diff -Nrcpad gcc-4.8.1/ChangeLog gcc-4.8.2/ChangeLog *** gcc-4.8.1/ChangeLog Fri May 31 09:00:41 2013 --- gcc-4.8.2/ChangeLog Wed Oct 16 07:18:46 2013 *************** *** 1,3 **** --- 1,12 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + + 2013-09-03 Richard Biener + + * configure.ac: Also allow ISL 0.12. + * configure: Regenerated. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/INSTALL/binaries.html gcc-4.8.2/INSTALL/binaries.html *** gcc-4.8.1/INSTALL/binaries.html Fri May 31 09:09:27 2013 --- gcc-4.8.2/INSTALL/binaries.html Wed Oct 16 07:28:04 2013 *************** *** 1,115 **** ! ! ! Installing GCC: Binaries ! ! ! ! ! ! ! ! ! !

Installing GCC: Binaries

! ! We are often asked about pre-compiled versions of GCC. While we cannot ! provide these for all platforms, below you'll find links to binaries for various platforms where creating them by yourself is not easy due to various reasons. ! !

Please note that we did not create these binaries, nor do we support them. If you have any problems installing them, please contact their makers. !

-


-

Return to the GCC Installation page - - - - - - --- 1,168 ---- ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

We are often asked about pre-compiled versions of GCC. While we cannot ! provide these for all platforms, below you’ll find links to binaries for various platforms where creating them by yourself is not easy due to various reasons. !

!

Please note that we did not create these binaries, nor do we support them. If you have any problems installing them, please contact their makers. +

+ ! !
!

Return to the GCC Installation page !

+ + + + + + diff -Nrcpad gcc-4.8.1/INSTALL/build.html gcc-4.8.2/INSTALL/build.html *** gcc-4.8.1/INSTALL/build.html Fri May 31 09:09:27 2013 --- gcc-4.8.2/INSTALL/build.html Wed Oct 16 07:28:03 2013 *************** *** 1,378 **** ! ! ! Installing GCC: Building ! ! ! ! ! ! ! ! - -

Installing GCC: Building

- - Now that GCC is configured, you are ready to build the compiler and - runtime libraries. !

Some commands executed when making the compiler may fail (return a ! nonzero status) and be ignored by make. These failures, which are often due to files that were not found, are expected, and can safely be ignored. ! !

It is normal to have compiler warnings when compiling certain files. Unless you are a GCC developer, you can generally ignore these warnings unless they cause compilation to fail. Developers should attempt to fix any warnings encountered, however they can temporarily continue past warnings-as-errors by specifying the configure flag ! --disable-werror. ! !

On certain old systems, defining certain environment variables such as ! CC can interfere with the functioning of make. ! !

If you encounter seemingly strange errors when trying to build the compiler in a directory other than the source directory, it could be because you have previously configured the compiler in the source directory. Make sure you have done all the necessary preparations. ! !

If you build GCC on a BSD system using a directory stored in an old System ! V file system, problems may occur in running fixincludes if the ! System V file system doesn't support symbolic links. These problems result in a failure to fix the declaration of size_t in ! sys/types.h. If you find that size_t is a signed type and that type mismatches occur, this could be the cause. ! !

The solution is not to use such a directory for building GCC. ! !

Similarly, when building from SVN or snapshots, or if you modify ! *.l files, you need the Flex lexical analyzer generator ! installed. If you do not modify *.l files, releases contain the Flex-generated files and you do not need Flex installed to build them. There is still one Flex-based lexical analyzer (part of the build machinery, not of GCC itself) that is used even if you only build the C front end. ! !

When building from SVN or snapshots, or if you modify Texinfo documentation, you need version 4.7 or later of Texinfo installed if you want Info documentation to be regenerated. Releases contain Info documentation pre-built for the unmodified documentation in the release. ! !

Building a native compiler

For a native build, the default configuration is to perform ! a 3-stage bootstrap of the compiler when ‘make’ is invoked. This will build the entire GCC system and ensure that it compiles ! itself correctly. It can be disabled with the --disable-bootstrap ! parameter to ‘configure’, but bootstrapping is suggested because the compiler will be tested more completely and could also have better performance. !

The bootstrapping process will complete the following steps: ! !

!

If you are short on disk space you might consider ‘make ! bootstrap-lean’ instead. The sequence of compilation is the same described above, but object files from the stage1 and stage2 of the 3-stage bootstrap of the compiler are deleted as soon as they are no longer needed. ! !

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers, set BOOT_CFLAGS on the command line when ! doing ‘make’. For example, if you want to save additional space during the bootstrap and in the final installation as well, you can build the compiler binaries without debugging information as in the following example. This will save roughly 40% of disk space both for the bootstrap and the final installation. (Libraries will still contain debugging information.) !

     make BOOT_CFLAGS='-O' bootstrap
! 
!

You can place non-default optimization flags into BOOT_CFLAGS; they ! are less well tested here than the default of ‘-g -O2’, but should still work. In a few cases, you may find that you need to specify special ! flags such as -msoft-float here to complete the bootstrap; or, if the native compiler miscompiles the stage1 compiler, you may need to work around this, by choosing BOOT_CFLAGS to avoid the parts ! of the stage1 compiler that were miscompiled, or by using ‘make ! bootstrap4’ to increase the number of stages of bootstrap. ! !

BOOT_CFLAGS does not apply to bootstrapped target libraries. Since these are always compiled with the compiler currently being bootstrapped, you can use CFLAGS_FOR_TARGET to modify their ! compilation flags, as for non-bootstrapped target libraries. Again, if the native compiler miscompiles the stage1 compiler, you may need to work around this by avoiding non-working parts of the stage1 compiler. Use STAGE1_TFLAGS to this end. ! !

If you used the flag --enable-languages=... to restrict ! the compilers to be built, only those you've actually enabled will be built. This will of course only build those runtime libraries, for which the particular compiler has been built. Please note, ! that re-defining LANGUAGES when calling ‘makedoes not work anymore! ! !

If the comparison of stage2 and stage3 fails, this normally indicates that the stage2 compiler has compiled GCC incorrectly, and is therefore a potentially serious bug which you should investigate and report. (On a few systems, meaningful comparison of object files is impossible; they always appear “different”. If you encounter this problem, you will ! need to disable comparison in the Makefile.) ! !

If you do not want to bootstrap your compiler, you can configure with ! --disable-bootstrap. In particular cases, you may want to bootstrap your compiler even if the target system is not the same as the one you are building on: for example, you could build a powerpc-unknown-linux-gnu toolchain on a powerpc64-unknown-linux-gnu host. In this case, pass ! --enable-bootstrap to the configure script. ! !

BUILD_CONFIG can be used to bring in additional customization ! to the build. It can be set to a whitespace-separated list of names. ! For each such NAME, top-level config/NAME.mk will ! be included by the top-level Makefile, bringing in any settings it contains. The default BUILD_CONFIG can be set using the ! configure option --with-build-config=NAME.... Some examples of supported build configurations are: ! !

!
bootstrap-O1
Removes any -O-started option from BOOT_CFLAGS, and adds ! -O1 to it. ‘BUILD_CONFIG=bootstrap-O1’ is equivalent to ! ‘BOOT_CFLAGS='-g -O1'’. ! !
bootstrap-O3
Analogous to bootstrap-O1. ! !
bootstrap-lto
Enables Link-Time Optimization for host tools during bootstrapping. ! ‘BUILD_CONFIG=bootstrap-lto’ is equivalent to adding ! -flto to ‘BOOT_CFLAGS’. ! !
bootstrap-debug
Verifies that the compiler generates the same executable code, whether or not it is asked to emit debug information. To this end, this option builds stage2 host programs without debug information, and uses ! contrib/compare-debug to compare them with the stripped stage3 object files. If BOOT_CFLAGS is overridden so as to not enable ! debug information, stage2 will have it, and stage3 won't. This option is enabled by default when GCC bootstrapping is enabled, if strip can turn object files compiled with and without debug info into identical object files. In addition to better test coverage, this option makes default bootstraps faster and leaner. ! !
bootstrap-debug-big
Rather than comparing stripped object files, as in bootstrap-debug, this option saves internal compiler dumps during stage2 and stage3 and compares them as well, which helps catch additional potential problems, but at a great cost in terms of disk ! space. It can be specified in addition to ‘bootstrap-debug’. ! !
bootstrap-debug-lean
This option saves disk space compared with bootstrap-debug-big, but at the expense of some recompilation. Instead of saving the dumps of stage2 and stage3 until the final compare, it uses ! -fcompare-debug to generate, compare and remove the dumps during stage3, repeating the compilation that already took place in stage2, whose dumps were not saved. ! !
bootstrap-debug-lib
This option tests executable code invariance over debug information generation on target libraries, just like bootstrap-debug-lean tests it on host programs. It builds stage3 libraries with ! -fcompare-debug, and it can be used along with any of the bootstrap-debug options above. ! !

There aren't -lean or -big counterparts to this option because most libraries are only build in stage3, so bootstrap compares would not get significant coverage. Moreover, the few libraries built ! in stage2 are used in stage3 host programs, so we wouldn't want to compile stage2 libraries with different options for comparison purposes. ! !

bootstrap-debug-ckovw
Arranges for error messages to be issued if the compiler built on any ! stage is run without the option -fcompare-debug. This is ! useful to verify the full -fcompare-debug testing coverage. It must be used along with bootstrap-debug-lean and bootstrap-debug-lib. ! !
bootstrap-time
Arranges for the run time of each program started by the GCC driver, ! built in any stage, to be logged to time.log, in the top level of the build tree. !
! !

Building a cross compiler

When building a cross compiler, it is not generally possible to do a 3-stage bootstrap of the compiler. This makes for an interesting problem as parts of GCC can only be built with GCC. ! !

To build a cross compiler, we recommend first building and installing a native compiler. You can then use the native GCC compiler to build the cross compiler. The installed native compiler needs to be GCC version 2.95 or later. ! !

If the cross compiler is to be built with support for the Java programming language and the ability to compile .java source files is desired, the installed native compiler used to build the cross compiler needs to be the same GCC version as the cross compiler. In addition the cross compiler needs to be configured with ! --with-ecj-jar=.... ! !

Assuming you have already installed a native copy of GCC and configured ! your cross compiler, issue the command make, which performs the following steps: !

!

Note that if an error occurs in any step the make process will exit. !

If you are not building GNU binutils in the same source tree as GCC, you will need a cross-assembler and cross-linker installed before configuring GCC. Put them in the directory ! prefix/target/bin. Here is a table of the tools you should put in this directory: ! !

!
as
This should be the cross-assembler. ! !
ld
This should be the cross-linker. ! !
ar
This should be the cross-archiver: a program which can manipulate ! archive files (linker libraries) in the target machine's format. ! !
ranlib
This should be a program to construct a symbol table in an archive file.
!

The installation of GCC will find these programs in that directory, and copy or link them to the proper place to for the cross-compiler to find them when run later. ! !

The easiest way to provide these files is to build the Binutils package. ! Configure it with the same --host and --target options that you use for configuring GCC, then build and install them. They install their executables automatically into the proper directory. Alas, they do not support all the targets that GCC supports. ! !

If you are not building a C library in the same source tree as GCC, you should also provide the target libraries and headers before configuring GCC, specifying the directories with ! --with-sysroot or --with-headers and ! --with-libs. Many targets also require “start files” such ! as crt0.o and ! crtn.o which are linked into each executable. There may be several ! alternatives for crt0.o, for use with profiling or other ! compilation options. Check your target's definition of STARTFILE_SPEC to find out what start files it uses. ! !

Building in parallel

GNU Make 3.80 and above, which is necessary to build GCC, support ! building in parallel. To activate this, you can use ‘make -j 2’ ! instead of ‘make’. You can also specify a bigger number, and in most cases using a value greater than the number of processors in your machine will result in fewer and shorter I/O latency hits, thus improving overall throughput; this is especially true for slow drives and network filesystems. ! !

Building the Ada compiler

In order to build GNAT, the Ada compiler, you need a working GNAT ! compiler (GCC version 4.0 or later). ! This includes GNAT tools such as gnatmake and ! gnatlink, since the Ada front end is written in Ada and uses some GNAT-specific extensions. ! !

In order to build a cross compiler, it is suggested to install the new compiler as native first, and then use it to build the cross compiler. ! !

configure does not test whether the GNAT installation works and has a sufficiently recent version; if too old a GNAT version is ! installed, the build will fail unless --enable-languages is used to disable building the Ada front end. ! !

ADA_INCLUDE_PATH and ADA_OBJECT_PATH environment variables must not be set when building the Ada compiler, the Ada tools, or the Ada runtime libraries. You can check that your build environment is clean ! by verifying that ‘gnatls -v’ lists only one explicit path in each section. ! !

Building with profile feedback

It is possible to use profile feedback to optimize the compiler itself. This should result in a faster compiler binary. Experiments done on x86 using gcc 3.3 showed approximately 7 percent speedup on compiling C programs. To bootstrap the compiler with profile feedback, use make profiledbootstrap. ! !

When ‘make profiledbootstrap’ is run, it will first build a stage1 compiler. This compiler is used to build a stageprofile compiler instrumented to collect execution counts of instruction and branch ! probabilities. Then runtime libraries are compiled with profile collected. Finally a stagefeedback compiler is built using the information collected. ! !

Unlike standard bootstrap, several additional restrictions apply. The ! compiler used to build stage1 needs to support a 64-bit integral type. It is recommended to only use GCC for this. Also parallel make is currently not supported since collisions in profile collecting may occur. -


-

Return to the GCC Installation page - - - - - - - - - --- 1,458 ---- ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Now that GCC is configured, you are ready to build the compiler and ! runtime libraries. !

!

Some commands executed when making the compiler may fail (return a ! nonzero status) and be ignored by make. These failures, which are often due to files that were not found, are expected, and can safely be ignored. !

!

It is normal to have compiler warnings when compiling certain files. Unless you are a GCC developer, you can generally ignore these warnings unless they cause compilation to fail. Developers should attempt to fix any warnings encountered, however they can temporarily continue past warnings-as-errors by specifying the configure flag ! --disable-werror. !

!

On certain old systems, defining certain environment variables such as ! CC can interfere with the functioning of make. !

!

If you encounter seemingly strange errors when trying to build the compiler in a directory other than the source directory, it could be because you have previously configured the compiler in the source directory. Make sure you have done all the necessary preparations. !

!

If you build GCC on a BSD system using a directory stored in an old System ! V file system, problems may occur in running fixincludes if the ! System V file system doesn’t support symbolic links. These problems result in a failure to fix the declaration of size_t in ! sys/types.h. If you find that size_t is a signed type and that type mismatches occur, this could be the cause. !

!

The solution is not to use such a directory for building GCC. !

!

Similarly, when building from SVN or snapshots, or if you modify ! *.l files, you need the Flex lexical analyzer generator ! installed. If you do not modify *.l files, releases contain the Flex-generated files and you do not need Flex installed to build them. There is still one Flex-based lexical analyzer (part of the build machinery, not of GCC itself) that is used even if you only build the C front end. !

!

When building from SVN or snapshots, or if you modify Texinfo documentation, you need version 4.7 or later of Texinfo installed if you want Info documentation to be regenerated. Releases contain Info documentation pre-built for the unmodified documentation in the release. !

! !

Building a native compiler

For a native build, the default configuration is to perform ! a 3-stage bootstrap of the compiler when ‘make’ is invoked. This will build the entire GCC system and ensure that it compiles ! itself correctly. It can be disabled with the --disable-bootstrap ! parameter to ‘configure’, but bootstrapping is suggested because the compiler will be tested more completely and could also have better performance. +

+

The bootstrapping process will complete the following steps: +

+ !

If you are short on disk space you might consider ‘make ! bootstrap-lean’ instead. The sequence of compilation is the same described above, but object files from the stage1 and stage2 of the 3-stage bootstrap of the compiler are deleted as soon as they are no longer needed. !

!

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers, set BOOT_CFLAGS on the command line when ! doing ‘make’. For example, if you want to save additional space during the bootstrap and in the final installation as well, you can build the compiler binaries without debugging information as in the following example. This will save roughly 40% of disk space both for the bootstrap and the final installation. (Libraries will still contain debugging information.) +

+
+
make BOOT_CFLAGS='-O' bootstrap
+ 
!

You can place non-default optimization flags into BOOT_CFLAGS; they ! are less well tested here than the default of ‘-g -O2’, but should still work. In a few cases, you may find that you need to specify special ! flags such as -msoft-float here to complete the bootstrap; or, if the native compiler miscompiles the stage1 compiler, you may need to work around this, by choosing BOOT_CFLAGS to avoid the parts ! of the stage1 compiler that were miscompiled, or by using ‘make ! bootstrap4’ to increase the number of stages of bootstrap. !

!

BOOT_CFLAGS does not apply to bootstrapped target libraries. Since these are always compiled with the compiler currently being bootstrapped, you can use CFLAGS_FOR_TARGET to modify their ! compilation flags, as for non-bootstrapped target libraries. Again, if the native compiler miscompiles the stage1 compiler, you may need to work around this by avoiding non-working parts of the stage1 compiler. Use STAGE1_TFLAGS to this end. !

!

If you used the flag --enable-languages=… to restrict ! the compilers to be built, only those you’ve actually enabled will be built. This will of course only build those runtime libraries, for which the particular compiler has been built. Please note, ! that re-defining LANGUAGES when calling ‘makedoes not work anymore! !

!

If the comparison of stage2 and stage3 fails, this normally indicates that the stage2 compiler has compiled GCC incorrectly, and is therefore a potentially serious bug which you should investigate and report. (On a few systems, meaningful comparison of object files is impossible; they always appear “different”. If you encounter this problem, you will ! need to disable comparison in the Makefile.) !

!

If you do not want to bootstrap your compiler, you can configure with ! --disable-bootstrap. In particular cases, you may want to bootstrap your compiler even if the target system is not the same as the one you are building on: for example, you could build a powerpc-unknown-linux-gnu toolchain on a powerpc64-unknown-linux-gnu host. In this case, pass ! --enable-bootstrap to the configure script. !

!

BUILD_CONFIG can be used to bring in additional customization ! to the build. It can be set to a whitespace-separated list of names. ! For each such NAME, top-level config/NAME.mk will ! be included by the top-level Makefile, bringing in any settings it contains. The default BUILD_CONFIG can be set using the ! configure option --with-build-config=NAME.... Some examples of supported build configurations are: !

!
!
bootstrap-O1
!

Removes any -O-started option from BOOT_CFLAGS, and adds ! -O1 to it. ‘BUILD_CONFIG=bootstrap-O1’ is equivalent to ! ‘BOOT_CFLAGS='-g -O1'’. !

!
!
bootstrap-O3
!

Analogous to bootstrap-O1. !

!
!
bootstrap-lto
!

Enables Link-Time Optimization for host tools during bootstrapping. ! ‘BUILD_CONFIG=bootstrap-lto’ is equivalent to adding ! -flto to ‘BOOT_CFLAGS’. !

!
!
bootstrap-debug
!

Verifies that the compiler generates the same executable code, whether or not it is asked to emit debug information. To this end, this option builds stage2 host programs without debug information, and uses ! contrib/compare-debug to compare them with the stripped stage3 object files. If BOOT_CFLAGS is overridden so as to not enable ! debug information, stage2 will have it, and stage3 won’t. This option is enabled by default when GCC bootstrapping is enabled, if strip can turn object files compiled with and without debug info into identical object files. In addition to better test coverage, this option makes default bootstraps faster and leaner. !

!
!
bootstrap-debug-big
!

Rather than comparing stripped object files, as in bootstrap-debug, this option saves internal compiler dumps during stage2 and stage3 and compares them as well, which helps catch additional potential problems, but at a great cost in terms of disk ! space. It can be specified in addition to ‘bootstrap-debug’. !

!
!
bootstrap-debug-lean
!

This option saves disk space compared with bootstrap-debug-big, but at the expense of some recompilation. Instead of saving the dumps of stage2 and stage3 until the final compare, it uses ! -fcompare-debug to generate, compare and remove the dumps during stage3, repeating the compilation that already took place in stage2, whose dumps were not saved. !

!
!
bootstrap-debug-lib
!

This option tests executable code invariance over debug information generation on target libraries, just like bootstrap-debug-lean tests it on host programs. It builds stage3 libraries with ! -fcompare-debug, and it can be used along with any of the bootstrap-debug options above. !

!

There aren’t -lean or -big counterparts to this option because most libraries are only build in stage3, so bootstrap compares would not get significant coverage. Moreover, the few libraries built ! in stage2 are used in stage3 host programs, so we wouldn’t want to compile stage2 libraries with different options for comparison purposes. !

!
!
bootstrap-debug-ckovw
!

Arranges for error messages to be issued if the compiler built on any ! stage is run without the option -fcompare-debug. This is ! useful to verify the full -fcompare-debug testing coverage. It must be used along with bootstrap-debug-lean and bootstrap-debug-lib. !

!
!
bootstrap-time
!

Arranges for the run time of each program started by the GCC driver, ! built in any stage, to be logged to time.log, in the top level of the build tree. +

+
+
! !

Building a cross compiler

When building a cross compiler, it is not generally possible to do a 3-stage bootstrap of the compiler. This makes for an interesting problem as parts of GCC can only be built with GCC. !

!

To build a cross compiler, we recommend first building and installing a native compiler. You can then use the native GCC compiler to build the cross compiler. The installed native compiler needs to be GCC version 2.95 or later. !

!

If the cross compiler is to be built with support for the Java programming language and the ability to compile .java source files is desired, the installed native compiler used to build the cross compiler needs to be the same GCC version as the cross compiler. In addition the cross compiler needs to be configured with ! --with-ecj-jar=…. !

!

Assuming you have already installed a native copy of GCC and configured ! your cross compiler, issue the command make, which performs the following steps: +

+ !

Note that if an error occurs in any step the make process will exit. !

!

If you are not building GNU binutils in the same source tree as GCC, you will need a cross-assembler and cross-linker installed before configuring GCC. Put them in the directory ! prefix/target/bin. Here is a table of the tools you should put in this directory: !

!
!
as
!

This should be the cross-assembler. !

!
!
ld
!

This should be the cross-linker. !

!
!
ar
!

This should be the cross-archiver: a program which can manipulate ! archive files (linker libraries) in the target machine’s format. !

!
!
ranlib
!

This should be a program to construct a symbol table in an archive file. !

!

The installation of GCC will find these programs in that directory, and copy or link them to the proper place to for the cross-compiler to find them when run later. !

!

The easiest way to provide these files is to build the Binutils package. ! Configure it with the same --host and --target options that you use for configuring GCC, then build and install them. They install their executables automatically into the proper directory. Alas, they do not support all the targets that GCC supports. !

!

If you are not building a C library in the same source tree as GCC, you should also provide the target libraries and headers before configuring GCC, specifying the directories with ! --with-sysroot or --with-headers and ! --with-libs. Many targets also require “start files” such ! as crt0.o and ! crtn.o which are linked into each executable. There may be several ! alternatives for crt0.o, for use with profiling or other ! compilation options. Check your target’s definition of STARTFILE_SPEC to find out what start files it uses. !

! !

Building in parallel

GNU Make 3.80 and above, which is necessary to build GCC, support ! building in parallel. To activate this, you can use ‘make -j 2’ ! instead of ‘make’. You can also specify a bigger number, and in most cases using a value greater than the number of processors in your machine will result in fewer and shorter I/O latency hits, thus improving overall throughput; this is especially true for slow drives and network filesystems. !

! !

Building the Ada compiler

In order to build GNAT, the Ada compiler, you need a working GNAT ! compiler (GCC version 4.0 or later). ! This includes GNAT tools such as gnatmake and ! gnatlink, since the Ada front end is written in Ada and uses some GNAT-specific extensions. !

!

In order to build a cross compiler, it is suggested to install the new compiler as native first, and then use it to build the cross compiler. !

!

configure does not test whether the GNAT installation works and has a sufficiently recent version; if too old a GNAT version is ! installed, the build will fail unless --enable-languages is used to disable building the Ada front end. !

!

ADA_INCLUDE_PATH and ADA_OBJECT_PATH environment variables must not be set when building the Ada compiler, the Ada tools, or the Ada runtime libraries. You can check that your build environment is clean ! by verifying that ‘gnatls -v’ lists only one explicit path in each section. !

! !

Building with profile feedback

It is possible to use profile feedback to optimize the compiler itself. This should result in a faster compiler binary. Experiments done on x86 using gcc 3.3 showed approximately 7 percent speedup on compiling C programs. To bootstrap the compiler with profile feedback, use make profiledbootstrap. !

!

When ‘make profiledbootstrap’ is run, it will first build a stage1 compiler. This compiler is used to build a stageprofile compiler instrumented to collect execution counts of instruction and branch ! probabilities. Then runtime libraries are compiled with profile collected. Finally a stagefeedback compiler is built using the information collected. !

!

Unlike standard bootstrap, several additional restrictions apply. The ! compiler used to build stage1 needs to support a 64-bit integral type. It is recommended to only use GCC for this. Also parallel make is currently not supported since collisions in profile collecting may occur. +

+
+

Return to the GCC Installation page +

+ + + + +
+ + + + + diff -Nrcpad gcc-4.8.1/INSTALL/configure.html gcc-4.8.2/INSTALL/configure.html *** gcc-4.8.1/INSTALL/configure.html Fri May 31 09:09:27 2013 --- gcc-4.8.2/INSTALL/configure.html Wed Oct 16 07:28:02 2013 *************** *** 1,1293 **** ! ! ! Installing GCC: Configuration ! ! ! ! ! ! ! ! - -

Installing GCC: Configuration

- - Like most GNU software, GCC must be configured before it can be built. - This document describes the recommended configuration procedure - for both native and cross targets. !

We use srcdir to refer to the toplevel source directory for ! GCC; we use objdir to refer to the toplevel build/object directory. -

If you obtained the sources via SVN, srcdir must refer to the top - gcc directory, the one where the MAINTAINERS file can be - found, and not its gcc subdirectory, otherwise the build will fail. !

If either srcdir or objdir is located on an automounted NFS ! file system, the shell's built-in pwd command will return temporary pathnames. Using these can lead to various sorts of build ! problems. To avoid this issue, set the PWDCMD environment ! variable to an automounter-aware pwd command, e.g., ! pawd or ‘amq -w’, during the configuration and build phases. ! !

First, we highly recommend that GCC be built into a separate directory from the sources which does not reside within the source tree. This is how we generally build GCC; building ! where srcdir == objdir should still work, but doesn't get extensive testing; building where objdir is a subdirectory of srcdir is unsupported. ! !

If you have previously built GCC in the same directory for a ! different target machine, do ‘make distclean’ to delete all files ! that might be invalid. One of the files this deletes is Makefile; ! if ‘make distclean’ complains that Makefile does not exist ! or issues a message like “don't know how to make distclean” it probably means that the directory is already suitably clean. However, with the recommended method of building in a separate objdir, you should simply use a different objdir for each target. ! !

Second, when configuring a native system, either cc or ! gcc must be in your path or you must set CC in your environment before running configure. Otherwise the configuration scripts may fail. !

To configure GCC: !

     % mkdir objdir
!      % cd objdir
!      % srcdir/configure [options] [target]
! 
!

Distributor options

If you will be distributing binary versions of GCC, with modifications to the source code, you should use the options described in this section to make clear that your version contains modifications. ! !

!
--with-pkgversion=version
Specify a string that identifies your package. You may wish to include a build number or build date. This version string will be ! included in the output of gcc --version. This suffix does ! not replace the default version string, only the ‘GCC’ part. ! !

The default value is ‘GCC’. ! !

--with-bugurl=url
Specify the URL that users should visit if they wish to report a bug. You are of course welcome to forward bugs reported to you to the FSF, if you determine that they are not bugs in your modifications. !

The default value refers to the FSF's GCC bug tracker. ! !

! !

Target specification

! ! !

Options specification

Use options to override several configure time options for ! GCC. A list of supported options follows; ‘configure ! --help’ may list other options, but those not listed below may not work and should not normally be used. ! !

Note that each --enable option has a corresponding ! --disable option and that each --with option has a ! corresponding --without option. ! !

!
--prefix=dirname
Specify the toplevel installation directory. This is the recommended way to install the tools into a directory other than the default. The toplevel installation directory defaults to ! /usr/local. ! !

We highly recommend against dirname being the same or a subdirectory of objdir or vice versa. If specifying a directory ! beneath a user's home directory tree, some shells will not expand ! dirname correctly if it contains the ‘~’ metacharacter; use ! $HOME instead. ! !

The following standard autoconf options are supported. Normally you should not need to use these options. !

!
--exec-prefix=dirname
Specify the toplevel installation directory for architecture-dependent files. The default is prefix. ! !
--bindir=dirname
Specify the installation directory for the executables called by users ! (such as gcc and g++). The default is ! exec-prefix/bin. ! !
--libdir=dirname
Specify the installation directory for object code libraries and ! internal data files of GCC. The default is exec-prefix/lib. ! !
--libexecdir=dirname
Specify the installation directory for internal executables of GCC. ! The default is exec-prefix/libexec. ! !
--with-slibdir=dirname
Specify the installation directory for the shared libgcc library. The default is libdir. ! !
--datarootdir=dirname
Specify the root of the directory tree for read-only architecture-independent ! data files referenced by GCC. The default is prefix/share. ! !
--infodir=dirname
Specify the installation directory for documentation in info format. ! The default is datarootdir/info. ! !
--datadir=dirname
Specify the installation directory for some architecture-independent data files referenced by GCC. The default is datarootdir. ! !
--docdir=dirname
Specify the installation directory for documentation files (other ! than Info) for GCC. The default is datarootdir/doc. ! !
--htmldir=dirname
Specify the installation directory for HTML documentation files. The default is docdir. ! !
--pdfdir=dirname
Specify the installation directory for PDF documentation files. The default is docdir. ! !
--mandir=dirname
Specify the installation directory for manual pages. The default is ! datarootdir/man. (Note that the manual pages are only extracts from the full GCC manuals, which are provided in Texinfo format. The manpages are derived by an automatic conversion process from parts of the full manual.) ! !
--with-gxx-include-dir=dirname
Specify the installation directory for G++ header files. The default depends on other configuration options, and differs between cross and native configurations. ! !
--with-specs=specs
Specify additional command line driver SPECS. This can be useful if you need to turn on a non-standard feature by ! default without modifying the compiler's source code, for instance ! --with-specs=%{!fcommon:%{!fno-common:-fno-common}}. See “Spec Files” in the main manual !
! !
--program-prefix=prefix
GCC supports some transformations of the names of its programs when installing them. This option prepends prefix to the names of programs to install in bindir (see above). For example, specifying ! --program-prefix=foo- would result in ‘gcc’ ! being installed as /usr/local/bin/foo-gcc. ! !
--program-suffix=suffix
Appends suffix to the names of programs to install in bindir ! (see above). For example, specifying --program-suffix=-3.1 ! would result in ‘gcc’ being installed as ! /usr/local/bin/gcc-3.1. ! !
--program-transform-name=pattern
Applies the ‘sed’ script pattern to be applied to the names of programs to install in bindir (see above). pattern has to ! consist of one or more basic ‘sed’ editing commands, separated by ! semicolons. For example, if you want the ‘gcc’ program name to be ! transformed to the installed program /usr/local/bin/myowngcc and ! the ‘g++’ program name to be transformed to ! /usr/local/bin/gspecial++ without changing other program names, you could use the pattern ! --program-transform-name='s/^gcc$/myowngcc/; s/^g++$/gspecial++/' to achieve this effect. ! !

All three options can be combined and used together, resulting in more complex conversion patterns. As a basic rule, prefix (and suffix) are prepended (appended) before further transformations can happen with a special transformation script pattern. ! !

As currently implemented, this option only takes effect for native ! builds; cross compiler binaries' names are not transformed even when a transformation is explicitly asked for by one of these options. ! !

For native builds, some of the installed programs are also installed with the target alias in front of their name, as in ! ‘i686-pc-linux-gnu-gcc’. All of the above transformations happen before the target alias is prepended to the name—so, specifying ! --program-prefix=foo- and program-suffix=-3.1, the resulting binary would be installed as ! /usr/local/bin/i686-pc-linux-gnu-foo-gcc-3.1. ! !

As a last shortcoming, none of the installed Ada programs are transformed yet, which will be fixed in some time. ! !

--with-local-prefix=dirname
Specify the installation directory for local include files. The default is ! /usr/local. Specify this option if you want the compiler to ! search directory dirname/include for locally installed ! header files instead of /usr/local/include. ! !

You should specify --with-local-prefix only if your ! site has a different convention (not /usr/local) for where to put site-specific files. ! !

The default value for --with-local-prefix is /usr/local ! regardless of the value of --prefix. Specifying ! --prefix has no effect on which directory GCC searches for local header files. This may seem counterintuitive, but actually it is logical. ! !

The purpose of --prefix is to specify where to install ! GCC. The local header files in /usr/local/include—if you put any in that directory—are not part of GCC. They are part of other programs—perhaps many others. (GCC installs its own header files in ! another directory which is based on the --prefix value.) ! !

Both the local-prefix include directory and the GCC-prefix include ! directory are part of GCC's “system include” directories. Although these two directories are not fixed, they need to be searched in the proper order for the correct processing of the include_next directive. The local-prefix include directory is searched before the GCC-prefix include directory. Another characteristic of system include directories is that pedantic warnings are turned off for headers in these directories. ! !

Some autoconf macros add -I directory options to the compiler command line, to ensure that directories containing installed ! packages' headers are searched. When directory is one of GCC's system include directories, GCC will ignore the option so that system directories continue to be processed in the correct order. This may result in a search order different from what was specified but the directory will still be searched. ! !

GCC automatically searches for ordinary libraries using ! GCC_EXEC_PREFIX. Thus, when the same installation prefix is used for both GCC and packages, GCC will automatically search for both headers and libraries. This provides a configuration that is easy to use. GCC behaves in a manner similar to that when it is ! installed as a system compiler in /usr. ! !

Sites that need to install multiple versions of GCC may not want to use the above simple configuration. It is possible to use the ! --program-prefix, --program-suffix and ! --program-transform-name options to install multiple versions into a single directory, but it may be simpler to use different prefixes ! and the --with-local-prefix option to specify the location of the site-specific files for each version. It will then be necessary for users to specify explicitly the location of local site libraries ! (e.g., with LIBRARY_PATH). ! !

The same value can be used for both --with-local-prefix and ! --prefix provided it is not /usr. This can be used ! to avoid the default search of /usr/local/include. ! !

Do not specify /usr as the --with-local-prefix! ! The directory you use for --with-local-prefix must not ! contain any of the system's standard header files. If it did contain them, certain programs would be miscompiled (including GNU Emacs, on certain targets), because this would override and nullify the header ! file corrections made by the fixincludes script. ! !

Indications are that people who use this option use it based on mistaken ideas of what it is for. People use it as if it specified where to install part of GCC. Perhaps they make this assumption because installing GCC creates the directory. ! !

--with-native-system-header-dir=dirname
Specifies that dirname is the directory that contains native system ! header files, rather than /usr/include. This option is most useful if you are creating a compiler that should be isolated from the system as much as possible. It is most commonly used with the ! --with-sysroot option and will cause GCC to search dirname inside the system root specified by that option. ! !
--enable-shared[=package[,...]]
Build shared versions of libraries, if shared libraries are supported on the target platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default on all platforms that support shared libraries. ! !

If a list of packages is given as an argument, build shared libraries only for the listed packages. For other packages, only static libraries will be built. Package names currently recognized in the GCC tree are ! ‘libgcc’ (also known as ‘gcc’), ‘libstdc++’ (not ! ‘libstdc++-v3’), ‘libffi’, ‘zlib’, ‘boehm-gc’, ! ‘ada’, ‘libada’, ‘libjava’, ‘libgo’, and ‘libobjc’. ! Note ‘libiberty’ does not support shared libraries at all. ! !

Use --disable-shared to build only static libraries. Note that ! --disable-shared does not accept a list of package names as ! argument, only --enable-shared does. ! !

--with-gnu-as
Specify that the compiler should assume that the assembler it finds is the GNU assembler. However, this does not modify the rules to find an assembler and will result in confusion if the assembler found is not actually the GNU assembler. (Confusion may also result if the compiler finds the GNU assembler but has not been ! configured with --with-gnu-as.) If you have more than one assembler installed on your system, you may want to use this option in ! connection with --with-as=pathname or ! --with-build-time-tools=pathname. ! !

The following systems are the only ones where it makes a difference whether you use the GNU assembler. On any other system, ! --with-gnu-as has no effect. ! !

    !
  • hppa1.0-any-any’ !
  • hppa1.1-any-any’ !
  • sparc-sun-solaris2.any’ !
  • sparc64-any-solaris2.any’ !
!
--with-as=pathname
Specify that the compiler should use the assembler pointed to by pathname, rather than the one found by the standard rules to find an assembler, which are: !
    !
  • Unless GCC is being built with a cross compiler, check the ! libexec/gcc/target/version directory. ! libexec defaults to exec-prefix/libexec; exec-prefix defaults to prefix, which ! defaults to /usr/local unless overridden by the ! --prefix=pathname switch described above. target ! is the target system triple, such as ‘sparc-sun-solaris2.7’, and version denotes the GCC version, such as 3.0. !
  • If the target system is the same that you are building on, check ! operating system specific directories (e.g. /usr/ccs/bin on Sun Solaris 2). !
  • Check in the PATH for a tool whose name is prefixed by the target system triple. !
  • Check in the PATH for a tool whose name is not prefixed by the target system triple, if the host and target system triple are the same (in other words, we use a host tool if it can be used for ! the target as well). !
!

You may want to use --with-as if no assembler is installed in the directories listed above, or if you have multiple assemblers installed and want to choose one that is not found by the above rules. ! !

--with-gnu-ld
Same as --with-gnu-as but for the linker. ! !
--with-ld=pathname
Same as --with-as but for the linker. ! !
--with-stabs
Specify that stabs debugging information should be used instead of whatever format the host normally uses. Normally GCC uses the same debug format as the host system. ! !

On MIPS based systems and on Alphas, you must specify whether you want GCC to create the normal ECOFF debugging format, or to use BSD-style stabs passed through the ECOFF symbol table. The normal ECOFF debug format cannot fully handle languages other than C. BSD stabs format can handle other languages, but it only works with the GNU debugger GDB. ! !

Normally, GCC uses the ECOFF debugging format by default; if you ! prefer BSD stabs, specify --with-stabs when you configure GCC. ! !

No matter which default you choose when you configure GCC, the user ! can use the -gcoff and -gstabs+ options to specify explicitly the debug format for a particular compilation. ! !

--with-stabs is meaningful on the ISC system on the 386, also, if ! --with-gas is used. It selects use of stabs debugging information embedded in COFF output. This kind of debugging information supports C++ well; ordinary COFF debugging information does not. ! !

--with-stabs is also meaningful on 386 systems running SVR4. It selects use of stabs debugging information embedded in ELF output. The C++ compiler currently (2.6.0) does not support the DWARF debugging information normally used on 386 SVR4 platforms; stabs provide a workable alternative. This requires gas and gdb, as the normal SVR4 tools can not generate or interpret stabs. ! !

--with-tls=dialect
Specify the default TLS dialect, for systems were there is a choice. For ARM targets, possible values for dialect are gnu or gnu2, which select between the original GNU dialect and the GNU TLS descriptor-based dialect. ! !
--enable-multiarch
Specify whether to enable or disable multiarch support. The default is to check for glibc start files in a multiarch location, and enable it if the files are found. The auto detection is enabled for native builds, ! and for cross builds configured with --with-sysroot, and without ! --with-native-system-header-dir. More documentation about multiarch can be found at http://wiki.debian.org/Multiarch. ! !
--disable-multilib
Specify that multiple target libraries to support different target variants, calling conventions, etc. should not be built. The default is to build a predefined set of them. ! !

Some targets provide finer-grained control over which multilibs are built ! (e.g., --disable-softfloat): !

!
arm-*-*
fpu, 26bit, underscore, interwork, biendian, nofmult. ! !
m68*-*-*
softfloat, m68881, m68000, m68020. ! !
mips*-*-*
single-float, biendian, softfloat. ! !
powerpc*-*-*, rs6000*-*-*
aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, biendian, sysv, aix. !
! !
--with-multilib-list=list
--without-multilib-list
Specify what multilibs to build. Currently only implemented for sh*-*-* and x86-64-*-linux*. ! !
!
sh*-*-*
list is a comma separated list of CPU names. These must be of the form sh* or m* (in which case they match the compiler option for that processor). The list should not contain any endian options - ! these are handled by --with-endian. ! !

If list is empty, then there will be no multilibs for extra processors. The multilib for the secondary endian remains enabled. ! !

As a special case, if an entry in the list starts with a ! ! (exclamation point), then it is added to the list of excluded multilibs. ! Entries of this sort should be compatible with ‘MULTILIB_EXCLUDES’ (once the leading ! has been stripped). ! !

If --with-multilib-list is not given, then a default set of ! multilibs is selected based on the value of --target. This is usually the complete set of libraries, but some targets imply a more specialized subset. ! !

Example 1: to configure a compiler for SH4A only, but supporting both endians, with little endian being the default: !

               --with-cpu=sh4a --with-endian=little,big --with-multilib-list=
! 
!

Example 2: to configure a compiler for both SH4A and SH4AL-DSP, but with only little endian SH4AL: !

               --with-cpu=sh4a --with-endian=little,big \
!                --with-multilib-list=sh4al,!mb/m4al
! 
!
x86-64-*-linux*
list is a comma separated list of m32, m64 and mx32 to enable 32-bit, 64-bit and x32 run-time libraries, respectively. If list is empty, then there will be no multilibs and only the default run-time library will be enabled. ! !

If --with-multilib-list is not given, then only 32-bit and ! 64-bit run-time libraries will be enabled.

!
--with-endian=endians
Specify what endians to use. Currently only implemented for sh*-*-*. ! !

endians may be one of the following: !

!
big
Use big endian exclusively. !
little
Use little endian exclusively. !
big,little
Use big endian by default. Provide a multilib for little endian. !
little,big
Use little endian by default. Provide a multilib for big endian.
!
--enable-threads
Specify that the target supports threads. This affects the Objective-C compiler and runtime ! library, and exception handling for other languages like C++ and Java. On some systems, this is the default. ! !

In general, the best (and, in many cases, the only known) threading model available will be configured for use. Beware that on some systems, GCC has not been taught what threading models are generally ! available for the system. In this case, --enable-threads is an ! alias for --enable-threads=single. ! !

--disable-threads
Specify that threading support should be disabled for the system. ! This is an alias for --enable-threads=single. ! !
--enable-threads=lib
Specify that lib is the thread support library. This affects the Objective-C compiler and runtime library, and exception handling for other languages like C++ and Java. The possibilities for lib are: ! !
!
aix
AIX thread support. !
dce
DCE thread support. !
lynx
LynxOS thread support. !
mipssde
MIPS SDE thread support. !
no
This is an alias for ‘single’. !
posix
Generic POSIX/Unix98 thread support. !
rtems
RTEMS thread support. !
single
Disable thread support, should work for all platforms. !
tpf
TPF thread support. !
vxworks
VxWorks thread support. !
win32
Microsoft Win32 API thread support.
!
--enable-tls
Specify that the target supports TLS (Thread Local Storage). Usually configure can correctly determine if TLS is supported. In cases where it guesses incorrectly, TLS can be explicitly enabled or disabled with ! --enable-tls or --disable-tls. This can happen if the assembler supports TLS but the C library does not, or if the assumptions made by the configure test are incorrect. ! !
--disable-tls
Specify that the target does not support TLS. ! This is an alias for --enable-tls=no. ! !
--with-cpu=cpu
--with-cpu-32=cpu
--with-cpu-64=cpu
Specify which cpu variant the compiler should generate code for by default. ! cpu will be used as the default value of the -mcpu= switch. This option is only supported on some targets, including ARM, i386, M68k, ! PowerPC, and SPARC. The --with-cpu-32 and ! --with-cpu-64 options specify separate default CPUs for 32-bit and 64-bit modes; these options are only supported for i386, x86-64 and PowerPC. ! !
--with-schedule=cpu
--with-arch=cpu
--with-arch-32=cpu
--with-arch-64=cpu
--with-tune=cpu
--with-tune-32=cpu
--with-tune-64=cpu
--with-abi=abi
--with-fpu=type
--with-float=type
These configure options provide default values for the -mschedule=, ! -march=, -mtune=, -mabi=, and -mfpu= ! options and for -mhard-float or -msoft-float. As with ! --with-cpu, which switches will be accepted and acceptable values of the arguments depend on the target. ! !
--with-mode=mode
Specify if the compiler should default to -marm or -mthumb. This option is only supported on ARM targets. ! !
--with-stack-offset=num
This option sets the default for the -mstack-offset=num option, and will thus generally also control the setting of this option for libraries. This option is only supported on Epiphany targets. ! !
--with-fpmath=isa
This options sets -mfpmath=sse by default and specifies the default ! ISA for floating-point arithmetics. You can select either ‘sse’ which ! enables -msse2 or ‘avx’ which enables -mavx by default. This option is only supported on i386 and x86-64 targets. ! !
--with-divide=type
Specify how the compiler should generate code for checking for ! division by zero. This option is only supported on the MIPS target. The possibilities for type are: !
!
traps
Division by zero checks use conditional traps (this is the default on ! systems that support conditional traps). !
breaks
Division by zero checks use the break instruction.
! ! !
--with-llsc
On MIPS targets, make -mllsc the default when no ! -mno-llsc option is passed. This is the default for Linux-based targets, as the kernel will emulate them if the ISA does not provide them. ! !
--without-llsc
On MIPS targets, make -mno-llsc the default when no ! -mllsc option is passed. ! !
--with-synci
On MIPS targets, make -msynci the default when no ! -mno-synci option is passed. ! !
--without-synci
On MIPS targets, make -mno-synci the default when no ! -msynci option is passed. This is the default. ! !
--with-mips-plt
On MIPS targets, make use of copy relocations and PLTs. These features are extensions to the traditional SVR4-based MIPS ABIs and require support from GNU binutils and the runtime C library. ! !
--enable-__cxa_atexit
Define if you want to use __cxa_atexit, rather than atexit, to ! register C++ destructors for local statics and global objects. This is essential for fully standards-compliant handling of destructors, but requires __cxa_atexit in libc. This option is currently only available on systems with GNU libc. When enabled, this will cause ! -fuse-cxa-atexit to be passed by default. ! !
--enable-gnu-indirect-function
Define if you want to enable the ifunc attribute. This option is currently only available on systems with GNU libc on certain targets. ! !
--enable-target-optspace
Specify that target ! libraries should be optimized for code space instead of code speed. This is the default for the m32r platform. ! !
--with-cpp-install-dir=dirname
Specify that the user visible cpp program should be installed ! in prefix/dirname/cpp, in addition to bindir. ! !
--enable-comdat
Enable COMDAT group support. This is primarily used to override the automatically detected value. ! !
--enable-initfini-array
Force the use of sections .init_array and .fini_array (instead of .init and .fini) for constructors and ! destructors. Option --disable-initfini-array has the opposite effect. If neither option is specified, the configure script will try to guess whether the .init_array and .fini_array sections are supported and, if they are, use them. ! !
--enable-maintainer-mode
The build rules that regenerate the Autoconf and Automake output files as ! well as the GCC master message catalog gcc.pot are normally disabled. This is because it can only be rebuilt if the complete source tree is present. If you have changed the sources and want to rebuild the ! catalog, configuring with --enable-maintainer-mode will enable this. Note that you need a recent version of the gettext tools to do so. ! !
--disable-bootstrap
For a native build, the default configuration is to perform ! a 3-stage bootstrap of the compiler when ‘make’ is invoked, testing that GCC can compile itself correctly. If you want to disable ! this process, you can configure with --disable-bootstrap. ! !
--enable-bootstrap
In special cases, you may want to perform a 3-stage build ! even if the target and host triplets are different. This is possible when the host can run code compiled for ! the target (e.g. host is i686-linux, target is i486-linux). Starting from GCC 4.2, to do this you have to configure explicitly ! with --enable-bootstrap. ! !
--enable-generated-files-in-srcdir
Neither the .c and .h files that are generated from Bison and flex nor the info manuals and man pages that are built from the .texi files are present in the SVN development tree. When building GCC from that development tree, or from one of our snapshots, those generated files are placed in your build directory, which allows for the source to be in a readonly directory. ! !

If you configure with --enable-generated-files-in-srcdir then those generated files will go into the source directory. This is mainly intended for generating release or prerelease tarballs of the GCC sources, since it is not a requirement that the users of source releases to have flex, Bison, or makeinfo. ! !

--enable-version-specific-runtime-libs
Specify that runtime libraries should be installed in the compiler specific ! subdirectory (libdir/gcc) rather than the usual places. In ! addition, ‘libstdc++’'s include files will be installed into libdir unless you overruled it by using ! --with-gxx-include-dir=dirname. Using this option is particularly useful if you intend to use several versions of GCC in ! parallel. This is currently supported by ‘libgfortran’, ! ‘libjava’, ‘libmudflap’, ‘libstdc++’, and ‘libobjc’. ! !
--enable-languages=lang1,lang2,...
Specify that only a particular subset of compilers and their runtime libraries should be built. For a list of valid values for langN you can issue the following command in the ! gcc directory of your GCC source tree:
!
          grep language= */config-lang.in
! 
!

Currently, you can use any of the following: all, ada, c, c++, fortran, ! go, java, objc, obj-c++. ! Building the Ada compiler has special requirements, see below. If you do not pass this flag, or specify the option all, then all ! default languages available in the gcc sub-tree will be configured. Ada, Go and Objective-C++ are not default languages; the rest are. ! !

--enable-stage1-languages=lang1,lang2,...
Specify that a particular subset of compilers and their runtime libraries should be built with the system C compiler during stage 1 of the bootstrap process, rather than only in later stages with the bootstrapped C compiler. The list of valid values is the same as for ! --enable-languages, and the option all will select all ! of the languages enabled by --enable-languages. This option is primarily useful for GCC development; for instance, when a development version of the compiler cannot bootstrap due to compiler bugs, or when one is debugging front ends other than the C front end. When this option is used, one can then build the target libraries for the ! specified languages with the stage-1 compiler by using make ! stage1-bubble all-target, or run the testsuite on the stage-1 compiler ! for the specified languages using make stage1-start check-gcc. ! !
--disable-libada
Specify that the run-time libraries and tools used by GNAT should not be built. This can be useful for debugging, or for compatibility with previous Ada build procedures, when it was required to explicitly ! do a ‘make -C gcc gnatlib_and_tools’. ! !
--disable-libssp
Specify that the run-time libraries for stack smashing protection should not be built. ! !
--disable-libquadmath
Specify that the GCC quad-precision math library should not be built. On some systems, the library is required to be linkable when building ! the Fortran front end, unless --disable-libquadmath-support is used. ! !
--disable-libquadmath-support
Specify that the Fortran front end and libgfortran do not add support for libquadmath on systems supporting it. ! !
--disable-libgomp
Specify that the run-time libraries used by GOMP should not be built. ! !
--with-dwarf2
Specify that the compiler should use DWARF 2 debugging information as the default. ! !
--enable-targets=all
--enable-targets=target_list
Some GCC targets, e.g. powerpc64-linux, build bi-arch compilers. These are compilers that are able to generate either 64-bit or 32-bit ! code. Typically, the corresponding 32-bit target, e.g. powerpc-linux for powerpc64-linux, only generates 32-bit code. This option enables the 32-bit target to be a bi-arch compiler, which is useful when you want a bi-arch compiler that defaults to 32-bit, and ! you are building a bi-arch or multi-arch binutils in a combined tree. On mips-linux, this will build a tri-arch compiler (ABI o32/n32/64), ! defaulted to o32. Currently, this option only affects sparc-linux, powerpc-linux, x86-linux, mips-linux and s390-linux. ! !
--enable-secureplt
This option enables -msecure-plt by default for powerpc-linux. See “RS/6000 and PowerPC Options” in the main manual ! !
--enable-cld
This option enables -mcld by default for 32-bit x86 targets. See “i386 and x86-64 Options” in the main manual ! !
--enable-win32-registry
--enable-win32-registry=key
--disable-win32-registry
The --enable-win32-registry option enables Microsoft Windows-hosted GCC to look up installations paths in the registry using the following key: !
          HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\key
! 
!

key defaults to GCC version number, and can be overridden by the ! --enable-win32-registry=key option. Vendors and distributors who use custom installers are encouraged to provide a different key, perhaps one comprised of vendor name and GCC version number, to avoid conflict with existing installations. This feature is enabled ! by default, and can be disabled by --disable-win32-registry option. This option has no effect on the other hosts. ! !

--nfp
Specify that the machine does not have a floating point unit. This ! option only applies to ‘m68k-sun-sunosn’. On any other ! system, --nfp has no effect. ! !
--enable-werror
--disable-werror
--enable-werror=yes
--enable-werror=no
When you specify this option, it controls whether certain files in the ! compiler are built with -Werror in bootstrap stage2 and later. ! If you don't specify it, -Werror is turned on for the main development trunk. However it defaults to off for release branches and ! final releases. The specific files which get -Werror are controlled by the Makefiles. ! !
--enable-checking
--enable-checking=list
When you specify this option, the compiler is built to perform internal consistency checks of the requested complexity. This does not change the generated code, but adds error checking within the compiler. This will slow down the compiler and may only work properly if you are building ! the compiler with GCC. This is ‘yes’ by default when building ! from SVN or snapshots, but ‘release’ for releases. The default ! for building the stage1 compiler is ‘yes’. More control over the checks may be had by specifying list. The categories of ! checks available are ‘yes’ (most common checks ! ‘assert,misc,tree,gc,rtlflag,runtime’), ‘no’ (no checks at ! all), ‘all’ (all but ‘valgrind’), ‘release’ (cheapest ! checks ‘assert,runtime’) or ‘none’ (same as ‘no’). ! Individual checks can be enabled with these flags ‘assert’, ! ‘df’, ‘fold’, ‘gc’, ‘gcac’ ‘misc’, ‘rtl’, ! ‘rtlflag’, ‘runtime’, ‘tree’, and ‘valgrind’. ! !

The ‘valgrind’ check requires the external valgrind simulator, available from http://valgrind.org/. The ! ‘df’, ‘rtl’, ‘gcac’ and ‘valgrind’ checks are very expensive. ! To disable all checking, ‘--disable-checking’ or ! ‘--enable-checking=none’ must be explicitly requested. Disabling assertions will make the compiler and runtime slightly faster but increase the risk of undetected internal errors causing wrong code to be generated. ! !

--disable-stage1-checking
--enable-stage1-checking
--enable-stage1-checking=list
If no --enable-checking option is specified the stage1 ! compiler will be built with ‘yes’ checking enabled, otherwise the stage1 checking flags are the same as specified by ! --enable-checking. To build the stage1 compiler with ! different checking options use --enable-stage1-checking. ! The list of checking options is the same as for --enable-checking. If your system is too slow or too small to bootstrap a released compiler ! with checking for stage1 enabled, you can use ‘--disable-stage1-checking’ to disable checking for the stage1 compiler. ! !
--enable-coverage
--enable-coverage=level
With this option, the compiler is built to collect self coverage information, every time it is run. This is for internal development purposes, and only works when the compiler is being built with gcc. The level argument controls whether the compiler is built optimized or ! not, values are ‘opt’ and ‘noopt’. For coverage analysis you want to disable optimization, for performance analysis you want to enable optimization. When coverage is enabled, the default level is without optimization. ! !
--enable-gather-detailed-mem-stats
When this option is specified more detailed information on memory allocation is gathered. This information is printed when using ! -fmem-report. ! !
--enable-nls
--disable-nls
The --enable-nls option enables Native Language Support (NLS), which lets GCC output diagnostics in languages other than American English. Native Language Support is enabled by default if not doing a ! canadian cross build. The --disable-nls option disables NLS. ! !
--with-included-gettext
If NLS is enabled, the --with-included-gettext option causes the build ! procedure to prefer its copy of GNU gettext. ! !
--with-catgets
If NLS is enabled, and if the host lacks gettext but has the inferior catgets interface, the GCC build procedure normally ! ignores catgets and instead uses GCC's copy of the GNU ! gettext library. The --with-catgets option causes the ! build procedure to use the host's catgets in this situation. ! !
--with-libiconv-prefix=dir
Search for libiconv header files in dir/include and ! libiconv library files in dir/lib. ! !
--enable-obsolete
Enable configuration for an obsoleted system. If you attempt to configure GCC for a system (build, host, or target) which has been obsoleted, and you do not specify this flag, configure will halt with an error message. ! !

All support for systems which have been obsoleted in one release of GCC is removed entirely in the next major release, unless someone steps forward to maintain the port. ! !

--enable-decimal-float
--enable-decimal-float=yes
--enable-decimal-float=no
--enable-decimal-float=bid
--enable-decimal-float=dpd
--disable-decimal-float
Enable (or disable) support for the C decimal floating point extension that is in the IEEE 754-2008 standard. This is enabled by default only on PowerPC, i386, and x86_64 GNU/Linux systems. Other systems may also support it, but require the user to specifically enable it. You can optionally control which decimal floating point format is used (either ! ‘bid’ or ‘dpd’). The ‘bid’ (binary integer decimal) ! format is default on i386 and x86_64 systems, and the ‘dpd’ (densely packed decimal) format is default on PowerPC systems. ! !
--enable-fixed-point
--disable-fixed-point
Enable (or disable) support for C fixed-point arithmetic. This option is enabled by default for some targets (such as MIPS) which have hardware-support for fixed-point operations. On other targets, you may enable this option manually. ! !
--with-long-double-128
Specify if long double type should be 128-bit by default on selected GNU/Linux architectures. If using --without-long-double-128, ! long double will be by default 64-bit, the same as double type. When neither of these configure options are used, the default will be 128-bit long double when built against GNU C Library 2.4 and later, 64-bit long double otherwise. ! !
--with-gmp=pathname
--with-gmp-include=pathname
--with-gmp-lib=pathname
--with-mpfr=pathname
--with-mpfr-include=pathname
--with-mpfr-lib=pathname
--with-mpc=pathname
--with-mpc-include=pathname
--with-mpc-lib=pathname
If you want to build GCC but do not have the GMP library, the MPFR library and/or the MPC library installed in a standard location and do not have their sources present in the GCC source tree then you can explicitly specify the directory where they are installed ! (‘--with-gmp=gmpinstalldir’, ! ‘--with-mpfr=mpfrinstalldir’, ! ‘--with-mpc=mpcinstalldir’). The ! --with-gmp=gmpinstalldir option is shorthand for ! --with-gmp-lib=gmpinstalldir/lib and ! --with-gmp-include=gmpinstalldir/include. Likewise the ! --with-mpfr=mpfrinstalldir option is shorthand for ! --with-mpfr-lib=mpfrinstalldir/lib and ! --with-mpfr-include=mpfrinstalldir/include, also the ! --with-mpc=mpcinstalldir option is shorthand for ! --with-mpc-lib=mpcinstalldir/lib and ! --with-mpc-include=mpcinstalldir/include. If these shorthand assumptions are not correct, you can use the explicit include and lib options directly. You might also need to ensure the shared libraries can be found by the dynamic linker when building and using GCC, for example by setting the runtime shared library path ! variable (LD_LIBRARY_PATH on GNU/Linux and Solaris systems). ! !

These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. ! !

--with-isl=pathname
--with-isl-include=pathname
--with-isl-lib=pathname
--with-cloog=pathname
--with-cloog-include=pathname
--with-cloog-lib=pathname
If you do not have ISL and the CLooG libraries installed in a standard location and you want to build GCC, you can explicitly specify the directory where they are installed ! (‘--with-isl=islinstalldir’, ! ‘--with-cloog=clooginstalldir’). The ! --with-isl=islinstalldir option is shorthand for ! --with-isl-lib=islinstalldir/lib and ! --with-isl-include=islinstalldir/include. Likewise the ! --with-cloog=clooginstalldir option is shorthand for ! --with-cloog-lib=clooginstalldir/lib and ! --with-cloog-include=clooginstalldir/include. If these shorthand assumptions are not correct, you can use the explicit include and lib options directly. ! !

These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. ! !

--with-host-libstdcxx=linker-args
If you are linking with a static copy of PPL, you can use this option to specify how the linker should find the standard C++ library used internally by PPL. Typical values of linker-args might be ! ‘-lstdc++’ or ‘-Wl,-Bstatic,-lstdc++,-Bdynamic -lm’. If you are linking with a shared copy of PPL, you probably do not need this option; shared library dependencies will cause the linker to search for the standard C++ library automatically. ! !
--with-stage1-ldflags=flags
This option may be used to set linker flags to be used when linking stage 1 of GCC. These are also used when linking GCC if configured with ! --disable-bootstrap. By default no special flags are used. ! !
--with-stage1-libs=libs
This option may be used to set libraries to be used when linking stage 1 of GCC. These are also used when linking GCC if configured with ! --disable-bootstrap. The default is the argument to ! --with-host-libstdcxx, if specified. ! !
--with-boot-ldflags=flags
This option may be used to set linker flags to be used when linking stage 2 and later when bootstrapping GCC. If neither –with-boot-libs nor –with-host-libstdcxx is set to a value, then the default is ! ‘-static-libstdc++ -static-libgcc’. ! !
--with-boot-libs=libs
This option may be used to set libraries to be used when linking stage 2 and later when bootstrapping GCC. The default is the argument to ! --with-host-libstdcxx, if specified. ! !
--with-debug-prefix-map=map
Convert source directory names using -fdebug-prefix-map when building runtime libraries. ‘map’ is a space-separated ! list of maps of the form ‘old=new’. ! !
--enable-linker-build-id
Tells GCC to pass --build-id option to the linker for all final ! links (links performed without the -r or --relocatable option), if the linker supports it. If you specify ! --enable-linker-build-id, but your linker does not ! support --build-id option, a warning is issued and the ! --enable-linker-build-id option is ignored. The default is off. ! !
--with-linker-hash-style=choice
Tells GCC to pass --hash-style=choice option to the linker for all final links. choice can be one of ! ‘sysv’, ‘gnu’, and ‘both’ where ‘sysv’ is the default. ! !
--enable-gnu-unique-object
--disable-gnu-unique-object
Tells GCC to use the gnu_unique_object relocation for C++ template static data members and inline function local statics. Enabled by default for a native toolchain with an assembler that accepts it and GLIBC 2.11 or above, otherwise disabled. ! !
--enable-lto
--disable-lto
Enable support for link-time optimization (LTO). This is enabled by ! default, and may be disabled using --disable-lto. ! !
--with-plugin-ld=pathname
Enable an alternate linker to be used at link-time optimization (LTO) ! link time when -fuse-linker-plugin is enabled. This linker should have plugin support such as gold starting with ! version 2.20 or GNU ld starting with version 2.21. ! See -fuse-linker-plugin for details. ! !
--enable-canonical-system-headers
--disable-canonical-system-headers
Enable system header path canonicalization for libcpp. This can produce shorter header file paths in diagnostics and dependency output files, but these changed header paths may conflict with some compilation environments. Enabled by default, and may be disabled using ! --disable-canonical-system-headers.
!

Cross-Compiler-Specific Options

!

The following options only apply to building cross compilers. ! !

!
--with-sysroot
--with-sysroot=dir
Tells GCC to consider dir as the root of a tree that contains ! (a subset of) the root filesystem of the target operating system. Target system headers, libraries and run-time object files will be searched for in there. More specifically, this acts as if ! --sysroot=dir was added to the default options of the built compiler. The specified directory is not copied into the ! install tree, unlike the options --with-headers and ! --with-libs that this option obsoletes. The default value, ! in case --with-sysroot is not given an argument, is ! ${gcc_tooldir}/sys-root. If the specified directory is a ! subdirectory of ${exec_prefix}, then it will be found relative to the GCC binaries if the installation tree is moved. ! !

This option affects the system root for the compiler used to build target libraries (which runs on the build system) and the compiler newly installed with make install; it does not affect the compiler which is used to build GCC itself. ! !

If you specify the --with-native-system-header-dir=dirname option then the compiler will search that directory within dirname for ! native system headers rather than the default /usr/include. ! !

--with-build-sysroot
--with-build-sysroot=dir
Tells GCC to consider dir as the system root (see ! --with-sysroot) while building target libraries, instead of ! the directory specified with --with-sysroot. This option is ! only useful when you are already using --with-sysroot. You ! can use --with-build-sysroot when you are configuring with ! --prefix set to a directory that is different from the one in which you are installing GCC and your target libraries. ! !

This option affects the system root for the compiler used to build target libraries (which runs on the build system); it does not affect the compiler which is used to build GCC itself. ! !

If you specify the --with-native-system-header-dir=dirname option then the compiler will search that directory within dirname for ! native system headers rather than the default /usr/include. ! !

--with-headers
--with-headers=dir
Deprecated in favor of --with-sysroot. ! Specifies that target headers are available when building a cross compiler. The dir argument specifies a directory which has the target include ! files. These include files will be copied into the gcc install ! directory. This option with the dir argument is required when ! building a cross compiler, if prefix/target/sys-include ! doesn't pre-exist. If prefix/target/sys-include does ! pre-exist, the dir argument may be omitted. fixincludes will be run on these files to make them compatible with GCC. ! !
--without-headers
Tells GCC not use any target headers from a libc when building a cross compiler. When crossing to GNU/Linux, you need the headers so GCC can build the exception handling for libgcc. ! !
--with-libs
--with-libs="dir1 dir2 ... dirN"
Deprecated in favor of --with-sysroot. Specifies a list of directories which contain the target runtime ! libraries. These libraries will be copied into the gcc install directory. If the directory list is omitted, this option has no effect. ! !
--with-newlib
Specifies that ‘newlib’ is being used as the target C library. This causes __eprintf to be ! omitted from libgcc.a on the assumption that it will be provided by ! ‘newlib’. ! !
--with-avrlibc
Specifies that ‘AVR-Libc’ is being used as the target C library. This causes float support ! functions like __addsf3 to be omitted from libgcc.a on ! the assumption that it will be provided by libm.a. For more ! technical details, cf. PR54461. This option is only supported for the AVR target. It is not supported for RTEMS configurations, which currently use newlib. The option is supported since version 4.7.2 and is the default in 4.8.0 and newer. ! !
--with-build-time-tools=dir
Specifies where to find the set of target tools (assembler, linker, etc.) that will be used while building GCC itself. This option can be useful if the directory layouts are different between the system you are building GCC on, and the system where you will deploy it. ! !

For example, on an ‘ia64-hp-hpux’ system, you may have the GNU ! assembler and linker in /usr/bin, and the native tools in a different path, and build a toolchain that expects to find the ! native tools in /usr/bin. ! !

When you use this option, you should ensure that dir includes ! ar, as, ld, nm, ! ranlib and strip if necessary, and possibly ! objdump. Otherwise, GCC may use an inconsistent set of ! tools.

!

Java-Specific Options

The following option applies to the build of the Java front end. ! !

!
--disable-libgcj
Specify that the run-time libraries used by GCJ should not be built. This is useful in case you intend ! to use GCJ with some other run-time, or you're going to install it separately, or it just happens not to build on your particular machine. In general, if the Java front end is enabled, the GCJ ! libraries will be enabled too, unless they're known to not work on ! the target platform. If GCJ is enabled but ‘libgcj’ isn't built, you may need to port it; in this case, before modifying the top-level ! configure.in so that ‘libgcj’ is enabled by default on this platform, ! you may use --enable-libgcj to override the default. ! !
! !

The following options apply to building ‘libgcj’. !

General Options
!
!
--enable-java-maintainer-mode
By default the ‘libjava’ build will not attempt to compile the ! .java source files to .class. Instead, it will use the ! .class files from the source tree. If you use this option you ! must have executables named ecj1 and gjavah in your path for use by the build. You must use this option if you intend to ! modify any .java files in libjava. ! !
--with-java-home=dirname
This ‘libjava’ option overrides the default value of the ! ‘java.home’ system property. It is also used to set ! ‘sun.boot.class.path’ to dirname/lib/rt.jar. By ! default ‘java.home’ is set to prefix and ! ‘sun.boot.class.path’ to ! datadir/java/libgcj-version.jar. ! !
--with-ecj-jar=filename
This option can be used to specify the location of an external jar file containing the Eclipse Java compiler. A specially modified ! version of this compiler is used by gcj to parse ! .java source files. If this option is given, the ! ‘libjava’ build will create and install an ecj1 executable which uses this jar file at runtime. ! !

If this option is not given, but an ecj.jar file is found in ! the topmost source tree at configure time, then the ‘libgcj’ ! build will create and install ecj1, and will also install the ! discovered ecj.jar into a suitable place in the install tree. ! !

If ecj1 is not installed, then the user will have to supply one ! on his path in order for gcj to properly parse .java source files. A suitable jar is available from ftp://sourceware.org/pub/java/. ! !

--disable-getenv-properties
Don't set system properties from GCJ_PROPERTIES. ! !
--enable-hash-synchronization
Use a global hash table for monitor locks. Ordinarily, ! ‘libgcj’'s ‘configure’ script automatically makes the correct choice for this option for your platform. Only use this if you know you need the library to be configured differently. ! !
--enable-interpreter
Enable the Java interpreter. The interpreter is automatically enabled by default on all platforms that support it. This option is really only useful if you want to disable the interpreter ! (using --disable-interpreter). ! !
--disable-java-net
Disable java.net. This disables the native part of java.net only, using non-functional stubs for native method implementations. ! !
--disable-jvmpi
Disable JVMPI support. ! !
--disable-libgcj-bc
Disable BC ABI compilation of certain parts of libgcj. By default, ! some portions of libgcj are compiled with -findirect-dispatch ! and -fno-indirect-classes, allowing them to be overridden at run-time. ! !

If --disable-libgcj-bc is specified, libgcj is built without these options. This allows the compile-time linker to resolve dependencies when statically linking to libgcj. However it makes it impossible to override the affected portions of libgcj at run-time. ! !

--enable-reduced-reflection
Build most of libgcj with -freduced-reflection. This reduces the size of libgcj at the expense of not being able to do accurate reflection on the classes it contains. This option is safe if you know that code using libgcj will never use reflection on the standard runtime classes in libgcj (including using serialization, RMI or CORBA). ! !
--with-ecos
Enable runtime eCos target support. ! !
--without-libffi
Don't use ‘libffi’. This will disable the interpreter and JNI ! support as well, as these require ‘libffi’ to work. ! !
--enable-libgcj-debug
Enable runtime debugging code. ! !
--enable-libgcj-multifile
If specified, causes all .java source files to be ! compiled into .class files in one invocation of ! ‘gcj’. This can speed up build time, but is more resource-intensive. If this option is unspecified or ! disabled, ‘gcj’ is invoked once for each .java ! file to compile into a .class file. ! !
--with-libiconv-prefix=DIR
Search for libiconv in DIR/include and DIR/lib. ! !
--enable-sjlj-exceptions
Force use of the setjmp/longjmp-based scheme for exceptions. ! ‘configure’ ordinarily picks the correct value based on the platform. Only use this option if you are sure you need a different setting. ! !
--with-system-zlib
Use installed ‘zlib’ rather than that included with GCC. ! !
--with-win32-nlsapi=ansi, unicows or unicode
Indicates how MinGW ‘libgcj’ translates between UNICODE characters and the Win32 API. ! !
--enable-java-home
If enabled, this creates a JPackage compatible SDK environment during install. Note that if –enable-java-home is used, –with-arch-directory=ARCH must also be specified. ! !
--with-arch-directory=ARCH
Specifies the name to use for the jre/lib/ARCH directory in the SDK environment created when –enable-java-home is passed. Typical names for this directory include i386, amd64, ia64, etc. ! !
--with-os-directory=DIR
Specifies the OS directory for the SDK include directory. This is set to auto ! detect, and is typically 'linux'. ! !
--with-origin-name=NAME
Specifies the JPackage origin name. This defaults to the 'gcj' in java-1.5.0-gcj. ! !
--with-arch-suffix=SUFFIX
Specifies the suffix for the sdk directory. Defaults to the empty string. ! Examples include '.x86_64' in 'java-1.5.0-gcj-1.5.0.0.x86_64'. ! !
--with-jvm-root-dir=DIR
Specifies where to install the SDK. Default is $(prefix)/lib/jvm. ! !
--with-jvm-jar-dir=DIR
Specifies where to install jars. Default is $(prefix)/lib/jvm-exports. ! !
--with-python-dir=DIR
Specifies where to install the Python modules used for aot-compile. DIR should not include the prefix used in installation. For example, if the Python modules are to be installed in /usr/lib/python2.5/site-packages, then –with-python-dir=/lib/python2.5/site-packages should be passed. If this is not specified, then the Python modules are installed in $(prefix)/share/python. ! !
--enable-aot-compile-rpm
Adds aot-compile-rpm to the list of installed scripts. ! !
--enable-browser-plugin
Build the gcjwebplugin web browser plugin. ! !
--enable-static-libjava
Build static libraries in libjava. The default is to only build shared libraries. ! !
!
ansi
Use the single-byte char and the Win32 A functions natively, translating to and from UNICODE when using these functions. If unspecified, this is the default. ! !
unicows
Use the WCHAR and Win32 W functions natively. Adds ! -lunicows to libgcj.spec to link with ‘libunicows’. ! unicows.dll needs to be deployed on Microsoft Windows 9X machines ! running built executables. libunicows.a, an open-source ! import library around Microsoft's unicows.dll, is obtained from http://libunicows.sourceforge.net/, which also gives details ! on getting unicows.dll from Microsoft. ! !
unicode
Use the WCHAR and Win32 W functions natively. Does not ! add -lunicows to libgcj.spec. The built executables will ! only run on Microsoft Windows NT and above.
-
- -
AWT-Specific Options
- -
-
--with-x
Use the X Window System. - -
--enable-java-awt=PEER(S)
Specifies the AWT peer library or libraries to build alongside - ‘libgcj’. If this option is unspecified or disabled, AWT - will be non-functional. Current valid values are gtk and - xlib. Multiple libraries should be separated by a - comma (i.e. --enable-java-awt=gtk,xlib). - -
--enable-gtk-cairo
Build the cairo Graphics2D implementation on GTK. - -
--enable-java-gc=TYPE
Choose garbage collector. Defaults to boehm if unspecified. !
--disable-gtktest
Do not try to compile and run a test GTK+ program. !
--disable-glibtest
Do not try to compile and run a test GLIB program. !
--with-libart-prefix=PFX
Prefix where libart is installed (optional). !
--with-libart-exec-prefix=PFX
Exec prefix where libart is installed (optional). !
--disable-libarttest
Do not try to compile and run a test libart program. -
-
Overriding configure test results
-

Sometimes, it might be necessary to override the result of some - configure test, for example in order to ease porting to a new - system or work around a bug in a test. The toplevel configure - script provides three variables for this: -

-
build_configargs
The contents of this variable is passed to all build configure - scripts. -
host_configargs
The contents of this variable is passed to all host configure - scripts. -
target_configargs
The contents of this variable is passed to all target configure - scripts. -
-

In order to avoid shell and make quoting issues for complex - overrides, you can pass a setting for CONFIG_SITE and set - variables in the site file. -


-

Return to the GCC Installation page - - - - - - - - - - --- 1,1759 ---- ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Like most GNU software, GCC must be configured before it can be built. ! This document describes the recommended configuration procedure ! for both native and cross targets. !

!

We use srcdir to refer to the toplevel source directory for ! GCC; we use objdir to refer to the toplevel build/object directory. !

!

If you obtained the sources via SVN, srcdir must refer to the top ! gcc directory, the one where the MAINTAINERS file can be ! found, and not its gcc subdirectory, otherwise the build will fail. !

!

If either srcdir or objdir is located on an automounted NFS ! file system, the shell’s built-in pwd command will return temporary pathnames. Using these can lead to various sorts of build ! problems. To avoid this issue, set the PWDCMD environment ! variable to an automounter-aware pwd command, e.g., ! pawd or ‘amq -w’, during the configuration and build phases. !

!

First, we highly recommend that GCC be built into a separate directory from the sources which does not reside within the source tree. This is how we generally build GCC; building ! where srcdir == objdir should still work, but doesn’t get extensive testing; building where objdir is a subdirectory of srcdir is unsupported. !

!

If you have previously built GCC in the same directory for a ! different target machine, do ‘make distclean’ to delete all files ! that might be invalid. One of the files this deletes is Makefile; ! if ‘make distclean’ complains that Makefile does not exist ! or issues a message like “don’t know how to make distclean” it probably means that the directory is already suitably clean. However, with the recommended method of building in a separate objdir, you should simply use a different objdir for each target. !

!

Second, when configuring a native system, either cc or ! gcc must be in your path or you must set CC in your environment before running configure. Otherwise the configuration scripts may fail. +

!

To configure GCC: !

!
!
% mkdir objdir
! % cd objdir
! % srcdir/configure [options] [target]
! 
! !

Distributor options

If you will be distributing binary versions of GCC, with modifications to the source code, you should use the options described in this section to make clear that your version contains modifications. !

!
!
--with-pkgversion=version
!

Specify a string that identifies your package. You may wish to include a build number or build date. This version string will be ! included in the output of gcc --version. This suffix does ! not replace the default version string, only the ‘GCC’ part. !

!

The default value is ‘GCC’. !

!
!
--with-bugurl=url
!

Specify the URL that users should visit if they wish to report a bug. You are of course welcome to forward bugs reported to you to the FSF, if you determine that they are not bugs in your modifications. +

+

The default value refers to the FSF’s GCC bug tracker. +

+
+
! !

Target specification

! ! ! !

Options specification

Use options to override several configure time options for ! GCC. A list of supported options follows; ‘configure ! --help’ may list other options, but those not listed below may not work and should not normally be used. !

!

Note that each --enable option has a corresponding ! --disable option and that each --with option has a ! corresponding --without option. !

!
!
--prefix=dirname
!

Specify the toplevel installation directory. This is the recommended way to install the tools into a directory other than the default. The toplevel installation directory defaults to ! /usr/local. !

!

We highly recommend against dirname being the same or a subdirectory of objdir or vice versa. If specifying a directory ! beneath a user’s home directory tree, some shells will not expand ! dirname correctly if it contains the ‘~’ metacharacter; use ! $HOME instead. !

!

The following standard autoconf options are supported. Normally you should not need to use these options. !

!
--exec-prefix=dirname
!

Specify the toplevel installation directory for architecture-dependent files. The default is prefix. !

!
!
--bindir=dirname
!

Specify the installation directory for the executables called by users ! (such as gcc and g++). The default is ! exec-prefix/bin. !

!
!
--libdir=dirname
!

Specify the installation directory for object code libraries and ! internal data files of GCC. The default is exec-prefix/lib. !

!
!
--libexecdir=dirname
!

Specify the installation directory for internal executables of GCC. ! The default is exec-prefix/libexec. !

!
!
--with-slibdir=dirname
!

Specify the installation directory for the shared libgcc library. The default is libdir. !

!
!
--datarootdir=dirname
!

Specify the root of the directory tree for read-only architecture-independent ! data files referenced by GCC. The default is prefix/share. !

!
!
--infodir=dirname
!

Specify the installation directory for documentation in info format. ! The default is datarootdir/info. !

!
!
--datadir=dirname
!

Specify the installation directory for some architecture-independent data files referenced by GCC. The default is datarootdir. !

!
!
--docdir=dirname
!

Specify the installation directory for documentation files (other ! than Info) for GCC. The default is datarootdir/doc. !

!
!
--htmldir=dirname
!

Specify the installation directory for HTML documentation files. The default is docdir. !

!
!
--pdfdir=dirname
!

Specify the installation directory for PDF documentation files. The default is docdir. !

!
!
--mandir=dirname
!

Specify the installation directory for manual pages. The default is ! datarootdir/man. (Note that the manual pages are only extracts from the full GCC manuals, which are provided in Texinfo format. The manpages are derived by an automatic conversion process from parts of the full manual.) !

!
!
--with-gxx-include-dir=dirname
!

Specify the installation directory for G++ header files. The default depends on other configuration options, and differs between cross and native configurations. !

!
!
--with-specs=specs
!

Specify additional command line driver SPECS. This can be useful if you need to turn on a non-standard feature by ! default without modifying the compiler’s source code, for instance ! --with-specs=%{!fcommon:%{!fno-common:-fno-common}}. See “Spec Files” in the main manual +

+
+
!
!
--program-prefix=prefix
!

GCC supports some transformations of the names of its programs when installing them. This option prepends prefix to the names of programs to install in bindir (see above). For example, specifying ! --program-prefix=foo- would result in ‘gcc’ ! being installed as /usr/local/bin/foo-gcc. !

!
!
--program-suffix=suffix
!

Appends suffix to the names of programs to install in bindir ! (see above). For example, specifying --program-suffix=-3.1 ! would result in ‘gcc’ being installed as ! /usr/local/bin/gcc-3.1. !

!
!
--program-transform-name=pattern
!

Applies the ‘sed’ script pattern to be applied to the names of programs to install in bindir (see above). pattern has to ! consist of one or more basic ‘sed’ editing commands, separated by ! semicolons. For example, if you want the ‘gcc’ program name to be ! transformed to the installed program /usr/local/bin/myowngcc and ! the ‘g++’ program name to be transformed to ! /usr/local/bin/gspecial++ without changing other program names, you could use the pattern ! --program-transform-name='s/^gcc$/myowngcc/; s/^g++$/gspecial++/' to achieve this effect. !

!

All three options can be combined and used together, resulting in more complex conversion patterns. As a basic rule, prefix (and suffix) are prepended (appended) before further transformations can happen with a special transformation script pattern. !

!

As currently implemented, this option only takes effect for native ! builds; cross compiler binaries’ names are not transformed even when a transformation is explicitly asked for by one of these options. !

!

For native builds, some of the installed programs are also installed with the target alias in front of their name, as in ! ‘i686-pc-linux-gnu-gcc’. All of the above transformations happen before the target alias is prepended to the name—so, specifying ! --program-prefix=foo- and program-suffix=-3.1, the resulting binary would be installed as ! /usr/local/bin/i686-pc-linux-gnu-foo-gcc-3.1. !

!

As a last shortcoming, none of the installed Ada programs are transformed yet, which will be fixed in some time. !

!
!
--with-local-prefix=dirname
!

Specify the installation directory for local include files. The default is ! /usr/local. Specify this option if you want the compiler to ! search directory dirname/include for locally installed ! header files instead of /usr/local/include. !

!

You should specify --with-local-prefix only if your ! site has a different convention (not /usr/local) for where to put site-specific files. !

!

The default value for --with-local-prefix is /usr/local ! regardless of the value of --prefix. Specifying ! --prefix has no effect on which directory GCC searches for local header files. This may seem counterintuitive, but actually it is logical. !

!

The purpose of --prefix is to specify where to install ! GCC. The local header files in /usr/local/include—if you put any in that directory—are not part of GCC. They are part of other programs—perhaps many others. (GCC installs its own header files in ! another directory which is based on the --prefix value.) !

!

Both the local-prefix include directory and the GCC-prefix include ! directory are part of GCC’s “system include” directories. Although these two directories are not fixed, they need to be searched in the proper order for the correct processing of the include_next directive. The local-prefix include directory is searched before the GCC-prefix include directory. Another characteristic of system include directories is that pedantic warnings are turned off for headers in these directories. !

!

Some autoconf macros add -I directory options to the compiler command line, to ensure that directories containing installed ! packages’ headers are searched. When directory is one of GCC’s system include directories, GCC will ignore the option so that system directories continue to be processed in the correct order. This may result in a search order different from what was specified but the directory will still be searched. !

!

GCC automatically searches for ordinary libraries using ! GCC_EXEC_PREFIX. Thus, when the same installation prefix is used for both GCC and packages, GCC will automatically search for both headers and libraries. This provides a configuration that is easy to use. GCC behaves in a manner similar to that when it is ! installed as a system compiler in /usr. !

!

Sites that need to install multiple versions of GCC may not want to use the above simple configuration. It is possible to use the ! --program-prefix, --program-suffix and ! --program-transform-name options to install multiple versions into a single directory, but it may be simpler to use different prefixes ! and the --with-local-prefix option to specify the location of the site-specific files for each version. It will then be necessary for users to specify explicitly the location of local site libraries ! (e.g., with LIBRARY_PATH). !

!

The same value can be used for both --with-local-prefix and ! --prefix provided it is not /usr. This can be used ! to avoid the default search of /usr/local/include. !

!

Do not specify /usr as the --with-local-prefix! ! The directory you use for --with-local-prefix must not ! contain any of the system’s standard header files. If it did contain them, certain programs would be miscompiled (including GNU Emacs, on certain targets), because this would override and nullify the header ! file corrections made by the fixincludes script. !

!

Indications are that people who use this option use it based on mistaken ideas of what it is for. People use it as if it specified where to install part of GCC. Perhaps they make this assumption because installing GCC creates the directory. !

!
!
--with-native-system-header-dir=dirname
!

Specifies that dirname is the directory that contains native system ! header files, rather than /usr/include. This option is most useful if you are creating a compiler that should be isolated from the system as much as possible. It is most commonly used with the ! --with-sysroot option and will cause GCC to search dirname inside the system root specified by that option. !

!
!
--enable-shared[=package[,…]]
!

Build shared versions of libraries, if shared libraries are supported on the target platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default on all platforms that support shared libraries. !

!

If a list of packages is given as an argument, build shared libraries only for the listed packages. For other packages, only static libraries will be built. Package names currently recognized in the GCC tree are ! ‘libgcc’ (also known as ‘gcc’), ‘libstdc++’ (not ! ‘libstdc++-v3’), ‘libffi’, ‘zlib’, ‘boehm-gc’, ! ‘ada’, ‘libada’, ‘libjava’, ‘libgo’, and ‘libobjc’. ! Note ‘libiberty’ does not support shared libraries at all. !

!

Use --disable-shared to build only static libraries. Note that ! --disable-shared does not accept a list of package names as ! argument, only --enable-shared does. !

!
!
--with-gnu-as
!

Specify that the compiler should assume that the assembler it finds is the GNU assembler. However, this does not modify the rules to find an assembler and will result in confusion if the assembler found is not actually the GNU assembler. (Confusion may also result if the compiler finds the GNU assembler but has not been ! configured with --with-gnu-as.) If you have more than one assembler installed on your system, you may want to use this option in ! connection with --with-as=pathname or ! --with-build-time-tools=pathname. !

!

The following systems are the only ones where it makes a difference whether you use the GNU assembler. On any other system, ! --with-gnu-as has no effect. !

!
    !
  • hppa1.0-any-any’ !
  • hppa1.1-any-any’ !
  • sparc-sun-solaris2.any’ !
  • sparc64-any-solaris2.any’ !
!
!
--with-as=pathname
!

Specify that the compiler should use the assembler pointed to by pathname, rather than the one found by the standard rules to find an assembler, which are: !

    !
  • Unless GCC is being built with a cross compiler, check the ! libexec/gcc/target/version directory. ! libexec defaults to exec-prefix/libexec; exec-prefix defaults to prefix, which ! defaults to /usr/local unless overridden by the ! --prefix=pathname switch described above. target ! is the target system triple, such as ‘sparc-sun-solaris2.7’, and version denotes the GCC version, such as 3.0. !
  • If the target system is the same that you are building on, check ! operating system specific directories (e.g. /usr/ccs/bin on Sun Solaris 2). !
  • Check in the PATH for a tool whose name is prefixed by the target system triple. !
  • Check in the PATH for a tool whose name is not prefixed by the target system triple, if the host and target system triple are the same (in other words, we use a host tool if it can be used for ! the target as well). !
!

You may want to use --with-as if no assembler is installed in the directories listed above, or if you have multiple assemblers installed and want to choose one that is not found by the above rules. !

!
!
--with-gnu-ld
!

Same as --with-gnu-as but for the linker. !

!
!
--with-ld=pathname
!

Same as --with-as but for the linker. !

!
!
--with-stabs
!

Specify that stabs debugging information should be used instead of whatever format the host normally uses. Normally GCC uses the same debug format as the host system. !

!

On MIPS based systems and on Alphas, you must specify whether you want GCC to create the normal ECOFF debugging format, or to use BSD-style stabs passed through the ECOFF symbol table. The normal ECOFF debug format cannot fully handle languages other than C. BSD stabs format can handle other languages, but it only works with the GNU debugger GDB. !

!

Normally, GCC uses the ECOFF debugging format by default; if you ! prefer BSD stabs, specify --with-stabs when you configure GCC. !

!

No matter which default you choose when you configure GCC, the user ! can use the -gcoff and -gstabs+ options to specify explicitly the debug format for a particular compilation. !

!

--with-stabs is meaningful on the ISC system on the 386, also, if ! --with-gas is used. It selects use of stabs debugging information embedded in COFF output. This kind of debugging information supports C++ well; ordinary COFF debugging information does not. !

!

--with-stabs is also meaningful on 386 systems running SVR4. It selects use of stabs debugging information embedded in ELF output. The C++ compiler currently (2.6.0) does not support the DWARF debugging information normally used on 386 SVR4 platforms; stabs provide a workable alternative. This requires gas and gdb, as the normal SVR4 tools can not generate or interpret stabs. !

!
!
--with-tls=dialect
!

Specify the default TLS dialect, for systems were there is a choice. For ARM targets, possible values for dialect are gnu or gnu2, which select between the original GNU dialect and the GNU TLS descriptor-based dialect. !

!
!
--enable-multiarch
!

Specify whether to enable or disable multiarch support. The default is to check for glibc start files in a multiarch location, and enable it if the files are found. The auto detection is enabled for native builds, ! and for cross builds configured with --with-sysroot, and without ! --with-native-system-header-dir. More documentation about multiarch can be found at http://wiki.debian.org/Multiarch. !

!
!
--disable-multilib
!

Specify that multiple target libraries to support different target variants, calling conventions, etc. should not be built. The default is to build a predefined set of them. !

!

Some targets provide finer-grained control over which multilibs are built ! (e.g., --disable-softfloat): !

!
arm-*-*
!

fpu, 26bit, underscore, interwork, biendian, nofmult. !

!
!
m68*-*-*
!

softfloat, m68881, m68000, m68020. !

!
!
mips*-*-*
!

single-float, biendian, softfloat. !

!
!
powerpc*-*-*, rs6000*-*-*
!

aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, biendian, sysv, aix. +

+
+
!
!
--with-multilib-list=list
!
--without-multilib-list
!

Specify what multilibs to build. Currently only implemented for sh*-*-* and x86-64-*-linux*. !

!
!
sh*-*-*
!

list is a comma separated list of CPU names. These must be of the form sh* or m* (in which case they match the compiler option for that processor). The list should not contain any endian options - ! these are handled by --with-endian. !

!

If list is empty, then there will be no multilibs for extra processors. The multilib for the secondary endian remains enabled. !

!

As a special case, if an entry in the list starts with a ! ! (exclamation point), then it is added to the list of excluded multilibs. ! Entries of this sort should be compatible with ‘MULTILIB_EXCLUDES’ (once the leading ! has been stripped). !

!

If --with-multilib-list is not given, then a default set of ! multilibs is selected based on the value of --target. This is usually the complete set of libraries, but some targets imply a more specialized subset. !

!

Example 1: to configure a compiler for SH4A only, but supporting both endians, with little endian being the default: !

!
--with-cpu=sh4a --with-endian=little,big --with-multilib-list=
! 
! !

Example 2: to configure a compiler for both SH4A and SH4AL-DSP, but with only little endian SH4AL: !

!
--with-cpu=sh4a --with-endian=little,big \
! --with-multilib-list=sh4al,!mb/m4al
! 
! !
!
x86-64-*-linux*
!

list is a comma separated list of m32, m64 and mx32 to enable 32-bit, 64-bit and x32 run-time libraries, respectively. If list is empty, then there will be no multilibs and only the default run-time library will be enabled. !

!

If --with-multilib-list is not given, then only 32-bit and ! 64-bit run-time libraries will be enabled. !

!
!
--with-endian=endians
!

Specify what endians to use. Currently only implemented for sh*-*-*. !

!

endians may be one of the following: !

!
big
!

Use big endian exclusively. !

!
little
!

Use little endian exclusively. !

!
big,little
!

Use big endian by default. Provide a multilib for little endian. !

!
little,big
!

Use little endian by default. Provide a multilib for big endian. !

!
!
--enable-threads
!

Specify that the target supports threads. This affects the Objective-C compiler and runtime ! library, and exception handling for other languages like C++ and Java. On some systems, this is the default. !

!

In general, the best (and, in many cases, the only known) threading model available will be configured for use. Beware that on some systems, GCC has not been taught what threading models are generally ! available for the system. In this case, --enable-threads is an ! alias for --enable-threads=single. !

!
!
--disable-threads
!

Specify that threading support should be disabled for the system. ! This is an alias for --enable-threads=single. !

!
!
--enable-threads=lib
!

Specify that lib is the thread support library. This affects the Objective-C compiler and runtime library, and exception handling for other languages like C++ and Java. The possibilities for lib are: !

!
!
aix
!

AIX thread support. !

!
dce
!

DCE thread support. !

!
lynx
!

LynxOS thread support. !

!
mipssde
!

MIPS SDE thread support. !

!
no
!

This is an alias for ‘single’. !

!
posix
!

Generic POSIX/Unix98 thread support. !

!
rtems
!

RTEMS thread support. !

!
single
!

Disable thread support, should work for all platforms. !

!
tpf
!

TPF thread support. !

!
vxworks
!

VxWorks thread support. !

!
win32
!

Microsoft Win32 API thread support. !

!
!
--enable-tls
!

Specify that the target supports TLS (Thread Local Storage). Usually configure can correctly determine if TLS is supported. In cases where it guesses incorrectly, TLS can be explicitly enabled or disabled with ! --enable-tls or --disable-tls. This can happen if the assembler supports TLS but the C library does not, or if the assumptions made by the configure test are incorrect. !

!
!
--disable-tls
!

Specify that the target does not support TLS. ! This is an alias for --enable-tls=no. !

!
!
--with-cpu=cpu
!
--with-cpu-32=cpu
!
--with-cpu-64=cpu
!

Specify which cpu variant the compiler should generate code for by default. ! cpu will be used as the default value of the -mcpu= switch. This option is only supported on some targets, including ARM, i386, M68k, ! PowerPC, and SPARC. The --with-cpu-32 and ! --with-cpu-64 options specify separate default CPUs for 32-bit and 64-bit modes; these options are only supported for i386, x86-64 and PowerPC. !

!
!
--with-schedule=cpu
!
--with-arch=cpu
!
--with-arch-32=cpu
!
--with-arch-64=cpu
!
--with-tune=cpu
!
--with-tune-32=cpu
!
--with-tune-64=cpu
!
--with-abi=abi
!
--with-fpu=type
!
--with-float=type
!

These configure options provide default values for the -mschedule=, ! -march=, -mtune=, -mabi=, and -mfpu= ! options and for -mhard-float or -msoft-float. As with ! --with-cpu, which switches will be accepted and acceptable values of the arguments depend on the target. !

!
!
--with-mode=mode
!

Specify if the compiler should default to -marm or -mthumb. This option is only supported on ARM targets. !

!
!
--with-stack-offset=num
!

This option sets the default for the -mstack-offset=num option, and will thus generally also control the setting of this option for libraries. This option is only supported on Epiphany targets. !

!
!
--with-fpmath=isa
!

This options sets -mfpmath=sse by default and specifies the default ! ISA for floating-point arithmetics. You can select either ‘sse’ which ! enables -msse2 or ‘avx’ which enables -mavx by default. This option is only supported on i386 and x86-64 targets. !

!
!
--with-divide=type
!

Specify how the compiler should generate code for checking for ! division by zero. This option is only supported on the MIPS target. The possibilities for type are: !

!
traps
!

Division by zero checks use conditional traps (this is the default on ! systems that support conditional traps). !

!
breaks
!

Division by zero checks use the break instruction. !

! !
!
--with-llsc
!

On MIPS targets, make -mllsc the default when no ! -mno-llsc option is passed. This is the default for Linux-based targets, as the kernel will emulate them if the ISA does not provide them. !

!
!
--without-llsc
!

On MIPS targets, make -mno-llsc the default when no ! -mllsc option is passed. !

!
!
--with-synci
!

On MIPS targets, make -msynci the default when no ! -mno-synci option is passed. !

!
!
--without-synci
!

On MIPS targets, make -mno-synci the default when no ! -msynci option is passed. This is the default. !

!
!
--with-mips-plt
!

On MIPS targets, make use of copy relocations and PLTs. These features are extensions to the traditional SVR4-based MIPS ABIs and require support from GNU binutils and the runtime C library. !

!
!
--enable-__cxa_atexit
!

Define if you want to use __cxa_atexit, rather than atexit, to ! register C++ destructors for local statics and global objects. This is essential for fully standards-compliant handling of destructors, but requires __cxa_atexit in libc. This option is currently only available on systems with GNU libc. When enabled, this will cause ! -fuse-cxa-atexit to be passed by default. !

!
!
--enable-gnu-indirect-function
!

Define if you want to enable the ifunc attribute. This option is currently only available on systems with GNU libc on certain targets. !

!
!
--enable-target-optspace
!

Specify that target ! libraries should be optimized for code space instead of code speed. This is the default for the m32r platform. !

!
!
--with-cpp-install-dir=dirname
!

Specify that the user visible cpp program should be installed ! in prefix/dirname/cpp, in addition to bindir. !

!
!
--enable-comdat
!

Enable COMDAT group support. This is primarily used to override the automatically detected value. !

!
!
--enable-initfini-array
!

Force the use of sections .init_array and .fini_array (instead of .init and .fini) for constructors and ! destructors. Option --disable-initfini-array has the opposite effect. If neither option is specified, the configure script will try to guess whether the .init_array and .fini_array sections are supported and, if they are, use them. !

!
!
--enable-maintainer-mode
!

The build rules that regenerate the Autoconf and Automake output files as ! well as the GCC master message catalog gcc.pot are normally disabled. This is because it can only be rebuilt if the complete source tree is present. If you have changed the sources and want to rebuild the ! catalog, configuring with --enable-maintainer-mode will enable this. Note that you need a recent version of the gettext tools to do so. !

!
!
--disable-bootstrap
!

For a native build, the default configuration is to perform ! a 3-stage bootstrap of the compiler when ‘make’ is invoked, testing that GCC can compile itself correctly. If you want to disable ! this process, you can configure with --disable-bootstrap. !

!
!
--enable-bootstrap
!

In special cases, you may want to perform a 3-stage build ! even if the target and host triplets are different. This is possible when the host can run code compiled for ! the target (e.g. host is i686-linux, target is i486-linux). Starting from GCC 4.2, to do this you have to configure explicitly ! with --enable-bootstrap. !

!
!
--enable-generated-files-in-srcdir
!

Neither the .c and .h files that are generated from Bison and flex nor the info manuals and man pages that are built from the .texi files are present in the SVN development tree. When building GCC from that development tree, or from one of our snapshots, those generated files are placed in your build directory, which allows for the source to be in a readonly directory. !

!

If you configure with --enable-generated-files-in-srcdir then those generated files will go into the source directory. This is mainly intended for generating release or prerelease tarballs of the GCC sources, since it is not a requirement that the users of source releases to have flex, Bison, or makeinfo. !

!
!
--enable-version-specific-runtime-libs
!

Specify that runtime libraries should be installed in the compiler specific ! subdirectory (libdir/gcc) rather than the usual places. In ! addition, ‘libstdc++’’s include files will be installed into libdir unless you overruled it by using ! --with-gxx-include-dir=dirname. Using this option is particularly useful if you intend to use several versions of GCC in ! parallel. This is currently supported by ‘libgfortran’, ! ‘libjava’, ‘libmudflap’, ‘libstdc++’, and ‘libobjc’. !

!
!
--enable-languages=lang1,lang2,…
!

Specify that only a particular subset of compilers and their runtime libraries should be built. For a list of valid values for langN you can issue the following command in the ! gcc directory of your GCC source tree:
!

!
grep language= */config-lang.in
! 
!

Currently, you can use any of the following: all, ada, c, c++, fortran, ! go, java, objc, obj-c++. ! Building the Ada compiler has special requirements, see below. If you do not pass this flag, or specify the option all, then all ! default languages available in the gcc sub-tree will be configured. Ada, Go and Objective-C++ are not default languages; the rest are. !

!
!
--enable-stage1-languages=lang1,lang2,…
!

Specify that a particular subset of compilers and their runtime libraries should be built with the system C compiler during stage 1 of the bootstrap process, rather than only in later stages with the bootstrapped C compiler. The list of valid values is the same as for ! --enable-languages, and the option all will select all ! of the languages enabled by --enable-languages. This option is primarily useful for GCC development; for instance, when a development version of the compiler cannot bootstrap due to compiler bugs, or when one is debugging front ends other than the C front end. When this option is used, one can then build the target libraries for the ! specified languages with the stage-1 compiler by using make ! stage1-bubble all-target, or run the testsuite on the stage-1 compiler ! for the specified languages using make stage1-start check-gcc. !

!
!
--disable-libada
!

Specify that the run-time libraries and tools used by GNAT should not be built. This can be useful for debugging, or for compatibility with previous Ada build procedures, when it was required to explicitly ! do a ‘make -C gcc gnatlib_and_tools’. !

!
!
--disable-libssp
!

Specify that the run-time libraries for stack smashing protection should not be built. !

!
!
--disable-libquadmath
!

Specify that the GCC quad-precision math library should not be built. On some systems, the library is required to be linkable when building ! the Fortran front end, unless --disable-libquadmath-support is used. !

!
!
--disable-libquadmath-support
!

Specify that the Fortran front end and libgfortran do not add support for libquadmath on systems supporting it. !

!
!
--disable-libgomp
!

Specify that the run-time libraries used by GOMP should not be built. !

!
!
--with-dwarf2
!

Specify that the compiler should use DWARF 2 debugging information as the default. !

!
!
--enable-targets=all
!
--enable-targets=target_list
!

Some GCC targets, e.g. powerpc64-linux, build bi-arch compilers. These are compilers that are able to generate either 64-bit or 32-bit ! code. Typically, the corresponding 32-bit target, e.g. powerpc-linux for powerpc64-linux, only generates 32-bit code. This option enables the 32-bit target to be a bi-arch compiler, which is useful when you want a bi-arch compiler that defaults to 32-bit, and ! you are building a bi-arch or multi-arch binutils in a combined tree. On mips-linux, this will build a tri-arch compiler (ABI o32/n32/64), ! defaulted to o32. Currently, this option only affects sparc-linux, powerpc-linux, x86-linux, mips-linux and s390-linux. !

!
!
--enable-secureplt
!

This option enables -msecure-plt by default for powerpc-linux. See “RS/6000 and PowerPC Options” in the main manual !

!
!
--enable-cld
!

This option enables -mcld by default for 32-bit x86 targets. See “i386 and x86-64 Options” in the main manual !

!
!
--enable-win32-registry
!
--enable-win32-registry=key
!
--disable-win32-registry
!

The --enable-win32-registry option enables Microsoft Windows-hosted GCC to look up installations paths in the registry using the following key: +

+
+
HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\key
+ 
!

key defaults to GCC version number, and can be overridden by the ! --enable-win32-registry=key option. Vendors and distributors who use custom installers are encouraged to provide a different key, perhaps one comprised of vendor name and GCC version number, to avoid conflict with existing installations. This feature is enabled ! by default, and can be disabled by --disable-win32-registry option. This option has no effect on the other hosts. !

!
!
--nfp
!

Specify that the machine does not have a floating point unit. This ! option only applies to ‘m68k-sun-sunosn’. On any other ! system, --nfp has no effect. !

!
!
--enable-werror
!
--disable-werror
!
--enable-werror=yes
!
--enable-werror=no
!

When you specify this option, it controls whether certain files in the ! compiler are built with -Werror in bootstrap stage2 and later. ! If you don’t specify it, -Werror is turned on for the main development trunk. However it defaults to off for release branches and ! final releases. The specific files which get -Werror are controlled by the Makefiles. !

!
!
--enable-checking
!
--enable-checking=list
!

When you specify this option, the compiler is built to perform internal consistency checks of the requested complexity. This does not change the generated code, but adds error checking within the compiler. This will slow down the compiler and may only work properly if you are building ! the compiler with GCC. This is ‘yes’ by default when building ! from SVN or snapshots, but ‘release’ for releases. The default ! for building the stage1 compiler is ‘yes’. More control over the checks may be had by specifying list. The categories of ! checks available are ‘yes’ (most common checks ! ‘assert,misc,tree,gc,rtlflag,runtime’), ‘no’ (no checks at ! all), ‘all’ (all but ‘valgrind’), ‘release’ (cheapest ! checks ‘assert,runtime’) or ‘none’ (same as ‘no’). ! Individual checks can be enabled with these flags ‘assert’, ! ‘df’, ‘fold’, ‘gc’, ‘gcac’ ‘misc’, ‘rtl’, ! ‘rtlflag’, ‘runtime’, ‘tree’, and ‘valgrind’. !

!

The ‘valgrind’ check requires the external valgrind simulator, available from http://valgrind.org/. The ! ‘df’, ‘rtl’, ‘gcac’ and ‘valgrind’ checks are very expensive. ! To disable all checking, ‘--disable-checking’ or ! ‘--enable-checking=none’ must be explicitly requested. Disabling assertions will make the compiler and runtime slightly faster but increase the risk of undetected internal errors causing wrong code to be generated. !

!
!
--disable-stage1-checking
!
--enable-stage1-checking
!
--enable-stage1-checking=list
!

If no --enable-checking option is specified the stage1 ! compiler will be built with ‘yes’ checking enabled, otherwise the stage1 checking flags are the same as specified by ! --enable-checking. To build the stage1 compiler with ! different checking options use --enable-stage1-checking. ! The list of checking options is the same as for --enable-checking. If your system is too slow or too small to bootstrap a released compiler ! with checking for stage1 enabled, you can use ‘--disable-stage1-checking’ to disable checking for the stage1 compiler. !

!
!
--enable-coverage
!
--enable-coverage=level
!

With this option, the compiler is built to collect self coverage information, every time it is run. This is for internal development purposes, and only works when the compiler is being built with gcc. The level argument controls whether the compiler is built optimized or ! not, values are ‘opt’ and ‘noopt’. For coverage analysis you want to disable optimization, for performance analysis you want to enable optimization. When coverage is enabled, the default level is without optimization. !

!
!
--enable-gather-detailed-mem-stats
!

When this option is specified more detailed information on memory allocation is gathered. This information is printed when using ! -fmem-report. !

!
!
--enable-nls
!
--disable-nls
!

The --enable-nls option enables Native Language Support (NLS), which lets GCC output diagnostics in languages other than American English. Native Language Support is enabled by default if not doing a ! canadian cross build. The --disable-nls option disables NLS. !

!
!
--with-included-gettext
!

If NLS is enabled, the --with-included-gettext option causes the build ! procedure to prefer its copy of GNU gettext. !

!
!
--with-catgets
!

If NLS is enabled, and if the host lacks gettext but has the inferior catgets interface, the GCC build procedure normally ! ignores catgets and instead uses GCC’s copy of the GNU ! gettext library. The --with-catgets option causes the ! build procedure to use the host’s catgets in this situation. !

!
!
--with-libiconv-prefix=dir
!

Search for libiconv header files in dir/include and ! libiconv library files in dir/lib. !

!
!
--enable-obsolete
!

Enable configuration for an obsoleted system. If you attempt to configure GCC for a system (build, host, or target) which has been obsoleted, and you do not specify this flag, configure will halt with an error message. !

!

All support for systems which have been obsoleted in one release of GCC is removed entirely in the next major release, unless someone steps forward to maintain the port. !

!
!
--enable-decimal-float
!
--enable-decimal-float=yes
!
--enable-decimal-float=no
!
--enable-decimal-float=bid
!
--enable-decimal-float=dpd
!
--disable-decimal-float
!

Enable (or disable) support for the C decimal floating point extension that is in the IEEE 754-2008 standard. This is enabled by default only on PowerPC, i386, and x86_64 GNU/Linux systems. Other systems may also support it, but require the user to specifically enable it. You can optionally control which decimal floating point format is used (either ! ‘bid’ or ‘dpd’). The ‘bid’ (binary integer decimal) ! format is default on i386 and x86_64 systems, and the ‘dpd’ (densely packed decimal) format is default on PowerPC systems. !

!
!
--enable-fixed-point
!
--disable-fixed-point
!

Enable (or disable) support for C fixed-point arithmetic. This option is enabled by default for some targets (such as MIPS) which have hardware-support for fixed-point operations. On other targets, you may enable this option manually. !

!
!
--with-long-double-128
!

Specify if long double type should be 128-bit by default on selected GNU/Linux architectures. If using --without-long-double-128, ! long double will be by default 64-bit, the same as double type. When neither of these configure options are used, the default will be 128-bit long double when built against GNU C Library 2.4 and later, 64-bit long double otherwise. !

!
!
--with-gmp=pathname
!
--with-gmp-include=pathname
!
--with-gmp-lib=pathname
!
--with-mpfr=pathname
!
--with-mpfr-include=pathname
!
--with-mpfr-lib=pathname
!
--with-mpc=pathname
!
--with-mpc-include=pathname
!
--with-mpc-lib=pathname
!

If you want to build GCC but do not have the GMP library, the MPFR library and/or the MPC library installed in a standard location and do not have their sources present in the GCC source tree then you can explicitly specify the directory where they are installed ! (‘--with-gmp=gmpinstalldir’, ! ‘--with-mpfr=mpfrinstalldir’, ! ‘--with-mpc=mpcinstalldir’). The ! --with-gmp=gmpinstalldir option is shorthand for ! --with-gmp-lib=gmpinstalldir/lib and ! --with-gmp-include=gmpinstalldir/include. Likewise the ! --with-mpfr=mpfrinstalldir option is shorthand for ! --with-mpfr-lib=mpfrinstalldir/lib and ! --with-mpfr-include=mpfrinstalldir/include, also the ! --with-mpc=mpcinstalldir option is shorthand for ! --with-mpc-lib=mpcinstalldir/lib and ! --with-mpc-include=mpcinstalldir/include. If these shorthand assumptions are not correct, you can use the explicit include and lib options directly. You might also need to ensure the shared libraries can be found by the dynamic linker when building and using GCC, for example by setting the runtime shared library path ! variable (LD_LIBRARY_PATH on GNU/Linux and Solaris systems). !

!

These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. !

!
!
--with-isl=pathname
!
--with-isl-include=pathname
!
--with-isl-lib=pathname
!
--with-cloog=pathname
!
--with-cloog-include=pathname
!
--with-cloog-lib=pathname
!

If you do not have ISL and the CLooG libraries installed in a standard location and you want to build GCC, you can explicitly specify the directory where they are installed ! (‘--with-isl=islinstalldir’, ! ‘--with-cloog=clooginstalldir’). The ! --with-isl=islinstalldir option is shorthand for ! --with-isl-lib=islinstalldir/lib and ! --with-isl-include=islinstalldir/include. Likewise the ! --with-cloog=clooginstalldir option is shorthand for ! --with-cloog-lib=clooginstalldir/lib and ! --with-cloog-include=clooginstalldir/include. If these shorthand assumptions are not correct, you can use the explicit include and lib options directly. !

!

These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. !

!
!
--with-host-libstdcxx=linker-args
!

If you are linking with a static copy of PPL, you can use this option to specify how the linker should find the standard C++ library used internally by PPL. Typical values of linker-args might be ! ‘-lstdc++’ or ‘-Wl,-Bstatic,-lstdc++,-Bdynamic -lm’. If you are linking with a shared copy of PPL, you probably do not need this option; shared library dependencies will cause the linker to search for the standard C++ library automatically. !

!
!
--with-stage1-ldflags=flags
!

This option may be used to set linker flags to be used when linking stage 1 of GCC. These are also used when linking GCC if configured with ! --disable-bootstrap. By default no special flags are used. !

!
!
--with-stage1-libs=libs
!

This option may be used to set libraries to be used when linking stage 1 of GCC. These are also used when linking GCC if configured with ! --disable-bootstrap. The default is the argument to ! --with-host-libstdcxx, if specified. !

!
!
--with-boot-ldflags=flags
!

This option may be used to set linker flags to be used when linking stage 2 and later when bootstrapping GCC. If neither –with-boot-libs nor –with-host-libstdcxx is set to a value, then the default is ! ‘-static-libstdc++ -static-libgcc’. !

!
!
--with-boot-libs=libs
!

This option may be used to set libraries to be used when linking stage 2 and later when bootstrapping GCC. The default is the argument to ! --with-host-libstdcxx, if specified. !

!
!
--with-debug-prefix-map=map
!

Convert source directory names using -fdebug-prefix-map when building runtime libraries. ‘map’ is a space-separated ! list of maps of the form ‘old=new’. !

!
!
--enable-linker-build-id
!

Tells GCC to pass --build-id option to the linker for all final ! links (links performed without the -r or --relocatable option), if the linker supports it. If you specify ! --enable-linker-build-id, but your linker does not ! support --build-id option, a warning is issued and the ! --enable-linker-build-id option is ignored. The default is off. !

!
!
--with-linker-hash-style=choice
!

Tells GCC to pass --hash-style=choice option to the linker for all final links. choice can be one of ! ‘sysv’, ‘gnu’, and ‘both’ where ‘sysv’ is the default. !

!
!
--enable-gnu-unique-object
!
--disable-gnu-unique-object
!

Tells GCC to use the gnu_unique_object relocation for C++ template static data members and inline function local statics. Enabled by default for a native toolchain with an assembler that accepts it and GLIBC 2.11 or above, otherwise disabled. !

!
!
--enable-lto
!
--disable-lto
!

Enable support for link-time optimization (LTO). This is enabled by ! default, and may be disabled using --disable-lto. !

!
!
--with-plugin-ld=pathname
!

Enable an alternate linker to be used at link-time optimization (LTO) ! link time when -fuse-linker-plugin is enabled. This linker should have plugin support such as gold starting with ! version 2.20 or GNU ld starting with version 2.21. ! See -fuse-linker-plugin for details. !

!
!
--enable-canonical-system-headers
!
--disable-canonical-system-headers
!

Enable system header path canonicalization for libcpp. This can produce shorter header file paths in diagnostics and dependency output files, but these changed header paths may conflict with some compilation environments. Enabled by default, and may be disabled using ! --disable-canonical-system-headers. !

! !

Cross-Compiler-Specific Options

The following options only apply to building cross compilers. !

!
!
--with-sysroot
!
--with-sysroot=dir
!

Tells GCC to consider dir as the root of a tree that contains ! (a subset of) the root filesystem of the target operating system. Target system headers, libraries and run-time object files will be searched for in there. More specifically, this acts as if ! --sysroot=dir was added to the default options of the built compiler. The specified directory is not copied into the ! install tree, unlike the options --with-headers and ! --with-libs that this option obsoletes. The default value, ! in case --with-sysroot is not given an argument, is ! ${gcc_tooldir}/sys-root. If the specified directory is a ! subdirectory of ${exec_prefix}, then it will be found relative to the GCC binaries if the installation tree is moved. !

!

This option affects the system root for the compiler used to build target libraries (which runs on the build system) and the compiler newly installed with make install; it does not affect the compiler which is used to build GCC itself. !

!

If you specify the --with-native-system-header-dir=dirname option then the compiler will search that directory within dirname for ! native system headers rather than the default /usr/include. !

!
!
--with-build-sysroot
!
--with-build-sysroot=dir
!

Tells GCC to consider dir as the system root (see ! --with-sysroot) while building target libraries, instead of ! the directory specified with --with-sysroot. This option is ! only useful when you are already using --with-sysroot. You ! can use --with-build-sysroot when you are configuring with ! --prefix set to a directory that is different from the one in which you are installing GCC and your target libraries. !

!

This option affects the system root for the compiler used to build target libraries (which runs on the build system); it does not affect the compiler which is used to build GCC itself. !

!

If you specify the --with-native-system-header-dir=dirname option then the compiler will search that directory within dirname for ! native system headers rather than the default /usr/include. !

!
!
--with-headers
!
--with-headers=dir
!

Deprecated in favor of --with-sysroot. ! Specifies that target headers are available when building a cross compiler. The dir argument specifies a directory which has the target include ! files. These include files will be copied into the gcc install ! directory. This option with the dir argument is required when ! building a cross compiler, if prefix/target/sys-include ! doesn’t pre-exist. If prefix/target/sys-include does ! pre-exist, the dir argument may be omitted. fixincludes will be run on these files to make them compatible with GCC. !

!
!
--without-headers
!

Tells GCC not use any target headers from a libc when building a cross compiler. When crossing to GNU/Linux, you need the headers so GCC can build the exception handling for libgcc. !

!
!
--with-libs
!
--with-libs="dir1 dir2dirN"
!

Deprecated in favor of --with-sysroot. Specifies a list of directories which contain the target runtime ! libraries. These libraries will be copied into the gcc install directory. If the directory list is omitted, this option has no effect. !

!
!
--with-newlib
!

Specifies that ‘newlib’ is being used as the target C library. This causes __eprintf to be ! omitted from libgcc.a on the assumption that it will be provided by ! ‘newlib’. !

!
!
--with-avrlibc
!

Specifies that ‘AVR-Libc’ is being used as the target C library. This causes float support ! functions like __addsf3 to be omitted from libgcc.a on ! the assumption that it will be provided by libm.a. For more ! technical details, cf. PR54461. This option is only supported for the AVR target. It is not supported for RTEMS configurations, which currently use newlib. The option is supported since version 4.7.2 and is the default in 4.8.0 and newer. !

!
!
--with-build-time-tools=dir
!

Specifies where to find the set of target tools (assembler, linker, etc.) that will be used while building GCC itself. This option can be useful if the directory layouts are different between the system you are building GCC on, and the system where you will deploy it. !

!

For example, on an ‘ia64-hp-hpux’ system, you may have the GNU ! assembler and linker in /usr/bin, and the native tools in a different path, and build a toolchain that expects to find the ! native tools in /usr/bin. !

!

When you use this option, you should ensure that dir includes ! ar, as, ld, nm, ! ranlib and strip if necessary, and possibly ! objdump. Otherwise, GCC may use an inconsistent set of ! tools. !

! !

Java-Specific Options

The following option applies to the build of the Java front end. !

!
!
--disable-libgcj
!

Specify that the run-time libraries used by GCJ should not be built. This is useful in case you intend ! to use GCJ with some other run-time, or you’re going to install it separately, or it just happens not to build on your particular machine. In general, if the Java front end is enabled, the GCJ ! libraries will be enabled too, unless they’re known to not work on ! the target platform. If GCJ is enabled but ‘libgcj’ isn’t built, you may need to port it; in this case, before modifying the top-level ! configure.in so that ‘libgcj’ is enabled by default on this platform, ! you may use --enable-libgcj to override the default. !

!
!
!

The following options apply to building ‘libgcj’. !

! !

General Options

!
!
--enable-java-maintainer-mode
!

By default the ‘libjava’ build will not attempt to compile the ! .java source files to .class. Instead, it will use the ! .class files from the source tree. If you use this option you ! must have executables named ecj1 and gjavah in your path for use by the build. You must use this option if you intend to ! modify any .java files in libjava. !

!
!
--with-java-home=dirname
!

This ‘libjava’ option overrides the default value of the ! ‘java.home’ system property. It is also used to set ! ‘sun.boot.class.path’ to dirname/lib/rt.jar. By ! default ‘java.home’ is set to prefix and ! ‘sun.boot.class.path’ to ! datadir/java/libgcj-version.jar. !

!
!
--with-ecj-jar=filename
!

This option can be used to specify the location of an external jar file containing the Eclipse Java compiler. A specially modified ! version of this compiler is used by gcj to parse ! .java source files. If this option is given, the ! ‘libjava’ build will create and install an ecj1 executable which uses this jar file at runtime. !

!

If this option is not given, but an ecj.jar file is found in ! the topmost source tree at configure time, then the ‘libgcj’ ! build will create and install ecj1, and will also install the ! discovered ecj.jar into a suitable place in the install tree. !

!

If ecj1 is not installed, then the user will have to supply one ! on his path in order for gcj to properly parse .java source files. A suitable jar is available from ftp://sourceware.org/pub/java/. !

!
!
--disable-getenv-properties
!

Don’t set system properties from GCJ_PROPERTIES. !

!
!
--enable-hash-synchronization
!

Use a global hash table for monitor locks. Ordinarily, ! ‘libgcj’’s ‘configure’ script automatically makes the correct choice for this option for your platform. Only use this if you know you need the library to be configured differently. !

!
!
--enable-interpreter
!

Enable the Java interpreter. The interpreter is automatically enabled by default on all platforms that support it. This option is really only useful if you want to disable the interpreter ! (using --disable-interpreter). !

!
!
--disable-java-net
!

Disable java.net. This disables the native part of java.net only, using non-functional stubs for native method implementations. !

!
!
--disable-jvmpi
!

Disable JVMPI support. !

!
!
--disable-libgcj-bc
!

Disable BC ABI compilation of certain parts of libgcj. By default, ! some portions of libgcj are compiled with -findirect-dispatch ! and -fno-indirect-classes, allowing them to be overridden at run-time. !

!

If --disable-libgcj-bc is specified, libgcj is built without these options. This allows the compile-time linker to resolve dependencies when statically linking to libgcj. However it makes it impossible to override the affected portions of libgcj at run-time. !

!
!
--enable-reduced-reflection
!

Build most of libgcj with -freduced-reflection. This reduces the size of libgcj at the expense of not being able to do accurate reflection on the classes it contains. This option is safe if you know that code using libgcj will never use reflection on the standard runtime classes in libgcj (including using serialization, RMI or CORBA). !

!
!
--with-ecos
!

Enable runtime eCos target support. !

!
!
--without-libffi
!

Don’t use ‘libffi’. This will disable the interpreter and JNI ! support as well, as these require ‘libffi’ to work. !

!
!
--enable-libgcj-debug
!

Enable runtime debugging code. !

!
!
--enable-libgcj-multifile
!

If specified, causes all .java source files to be ! compiled into .class files in one invocation of ! ‘gcj’. This can speed up build time, but is more resource-intensive. If this option is unspecified or ! disabled, ‘gcj’ is invoked once for each .java ! file to compile into a .class file. !

!
!
--with-libiconv-prefix=DIR
!

Search for libiconv in DIR/include and DIR/lib. !

!
!
--enable-sjlj-exceptions
!

Force use of the setjmp/longjmp-based scheme for exceptions. ! ‘configure’ ordinarily picks the correct value based on the platform. Only use this option if you are sure you need a different setting. !

!
!
--with-system-zlib
!

Use installed ‘zlib’ rather than that included with GCC. !

!
!
--with-win32-nlsapi=ansi, unicows or unicode
!

Indicates how MinGW ‘libgcj’ translates between UNICODE characters and the Win32 API. !

!
!
--enable-java-home
!

If enabled, this creates a JPackage compatible SDK environment during install. Note that if –enable-java-home is used, –with-arch-directory=ARCH must also be specified. !

!
!
--with-arch-directory=ARCH
!

Specifies the name to use for the jre/lib/ARCH directory in the SDK environment created when –enable-java-home is passed. Typical names for this directory include i386, amd64, ia64, etc. !

!
!
--with-os-directory=DIR
!

Specifies the OS directory for the SDK include directory. This is set to auto ! detect, and is typically ’linux’. !

!
!
--with-origin-name=NAME
!

Specifies the JPackage origin name. This defaults to the ’gcj’ in java-1.5.0-gcj. !

!
!
--with-arch-suffix=SUFFIX
!

Specifies the suffix for the sdk directory. Defaults to the empty string. ! Examples include ’.x86_64’ in ’java-1.5.0-gcj-1.5.0.0.x86_64’. !

!
!
--with-jvm-root-dir=DIR
!

Specifies where to install the SDK. Default is $(prefix)/lib/jvm. !

!
!
--with-jvm-jar-dir=DIR
!

Specifies where to install jars. Default is $(prefix)/lib/jvm-exports. !

!
!
--with-python-dir=DIR
!

Specifies where to install the Python modules used for aot-compile. DIR should not include the prefix used in installation. For example, if the Python modules are to be installed in /usr/lib/python2.5/site-packages, then –with-python-dir=/lib/python2.5/site-packages should be passed. If this is not specified, then the Python modules are installed in $(prefix)/share/python. !

!
!
--enable-aot-compile-rpm
!

Adds aot-compile-rpm to the list of installed scripts. !

!
!
--enable-browser-plugin
!

Build the gcjwebplugin web browser plugin. !

!
!
--enable-static-libjava
!

Build static libraries in libjava. The default is to only build shared libraries. !

!
!
ansi
!

Use the single-byte char and the Win32 A functions natively, translating to and from UNICODE when using these functions. If unspecified, this is the default. !

!
!
unicows
!

Use the WCHAR and Win32 W functions natively. Adds ! -lunicows to libgcj.spec to link with ‘libunicows’. ! unicows.dll needs to be deployed on Microsoft Windows 9X machines ! running built executables. libunicows.a, an open-source ! import library around Microsoft’s unicows.dll, is obtained from http://libunicows.sourceforge.net/, which also gives details ! on getting unicows.dll from Microsoft. !

!
!
unicode
!

Use the WCHAR and Win32 W functions natively. Does not ! add -lunicows to libgcj.spec. The built executables will ! only run on Microsoft Windows NT and above. !

!
!
! !

AWT-Specific Options

!
!
--with-x
!

Use the X Window System. !

!
!
--enable-java-awt=PEER(S)
!

Specifies the AWT peer library or libraries to build alongside ! ‘libgcj’. If this option is unspecified or disabled, AWT ! will be non-functional. Current valid values are gtk and ! xlib. Multiple libraries should be separated by a ! comma (i.e. --enable-java-awt=gtk,xlib). !

!
!
--enable-gtk-cairo
!

Build the cairo Graphics2D implementation on GTK. !

!
!
--enable-java-gc=TYPE
!

Choose garbage collector. Defaults to boehm if unspecified. !

!
!
--disable-gtktest
!

Do not try to compile and run a test GTK+ program. !

!
!
--disable-glibtest
!

Do not try to compile and run a test GLIB program. !

!
!
--with-libart-prefix=PFX
!

Prefix where libart is installed (optional). !

!
!
--with-libart-exec-prefix=PFX
!

Exec prefix where libart is installed (optional). !

!
!
--disable-libarttest
!

Do not try to compile and run a test libart program. !

!
!
! !

Overriding configure test results

!

Sometimes, it might be necessary to override the result of some ! configure test, for example in order to ease porting to a new ! system or work around a bug in a test. The toplevel configure ! script provides three variables for this: !

!
!
build_configargs
!
!

The contents of this variable is passed to all build configure ! scripts. !

!
!
host_configargs
!
!

The contents of this variable is passed to all host configure ! scripts. !

!
!
target_configargs
!
!

The contents of this variable is passed to all target configure ! scripts. !

!
!
!

In order to avoid shell and make quoting issues for complex ! overrides, you can pass a setting for CONFIG_SITE and set ! variables in the site file. !

!
!

Return to the GCC Installation page !

+ + diff -Nrcpad gcc-4.8.1/INSTALL/download.html gcc-4.8.2/INSTALL/download.html *** gcc-4.8.1/INSTALL/download.html Fri May 31 09:09:27 2013 --- gcc-4.8.2/INSTALL/download.html Wed Oct 16 07:28:01 2013 *************** *** 1,87 **** ! ! ! Downloading GCC ! ! ! ! ! ! ! ! - -

Downloading GCC

- - GCC is distributed via SVN and FTP - tarballs compressed with gzip or - bzip2. !

Please refer to the releases web page ! for information on how to obtain GCC. !

The source distribution includes the C, C++, Objective-C, Fortran, Java, and Ada (in the case of GCC 3.1 and later) compilers, as well as ! runtime libraries for C++, Objective-C, Fortran, and Java. For previous versions these were downloadable as separate components such as the core GCC distribution, which included the C language front end and shared components, and language-specific distributions including the language front end and the language runtime (where appropriate). ! !

If you also intend to build binutils (either to upgrade an existing installation or for use in place of the corresponding tools of your OS), unpack the binutils distribution either in the same directory or a separate one. In the latter case, add symbolic links to any components of the binutils you intend to build alongside the compiler ! (bfd, binutils, gas, gprof, ld, ! opcodes, ...) to the directory containing the GCC sources. ! !

Likewise the GMP, MPFR and MPC libraries can be automatically built together with GCC. Unpack the GMP, MPFR and/or MPC source distributions in the directory containing the GCC sources and rename ! their directories to gmp, mpfr and mpc, respectively (or use symbolic links with the same name). -


-

Return to the GCC Installation page - - - - - - - - - - - --- 1,132 ---- ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

GCC is distributed via SVN and FTP ! tarballs compressed with gzip or ! bzip2. !

!

Please refer to the releases web page ! for information on how to obtain GCC. !

!

The source distribution includes the C, C++, Objective-C, Fortran, Java, and Ada (in the case of GCC 3.1 and later) compilers, as well as ! runtime libraries for C++, Objective-C, Fortran, and Java. For previous versions these were downloadable as separate components such as the core GCC distribution, which included the C language front end and shared components, and language-specific distributions including the language front end and the language runtime (where appropriate). !

!

If you also intend to build binutils (either to upgrade an existing installation or for use in place of the corresponding tools of your OS), unpack the binutils distribution either in the same directory or a separate one. In the latter case, add symbolic links to any components of the binutils you intend to build alongside the compiler ! (bfd, binutils, gas, gprof, ld, ! opcodes, …) to the directory containing the GCC sources. !

!

Likewise the GMP, MPFR and MPC libraries can be automatically built together with GCC. Unpack the GMP, MPFR and/or MPC source distributions in the directory containing the GCC sources and rename ! their directories to gmp, mpfr and mpc, respectively (or use symbolic links with the same name). +

+
+

Return to the GCC Installation page +

+ + + + + + + + + + + diff -Nrcpad gcc-4.8.1/INSTALL/finalinstall.html gcc-4.8.2/INSTALL/finalinstall.html *** gcc-4.8.1/INSTALL/finalinstall.html Fri May 31 09:09:27 2013 --- gcc-4.8.2/INSTALL/finalinstall.html Wed Oct 16 07:28:03 2013 *************** *** 1,172 **** ! ! ! Installing GCC: Final installation ! ! ! ! ! ! ! ! ! !

Installing GCC: Final installation

! Now that GCC has been built (and optionally tested), you can install it with !
     cd objdir && make install
! 
!

We strongly recommend to install into a target directory where there is no previous version of GCC present. Also, the GNAT runtime should not be stripped, as this would break certain features of the debugger that depend on this debugging information (catching Ada exceptions for instance). ! !

That step completes the installation of GCC; user level binaries can ! be found in prefix/bin where prefix is the value ! you specified with the --prefix to configure (or ! /usr/local by default). (If you specified --bindir, that directory will be used instead; otherwise, if you specified ! --exec-prefix, exec-prefix/bin will be used.) Headers for the C++ and Java libraries are installed in ! prefix/include; libraries in libdir ! (normally prefix/lib); internal parts of the compiler in ! libdir/gcc and libexecdir/gcc; documentation in info format in infodir (normally ! prefix/info). ! !

When installing cross-compilers, GCC's executables are not only installed into bindir, that ! is, exec-prefix/bin, but additionally into ! exec-prefix/target-alias/bin, if that directory ! exists. Typically, such tooldirs hold target-specific binutils, including assembler and linker. ! !

Installation into a temporary staging area or into a chroot jail can be achieved with the command !

     make DESTDIR=path-to-rootdir install
! 
!

where path-to-rootdir is the absolute path of a directory relative to which all installation paths will be interpreted. Note that the directory specified by DESTDIR need not exist yet; it will be created if necessary. ! !

There is a subtle point with tooldirs and DESTDIR: If you relocate a cross-compiler installation with ! e.g. ‘DESTDIR=rootdir’, then the directory ! rootdir/exec-prefix/target-alias/bin will be filled with duplicated GCC executables only if it already exists, it will not be created otherwise. This is regarded as a feature, not as a bug, because it gives slightly more control to the packagers using the DESTDIR feature. !

You can install stripped programs and libraries with ! !

     make install-strip
! 
!

If you are bootstrapping a released version of GCC then please quickly review the build status page for your release, available from ! http://gcc.gnu.org/buildstat.html. If your system is not listed for the version of GCC that you built, send a note to gcc@gcc.gnu.org indicating ! that you successfully built and installed GCC. Include the following information: ! !

!

We'd also like to know if the host/target specific installation notes ! didn't include your host/target information or if that information is incomplete or out of date. Send a note to gcc@gcc.gnu.org detailing how the information should be changed. ! !

If you find a bug, please report it following the bug reporting guidelines. ! !

If you want to print the GCC manuals, do ‘cd objdir; make ! dvi’. You will need to have texi2dvi (version at least 4.7) ! and TeX installed. This creates a number of .dvi files in subdirectories of objdir; these may be converted for ! printing with programs such as dvips. Alternately, by using ! ‘make pdf’ in place of ‘make dvi’, you can create documentation ! in the form of .pdf files; this requires texi2pdf, which is included with Texinfo version 4.8 and later. You can also ! buy printed manuals from the Free Software Foundation, though such manuals may not be for the most recent version of GCC. -

If you would like to generate online HTML documentation, do ‘cd - objdir; make html’ and HTML will be generated for the gcc manuals in - objdir/gcc/HTML. -


-

Return to the GCC Installation page - - - - - - - --- 1,227 ---- ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Now that GCC has been built (and optionally tested), you can install it with !

!
cd objdir && make install
! 
! !

We strongly recommend to install into a target directory where there is no previous version of GCC present. Also, the GNAT runtime should not be stripped, as this would break certain features of the debugger that depend on this debugging information (catching Ada exceptions for instance). !

!

That step completes the installation of GCC; user level binaries can ! be found in prefix/bin where prefix is the value ! you specified with the --prefix to configure (or ! /usr/local by default). (If you specified --bindir, that directory will be used instead; otherwise, if you specified ! --exec-prefix, exec-prefix/bin will be used.) Headers for the C++ and Java libraries are installed in ! prefix/include; libraries in libdir ! (normally prefix/lib); internal parts of the compiler in ! libdir/gcc and libexecdir/gcc; documentation in info format in infodir (normally ! prefix/info). !

!

When installing cross-compilers, GCC’s executables are not only installed into bindir, that ! is, exec-prefix/bin, but additionally into ! exec-prefix/target-alias/bin, if that directory ! exists. Typically, such tooldirs hold target-specific binutils, including assembler and linker. !

!

Installation into a temporary staging area or into a chroot jail can be achieved with the command +

+
+
make DESTDIR=path-to-rootdir install
+ 
!

where path-to-rootdir is the absolute path of a directory relative to which all installation paths will be interpreted. Note that the directory specified by DESTDIR need not exist yet; it will be created if necessary. !

!

There is a subtle point with tooldirs and DESTDIR: If you relocate a cross-compiler installation with ! e.g. ‘DESTDIR=rootdir’, then the directory ! rootdir/exec-prefix/target-alias/bin will be filled with duplicated GCC executables only if it already exists, it will not be created otherwise. This is regarded as a feature, not as a bug, because it gives slightly more control to the packagers using the DESTDIR feature. +

+

You can install stripped programs and libraries with +

+
+
make install-strip
+ 
!

If you are bootstrapping a released version of GCC then please quickly review the build status page for your release, available from ! http://gcc.gnu.org/buildstat.html. If your system is not listed for the version of GCC that you built, send a note to gcc@gcc.gnu.org indicating ! that you successfully built and installed GCC. Include the following information: !

! !

We’d also like to know if the host/target specific installation notes ! didn’t include your host/target information or if that information is incomplete or out of date. Send a note to gcc@gcc.gnu.org detailing how the information should be changed. !

!

If you find a bug, please report it following the bug reporting guidelines. !

!

If you want to print the GCC manuals, do ‘cd objdir; make ! dvi’. You will need to have texi2dvi (version at least 4.7) ! and TeX installed. This creates a number of .dvi files in subdirectories of objdir; these may be converted for ! printing with programs such as dvips. Alternately, by using ! ‘make pdf’ in place of ‘make dvi’, you can create documentation ! in the form of .pdf files; this requires texi2pdf, which is included with Texinfo version 4.8 and later. You can also ! buy printed manuals from the ! Free Software Foundation, though such manuals may not be for the most recent version of GCC. +

+

If you would like to generate online HTML documentation, do ‘cd + objdir; make html’ and HTML will be generated for the gcc manuals in + objdir/gcc/HTML. +

+
+

Return to the GCC Installation page +

+ + + + + + diff -Nrcpad gcc-4.8.1/INSTALL/gfdl.html gcc-4.8.2/INSTALL/gfdl.html *** gcc-4.8.1/INSTALL/gfdl.html Fri May 31 09:09:27 2013 --- gcc-4.8.2/INSTALL/gfdl.html Wed Oct 16 07:28:05 2013 *************** *** 1,82 **** ! ! ! Installing GCC: GNU Free Documentation License ! ! ! ! ! ! ! ! - -

Installing GCC: GNU Free Documentation License

-

Installing GCC: GNU Free Documentation License

!

Version 1.3, 3 November 2008
-
     Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
-      http://fsf.org/
-      
-      Everyone is permitted to copy and distribute verbatim copies
-      of this license document, but changing it is not allowed.
- 
-
    -
  1. PREAMBLE !

    The purpose of this License is to make a manual, textbook, or other ! functional and useful document free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, ! with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. ! !

    This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. ! !

    We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. !

  2. APPLICABILITY AND DEFINITIONS ! !

    This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that --- 1,133 ---- ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! !

    Installing GCC

    ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

    Installing GCC: GNU Free Documentation License

    ! !
    Version 1.3, 3 November 2008 !
    !
    !
    Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
    ! http://fsf.org/
    ! 
    ! Everyone is permitted to copy and distribute verbatim copies
    ! of this license document, but changing it is not allowed.
    ! 
    ! !
      !
    1. PREAMBLE ! !

      The purpose of this License is to make a manual, textbook, or other ! functional and useful document free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, ! with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. !

      !

      This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. !

      !

      We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. +

      +
    2. APPLICABILITY AND DEFINITIONS !

      This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that *************** refers to any such manual or work. Any *** 85,98 **** licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law. ! !

      A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. ! !

      A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the ! publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain --- 136,149 ---- licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law. !

      !

      A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. !

      !

      A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the ! publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain *************** any mathematics.) The relationship coul *** 100,120 **** connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. ! !

      The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none. ! !

      The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. ! !

      A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of --- 151,171 ---- connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. !

      !

      The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none. !

      !

      The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. !

      !

      A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of *************** drawing editor, and that is suitable for *** 123,134 **** for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart ! or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”. ! !

      Examples of suitable formats for Transparent copies include plain ! ascii without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples --- 174,185 ---- for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart ! or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”. !

      !

      Examples of suitable formats for Transparent copies include plain ! ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples *************** read and edited only by proprietary word *** 139,173 **** not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only. ! !

      The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means ! the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text. ! !

      The “publisher” means any person or entity that distributes copies of the Document to the public. ! !

      A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition. ! !

      The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License. !

    3. VERBATIM COPYING ! !

      You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other --- 190,224 ---- not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only. !

      !

      The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means ! the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text. !

      !

      The “publisher” means any person or entity that distributes copies of the Document to the public. !

      !

      A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition. !

      !

      The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License. +

      +
    4. VERBATIM COPYING !

      You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other *************** technical measures to obstruct or contro *** 176,262 **** copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3. ! !

      You may also lend copies, under the same conditions stated above, and you may publicly display copies. !

    5. COPYING IN QUANTITY ! !

      If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the ! Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and ! visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. ! !

      If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. ! !

      If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols ! a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. ! !

      It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. !

    6. MODIFICATIONS ! !

      You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: ! !

        !
      1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. !
      2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. !
      3. State on the Title page the name of the publisher of the Modified Version, as the publisher. !
      4. Preserve all the copyright notices of the Document. !
      5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. !
      6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. !
      7. Preserve in that license notice the full lists of Invariant Sections ! and required Cover Texts given in the Document's license notice. !
      8. Include an unaltered copy of this License. !
      9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one --- 227,313 ---- copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3. !

        !

        You may also lend copies, under the same conditions stated above, and you may publicly display copies. +

        +
      10. COPYING IN QUANTITY !

        If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the ! Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and ! visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. !

        !

        If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. !

        !

        If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols ! a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. !

        !

        It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. +

        +
      11. MODIFICATIONS !

        You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: !

        !
          !
        1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. !
        2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. !
        3. State on the Title page the name of the publisher of the Modified Version, as the publisher. !
        4. Preserve all the copyright notices of the Document. !
        5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. !
        6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. !
        7. Preserve in that license notice the full lists of Invariant Sections ! and required Cover Texts given in the Document’s license notice. !
        8. Include an unaltered copy of this License. !
        9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one *************** stating the title, year, authors, and pu *** 264,309 **** given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. !
        10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions ! it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. !
        11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. !
        12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. !
        13. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version. !
        14. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section. !
        15. Preserve any Warranty Disclaimers. !
        !

        If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the ! list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles. ! !

        You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard. ! !

        You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or --- 315,360 ---- given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. !

      12. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions ! it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. !
      13. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. !
      14. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. !
      15. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version. !
      16. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section. !
      17. Preserve any Warranty Disclaimers. !
      !

      If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the ! list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles. !

      !

      You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard. !

      !

      You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or *************** includes a cover text for the same cover *** 312,382 **** by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. ! !

      The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. !

    7. COMBINING DOCUMENTS ! !

      You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. ! !

      The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original ! author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. ! !

      In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements.” !

    8. COLLECTIONS OF DOCUMENTS ! !

      You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. ! !

      You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. !

    9. AGGREGATION WITH INDEPENDENT WORKS ! !

      A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights ! of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. ! !

      If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of ! the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the ! electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. !

    10. TRANSLATION ! !

      Translation is considered a kind of modification, so you may ! distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the --- 363,433 ---- by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. !

      !

      The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. +

      +
    11. COMBINING DOCUMENTS !

      You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. !

      !

      The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original ! author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. !

      !

      In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements.” +

      +
    12. COLLECTIONS OF DOCUMENTS !

      You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. !

      !

      You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. +

      +
    13. AGGREGATION WITH INDEPENDENT WORKS !

      A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights ! of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. !

      !

      If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of ! the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the ! electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. +

      +
    14. TRANSLATION !

      Translation is considered a kind of modification, so you may ! distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the *************** the original English version of this Lic *** 387,434 **** of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail. ! !

      If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title. !

    15. TERMINATION ! !

      You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License. ! !

      However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. ! !

      Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. ! !

      Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it. !

    16. FUTURE REVISIONS OF THIS LICENSE ! !

      The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/. ! !

      Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or --- 438,485 ---- of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail. !

      !

      If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title. +

      +
    17. TERMINATION !

      You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License. !

      !

      However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. !

      !

      Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. !

      !

      Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it. +

      +
    18. FUTURE REVISIONS OF THIS LICENSE !

      The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/. !

      !

      Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or *************** Free Software Foundation. If the Docume *** 437,515 **** number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this ! License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. !

    19. RELICENSING ! !

      “Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus published on the MMC site. ! !

      “CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization. ! !

      “Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document. ! !

      An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008. ! !

      The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. !

    ! !

    ADDENDUM: How to use this License for your documents

    To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: !

           Copyright (C)  year  your name.
    !        Permission is granted to copy, distribute and/or modify this document
    !        under the terms of the GNU Free Documentation License, Version 1.3
    !        or any later version published by the Free Software Foundation;
    !        with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
    !        Texts.  A copy of the license is included in the section entitled ``GNU
    !        Free Documentation License''.
    ! 
    !

    If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.” line with this: !

             with the Invariant Sections being list their titles, with
    !          the Front-Cover Texts being list, and with the Back-Cover Texts
    !          being list.
    ! 
    !

    If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. ! !

    If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software. ! ! ! ! !


    !

    Return to the GCC Installation page - - - --- 488,571 ---- number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this ! License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Document. +

    +
  3. RELICENSING !

    “Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus published on the MMC site. !

    !

    “CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization. !

    !

    “Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document. !

    !

    An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008. !

    !

    The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. +

    +
! !

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: +

+
+
  Copyright (C)  year  your name.
+   Permission is granted to copy, distribute and/or modify this document
+   under the terms of the GNU Free Documentation License, Version 1.3
+   or any later version published by the Free Software Foundation;
+   with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
+   Texts.  A copy of the license is included in the section entitled ``GNU
+   Free Documentation License''.
+ 
!

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.” line with this: +

+
+
    with the Invariant Sections being list their titles, with
+     the Front-Cover Texts being list, and with the Back-Cover Texts
+     being list.
+ 
!

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. !

!

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software. +

!
!

Return to the GCC Installation page !

! !
+ + + diff -Nrcpad gcc-4.8.1/INSTALL/index.html gcc-4.8.2/INSTALL/index.html *** gcc-4.8.1/INSTALL/index.html Fri May 31 09:09:27 2013 --- gcc-4.8.2/INSTALL/index.html Wed Oct 16 07:28:00 2013 *************** *** 1,123 **** ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! !

Installing GCC

! The latest version of this document is always available at ! http://gcc.gnu.org/install/. It refers to the current development sources, instructions for specific released versions are included with the sources. ! !

This document describes the generic installation procedure for GCC as well as detailing some target specific installation instructions. ! !

GCC includes several components that previously were separate distributions with their own installation instructions. This document supersedes all package-specific installation instructions. ! !

Before starting the build/install procedure please check the ! host/target specific installation notes. We recommend you browse the entire generic installation instructions before you proceed. ! !

Lists of successful builds for released versions of GCC are ! available at http://gcc.gnu.org/buildstat.html. These lists are updated as new information becomes available. !

The installation procedure itself is broken into five steps. ! !

    !
  1. Prerequisites !
  2. Downloading the source !
  3. Configuration !
  4. Building !
  5. Testing (optional) !
  6. Final install !
! !

Please note that GCC does not support ‘make uninstall’ and probably ! won't do so in the near future as this would open a can of worms. Instead, we suggest that you install GCC into a directory of its own and simply remove that directory when you do not need that specific version of GCC any longer, and, if shared libraries are installed there as well, no more binaries exist that use them. ! !

There are also some old installation instructions, which are mostly obsolete but still contain some information which has not yet been merged into the main part of this manual. ! !


!

Return to the GCC Installation page ! !

Copyright © 1988-2013 Free Software Foundation, Inc. !

! 
! 
! Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the ! license is included in the section entitled “GNU Free Documentation License”. -

(a) The FSF's Front-Cover Text is: -

A GNU Manual -

(b) The FSF's Back-Cover Text is: -

You have freedom to copy and modify this GNU Manual, like GNU - software. Copies published by the Free Software Foundation raise - funds for GNU development. - - - - - - - - - - - - - --- 1,165 ---- ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

The latest version of this document is always available at ! http://gcc.gnu.org/install/. It refers to the current development sources, instructions for specific released versions are included with the sources. !

!

This document describes the generic installation procedure for GCC as well as detailing some target specific installation instructions. !

!

GCC includes several components that previously were separate distributions with their own installation instructions. This document supersedes all package-specific installation instructions. !

!

Before starting the build/install procedure please check the ! host/target specific installation notes. We recommend you browse the entire generic installation instructions before you proceed. !

!

Lists of successful builds for released versions of GCC are ! available at http://gcc.gnu.org/buildstat.html. These lists are updated as new information becomes available. +

+

The installation procedure itself is broken into five steps. +

+
    +
  1. Prerequisites +
  2. Downloading the source +
  3. Configuration +
  4. Building +
  5. Testing (optional) +
  6. Final install +
!

Please note that GCC does not support ‘make uninstall’ and probably ! won’t do so in the near future as this would open a can of worms. Instead, we suggest that you install GCC into a directory of its own and simply remove that directory when you do not need that specific version of GCC any longer, and, if shared libraries are installed there as well, no more binaries exist that use them. !

!

There are also some old installation instructions, which are mostly obsolete but still contain some information which has not yet been merged into the main part of this manual. !

!
!

Return to the GCC Installation page !

!

Copyright © 1988-2013 Free Software Foundation, Inc. !


!

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the ! license is included in the section entitled “GNU ! Free Documentation License”. !

!

(a) The FSF’s Front-Cover Text is: !

!

A GNU Manual !

!

(b) The FSF’s Back-Cover Text is: !

!

You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. !

! ! ! ! ! + + + + + + diff -Nrcpad gcc-4.8.1/INSTALL/old.html gcc-4.8.2/INSTALL/old.html *** gcc-4.8.1/INSTALL/old.html Fri May 31 09:09:27 2013 --- gcc-4.8.2/INSTALL/old.html Wed Oct 16 07:28:04 2013 *************** *** 1,181 **** ! ! ! Installing GCC: Old documentation ! ! ! ! ! ! ! ! - -

Installing GCC: Old documentation

-

Old installation documentation

!

Note most of this information is out of date and superseded by the previous chapters of this manual. It is provided for historical reference only, because of a lack of volunteers to merge it into the main manual. !

Here is the procedure for installing GCC on a GNU or Unix system. ! !

    !
  1. If you have chosen a configuration for GCC which requires other GNU tools (such as GAS or the GNU linker) instead of the standard system tools, install the required tools in the build directory under the names ! as, ld or whatever is appropriate. !

    Alternatively, you can do subsequent compilation using a value of the PATH environment variable such that the necessary GNU tools come before the standard system tools. !

  2. Specify the host, build and target machine configurations. You do this ! when you run the configure script. ! !

    The build machine is the system which you are using, the ! host machine is the system where you want to run the resulting ! compiler (normally the build machine), and the target machine is the system for which you want the compiler to generate code. ! !

    If you are building a compiler to produce code for the machine it runs on (a native compiler), you normally do not need to specify any operands ! to configure; it will try to guess the type of machine you are on ! and use that as the build, host and target machines. So you don't need to specify a configuration when building a native compiler unless ! configure cannot figure out what your configuration is or guesses wrong. ! !

    In those cases, specify the build machine's configuration name ! with the --host option; the host and target will default to be the same as the host machine. !

    Here is an example: ! !

              ./configure --host=sparc-sun-sunos4.1
    ! 
    !

    A configuration name may be canonical or it may be more or less abbreviated. ! !

    A canonical configuration name has three parts, separated by dashes. ! It looks like this: ‘cpu-company-system’. ! (The three parts may themselves contain dashes; configure can figure out which dashes serve which purpose.) For example, ! ‘m68k-sun-sunos4.1’ specifies a Sun 3. ! !

    You can also replace parts of the configuration by nicknames or aliases. ! For example, ‘sun3’ stands for ‘m68k-sun’, so ! ‘sun3-sunos4.1’ is another way to specify a Sun 3. ! !

    You can specify a version number after any of the system types, and some of the CPU types. In most cases, the version is irrelevant, and will be ignored. So you might as well specify the version if you know it. ! !

    See Configurations, for a list of supported configuration names and notes on many of the configurations. You should check the notes in that section before proceeding any further with the installation of GCC. !

! !

Configurations Supported by GCC

! Here are the possible CPU types: !
! ! 1750a, a29k, alpha, arm, avr, cn, clipper, dsp16xx, elxsi, fr30, h8300, hppa1.0, hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, ip2k, m32r, m68000, m68k, m88k, mcore, mips, mipsel, mips64, mips64el, mn10200, mn10300, ns32k, pdp11, powerpc, powerpcle, romp, rs6000, sh, sparc, ! sparclite, sparc64, v850, vax, we32k. !
!

Here are the recognized company names. As you can see, customary abbreviations are used rather than the longer official names. ! ! !

! acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus, ! sequent, sgi, sony, sun, tti, unicom, wrs. !
!

The company name is meaningful only to disambiguate when the rest of the information supplied is insufficient. You can omit it, writing ! just ‘cpu-system’, if it is not needed. For example, ! ‘vax-ultrix4.2’ is equivalent to ‘vax-dec-ultrix4.2’. ! !

Here is a list of system types: ! !

! 386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff, ctix, cxux, dgux, dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix, gnu, linux, linux-gnu, hiux, hpux, iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs, netbsd, newsos, nindy, ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv, udi, ultrix, unicos, uniplus, unos, vms, vsta, ! vxworks, winnt, xenix. !
!

You can omit the system type; then configure guesses the operating system from the CPU and company. ! !

You can add a version number to the system type; this may or may not ! make a difference. For example, you can write ‘bsd4.3’ or ! ‘bsd4.4’ to distinguish versions of BSD. In practice, the version ! number is most needed for ‘sysv3’ and ‘sysv4’, which are often treated differently. ! !

linux-gnu’ is the canonical name for the GNU/Linux target; however ! GCC will also accept ‘linux’. The version of the kernel in use is ! not relevant on these systems. A suffix such as ‘libc1’ or ‘aout’ distinguishes major versions of the C library; all of the suffixed versions are obsolete. ! !

If you specify an impossible combination such as ‘i860-dg-vms’, ! then you may get an error message from configure, or it may ! ignore part of the information and do the best it can with the rest. ! configure always prints the canonical name for the alternative that it used. GCC does not support all possible alternatives. ! !

Often a particular model of machine has a name. Many machine names are recognized as aliases for CPU/company combinations. Thus, the machine ! name ‘sun3’, mentioned above, is an alias for ‘m68k-sun’. Sometimes we accept a company name as a machine name, when the name is popularly used for a particular machine. Here is a table of the known machine names: ! !

! 3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cn, crds, decstation-3100, decstation, delta, encore, --- 1,231 ---- ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Old installation documentation

!

Note most of this information is out of date and superseded by the previous chapters of this manual. It is provided for historical reference only, because of a lack of volunteers to merge it into the main manual. +

!

Here is the procedure for installing GCC on a GNU or Unix system. !

!
    !
  1. If you have chosen a configuration for GCC which requires other GNU tools (such as GAS or the GNU linker) instead of the standard system tools, install the required tools in the build directory under the names ! as, ld or whatever is appropriate. !

    Alternatively, you can do subsequent compilation using a value of the PATH environment variable such that the necessary GNU tools come before the standard system tools. +

    +
  2. Specify the host, build and target machine configurations. You do this + when you run the configure script. !

    The build machine is the system which you are using, the ! host machine is the system where you want to run the resulting ! compiler (normally the build machine), and the target machine is the system for which you want the compiler to generate code. !

    !

    If you are building a compiler to produce code for the machine it runs on (a native compiler), you normally do not need to specify any operands ! to configure; it will try to guess the type of machine you are on ! and use that as the build, host and target machines. So you don’t need to specify a configuration when building a native compiler unless ! configure cannot figure out what your configuration is or guesses wrong. !

    !

    In those cases, specify the build machine’s configuration name ! with the --host option; the host and target will default to be the same as the host machine. +

    +

    Here is an example: +

    +
    +
    ./configure --host=sparc-sun-sunos4.1
    + 
    !

    A configuration name may be canonical or it may be more or less abbreviated. !

    !

    A canonical configuration name has three parts, separated by dashes. ! It looks like this: ‘cpu-company-system’. ! (The three parts may themselves contain dashes; configure can figure out which dashes serve which purpose.) For example, ! ‘m68k-sun-sunos4.1’ specifies a Sun 3. !

    !

    You can also replace parts of the configuration by nicknames or aliases. ! For example, ‘sun3’ stands for ‘m68k-sun’, so ! ‘sun3-sunos4.1’ is another way to specify a Sun 3. !

    !

    You can specify a version number after any of the system types, and some of the CPU types. In most cases, the version is irrelevant, and will be ignored. So you might as well specify the version if you know it. !

    !

    See Configurations, for a list of supported configuration names and notes on many of the configurations. You should check the notes in that section before proceeding any further with the installation of GCC. +

    +
!

Configurations Supported by GCC

!

Here are the possible CPU types: !

!
!

1750a, a29k, alpha, arm, avr, cn, clipper, dsp16xx, elxsi, fr30, h8300, hppa1.0, hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, ip2k, m32r, m68000, m68k, m88k, mcore, mips, mipsel, mips64, mips64el, mn10200, mn10300, ns32k, pdp11, powerpc, powerpcle, romp, rs6000, sh, sparc, ! sparclite, sparc64, v850, vax, we32k. !

!

Here are the recognized company names. As you can see, customary abbreviations are used rather than the longer official names. !

!
!

acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus, ! sequent, sgi, sony, sun, tti, unicom, wrs. !

!

The company name is meaningful only to disambiguate when the rest of the information supplied is insufficient. You can omit it, writing ! just ‘cpu-system’, if it is not needed. For example, ! ‘vax-ultrix4.2’ is equivalent to ‘vax-dec-ultrix4.2’. !

!

Here is a list of system types: !

!
!

386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff, ctix, cxux, dgux, dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix, gnu, linux, linux-gnu, hiux, hpux, iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs, netbsd, newsos, nindy, ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv, udi, ultrix, unicos, uniplus, unos, vms, vsta, ! vxworks, winnt, xenix. !

!

You can omit the system type; then configure guesses the operating system from the CPU and company. !

!

You can add a version number to the system type; this may or may not ! make a difference. For example, you can write ‘bsd4.3’ or ! ‘bsd4.4’ to distinguish versions of BSD. In practice, the version ! number is most needed for ‘sysv3’ and ‘sysv4’, which are often treated differently. !

!

linux-gnu’ is the canonical name for the GNU/Linux target; however ! GCC will also accept ‘linux’. The version of the kernel in use is ! not relevant on these systems. A suffix such as ‘libc1’ or ‘aout’ distinguishes major versions of the C library; all of the suffixed versions are obsolete. !

!

If you specify an impossible combination such as ‘i860-dg-vms’, ! then you may get an error message from configure, or it may ! ignore part of the information and do the best it can with the rest. ! configure always prints the canonical name for the alternative that it used. GCC does not support all possible alternatives. !

!

Often a particular model of machine has a name. Many machine names are recognized as aliases for CPU/company combinations. Thus, the machine ! name ‘sun3’, mentioned above, is an alias for ‘m68k-sun’. Sometimes we accept a company name as a machine name, when the name is popularly used for a particular machine. Here is a table of the known machine names: !

!
!

3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cn, crds, decstation-3100, decstation, delta, encore, *************** m3230, magnum, merlin, miniframe, *** 186,201 **** mmax, news-3600, news800, news, next, pbd, pc532, pmax, powerpc, powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, ! sun4, symmetry, tower-32, tower. !

!

Remember that a machine name specifies both the cpu type and the company ! name.


Return to the GCC Installation page - - - - --- 236,253 ---- mmax, news-3600, news800, news, next, pbd, pc532, pmax, powerpc, powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, ! sun4, symmetry, tower-32, tower. !

!

Remember that a machine name specifies both the cpu type and the company ! name.


Return to the GCC Installation page +

+ + + + + diff -Nrcpad gcc-4.8.1/INSTALL/prerequisites.html gcc-4.8.2/INSTALL/prerequisites.html *** gcc-4.8.1/INSTALL/prerequisites.html Fri May 31 09:09:27 2013 --- gcc-4.8.2/INSTALL/prerequisites.html Wed Oct 16 07:28:01 2013 *************** *** 1,296 **** ! ! ! Prerequisites for GCC ! ! ! ! ! ! ! ! - -

Prerequisites for GCC

- - GCC requires that various tools and packages be available for use in the - build procedure. Modifying GCC sources requires additional tools - described below. !

Tools/packages necessary for building GCC

!
!
ISO C++98 compiler
Necessary to bootstrap GCC, although versions of GCC prior to 4.8 also allow bootstrapping with a ISO C89 compiler and versions of GCC prior to 3.4 also allow bootstrapping with a traditional (K&R) C compiler. ! !

To build all languages in a cross-compiler or other configuration where 3-stage bootstrap is not performed, you need to start with an existing GCC binary (version 3.4 or later) because source code for language frontends other than C might use GCC extensions. ! !

Note that to bootstrap GCC with versions of GCC earlier than 3.4, you ! may need to use --disable-stage1-checking, though bootstrapping the compiler with such earlier compilers is strongly discouraged. ! !

GNAT
! In order to build the Ada compiler (GNAT) you must already have GNAT installed because portions of the Ada frontend are written in Ada (with GNAT extensions.) Refer to the Ada installation instructions for more specific information. ! !
A “working” POSIX compatible shell, or GNU bash
! Necessary when running configure because some ! /bin/sh shells have bugs and may crash when configuring the ! target libraries. In other cases, /bin/sh or ksh have disastrous corner-case performance problems. This ! can cause target configure runs to literally take days to complete in some cases. ! !

So on some platforms /bin/ksh is sufficient, on others it ! isn't. See the host/target specific instructions for your platform, or ! use bash to be sure. Then set CONFIG_SHELL in your environment to your “good” shell prior to running ! configure/make. ! !

zsh is not a fully compliant POSIX shell and will not work when configuring GCC. ! !

A POSIX or SVR4 awk
! Necessary for creating some of the generated source files for GCC. If in doubt, use a recent GNU awk version, as some of the older ones are broken. GNU awk version 3.1.5 is known to work. ! !
GNU binutils
! Necessary in some circumstances, optional in others. See the host/target specific instructions for your platform for the exact requirements. ! !
gzip version 1.2.4 (or later) or
bzip2 version 1.0.2 (or later)
! Necessary to uncompress GCC tar files when source code is obtained via FTP mirror sites. ! !
GNU make version 3.80 (or later)
! You must have GNU make installed to build GCC. ! !
GNU tar version 1.14 (or later)
! Necessary (only on some platforms) to untar the source code. Many ! systems' tar programs will also work, only try GNU ! tar if you have problems. ! !
Perl version 5.6.1 (or later)
! Necessary when targeting Darwin, building ‘libstdc++’, ! and not using --disable-symvers. ! Necessary when targeting Solaris 2 with Sun ld and not using ! --disable-symvers. The bundled perl in Solaris 8 and up works. ! !

Necessary when regenerating Makefile dependencies in libiberty. ! Necessary when regenerating libiberty/functions.texi. ! Necessary when generating manpages from Texinfo manuals. Used by various scripts to generate some files included in SVN (mainly Unicode-related and rarely changing) from source tables. ! !

jar, or InfoZIP (zip and unzip)
! Necessary to build libgcj, the GCJ runtime. !
!

Several support libraries are necessary to build GCC, some are required, others optional. While any sufficiently new version of required tools usually work, library requirements are generally stricter. Newer ! versions may work in some cases, but it's safer to use the exact versions documented. We appreciate bug reports about problems with newer versions, though. If your OS vendor provides packages for the support libraries then using those packages may be the simplest way to install the libraries. ! !

!
GNU Multiple Precision Library (GMP) version 4.3.2 (or later)
! Necessary to build GCC. If a GMP source distribution is found in a ! subdirectory of your GCC sources named gmp, it will be built together with GCC. Alternatively, if GMP is already installed but it is not in your library search path, you will have to configure with the ! --with-gmp configure option. See also --with-gmp-lib ! and --with-gmp-include. ! !
MPFR Library version 2.4.2 (or later)
! Necessary to build GCC. It can be downloaded from http://www.mpfr.org/. If an MPFR source distribution is found ! in a subdirectory of your GCC sources named mpfr, it will be built together with GCC. Alternatively, if MPFR is already installed but it is not in your default library search path, the ! --with-mpfr configure option should be used. See also ! --with-mpfr-lib and --with-mpfr-include. ! !
MPC Library version 0.8.1 (or later)
! Necessary to build GCC. It can be downloaded from http://www.multiprecision.org/. If an MPC source distribution ! is found in a subdirectory of your GCC sources named mpc, it will be built together with GCC. Alternatively, if MPC is already installed but it is not in your default library search path, the ! --with-mpc configure option should be used. See also ! --with-mpc-lib and --with-mpc-include. ! !
ISL Library version 0.11.1
! Necessary to build GCC with the Graphite loop optimizations. It can be downloaded from ftp://gcc.gnu.org/pub/gcc/infrastructure/ ! as isl-0.11.1.tar.bz2. ! !

The --with-isl configure option should be used if ISL is not installed in your default library search path. ! !

CLooG 0.18.0
! Necessary to build GCC with the Graphite loop optimizations. It can be downloaded from ftp://gcc.gnu.org/pub/gcc/infrastructure/ as ! cloog-0.18.0.tar.gz. The --with-cloog configure option should ! be used if CLooG is not installed in your default library search path. ! CLooG needs to be built against ISL 0.11.1. Use --with-isl=system to direct CLooG to pick up an already installed ISL, otherwise it will use ISL 0.11.1 as bundled with CLooG. CLooG needs to be configured to use GMP ! internally, use --with-bits=gmp to direct it to do that. ! !
! !

Tools/packages necessary for modifying GCC

! !
!
autoconf version 2.64
GNU m4 version 1.4.6 (or later)
! Necessary when modifying configure.ac, aclocal.m4, etc. ! to regenerate configure and config.in files. ! !
automake version 1.11.1
! Necessary when modifying a Makefile.am file to regenerate its ! associated Makefile.in. !

Much of GCC does not use automake, so directly edit the Makefile.in ! file. Specifically this applies to the gcc, intl, ! libcpp, libiberty, libobjc directories as well as any of their subdirectories. ! !

For directories that use automake, GCC requires the latest release in the 1.11 series, which is currently 1.11.1. When regenerating a directory to a newer version, please update all the directories using an older 1.11 to the latest released version. ! !

gettext version 0.14.5 (or later)
! Needed to regenerate gcc.pot. ! !
gperf version 2.7.2 (or later)
! Necessary when modifying gperf input files, e.g. ! gcc/cp/cfns.gperf to regenerate its associated header file, e.g. ! gcc/cp/cfns.h. ! !
DejaGnu 1.4.4
Expect
Tcl
! Necessary to run the GCC testsuite; see the section on testing for details. ! !
autogen version 5.5.4 (or later) and
guile version 1.4.1 (or later)
! Necessary to regenerate fixinc/fixincl.x from ! fixinc/inclhack.def and fixinc/*.tpl. ! !

Necessary to run ‘make check’ for fixinc. ! !

Necessary to regenerate the top level Makefile.in file from ! Makefile.tpl and Makefile.def. ! !

Flex version 2.5.4 (or later)
! Necessary when modifying *.l files. ! !

Necessary to build GCC during development because the generated output files are not included in the SVN repository. They are included in releases. ! !

Texinfo version 4.7 (or later)
! Necessary for running makeinfo when modifying *.texi files to test your changes. ! !

Necessary for running make dvi or make pdf to create printable documentation in DVI or PDF format. Texinfo version ! 4.8 or later is required for make pdf. ! !

Necessary to build GCC documentation during development because the generated output files are not included in the SVN repository. They are included in releases. ! !

TeX (any working version)
! Necessary for running texi2dvi and texi2pdf, which ! are used when running make dvi or make pdf to create DVI or PDF files, respectively. ! !
SVN (any version)
SSH (any version)
! Necessary to access the SVN repository. Public releases and weekly snapshots of the development sources are also available via FTP. ! !
GNU diffutils version 2.7 (or later)
! Useful when submitting patches for the GCC source code. ! !
patch version 2.5.4 (or later)
! Necessary when applying patches, created with diff, to one's own sources. ! !
ecj1
gjavah
! If you wish to modify .java files in libjava, you will need to ! configure with --enable-java-maintainer-mode, and you will need ! to have executables named ecj1 and gjavah in your path. ! The ecj1 executable should run the Eclipse Java compiler via the GCC-specific entry point. You can download a suitable jar from ftp://sourceware.org/pub/java/, or by running the script ! contrib/download_ecj. ! !
antlr.jar version 2.7.1 (or later)
antlr binary
! If you wish to build the gjdoc binary in libjava, you will ! need to have an antlr.jar library available. The library is searched for in system locations but can be specified with ! --with-antlr-jar= instead. When configuring with ! --enable-java-maintainer-mode, you will need to have one of ! the executables named cantlr, runantlr or ! antlr in your path. !
!


!

Return to the GCC Installation page - - - - - - - - - - - - --- 1,405 ---- ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

GCC requires that various tools and packages be available for use in the ! build procedure. Modifying GCC sources requires additional tools ! described below. !

! !

Tools/packages necessary for building GCC

!
!
ISO C++98 compiler
!

Necessary to bootstrap GCC, although versions of GCC prior to 4.8 also allow bootstrapping with a ISO C89 compiler and versions of GCC prior to 3.4 also allow bootstrapping with a traditional (K&R) C compiler. !

!

To build all languages in a cross-compiler or other configuration where 3-stage bootstrap is not performed, you need to start with an existing GCC binary (version 3.4 or later) because source code for language frontends other than C might use GCC extensions. !

!

Note that to bootstrap GCC with versions of GCC earlier than 3.4, you ! may need to use --disable-stage1-checking, though bootstrapping the compiler with such earlier compilers is strongly discouraged. !

!
!
GNAT
!
!

In order to build the Ada compiler (GNAT) you must already have GNAT installed because portions of the Ada frontend are written in Ada (with GNAT extensions.) Refer to the Ada installation instructions for more specific information. !

!
!
A “working” POSIX compatible shell, or GNU bash
!
!

Necessary when running configure because some ! /bin/sh shells have bugs and may crash when configuring the ! target libraries. In other cases, /bin/sh or ksh have disastrous corner-case performance problems. This ! can cause target configure runs to literally take days to complete in some cases. !

!

So on some platforms /bin/ksh is sufficient, on others it ! isn’t. See the host/target specific instructions for your platform, or ! use bash to be sure. Then set CONFIG_SHELL in your environment to your “good” shell prior to running ! configure/make. !

!

zsh is not a fully compliant POSIX shell and will not work when configuring GCC. !

!
!
A POSIX or SVR4 awk
!
!

Necessary for creating some of the generated source files for GCC. If in doubt, use a recent GNU awk version, as some of the older ones are broken. GNU awk version 3.1.5 is known to work. !

!
!
GNU binutils
!
!

Necessary in some circumstances, optional in others. See the host/target specific instructions for your platform for the exact requirements. !

!
!
gzip version 1.2.4 (or later) or
!
bzip2 version 1.0.2 (or later)
!
!

Necessary to uncompress GCC tar files when source code is obtained via FTP mirror sites. !

!
!
GNU make version 3.80 (or later)
!
!

You must have GNU make installed to build GCC. !

!
!
GNU tar version 1.14 (or later)
!
!

Necessary (only on some platforms) to untar the source code. Many ! systems’ tar programs will also work, only try GNU ! tar if you have problems. !

!
!
Perl version 5.6.1 (or later)
!
!

Necessary when targeting Darwin, building ‘libstdc++’, ! and not using --disable-symvers. ! Necessary when targeting Solaris 2 with Sun ld and not using ! --disable-symvers. The bundled perl in Solaris 8 and up works. !

!

Necessary when regenerating Makefile dependencies in libiberty. ! Necessary when regenerating libiberty/functions.texi. ! Necessary when generating manpages from Texinfo manuals. Used by various scripts to generate some files included in SVN (mainly Unicode-related and rarely changing) from source tables. !

!
!
jar, or InfoZIP (zip and unzip)
!
!

Necessary to build libgcj, the GCJ runtime. !

!
!

Several support libraries are necessary to build GCC, some are required, others optional. While any sufficiently new version of required tools usually work, library requirements are generally stricter. Newer ! versions may work in some cases, but it’s safer to use the exact versions documented. We appreciate bug reports about problems with newer versions, though. If your OS vendor provides packages for the support libraries then using those packages may be the simplest way to install the libraries. !

!
!
GNU Multiple Precision Library (GMP) version 4.3.2 (or later)
!
!

Necessary to build GCC. If a GMP source distribution is found in a ! subdirectory of your GCC sources named gmp, it will be built together with GCC. Alternatively, if GMP is already installed but it is not in your library search path, you will have to configure with the ! --with-gmp configure option. See also --with-gmp-lib ! and --with-gmp-include. !

!
!
MPFR Library version 2.4.2 (or later)
!
!

Necessary to build GCC. It can be downloaded from http://www.mpfr.org/. If an MPFR source distribution is found ! in a subdirectory of your GCC sources named mpfr, it will be built together with GCC. Alternatively, if MPFR is already installed but it is not in your default library search path, the ! --with-mpfr configure option should be used. See also ! --with-mpfr-lib and --with-mpfr-include. !

!
!
MPC Library version 0.8.1 (or later)
!
!

Necessary to build GCC. It can be downloaded from http://www.multiprecision.org/. If an MPC source distribution ! is found in a subdirectory of your GCC sources named mpc, it will be built together with GCC. Alternatively, if MPC is already installed but it is not in your default library search path, the ! --with-mpc configure option should be used. See also ! --with-mpc-lib and --with-mpc-include. !

!
!
ISL Library version 0.11.1
!
!

Necessary to build GCC with the Graphite loop optimizations. It can be downloaded from ftp://gcc.gnu.org/pub/gcc/infrastructure/ ! as isl-0.11.1.tar.bz2. !

!

The --with-isl configure option should be used if ISL is not installed in your default library search path. !

!
!
CLooG 0.18.0
!
!

Necessary to build GCC with the Graphite loop optimizations. It can be downloaded from ftp://gcc.gnu.org/pub/gcc/infrastructure/ as ! cloog-0.18.0.tar.gz. The --with-cloog configure option should ! be used if CLooG is not installed in your default library search path. ! CLooG needs to be built against ISL 0.11.1. Use --with-isl=system to direct CLooG to pick up an already installed ISL, otherwise it will use ISL 0.11.1 as bundled with CLooG. CLooG needs to be configured to use GMP ! internally, use --with-bits=gmp to direct it to do that. !

!
!
! !

Tools/packages necessary for modifying GCC

!
!
autoconf version 2.64
!
GNU m4 version 1.4.6 (or later)
!
!

Necessary when modifying configure.ac, aclocal.m4, etc. ! to regenerate configure and config.in files. !

!
!
automake version 1.11.1
!
!

Necessary when modifying a Makefile.am file to regenerate its ! associated Makefile.in. !

!

Much of GCC does not use automake, so directly edit the Makefile.in ! file. Specifically this applies to the gcc, intl, ! libcpp, libiberty, libobjc directories as well as any of their subdirectories. !

!

For directories that use automake, GCC requires the latest release in the 1.11 series, which is currently 1.11.1. When regenerating a directory to a newer version, please update all the directories using an older 1.11 to the latest released version. !

!
!
gettext version 0.14.5 (or later)
!
!

Needed to regenerate gcc.pot. !

!
!
gperf version 2.7.2 (or later)
!
!

Necessary when modifying gperf input files, e.g. ! gcc/cp/cfns.gperf to regenerate its associated header file, e.g. ! gcc/cp/cfns.h. !

!
!
DejaGnu 1.4.4
!
Expect
!
Tcl
!
!

Necessary to run the GCC testsuite; see the section on testing for details. !

!
!
autogen version 5.5.4 (or later) and
!
guile version 1.4.1 (or later)
!
!

Necessary to regenerate fixinc/fixincl.x from ! fixinc/inclhack.def and fixinc/*.tpl. !

!

Necessary to run ‘make check’ for fixinc. !

!

Necessary to regenerate the top level Makefile.in file from ! Makefile.tpl and Makefile.def. !

!
!
Flex version 2.5.4 (or later)
!
!

Necessary when modifying *.l files. !

!

Necessary to build GCC during development because the generated output files are not included in the SVN repository. They are included in releases. !

!
!
Texinfo version 4.7 (or later)
!
!

Necessary for running makeinfo when modifying *.texi files to test your changes. !

!

Necessary for running make dvi or make pdf to create printable documentation in DVI or PDF format. Texinfo version ! 4.8 or later is required for make pdf. !

!

Necessary to build GCC documentation during development because the generated output files are not included in the SVN repository. They are included in releases. !

!
!
TeX (any working version)
!
!

Necessary for running texi2dvi and texi2pdf, which ! are used when running make dvi or make pdf to create DVI or PDF files, respectively. !

!
!
SVN (any version)
!
SSH (any version)
!
!

Necessary to access the SVN repository. Public releases and weekly snapshots of the development sources are also available via FTP. !

!
!
GNU diffutils version 2.7 (or later)
!
!

Useful when submitting patches for the GCC source code. !

!
!
patch version 2.5.4 (or later)
!
!

Necessary when applying patches, created with diff, to one’s own sources. !

!
!
ecj1
!
gjavah
!
!

If you wish to modify .java files in libjava, you will need to ! configure with --enable-java-maintainer-mode, and you will need ! to have executables named ecj1 and gjavah in your path. ! The ecj1 executable should run the Eclipse Java compiler via the GCC-specific entry point. You can download a suitable jar from ftp://sourceware.org/pub/java/, or by running the script ! contrib/download_ecj. !

!
!
antlr.jar version 2.7.1 (or later)
!
antlr binary
!
!

If you wish to build the gjdoc binary in libjava, you will ! need to have an antlr.jar library available. The library is searched for in system locations but can be specified with ! --with-antlr-jar= instead. When configuring with ! --enable-java-maintainer-mode, you will need to have one of ! the executables named cantlr, runantlr or ! antlr in your path. !

!
!
!

Return to the GCC Installation page !

! ! ! ! ! + + + + + + + + diff -Nrcpad gcc-4.8.1/INSTALL/specific.html gcc-4.8.2/INSTALL/specific.html *** gcc-4.8.1/INSTALL/specific.html Fri May 31 09:09:27 2013 --- gcc-4.8.2/INSTALL/specific.html Wed Oct 16 07:28:00 2013 *************** *** 1,645 **** ! ! ! Host/Target specific installation notes for GCC ! ! ! ! ! ! ! ! - -

Host/Target specific installation notes for GCC

- - Please read this document carefully before installing the - GNU Compiler Collection on your machine. !

Note that this list of install notes is not a list of supported hosts or targets. Not all supported hosts and targets are listed here, only the ones that require host-specific or target-specific ! information have to. ! !

! -

-


!

alpha*-*-*

This section contains general configuration information for all alpha-based platforms using ELF (in particular, ignore this section for DEC OSF/1, Digital UNIX and Tru64 UNIX). In addition to reading this section, please read all other sections that match your target. ! !

We require binutils 2.11.2 or newer. Previous binutils releases had a number of problems with DWARF 2 debugging information, not the least of which is incorrect linking of shared libraries. ! !


! !

alpha*-dec-osf5.1

!

Systems using processors that implement the DEC Alpha architecture and are running the DEC/Compaq/HP Unix (DEC OSF/1, Digital UNIX, or Compaq/HP Tru64 UNIX) operating system, for example the DEC Alpha AXP systems. ! !

Support for Tru64 UNIX V5.1 has been removed in GCC 4.8. As of GCC 4.6, support for Tru64 UNIX V4.0 and V5.0 has been removed. As of GCC 3.2, versions before alpha*-dec-osf4 are no longer supported. (These are the versions which identify themselves as DEC OSF/1.) !


! !

amd64-*-solaris2.1[0-9]*

! !

This is a synonym for ‘x86_64-*-solaris2.1[0-9]*’. ! !


! !

arm-*-eabi

!

ARM-family processors. Subtargets that use the ELF object format require GNU binutils 2.13 or newer. Such subtargets include: arm-*-netbsdelf, arm-*-*linux-* and arm-*-rtemseabi. ! !


! !

avr

ATMEL AVR-family micro controllers. These are used in embedded ! applications. There are no standard Unix configurations. See “AVR Options” in the main manual for the list of supported MCU types. ! !

Use ‘configure --target=avr --enable-languages="c"’ to configure GCC. ! !

Further installation notes and other useful information about AVR tools can also be obtained from: !

! !

We strongly recommend using binutils 2.13 or newer. ! !

The following error: !

     Error: register required
! 
!

indicates that you should upgrade to a newer version of the binutils. ! !


!

Blackfin

!

The Blackfin processor, an Analog Devices DSP. See “Blackfin Options” in the main manual ! !

More information, and a version of binutils with support for this processor, is available at http://blackfin.uclinux.org !


! !

CR16

! !

The CR16 CompactRISC architecture is a 16-bit architecture. This architecture is used in embedded applications. !

See “CR16 Options” in the main manual for a list of CR16-specific options. ! !

Use ‘configure --target=cr16-elf --enable-languages=c,c++’ to configure ! GCC for building a CR16 elf cross-compiler. ! !

Use ‘configure --target=cr16-uclinux --enable-languages=c,c++’ to configure ! GCC for building a CR16 uclinux cross-compiler. ! !


! !

CRIS

CRIS is the CPU architecture in Axis Communications ETRAX system-on-a-chip series. These are used in embedded applications. ! !

See “CRIS Options” in the main manual for a list of CRIS-specific options. ! !

There are a few different CRIS targets: !

!
cris-axis-elf
Mainly for monolithic embedded systems. Includes a multilib for the ! ‘v10’ core used in ‘ETRAX 100 LX’. !
cris-axis-linux-gnu
A GNU/Linux port for the CRIS architecture, currently targeting ! ‘ETRAX 100 LX’ by default.
!

For cris-axis-elf you need binutils 2.11 or newer. For cris-axis-linux-gnu you need binutils 2.12 or newer. ! !

Pre-packaged tools can be obtained from ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/. More information about this platform is available at http://developer.axis.com/. ! !


! !

DOS

Please have a look at the binaries page. ! !

You cannot install GCC by itself on MSDOS; it will not compile under any MSDOS compiler except itself. You need to get the complete compilation package DJGPP, which includes binaries as well as sources, and includes all the necessary compilation tools and libraries. ! !


! !

epiphany-*-elf

! !

Adapteva Epiphany. This configuration is intended for embedded systems. ! !


! !

*-*-freebsd*

Support for FreeBSD 1 was discontinued in GCC 3.2. Support for FreeBSD 2 (and any mutant a.out variants of FreeBSD 3) was discontinued in GCC 4.0. ! !

In order to better utilize FreeBSD base system functionality and match the configuration of the system compiler, GCC 4.5 and above as well as GCC 4.4 past 2010-06-20 leverage SSP support in libc (which is present on FreeBSD 7 or later) and the use of __cxa_atexit by default (on FreeBSD 6 or later). The use of dl_iterate_phdr inside ! libgcc_s.so.1 and boehm-gc (on FreeBSD 7 or later) is enabled by GCC 4.5 and above. ! !

We support FreeBSD using the ELF file format with DWARF 2 debugging ! for all CPU architectures. You may use -gstabs instead of ! -g, if you really want the old debugging format. There are no known issues with mixing object files and libraries with different debugging formats. Otherwise, this release of GCC should now match more of the configuration used in the stock FreeBSD configuration of ! GCC. In particular, --enable-threads is now configured by default. However, as a general user, do not attempt to replace the system compiler with this release. Known to bootstrap and check with good results on FreeBSD 7.2-STABLE. In the past, known to bootstrap and check with good results on FreeBSD 3.0, 3.4, 4.0, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9 and 5-CURRENT. ! !

The version of binutils installed in /usr/bin probably works with this release of GCC. Bootstrapping against the latest GNU ! binutils and/or the version found in /usr/ports/devel/binutils has been known to enable additional features and improve overall testsuite results. However, it is currently known that boehm-gc (which itself is required for java) may not configure properly on FreeBSD prior to the FreeBSD 7.0 release with GNU binutils after 2.16.1. ! !


! !

h8300-hms

!

Renesas H8/300 series of processors. ! !

Please have a look at the binaries page. ! !

The calling convention and structure layout has changed in release 2.6. All code must be recompiled. The calling convention now passes the first three arguments in function calls in registers. Structures are no longer a multiple of 2 bytes. ! !


! !

hppa*-hp-hpux*

!

Support for HP-UX version 9 and older was discontinued in GCC 3.4. ! !

We require using gas/binutils on all hppa platforms. Version 2.19 or later is recommended. ! !

It may be helpful to configure GCC with the ! --with-gnu-as and ! --with-as=... options to ensure that GCC can find GAS. ! !

The HP assembler should not be used with GCC. It is rarely tested and may ! not work. It shouldn't be used with any languages other than C due to its many limitations. ! !

Specifically, -g does not work (HP-UX uses a peculiar debugging format which GCC does not know about). It also inserts timestamps into each object file it creates, causing the 3-stage comparison test to fail during a bootstrap. You should be able to continue by saying ! ‘make all-host all-target’ after getting the failure from ‘make’. ! !

Various GCC features are not supported. For example, it does not support weak symbols or alias definitions. As a result, explicit template instantiations are required when using C++. This makes it difficult if not impossible to build many C++ applications. ! !

There are two default scheduling models for instructions. These are PROCESSOR_7100LC and PROCESSOR_8000. They are selected from the pa-risc ! architecture specified for the target machine when configuring. PROCESSOR_8000 is the default. PROCESSOR_7100LC is selected when ! the target is a ‘hppa1*’ machine. ! !

The PROCESSOR_8000 model is not well suited to older processors. Thus, it is important to completely specify the machine architecture when configuring if you want a model other than PROCESSOR_8000. The macro TARGET_SCHED_DEFAULT can be defined in BOOT_CFLAGS if a different default scheduling model is desired. ! !

As of GCC 4.0, GCC uses the UNIX 95 namespace for HP-UX 10.10 ! through 11.00, and the UNIX 98 namespace for HP-UX 11.11 and later. This namespace change might cause problems when bootstrapping with an earlier version of GCC or the HP compiler as essentially the same namespace is required for an entire build. This problem can be avoided ! in a number of ways. With HP cc, UNIX_STD can be set to ‘95’ ! or ‘98’. Another way is to add an appropriate set of predefines ! to CC. The description for the munix= option contains a list of the predefines used with each standard. ! !

More specific information to ‘hppa*-hp-hpux*’ targets follows. ! !


! !

hppa*-hp-hpux10

For hpux10.20, we highly recommend you pick up the latest sed patch PHCO_19798 from HP. ! !

The C++ ABI has changed incompatibly in GCC 4.0. COMDAT subspaces are used for one-only code and data. This resolves many of the previous problems in using C++ on this target. However, the ABI is not compatible with the one implemented under HP-UX 11 using secondary definitions. ! !


! !

hppa*-hp-hpux11

GCC 3.0 and up support HP-UX 11. GCC 2.95.x is not supported and cannot be used to compile GCC 3.0 and up. ! !

The libffi and libjava libraries haven't been ported to 64-bit HP-UX and don't build. ! !

Refer to binaries for information about obtaining precompiled GCC binaries for HP-UX. Precompiled binaries must be obtained ! to build the Ada language as it can't be bootstrapped using C. Ada is only available for the 32-bit PA-RISC runtime. ! !

Starting with GCC 3.4 an ISO C compiler is required to bootstrap. The ! bundled compiler supports only traditional C; you will need either HP's unbundled compiler, or a binary distribution of GCC. ! !

It is possible to build GCC 3.3 starting with the bundled HP compiler, but the process requires several steps. GCC 3.3 can then be used to build later versions. The fastjar program contains ISO C code and ! can't be built with the HP bundled compiler. This problem can be avoided by not building the Java language. For example, use the ! --enable-languages="c,c++,f77,objc" option in your configure command. ! !

There are several possible approaches to building the distribution. Binutils can be built first using the HP tools. Then, the GCC distribution can be built. The second approach is to build GCC ! first using the HP tools, then build binutils, then rebuild GCC. There have been problems with various binary distributions, so it is best not to start from a binary distribution. ! !

On 64-bit capable systems, there are two distinct targets. Different installation prefixes must be used if both are to be installed on ! the same system. The ‘hppa[1-2]*-hp-hpux11*’ target generates code ! for the 32-bit PA-RISC runtime architecture and uses the HP linker. ! The ‘hppa64-hp-hpux11*’ target generates 64-bit code for the PA-RISC 2.0 architecture. ! !

The script config.guess now selects the target type based on the compiler ! detected during configuration. You must define PATH or CC so ! that configure finds an appropriate compiler for the initial bootstrap. ! When CC is used, the definition should contain the options that are ! needed whenever CC is used. ! !

Specifically, options that determine the runtime architecture must be ! in CC to correctly select the target for the build. It is also ! convenient to place many other compiler options in CC. For example, ! CC="cc -Ac +DA2.0W -Wp,-H16376 -D_CLASSIC_TYPES -D_HPUX_SOURCE" can be used to bootstrap the GCC 3.3 branch with the HP compiler in ! 64-bit K&R/bundled mode. The +DA2.0W option will result in ! the automatic selection of the ‘hppa64-hp-hpux11*’ target. The macro definition table of cpp needs to be increased for a successful build with the HP compiler. _CLASSIC_TYPES and _HPUX_SOURCE need to be defined when building with the bundled compiler, or when using the ! -Ac option. These defines aren't necessary with -Ae. ! !

It is best to explicitly configure the ‘hppa64-hp-hpux11*’ target ! with the --with-ld=... option. This overrides the standard search for ld. The two linkers supported on this target require different commands. The default linker is determined during configuration. As a ! result, it's not possible to switch linkers in the middle of a GCC build. This has been reported to sometimes occur in unified builds of binutils and GCC. ! !

A recent linker patch must be installed for the correct operation of GCC 3.3 and later. PHSS_26559 and PHSS_24304 are the oldest linker patches that are known to work. They are for HP-UX 11.00 and 11.11, respectively. PHSS_24303, the companion to ! PHSS_24304, might be usable but it hasn't been tested. These patches have been superseded. Consult the HP patch database to obtain the currently recommended linker patch for your system. ! !

The patches are necessary for the support of weak symbols on the 32-bit port, and for the running of initializers and finalizers. Weak symbols are implemented using SOM secondary definition symbols. Prior ! to HP-UX 11, there are bugs in the linker support for secondary symbols. The patches correct a problem of linker core dumps creating shared libraries containing secondary symbols, as well as various other linking issues involving secondary symbols. ! !

GCC 3.3 uses the ELF DT_INIT_ARRAY and DT_FINI_ARRAY capabilities to run initializers and finalizers on the 64-bit port. The 32-bit port ! uses the linker +init and +fini options for the same purpose. The patches correct various problems with the +init/+fini options, including program core dumps. Binutils 2.14 corrects a ! problem on the 64-bit port resulting from HP's non-standard use of the .init and .fini sections for array initializers and finalizers. ! !

Although the HP and GNU linkers are both supported for the ! ‘hppa64-hp-hpux11*’ target, it is strongly recommended that the HP linker be used for link editing on this target. ! !

At this time, the GNU linker does not support the creation of long ! branch stubs. As a result, it can't successfully link binaries containing branch offsets larger than 8 megabytes. In addition, there are problems linking shared libraries, linking executables ! with -static, and with dwarf2 unwind and exception support. ! It also doesn't provide stubs for internal calls to global functions ! in shared libraries, so these calls can't be overloaded. ! !

The HP dynamic loader does not support GNU symbol versioning, so symbol versioning is not supported. It may be necessary to disable symbol ! versioning with --disable-symvers when using GNU ld. ! !

POSIX threads are the default. The optional DCE thread library is not ! supported, so --enable-threads=dce does not work. ! !


! !

*-*-linux-gnu

Versions of libstdc++-v3 starting with 3.2.1 require bug fixes present in glibc 2.2.5 and later. More information is available in the libstdc++-v3 documentation. !


! !

i?86-*-linux*

! !

As of GCC 3.3, binutils 2.13.1 or later is required for this platform. See bug 10877 for more information. ! !

If you receive Signal 11 errors when building on GNU/Linux, then it is possible you have a hardware problem. Further information on this can be found on www.bitwizard.nl. ! !


! !

i?86-*-solaris2.9

! !

The Sun assembler in Solaris 9 has several bugs and limitations. While GCC works around them, several features are missing, so it is - recommended to use the GNU assembler instead. There is no bundled version, but the current version, from GNU binutils 2.22, is known to work. ! !

Solaris 2/x86 doesn't support the execution of SSE/SSE2 instructions before Solaris 9 4/04, even if the CPU supports them. Programs will receive SIGILL if they try. The fix is available both in Solaris 9 Update 6 and kernel patch 112234-12 or newer. To avoid this problem, ! -march defaults to ‘pentiumpro’ on Solaris 9. If you have the patch installed, you can configure GCC with an appropriate ! --with-arch option, but need GNU as for SSE2 support. ! !


! !

i?86-*-solaris2.10

!

Use this for Solaris 10 or later on x86 and x86-64 systems. Starting ! with GCC 4.7, there is also a 64-bit ‘amd64-*-solaris2.1[0-9]*’ or ! ‘x86_64-*-solaris2.1[0-9]*’ configuration that corresponds to ! ‘sparcv9-sun-solaris2*’. ! !

It is recommended that you configure GCC to use the GNU assembler, in ! /usr/sfw/bin/gas. The versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils 2.19, work fine, although the current version, from GNU binutils 2.22, is known to work, too. Recent versions of the Sun assembler in ! /usr/ccs/bin/as work almost as well, though. ! ! !

For linking, the Sun linker, is preferred. If you want to use the GNU ! linker instead, which is available in /usr/sfw/bin/gld, note that due to a packaging bug the version in Solaris 10, from GNU binutils 2.15, cannot be used, while the version in Solaris 11, from GNU binutils 2.19, works, as does the latest version, from GNU binutils 2.22. ! !

To use GNU as, configure with the options ! --with-gnu-as --with-as=/usr/sfw/bin/gas. It may be necessary ! to configure with --without-gnu-ld --with-ld=/usr/ccs/bin/ld to ! guarantee use of Sun ld. ! ! !


! !

ia64-*-linux

!

IA-64 processor (also known as IPF, or Itanium Processor Family) running GNU/Linux. ! !

If you are using the installed system libunwind library with ! --with-system-libunwind, then you must use libunwind 0.98 or later. ! !

None of the following versions of GCC has an ABI that is compatible with any of the other versions in this list, with the exception that Red Hat 2.96 and Trillian 000171 are compatible with each other: ! 3.1, 3.0.2, 3.0.1, 3.0, Red Hat 2.96, and Trillian 000717. ! This primarily affects C++ programs and programs that create shared libraries. ! GCC 3.1 or later is recommended for compiling linux, the kernel. As of version 3.1 GCC is believed to be fully ABI compliant, and hence no more major ABI changes are expected. ! !


! !

ia64-*-hpux*

!

Building GCC on this target requires the GNU Assembler. The bundled HP assembler will not work. To prevent GCC from using the wrong assembler, ! the option --with-gnu-as may be necessary. ! !

The GCC libunwind library has not been ported to HPUX. This means that for ! GCC versions 3.2.3 and earlier, --enable-libunwind-exceptions ! is required to build GCC. For GCC 3.3 and later, this is the default. ! For gcc 3.4.3 and later, --enable-libunwind-exceptions is removed and the system libunwind library will always be used. ! !


! ! !

*-ibm-aix*

! !

Support for AIX version 3 and older was discontinued in GCC 3.4. Support for AIX version 4.2 and older was discontinued in GCC 4.5. ! !

“out of memory” bootstrap failures may indicate a problem with process resource limits (ulimit). Hard limits are configured in the ! /etc/security/limits system configuration file. ! !

GCC can bootstrap with recent versions of IBM XLC, but bootstrapping with an earlier release of GCC is recommended. Bootstrapping with XLC requires a larger data segment, which can be enabled through the LDR_CNTRL environment variable, e.g., !

     % LDR_CNTRL=MAXDATA=0x50000000
!      % export LDR_CNTRL
! 
!

One can start with a pre-compiled version of GCC to build from ! sources. One may delete GCC's “fixed” header files when starting with a version of GCC built for an earlier release of AIX. !

To speed up the configuration phases of bootstrapping and installing GCC, ! one may use GNU Bash instead of AIX /bin/sh, e.g., ! !

     % CONFIG_SHELL=/opt/freeware/bin/bash
!      % export CONFIG_SHELL
! 
!

and then proceed as described in the build instructions, where we strongly recommend specifying an absolute path to invoke srcdir/configure. ! !

Because GCC on AIX is built as a 32-bit executable by default, (although it can generate 64-bit programs) the GMP and MPFR libraries required by gfortran must be 32-bit libraries. Building GMP and MPFR as static archive libraries works better than shared libraries. ! !

Errors involving alloca when building GCC generally are due to an incorrect definition of CC in the Makefile or mixing files compiled with the native C compiler and GCC. During the stage1 phase of ! the build, the native AIX compiler must be invoked as cc ! (not xlc). Once configure has been informed of ! xlc, one needs to use ‘make distclean’ to remove the ! configure cache files and ensure that CC environment variable ! does not provide a definition that will confuse configure. If this error occurs during stage2 or later, then the problem most likely is the version of Make (see above). ! !

The native as and ld are recommended for bootstrapping on AIX. The GNU Assembler, GNU Linker, and GNU Binutils version 2.20 is the minimum level that supports bootstrap on ! AIX 5. The GNU Assembler has not been updated to support AIX 6 or AIX 7. The native AIX tools do interoperate with GCC. ! !

AIX 5.3 TL10, AIX 6.1 TL05 and AIX 7.1 TL00 introduced an AIX assembler change that sometimes produces corrupt assembly files causing AIX linker errors. The bug breaks GCC bootstrap on AIX and can cause compilation failures with existing GCC installations. An --- 1,675 ---- ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Please read this document carefully before installing the ! GNU Compiler Collection on your machine. !

!

Note that this list of install notes is not a list of supported hosts or targets. Not all supported hosts and targets are listed here, only the ones that require host-specific or target-specific ! information have to. !

! ! ! !
!

alpha*-*-*

This section contains general configuration information for all alpha-based platforms using ELF (in particular, ignore this section for DEC OSF/1, Digital UNIX and Tru64 UNIX). In addition to reading this section, please read all other sections that match your target. !

!

We require binutils 2.11.2 or newer. Previous binutils releases had a number of problems with DWARF 2 debugging information, not the least of which is incorrect linking of shared libraries. !

!
!

alpha*-dec-osf5.1

Systems using processors that implement the DEC Alpha architecture and are running the DEC/Compaq/HP Unix (DEC OSF/1, Digital UNIX, or Compaq/HP Tru64 UNIX) operating system, for example the DEC Alpha AXP systems. !

!

Support for Tru64 UNIX V5.1 has been removed in GCC 4.8. As of GCC 4.6, support for Tru64 UNIX V4.0 and V5.0 has been removed. As of GCC 3.2, versions before alpha*-dec-osf4 are no longer supported. (These are the versions which identify themselves as DEC OSF/1.) +

+
+

amd64-*-solaris2.1[0-9]*

!

This is a synonym for ‘x86_64-*-solaris2.1[0-9]*’. !

!
!

arm-*-eabi

ARM-family processors. Subtargets that use the ELF object format require GNU binutils 2.13 or newer. Such subtargets include: arm-*-netbsdelf, arm-*-*linux-* and arm-*-rtemseabi. !

!
!

avr

ATMEL AVR-family micro controllers. These are used in embedded ! applications. There are no standard Unix configurations. See “AVR Options” in the main manual for the list of supported MCU types. !

!

Use ‘configure --target=avr --enable-languages="c"’ to configure GCC. !

!

Further installation notes and other useful information about AVR tools can also be obtained from: +

+ !

We strongly recommend using binutils 2.13 or newer. !

!

The following error: !

!
Error: register required
! 
!

indicates that you should upgrade to a newer version of the binutils. !

!
!

Blackfin

!

The Blackfin processor, an Analog Devices DSP. See “Blackfin Options” in the main manual !

!

More information, and a version of binutils with support for this processor, is available at http://blackfin.uclinux.org +

+
+

CR16

!

The CR16 CompactRISC architecture is a 16-bit architecture. This architecture is used in embedded applications. +

!

See “CR16 Options” in the main manual for a list of CR16-specific options. !

!

Use ‘configure --target=cr16-elf --enable-languages=c,c++’ to configure ! GCC for building a CR16 elf cross-compiler. !

!

Use ‘configure --target=cr16-uclinux --enable-languages=c,c++’ to configure ! GCC for building a CR16 uclinux cross-compiler. !

!
!

CRIS

CRIS is the CPU architecture in Axis Communications ETRAX system-on-a-chip series. These are used in embedded applications. !

!

See “CRIS Options” in the main manual for a list of CRIS-specific options. !

!

There are a few different CRIS targets: !

!
cris-axis-elf
!

Mainly for monolithic embedded systems. Includes a multilib for the ! ‘v10’ core used in ‘ETRAX 100 LX’. !

!
cris-axis-linux-gnu
!

A GNU/Linux port for the CRIS architecture, currently targeting ! ‘ETRAX 100 LX’ by default. !

!

For cris-axis-elf you need binutils 2.11 or newer. For cris-axis-linux-gnu you need binutils 2.12 or newer. !

!

Pre-packaged tools can be obtained from ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/. More information about this platform is available at http://developer.axis.com/. !

!
!

DOS

Please have a look at the binaries page. !

!

You cannot install GCC by itself on MSDOS; it will not compile under any MSDOS compiler except itself. You need to get the complete compilation package DJGPP, which includes binaries as well as sources, and includes all the necessary compilation tools and libraries. !

!
!

epiphany-*-elf

!

Adapteva Epiphany. This configuration is intended for embedded systems. !

!
!

*-*-freebsd*

Support for FreeBSD 1 was discontinued in GCC 3.2. Support for FreeBSD 2 (and any mutant a.out variants of FreeBSD 3) was discontinued in GCC 4.0. !

!

In order to better utilize FreeBSD base system functionality and match the configuration of the system compiler, GCC 4.5 and above as well as GCC 4.4 past 2010-06-20 leverage SSP support in libc (which is present on FreeBSD 7 or later) and the use of __cxa_atexit by default (on FreeBSD 6 or later). The use of dl_iterate_phdr inside ! libgcc_s.so.1 and boehm-gc (on FreeBSD 7 or later) is enabled by GCC 4.5 and above. !

!

We support FreeBSD using the ELF file format with DWARF 2 debugging ! for all CPU architectures. You may use -gstabs instead of ! -g, if you really want the old debugging format. There are no known issues with mixing object files and libraries with different debugging formats. Otherwise, this release of GCC should now match more of the configuration used in the stock FreeBSD configuration of ! GCC. In particular, --enable-threads is now configured by default. However, as a general user, do not attempt to replace the system compiler with this release. Known to bootstrap and check with good results on FreeBSD 7.2-STABLE. In the past, known to bootstrap and check with good results on FreeBSD 3.0, 3.4, 4.0, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9 and 5-CURRENT. !

!

The version of binutils installed in /usr/bin probably works with this release of GCC. Bootstrapping against the latest GNU ! binutils and/or the version found in /usr/ports/devel/binutils has been known to enable additional features and improve overall testsuite results. However, it is currently known that boehm-gc (which itself is required for java) may not configure properly on FreeBSD prior to the FreeBSD 7.0 release with GNU binutils after 2.16.1. !

!
!

h8300-hms

Renesas H8/300 series of processors. !

!

Please have a look at the binaries page. !

!

The calling convention and structure layout has changed in release 2.6. All code must be recompiled. The calling convention now passes the first three arguments in function calls in registers. Structures are no longer a multiple of 2 bytes. !

!
!

hppa*-hp-hpux*

Support for HP-UX version 9 and older was discontinued in GCC 3.4. !

!

We require using gas/binutils on all hppa platforms. Version 2.19 or later is recommended. !

!

It may be helpful to configure GCC with the ! --with-gnu-as and ! --with-as=… options to ensure that GCC can find GAS. !

!

The HP assembler should not be used with GCC. It is rarely tested and may ! not work. It shouldn’t be used with any languages other than C due to its many limitations. !

!

Specifically, -g does not work (HP-UX uses a peculiar debugging format which GCC does not know about). It also inserts timestamps into each object file it creates, causing the 3-stage comparison test to fail during a bootstrap. You should be able to continue by saying ! ‘make all-host all-target’ after getting the failure from ‘make’. !

!

Various GCC features are not supported. For example, it does not support weak symbols or alias definitions. As a result, explicit template instantiations are required when using C++. This makes it difficult if not impossible to build many C++ applications. !

!

There are two default scheduling models for instructions. These are PROCESSOR_7100LC and PROCESSOR_8000. They are selected from the pa-risc ! architecture specified for the target machine when configuring. PROCESSOR_8000 is the default. PROCESSOR_7100LC is selected when ! the target is a ‘hppa1*’ machine. !

!

The PROCESSOR_8000 model is not well suited to older processors. Thus, it is important to completely specify the machine architecture when configuring if you want a model other than PROCESSOR_8000. The macro TARGET_SCHED_DEFAULT can be defined in BOOT_CFLAGS if a different default scheduling model is desired. !

!

As of GCC 4.0, GCC uses the UNIX 95 namespace for HP-UX 10.10 ! through 11.00, and the UNIX 98 namespace for HP-UX 11.11 and later. This namespace change might cause problems when bootstrapping with an earlier version of GCC or the HP compiler as essentially the same namespace is required for an entire build. This problem can be avoided ! in a number of ways. With HP cc, UNIX_STD can be set to ‘95’ ! or ‘98’. Another way is to add an appropriate set of predefines ! to CC. The description for the munix= option contains a list of the predefines used with each standard. !

!

More specific information to ‘hppa*-hp-hpux*’ targets follows. !

!
!

hppa*-hp-hpux10

For hpux10.20, we highly recommend you pick up the latest sed patch PHCO_19798 from HP. !

!

The C++ ABI has changed incompatibly in GCC 4.0. COMDAT subspaces are used for one-only code and data. This resolves many of the previous problems in using C++ on this target. However, the ABI is not compatible with the one implemented under HP-UX 11 using secondary definitions. !

!
!

hppa*-hp-hpux11

GCC 3.0 and up support HP-UX 11. GCC 2.95.x is not supported and cannot be used to compile GCC 3.0 and up. !

!

The libffi and libjava libraries haven’t been ported to 64-bit HP-UX and don’t build. !

!

Refer to binaries for information about obtaining precompiled GCC binaries for HP-UX. Precompiled binaries must be obtained ! to build the Ada language as it can’t be bootstrapped using C. Ada is only available for the 32-bit PA-RISC runtime. !

!

Starting with GCC 3.4 an ISO C compiler is required to bootstrap. The ! bundled compiler supports only traditional C; you will need either HP’s unbundled compiler, or a binary distribution of GCC. !

!

It is possible to build GCC 3.3 starting with the bundled HP compiler, but the process requires several steps. GCC 3.3 can then be used to build later versions. The fastjar program contains ISO C code and ! can’t be built with the HP bundled compiler. This problem can be avoided by not building the Java language. For example, use the ! --enable-languages="c,c++,f77,objc" option in your configure command. !

!

There are several possible approaches to building the distribution. Binutils can be built first using the HP tools. Then, the GCC distribution can be built. The second approach is to build GCC ! first using the HP tools, then build binutils, then rebuild GCC. There have been problems with various binary distributions, so it is best not to start from a binary distribution. !

!

On 64-bit capable systems, there are two distinct targets. Different installation prefixes must be used if both are to be installed on ! the same system. The ‘hppa[1-2]*-hp-hpux11*’ target generates code ! for the 32-bit PA-RISC runtime architecture and uses the HP linker. ! The ‘hppa64-hp-hpux11*’ target generates 64-bit code for the PA-RISC 2.0 architecture. !

!

The script config.guess now selects the target type based on the compiler ! detected during configuration. You must define PATH or CC so ! that configure finds an appropriate compiler for the initial bootstrap. ! When CC is used, the definition should contain the options that are ! needed whenever CC is used. !

!

Specifically, options that determine the runtime architecture must be ! in CC to correctly select the target for the build. It is also ! convenient to place many other compiler options in CC. For example, ! CC="cc -Ac +DA2.0W -Wp,-H16376 -D_CLASSIC_TYPES -D_HPUX_SOURCE" can be used to bootstrap the GCC 3.3 branch with the HP compiler in ! 64-bit K&R/bundled mode. The +DA2.0W option will result in ! the automatic selection of the ‘hppa64-hp-hpux11*’ target. The macro definition table of cpp needs to be increased for a successful build with the HP compiler. _CLASSIC_TYPES and _HPUX_SOURCE need to be defined when building with the bundled compiler, or when using the ! -Ac option. These defines aren’t necessary with -Ae. !

!

It is best to explicitly configure the ‘hppa64-hp-hpux11*’ target ! with the --with-ld=… option. This overrides the standard search for ld. The two linkers supported on this target require different commands. The default linker is determined during configuration. As a ! result, it’s not possible to switch linkers in the middle of a GCC build. This has been reported to sometimes occur in unified builds of binutils and GCC. !

!

A recent linker patch must be installed for the correct operation of GCC 3.3 and later. PHSS_26559 and PHSS_24304 are the oldest linker patches that are known to work. They are for HP-UX 11.00 and 11.11, respectively. PHSS_24303, the companion to ! PHSS_24304, might be usable but it hasn’t been tested. These patches have been superseded. Consult the HP patch database to obtain the currently recommended linker patch for your system. !

!

The patches are necessary for the support of weak symbols on the 32-bit port, and for the running of initializers and finalizers. Weak symbols are implemented using SOM secondary definition symbols. Prior ! to HP-UX 11, there are bugs in the linker support for secondary symbols. The patches correct a problem of linker core dumps creating shared libraries containing secondary symbols, as well as various other linking issues involving secondary symbols. !

!

GCC 3.3 uses the ELF DT_INIT_ARRAY and DT_FINI_ARRAY capabilities to run initializers and finalizers on the 64-bit port. The 32-bit port ! uses the linker +init and +fini options for the same purpose. The patches correct various problems with the +init/+fini options, including program core dumps. Binutils 2.14 corrects a ! problem on the 64-bit port resulting from HP’s non-standard use of the .init and .fini sections for array initializers and finalizers. !

!

Although the HP and GNU linkers are both supported for the ! ‘hppa64-hp-hpux11*’ target, it is strongly recommended that the HP linker be used for link editing on this target. !

!

At this time, the GNU linker does not support the creation of long ! branch stubs. As a result, it can’t successfully link binaries containing branch offsets larger than 8 megabytes. In addition, there are problems linking shared libraries, linking executables ! with -static, and with dwarf2 unwind and exception support. ! It also doesn’t provide stubs for internal calls to global functions ! in shared libraries, so these calls can’t be overloaded. !

!

The HP dynamic loader does not support GNU symbol versioning, so symbol versioning is not supported. It may be necessary to disable symbol ! versioning with --disable-symvers when using GNU ld. !

!

POSIX threads are the default. The optional DCE thread library is not ! supported, so --enable-threads=dce does not work. !

!
!

*-*-linux-gnu

Versions of libstdc++-v3 starting with 3.2.1 require bug fixes present in glibc 2.2.5 and later. More information is available in the libstdc++-v3 documentation. +

+
+

i?86-*-linux*

!

As of GCC 3.3, binutils 2.13.1 or later is required for this platform. See bug 10877 for more information. !

!

If you receive Signal 11 errors when building on GNU/Linux, then it is possible you have a hardware problem. Further information on this can be found on www.bitwizard.nl. !

!
!

i?86-*-solaris2.9

!

The Sun assembler in Solaris 9 has several bugs and limitations. While GCC works around them, several features are missing, so it is recommended to use the GNU assembler instead. There is no bundled version, but the current version, from GNU binutils 2.22, is known to work. !

!

Solaris 2/x86 doesn’t support the execution of SSE/SSE2 instructions before Solaris 9 4/04, even if the CPU supports them. Programs will receive SIGILL if they try. The fix is available both in Solaris 9 Update 6 and kernel patch 112234-12 or newer. To avoid this problem, ! -march defaults to ‘pentiumpro’ on Solaris 9. If you have the patch installed, you can configure GCC with an appropriate ! --with-arch option, but need GNU as for SSE2 support. !

!
!

i?86-*-solaris2.10

Use this for Solaris 10 or later on x86 and x86-64 systems. Starting ! with GCC 4.7, there is also a 64-bit ‘amd64-*-solaris2.1[0-9]*’ or ! ‘x86_64-*-solaris2.1[0-9]*’ configuration that corresponds to ! ‘sparcv9-sun-solaris2*’. !

!

It is recommended that you configure GCC to use the GNU assembler, in ! /usr/sfw/bin/gas. The versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils 2.19, work fine, although the current version, from GNU binutils 2.22, is known to work, too. Recent versions of the Sun assembler in ! /usr/ccs/bin/as work almost as well, though. !

!

For linking, the Sun linker, is preferred. If you want to use the GNU ! linker instead, which is available in /usr/sfw/bin/gld, note that due to a packaging bug the version in Solaris 10, from GNU binutils 2.15, cannot be used, while the version in Solaris 11, from GNU binutils 2.19, works, as does the latest version, from GNU binutils 2.22. !

!

To use GNU as, configure with the options ! --with-gnu-as --with-as=/usr/sfw/bin/gas. It may be necessary ! to configure with --without-gnu-ld --with-ld=/usr/ccs/bin/ld to ! guarantee use of Sun ld. !

!
!

ia64-*-linux

IA-64 processor (also known as IPF, or Itanium Processor Family) running GNU/Linux. !

!

If you are using the installed system libunwind library with ! --with-system-libunwind, then you must use libunwind 0.98 or later. !

!

None of the following versions of GCC has an ABI that is compatible with any of the other versions in this list, with the exception that Red Hat 2.96 and Trillian 000171 are compatible with each other: ! 3.1, 3.0.2, 3.0.1, 3.0, Red Hat 2.96, and Trillian 000717. ! This primarily affects C++ programs and programs that create shared libraries. ! GCC 3.1 or later is recommended for compiling linux, the kernel. As of version 3.1 GCC is believed to be fully ABI compliant, and hence no more major ABI changes are expected. !

!
!

ia64-*-hpux*

Building GCC on this target requires the GNU Assembler. The bundled HP assembler will not work. To prevent GCC from using the wrong assembler, ! the option --with-gnu-as may be necessary. !

!

The GCC libunwind library has not been ported to HPUX. This means that for ! GCC versions 3.2.3 and earlier, --enable-libunwind-exceptions ! is required to build GCC. For GCC 3.3 and later, this is the default. ! For gcc 3.4.3 and later, --enable-libunwind-exceptions is removed and the system libunwind library will always be used. !

!
! !

*-ibm-aix*

!

Support for AIX version 3 and older was discontinued in GCC 3.4. Support for AIX version 4.2 and older was discontinued in GCC 4.5. !

!

“out of memory” bootstrap failures may indicate a problem with process resource limits (ulimit). Hard limits are configured in the ! /etc/security/limits system configuration file. !

!

GCC can bootstrap with recent versions of IBM XLC, but bootstrapping with an earlier release of GCC is recommended. Bootstrapping with XLC requires a larger data segment, which can be enabled through the LDR_CNTRL environment variable, e.g., +

+
+
% LDR_CNTRL=MAXDATA=0x50000000
+ % export LDR_CNTRL
+ 
!

One can start with a pre-compiled version of GCC to build from ! sources. One may delete GCC’s “fixed” header files when starting with a version of GCC built for an earlier release of AIX. +

+

To speed up the configuration phases of bootstrapping and installing GCC, + one may use GNU Bash instead of AIX /bin/sh, e.g., +

+
+
% CONFIG_SHELL=/opt/freeware/bin/bash
+ % export CONFIG_SHELL
+ 
!

and then proceed as described in the build ! instructions, where we strongly recommend specifying an absolute path to invoke srcdir/configure. !

!

Because GCC on AIX is built as a 32-bit executable by default, (although it can generate 64-bit programs) the GMP and MPFR libraries required by gfortran must be 32-bit libraries. Building GMP and MPFR as static archive libraries works better than shared libraries. !

!

Errors involving alloca when building GCC generally are due to an incorrect definition of CC in the Makefile or mixing files compiled with the native C compiler and GCC. During the stage1 phase of ! the build, the native AIX compiler must be invoked as cc ! (not xlc). Once configure has been informed of ! xlc, one needs to use ‘make distclean’ to remove the ! configure cache files and ensure that CC environment variable ! does not provide a definition that will confuse configure. If this error occurs during stage2 or later, then the problem most likely is the version of Make (see above). !

!

The native as and ld are recommended for bootstrapping on AIX. The GNU Assembler, GNU Linker, and GNU Binutils version 2.20 is the minimum level that supports bootstrap on ! AIX 5. The GNU Assembler has not been updated to support AIX 6 or AIX 7. The native AIX tools do interoperate with GCC. !

!

AIX 5.3 TL10, AIX 6.1 TL05 and AIX 7.1 TL00 introduced an AIX assembler change that sometimes produces corrupt assembly files causing AIX linker errors. The bug breaks GCC bootstrap on AIX and can cause compilation failures with existing GCC installations. An *************** AIX iFix for AIX 5.3 is available (APAR *** 647,1441 **** IZ98477 for AIX 5.3 TL11 and IZ98134 for AIX 5.3 TL12). AIX 5.3 TL11 SP8, AIX 5.3 TL12 SP5, AIX 6.1 TL04 SP11, AIX 6.1 TL05 SP7, AIX 6.1 TL06 SP6, AIX 6.1 TL07 and AIX 7.1 TL01 should include the fix. ! !

Building libstdc++.a requires a fix for an AIX Assembler bug APAR IY26685 (AIX 4.3) or APAR IY25528 (AIX 5.1). It also requires a fix for another AIX Assembler bug and a co-dependent AIX Archiver fix referenced as APAR IY53606 (AIX 5.2) or as APAR IY54774 (AIX 5.1) ! !

libstdc++’ in GCC 3.4 increments the major version number of the ! shared object and GCC installation places the libstdc++.a shared library in a common location which will overwrite the and GCC 3.3 version of the shared library. Applications either need to be re-linked against the new shared library or the GCC 3.1 and GCC 3.3 ! versions of the ‘libstdc++’ shared object needs to be available ! to the AIX runtime loader. The GCC 3.1 ‘libstdc++.so.4’, if ! present, and GCC 3.3 ‘libstdc++.so.5’ shared objects can be installed for runtime dynamic loading using the following steps to set ! the ‘F_LOADONLY’ flag in the shared object for each ! multilib libstdc++.a installed: !

Extract the shared objects from the currently installed ! libstdc++.a archive: !

     % ar -x libstdc++.a libstdc++.so.4 libstdc++.so.5
! 
!

Enable the ‘F_LOADONLY’ flag so that the shared object will be available for runtime dynamic loading, but not linking: !

     % strip -e libstdc++.so.4 libstdc++.so.5
! 
!

Archive the runtime-only shared object in the GCC 3.4 ! libstdc++.a archive: !

     % ar -q libstdc++.a libstdc++.so.4 libstdc++.so.5
! 
!

Linking executables and shared libraries may produce warnings of duplicate symbols. The assembly files generated by GCC for AIX always have included multiple symbol definitions for certain global variable and function declarations in the original program. The warnings should not prevent the linker from producing a correct library or runnable executable. ! !

AIX 4.3 utilizes a “large format” archive to support both 32-bit and 64-bit object modules. The routines provided in AIX 4.3.0 and AIX 4.3.1 ! to parse archive libraries did not handle the new format correctly. These routines are used by GCC and result in error messages during linking such as “not a COFF file”. The version of the routines shipped ! with AIX 4.3.1 should work for a 32-bit environment. The -g option of the archive command may be used to create archives of 32-bit objects using the original “small format”. A correct version of the routines is shipped with AIX 4.3.2 and above. ! !

Some versions of the AIX binder (linker) can fail with a relocation ! overflow severe error when the -bbigtoc option is used to link GCC-produced object files into an executable that overflows the TOC. A fix for APAR IX75823 (OVERFLOW DURING LINK WHEN USING GCC AND -BBIGTOC) is available from IBM Customer Support and from its techsupport.services.ibm.com website as PTF U455193. ! !

The AIX 4.3.2.1 linker (bos.rte.bind_cmds Level 4.3.2.1) will dump core with a segmentation fault when invoked by any version of GCC. A fix for APAR IX87327 is available from IBM Customer Support and from its techsupport.services.ibm.com website as PTF U461879. This fix is incorporated in AIX 4.3.3 and above. ! !

The initial assembler shipped with AIX 4.3.0 generates incorrect object files. A fix for APAR IX74254 (64BIT DISASSEMBLED OUTPUT FROM COMPILER FAILS TO ASSEMBLE/BIND) is available from IBM Customer Support and from its techsupport.services.ibm.com website as PTF U453956. This fix is incorporated in AIX 4.3.1 and above. ! !

AIX provides National Language Support (NLS). Compilers and assemblers use NLS to support locale-specific representations of various data ! formats including floating-point numbers (e.g., ‘.’ vs ‘,’ for separating decimal fractions). There have been problems reported where GCC does not produce the same floating-point formats that the assembler ! expects. If one encounters this problem, set the LANG ! environment variable to ‘C’ or ‘En_US’. ! !

A default can be specified with the -mcpu=cpu_type ! switch and using the configure option --with-cpu-cpu_type. ! !


! !

iq2000-*-elf

!

Vitesse IQ2000 processors. These are used in embedded applications. There are no standard Unix configurations. ! !


! !

lm32-*-elf

! !

Lattice Mico32 processor. This configuration is intended for embedded systems. ! !


! !

lm32-*-uclinux

! !

Lattice Mico32 processor. This configuration is intended for embedded systems running uClinux. ! !


! !

m32c-*-elf

! !

Renesas M32C processor. This configuration is intended for embedded systems. ! !


! !

m32r-*-elf

! !

Renesas M32R processor. This configuration is intended for embedded systems. ! !


! !

m68k-*-*

!

By default, ! ‘m68k-*-elf*’, ‘m68k-*-rtems’, ‘m68k-*-uclinux’ and ! ‘m68k-*-linux’ build libraries for both M680x0 and ColdFire processors. If you only need the M680x0 libraries, you can omit the ColdFire ones by passing ! --with-arch=m68k to configure. Alternatively, you ! can omit the M680x0 libraries by passing --with-arch=cf to ! configure. These targets default to 5206 or 5475 code as appropriate for the target system when ! configured with --with-arch=cf and 68020 code otherwise. ! !

The ‘m68k-*-netbsd’ and ! ‘m68k-*-openbsd’ targets also support the --with-arch option. They will generate ColdFire CFV4e code when configured with ! --with-arch=cf and 68020 code otherwise. ! !

You can override the default processors listed above by configuring ! with --with-cpu=target. This target can either ! be a -mcpu argument or one of the following values: ! ‘m68000’, ‘m68010’, ‘m68020’, ‘m68030’, ! ‘m68040’, ‘m68060’, ‘m68020-40’ and ‘m68020-60’. ! !

GCC requires at least binutils version 2.17 on these targets. ! !


! !

m68k-*-uclinux

!

GCC 4.3 changed the uClinux configuration so that it uses the ! ‘m68k-linux-gnu’ ABI rather than the ‘m68k-elf’ ABI. It also added improved support for C++ and flat shared libraries, both of which were ABI changes. !


! !

mep-*-elf

! !

Toshiba Media embedded Processor. This configuration is intended for embedded systems. ! !


! !

microblaze-*-elf

! !

Xilinx MicroBlaze processor. This configuration is intended for embedded systems. ! !


! !

mips-*-*

!

If on a MIPS system you get an error message saying “does not have gp ! sections for all it's [sic] sectons [sic]”, don't worry about it. This happens whenever you use GAS with the MIPS linker, but there is not really anything wrong, and it is okay to use the output file. You can stop such warnings by installing the GNU linker. ! !

It would be nice to extend GAS to produce the gp tables, but they are optional, and there should not be a warning about their absence. ! !

The libstdc++ atomic locking routines for MIPS targets requires MIPS II and later. A patch went in just after the GCC 3.3 release to ! make ‘mips*-*-*’ use the generic implementation instead. You can also ! configure for ‘mipsel-elf’ as a workaround. The ! ‘mips*-*-linux*’ target continues to use the MIPS II routines. More work on this is expected in future releases. ! ! !

The built-in __sync_* functions are available on MIPS II and ! later systems and others that support the ‘ll’, ‘sc’ and ! ‘sync’ instructions. This can be overridden by passing ! --with-llsc or --without-llsc when configuring GCC. Since the Linux kernel emulates these instructions if they are ! missing, the default for ‘mips*-*-linux*’ targets is ! --with-llsc. The --with-llsc and ! --without-llsc configure options may be overridden at compile ! time by passing the -mllsc or -mno-llsc options to the compiler. ! !

MIPS systems check for division by zero (unless ! -mno-check-zero-division is passed to the compiler) by generating either a conditional trap or a break instruction. Using trap results in smaller code, but is only supported on MIPS II and later. Also, some versions of the Linux kernel have a bug that prevents trap from generating the proper signal (SIGFPE). To enable ! the use of break, use the --with-divide=breaks ! configure option when configuring GCC. The default is to use traps on systems that support them. ! !

The assembler from GNU binutils 2.17 and earlier has a bug in the way it sorts relocations for REL targets (o32, o64, EABI). This can cause bad code to be generated for simple C++ programs. Also the linker from GNU binutils versions prior to 2.17 has a bug which causes the ! runtime linker stubs in very large programs, like libgcj.so, to be incorrectly generated. GNU Binutils 2.18 and later (and snapshots made after Nov. 9, 2006) should be free from both of these problems. ! !


! !

mips-sgi-irix5

Support for IRIX 5 has been removed in GCC 4.6. ! !


! !

mips-sgi-irix6

Support for IRIX 6.5 has been removed in GCC 4.8. Support for IRIX 6 releases before 6.5 has been removed in GCC 4.6, as well as support for the O32 ABI. ! !


! !

moxie-*-elf

!

The moxie processor. !


! !

powerpc-*-*

! !

You can specify a default version for the -mcpu=cpu_type ! switch by using the configure option --with-cpu-cpu_type. ! !

You will need binutils 2.15 or newer for a working GCC. ! !


! !

powerpc-*-darwin*

!

PowerPC running Darwin (Mac OS X kernel). ! !

Pre-installed versions of Mac OS X may not include any developer tools, meaning that you will not be able to build GCC from source. Tool binaries are available at http://opensource.apple.com/. ! !

This version of GCC requires at least cctools-590.36. The cctools-590.36 package referenced from http://gcc.gnu.org/ml/gcc/2006-03/msg00507.html will not work on systems older than 10.3.9 (aka darwin7.9.0). ! !


! !

powerpc-*-elf

!

PowerPC system in big endian mode, running System V.4. ! !


! !

powerpc*-*-linux-gnu*

PowerPC system in big endian mode running Linux. ! !


! !

powerpc-*-netbsd*

!

PowerPC system in big endian mode running NetBSD. ! !


! !

powerpc-*-eabisim

!

Embedded PowerPC system in big endian mode for use in running under the PSIM simulator. ! !


! !

powerpc-*-eabi

!

Embedded PowerPC system in big endian mode. ! !


! !

powerpcle-*-elf

!

PowerPC system in little endian mode, running System V.4. ! !


! !

powerpcle-*-eabisim

!

Embedded PowerPC system in little endian mode for use in running under the PSIM simulator. ! !


! !

powerpcle-*-eabi

!

Embedded PowerPC system in little endian mode. ! !


! !

rl78-*-elf

! !

The Renesas RL78 processor. This configuration is intended for embedded systems. ! !


! !

rx-*-elf

!

The Renesas RX processor. See http://eu.renesas.com/fmwk.jsp?cnt=rx600_series_landing.jsp&fp=/products/mpumcu/rx_family/rx600_series for more information about this processor. ! !


! !

s390-*-linux*

!

S/390 system running GNU/Linux for S/390. ! !


! !

s390x-*-linux*

!

zSeries system (64-bit) running GNU/Linux for zSeries. ! !


! !

s390x-ibm-tpf*

!

zSeries system (64-bit) running TPF. This platform is supported as cross-compilation target only. ! !


! ! ! ! !

*-*-solaris2*

Support for Solaris 8 has removed in GCC 4.8. Support for Solaris 7 has been removed in GCC 4.6. ! !

Sun does not ship a C compiler with Solaris 2 before Solaris 10, though you can download the Sun Studio compilers for free. In Solaris 10 and ! 11, GCC 3.4.3 is available as /usr/sfw/bin/gcc. Solaris 11 ! also provides GCC 4.5.2 as /usr/gcc/4.5/bin/gcc. Alternatively, you can install a pre-built GCC to bootstrap and install GCC. See the binaries page for details. ! !

The Solaris 2 /bin/sh will often fail to configure ! ‘libstdc++-v3’, ‘boehm-gc’ or ‘libjava’. We therefore recommend using the following initial sequence of commands !

     % CONFIG_SHELL=/bin/ksh
!      % export CONFIG_SHELL
! 
!

and proceed as described in the configure instructions. In addition we strongly recommend specifying an absolute path to invoke ! srcdir/configure. ! !

Solaris 2 comes with a number of optional OS packages. Some of these are needed to use GCC fully, namely SUNWarc, SUNWbtool, SUNWesu, SUNWhea, SUNWlibm, SUNWsprot, and SUNWtoo. If you did not install all optional packages when installing Solaris 2, you will need to verify that the packages that GCC needs are installed. ! !

To check whether an optional package is installed, use ! the pkginfo command. To add an optional package, use the ! pkgadd command. For further details, see the Solaris 2 documentation. ! !

Trying to use the linker and other tools in ! /usr/ucb to install GCC has been observed to cause trouble. For example, the linker may hang indefinitely. The fix is to remove ! /usr/ucb from your PATH. ! !

The build process works more smoothly with the legacy Sun tools so, if you ! have /usr/xpg4/bin in your PATH, we recommend that you place ! /usr/bin before /usr/xpg4/bin for the duration of the build. ! !

We recommend the use of the Sun assembler or the GNU assembler, in ! conjunction with the Sun linker. The GNU as versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils 2.19, are known to work. They can be found in ! /usr/sfw/bin/gas. Current versions of GNU binutils (2.22) are known to work as well. Note that your mileage may vary if you use a combination of the GNU tools and the Sun tools: while the ! combination GNU as + Sun ld should reasonably work, ! the reverse combination Sun as + GNU ld may fail to ! build or cause memory corruption at runtime in some cases for C++ programs. ! ! GNU ld usually works as well, although the version included in Solaris 10 cannot be used due to several bugs. Again, the current version (2.22) is known to work, but generally lacks platform specific ! features, so better stay with Sun ld. To use the LTO linker ! plugin (-fuse-linker-plugin) with GNU ld, GNU ! binutils must be configured with --enable-largefile. ! !

To enable symbol versioning in ‘libstdc++’ with Sun ld, ! you need to have any version of GNU c++filt, which is part of ! GNU binutils. ‘libstdc++’ symbol versioning will be disabled if no ! appropriate version is found. Sun c++filt from the Sun Studio compilers does not work. ! !

Sun bug 4296832 turns up when compiling X11 headers with GCC 2.95 or ! newer: g++ will complain that types are missing. These headers assume that omitting the type means int; this assumption worked for C90 but is wrong for C++, and is now wrong for C99 also. ! !

Sun bug 4927647 sometimes causes random spurious testsuite failures ! related to missing diagnostic output. This bug doesn't affect GCC ! itself, rather it is a kernel bug triggered by the expect program which is used only by the GCC testsuite driver. When the bug ! causes the expect program to miss anticipated output, extra testsuite failures appear. ! !

There are patches for Solaris 9 (117171-11 or newer for SPARC, 117172-11 or newer for Intel) that address this problem. ! !

Thread-local storage (TLS) is supported in Solaris 9, but requires ! some patches. The ‘libthread’ patches provide the ! __tls_get_addr (SPARC, 64-bit x86) resp. ___tls_get_addr (32-bit x86) functions. On Solaris 9, the necessary support on SPARC is present since FCS, while 114432-05 or newer is required on Intel. Additionally, on Solaris 9/x86, patch 113986-02 or newer is ! required for the Sun ld and runtime linker (ld.so.1) support, while Solaris 9/SPARC works since FCS. The linker ! patches must be installed even if GNU ld is used. Sun ! as in Solaris 9 doesn't support the necessary ! relocations, so GNU as must be used. The configure script checks for those prerequisites and automatically enables TLS support if they are met. Although those minimal patch versions should work, it is recommended to use the latest patch versions which include additional bug fixes. ! !


! !

sparc*-*-*

This section contains general configuration information for all SPARC-based platforms. In addition to reading this section, please read all other sections that match your target. ! !

Newer versions of the GNU Multiple Precision Library (GMP), the MPFR library and the MPC library are known to be miscompiled by earlier versions of GCC on these platforms. We therefore recommend the use of the exact versions of these libraries listed as minimal versions in the prerequisites. ! !


! !

sparc-sun-solaris2*

When GCC is configured to use GNU binutils 2.14 or later, the binaries ! produced are smaller than the ones produced using Sun's native tools; this difference is quite significant for binaries containing debugging information. ! !

Starting with Solaris 7, the operating system is capable of executing 64-bit SPARC V9 binaries. GCC 3.1 and later properly supports ! this; the -m64 option enables 64-bit code generation. However, if all you want is code tuned for the UltraSPARC CPU, you ! should try the -mtune=ultrasparc option instead, which produces code that, unlike full 64-bit code, can still run on non-UltraSPARC machines. ! !

When configuring on a Solaris 7 or later system that is running a kernel that supports only 32-bit binaries, one must configure with ! --disable-multilib, since we will not be able to build the 64-bit target libraries. ! !

GCC 3.3 and GCC 3.4 trigger code generation bugs in earlier versions of the GNU compiler (especially GCC 3.0.x versions), which lead to the miscompilation of the stage1 compiler and the subsequent failure of the bootstrap process. A workaround is to use GCC 3.2.3 as an intermediary stage, i.e. to bootstrap that compiler with the base compiler and then use it to bootstrap the final compiler. ! !

GCC 3.4 triggers a code generation bug in versions 5.4 (Sun ONE Studio 7) and 5.5 (Sun ONE Studio 8) of the Sun compiler, which causes a bootstrap failure in form of a miscompilation of the stage1 compiler by the Sun compiler. This is Sun bug 4974440. This is fixed with patch 112760-07. ! !

GCC 3.4 changed the default debugging format from Stabs to DWARF-2 for 32-bit code on Solaris 7 and later. If you use the Sun assembler, this change apparently runs afoul of Sun bug 4910101 (which is referenced as ! an x86-only problem by Sun, probably because they do not use DWARF-2). A symptom of the problem is that you cannot compile C++ programs like ! groff 1.19.1 without getting messages similar to the following: ! !

     ld: warning: relocation error: R_SPARC_UA32: ...
!        external symbolic relocation against non-allocatable section
!        .debug_info cannot be processed at runtime: relocation ignored.
! 
!

To work around this problem, compile with -gstabs+ instead of ! plain -g. !

When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library on a Solaris 7 or later system, the canonical ! target triplet must be specified as the build parameter on the ! configure line. This target triplet can be obtained by invoking ./config.guess in the toplevel source directory of GCC (and not that of GMP or MPFR or MPC). For example on a Solaris 9 system: !

     % ./configure --build=sparc-sun-solaris2.9 --prefix=xxx
! 
!


! !

sparc-sun-solaris2.10

There is a bug in older versions of the Sun assembler which breaks thread-local storage (TLS). A typical error message is !

     ld: fatal: relocation error: R_SPARC_TLS_LE_HIX22: file /var/tmp//ccamPA1v.o:
!        symbol <unknown>: bad symbol type SECT: symbol type must be TLS
! 
!

This bug is fixed in Sun patch 118683-03 or later. ! !


! !

sparc-*-linux*

GCC versions 3.0 and higher require binutils 2.11.2 and glibc 2.2.4 or newer on this platform. All earlier binutils and glibc releases mishandled unaligned relocations on sparc-*-* targets. !


! !

sparc64-*-solaris2*

When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library, the canonical target triplet must be specified ! as the build parameter on the configure line. For example on a Solaris 9 system: !

     % ./configure --build=sparc64-sun-solaris2.9 --prefix=xxx
! 
!

The following compiler flags must be specified in the configure step in order to bootstrap this target with the Sun compiler: !

     % CC="cc -xarch=v9 -xildoff" srcdir/configure [options] [target]
! 
!

-xarch=v9 specifies the SPARC-V9 architecture to the Sun toolchain ! and -xildoff turns off the incremental linker. ! !


! !

sparcv9-*-solaris2*

! !

This is a synonym for ‘sparc64-*-solaris2*’. ! !


!

c6x-*-*

The C6X family of processors. This port requires binutils-2.22 or newer. ! !


! !

tilegx-*-linux*

The TILE-Gx processor running GNU/Linux. This port requires binutils-2.22 or newer. ! !


! !

tilepro-*-linux*

The TILEPro processor running GNU/Linux. This port requires binutils-2.22 or newer. ! !


! !

*-*-vxworks*

!

Support for VxWorks is in flux. At present GCC supports only the ! very recent VxWorks 5.5 (aka Tornado 2.2) release, and only on PowerPC. ! We welcome patches for other architectures supported by VxWorks 5.5. Support for VxWorks AE would also be welcome; we believe this is merely a matter of writing an appropriate “configlette” (see below). We are not interested in supporting older, a.out or COFF-based, versions of VxWorks in GCC 3. ! !

VxWorks comes with an older version of GCC installed in ! $WIND_BASE/host; we recommend you do not overwrite it. ! Choose an installation prefix entirely outside $WIND_BASE. ! Before running configure, create the directories prefix ! and prefix/bin. Link or copy the appropriate assembler, ! linker, etc. into prefix/bin, and set your PATH to ! include that directory while running both configure and ! make. ! !

You must give configure the ! --with-headers=$WIND_BASE/target/h switch so that it can find the VxWorks system headers. Since VxWorks is a cross compilation ! target only, you must also specify --target=target. ! configure will attempt to create the directory ! prefix/target/sys-include and copy files into it; ! make sure the user running configure has sufficient privilege to do so. ! !

GCC's exception handling runtime requires a special “configlette” ! module, contrib/gthr_supp_vxw_5x.c. Follow the instructions in that file to add the module to your kernel build. (Future versions of VxWorks will incorporate this module.) ! !


! !

x86_64-*-*, amd64-*-*

GCC supports the x86-64 architecture implemented by the AMD64 processor ! (amd64-*-* is an alias for x86_64-*-*) on GNU/Linux, FreeBSD and NetBSD. On GNU/Linux the default is a bi-arch compiler which is able to generate ! both 64-bit x86-64 and 32-bit x86 code (via the -m32 switch). ! !


! !

x86_64-*-solaris2.1[0-9]*

GCC also supports the x86-64 architecture implemented by the AMD64 ! processor (‘amd64-*-*’ is an alias for ‘x86_64-*-*’) on Solaris 10 or later. Unlike other systems, without special options a bi-arch compiler is built which generates 32-bit code by default, but ! can generate 64-bit x86-64 code with the -m64 switch. Since GCC 4.7, there is also configuration that defaults to 64-bit code, but ! can generate 32-bit code with -m32. To configure and build ! this way, you have to provide all support libraries like libgmp ! as 64-bit code, configure with --target=x86_64-pc-solaris2.1x ! and ‘CC=gcc -m64’. ! !


! !

xtensa*-*-elf

This target is intended for embedded Xtensa systems using the ! ‘newlib’ C library. It uses ELF but does not support shared objects. Designed-defined instructions specified via the Tensilica Instruction Extension (TIE) language are only supported through inline assembly. ! !

The Xtensa configuration information must be specified prior to ! building GCC. The include/xtensa-config.h header file contains the configuration information. If you created your own Xtensa configuration with the Xtensa Processor Generator, the downloaded files include a customized copy of this header file, which you can use to replace the default header file. ! !


! !

xtensa*-*-linux*

This target is for Xtensa systems running GNU/Linux. It supports ELF shared objects and the GNU C library (glibc). It also generates position-independent code (PIC) regardless of whether the ! -fpic or -fPIC options are used. In other respects, this target is the same as the ! xtensa*-*-elf target. ! !


! !

Microsoft Windows

! !

Intel 16-bit versions

The 16-bit versions of Microsoft Windows, such as Windows 3.1, are not supported. ! !

However, the 32-bit port has limited support for Microsoft Windows 3.11 in the Win32s environment, as a target only. See below. ! !

Intel 32-bit versions

The 32-bit versions of Windows, including Windows 95, Windows NT, Windows XP, and Windows Vista, are supported by several different target platforms. These targets differ in which Windows subsystem they target and which C libraries are used. !

! !

Intel 64-bit versions

GCC contains support for x86-64 using the mingw-w64 ! runtime library, available from http://mingw-w64.sourceforge.net/. This library should be used with the target triple x86_64-pc-mingw32. ! !

Presently Windows for Itanium is not supported. ! !

Windows CE

Windows CE is supported as a target only on Hitachi SuperH (sh-wince-pe), and MIPS (mips-wince-pe). ! !

Other Windows Platforms

GCC no longer supports Windows NT on the Alpha or PowerPC. ! !

GCC no longer supports the Windows POSIX subsystem. However, it does support the Interix subsystem. See above. ! !

Old target names including *-*-winnt and *-*-windowsnt are no longer used. ! !

PW32 (i386-pc-pw32) support was never completed, and the project seems to be inactive. See http://pw32.sourceforge.net/ for more information. ! !

UWIN support has been removed due to a lack of maintenance. ! !


! !

*-*-cygwin

Ports of GCC are included with the Cygwin environment. ! !

GCC will build under Cygwin without modification; it does not build ! with Microsoft's C++ compiler and there are no plans to make it do so. ! !

The Cygwin native compiler can be configured to target any 32-bit x86 cpu architecture desired; the default is i686-pc-cygwin. It should be used with as up-to-date a version of binutils as possible; use either the latest official GNU binutils release in the Cygwin distribution, or version 2.20 or above if building your own. ! !


! !

*-*-interix

The Interix target is used by OpenNT, Interix, Services For UNIX (SFU), and Subsystem for UNIX-based Applications (SUA). Applications compiled with this target run in the Interix subsystem, which is separate from the Win32 subsystem. This target was last known to work in GCC 3.3. !


! !

*-*-mingw32

! !

GCC will build with and support only MinGW runtime 3.12 and later. Earlier versions of headers are incompatible with the new default semantics of extern inline in -std=c99 and -std=gnu99 modes. ! !


! !

Older systems

GCC contains support files for many older (1980s and early 1990s) Unix variants. For the most part, support for these systems has not been deliberately removed, but it has not been maintained for several years and may suffer from bitrot. ! !

Starting with GCC 3.1, each release has a list of “obsoleted” systems. Support for these systems is still present in that release, but ! configure will fail unless the --enable-obsolete option is given. Unless a maintainer steps forward, support for these systems will be removed from the next release of GCC. ! !

Support for old systems as hosts for GCC can cause problems if the workarounds for compiler, library and operating system bugs affect the cleanliness or maintainability of the rest of GCC. In some cases, to bring GCC up on such a system, if still possible with current GCC, may require first installing an old version of GCC which did work on that system, and using it to compile a more recent GCC, to avoid bugs in the vendor compiler. Old releases of GCC 1 and GCC 2 are available in the ! old-releases directory on the GCC mirror sites. Header bugs may generally be avoided using ! fixincludes, but bugs or deficiencies in libraries and the operating system may still cause problems. ! !

Support for older systems as targets for cross-compilation is less problematic than support for them as hosts for GCC; if an enthusiast wishes to make such a target work again (including resurrecting any of the targets that never worked with GCC 2, starting from the last --- 677,1418 ---- IZ98477 for AIX 5.3 TL11 and IZ98134 for AIX 5.3 TL12). AIX 5.3 TL11 SP8, AIX 5.3 TL12 SP5, AIX 6.1 TL04 SP11, AIX 6.1 TL05 SP7, AIX 6.1 TL06 SP6, AIX 6.1 TL07 and AIX 7.1 TL01 should include the fix. !

!

Building libstdc++.a requires a fix for an AIX Assembler bug APAR IY26685 (AIX 4.3) or APAR IY25528 (AIX 5.1). It also requires a fix for another AIX Assembler bug and a co-dependent AIX Archiver fix referenced as APAR IY53606 (AIX 5.2) or as APAR IY54774 (AIX 5.1) !

!

libstdc++’ in GCC 3.4 increments the major version number of the ! shared object and GCC installation places the libstdc++.a shared library in a common location which will overwrite the and GCC 3.3 version of the shared library. Applications either need to be re-linked against the new shared library or the GCC 3.1 and GCC 3.3 ! versions of the ‘libstdc++’ shared object needs to be available ! to the AIX runtime loader. The GCC 3.1 ‘libstdc++.so.4’, if ! present, and GCC 3.3 ‘libstdc++.so.5’ shared objects can be installed for runtime dynamic loading using the following steps to set ! the ‘F_LOADONLY’ flag in the shared object for each ! multilib libstdc++.a installed: !

!

Extract the shared objects from the currently installed ! libstdc++.a archive: !

!
% ar -x libstdc++.a libstdc++.so.4 libstdc++.so.5
! 
!

Enable the ‘F_LOADONLY’ flag so that the shared object will be available for runtime dynamic loading, but not linking: !

!
% strip -e libstdc++.so.4 libstdc++.so.5
! 
! !

Archive the runtime-only shared object in the GCC 3.4 ! libstdc++.a archive: !

!
% ar -q libstdc++.a libstdc++.so.4 libstdc++.so.5
! 
! !

Linking executables and shared libraries may produce warnings of duplicate symbols. The assembly files generated by GCC for AIX always have included multiple symbol definitions for certain global variable and function declarations in the original program. The warnings should not prevent the linker from producing a correct library or runnable executable. !

!

AIX 4.3 utilizes a “large format” archive to support both 32-bit and 64-bit object modules. The routines provided in AIX 4.3.0 and AIX 4.3.1 ! to parse archive libraries did not handle the new format correctly. These routines are used by GCC and result in error messages during linking such as “not a COFF file”. The version of the routines shipped ! with AIX 4.3.1 should work for a 32-bit environment. The -g option of the archive command may be used to create archives of 32-bit objects using the original “small format”. A correct version of the routines is shipped with AIX 4.3.2 and above. !

!

Some versions of the AIX binder (linker) can fail with a relocation ! overflow severe error when the -bbigtoc option is used to link GCC-produced object files into an executable that overflows the TOC. A fix for APAR IX75823 (OVERFLOW DURING LINK WHEN USING GCC AND -BBIGTOC) is available from IBM Customer Support and from its techsupport.services.ibm.com website as PTF U455193. !

!

The AIX 4.3.2.1 linker (bos.rte.bind_cmds Level 4.3.2.1) will dump core with a segmentation fault when invoked by any version of GCC. A fix for APAR IX87327 is available from IBM Customer Support and from its techsupport.services.ibm.com website as PTF U461879. This fix is incorporated in AIX 4.3.3 and above. !

!

The initial assembler shipped with AIX 4.3.0 generates incorrect object files. A fix for APAR IX74254 (64BIT DISASSEMBLED OUTPUT FROM COMPILER FAILS TO ASSEMBLE/BIND) is available from IBM Customer Support and from its techsupport.services.ibm.com website as PTF U453956. This fix is incorporated in AIX 4.3.1 and above. !

!

AIX provides National Language Support (NLS). Compilers and assemblers use NLS to support locale-specific representations of various data ! formats including floating-point numbers (e.g., ‘.’ vs ‘,’ for separating decimal fractions). There have been problems reported where GCC does not produce the same floating-point formats that the assembler ! expects. If one encounters this problem, set the LANG ! environment variable to ‘C’ or ‘En_US’. !

!

A default can be specified with the -mcpu=cpu_type ! switch and using the configure option --with-cpu-cpu_type. !

!
!

iq2000-*-elf

Vitesse IQ2000 processors. These are used in embedded applications. There are no standard Unix configurations. !

!
!

lm32-*-elf

!

Lattice Mico32 processor. This configuration is intended for embedded systems. !

!
!

lm32-*-uclinux

!

Lattice Mico32 processor. This configuration is intended for embedded systems running uClinux. !

!
!

m32c-*-elf

!

Renesas M32C processor. This configuration is intended for embedded systems. !

!
!

m32r-*-elf

!

Renesas M32R processor. This configuration is intended for embedded systems. !

!
!

m68k-*-*

By default, ! ‘m68k-*-elf*’, ‘m68k-*-rtems’, ‘m68k-*-uclinux’ and ! ‘m68k-*-linux’ build libraries for both M680x0 and ColdFire processors. If you only need the M680x0 libraries, you can omit the ColdFire ones by passing ! --with-arch=m68k to configure. Alternatively, you ! can omit the M680x0 libraries by passing --with-arch=cf to ! configure. These targets default to 5206 or 5475 code as appropriate for the target system when ! configured with --with-arch=cf and 68020 code otherwise. !

!

The ‘m68k-*-netbsd’ and ! ‘m68k-*-openbsd’ targets also support the --with-arch option. They will generate ColdFire CFV4e code when configured with ! --with-arch=cf and 68020 code otherwise. !

!

You can override the default processors listed above by configuring ! with --with-cpu=target. This target can either ! be a -mcpu argument or one of the following values: ! ‘m68000’, ‘m68010’, ‘m68020’, ‘m68030’, ! ‘m68040’, ‘m68060’, ‘m68020-40’ and ‘m68020-60’. !

!

GCC requires at least binutils version 2.17 on these targets. !

!
!

m68k-*-uclinux

GCC 4.3 changed the uClinux configuration so that it uses the ! ‘m68k-linux-gnu’ ABI rather than the ‘m68k-elf’ ABI. It also added improved support for C++ and flat shared libraries, both of which were ABI changes. +

!
!

mep-*-elf

!

Toshiba Media embedded Processor. This configuration is intended for embedded systems. !

!
!

microblaze-*-elf

!

Xilinx MicroBlaze processor. This configuration is intended for embedded systems. !

!
!

mips-*-*

If on a MIPS system you get an error message saying “does not have gp ! sections for all it’s [sic] sectons [sic]”, don’t worry about it. This happens whenever you use GAS with the MIPS linker, but there is not really anything wrong, and it is okay to use the output file. You can stop such warnings by installing the GNU linker. !

!

It would be nice to extend GAS to produce the gp tables, but they are optional, and there should not be a warning about their absence. !

!

The libstdc++ atomic locking routines for MIPS targets requires MIPS II and later. A patch went in just after the GCC 3.3 release to ! make ‘mips*-*-*’ use the generic implementation instead. You can also ! configure for ‘mipsel-elf’ as a workaround. The ! ‘mips*-*-linux*’ target continues to use the MIPS II routines. More work on this is expected in future releases. +

!

The built-in __sync_* functions are available on MIPS II and ! later systems and others that support the ‘ll’, ‘sc’ and ! ‘sync’ instructions. This can be overridden by passing ! --with-llsc or --without-llsc when configuring GCC. Since the Linux kernel emulates these instructions if they are ! missing, the default for ‘mips*-*-linux*’ targets is ! --with-llsc. The --with-llsc and ! --without-llsc configure options may be overridden at compile ! time by passing the -mllsc or -mno-llsc options to the compiler. !

!

MIPS systems check for division by zero (unless ! -mno-check-zero-division is passed to the compiler) by generating either a conditional trap or a break instruction. Using trap results in smaller code, but is only supported on MIPS II and later. Also, some versions of the Linux kernel have a bug that prevents trap from generating the proper signal (SIGFPE). To enable ! the use of break, use the --with-divide=breaks ! configure option when configuring GCC. The default is to use traps on systems that support them. !

!

The assembler from GNU binutils 2.17 and earlier has a bug in the way it sorts relocations for REL targets (o32, o64, EABI). This can cause bad code to be generated for simple C++ programs. Also the linker from GNU binutils versions prior to 2.17 has a bug which causes the ! runtime linker stubs in very large programs, like libgcj.so, to be incorrectly generated. GNU Binutils 2.18 and later (and snapshots made after Nov. 9, 2006) should be free from both of these problems. !

!
!

mips-sgi-irix5

Support for IRIX 5 has been removed in GCC 4.6. !

!
!

mips-sgi-irix6

Support for IRIX 6.5 has been removed in GCC 4.8. Support for IRIX 6 releases before 6.5 has been removed in GCC 4.6, as well as support for the O32 ABI. !

!
!

moxie-*-elf

The moxie processor. +

+
+

powerpc-*-*

!

You can specify a default version for the -mcpu=cpu_type ! switch by using the configure option --with-cpu-cpu_type. !

!

You will need binutils 2.15 or newer for a working GCC. !

!
!

powerpc-*-darwin*

PowerPC running Darwin (Mac OS X kernel). !

!

Pre-installed versions of Mac OS X may not include any developer tools, meaning that you will not be able to build GCC from source. Tool binaries are available at http://opensource.apple.com/. !

!

This version of GCC requires at least cctools-590.36. The cctools-590.36 package referenced from http://gcc.gnu.org/ml/gcc/2006-03/msg00507.html will not work on systems older than 10.3.9 (aka darwin7.9.0). !

!
!

powerpc-*-elf

PowerPC system in big endian mode, running System V.4. !

!
!

powerpc*-*-linux-gnu*

PowerPC system in big endian mode running Linux. !

!
!

powerpc-*-netbsd*

PowerPC system in big endian mode running NetBSD. !

!
!

powerpc-*-eabisim

Embedded PowerPC system in big endian mode for use in running under the PSIM simulator. !

!
!

powerpc-*-eabi

Embedded PowerPC system in big endian mode. !

!
!

powerpcle-*-elf

PowerPC system in little endian mode, running System V.4. !

!
!

powerpcle-*-eabisim

Embedded PowerPC system in little endian mode for use in running under the PSIM simulator. !

!
!

powerpcle-*-eabi

Embedded PowerPC system in little endian mode. !

!
!

rl78-*-elf

!

The Renesas RL78 processor. This configuration is intended for embedded systems. !

!
!

rx-*-elf

The Renesas RX processor. See http://eu.renesas.com/fmwk.jsp?cnt=rx600_series_landing.jsp&fp=/products/mpumcu/rx_family/rx600_series for more information about this processor. !

!
!

s390-*-linux*

S/390 system running GNU/Linux for S/390. !

!
!

s390x-*-linux*

zSeries system (64-bit) running GNU/Linux for zSeries. !

!
!

s390x-ibm-tpf*

zSeries system (64-bit) running TPF. This platform is supported as cross-compilation target only. !

!
!

*-*-solaris2*

Support for Solaris 8 has removed in GCC 4.8. Support for Solaris 7 has been removed in GCC 4.6. !

!

Sun does not ship a C compiler with Solaris 2 before Solaris 10, though you can download the Sun Studio compilers for free. In Solaris 10 and ! 11, GCC 3.4.3 is available as /usr/sfw/bin/gcc. Solaris 11 ! also provides GCC 4.5.2 as /usr/gcc/4.5/bin/gcc. Alternatively, you can install a pre-built GCC to bootstrap and install GCC. See the binaries page for details. !

!

The Solaris 2 /bin/sh will often fail to configure ! ‘libstdc++-v3’, ‘boehm-gc’ or ‘libjava’. We therefore recommend using the following initial sequence of commands +

+
+
% CONFIG_SHELL=/bin/ksh
+ % export CONFIG_SHELL
+ 
!

and proceed as described in the configure instructions. In addition we strongly recommend specifying an absolute path to invoke ! srcdir/configure. !

!

Solaris 2 comes with a number of optional OS packages. Some of these are needed to use GCC fully, namely SUNWarc, SUNWbtool, SUNWesu, SUNWhea, SUNWlibm, SUNWsprot, and SUNWtoo. If you did not install all optional packages when installing Solaris 2, you will need to verify that the packages that GCC needs are installed. !

!

To check whether an optional package is installed, use ! the pkginfo command. To add an optional package, use the ! pkgadd command. For further details, see the Solaris 2 documentation. !

!

Trying to use the linker and other tools in ! /usr/ucb to install GCC has been observed to cause trouble. For example, the linker may hang indefinitely. The fix is to remove ! /usr/ucb from your PATH. !

!

The build process works more smoothly with the legacy Sun tools so, if you ! have /usr/xpg4/bin in your PATH, we recommend that you place ! /usr/bin before /usr/xpg4/bin for the duration of the build. !

!

We recommend the use of the Sun assembler or the GNU assembler, in ! conjunction with the Sun linker. The GNU as versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils 2.19, are known to work. They can be found in ! /usr/sfw/bin/gas. Current versions of GNU binutils (2.22) are known to work as well. Note that your mileage may vary if you use a combination of the GNU tools and the Sun tools: while the ! combination GNU as + Sun ld should reasonably work, ! the reverse combination Sun as + GNU ld may fail to ! build or cause memory corruption at runtime in some cases for C++ programs. ! GNU ld usually works as well, although the version included in Solaris 10 cannot be used due to several bugs. Again, the current version (2.22) is known to work, but generally lacks platform specific ! features, so better stay with Sun ld. To use the LTO linker ! plugin (-fuse-linker-plugin) with GNU ld, GNU ! binutils must be configured with --enable-largefile. !

!

To enable symbol versioning in ‘libstdc++’ with Sun ld, ! you need to have any version of GNU c++filt, which is part of ! GNU binutils. ‘libstdc++’ symbol versioning will be disabled if no ! appropriate version is found. Sun c++filt from the Sun Studio compilers does not work. !

!

Sun bug 4296832 turns up when compiling X11 headers with GCC 2.95 or ! newer: g++ will complain that types are missing. These headers assume that omitting the type means int; this assumption worked for C90 but is wrong for C++, and is now wrong for C99 also. !

!

Sun bug 4927647 sometimes causes random spurious testsuite failures ! related to missing diagnostic output. This bug doesn’t affect GCC ! itself, rather it is a kernel bug triggered by the expect program which is used only by the GCC testsuite driver. When the bug ! causes the expect program to miss anticipated output, extra testsuite failures appear. !

!

There are patches for Solaris 9 (117171-11 or newer for SPARC, 117172-11 or newer for Intel) that address this problem. !

!

Thread-local storage (TLS) is supported in Solaris 9, but requires ! some patches. The ‘libthread’ patches provide the ! __tls_get_addr (SPARC, 64-bit x86) resp. ___tls_get_addr (32-bit x86) functions. On Solaris 9, the necessary support on SPARC is present since FCS, while 114432-05 or newer is required on Intel. Additionally, on Solaris 9/x86, patch 113986-02 or newer is ! required for the Sun ld and runtime linker (ld.so.1) support, while Solaris 9/SPARC works since FCS. The linker ! patches must be installed even if GNU ld is used. Sun ! as in Solaris 9 doesn’t support the necessary ! relocations, so GNU as must be used. The configure script checks for those prerequisites and automatically enables TLS support if they are met. Although those minimal patch versions should work, it is recommended to use the latest patch versions which include additional bug fixes. !

!
!

sparc*-*-*

This section contains general configuration information for all SPARC-based platforms. In addition to reading this section, please read all other sections that match your target. !

!

Newer versions of the GNU Multiple Precision Library (GMP), the MPFR library and the MPC library are known to be miscompiled by earlier versions of GCC on these platforms. We therefore recommend the use of the exact versions of these libraries listed as minimal versions in the prerequisites. !

!
!

sparc-sun-solaris2*

When GCC is configured to use GNU binutils 2.14 or later, the binaries ! produced are smaller than the ones produced using Sun’s native tools; this difference is quite significant for binaries containing debugging information. !

!

Starting with Solaris 7, the operating system is capable of executing 64-bit SPARC V9 binaries. GCC 3.1 and later properly supports ! this; the -m64 option enables 64-bit code generation. However, if all you want is code tuned for the UltraSPARC CPU, you ! should try the -mtune=ultrasparc option instead, which produces code that, unlike full 64-bit code, can still run on non-UltraSPARC machines. !

!

When configuring on a Solaris 7 or later system that is running a kernel that supports only 32-bit binaries, one must configure with ! --disable-multilib, since we will not be able to build the 64-bit target libraries. !

!

GCC 3.3 and GCC 3.4 trigger code generation bugs in earlier versions of the GNU compiler (especially GCC 3.0.x versions), which lead to the miscompilation of the stage1 compiler and the subsequent failure of the bootstrap process. A workaround is to use GCC 3.2.3 as an intermediary stage, i.e. to bootstrap that compiler with the base compiler and then use it to bootstrap the final compiler. !

!

GCC 3.4 triggers a code generation bug in versions 5.4 (Sun ONE Studio 7) and 5.5 (Sun ONE Studio 8) of the Sun compiler, which causes a bootstrap failure in form of a miscompilation of the stage1 compiler by the Sun compiler. This is Sun bug 4974440. This is fixed with patch 112760-07. !

!

GCC 3.4 changed the default debugging format from Stabs to DWARF-2 for 32-bit code on Solaris 7 and later. If you use the Sun assembler, this change apparently runs afoul of Sun bug 4910101 (which is referenced as ! an x86-only problem by Sun, probably because they do not use DWARF-2). A symptom of the problem is that you cannot compile C++ programs like ! groff 1.19.1 without getting messages similar to the following: !

!
!
ld: warning: relocation error: R_SPARC_UA32: …
!   external symbolic relocation against non-allocatable section
!   .debug_info cannot be processed at runtime: relocation ignored.
! 
!

To work around this problem, compile with -gstabs+ instead of ! plain -g. !

!

When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library on a Solaris 7 or later system, the canonical ! target triplet must be specified as the build parameter on the ! configure line. This target triplet can be obtained by invoking ./config.guess in the toplevel source directory of GCC (and not that of GMP or MPFR or MPC). For example on a Solaris 9 system: +

+
+
% ./configure --build=sparc-sun-solaris2.9 --prefix=xxx
+ 
!
!

sparc-sun-solaris2.10

There is a bug in older versions of the Sun assembler which breaks thread-local storage (TLS). A typical error message is +

+
+
ld: fatal: relocation error: R_SPARC_TLS_LE_HIX22: file /var/tmp//ccamPA1v.o:
+   symbol <unknown>: bad symbol type SECT: symbol type must be TLS
+ 
!

This bug is fixed in Sun patch 118683-03 or later. !

!
!

sparc-*-linux*

GCC versions 3.0 and higher require binutils 2.11.2 and glibc 2.2.4 or newer on this platform. All earlier binutils and glibc releases mishandled unaligned relocations on sparc-*-* targets. +

!
!

sparc64-*-solaris2*

When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library, the canonical target triplet must be specified ! as the build parameter on the configure line. For example on a Solaris 9 system: +

+
+
% ./configure --build=sparc64-sun-solaris2.9 --prefix=xxx
+ 
!

The following compiler flags must be specified in the configure step in order to bootstrap this target with the Sun compiler: +

+
+
% CC="cc -xarch=v9 -xildoff" srcdir/configure [options] [target]
+ 
!

-xarch=v9 specifies the SPARC-V9 architecture to the Sun toolchain ! and -xildoff turns off the incremental linker. !

!
!

sparcv9-*-solaris2*

!

This is a synonym for ‘sparc64-*-solaris2*’. !

!
!

c6x-*-*

The C6X family of processors. This port requires binutils-2.22 or newer. !

!
!

tilegx-*-linux*

The TILE-Gx processor running GNU/Linux. This port requires binutils-2.22 or newer. !

!
!

tilepro-*-linux*

The TILEPro processor running GNU/Linux. This port requires binutils-2.22 or newer. !

!
!

*-*-vxworks*

Support for VxWorks is in flux. At present GCC supports only the ! very recent VxWorks 5.5 (aka Tornado 2.2) release, and only on PowerPC. ! We welcome patches for other architectures supported by VxWorks 5.5. Support for VxWorks AE would also be welcome; we believe this is merely a matter of writing an appropriate “configlette” (see below). We are not interested in supporting older, a.out or COFF-based, versions of VxWorks in GCC 3. !

!

VxWorks comes with an older version of GCC installed in ! $WIND_BASE/host; we recommend you do not overwrite it. ! Choose an installation prefix entirely outside $WIND_BASE. ! Before running configure, create the directories prefix ! and prefix/bin. Link or copy the appropriate assembler, ! linker, etc. into prefix/bin, and set your PATH to ! include that directory while running both configure and ! make. !

!

You must give configure the ! --with-headers=$WIND_BASE/target/h switch so that it can find the VxWorks system headers. Since VxWorks is a cross compilation ! target only, you must also specify --target=target. ! configure will attempt to create the directory ! prefix/target/sys-include and copy files into it; ! make sure the user running configure has sufficient privilege to do so. !

!

GCC’s exception handling runtime requires a special “configlette” ! module, contrib/gthr_supp_vxw_5x.c. Follow the instructions in that file to add the module to your kernel build. (Future versions of VxWorks will incorporate this module.) !

!
!

x86_64-*-*, amd64-*-*

GCC supports the x86-64 architecture implemented by the AMD64 processor ! (amd64-*-* is an alias for x86_64-*-*) on GNU/Linux, FreeBSD and NetBSD. On GNU/Linux the default is a bi-arch compiler which is able to generate ! both 64-bit x86-64 and 32-bit x86 code (via the -m32 switch). !

!
!

x86_64-*-solaris2.1[0-9]*

GCC also supports the x86-64 architecture implemented by the AMD64 ! processor (‘amd64-*-*’ is an alias for ‘x86_64-*-*’) on Solaris 10 or later. Unlike other systems, without special options a bi-arch compiler is built which generates 32-bit code by default, but ! can generate 64-bit x86-64 code with the -m64 switch. Since GCC 4.7, there is also configuration that defaults to 64-bit code, but ! can generate 32-bit code with -m32. To configure and build ! this way, you have to provide all support libraries like libgmp ! as 64-bit code, configure with --target=x86_64-pc-solaris2.1x ! and ‘CC=gcc -m64’. !

!
!

xtensa*-*-elf

This target is intended for embedded Xtensa systems using the ! ‘newlib’ C library. It uses ELF but does not support shared objects. Designed-defined instructions specified via the Tensilica Instruction Extension (TIE) language are only supported through inline assembly. !

!

The Xtensa configuration information must be specified prior to ! building GCC. The include/xtensa-config.h header file contains the configuration information. If you created your own Xtensa configuration with the Xtensa Processor Generator, the downloaded files include a customized copy of this header file, which you can use to replace the default header file. !

!
!

xtensa*-*-linux*

This target is for Xtensa systems running GNU/Linux. It supports ELF shared objects and the GNU C library (glibc). It also generates position-independent code (PIC) regardless of whether the ! -fpic or -fPIC options are used. In other respects, this target is the same as the ! xtensa*-*-elf target. !

!
!

Microsoft Windows

+ +

Intel 16-bit versions

The 16-bit versions of Microsoft Windows, such as Windows 3.1, are not supported. !

!

However, the 32-bit port has limited support for Microsoft Windows 3.11 in the Win32s environment, as a target only. See below. !

! !

Intel 32-bit versions

The 32-bit versions of Windows, including Windows 95, Windows NT, Windows XP, and Windows Vista, are supported by several different target platforms. These targets differ in which Windows subsystem they target and which C libraries are used. +

+ ! !

Intel 64-bit versions

GCC contains support for x86-64 using the mingw-w64 ! runtime library, available from http://mingw-w64.sourceforge.net/. This library should be used with the target triple x86_64-pc-mingw32. !

!

Presently Windows for Itanium is not supported. !

! !

Windows CE

Windows CE is supported as a target only on Hitachi SuperH (sh-wince-pe), and MIPS (mips-wince-pe). !

! !

Other Windows Platforms

GCC no longer supports Windows NT on the Alpha or PowerPC. !

!

GCC no longer supports the Windows POSIX subsystem. However, it does support the Interix subsystem. See above. !

!

Old target names including *-*-winnt and *-*-windowsnt are no longer used. !

!

PW32 (i386-pc-pw32) support was never completed, and the project seems to be inactive. See http://pw32.sourceforge.net/ for more information. !

!

UWIN support has been removed due to a lack of maintenance. !

!
!

*-*-cygwin

Ports of GCC are included with the Cygwin environment. !

!

GCC will build under Cygwin without modification; it does not build ! with Microsoft’s C++ compiler and there are no plans to make it do so. !

!

The Cygwin native compiler can be configured to target any 32-bit x86 cpu architecture desired; the default is i686-pc-cygwin. It should be used with as up-to-date a version of binutils as possible; use either the latest official GNU binutils release in the Cygwin distribution, or version 2.20 or above if building your own. !

!
!

*-*-interix

The Interix target is used by OpenNT, Interix, Services For UNIX (SFU), and Subsystem for UNIX-based Applications (SUA). Applications compiled with this target run in the Interix subsystem, which is separate from the Win32 subsystem. This target was last known to work in GCC 3.3. +

+
+

*-*-mingw32

!

GCC will build with and support only MinGW runtime 3.12 and later. Earlier versions of headers are incompatible with the new default semantics of extern inline in -std=c99 and -std=gnu99 modes. !

!
!

Older systems

GCC contains support files for many older (1980s and early 1990s) Unix variants. For the most part, support for these systems has not been deliberately removed, but it has not been maintained for several years and may suffer from bitrot. !

!

Starting with GCC 3.1, each release has a list of “obsoleted” systems. Support for these systems is still present in that release, but ! configure will fail unless the --enable-obsolete option is given. Unless a maintainer steps forward, support for these systems will be removed from the next release of GCC. !

!

Support for old systems as hosts for GCC can cause problems if the workarounds for compiler, library and operating system bugs affect the cleanliness or maintainability of the rest of GCC. In some cases, to bring GCC up on such a system, if still possible with current GCC, may require first installing an old version of GCC which did work on that system, and using it to compile a more recent GCC, to avoid bugs in the vendor compiler. Old releases of GCC 1 and GCC 2 are available in the ! old-releases directory on the GCC mirror ! sites. Header bugs may generally be avoided using ! fixincludes, but bugs or deficiencies in libraries and the operating system may still cause problems. !

!

Support for older systems as targets for cross-compilation is less problematic than support for them as hosts for GCC; if an enthusiast wishes to make such a target work again (including resurrecting any of the targets that never worked with GCC 2, starting from the last *************** version before they were removed), patch *** 1443,1473 **** following the usual requirements would be likely to be accepted, since they should not affect the support for more modern targets. ! !

For some systems, old versions of GNU binutils may also be useful, ! and are available from pub/binutils/old-releases on sourceware.org mirror sites. ! !

Some of the information on specific systems above relates to such older systems, but much of the information about GCC on such systems (which may no longer be applicable to current GCC) is to be found in the GCC texinfo manual. ! !


! !

all ELF targets (SVR4, Solaris 2, etc.)

C++ support is significantly better on ELF targets if you use the GNU linker; duplicate copies of inlines, vtables and template instantiations will be discarded automatically. -


-

Return to the GCC Installation page - - - - - --- 1420,1452 ---- following the usual requirements would be likely to be accepted, since they should not affect the support for more modern targets. !

!

For some systems, old versions of GNU binutils may also be useful, ! and are available from pub/binutils/old-releases on sourceware.org mirror sites. !

!

Some of the information on specific systems above relates to such older systems, but much of the information about GCC on such systems (which may no longer be applicable to current GCC) is to be found in the GCC texinfo manual. !

!
!

all ELF targets (SVR4, Solaris 2, etc.)

C++ support is significantly better on ELF targets if you use the GNU linker; duplicate copies of inlines, vtables and template instantiations will be discarded automatically. +

+ +
+

Return to the GCC Installation page +

+ + + + + diff -Nrcpad gcc-4.8.1/INSTALL/test.html gcc-4.8.2/INSTALL/test.html *** gcc-4.8.1/INSTALL/test.html Fri May 31 09:09:27 2013 --- gcc-4.8.2/INSTALL/test.html Wed Oct 16 07:28:03 2013 *************** *** 1,234 **** ! ! ! Installing GCC: Testing ! ! ! ! ! ! ! ! ! !

Installing GCC: Testing

! ! Before you install GCC, we encourage you to run the testsuites and to compare your results with results from a similar configuration that have been submitted to the ! gcc-testresults mailing list. Some of these archived results are linked from the build status lists at http://gcc.gnu.org/buildstat.html, although not everyone who ! reports a successful build runs the testsuites and submits the results. This step is optional and may require you to download additional software, but it can give you confidence in your new GCC installation or point out problems before you install and start using your new GCC. ! !

First, you must have downloaded the testsuites. These are part of the full distribution, but if you downloaded the “core” compiler plus any front ends, you must download the testsuites separately. ! !

Second, you must have the testing tools installed. This includes DejaGnu, Tcl, and Expect; the DejaGnu site has links to these. ! !

If the directories where runtest and expect were ! installed are not in the PATH, you may need to set the following environment variables appropriately, as in the following example (which ! assumes that DejaGnu has been installed under /usr/local): !

     TCL_LIBRARY = /usr/local/share/tcl8.0
!      DEJAGNULIBS = /usr/local/share/dejagnu
! 
!

(On systems such as Cygwin, these paths are required to be actual paths, not mounts or links; presumably this is due to some lack of portability in the DejaGnu code.) !

Finally, you can run the testsuite (which may take a long time): !

     cd objdir; make -k check
! 
!

This will test various components of GCC, such as compiler front ends and runtime libraries. While running the testsuite, DejaGnu might emit some harmless messages resembling ! ‘WARNING: Couldn't find the global config file.’ or ! ‘WARNING: Couldn't find tool init file’ that can be ignored. ! !

If you are testing a cross-compiler, you may want to run the testsuite on a simulator as described at http://gcc.gnu.org/simtest-howto.html. ! !

How can you run the testsuite on selected tests?

In order to run sets of tests selectively, there are targets ! ‘make check-gcc’ and language specific ‘make check-c’, ! ‘make check-c++’, ‘make check-fortran’, ‘make check-java’, ! ‘make check-ada’, ‘make check-objc’, ‘make check-obj-c++’, ! ‘make check-lto’ ! in the gcc subdirectory of the object directory. You can also ! just run ‘make check’ in a subdirectory of the object directory. !

A more selective way to just run all gcc execute tests in the testsuite is to use !

     make check-gcc RUNTESTFLAGS="execute.exp other-options"
! 
!

Likewise, in order to run only the g++ “old-deja” tests in ! the testsuite with filenames matching ‘9805*’, you would use ! !

     make check-g++ RUNTESTFLAGS="old-deja.exp=9805* other-options"
! 
!

The *.exp files are located in the testsuite directories of the GCC ! source, the most important ones being compile.exp, ! execute.exp, dg.exp and old-deja.exp. ! To get a list of the possible *.exp files, pipe the ! output of ‘make check’ into a file and look at the ! ‘Running ... .exp’ lines. !

Passing options and running multiple testsuites

You can pass multiple options to the testsuite using the ! ‘--target_board’ option of DejaGNU, either passed as part of ! ‘RUNTESTFLAGS’, or directly to runtest if you prefer to work outside the makefiles. For example, !

     make check-g++ RUNTESTFLAGS="--target_board=unix/-O3/-fmerge-constants"
! 
!

will run the standard g++ testsuites (“unix” is the target name for a standard native testsuite situation), passing ! ‘-O3 -fmerge-constants’ to the compiler on every test, i.e., slashes separate options. ! !

You can run the testsuites multiple times using combinations of options with a syntax similar to the brace expansion of popular shells: !

     ..."--target_board=arm-sim\{-mhard-float,-msoft-float\}\{-O1,-O2,-O3,\}"
! 
!

(Note the empty option caused by the trailing comma in the final group.) ! The following will run each testsuite eight times using the ‘arm-sim’ target, as if you had specified all possible combinations yourself: !

     --target_board='arm-sim/-mhard-float/-O1 \
!                      arm-sim/-mhard-float/-O2 \
!                      arm-sim/-mhard-float/-O3 \
!                      arm-sim/-mhard-float \
!                      arm-sim/-msoft-float/-O1 \
!                      arm-sim/-msoft-float/-O2 \
!                      arm-sim/-msoft-float/-O3 \
!                      arm-sim/-msoft-float'
! 
!

They can be combined as many times as you wish, in arbitrary ways. This list: !

     ..."--target_board=unix/-Wextra\{-O3,-fno-strength\}\{-fomit-frame,\}"
! 
!

will generate four combinations, all involving ‘-Wextra’. ! !

The disadvantage to this method is that the testsuites are run in serial, which is a waste on multiprocessor systems. For users with GNU Make and a shell which performs brace expansion, you can run the testsuites in ! parallel by having the shell perform the combinations and make ! do the parallel runs. Instead of using ‘--target_board’, use a special makefile target: !

     make -jN check-testsuite//test-target/option1/option2/...
! 
!

For example, !

     make -j3 check-gcc//sh-hms-sim/{-m1,-m2,-m3,-m3e,-m4}/{,-nofpu}
! 
!

will run three concurrent “make-gcc” testsuites, eventually testing all ten combinations as described above. Note that this is currently only ! supported in the gcc subdirectory. (To see how this works, try ! typing echo before the example given here.) !

Additional testing for Java Class Libraries

!

The Java runtime tests can be executed via ‘make check’ ! in the target/libjava/testsuite directory in the build tree. ! !

The Mauve Project provides a suite of tests for the Java Class Libraries. This suite can be run as part of libgcj testing by placing the Mauve tree within the libjava ! testsuite at libjava/testsuite/libjava.mauve/mauve, or by ! specifying the location of that tree when invoking ‘make’, as in ! ‘make MAUVEDIR=~/mauve check’. ! !

How to interpret test results

!

The result of running the testsuite are various *.sum and *.log ! files in the testsuite subdirectories. The *.log files contain a detailed log of the compiler invocations and the corresponding ! results, the *.sum files summarize the results. These summaries contain status codes for all tests: !

! !

It is normal for some tests to report unexpected failures. At the current time the testing harness does not allow fine grained control over whether or not a test is expected to fail. This problem should be fixed in future releases. !

Submitting test results

If you want to report the results to the GCC project, use the ! contrib/test_summary shell script. Start it in the objdir with !

     srcdir/contrib/test_summary -p your_commentary.txt \
!          -m gcc-testresults@gcc.gnu.org |sh
! 
!

This script uses the Mail program to send the results, so ! make sure it is in your PATH. The file your_commentary.txt is prepended to the testsuite summary and should contain any special remarks you have on your results or your build environment. Please do not edit the testsuite result block or the subject line, as these messages may be automatically processed. -


-

Return to the GCC Installation page - - - - - - - - --- 1,315 ---- ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Before you install GCC, we encourage you to run the testsuites and to compare your results with results from a similar configuration that have been submitted to the ! gcc-testresults mailing list. Some of these archived results are linked from the build status lists at http://gcc.gnu.org/buildstat.html, although not everyone who ! reports a successful build runs the testsuites and submits the results. This step is optional and may require you to download additional software, but it can give you confidence in your new GCC installation or point out problems before you install and start using your new GCC. !

!

First, you must have downloaded the testsuites. These are part of the full distribution, but if you downloaded the “core” compiler plus any front ends, you must download the testsuites separately. !

!

Second, you must have the testing tools installed. This includes DejaGnu, Tcl, and Expect; the DejaGnu site has links to these. !

!

If the directories where runtest and expect were ! installed are not in the PATH, you may need to set the following environment variables appropriately, as in the following example (which ! assumes that DejaGnu has been installed under /usr/local): !

!
!
TCL_LIBRARY = /usr/local/share/tcl8.0
! DEJAGNULIBS = /usr/local/share/dejagnu
! 
!

(On systems such as Cygwin, these paths are required to be actual paths, not mounts or links; presumably this is due to some lack of portability in the DejaGnu code.) +

!

Finally, you can run the testsuite (which may take a long time): !

!
cd objdir; make -k check
! 
! !

This will test various components of GCC, such as compiler front ends and runtime libraries. While running the testsuite, DejaGnu might emit some harmless messages resembling ! ‘WARNING: Couldn't find the global config file.’ or ! ‘WARNING: Couldn't find tool init file’ that can be ignored. !

!

If you are testing a cross-compiler, you may want to run the testsuite on a simulator as described at http://gcc.gnu.org/simtest-howto.html. !

! !

How can you run the testsuite on selected tests?

In order to run sets of tests selectively, there are targets ! ‘make check-gcc’ and language specific ‘make check-c’, ! ‘make check-c++’, ‘make check-fortran’, ‘make check-java’, ! ‘make check-ada’, ‘make check-objc’, ‘make check-obj-c++’, ! ‘make check-lto’ ! in the gcc subdirectory of the object directory. You can also ! just run ‘make check’ in a subdirectory of the object directory. !

!

A more selective way to just run all gcc execute tests in the testsuite is to use +

+
+
make check-gcc RUNTESTFLAGS="execute.exp other-options"
+ 
!

Likewise, in order to run only the g++ “old-deja” tests in ! the testsuite with filenames matching ‘9805*’, you would use !

!
!
make check-g++ RUNTESTFLAGS="old-deja.exp=9805* other-options"
! 
!

The *.exp files are located in the testsuite directories of the GCC ! source, the most important ones being compile.exp, ! execute.exp, dg.exp and old-deja.exp. ! To get a list of the possible *.exp files, pipe the ! output of ‘make check’ into a file and look at the ! ‘Running … .exp’ lines. !

! !

Passing options and running multiple testsuites

You can pass multiple options to the testsuite using the ! ‘--target_board’ option of DejaGNU, either passed as part of ! ‘RUNTESTFLAGS’, or directly to runtest if you prefer to work outside the makefiles. For example, +

+
+
make check-g++ RUNTESTFLAGS="--target_board=unix/-O3/-fmerge-constants"
+ 
!

will run the standard g++ testsuites (“unix” is the target name for a standard native testsuite situation), passing ! ‘-O3 -fmerge-constants’ to the compiler on every test, i.e., slashes separate options. !

!

You can run the testsuites multiple times using combinations of options with a syntax similar to the brace expansion of popular shells: +

+
+
…"--target_board=arm-sim\{-mhard-float,-msoft-float\}\{-O1,-O2,-O3,\}"
+ 
!

(Note the empty option caused by the trailing comma in the final group.) ! The following will run each testsuite eight times using the ‘arm-sim’ target, as if you had specified all possible combinations yourself: +

+
+
--target_board='arm-sim/-mhard-float/-O1 \
+                 arm-sim/-mhard-float/-O2 \
+                 arm-sim/-mhard-float/-O3 \
+                 arm-sim/-mhard-float \
+                 arm-sim/-msoft-float/-O1 \
+                 arm-sim/-msoft-float/-O2 \
+                 arm-sim/-msoft-float/-O3 \
+                 arm-sim/-msoft-float'
+ 
!

They can be combined as many times as you wish, in arbitrary ways. This list: +

+
+
…"--target_board=unix/-Wextra\{-O3,-fno-strength\}\{-fomit-frame,\}"
+ 
!

will generate four combinations, all involving ‘-Wextra’. !

!

The disadvantage to this method is that the testsuites are run in serial, which is a waste on multiprocessor systems. For users with GNU Make and a shell which performs brace expansion, you can run the testsuites in ! parallel by having the shell perform the combinations and make ! do the parallel runs. Instead of using ‘--target_board’, use a special makefile target: +

+
+
make -jN check-testsuite//test-target/option1/option2/…
+ 
!

For example, !

!
!
make -j3 check-gcc//sh-hms-sim/{-m1,-m2,-m3,-m3e,-m4}/{,-nofpu}
! 
!

will run three concurrent “make-gcc” testsuites, eventually testing all ten combinations as described above. Note that this is currently only ! supported in the gcc subdirectory. (To see how this works, try ! typing echo before the example given here.) !

! !

Additional testing for Java Class Libraries

!

The Java runtime tests can be executed via ‘make check’ ! in the target/libjava/testsuite directory in the build tree. !

!

The Mauve Project provides a suite of tests for the Java Class Libraries. This suite can be run as part of libgcj testing by placing the Mauve tree within the libjava ! testsuite at libjava/testsuite/libjava.mauve/mauve, or by ! specifying the location of that tree when invoking ‘make’, as in ! ‘make MAUVEDIR=~/mauve check’. !

! !

How to interpret test results

!

The result of running the testsuite are various *.sum and *.log ! files in the testsuite subdirectories. The *.log files contain a detailed log of the compiler invocations and the corresponding ! results, the *.sum files summarize the results. These summaries contain status codes for all tests: +

+ !

It is normal for some tests to report unexpected failures. At the current time the testing harness does not allow fine grained control over whether or not a test is expected to fail. This problem should be fixed in future releases. +

! !

Submitting test results

If you want to report the results to the GCC project, use the ! contrib/test_summary shell script. Start it in the objdir with !

!
!
srcdir/contrib/test_summary -p your_commentary.txt \
!     -m gcc-testresults@gcc.gnu.org |sh
! 
!

This script uses the Mail program to send the results, so ! make sure it is in your PATH. The file your_commentary.txt is prepended to the testsuite summary and should contain any special remarks you have on your results or your build environment. Please do not edit the testsuite result block or the subject line, as these messages may be automatically processed. +

+
+

Return to the GCC Installation page +

+ + + +
+ + + + + diff -Nrcpad gcc-4.8.1/LAST_UPDATED gcc-4.8.2/LAST_UPDATED *** gcc-4.8.1/LAST_UPDATED Fri May 31 09:09:27 2013 --- gcc-4.8.2/LAST_UPDATED Wed Oct 16 07:27:59 2013 *************** *** 1 **** ! Obtained from SVN: tags/gcc_4_8_1_release revision 199526 --- 1 ---- ! Obtained from SVN: tags/gcc_4_8_2_release revision 203690 diff -Nrcpad gcc-4.8.1/MD5SUMS gcc-4.8.2/MD5SUMS *** gcc-4.8.1/MD5SUMS Fri May 31 10:14:02 2013 --- gcc-4.8.2/MD5SUMS Wed Oct 16 08:30:10 2013 *************** *** 1,5 **** # This file contains the MD5 checksums of the files in the ! # gcc-4.8.1.tar.bz2 tarball. # # Besides verifying that all files in the tarball were correctly expanded, # it also can be used to determine if any files have changed since the --- 1,5 ---- # This file contains the MD5 checksums of the files in the ! # gcc-4.8.2.tar.bz2 tarball. # # Besides verifying that all files in the tarball were correctly expanded, # it also can be used to determine if any files have changed since the *************** *** 15,44 **** fe60d87048567d4fe8c8a0ed2448bcc8 COPYING.RUNTIME d32239bcb673463ab874e80d47fae504 COPYING3 6a6a8e020838b23406c81b19c1d46df6 COPYING3.LIB ! 4c2680bb17a0ff56a2255cff6d7c2b52 ChangeLog 09538b708302f1735f6fa05b622ecf5e ChangeLog.tree-ssa 79ef16e405f5873970e04cee49091ff8 INSTALL/README ! 6e71fef68aceffc9bd1ca1d67b4a1a3e INSTALL/binaries.html ! c4f840ac790a5f400ba786135ffaa6b3 INSTALL/build.html ! 6147a90ce41a275d274eb6354a6eca3c INSTALL/configure.html ! 4b66d729f8d0d5d231d484f7d8e3e869 INSTALL/download.html ! b5c00e6e01eede2193fcb533a4025bb1 INSTALL/finalinstall.html ! 5a03634e028ad09a5d057c846670cacd INSTALL/gfdl.html ! da731ed85630b74b28d55eb6c0b87b8a INSTALL/index.html ! ac167c1db25300d9640e17215415d201 INSTALL/old.html ! 717ea1223e220560d2e774c17b52fd62 INSTALL/prerequisites.html ! 3e67a9b9bf1e7d7f9a607247e49e3ff9 INSTALL/specific.html ! 79849f69e8547772edfc9d639f24d8e5 INSTALL/test.html ! d96713329c67fe7aa759708fed464a8e LAST_UPDATED 98dba0586988a9aa76768f50ece2dc21 MAINTAINERS 9778e247c16e7f5a4de9f623068dc8ab Makefile.def 3ef32dc362ce6ac47f2882fe0334f79f Makefile.in 6b571c1e8f90bb088989c4350d479485 Makefile.tpl ! 06739d5bd6f66d2bd50f0adc9b5aa358 NEWS 80d26bc3b1ad4f6969a96a24c9181bf5 README b510a5285eb05298b5f3d9f5ae920588 boehm-gc/AmigaOS.c 2caafacabf758bb76a9dfce1fc544b97 boehm-gc/BCC_MAKEFILE ! df76f1f4fd4c031564c98d23bb538a50 boehm-gc/ChangeLog c18075e3729cd116028480307a8e845d boehm-gc/EMX_MAKEFILE 3b7cc3be9ed3c2135bbda990e8a69303 boehm-gc/MacOS.c 5cf7764626b7dd7272b2fe11403d1b6a boehm-gc/MacProjects.sit.hqx --- 15,44 ---- fe60d87048567d4fe8c8a0ed2448bcc8 COPYING.RUNTIME d32239bcb673463ab874e80d47fae504 COPYING3 6a6a8e020838b23406c81b19c1d46df6 COPYING3.LIB ! c2eeb53662831fb4b8f57d5d14415ade ChangeLog 09538b708302f1735f6fa05b622ecf5e ChangeLog.tree-ssa 79ef16e405f5873970e04cee49091ff8 INSTALL/README ! 5702e2c21728eb13d5fbafc8820451f3 INSTALL/binaries.html ! 5bf577945064322e27c1a09068a5db39 INSTALL/build.html ! 3118c247ea89aefdceedca0891204b42 INSTALL/configure.html ! 2bb5514c2c5fe5584bda3090c91ee3a7 INSTALL/download.html ! 98ae902bd66b297e34b24bac93bb999b INSTALL/finalinstall.html ! 3b4eca14d955a9049334393fb142d70b INSTALL/gfdl.html ! 1e4538eec627577de5636e36e006d5f0 INSTALL/index.html ! f04fba7e32b5623c40555f3156644385 INSTALL/old.html ! c7c6c2d30bc9ba50366e6e2f21c533ea INSTALL/prerequisites.html ! b63b8132101c07046f24f21e2ef2a630 INSTALL/specific.html ! 56d9599631a9ccc78881c6a37ef12639 INSTALL/test.html ! 12697e7a5b9df79a7ab0929889805eca LAST_UPDATED 98dba0586988a9aa76768f50ece2dc21 MAINTAINERS 9778e247c16e7f5a4de9f623068dc8ab Makefile.def 3ef32dc362ce6ac47f2882fe0334f79f Makefile.in 6b571c1e8f90bb088989c4350d479485 Makefile.tpl ! f7798cb0802ea70e1486486925553094 NEWS 80d26bc3b1ad4f6969a96a24c9181bf5 README b510a5285eb05298b5f3d9f5ae920588 boehm-gc/AmigaOS.c 2caafacabf758bb76a9dfce1fc544b97 boehm-gc/BCC_MAKEFILE ! eb34471dca0ef9540794c91143e53429 boehm-gc/ChangeLog c18075e3729cd116028480307a8e845d boehm-gc/EMX_MAKEFILE 3b7cc3be9ed3c2135bbda990e8a69303 boehm-gc/MacOS.c 5cf7764626b7dd7272b2fe11403d1b6a boehm-gc/MacProjects.sit.hqx *************** e9d4bf13bdd11f9590788db857faf080 boehm- *** 47,57 **** f5f78130ed0450ba9503ca3122244195 boehm-gc/Mac_files/dataend.c 548c55b112b5d4766c7f87be96f79df2 boehm-gc/Mac_files/datastart.c 8ef74141b1fb9a289228c259044f4934 boehm-gc/Makefile.DLLs ! e3bfbe6fffb15626da8479bb70f75831 boehm-gc/Makefile.am ee5852b604978c4bc485f3503799bea5 boehm-gc/Makefile.direct dfbca9ef8eed29378fa34ab88a644c95 boehm-gc/Makefile.dist a50d3b2e14f6cf62519f1f7e557e7221 boehm-gc/Makefile.dj ! a4b5833111a219fcf5546577ed412d14 boehm-gc/Makefile.in bdf166ac9229e7e18158c3c84eb77915 boehm-gc/NT_MAKEFILE 4c48a2eb34d18243e169564ded1eda87 boehm-gc/NT_STATIC_THREADS_MAKEFILE bc4287e5afadf75c1683ec57f0db80d0 boehm-gc/NT_THREADS_MAKEFILE --- 47,57 ---- f5f78130ed0450ba9503ca3122244195 boehm-gc/Mac_files/dataend.c 548c55b112b5d4766c7f87be96f79df2 boehm-gc/Mac_files/datastart.c 8ef74141b1fb9a289228c259044f4934 boehm-gc/Makefile.DLLs ! c2d3a0b7bfa98d16040556aebd571b0e boehm-gc/Makefile.am ee5852b604978c4bc485f3503799bea5 boehm-gc/Makefile.direct dfbca9ef8eed29378fa34ab88a644c95 boehm-gc/Makefile.dist a50d3b2e14f6cf62519f1f7e557e7221 boehm-gc/Makefile.dj ! 42f4ec798da512961041ba673cd6d3d2 boehm-gc/Makefile.in bdf166ac9229e7e18158c3c84eb77915 boehm-gc/NT_MAKEFILE 4c48a2eb34d18243e169564ded1eda87 boehm-gc/NT_STATIC_THREADS_MAKEFILE bc4287e5afadf75c1683ec57f0db80d0 boehm-gc/NT_THREADS_MAKEFILE *************** b04a1232318128ebd7c630fca10d02e5 boehm- *** 217,223 **** 9cd4b6d4d78c745db41c485daef7c56c config.guess 040359150cf11493f973a46d8a25b06b config.rpath 3cb710e658354c2f7e93ecd437c54a53 config.sub ! ff1577ed22df324711d6307d5b2d7868 config/ChangeLog 0fcd4badfe2a2191778bdf5ab94aa40c config/acinclude.m4 9238d23c68259d195b332db71892d242 config/acx.m4 6b030f5cf640bdd401ea739f54a667f8 config/asmcfi.m4 --- 217,223 ---- 9cd4b6d4d78c745db41c485daef7c56c config.guess 040359150cf11493f973a46d8a25b06b config.rpath 3cb710e658354c2f7e93ecd437c54a53 config.sub ! 7d484b5e1b8a819004ca5b9d2308a5c4 config/ChangeLog 0fcd4badfe2a2191778bdf5ab94aa40c config/acinclude.m4 9238d23c68259d195b332db71892d242 config/acx.m4 6b030f5cf640bdd401ea739f54a667f8 config/asmcfi.m4 *************** b0d2f2e937c16091b330451e6883c4b6 config *** 297,305 **** b6afa5c33fb98edfaf591dd38d198b0d config/warnings.m4 7ef51b0adb98e5c5f7aba46d2c7293f1 config/weakref.m4 e249d18c447a8372fd1ed5f084284d6b config/zlib.m4 ! bcbc4ea392d20517126c03fb8734d3e1 configure ! a08f967203f9193ff9770f52755b7bcc configure.ac ! 3d5d71e7a92ca7c29d4ac2ec0e41fd36 contrib/ChangeLog 7af8d2979bf1a7cfa88e30d05fa22be2 contrib/ChangeLog.tree-ssa e0ea80d7094bf66610f2f60db444f9a1 contrib/analyze_brprob 998f0112578f801ac84646f060e18f89 contrib/check_GNU_style.sh --- 297,305 ---- b6afa5c33fb98edfaf591dd38d198b0d config/warnings.m4 7ef51b0adb98e5c5f7aba46d2c7293f1 config/weakref.m4 e249d18c447a8372fd1ed5f084284d6b config/zlib.m4 ! 3ba1df961222c2c2164adb7b93feec90 configure ! 24bd5c47cd8cd47278faa0679a6a66f1 configure.ac ! 8335e9cc90d4cb8bb23c6c8e7ce90933 contrib/ChangeLog 7af8d2979bf1a7cfa88e30d05fa22be2 contrib/ChangeLog.tree-ssa e0ea80d7094bf66610f2f60db444f9a1 contrib/analyze_brprob 998f0112578f801ac84646f060e18f89 contrib/check_GNU_style.sh *************** fa945bac89ee68b410027dcfe1312f4b contri *** 331,337 **** 0fb5c8c3cd465d8bd57b55b2548c683a contrib/paranoia.cc 9083c56c1c89c5bec355a27f78e49807 contrib/patch_tester.sh 87a19b40fbd220938cf6c23c42c255e2 contrib/prepare_patch.sh ! c9e4ffca7d2973fc13882e1a0d789cca contrib/reghunt/ChangeLog cf247a580e49d212518de409793db0a8 contrib/reghunt/bin/gcc-build-full 724e70ea3e80f87f2a201bbe2f1eef37 contrib/reghunt/bin/gcc-build-simple 3f2318bae7562a4ad1639e686916a545 contrib/reghunt/bin/gcc-cleanup --- 331,337 ---- 0fb5c8c3cd465d8bd57b55b2548c683a contrib/paranoia.cc 9083c56c1c89c5bec355a27f78e49807 contrib/patch_tester.sh 87a19b40fbd220938cf6c23c42c255e2 contrib/prepare_patch.sh ! 16f6fa766a0c9316a33444e7d680aa7a contrib/reghunt/ChangeLog cf247a580e49d212518de409793db0a8 contrib/reghunt/bin/gcc-build-full 724e70ea3e80f87f2a201bbe2f1eef37 contrib/reghunt/bin/gcc-build-simple 3f2318bae7562a4ad1639e686916a545 contrib/reghunt/bin/gcc-cleanup *************** f251d49dd87647250fcd74dd50b7835f contri *** 390,396 **** e2829fc4af4f433a6a328a62d5ce8066 contrib/reghunt/examples/reg-watch afd863c2ec84c906e20f9b9787b1f0fe contrib/reghunt/examples/reg-watch.awk 8955535523d4b5f48006bcb851ba9b4b contrib/reghunt/examples/testall ! 7d9110d91d43f91d142a92ce944c6cbb contrib/regression/ChangeLog 30553bfced1b2b46bf7ca01ef6ba69d1 contrib/regression/GCC_Regression_Tester.wdgt/Default.png ad38ddd771df222eb9d413e3c7f6a751 contrib/regression/GCC_Regression_Tester.wdgt/Icon.png 777bd286c147cc02861811f66b9a4440 contrib/regression/GCC_Regression_Tester.wdgt/Info.plist --- 390,396 ---- e2829fc4af4f433a6a328a62d5ce8066 contrib/reghunt/examples/reg-watch afd863c2ec84c906e20f9b9787b1f0fe contrib/reghunt/examples/reg-watch.awk 8955535523d4b5f48006bcb851ba9b4b contrib/reghunt/examples/testall ! b54ac21ab718b7b5f4762fc04f327db5 contrib/regression/ChangeLog 30553bfced1b2b46bf7ca01ef6ba69d1 contrib/regression/GCC_Regression_Tester.wdgt/Default.png ad38ddd771df222eb9d413e3c7f6a751 contrib/regression/GCC_Regression_Tester.wdgt/Icon.png 777bd286c147cc02861811f66b9a4440 contrib/regression/GCC_Regression_Tester.wdgt/Info.plist *************** e00fa8f7dd72b80ca5a64130e85fe4f4 contri *** 414,420 **** 6ed51d5edccbae74c6500732f8a40540 contrib/update-copyright.py 7cb42cbdf8becd280d1e16191416fb62 contrib/warn_summary 21504de31981a67b5b93b265029d1865 depcomp ! 1158d343479491e47ed236d932e64eea fixincludes/ChangeLog 8150ff8dbd50833dcd358501d665da10 fixincludes/Makefile.in 4eb8fdda3b3e303c7aa822d341495822 fixincludes/README 455903ad4ff71fa5c5340ef7ae41a0e6 fixincludes/README-fixinc --- 414,420 ---- 6ed51d5edccbae74c6500732f8a40540 contrib/update-copyright.py 7cb42cbdf8becd280d1e16191416fb62 contrib/warn_summary 21504de31981a67b5b93b265029d1865 depcomp ! 17d99d658c243b53f22a7cb6b18bb992 fixincludes/ChangeLog 8150ff8dbd50833dcd358501d665da10 fixincludes/Makefile.in 4eb8fdda3b3e303c7aa822d341495822 fixincludes/README 455903ad4ff71fa5c5340ef7ae41a0e6 fixincludes/README-fixinc *************** e06760e2aaa65a20f4f201cf50e62a16 fixinc *** 427,439 **** 497da58c4b47627a33f754b61f6eb051 fixincludes/fixinc.in 01aed58f85fe12db3071f34a29e54c9b fixincludes/fixincl.c 33eafc45c2f2fff3597f318ca0dfb5a1 fixincludes/fixincl.tpl ! 54eff198bbd1a942d7f20a09711e7066 fixincludes/fixincl.x 47da6e634225e1667c26a71bcf234bfa fixincludes/fixlib.c 440bb79da40ac194e1c91b5ae2754eb1 fixincludes/fixlib.h 5b2c1fd3ef9d44fb6beb1a0d45ddd533 fixincludes/fixopts.c ed1415e9dbc8f421fd9288bde0d90ad1 fixincludes/fixtests.c 6df145c7cea1e2099cf97a0d83564aca fixincludes/genfixes ! b7fd413e11237c05919dfacb7eb88aa3 fixincludes/inclhack.def 6e093a147c4e377aa751d74c82d0bd87 fixincludes/mkfixinc.sh 5f9960cfe65b2e6bef658f770e52dfef fixincludes/mkheaders.in 3aa0563cd682ee61ecd9eb6eea0b0bce fixincludes/procopen.c --- 427,439 ---- 497da58c4b47627a33f754b61f6eb051 fixincludes/fixinc.in 01aed58f85fe12db3071f34a29e54c9b fixincludes/fixincl.c 33eafc45c2f2fff3597f318ca0dfb5a1 fixincludes/fixincl.tpl ! b7e036829920b37ab4b34cd43ee73221 fixincludes/fixincl.x 47da6e634225e1667c26a71bcf234bfa fixincludes/fixlib.c 440bb79da40ac194e1c91b5ae2754eb1 fixincludes/fixlib.h 5b2c1fd3ef9d44fb6beb1a0d45ddd533 fixincludes/fixopts.c ed1415e9dbc8f421fd9288bde0d90ad1 fixincludes/fixtests.c 6df145c7cea1e2099cf97a0d83564aca fixincludes/genfixes ! 692c5c35ffa16845dc090956e036ed05 fixincludes/inclhack.def 6e093a147c4e377aa751d74c82d0bd87 fixincludes/mkfixinc.sh 5f9960cfe65b2e6bef658f770e52dfef fixincludes/mkheaders.in 3aa0563cd682ee61ecd9eb6eea0b0bce fixincludes/procopen.c *************** bfb58e3983fc133c965e434e57aed732 fixinc *** 469,475 **** 833e9408a49784184bee7981d665c911 fixincludes/tests/base/io-quotes-def-1.h a11561f51aa57e84e571f2073fb6bf60 fixincludes/tests/base/ioLib.h 5bf45a2b904d0885d71c55387cf3e8f2 fixincludes/tests/base/iso/math_c99.h ! 42cc91f317475675d22133b73a59bad2 fixincludes/tests/base/iso/math_iso.h 8fc57cb4314d0f1fc5a2fcf839f50893 fixincludes/tests/base/iso/setjmp_iso.h 5b48936adb644e9aa4b78d21297cc193 fixincludes/tests/base/iso/stdio_iso.h e1bd28539aceeab13a3028da02f8c4ae fixincludes/tests/base/iso/stdlib_iso.h --- 469,475 ---- 833e9408a49784184bee7981d665c911 fixincludes/tests/base/io-quotes-def-1.h a11561f51aa57e84e571f2073fb6bf60 fixincludes/tests/base/ioLib.h 5bf45a2b904d0885d71c55387cf3e8f2 fixincludes/tests/base/iso/math_c99.h ! 56aa16fdf3be46d7dc2b462246495f82 fixincludes/tests/base/iso/math_iso.h 8fc57cb4314d0f1fc5a2fcf839f50893 fixincludes/tests/base/iso/setjmp_iso.h 5b48936adb644e9aa4b78d21297cc193 fixincludes/tests/base/iso/stdio_iso.h e1bd28539aceeab13a3028da02f8c4ae fixincludes/tests/base/iso/stdlib_iso.h *************** a5e817d35ded04a0fb03999b50c0e89e fixinc *** 546,557 **** 955462b555900ecd3934223c64e21fa7 fixincludes/tests/base/types/vxTypesBase.h c78e762f2c91f2af991feda7d3d7f4b2 fixincludes/tests/base/unistd.h ae1ca33497c87ae3e6d4558a8e5c6583 gcc/ABOUT-GCC-NLS ! f2355ebd5f1d98c840c777041e8bf6eb gcc/BASE-VER 59530bdf33659b29e73d4adb9f9f6552 gcc/COPYING a916467b91076e631dd8edb7424769c7 gcc/COPYING.LIB d32239bcb673463ab874e80d47fae504 gcc/COPYING3 6a6a8e020838b23406c81b19c1d46df6 gcc/COPYING3.LIB ! 2eeca8fdbd518bb680ba824825218b86 gcc/ChangeLog a3b63c675afa7a655cc2bfa8a907af79 gcc/ChangeLog-1997 d9a88529352a010253c2e8fb1ed6023b gcc/ChangeLog-1998 240f08f81cb4699e8b49347db38233db gcc/ChangeLog-1999 --- 546,557 ---- 955462b555900ecd3934223c64e21fa7 fixincludes/tests/base/types/vxTypesBase.h c78e762f2c91f2af991feda7d3d7f4b2 fixincludes/tests/base/unistd.h ae1ca33497c87ae3e6d4558a8e5c6583 gcc/ABOUT-GCC-NLS ! ea9cff09f299c5d630e8997da942a4f2 gcc/BASE-VER 59530bdf33659b29e73d4adb9f9f6552 gcc/COPYING a916467b91076e631dd8edb7424769c7 gcc/COPYING.LIB d32239bcb673463ab874e80d47fae504 gcc/COPYING3 6a6a8e020838b23406c81b19c1d46df6 gcc/COPYING3.LIB ! ab03649c2dd70580706d5637a9d9698c gcc/ChangeLog a3b63c675afa7a655cc2bfa8a907af79 gcc/ChangeLog-1997 d9a88529352a010253c2e8fb1ed6023b gcc/ChangeLog-1998 240f08f81cb4699e8b49347db38233db gcc/ChangeLog-1999 *************** fb3fadb88e1d2b3b640cfaaa5ff11780 gcc/Ch *** 574,592 **** 3eb07e0b2e542409bf73d359f7f65609 gcc/ChangeLog.ptr e13638e26743ba41e6011b76cc00d9a9 gcc/ChangeLog.tree-ssa 739ab47f6425bcea1d05e4fc0542de54 gcc/ChangeLog.tuples ! 9e3fc21931789765db3e02888117aabc gcc/DATESTAMP d41d8cd98f00b204e9800998ecf8427e gcc/DEV-PHASE eb92e1ff5e982ca07e173e0eb286d243 gcc/FSFChangeLog 30e1e33411566388b3164558482dc5e6 gcc/FSFChangeLog.10 36698274bb69e2ada20f5cc434f3caa5 gcc/FSFChangeLog.11 6ece70576d3e44730c59ec687127ff1b gcc/LANGUAGES ! ab4445ca7d9f5368fc4a9196403e740b gcc/Makefile.in ec6799501b2eb2923d5de6a66169dbd2 gcc/ONEWS 68272a338eaa43b3076addba938a8c2c gcc/README.Portability edaf2016f8d373efc2a2690dee7f6b98 gcc/acinclude.m4 3b531d1851da8752f541b0cc0f9b5abc gcc/aclocal.m4 30995d78221b41ce62c92b2f601b4ebb gcc/ada/9drpc.adb ! bab898ed180309895fdfc596f9702a57 gcc/ada/ChangeLog 683be0b07dc4f64f118fd5e8ae9cb30d gcc/ada/ChangeLog-2001 7aff25efb203be4136b8776cdc812956 gcc/ada/ChangeLog-2002 cd2379152000f40157d349018fb9364d gcc/ada/ChangeLog-2003 --- 574,592 ---- 3eb07e0b2e542409bf73d359f7f65609 gcc/ChangeLog.ptr e13638e26743ba41e6011b76cc00d9a9 gcc/ChangeLog.tree-ssa 739ab47f6425bcea1d05e4fc0542de54 gcc/ChangeLog.tuples ! 0a808d7e108eab7335ef3d44bb725709 gcc/DATESTAMP d41d8cd98f00b204e9800998ecf8427e gcc/DEV-PHASE eb92e1ff5e982ca07e173e0eb286d243 gcc/FSFChangeLog 30e1e33411566388b3164558482dc5e6 gcc/FSFChangeLog.10 36698274bb69e2ada20f5cc434f3caa5 gcc/FSFChangeLog.11 6ece70576d3e44730c59ec687127ff1b gcc/LANGUAGES ! 7aa1838e15539adb7df780b395a76e76 gcc/Makefile.in ec6799501b2eb2923d5de6a66169dbd2 gcc/ONEWS 68272a338eaa43b3076addba938a8c2c gcc/README.Portability edaf2016f8d373efc2a2690dee7f6b98 gcc/acinclude.m4 3b531d1851da8752f541b0cc0f9b5abc gcc/aclocal.m4 30995d78221b41ce62c92b2f601b4ebb gcc/ada/9drpc.adb ! ff9f730736842c14b45a7674bd1b4396 gcc/ada/ChangeLog 683be0b07dc4f64f118fd5e8ae9cb30d gcc/ada/ChangeLog-2001 7aff25efb203be4136b8776cdc812956 gcc/ada/ChangeLog-2002 cd2379152000f40157d349018fb9364d gcc/ada/ChangeLog-2003 *************** b45654446bc74bb68ae4adef78906e9b gcc/ad *** 1553,1571 **** 10169e386a8f3569ae8eefa1584a7158 gcc/ada/gcc-interface/Make-lang.in c568a5224fae3582bcbf7aa222b714ce gcc/ada/gcc-interface/Makefile.in d47cdfac076a7e474979da4139393b39 gcc/ada/gcc-interface/ada-tree.def ! 250f014a7d9cb58ee235ad1f824d27ba gcc/ada/gcc-interface/ada-tree.h 0b1c6ffed20c195e773f26671ffe4088 gcc/ada/gcc-interface/ada.h 4cbfd794461da0feb1b8661ec623b6c6 gcc/ada/gcc-interface/config-lang.in 6208321217d96eec496baac4f3359129 gcc/ada/gcc-interface/cuintp.c ! fd5070e45eedb89d0c65d89209ddf6a3 gcc/ada/gcc-interface/decl.c c413d4d50e9563859f4d751a4404b705 gcc/ada/gcc-interface/gadaint.h ! 076f85f4823576c4e2ac216654b3c1f3 gcc/ada/gcc-interface/gigi.h 551c6c4d04e4f9c63340554e826c7bed gcc/ada/gcc-interface/lang-specs.h 88263527679e56259b31778ee188631c gcc/ada/gcc-interface/lang.opt c7359dcb677f882b3ffb3595fb26e6b2 gcc/ada/gcc-interface/misc.c 4ce109758af9fd09626d5277a2507764 gcc/ada/gcc-interface/targtyps.c ! 0321865bc2eb30a3ed0354976b9bf48d gcc/ada/gcc-interface/trans.c ! 26cb9873951ebfb34e81755e94d72d06 gcc/ada/gcc-interface/utils.c 1ba2f2aa401642279d2941fa1abb632d gcc/ada/gcc-interface/utils2.c f03992068d889f278ee525aca83f27fc gcc/ada/get_alfa.adb 3e1abd579a2bee793b5b7684cbf2b482 gcc/ada/get_alfa.ads --- 1553,1571 ---- 10169e386a8f3569ae8eefa1584a7158 gcc/ada/gcc-interface/Make-lang.in c568a5224fae3582bcbf7aa222b714ce gcc/ada/gcc-interface/Makefile.in d47cdfac076a7e474979da4139393b39 gcc/ada/gcc-interface/ada-tree.def ! 0f3fcb0f27440adcf1de17ab96c2569e gcc/ada/gcc-interface/ada-tree.h 0b1c6ffed20c195e773f26671ffe4088 gcc/ada/gcc-interface/ada.h 4cbfd794461da0feb1b8661ec623b6c6 gcc/ada/gcc-interface/config-lang.in 6208321217d96eec496baac4f3359129 gcc/ada/gcc-interface/cuintp.c ! 29cd27b4cf928521d9b7de044856d4e9 gcc/ada/gcc-interface/decl.c c413d4d50e9563859f4d751a4404b705 gcc/ada/gcc-interface/gadaint.h ! aa28e6baa118bb74e8a5df28725c969e gcc/ada/gcc-interface/gigi.h 551c6c4d04e4f9c63340554e826c7bed gcc/ada/gcc-interface/lang-specs.h 88263527679e56259b31778ee188631c gcc/ada/gcc-interface/lang.opt c7359dcb677f882b3ffb3595fb26e6b2 gcc/ada/gcc-interface/misc.c 4ce109758af9fd09626d5277a2507764 gcc/ada/gcc-interface/targtyps.c ! fd58b320b7fb10ef35e5905f41a1a760 gcc/ada/gcc-interface/trans.c ! 8df5349d8e4c2c70c5289f69f75cef79 gcc/ada/gcc-interface/utils.c 1ba2f2aa401642279d2941fa1abb632d gcc/ada/gcc-interface/utils2.c f03992068d889f278ee525aca83f27fc gcc/ada/get_alfa.adb 3e1abd579a2bee793b5b7684cbf2b482 gcc/ada/get_alfa.ads *************** bd56f227cab5f7994d2054b143e27758 gcc/ad *** 2628,2634 **** c7e521591893e9b9fdbbc065b4268188 gcc/ada/table.ads 5c87a77d480930c745acf8222d7934bc gcc/ada/targext.c 4d2b5e751bb00245c37e428b4dd6cd62 gcc/ada/targparm.adb ! 2f03ade63011cb8dc8e3c2d28ed48874 gcc/ada/targparm.ads 66410fee16af89862bccbe8331656824 gcc/ada/tb-alvms.c 59d5afe5790e7c5e9d042bbc3924193c gcc/ada/tb-alvxw.c 7a238acfa7f13f0ebba35928cb42056e gcc/ada/tb-gcc.c --- 2628,2634 ---- c7e521591893e9b9fdbbc065b4268188 gcc/ada/table.ads 5c87a77d480930c745acf8222d7934bc gcc/ada/targext.c 4d2b5e751bb00245c37e428b4dd6cd62 gcc/ada/targparm.adb ! e764ac52909b487dbeaca9910011228f gcc/ada/targparm.ads 66410fee16af89862bccbe8331656824 gcc/ada/tb-alvms.c 59d5afe5790e7c5e9d042bbc3924193c gcc/ada/tb-alvxw.c 7a238acfa7f13f0ebba35928cb42056e gcc/ada/tb-gcc.c *************** ff8da8054927fb30c4aafefd1d5a31fb gcc/al *** 2697,2703 **** 05034325efc1c6fd55a9496de09e7522 gcc/alias.h 1327c03cb48c01740371ed5411053654 gcc/alloc-pool.c 222eaa2b4cef8d542c786fbe9ae9cf07 gcc/alloc-pool.h ! 65663381a0def5b78563aad1ab0a4b93 gcc/asan.c 5132ae1421f71d792102b029ad59e831 gcc/asan.h 58d4f0310fe4e4bc8a27505b809f2867 gcc/attribs.c 6fa41f5c633490844145153b872b1ab0 gcc/auto-inc-dec.c --- 2697,2703 ---- 05034325efc1c6fd55a9496de09e7522 gcc/alias.h 1327c03cb48c01740371ed5411053654 gcc/alloc-pool.c 222eaa2b4cef8d542c786fbe9ae9cf07 gcc/alloc-pool.h ! 067ff3498b69c3591bb58ec493f694df gcc/asan.c 5132ae1421f71d792102b029ad59e831 gcc/asan.h 58d4f0310fe4e4bc8a27505b809f2867 gcc/attribs.c 6fa41f5c633490844145153b872b1ab0 gcc/auto-inc-dec.c *************** e4bf7085119fadf0cf91a26d2df4cb24 gcc/bi *** 2712,2719 **** cdd67c998b3c5e8698deb5d5cfb00934 gcc/builtins.c 487ae8e1d9ed4cb1f8dacb56136dd8dc gcc/builtins.def ecdeb32db3d71ab656bf8f96b6dbcf7c gcc/builtins.h ! 67f9ba69fd7b3043daa2bde915cfa3f9 gcc/c-family/ChangeLog ! 3737a8a7d9a9e8f1b222436fbb53d70e gcc/c-family/c-ada-spec.c 4755b05370bb4bf1aac2eb9d4d6df083 gcc/c-family/c-ada-spec.h 8c7c4ac81fc84980b53c0e1e1fcd19c3 gcc/c-family/c-common.c a4c3104a1278bb8b30367026bf98aa86 gcc/c-family/c-common.def --- 2712,2719 ---- cdd67c998b3c5e8698deb5d5cfb00934 gcc/builtins.c 487ae8e1d9ed4cb1f8dacb56136dd8dc gcc/builtins.def ecdeb32db3d71ab656bf8f96b6dbcf7c gcc/builtins.h ! 89f6b4137096b1dd6350ca6d909fba3f gcc/c-family/ChangeLog ! 56497a0c46ef67a9abe43fc6daa48734 gcc/c-family/c-ada-spec.c 4755b05370bb4bf1aac2eb9d4d6df083 gcc/c-family/c-ada-spec.h 8c7c4ac81fc84980b53c0e1e1fcd19c3 gcc/c-family/c-common.c a4c3104a1278bb8b30367026bf98aa86 gcc/c-family/c-common.def *************** bf9abbc411cb1aafd43579240cc4cc2c gcc/c- *** 2740,2746 **** 778f7e3f42ab4fc58bae81d2334ce9e1 gcc/c-family/c.opt e349380027a0e4b3a8d6a7a3a7c0c10d gcc/c-family/cppspec.c 480089f4072c03d274c51c9b757fc9e6 gcc/c-family/stub-objc.c ! ecec96d25f090df8546f8ca4dcf75c99 gcc/c/ChangeLog 0a9eb9433fb3d43ee8f87c141a16a9ce gcc/c/Make-lang.in e085062e94ae6c0259e7613d5ab6a6ec gcc/c/c-aux-info.c f36f96a5a736e62a50a5fbaa2eea981a gcc/c/c-convert.c --- 2740,2746 ---- 778f7e3f42ab4fc58bae81d2334ce9e1 gcc/c-family/c.opt e349380027a0e4b3a8d6a7a3a7c0c10d gcc/c-family/cppspec.c 480089f4072c03d274c51c9b757fc9e6 gcc/c-family/stub-objc.c ! c02ed96a636fcb5590fbb39932264396 gcc/c/ChangeLog 0a9eb9433fb3d43ee8f87c141a16a9ce gcc/c/Make-lang.in e085062e94ae6c0259e7613d5ab6a6ec gcc/c/c-aux-info.c f36f96a5a736e62a50a5fbaa2eea981a gcc/c/c-convert.c *************** e311154ce8f515bbc83b5b60c75b17d1 gcc/cf *** 2761,2767 **** 5fcc616d4ae175ca4611cfe0d68b35c4 gcc/cfg.c a9a92a0866d06d363474284ac2f71300 gcc/cfganal.c 840f7393d180c32863a3a5c977b4fe9e gcc/cfgbuild.c ! 646708232e8d34463e664b1b609dd11d gcc/cfgcleanup.c 5c50eef9f6dc27419b061923f6526c19 gcc/cfgexpand.c 404fce3cf1f8b3feac2fa39921040889 gcc/cfghooks.c 261acd694bb6b5bd1b745909214498c6 gcc/cfghooks.h --- 2761,2767 ---- 5fcc616d4ae175ca4611cfe0d68b35c4 gcc/cfg.c a9a92a0866d06d363474284ac2f71300 gcc/cfganal.c 840f7393d180c32863a3a5c977b4fe9e gcc/cfgbuild.c ! 7e07c786f38aac3974fd601e764c6a65 gcc/cfgcleanup.c 5c50eef9f6dc27419b061923f6526c19 gcc/cfgexpand.c 404fce3cf1f8b3feac2fa39921040889 gcc/cfghooks.c 261acd694bb6b5bd1b745909214498c6 gcc/cfghooks.h *************** a9a92a0866d06d363474284ac2f71300 gcc/cf *** 2769,2775 **** 309dccb4d31fd9dd3d118a2a43ca1dfe gcc/cfgloop.h 5b42d064414c4d83080f8589c1fb4a50 gcc/cfgloopanal.c bd52e0e46ebe6bda7ef58c01df9a4a65 gcc/cfgloopmanip.c ! 2b5a11f0582fdb94e16c13f62df80577 gcc/cfgrtl.c 3dc06dc12017e59c68212643a90da4ab gcc/cgraph.c 8b7d3f625732f0134be671c326e38ac1 gcc/cgraph.h 9c726270864fa0ca2b8b87912a8e9068 gcc/cgraphbuild.c --- 2769,2775 ---- 309dccb4d31fd9dd3d118a2a43ca1dfe gcc/cfgloop.h 5b42d064414c4d83080f8589c1fb4a50 gcc/cfgloopanal.c bd52e0e46ebe6bda7ef58c01df9a4a65 gcc/cfgloopmanip.c ! 22b06fe3a7a484d93604dadb8ed100c6 gcc/cfgrtl.c 3dc06dc12017e59c68212643a90da4ab gcc/cgraph.c 8b7d3f625732f0134be671c326e38ac1 gcc/cgraph.h 9c726270864fa0ca2b8b87912a8e9068 gcc/cgraphbuild.c *************** bd52e0e46ebe6bda7ef58c01df9a4a65 gcc/cf *** 2778,2785 **** 960d43483aa24e6815a21b550517a88d gcc/cif-code.def 033eb214c2b0dd97b349ad03ee419889 gcc/collect2-aix.c 825cf7626d842c24e486654be35ee2a3 gcc/collect2-aix.h ! da3309ae51b20eb6299fde3299d71cb7 gcc/collect2.c ! d4284c6601827e072f834863114975e3 gcc/collect2.h 0200808e761864973bcc678f8e3f6e0a gcc/combine-stack-adj.c 3447f1072397738e4f2039b14cc285a8 gcc/combine.c 8c1942f30436a8abb35410a846b64e87 gcc/common.opt --- 2778,2785 ---- 960d43483aa24e6815a21b550517a88d gcc/cif-code.def 033eb214c2b0dd97b349ad03ee419889 gcc/collect2-aix.c 825cf7626d842c24e486654be35ee2a3 gcc/collect2-aix.h ! 11377efa2a747fc5757a25d3242568ca gcc/collect2.c ! a70da9a8c6815a821962bc75c5ca378e gcc/collect2.h 0200808e761864973bcc678f8e3f6e0a gcc/combine-stack-adj.c 3447f1072397738e4f2039b14cc285a8 gcc/combine.c 8c1942f30436a8abb35410a846b64e87 gcc/common.opt *************** d98393129c4e54ac682cb74e3e3bd4d1 gcc/co *** 2818,2824 **** c6632abe75c3e6d797d4582b22416687 gcc/common/config/picochip/picochip-common.c 80803132ac42cc1fcd666d6ee592897a gcc/common/config/rs6000/rs6000-common.c a913a2b9e0b8fe50f46ba443011c2206 gcc/common/config/rx/rx-common.c ! 264c9d03fa9411eafac77708446191b3 gcc/common/config/s390/s390-common.c c4426b7b271911c210358adf2aa233d8 gcc/common/config/score/score-common.c 966ce84ee95e6b75a7c14f4843802fbb gcc/common/config/sh/sh-common.c c6c95afea3bffdb71f270ed696bb9e8a gcc/common/config/sparc/sparc-common.c --- 2818,2824 ---- c6632abe75c3e6d797d4582b22416687 gcc/common/config/picochip/picochip-common.c 80803132ac42cc1fcd666d6ee592897a gcc/common/config/rs6000/rs6000-common.c a913a2b9e0b8fe50f46ba443011c2206 gcc/common/config/rx/rx-common.c ! 4d7fdc92d47147b10f51fd3a569092c5 gcc/common/config/s390/s390-common.c c4426b7b271911c210358adf2aa233d8 gcc/common/config/score/score-common.c 966ce84ee95e6b75a7c14f4843802fbb gcc/common/config/sh/sh-common.c c6c95afea3bffdb71f270ed696bb9e8a gcc/common/config/sparc/sparc-common.c *************** ef626b893bd240d7df8a90b30f34e39d gcc/co *** 2832,2860 **** 1ef3d944b329df2c0efa98d6cad7af2a gcc/compare-elim.c fa96792072dbc4c07d2490b630737268 gcc/conditions.h 66d09ded30a98c13b7a2ca1f77a6a1b5 gcc/config.build ! efff737384eda1f4aa1cdf08f630b2df gcc/config.gcc 0a351a88034d24ffd262aa77c2dcb9dc gcc/config.host ! 8511f5b441facdd7a4850bd125957ce3 gcc/config.in 8e697813dc96ca90f5d0f4c196efe2cc gcc/config/README 0dbcd27c257c4f7ed711324c0d3ebf53 gcc/config/aarch64/aarch64-arches.def ! 69c42092a7d8c80823e8a4ada9a12d4a gcc/config/aarch64/aarch64-builtins.c f6606fbd4d252e15be5dfb676e6cb42e gcc/config/aarch64/aarch64-cores.def 5b9fed09df29c2832b423277b6e2c96c gcc/config/aarch64/aarch64-elf-raw.h 774fd1b71ba1f45508d04e47ddc4d423 gcc/config/aarch64/aarch64-elf.h aca57d221026af131a6daf33da44a956 gcc/config/aarch64/aarch64-generic.md ! c6a3e2277c649f39ccc61fbc7dd68cce gcc/config/aarch64/aarch64-linux.h eb6391d8ade2716d125b8d89ea76b3fc gcc/config/aarch64/aarch64-modes.def 9e64f4665941adf4bde1154b023246c8 gcc/config/aarch64/aarch64-option-extensions.def 7a13f8011a0119f87ba3ef3a20600744 gcc/config/aarch64/aarch64-opts.h b41112a4f8a1a36fd196647d7c2a1177 gcc/config/aarch64/aarch64-protos.h ! e97f6c416dd891587bca71ce7e75e5d5 gcc/config/aarch64/aarch64-simd-builtins.def ! b8124ebe970d3134cfa9a6f61cfb2bb4 gcc/config/aarch64/aarch64-simd.md 195cd734170316d54b39ffb66ec3480f gcc/config/aarch64/aarch64-tune.md ! 95e6ebf1e6b5cc933648aafaa35ffa3c gcc/config/aarch64/aarch64.c 235f75ab1c2c63a2930e5336bc96cdb2 gcc/config/aarch64/aarch64.h ! d8e0087223be25d0f6e0fef7ef2d2e3d gcc/config/aarch64/aarch64.md 4ac7df22d60b80bac89a5670e94decf7 gcc/config/aarch64/aarch64.opt ! d947b04747cb317d6ce8f8171df5ef35 gcc/config/aarch64/arm_neon.h b13264d74fe40d07c69abc3574fea589 gcc/config/aarch64/atomics.md 33611f8bac32ca1bb434bf91226a5ceb gcc/config/aarch64/constraints.md 233778cb3d9926b58114d054a717effb gcc/config/aarch64/gentune.sh --- 2832,2860 ---- 1ef3d944b329df2c0efa98d6cad7af2a gcc/compare-elim.c fa96792072dbc4c07d2490b630737268 gcc/conditions.h 66d09ded30a98c13b7a2ca1f77a6a1b5 gcc/config.build ! 6fe04eebde46545e03fccb4a4203d926 gcc/config.gcc 0a351a88034d24ffd262aa77c2dcb9dc gcc/config.host ! 8dc565e4c9b1b7b203311724bfb152f6 gcc/config.in 8e697813dc96ca90f5d0f4c196efe2cc gcc/config/README 0dbcd27c257c4f7ed711324c0d3ebf53 gcc/config/aarch64/aarch64-arches.def ! be5740fbf2603eca3340c39841f94db3 gcc/config/aarch64/aarch64-builtins.c f6606fbd4d252e15be5dfb676e6cb42e gcc/config/aarch64/aarch64-cores.def 5b9fed09df29c2832b423277b6e2c96c gcc/config/aarch64/aarch64-elf-raw.h 774fd1b71ba1f45508d04e47ddc4d423 gcc/config/aarch64/aarch64-elf.h aca57d221026af131a6daf33da44a956 gcc/config/aarch64/aarch64-generic.md ! 171d719ff7a3b4ecf01846813f3ad5e1 gcc/config/aarch64/aarch64-linux.h eb6391d8ade2716d125b8d89ea76b3fc gcc/config/aarch64/aarch64-modes.def 9e64f4665941adf4bde1154b023246c8 gcc/config/aarch64/aarch64-option-extensions.def 7a13f8011a0119f87ba3ef3a20600744 gcc/config/aarch64/aarch64-opts.h b41112a4f8a1a36fd196647d7c2a1177 gcc/config/aarch64/aarch64-protos.h ! 7b165fe3633bafaf624f9c4f5fb3d0c1 gcc/config/aarch64/aarch64-simd-builtins.def ! 3938483a6c375b3ab36e7dce4964433e gcc/config/aarch64/aarch64-simd.md 195cd734170316d54b39ffb66ec3480f gcc/config/aarch64/aarch64-tune.md ! 6b08cc4a542e42ee386e585dfe41c346 gcc/config/aarch64/aarch64.c 235f75ab1c2c63a2930e5336bc96cdb2 gcc/config/aarch64/aarch64.h ! fb708e81ab5464fab6e800c349f6218f gcc/config/aarch64/aarch64.md 4ac7df22d60b80bac89a5670e94decf7 gcc/config/aarch64/aarch64.opt ! a2e3ce1ad6442fd7777a5e62eb10a326 gcc/config/aarch64/arm_neon.h b13264d74fe40d07c69abc3574fea589 gcc/config/aarch64/atomics.md 33611f8bac32ca1bb434bf91226a5ceb gcc/config/aarch64/constraints.md 233778cb3d9926b58114d054a717effb gcc/config/aarch64/gentune.sh *************** a7551ca197eb21652de7a48aeab05812 gcc/co *** 2866,2874 **** 12c091d70d76335ee17cd22ab10bde54 gcc/config/aarch64/t-aarch64-linux 9d04cfe9d407d38bf2ced1c1414ea1bd gcc/config/alpha/alpha-modes.def 0907de78725031c4e92e0a7950d98cee gcc/config/alpha/alpha-protos.h ! 12c66d725a508413f822c0417424c9b4 gcc/config/alpha/alpha.c 5d0b9ec764a170cb48b345b87fc95255 gcc/config/alpha/alpha.h ! 85fbcbe6465679db6cd0fa26b739a255 gcc/config/alpha/alpha.md 0941b77621787a816b2ab1b33709601e gcc/config/alpha/alpha.opt 4a3f4d74e5b42dadac3058c6b6492624 gcc/config/alpha/constraints.md a3151413a9b2c0a6241d36ef84864866 gcc/config/alpha/driver-alpha.c --- 2866,2874 ---- 12c091d70d76335ee17cd22ab10bde54 gcc/config/aarch64/t-aarch64-linux 9d04cfe9d407d38bf2ced1c1414ea1bd gcc/config/alpha/alpha-modes.def 0907de78725031c4e92e0a7950d98cee gcc/config/alpha/alpha-protos.h ! 5b352bab4c3826f0d9a64026cc21d0aa gcc/config/alpha/alpha.c 5d0b9ec764a170cb48b345b87fc95255 gcc/config/alpha/alpha.h ! dca3410723c244ac12ea960455275089 gcc/config/alpha/alpha.md 0941b77621787a816b2ab1b33709601e gcc/config/alpha/alpha.opt 4a3f4d74e5b42dadac3058c6b6492624 gcc/config/alpha/constraints.md a3151413a9b2c0a6241d36ef84864866 gcc/config/alpha/driver-alpha.c *************** b094c9cfc88292b80a5c169910b12a0a gcc/co *** 2902,2908 **** 905d168ca431cc9f433aef653733b5b6 gcc/config/arm/arm-protos.h 4b4866800523024414368d9d07b2dcd9 gcc/config/arm/arm-tables.opt 5a53df61b7545ff777b7254670f8f3af gcc/config/arm/arm-tune.md ! 2414e20ae48926cb79a38e52d9d8256f gcc/config/arm/arm.c 8dea99c277e6311e28191436b14df948 gcc/config/arm/arm.h 0b81ded9e1a32f93445123c37f50761d gcc/config/arm/arm.md 4c04a7fdc5fcff73b85309be29d86058 gcc/config/arm/arm.opt --- 2902,2908 ---- 905d168ca431cc9f433aef653733b5b6 gcc/config/arm/arm-protos.h 4b4866800523024414368d9d07b2dcd9 gcc/config/arm/arm-tables.opt 5a53df61b7545ff777b7254670f8f3af gcc/config/arm/arm-tune.md ! 7d5a71544f7c73fea23a158eea232509 gcc/config/arm/arm.c 8dea99c277e6311e28191436b14df948 gcc/config/arm/arm.h 0b81ded9e1a32f93445123c37f50761d gcc/config/arm/arm.md 4c04a7fdc5fcff73b85309be29d86058 gcc/config/arm/arm.opt *************** b56b191eecc402066a8b343050d291e1 gcc/co *** 2949,2955 **** 276e5d88d8a84682984e16f144ff45dd gcc/config/arm/neon-gen.ml e72c4e462cad59d37e0371afab4f7fb6 gcc/config/arm/neon-schedgen.ml 8255720b7ec13a1f512b56c97012e026 gcc/config/arm/neon-testgen.ml ! e8a6d64c1ebfaa75d61265581ec63322 gcc/config/arm/neon.md a7bf58e32a150f5d91a2a0a21dd24e73 gcc/config/arm/neon.ml de92ae7e6ca13ac5c8e0364a78d3dea7 gcc/config/arm/netbsd-elf.h 0875ea7b582c99fe8c5f650e701f6385 gcc/config/arm/predicates.md --- 2949,2955 ---- 276e5d88d8a84682984e16f144ff45dd gcc/config/arm/neon-gen.ml e72c4e462cad59d37e0371afab4f7fb6 gcc/config/arm/neon-schedgen.ml 8255720b7ec13a1f512b56c97012e026 gcc/config/arm/neon-testgen.ml ! efb1ce51b251e348246f988052fe50a6 gcc/config/arm/neon.md a7bf58e32a150f5d91a2a0a21dd24e73 gcc/config/arm/neon.ml de92ae7e6ca13ac5c8e0364a78d3dea7 gcc/config/arm/netbsd-elf.h 0875ea7b582c99fe8c5f650e701f6385 gcc/config/arm/predicates.md *************** c74b612ea78e3fe3115440eb445a363f gcc/co *** 2971,2977 **** 60730710802ae80aeae4208695e82934 gcc/config/arm/unknown-elf.h 8dc8e38bd1b693ed003af2ea5c30e414 gcc/config/arm/unspecs.md af9e31ade253a5825467e27b62f92a74 gcc/config/arm/vec-common.md ! d370369a4c0c1d9139b025aeff3dfa6b gcc/config/arm/vfp.md 4606f73283303ca4a0c1f4d8bb737781 gcc/config/arm/vfp11.md 50402cb52a1a461a25c715fb08f6b06c gcc/config/arm/vxworks.h fb9eed0718285fc0e5c65020c7e37c48 gcc/config/arm/vxworks.opt --- 2971,2977 ---- 60730710802ae80aeae4208695e82934 gcc/config/arm/unknown-elf.h 8dc8e38bd1b693ed003af2ea5c30e414 gcc/config/arm/unspecs.md af9e31ade253a5825467e27b62f92a74 gcc/config/arm/vec-common.md ! a91779f6f1abe8f8e5de15673295d75c gcc/config/arm/vfp.md 4606f73283303ca4a0c1f4d8bb737781 gcc/config/arm/vfp11.md 50402cb52a1a461a25c715fb08f6b06c gcc/config/arm/vxworks.h fb9eed0718285fc0e5c65020c7e37c48 gcc/config/arm/vxworks.opt *************** a17a638dc98f3f18b0e13448c69e1e65 gcc/co *** 2980,3009 **** a1168d98724421f5bd6d3285ec713c92 gcc/config/avr/avr-c.c 2bfb88cf483d49c3527982a2a644df8c gcc/config/avr/avr-devices.c ee97098a9434d6184f07c75d1f50aa20 gcc/config/avr/avr-dimode.md ! edf5c27427fc7c4ff3d874a4f504cf47 gcc/config/avr/avr-fixed.md 32bb7fb30251aaade2a495d79af47f9f gcc/config/avr/avr-log.c ! af82c86826db68fb3d5c4554f64c57ea gcc/config/avr/avr-mcus.def b13f3ac768820728756433782943d231 gcc/config/avr/avr-modes.def ! 260802b888a99662c6860186cc2c4bd8 gcc/config/avr/avr-protos.h 39c73e900bd48ba5e4e439c9e7e57c58 gcc/config/avr/avr-stdint.h ! 85a5ebbe78be35a7292ebd00a28f2a2f gcc/config/avr/avr-tables.opt ! 6affc68f966f493dbe9516e634325404 gcc/config/avr/avr.c 7e1c1782fda865f163c108f7d2bd14d7 gcc/config/avr/avr.h ! 1ea0ea08d7515b4c3a889457afdb1eaa gcc/config/avr/avr.md ! a7fc03d9ed6fd42d968e5c01022eff17 gcc/config/avr/avr.opt b051562057ef0c881a45ef5897a1ceb7 gcc/config/avr/avrlibc.h a9e31ccdad36999ad034531223c6af7b gcc/config/avr/builtins.def 5a54529823c5c0a0ec7194f70cd4d077 gcc/config/avr/constraints.md 5dca69f34b5f9c521a285cf7829f5714 gcc/config/avr/driver-avr.c 637939858818e9c2d48e32cc79fa4012 gcc/config/avr/elf.h ! af69314026052b0eff142c47c7b98a56 gcc/config/avr/gen-avr-mmcu-texi.c 9aabbc5578697647065bca5658099b28 gcc/config/avr/genmultilib.awk f3365c4aee09763d3a7fbd6d87a3372b gcc/config/avr/genopt.sh 88efe4be503d008324520466eb3bfdff gcc/config/avr/predicates.md 88efc9ac6ff9680e00197eaa56c02dce gcc/config/avr/rtems.h 69d0a05957dfaa9f38e3ba072fbc6f61 gcc/config/avr/stdfix.h a52e886520716769137be24aa93fd333 gcc/config/avr/t-avr ! ff32a3afbc90b7e126f3d94e864e4230 gcc/config/avr/t-multilib 6aa29f64f366fd362ab1f548d54415cc gcc/config/avr/t-rtems 84c0f11e698cc880f403548f35ab0ec1 gcc/config/bfin/bfin-modes.def e93b72a51566a7f787512b81920e7a6d gcc/config/bfin/bfin-opts.h --- 2980,3009 ---- a1168d98724421f5bd6d3285ec713c92 gcc/config/avr/avr-c.c 2bfb88cf483d49c3527982a2a644df8c gcc/config/avr/avr-devices.c ee97098a9434d6184f07c75d1f50aa20 gcc/config/avr/avr-dimode.md ! 68f60dd93c98b956f23789c497e49701 gcc/config/avr/avr-fixed.md 32bb7fb30251aaade2a495d79af47f9f gcc/config/avr/avr-log.c ! 80b36806b62c1194f1a41ff37d8632b1 gcc/config/avr/avr-mcus.def b13f3ac768820728756433782943d231 gcc/config/avr/avr-modes.def ! 1efebb39956e5e1ef56c691b3dd16010 gcc/config/avr/avr-protos.h 39c73e900bd48ba5e4e439c9e7e57c58 gcc/config/avr/avr-stdint.h ! 6e6e5d80331adb5ba7bf70a773a04af0 gcc/config/avr/avr-tables.opt ! 1bfcf7809f69d7f668b4dd36a2a00505 gcc/config/avr/avr.c 7e1c1782fda865f163c108f7d2bd14d7 gcc/config/avr/avr.h ! 71e62463511dc47f52ca6bb8366cd6bf gcc/config/avr/avr.md ! 9a7d42cbf8f07ffe8defeab349d2605d gcc/config/avr/avr.opt b051562057ef0c881a45ef5897a1ceb7 gcc/config/avr/avrlibc.h a9e31ccdad36999ad034531223c6af7b gcc/config/avr/builtins.def 5a54529823c5c0a0ec7194f70cd4d077 gcc/config/avr/constraints.md 5dca69f34b5f9c521a285cf7829f5714 gcc/config/avr/driver-avr.c 637939858818e9c2d48e32cc79fa4012 gcc/config/avr/elf.h ! 5e3c70cda32e029807a75757c1940910 gcc/config/avr/gen-avr-mmcu-texi.c 9aabbc5578697647065bca5658099b28 gcc/config/avr/genmultilib.awk f3365c4aee09763d3a7fbd6d87a3372b gcc/config/avr/genopt.sh 88efe4be503d008324520466eb3bfdff gcc/config/avr/predicates.md 88efc9ac6ff9680e00197eaa56c02dce gcc/config/avr/rtems.h 69d0a05957dfaa9f38e3ba072fbc6f61 gcc/config/avr/stdfix.h a52e886520716769137be24aa93fd333 gcc/config/avr/t-avr ! 3e8b783e87b45619e57cdcae6e52d512 gcc/config/avr/t-multilib 6aa29f64f366fd362ab1f548d54415cc gcc/config/avr/t-rtems 84c0f11e698cc880f403548f35ab0ec1 gcc/config/bfin/bfin-modes.def e93b72a51566a7f787512b81920e7a6d gcc/config/bfin/bfin-opts.h *************** c606cc01ca984ed0b47214c469cb1dcf gcc/co *** 3076,3084 **** 5f1a0c303bbe728e3d449b80ce01cb52 gcc/config/darwin-driver.c 4c1d1d2bbb3434a980ac858f9e0b77bd gcc/config/darwin-f.c 2603254c641b884801faee6075bc20c1 gcc/config/darwin-ppc-ldouble-patch.def ! 848fd05f74f5d7915f452e81acbd2a05 gcc/config/darwin-protos.h 5e536d2b4a91688c1cbcdc2429e07780 gcc/config/darwin-sections.def ! 35933aa5f0ade1bde124d050f6e526cc gcc/config/darwin.c 26a2f9c449f7294a56013bf7b62c9bd3 gcc/config/darwin.h a2f9c51feaa2cd2cc16bc9db4223fe91 gcc/config/darwin.opt 4525380607e9883a09de919ef082d632 gcc/config/darwin10.h --- 3076,3084 ---- 5f1a0c303bbe728e3d449b80ce01cb52 gcc/config/darwin-driver.c 4c1d1d2bbb3434a980ac858f9e0b77bd gcc/config/darwin-f.c 2603254c641b884801faee6075bc20c1 gcc/config/darwin-ppc-ldouble-patch.def ! d3310030788b3ed1fe3acec81d41b527 gcc/config/darwin-protos.h 5e536d2b4a91688c1cbcdc2429e07780 gcc/config/darwin-sections.def ! 68c0dcffa5688a038a89a17b9857f4d0 gcc/config/darwin.c 26a2f9c449f7294a56013bf7b62c9bd3 gcc/config/darwin.h a2f9c51feaa2cd2cc16bc9db4223fe91 gcc/config/darwin.opt 4525380607e9883a09de919ef082d632 gcc/config/darwin10.h *************** cb2e948f289990ca1548d4b52bebb2e8 gcc/co *** 3168,3174 **** 20b2527fbd755cfff6d6f9911a4d0235 gcc/config/i386/biarch64.h 71ea68772e9a6e13945ce709b42d07f8 gcc/config/i386/biarchx32.h aa501207205f1326bd8aaf15efd460a4 gcc/config/i386/bmi2intrin.h ! f41240b004e3d59c4396658b24de0f6c gcc/config/i386/bmiintrin.h 3e8f794c4e58fe25047f68e79097d481 gcc/config/i386/bmmintrin.h 3cef6b5ae2efc24fd715e82ff6211b9f gcc/config/i386/bsd.h e30b6772649ab0556a6d46cd518c1298 gcc/config/i386/btver2.md --- 3168,3174 ---- 20b2527fbd755cfff6d6f9911a4d0235 gcc/config/i386/biarch64.h 71ea68772e9a6e13945ce709b42d07f8 gcc/config/i386/biarchx32.h aa501207205f1326bd8aaf15efd460a4 gcc/config/i386/bmi2intrin.h ! dd06b6e981ec183fe3fad7987eb7acd2 gcc/config/i386/bmiintrin.h 3e8f794c4e58fe25047f68e79097d481 gcc/config/i386/bmmintrin.h 3cef6b5ae2efc24fd715e82ff6211b9f gcc/config/i386/bsd.h e30b6772649ab0556a6d46cd518c1298 gcc/config/i386/btver2.md *************** c568b4759b79c17cb4d8e8d4568ef39e gcc/co *** 3186,3192 **** 4785ccfc47eaaaa7c62dbfc05f9d8b86 gcc/config/i386/djgpp-stdint.h dd1eaefa2553dd1e555c2733ef551527 gcc/config/i386/djgpp.h d1586a91e8a2175dd88e5511afe55d0e gcc/config/i386/djgpp.opt ! 8b442d9f51346bcda565c9a9a98a853c gcc/config/i386/driver-i386.c fb06e2d9664a39db5db3c6c0679de0ce gcc/config/i386/emmintrin.h c88535fbf132c1f278c15394aef3340b gcc/config/i386/f16cintrin.h 2ba04392850cfd19dd7c92d443455ed2 gcc/config/i386/fma4intrin.h --- 3186,3192 ---- 4785ccfc47eaaaa7c62dbfc05f9d8b86 gcc/config/i386/djgpp-stdint.h dd1eaefa2553dd1e555c2733ef551527 gcc/config/i386/djgpp.h d1586a91e8a2175dd88e5511afe55d0e gcc/config/i386/djgpp.opt ! 13a87faf7db869b24190dadbce5f7796 gcc/config/i386/driver-i386.c fb06e2d9664a39db5db3c6c0679de0ce gcc/config/i386/emmintrin.h c88535fbf132c1f278c15394aef3340b gcc/config/i386/f16cintrin.h 2ba04392850cfd19dd7c92d443455ed2 gcc/config/i386/fma4intrin.h *************** be3b23219ebac7970d1f9b1d5f82e4de gcc/co *** 3212,3220 **** 2ba789f83c27d255333f01d514c1592f gcc/config/i386/i386-modes.def 00be754e0e6424cf60e02acf796f5819 gcc/config/i386/i386-opts.h e68f96b9008364ea0d5eabe9de379b54 gcc/config/i386/i386-protos.h ! c5c845148d816e1934326ab988474739 gcc/config/i386/i386.c 5d7fdc81fdfd7ebcb48f93872a3cd80b gcc/config/i386/i386.h ! 96f318e54ed0539d96844cb7f8e18fcc gcc/config/i386/i386.md b7e49bcb9fea7b61eab73988a17ee919 gcc/config/i386/i386.opt 58bbfa9b8ce4fd4126c4ab71d0bd9476 gcc/config/i386/i386elf.h 155007e2bb73902c958d03bbebf517ce gcc/config/i386/ia32intrin.h --- 3212,3220 ---- 2ba789f83c27d255333f01d514c1592f gcc/config/i386/i386-modes.def 00be754e0e6424cf60e02acf796f5819 gcc/config/i386/i386-opts.h e68f96b9008364ea0d5eabe9de379b54 gcc/config/i386/i386-protos.h ! 6b15923536cf29692d0c02c1f7715e56 gcc/config/i386/i386.c 5d7fdc81fdfd7ebcb48f93872a3cd80b gcc/config/i386/i386.h ! fab075e6624539644c091d9d2a2d77d6 gcc/config/i386/i386.md b7e49bcb9fea7b61eab73988a17ee919 gcc/config/i386/i386.opt 58bbfa9b8ce4fd4126c4ab71d0bd9476 gcc/config/i386/i386elf.h 155007e2bb73902c958d03bbebf517ce gcc/config/i386/ia32intrin.h *************** d8d2635dbaad7d1cc58a31bba70ba725 gcc/co *** 3253,3259 **** 3ea357fcceb71528a81f46bb5656beb1 gcc/config/i386/pmmintrin.h fa37ab5ba879ae8c48926987b4a7577a gcc/config/i386/popcntintrin.h 29125c3b6201eec3fef6a187635c67c6 gcc/config/i386/ppro.md ! 8961c2a135215449c331c689b3111144 gcc/config/i386/predicates.md bd747c19ad89b5915faddbdb7545a547 gcc/config/i386/prfchwintrin.h bd2be3bd8743ee55b2489bbd906815c0 gcc/config/i386/rdos.h 455ec7883b27d216ff17dff5766f837d gcc/config/i386/rdos64.h --- 3253,3259 ---- 3ea357fcceb71528a81f46bb5656beb1 gcc/config/i386/pmmintrin.h fa37ab5ba879ae8c48926987b4a7577a gcc/config/i386/popcntintrin.h 29125c3b6201eec3fef6a187635c67c6 gcc/config/i386/ppro.md ! 6e7e12a0b3f7faf71006c12e3aaac019 gcc/config/i386/predicates.md bd747c19ad89b5915faddbdb7545a547 gcc/config/i386/prfchwintrin.h bd2be3bd8743ee55b2489bbd906815c0 gcc/config/i386/rdos.h 455ec7883b27d216ff17dff5766f837d gcc/config/i386/rdos64.h *************** d6d0b9740afd348fc7288a251b6c7ecb gcc/co *** 3263,3269 **** c7dbf91cae1df04f0c69d17bdb9eb739 gcc/config/i386/smmintrin.h 356c9d5cf06fc52a905dc4ba4b8d1dd1 gcc/config/i386/sol2-bi.h a0c6c5a1327e7aa2252656a0bd72921a gcc/config/i386/sol2.h ! 2f372b859f6d313351c5fabfe9f413a6 gcc/config/i386/sse.md 133ed82593d2dcb4ebd649ccae429e2f gcc/config/i386/ssemath.h 779935bb416cf8724ffb3fa38dc4459b gcc/config/i386/sync.md 6c77cea4e52de21183c1ef931d6fce32 gcc/config/i386/sysv4.h --- 3263,3269 ---- c7dbf91cae1df04f0c69d17bdb9eb739 gcc/config/i386/smmintrin.h 356c9d5cf06fc52a905dc4ba4b8d1dd1 gcc/config/i386/sol2-bi.h a0c6c5a1327e7aa2252656a0bd72921a gcc/config/i386/sol2.h ! 52497d401e248e7cee306ee81319fc2a gcc/config/i386/sse.md 133ed82593d2dcb4ebd649ccae429e2f gcc/config/i386/ssemath.h 779935bb416cf8724ffb3fa38dc4459b gcc/config/i386/sync.md 6c77cea4e52de21183c1ef931d6fce32 gcc/config/i386/sysv4.h *************** ac803092fce09cef5f39fbf0bd1ee56d gcc/co *** 3299,3305 **** 58a984112f85a94b6be59817a4c57d48 gcc/config/i386/x-darwin 86959b066ad3234f6b1aec2533c8049d gcc/config/i386/x-i386 0c37bb392fd07fdf2cdb3c02d7cc0e3a gcc/config/i386/x-mingw32 ! 2b92813e977d23b3a6fad4639359f636 gcc/config/i386/x86-64.h 749986da182c6615afce92a262a98b52 gcc/config/i386/x86intrin.h 95770cf9b1b03774a6a7fe23f1f4c649 gcc/config/i386/xm-cygwin.h 3685fb0714327699396f20c9a0fbbd83 gcc/config/i386/xm-djgpp.h --- 3299,3305 ---- 58a984112f85a94b6be59817a4c57d48 gcc/config/i386/x-darwin 86959b066ad3234f6b1aec2533c8049d gcc/config/i386/x-i386 0c37bb392fd07fdf2cdb3c02d7cc0e3a gcc/config/i386/x-mingw32 ! 165bebe6d0a5a7ced2d041d215c51258 gcc/config/i386/x86-64.h 749986da182c6615afce92a262a98b52 gcc/config/i386/x86intrin.h 95770cf9b1b03774a6a7fe23f1f4c649 gcc/config/i386/xm-cygwin.h 3685fb0714327699396f20c9a0fbbd83 gcc/config/i386/xm-djgpp.h *************** f6ece491057229f3a7db89a70039abbd gcc/co *** 3624,3632 **** 134a862333cd36aa9be58272c66ef672 gcc/config/pa/pa-openbsd.h 03fdc2c22864cbd070b6e87110142e0d gcc/config/pa/pa-opts.h e2fc4a1737dbed493a8abc267b7764c4 gcc/config/pa/pa-protos.h ! 3fad6fb19a70e43f915234d93bb564be gcc/config/pa/pa.c aac106ded96613868c7b978f31ba4146 gcc/config/pa/pa.h ! 18eac5bc9177b98bbfa3bb6360ce71c8 gcc/config/pa/pa.md 4da312d74afa896f8ad580f2d13c7995 gcc/config/pa/pa.opt 307965ddc82931797f2c18d014fd9545 gcc/config/pa/pa32-linux.h 016072534b66c153049cad0d853e1afc gcc/config/pa/pa32-openbsd.h --- 3624,3632 ---- 134a862333cd36aa9be58272c66ef672 gcc/config/pa/pa-openbsd.h 03fdc2c22864cbd070b6e87110142e0d gcc/config/pa/pa-opts.h e2fc4a1737dbed493a8abc267b7764c4 gcc/config/pa/pa-protos.h ! 05ee13c14a9fc7c69630704a72025755 gcc/config/pa/pa.c aac106ded96613868c7b978f31ba4146 gcc/config/pa/pa.h ! 1e689ba950a9dcff7946d1a638aa0897 gcc/config/pa/pa.md 4da312d74afa896f8ad580f2d13c7995 gcc/config/pa/pa.opt 307965ddc82931797f2c18d014fd9545 gcc/config/pa/pa32-linux.h 016072534b66c153049cad0d853e1afc gcc/config/pa/pa32-openbsd.h *************** bfe3112e1e2013f04d3a8b82c5746919 gcc/co *** 3706,3713 **** de1e58e023126d18861ecd6bf950be44 gcc/config/rs6000/darwin64.h 274a1a4679ee4d763744361d947515d0 gcc/config/rs6000/darwin7.h 502c371891710ae9a4526980a5d99ab7 gcc/config/rs6000/darwin8.h ! 5dd5c8a3647eb27ef1ff9d1d37e01bd1 gcc/config/rs6000/default64.h ! c1a28adb9f39e8dfe77f2c37eb91cfec gcc/config/rs6000/dfp.md 518da3fd76509f1214bf541cd37fa721 gcc/config/rs6000/driver-rs6000.c 647c9512f8e2b1e7b9aaaa0bcfbe8eba gcc/config/rs6000/e300c2c3.md 20c280571996373aeda564375e7b8c6b gcc/config/rs6000/e500.h --- 3706,3713 ---- de1e58e023126d18861ecd6bf950be44 gcc/config/rs6000/darwin64.h 274a1a4679ee4d763744361d947515d0 gcc/config/rs6000/darwin7.h 502c371891710ae9a4526980a5d99ab7 gcc/config/rs6000/darwin8.h ! 1ba3379bafb9241886a65a9413900250 gcc/config/rs6000/default64.h ! aa49932c10047c9e55094e79e082393d gcc/config/rs6000/dfp.md 518da3fd76509f1214bf541cd37fa721 gcc/config/rs6000/driver-rs6000.c 647c9512f8e2b1e7b9aaaa0bcfbe8eba gcc/config/rs6000/e300c2c3.md 20c280571996373aeda564375e7b8c6b gcc/config/rs6000/e500.h *************** c9164c6d1f0780efca921dd6473e896a gcc/co *** 3724,3734 **** 2dd91d7170e843afa16ce9773a0402f9 gcc/config/rs6000/genopt.sh 2d6e470d61d40f02ed935702b8656702 gcc/config/rs6000/host-darwin.c 15da2c30dd5e1822354f016081aa22f1 gcc/config/rs6000/host-ppc64-darwin.c ! 6039dc316483dd6a7afa6bfb10fffe02 gcc/config/rs6000/linux.h ! abce75f1c5fb0bc967c27b2ff1e49c0c gcc/config/rs6000/linux64.h 8234299aeb4439357d76de9db97babad gcc/config/rs6000/linux64.opt ! 8de856596606d746e9c2a231678a3b75 gcc/config/rs6000/linuxaltivec.h ! 76f593c437e11a9f2cf9568758593265 gcc/config/rs6000/linuxspe.h ca1700694d7046be612275378c4200e5 gcc/config/rs6000/lynx.h 0cc3c5f9101501b8253ce3176c3ffce4 gcc/config/rs6000/milli.exp b129a9ba5a810466224e0a535b3198a7 gcc/config/rs6000/mpc.md --- 3724,3734 ---- 2dd91d7170e843afa16ce9773a0402f9 gcc/config/rs6000/genopt.sh 2d6e470d61d40f02ed935702b8656702 gcc/config/rs6000/host-darwin.c 15da2c30dd5e1822354f016081aa22f1 gcc/config/rs6000/host-ppc64-darwin.c ! 4737b441859039ee14ec15323413eccd gcc/config/rs6000/linux.h ! 135b9781f17fdf76b3c025759afd0763 gcc/config/rs6000/linux64.h 8234299aeb4439357d76de9db97babad gcc/config/rs6000/linux64.opt ! c050ce5476e06a291aa23a8cdd84935b gcc/config/rs6000/linuxaltivec.h ! 67560fa80452cf101107f94c34a67013 gcc/config/rs6000/linuxspe.h ca1700694d7046be612275378c4200e5 gcc/config/rs6000/lynx.h 0cc3c5f9101501b8253ce3176c3ffce4 gcc/config/rs6000/milli.exp b129a9ba5a810466224e0a535b3198a7 gcc/config/rs6000/mpc.md *************** fe39ced9a340b2083ec767453b517ce3 gcc/co *** 3742,3748 **** ffc3754101a9853c46e39826585bc448 gcc/config/rs6000/power7.md aeb3fafb226082ace5572c5a6bc2c12f gcc/config/rs6000/ppc-asm.h 47e26b4e2997e1eb1fa323fb7f83cb35 gcc/config/rs6000/ppu_intrinsics.h ! cdf9b8af2018b945cee20adb91bd1f85 gcc/config/rs6000/predicates.md 8d935aff549ffe3c866f9dcfa9d9a276 gcc/config/rs6000/rs6000-builtin.def fd14a2221437963677c27841ec0dd8d8 gcc/config/rs6000/rs6000-c.c 9675b0b5128d596388c45798ff833082 gcc/config/rs6000/rs6000-cpus.def --- 3742,3748 ---- ffc3754101a9853c46e39826585bc448 gcc/config/rs6000/power7.md aeb3fafb226082ace5572c5a6bc2c12f gcc/config/rs6000/ppc-asm.h 47e26b4e2997e1eb1fa323fb7f83cb35 gcc/config/rs6000/ppu_intrinsics.h ! d30b2099e564babfca0211dae4442b29 gcc/config/rs6000/predicates.md 8d935aff549ffe3c866f9dcfa9d9a276 gcc/config/rs6000/rs6000-builtin.def fd14a2221437963677c27841ec0dd8d8 gcc/config/rs6000/rs6000-c.c 9675b0b5128d596388c45798ff833082 gcc/config/rs6000/rs6000-cpus.def *************** fd14a2221437963677c27841ec0dd8d8 gcc/co *** 3750,3771 **** da00f6c375e270a80467643901085b7a gcc/config/rs6000/rs6000-opts.h 8f6568fd06b952b2aebd50c12ded676e gcc/config/rs6000/rs6000-protos.h 3d464892d4463d95ff027607410640cb gcc/config/rs6000/rs6000-tables.opt ! 3cb6d724d6f3099957689cf84e1824cc gcc/config/rs6000/rs6000.c ! 5621920a815da1670c86af3fa77c8318 gcc/config/rs6000/rs6000.h ! 6dd2cc43e0c84b0321f1863c031567a7 gcc/config/rs6000/rs6000.md e6e84f1bc31399685617cf4a1a97e37e gcc/config/rs6000/rs6000.opt e1d48528802143c9fde5076eb841eea6 gcc/config/rs6000/rs64.md ! ed80ac892f8708fb0984d9176091a0b4 gcc/config/rs6000/rtems.h 053e158620d93e03e5cca4dfb9fdb5c7 gcc/config/rs6000/secureplt.h 6de3a0be06280c4b673708cecd05e608 gcc/config/rs6000/si2vmx.h d41abb901c584de2a35db0a208e96360 gcc/config/rs6000/singlefp.h 03636ed5c6dcefbc165211cb0cefb0e7 gcc/config/rs6000/spe.h ! 5facad33c9fef4e775b0c6edd7fc92b5 gcc/config/rs6000/spe.md 11b78241f26ad456c4c24d2e301d6cae gcc/config/rs6000/spu2vmx.h 49f419bf96b5c0f1eefbaa88b9f0bf68 gcc/config/rs6000/sync.md ! 7ba883f78f571203a07970ae116d6198 gcc/config/rs6000/sysv4.h 1a2f919a3dce90c9bd0c032097e9c929 gcc/config/rs6000/sysv4.opt ! 94584c0dfede5b8925a5eb8b640f5dbd gcc/config/rs6000/sysv4le.h a487a9ff3cef979e51c91d36df02ae31 gcc/config/rs6000/t-aix43 302e3b21256a57e0053542a3bf992006 gcc/config/rs6000/t-aix52 f3250b9720d1149346f1ef8e21b52ea9 gcc/config/rs6000/t-darwin64 --- 3750,3771 ---- da00f6c375e270a80467643901085b7a gcc/config/rs6000/rs6000-opts.h 8f6568fd06b952b2aebd50c12ded676e gcc/config/rs6000/rs6000-protos.h 3d464892d4463d95ff027607410640cb gcc/config/rs6000/rs6000-tables.opt ! 4193ef7063f16e67fa7ad1b7c19728ee gcc/config/rs6000/rs6000.c ! 7be233a5f94f3dc0572dde43efdbf221 gcc/config/rs6000/rs6000.h ! 0bb472c9e7c6d3dd18fc2c4a52f7792c gcc/config/rs6000/rs6000.md e6e84f1bc31399685617cf4a1a97e37e gcc/config/rs6000/rs6000.opt e1d48528802143c9fde5076eb841eea6 gcc/config/rs6000/rs64.md ! cffe153c5a922082f3e53a9f72f76cf0 gcc/config/rs6000/rtems.h 053e158620d93e03e5cca4dfb9fdb5c7 gcc/config/rs6000/secureplt.h 6de3a0be06280c4b673708cecd05e608 gcc/config/rs6000/si2vmx.h d41abb901c584de2a35db0a208e96360 gcc/config/rs6000/singlefp.h 03636ed5c6dcefbc165211cb0cefb0e7 gcc/config/rs6000/spe.h ! 899ac44192250defa16c95d920330158 gcc/config/rs6000/spe.md 11b78241f26ad456c4c24d2e301d6cae gcc/config/rs6000/spu2vmx.h 49f419bf96b5c0f1eefbaa88b9f0bf68 gcc/config/rs6000/sync.md ! b7b731f89b911c70249b4727833bbc22 gcc/config/rs6000/sysv4.h 1a2f919a3dce90c9bd0c032097e9c929 gcc/config/rs6000/sysv4.opt ! 6e8dceb30250da47780ede6ed5ff1caf gcc/config/rs6000/sysv4le.h a487a9ff3cef979e51c91d36df02ae31 gcc/config/rs6000/t-aix43 302e3b21256a57e0053542a3bf992006 gcc/config/rs6000/t-aix52 f3250b9720d1149346f1ef8e21b52ea9 gcc/config/rs6000/t-darwin64 *************** dbfa630b44bc40188400c557bcae24ac gcc/co *** 3819,3833 **** fb146efd086d9001c0d468a92e9f03ee gcc/config/s390/2817.md 2162edbc9ce1aea7e5dd777928f486ff gcc/config/s390/2827.md aad75e9cfee7b4a3ae7452e8321e3ecf gcc/config/s390/constraints.md 92a52bb44cb2ebf7e6fb7c8dea5af752 gcc/config/s390/linux.h ! be8743846f21af9066de8cba9e12264e gcc/config/s390/predicates.md ! fb549ecab8d9cbf16fd4acfd852005be gcc/config/s390/s390-modes.def 609500eb4414e9e848d3804134bfa79e gcc/config/s390/s390-opts.h ! 77be6ad9560760beee18db2dc39a399e gcc/config/s390/s390-protos.h ! e7e5e56449f0d1d74b1c9448ec8b437d gcc/config/s390/s390.c ! 17de719f00add4e6d0efb0717c3fdad1 gcc/config/s390/s390.h ! bd8f41e26383354f911db56eeef94a4b gcc/config/s390/s390.md ! 3d23d388a3a4ff410bdfbb8af7160651 gcc/config/s390/s390.opt 1f405766a3e2d465229b0197ef1a6107 gcc/config/s390/s390x.h 551847ee4c38fa1a7e95fd93cdb32f17 gcc/config/s390/t-linux64 e4669ad8dded968c0a14dc67f5c32fcc gcc/config/s390/tpf.h --- 3819,3836 ---- fb146efd086d9001c0d468a92e9f03ee gcc/config/s390/2817.md 2162edbc9ce1aea7e5dd777928f486ff gcc/config/s390/2827.md aad75e9cfee7b4a3ae7452e8321e3ecf gcc/config/s390/constraints.md + 70904ee44e0e3149fa54d9adb8f7ada6 gcc/config/s390/htmintrin.h + dfc9851f6abd0415adb8857f29e7a462 gcc/config/s390/htmxlintrin.h 92a52bb44cb2ebf7e6fb7c8dea5af752 gcc/config/s390/linux.h ! 6d4923ef6a6131547fce4df327193407 gcc/config/s390/predicates.md ! 90bd21ef575e0643d65569d1a4f9aad9 gcc/config/s390/s390-modes.def 609500eb4414e9e848d3804134bfa79e gcc/config/s390/s390-opts.h ! d8aa92406ebc55249f2b8a00785f318a gcc/config/s390/s390-protos.h ! 048044ccfbc8a81feab6b0a57b37ba69 gcc/config/s390/s390.c ! 01afd5c43ece4c467203727c3f1cb6bc gcc/config/s390/s390.h ! f778fea72386d9dc1e51a21816c8cd92 gcc/config/s390/s390.md ! d0816bab7ca11354dc110095c5fb3077 gcc/config/s390/s390.opt ! a6413643c6a352ed2a285f593cc2f96d gcc/config/s390/s390intrin.h 1f405766a3e2d465229b0197ef1a6107 gcc/config/s390/s390x.h 551847ee4c38fa1a7e95fd93cdb32f17 gcc/config/s390/t-linux64 e4669ad8dded968c0a14dc67f5c32fcc gcc/config/s390/tpf.h *************** bde213ebbaee311cfdec4ae74a0a1504 gcc/co *** 3864,3870 **** 9257eb3435a01969664ba8d20b35c44b gcc/config/sh/sh-protos.h 40b4f0cb9123b3cf3369a21bd5bd2229 gcc/config/sh/sh.c 43b4250562a6c95b5e25a336154bde1d gcc/config/sh/sh.h ! b683d9031e8486f4f8045c8874ae40c5 gcc/config/sh/sh.md f870631f7d199a77aee8c89b424d1c1d gcc/config/sh/sh.opt 1263fa72b2e5f7cbdf81a98d33bf721d gcc/config/sh/sh1.md c546660841ebe9ce572a566753eca775 gcc/config/sh/sh4-300.md --- 3867,3873 ---- 9257eb3435a01969664ba8d20b35c44b gcc/config/sh/sh-protos.h 40b4f0cb9123b3cf3369a21bd5bd2229 gcc/config/sh/sh.c 43b4250562a6c95b5e25a336154bde1d gcc/config/sh/sh.h ! ea89771d7600e8fc20f410cdfb949c97 gcc/config/sh/sh.md f870631f7d199a77aee8c89b424d1c1d gcc/config/sh/sh.opt 1263fa72b2e5f7cbdf81a98d33bf721d gcc/config/sh/sh1.md c546660841ebe9ce572a566753eca775 gcc/config/sh/sh4-300.md *************** b75e22d37c9c2f8ad66d81fc06b17f8c gcc/co *** 3920,3926 **** 02e826fd35d286ee705e2897332381f1 gcc/config/sparc/sparc-modes.def a63218af70abc2688f35e13614930208 gcc/config/sparc/sparc-opts.h 79c4b40cafeb9e3e0f6bac420c81ea13 gcc/config/sparc/sparc-protos.h ! f964a2b0b798180e7b64c4acec0988f5 gcc/config/sparc/sparc.c c43cef8b1ff14eb630e7ef69268baa37 gcc/config/sparc/sparc.h e22b95ffb78b46d132719ac69055a7fe gcc/config/sparc/sparc.md 4a7396c3931f8e1b4b161cef5c3b3eab gcc/config/sparc/sparc.opt --- 3923,3929 ---- 02e826fd35d286ee705e2897332381f1 gcc/config/sparc/sparc-modes.def a63218af70abc2688f35e13614930208 gcc/config/sparc/sparc-opts.h 79c4b40cafeb9e3e0f6bac420c81ea13 gcc/config/sparc/sparc-protos.h ! b40f408b47766dccbdba7023d92b2a94 gcc/config/sparc/sparc.c c43cef8b1ff14eb630e7ef69268baa37 gcc/config/sparc/sparc.h e22b95ffb78b46d132719ac69055a7fe gcc/config/sparc/sparc.md 4a7396c3931f8e1b4b161cef5c3b3eab gcc/config/sparc/sparc.opt *************** e467d0083111aa3269de2554300f8334 gcc/co *** 4088,4101 **** e8328aff294f934fd782b1db6da38f15 gcc/config/xtensa/xtensa.h 1100c938f8e867a8722d27de82af74f4 gcc/config/xtensa/xtensa.md 7a962c824317ff1c87b4122986416628 gcc/config/xtensa/xtensa.opt ! 311c850c87c466275493145d2f98644c gcc/configure ! 915fa4959c3fd7bb2c924eff9762bd4a gcc/configure.ac 7d2fe7eff451ca9f6f9f6d4f3b901ad3 gcc/convert.c 6e8b7421b0adf01e8252b45e8948f1cf gcc/convert.h 277effb7fe5e9806d8e9575b9beae14e gcc/coretypes.h 2d6dccd6278a672ff3a8fb498ea867f8 gcc/coverage.c ed37861da2131579a9b43a44244db398 gcc/coverage.h ! cea06768388d7aae2acaf3c757372b87 gcc/cp/ChangeLog d271e3663538ba1f3281cab3838e92cd gcc/cp/ChangeLog-1993 f5a44adbc05521162350ca409d1d95ce gcc/cp/ChangeLog-1994 ac55db48d964cb5469ff03c1cd3ee04d gcc/cp/ChangeLog-1995 --- 4091,4104 ---- e8328aff294f934fd782b1db6da38f15 gcc/config/xtensa/xtensa.h 1100c938f8e867a8722d27de82af74f4 gcc/config/xtensa/xtensa.md 7a962c824317ff1c87b4122986416628 gcc/config/xtensa/xtensa.opt ! 68667cd6d35e77ab2fb5ac59f695730c gcc/configure ! 77c0d6b55be8ff7e288c28d6240ef8c0 gcc/configure.ac 7d2fe7eff451ca9f6f9f6d4f3b901ad3 gcc/convert.c 6e8b7421b0adf01e8252b45e8948f1cf gcc/convert.h 277effb7fe5e9806d8e9575b9beae14e gcc/coretypes.h 2d6dccd6278a672ff3a8fb498ea867f8 gcc/coverage.c ed37861da2131579a9b43a44244db398 gcc/coverage.h ! 1a402eac8dea0723e61f61bdf0d280a7 gcc/cp/ChangeLog d271e3663538ba1f3281cab3838e92cd gcc/cp/ChangeLog-1993 f5a44adbc05521162350ca409d1d95ce gcc/cp/ChangeLog-1994 ac55db48d964cb5469ff03c1cd3ee04d gcc/cp/ChangeLog-1995 *************** c1c7801b9b0f379e702a4f6cb83972e7 gcc/cp *** 4120,4140 **** 9aa3cd9f75c785de9f51446e3f295515 gcc/cp/ChangeLog.tree-ssa d0adaf2e34318d9a6e06563673d2baeb gcc/cp/Make-lang.in a5696a858cc9f2fe6b75200cd0e01601 gcc/cp/NEWS ! 0efb24d3b1a7490a3bc439c32615ff11 gcc/cp/call.c 4668e3154b2720dece7f59a74768fc4a gcc/cp/cfns.gperf 3e5da5c104ccaeefe88cc051c49fa087 gcc/cp/cfns.h ! 6e8d760730cda99e2231d2fc7ed79621 gcc/cp/class.c b6e8c949212a55c4140d5853853b8832 gcc/cp/config-lang.in 8bc8e24bd8c2256e9db7737a9319f740 gcc/cp/cp-gimplify.c b58cad425e7a757d33958109aec0d5f2 gcc/cp/cp-lang.c 39fc1c8e9a41f6ac537e2688ecd93fa8 gcc/cp/cp-objcp-common.c bebed592086c4f5998cdbb22cb15c4ff gcc/cp/cp-objcp-common.h de5f0608b3ed90846da44a32c5582a52 gcc/cp/cp-tree.def ! d69cb2d52883b8af77866821bb0d1865 gcc/cp/cp-tree.h ! 4e3d4f7f732c2d345ba63215939722e0 gcc/cp/cvt.c 25917dc25eca9b0bbeb42839464fac3b gcc/cp/cxx-pretty-print.c 61f5739c6f20cceac3a22d7e2728b8f6 gcc/cp/cxx-pretty-print.h ! d737e22033ea3223ad003c0e08314c7f gcc/cp/decl.c 01f4c10ab7e6c042a9b220a017a7caeb gcc/cp/decl.h 6f178cf22ed4fb13f70c62382bc287e7 gcc/cp/decl2.c b57a052726f7af023695d9a46ef9b38f gcc/cp/dump.c --- 4123,4143 ---- 9aa3cd9f75c785de9f51446e3f295515 gcc/cp/ChangeLog.tree-ssa d0adaf2e34318d9a6e06563673d2baeb gcc/cp/Make-lang.in a5696a858cc9f2fe6b75200cd0e01601 gcc/cp/NEWS ! f19f767b523248ade1e801e5bf31b09f gcc/cp/call.c 4668e3154b2720dece7f59a74768fc4a gcc/cp/cfns.gperf 3e5da5c104ccaeefe88cc051c49fa087 gcc/cp/cfns.h ! b2e80fb525dee9d54114cd650a1e4981 gcc/cp/class.c b6e8c949212a55c4140d5853853b8832 gcc/cp/config-lang.in 8bc8e24bd8c2256e9db7737a9319f740 gcc/cp/cp-gimplify.c b58cad425e7a757d33958109aec0d5f2 gcc/cp/cp-lang.c 39fc1c8e9a41f6ac537e2688ecd93fa8 gcc/cp/cp-objcp-common.c bebed592086c4f5998cdbb22cb15c4ff gcc/cp/cp-objcp-common.h de5f0608b3ed90846da44a32c5582a52 gcc/cp/cp-tree.def ! 7081149db49e2f5226ae235dea8dd8cc gcc/cp/cp-tree.h ! 91d4c396d98399e9ee491450204640bc gcc/cp/cvt.c 25917dc25eca9b0bbeb42839464fac3b gcc/cp/cxx-pretty-print.c 61f5739c6f20cceac3a22d7e2728b8f6 gcc/cp/cxx-pretty-print.h ! c6c348a70e9c79279d83bc809e8117a9 gcc/cp/decl.c 01f4c10ab7e6c042a9b220a017a7caeb gcc/cp/decl.h 6f178cf22ed4fb13f70c62382bc287e7 gcc/cp/decl2.c b57a052726f7af023695d9a46ef9b38f gcc/cp/dump.c *************** fbec6d940fa3cee0b1fe26036b26e5a3 gcc/cp *** 4143,4168 **** ddcf267b9cc22edff977fe1cf38d8f2b gcc/cp/expr.c 45750dc2e50ca53a533ab357de22b304 gcc/cp/friend.c beb71c78ba1fc9349e7790c116460ed3 gcc/cp/g++spec.c ! 13cfdde692c67b469a76060cfe2541cb gcc/cp/init.c 4590371f76a1618ecb16e2dbb62bf330 gcc/cp/lang-specs.h 98dad6b273901f5b3fbaae9223500b78 gcc/cp/lex.c 1d0fd225aacaca48c253a6685f0e843a gcc/cp/mangle.c ! 3fb3fe84709c73fa93fff3609ffb6e46 gcc/cp/method.c ! 949d7d9a17f4b98367c721368d79e4ef gcc/cp/name-lookup.c 36b461e0a914364150a6ee35950d3c02 gcc/cp/name-lookup.h 872eacd3a268bd51abeaa61950e9219f gcc/cp/operators.def 20a6d327a96b86d209c489a7e22d2b33 gcc/cp/optimize.c ! 82e0f848421b824b78fc274867cd7647 gcc/cp/parser.c cbb7a6f8e3c74ce2162166e304006c6e gcc/cp/parser.h ! 5c28fd72adcd34e484e887682b24d68a gcc/cp/pt.c e7b848ff3b21f9c97cc834f363799159 gcc/cp/ptree.c f47fed7918263c05f0eea80cd16cbfb9 gcc/cp/repo.c f916295036ceeea0b4c4439a62059066 gcc/cp/rtti.c 6aed8541a18e3ed22eb433507aa6e60f gcc/cp/search.c ! 5f1ce483a77f6a7aa123fe2fe48ced53 gcc/cp/semantics.c ! e2fd97bdba991a53ae8cbf9fee45c59e gcc/cp/tree.c ! aa42072b096c8ad5c35bef94b67a9b20 gcc/cp/typeck.c ! 603a464d6e07890e5dcee854eae834dd gcc/cp/typeck2.c a1bca2fdf18733f4b65c1fa77bcd071d gcc/cppbuiltin.c 7d95b664f39094554ee524a3ceadfee7 gcc/cppbuiltin.h 31d9d722a592e33dfcfefb895549db88 gcc/cppdefault.c --- 4146,4171 ---- ddcf267b9cc22edff977fe1cf38d8f2b gcc/cp/expr.c 45750dc2e50ca53a533ab357de22b304 gcc/cp/friend.c beb71c78ba1fc9349e7790c116460ed3 gcc/cp/g++spec.c ! 521cf47d8d1ae09f3f56e23b8b9f2b01 gcc/cp/init.c 4590371f76a1618ecb16e2dbb62bf330 gcc/cp/lang-specs.h 98dad6b273901f5b3fbaae9223500b78 gcc/cp/lex.c 1d0fd225aacaca48c253a6685f0e843a gcc/cp/mangle.c ! 41fa8841e8d6a9a65e424448a51ab85a gcc/cp/method.c ! e64df594edda96474a80408c05143226 gcc/cp/name-lookup.c 36b461e0a914364150a6ee35950d3c02 gcc/cp/name-lookup.h 872eacd3a268bd51abeaa61950e9219f gcc/cp/operators.def 20a6d327a96b86d209c489a7e22d2b33 gcc/cp/optimize.c ! fb9e001da655b4400d91bfe5efe8b890 gcc/cp/parser.c cbb7a6f8e3c74ce2162166e304006c6e gcc/cp/parser.h ! abad521931ba4349e8c7c42fa2f47eae gcc/cp/pt.c e7b848ff3b21f9c97cc834f363799159 gcc/cp/ptree.c f47fed7918263c05f0eea80cd16cbfb9 gcc/cp/repo.c f916295036ceeea0b4c4439a62059066 gcc/cp/rtti.c 6aed8541a18e3ed22eb433507aa6e60f gcc/cp/search.c ! e0fea9f140fa6bca316e3538b374c348 gcc/cp/semantics.c ! b5f0b2bfae08ac225ca922ec2b6436c8 gcc/cp/tree.c ! 5dfc3bec31c3c67c8606150c46603eba gcc/cp/typeck.c ! 8589222c8d3b1f6bd32f6964ec7da709 gcc/cp/typeck2.c a1bca2fdf18733f4b65c1fa77bcd071d gcc/cppbuiltin.c 7d95b664f39094554ee524a3ceadfee7 gcc/cppbuiltin.h 31d9d722a592e33dfcfefb895549db88 gcc/cppdefault.c *************** add2c52dd3bb8a7f60c69f44a7390b84 gcc/df *** 4198,4206 **** e75a87c3a73567191a1d647134a2dcf2 gcc/diagnostic.c df9f056a8154820d69a97f1f312f12e1 gcc/diagnostic.def 02fc04f45a8003c350bbdd6553ae9a50 gcc/diagnostic.h ! 0c21ab748907c727c9caa1f024a94ee9 gcc/doc/aot-compile.1 4bfbab1c5884cd362fd8e2517a846021 gcc/doc/arm-neon-intrinsics.texi ! af13c92a7f47f7c07d1346b23cbaf1c7 gcc/doc/avr-mmcu.texi e71b6352a1361e166e061ba42eb47717 gcc/doc/bugreport.texi ee8f2b032786af921472100e667bbcea gcc/doc/cfg.texi fbf2940011e16af51c303a45945872f6 gcc/doc/collect2.texi --- 4201,4209 ---- e75a87c3a73567191a1d647134a2dcf2 gcc/diagnostic.c df9f056a8154820d69a97f1f312f12e1 gcc/diagnostic.def 02fc04f45a8003c350bbdd6553ae9a50 gcc/diagnostic.h ! 04bbb9a34b8f1cfb0c2963573f26d582 gcc/doc/aot-compile.1 4bfbab1c5884cd362fd8e2517a846021 gcc/doc/arm-neon-intrinsics.texi ! 418a1066cf3d3e579919b3ceba042431 gcc/doc/avr-mmcu.texi e71b6352a1361e166e061ba42eb47717 gcc/doc/bugreport.texi ee8f2b032786af921472100e667bbcea gcc/doc/cfg.texi fbf2940011e16af51c303a45945872f6 gcc/doc/collect2.texi *************** fbf2940011e16af51c303a45945872f6 gcc/do *** 4209,4251 **** 39e3a032e624656d48cf132bd0379946 gcc/doc/configterms.texi 113270a91fc21f6e7fbe7649b7f30a02 gcc/doc/contrib.texi e39c1eaf3f355358055474f05a46b069 gcc/doc/contribute.texi ! d72d86bf2c2dea3ec79174fc3931bf0c gcc/doc/cpp.1 ! 2f233406893c67ec6889e4c867dd106b gcc/doc/cpp.info ! c50102059f5e19d134361cd6cd4ffe19 gcc/doc/cpp.texi 02824f5f17e5eca21fca7409a86eba49 gcc/doc/cppenv.texi ! f0e8402b83bdcd8f31b91e412961851b gcc/doc/cppinternals.info 7c30c21d8684505c7ac6ebf63487bc62 gcc/doc/cppinternals.texi 60cbe6eeb5b2f3f885ae57d83ccca8e2 gcc/doc/cppopts.texi ! fe7cc6c46258af1b18b0e40e6a752fa0 gcc/doc/extend.texi b9edf829225f1dd35fc344fb797a73f8 gcc/doc/fragments.texi f16e1063f3a2f89946d13908028f3043 gcc/doc/frontends.texi ! e48135c3bfa1fd68a65f77e9646a8c08 gcc/doc/fsf-funding.7 ! 588b79876bda2b435f209e9b7b70170d gcc/doc/g++.1 ! f353d1e6744d9e88416b606a42f495fc gcc/doc/gc-analyze.1 ! 588b79876bda2b435f209e9b7b70170d gcc/doc/gcc.1 ! 43a9a4d74ed376a6562a023a62089d8f gcc/doc/gcc.info 69b61caf2f51ec5464380354a6c1af45 gcc/doc/gcc.texi ! bae53faa7bd2ce9cb1edcbab48852242 gcc/doc/gccinstall.info ! 746732367624e9fcdb059f29fb5b053e gcc/doc/gccint.info 6d002f7ed488c1b685d947634f2fd99e gcc/doc/gccint.texi ! 0ee2f669c375ad408376ae990e6f029c gcc/doc/gcj-dbtool.1 ! d624feb8f016bd58f98ed2d6a015c93d gcc/doc/gcj.1 ! fb530072b25342404e9503dca5ee6f90 gcc/doc/gcj.info ! 3691410685e4cdcd89e81cbea1c29f33 gcc/doc/gcov.1 053bb48ea7f717b259c38318f71a215e gcc/doc/gcov.texi 534c71bc4d5016f14f06cc59d08229fa gcc/doc/generic.texi ! 7421e23bad97141457b09d83f6c22c55 gcc/doc/gfdl.7 ! dd5ee2b3089ec777a0bafbd72113bf08 gcc/doc/gfortran.1 ! a234170a55b3fdc24c31320523f0e3d9 gcc/doc/gij.1 3bc8d6f48d4261e4343c29a08dd83fa9 gcc/doc/gimple.texi 290370669f02bef1502ada9273e5261f gcc/doc/gnu.texi ! 591dbca42b8e903c194cc474e1c0a247 gcc/doc/gpl.7 ! 4a4864270f0fd50f57f4f928d32f1a43 gcc/doc/grmic.1 62ae21dd8415d4629be53ad0c18c07b1 gcc/doc/gty.texi 91b853490a8a6fcf664b92657a9ae2f0 gcc/doc/headerdirs.texi 453cc50c14627283ae92ac835a026e6b gcc/doc/hostconfig.texi fad91d6cb415eed39a4bc882e3159b66 gcc/doc/implement-c.texi ! a9d88ce2f53b3310d25c2f5143d8edac gcc/doc/implement-cxx.texi c9c72c6be45fb9d057a5590dab9dc5b2 gcc/doc/include/fdl.texi 8787976f426cd52da24a856cd41d87be gcc/doc/include/funding.texi c0618b1390827c035f3d48e7360bf0f6 gcc/doc/include/gcc-common.texi --- 4212,4254 ---- 39e3a032e624656d48cf132bd0379946 gcc/doc/configterms.texi 113270a91fc21f6e7fbe7649b7f30a02 gcc/doc/contrib.texi e39c1eaf3f355358055474f05a46b069 gcc/doc/contribute.texi ! 7d9056eebf60247313fdf8ae8ba212c5 gcc/doc/cpp.1 ! 1937ac62dfb4d423ff1d24c65535a1ed gcc/doc/cpp.info ! 441226d41a68854844d95e32b1933845 gcc/doc/cpp.texi 02824f5f17e5eca21fca7409a86eba49 gcc/doc/cppenv.texi ! 34042e96be3bb37c5cd57cf715d87579 gcc/doc/cppinternals.info 7c30c21d8684505c7ac6ebf63487bc62 gcc/doc/cppinternals.texi 60cbe6eeb5b2f3f885ae57d83ccca8e2 gcc/doc/cppopts.texi ! ac7f746afb125765e8832afbfc2d2385 gcc/doc/extend.texi b9edf829225f1dd35fc344fb797a73f8 gcc/doc/fragments.texi f16e1063f3a2f89946d13908028f3043 gcc/doc/frontends.texi ! 03731cd7a40c1779ea1005c4e78685f5 gcc/doc/fsf-funding.7 ! e45a7e8bcd05e8250b268160835257a9 gcc/doc/g++.1 ! 53567c13168fcdd20b939f095c7e92a7 gcc/doc/gc-analyze.1 ! e45a7e8bcd05e8250b268160835257a9 gcc/doc/gcc.1 ! f20e54f5e9fde2bd210d3600e6fc39ec gcc/doc/gcc.info 69b61caf2f51ec5464380354a6c1af45 gcc/doc/gcc.texi ! d9f57c58b39b8b789f31881792c0e047 gcc/doc/gccinstall.info ! 114412ae8a56de29a7a285aa31510a7b gcc/doc/gccint.info 6d002f7ed488c1b685d947634f2fd99e gcc/doc/gccint.texi ! e98184317d95955ad227ea3de80b6f60 gcc/doc/gcj-dbtool.1 ! 9c60ff4c9be418592ea544d8ba2fe0d4 gcc/doc/gcj.1 ! aacae6ba25a0d4d2a18248601c2ad05d gcc/doc/gcj.info ! 1f1278da62a9a460c8aa27886b47ac27 gcc/doc/gcov.1 053bb48ea7f717b259c38318f71a215e gcc/doc/gcov.texi 534c71bc4d5016f14f06cc59d08229fa gcc/doc/generic.texi ! 2ead3e292cfdbf43c2df41356687b7ea gcc/doc/gfdl.7 ! c52592a4fa6cab7e65164bcad9871240 gcc/doc/gfortran.1 ! 4b8696acf0f976a76d35f3f2c938a47a gcc/doc/gij.1 3bc8d6f48d4261e4343c29a08dd83fa9 gcc/doc/gimple.texi 290370669f02bef1502ada9273e5261f gcc/doc/gnu.texi ! 58f5608e509a02b8e3d74787ffa95fa3 gcc/doc/gpl.7 ! b6c9e5a32948c20ad13193a01984673a gcc/doc/grmic.1 62ae21dd8415d4629be53ad0c18c07b1 gcc/doc/gty.texi 91b853490a8a6fcf664b92657a9ae2f0 gcc/doc/headerdirs.texi 453cc50c14627283ae92ac835a026e6b gcc/doc/hostconfig.texi fad91d6cb415eed39a4bc882e3159b66 gcc/doc/implement-c.texi ! f4b4e29efb521e5adfaf625224865384 gcc/doc/implement-cxx.texi c9c72c6be45fb9d057a5590dab9dc5b2 gcc/doc/include/fdl.texi 8787976f426cd52da24a856cd41d87be gcc/doc/include/funding.texi c0618b1390827c035f3d48e7360bf0f6 gcc/doc/include/gcc-common.texi *************** c0618b1390827c035f3d48e7360bf0f6 gcc/do *** 4255,4263 **** c6b6785b0b523679c6d41c25b9cccc45 gcc/doc/install.texi 95988b4d859b4aa130ee97cb1138477b gcc/doc/install.texi2html 1aa2c4a4454077d6ba564cd2d2b1db06 gcc/doc/interface.texi ! 27f0d4eaa12da06560792a91a56aa8bc gcc/doc/invoke.texi ! d97bd549c8cb24673649289909f2b27d gcc/doc/jcf-dump.1 ! 9263e32dc15b34a750f6ab1617f80b2b gcc/doc/jv-convert.1 b923b4b2eae6b79de44136ab176a1ac0 gcc/doc/languages.texi 939a4e9504972e6a945b121c1c034287 gcc/doc/libgcc.texi fc7eb0cd34527600ed376ab397567cb6 gcc/doc/loop.texi --- 4258,4266 ---- c6b6785b0b523679c6d41c25b9cccc45 gcc/doc/install.texi 95988b4d859b4aa130ee97cb1138477b gcc/doc/install.texi2html 1aa2c4a4454077d6ba564cd2d2b1db06 gcc/doc/interface.texi ! e27ab793d37af50aacebaa3a881ad035 gcc/doc/invoke.texi ! 046eb237851619cd799c4970a4ffb370 gcc/doc/jcf-dump.1 ! 5cd5ba57745b3d6b3a469f46539f9259 gcc/doc/jv-convert.1 b923b4b2eae6b79de44136ab176a1ac0 gcc/doc/languages.texi 939a4e9504972e6a945b121c1c034287 gcc/doc/libgcc.texi fc7eb0cd34527600ed376ab397567cb6 gcc/doc/loop.texi *************** eced7540c96f029596c2ecbe3cf307d9 gcc/do *** 4269,4275 **** a4bc7518259e39fb793e0ce7891a7b4a gcc/doc/passes.texi bd754972af866dcd903b7dc93aff4f85 gcc/doc/plugins.texi 959d744eb4f6390f76608288d18a9139 gcc/doc/portability.texi ! b95b6ee2ff26c9e744f86dbc798ee172 gcc/doc/rebuild-gcj-db.1 cf83bddba61bf3df2fba5ed6fd389e1f gcc/doc/rtl.texi 35b0914f1d92947f75df771e34ccceb1 gcc/doc/service.texi b4b1a0826a0e0694cfed33674937afa6 gcc/doc/sourcebuild.texi --- 4272,4278 ---- a4bc7518259e39fb793e0ce7891a7b4a gcc/doc/passes.texi bd754972af866dcd903b7dc93aff4f85 gcc/doc/plugins.texi 959d744eb4f6390f76608288d18a9139 gcc/doc/portability.texi ! 29df004547732dc6fa470dd1d4290193 gcc/doc/rebuild-gcj-db.1 cf83bddba61bf3df2fba5ed6fd389e1f gcc/doc/rtl.texi 35b0914f1d92947f75df771e34ccceb1 gcc/doc/service.texi b4b1a0826a0e0694cfed33674937afa6 gcc/doc/sourcebuild.texi *************** a4ae0b091656152b1d43ac556c6d2821 gcc/dw *** 4301,4320 **** 0120398ec00f6d49ed232142ded227db gcc/except.c dd5b502ae8cb8aac91b3c13e6ea5ccfa gcc/except.h 93c33a0cf1e0e3f59d71b257b2b7598e gcc/exec-tool.in ! 0b80bac63bf75995b4e7ac10d03b6e6a gcc/explow.c fb9da3a428d708e90d13d30e22444458 gcc/expmed.c 3b3170f98f4cbedf560e72f2ffd3e5f3 gcc/expmed.h ! d56ec831a076534db96954849852107a gcc/expr.c 1fbba4512061e09ca2bcf40a5f970dbf gcc/expr.h ! e65854ecda471fc3b5a2b815fdc61c1e gcc/file-find.c ! 4e245017429e2a2102de48cf32ebd59d gcc/file-find.h 8e474617b91fa6ac98e9f4116a4a09b3 gcc/final.c 90481cbbee3777f3dd8bde5fc37da5ca gcc/fixed-value.c 8a229e17f465e980e8af273fc426db78 gcc/fixed-value.h 1ed59924f8844366de01c2dfa6fc66e1 gcc/flag-types.h ed2aae469fdd4b6cc5194ab957a2f03e gcc/flags.h ! e92c676e0f37e7ea6c02e4f497efe617 gcc/fold-const.c ! 4ff79e88c5cb8fb42f02cf907bf74c17 gcc/fortran/ChangeLog 3330102ad3a0217cba963be6b5eefd58 gcc/fortran/ChangeLog-2002 d000ab985b1eeb1ad5749f98b8fef99f gcc/fortran/ChangeLog-2003 bf42f94f0c51dcc7d8051cc7fda1efdc gcc/fortran/ChangeLog-2004 --- 4304,4323 ---- 0120398ec00f6d49ed232142ded227db gcc/except.c dd5b502ae8cb8aac91b3c13e6ea5ccfa gcc/except.h 93c33a0cf1e0e3f59d71b257b2b7598e gcc/exec-tool.in ! 9048721952c370d0b68d83fff2e2b5ea gcc/explow.c fb9da3a428d708e90d13d30e22444458 gcc/expmed.c 3b3170f98f4cbedf560e72f2ffd3e5f3 gcc/expmed.h ! 5d38a6fa3e252b98dcab3fd7bc830e3b gcc/expr.c 1fbba4512061e09ca2bcf40a5f970dbf gcc/expr.h ! 014008d01729bc9cb46c49b36e47ed73 gcc/file-find.c ! 2a6edc19b20daab7de76d6fd01d0f56d gcc/file-find.h 8e474617b91fa6ac98e9f4116a4a09b3 gcc/final.c 90481cbbee3777f3dd8bde5fc37da5ca gcc/fixed-value.c 8a229e17f465e980e8af273fc426db78 gcc/fixed-value.h 1ed59924f8844366de01c2dfa6fc66e1 gcc/flag-types.h ed2aae469fdd4b6cc5194ab957a2f03e gcc/flags.h ! b50b3f871ead079b18b79389e9ae0c52 gcc/fold-const.c ! 53902376fd0544fe818ef961adc9cf1f gcc/fortran/ChangeLog 3330102ad3a0217cba963be6b5eefd58 gcc/fortran/ChangeLog-2002 d000ab985b1eeb1ad5749f98b8fef99f gcc/fortran/ChangeLog-2003 bf42f94f0c51dcc7d8051cc7fda1efdc gcc/fortran/ChangeLog-2004 *************** df62744b17457b16fa37b60ae89fbac9 gcc/fo *** 4352,4361 **** 809f2e3a8b839022851f8d4ecf31dc72 gcc/fortran/frontend-passes.c 05bb4858a9a865a30dc4c1c8082427de gcc/fortran/gfc-internals.texi 59d0a123c188023bdb8d2a5fb238de1e gcc/fortran/gfortran.h ! ed44b9837d87102bd90a7fc777c01786 gcc/fortran/gfortran.info 08b1538c6c9d0bbaa8da80b18bfb9fd7 gcc/fortran/gfortran.texi 73a639129e92c89d873219c2af0c14fb gcc/fortran/gfortranspec.c ! 1101c0f27dde58a043ec2980f5a3f1fd gcc/fortran/interface.c 8bc1da83cd83b8d92b598e9fa58d7ac9 gcc/fortran/intrinsic.c 4a3423bd1dd13b19872f978074c97642 gcc/fortran/intrinsic.h 5b4911828e900e92c90a395aa0d1c799 gcc/fortran/intrinsic.texi --- 4355,4364 ---- 809f2e3a8b839022851f8d4ecf31dc72 gcc/fortran/frontend-passes.c 05bb4858a9a865a30dc4c1c8082427de gcc/fortran/gfc-internals.texi 59d0a123c188023bdb8d2a5fb238de1e gcc/fortran/gfortran.h ! 720cac60644adb783bf9b3d228faf083 gcc/fortran/gfortran.info 08b1538c6c9d0bbaa8da80b18bfb9fd7 gcc/fortran/gfortran.texi 73a639129e92c89d873219c2af0c14fb gcc/fortran/gfortranspec.c ! 62328f950c1c8090cbb865ce92b726f6 gcc/fortran/interface.c 8bc1da83cd83b8d92b598e9fa58d7ac9 gcc/fortran/intrinsic.c 4a3423bd1dd13b19872f978074c97642 gcc/fortran/intrinsic.h 5b4911828e900e92c90a395aa0d1c799 gcc/fortran/intrinsic.texi *************** f10da363d65a2ec21baba9252806dcc9 gcc/fo *** 4368,4399 **** 84edf7c8dcecc9bf8eda92dea95e9c64 gcc/fortran/lang-specs.h eed737c6d8bf2cef95e7993d147a1293 gcc/fortran/lang.opt 7440739cad63a7c456b17e9be97545c2 gcc/fortran/libgfortran.h ! f7388b4993b983fa59b8dd1a1b9727e0 gcc/fortran/match.c 7cf341657aada6ae8555c5805e2634a6 gcc/fortran/match.h 08bd88d78f50f4eab24194b95c6f4ed7 gcc/fortran/matchexp.c 755064d40baddcd119d05e0bd7480c77 gcc/fortran/mathbuiltins.def 3a2af8688ea886e70abd88d5600c59ea gcc/fortran/misc.c ! 31ea77d1f3b8e79834ab828075af3014 gcc/fortran/module.c 2124ba47c440011b3bccc6ea2b184fe3 gcc/fortran/openmp.c 27d9b99db693336fe0faeafd4f5c1a7c gcc/fortran/options.c d0c7270c8b0f0d65d215b56d02216f54 gcc/fortran/parse.c b88644b4efd366ba77747907326deb00 gcc/fortran/parse.h a061e311f1cdf443a43bb948d20342b6 gcc/fortran/primary.c ! 26cb41a46f8d85b40f7c758d0bfd24f1 gcc/fortran/resolve.c 6ff7107ec2833891b530cfa903efe6a1 gcc/fortran/scanner.c ! 2771cd8ef1d25e89209feeaeb11a552f gcc/fortran/simplify.c a565e159d186cbaa127c6b44d388b6b3 gcc/fortran/st.c 858c69d40a96e1a3c737b1cfeeb96caa gcc/fortran/symbol.c 809dd4637fbe05e624166de3eda72990 gcc/fortran/target-memory.c ca7c1acc0e3997a47f70eea33ac5b477 gcc/fortran/target-memory.h ! e0172f4de52b70902943027db0abb51d gcc/fortran/trans-array.c 893c2fd62d74117f50c9db52280c2437 gcc/fortran/trans-array.h c1f19bac05b796a4657d959197090d7c gcc/fortran/trans-common.c d20eed979de96ec592a6451b46ac4269 gcc/fortran/trans-const.c 0c13272845dfd5152bae2845d0948abe gcc/fortran/trans-const.h da20820d7064cf2f8ac97940ae66dccf gcc/fortran/trans-decl.c b4e9b8e2904682b0227e77c779fc0837 gcc/fortran/trans-expr.c ! da2b55ca00df503ae000d3a8999cfe05 gcc/fortran/trans-intrinsic.c e8f2f050d016b608d5cfec6e79903a11 gcc/fortran/trans-io.c 3b0b6530af69c2750fbe26d226bed07d gcc/fortran/trans-openmp.c 6591d4e6d0c7c8740554b98127940d67 gcc/fortran/trans-stmt.c --- 4371,4402 ---- 84edf7c8dcecc9bf8eda92dea95e9c64 gcc/fortran/lang-specs.h eed737c6d8bf2cef95e7993d147a1293 gcc/fortran/lang.opt 7440739cad63a7c456b17e9be97545c2 gcc/fortran/libgfortran.h ! c3366245a70b52c6c1dff6e641d9dfbc gcc/fortran/match.c 7cf341657aada6ae8555c5805e2634a6 gcc/fortran/match.h 08bd88d78f50f4eab24194b95c6f4ed7 gcc/fortran/matchexp.c 755064d40baddcd119d05e0bd7480c77 gcc/fortran/mathbuiltins.def 3a2af8688ea886e70abd88d5600c59ea gcc/fortran/misc.c ! 52a5369336e86e86516e3a6319bfc975 gcc/fortran/module.c 2124ba47c440011b3bccc6ea2b184fe3 gcc/fortran/openmp.c 27d9b99db693336fe0faeafd4f5c1a7c gcc/fortran/options.c d0c7270c8b0f0d65d215b56d02216f54 gcc/fortran/parse.c b88644b4efd366ba77747907326deb00 gcc/fortran/parse.h a061e311f1cdf443a43bb948d20342b6 gcc/fortran/primary.c ! 403218a905f30bb989b44c556ab4eeea gcc/fortran/resolve.c 6ff7107ec2833891b530cfa903efe6a1 gcc/fortran/scanner.c ! ed8fcd4ad516229fd0dde09685ee744a gcc/fortran/simplify.c a565e159d186cbaa127c6b44d388b6b3 gcc/fortran/st.c 858c69d40a96e1a3c737b1cfeeb96caa gcc/fortran/symbol.c 809dd4637fbe05e624166de3eda72990 gcc/fortran/target-memory.c ca7c1acc0e3997a47f70eea33ac5b477 gcc/fortran/target-memory.h ! 663cc057180a67273804a11a6cf4e574 gcc/fortran/trans-array.c 893c2fd62d74117f50c9db52280c2437 gcc/fortran/trans-array.h c1f19bac05b796a4657d959197090d7c gcc/fortran/trans-common.c d20eed979de96ec592a6451b46ac4269 gcc/fortran/trans-const.c 0c13272845dfd5152bae2845d0948abe gcc/fortran/trans-const.h da20820d7064cf2f8ac97940ae66dccf gcc/fortran/trans-decl.c b4e9b8e2904682b0227e77c779fc0837 gcc/fortran/trans-expr.c ! 287595a28c2f2bbfeb4916035083e8ac gcc/fortran/trans-intrinsic.c e8f2f050d016b608d5cfec6e79903a11 gcc/fortran/trans-io.c 3b0b6530af69c2750fbe26d226bed07d gcc/fortran/trans-openmp.c 6591d4e6d0c7c8740554b98127940d67 gcc/fortran/trans-stmt.c *************** dc6d9c951cdfbc5a92fe2731cc414c2e gcc/fp *** 4407,4413 **** b4500a98518d321eaceb34508c68fc68 gcc/function.c ddaeb24288c774b25fb7039eac9a4e53 gcc/function.h bd0cc249df0a8ecbcae3633c6024d6e4 gcc/fwprop.c ! d57d8604bd77386f61a85c741b5deb2c gcc/gcc-ar.c 84fd4ac6893c78c599b92ec4a771459f gcc/gcc-plugin.h 397ae3491b8155e2abdea3f9c11e13b4 gcc/gcc.c f63d6bc2ff7313bb7bedc35a302e7403 gcc/gcc.h --- 4410,4416 ---- b4500a98518d321eaceb34508c68fc68 gcc/function.c ddaeb24288c774b25fb7039eac9a4e53 gcc/function.h bd0cc249df0a8ecbcae3633c6024d6e4 gcc/fwprop.c ! 4ac4107f1828b55ebce6d8a583c84664 gcc/gcc-ar.c 84fd4ac6893c78c599b92ec4a771459f gcc/gcc-plugin.h 397ae3491b8155e2abdea3f9c11e13b4 gcc/gcc.c f63d6bc2ff7313bb7bedc35a302e7403 gcc/gcc.h *************** c3b285ca47b1a00515107e2be9d80fb0 gcc/ge *** 4434,4440 **** 94e3cdbc1f5f335198dab2b321c59699 gcc/genextract.c 10cf2ce540500cd073f69fcd732ff270 gcc/genflags.c c6a4032b87f7558ae66e1d35d8f98801 gcc/gengenrtl.c ! 7175fc1403aaa7073d186266818a1e50 gcc/gengtype-lex.c c3aaa5fc0c08e0eaa7367bbc611d786a gcc/gengtype-lex.l e3f7768565a5af266ecee6fe2b4b2ef8 gcc/gengtype-parse.c f0d6354c49ffee0688dfa781a7621735 gcc/gengtype-state.c --- 4437,4443 ---- 94e3cdbc1f5f335198dab2b321c59699 gcc/genextract.c 10cf2ce540500cd073f69fcd732ff270 gcc/genflags.c c6a4032b87f7558ae66e1d35d8f98801 gcc/gengenrtl.c ! c231b63e330c75ba10e4cadd33eae91d gcc/gengtype-lex.c c3aaa5fc0c08e0eaa7367bbc611d786a gcc/gengtype-lex.l e3f7768565a5af266ecee6fe2b4b2ef8 gcc/gengtype-parse.c f0d6354c49ffee0688dfa781a7621735 gcc/gengtype-state.c *************** ceb0dabc18c2a5a775665e1925175843 gcc/ge *** 4446,4452 **** 448feb0d0ad0adc839511ad703885135 gcc/genmodes.c f2ec67897723f368f0aaa94d899d4009 gcc/genmultilib 66ae4d38e29e799231213ba7496e1469 gcc/genopinit.c ! dd7258eb546048834129d355bf20c71a gcc/genoutput.c c47738eef9b802788857c62d16ec4e1c gcc/genpeep.c 841fee5553f331fb534611029be74442 gcc/genpreds.c cb75a53d61df88efb8fb7167cb63cf1e gcc/genrecog.c --- 4449,4455 ---- 448feb0d0ad0adc839511ad703885135 gcc/genmodes.c f2ec67897723f368f0aaa94d899d4009 gcc/genmultilib 66ae4d38e29e799231213ba7496e1469 gcc/genopinit.c ! a4658941a9f57b3d07e373f50c5b76bd gcc/genoutput.c c47738eef9b802788857c62d16ec4e1c gcc/genpeep.c 841fee5553f331fb534611029be74442 gcc/genpreds.c cb75a53d61df88efb8fb7167cb63cf1e gcc/genrecog.c *************** aeb71d32e547dd56409cd7abca846f82 gcc/gi *** 4463,4473 **** d7d1faf994dc885b19f85b0c555459db gcc/gimple-low.c 28e6e754e088d30ac7573d7f49fb67e2 gcc/gimple-pretty-print.c 9ed3d871b98e55c037b960ab3a832003 gcc/gimple-pretty-print.h ! 846a79973169439df6819c12ca445e23 gcc/gimple-ssa-strength-reduction.c 7672cd91eeb03f05cc6eadc7c5147bbc gcc/gimple-streamer-in.c f4f035722f05b217c70a2c9b2495d5e0 gcc/gimple-streamer-out.c 68accf658c29df78d7bfea9378d8d1e9 gcc/gimple-streamer.h ! e572d1ed4cd275d8fafbd58f3f81b6d3 gcc/gimple.c 0d589ffbb5e11833d5b80ec5e093d9ea gcc/gimple.def deee5b84bec974f7768f1fe2832ebc72 gcc/gimple.h 47d4ae178238fb0f15a63ee7aad93683 gcc/gimplify.c --- 4466,4476 ---- d7d1faf994dc885b19f85b0c555459db gcc/gimple-low.c 28e6e754e088d30ac7573d7f49fb67e2 gcc/gimple-pretty-print.c 9ed3d871b98e55c037b960ab3a832003 gcc/gimple-pretty-print.h ! 49bec127eb4ca441d4d34387d1dac924 gcc/gimple-ssa-strength-reduction.c 7672cd91eeb03f05cc6eadc7c5147bbc gcc/gimple-streamer-in.c f4f035722f05b217c70a2c9b2495d5e0 gcc/gimple-streamer-out.c 68accf658c29df78d7bfea9378d8d1e9 gcc/gimple-streamer.h ! c86501954aee981408137e4dc7192795 gcc/gimple.c 0d589ffbb5e11833d5b80ec5e093d9ea gcc/gimple.def deee5b84bec974f7768f1fe2832ebc72 gcc/gimple.h 47d4ae178238fb0f15a63ee7aad93683 gcc/gimplify.c *************** f85aa0745c3e9e0d32fa64753089b2f1 gcc/gi *** 4485,4498 **** c522d64edf87b51ba2a93c23b17eacd4 gcc/ginclude/unwind-arm-common.h 8d9ecf0d6ef93c79623ce1d27a32a2cb gcc/ginclude/varargs.h 778d9444027fa170bbc983e69203bfe8 gcc/glimits.h ! 4d49af1e63652bcac25dcc674eb2e38b gcc/go/ChangeLog 58101808498c03cc8a6701b36e1c11f2 gcc/go/Make-lang.in 60ea054548c83c7f66170073f9f3e74c gcc/go/README.gcc 092b7ac61164339dc0360d02523e6737 gcc/go/config-lang.in c5e3ffe9c479a8ee08232eb46692ce9f gcc/go/gccgo.texi bcfab40222211b0d2384dcfb8a90969f gcc/go/go-backend.c e94769af7598cdf70250fa4f67bb27e0 gcc/go/go-c.h ! c637ceab54b6e507a8ac7e5e9fc52ea1 gcc/go/go-gcc.cc d94d786d197fb1ffa104d4d8a09090aa gcc/go/go-lang.c 23c13bf184eab0071ce44a00188801f6 gcc/go/go-linemap.cc e044aac17049110bf65f2288f6f7cace gcc/go/go-location.h --- 4488,4501 ---- c522d64edf87b51ba2a93c23b17eacd4 gcc/ginclude/unwind-arm-common.h 8d9ecf0d6ef93c79623ce1d27a32a2cb gcc/ginclude/varargs.h 778d9444027fa170bbc983e69203bfe8 gcc/glimits.h ! e0b80b8b9019ba0f11d6ccdfc24b7e4a gcc/go/ChangeLog 58101808498c03cc8a6701b36e1c11f2 gcc/go/Make-lang.in 60ea054548c83c7f66170073f9f3e74c gcc/go/README.gcc 092b7ac61164339dc0360d02523e6737 gcc/go/config-lang.in c5e3ffe9c479a8ee08232eb46692ce9f gcc/go/gccgo.texi bcfab40222211b0d2384dcfb8a90969f gcc/go/go-backend.c e94769af7598cdf70250fa4f67bb27e0 gcc/go/go-c.h ! dfc235b80049f9bc5c9a19b1a194ad68 gcc/go/go-gcc.cc d94d786d197fb1ffa104d4d8a09090aa gcc/go/go-lang.c 23c13bf184eab0071ce44a00188801f6 gcc/go/go-linemap.cc e044aac17049110bf65f2288f6f7cace gcc/go/go-location.h *************** b2a38f77f1ef3fe1311c4a6e949c9b50 gcc/go *** 4502,4539 **** 09b47be9ee44cac640658e346eb568be gcc/go/gofrontend/README 897d8051261e2e293a60b8ee09b04f32 gcc/go/gofrontend/ast-dump.cc 456b6d4cc785176b6e3eb0c685a93b39 gcc/go/gofrontend/ast-dump.h ! 620fc1c74f01ecd126d805ac11c2bd83 gcc/go/gofrontend/backend.h 2b32f2111cb0863a0f232de883d9fd1c gcc/go/gofrontend/dataflow.cc ac50f288c85f0d8fff72198966a48008 gcc/go/gofrontend/dataflow.h 8734f348c527b9800d30461119288c38 gcc/go/gofrontend/export.cc 5725a5fa742fd955d4c6d2c2c1befb13 gcc/go/gofrontend/export.h ! 3b8b263786ea30af87339031f14dea08 gcc/go/gofrontend/expressions.cc ! 9940d778db1ee4e80ad7859b1ea9c25f gcc/go/gofrontend/expressions.h 19e66447fa803385274b4e1a7501a4d5 gcc/go/gofrontend/go-dump.cc e3f005ccc40000dcaf14ab6eec979f69 gcc/go/gofrontend/go-dump.h 505078b1e9185e86c97fda5cda6fa67a gcc/go/gofrontend/go-linemap.h a9976cefc0150a7132d127b093292abb gcc/go/gofrontend/go-optimize.cc 6d061113313f445cd9a8a626d8138a43 gcc/go/gofrontend/go-optimize.h ! 959d260ce5e9d4d11760f564b82713c1 gcc/go/gofrontend/go.cc ! 7abd523099c1b598aac1c55216d42425 gcc/go/gofrontend/gogo-tree.cc ! a135a7a3220c8412d66e073716f79a2f gcc/go/gofrontend/gogo.cc ! 0766e783cb1eca48c5ded3894258fa6b gcc/go/gofrontend/gogo.h a54db7e2c0bee63493b5e156afd1e29c gcc/go/gofrontend/import-archive.cc 499fe8bccdd0651f0566d8c145b8d5f7 gcc/go/gofrontend/import.cc 8ce6ea644300b19ee74606e62d1d80f1 gcc/go/gofrontend/import.h 8f83bc27d55752bb2acf3f1a71cfc88f gcc/go/gofrontend/lex.cc 50f7fe6bed67437bd8cdedbdadbfd777 gcc/go/gofrontend/lex.h 98235b1a736055cd6a130337a9ee8e8e gcc/go/gofrontend/operator.h ! 1661021452fd90f6bbd7d4ceeef0e26c gcc/go/gofrontend/parse.cc 6631a726a5759b4d2a6ced1a2e58145c gcc/go/gofrontend/parse.h 31eaeff317416896237d8796924dc570 gcc/go/gofrontend/runtime.cc ! c9e8926e03bae873c931c4c07a4245fd gcc/go/gofrontend/runtime.def df0b2e89a7ce7d87c1816e63cdecbf48 gcc/go/gofrontend/runtime.h ! d63063d1d940afb9e1e13554b2e90d5d gcc/go/gofrontend/statements.cc ! c5b2ebe8d164bf2a1eb89a18970de2d3 gcc/go/gofrontend/statements.h 0ba1a11b029f92c6795e4c940c966f48 gcc/go/gofrontend/string-dump.h ! 0e9fef199b62c030f4d836844718c2dc gcc/go/gofrontend/types.cc ! 1c0205ae3ce27f81c8dc86617353da90 gcc/go/gofrontend/types.h 14f99064d66c4b9bc9ab92b14d4e7afe gcc/go/gofrontend/unsafe.cc af481ad648303227ee2ef686a790de46 gcc/go/gospec.c bdc23beb6b5dad1dd4f9c56b8ab36ef7 gcc/go/lang-specs.h --- 4505,4542 ---- 09b47be9ee44cac640658e346eb568be gcc/go/gofrontend/README 897d8051261e2e293a60b8ee09b04f32 gcc/go/gofrontend/ast-dump.cc 456b6d4cc785176b6e3eb0c685a93b39 gcc/go/gofrontend/ast-dump.h ! ae049a118b73a55d4641d19bc6775ca8 gcc/go/gofrontend/backend.h 2b32f2111cb0863a0f232de883d9fd1c gcc/go/gofrontend/dataflow.cc ac50f288c85f0d8fff72198966a48008 gcc/go/gofrontend/dataflow.h 8734f348c527b9800d30461119288c38 gcc/go/gofrontend/export.cc 5725a5fa742fd955d4c6d2c2c1befb13 gcc/go/gofrontend/export.h ! e9a1405b53c2d321465cc33b2fb942f1 gcc/go/gofrontend/expressions.cc ! ae1e5ea875d0815e01d7538e61263db9 gcc/go/gofrontend/expressions.h 19e66447fa803385274b4e1a7501a4d5 gcc/go/gofrontend/go-dump.cc e3f005ccc40000dcaf14ab6eec979f69 gcc/go/gofrontend/go-dump.h 505078b1e9185e86c97fda5cda6fa67a gcc/go/gofrontend/go-linemap.h a9976cefc0150a7132d127b093292abb gcc/go/gofrontend/go-optimize.cc 6d061113313f445cd9a8a626d8138a43 gcc/go/gofrontend/go-optimize.h ! 0e0ea3150f1775faaf3e21729196c772 gcc/go/gofrontend/go.cc ! 3a1a1e70db59c72ddf0c475fa0ace587 gcc/go/gofrontend/gogo-tree.cc ! 1c7090154643cbc495840cf89c2dcd4f gcc/go/gofrontend/gogo.cc ! 47c229d436d2a82b59e464c0c73a820a gcc/go/gofrontend/gogo.h a54db7e2c0bee63493b5e156afd1e29c gcc/go/gofrontend/import-archive.cc 499fe8bccdd0651f0566d8c145b8d5f7 gcc/go/gofrontend/import.cc 8ce6ea644300b19ee74606e62d1d80f1 gcc/go/gofrontend/import.h 8f83bc27d55752bb2acf3f1a71cfc88f gcc/go/gofrontend/lex.cc 50f7fe6bed67437bd8cdedbdadbfd777 gcc/go/gofrontend/lex.h 98235b1a736055cd6a130337a9ee8e8e gcc/go/gofrontend/operator.h ! 1e714dacf1b10147ebae061c2f40fb3d gcc/go/gofrontend/parse.cc 6631a726a5759b4d2a6ced1a2e58145c gcc/go/gofrontend/parse.h 31eaeff317416896237d8796924dc570 gcc/go/gofrontend/runtime.cc ! e4789327c1d1a632971e503a7a306892 gcc/go/gofrontend/runtime.def df0b2e89a7ce7d87c1816e63cdecbf48 gcc/go/gofrontend/runtime.h ! e5e906544c53837a1c28120cb0ccaea4 gcc/go/gofrontend/statements.cc ! fffe9b016a63c2398001c1b17232f80b gcc/go/gofrontend/statements.h 0ba1a11b029f92c6795e4c940c966f48 gcc/go/gofrontend/string-dump.h ! 306d1ed67458c8c9652e136e6527fa38 gcc/go/gofrontend/types.cc ! cccd293f1abaeef1c5a2b2bc176feb41 gcc/go/gofrontend/types.h 14f99064d66c4b9bc9ab92b14d4e7afe gcc/go/gofrontend/unsafe.cc af481ad648303227ee2ef686a790de46 gcc/go/gospec.c bdc23beb6b5dad1dd4f9c56b8ab36ef7 gcc/go/lang-specs.h *************** de7db9c6960cbe5162609cec2f6ba810 gcc/in *** 4588,4599 **** 4b13ac923a155c59a97e134de001f046 gcc/internal-fn.h 08ad208dcf308926a7ef015f7a93632a gcc/intl.c e95886d905202cdb6d037116025e894b gcc/intl.h ! 42aaf8df612ffb0cea158503eb874d57 gcc/ipa-cp.c f1900b0b6fffbe515061bb8a981e84ac gcc/ipa-inline-analysis.c 6f1d185e0b4b5800833d9595dd675e6e gcc/ipa-inline-transform.c 02d1214f8a90777148ac30c95cdc5b2f gcc/ipa-inline.c 974fa89b4cf3941591022f9b8a05d15a gcc/ipa-inline.h ! 9b2fa197c026c8d4f6790480ee66bd7c gcc/ipa-prop.c a90d1e4de5c33678f506dfd0e91bb4f3 gcc/ipa-prop.h 8120dae084b913b84ce470c8138586d9 gcc/ipa-pure-const.c fce4172c2e96de50855f90d643271aa1 gcc/ipa-ref-inline.h --- 4591,4602 ---- 4b13ac923a155c59a97e134de001f046 gcc/internal-fn.h 08ad208dcf308926a7ef015f7a93632a gcc/intl.c e95886d905202cdb6d037116025e894b gcc/intl.h ! f87cf1be814aaf48883a3420fa470e27 gcc/ipa-cp.c f1900b0b6fffbe515061bb8a981e84ac gcc/ipa-inline-analysis.c 6f1d185e0b4b5800833d9595dd675e6e gcc/ipa-inline-transform.c 02d1214f8a90777148ac30c95cdc5b2f gcc/ipa-inline.c 974fa89b4cf3941591022f9b8a05d15a gcc/ipa-inline.h ! f83a33f0d088d9c4913a5d4aace8b5bc gcc/ipa-prop.c a90d1e4de5c33678f506dfd0e91bb4f3 gcc/ipa-prop.h 8120dae084b913b84ce470c8138586d9 gcc/ipa-pure-const.c fce4172c2e96de50855f90d643271aa1 gcc/ipa-ref-inline.h *************** f1b17b1c1b0efb2f64270a15ddc9913a gcc/ir *** 4612,4621 **** a9f389295b1585eb58c77a8d6d62817b gcc/ira-emit.c 71cf2884b64be5fec4c073f206d46dc3 gcc/ira-int.h 2ba2df17476a9a79056eefe863cc7750 gcc/ira-lives.c ! 7003bc09af29c6916a789b7e5f3c08fc gcc/ira.c 2714c0e87bd0fac348a05d59d2cab626 gcc/ira.h 7a8e145db61bfb35670d7544ea6de83d gcc/is-a.h ! 9209a0f5300c189c1d2cb7d5328eb745 gcc/java/ChangeLog 3becfaac793f49e1f52cd74e78172b48 gcc/java/ChangeLog.ptr 1c698a5c434720749e71a0ea3eb5a0ea gcc/java/ChangeLog.tree-ssa 4b9afc39cd80ed1c750024ffe858b2f2 gcc/java/Make-lang.in --- 4615,4624 ---- a9f389295b1585eb58c77a8d6d62817b gcc/ira-emit.c 71cf2884b64be5fec4c073f206d46dc3 gcc/ira-int.h 2ba2df17476a9a79056eefe863cc7750 gcc/ira-lives.c ! 0482c8c3b45337ecf5d1171a03efab0a gcc/ira.c 2714c0e87bd0fac348a05d59d2cab626 gcc/ira.h 7a8e145db61bfb35670d7544ea6de83d gcc/is-a.h ! 5473e3e4e1aa57f36cfd642bdad0b46a gcc/java/ChangeLog 3becfaac793f49e1f52cd74e78172b48 gcc/java/ChangeLog.ptr 1c698a5c434720749e71a0ea3eb5a0ea gcc/java/ChangeLog.tree-ssa 4b9afc39cd80ed1c750024ffe858b2f2 gcc/java/Make-lang.in *************** ec3b15e79ebc8010284c494ec5813d88 gcc/lo *** 4675,4683 **** 038f8924b66f34d9d4f49994fe9ce617 gcc/loop-unswitch.c e6c7f1bfe95901186341d92f67a9bf8f gcc/lower-subreg.c 13ff04415157268c7c354fac1a222262 gcc/lower-subreg.h ! 758a47286d8a2a9d8c14513067f694ff gcc/lra-assigns.c 06ba8900e3d200332f441148a8bbf4c2 gcc/lra-coalesce.c ! f0cd78d189372cfb3bae1cfa5a3aa407 gcc/lra-constraints.c de94c4459d8a6f57fba2cee8651711e5 gcc/lra-eliminations.c 77d159fb59e63ddcd255d6cebeb06943 gcc/lra-int.h f8a94dbecb891b8f4f400ad6ef99d54a gcc/lra-lives.c --- 4678,4686 ---- 038f8924b66f34d9d4f49994fe9ce617 gcc/loop-unswitch.c e6c7f1bfe95901186341d92f67a9bf8f gcc/lower-subreg.c 13ff04415157268c7c354fac1a222262 gcc/lower-subreg.h ! ed34b3bd2406ceba47aeac3cc35ee2e8 gcc/lra-assigns.c 06ba8900e3d200332f441148a8bbf4c2 gcc/lra-coalesce.c ! 564d2d324857bb24430c63e8166ccb48 gcc/lra-constraints.c de94c4459d8a6f57fba2cee8651711e5 gcc/lra-eliminations.c 77d159fb59e63ddcd255d6cebeb06943 gcc/lra-int.h f8a94dbecb891b8f4f400ad6ef99d54a gcc/lra-lives.c *************** a44181185d8546ca59ab03eaa4a3d2ea gcc/lt *** 4696,4702 **** fa502faa2e9b61cd604e737b97a69a9c gcc/lto-streamer.h 552665902f7953a08486e14749e6fc17 gcc/lto-symtab.c 856d79679d0b3d5e94b7e9de5d8253ee gcc/lto-wrapper.c ! a39e9e5820e85047ee3ea81e2005f40a gcc/lto/ChangeLog 8e9737eed782ed19149b9679a87ebade gcc/lto/Make-lang.in 87a474ea195ea7bb5375f26939ca92dc gcc/lto/common.c 6b94d922e55046ef560c709289e121d4 gcc/lto/common.h --- 4699,4705 ---- fa502faa2e9b61cd604e737b97a69a9c gcc/lto-streamer.h 552665902f7953a08486e14749e6fc17 gcc/lto-symtab.c 856d79679d0b3d5e94b7e9de5d8253ee gcc/lto-wrapper.c ! 76b27d6add9d88dd3f6d24fa1ca00b56 gcc/lto/ChangeLog 8e9737eed782ed19149b9679a87ebade gcc/lto/Make-lang.in 87a474ea195ea7bb5375f26939ca92dc gcc/lto/common.c 6b94d922e55046ef560c709289e121d4 gcc/lto/common.h *************** c9d8e9f5b89c2254c9a5080160a101d5 gcc/mk *** 4718,4724 **** 5879bfc1e48884989641ea1e246cb833 gcc/mode-classes.def 2af7bb21a85297320df4680f8ef51999 gcc/mode-switching.c d0abe7376864afded216a2bb219a595b gcc/modulo-sched.c ! 3711207de778398da81dc44594c3f264 gcc/objc/ChangeLog e76cc4ca44cba1d1e9da27c20b9c2afa gcc/objc/Make-lang.in f6bb154fcc19f8645fae88e2c5f47642 gcc/objc/config-lang.in a0ab2b2514b06d0268271da158f2ed06 gcc/objc/lang-specs.h --- 4721,4727 ---- 5879bfc1e48884989641ea1e246cb833 gcc/mode-classes.def 2af7bb21a85297320df4680f8ef51999 gcc/mode-switching.c d0abe7376864afded216a2bb219a595b gcc/modulo-sched.c ! 8e3f042cd5b268a97dc7eed1c5b72c30 gcc/objc/ChangeLog e76cc4ca44cba1d1e9da27c20b9c2afa gcc/objc/Make-lang.in f6bb154fcc19f8645fae88e2c5f47642 gcc/objc/config-lang.in a0ab2b2514b06d0268271da158f2ed06 gcc/objc/lang-specs.h *************** ab226cb4f791beb9d63c84a44c5b9d1e gcc/ob *** 4737,4743 **** 9fb982fa0c2bb9715c3cad81b5ca03ca gcc/objc/objc-runtime-shared-support.c c9fe30074726aab0d94736073d4d916a gcc/objc/objc-runtime-shared-support.h f594fdaff13b8567308947ab49a9a2ba gcc/objc/objc-tree.def ! e168f7be50e1ea1bd89b9345d88f5157 gcc/objcp/ChangeLog bd26df0245faf7987e131dbeaffb90da gcc/objcp/Make-lang.in 0e23bb53ac4b2cda2c11805264d0f753 gcc/objcp/config-lang.in 5fbe8381b779b412f3d72e29cca21ee5 gcc/objcp/lang-specs.h --- 4740,4746 ---- 9fb982fa0c2bb9715c3cad81b5ca03ca gcc/objc/objc-runtime-shared-support.c c9fe30074726aab0d94736073d4d916a gcc/objc/objc-runtime-shared-support.h f594fdaff13b8567308947ab49a9a2ba gcc/objc/objc-tree.def ! ac87a31d2a615d40c3abafd35ccfb84e gcc/objcp/ChangeLog bd26df0245faf7987e131dbeaffb90da gcc/objcp/Make-lang.in 0e23bb53ac4b2cda2c11805264d0f753 gcc/objcp/config-lang.in 5fbe8381b779b412f3d72e29cca21ee5 gcc/objcp/lang-specs.h *************** b31982a12f25c1540752a12e817a8955 gcc/ob *** 4747,4753 **** a141eaac80536a7f731eaec8a8f7b997 gcc/omega.c d4c17fba3450bb742d0cbf82a49e127a gcc/omega.h 2805a2e221dccbe76398688035ca8a6d gcc/omp-builtins.def ! cc80c8751703de0853732c3d73b56d1c gcc/omp-low.c abe40c7e66ee44bded017aeb23a2f09b gcc/opt-functions.awk 343fadfef7e8b770b9c5279dbaa738c0 gcc/opt-gather.awk fd851f016e2f49c572d80627cc3a88be gcc/opt-include.awk --- 4750,4756 ---- a141eaac80536a7f731eaec8a8f7b997 gcc/omega.c d4c17fba3450bb742d0cbf82a49e127a gcc/omega.h 2805a2e221dccbe76398688035ca8a6d gcc/omp-builtins.def ! d25b0ccef2c9f65b28fcfe01288d9959 gcc/omp-low.c abe40c7e66ee44bded017aeb23a2f09b gcc/opt-functions.awk 343fadfef7e8b770b9c5279dbaa738c0 gcc/opt-gather.awk fd851f016e2f49c572d80627cc3a88be gcc/opt-include.awk *************** fc8d560f93f24f6e0dce1890693ee7b0 gcc/op *** 4767,4777 **** af1c244ad89c0048275767a8f7fbeb0e gcc/params.c c4d5b2c4795d130551a557dbc75959ec gcc/params.def 380184a14b8e78710b46f5e4ab79404c gcc/params.h ! 469e5070c05609b1de0e4fe64d19b87a gcc/passes.c 3e0be78cbc18df33e50629e13310013c gcc/plugin.c e66d277467c8fd7470bc7d1b0ba0287c gcc/plugin.def b8dcb1ca1517990206efd591e8d1fae7 gcc/plugin.h ! 45baab183bab29fd98c06e364c1e4267 gcc/po/ChangeLog 083d211180afd5c4004e6992c3678e5b gcc/po/EXCLUDES 345fe081d102dab1ed296ffbf69067ea gcc/po/be.gmo 7fbfc0bf33162e9149ae6f57672d94c9 gcc/po/be.po --- 4770,4780 ---- af1c244ad89c0048275767a8f7fbeb0e gcc/params.c c4d5b2c4795d130551a557dbc75959ec gcc/params.def 380184a14b8e78710b46f5e4ab79404c gcc/params.h ! 8d30f543b4f7a81353f7c247dc980085 gcc/passes.c 3e0be78cbc18df33e50629e13310013c gcc/plugin.c e66d277467c8fd7470bc7d1b0ba0287c gcc/plugin.def b8dcb1ca1517990206efd591e8d1fae7 gcc/plugin.h ! 50fa0ee7d55a471c60b3bd526a497432 gcc/po/ChangeLog 083d211180afd5c4004e6992c3678e5b gcc/po/EXCLUDES 345fe081d102dab1ed296ffbf69067ea gcc/po/be.gmo 7fbfc0bf33162e9149ae6f57672d94c9 gcc/po/be.po *************** f0f5bde900e27f89bb431b6ee20fc0a3 gcc/po *** 4784,4791 **** c97646cb2820aee61c55b4b1c51be740 gcc/po/es.gmo 873bf17b3ef2e6f5e5e37fab552cedf9 gcc/po/es.po bc07cfc6023a889a3117d381761c3203 gcc/po/exgettext ! 0d3c8d3e7bb41b9bca7ee6daa1adfb8d gcc/po/fi.gmo ! 858b3832b8eac89a877ff4abaf24a31a gcc/po/fi.po 9131b14d07d5f8a93ec1fe28e219607b gcc/po/fr.gmo 6c5a525015267d4e609fefc7d7b4479b gcc/po/fr.po 99e446ea7d28a68c767522eb75180cef gcc/po/gcc.pot --- 4787,4794 ---- c97646cb2820aee61c55b4b1c51be740 gcc/po/es.gmo 873bf17b3ef2e6f5e5e37fab552cedf9 gcc/po/es.po bc07cfc6023a889a3117d381761c3203 gcc/po/exgettext ! 3f09018d570aa21259a340288755c020 gcc/po/fi.gmo ! 3ee44bde77f675e7c4b6b2df82b2b396 gcc/po/fi.po 9131b14d07d5f8a93ec1fe28e219607b gcc/po/fr.gmo 6c5a525015267d4e609fefc7d7b4479b gcc/po/fr.po 99e446ea7d28a68c767522eb75180cef gcc/po/gcc.pot *************** ddcbb8f75c0b4a9703667740e75fbbe0 gcc/po *** 4797,4804 **** 480b098f5b9eba7848f97e5874147d51 gcc/po/ja.po c6cbad029ba199df0ac5e6a78f930acc gcc/po/nl.gmo e41095ac68cbf4ca5fba2150a0d00a18 gcc/po/nl.po ! 041de48884ddd2db183414f819360a22 gcc/po/ru.gmo ! 041dbea5e873c61da5787210d7da730e gcc/po/ru.po 5c1ef4447fa187d26bccc0aa052217ec gcc/po/sr.gmo 6a2bf79d20c827a4a8392367ac353782 gcc/po/sr.po 7f864a9435df7ef955c2154dbc93b1a5 gcc/po/sv.gmo --- 4800,4807 ---- 480b098f5b9eba7848f97e5874147d51 gcc/po/ja.po c6cbad029ba199df0ac5e6a78f930acc gcc/po/nl.gmo e41095ac68cbf4ca5fba2150a0d00a18 gcc/po/nl.po ! 54bc7ca65baf834cb7b508147e091a46 gcc/po/ru.gmo ! b2812c2aa11502012c510b8a7a24c892 gcc/po/ru.po 5c1ef4447fa187d26bccc0aa052217ec gcc/po/sr.gmo 6a2bf79d20c827a4a8392367ac353782 gcc/po/sr.po 7f864a9435df7ef955c2154dbc93b1a5 gcc/po/sv.gmo *************** cab4bff8b231f597ccfcdd9d9772887f gcc/po *** 4809,4816 **** eaf1c61b65760abd2d338d375d490d6a gcc/po/vi.po 0b8e1bc2decf0f8f91e3069554b3859e gcc/po/zh_CN.gmo 8f9b6d8719ad8b4de29bce8f0cf4597f gcc/po/zh_CN.po ! a5b4b52ac871142c5325a12728133064 gcc/po/zh_TW.gmo ! 387d296abd399669ac96b7c8775f72c5 gcc/po/zh_TW.po b3f35fff414cd4ecf269bd373cda0fd0 gcc/pointer-set.c 64b5ae3d2b5555011ed0ad2c2f408584 gcc/pointer-set.h dde6c38ce21723e08ddbfee904185ff6 gcc/postreload-gcse.c --- 4812,4819 ---- eaf1c61b65760abd2d338d375d490d6a gcc/po/vi.po 0b8e1bc2decf0f8f91e3069554b3859e gcc/po/zh_CN.gmo 8f9b6d8719ad8b4de29bce8f0cf4597f gcc/po/zh_CN.po ! 04453db2a7b52e2d1d1e106ff15c33ba gcc/po/zh_TW.gmo ! b1b8522cddb184d441cb28e848f29045 gcc/po/zh_TW.po b3f35fff414cd4ecf269bd373cda0fd0 gcc/pointer-set.c 64b5ae3d2b5555011ed0ad2c2f408584 gcc/pointer-set.h dde6c38ce21723e08ddbfee904185ff6 gcc/postreload-gcse.c *************** df786e7aeed5444a31cc046f96a0e595 gcc/pr *** 4833,4840 **** f0b6eb17f649f89f758701316c2ca4f2 gcc/real.h 292a6839db089b75a5ab94bb18a87472 gcc/realmpfr.c 6979c412281b44f88ca8ab4cdf0d3f25 gcc/realmpfr.h ! 6806212f20063297cb735ad95853d1dc gcc/recog.c ! 6ad2e92bfeae9af3250d213cdffce04e gcc/recog.h f06d3f959d7f0b47d0699ea7fcafbb6c gcc/ree.c 260b147174cddde5226ae71568c4b458 gcc/reg-notes.def 06fcf5e75ae0461a5316443164c0b51e gcc/reg-stack.c --- 4836,4843 ---- f0b6eb17f649f89f758701316c2ca4f2 gcc/real.h 292a6839db089b75a5ab94bb18a87472 gcc/realmpfr.c 6979c412281b44f88ca8ab4cdf0d3f25 gcc/realmpfr.h ! 95ef553353fcb5b55ecfb5a9ce2e881a gcc/recog.c ! 80afecce497880a9aae51ca70f16c83a gcc/recog.h f06d3f959d7f0b47d0699ea7fcafbb6c gcc/ree.c 260b147174cddde5226ae71568c4b458 gcc/reg-notes.def 06fcf5e75ae0461a5316443164c0b51e gcc/reg-stack.c *************** c3f5409b641cfb8e5ded10e902427522 gcc/se *** 4878,4884 **** d359df32a7ce16b6a9ca523af60cb9e7 gcc/sel-sched.h bba33efde25142bd2d16863a8d152ddc gcc/sese.c ef2b93259dadd69307f6c7963f34609d gcc/sese.h ! 83c6b5d07dca1a40f1b389c93da7cf8b gcc/simplify-rtx.c 80352eb700db465d575b821ae855402f gcc/sparseset.c 69088101c47e18900b2be73c3b42ad2c gcc/sparseset.h c4e9683377d8a2b4ef0132f0bd9c4acc gcc/sreal.c --- 4881,4887 ---- d359df32a7ce16b6a9ca523af60cb9e7 gcc/sel-sched.h bba33efde25142bd2d16863a8d152ddc gcc/sese.c ef2b93259dadd69307f6c7963f34609d gcc/sese.h ! d27a9ace694da0426a84c32df026e6bf gcc/simplify-rtx.c 80352eb700db465d575b821ae855402f gcc/sparseset.c 69088101c47e18900b2be73c3b42ad2c gcc/sparseset.h c4e9683377d8a2b4ef0132f0bd9c4acc gcc/sreal.c *************** d1271633f8ffd85d06b40c7abec29d90 gcc/ss *** 4888,4894 **** 76174c42a910eb60feb3b9e632c6da16 gcc/stack-ptr-mod.c fcd50b76553e5909e599a0ab7d512e0e gcc/statistics.c 21e74efa37c41d87f7ff63b6e9afc171 gcc/statistics.h ! c8e056ff91ebdc1afa4e5fe767d44448 gcc/stmt.c fcdc9bf2076ecc101a01906046ffa199 gcc/stor-layout.c 4c262d95fcc939317e27f251439cab89 gcc/store-motion.c efb41aaf206f28483ac9ab36e70780f5 gcc/streamer-hooks.c --- 4891,4897 ---- 76174c42a910eb60feb3b9e632c6da16 gcc/stack-ptr-mod.c fcd50b76553e5909e599a0ab7d512e0e gcc/statistics.c 21e74efa37c41d87f7ff63b6e9afc171 gcc/statistics.h ! a72727ea73d91f53c506fe30a6e81676 gcc/stmt.c fcdc9bf2076ecc101a01906046ffa199 gcc/stor-layout.c 4c262d95fcc939317e27f251439cab89 gcc/store-motion.c efb41aaf206f28483ac9ab36e70780f5 gcc/streamer-hooks.c *************** bb0c215bbbd2a9b34178d0329d271539 gcc/ta *** 4905,4911 **** 38ec82f7ebd1744dc00b09e2d6cbc019 gcc/target.h 750b54ed76b3ba238b67b4ff7a9cefc0 gcc/targhooks.c aeb4c1ff2a1bbbcfc5611149fbf4a5c1 gcc/targhooks.h ! 7d7844cee9fd7426d1cd14da8865c583 gcc/testsuite/ChangeLog 862f04afbd87da2cc6bc432c3f28430f gcc/testsuite/ChangeLog-1993-2007 0cfd18f5e11308d47955263801f31753 gcc/testsuite/ChangeLog-2008 60d3faaef4bf51b170759743d2081977 gcc/testsuite/ChangeLog-2009 --- 4908,4914 ---- 38ec82f7ebd1744dc00b09e2d6cbc019 gcc/target.h 750b54ed76b3ba238b67b4ff7a9cefc0 gcc/targhooks.c aeb4c1ff2a1bbbcfc5611149fbf4a5c1 gcc/targhooks.h ! c7367365720fce2d8c160a319a9ec67f gcc/testsuite/ChangeLog 862f04afbd87da2cc6bc432c3f28430f gcc/testsuite/ChangeLog-1993-2007 0cfd18f5e11308d47955263801f31753 gcc/testsuite/ChangeLog-2008 60d3faaef4bf51b170759743d2081977 gcc/testsuite/ChangeLog-2009 *************** e16ef156ad193ef1f3cba60ad16e57ab gcc/te *** 7688,7693 **** --- 7691,7697 ---- 84c977571aeb43c0224137efe7f5b213 gcc/testsuite/c-c++-common/gomp/pr53580.c 28bfd873981083756a16f70fdb0b86db gcc/testsuite/c-c++-common/gomp/pr54017.c 48f64493dfa602c2fef9c13d9dee50d4 gcc/testsuite/c-c++-common/gomp/pr56883.c + a7d789b5091f59130b63c3467560e1e1 gcc/testsuite/c-c++-common/gomp/pr58257.c 715226741a182526f3d2c9f0d0384ac7 gcc/testsuite/c-c++-common/guality/pr43141.c efe9ef98b52d49485763af49dfafca8c gcc/testsuite/c-c++-common/init-vec-1.c ed31996e3dda298f798652d482bc4224 gcc/testsuite/c-c++-common/int128-1.c *************** ef299d52e4acb0accc6e4fa4baf91cc1 gcc/te *** 8561,8566 **** --- 8565,8571 ---- a80be7ed60483526cbc73b734a6567d3 gcc/testsuite/g++.dg/cpp0x/constexpr-value.C 213357e480e4e1b2ced92b711e3ca2c8 gcc/testsuite/g++.dg/cpp0x/constexpr-value2.C a930284b1953ab77dcbc0ec94543b57b gcc/testsuite/g++.dg/cpp0x/constexpr-value3.C + 9723fae309dff5e39e0b630954d2d10e gcc/testsuite/g++.dg/cpp0x/constexpr-value4.C 443012f7b572f9e31cec22b76face1b0 gcc/testsuite/g++.dg/cpp0x/constexpr-variadic.C 4138d75ee330a5d2fd3099d8f561e59b gcc/testsuite/g++.dg/cpp0x/constexpr-virtual.C 74b6dc368af3203141184d90425c0b43 gcc/testsuite/g++.dg/cpp0x/constexpr-virtual2.C *************** bdba0a334769e5b07579a00b83619135 gcc/te *** 8629,8634 **** --- 8634,8640 ---- 386eaa55c3c1d627d49e5f9e7adec123 gcc/testsuite/g++.dg/cpp0x/decltype5.C 93d62035309e5a9b0197c32f19717624 gcc/testsuite/g++.dg/cpp0x/decltype52.C 18ed71440e53d896399bdba36dc42a08 gcc/testsuite/g++.dg/cpp0x/decltype53.C + f94e897a0b87b037c2e3f9e1357c1cab gcc/testsuite/g++.dg/cpp0x/decltype55.C 5e830daa5bfe8780960733c15cef7f74 gcc/testsuite/g++.dg/cpp0x/decltype6.C c3626f3b26fbb53bd234a4e39649b63f gcc/testsuite/g++.dg/cpp0x/decltype7.C bbdff105c665351973aaa6a25eaa0940 gcc/testsuite/g++.dg/cpp0x/decltype8.C *************** c163e76b6fe04152df8ad492d1575982 gcc/te *** 8670,8675 **** --- 8676,8683 ---- 1a3c0b47ba7c2e8534100aba130285d9 gcc/testsuite/g++.dg/cpp0x/defaulted40.C ac76d900f119c9ca0e7c93a364ec9ca8 gcc/testsuite/g++.dg/cpp0x/defaulted41.C 973e3938ae3516d6d2de0d6490aaa504 gcc/testsuite/g++.dg/cpp0x/defaulted42.C + 2ee0772db61578cee819eb3f0c529df5 gcc/testsuite/g++.dg/cpp0x/defaulted44.C + bf3070d396c7bb7e08191019deb59497 gcc/testsuite/g++.dg/cpp0x/defaulted45.C a542994a8950397c6e282c0db4479373 gcc/testsuite/g++.dg/cpp0x/defaulted5.C d55216a62be51ae4ddecbd573454b5cd gcc/testsuite/g++.dg/cpp0x/defaulted6.C 7ce42a1717ccdfef065fa2abb34b230c gcc/testsuite/g++.dg/cpp0x/defaulted7.C *************** a68c6107558f25b70fd1a97ccd9b3825 gcc/te *** 8921,8926 **** --- 8929,8935 ---- d0fee121db223a5055591a32f5294ffe gcc/testsuite/g++.dg/cpp0x/initlist69.C 613b80eadd3f31808de00e614b6391fa gcc/testsuite/g++.dg/cpp0x/initlist7.C 2d66a677a148bf90b713edeecf9c1bbb gcc/testsuite/g++.dg/cpp0x/initlist70.C + 8c9b40880020e82966f1de834781daf0 gcc/testsuite/g++.dg/cpp0x/initlist71.C d3a348c4b49e1b0531708a46d1a74cce gcc/testsuite/g++.dg/cpp0x/initlist8.C 73b80da7e3c8fd208ac554539a446c84 gcc/testsuite/g++.dg/cpp0x/initlist9.C 42dda7ee38ea7ff6645882f3f9a6eaa0 gcc/testsuite/g++.dg/cpp0x/inline-ns1.C *************** d9b3b9597d3bf51088b71abd8f440104 gcc/te *** 8934,8939 **** --- 8943,8949 ---- 90b350c0b9cc2b8f8033e108b56da294 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-__func__.C 4a88207602c959a71cb68833ac3176a7 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-array.C 35a01a9ec2c183901d61e92e474c0aa5 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-auto1.C + c5dc01d7b5c6d100481180d9a0f8ce62 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-auto3.C 414981bc7d01f6877362173a78b37d06 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-capture-const-ref-neg.C 51dab2ccc004f3b91f60a7b710c8d2f0 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-capture-const-ref.C e2a083691b1566f137dbcda5f4010917 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-capture-neg.C *************** a30e26da337ef1a550b5b617672f3782 gcc/te *** 8966,8971 **** --- 8976,8982 ---- 7b0aad310340521d4ca9c11fd880f129 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-defarg2.C d102c62f275734141afe46d44e6c3423 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-defarg3.C ffc39c5b4c152803a184a9a8a8a77a77 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-defarg4.C + 0ee6fa2440a52fd8a86025d3704e8fc8 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-defarg5.C 42c269128ec251cc935bf084af3fbf0b gcc/testsuite/g++.dg/cpp0x/lambda/lambda-direct-init.C 4d150a5c8a885c4059815a3096459204 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-eh.C b88a795aaa2898fb80b0ec0b82214e74 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-eh2.C *************** d6b61c53f6746bab283cfde83dd61400 gcc/te *** 8978,8983 **** --- 8989,8995 ---- bcb561a88f61bda5399b57a2891eb5ca gcc/testsuite/g++.dg/cpp0x/lambda/lambda-field-names.C 02f20fb8b429131ddea86b03510488e5 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-for.C d571c1f713fa3db34b2ad3b7c961930a gcc/testsuite/g++.dg/cpp0x/lambda/lambda-ice1.C + d010708ff9dfabefb31e6ac59b3c7b96 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-ice10.C 9ce51776cab44241098f2ddbefc57b8e gcc/testsuite/g++.dg/cpp0x/lambda/lambda-ice2.C aeedb86ecc165de825ed34f0347ad287 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-ice3.C d861ff7bb238770549f1f9ba4261c13c gcc/testsuite/g++.dg/cpp0x/lambda/lambda-ice4.C *************** d99567b8456dc927600ebf819b5a5619 gcc/te *** 9018,9023 **** --- 9030,9036 ---- 1c8ff3c470a354b483ecd257a3ce332b gcc/testsuite/g++.dg/cpp0x/lambda/lambda-ref-default.C 0059c3472d7a3d6ab23c7aa58857fedc gcc/testsuite/g++.dg/cpp0x/lambda/lambda-ref.C acbae52bdbdaf07e52af0298a84decea gcc/testsuite/g++.dg/cpp0x/lambda/lambda-ref2.C + 1513e36e6bd3517091ebe8591db0f6a9 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-return1.C 8b146a8ee8aad9a37f05efbe4398473d gcc/testsuite/g++.dg/cpp0x/lambda/lambda-sfinae1.C edbfa2dc925571a1d9ea613aa37a589c gcc/testsuite/g++.dg/cpp0x/lambda/lambda-std-function.C 56bd211474cf91f523f453555f6eb049 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-switch.C *************** ae7b9d7f58a9bc802bcf7ffd5e196b3b gcc/te *** 9084,9089 **** --- 9097,9103 ---- f10a73fb8e727619c647ab5fa4bfc33d gcc/testsuite/g++.dg/cpp0x/noexcept18.C 106c122a0f8476e054941f5467d4db3e gcc/testsuite/g++.dg/cpp0x/noexcept19.C 2c2ee75fa09bba00462d8640b91c498d gcc/testsuite/g++.dg/cpp0x/noexcept20.C + 2b6c095cbaee8a1afa6ee4b8efb3eca6 gcc/testsuite/g++.dg/cpp0x/noexcept21.C b2aeffa807ca947f2ac1ce254e43f97a gcc/testsuite/g++.dg/cpp0x/nolinkage1.C 6b7c91b931bbdacbbffbf9b90a79bc6a gcc/testsuite/g++.dg/cpp0x/nolinkage1.h 84840c32c28b1c181ccc33aecc2459a7 gcc/testsuite/g++.dg/cpp0x/nolinkage1a.cc *************** b52e8ee1319932d3b243a6fa7a55c976 gcc/te *** 9201,9206 **** --- 9215,9221 ---- 17842e627dda285d3231b7dc2e1dd2e5 gcc/testsuite/g++.dg/cpp0x/pr52744.C d99b705d92b5a7195917ee59c6c04bc6 gcc/testsuite/g++.dg/cpp0x/pr52841.C 6eb4712996c5c48893b31133038f46f0 gcc/testsuite/g++.dg/cpp0x/pr54323.C + e68bf835ac536338752ce48bd0776207 gcc/testsuite/g++.dg/cpp0x/pr57981.C e4fa87f30de032d5f1a1cdd560512371 gcc/testsuite/g++.dg/cpp0x/ptrmem-cst-arg1.C edffb4150e3adee1e7286e8172cde88a gcc/testsuite/g++.dg/cpp0x/range-for1.C a704049cf608b9b47381e29ee9dbb3fc gcc/testsuite/g++.dg/cpp0x/range-for10.C *************** d0d588806aef3922d92ee7fb7c632659 gcc/te *** 9233,9238 **** --- 9248,9254 ---- e25aa6f18faad387b7f1ade3529476a6 gcc/testsuite/g++.dg/cpp0x/ref-qual11.C 0a0c7a2db84d28ba649ea53e136a1d9c gcc/testsuite/g++.dg/cpp0x/ref-qual12.C 759a26dd15a061d3f5a982b5eb65098b gcc/testsuite/g++.dg/cpp0x/ref-qual13.C + bf679e1b75877f28dc4d57155f61bcb1 gcc/testsuite/g++.dg/cpp0x/ref-qual14.C 17d77d3ef6cc0e1cfd53228f15a40017 gcc/testsuite/g++.dg/cpp0x/ref-qual2.C 68b27ec15231994ad0330625660d2720 gcc/testsuite/g++.dg/cpp0x/ref-qual3.C 1bb06529f586a3e77263290dd006534e gcc/testsuite/g++.dg/cpp0x/ref-qual4.C *************** a864ac9ace6ee08b0ae00899e67445f0 gcc/te *** 9805,9810 **** --- 9821,9827 ---- 3dc7fc950cc8912775fd7b3753944d23 gcc/testsuite/g++.dg/debug/pr56819.C c3f392076ad11f8768ef0321b89abd5f gcc/testsuite/g++.dg/debug/static1.C 7e13d86d33b17cfb7cdf61b7b8cca961 gcc/testsuite/g++.dg/debug/template1.C + 23dff563f4e6898790a381f0897b988f gcc/testsuite/g++.dg/debug/template2.C f50cc26d9a41a3cc4afb62032326372f gcc/testsuite/g++.dg/debug/trivial.C 863c8434199f0ac4d3a2d8d915bd5d1a gcc/testsuite/g++.dg/debug/typedef1.C 798848d35df1829cb7c468058c887871 gcc/testsuite/g++.dg/debug/typedef2.C *************** d30ef5af28e6363dab6713f12d513bc9 gcc/te *** 9995,10000 **** --- 10012,10018 ---- f30409fd40ff04e848318e2beb14a1c7 gcc/testsuite/g++.dg/expr/cond7.C 40070278213343c0b01841f7df7492ae gcc/testsuite/g++.dg/expr/cond8.C d66ca920348778bbeb8e0826f1345ba0 gcc/testsuite/g++.dg/expr/cond9.C + 89913df130d2e40e91c042ff5d6c302d gcc/testsuite/g++.dg/expr/const1.C 40c29dc173bf365777a7de4d0970b286 gcc/testsuite/g++.dg/expr/copy1.C 5943e958df776a88c39dc200ec5d291c gcc/testsuite/g++.dg/expr/crash-1.C 4ddfe508094ae855749b3a8b63fd8063 gcc/testsuite/g++.dg/expr/crash2.C *************** f5e4ea70b45a11c5323da18215d95112 gcc/te *** 10412,10417 **** --- 10430,10437 ---- d5eea1e0f08dca8eab2b57d02f7bc73a gcc/testsuite/g++.dg/ext/pr34829.C 188a8d2b9be2004a264afef6a0d937cb gcc/testsuite/g++.dg/ext/pr47213.C 098b8140ebbd429d9c2b2419717ce9d6 gcc/testsuite/g++.dg/ext/pr53605.C + 627009ec0ac71a6fc351693f33db780f gcc/testsuite/g++.dg/ext/pr57362.C + db6ceb60c85d19ebe96df1d062b22334 gcc/testsuite/g++.dg/ext/pr57735.C ad117686eb16e680b29f2f5e45ebe0df gcc/testsuite/g++.dg/ext/pragmaweak1.C ae2794e104309a224e228d70e4cede48 gcc/testsuite/g++.dg/ext/pretty1.C faa8333681bedde3ba84daa60ec26ff8 gcc/testsuite/g++.dg/ext/pretty2.C *************** eb316460089208481c6b3e5a0c34a90a gcc/te *** 11817,11822 **** --- 11837,11844 ---- 7057b0c0d36c90d59e489132e8fff3fe gcc/testsuite/g++.dg/opt/pr55717.C 374e458734ce7fe1729a8ba680a51657 gcc/testsuite/g++.dg/opt/pr56381.C c68a9b9f4514e9c73fd26523ebebc10e gcc/testsuite/g++.dg/opt/pr56999.C + 828022ccc1e84d3cca942139c1d8d082 gcc/testsuite/g++.dg/opt/pr58006.C + 1cadcb34706f8ce0f09e6fdea8d1e401 gcc/testsuite/g++.dg/opt/pr58165.C ac2356162f00cd5e8804482480f1795a gcc/testsuite/g++.dg/opt/pr6713.C 90bdbfd9313461944756a9e9f01ce788 gcc/testsuite/g++.dg/opt/pr7503-1.C 1451eba24eea82cbd0c1ab87885c0f77 gcc/testsuite/g++.dg/opt/preinc1.C *************** fcbbcebb755ba0db8bde5a91a31088a8 gcc/te *** 12326,12331 **** --- 12348,12354 ---- 3cae354cb01ecb5097fe78c4d17c8ccd gcc/testsuite/g++.dg/parse/crash6.C 84cac2482e8cc58f9b56a35359690164 gcc/testsuite/g++.dg/parse/crash60.C 02796255ff9d4aacb61ea075da81bea0 gcc/testsuite/g++.dg/parse/crash61.C + 3fae4596904aa2d63a517ea2ea3ed98a gcc/testsuite/g++.dg/parse/crash62.C 34393b72e5dec85fca930dee15e2f669 gcc/testsuite/g++.dg/parse/crash7.C 5818f331167c496db06ad694932a1beb gcc/testsuite/g++.dg/parse/crash9.C 5940e29a523673e2c47048c21c11d678 gcc/testsuite/g++.dg/parse/ctor1.C *************** d58864cd4550e9a43e5536d8ea904e26 gcc/te *** 12565,12570 **** --- 12588,12594 ---- 8d6d8891281e77e95edf66cda3bc270f gcc/testsuite/g++.dg/parse/redef1.C fc942a22cb8c9c4f56299a12c41b226e gcc/testsuite/g++.dg/parse/redef2.C 19c9483f0726842c500357ad04acc983 gcc/testsuite/g++.dg/parse/ref-qual1.C + 70d93639ad9e4d1ee8748d9329dfae12 gcc/testsuite/g++.dg/parse/ref-qual2.C 176cd37bac0e17d41ebe5f535df4a12c gcc/testsuite/g++.dg/parse/ref1.C 0ac246d1c2c84000962245c7661e60cc gcc/testsuite/g++.dg/parse/register1.C 15c20313893567659b867565ddb52b45 gcc/testsuite/g++.dg/parse/repo1.C *************** e831cec93609978519f8f94b9c7e0a97 gcc/te *** 12652,12657 **** --- 12676,12682 ---- 6bd4c0f7191355f693af56ab02582e5d gcc/testsuite/g++.dg/parse/using1.C b0efdadcde3dc0c5df6d0eb6b88135b3 gcc/testsuite/g++.dg/parse/using2.C ac80fae137a8a1ef9021d6e173ca8090 gcc/testsuite/g++.dg/parse/using3.C + 7bdf885c8575c5234e7e0016e3c76dcc gcc/testsuite/g++.dg/parse/using4.C 2b4ab97a787e4e5ab0056f2bb0da4a6d gcc/testsuite/g++.dg/parse/varmod1.C 87484ba10cbb539c4f84ec334125b020 gcc/testsuite/g++.dg/parse/wrong-inline1.C d9064b328bf2156a9e67df26156ec572 gcc/testsuite/g++.dg/pch/array-1.C *************** da36360b1eaeaaf6b1adffefc9001717 gcc/te *** 12723,12728 **** --- 12748,12754 ---- 87fdbc7f65a77794bc417b29c89d0401 gcc/testsuite/g++.dg/pr55263.C 99ec6374b2f0e4e6df67c98e4c982d12 gcc/testsuite/g++.dg/pr55513.C 0ae4a428b317c1c96fedab8dbcaf1da0 gcc/testsuite/g++.dg/pr55604.C + 5abc6bae2519525e59b2a021bb5cd489 gcc/testsuite/g++.dg/pr57878.C ae8863cdd596655bd9501c7a7e546fc7 gcc/testsuite/g++.dg/predict-loop-exit-1.C 112161f9cc2e99ed1a64b608b234d230 gcc/testsuite/g++.dg/predict-loop-exit-2.C 9fdf45388f73e8c9a46342cf4ec52cb6 gcc/testsuite/g++.dg/predict-loop-exit-3.C *************** fddf6e4104e367506b1483b55a539b63 gcc/te *** 12810,12815 **** --- 12836,12842 ---- c241bed1d85ccf57402c8efd46ab9b8c gcc/testsuite/g++.dg/tc1/dr85.C bf475bf32acceb9eb23c5b5b7013f7fe gcc/testsuite/g++.dg/tc1/dr90.C 2b6b832186c8ccf57001b2888f9dec54 gcc/testsuite/g++.dg/tc1/dr94.C + c07d50142bc334d2ce490d4f68be9ca4 gcc/testsuite/g++.dg/template/abstract1.C 1c360b630dc5835068452f918bda8fb6 gcc/testsuite/g++.dg/template/access1.C 71d21b2797de6268bae8a876a61f64ac gcc/testsuite/g++.dg/template/access10.C 4258b0983bb1e6a711060fef0bfee6ae gcc/testsuite/g++.dg/template/access11.C *************** bd880d8d2c138019357fe824987745e3 gcc/te *** 12828,12833 **** --- 12855,12861 ---- edd1a0ccdc40a95e3ee5956e50250f9a gcc/testsuite/g++.dg/template/access23.C e369c82013a70a752273af1adface28c gcc/testsuite/g++.dg/template/access24.C 8fd60bfd6c2c2368d8cb3afb7640aa87 gcc/testsuite/g++.dg/template/access25.C + c7c275427c1f23da1f5270746886e61d gcc/testsuite/g++.dg/template/access27.C bb203818faa22dcb1d2c8ada7ef4ec82 gcc/testsuite/g++.dg/template/access3.C 7ea6af968e54287945d17d2352e36fd6 gcc/testsuite/g++.dg/template/access4.C 043c53bbc7cad60a3c72bfa79987f011 gcc/testsuite/g++.dg/template/access5.C *************** c306ff6eb2399c47b955c0f32952ba01 gcc/te *** 12853,12858 **** --- 12881,12887 ---- f90e567b7331a6236abd917963c61a0f gcc/testsuite/g++.dg/template/arg6.C 9fda611eb6ff85fc5c7bbaaf0b553563 gcc/testsuite/g++.dg/template/arg7.C ab34028d94948742f14d5352356f20d5 gcc/testsuite/g++.dg/template/arg8.C + 9a06687b448bfad17e2e10a4c58cfcf5 gcc/testsuite/g++.dg/template/arg9.C 99d7b1deba3ad5e11fcbd2dc7d70e9ee gcc/testsuite/g++.dg/template/array1-1.C 075227803fea6455eb958b3d2d173e9b gcc/testsuite/g++.dg/template/array1-2.C 2960ad36eda739b652d2efa379834c5c gcc/testsuite/g++.dg/template/array10.C *************** e55baeaf118c452b9f707b8236ee86b1 gcc/te *** 13094,13099 **** --- 13123,13129 ---- 5a9ab10f62078b4d20766a00362fa933 gcc/testsuite/g++.dg/template/defarg8.C bbc0cedc0c23e5084b73fd2bd7d12be0 gcc/testsuite/g++.dg/template/defarg9.C 08e2480f72bcb72f3f0c69f74625bd4c gcc/testsuite/g++.dg/template/delete1.C + f64b5dcbfa3d3051a358c8d1c1e8a878 gcc/testsuite/g++.dg/template/delete2.C 3e39818cd75d670c263210d492e83fc2 gcc/testsuite/g++.dg/template/dependent-args1.C 4e28ad3da9cf0f80841dd7ac6a9a0233 gcc/testsuite/g++.dg/template/dependent-expr1.C 5c363f74bcfd32858f0d7daa76f3d56b gcc/testsuite/g++.dg/template/dependent-expr2.C *************** c617d0614fa2c65ab23502fc466e2592 gcc/te *** 13273,13278 **** --- 13303,13309 ---- f324fc75e2ce740742e957e7c3d64819 gcc/testsuite/g++.dg/template/inherit6.C 512af16a8d227668dfd611f18408ff34 gcc/testsuite/g++.dg/template/inherit7.C 25ec4783042b53fc8562540bbe248d82 gcc/testsuite/g++.dg/template/inherit8.C + 19797273bb7cf4155972bbcb4d4fb8c3 gcc/testsuite/g++.dg/template/inherit9.C 9783cba5cd0e48e50ecc5c42ed1dd282 gcc/testsuite/g++.dg/template/init-list.C f30fe425de51d4cb2ab5ff05b71d616a gcc/testsuite/g++.dg/template/init1.C 7c6a96d0550437ed561f8825ad2bc25e gcc/testsuite/g++.dg/template/init10.C *************** cfc21cabe74fa837433fc899f5f5211c gcc/te *** 13820,13825 **** --- 13851,13857 ---- 320afc20e453862a122ac3d0bdda181b gcc/testsuite/g++.dg/template/using20.C 8f24a6602645350feb421484b6b3ea57 gcc/testsuite/g++.dg/template/using21.C 15875b358b7888d3afb1bb2d41b1be7f gcc/testsuite/g++.dg/template/using22.C + b6fd01563ec784b5aec55681183ee573 gcc/testsuite/g++.dg/template/using23.C 2131f7be9d523457118116995b368d74 gcc/testsuite/g++.dg/template/using3.C cd698ebd98a80f55920d17ae629b4d9b gcc/testsuite/g++.dg/template/using4.C 730dbbdbfc73d70df6d68467f8af3c39 gcc/testsuite/g++.dg/template/using5.C *************** f0a1fb92cf38358bf8b5f06449cca963 gcc/te *** 14355,14360 **** --- 14387,14393 ---- c299a2e8f2fcb74286fbc4d6d1cf115d gcc/testsuite/g++.dg/uninit-pred-2_b.C 5786bf78cee1b70c9836b60ec34f42ba gcc/testsuite/g++.dg/uninit-pred-3_a.C e7062d8b8ae34f0a4f8b5b407e180316 gcc/testsuite/g++.dg/uninit-pred-3_b.C + 5ee1b7f723d2f67283e9a5a7eb0c38f1 gcc/testsuite/g++.dg/uninit-pred-4.C 2fcbc57bdfc93414220095e1211dcd11 gcc/testsuite/g++.dg/uninit-pred-loop-1_a.cc 03d2a78bcc9e78b2411e9795306910ae gcc/testsuite/g++.dg/uninit-pred-loop-1_b.cc 78a350564146421e6be7ebee31e87669 gcc/testsuite/g++.dg/uninit-pred-loop-1_c.cc *************** f11e1a6a7c64d32c0698605c42c159c1 gcc/te *** 14584,14589 **** --- 14617,14623 ---- b44ce135d8c96099ca5e30272b8ceaa0 gcc/testsuite/g++.dg/warn/Wunused-var-18.C 457e420b30b84147da9f1deedcd1c32b gcc/testsuite/g++.dg/warn/Wunused-var-19.C 6f250a1bec102f3ef4c4450109985c6c gcc/testsuite/g++.dg/warn/Wunused-var-2.C + 0c5df293cc7c104d4640b26ebae4ed15 gcc/testsuite/g++.dg/warn/Wunused-var-21.C dd0f2a1889a83658587b5f12c08c0c1c gcc/testsuite/g++.dg/warn/Wunused-var-3.C 62e5565091b4ee3f018515196f818bf3 gcc/testsuite/g++.dg/warn/Wunused-var-4.C d9191ea69f8ac18b1043d3d093b1f0d4 gcc/testsuite/g++.dg/warn/Wunused-var-5.C *************** e7c9db1b2be675ff14addb88e2a90cef gcc/te *** 16200,16206 **** cc10249212aad9171788f0541d34cad0 gcc/testsuite/g++.old-deja/g++.mike/misc6.C c9236b6c45f41911c2786a0c494cbd04 gcc/testsuite/g++.old-deja/g++.mike/misc7.C 7baa89fdc351351ac514a4fdec32841e gcc/testsuite/g++.old-deja/g++.mike/misc8.C ! 9d678ffaa0a7fb192c5e40b3b989e778 gcc/testsuite/g++.old-deja/g++.mike/misc9.C d8c035c73c2a5073c19014f1eec91dd9 gcc/testsuite/g++.old-deja/g++.mike/net1.C cd9054e1e5f8438c5b5ed72aa90b5f17 gcc/testsuite/g++.old-deja/g++.mike/net10.C 1943b8a0ba3e57ee8e1a45729af9388a gcc/testsuite/g++.old-deja/g++.mike/net11.C --- 16234,16240 ---- cc10249212aad9171788f0541d34cad0 gcc/testsuite/g++.old-deja/g++.mike/misc6.C c9236b6c45f41911c2786a0c494cbd04 gcc/testsuite/g++.old-deja/g++.mike/misc7.C 7baa89fdc351351ac514a4fdec32841e gcc/testsuite/g++.old-deja/g++.mike/misc8.C ! c0a0ee051f07383fd186d9c88990720f gcc/testsuite/g++.old-deja/g++.mike/misc9.C d8c035c73c2a5073c19014f1eec91dd9 gcc/testsuite/g++.old-deja/g++.mike/net1.C cd9054e1e5f8438c5b5ed72aa90b5f17 gcc/testsuite/g++.old-deja/g++.mike/net10.C 1943b8a0ba3e57ee8e1a45729af9388a gcc/testsuite/g++.old-deja/g++.mike/net11.C *************** aff7f7ad2ad7fb2c1d7c7583cac7cbd9 gcc/te *** 19264,19269 **** --- 19298,19305 ---- c5f5e137c2f8e6dd178cf3e0d2f39551 gcc/testsuite/gcc.c-torture/compile/pr56571.c d4fcbeedbb50d5d862a10fb29f188f75 gcc/testsuite/gcc.c-torture/compile/pr56745.c a6c492944eeef02cb44d6b3efeac2e1f gcc/testsuite/gcc.c-torture/compile/pr56984.c + 3d5e2d289193cbadd96cde226ed96cc8 gcc/testsuite/gcc.c-torture/compile/pr58088.c + a71124ce890a6be17c193b949f241ac4 gcc/testsuite/gcc.c-torture/compile/pr58164.c b9e6ce52b90320c1c3803c25113844c5 gcc/testsuite/gcc.c-torture/compile/pta-1.c ed716c1d1727fc2c748162e0cbc4ee47 gcc/testsuite/gcc.c-torture/compile/ptr-conv-1.c 8d869e3426345f0cf8837c5eaafd43b5 gcc/testsuite/gcc.c-torture/compile/simd-1.c *************** f5bf213254196069bdc2f4abece6c1cd gcc/te *** 20413,20418 **** --- 20449,20455 ---- 42a724c275e627732267a4990711c28b gcc/testsuite/gcc.c-torture/execute/multdi-1.c 558a99bf90e011acde6ff3a4538d3ee5 gcc/testsuite/gcc.c-torture/execute/multi-ix.c 58ee45237d40aa51ec8417546f0a94c1 gcc/testsuite/gcc.c-torture/execute/nest-align-1.c + 7640dcfda4cf687ecdb5fd8260478415 gcc/testsuite/gcc.c-torture/execute/nest-align-1.x b07a89f75cb6cca54f6a324b7bbae1ab gcc/testsuite/gcc.c-torture/execute/nest-stdar-1.c 3fc3711523c60ede825fe7d2be3620e1 gcc/testsuite/gcc.c-torture/execute/nestfunc-1.c 41499442e4d8bf92f1ed068c66da251b gcc/testsuite/gcc.c-torture/execute/nestfunc-2.c *************** bb473d2731dd977b955a467b41d4b0a7 gcc/te *** 20709,20714 **** --- 20746,20761 ---- a6ee4f90175761323521d06c87d8f3cf gcc/testsuite/gcc.c-torture/execute/pr57344-2.c 50e495b0fabb8f95697b9eafd2f73302 gcc/testsuite/gcc.c-torture/execute/pr57344-3.c 4f00e03c7572cce58e5e17e4cf8506dd gcc/testsuite/gcc.c-torture/execute/pr57344-4.c + 0771ee8b89aebedb83998f5ffe49b94f gcc/testsuite/gcc.c-torture/execute/pr57568.c + 08fd7473bb8a1bd8223764857d3fe1f2 gcc/testsuite/gcc.c-torture/execute/pr57829.c + 7b314b618bd13790f4474067f69058e8 gcc/testsuite/gcc.c-torture/execute/pr58209.c + fde008949dd0c0020ce7e53727e1af7b gcc/testsuite/gcc.c-torture/execute/pr58277-1.c + f0a6494062a64d2fc689d8a4192959c2 gcc/testsuite/gcc.c-torture/execute/pr58277-2.c + bd86b21061018f4f7333c7161ae55fde gcc/testsuite/gcc.c-torture/execute/pr58364.c + a23a8e366e50c4fc95caccc34c4936a7 gcc/testsuite/gcc.c-torture/execute/pr58365.c + 5a8aed9f9f8292f522056ba7ca80d4b3 gcc/testsuite/gcc.c-torture/execute/pr58385.c + cab5da103e14455c850172740640b27c gcc/testsuite/gcc.c-torture/execute/pr58564.c + 2f577ba387848a723e6649715b59a5ba gcc/testsuite/gcc.c-torture/execute/pr58574.c ecfc31f12ce09d6ccbcced04ff04deba gcc/testsuite/gcc.c-torture/execute/pr7284-1.c 89f3c7ee990221eeb33cb08a0772e024 gcc/testsuite/gcc.c-torture/execute/pr7284-1.x f4610e3bba97324f7005c428fe41e597 gcc/testsuite/gcc.c-torture/execute/printf-1.c *************** f5a2800fc5f21185bd9bdbd69e270c10 gcc/te *** 21561,21566 **** --- 21608,21614 ---- fb704062563e6eb92ac46a371e6936ef gcc/testsuite/gcc.dg/array-quals-1.c 7751728a827a1c380d5ac446406e618f gcc/testsuite/gcc.dg/array-quals-2.c 62742c1c20ac0ef8771a66f64177b3ca gcc/testsuite/gcc.dg/asan/asan.exp + a5e988481cd66b8acf6c610b847cb713 gcc/testsuite/gcc.dg/asan/pr56417.c 5ff39290aee620ff2495e8cb5a3905ee gcc/testsuite/gcc.dg/asm-1.c b8a6dfeb58832a8b8624357eed99557a gcc/testsuite/gcc.dg/asm-2.c b911cf51d486403e3ca1c067a8a15675 gcc/testsuite/gcc.dg/asm-3.c *************** cdec1b240b89ad7bf971aa799a1ea4a0 gcc/te *** 24094,24099 **** --- 24142,24148 ---- ca6dd47eed2470f390bd2cdca32f96fb gcc/testsuite/gcc.dg/ipa/pr51362.c b4b413e9bfe0953511e137aebc29136a gcc/testsuite/gcc.dg/ipa/pr56988.c 58f2a6cfb6cca81430c94183416b499f gcc/testsuite/gcc.dg/ipa/pr57347.c + 028bd5e9b5fe94c915a410cf6f55ef3f gcc/testsuite/gcc.dg/ipa/pr57358.c b58d896a4d97e5f7f8b082f407df9a92 gcc/testsuite/gcc.dg/ipa/pure-const-1.c 96d395d8b51f69b544facb9312923acf gcc/testsuite/gcc.dg/ipa/pure-const-2.c 8f5983946d28dca5853e89d0aa48b65d gcc/testsuite/gcc.dg/kpice1.c *************** e4a2d97c5aa27b96f13bb39a2628cf46 gcc/te *** 25513,25524 **** --- 25562,25580 ---- f26f8c6b2b3adcb38915f56973447282 gcc/testsuite/gcc.dg/pr56847.c df4b816776f2c4e40c56112e07abeeca gcc/testsuite/gcc.dg/pr56890-1.c 8fe731c15e241e6c041ba662739f3d48 gcc/testsuite/gcc.dg/pr56890-2.c + 9fb688d9b964a566c7e58955b48c1b97 gcc/testsuite/gcc.dg/pr56977.c 0cd01efbdd291345aec2641113cc4ca4 gcc/testsuite/gcc.dg/pr56990.c 652c6f195eab46e89dabc36583be9dcb gcc/testsuite/gcc.dg/pr56992.c f6f3bb5c15b24fa2eea3282ce7841295 gcc/testsuite/gcc.dg/pr57104.c 605598c67818ee5aed3cb1f08d3c11f5 gcc/testsuite/gcc.dg/pr57149.c a7df18a8bb63d3ca237dbd1011053c66 gcc/testsuite/gcc.dg/pr57184.c f2ca35cbd43cf9bf71e9cbf3e52945f0 gcc/testsuite/gcc.dg/pr57300.c + 02887872c44b39d742f2cbce9f89b042 gcc/testsuite/gcc.dg/pr57518.c + d62e4be4c8237006d589df7d27fb262c gcc/testsuite/gcc.dg/pr57980.c + b21bdd688c2c75ad2d1f53e4f66341fa gcc/testsuite/gcc.dg/pr58010.c + c98f58ca0ac52f1af517f2e7335529ea gcc/testsuite/gcc.dg/pr58145-1.c + 4468b012f14454dc854790c2b1c956f6 gcc/testsuite/gcc.dg/pr58145-2.c + 6d4a2a985c3bca6f3d6d31b8abadc7b1 gcc/testsuite/gcc.dg/pr58463.c 8b7d73da2d5d78000716492365a85d5a gcc/testsuite/gcc.dg/pr8715.c 3d08410b2dd57259aa63f0e1c64b376e gcc/testsuite/gcc.dg/pr8788-1.c be04382a35ebb1cfae1b2168f1693a94 gcc/testsuite/gcc.dg/pr8835-1.c *************** bfa7e58f4ea5172e739ce75b74990c90 gcc/te *** 26362,26367 **** --- 26418,26435 ---- 845769847030f070941db74e9782dce5 gcc/testsuite/gcc.dg/torture/pr57303.c c99cd8db49c08f93e69d5c56eb0556fa gcc/testsuite/gcc.dg/torture/pr57330.c bf886fb9169b1bea9c33c365078fa538 gcc/testsuite/gcc.dg/torture/pr57341.c + 60a1c407cd875990011861fd700b448b gcc/testsuite/gcc.dg/torture/pr57343.c + 69a811a55301952804831d2352da7869 gcc/testsuite/gcc.dg/torture/pr57381.c + ee1a66e4d4e596c1ede2df5349d53f89 gcc/testsuite/gcc.dg/torture/pr57417.c + a5c2783ab5ddf3529e7f6c7e2fd5069b gcc/testsuite/gcc.dg/torture/pr57521.c + 8534fdea4d74f4a82515872dd4723697 gcc/testsuite/gcc.dg/torture/pr57656.c + 26110023944b046641989ad92c41a349 gcc/testsuite/gcc.dg/torture/pr57685.c + d89477ea0d429b92206325d86a42808d gcc/testsuite/gcc.dg/torture/pr58041.c + c0dbc10c6440a10949cd2b0e7665d7ec gcc/testsuite/gcc.dg/torture/pr58223.c + c47ad0b2897e63ad3159940f9b7fa206 gcc/testsuite/gcc.dg/torture/pr58228.c + ea30d11931d516d6e92b14fe47202b4e gcc/testsuite/gcc.dg/torture/pr58246.c + 9bc5f90faa2efd8139900d4888af0d50 gcc/testsuite/gcc.dg/torture/pr58539.c + b0f851c79dae61f576b8598934dfcf2b gcc/testsuite/gcc.dg/torture/pr58670.c c99c3745eca0ddc81822cc070070a4d3 gcc/testsuite/gcc.dg/torture/pr8081.c b3a9e4f2af6462183da8d6c5cb13bf1f gcc/testsuite/gcc.dg/torture/pta-callused-1.c 98fde0e59e55c1ed923ee9d9f034d7f2 gcc/testsuite/gcc.dg/torture/pta-escape-1.c *************** a93992ffe78f03f6cd4cbd4e8ed9cbe3 gcc/te *** 26789,26795 **** 7916a3a3d6f570fad84d74b8c2a4f488 gcc/testsuite/gcc.dg/tree-ssa/ldist-13.c 0f06cbfcc7026f848fa34cb2cf6a03b8 gcc/testsuite/gcc.dg/tree-ssa/ldist-14.c d45bb4e1f0fa1ee10ae07e8c358f346d gcc/testsuite/gcc.dg/tree-ssa/ldist-15.c ! 81397916e541847b186040b5c1a50ded gcc/testsuite/gcc.dg/tree-ssa/ldist-16.c 7ba69d40ffb4f2b50dda5ab94ec6adc1 gcc/testsuite/gcc.dg/tree-ssa/ldist-17.c ba0de0c308a8a8c3067ebecd59de53dc gcc/testsuite/gcc.dg/tree-ssa/ldist-18.c 2b2fb28884ef2d243a9e30751c5876bd gcc/testsuite/gcc.dg/tree-ssa/ldist-19.c --- 26857,26863 ---- 7916a3a3d6f570fad84d74b8c2a4f488 gcc/testsuite/gcc.dg/tree-ssa/ldist-13.c 0f06cbfcc7026f848fa34cb2cf6a03b8 gcc/testsuite/gcc.dg/tree-ssa/ldist-14.c d45bb4e1f0fa1ee10ae07e8c358f346d gcc/testsuite/gcc.dg/tree-ssa/ldist-15.c ! 180689bda7d14d8800cb88f6da20b3a2 gcc/testsuite/gcc.dg/tree-ssa/ldist-16.c 7ba69d40ffb4f2b50dda5ab94ec6adc1 gcc/testsuite/gcc.dg/tree-ssa/ldist-17.c ba0de0c308a8a8c3067ebecd59de53dc gcc/testsuite/gcc.dg/tree-ssa/ldist-18.c 2b2fb28884ef2d243a9e30751c5876bd gcc/testsuite/gcc.dg/tree-ssa/ldist-19.c *************** d56e1d54601d45793aabb89d50201a58 gcc/te *** 28835,28840 **** --- 28903,28909 ---- 7fff87a71a10bdb4442a83328d11198d gcc/testsuite/gcc.target/aarch64/narrow_high-intrinsics.c a1759a4eb1fc0f62e2222315d0eb8cc0 gcc/testsuite/gcc.target/aarch64/pic-constantpool1.c 100e94c4ffeea90b2da74a773d59f1cf gcc/testsuite/gcc.target/aarch64/pic-symrefplus.c + e668fb9e0d32efadd671247467dc90db gcc/testsuite/gcc.target/aarch64/pr58460.c 1f95766b4ed5bfb5f2cf1f168a607a8d gcc/testsuite/gcc.target/aarch64/predefine_large.c d38e476730748c653068e7cb2d8d6ca6 gcc/testsuite/gcc.target/aarch64/predefine_small.c 29e7dbfba15c0f945488b33400b908b4 gcc/testsuite/gcc.target/aarch64/predefine_tiny.c *************** bf821309d2cd93b8c0d6b0704742bc45 gcc/te *** 29044,29049 **** --- 29113,29119 ---- 42a78271420e5c48df61165376eb067e gcc/testsuite/gcc.target/arm/long-calls-2.c 045075d4c4f653f51cab15b6c12b3e09 gcc/testsuite/gcc.target/arm/long-calls-3.c 856b2cad766c5a53d737088d9056031b gcc/testsuite/gcc.target/arm/long-calls-4.c + 37fc8929c0e544dc7359fee7cd1c61e2 gcc/testsuite/gcc.target/arm/lp1189445.c a806646e365240ac5e4717aadb89dd85 gcc/testsuite/gcc.target/arm/mla-1.c 7a61babf21fe0e2b87f08d86f719bd45 gcc/testsuite/gcc.target/arm/mla-2.c 72c8a20787a9bdd11b0b784553c2b94d gcc/testsuite/gcc.target/arm/mmx-1.c *************** d8c2b3438057bd37308e16b1228b0738 gcc/te *** 31081,31086 **** --- 31151,31157 ---- e61aebaf5b575834daaa3b467a7df60c gcc/testsuite/gcc.target/arm/pr55642.c 0a7c9241c50089dadefc674da11d9d78 gcc/testsuite/gcc.target/arm/pr56184.C 20dfa54a1381508ca3646536cfa44c09 gcc/testsuite/gcc.target/arm/pr56732-1.c + 54166fd5f347708a423e88701c6c6679 gcc/testsuite/gcc.target/arm/pr58041.c 3143560976572191d8bba6ba78a45aa6 gcc/testsuite/gcc.target/arm/register-variables.c f4b0167ffa11835780a49b6681dae08a gcc/testsuite/gcc.target/arm/sat-1.c 8ad9146d832ee4875783406d1578ca80 gcc/testsuite/gcc.target/arm/scd42-1.c *************** c0d093a1e77e17f4b29f6d2be56fefa7 gcc/te *** 31112,31117 **** --- 31183,31189 ---- f362d64184584a135071c712d4ebc2e3 gcc/testsuite/gcc.target/arm/thumb-ifcvt.c 903cc66b84907ea3367f74ea1d9d97f9 gcc/testsuite/gcc.target/arm/thumb-ltu.c 7184e928dc61e9e887edd32b11343712 gcc/testsuite/gcc.target/arm/thumb-stackframe.c + edc79cd40be95cb422077e36df6f78dd gcc/testsuite/gcc.target/arm/thumb1-Os-mult.c 620a6821f4b18cc04954fc837f2d5761 gcc/testsuite/gcc.target/arm/thumb1-imm.c 32f5855db5242a89b54d8bce82ade4ec gcc/testsuite/gcc.target/arm/thumb1-mul-moves.c d28c50f238226623cf455200121f3794 gcc/testsuite/gcc.target/arm/thumb2-cmpneg2add-1.c *************** a0d24b6b729b3316832b85d84ee2f113 gcc/te *** 31205,31211 **** 6f7a316d69505eb726fcfadde1df3047 gcc/testsuite/gcc.target/avr/torture/builtins-1.c 4e8775f7644c516578716a8ea7d588b2 gcc/testsuite/gcc.target/avr/torture/builtins-2.c 174c31ad852080b435229b98d586eb45 gcc/testsuite/gcc.target/avr/torture/builtins-3-absfx.c ! 17050684920770e143ea841e175ff83c gcc/testsuite/gcc.target/avr/torture/builtins-4-roundfx.c 0d57054a27e8f45b06571358f92c481b gcc/testsuite/gcc.target/avr/torture/builtins-5-countlsfx.c 4a5987f17a5b1c68712021003150be18 gcc/testsuite/gcc.target/avr/torture/builtins-error.c c458c2462e23a4c58a7e4d05b6200907 gcc/testsuite/gcc.target/avr/torture/fix-types.h --- 31277,31283 ---- 6f7a316d69505eb726fcfadde1df3047 gcc/testsuite/gcc.target/avr/torture/builtins-1.c 4e8775f7644c516578716a8ea7d588b2 gcc/testsuite/gcc.target/avr/torture/builtins-2.c 174c31ad852080b435229b98d586eb45 gcc/testsuite/gcc.target/avr/torture/builtins-3-absfx.c ! 72764bd3fc957d6e2c5475fdf94633ff gcc/testsuite/gcc.target/avr/torture/builtins-4-roundfx.c 0d57054a27e8f45b06571358f92c481b gcc/testsuite/gcc.target/avr/torture/builtins-5-countlsfx.c 4a5987f17a5b1c68712021003150be18 gcc/testsuite/gcc.target/avr/torture/builtins-error.c c458c2462e23a4c58a7e4d05b6200907 gcc/testsuite/gcc.target/avr/torture/fix-types.h *************** f71785cfb6f7da40bab4b1f4c7a8c590 gcc/te *** 32607,32614 **** 3337c95e7c07c6cd87ce0fa94f6b609c gcc/testsuite/gcc.target/i386/bitfield1.c d66616bf53bd4a5815503634d62e1fc5 gcc/testsuite/gcc.target/i386/bitfield2.c b7e1d2270e9e86c4a2b4f064a58c9780 gcc/testsuite/gcc.target/i386/bitfield3.c ! 48640e9f41354e13d70aeced97399ed8 gcc/testsuite/gcc.target/i386/bmi-1.c ! 8885c9ba6276c28a717ce25a4260f415 gcc/testsuite/gcc.target/i386/bmi-2.c fc48ef0f1e33b7021253ebb6122ab809 gcc/testsuite/gcc.target/i386/bmi-3.c 5c41f4a1da9d179a1e082c5737b33e73 gcc/testsuite/gcc.target/i386/bmi-4.c 11456bbe2b105dfd8b430a5bd4fa34dd gcc/testsuite/gcc.target/i386/bmi-5.c --- 32679,32686 ---- 3337c95e7c07c6cd87ce0fa94f6b609c gcc/testsuite/gcc.target/i386/bitfield1.c d66616bf53bd4a5815503634d62e1fc5 gcc/testsuite/gcc.target/i386/bitfield2.c b7e1d2270e9e86c4a2b4f064a58c9780 gcc/testsuite/gcc.target/i386/bitfield3.c ! fa67e684d1aa14f6e3c969d5bba83ce5 gcc/testsuite/gcc.target/i386/bmi-1.c ! 259dd2b0ea62567196e3d430d73bde8a gcc/testsuite/gcc.target/i386/bmi-2.c fc48ef0f1e33b7021253ebb6122ab809 gcc/testsuite/gcc.target/i386/bmi-3.c 5c41f4a1da9d179a1e082c5737b33e73 gcc/testsuite/gcc.target/i386/bmi-4.c 11456bbe2b105dfd8b430a5bd4fa34dd gcc/testsuite/gcc.target/i386/bmi-5.c *************** c5c0bf5c0799ea247b5c4285106ed0e7 gcc/te *** 32621,32626 **** --- 32693,32699 ---- 519fc1dbd9a690adb68f647190c125a9 gcc/testsuite/gcc.target/i386/bmi-bextr-1a.c 9caf25ffef27d09a188988bb7307fb43 gcc/testsuite/gcc.target/i386/bmi-bextr-2.c fed20c01e309fe356e55e3cc116c5e00 gcc/testsuite/gcc.target/i386/bmi-bextr-2a.c + ab7b0415123a9edc18231c77b77ec43d gcc/testsuite/gcc.target/i386/bmi-bextr-3.c 6a7249c775a4e50d86020cb0fd1b0c5e gcc/testsuite/gcc.target/i386/bmi-blsi-1.c bd48ce53571cdd48fe6e6784a994f7e7 gcc/testsuite/gcc.target/i386/bmi-blsi-1a.c 4e27601f29d1f40e91892c4a8371f943 gcc/testsuite/gcc.target/i386/bmi-blsi-2.c *************** be3fee1889ad65677a041f24f858b1cb gcc/te *** 32638,32643 **** --- 32711,32717 ---- bddf7c2fb14fca97f8ff604d99aa87eb gcc/testsuite/gcc.target/i386/bmi-tzcnt-1a.c f696e5f06827c19304c1291071f8675b gcc/testsuite/gcc.target/i386/bmi-tzcnt-2.c 0c9052e28cad40006a0099159bd98468 gcc/testsuite/gcc.target/i386/bmi-tzcnt-2a.c + 9950789cb130fff96f198223bbe0f518 gcc/testsuite/gcc.target/i386/bmi2-bzhi-1.c a2c0c7d391a581fc83d61c68b6bd649b gcc/testsuite/gcc.target/i386/bmi2-bzhi32-1.c 3ead3d8eb2eb9104a7e22ff065727719 gcc/testsuite/gcc.target/i386/bmi2-bzhi32-1a.c abb025375057fca2257ef280333b1bc3 gcc/testsuite/gcc.target/i386/bmi2-bzhi64-1.c *************** e06a25d8009fb83e07df79ef139ed068 gcc/te *** 32995,33000 **** --- 33069,33075 ---- acfecf30891fca26ef446ceccb8bdac6 gcc/testsuite/gcc.target/i386/mmx-check.h 3469a132e934293324b61b6f23458c92 gcc/testsuite/gcc.target/i386/mod-1.c 0df5ef30c53dec7183c7eb19bdaa491b gcc/testsuite/gcc.target/i386/monitor.c + 0da0edded160ecacdaaf3c0403ab6a77 gcc/testsuite/gcc.target/i386/movabs-1.c a6f8c88f5ffc21bacd41b8da9e685138 gcc/testsuite/gcc.target/i386/movbe-1.c ae6730a7d536bb012c657f60f9beedda gcc/testsuite/gcc.target/i386/movbe-2.c 0d20bce1f8d326eae5b8360ae189013a gcc/testsuite/gcc.target/i386/movdi-rex64.c *************** c7f426034d9df3b9350c1df80138c8dc gcc/te *** 33435,33440 **** --- 33510,33520 ---- c2db58543174fc682e6c481e525df5d6 gcc/testsuite/gcc.target/i386/pr57098.c a995edc07e467f878e75e842897b1cfd gcc/testsuite/gcc.target/i386/pr57106.c 1be3cad52880bd204c5668a12dc63bc1 gcc/testsuite/gcc.target/i386/pr57264.c + 7e388cbf0472c0b7b43d3d478bbe0e43 gcc/testsuite/gcc.target/i386/pr57459.c + 137ff6c74763639089440687727cf6c3 gcc/testsuite/gcc.target/i386/pr57655.c + 681638da206cb4838378ec263136509c gcc/testsuite/gcc.target/i386/pr57736.c + c01a05903164ed251d7228d2c57431ed gcc/testsuite/gcc.target/i386/pr57777.c + e718e67bc7810d948894cb16a9fac0a6 gcc/testsuite/gcc.target/i386/pr58218.c bbfa334a0bc4402cca428e4d748bf58a gcc/testsuite/gcc.target/i386/pr9771-1.c 24ceb6d5f3f5cde4b9d852839bdb98ae gcc/testsuite/gcc.target/i386/prefetchw-1.c 267203167ae369a7a0f5d3c309117f35 gcc/testsuite/gcc.target/i386/quad-sse.c *************** d41d8cd98f00b204e9800998ecf8427e gcc/te *** 34588,34594 **** 02c4c8d0119ce2bc51f551d7c42c6af6 gcc/testsuite/gcc.target/mips/va-arg-1.c 48f200c43fab7d67a5ee8d4fd8af91a5 gcc/testsuite/gcc.target/mips/vr-mult-1.c bdbe1b2e833e8da48eee27859726180e gcc/testsuite/gcc.target/mips/vr-mult-2.c ! 4e25612c3feea3064b5df8cc4b5abde6 gcc/testsuite/gcc.target/powerpc/20020118-1.c 0c9de9fb151f4887897fb0ef6652d679 gcc/testsuite/gcc.target/powerpc/20030218-1.c 5ad9d2d0ffe29d1973ef77bb7de54467 gcc/testsuite/gcc.target/powerpc/20030505.c ee737184c69185ff4d7409ed3d8ba237 gcc/testsuite/gcc.target/powerpc/20040121-1.c --- 34668,34674 ---- 02c4c8d0119ce2bc51f551d7c42c6af6 gcc/testsuite/gcc.target/mips/va-arg-1.c 48f200c43fab7d67a5ee8d4fd8af91a5 gcc/testsuite/gcc.target/mips/vr-mult-1.c bdbe1b2e833e8da48eee27859726180e gcc/testsuite/gcc.target/mips/vr-mult-2.c ! 062154ab36a8a3302cf52ce4762996ac gcc/testsuite/gcc.target/powerpc/20020118-1.c 0c9de9fb151f4887897fb0ef6652d679 gcc/testsuite/gcc.target/powerpc/20030218-1.c 5ad9d2d0ffe29d1973ef77bb7de54467 gcc/testsuite/gcc.target/powerpc/20030505.c ee737184c69185ff4d7409ed3d8ba237 gcc/testsuite/gcc.target/powerpc/20040121-1.c *************** a0e560e56bf1611760575d6fab16e0c8 gcc/te *** 34703,34709 **** a992cefc8fadc224aab3acadbe8c81e5 gcc/testsuite/gcc.target/powerpc/altivec-cell-6.c 53eae7638cc25a670ceae4ceb2da4973 gcc/testsuite/gcc.target/powerpc/altivec-cell-7.c e71ad93cf02de4196b122d33c5312bb6 gcc/testsuite/gcc.target/powerpc/altivec-cell-8.c ! 8c4aae27dcbaa3f557a8519fadb313b5 gcc/testsuite/gcc.target/powerpc/altivec-consts.c 363a776f6e4b0eac12304bbd2c6c34a0 gcc/testsuite/gcc.target/powerpc/altivec-macros.c 538664c4bd63a23bf0b45b5692e71f55 gcc/testsuite/gcc.target/powerpc/altivec-perm-1.c 1ada2df7c2add0bec64338812ac2b0bd gcc/testsuite/gcc.target/powerpc/altivec-perm-2.c --- 34783,34789 ---- a992cefc8fadc224aab3acadbe8c81e5 gcc/testsuite/gcc.target/powerpc/altivec-cell-6.c 53eae7638cc25a670ceae4ceb2da4973 gcc/testsuite/gcc.target/powerpc/altivec-cell-7.c e71ad93cf02de4196b122d33c5312bb6 gcc/testsuite/gcc.target/powerpc/altivec-cell-8.c ! f84afb22ce6cbb4426503258a87d5c5a gcc/testsuite/gcc.target/powerpc/altivec-consts.c 363a776f6e4b0eac12304bbd2c6c34a0 gcc/testsuite/gcc.target/powerpc/altivec-macros.c 538664c4bd63a23bf0b45b5692e71f55 gcc/testsuite/gcc.target/powerpc/altivec-perm-1.c 1ada2df7c2add0bec64338812ac2b0bd gcc/testsuite/gcc.target/powerpc/altivec-perm-2.c *************** b4bba5410c6e6f914897ce86ffaca508 gcc/te *** 34771,34776 **** --- 34851,34857 ---- 52468a71868e251587d1c07bc7e2b10f gcc/testsuite/gcc.target/powerpc/ehreturn.c 4109709d89c976bec9d1d05e94004ff2 gcc/testsuite/gcc.target/powerpc/gcse-1.c 8d634b2a7d443f1e5b4b69716e57ac00 gcc/testsuite/gcc.target/powerpc/indexed-addr.c + a06c80b6841f0e175447fb154db9d45d gcc/testsuite/gcc.target/powerpc/le-altivec-consts.c 7893fdf7b4681a84cb4d049bea9ffc10 gcc/testsuite/gcc.target/powerpc/leaf.c d168802e448650c65bc82b38f289b3a6 gcc/testsuite/gcc.target/powerpc/lhs-1.c 5ce146376f07e418dde2aaa36d530c96 gcc/testsuite/gcc.target/powerpc/lhs-2.c *************** a7985ec42357ffb9cc4e1651d5ad8828 gcc/te *** 34842,34848 **** 01aaaef3cb8cee0f105c2e9489dc423d gcc/testsuite/gcc.target/powerpc/ppc-sdata-1.c 860fdd35425c1e9e3cd0af60d01d2ed4 gcc/testsuite/gcc.target/powerpc/ppc-sdata-2.c 74c8a87249145d84fb45eaaaee7aeddf gcc/testsuite/gcc.target/powerpc/ppc-spe.c ! 2a83a8e04d88e2928783f0d1382fd50d gcc/testsuite/gcc.target/powerpc/ppc-spe64-1.c 031e121f3288d78b35a626363fbb6306 gcc/testsuite/gcc.target/powerpc/ppc-stackalign-1.c 347db92de42c68a0e17367b289aaa20b gcc/testsuite/gcc.target/powerpc/ppc-stfiwx.c 81c1df8da4df683e063ca0743cfcfc1f gcc/testsuite/gcc.target/powerpc/ppc-switch-1.c --- 34923,34929 ---- 01aaaef3cb8cee0f105c2e9489dc423d gcc/testsuite/gcc.target/powerpc/ppc-sdata-1.c 860fdd35425c1e9e3cd0af60d01d2ed4 gcc/testsuite/gcc.target/powerpc/ppc-sdata-2.c 74c8a87249145d84fb45eaaaee7aeddf gcc/testsuite/gcc.target/powerpc/ppc-spe.c ! 87e474f57be9adad2f6d0a89328b39c3 gcc/testsuite/gcc.target/powerpc/ppc-spe64-1.c 031e121f3288d78b35a626363fbb6306 gcc/testsuite/gcc.target/powerpc/ppc-stackalign-1.c 347db92de42c68a0e17367b289aaa20b gcc/testsuite/gcc.target/powerpc/ppc-stfiwx.c 81c1df8da4df683e063ca0743cfcfc1f gcc/testsuite/gcc.target/powerpc/ppc-switch-1.c *************** a29766cc5f98866ea21c9ca1ebabc556 gcc/te *** 34891,34897 **** 6e48bb052ee0a9a3adfb65d0f4ceda2f gcc/testsuite/gcc.target/powerpc/pr46728-5.c 578c64c87b74b5b2f698747ecffd19c0 gcc/testsuite/gcc.target/powerpc/pr46728-7.c d776e75164beada31b39ff00852a1668 gcc/testsuite/gcc.target/powerpc/pr46728-8.c ! 1d5538e4ebad5939eb87802b598e86c7 gcc/testsuite/gcc.target/powerpc/pr47197.c b89c69857fcc2ecbf3fe2ed9bc723472 gcc/testsuite/gcc.target/powerpc/pr47251.c f0da9e2cf992d7b349c97998a9fb16ba gcc/testsuite/gcc.target/powerpc/pr47755-2.c 3252999c1817a292ef90139c498492a4 gcc/testsuite/gcc.target/powerpc/pr47755.c --- 34972,34978 ---- 6e48bb052ee0a9a3adfb65d0f4ceda2f gcc/testsuite/gcc.target/powerpc/pr46728-5.c 578c64c87b74b5b2f698747ecffd19c0 gcc/testsuite/gcc.target/powerpc/pr46728-7.c d776e75164beada31b39ff00852a1668 gcc/testsuite/gcc.target/powerpc/pr46728-8.c ! 09542fc0756c51e091818e0d1a7a05b5 gcc/testsuite/gcc.target/powerpc/pr47197.c b89c69857fcc2ecbf3fe2ed9bc723472 gcc/testsuite/gcc.target/powerpc/pr47251.c f0da9e2cf992d7b349c97998a9fb16ba gcc/testsuite/gcc.target/powerpc/pr47755-2.c 3252999c1817a292ef90139c498492a4 gcc/testsuite/gcc.target/powerpc/pr47755.c *************** babf211c969ecb6f6cedf08f5ee9bae2 gcc/te *** 34915,34920 **** --- 34996,35002 ---- e4531bd522b146b22bdbf991fc3d207e gcc/testsuite/gcc.target/powerpc/pr56256.c 0a433ea1fffe47d0b355ab58f5d7de35 gcc/testsuite/gcc.target/powerpc/pr56605.c 39b7cb95be459b75bf996ea98e8ffc39 gcc/testsuite/gcc.target/powerpc/pr57150.c + d58a248fbbaa40f8533b7dd68594b12c gcc/testsuite/gcc.target/powerpc/pr58330.c f484e2a76013a8abf2f1634d33554af5 gcc/testsuite/gcc.target/powerpc/recip-1.c 6f035f512a3f0d6917409f569174ccea gcc/testsuite/gcc.target/powerpc/recip-2.c 19c27f9d2a9c26ded91356055b0cd01f gcc/testsuite/gcc.target/powerpc/recip-3.c *************** caf83f2b272138041945d99cf818ff06 gcc/te *** 34938,34944 **** aefbc9c117b311a9394883e9c890efb9 gcc/testsuite/gcc.target/powerpc/spe-vector-memset.c 32bb5e201dd78c548aed0cdf044779ec gcc/testsuite/gcc.target/powerpc/spe1.c c9be7e0cc9ba390460928b1de506fa70 gcc/testsuite/gcc.target/powerpc/stabs-attrib-vect-darwin.c ! 5fcf96a91171b11ecf5a8a4678a2bb9e gcc/testsuite/gcc.target/powerpc/tfmode_off.c b45257a2f22a9bbacc52f0c33eefebac gcc/testsuite/gcc.target/powerpc/timode_off.c 2d7ba7687ab5e578e54145507a734e92 gcc/testsuite/gcc.target/powerpc/vsx-builtin-1.c 0126618c8adf18da2ca783d2a0e48645 gcc/testsuite/gcc.target/powerpc/vsx-builtin-2.c --- 35020,35026 ---- aefbc9c117b311a9394883e9c890efb9 gcc/testsuite/gcc.target/powerpc/spe-vector-memset.c 32bb5e201dd78c548aed0cdf044779ec gcc/testsuite/gcc.target/powerpc/spe1.c c9be7e0cc9ba390460928b1de506fa70 gcc/testsuite/gcc.target/powerpc/stabs-attrib-vect-darwin.c ! d032ed8cc3859ce1a17c9d90fc292f26 gcc/testsuite/gcc.target/powerpc/tfmode_off.c b45257a2f22a9bbacc52f0c33eefebac gcc/testsuite/gcc.target/powerpc/timode_off.c 2d7ba7687ab5e578e54145507a734e92 gcc/testsuite/gcc.target/powerpc/vsx-builtin-1.c 0126618c8adf18da2ca783d2a0e48645 gcc/testsuite/gcc.target/powerpc/vsx-builtin-2.c *************** c975117f4dad5f7d006165a64d22ff94 gcc/te *** 34988,34993 **** --- 35070,35079 ---- d69a98eeb9d370fcef146a6f7778c59d gcc/testsuite/gcc.target/s390/addr-constraints-1.c 9b770970bea6710409e92c9a84d3a5d3 gcc/testsuite/gcc.target/s390/frame-addr1.c c7958dc9fa4da0d50fe09b45a6790ac0 gcc/testsuite/gcc.target/s390/frame-addr2.c + c331b81bad84437f8bc1e110f9656b8d gcc/testsuite/gcc.target/s390/htm-1.c + 81eabdfd43ce0edc626c27f72b8cbfed gcc/testsuite/gcc.target/s390/htm-nofloat-1.c + 70af1c30e216ac663635ce8ddbc10371 gcc/testsuite/gcc.target/s390/htm-nofloat-2.c + ab0f83b02eabb2022df1ceee50ef4733 gcc/testsuite/gcc.target/s390/htm-xl-intrin-1.c 765307a040de72f2f4376b7068d68018 gcc/testsuite/gcc.target/s390/pr20927.c 85f31fb9b4b15529205376d3f6fa385c gcc/testsuite/gcc.target/s390/pr24624.c 7adacbd67601dc0845e556e5632cd718 gcc/testsuite/gcc.target/s390/pr27661.c *************** e1788cb7aa47c342b2e1ed6ec73e74c5 gcc/te *** 35097,35102 **** --- 35183,35190 ---- dc40fea68b996025d78b526785990191 gcc/testsuite/gcc.target/sh/pr54760-4.c fa8694eca781a3a2f428af0684f2f761 gcc/testsuite/gcc.target/sh/pr55146.c a5d4f7ecd45ee5d8031bebcf7653f0ef gcc/testsuite/gcc.target/sh/pr55160.c + 8f8600fe8379fd8b084dff634b8b031e gcc/testsuite/gcc.target/sh/pr56547-1.c + f4720ab3966dfdcf8c1359c7654fb6bb gcc/testsuite/gcc.target/sh/pr56547-2.c 918a31e179bcdcb5da1ea39bacfe2e35 gcc/testsuite/gcc.target/sh/pr57108.c 200f195dec2d3ee29fa0f5e651489635 gcc/testsuite/gcc.target/sh/prefetch.c 4e2e0d723045d4e05e55616734e675f5 gcc/testsuite/gcc.target/sh/rte-delay-slot.c *************** ceda3c3fd00f2b2bbfd3c515f03ee15f gcc/te *** 35127,35132 **** --- 35215,35221 ---- e8e43b3795c01cddbff73881d71d90b4 gcc/testsuite/gcc.target/sh/sp-switch.c 9dd6b3da150e76dc3b24c73088608fef gcc/testsuite/gcc.target/sh/struct-arg-dw2.c 7d0b71bf88e98eb5d7bbc8cba1e04bcb gcc/testsuite/gcc.target/sh/torture/pr34777.c + 33d7712339109684dfd7a3d41a731f2d gcc/testsuite/gcc.target/sh/torture/pr58314.c 0b6d1226a0f1116b7502e3bb2cc07999 gcc/testsuite/gcc.target/sh/torture/sh-torture.exp 5d678d17dea97c03c156e8eac1cbdb05 gcc/testsuite/gcc.target/sparc/20001013-1.c d0d646cfe216eb6e3c43fb56cb548ea0 gcc/testsuite/gcc.target/sparc/20001101-1.c *************** e189b6467dfc0f9dfe164cf2b5324f07 gcc/te *** 36752,36761 **** --- 36841,36856 ---- c36fd31b877966c80efb601cae605f16 gcc/testsuite/gfortran.dg/deferred_type_proc_pointer_1.f90 9a7f5816052bca62e6c6a9777872b7b0 gcc/testsuite/gfortran.dg/deferred_type_proc_pointer_2.f90 ba35c559ce8aa2c85326f745d0bf31d8 gcc/testsuite/gfortran.dg/defined_assignment_1.f90 + 6a042915ff51b96280e122e12326eaa4 gcc/testsuite/gfortran.dg/defined_assignment_10.f90 + 0ee43b837e0fe5d5783a1adc88172ac7 gcc/testsuite/gfortran.dg/defined_assignment_11.f90 7e1ecee5b2a91e4fec24b46b4c781369 gcc/testsuite/gfortran.dg/defined_assignment_2.f90 03d27ec6d8bbeb1c45e94ec025cdb446 gcc/testsuite/gfortran.dg/defined_assignment_3.f90 a12e8334fef336658cec44241ce5d959 gcc/testsuite/gfortran.dg/defined_assignment_4.f90 3d6b5b63a7ce69739060abcd8ba58827 gcc/testsuite/gfortran.dg/defined_assignment_5.f90 + b6d3fcdac45694e2e7c717b1f9afc657 gcc/testsuite/gfortran.dg/defined_assignment_6.f90 + f01ec9fce25aab90738c146ac0e5ab68 gcc/testsuite/gfortran.dg/defined_assignment_7.f90 + 37c86f326c8695aba776bcd32f9d2d30 gcc/testsuite/gfortran.dg/defined_assignment_8.f90 + 6bb99d80deb71a9c9ac1f00e4f613af6 gcc/testsuite/gfortran.dg/defined_assignment_9.f90 16d6d3eb6a74eeb6ca2f7fceb2fb2c93 gcc/testsuite/gfortran.dg/defined_operators_1.f90 2d5af451897a230f5c4e75f539402003 gcc/testsuite/gfortran.dg/deftype_1.f90 f1315c405d72b632bf1260f77c98f35b gcc/testsuite/gfortran.dg/dependency_1.f90 *************** e26c1f7f5f5bf58bc20b92b7f15df396 gcc/te *** 36882,36887 **** --- 36977,36983 ---- bee33f45b2081d3f23f2f3b508893078 gcc/testsuite/gfortran.dg/dollar_sym_2.f90 81c02ab79001889d92651612f04f4029 gcc/testsuite/gfortran.dg/dos_eol.f 47318dcb4acfe6f2932913c638511078 gcc/testsuite/gfortran.dg/dot_product_1.f03 + b18ea280a91df3b2aefc263a51f2897e gcc/testsuite/gfortran.dg/dot_product_2.f90 28c9ee70843b7ef41ef74327bc08fb12 gcc/testsuite/gfortran.dg/double_complex_1.f90 9ce87f920f9f5536194a351e33dbbeb6 gcc/testsuite/gfortran.dg/dshift_1.F90 187310d2d84779c767a852f19eacaaad gcc/testsuite/gfortran.dg/dshift_2.F90 *************** cfb8e50d4fa48db93c32f4551602f163 gcc/te *** 37755,37760 **** --- 37851,37857 ---- f279c23f64da248a23ac4678746ff811 gcc/testsuite/gfortran.dg/inline_sum_2.f90 9ca8d5cd81ef49491a4220319297780e gcc/testsuite/gfortran.dg/inline_sum_3.f90 49d13efbffd28fc321f8e9af3bdc8c25 gcc/testsuite/gfortran.dg/inline_sum_4.f90 + 6942e5979cd0329d46fe600174fb507a gcc/testsuite/gfortran.dg/inline_sum_5.f90 0324473511cbe15ef22bba21da72923d gcc/testsuite/gfortran.dg/inline_sum_bounds_check_1.f90 cd4289a23a1c1ceafe65b10e1489224f gcc/testsuite/gfortran.dg/inline_sum_bounds_check_2.f90 5fcb58ef448bf8ec2b277459092550bc gcc/testsuite/gfortran.dg/inline_transpose_1.f90 *************** bc6f4b8427180f3d7fe9596b5eb507d7 gcc/te *** 39080,39085 **** --- 39177,39183 ---- e4078fcf84bae622e034eda4e4a7bd1b gcc/testsuite/gfortran.dg/select_type_31.f03 0fa3636ab8c629eaf962c9d4116c05fb gcc/testsuite/gfortran.dg/select_type_32.f90 65d1bc4754dda94ab063cc52f230bad4 gcc/testsuite/gfortran.dg/select_type_33.f03 + 8400e196604f257ef8d8e9269bae6945 gcc/testsuite/gfortran.dg/select_type_34.f90 402dd7c959e0269e964ee68c701dfb67 gcc/testsuite/gfortran.dg/select_type_4.f90 3ab901522e5a6c2930daa42a08c5a4c3 gcc/testsuite/gfortran.dg/select_type_5.f03 08871f191c3a23bf7de4d00e2c1959a3 gcc/testsuite/gfortran.dg/select_type_6.f03 *************** dc67674921059cc6c14a48ba9f6e8515 gcc/te *** 39252,39257 **** --- 39350,39356 ---- 555fb529d24597e1674b14b43dd22a0a gcc/testsuite/gfortran.dg/transfer_intrinsic_3.f90 ea5b93d114291b99d509c890190b87e6 gcc/testsuite/gfortran.dg/transfer_intrinsic_4.f 1436414e1567857b5667b2b6403a5f18 gcc/testsuite/gfortran.dg/transfer_intrinsic_5.f90 + 2548b0050cad7d0bdc2410b87807d30a gcc/testsuite/gfortran.dg/transfer_intrinsic_6.f90 d68fb0123f87274c2d884716d42b47b9 gcc/testsuite/gfortran.dg/transfer_null_1.f90 fb06cac22180b4daf49f140f6a9ad4c3 gcc/testsuite/gfortran.dg/transfer_resolve_1.f90 099850a87aba56ec7cc45b0bd6ddec3c gcc/testsuite/gfortran.dg/transfer_simplify_1.f90 *************** ac5c092dfb7ce6ee6fe91699bdf80f18 gcc/te *** 39350,39355 **** --- 39449,39455 ---- b21385a99a696d6b4f02a32ca30d912a gcc/testsuite/gfortran.dg/typebound_override_1.f90 effa091894b3e888f170c035d58686bb gcc/testsuite/gfortran.dg/typebound_override_2.f90 c9aeca1e7c268b3e0cbe5461cbf85bcd gcc/testsuite/gfortran.dg/typebound_override_3.f90 + 86f54bff12342f95ba0b5682da57f82c gcc/testsuite/gfortran.dg/typebound_override_4.f90 b8f4745b35601a2d347854f6571f941c gcc/testsuite/gfortran.dg/typebound_proc_1.f08 2dc3ab48b20eb9f992bdb4c1579776d1 gcc/testsuite/gfortran.dg/typebound_proc_10.f03 832e1f61727ceca8dd5bde39eb1ca531 gcc/testsuite/gfortran.dg/typebound_proc_11.f03 *************** b7fee6814c91e8eabf3a9b812c60942a gcc/te *** 39430,39435 **** --- 39530,39536 ---- b901a88b454d7825c0db0571e62c9944 gcc/testsuite/gfortran.dg/use_26.f90 a1aea473d60b54462b6cf51bf868c93a gcc/testsuite/gfortran.dg/use_27.f90 5b57495125ee9306be1b2dd3b0ff762b gcc/testsuite/gfortran.dg/use_28.f90 + aa0dfadd71d3f03426fb0f846d07e63b gcc/testsuite/gfortran.dg/use_29.f90 9ca8384adf4fc331598e3bcd1cbb8ffe gcc/testsuite/gfortran.dg/use_3.f90 0c64a8a6f9a898ee90f8cccc71a7f782 gcc/testsuite/gfortran.dg/use_4.f90 c011e9a04d62e1471412a9cb947b4a99 gcc/testsuite/gfortran.dg/use_5.f90 *************** aa816d8f5ef5d24a6e170c281a0e6293 gcc/te *** 39944,39949 **** --- 40045,40051 ---- 0277cb8618f5a94496d3d935dccfcba0 gcc/testsuite/gfortran.fortran-torture/execute/pr40021.f 18d76094e6dbeab187d55c32505d6af4 gcc/testsuite/gfortran.fortran-torture/execute/pr43390.f90 dd40d4b957380ba6ca3ab6addb8a5a14 gcc/testsuite/gfortran.fortran-torture/execute/pr54767.f90 + c617506fdfdc576d1ca5f17b049e5ce8 gcc/testsuite/gfortran.fortran-torture/execute/pr57396.f90 78df18b9400c1b2f401164418dc104c0 gcc/testsuite/gfortran.fortran-torture/execute/procarg.f90 54b26651618ba6afa7aae0c3b8994e66 gcc/testsuite/gfortran.fortran-torture/execute/ptr.f90 eae8dc541702830d5c63bf337333c15b gcc/testsuite/gfortran.fortran-torture/execute/random_1.f90 *************** d3c3ea85a2d542a334f54886bc6d0e68 gcc/te *** 40129,40134 **** --- 40231,40237 ---- 12c52f23c378fd6be0c22806a374e7ac gcc/testsuite/gnat.dg/array8.adb 9e79ec4077e627de01176e9d19ff0054 gcc/testsuite/gnat.dg/array9.adb 4e4a2cd2383fcedd1f7f9e094a9733f7 gcc/testsuite/gnat.dg/array_bounds_test.adb + 7d28bdf32624ddc6639c523e6b6ecf60 gcc/testsuite/gnat.dg/array_bounds_test2.adb 52657f6a50de3dd615f1839a7c6e5b3d gcc/testsuite/gnat.dg/assert.ads 80ad90db652eb7009d6b74cdc65a3059 gcc/testsuite/gnat.dg/assert1.adb 6f97895d623a26408408d6f56c73a050 gcc/testsuite/gnat.dg/assign_from_packed.adb *************** a166962c38d6c017c1d775431b13680f gcc/te *** 40422,40427 **** --- 40525,40531 ---- f3890754644fddd9f8ca37a3bd1cc7ea gcc/testsuite/gnat.dg/in_out_parameter.adb a2da4cb0a5f42827fe6f0e4f56d14218 gcc/testsuite/gnat.dg/in_out_parameter2.adb ad89e1da831369fbad29c8ebf625be88 gcc/testsuite/gnat.dg/in_out_parameter3.adb + aac11d5ba43ac52a20324f46ef1e2185 gcc/testsuite/gnat.dg/in_out_parameter4.adb 928de3a42da5c250f7a1c2e1ce568abb gcc/testsuite/gnat.dg/include.adb 94a108b336603d0d2ef666ceaea862ce gcc/testsuite/gnat.dg/incomplete1.ads 27d2aa8cce9d8a8fca96e6713148db79 gcc/testsuite/gnat.dg/incomplete2.adb *************** c803881a92a52cb2b85edbffe804583c gcc/te *** 40486,40491 **** --- 40590,40598 ---- 082ece5e26600cca596c46e760c7c38d gcc/testsuite/gnat.dg/loop_optimization14_pkg.ads ee41fbb17306ac2dee477aa74b19ee28 gcc/testsuite/gnat.dg/loop_optimization15.adb ead3ce9c1042fd0ba014ada4fdf10351 gcc/testsuite/gnat.dg/loop_optimization15.ads + 118360462b3fb60c35509947b10c1095 gcc/testsuite/gnat.dg/loop_optimization16.adb + 7e48f98b410bc84da4e2783deb3f19bf gcc/testsuite/gnat.dg/loop_optimization16_pkg.adb + 5b1702dd3857556efb2c3278e4b70357 gcc/testsuite/gnat.dg/loop_optimization16_pkg.ads f541e6bfbb5ebc32c8c88b9475f024d2 gcc/testsuite/gnat.dg/loop_optimization2.adb c127785f315390b699c7fa039c495c81 gcc/testsuite/gnat.dg/loop_optimization2.ads 5e481abfdb92dddf7569d6c4d76c865f gcc/testsuite/gnat.dg/loop_optimization3.adb *************** e5b4a3246c128a0f6e5b5b2bee28fec6 gcc/te *** 40655,40660 **** --- 40762,40770 ---- f5a7a2892a18bb3555cdd8dfcaac8feb gcc/testsuite/gnat.dg/opt25_pkg2.adb 44443bdff16278b913a0f3afbc217db6 gcc/testsuite/gnat.dg/opt25_pkg2.ads 95f3d67f9d9254303835cc8a3088a0bf gcc/testsuite/gnat.dg/opt26.adb + 777b73757e1b7106d78209dab2f1e669 gcc/testsuite/gnat.dg/opt28.adb + f34c1ccc4215e16c24735299c32e5af3 gcc/testsuite/gnat.dg/opt28.ads + 58c81b3fda681cd5320a6f0ff30bc291 gcc/testsuite/gnat.dg/opt28_pkg.ads 98384ef07686507b4ed94c26f6a58813 gcc/testsuite/gnat.dg/opt3.adb 65e20f998d483941d92a34b07b482d10 gcc/testsuite/gnat.dg/opt3_pkg.ads e98c04ac385dbd0581c1f5fa108caf6b gcc/testsuite/gnat.dg/opt4.adb *************** b760f8c4f0593565426879b84ab6787b gcc/te *** 41169,41175 **** ac0017eb534302ec5987291f615d13ca gcc/testsuite/go.go-torture/execute/var-3.go 5a0252d8d69bc599903eac822e0419c0 gcc/testsuite/go.test/go-test.exp 88c59e0bc9f2a79ed3a3e8f1409ed1d8 gcc/testsuite/go.test/test/235.go ! 0386003ab95c6a0b42bb3c7b13680401 gcc/testsuite/go.test/test/64bit.go 43e15a8d565d16ab908b7cf6db8e0bf9 gcc/testsuite/go.test/test/README.gcc 6e5009f7b50fce4ecadf649427d176c5 gcc/testsuite/go.test/test/alias.go d5fd5eb00413f12256637dc5d2d1296c gcc/testsuite/go.test/test/alias1.go --- 41279,41285 ---- ac0017eb534302ec5987291f615d13ca gcc/testsuite/go.go-torture/execute/var-3.go 5a0252d8d69bc599903eac822e0419c0 gcc/testsuite/go.test/go-test.exp 88c59e0bc9f2a79ed3a3e8f1409ed1d8 gcc/testsuite/go.test/test/235.go ! 1a94dd86d2262280f883261800a13104 gcc/testsuite/go.test/test/64bit.go 43e15a8d565d16ab908b7cf6db8e0bf9 gcc/testsuite/go.test/test/README.gcc 6e5009f7b50fce4ecadf649427d176c5 gcc/testsuite/go.test/test/alias.go d5fd5eb00413f12256637dc5d2d1296c gcc/testsuite/go.test/test/alias1.go *************** dec49e75b2ceb9311df439ebb4804316 gcc/te *** 41418,41424 **** f48913a660384a038d00a42dcd34d033 gcc/testsuite/go.test/test/fixedbugs/bug083.go eecf0c4fe5675a2853653c5d7284edd3 gcc/testsuite/go.test/test/fixedbugs/bug084.go 4f272e99638e31f83f7ec38c9144bfcb gcc/testsuite/go.test/test/fixedbugs/bug085.go ! 599108fecc4a512af9689f7060c56f8f gcc/testsuite/go.test/test/fixedbugs/bug086.go 5b69cdd1833fb3eadc5492f7ff6d8827 gcc/testsuite/go.test/test/fixedbugs/bug087.go 79684f66ca16fe863072e7d4978a5dfc gcc/testsuite/go.test/test/fixedbugs/bug088.dir/bug0.go 307976a0359c49b4d41adf4e20e13139 gcc/testsuite/go.test/test/fixedbugs/bug088.dir/bug1.go --- 41528,41534 ---- f48913a660384a038d00a42dcd34d033 gcc/testsuite/go.test/test/fixedbugs/bug083.go eecf0c4fe5675a2853653c5d7284edd3 gcc/testsuite/go.test/test/fixedbugs/bug084.go 4f272e99638e31f83f7ec38c9144bfcb gcc/testsuite/go.test/test/fixedbugs/bug085.go ! ea74d75261cb8943fab1fd46b8fd3df3 gcc/testsuite/go.test/test/fixedbugs/bug086.go 5b69cdd1833fb3eadc5492f7ff6d8827 gcc/testsuite/go.test/test/fixedbugs/bug087.go 79684f66ca16fe863072e7d4978a5dfc gcc/testsuite/go.test/test/fixedbugs/bug088.dir/bug0.go 307976a0359c49b4d41adf4e20e13139 gcc/testsuite/go.test/test/fixedbugs/bug088.dir/bug1.go *************** bcda4b850a5c39c69d1759f32d4cec95 gcc/te *** 41774,41780 **** 646b095520d80ac1fc6fa29a5b99e936 gcc/testsuite/go.test/test/fixedbugs/bug407.go db53af9b24817672917a3acefbdae2e3 gcc/testsuite/go.test/test/fixedbugs/bug409.go b2da4073238f992900af7d530a049044 gcc/testsuite/go.test/test/fixedbugs/bug409.out ! 484dea7d900d5d266076be86f13d9f11 gcc/testsuite/go.test/test/fixedbugs/bug410.go b3b9ea9f96eb142647f6a6cb403d2fb1 gcc/testsuite/go.test/test/fixedbugs/bug411.go 67a324bea569ff9e1f788988528c80fb gcc/testsuite/go.test/test/fixedbugs/bug412.go 0cc1d4050c8bcd14de8561803daabe36 gcc/testsuite/go.test/test/fixedbugs/bug413.go --- 41884,41890 ---- 646b095520d80ac1fc6fa29a5b99e936 gcc/testsuite/go.test/test/fixedbugs/bug407.go db53af9b24817672917a3acefbdae2e3 gcc/testsuite/go.test/test/fixedbugs/bug409.go b2da4073238f992900af7d530a049044 gcc/testsuite/go.test/test/fixedbugs/bug409.out ! 33476b4a926fd252b27886588fe9af3d gcc/testsuite/go.test/test/fixedbugs/bug410.go b3b9ea9f96eb142647f6a6cb403d2fb1 gcc/testsuite/go.test/test/fixedbugs/bug411.go 67a324bea569ff9e1f788988528c80fb gcc/testsuite/go.test/test/fixedbugs/bug412.go 0cc1d4050c8bcd14de8561803daabe36 gcc/testsuite/go.test/test/fixedbugs/bug413.go *************** f35a7d21fe1566cdf641a0787323d2da gcc/te *** 41973,41979 **** 961966dfd1c9ebb158884a859982a6b9 gcc/testsuite/go.test/test/safe/nousesafe.go 654467ddeb26d10c3cffa5707ac4b405 gcc/testsuite/go.test/test/safe/pkg.go efaf8b3f770d1b7481152bdf82cb0897 gcc/testsuite/go.test/test/safe/usesafe.go ! 9db5bdca6a83562fad301d147b94b272 gcc/testsuite/go.test/test/shift1.go 31f622d91578b5c2619da6573c037c53 gcc/testsuite/go.test/test/shift2.go 98eaa818a13192aad65a388f0fafa7ad gcc/testsuite/go.test/test/sieve.go 7522d45169c2dc45a787c8b7a9356db1 gcc/testsuite/go.test/test/sigchld.go --- 42083,42089 ---- 961966dfd1c9ebb158884a859982a6b9 gcc/testsuite/go.test/test/safe/nousesafe.go 654467ddeb26d10c3cffa5707ac4b405 gcc/testsuite/go.test/test/safe/pkg.go efaf8b3f770d1b7481152bdf82cb0897 gcc/testsuite/go.test/test/safe/usesafe.go ! 50c762c6035ec8c294af970e92eb8af6 gcc/testsuite/go.test/test/shift1.go 31f622d91578b5c2619da6573c037c53 gcc/testsuite/go.test/test/shift2.go 98eaa818a13192aad65a388f0fafa7ad gcc/testsuite/go.test/test/sieve.go 7522d45169c2dc45a787c8b7a9356db1 gcc/testsuite/go.test/test/sigchld.go *************** ac0b35dcfcf72480c040349b2b8a874b gcc/te *** 42121,42127 **** f6a135d669303e10360f4a9e17664aa7 gcc/testsuite/obj-c++.dg/cxx-class-1.mm eaca42112d9683b4af93483c642c5b3d gcc/testsuite/obj-c++.dg/cxx-ivars-1.mm 2dd2f7dd6f655732fc606d8c85af825b gcc/testsuite/obj-c++.dg/cxx-ivars-2.mm ! 0e74fdedad66d719f97674a41630017d gcc/testsuite/obj-c++.dg/cxx-ivars-3.mm 0f4f03268c6b5629c2c23fe7fbc06966 gcc/testsuite/obj-c++.dg/cxx-scope-1.mm 74ea4974ad0f897a229d4bd99f47da95 gcc/testsuite/obj-c++.dg/cxx-scope-2.mm 4d63d224c8c642188a58882a0609e394 gcc/testsuite/obj-c++.dg/defs.mm --- 42231,42237 ---- f6a135d669303e10360f4a9e17664aa7 gcc/testsuite/obj-c++.dg/cxx-class-1.mm eaca42112d9683b4af93483c642c5b3d gcc/testsuite/obj-c++.dg/cxx-ivars-1.mm 2dd2f7dd6f655732fc606d8c85af825b gcc/testsuite/obj-c++.dg/cxx-ivars-2.mm ! cca9a4ce8eba1acccfd6ad6cb92b40e7 gcc/testsuite/obj-c++.dg/cxx-ivars-3.mm 0f4f03268c6b5629c2c23fe7fbc06966 gcc/testsuite/obj-c++.dg/cxx-scope-1.mm 74ea4974ad0f897a229d4bd99f47da95 gcc/testsuite/obj-c++.dg/cxx-scope-2.mm 4d63d224c8c642188a58882a0609e394 gcc/testsuite/obj-c++.dg/defs.mm *************** a18e5d5b1c772fda466670d9a820b3af gcc/te *** 42193,42199 **** e5590a2a3f8b22c8f340429d19038365 gcc/testsuite/obj-c++.dg/method-1.mm 19f8317903ba8bee4bf9fa945f98478d gcc/testsuite/obj-c++.dg/method-10.mm 6eecfde212363a6364af0934a93626ab gcc/testsuite/obj-c++.dg/method-11.mm ! 74240fb8891f61b92b8b5fbfe4b60c59 gcc/testsuite/obj-c++.dg/method-12.mm 5db486c8dedadbd2dec6ab6ab50e4760 gcc/testsuite/obj-c++.dg/method-13.mm 172164daa5b2292983d23e0e5d5a94eb gcc/testsuite/obj-c++.dg/method-14.mm 4e53ceac34f8c331fb19afd677abd05d gcc/testsuite/obj-c++.dg/method-15.mm --- 42303,42309 ---- e5590a2a3f8b22c8f340429d19038365 gcc/testsuite/obj-c++.dg/method-1.mm 19f8317903ba8bee4bf9fa945f98478d gcc/testsuite/obj-c++.dg/method-10.mm 6eecfde212363a6364af0934a93626ab gcc/testsuite/obj-c++.dg/method-11.mm ! 70bd4843da3e5fe528aabbba3c165225 gcc/testsuite/obj-c++.dg/method-12.mm 5db486c8dedadbd2dec6ab6ab50e4760 gcc/testsuite/obj-c++.dg/method-13.mm 172164daa5b2292983d23e0e5d5a94eb gcc/testsuite/obj-c++.dg/method-14.mm 4e53ceac34f8c331fb19afd677abd05d gcc/testsuite/obj-c++.dg/method-15.mm *************** e9acacfeddf9f5b3fcc7bd49ae2063e8 gcc/te *** 42331,42337 **** 8c2650d88d078d9a00f1f3ef1029cbef gcc/testsuite/obj-c++.dg/proto-lossage-4.mm 40b981421154ac96e17299bce5569949 gcc/testsuite/obj-c++.dg/proto-lossage-5.mm fd29bc4e26ebfbde2219d16bcd57ff44 gcc/testsuite/obj-c++.dg/proto-lossage-6.mm ! f1a8174a0d750e68abf26109030dadbb gcc/testsuite/obj-c++.dg/proto-lossage-7.mm 4cd57b67eb48bda4d17d7be6cbbf3651 gcc/testsuite/obj-c++.dg/proto-qual-1.mm cf4aa34add213bab910de4918a4bb01d gcc/testsuite/obj-c++.dg/protocol-forward-1.mm 30d24d440a6063d356f6a53af5141ba5 gcc/testsuite/obj-c++.dg/protocol-forward-2.mm --- 42441,42447 ---- 8c2650d88d078d9a00f1f3ef1029cbef gcc/testsuite/obj-c++.dg/proto-lossage-4.mm 40b981421154ac96e17299bce5569949 gcc/testsuite/obj-c++.dg/proto-lossage-5.mm fd29bc4e26ebfbde2219d16bcd57ff44 gcc/testsuite/obj-c++.dg/proto-lossage-6.mm ! 6975286133171cd693b6f659097de913 gcc/testsuite/obj-c++.dg/proto-lossage-7.mm 4cd57b67eb48bda4d17d7be6cbbf3651 gcc/testsuite/obj-c++.dg/proto-qual-1.mm cf4aa34add213bab910de4918a4bb01d gcc/testsuite/obj-c++.dg/protocol-forward-1.mm 30d24d440a6063d356f6a53af5141ba5 gcc/testsuite/obj-c++.dg/protocol-forward-2.mm *************** c7256230d1e3f8e9c93d3614935b69bc gcc/te *** 42350,42358 **** 9359d93417f401fddd8bdbb1bd3bae20 gcc/testsuite/obj-c++.dg/selector-warn-1.mm d2caa0c9e2ed2954ba9e33d87f726293 gcc/testsuite/obj-c++.dg/set-not-used-1.mm 4c5901302ebb869ad2843e5bd9b59f85 gcc/testsuite/obj-c++.dg/strings/const-cfstring-2.mm ! 1dc90b8d5a711a3056e6158e886891a3 gcc/testsuite/obj-c++.dg/strings/const-cfstring-5.mm 21b76d31bad8ab2bce32ce3f5fceff78 gcc/testsuite/obj-c++.dg/strings/const-str-1.mm ! df65847cf73a8ffd54aeb213e0d72b63 gcc/testsuite/obj-c++.dg/strings/const-str-12.mm 71d1ca70f87be11f4325a5b06987bb9b gcc/testsuite/obj-c++.dg/strings/const-str-2.mm c2f326ebd57afc69cfee9d8f6b441323 gcc/testsuite/obj-c++.dg/strings/const-str-5.mm a9aabe53382bdf1de0612f8bcf7ef0eb gcc/testsuite/obj-c++.dg/strings/const-str-6.mm --- 42460,42468 ---- 9359d93417f401fddd8bdbb1bd3bae20 gcc/testsuite/obj-c++.dg/selector-warn-1.mm d2caa0c9e2ed2954ba9e33d87f726293 gcc/testsuite/obj-c++.dg/set-not-used-1.mm 4c5901302ebb869ad2843e5bd9b59f85 gcc/testsuite/obj-c++.dg/strings/const-cfstring-2.mm ! 944b45f8bae04534787888f64340973c gcc/testsuite/obj-c++.dg/strings/const-cfstring-5.mm 21b76d31bad8ab2bce32ce3f5fceff78 gcc/testsuite/obj-c++.dg/strings/const-str-1.mm ! 88a204f313d69410fede9a1fadead584 gcc/testsuite/obj-c++.dg/strings/const-str-12.mm 71d1ca70f87be11f4325a5b06987bb9b gcc/testsuite/obj-c++.dg/strings/const-str-2.mm c2f326ebd57afc69cfee9d8f6b441323 gcc/testsuite/obj-c++.dg/strings/const-str-5.mm a9aabe53382bdf1de0612f8bcf7ef0eb gcc/testsuite/obj-c++.dg/strings/const-str-6.mm *************** bc9aa7712b120aebc943581aa15c9c31 gcc/te *** 42367,42373 **** 43c780cbecdb5565a2bda8b0795d5cf8 gcc/testsuite/obj-c++.dg/super-dealloc-2.mm 6d77d7810e6a1711e9c3e10911fdf7f5 gcc/testsuite/obj-c++.dg/sync-2.mm c1db611d2e6bb0f9226c7b773e41bec6 gcc/testsuite/obj-c++.dg/sync-3.mm ! 93fca1bd756ffd9eb1cb9a28fb5bc2af gcc/testsuite/obj-c++.dg/syntax-error-1.mm 76c552ffde73821d35ce37029bf52fb7 gcc/testsuite/obj-c++.dg/syntax-error-10.mm fcc3247af976d648bb2eb1348d0828a8 gcc/testsuite/obj-c++.dg/syntax-error-2.mm 6090398b844ba0e695f8af2946ade6c8 gcc/testsuite/obj-c++.dg/syntax-error-3.mm --- 42477,42483 ---- 43c780cbecdb5565a2bda8b0795d5cf8 gcc/testsuite/obj-c++.dg/super-dealloc-2.mm 6d77d7810e6a1711e9c3e10911fdf7f5 gcc/testsuite/obj-c++.dg/sync-2.mm c1db611d2e6bb0f9226c7b773e41bec6 gcc/testsuite/obj-c++.dg/sync-3.mm ! 748c7566fb8449a9c4cf464bde2a00c3 gcc/testsuite/obj-c++.dg/syntax-error-1.mm 76c552ffde73821d35ce37029bf52fb7 gcc/testsuite/obj-c++.dg/syntax-error-10.mm fcc3247af976d648bb2eb1348d0828a8 gcc/testsuite/obj-c++.dg/syntax-error-2.mm 6090398b844ba0e695f8af2946ade6c8 gcc/testsuite/obj-c++.dg/syntax-error-3.mm *************** d951d115e8add5e2e78e8e2e56aebc7f gcc/te *** 42402,42414 **** 1f7b520d7df4159bcf567388c99dd690 gcc/testsuite/obj-c++.dg/torture/strings/const-cfstring-1.mm e42495f1f3ad6ec8f920137751c3f8f7 gcc/testsuite/obj-c++.dg/torture/strings/const-cfstring-3.mm d2c0463e1e05d168d9d004c74cec0610 gcc/testsuite/obj-c++.dg/torture/strings/const-cfstring-4.mm ! 1b65b5e8c76ecd26a9db68d7f1675ece gcc/testsuite/obj-c++.dg/torture/strings/const-str-10.mm ! c623717c970c4e8cdab658095dd2fd1d gcc/testsuite/obj-c++.dg/torture/strings/const-str-11.mm 78b70f1aad125fecbbe161087e6dbc54 gcc/testsuite/obj-c++.dg/torture/strings/const-str-3.mm 3b2c597aefd84853b16f8cd8438ff907 gcc/testsuite/obj-c++.dg/torture/strings/const-str-4.mm 71862e2dfd32f32cc37bc2b6300c0cab gcc/testsuite/obj-c++.dg/torture/strings/const-str-7.mm 69c47926ef31db0bb79c5cd3cea4fa0b gcc/testsuite/obj-c++.dg/torture/strings/const-str-8.mm ! c8e0d7f2e9f51ed12a7fb3d2330da091 gcc/testsuite/obj-c++.dg/torture/strings/const-str-9.mm 38bba22e495d1876db60c1ae29146fbe gcc/testsuite/obj-c++.dg/torture/strings/string1.mm ac7df7c7b1d8ac191e74d84ad10b6c53 gcc/testsuite/obj-c++.dg/torture/strings/strings.exp 6f6356dbcb53d22602416e8919a2b428 gcc/testsuite/obj-c++.dg/torture/tls/diag-1.mm --- 42512,42524 ---- 1f7b520d7df4159bcf567388c99dd690 gcc/testsuite/obj-c++.dg/torture/strings/const-cfstring-1.mm e42495f1f3ad6ec8f920137751c3f8f7 gcc/testsuite/obj-c++.dg/torture/strings/const-cfstring-3.mm d2c0463e1e05d168d9d004c74cec0610 gcc/testsuite/obj-c++.dg/torture/strings/const-cfstring-4.mm ! 3f540974a4f92e1b3375aa8bcbca7e8c gcc/testsuite/obj-c++.dg/torture/strings/const-str-10.mm ! bc7815bb9a08dccb57fe4e22b74eb729 gcc/testsuite/obj-c++.dg/torture/strings/const-str-11.mm 78b70f1aad125fecbbe161087e6dbc54 gcc/testsuite/obj-c++.dg/torture/strings/const-str-3.mm 3b2c597aefd84853b16f8cd8438ff907 gcc/testsuite/obj-c++.dg/torture/strings/const-str-4.mm 71862e2dfd32f32cc37bc2b6300c0cab gcc/testsuite/obj-c++.dg/torture/strings/const-str-7.mm 69c47926ef31db0bb79c5cd3cea4fa0b gcc/testsuite/obj-c++.dg/torture/strings/const-str-8.mm ! 019ec55674cd5d821fa8a7357a379cfc gcc/testsuite/obj-c++.dg/torture/strings/const-str-9.mm 38bba22e495d1876db60c1ae29146fbe gcc/testsuite/obj-c++.dg/torture/strings/string1.mm ac7df7c7b1d8ac191e74d84ad10b6c53 gcc/testsuite/obj-c++.dg/torture/strings/strings.exp 6f6356dbcb53d22602416e8919a2b428 gcc/testsuite/obj-c++.dg/torture/tls/diag-1.mm *************** d41bdbf8fd720cd2fb1c999d1e580ba5 gcc/te *** 42527,42533 **** e8f3db69a8847b70c8bc969edd78dbb2 gcc/testsuite/objc.dg/encode-5.m 1296445554abff012ff56b38392805d1 gcc/testsuite/objc.dg/encode-6-next.m e53ead1c08985bdb0849e450194e9b99 gcc/testsuite/objc.dg/encode-6.m ! d42654d5f0004e95a94e24ba46f1b67a gcc/testsuite/objc.dg/encode-7-next-64bit.m ec0c203eb500e86f1c38d60a10728024 gcc/testsuite/objc.dg/encode-7-next.m 9ab782c949f890c6873d2669830a2e31 gcc/testsuite/objc.dg/encode-7.m 429d40f99aa6566cade774190e6fc983 gcc/testsuite/objc.dg/encode-8.m --- 42637,42643 ---- e8f3db69a8847b70c8bc969edd78dbb2 gcc/testsuite/objc.dg/encode-5.m 1296445554abff012ff56b38392805d1 gcc/testsuite/objc.dg/encode-6-next.m e53ead1c08985bdb0849e450194e9b99 gcc/testsuite/objc.dg/encode-6.m ! 6080da2594c39158f3f4b1344700903b gcc/testsuite/objc.dg/encode-7-next-64bit.m ec0c203eb500e86f1c38d60a10728024 gcc/testsuite/objc.dg/encode-7-next.m 9ab782c949f890c6873d2669830a2e31 gcc/testsuite/objc.dg/encode-7.m 429d40f99aa6566cade774190e6fc983 gcc/testsuite/objc.dg/encode-8.m *************** a10c57561f5023d1bc5813fb62b15e8f gcc/te *** 42588,42594 **** cf495a272fe911f953544354d7af49e2 gcc/testsuite/objc.dg/gnu-runtime-3.m 5af5796e26fc687bf55b3d9f3ed9238f gcc/testsuite/objc.dg/headers.m f1920dcb3d447ac1425163a2d1e6c0d2 gcc/testsuite/objc.dg/id-1.m ! 08c76a379738e6b0b0eb4537ca5d8885 gcc/testsuite/objc.dg/image-info.m f642d96cba4255caca5622eae71014c4 gcc/testsuite/objc.dg/incomplete-type-1.m 7965f2dab76d401f8398a30bcae85653 gcc/testsuite/objc.dg/invalid-method-1.m 172bebf6092a27228381556a110f96cb gcc/testsuite/objc.dg/invalid-method-2.m --- 42698,42704 ---- cf495a272fe911f953544354d7af49e2 gcc/testsuite/objc.dg/gnu-runtime-3.m 5af5796e26fc687bf55b3d9f3ed9238f gcc/testsuite/objc.dg/headers.m f1920dcb3d447ac1425163a2d1e6c0d2 gcc/testsuite/objc.dg/id-1.m ! c6f4519ae7cdde25ce603a24cab9f418 gcc/testsuite/objc.dg/image-info.m f642d96cba4255caca5622eae71014c4 gcc/testsuite/objc.dg/incomplete-type-1.m 7965f2dab76d401f8398a30bcae85653 gcc/testsuite/objc.dg/invalid-method-1.m 172bebf6092a27228381556a110f96cb gcc/testsuite/objc.dg/invalid-method-2.m *************** f00cd88add91ecc5ecc2a311e5080729 gcc/te *** 42626,42632 **** 9153d82237cc99af905bfcb58426980b gcc/testsuite/objc.dg/method-3.m 1857e378233cbdb0ef09315d0ee04fc9 gcc/testsuite/objc.dg/method-4.m 1ad4b2a31a2fabfd021245ffcfa25817 gcc/testsuite/objc.dg/method-5.m ! 87c6479c5012497b9060932a941a4377 gcc/testsuite/objc.dg/method-6.m cf1647763aa007475503deb5e1e09f59 gcc/testsuite/objc.dg/method-7.m 172164daa5b2292983d23e0e5d5a94eb gcc/testsuite/objc.dg/method-8.m 0dfce97c95b1493edb33d7a1bb51e35a gcc/testsuite/objc.dg/method-9.m --- 42736,42742 ---- 9153d82237cc99af905bfcb58426980b gcc/testsuite/objc.dg/method-3.m 1857e378233cbdb0ef09315d0ee04fc9 gcc/testsuite/objc.dg/method-4.m 1ad4b2a31a2fabfd021245ffcfa25817 gcc/testsuite/objc.dg/method-5.m ! 820d2072288e0c5450c20ecf67e0cee7 gcc/testsuite/objc.dg/method-6.m cf1647763aa007475503deb5e1e09f59 gcc/testsuite/objc.dg/method-7.m 172164daa5b2292983d23e0e5d5a94eb gcc/testsuite/objc.dg/method-8.m 0dfce97c95b1493edb33d7a1bb51e35a gcc/testsuite/objc.dg/method-9.m *************** ba9c85f123a269332f97289544f0c272 gcc/te *** 42647,42659 **** 1e68654789c238dc1eaf9e923fe49822 gcc/testsuite/objc.dg/naming-6.m ab539e16480243bccd13cb0ab5c05a26 gcc/testsuite/objc.dg/naming-7.m dab2c64c5d57ebdc0ca4b496b1db48a2 gcc/testsuite/objc.dg/next-runtime-1.m ! 7bd9c4e6799faaf21a263b5b57b1ba2c gcc/testsuite/objc.dg/no-extra-load.m 5aa0d8665f3838cd2d663fc71be4933d gcc/testsuite/objc.dg/objc-fast-4.m 6e3afeaf5baf2e68de83a0896e550b27 gcc/testsuite/objc.dg/objc-foreach-1.m d7940785b72ab02856b58bf8b4c3d710 gcc/testsuite/objc.dg/objc-foreach-2.m b0a4bc88be3fcbba334ad86617c9724e gcc/testsuite/objc.dg/objc-foreach-3.m ! 59d4961cff3bb938af2ce6bafd43529e gcc/testsuite/objc.dg/objc-foreach-4.m ! 7c23e37a96b638975904c678dfab3bd2 gcc/testsuite/objc.dg/objc-foreach-5.m f531c9a9d8f9e24e5d1b5e0d059e3392 gcc/testsuite/objc.dg/objc-gc-4.m e2b871afc37f1772b337d989244b97c6 gcc/testsuite/objc.dg/objc-nofilename-1.m 6eed5537eae24ed6634c3706c12f2114 gcc/testsuite/objc.dg/param-1.m --- 42757,42769 ---- 1e68654789c238dc1eaf9e923fe49822 gcc/testsuite/objc.dg/naming-6.m ab539e16480243bccd13cb0ab5c05a26 gcc/testsuite/objc.dg/naming-7.m dab2c64c5d57ebdc0ca4b496b1db48a2 gcc/testsuite/objc.dg/next-runtime-1.m ! 7bdacce2d25fc27ed41077ddc1cb6a7e gcc/testsuite/objc.dg/no-extra-load.m 5aa0d8665f3838cd2d663fc71be4933d gcc/testsuite/objc.dg/objc-fast-4.m 6e3afeaf5baf2e68de83a0896e550b27 gcc/testsuite/objc.dg/objc-foreach-1.m d7940785b72ab02856b58bf8b4c3d710 gcc/testsuite/objc.dg/objc-foreach-2.m b0a4bc88be3fcbba334ad86617c9724e gcc/testsuite/objc.dg/objc-foreach-3.m ! 12235d0aec67d729a9f040e360810e9c gcc/testsuite/objc.dg/objc-foreach-4.m ! 3b7013081c6c015d989ef0bde95be007 gcc/testsuite/objc.dg/objc-foreach-5.m f531c9a9d8f9e24e5d1b5e0d059e3392 gcc/testsuite/objc.dg/objc-gc-4.m e2b871afc37f1772b337d989244b97c6 gcc/testsuite/objc.dg/objc-nofilename-1.m 6eed5537eae24ed6634c3706c12f2114 gcc/testsuite/objc.dg/param-1.m *************** e2b871afc37f1772b337d989244b97c6 gcc/te *** 42661,42667 **** 71da4e106e38b3671b4f4ae8a237e55f gcc/testsuite/objc.dg/pch/interface-1.m aeeae2ba23272e1b1d0190c848346b68 gcc/testsuite/objc.dg/pch/pch.exp 4bde0ee2020d54cbaccb19eddeb1ff93 gcc/testsuite/objc.dg/pr18255.m ! 512f75f9c158730eb4d679896680d2e4 gcc/testsuite/objc.dg/pr23214.m e220e57343bac32bbc315171b87b1bba gcc/testsuite/objc.dg/pr23709.m 8480d22a4388c485c49d1c703c34f7f7 gcc/testsuite/objc.dg/pr24393.m 2e9567e68880e80a9fa203bba6e86d7f gcc/testsuite/objc.dg/pr28049.m --- 42771,42777 ---- 71da4e106e38b3671b4f4ae8a237e55f gcc/testsuite/objc.dg/pch/interface-1.m aeeae2ba23272e1b1d0190c848346b68 gcc/testsuite/objc.dg/pch/pch.exp 4bde0ee2020d54cbaccb19eddeb1ff93 gcc/testsuite/objc.dg/pr18255.m ! 92850ceb26e638315f91054c730aacc8 gcc/testsuite/objc.dg/pr23214.m e220e57343bac32bbc315171b87b1bba gcc/testsuite/objc.dg/pr23709.m 8480d22a4388c485c49d1c703c34f7f7 gcc/testsuite/objc.dg/pr24393.m 2e9567e68880e80a9fa203bba6e86d7f gcc/testsuite/objc.dg/pr28049.m *************** d165610dbbfad82f6af91eab9b66d300 gcc/te *** 42767,42773 **** f2414cf609997abfd57b517bafd39019 gcc/testsuite/objc.dg/proto-lossage-4.m 40b981421154ac96e17299bce5569949 gcc/testsuite/objc.dg/proto-lossage-5.m d26b84bd4fece35e5ae1ec9a7c6d4f15 gcc/testsuite/objc.dg/proto-lossage-6.m ! f1a8174a0d750e68abf26109030dadbb gcc/testsuite/objc.dg/proto-lossage-7.m 604faba6fd06b505d44d4837836124fa gcc/testsuite/objc.dg/proto-qual-1.m 4afd2785a0050e517e5c3818d2d5ea46 gcc/testsuite/objc.dg/protocol-forward-1.m 30d24d440a6063d356f6a53af5141ba5 gcc/testsuite/objc.dg/protocol-forward-2.m --- 42877,42883 ---- f2414cf609997abfd57b517bafd39019 gcc/testsuite/objc.dg/proto-lossage-4.m 40b981421154ac96e17299bce5569949 gcc/testsuite/objc.dg/proto-lossage-5.m d26b84bd4fece35e5ae1ec9a7c6d4f15 gcc/testsuite/objc.dg/proto-lossage-6.m ! 6975286133171cd693b6f659097de913 gcc/testsuite/objc.dg/proto-lossage-7.m 604faba6fd06b505d44d4837836124fa gcc/testsuite/objc.dg/proto-qual-1.m 4afd2785a0050e517e5c3818d2d5ea46 gcc/testsuite/objc.dg/protocol-forward-1.m 30d24d440a6063d356f6a53af5141ba5 gcc/testsuite/objc.dg/protocol-forward-2.m *************** fd73b19f16303df474ad98a05e01cd6a gcc/te *** 42801,42810 **** 911d824641cc5460f0bb8428edcd155b gcc/testsuite/objc.dg/stret-1.m 581f8e860f7f1e705a6b0235823fa173 gcc/testsuite/objc.dg/stret-2.m 48dbd5e4f3a80cc5653bb873d59cd3b4 gcc/testsuite/objc.dg/strings/const-cfstring-2.m ! 1dc90b8d5a711a3056e6158e886891a3 gcc/testsuite/objc.dg/strings/const-cfstring-5.m 21b76d31bad8ab2bce32ce3f5fceff78 gcc/testsuite/objc.dg/strings/const-str-1.m 24ad853ec86d75ab828e6fc36156ce31 gcc/testsuite/objc.dg/strings/const-str-12.m ! df65847cf73a8ffd54aeb213e0d72b63 gcc/testsuite/objc.dg/strings/const-str-12b.m 11e6b8b6d3e9f318be035ef31f291e33 gcc/testsuite/objc.dg/strings/const-str-2.m 2ea7be2c8319bbf91f203eb9e01c5520 gcc/testsuite/objc.dg/strings/const-str-5.m 1b52a4aa3cd0d5062e03b48964ddcb0b gcc/testsuite/objc.dg/strings/const-str-6.m --- 42911,42920 ---- 911d824641cc5460f0bb8428edcd155b gcc/testsuite/objc.dg/stret-1.m 581f8e860f7f1e705a6b0235823fa173 gcc/testsuite/objc.dg/stret-2.m 48dbd5e4f3a80cc5653bb873d59cd3b4 gcc/testsuite/objc.dg/strings/const-cfstring-2.m ! 944b45f8bae04534787888f64340973c gcc/testsuite/objc.dg/strings/const-cfstring-5.m 21b76d31bad8ab2bce32ce3f5fceff78 gcc/testsuite/objc.dg/strings/const-str-1.m 24ad853ec86d75ab828e6fc36156ce31 gcc/testsuite/objc.dg/strings/const-str-12.m ! 88a204f313d69410fede9a1fadead584 gcc/testsuite/objc.dg/strings/const-str-12b.m 11e6b8b6d3e9f318be035ef31f291e33 gcc/testsuite/objc.dg/strings/const-str-2.m 2ea7be2c8319bbf91f203eb9e01c5520 gcc/testsuite/objc.dg/strings/const-str-5.m 1b52a4aa3cd0d5062e03b48964ddcb0b gcc/testsuite/objc.dg/strings/const-str-6.m *************** a1b0dd9c9fb200a066255256ef572225 gcc/te *** 42819,42825 **** c71fc5d6430c26f90154d279a0e4420e gcc/testsuite/objc.dg/super-class-4.m 5f7cf7eb1290cd0ac7cc810aca461fcb gcc/testsuite/objc.dg/super-dealloc-1.m 43c780cbecdb5565a2bda8b0795d5cf8 gcc/testsuite/objc.dg/super-dealloc-2.m ! d3e8e95d2965e9632b94976c344b8386 gcc/testsuite/objc.dg/symtab-1.m 2a986a873850ef622badcc1eb9048d4a gcc/testsuite/objc.dg/sync-1.m 6d77d7810e6a1711e9c3e10911fdf7f5 gcc/testsuite/objc.dg/sync-2.m a7c71308c349df3308ea10cfd5c4cfc2 gcc/testsuite/objc.dg/sync-3.m --- 42929,42935 ---- c71fc5d6430c26f90154d279a0e4420e gcc/testsuite/objc.dg/super-class-4.m 5f7cf7eb1290cd0ac7cc810aca461fcb gcc/testsuite/objc.dg/super-dealloc-1.m 43c780cbecdb5565a2bda8b0795d5cf8 gcc/testsuite/objc.dg/super-dealloc-2.m ! e806ea4ccd7ce77b9958611b5c803146 gcc/testsuite/objc.dg/symtab-1.m 2a986a873850ef622badcc1eb9048d4a gcc/testsuite/objc.dg/sync-1.m 6d77d7810e6a1711e9c3e10911fdf7f5 gcc/testsuite/objc.dg/sync-2.m a7c71308c349df3308ea10cfd5c4cfc2 gcc/testsuite/objc.dg/sync-3.m *************** be65f96db9eb7870d002772ea73b79da gcc/te *** 42837,42849 **** eb414f8a7531ed8a420a1a6ee919602f gcc/testsuite/objc.dg/torture/strings/const-cfstring-1.m e42495f1f3ad6ec8f920137751c3f8f7 gcc/testsuite/objc.dg/torture/strings/const-cfstring-3.m d2c0463e1e05d168d9d004c74cec0610 gcc/testsuite/objc.dg/torture/strings/const-cfstring-4.m ! 61e785b1dd58fe544047faf4bcf12ae5 gcc/testsuite/objc.dg/torture/strings/const-str-10.m ! 7b857c4eb80fbc2510098381770e3e2b gcc/testsuite/objc.dg/torture/strings/const-str-11.m 11f5cd130f549cf602c1bb2004fba283 gcc/testsuite/objc.dg/torture/strings/const-str-3.m 95175d9f569f2455a67d3a042a9b49e5 gcc/testsuite/objc.dg/torture/strings/const-str-4.m 38dc4c1d8bffabc69a852320760c79a3 gcc/testsuite/objc.dg/torture/strings/const-str-7.m 3e0b925a0c58f41da0dff25baae98066 gcc/testsuite/objc.dg/torture/strings/const-str-8.m ! 1563584c463f1f03e40f6137e805d4c3 gcc/testsuite/objc.dg/torture/strings/const-str-9.m a8a9f4264b042cb130bb43f35157c620 gcc/testsuite/objc.dg/torture/strings/string1.m f559fec747b34a07335a33efaef1d635 gcc/testsuite/objc.dg/torture/strings/string2.m 8d3378c509e4ec126b88298049f5b787 gcc/testsuite/objc.dg/torture/strings/string3.m --- 42947,42959 ---- eb414f8a7531ed8a420a1a6ee919602f gcc/testsuite/objc.dg/torture/strings/const-cfstring-1.m e42495f1f3ad6ec8f920137751c3f8f7 gcc/testsuite/objc.dg/torture/strings/const-cfstring-3.m d2c0463e1e05d168d9d004c74cec0610 gcc/testsuite/objc.dg/torture/strings/const-cfstring-4.m ! c00db2a33ee79619d0d18ec1bec143d2 gcc/testsuite/objc.dg/torture/strings/const-str-10.m ! 870aba766852dd810f3d097bf57286e0 gcc/testsuite/objc.dg/torture/strings/const-str-11.m 11f5cd130f549cf602c1bb2004fba283 gcc/testsuite/objc.dg/torture/strings/const-str-3.m 95175d9f569f2455a67d3a042a9b49e5 gcc/testsuite/objc.dg/torture/strings/const-str-4.m 38dc4c1d8bffabc69a852320760c79a3 gcc/testsuite/objc.dg/torture/strings/const-str-7.m 3e0b925a0c58f41da0dff25baae98066 gcc/testsuite/objc.dg/torture/strings/const-str-8.m ! c240b028053e462ac058c3f830ba0503 gcc/testsuite/objc.dg/torture/strings/const-str-9.m a8a9f4264b042cb130bb43f35157c620 gcc/testsuite/objc.dg/torture/strings/string1.m f559fec747b34a07335a33efaef1d635 gcc/testsuite/objc.dg/torture/strings/string2.m 8d3378c509e4ec126b88298049f5b787 gcc/testsuite/objc.dg/torture/strings/string3.m *************** d2d07c2ebcb90350a34d2a0a2a215530 gcc/te *** 42877,42885 **** 8c73a8da87197ef7c9627087e4a0abdc gcc/testsuite/objc.dg/va-meth-1.m ad588be086756c7bce570ed5a28030b0 gcc/testsuite/objc.dg/volatile-1.m 5b030d8bcb22dedd984e8d8dae17cfb6 gcc/testsuite/objc.dg/weak-1.m ! 80bc77ef95d07372714b27118e333076 gcc/testsuite/objc.dg/zero-link-1.m ! c28e3d0516d4a7c902150ee11a09aa9e gcc/testsuite/objc.dg/zero-link-2.m ! 9a37ef4fef5bcfa3c169baa6e9a266db gcc/testsuite/objc.dg/zero-link-3.m 0d71c48c831bf5882b80c4cd6ca9d9d8 gcc/testsuite/objc/compile/20011211-1.m 9b70591be7f91f15d0a53c89bdc94bf4 gcc/testsuite/objc/compile/20060406-1.m d967a8655a62d35feb179a9994fd1997 gcc/testsuite/objc/compile/compile.exp --- 42987,42995 ---- 8c73a8da87197ef7c9627087e4a0abdc gcc/testsuite/objc.dg/va-meth-1.m ad588be086756c7bce570ed5a28030b0 gcc/testsuite/objc.dg/volatile-1.m 5b030d8bcb22dedd984e8d8dae17cfb6 gcc/testsuite/objc.dg/weak-1.m ! c6f92ed8e0845d4f49274791f11f8632 gcc/testsuite/objc.dg/zero-link-1.m ! 665cb537ffd18b494c34ac2bd13e3f52 gcc/testsuite/objc.dg/zero-link-2.m ! a86dde4579f2a917b3ba4488f0c82a58 gcc/testsuite/objc.dg/zero-link-3.m 0d71c48c831bf5882b80c4cd6ca9d9d8 gcc/testsuite/objc/compile/20011211-1.m 9b70591be7f91f15d0a53c89bdc94bf4 gcc/testsuite/objc/compile/20060406-1.m d967a8655a62d35feb179a9994fd1997 gcc/testsuite/objc/compile/compile.exp *************** a57e521085412bbde60e78229ace4fd5 gcc/te *** 42992,43008 **** de103c5aee763e42ee068bab52ae81e8 gcc/timevar.c 9ffac7207872c810c9ef84c6e4f8bbae gcc/timevar.def b05bcc8660162d48a2e75f133cce2b79 gcc/timevar.h ! 6e9ca03c0dd531cf4bc6469a2a40fe5e gcc/tlink.c a25018ae151c7c3204f534bedb9eaece gcc/toplev.c 35ce64bb0fea6c209fadfd69f7c7a768 gcc/toplev.h 2c1c7849b62e2bf62e8796d68a2e7381 gcc/tracer.c b58dec5bbbdc9979bb90617277512ff0 gcc/trans-mem.c 7cf500646c715cc53eba83351c9b4b7a gcc/trans-mem.h ! bcde3eb71717783c7d2705f4bab58553 gcc/tree-affine.c d8dd64d584ba26c0277022b34f0338b7 gcc/tree-affine.h de7e1aef471e64fe9e070164d1f11dcf gcc/tree-browser.c bedec07f7d7cbf81dac14846da39f828 gcc/tree-browser.def ! 6e92824e12e90bc6331122d93d020102 gcc/tree-call-cdce.c af38fbb04a82deabff4d68d2bc2451dd gcc/tree-cfg.c 7874da707addbf5e9eb78044d08e84af gcc/tree-cfgcleanup.c 68179679c594512a41d957a0d247cc6e gcc/tree-chrec.c --- 43102,43118 ---- de103c5aee763e42ee068bab52ae81e8 gcc/timevar.c 9ffac7207872c810c9ef84c6e4f8bbae gcc/timevar.def b05bcc8660162d48a2e75f133cce2b79 gcc/timevar.h ! c04d3d2b76e14cae33ccfbe084c75fdc gcc/tlink.c a25018ae151c7c3204f534bedb9eaece gcc/toplev.c 35ce64bb0fea6c209fadfd69f7c7a768 gcc/toplev.h 2c1c7849b62e2bf62e8796d68a2e7381 gcc/tracer.c b58dec5bbbdc9979bb90617277512ff0 gcc/trans-mem.c 7cf500646c715cc53eba83351c9b4b7a gcc/trans-mem.h ! a9874e4fe8492a1061773b8cdcae3e03 gcc/tree-affine.c d8dd64d584ba26c0277022b34f0338b7 gcc/tree-affine.h de7e1aef471e64fe9e070164d1f11dcf gcc/tree-browser.c bedec07f7d7cbf81dac14846da39f828 gcc/tree-browser.def ! 60ab405ffc7ae05fd582a869f9886f13 gcc/tree-call-cdce.c af38fbb04a82deabff4d68d2bc2451dd gcc/tree-cfg.c 7874da707addbf5e9eb78044d08e84af gcc/tree-cfgcleanup.c 68179679c594512a41d957a0d247cc6e gcc/tree-chrec.c *************** d8bbfdafa539a13f81016e4be83ef743 gcc/tr *** 43019,43031 **** de7bd2fc34a4358c9f61c6027a6b00ee gcc/tree-emutls.c 458ce453916436bfc3fbec01822924b7 gcc/tree-flow-inline.h 95f88e8cdd576a07bd4be93aa71be9e9 gcc/tree-flow.h ! ecea3caa354fc77cd048ab491876ae41 gcc/tree-if-conv.c 0c66fe97095630f83cdd02a6fa18499c gcc/tree-inline.c cf86d37557212f5c82d4d97019c10d5c gcc/tree-inline.h 5cdb1d6c7f40ef3be755755ed2e14690 gcc/tree-into-ssa.c 087061a54dad51be42e8b43f90beed7b gcc/tree-iterator.c 75d0dc05a3629f3b5871406f6d4f2c5c gcc/tree-iterator.h ! 0ff5ec58191ea2e53a5b617e9de293fb gcc/tree-loop-distribution.c b48ba95cb168a8ea86996501285cf069 gcc/tree-mudflap.c 93e0f193efff098d3fe42ff38b49c69c gcc/tree-mudflap.h dfa7692d33439e94364d634ec6be44bb gcc/tree-nested.c --- 43129,43141 ---- de7bd2fc34a4358c9f61c6027a6b00ee gcc/tree-emutls.c 458ce453916436bfc3fbec01822924b7 gcc/tree-flow-inline.h 95f88e8cdd576a07bd4be93aa71be9e9 gcc/tree-flow.h ! acf1cd0cf9b8a47bb8740db5f79104a8 gcc/tree-if-conv.c 0c66fe97095630f83cdd02a6fa18499c gcc/tree-inline.c cf86d37557212f5c82d4d97019c10d5c gcc/tree-inline.h 5cdb1d6c7f40ef3be755755ed2e14690 gcc/tree-into-ssa.c 087061a54dad51be42e8b43f90beed7b gcc/tree-iterator.c 75d0dc05a3629f3b5871406f6d4f2c5c gcc/tree-iterator.h ! 8660d13fd9360c98ba46195d113c39ba gcc/tree-loop-distribution.c b48ba95cb168a8ea86996501285cf069 gcc/tree-mudflap.c 93e0f193efff098d3fe42ff38b49c69c gcc/tree-mudflap.h dfa7692d33439e94364d634ec6be44bb gcc/tree-nested.c *************** f196dc26aec099f2db0c88c4a764ecbb gcc/tr *** 43034,43040 **** f022abac96ef0eb7e9c43e73793bc0cf gcc/tree-object-size.c 455978c94f31394ec28e886d0cfab05d gcc/tree-optimize.c 356e8f99c98122df8e188147ee88b405 gcc/tree-outof-ssa.c ! 4e715a8bfc590eeabef3b41cb509d6cd gcc/tree-parloops.c 47f1231c6cdfdb103d2ff831d2c27d41 gcc/tree-pass.h bd460d2caaeb01469c672ef3221eef18 gcc/tree-phinodes.c 898c8f01096591fe53ddd55b623c5e7d gcc/tree-predcom.c --- 43144,43150 ---- f022abac96ef0eb7e9c43e73793bc0cf gcc/tree-object-size.c 455978c94f31394ec28e886d0cfab05d gcc/tree-optimize.c 356e8f99c98122df8e188147ee88b405 gcc/tree-outof-ssa.c ! 8fd50142b0fa437a55185de9e002ad28 gcc/tree-parloops.c 47f1231c6cdfdb103d2ff831d2c27d41 gcc/tree-pass.h bd460d2caaeb01469c672ef3221eef18 gcc/tree-phinodes.c 898c8f01096591fe53ddd55b623c5e7d gcc/tree-predcom.c *************** dddf038e7a240a18586c3fcb1683d30d gcc/tr *** 43043,43057 **** 91161ffd17ef85c8a099d7dd5fcdc659 gcc/tree-profile.c 03ac00b80fa4c73e9a1a24e495342a6b gcc/tree-scalar-evolution.c 7a423ea0669b0af23fb01196fec57dad gcc/tree-scalar-evolution.h ! 72c745ef81c2b924b5b2db724b6bbdfd gcc/tree-sra.c ad49186a0a84fbac461b01b3030c1e44 gcc/tree-ssa-address.c 3826ea88f246b7013040944483a2e833 gcc/tree-ssa-alias.c db1587e6eb45bf71279bd5efa5ee185f gcc/tree-ssa-alias.h ! 7b4b4ff8bc51eb30e5e1daed5c4f4b9e gcc/tree-ssa-ccp.c 0cc25e5c4a46295466ae3777e26a2eb7 gcc/tree-ssa-coalesce.c 01714fd7d06fb47a3793320c131f1de5 gcc/tree-ssa-copy.c a1e8e4e4d17284cb920e6d4f501aa878 gcc/tree-ssa-copyrename.c ! dd076069928034b154813e6f6f98aa54 gcc/tree-ssa-dce.c 13f57ae9386c27401a0430b1934d6d09 gcc/tree-ssa-dom.c af90e7210ab95b65d71bf0ab467b0af7 gcc/tree-ssa-dse.c 0b2220d4c338a768afe6f65499c73090 gcc/tree-ssa-forwprop.c --- 43153,43167 ---- 91161ffd17ef85c8a099d7dd5fcdc659 gcc/tree-profile.c 03ac00b80fa4c73e9a1a24e495342a6b gcc/tree-scalar-evolution.c 7a423ea0669b0af23fb01196fec57dad gcc/tree-scalar-evolution.h ! fb3aaa38bcc808fc2141b6408faa37ca gcc/tree-sra.c ad49186a0a84fbac461b01b3030c1e44 gcc/tree-ssa-address.c 3826ea88f246b7013040944483a2e833 gcc/tree-ssa-alias.c db1587e6eb45bf71279bd5efa5ee185f gcc/tree-ssa-alias.h ! 4507eddd937b81e5c31e62e09f602fd2 gcc/tree-ssa-ccp.c 0cc25e5c4a46295466ae3777e26a2eb7 gcc/tree-ssa-coalesce.c 01714fd7d06fb47a3793320c131f1de5 gcc/tree-ssa-copy.c a1e8e4e4d17284cb920e6d4f501aa878 gcc/tree-ssa-copyrename.c ! 18f185bd58b7acc37ee2a63cb585e801 gcc/tree-ssa-dce.c 13f57ae9386c27401a0430b1934d6d09 gcc/tree-ssa-dom.c af90e7210ab95b65d71bf0ab467b0af7 gcc/tree-ssa-dse.c 0b2220d4c338a768afe6f65499c73090 gcc/tree-ssa-forwprop.c *************** ec668503d8bf24c2ccd961da9c5fc9e4 gcc/tr *** 43063,43069 **** 5b9f1da4873cf93a7e20c171fff2d941 gcc/tree-ssa-loop-ivcanon.c 70ba279a855b2df414b092d106d56e1a gcc/tree-ssa-loop-ivopts.c 71426fb357e3bcef935be34c119a8ba9 gcc/tree-ssa-loop-manip.c ! e9f165fef7e3ddcc2eded855906e48f6 gcc/tree-ssa-loop-niter.c 5715b9e0230aab1c6070b689faa6d550 gcc/tree-ssa-loop-prefetch.c 48ff0fbf65a03c622450a93fa8aeb83f gcc/tree-ssa-loop-unswitch.c 4c10107ae48f35306617ea873661d70b gcc/tree-ssa-loop.c --- 43173,43179 ---- 5b9f1da4873cf93a7e20c171fff2d941 gcc/tree-ssa-loop-ivcanon.c 70ba279a855b2df414b092d106d56e1a gcc/tree-ssa-loop-ivopts.c 71426fb357e3bcef935be34c119a8ba9 gcc/tree-ssa-loop-manip.c ! 6c897876f8203ec9f56782ba31ac8253 gcc/tree-ssa-loop-niter.c 5715b9e0230aab1c6070b689faa6d550 gcc/tree-ssa-loop-prefetch.c 48ff0fbf65a03c622450a93fa8aeb83f gcc/tree-ssa-loop-unswitch.c 4c10107ae48f35306617ea873661d70b gcc/tree-ssa-loop.c *************** ace84307a5785c9babcc90d0d8f4c393 gcc/tr *** 43075,43086 **** f5f75f3461f379689c19fda41c544231 gcc/tree-ssa-pre.c 5d35d9bce1fa89bce495b78164ac8742 gcc/tree-ssa-propagate.c d689dae8bc71860440447aaa56d3ccb8 gcc/tree-ssa-propagate.h ! ccb418b5f513a043eb2365cd5e0ea0ba gcc/tree-ssa-reassoc.c ! 9164fff972f032a49dc195d2024482ee gcc/tree-ssa-sccvn.c 6fe27f9e3903a323a7a8520383288704 gcc/tree-ssa-sccvn.h f955ca98f3760640fdf592190d45e528 gcc/tree-ssa-sink.c ! aaa4a8f2996b73f5f673dc770da5b34b gcc/tree-ssa-strlen.c ! b1b8bf0889cf0194a3a4890fdc79edcb gcc/tree-ssa-structalias.c acd08e44ecd23aaeece83f93f57ebeb4 gcc/tree-ssa-tail-merge.c f4b8ce02e388c8d8e9e1f3b896222096 gcc/tree-ssa-ter.c 28d8b02aef8ef6946f8b7c29d61266b7 gcc/tree-ssa-threadedge.c --- 43185,43196 ---- f5f75f3461f379689c19fda41c544231 gcc/tree-ssa-pre.c 5d35d9bce1fa89bce495b78164ac8742 gcc/tree-ssa-propagate.c d689dae8bc71860440447aaa56d3ccb8 gcc/tree-ssa-propagate.h ! 1c2eb65dc7edd013712eba66f1b429ca gcc/tree-ssa-reassoc.c ! 6a686207bac366a593485b9c5be25b65 gcc/tree-ssa-sccvn.c 6fe27f9e3903a323a7a8520383288704 gcc/tree-ssa-sccvn.h f955ca98f3760640fdf592190d45e528 gcc/tree-ssa-sink.c ! 7c4959a99d6de6d114b4ed5d6e32fca6 gcc/tree-ssa-strlen.c ! 7c104a536a2321008d5c78df3d1e1158 gcc/tree-ssa-structalias.c acd08e44ecd23aaeece83f93f57ebeb4 gcc/tree-ssa-tail-merge.c f4b8ce02e388c8d8e9e1f3b896222096 gcc/tree-ssa-ter.c 28d8b02aef8ef6946f8b7c29d61266b7 gcc/tree-ssa-threadedge.c *************** b02d579419b07a18ffed08558d209934 gcc/tr *** 43096,43112 **** 7653bd266bb2a9e3627a09c78e26b03b gcc/tree-streamer.c 72da86c2c3239994df13f07eecd3ec00 gcc/tree-streamer.h ae219e6773983a4088ee506dd8a48c20 gcc/tree-switch-conversion.c ! f3abaa64dd5a8c46f2fa73d3d3a92ce7 gcc/tree-tailcall.c ! 35edb040b73680c98db01321d99ec192 gcc/tree-vect-data-refs.c af3c146a2c77a1ce7b8274fa674c1964 gcc/tree-vect-generic.c b2a892b4a6545df0a0f3b0f569d2f2a4 gcc/tree-vect-loop-manip.c ! b6159acae3ca76aa89b40171bc313311 gcc/tree-vect-loop.c ! 009fe933b12db22a4ceee2d34e1a6a5f gcc/tree-vect-patterns.c ea261eecd956ae96972feab9c7b1b702 gcc/tree-vect-slp.c ! 56139a9c7ad48c10fca0585a4928aa51 gcc/tree-vect-stmts.c 0f22eb73f3b6dd0a65712c22a41b5423 gcc/tree-vectorizer.c 6bd1f962629a3368bdb0fa258ff8a873 gcc/tree-vectorizer.h ! a1fad0786150dad099eabb7c00f15d68 gcc/tree-vrp.c e18382b01cf6f875a0577db97ea6795b gcc/tree.c ea4f261af9d9eb5624cb9c7d28b4c25c gcc/tree.def e48bfea13a1626e2c0034949bc6620b7 gcc/tree.h --- 43206,43222 ---- 7653bd266bb2a9e3627a09c78e26b03b gcc/tree-streamer.c 72da86c2c3239994df13f07eecd3ec00 gcc/tree-streamer.h ae219e6773983a4088ee506dd8a48c20 gcc/tree-switch-conversion.c ! 9e87e9dffb55317a4f8d1804fcfe797a gcc/tree-tailcall.c ! 1af4e7a500dac85caf57e70cd5626e48 gcc/tree-vect-data-refs.c af3c146a2c77a1ce7b8274fa674c1964 gcc/tree-vect-generic.c b2a892b4a6545df0a0f3b0f569d2f2a4 gcc/tree-vect-loop-manip.c ! 6819c4869557b92c9b6de4eba4a6c646 gcc/tree-vect-loop.c ! 7244555a083957490cee55bbf337148c gcc/tree-vect-patterns.c ea261eecd956ae96972feab9c7b1b702 gcc/tree-vect-slp.c ! a3d76795ace9847f323803a62a4169e0 gcc/tree-vect-stmts.c 0f22eb73f3b6dd0a65712c22a41b5423 gcc/tree-vectorizer.c 6bd1f962629a3368bdb0fa258ff8a873 gcc/tree-vectorizer.h ! 9d1aac3b13605fedf00900a053eed43d gcc/tree-vrp.c e18382b01cf6f875a0577db97ea6795b gcc/tree.c ea4f261af9d9eb5624cb9c7d28b4c25c gcc/tree.def e48bfea13a1626e2c0034949bc6620b7 gcc/tree.h *************** aaa8eaf7d0bca1f6ea9cffe2450ec2d4 gcc/va *** 43132,43144 **** 39372cc3c49609bc5e0575a4a11a7de1 gcc/xcoff.h 97259effcb6b2de557d762808c0e8231 gcc/xcoffout.c 96596e234586faf6013b63f2e2046979 gcc/xcoffout.h ! f19f12402ff230ae3c1a5d77d858ac07 gnattools/ChangeLog cee94c5f34069420d5b60536299278c5 gnattools/Makefile.in 72c9af35fea24756a96511605fe95c4b gnattools/configure 2096eea599268b6437e99e27d1a585b5 gnattools/configure.ac 59530bdf33659b29e73d4adb9f9f6552 include/COPYING d32239bcb673463ab874e80d47fae504 include/COPYING3 ! 3c33cc110ffc46286f78aa5aa7db38f4 include/ChangeLog 4263432a72ff47ed8bf420208ee7eea5 include/ChangeLog-9103 c10455e70062ca837a41a6f0da8f1afb include/ansidecl.h e26b43ff0d807159894134d22e503555 include/demangle.h --- 43242,43254 ---- 39372cc3c49609bc5e0575a4a11a7de1 gcc/xcoff.h 97259effcb6b2de557d762808c0e8231 gcc/xcoffout.c 96596e234586faf6013b63f2e2046979 gcc/xcoffout.h ! 3976edaa40ead1f5d5587d2398b60139 gnattools/ChangeLog cee94c5f34069420d5b60536299278c5 gnattools/Makefile.in 72c9af35fea24756a96511605fe95c4b gnattools/configure 2096eea599268b6437e99e27d1a585b5 gnattools/configure.ac 59530bdf33659b29e73d4adb9f9f6552 include/COPYING d32239bcb673463ab874e80d47fae504 include/COPYING3 ! c969117c85e42c8e2823a578e1724fd0 include/ChangeLog 4263432a72ff47ed8bf420208ee7eea5 include/ChangeLog-9103 c10455e70062ca837a41a6f0da8f1afb include/ansidecl.h e26b43ff0d807159894134d22e503555 include/demangle.h *************** e34d525d7faceda0dd5cb3eae49c1548 includ *** 43170,43176 **** 0294cecbb1f66d640ccba3a5d862d05b include/xregex2.h f648a66ed08e079e26a24c4346a3ba03 include/xtensa-config.h 0afce91a3daa1fdc32ee36370c1129dd install-sh ! 8b55bc2f8e91337b904b150f34be0843 intl/ChangeLog cad1d6fab2274517783de7433c0faa74 intl/Makefile.in 6ec998bb4716c744bf8185e607f69301 intl/README 76ca170a525d5b84d90f0478fe788931 intl/VERSION --- 43280,43286 ---- 0294cecbb1f66d640ccba3a5d862d05b include/xregex2.h f648a66ed08e079e26a24c4346a3ba03 include/xtensa-config.h 0afce91a3daa1fdc32ee36370c1129dd install-sh ! ae6ddde30448148873f3773128d4fd43 intl/ChangeLog cad1d6fab2274517783de7433c0faa74 intl/Makefile.in 6ec998bb4716c744bf8185e607f69301 intl/README 76ca170a525d5b84d90f0478fe788931 intl/VERSION *************** d50a8c6c5b41089930accbdce767d3c0 intl/p *** 43212,43223 **** b4758a0194e3e41362b939911472ce62 intl/relocatable.c bedade7bcfc3bc5eb09a2c6844f637f3 intl/relocatable.h 43f287d082528203fc85c1d2d81bf30d intl/textdomain.c ! d20ab12c515bbedaa3e197a49093cf94 libada/ChangeLog f2d2c3ff182f32f52aee7efced009cba libada/Makefile.in 1d3025570b3a47e06a8c08a1af035817 libada/configure bb6690a32f61acae48558269e9aed430 libada/configure.ac 46d3fe6da7a771cc2d5420c4137a6861 libatomic/.gitignore ! 118ca684111ef4b8aa0eee236ea9ef99 libatomic/ChangeLog b59ffa866cb861ebba5fbe51d5064bb7 libatomic/Makefile.am be6ba7ac41a48569bb10480827c68c24 libatomic/Makefile.in f7853b06953072a9987a45a5b00782d6 libatomic/acinclude.m4 --- 43322,43333 ---- b4758a0194e3e41362b939911472ce62 intl/relocatable.c bedade7bcfc3bc5eb09a2c6844f637f3 intl/relocatable.h 43f287d082528203fc85c1d2d81bf30d intl/textdomain.c ! ff9125167095c0dec5ee8de3984d5d22 libada/ChangeLog f2d2c3ff182f32f52aee7efced009cba libada/Makefile.in 1d3025570b3a47e06a8c08a1af035817 libada/configure bb6690a32f61acae48558269e9aed430 libada/configure.ac 46d3fe6da7a771cc2d5420c4137a6861 libatomic/.gitignore ! c11a292406e13a63eef071efc659f7dc libatomic/ChangeLog b59ffa866cb861ebba5fbe51d5064bb7 libatomic/Makefile.am be6ba7ac41a48569bb10480827c68c24 libatomic/Makefile.in f7853b06953072a9987a45a5b00782d6 libatomic/acinclude.m4 *************** d7602ad09d5eea3db942d4889dbbd78c libato *** 43293,43299 **** fe8909975b6ede03308685e9f19dddaa libatomic/testsuite/libatomic.c/atomic-store-5.c cce610fe1b2413dc6f097cb40816e9e8 libatomic/testsuite/libatomic.c/c.exp 97b0c9cdfcb733664bdf4efe0f5dc449 libatomic/testsuite/libatomic.c/generic-2.c ! 1ae46636573c1221815bccf793cc8d22 libbacktrace/ChangeLog 055963ca0d14c116102ca5aae7974dc6 libbacktrace/Makefile.am e213a98a07f1e1abb9747b16293305ba libbacktrace/Makefile.in 1987c0495aeee1bc47709f399772173b libbacktrace/README --- 43403,43409 ---- fe8909975b6ede03308685e9f19dddaa libatomic/testsuite/libatomic.c/atomic-store-5.c cce610fe1b2413dc6f097cb40816e9e8 libatomic/testsuite/libatomic.c/c.exp 97b0c9cdfcb733664bdf4efe0f5dc449 libatomic/testsuite/libatomic.c/generic-2.c ! 2bd32eb2de93f44c82fd9adb6a1c1b49 libbacktrace/ChangeLog 055963ca0d14c116102ca5aae7974dc6 libbacktrace/Makefile.am e213a98a07f1e1abb9747b16293305ba libbacktrace/Makefile.in 1987c0495aeee1bc47709f399772173b libbacktrace/README *************** e89d3578964d0d1a5d4b598dee4a43f5 libbac *** 43320,43326 **** 202326331fb5f3f5a431e0149aec7525 libbacktrace/simple.c e88bff20263a0e56f81e1d76f984514b libbacktrace/state.c 92c58abbfc91efaa3db8b440780fd2f2 libbacktrace/unknown.c ! 30bced26034a954c4d04a147d3708077 libcpp/ChangeLog 26ffb201e443bb679ed64a0329737f2d libcpp/Makefile.in 7307c791a8de641ef6dada9a179ece57 libcpp/aclocal.m4 958e637c9d5fd3c9b53d0fdc3607f896 libcpp/charset.c --- 43430,43436 ---- 202326331fb5f3f5a431e0149aec7525 libbacktrace/simple.c e88bff20263a0e56f81e1d76f984514b libbacktrace/state.c 92c58abbfc91efaa3db8b440780fd2f2 libbacktrace/unknown.c ! 8e406d815cede1300640c896c05451f6 libcpp/ChangeLog 26ffb201e443bb679ed64a0329737f2d libcpp/Makefile.in 7307c791a8de641ef6dada9a179ece57 libcpp/aclocal.m4 958e637c9d5fd3c9b53d0fdc3607f896 libcpp/charset.c *************** b1b184d2ad5577b189dd6795e51191b6 libcpp *** 43346,43352 **** 611224973c1e6632c4ad849a0ac1b31d libcpp/makeucnid.c 634171cd32f244f676d7b06b32382989 libcpp/mkdeps.c fa26d0b2c083921ac59df21f59b97b0f libcpp/pch.c ! 6680150b2d5a76cbaf6f652b59a9c631 libcpp/po/ChangeLog d4649bf51d8ae9e4289419795d18d32f libcpp/po/be.gmo d9cabe81984e7eabac3d6fa1f7888b29 libcpp/po/be.po 2506ac634333a282db74796aede450bd libcpp/po/ca.gmo --- 43456,43462 ---- 611224973c1e6632c4ad849a0ac1b31d libcpp/makeucnid.c 634171cd32f244f676d7b06b32382989 libcpp/mkdeps.c fa26d0b2c083921ac59df21f59b97b0f libcpp/pch.c ! 5ed0b361973d122b6bd44a71dd1f50a7 libcpp/po/ChangeLog d4649bf51d8ae9e4289419795d18d32f libcpp/po/be.gmo d9cabe81984e7eabac3d6fa1f7888b29 libcpp/po/be.po 2506ac634333a282db74796aede450bd libcpp/po/ca.gmo *************** edd978ede45df89f653adf97c34ac73f libcpp *** 43374,43381 **** 6583f81e550c253db628a9037e5f542d libcpp/po/nl.po d1ea3e9c91a694f749b05677f4e6fc5c libcpp/po/ru.gmo 86373897da25e9d9a8fcd4144d7454bc libcpp/po/ru.po ! ab6f1b275060051b3622b4ce25b41b9e libcpp/po/sr.gmo ! 439ae85eec58b156f479e5e7039c56d1 libcpp/po/sr.po a66170770253598cac1e80a989ec6951 libcpp/po/sv.gmo b1b714d95a64e26e6a2941c1bd0e8a33 libcpp/po/sv.po c6364dd179bbe2cf22453e017a35ee7a libcpp/po/tr.gmo --- 43484,43491 ---- 6583f81e550c253db628a9037e5f542d libcpp/po/nl.po d1ea3e9c91a694f749b05677f4e6fc5c libcpp/po/ru.gmo 86373897da25e9d9a8fcd4144d7454bc libcpp/po/ru.po ! ae43f19622a93fffa760d95a62c566a3 libcpp/po/sr.gmo ! 815c0fc23bb586e702e1d33199e9fc78 libcpp/po/sr.po a66170770253598cac1e80a989ec6951 libcpp/po/sv.gmo b1b714d95a64e26e6a2941c1bd0e8a33 libcpp/po/sv.po c6364dd179bbe2cf22453e017a35ee7a libcpp/po/tr.gmo *************** a9e135910542909365cd19b78530aafe libcpp *** 43394,43400 **** b623a60e3ea9edeb8cb36adca65cf47e libcpp/ucnid.h ace1c093717ce9f7354fc083ea722589 libcpp/ucnid.tab a6c2b3de06c7424706b16f4c206396a1 libdecnumber/.gitignore ! e2e77750ec0b4c8b51162c0a1c0d91ef libdecnumber/ChangeLog f511cdc1e972856b3b009d7a000fd9e0 libdecnumber/Makefile.in 2746a1155d319a2cda823ee5b58921ce libdecnumber/aclocal.m4 c554da3dd320de9f364bb99511586e0a libdecnumber/bid/bid-dpd.h --- 43504,43510 ---- b623a60e3ea9edeb8cb36adca65cf47e libcpp/ucnid.h ace1c093717ce9f7354fc083ea722589 libcpp/ucnid.tab a6c2b3de06c7424706b16f4c206396a1 libdecnumber/.gitignore ! b3de9069e590f48c711d3c1e8aacab22 libdecnumber/ChangeLog f511cdc1e972856b3b009d7a000fd9e0 libdecnumber/Makefile.in 2746a1155d319a2cda823ee5b58921ce libdecnumber/aclocal.m4 c554da3dd320de9f364bb99511586e0a libdecnumber/bid/bid-dpd.h *************** a97c47969dfc92a7666dfe3c2e1e1448 libdec *** 43456,43462 **** 7bff859e94ae843784d72e241ab2b5c7 libdecnumber/dpd/decimal64.c 15afb5cf507c63955aef09267fbaa571 libdecnumber/dpd/decimal64.h 0f6db29710e7075c2fd62bc4478b3b8d libdecnumber/dpd/decimal64Symbols.h ! c229686c75741f2e32fd055a7d42cb13 libffi/ChangeLog ba66fc19311348d373ec271be939a659 libffi/ChangeLog.libffi fbbc216bc25d759a72ea3e6d734af56b libffi/ChangeLog.libgcj d946d2b97454ad50a1dbfbf48923c5be libffi/ChangeLog.v1 --- 43566,43572 ---- 7bff859e94ae843784d72e241ab2b5c7 libdecnumber/dpd/decimal64.c 15afb5cf507c63955aef09267fbaa571 libdecnumber/dpd/decimal64.h 0f6db29710e7075c2fd62bc4478b3b8d libdecnumber/dpd/decimal64Symbols.h ! 6e9bed16f72d9659f401d098f5f42744 libffi/ChangeLog ba66fc19311348d373ec271be939a659 libffi/ChangeLog.libffi fbbc216bc25d759a72ea3e6d734af56b libffi/ChangeLog.libgcj d946d2b97454ad50a1dbfbf48923c5be libffi/ChangeLog.v1 *************** c9faebdbe02f87b62c091d969dad5a0f libffi *** 43470,43476 **** 524bf51636ca2be6d5038f35f55c36cc libffi/configure 04fd40064ce81f59d63fd77f42c0debd libffi/configure.ac bec544523f8f7f3d5136f67598cf609a libffi/configure.host ! 108fed52798a5a816c646c5c42a3d35c libffi/doc/libffi.info f9918c442ad99f826302594afed89dc4 libffi/doc/libffi.texi d9de4b04d3550cec2e8e18ebad6434fc libffi/doc/stamp-vti d9de4b04d3550cec2e8e18ebad6434fc libffi/doc/version.texi --- 43580,43586 ---- 524bf51636ca2be6d5038f35f55c36cc libffi/configure 04fd40064ce81f59d63fd77f42c0debd libffi/configure.ac bec544523f8f7f3d5136f67598cf609a libffi/configure.host ! 4dc8c2f0828a2549718e2e5affba1bce libffi/doc/libffi.info f9918c442ad99f826302594afed89dc4 libffi/doc/libffi.texi d9de4b04d3550cec2e8e18ebad6434fc libffi/doc/stamp-vti d9de4b04d3550cec2e8e18ebad6434fc libffi/doc/version.texi *************** a0da8c57c7ff9de674c6728fe321f0be libffi *** 43541,43552 **** c1917bbd6c116317e71dbc2d92d7f163 libffi/src/powerpc/asm.h cb116cc1ffaabda1a64689d60d0fb301 libffi/src/powerpc/darwin.S 6856b1cf44ef10b0c181b08cbe4773a5 libffi/src/powerpc/darwin_closure.S ! 03995f6e40d76f66f81de8481ca26d5a libffi/src/powerpc/ffi.c 8714142018b529d0475a927bb86ff421 libffi/src/powerpc/ffi_darwin.c c6308c0bafe2c30785a274e6972f38e8 libffi/src/powerpc/ffitarget.h c9faf1760be1745d8b2d0300174f2ce6 libffi/src/powerpc/linux64.S ! a863fb13ba74dbfd56bb87746c991b42 libffi/src/powerpc/linux64_closure.S ! 13b8217e70b9771fe1c9a8cab93ed859 libffi/src/powerpc/ppc_closure.S ab24fdf5ea0e700b4d272d00c4099c95 libffi/src/powerpc/sysv.S 50404dc78626d328fac6555a5a12ce01 libffi/src/prep_cif.c a9086fc5c1b5440f02dcbc425f093ae5 libffi/src/raw_api.c --- 43651,43662 ---- c1917bbd6c116317e71dbc2d92d7f163 libffi/src/powerpc/asm.h cb116cc1ffaabda1a64689d60d0fb301 libffi/src/powerpc/darwin.S 6856b1cf44ef10b0c181b08cbe4773a5 libffi/src/powerpc/darwin_closure.S ! 6b5e38b0784eb0c376e63d4e428facce libffi/src/powerpc/ffi.c 8714142018b529d0475a927bb86ff421 libffi/src/powerpc/ffi_darwin.c c6308c0bafe2c30785a274e6972f38e8 libffi/src/powerpc/ffitarget.h c9faf1760be1745d8b2d0300174f2ce6 libffi/src/powerpc/linux64.S ! e7bc0feeadc81862754f3648f40a38de libffi/src/powerpc/linux64_closure.S ! 9bd9d1a2c1b9ab06b6c89984945e23c7 libffi/src/powerpc/ppc_closure.S ab24fdf5ea0e700b4d272d00c4099c95 libffi/src/powerpc/sysv.S 50404dc78626d328fac6555a5a12ce01 libffi/src/prep_cif.c a9086fc5c1b5440f02dcbc425f093ae5 libffi/src/raw_api.c *************** d47c79b281339983862a8e52d8c73f0f libffi *** 43730,43745 **** 291be426192f460f6a07dfe1c96ab094 libffi/testsuite/libffi.special/special.exp 93fc3ea311b79f64004992807ce75d1e libffi/testsuite/libffi.special/unwindtest.cc 185d0795017fbbe253a13db8e34085f9 libffi/testsuite/libffi.special/unwindtest_ffi_call.cc ! 6b527b7b1678b7ef76d0c49d014006a6 libgcc/ChangeLog bd31c7bbe6eb52bb7499c0f55df9c9e1 libgcc/Makefile.in ! 30ea6c4f2676851924c57b989ee8ea8e libgcc/config.host 25a291c353009228fc85e36e91e64c08 libgcc/config.in 8b68678683255713ab4f8c57104db60e libgcc/config/aarch64/crti.S d3019e9c9b011f9f0b46b52674ce810a libgcc/config/aarch64/crtn.S d3138f9ff10b7dc30d8089a1f4dd9f92 libgcc/config/aarch64/linux-unwind.h 88abe84ac0c33497b81192786cbd07cd libgcc/config/aarch64/sfp-exceptions.c ! 6c55b901809db528a1dc952efd9db5c3 libgcc/config/aarch64/sfp-machine.h ! 5f9ca5f940bea9f0773fabdab7cc9c4b libgcc/config/aarch64/sync-cache.c bb8cba7191f4f2b117a9c83fc4b71e04 libgcc/config/aarch64/t-aarch64 a0a46a9affff177d894176604c30c40d libgcc/config/aarch64/t-softfp d2179910497848ac8cf34d0f815a13bc libgcc/config/alpha/crtfastmath.c --- 43840,43855 ---- 291be426192f460f6a07dfe1c96ab094 libffi/testsuite/libffi.special/special.exp 93fc3ea311b79f64004992807ce75d1e libffi/testsuite/libffi.special/unwindtest.cc 185d0795017fbbe253a13db8e34085f9 libffi/testsuite/libffi.special/unwindtest_ffi_call.cc ! 81aaea752015a1e57e4e67c800775d5c libgcc/ChangeLog bd31c7bbe6eb52bb7499c0f55df9c9e1 libgcc/Makefile.in ! e302ab51642fc82219920ce7fa57f985 libgcc/config.host 25a291c353009228fc85e36e91e64c08 libgcc/config.in 8b68678683255713ab4f8c57104db60e libgcc/config/aarch64/crti.S d3019e9c9b011f9f0b46b52674ce810a libgcc/config/aarch64/crtn.S d3138f9ff10b7dc30d8089a1f4dd9f92 libgcc/config/aarch64/linux-unwind.h 88abe84ac0c33497b81192786cbd07cd libgcc/config/aarch64/sfp-exceptions.c ! ecd26f0f24125873071b8253c0b8b4e3 libgcc/config/aarch64/sfp-machine.h ! 1f0bf278cec4d19b79ce30f24f6828ec libgcc/config/aarch64/sync-cache.c bb8cba7191f4f2b117a9c83fc4b71e04 libgcc/config/aarch64/t-aarch64 a0a46a9affff177d894176604c30c40d libgcc/config/aarch64/t-softfp d2179910497848ac8cf34d0f815a13bc libgcc/config/alpha/crtfastmath.c *************** b2fe917cb56979809662a1958cd87c57 libgcc *** 43786,43792 **** 0a814be9a668116ea231935f6847a439 libgcc/config/arm/unwind-arm.c e5e2d6717d5b6c83e2363f96d46dc917 libgcc/config/arm/unwind-arm.h 394ecf57074f9c41c39b265fb95f9481 libgcc/config/avr/avr-lib.h ! c0822f135e9093219a81a5967fd5b9d8 libgcc/config/avr/lib1funcs-fixed.S 14c3ef9b5848b2286025774a1763e570 libgcc/config/avr/lib1funcs.S 622f81485f02d0eac2caaafa7d3a2fd1 libgcc/config/avr/lib2-object.mk 9c1facdf81ee7ea3c768ee0d2dedcbea libgcc/config/avr/lib2funcs.c --- 43896,43902 ---- 0a814be9a668116ea231935f6847a439 libgcc/config/arm/unwind-arm.c e5e2d6717d5b6c83e2363f96d46dc917 libgcc/config/arm/unwind-arm.h 394ecf57074f9c41c39b265fb95f9481 libgcc/config/avr/avr-lib.h ! 41638e749f934038f296f19248afa151 libgcc/config/avr/lib1funcs-fixed.S 14c3ef9b5848b2286025774a1763e570 libgcc/config/avr/lib1funcs.S 622f81485f02d0eac2caaafa7d3a2fd1 libgcc/config/avr/lib2-object.mk 9c1facdf81ee7ea3c768ee0d2dedcbea libgcc/config/avr/lib2funcs.c *************** b2bcf8b944f937cb4f3799c02670dcee libgcc *** 43916,43922 **** a92aa384cf96b81c0dbb642826200dd7 libgcc/config/i386/64/letf2.c d1337b28acd8dbde9817492f9027dbc3 libgcc/config/i386/64/sfp-machine.h 498bbaf506a5bbdaa793f66399ece491 libgcc/config/i386/64/t-softfp-compat ! 2151715d8170b937668106143375cc6f libgcc/config/i386/cpuinfo.c d9783e3e70223c2e97cf70dadf00c055 libgcc/config/i386/crtfastmath.c 00b81fda8bb02f823f1fe59c9df884f2 libgcc/config/i386/crti.S df0dc1dae9b4ea977f72c0c233acd40b libgcc/config/i386/crtn.S --- 44026,44032 ---- a92aa384cf96b81c0dbb642826200dd7 libgcc/config/i386/64/letf2.c d1337b28acd8dbde9817492f9027dbc3 libgcc/config/i386/64/sfp-machine.h 498bbaf506a5bbdaa793f66399ece491 libgcc/config/i386/64/t-softfp-compat ! f07936802d5a0924b9c71c2550d9216e libgcc/config/i386/cpuinfo.c d9783e3e70223c2e97cf70dadf00c055 libgcc/config/i386/crtfastmath.c 00b81fda8bb02f823f1fe59c9df884f2 libgcc/config/i386/crti.S df0dc1dae9b4ea977f72c0c233acd40b libgcc/config/i386/crtn.S *************** bb4c79dfdc7020c68212eae69b7526ae libgcc *** 43996,44007 **** 552ede49162d3a4fb9e1e113de11e8b5 libgcc/config/ia64/t-vms fb9e0402d7f976b597835a1c56842c6f libgcc/config/ia64/tf-signs.c c1cdfb43b17ffe3ad6bf5a9e2538736f libgcc/config/ia64/unwind-ia64.c ! d3c6babcf8a35a846512dcca1e8129d0 libgcc/config/ia64/unwind-ia64.h 46963207fd3365c766c4b1dd74b3ff64 libgcc/config/ia64/vms-crtinit.S 898656d15607bbf736ed8d48f0bed276 libgcc/config/ia64/vms-unwind.h ec20ac1b60c3f204e84fbf20ac8b2a3b libgcc/config/iq2000/lib2funcs.c 102f7dad8ad6b54434a1b8313d1e42c4 libgcc/config/iq2000/t-iq2000 ! 7c1d6f2260e6490aba21c3f6f0b6ae5f libgcc/config/libbid/ChangeLog b835dd462e5fd34b7198fa877faaba74 libgcc/config/libbid/_addsub_dd.c 9b5c5028d03c371b7b637fed046684e5 libgcc/config/libbid/_addsub_sd.c aab1fbd92c8dfbaddbc821b25f242afa libgcc/config/libbid/_addsub_td.c --- 44106,44117 ---- 552ede49162d3a4fb9e1e113de11e8b5 libgcc/config/ia64/t-vms fb9e0402d7f976b597835a1c56842c6f libgcc/config/ia64/tf-signs.c c1cdfb43b17ffe3ad6bf5a9e2538736f libgcc/config/ia64/unwind-ia64.c ! 9d6b258eee8b75c6710b1fc246c8be6a libgcc/config/ia64/unwind-ia64.h 46963207fd3365c766c4b1dd74b3ff64 libgcc/config/ia64/vms-crtinit.S 898656d15607bbf736ed8d48f0bed276 libgcc/config/ia64/vms-unwind.h ec20ac1b60c3f204e84fbf20ac8b2a3b libgcc/config/iq2000/lib2funcs.c 102f7dad8ad6b54434a1b8313d1e42c4 libgcc/config/iq2000/t-iq2000 ! ca05c787f9d40e663ce2eef719f58ab0 libgcc/config/libbid/ChangeLog b835dd462e5fd34b7198fa877faaba74 libgcc/config/libbid/_addsub_dd.c 9b5c5028d03c371b7b637fed046684e5 libgcc/config/libbid/_addsub_sd.c aab1fbd92c8dfbaddbc821b25f242afa libgcc/config/libbid/_addsub_td.c *************** f75f4d18eb7ae2677787d98c39337a3d libgcc *** 44227,44233 **** 6403b3d85f0ed6751174f1088d074f62 libgcc/config/mips/t-sdemtk 5c0de0b169d03e1fbd60d32ce75e4118 libgcc/config/mips/t-tpbit 532a76f856d3755b780a19a91bdd1654 libgcc/config/mips/t-vr ! 33c78dbdce43ba967e3eb5d73dd91074 libgcc/config/mips/vr4120-div.S 58381155f322343bb5e25b3b6b7bada7 libgcc/config/mmix/crti.S 1128a6133ece93166943e6daa2f0b533 libgcc/config/mmix/crtn.S 41478efd1b19b3c7c9426d8e843f3b39 libgcc/config/mmix/t-mmix --- 44337,44343 ---- 6403b3d85f0ed6751174f1088d074f62 libgcc/config/mips/t-sdemtk 5c0de0b169d03e1fbd60d32ce75e4118 libgcc/config/mips/t-tpbit 532a76f856d3755b780a19a91bdd1654 libgcc/config/mips/t-vr ! d49cb0e8a625e5deab570b0599831b5b libgcc/config/mips/vr4120-div.S 58381155f322343bb5e25b3b6b7bada7 libgcc/config/mmix/crti.S 1128a6133ece93166943e6daa2f0b533 libgcc/config/mmix/crtn.S 41478efd1b19b3c7c9426d8e843f3b39 libgcc/config/mmix/t-mmix *************** cc9dfb63fb2751f1b0d887283bef8993 libgcc *** 44329,44335 **** 16353fc5c231e80f84b3b164bf71d511 libgcc/config/rs6000/freebsd-unwind.h 065bc63c96e4230986321a556beebd41 libgcc/config/rs6000/gthr-aix.h 887e251c6d58fb3a108e0aaf9d3f5944 libgcc/config/rs6000/ibm-ldouble-format ! 91a11b75a1c27986f1229e4fff7c4f0a libgcc/config/rs6000/ibm-ldouble.c ced1d5aee32a5d37a55cdcab47689d83 libgcc/config/rs6000/libgcc-aix-cxa.ver f0e66111fa0e721ac9111de5fa85186b libgcc/config/rs6000/libgcc-darwin.10.4.ver ff237c405b951422888986afadc16f70 libgcc/config/rs6000/libgcc-darwin.10.5.ver --- 44439,44445 ---- 16353fc5c231e80f84b3b164bf71d511 libgcc/config/rs6000/freebsd-unwind.h 065bc63c96e4230986321a556beebd41 libgcc/config/rs6000/gthr-aix.h 887e251c6d58fb3a108e0aaf9d3f5944 libgcc/config/rs6000/ibm-ldouble-format ! f91f6ae6af89c14beb0e0d7e0acf322c libgcc/config/rs6000/ibm-ldouble.c ced1d5aee32a5d37a55cdcab47689d83 libgcc/config/rs6000/libgcc-aix-cxa.ver f0e66111fa0e721ac9111de5fa85186b libgcc/config/rs6000/libgcc-darwin.10.4.ver ff237c405b951422888986afadc16f70 libgcc/config/rs6000/libgcc-darwin.10.5.ver *************** b16489b7c37a63fa518d47ca1295a42b libgcc *** 44368,44374 **** 6101649604e2b3fdd6179e1aa53066bf libgcc/config/s390/32/t-floattodi 35fb69e7d4dfef402ac37fda75e3ef89 libgcc/config/s390/gthr-tpf.h ea5aec5752a59c6b4ee1a4d5afcb7021 libgcc/config/s390/libgcc-glibc.ver ! 2d2824050531eb82f78b4aeec95510a2 libgcc/config/s390/linux-unwind.h c150e28c734710584eba8e77d2ff5105 libgcc/config/s390/t-crtstuff 35a77f8c50ecf16802e00e647ad94026 libgcc/config/s390/t-linux f41123a30f51a8817eb486a434d6824c libgcc/config/s390/tpf-unwind.h --- 44478,44484 ---- 6101649604e2b3fdd6179e1aa53066bf libgcc/config/s390/32/t-floattodi 35fb69e7d4dfef402ac37fda75e3ef89 libgcc/config/s390/gthr-tpf.h ea5aec5752a59c6b4ee1a4d5afcb7021 libgcc/config/s390/libgcc-glibc.ver ! 392f15247291f349dd22c81e7aa3ae5f libgcc/config/s390/linux-unwind.h c150e28c734710584eba8e77d2ff5105 libgcc/config/s390/t-crtstuff 35a77f8c50ecf16802e00e647ad94026 libgcc/config/s390/t-linux f41123a30f51a8817eb486a434d6824c libgcc/config/s390/tpf-unwind.h *************** f5fb690a7006c3237a8adededc5944a9 libgcc *** 44477,44483 **** 5e2260f13769a960c8e1f24b0c9847e4 libgcc/config/tilegx/t-softfp 94fecaba2fa3fca31d038d5739e45e51 libgcc/config/tilegx/t-tilegx b8c77a6c19ac0a0422492d6e37274543 libgcc/config/tilepro/atomic.c ! c838682d3324d77e4d7cb3c5de804c18 libgcc/config/tilepro/atomic.h b2c55278318724fadc2286dd7751c435 libgcc/config/tilepro/linux-unwind.h 861e6fdc8a21cc807126682f8474a6e9 libgcc/config/tilepro/sfp-machine.h 408c526d0f23a7bc9292f0772b4a096a libgcc/config/tilepro/softdivide.c --- 44587,44593 ---- 5e2260f13769a960c8e1f24b0c9847e4 libgcc/config/tilegx/t-softfp 94fecaba2fa3fca31d038d5739e45e51 libgcc/config/tilegx/t-tilegx b8c77a6c19ac0a0422492d6e37274543 libgcc/config/tilepro/atomic.c ! 6a1fdf7ebb19f9b5146c633d9cafcefc libgcc/config/tilepro/atomic.h b2c55278318724fadc2286dd7751c435 libgcc/config/tilepro/linux-unwind.h 861e6fdc8a21cc807126682f8474a6e9 libgcc/config/tilepro/sfp-machine.h 408c526d0f23a7bc9292f0772b4a096a libgcc/config/tilepro/softdivide.c *************** c5e1488a025c3a81ee12116d7e02d356 libgcc *** 44642,44655 **** e55dca88aac1b014ab4d26d6f0450e78 libgcc/unwind-dw2-fde-dip.c ce32603c06695e84543e60ba07081406 libgcc/unwind-dw2-fde.c 912fd64b341efee4aaf83cdf63e4d11c libgcc/unwind-dw2-fde.h ! 349e235a01b871024e445edb4a985330 libgcc/unwind-dw2.c 08ab67dd6b1a9c4b56cdf819b49007d4 libgcc/unwind-dw2.h 4f690feb235646a0c59ce8190e1a2e24 libgcc/unwind-generic.h 47faab3e588ca633f6eaf0387b2d3594 libgcc/unwind-pe.h 379d10f50b128a7d7895fbc2854200ee libgcc/unwind-seh.c 912c2613f0bf8838c9e1e783a32db47c libgcc/unwind-sjlj.c ca48521404fe4bff32cf281a4f25ad68 libgcc/unwind.inc ! 53df9f5d33b9fd8227e301e398059d8a libgfortran/ChangeLog 9aca36338382e5b4b730e7779170b24d libgfortran/ChangeLog-2002 80d3edc880c2da0b7a2beec2e2c4f774 libgfortran/ChangeLog-2003 9f0239429993a5e64ed793eb6c55a5c1 libgfortran/ChangeLog-2004 --- 44752,44765 ---- e55dca88aac1b014ab4d26d6f0450e78 libgcc/unwind-dw2-fde-dip.c ce32603c06695e84543e60ba07081406 libgcc/unwind-dw2-fde.c 912fd64b341efee4aaf83cdf63e4d11c libgcc/unwind-dw2-fde.h ! cb83711a4cc08d7f79ceeff970508e6d libgcc/unwind-dw2.c 08ab67dd6b1a9c4b56cdf819b49007d4 libgcc/unwind-dw2.h 4f690feb235646a0c59ce8190e1a2e24 libgcc/unwind-generic.h 47faab3e588ca633f6eaf0387b2d3594 libgcc/unwind-pe.h 379d10f50b128a7d7895fbc2854200ee libgcc/unwind-seh.c 912c2613f0bf8838c9e1e783a32db47c libgcc/unwind-sjlj.c ca48521404fe4bff32cf281a4f25ad68 libgcc/unwind.inc ! a5c9b302b0f74e77b07fff848992ab8b libgfortran/ChangeLog 9aca36338382e5b4b730e7779170b24d libgfortran/ChangeLog-2002 80d3edc880c2da0b7a2beec2e2c4f774 libgfortran/ChangeLog-2003 9f0239429993a5e64ed793eb6c55a5c1 libgfortran/ChangeLog-2004 *************** fe57a422cebe3ffdc63e1df3d02ceda6 libgfo *** 44670,44676 **** ccffe82934121261cb06e69e66cdb40a libgfortran/caf/mpi.c 9735fe4cb9e26bb7624846d918aa9e19 libgfortran/caf/single.c 79481157d92cc3c427b7774260f1831d libgfortran/config.h.in ! 63aa441fbda52ffb381de581850e4ab6 libgfortran/config/fpu-387.h 5b3e573754dedfe20954a31cd75df165 libgfortran/config/fpu-aix.h f197f1b7b06141bc282cf10f598e67fe libgfortran/config/fpu-generic.h aa0312daec26dda031dc8d2192c89d49 libgfortran/config/fpu-glibc.h --- 44780,44786 ---- ccffe82934121261cb06e69e66cdb40a libgfortran/caf/mpi.c 9735fe4cb9e26bb7624846d918aa9e19 libgfortran/caf/single.c 79481157d92cc3c427b7774260f1831d libgfortran/config.h.in ! 15af6aa34932836b79f0e220438c09f2 libgfortran/config/fpu-387.h 5b3e573754dedfe20954a31cd75df165 libgfortran/config/fpu-aix.h f197f1b7b06141bc282cf10f598e67fe libgfortran/config/fpu-generic.h aa0312daec26dda031dc8d2192c89d49 libgfortran/config/fpu-glibc.h *************** a47ea8ad7577af4224ab41dc2e43c49b libgfo *** 45270,45276 **** 67fa480e13c20102d22c8cf36c9e3168 libgfortran/io/inquire.c 0eb95ab320c2c6bce8fb0d785e74117a libgfortran/io/intrinsics.c d9f53023a71893a4f3a259baa1904624 libgfortran/io/io.h ! 52cb2d76b75433813ee31ff6ab968ee7 libgfortran/io/list_read.c 080ec66fd75715f5787fbed7db21f132 libgfortran/io/lock.c 71ebd874226546c911c7e0ea5160c997 libgfortran/io/open.c 25b77f45f1fc999c0d804a78824ae767 libgfortran/io/read.c --- 45380,45386 ---- 67fa480e13c20102d22c8cf36c9e3168 libgfortran/io/inquire.c 0eb95ab320c2c6bce8fb0d785e74117a libgfortran/io/intrinsics.c d9f53023a71893a4f3a259baa1904624 libgfortran/io/io.h ! b2bca795f7dbdf051dbaf57ec14cf96b libgfortran/io/list_read.c 080ec66fd75715f5787fbed7db21f132 libgfortran/io/lock.c 71ebd874226546c911c7e0ea5160c997 libgfortran/io/open.c 25b77f45f1fc999c0d804a78824ae767 libgfortran/io/read.c *************** cedd8f6fec0fe8a4f0614b86088afff8 libgfo *** 45354,45367 **** cd71536bfea7fc61961f8383cdd10f4e libgfortran/runtime/stop.c 402ff567135026c48c2960be91da03a1 libgfortran/runtime/string.c 5d4950ecb7b26d2c5e4e7b4e0dd74707 libgo/LICENSE ! 1c2aeb54729923e4f2b984f1da2a250f libgo/MERGE ! 1b53eaadcc25e01d3985e797bac3b6e7 libgo/Makefile.am ! 466173949b416a7e1a42bdd8fbde263f libgo/Makefile.in 3a55d95595a6f9e37dee53826b4daff2 libgo/PATENTS 0e3a2fb357762bdec163fe51ccb1e951 libgo/README d46376034c1fd6df47c8ba2cd5de9d0a libgo/README.gcc 7281cb4b7a426e299beb22a3191d79c3 libgo/aclocal.m4 ! e47893a96fae633ddde637cdfd4f8345 libgo/config.h.in ad1ce707d70b18d5d14bdbcfef82a9bb libgo/config/README 9a6e33ac95f7d5857d34f53bde4cb610 libgo/config/go.m4 a1fa746e7b6fc02162f6b2cfde2c8edd libgo/config/libtool.m4 --- 45464,45477 ---- cd71536bfea7fc61961f8383cdd10f4e libgfortran/runtime/stop.c 402ff567135026c48c2960be91da03a1 libgfortran/runtime/string.c 5d4950ecb7b26d2c5e4e7b4e0dd74707 libgo/LICENSE ! d9117b7588d5898e0c0821d6ae6a5300 libgo/MERGE ! d6367b20d1060d5448b3dd6da4f5ea03 libgo/Makefile.am ! 8cef001e62f732d7e848ccce019e3b2a libgo/Makefile.in 3a55d95595a6f9e37dee53826b4daff2 libgo/PATENTS 0e3a2fb357762bdec163fe51ccb1e951 libgo/README d46376034c1fd6df47c8ba2cd5de9d0a libgo/README.gcc 7281cb4b7a426e299beb22a3191d79c3 libgo/aclocal.m4 ! 200e0c530a06a90ded5834756452c723 libgo/config.h.in ad1ce707d70b18d5d14bdbcfef82a9bb libgo/config/README 9a6e33ac95f7d5857d34f53bde4cb610 libgo/config/go.m4 a1fa746e7b6fc02162f6b2cfde2c8edd libgo/config/libtool.m4 *************** dee72a6a60e99528b0d17bf3ff9a1e15 libgo/ *** 45370,45396 **** bc2f6032c98896249eadb56177c7d357 libgo/config/ltsugar.m4 c30cd33c496505f13d9fbdb6970c7c33 libgo/config/ltversion.m4 293853a13b7e218e3a4342cf85fbbf25 libgo/config/lt~obsolete.m4 ! 8bea103c2af5dbbb09ac4bebdf8cbde9 libgo/configure ! 7d4df365317e0ba8ed585f7bb6df9105 libgo/configure.ac ! a146d177919111be1d2edda6f5c694ee libgo/go/archive/tar/common.go ! 758e498fd7d7a48d8b27f6d90e25ebb4 libgo/go/archive/tar/reader.go ! c7b194e5175373edb2c048f55a966df9 libgo/go/archive/tar/reader_test.go b88fa6f22d1ef21c1ceaccf495310678 libgo/go/archive/tar/stat_atim.go f24d0e0a8444fa94e8cf245a1b0655b1 libgo/go/archive/tar/stat_atimespec.go 7009ffb1fa5c28b217902d239c67d9cf libgo/go/archive/tar/stat_unix.go ! 6f481bb0fd26a3a618ba386158160f9d libgo/go/archive/tar/tar_test.go d36839a53022ca7143744431d9d5aa65 libgo/go/archive/tar/testdata/gnu.tar e38b27eaccb4391bdec553a7f3ae6b2f libgo/go/archive/tar/testdata/small.txt c65bd2e50a56a2138bf1716f2fd56fe9 libgo/go/archive/tar/testdata/small2.txt 2e308433b209b3af3be588c55838c217 libgo/go/archive/tar/testdata/star.tar 9a4e79a89eb3490ff21b53303324301f libgo/go/archive/tar/testdata/v7.tar ab1694ea9d7ccb2c70b435188acfa6e9 libgo/go/archive/tar/testdata/writer-big.tar 88712af2a004429d7101fd0c710baa8f libgo/go/archive/tar/testdata/writer.tar ! f0b2ed09291159d424c629aa4538a8fe libgo/go/archive/tar/writer.go ! c914e91fc6a8ef7e157e37e43f6c30cc libgo/go/archive/tar/writer_test.go ! 7bd3adadd69cca5a97a4c4f67636d45c libgo/go/archive/zip/reader.go ! 8d39bd482cd073423eaafe05713e0ab6 libgo/go/archive/zip/reader_test.go ! 776601b0bf0dcf7cd1a5a83209019f6b libgo/go/archive/zip/struct.go 0e5c6061f34579a29cd9e706200e3fc5 libgo/go/archive/zip/testdata/crc32-not-streamed.zip a0dc0660d6847cfdefd1e34811fa3e2a libgo/go/archive/zip/testdata/dd.zip abb58ce61c08e3f2b2498ee654e13589 libgo/go/archive/zip/testdata/go-no-datadesc-sig.zip --- 45480,45508 ---- bc2f6032c98896249eadb56177c7d357 libgo/config/ltsugar.m4 c30cd33c496505f13d9fbdb6970c7c33 libgo/config/ltversion.m4 293853a13b7e218e3a4342cf85fbbf25 libgo/config/lt~obsolete.m4 ! a09c6655ed345b053a016d87a6698f5c libgo/configure ! ad86a5455fc407ae1c3d54d0543e3e81 libgo/configure.ac ! b03fdfd905fb7ca12cbeeb02c14f9a12 libgo/go/archive/tar/common.go ! 49ff3ef2f67610e000a1eb29470f6fc0 libgo/go/archive/tar/reader.go ! 1749e2537de78d29e8bb8b9222d6d45c libgo/go/archive/tar/reader_test.go b88fa6f22d1ef21c1ceaccf495310678 libgo/go/archive/tar/stat_atim.go f24d0e0a8444fa94e8cf245a1b0655b1 libgo/go/archive/tar/stat_atimespec.go 7009ffb1fa5c28b217902d239c67d9cf libgo/go/archive/tar/stat_unix.go ! e7211251fccaa6c66dfa24b02e7329f3 libgo/go/archive/tar/tar_test.go d36839a53022ca7143744431d9d5aa65 libgo/go/archive/tar/testdata/gnu.tar + f578fe90dd8a45ac3618adf6c881211f libgo/go/archive/tar/testdata/pax.tar e38b27eaccb4391bdec553a7f3ae6b2f libgo/go/archive/tar/testdata/small.txt c65bd2e50a56a2138bf1716f2fd56fe9 libgo/go/archive/tar/testdata/small2.txt 2e308433b209b3af3be588c55838c217 libgo/go/archive/tar/testdata/star.tar + 2adf93d4ee327e554d256152b0bafc7e libgo/go/archive/tar/testdata/ustar.tar 9a4e79a89eb3490ff21b53303324301f libgo/go/archive/tar/testdata/v7.tar ab1694ea9d7ccb2c70b435188acfa6e9 libgo/go/archive/tar/testdata/writer-big.tar 88712af2a004429d7101fd0c710baa8f libgo/go/archive/tar/testdata/writer.tar ! 0a5f1a796210eae79d35516252892bdd libgo/go/archive/tar/writer.go ! 3d9853555234afba38708dbeb8b86fc2 libgo/go/archive/tar/writer_test.go ! 861c2135b00956b60db97703594904e9 libgo/go/archive/zip/reader.go ! c6b240da635a58781e265a1b5ae7f0e6 libgo/go/archive/zip/reader_test.go ! 8db124fa0620957ffb30c4e75fca438f libgo/go/archive/zip/struct.go 0e5c6061f34579a29cd9e706200e3fc5 libgo/go/archive/zip/testdata/crc32-not-streamed.zip a0dc0660d6847cfdefd1e34811fa3e2a libgo/go/archive/zip/testdata/dd.zip abb58ce61c08e3f2b2498ee654e13589 libgo/go/archive/zip/testdata/go-no-datadesc-sig.zip *************** fff846d4718fdf270982b47654219800 libgo/ *** 45399,45448 **** 3df2215c7ff8a7a4e892476ca076bec5 libgo/go/archive/zip/testdata/readme.notzip 0961cbf58a849bc5541cf7ca2609ba4e libgo/go/archive/zip/testdata/readme.zip c405e9ec3c7566b1b42e5d52fd916619 libgo/go/archive/zip/testdata/symlink.zip d8df365fbb6fac417a9fbde8585a9270 libgo/go/archive/zip/testdata/test.zip f1dcd13397f7e578380b3fa564156b46 libgo/go/archive/zip/testdata/unix.zip 384be2e5e01c2618a144579f16ba024b libgo/go/archive/zip/testdata/winxp.zip 8ae15e579d181b7b7837c197f02bbd5e libgo/go/archive/zip/testdata/zip64.zip ! de31996b797924a03360ae675651bc11 libgo/go/archive/zip/writer.go 88925052041cbb7eca93f05ecc232bdd libgo/go/archive/zip/writer_test.go 8f474b73f84beb84bcc543a7a630fb06 libgo/go/archive/zip/zip_test.go ! 4d652893b542f90e2fe0f81e17bb298c libgo/go/bufio/bufio.go ! 173a36228caaed31e2d15922e478a9e5 libgo/go/bufio/bufio_test.go ! 24a38a943d5c93316d7d5f7f7d29cd49 libgo/go/builtin/builtin.go ! b139ab230b02114ebc603db8a2cdbe3a libgo/go/bytes/buffer.go ! 57181d53780bf947f5a0f2ed731710e8 libgo/go/bytes/buffer_test.go ! 51b140d7b6451d89504ec85a1e9b5be6 libgo/go/bytes/bytes.go ! 496261feab7f2a385b20d3be6fccc5c0 libgo/go/bytes/bytes_decl.go ! bf9b9de7368fd55d8e97408bf3c78866 libgo/go/bytes/bytes_test.go ! 9b7ac28609bcd31da0973f87647a3d51 libgo/go/bytes/example_test.go ! 412d6cc36b1ce545eb83e0a0fb9a59fd libgo/go/bytes/export_test.go 399c50fbcd12a858418a0c5c0e2a1eae libgo/go/bytes/indexbyte.c 13a94d005858e80aa58c1b5c1c974a60 libgo/go/bytes/reader.go 7a852ffd5b8769b53a9ea2507cdd0307 libgo/go/bytes/reader_test.go 2751bc45c7c671452400b155c492052f libgo/go/compress/bzip2/bit_reader.go 3688e3495515d1cca56076e4c5a684b7 libgo/go/compress/bzip2/bzip2.go 09d3c116c445eb89fc274d66e4af34a4 libgo/go/compress/bzip2/bzip2_test.go ! 915b7decd5e7f6f7e0fea3f553d50ae1 libgo/go/compress/bzip2/huffman.go 15542234791b1acbf25f1fd133ef66d9 libgo/go/compress/bzip2/move_to_front.go b53414c34fff6bd8c6ee2bc33e404517 libgo/go/compress/flate/copy.go ccbc225d42ea3c0f882a8d9eb0ec17ca libgo/go/compress/flate/copy_test.go 9b0bf3a90b8890e49867838307069868 libgo/go/compress/flate/deflate.go ! 74346cec323620fa67f8ed8e0a4f50e8 libgo/go/compress/flate/deflate_test.go 7eb6b756daff8062c36a93365a62c786 libgo/go/compress/flate/fixedhuff.go 42c4bbc6d3784fd378672fd470053a8b libgo/go/compress/flate/flate_test.go b24bb3865aa9d5366675cd00e20ff041 libgo/go/compress/flate/gen.go 726a7ece97856afb66dc171a4b6fef32 libgo/go/compress/flate/huffman_bit_writer.go 8ff1b5b10134c8fefad9121939b2c23b libgo/go/compress/flate/huffman_code.go ! bf8fda0c831e2e621589166ff047403f libgo/go/compress/flate/inflate.go 4b9d925d7c0cd7e4c41f3aa59941118b libgo/go/compress/flate/reader_test.go d39f14ab060c114d2723e2ddb7ed73a2 libgo/go/compress/flate/reverse_bits.go ! ed76ef7a0a4ab40751ef344ae4958203 libgo/go/compress/flate/token.go 1fa41c7f84fa9387bf717b45041c299e libgo/go/compress/flate/writer_test.go ! 6cefc2c5e6b754afedafc0aecce89b63 libgo/go/compress/gzip/gunzip.go 52eee4f473e4878ee74dd0c5fa07993f libgo/go/compress/gzip/gunzip_test.go ! 0cb6ea6500736440804f3b33af5bd294 libgo/go/compress/gzip/gzip.go ! 56a4b69727a1ca90b329de5614ed7544 libgo/go/compress/gzip/gzip_test.go ! 9fd61579f096f79b727f11bc544d62f8 libgo/go/compress/lzw/reader.go ca7db5ee4265f0e891389f4ecd11b6d6 libgo/go/compress/lzw/reader_test.go d3cd18444a4e382df823575aecb95917 libgo/go/compress/lzw/writer.go 0ae4167fa8a55812c248d038baa8f36f libgo/go/compress/lzw/writer_test.go --- 45511,45566 ---- 3df2215c7ff8a7a4e892476ca076bec5 libgo/go/archive/zip/testdata/readme.notzip 0961cbf58a849bc5541cf7ca2609ba4e libgo/go/archive/zip/testdata/readme.zip c405e9ec3c7566b1b42e5d52fd916619 libgo/go/archive/zip/testdata/symlink.zip + f919ed2101b4fece8facfd3ccf238f95 libgo/go/archive/zip/testdata/test-trailing-junk.zip d8df365fbb6fac417a9fbde8585a9270 libgo/go/archive/zip/testdata/test.zip f1dcd13397f7e578380b3fa564156b46 libgo/go/archive/zip/testdata/unix.zip 384be2e5e01c2618a144579f16ba024b libgo/go/archive/zip/testdata/winxp.zip 8ae15e579d181b7b7837c197f02bbd5e libgo/go/archive/zip/testdata/zip64.zip ! a3f70a363ba8f5c86eb97afa40922f9b libgo/go/archive/zip/writer.go 88925052041cbb7eca93f05ecc232bdd libgo/go/archive/zip/writer_test.go 8f474b73f84beb84bcc543a7a630fb06 libgo/go/archive/zip/zip_test.go ! 5a4c97e48f27a5403c0ac37abb6f2c3c libgo/go/bufio/bufio.go ! f8bcf2fe9a4710f0619f120bee54ab24 libgo/go/bufio/bufio_test.go ! faf4eae455e733ff5c6d3ed43b15d352 libgo/go/bufio/example_test.go ! 57dbb550ccddbac1f19975154c727f6c libgo/go/bufio/export_test.go ! 70eeeeaa94f73d031b56806b8b722bcd libgo/go/bufio/scan.go ! eccfb6ab5502a50b8d293c2dc6dd1121 libgo/go/bufio/scan_test.go ! f53e3025a78767f07c8d0de1aca96cbe libgo/go/builtin/builtin.go ! bae2a3a34fb5c359c9f843aac557b255 libgo/go/bytes/buffer.go ! 0b5dc7833f606dea06dc645f4604bee5 libgo/go/bytes/buffer_test.go ! 2805c3d066cda6f1df0b4d4fb7f552cd libgo/go/bytes/bytes.go ! bf72fbe096bc2240eea88dc6c061c7be libgo/go/bytes/bytes_decl.go ! 74657d8856fc994e29b7951113876548 libgo/go/bytes/bytes_test.go ! 55675fcb9d01374cc117b8f723ecaf12 libgo/go/bytes/equal_test.go ! e05b6feb45dd2ab9faaae9113f64a8da libgo/go/bytes/example_test.go ! 3cd3fec5806355606b10af163e824cfc libgo/go/bytes/export_test.go 399c50fbcd12a858418a0c5c0e2a1eae libgo/go/bytes/indexbyte.c 13a94d005858e80aa58c1b5c1c974a60 libgo/go/bytes/reader.go 7a852ffd5b8769b53a9ea2507cdd0307 libgo/go/bytes/reader_test.go 2751bc45c7c671452400b155c492052f libgo/go/compress/bzip2/bit_reader.go 3688e3495515d1cca56076e4c5a684b7 libgo/go/compress/bzip2/bzip2.go 09d3c116c445eb89fc274d66e4af34a4 libgo/go/compress/bzip2/bzip2_test.go ! 0e25a00273b6948dc996d801c127d32b libgo/go/compress/bzip2/huffman.go 15542234791b1acbf25f1fd133ef66d9 libgo/go/compress/bzip2/move_to_front.go b53414c34fff6bd8c6ee2bc33e404517 libgo/go/compress/flate/copy.go ccbc225d42ea3c0f882a8d9eb0ec17ca libgo/go/compress/flate/copy_test.go 9b0bf3a90b8890e49867838307069868 libgo/go/compress/flate/deflate.go ! 39b22219fe0e5bf359ee16aef7db7138 libgo/go/compress/flate/deflate_test.go 7eb6b756daff8062c36a93365a62c786 libgo/go/compress/flate/fixedhuff.go 42c4bbc6d3784fd378672fd470053a8b libgo/go/compress/flate/flate_test.go b24bb3865aa9d5366675cd00e20ff041 libgo/go/compress/flate/gen.go 726a7ece97856afb66dc171a4b6fef32 libgo/go/compress/flate/huffman_bit_writer.go 8ff1b5b10134c8fefad9121939b2c23b libgo/go/compress/flate/huffman_code.go ! 57b6f43aa3051221fe9c9fed1fa7f44d libgo/go/compress/flate/inflate.go 4b9d925d7c0cd7e4c41f3aa59941118b libgo/go/compress/flate/reader_test.go d39f14ab060c114d2723e2ddb7ed73a2 libgo/go/compress/flate/reverse_bits.go ! db6eb547379d2108e7a4138a98d8296a libgo/go/compress/flate/token.go 1fa41c7f84fa9387bf717b45041c299e libgo/go/compress/flate/writer_test.go ! 8bc45680e177970aed7eb79ca5833797 libgo/go/compress/gzip/gunzip.go 52eee4f473e4878ee74dd0c5fa07993f libgo/go/compress/gzip/gunzip_test.go ! 01721bda45d224425deea6e3bcfe75ae libgo/go/compress/gzip/gzip.go ! fa03bd25d29fe134c747c1c99dc2c8cd libgo/go/compress/gzip/gzip_test.go ! 889a207bea1237ba5cd026e93dbdc50b libgo/go/compress/lzw/reader.go ca7db5ee4265f0e891389f4ecd11b6d6 libgo/go/compress/lzw/reader_test.go d3cd18444a4e382df823575aecb95917 libgo/go/compress/lzw/writer.go 0ae4167fa8a55812c248d038baa8f36f libgo/go/compress/lzw/writer_test.go *************** e654f83f0131cd51b41eebac2949f005 libgo/ *** 45453,45461 **** 235d50874cd6203eff2007321a50e2b7 libgo/go/compress/zlib/reader_test.go db2f5183dd51c9a690226873d14363d5 libgo/go/compress/zlib/writer.go 1e691b82b3a7dc5251ef72fd2eb3a647 libgo/go/compress/zlib/writer_test.go ! 6b5d99a9358f7fc2bbfb92fb6e0fca10 libgo/go/container/heap/example_test.go ! 04e60207d2e7babdb9fa78819775e650 libgo/go/container/heap/heap.go ! e3693ef2bb1ff44fd99d4aea3abe8fbf libgo/go/container/heap/heap_test.go d928b9f320ec93b92776e02fd435774e libgo/go/container/list/list.go 74b536964f548bc55e22973c774095d0 libgo/go/container/list/list_test.go 04f808f97d2480ea07eb40b3a54bf51b libgo/go/container/ring/ring.go --- 45571,45578 ---- 235d50874cd6203eff2007321a50e2b7 libgo/go/compress/zlib/reader_test.go db2f5183dd51c9a690226873d14363d5 libgo/go/compress/zlib/writer.go 1e691b82b3a7dc5251ef72fd2eb3a647 libgo/go/compress/zlib/writer_test.go ! e9f0ddb9ac9dc14cf19637df479935a3 libgo/go/container/heap/heap.go ! 146c5e9013fac7775a644548a8a2c67d libgo/go/container/heap/heap_test.go d928b9f320ec93b92776e02fd435774e libgo/go/container/list/list.go 74b536964f548bc55e22973c774095d0 libgo/go/container/list/list_test.go 04f808f97d2480ea07eb40b3a54bf51b libgo/go/container/ring/ring.go *************** bf64bc46062091ee1effe64592456eb3 libgo/ *** 45466,45480 **** bee18c89bd6aa3180730ba72967df300 libgo/go/crypto/aes/cipher_asm.go fa8ab5fd512c6cec979e31c6654f1740 libgo/go/crypto/aes/cipher_generic.go fd4d79deafaf1daf19c34a5ecc330461 libgo/go/crypto/aes/const.go ! df5e37e0f7a103cf0e9cd82df2961ca1 libgo/go/crypto/cipher/cbc.go 9bd5f5f1ced9eaf4fe19b85f1ef0a9da libgo/go/crypto/cipher/cbc_aes_test.go 32e53b98b64e4a97082def66f3e2f5dd libgo/go/crypto/cipher/cfb.go cce3dc4be5b5b668999792b39693af08 libgo/go/crypto/cipher/cfb_test.go c82e28f91efcb812d5e8c183c9fb6332 libgo/go/crypto/cipher/cipher.go 81d8d687d1fabfecb21a90f9182cfe3e libgo/go/crypto/cipher/common_test.go 093a7fb92c3b0c10f1b15538941ab62f libgo/go/crypto/cipher/ctr.go b271cef78c34fc4ea2859b963aff6149 libgo/go/crypto/cipher/ctr_aes_test.go ! bdbd36253c75c65e5b8997ed5207226f libgo/go/crypto/cipher/example_test.go a492c4ae6c6a72592a6ebf65e1a7f0b8 libgo/go/crypto/cipher/io.go 3f4d384189e20a4457e95346bf8e6600 libgo/go/crypto/cipher/ofb.go 4d22c5a31ed3d5a3827c3c74a203d991 libgo/go/crypto/cipher/ofb_test.go --- 45583,45598 ---- bee18c89bd6aa3180730ba72967df300 libgo/go/crypto/aes/cipher_asm.go fa8ab5fd512c6cec979e31c6654f1740 libgo/go/crypto/aes/cipher_generic.go fd4d79deafaf1daf19c34a5ecc330461 libgo/go/crypto/aes/const.go ! db7df6be72e9f6092261b052ca7f032e libgo/go/crypto/cipher/cbc.go 9bd5f5f1ced9eaf4fe19b85f1ef0a9da libgo/go/crypto/cipher/cbc_aes_test.go 32e53b98b64e4a97082def66f3e2f5dd libgo/go/crypto/cipher/cfb.go cce3dc4be5b5b668999792b39693af08 libgo/go/crypto/cipher/cfb_test.go c82e28f91efcb812d5e8c183c9fb6332 libgo/go/crypto/cipher/cipher.go + 109448d23199d305bb522dd90c805f9c libgo/go/crypto/cipher/cipher_test.go 81d8d687d1fabfecb21a90f9182cfe3e libgo/go/crypto/cipher/common_test.go 093a7fb92c3b0c10f1b15538941ab62f libgo/go/crypto/cipher/ctr.go b271cef78c34fc4ea2859b963aff6149 libgo/go/crypto/cipher/ctr_aes_test.go ! f89ba01985a48286a8b9ae697bf400d6 libgo/go/crypto/cipher/example_test.go a492c4ae6c6a72592a6ebf65e1a7f0b8 libgo/go/crypto/cipher/io.go 3f4d384189e20a4457e95346bf8e6600 libgo/go/crypto/cipher/ofb.go 4d22c5a31ed3d5a3827c3c74a203d991 libgo/go/crypto/cipher/ofb_test.go *************** a492c4ae6c6a72592a6ebf65e1a7f0b8 libgo/ *** 45483,45491 **** 39423b1d39539aecac6d7fa8e83a8663 libgo/go/crypto/des/cipher.go 13fcc9e8fe8cf78d1ba089361c58a142 libgo/go/crypto/des/const.go 5eee02aa8d82428adb7928a7eabf8a65 libgo/go/crypto/des/des_test.go ! 20091f20fe67c54556dc03db130fed56 libgo/go/crypto/dsa/dsa.go ! ffeccc09da06d78737c559dd71cd8367 libgo/go/crypto/dsa/dsa_test.go ! fc0527e4a5f83e3aff079c3e70f22f1b libgo/go/crypto/ecdsa/ecdsa.go bdaec212bc8739a13fbf67792f485e19 libgo/go/crypto/ecdsa/ecdsa_test.go 66d590a760ae86eb1a4d3c26107701d3 libgo/go/crypto/elliptic/elliptic.go 721b49034417040477a548d96308c61e libgo/go/crypto/elliptic/elliptic_test.go --- 45601,45609 ---- 39423b1d39539aecac6d7fa8e83a8663 libgo/go/crypto/des/cipher.go 13fcc9e8fe8cf78d1ba089361c58a142 libgo/go/crypto/des/const.go 5eee02aa8d82428adb7928a7eabf8a65 libgo/go/crypto/des/des_test.go ! e47411438be384c30d83eb67822f9177 libgo/go/crypto/dsa/dsa.go ! 907a4b2c6ace44ae150d8d9b636f2939 libgo/go/crypto/dsa/dsa_test.go ! 34f1c66a1d1c7cfda0c243b2465f3e82 libgo/go/crypto/ecdsa/ecdsa.go bdaec212bc8739a13fbf67792f485e19 libgo/go/crypto/ecdsa/ecdsa_test.go 66d590a760ae86eb1a4d3c26107701d3 libgo/go/crypto/elliptic/elliptic.go 721b49034417040477a548d96308c61e libgo/go/crypto/elliptic/elliptic_test.go *************** d502498baefaaf1a4246dd93f1e64d3a libgo/ *** 45493,45516 **** 6cd56b4bae7d15ebf6b1432983818b08 libgo/go/crypto/elliptic/p224_test.go 5c4474e0e50fed54e290a5a4ec55c93b libgo/go/crypto/hmac/hmac.go 8cf480a9ca64de509c6bb77196809065 libgo/go/crypto/hmac/hmac_test.go ! 1ef80e2f7f6646693b5ac91eef3b1ab1 libgo/go/crypto/md5/gen.go a41f92e2494efd9b33e843c1831d8429 libgo/go/crypto/md5/md5.go ! 5c89789e726a7b67a74887247ad51016 libgo/go/crypto/md5/md5_test.go ! 7b499aef10a4b2533079a8dd11d5a028 libgo/go/crypto/md5/md5block.go 1fe49cba29b18fb4add38ebd37e0d58a libgo/go/crypto/rand/rand.go 27122dad4c482d98577a690f144f5138 libgo/go/crypto/rand/rand_test.go a5e73a59f76a4d067e20c8f575d57c32 libgo/go/crypto/rand/rand_unix.go 44251439cd63fdaa9005e8670c7d3fd1 libgo/go/crypto/rand/rand_windows.go ! 3467703bff2b4b96b7966b1acbb40e45 libgo/go/crypto/rand/util.go ! 7ebf4d13b32be6d8b4bf51972ce8a01a libgo/go/crypto/rc4/rc4.go ! 15ce38569d44dafd3afa0572d11c629e libgo/go/crypto/rc4/rc4_test.go b65a73671946989eec985a725bae2577 libgo/go/crypto/rsa/pkcs1v15.go ccb0081cbdb0b4c7ef4399d9b740fe0e libgo/go/crypto/rsa/pkcs1v15_test.go ! 63c454b91fd2f432715a2e197cd22dad libgo/go/crypto/rsa/rsa.go ! 2b6cc3a46c69dc3a651d9ff3680dc88c libgo/go/crypto/rsa/rsa_test.go 122fe767fd4be71ffa0944f94df71c14 libgo/go/crypto/sha1/sha1.go ! c10ae945b288b3f60f27d104dfb2e244 libgo/go/crypto/sha1/sha1_test.go ! ed4a25df97983bf13a131e3cd3d85d83 libgo/go/crypto/sha1/sha1block.go 27814d746c081304e6031a36469a9c47 libgo/go/crypto/sha256/sha256.go e082c164bde26468b2bafd71bfc5721b libgo/go/crypto/sha256/sha256_test.go fe5a6d6f47620494029273e8d911b533 libgo/go/crypto/sha256/sha256block.go --- 45611,45638 ---- 6cd56b4bae7d15ebf6b1432983818b08 libgo/go/crypto/elliptic/p224_test.go 5c4474e0e50fed54e290a5a4ec55c93b libgo/go/crypto/hmac/hmac.go 8cf480a9ca64de509c6bb77196809065 libgo/go/crypto/hmac/hmac_test.go ! c6fc4d98abde29266f32f60f3c4480d9 libgo/go/crypto/md5/gen.go a41f92e2494efd9b33e843c1831d8429 libgo/go/crypto/md5/md5.go ! a2d8d00e7a0680198da7cc0f9db19179 libgo/go/crypto/md5/md5_test.go ! ea059ae5e3f8fc2e6debad90dc681664 libgo/go/crypto/md5/md5block.go ! a3dd1958c1f010bc491f2d9aefd08e29 libgo/go/crypto/md5/md5block_decl.go 1fe49cba29b18fb4add38ebd37e0d58a libgo/go/crypto/rand/rand.go 27122dad4c482d98577a690f144f5138 libgo/go/crypto/rand/rand_test.go a5e73a59f76a4d067e20c8f575d57c32 libgo/go/crypto/rand/rand_unix.go 44251439cd63fdaa9005e8670c7d3fd1 libgo/go/crypto/rand/rand_windows.go ! 0ecdff43f6287e19543cbebceb744a56 libgo/go/crypto/rand/util.go ! 56688237b39a2e82dabeacd9760762ce libgo/go/crypto/rc4/rc4.go ! 3e5796b06e95da28b5950f4fcf1b8d01 libgo/go/crypto/rc4/rc4_asm.go ! d02df585b1f5b833a49abb2812737c02 libgo/go/crypto/rc4/rc4_ref.go ! 95894606aaa16e8d3f48555c81538733 libgo/go/crypto/rc4/rc4_test.go b65a73671946989eec985a725bae2577 libgo/go/crypto/rsa/pkcs1v15.go ccb0081cbdb0b4c7ef4399d9b740fe0e libgo/go/crypto/rsa/pkcs1v15_test.go ! 477e2acbc2b25541ec803bf079c1fdbb libgo/go/crypto/rsa/rsa.go ! 3f80230fcdd0e85fa2e1d8eba829999e libgo/go/crypto/rsa/rsa_test.go 122fe767fd4be71ffa0944f94df71c14 libgo/go/crypto/sha1/sha1.go ! c3d52deaef0e37bc67696f1b6dcad3ac libgo/go/crypto/sha1/sha1_test.go ! ffc6d79026a197ed12e3e5ee3749494c libgo/go/crypto/sha1/sha1block.go ! 92650e90d7a28a33e86249b243733aed libgo/go/crypto/sha1/sha1block_decl.go 27814d746c081304e6031a36469a9c47 libgo/go/crypto/sha256/sha256.go e082c164bde26468b2bafd71bfc5721b libgo/go/crypto/sha256/sha256_test.go fe5a6d6f47620494029273e8d911b533 libgo/go/crypto/sha256/sha256block.go *************** ff0fd7b39d29af0bd5560bf305ab5179 libgo/ *** 45521,45535 **** 33cff71f8c91be72bde01e3a50eb68cc libgo/go/crypto/subtle/constant_time_test.go 7afe7dd08272e10245d65cf6662d2669 libgo/go/crypto/tls/alert.go 1c63232cb1b9fb6d4d0b85f9d3832781 libgo/go/crypto/tls/cipher_suites.go ! 51a45d8596946bb412d05c9f05a078d6 libgo/go/crypto/tls/common.go 0eccacbf21fb168309a77cb44a5e0f05 libgo/go/crypto/tls/conn.go eac0b0c03aadac53ec75d685be117e99 libgo/go/crypto/tls/conn_test.go ! 6a82e8a7fedf7996e8ce4240e9973804 libgo/go/crypto/tls/generate_cert.go 601fd3fbbbb4cfcfce6e64472a4ded2d libgo/go/crypto/tls/handshake_client.go 23423b0514a6d4da3cea2a0f69a83aa2 libgo/go/crypto/tls/handshake_client_test.go d870f4e66ce542d5ebfcd9a531ad4f6e libgo/go/crypto/tls/handshake_messages.go 2c9dbe47aad8da859404c5286779aeb6 libgo/go/crypto/tls/handshake_messages_test.go ! e4541bc303304eea18a9febdece63152 libgo/go/crypto/tls/handshake_server.go 782b0d167ee8754f349cf60dba2bb581 libgo/go/crypto/tls/handshake_server_test.go 36be24bd4d4635177adc2e675945e131 libgo/go/crypto/tls/key_agreement.go c580ff6035e0dbfdbbd571862a2f8e28 libgo/go/crypto/tls/prf.go --- 45643,45657 ---- 33cff71f8c91be72bde01e3a50eb68cc libgo/go/crypto/subtle/constant_time_test.go 7afe7dd08272e10245d65cf6662d2669 libgo/go/crypto/tls/alert.go 1c63232cb1b9fb6d4d0b85f9d3832781 libgo/go/crypto/tls/cipher_suites.go ! 0c83a44b094bd1c702d1f39ab82f3759 libgo/go/crypto/tls/common.go 0eccacbf21fb168309a77cb44a5e0f05 libgo/go/crypto/tls/conn.go eac0b0c03aadac53ec75d685be117e99 libgo/go/crypto/tls/conn_test.go ! 7348a9e4ab756ef9936cb3c0f943539a libgo/go/crypto/tls/generate_cert.go 601fd3fbbbb4cfcfce6e64472a4ded2d libgo/go/crypto/tls/handshake_client.go 23423b0514a6d4da3cea2a0f69a83aa2 libgo/go/crypto/tls/handshake_client_test.go d870f4e66ce542d5ebfcd9a531ad4f6e libgo/go/crypto/tls/handshake_messages.go 2c9dbe47aad8da859404c5286779aeb6 libgo/go/crypto/tls/handshake_messages_test.go ! ab4a0626ad490a58c56a160996d3f9dd libgo/go/crypto/tls/handshake_server.go 782b0d167ee8754f349cf60dba2bb581 libgo/go/crypto/tls/handshake_server_test.go 36be24bd4d4635177adc2e675945e131 libgo/go/crypto/tls/key_agreement.go c580ff6035e0dbfdbbd571862a2f8e28 libgo/go/crypto/tls/prf.go *************** aeda74932519e2cb7f35469438030cec libgo/ *** 45541,45547 **** f9263bf6219068386c5a11c8288479a1 libgo/go/crypto/x509/pem_decrypt.go 7bb7b9f998cc397c91f88bcc173eff9b libgo/go/crypto/x509/pem_decrypt_test.go 720484a32f5352345c7a7786f171a83e libgo/go/crypto/x509/pkcs1.go ! 4e572a44bede52b1accfc41fdbf7ba49 libgo/go/crypto/x509/pkcs8.go c296b2c509a2a5e0322c789ed2dc5807 libgo/go/crypto/x509/pkcs8_test.go 3ea78cd097aaf3461bc234957ce965c0 libgo/go/crypto/x509/pkix/pkix.go e62e93c0e1b83cd45b5518bcf24e00ab libgo/go/crypto/x509/root.go --- 45663,45669 ---- f9263bf6219068386c5a11c8288479a1 libgo/go/crypto/x509/pem_decrypt.go 7bb7b9f998cc397c91f88bcc173eff9b libgo/go/crypto/x509/pem_decrypt_test.go 720484a32f5352345c7a7786f171a83e libgo/go/crypto/x509/pkcs1.go ! c5427ce435b4aa6a3b43726a48f0ebfa libgo/go/crypto/x509/pkcs8.go c296b2c509a2a5e0322c789ed2dc5807 libgo/go/crypto/x509/pkcs8_test.go 3ea78cd097aaf3461bc234957ce965c0 libgo/go/crypto/x509/pkix/pkix.go e62e93c0e1b83cd45b5518bcf24e00ab libgo/go/crypto/x509/root.go *************** b60caceda57e127b6b7e209d832684a7 libgo/ *** 45552,45584 **** 72a9dfe18d95f1391c158e0d154cd797 libgo/go/crypto/x509/root_windows.go e3712bb96a6aa59197593fe405e76293 libgo/go/crypto/x509/sec1.go 33cfc2e8f0113e9a63361ce8355f76f5 libgo/go/crypto/x509/sec1_test.go ! bc1493cb2dcc62a420b9fb183b9be9c4 libgo/go/crypto/x509/verify.go ! ec07fd64248a53599dad51caaf151e03 libgo/go/crypto/x509/verify_test.go ! bf9ab6acd8e58548563981783a9491f7 libgo/go/crypto/x509/x509.go ! ff45e4b00994fc3110c62393df64d9ed libgo/go/crypto/x509/x509_test.go ! e94bb676a4a707369dabc7dd16ba1d22 libgo/go/database/sql/convert.go ! 98bda4a511de09e7ef809ea5174b7eb0 libgo/go/database/sql/convert_test.go ! a22f47e35c12b47880641dd8e335311b libgo/go/database/sql/driver/driver.go 262788b1495dc9451ebbacea15200da5 libgo/go/database/sql/driver/types.go 7cf2017c63b7da8c06b022399b791b28 libgo/go/database/sql/driver/types_test.go ! fabbeda921cfe3bcadacbfa74a61ab4b libgo/go/database/sql/fakedb_test.go ! eac68257ae2ea0fdab71b5f3de79b52c libgo/go/database/sql/sql.go ! a2960d7b03ad1629feecbdd26243ed28 libgo/go/database/sql/sql_test.go ! 39eb99c880544bc9c823bbb72204c34a libgo/go/debug/dwarf/buf.go ac414fe376fda5cad9f02ecbe0673423 libgo/go/debug/dwarf/const.go ! 95333e2c037c29b76d8cea16fcff77fa libgo/go/debug/dwarf/entry.go ! 46639a7c98ef232bfdd9c803b8a39cfb libgo/go/debug/dwarf/line.go 475d94d9fd82648c0d12c7b1b7a9db3e libgo/go/debug/dwarf/line_test.go f0da958563f37dbbc84ce9708d80a6c6 libgo/go/debug/dwarf/open.go 201d1bb1c16362965c559ea8c059a351 libgo/go/debug/dwarf/testdata/typedef.c 8c7e4f38f77d12641dd655ac2bf2b1ce libgo/go/debug/dwarf/testdata/typedef.elf 64631e6b3ed893db85436dc8c1544486 libgo/go/debug/dwarf/testdata/typedef.macho ! 7ff912cb5f8a0dd536a9a0662358817a libgo/go/debug/dwarf/type.go 4dd735786604fdada06b9d4988c55ea2 libgo/go/debug/dwarf/type_test.go ! 7d8008af6b4040ce7591de60a234d3ea libgo/go/debug/dwarf/unit.go 9f6d810f4f8d38f86b29e54e2b068ab8 libgo/go/debug/elf/elf.go 2ce9136cffb642d4b1249abea9fe4a64 libgo/go/debug/elf/elf_test.go ! 55630c92083bc4cc1fe0682ebd158d1e libgo/go/debug/elf/file.go 22be0582d9f47c29219484497e598979 libgo/go/debug/elf/file_test.go 6bc826fa60d18740a7844fae136536a3 libgo/go/debug/elf/testdata/gcc-386-freebsd-exec 28249f6bb3a2d1f8223ddadf73f9b059 libgo/go/debug/elf/testdata/gcc-amd64-linux-exec --- 45674,45706 ---- 72a9dfe18d95f1391c158e0d154cd797 libgo/go/crypto/x509/root_windows.go e3712bb96a6aa59197593fe405e76293 libgo/go/crypto/x509/sec1.go 33cfc2e8f0113e9a63361ce8355f76f5 libgo/go/crypto/x509/sec1_test.go ! 155cc07772511a33d5ea8366482607af libgo/go/crypto/x509/verify.go ! c06504d1cee46e140d33da14c61abef2 libgo/go/crypto/x509/verify_test.go ! 4d1bdb40302052f978085eac1b646594 libgo/go/crypto/x509/x509.go ! 2f343715eab5b785b1f3c58e0da6ba9f libgo/go/crypto/x509/x509_test.go ! 0cbf8295201446f67098f529c0243ec0 libgo/go/database/sql/convert.go ! 728a741fed9fa37bda599a755ff359e4 libgo/go/database/sql/convert_test.go ! 3385d2219832899c02a7a1f1a6229402 libgo/go/database/sql/driver/driver.go 262788b1495dc9451ebbacea15200da5 libgo/go/database/sql/driver/types.go 7cf2017c63b7da8c06b022399b791b28 libgo/go/database/sql/driver/types_test.go ! c9c489bf9803301249173825b5502887 libgo/go/database/sql/fakedb_test.go ! 6a82c2ea1dc57719e67c2a8c7a9dd902 libgo/go/database/sql/sql.go ! 13d350b831728a34e279339adaf14cf4 libgo/go/database/sql/sql_test.go ! 475fe5279c2c2bc5c069018ef45d33f0 libgo/go/debug/dwarf/buf.go ac414fe376fda5cad9f02ecbe0673423 libgo/go/debug/dwarf/const.go ! 3a0972af8429d9bd1d78e3ce539918ba libgo/go/debug/dwarf/entry.go ! af7b699e30fc05dc19be141babd4d8af libgo/go/debug/dwarf/line.go 475d94d9fd82648c0d12c7b1b7a9db3e libgo/go/debug/dwarf/line_test.go f0da958563f37dbbc84ce9708d80a6c6 libgo/go/debug/dwarf/open.go 201d1bb1c16362965c559ea8c059a351 libgo/go/debug/dwarf/testdata/typedef.c 8c7e4f38f77d12641dd655ac2bf2b1ce libgo/go/debug/dwarf/testdata/typedef.elf 64631e6b3ed893db85436dc8c1544486 libgo/go/debug/dwarf/testdata/typedef.macho ! 97d9e4c2b1cc338429c102ef830f588d libgo/go/debug/dwarf/type.go 4dd735786604fdada06b9d4988c55ea2 libgo/go/debug/dwarf/type_test.go ! fd19a135314633f873bb441c3ee45b59 libgo/go/debug/dwarf/unit.go 9f6d810f4f8d38f86b29e54e2b068ab8 libgo/go/debug/elf/elf.go 2ce9136cffb642d4b1249abea9fe4a64 libgo/go/debug/elf/elf_test.go ! 3e1dc3e3ab5fdf1039ce51181dc8754e libgo/go/debug/elf/file.go 22be0582d9f47c29219484497e598979 libgo/go/debug/elf/file_test.go 6bc826fa60d18740a7844fae136536a3 libgo/go/debug/elf/testdata/gcc-386-freebsd-exec 28249f6bb3a2d1f8223ddadf73f9b059 libgo/go/debug/elf/testdata/gcc-amd64-linux-exec *************** f549e93bb4abecfa2f405787ace90ac7 libgo/ *** 45591,45598 **** 0c042c48ee46b12d9e396c15d9f5998e libgo/go/debug/gosym/pclinetest.s 543b546fe3c0da4023b57f1238febe79 libgo/go/debug/gosym/pclntab.go 7a167a75beb928f5e270d4a5098e284c libgo/go/debug/gosym/pclntab_test.go ! 66834ea2bac2e5c42db5aa0990de2ea3 libgo/go/debug/gosym/symtab.go ! 52a54b43a8ce3e13d000a85f21c47e40 libgo/go/debug/macho/file.go 08d223ff722230858f1e9f1d0e5d5125 libgo/go/debug/macho/file_test.go 88e7499c19914bc99617779268273341 libgo/go/debug/macho/macho.go cf6fb2d5a91704e510e0ddb613f19e94 libgo/go/debug/macho/testdata/gcc-386-darwin-exec --- 45713,45720 ---- 0c042c48ee46b12d9e396c15d9f5998e libgo/go/debug/gosym/pclinetest.s 543b546fe3c0da4023b57f1238febe79 libgo/go/debug/gosym/pclntab.go 7a167a75beb928f5e270d4a5098e284c libgo/go/debug/gosym/pclntab_test.go ! aa5b2e12ac3784a1f1a9136f96e17ccb libgo/go/debug/gosym/symtab.go ! 5fd3256aafa472deca2079b82bfaf2a1 libgo/go/debug/macho/file.go 08d223ff722230858f1e9f1d0e5d5125 libgo/go/debug/macho/file_test.go 88e7499c19914bc99617779268273341 libgo/go/debug/macho/macho.go cf6fb2d5a91704e510e0ddb613f19e94 libgo/go/debug/macho/testdata/gcc-386-darwin-exec *************** fdcfbe188ea9dce308cdb6c6c9649c71 libgo/ *** 45605,45632 **** e88b744b2c8799bfed6f3a8b13f20c44 libgo/go/debug/pe/testdata/gcc-386-mingw-exec 2a22cae57fa8c533424786def5e67393 libgo/go/debug/pe/testdata/gcc-386-mingw-obj 16ac886f4f5d825a30306e935bbeb5a4 libgo/go/debug/pe/testdata/hello.c ! 51e6157aa6d4679f95608e23a2937b79 libgo/go/encoding/ascii85/ascii85.go ebd0c280429f146eda833c38f16acadb libgo/go/encoding/ascii85/ascii85_test.go d177860e88689afce24e5db49d5f3647 libgo/go/encoding/asn1/asn1.go aaa21320689b41cc503d8fd6466734b6 libgo/go/encoding/asn1/asn1_test.go 9ea3dc8623024eef02de3b8fae563d04 libgo/go/encoding/asn1/common.go ! cd2a718d740acc787c33adfb36e8950a libgo/go/encoding/asn1/marshal.go 16043dc7aba6dfc6038cfa2ddbed9413 libgo/go/encoding/asn1/marshal_test.go ! 288045b31f54ca575f3470ef71678b66 libgo/go/encoding/base32/base32.go ! 614b33f22d34e29650bd06c98052b6a1 libgo/go/encoding/base32/base32_test.go ! f4afc6106130f6b37f2d53f999d9a764 libgo/go/encoding/base64/base64.go ! be44960e69900d8d115fc12ec4565747 libgo/go/encoding/base64/base64_test.go ! 4dcd65433d89e4ffaacc53efb42ba7c0 libgo/go/encoding/binary/binary.go ! f601428df63ed2ebdd351fd4787773f7 libgo/go/encoding/binary/binary_test.go ! f55e87dcdee4d9b21272bb77ca9a6bcd libgo/go/encoding/binary/varint.go b9519cf764acd171a8e0b72cefd45b34 libgo/go/encoding/binary/varint_test.go ! b7683df6b42a58a83195ec03cdf28ac3 libgo/go/encoding/csv/reader.go 7efcea3dcc04052f919fecb64ab30167 libgo/go/encoding/csv/reader_test.go 40a16e17217560b70e3594d3ec13ecbd libgo/go/encoding/csv/writer.go 6cb686d65f3c14d9cee82278dc1892b1 libgo/go/encoding/csv/writer_test.go ! 8c3476e18850f6073d0c8ebeecc01a8e libgo/go/encoding/gob/codec_test.go 11b5516ce187140dee82b6739d376625 libgo/go/encoding/gob/debug.go ! 58d439cd4cc5231c128efc702c065efa libgo/go/encoding/gob/decode.go 968adc91f33adc72c88a3cff78b3759d libgo/go/encoding/gob/decoder.go e7e6002d017f13fd90ad75ba695baeec libgo/go/encoding/gob/doc.go 5a6d15243feedb1eca701318de31977a libgo/go/encoding/gob/dump.go --- 45727,45754 ---- e88b744b2c8799bfed6f3a8b13f20c44 libgo/go/debug/pe/testdata/gcc-386-mingw-exec 2a22cae57fa8c533424786def5e67393 libgo/go/debug/pe/testdata/gcc-386-mingw-obj 16ac886f4f5d825a30306e935bbeb5a4 libgo/go/debug/pe/testdata/hello.c ! 1852b449590a9f8afd9ba5ab5aa46e5f libgo/go/encoding/ascii85/ascii85.go ebd0c280429f146eda833c38f16acadb libgo/go/encoding/ascii85/ascii85_test.go d177860e88689afce24e5db49d5f3647 libgo/go/encoding/asn1/asn1.go aaa21320689b41cc503d8fd6466734b6 libgo/go/encoding/asn1/asn1_test.go 9ea3dc8623024eef02de3b8fae563d04 libgo/go/encoding/asn1/common.go ! 4e9fc5673ff4b44ed3c3e62b7b8ef3cf libgo/go/encoding/asn1/marshal.go 16043dc7aba6dfc6038cfa2ddbed9413 libgo/go/encoding/asn1/marshal_test.go ! 6a1646b5afdb751a005ae14ee2994096 libgo/go/encoding/base32/base32.go ! cf18d85068e0077e74714d31e9d21cb7 libgo/go/encoding/base32/base32_test.go ! 24d04510ee0a09ede7d2584591569dec libgo/go/encoding/base64/base64.go ! 650c7746b8be6a74a34c14afe88700c5 libgo/go/encoding/base64/base64_test.go ! 7d0c6851238e000585fa29a6ddb48e27 libgo/go/encoding/binary/binary.go ! 0e2f8220e27e3769f1aeae58f826816e libgo/go/encoding/binary/binary_test.go ! 71169abd384cc4d3d1fbc2ac6ffa1ac7 libgo/go/encoding/binary/varint.go b9519cf764acd171a8e0b72cefd45b34 libgo/go/encoding/binary/varint_test.go ! 511e93bfd8de8e0df5dd46fde0664717 libgo/go/encoding/csv/reader.go 7efcea3dcc04052f919fecb64ab30167 libgo/go/encoding/csv/reader_test.go 40a16e17217560b70e3594d3ec13ecbd libgo/go/encoding/csv/writer.go 6cb686d65f3c14d9cee82278dc1892b1 libgo/go/encoding/csv/writer_test.go ! e16e34f60d737296db677d6e1cc33f2c libgo/go/encoding/gob/codec_test.go 11b5516ce187140dee82b6739d376625 libgo/go/encoding/gob/debug.go ! be9495b60a7bc62e8c9f663e94b3498e libgo/go/encoding/gob/decode.go 968adc91f33adc72c88a3cff78b3759d libgo/go/encoding/gob/decoder.go e7e6002d017f13fd90ad75ba695baeec libgo/go/encoding/gob/doc.go 5a6d15243feedb1eca701318de31977a libgo/go/encoding/gob/dump.go *************** ba99a6617080d2c01b131fdf76dbfa3b libgo/ *** 45634,45653 **** 1594991dcd75646a5bbab21d3597f332 libgo/go/encoding/gob/encoder.go c635d418f45bf63a00407818b102d4aa libgo/go/encoding/gob/encoder_test.go e67f01368492baca84a65bb2984a3e1f libgo/go/encoding/gob/error.go ! 3ddc0188cda366e09d546e8812615eaf libgo/go/encoding/gob/gobencdec_test.go ! 91beaf17f30f3422693ad20343ea13bb libgo/go/encoding/gob/timing_test.go ! 3c18d2f7bb3bf732b97df5a671ea1bf9 libgo/go/encoding/gob/type.go fcf5432af6d24f575bbb9b3173b769f8 libgo/go/encoding/gob/type_test.go 0d92ed3b59bf7155c953c1040ce01f55 libgo/go/encoding/hex/hex.go 883b60c4fcb6f0897c250077d418d73b libgo/go/encoding/hex/hex_test.go aa374794ab3bc389fc556a4f58d07d70 libgo/go/encoding/json/bench_test.go ! 971395004e54c88895545c16dccbcd2a libgo/go/encoding/json/decode.go ! 4b5a5244816d86b0a1eb20f4c2336d41 libgo/go/encoding/json/decode_test.go ! 1435b1d45d3a8218daa9dc1dd70e5f64 libgo/go/encoding/json/encode.go ! dd0cc75d4dffb72b0fd85758beb320a5 libgo/go/encoding/json/encode_test.go 29a8b438eceff124e33cc7aad04e7dca libgo/go/encoding/json/indent.go c259de9ed68ee160e5ec270a17d97f01 libgo/go/encoding/json/scanner.go ! 2af1c70907935d3f2fb29d035c17c1b9 libgo/go/encoding/json/scanner_test.go 77e6d23d029754b7c8179fa748ee486a libgo/go/encoding/json/stream.go 181b31f9472a9e3035666a4b3706e75a libgo/go/encoding/json/stream_test.go 29878de51a58cf9296eb58665087622d libgo/go/encoding/json/tagkey_test.go --- 45756,45775 ---- 1594991dcd75646a5bbab21d3597f332 libgo/go/encoding/gob/encoder.go c635d418f45bf63a00407818b102d4aa libgo/go/encoding/gob/encoder_test.go e67f01368492baca84a65bb2984a3e1f libgo/go/encoding/gob/error.go ! c760bfff4f6aca8b24c2d597b11a2ee4 libgo/go/encoding/gob/gobencdec_test.go ! 0885b351686aeab437390ec95d5d09ac libgo/go/encoding/gob/timing_test.go ! 58372733cf751da20f4c9614891be6d3 libgo/go/encoding/gob/type.go fcf5432af6d24f575bbb9b3173b769f8 libgo/go/encoding/gob/type_test.go 0d92ed3b59bf7155c953c1040ce01f55 libgo/go/encoding/hex/hex.go 883b60c4fcb6f0897c250077d418d73b libgo/go/encoding/hex/hex_test.go aa374794ab3bc389fc556a4f58d07d70 libgo/go/encoding/json/bench_test.go ! a40a2dd0befb77a9377928c474387d3a libgo/go/encoding/json/decode.go ! 86063291efd471d4a462ff37bd40c874 libgo/go/encoding/json/decode_test.go ! 191358a4a9c181b04c09b50eae4858c5 libgo/go/encoding/json/encode.go ! 5ea94e560deffe68dfe85f6f660755bd libgo/go/encoding/json/encode_test.go 29a8b438eceff124e33cc7aad04e7dca libgo/go/encoding/json/indent.go c259de9ed68ee160e5ec270a17d97f01 libgo/go/encoding/json/scanner.go ! b8b4b247490da6c20609fc00878b34f4 libgo/go/encoding/json/scanner_test.go 77e6d23d029754b7c8179fa748ee486a libgo/go/encoding/json/stream.go 181b31f9472a9e3035666a4b3706e75a libgo/go/encoding/json/stream_test.go 29878de51a58cf9296eb58665087622d libgo/go/encoding/json/tagkey_test.go *************** f47bac5e473480a974a2b43143dfee40 libgo/ *** 45657,45839 **** 608f1dc80db82fc5f5c0dcfaa0e3ddc7 libgo/go/encoding/pem/pem.go ae7ae3934a519034b2412a0f1443ff53 libgo/go/encoding/pem/pem_test.go 659cbebb141452610ccfc7a0c5f2edfd libgo/go/encoding/xml/atom_test.go ! 51c3157f882b56ad6e87affeba13d76a libgo/go/encoding/xml/marshal.go ! 708be3ef8a6015f87e16f3b9691badf1 libgo/go/encoding/xml/marshal_test.go ! 49dfc371f4bd5e1bb14d0c895de0a067 libgo/go/encoding/xml/read.go ! 371b7db0671ea13d1e919877ce2a9545 libgo/go/encoding/xml/read_test.go ! 82e001817c2ff9fc061415c0ba7578f6 libgo/go/encoding/xml/typeinfo.go ! dc128e5266317877841af3ebf061eb9d libgo/go/encoding/xml/xml.go ! e95e6ab7fdf5653cc2a626bae4a59f18 libgo/go/encoding/xml/xml_test.go 12c6fc81238b7cfa482f7548bd274890 libgo/go/errors/errors.go bf2bfea5589d38767d5d145cf24a1410 libgo/go/errors/errors_test.go 9570c2fcbe5c635e0f2723d92060ae0f libgo/go/exp/README - 63c3636ad193193836fccd945e5239c5 libgo/go/exp/cookiejar/jar.go - 782a80193eeb7b0057df02616e7a236d libgo/go/exp/cookiejar/storage.go - 5560f20aec5bcfecfb08db5d1e512cb5 libgo/go/exp/cookiejar/storage_test.go - e0fb2dd9fc2e4f25e4f26fafb5f364bc libgo/go/exp/ebnf/ebnf.go - 5bb23e5b0cfdd19a9af40bec83198bb3 libgo/go/exp/ebnf/ebnf_test.go - 391caf4fe72ac68f4129860f63652b56 libgo/go/exp/ebnf/parser.go - 074a6512662c3c8acf4941802dee747d libgo/go/exp/ebnflint/doc.go - de7637563d9a296e9b95cf51c1f72fc4 libgo/go/exp/ebnflint/ebnflint.go - 3eaa1989a5983231ad589828c22fcb19 libgo/go/exp/ebnflint/ebnflint_test.go - f0c61db011ae777fb55323a8744efb2c libgo/go/exp/gotype/doc.go - 6e2ad48ca59f58d11da4d830785e661d libgo/go/exp/gotype/gotype.go - c7f761c0eec00d111034e3421b0cc978 libgo/go/exp/gotype/gotype_test.go - 5301b04799f0bde2f015ad1cbf312399 libgo/go/exp/gotype/testdata/test1.go - 81255d0bb2fcff75eadc2f328e20deaa libgo/go/exp/html/atom/atom.go - 01a4adae4b15dc7f11f21c0f50d7c099 libgo/go/exp/html/atom/atom_test.go - 891e1cef3ece668c3c605c7eaa34aea9 libgo/go/exp/html/atom/gen.go - d0ec169eceda19d5c1bdedf2ecbfc230 libgo/go/exp/html/atom/table.go - 657310f91765c4b881d19fa400d0305b libgo/go/exp/html/atom/table_test.go - d838fc499544d9b39a478c49eca85644 libgo/go/exp/html/const.go - 6b1dff43351e1829b586c7c1533036f4 libgo/go/exp/html/doc.go - c4266ed1266597cc06a000b8cc31f148 libgo/go/exp/html/doctype.go - 0a11bd3b506218577aec8e26aa097e0d libgo/go/exp/html/entity.go - 9499982502f6fab9b4c5d4c8c4814feb libgo/go/exp/html/entity_test.go - fde0ca2333ef768fd357c16d6d55049e libgo/go/exp/html/escape.go - 71eb665eee0d6dba2783c31053ab689a libgo/go/exp/html/foreign.go - fd9f2258031d6dd7aacf5b3699124e40 libgo/go/exp/html/node.go - 769a2f3b1a228ca113da005f1a164319 libgo/go/exp/html/node_test.go - 6cbdce68194026457481a3001534d965 libgo/go/exp/html/parse.go - 2ceb5bf1cbb5340280d289ca2c826736 libgo/go/exp/html/parse_test.go - 4d290a1724db66b0d74d4d0cbf838765 libgo/go/exp/html/render.go - 88cc198b5f695f33e4860afadb95ccc0 libgo/go/exp/html/render_test.go - a9f07da8b03a6c480b2b84dd005dad59 libgo/go/exp/html/testdata/go1.html - 9eeb0c73e0fcdcaa7858d4489e803f18 libgo/go/exp/html/testdata/webkit/README - c674ddf94fec9d706018ef05dc910f7f libgo/go/exp/html/testdata/webkit/adoption01.dat - 37108efa6236b8086ab61ecfa6f4c7d4 libgo/go/exp/html/testdata/webkit/adoption02.dat - 6209a34099c6807628f1e8e3c0132527 libgo/go/exp/html/testdata/webkit/comments01.dat - c039890fdb42422bafa168fbeab4c7e9 libgo/go/exp/html/testdata/webkit/doctype01.dat - af1be43a68c932e7743a819e21b0d5c8 libgo/go/exp/html/testdata/webkit/entities01.dat - 2e5649adb77113a15483d53c9b40a90a libgo/go/exp/html/testdata/webkit/entities02.dat - 33106b86f5ea42c700b7741cd06c4d4f libgo/go/exp/html/testdata/webkit/html5test-com.dat - 7eb54cb896176235247b42222d0c008a libgo/go/exp/html/testdata/webkit/inbody01.dat - 6f0b929374695e754ac6d3b49e96a0f1 libgo/go/exp/html/testdata/webkit/isindex.dat 12c04a7036924c4fc4e8348a18820b1d libgo/go/exp/html/testdata/webkit/pending-spec-changes-plain-text-unsafe.dat - 08019dc4df428de1db8580f94990ddec libgo/go/exp/html/testdata/webkit/pending-spec-changes.dat 1255c947f22cc3b8f9618b655f18ec28 libgo/go/exp/html/testdata/webkit/plain-text-unsafe.dat - 8a60b5fbaccb4756df2d862d70162bd6 libgo/go/exp/html/testdata/webkit/scriptdata01.dat - bfd8a34278a22a1495f8d7640c501452 libgo/go/exp/html/testdata/webkit/scripted/adoption01.dat - 084aae3e2d570fb2638e9e4583eb39d4 libgo/go/exp/html/testdata/webkit/scripted/webkit01.dat - 38618c25daab1cca72baa79f8330754f libgo/go/exp/html/testdata/webkit/tables01.dat - 7e16047b93dc2dd15aa371f871cd8b5b libgo/go/exp/html/testdata/webkit/tests1.dat - a3652deef50ac48c0628ed00e547ca2b libgo/go/exp/html/testdata/webkit/tests10.dat - a60bb51037bcbc91e404484dc38f5a50 libgo/go/exp/html/testdata/webkit/tests11.dat - b1c48d4244e69630d51dd2dcb2fbcf15 libgo/go/exp/html/testdata/webkit/tests12.dat - 389eb02e94cde6c0a6d1f48f4c2f8f65 libgo/go/exp/html/testdata/webkit/tests14.dat - 22987f5228a8c5c6afb0954b3d3d57f5 libgo/go/exp/html/testdata/webkit/tests15.dat - f69cac5e88b79df69e421f626957c30a libgo/go/exp/html/testdata/webkit/tests16.dat - 5e12546a1ded2504e0761717131668cb libgo/go/exp/html/testdata/webkit/tests17.dat - 9dbeda2b205dc4f0db8271de4baa61f6 libgo/go/exp/html/testdata/webkit/tests18.dat - d25528cf52db539cda1cfa63bdf91c71 libgo/go/exp/html/testdata/webkit/tests19.dat - 7b7aa54cbc4bdcb56f4e216f567a59cd libgo/go/exp/html/testdata/webkit/tests2.dat - 3932cd3693879fd62be16016f6a04b61 libgo/go/exp/html/testdata/webkit/tests20.dat - bac362931ff08ef6a4f674723b983f2b libgo/go/exp/html/testdata/webkit/tests21.dat - 8526d992d85d21771cf5f515acc3a3bd libgo/go/exp/html/testdata/webkit/tests22.dat - de867ada8c68f51a22b80448c29f2022 libgo/go/exp/html/testdata/webkit/tests23.dat - 9b9e34bfc30a0c621550c738958fa1b7 libgo/go/exp/html/testdata/webkit/tests24.dat - e97fe77d6d0da8e4432edc2d77a115c9 libgo/go/exp/html/testdata/webkit/tests25.dat - db55ea2f968dc4e28989a07ce901d1e1 libgo/go/exp/html/testdata/webkit/tests26.dat - a7c3d847b65983ed23c1dc9e18b8bf55 libgo/go/exp/html/testdata/webkit/tests3.dat - ebaa4878bf619e24fe2d6107d34e5deb libgo/go/exp/html/testdata/webkit/tests4.dat - ee1588dc24e363af67a13b42ffc5aace libgo/go/exp/html/testdata/webkit/tests5.dat - 60ec4d0ab544f3b1bd4ffe698af1e5f5 libgo/go/exp/html/testdata/webkit/tests6.dat - a0ef7f8dbe8ff22f0e93e1714a5ef1ad libgo/go/exp/html/testdata/webkit/tests7.dat - e120c2db4594e470c96f8e2042ed16ae libgo/go/exp/html/testdata/webkit/tests8.dat - a1b3e6fc5c16dd22d7be2d96b465feb3 libgo/go/exp/html/testdata/webkit/tests9.dat - 9aa18474af8e112006795bb1dcee73c8 libgo/go/exp/html/testdata/webkit/tests_innerHTML_1.dat - 49f45c9fd7b9a29080068b8ed1ab622d libgo/go/exp/html/testdata/webkit/tricky01.dat - b816e1aa1dd48626f15658f902c9e31b libgo/go/exp/html/testdata/webkit/webkit01.dat - df5ecb1502d35c2887b0d33f87bf6154 libgo/go/exp/html/testdata/webkit/webkit02.dat - 4b9f2a0fefe0b81f6bfebeff50809b7d libgo/go/exp/html/token.go - ee26e87d8b32ef6fdca2df71fc46d139 libgo/go/exp/html/token_test.go - a36651542373595fbec49de19e9402a9 libgo/go/exp/inotify/inotify_linux.go - 1d6389b64784ea1c7859b36b24ebfdb6 libgo/go/exp/inotify/inotify_linux_test.go - a592cc9178407bc3809b79870775e7a3 libgo/go/exp/locale/collate/build/builder.go - b9cda0ce6686d03c4a489368c67311bd libgo/go/exp/locale/collate/build/builder_test.go - ce416bcc79b9c481cff4f037616226c4 libgo/go/exp/locale/collate/build/colelem.go - dd240c73bbd55933ef6224c0e3eb8b80 libgo/go/exp/locale/collate/build/colelem_test.go - 30ab5eabcfba45cdc0af621c5555eef2 libgo/go/exp/locale/collate/build/contract.go - ba4a67f52a80e29da82050c3396f76b9 libgo/go/exp/locale/collate/build/contract_test.go - 18b4712904530e1d8a832f1ec3a0970c libgo/go/exp/locale/collate/build/order.go - 29fc5067ffa813c18832d1885a6c291c libgo/go/exp/locale/collate/build/order_test.go - e9f0673e034738462357667914555e69 libgo/go/exp/locale/collate/build/table.go - 7d51dd374814194a02bdd667badb9450 libgo/go/exp/locale/collate/build/trie.go - d83252a8109eb475cca1de32f19411a9 libgo/go/exp/locale/collate/build/trie_test.go - 53c08c6422ccb7d9d6e1b77de1de14d9 libgo/go/exp/locale/collate/colelem.go - cd862d6049cfd2f91369934cac16c9ce libgo/go/exp/locale/collate/colelem_test.go - 992d965b5f326ba1d759360535cdee76 libgo/go/exp/locale/collate/collate.go - c9565a70bd3b7d9ad461ca9a39359186 libgo/go/exp/locale/collate/colltab.go - 28bf9f15b0fbeeca83650d4e4138272b libgo/go/exp/locale/collate/contract.go - 8a6fbc08c8443e7344132c52f8cdf572 libgo/go/exp/locale/collate/contract_test.go - ca7885a26d822a88cce90fc7e61012c8 libgo/go/exp/locale/collate/export.go - dd8c0347201974c5b6c39cb66262db34 libgo/go/exp/locale/collate/export_test.go - cb6e4af8f613ed4f40a42de4ae49ce81 libgo/go/exp/locale/collate/maketables.go - be5448bcfec1126e8a24e0374e77af05 libgo/go/exp/locale/collate/regtest.go - a175759745ff9f2f6d7c7df03c8e3dbe libgo/go/exp/locale/collate/sort.go - 4886e6f87ce69b999519dcf90e759512 libgo/go/exp/locale/collate/sort_test.go - 012d9e08a87d1bbb31e8287bf84d117f libgo/go/exp/locale/collate/table.go - dae650a3cb32f722d20022e46008ea6a libgo/go/exp/locale/collate/tables.go - c2d1fd8af02d520db829897381e83c2b libgo/go/exp/locale/collate/tools/colcmp/chars.go - c7ab2b91f5398c0ed0f600665365a1a2 libgo/go/exp/locale/collate/tools/colcmp/col.go - 7a0601e6e0e3ab84409a46ac189464de libgo/go/exp/locale/collate/tools/colcmp/colcmp.go - 7a1486f9b2d224a940edfcc844afe6fa libgo/go/exp/locale/collate/tools/colcmp/darwin.go - e7b6e8874b6051553a2d3e78c3f7bea7 libgo/go/exp/locale/collate/tools/colcmp/gen.go - e477e594bea4c79947ad529f2d8d2a2e libgo/go/exp/locale/collate/tools/colcmp/icu.go - fcd1d43511a2cf181b83cb4c63af822a libgo/go/exp/locale/collate/trie.go - 36ab6322e9a5b1004c2dae31e37a053d libgo/go/exp/locale/collate/trie_test.go - df00066d7cbd684b7c4960eae20a6325 libgo/go/exp/norm/composition.go - 6927b03d287633db32f576fd492637b9 libgo/go/exp/norm/composition_test.go - 71635421884458c5f0f5e2b39e2c5937 libgo/go/exp/norm/example_iter_test.go - 27cd8837127a7ad340c21ce3e7e76d65 libgo/go/exp/norm/forminfo.go - dfce5209998e4e3ff6304a6eb951ea7a libgo/go/exp/norm/input.go - 48550cd00b15330e59d4a2da033e560d libgo/go/exp/norm/iter.go - 58970805cbb70593d544509249765863 libgo/go/exp/norm/iter_test.go - bf794630cb9e00d10c10f4e5023b247a libgo/go/exp/norm/maketables.go - af6d46fbd4799fab47a3923f2ae89c18 libgo/go/exp/norm/maketesttables.go - 638a87b113f8e51ee2bf5da8d590332e libgo/go/exp/norm/norm_test.go - cfbdb66a0bcf39042e4c4c19dd850279 libgo/go/exp/norm/normalize.go - c3b8df5a03c7d58b8e1d60500ef3db33 libgo/go/exp/norm/normalize_test.go - ec974ba62d92c0d54bb927479aab22c3 libgo/go/exp/norm/normregtest.go - 69aae0970473d3a410f50aace1fbff63 libgo/go/exp/norm/readwriter.go - f2017297da9e588e6dd39047552f3f49 libgo/go/exp/norm/readwriter_test.go - 020bbebfb84666fc472e9166d081b61a libgo/go/exp/norm/tables.go - 745f82c13b745dbf92ff351dd675651d libgo/go/exp/norm/trie.go - 606ef6d65ce60d7235b798c6e4c1f101 libgo/go/exp/norm/trie_test.go - 882bc7b23a3e91bd7947c2c1d35e4802 libgo/go/exp/norm/triedata_test.go - 035b0961819220c8a99a2a12f44b96c0 libgo/go/exp/norm/triegen.go a73827f69c118add0c8490dbdac4351e libgo/go/exp/proxy/direct.go 40c1d2d85e44e7d3011793c100f485aa libgo/go/exp/proxy/per_host.go 05442517b16d2cd688f125b14ad2a608 libgo/go/exp/proxy/per_host_test.go 86a193e35715b46fd7397606ce679a79 libgo/go/exp/proxy/proxy.go 78856ab853a4a79946362744f1d31691 libgo/go/exp/proxy/proxy_test.go b131be6e3f6d7c94db74e920c464289c libgo/go/exp/proxy/socks5.go - 81e2f95c2ad27e1eef25d2f137b81dce libgo/go/exp/ssa/blockopt.go - bd6fe346a3c2006f2b3ffe8755bd3182 libgo/go/exp/ssa/doc.go - f27bcf83288ac88267ef52960faa0c03 libgo/go/exp/ssa/func.go - fc24a65ff98f9a1df29510f426f3e3f4 libgo/go/exp/ssa/literal.go - 0ad36dbc27d4a270827e81d81c7be4c4 libgo/go/exp/ssa/print.go - 2c075274c9560bdeab29e880aadf4200 libgo/go/exp/ssa/sanity.go - 749944d692ff1088b9486c99106e078b libgo/go/exp/ssa/ssa.go - 64f13f0189ca7b0ac64f21df92041c8d libgo/go/exp/ssa/util.go c47536c131dbfd1f39faaf4221370b64 libgo/go/exp/terminal/terminal.go 002f23e1d4a0aa4a32ba2d1e7720ac08 libgo/go/exp/terminal/terminal_test.go 6c205d5769af494f06e3313404ca2cd6 libgo/go/exp/terminal/util.go - fa6be7f94f1aa7b5610102715a331ba0 libgo/go/exp/utf8string/string.go - 703e403569257c2d74907fe69e45be75 libgo/go/exp/utf8string/string_test.go - 63f86c4bde82e6776a7b22abd22557e5 libgo/go/exp/winfsnotify/winfsnotify.go - f1f01892b7299d760b0cfdbd5ef150b0 libgo/go/exp/winfsnotify/winfsnotify_test.go 71cd6d8884ca0e5a46c17bbe4705c1f6 libgo/go/expvar/expvar.go 2ee2cfcf6df7a8e29a640f10d24769a6 libgo/go/expvar/expvar_test.go 97c2f30cebb7bb49677b5c6216b7e495 libgo/go/flag/example_test.go 96a00d236dc8445959bead977fbfd1f6 libgo/go/flag/export_test.go aed5676f737e3d5010eaa83cd61eb929 libgo/go/flag/flag.go 1e09cd354af274b7356eaec009694bad libgo/go/flag/flag_test.go ! efa94cc56ac3352595b5cc98b03ed461 libgo/go/fmt/doc.go b11aa946c688e343c2c41f727f3c56b2 libgo/go/fmt/export_test.go ! 8452a8b8b19e3ffc1f2aff6f0e8e6d38 libgo/go/fmt/fmt_test.go f2c0a1926b7387a1652915a545456e66 libgo/go/fmt/format.go ! 1efaf7451d3677564c6bbe20c5dbef9a libgo/go/fmt/print.go db1528159d27ce145963e5f31912111e libgo/go/fmt/scan.go 5bd44ed1964296c2dfd2596667e35758 libgo/go/fmt/scan_test.go 2369824f08c60e32daa40b736d182964 libgo/go/fmt/stringer_test.go --- 45779,45816 ---- 608f1dc80db82fc5f5c0dcfaa0e3ddc7 libgo/go/encoding/pem/pem.go ae7ae3934a519034b2412a0f1443ff53 libgo/go/encoding/pem/pem_test.go 659cbebb141452610ccfc7a0c5f2edfd libgo/go/encoding/xml/atom_test.go ! fbc408f27f3bc2d089f756f791b08d4e libgo/go/encoding/xml/marshal.go ! b70008e7fed99a8b8deec21432e5d179 libgo/go/encoding/xml/marshal_test.go ! 52528220dbd6b416b6a1edac0945ca86 libgo/go/encoding/xml/read.go ! f70e43203d4c8c7bbecdd840e5196a68 libgo/go/encoding/xml/read_test.go ! 7af330ce1babe9b9f0fa9b8e0e51e157 libgo/go/encoding/xml/typeinfo.go ! b65df81e0321ad21ed6d8d79aa24153b libgo/go/encoding/xml/xml.go ! bb58958637d88d5c683af077fed24502 libgo/go/encoding/xml/xml_test.go 12c6fc81238b7cfa482f7548bd274890 libgo/go/errors/errors.go bf2bfea5589d38767d5d145cf24a1410 libgo/go/errors/errors_test.go 9570c2fcbe5c635e0f2723d92060ae0f libgo/go/exp/README 12c04a7036924c4fc4e8348a18820b1d libgo/go/exp/html/testdata/webkit/pending-spec-changes-plain-text-unsafe.dat 1255c947f22cc3b8f9618b655f18ec28 libgo/go/exp/html/testdata/webkit/plain-text-unsafe.dat a73827f69c118add0c8490dbdac4351e libgo/go/exp/proxy/direct.go 40c1d2d85e44e7d3011793c100f485aa libgo/go/exp/proxy/per_host.go 05442517b16d2cd688f125b14ad2a608 libgo/go/exp/proxy/per_host_test.go 86a193e35715b46fd7397606ce679a79 libgo/go/exp/proxy/proxy.go 78856ab853a4a79946362744f1d31691 libgo/go/exp/proxy/proxy_test.go b131be6e3f6d7c94db74e920c464289c libgo/go/exp/proxy/socks5.go c47536c131dbfd1f39faaf4221370b64 libgo/go/exp/terminal/terminal.go 002f23e1d4a0aa4a32ba2d1e7720ac08 libgo/go/exp/terminal/terminal_test.go 6c205d5769af494f06e3313404ca2cd6 libgo/go/exp/terminal/util.go 71cd6d8884ca0e5a46c17bbe4705c1f6 libgo/go/expvar/expvar.go 2ee2cfcf6df7a8e29a640f10d24769a6 libgo/go/expvar/expvar_test.go 97c2f30cebb7bb49677b5c6216b7e495 libgo/go/flag/example_test.go 96a00d236dc8445959bead977fbfd1f6 libgo/go/flag/export_test.go aed5676f737e3d5010eaa83cd61eb929 libgo/go/flag/flag.go 1e09cd354af274b7356eaec009694bad libgo/go/flag/flag_test.go ! e0dce0944b8bb9de2af257e763324ceb libgo/go/fmt/doc.go b11aa946c688e343c2c41f727f3c56b2 libgo/go/fmt/export_test.go ! 31c05c3a39de46582a78f24454f2bc5e libgo/go/fmt/fmt_test.go f2c0a1926b7387a1652915a545456e66 libgo/go/fmt/format.go ! 8af6399ab7311ca7abe4f5bb4c2dbec2 libgo/go/fmt/print.go db1528159d27ce145963e5f31912111e libgo/go/fmt/scan.go 5bd44ed1964296c2dfd2596667e35758 libgo/go/fmt/scan_test.go 2369824f08c60e32daa40b736d182964 libgo/go/fmt/stringer_test.go *************** be3cc18c16b26a92672a6ca2dcdd8eb7 libgo/ *** 45841,45857 **** f8d3946f87220cd03b7c011174b0fd23 libgo/go/go/ast/ast_test.go d7030acf81977114c69226cc5c1900df libgo/go/go/ast/commentmap.go 889bfab30af17cf18a71cf952b6a0740 libgo/go/go/ast/commentmap_test.go ! 3f0ad1e9f918683ad0391a20b3c0242b libgo/go/go/ast/filter.go 9b57b26651e7f02a28305a178d72b6c5 libgo/go/go/ast/import.go ! 4e04fcdfcaa85de18d7e1f471d0237b8 libgo/go/go/ast/print.go 37f0da8f9994ef23553dd3327895afa7 libgo/go/go/ast/print_test.go 4809f5e72ce6172b93859e9027185c59 libgo/go/go/ast/resolve.go 13f13f5f2b17c434403bcf5388c039cc libgo/go/go/ast/scope.go 82e54134a6bb53547c0252d262233225 libgo/go/go/ast/walk.go ! 777467b63cacd4a8533b67930bc5bbd5 libgo/go/go/build/build.go 5dc711b3673370d0650d3f050b7c9acf libgo/go/go/build/build_test.go ! 22a7815f11654c4a4f149641d0013d2b libgo/go/go/build/deps_test.go ! 1312e790e356bca683d3f4cb98dafe24 libgo/go/go/build/doc.go 0a125f4b50a44436fc08a14a2d69a5e9 libgo/go/go/build/read.go 55bad531524fbfa1a2ff2af400b70447 libgo/go/go/build/read_test.go 39f113d9eb3addc6b532513c9828a075 libgo/go/go/build/syslist_test.go --- 45818,45835 ---- f8d3946f87220cd03b7c011174b0fd23 libgo/go/go/ast/ast_test.go d7030acf81977114c69226cc5c1900df libgo/go/go/ast/commentmap.go 889bfab30af17cf18a71cf952b6a0740 libgo/go/go/ast/commentmap_test.go ! 550baca40933658d1bbd86a0537f7e38 libgo/go/go/ast/filter.go ! bf2c3134657aed37c679064ac0654d88 libgo/go/go/ast/filter_test.go 9b57b26651e7f02a28305a178d72b6c5 libgo/go/go/ast/import.go ! 3b54e2fa25e32b8a1a0a9035b8d81be6 libgo/go/go/ast/print.go 37f0da8f9994ef23553dd3327895afa7 libgo/go/go/ast/print_test.go 4809f5e72ce6172b93859e9027185c59 libgo/go/go/ast/resolve.go 13f13f5f2b17c434403bcf5388c039cc libgo/go/go/ast/scope.go 82e54134a6bb53547c0252d262233225 libgo/go/go/ast/walk.go ! fc873b5d730b676e518be5cb69665bc3 libgo/go/go/build/build.go 5dc711b3673370d0650d3f050b7c9acf libgo/go/go/build/build_test.go ! a7a601791d820f7c3908c2180a69f7b8 libgo/go/go/build/deps_test.go ! 9ee5973d64ac0a991d496d322264bb34 libgo/go/go/build/doc.go 0a125f4b50a44436fc08a14a2d69a5e9 libgo/go/go/build/read.go 55bad531524fbfa1a2ff2af400b70447 libgo/go/go/build/read_test.go 39f113d9eb3addc6b532513c9828a075 libgo/go/go/build/syslist_test.go *************** de6991b3771170d6d3ce31fe2c89b5f1 libgo/ *** 45859,45879 **** 0f6926e3a63df39bdeb382e093950776 libgo/go/go/build/testdata/other/main.go 76dbc78dbf0a8a2e7940988f18309d59 libgo/go/go/doc/comment.go 376ef0bf2dcd086576aac0b87e69867f libgo/go/go/doc/comment_test.go ! bb44c59d760e1bdeaddac1ef40e278aa libgo/go/go/doc/doc.go 4e6e3d68caa91b56e6b1a7360ec1511d libgo/go/go/doc/doc_test.go ! 6c070818451fb6349c39179bf68e4696 libgo/go/go/doc/example.go ! 32875da5b77d4c642a4b170e9b0f40e4 libgo/go/go/doc/example_test.go 1479f7e783f2d679f02e728ef12d86ad libgo/go/go/doc/exports.go ! d3e52eb848d1ea5cc479cf3ed007a83d libgo/go/go/doc/filter.go 869a816db378209d1a9bdc7bafbdfd57 libgo/go/go/doc/headscan.go ! 395a2d5c41b8ddefa2438d16e4a10c03 libgo/go/go/doc/reader.go 868ac75fef94ceaaea6f0859b7c6ee66 libgo/go/go/doc/synopsis.go 88c41785eb57463ca3ca99e567ae23f9 libgo/go/go/doc/synopsis_test.go ! 20698036889b7b79349fc2d70bb9d110 libgo/go/go/doc/testdata/a.0.golden ! 20698036889b7b79349fc2d70bb9d110 libgo/go/go/doc/testdata/a.1.golden ! 20698036889b7b79349fc2d70bb9d110 libgo/go/go/doc/testdata/a.2.golden ! af041897634c34ec3286e1f7d39b5711 libgo/go/go/doc/testdata/a0.go ! c8a151e5afdf82247c7ed070a3b7edb8 libgo/go/go/doc/testdata/a1.go e55a6d247f12d1e0c63ec812281121f8 libgo/go/go/doc/testdata/b.0.golden d2e1f55e788d6f5d6a2f81a1ab87be0f libgo/go/go/doc/testdata/b.1.golden e55a6d247f12d1e0c63ec812281121f8 libgo/go/go/doc/testdata/b.2.golden --- 45837,45857 ---- 0f6926e3a63df39bdeb382e093950776 libgo/go/go/build/testdata/other/main.go 76dbc78dbf0a8a2e7940988f18309d59 libgo/go/go/doc/comment.go 376ef0bf2dcd086576aac0b87e69867f libgo/go/go/doc/comment_test.go ! f8affaeb6e5777547f309f70478b4944 libgo/go/go/doc/doc.go 4e6e3d68caa91b56e6b1a7360ec1511d libgo/go/go/doc/doc_test.go ! 42d43687e9cbd6fd131c296f35cf79b4 libgo/go/go/doc/example.go ! 3c29e45e38a42d666ecb58a2e15160cf libgo/go/go/doc/example_test.go 1479f7e783f2d679f02e728ef12d86ad libgo/go/go/doc/exports.go ! a8c394bea00b685d8d0c5c3e24018879 libgo/go/go/doc/filter.go 869a816db378209d1a9bdc7bafbdfd57 libgo/go/go/doc/headscan.go ! 263ecbac6e9afba71bd7e50ca2bbba5d libgo/go/go/doc/reader.go 868ac75fef94ceaaea6f0859b7c6ee66 libgo/go/go/doc/synopsis.go 88c41785eb57463ca3ca99e567ae23f9 libgo/go/go/doc/synopsis_test.go ! 88438313ef932839f4386760f15e13d1 libgo/go/go/doc/testdata/a.0.golden ! 88438313ef932839f4386760f15e13d1 libgo/go/go/doc/testdata/a.1.golden ! 88438313ef932839f4386760f15e13d1 libgo/go/go/doc/testdata/a.2.golden ! 53211c711431e426a5015b7b8b45e503 libgo/go/go/doc/testdata/a0.go ! 8c26c3ead4faa5df75ae374068e1c239 libgo/go/go/doc/testdata/a1.go e55a6d247f12d1e0c63ec812281121f8 libgo/go/go/doc/testdata/b.0.golden d2e1f55e788d6f5d6a2f81a1ab87be0f libgo/go/go/doc/testdata/b.1.golden e55a6d247f12d1e0c63ec812281121f8 libgo/go/go/doc/testdata/b.2.golden *************** a485ccb6a5f4b4b61fa9cfcc83bf806f libgo/ *** 45905,45936 **** bca48e5274500c7c89d16122908ac9a8 libgo/go/go/doc/testdata/f.1.golden 40794af971bc3b3ecbb38e9331833f54 libgo/go/go/doc/testdata/f.2.golden e8f76e1ff0676842f419c7b3b67a7907 libgo/go/go/doc/testdata/f.go ! 078307c80a8e9775ff0f25bf0bf20ad6 libgo/go/go/doc/testdata/template.txt 754327124c9f0e4661805708b71b2e38 libgo/go/go/doc/testdata/testing.0.golden 565a6582292dbd98e5af75a9aac65336 libgo/go/go/doc/testdata/testing.1.golden 754327124c9f0e4661805708b71b2e38 libgo/go/go/doc/testdata/testing.2.golden ba37c473c4f1338e09e471948a56919f libgo/go/go/doc/testdata/testing.go ! 86cf7124c090dd13ff4ca16ac215f81e libgo/go/go/format/format.go 2450a611e93fd367665024a0c849dd1b libgo/go/go/format/format_test.go ! 23475733a965254f24c7143907137e02 libgo/go/go/parser/error_test.go ! 176240524810a1a8cf93de7dcc8eed9d libgo/go/go/parser/interface.go ! aebcc9bd1be2c82afdca415b733c7cce libgo/go/go/parser/parser.go ! 8f22b627acf0b3544e1f2914ef292b9c libgo/go/go/parser/parser_test.go 785eea855ded220460b8f6bbc78a392a libgo/go/go/parser/performance_test.go ! be67880c8b294453148c08f1c3d36737 libgo/go/go/parser/short_test.go b72b1f0432aed37d275e66b0169f39fb libgo/go/go/parser/testdata/commas.src c70ad2a62c388725a380285de2dc2586 libgo/go/go/parser/testdata/issue3106.src ! 5fb1f6c5c9684b917e4890208f443db9 libgo/go/go/printer/nodes.go a3b1bc0d9114a1883a56f0adbb5d8d96 libgo/go/go/printer/performance_test.go ! 6e557279488bd67f8cead14c6f2aa80a libgo/go/go/printer/printer.go 3417129f06bd4104564c1f0a76e99f38 libgo/go/go/printer/printer_test.go e94d1c844f69f099467f1452d2815508 libgo/go/go/printer/testdata/comments.golden 2c218f97e741b8526d07c88429b88c72 libgo/go/go/printer/testdata/comments.input e6e08677739f80de2dfe4d48b9d3bb45 libgo/go/go/printer/testdata/comments.x fe997148c24e2e84f133735e22b3fa08 libgo/go/go/printer/testdata/comments2.golden d4bcd365a26db79db466b43934749b58 libgo/go/go/printer/testdata/comments2.input ! c489ec783824c36a95c9967b1cead870 libgo/go/go/printer/testdata/declarations.golden ! 8efd2103a61939f33d51fc6e659cdc65 libgo/go/go/printer/testdata/declarations.input 844f4638b6f2ac8ff51fb9b08ba912e2 libgo/go/go/printer/testdata/empty.golden 844f4638b6f2ac8ff51fb9b08ba912e2 libgo/go/go/printer/testdata/empty.input c8b7d43c9824651ce2fd4ae4519ead7e libgo/go/go/printer/testdata/expressions.golden --- 45883,45914 ---- bca48e5274500c7c89d16122908ac9a8 libgo/go/go/doc/testdata/f.1.golden 40794af971bc3b3ecbb38e9331833f54 libgo/go/go/doc/testdata/f.2.golden e8f76e1ff0676842f419c7b3b67a7907 libgo/go/go/doc/testdata/f.go ! bbb70d493df03e7c4221ea6b6f8c6573 libgo/go/go/doc/testdata/template.txt 754327124c9f0e4661805708b71b2e38 libgo/go/go/doc/testdata/testing.0.golden 565a6582292dbd98e5af75a9aac65336 libgo/go/go/doc/testdata/testing.1.golden 754327124c9f0e4661805708b71b2e38 libgo/go/go/doc/testdata/testing.2.golden ba37c473c4f1338e09e471948a56919f libgo/go/go/doc/testdata/testing.go ! 0855d12b9693040f163a66eb488e9dbe libgo/go/go/format/format.go 2450a611e93fd367665024a0c849dd1b libgo/go/go/format/format_test.go ! 1b47b46debf26d1d0875aec148e2ad25 libgo/go/go/parser/error_test.go ! 057558dc4862106e1e9c96a83393631a libgo/go/go/parser/interface.go ! c3da42ca69732c40dbf634cd551ebf81 libgo/go/go/parser/parser.go ! afe8c9e51ef530fae2a30c8cff82bae5 libgo/go/go/parser/parser_test.go 785eea855ded220460b8f6bbc78a392a libgo/go/go/parser/performance_test.go ! 8a6608526a5b533c5a8ec728b641f3ee libgo/go/go/parser/short_test.go b72b1f0432aed37d275e66b0169f39fb libgo/go/go/parser/testdata/commas.src c70ad2a62c388725a380285de2dc2586 libgo/go/go/parser/testdata/issue3106.src ! dc5b8d0e5ca9ded6a698a693273e17bc libgo/go/go/printer/nodes.go a3b1bc0d9114a1883a56f0adbb5d8d96 libgo/go/go/printer/performance_test.go ! 38e4b2c45d4b412d2756cf31dbe18b04 libgo/go/go/printer/printer.go 3417129f06bd4104564c1f0a76e99f38 libgo/go/go/printer/printer_test.go e94d1c844f69f099467f1452d2815508 libgo/go/go/printer/testdata/comments.golden 2c218f97e741b8526d07c88429b88c72 libgo/go/go/printer/testdata/comments.input e6e08677739f80de2dfe4d48b9d3bb45 libgo/go/go/printer/testdata/comments.x fe997148c24e2e84f133735e22b3fa08 libgo/go/go/printer/testdata/comments2.golden d4bcd365a26db79db466b43934749b58 libgo/go/go/printer/testdata/comments2.input ! 7883d0cb8376c2feb9b79841956b3ce9 libgo/go/go/printer/testdata/declarations.golden ! 3a63267be381eae5dc8583a793772d95 libgo/go/go/printer/testdata/declarations.input 844f4638b6f2ac8ff51fb9b08ba912e2 libgo/go/go/printer/testdata/empty.golden 844f4638b6f2ac8ff51fb9b08ba912e2 libgo/go/go/printer/testdata/empty.input c8b7d43c9824651ce2fd4ae4519ead7e libgo/go/go/printer/testdata/expressions.golden *************** a7bb8d47908112f568e617904eeb185a libgo/ *** 45944,45974 **** 8658639274f42b42539cad779bba1c4f libgo/go/go/printer/testdata/statements.golden d8d797d77d5977e661a771197109cc11 libgo/go/go/printer/testdata/statements.input ed6d8f81a626e68919c6ca821880624e libgo/go/go/scanner/errors.go ! 34a70b1fcb37eea0d1ea4f56b0302655 libgo/go/go/scanner/scanner.go ! f22d7d4c0cfbee93bcc5727966df2274 libgo/go/go/scanner/scanner_test.go edcdea4c6d2203889c0d93bff733a6b0 libgo/go/go/token/position.go 73e6730aae0ea831a9c3dfaddf756ca5 libgo/go/go/token/position_test.go 1d64ffbe92654fda0192d364e0598dfb libgo/go/go/token/serialize.go 7f96cc16b25fcc0687a856f1bd33e74f libgo/go/go/token/serialize_test.go ! 518a534e9176943c103dbc6bd7cf0927 libgo/go/go/token/token.go ! ef33157ef9257f296c85e432d395c8e0 libgo/go/go/types/api.go ! 09e9f88629a1d94f9784545391b213cd libgo/go/go/types/builtins.go ! d74def31b95b10833ba1b790ef17b834 libgo/go/go/types/check.go ! 6713c497dc898beb1ea46a8a77d29b1c libgo/go/go/types/check_test.go ! b374c89889ca305aff32d366410627cb libgo/go/go/types/const.go ! fda4bdcb2a55f1853b9a9c8b2c31ff37 libgo/go/go/types/conversions.go ! 58b1c97fdf05f282fd1671c28bf09445 libgo/go/go/types/errors.go ! e8c42443c5619f1a147b84c36296f8c1 libgo/go/go/types/exportdata.go ! dac38ab90c37a726f1c8388439676433 libgo/go/go/types/expr.go ! cf66cbb33e4c6b480f180b29cf6587fb libgo/go/go/types/gcimporter.go ! ab75ce83653142d96073a535065b4402 libgo/go/go/types/gcimporter_test.go ! 6f67227f11073cab775b44c1c10e9af4 libgo/go/go/types/objects.go ! c169408c156bf9ed761910d02877db65 libgo/go/go/types/operand.go ! 66abe4036e4f17ae9f6044eec945353e libgo/go/go/types/predicates.go ! e2df56015e22e436594709a2dbbe3433 libgo/go/go/types/resolve.go ! 91a0cb53d9c28fad60340a6787d550a2 libgo/go/go/types/resolver_test.go ! 95134183b5e3c76bee98fac9a931a2cd libgo/go/go/types/scope.go ! d97720cd53703a775cb7304cf30c3ff1 libgo/go/go/types/stmt.go 4d0ca33167ee1273334875c348f31533 libgo/go/go/types/testdata/builtins.src 41b1ea102c5f8550d32c9bd6c50cdd97 libgo/go/go/types/testdata/const0.src 42ae4b6f41811f53d6a784998d23b294 libgo/go/go/types/testdata/conversions.src --- 45922,45934 ---- 8658639274f42b42539cad779bba1c4f libgo/go/go/printer/testdata/statements.golden d8d797d77d5977e661a771197109cc11 libgo/go/go/printer/testdata/statements.input ed6d8f81a626e68919c6ca821880624e libgo/go/go/scanner/errors.go ! f17f375152be940d44ebae2e8e87e57b libgo/go/go/scanner/scanner.go ! 17bc2e9ee90d0be86189b5583f58b8e2 libgo/go/go/scanner/scanner_test.go edcdea4c6d2203889c0d93bff733a6b0 libgo/go/go/token/position.go 73e6730aae0ea831a9c3dfaddf756ca5 libgo/go/go/token/position_test.go 1d64ffbe92654fda0192d364e0598dfb libgo/go/go/token/serialize.go 7f96cc16b25fcc0687a856f1bd33e74f libgo/go/go/token/serialize_test.go ! 3db18ed197c48a309cfd489e718e0a69 libgo/go/go/token/token.go 4d0ca33167ee1273334875c348f31533 libgo/go/go/types/testdata/builtins.src 41b1ea102c5f8550d32c9bd6c50cdd97 libgo/go/go/types/testdata/const0.src 42ae4b6f41811f53d6a784998d23b294 libgo/go/go/types/testdata/conversions.src *************** dfa7e5a165f54449dd3bf1ceb7f66b42 libgo/ *** 45977,45991 **** dd58478d6fc063a4bf276b66908f22dd libgo/go/go/types/testdata/decls2a.src a4602fb94ad947d3d171c9366d45db97 libgo/go/go/types/testdata/decls2b.src 52a63048131bb2a7fc2bd8f31524898f libgo/go/go/types/testdata/decls3.src - 3d3dc188ad73727d6fba9afff1634d2d libgo/go/go/types/testdata/exports.go 21ce81eed58c7d187ee50ba1ba2deaba libgo/go/go/types/testdata/expr0.src 5405c27b633e7ea6bdbd8c735c8f1414 libgo/go/go/types/testdata/expr1.src 6d053bed05db0448d088c5a1bd0af774 libgo/go/go/types/testdata/expr2.src adf2bce26855e4c6cf91d421cc760050 libgo/go/go/types/testdata/expr3.src 3b344659c0b464d28c3d7c864111e013 libgo/go/go/types/testdata/stmt0.src - 27fc99df7b363b78a76feae674584c25 libgo/go/go/types/types.go - 4d9e81db739eca79501f71e3e772cd40 libgo/go/go/types/types_test.go - 7b129e1bde6b8d47c6cf93d4c3082a47 libgo/go/go/types/universe.go 44f2c9cff79c088c9ca682898d21b5b1 libgo/go/hash/adler32/adler32.go 38a8db647c3cf7d81f4c9356efdd7ba5 libgo/go/hash/adler32/adler32_test.go 8d7162bc08cdd965f1d4bebc05a30046 libgo/go/hash/crc32/crc32.go --- 45937,45947 ---- *************** db158c123d9fe7fccc8dfaaf61f65890 libgo/ *** 46007,46013 **** 302b2b14f96a6f7b5022d35deb5b6bde libgo/go/html/template/context.go 506e3b530bdd40373071c9e859b1912e libgo/go/html/template/css.go 55e9163874525f8c28e019f575a9ebba libgo/go/html/template/css_test.go ! 337c65a83d6492ae3e67be264ef531e9 libgo/go/html/template/doc.go c284267156f1b21cf233f742bdf31207 libgo/go/html/template/error.go 069ca481582f96a02d805f1efd842324 libgo/go/html/template/escape.go bfdfcb2a850866a5651784af21258ad0 libgo/go/html/template/escape_test.go --- 45963,45969 ---- 302b2b14f96a6f7b5022d35deb5b6bde libgo/go/html/template/context.go 506e3b530bdd40373071c9e859b1912e libgo/go/html/template/css.go 55e9163874525f8c28e019f575a9ebba libgo/go/html/template/css_test.go ! 9799ec2d06e25c71d48d951082afd687 libgo/go/html/template/doc.go c284267156f1b21cf233f742bdf31207 libgo/go/html/template/error.go 069ca481582f96a02d805f1efd842324 libgo/go/html/template/escape.go bfdfcb2a850866a5651784af21258ad0 libgo/go/html/template/escape_test.go *************** bfdfcb2a850866a5651784af21258ad0 libgo/ *** 46015,46022 **** 8a90f9992b1507eee221abbf31a5a8b1 libgo/go/html/template/html_test.go 714e48f1a876c4b0960a95710f767ae3 libgo/go/html/template/js.go 4e672f8f9eedec591899270ea1a1fae2 libgo/go/html/template/js_test.go ! 1c9dda3089f0d3ce4d393fce111d1cbf libgo/go/html/template/template.go ! 662c46887ffebd6da072fc63eae58946 libgo/go/html/template/transition.go bef0cd35c00098f75880ead9e458f22d libgo/go/html/template/url.go acc5e4eff8396c29ef5a0b00631ccc85 libgo/go/html/template/url_test.go b8e3e850bc2ef573b9c8357230fd22a8 libgo/go/image/color/color.go --- 45971,45978 ---- 8a90f9992b1507eee221abbf31a5a8b1 libgo/go/html/template/html_test.go 714e48f1a876c4b0960a95710f767ae3 libgo/go/html/template/js.go 4e672f8f9eedec591899270ea1a1fae2 libgo/go/html/template/js_test.go ! 5e5eefc26e0f6286baccea773cf2f02b libgo/go/html/template/template.go ! 7545c64ecdd5aaeb0b4a701fc3c2fc60 libgo/go/html/template/transition.go bef0cd35c00098f75880ead9e458f22d libgo/go/html/template/url.go acc5e4eff8396c29ef5a0b00631ccc85 libgo/go/html/template/url_test.go b8e3e850bc2ef573b9c8357230fd22a8 libgo/go/image/color/color.go *************** bf6650b45f2f8f92510e1c9e7ac025b8 libgo/ *** 46030,46052 **** 02460115d1a897aee600ac628fb33a33 libgo/go/image/draw/draw_test.go 91f7e3b36da731f28e70ac5c62d0d597 libgo/go/image/format.go 9380d7454f4046f06fc2d5c208151f78 libgo/go/image/geom.go ! acc606e8da825cf4e34fb6e92f683436 libgo/go/image/gif/reader.go 440ee93ac77462bef4173cd97fae4bf4 libgo/go/image/image.go 6b2448f0fcaf5e41f57d433a0c5687c3 libgo/go/image/image_test.go ee8a7ac38086663340a0d3cb021fe92c libgo/go/image/jpeg/dct_test.go ba14c236db1bc45cc63d90ddf161877e libgo/go/image/jpeg/fdct.go c7202c270b55cc3ce4c73f2fa531d7c3 libgo/go/image/jpeg/huffman.go 2f5a5cac3c1826aa5f4df8b8108ebeb6 libgo/go/image/jpeg/idct.go ! 88d0db539332047957a9b8ad1d51b24e libgo/go/image/jpeg/reader.go ! 06e46c89daa2754a2dd0f3942987c2df libgo/go/image/jpeg/reader_test.go ! 3dbc09a42453fba0dd6c03777ebad4b5 libgo/go/image/jpeg/scan.go 8575865f448d39beb28a6d593ee76082 libgo/go/image/jpeg/writer.go ! b2c98b8dfe427b41984d18d0d371c036 libgo/go/image/jpeg/writer_test.go 1813b521ce4d162c7510499308c51b86 libgo/go/image/names.go 6c6c71a7fbf844a4b7e2c7e30b137070 libgo/go/image/png/paeth.go b28ff874fcfdab0532ce47eb2684feff libgo/go/image/png/paeth_test.go ! 9b96ed944779cba58f9f0e1ba0e18f57 libgo/go/image/png/reader.go ! ee127290bdd05c30b7bcf696db2aaa3e libgo/go/image/png/reader_test.go a17c493ff9606bdfb9f8ed3e71aa7043 libgo/go/image/png/testdata/invalid-crc32.png 324cdba273cb831902d87464f65b1551 libgo/go/image/png/testdata/invalid-noend.png 2b0ef2e6e70a1fc5ca3ee835aac93240 libgo/go/image/png/testdata/invalid-trunc.png --- 45986,46009 ---- 02460115d1a897aee600ac628fb33a33 libgo/go/image/draw/draw_test.go 91f7e3b36da731f28e70ac5c62d0d597 libgo/go/image/format.go 9380d7454f4046f06fc2d5c208151f78 libgo/go/image/geom.go ! dafd9d5a7823abcc6dec60723ce922ae libgo/go/image/gif/reader.go ! bc55f594e5641f3f8db5f1e3bd5b3e73 libgo/go/image/gif/reader_test.go 440ee93ac77462bef4173cd97fae4bf4 libgo/go/image/image.go 6b2448f0fcaf5e41f57d433a0c5687c3 libgo/go/image/image_test.go ee8a7ac38086663340a0d3cb021fe92c libgo/go/image/jpeg/dct_test.go ba14c236db1bc45cc63d90ddf161877e libgo/go/image/jpeg/fdct.go c7202c270b55cc3ce4c73f2fa531d7c3 libgo/go/image/jpeg/huffman.go 2f5a5cac3c1826aa5f4df8b8108ebeb6 libgo/go/image/jpeg/idct.go ! a8c884030d42c5fd0995b1216042d7d2 libgo/go/image/jpeg/reader.go ! 208445d95af0dd2adf1f1e62da378819 libgo/go/image/jpeg/reader_test.go ! 3d17051221e871f23ca71cb985a96c11 libgo/go/image/jpeg/scan.go 8575865f448d39beb28a6d593ee76082 libgo/go/image/jpeg/writer.go ! c554f2493133e5b2125d5f214e3307fb libgo/go/image/jpeg/writer_test.go 1813b521ce4d162c7510499308c51b86 libgo/go/image/names.go 6c6c71a7fbf844a4b7e2c7e30b137070 libgo/go/image/png/paeth.go b28ff874fcfdab0532ce47eb2684feff libgo/go/image/png/paeth_test.go ! 9dd07bb8dfcef56066fa317ff25b6c04 libgo/go/image/png/reader.go ! 8fe076bdcb0c311e81a6836d490f7e2d libgo/go/image/png/reader_test.go a17c493ff9606bdfb9f8ed3e71aa7043 libgo/go/image/png/testdata/invalid-crc32.png 324cdba273cb831902d87464f65b1551 libgo/go/image/png/testdata/invalid-noend.png 2b0ef2e6e70a1fc5ca3ee835aac93240 libgo/go/image/png/testdata/invalid-trunc.png *************** c87d2371dc6f02c473cf3e4d834a9919 libgo/ *** 46091,46097 **** e573c18a6e0be2e8578a3a14f47eb072 libgo/go/image/png/testdata/pngsuite/basn6a08.sng dd80078058a6e4b47966ab66d8a91f6e libgo/go/image/png/testdata/pngsuite/basn6a16.png e83e8da292b780bb0c1e25f72774c780 libgo/go/image/png/testdata/pngsuite/basn6a16.sng ! 6a0d29088eb5ea42456e82f1479490d7 libgo/go/image/png/writer.go 0b44efb9c61c661c48c17b87665a5b4e libgo/go/image/png/writer_test.go 4525d5eeca18697cbb6af6a1ed405666 libgo/go/image/testdata/video-001.5bpp.gif 0d1dcfe8299c392e3bb3c1a11a939706 libgo/go/image/testdata/video-001.gif --- 46048,46054 ---- e573c18a6e0be2e8578a3a14f47eb072 libgo/go/image/png/testdata/pngsuite/basn6a08.sng dd80078058a6e4b47966ab66d8a91f6e libgo/go/image/png/testdata/pngsuite/basn6a16.png e83e8da292b780bb0c1e25f72774c780 libgo/go/image/png/testdata/pngsuite/basn6a16.sng ! a155de979af0a4c1ae497710d045654f libgo/go/image/png/writer.go 0b44efb9c61c661c48c17b87665a5b4e libgo/go/image/png/writer_test.go 4525d5eeca18697cbb6af6a1ed405666 libgo/go/image/testdata/video-001.5bpp.gif 0d1dcfe8299c392e3bb3c1a11a939706 libgo/go/image/testdata/video-001.gif *************** af5a9f0665487352d0b002299ff14722 libgo/ *** 46118,46142 **** 466c92d784f128354149655cd726bb4d libgo/go/index/suffixarray/qsufsort.go c18aefee1b7e8ebf602a98c849c4845b libgo/go/index/suffixarray/suffixarray.go 7d0ba82fe0d46991d857dffb8403c6f6 libgo/go/index/suffixarray/suffixarray_test.go ! 9df28dbd695d0819edeff0c4cb46b78e libgo/go/io/io.go ! 6d74e1b9b0b4367a8b994c51c7a29bf2 libgo/go/io/io_test.go 39043cd316434f3b2bb9d850ca4162c2 libgo/go/io/ioutil/blackhole.go ! 1bf90b0a99583432f55edab337b2e177 libgo/go/io/ioutil/ioutil.go ! ad740eb6026fe4d185470c2f0059a51f libgo/go/io/ioutil/ioutil_test.go 812c05ca6dcce97f409cb5ed99d5be94 libgo/go/io/ioutil/tempfile.go ! 585759c9af7741dc86427105d1725044 libgo/go/io/ioutil/tempfile_test.go fd73854b88109e799217b8ccaaa5c79a libgo/go/io/multi.go 11c6dbc25beb014bd988519c28564e85 libgo/go/io/multi_test.go fb7dce31ce7b4f8173df507ca663a91f libgo/go/io/pipe.go b75b7e96196456b7d80c7ea307d19ee1 libgo/go/io/pipe_test.go 3ce5c0b9e4f6c7d14276a4dfb202206e libgo/go/log/log.go 32a5f59cb1aa5fe7ea8a60016571564f libgo/go/log/log_test.go ! 14c92fa3afb8c0d0aa339ceb3b6a47e3 libgo/go/log/syslog/syslog.go 539acc0320961711b88dbcc4b9cb3e49 libgo/go/log/syslog/syslog_c.c ! ec57e379db2ab018db3fd5d8fa001be9 libgo/go/log/syslog/syslog_libc.go 66e268293325840fb3a57f3d6d614a72 libgo/go/log/syslog/syslog_plan9.go ! c7590df4e9a6ac66c1550679b9647d18 libgo/go/log/syslog/syslog_test.go ! a372cbdde7f0c56febf963a2eabc9b08 libgo/go/log/syslog/syslog_unix.go c2d1b18fade6d1d57fb11dd2ca8ad37f libgo/go/log/syslog/syslog_windows.go 70df85639bee856fbbeeea8cce5cd98c libgo/go/math/abs.go c6ab241c7424e1181f13469dbd95555b libgo/go/math/acosh.go --- 46075,46099 ---- 466c92d784f128354149655cd726bb4d libgo/go/index/suffixarray/qsufsort.go c18aefee1b7e8ebf602a98c849c4845b libgo/go/index/suffixarray/suffixarray.go 7d0ba82fe0d46991d857dffb8403c6f6 libgo/go/index/suffixarray/suffixarray_test.go ! c04d4deb4f1e1dfe2d9b8cc85236ce50 libgo/go/io/io.go ! cda25124da62f3858ce18dc4b3bb6309 libgo/go/io/io_test.go 39043cd316434f3b2bb9d850ca4162c2 libgo/go/io/ioutil/blackhole.go ! 6fd03a4c3ea6840b1e8da7b78e137b33 libgo/go/io/ioutil/ioutil.go ! 63ed9cb1cba20f3251490e2140b79f0d libgo/go/io/ioutil/ioutil_test.go 812c05ca6dcce97f409cb5ed99d5be94 libgo/go/io/ioutil/tempfile.go ! a8aa7a8af68bdeda2bf5959f816c4b11 libgo/go/io/ioutil/tempfile_test.go fd73854b88109e799217b8ccaaa5c79a libgo/go/io/multi.go 11c6dbc25beb014bd988519c28564e85 libgo/go/io/multi_test.go fb7dce31ce7b4f8173df507ca663a91f libgo/go/io/pipe.go b75b7e96196456b7d80c7ea307d19ee1 libgo/go/io/pipe_test.go 3ce5c0b9e4f6c7d14276a4dfb202206e libgo/go/log/log.go 32a5f59cb1aa5fe7ea8a60016571564f libgo/go/log/log_test.go ! 9f855eff29c15aef1f1c2ad4f3203f9f libgo/go/log/syslog/syslog.go 539acc0320961711b88dbcc4b9cb3e49 libgo/go/log/syslog/syslog_c.c ! 698968d133a7919feeff9b0d93009b84 libgo/go/log/syslog/syslog_libc.go 66e268293325840fb3a57f3d6d614a72 libgo/go/log/syslog/syslog_plan9.go ! 374dae5a130e470ff3e8ecc1a06b0c3f libgo/go/log/syslog/syslog_test.go ! 0c99261202d00062e9c2049166832a88 libgo/go/log/syslog/syslog_unix.go c2d1b18fade6d1d57fb11dd2ca8ad37f libgo/go/log/syslog/syslog_windows.go 70df85639bee856fbbeeea8cce5cd98c libgo/go/math/abs.go c6ab241c7424e1181f13469dbd95555b libgo/go/math/acosh.go *************** a38c5d81ae7b5fa0749743a1f6d19480 libgo/ *** 46152,46163 **** a53d4ed46d3182e690f0adb196af3fd3 libgo/go/math/big/calibrate_test.go 765d334931ed789796732be1ba73ac91 libgo/go/math/big/gcd_test.go fb40193bf8426b322ecf298d83723925 libgo/go/math/big/hilbert_test.go ! ff1a8b8fb02b6ceb1d1984a919f05035 libgo/go/math/big/int.go 2442fd7e312a1bb61c8debd879502ca0 libgo/go/math/big/int_test.go ! cbc6da77fa75e32803bd272004a67361 libgo/go/math/big/nat.go 042e79f43b30ac8075baa4f4dbef8e0c libgo/go/math/big/nat_test.go ! 1ddc01f4ba202d73e6c72e2c506538f4 libgo/go/math/big/rat.go ! b277233aa1bf405a55e3b024ed410580 libgo/go/math/big/rat_test.go b8f8d551d454105eccf779d82f4d7021 libgo/go/math/bits.go e753134baf49d1948892ff5afc379346 libgo/go/math/cbrt.go 400bac022849ee5bc5e3e03de5e2d076 libgo/go/math/cmplx/abs.go --- 46109,46120 ---- a53d4ed46d3182e690f0adb196af3fd3 libgo/go/math/big/calibrate_test.go 765d334931ed789796732be1ba73ac91 libgo/go/math/big/gcd_test.go fb40193bf8426b322ecf298d83723925 libgo/go/math/big/hilbert_test.go ! 2d38208eef8ecbb58bd9654c61c1a066 libgo/go/math/big/int.go 2442fd7e312a1bb61c8debd879502ca0 libgo/go/math/big/int_test.go ! 6d64795cde88247d9f7a3e349475783b libgo/go/math/big/nat.go 042e79f43b30ac8075baa4f4dbef8e0c libgo/go/math/big/nat_test.go ! e651dbb85ce20b458e42cad033f118ef libgo/go/math/big/rat.go ! bc8ceb1065ed346e24b779a1cddd8b4c libgo/go/math/big/rat_test.go b8f8d551d454105eccf779d82f4d7021 libgo/go/math/bits.go e753134baf49d1948892ff5afc379346 libgo/go/math/cbrt.go 400bac022849ee5bc5e3e03de5e2d076 libgo/go/math/cmplx/abs.go *************** d9c695137b161c02243586e4033c50ed libgo/ *** 46185,46191 **** bbefd764c349866598d34f7fd55ea82f libgo/go/math/floor.go 4822cff972ca61cb955c6f6a36c2cc62 libgo/go/math/frexp.go e55cda522bae63719e41b30bfc9bf4d2 libgo/go/math/gamma.go ! 00a4840d67b096ea52ac17c8c36ed0dc libgo/go/math/hypot.go 3c26065f9ab149e5b4ac85c73345b81f libgo/go/math/j0.go 996f7a09e4911e9bfde8e409d21eb941 libgo/go/math/j1.go 5207d294e2575bf317b39496857f11a5 libgo/go/math/jn.go --- 46142,46148 ---- bbefd764c349866598d34f7fd55ea82f libgo/go/math/floor.go 4822cff972ca61cb955c6f6a36c2cc62 libgo/go/math/frexp.go e55cda522bae63719e41b30bfc9bf4d2 libgo/go/math/gamma.go ! 99b6843725de4108099d5616fe1e1a33 libgo/go/math/hypot.go 3c26065f9ab149e5b4ac85c73345b81f libgo/go/math/j0.go 996f7a09e4911e9bfde8e409d21eb941 libgo/go/math/j1.go 5207d294e2575bf317b39496857f11a5 libgo/go/math/jn.go *************** f775349b41104ab1d9a5796356f75fd6 libgo/ *** 46200,46229 **** 6d416862337dd783e5fe560d1bd25322 libgo/go/math/nextafter.go 5c3b8630645320c3a5fc598aafe8cc09 libgo/go/math/pow.go 2cf31073c2b9d9b72520fe905306e01a libgo/go/math/pow10.go ! d70271f80ee53872eab2d1cb3fccd16d libgo/go/math/rand/exp.go ! 4ceb375bcec25f3e93eb163737922ce7 libgo/go/math/rand/normal.go 2cb1bd55876053c07cc54d8813cf0f03 libgo/go/math/rand/rand.go 6e5b1e595cf6f3f3804540f049d6f7f3 libgo/go/math/rand/rand_test.go b4f4533d25b4cd45e295b792a74b6cfd libgo/go/math/rand/rng.go ! 1fb7d541ce47fef81f679febdb8eae97 libgo/go/math/rand/zipf.go 3cea1b096bfc0ae8e50c71e452de8781 libgo/go/math/remainder.go be95fcee6784fe2c493051d6ca0c6dab libgo/go/math/signbit.go 22e5f10716c58937384715d063c84876 libgo/go/math/sin.go d2805fa534e69599e42a65a62211a791 libgo/go/math/sincos.go 6c193bb2ec61202105f16f3e7937855b libgo/go/math/sinh.go ! e16db6155203df6ead837102952aa750 libgo/go/math/sqrt.go f105380c8b2240aa9e113eee1d360ac2 libgo/go/math/tan.go ! 8f23084519cce184a99f851204948a3c libgo/go/math/tanh.go 4103ff95b1987b7619ca55fad881ed7f libgo/go/math/unsafe.go c0dba3f73fc42783c1ebeceb96d7f7d3 libgo/go/mime/grammar.go 7ed03e1f91d8a0846f74902002cef0ac libgo/go/mime/mediatype.go 3401cf15d704a1d71138552bdc88e284 libgo/go/mime/mediatype_test.go 853bb2a637cc10fcf9f220516279a63b libgo/go/mime/multipart/formdata.go 517c3e018d5a285925a0b5a0dd58db0c libgo/go/mime/multipart/formdata_test.go ! 7929e55b1c0656b7ff5a49858dbb18e3 libgo/go/mime/multipart/multipart.go d4b9c7c160c8571e6ad8a2da1fc4f211 libgo/go/mime/multipart/multipart_test.go ! 136d564ccfe3e0f0ea5005ae5f49d4cc libgo/go/mime/multipart/quotedprintable.go ! 42bf713a72e87b3f9b5e538b5730479f libgo/go/mime/multipart/quotedprintable_test.go ea13f3c87e9a921a7368f85cd6ae67d3 libgo/go/mime/multipart/testdata/nested-mime a871fe0e86933fceee9528b92ee91e70 libgo/go/mime/multipart/writer.go f5f35288335bbf460ecea13d214d7461 libgo/go/mime/multipart/writer_test.go --- 46157,46186 ---- 6d416862337dd783e5fe560d1bd25322 libgo/go/math/nextafter.go 5c3b8630645320c3a5fc598aafe8cc09 libgo/go/math/pow.go 2cf31073c2b9d9b72520fe905306e01a libgo/go/math/pow10.go ! df6b820f38f3fc266144d16294666cad libgo/go/math/rand/exp.go ! f494cbe6b2548dae6f26cf4fb4a03b3a libgo/go/math/rand/normal.go 2cb1bd55876053c07cc54d8813cf0f03 libgo/go/math/rand/rand.go 6e5b1e595cf6f3f3804540f049d6f7f3 libgo/go/math/rand/rand_test.go b4f4533d25b4cd45e295b792a74b6cfd libgo/go/math/rand/rng.go ! d7c428be7b9ff40cc8f775cc2c3faa95 libgo/go/math/rand/zipf.go 3cea1b096bfc0ae8e50c71e452de8781 libgo/go/math/remainder.go be95fcee6784fe2c493051d6ca0c6dab libgo/go/math/signbit.go 22e5f10716c58937384715d063c84876 libgo/go/math/sin.go d2805fa534e69599e42a65a62211a791 libgo/go/math/sincos.go 6c193bb2ec61202105f16f3e7937855b libgo/go/math/sinh.go ! b2bad273c2c631885de3f597d5ad0920 libgo/go/math/sqrt.go f105380c8b2240aa9e113eee1d360ac2 libgo/go/math/tan.go ! e3e199dca9ef50f00e69d686f499c2a1 libgo/go/math/tanh.go 4103ff95b1987b7619ca55fad881ed7f libgo/go/math/unsafe.go c0dba3f73fc42783c1ebeceb96d7f7d3 libgo/go/mime/grammar.go 7ed03e1f91d8a0846f74902002cef0ac libgo/go/mime/mediatype.go 3401cf15d704a1d71138552bdc88e284 libgo/go/mime/mediatype_test.go 853bb2a637cc10fcf9f220516279a63b libgo/go/mime/multipart/formdata.go 517c3e018d5a285925a0b5a0dd58db0c libgo/go/mime/multipart/formdata_test.go ! 7d16da40a97bdc7a6906b38ecb871948 libgo/go/mime/multipart/multipart.go d4b9c7c160c8571e6ad8a2da1fc4f211 libgo/go/mime/multipart/multipart_test.go ! 5952f52304e66b1488865f5d76cd2fec libgo/go/mime/multipart/quotedprintable.go ! b603bd24dc1127464a51cb6a041b9382 libgo/go/mime/multipart/quotedprintable_test.go ea13f3c87e9a921a7368f85cd6ae67d3 libgo/go/mime/multipart/testdata/nested-mime a871fe0e86933fceee9528b92ee91e70 libgo/go/mime/multipart/writer.go f5f35288335bbf460ecea13d214d7461 libgo/go/mime/multipart/writer_test.go *************** d7c2d693b83d74f542553f24afe3d013 libgo/ *** 46231,46247 **** d7c2d693b83d74f542553f24afe3d013 libgo/go/mime/testdata/test.types 3d321dd07ed1f050dc6b5d369dbf6cbb libgo/go/mime/type.go e3df6cfc265614b31497785ff24ccf18 libgo/go/mime/type_test.go ! 2f99d9170e2df11835c0400ccc4abde5 libgo/go/mime/type_unix.go ! 69abca603b910cbbf1991f4fe240e85c libgo/go/mime/type_windows.go 496554648ab29c59b41b58e50f93b548 libgo/go/net/cgo_bsd.go b6395bdea68e046bf9dd254af52bf07a libgo/go/net/cgo_linux.go 1be35ee90ee1d78a6b0f799de20637bd libgo/go/net/cgo_netbsd.go b4ed7a0f94cf6dd1e6880945cf815013 libgo/go/net/cgo_openbsd.go b2eecf9f58beeebac876f9f7cf9e736f libgo/go/net/cgo_stub.go ! efbbcc9216074f66560958bb4598ad76 libgo/go/net/cgo_unix.go ! a32a9fa5015dffd36ed8afbefef9c757 libgo/go/net/conn_test.go ! 256d13e9f65af3d5270ae4c50ed1b2bb libgo/go/net/dial.go ! d4e1258514d747a8d7909b78d90be0ce libgo/go/net/dial_test.go e11a07c03a09039262cbbd096cc0ed3a libgo/go/net/dialgoogle_test.go e0814a75ac8373858c1a78957e9ab259 libgo/go/net/dnsclient.go 6fd6e0cb4a0bb3a9722bdec1246f33a9 libgo/go/net/dnsclient_unix.go --- 46188,46205 ---- d7c2d693b83d74f542553f24afe3d013 libgo/go/mime/testdata/test.types 3d321dd07ed1f050dc6b5d369dbf6cbb libgo/go/mime/type.go e3df6cfc265614b31497785ff24ccf18 libgo/go/mime/type_test.go ! 71cdc56313a74021be855c9ab12ce11f libgo/go/mime/type_unix.go ! 126df331f5154c877617198be163dc79 libgo/go/mime/type_windows.go 496554648ab29c59b41b58e50f93b548 libgo/go/net/cgo_bsd.go b6395bdea68e046bf9dd254af52bf07a libgo/go/net/cgo_linux.go 1be35ee90ee1d78a6b0f799de20637bd libgo/go/net/cgo_netbsd.go b4ed7a0f94cf6dd1e6880945cf815013 libgo/go/net/cgo_openbsd.go b2eecf9f58beeebac876f9f7cf9e736f libgo/go/net/cgo_stub.go ! 5922b9c03cb7a9ae369ae14ce58bafbc libgo/go/net/cgo_unix.go ! 67bed6c6b4c147ae3272c5ff618df231 libgo/go/net/conn_test.go ! 766f30518c7c38deb05f01fa2ef6cdad libgo/go/net/dial.go ! d885d0cf482b1d9c1a8fc9dbce53df55 libgo/go/net/dial_gen.go ! f2eceb6302458d0237d727252c31b873 libgo/go/net/dial_test.go e11a07c03a09039262cbbd096cc0ed3a libgo/go/net/dialgoogle_test.go e0814a75ac8373858c1a78957e9ab259 libgo/go/net/dnsclient.go 6fd6e0cb4a0bb3a9722bdec1246f33a9 libgo/go/net/dnsclient_unix.go *************** e0814a75ac8373858c1a78957e9ab259 libgo/ *** 46249,46432 **** 756757ea37b305f2cb85b33813eb6c53 libgo/go/net/dnsmsg.go 978c04416e1c16d816259d7e1f4990d5 libgo/go/net/dnsmsg_test.go 149a1c254b62a74ae730ffb20a2cf763 libgo/go/net/dnsname_test.go ! f04d99eb1e511e4d0ee0200f5242e83e libgo/go/net/fd_bsd.go ! dd4e3097056357b6d512b0e32fbb2b47 libgo/go/net/fd_linux.go ! f2145f676a42d5c1f19fcec5ca8d1fd6 libgo/go/net/fd_plan9.go 2291a3c081b075e8519795e5d1aa8e09 libgo/go/net/fd_posix_test.go 243f24ac2a87c14fa0c539725022068b libgo/go/net/fd_select.go ! dbcda3f5b1cd66d11d0c163101e3816c libgo/go/net/fd_unix.go ! 2800d916f139babc1d047f12acd44ac7 libgo/go/net/fd_unix_test.go ! 928f6f8e768356755058995291f3f977 libgo/go/net/fd_windows.go ! 26e2d02fe9259784c9a8dcfa1e73b2c5 libgo/go/net/file_plan9.go ! 8f3e185e60ff729f6fa00059bfe75d3d libgo/go/net/file_test.go fda43a58593624d1adc039d4da63e3a9 libgo/go/net/file_unix.go ! 11543a50d361433a59490967733e1525 libgo/go/net/file_windows.go 7c2cfdb5bb78affbf11aad3590499503 libgo/go/net/hosts.go 66d618dc9acb461080a44ea79da230b0 libgo/go/net/hosts_test.go 77e1fec0f3af1cf49701683f11039637 libgo/go/net/hosts_testdata a85420107020d629d16974bb2c56f078 libgo/go/net/http/cgi/child.go b7c1c46fef07cc8145e99cca3ecc6e52 libgo/go/net/http/cgi/child_test.go b29019bb8ac585422325eb11fcb16b27 libgo/go/net/http/cgi/host.go ! ba67d2d6dd5afdb9bb1b83fac73c75b1 libgo/go/net/http/cgi/host_test.go 3f687a6ca8d76fff8bef0354ff830099 libgo/go/net/http/cgi/matryoshka_test.go ! b0e5bb57d5b859463b21031f85b2fb1a libgo/go/net/http/cgi/testdata/test.cgi cc2bf8ae55726b96eeb3c7a0c502b6bf libgo/go/net/http/chunked.go fc94c54a8e160a8d9f4ad9d746b8127f libgo/go/net/http/chunked_test.go ! 1dd3f8a4a384beffc130c3d8ea109c08 libgo/go/net/http/client.go ! 997b9e0abaa622262c410ea16793279f libgo/go/net/http/client_test.go 6a09f3137e3eba83323a2ad92bafb317 libgo/go/net/http/cookie.go f7505a1b6228b8731ef2cd5abbbfa001 libgo/go/net/http/cookie_test.go 406e6a0ccd19be89e69d3291b6f96a75 libgo/go/net/http/doc.go ! 778d41cd8dca3f3df405132185e07480 libgo/go/net/http/example_test.go ! 6fbbeda23fab82b0cb53feed7903d530 libgo/go/net/http/export_test.go ! 09c23dda363bea5710dba899797d2500 libgo/go/net/http/fcgi/child.go d2dd73ca9dff93f07ddcf480c17d4608 libgo/go/net/http/fcgi/fcgi.go cfdf9f6b03cfb8bc5067889e8328c84a libgo/go/net/http/fcgi/fcgi_test.go c8f8c881b2b45eb49806f8d2598ab02c libgo/go/net/http/filetransport.go ! c977abea8a6b03d9f790d2f3b90b744f libgo/go/net/http/filetransport_test.go 0f81a968e4ea0ceaeb66738a406325e5 libgo/go/net/http/fs.go ! f2c88c6bc563ca84cdd8d533e16354bd libgo/go/net/http/fs_test.go ! ac9465f619cf564fe829c1ec8ba65754 libgo/go/net/http/header.go ! 3336adf775e139e484f64c63cc87fd30 libgo/go/net/http/header_test.go 25a0928250edebf147e2cdd7656a63d7 libgo/go/net/http/httptest/recorder.go 157624fe94f7a3aa51a1e41b9aecbcc5 libgo/go/net/http/httptest/recorder_test.go ! 113a0ae2af0c5f0ed672ed39aee9b53e libgo/go/net/http/httptest/server.go 5ad12e068971bc75db8d4ba7db389296 libgo/go/net/http/httptest/server_test.go 14e4dcc7cf6db23e5f55d61d10b49271 libgo/go/net/http/httputil/chunked.go 76996baf8c192cf6345de6cb14123862 libgo/go/net/http/httputil/chunked_test.go 415df8dd0077e50b5a4b8c57c12c79be libgo/go/net/http/httputil/dump.go ! 0683536b4ea0dfeff31744617ea0af04 libgo/go/net/http/httputil/dump_test.go ae7a48bacf762048c72a70d62cf25805 libgo/go/net/http/httputil/persist.go ! 953c9b1c9ba7f7b12caad7a3d1ffbb52 libgo/go/net/http/httputil/reverseproxy.go ! 47ee0e5a776a1f15014994a440371b1f libgo/go/net/http/httputil/reverseproxy_test.go ! 91dc2cfc0b29ee561c085e851eb34a9b libgo/go/net/http/jar.go efca29558454c70aec3ffdb1a40312b9 libgo/go/net/http/lex.go 60842caf5b062524ccf8bbf2fea18d84 libgo/go/net/http/lex_test.go ! be8cd5b05eaa7f9eb6ffaa010c134edf libgo/go/net/http/pprof/pprof.go c37ac60c86f5111cf53983311368cf03 libgo/go/net/http/proxy_test.go e79bfc5725423d1946ef557edc738faa libgo/go/net/http/range_test.go 0701600740fc8f8d502410b8e4aca7a3 libgo/go/net/http/readrequest_test.go ! 8fc3efb993dca258e7b035ceafc3c982 libgo/go/net/http/request.go ! f0c18eb5b99925b9e6a60043b35b7b78 libgo/go/net/http/request_test.go ! 999d0839d672106fec8bfc2ca80e69e3 libgo/go/net/http/requestwrite_test.go ! 198498daf89e314f703692c5e065e84f libgo/go/net/http/response.go ! 4a1e868017d582ad1b82580b0b31fa82 libgo/go/net/http/response_test.go 83d0a74c47454c41f9cb4cdc5587b8ee libgo/go/net/http/responsewrite_test.go ! 0e581d96533d0bd7a0a1e98fe1478a3d libgo/go/net/http/serve_test.go ! 9a2df522212ba18d9f5ecf85731a8897 libgo/go/net/http/server.go ! 38ff71ae4b684a82b624b738c4f7b5d7 libgo/go/net/http/server_test.go 305fbe2c3e9d6bd7cd71b0de1f482fe0 libgo/go/net/http/sniff.go ! bde83bcd44e8d81f429a06d91f1b9f29 libgo/go/net/http/sniff_test.go ! db3e9a59c89e51fb018c8cac6787d939 libgo/go/net/http/status.go 3749f52bb326ae96782b42dc0a97b4c1 libgo/go/net/http/testdata/file 39bf3a5cbcd978e0d9a9bab0f27787b4 libgo/go/net/http/testdata/index.html 746f7bd76da133c7035108d0053a7e79 libgo/go/net/http/testdata/style.css ! 4fa62b11db397ce1384e195e2d933c9b libgo/go/net/http/transfer.go a74a79a79e580c944a3fd41ce77c0335 libgo/go/net/http/transfer_test.go ! 5b24e4eb98fdab46acafd20c84f623e1 libgo/go/net/http/transport.go ! 2ff79aeebb3876562cf7425d0bc8670a libgo/go/net/http/transport_test.go 3e2d83926f658967180e34ebd76e9de5 libgo/go/net/http/triv.go ! a2209175cb7b0d91717df706b1efdb7b libgo/go/net/interface.go ! 0b7d185e7c3d9b9cbe8e649157fa0098 libgo/go/net/interface_bsd.go ! c5b43dfe35a43fee6c2b25600d178c26 libgo/go/net/interface_darwin.go ! 41682fb9695d34dba2a8f8743fd61b70 libgo/go/net/interface_freebsd.go ! 79212e1856e369f128ccce0a039bb054 libgo/go/net/interface_linux.go ! 722fbf6d83dd0c9d48e224adcb9e04a4 libgo/go/net/interface_netbsd.go ! 71ca95bb3c70392640a56baa034d1876 libgo/go/net/interface_openbsd.go ! 8e2517d72e724ac03c70701e0ea007a4 libgo/go/net/interface_stub.go ! 4083437c0bbfeded2892c92ae4a8725e libgo/go/net/interface_test.go ! bf1a753a1d0ab10a5d25628019181d62 libgo/go/net/interface_windows.go ! 3fee57038a8e127a238885cbd2ed2ba6 libgo/go/net/ip.go ! d15d9d97f02c2c43f2e4c7d8b825babc libgo/go/net/ip_test.go ! 0988bdc00ec9e10e96550eb3103aac83 libgo/go/net/ipraw_test.go ! 175d6bb8ba2b0e1eb71a410cdf980e42 libgo/go/net/iprawsock.go ! 6d178db814854009587657a7210edb8c libgo/go/net/iprawsock_plan9.go ! 29dd7dbc5ad4a7e1eb4cfe7bd5ee6964 libgo/go/net/iprawsock_posix.go ! 34ff44412c3d4523371fae30e138f3d7 libgo/go/net/ipsock.go ! 81e65a7fb6572a8d5691f705f3f3bffe libgo/go/net/ipsock_plan9.go 55bebb48f2b5fec1e1f2cc916210a435 libgo/go/net/ipsock_posix.go 9da659ff957275145d58cba329712c02 libgo/go/net/lookup.go ! 9e095af4aab67ceef275f09d5a9381d6 libgo/go/net/lookup_plan9.go a64eb8cc11e3df5771cd4712f13effd0 libgo/go/net/lookup_test.go 76e72610f90a060445f751b5966cdcec libgo/go/net/lookup_unix.go ! f188b65acedef96a0bb7a3fab219547b libgo/go/net/lookup_windows.go a6e3a6266c3dfdb3d9df1babe1dd921e libgo/go/net/mac.go 59f014c6c4c19e49807c77369c842fd5 libgo/go/net/mac_test.go 6b1e781b26939ed4746aa1f0061b4a43 libgo/go/net/mail/message.go 227289f49c0e0fe9929f659aa9d37838 libgo/go/net/mail/message_test.go ! 3cc78f50fefa7744edcb195f4bd89d0a libgo/go/net/multicast_posix_test.go ! ee874b1d9d587d61c5a00173b7063f88 libgo/go/net/net.go ! e065e9131348ab978c76ed3520859e83 libgo/go/net/net_test.go e0d88f0e247dd2e2f739414f8c061e7a libgo/go/net/newpollserver_rtems.go ! 9213c4ffbde22507f59959268967a608 libgo/go/net/newpollserver_unix.go ! ef82d4c3dc54f8bd7589cc6f4a6f2ef4 libgo/go/net/packetconn_test.go 99c6c0c634f841cfa8a42435ae62a596 libgo/go/net/parse.go bfa8d742381ad62ddc680e65e4398f35 libgo/go/net/parse_test.go fa468a061a49a449d89780ffbcd1eb2d libgo/go/net/pipe.go bd551efce9ea7bb3c69f43483201285f libgo/go/net/pipe_test.go 26ed1a0b748dcf192327d05f8cbb9ecb libgo/go/net/port.go ! 8f501eabcc3f3f7615cd7a37bf22c01b libgo/go/net/port_test.go 6966b583a0fb7eae5e112bb9f9896abd libgo/go/net/port_unix.go ! 50dec00c0435dc56866cb367e6422cf0 libgo/go/net/protoconn_test.go ! 22f9c993486a959b1862fe2d887acdb8 libgo/go/net/rpc/client.go e9a72102a30228998957257c4b098ce3 libgo/go/net/rpc/debug.go ! 5744f64b3a367482d19bd91bd0dedc32 libgo/go/net/rpc/jsonrpc/all_test.go ! de453f7f22d1dc711db99323e40b93a6 libgo/go/net/rpc/jsonrpc/client.go c0a47ec1a9c44e6b17e0672b590bbcc6 libgo/go/net/rpc/jsonrpc/server.go fc304c3a041d67993a6b83e4bcee0acc libgo/go/net/rpc/server.go ! 7042336f8ad64ac0c71b09737f4dbec2 libgo/go/net/rpc/server_test.go ! b4984eee541188e5ace94df78cd6d728 libgo/go/net/sendfile_freebsd.go ! 73f51cb8a8c223584887ffb702866a69 libgo/go/net/sendfile_linux.go fdf6f04d0ebfc6f5c4744538fdcd6907 libgo/go/net/sendfile_stub.go d156fbdb63b445c5b828d651d3b0c707 libgo/go/net/sendfile_windows.go ! 55793ed654dcdf08cba3cdde61592fe3 libgo/go/net/server_test.go ! 6b6ea9bdf38621a73c1de3707c9f07b4 libgo/go/net/smtp/auth.go 03e376da342331b8f0775b076d51aa8b libgo/go/net/smtp/smtp.go ! 72fd2d31d26c49fe4530940b962ccd1d libgo/go/net/smtp/smtp_test.go ! 589ee93df0de60981a88ef49e53e84b5 libgo/go/net/sock_bsd.go ! 59a9c7c206334c89df9e394e2331c529 libgo/go/net/sock_cloexec.go ! 7b66581bf39c642d3abee4ba2223501b libgo/go/net/sock_linux.go ! 39d945a7010a35daa3bfce5db5ee2d03 libgo/go/net/sock_posix.go ! 561b4fdfc56ecfb4f7314eb308d777e7 libgo/go/net/sock_solaris.go ! 9611161978e177e3c5b9013861a9dd35 libgo/go/net/sock_windows.go 4fc7c4a3bc67a6b33218911c3572f137 libgo/go/net/sockopt_bsd.go 74d0ff74997ec52005cff1428069c956 libgo/go/net/sockopt_linux.go ! 7358be15ddb495de31378c445c85bb03 libgo/go/net/sockopt_posix.go ! 9c4186293ed1a28e06b0677598e4eee4 libgo/go/net/sockopt_windows.go 86207d6a4883e9d0abfb29e5fe858e1f libgo/go/net/sockoptip_bsd.go c57f2ca3a916675122d8a6bf1e47d3e9 libgo/go/net/sockoptip_linux.go 5e4309101269b9db639e219027177d69 libgo/go/net/sockoptip_posix.go 25859711682b50feb790555ee5338c4c libgo/go/net/sockoptip_windows.go ! 81b770c9efc1d6eced4881e50fdd5f58 libgo/go/net/sys_cloexec.go ! f8c08ac7e71659cfceb26189ca015c0c libgo/go/net/tcp_test.go ! 3079eff13c172325d35c501aa1400d98 libgo/go/net/tcpsock.go ! e74fe0f7aa33cd58665bac0fff1bd005 libgo/go/net/tcpsock_plan9.go ! 5a9f71f6a3af92c41aaf10772396c057 libgo/go/net/tcpsock_posix.go 77e1fec0f3af1cf49701683f11039637 libgo/go/net/testdata/hosts 2ed3fc440e799eb489bd3308adff0e57 libgo/go/net/testdata/igmp 4ffe1a59695f13c8a17af741b859aa19 libgo/go/net/testdata/igmp6 f6c31a5377b60103bcffa338a3a383b0 libgo/go/net/textproto/header.go 71eb9da4b09fd32732ea13103fb0a83e libgo/go/net/textproto/pipeline.go ! 684a2ae293cff6792b271543ace82a00 libgo/go/net/textproto/reader.go ! de406dfdaf91bf0ed3f219cf35dec1a8 libgo/go/net/textproto/reader_test.go ! 300f4de23f56ed17085200311f0961c9 libgo/go/net/textproto/textproto.go 7d349e55162c24d7987cf4a349aa117f libgo/go/net/textproto/writer.go 3abbd1cc26c974b1cc48fc5feb96c014 libgo/go/net/textproto/writer_test.go ! be16e8f8f25598387fa560b87232a7e1 libgo/go/net/timeout_test.go ! 4d01b737c446f3b0b96ca5d04310d251 libgo/go/net/udp_test.go ! 67f98686dcc1a75754022688ef09bf45 libgo/go/net/udpsock.go ! da7aab23e39789b91bc71bca78282835 libgo/go/net/udpsock_plan9.go ! 52e8a5ade0f35868bafe9949b78d040f libgo/go/net/udpsock_posix.go ! 6a3b3046b96391129a129255dca18045 libgo/go/net/unicast_posix_test.go ! a9851dd8bf3d853131939b53e42c51a1 libgo/go/net/unixsock.go ! 7612a9f879f844bd4b9c481711b7c2e8 libgo/go/net/unixsock_plan9.go ! ea6ae39891a060fbc42c8d88d378efa4 libgo/go/net/unixsock_posix.go ! 919f5ce29d0acd7e58911b6b49fea910 libgo/go/net/url/url.go ! fd0085b40c1b0fbade2a8131d7c38911 libgo/go/net/url/url_test.go ! d8e50193613456ffcc3b6cf18104614d libgo/go/old/netchan/common.go ! ce4e7b4df8943a8e4e0e8f47046b51dc libgo/go/old/netchan/export.go ! e06b97c57c35cb381429277d5219b19c libgo/go/old/netchan/import.go ! a8d71f94558b709d8b450e6a736e5305 libgo/go/old/netchan/netchan_test.go 9cfadd1d128099cb7a8f837bdcacb8b3 libgo/go/old/regexp/all_test.go 15dab3e6f2a006513f8410404c1b7322 libgo/go/old/regexp/find_test.go 3dc6bd0bc3717c1fd4807ff1de9f45a2 libgo/go/old/regexp/regexp.go --- 46207,46395 ---- 756757ea37b305f2cb85b33813eb6c53 libgo/go/net/dnsmsg.go 978c04416e1c16d816259d7e1f4990d5 libgo/go/net/dnsmsg_test.go 149a1c254b62a74ae730ffb20a2cf763 libgo/go/net/dnsname_test.go ! 13ea04fdd29fa39a5d319757ed3ea7de libgo/go/net/fd_bsd.go ! 845b513a8b4b7df06f219a1c1b7b2845 libgo/go/net/fd_plan9.go ! 5cc6c58a2bb6b732e37d9580d27d592f libgo/go/net/fd_poll_runtime.go ! 45ddf432d806270398b3d0136f2a735c libgo/go/net/fd_poll_unix.go 2291a3c081b075e8519795e5d1aa8e09 libgo/go/net/fd_posix_test.go 243f24ac2a87c14fa0c539725022068b libgo/go/net/fd_select.go ! 3e3f56ee8c1c4f88955a5c20f1a927e9 libgo/go/net/fd_unix.go ! b8ab16260ae58511b97a69561541cf9e libgo/go/net/fd_unix_test.go ! 18eb3f4b649f51d82d71193237d61ce2 libgo/go/net/fd_windows.go ! 7fdcbfcfa2e3daaf8c4f24b6a873cf5b libgo/go/net/file_plan9.go ! 3c6033a1af7b9eaf4a55c29fe3181843 libgo/go/net/file_test.go fda43a58593624d1adc039d4da63e3a9 libgo/go/net/file_unix.go ! d6c8049bece451d461a9a91f248e1773 libgo/go/net/file_windows.go 7c2cfdb5bb78affbf11aad3590499503 libgo/go/net/hosts.go 66d618dc9acb461080a44ea79da230b0 libgo/go/net/hosts_test.go 77e1fec0f3af1cf49701683f11039637 libgo/go/net/hosts_testdata a85420107020d629d16974bb2c56f078 libgo/go/net/http/cgi/child.go b7c1c46fef07cc8145e99cca3ecc6e52 libgo/go/net/http/cgi/child_test.go b29019bb8ac585422325eb11fcb16b27 libgo/go/net/http/cgi/host.go ! 2808668afe532885429b35f2d83940c9 libgo/go/net/http/cgi/host_test.go 3f687a6ca8d76fff8bef0354ff830099 libgo/go/net/http/cgi/matryoshka_test.go ! 15916237881c26dbdd88c6464608d191 libgo/go/net/http/cgi/posix_test.go ! d06f3c03c91097f03e646f5c29fa2bf2 libgo/go/net/http/cgi/testdata/test.cgi cc2bf8ae55726b96eeb3c7a0c502b6bf libgo/go/net/http/chunked.go fc94c54a8e160a8d9f4ad9d746b8127f libgo/go/net/http/chunked_test.go ! 3d2e81be77379d3321bd4ef30445739d libgo/go/net/http/client.go ! 9c5fd300d659064236ff22eb3850edac libgo/go/net/http/client_test.go 6a09f3137e3eba83323a2ad92bafb317 libgo/go/net/http/cookie.go f7505a1b6228b8731ef2cd5abbbfa001 libgo/go/net/http/cookie_test.go + 09a9481a5441006bf3472b29504acf17 libgo/go/net/http/cookiejar/jar.go + 297bc6c05c9ff31981119a605bfec77d libgo/go/net/http/cookiejar/jar_test.go + c4f5243d0fadf992024b5c7bc6adde2f libgo/go/net/http/cookiejar/punycode.go + fabfb997332db4db285c4a3beaa6d742 libgo/go/net/http/cookiejar/punycode_test.go 406e6a0ccd19be89e69d3291b6f96a75 libgo/go/net/http/doc.go ! 7d19946ecfe66533411d8c9afcf28069 libgo/go/net/http/example_test.go ! 67baaf356bdd0308a459d1bd43f0c734 libgo/go/net/http/export_test.go ! 366b5e5d70903613b9ce9fd1755c5b83 libgo/go/net/http/fcgi/child.go d2dd73ca9dff93f07ddcf480c17d4608 libgo/go/net/http/fcgi/fcgi.go cfdf9f6b03cfb8bc5067889e8328c84a libgo/go/net/http/fcgi/fcgi_test.go c8f8c881b2b45eb49806f8d2598ab02c libgo/go/net/http/filetransport.go ! 2bf97b4fbbfe4b8828ad513902192c85 libgo/go/net/http/filetransport_test.go 0f81a968e4ea0ceaeb66738a406325e5 libgo/go/net/http/fs.go ! 94b7a388ecac8bbd3e64aa5e717f9797 libgo/go/net/http/fs_test.go ! d081fc6184adfa3cd58ae7926240407b libgo/go/net/http/header.go ! 106a86acfa4be754368da8a30940cf91 libgo/go/net/http/header_test.go 25a0928250edebf147e2cdd7656a63d7 libgo/go/net/http/httptest/recorder.go 157624fe94f7a3aa51a1e41b9aecbcc5 libgo/go/net/http/httptest/recorder_test.go ! dcc3551260dbaa32f16ccc8af1545796 libgo/go/net/http/httptest/server.go 5ad12e068971bc75db8d4ba7db389296 libgo/go/net/http/httptest/server_test.go 14e4dcc7cf6db23e5f55d61d10b49271 libgo/go/net/http/httputil/chunked.go 76996baf8c192cf6345de6cb14123862 libgo/go/net/http/httputil/chunked_test.go 415df8dd0077e50b5a4b8c57c12c79be libgo/go/net/http/httputil/dump.go ! 7b4faef4dccbb21acbec453c59e44125 libgo/go/net/http/httputil/dump_test.go ae7a48bacf762048c72a70d62cf25805 libgo/go/net/http/httputil/persist.go ! c3fe7f010bcea63ef6e6d9899d121631 libgo/go/net/http/httputil/reverseproxy.go ! 25ec04ff578e6a665d9efd2d13f7b4c6 libgo/go/net/http/httputil/reverseproxy_test.go ! 0f1b2ae9b087721dc8d532479b919c2e libgo/go/net/http/jar.go efca29558454c70aec3ffdb1a40312b9 libgo/go/net/http/lex.go 60842caf5b062524ccf8bbf2fea18d84 libgo/go/net/http/lex_test.go ! 8dbdb3a4284f75baff2b3d1493826481 libgo/go/net/http/npn_test.go ! 4faa593d40710e166d940442bacd78c4 libgo/go/net/http/pprof/pprof.go c37ac60c86f5111cf53983311368cf03 libgo/go/net/http/proxy_test.go e79bfc5725423d1946ef557edc738faa libgo/go/net/http/range_test.go 0701600740fc8f8d502410b8e4aca7a3 libgo/go/net/http/readrequest_test.go ! ee9630c2621fd45ea33e67b8cdacdc13 libgo/go/net/http/request.go ! 6c33affe2831d872e909f81043aebb6d libgo/go/net/http/request_test.go ! 1c6276a25161953821a6dc7ea8750354 libgo/go/net/http/requestwrite_test.go ! 7bc24508742656a33ce1354987ef0c44 libgo/go/net/http/response.go ! aac90a00eb1d9cedbd7a4af23df66089 libgo/go/net/http/response_test.go 83d0a74c47454c41f9cb4cdc5587b8ee libgo/go/net/http/responsewrite_test.go ! ea26214b913b132baf61fdfcbe15ae4d libgo/go/net/http/serve_test.go ! 2503481b317006ede3182e7e5c44ac62 libgo/go/net/http/server.go ! 0a4e44dc4ddffd44df16f337fd6ac2d6 libgo/go/net/http/server_test.go 305fbe2c3e9d6bd7cd71b0de1f482fe0 libgo/go/net/http/sniff.go ! 4e24d1590fafbed9f9e9a1ea26972aa1 libgo/go/net/http/sniff_test.go ! a689808b134c81d79172149abca0eb69 libgo/go/net/http/status.go 3749f52bb326ae96782b42dc0a97b4c1 libgo/go/net/http/testdata/file 39bf3a5cbcd978e0d9a9bab0f27787b4 libgo/go/net/http/testdata/index.html 746f7bd76da133c7035108d0053a7e79 libgo/go/net/http/testdata/style.css ! 0899581683533bdf93339c99d1e09f80 libgo/go/net/http/transfer.go a74a79a79e580c944a3fd41ce77c0335 libgo/go/net/http/transfer_test.go ! f9d3c35f9054abc93ce3a1d0ce0e0a13 libgo/go/net/http/transport.go ! 5e36f54598196b637d27749dee36340b libgo/go/net/http/transport_test.go 3e2d83926f658967180e34ebd76e9de5 libgo/go/net/http/triv.go ! 8cb3407690a974e54d51a77c45ab12fe libgo/go/net/http/z_last_test.go ! efabef0179db561bc170c5eb18b98579 libgo/go/net/interface.go ! ba25c3761cdd3f2c5021cc1652ce5338 libgo/go/net/interface_bsd.go ! 2c3b7883c5b04d3feecb7d4df95f053b libgo/go/net/interface_darwin.go ! 9b4be8a58495585a44e5ac4344f87e80 libgo/go/net/interface_freebsd.go ! ce94fdf18502cb66f636e28301af8d75 libgo/go/net/interface_linux.go ! 3e38b81345aec4e4a1de552ab08c01f5 libgo/go/net/interface_netbsd.go ! 3e38b81345aec4e4a1de552ab08c01f5 libgo/go/net/interface_openbsd.go ! 17e42c31189dd5f7ae40c06b80f05c87 libgo/go/net/interface_stub.go ! 2df71b735c9534cccc4e5faa4d32fc75 libgo/go/net/interface_test.go ! bfb1a4e423cb4451ab8f60667afda923 libgo/go/net/interface_windows.go ! ec179d07ef0e80b9c2b9bffb44e5606e libgo/go/net/ip.go ! 28b1fa77d079c3fd2408c37eab2a2e5b libgo/go/net/ip_test.go ! 0748046001e14691c00396e80c19d0d9 libgo/go/net/ipraw_test.go ! 20a7287430ea787e45f4ca700fa35ec0 libgo/go/net/iprawsock.go ! fd1dacaf0f9896fbc9a70bbd7e1519c5 libgo/go/net/iprawsock_plan9.go ! 39baaec1e59a9c1dafe9ca4f2658ed9f libgo/go/net/iprawsock_posix.go ! bbd3b4acaf0a3f72df21fd2bcd6ca9b6 libgo/go/net/ipsock.go ! 7df6717b54fa269b9bbeb5a7b76ebfe1 libgo/go/net/ipsock_plan9.go 55bebb48f2b5fec1e1f2cc916210a435 libgo/go/net/ipsock_posix.go 9da659ff957275145d58cba329712c02 libgo/go/net/lookup.go ! b976e19e4763794dac7115b4e5d0c6e5 libgo/go/net/lookup_plan9.go a64eb8cc11e3df5771cd4712f13effd0 libgo/go/net/lookup_test.go 76e72610f90a060445f751b5966cdcec libgo/go/net/lookup_unix.go ! e5541f69bd01aa8a1e78a0d414624f5a libgo/go/net/lookup_windows.go a6e3a6266c3dfdb3d9df1babe1dd921e libgo/go/net/mac.go 59f014c6c4c19e49807c77369c842fd5 libgo/go/net/mac_test.go 6b1e781b26939ed4746aa1f0061b4a43 libgo/go/net/mail/message.go 227289f49c0e0fe9929f659aa9d37838 libgo/go/net/mail/message_test.go ! b4da8348d8d6a476841930f686e12f8f libgo/go/net/multicast_test.go ! 81492b4635490b168e57aae270d954fd libgo/go/net/net.go ! acd2caf017e50d805ec2a4d067251cb1 libgo/go/net/net_test.go e0d88f0e247dd2e2f739414f8c061e7a libgo/go/net/newpollserver_rtems.go ! 99534de5dca1e0ee98ef601f84e011f1 libgo/go/net/packetconn_test.go 99c6c0c634f841cfa8a42435ae62a596 libgo/go/net/parse.go bfa8d742381ad62ddc680e65e4398f35 libgo/go/net/parse_test.go fa468a061a49a449d89780ffbcd1eb2d libgo/go/net/pipe.go bd551efce9ea7bb3c69f43483201285f libgo/go/net/pipe_test.go 26ed1a0b748dcf192327d05f8cbb9ecb libgo/go/net/port.go ! ab0aaaf92ff580933dde8c746976a493 libgo/go/net/port_test.go 6966b583a0fb7eae5e112bb9f9896abd libgo/go/net/port_unix.go ! 3634d5dfb0b34b0059ae591842cce2fb libgo/go/net/protoconn_test.go ! ae96a37fe4be8a09438740c550021c6d libgo/go/net/rpc/client.go e9a72102a30228998957257c4b098ce3 libgo/go/net/rpc/debug.go ! 19ec8e99f22edf2e024da6ad1031a68a libgo/go/net/rpc/jsonrpc/all_test.go ! 8158fae2d374b0fdc2ef914bc6cb3233 libgo/go/net/rpc/jsonrpc/client.go c0a47ec1a9c44e6b17e0672b590bbcc6 libgo/go/net/rpc/jsonrpc/server.go fc304c3a041d67993a6b83e4bcee0acc libgo/go/net/rpc/server.go ! 65cad83291c3fd29a18a409b7df88458 libgo/go/net/rpc/server_test.go ! cb6ab719a1d6b9f08d27140eadb6b9c3 libgo/go/net/sendfile_freebsd.go ! 42008277ecd1853f171945f2948e35de libgo/go/net/sendfile_linux.go fdf6f04d0ebfc6f5c4744538fdcd6907 libgo/go/net/sendfile_stub.go d156fbdb63b445c5b828d651d3b0c707 libgo/go/net/sendfile_windows.go ! cef4264a47cefa004f5e175cd61a71f7 libgo/go/net/server_test.go ! c5f1bf7407965a76d59082fa2afcc9d5 libgo/go/net/smtp/auth.go 03e376da342331b8f0775b076d51aa8b libgo/go/net/smtp/smtp.go ! 17bbf3c29dc421949de1e1c2503d14c9 libgo/go/net/smtp/smtp_test.go ! 6f28d255d393731343a6e251c7ea9381 libgo/go/net/sock_bsd.go ! b7809a49bb42bbff0df0467d1699c599 libgo/go/net/sock_cloexec.go ! 45082421d718d334c470c16af2b3fcff libgo/go/net/sock_linux.go ! 5fbeb3c9bc0380420527fe4afb8ef18b libgo/go/net/sock_posix.go ! f8f5a9e88f9443ec8596967848736326 libgo/go/net/sock_solaris.go ! 4170a1aaada6a8afd452088f636295bb libgo/go/net/sock_unix.go ! a8409ec83a58f09218e5c7c293eaca30 libgo/go/net/sock_windows.go 4fc7c4a3bc67a6b33218911c3572f137 libgo/go/net/sockopt_bsd.go 74d0ff74997ec52005cff1428069c956 libgo/go/net/sockopt_linux.go ! 386ddb9b5facc69b8bd08333255278c1 libgo/go/net/sockopt_posix.go ! 33fb48601d717c50a5ff25183e79638c libgo/go/net/sockopt_windows.go 86207d6a4883e9d0abfb29e5fe858e1f libgo/go/net/sockoptip_bsd.go c57f2ca3a916675122d8a6bf1e47d3e9 libgo/go/net/sockoptip_linux.go 5e4309101269b9db639e219027177d69 libgo/go/net/sockoptip_posix.go 25859711682b50feb790555ee5338c4c libgo/go/net/sockoptip_windows.go ! 0d24741c8c28778e4ae5543dabce746c libgo/go/net/sys_cloexec.go ! 923fc9d7e94eaac60bc38d8d69adae5e libgo/go/net/tcp_test.go ! e8790dabc6cf899164185f327b4c78c1 libgo/go/net/tcpsock.go ! 49e77bd5deaa45c1df2b0c3a6a46c10e libgo/go/net/tcpsock_plan9.go ! b847d661d9b5a94ea5a8b31f14d0b3e4 libgo/go/net/tcpsock_posix.go 77e1fec0f3af1cf49701683f11039637 libgo/go/net/testdata/hosts 2ed3fc440e799eb489bd3308adff0e57 libgo/go/net/testdata/igmp 4ffe1a59695f13c8a17af741b859aa19 libgo/go/net/testdata/igmp6 f6c31a5377b60103bcffa338a3a383b0 libgo/go/net/textproto/header.go 71eb9da4b09fd32732ea13103fb0a83e libgo/go/net/textproto/pipeline.go ! 01248de7e0917b63ef2ae6df6b4cc123 libgo/go/net/textproto/reader.go ! a5efcd3567269b6b712f6fe02fe92466 libgo/go/net/textproto/reader_test.go ! b7530ab701f1e80c6238b1183b429d57 libgo/go/net/textproto/textproto.go 7d349e55162c24d7987cf4a349aa117f libgo/go/net/textproto/writer.go 3abbd1cc26c974b1cc48fc5feb96c014 libgo/go/net/textproto/writer_test.go ! 5049983b430e910eb7971392fe2a00ce libgo/go/net/timeout_test.go ! c26152b57d875b83dee6ae2a557baa3b libgo/go/net/udp_test.go ! 387556bfb5bef14885f310f89c661dd8 libgo/go/net/udpsock.go ! cd0ba7099b3b75b67b476f036b597f35 libgo/go/net/udpsock_plan9.go ! d190429e78181db7bb18740edb4b24cb libgo/go/net/udpsock_posix.go ! 4669c828243ac8fcc25343d7316b4671 libgo/go/net/unicast_posix_test.go ! 45c5da227f07d993b60f4a5785e44fa7 libgo/go/net/unix_test.go ! 9ae171a6754e253e554a0eaaf94e99c1 libgo/go/net/unixsock.go ! 83dfafaa0b9e022564598b3759089ca1 libgo/go/net/unixsock_plan9.go ! ac28b21ed6582e7989c815d4acfd246d libgo/go/net/unixsock_posix.go ! 1160e8ded2f129ed1107ff66c77b9d4d libgo/go/net/url/url.go ! e51347001fab6bd47cb354a7b0405d86 libgo/go/net/url/url_test.go 9cfadd1d128099cb7a8f837bdcacb8b3 libgo/go/old/regexp/all_test.go 15dab3e6f2a006513f8410404c1b7322 libgo/go/old/regexp/find_test.go 3dc6bd0bc3717c1fd4807ff1de9f45a2 libgo/go/old/regexp/regexp.go *************** d53a8079cb71aaa953526fd13f2ffc32 libgo/ *** 46440,46471 **** d3cfe6799a6a88601cd99a34802996f0 libgo/go/os/dir_plan9.go b47df6ca79c22ddb073dbc1929d03c3d libgo/go/os/dir_regfile.go d4495adc13f84cdd9d94d94bcf750627 libgo/go/os/dir_unix.go ! b94c14345b963743e6450feb9be1f79f libgo/go/os/doc.go 88dc00dc418fbb6312ef00f24ccfff64 libgo/go/os/env.go c7045ec245a7cd258a7fe3bee3463898 libgo/go/os/env_test.go 55932fed2b5947891a67de79968dcce4 libgo/go/os/error.go 35726928fd2fe3a155ce6f500441c301 libgo/go/os/error_plan9.go a73e30615101d187e6e9422fff8885ff libgo/go/os/error_posix.go 5c16c64c93f2e09570889476ebedbffa libgo/go/os/error_test.go 55169cfdfd3549152c02af2a128ee7d8 libgo/go/os/error_windows.go 164c49701a8d3c084783aa8f19209f3c libgo/go/os/exec.go ! d62b6ed5d21da46a9fa801cb7935abf6 libgo/go/os/exec/exec.go ! e1ccfea95574057500d41a28a7c3397d libgo/go/os/exec/exec_test.go ! 931716bd9105ad8d0c166d61b4eed28e libgo/go/os/exec/lp_plan9.go 41619b7d87d5ecc522bc2eafadf2f303 libgo/go/os/exec/lp_test.go ! 43a2264f4f38ee9a91b2b0fbdff917e7 libgo/go/os/exec/lp_unix.go ! 5b068237af521405f44c3293db8368f5 libgo/go/os/exec/lp_windows.go ce0c864511363631511bba8868bc7e50 libgo/go/os/exec_plan9.go ! 58ba43c4c3556a7c030985b122030590 libgo/go/os/exec_posix.go dcdfa389da32f8c701e7d6e62666aca3 libgo/go/os/exec_unix.go 02ff68c1af8f3975143e5aff7aad834d libgo/go/os/exec_windows.go 8ecdb9cc8d9e1eab60d58b404a56b8af libgo/go/os/export_test.go bc4ce817a921e59720ac4701f0abd986 libgo/go/os/file.go ! c73dcaf2ea3517edc629cf94aaf64f3f libgo/go/os/file_plan9.go ! 8b2f609d8dc3e4803edee9d85e85365b libgo/go/os/file_posix.go ! cae3f4f6fedcba5c13c166686b4d06ff libgo/go/os/file_unix.go ! da0d2d254396b18e806b5b975b03dca9 libgo/go/os/getwd.go ! b41c958dfec0ecba400cc07da3a6de9d libgo/go/os/os_test.go 5d5a079650c8eba17c214d242b513f43 libgo/go/os/os_unix_test.go 34b27033c046dfe443248a5909079e8c libgo/go/os/path.go 9b0b6a889ba031f93daacf0ba65cd5e3 libgo/go/os/path_plan9.go --- 46403,46436 ---- d3cfe6799a6a88601cd99a34802996f0 libgo/go/os/dir_plan9.go b47df6ca79c22ddb073dbc1929d03c3d libgo/go/os/dir_regfile.go d4495adc13f84cdd9d94d94bcf750627 libgo/go/os/dir_unix.go ! 17e47dddb6878509e3b963e0a7713561 libgo/go/os/doc.go 88dc00dc418fbb6312ef00f24ccfff64 libgo/go/os/env.go c7045ec245a7cd258a7fe3bee3463898 libgo/go/os/env_test.go + 907ae02cc8e98243da700d5314656bfb libgo/go/os/env_unix_test.go 55932fed2b5947891a67de79968dcce4 libgo/go/os/error.go 35726928fd2fe3a155ce6f500441c301 libgo/go/os/error_plan9.go a73e30615101d187e6e9422fff8885ff libgo/go/os/error_posix.go 5c16c64c93f2e09570889476ebedbffa libgo/go/os/error_test.go 55169cfdfd3549152c02af2a128ee7d8 libgo/go/os/error_windows.go 164c49701a8d3c084783aa8f19209f3c libgo/go/os/exec.go ! 9031f5edbdab614b6f449b8ebfbf2ea3 libgo/go/os/exec/exec.go ! 797224628a2a34dc6a857de806cd7ad8 libgo/go/os/exec/exec_test.go ! 0812d10dd09260508f703c1be192af4c libgo/go/os/exec/lp_plan9.go 41619b7d87d5ecc522bc2eafadf2f303 libgo/go/os/exec/lp_test.go ! 5c94270336efaa243dd2218b8b4e2db4 libgo/go/os/exec/lp_unix.go ! 60551dbe93b0ba3f75e0bad401d5a73f libgo/go/os/exec/lp_unix_test.go ! f835b6974deb35cf0c711529dad4bbf3 libgo/go/os/exec/lp_windows.go ce0c864511363631511bba8868bc7e50 libgo/go/os/exec_plan9.go ! 455b1106eaf4de8894a92ce9ca14c681 libgo/go/os/exec_posix.go dcdfa389da32f8c701e7d6e62666aca3 libgo/go/os/exec_unix.go 02ff68c1af8f3975143e5aff7aad834d libgo/go/os/exec_windows.go 8ecdb9cc8d9e1eab60d58b404a56b8af libgo/go/os/export_test.go bc4ce817a921e59720ac4701f0abd986 libgo/go/os/file.go ! ccaac58f417b10941b80b0a6405051f5 libgo/go/os/file_plan9.go ! f2bfa772fc528615475aef83d80f3f8e libgo/go/os/file_posix.go ! 557bd8cbda53442d1826c4332cee8ea9 libgo/go/os/file_unix.go ! 7e4cfbbfb6bce7045803f9369ff7d586 libgo/go/os/getwd.go ! 2114609c30808b2c3e3e552755c8148c libgo/go/os/os_test.go 5d5a079650c8eba17c214d242b513f43 libgo/go/os/os_unix_test.go 34b27033c046dfe443248a5909079e8c libgo/go/os/path.go 9b0b6a889ba031f93daacf0ba65cd5e3 libgo/go/os/path_plan9.go *************** e51071aa9651571b2bdfc40398322e88 libgo/ *** 46475,46495 **** e4ea3dd1291113adf3964ef6a05ed381 libgo/go/os/pipe_bsd.go 203760c2f9bdd038dcef96f85a91ce33 libgo/go/os/pipe_linux.go c0dd1a60a6489d9dd955553409eb39ba libgo/go/os/proc.go ! 4f7ca2811ba7a177ddad8e736628506f libgo/go/os/signal/signal.go ! f47358ca3019033b02bfb8ffdc5f4328 libgo/go/os/signal/signal_stub.go ! 1cb6de57484b7700774d385230419c1e libgo/go/os/signal/signal_test.go ! 78b6cd69de85e9595d46dcee7370c268 libgo/go/os/signal/signal_unix.go ! 4aec448a43893509b078be5723a21607 libgo/go/os/stat.go ! 294b2a99943da85bd78489f1d935c33e libgo/go/os/stat_atim.go ! 69291e1a15bf6719f2fd7efa820c9209 libgo/go/os/stat_atimespec.go ! c27013fad383590909ffac5af8d14c32 libgo/go/os/stat_plan9.go ! b832a1c4e7e472f52b43f755a1a6fdb3 libgo/go/os/stat_solaris.go c30c409cc856527ee480915cec43f7a6 libgo/go/os/str.go c4f9d4533ade955f43aff1a1984bc7a3 libgo/go/os/sys_bsd.go ce9d201edac3356b112501276aa1c207 libgo/go/os/sys_linux.go 48f91a4fd8049ea550cd900cf26f7ac7 libgo/go/os/sys_plan9.go 5194f71f4857c5fa33c16697535e5a8b libgo/go/os/sys_uname.go ! d7c9b98a6e7e0e853fd8ccdef2fbfc8e libgo/go/os/types.go db3053584bf91d6884adf98b27ee6863 libgo/go/os/user/lookup.go 064450b3e9758745b95ef0db481ab985 libgo/go/os/user/lookup_stubs.go fec0f268168f34645576d8aed234ad82 libgo/go/os/user/lookup_unix.go --- 46440,46462 ---- e4ea3dd1291113adf3964ef6a05ed381 libgo/go/os/pipe_bsd.go 203760c2f9bdd038dcef96f85a91ce33 libgo/go/os/pipe_linux.go c0dd1a60a6489d9dd955553409eb39ba libgo/go/os/proc.go ! afc79bf9c8f01fd757a85c3020eb2f4d libgo/go/os/signal/signal.go ! b37dad28fc575ce562a4dcfa6abd4e4a libgo/go/os/signal/signal_stub.go ! 7b11db9ff69f87d97fbc8652cade084a libgo/go/os/signal/signal_test.go ! 003bf69bdbe3213079ee3928575d999d libgo/go/os/signal/signal_unix.go ! f211e42998bec3b1f2baa3ce330e3127 libgo/go/os/stat.go ! a57f209191526a307dbdaa07fa40228e libgo/go/os/stat_atim.go ! 6a164dafc74926adff43d1d924a079b7 libgo/go/os/stat_atimespec.go ! 3ee0472ca354e3382548c0e9fa8d1fad libgo/go/os/stat_plan9.go ! 01a83df87d89120c07c9f8b5363cf632 libgo/go/os/stat_solaris.go c30c409cc856527ee480915cec43f7a6 libgo/go/os/str.go c4f9d4533ade955f43aff1a1984bc7a3 libgo/go/os/sys_bsd.go ce9d201edac3356b112501276aa1c207 libgo/go/os/sys_linux.go 48f91a4fd8049ea550cd900cf26f7ac7 libgo/go/os/sys_plan9.go 5194f71f4857c5fa33c16697535e5a8b libgo/go/os/sys_uname.go ! 0a841f2ce9240ad927b733a840638608 libgo/go/os/types.go ! 39bc59500c2bd7a918eafb9ee2322c70 libgo/go/os/types_notwin.go ! 1877a110aba03c54d5dd1e2e2051d970 libgo/go/os/types_windows.go db3053584bf91d6884adf98b27ee6863 libgo/go/os/user/lookup.go 064450b3e9758745b95ef0db481ab985 libgo/go/os/user/lookup_stubs.go fec0f268168f34645576d8aed234ad82 libgo/go/os/user/lookup_unix.go *************** b0f66bc2784096265986651077811fe0 libgo/ *** 46497,46531 **** 7a204eaa296233e925699f02af5f1903 libgo/go/os/user/user.go 3cf855d00a40873236f2d3c13ec2e416 libgo/go/os/user/user_test.go d2fa63df751f87329213c36aef50f90d libgo/go/path/example_test.go ca197b7907e5ce9820272cb74f16d429 libgo/go/path/filepath/match.go ! 6fd91aec2c49f04a5c52958071f0927d libgo/go/path/filepath/match_test.go ! 7a0e6af0c5dfe70993f6dc7e0275783e libgo/go/path/filepath/path.go ! ff4fa0df86610d02bc0a61bd16b42a55 libgo/go/path/filepath/path_plan9.go ! 04be5bf857f43aaa67770935db04e708 libgo/go/path/filepath/path_test.go ! 72b33d6c5265de73fdca2a874f47813d libgo/go/path/filepath/path_unix.go ! 9f87cd3ea027b77a2a276e219b697fc5 libgo/go/path/filepath/path_windows.go 877f3ac323aedd517e2049890b1a00aa libgo/go/path/filepath/symlink.go 41842a7f124d575b37df4804ccbeb572 libgo/go/path/filepath/symlink_windows.go 76f93ef3da69ffde8dbf661475937b69 libgo/go/path/match.go 2df00fe0b0ce14eeec25c553bc575dd1 libgo/go/path/match_test.go a9b0cd8b61d812401781bba857a20dd3 libgo/go/path/path.go ! a35b564b8c4aabeb54d59080191a0e8b libgo/go/path/path_test.go ! 46d955ac3d60a6f92d5416f1fb23cd9f libgo/go/reflect/all_test.go ! 05188d0b215380d68b5634ef30683a56 libgo/go/reflect/deepequal.go 29d842f2d2bdfc6c2ae4bc9be9c0329f libgo/go/reflect/example_test.go e2da4c8efb5a26f55d39dc5657793561 libgo/go/reflect/export_test.go ! eebfec2a9ec463a98e8a287024d29084 libgo/go/reflect/makefunc.go ! 96d3eb07c1986fab1ebc691464baea4f libgo/go/reflect/set_test.go ! de660137001e38eb0a5ee8a1ead4b25d libgo/go/reflect/tostring_test.go ! af11b539fa54bd0bc17fb0b7fd8bd02b libgo/go/reflect/type.go ! 2d6586333c132dcb23496033153ee125 libgo/go/reflect/value.go 5565b63ddbc5a3f6323d343d63483390 libgo/go/regexp/all_test.go 7d33bb173a6f906a2d9c6c5346b23683 libgo/go/regexp/exec.go ! 70b7f08c1ca83c27df33f9543d3382db libgo/go/regexp/exec_test.go 15459c9a0c3bf5eb4f80172319b21e12 libgo/go/regexp/find_test.go ! 905fad731429e6125f96c8571eee88e6 libgo/go/regexp/regexp.go 572ae5301696f04429d984e2966ef0c5 libgo/go/regexp/syntax/compile.go ! b0b6d5f1f19a5b504f4f5fe6209c052c libgo/go/regexp/syntax/doc.go 73581ebcbe4156a5f0014ad0dcc70dc8 libgo/go/regexp/syntax/parse.go 8aa481873483ba48609619bddc11f214 libgo/go/regexp/syntax/parse_test.go 9fdb72aefafddb8ca71de6e947ef6e8e libgo/go/regexp/syntax/perl_groups.go --- 46464,46504 ---- 7a204eaa296233e925699f02af5f1903 libgo/go/os/user/user.go 3cf855d00a40873236f2d3c13ec2e416 libgo/go/os/user/user_test.go d2fa63df751f87329213c36aef50f90d libgo/go/path/example_test.go + 0808ef2134f2917282fac11db7eb0a8f libgo/go/path/filepath/example_unix_test.go ca197b7907e5ce9820272cb74f16d429 libgo/go/path/filepath/match.go ! 5760a48874454dba18dcd0b17dc03895 libgo/go/path/filepath/match_test.go ! fe16342b8a912e49c713e15ce89addae libgo/go/path/filepath/path.go ! c1dfa705b62ada8ff1ea0643711ad4fa libgo/go/path/filepath/path_plan9.go ! 90d8369b2360246a3f6cd29326074e83 libgo/go/path/filepath/path_test.go ! b8c7b579291fb7f7f1ecc6cae311c864 libgo/go/path/filepath/path_unix.go ! 47a6881cbc359ff622883c13823fc4ff libgo/go/path/filepath/path_windows.go 877f3ac323aedd517e2049890b1a00aa libgo/go/path/filepath/symlink.go 41842a7f124d575b37df4804ccbeb572 libgo/go/path/filepath/symlink_windows.go 76f93ef3da69ffde8dbf661475937b69 libgo/go/path/match.go 2df00fe0b0ce14eeec25c553bc575dd1 libgo/go/path/match_test.go a9b0cd8b61d812401781bba857a20dd3 libgo/go/path/path.go ! 657b7bf3fe5388d2add9f527ba86219b libgo/go/path/path_test.go ! 1554889c539834baaa104419a5531759 libgo/go/reflect/all_test.go ! 8f251348669dda7527e857426accc42e libgo/go/reflect/deepequal.go 29d842f2d2bdfc6c2ae4bc9be9c0329f libgo/go/reflect/example_test.go e2da4c8efb5a26f55d39dc5657793561 libgo/go/reflect/export_test.go ! 30fc6877740753cc57e2edbcd87fe41b libgo/go/reflect/makefunc.go ! 3504244f1a22eb51e081b8a3ed3b79cd libgo/go/reflect/makefunc_386.S ! b76743bc61442bf07071441f60901aa5 libgo/go/reflect/makefunc_amd64.S ! 468cb0579689ce7cfc8740c481052d25 libgo/go/reflect/makefunc_dummy.c ! f686e4d2993851bc7e37788df1cb2de5 libgo/go/reflect/makefuncgo_386.go ! 075de188ed0f0393e4d9d4cc50f78796 libgo/go/reflect/makefuncgo_amd64.go ! d4f1adf34ef0a150a021f310b4cc8c92 libgo/go/reflect/set_test.go ! f85e1c21045db9a41164cb7c72373e9b libgo/go/reflect/tostring_test.go ! dd190bcdd8964d00c95581892b1baa94 libgo/go/reflect/type.go ! 6581b3a26f9573147c6a95b55cf3e6ab libgo/go/reflect/value.go 5565b63ddbc5a3f6323d343d63483390 libgo/go/regexp/all_test.go 7d33bb173a6f906a2d9c6c5346b23683 libgo/go/regexp/exec.go ! a7fb608c3c20d79213293490ae4253d3 libgo/go/regexp/exec_test.go 15459c9a0c3bf5eb4f80172319b21e12 libgo/go/regexp/find_test.go ! e4b612ec1b57b8177a966bd94b5577f0 libgo/go/regexp/regexp.go 572ae5301696f04429d984e2966ef0c5 libgo/go/regexp/syntax/compile.go ! 3fcf9cf3708f823bb528ef57e1a260be libgo/go/regexp/syntax/doc.go 73581ebcbe4156a5f0014ad0dcc70dc8 libgo/go/regexp/syntax/parse.go 8aa481873483ba48609619bddc11f214 libgo/go/regexp/syntax/parse_test.go 9fdb72aefafddb8ca71de6e947ef6e8e libgo/go/regexp/syntax/perl_groups.go *************** ce4d01bc256482203dedba6c2e6827df libgo/ *** 46541,46598 **** 7da76dd405a8ea563d9ea6b9d80003e0 libgo/go/regexp/testdata/re2-search.txt f99f99715745fe92f8a824f11d936a06 libgo/go/regexp/testdata/repetition.dat 454e3934d6cbf6640a547548f78e70b9 libgo/go/regexp/testdata/testregex.c ! 4d5cb6e025bf9dee015e29913c4ba1b2 libgo/go/runtime/append_test.go 258d2033b321dac71d448b673cca0aaf libgo/go/runtime/chan_test.go fb78502ca8f0a4bfc5b6b5dbb4ff54d5 libgo/go/runtime/closure_test.go da7bab610889763f7b61bf82534caf57 libgo/go/runtime/compiler.go e0c63ad8382340442573a02a97aebcda libgo/go/runtime/complex_test.go ! 789c2dfcf6cee4495cb888d156da2b95 libgo/go/runtime/crash_cgo_test.go ! 100bdecf99cb1f06d3275a7e8d84d10c libgo/go/runtime/crash_test.go a1901ae49125bd8264e25e14a9d76aa8 libgo/go/runtime/debug.go 3d76ef9fab05ad0eaaa98db968f76049 libgo/go/runtime/debug/stack.go ae77c568043ad52dae3d531b34a96caa libgo/go/runtime/debug/stack_test.go 13b4f536494ddae0292120bee502ca23 libgo/go/runtime/error.go ! b554a012a1b4dd8324690dfd9e1f551f libgo/go/runtime/export_test.go ! ca9867e3a833c5c3117237e623fd18d4 libgo/go/runtime/extern.go ! 2867da8c9d7d90008666cfe05ac17e66 libgo/go/runtime/gc_test.go 501f9027848bff1c755372f98af1e9ed libgo/go/runtime/iface_test.go b3ea4a5592a01d0c6cca3b72d68ec4c8 libgo/go/runtime/lfstack_test.go 810aa2ca13b8b004fa4d35dfc4e51c3c libgo/go/runtime/malloc1.go 41e279f8888c9d4470ecd41b7b5553a5 libgo/go/runtime/mallocrand.go 40163a0051bc58647384ce2e58682a1b libgo/go/runtime/mallocrep.go b6e92d42a15431c55b35d0a4c4019b38 libgo/go/runtime/mallocrep1.go ead0f729d6142a1849faf82abd4282a4 libgo/go/runtime/mem.go 46598e7be74751741e95b59244e86b31 libgo/go/runtime/mfinal_test.go f54a70faf4b2eb3411c3a395e8c38500 libgo/go/runtime/mgc0.go ! 3f5782356fdc3e75c62bc2e18b16f369 libgo/go/runtime/parfor_test.go ! f72eb1b353cdfed2e44e54e4abe628a7 libgo/go/runtime/pprof/pprof.go bd0d8e7629f676719d73fa11fe71409c libgo/go/runtime/pprof/pprof_test.go ! 832634050b6ceee471f82c7db0c2dd3e libgo/go/runtime/proc_test.go 7470d7c4510c97a7f1201bb4d239e1b5 libgo/go/runtime/runtime_test.go a386a3ce47acd70d63ec21b4810ec675 libgo/go/runtime/softfloat64.go 4578a5b629ec39d7a3769315aa733931 libgo/go/runtime/softfloat64_test.go ! aab38e6e3a6ec3ee85dcc73e5736245e libgo/go/runtime/string_test.go a3286e14a424325d853fdc6f144a98bb libgo/go/runtime/symtab_test.go 222652ebabf3e0db806ba8e1f0524799 libgo/go/runtime/type.go f7e6de8954fe597f6d66fd2cad07f37d libgo/go/runtime/vlop_arm_test.go b63664404cdfbcf94ae20bba6edb2b07 libgo/go/sort/example_interface_test.go ! 0f0cbe9bdc170ce2ab8543f2f4ff772a libgo/go/sort/example_reverse_test.go ! 1c787ee5f653758dbe940daae4ecc907 libgo/go/sort/example_test.go 5ec468d74053964b118cc04effd2611c libgo/go/sort/export_test.go 4694a81e5924029379c8cc588feda521 libgo/go/sort/search.go ! 24c69747b638dc971ecc37e456a66a95 libgo/go/sort/search_test.go ! baecedb6071576ca4776b41fd7683a7f libgo/go/sort/sort.go ! a72e52cff37c206b8e4010bb3b621cde libgo/go/sort/sort_test.go 3b6e5d583f1330de5b9e9a23151ef238 libgo/go/strconv/atob.go 8dc26af38a1817db03375830b042803d libgo/go/strconv/atob_test.go e1b53cc22ad42b6be5bd60507f05807f libgo/go/strconv/atof.go ! 15d43e542b04cfc7f7e1c9de10ccd2a1 libgo/go/strconv/atof_test.go ! 97531b9adc90b17c8f2e4497913c3722 libgo/go/strconv/atoi.go ! cfd427658b3cac23e28759dcfaada942 libgo/go/strconv/atoi_test.go a805bba7252a377d78aa640c4aeae151 libgo/go/strconv/decimal.go c8fbcf5ed89480898c8ad5a5f7e91a2f libgo/go/strconv/decimal_test.go ! 6b6b5290210f1c4cb6b020a5cca0f456 libgo/go/strconv/extfloat.go ! d08cba2773beb79fdb7701e8bb56c33f libgo/go/strconv/fp_test.go ac5cccac6c947a3067fe3a046dfc1f04 libgo/go/strconv/ftoa.go cbf3af6df021ff9783f6ac943eba8bd1 libgo/go/strconv/ftoa_test.go c85e39623b22d1a4ea56bf05e1010929 libgo/go/strconv/internal_test.go --- 46514,46576 ---- 7da76dd405a8ea563d9ea6b9d80003e0 libgo/go/regexp/testdata/re2-search.txt f99f99715745fe92f8a824f11d936a06 libgo/go/regexp/testdata/repetition.dat 454e3934d6cbf6640a547548f78e70b9 libgo/go/regexp/testdata/testregex.c ! c7cd029802a06332c6e80cbf7952c65c libgo/go/runtime/append_test.go 258d2033b321dac71d448b673cca0aaf libgo/go/runtime/chan_test.go fb78502ca8f0a4bfc5b6b5dbb4ff54d5 libgo/go/runtime/closure_test.go da7bab610889763f7b61bf82534caf57 libgo/go/runtime/compiler.go e0c63ad8382340442573a02a97aebcda libgo/go/runtime/complex_test.go ! 0d39e1736264d922891e898fcac9ac8a libgo/go/runtime/crash_cgo_test.go ! 2f7bff9e075aac85229ff081c33e5920 libgo/go/runtime/crash_test.go a1901ae49125bd8264e25e14a9d76aa8 libgo/go/runtime/debug.go + 7546f5064a61db313dedb478621a5c5f libgo/go/runtime/debug/garbage.go + bebb9eb523331f82fdae4e5d10350359 libgo/go/runtime/debug/garbage_test.go 3d76ef9fab05ad0eaaa98db968f76049 libgo/go/runtime/debug/stack.go ae77c568043ad52dae3d531b34a96caa libgo/go/runtime/debug/stack_test.go 13b4f536494ddae0292120bee502ca23 libgo/go/runtime/error.go ! 2155a42923b103952d891c9855dbd1ff libgo/go/runtime/export_test.go ! d3625d01d2368fb672dc3931557d14e1 libgo/go/runtime/extern.go ! a6a8150be8ccaf87772c943772aca949 libgo/go/runtime/gc_test.go 501f9027848bff1c755372f98af1e9ed libgo/go/runtime/iface_test.go b3ea4a5592a01d0c6cca3b72d68ec4c8 libgo/go/runtime/lfstack_test.go 810aa2ca13b8b004fa4d35dfc4e51c3c libgo/go/runtime/malloc1.go 41e279f8888c9d4470ecd41b7b5553a5 libgo/go/runtime/mallocrand.go 40163a0051bc58647384ce2e58682a1b libgo/go/runtime/mallocrep.go b6e92d42a15431c55b35d0a4c4019b38 libgo/go/runtime/mallocrep1.go + e3084662a4050399ebfe2efaa2bb6d62 libgo/go/runtime/map_test.go + 863d2cea46c2b450a159b320d255e797 libgo/go/runtime/mapspeed_test.go ead0f729d6142a1849faf82abd4282a4 libgo/go/runtime/mem.go 46598e7be74751741e95b59244e86b31 libgo/go/runtime/mfinal_test.go f54a70faf4b2eb3411c3a395e8c38500 libgo/go/runtime/mgc0.go ! 4e2614a1dd68e5aa4ba3c8ba92cace19 libgo/go/runtime/parfor_test.go ! 7f9d4eeb1072a35498debce1746a2736 libgo/go/runtime/pprof/pprof.go bd0d8e7629f676719d73fa11fe71409c libgo/go/runtime/pprof/pprof_test.go ! 3c64bdc386285bb2e447daa6986a8cf4 libgo/go/runtime/proc_test.go 7470d7c4510c97a7f1201bb4d239e1b5 libgo/go/runtime/runtime_test.go a386a3ce47acd70d63ec21b4810ec675 libgo/go/runtime/softfloat64.go 4578a5b629ec39d7a3769315aa733931 libgo/go/runtime/softfloat64_test.go ! f93f07ffe476214c1bd963adbbaa8fb2 libgo/go/runtime/string_test.go a3286e14a424325d853fdc6f144a98bb libgo/go/runtime/symtab_test.go 222652ebabf3e0db806ba8e1f0524799 libgo/go/runtime/type.go f7e6de8954fe597f6d66fd2cad07f37d libgo/go/runtime/vlop_arm_test.go b63664404cdfbcf94ae20bba6edb2b07 libgo/go/sort/example_interface_test.go ! 3f3252dbe4111789cb78e675ffe83e6d libgo/go/sort/example_keys_test.go ! 8492c9d8c16eadff053b4fc460847936 libgo/go/sort/example_multi_test.go ! 017c4dbd4912cf2f5c8f3e4fd800c529 libgo/go/sort/example_test.go 5ec468d74053964b118cc04effd2611c libgo/go/sort/export_test.go 4694a81e5924029379c8cc588feda521 libgo/go/sort/search.go ! d8c30dc3414d4afb2a3f75dbfee2fead libgo/go/sort/search_test.go ! f0ad9a3cdd60e9e58c48890f4d669588 libgo/go/sort/sort.go ! 07c31dfaac4d06deb74893a59e88aa73 libgo/go/sort/sort_test.go 3b6e5d583f1330de5b9e9a23151ef238 libgo/go/strconv/atob.go 8dc26af38a1817db03375830b042803d libgo/go/strconv/atob_test.go e1b53cc22ad42b6be5bd60507f05807f libgo/go/strconv/atof.go ! 4d184ca03b093fb2b5aa63cf579a2cba libgo/go/strconv/atof_test.go ! 3d15788b13d2f635dab8d5154e31e7c6 libgo/go/strconv/atoi.go ! db55a405ae04cd9975d2d24545fb99a6 libgo/go/strconv/atoi_test.go a805bba7252a377d78aa640c4aeae151 libgo/go/strconv/decimal.go c8fbcf5ed89480898c8ad5a5f7e91a2f libgo/go/strconv/decimal_test.go ! a2575c136cb6078022818c5cf2361bca libgo/go/strconv/extfloat.go ! 3ab6b7c459db754b33232605939abf2f libgo/go/strconv/fp_test.go ac5cccac6c947a3067fe3a046dfc1f04 libgo/go/strconv/ftoa.go cbf3af6df021ff9783f6ac943eba8bd1 libgo/go/strconv/ftoa_test.go c85e39623b22d1a4ea56bf05e1010929 libgo/go/strconv/internal_test.go *************** bd305373915aa569436bc22b3ffea17b libgo/ *** 46600,46611 **** d1f0a64a15007acef8415a4d0327a6b8 libgo/go/strconv/itoa.go e77614c3a3c467d127a839d3dc4d7635 libgo/go/strconv/itoa_test.go ac05cc1ef92b8edf4ab9f2a880a63444 libgo/go/strconv/makeisprint.go ! 477cafa1bf39b1c44cb92fd513a57bbe libgo/go/strconv/quote.go e3ffd6f808a323338092da27a96622d0 libgo/go/strconv/quote_test.go ! 3c4709de62037b55c63a34250aeca295 libgo/go/strconv/strconv_test.go dc1ca447fa01cae0bb5de6427d6aa4ae libgo/go/strconv/testdata/testfp.txt dc1ca447fa01cae0bb5de6427d6aa4ae libgo/go/strconv/testfp.txt ! 8b957128805d0c719a7093a9806042fe libgo/go/strings/example_test.go 71dc96ee07707f51b3e212e395920640 libgo/go/strings/export_test.go ee3c9dff6000295e7604fecf25ad2e0e libgo/go/strings/reader.go aaa59aae12504bf0c5822802fa06b02a libgo/go/strings/reader_test.go --- 46578,46589 ---- d1f0a64a15007acef8415a4d0327a6b8 libgo/go/strconv/itoa.go e77614c3a3c467d127a839d3dc4d7635 libgo/go/strconv/itoa_test.go ac05cc1ef92b8edf4ab9f2a880a63444 libgo/go/strconv/makeisprint.go ! 0107caee096b39e89cd951ccb4fccded libgo/go/strconv/quote.go e3ffd6f808a323338092da27a96622d0 libgo/go/strconv/quote_test.go ! 083a4d5d85246f8d8f9ae6fe6e1e837d libgo/go/strconv/strconv_test.go dc1ca447fa01cae0bb5de6427d6aa4ae libgo/go/strconv/testdata/testfp.txt dc1ca447fa01cae0bb5de6427d6aa4ae libgo/go/strconv/testfp.txt ! 0ff0f567a26406697642b37e2aea936d libgo/go/strings/example_test.go 71dc96ee07707f51b3e212e395920640 libgo/go/strings/export_test.go ee3c9dff6000295e7604fecf25ad2e0e libgo/go/strings/reader.go aaa59aae12504bf0c5822802fa06b02a libgo/go/strings/reader_test.go *************** c1bf897fe0c784f12c5e8a20ca7f5235 libgo/ *** 46613,46631 **** 5bee27c65304c026e8ab6428080e22f5 libgo/go/strings/replace_test.go 97b6e2b538f36a21a939616a937151b0 libgo/go/strings/search.go a05591c865981302f636deae83006dc9 libgo/go/strings/search_test.go ! 3e35de1957a9bb057954df0d39095089 libgo/go/strings/strings.go ! 44d9d201039b958fcadecf99ae43b83d libgo/go/strings/strings_test.go 35f930378e1e27db8321b813d28ff16b libgo/go/sync/atomic/64bit_arm.go ded39cbb5ad02e138d61f832145dd927 libgo/go/sync/atomic/atomic.c ! c9ccee72dd58bb624ccd179b4f125102 libgo/go/sync/atomic/atomic_test.go fb9ea3500df6fb5525edcc6f00eaefb4 libgo/go/sync/atomic/doc.go ! b74b93d6b2428da1157ab546e8506290 libgo/go/sync/atomic/race.go 06ece0ce3f835256b09c76b569f08853 libgo/go/sync/cas.c ! 82f9c23a1f96d9d95b4b6332fc36484e libgo/go/sync/cond.go dbf2a0d8bb38eda85dd1805590ddfd95 libgo/go/sync/cond_test.go ! 0a69deb22d0d50543a575406337747aa libgo/go/sync/example_test.go 474e69c733b0a73c606742fbb0dd6a02 libgo/go/sync/export_test.go ! f53417d684f22dc3f0aa9566ce828c17 libgo/go/sync/mutex.go d4bb70e35da223bccf407bf86e67f0eb libgo/go/sync/mutex_test.go 780f2e4f06c05135f7d159604d797049 libgo/go/sync/once.go e977328386ba4eb914492b9a1f1c75a6 libgo/go/sync/once_test.go --- 46591,46609 ---- 5bee27c65304c026e8ab6428080e22f5 libgo/go/strings/replace_test.go 97b6e2b538f36a21a939616a937151b0 libgo/go/strings/search.go a05591c865981302f636deae83006dc9 libgo/go/strings/search_test.go ! 51501e2826f6cdf941275d89e962357a libgo/go/strings/strings.go ! e966c0fbb3124b46506846e340aeb07e libgo/go/strings/strings_test.go 35f930378e1e27db8321b813d28ff16b libgo/go/sync/atomic/64bit_arm.go ded39cbb5ad02e138d61f832145dd927 libgo/go/sync/atomic/atomic.c ! e572ee435da947ad79ce120a7af92b57 libgo/go/sync/atomic/atomic_test.go fb9ea3500df6fb5525edcc6f00eaefb4 libgo/go/sync/atomic/doc.go ! b5fcebbe1e7a4ca39c8883bc858722cf libgo/go/sync/atomic/race.go 06ece0ce3f835256b09c76b569f08853 libgo/go/sync/cas.c ! 5b9094481393d913b267e57015ce8c2f libgo/go/sync/cond.go dbf2a0d8bb38eda85dd1805590ddfd95 libgo/go/sync/cond_test.go ! 065fef4bbad61d7238e6d4b0d07b5e97 libgo/go/sync/example_test.go 474e69c733b0a73c606742fbb0dd6a02 libgo/go/sync/export_test.go ! daaa3fa146bcac361522ec827feaa12c libgo/go/sync/mutex.go d4bb70e35da223bccf407bf86e67f0eb libgo/go/sync/mutex_test.go 780f2e4f06c05135f7d159604d797049 libgo/go/sync/once.go e977328386ba4eb914492b9a1f1c75a6 libgo/go/sync/once_test.go *************** e977328386ba4eb914492b9a1f1c75a6 libgo/ *** 46633,46654 **** 0c3c413bef1f9afe145d67f681aee933 libgo/go/sync/race0.go 85bdccf4b3092c1026ddf668f93fbafc libgo/go/sync/runtime.go 679687f0398a357c14fcb34400142d90 libgo/go/sync/runtime_sema_test.go ! 293a6b1dae7835ce3332d916b56ae87e libgo/go/sync/rwmutex.go ee2dd034170d9454905559770571bfd7 libgo/go/sync/rwmutex_test.go ! 7974c75cdd1a4df69fb88d3c5be61407 libgo/go/sync/waitgroup.go 8eeb4a8ec99b5ff6e419aa822b8ca17d libgo/go/sync/waitgroup_test.go 39bff060d57eb54a33c551a4ebaf81f6 libgo/go/syscall/bpf_bsd.go c0e7388cc2a06f7beb3c69526eb655fb libgo/go/syscall/creds_test.go ! 4e2ade9f4c0d0c2504e14d13d2cb5784 libgo/go/syscall/dir_plan9.go ! f69be3d8276538325d7f665345afeed9 libgo/go/syscall/env_plan9.go ! 24e833b0064aa277aca854f3ed4c5ab3 libgo/go/syscall/env_unix.go 78aaedd54f74a5d1ff7942dd39222bb3 libgo/go/syscall/env_windows.go 76cf89ba805c0ab5b30db29ee4904f3c libgo/go/syscall/errno.c ad1a8f2195caa5e7291251f65bf077cb libgo/go/syscall/errstr.go 40a11bc10500191f67601f12ca570819 libgo/go/syscall/errstr_linux.go 19670d6bf680f7f085887703e6a0ecd4 libgo/go/syscall/errstr_nor.go ! 4619236e20074bcba0401d12a99e8cd5 libgo/go/syscall/exec_bsd.go ! 5cb421778458f9b1fd030db77ee8d89a libgo/go/syscall/exec_linux.go e22586efc37ba708def40a04ba637604 libgo/go/syscall/exec_stubs.go a0065d7ef4f7572b858b7e3821f6d421 libgo/go/syscall/exec_unix.go dd24802d634b914579f941c1d3bed730 libgo/go/syscall/exec_windows.go --- 46611,46632 ---- 0c3c413bef1f9afe145d67f681aee933 libgo/go/sync/race0.go 85bdccf4b3092c1026ddf668f93fbafc libgo/go/sync/runtime.go 679687f0398a357c14fcb34400142d90 libgo/go/sync/runtime_sema_test.go ! 53170cf332687c41a35696e60aa77b3e libgo/go/sync/rwmutex.go ee2dd034170d9454905559770571bfd7 libgo/go/sync/rwmutex_test.go ! de5edde3bb8098bc5104733e8abd6ae7 libgo/go/sync/waitgroup.go 8eeb4a8ec99b5ff6e419aa822b8ca17d libgo/go/sync/waitgroup_test.go 39bff060d57eb54a33c551a4ebaf81f6 libgo/go/syscall/bpf_bsd.go c0e7388cc2a06f7beb3c69526eb655fb libgo/go/syscall/creds_test.go ! e01a7dbdbdd24399ddb82f3cb74738bc libgo/go/syscall/dir_plan9.go ! 87cf7ef62df6bd161f050169236367a6 libgo/go/syscall/env_plan9.go ! d61e1ec72027eae2f50994fd0a2ba14c libgo/go/syscall/env_unix.go 78aaedd54f74a5d1ff7942dd39222bb3 libgo/go/syscall/env_windows.go 76cf89ba805c0ab5b30db29ee4904f3c libgo/go/syscall/errno.c ad1a8f2195caa5e7291251f65bf077cb libgo/go/syscall/errstr.go 40a11bc10500191f67601f12ca570819 libgo/go/syscall/errstr_linux.go 19670d6bf680f7f085887703e6a0ecd4 libgo/go/syscall/errstr_nor.go ! 70b1ba72969039528fcd7456c078dd75 libgo/go/syscall/exec_bsd.go ! 05d36df452101752257a014a3e89394f libgo/go/syscall/exec_linux.go e22586efc37ba708def40a04ba637604 libgo/go/syscall/exec_stubs.go a0065d7ef4f7572b858b7e3821f6d421 libgo/go/syscall/exec_unix.go dd24802d634b914579f941c1d3bed730 libgo/go/syscall/exec_windows.go *************** b2ae1a8555ca595b887f02a318c8b142 libgo/ *** 46671,46697 **** b1d5fe6eea4796e7a26540ead689af5b libgo/go/syscall/libcall_wait4.go a3eb12b2f5976509be2c924a82dbad99 libgo/go/syscall/libcall_waitpid.go 147ea20768a2904fac737cdadc28322b libgo/go/syscall/lsf_linux.go ! 5a8296d47872c668ed302c995130ccee libgo/go/syscall/mksyscall.awk bc2830a2d47cb87b26cd2ad0bad11196 libgo/go/syscall/netlink_linux.go ! 71e59a85c8e71d297bb3575df149ce77 libgo/go/syscall/passfd_test.go e8b14ec31f0f875a8f305a8c32d26c91 libgo/go/syscall/race0.go ! df37c942560e145e089c86665d737cc6 libgo/go/syscall/route_bsd.go ! 4c62ca09e3ee28094e3ea2781d3ed0bf libgo/go/syscall/route_darwin.go ! 653e3817658d7bba4fed3cb1689f0db9 libgo/go/syscall/route_freebsd.go ! 52dddbc1bb030423655f597258b9da23 libgo/go/syscall/route_netbsd.go ! 1aa652aca7220e1b6c3ba261440c31b0 libgo/go/syscall/route_openbsd.go ! 9e5b1e693e8a0cdf4cccaa347c7d2405 libgo/go/syscall/security_windows.go 08b954522aa753891da0dc09d42dbf76 libgo/go/syscall/signame.c 01b7cc2dd39fe7a210ec6159c07f5528 libgo/go/syscall/sleep_rtems.go 331d0bf0f22836e09d209810027bd981 libgo/go/syscall/sleep_select.go 5e31eec253c769fe32ff9aab5732e340 libgo/go/syscall/sockcmsg_linux.go ! 26e114c891cc39d09126503434d51d94 libgo/go/syscall/sockcmsg_unix.go ! 8326079204df98ca54d0ccc1047bba1f libgo/go/syscall/socket.go ! a29bbd049844248dd2c925d4f1862a9a libgo/go/syscall/socket_bsd.go ! 1aa8697081ad1e12125b7495c5e49188 libgo/go/syscall/socket_irix.go ! 3e95264696501e4a5fa2e24abe597754 libgo/go/syscall/socket_linux.go e636122b0c5d7dbf94baf659e2869a9a libgo/go/syscall/socket_posix.go ! 53678cced01f1bfef17a0d71847310e5 libgo/go/syscall/socket_solaris.go 683dbd7cd1b765a6a1e09f47d528a856 libgo/go/syscall/socket_xnet.go 6d600e77d7a955ca5bfb733925e3b90e libgo/go/syscall/str.go b86ec073499e24636b469ffa868aa5ec libgo/go/syscall/syscall.go --- 46649,46675 ---- b1d5fe6eea4796e7a26540ead689af5b libgo/go/syscall/libcall_wait4.go a3eb12b2f5976509be2c924a82dbad99 libgo/go/syscall/libcall_waitpid.go 147ea20768a2904fac737cdadc28322b libgo/go/syscall/lsf_linux.go ! 914974cc893e8474c6fdfad9e9c4afef libgo/go/syscall/mksyscall.awk bc2830a2d47cb87b26cd2ad0bad11196 libgo/go/syscall/netlink_linux.go ! 9c27c1584d355eb8c408d25a652c740c libgo/go/syscall/passfd_test.go e8b14ec31f0f875a8f305a8c32d26c91 libgo/go/syscall/race0.go ! f5494adc725db58ef2ea298a3ab2a920 libgo/go/syscall/route_bsd.go ! aced66e6302f0ca20137dd331b8209d5 libgo/go/syscall/route_darwin.go ! dad97d933ed6bf9184bcec662e8eed08 libgo/go/syscall/route_freebsd.go ! fe887fefd2ebc43fa40a8401cccc2440 libgo/go/syscall/route_netbsd.go ! 6dcc6739eaf95c9aba0a5ef40aa7ffe5 libgo/go/syscall/route_openbsd.go ! 76fcd108b180f72e17f71d73e3cfd840 libgo/go/syscall/security_windows.go 08b954522aa753891da0dc09d42dbf76 libgo/go/syscall/signame.c 01b7cc2dd39fe7a210ec6159c07f5528 libgo/go/syscall/sleep_rtems.go 331d0bf0f22836e09d209810027bd981 libgo/go/syscall/sleep_select.go 5e31eec253c769fe32ff9aab5732e340 libgo/go/syscall/sockcmsg_linux.go ! 72bec8936b298824d9bd0740c41f5dc2 libgo/go/syscall/sockcmsg_unix.go ! 65b428fb8e6c774176eb87dd2ec22a00 libgo/go/syscall/socket.go ! 3feb4e2dcba738ec5d2b0877ee354390 libgo/go/syscall/socket_bsd.go ! e0d78aff4e500dfa932ce25cd9c338c5 libgo/go/syscall/socket_irix.go ! b9d115304b73ec19d714427a0afcec35 libgo/go/syscall/socket_linux.go e636122b0c5d7dbf94baf659e2869a9a libgo/go/syscall/socket_posix.go ! 57ed75694a025e8553fe2ba1de10d658 libgo/go/syscall/socket_solaris.go 683dbd7cd1b765a6a1e09f47d528a856 libgo/go/syscall/socket_xnet.go 6d600e77d7a955ca5bfb733925e3b90e libgo/go/syscall/str.go b86ec073499e24636b469ffa868aa5ec libgo/go/syscall/syscall.go *************** d482603cb69e8cf915d7e424d5639437 libgo/ *** 46703,46753 **** aa19419240f5a247f0338eb695ceac57 libgo/go/syscall/syscall_stubs.go 05c3a2cd7c63dce506bfce629df07968 libgo/go/syscall/syscall_unix.go e4a4eeef4eae11289d3cf770b277e46e libgo/go/syscall/wait.c 1aa0363e693b86015258ea9b28d98b4f libgo/go/testing/benchmark.go 5bda2645ea24939b9551ba26338fc6b3 libgo/go/testing/example.go 32a55523580128d103482f0a9cb7dd6c libgo/go/testing/iotest/logger.go ! 19135e3fc2e5d03e8c347a0c6d6d943c libgo/go/testing/iotest/reader.go 9217f1912a8069ffc6136a02aeeb2f4b libgo/go/testing/iotest/writer.go ! 0f590d23d6983fd13ad722675a2ed84e libgo/go/testing/quick/quick.go 32739fe6ece2e8674f9224b97628356d libgo/go/testing/quick/quick_test.go ! b6cd3a839888e72485e8b6eeb0ac0b44 libgo/go/testing/testing.go 81a61cf718f5d36b72795b1da52759bd libgo/go/text/scanner/scanner.go f8bfc071fed5322a9b73ed27bf756282 libgo/go/text/scanner/scanner_test.go 188eb974f5da9662ce110c0bc2411100 libgo/go/text/tabwriter/example_test.go 0dd8bfcbfd0a46b93e876fa89f0b6df2 libgo/go/text/tabwriter/tabwriter.go afc792a236e76fe33245191523f77760 libgo/go/text/tabwriter/tabwriter_test.go 9d48e57beb903716a59db434329d59cd libgo/go/text/template/doc.go ! 8969e9020270870875d444535fabe053 libgo/go/text/template/exec.go ! d84337d696000bacf370f8d20a662ba1 libgo/go/text/template/exec_test.go ! 93cb925ae313c2d300011a7d9e069830 libgo/go/text/template/funcs.go 13e16d5aee6bcb3d63c300b5cbce6777 libgo/go/text/template/helper.go 32062cf31bd07475dd2a1762f8bb85ae libgo/go/text/template/multi_test.go 1abb2d3220ac1df5d39941f257964118 libgo/go/text/template/parse/lex.go a2b81c9588063af63d7af84573af2054 libgo/go/text/template/parse/lex_test.go 74b59a978e21ff04b3a5fc41b6cb26c9 libgo/go/text/template/parse/node.go ! 9de999cb73dedb7f427eb8f70df6bf2e libgo/go/text/template/parse/parse.go edd6ba9153565995497e2e7f6eb85482 libgo/go/text/template/parse/parse_test.go 62911d0dd6d4520dc4e96d1b7b1a833b libgo/go/text/template/template.go d6b6ff8eb45b5d3c6559c70664f2f9f3 libgo/go/text/template/testdata/file1.tmpl 30ae547a79cfdc1dc838a5a0d9ed8198 libgo/go/text/template/testdata/file2.tmpl 3bb3b4e20658955000386362214b8246 libgo/go/text/template/testdata/tmpl1.tmpl 1fd8ef440f5fd08e0117c3c00500294b libgo/go/text/template/testdata/tmpl2.tmpl ! e683faaf6d9c504449dec57ea0f12d08 libgo/go/time/example_test.go 827b46426d2d46ab94b0ca0e99d2504a libgo/go/time/export_test.go ! 92d71d07fcad9f2ec21df487d88e4703 libgo/go/time/format.go 64b3d18c2f3f33e87c5d22442ef28760 libgo/go/time/internal_test.go ! f237a0378577ea1c5fcca2d817710474 libgo/go/time/sleep.go ! f0057c551d06bf0899e6b4d2fb19d822 libgo/go/time/sleep_test.go a42fcd0a904b2aa1f3a4f1f732c9b80c libgo/go/time/sys_plan9.go 4ddd54f063aa3f87dc206d8e1538dd5c libgo/go/time/sys_unix.go 9ab47f84ec5443abd2d26eb0aaf0988b libgo/go/time/sys_windows.go 855ebcb6c96d25cd62599e8d6f565cf4 libgo/go/time/tick.go 1732e1ffaef3c1df384d55b614ef532d libgo/go/time/tick_test.go e9c176b594ff16dd893564444f5095af libgo/go/time/time.go ! 712ad80f9ede1c13d35d9119ab467dcc libgo/go/time/time_test.go ! 60ec24b5b21ae244fb7f1976b6528124 libgo/go/time/zoneinfo.go b95eef5d4afde3e9f478859c59a50995 libgo/go/time/zoneinfo_plan9.go ! 1f93540ff42f42c33e97500cc36b0d05 libgo/go/time/zoneinfo_read.go a8792747f9fa47db3288da4cde66c900 libgo/go/time/zoneinfo_unix.go 56638b78cf3c1aeb52192559b0581b78 libgo/go/time/zoneinfo_windows.go 20462663527bbc31aa3bdf3fba3f978a libgo/go/unicode/casetables.go --- 46681,46732 ---- aa19419240f5a247f0338eb695ceac57 libgo/go/syscall/syscall_stubs.go 05c3a2cd7c63dce506bfce629df07968 libgo/go/syscall/syscall_unix.go e4a4eeef4eae11289d3cf770b277e46e libgo/go/syscall/wait.c + 4dc02b0be1f70b259d08ed007de0f64f libgo/go/testing/allocs.go 1aa0363e693b86015258ea9b28d98b4f libgo/go/testing/benchmark.go 5bda2645ea24939b9551ba26338fc6b3 libgo/go/testing/example.go 32a55523580128d103482f0a9cb7dd6c libgo/go/testing/iotest/logger.go ! 9c32c7a7dc0d00c0a5a680c83a6dbd8d libgo/go/testing/iotest/reader.go 9217f1912a8069ffc6136a02aeeb2f4b libgo/go/testing/iotest/writer.go ! e44f96007fa84b3a5e0fa025efa19d85 libgo/go/testing/quick/quick.go 32739fe6ece2e8674f9224b97628356d libgo/go/testing/quick/quick_test.go ! 6793b3f2444575c3edb2cf59a8f5b882 libgo/go/testing/testing.go 81a61cf718f5d36b72795b1da52759bd libgo/go/text/scanner/scanner.go f8bfc071fed5322a9b73ed27bf756282 libgo/go/text/scanner/scanner_test.go 188eb974f5da9662ce110c0bc2411100 libgo/go/text/tabwriter/example_test.go 0dd8bfcbfd0a46b93e876fa89f0b6df2 libgo/go/text/tabwriter/tabwriter.go afc792a236e76fe33245191523f77760 libgo/go/text/tabwriter/tabwriter_test.go 9d48e57beb903716a59db434329d59cd libgo/go/text/template/doc.go ! a54ba28924b9323a9d0b1becf8c307b8 libgo/go/text/template/exec.go ! 51bbca1986b88b5deac732e1dee8db04 libgo/go/text/template/exec_test.go ! 0616761b22e83c6b04b5515c2abcb5cb libgo/go/text/template/funcs.go 13e16d5aee6bcb3d63c300b5cbce6777 libgo/go/text/template/helper.go 32062cf31bd07475dd2a1762f8bb85ae libgo/go/text/template/multi_test.go 1abb2d3220ac1df5d39941f257964118 libgo/go/text/template/parse/lex.go a2b81c9588063af63d7af84573af2054 libgo/go/text/template/parse/lex_test.go 74b59a978e21ff04b3a5fc41b6cb26c9 libgo/go/text/template/parse/node.go ! a99e84a2101d40862bb4f69ba07bf472 libgo/go/text/template/parse/parse.go edd6ba9153565995497e2e7f6eb85482 libgo/go/text/template/parse/parse_test.go 62911d0dd6d4520dc4e96d1b7b1a833b libgo/go/text/template/template.go d6b6ff8eb45b5d3c6559c70664f2f9f3 libgo/go/text/template/testdata/file1.tmpl 30ae547a79cfdc1dc838a5a0d9ed8198 libgo/go/text/template/testdata/file2.tmpl 3bb3b4e20658955000386362214b8246 libgo/go/text/template/testdata/tmpl1.tmpl 1fd8ef440f5fd08e0117c3c00500294b libgo/go/text/template/testdata/tmpl2.tmpl ! 71c5753972587706b9fbd2623249ef36 libgo/go/time/example_test.go 827b46426d2d46ab94b0ca0e99d2504a libgo/go/time/export_test.go ! 500c4dff89fb97172832d85b318cac90 libgo/go/time/format.go 64b3d18c2f3f33e87c5d22442ef28760 libgo/go/time/internal_test.go ! b8a54644319d0b8503ac9a0bfded26df libgo/go/time/sleep.go ! 0d213f1ada2ce3dca75e6b1d48f4336e libgo/go/time/sleep_test.go a42fcd0a904b2aa1f3a4f1f732c9b80c libgo/go/time/sys_plan9.go 4ddd54f063aa3f87dc206d8e1538dd5c libgo/go/time/sys_unix.go 9ab47f84ec5443abd2d26eb0aaf0988b libgo/go/time/sys_windows.go 855ebcb6c96d25cd62599e8d6f565cf4 libgo/go/time/tick.go 1732e1ffaef3c1df384d55b614ef532d libgo/go/time/tick_test.go e9c176b594ff16dd893564444f5095af libgo/go/time/time.go ! 2cc502a97f54ee4f7551d80e46b47f11 libgo/go/time/time_test.go ! d3a7f36ab100c6f36993da9e449d773c libgo/go/time/zoneinfo.go b95eef5d4afde3e9f478859c59a50995 libgo/go/time/zoneinfo_plan9.go ! 4eaa088a6d3b04896a67bf69247d4b7f libgo/go/time/zoneinfo_read.go a8792747f9fa47db3288da4cde66c900 libgo/go/time/zoneinfo_unix.go 56638b78cf3c1aeb52192559b0581b78 libgo/go/time/zoneinfo_windows.go 20462663527bbc31aa3bdf3fba3f978a libgo/go/unicode/casetables.go *************** a8792747f9fa47db3288da4cde66c900 libgo/ *** 46755,46777 **** 52e66b5dde148ddf6d9b349d93601cfe libgo/go/unicode/digit_test.go a454a0ba713d77ab234462a490eb9822 libgo/go/unicode/graphic.go 329df455c4a64191a108e40228e0a975 libgo/go/unicode/graphic_test.go ! d2e6deb7b6e76dbce6c90ea80cec71a4 libgo/go/unicode/letter.go d45efeb3f81b833ccbdaf45a2aed7d6e libgo/go/unicode/letter_test.go 70bc3d8abc81dda4da66aefc71c20f9d libgo/go/unicode/script_test.go ! 22a49676ab95083db41a87ab36568c4d libgo/go/unicode/tables.go 6fd68c975fa19dc6fb31c13282e47bc5 libgo/go/unicode/utf16/export_test.go db7661e38c760ca659720193cea7deaf libgo/go/unicode/utf16/utf16.go bd8fc56eab9b633e58128083caf5df5f libgo/go/unicode/utf16/utf16_test.go 6359c3b05f9df1c6a4878205a3b23207 libgo/go/unicode/utf8/example_test.go 7aedcc4e62d8452a0e4e84dcd4325c45 libgo/go/unicode/utf8/utf8.go ! 5fb90fa8b74a1190ca7f369f587a3630 libgo/go/unicode/utf8/utf8_test.go 8e700e99e52bad7f8289006b7bd149d4 libgo/godeps.sh ! 5c124fee918e998c838de29c901aca9c libgo/merge.sh 3e00bc8af83e5c0efe99761094484569 libgo/mksysinfo.sh 06b0ddfbd036dbdfdf8c4c7efb8b746f libgo/runtime/arch.h 0d727dcfb3816731f56f174e8cbd29eb libgo/runtime/array.h ! 30f0db7c6198512f51de3395261887be libgo/runtime/chan.c ! fbf1f9e4d53c81942cfb397abbb63489 libgo/runtime/cpuprof.c 8fc341c18fc3cdc557312f0483aceb2b libgo/runtime/defs.h a5bda04fcc4feeee03af42f105300e43 libgo/runtime/env_posix.c 0bd75fb7a863be3c7dc871e77fa22575 libgo/runtime/getncpu-bsd.c --- 46734,46756 ---- 52e66b5dde148ddf6d9b349d93601cfe libgo/go/unicode/digit_test.go a454a0ba713d77ab234462a490eb9822 libgo/go/unicode/graphic.go 329df455c4a64191a108e40228e0a975 libgo/go/unicode/graphic_test.go ! 2b29c3a2bb576b322782da5f24a43bb1 libgo/go/unicode/letter.go d45efeb3f81b833ccbdaf45a2aed7d6e libgo/go/unicode/letter_test.go 70bc3d8abc81dda4da66aefc71c20f9d libgo/go/unicode/script_test.go ! e30759d232312549885e96556be24f4e libgo/go/unicode/tables.go 6fd68c975fa19dc6fb31c13282e47bc5 libgo/go/unicode/utf16/export_test.go db7661e38c760ca659720193cea7deaf libgo/go/unicode/utf16/utf16.go bd8fc56eab9b633e58128083caf5df5f libgo/go/unicode/utf16/utf16_test.go 6359c3b05f9df1c6a4878205a3b23207 libgo/go/unicode/utf8/example_test.go 7aedcc4e62d8452a0e4e84dcd4325c45 libgo/go/unicode/utf8/utf8.go ! d2c0f0166aa2cc63cec3270b5fa1d3e2 libgo/go/unicode/utf8/utf8_test.go 8e700e99e52bad7f8289006b7bd149d4 libgo/godeps.sh ! 8bc70efd6d9c1c8ba1e6df79a2241516 libgo/merge.sh 3e00bc8af83e5c0efe99761094484569 libgo/mksysinfo.sh 06b0ddfbd036dbdfdf8c4c7efb8b746f libgo/runtime/arch.h 0d727dcfb3816731f56f174e8cbd29eb libgo/runtime/array.h ! c758cd534b2eef0cdb403f98ab4d78a0 libgo/runtime/chan.c ! ed5a86c55b2608b55a806fb404ee46ad libgo/runtime/cpuprof.c 8fc341c18fc3cdc557312f0483aceb2b libgo/runtime/defs.h a5bda04fcc4feeee03af42f105300e43 libgo/runtime/env_posix.c 0bd75fb7a863be3c7dc871e77fa22575 libgo/runtime/getncpu-bsd.c *************** a5bda04fcc4feeee03af42f105300e43 libgo/ *** 46780,46800 **** 0195e66b8372eda820605a9e5e6a7b23 libgo/runtime/getncpu-none.c 9ee34ac99a92a81dd6760a6252e458f6 libgo/runtime/getncpu-solaris.c 7f7d156860cf43a15110636eb461e8a0 libgo/runtime/go-alloc.h ! d4e607e09b17de3fa0bf171adb8d3502 libgo/runtime/go-append.c ffce11dc5416c0c1bfb5a74207a4d20d libgo/runtime/go-assert-interface.c 6fb6a5d0012113bed4ea45325d64a0ae libgo/runtime/go-assert.c 15f566278d64ff0b58823d3875194e29 libgo/runtime/go-assert.h f8c17aeb5ad771890f2f006bae6aeee5 libgo/runtime/go-breakpoint.c 87ef5cf31bb3c0f898596ded0a0ab483 libgo/runtime/go-byte-array-to-string.c 8fd9413864341f477401dd254942a620 libgo/runtime/go-caller.c ! 67ac9909e89f36531bd1f0f3d64ca8a5 libgo/runtime/go-callers.c 990d7c40634767a4d4639fb580b5be29 libgo/runtime/go-can-convert-interface.c ! 645bfea549317d730385424e4ae0c3be libgo/runtime/go-cgo.c 8de75cab8bdf53b9ea1890f50d87917d libgo/runtime/go-check-interface.c 39368ef3345811d8544e2447df1e4fb5 libgo/runtime/go-construct-map.c 939a5d4ac93334f0623a3480d86881aa libgo/runtime/go-convert-interface.c 10315a5422f17793f93cdddce100a380 libgo/runtime/go-copy.c ! 312b9e591bf58c23a0bbc21965015879 libgo/runtime/go-defer.c 3623144938495dd6a89fd8d5cdfd504a libgo/runtime/go-defer.h f6c1aee78d18be635982d5a888839202 libgo/runtime/go-deferred-recover.c 21bfd7a1a325df3865579a56214ff506 libgo/runtime/go-eface-compare.c --- 46759,46779 ---- 0195e66b8372eda820605a9e5e6a7b23 libgo/runtime/getncpu-none.c 9ee34ac99a92a81dd6760a6252e458f6 libgo/runtime/getncpu-solaris.c 7f7d156860cf43a15110636eb461e8a0 libgo/runtime/go-alloc.h ! ff92bd508b56c09bd3a84a56afebd9c2 libgo/runtime/go-append.c ffce11dc5416c0c1bfb5a74207a4d20d libgo/runtime/go-assert-interface.c 6fb6a5d0012113bed4ea45325d64a0ae libgo/runtime/go-assert.c 15f566278d64ff0b58823d3875194e29 libgo/runtime/go-assert.h f8c17aeb5ad771890f2f006bae6aeee5 libgo/runtime/go-breakpoint.c 87ef5cf31bb3c0f898596ded0a0ab483 libgo/runtime/go-byte-array-to-string.c 8fd9413864341f477401dd254942a620 libgo/runtime/go-caller.c ! a846f69439ec06357ff77227d133cdd4 libgo/runtime/go-callers.c 990d7c40634767a4d4639fb580b5be29 libgo/runtime/go-can-convert-interface.c ! 137b038b1cdfb6a762b679ca2c16e887 libgo/runtime/go-cgo.c 8de75cab8bdf53b9ea1890f50d87917d libgo/runtime/go-check-interface.c 39368ef3345811d8544e2447df1e4fb5 libgo/runtime/go-construct-map.c 939a5d4ac93334f0623a3480d86881aa libgo/runtime/go-convert-interface.c 10315a5422f17793f93cdddce100a380 libgo/runtime/go-copy.c ! f822a109e7e5a008900f8e5752e065fc libgo/runtime/go-defer.c 3623144938495dd6a89fd8d5cdfd504a libgo/runtime/go-defer.h f6c1aee78d18be635982d5a888839202 libgo/runtime/go-deferred-recover.c 21bfd7a1a325df3865579a56214ff506 libgo/runtime/go-eface-compare.c *************** bc83b27606a3673316c31352a6d12bae libgo/ *** 46806,46815 **** 585b3c103bde3505300d9397357d242f libgo/runtime/go-interface-compare.c 2ffba97f9cdfed2c2f24b70d172332e6 libgo/runtime/go-interface-eface-compare.c cd2c9daae85c953b537ee88d4b9d50bd libgo/runtime/go-interface-val-compare.c ! e892f88d126c3168d54f0735f8f66c4e libgo/runtime/go-main.c db8755ef65ee115b4e1ad0d72e0ba70c libgo/runtime/go-make-slice.c f30ef89145499b930050f1a487615b30 libgo/runtime/go-map-delete.c ! ed08c58e876940dde5f75b27ff078d08 libgo/runtime/go-map-index.c 818adba56865a569fbd076f701116339 libgo/runtime/go-map-len.c 0efe21ade3aaf43f37289f39b86603e2 libgo/runtime/go-map-range.c bc8121acb97ddc7bf2ce153b0918ca35 libgo/runtime/go-matherr.c --- 46785,46794 ---- 585b3c103bde3505300d9397357d242f libgo/runtime/go-interface-compare.c 2ffba97f9cdfed2c2f24b70d172332e6 libgo/runtime/go-interface-eface-compare.c cd2c9daae85c953b537ee88d4b9d50bd libgo/runtime/go-interface-val-compare.c ! d5ad7678bf747d3ce48a70325e4d3192 libgo/runtime/go-main.c db8755ef65ee115b4e1ad0d72e0ba70c libgo/runtime/go-make-slice.c f30ef89145499b930050f1a487615b30 libgo/runtime/go-map-delete.c ! bc72473dfaaf58ad95fccea57faf2880 libgo/runtime/go-map-index.c 818adba56865a569fbd076f701116339 libgo/runtime/go-map-len.c 0efe21ade3aaf43f37289f39b86603e2 libgo/runtime/go-map-range.c bc8121acb97ddc7bf2ce153b0918ca35 libgo/runtime/go-matherr.c *************** a87c961e21c1e9bc987fe32541a16340 libgo/ *** 46819,46834 **** d61f47247176afc7541b14fc6adb9cab libgo/runtime/go-new.c 20b3fc0996900fd7c60cb7e23b3678a3 libgo/runtime/go-nosys.c e1fa479f8014aecc8147bf50f856fb91 libgo/runtime/go-now.c ! d358b4168faba7bdeb94bddc8c8cec96 libgo/runtime/go-panic.c ee0b030a1b0a13cd1aa6596a1c86e6e2 libgo/runtime/go-panic.h 76a1e655e98d13a2cc5e5cb9c8471c9e libgo/runtime/go-print.c 813d13218c6940b1935cfb8ffbc1d135 libgo/runtime/go-recover.c ! 711d9fec345010156729e2249330b4fe libgo/runtime/go-reflect-call.c ! 45a9e987d3ff70ea29e0c396c633599c libgo/runtime/go-reflect-map.c ed6b937d9f770f14a5fcc0135a01804e libgo/runtime/go-rune.c cc3e963ebf93b5da88c77c07557e6d45 libgo/runtime/go-runtime-error.c cafba2949a50a6d9b0d2c351019da3ec libgo/runtime/go-setenv.c ! 6ab7ee156117d4152d13f93d784357e1 libgo/runtime/go-signal.c a2cdac8f98b5543f8f54f39580008be1 libgo/runtime/go-strcmp.c 70523c2c9f12b01b4eda16c2efb6fd61 libgo/runtime/go-string-to-byte-array.c a6ba8dbf9e0ec85c2c832ac6cd837e2b libgo/runtime/go-string-to-int-array.c --- 46798,46813 ---- d61f47247176afc7541b14fc6adb9cab libgo/runtime/go-new.c 20b3fc0996900fd7c60cb7e23b3678a3 libgo/runtime/go-nosys.c e1fa479f8014aecc8147bf50f856fb91 libgo/runtime/go-now.c ! bf5df615d80e7f1a95a9f9cb7bfbdcf6 libgo/runtime/go-panic.c ee0b030a1b0a13cd1aa6596a1c86e6e2 libgo/runtime/go-panic.h 76a1e655e98d13a2cc5e5cb9c8471c9e libgo/runtime/go-print.c 813d13218c6940b1935cfb8ffbc1d135 libgo/runtime/go-recover.c ! 4095e1859cb9c1915c61f4e441cab46c libgo/runtime/go-reflect-call.c ! 102d2b88e578efa0edcbe9e0f641d34e libgo/runtime/go-reflect-map.c ed6b937d9f770f14a5fcc0135a01804e libgo/runtime/go-rune.c cc3e963ebf93b5da88c77c07557e6d45 libgo/runtime/go-runtime-error.c cafba2949a50a6d9b0d2c351019da3ec libgo/runtime/go-setenv.c ! a010b57048c6bae10fda7393a9cd2554 libgo/runtime/go-signal.c a2cdac8f98b5543f8f54f39580008be1 libgo/runtime/go-strcmp.c 70523c2c9f12b01b4eda16c2efb6fd61 libgo/runtime/go-string-to-byte-array.c a6ba8dbf9e0ec85c2c832ac6cd837e2b libgo/runtime/go-string-to-int-array.c *************** a0dedb2348d29e859f372aedc81babf1 libgo/ *** 46847,46895 **** ebe1ee7084c3f5a9dce96ba46c84bf90 libgo/runtime/go-type.h 3bda671d3b556cf1dc7b987d08c7d5d1 libgo/runtime/go-typedesc-equal.c 3e2ff5347b6683cf4c89cf9a0da30dc4 libgo/runtime/go-typestring.c ! 09921d509779574f2b814755f86ad411 libgo/runtime/go-unsafe-new.c ! f2cbdbcfe5264cb8f467f6ada1233f0c libgo/runtime/go-unsafe-newarray.c c80605ee0a71267b38dbc5c9d2633ecf libgo/runtime/go-unsafe-pointer.c 630cd384e4eff0e703a9e03770bc72ca libgo/runtime/go-unwind.c b54905bea79a5b11a61c030808063069 libgo/runtime/goc2c.c 947461bef3c8b10a15d2b639141c6dfb libgo/runtime/iface.goc c41f429a920306b2b57f3b7f83b8a442 libgo/runtime/interface.h 241d192b6f5936ebbfcbb9c708d9473d libgo/runtime/lfstack.c ! 0642cebf3fb28e302ab38f76ea491ddd libgo/runtime/lock_futex.c ! 7c0102e80704663803b6d6c5677caaa4 libgo/runtime/lock_sema.c ! 9480ac957e4eb89ca706498012a03f0c libgo/runtime/malloc.goc ! 657491b56701a30b0875b6b4046d0c7a libgo/runtime/malloc.h 653771fbf9991e866465454a04fe9fc5 libgo/runtime/map.goc c968f0acf76d47dafa1eb98e90f01d11 libgo/runtime/map.h ! be3a2874eadf40b0182bdcf54db2404e libgo/runtime/mcache.c ! 0fb7547aa3d2501052c433822cab1c67 libgo/runtime/mcentral.c ! 1fcaea9a1be26995345470212d55e06f libgo/runtime/mem.c 6b11f53a4b7d331ecd6351fcca3ffe55 libgo/runtime/mem_posix_memalign.c ! 479ec37fc14b48f3599dc582b4e49ede libgo/runtime/mfinal.c ! 535bbdcce7df35be3df928175963dbb6 libgo/runtime/mfixalloc.c ! 0c5e32027df6f460f4e56f250c68cbb2 libgo/runtime/mgc0.c ! 35f4cfd9828701508fc4c187f83c3543 libgo/runtime/mgc0.h ! b885a67c4e14fe3881dde1c84d452317 libgo/runtime/mheap.c ! ed964eee32507b353d58063e2ee5ae0e libgo/runtime/mprof.goc 5c4ff8bc9d08419f41ef4178f1419e93 libgo/runtime/msize.c ! 707254ed3a524231dec3f824cc08b787 libgo/runtime/panic.c ! d6f23d6dbae0899fd004cca02b6637e5 libgo/runtime/parfor.c ! d82adfbd59f7efc8c9cbd23ab58aa4e5 libgo/runtime/print.c ! 5366becba3d9fd045f2421b8648b4c8e libgo/runtime/proc.c ! 37f77c934b6dd91878630d73683d53ff libgo/runtime/race.h f3043edb6d3f3dec7c3d18064c9a2f46 libgo/runtime/reflect.goc 88236bd9baaae0e22c2fe3c097d9cfbf libgo/runtime/rtems-task-variable-add.c ! 398ca70deb334faf80ee8246705e53e7 libgo/runtime/runtime.c ! 294e568f63ad46bc8a5117bc8dbbd707 libgo/runtime/runtime.h 6786f18d437cda638da71171188c7f24 libgo/runtime/runtime1.goc ! e7adcb33a16bdff454f833d323e1b74b libgo/runtime/sema.goc ! 0c6abfe14a73c262c5bde18a7fef9da9 libgo/runtime/signal_unix.c ! fc763561e90a0829c863f013b75e1d42 libgo/runtime/sigqueue.goc ! 111d2089f3c6fa7f9447297b5c256029 libgo/runtime/string.goc 9a487e9a751117c187a9546b2fcc241e libgo/runtime/thread-linux.c d10e9f302c0928972dd112b3a251da43 libgo/runtime/thread-sema.c ! 609d672200bed549073bff12670260de libgo/runtime/thread.c ! 0a6a9910fcb6e01596f49204a89a73a2 libgo/runtime/time.goc 5eba9c31299a555c2228fac2b113f713 libgo/runtime/yield.c 3a8ddeaf36a9f143f9124fe1aada456a libgo/testsuite/Makefile.am c95a6cc35511a2183eb5b480fa8ae836 libgo/testsuite/Makefile.in --- 46826,46879 ---- ebe1ee7084c3f5a9dce96ba46c84bf90 libgo/runtime/go-type.h 3bda671d3b556cf1dc7b987d08c7d5d1 libgo/runtime/go-typedesc-equal.c 3e2ff5347b6683cf4c89cf9a0da30dc4 libgo/runtime/go-typestring.c ! af5de48480273b6c892b00fc4277850a libgo/runtime/go-unsafe-new.c ! c4204400dda158eedfe16fcf9ddb2c71 libgo/runtime/go-unsafe-newarray.c c80605ee0a71267b38dbc5c9d2633ecf libgo/runtime/go-unsafe-pointer.c 630cd384e4eff0e703a9e03770bc72ca libgo/runtime/go-unwind.c b54905bea79a5b11a61c030808063069 libgo/runtime/goc2c.c 947461bef3c8b10a15d2b639141c6dfb libgo/runtime/iface.goc c41f429a920306b2b57f3b7f83b8a442 libgo/runtime/interface.h 241d192b6f5936ebbfcbb9c708d9473d libgo/runtime/lfstack.c ! a4a6bee0a7ce7e40fd8c3b91e4ce7a2e libgo/runtime/lock_futex.c ! 078f220fa7aaf10c769da0d13af43587 libgo/runtime/lock_sema.c ! d742025c3a36ac523927eb66b6c7f19b libgo/runtime/malloc.goc ! c2ffac4084e294bc4382b6643e7ece82 libgo/runtime/malloc.h 653771fbf9991e866465454a04fe9fc5 libgo/runtime/map.goc c968f0acf76d47dafa1eb98e90f01d11 libgo/runtime/map.h ! d8f8d62827d00c5d0231bfa3d1116fd7 libgo/runtime/mcache.c ! ee4df41796404971bd265e733fec3864 libgo/runtime/mcentral.c ! c78518b10d0284dda0e87d0d662ae1df libgo/runtime/mem.c 6b11f53a4b7d331ecd6351fcca3ffe55 libgo/runtime/mem_posix_memalign.c ! d51432dd3f3d9ae9493d40c6620a2929 libgo/runtime/mfinal.c ! af1e943ac58130847638ff131d377a64 libgo/runtime/mfixalloc.c ! 03fbcd9f581a63c30ac094a3e55f31c3 libgo/runtime/mgc0.c ! b9636ab59fa641d3a35cb0ae34848955 libgo/runtime/mgc0.h ! aea9b338525e63d289f25c835f24eb45 libgo/runtime/mheap.c ! 6f477b5492644b6171147834c86877ed libgo/runtime/mprof.goc 5c4ff8bc9d08419f41ef4178f1419e93 libgo/runtime/msize.c ! 3e2ffe112c365665e39728bf88d0a5aa libgo/runtime/netpoll.goc ! 5464264a03d4a509269298e84ada4acb libgo/runtime/netpoll_epoll.c ! 74d5d0788b593ea333107681624b41fd libgo/runtime/netpoll_kqueue.c ! ae362deb9de41678893ec0be3751a4f8 libgo/runtime/netpoll_stub.c ! fb5c83a2325f79c2161797c9d9c34447 libgo/runtime/panic.c ! c0922a2aec78975b25d4b3d8e77a19c6 libgo/runtime/parfor.c ! 6e44f09d4b9a5fd2c7072d40f35b8493 libgo/runtime/print.c ! 1f695bbe50d035e418bf803c215d71e3 libgo/runtime/proc.c ! 178f690729024a599b91d3a7dc03345f libgo/runtime/race.h f3043edb6d3f3dec7c3d18064c9a2f46 libgo/runtime/reflect.goc 88236bd9baaae0e22c2fe3c097d9cfbf libgo/runtime/rtems-task-variable-add.c ! 5ff2fb55d0ff02f19c06ecc0bcc976ef libgo/runtime/runtime.c ! 0b9567bb37786296a5921933eff70c71 libgo/runtime/runtime.h 6786f18d437cda638da71171188c7f24 libgo/runtime/runtime1.goc ! 9ed6bc258affb1493ac6153a7306fabf libgo/runtime/sema.goc ! fb2fae6fb8486bd4921c8319c992af6e libgo/runtime/signal_unix.c ! c3f6016bcf563a2e372e351424ac9d24 libgo/runtime/signal_unix.h ! d492da3448c75dbaac78036ec535cd99 libgo/runtime/sigqueue.goc ! 5960da905a36a3bf3b2ab0b979fcb9d0 libgo/runtime/string.goc 9a487e9a751117c187a9546b2fcc241e libgo/runtime/thread-linux.c d10e9f302c0928972dd112b3a251da43 libgo/runtime/thread-sema.c ! a27782f03d1a06d6c45554841b18cdfd libgo/runtime/thread.c ! e4aff56e1b7c89d62f2ce75676087183 libgo/runtime/time.goc 5eba9c31299a555c2228fac2b113f713 libgo/runtime/yield.c 3a8ddeaf36a9f143f9124fe1aada456a libgo/testsuite/Makefile.am c95a6cc35511a2183eb5b480fa8ae836 libgo/testsuite/Makefile.in *************** c95a6cc35511a2183eb5b480fa8ae836 libgo/ *** 46897,46903 **** 348568e62149aec5405f886cbfb28504 libgo/testsuite/gotest 578a4705035f5cbb8425f2e2eb75a433 libgo/testsuite/lib/libgo.exp 6df485581d2f02246f41b5ca46f5bb5d libgo/testsuite/libgo.testmain/testmain.exp ! 14d97901c0a7a057bee668afef5aadef libgomp/ChangeLog 0d55aa862aee66efdc5f8d62c94ff8fb libgomp/ChangeLog.graphite 79e407d8620e08863da6142c9eed25be libgomp/Makefile.am e6e03766255f9acec1eaca053c845d7a libgomp/Makefile.in --- 46881,46887 ---- 348568e62149aec5405f886cbfb28504 libgo/testsuite/gotest 578a4705035f5cbb8425f2e2eb75a433 libgo/testsuite/lib/libgo.exp 6df485581d2f02246f41b5ca46f5bb5d libgo/testsuite/libgo.testmain/testmain.exp ! 644152553e3bf32ac1a6d499b69a7fad libgomp/ChangeLog 0d55aa862aee66efdc5f8d62c94ff8fb libgomp/ChangeLog.graphite 79e407d8620e08863da6142c9eed25be libgomp/Makefile.am e6e03766255f9acec1eaca053c845d7a libgomp/Makefile.in *************** bd5cb86b4c93d8cf028a8473244d3e33 libgom *** 46955,46961 **** b2d2bd391b88c0947b2eb6f35b5fa007 libgomp/iter.c d802f31bf81987e6dade50d2518a683a libgomp/iter_ull.c 55008a953b0a49e5f465c8d5417f551b libgomp/libgomp.h ! 7fc80ca80e0d7777957c2f7423304e4a libgomp/libgomp.info fde0d3b4fa91f0570fbc897a8cf8341d libgomp/libgomp.map 591ff20dfd2b81e3c919249b5db8a967 libgomp/libgomp.spec.in 9b9824c99610e8fa83582bd245a1534a libgomp/libgomp.texi --- 46939,46945 ---- b2d2bd391b88c0947b2eb6f35b5fa007 libgomp/iter.c d802f31bf81987e6dade50d2518a683a libgomp/iter_ull.c 55008a953b0a49e5f465c8d5417f551b libgomp/libgomp.h ! 8b1bc421cefb1521dd3de51f3d694287 libgomp/libgomp.info fde0d3b4fa91f0570fbc897a8cf8341d libgomp/libgomp.map 591ff20dfd2b81e3c919249b5db8a967 libgomp/libgomp.spec.in 9b9824c99610e8fa83582bd245a1534a libgomp/libgomp.texi *************** dcd3477742913bd7e0518e9471bb7437 libgom *** 46967,46973 **** 0089e68eb509e9632e879b0f3fc8575a libgomp/omp_lib.f90.in 30b9f69f6ae7980ebb3b49099b75061e libgomp/omp_lib.h.in 012c97371be7ac1575f6e5165bab6a94 libgomp/ordered.c ! beffe68c782ab45c5827faf4b294b48a libgomp/parallel.c cbb1d172c25afe665990d0828ee35b7c libgomp/sections.c bfbaa1e1af33dc16738a861f70d0756f libgomp/single.c 731bfd755896dc04eb8f2fbbfac306ce libgomp/task.c --- 46951,46957 ---- 0089e68eb509e9632e879b0f3fc8575a libgomp/omp_lib.f90.in 30b9f69f6ae7980ebb3b49099b75061e libgomp/omp_lib.h.in 012c97371be7ac1575f6e5165bab6a94 libgomp/ordered.c ! fb4acb200103dda5c54e7f746151c7ae libgomp/parallel.c cbb1d172c25afe665990d0828ee35b7c libgomp/sections.c bfbaa1e1af33dc16738a861f70d0756f libgomp/single.c 731bfd755896dc04eb8f2fbbfac306ce libgomp/task.c *************** e6be7ac480ea1328785bc17e9c2ecc9a libgom *** 47199,47204 **** --- 47183,47189 ---- 9126ac9782df114930590ae42eef14dc libgomp/testsuite/libgomp.c/reduction-5.c bec2e246a29d581f6ebc16d2674347cb libgomp/testsuite/libgomp.c/reduction-6.c 054ece1e6f3474062b5a01399c9e8af2 libgomp/testsuite/libgomp.c/sections-1.c + aed7e36c7c93e3badbbf11beaf753207 libgomp/testsuite/libgomp.c/sections-2.c 5d45a2da7670f7b3feaa70f2caa0d69b libgomp/testsuite/libgomp.c/shared-1.c 6059443919441f3c8acfe62439b65044 libgomp/testsuite/libgomp.c/shared-2.c 7b472060fcdfa5aa072be093a71d8d41 libgomp/testsuite/libgomp.c/shared-3.c *************** b07f3ce8ad8f8edece7624d18f5d154d libgom *** 47210,47215 **** --- 47195,47201 ---- f7ff00e5f2a30832f7f427c91fa1f61b libgomp/testsuite/libgomp.c/task-3.c d3e7c403248ba696f161f0c29c1f87a6 libgomp/testsuite/libgomp.c/task-4.c 1632e928ba733271be6ddd0108e94f71 libgomp/testsuite/libgomp.c/task-5.c + d2c0d431148453f28f8abd6fe5503dcf libgomp/testsuite/libgomp.c/thread-limit-1.c 35c4904668124586d73a652acb4ed703 libgomp/testsuite/libgomp.c/vla-1.c 56a24835fa9d124fad3d523ffafe3b21 libgomp/testsuite/libgomp.fortran/allocatable1.f90 927bc460f431a751bec399f6f3f1eae7 libgomp/testsuite/libgomp.fortran/allocatable2.f90 *************** e1362c83d5ba73eb8768fbabff951667 libgom *** 47363,47369 **** 10c955b1a244a0c3499fca8b6b4c4278 libgomp/work.c 99c2e5e712b990ee07be10f53e41f3fb libiberty/.gitignore a916467b91076e631dd8edb7424769c7 libiberty/COPYING.LIB ! 1538a7c8ce10c07f79375b54bb20b2fc libiberty/ChangeLog fe777f81e2cb81a26e83f7d120c6ff2d libiberty/Makefile.in c68dbf7834af4281ebd84caa3fd54680 libiberty/README 8797cb1a6faa84f3c7fe3d12164a4b13 libiberty/_doprnt.c --- 47349,47355 ---- 10c955b1a244a0c3499fca8b6b4c4278 libgomp/work.c 99c2e5e712b990ee07be10f53e41f3fb libiberty/.gitignore a916467b91076e631dd8edb7424769c7 libiberty/COPYING.LIB ! 08c0bb2aec56ed11eb94f16d041c7b0d libiberty/ChangeLog fe777f81e2cb81a26e83f7d120c6ff2d libiberty/Makefile.in c68dbf7834af4281ebd84caa3fd54680 libiberty/README 8797cb1a6faa84f3c7fe3d12164a4b13 libiberty/_doprnt.c *************** cdc140ce93944c5bb2ac62cd3dfd86d6 libibe *** 47514,47525 **** 4746095b1b67693ab6e78ed72ead1235 libiberty/xstrdup.c 6f774a92661ca4a067f1691a7925524b libiberty/xstrerror.c c6e7ef53b4ff115a136d917511222656 libiberty/xstrndup.c ! 741a385775b18832354f94204fbcd37b libitm/ChangeLog babf0aa268f489737739f16533cc22de libitm/Makefile.am 86266ae1bc0838d04162c98147dac3e0 libitm/Makefile.in 0968d21ef457674d9a549e5462859831 libitm/aatree.cc 9a9f2a00b72d067d9c712c2fc0c1b5da libitm/aatree.h ! 4bb4920436685582f2c114b38e96a81f libitm/acinclude.m4 94efa0c0176ffe7ccddefedbc7bf422c libitm/aclocal.m4 323c150bcbc6e2c2ba3eb7b2d140cda2 libitm/alloc.cc df1c3272076b45bb55dd9ef7cd4e5cb1 libitm/alloc_c.cc --- 47500,47511 ---- 4746095b1b67693ab6e78ed72ead1235 libiberty/xstrdup.c 6f774a92661ca4a067f1691a7925524b libiberty/xstrerror.c c6e7ef53b4ff115a136d917511222656 libiberty/xstrndup.c ! e974c4f122735e7d426b8321cb1ddf84 libitm/ChangeLog babf0aa268f489737739f16533cc22de libitm/Makefile.am 86266ae1bc0838d04162c98147dac3e0 libitm/Makefile.in 0968d21ef457674d9a549e5462859831 libitm/aatree.cc 9a9f2a00b72d067d9c712c2fc0c1b5da libitm/aatree.h ! 3e374c014702b8220bdf6f38be7da572 libitm/acinclude.m4 94efa0c0176ffe7ccddefedbc7bf422c libitm/aclocal.m4 323c150bcbc6e2c2ba3eb7b2d140cda2 libitm/alloc.cc df1c3272076b45bb55dd9ef7cd4e5cb1 libitm/alloc_c.cc *************** bb12e592fd938b3c3fe625bb277afda9 libitm *** 47529,47535 **** 13c1205a3cbd2d6cd8d6531983c3b639 libitm/clearcap.map feebbb752005ac4f4ede7ce79414dc7f libitm/clone.cc 3149aa41dab3ee3db3f64f68dd00ddd3 libitm/common.h ! b1518d02c12bf62ad42adb6a4715293b libitm/config.h.in 2fa21aa55341fa035da87b3020b0faa0 libitm/config/alpha/cacheline.h 40a4cf70dd9ab6908da44f4e3122575b libitm/config/alpha/sjlj.S ecdcfae51592fb8e00c563afd5e5c167 libitm/config/alpha/target.h --- 47515,47521 ---- 13c1205a3cbd2d6cd8d6531983c3b639 libitm/clearcap.map feebbb752005ac4f4ede7ce79414dc7f libitm/clone.cc 3149aa41dab3ee3db3f64f68dd00ddd3 libitm/common.h ! 05ea82fd12c7b4a030b6310b862ff47d libitm/config.h.in 2fa21aa55341fa035da87b3020b0faa0 libitm/config/alpha/cacheline.h 40a4cf70dd9ab6908da44f4e3122575b libitm/config/alpha/sjlj.S ecdcfae51592fb8e00c563afd5e5c167 libitm/config/alpha/target.h *************** c510164a13b482a2d2bb7ec238993e05 libitm *** 47557,47562 **** --- 47543,47550 ---- 243e22fe1f89c5310f5995ee3b5b2054 libitm/config/powerpc/cacheline.h baa7795c4f6d303012d4b53515d12634 libitm/config/powerpc/sjlj.S 88edd806f727549ffbc72530b89deecf libitm/config/powerpc/target.h + 9c125deeb15e1a8a2ce1273c89071cff libitm/config/s390/sjlj.S + 06d484253bf164212229f79546393fd5 libitm/config/s390/target.h 68dd967a90830ad3afaf6fce0546e3c7 libitm/config/sh/sjlj.S fe8ac2fa35c2f95326d125a9daddda58 libitm/config/sh/target.h d9bce7b0a454ead6868a049ed3561f88 libitm/config/sparc/cacheline.h *************** d5b45ac72482441bc4547b031122e511 libitm *** 47567,47580 **** a509a318638a892b6d8f23ba4600e992 libitm/config/x86/target.h 26b3faeed41593e7d8ed02a4a590952f libitm/config/x86/x86_avx.cc 774f166eaa649652ba84ecac94ccec3b libitm/config/x86/x86_sse.cc ! 1dfe57b82d8bc77a7767be65eba771c6 libitm/configure ! 5259e91c2214841f24977ec3a6741d92 libitm/configure.ac ! aca901b689a77bfa7a14d2c4a3e81bc8 libitm/configure.tgt a880f7bf4ba2b802683664aabaa370d3 libitm/containers.h 58d6b7f4d71af18a1539d55fbbbd2b8c libitm/dispatch.h 37862447ce14b3005bb3d856f0c66a7d libitm/eh_cpp.cc 0d5244d9b6aab6059545ed7dac590f2b libitm/libitm.h ! 1bf1b3284049c70b87298c5a63b89099 libitm/libitm.info 8d44f8cc119e5c7cbc20c558b551475b libitm/libitm.map ea467d7117853d139bb288ab75261139 libitm/libitm.spec.in de3297853fbdb2b8abca6b43897355c8 libitm/libitm.texi --- 47555,47568 ---- a509a318638a892b6d8f23ba4600e992 libitm/config/x86/target.h 26b3faeed41593e7d8ed02a4a590952f libitm/config/x86/x86_avx.cc 774f166eaa649652ba84ecac94ccec3b libitm/config/x86/x86_sse.cc ! a2418152df46599274431a0d54ef35b5 libitm/configure ! 38b35fe4a8b607c7901e2b4e7cb964aa libitm/configure.ac ! 5f7a506b8fe3c65a142f97e27edae6e6 libitm/configure.tgt a880f7bf4ba2b802683664aabaa370d3 libitm/containers.h 58d6b7f4d71af18a1539d55fbbbd2b8c libitm/dispatch.h 37862447ce14b3005bb3d856f0c66a7d libitm/eh_cpp.cc 0d5244d9b6aab6059545ed7dac590f2b libitm/libitm.h ! b60d2872c1b52b9176f7c557cb74bbf9 libitm/libitm.info 8d44f8cc119e5c7cbc20c558b551475b libitm/libitm.map ea467d7117853d139bb288ab75261139 libitm/libitm.spec.in de3297853fbdb2b8abca6b43897355c8 libitm/libitm.texi *************** ef24198422c19f99b0c41be6a16f7081 libitm *** 47614,47620 **** a461c2022ca3b6af6e76e149ebac1141 libitm/useraction.cc 51cac9d6e5e4d1681f3a49c39f85010f libitm/util.cc 94d55d512a9ba36caa9b7df079bae19f libjava/COPYING ! a8091915ba0bd4be2f6d1b3f207e0bf0 libjava/ChangeLog 03e1f38b916604fdf1470238201325f3 libjava/ChangeLog-1998 691acb61fbd6a2235826ff55db5578be libjava/ChangeLog-1999 b58c6701706771a02bf00a77666941ef libjava/ChangeLog-2000 --- 47602,47608 ---- a461c2022ca3b6af6e76e149ebac1141 libitm/useraction.cc 51cac9d6e5e4d1681f3a49c39f85010f libitm/util.cc 94d55d512a9ba36caa9b7df079bae19f libjava/COPYING ! 4d4db7ae139b33030549549238355e0f libjava/ChangeLog 03e1f38b916604fdf1470238201325f3 libjava/ChangeLog-1998 691acb61fbd6a2235826ff55db5578be libjava/ChangeLog-1999 b58c6701706771a02bf00a77666941ef libjava/ChangeLog-2000 *************** de54f80484e640306e109e785e4611c8 libjav *** 47654,47660 **** 880a25226e4e4e4c241663041d24f8dd libjava/classpath/AUTHORS efd97e0bb913655e0c8b16fa78bdded4 libjava/classpath/BUGS af0004801732bc4b20d90f351cf80510 libjava/classpath/COPYING ! d52e846c7b77f3c1482772c1166af678 libjava/classpath/ChangeLog 3418fae58de967afe26d915a4b18d82c libjava/classpath/ChangeLog-2003 a5b72adb94a3c362738b0f52e57a82af libjava/classpath/ChangeLog-2004 61159c6e0802d0d2a92b3051003db5c5 libjava/classpath/ChangeLog-2005 --- 47642,47648 ---- 880a25226e4e4e4c241663041d24f8dd libjava/classpath/AUTHORS efd97e0bb913655e0c8b16fa78bdded4 libjava/classpath/BUGS af0004801732bc4b20d90f351cf80510 libjava/classpath/COPYING ! fd818d4374fc4b29018bf304bb8bb5a9 libjava/classpath/ChangeLog 3418fae58de967afe26d915a4b18d82c libjava/classpath/ChangeLog-2003 a5b72adb94a3c362738b0f52e57a82af libjava/classpath/ChangeLog-2004 61159c6e0802d0d2a92b3051003db5c5 libjava/classpath/ChangeLog-2005 *************** b2a35e98453194ca837c363ee9c0d379 libjav *** 47681,47687 **** 8385976ed3a37f278f07c10341d53876 libjava/classpath/config.guess 6ba186363745a3fe81716c8c67bd370c libjava/classpath/config.rpath b65469e74491b977b8babd8f98f3c1e5 libjava/classpath/config.sub ! aa2f2f9f7a8435f7eba8a1ec4a90d101 libjava/classpath/configure 8317b38730f7b67a3e606bfc2811127f libjava/classpath/configure.ac 21504de31981a67b5b93b265029d1865 libjava/classpath/depcomp a6cedb4991503f803e9f0870daf59c13 libjava/classpath/doc/.cvsignore --- 47669,47675 ---- 8385976ed3a37f278f07c10341d53876 libjava/classpath/config.guess 6ba186363745a3fe81716c8c67bd370c libjava/classpath/config.rpath b65469e74491b977b8babd8f98f3c1e5 libjava/classpath/config.sub ! 728c53e921a382ab13bbaed96199c61f libjava/classpath/configure 8317b38730f7b67a3e606bfc2811127f libjava/classpath/configure.ac 21504de31981a67b5b93b265029d1865 libjava/classpath/depcomp a6cedb4991503f803e9f0870daf59c13 libjava/classpath/doc/.cvsignore *************** a6cedb4991503f803e9f0870daf59c13 libjav *** 47692,47712 **** b343eec566430e85d1f95c21438aa4ee libjava/classpath/doc/api/Makefile.am 5fcdae5b1c0be2a1d42d9d919e2a9d10 libjava/classpath/doc/api/Makefile.in 5ddd829b35fc94b0cdb119084089edb8 libjava/classpath/doc/cp-hacking.texinfo ! f24186a042d3d9b3269ecdad93c26f22 libjava/classpath/doc/cp-tools.info 0349e5c38c548584225423ef4bafd20b libjava/classpath/doc/cp-tools.texinfo 3155d9bd9a7bf4aff2ff0dfe4a2cb878 libjava/classpath/doc/cp-vmintegration.texinfo ! 818b1eb6ebb8e4b4f5335332b8982138 libjava/classpath/doc/gappletviewer.1 ! d47e00b54e364bfe1de8d619350e0246 libjava/classpath/doc/gjar.1 ! 18053bd9f19217cd88ceba26fea5a362 libjava/classpath/doc/gjarsigner.1 ! bd8b5cd9b92c7c9bc3ec1cbbe7240613 libjava/classpath/doc/gjavah.1 ! 49c98b3dabf586cd978a3e468703a929 libjava/classpath/doc/gjdoc.1 ! d20ab6911a1009716dc0858e43180e69 libjava/classpath/doc/gkeytool.1 ! b3a03609ee274b6e3d65f40e7b783845 libjava/classpath/doc/gnative2ascii.1 ! a9bdbbee8a2330f898fdc0f36561490b libjava/classpath/doc/gorbd.1 ! 74cdb6ca4de32661fb7224467a43bc27 libjava/classpath/doc/grmid.1 ! 51388702abe7d5c6cadef6267fe5d154 libjava/classpath/doc/grmiregistry.1 ! 0f7d139260642dcc6a3b6f7344e9898c libjava/classpath/doc/gserialver.1 ! 118fca8e4058f5dac0c59033fb9c9d0f libjava/classpath/doc/gtnameserv.1 7e4e31659df1c7e815f9151958dceef2 libjava/classpath/doc/texi2pod.pl 01b23c87dcf82048a5958c8224653305 libjava/classpath/doc/texinfo.tex b1e0c0c30547d57d7a09b04d47c70b06 libjava/classpath/examples/.cvsignore --- 47680,47700 ---- b343eec566430e85d1f95c21438aa4ee libjava/classpath/doc/api/Makefile.am 5fcdae5b1c0be2a1d42d9d919e2a9d10 libjava/classpath/doc/api/Makefile.in 5ddd829b35fc94b0cdb119084089edb8 libjava/classpath/doc/cp-hacking.texinfo ! 8e47b82e10c52c7434946f7552f1b333 libjava/classpath/doc/cp-tools.info 0349e5c38c548584225423ef4bafd20b libjava/classpath/doc/cp-tools.texinfo 3155d9bd9a7bf4aff2ff0dfe4a2cb878 libjava/classpath/doc/cp-vmintegration.texinfo ! 1c56b7133b69dbcf253e08b8d4091128 libjava/classpath/doc/gappletviewer.1 ! 6620c56ee315a5430e3e0167acc8ccc2 libjava/classpath/doc/gjar.1 ! 221186a6e6319be73648f34a4e5a5cda libjava/classpath/doc/gjarsigner.1 ! 9baefc566c7d3ea92badf6c449f44749 libjava/classpath/doc/gjavah.1 ! 182eb0b4d6efec12857a260adfd53233 libjava/classpath/doc/gjdoc.1 ! 455911a565f89dc4d100364139503337 libjava/classpath/doc/gkeytool.1 ! f8181bf9766fabb994007ca5b706d6bb libjava/classpath/doc/gnative2ascii.1 ! 2b99d4ecf4fb3f8ef552aecf12d05d95 libjava/classpath/doc/gorbd.1 ! 317a1ca1ebb81da4475c85195f8e94f5 libjava/classpath/doc/grmid.1 ! e2dc356620666dc6183673de81a87f2d libjava/classpath/doc/grmiregistry.1 ! 655c5e6da417ba02157ffddbb54eb76d libjava/classpath/doc/gserialver.1 ! 2a874c0431b1bb5afc031e2d51312770 libjava/classpath/doc/gtnameserv.1 7e4e31659df1c7e815f9151958dceef2 libjava/classpath/doc/texi2pod.pl 01b23c87dcf82048a5958c8224653305 libjava/classpath/doc/texinfo.tex b1e0c0c30547d57d7a09b04d47c70b06 libjava/classpath/examples/.cvsignore *************** b2e1169c44e6959b0a89c191eed11d93 libjav *** 60400,60406 **** ccb88af68838277a679d9d358f18c86d libjava/classpath/m4/lib-ld.m4 ae7b83f9e10586d558f81855a211b5b1 libjava/classpath/m4/lib-link.m4 d305e70dd3440147ae6beb0ced42636d libjava/classpath/m4/lib-prefix.m4 ! 8bc9c6be20df8421c1a687421fbfde85 libjava/classpath/m4/pkg.m4 41a1f90974d52d40bcd4784b81bb462b libjava/classpath/mauve-classpath 9d9668fb32d0542b712be2c34ca79bd7 libjava/classpath/missing ce1fb6b579015b49d94f3b093f4cb332 libjava/classpath/mkinstalldirs --- 60388,60394 ---- ccb88af68838277a679d9d358f18c86d libjava/classpath/m4/lib-ld.m4 ae7b83f9e10586d558f81855a211b5b1 libjava/classpath/m4/lib-link.m4 d305e70dd3440147ae6beb0ced42636d libjava/classpath/m4/lib-prefix.m4 ! 631036b57d165731f86054af6a44290f libjava/classpath/m4/pkg.m4 41a1f90974d52d40bcd4784b81bb462b libjava/classpath/mauve-classpath 9d9668fb32d0542b712be2c34ca79bd7 libjava/classpath/missing ce1fb6b579015b49d94f3b093f4cb332 libjava/classpath/mkinstalldirs *************** eb41bc24fe11de48910454ad60b1d450 libjav *** 62953,62959 **** 7667fd55916077a20c6c1606c282c71e libjava/classpath/vm/reference/sun/misc/Unsafe.java 51797ad56585c18d465096c545896968 libjava/classpath/vm/reference/sun/reflect/Reflection.java ee8b97b4210bc58ca056b570a7b0a1a2 libjava/classpath/vm/reference/sun/reflect/misc/ReflectUtil.java ! 5b5d0352df09223f4ea1a3004c397233 libjava/configure 60fa9969d9ea31d2539cca081bab0b45 libjava/configure.ac ab92b7fe8250b2cd4831120b90535fef libjava/configure.host c87469b826abd90aa96813dbb712963b libjava/contrib/aot-compile-rpm.in --- 62941,62947 ---- 7667fd55916077a20c6c1606c282c71e libjava/classpath/vm/reference/sun/misc/Unsafe.java 51797ad56585c18d465096c545896968 libjava/classpath/vm/reference/sun/reflect/Reflection.java ee8b97b4210bc58ca056b570a7b0a1a2 libjava/classpath/vm/reference/sun/reflect/misc/ReflectUtil.java ! 39548acbbb9132d665d48c95016931af libjava/configure 60fa9969d9ea31d2539cca081bab0b45 libjava/configure.ac ab92b7fe8250b2cd4831120b90535fef libjava/configure.host c87469b826abd90aa96813dbb712963b libjava/contrib/aot-compile-rpm.in *************** a40a8f1527e2703fe2f08bf7276d8591 libjav *** 69923,69929 **** 697ca1de35069bd86456a5a19b9c4f11 libjava/libgcj.ver 184718636f014ef2ca46d62ba8d6c3bf libjava/libgcj_bc.c e3eda01d9815f8d24aae2dbd89b68b06 libjava/libltdl/COPYING.LIB ! f25ec9617857cd456f05f16dd73e7245 libjava/libltdl/ChangeLog 349267319e3d55dcf180a20f85394144 libjava/libltdl/Makefile.am 930c6383a37e6cc8e0625c9a281eda95 libjava/libltdl/Makefile.in 36da24f9facf00b349ea10dba3789d92 libjava/libltdl/README --- 69911,69917 ---- 697ca1de35069bd86456a5a19b9c4f11 libjava/libgcj.ver 184718636f014ef2ca46d62ba8d6c3bf libjava/libgcj_bc.c e3eda01d9815f8d24aae2dbd89b68b06 libjava/libltdl/COPYING.LIB ! 35bd630f5703c947b0f47dedd2f52054 libjava/libltdl/ChangeLog 349267319e3d55dcf180a20f85394144 libjava/libltdl/Makefile.am 930c6383a37e6cc8e0625c9a281eda95 libjava/libltdl/Makefile.in 36da24f9facf00b349ea10dba3789d92 libjava/libltdl/README *************** efa3c5db8112696291d98ab0b195e083 libjav *** 70693,70699 **** 2f21b717a19d42ea904d19ee7b6a39b1 libjava/org/xml/sax/helpers/XMLReaderAdapter$AttributesAdapter.h 59d1d8acc4bee54bd001d76c45abb268 libjava/org/xml/sax/helpers/XMLReaderAdapter.h 1ac85ce766f7c0195f78ea0156116e9a libjava/org/xml/sax/helpers/XMLReaderFactory.h ! 8bc9c6be20df8421c1a687421fbfde85 libjava/pkg.m4 bcecf5b2507e5f3693f16c96acd82a17 libjava/posix-threads.cc 988741ff03c71aa76b896742aaffe296 libjava/posix.cc de6f44effe53248a36da4ddcf8c4d91e libjava/prims.cc --- 70681,70687 ---- 2f21b717a19d42ea904d19ee7b6a39b1 libjava/org/xml/sax/helpers/XMLReaderAdapter$AttributesAdapter.h 59d1d8acc4bee54bd001d76c45abb268 libjava/org/xml/sax/helpers/XMLReaderAdapter.h 1ac85ce766f7c0195f78ea0156116e9a libjava/org/xml/sax/helpers/XMLReaderFactory.h ! 631036b57d165731f86054af6a44290f libjava/pkg.m4 bcecf5b2507e5f3693f16c96acd82a17 libjava/posix-threads.cc 988741ff03c71aa76b896742aaffe296 libjava/posix.cc de6f44effe53248a36da4ddcf8c4d91e libjava/prims.cc *************** d41d8cd98f00b204e9800998ecf8427e libjav *** 71619,71625 **** 434ac04eb066f5075299583492846410 libjava/verify.cc 355440a0c2fb5e16259d7ae381b37ed5 libjava/win32-threads.cc 434d5e5e91727dec004f0d1d1fab47ec libjava/win32.cc ! c173f39a63818b5c562235bf8a493294 libmudflap/ChangeLog d17c97a25d15628f9814330350c9f68c libmudflap/Makefile.am 799a9b84a86476bbeff50297b7468483 libmudflap/Makefile.in 9883ed42b491d8aea83fdde90561cf2a libmudflap/acinclude.m4 --- 71607,71613 ---- 434ac04eb066f5075299583492846410 libjava/verify.cc 355440a0c2fb5e16259d7ae381b37ed5 libjava/win32-threads.cc 434d5e5e91727dec004f0d1d1fab47ec libjava/win32.cc ! ae85c3e56fff7373097fa505734cd913 libmudflap/ChangeLog d17c97a25d15628f9814330350c9f68c libmudflap/Makefile.am 799a9b84a86476bbeff50297b7468483 libmudflap/Makefile.in 9883ed42b491d8aea83fdde90561cf2a libmudflap/acinclude.m4 *************** a413e4b774854ae9e990ae6d41d97941 libmud *** 71763,71769 **** 86b705472b17ac803b1be2e9048982f1 libmudflap/testsuite/libmudflap.cth/pass40-frag.c 725a94441658e42a6adf2add0a0a419d libmudflap/testsuite/libmudflap.cth/pass59-frag.c 60168171460c9277504005955b1ea1b8 libmudflap/testsuite/mfconfig.exp.in ! 7e5ac0101905e2e4bf5f29972fe9b2d4 libobjc/ChangeLog e68e4faf07897a32896c6ea00a6dd769 libobjc/Makefile.in 56746171b8870cf9098f90c3562cec71 libobjc/NXConstStr.m af8fcd9da32497be695cde3725912fd9 libobjc/Object.m --- 71751,71757 ---- 86b705472b17ac803b1be2e9048982f1 libmudflap/testsuite/libmudflap.cth/pass40-frag.c 725a94441658e42a6adf2add0a0a419d libmudflap/testsuite/libmudflap.cth/pass59-frag.c 60168171460c9277504005955b1ea1b8 libmudflap/testsuite/mfconfig.exp.in ! 2bbb558266b36e43a6f0dd0a1300ef2c libobjc/ChangeLog e68e4faf07897a32896c6ea00a6dd769 libobjc/Makefile.in 56746171b8870cf9098f90c3562cec71 libobjc/NXConstStr.m af8fcd9da32497be695cde3725912fd9 libobjc/Object.m *************** f247118d9a54957685ebfc41c827a9f3 libobj *** 71779,71785 **** e5fcf35570b8103f9b00638e12708cc0 libobjc/configure.ac 16203e5ea5e964e825ecc2cf2f4f2ee1 libobjc/encoding.c 16e0dc14f4d43c8ae7033c198518b4cf libobjc/error.c ! 5d290c260f4bd767361e0c43fc815151 libobjc/exception.c edb57f642d391c0438ad5cd2c9ad3d33 libobjc/gc.c a530ed85d7f1bb39160020ee8d9725b6 libobjc/hash.c ff48f55afaeb1c5477eea95a54c551c1 libobjc/init.c --- 71767,71773 ---- e5fcf35570b8103f9b00638e12708cc0 libobjc/configure.ac 16203e5ea5e964e825ecc2cf2f4f2ee1 libobjc/encoding.c 16e0dc14f4d43c8ae7033c198518b4cf libobjc/error.c ! 2a65a9e4fdaf97fc6599a8373a4fa7a9 libobjc/exception.c edb57f642d391c0438ad5cd2c9ad3d33 libobjc/gc.c a530ed85d7f1bb39160020ee8d9725b6 libobjc/hash.c ff48f55afaeb1c5477eea95a54c551c1 libobjc/init.c *************** df34ec75bbe88331b52cb1e690032c80 libobj *** 71821,71827 **** 13f4a173a94f3c5139c3d6827f8c49fa libobjc/sendmsg.c 8bae79345f1be0f341a14f9006b4fff1 libobjc/thr.c a916467b91076e631dd8edb7424769c7 libquadmath/COPYING.LIB ! eb6842c27381586c69897db71e581d34 libquadmath/ChangeLog 23c7bbe18a2fd46fd6d7090e03b3f561 libquadmath/Makefile.am d7cf19f3f2f3edcb6f903996e5d97087 libquadmath/Makefile.in 4c8b4478a1031d129e7cc6b341876b99 libquadmath/acinclude.m4 --- 71809,71815 ---- 13f4a173a94f3c5139c3d6827f8c49fa libobjc/sendmsg.c 8bae79345f1be0f341a14f9006b4fff1 libobjc/thr.c a916467b91076e631dd8edb7424769c7 libquadmath/COPYING.LIB ! f301e67e6d426dca4a5613ccfb8ca0fc libquadmath/ChangeLog 23c7bbe18a2fd46fd6d7090e03b3f561 libquadmath/Makefile.am d7cf19f3f2f3edcb6f903996e5d97087 libquadmath/Makefile.in 4c8b4478a1031d129e7cc6b341876b99 libquadmath/acinclude.m4 *************** aece970dd74d47d051257c4d4d1e91fa libqua *** 71829,71835 **** bf09ede5c6d78e3d132bde0f933590d8 libquadmath/config.h.in 62b6103080109c32d8cd943eccd32e38 libquadmath/configure 70f1bb2cf17ed14a22bd7f52ebf2593e libquadmath/configure.ac ! 0a1726d360865676ca42776e65f230e1 libquadmath/libquadmath.info 839b93777d307acba83159b15f3d9824 libquadmath/libquadmath.texi 77280bb7ee423875e03d9c0d34527df6 libquadmath/libtool-version f44065462735b4699d44588271a5f09a libquadmath/math/acoshq.c --- 71817,71823 ---- bf09ede5c6d78e3d132bde0f933590d8 libquadmath/config.h.in 62b6103080109c32d8cd943eccd32e38 libquadmath/configure 70f1bb2cf17ed14a22bd7f52ebf2593e libquadmath/configure.ac ! a367e9f670e195b232980cf49fc9f0b7 libquadmath/libquadmath.info 839b93777d307acba83159b15f3d9824 libquadmath/libquadmath.texi 77280bb7ee423875e03d9c0d34527df6 libquadmath/libtool-version f44065462735b4699d44588271a5f09a libquadmath/math/acoshq.c *************** e766022f8615b72cbc38335d262e9d3d libqua *** 71952,71958 **** a81cc82679e80c86cfbd5575867450d0 libquadmath/strtod/strtod_l.c da808e110fc09ebd41ebd405790a70df libquadmath/strtod/strtoflt128.c d15a18f7c46ba2add6148edc5b7563c0 libquadmath/strtod/tens_in_limb.c ! 90d1a723b20eddb15fb87f6efb6467d3 libsanitizer/ChangeLog 0249c37748936faf5b1efd5789587909 libsanitizer/LICENSE.TXT d684e511ea80e2cc442a652a42156e81 libsanitizer/MERGE beb6222f9a25db3ea8121457aca5d299 libsanitizer/Makefile.am --- 71940,71946 ---- a81cc82679e80c86cfbd5575867450d0 libquadmath/strtod/strtod_l.c da808e110fc09ebd41ebd405790a70df libquadmath/strtod/strtoflt128.c d15a18f7c46ba2add6148edc5b7563c0 libquadmath/strtod/tens_in_limb.c ! 22a53cd8c771d5d5c407062b57a91d09 libsanitizer/ChangeLog 0249c37748936faf5b1efd5789587909 libsanitizer/LICENSE.TXT d684e511ea80e2cc442a652a42156e81 libsanitizer/MERGE beb6222f9a25db3ea8121457aca5d299 libsanitizer/Makefile.am *************** be2c84b52568ecfd1a780b1f03ef0427 libsan *** 72107,72113 **** b64cdedde58be4c1c3afd082ccfcd890 libsanitizer/tsan/tsan_trace.h 1ecb5346ab82bca2a8c49f55663a2d55 libsanitizer/tsan/tsan_update_shadow_word_inl.h 602903a9e6505ac239fac5079d8cc141 libsanitizer/tsan/tsan_vector.h ! 633a7f746dea984bdb0d90455f58a749 libssp/ChangeLog 01d9954c400db04da1b8705029e6d9d9 libssp/Makefile.am 6f9651cc4e77f9e7629b0142b05a90e0 libssp/Makefile.in 8b0dd0c2a8b446bf5577a8562ad19885 libssp/aclocal.m4 --- 72095,72101 ---- b64cdedde58be4c1c3afd082ccfcd890 libsanitizer/tsan/tsan_trace.h 1ecb5346ab82bca2a8c49f55663a2d55 libsanitizer/tsan/tsan_update_shadow_word_inl.h 602903a9e6505ac239fac5079d8cc141 libsanitizer/tsan/tsan_vector.h ! 802bff9a675310f8099747b123a882d9 libssp/ChangeLog 01d9954c400db04da1b8705029e6d9d9 libssp/Makefile.am 6f9651cc4e77f9e7629b0142b05a90e0 libssp/Makefile.in 8b0dd0c2a8b446bf5577a8562ad19885 libssp/aclocal.m4 *************** aeb2f84c5e8ba3215469d507bd2efe57 libssp *** 72136,72142 **** e9ab923d2562bf5f5be6883dfb9f0184 libssp/strncpy-chk.c 5e0d8b8a766c31b12354baec1b7a159c libssp/vsnprintf-chk.c f56ab1f8922a16f7e9e4f5270ae1e34e libssp/vsprintf-chk.c ! f1ec3b9cd2501457cd0797c24f3fc65a libstdc++-v3/ChangeLog 7aa6c40440a44fcf5ec94c066160c2f8 libstdc++-v3/ChangeLog-1998 7aff86600b6a1ed3fa87305075a92db0 libstdc++-v3/ChangeLog-1999 a6f28e8fc9bb07696a9e068b439a3a87 libstdc++-v3/ChangeLog-2000 --- 72124,72130 ---- e9ab923d2562bf5f5be6883dfb9f0184 libssp/strncpy-chk.c 5e0d8b8a766c31b12354baec1b7a159c libssp/vsnprintf-chk.c f56ab1f8922a16f7e9e4f5270ae1e34e libssp/vsprintf-chk.c ! 08b50ed9064a0a4673b812df01081531 libstdc++-v3/ChangeLog 7aa6c40440a44fcf5ec94c066160c2f8 libstdc++-v3/ChangeLog-1998 7aff86600b6a1ed3fa87305075a92db0 libstdc++-v3/ChangeLog-1999 a6f28e8fc9bb07696a9e068b439a3a87 libstdc++-v3/ChangeLog-2000 *************** f372af73db4ac0ad88e43199e1f29e08 libstd *** 72159,72165 **** 8740082679d696cb8e212b6106b77cff libstdc++-v3/aclocal.m4 cca4dc44503a59433bd3421b09a53f77 libstdc++-v3/config.h.in 7b87f8a3b611dab377987f5929c1b4c0 libstdc++-v3/config/abi/compatibility.h ! 95673cb90f78418a516eb75c8fee9460 libstdc++-v3/config/abi/post/alpha-linux-gnu/baseline_symbols.txt 4f606e847ef6533868096efdee25a693 libstdc++-v3/config/abi/post/hppa-linux-gnu/baseline_symbols.txt 37fa29fff6d5209c5e4fc0191af0c1b4 libstdc++-v3/config/abi/post/i386-linux-gnu/baseline_symbols.txt 37fa29fff6d5209c5e4fc0191af0c1b4 libstdc++-v3/config/abi/post/i486-linux-gnu/baseline_symbols.txt --- 72147,72153 ---- 8740082679d696cb8e212b6106b77cff libstdc++-v3/aclocal.m4 cca4dc44503a59433bd3421b09a53f77 libstdc++-v3/config.h.in 7b87f8a3b611dab377987f5929c1b4c0 libstdc++-v3/config/abi/compatibility.h ! 4aef090e961ba1e43b6333c1429e1e36 libstdc++-v3/config/abi/post/alpha-linux-gnu/baseline_symbols.txt 4f606e847ef6533868096efdee25a693 libstdc++-v3/config/abi/post/hppa-linux-gnu/baseline_symbols.txt 37fa29fff6d5209c5e4fc0191af0c1b4 libstdc++-v3/config/abi/post/i386-linux-gnu/baseline_symbols.txt 37fa29fff6d5209c5e4fc0191af0c1b4 libstdc++-v3/config/abi/post/i486-linux-gnu/baseline_symbols.txt *************** cc65678819ec7ff06eaeed8b1a5455eb libstd *** 72181,72187 **** 37fa29fff6d5209c5e4fc0191af0c1b4 libstdc++-v3/config/abi/post/x86_64-linux-gnu/32/baseline_symbols.txt 132aee89d5dcfaf2ffaa5097110e5b22 libstdc++-v3/config/abi/post/x86_64-linux-gnu/baseline_symbols.txt 46f1f52521e0883553a3ae00ed8e5f78 libstdc++-v3/config/abi/post/x86_64-linux-gnu/x32/baseline_symbols.txt ! 401df36115d78648e1e70de3ef17d638 libstdc++-v3/config/abi/pre/gnu-versioned-namespace.ver 79f832e03e56d22538b642d6c3894b09 libstdc++-v3/config/abi/pre/gnu.ver 6f099054f1d75e3e178e42c4d8e4c6e1 libstdc++-v3/config/abi/pre/none.ver d21b0d4887ef90d1eb43c96a77bf553f libstdc++-v3/config/allocator/bitmap_allocator_base.h --- 72169,72175 ---- 37fa29fff6d5209c5e4fc0191af0c1b4 libstdc++-v3/config/abi/post/x86_64-linux-gnu/32/baseline_symbols.txt 132aee89d5dcfaf2ffaa5097110e5b22 libstdc++-v3/config/abi/post/x86_64-linux-gnu/baseline_symbols.txt 46f1f52521e0883553a3ae00ed8e5f78 libstdc++-v3/config/abi/post/x86_64-linux-gnu/x32/baseline_symbols.txt ! baafbaf642a49bf7b84ceb79f1d4ff66 libstdc++-v3/config/abi/pre/gnu-versioned-namespace.ver 79f832e03e56d22538b642d6c3894b09 libstdc++-v3/config/abi/pre/gnu.ver 6f099054f1d75e3e178e42c4d8e4c6e1 libstdc++-v3/config/abi/pre/none.ver d21b0d4887ef90d1eb43c96a77bf553f libstdc++-v3/config/allocator/bitmap_allocator_base.h *************** af4dde35437cbf5e9b1083dec1615f81 libstd *** 72329,72335 **** 83eeaef7204d701bfb631124068ac3cd libstdc++-v3/config/os/vxworks/os_defines.h b5942cfe4e2f3ccf9f2a247e4f785037 libstdc++-v3/configure 0eb63e40125a3d6980e5e5f9071ab191 libstdc++-v3/configure.ac ! 8a2407e5af5e80263e649b1434da16b4 libstdc++-v3/configure.host f42849589da50c9c3b93457ae975aeab libstdc++-v3/crossconfig.m4 dbd33ef93b6276c19b2ebbb8a26223af libstdc++-v3/doc/Makefile.am 7de1e27bc9ed8894d96beb8432bee129 libstdc++-v3/doc/Makefile.in --- 72317,72323 ---- 83eeaef7204d701bfb631124068ac3cd libstdc++-v3/config/os/vxworks/os_defines.h b5942cfe4e2f3ccf9f2a247e4f785037 libstdc++-v3/configure 0eb63e40125a3d6980e5e5f9071ab191 libstdc++-v3/configure.ac ! 723bbf19544344eaf9c9bea88cfd3e59 libstdc++-v3/configure.host f42849589da50c9c3b93457ae975aeab libstdc++-v3/crossconfig.m4 dbd33ef93b6276c19b2ebbb8a26223af libstdc++-v3/doc/Makefile.am 7de1e27bc9ed8894d96beb8432bee129 libstdc++-v3/doc/Makefile.in *************** d42dacf57cbf8644fc8b7217c7e8893a libstd *** 72767,72774 **** 81101633486578b85f0457b4b1b10424 libstdc++-v3/doc/xml/spine.xml bd966b4a0df6f2a84f9770525581d45c libstdc++-v3/doc/xsl/customization.xsl.in 216bae5f7d13e4004761f08c0dade9db libstdc++-v3/fragment.am ! b569e4202f814a07ff8526039e7c5284 libstdc++-v3/include/Makefile.am ! 56811151df394483a100bb433df1492d libstdc++-v3/include/Makefile.in 7b22a0fef9e41b675c99be921657962e libstdc++-v3/include/backward/auto_ptr.h 1c9368be16078b87c84c42d77e12fe63 libstdc++-v3/include/backward/backward_warning.h a141de41381daf22f2f7aff44d47fc84 libstdc++-v3/include/backward/binders.h --- 72755,72762 ---- 81101633486578b85f0457b4b1b10424 libstdc++-v3/doc/xml/spine.xml bd966b4a0df6f2a84f9770525581d45c libstdc++-v3/doc/xsl/customization.xsl.in 216bae5f7d13e4004761f08c0dade9db libstdc++-v3/fragment.am ! 2de1c38c53b14a487e6022c3489bab24 libstdc++-v3/include/Makefile.am ! f8ae8cc4b1c74c12552a2c485288104f libstdc++-v3/include/Makefile.in 7b22a0fef9e41b675c99be921657962e libstdc++-v3/include/backward/auto_ptr.h 1c9368be16078b87c84c42d77e12fe63 libstdc++-v3/include/backward/backward_warning.h a141de41381daf22f2f7aff44d47fc84 libstdc++-v3/include/backward/binders.h *************** b15dde277c878b464b1c72810c9da508 libstd *** 72787,72793 **** a97811d392e87c0cd33892e178aa5752 libstdc++-v3/include/bits/basic_string.tcc 240d723edf58a90d26025e42213bab32 libstdc++-v3/include/bits/boost_concept_check.h 0a0e37f5b66a26da7ee6fc3e90e32b35 libstdc++-v3/include/bits/c++0x_warning.h ! 8c7e44e4c4a446595c64c0043d693e4a libstdc++-v3/include/bits/c++config 9a209a6fc7da5fd30ea7c3f939b6ad3d libstdc++-v3/include/bits/char_traits.h 83f824afb806ca318e6cce9f814836d4 libstdc++-v3/include/bits/codecvt.h 0d3ad3a7f61303742f8b02601b702744 libstdc++-v3/include/bits/concept_check.h --- 72775,72781 ---- a97811d392e87c0cd33892e178aa5752 libstdc++-v3/include/bits/basic_string.tcc 240d723edf58a90d26025e42213bab32 libstdc++-v3/include/bits/boost_concept_check.h 0a0e37f5b66a26da7ee6fc3e90e32b35 libstdc++-v3/include/bits/c++0x_warning.h ! 106f50ece7e2528b7f340c9a01f099ed libstdc++-v3/include/bits/c++config 9a209a6fc7da5fd30ea7c3f939b6ad3d libstdc++-v3/include/bits/char_traits.h 83f824afb806ca318e6cce9f814836d4 libstdc++-v3/include/bits/codecvt.h 0d3ad3a7f61303742f8b02601b702744 libstdc++-v3/include/bits/concept_check.h *************** adb9d0b7d50e2f0b484f81f5aacee930 libstd *** 72820,72827 **** 8921ee8c6ebb149267f73c422866b51c libstdc++-v3/include/bits/ostream_insert.h 533becd00d6ace73ae1c776f2dafadca libstdc++-v3/include/bits/postypes.h 4a3f1323e741e71b77bf3993407516df libstdc++-v3/include/bits/ptr_traits.h ! 128338bd832e9001dafda4b36daab4c0 libstdc++-v3/include/bits/random.h ! 50f2eb99530090c21a30eebe98bc3a77 libstdc++-v3/include/bits/random.tcc 26d7002e1985723d240003bfc299346f libstdc++-v3/include/bits/range_access.h 0c32ccc04a3eb5d5161f590c851ee854 libstdc++-v3/include/bits/regex.h 4eeae659d0314bc205ab91cc892764f2 libstdc++-v3/include/bits/regex_compiler.h --- 72808,72815 ---- 8921ee8c6ebb149267f73c422866b51c libstdc++-v3/include/bits/ostream_insert.h 533becd00d6ace73ae1c776f2dafadca libstdc++-v3/include/bits/postypes.h 4a3f1323e741e71b77bf3993407516df libstdc++-v3/include/bits/ptr_traits.h ! 96ed900d32b31ed58c934ce1c333754d libstdc++-v3/include/bits/random.h ! 9ddddc5b70e2f6675190798e4636b2de libstdc++-v3/include/bits/random.tcc 26d7002e1985723d240003bfc299346f libstdc++-v3/include/bits/range_access.h 0c32ccc04a3eb5d5161f590c851ee854 libstdc++-v3/include/bits/regex.h 4eeae659d0314bc205ab91cc892764f2 libstdc++-v3/include/bits/regex_compiler.h *************** fa122b0d450458b7cc31dab936718d3e libstd *** 72833,72844 **** 9c2da0aae4a4af584e09769625e673c9 libstdc++-v3/include/bits/regex_nfa.h 1aab141c373ca92a04225f56532a14b9 libstdc++-v3/include/bits/regex_nfa.tcc 87994345535cdf3b8c985a0a016453b5 libstdc++-v3/include/bits/shared_ptr.h ! ebcee0a35f388684d96ed120b27ae994 libstdc++-v3/include/bits/shared_ptr_base.h 59d02d9f5070d3603f1e223dd7f8014a libstdc++-v3/include/bits/slice_array.h 323e24e40e9fa392e721d04d4431768e libstdc++-v3/include/bits/sstream.tcc ! fc33f4ecc9fa306ad7ca99473233dc8c libstdc++-v3/include/bits/stl_algo.h ! 65a3f13f64ef6e5a2b44e7426f0a5db2 libstdc++-v3/include/bits/stl_algobase.h ! 2050e2e137147693a4c9574d6a9aec8a libstdc++-v3/include/bits/stl_bvector.h e8ba3e4c10b7b0f7ce71a0d624e57681 libstdc++-v3/include/bits/stl_construct.h 2b8e94748ab0343478568845ed19d544 libstdc++-v3/include/bits/stl_deque.h ec18a5afdc73e1222b62b54545e31e99 libstdc++-v3/include/bits/stl_function.h --- 72821,72832 ---- 9c2da0aae4a4af584e09769625e673c9 libstdc++-v3/include/bits/regex_nfa.h 1aab141c373ca92a04225f56532a14b9 libstdc++-v3/include/bits/regex_nfa.tcc 87994345535cdf3b8c985a0a016453b5 libstdc++-v3/include/bits/shared_ptr.h ! f163e221fda9d67c31348b434e7e6d1b libstdc++-v3/include/bits/shared_ptr_base.h 59d02d9f5070d3603f1e223dd7f8014a libstdc++-v3/include/bits/slice_array.h 323e24e40e9fa392e721d04d4431768e libstdc++-v3/include/bits/sstream.tcc ! 8df72e70da6e1361d63fdccc60a7e605 libstdc++-v3/include/bits/stl_algo.h ! 6969df87c5a67dc4e50a33c793db05a0 libstdc++-v3/include/bits/stl_algobase.h ! 38cdfc89e6ee845ee6d598963b8497cf libstdc++-v3/include/bits/stl_bvector.h e8ba3e4c10b7b0f7ce71a0d624e57681 libstdc++-v3/include/bits/stl_construct.h 2b8e94748ab0343478568845ed19d544 libstdc++-v3/include/bits/stl_deque.h ec18a5afdc73e1222b62b54545e31e99 libstdc++-v3/include/bits/stl_function.h *************** a8705ee339f879bc9bfc333ae77c554f libstd *** 72847,72864 **** 6ae0e1f41b872997386a0d70b9239247 libstdc++-v3/include/bits/stl_iterator_base_funcs.h 89344ff5aeffaeb01926d555a07da13c libstdc++-v3/include/bits/stl_iterator_base_types.h fbf0470230f747012d5ff1d2ca12b138 libstdc++-v3/include/bits/stl_list.h ! 9c367a09ac6373a8d69c5fab7efea73f libstdc++-v3/include/bits/stl_map.h ! b56d35a09afe326a1b9c62677ed77df6 libstdc++-v3/include/bits/stl_multimap.h ! 681504f6b8d73aa6f7e38db81d82ac3b libstdc++-v3/include/bits/stl_multiset.h 89a1f3dcb04b443b6ba3764dff2b0f5a libstdc++-v3/include/bits/stl_numeric.h 96ee8f52de52edde9124b9a35d842ceb libstdc++-v3/include/bits/stl_pair.h f091b27cab7b96690dccd8d568e4a7b6 libstdc++-v3/include/bits/stl_queue.h 50edffd5abb8695fab94be9c57bd6f7f libstdc++-v3/include/bits/stl_raw_storage_iter.h df33513bdd7a8c5b25f866ba68c434e8 libstdc++-v3/include/bits/stl_relops.h ! 5c82c3d777e8462540494fd73b5349f1 libstdc++-v3/include/bits/stl_set.h 15975ea849a272880d15fa7ba2292628 libstdc++-v3/include/bits/stl_stack.h 7c836c5c89990d969dc7197299eb71fc libstdc++-v3/include/bits/stl_tempbuf.h ! 3026b1385c38a1e1ce6b8703841af82e libstdc++-v3/include/bits/stl_tree.h 51bd11e25be3ada8b15df8714f8b5288 libstdc++-v3/include/bits/stl_uninitialized.h a25b5f29edd471bd3b02a8b84c8f7774 libstdc++-v3/include/bits/stl_vector.h e997c07543cbb5b707a22cf5f14307d2 libstdc++-v3/include/bits/stream_iterator.h --- 72835,72852 ---- 6ae0e1f41b872997386a0d70b9239247 libstdc++-v3/include/bits/stl_iterator_base_funcs.h 89344ff5aeffaeb01926d555a07da13c libstdc++-v3/include/bits/stl_iterator_base_types.h fbf0470230f747012d5ff1d2ca12b138 libstdc++-v3/include/bits/stl_list.h ! 0533d9e5a0996192adad6800cf753a43 libstdc++-v3/include/bits/stl_map.h ! 5b45f9dfb9c74e8332862f5d0b4f9d25 libstdc++-v3/include/bits/stl_multimap.h ! c0b419476622d2d11eb4c32844de7a82 libstdc++-v3/include/bits/stl_multiset.h 89a1f3dcb04b443b6ba3764dff2b0f5a libstdc++-v3/include/bits/stl_numeric.h 96ee8f52de52edde9124b9a35d842ceb libstdc++-v3/include/bits/stl_pair.h f091b27cab7b96690dccd8d568e4a7b6 libstdc++-v3/include/bits/stl_queue.h 50edffd5abb8695fab94be9c57bd6f7f libstdc++-v3/include/bits/stl_raw_storage_iter.h df33513bdd7a8c5b25f866ba68c434e8 libstdc++-v3/include/bits/stl_relops.h ! a1fde6d07a3e7127041ac50752eaf68d libstdc++-v3/include/bits/stl_set.h 15975ea849a272880d15fa7ba2292628 libstdc++-v3/include/bits/stl_stack.h 7c836c5c89990d969dc7197299eb71fc libstdc++-v3/include/bits/stl_tempbuf.h ! 271e5da1a72e24718f9cbbea05f821a2 libstdc++-v3/include/bits/stl_tree.h 51bd11e25be3ada8b15df8714f8b5288 libstdc++-v3/include/bits/stl_uninitialized.h a25b5f29edd471bd3b02a8b84c8f7774 libstdc++-v3/include/bits/stl_vector.h e997c07543cbb5b707a22cf5f14307d2 libstdc++-v3/include/bits/stream_iterator.h *************** d53ae1f75b7d4aabf00ea62fb66e85a6 libstd *** 72866,72872 **** 4dfbb11eaecf9f7b1a4714c9340987f3 libstdc++-v3/include/bits/streambuf_iterator.h b40f1ea7b6e7f1a78cf6502af2c9c333 libstdc++-v3/include/bits/stringfwd.h 80c513ee57655ca175c8d5c5e4e3dff1 libstdc++-v3/include/bits/unique_ptr.h ! b716aba4a3cf3c202acf19a5afdb68b7 libstdc++-v3/include/bits/unordered_map.h 6089282a602a26a8df9cf1b005d58da7 libstdc++-v3/include/bits/unordered_set.h ce330de082025907951797315fe41ddf libstdc++-v3/include/bits/uses_allocator.h f3485681aeae45e197bf2f8ffb4c6786 libstdc++-v3/include/bits/valarray_after.h --- 72854,72860 ---- 4dfbb11eaecf9f7b1a4714c9340987f3 libstdc++-v3/include/bits/streambuf_iterator.h b40f1ea7b6e7f1a78cf6502af2c9c333 libstdc++-v3/include/bits/stringfwd.h 80c513ee57655ca175c8d5c5e4e3dff1 libstdc++-v3/include/bits/unique_ptr.h ! 6448b42d126b02e020eed347d13a33eb libstdc++-v3/include/bits/unordered_map.h 6089282a602a26a8df9cf1b005d58da7 libstdc++-v3/include/bits/unordered_set.h ce330de082025907951797315fe41ddf libstdc++-v3/include/bits/uses_allocator.h f3485681aeae45e197bf2f8ffb4c6786 libstdc++-v3/include/bits/valarray_after.h *************** ff469135432a9ef56fe2f2f4f892c03c libstd *** 72993,72999 **** 65213aa8e4207abfcee2b59462e12fc6 libstdc++-v3/include/ext/algorithm c3cb7f6cb93ee5e623f0d73e1b8ba37b libstdc++-v3/include/ext/alloc_traits.h 8fcd49182b940e15723963b1f267e270 libstdc++-v3/include/ext/array_allocator.h ! 75d15595170f449afd7720b8a80ce7d3 libstdc++-v3/include/ext/atomicity.h 708c8ec2a9733c59fa24193d3ba631f8 libstdc++-v3/include/ext/bitmap_allocator.h 13a22e3090bce7f2afe102f6d1d05615 libstdc++-v3/include/ext/cast.h 8bf471f57fcdb380d4c771f5c8d49fcb libstdc++-v3/include/ext/cmath --- 72981,72987 ---- 65213aa8e4207abfcee2b59462e12fc6 libstdc++-v3/include/ext/algorithm c3cb7f6cb93ee5e623f0d73e1b8ba37b libstdc++-v3/include/ext/alloc_traits.h 8fcd49182b940e15723963b1f267e270 libstdc++-v3/include/ext/array_allocator.h ! 1cf1c170630a2a78b46ee9a0ef92b77e libstdc++-v3/include/ext/atomicity.h 708c8ec2a9733c59fa24193d3ba631f8 libstdc++-v3/include/ext/bitmap_allocator.h 13a22e3090bce7f2afe102f6d1d05615 libstdc++-v3/include/ext/cast.h 8bf471f57fcdb380d4c771f5c8d49fcb libstdc++-v3/include/ext/cmath *************** a70e7c5fc2b95825b76484ee6cb64352 libstd *** 73256,73269 **** 140a8fb145ec3880f0cedb5032bfe996 libstdc++-v3/include/ext/pod_char_traits.h 0f96a0fbb7b5551cd1d2c3baff8ecb7b libstdc++-v3/include/ext/pointer.h ab2373d24f99d4320608175237fdde8d libstdc++-v3/include/ext/pool_allocator.h ! 510423d2fb7570dc27cb07a9f4e32775 libstdc++-v3/include/ext/random 2510c7047c2cee86eeeb6200ad5789f4 libstdc++-v3/include/ext/random.tcc b5b945d3a4ba05855521679a242c4ec0 libstdc++-v3/include/ext/rb_tree bee2f52df7edff78522722a63203cf44 libstdc++-v3/include/ext/rc_string_base.h 7715fa53cccee129569cf7c7bc1e936f libstdc++-v3/include/ext/rope 46439fd1f94d246cbbbc59de6a47d273 libstdc++-v3/include/ext/ropeimpl.h 6072aa98cd553bd6107b5c2570b398b3 libstdc++-v3/include/ext/slist ! fbf29ab0cf18d4aedcedc01efa460eec libstdc++-v3/include/ext/sso_string_base.h a7f505f99a687e19c99aae7747f91d78 libstdc++-v3/include/ext/stdio_filebuf.h e1f2d4ca30e6ecc46ef6819634bd093c libstdc++-v3/include/ext/stdio_sync_filebuf.h 2a7155770b2e009a347b71f4a8acba64 libstdc++-v3/include/ext/string_conversions.h --- 73244,73257 ---- 140a8fb145ec3880f0cedb5032bfe996 libstdc++-v3/include/ext/pod_char_traits.h 0f96a0fbb7b5551cd1d2c3baff8ecb7b libstdc++-v3/include/ext/pointer.h ab2373d24f99d4320608175237fdde8d libstdc++-v3/include/ext/pool_allocator.h ! 197184918dd80e9c6597578cacc5279b libstdc++-v3/include/ext/random 2510c7047c2cee86eeeb6200ad5789f4 libstdc++-v3/include/ext/random.tcc b5b945d3a4ba05855521679a242c4ec0 libstdc++-v3/include/ext/rb_tree bee2f52df7edff78522722a63203cf44 libstdc++-v3/include/ext/rc_string_base.h 7715fa53cccee129569cf7c7bc1e936f libstdc++-v3/include/ext/rope 46439fd1f94d246cbbbc59de6a47d273 libstdc++-v3/include/ext/ropeimpl.h 6072aa98cd553bd6107b5c2570b398b3 libstdc++-v3/include/ext/slist ! ac1677d2e780d7037834fee0a0f16a4d libstdc++-v3/include/ext/sso_string_base.h a7f505f99a687e19c99aae7747f91d78 libstdc++-v3/include/ext/stdio_filebuf.h e1f2d4ca30e6ecc46ef6819634bd093c libstdc++-v3/include/ext/stdio_sync_filebuf.h 2a7155770b2e009a347b71f4a8acba64 libstdc++-v3/include/ext/string_conversions.h *************** a68703597f9d9803390810a55da657b7 libstd *** 73325,73331 **** c2199262063740d76b61fff5d2538a88 libstdc++-v3/include/profile/bitset 99dbb851784f37adf54b38383e559b9c libstdc++-v3/include/profile/deque 55be4fc177b00856e36ca34793874500 libstdc++-v3/include/profile/forward_list ! 9f8b517f6bca5f67a2b2e8416f4fb61a libstdc++-v3/include/profile/impl/profiler.h 4073502c33c36b2054c5b508849e041e libstdc++-v3/include/profile/impl/profiler_algos.h eb86d58ced07f7fb71f5ce7cf9cc98cc libstdc++-v3/include/profile/impl/profiler_container_size.h d7e9d05e35c9210805e834fba0c6e397 libstdc++-v3/include/profile/impl/profiler_hash_func.h --- 73313,73319 ---- c2199262063740d76b61fff5d2538a88 libstdc++-v3/include/profile/bitset 99dbb851784f37adf54b38383e559b9c libstdc++-v3/include/profile/deque 55be4fc177b00856e36ca34793874500 libstdc++-v3/include/profile/forward_list ! 243afa3d23f584ce5e72ec8cb5c071aa libstdc++-v3/include/profile/impl/profiler.h 4073502c33c36b2054c5b508849e041e libstdc++-v3/include/profile/impl/profiler_algos.h eb86d58ced07f7fb71f5ce7cf9cc98cc libstdc++-v3/include/profile/impl/profiler_container_size.h d7e9d05e35c9210805e834fba0c6e397 libstdc++-v3/include/profile/impl/profiler_hash_func.h *************** f45622c3162d872d9bd0d0b6f100d3cd libstd *** 73346,73365 **** 75158c1995994ab22b4c4505c43c85c1 libstdc++-v3/include/profile/multiset.h 3f2749e208c02834e4caac4c0d943abc libstdc++-v3/include/profile/set 2b2d7b8ccba5906275314e7728178696 libstdc++-v3/include/profile/set.h ! 70a57f15bfccb6ab91cac4a4138e5b11 libstdc++-v3/include/profile/unordered_map ! 4a4304c0c00aee1b9b6361d8be1c829f libstdc++-v3/include/profile/unordered_set ! dac83e250e987f1d3bea0f79e6abd7bf libstdc++-v3/include/profile/vector 3f5f9137b924683b8cdbec6bd818e09e libstdc++-v3/include/std/algorithm 29121e588d25509666e0170a62bb3b4a libstdc++-v3/include/std/array db55c8576c523add77de26f8e6a5f203 libstdc++-v3/include/std/atomic ! 7126d9054cc73f48a78480b33425074c libstdc++-v3/include/std/bitset 261d696dada0ac13c22043593897f7a0 libstdc++-v3/include/std/chrono ! 95d030725d6babacd62f69b55ca45850 libstdc++-v3/include/std/complex 9d1a2e0279e1f3e63e33c0b6b85a325e libstdc++-v3/include/std/condition_variable b7270928c058d9549c111f7e367ffb7c libstdc++-v3/include/std/deque 85427296f8cb88bd14e002b4fabb2f4a libstdc++-v3/include/std/forward_list be282d17c5f8ba5dc2e5fc0b147aa441 libstdc++-v3/include/std/fstream ! 89252a5ba99d63cbf54162447eda722a libstdc++-v3/include/std/functional 41124c823fa25a9a65e2e4af870a639c libstdc++-v3/include/std/future 168cef671aa9099c19b1819faf3aa7de libstdc++-v3/include/std/iomanip 8c0ede8a5724470e17694a22159fa0ea libstdc++-v3/include/std/ios --- 73334,73354 ---- 75158c1995994ab22b4c4505c43c85c1 libstdc++-v3/include/profile/multiset.h 3f2749e208c02834e4caac4c0d943abc libstdc++-v3/include/profile/set 2b2d7b8ccba5906275314e7728178696 libstdc++-v3/include/profile/set.h ! f28302dc58e0d2e55f580556747b1195 libstdc++-v3/include/profile/unordered_base.h ! 6f3148960689dc95b370e14ec7828588 libstdc++-v3/include/profile/unordered_map ! 070bb0145348bbd192a14f24317dbd54 libstdc++-v3/include/profile/unordered_set ! de96fe490d145cf41c4cc610bfc0c243 libstdc++-v3/include/profile/vector 3f5f9137b924683b8cdbec6bd818e09e libstdc++-v3/include/std/algorithm 29121e588d25509666e0170a62bb3b4a libstdc++-v3/include/std/array db55c8576c523add77de26f8e6a5f203 libstdc++-v3/include/std/atomic ! 1aa00b720618c0253accec53d64520d7 libstdc++-v3/include/std/bitset 261d696dada0ac13c22043593897f7a0 libstdc++-v3/include/std/chrono ! feb944c45d4ddb4d0f8a9afc3b28125b libstdc++-v3/include/std/complex 9d1a2e0279e1f3e63e33c0b6b85a325e libstdc++-v3/include/std/condition_variable b7270928c058d9549c111f7e367ffb7c libstdc++-v3/include/std/deque 85427296f8cb88bd14e002b4fabb2f4a libstdc++-v3/include/std/forward_list be282d17c5f8ba5dc2e5fc0b147aa441 libstdc++-v3/include/std/fstream ! ad55f406abc190b890974453a03978fb libstdc++-v3/include/std/functional 41124c823fa25a9a65e2e4af870a639c libstdc++-v3/include/std/future 168cef671aa9099c19b1819faf3aa7de libstdc++-v3/include/std/iomanip 8c0ede8a5724470e17694a22159fa0ea libstdc++-v3/include/std/ios *************** a48b857a18ba6643406cd72b9b4ba9ca libstd *** 73372,73378 **** 7413932f2a048559e70f7fed0da1104e libstdc++-v3/include/std/locale ef73fdf7b15a7fbe753f80ed0c51fc73 libstdc++-v3/include/std/map 653b4195cf8fb1319e1aa4dff30ace17 libstdc++-v3/include/std/memory ! b0429aa2cc53763d8dab48a7c03ae11e libstdc++-v3/include/std/mutex b8fdc22341a3ff10f1433454dc71fe50 libstdc++-v3/include/std/numeric 900bc0d9960a0b25a5b55c447ce291d9 libstdc++-v3/include/std/ostream 6c63a9921e3ea9443e509acbbbf0bd49 libstdc++-v3/include/std/queue --- 73361,73367 ---- 7413932f2a048559e70f7fed0da1104e libstdc++-v3/include/std/locale ef73fdf7b15a7fbe753f80ed0c51fc73 libstdc++-v3/include/std/map 653b4195cf8fb1319e1aa4dff30ace17 libstdc++-v3/include/std/memory ! 0f7b7caffc9423f70697c6ffb2ce2ae5 libstdc++-v3/include/std/mutex b8fdc22341a3ff10f1433454dc71fe50 libstdc++-v3/include/std/numeric 900bc0d9960a0b25a5b55c447ce291d9 libstdc++-v3/include/std/ostream 6c63a9921e3ea9443e509acbbbf0bd49 libstdc++-v3/include/std/queue *************** ac4d8c834880801cacfc4dbd3368b8c7 libstd *** 73394,73400 **** a0fd640042fab6c581c4d62814c79401 libstdc++-v3/include/std/unordered_map 71561de97a4411b3e56baa3ae438f2f1 libstdc++-v3/include/std/unordered_set 2d1641778d07df1d91c23801d97a0eca libstdc++-v3/include/std/utility ! c8ae8ae46554ce0c2e1f1da30a95057d libstdc++-v3/include/std/valarray 990fd530ecfa5236f5a2a5b070509b65 libstdc++-v3/include/std/vector 67439425d66c66fed341a499ec0e45d8 libstdc++-v3/include/tr1/array 6e0a62a3aa4e5cb36f6dd42d92b77220 libstdc++-v3/include/tr1/bessel_function.tcc --- 73383,73389 ---- a0fd640042fab6c581c4d62814c79401 libstdc++-v3/include/std/unordered_map 71561de97a4411b3e56baa3ae438f2f1 libstdc++-v3/include/std/unordered_set 2d1641778d07df1d91c23801d97a0eca libstdc++-v3/include/std/utility ! d0cc0df1d41f21e4e450f7362b549616 libstdc++-v3/include/std/valarray 990fd530ecfa5236f5a2a5b070509b65 libstdc++-v3/include/std/vector 67439425d66c66fed341a499ec0e45d8 libstdc++-v3/include/tr1/array 6e0a62a3aa4e5cb36f6dd42d92b77220 libstdc++-v3/include/tr1/bessel_function.tcc *************** f5846f12a77c7873bcd4719c2a895afa libstd *** 73467,73473 **** 9de51e05bd29d687dda117ca4f701a88 libstdc++-v3/libsupc++/Makefile.in 4f7a159a593c84f5ec3b4fa404a8386c libstdc++-v3/libsupc++/array_type_info.cc 34375ed5dd05e95a48c2f8d3a2a228f5 libstdc++-v3/libsupc++/atexit_arm.cc ! 1a63d25b59e1312889053749eac0b5e3 libstdc++-v3/libsupc++/atexit_thread.cc 7a9ebc806e7b4d8ba8b5478ebd12cd7b libstdc++-v3/libsupc++/atomic_lockfree_defines.h c7b0566356876a729b39d12a9f3393c5 libstdc++-v3/libsupc++/bad_alloc.cc 47302e6c9e927957c23a78f05af4f3f6 libstdc++-v3/libsupc++/bad_cast.cc --- 73456,73462 ---- 9de51e05bd29d687dda117ca4f701a88 libstdc++-v3/libsupc++/Makefile.in 4f7a159a593c84f5ec3b4fa404a8386c libstdc++-v3/libsupc++/array_type_info.cc 34375ed5dd05e95a48c2f8d3a2a228f5 libstdc++-v3/libsupc++/atexit_arm.cc ! cfd35a707ef78369f82950c9599a82d8 libstdc++-v3/libsupc++/atexit_thread.cc 7a9ebc806e7b4d8ba8b5478ebd12cd7b libstdc++-v3/libsupc++/atomic_lockfree_defines.h c7b0566356876a729b39d12a9f3393c5 libstdc++-v3/libsupc++/bad_alloc.cc 47302e6c9e927957c23a78f05af4f3f6 libstdc++-v3/libsupc++/bad_cast.cc *************** bf758628bbfe28b610d872cfca617e2b libstd *** 73588,73594 **** 46fd5701abdb4cc1cd43078662bc3a98 libstdc++-v3/src/c++98/compatibility-debug_list-2.cc 5478df34dd0f7f4cd6cdd257f1bf2da2 libstdc++-v3/src/c++98/compatibility-debug_list.cc 02c271eeb4f1f598f22cbe4966c5f2b0 libstdc++-v3/src/c++98/compatibility-ldbl.cc ! 18ed72bfcf67a8c77f35c7a8c54a1dc3 libstdc++-v3/src/c++98/compatibility.cc 6ca406f50a9388443d4c3767ab7579cc libstdc++-v3/src/c++98/complex_io.cc 15ed84d22a1aef01a4020da8ef4a8c27 libstdc++-v3/src/c++98/concept-inst.cc 84c47e3839ed2439998a58f74ae0faa6 libstdc++-v3/src/c++98/ctype.cc --- 73577,73583 ---- 46fd5701abdb4cc1cd43078662bc3a98 libstdc++-v3/src/c++98/compatibility-debug_list-2.cc 5478df34dd0f7f4cd6cdd257f1bf2da2 libstdc++-v3/src/c++98/compatibility-debug_list.cc 02c271eeb4f1f598f22cbe4966c5f2b0 libstdc++-v3/src/c++98/compatibility-ldbl.cc ! c0caaf20833759f29852f5b2eb629038 libstdc++-v3/src/c++98/compatibility.cc 6ca406f50a9388443d4c3767ab7579cc libstdc++-v3/src/c++98/complex_io.cc 15ed84d22a1aef01a4020da8ef4a8c27 libstdc++-v3/src/c++98/concept-inst.cc 84c47e3839ed2439998a58f74ae0faa6 libstdc++-v3/src/c++98/ctype.cc *************** ee7fff5585531689560eedb557305638 libstd *** 73897,73902 **** --- 73886,73892 ---- 307c4139c7faf88f6ec439864bf20f91 libstdc++-v3/testsuite/20_util/function/43397.cc 02964398dfdcad6da8176e1526337665 libstdc++-v3/testsuite/20_util/function/48541.cc a615ce3ba22d73faff4275fac7465ab4 libstdc++-v3/testsuite/20_util/function/5.cc + ba27f2cd719e30c2e28005bc15abd26e libstdc++-v3/testsuite/20_util/function/58569.cc 62dd96c6bfb84ebca312e3a461384a2d libstdc++-v3/testsuite/20_util/function/6.cc 47c5a07778ccc81c9b78684d64b5f33f libstdc++-v3/testsuite/20_util/function/7.cc 7460f53b8739df7e03defeb4fcaa3bca libstdc++-v3/testsuite/20_util/function/8.cc *************** a615ce3ba22d73faff4275fac7465ab4 libstd *** 73905,73910 **** --- 73895,73901 ---- c842c2f46930dc5ded320923c1f58394 libstdc++-v3/testsuite/20_util/function/assign/move_target.cc 42288f8412fcfbad6cffe50da9e53830 libstdc++-v3/testsuite/20_util/function/cmp/cmp_neg.cc bafcf21d5a3e714726893ac86680fe8d libstdc++-v3/testsuite/20_util/function/cons/55320.cc + f382078706cc7468790fdc90beeed55d libstdc++-v3/testsuite/20_util/function/cons/57465.cc 5128dd345b4216d789b6a32f2a2154af libstdc++-v3/testsuite/20_util/function/cons/addressof.cc 3c766f0f03522d0f4f271ab6fca27557 libstdc++-v3/testsuite/20_util/function/cons/callable.cc 6c5bf5f0df6576fbae7fd82ee27fb5e6 libstdc++-v3/testsuite/20_util/function/cons/move.cc *************** b491fbf0000e793eea23cf62bbf59a93 libstd *** 74159,74168 **** 58561eda6521361f43d5e7f3eb0eba5b libstdc++-v3/testsuite/20_util/shared_ptr/comparison/dr1401.cc 761f162ce1b8aebf0a43c65d68116264 libstdc++-v3/testsuite/20_util/shared_ptr/comparison/less.cc 6533819891f96bc25c3d6a2b745b6dfc libstdc++-v3/testsuite/20_util/shared_ptr/cons/39405.cc ! a6dfef94e9b45dec9d46ff087f2af1f4 libstdc++-v3/testsuite/20_util/shared_ptr/cons/43820_neg.cc 7c43b70bf9617c706bb4581ad7f4906e libstdc++-v3/testsuite/20_util/shared_ptr/cons/46910.cc ad6cd2ee5f85327cc42bdf5bf70f7d2a libstdc++-v3/testsuite/20_util/shared_ptr/cons/52924.cc 9c92d171303399b72034241629ee8ff5 libstdc++-v3/testsuite/20_util/shared_ptr/cons/55123.cc 76e899a5e15801fb20b06eaeea96419d libstdc++-v3/testsuite/20_util/shared_ptr/cons/alias.cc 15362ff4aaaacb8940ab49fb91ef6e9a libstdc++-v3/testsuite/20_util/shared_ptr/cons/alloc.cc b7def0f4b2cc42ac29c552c03af3f451 libstdc++-v3/testsuite/20_util/shared_ptr/cons/alloc_min.cc --- 74150,74160 ---- 58561eda6521361f43d5e7f3eb0eba5b libstdc++-v3/testsuite/20_util/shared_ptr/comparison/dr1401.cc 761f162ce1b8aebf0a43c65d68116264 libstdc++-v3/testsuite/20_util/shared_ptr/comparison/less.cc 6533819891f96bc25c3d6a2b745b6dfc libstdc++-v3/testsuite/20_util/shared_ptr/cons/39405.cc ! da7c62e91c8b2c3d79447b5225e87391 libstdc++-v3/testsuite/20_util/shared_ptr/cons/43820_neg.cc 7c43b70bf9617c706bb4581ad7f4906e libstdc++-v3/testsuite/20_util/shared_ptr/cons/46910.cc ad6cd2ee5f85327cc42bdf5bf70f7d2a libstdc++-v3/testsuite/20_util/shared_ptr/cons/52924.cc 9c92d171303399b72034241629ee8ff5 libstdc++-v3/testsuite/20_util/shared_ptr/cons/55123.cc + df158743b33e1c7ad2052ecec6182379 libstdc++-v3/testsuite/20_util/shared_ptr/cons/58659.cc 76e899a5e15801fb20b06eaeea96419d libstdc++-v3/testsuite/20_util/shared_ptr/cons/alias.cc 15362ff4aaaacb8940ab49fb91ef6e9a libstdc++-v3/testsuite/20_util/shared_ptr/cons/alloc.cc b7def0f4b2cc42ac29c552c03af3f451 libstdc++-v3/testsuite/20_util/shared_ptr/cons/alloc_min.cc *************** ab1e93aeb444a51b0883858f0a1900ab libstd *** 75452,75466 **** 631a184b6a185a6225fdce35a2c00df4 libstdc++-v3/testsuite/23_containers/map/debug/invalidation/2.cc c75a8dc2c94953a846796bccdee508b8 libstdc++-v3/testsuite/23_containers/map/debug/iterator_self_move_assign_neg.cc 374b8013d775598edc3343266af53358 libstdc++-v3/testsuite/23_containers/map/debug/self_move_assign_neg.cc - 336c9a57577c404c11aed48edbb408af libstdc++-v3/testsuite/23_containers/map/dr130.cc deb4094ce8dbbe148d7e8ebb275c8cf8 libstdc++-v3/testsuite/23_containers/map/element_access/1.cc 970af3e02047bc6bf4ad046d247f04e3 libstdc++-v3/testsuite/23_containers/map/element_access/2.cc a4ac231e9f673f25d2967ec2193ae840 libstdc++-v3/testsuite/23_containers/map/element_access/39901.cc fe2e209a3ad9d1496b00486adad83cd7 libstdc++-v3/testsuite/23_containers/map/element_access/46148.cc 00cdbe56b0a348be72facaf77799f453 libstdc++-v3/testsuite/23_containers/map/init-list.cc 95cb0b8ff75e41f7e655360606163a07 libstdc++-v3/testsuite/23_containers/map/modifiers/emplace/1.cc 89ccab7779eb949a3a3f74cef68634c1 libstdc++-v3/testsuite/23_containers/map/modifiers/erase/47628.cc 068708f4d4a8b05973116215787aca24 libstdc++-v3/testsuite/23_containers/map/modifiers/erase/51142.cc c33f1e66a02ff42085b1b804b329d4d7 libstdc++-v3/testsuite/23_containers/map/modifiers/insert/1.cc 7b5699fb6943d4b91df9840da31079ca libstdc++-v3/testsuite/23_containers/map/modifiers/insert/16813.cc 2405145b215aac67b8f3292ab2ccaaf8 libstdc++-v3/testsuite/23_containers/map/modifiers/insert/2.cc --- 75444,75460 ---- 631a184b6a185a6225fdce35a2c00df4 libstdc++-v3/testsuite/23_containers/map/debug/invalidation/2.cc c75a8dc2c94953a846796bccdee508b8 libstdc++-v3/testsuite/23_containers/map/debug/iterator_self_move_assign_neg.cc 374b8013d775598edc3343266af53358 libstdc++-v3/testsuite/23_containers/map/debug/self_move_assign_neg.cc deb4094ce8dbbe148d7e8ebb275c8cf8 libstdc++-v3/testsuite/23_containers/map/element_access/1.cc 970af3e02047bc6bf4ad046d247f04e3 libstdc++-v3/testsuite/23_containers/map/element_access/2.cc a4ac231e9f673f25d2967ec2193ae840 libstdc++-v3/testsuite/23_containers/map/element_access/39901.cc fe2e209a3ad9d1496b00486adad83cd7 libstdc++-v3/testsuite/23_containers/map/element_access/46148.cc 00cdbe56b0a348be72facaf77799f453 libstdc++-v3/testsuite/23_containers/map/init-list.cc + 336c9a57577c404c11aed48edbb408af libstdc++-v3/testsuite/23_containers/map/modifiers/dr130.cc 95cb0b8ff75e41f7e655360606163a07 libstdc++-v3/testsuite/23_containers/map/modifiers/emplace/1.cc 89ccab7779eb949a3a3f74cef68634c1 libstdc++-v3/testsuite/23_containers/map/modifiers/erase/47628.cc 068708f4d4a8b05973116215787aca24 libstdc++-v3/testsuite/23_containers/map/modifiers/erase/51142.cc + c42b9ea56698d78fb1c55259ca03daf2 libstdc++-v3/testsuite/23_containers/map/modifiers/erase/abi_tag.cc + 7fd0cc91b40a0aa7eee063946ba0ad75 libstdc++-v3/testsuite/23_containers/map/modifiers/erase/dr130-linkage-check.cc c33f1e66a02ff42085b1b804b329d4d7 libstdc++-v3/testsuite/23_containers/map/modifiers/insert/1.cc 7b5699fb6943d4b91df9840da31079ca libstdc++-v3/testsuite/23_containers/map/modifiers/insert/16813.cc 2405145b215aac67b8f3292ab2ccaaf8 libstdc++-v3/testsuite/23_containers/map/modifiers/insert/2.cc *************** aaccd5922d3c6ae2fc8f02a2fe4f1a92 libstd *** 75508,75518 **** 27012c68c419408aaf34eb85eddc7778 libstdc++-v3/testsuite/23_containers/multimap/debug/invalidation/2.cc 555db94f680ac733ceb0ab3f7294c28f libstdc++-v3/testsuite/23_containers/multimap/debug/iterator_self_move_assign_neg.cc 0d7155a9daba232f4fc29695aba36cea libstdc++-v3/testsuite/23_containers/multimap/debug/self_move_assign_neg.cc - a9d55bc3279c7dd900c281eebe658038 libstdc++-v3/testsuite/23_containers/multimap/dr130.cc ff47ad224d6e02f07d88b3a59f498504 libstdc++-v3/testsuite/23_containers/multimap/init-list.cc ef7ee1aa03628ccaae18d724f725159a libstdc++-v3/testsuite/23_containers/multimap/modifiers/emplace/1.cc 19e9d94193d9bbdc5d12bd3234240a3f libstdc++-v3/testsuite/23_containers/multimap/modifiers/erase/47628.cc 70144cca9a5ee371758dc8aa6f3c23a0 libstdc++-v3/testsuite/23_containers/multimap/modifiers/erase/51142.cc f5802ceb8f1ee266150ed222abf1c82d libstdc++-v3/testsuite/23_containers/multimap/modifiers/insert/1.cc fe280684759ea5dc53287e2afe948556 libstdc++-v3/testsuite/23_containers/multimap/modifiers/insert/2.cc e002e83c1070397411920fab1334a805 libstdc++-v3/testsuite/23_containers/multimap/modifiers/insert/22102.cc --- 75502,75514 ---- 27012c68c419408aaf34eb85eddc7778 libstdc++-v3/testsuite/23_containers/multimap/debug/invalidation/2.cc 555db94f680ac733ceb0ab3f7294c28f libstdc++-v3/testsuite/23_containers/multimap/debug/iterator_self_move_assign_neg.cc 0d7155a9daba232f4fc29695aba36cea libstdc++-v3/testsuite/23_containers/multimap/debug/self_move_assign_neg.cc ff47ad224d6e02f07d88b3a59f498504 libstdc++-v3/testsuite/23_containers/multimap/init-list.cc + a9d55bc3279c7dd900c281eebe658038 libstdc++-v3/testsuite/23_containers/multimap/modifiers/dr130.cc ef7ee1aa03628ccaae18d724f725159a libstdc++-v3/testsuite/23_containers/multimap/modifiers/emplace/1.cc 19e9d94193d9bbdc5d12bd3234240a3f libstdc++-v3/testsuite/23_containers/multimap/modifiers/erase/47628.cc 70144cca9a5ee371758dc8aa6f3c23a0 libstdc++-v3/testsuite/23_containers/multimap/modifiers/erase/51142.cc + 491c53df74fe54c9b03d5ab77104aa8a libstdc++-v3/testsuite/23_containers/multimap/modifiers/erase/abi_tag.cc + 881b6979627af31680085bb2a593499f libstdc++-v3/testsuite/23_containers/multimap/modifiers/erase/dr130-linkage-check.cc f5802ceb8f1ee266150ed222abf1c82d libstdc++-v3/testsuite/23_containers/multimap/modifiers/insert/1.cc fe280684759ea5dc53287e2afe948556 libstdc++-v3/testsuite/23_containers/multimap/modifiers/insert/2.cc e002e83c1070397411920fab1334a805 libstdc++-v3/testsuite/23_containers/multimap/modifiers/insert/22102.cc *************** bce271af583ada3073f8f08bb25f25d6 libstd *** 75554,75563 **** ae3f282b1bdc69304dcccab2f9cc5885 libstdc++-v3/testsuite/23_containers/multiset/debug/invalidation/2.cc d6c8664f0cbafd6dca296aba3dbb9612 libstdc++-v3/testsuite/23_containers/multiset/debug/iterator_self_move_assign_neg.cc 2024f422d614f5345e24a6903344c939 libstdc++-v3/testsuite/23_containers/multiset/debug/self_move_assign_neg.cc - 28033f5af4e0e0afe574c9cabe596067 libstdc++-v3/testsuite/23_containers/multiset/dr130.cc 27bf4bd73ac999e75876049d8fe1d7eb libstdc++-v3/testsuite/23_containers/multiset/init-list.cc b695deb9f17aa5759ba837ee18c37828 libstdc++-v3/testsuite/23_containers/multiset/modifiers/emplace/1.cc b03df1033f244af33867f808aa63aca5 libstdc++-v3/testsuite/23_containers/multiset/modifiers/erase/51142.cc 66a1a1e3fa60b892c584d50e0ae2547f libstdc++-v3/testsuite/23_containers/multiset/modifiers/insert/1.cc 1270efbf86c4bdbdd9f94dcb3d68ab98 libstdc++-v3/testsuite/23_containers/multiset/modifiers/insert/2.cc 7eac8b37d29ce8173a2b48b3023fec7c libstdc++-v3/testsuite/23_containers/multiset/modifiers/insert/22102.cc --- 75550,75561 ---- ae3f282b1bdc69304dcccab2f9cc5885 libstdc++-v3/testsuite/23_containers/multiset/debug/invalidation/2.cc d6c8664f0cbafd6dca296aba3dbb9612 libstdc++-v3/testsuite/23_containers/multiset/debug/iterator_self_move_assign_neg.cc 2024f422d614f5345e24a6903344c939 libstdc++-v3/testsuite/23_containers/multiset/debug/self_move_assign_neg.cc 27bf4bd73ac999e75876049d8fe1d7eb libstdc++-v3/testsuite/23_containers/multiset/init-list.cc + 28033f5af4e0e0afe574c9cabe596067 libstdc++-v3/testsuite/23_containers/multiset/modifiers/dr130.cc b695deb9f17aa5759ba837ee18c37828 libstdc++-v3/testsuite/23_containers/multiset/modifiers/emplace/1.cc b03df1033f244af33867f808aa63aca5 libstdc++-v3/testsuite/23_containers/multiset/modifiers/erase/51142.cc + 73d0415e053ce81abec17f25184ba89d libstdc++-v3/testsuite/23_containers/multiset/modifiers/erase/abi_tag.cc + fc1bb6832d18596936ef6fea85ac1d6b libstdc++-v3/testsuite/23_containers/multiset/modifiers/erase/dr130-linkage-check.cc 66a1a1e3fa60b892c584d50e0ae2547f libstdc++-v3/testsuite/23_containers/multiset/modifiers/insert/1.cc 1270efbf86c4bdbdd9f94dcb3d68ab98 libstdc++-v3/testsuite/23_containers/multiset/modifiers/insert/2.cc 7eac8b37d29ce8173a2b48b3023fec7c libstdc++-v3/testsuite/23_containers/multiset/modifiers/insert/22102.cc *************** adb9cc54b856ffae47fdabd794d1a809 libstd *** 75611,75622 **** ed28fd4721d778384d2ec0d0f69dec60 libstdc++-v3/testsuite/23_containers/set/debug/invalidation/2.cc fc4326c5119cc590560dba91d3d3ee80 libstdc++-v3/testsuite/23_containers/set/debug/iterator_self_move_assign_neg.cc 55f89f66718ad8f4ac29c6eafdbe6aa2 libstdc++-v3/testsuite/23_containers/set/debug/self_move_assign_neg.cc - ded58fb46169027fade43b6a81e9a8d3 libstdc++-v3/testsuite/23_containers/set/dr130.cc 9d597c5cbca80769288243b5c02d6ece libstdc++-v3/testsuite/23_containers/set/init-list.cc 20866b3b8c9386b0d02eda02696f68d2 libstdc++-v3/testsuite/23_containers/set/modifiers/16728.cc 42801eae472c3c7f74eaacc332c7d709 libstdc++-v3/testsuite/23_containers/set/modifiers/17948.cc 835ee03eb9567d71682228e70bae8801 libstdc++-v3/testsuite/23_containers/set/modifiers/emplace/1.cc 90a34e5010763c65cf003d44d76f2fb5 libstdc++-v3/testsuite/23_containers/set/modifiers/erase/51142.cc 57a358133bf5625996430c4d2d942a6a libstdc++-v3/testsuite/23_containers/set/modifiers/insert/1.cc cbee2638b7a0a59a01dad5c242c7e3af libstdc++-v3/testsuite/23_containers/set/modifiers/insert/2.cc df8a7228390c553304ea06c448a353c5 libstdc++-v3/testsuite/23_containers/set/modifiers/insert/3.cc --- 75609,75622 ---- ed28fd4721d778384d2ec0d0f69dec60 libstdc++-v3/testsuite/23_containers/set/debug/invalidation/2.cc fc4326c5119cc590560dba91d3d3ee80 libstdc++-v3/testsuite/23_containers/set/debug/iterator_self_move_assign_neg.cc 55f89f66718ad8f4ac29c6eafdbe6aa2 libstdc++-v3/testsuite/23_containers/set/debug/self_move_assign_neg.cc 9d597c5cbca80769288243b5c02d6ece libstdc++-v3/testsuite/23_containers/set/init-list.cc 20866b3b8c9386b0d02eda02696f68d2 libstdc++-v3/testsuite/23_containers/set/modifiers/16728.cc 42801eae472c3c7f74eaacc332c7d709 libstdc++-v3/testsuite/23_containers/set/modifiers/17948.cc + ded58fb46169027fade43b6a81e9a8d3 libstdc++-v3/testsuite/23_containers/set/modifiers/dr130.cc 835ee03eb9567d71682228e70bae8801 libstdc++-v3/testsuite/23_containers/set/modifiers/emplace/1.cc 90a34e5010763c65cf003d44d76f2fb5 libstdc++-v3/testsuite/23_containers/set/modifiers/erase/51142.cc + 1a3bc792ac59998280d565f03e700a52 libstdc++-v3/testsuite/23_containers/set/modifiers/erase/abi_tag.cc + f1e8b9821b9ead68263f74c580c3ae95 libstdc++-v3/testsuite/23_containers/set/modifiers/erase/dr130-linkage-check.cc 57a358133bf5625996430c4d2d942a6a libstdc++-v3/testsuite/23_containers/set/modifiers/insert/1.cc cbee2638b7a0a59a01dad5c242c7e3af libstdc++-v3/testsuite/23_containers/set/modifiers/insert/2.cc df8a7228390c553304ea06c448a353c5 libstdc++-v3/testsuite/23_containers/set/modifiers/insert/3.cc *************** c144c3a6fcd62b77703b4bf5aa2c9c66 libstd *** 75679,75684 **** --- 75679,75685 ---- ea57e9e88798af4335a7095d06bd3e72 libstdc++-v3/testsuite/23_containers/unordered_map/hash_policy/dr1189.cc b910a33060c236c6fdc1d8c0b7f14069 libstdc++-v3/testsuite/23_containers/unordered_map/init-list.cc 7aaf3ddb432fef05283921b3a70f2b6e libstdc++-v3/testsuite/23_containers/unordered_map/insert/24061-map.cc + 269c89ec19ceff42da82c23856d6ad04 libstdc++-v3/testsuite/23_containers/unordered_map/insert/57619.C b4bc8586a6b4788ffe80adc48c13b122 libstdc++-v3/testsuite/23_containers/unordered_map/insert/array_syntax.cc fac8fa663db6dbe4eb4c62126b9f0e1c libstdc++-v3/testsuite/23_containers/unordered_map/insert/array_syntax_move.cc e0e470a0573ce782c0ea65185ebd60ba libstdc++-v3/testsuite/23_containers/unordered_map/insert/map_range.cc *************** a2ea54d689692904dba2e980b8ffc397 libstd *** 75749,75754 **** --- 75750,75756 ---- 9229c9434f4b18e8b660c59ae850014b libstdc++-v3/testsuite/23_containers/unordered_multimap/insert/52476.cc 867f8f710b61fcab80660401ba80a4af libstdc++-v3/testsuite/23_containers/unordered_multimap/insert/53115.cc 84778c2c3ca257ffe1ce6d255db115fe libstdc++-v3/testsuite/23_containers/unordered_multimap/insert/55028-debug.cc + d78535d6ae5951625bf246b75f5706dc libstdc++-v3/testsuite/23_containers/unordered_multimap/insert/57619.C 45f5c07d1561f22c55f73db8e4284cc1 libstdc++-v3/testsuite/23_containers/unordered_multimap/insert/multimap_range.cc 424045615bffdc63c3b3e2ddfea5a112 libstdc++-v3/testsuite/23_containers/unordered_multimap/insert/multimap_single.cc 9240b89a794756e93838a29194ed646d libstdc++-v3/testsuite/23_containers/unordered_multimap/insert/multimap_single_move-1.cc *************** d7208a495de5030df515b7b7cc85b9cd libstd *** 75773,75779 **** 0aecbb7b91d6c07d6d6124d48733be69 libstdc++-v3/testsuite/23_containers/unordered_multimap/requirements/explicit_instantiation/4.cc 016ee4b86832bf445aba7e250f5881ce libstdc++-v3/testsuite/23_containers/unordered_multimap/requirements/explicit_instantiation/5.cc 0be36cd106b3d1409e083a9f016526ee libstdc++-v3/testsuite/23_containers/unordered_multimap/requirements/typedefs.cc ! 1585ecbd7967b9f6068c57176f478033 libstdc++-v3/testsuite/23_containers/unordered_multiset/55043.cc c907a1efcf172d9be60e198419014567 libstdc++-v3/testsuite/23_containers/unordered_multiset/cons/copy.cc 1e1630d508f121deec00df2e37269af9 libstdc++-v3/testsuite/23_containers/unordered_multiset/cons/moveable.cc cb7c5e1d4d1c3dab5531952504f3ab10 libstdc++-v3/testsuite/23_containers/unordered_multiset/debug/begin1_neg.cc --- 75775,75781 ---- 0aecbb7b91d6c07d6d6124d48733be69 libstdc++-v3/testsuite/23_containers/unordered_multimap/requirements/explicit_instantiation/4.cc 016ee4b86832bf445aba7e250f5881ce libstdc++-v3/testsuite/23_containers/unordered_multimap/requirements/explicit_instantiation/5.cc 0be36cd106b3d1409e083a9f016526ee libstdc++-v3/testsuite/23_containers/unordered_multimap/requirements/typedefs.cc ! a063c5f22ec11cc1d142e8a905a9143a libstdc++-v3/testsuite/23_containers/unordered_multiset/55043.cc c907a1efcf172d9be60e198419014567 libstdc++-v3/testsuite/23_containers/unordered_multiset/cons/copy.cc 1e1630d508f121deec00df2e37269af9 libstdc++-v3/testsuite/23_containers/unordered_multiset/cons/moveable.cc cb7c5e1d4d1c3dab5531952504f3ab10 libstdc++-v3/testsuite/23_containers/unordered_multiset/debug/begin1_neg.cc *************** ea083cfb40ca6ef7e6311c6b4572529f libstd *** 76415,76422 **** 311fca88a20f0360c64eff81bee04559 libstdc++-v3/testsuite/25_algorithms/search/requirements/explicit_instantiation/2.cc fdce0b1f4b0bb0f593279c54e95f9b35 libstdc++-v3/testsuite/25_algorithms/search/requirements/explicit_instantiation/pod.cc 9231c853d27ef29c23bcb79c9c05cb44 libstdc++-v3/testsuite/25_algorithms/search_n/11400.cc 763ea21b6803a3f1d5335d935e07fbc4 libstdc++-v3/testsuite/25_algorithms/search_n/check_type.cc ! b99a756531ceed6ea5b7c45c35e14e19 libstdc++-v3/testsuite/25_algorithms/search_n/iterator.cc 9ce084e02f3d7c39f00cd217c1a20757 libstdc++-v3/testsuite/25_algorithms/search_n/requirements/explicit_instantiation/2.cc c7f576275994aa963bb50cff37f8acb6 libstdc++-v3/testsuite/25_algorithms/search_n/requirements/explicit_instantiation/pod.cc 536a29a10b797909340a97c34f15ec54 libstdc++-v3/testsuite/25_algorithms/set_difference/1.cc --- 76417,76425 ---- 311fca88a20f0360c64eff81bee04559 libstdc++-v3/testsuite/25_algorithms/search/requirements/explicit_instantiation/2.cc fdce0b1f4b0bb0f593279c54e95f9b35 libstdc++-v3/testsuite/25_algorithms/search/requirements/explicit_instantiation/pod.cc 9231c853d27ef29c23bcb79c9c05cb44 libstdc++-v3/testsuite/25_algorithms/search_n/11400.cc + 8ba6366c2b9cf1bd223c90bcd1dcab02 libstdc++-v3/testsuite/25_algorithms/search_n/58358.cc 763ea21b6803a3f1d5335d935e07fbc4 libstdc++-v3/testsuite/25_algorithms/search_n/check_type.cc ! 31f389ddfa97904a41b3154bf06a93b8 libstdc++-v3/testsuite/25_algorithms/search_n/iterator.cc 9ce084e02f3d7c39f00cd217c1a20757 libstdc++-v3/testsuite/25_algorithms/search_n/requirements/explicit_instantiation/2.cc c7f576275994aa963bb50cff37f8acb6 libstdc++-v3/testsuite/25_algorithms/search_n/requirements/explicit_instantiation/pod.cc 536a29a10b797909340a97c34f15ec54 libstdc++-v3/testsuite/25_algorithms/set_difference/1.cc *************** ebb8e41c348aa6fe52de6d450d5a9557 libstd *** 76588,76598 **** 783f4861501a8530fb7751302ccab531 libstdc++-v3/testsuite/26_numerics/random/binomial_distribution/operators/equal.cc c71aa49d20403ff7a8368b4064f18390 libstdc++-v3/testsuite/26_numerics/random/binomial_distribution/operators/inequal.cc ca8f7e1c274b831bcc18346135643229 libstdc++-v3/testsuite/26_numerics/random/binomial_distribution/operators/serialize.cc ! 2a792034f7ecc8216c57fbe9fb25a449 libstdc++-v3/testsuite/26_numerics/random/binomial_distribution/operators/values.cc e09e91c324eb8a6f48a65a10b2470790 libstdc++-v3/testsuite/26_numerics/random/binomial_distribution/requirements/explicit_instantiation/1.cc fcf079f49f12dffe037be0170eaf1922 libstdc++-v3/testsuite/26_numerics/random/binomial_distribution/requirements/typedefs.cc ! 2b830cc486bb426e0371c17d55c8662e libstdc++-v3/testsuite/26_numerics/random/cauchy_distribution/cons/default.cc ! 55935be4d06810d9768db9631b94cf46 libstdc++-v3/testsuite/26_numerics/random/cauchy_distribution/cons/parms.cc d227c535998599335d684bb5e7dc13e4 libstdc++-v3/testsuite/26_numerics/random/cauchy_distribution/operators/equal.cc 6b70aa2686c653b0d8478ebb713ae690 libstdc++-v3/testsuite/26_numerics/random/cauchy_distribution/operators/inequal.cc 06b5f5a2517eadcf4dfc02e0b1f0131f libstdc++-v3/testsuite/26_numerics/random/cauchy_distribution/operators/serialize.cc --- 76591,76601 ---- 783f4861501a8530fb7751302ccab531 libstdc++-v3/testsuite/26_numerics/random/binomial_distribution/operators/equal.cc c71aa49d20403ff7a8368b4064f18390 libstdc++-v3/testsuite/26_numerics/random/binomial_distribution/operators/inequal.cc ca8f7e1c274b831bcc18346135643229 libstdc++-v3/testsuite/26_numerics/random/binomial_distribution/operators/serialize.cc ! 22b1a76359b9b7de668d73ad36a25c7d libstdc++-v3/testsuite/26_numerics/random/binomial_distribution/operators/values.cc e09e91c324eb8a6f48a65a10b2470790 libstdc++-v3/testsuite/26_numerics/random/binomial_distribution/requirements/explicit_instantiation/1.cc fcf079f49f12dffe037be0170eaf1922 libstdc++-v3/testsuite/26_numerics/random/binomial_distribution/requirements/typedefs.cc ! 44aeb6a1d79c9a3a1ea1922d8f5e43ec libstdc++-v3/testsuite/26_numerics/random/cauchy_distribution/cons/default.cc ! da4c3136113d14bd9096c0aaac125a02 libstdc++-v3/testsuite/26_numerics/random/cauchy_distribution/cons/parms.cc d227c535998599335d684bb5e7dc13e4 libstdc++-v3/testsuite/26_numerics/random/cauchy_distribution/operators/equal.cc 6b70aa2686c653b0d8478ebb713ae690 libstdc++-v3/testsuite/26_numerics/random/cauchy_distribution/operators/inequal.cc 06b5f5a2517eadcf4dfc02e0b1f0131f libstdc++-v3/testsuite/26_numerics/random/cauchy_distribution/operators/serialize.cc *************** fc988edadf1a5bc15d472efd9aeb8796 libstd *** 76631,76645 **** bb9194388fdb49c6d66475ad41506afd libstdc++-v3/testsuite/26_numerics/random/discrete_distribution/operators/values.cc 6a0e2dd6ed04b12c24ff4708694e876b libstdc++-v3/testsuite/26_numerics/random/discrete_distribution/requirements/explicit_instantiation/1.cc c21f9bccc31626e6dcedfad6b14f3445 libstdc++-v3/testsuite/26_numerics/random/discrete_distribution/requirements/typedefs.cc ! c526fd3ec37e655bc48f0945b8e94453 libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/cons/default.cc ! c1a19b31ed1d11359aeee9eee2160538 libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/cons/parms.cc ebe4cd4c3fc8ef5ff7b8f1febdd3fe3a libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/operators/equal.cc 18c291ce479e6e49701f58c824919e3c libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/operators/inequal.cc 5c4f65d53d7e175ea2492df2d0a8b8d0 libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/operators/serialize.cc 7342d26a9e402a71235f357e4e6bb6c2 libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/requirements/explicit_instantiation/1.cc 8dfe07cb6469021697d397105de21765 libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/requirements/typedefs.cc ! da27bef36cb11a1e31116d3b2ad0078e libstdc++-v3/testsuite/26_numerics/random/extreme_value_distribution/cons/default.cc ! 35d74750023e81a6392648a89901dce6 libstdc++-v3/testsuite/26_numerics/random/extreme_value_distribution/cons/parms.cc e3a9b18b872e895a9cfb7dfef41946fe libstdc++-v3/testsuite/26_numerics/random/extreme_value_distribution/operators/equal.cc af3edab3c07ef670372dc75ffe0ab1ae libstdc++-v3/testsuite/26_numerics/random/extreme_value_distribution/operators/inequal.cc d8ce0dbe24fe909187ba496b90e7444b libstdc++-v3/testsuite/26_numerics/random/extreme_value_distribution/operators/serialize.cc --- 76634,76648 ---- bb9194388fdb49c6d66475ad41506afd libstdc++-v3/testsuite/26_numerics/random/discrete_distribution/operators/values.cc 6a0e2dd6ed04b12c24ff4708694e876b libstdc++-v3/testsuite/26_numerics/random/discrete_distribution/requirements/explicit_instantiation/1.cc c21f9bccc31626e6dcedfad6b14f3445 libstdc++-v3/testsuite/26_numerics/random/discrete_distribution/requirements/typedefs.cc ! 6da543ec2da178d39930e55578f4a978 libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/cons/default.cc ! a43dfd3594a3bdbd1d440400c3943fe9 libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/cons/parms.cc ebe4cd4c3fc8ef5ff7b8f1febdd3fe3a libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/operators/equal.cc 18c291ce479e6e49701f58c824919e3c libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/operators/inequal.cc 5c4f65d53d7e175ea2492df2d0a8b8d0 libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/operators/serialize.cc 7342d26a9e402a71235f357e4e6bb6c2 libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/requirements/explicit_instantiation/1.cc 8dfe07cb6469021697d397105de21765 libstdc++-v3/testsuite/26_numerics/random/exponential_distribution/requirements/typedefs.cc ! 668991224de7a5aa6039aaca2bf58f24 libstdc++-v3/testsuite/26_numerics/random/extreme_value_distribution/cons/default.cc ! 62e28f425e308c50ccc6784286dfe2ee libstdc++-v3/testsuite/26_numerics/random/extreme_value_distribution/cons/parms.cc e3a9b18b872e895a9cfb7dfef41946fe libstdc++-v3/testsuite/26_numerics/random/extreme_value_distribution/operators/equal.cc af3edab3c07ef670372dc75ffe0ab1ae libstdc++-v3/testsuite/26_numerics/random/extreme_value_distribution/operators/inequal.cc d8ce0dbe24fe909187ba496b90e7444b libstdc++-v3/testsuite/26_numerics/random/extreme_value_distribution/operators/serialize.cc *************** ced2cf4faf300b742d549539de7ffe14 libstd *** 76722,76735 **** 01668f05f55a9eef037fdbe8ca50fd26 libstdc++-v3/testsuite/26_numerics/random/mt19937_64.cc 0f7025d1860d9fc053b3dc2d93845dd1 libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/cons/default.cc e864bc0f8b70e7653eed08650d2368fe libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/cons/parms.cc 04e7c9af2e99dc236c4ee84f61922adf libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/operators/equal.cc 39d5e7932612220593d7e07b7b5897d7 libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/operators/inequal.cc 61b40d105e25a36d0e3a77fbdd05ab68 libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/operators/serialize.cc ad5deffad472cf4646750eda3ab7532f libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/operators/values.cc 97a82a3d8926ec03665c599388fba701 libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/requirements/explicit_instantiation/1.cc 8b6404b09255a85106c157c39063725f libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/requirements/typedefs.cc ! dc49d3fea4bc6d9bb17ae48ee9dd4480 libstdc++-v3/testsuite/26_numerics/random/normal_distribution/cons/default.cc ! 2ac73914f4db47bfb31d461bf3c1af6d libstdc++-v3/testsuite/26_numerics/random/normal_distribution/cons/parms.cc a3fab3bd19288557ba6174795e085884 libstdc++-v3/testsuite/26_numerics/random/normal_distribution/operators/equal.cc 01580121858a71bdd04a677b501d6c26 libstdc++-v3/testsuite/26_numerics/random/normal_distribution/operators/inequal.cc 1630f8e92b1fca3e74adc50ef74cb0b7 libstdc++-v3/testsuite/26_numerics/random/normal_distribution/operators/serialize.cc --- 76725,76739 ---- 01668f05f55a9eef037fdbe8ca50fd26 libstdc++-v3/testsuite/26_numerics/random/mt19937_64.cc 0f7025d1860d9fc053b3dc2d93845dd1 libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/cons/default.cc e864bc0f8b70e7653eed08650d2368fe libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/cons/parms.cc + c9d379364d7bcd3229fa3d6ce4120758 libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/operators/58302.cc 04e7c9af2e99dc236c4ee84f61922adf libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/operators/equal.cc 39d5e7932612220593d7e07b7b5897d7 libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/operators/inequal.cc 61b40d105e25a36d0e3a77fbdd05ab68 libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/operators/serialize.cc ad5deffad472cf4646750eda3ab7532f libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/operators/values.cc 97a82a3d8926ec03665c599388fba701 libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/requirements/explicit_instantiation/1.cc 8b6404b09255a85106c157c39063725f libstdc++-v3/testsuite/26_numerics/random/negative_binomial_distribution/requirements/typedefs.cc ! 601526890f3a31f1839ed1991add7ae1 libstdc++-v3/testsuite/26_numerics/random/normal_distribution/cons/default.cc ! d67325275acefe3d1dd5bc490daf2d01 libstdc++-v3/testsuite/26_numerics/random/normal_distribution/cons/parms.cc a3fab3bd19288557ba6174795e085884 libstdc++-v3/testsuite/26_numerics/random/normal_distribution/operators/equal.cc 01580121858a71bdd04a677b501d6c26 libstdc++-v3/testsuite/26_numerics/random/normal_distribution/operators/inequal.cc 1630f8e92b1fca3e74adc50ef74cb0b7 libstdc++-v3/testsuite/26_numerics/random/normal_distribution/operators/serialize.cc *************** e682392e917becc92d771a2318972be2 libstd *** 76789,76796 **** 8da751c07a87630b6ef826dd5ef3efcf libstdc++-v3/testsuite/26_numerics/random/shuffle_order_engine/requirements/constexpr_data.cc 35d2b6887f0931baf48cc92a2da0cd01 libstdc++-v3/testsuite/26_numerics/random/shuffle_order_engine/requirements/constexpr_functions.cc 9cfb97c0f229477afdf4fa85c7624fe9 libstdc++-v3/testsuite/26_numerics/random/shuffle_order_engine/requirements/typedefs.cc ! 07fa4989f4b0ef6b1c8f0ae22ee42600 libstdc++-v3/testsuite/26_numerics/random/student_t_distribution/cons/default.cc ! b5796460086d0846767692fc20b1f429 libstdc++-v3/testsuite/26_numerics/random/student_t_distribution/cons/parms.cc 27535f5478a172708544b30dcde208ce libstdc++-v3/testsuite/26_numerics/random/student_t_distribution/operators/equal.cc 1ca0aa168f2e52afd3b1d9d284573467 libstdc++-v3/testsuite/26_numerics/random/student_t_distribution/operators/inequal.cc ff21290acc7c5f9b28dca1367639342f libstdc++-v3/testsuite/26_numerics/random/student_t_distribution/operators/serialize.cc --- 76793,76800 ---- 8da751c07a87630b6ef826dd5ef3efcf libstdc++-v3/testsuite/26_numerics/random/shuffle_order_engine/requirements/constexpr_data.cc 35d2b6887f0931baf48cc92a2da0cd01 libstdc++-v3/testsuite/26_numerics/random/shuffle_order_engine/requirements/constexpr_functions.cc 9cfb97c0f229477afdf4fa85c7624fe9 libstdc++-v3/testsuite/26_numerics/random/shuffle_order_engine/requirements/typedefs.cc ! c89ff4dbb6a51c04e2736e1855d7b5ad libstdc++-v3/testsuite/26_numerics/random/student_t_distribution/cons/default.cc ! a4662fe590e1bad2bb6a3a9e3529a5a9 libstdc++-v3/testsuite/26_numerics/random/student_t_distribution/cons/parms.cc 27535f5478a172708544b30dcde208ce libstdc++-v3/testsuite/26_numerics/random/student_t_distribution/operators/equal.cc 1ca0aa168f2e52afd3b1d9d284573467 libstdc++-v3/testsuite/26_numerics/random/student_t_distribution/operators/inequal.cc ff21290acc7c5f9b28dca1367639342f libstdc++-v3/testsuite/26_numerics/random/student_t_distribution/operators/serialize.cc *************** bb01ae0813275e38c20101fdd75728f3 libstd *** 76846,76851 **** --- 76850,76856 ---- 592655569ae79aaf00802200e9070b9e libstdc++-v3/testsuite/26_numerics/valarray/dr543.cc 1d2fc52d60b09e263e2df15a4add633a libstdc++-v3/testsuite/26_numerics/valarray/dr630-1.cc a0af430cabde5f2c341fff0266d8772e libstdc++-v3/testsuite/26_numerics/valarray/dr630-2.cc + f14a05986437362cd2aeda959935dc8e libstdc++-v3/testsuite/26_numerics/valarray/dr630-3.C f1fd97c2f14213b8aad1230fa816dad0 libstdc++-v3/testsuite/26_numerics/valarray/init-list.cc ac66459e8981047a83f5f0e32c51731a libstdc++-v3/testsuite/26_numerics/valarray/moveable.cc 4d1d792cc2627052cd72cee05a03d5d3 libstdc++-v3/testsuite/26_numerics/valarray/name_lookup.cc *************** b3381aeb781a9573e998b9cbe722b21d libstd *** 78070,78075 **** --- 78075,78081 ---- 0a8326501adeab5e7dbc563b3f11127f libstdc++-v3/testsuite/30_threads/timed_mutex/try_lock_for/3.cc d729e2ad9742d40d3a6c129d3b706792 libstdc++-v3/testsuite/30_threads/timed_mutex/try_lock_until/1.cc 84c0ad700f327252f046d5e81c9b87fd libstdc++-v3/testsuite/30_threads/timed_mutex/try_lock_until/2.cc + 97b8d7e58e65c886dc9c395c70b83877 libstdc++-v3/testsuite/30_threads/timed_mutex/try_lock_until/57641.cc b1c326ff67242d0ac5e31ae65234029a libstdc++-v3/testsuite/30_threads/timed_mutex/unlock/1.cc 9947e1e496acd27613b6976e29972a72 libstdc++-v3/testsuite/30_threads/try_lock/1.cc 177c6e16195dfb3212fe9f88a95f3818 libstdc++-v3/testsuite/30_threads/try_lock/2.cc *************** a7080ed4535b0fb4daac0945f9cab0db libstd *** 78393,78399 **** da95306eba80f7c3a94efd3ab940fae3 libstdc++-v3/testsuite/ext/pool_allocator/variadic_construct.cc 449345468bd44b868ad36c0f1586da15 libstdc++-v3/testsuite/ext/profile/all.cc c6e4f2df3265dbc54f9dff7feb16a9f1 libstdc++-v3/testsuite/ext/profile/mh.cc ! 6a03df517054b555f028b504e087850d libstdc++-v3/testsuite/ext/profile/mutex_extensions_neg.cc 25e7b1ec221dcb990a4b7c90f5a0c0eb libstdc++-v3/testsuite/ext/profile/profiler_algos.cc 7c775309398d3bacc7f4d6484908c8bc libstdc++-v3/testsuite/ext/random/arcsine_distribution/cons/default.cc db3882112dbc630d1b7f4decf95fd194 libstdc++-v3/testsuite/ext/random/arcsine_distribution/cons/parms.cc --- 78399,78405 ---- da95306eba80f7c3a94efd3ab940fae3 libstdc++-v3/testsuite/ext/pool_allocator/variadic_construct.cc 449345468bd44b868ad36c0f1586da15 libstdc++-v3/testsuite/ext/profile/all.cc c6e4f2df3265dbc54f9dff7feb16a9f1 libstdc++-v3/testsuite/ext/profile/mh.cc ! 3b6a6a0cc72a879b74062144b450c0c9 libstdc++-v3/testsuite/ext/profile/mutex_extensions_neg.cc 25e7b1ec221dcb990a4b7c90f5a0c0eb libstdc++-v3/testsuite/ext/profile/profiler_algos.cc 7c775309398d3bacc7f4d6484908c8bc libstdc++-v3/testsuite/ext/random/arcsine_distribution/cons/default.cc db3882112dbc630d1b7f4decf95fd194 libstdc++-v3/testsuite/ext/random/arcsine_distribution/cons/parms.cc *************** ba07ed7e4b6be563786243460ce5f85f libstd *** 78430,78437 **** c01ad9ee65c71390cee1196a64b1390d libstdc++-v3/testsuite/ext/random/nakagami_distribution/operators/serialize.cc b63f4535c8fb715ebb8971c20859e27c libstdc++-v3/testsuite/ext/random/nakagami_distribution/requirements/explicit_instantiation/1.cc a9ca701e8c9aab9e3336d7730c2c9a0c libstdc++-v3/testsuite/ext/random/nakagami_distribution/requirements/typedefs.cc ! 50a84224ffcf7296074ea1368654db74 libstdc++-v3/testsuite/ext/random/normal_mv_distribution/cons/default.cc ! 5af2679b485a25a335063cc5c907015c libstdc++-v3/testsuite/ext/random/normal_mv_distribution/cons/parms.cc afd7a5c05aeecbf3be44dd12f71f20f2 libstdc++-v3/testsuite/ext/random/normal_mv_distribution/operators/equal.cc 72b3485a951487d6c6d409bc80f866ad libstdc++-v3/testsuite/ext/random/normal_mv_distribution/operators/inequal.cc f970014797d53adfd071278673d96807 libstdc++-v3/testsuite/ext/random/normal_mv_distribution/operators/serialize.cc --- 78436,78443 ---- c01ad9ee65c71390cee1196a64b1390d libstdc++-v3/testsuite/ext/random/nakagami_distribution/operators/serialize.cc b63f4535c8fb715ebb8971c20859e27c libstdc++-v3/testsuite/ext/random/nakagami_distribution/requirements/explicit_instantiation/1.cc a9ca701e8c9aab9e3336d7730c2c9a0c libstdc++-v3/testsuite/ext/random/nakagami_distribution/requirements/typedefs.cc ! 8609a39fe66d4336bc10f8bf8d544306 libstdc++-v3/testsuite/ext/random/normal_mv_distribution/cons/default.cc ! 3a953d4a7f1493c5971a67d9bef99a55 libstdc++-v3/testsuite/ext/random/normal_mv_distribution/cons/parms.cc afd7a5c05aeecbf3be44dd12f71f20f2 libstdc++-v3/testsuite/ext/random/normal_mv_distribution/operators/equal.cc 72b3485a951487d6c6d409bc80f866ad libstdc++-v3/testsuite/ext/random/normal_mv_distribution/operators/inequal.cc f970014797d53adfd071278673d96807 libstdc++-v3/testsuite/ext/random/normal_mv_distribution/operators/serialize.cc *************** fa18f67dac08bcbec918bf714cb8fe84 libstd *** 78459,78464 **** --- 78465,78484 ---- 8a90d0a4ee08673b922accee74ee1f29 libstdc++-v3/testsuite/ext/random/simd_fast_mersenne_twister_engine/operators/equal.cc 01b81068ceb82fae1f804c673b6f0e0e libstdc++-v3/testsuite/ext/random/simd_fast_mersenne_twister_engine/operators/inequal.cc 0cc6bd16f17939bf9ad877308348ab9b libstdc++-v3/testsuite/ext/random/simd_fast_mersenne_twister_engine/operators/serialize.cc + 539e52b156799b01bf24eee454abc462 libstdc++-v3/testsuite/ext/random/triangular_distribution/cons/default.cc + e4d19199fd682991e6844023bfa8ad16 libstdc++-v3/testsuite/ext/random/triangular_distribution/cons/parms.cc + f38cb5dcb792b92a4de3687f1c37c6fe libstdc++-v3/testsuite/ext/random/triangular_distribution/operators/equal.cc + 8d7a402854f1a815dea25f479be9c3ed libstdc++-v3/testsuite/ext/random/triangular_distribution/operators/inequal.cc + 40f5f126a6508e9841b08c989984e268 libstdc++-v3/testsuite/ext/random/triangular_distribution/operators/serialize.cc + 0de84461380901819ceebcf12dc8e969 libstdc++-v3/testsuite/ext/random/triangular_distribution/requirements/explicit_instantiation/1.cc + 699d4f181acba70af0a5e438d5d45850 libstdc++-v3/testsuite/ext/random/triangular_distribution/requirements/typedefs.cc + fd3648a4c4ba2c619a10f5154ae82162 libstdc++-v3/testsuite/ext/random/von_mises_distribution/cons/default.cc + efbb1562a34e2795cca0718a3024920c libstdc++-v3/testsuite/ext/random/von_mises_distribution/cons/parms.cc + 28ada5e521f01ac5334be5088ef102ea libstdc++-v3/testsuite/ext/random/von_mises_distribution/operators/equal.cc + b181a10b30fc116040b5701f5e8af436 libstdc++-v3/testsuite/ext/random/von_mises_distribution/operators/inequal.cc + 8d2a91c8edff4efa7fdd4b260c38f6b3 libstdc++-v3/testsuite/ext/random/von_mises_distribution/operators/serialize.cc + ebcfaaa10f106567378cd631fd92d908 libstdc++-v3/testsuite/ext/random/von_mises_distribution/requirements/explicit_instantiation/1.cc + 78c2117a5c80289d013019588a2e25ad libstdc++-v3/testsuite/ext/random/von_mises_distribution/requirements/typedefs.cc 3d6b3b7b5c2769f1b693a8598e8675c4 libstdc++-v3/testsuite/ext/rope/1.cc ff75269b343d110f9ff811651e91bb2a libstdc++-v3/testsuite/ext/rope/2.cc 8b1ae967b4aa3794f9927870670ae0d0 libstdc++-v3/testsuite/ext/rope/3.cc *************** cc1c2add1dfaf7ab8c37cb707fe2830d libstd *** 78499,78527 **** e37856ce9f7935440851ac651adc790e libstdc++-v3/testsuite/ext/throw_allocator/explicit_instantiation.cc e6199ee6464f6221db119b3d05d642fe libstdc++-v3/testsuite/ext/throw_allocator/variadic_construct.cc 444ebcd74cc8b9e60c121c897b3464bb libstdc++-v3/testsuite/ext/throw_value/cons.cc - 539e52b156799b01bf24eee454abc462 libstdc++-v3/testsuite/ext/triangular_distribution/cons/default.cc - e4d19199fd682991e6844023bfa8ad16 libstdc++-v3/testsuite/ext/triangular_distribution/cons/parms.cc - f38cb5dcb792b92a4de3687f1c37c6fe libstdc++-v3/testsuite/ext/triangular_distribution/operators/equal.cc - 8d7a402854f1a815dea25f479be9c3ed libstdc++-v3/testsuite/ext/triangular_distribution/operators/inequal.cc - 40f5f126a6508e9841b08c989984e268 libstdc++-v3/testsuite/ext/triangular_distribution/operators/serialize.cc - 0de84461380901819ceebcf12dc8e969 libstdc++-v3/testsuite/ext/triangular_distribution/requirements/explicit_instantiation/1.cc - 699d4f181acba70af0a5e438d5d45850 libstdc++-v3/testsuite/ext/triangular_distribution/requirements/typedefs.cc 9d41eb5343249cd5865c1877fd61fefc libstdc++-v3/testsuite/ext/type_traits/add_unsigned.cc 81092b25a86e9d9180ffb34479c70790 libstdc++-v3/testsuite/ext/type_traits/add_unsigned_floating_neg.cc 82333792ef6bfe457c6eaa909fdcc2a0 libstdc++-v3/testsuite/ext/type_traits/add_unsigned_integer_neg.cc ed0996e869124ea2a211c9073dd0e063 libstdc++-v3/testsuite/ext/type_traits/remove_unsigned.cc 00a1cf195f9b54e0be60c102c7f3e944 libstdc++-v3/testsuite/ext/type_traits/remove_unsigned_floating_neg.cc e4237ec5c78e83e0e22a7117c7235948 libstdc++-v3/testsuite/ext/type_traits/remove_unsigned_integer_neg.cc - fd3648a4c4ba2c619a10f5154ae82162 libstdc++-v3/testsuite/ext/von_mises_distribution/cons/default.cc - efbb1562a34e2795cca0718a3024920c libstdc++-v3/testsuite/ext/von_mises_distribution/cons/parms.cc - 28ada5e521f01ac5334be5088ef102ea libstdc++-v3/testsuite/ext/von_mises_distribution/operators/equal.cc - b181a10b30fc116040b5701f5e8af436 libstdc++-v3/testsuite/ext/von_mises_distribution/operators/inequal.cc - 8d2a91c8edff4efa7fdd4b260c38f6b3 libstdc++-v3/testsuite/ext/von_mises_distribution/operators/serialize.cc - ebcfaaa10f106567378cd631fd92d908 libstdc++-v3/testsuite/ext/von_mises_distribution/requirements/explicit_instantiation/1.cc - 78c2117a5c80289d013019588a2e25ad libstdc++-v3/testsuite/ext/von_mises_distribution/requirements/typedefs.cc 1e92c9a4b978aa362db31f8addd7e8ba libstdc++-v3/testsuite/ext/vstring/assign/move_assign.cc a5c4fc68e464a148e94336d863d93efd libstdc++-v3/testsuite/ext/vstring/capacity/29134.cc 0f63d02af15bcdb69e2d3611c1571253 libstdc++-v3/testsuite/ext/vstring/capacity/shrink_to_fit.cc 4314d04bb85d8b91851b34b0290ed03c libstdc++-v3/testsuite/ext/vstring/cons/moveable.cc 049a0ce3e9b6c8e0519d3103d56b2a8d libstdc++-v3/testsuite/ext/vstring/cons/noexcept_move_construct.cc dd1619854350d7ff9ac5464de3deabcd libstdc++-v3/testsuite/ext/vstring/element_access/char/front_back.cc --- 78519,78535 ---- e37856ce9f7935440851ac651adc790e libstdc++-v3/testsuite/ext/throw_allocator/explicit_instantiation.cc e6199ee6464f6221db119b3d05d642fe libstdc++-v3/testsuite/ext/throw_allocator/variadic_construct.cc 444ebcd74cc8b9e60c121c897b3464bb libstdc++-v3/testsuite/ext/throw_value/cons.cc 9d41eb5343249cd5865c1877fd61fefc libstdc++-v3/testsuite/ext/type_traits/add_unsigned.cc 81092b25a86e9d9180ffb34479c70790 libstdc++-v3/testsuite/ext/type_traits/add_unsigned_floating_neg.cc 82333792ef6bfe457c6eaa909fdcc2a0 libstdc++-v3/testsuite/ext/type_traits/add_unsigned_integer_neg.cc ed0996e869124ea2a211c9073dd0e063 libstdc++-v3/testsuite/ext/type_traits/remove_unsigned.cc 00a1cf195f9b54e0be60c102c7f3e944 libstdc++-v3/testsuite/ext/type_traits/remove_unsigned_floating_neg.cc e4237ec5c78e83e0e22a7117c7235948 libstdc++-v3/testsuite/ext/type_traits/remove_unsigned_integer_neg.cc 1e92c9a4b978aa362db31f8addd7e8ba libstdc++-v3/testsuite/ext/vstring/assign/move_assign.cc a5c4fc68e464a148e94336d863d93efd libstdc++-v3/testsuite/ext/vstring/capacity/29134.cc 0f63d02af15bcdb69e2d3611c1571253 libstdc++-v3/testsuite/ext/vstring/capacity/shrink_to_fit.cc + 6ed9e91ee2ecd0b6958715cd55e746d8 libstdc++-v3/testsuite/ext/vstring/cons/58415-1.cc + 9929033a84deb575a1ccd7573fa8f2fe libstdc++-v3/testsuite/ext/vstring/cons/58415-2.cc 4314d04bb85d8b91851b34b0290ed03c libstdc++-v3/testsuite/ext/vstring/cons/moveable.cc 049a0ce3e9b6c8e0519d3103d56b2a8d libstdc++-v3/testsuite/ext/vstring/cons/noexcept_move_construct.cc dd1619854350d7ff9ac5464de3deabcd libstdc++-v3/testsuite/ext/vstring/element_access/char/front_back.cc *************** c83620faf68602950e99333338d3ed8a libstd *** 78552,78558 **** f75f5b5222d36160db05ddf8bcc63fa5 libstdc++-v3/testsuite/ext/vstring/types/23767.cc 3cdc7b25eea6a0e7ab788dd2a0e77276 libstdc++-v3/testsuite/lib/dg-options.exp 2de7cab794020b112f8ba9d1e9feee21 libstdc++-v3/testsuite/lib/gdb-test.exp ! 414655c743530c0d016e21345aeb157b libstdc++-v3/testsuite/lib/libstdc++.exp 24da12a7ea72e2fe7bc25f705a988132 libstdc++-v3/testsuite/lib/prune.exp 282116ece0a61e7c6bf83e16c73457d9 libstdc++-v3/testsuite/libstdc++-abi/abi.exp 9220792cfeef6042ba22d71bc5a21af3 libstdc++-v3/testsuite/libstdc++-dg/conformance.exp --- 78560,78566 ---- f75f5b5222d36160db05ddf8bcc63fa5 libstdc++-v3/testsuite/ext/vstring/types/23767.cc 3cdc7b25eea6a0e7ab788dd2a0e77276 libstdc++-v3/testsuite/lib/dg-options.exp 2de7cab794020b112f8ba9d1e9feee21 libstdc++-v3/testsuite/lib/gdb-test.exp ! c6dd50e2ec9b90d56edf56968137de81 libstdc++-v3/testsuite/lib/libstdc++.exp 24da12a7ea72e2fe7bc25f705a988132 libstdc++-v3/testsuite/lib/prune.exp 282116ece0a61e7c6bf83e16c73457d9 libstdc++-v3/testsuite/libstdc++-abi/abi.exp 9220792cfeef6042ba22d71bc5a21af3 libstdc++-v3/testsuite/libstdc++-dg/conformance.exp *************** aa99e264ce0cf2f5fa6d5d48a8274724 libstd *** 78605,78610 **** --- 78613,78621 ---- 21deb781394b7c6e94bfbc4d26f89d56 libstdc++-v3/testsuite/performance/25_algorithms/lexicographical_compare.cc e71529fa2e6332324cf117d0dfbbaf4b libstdc++-v3/testsuite/performance/25_algorithms/nth_element_worst_case.cc c0188f1520cf0470e454f0fb5af94635 libstdc++-v3/testsuite/performance/25_algorithms/search_n.cc + 864aa9e34d780091044cc45586f7144d libstdc++-v3/testsuite/performance/25_algorithms/sort.cc + 885ed66171e4d335347b605c76200a3d libstdc++-v3/testsuite/performance/25_algorithms/sort_heap.cc + f7cc703b825680038bde13c126fc9906 libstdc++-v3/testsuite/performance/25_algorithms/stable_sort.cc 1088c186bfc7be476cce6a87867874bb libstdc++-v3/testsuite/performance/26_numerics/complex_norm.cc fe4636f8b3b52093ba5de241e6b59329 libstdc++-v3/testsuite/performance/26_numerics/valarray_gslice_to_index.cc 20c58fddd902d1b92c22e4de15c4b3cc libstdc++-v3/testsuite/performance/27_io/cout_insert_int.cc *************** a5ad2fe1171969291f6d2ab5a90bd8c6 libstd *** 79329,79335 **** 7805ffd6e70bed53f868067a6a21bd42 libstdc++-v3/testsuite/util/testsuite_character.h 5c1ddb5d70ba635fed1934cb2a1c8102 libstdc++-v3/testsuite/util/testsuite_common_types.h 33a55b3102965fba6271eefd241169b1 libstdc++-v3/testsuite/util/testsuite_container_traits.h ! 310e882c382c577fe75d97cf317b3a0d libstdc++-v3/testsuite/util/testsuite_containers.h 1f4587425ea646435331b73dba0fddc8 libstdc++-v3/testsuite/util/testsuite_counter_type.h 8456e4f8c2c190d6f32f97f11bd17728 libstdc++-v3/testsuite/util/testsuite_error.h 8e549c4af39f666b616504c16e421210 libstdc++-v3/testsuite/util/testsuite_greedy_ops.h --- 79340,79346 ---- 7805ffd6e70bed53f868067a6a21bd42 libstdc++-v3/testsuite/util/testsuite_character.h 5c1ddb5d70ba635fed1934cb2a1c8102 libstdc++-v3/testsuite/util/testsuite_common_types.h 33a55b3102965fba6271eefd241169b1 libstdc++-v3/testsuite/util/testsuite_container_traits.h ! 085376bc1e89ae6dcef132fc1347eb80 libstdc++-v3/testsuite/util/testsuite_containers.h 1f4587425ea646435331b73dba0fddc8 libstdc++-v3/testsuite/util/testsuite_counter_type.h 8456e4f8c2c190d6f32f97f11bd17728 libstdc++-v3/testsuite/util/testsuite_error.h 8e549c4af39f666b616504c16e421210 libstdc++-v3/testsuite/util/testsuite_greedy_ops.h *************** be9ed82042d100b5f403d1c2e09c0393 libstd *** 79342,79355 **** e1befc668e27451b0ea0961b99c4e35f libstdc++-v3/testsuite/util/testsuite_regex.h 78cafd1fa0d20e60285e226ac32d9a25 libstdc++-v3/testsuite/util/testsuite_rng.h 8fdca638d48a29e2334f074708f4752c libstdc++-v3/testsuite/util/testsuite_rvalref.h ! 3c572789bef84e153a04edf7ef70ccec libstdc++-v3/testsuite/util/testsuite_shared.cc f6d8a34abb130c434f27d5f852def21f libstdc++-v3/testsuite/util/testsuite_tr1.h 3460884b4921151a5b6ae1da2f363bab libstdc++-v3/testsuite/util/thread/all.h 18097d974d6f6a830c12c42592f0006d libtool-ldflags a553e7aea8e3f82d003693fd12506721 libtool.m4 247597a3fcc5b5aa8bd923351c59d853 ltgcc.m4 01d0921596c9fa4d9a7add89fd6fc1f1 ltmain.sh ! 71ab1814cb1cea54ccc20862df4b9f13 lto-plugin/ChangeLog 266147278cdeeab779ac75a4c3e2ee6d lto-plugin/Makefile.am db5afb8268c8a17e49d078936ef6fdbc lto-plugin/Makefile.in e0b6c77fa2326a08aa2d7a69e87e0f8c lto-plugin/aclocal.m4 --- 79353,79366 ---- e1befc668e27451b0ea0961b99c4e35f libstdc++-v3/testsuite/util/testsuite_regex.h 78cafd1fa0d20e60285e226ac32d9a25 libstdc++-v3/testsuite/util/testsuite_rng.h 8fdca638d48a29e2334f074708f4752c libstdc++-v3/testsuite/util/testsuite_rvalref.h ! 8dd481187dbaba64954d5ce460462636 libstdc++-v3/testsuite/util/testsuite_shared.cc f6d8a34abb130c434f27d5f852def21f libstdc++-v3/testsuite/util/testsuite_tr1.h 3460884b4921151a5b6ae1da2f363bab libstdc++-v3/testsuite/util/thread/all.h 18097d974d6f6a830c12c42592f0006d libtool-ldflags a553e7aea8e3f82d003693fd12506721 libtool.m4 247597a3fcc5b5aa8bd923351c59d853 ltgcc.m4 01d0921596c9fa4d9a7add89fd6fc1f1 ltmain.sh ! 50f3aa9e0d5638ad2e60b1e3b6f1a411 lto-plugin/ChangeLog 266147278cdeeab779ac75a4c3e2ee6d lto-plugin/Makefile.am db5afb8268c8a17e49d078936ef6fdbc lto-plugin/Makefile.in e0b6c77fa2326a08aa2d7a69e87e0f8c lto-plugin/aclocal.m4 *************** dee72a6a60e99528b0d17bf3ff9a1e15 ltopti *** 79362,79368 **** bc2f6032c98896249eadb56177c7d357 ltsugar.m4 c30cd33c496505f13d9fbdb6970c7c33 ltversion.m4 293853a13b7e218e3a4342cf85fbbf25 lt~obsolete.m4 ! 24155b5c6eca1f0d2900da4f896e3d7e maintainer-scripts/ChangeLog 33c7bc2d2c55956dfac85a05d8a80eff maintainer-scripts/README 6ce6794398c501e0b463ac668dffed27 maintainer-scripts/crontab 8c8d4248e14c842a3c7f7e8f3bffbb0f maintainer-scripts/gcc_release --- 79373,79379 ---- bc2f6032c98896249eadb56177c7d357 ltsugar.m4 c30cd33c496505f13d9fbdb6970c7c33 ltversion.m4 293853a13b7e218e3a4342cf85fbbf25 lt~obsolete.m4 ! 58ab591fb4930419070d657e57c75841 maintainer-scripts/ChangeLog 33c7bc2d2c55956dfac85a05d8a80eff maintainer-scripts/README 6ce6794398c501e0b463ac668dffed27 maintainer-scripts/crontab 8c8d4248e14c842a3c7f7e8f3bffbb0f maintainer-scripts/gcc_release *************** f1fff2ea196cbf6fe4634bc3edc5af4d move-i *** 79377,79383 **** cf2baa0854f564a7785307e79f155efc symlink-tree 69678e72941d681665c3731bfb3044ab ylwrap ed77bd1cb8611c7e07d54332abbbb44a zlib/CMakeLists.txt ! a1bc84fc5dafedd4a40fd032e1111b83 zlib/ChangeLog 9501e80cadfc03261bf598c295f5b714 zlib/ChangeLog.gcj b7a1991f01daea3efe108a215c5514a5 zlib/FAQ 3b6b6f9e88f2319b75e6ccb8c2823b13 zlib/INDEX --- 79388,79394 ---- cf2baa0854f564a7785307e79f155efc symlink-tree 69678e72941d681665c3731bfb3044ab ylwrap ed77bd1cb8611c7e07d54332abbbb44a zlib/CMakeLists.txt ! 062d743c77c6bf050c82315a67a27762 zlib/ChangeLog 9501e80cadfc03261bf598c295f5b714 zlib/ChangeLog.gcj b7a1991f01daea3efe108a215c5514a5 zlib/FAQ 3b6b6f9e88f2319b75e6ccb8c2823b13 zlib/INDEX diff -Nrcpad gcc-4.8.1/NEWS gcc-4.8.2/NEWS *** gcc-4.8.1/NEWS Fri May 31 09:10:06 2013 --- gcc-4.8.2/NEWS Wed Oct 16 07:28:43 2013 *************** see ONEWS. *** 8,28 **** http://gcc.gnu.org/gcc-4.8/index.html GCC 4.8 Release Series ! May 31, 2013 The [1]GNU project and the GCC developers are pleased to announce the ! release of GCC 4.8.1. This release is a bug-fix release, containing fixes for regressions in ! GCC 4.8.0 relative to previous releases of GCC. Release History GCC 4.8.1 ! May 31, 2013 ([2]changes, [3]documentation) GCC 4.8.0 ! March 22, 2013 ([4]changes, [5]documentation) References and Acknowledgements --- 8,31 ---- http://gcc.gnu.org/gcc-4.8/index.html GCC 4.8 Release Series ! October 16, 2013 The [1]GNU project and the GCC developers are pleased to announce the ! release of GCC 4.8.2. This release is a bug-fix release, containing fixes for regressions in ! GCC 4.8.1 relative to previous releases of GCC. Release History + GCC 4.8.2 + October 16, 2013 ([2]changes, [3]documentation) + GCC 4.8.1 ! May 31, 2013 ([4]changes, [5]documentation) GCC 4.8.0 ! March 22, 2013 ([6]changes, [7]documentation) References and Acknowledgements *************** References and Acknowledgements *** 30,83 **** supports several other languages aside from C, it now stands for the GNU Compiler Collection. ! A list of [6]successful builds is updated as new information becomes available. The GCC developers would like to thank the numerous people that have contributed new features, improvements, bug fixes, and other changes as ! well as test results to GCC. This [7]amazing group of volunteers is what makes GCC successful. ! For additional information about GCC please refer to the [8]GCC project ! web site or contact the [9]GCC development mailing list. ! To obtain GCC please use [10]our mirror sites or [11]our SVN server. For questions related to the use of GCC, please consult these web ! pages and the [12]GCC manuals. If that fails, the ! [13]gcc-help@gcc.gnu.org mailing list might help. Comments on these web pages and the development of GCC are welcome on our developer ! list at [14]gcc@gcc.gnu.org. All of [15]our lists have public archives. ! Copyright (C) [16]Free Software Foundation, Inc. Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved. ! These pages are [17]maintained by the GCC team. Last modified ! 2013-05-31[18]. References 1. http://www.gnu.org/ 2. http://gcc.gnu.org/gcc-4.8/changes.html ! 3. http://gcc.gnu.org/onlinedocs/4.8.1/ 4. http://gcc.gnu.org/gcc-4.8/changes.html ! 5. http://gcc.gnu.org/onlinedocs/4.8.0/ ! 6. http://gcc.gnu.org/gcc-4.8/buildstat.html ! 7. http://gcc.gnu.org/onlinedocs/gcc/Contributors.html ! 8. http://gcc.gnu.org/index.html ! 9. mailto:gcc@gcc.gnu.org ! 10. http://gcc.gnu.org/mirrors.html ! 11. http://gcc.gnu.org/svn.html ! 12. http://gcc.gnu.org/onlinedocs/ ! 13. mailto:gcc-help@gcc.gnu.org ! 14. mailto:gcc@gcc.gnu.org ! 15. http://gcc.gnu.org/lists.html ! 16. http://www.fsf.org/ ! 17. http://gcc.gnu.org/about.html ! 18. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.8/changes.html GCC 4.8 Release Series --- 33,88 ---- supports several other languages aside from C, it now stands for the GNU Compiler Collection. ! A list of [8]successful builds is updated as new information becomes available. The GCC developers would like to thank the numerous people that have contributed new features, improvements, bug fixes, and other changes as ! well as test results to GCC. This [9]amazing group of volunteers is what makes GCC successful. ! For additional information about GCC please refer to the [10]GCC ! project web site or contact the [11]GCC development mailing list. ! To obtain GCC please use [12]our mirror sites or [13]our SVN server. For questions related to the use of GCC, please consult these web ! pages and the [14]GCC manuals. If that fails, the ! [15]gcc-help@gcc.gnu.org mailing list might help. Comments on these web pages and the development of GCC are welcome on our developer ! list at [16]gcc@gcc.gnu.org. All of [17]our lists have public archives. ! Copyright (C) [18]Free Software Foundation, Inc. Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved. ! These pages are [19]maintained by the GCC team. Last modified ! 2013-10-16[20]. References 1. http://www.gnu.org/ 2. http://gcc.gnu.org/gcc-4.8/changes.html ! 3. http://gcc.gnu.org/onlinedocs/4.8.2/ 4. http://gcc.gnu.org/gcc-4.8/changes.html ! 5. http://gcc.gnu.org/onlinedocs/4.8.1/ ! 6. http://gcc.gnu.org/gcc-4.8/changes.html ! 7. http://gcc.gnu.org/onlinedocs/4.8.0/ ! 8. http://gcc.gnu.org/gcc-4.8/buildstat.html ! 9. http://gcc.gnu.org/onlinedocs/gcc/Contributors.html ! 10. http://gcc.gnu.org/index.html ! 11. mailto:gcc@gcc.gnu.org ! 12. http://gcc.gnu.org/mirrors.html ! 13. http://gcc.gnu.org/svn.html ! 14. http://gcc.gnu.org/onlinedocs/ ! 15. mailto:gcc-help@gcc.gnu.org ! 16. mailto:gcc@gcc.gnu.org ! 17. http://gcc.gnu.org/lists.html ! 18. http://www.fsf.org/ ! 19. http://gcc.gnu.org/about.html ! 20. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.8/changes.html GCC 4.8 Release Series *************** General Optimizer Improvements (and Chan *** 189,197 **** * [7]ThreadSanitizer has been added and can be enabled via -fsanitize=thread. Instructions will be instrumented to detect data races. The ThreadSanitizer is available on x86-64 GNU/Linux. ! * A new local register allocator has been implemented, which replaces ! the 26 year old reload pass and improves generated code quality. ! For now it is active on the ia32 and x86-64 targets. * Support for transactional memory has been implemented on the following architectures: IA-32/x86-64, ARM, PowerPC, SH, Sparc, and Alpha. --- 194,202 ---- * [7]ThreadSanitizer has been added and can be enabled via -fsanitize=thread. Instructions will be instrumented to detect data races. The ThreadSanitizer is available on x86-64 GNU/Linux. ! * A new local register allocator (LRA) has been implemented, which ! replaces the 26 year old reload pass and improves generated code ! quality. For now it is active on the ia32 and x86-64 targets. * Support for transactional memory has been implemented on the following architectures: IA-32/x86-64, ARM, PowerPC, SH, Sparc, and Alpha. *************** Operating Systems *** 717,728 **** * Executables are now linked against shared libgcc by default. The previous default was to link statically, which can still be done by ! explicitly specifying -static or -static-libgcc on the command ! line. However it is strongly advised against, as it will cause ! problems for any application that makes use of DLLs compiled by ! GCC. It should be alright for a monolithic stand-alone application ! that only links against the Windows OS DLLs, but offers little or ! no benefit. GCC 4.8.1 --- 722,733 ---- * Executables are now linked against shared libgcc by default. The previous default was to link statically, which can still be done by ! explicitly specifying -static or static-libgcc on the command line. ! However it is strongly advised against, as it will cause problems ! for any application that makes use of DLLs compiled by GCC. It ! should be alright for a monolithic stand-alone application that ! only links against the Windows DLLs, but offers little or no ! benefit. GCC 4.8.1 *************** GCC 4.8.1 *** 747,766 **** libstdc++ configured with the non-default --enable-libstdcxx-time= configuration option needs to be recompiled. For questions related to the use of GCC, please consult these web ! pages and the [34]GCC manuals. If that fails, the ! [35]gcc-help@gcc.gnu.org mailing list might help. Comments on these web pages and the development of GCC are welcome on our developer ! list at [36]gcc@gcc.gnu.org. All of [37]our lists have public archives. ! Copyright (C) [38]Free Software Foundation, Inc. Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved. ! These pages are [39]maintained by the GCC team. Last modified ! 2013-05-31[40]. References --- 752,778 ---- libstdc++ configured with the non-default --enable-libstdcxx-time= configuration option needs to be recompiled. + GCC 4.8.2 + + This is the [34]list of problem reports (PRs) from GCC's bug tracking + system that are known to be fixed in the 4.8.2 release. This list might + not be complete (that is, it is possible that some PRs that have been + fixed are not listed here). + For questions related to the use of GCC, please consult these web ! pages and the [35]GCC manuals. If that fails, the ! [36]gcc-help@gcc.gnu.org mailing list might help. Comments on these web pages and the development of GCC are welcome on our developer ! list at [37]gcc@gcc.gnu.org. All of [38]our lists have public archives. ! Copyright (C) [39]Free Software Foundation, Inc. Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved. ! These pages are [40]maintained by the GCC team. Last modified ! 2013-10-16[41]. References *************** References *** 797,809 **** 31. http://gcc.gnu.org/onlinedocs/gcc/X86-Built-in-Functions.html#X86-Built-in-Functions 32. http://gcc.gnu.org/wiki/FunctionMultiVersioning 33. http://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.8.1 ! 34. http://gcc.gnu.org/onlinedocs/ ! 35. mailto:gcc-help@gcc.gnu.org ! 36. mailto:gcc@gcc.gnu.org ! 37. http://gcc.gnu.org/lists.html ! 38. http://www.fsf.org/ ! 39. http://gcc.gnu.org/about.html ! 40. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.7/index.html GCC 4.7 Release Series --- 809,822 ---- 31. http://gcc.gnu.org/onlinedocs/gcc/X86-Built-in-Functions.html#X86-Built-in-Functions 32. http://gcc.gnu.org/wiki/FunctionMultiVersioning 33. http://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.8.1 ! 34. http://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.8.2 ! 35. http://gcc.gnu.org/onlinedocs/ ! 36. mailto:gcc-help@gcc.gnu.org ! 37. mailto:gcc@gcc.gnu.org ! 38. http://gcc.gnu.org/lists.html ! 39. http://www.fsf.org/ ! 40. http://gcc.gnu.org/about.html ! 41. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.7/index.html GCC 4.7 Release Series diff -Nrcpad gcc-4.8.1/boehm-gc/ChangeLog gcc-4.8.2/boehm-gc/ChangeLog *** gcc-4.8.1/boehm-gc/ChangeLog Fri May 31 09:01:17 2013 --- gcc-4.8.2/boehm-gc/ChangeLog Wed Oct 16 07:19:20 2013 *************** *** 1,3 **** --- 1,12 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + + 2013-09-04 Matthias Klose + + * Makefile.am (libgcjgc_la_LIBADD): Add EXTRA_TEST_LIBS. + * Makefile.in: Regenerate. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/boehm-gc/Makefile.am gcc-4.8.2/boehm-gc/Makefile.am *** gcc-4.8.1/boehm-gc/Makefile.am Fri Mar 22 14:19:12 2013 --- gcc-4.8.2/boehm-gc/Makefile.am Wed Sep 4 10:49:53 2013 *************** sparc_sunos4_mach_dep.s ia64_save_regs_i *** 35,41 **** # Include THREADLIBS here to ensure that the correct versions of # linuxthread semaphore functions get linked: ! libgcjgc_la_LIBADD = $(addobjs) $(THREADLIBS) libgcjgc_la_DEPENDENCIES = $(addobjs) libgcjgc_la_LDFLAGS = $(extra_ldflags_libgc) -version-info 1:2:0 -rpath $(toolexeclibdir) libgcjgc_la_LINK = $(LINK) $(libgcjgc_la_LDFLAGS) --- 35,41 ---- # Include THREADLIBS here to ensure that the correct versions of # linuxthread semaphore functions get linked: ! libgcjgc_la_LIBADD = $(addobjs) $(THREADLIBS) $(EXTRA_TEST_LIBS) libgcjgc_la_DEPENDENCIES = $(addobjs) libgcjgc_la_LDFLAGS = $(extra_ldflags_libgc) -version-info 1:2:0 -rpath $(toolexeclibdir) libgcjgc_la_LINK = $(LINK) $(libgcjgc_la_LDFLAGS) diff -Nrcpad gcc-4.8.1/boehm-gc/Makefile.in gcc-4.8.2/boehm-gc/Makefile.in *** gcc-4.8.1/boehm-gc/Makefile.in Fri May 31 09:09:26 2013 --- gcc-4.8.2/boehm-gc/Makefile.in Wed Oct 16 07:27:58 2013 *************** sparc_sunos4_mach_dep.s ia64_save_regs_i *** 280,286 **** # Include THREADLIBS here to ensure that the correct versions of # linuxthread semaphore functions get linked: ! libgcjgc_la_LIBADD = $(addobjs) $(THREADLIBS) libgcjgc_la_DEPENDENCIES = $(addobjs) libgcjgc_la_LDFLAGS = $(extra_ldflags_libgc) -version-info 1:2:0 -rpath $(toolexeclibdir) libgcjgc_la_LINK = $(LINK) $(libgcjgc_la_LDFLAGS) --- 280,286 ---- # Include THREADLIBS here to ensure that the correct versions of # linuxthread semaphore functions get linked: ! libgcjgc_la_LIBADD = $(addobjs) $(THREADLIBS) $(EXTRA_TEST_LIBS) libgcjgc_la_DEPENDENCIES = $(addobjs) libgcjgc_la_LDFLAGS = $(extra_ldflags_libgc) -version-info 1:2:0 -rpath $(toolexeclibdir) libgcjgc_la_LINK = $(LINK) $(libgcjgc_la_LDFLAGS) diff -Nrcpad gcc-4.8.1/config/ChangeLog gcc-4.8.2/config/ChangeLog *** gcc-4.8.1/config/ChangeLog Fri May 31 08:59:38 2013 --- gcc-4.8.2/config/ChangeLog Wed Oct 16 07:17:49 2013 *************** *** 1,3 **** --- 1,7 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/configure gcc-4.8.2/configure *** gcc-4.8.1/configure Fri Feb 15 17:45:54 2013 --- gcc-4.8.2/configure Tue Sep 3 12:13:42 2013 *************** $as_echo "$gcc_cv_isl" >&6; } *** 5939,5944 **** --- 5939,5993 ---- fi + if test "${gcc_cv_isl}" = no ; then + + if test "${ENABLE_ISL_CHECK}" = yes ; then + _isl_saved_CFLAGS=$CFLAGS + _isl_saved_LDFLAGS=$LDFLAGS + _isl_saved_LIBS=$LIBS + + CFLAGS="${_isl_saved_CFLAGS} ${islinc} ${gmpinc}" + LDFLAGS="${_isl_saved_LDFLAGS} ${isllibs}" + LIBS="${_isl_saved_LIBS} -lisl" + + { $as_echo "$as_me:${as_lineno-$LINENO}: checking for version 0.12 of ISL" >&5 + $as_echo_n "checking for version 0.12 of ISL... " >&6; } + if test "$cross_compiling" = yes; then : + gcc_cv_isl=yes + else + cat confdefs.h - <<_ACEOF >conftest.$ac_ext + /* end confdefs.h. */ + #include + #include + int + main () + { + if (strncmp (isl_version (), "isl-0.12", strlen ("isl-0.12")) != 0) + return 1; + + ; + return 0; + } + _ACEOF + if ac_fn_c_try_run "$LINENO"; then : + gcc_cv_isl=yes + else + gcc_cv_isl=no + fi + rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ + conftest.$ac_objext conftest.beam conftest.$ac_ext + fi + + { $as_echo "$as_me:${as_lineno-$LINENO}: result: $gcc_cv_isl" >&5 + $as_echo "$gcc_cv_isl" >&6; } + + CFLAGS=$_isl_saved_CFLAGS + LDFLAGS=$_isl_saved_LDFLAGS + LIBS=$_isl_saved_LIBS + fi + + + fi fi diff -Nrcpad gcc-4.8.1/configure.ac gcc-4.8.2/configure.ac *** gcc-4.8.1/configure.ac Fri Feb 15 17:45:54 2013 --- gcc-4.8.2/configure.ac Tue Sep 3 12:13:42 2013 *************** if test "x$with_isl" != "xno" && *** 1630,1635 **** --- 1630,1638 ---- ISL_CHECK_VERSION(0,10) if test "${gcc_cv_isl}" = no ; then ISL_CHECK_VERSION(0,11) + if test "${gcc_cv_isl}" = no ; then + ISL_CHECK_VERSION(0,12) + fi fi dnl Only execute fail-action, if ISL has been requested. ISL_IF_FAILED([ diff -Nrcpad gcc-4.8.1/contrib/ChangeLog gcc-4.8.2/contrib/ChangeLog *** gcc-4.8.1/contrib/ChangeLog Fri May 31 09:01:42 2013 --- gcc-4.8.2/contrib/ChangeLog Wed Oct 16 07:19:41 2013 *************** *** 1,3 **** --- 1,7 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/contrib/reghunt/ChangeLog gcc-4.8.2/contrib/reghunt/ChangeLog *** gcc-4.8.1/contrib/reghunt/ChangeLog Fri May 31 09:01:38 2013 --- gcc-4.8.2/contrib/reghunt/ChangeLog Wed Oct 16 07:19:38 2013 *************** *** 1,3 **** --- 1,7 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/contrib/regression/ChangeLog gcc-4.8.2/contrib/regression/ChangeLog *** gcc-4.8.1/contrib/regression/ChangeLog Fri May 31 09:01:46 2013 --- gcc-4.8.2/contrib/regression/ChangeLog Wed Oct 16 07:19:45 2013 *************** *** 1,3 **** --- 1,7 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/fixincludes/ChangeLog gcc-4.8.2/fixincludes/ChangeLog *** gcc-4.8.1/fixincludes/ChangeLog Fri May 31 08:59:49 2013 --- gcc-4.8.2/fixincludes/ChangeLog Wed Oct 16 07:17:59 2013 *************** *** 1,3 **** --- 1,18 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + + 2013-05-31 Rainer Orth + + Backport from mainline: + 2013-05-17 Rainer Orth + + * inclhack.def (solaris_pow_int_overload): Update comment. + Change guard to match . + * fixincl.x: Regenerate. + * tests/base/iso/math_iso.h [SOLARIS_POW_INT_OVERLOAD_CHECK]: + Matching change. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/fixincludes/fixincl.x gcc-4.8.2/fixincludes/fixincl.x *** gcc-4.8.1/fixincludes/fixincl.x Wed Jan 16 04:07:20 2013 --- gcc-4.8.2/fixincludes/fixincl.x Fri May 31 11:43:36 2013 *************** *** 2,12 **** * * DO NOT EDIT THIS FILE (fixincl.x) * ! * It has been AutoGen-ed Saturday December 29, 2012 at 09:17:09 AM BRST * From the definitions inclhack.def * and the template file fixincl */ ! /* DO NOT SVN-MERGE THIS FILE, EITHER Sat Dec 29 09:17:10 BRST 2012 * * You must regenerate it. Use the ./genfixes script. * --- 2,12 ---- * * DO NOT EDIT THIS FILE (fixincl.x) * ! * It has been AutoGen-ed Thursday May 16, 2013 at 03:34:25 PM MEST * From the definitions inclhack.def * and the template file fixincl */ ! /* DO NOT SVN-MERGE THIS FILE, EITHER Thu May 16 15:34:25 MEST 2013 * * You must regenerate it. Use the ./genfixes script. * *************** static tTestDesc aSolaris_Pow_Int_Overlo *** 6663,6669 **** */ static const char* apzSolaris_Pow_Int_OverloadPatch[] = { "format", ! "#ifndef __GXX_EXPERIMENTAL_CXX0X__\n\ %0\n\ #endif", (char*)NULL }; --- 6663,6669 ---- */ static const char* apzSolaris_Pow_Int_OverloadPatch[] = { "format", ! "#if __cplusplus < 201103L\n\ %0\n\ #endif", (char*)NULL }; diff -Nrcpad gcc-4.8.1/fixincludes/inclhack.def gcc-4.8.2/fixincludes/inclhack.def *** gcc-4.8.1/fixincludes/inclhack.def Wed Jan 16 04:07:20 2013 --- gcc-4.8.2/fixincludes/inclhack.def Fri May 31 11:43:36 2013 *************** fix = { *** 3447,3453 **** /* ! * The pow overloads with int were removed in C++ 2011. */ fix = { hackname = solaris_pow_int_overload; --- 3447,3453 ---- /* ! * The pow overloads with int were removed in C++ 2011 DR 550. */ fix = { hackname = solaris_pow_int_overload; *************** fix = { *** 3456,3462 **** select = "^[ \t]*inline [a-z ]* pow\\([^()]*, int [^()]*\\)" " *\\{[^{}]*\n[^{}]*\\}"; c_fix = format; ! c_fix_arg = "#ifndef __GXX_EXPERIMENTAL_CXX0X__\n%0\n#endif"; test_text = " inline long double pow(long double __X, int __Y) { return\n" --- 3456,3462 ---- select = "^[ \t]*inline [a-z ]* pow\\([^()]*, int [^()]*\\)" " *\\{[^{}]*\n[^{}]*\\}"; c_fix = format; ! c_fix_arg = "#if __cplusplus < 201103L\n%0\n#endif"; test_text = " inline long double pow(long double __X, int __Y) { return\n" diff -Nrcpad gcc-4.8.1/fixincludes/tests/base/iso/math_iso.h gcc-4.8.2/fixincludes/tests/base/iso/math_iso.h *** gcc-4.8.1/fixincludes/tests/base/iso/math_iso.h Wed Aug 10 08:43:38 2011 --- gcc-4.8.2/fixincludes/tests/base/iso/math_iso.h Fri May 31 11:43:36 2013 *************** *** 10,16 **** #if defined( SOLARIS_POW_INT_OVERLOAD_CHECK ) ! #ifndef __GXX_EXPERIMENTAL_CXX0X__ inline long double pow(long double __X, int __Y) { return __powl(__X, (long double) (__Y)); } #endif --- 10,16 ---- #if defined( SOLARIS_POW_INT_OVERLOAD_CHECK ) ! #if __cplusplus < 201103L inline long double pow(long double __X, int __Y) { return __powl(__X, (long double) (__Y)); } #endif diff -Nrcpad gcc-4.8.1/gcc/BASE-VER gcc-4.8.2/gcc/BASE-VER *** gcc-4.8.1/gcc/BASE-VER Fri Mar 22 13:26:19 2013 --- gcc-4.8.2/gcc/BASE-VER Fri May 31 10:44:33 2013 *************** *** 1 **** ! 4.8.1 --- 1 ---- ! 4.8.2 diff -Nrcpad gcc-4.8.1/gcc/ChangeLog gcc-4.8.2/gcc/ChangeLog *** gcc-4.8.1/gcc/ChangeLog Fri May 31 09:02:05 2013 --- gcc-4.8.2/gcc/ChangeLog Wed Oct 16 07:20:05 2013 *************** *** 1,3 **** --- 1,1095 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + + 2013-10-12 James Greenhalgh + + Backport from mainline. + 2013-10-12 James Greenhalgh + + * config/aarch64/arm_neon.h + (vtbx<1,3>_8): Fix register constriants. + + 2013-10-10 Jakub Jelinek + + PR middle-end/58670 + * stmt.c (expand_asm_operands): Add FALLTHRU_BB argument, + if any labels are in FALLTHRU_BB, use a special label emitted + immediately after the asm goto insn rather than label_rtx + of the LABEL_DECL. + (expand_asm_stmt): Adjust caller. + * cfgrtl.c (commit_one_edge_insertion): Force splitting of + edge if the last insn in predecessor is a jump with single successor, + but it isn't simplejump_p. + + 2013-10-09 Jakub Jelinek + + Backport from mainline + 2013-09-26 Richard Biener + + PR tree-optimization/58539 + * tree-vect-loop.c (vect_create_epilog_for_reduction): Honor + the fact that debug statements are not taking part in loop-closed + SSA construction. + + 2013-10-07 Andreas Krebbel + + * config/s390/s390.c (s390_register_info): Make the call-saved FPR + loop to work also for 31bit ABI. + Save the stack pointer for frame_size > 0. + + 2013-10-07 Andreas Krebbel + + * config/s390/s390.md ("tbegin", "tbegin_nofloat", "tbegin_retry") + ("tbegin_retry_nofloat", "tend", "tabort", "tx_assist"): Remove + constraint letters from expanders. + ("tbegin_retry", "tbegin_retry_nofloat"): Change predicate of the + retry count to general_operand. + ("tabort"): Give operand 0 a mode. + ("tabort_1"): Add mode and constraint letter for operand 0. + * doc/extend.texi: Fix protoype of __builtin_non_tx_store. + + 2013-10-04 Marcus Shawcroft + + Backport from mainline. + + PR target/58460 + * config/aarch64/aarch64.md (*add__) + (*add__si_uxtw,*add_mul_imm_) + (*sub__) + (*sub__si_uxtw,*sub_mul_imm_, *sub_mul_imm_si_uxtw): + Remove k constraint. + + 2013-10-02 John David Anglin + + * config.gcc (hppa*64*-*-linux*): Don't add pa/t-linux to tmake_file. + + 2013-10-01 Jakub Jelinek + Andreas Krebbel + + PR target/58574 + * config/s390/s390.c (s390_chunkify_start): Handle tablejump_p first, + continue when done, for other jumps look through PARALLEL + unconditionally. + + 2013-09-30 Jakub Jelinek + + PR middle-end/58564 + * fold-const.c (fold_ternary_loc): For A < 0 : : 0 + optimization, punt if sign_bit_p looked through any zero extension. + + 2013-09-27 Paulo Matos + + Backport from mainline. + + PR middle-end/58463 + 2013-03-27 Richard Biener + + PR tree-optimization/56716 + * tree-ssa-structalias.c (perform_var_substitution): Adjust + dumping for ref nodes. + + 2013-09-27 Paulo Matos + + Backport from mainline. + + 2013-09-27 Paulo Matos + PR middle-end/58463 + * gcc.dg/pr58463.c: New test. + + 2013-09-23 Eric Botcazou + + * tree-ssa-ccp.c (insert_clobber_before_stack_restore): Recurse on copy + assignment statements. + + 2013-09-23 Alan Modra + + PR target/58330 + * config/rs6000/rs6000.md (bswapdi2_64bit): Disable for volatile mems. + + 2013-09-23 Alan Modra + + * config/rs6000/predicates.md (add_cint_operand): New. + (reg_or_add_cint_operand, small_toc_ref): Use add_cint_operand. + * config/rs6000/rs6000.md (largetoc_high_plus): Restrict offset + using add_cint_operand. + (largetoc_high_plus_aix): Likewise. + * config/rs6000/rs6000.c (toc_relative_expr_p): Use add_cint_operand. + + 2013-09-20 John David Anglin + + PR middle-end/56791 + * config/pa/pa.c (pa_option_override): Disable auto increment and + decrement instructions until reload is completed. + + * config/pa/pa.md: In "scc" insn patterns, change output template to + handle const0_rtx in reg_or_0_operand operands. + + 2013-09-19 Jakub Jelinek + + * omp-low.c (expand_omp_sections): Always pass len - 1 to + GOMP_sections_start, even if !exit_reachable. + + 2013-09-18 Richard Earnshaw + + * arm.c (arm_expand_prologue): Validate architecture supports + LDRD/STRD before accepting tuning preferences. + (arm_expand_epilogue): Likewise. + + 2013-09-18 Daniel Morris + Paolo Carlini + + PR c++/58458 + * doc/implement-cxx.texi: Fix references to the C++ standards. + + 2013-09-17 Kyrylo Tkachov + + PR tree-optimization/58088 + * fold-const.c (mask_with_trailing_zeros): New function. + (fold_binary_loc): Make sure we don't recurse infinitely + when the X in (X & C1) | C2 is a tree of the form (Y * K1) & K2. + Use mask_with_trailing_zeros where appropriate. + + 2013-09-14 John David Anglin + + PR target/58382 + * config/pa/pa.c (pa_expand_prologue): Change mode in gen_rtx_POST_INC + calls to word_mode. + + 2013-09-13 Christian Bruel + + PR target/58314 + * config/sh/sh.md (mov_reg_reg): Allow memory reloads. + + 2013-09-11 Andi Kleen + + Backport from mainline + * doc/extend.texi: Use __atomic_store_n instead of + __atomic_store in HLE example. + + 2013-09-11 Andi Kleen + + Backport from mainline + * doc/extend.texi: Dont use __atomic_clear in HLE + example. Fix typo. + + 2013-09-11 Andi Kleen + + Backport from mainline + * doc/extend.texi: Document that __atomic_clear and + __atomic_test_and_set should only be used with bool. + + 2013-09-11 Richard Biener + + PR middle-end/58377 + * passes.c (init_optimization_passes): Split critical edges + before late uninit warning pass in the -Og pipeline. + + 2013-09-11 Jakub Jelinek + + PR tree-optimization/58385 + * fold-const.c (build_range_check): If both low and high are NULL, + use omit_one_operand_loc to preserve exp side-effects. + + 2013-09-10 Richard Earnshaw + + PR target/58361 + * arm/vfp.md (combine_vcvt_f32_): Fix pattern to + support conditional execution. + (combine_vcvt_f64_): Likewise. + + 2013-09-10 Jakub Jelinek + + PR rtl-optimization/58365 + * cfgcleanup.c (merge_memattrs): Also clear MEM_READONLY_P + resp. MEM_NOTRAP_P if they differ, or set MEM_VOLATILE_P if + it differs. + + 2013-09-09 Jakub Jelinek + + PR tree-optimization/58364 + * tree-ssa-reassoc.c (init_range_entry): For BIT_NOT_EXPR on + BOOLEAN_TYPE, only invert in_p and continue with arg0 if + the current range can't be an unconditional true or false. + + 2013-09-09 Kyrylo Tkachov + + PR target/57735 + Backport from mainline + 2013-04-30 Richard Sandiford + + * explow.c (plus_constant): Pass "mode" to immed_double_int_const. + Use gen_int_mode rather than GEN_INT. + + 2013-09-09 Richard Biener + + Backport from mainline + 2013-08-27 Richard Biener + + PR tree-optimization/57521 + * tree-if-conv.c (if_convertible_bb_p): Verify that at least + one edge is non-critical. + (find_phi_replacement_condition): Make sure to use a non-critical + edge. Cleanup and remove old bug workarounds. + (bb_postdominates_preds): Remove. + (if_convertible_loop_p_1): Do not compute post-dominators. + (combine_blocks): Do not free post-dominators. + (main_tree_if_conversion): Likewise. + + 2013-09-09 Richard Biener + + Backport from mainline + 2013-09-03 Richard Biener + + PR middle-end/57656 + * fold-const.c (negate_expr_p): Fix division case. + (negate_expr): Likewise. + + 2013-09-09 Richard Biener + + Backport from mainline + 2013-08-29 Richard Biener + + PR tree-optimization/57685 + * tree-vrp.c (register_edge_assert_for_1): Recurse only for + single-use operands to avoid exponential complexity. + + 2013-09-09 Richard Biener + + Backport from mainline + 2013-08-30 Richard Biener + + PR tree-optimization/58223 + * tree-loop-distribution.c (has_anti_dependence): Rename to ... + (has_anti_or_output_dependence): ... this and adjust to also + look for output dependences. + (mark_nodes_having_upstream_mem_writes): Adjust. + (rdg_flag_uses): Likewise. + + 2013-09-03 Richard Biener + + Backport from mainline + 2013-08-29 Richard Biener + + PR tree-optimization/58246 + * tree-ssa-dce.c (mark_aliased_reaching_defs_necessary_1): Properly + handle the dominance check inside a basic-block. + + 2013-09-03 Richard Biener + + Backport from mainline + 2013-08-30 Richard Biener + + PR tree-optimization/58228 + * tree-vect-data-refs.c (vect_analyze_data_ref_access): Do not + allow invariant loads in nested loop vectorization. + + 2013-09-03 Richard Biener + + Backport from mainline + 2013-08-30 Richard Biener + + PR tree-optimization/58010 + * tree-vect-loop.c (vect_create_epilog_for_reduction): Remove + assert that we have a loop-closed PHI. + + 2013-09-01 Uros Bizjak + + Backport from mainline + 2013-08-31 Uros Bizjak + + * config/alpha/alpha.c (alpha_emit_conditional_move): Update + "cmp" RTX before signed_comparison_operator check to account + for "code" changes. + + 2013-09-01 John David Anglin + + * config/pa/pa.md: Allow "const 0" operand 1 in "scc" insns. + + 2013-08-30 Jakub Jelinek + + PR tree-optimization/58277 + * tree-ssa-strlen.c (strlen_enter_block): If do_invalidate gave up + after seeing too many stmts with vdef in between dombb and current + bb, invalidate everything. + + 2013-08-29 Oleg Endo + + Backport from mainline + 2013-08-05 Oleg Endo + + PR other/12081 + * recog.h (rtx (*insn_gen_fn) (rtx, ...)): Replace typedef with new + class insn_gen_fn. + * expr.c (move_by_pieces_1, store_by_pieces_2): Replace argument + rtx (*) (rtx, ...) with insn_gen_fn. + * genoutput.c (output_insn_data): Cast gen_? function pointers to + insn_gen_fn::stored_funcptr. Add initializer braces. + + Backport from mainline + 2013-08-07 Oleg Endo + + PR other/12081 + * config/rs6000/rs6000.c (gen_2arg_fn_t): Remove typedef. + (rs6000_emit_swdiv_high_precision, rs6000_emit_swdiv_low_precision, + rs6000_emit_swrsqrt): Don't cast result of GEN_FCN to gen_2arg_fn_t. + + 2013-08-29 Jakub Jelinek + + Backported from mainline + 2013-05-27 Richard Biener + + PR middle-end/57381 + PR tree-optimization/57417 + * tree-ssa-sccvn.c (vn_reference_fold_indirect): Fix test + for unchanged base. + (set_ssa_val_to): Compare addresses using + get_addr_base_and_unit_offset. + + PR tree-optimization/57396 + * tree-affine.c (double_int_constant_multiple_p): Properly + return false for val == 0 and div != 0. + + PR tree-optimization/57343 + * tree-ssa-loop-niter.c (number_of_iterations_ne_max): Do not + use multiple_of_p if not TYPE_OVERFLOW_UNDEFINED. + (number_of_iterations_cond): Do not build the folded tree. + + 2013-08-28 Jakub Jelinek + + PR middle-end/58257 + * omp-low.c (copy_var_decl): Copy over TREE_NO_WARNING flag. + + 2013-08-28 Richard Biener + + Backport from mainline + 2013-06-24 Richard Biener + + PR middle-end/56977 + * passes.c (init_optimization_passes): Move pass_fold_builtins + and pass_dce earlier with -Og. + + 2013-08-28 Uros Bizjak + + Backport from mainline + 2013-08-27 H.J. Lu + + * config/i386/driver-i386.c (host_detect_local_cpu): Update + Haswell processor detection. + + Backport from mainline + 2013-08-27 Christian Widmer + + PR target/57927 + * config/i386/driver-i386.c (host_detect_local_cpu): Add detection + of Ivy Bridge and Haswell processors. Assume core-avx2 for unknown + AVX2 capable processors. + + 2013-08-23 Jakub Jelinek + + PR target/58218 + * config/i386/x86-64.h (TARGET_SECTION_TYPE_FLAGS): Define. + * config/i386/i386.c (x86_64_elf_section_type_flags): New function. + + PR tree-optimization/58209 + * tree-tailcall.c (find_tail_calls): Give up for pointer result types + if m or a is non-NULL. + + 2013-08-21 Richard Earnshaw + + PR target/56979 + * arm.c (aapcs_vfp_allocate): Decompose the argument if the + suggested mode for the assignment isn't compatible with the + registers required. + + 2013-08-20 Alan Modra + + PR target/57865 + * config/rs6000/rs6000.c (rs6000_emit_prologue): Correct ool_adjust. + (rs6000_emit_epilogue): Likewise. + + 2013-08-19 Peter Bergner + Jakub Jelinek + + Backport from mainline + * config/rs6000/dfp.md (*negtd2_fpr): Handle non-overlapping + destination and source operands. + + 2013-08-18 Jakub Jelinek + + PR tree-optimization/58006 + * tree-parloops.c (take_address_of): Don't ICE if get_name + returns NULL. + (eliminate_local_variables_stmt): Remove clobber stmts. + + 2013-08-16 Jakub Jelinek + + PR tree-optimization/58164 + * gimple.c (walk_stmt_load_store_addr_ops): For visit_addr + walk gimple_goto_dest of GIMPLE_GOTO. + + PR tree-optimization/58165 + * tree-call-cdce.c (shrink_wrap_one_built_in_call): If + bi_call must be the last stmt in a bb, don't split_block, instead + use fallthru edge from it and give up if there is none. + Release conds vector when returning early. + + 2013-08-15 David Given + + Backport from mainline + 2013-04-26 Vladimir Makarov + + * lra-constraints.c (process_alt_operands): Use #if HAVE_ATTR_enable + instead of #ifdef. + + 2013-08-14 Jakub Jelinek + + PR tree-optimization/58145 + * tree-sra.c (build_ref_for_offset): If prev_base has + TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS, propagate it to MEM_REF. + + 2013-08-14 Andreas Krebbel + + * config/s390/htmxlintrin.h: Add file missing from last commit. + * config/s390/htmintrin.h: Likewise. + * config/s390/s390intrin.h: Likewise. + + 2013-08-14 Uros Bizjak + + Backport from mainline + 2013-08-13 Uros Bizjak + + * config/i386/sse.md (*sse2_maskmovdqu): Emit addr32 prefix + when Pmode != word_mode. Add length_address attribute. + (sse3_monitor_): Merge from sse3_monitor and + sse3_monitor64_ insn patterns. Emit addr32 prefix when + Pmode != word_mode. Update insn length attribute. + * config/i386/i386.c (ix86_option_override_internal): Update + ix86_gen_monitor selection for merged sse3_monitor insn. + + 2013-08-14 Jakub Jelinek + Alexandre Oliva + + PR target/58067 + * config/i386/i386.c (ix86_delegitimize_address): For CM_MEDIUM_PIC + and CM_LARGE_PIC ix86_cmodel fall thru into the -m32 code, handle + there also UNSPEC_PLTOFF. + + 2013-08-13 Jakub Jelinek + + PR sanitizer/56417 + * asan.c (instrument_strlen_call): Fix typo in comment. + Use char * type even for the lhs of POINTER_PLUS_EXPR. + + 2013-08-13 Vladimir Makarov + + Backport from mainline + 2013-06-06 Vladimir Makarov + + PR rtl-optimization/57459 + * lra-constraints.c (update_ebb_live_info): Fix typo for operand + type when setting live regs. + + 2013-08-13 Marek Polacek + Jakub Jelinek + + PR tree-optimization/57980 + * tree-tailcall.c (process_assignment): Return false + when not dealing with integers or floats. + + 2013-08-12 Andrew Haley + + Backport from mainline: + * 2013-07-11 Andreas Schwab + + * config/aarch64/aarch64-linux.h (CPP_SPEC): Define. + + 2013-08-13 Uros Bizjak + + Backport from mainline + 2013-08-12 Perez Read + + PR target/58132 + * config/i386/i386.md (*movabs_1): Add PTR before + operand 0 for intel asm alternative. + (*movabs_2): Ditto for operand 1. + + 2013-08-09 Zhenqiang Chen + + Backport from mainline: + 2013-08-09 Zhenqiang Chen + + * config/arm/neon.md (vcond): Fix floating-point vector + comparisons against 0. + + 2013-08-08 Kyrylo Tkachov + + Backport from mainline: + 2013-08-08 Kyrylo Tkachov + + * config/arm/neon.md (movmisalign): Disable when we + don't allow unaligned accesses. + (*movmisalign_neon_store): Likewise. + (*movmisalign_neon_load): Likewise. + (*movmisalign_neon_store): Likewise. + (*movmisalign_neon_load): Likewise. + + 2013-08-06 Martin Jambor + + PR middle-end/58041 + * gimple-ssa-strength-reduction.c (replace_ref): Make sure built + MEM_REF has proper alignment information. + + 2013-08-05 Richard Earnshaw + + PR rtl-optimization/57708 + * recog.c (peep2_find_free_register): Validate all regs in a + multi-reg mode. + + 2013-08-02 Eric Botcazou + + * config/sparc/sparc.c (sparc_emit_membar_for_model) : Add + the implied StoreLoad barrier for atomic operations if before. + + 2013-08-02 Andreas Krebbel + + Backports from mainline: + 2013-06-27 Andreas Krebbel + + * config/s390/s390.c: Rename UNSPEC_CCU_TO_INT to + UNSPEC_STRCMPCC_TO_INT and UNSPEC_CCZ_TO_INT to UNSPEC_CC_TO_INT. + (struct machine_function): Add tbegin_p. + (s390_canonicalize_comparison): Fold CC mode compares to + conditional jump if possible. + (s390_emit_jump): Return the emitted jump. + (s390_branch_condition_mask, s390_branch_condition_mnemonic): + Handle CCRAWmode compares. + (s390_option_override): Default to -mhtm if available. + (s390_reg_clobbered_rtx): Handle floating point regs as well. + (s390_regs_ever_clobbered): Use s390_regs_ever_clobbered also for + FPRs instead of df_regs_ever_live_p. + (s390_optimize_nonescaping_tx): New function. + (s390_init_frame_layout): Extend clobbered_regs array to cover + FPRs as well. + (s390_emit_prologue): Call s390_optimize_nonescaping_tx. + (s390_expand_tbegin): New function. + (enum s390_builtin): New enum definition. + (code_for_builtin): New array definition. + (s390_init_builtins): New function. + (s390_expand_builtin): New function. + (TARGET_INIT_BUILTINS): Define. + (TARGET_EXPAND_BUILTIN): Define. + * common/config/s390/s390-common.c (processor_flags_table): Add PF_TX. + * config/s390/predicates.md (s390_comparison): Handle CCRAWmode. + (s390_alc_comparison): Likewise. + * config/s390/s390-modes.def: Add CCRAWmode. + * config/s390/s390.h (processor_flags): Add PF_TX. + (TARGET_CPU_HTM): Define macro. + (TARGET_HTM): Define macro. + (TARGET_CPU_CPP_BUILTINS): Define __HTM__ for htm. + * config/s390/s390.md: Rename UNSPEC_CCU_TO_INT to + UNSPEC_STRCMPCC_TO_INT and UNSPEC_CCZ_TO_INT to UNSPEC_CC_TO_INT. + (UNSPECV_TBEGIN, UNSPECV_TBEGINC, UNSPECV_TEND, UNSPECV_TABORT) + (UNSPECV_ETND, UNSPECV_NTSTG, UNSPECV_PPA): New unspecv enum + values. + (TBEGIN_MASK, TBEGINC_MASK): New constants. + ("*cc_to_int"): Move up. + ("*movcc", "*cjump_64", "*cjump_31"): Accept integer + constants other than 0. + ("*ccraw_to_int"): New insn and splitter definition. + ("tbegin", "tbegin_nofloat", "tbegin_retry") + ("tbegin_retry_nofloat", "tbeginc", "tend", "tabort") + ("tx_assist"): New expander. + ("tbegin_1", "tbegin_nofloat_1", "*tbeginc_1", "*tend_1") + ("*tabort_1", "etnd", "ntstg", "*ppa"): New insn definition. + * config/s390/s390.opt: Add -mhtm option. + * config/s390/s390-protos.h (s390_emit_jump): Add return type. + * config/s390/htmxlintrin.h: New file. + * config/s390/htmintrin.h: New file. + * config/s390/s390intrin.h: New file. + * doc/extend.texi: Document htm builtins. + * config.gcc: Add the new header files to extra_headers. + + 2013-07-17 Andreas Krebbel + + * config/s390/s390.c: (s390_expand_builtin): Allow -mhtm to be + enabled without -march=zEC12. + * config/s390/s390.h (TARGET_HTM): Do not require EC12 machine + flags to be set. + + 2013-08-01 Ganesh Gopalasubramanian + + Backport from mainline + 2013-05-13 Ganesh Gopalasubramanian + + + * config/i386/i386.c (processor_target_table): Modified default + alignment values for AMD BD and BT architectures. + + 2013-07-31 Sriraman Tallam + + * config/i386/i386.c (dispatch_function_versions): Fix array + indexing of function_version_info to match actual_versions. + + 2013-07-31 Sebastian Huber + + * config.gcc (*-*-rtems*): Use __cxa_atexit by default. + * config/rs6000/rtems.h (TARGET_LIBGCC_SDATA_SECTION): Define. + + 2013-07-31 Andreas Krebbel + + Backport from mainline + 2013-03-27 Andreas Krebbel + + * config/s390/s390.h (TARGET_FLT_EVAL_METHOD): Define. + + 2013-07-23 Andreas Krebbel + + * config/s390/linux-unwind.h: Use the proper dwarf to hard reg + mapping for FPRs when creating the fallback framestate. + + 2013-07-29 Dominik Vogt + + * config/s390/s390.md ("movcc"): Swap load and store instructions. + + 2013-07-25 Terry Guo + + Backport from mainline: + 2013-07-25 Terry Guo + + * config/arm/arm.c (thumb1_size_rtx_costs): Assign proper cost for + shift_add/shift_sub0/shift_sub1 RTXs. + + 2013-07-22 Iain Sandoe + + Backport from mainline: + 2013-07-22 Uros Bizjak + + * config/i386/i386.md (nonlocal_goto_receiver): Delete insn if + it is not needed after split. + + 2013-07-20 Iain Sandoe + + PR target/51784 + * config/i386/i386.c (output_set_got) [TARGET_MACHO]: Adjust to emit a + second label for nonlocal goto receivers. Don't output pic base labels + unless we're producing PIC; mark that action unreachable(). + (ix86_save_reg): If the function contains a nonlocal label, save the + PIC base reg. + * config/darwin-protos.h (machopic_should_output_picbase_label): New. + * gcc/config/darwin.c (emitted_pic_label_num): New GTY. + (update_pic_label_number_if_needed): New. + (machopic_output_function_base_name): Adjust for nonlocal receiver + case. + (machopic_should_output_picbase_label): New. + * config/i386/i386.md (enum unspecv): UNSPECV_NLGR: New. + (nonlocal_goto_receiver): New insn and split. + + 2013-07-19 Wei Mi + + Backport from mainline: + 2013-07-18 Vladimir Makarov + Wei Mi + + PR rtl-optimization/57878 + * lra-assigns.c (assign_by_spills): Move non_reload_pseudos to the + top. Promote lra_assert to gcc_assert. + (reload_pseudo_compare_func): Check regs first for reload pseudos. + + 2013-07-11 Georg-Johann Lay + + Backport from 2013-07-19 trunk r201051. + + PR target/57516 + * config/avr/avr-fixed.md (round3_const): Turn expander to insn. + * config/avr/avr.md (adjust_len): Add `round'. + * config/avr/avr-protos.h (avr_out_round): New prototype. + (avr_out_plus): Add `out_label' argument. + * config/avr/avr.c (avr_out_plus_1): Add `out_label' argument. + (avr_out_plus): Pass down `out_label' to avr_out_plus_1. + Handle the case where `insn' is just a pattern. + (avr_out_bitop): Handle the case where `insn' is just a pattern. + (avr_out_round): New function. + (avr_adjust_insn_length): Handle ADJUST_LEN_ROUND. + + 2013-07-19 Kirill Yukhin + + * config/i386/bmiintrin.h (_bextr_u32): New. + (_bextr_u64): Ditto. + (_blsi_u32): New. + (_blsi_u64): Ditto. + (_blsr_u32): Ditto. + (_blsr_u64): Ditto. + (_blsmsk_u32): Ditto. + (_blsmsk_u64): Ditto. + (_tzcnt_u32): Ditto. + (_tzcnt_u64): Ditto. + + 2013-07-17 James Greenhalgh + + Backport From mainline: + 2013-07-03 James Greenhalgh + + * config/aarch64/aarch64-builtins.c + (aarch64_simd_expand_builtin): Handle AARCH64_SIMD_STORE1. + * config/aarch64/aarch64-simd-builtins.def (ld1): New. + (st1): Likewise. + * config/aarch64/aarch64-simd.md + (aarch64_ld1): New. + (aarch64_st1): Likewise. + * config/aarch64/arm_neon.h + (vld1_<8, 16, 32, 64>): Convert to RTL builtins. + + 2013-07-11 Georg-Johann Lay + + Backport from 2013-07-11 trunk r200901. + + PR target/57631 + * config/avr/avr.c (avr_set_current_function): Sanity-check signal + name seen by assembler/linker if available. + + 2013-07-10 Georg-Johann Lay + + Backport from 2013-07-10 trunk r200872. + + PR target/57844 + * config/avr/avr.c (avr_prologue_setup_frame): Trunk -size to mode + of my_fp. + + 2013-07-10 Georg-Johann Lay + + Backport from 2013-07-10 trunk r200870. + + PR target/57506 + * config/avr/avr-mcus.def (atmega16hva, atmega16hva2, atmega16hvb) + (atmega16m1, atmega16u4, atmega32a, atmega32c1, atmega32hvb) + (atmega32m1, atmega32u4, atmega32u6, atmega64c1, atmega64m1): + Remove duplicate devices. + * config/avr/gen-avr-mmcu-texi.c (print_mcus): Fail on duplicate MCUs. + * config/avr/t-multilib: Regenerate. + * config/avr/avr-tables.opt: Regenerate. + * doc/avr-mmcu.texi: Regenerate. + + 2013-07-10 Georg-Johann Lay + + PR target/56987 + * config/avr/avr.opt (Waddr-space-convert): Fix typo. + + 2013-07-09 Joseph Myers + + * config/rs6000/rs6000.c (rs6000_init_hard_regno_mode_ok): Only + adjust register size for TDmode and TFmode for VSX registers. + + 2013-07-08 Kai Tietz + + Backport from mainline + PR target/56892 + * config/i386/i386.c (TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P): Define as + hook_bool_const_tree_true. + + 2013-07-08 Uros Bizjak + + Backport from mainline + 2013-07-07 Uros Bizjak + + * config/i386/driver-i386.c (host_detect_local_cpu): Do not check + signature_TM2_ebx, it interferes with signature_INTEL_ebx. + + Backport from mainline + 2013-07-06 Uros Bizjak + + * config/i386/sse.md (sse_movlhps): Change alternative 3 + of operand 2 to "m". + + 2013-07-08 Eric Botcazou + + * Makefile.in (tree-ssa-reassoc.o): Add dependency on $(PARAMS_H). + + 2013-07-08 Jakub Jelinek + + PR rtl-optimization/57829 + * simplify-rtx.c (simplify_binary_operation_1) : Ensure that + mask bits outside of mode are just sign-extension from mode to HWI. + + 2013-07-03 Jakub Jelinek + + PR target/57777 + * config/i386/predicates.md (vsib_address_operand): Disallow + SYMBOL_REF or LABEL_REF in parts.disp if TARGET_64BIT && flag_pic. + + 2013-06-30 Terry Guo + + Backport from mainline + 2013-03-27 Bin Cheng + + PR target/56102 + * config/arm/arm.c (thumb1_rtx_costs, thumb1_size_rtx_costs): Fix + rtx costs for SET/ASHIFT/ASHIFTRT/LSHIFTRT/ROTATERT patterns with + mult-word mode. + + 2013-06-28 Jakub Jelinek + + PR target/57736 + * config/i386/i386.c (ix86_expand_builtin): If target == NULL + and mode is VOIDmode, don't create a VOIDmode pseudo to copy result + into. + + 2013-06-27 Jakub Jelinek + + PR target/57623 + * config/i386/i386.md (bmi_bextr_): Swap predicates and + constraints of operand 1 and 2. + + PR target/57623 + * config/i386/i386.md (bmi2_bzhi_3): Swap AND arguments + to match RTL canonicalization. Swap predicates and + constraints of operand 1 and 2. + + * tree-vect-stmts.c (vectorizable_store): Move ptr_incr var + decl before the loop, initialize to NULL. + (vectorizable_load): Initialize ptr_incr to NULL. + + 2013-06-24 Martin Jambor + + PR tree-optimization/57358 + * ipa-prop.c (parm_ref_data_preserved_p): Always return true when + not optimizing. + + 2013-06-24 Alan Modra + + * config/rs6000/rs6000.c (vspltis_constant): Correct for little-endian. + (gen_easy_altivec_constant): Likewise. + * config/rs6000/predicates.md (easy_vector_constant_add_self, + easy_vector_constant_msb): Likewise. + + 2013-06-21 Uros Bizjak + + Backport from mainline + 2013-06-20 Uros Bizjak + + PR target/57655 + * config/i386/i386.c (construct_container): Report error if + long double is used with disabled x87 float returns. + + 2013-06-20 Wei Mi + + Backport from mainline + 2013-06-19 Wei Mi + + PR rtl-optimization/57518 + * ira.c (set_paradoxical_subreg): Set pdx_subregs[regno] + if regno is used in paradoxical subreg. + (update_equiv_regs): Check pdx_subregs[regno] before + set a reg to be equivalent with a mem. + + + 2013-06-20 David Edelsohn + + Backport from mainline + 2013-06-19 David Edelsohn + + PR driver/57652 + * collect2.c (collect_atexit): New. + (collect_exit): Delete. + (main): Register collect_atexit with atexit. + (collect_wait): Change collect_exit to exit. + (do_wait): Same. + * collect2.h (collect_exit): Delete. + * tlink.c (do_tlink): Rename exit to ret. Change collect_exit to exit. + + 2013-06-19 Matthias Klose + + PR driver/57651 + * file-find.h (find_a_file): Add a mode parameter. + * file-find.c (find_a_file): Likewise. + * gcc-ar.c (main): Call find_a_file with R_OK for the plugin, + with X_OK for the executables. + * collect2.c (main): Call find_a_file with X_OK. + + 2013-06-19 Igor Zamyatin + + * doc/invoke.texi (core-avx2): Document. + (atom): Updated with MOVBE. + + 2013-06-19 Jakub Jelinek + + PR driver/57651 + * gcc-ar.c (main): If not CROSS_DIRECTORY_STRUCTURE, look for + PERSONALITY in $PATH derived prefixes. + + 2013-06-19 Paolo Carlini + + PR c++/56544 + * doc/cpp.texi [Standard Predefined Macros, __cplusplus]: Document + that now in C++ the value is correct per the C++ standards. + + 2013-06-19 Alan Modra + + Apply mainline patches + 2013-06-13 Alan Modra + * config/rs6000/rs6000.h (LONG_DOUBLE_LARGE_FIRST): Define. + * config/rs6000/rs6000.md (signbittf2): New insn. + (extenddftf2_internal): Use LONG_DOUBLE_LARGE_FIRST. + (abstf2_internal, cmptf_internal2): Likewise. + * config/rs6000/spe.md (spe_abstf2_cmp, spe_abstf2_tst): Likewise. + + 2013-06-11 Anton Blanchard + * config/rs6000/rs6000.c (rs6000_adjust_atomic_subword): Calculate + correct shift value in little-endian mode. + + 2013-06-07 Alan Modra + * config/rs6000/rs6000.c (setup_incoming_varargs): Round up + va_list_gpr_size. + + 2013-06-04 Alan Modra + * config/rs6000/rs6000.c (output_toc): Correct little-endian float + constant output. + + 2013-05-10 Alan Modra + * configure.ac (HAVE_AS_TLS): Swap powerpc64 and powerpc cases. + (HAVE_LD_LARGE_TOC): Don't mention AIX in help text. + * configure: Regenerate. + + 2013-05-09 Alan Modra + * configure.ac (HAVE_AS_TLS): Enable tests for powerpcle and + powerpc64le. + * configure: Regenerate. + + 2013-05-07 Anton Blanchard + * configure.ac (HAVE_LD_LARGE_TOC): Use right linker emulation + for powerpc64 little endian. + * configure: Regenerate. + + 2013-05-06 Alan Modra + * config/rs6000/linux.h (DEFAULT_ASM_ENDIAN): Define. + (LINK_OS_LINUX_EMUL): Use ENDIAN_SELECT. + * config/rs6000/linux64.h (DEFAULT_ASM_ENDIAN): Define. + * config/rs6000/sysv4le.h (DEFAULT_ASM_ENDIAN): Define. + (LINK_TARGET_SPEC): Use ENDIAN_SELECT. + * config/rs6000/sysv4.h (DEFAULT_ASM_ENDIAN): Define as -mbig. + + 2013-05-06 Alan Modra + * config/rs6000/sysv4.h (ENDIAN_SELECT): Define, extracted from + (ASM_SPEC): ..here. Emit DEFAULT_ASM_ENDIAN too. + (DEFAULT_ASM_ENDIAN): Define. + (CC1_SPEC, LINK_TARGET_SPEC): Use ENDIAN_SELECT. + * config/rs6000/linux64.h (ASM_SPEC32): Remove endian options. + Update -K PIC clause from sysv4.h. + (ASM_SPEC_COMMON): Use ENDIAN_SELECT. + (LINK_OS_LINUX_EMUL32, LINK_OS_LINUX_EMUL64): Likewise. + + 2013-05-06 Alan Modra + * config/rs6000/rs6000.md (bswapdi 2nd splitter): Don't swap words + twice for little-endian. + (ashrdi3_no_power, ashrdi3): Support little-endian. + + 2013-04-25 Alan Modra + * config.gcc: Support little-endian powerpc-linux targets. + * config/rs6000/linux.h (LINK_OS_LINUX_EMUL): Define. + (LINK_OS_LINUX_SPEC): Define. + * config/rs6000/linuxspe.h (TARGET_DEFAULT): + Preserve MASK_LITTLE_ENDIAN. + * config/rs6000/default64.h (TARGET_DEFAULT): Likewise. + * config/rs6000/linuxaltivec.h (TARGET_DEFAULT): Likewise. + * config/rs6000/linux64.h (OPTION_LITTLE_ENDIAN): Don't zero. + (LINK_OS_LINUX_EMUL32, LINK_OS_LINUX_EMUL64): Define. + (LINK_OS_LINUX_SPEC32, LINK_OS_LINUX_SPEC64): Use above. + * config/rs6000/rs6000.c (output_toc): Don't use .tc for TARGET_ELF. + Correct fp word order for little-endian. Don't shift toc entries + smaller than a word for little-endian. + * config/rs6000/rs6000.md (bswaphi2, bswapsi2 split): Comment. + (bswapdi2 splits): Correct low-part subreg for little-endian. + Remove wrong BYTES_BIG_ENDIAN tests, and rename vars to remove + low/high where such is correct only for be. + * config/rs6000/sysv4.h (SUBTARGET_OVERRIDE_OPTIONS): Allow + little-endian for -mcall-aixdesc. + + 2013-06-12 Martin Jambor + + * ipa-cp.c (ipa_get_indirect_edge_target_1): Check that param_index is + within bounds at the beginning of the function. + + 2013-06-12 Jakub Jelinek + + PR tree-optimization/57537 + * tree-vect-patterns.c (vect_recog_widen_mult_pattern): If + vect_handle_widen_op_by_const, convert oprnd1 to half_type1. + + 2013-06-10 Uros Bizjak + + Backport from mainline + 2013-06-10 Uros Bizjak + + * config/alpha/alpha.c (alpha_emit_xfloating_compare): Also use + cmp_code to construct REG_EQUAL note. + + 2013-06-10 Oleg Endo + + Backport from mainline + 2013-05-20 Oleg Endo + + PR target/56547 + * config/sh/sh.md (fmasf4): Remove empty constraints strings. + (*fmasf4, *fmasf4_media): New insns. + + 2013-06-09 Jakub Jelinek + + PR target/57568 + * config/i386/i386.md (TARGET_READ_MODIFY_WRITE peepholes): Ensure + that operands[2] doesn't overlap with operands[0]. + + 2013-06-07 Richard Sandiford + + * recog.c (offsettable_address_addr_space_p): Fix calculation of + address mode. Move pointer mode initialization to the same place. + + 2013-06-07 Sofiane Naci + + Backport from mainline + * config/aarch64/aarch64.md (*movdi_aarch64): Define "simd" attribute. + + 2013-06-07 Uros Bizjak + + Backport from mainline + 2013-06-05 Uros Bizjak + + * config/alpha/alpha.c (alpha_emit_conditional_move): Swap all + GE, GT, GEU and GTU compares, modulo DImode compares with zero. + + Backport from mainline + 2013-05-23 Uros Bizjak + + PR target/57379 + * config/alpha/alpha.md (unspec): Add UNSPEC_XFLT_COMPARE. + * config/alpha/alpha.c (alpha_emit_xfloating_compare): Construct + REG_EQUAL note as UNSPEC_XFLT_COMPARE unspec. + + 2013-06-04 Bill Schmidt + + Backport from mainline. + 2013-05-22 Bill Schmidt + + * config/rs6000/rs6000.h (MALLOC_ABI_ALIGNMENT): New #define. + + 2013-06-03 James Greenhalgh + + Backport from mainline. + 2013-04-25 James Greenhalgh + + * config/aarch64/aarch64.c (aarch64_print_operand): Fix asm_fprintf + format specifier in 'X' case. + + 2013-05-31 Richard Henderson + + PR target/56742 + * config/i386/i386.c (ix86_seh_fixup_eh_fallthru): New. + (ix86_reorg): Call it. + + 2012-05-31 Jakub Jelinek + + * BASE-VER: Set to 4.8.2. + * DEV-PHASE: Set to prerelease. + 2013-05-31 Release Manager * GCC 4.8.1 released. *************** *** 7,13 **** Backport from mainline 2013-05-02 Greta Yorsh ! PR target/56732 * config/arm/arm.c (arm_expand_epilogue): Check really_return before generating simple_return for naked functions. --- 1099,1105 ---- Backport from mainline 2013-05-02 Greta Yorsh ! PR target/56732 * config/arm/arm.c (arm_expand_epilogue): Check really_return before generating simple_return for naked functions. *************** *** 203,216 **** 2013-05-09 Martin Jambor ! PR middle-end/56988 ! * ipa-prop.h (ipa_agg_replacement_value): New flag by_ref. ! * ipa-cp.c (find_aggregate_values_for_callers_subset): Fill in the by_ref flag of ipa_agg_replacement_value structures. ! (known_aggs_to_agg_replacement_list): Likewise. ! * ipa-prop.c (write_agg_replacement_chain): Stream by_ref flag. ! (read_agg_replacement_chain): Likewise. ! (ipcp_transform_function): Also check that by_ref flags match. 2013-05-08 Diego Novillo --- 1295,1308 ---- 2013-05-09 Martin Jambor ! PR middle-end/56988 ! * ipa-prop.h (ipa_agg_replacement_value): New flag by_ref. ! * ipa-cp.c (find_aggregate_values_for_callers_subset): Fill in the by_ref flag of ipa_agg_replacement_value structures. ! (known_aggs_to_agg_replacement_list): Likewise. ! * ipa-prop.c (write_agg_replacement_chain): Stream by_ref flag. ! (read_agg_replacement_chain): Likewise. ! (ipcp_transform_function): Also check that by_ref flags match. 2013-05-08 Diego Novillo *************** *** 315,321 **** 2013-04-25 Marek Polacek PR tree-optimization/57066 ! * builtins.c (fold_builtin_logb): Return +Inf for -Inf. 2013-05-02 Vladimir Makarov --- 1407,1413 ---- 2013-04-25 Marek Polacek PR tree-optimization/57066 ! * builtins.c (fold_builtin_logb): Return +Inf for -Inf. 2013-05-02 Vladimir Makarov *************** *** 351,390 **** Backport from mainline 2013-04-24 Vladimir Makarov ! PR rtl-optimizations/57046 ! * lra-constraints (split_reg): Set up lra_risky_transformations_p ! for multi-reg splits. 2013-05-02 Vladimir Makarov Backport from mainline 2013-04-22 Vladimir Makarov ! PR target/57018 ! * lra-eliminations.c (mark_not_eliminable): Prevent elimination of ! a set sp if no stack realignment. 2013-05-02 Vladimir Makarov Backport from mainline 2013-04-18 Vladimir Makarov ! PR rtl-optimization/56999 ! * lra-coalesce.c (coalescable_pseudo_p): Remove 2nd parameter and ! related code. ! (lra_coalesce): Remove split_origin_bitmap and related code. ! * lra.c (lra): Coalesce after undoing inheritance. Recreate live ! ranges if necessary. 2013-05-02 Vladimir Makarov Backport from mainline 2013-04-19 Vladimir Makarov ! PR rtl-optimization/56847 ! * lra-constraints.c (process_alt_operands): Discourage alternative ! with non-matche doffsettable memory constraint fro memory with ! known offset. 2013-05-02 Ian Bolton --- 1443,1482 ---- Backport from mainline 2013-04-24 Vladimir Makarov ! PR rtl-optimizations/57046 ! * lra-constraints (split_reg): Set up lra_risky_transformations_p ! for multi-reg splits. 2013-05-02 Vladimir Makarov Backport from mainline 2013-04-22 Vladimir Makarov ! PR target/57018 ! * lra-eliminations.c (mark_not_eliminable): Prevent elimination of ! a set sp if no stack realignment. 2013-05-02 Vladimir Makarov Backport from mainline 2013-04-18 Vladimir Makarov ! PR rtl-optimization/56999 ! * lra-coalesce.c (coalescable_pseudo_p): Remove 2nd parameter and ! related code. ! (lra_coalesce): Remove split_origin_bitmap and related code. ! * lra.c (lra): Coalesce after undoing inheritance. Recreate live ! ranges if necessary. 2013-05-02 Vladimir Makarov Backport from mainline 2013-04-19 Vladimir Makarov ! PR rtl-optimization/56847 ! * lra-constraints.c (process_alt_operands): Discourage alternative ! with non-matche doffsettable memory constraint fro memory with ! known offset. 2013-05-02 Ian Bolton diff -Nrcpad gcc-4.8.1/gcc/DATESTAMP gcc-4.8.2/gcc/DATESTAMP *** gcc-4.8.1/gcc/DATESTAMP Fri May 31 00:16:35 2013 --- gcc-4.8.2/gcc/DATESTAMP Wed Oct 16 00:16:34 2013 *************** *** 1 **** ! 20130531 --- 1 ---- ! 20131016 diff -Nrcpad gcc-4.8.1/gcc/Makefile.in gcc-4.8.2/gcc/Makefile.in *** gcc-4.8.1/gcc/Makefile.in Tue May 21 16:00:49 2013 --- gcc-4.8.2/gcc/Makefile.in Mon Jul 8 09:14:34 2013 *************** tree-ssa-reassoc.o : tree-ssa-reassoc.c *** 2505,2511 **** $(TM_H) coretypes.h $(TREE_PASS_H) $(FLAGS_H) \ tree-iterator.h $(BASIC_BLOCK_H) $(GIMPLE_H) $(TREE_INLINE_H) \ $(VEC_H) langhooks.h alloc-pool.h pointer-set.h $(CFGLOOP_H) \ ! $(TARGET_H) $(GIMPLE_PRETTY_PRINT_H) $(DIAGNOSTIC_CORE_H) tree-optimize.o : tree-optimize.c $(TREE_FLOW_H) $(CONFIG_H) $(SYSTEM_H) \ $(TREE_H) $(TM_P_H) $(GGC_H) \ $(DIAGNOSTIC_H) $(BASIC_BLOCK_H) $(FLAGS_H) $(TM_H) \ --- 2505,2511 ---- $(TM_H) coretypes.h $(TREE_PASS_H) $(FLAGS_H) \ tree-iterator.h $(BASIC_BLOCK_H) $(GIMPLE_H) $(TREE_INLINE_H) \ $(VEC_H) langhooks.h alloc-pool.h pointer-set.h $(CFGLOOP_H) \ ! $(TARGET_H) $(GIMPLE_PRETTY_PRINT_H) $(DIAGNOSTIC_CORE_H) $(PARAMS_H) tree-optimize.o : tree-optimize.c $(TREE_FLOW_H) $(CONFIG_H) $(SYSTEM_H) \ $(TREE_H) $(TM_P_H) $(GGC_H) \ $(DIAGNOSTIC_H) $(BASIC_BLOCK_H) $(FLAGS_H) $(TM_H) \ diff -Nrcpad gcc-4.8.1/gcc/ada/ChangeLog gcc-4.8.2/gcc/ada/ChangeLog *** gcc-4.8.1/gcc/ada/ChangeLog Fri May 31 09:02:17 2013 --- gcc-4.8.2/gcc/ada/ChangeLog Wed Oct 16 07:20:16 2013 *************** *** 1,3 **** --- 1,51 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + + 2013-10-13 Eric Botcazou + + * gcc-interface/decl.c (gnat_to_gnu_param): Remove obsolete comment. + + 2013-09-18 Eric Botcazou + + PR ada/58264 + * gcc-interface/trans.c (Attribute_to_gnu): Define GNAT_PREFIX local + variable and use it throughout. + : Note whether the prefix is the dereference of a pointer + to unconstrained array and, in this case, capture the result for both + Attr_First and Attr_Last. + + 2013-09-18 Eric Botcazou + + * gcc-interface/trans.c (gigi): Remove dead code. + + 2013-09-18 Eric Botcazou + + * gcc-interface/trans.c (Subprogram_Body_to_gnu): Pop the stack of + return variables for subprograms using the CICO mechanism. + + 2013-08-13 Eric Botcazou + + * gcc-interface/trans.c (can_equal_min_or_max_val_p): Be prepared for + values outside of the range of the type. + + 2013-06-13 Eric Botcazou + + * gcc-interface/ada-tree.h (DECL_BY_DOUBLE_REF_P): Delete. + * gcc-interface/gigi.h (annotate_object): Adjust prototype. + (convert_vms_descriptor): Likewise. + * gcc-interface/decl.c (gnat_to_gnu_param): Do not pass fat pointer + types by double dereference. + (annotate_object): Remove BY_DOUBLE_REF parameter and adjust. + (gnat_to_gnu_entity): Adjust calls to annotate_object. + * gcc-interface/trans.c (Identifier_to_gnu): Do not deal with double + dereference. + (Call_to_gnu): Likewise. + (build_function_stub): Adjust call to convert_vms_descriptor. + (Subprogram_Body_to_gnu): Adjust call to annotate_object. + * gcc-interface/utils.c (convert_vms_descriptor): Remove BY_REF + parameter and adjust. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/gcc/ada/gcc-interface/ada-tree.h gcc-4.8.2/gcc/ada/gcc-interface/ada-tree.h *** gcc-4.8.1/gcc/ada/gcc-interface/ada-tree.h Mon Feb 25 19:08:51 2013 --- gcc-4.8.2/gcc/ada/gcc-interface/ada-tree.h Thu Jun 13 07:51:32 2013 *************** do { \ *** 360,369 **** constant CONSTRUCTOR. */ #define DECL_CONST_ADDRESS_P(NODE) DECL_LANG_FLAG_0 (CONST_DECL_CHECK (NODE)) - /* Nonzero in a PARM_DECL if it is always used by double reference, i.e. a - pair of INDIRECT_REFs is needed to access the object. */ - #define DECL_BY_DOUBLE_REF_P(NODE) DECL_LANG_FLAG_0 (PARM_DECL_CHECK (NODE)) - /* Nonzero in a FIELD_DECL if it is declared as aliased. */ #define DECL_ALIASED_P(NODE) DECL_LANG_FLAG_0 (FIELD_DECL_CHECK (NODE)) --- 360,365 ---- diff -Nrcpad gcc-4.8.1/gcc/ada/gcc-interface/decl.c gcc-4.8.2/gcc/ada/gcc-interface/decl.c *** gcc-4.8.1/gcc/ada/gcc-interface/decl.c Tue May 7 08:03:15 2013 --- gcc-4.8.2/gcc/ada/gcc-interface/decl.c Sun Oct 13 14:58:57 2013 *************** gnat_to_gnu_entity (Entity_Id gnat_entit *** 1019,1025 **** save_gnu_tree (gnat_entity, gnu_decl, true); saved = true; annotate_object (gnat_entity, gnu_type, NULL_TREE, ! false, false); /* This assertion will fail if the renamed object isn't aligned enough as to make it possible to honor the alignment set on the renaming. */ --- 1019,1025 ---- save_gnu_tree (gnat_entity, gnu_decl, true); saved = true; annotate_object (gnat_entity, gnu_type, NULL_TREE, ! false); /* This assertion will fail if the renamed object isn't aligned enough as to make it possible to honor the alignment set on the renaming. */ *************** gnat_to_gnu_entity (Entity_Id gnat_entit *** 1605,1611 **** type of the object and not on the object directly, and makes it possible to support all confirming representation clauses. */ annotate_object (gnat_entity, TREE_TYPE (gnu_decl), gnu_object_size, ! used_by_ref, false); } break; --- 1605,1611 ---- type of the object and not on the object directly, and makes it possible to support all confirming representation clauses. */ annotate_object (gnat_entity, TREE_TYPE (gnu_decl), gnu_object_size, ! used_by_ref); } break; *************** gnat_to_gnu_param (Entity_Id gnat_param, *** 5595,5601 **** /* The parameter can be indirectly modified if its address is taken. */ bool ro_param = in_param && !Address_Taken (gnat_param); bool by_return = false, by_component_ptr = false; ! bool by_ref = false, by_double_ref = false; tree gnu_param; /* Copy-return is used only for the first parameter of a valued procedure. --- 5595,5601 ---- /* The parameter can be indirectly modified if its address is taken. */ bool ro_param = in_param && !Address_Taken (gnat_param); bool by_return = false, by_component_ptr = false; ! bool by_ref = false; tree gnu_param; /* Copy-return is used only for the first parameter of a valued procedure. *************** gnat_to_gnu_param (Entity_Id gnat_param, *** 5720,5738 **** gnu_param_type = build_qualified_type (gnu_param_type, TYPE_QUAL_RESTRICT); by_ref = true; - - /* In some ABIs, e.g. SPARC 32-bit, fat pointer types are themselves - passed by reference. Pass them by explicit reference, this will - generate more debuggable code at -O0. */ - if (TYPE_IS_FAT_POINTER_P (gnu_param_type) - && targetm.calls.pass_by_reference (pack_cumulative_args (NULL), - TYPE_MODE (gnu_param_type), - gnu_param_type, - true)) - { - gnu_param_type = build_reference_type (gnu_param_type); - by_double_ref = true; - } } /* Pass In Out or Out parameters using copy-in copy-out mechanism. */ --- 5720,5725 ---- *************** gnat_to_gnu_param (Entity_Id gnat_param, *** 5775,5788 **** gnu_param = create_param_decl (gnu_param_name, gnu_param_type, ro_param || by_ref || by_component_ptr); DECL_BY_REF_P (gnu_param) = by_ref; - DECL_BY_DOUBLE_REF_P (gnu_param) = by_double_ref; DECL_BY_COMPONENT_PTR_P (gnu_param) = by_component_ptr; ! DECL_BY_DESCRIPTOR_P (gnu_param) = (mech == By_Descriptor || ! mech == By_Short_Descriptor); ! /* Note that, in case of a parameter passed by double reference, the ! DECL_POINTS_TO_READONLY_P flag is meant for the second reference. ! The first reference always points to read-only, as it points to ! the second reference, i.e. the reference to the actual parameter. */ DECL_POINTS_TO_READONLY_P (gnu_param) = (ro_param && (by_ref || by_component_ptr)); DECL_CAN_NEVER_BE_NULL_P (gnu_param) = Can_Never_Be_Null (gnat_param); --- 5762,5770 ---- gnu_param = create_param_decl (gnu_param_name, gnu_param_type, ro_param || by_ref || by_component_ptr); DECL_BY_REF_P (gnu_param) = by_ref; DECL_BY_COMPONENT_PTR_P (gnu_param) = by_component_ptr; ! DECL_BY_DESCRIPTOR_P (gnu_param) ! = (mech == By_Descriptor || mech == By_Short_Descriptor); DECL_POINTS_TO_READONLY_P (gnu_param) = (ro_param && (by_ref || by_component_ptr)); DECL_CAN_NEVER_BE_NULL_P (gnu_param) = Can_Never_Be_Null (gnat_param); *************** annotate_value (tree gnu_size) *** 7427,7444 **** /* Given GNAT_ENTITY, an object (constant, variable, parameter, exception) and GNU_TYPE, its corresponding GCC type, set Esize and Alignment to the size and alignment used by Gigi. Prefer SIZE over TYPE_SIZE if non-null. ! BY_REF is true if the object is used by reference and BY_DOUBLE_REF is ! true if the object is used by double reference. */ void ! annotate_object (Entity_Id gnat_entity, tree gnu_type, tree size, bool by_ref, ! bool by_double_ref) { if (by_ref) { - if (by_double_ref) - gnu_type = TREE_TYPE (gnu_type); - if (TYPE_IS_FAT_POINTER_P (gnu_type)) gnu_type = TYPE_UNCONSTRAINED_ARRAY (gnu_type); else --- 7409,7421 ---- /* Given GNAT_ENTITY, an object (constant, variable, parameter, exception) and GNU_TYPE, its corresponding GCC type, set Esize and Alignment to the size and alignment used by Gigi. Prefer SIZE over TYPE_SIZE if non-null. ! BY_REF is true if the object is used by reference. */ void ! annotate_object (Entity_Id gnat_entity, tree gnu_type, tree size, bool by_ref) { if (by_ref) { if (TYPE_IS_FAT_POINTER_P (gnu_type)) gnu_type = TYPE_UNCONSTRAINED_ARRAY (gnu_type); else diff -Nrcpad gcc-4.8.1/gcc/ada/gcc-interface/gigi.h gcc-4.8.2/gcc/ada/gcc-interface/gigi.h *** gcc-4.8.1/gcc/ada/gcc-interface/gigi.h Wed Feb 6 13:19:20 2013 --- gcc-4.8.2/gcc/ada/gcc-interface/gigi.h Thu Jun 13 07:51:32 2013 *************** extern tree choices_to_gnu (tree operand *** 177,186 **** /* Given GNAT_ENTITY, an object (constant, variable, parameter, exception) and GNU_TYPE, its corresponding GCC type, set Esize and Alignment to the size and alignment used by Gigi. Prefer SIZE over TYPE_SIZE if non-null. ! BY_REF is true if the object is used by reference and BY_DOUBLE_REF is ! true if the object is used by double reference. */ extern void annotate_object (Entity_Id gnat_entity, tree gnu_type, tree size, ! bool by_ref, bool by_double_ref); /* Return the variant part of RECORD_TYPE, if any. Otherwise return NULL. */ extern tree get_variant_part (tree record_type); --- 177,185 ---- /* Given GNAT_ENTITY, an object (constant, variable, parameter, exception) and GNU_TYPE, its corresponding GCC type, set Esize and Alignment to the size and alignment used by Gigi. Prefer SIZE over TYPE_SIZE if non-null. ! BY_REF is true if the object is used by reference. */ extern void annotate_object (Entity_Id gnat_entity, tree gnu_type, tree size, ! bool by_ref); /* Return the variant part of RECORD_TYPE, if any. Otherwise return NULL. */ extern tree get_variant_part (tree record_type); *************** extern tree fill_vms_descriptor (tree gn *** 930,940 **** /* Convert GNU_EXPR, a pointer to a VMS descriptor, to GNU_TYPE, a regular pointer or fat pointer type. GNU_EXPR_ALT_TYPE is the alternate (32-bit) ! pointer type of GNU_EXPR. BY_REF is true if the result is to be used by ! reference. GNAT_SUBPROG is the subprogram to which the VMS descriptor is ! passed. */ extern tree convert_vms_descriptor (tree gnu_type, tree gnu_expr, ! tree gnu_expr_alt_type, bool by_ref, Entity_Id gnat_subprog); /* Indicate that we need to take the address of T and that it therefore --- 929,938 ---- /* Convert GNU_EXPR, a pointer to a VMS descriptor, to GNU_TYPE, a regular pointer or fat pointer type. GNU_EXPR_ALT_TYPE is the alternate (32-bit) ! pointer type of GNU_EXPR. GNAT_SUBPROG is the subprogram to which the ! descriptor is passed. */ extern tree convert_vms_descriptor (tree gnu_type, tree gnu_expr, ! tree gnu_expr_alt_type, Entity_Id gnat_subprog); /* Indicate that we need to take the address of T and that it therefore diff -Nrcpad gcc-4.8.1/gcc/ada/gcc-interface/trans.c gcc-4.8.2/gcc/ada/gcc-interface/trans.c *** gcc-4.8.1/gcc/ada/gcc-interface/trans.c Sun May 26 10:04:50 2013 --- gcc-4.8.2/gcc/ada/gcc-interface/trans.c Wed Sep 18 10:55:36 2013 *************** gigi (Node_Id gnat_root, int max_gnat_no *** 286,294 **** tree int64_type = gnat_type_for_size (64, 0); struct elab_info *info; int i; - #ifdef ORDINARY_MAP_INSTANCE - struct line_map *map; - #endif max_gnat_nodes = max_gnat_node; --- 286,291 ---- *************** gigi (Node_Id gnat_root, int max_gnat_no *** 303,312 **** type_annotate_only = (gigi_operating_mode == 1); - /* ??? Disable the generation of the SCO instance table until after the - back-end supports instance based debug info discriminators. */ - Generate_SCO_Instance_Table = False; - for (i = 0; i < number_file; i++) { /* Use the identifier table to make a permanent copy of the filename as --- 300,305 ---- *************** gigi (Node_Id gnat_root, int max_gnat_no *** 326,336 **** /* We create the line map for a source file at once, with a fixed number of columns chosen to avoid jumping over the next power of 2. */ linemap_add (line_table, LC_ENTER, 0, filename, 1); - #ifdef ORDINARY_MAP_INSTANCE - map = LINEMAPS_ORDINARY_MAP_AT (line_table, i); - if (flag_debug_instances) - ORDINARY_MAP_INSTANCE (map) = file_info_ptr[i].Instance; - #endif linemap_line_start (line_table, file_info_ptr[i].Num_Source_Lines, 252); linemap_position_for_column (line_table, 252 - 1); linemap_add (line_table, LC_LEAVE, 0, NULL, 0); --- 319,324 ---- *************** Identifier_to_gnu (Node_Id gnat_node, tr *** 1075,1093 **** { const bool read_only = DECL_POINTS_TO_READONLY_P (gnu_result); - /* First do the first dereference if needed. */ - if (TREE_CODE (gnu_result) == PARM_DECL - && DECL_BY_DOUBLE_REF_P (gnu_result)) - { - gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_result); - if (TREE_CODE (gnu_result) == INDIRECT_REF) - TREE_THIS_NOTRAP (gnu_result) = 1; - - /* The first reference, in case of a double reference, always points - to read-only, see gnat_to_gnu_param for the rationale. */ - TREE_READONLY (gnu_result) = 1; - } - /* If it's a PARM_DECL to foreign convention subprogram, convert it. */ if (TREE_CODE (gnu_result) == PARM_DECL && DECL_BY_COMPONENT_PTR_P (gnu_result)) --- 1063,1068 ---- *************** Pragma_to_gnu (Node_Id gnat_node) *** 1290,1295 **** --- 1265,1271 ---- static tree Attribute_to_gnu (Node_Id gnat_node, tree *gnu_result_type_p, int attribute) { + const Node_Id gnat_prefix = Prefix (gnat_node); tree gnu_prefix, gnu_type, gnu_expr; tree gnu_result_type, gnu_result = error_mark_node; bool prefix_unused = false; *************** Attribute_to_gnu (Node_Id gnat_node, tre *** 1299,1311 **** parameter types might be incomplete types coming from a limited with. */ if (Ekind (Etype (gnat_node)) == E_Access_Subprogram_Type && Is_Dispatch_Table_Entity (Etype (gnat_node)) ! && Nkind (Prefix (gnat_node)) == N_Identifier ! && Is_Subprogram (Entity (Prefix (gnat_node))) ! && Is_Public (Entity (Prefix (gnat_node))) ! && !present_gnu_tree (Entity (Prefix (gnat_node)))) ! gnu_prefix = get_minimal_subprog_decl (Entity (Prefix (gnat_node))); else ! gnu_prefix = gnat_to_gnu (Prefix (gnat_node)); gnu_type = TREE_TYPE (gnu_prefix); /* If the input is a NULL_EXPR, make a new one. */ --- 1275,1287 ---- parameter types might be incomplete types coming from a limited with. */ if (Ekind (Etype (gnat_node)) == E_Access_Subprogram_Type && Is_Dispatch_Table_Entity (Etype (gnat_node)) ! && Nkind (gnat_prefix) == N_Identifier ! && Is_Subprogram (Entity (gnat_prefix)) ! && Is_Public (Entity (gnat_prefix)) ! && !present_gnu_tree (Entity (gnat_prefix))) ! gnu_prefix = get_minimal_subprog_decl (Entity (gnat_prefix)); else ! gnu_prefix = gnat_to_gnu (gnat_prefix); gnu_type = TREE_TYPE (gnu_prefix); /* If the input is a NULL_EXPR, make a new one. */ *************** Attribute_to_gnu (Node_Id gnat_node, tre *** 1448,1455 **** since it can use a special calling convention on some platforms, which cannot be propagated to the access type. */ else if (attribute == Attr_Access ! && Nkind (Prefix (gnat_node)) == N_Identifier ! && is_cplusplus_method (Entity (Prefix (gnat_node)))) post_error ("access to C++ constructor or member function not allowed", gnat_node); --- 1424,1431 ---- since it can use a special calling convention on some platforms, which cannot be propagated to the access type. */ else if (attribute == Attr_Access ! && Nkind (gnat_prefix) == N_Identifier ! && is_cplusplus_method (Entity (gnat_prefix))) post_error ("access to C++ constructor or member function not allowed", gnat_node); *************** Attribute_to_gnu (Node_Id gnat_node, tre *** 1560,1572 **** /* If this is a dereference and we have a special dynamic constrained subtype on the prefix, use it to compute the size; otherwise, use the designated subtype. */ ! if (Nkind (Prefix (gnat_node)) == N_Explicit_Dereference) { - Node_Id gnat_deref = Prefix (gnat_node); Node_Id gnat_actual_subtype ! = Actual_Designated_Subtype (gnat_deref); tree gnu_ptr_type ! = TREE_TYPE (gnat_to_gnu (Prefix (gnat_deref))); if (TYPE_IS_FAT_OR_THIN_POINTER_P (gnu_ptr_type) && Present (gnat_actual_subtype)) --- 1536,1547 ---- /* If this is a dereference and we have a special dynamic constrained subtype on the prefix, use it to compute the size; otherwise, use the designated subtype. */ ! if (Nkind (gnat_prefix) == N_Explicit_Dereference) { Node_Id gnat_actual_subtype ! = Actual_Designated_Subtype (gnat_prefix); tree gnu_ptr_type ! = TREE_TYPE (gnat_to_gnu (Prefix (gnat_prefix))); if (TYPE_IS_FAT_OR_THIN_POINTER_P (gnu_ptr_type) && Present (gnat_actual_subtype)) *************** Attribute_to_gnu (Node_Id gnat_node, tre *** 1627,1633 **** align = DECL_ALIGN (TREE_OPERAND (gnu_prefix, 1)) / BITS_PER_UNIT; else { - Node_Id gnat_prefix = Prefix (gnat_node); Entity_Id gnat_type = Etype (gnat_prefix); unsigned int double_align; bool is_capped_double, align_clause; --- 1602,1607 ---- *************** Attribute_to_gnu (Node_Id gnat_node, tre *** 1699,1726 **** : 1), i; struct parm_attr_d *pa = NULL; Entity_Id gnat_param = Empty; /* Make sure any implicit dereference gets done. */ gnu_prefix = maybe_implicit_deref (gnu_prefix); gnu_prefix = maybe_unconstrained_array (gnu_prefix); ! /* We treat unconstrained array In parameters specially. */ ! if (!Is_Constrained (Etype (Prefix (gnat_node)))) ! { ! Node_Id gnat_prefix = Prefix (gnat_node); ! /* This is the direct case. */ ! if (Nkind (gnat_prefix) == N_Identifier ! && Ekind (Entity (gnat_prefix)) == E_In_Parameter) ! gnat_param = Entity (gnat_prefix); ! /* This is the indirect case. Note that we need to be sure that ! the access value cannot be null as we'll hoist the load. */ ! if (Nkind (gnat_prefix) == N_Explicit_Dereference ! && Nkind (Prefix (gnat_prefix)) == N_Identifier ! && Ekind (Entity (Prefix (gnat_prefix))) == E_In_Parameter ! && Can_Never_Be_Null (Entity (Prefix (gnat_prefix)))) ! gnat_param = Entity (Prefix (gnat_prefix)); } /* If the prefix is the view conversion of a constrained array to an --- 1673,1710 ---- : 1), i; struct parm_attr_d *pa = NULL; Entity_Id gnat_param = Empty; + bool unconstrained_ptr_deref = false; /* Make sure any implicit dereference gets done. */ gnu_prefix = maybe_implicit_deref (gnu_prefix); gnu_prefix = maybe_unconstrained_array (gnu_prefix); ! /* We treat unconstrained array In parameters specially. We also note ! whether we are dereferencing a pointer to unconstrained array. */ ! if (!Is_Constrained (Etype (gnat_prefix))) ! switch (Nkind (gnat_prefix)) ! { ! case N_Identifier: ! /* This is the direct case. */ ! if (Ekind (Entity (gnat_prefix)) == E_In_Parameter) ! gnat_param = Entity (gnat_prefix); ! break; ! case N_Explicit_Dereference: ! /* This is the indirect case. Note that we need to be sure that ! the access value cannot be null as we'll hoist the load. */ ! if (Nkind (Prefix (gnat_prefix)) == N_Identifier ! && Ekind (Entity (Prefix (gnat_prefix))) == E_In_Parameter) ! { ! if (Can_Never_Be_Null (Entity (Prefix (gnat_prefix)))) ! gnat_param = Entity (Prefix (gnat_prefix)); ! } ! else ! unconstrained_ptr_deref = true; ! break; ! default: ! break; } /* If the prefix is the view conversion of a constrained array to an *************** Attribute_to_gnu (Node_Id gnat_node, tre *** 1855,1876 **** { gnu_result = build1 (SAVE_EXPR, TREE_TYPE (gnu_result), gnu_result); ! if (attribute == Attr_First) ! pa->first = gnu_result; ! else if (attribute == Attr_Last) ! pa->last = gnu_result; ! else ! pa->length = gnu_result; } ! /* Set the source location onto the predicate of the condition in the ! 'Length case but do not do it if the expression is cached to avoid ! messing up the debug info. */ ! else if ((attribute == Attr_Range_Length || attribute == Attr_Length) ! && TREE_CODE (gnu_result) == COND_EXPR ! && EXPR_P (TREE_OPERAND (gnu_result, 0))) ! set_expr_location_from_node (TREE_OPERAND (gnu_result, 0), ! gnat_node); break; } --- 1839,1892 ---- { gnu_result = build1 (SAVE_EXPR, TREE_TYPE (gnu_result), gnu_result); ! switch (attribute) ! { ! case Attr_First: ! pa->first = gnu_result; ! break; ! ! case Attr_Last: ! pa->last = gnu_result; ! break; ! ! case Attr_Length: ! case Attr_Range_Length: ! pa->length = gnu_result; ! break; ! ! default: ! gcc_unreachable (); ! } } ! /* Otherwise, evaluate it each time it is referenced. */ ! else ! switch (attribute) ! { ! case Attr_First: ! case Attr_Last: ! /* If we are dereferencing a pointer to unconstrained array, we ! need to capture the value because the pointed-to bounds may ! subsequently be released. */ ! if (unconstrained_ptr_deref) ! gnu_result ! = build1 (SAVE_EXPR, TREE_TYPE (gnu_result), gnu_result); ! break; ! ! case Attr_Length: ! case Attr_Range_Length: ! /* Set the source location onto the predicate of the condition ! but not if the expression is cached to avoid messing up the ! debug info. */ ! if (TREE_CODE (gnu_result) == COND_EXPR ! && EXPR_P (TREE_OPERAND (gnu_result, 0))) ! set_expr_location_from_node (TREE_OPERAND (gnu_result, 0), ! gnat_node); ! break; ! ! default: ! gcc_unreachable (); ! } break; } *************** Attribute_to_gnu (Node_Id gnat_node, tre *** 2043,2050 **** case Attr_Mechanism_Code: { int code; - Entity_Id gnat_obj = Entity (Prefix (gnat_node)); prefix_unused = true; gnu_result_type = get_unpadded_type (Etype (gnat_node)); --- 2059,2066 ---- case Attr_Mechanism_Code: { + Entity_Id gnat_obj = Entity (gnat_prefix); int code; prefix_unused = true; gnu_result_type = get_unpadded_type (Etype (gnat_node)); *************** Attribute_to_gnu (Node_Id gnat_node, tre *** 2079,2088 **** it has a side-effect. But don't do it if the prefix is just an entity name. However, if an access check is needed, we must do it. See second example in AARM 11.6(5.e). */ ! if (prefix_unused && TREE_SIDE_EFFECTS (gnu_prefix) ! && !Is_Entity_Name (Prefix (gnat_node))) ! gnu_result = build_compound_expr (TREE_TYPE (gnu_result), gnu_prefix, ! gnu_result); *gnu_result_type_p = gnu_result_type; return gnu_result; --- 2095,2105 ---- it has a side-effect. But don't do it if the prefix is just an entity name. However, if an access check is needed, we must do it. See second example in AARM 11.6(5.e). */ ! if (prefix_unused ! && TREE_SIDE_EFFECTS (gnu_prefix) ! && !Is_Entity_Name (gnat_prefix)) ! gnu_result ! = build_compound_expr (TREE_TYPE (gnu_result), gnu_prefix, gnu_result); *gnu_result_type_p = gnu_result_type; return gnu_result; *************** can_equal_min_or_max_val_p (tree val, tr *** 2280,2286 **** if (TREE_CODE (val) != INTEGER_CST) return true; ! return tree_int_cst_equal (val, min_or_max_val) == 1; } /* Return true if VAL (of type TYPE) can equal the minimum value of TYPE. --- 2297,2306 ---- if (TREE_CODE (val) != INTEGER_CST) return true; ! if (max) ! return tree_int_cst_lt (val, min_or_max_val) == 0; ! else ! return tree_int_cst_lt (min_or_max_val, val) == 0; } /* Return true if VAL (of type TYPE) can equal the minimum value of TYPE. *************** build_function_stub (tree gnu_subprog, E *** 3251,3257 **** = convert_vms_descriptor (TREE_TYPE (gnu_subprog_param), gnu_stub_param, DECL_PARM_ALT_TYPE (gnu_stub_param), - DECL_BY_DOUBLE_REF_P (gnu_subprog_param), gnat_subprog); } else --- 3271,3276 ---- *************** Subprogram_Body_to_gnu (Node_Id gnat_nod *** 3490,3495 **** --- 3509,3516 ---- { tree gnu_retval; + gnu_return_var_stack->pop (); + add_stmt (gnu_result); add_stmt (build1 (LABEL_EXPR, void_type_node, gnu_return_label_stack->last ())); *************** Subprogram_Body_to_gnu (Node_Id gnat_nod *** 3546,3553 **** bool is_var_decl = (TREE_CODE (gnu_param) == VAR_DECL); annotate_object (gnat_param, TREE_TYPE (gnu_param), NULL_TREE, ! DECL_BY_REF_P (gnu_param), ! !is_var_decl && DECL_BY_DOUBLE_REF_P (gnu_param)); if (is_var_decl) save_gnu_tree (gnat_param, NULL_TREE, false); --- 3567,3573 ---- bool is_var_decl = (TREE_CODE (gnu_param) == VAR_DECL); annotate_object (gnat_param, TREE_TYPE (gnu_param), NULL_TREE, ! DECL_BY_REF_P (gnu_param)); if (is_var_decl) save_gnu_tree (gnat_param, NULL_TREE, false); *************** Call_to_gnu (Node_Id gnat_node, tree *gn *** 4009,4020 **** /* The symmetry of the paths to the type of an entity is broken here since arguments don't know that they will be passed by ref. */ gnu_formal_type = TREE_TYPE (gnu_formal); - - if (DECL_BY_DOUBLE_REF_P (gnu_formal)) - gnu_actual - = build_unary_op (ADDR_EXPR, TREE_TYPE (gnu_formal_type), - gnu_actual); - gnu_actual = build_unary_op (ADDR_EXPR, gnu_formal_type, gnu_actual); } else if (is_true_formal_parm && DECL_BY_COMPONENT_PTR_P (gnu_formal)) --- 4029,4034 ---- diff -Nrcpad gcc-4.8.1/gcc/ada/gcc-interface/utils.c gcc-4.8.2/gcc/ada/gcc-interface/utils.c *** gcc-4.8.1/gcc/ada/gcc-interface/utils.c Wed Feb 6 13:19:20 2013 --- gcc-4.8.2/gcc/ada/gcc-interface/utils.c Thu Jun 13 07:51:32 2013 *************** convert_vms_descriptor32 (tree gnu_type, *** 4073,4105 **** /* Convert GNU_EXPR, a pointer to a VMS descriptor, to GNU_TYPE, a regular pointer or fat pointer type. GNU_EXPR_ALT_TYPE is the alternate (32-bit) ! pointer type of GNU_EXPR. BY_REF is true if the result is to be used by ! reference. GNAT_SUBPROG is the subprogram to which the VMS descriptor is ! passed. */ tree convert_vms_descriptor (tree gnu_type, tree gnu_expr, tree gnu_expr_alt_type, ! bool by_ref, Entity_Id gnat_subprog) { tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr)); tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr); tree mbo = TYPE_FIELDS (desc_type); const char *mbostr = IDENTIFIER_POINTER (DECL_NAME (mbo)); tree mbmo = DECL_CHAIN (DECL_CHAIN (DECL_CHAIN (mbo))); ! tree real_type, is64bit, gnu_expr32, gnu_expr64; ! ! if (by_ref) ! real_type = TREE_TYPE (gnu_type); ! else ! real_type = gnu_type; /* If the field name is not MBO, it must be 32-bit and no alternate. Otherwise primary must be 64-bit and alternate 32-bit. */ if (strcmp (mbostr, "MBO") != 0) { ! tree ret = convert_vms_descriptor32 (real_type, gnu_expr, gnat_subprog); ! if (by_ref) ! ret = build_unary_op (ADDR_EXPR, gnu_type, ret); return ret; } --- 4073,4097 ---- /* Convert GNU_EXPR, a pointer to a VMS descriptor, to GNU_TYPE, a regular pointer or fat pointer type. GNU_EXPR_ALT_TYPE is the alternate (32-bit) ! pointer type of GNU_EXPR. GNAT_SUBPROG is the subprogram to which the ! descriptor is passed. */ tree convert_vms_descriptor (tree gnu_type, tree gnu_expr, tree gnu_expr_alt_type, ! Entity_Id gnat_subprog) { tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr)); tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr); tree mbo = TYPE_FIELDS (desc_type); const char *mbostr = IDENTIFIER_POINTER (DECL_NAME (mbo)); tree mbmo = DECL_CHAIN (DECL_CHAIN (DECL_CHAIN (mbo))); ! tree is64bit, gnu_expr32, gnu_expr64; /* If the field name is not MBO, it must be 32-bit and no alternate. Otherwise primary must be 64-bit and alternate 32-bit. */ if (strcmp (mbostr, "MBO") != 0) { ! tree ret = convert_vms_descriptor32 (gnu_type, gnu_expr, gnat_subprog); return ret; } *************** convert_vms_descriptor (tree gnu_type, t *** 4116,4129 **** integer_minus_one_node)); /* Build the 2 possible end results. */ ! gnu_expr64 = convert_vms_descriptor64 (real_type, gnu_expr, gnat_subprog); ! if (by_ref) ! gnu_expr64 = build_unary_op (ADDR_EXPR, gnu_type, gnu_expr64); gnu_expr = fold_convert (gnu_expr_alt_type, gnu_expr); ! gnu_expr32 = convert_vms_descriptor32 (real_type, gnu_expr, gnat_subprog); ! if (by_ref) ! gnu_expr32 = build_unary_op (ADDR_EXPR, gnu_type, gnu_expr32); ! return build3 (COND_EXPR, gnu_type, is64bit, gnu_expr64, gnu_expr32); } --- 4108,4116 ---- integer_minus_one_node)); /* Build the 2 possible end results. */ ! gnu_expr64 = convert_vms_descriptor64 (gnu_type, gnu_expr, gnat_subprog); gnu_expr = fold_convert (gnu_expr_alt_type, gnu_expr); ! gnu_expr32 = convert_vms_descriptor32 (gnu_type, gnu_expr, gnat_subprog); return build3 (COND_EXPR, gnu_type, is64bit, gnu_expr64, gnu_expr32); } diff -Nrcpad gcc-4.8.1/gcc/ada/targparm.ads gcc-4.8.2/gcc/ada/targparm.ads *** gcc-4.8.1/gcc/ada/targparm.ads Wed Feb 6 10:35:52 2013 --- gcc-4.8.2/gcc/ada/targparm.ads Thu Jun 13 07:51:32 2013 *************** package Targparm is *** 436,442 **** -- the source program may not contain explicit 64-bit shifts. In addition, -- the code generated for packed arrays will avoid the use of long shifts. ! Support_Nondefault_SSO_On_Target : Boolean := False; -- If True, the back end supports the non-default Scalar_Storage_Order -- (i.e. allows non-confirming Scalar_Storage_Order attribute definition -- clauses). --- 436,442 ---- -- the source program may not contain explicit 64-bit shifts. In addition, -- the code generated for packed arrays will avoid the use of long shifts. ! Support_Nondefault_SSO_On_Target : Boolean := True; -- If True, the back end supports the non-default Scalar_Storage_Order -- (i.e. allows non-confirming Scalar_Storage_Order attribute definition -- clauses). diff -Nrcpad gcc-4.8.1/gcc/asan.c gcc-4.8.2/gcc/asan.c *** gcc-4.8.1/gcc/asan.c Thu Feb 28 21:23:23 2013 --- gcc-4.8.2/gcc/asan.c Tue Aug 13 17:02:13 2013 *************** instrument_mem_region_access (tree base, *** 1675,1681 **** access to the last byte of the argument; it uses the result of the call to deduce the offset of that last byte. ! Upon completion, iff the call has actullay been instrumented, this function returns TRUE and *ITER points to the statement logically following the built-in strlen function call *ITER was initially pointing to. Otherwise, the function returns FALSE and *ITER --- 1675,1681 ---- access to the last byte of the argument; it uses the result of the call to deduce the offset of that last byte. ! Upon completion, iff the call has actually been instrumented, this function returns TRUE and *ITER points to the statement logically following the built-in strlen function call *ITER was initially pointing to. Otherwise, the function returns FALSE and *ITER *************** instrument_strlen_call (gimple_stmt_iter *** 1706,1715 **** /* Instrument the access to the first byte of str_arg. i.e: _1 = str_arg; instrument (_1); */ gimple str_arg_ssa = gimple_build_assign_with_ops (NOP_EXPR, ! make_ssa_name (build_pointer_type ! (char_type_node), NULL), str_arg, NULL); gimple_set_location (str_arg_ssa, loc); gimple_stmt_iterator gsi = *iter; --- 1706,1715 ---- /* Instrument the access to the first byte of str_arg. i.e: _1 = str_arg; instrument (_1); */ + tree cptr_type = build_pointer_type (char_type_node); gimple str_arg_ssa = gimple_build_assign_with_ops (NOP_EXPR, ! make_ssa_name (cptr_type, NULL), str_arg, NULL); gimple_set_location (str_arg_ssa, loc); gimple_stmt_iterator gsi = *iter; *************** instrument_strlen_call (gimple_stmt_iter *** 1728,1735 **** pointer_plus expr: (_1 + len). */ gimple stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, ! make_ssa_name (TREE_TYPE (str_arg), ! NULL), gimple_assign_lhs (str_arg_ssa), len); gimple_set_location (stmt, loc); --- 1728,1734 ---- pointer_plus expr: (_1 + len). */ gimple stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, ! make_ssa_name (cptr_type, NULL), gimple_assign_lhs (str_arg_ssa), len); gimple_set_location (stmt, loc); diff -Nrcpad gcc-4.8.1/gcc/c/ChangeLog gcc-4.8.2/gcc/c/ChangeLog *** gcc-4.8.1/gcc/c/ChangeLog Fri May 31 09:01:54 2013 --- gcc-4.8.2/gcc/c/ChangeLog Wed Oct 16 07:19:52 2013 *************** *** 1,3 **** --- 1,7 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/gcc/c-family/ChangeLog gcc-4.8.2/gcc/c-family/ChangeLog *** gcc-4.8.1/gcc/c-family/ChangeLog Fri May 31 09:02:29 2013 --- gcc-4.8.2/gcc/c-family/ChangeLog Wed Oct 16 07:20:26 2013 *************** *** 1,3 **** --- 1,11 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + + 2013-08-09 Arnaud Charlet + + * c-ada-spec.c (print_ada_declaration): Prevent accessing null asm name + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/gcc/c-family/c-ada-spec.c gcc-4.8.2/gcc/c-family/c-ada-spec.c *** gcc-4.8.1/gcc/c-family/c-ada-spec.c Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/c-family/c-ada-spec.c Fri Aug 9 10:53:01 2013 *************** print_ada_declaration (pretty_printer *b *** 2900,2906 **** pp_string (buffer, " -- "); dump_sloc (buffer, t); ! if (is_abstract) return 1; newline_and_indent (buffer, spc); --- 2900,2906 ---- pp_string (buffer, " -- "); dump_sloc (buffer, t); ! if (is_abstract || !DECL_ASSEMBLER_NAME (t)) return 1; newline_and_indent (buffer, spc); diff -Nrcpad gcc-4.8.1/gcc/cfgcleanup.c gcc-4.8.2/gcc/cfgcleanup.c *** gcc-4.8.1/gcc/cfgcleanup.c Wed Jan 30 11:53:28 2013 --- gcc-4.8.2/gcc/cfgcleanup.c Tue Sep 10 11:48:30 2013 *************** merge_memattrs (rtx x, rtx y) *** 927,932 **** --- 927,950 ---- set_mem_align (y, MEM_ALIGN (x)); } } + if (code == MEM) + { + if (MEM_READONLY_P (x) != MEM_READONLY_P (y)) + { + MEM_READONLY_P (x) = 0; + MEM_READONLY_P (y) = 0; + } + if (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)) + { + MEM_NOTRAP_P (x) = 0; + MEM_NOTRAP_P (y) = 0; + } + if (MEM_VOLATILE_P (x) != MEM_VOLATILE_P (y)) + { + MEM_VOLATILE_P (x) = 1; + MEM_VOLATILE_P (y) = 1; + } + } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) diff -Nrcpad gcc-4.8.1/gcc/cfgrtl.c gcc-4.8.2/gcc/cfgrtl.c *** gcc-4.8.1/gcc/cfgrtl.c Mon Feb 25 11:50:25 2013 --- gcc-4.8.2/gcc/cfgrtl.c Thu Oct 10 16:39:52 2013 *************** commit_one_edge_insertion (edge e) *** 1784,1793 **** } /* If the source has one successor and the edge is not abnormal, ! insert there. Except for the entry block. */ else if ((e->flags & EDGE_ABNORMAL) == 0 && single_succ_p (e->src) ! && e->src != ENTRY_BLOCK_PTR) { bb = e->src; --- 1784,1801 ---- } /* If the source has one successor and the edge is not abnormal, ! insert there. Except for the entry block. ! Don't do this if the predecessor ends in a jump other than ! unconditional simple jump. E.g. for asm goto that points all ! its labels at the fallthru basic block, we can't insert instructions ! before the asm goto, as the asm goto can have various of side effects, ! and can't emit instructions after the asm goto, as it must end ! the basic block. */ else if ((e->flags & EDGE_ABNORMAL) == 0 && single_succ_p (e->src) ! && e->src != ENTRY_BLOCK_PTR ! && (!JUMP_P (BB_END (e->src)) ! || simplejump_p (BB_END (e->src)))) { bb = e->src; diff -Nrcpad gcc-4.8.1/gcc/collect2.c gcc-4.8.2/gcc/collect2.c *** gcc-4.8.1/gcc/collect2.c Thu Feb 7 02:53:13 2013 --- gcc-4.8.2/gcc/collect2.c Thu Jun 20 17:12:17 2013 *************** static void scan_prog_file (const char * *** 366,373 **** /* Delete tempfiles and exit function. */ ! void ! collect_exit (int status) { if (c_file != 0 && c_file[0]) maybe_unlink (c_file); --- 366,373 ---- /* Delete tempfiles and exit function. */ ! static void ! collect_atexit (void) { if (c_file != 0 && c_file[0]) maybe_unlink (c_file); *************** collect_exit (int status) *** 395,407 **** maybe_unlink (lderrout); } - if (status != 0 && output_file != 0 && output_file[0]) - maybe_unlink (output_file); - if (response_file) maybe_unlink (response_file); - - exit (status); } --- 395,402 ---- *************** main (int argc, char **argv) *** 970,975 **** --- 965,973 ---- signal (SIGCHLD, SIG_DFL); #endif + if (atexit (collect_atexit) != 0) + fatal_error ("atexit failed"); + /* Unlock the stdio streams. */ unlock_std_streams (); *************** main (int argc, char **argv) *** 1110,1164 **** if (ld_file_name == 0) #endif #ifdef REAL_LD_FILE_NAME ! ld_file_name = find_a_file (&path, REAL_LD_FILE_NAME); if (ld_file_name == 0) #endif /* Search the (target-specific) compiler dirs for ld'. */ ! ld_file_name = find_a_file (&cpath, real_ld_suffix); /* Likewise for `collect-ld'. */ if (ld_file_name == 0) { ! ld_file_name = find_a_file (&cpath, collect_ld_suffix); use_collect_ld = ld_file_name != 0; } /* Search the compiler directories for `ld'. We have protection against recursive calls in find_a_file. */ if (ld_file_name == 0) ! ld_file_name = find_a_file (&cpath, ld_suffixes[selected_linker]); /* Search the ordinary system bin directories for `ld' (if native linking) or `TARGET-ld' (if cross). */ if (ld_file_name == 0) ! ld_file_name = find_a_file (&path, full_ld_suffixes[selected_linker]); #ifdef REAL_NM_FILE_NAME ! nm_file_name = find_a_file (&path, REAL_NM_FILE_NAME); if (nm_file_name == 0) #endif ! nm_file_name = find_a_file (&cpath, gnm_suffix); if (nm_file_name == 0) ! nm_file_name = find_a_file (&path, full_gnm_suffix); if (nm_file_name == 0) ! nm_file_name = find_a_file (&cpath, nm_suffix); if (nm_file_name == 0) ! nm_file_name = find_a_file (&path, full_nm_suffix); #ifdef LDD_SUFFIX ! ldd_file_name = find_a_file (&cpath, ldd_suffix); if (ldd_file_name == 0) ! ldd_file_name = find_a_file (&path, full_ldd_suffix); #endif #ifdef REAL_STRIP_FILE_NAME ! strip_file_name = find_a_file (&path, REAL_STRIP_FILE_NAME); if (strip_file_name == 0) #endif ! strip_file_name = find_a_file (&cpath, gstrip_suffix); if (strip_file_name == 0) ! strip_file_name = find_a_file (&path, full_gstrip_suffix); if (strip_file_name == 0) ! strip_file_name = find_a_file (&cpath, strip_suffix); if (strip_file_name == 0) ! strip_file_name = find_a_file (&path, full_strip_suffix); /* Determine the full path name of the C compiler to use. */ c_file_name = getenv ("COLLECT_GCC"); --- 1108,1162 ---- if (ld_file_name == 0) #endif #ifdef REAL_LD_FILE_NAME ! ld_file_name = find_a_file (&path, REAL_LD_FILE_NAME, X_OK); if (ld_file_name == 0) #endif /* Search the (target-specific) compiler dirs for ld'. */ ! ld_file_name = find_a_file (&cpath, real_ld_suffix, X_OK); /* Likewise for `collect-ld'. */ if (ld_file_name == 0) { ! ld_file_name = find_a_file (&cpath, collect_ld_suffix, X_OK); use_collect_ld = ld_file_name != 0; } /* Search the compiler directories for `ld'. We have protection against recursive calls in find_a_file. */ if (ld_file_name == 0) ! ld_file_name = find_a_file (&cpath, ld_suffixes[selected_linker], X_OK); /* Search the ordinary system bin directories for `ld' (if native linking) or `TARGET-ld' (if cross). */ if (ld_file_name == 0) ! ld_file_name = find_a_file (&path, full_ld_suffixes[selected_linker], X_OK); #ifdef REAL_NM_FILE_NAME ! nm_file_name = find_a_file (&path, REAL_NM_FILE_NAME, X_OK); if (nm_file_name == 0) #endif ! nm_file_name = find_a_file (&cpath, gnm_suffix, X_OK); if (nm_file_name == 0) ! nm_file_name = find_a_file (&path, full_gnm_suffix, X_OK); if (nm_file_name == 0) ! nm_file_name = find_a_file (&cpath, nm_suffix, X_OK); if (nm_file_name == 0) ! nm_file_name = find_a_file (&path, full_nm_suffix, X_OK); #ifdef LDD_SUFFIX ! ldd_file_name = find_a_file (&cpath, ldd_suffix, X_OK); if (ldd_file_name == 0) ! ldd_file_name = find_a_file (&path, full_ldd_suffix, X_OK); #endif #ifdef REAL_STRIP_FILE_NAME ! strip_file_name = find_a_file (&path, REAL_STRIP_FILE_NAME, X_OK); if (strip_file_name == 0) #endif ! strip_file_name = find_a_file (&cpath, gstrip_suffix, X_OK); if (strip_file_name == 0) ! strip_file_name = find_a_file (&path, full_gstrip_suffix, X_OK); if (strip_file_name == 0) ! strip_file_name = find_a_file (&cpath, strip_suffix, X_OK); if (strip_file_name == 0) ! strip_file_name = find_a_file (&path, full_strip_suffix, X_OK); /* Determine the full path name of the C compiler to use. */ c_file_name = getenv ("COLLECT_GCC"); *************** main (int argc, char **argv) *** 1171,1182 **** #endif } ! p = find_a_file (&cpath, c_file_name); /* Here it should be safe to use the system search path since we should have already qualified the name of the compiler when it is needed. */ if (p == 0) ! p = find_a_file (&path, c_file_name); if (p) c_file_name = p; --- 1169,1180 ---- #endif } ! p = find_a_file (&cpath, c_file_name, X_OK); /* Here it should be safe to use the system search path since we should have already qualified the name of the compiler when it is needed. */ if (p == 0) ! p = find_a_file (&path, c_file_name, X_OK); if (p) c_file_name = p; *************** collect_wait (const char *prog, struct p *** 1813,1819 **** error ("%s terminated with signal %d [%s]%s", prog, sig, strsignal(sig), WCOREDUMP(status) ? ", core dumped" : ""); ! collect_exit (FATAL_EXIT_CODE); } if (WIFEXITED (status)) --- 1811,1817 ---- error ("%s terminated with signal %d [%s]%s", prog, sig, strsignal(sig), WCOREDUMP(status) ? ", core dumped" : ""); ! exit (FATAL_EXIT_CODE); } if (WIFEXITED (status)) *************** do_wait (const char *prog, struct pex_ob *** 1829,1835 **** if (ret != 0) { error ("%s returned %d exit status", prog, ret); ! collect_exit (ret); } if (response_file) --- 1827,1833 ---- if (ret != 0) { error ("%s returned %d exit status", prog, ret); ! exit (ret); } if (response_file) diff -Nrcpad gcc-4.8.1/gcc/collect2.h gcc-4.8.2/gcc/collect2.h *** gcc-4.8.1/gcc/collect2.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/collect2.h Thu Jun 20 17:12:17 2013 *************** extern void do_tlink (char **, char **); *** 25,32 **** extern struct pex_obj *collect_execute (const char *, char **, const char *, const char *, int flags); - extern void collect_exit (int) ATTRIBUTE_NORETURN; - extern int collect_wait (const char *, struct pex_obj *); extern void dump_ld_file (const char *, FILE *); --- 25,30 ---- diff -Nrcpad gcc-4.8.1/gcc/common/config/s390/s390-common.c gcc-4.8.2/gcc/common/config/s390/s390-common.c *** gcc-4.8.1/gcc/common/config/s390/s390-common.c Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/common/config/s390/s390-common.c Fri Aug 2 15:41:10 2013 *************** EXPORTED_CONST int processor_flags_table *** 42,48 **** /* z196 */ PF_IEEE_FLOAT | PF_ZARCH | PF_LONG_DISPLACEMENT | PF_EXTIMM | PF_DFP | PF_Z10 | PF_Z196, /* zEC12 */ PF_IEEE_FLOAT | PF_ZARCH | PF_LONG_DISPLACEMENT ! | PF_EXTIMM | PF_DFP | PF_Z10 | PF_Z196 | PF_ZEC12 }; /* Change optimizations to be performed, depending on the --- 42,48 ---- /* z196 */ PF_IEEE_FLOAT | PF_ZARCH | PF_LONG_DISPLACEMENT | PF_EXTIMM | PF_DFP | PF_Z10 | PF_Z196, /* zEC12 */ PF_IEEE_FLOAT | PF_ZARCH | PF_LONG_DISPLACEMENT ! | PF_EXTIMM | PF_DFP | PF_Z10 | PF_Z196 | PF_ZEC12 | PF_TX }; /* Change optimizations to be performed, depending on the diff -Nrcpad gcc-4.8.1/gcc/config/aarch64/aarch64-builtins.c gcc-4.8.2/gcc/config/aarch64/aarch64-builtins.c *** gcc-4.8.1/gcc/config/aarch64/aarch64-builtins.c Thu Feb 28 17:19:33 2013 --- gcc-4.8.2/gcc/config/aarch64/aarch64-builtins.c Wed Jul 17 09:06:21 2013 *************** aarch64_simd_expand_builtin (int fcode, *** 1154,1159 **** --- 1154,1160 ---- return aarch64_simd_expand_args (target, icode, 1, exp, SIMD_ARG_COPY_TO_REG, SIMD_ARG_STOP); + case AARCH64_SIMD_STORE1: case AARCH64_SIMD_STORESTRUCT: return aarch64_simd_expand_args (target, icode, 0, exp, SIMD_ARG_COPY_TO_REG, diff -Nrcpad gcc-4.8.1/gcc/config/aarch64/aarch64-linux.h gcc-4.8.2/gcc/config/aarch64/aarch64-linux.h *** gcc-4.8.1/gcc/config/aarch64/aarch64-linux.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/aarch64/aarch64-linux.h Tue Aug 13 13:22:18 2013 *************** *** 23,28 **** --- 23,30 ---- #define GLIBC_DYNAMIC_LINKER "/lib/ld-linux-aarch64.so.1" + #define CPP_SPEC "%{pthread:-D_REENTRANT}" + #define LINUX_TARGET_LINK_SPEC "%{h*} \ %{static:-Bstatic} \ %{shared:-shared} \ diff -Nrcpad gcc-4.8.1/gcc/config/aarch64/aarch64-simd-builtins.def gcc-4.8.2/gcc/config/aarch64/aarch64-simd-builtins.def *** gcc-4.8.1/gcc/config/aarch64/aarch64-simd-builtins.def Fri Feb 22 16:39:45 2013 --- gcc-4.8.2/gcc/config/aarch64/aarch64-simd-builtins.def Wed Jul 17 09:06:21 2013 *************** *** 256,258 **** --- 256,265 ---- BUILTIN_VALL (BINOP, uzp2) BUILTIN_VALL (BINOP, trn1) BUILTIN_VALL (BINOP, trn2) + + /* Implemented by aarch64_ld1. */ + BUILTIN_VALL (LOAD1, ld1) + + /* Implemented by aarch64_st1. */ + BUILTIN_VALL (STORE1, st1) + diff -Nrcpad gcc-4.8.1/gcc/config/aarch64/aarch64-simd.md gcc-4.8.2/gcc/config/aarch64/aarch64-simd.md *** gcc-4.8.1/gcc/config/aarch64/aarch64-simd.md Thu Apr 11 14:14:56 2013 --- gcc-4.8.2/gcc/config/aarch64/aarch64-simd.md Wed Jul 17 09:06:21 2013 *************** *** 3457,3462 **** --- 3457,3473 ---- DONE; }) + (define_expand "aarch64_ld1" + [(match_operand:VALL 0 "register_operand") + (match_operand:DI 1 "register_operand")] + "TARGET_SIMD" + { + enum machine_mode mode = mode; + rtx mem = gen_rtx_MEM (mode, operands[1]); + emit_move_insn (operands[0], mem); + DONE; + }) + (define_expand "aarch64_ld" [(match_operand:VSTRUCT 0 "register_operand" "=w") (match_operand:DI 1 "register_operand" "r") *************** *** 3673,3678 **** --- 3684,3700 ---- DONE; }) + (define_expand "aarch64_st1" + [(match_operand:DI 0 "register_operand") + (match_operand:VALL 1 "register_operand")] + "TARGET_SIMD" + { + enum machine_mode mode = mode; + rtx mem = gen_rtx_MEM (mode, operands[0]); + emit_move_insn (mem, operands[1]); + DONE; + }) + ;; Expander for builtins to insert vector registers into large ;; opaque integer modes. diff -Nrcpad gcc-4.8.1/gcc/config/aarch64/aarch64.c gcc-4.8.2/gcc/config/aarch64/aarch64.c *** gcc-4.8.1/gcc/config/aarch64/aarch64.c Thu May 2 17:00:00 2013 --- gcc-4.8.2/gcc/config/aarch64/aarch64.c Mon Jun 3 15:33:09 2013 *************** aarch64_print_operand (FILE *f, rtx x, c *** 3373,3379 **** output_operand_lossage ("invalid operand for '%%%c'", code); return; } ! asm_fprintf (f, "0x%x", UINTVAL (x)); break; case 'w': --- 3373,3379 ---- output_operand_lossage ("invalid operand for '%%%c'", code); return; } ! asm_fprintf (f, "0x%wx", UINTVAL (x)); break; case 'w': diff -Nrcpad gcc-4.8.1/gcc/config/aarch64/aarch64.md gcc-4.8.2/gcc/config/aarch64/aarch64.md *** gcc-4.8.1/gcc/config/aarch64/aarch64.md Thu Apr 25 17:00:44 2013 --- gcc-4.8.2/gcc/config/aarch64/aarch64.md Fri Oct 4 14:57:04 2013 *************** *** 834,840 **** movi\\t%d0, %1" [(set_attr "v8type" "move,move,move,alu,load1,store1,adr,adr,fmov,fmov,fmov,fmov") (set_attr "mode" "DI") ! (set_attr "fp" "*,*,*,*,*,*,*,*,yes,yes,yes,yes")] ) (define_insn "insv_imm" --- 834,841 ---- movi\\t%d0, %1" [(set_attr "v8type" "move,move,move,alu,load1,store1,adr,adr,fmov,fmov,fmov,fmov") (set_attr "mode" "DI") ! (set_attr "fp" "*,*,*,*,*,*,*,*,yes,yes,yes,*") ! (set_attr "simd" "*,*,*,*,*,*,*,*,*,*,*,yes")] ) (define_insn "insv_imm" *************** *** 1312,1318 **** ) (define_insn "*add__" ! [(set (match_operand:GPI 0 "register_operand" "=rk") (plus:GPI (ASHIFT:GPI (match_operand:GPI 1 "register_operand" "r") (match_operand:QI 2 "aarch64_shift_imm_" "n")) (match_operand:GPI 3 "register_operand" "r")))] --- 1313,1319 ---- ) (define_insn "*add__" ! [(set (match_operand:GPI 0 "register_operand" "=r") (plus:GPI (ASHIFT:GPI (match_operand:GPI 1 "register_operand" "r") (match_operand:QI 2 "aarch64_shift_imm_" "n")) (match_operand:GPI 3 "register_operand" "r")))] *************** *** 1324,1330 **** ;; zero_extend version of above (define_insn "*add__si_uxtw" ! [(set (match_operand:DI 0 "register_operand" "=rk") (zero_extend:DI (plus:SI (ASHIFT:SI (match_operand:SI 1 "register_operand" "r") (match_operand:QI 2 "aarch64_shift_imm_si" "n")) --- 1325,1331 ---- ;; zero_extend version of above (define_insn "*add__si_uxtw" ! [(set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (plus:SI (ASHIFT:SI (match_operand:SI 1 "register_operand" "r") (match_operand:QI 2 "aarch64_shift_imm_si" "n")) *************** *** 1336,1342 **** ) (define_insn "*add_mul_imm_" ! [(set (match_operand:GPI 0 "register_operand" "=rk") (plus:GPI (mult:GPI (match_operand:GPI 1 "register_operand" "r") (match_operand:QI 2 "aarch64_pwr_2_" "n")) (match_operand:GPI 3 "register_operand" "r")))] --- 1337,1343 ---- ) (define_insn "*add_mul_imm_" ! [(set (match_operand:GPI 0 "register_operand" "=r") (plus:GPI (mult:GPI (match_operand:GPI 1 "register_operand" "r") (match_operand:QI 2 "aarch64_pwr_2_" "n")) (match_operand:GPI 3 "register_operand" "r")))] *************** *** 1659,1665 **** ) (define_insn "*sub__" ! [(set (match_operand:GPI 0 "register_operand" "=rk") (minus:GPI (match_operand:GPI 3 "register_operand" "r") (ASHIFT:GPI (match_operand:GPI 1 "register_operand" "r") --- 1660,1666 ---- ) (define_insn "*sub__" ! [(set (match_operand:GPI 0 "register_operand" "=r") (minus:GPI (match_operand:GPI 3 "register_operand" "r") (ASHIFT:GPI (match_operand:GPI 1 "register_operand" "r") *************** *** 1672,1678 **** ;; zero_extend version of above (define_insn "*sub__si_uxtw" ! [(set (match_operand:DI 0 "register_operand" "=rk") (zero_extend:DI (minus:SI (match_operand:SI 3 "register_operand" "r") (ASHIFT:SI --- 1673,1679 ---- ;; zero_extend version of above (define_insn "*sub__si_uxtw" ! [(set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (minus:SI (match_operand:SI 3 "register_operand" "r") (ASHIFT:SI *************** *** 1685,1691 **** ) (define_insn "*sub_mul_imm_" ! [(set (match_operand:GPI 0 "register_operand" "=rk") (minus:GPI (match_operand:GPI 3 "register_operand" "r") (mult:GPI (match_operand:GPI 1 "register_operand" "r") --- 1686,1692 ---- ) (define_insn "*sub_mul_imm_" ! [(set (match_operand:GPI 0 "register_operand" "=r") (minus:GPI (match_operand:GPI 3 "register_operand" "r") (mult:GPI (match_operand:GPI 1 "register_operand" "r") *************** *** 1698,1704 **** ;; zero_extend version of above (define_insn "*sub_mul_imm_si_uxtw" ! [(set (match_operand:DI 0 "register_operand" "=rk") (zero_extend:DI (minus:SI (match_operand:SI 3 "register_operand" "r") (mult:SI --- 1699,1705 ---- ;; zero_extend version of above (define_insn "*sub_mul_imm_si_uxtw" ! [(set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (minus:SI (match_operand:SI 3 "register_operand" "r") (mult:SI diff -Nrcpad gcc-4.8.1/gcc/config/aarch64/arm_neon.h gcc-4.8.2/gcc/config/aarch64/arm_neon.h *** gcc-4.8.1/gcc/config/aarch64/arm_neon.h Wed Apr 24 15:47:21 2013 --- gcc-4.8.2/gcc/config/aarch64/arm_neon.h Sat Oct 12 08:23:31 2013 *************** vld1_dup_u64 (const uint64_t * a) *** 8518,8545 **** return result; } - __extension__ static __inline float32x2_t __attribute__ ((__always_inline__)) - vld1_f32 (const float32_t * a) - { - float32x2_t result; - __asm__ ("ld1 {%0.2s}, %1" - : "=w"(result) - : "Utv"(({const float32x2_t *_a = (float32x2_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline float64x1_t __attribute__ ((__always_inline__)) - vld1_f64 (const float64_t * a) - { - float64x1_t result; - __asm__ ("ld1 {%0.1d}, %1" - : "=w"(result) - : "Utv"(*a) - : /* No clobbers */); - return result; - } - #define vld1_lane_f32(a, b, c) \ __extension__ \ ({ \ --- 8518,8523 ---- *************** vld1_f64 (const float64_t * a) *** 8696,8811 **** result; \ }) - __extension__ static __inline poly8x8_t __attribute__ ((__always_inline__)) - vld1_p8 (const poly8_t * a) - { - poly8x8_t result; - __asm__ ("ld1 {%0.8b}, %1" - : "=w"(result) - : "Utv"(({const poly8x8_t *_a = (poly8x8_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline poly16x4_t __attribute__ ((__always_inline__)) - vld1_p16 (const poly16_t * a) - { - poly16x4_t result; - __asm__ ("ld1 {%0.4h}, %1" - : "=w"(result) - : "Utv"(({const poly16x4_t *_a = (poly16x4_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline int8x8_t __attribute__ ((__always_inline__)) - vld1_s8 (const int8_t * a) - { - int8x8_t result; - __asm__ ("ld1 {%0.8b}, %1" - : "=w"(result) - : "Utv"(({const int8x8_t *_a = (int8x8_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline int16x4_t __attribute__ ((__always_inline__)) - vld1_s16 (const int16_t * a) - { - int16x4_t result; - __asm__ ("ld1 {%0.4h}, %1" - : "=w"(result) - : "Utv"(({const int16x4_t *_a = (int16x4_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline int32x2_t __attribute__ ((__always_inline__)) - vld1_s32 (const int32_t * a) - { - int32x2_t result; - __asm__ ("ld1 {%0.2s}, %1" - : "=w"(result) - : "Utv"(({const int32x2_t *_a = (int32x2_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline int64x1_t __attribute__ ((__always_inline__)) - vld1_s64 (const int64_t * a) - { - int64x1_t result; - __asm__ ("ld1 {%0.1d}, %1" - : "=w"(result) - : "Utv"(*a) - : /* No clobbers */); - return result; - } - - __extension__ static __inline uint8x8_t __attribute__ ((__always_inline__)) - vld1_u8 (const uint8_t * a) - { - uint8x8_t result; - __asm__ ("ld1 {%0.8b}, %1" - : "=w"(result) - : "Utv"(({const uint8x8_t *_a = (uint8x8_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline uint16x4_t __attribute__ ((__always_inline__)) - vld1_u16 (const uint16_t * a) - { - uint16x4_t result; - __asm__ ("ld1 {%0.4h}, %1" - : "=w"(result) - : "Utv"(({const uint16x4_t *_a = (uint16x4_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline uint32x2_t __attribute__ ((__always_inline__)) - vld1_u32 (const uint32_t * a) - { - uint32x2_t result; - __asm__ ("ld1 {%0.2s}, %1" - : "=w"(result) - : "Utv"(({const uint32x2_t *_a = (uint32x2_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline uint64x1_t __attribute__ ((__always_inline__)) - vld1_u64 (const uint64_t * a) - { - uint64x1_t result; - __asm__ ("ld1 {%0.1d}, %1" - : "=w"(result) - : "Utv"(*a) - : /* No clobbers */); - return result; - } - __extension__ static __inline float32x4_t __attribute__ ((__always_inline__)) vld1q_dup_f32 (const float32_t * a) { --- 8674,8679 ---- *************** vld1q_dup_u64 (const uint64_t * a) *** 8938,8965 **** return result; } - __extension__ static __inline float32x4_t __attribute__ ((__always_inline__)) - vld1q_f32 (const float32_t * a) - { - float32x4_t result; - __asm__ ("ld1 {%0.4s}, %1" - : "=w"(result) - : "Utv"(({const float32x4_t *_a = (float32x4_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline float64x2_t __attribute__ ((__always_inline__)) - vld1q_f64 (const float64_t * a) - { - float64x2_t result; - __asm__ ("ld1 {%0.2d}, %1" - : "=w"(result) - : "Utv"(({const float64x2_t *_a = (float64x2_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - #define vld1q_lane_f32(a, b, c) \ __extension__ \ ({ \ --- 8806,8811 ---- *************** vld1q_f64 (const float64_t * a) *** 9116,9231 **** result; \ }) - __extension__ static __inline poly8x16_t __attribute__ ((__always_inline__)) - vld1q_p8 (const poly8_t * a) - { - poly8x16_t result; - __asm__ ("ld1 {%0.16b}, %1" - : "=w"(result) - : "Utv"(({const poly8x16_t *_a = (poly8x16_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline poly16x8_t __attribute__ ((__always_inline__)) - vld1q_p16 (const poly16_t * a) - { - poly16x8_t result; - __asm__ ("ld1 {%0.16b}, %1" - : "=w"(result) - : "Utv"(({const poly16x8_t *_a = (poly16x8_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline int8x16_t __attribute__ ((__always_inline__)) - vld1q_s8 (const int8_t * a) - { - int8x16_t result; - __asm__ ("ld1 {%0.16b}, %1" - : "=w"(result) - : "Utv"(({const int8x16_t *_a = (int8x16_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline int16x8_t __attribute__ ((__always_inline__)) - vld1q_s16 (const int16_t * a) - { - int16x8_t result; - __asm__ ("ld1 {%0.8h}, %1" - : "=w"(result) - : "Utv"(({const int16x8_t *_a = (int16x8_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline int32x4_t __attribute__ ((__always_inline__)) - vld1q_s32 (const int32_t * a) - { - int32x4_t result; - __asm__ ("ld1 {%0.4s}, %1" - : "=w"(result) - : "Utv"(({const int32x4_t *_a = (int32x4_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline int64x2_t __attribute__ ((__always_inline__)) - vld1q_s64 (const int64_t * a) - { - int64x2_t result; - __asm__ ("ld1 {%0.2d}, %1" - : "=w"(result) - : "Utv"(({const int64x2_t *_a = (int64x2_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline uint8x16_t __attribute__ ((__always_inline__)) - vld1q_u8 (const uint8_t * a) - { - uint8x16_t result; - __asm__ ("ld1 {%0.16b}, %1" - : "=w"(result) - : "Utv"(({const uint8x16_t *_a = (uint8x16_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline uint16x8_t __attribute__ ((__always_inline__)) - vld1q_u16 (const uint16_t * a) - { - uint16x8_t result; - __asm__ ("ld1 {%0.8h}, %1" - : "=w"(result) - : "Utv"(({const uint16x8_t *_a = (uint16x8_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline uint32x4_t __attribute__ ((__always_inline__)) - vld1q_u32 (const uint32_t * a) - { - uint32x4_t result; - __asm__ ("ld1 {%0.4s}, %1" - : "=w"(result) - : "Utv"(({const uint32x4_t *_a = (uint32x4_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - - __extension__ static __inline uint64x2_t __attribute__ ((__always_inline__)) - vld1q_u64 (const uint64_t * a) - { - uint64x2_t result; - __asm__ ("ld1 {%0.2d}, %1" - : "=w"(result) - : "Utv"(({const uint64x2_t *_a = (uint64x2_t *) a; *_a;})) - : /* No clobbers */); - return result; - } - __extension__ static __inline float32x2_t __attribute__ ((__always_inline__)) vmaxnm_f32 (float32x2_t a, float32x2_t b) { --- 8962,8967 ---- *************** vrsubhn_u64 (uint64x2_t a, uint64x2_t b) *** 16285,16308 **** result; \ }) - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1_f32 (float32_t * a, float32x2_t b) - { - __asm__ ("st1 {%1.2s},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1_f64 (float64_t * a, float64x1_t b) - { - __asm__ ("st1 {%1.1d},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - #define vst1_lane_f32(a, b, c) \ __extension__ \ ({ \ --- 16021,16026 ---- *************** vst1_f64 (float64_t * a, float64x1_t b) *** 16435,16547 **** : "memory"); \ }) - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1_p8 (poly8_t * a, poly8x8_t b) - { - __asm__ ("st1 {%1.8b},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1_p16 (poly16_t * a, poly16x4_t b) - { - __asm__ ("st1 {%1.4h},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1_s8 (int8_t * a, int8x8_t b) - { - __asm__ ("st1 {%1.8b},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1_s16 (int16_t * a, int16x4_t b) - { - __asm__ ("st1 {%1.4h},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1_s32 (int32_t * a, int32x2_t b) - { - __asm__ ("st1 {%1.2s},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1_s64 (int64_t * a, int64x1_t b) - { - __asm__ ("st1 {%1.1d},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1_u8 (uint8_t * a, uint8x8_t b) - { - __asm__ ("st1 {%1.8b},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1_u16 (uint16_t * a, uint16x4_t b) - { - __asm__ ("st1 {%1.4h},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1_u32 (uint32_t * a, uint32x2_t b) - { - __asm__ ("st1 {%1.2s},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1_u64 (uint64_t * a, uint64x1_t b) - { - __asm__ ("st1 {%1.1d},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1q_f32 (float32_t * a, float32x4_t b) - { - __asm__ ("st1 {%1.4s},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1q_f64 (float64_t * a, float64x2_t b) - { - __asm__ ("st1 {%1.2d},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } #define vst1q_lane_f32(a, b, c) \ __extension__ \ --- 16153,16158 ---- *************** vst1q_f64 (float64_t * a, float64x2_t b) *** 16675,16770 **** : "memory"); \ }) - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1q_p8 (poly8_t * a, poly8x16_t b) - { - __asm__ ("st1 {%1.16b},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1q_p16 (poly16_t * a, poly16x8_t b) - { - __asm__ ("st1 {%1.8h},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1q_s8 (int8_t * a, int8x16_t b) - { - __asm__ ("st1 {%1.16b},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1q_s16 (int16_t * a, int16x8_t b) - { - __asm__ ("st1 {%1.8h},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1q_s32 (int32_t * a, int32x4_t b) - { - __asm__ ("st1 {%1.4s},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1q_s64 (int64_t * a, int64x2_t b) - { - __asm__ ("st1 {%1.2d},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1q_u8 (uint8_t * a, uint8x16_t b) - { - __asm__ ("st1 {%1.16b},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1q_u16 (uint16_t * a, uint16x8_t b) - { - __asm__ ("st1 {%1.8h},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1q_u32 (uint32_t * a, uint32x4_t b) - { - __asm__ ("st1 {%1.4s},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - - __extension__ static __inline void __attribute__ ((__always_inline__)) - vst1q_u64 (uint64_t * a, uint64x2_t b) - { - __asm__ ("st1 {%1.2d},[%0]" - : - : "r"(a), "w"(b) - : "memory"); - } - __extension__ static __inline int8x16_t __attribute__ ((__always_inline__)) vsubhn_high_s16 (int8x8_t a, int16x8_t b, int16x8_t c) { --- 16286,16291 ---- *************** vtbx1_s8 (int8x8_t r, int8x8_t tab, int8 *** 19669,19675 **** "cmhs %0.8b, %3.8b, %0.8b\n\t" "tbl %1.8b, {%2.16b}, %3.8b\n\t" "bsl %0.8b, %4.8b, %1.8b\n\t" ! : "+w"(result), "=w"(tmp1) : "w"(temp), "w"(idx), "w"(r) : /* No clobbers */); return result; --- 19190,19196 ---- "cmhs %0.8b, %3.8b, %0.8b\n\t" "tbl %1.8b, {%2.16b}, %3.8b\n\t" "bsl %0.8b, %4.8b, %1.8b\n\t" ! : "+w"(result), "=&w"(tmp1) : "w"(temp), "w"(idx), "w"(r) : /* No clobbers */); return result; *************** vtbx1_u8 (uint8x8_t r, uint8x8_t tab, ui *** 19685,19691 **** "cmhs %0.8b, %3.8b, %0.8b\n\t" "tbl %1.8b, {%2.16b}, %3.8b\n\t" "bsl %0.8b, %4.8b, %1.8b\n\t" ! : "+w"(result), "=w"(tmp1) : "w"(temp), "w"(idx), "w"(r) : /* No clobbers */); return result; --- 19206,19212 ---- "cmhs %0.8b, %3.8b, %0.8b\n\t" "tbl %1.8b, {%2.16b}, %3.8b\n\t" "bsl %0.8b, %4.8b, %1.8b\n\t" ! : "+w"(result), "=&w"(tmp1) : "w"(temp), "w"(idx), "w"(r) : /* No clobbers */); return result; *************** vtbx1_p8 (poly8x8_t r, poly8x8_t tab, ui *** 19701,19707 **** "cmhs %0.8b, %3.8b, %0.8b\n\t" "tbl %1.8b, {%2.16b}, %3.8b\n\t" "bsl %0.8b, %4.8b, %1.8b\n\t" ! : "+w"(result), "=w"(tmp1) : "w"(temp), "w"(idx), "w"(r) : /* No clobbers */); return result; --- 19222,19228 ---- "cmhs %0.8b, %3.8b, %0.8b\n\t" "tbl %1.8b, {%2.16b}, %3.8b\n\t" "bsl %0.8b, %4.8b, %1.8b\n\t" ! : "+w"(result), "=&w"(tmp1) : "w"(temp), "w"(idx), "w"(r) : /* No clobbers */); return result; *************** vtbx3_s8 (int8x8_t r, int8x8x3_t tab, in *** 19756,19762 **** "cmhs %0.8b, %3.8b, %0.8b\n\t" "tbl %1.8b, {v16.16b - v17.16b}, %3.8b\n\t" "bsl %0.8b, %4.8b, %1.8b\n\t" ! : "+w"(result), "=w"(tmp1) : "Q"(temp), "w"(idx), "w"(r) : "v16", "v17", "memory"); return result; --- 19277,19283 ---- "cmhs %0.8b, %3.8b, %0.8b\n\t" "tbl %1.8b, {v16.16b - v17.16b}, %3.8b\n\t" "bsl %0.8b, %4.8b, %1.8b\n\t" ! : "+w"(result), "=&w"(tmp1) : "Q"(temp), "w"(idx), "w"(r) : "v16", "v17", "memory"); return result; *************** vtbx3_u8 (uint8x8_t r, uint8x8x3_t tab, *** 19775,19781 **** "cmhs %0.8b, %3.8b, %0.8b\n\t" "tbl %1.8b, {v16.16b - v17.16b}, %3.8b\n\t" "bsl %0.8b, %4.8b, %1.8b\n\t" ! : "+w"(result), "=w"(tmp1) : "Q"(temp), "w"(idx), "w"(r) : "v16", "v17", "memory"); return result; --- 19296,19302 ---- "cmhs %0.8b, %3.8b, %0.8b\n\t" "tbl %1.8b, {v16.16b - v17.16b}, %3.8b\n\t" "bsl %0.8b, %4.8b, %1.8b\n\t" ! : "+w"(result), "=&w"(tmp1) : "Q"(temp), "w"(idx), "w"(r) : "v16", "v17", "memory"); return result; *************** vtbx3_p8 (poly8x8_t r, poly8x8x3_t tab, *** 19794,19800 **** "cmhs %0.8b, %3.8b, %0.8b\n\t" "tbl %1.8b, {v16.16b - v17.16b}, %3.8b\n\t" "bsl %0.8b, %4.8b, %1.8b\n\t" ! : "+w"(result), "=w"(tmp1) : "Q"(temp), "w"(idx), "w"(r) : "v16", "v17", "memory"); return result; --- 19315,19321 ---- "cmhs %0.8b, %3.8b, %0.8b\n\t" "tbl %1.8b, {v16.16b - v17.16b}, %3.8b\n\t" "bsl %0.8b, %4.8b, %1.8b\n\t" ! : "+w"(result), "=&w"(tmp1) : "Q"(temp), "w"(idx), "w"(r) : "v16", "v17", "memory"); return result; *************** vdupd_lane_u64 (uint64x2_t a, int const *** 20537,20542 **** --- 20058,20222 ---- return (uint64x1_t) __builtin_aarch64_dup_lanedi ((int64x2_t) a, b); } + /* vld1 */ + + __extension__ static __inline float32x2_t __attribute__ ((__always_inline__)) + vld1_f32 (const float32_t *a) + { + return __builtin_aarch64_ld1v2sf ((const __builtin_aarch64_simd_sf *) a); + } + + __extension__ static __inline float64x1_t __attribute__ ((__always_inline__)) + vld1_f64 (const float64_t *a) + { + return *a; + } + + __extension__ static __inline poly8x8_t __attribute__ ((__always_inline__)) + vld1_p8 (const poly8_t *a) + { + return (poly8x8_t) + __builtin_aarch64_ld1v8qi ((const __builtin_aarch64_simd_qi *) a); + } + + __extension__ static __inline poly16x4_t __attribute__ ((__always_inline__)) + vld1_p16 (const poly16_t *a) + { + return (poly16x4_t) + __builtin_aarch64_ld1v4hi ((const __builtin_aarch64_simd_hi *) a); + } + + __extension__ static __inline int8x8_t __attribute__ ((__always_inline__)) + vld1_s8 (const int8_t *a) + { + return __builtin_aarch64_ld1v8qi ((const __builtin_aarch64_simd_qi *) a); + } + + __extension__ static __inline int16x4_t __attribute__ ((__always_inline__)) + vld1_s16 (const int16_t *a) + { + return __builtin_aarch64_ld1v4hi ((const __builtin_aarch64_simd_hi *) a); + } + + __extension__ static __inline int32x2_t __attribute__ ((__always_inline__)) + vld1_s32 (const int32_t *a) + { + return __builtin_aarch64_ld1v2si ((const __builtin_aarch64_simd_si *) a); + } + + __extension__ static __inline int64x1_t __attribute__ ((__always_inline__)) + vld1_s64 (const int64_t *a) + { + return *a; + } + + __extension__ static __inline uint8x8_t __attribute__ ((__always_inline__)) + vld1_u8 (const uint8_t *a) + { + return (uint8x8_t) + __builtin_aarch64_ld1v8qi ((const __builtin_aarch64_simd_qi *) a); + } + + __extension__ static __inline uint16x4_t __attribute__ ((__always_inline__)) + vld1_u16 (const uint16_t *a) + { + return (uint16x4_t) + __builtin_aarch64_ld1v4hi ((const __builtin_aarch64_simd_hi *) a); + } + + __extension__ static __inline uint32x2_t __attribute__ ((__always_inline__)) + vld1_u32 (const uint32_t *a) + { + return (uint32x2_t) + __builtin_aarch64_ld1v2si ((const __builtin_aarch64_simd_si *) a); + } + + __extension__ static __inline uint64x1_t __attribute__ ((__always_inline__)) + vld1_u64 (const uint64_t *a) + { + return *a; + } + + /* vld1q */ + + __extension__ static __inline float32x4_t __attribute__ ((__always_inline__)) + vld1q_f32 (const float32_t *a) + { + return __builtin_aarch64_ld1v4sf ((const __builtin_aarch64_simd_sf *) a); + } + + __extension__ static __inline float64x2_t __attribute__ ((__always_inline__)) + vld1q_f64 (const float64_t *a) + { + return __builtin_aarch64_ld1v2df ((const __builtin_aarch64_simd_df *) a); + } + + __extension__ static __inline poly8x16_t __attribute__ ((__always_inline__)) + vld1q_p8 (const poly8_t *a) + { + return (poly8x16_t) + __builtin_aarch64_ld1v16qi ((const __builtin_aarch64_simd_qi *) a); + } + + __extension__ static __inline poly16x8_t __attribute__ ((__always_inline__)) + vld1q_p16 (const poly16_t *a) + { + return (poly16x8_t) + __builtin_aarch64_ld1v8hi ((const __builtin_aarch64_simd_hi *) a); + } + + __extension__ static __inline int8x16_t __attribute__ ((__always_inline__)) + vld1q_s8 (const int8_t *a) + { + return __builtin_aarch64_ld1v16qi ((const __builtin_aarch64_simd_qi *) a); + } + + __extension__ static __inline int16x8_t __attribute__ ((__always_inline__)) + vld1q_s16 (const int16_t *a) + { + return __builtin_aarch64_ld1v8hi ((const __builtin_aarch64_simd_hi *) a); + } + + __extension__ static __inline int32x4_t __attribute__ ((__always_inline__)) + vld1q_s32 (const int32_t *a) + { + return __builtin_aarch64_ld1v4si ((const __builtin_aarch64_simd_si *) a); + } + + __extension__ static __inline int64x2_t __attribute__ ((__always_inline__)) + vld1q_s64 (const int64_t *a) + { + return __builtin_aarch64_ld1v2di ((const __builtin_aarch64_simd_di *) a); + } + + __extension__ static __inline uint8x16_t __attribute__ ((__always_inline__)) + vld1q_u8 (const uint8_t *a) + { + return (uint8x16_t) + __builtin_aarch64_ld1v16qi ((const __builtin_aarch64_simd_qi *) a); + } + + __extension__ static __inline uint16x8_t __attribute__ ((__always_inline__)) + vld1q_u16 (const uint16_t *a) + { + return (uint16x8_t) + __builtin_aarch64_ld1v8hi ((const __builtin_aarch64_simd_hi *) a); + } + + __extension__ static __inline uint32x4_t __attribute__ ((__always_inline__)) + vld1q_u32 (const uint32_t *a) + { + return (uint32x4_t) + __builtin_aarch64_ld1v4si ((const __builtin_aarch64_simd_si *) a); + } + + __extension__ static __inline uint64x2_t __attribute__ ((__always_inline__)) + vld1q_u64 (const uint64_t *a) + { + return (uint64x2_t) + __builtin_aarch64_ld1v2di ((const __builtin_aarch64_simd_di *) a); + } + /* vldn */ __extension__ static __inline int64x1x2_t __attribute__ ((__always_inline__)) *************** vsrid_n_u64 (uint64x1_t __a, uint64x1_t *** 24307,24312 **** --- 23987,24151 ---- return (uint64x1_t) __builtin_aarch64_usri_ndi (__a, __b, __c); } + /* vst1 */ + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1_f32 (float32_t *a, float32x2_t b) + { + __builtin_aarch64_st1v2sf ((__builtin_aarch64_simd_sf *) a, b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1_f64 (float64_t *a, float64x1_t b) + { + *a = b; + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1_p8 (poly8_t *a, poly8x8_t b) + { + __builtin_aarch64_st1v8qi ((__builtin_aarch64_simd_qi *) a, + (int8x8_t) b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1_p16 (poly16_t *a, poly16x4_t b) + { + __builtin_aarch64_st1v4hi ((__builtin_aarch64_simd_hi *) a, + (int16x4_t) b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1_s8 (int8_t *a, int8x8_t b) + { + __builtin_aarch64_st1v8qi ((__builtin_aarch64_simd_qi *) a, b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1_s16 (int16_t *a, int16x4_t b) + { + __builtin_aarch64_st1v4hi ((__builtin_aarch64_simd_hi *) a, b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1_s32 (int32_t *a, int32x2_t b) + { + __builtin_aarch64_st1v2si ((__builtin_aarch64_simd_si *) a, b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1_s64 (int64_t *a, int64x1_t b) + { + *a = b; + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1_u8 (uint8_t *a, uint8x8_t b) + { + __builtin_aarch64_st1v8qi ((__builtin_aarch64_simd_qi *) a, + (int8x8_t) b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1_u16 (uint16_t *a, uint16x4_t b) + { + __builtin_aarch64_st1v4hi ((__builtin_aarch64_simd_hi *) a, + (int16x4_t) b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1_u32 (uint32_t *a, uint32x2_t b) + { + __builtin_aarch64_st1v2si ((__builtin_aarch64_simd_si *) a, + (int32x2_t) b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1_u64 (uint64_t *a, uint64x1_t b) + { + *a = b; + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1q_f32 (float32_t *a, float32x4_t b) + { + __builtin_aarch64_st1v4sf ((__builtin_aarch64_simd_sf *) a, b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1q_f64 (float64_t *a, float64x2_t b) + { + __builtin_aarch64_st1v2df ((__builtin_aarch64_simd_df *) a, b); + } + + /* vst1q */ + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1q_p8 (poly8_t *a, poly8x16_t b) + { + __builtin_aarch64_st1v16qi ((__builtin_aarch64_simd_qi *) a, + (int8x16_t) b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1q_p16 (poly16_t *a, poly16x8_t b) + { + __builtin_aarch64_st1v8hi ((__builtin_aarch64_simd_hi *) a, + (int16x8_t) b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1q_s8 (int8_t *a, int8x16_t b) + { + __builtin_aarch64_st1v16qi ((__builtin_aarch64_simd_qi *) a, b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1q_s16 (int16_t *a, int16x8_t b) + { + __builtin_aarch64_st1v8hi ((__builtin_aarch64_simd_hi *) a, b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1q_s32 (int32_t *a, int32x4_t b) + { + __builtin_aarch64_st1v4si ((__builtin_aarch64_simd_si *) a, b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1q_s64 (int64_t *a, int64x2_t b) + { + __builtin_aarch64_st1v2di ((__builtin_aarch64_simd_di *) a, b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1q_u8 (uint8_t *a, uint8x16_t b) + { + __builtin_aarch64_st1v16qi ((__builtin_aarch64_simd_qi *) a, + (int8x16_t) b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1q_u16 (uint16_t *a, uint16x8_t b) + { + __builtin_aarch64_st1v8hi ((__builtin_aarch64_simd_hi *) a, + (int16x8_t) b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1q_u32 (uint32_t *a, uint32x4_t b) + { + __builtin_aarch64_st1v4si ((__builtin_aarch64_simd_si *) a, + (int32x4_t) b); + } + + __extension__ static __inline void __attribute__ ((__always_inline__)) + vst1q_u64 (uint64_t *a, uint64x2_t b) + { + __builtin_aarch64_st1v2di ((__builtin_aarch64_simd_di *) a, + (int64x2_t) b); + } + /* vstn */ __extension__ static __inline void diff -Nrcpad gcc-4.8.1/gcc/config/alpha/alpha.c gcc-4.8.2/gcc/config/alpha/alpha.c *** gcc-4.8.1/gcc/config/alpha/alpha.c Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/alpha/alpha.c Mon Sep 2 15:11:47 2013 *************** alpha_emit_conditional_move (rtx cmp, en *** 2659,2664 **** --- 2659,2665 ---- cmp_mode = cmp_mode == DImode ? DFmode : DImode; op0 = gen_lowpart (cmp_mode, tem); op1 = CONST0_RTX (cmp_mode); + cmp = gen_rtx_fmt_ee (code, VOIDmode, op0, op1); local_fast_math = 1; } *************** alpha_emit_conditional_move (rtx cmp, en *** 2700,2711 **** break; case GE: case GT: case GEU: case GTU: ! /* These must be swapped. */ ! if (op1 != CONST0_RTX (cmp_mode)) ! { ! code = swap_condition (code); ! tem = op0, op0 = op1, op1 = tem; ! } break; default: --- 2701,2712 ---- break; case GE: case GT: case GEU: case GTU: ! /* These normally need swapping, but for integer zero we have ! special patterns that recognize swapped operands. */ ! if (cmp_mode == DImode && op1 == const0_rtx) ! break; ! code = swap_condition (code); ! tem = op0, op0 = op1, op1 = tem; break; default: *************** alpha_emit_xfloating_compare (enum rtx_c *** 3067,3078 **** operands[1] = op1; out = gen_reg_rtx (DImode); ! /* What's actually returned is -1,0,1, not a proper boolean value, ! so use an EXPR_LIST as with a generic libcall instead of a ! comparison type expression. */ ! note = gen_rtx_EXPR_LIST (VOIDmode, op1, NULL_RTX); ! note = gen_rtx_EXPR_LIST (VOIDmode, op0, note); ! note = gen_rtx_EXPR_LIST (VOIDmode, func, note); alpha_emit_xfloating_libcall (func, out, operands, 2, note); return out; --- 3068,3076 ---- operands[1] = op1; out = gen_reg_rtx (DImode); ! /* What's actually returned is -1,0,1, not a proper boolean value. */ ! note = gen_rtx_fmt_ee (cmp_code, VOIDmode, op0, op1); ! note = gen_rtx_UNSPEC (DImode, gen_rtvec (1, note), UNSPEC_XFLT_COMPARE); alpha_emit_xfloating_libcall (func, out, operands, 2, note); return out; diff -Nrcpad gcc-4.8.1/gcc/config/alpha/alpha.md gcc-4.8.2/gcc/config/alpha/alpha.md *** gcc-4.8.1/gcc/config/alpha/alpha.md Fri Feb 1 16:34:28 2013 --- gcc-4.8.2/gcc/config/alpha/alpha.md Fri Jun 7 06:26:42 2013 *************** *** 23,28 **** --- 23,29 ---- ;; Uses of UNSPEC in this file: (define_c_enum "unspec" [ + UNSPEC_XFLT_COMPARE UNSPEC_ARG_HOME UNSPEC_LDGP1 UNSPEC_INSXH diff -Nrcpad gcc-4.8.1/gcc/config/arm/arm.c gcc-4.8.2/gcc/config/arm/arm.c *** gcc-4.8.1/gcc/config/arm/arm.c Fri May 24 15:15:44 2013 --- gcc-4.8.2/gcc/config/arm/arm.c Wed Sep 18 16:37:35 2013 *************** aapcs_vfp_allocate (CUMULATIVE_ARGS *pcu *** 4459,4465 **** if (((pcum->aapcs_vfp_regs_free >> regno) & mask) == mask) { pcum->aapcs_vfp_reg_alloc = mask << regno; ! if (mode == BLKmode || (mode == TImode && !TARGET_NEON)) { int i; int rcount = pcum->aapcs_vfp_rcount; --- 4459,4467 ---- if (((pcum->aapcs_vfp_regs_free >> regno) & mask) == mask) { pcum->aapcs_vfp_reg_alloc = mask << regno; ! if (mode == BLKmode ! || (mode == TImode && ! TARGET_NEON) ! || ! arm_hard_regno_mode_ok (FIRST_VFP_REGNUM + regno, mode)) { int i; int rcount = pcum->aapcs_vfp_rcount; *************** static inline int *** 7094,7100 **** thumb1_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer) { enum machine_mode mode = GET_MODE (x); ! int total; switch (code) { --- 7096,7102 ---- thumb1_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer) { enum machine_mode mode = GET_MODE (x); ! int total, words; switch (code) { *************** thumb1_rtx_costs (rtx x, enum rtx_code c *** 7102,7107 **** --- 7104,7111 ---- case ASHIFTRT: case LSHIFTRT: case ROTATERT: + return (mode == SImode) ? COSTS_N_INSNS (1) : COSTS_N_INSNS (2); + case PLUS: case MINUS: case COMPARE: *************** thumb1_rtx_costs (rtx x, enum rtx_code c *** 7125,7131 **** return COSTS_N_INSNS (1) + 16; case SET: ! return (COSTS_N_INSNS (1) + 4 * ((MEM_P (SET_SRC (x))) + MEM_P (SET_DEST (x)))); --- 7129,7138 ---- return COSTS_N_INSNS (1) + 16; case SET: ! /* A SET doesn't have a mode, so let's look at the SET_DEST to get ! the mode. */ ! words = ARM_NUM_INTS (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))); ! return (COSTS_N_INSNS (words) + 4 * ((MEM_P (SET_SRC (x))) + MEM_P (SET_DEST (x)))); *************** static inline int *** 7822,7827 **** --- 7829,7835 ---- thumb1_size_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer) { enum machine_mode mode = GET_MODE (x); + int words; switch (code) { *************** thumb1_size_rtx_costs (rtx x, enum rtx_c *** 7829,7836 **** --- 7837,7855 ---- case ASHIFTRT: case LSHIFTRT: case ROTATERT: + return (mode == SImode) ? COSTS_N_INSNS (1) : COSTS_N_INSNS (2); + case PLUS: case MINUS: + /* Thumb-1 needs two instructions to fulfill shiftadd/shiftsub0/shiftsub1 + defined by RTL expansion, especially for the expansion of + multiplication. */ + if ((GET_CODE (XEXP (x, 0)) == MULT + && power_of_two_operand (XEXP (XEXP (x,0),1), SImode)) + || (GET_CODE (XEXP (x, 1)) == MULT + && power_of_two_operand (XEXP (XEXP (x, 1), 1), SImode))) + return COSTS_N_INSNS (2); + /* On purpose fall through for normal RTX. */ case COMPARE: case NEG: case NOT: *************** thumb1_size_rtx_costs (rtx x, enum rtx_c *** 7847,7853 **** return COSTS_N_INSNS (1); case SET: ! return (COSTS_N_INSNS (1) + 4 * ((MEM_P (SET_SRC (x))) + MEM_P (SET_DEST (x)))); --- 7866,7875 ---- return COSTS_N_INSNS (1); case SET: ! /* A SET doesn't have a mode, so let's look at the SET_DEST to get ! the mode. */ ! words = ARM_NUM_INTS (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))); ! return (COSTS_N_INSNS (words) + 4 * ((MEM_P (SET_SRC (x))) + MEM_P (SET_DEST (x)))); *************** arm_expand_prologue (void) *** 17453,17459 **** } } ! if (current_tune->prefer_ldrd_strd && !optimize_function_for_size_p (cfun)) { if (TARGET_THUMB2) --- 17475,17482 ---- } } ! if (TARGET_LDRD ! && current_tune->prefer_ldrd_strd && !optimize_function_for_size_p (cfun)) { if (TARGET_THUMB2) *************** arm_expand_epilogue (bool really_return) *** 23767,23773 **** } else { ! if (current_tune->prefer_ldrd_strd && !optimize_function_for_size_p (cfun)) { if (TARGET_THUMB2) --- 23790,23797 ---- } else { ! if (TARGET_LDRD ! && current_tune->prefer_ldrd_strd && !optimize_function_for_size_p (cfun)) { if (TARGET_THUMB2) diff -Nrcpad gcc-4.8.1/gcc/config/arm/neon.md gcc-4.8.2/gcc/config/arm/neon.md *** gcc-4.8.1/gcc/config/arm/neon.md Thu Apr 4 14:34:01 2013 --- gcc-4.8.2/gcc/config/arm/neon.md Fri Aug 9 06:59:01 2013 *************** *** 244,250 **** [(set (match_operand:VDQX 0 "neon_struct_or_register_operand") (unspec:VDQX [(match_operand:VDQX 1 "neon_struct_or_register_operand")] UNSPEC_MISALIGNED_ACCESS))] ! "TARGET_NEON && !BYTES_BIG_ENDIAN" { /* This pattern is not permitted to fail during expansion: if both arguments are non-registers (e.g. memory := constant, which can be created by the --- 244,250 ---- [(set (match_operand:VDQX 0 "neon_struct_or_register_operand") (unspec:VDQX [(match_operand:VDQX 1 "neon_struct_or_register_operand")] UNSPEC_MISALIGNED_ACCESS))] ! "TARGET_NEON && !BYTES_BIG_ENDIAN && unaligned_access" { /* This pattern is not permitted to fail during expansion: if both arguments are non-registers (e.g. memory := constant, which can be created by the *************** *** 258,264 **** [(set (match_operand:VDX 0 "neon_struct_operand" "=Um") (unspec:VDX [(match_operand:VDX 1 "s_register_operand" " w")] UNSPEC_MISALIGNED_ACCESS))] ! "TARGET_NEON && !BYTES_BIG_ENDIAN" "vst1.\t{%P1}, %A0" [(set_attr "neon_type" "neon_vst1_1_2_regs_vst2_2_regs")]) --- 258,264 ---- [(set (match_operand:VDX 0 "neon_struct_operand" "=Um") (unspec:VDX [(match_operand:VDX 1 "s_register_operand" " w")] UNSPEC_MISALIGNED_ACCESS))] ! "TARGET_NEON && !BYTES_BIG_ENDIAN && unaligned_access" "vst1.\t{%P1}, %A0" [(set_attr "neon_type" "neon_vst1_1_2_regs_vst2_2_regs")]) *************** *** 266,272 **** [(set (match_operand:VDX 0 "s_register_operand" "=w") (unspec:VDX [(match_operand:VDX 1 "neon_struct_operand" " Um")] UNSPEC_MISALIGNED_ACCESS))] ! "TARGET_NEON && !BYTES_BIG_ENDIAN" "vld1.\t{%P0}, %A1" [(set_attr "neon_type" "neon_vld1_1_2_regs")]) --- 266,272 ---- [(set (match_operand:VDX 0 "s_register_operand" "=w") (unspec:VDX [(match_operand:VDX 1 "neon_struct_operand" " Um")] UNSPEC_MISALIGNED_ACCESS))] ! "TARGET_NEON && !BYTES_BIG_ENDIAN && unaligned_access" "vld1.\t{%P0}, %A1" [(set_attr "neon_type" "neon_vld1_1_2_regs")]) *************** *** 274,280 **** [(set (match_operand:VQX 0 "neon_struct_operand" "=Um") (unspec:VQX [(match_operand:VQX 1 "s_register_operand" " w")] UNSPEC_MISALIGNED_ACCESS))] ! "TARGET_NEON && !BYTES_BIG_ENDIAN" "vst1.\t{%q1}, %A0" [(set_attr "neon_type" "neon_vst1_1_2_regs_vst2_2_regs")]) --- 274,280 ---- [(set (match_operand:VQX 0 "neon_struct_operand" "=Um") (unspec:VQX [(match_operand:VQX 1 "s_register_operand" " w")] UNSPEC_MISALIGNED_ACCESS))] ! "TARGET_NEON && !BYTES_BIG_ENDIAN && unaligned_access" "vst1.\t{%q1}, %A0" [(set_attr "neon_type" "neon_vst1_1_2_regs_vst2_2_regs")]) *************** *** 282,288 **** [(set (match_operand:VQX 0 "s_register_operand" "=w") (unspec:VQX [(match_operand:VQX 1 "neon_struct_operand" " Um")] UNSPEC_MISALIGNED_ACCESS))] ! "TARGET_NEON && !BYTES_BIG_ENDIAN" "vld1.\t{%q0}, %A1" [(set_attr "neon_type" "neon_vld1_1_2_regs")]) --- 282,288 ---- [(set (match_operand:VQX 0 "s_register_operand" "=w") (unspec:VQX [(match_operand:VQX 1 "neon_struct_operand" " Um")] UNSPEC_MISALIGNED_ACCESS))] ! "TARGET_NEON && !BYTES_BIG_ENDIAN && unaligned_access" "vld1.\t{%q0}, %A1" [(set_attr "neon_type" "neon_vld1_1_2_regs")]) *************** *** 1732,1737 **** --- 1732,1738 ---- ? 3 : 1; rtx magic_rtx = GEN_INT (magic_word); int inverse = 0; + int use_zero_form = 0; int swap_bsl_operands = 0; rtx mask = gen_reg_rtx (mode); rtx tmp = gen_reg_rtx (mode); *************** *** 1742,1753 **** switch (GET_CODE (operands[3])) { case GE: case LE: case EQ: ! if (!REG_P (operands[5]) ! && (operands[5] != CONST0_RTX (mode))) ! operands[5] = force_reg (mode, operands[5]); ! break; default: if (!REG_P (operands[5])) operands[5] = force_reg (mode, operands[5]); --- 1743,1758 ---- switch (GET_CODE (operands[3])) { case GE: + case GT: case LE: + case LT: case EQ: ! if (operands[5] == CONST0_RTX (mode)) ! { ! use_zero_form = 1; ! break; ! } ! /* Fall through. */ default: if (!REG_P (operands[5])) operands[5] = force_reg (mode, operands[5]); *************** *** 1798,1804 **** a GT b -> a GT b a LE b -> b GE a a LT b -> b GT a ! a EQ b -> a EQ b */ if (!inverse) emit_insn (base_comparison (mask, operands[4], operands[5], magic_rtx)); --- 1803,1828 ---- a GT b -> a GT b a LE b -> b GE a a LT b -> b GT a ! a EQ b -> a EQ b ! Note that there also exist direct comparison against 0 forms, ! so catch those as a special case. */ ! if (use_zero_form) ! { ! inverse = 0; ! switch (GET_CODE (operands[3])) ! { ! case LT: ! base_comparison = gen_neon_vclt; ! break; ! case LE: ! base_comparison = gen_neon_vcle; ! break; ! default: ! /* Do nothing, other zero form cases already have the correct ! base_comparison. */ ! break; ! } ! } if (!inverse) emit_insn (base_comparison (mask, operands[4], operands[5], magic_rtx)); diff -Nrcpad gcc-4.8.1/gcc/config/arm/vfp.md gcc-4.8.2/gcc/config/arm/vfp.md *** gcc-4.8.1/gcc/config/arm/vfp.md Tue Jan 29 18:34:12 2013 --- gcc-4.8.2/gcc/config/arm/vfp.md Tue Sep 10 16:53:15 2013 *************** *** 1207,1224 **** (set_attr "type" "fcmpd")] ) ! ;; Fixed point to floating point conversions. (define_code_iterator FCVT [unsigned_float float]) (define_code_attr FCVTI32typename [(unsigned_float "u32") (float "s32")]) (define_insn "*combine_vcvt_f32_" [(set (match_operand:SF 0 "s_register_operand" "=t") (mult:SF (FCVT:SF (match_operand:SI 1 "s_register_operand" "0")) ! (match_operand 2 "const_double_vcvt_power_of_two_reciprocal" "Dt")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP3 && !flag_rounding_math" ! "vcvt.f32.\\t%0, %1, %v2" ! [(set_attr "predicable" "no") (set_attr "type" "f_cvt")] ) --- 1207,1224 ---- (set_attr "type" "fcmpd")] ) ! ;; Fixed point to floating point conversions. (define_code_iterator FCVT [unsigned_float float]) (define_code_attr FCVTI32typename [(unsigned_float "u32") (float "s32")]) (define_insn "*combine_vcvt_f32_" [(set (match_operand:SF 0 "s_register_operand" "=t") (mult:SF (FCVT:SF (match_operand:SI 1 "s_register_operand" "0")) ! (match_operand 2 "const_double_vcvt_power_of_two_reciprocal" "Dt")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP3 && !flag_rounding_math" ! "vcvt%?.f32.\\t%0, %1, %v2" ! [(set_attr "predicable" "yes") (set_attr "type" "f_cvt")] ) *************** *** 1227,1241 **** (define_insn "*combine_vcvt_f64_" [(set (match_operand:DF 0 "s_register_operand" "=x,x,w") (mult:DF (FCVT:DF (match_operand:SI 1 "s_register_operand" "r,t,r")) ! (match_operand 2 "const_double_vcvt_power_of_two_reciprocal" "Dt,Dt,Dt")))] ! "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP3 && !flag_rounding_math && !TARGET_VFP_SINGLE" "@ ! vmov.f32\\t%0, %1\;vcvt.f64.\\t%P0, %P0, %v2 ! vmov.f32\\t%0, %1\;vcvt.f64.\\t%P0, %P0, %v2 ! vmov.f64\\t%P0, %1, %1\;vcvt.f64.\\t%P0, %P0, %v2" ! [(set_attr "predicable" "no") (set_attr "type" "f_cvt") (set_attr "length" "8")] ) --- 1227,1242 ---- (define_insn "*combine_vcvt_f64_" [(set (match_operand:DF 0 "s_register_operand" "=x,x,w") (mult:DF (FCVT:DF (match_operand:SI 1 "s_register_operand" "r,t,r")) ! (match_operand 2 "const_double_vcvt_power_of_two_reciprocal" "Dt,Dt,Dt")))] ! "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP3 && !flag_rounding_math && !TARGET_VFP_SINGLE" "@ ! vmov%?.f32\\t%0, %1\;vcvt%?.f64.\\t%P0, %P0, %v2 ! vmov%?.f32\\t%0, %1\;vcvt%?.f64.\\t%P0, %P0, %v2 ! vmov%?.f64\\t%P0, %1, %1\;vcvt%?.f64.\\t%P0, %P0, %v2" ! [(set_attr "predicable" "yes") ! (set_attr "ce_count" "2") (set_attr "type" "f_cvt") (set_attr "length" "8")] ) diff -Nrcpad gcc-4.8.1/gcc/config/avr/avr-fixed.md gcc-4.8.2/gcc/config/avr/avr-fixed.md *** gcc-4.8.1/gcc/config/avr/avr-fixed.md Fri Feb 8 10:13:37 2013 --- gcc-4.8.2/gcc/config/avr/avr-fixed.md Fri Jul 19 11:15:26 2013 *************** *** 447,495 **** ;; "roundqq3_const" "rounduqq3_const" ;; "roundhq3_const" "rounduhq3_const" "roundha3_const" "rounduha3_const" ;; "roundsq3_const" "roundusq3_const" "roundsa3_const" "roundusa3_const" ! (define_expand "round3_const" ! [(parallel [(match_operand:ALL124QA 0 "register_operand" "") ! (match_operand:ALL124QA 1 "register_operand" "") ! (match_operand:HI 2 "const_int_operand" "")])] "" { ! // The rounding point RP is $2. The smallest fractional ! // bit that is not cleared by the rounding is 2^(-RP). ! ! enum machine_mode imode = int_mode_for_mode (mode); ! int fbit = (int) GET_MODE_FBIT (mode); ! ! // Add-Saturate 1/2 * 2^(-RP) ! ! double_int i_add = double_int_zero.set_bit (fbit-1 - INTVAL (operands[2])); ! rtx x_add = const_fixed_from_double_int (i_add, mode); ! ! if (SIGNED_FIXED_POINT_MODE_P (mode)) ! emit_move_insn (operands[0], ! gen_rtx_SS_PLUS (mode, operands[1], x_add)); ! else ! emit_move_insn (operands[0], ! gen_rtx_US_PLUS (mode, operands[1], x_add)); ! ! // Keep all bits from RP and higher: ... 2^(-RP) ! // Clear all bits from RP+1 and lower: 2^(-RP-1) ... ! // Rounding point ^^^^^^^ ! // Added above ^^^^^^^^^ ! ! rtx xreg = simplify_gen_subreg (imode, operands[0], mode, 0); ! rtx xmask = immed_double_int_const (-i_add - i_add, imode); ! ! if (SImode == imode) ! emit_insn (gen_andsi3 (xreg, xreg, xmask)); ! else if (HImode == imode) ! emit_insn (gen_andhi3 (xreg, xreg, xmask)); ! else if (QImode == imode) ! emit_insn (gen_andqi3 (xreg, xreg, xmask)); ! else ! gcc_unreachable(); ! ! DONE; ! }) ;; "*roundqq3.libgcc" "*rounduqq3.libgcc" --- 447,464 ---- ;; "roundqq3_const" "rounduqq3_const" ;; "roundhq3_const" "rounduhq3_const" "roundha3_const" "rounduha3_const" ;; "roundsq3_const" "roundusq3_const" "roundsa3_const" "roundusa3_const" ! (define_insn "round3_const" ! [(set (match_operand:ALL124QA 0 "register_operand" "=d") ! (unspec:ALL124QA [(match_operand:ALL124QA 1 "register_operand" "0") ! (match_operand:HI 2 "const_int_operand" "n") ! (const_int 0)] ! UNSPEC_ROUND))] "" { ! return avr_out_round (insn, operands); ! } ! [(set_attr "cc" "clobber") ! (set_attr "adjust_len" "round")]) ;; "*roundqq3.libgcc" "*rounduqq3.libgcc" diff -Nrcpad gcc-4.8.1/gcc/config/avr/avr-mcus.def gcc-4.8.2/gcc/config/avr/avr-mcus.def *** gcc-4.8.1/gcc/config/avr/avr-mcus.def Thu Feb 28 09:03:09 2013 --- gcc-4.8.2/gcc/config/avr/avr-mcus.def Wed Jul 10 12:36:36 2013 *************** AVR_MCU ("atmega169", ARCH_AV *** 168,174 **** AVR_MCU ("atmega169a", ARCH_AVR5, "__AVR_ATmega169A__", 0, 0, 0x0100, 1, "m169a") AVR_MCU ("atmega169p", ARCH_AVR5, "__AVR_ATmega169P__", 0, 0, 0x0100, 1, "m169p") AVR_MCU ("atmega169pa", ARCH_AVR5, "__AVR_ATmega169PA__", 0, 0, 0x0100, 1, "m169pa") - AVR_MCU ("atmega16hva", ARCH_AVR5, "__AVR_ATmega16HVA__", 0, 0, 0x0100, 1, "m16hva") AVR_MCU ("atmega16hvb", ARCH_AVR5, "__AVR_ATmega16HVB__", 0, 0, 0x0100, 1, "m16hvb") AVR_MCU ("atmega16hvbrevb", ARCH_AVR5, "__AVR_ATmega16HVBREVB__", 0, 0, 0x0100, 1, "m16hvbrevb") AVR_MCU ("atmega16m1", ARCH_AVR5, "__AVR_ATmega16M1__", 0, 0, 0x0100, 1, "m16m1") --- 168,173 ---- *************** AVR_MCU ("atmega16u4", ARCH_AV *** 176,182 **** AVR_MCU ("atmega26hvg", ARCH_AVR5, "__AVR_ATmega26HVG__", 0, 0, 0x0100, 1, "m26hvg") AVR_MCU ("atmega32a", ARCH_AVR5, "__AVR_ATmega32A__", 0, 0, 0x0060, 1, "m32a") AVR_MCU ("atmega32", ARCH_AVR5, "__AVR_ATmega32__", 0, 0, 0x0060, 1, "m32") - AVR_MCU ("atmega32a", ARCH_AVR5, "__AVR_ATmega32A__", 0, 0, 0x0060, 1, "m32a") AVR_MCU ("atmega323", ARCH_AVR5, "__AVR_ATmega323__", 0, 0, 0x0060, 1, "m323") AVR_MCU ("atmega324a", ARCH_AVR5, "__AVR_ATmega324A__", 0, 0, 0x0100, 1, "m324a") AVR_MCU ("atmega324p", ARCH_AVR5, "__AVR_ATmega324P__", 0, 0, 0x0100, 1, "m324p") --- 175,180 ---- *************** AVR_MCU ("atmega649p", ARCH_AV *** 222,228 **** AVR_MCU ("atmega6490", ARCH_AVR5, "__AVR_ATmega6490__", 0, 0, 0x0100, 1, "m6490") AVR_MCU ("atmega16hva", ARCH_AVR5, "__AVR_ATmega16HVA__", 0, 0, 0x0100, 1, "m16hva") AVR_MCU ("atmega16hva2", ARCH_AVR5, "__AVR_ATmega16HVA2__", 0, 0, 0x0100, 1, "m16hva2") - AVR_MCU ("atmega16hvb", ARCH_AVR5, "__AVR_ATmega16HVB__", 0, 0, 0x0100, 1, "m16hvb") AVR_MCU ("atmega32hvb", ARCH_AVR5, "__AVR_ATmega32HVB__", 0, 0, 0x0100, 1, "m32hvb") AVR_MCU ("atmega6490a", ARCH_AVR5, "__AVR_ATmega6490A__", 0, 0, 0x0100, 1, "m6490a") AVR_MCU ("atmega6490p", ARCH_AVR5, "__AVR_ATmega6490P__", 0, 0, 0x0100, 1, "m6490p") --- 220,225 ---- *************** AVR_MCU ("atmega64m1", ARCH_AV *** 231,253 **** AVR_MCU ("atmega64hve", ARCH_AVR5, "__AVR_ATmega64HVE__", 0, 0, 0x0100, 1, "m64hve") AVR_MCU ("atmega64rfa2", ARCH_AVR5, "__AVR_ATmega64RFA2__", 0, 0, 0x0200, 1, "m64rfa2") AVR_MCU ("atmega64rfr2", ARCH_AVR5, "__AVR_ATmega64RFR2__", 0, 0, 0x0200, 1, "m64rfr2") - AVR_MCU ("atmega32hvb", ARCH_AVR5, "__AVR_ATmega32HVB__", 0, 0, 0x0100, 1, "m32hvb") AVR_MCU ("atmega32hvbrevb", ARCH_AVR5, "__AVR_ATmega32HVBREVB__", 0, 0, 0x0100, 1, "m32hvbrevb") - AVR_MCU ("atmega16hva2", ARCH_AVR5, "__AVR_ATmega16HVA2__", 0, 0, 0x0100, 1, "m16hva2") AVR_MCU ("atmega48hvf", ARCH_AVR5, "__AVR_ATmega48HVF__", 0, 0, 0x0100, 1, "m48hvf") AVR_MCU ("at90can32", ARCH_AVR5, "__AVR_AT90CAN32__", 0, 0, 0x0100, 1, "can32") AVR_MCU ("at90can64", ARCH_AVR5, "__AVR_AT90CAN64__", 0, 0, 0x0100, 1, "can64") AVR_MCU ("at90pwm161", ARCH_AVR5, "__AVR_AT90PWM161__", 0, 0, 0x0100, 1, "90pwm161") AVR_MCU ("at90pwm216", ARCH_AVR5, "__AVR_AT90PWM216__", 0, 0, 0x0100, 1, "90pwm216") AVR_MCU ("at90pwm316", ARCH_AVR5, "__AVR_AT90PWM316__", 0, 0, 0x0100, 1, "90pwm316") - AVR_MCU ("atmega32c1", ARCH_AVR5, "__AVR_ATmega32C1__", 0, 0, 0x0100, 1, "m32c1") - AVR_MCU ("atmega64c1", ARCH_AVR5, "__AVR_ATmega64C1__", 0, 0, 0x0100, 1, "m64c1") - AVR_MCU ("atmega16m1", ARCH_AVR5, "__AVR_ATmega16M1__", 0, 0, 0x0100, 1, "m16m1") - AVR_MCU ("atmega32m1", ARCH_AVR5, "__AVR_ATmega32M1__", 0, 0, 0x0100, 1, "m32m1") - AVR_MCU ("atmega64m1", ARCH_AVR5, "__AVR_ATmega64M1__", 0, 0, 0x0100, 1, "m64m1") - AVR_MCU ("atmega16u4", ARCH_AVR5, "__AVR_ATmega16U4__", 0, 0, 0x0100, 1, "m16u4") - AVR_MCU ("atmega32u4", ARCH_AVR5, "__AVR_ATmega32U4__", 0, 0, 0x0100, 1, "m32u4") - AVR_MCU ("atmega32u6", ARCH_AVR5, "__AVR_ATmega32U6__", 0, 0, 0x0100, 1, "m32u6") AVR_MCU ("at90scr100", ARCH_AVR5, "__AVR_AT90SCR100__", 0, 0, 0x0100, 1, "90scr100") AVR_MCU ("at90usb646", ARCH_AVR5, "__AVR_AT90USB646__", 0, 0, 0x0100, 1, "usb646") AVR_MCU ("at90usb647", ARCH_AVR5, "__AVR_AT90USB647__", 0, 0, 0x0100, 1, "usb647") --- 228,240 ---- diff -Nrcpad gcc-4.8.1/gcc/config/avr/avr-protos.h gcc-4.8.2/gcc/config/avr/avr-protos.h *** gcc-4.8.1/gcc/config/avr/avr-protos.h Mon Jan 14 15:08:45 2013 --- gcc-4.8.2/gcc/config/avr/avr-protos.h Fri Jul 19 11:15:26 2013 *************** extern int avr_starting_frame_offset (vo *** 86,92 **** extern void avr_output_addr_vec_elt (FILE *stream, int value); extern const char *avr_out_sbxx_branch (rtx insn, rtx operands[]); extern const char* avr_out_bitop (rtx, rtx*, int*); ! extern const char* avr_out_plus (rtx, rtx*, int* =NULL, int* =NULL); extern const char* avr_out_addto_sp (rtx*, int*); extern const char* avr_out_xload (rtx, rtx*, int*); extern const char* avr_out_movmem (rtx, rtx*, int*); --- 86,93 ---- extern void avr_output_addr_vec_elt (FILE *stream, int value); extern const char *avr_out_sbxx_branch (rtx insn, rtx operands[]); extern const char* avr_out_bitop (rtx, rtx*, int*); ! extern const char* avr_out_plus (rtx, rtx*, int* =NULL, int* =NULL, bool =true); ! extern const char* avr_out_round (rtx, rtx*, int* =NULL); extern const char* avr_out_addto_sp (rtx*, int*); extern const char* avr_out_xload (rtx, rtx*, int*); extern const char* avr_out_movmem (rtx, rtx*, int*); diff -Nrcpad gcc-4.8.1/gcc/config/avr/avr-tables.opt gcc-4.8.2/gcc/config/avr/avr-tables.opt *** gcc-4.8.1/gcc/config/avr/avr-tables.opt Thu Feb 28 09:03:09 2013 --- gcc-4.8.2/gcc/config/avr/avr-tables.opt Wed Jul 10 12:36:36 2013 *************** EnumValue *** 330,808 **** Enum(avr_mcu) String(atmega169pa) Value(101) EnumValue ! Enum(avr_mcu) String(atmega16hva) Value(102) ! ! EnumValue ! Enum(avr_mcu) String(atmega16hvb) Value(103) ! ! EnumValue ! Enum(avr_mcu) String(atmega16hvbrevb) Value(104) ! ! EnumValue ! Enum(avr_mcu) String(atmega16m1) Value(105) ! ! EnumValue ! Enum(avr_mcu) String(atmega16u4) Value(106) ! ! EnumValue ! Enum(avr_mcu) String(atmega26hvg) Value(107) ! ! EnumValue ! Enum(avr_mcu) String(atmega32a) Value(108) ! ! EnumValue ! Enum(avr_mcu) String(atmega32) Value(109) ! ! EnumValue ! Enum(avr_mcu) String(atmega32a) Value(110) ! ! EnumValue ! Enum(avr_mcu) String(atmega323) Value(111) ! ! EnumValue ! Enum(avr_mcu) String(atmega324a) Value(112) ! ! EnumValue ! Enum(avr_mcu) String(atmega324p) Value(113) ! ! EnumValue ! Enum(avr_mcu) String(atmega324pa) Value(114) ! ! EnumValue ! Enum(avr_mcu) String(atmega325) Value(115) EnumValue ! Enum(avr_mcu) String(atmega325a) Value(116) EnumValue ! Enum(avr_mcu) String(atmega325p) Value(117) EnumValue ! Enum(avr_mcu) String(atmega3250) Value(118) EnumValue ! Enum(avr_mcu) String(atmega3250a) Value(119) EnumValue ! Enum(avr_mcu) String(atmega3250p) Value(120) EnumValue ! Enum(avr_mcu) String(atmega3250pa) Value(121) EnumValue ! Enum(avr_mcu) String(atmega328) Value(122) EnumValue ! Enum(avr_mcu) String(atmega328p) Value(123) EnumValue ! Enum(avr_mcu) String(atmega329) Value(124) EnumValue ! Enum(avr_mcu) String(atmega329a) Value(125) EnumValue ! Enum(avr_mcu) String(atmega329p) Value(126) EnumValue ! Enum(avr_mcu) String(atmega329pa) Value(127) EnumValue ! Enum(avr_mcu) String(atmega3290) Value(128) EnumValue ! Enum(avr_mcu) String(atmega3290a) Value(129) EnumValue ! Enum(avr_mcu) String(atmega3290p) Value(130) EnumValue ! Enum(avr_mcu) String(atmega3290pa) Value(131) EnumValue ! Enum(avr_mcu) String(atmega32c1) Value(132) EnumValue ! Enum(avr_mcu) String(atmega32m1) Value(133) EnumValue ! Enum(avr_mcu) String(atmega32u4) Value(134) EnumValue ! Enum(avr_mcu) String(atmega32u6) Value(135) EnumValue ! Enum(avr_mcu) String(atmega406) Value(136) EnumValue ! Enum(avr_mcu) String(atmega64) Value(137) EnumValue ! Enum(avr_mcu) String(atmega64a) Value(138) EnumValue ! Enum(avr_mcu) String(atmega640) Value(139) EnumValue ! Enum(avr_mcu) String(atmega644) Value(140) EnumValue ! Enum(avr_mcu) String(atmega644a) Value(141) EnumValue ! Enum(avr_mcu) String(atmega644p) Value(142) EnumValue ! Enum(avr_mcu) String(atmega644pa) Value(143) EnumValue ! Enum(avr_mcu) String(atmega645) Value(144) EnumValue ! Enum(avr_mcu) String(atmega645a) Value(145) EnumValue ! Enum(avr_mcu) String(atmega645p) Value(146) EnumValue ! Enum(avr_mcu) String(atmega6450) Value(147) EnumValue ! Enum(avr_mcu) String(atmega6450a) Value(148) EnumValue ! Enum(avr_mcu) String(atmega6450p) Value(149) EnumValue ! Enum(avr_mcu) String(atmega649) Value(150) EnumValue ! Enum(avr_mcu) String(atmega649a) Value(151) EnumValue ! Enum(avr_mcu) String(atmega649p) Value(152) EnumValue ! Enum(avr_mcu) String(atmega6490) Value(153) EnumValue ! Enum(avr_mcu) String(atmega16hva) Value(154) EnumValue ! Enum(avr_mcu) String(atmega16hva2) Value(155) EnumValue ! Enum(avr_mcu) String(atmega16hvb) Value(156) EnumValue ! Enum(avr_mcu) String(atmega32hvb) Value(157) EnumValue ! Enum(avr_mcu) String(atmega6490a) Value(158) EnumValue ! Enum(avr_mcu) String(atmega6490p) Value(159) EnumValue ! Enum(avr_mcu) String(atmega64c1) Value(160) EnumValue ! Enum(avr_mcu) String(atmega64m1) Value(161) EnumValue ! Enum(avr_mcu) String(atmega64hve) Value(162) EnumValue ! Enum(avr_mcu) String(atmega64rfa2) Value(163) EnumValue ! Enum(avr_mcu) String(atmega64rfr2) Value(164) EnumValue ! Enum(avr_mcu) String(atmega32hvb) Value(165) EnumValue ! Enum(avr_mcu) String(atmega32hvbrevb) Value(166) EnumValue ! Enum(avr_mcu) String(atmega16hva2) Value(167) EnumValue ! Enum(avr_mcu) String(atmega48hvf) Value(168) EnumValue ! Enum(avr_mcu) String(at90can32) Value(169) EnumValue ! Enum(avr_mcu) String(at90can64) Value(170) EnumValue ! Enum(avr_mcu) String(at90pwm161) Value(171) EnumValue ! Enum(avr_mcu) String(at90pwm216) Value(172) EnumValue ! Enum(avr_mcu) String(at90pwm316) Value(173) EnumValue ! Enum(avr_mcu) String(atmega32c1) Value(174) EnumValue ! Enum(avr_mcu) String(atmega64c1) Value(175) EnumValue ! Enum(avr_mcu) String(atmega16m1) Value(176) EnumValue ! Enum(avr_mcu) String(atmega32m1) Value(177) EnumValue ! Enum(avr_mcu) String(atmega64m1) Value(178) EnumValue ! Enum(avr_mcu) String(atmega16u4) Value(179) EnumValue ! Enum(avr_mcu) String(atmega32u4) Value(180) EnumValue ! Enum(avr_mcu) String(atmega32u6) Value(181) EnumValue ! Enum(avr_mcu) String(at90scr100) Value(182) EnumValue ! Enum(avr_mcu) String(at90usb646) Value(183) EnumValue ! Enum(avr_mcu) String(at90usb647) Value(184) EnumValue ! Enum(avr_mcu) String(at94k) Value(185) EnumValue ! Enum(avr_mcu) String(m3000) Value(186) EnumValue ! Enum(avr_mcu) String(avr51) Value(187) EnumValue ! Enum(avr_mcu) String(atmega128) Value(188) EnumValue ! Enum(avr_mcu) String(atmega128a) Value(189) EnumValue ! Enum(avr_mcu) String(atmega1280) Value(190) EnumValue ! Enum(avr_mcu) String(atmega1281) Value(191) EnumValue ! Enum(avr_mcu) String(atmega1284) Value(192) EnumValue ! Enum(avr_mcu) String(atmega1284p) Value(193) EnumValue ! Enum(avr_mcu) String(atmega128rfa1) Value(194) EnumValue ! Enum(avr_mcu) String(at90can128) Value(195) EnumValue ! Enum(avr_mcu) String(at90usb1286) Value(196) EnumValue ! Enum(avr_mcu) String(at90usb1287) Value(197) EnumValue ! Enum(avr_mcu) String(avr6) Value(198) EnumValue ! Enum(avr_mcu) String(atmega2560) Value(199) EnumValue ! Enum(avr_mcu) String(atmega2561) Value(200) EnumValue ! Enum(avr_mcu) String(avrxmega2) Value(201) EnumValue ! Enum(avr_mcu) String(atxmega16a4) Value(202) EnumValue ! Enum(avr_mcu) String(atxmega16d4) Value(203) EnumValue ! Enum(avr_mcu) String(atxmega16x1) Value(204) EnumValue ! Enum(avr_mcu) String(atxmega32a4) Value(205) EnumValue ! Enum(avr_mcu) String(atxmega32d4) Value(206) EnumValue ! Enum(avr_mcu) String(atxmega32x1) Value(207) EnumValue ! Enum(avr_mcu) String(atmxt112sl) Value(208) EnumValue ! Enum(avr_mcu) String(atmxt224) Value(209) EnumValue ! Enum(avr_mcu) String(atmxt224e) Value(210) EnumValue ! Enum(avr_mcu) String(atmxt336s) Value(211) EnumValue ! Enum(avr_mcu) String(atxmega16a4u) Value(212) EnumValue ! Enum(avr_mcu) String(atxmega16c4) Value(213) EnumValue ! Enum(avr_mcu) String(atxmega32a4u) Value(214) EnumValue ! Enum(avr_mcu) String(atxmega32c4) Value(215) EnumValue ! Enum(avr_mcu) String(atxmega32e5) Value(216) EnumValue ! Enum(avr_mcu) String(avrxmega4) Value(217) EnumValue ! Enum(avr_mcu) String(atxmega64a3) Value(218) EnumValue ! Enum(avr_mcu) String(atxmega64d3) Value(219) EnumValue ! Enum(avr_mcu) String(atxmega64a3u) Value(220) EnumValue ! Enum(avr_mcu) String(atxmega64a4u) Value(221) EnumValue ! Enum(avr_mcu) String(atxmega64b1) Value(222) EnumValue ! Enum(avr_mcu) String(atxmega64b3) Value(223) EnumValue ! Enum(avr_mcu) String(atxmega64c3) Value(224) EnumValue ! Enum(avr_mcu) String(atxmega64d4) Value(225) EnumValue ! Enum(avr_mcu) String(avrxmega5) Value(226) EnumValue ! Enum(avr_mcu) String(atxmega64a1) Value(227) EnumValue ! Enum(avr_mcu) String(atxmega64a1u) Value(228) EnumValue ! Enum(avr_mcu) String(avrxmega6) Value(229) EnumValue ! Enum(avr_mcu) String(atxmega128a3) Value(230) EnumValue ! Enum(avr_mcu) String(atxmega128d3) Value(231) EnumValue ! Enum(avr_mcu) String(atxmega192a3) Value(232) EnumValue ! Enum(avr_mcu) String(atxmega192d3) Value(233) EnumValue ! Enum(avr_mcu) String(atxmega256a3) Value(234) EnumValue ! Enum(avr_mcu) String(atxmega256a3b) Value(235) EnumValue ! Enum(avr_mcu) String(atxmega256a3bu) Value(236) EnumValue ! Enum(avr_mcu) String(atxmega256d3) Value(237) EnumValue ! Enum(avr_mcu) String(atxmega128a3u) Value(238) EnumValue ! Enum(avr_mcu) String(atxmega128b1) Value(239) EnumValue ! Enum(avr_mcu) String(atxmega128b3) Value(240) EnumValue ! Enum(avr_mcu) String(atxmega128c3) Value(241) EnumValue ! Enum(avr_mcu) String(atxmega128d4) Value(242) EnumValue ! Enum(avr_mcu) String(atmxt540s) Value(243) EnumValue ! Enum(avr_mcu) String(atmxt540sreva) Value(244) EnumValue ! Enum(avr_mcu) String(atxmega192a3u) Value(245) EnumValue ! Enum(avr_mcu) String(atxmega192c3) Value(246) EnumValue ! Enum(avr_mcu) String(atxmega256a3u) Value(247) EnumValue ! Enum(avr_mcu) String(atxmega256c3) Value(248) EnumValue ! Enum(avr_mcu) String(atxmega384c3) Value(249) EnumValue ! Enum(avr_mcu) String(atxmega384d3) Value(250) EnumValue ! Enum(avr_mcu) String(avrxmega7) Value(251) EnumValue ! Enum(avr_mcu) String(atxmega128a1) Value(252) EnumValue ! Enum(avr_mcu) String(atxmega128a1u) Value(253) EnumValue ! Enum(avr_mcu) String(atxmega128a4u) Value(254) EnumValue ! Enum(avr_mcu) String(avr1) Value(255) EnumValue ! Enum(avr_mcu) String(at90s1200) Value(256) EnumValue ! Enum(avr_mcu) String(attiny11) Value(257) EnumValue ! Enum(avr_mcu) String(attiny12) Value(258) EnumValue ! Enum(avr_mcu) String(attiny15) Value(259) EnumValue ! Enum(avr_mcu) String(attiny28) Value(260) --- 330,769 ---- Enum(avr_mcu) String(atmega169pa) Value(101) EnumValue ! Enum(avr_mcu) String(atmega16hvb) Value(102) EnumValue ! Enum(avr_mcu) String(atmega16hvbrevb) Value(103) EnumValue ! Enum(avr_mcu) String(atmega16m1) Value(104) EnumValue ! Enum(avr_mcu) String(atmega16u4) Value(105) EnumValue ! Enum(avr_mcu) String(atmega26hvg) Value(106) EnumValue ! Enum(avr_mcu) String(atmega32a) Value(107) EnumValue ! Enum(avr_mcu) String(atmega32) Value(108) EnumValue ! Enum(avr_mcu) String(atmega323) Value(109) EnumValue ! Enum(avr_mcu) String(atmega324a) Value(110) EnumValue ! Enum(avr_mcu) String(atmega324p) Value(111) EnumValue ! Enum(avr_mcu) String(atmega324pa) Value(112) EnumValue ! Enum(avr_mcu) String(atmega325) Value(113) EnumValue ! Enum(avr_mcu) String(atmega325a) Value(114) EnumValue ! Enum(avr_mcu) String(atmega325p) Value(115) EnumValue ! Enum(avr_mcu) String(atmega3250) Value(116) EnumValue ! Enum(avr_mcu) String(atmega3250a) Value(117) EnumValue ! Enum(avr_mcu) String(atmega3250p) Value(118) EnumValue ! Enum(avr_mcu) String(atmega3250pa) Value(119) EnumValue ! Enum(avr_mcu) String(atmega328) Value(120) EnumValue ! Enum(avr_mcu) String(atmega328p) Value(121) EnumValue ! Enum(avr_mcu) String(atmega329) Value(122) EnumValue ! Enum(avr_mcu) String(atmega329a) Value(123) EnumValue ! Enum(avr_mcu) String(atmega329p) Value(124) EnumValue ! Enum(avr_mcu) String(atmega329pa) Value(125) EnumValue ! Enum(avr_mcu) String(atmega3290) Value(126) EnumValue ! Enum(avr_mcu) String(atmega3290a) Value(127) EnumValue ! Enum(avr_mcu) String(atmega3290p) Value(128) EnumValue ! Enum(avr_mcu) String(atmega3290pa) Value(129) EnumValue ! Enum(avr_mcu) String(atmega32c1) Value(130) EnumValue ! Enum(avr_mcu) String(atmega32m1) Value(131) EnumValue ! Enum(avr_mcu) String(atmega32u4) Value(132) EnumValue ! Enum(avr_mcu) String(atmega32u6) Value(133) EnumValue ! Enum(avr_mcu) String(atmega406) Value(134) EnumValue ! Enum(avr_mcu) String(atmega64) Value(135) EnumValue ! Enum(avr_mcu) String(atmega64a) Value(136) EnumValue ! Enum(avr_mcu) String(atmega640) Value(137) EnumValue ! Enum(avr_mcu) String(atmega644) Value(138) EnumValue ! Enum(avr_mcu) String(atmega644a) Value(139) EnumValue ! Enum(avr_mcu) String(atmega644p) Value(140) EnumValue ! Enum(avr_mcu) String(atmega644pa) Value(141) EnumValue ! Enum(avr_mcu) String(atmega645) Value(142) EnumValue ! Enum(avr_mcu) String(atmega645a) Value(143) EnumValue ! Enum(avr_mcu) String(atmega645p) Value(144) EnumValue ! Enum(avr_mcu) String(atmega6450) Value(145) EnumValue ! Enum(avr_mcu) String(atmega6450a) Value(146) EnumValue ! Enum(avr_mcu) String(atmega6450p) Value(147) EnumValue ! Enum(avr_mcu) String(atmega649) Value(148) EnumValue ! Enum(avr_mcu) String(atmega649a) Value(149) EnumValue ! Enum(avr_mcu) String(atmega649p) Value(150) EnumValue ! Enum(avr_mcu) String(atmega6490) Value(151) EnumValue ! Enum(avr_mcu) String(atmega16hva) Value(152) EnumValue ! Enum(avr_mcu) String(atmega16hva2) Value(153) EnumValue ! Enum(avr_mcu) String(atmega32hvb) Value(154) EnumValue ! Enum(avr_mcu) String(atmega6490a) Value(155) EnumValue ! Enum(avr_mcu) String(atmega6490p) Value(156) EnumValue ! Enum(avr_mcu) String(atmega64c1) Value(157) EnumValue ! Enum(avr_mcu) String(atmega64m1) Value(158) EnumValue ! Enum(avr_mcu) String(atmega64hve) Value(159) EnumValue ! Enum(avr_mcu) String(atmega64rfa2) Value(160) EnumValue ! Enum(avr_mcu) String(atmega64rfr2) Value(161) EnumValue ! Enum(avr_mcu) String(atmega32hvbrevb) Value(162) EnumValue ! Enum(avr_mcu) String(atmega48hvf) Value(163) EnumValue ! Enum(avr_mcu) String(at90can32) Value(164) EnumValue ! Enum(avr_mcu) String(at90can64) Value(165) EnumValue ! Enum(avr_mcu) String(at90pwm161) Value(166) EnumValue ! Enum(avr_mcu) String(at90pwm216) Value(167) EnumValue ! Enum(avr_mcu) String(at90pwm316) Value(168) EnumValue ! Enum(avr_mcu) String(at90scr100) Value(169) EnumValue ! Enum(avr_mcu) String(at90usb646) Value(170) EnumValue ! Enum(avr_mcu) String(at90usb647) Value(171) EnumValue ! Enum(avr_mcu) String(at94k) Value(172) EnumValue ! Enum(avr_mcu) String(m3000) Value(173) EnumValue ! Enum(avr_mcu) String(avr51) Value(174) EnumValue ! Enum(avr_mcu) String(atmega128) Value(175) EnumValue ! Enum(avr_mcu) String(atmega128a) Value(176) EnumValue ! Enum(avr_mcu) String(atmega1280) Value(177) EnumValue ! Enum(avr_mcu) String(atmega1281) Value(178) EnumValue ! Enum(avr_mcu) String(atmega1284) Value(179) EnumValue ! Enum(avr_mcu) String(atmega1284p) Value(180) EnumValue ! Enum(avr_mcu) String(atmega128rfa1) Value(181) EnumValue ! Enum(avr_mcu) String(at90can128) Value(182) EnumValue ! Enum(avr_mcu) String(at90usb1286) Value(183) EnumValue ! Enum(avr_mcu) String(at90usb1287) Value(184) EnumValue ! Enum(avr_mcu) String(avr6) Value(185) EnumValue ! Enum(avr_mcu) String(atmega2560) Value(186) EnumValue ! Enum(avr_mcu) String(atmega2561) Value(187) EnumValue ! Enum(avr_mcu) String(avrxmega2) Value(188) EnumValue ! Enum(avr_mcu) String(atxmega16a4) Value(189) EnumValue ! Enum(avr_mcu) String(atxmega16d4) Value(190) EnumValue ! Enum(avr_mcu) String(atxmega16x1) Value(191) EnumValue ! Enum(avr_mcu) String(atxmega32a4) Value(192) EnumValue ! Enum(avr_mcu) String(atxmega32d4) Value(193) EnumValue ! Enum(avr_mcu) String(atxmega32x1) Value(194) EnumValue ! Enum(avr_mcu) String(atmxt112sl) Value(195) EnumValue ! Enum(avr_mcu) String(atmxt224) Value(196) EnumValue ! Enum(avr_mcu) String(atmxt224e) Value(197) EnumValue ! Enum(avr_mcu) String(atmxt336s) Value(198) EnumValue ! Enum(avr_mcu) String(atxmega16a4u) Value(199) EnumValue ! Enum(avr_mcu) String(atxmega16c4) Value(200) EnumValue ! Enum(avr_mcu) String(atxmega32a4u) Value(201) EnumValue ! Enum(avr_mcu) String(atxmega32c4) Value(202) EnumValue ! Enum(avr_mcu) String(atxmega32e5) Value(203) EnumValue ! Enum(avr_mcu) String(avrxmega4) Value(204) EnumValue ! Enum(avr_mcu) String(atxmega64a3) Value(205) EnumValue ! Enum(avr_mcu) String(atxmega64d3) Value(206) EnumValue ! Enum(avr_mcu) String(atxmega64a3u) Value(207) EnumValue ! Enum(avr_mcu) String(atxmega64a4u) Value(208) EnumValue ! Enum(avr_mcu) String(atxmega64b1) Value(209) EnumValue ! Enum(avr_mcu) String(atxmega64b3) Value(210) EnumValue ! Enum(avr_mcu) String(atxmega64c3) Value(211) EnumValue ! Enum(avr_mcu) String(atxmega64d4) Value(212) EnumValue ! Enum(avr_mcu) String(avrxmega5) Value(213) EnumValue ! Enum(avr_mcu) String(atxmega64a1) Value(214) EnumValue ! Enum(avr_mcu) String(atxmega64a1u) Value(215) EnumValue ! Enum(avr_mcu) String(avrxmega6) Value(216) EnumValue ! Enum(avr_mcu) String(atxmega128a3) Value(217) EnumValue ! Enum(avr_mcu) String(atxmega128d3) Value(218) EnumValue ! Enum(avr_mcu) String(atxmega192a3) Value(219) EnumValue ! Enum(avr_mcu) String(atxmega192d3) Value(220) EnumValue ! Enum(avr_mcu) String(atxmega256a3) Value(221) EnumValue ! Enum(avr_mcu) String(atxmega256a3b) Value(222) EnumValue ! Enum(avr_mcu) String(atxmega256a3bu) Value(223) EnumValue ! Enum(avr_mcu) String(atxmega256d3) Value(224) EnumValue ! Enum(avr_mcu) String(atxmega128a3u) Value(225) EnumValue ! Enum(avr_mcu) String(atxmega128b1) Value(226) EnumValue ! Enum(avr_mcu) String(atxmega128b3) Value(227) EnumValue ! Enum(avr_mcu) String(atxmega128c3) Value(228) EnumValue ! Enum(avr_mcu) String(atxmega128d4) Value(229) EnumValue ! Enum(avr_mcu) String(atmxt540s) Value(230) EnumValue ! Enum(avr_mcu) String(atmxt540sreva) Value(231) EnumValue ! Enum(avr_mcu) String(atxmega192a3u) Value(232) EnumValue ! Enum(avr_mcu) String(atxmega192c3) Value(233) EnumValue ! Enum(avr_mcu) String(atxmega256a3u) Value(234) EnumValue ! Enum(avr_mcu) String(atxmega256c3) Value(235) EnumValue ! Enum(avr_mcu) String(atxmega384c3) Value(236) EnumValue ! Enum(avr_mcu) String(atxmega384d3) Value(237) EnumValue ! Enum(avr_mcu) String(avrxmega7) Value(238) EnumValue ! Enum(avr_mcu) String(atxmega128a1) Value(239) EnumValue ! Enum(avr_mcu) String(atxmega128a1u) Value(240) EnumValue ! Enum(avr_mcu) String(atxmega128a4u) Value(241) EnumValue ! Enum(avr_mcu) String(avr1) Value(242) EnumValue ! Enum(avr_mcu) String(at90s1200) Value(243) EnumValue ! Enum(avr_mcu) String(attiny11) Value(244) EnumValue ! Enum(avr_mcu) String(attiny12) Value(245) EnumValue ! Enum(avr_mcu) String(attiny15) Value(246) EnumValue ! Enum(avr_mcu) String(attiny28) Value(247) diff -Nrcpad gcc-4.8.1/gcc/config/avr/avr.c gcc-4.8.2/gcc/config/avr/avr.c *** gcc-4.8.1/gcc/config/avr/avr.c Tue Mar 12 11:42:26 2013 --- gcc-4.8.2/gcc/config/avr/avr.c Fri Jul 19 11:15:26 2013 *************** avr_set_current_function (tree decl) *** 584,590 **** { tree args = TYPE_ARG_TYPES (TREE_TYPE (decl)); tree ret = TREE_TYPE (TREE_TYPE (decl)); ! const char *name = IDENTIFIER_POINTER (DECL_NAME (decl)); /* Silently ignore 'signal' if 'interrupt' is present. AVR-LibC startet using this when it switched from SIGNAL and INTERRUPT to ISR. */ --- 584,595 ---- { tree args = TYPE_ARG_TYPES (TREE_TYPE (decl)); tree ret = TREE_TYPE (TREE_TYPE (decl)); ! const char *name; ! ! name = DECL_ASSEMBLER_NAME_SET_P (decl) ! /* Remove the leading '*' added in set_user_assembler_name. */ ! ? 1 + IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)) ! : IDENTIFIER_POINTER (DECL_NAME (decl)); /* Silently ignore 'signal' if 'interrupt' is present. AVR-LibC startet using this when it switched from SIGNAL and INTERRUPT to ISR. */ *************** avr_prologue_setup_frame (HOST_WIDE_INT *** 1112,1118 **** leaf function and thus X has already been saved. */ int irq_state = -1; ! HOST_WIDE_INT size_cfa = size; rtx fp_plus_insns, fp, my_fp; gcc_assert (frame_pointer_needed --- 1117,1123 ---- leaf function and thus X has already been saved. */ int irq_state = -1; ! HOST_WIDE_INT size_cfa = size, neg_size; rtx fp_plus_insns, fp, my_fp; gcc_assert (frame_pointer_needed *************** avr_prologue_setup_frame (HOST_WIDE_INT *** 1151,1156 **** --- 1156,1162 ---- } size = trunc_int_for_mode (size, GET_MODE (my_fp)); + neg_size = trunc_int_for_mode (-size, GET_MODE (my_fp)); /************ Method 1: Adjust frame pointer ************/ *************** avr_prologue_setup_frame (HOST_WIDE_INT *** 1171,1177 **** } insn = emit_move_insn (my_fp, plus_constant (GET_MODE (my_fp), ! my_fp, -size)); if (frame_pointer_needed) { RTX_FRAME_RELATED_P (insn) = 1; --- 1177,1184 ---- } insn = emit_move_insn (my_fp, plus_constant (GET_MODE (my_fp), ! my_fp, neg_size)); ! if (frame_pointer_needed) { RTX_FRAME_RELATED_P (insn) = 1; *************** lshrsi3_out (rtx insn, rtx operands[], i *** 6225,6235 **** the subtrahend in the original insn, provided it is a compile time constant. In all other cases, SIGN is 0. ! Return "". */ static void avr_out_plus_1 (rtx *xop, int *plen, enum rtx_code code, int *pcc, ! enum rtx_code code_sat = UNKNOWN, int sign = 0) { /* MODE of the operation. */ enum machine_mode mode = GET_MODE (xop[0]); --- 6232,6245 ---- the subtrahend in the original insn, provided it is a compile time constant. In all other cases, SIGN is 0. ! If OUT_LABEL is true, print the final 0: label which is needed for ! saturated addition / subtraction. The only case where OUT_LABEL = false ! is useful is for saturated addition / subtraction performed during ! fixed-point rounding, cf. `avr_out_round'. */ static void avr_out_plus_1 (rtx *xop, int *plen, enum rtx_code code, int *pcc, ! enum rtx_code code_sat, int sign, bool out_label) { /* MODE of the operation. */ enum machine_mode mode = GET_MODE (xop[0]); *************** avr_out_plus_1 (rtx *xop, int *plen, enu *** 6668,6674 **** "mov %r0+5,%0", xop, plen, 4); } ! avr_asm_len ("0:", op, plen, 0); } --- 6678,6685 ---- "mov %r0+5,%0", xop, plen, 4); } ! if (out_label) ! avr_asm_len ("0:", op, plen, 0); } *************** avr_out_plus_symbol (rtx *xop, enum rtx_ *** 6706,6713 **** /* Prepare operands of addition/subtraction to be used with avr_out_plus_1. ! INSN is a single_set insn with a binary operation as SET_SRC that is ! one of: PLUS, SS_PLUS, US_PLUS, MINUS, SS_MINUS, US_MINUS. XOP are the operands of INSN. In the case of 64-bit operations with constant XOP[] has just one element: The summand/subtrahend in XOP[0]. --- 6717,6724 ---- /* Prepare operands of addition/subtraction to be used with avr_out_plus_1. ! INSN is a single_set insn or an insn pattern with a binary operation as ! SET_SRC that is one of: PLUS, SS_PLUS, US_PLUS, MINUS, SS_MINUS, US_MINUS. XOP are the operands of INSN. In the case of 64-bit operations with constant XOP[] has just one element: The summand/subtrahend in XOP[0]. *************** avr_out_plus_symbol (rtx *xop, enum rtx_ *** 6722,6740 **** PLEN and PCC default to NULL. Return "" */ const char* ! avr_out_plus (rtx insn, rtx *xop, int *plen, int *pcc) { int cc_plus, cc_minus, cc_dummy; int len_plus, len_minus; rtx op[4]; ! rtx xdest = SET_DEST (single_set (insn)); enum machine_mode mode = GET_MODE (xdest); enum machine_mode imode = int_mode_for_mode (mode); int n_bytes = GET_MODE_SIZE (mode); ! enum rtx_code code_sat = GET_CODE (SET_SRC (single_set (insn))); enum rtx_code code = (PLUS == code_sat || SS_PLUS == code_sat || US_PLUS == code_sat ? PLUS : MINUS); --- 6733,6754 ---- PLEN and PCC default to NULL. + OUT_LABEL defaults to TRUE. For a description, see AVR_OUT_PLUS_1. + Return "" */ const char* ! avr_out_plus (rtx insn, rtx *xop, int *plen, int *pcc, bool out_label) { int cc_plus, cc_minus, cc_dummy; int len_plus, len_minus; rtx op[4]; ! rtx xpattern = INSN_P (insn) ? single_set (insn) : insn; ! rtx xdest = SET_DEST (xpattern); enum machine_mode mode = GET_MODE (xdest); enum machine_mode imode = int_mode_for_mode (mode); int n_bytes = GET_MODE_SIZE (mode); ! enum rtx_code code_sat = GET_CODE (SET_SRC (xpattern)); enum rtx_code code = (PLUS == code_sat || SS_PLUS == code_sat || US_PLUS == code_sat ? PLUS : MINUS); *************** avr_out_plus (rtx insn, rtx *xop, int *p *** 6749,6755 **** if (n_bytes <= 4 && REG_P (xop[2])) { ! avr_out_plus_1 (xop, plen, code, pcc, code_sat); return ""; } --- 6763,6769 ---- if (n_bytes <= 4 && REG_P (xop[2])) { ! avr_out_plus_1 (xop, plen, code, pcc, code_sat, 0, out_label); return ""; } *************** avr_out_plus (rtx insn, rtx *xop, int *p *** 6776,6782 **** /* Saturations and 64-bit operations don't have a clobber operand. For the other cases, the caller will provide a proper XOP[3]. */ ! op[3] = PARALLEL == GET_CODE (PATTERN (insn)) ? xop[3] : NULL_RTX; /* Saturation will need the sign of the original operand. */ --- 6790,6797 ---- /* Saturations and 64-bit operations don't have a clobber operand. For the other cases, the caller will provide a proper XOP[3]. */ ! xpattern = INSN_P (insn) ? PATTERN (insn) : insn; ! op[3] = PARALLEL == GET_CODE (xpattern) ? xop[3] : NULL_RTX; /* Saturation will need the sign of the original operand. */ *************** avr_out_plus (rtx insn, rtx *xop, int *p *** 6791,6798 **** /* Work out the shortest sequence. */ ! avr_out_plus_1 (op, &len_minus, MINUS, &cc_plus, code_sat, sign); ! avr_out_plus_1 (op, &len_plus, PLUS, &cc_minus, code_sat, sign); if (plen) { --- 6806,6813 ---- /* Work out the shortest sequence. */ ! avr_out_plus_1 (op, &len_minus, MINUS, &cc_plus, code_sat, sign, out_label); ! avr_out_plus_1 (op, &len_plus, PLUS, &cc_minus, code_sat, sign, out_label); if (plen) { *************** avr_out_plus (rtx insn, rtx *xop, int *p *** 6800,6808 **** *pcc = (len_minus <= len_plus) ? cc_minus : cc_plus; } else if (len_minus <= len_plus) ! avr_out_plus_1 (op, NULL, MINUS, pcc, code_sat, sign); else ! avr_out_plus_1 (op, NULL, PLUS, pcc, code_sat, sign); return ""; } --- 6815,6823 ---- *pcc = (len_minus <= len_plus) ? cc_minus : cc_plus; } else if (len_minus <= len_plus) ! avr_out_plus_1 (op, NULL, MINUS, pcc, code_sat, sign, out_label); else ! avr_out_plus_1 (op, NULL, PLUS, pcc, code_sat, sign, out_label); return ""; } *************** avr_out_plus (rtx insn, rtx *xop, int *p *** 6816,6828 **** and return "". If PLEN == NULL, print assembler instructions to perform the operation; otherwise, set *PLEN to the length of the instruction sequence (in words) printed with PLEN == NULL. XOP[3] is either an 8-bit clobber ! register or SCRATCH if no clobber register is needed for the operation. */ const char* avr_out_bitop (rtx insn, rtx *xop, int *plen) { /* CODE and MODE of the operation. */ ! enum rtx_code code = GET_CODE (SET_SRC (single_set (insn))); enum machine_mode mode = GET_MODE (xop[0]); /* Number of bytes to operate on. */ --- 6831,6845 ---- and return "". If PLEN == NULL, print assembler instructions to perform the operation; otherwise, set *PLEN to the length of the instruction sequence (in words) printed with PLEN == NULL. XOP[3] is either an 8-bit clobber ! register or SCRATCH if no clobber register is needed for the operation. ! INSN is an INSN_P or a pattern of an insn. */ const char* avr_out_bitop (rtx insn, rtx *xop, int *plen) { /* CODE and MODE of the operation. */ ! rtx xpattern = INSN_P (insn) ? single_set (insn) : insn; ! enum rtx_code code = GET_CODE (SET_SRC (xpattern)); enum machine_mode mode = GET_MODE (xop[0]); /* Number of bytes to operate on. */ *************** avr_out_fract (rtx insn, rtx operands[], *** 7325,7330 **** --- 7342,7408 ---- } + /* Output fixed-point rounding. XOP[0] = XOP[1] is the operand to round. + XOP[2] is the rounding point, a CONST_INT. The function prints the + instruction sequence if PLEN = NULL and computes the length in words + of the sequence if PLEN != NULL. Most of this function deals with + preparing operands for calls to `avr_out_plus' and `avr_out_bitop'. */ + + const char* + avr_out_round (rtx insn ATTRIBUTE_UNUSED, rtx *xop, int *plen) + { + enum machine_mode mode = GET_MODE (xop[0]); + enum machine_mode imode = int_mode_for_mode (mode); + // The smallest fractional bit not cleared by the rounding is 2^(-RP). + int fbit = (int) GET_MODE_FBIT (mode); + double_int i_add = double_int_zero.set_bit (fbit-1 - INTVAL (xop[2])); + // Lengths of PLUS and AND parts. + int len_add = 0, *plen_add = plen ? &len_add : NULL; + int len_and = 0, *plen_and = plen ? &len_and : NULL; + + // Add-Saturate 1/2 * 2^(-RP). Don't print the label "0:" when printing + // the saturated addition so that we can emit the "rjmp 1f" before the + // "0:" below. + + rtx xadd = const_fixed_from_double_int (i_add, mode); + rtx xpattern, xsrc, op[4]; + + xsrc = SIGNED_FIXED_POINT_MODE_P (mode) + ? gen_rtx_SS_PLUS (mode, xop[1], xadd) + : gen_rtx_US_PLUS (mode, xop[1], xadd); + xpattern = gen_rtx_SET (VOIDmode, xop[0], xsrc); + + op[0] = xop[0]; + op[1] = xop[1]; + op[2] = xadd; + avr_out_plus (xpattern, op, plen_add, NULL, false /* Don't print "0:" */); + + avr_asm_len ("rjmp 1f" CR_TAB + "0:", NULL, plen_add, 1); + + // Keep all bits from RP and higher: ... 2^(-RP) + // Clear all bits from RP+1 and lower: 2^(-RP-1) ... + // Rounding point ^^^^^^^ + // Added above ^^^^^^^^^ + rtx xreg = simplify_gen_subreg (imode, xop[0], mode, 0); + rtx xmask = immed_double_int_const (-i_add - i_add, imode); + + xpattern = gen_rtx_SET (VOIDmode, xreg, gen_rtx_AND (imode, xreg, xmask)); + + op[0] = xreg; + op[1] = xreg; + op[2] = xmask; + op[3] = gen_rtx_SCRATCH (QImode); + avr_out_bitop (xpattern, op, plen_and); + avr_asm_len ("1:", NULL, plen, 0); + + if (plen) + *plen = len_add + len_and; + + return ""; + } + + /* Create RTL split patterns for byte sized rotate expressions. This produces a series of move instructions and considers overlap situations. Overlapping non-HImode operands need a scratch register. */ *************** avr_adjust_insn_length (rtx insn, int le *** 7533,7538 **** --- 7611,7617 ---- case ADJUST_LEN_SFRACT: avr_out_fract (insn, op, true, &len); break; case ADJUST_LEN_UFRACT: avr_out_fract (insn, op, false, &len); break; + case ADJUST_LEN_ROUND: avr_out_round (insn, op, &len); break; case ADJUST_LEN_TSTHI: avr_out_tsthi (insn, op, &len); break; case ADJUST_LEN_TSTPSI: avr_out_tstpsi (insn, op, &len); break; diff -Nrcpad gcc-4.8.1/gcc/config/avr/avr.md gcc-4.8.2/gcc/config/avr/avr.md *** gcc-4.8.1/gcc/config/avr/avr.md Fri Feb 8 10:13:37 2013 --- gcc-4.8.2/gcc/config/avr/avr.md Fri Jul 19 11:15:26 2013 *************** *** 140,146 **** "out_bitop, plus, addto_sp, tsthi, tstpsi, tstsi, compare, compare64, call, mov8, mov16, mov24, mov32, reload_in16, reload_in24, reload_in32, ! ufract, sfract, xload, lpm, movmem, ashlqi, ashrqi, lshrqi, ashlhi, ashrhi, lshrhi, --- 140,146 ---- "out_bitop, plus, addto_sp, tsthi, tstpsi, tstsi, compare, compare64, call, mov8, mov16, mov24, mov32, reload_in16, reload_in24, reload_in32, ! ufract, sfract, round, xload, lpm, movmem, ashlqi, ashrqi, lshrqi, ashlhi, ashrhi, lshrhi, diff -Nrcpad gcc-4.8.1/gcc/config/avr/avr.opt gcc-4.8.2/gcc/config/avr/avr.opt *** gcc-4.8.1/gcc/config/avr/avr.opt Tue Mar 12 11:42:26 2013 --- gcc-4.8.2/gcc/config/avr/avr.opt Wed Jul 10 11:20:18 2013 *************** The device has no SPH special function r *** 77,80 **** Waddr-space-convert Warning C Report Var(avr_warn_addr_space_convert) Init(0) ! Warn if the address space of an address is change. --- 77,80 ---- Waddr-space-convert Warning C Report Var(avr_warn_addr_space_convert) Init(0) ! Warn if the address space of an address is changed. diff -Nrcpad gcc-4.8.1/gcc/config/avr/gen-avr-mmcu-texi.c gcc-4.8.2/gcc/config/avr/gen-avr-mmcu-texi.c *** gcc-4.8.1/gcc/config/avr/gen-avr-mmcu-texi.c Mon Jan 14 18:09:34 2013 --- gcc-4.8.2/gcc/config/avr/gen-avr-mmcu-texi.c Wed Jul 10 12:36:36 2013 *************** comparator (const void *va, const void * *** 68,73 **** --- 68,74 ---- static void print_mcus (size_t n_mcus) { + int duplicate = 0; size_t i; if (!n_mcus) *************** print_mcus (size_t n_mcus) *** 78,84 **** printf ("@*@var{mcu}@tie{}="); for (i = 0; i < n_mcus; i++) ! printf (" @code{%s}%s", mcu_name[i], i == n_mcus-1 ? ".\n\n" : ","); } int main (void) --- 79,98 ---- printf ("@*@var{mcu}@tie{}="); for (i = 0; i < n_mcus; i++) ! { ! printf (" @code{%s}%s", mcu_name[i], i == n_mcus-1 ? ".\n\n" : ","); ! ! if (i && !strcmp (mcu_name[i], mcu_name[i-1])) ! { ! /* Sanity-check: Fail on devices that are present more than once. */ ! ! duplicate = 1; ! fprintf (stderr, "error: duplicate device: %s\n", mcu_name[i]); ! } ! } ! ! if (duplicate) ! exit (1); } int main (void) diff -Nrcpad gcc-4.8.1/gcc/config/avr/t-multilib gcc-4.8.2/gcc/config/avr/t-multilib *** gcc-4.8.1/gcc/config/avr/t-multilib Thu Feb 28 09:03:09 2013 --- gcc-4.8.2/gcc/config/avr/t-multilib Wed Jul 10 12:36:36 2013 *************** MULTILIB_MATCHES = \ *** 135,141 **** mmcu?avr5=mmcu?atmega169a \ mmcu?avr5=mmcu?atmega169p \ mmcu?avr5=mmcu?atmega169pa \ - mmcu?avr5=mmcu?atmega16hva \ mmcu?avr5=mmcu?atmega16hvb \ mmcu?avr5=mmcu?atmega16hvbrevb \ mmcu?avr5=mmcu?atmega16m1 \ --- 135,140 ---- *************** MULTILIB_MATCHES = \ *** 143,149 **** mmcu?avr5=mmcu?atmega26hvg \ mmcu?avr5=mmcu?atmega32a \ mmcu?avr5=mmcu?atmega32 \ - mmcu?avr5=mmcu?atmega32a \ mmcu?avr5=mmcu?atmega323 \ mmcu?avr5=mmcu?atmega324a \ mmcu?avr5=mmcu?atmega324p \ --- 142,147 ---- *************** MULTILIB_MATCHES = \ *** 189,195 **** mmcu?avr5=mmcu?atmega6490 \ mmcu?avr5=mmcu?atmega16hva \ mmcu?avr5=mmcu?atmega16hva2 \ - mmcu?avr5=mmcu?atmega16hvb \ mmcu?avr5=mmcu?atmega32hvb \ mmcu?avr5=mmcu?atmega6490a \ mmcu?avr5=mmcu?atmega6490p \ --- 187,192 ---- *************** MULTILIB_MATCHES = \ *** 198,220 **** mmcu?avr5=mmcu?atmega64hve \ mmcu?avr5=mmcu?atmega64rfa2 \ mmcu?avr5=mmcu?atmega64rfr2 \ - mmcu?avr5=mmcu?atmega32hvb \ mmcu?avr5=mmcu?atmega32hvbrevb \ - mmcu?avr5=mmcu?atmega16hva2 \ mmcu?avr5=mmcu?atmega48hvf \ mmcu?avr5=mmcu?at90can32 \ mmcu?avr5=mmcu?at90can64 \ mmcu?avr5=mmcu?at90pwm161 \ mmcu?avr5=mmcu?at90pwm216 \ mmcu?avr5=mmcu?at90pwm316 \ - mmcu?avr5=mmcu?atmega32c1 \ - mmcu?avr5=mmcu?atmega64c1 \ - mmcu?avr5=mmcu?atmega16m1 \ - mmcu?avr5=mmcu?atmega32m1 \ - mmcu?avr5=mmcu?atmega64m1 \ - mmcu?avr5=mmcu?atmega16u4 \ - mmcu?avr5=mmcu?atmega32u4 \ - mmcu?avr5=mmcu?atmega32u6 \ mmcu?avr5=mmcu?at90scr100 \ mmcu?avr5=mmcu?at90usb646 \ mmcu?avr5=mmcu?at90usb647 \ --- 195,207 ---- diff -Nrcpad gcc-4.8.1/gcc/config/darwin-protos.h gcc-4.8.2/gcc/config/darwin-protos.h *** gcc-4.8.1/gcc/config/darwin-protos.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/darwin-protos.h Mon Jul 22 08:57:41 2013 *************** extern void machopic_validate_stub_or_no *** 25,30 **** --- 25,31 ---- extern void machopic_output_function_base_name (FILE *); extern const char *machopic_indirection_name (rtx, bool); extern const char *machopic_mcount_stub_name (void); + extern bool machopic_should_output_picbase_label (void); #ifdef RTX_CODE diff -Nrcpad gcc-4.8.1/gcc/config/darwin.c gcc-4.8.2/gcc/config/darwin.c *** gcc-4.8.1/gcc/config/darwin.c Mon Feb 11 22:36:23 2013 --- gcc-4.8.2/gcc/config/darwin.c Mon Jul 22 08:57:41 2013 *************** machopic_gen_offset (rtx orig) *** 369,382 **** static GTY(()) const char * function_base_func_name; static GTY(()) int current_pic_label_num; ! void ! machopic_output_function_base_name (FILE *file) { const char *current_name; - /* If dynamic-no-pic is on, we should not get here. */ - gcc_assert (!MACHO_DYNAMIC_NO_PIC_P); /* When we are generating _get_pc thunks within stubs, there is no current function. */ if (current_function_decl) --- 369,381 ---- static GTY(()) const char * function_base_func_name; static GTY(()) int current_pic_label_num; + static GTY(()) int emitted_pic_label_num; ! static void ! update_pic_label_number_if_needed (void) { const char *current_name; /* When we are generating _get_pc thunks within stubs, there is no current function. */ if (current_function_decl) *************** machopic_output_function_base_name (FILE *** 394,400 **** ++current_pic_label_num; function_base_func_name = "L_machopic_stub_dummy"; } ! fprintf (file, "L%011d$pb", current_pic_label_num); } /* The suffix attached to non-lazy pointer symbols. */ --- 393,420 ---- ++current_pic_label_num; function_base_func_name = "L_machopic_stub_dummy"; } ! } ! ! void ! machopic_output_function_base_name (FILE *file) ! { ! /* If dynamic-no-pic is on, we should not get here. */ ! gcc_assert (!MACHO_DYNAMIC_NO_PIC_P); ! ! update_pic_label_number_if_needed (); ! fprintf (file, "L%d$pb", current_pic_label_num); ! } ! ! bool ! machopic_should_output_picbase_label (void) ! { ! update_pic_label_number_if_needed (); ! ! if (current_pic_label_num == emitted_pic_label_num) ! return false; ! ! emitted_pic_label_num = current_pic_label_num; ! return true; } /* The suffix attached to non-lazy pointer symbols. */ diff -Nrcpad gcc-4.8.1/gcc/config/i386/bmiintrin.h gcc-4.8.2/gcc/config/i386/bmiintrin.h *** gcc-4.8.1/gcc/config/i386/bmiintrin.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/i386/bmiintrin.h Fri Jul 19 07:38:07 2013 *************** __tzcnt_u16 (unsigned short __X) *** 38,44 **** return __builtin_ctzs (__X); } - extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) __andn_u32 (unsigned int __X, unsigned int __Y) { --- 38,43 ---- *************** __bextr_u32 (unsigned int __X, unsigned *** 52,74 **** --- 51,96 ---- } extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _bextr_u32 (unsigned int __X, unsigned int __Y, unsigned __Z) + { + return __builtin_ia32_bextr_u32 (__X, ((__Y & 0xff) | ((__Z & 0xff) << 8))); + } + + extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) __blsi_u32 (unsigned int __X) { return __X & -__X; } extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _blsi_u32 (unsigned int __X) + { + return __blsi_u32 (__X); + } + + extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) __blsmsk_u32 (unsigned int __X) { return __X ^ (__X - 1); } extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _blsmsk_u32 (unsigned int __X) + { + return __blsmsk_u32 (__X); + } + + extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) __blsr_u32 (unsigned int __X) { return __X & (__X - 1); } + extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _blsr_u32 (unsigned int __X) + { + return __blsr_u32 (__X); + } extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) __tzcnt_u32 (unsigned int __X) *************** __tzcnt_u32 (unsigned int __X) *** 76,81 **** --- 98,109 ---- return __builtin_ctz (__X); } + extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _tzcnt_u32 (unsigned int __X) + { + return __builtin_ctz (__X); + } + #ifdef __x86_64__ extern __inline unsigned long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) *************** __bextr_u64 (unsigned long long __X, uns *** 91,118 **** --- 119,176 ---- } extern __inline unsigned long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _bextr_u64 (unsigned long long __X, unsigned int __Y, unsigned int __Z) + { + return __builtin_ia32_bextr_u64 (__X, ((__Y & 0xff) | ((__Z & 0xff) << 8))); + } + + extern __inline unsigned long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) __blsi_u64 (unsigned long long __X) { return __X & -__X; } extern __inline unsigned long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _blsi_u64 (unsigned long long __X) + { + return __blsi_u64 (__X); + } + + extern __inline unsigned long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) __blsmsk_u64 (unsigned long long __X) { return __X ^ (__X - 1); } extern __inline unsigned long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _blsmsk_u64 (unsigned long long __X) + { + return __blsmsk_u64 (__X); + } + + extern __inline unsigned long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) __blsr_u64 (unsigned long long __X) { return __X & (__X - 1); } extern __inline unsigned long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _blsr_u64 (unsigned long long __X) + { + return __blsr_u64 (__X); + } + + extern __inline unsigned long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) __tzcnt_u64 (unsigned long long __X) { return __builtin_ctzll (__X); } + + extern __inline unsigned long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _tzcnt_u64 (unsigned long long __X) + { + return __builtin_ctzll (__X); + } #endif /* __x86_64__ */ diff -Nrcpad gcc-4.8.1/gcc/config/i386/driver-i386.c gcc-4.8.2/gcc/config/i386/driver-i386.c *** gcc-4.8.1/gcc/config/i386/driver-i386.c Fri May 17 15:06:36 2013 --- gcc-4.8.2/gcc/config/i386/driver-i386.c Wed Aug 28 08:25:13 2013 *************** const char *host_detect_local_cpu (int a *** 520,527 **** if (vendor == signature_AMD_ebx || vendor == signature_CENTAUR_ebx || vendor == signature_CYRIX_ebx ! || vendor == signature_NSC_ebx ! || vendor == signature_TM2_ebx) cache = detect_caches_amd (ext_level); else if (vendor == signature_INTEL_ebx) { --- 520,526 ---- if (vendor == signature_AMD_ebx || vendor == signature_CENTAUR_ebx || vendor == signature_CYRIX_ebx ! || vendor == signature_NSC_ebx) cache = detect_caches_amd (ext_level); else if (vendor == signature_INTEL_ebx) { *************** const char *host_detect_local_cpu (int a *** 639,651 **** /* Atom. */ cpu = "atom"; break; case 0x1a: case 0x1e: case 0x1f: case 0x2e: /* Nehalem. */ - cpu = "corei7"; - break; case 0x25: case 0x2c: case 0x2f: --- 638,655 ---- /* Atom. */ cpu = "atom"; break; + case 0x0f: + /* Merom. */ + case 0x17: + case 0x1d: + /* Penryn. */ + cpu = "core2"; + break; case 0x1a: case 0x1e: case 0x1f: case 0x2e: /* Nehalem. */ case 0x25: case 0x2c: case 0x2f: *************** const char *host_detect_local_cpu (int a *** 657,676 **** /* Sandy Bridge. */ cpu = "corei7-avx"; break; ! case 0x17: ! case 0x1d: ! /* Penryn. */ ! cpu = "core2"; break; ! case 0x0f: ! /* Merom. */ ! cpu = "core2"; break; default: if (arch) { /* This is unknown family 0x6 CPU. */ ! if (has_avx) /* Assume Sandy Bridge. */ cpu = "corei7-avx"; else if (has_sse4_2) --- 661,685 ---- /* Sandy Bridge. */ cpu = "corei7-avx"; break; ! case 0x3a: ! case 0x3e: ! /* Ivy Bridge. */ ! cpu = "core-avx-i"; break; ! case 0x3c: ! case 0x45: ! case 0x46: ! /* Haswell. */ ! cpu = "core-avx2"; break; default: if (arch) { /* This is unknown family 0x6 CPU. */ ! if (has_avx2) ! /* Assume Haswell. */ ! cpu = "core-avx2"; ! else if (has_avx) /* Assume Sandy Bridge. */ cpu = "corei7-avx"; else if (has_sse4_2) diff -Nrcpad gcc-4.8.1/gcc/config/i386/i386.c gcc-4.8.2/gcc/config/i386/i386.c *** gcc-4.8.1/gcc/config/i386/i386.c Fri May 17 15:06:36 2013 --- gcc-4.8.2/gcc/config/i386/i386.c Fri Aug 23 10:01:34 2013 *************** static const struct ptt processor_target *** 2438,2448 **** {&generic32_cost, 16, 7, 16, 7, 16}, {&generic64_cost, 16, 10, 16, 10, 16}, {&amdfam10_cost, 32, 24, 32, 7, 32}, ! {&bdver1_cost, 32, 24, 32, 7, 32}, ! {&bdver2_cost, 32, 24, 32, 7, 32}, ! {&bdver3_cost, 32, 24, 32, 7, 32}, ! {&btver1_cost, 32, 24, 32, 7, 32}, ! {&btver2_cost, 32, 24, 32, 7, 32}, {&atom_cost, 16, 15, 16, 7, 16} }; --- 2438,2448 ---- {&generic32_cost, 16, 7, 16, 7, 16}, {&generic64_cost, 16, 10, 16, 10, 16}, {&amdfam10_cost, 32, 24, 32, 7, 32}, ! {&bdver1_cost, 16, 10, 16, 7, 11}, ! {&bdver2_cost, 16, 10, 16, 7, 11}, ! {&bdver3_cost, 16, 10, 16, 7, 11}, ! {&btver1_cost, 16, 10, 16, 7, 11}, ! {&btver2_cost, 16, 10, 16, 7, 11}, {&atom_cost, 16, 15, 16, 7, 16} }; *************** ix86_option_override_internal (bool main *** 3768,3791 **** ix86_gen_leave = gen_leave_rex64; if (Pmode == DImode) { - ix86_gen_monitor = gen_sse3_monitor64_di; ix86_gen_tls_global_dynamic_64 = gen_tls_global_dynamic_64_di; ix86_gen_tls_local_dynamic_base_64 = gen_tls_local_dynamic_base_64_di; } else { - ix86_gen_monitor = gen_sse3_monitor64_si; ix86_gen_tls_global_dynamic_64 = gen_tls_global_dynamic_64_si; ix86_gen_tls_local_dynamic_base_64 = gen_tls_local_dynamic_base_64_si; } } else ! { ! ix86_gen_leave = gen_leave; ! ix86_gen_monitor = gen_sse3_monitor; ! } if (Pmode == DImode) { --- 3768,3786 ---- ix86_gen_leave = gen_leave_rex64; if (Pmode == DImode) { ix86_gen_tls_global_dynamic_64 = gen_tls_global_dynamic_64_di; ix86_gen_tls_local_dynamic_base_64 = gen_tls_local_dynamic_base_64_di; } else { ix86_gen_tls_global_dynamic_64 = gen_tls_global_dynamic_64_si; ix86_gen_tls_local_dynamic_base_64 = gen_tls_local_dynamic_base_64_si; } } else ! ix86_gen_leave = gen_leave; if (Pmode == DImode) { *************** ix86_option_override_internal (bool main *** 3797,3802 **** --- 3792,3798 ---- ix86_gen_allocate_stack_worker = gen_allocate_stack_worker_probe_di; ix86_gen_adjust_stack_and_probe = gen_adjust_stack_and_probedi; ix86_gen_probe_stack_range = gen_probe_stack_rangedi; + ix86_gen_monitor = gen_sse3_monitor_di; } else { *************** ix86_option_override_internal (bool main *** 3808,3813 **** --- 3804,3810 ---- ix86_gen_allocate_stack_worker = gen_allocate_stack_worker_probe_si; ix86_gen_adjust_stack_and_probe = gen_adjust_stack_and_probesi; ix86_gen_probe_stack_range = gen_probe_stack_rangesi; + ix86_gen_monitor = gen_sse3_monitor_si; } #ifdef USE_IX86_CLD *************** x86_64_elf_select_section (tree decl, in *** 4691,4696 **** --- 4688,4715 ---- return default_elf_select_section (decl, reloc, align); } + /* Select a set of attributes for section NAME based on the properties + of DECL and whether or not RELOC indicates that DECL's initializer + might contain runtime relocations. */ + + static unsigned int ATTRIBUTE_UNUSED + x86_64_elf_section_type_flags (tree decl, const char *name, int reloc) + { + unsigned int flags = default_section_type_flags (decl, name, reloc); + + if (decl == NULL_TREE + && (strcmp (name, ".ldata.rel.ro") == 0 + || strcmp (name, ".ldata.rel.ro.local") == 0)) + flags |= SECTION_RELRO; + + if (strcmp (name, ".lbss") == 0 + || strncmp (name, ".lbss.", 5) == 0 + || strncmp (name, ".gnu.linkonce.lb.", 16) == 0) + flags |= SECTION_BSS; + + return flags; + } + /* Build up a unique section name, expressed as a STRING_CST node, and assign it to DECL_SECTION_NAME (decl). RELOC indicates whether the initial value of EXP requires *************** construct_container (enum machine_mode m *** 6396,6402 **** /* Likewise, error if the ABI requires us to return values in the x87 registers and the user specified -mno-80387. */ ! if (!TARGET_80387 && in_return) for (i = 0; i < n; i++) if (regclass[i] == X86_64_X87_CLASS || regclass[i] == X86_64_X87UP_CLASS --- 6415,6421 ---- /* Likewise, error if the ABI requires us to return values in the x87 registers and the user specified -mno-80387. */ ! if (in_return && !TARGET_FLOAT_RETURNS_IN_80387) for (i = 0; i < n; i++) if (regclass[i] == X86_64_X87_CLASS || regclass[i] == X86_64_X87UP_CLASS *************** output_set_got (rtx dest, rtx label ATTR *** 8721,8737 **** if (!flag_pic) { ! xops[2] = gen_rtx_LABEL_REF (Pmode, label ? label : gen_label_rtx ()); output_asm_insn ("mov%z0\t{%2, %0|%0, %2}", xops); - - #if TARGET_MACHO - /* Output the Mach-O "canonical" label name ("Lxx$pb") here too. This - is what will be referenced by the Mach-O PIC subsystem. */ - if (!label) - ASM_OUTPUT_LABEL (asm_out_file, MACHOPIC_FUNCTION_BASE_NAME); - #endif - targetm.asm_out.internal_label (asm_out_file, "L", CODE_LABEL_NUMBER (XEXP (xops[2], 0))); } --- 8740,8751 ---- if (!flag_pic) { ! if (TARGET_MACHO) ! /* We don't need a pic base, we're not producing pic. */ ! gcc_unreachable (); + xops[2] = gen_rtx_LABEL_REF (Pmode, label ? label : gen_label_rtx ()); output_asm_insn ("mov%z0\t{%2, %0|%0, %2}", xops); targetm.asm_out.internal_label (asm_out_file, "L", CODE_LABEL_NUMBER (XEXP (xops[2], 0))); } *************** output_set_got (rtx dest, rtx label ATTR *** 8744,8755 **** xops[2] = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name)); xops[2] = gen_rtx_MEM (QImode, xops[2]); output_asm_insn ("call\t%X2", xops); ! /* Output the Mach-O "canonical" label name ("Lxx$pb") here too. This ! is what will be referenced by the Mach-O PIC subsystem. */ #if TARGET_MACHO ! if (!label) ASM_OUTPUT_LABEL (asm_out_file, MACHOPIC_FUNCTION_BASE_NAME); ! else targetm.asm_out.internal_label (asm_out_file, "L", CODE_LABEL_NUMBER (label)); #endif --- 8758,8775 ---- xops[2] = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name)); xops[2] = gen_rtx_MEM (QImode, xops[2]); output_asm_insn ("call\t%X2", xops); ! #if TARGET_MACHO ! /* Output the Mach-O "canonical" pic base label name ("Lxx$pb") here. ! This is what will be referenced by the Mach-O PIC subsystem. */ ! if (machopic_should_output_picbase_label () || !label) ASM_OUTPUT_LABEL (asm_out_file, MACHOPIC_FUNCTION_BASE_NAME); ! ! /* When we are restoring the pic base at the site of a nonlocal label, ! and we decided to emit the pic base above, we will still output a ! local label used for calculating the correction offset (even though ! the offset will be 0 in that case). */ ! if (label) targetm.asm_out.internal_label (asm_out_file, "L", CODE_LABEL_NUMBER (label)); #endif *************** ix86_save_reg (unsigned int regno, bool *** 8831,8837 **** && (df_regs_ever_live_p (REAL_PIC_OFFSET_TABLE_REGNUM) || crtl->profile || crtl->calls_eh_return ! || crtl->uses_const_pool)) return ix86_select_alt_pic_regnum () == INVALID_REGNUM; if (crtl->calls_eh_return && maybe_eh_return) --- 8851,8858 ---- && (df_regs_ever_live_p (REAL_PIC_OFFSET_TABLE_REGNUM) || crtl->profile || crtl->calls_eh_return ! || crtl->uses_const_pool ! || cfun->has_nonlocal_label)) return ix86_select_alt_pic_regnum () == INVALID_REGNUM; if (crtl->calls_eh_return && maybe_eh_return) *************** ix86_delegitimize_address (rtx x) *** 13596,13616 **** x = replace_equiv_address_nv (orig_x, x); return x; } ! if (GET_CODE (x) != CONST ! || GET_CODE (XEXP (x, 0)) != UNSPEC ! || (XINT (XEXP (x, 0), 1) != UNSPEC_GOTPCREL ! && XINT (XEXP (x, 0), 1) != UNSPEC_PCREL) ! || (!MEM_P (orig_x) && XINT (XEXP (x, 0), 1) != UNSPEC_PCREL)) ! return ix86_delegitimize_tls_address (orig_x); ! x = XVECEXP (XEXP (x, 0), 0, 0); ! if (GET_MODE (orig_x) != GET_MODE (x) && MEM_P (orig_x)) { ! x = simplify_gen_subreg (GET_MODE (orig_x), x, ! GET_MODE (x), 0); ! if (x == NULL_RTX) ! return orig_x; } ! return x; } if (GET_CODE (x) != PLUS --- 13617,13645 ---- x = replace_equiv_address_nv (orig_x, x); return x; } ! ! if (GET_CODE (x) == CONST ! && GET_CODE (XEXP (x, 0)) == UNSPEC ! && (XINT (XEXP (x, 0), 1) == UNSPEC_GOTPCREL ! || XINT (XEXP (x, 0), 1) == UNSPEC_PCREL) ! && (MEM_P (orig_x) || XINT (XEXP (x, 0), 1) == UNSPEC_PCREL)) { ! x = XVECEXP (XEXP (x, 0), 0, 0); ! if (GET_MODE (orig_x) != GET_MODE (x) && MEM_P (orig_x)) ! { ! x = simplify_gen_subreg (GET_MODE (orig_x), x, ! GET_MODE (x), 0); ! if (x == NULL_RTX) ! return orig_x; ! } ! return x; } ! ! if (ix86_cmodel != CM_MEDIUM_PIC && ix86_cmodel != CM_LARGE_PIC) ! return ix86_delegitimize_tls_address (orig_x); ! ! /* Fall thru into the code shared with -m32 for -mcmodel=large -fpic ! and -mcmodel=medium -fpic. */ } if (GET_CODE (x) != PLUS *************** ix86_delegitimize_address (rtx x) *** 13647,13656 **** if (GET_CODE (x) == UNSPEC && ((XINT (x, 1) == UNSPEC_GOT && MEM_P (orig_x) && !addend) ! || (XINT (x, 1) == UNSPEC_GOTOFF && !MEM_P (orig_x)))) result = XVECEXP (x, 0, 0); ! if (TARGET_MACHO && darwin_local_data_pic (x) && !MEM_P (orig_x)) result = XVECEXP (x, 0, 0); --- 13676,13687 ---- if (GET_CODE (x) == UNSPEC && ((XINT (x, 1) == UNSPEC_GOT && MEM_P (orig_x) && !addend) ! || (XINT (x, 1) == UNSPEC_GOTOFF && !MEM_P (orig_x)) ! || (XINT (x, 1) == UNSPEC_PLTOFF && ix86_cmodel == CM_LARGE_PIC ! && !MEM_P (orig_x) && !addend))) result = XVECEXP (x, 0, 0); ! if (!TARGET_64BIT && TARGET_MACHO && darwin_local_data_pic (x) && !MEM_P (orig_x)) result = XVECEXP (x, 0, 0); *************** dispatch_function_versions (tree dispatc *** 28935,28944 **** if (predicate_chain == NULL_TREE) continue; actual_versions++; - function_version_info [ix - 1].version_decl = version_decl; - function_version_info [ix - 1].predicate_chain = predicate_chain; - function_version_info [ix - 1].dispatch_priority = priority; } /* Sort the versions according to descending order of dispatch priority. The --- 28966,28976 ---- if (predicate_chain == NULL_TREE) continue; + function_version_info [actual_versions].version_decl = version_decl; + function_version_info [actual_versions].predicate_chain + = predicate_chain; + function_version_info [actual_versions].dispatch_priority = priority; actual_versions++; } /* Sort the versions according to descending order of dispatch priority. The *************** ix86_expand_builtin (tree exp, rtx targe *** 31780,31786 **** } if (target == 0) ! target = gen_reg_rtx (mode); if (TARGET_64BIT) { --- 31812,31824 ---- } if (target == 0) ! { ! /* mode is VOIDmode if __builtin_rd* has been called ! without lhs. */ ! if (mode == VOIDmode) ! return target; ! target = gen_reg_rtx (mode); ! } if (TARGET_64BIT) { *************** ix86_pad_short_function (void) *** 35444,35449 **** --- 35482,35527 ---- } } + /* Fix up a Windows system unwinder issue. If an EH region falls thru into + the epilogue, the Windows system unwinder will apply epilogue logic and + produce incorrect offsets. This can be avoided by adding a nop between + the last insn that can throw and the first insn of the epilogue. */ + + static void + ix86_seh_fixup_eh_fallthru (void) + { + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) + { + rtx insn, next; + + /* Find the beginning of the epilogue. */ + for (insn = BB_END (e->src); insn != NULL; insn = PREV_INSN (insn)) + if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG) + break; + if (insn == NULL) + continue; + + /* We only care about preceeding insns that can throw. */ + insn = prev_active_insn (insn); + if (insn == NULL || !can_throw_internal (insn)) + continue; + + /* Do not separate calls from their debug information. */ + for (next = NEXT_INSN (insn); next != NULL; next = NEXT_INSN (next)) + if (NOTE_P (next) + && (NOTE_KIND (next) == NOTE_INSN_VAR_LOCATION + || NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)) + insn = next; + else + break; + + emit_insn_after (gen_nops (const1_rtx), insn); + } + } + /* Implement machine specific optimizations. We implement padding of returns for K8 CPUs and pass to avoid 4 jumps in the single 16 byte window. */ static void *************** ix86_reorg (void) *** 35453,35458 **** --- 35531,35539 ---- with old MDEP_REORGS that are not CFG based. Recompute it now. */ compute_bb_for_insn (); + if (TARGET_SEH && current_function_has_exception_handlers ()) + ix86_seh_fixup_eh_fallthru (); + if (optimize && optimize_function_for_speed_p (cfun)) { if (TARGET_PAD_SHORT_FUNCTION) *************** ix86_memmodel_check (unsigned HOST_WIDE_ *** 42205,42210 **** --- 42286,42293 ---- #undef TARGET_ATTRIBUTE_TABLE #define TARGET_ATTRIBUTE_TABLE ix86_attribute_table + #undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P + #define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true #if TARGET_DLLIMPORT_DECL_ATTRIBUTES # undef TARGET_MERGE_DECL_ATTRIBUTES # define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes diff -Nrcpad gcc-4.8.1/gcc/config/i386/i386.md gcc-4.8.2/gcc/config/i386/i386.md *** gcc-4.8.1/gcc/config/i386/i386.md Wed May 22 12:16:41 2013 --- gcc-4.8.2/gcc/config/i386/i386.md Tue Aug 13 12:45:06 2013 *************** *** 222,227 **** --- 222,229 ---- UNSPECV_XEND UNSPECV_XABORT UNSPECV_XTEST + + UNSPECV_NLGR ]) ;; Constants to represent rounding modes in the ROUND instruction *************** *** 2314,2320 **** "TARGET_LP64 && ix86_check_movabs (insn, 0)" "@ movabs{}\t{%1, %P0|[%P0], %1} ! mov{}\t{%1, %a0|%a0, %1}" [(set_attr "type" "imov") (set_attr "modrm" "0,*") (set_attr "length_address" "8,0") --- 2316,2322 ---- "TARGET_LP64 && ix86_check_movabs (insn, 0)" "@ movabs{}\t{%1, %P0|[%P0], %1} ! mov{}\t{%1, %a0| PTR %a0, %1}" [(set_attr "type" "imov") (set_attr "modrm" "0,*") (set_attr "length_address" "8,0") *************** *** 2328,2334 **** "TARGET_LP64 && ix86_check_movabs (insn, 1)" "@ movabs{}\t{%P1, %0|%0, [%P1]} ! mov{}\t{%a1, %0|%0, %a1}" [(set_attr "type" "imov") (set_attr "modrm" "0,*") (set_attr "length_address" "8,0") --- 2330,2336 ---- "TARGET_LP64 && ix86_check_movabs (insn, 1)" "@ movabs{}\t{%P1, %0|%0, [%P1]} ! mov{}\t{%a1, %0|%0, PTR %a1}" [(set_attr "type" "imov") (set_attr "modrm" "0,*") (set_attr "length_address" "8,0") *************** *** 12120,12127 **** (define_insn "bmi_bextr_" [(set (match_operand:SWI48 0 "register_operand" "=r,r") ! (unspec:SWI48 [(match_operand:SWI48 1 "register_operand" "r,r") ! (match_operand:SWI48 2 "nonimmediate_operand" "r,m")] UNSPEC_BEXTR)) (clobber (reg:CC FLAGS_REG))] "TARGET_BMI" --- 12122,12129 ---- (define_insn "bmi_bextr_" [(set (match_operand:SWI48 0 "register_operand" "=r,r") ! (unspec:SWI48 [(match_operand:SWI48 1 "nonimmediate_operand" "r,m") ! (match_operand:SWI48 2 "register_operand" "r,r")] UNSPEC_BEXTR)) (clobber (reg:CC FLAGS_REG))] "TARGET_BMI" *************** *** 12174,12182 **** ;; BMI2 instructions. (define_insn "bmi2_bzhi_3" [(set (match_operand:SWI48 0 "register_operand" "=r") ! (and:SWI48 (match_operand:SWI48 1 "register_operand" "r") ! (lshiftrt:SWI48 (const_int -1) ! (match_operand:SWI48 2 "nonimmediate_operand" "rm")))) (clobber (reg:CC FLAGS_REG))] "TARGET_BMI2" "bzhi\t{%2, %1, %0|%0, %1, %2}" --- 12176,12184 ---- ;; BMI2 instructions. (define_insn "bmi2_bzhi_3" [(set (match_operand:SWI48 0 "register_operand" "=r") ! (and:SWI48 (lshiftrt:SWI48 (const_int -1) ! (match_operand:SWI48 2 "register_operand" "r")) ! (match_operand:SWI48 1 "nonimmediate_operand" "rm"))) (clobber (reg:CC FLAGS_REG))] "TARGET_BMI2" "bzhi\t{%2, %1, %0|%0, %1, %2}" *************** *** 16646,16652 **** emit_insn (gen_set_got (pic_offset_table_rtx)); DONE; }) ! ;; Avoid redundant prefixes by splitting HImode arithmetic to SImode. (define_split --- 16648,16684 ---- emit_insn (gen_set_got (pic_offset_table_rtx)); DONE; }) ! ! (define_insn_and_split "nonlocal_goto_receiver" ! [(unspec_volatile [(const_int 0)] UNSPECV_NLGR)] ! "TARGET_MACHO && !TARGET_64BIT && flag_pic" ! "#" ! "&& reload_completed" ! [(const_int 0)] ! { ! if (crtl->uses_pic_offset_table) ! { ! rtx xops[3]; ! rtx label_rtx = gen_label_rtx (); ! rtx tmp; ! ! /* Get a new pic base. */ ! emit_insn (gen_set_got_labelled (pic_offset_table_rtx, label_rtx)); ! /* Correct this with the offset from the new to the old. */ ! xops[0] = xops[1] = pic_offset_table_rtx; ! label_rtx = gen_rtx_LABEL_REF (SImode, label_rtx); ! tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, label_rtx), ! UNSPEC_MACHOPIC_OFFSET); ! xops[2] = gen_rtx_CONST (Pmode, tmp); ! ix86_expand_binary_operator (MINUS, SImode, xops); ! } ! else ! /* No pic reg restore needed. */ ! emit_note (NOTE_INSN_DELETED); ! ! DONE; ! }) ! ;; Avoid redundant prefixes by splitting HImode arithmetic to SImode. (define_split *************** *** 17043,17048 **** --- 17075,17081 ---- "(TARGET_READ_MODIFY_WRITE || optimize_insn_for_size_p ()) && peep2_reg_dead_p (4, operands[0]) && !reg_overlap_mentioned_p (operands[0], operands[1]) + && !reg_overlap_mentioned_p (operands[0], operands[2]) && (mode != QImode || immediate_operand (operands[2], QImode) || q_regs_operand (operands[2], QImode)) *************** *** 17107,17112 **** --- 17140,17146 ---- || immediate_operand (operands[2], SImode) || q_regs_operand (operands[2], SImode)) && !reg_overlap_mentioned_p (operands[0], operands[1]) + && !reg_overlap_mentioned_p (operands[0], operands[2]) && ix86_match_ccmode (peep2_next_insn (3), (GET_CODE (operands[3]) == PLUS || GET_CODE (operands[3]) == MINUS) diff -Nrcpad gcc-4.8.1/gcc/config/i386/predicates.md gcc-4.8.2/gcc/config/i386/predicates.md *** gcc-4.8.1/gcc/config/i386/predicates.md Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/i386/predicates.md Wed Jul 3 20:24:19 2013 *************** *** 835,853 **** return false; /* VSIB addressing doesn't support (%rip). */ ! if (parts.disp && GET_CODE (parts.disp) == CONST) { ! disp = XEXP (parts.disp, 0); ! if (GET_CODE (disp) == PLUS) ! disp = XEXP (disp, 0); ! if (GET_CODE (disp) == UNSPEC) ! switch (XINT (disp, 1)) ! { ! case UNSPEC_GOTPCREL: ! case UNSPEC_PCREL: ! case UNSPEC_GOTNTPOFF: ! return false; ! } } return true; --- 835,862 ---- return false; /* VSIB addressing doesn't support (%rip). */ ! if (parts.disp) { ! disp = parts.disp; ! if (GET_CODE (disp) == CONST) ! { ! disp = XEXP (disp, 0); ! if (GET_CODE (disp) == PLUS) ! disp = XEXP (disp, 0); ! if (GET_CODE (disp) == UNSPEC) ! switch (XINT (disp, 1)) ! { ! case UNSPEC_GOTPCREL: ! case UNSPEC_PCREL: ! case UNSPEC_GOTNTPOFF: ! return false; ! } ! } ! if (TARGET_64BIT ! && flag_pic ! && (GET_CODE (disp) == SYMBOL_REF ! || GET_CODE (disp) == LABEL_REF)) ! return false; } return true; diff -Nrcpad gcc-4.8.1/gcc/config/i386/sse.md gcc-4.8.2/gcc/config/i386/sse.md *** gcc-4.8.1/gcc/config/i386/sse.md Mon Apr 29 22:16:04 2013 --- gcc-4.8.2/gcc/config/i386/sse.md Wed Aug 14 14:09:59 2013 *************** *** 3603,3609 **** (vec_select:V4SF (vec_concat:V8SF (match_operand:V4SF 1 "nonimmediate_operand" " 0,x,0,x,0") ! (match_operand:V4SF 2 "nonimmediate_operand" " x,x,m,x,x")) (parallel [(const_int 0) (const_int 1) (const_int 4) --- 3603,3609 ---- (vec_select:V4SF (vec_concat:V8SF (match_operand:V4SF 1 "nonimmediate_operand" " 0,x,0,x,0") ! (match_operand:V4SF 2 "nonimmediate_operand" " x,x,m,m,x")) (parallel [(const_int 0) (const_int 1) (const_int 4) *************** *** 7758,7766 **** (mem:V16QI (match_dup 0))] UNSPEC_MASKMOV))] "TARGET_SSE2" ! "%vmaskmovdqu\t{%2, %1|%1, %2}" [(set_attr "type" "ssemov") (set_attr "prefix_data16" "1") ;; The implicit %rdi operand confuses default length_vex computation. (set (attr "length_vex") (symbol_ref ("3 + REX_SSE_REGNO_P (REGNO (operands[2]))"))) --- 7758,7774 ---- (mem:V16QI (match_dup 0))] UNSPEC_MASKMOV))] "TARGET_SSE2" ! { ! /* We can't use %^ here due to ASM_OUTPUT_OPCODE processing ! that requires %v to be at the beginning of the opcode name. */ ! if (Pmode != word_mode) ! fputs ("\taddr32", asm_out_file); ! return "%vmaskmovdqu\t{%2, %1|%1, %2}"; ! } [(set_attr "type" "ssemov") (set_attr "prefix_data16" "1") + (set (attr "length_address") + (symbol_ref ("Pmode != word_mode"))) ;; The implicit %rdi operand confuses default length_vex computation. (set (attr "length_vex") (symbol_ref ("3 + REX_SSE_REGNO_P (REGNO (operands[2]))"))) *************** *** 7808,7833 **** "mwait" [(set_attr "length" "3")]) ! (define_insn "sse3_monitor" ! [(unspec_volatile [(match_operand:SI 0 "register_operand" "a") ! (match_operand:SI 1 "register_operand" "c") ! (match_operand:SI 2 "register_operand" "d")] ! UNSPECV_MONITOR)] ! "TARGET_SSE3 && !TARGET_64BIT" ! "monitor\t%0, %1, %2" ! [(set_attr "length" "3")]) ! ! (define_insn "sse3_monitor64_" [(unspec_volatile [(match_operand:P 0 "register_operand" "a") (match_operand:SI 1 "register_operand" "c") (match_operand:SI 2 "register_operand" "d")] UNSPECV_MONITOR)] ! "TARGET_SSE3 && TARGET_64BIT" ;; 64bit version is "monitor %rax,%rcx,%rdx". But only lower 32bits in ;; RCX and RDX are used. Since 32bit register operands are implicitly ;; zero extended to 64bit, we only need to set up 32bit registers. ! "monitor" ! [(set_attr "length" "3")]) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; --- 7816,7833 ---- "mwait" [(set_attr "length" "3")]) ! (define_insn "sse3_monitor_" [(unspec_volatile [(match_operand:P 0 "register_operand" "a") (match_operand:SI 1 "register_operand" "c") (match_operand:SI 2 "register_operand" "d")] UNSPECV_MONITOR)] ! "TARGET_SSE3" ;; 64bit version is "monitor %rax,%rcx,%rdx". But only lower 32bits in ;; RCX and RDX are used. Since 32bit register operands are implicitly ;; zero extended to 64bit, we only need to set up 32bit registers. ! "%^monitor" ! [(set (attr "length") ! (symbol_ref ("(Pmode != word_mode) + 3")))]) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; diff -Nrcpad gcc-4.8.1/gcc/config/i386/x86-64.h gcc-4.8.2/gcc/config/i386/x86-64.h *** gcc-4.8.1/gcc/config/i386/x86-64.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/i386/x86-64.h Fri Aug 23 10:01:34 2013 *************** see the files COPYING3 and COPYING.RUNTI *** 103,105 **** --- 103,108 ---- #undef TARGET_ASM_UNIQUE_SECTION #define TARGET_ASM_UNIQUE_SECTION x86_64_elf_unique_section + + #undef TARGET_SECTION_TYPE_FLAGS + #define TARGET_SECTION_TYPE_FLAGS x86_64_elf_section_type_flags diff -Nrcpad gcc-4.8.1/gcc/config/pa/pa.c gcc-4.8.2/gcc/config/pa/pa.c *** gcc-4.8.1/gcc/config/pa/pa.c Sat Apr 6 17:46:50 2013 --- gcc-4.8.2/gcc/config/pa/pa.c Sat Sep 21 00:00:38 2013 *************** pa_option_override (void) *** 513,518 **** --- 513,524 ---- write_symbols = NO_DEBUG; } + #ifdef AUTO_INC_DEC + /* FIXME: Disable auto increment and decrement processing until reload + is completed. See PR middle-end 56791. */ + flag_auto_inc_dec = reload_completed; + #endif + /* We only support the "big PIC" model now. And we always generate PIC code when in 64bit mode. */ if (flag_pic == 1 || TARGET_64BIT) *************** pa_expand_prologue (void) *** 4038,4044 **** || (! TARGET_64BIT && df_regs_ever_live_p (i + 1))) { rtx addr, insn, reg; ! addr = gen_rtx_MEM (DFmode, gen_rtx_POST_INC (DFmode, tmpreg)); reg = gen_rtx_REG (DFmode, i); insn = emit_move_insn (addr, reg); if (DO_FRAME_NOTES) --- 4044,4051 ---- || (! TARGET_64BIT && df_regs_ever_live_p (i + 1))) { rtx addr, insn, reg; ! addr = gen_rtx_MEM (DFmode, ! gen_rtx_POST_INC (word_mode, tmpreg)); reg = gen_rtx_REG (DFmode, i); insn = emit_move_insn (addr, reg); if (DO_FRAME_NOTES) *************** pa_expand_epilogue (void) *** 4331,4337 **** if (df_regs_ever_live_p (i) || (! TARGET_64BIT && df_regs_ever_live_p (i + 1))) { ! rtx src = gen_rtx_MEM (DFmode, gen_rtx_POST_INC (DFmode, tmpreg)); rtx dest = gen_rtx_REG (DFmode, i); emit_move_insn (dest, src); } --- 4338,4345 ---- if (df_regs_ever_live_p (i) || (! TARGET_64BIT && df_regs_ever_live_p (i + 1))) { ! rtx src = gen_rtx_MEM (DFmode, ! gen_rtx_POST_INC (word_mode, tmpreg)); rtx dest = gen_rtx_REG (DFmode, i); emit_move_insn (dest, src); } diff -Nrcpad gcc-4.8.1/gcc/config/pa/pa.md gcc-4.8.2/gcc/config/pa/pa.md *** gcc-4.8.1/gcc/config/pa/pa.md Mon Mar 11 00:44:28 2013 --- gcc-4.8.2/gcc/config/pa/pa.md Fri Sep 20 22:30:21 2013 *************** *** 833,878 **** (define_insn "scc" [(set (match_operand:SI 0 "register_operand" "=r") (match_operator:SI 3 "comparison_operator" ! [(match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith11_operand" "rI")]))] "" ! "{com%I2clr|cmp%I2clr},%B3 %2,%1,%0\;ldi 1,%0" [(set_attr "type" "binary") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (match_operator:DI 3 "comparison_operator" ! [(match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "arith11_operand" "rI")]))] "TARGET_64BIT" ! "cmp%I2clr,*%B3 %2,%1,%0\;ldi 1,%0" [(set_attr "type" "binary") (set_attr "length" "8")]) (define_insn "iorscc" [(set (match_operand:SI 0 "register_operand" "=r") (ior:SI (match_operator:SI 3 "comparison_operator" ! [(match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith11_operand" "rI")]) (match_operator:SI 6 "comparison_operator" ! [(match_operand:SI 4 "register_operand" "r") (match_operand:SI 5 "arith11_operand" "rI")])))] "" ! "{com%I2clr|cmp%I2clr},%S3 %2,%1,%%r0\;{com%I5clr|cmp%I5clr},%B6 %5,%4,%0\;ldi 1,%0" [(set_attr "type" "binary") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (ior:DI (match_operator:DI 3 "comparison_operator" ! [(match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "arith11_operand" "rI")]) (match_operator:DI 6 "comparison_operator" ! [(match_operand:DI 4 "register_operand" "r") (match_operand:DI 5 "arith11_operand" "rI")])))] "TARGET_64BIT" ! "cmp%I2clr,*%S3 %2,%1,%%r0\;cmp%I5clr,*%B6 %5,%4,%0\;ldi 1,%0" [(set_attr "type" "binary") (set_attr "length" "12")]) --- 833,878 ---- (define_insn "scc" [(set (match_operand:SI 0 "register_operand" "=r") (match_operator:SI 3 "comparison_operator" ! [(match_operand:SI 1 "reg_or_0_operand" "rM") (match_operand:SI 2 "arith11_operand" "rI")]))] "" ! "{com%I2clr|cmp%I2clr},%B3 %2,%r1,%0\;ldi 1,%0" [(set_attr "type" "binary") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (match_operator:DI 3 "comparison_operator" ! [(match_operand:DI 1 "reg_or_0_operand" "rM") (match_operand:DI 2 "arith11_operand" "rI")]))] "TARGET_64BIT" ! "cmp%I2clr,*%B3 %2,%r1,%0\;ldi 1,%0" [(set_attr "type" "binary") (set_attr "length" "8")]) (define_insn "iorscc" [(set (match_operand:SI 0 "register_operand" "=r") (ior:SI (match_operator:SI 3 "comparison_operator" ! [(match_operand:SI 1 "reg_or_0_operand" "rM") (match_operand:SI 2 "arith11_operand" "rI")]) (match_operator:SI 6 "comparison_operator" ! [(match_operand:SI 4 "reg_or_0_operand" "rM") (match_operand:SI 5 "arith11_operand" "rI")])))] "" ! "{com%I2clr|cmp%I2clr},%S3 %2,%r1,%%r0\;{com%I5clr|cmp%I5clr},%B6 %5,%r4,%0\;ldi 1,%0" [(set_attr "type" "binary") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (ior:DI (match_operator:DI 3 "comparison_operator" ! [(match_operand:DI 1 "reg_or_0_operand" "rM") (match_operand:DI 2 "arith11_operand" "rI")]) (match_operator:DI 6 "comparison_operator" ! [(match_operand:DI 4 "reg_or_0_operand" "rM") (match_operand:DI 5 "arith11_operand" "rI")])))] "TARGET_64BIT" ! "cmp%I2clr,*%S3 %2,%r1,%%r0\;cmp%I5clr,*%B6 %5,%r4,%0\;ldi 1,%0" [(set_attr "type" "binary") (set_attr "length" "12")]) *************** *** 881,900 **** (define_insn "negscc" [(set (match_operand:SI 0 "register_operand" "=r") (neg:SI (match_operator:SI 3 "comparison_operator" ! [(match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith11_operand" "rI")])))] "" ! "{com%I2clr|cmp%I2clr},%B3 %2,%1,%0\;ldi -1,%0" [(set_attr "type" "binary") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (neg:DI (match_operator:DI 3 "comparison_operator" ! [(match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "arith11_operand" "rI")])))] "TARGET_64BIT" ! "cmp%I2clr,*%B3 %2,%1,%0\;ldi -1,%0" [(set_attr "type" "binary") (set_attr "length" "8")]) --- 881,900 ---- (define_insn "negscc" [(set (match_operand:SI 0 "register_operand" "=r") (neg:SI (match_operator:SI 3 "comparison_operator" ! [(match_operand:SI 1 "reg_or_0_operand" "rM") (match_operand:SI 2 "arith11_operand" "rI")])))] "" ! "{com%I2clr|cmp%I2clr},%B3 %2,%r1,%0\;ldi -1,%0" [(set_attr "type" "binary") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (neg:DI (match_operator:DI 3 "comparison_operator" ! [(match_operand:DI 1 "reg_or_0_operand" "rM") (match_operand:DI 2 "arith11_operand" "rI")])))] "TARGET_64BIT" ! "cmp%I2clr,*%B3 %2,%r1,%0\;ldi -1,%0" [(set_attr "type" "binary") (set_attr "length" "8")]) diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/default64.h gcc-4.8.2/gcc/config/rs6000/default64.h *** gcc-4.8.1/gcc/config/rs6000/default64.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/rs6000/default64.h Wed Jun 19 01:18:38 2013 *************** You should have received a copy of the G *** 18,22 **** --- 18,27 ---- along with GCC; see the file COPYING3. If not see . */ + #if (TARGET_DEFAULT & MASK_LITTLE_ENDIAN) + #undef TARGET_DEFAULT + #define TARGET_DEFAULT (MASK_PPC_GFXOPT | MASK_POWERPC64 | MASK_64BIT | MASK_LITTLE_ENDIAN) + #else #undef TARGET_DEFAULT #define TARGET_DEFAULT (MASK_PPC_GFXOPT | MASK_POWERPC64 | MASK_64BIT) + #endif diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/dfp.md gcc-4.8.2/gcc/config/rs6000/dfp.md *** gcc-4.8.1/gcc/config/rs6000/dfp.md Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/rs6000/dfp.md Mon Aug 19 17:55:50 2013 *************** *** 394,404 **** "") (define_insn "*negtd2_fpr" ! [(set (match_operand:TD 0 "gpc_reg_operand" "=d") ! (neg:TD (match_operand:TD 1 "gpc_reg_operand" "d")))] "TARGET_HARD_FLOAT && TARGET_FPRS" ! "fneg %0,%1" ! [(set_attr "type" "fp")]) (define_expand "abstd2" [(set (match_operand:TD 0 "gpc_reg_operand" "") --- 394,407 ---- "") (define_insn "*negtd2_fpr" ! [(set (match_operand:TD 0 "gpc_reg_operand" "=d,d") ! (neg:TD (match_operand:TD 1 "gpc_reg_operand" "0,d")))] "TARGET_HARD_FLOAT && TARGET_FPRS" ! "@ ! fneg %0,%1 ! fneg %0,%1\;fmr %L0,%L1" ! [(set_attr "type" "fp") ! (set_attr "length" "4,8")]) (define_expand "abstd2" [(set (match_operand:TD 0 "gpc_reg_operand" "") diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/linux.h gcc-4.8.2/gcc/config/rs6000/linux.h *** gcc-4.8.1/gcc/config/rs6000/linux.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/rs6000/linux.h Wed Jun 19 01:18:38 2013 *************** *** 79,84 **** --- 79,102 ---- #undef LINK_OS_DEFAULT_SPEC #define LINK_OS_DEFAULT_SPEC "%(link_os_linux)" + #undef DEFAULT_ASM_ENDIAN + #if (TARGET_DEFAULT & MASK_LITTLE_ENDIAN) + #define DEFAULT_ASM_ENDIAN " -mlittle" + #define LINK_OS_LINUX_EMUL ENDIAN_SELECT(" -m elf32ppclinux", \ + " -m elf32lppclinux", \ + " -m elf32lppclinux") + #else + #define DEFAULT_ASM_ENDIAN " -mbig" + #define LINK_OS_LINUX_EMUL ENDIAN_SELECT(" -m elf32ppclinux", \ + " -m elf32lppclinux", \ + " -m elf32ppclinux") + #endif + + #undef LINK_OS_LINUX_SPEC + #define LINK_OS_LINUX_SPEC LINK_OS_LINUX_EMUL " %{!shared: %{!static: \ + %{rdynamic:-export-dynamic} \ + -dynamic-linker " GNU_USER_DYNAMIC_LINKER "}}" + #define LINK_GCC_C_SEQUENCE_SPEC \ "%{static:--start-group} %G %L %{static:--end-group}%{!static:%G}" diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/linux64.h gcc-4.8.2/gcc/config/rs6000/linux64.h *** gcc-4.8.1/gcc/config/rs6000/linux64.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/rs6000/linux64.h Wed Jun 19 01:18:38 2013 *************** extern int dot_symbols; *** 180,199 **** #endif #define ASM_SPEC32 "-a32 \ ! %{mrelocatable} %{mrelocatable-lib} %{fpic:-K PIC} %{fPIC:-K PIC} \ ! %{memb} %{!memb: %{msdata=eabi: -memb}} \ ! %{!mlittle: %{!mlittle-endian: %{!mbig: %{!mbig-endian: \ ! %{mcall-freebsd: -mbig} \ ! %{mcall-i960-old: -mlittle} \ ! %{mcall-linux: -mbig} \ ! %{mcall-netbsd: -mbig} \ ! }}}}" #define ASM_SPEC64 "-a64" #define ASM_SPEC_COMMON "%(asm_cpu) \ ! %{,assembler|,assembler-with-cpp: %{mregnames} %{mno-regnames}} \ ! %{mlittle} %{mlittle-endian} %{mbig} %{mbig-endian}" #undef SUBSUBTARGET_EXTRA_SPECS #define SUBSUBTARGET_EXTRA_SPECS \ --- 180,193 ---- #endif #define ASM_SPEC32 "-a32 \ ! %{mrelocatable} %{mrelocatable-lib} %{fpic|fpie|fPIC|fPIE:-K PIC} \ ! %{memb|msdata=eabi: -memb}" #define ASM_SPEC64 "-a64" #define ASM_SPEC_COMMON "%(asm_cpu) \ ! %{,assembler|,assembler-with-cpp: %{mregnames} %{mno-regnames}}" \ ! ENDIAN_SELECT(" -mbig", " -mlittle", DEFAULT_ASM_ENDIAN) #undef SUBSUBTARGET_EXTRA_SPECS #define SUBSUBTARGET_EXTRA_SPECS \ *************** extern int dot_symbols; *** 212,221 **** #ifndef RS6000_BI_ARCH - /* 64-bit PowerPC Linux is always big-endian. */ - #undef OPTION_LITTLE_ENDIAN - #define OPTION_LITTLE_ENDIAN 0 - /* 64-bit PowerPC Linux always has a TOC. */ #undef TARGET_TOC #define TARGET_TOC 1 --- 206,211 ---- *************** extern int dot_symbols; *** 376,387 **** #define GNU_USER_DYNAMIC_LINKER64 \ CHOOSE_DYNAMIC_LINKER (GLIBC_DYNAMIC_LINKER64, UCLIBC_DYNAMIC_LINKER64) ! #define LINK_OS_LINUX_SPEC32 "-m elf32ppclinux %{!shared: %{!static: \ %{rdynamic:-export-dynamic} \ -dynamic-linker " GNU_USER_DYNAMIC_LINKER32 "}}" ! #define LINK_OS_LINUX_SPEC64 "-m elf64ppc %{!shared: %{!static: \ %{rdynamic:-export-dynamic} \ -dynamic-linker " GNU_USER_DYNAMIC_LINKER64 "}}" --- 366,395 ---- #define GNU_USER_DYNAMIC_LINKER64 \ CHOOSE_DYNAMIC_LINKER (GLIBC_DYNAMIC_LINKER64, UCLIBC_DYNAMIC_LINKER64) + #undef DEFAULT_ASM_ENDIAN + #if (TARGET_DEFAULT & MASK_LITTLE_ENDIAN) + #define DEFAULT_ASM_ENDIAN " -mlittle" + #define LINK_OS_LINUX_EMUL32 ENDIAN_SELECT(" -m elf32ppclinux", \ + " -m elf32lppclinux", \ + " -m elf32lppclinux") + #define LINK_OS_LINUX_EMUL64 ENDIAN_SELECT(" -m elf64ppc", \ + " -m elf64lppc", \ + " -m elf64lppc") + #else + #define DEFAULT_ASM_ENDIAN " -mbig" + #define LINK_OS_LINUX_EMUL32 ENDIAN_SELECT(" -m elf32ppclinux", \ + " -m elf32lppclinux", \ + " -m elf32ppclinux") + #define LINK_OS_LINUX_EMUL64 ENDIAN_SELECT(" -m elf64ppc", \ + " -m elf64lppc", \ + " -m elf64ppc") + #endif ! #define LINK_OS_LINUX_SPEC32 LINK_OS_LINUX_EMUL32 " %{!shared: %{!static: \ %{rdynamic:-export-dynamic} \ -dynamic-linker " GNU_USER_DYNAMIC_LINKER32 "}}" ! #define LINK_OS_LINUX_SPEC64 LINK_OS_LINUX_EMUL64 " %{!shared: %{!static: \ %{rdynamic:-export-dynamic} \ -dynamic-linker " GNU_USER_DYNAMIC_LINKER64 "}}" diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/linuxaltivec.h gcc-4.8.2/gcc/config/rs6000/linuxaltivec.h *** gcc-4.8.1/gcc/config/rs6000/linuxaltivec.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/rs6000/linuxaltivec.h Wed Jun 19 01:18:38 2013 *************** *** 20,27 **** --- 20,32 ---- . */ /* Override rs6000.h and sysv4.h definition. */ + #if (TARGET_DEFAULT & MASK_LITTLE_ENDIAN) + #undef TARGET_DEFAULT + #define TARGET_DEFAULT (MASK_ALTIVEC | MASK_LITTLE_ENDIAN) + #else #undef TARGET_DEFAULT #define TARGET_DEFAULT MASK_ALTIVEC + #endif #undef SUBSUBTARGET_OVERRIDE_OPTIONS #define SUBSUBTARGET_OVERRIDE_OPTIONS rs6000_altivec_abi = 1 diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/linuxspe.h gcc-4.8.2/gcc/config/rs6000/linuxspe.h *** gcc-4.8.1/gcc/config/rs6000/linuxspe.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/rs6000/linuxspe.h Wed Jun 19 01:18:38 2013 *************** *** 20,27 **** --- 20,32 ---- . */ /* Override rs6000.h and sysv4.h definition. */ + #if (TARGET_DEFAULT & MASK_LITTLE_ENDIAN) + #undef TARGET_DEFAULT + #define TARGET_DEFAULT (MASK_STRICT_ALIGN | MASK_LITTLE_ENDIAN) + #else #undef TARGET_DEFAULT #define TARGET_DEFAULT MASK_STRICT_ALIGN + #endif #undef ASM_DEFAULT_SPEC #define ASM_DEFAULT_SPEC "-mppc -mspe -me500" diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/predicates.md gcc-4.8.2/gcc/config/rs6000/predicates.md *** gcc-4.8.1/gcc/config/rs6000/predicates.md Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/rs6000/predicates.md Mon Sep 23 14:19:31 2013 *************** *** 275,288 **** (ior (match_code "const_int") (match_operand 0 "gpc_reg_operand"))) ;; Return 1 if op is a constant integer valid for addition ;; or non-special register. (define_predicate "reg_or_add_cint_operand" (if_then_else (match_code "const_int") ! (match_test "(HOST_BITS_PER_WIDE_INT == 32 ! && (mode == SImode || INTVAL (op) < 0x7fff8000)) ! || ((unsigned HOST_WIDE_INT) (INTVAL (op) + 0x80008000) ! < (unsigned HOST_WIDE_INT) 0x100000000ll)") (match_operand 0 "gpc_reg_operand"))) ;; Return 1 if op is a constant integer valid for subtraction --- 275,292 ---- (ior (match_code "const_int") (match_operand 0 "gpc_reg_operand"))) + ;; Return 1 if op is a constant integer valid for addition with addis, addi. + (define_predicate "add_cint_operand" + (and (match_code "const_int") + (match_test "(unsigned HOST_WIDE_INT) + (INTVAL (op) + (mode == SImode ? 0x80000000 : 0x80008000)) + < (unsigned HOST_WIDE_INT) 0x100000000ll"))) + ;; Return 1 if op is a constant integer valid for addition ;; or non-special register. (define_predicate "reg_or_add_cint_operand" (if_then_else (match_code "const_int") ! (match_operand 0 "add_cint_operand") (match_operand 0 "gpc_reg_operand"))) ;; Return 1 if op is a constant integer valid for subtraction *************** *** 464,472 **** (match_test "easy_altivec_constant (op, mode)"))) { HOST_WIDE_INT val; if (mode == V2DImode || mode == V2DFmode) return 0; ! val = const_vector_elt_as_int (op, GET_MODE_NUNITS (mode) - 1); val = ((val & 0xff) ^ 0x80) - 0x80; return EASY_VECTOR_15_ADD_SELF (val); }) --- 468,478 ---- (match_test "easy_altivec_constant (op, mode)"))) { HOST_WIDE_INT val; + int elt; if (mode == V2DImode || mode == V2DFmode) return 0; ! elt = BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 : 0; ! val = const_vector_elt_as_int (op, elt); val = ((val & 0xff) ^ 0x80) - 0x80; return EASY_VECTOR_15_ADD_SELF (val); }) *************** *** 478,486 **** (match_test "easy_altivec_constant (op, mode)"))) { HOST_WIDE_INT val; if (mode == V2DImode || mode == V2DFmode) return 0; ! val = const_vector_elt_as_int (op, GET_MODE_NUNITS (mode) - 1); return EASY_VECTOR_MSB (val, GET_MODE_INNER (mode)); }) --- 484,494 ---- (match_test "easy_altivec_constant (op, mode)"))) { HOST_WIDE_INT val; + int elt; if (mode == V2DImode || mode == V2DFmode) return 0; ! elt = BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 : 0; ! val = const_vector_elt_as_int (op, elt); return EASY_VECTOR_MSB (val, GET_MODE_INNER (mode)); }) *************** *** 1521,1527 **** (define_predicate "small_toc_ref" (match_code "unspec,plus") { ! if (GET_CODE (op) == PLUS && CONST_INT_P (XEXP (op, 1))) op = XEXP (op, 0); return GET_CODE (op) == UNSPEC && XINT (op, 1) == UNSPEC_TOCREL; --- 1529,1535 ---- (define_predicate "small_toc_ref" (match_code "unspec,plus") { ! if (GET_CODE (op) == PLUS && add_cint_operand (XEXP (op, 1), mode)) op = XEXP (op, 0); return GET_CODE (op) == UNSPEC && XINT (op, 1) == UNSPEC_TOCREL; diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/rs6000.c gcc-4.8.2/gcc/config/rs6000/rs6000.c *** gcc-4.8.1/gcc/config/rs6000/rs6000.c Fri May 10 01:54:06 2013 --- gcc-4.8.2/gcc/config/rs6000/rs6000.c Mon Sep 23 14:19:31 2013 *************** static struct *** 284,292 **** { "rsqrtd", (RECIP_DF_RSQRT | RECIP_V2DF_RSQRT) }, }; - /* 2 argument gen function typedef. */ - typedef rtx (*gen_2arg_fn_t) (rtx, rtx, rtx); - /* Pointer to function (in rs6000-c.c) that can define or undefine target macros that have changed. Languages that don't support the preprocessor don't link in rs6000-c.c, so we can't call it directly. */ --- 284,289 ---- *************** rs6000_init_hard_regno_mode_ok (bool glo *** 2190,2196 **** int reg_size2 = reg_size; /* TFmode/TDmode always takes 2 registers, even in VSX. */ ! if (m == TDmode || m == TFmode) reg_size2 = UNITS_PER_FP_WORD; rs6000_class_max_nregs[m][c] --- 2187,2194 ---- int reg_size2 = reg_size; /* TFmode/TDmode always takes 2 registers, even in VSX. */ ! if (TARGET_VSX && VSX_REG_CLASS_P (c) ! && (m == TDmode || m == TFmode)) reg_size2 = UNITS_PER_FP_WORD; rs6000_class_max_nregs[m][c] *************** vspltis_constant (rtx op, unsigned step, *** 4239,4245 **** bitsize = GET_MODE_BITSIZE (inner); mask = GET_MODE_MASK (inner); ! val = const_vector_elt_as_int (op, nunits - 1); splat_val = val; msb_val = val > 0 ? 0 : -1; --- 4237,4243 ---- bitsize = GET_MODE_BITSIZE (inner); mask = GET_MODE_MASK (inner); ! val = const_vector_elt_as_int (op, BYTES_BIG_ENDIAN ? nunits - 1 : 0); splat_val = val; msb_val = val > 0 ? 0 : -1; *************** vspltis_constant (rtx op, unsigned step, *** 4279,4285 **** for (i = 0; i < nunits - 1; ++i) { HOST_WIDE_INT desired_val; ! if (((i + 1) & (step - 1)) == 0) desired_val = val; else desired_val = msb_val; --- 4277,4283 ---- for (i = 0; i < nunits - 1; ++i) { HOST_WIDE_INT desired_val; ! if (((BYTES_BIG_ENDIAN ? i + 1 : i) & (step - 1)) == 0) desired_val = val; else desired_val = msb_val; *************** gen_easy_altivec_constant (rtx op) *** 4364,4376 **** { enum machine_mode mode = GET_MODE (op); int nunits = GET_MODE_NUNITS (mode); ! rtx last = CONST_VECTOR_ELT (op, nunits - 1); unsigned step = nunits / 4; unsigned copies = 1; /* Start with a vspltisw. */ if (vspltis_constant (op, step, copies)) ! return gen_rtx_VEC_DUPLICATE (V4SImode, gen_lowpart (SImode, last)); /* Then try with a vspltish. */ if (step == 1) --- 4362,4374 ---- { enum machine_mode mode = GET_MODE (op); int nunits = GET_MODE_NUNITS (mode); ! rtx val = CONST_VECTOR_ELT (op, BYTES_BIG_ENDIAN ? nunits - 1 : 0); unsigned step = nunits / 4; unsigned copies = 1; /* Start with a vspltisw. */ if (vspltis_constant (op, step, copies)) ! return gen_rtx_VEC_DUPLICATE (V4SImode, gen_lowpart (SImode, val)); /* Then try with a vspltish. */ if (step == 1) *************** gen_easy_altivec_constant (rtx op) *** 4379,4385 **** step >>= 1; if (vspltis_constant (op, step, copies)) ! return gen_rtx_VEC_DUPLICATE (V8HImode, gen_lowpart (HImode, last)); /* And finally a vspltisb. */ if (step == 1) --- 4377,4383 ---- step >>= 1; if (vspltis_constant (op, step, copies)) ! return gen_rtx_VEC_DUPLICATE (V8HImode, gen_lowpart (HImode, val)); /* And finally a vspltisb. */ if (step == 1) *************** gen_easy_altivec_constant (rtx op) *** 4388,4394 **** step >>= 1; if (vspltis_constant (op, step, copies)) ! return gen_rtx_VEC_DUPLICATE (V16QImode, gen_lowpart (QImode, last)); gcc_unreachable (); } --- 4386,4392 ---- step >>= 1; if (vspltis_constant (op, step, copies)) ! return gen_rtx_VEC_DUPLICATE (V16QImode, gen_lowpart (QImode, val)); gcc_unreachable (); } *************** toc_relative_expr_p (const_rtx op, bool *** 5337,5343 **** tocrel_base = op; tocrel_offset = const0_rtx; ! if (GET_CODE (op) == PLUS && CONST_INT_P (XEXP (op, 1))) { tocrel_base = XEXP (op, 0); tocrel_offset = XEXP (op, 1); --- 5335,5341 ---- tocrel_base = op; tocrel_offset = const0_rtx; ! if (GET_CODE (op) == PLUS && add_cint_operand (XEXP (op, 1), GET_MODE (op))) { tocrel_base = XEXP (op, 0); tocrel_offset = XEXP (op, 1); *************** setup_incoming_varargs (cumulative_args_ *** 9066,9084 **** && cfun->va_list_gpr_size) { int nregs = GP_ARG_NUM_REG - first_reg_offset; if (va_list_gpr_counter_field) { /* V4 va_list_gpr_size counts number of registers needed. */ ! if (nregs > cfun->va_list_gpr_size) ! nregs = cfun->va_list_gpr_size; } else { /* char * va_list instead counts number of bytes needed. */ ! if (nregs > cfun->va_list_gpr_size / reg_size) ! nregs = cfun->va_list_gpr_size / reg_size; } mem = gen_rtx_MEM (BLKmode, plus_constant (Pmode, save_area, --- 9064,9083 ---- && cfun->va_list_gpr_size) { int nregs = GP_ARG_NUM_REG - first_reg_offset; + int n_gpr; if (va_list_gpr_counter_field) { /* V4 va_list_gpr_size counts number of registers needed. */ ! n_gpr = cfun->va_list_gpr_size; } else { /* char * va_list instead counts number of bytes needed. */ ! n_gpr = (cfun->va_list_gpr_size + reg_size - 1) / reg_size; } + if (nregs > n_gpr) + nregs = n_gpr; mem = gen_rtx_MEM (BLKmode, plus_constant (Pmode, save_area, *************** rs6000_adjust_atomic_subword (rtx orig_m *** 16900,16907 **** shift = gen_reg_rtx (SImode); addr = gen_lowpart (SImode, addr); emit_insn (gen_rlwinm (shift, addr, GEN_INT (3), GEN_INT (shift_mask))); ! shift = expand_simple_binop (SImode, XOR, shift, GEN_INT (shift_mask), ! shift, 1, OPTAB_LIB_WIDEN); *pshift = shift; /* Mask for insertion. */ --- 16899,16907 ---- shift = gen_reg_rtx (SImode); addr = gen_lowpart (SImode, addr); emit_insn (gen_rlwinm (shift, addr, GEN_INT (3), GEN_INT (shift_mask))); ! if (WORDS_BIG_ENDIAN) ! shift = expand_simple_binop (SImode, XOR, shift, GEN_INT (shift_mask), ! shift, 1, OPTAB_LIB_WIDEN); *pshift = shift; /* Mask for insertion. */ *************** rs6000_emit_prologue (void) *** 19957,19964 **** HOST_WIDE_INT offset; if (!(strategy & SAVE_INLINE_GPRS)) ! ool_adjust = 8 * (info->first_gp_reg_save ! - (FIRST_SAVRES_REGISTER + 1)); offset = info->spe_gp_save_offset + frame_off - ool_adjust; spe_save_area_ptr = gen_rtx_REG (Pmode, 11); save_off = frame_off - offset; --- 19957,19963 ---- HOST_WIDE_INT offset; if (!(strategy & SAVE_INLINE_GPRS)) ! ool_adjust = 8 * (info->first_gp_reg_save - FIRST_SAVED_GP_REGNO); offset = info->spe_gp_save_offset + frame_off - ool_adjust; spe_save_area_ptr = gen_rtx_REG (Pmode, 11); save_off = frame_off - offset; *************** rs6000_emit_epilogue (int sibcall) *** 21200,21207 **** anew to every function. */ if (!restoring_GPRs_inline) ! ool_adjust = 8 * (info->first_gp_reg_save ! - (FIRST_SAVRES_REGISTER + 1)); frame_reg_rtx = gen_rtx_REG (Pmode, 11); emit_insn (gen_addsi3 (frame_reg_rtx, old_frame_reg_rtx, GEN_INT (info->spe_gp_save_offset --- 21199,21205 ---- anew to every function. */ if (!restoring_GPRs_inline) ! ool_adjust = 8 * (info->first_gp_reg_save - FIRST_SAVED_GP_REGNO); frame_reg_rtx = gen_rtx_REG (Pmode, 11); emit_insn (gen_addsi3 (frame_reg_rtx, old_frame_reg_rtx, GEN_INT (info->spe_gp_save_offset *************** output_toc (FILE *file, rtx x, int label *** 22151,22170 **** if (TARGET_64BIT) { ! if (TARGET_MINIMAL_TOC) fputs (DOUBLE_INT_ASM_OP, file); else fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],", k[0] & 0xffffffff, k[1] & 0xffffffff, k[2] & 0xffffffff, k[3] & 0xffffffff); fprintf (file, "0x%lx%08lx,0x%lx%08lx\n", ! k[0] & 0xffffffff, k[1] & 0xffffffff, ! k[2] & 0xffffffff, k[3] & 0xffffffff); return; } else { ! if (TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],", --- 22149,22170 ---- if (TARGET_64BIT) { ! if (TARGET_ELF || TARGET_MINIMAL_TOC) fputs (DOUBLE_INT_ASM_OP, file); else fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],", k[0] & 0xffffffff, k[1] & 0xffffffff, k[2] & 0xffffffff, k[3] & 0xffffffff); fprintf (file, "0x%lx%08lx,0x%lx%08lx\n", ! k[WORDS_BIG_ENDIAN ? 0 : 1] & 0xffffffff, ! k[WORDS_BIG_ENDIAN ? 1 : 0] & 0xffffffff, ! k[WORDS_BIG_ENDIAN ? 2 : 3] & 0xffffffff, ! k[WORDS_BIG_ENDIAN ? 3 : 2] & 0xffffffff); return; } else { ! if (TARGET_ELF || TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],", *************** output_toc (FILE *file, rtx x, int label *** 22191,22208 **** if (TARGET_64BIT) { ! if (TARGET_MINIMAL_TOC) fputs (DOUBLE_INT_ASM_OP, file); else fprintf (file, "\t.tc FD_%lx_%lx[TC],", k[0] & 0xffffffff, k[1] & 0xffffffff); fprintf (file, "0x%lx%08lx\n", ! k[0] & 0xffffffff, k[1] & 0xffffffff); return; } else { ! if (TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc FD_%lx_%lx[TC],", --- 22191,22209 ---- if (TARGET_64BIT) { ! if (TARGET_ELF || TARGET_MINIMAL_TOC) fputs (DOUBLE_INT_ASM_OP, file); else fprintf (file, "\t.tc FD_%lx_%lx[TC],", k[0] & 0xffffffff, k[1] & 0xffffffff); fprintf (file, "0x%lx%08lx\n", ! k[WORDS_BIG_ENDIAN ? 0 : 1] & 0xffffffff, ! k[WORDS_BIG_ENDIAN ? 1 : 0] & 0xffffffff); return; } else { ! if (TARGET_ELF || TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc FD_%lx_%lx[TC],", *************** output_toc (FILE *file, rtx x, int label *** 22226,22241 **** if (TARGET_64BIT) { ! if (TARGET_MINIMAL_TOC) fputs (DOUBLE_INT_ASM_OP, file); else fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff); ! fprintf (file, "0x%lx00000000\n", l & 0xffffffff); return; } else { ! if (TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff); --- 22227,22245 ---- if (TARGET_64BIT) { ! if (TARGET_ELF || TARGET_MINIMAL_TOC) fputs (DOUBLE_INT_ASM_OP, file); else fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff); ! if (WORDS_BIG_ENDIAN) ! fprintf (file, "0x%lx00000000\n", l & 0xffffffff); ! else ! fprintf (file, "0x%lx\n", l & 0xffffffff); return; } else { ! if (TARGET_ELF || TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff); *************** output_toc (FILE *file, rtx x, int label *** 22267,22275 **** } #endif ! /* TOC entries are always Pmode-sized, but since this ! is a bigendian machine then if we're putting smaller ! integer constants in the TOC we have to pad them. (This is still a win over putting the constants in a separate constant pool, because then we'd have to have both a TOC entry _and_ the actual constant.) --- 22271,22278 ---- } #endif ! /* TOC entries are always Pmode-sized, so when big-endian ! smaller integer constants in the TOC need to be padded. (This is still a win over putting the constants in a separate constant pool, because then we'd have to have both a TOC entry _and_ the actual constant.) *************** output_toc (FILE *file, rtx x, int label *** 22280,22286 **** /* It would be easy to make this work, but it doesn't now. */ gcc_assert (!TARGET_64BIT || POINTER_SIZE >= GET_MODE_BITSIZE (mode)); ! if (POINTER_SIZE > GET_MODE_BITSIZE (mode)) { #if HOST_BITS_PER_WIDE_INT == 32 lshift_double (low, high, POINTER_SIZE - GET_MODE_BITSIZE (mode), --- 22283,22289 ---- /* It would be easy to make this work, but it doesn't now. */ gcc_assert (!TARGET_64BIT || POINTER_SIZE >= GET_MODE_BITSIZE (mode)); ! if (WORDS_BIG_ENDIAN && POINTER_SIZE > GET_MODE_BITSIZE (mode)) { #if HOST_BITS_PER_WIDE_INT == 32 lshift_double (low, high, POINTER_SIZE - GET_MODE_BITSIZE (mode), *************** output_toc (FILE *file, rtx x, int label *** 22295,22301 **** if (TARGET_64BIT) { ! if (TARGET_MINIMAL_TOC) fputs (DOUBLE_INT_ASM_OP, file); else fprintf (file, "\t.tc ID_%lx_%lx[TC],", --- 22298,22304 ---- if (TARGET_64BIT) { ! if (TARGET_ELF || TARGET_MINIMAL_TOC) fputs (DOUBLE_INT_ASM_OP, file); else fprintf (file, "\t.tc ID_%lx_%lx[TC],", *************** output_toc (FILE *file, rtx x, int label *** 22308,22314 **** { if (POINTER_SIZE < GET_MODE_BITSIZE (mode)) { ! if (TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc ID_%lx_%lx[TC],", --- 22311,22317 ---- { if (POINTER_SIZE < GET_MODE_BITSIZE (mode)) { ! if (TARGET_ELF || TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc ID_%lx_%lx[TC],", *************** output_toc (FILE *file, rtx x, int label *** 22318,22324 **** } else { ! if (TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc IS_%lx[TC],", (long) low & 0xffffffff); --- 22321,22327 ---- } else { ! if (TARGET_ELF || TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc IS_%lx[TC],", (long) low & 0xffffffff); *************** output_toc (FILE *file, rtx x, int label *** 22356,22362 **** gcc_unreachable (); } ! if (TARGET_MINIMAL_TOC) fputs (TARGET_32BIT ? "\t.long " : DOUBLE_INT_ASM_OP, file); else { --- 22359,22365 ---- gcc_unreachable (); } ! if (TARGET_ELF || TARGET_MINIMAL_TOC) fputs (TARGET_32BIT ? "\t.long " : DOUBLE_INT_ASM_OP, file); else { *************** rs6000_emit_swdiv_high_precision (rtx ds *** 26651,26657 **** enum machine_mode mode = GET_MODE (dst); rtx x0, e0, e1, y1, u0, v0; enum insn_code code = optab_handler (smul_optab, mode); ! gen_2arg_fn_t gen_mul = (gen_2arg_fn_t) GEN_FCN (code); rtx one = rs6000_load_constant_and_splat (mode, dconst1); gcc_assert (code != CODE_FOR_nothing); --- 26654,26660 ---- enum machine_mode mode = GET_MODE (dst); rtx x0, e0, e1, y1, u0, v0; enum insn_code code = optab_handler (smul_optab, mode); ! insn_gen_fn gen_mul = GEN_FCN (code); rtx one = rs6000_load_constant_and_splat (mode, dconst1); gcc_assert (code != CODE_FOR_nothing); *************** rs6000_emit_swdiv_low_precision (rtx dst *** 26689,26695 **** enum machine_mode mode = GET_MODE (dst); rtx x0, e0, e1, e2, y1, y2, y3, u0, v0, one; enum insn_code code = optab_handler (smul_optab, mode); ! gen_2arg_fn_t gen_mul = (gen_2arg_fn_t) GEN_FCN (code); gcc_assert (code != CODE_FOR_nothing); --- 26692,26698 ---- enum machine_mode mode = GET_MODE (dst); rtx x0, e0, e1, e2, y1, y2, y3, u0, v0, one; enum insn_code code = optab_handler (smul_optab, mode); ! insn_gen_fn gen_mul = GEN_FCN (code); gcc_assert (code != CODE_FOR_nothing); *************** rs6000_emit_swrsqrt (rtx dst, rtx src) *** 26760,26766 **** int i; rtx halfthree; enum insn_code code = optab_handler (smul_optab, mode); ! gen_2arg_fn_t gen_mul = (gen_2arg_fn_t) GEN_FCN (code); gcc_assert (code != CODE_FOR_nothing); --- 26763,26769 ---- int i; rtx halfthree; enum insn_code code = optab_handler (smul_optab, mode); ! insn_gen_fn gen_mul = GEN_FCN (code); gcc_assert (code != CODE_FOR_nothing); diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/rs6000.h gcc-4.8.2/gcc/config/rs6000/rs6000.h *** gcc-4.8.1/gcc/config/rs6000/rs6000.h Mon May 6 23:33:49 2013 --- gcc-4.8.2/gcc/config/rs6000/rs6000.h Wed Jun 19 01:18:38 2013 *************** extern unsigned char rs6000_recip_bits[] *** 662,667 **** --- 662,672 ---- instructions for them. Might as well be consistent with bits and bytes. */ #define WORDS_BIG_ENDIAN 1 + /* This says that for the IBM long double the larger magnitude double + comes first. It's really a two element double array, and arrays + don't index differently between little- and big-endian. */ + #define LONG_DOUBLE_LARGE_FIRST 1 + #define MAX_BITS_PER_WORD 64 /* Width of a word, in units (bytes). */ *************** extern char rs6000_reg_names[][8]; /* re *** 2289,2294 **** --- 2294,2306 ---- /* How to align the given loop. */ #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL) + /* Alignment guaranteed by __builtin_malloc. */ + /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT. + However, specifying the stronger guarantee currently leads to + a regression in SPEC CPU2006 437.leslie3d. The stronger + guarantee should be implemented here once that's fixed. */ + #define MALLOC_ABI_ALIGNMENT (64) + /* Pick up the return address upon entry to a procedure. Used for dwarf2 unwind information. This also enables the table driven mechanism. */ diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/rs6000.md gcc-4.8.2/gcc/config/rs6000/rs6000.md *** gcc-4.8.1/gcc/config/rs6000/rs6000.md Thu Feb 7 08:04:58 2013 --- gcc-4.8.2/gcc/config/rs6000/rs6000.md Mon Sep 23 14:27:06 2013 *************** *** 1990,1995 **** --- 1990,1997 ---- [(set_attr "length" "4,4,12") (set_attr "type" "load,store,*")]) + ;; We are always BITS_BIG_ENDIAN, so the (const_int 16) below is + ;; correct for -mlittle as well as -mbig. (define_split [(set (match_operand:HI 0 "gpc_reg_operand" "") (bswap:HI (match_operand:HI 1 "gpc_reg_operand" ""))) *************** *** 2043,2048 **** --- 2045,2052 ---- [(set_attr "length" "4,4,12") (set_attr "type" "load,store,*")]) + ;; We are always BITS_BIG_ENDIAN, so the bit positions below in + ;; zero_extract insns do not change for -mlittle. (define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (bswap:SI (match_operand:SI 1 "gpc_reg_operand" "")))] *************** *** 2106,2112 **** (clobber (match_scratch:DI 3 "=&r,&r,&r")) (clobber (match_scratch:DI 4 "=&r,X,&r"))] "TARGET_POWERPC64 && !TARGET_LDBRX ! && (REG_P (operands[0]) || REG_P (operands[1]))" "#" [(set_attr "length" "16,12,36")]) --- 2110,2118 ---- (clobber (match_scratch:DI 3 "=&r,&r,&r")) (clobber (match_scratch:DI 4 "=&r,X,&r"))] "TARGET_POWERPC64 && !TARGET_LDBRX ! && (REG_P (operands[0]) || REG_P (operands[1])) ! && !(MEM_P (operands[0]) && MEM_VOLATILE_P (operands[0])) ! && !(MEM_P (operands[1]) && MEM_VOLATILE_P (operands[1]))" "#" [(set_attr "length" "16,12,36")]) *************** *** 2125,2132 **** rtx op2 = operands[2]; rtx op3 = operands[3]; rtx op4 = operands[4]; ! rtx op3_32 = simplify_gen_subreg (SImode, op3, DImode, 4); ! rtx op4_32 = simplify_gen_subreg (SImode, op4, DImode, 4); rtx addr1; rtx addr2; rtx word_high; --- 2131,2140 ---- rtx op2 = operands[2]; rtx op3 = operands[3]; rtx op4 = operands[4]; ! rtx op3_32 = simplify_gen_subreg (SImode, op3, DImode, ! BYTES_BIG_ENDIAN ? 4 : 0); ! rtx op4_32 = simplify_gen_subreg (SImode, op4, DImode, ! BYTES_BIG_ENDIAN ? 4 : 0); rtx addr1; rtx addr2; rtx word_high; *************** *** 2186,2193 **** rtx src = operands[1]; rtx op2 = operands[2]; rtx op3 = operands[3]; ! rtx src_si = simplify_gen_subreg (SImode, src, DImode, 4); ! rtx op3_si = simplify_gen_subreg (SImode, op3, DImode, 4); rtx addr1; rtx addr2; rtx word_high; --- 2194,2203 ---- rtx src = operands[1]; rtx op2 = operands[2]; rtx op3 = operands[3]; ! rtx src_si = simplify_gen_subreg (SImode, src, DImode, ! BYTES_BIG_ENDIAN ? 4 : 0); ! rtx op3_si = simplify_gen_subreg (SImode, op3, DImode, ! BYTES_BIG_ENDIAN ? 4 : 0); rtx addr1; rtx addr2; rtx word_high; *************** *** 2221,2236 **** { word_high = change_address (dest, SImode, addr1); word_low = change_address (dest, SImode, addr2); - emit_insn (gen_bswapsi2 (word_high, src_si)); - emit_insn (gen_bswapsi2 (word_low, op3_si)); } else { word_high = change_address (dest, SImode, addr2); word_low = change_address (dest, SImode, addr1); - emit_insn (gen_bswapsi2 (word_low, src_si)); - emit_insn (gen_bswapsi2 (word_high, op3_si)); } }") (define_split --- 2231,2244 ---- { word_high = change_address (dest, SImode, addr1); word_low = change_address (dest, SImode, addr2); } else { word_high = change_address (dest, SImode, addr2); word_low = change_address (dest, SImode, addr1); } + emit_insn (gen_bswapsi2 (word_high, src_si)); + emit_insn (gen_bswapsi2 (word_low, op3_si)); }") (define_split *************** *** 2247,2256 **** rtx src = operands[1]; rtx op2 = operands[2]; rtx op3 = operands[3]; ! rtx dest_si = simplify_gen_subreg (SImode, dest, DImode, 4); ! rtx src_si = simplify_gen_subreg (SImode, src, DImode, 4); ! rtx op2_si = simplify_gen_subreg (SImode, op2, DImode, 4); ! rtx op3_si = simplify_gen_subreg (SImode, op3, DImode, 4); emit_insn (gen_lshrdi3 (op2, src, GEN_INT (32))); emit_insn (gen_bswapsi2 (dest_si, src_si)); --- 2255,2265 ---- rtx src = operands[1]; rtx op2 = operands[2]; rtx op3 = operands[3]; ! int lo_off = BYTES_BIG_ENDIAN ? 4 : 0; ! rtx dest_si = simplify_gen_subreg (SImode, dest, DImode, lo_off); ! rtx src_si = simplify_gen_subreg (SImode, src, DImode, lo_off); ! rtx op2_si = simplify_gen_subreg (SImode, op2, DImode, lo_off); ! rtx op3_si = simplify_gen_subreg (SImode, op3, DImode, lo_off); emit_insn (gen_lshrdi3 (op2, src, GEN_INT (32))); emit_insn (gen_bswapsi2 (dest_si, src_si)); *************** *** 2275,2289 **** [(const_int 0)] " { ! rtx dest = operands[0]; ! rtx src = operands[1]; ! rtx op2 = operands[2]; ! rtx dest_hi = simplify_gen_subreg (SImode, dest, DImode, 0); ! rtx dest_lo = simplify_gen_subreg (SImode, dest, DImode, 4); rtx addr1; rtx addr2; ! rtx word_high; ! rtx word_low; addr1 = XEXP (src, 0); if (GET_CODE (addr1) == PLUS) --- 2284,2298 ---- [(const_int 0)] " { ! rtx dest = operands[0]; ! rtx src = operands[1]; ! rtx op2 = operands[2]; ! rtx dest1 = simplify_gen_subreg (SImode, dest, DImode, 0); ! rtx dest2 = simplify_gen_subreg (SImode, dest, DImode, 4); rtx addr1; rtx addr2; ! rtx word1; ! rtx word2; addr1 = XEXP (src, 0); if (GET_CODE (addr1) == PLUS) *************** *** 2308,2326 **** addr2 = gen_rtx_PLUS (SImode, op2, addr1); } ! if (BYTES_BIG_ENDIAN) ! { ! word_high = change_address (src, SImode, addr1); ! word_low = change_address (src, SImode, addr2); ! } ! else ! { ! word_high = change_address (src, SImode, addr2); ! word_low = change_address (src, SImode, addr1); ! } ! emit_insn (gen_bswapsi2 (dest_hi, word_low)); ! emit_insn (gen_bswapsi2 (dest_lo, word_high)); }") (define_split --- 2317,2327 ---- addr2 = gen_rtx_PLUS (SImode, op2, addr1); } ! word1 = change_address (src, SImode, addr1); ! word2 = change_address (src, SImode, addr2); ! emit_insn (gen_bswapsi2 (dest2, word1)); ! emit_insn (gen_bswapsi2 (dest1, word2)); }") (define_split *************** *** 2331,2345 **** [(const_int 0)] " { ! rtx dest = operands[0]; ! rtx src = operands[1]; ! rtx op2 = operands[2]; ! rtx src_high = simplify_gen_subreg (SImode, src, DImode, 0); ! rtx src_low = simplify_gen_subreg (SImode, src, DImode, 4); rtx addr1; rtx addr2; ! rtx word_high; ! rtx word_low; addr1 = XEXP (dest, 0); if (GET_CODE (addr1) == PLUS) --- 2332,2346 ---- [(const_int 0)] " { ! rtx dest = operands[0]; ! rtx src = operands[1]; ! rtx op2 = operands[2]; ! rtx src1 = simplify_gen_subreg (SImode, src, DImode, 0); ! rtx src2 = simplify_gen_subreg (SImode, src, DImode, 4); rtx addr1; rtx addr2; ! rtx word1; ! rtx word2; addr1 = XEXP (dest, 0); if (GET_CODE (addr1) == PLUS) *************** *** 2364,2382 **** addr2 = gen_rtx_PLUS (SImode, op2, addr1); } ! if (BYTES_BIG_ENDIAN) ! { ! word_high = change_address (dest, SImode, addr1); ! word_low = change_address (dest, SImode, addr2); ! } ! else ! { ! word_high = change_address (dest, SImode, addr2); ! word_low = change_address (dest, SImode, addr1); ! } ! emit_insn (gen_bswapsi2 (word_high, src_low)); ! emit_insn (gen_bswapsi2 (word_low, src_high)); }") (define_split --- 2365,2375 ---- addr2 = gen_rtx_PLUS (SImode, op2, addr1); } ! word1 = change_address (dest, SImode, addr1); ! word2 = change_address (dest, SImode, addr2); ! emit_insn (gen_bswapsi2 (word2, src1)); ! emit_insn (gen_bswapsi2 (word1, src2)); }") (define_split *************** *** 2387,2401 **** [(const_int 0)] " { ! rtx dest = operands[0]; ! rtx src = operands[1]; ! rtx src_high = simplify_gen_subreg (SImode, src, DImode, 0); ! rtx src_low = simplify_gen_subreg (SImode, src, DImode, 4); ! rtx dest_high = simplify_gen_subreg (SImode, dest, DImode, 0); ! rtx dest_low = simplify_gen_subreg (SImode, dest, DImode, 4); ! emit_insn (gen_bswapsi2 (dest_high, src_low)); ! emit_insn (gen_bswapsi2 (dest_low, src_high)); }") (define_insn "mulsi3" --- 2380,2394 ---- [(const_int 0)] " { ! rtx dest = operands[0]; ! rtx src = operands[1]; ! rtx src1 = simplify_gen_subreg (SImode, src, DImode, 0); ! rtx src2 = simplify_gen_subreg (SImode, src, DImode, 4); ! rtx dest1 = simplify_gen_subreg (SImode, dest, DImode, 0); ! rtx dest2 = simplify_gen_subreg (SImode, dest, DImode, 4); ! emit_insn (gen_bswapsi2 (dest1, src2)); ! emit_insn (gen_bswapsi2 (dest2, src1)); }") (define_insn "mulsi3" *************** *** 4682,4687 **** --- 4675,4715 ---- "frsqrtes %0,%1" [(set_attr "type" "fp")]) + ;; This expander is here to avoid FLOAT_WORDS_BIGENDIAN tests in + ;; builtins.c and optabs.c that are not correct for IBM long double + ;; when little-endian. + (define_expand "signbittf2" + [(set (match_dup 2) + (float_truncate:DF (match_operand:TF 1 "gpc_reg_operand" ""))) + (set (match_dup 3) + (subreg:DI (match_dup 2) 0)) + (set (match_dup 4) + (match_dup 5)) + (set (match_operand:SI 0 "gpc_reg_operand" "") + (match_dup 6))] + "!TARGET_IEEEQUAD + && TARGET_HARD_FLOAT + && (TARGET_FPRS || TARGET_E500_DOUBLE) + && TARGET_LONG_DOUBLE_128" + { + operands[2] = gen_reg_rtx (DFmode); + operands[3] = gen_reg_rtx (DImode); + if (TARGET_POWERPC64) + { + operands[4] = gen_reg_rtx (DImode); + operands[5] = gen_rtx_LSHIFTRT (DImode, operands[3], GEN_INT (63)); + operands[6] = gen_rtx_SUBREG (SImode, operands[4], + WORDS_BIG_ENDIAN ? 4 : 0); + } + else + { + operands[4] = gen_reg_rtx (SImode); + operands[5] = gen_rtx_SUBREG (SImode, operands[3], + WORDS_BIG_ENDIAN ? 0 : 4); + operands[6] = gen_rtx_LSHIFTRT (SImode, operands[4], GEN_INT (31)); + } + }) + (define_expand "copysign3" [(set (match_dup 3) (abs:SFDF (match_operand:SFDF 1 "gpc_reg_operand" ""))) *************** *** 6210,6219 **** [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,&r") (ashiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "const_int_operand" "M,i")))] ! "TARGET_32BIT && !TARGET_POWERPC64 && WORDS_BIG_ENDIAN" ! "@ ! srawi %0,%1,31\;srawi %L0,%1,%h2 ! srwi %L0,%L1,%h2\;insrwi %L0,%1,%h2,0\;srawi %0,%1,%h2" [(set_attr "type" "two,three") (set_attr "length" "8,12")]) --- 6238,6262 ---- [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,&r") (ashiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "const_int_operand" "M,i")))] ! "!TARGET_POWERPC64" ! "* ! { ! switch (which_alternative) ! { ! default: ! gcc_unreachable (); ! case 0: ! if (WORDS_BIG_ENDIAN) ! return \"srawi %0,%1,31\;srawi %L0,%1,%h2\"; ! else ! return \"srawi %L0,%L1,31\;srawi %0,%L1,%h2\"; ! case 1: ! if (WORDS_BIG_ENDIAN) ! return \"srwi %L0,%L1,%h2\;insrwi %L0,%1,%h2,0\;srawi %0,%1,%h2\"; ! else ! return \"srwi %0,%1,%h2\;insrwi %0,%L1,%h2,0\;srawi %L0,%L1,%h2\"; ! } ! }" [(set_attr "type" "two,three") (set_attr "length" "8,12")]) *************** *** 7064,7076 **** [(set (match_operand:DI 0 "gpc_reg_operand" "") (ashiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_cint_operand" "")))] ! "WORDS_BIG_ENDIAN" " { if (TARGET_POWERPC64) ; ! else if (TARGET_32BIT && GET_CODE (operands[2]) == CONST_INT ! && WORDS_BIG_ENDIAN) { emit_insn (gen_ashrdi3_no_power (operands[0], operands[1], operands[2])); DONE; --- 7107,7118 ---- [(set (match_operand:DI 0 "gpc_reg_operand" "") (ashiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_cint_operand" "")))] ! "" " { if (TARGET_POWERPC64) ; ! else if (GET_CODE (operands[2]) == CONST_INT) { emit_insn (gen_ashrdi3_no_power (operands[0], operands[1], operands[2])); DONE; *************** *** 8277,8284 **** "&& reload_completed" [(pc)] { ! const int lo_word = FLOAT_WORDS_BIG_ENDIAN ? GET_MODE_SIZE (DFmode) : 0; ! const int hi_word = FLOAT_WORDS_BIG_ENDIAN ? 0 : GET_MODE_SIZE (DFmode); emit_move_insn (simplify_gen_subreg (DFmode, operands[0], TFmode, hi_word), operands[1]); emit_move_insn (simplify_gen_subreg (DFmode, operands[0], TFmode, lo_word), --- 8319,8326 ---- "&& reload_completed" [(pc)] { ! const int lo_word = LONG_DOUBLE_LARGE_FIRST ? GET_MODE_SIZE (DFmode) : 0; ! const int hi_word = LONG_DOUBLE_LARGE_FIRST ? 0 : GET_MODE_SIZE (DFmode); emit_move_insn (simplify_gen_subreg (DFmode, operands[0], TFmode, hi_word), operands[1]); emit_move_insn (simplify_gen_subreg (DFmode, operands[0], TFmode, lo_word), *************** *** 8507,8514 **** && TARGET_LONG_DOUBLE_128" " { ! const int hi_word = FLOAT_WORDS_BIG_ENDIAN ? 0 : GET_MODE_SIZE (DFmode); ! const int lo_word = FLOAT_WORDS_BIG_ENDIAN ? GET_MODE_SIZE (DFmode) : 0; operands[3] = gen_reg_rtx (DFmode); operands[4] = gen_reg_rtx (CCFPmode); operands[5] = simplify_gen_subreg (DFmode, operands[0], TFmode, hi_word); --- 8549,8556 ---- && TARGET_LONG_DOUBLE_128" " { ! const int hi_word = LONG_DOUBLE_LARGE_FIRST ? 0 : GET_MODE_SIZE (DFmode); ! const int lo_word = LONG_DOUBLE_LARGE_FIRST ? GET_MODE_SIZE (DFmode) : 0; operands[3] = gen_reg_rtx (DFmode); operands[4] = gen_reg_rtx (CCFPmode); operands[5] = simplify_gen_subreg (DFmode, operands[0], TFmode, hi_word); *************** *** 10422,10428 **** (unspec [(match_operand:DI 1 "" "") (match_operand:DI 2 "gpc_reg_operand" "b")] UNSPEC_TOCREL) ! (match_operand 3 "const_int_operand" "n"))))] "TARGET_ELF && TARGET_CMODEL != CMODEL_SMALL" "addis %0,%2,%1+%3@toc@ha") --- 10464,10470 ---- (unspec [(match_operand:DI 1 "" "") (match_operand:DI 2 "gpc_reg_operand" "b")] UNSPEC_TOCREL) ! (match_operand:DI 3 "add_cint_operand" "n"))))] "TARGET_ELF && TARGET_CMODEL != CMODEL_SMALL" "addis %0,%2,%1+%3@toc@ha") *************** *** 10433,10439 **** (unspec [(match_operand:P 1 "" "") (match_operand:P 2 "gpc_reg_operand" "b")] UNSPEC_TOCREL) ! (match_operand 3 "const_int_operand" "n"))))] "TARGET_XCOFF && TARGET_CMODEL != CMODEL_SMALL" "addis %0,%1+%3@u(%2)") --- 10475,10481 ---- (unspec [(match_operand:P 1 "" "") (match_operand:P 2 "gpc_reg_operand" "b")] UNSPEC_TOCREL) ! (match_operand:P 3 "add_cint_operand" "n"))))] "TARGET_XCOFF && TARGET_CMODEL != CMODEL_SMALL" "addis %0,%1+%3@u(%2)") *************** *** 11609,11616 **** (match_dup 13)] { REAL_VALUE_TYPE rv; ! const int lo_word = FLOAT_WORDS_BIG_ENDIAN ? GET_MODE_SIZE (DFmode) : 0; ! const int hi_word = FLOAT_WORDS_BIG_ENDIAN ? 0 : GET_MODE_SIZE (DFmode); operands[5] = simplify_gen_subreg (DFmode, operands[1], TFmode, hi_word); operands[6] = simplify_gen_subreg (DFmode, operands[1], TFmode, lo_word); --- 11651,11658 ---- (match_dup 13)] { REAL_VALUE_TYPE rv; ! const int lo_word = LONG_DOUBLE_LARGE_FIRST ? GET_MODE_SIZE (DFmode) : 0; ! const int hi_word = LONG_DOUBLE_LARGE_FIRST ? 0 : GET_MODE_SIZE (DFmode); operands[5] = simplify_gen_subreg (DFmode, operands[1], TFmode, hi_word); operands[6] = simplify_gen_subreg (DFmode, operands[1], TFmode, lo_word); diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/rtems.h gcc-4.8.2/gcc/config/rs6000/rtems.h *** gcc-4.8.1/gcc/config/rs6000/rtems.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/rs6000/rtems.h Wed Jul 31 12:59:09 2013 *************** *** 34,39 **** --- 34,42 ---- } \ while (0) + #undef TARGET_LIBGCC_SDATA_SECTION + #define TARGET_LIBGCC_SDATA_SECTION ".sdata" + #undef CPP_OS_DEFAULT_SPEC #define CPP_OS_DEFAULT_SPEC "%(cpp_os_rtems)" diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/spe.md gcc-4.8.2/gcc/config/rs6000/spe.md *** gcc-4.8.1/gcc/config/rs6000/spe.md Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/rs6000/spe.md Wed Jun 19 01:18:38 2013 *************** *** 2604,2611 **** && TARGET_HARD_FLOAT && TARGET_E500_DOUBLE && TARGET_LONG_DOUBLE_128" " { ! const int hi_word = FLOAT_WORDS_BIG_ENDIAN ? 0 : GET_MODE_SIZE (DFmode); ! const int lo_word = FLOAT_WORDS_BIG_ENDIAN ? GET_MODE_SIZE (DFmode) : 0; operands[3] = gen_reg_rtx (DFmode); operands[4] = gen_reg_rtx (CCFPmode); operands[5] = simplify_gen_subreg (DFmode, operands[0], TFmode, hi_word); --- 2604,2611 ---- && TARGET_HARD_FLOAT && TARGET_E500_DOUBLE && TARGET_LONG_DOUBLE_128" " { ! const int hi_word = LONG_DOUBLE_LARGE_FIRST ? 0 : GET_MODE_SIZE (DFmode); ! const int lo_word = LONG_DOUBLE_LARGE_FIRST ? GET_MODE_SIZE (DFmode) : 0; operands[3] = gen_reg_rtx (DFmode); operands[4] = gen_reg_rtx (CCFPmode); operands[5] = simplify_gen_subreg (DFmode, operands[0], TFmode, hi_word); *************** *** 2627,2634 **** && TARGET_HARD_FLOAT && TARGET_E500_DOUBLE && TARGET_LONG_DOUBLE_128" " { ! const int hi_word = FLOAT_WORDS_BIG_ENDIAN ? 0 : GET_MODE_SIZE (DFmode); ! const int lo_word = FLOAT_WORDS_BIG_ENDIAN ? GET_MODE_SIZE (DFmode) : 0; operands[3] = gen_reg_rtx (DFmode); operands[4] = gen_reg_rtx (CCFPmode); operands[5] = simplify_gen_subreg (DFmode, operands[0], TFmode, hi_word); --- 2627,2634 ---- && TARGET_HARD_FLOAT && TARGET_E500_DOUBLE && TARGET_LONG_DOUBLE_128" " { ! const int hi_word = LONG_DOUBLE_LARGE_FIRST ? 0 : GET_MODE_SIZE (DFmode); ! const int lo_word = LONG_DOUBLE_LARGE_FIRST ? GET_MODE_SIZE (DFmode) : 0; operands[3] = gen_reg_rtx (DFmode); operands[4] = gen_reg_rtx (CCFPmode); operands[5] = simplify_gen_subreg (DFmode, operands[0], TFmode, hi_word); diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/sysv4.h gcc-4.8.2/gcc/config/rs6000/sysv4.h *** gcc-4.8.1/gcc/config/rs6000/sysv4.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/rs6000/sysv4.h Wed Jun 19 01:18:38 2013 *************** do { \ *** 187,198 **** rs6000_abi_name); \ } \ \ - if (rs6000_current_abi == ABI_AIX && TARGET_LITTLE_ENDIAN) \ - { \ - rs6000_isa_flags &= ~OPTION_MASK_LITTLE_ENDIAN; \ - error ("-mcall-aixdesc must be big endian"); \ - } \ - \ if (TARGET_SECURE_PLT != secure_plt) \ { \ error ("-msecure-plt not supported by your assembler"); \ --- 187,192 ---- *************** extern int fixuplabelno; *** 523,541 **** while (0) #endif #undef ASM_SPEC #define ASM_SPEC "%(asm_cpu) \ %{,assembler|,assembler-with-cpp: %{mregnames} %{mno-regnames}} \ %{mrelocatable} %{mrelocatable-lib} %{fpic|fpie|fPIC|fPIE:-K PIC} \ ! %{memb|msdata=eabi: -memb} \ ! %{mlittle|mlittle-endian:-mlittle; \ ! mbig|mbig-endian :-mbig; \ ! mcall-aixdesc | \ ! mcall-freebsd | \ ! mcall-netbsd | \ ! mcall-openbsd | \ ! mcall-linux :-mbig; \ ! mcall-i960-old :-mlittle}" #define CC1_ENDIAN_BIG_SPEC "" --- 517,540 ---- while (0) #endif + /* Select one of BIG_OPT, LITTLE_OPT or DEFAULT_OPT depending + on various -mbig, -mlittle and -mcall- options. */ + #define ENDIAN_SELECT(BIG_OPT, LITTLE_OPT, DEFAULT_OPT) \ + "%{mlittle|mlittle-endian:" LITTLE_OPT ";" \ + "mbig|mbig-endian:" BIG_OPT ";" \ + "mcall-aixdesc|mcall-freebsd|mcall-netbsd|" \ + "mcall-openbsd|mcall-linux:" BIG_OPT ";" \ + "mcall-i960-old:" LITTLE_OPT ";" \ + ":" DEFAULT_OPT "}" + + #define DEFAULT_ASM_ENDIAN " -mbig" + #undef ASM_SPEC #define ASM_SPEC "%(asm_cpu) \ %{,assembler|,assembler-with-cpp: %{mregnames} %{mno-regnames}} \ %{mrelocatable} %{mrelocatable-lib} %{fpic|fpie|fPIC|fPIE:-K PIC} \ ! %{memb|msdata=eabi: -memb}" \ ! ENDIAN_SELECT(" -mbig", " -mlittle", DEFAULT_ASM_ENDIAN) #define CC1_ENDIAN_BIG_SPEC "" *************** extern int fixuplabelno; *** 553,569 **** #endif /* Pass -G xxx to the compiler and set correct endian mode. */ ! #define CC1_SPEC "%{G*} %(cc1_cpu) \ ! %{mlittle|mlittle-endian: %(cc1_endian_little); \ ! mbig |mbig-endian : %(cc1_endian_big); \ ! mcall-aixdesc | \ ! mcall-freebsd | \ ! mcall-netbsd | \ ! mcall-openbsd | \ ! mcall-linux : -mbig %(cc1_endian_big); \ ! mcall-i960-old : -mlittle %(cc1_endian_little); \ ! : %(cc1_endian_default)} \ ! %{meabi: %{!mcall-*: -mcall-sysv }} \ %{!meabi: %{!mno-eabi: \ %{mrelocatable: -meabi } \ %{mcall-freebsd: -mno-eabi } \ --- 552,561 ---- #endif /* Pass -G xxx to the compiler and set correct endian mode. */ ! #define CC1_SPEC "%{G*} %(cc1_cpu)" \ ! ENDIAN_SELECT(" %(cc1_endian_big)", " %(cc1_endian_little)", \ ! " %(cc1_endian_default)") \ ! "%{meabi: %{!mcall-*: -mcall-sysv }} \ %{!meabi: %{!mno-eabi: \ %{mrelocatable: -meabi } \ %{mcall-freebsd: -mno-eabi } \ *************** extern int fixuplabelno; *** 607,617 **** %{symbolic:-Bsymbolic -G -dy -z text }" /* Override the default target of the linker. */ ! #define LINK_TARGET_SPEC "\ ! %{mlittle: --oformat elf32-powerpcle } %{mlittle-endian: --oformat elf32-powerpcle } \ ! %{!mlittle: %{!mlittle-endian: %{!mbig: %{!mbig-endian: \ ! %{mcall-i960-old: --oformat elf32-powerpcle} \ ! }}}}" /* Any specific OS flags. */ #define LINK_OS_SPEC "\ --- 599,606 ---- %{symbolic:-Bsymbolic -G -dy -z text }" /* Override the default target of the linker. */ ! #define LINK_TARGET_SPEC \ ! ENDIAN_SELECT("", " --oformat elf32-powerpcle", "") /* Any specific OS flags. */ #define LINK_OS_SPEC "\ diff -Nrcpad gcc-4.8.1/gcc/config/rs6000/sysv4le.h gcc-4.8.2/gcc/config/rs6000/sysv4le.h *** gcc-4.8.1/gcc/config/rs6000/sysv4le.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/rs6000/sysv4le.h Wed Jun 19 01:18:38 2013 *************** *** 25,36 **** #undef CC1_ENDIAN_DEFAULT_SPEC #define CC1_ENDIAN_DEFAULT_SPEC "%(cc1_endian_little)" #undef LINK_TARGET_SPEC ! #define LINK_TARGET_SPEC "\ ! %{mbig: --oformat elf32-powerpc } %{mbig-endian: --oformat elf32-powerpc } \ ! %{!mlittle: %{!mlittle-endian: %{!mbig: %{!mbig-endian: \ ! %{mcall-linux: --oformat elf32-powerpc} \ ! }}}}" #undef MULTILIB_DEFAULTS #define MULTILIB_DEFAULTS { "mlittle", "mcall-sysv" } --- 25,36 ---- #undef CC1_ENDIAN_DEFAULT_SPEC #define CC1_ENDIAN_DEFAULT_SPEC "%(cc1_endian_little)" + #undef DEFAULT_ASM_ENDIAN + #define DEFAULT_ASM_ENDIAN " -mlittle" + #undef LINK_TARGET_SPEC ! #define LINK_TARGET_SPEC \ ! ENDIAN_SELECT(" --oformat elf32-powerpc", "", "") #undef MULTILIB_DEFAULTS #define MULTILIB_DEFAULTS { "mlittle", "mcall-sysv" } diff -Nrcpad gcc-4.8.1/gcc/config/s390/htmintrin.h gcc-4.8.2/gcc/config/s390/htmintrin.h *** gcc-4.8.1/gcc/config/s390/htmintrin.h Thu Jan 1 00:00:00 1970 --- gcc-4.8.2/gcc/config/s390/htmintrin.h Wed Aug 14 19:44:27 2013 *************** *** 0 **** --- 1,57 ---- + /* GNU compiler hardware transactional execution intrinsics + Copyright (C) 2013 Free Software Foundation, Inc. + Contributed by Andreas Krebbel (Andreas.Krebbel@de.ibm.com) + + This file is part of GCC. + + GCC is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation; either version 3, or (at your option) any later + version. + + GCC is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License + along with GCC; see the file COPYING3. If not see + . */ + + #ifndef _HTMINTRIN_H + #define _HTMINTRIN_H + + + /* Condition codes generated by tbegin */ + #define _HTM_TBEGIN_STARTED 0 + #define _HTM_TBEGIN_INDETERMINATE 1 + #define _HTM_TBEGIN_TRANSIENT 2 + #define _HTM_TBEGIN_PERSISTENT 3 + + /* The abort codes below this threshold are reserved for machine + use. */ + #define _HTM_FIRST_USER_ABORT_CODE 256 + + /* The transaction diagnostic block is it is defined in the Principles + of Operation chapter 5-91. */ + + struct __htm_tdb { + unsigned char format; /* 0 */ + unsigned char flags; + unsigned char reserved1[4]; + unsigned short nesting_depth; + unsigned long long abort_code; /* 8 */ + unsigned long long conflict_token; /* 16 */ + unsigned long long atia; /* 24 */ + unsigned char eaid; /* 32 */ + unsigned char dxc; + unsigned char reserved2[2]; + unsigned int program_int_id; + unsigned long long exception_id; /* 40 */ + unsigned long long bea; /* 48 */ + unsigned char reserved3[72]; /* 56 */ + unsigned long long gprs[16]; /* 128 */ + } __attribute__((__packed__, __aligned__ (8))); + + + #endif /* _HTMINTRIN_H */ diff -Nrcpad gcc-4.8.1/gcc/config/s390/htmxlintrin.h gcc-4.8.2/gcc/config/s390/htmxlintrin.h *** gcc-4.8.1/gcc/config/s390/htmxlintrin.h Thu Jan 1 00:00:00 1970 --- gcc-4.8.2/gcc/config/s390/htmxlintrin.h Wed Aug 14 19:44:27 2013 *************** *** 0 **** --- 1,182 ---- + /* XL compiler hardware transactional execution intrinsics + Copyright (C) 2013 Free Software Foundation, Inc. + Contributed by Andreas Krebbel (Andreas.Krebbel@de.ibm.com) + + This file is part of GCC. + + GCC is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation; either version 3, or (at your option) any later + version. + + GCC is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License + along with GCC; see the file COPYING3. If not see + . */ + + #ifndef _HTMXLINTRIN_H + #define _HTMXLINTRIN_H + + #include + + #include + + #ifdef __cplusplus + extern "C" { + #endif + + /* These intrinsics are being made available for compatibility with + the IBM XL compiler. For documentation please see the "z/OS XL + C/C++ Programming Guide" publically available on the web. */ + + extern __inline long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_simple_begin () + { + return __builtin_tbegin_nofloat (0); + } + + extern __inline long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_begin (void* const tdb) + { + return __builtin_tbegin_nofloat (tdb); + } + + extern __inline long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_end () + { + return __builtin_tend (); + } + + extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_abort () + { + return __builtin_tabort (_HTM_FIRST_USER_ABORT_CODE); + } + + extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_named_abort (unsigned char const code) + { + return __builtin_tabort ((int)_HTM_FIRST_USER_ABORT_CODE + code); + } + + extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_non_transactional_store (void* const addr, long long const value) + { + __builtin_non_tx_store ((uint64_t*)addr, (uint64_t)value); + } + + extern __inline long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_nesting_depth (void* const tdb_ptr) + { + int depth = __builtin_tx_nesting_depth (); + struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr; + + if (depth != 0) + return depth; + + if (tdb->format == 0) + return 0; + return tdb->nesting_depth; + } + + /* Transaction failure diagnostics */ + + extern __inline long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_is_user_abort (void* const tdb_ptr) + { + struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr; + + if (tdb->format == 0) + return 0; + + return !!(tdb->abort_code >= _HTM_FIRST_USER_ABORT_CODE); + } + + extern __inline long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_is_named_user_abort (void* const tdb_ptr, unsigned char* code) + { + struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr; + + if (tdb->format == 0) + return 0; + + if (tdb->abort_code >= _HTM_FIRST_USER_ABORT_CODE) + { + *code = tdb->abort_code - _HTM_FIRST_USER_ABORT_CODE; + return 1; + } + return 0; + } + + extern __inline long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_is_illegal (void* const tdb_ptr) + { + struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr; + + return (tdb->format == 0 + && (tdb->abort_code == 4 /* unfiltered program interruption */ + || tdb->abort_code == 11 /* restricted instruction */)); + } + + extern __inline long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_is_footprint_exceeded (void* const tdb_ptr) + { + struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr; + + return (tdb->format == 0 + && (tdb->abort_code == 7 /* fetch overflow */ + || tdb->abort_code == 8 /* store overflow */)); + } + + extern __inline long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_is_nested_too_deep (void* const tdb_ptr) + { + struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr; + + return tdb->format == 0 && tdb->abort_code == 13; /* depth exceeded */ + } + + extern __inline long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_is_conflict (void* const tdb_ptr) + { + struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr; + + return (tdb->format == 0 + && (tdb->abort_code == 9 /* fetch conflict */ + || tdb->abort_code == 10 /* store conflict */)); + } + + extern __inline long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_is_failure_persistent (long const result) + { + return result == _HTM_TBEGIN_PERSISTENT; + } + + extern __inline long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_failure_address (void* const tdb_ptr) + { + struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr; + #ifdef __s390x__ + return tdb->atia; + #else + return tdb->atia & 0xffffffff; + #endif + } + + extern __inline long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + __TM_failure_code (void* const tdb_ptr) + { + struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr; + + return tdb->abort_code; + } + + #ifdef __cplusplus + } + #endif + + #endif /* _HTMXLINTRIN_H */ diff -Nrcpad gcc-4.8.1/gcc/config/s390/predicates.md gcc-4.8.2/gcc/config/s390/predicates.md *** gcc-4.8.1/gcc/config/s390/predicates.md Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/s390/predicates.md Fri Aug 2 15:41:10 2013 *************** *** 176,182 **** { if (GET_CODE (XEXP (op, 0)) != REG || REGNO (XEXP (op, 0)) != CC_REGNUM ! || XEXP (op, 1) != const0_rtx) return false; return (s390_branch_condition_mask (op) >= 0); --- 176,186 ---- { if (GET_CODE (XEXP (op, 0)) != REG || REGNO (XEXP (op, 0)) != CC_REGNUM ! || (XEXP (op, 1) != const0_rtx ! && !(CONST_INT_P (XEXP (op, 1)) ! && GET_MODE (XEXP (op, 0)) == CCRAWmode ! && INTVAL (XEXP (op, 1)) >= 0 ! && INTVAL (XEXP (op, 1)) <= 15))) return false; return (s390_branch_condition_mask (op) >= 0); *************** *** 224,230 **** if (GET_CODE (XEXP (op, 0)) != REG || REGNO (XEXP (op, 0)) != CC_REGNUM ! || XEXP (op, 1) != const0_rtx) return false; switch (GET_MODE (XEXP (op, 0))) --- 228,238 ---- if (GET_CODE (XEXP (op, 0)) != REG || REGNO (XEXP (op, 0)) != CC_REGNUM ! || (XEXP (op, 1) != const0_rtx ! && !(CONST_INT_P (XEXP (op, 1)) ! && GET_MODE (XEXP (op, 0)) == CCRAWmode ! && INTVAL (XEXP (op, 1)) >= 0 ! && INTVAL (XEXP (op, 1)) <= 15))) return false; switch (GET_MODE (XEXP (op, 0))) diff -Nrcpad gcc-4.8.1/gcc/config/s390/s390-modes.def gcc-4.8.2/gcc/config/s390/s390-modes.def *** gcc-4.8.1/gcc/config/s390/s390-modes.def Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/s390/s390-modes.def Fri Aug 2 15:41:10 2013 *************** The compare and swap instructions sets t *** 152,157 **** --- 152,165 ---- operands were equal/unequal. The CCZ1 mode ensures the result can be effectively placed into a register. + CCRAW + + The cc mode generated by a non-compare instruction. The condition + code mask for the CC consumer is determined by the comparison operator + (only EQ and NE allowed) and the immediate value given as second + operand to the operator. For the other CC modes this value used to be + 0. + */ *************** CC_MODE (CCT); *** 172,174 **** --- 180,183 ---- CC_MODE (CCT1); CC_MODE (CCT2); CC_MODE (CCT3); + CC_MODE (CCRAW); diff -Nrcpad gcc-4.8.1/gcc/config/s390/s390-protos.h gcc-4.8.2/gcc/config/s390/s390-protos.h *** gcc-4.8.1/gcc/config/s390/s390-protos.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/s390/s390-protos.h Fri Aug 2 15:41:10 2013 *************** extern bool s390_match_ccmode (rtx, enum *** 58,64 **** extern enum machine_mode s390_tm_ccmode (rtx, rtx, bool); extern enum machine_mode s390_select_ccmode (enum rtx_code, rtx, rtx); extern rtx s390_emit_compare (enum rtx_code, rtx, rtx); ! extern void s390_emit_jump (rtx, rtx); extern bool symbolic_reference_mentioned_p (rtx); extern bool tls_symbolic_reference_mentioned_p (rtx); extern bool legitimate_la_operand_p (rtx); --- 58,64 ---- extern enum machine_mode s390_tm_ccmode (rtx, rtx, bool); extern enum machine_mode s390_select_ccmode (enum rtx_code, rtx, rtx); extern rtx s390_emit_compare (enum rtx_code, rtx, rtx); ! extern rtx s390_emit_jump (rtx, rtx); extern bool symbolic_reference_mentioned_p (rtx); extern bool tls_symbolic_reference_mentioned_p (rtx); extern bool legitimate_la_operand_p (rtx); *************** extern void s390_expand_cs_hqi (enum mac *** 87,92 **** --- 87,93 ---- rtx, rtx, bool); extern void s390_expand_atomic (enum machine_mode, enum rtx_code, rtx, rtx, rtx, bool); + extern void s390_expand_tbegin (rtx, rtx, rtx, bool); extern rtx s390_return_addr_rtx (int, rtx); extern rtx s390_back_chain_rtx (void); extern rtx s390_emit_call (rtx, rtx, rtx, rtx); diff -Nrcpad gcc-4.8.1/gcc/config/s390/s390.c gcc-4.8.2/gcc/config/s390/s390.c *** gcc-4.8.1/gcc/config/s390/s390.c Mon Apr 8 07:55:57 2013 --- gcc-4.8.2/gcc/config/s390/s390.c Mon Oct 7 07:47:17 2013 *************** struct GTY(()) machine_function *** 367,372 **** --- 367,376 ---- const char *some_ld_name; bool has_landing_pad_p; + + /* True if the current function may contain a tbegin clobbering + FPRs. */ + bool tbegin_p; }; /* Few accessor macros for struct cfun->machine->s390_frame_layout. */ *************** s390_canonicalize_comparison (int *code, *** 824,832 **** *op1 = constm1_rtx; } ! /* Remove redundant UNSPEC_CCU_TO_INT conversions if possible. */ if (GET_CODE (*op0) == UNSPEC ! && XINT (*op0, 1) == UNSPEC_CCU_TO_INT && XVECLEN (*op0, 0) == 1 && GET_MODE (XVECEXP (*op0, 0, 0)) == CCUmode && GET_CODE (XVECEXP (*op0, 0, 0)) == REG --- 828,836 ---- *op1 = constm1_rtx; } ! /* Remove redundant UNSPEC_STRCMPCC_TO_INT conversions if possible. */ if (GET_CODE (*op0) == UNSPEC ! && XINT (*op0, 1) == UNSPEC_STRCMPCC_TO_INT && XVECLEN (*op0, 0) == 1 && GET_MODE (XVECEXP (*op0, 0, 0)) == CCUmode && GET_CODE (XVECEXP (*op0, 0, 0)) == REG *************** s390_canonicalize_comparison (int *code, *** 852,876 **** } } ! /* Remove redundant UNSPEC_CCZ_TO_INT conversions if possible. */ if (GET_CODE (*op0) == UNSPEC ! && XINT (*op0, 1) == UNSPEC_CCZ_TO_INT && XVECLEN (*op0, 0) == 1 - && GET_MODE (XVECEXP (*op0, 0, 0)) == CCZmode && GET_CODE (XVECEXP (*op0, 0, 0)) == REG && REGNO (XVECEXP (*op0, 0, 0)) == CC_REGNUM ! && *op1 == const0_rtx) { enum rtx_code new_code = UNKNOWN; ! switch (*code) { ! case EQ: new_code = EQ; break; ! case NE: new_code = NE; break; ! default: break; } if (new_code != UNKNOWN) { *op0 = XVECEXP (*op0, 0, 0); *code = new_code; } --- 856,890 ---- } } ! /* Remove redundant UNSPEC_CC_TO_INT conversions if possible. */ if (GET_CODE (*op0) == UNSPEC ! && XINT (*op0, 1) == UNSPEC_CC_TO_INT && XVECLEN (*op0, 0) == 1 && GET_CODE (XVECEXP (*op0, 0, 0)) == REG && REGNO (XVECEXP (*op0, 0, 0)) == CC_REGNUM ! && CONST_INT_P (*op1)) { enum rtx_code new_code = UNKNOWN; ! switch (GET_MODE (XVECEXP (*op0, 0, 0))) { ! case CCZmode: ! case CCRAWmode: ! switch (*code) ! { ! case EQ: new_code = EQ; break; ! case NE: new_code = NE; break; ! default: break; ! } ! break; ! default: break; } if (new_code != UNKNOWN) { + /* For CCRAWmode put the required cc mask into the second + operand. */ + if (GET_MODE (XVECEXP (*op0, 0, 0)) == CCRAWmode) + *op1 = gen_rtx_CONST_INT (VOIDmode, 1 << (3 - INTVAL (*op1))); *op0 = XVECEXP (*op0, 0, 0); *code = new_code; } *************** s390_emit_compare_and_swap (enum rtx_cod *** 942,951 **** const0_rtx); } ! /* Emit a jump instruction to TARGET. If COND is NULL_RTX, emit an ! unconditional jump, else a conditional jump under condition COND. */ ! void s390_emit_jump (rtx target, rtx cond) { rtx insn; --- 956,966 ---- const0_rtx); } ! /* Emit a jump instruction to TARGET and return it. If COND is ! NULL_RTX, emit an unconditional jump, else a conditional jump under ! condition COND. */ ! rtx s390_emit_jump (rtx target, rtx cond) { rtx insn; *************** s390_emit_jump (rtx target, rtx cond) *** 955,961 **** target = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, target, pc_rtx); insn = gen_rtx_SET (VOIDmode, pc_rtx, target); ! emit_jump_insn (insn); } /* Return branch condition mask to implement a branch --- 970,976 ---- target = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, target, pc_rtx); insn = gen_rtx_SET (VOIDmode, pc_rtx, target); ! return emit_jump_insn (insn); } /* Return branch condition mask to implement a branch *************** s390_branch_condition_mask (rtx code) *** 971,977 **** gcc_assert (GET_CODE (XEXP (code, 0)) == REG); gcc_assert (REGNO (XEXP (code, 0)) == CC_REGNUM); ! gcc_assert (XEXP (code, 1) == const0_rtx); switch (GET_MODE (XEXP (code, 0))) { --- 986,995 ---- gcc_assert (GET_CODE (XEXP (code, 0)) == REG); gcc_assert (REGNO (XEXP (code, 0)) == CC_REGNUM); ! gcc_assert (XEXP (code, 1) == const0_rtx ! || (GET_MODE (XEXP (code, 0)) == CCRAWmode ! && CONST_INT_P (XEXP (code, 1)))); ! switch (GET_MODE (XEXP (code, 0))) { *************** s390_branch_condition_mask (rtx code) *** 1145,1150 **** --- 1163,1179 ---- } break; + case CCRAWmode: + switch (GET_CODE (code)) + { + case EQ: + return INTVAL (XEXP (code, 1)); + case NE: + return (INTVAL (XEXP (code, 1))) ^ 0xf; + default: + gcc_unreachable (); + } + default: return -1; } *************** s390_branch_condition_mnemonic (rtx code *** 1204,1210 **** if (GET_CODE (XEXP (code, 0)) == REG && REGNO (XEXP (code, 0)) == CC_REGNUM ! && XEXP (code, 1) == const0_rtx) mask = s390_branch_condition_mask (code); else mask = s390_compare_and_branch_condition_mask (code); --- 1233,1241 ---- if (GET_CODE (XEXP (code, 0)) == REG && REGNO (XEXP (code, 0)) == CC_REGNUM ! && (XEXP (code, 1) == const0_rtx ! || (GET_MODE (XEXP (code, 0)) == CCRAWmode ! && CONST_INT_P (XEXP (code, 1))))) mask = s390_branch_condition_mask (code); else mask = s390_compare_and_branch_condition_mask (code); *************** s390_option_override (void) *** 1602,1607 **** --- 1633,1643 ---- if (!(target_flags_explicit & MASK_HARD_DFP) && TARGET_DFP) target_flags |= MASK_HARD_DFP; + /* Enable hardware transactions if available and not explicitly + disabled by user. E.g. with -m31 -march=zEC12 -mzarch */ + if (!(target_flags_explicit & MASK_OPT_HTM) && TARGET_CPU_HTM && TARGET_ZARCH) + target_flags |= MASK_OPT_HTM; + if (TARGET_HARD_DFP && !TARGET_DFP) { if (target_flags_explicit & MASK_HARD_DFP) *************** s390_chunkify_start (void) *** 7028,7052 **** or a casesi jump, check all potential targets. */ else if (GET_CODE (insn) == JUMP_INSN) { ! rtx pat = PATTERN (insn); ! if (GET_CODE (pat) == PARALLEL && XVECLEN (pat, 0) > 2) ! pat = XVECEXP (pat, 0, 0); ! ! if (GET_CODE (pat) == SET) ! { ! rtx label = JUMP_LABEL (insn); ! if (label) ! { ! if (s390_find_pool (pool_list, label) ! != s390_find_pool (pool_list, insn)) ! bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label)); ! } ! } ! else if (GET_CODE (pat) == PARALLEL ! && XVECLEN (pat, 0) == 2 ! && GET_CODE (XVECEXP (pat, 0, 0)) == SET ! && GET_CODE (XVECEXP (pat, 0, 1)) == USE ! && GET_CODE (XEXP (XVECEXP (pat, 0, 1), 0)) == LABEL_REF) { /* Find the jump table used by this casesi jump. */ rtx vec_label = XEXP (XEXP (XVECEXP (pat, 0, 1), 0), 0); --- 7064,7075 ---- or a casesi jump, check all potential targets. */ else if (GET_CODE (insn) == JUMP_INSN) { ! rtx pat = PATTERN (insn); ! if (GET_CODE (pat) == PARALLEL ! && XVECLEN (pat, 0) == 2 ! && GET_CODE (XVECEXP (pat, 0, 0)) == SET ! && GET_CODE (XVECEXP (pat, 0, 1)) == USE ! && GET_CODE (XEXP (XVECEXP (pat, 0, 1), 0)) == LABEL_REF) { /* Find the jump table used by this casesi jump. */ rtx vec_label = XEXP (XEXP (XVECEXP (pat, 0, 1), 0), 0); *************** s390_chunkify_start (void) *** 7068,7075 **** bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label)); } } } ! } } /* Insert base register reload insns before every pool. */ --- 7091,7113 ---- bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label)); } } + continue; } ! ! if (GET_CODE (pat) == PARALLEL) ! pat = XVECEXP (pat, 0, 0); ! ! if (GET_CODE (pat) == SET) ! { ! rtx label = JUMP_LABEL (insn); ! if (label) ! { ! if (s390_find_pool (pool_list, label) ! != s390_find_pool (pool_list, insn)) ! bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label)); ! } ! } ! } } /* Insert base register reload insns before every pool. */ *************** s390_reg_clobbered_rtx (rtx setreg, cons *** 7341,7351 **** if (GET_CODE (setreg) == SUBREG) { rtx inner = SUBREG_REG (setreg); ! if (!GENERAL_REG_P (inner)) return; regno = subreg_regno (setreg); } ! else if (GENERAL_REG_P (setreg)) regno = REGNO (setreg); else return; --- 7379,7389 ---- if (GET_CODE (setreg) == SUBREG) { rtx inner = SUBREG_REG (setreg); ! if (!GENERAL_REG_P (inner) && !FP_REG_P (inner)) return; regno = subreg_regno (setreg); } ! else if (GENERAL_REG_P (setreg) || FP_REG_P (setreg)) regno = REGNO (setreg); else return; *************** s390_regs_ever_clobbered (int *regs_ever *** 7368,7380 **** rtx cur_insn; unsigned int i; ! memset (regs_ever_clobbered, 0, 16 * sizeof (int)); /* For non-leaf functions we have to consider all call clobbered regs to be clobbered. */ if (!crtl->is_leaf) { ! for (i = 0; i < 16; i++) regs_ever_clobbered[i] = call_really_used_regs[i]; } --- 7406,7418 ---- rtx cur_insn; unsigned int i; ! memset (regs_ever_clobbered, 0, 32 * sizeof (int)); /* For non-leaf functions we have to consider all call clobbered regs to be clobbered. */ if (!crtl->is_leaf) { ! for (i = 0; i < 32; i++) regs_ever_clobbered[i] = call_really_used_regs[i]; } *************** s390_regs_ever_clobbered (int *regs_ever *** 7396,7402 **** See expand_builtin_unwind_init. For regs_ever_live this is done by reload. */ if (cfun->has_nonlocal_label) ! for (i = 0; i < 16; i++) if (!call_really_used_regs[i]) regs_ever_clobbered[i] = 1; --- 7434,7440 ---- See expand_builtin_unwind_init. For regs_ever_live this is done by reload. */ if (cfun->has_nonlocal_label) ! for (i = 0; i < 32; i++) if (!call_really_used_regs[i]) regs_ever_clobbered[i] = 1; *************** s390_register_info (int clobbered_regs[] *** 7462,7478 **** { int i, j; - /* fprs 8 - 15 are call saved for 64 Bit ABI. */ - cfun_frame_layout.fpr_bitmap = 0; - cfun_frame_layout.high_fprs = 0; - if (TARGET_64BIT) - for (i = 24; i < 32; i++) - if (df_regs_ever_live_p (i) && !global_regs[i]) - { - cfun_set_fpr_bit (i - 16); - cfun_frame_layout.high_fprs++; - } - /* Find first and last gpr to be saved. We trust regs_ever_live data, except that we don't save and restore global registers. --- 7500,7505 ---- *************** s390_register_info (int clobbered_regs[] *** 7481,7486 **** --- 7508,7539 ---- s390_regs_ever_clobbered (clobbered_regs); + /* fprs 8 - 15 are call saved for 64 Bit ABI. */ + if (!epilogue_completed) + { + cfun_frame_layout.fpr_bitmap = 0; + cfun_frame_layout.high_fprs = 0; + for (i = 16; i <= 31; i++) + { + if (call_really_used_regs[i]) + continue; + /* During reload we have to use the df_regs_ever_live infos + since reload is marking FPRs used as spill slots there as + live before actually making the code changes. Without + this we fail during elimination offset verification. */ + if ((clobbered_regs[i] + || (df_regs_ever_live_p (i) + && (reload_in_progress + || crtl->saves_all_registers))) + && !global_regs[i]) + { + cfun_set_fpr_bit (i - 16); + if (i >= 24) + cfun_frame_layout.high_fprs++; + } + } + } + for (i = 0; i < 16; i++) clobbered_regs[i] = clobbered_regs[i] && !global_regs[i] && !fixed_regs[i]; *************** s390_register_info (int clobbered_regs[] *** 7508,7513 **** --- 7561,7567 ---- || TARGET_TPF_PROFILING || cfun_save_high_fprs_p || get_frame_size () > 0 + || (reload_completed && cfun_frame_layout.frame_size > 0) || cfun->calls_alloca || cfun->stdarg); *************** s390_register_info (int clobbered_regs[] *** 7606,7616 **** cfun_set_fpr_bit (i); } } - - if (!TARGET_64BIT) - for (i = 2; i < 4; i++) - if (df_regs_ever_live_p (i + 16) && !global_regs[i + 16]) - cfun_set_fpr_bit (i); } /* Fill cfun->machine with info about frame of current function. */ --- 7660,7665 ---- *************** s390_init_frame_layout (void) *** 7731,7737 **** { HOST_WIDE_INT frame_size; int base_used; ! int clobbered_regs[16]; /* On S/390 machines, we may need to perform branch splitting, which will require both base and return address register. We have no --- 7780,7786 ---- { HOST_WIDE_INT frame_size; int base_used; ! int clobbered_regs[32]; /* On S/390 machines, we may need to perform branch splitting, which will require both base and return address register. We have no *************** s390_init_frame_layout (void) *** 7766,7771 **** --- 7815,7971 ---- while (frame_size != cfun_frame_layout.frame_size); } + /* Remove the FPR clobbers from a tbegin insn if it can be proven that + the TX is nonescaping. A transaction is considered escaping if + there is at least one path from tbegin returning CC0 to the + function exit block without an tend. + + The check so far has some limitations: + - only single tbegin/tend BBs are supported + - the first cond jump after tbegin must separate the CC0 path from ~CC0 + - when CC is copied to a GPR and the CC0 check is done with the GPR + this is not supported + */ + + static void + s390_optimize_nonescaping_tx (void) + { + const unsigned int CC0 = 1 << 3; + basic_block tbegin_bb = NULL; + basic_block tend_bb = NULL; + basic_block bb; + rtx insn; + bool result = true; + int bb_index; + rtx tbegin_insn = NULL_RTX; + + if (!cfun->machine->tbegin_p) + return; + + for (bb_index = 0; bb_index < n_basic_blocks; bb_index++) + { + bb = BASIC_BLOCK (bb_index); + + FOR_BB_INSNS (bb, insn) + { + rtx ite, cc, pat, target; + unsigned HOST_WIDE_INT mask; + + if (!INSN_P (insn) || INSN_CODE (insn) <= 0) + continue; + + pat = PATTERN (insn); + + if (GET_CODE (pat) == PARALLEL) + pat = XVECEXP (pat, 0, 0); + + if (GET_CODE (pat) != SET + || GET_CODE (SET_SRC (pat)) != UNSPEC_VOLATILE) + continue; + + if (XINT (SET_SRC (pat), 1) == UNSPECV_TBEGIN) + { + rtx tmp; + + tbegin_insn = insn; + + /* Just return if the tbegin doesn't have clobbers. */ + if (GET_CODE (PATTERN (insn)) != PARALLEL) + return; + + if (tbegin_bb != NULL) + return; + + /* Find the next conditional jump. */ + for (tmp = NEXT_INSN (insn); + tmp != NULL_RTX; + tmp = NEXT_INSN (tmp)) + { + if (reg_set_p (gen_rtx_REG (CCmode, CC_REGNUM), tmp)) + return; + if (!JUMP_P (tmp)) + continue; + + ite = SET_SRC (PATTERN (tmp)); + if (GET_CODE (ite) != IF_THEN_ELSE) + continue; + + cc = XEXP (XEXP (ite, 0), 0); + if (!REG_P (cc) || !CC_REGNO_P (REGNO (cc)) + || GET_MODE (cc) != CCRAWmode + || GET_CODE (XEXP (XEXP (ite, 0), 1)) != CONST_INT) + return; + + if (bb->succs->length () != 2) + return; + + mask = INTVAL (XEXP (XEXP (ite, 0), 1)); + if (GET_CODE (XEXP (ite, 0)) == NE) + mask ^= 0xf; + + if (mask == CC0) + target = XEXP (ite, 1); + else if (mask == (CC0 ^ 0xf)) + target = XEXP (ite, 2); + else + return; + + { + edge_iterator ei; + edge e1, e2; + + ei = ei_start (bb->succs); + e1 = ei_safe_edge (ei); + ei_next (&ei); + e2 = ei_safe_edge (ei); + + if (e2->flags & EDGE_FALLTHRU) + { + e2 = e1; + e1 = ei_safe_edge (ei); + } + + if (!(e1->flags & EDGE_FALLTHRU)) + return; + + tbegin_bb = (target == pc_rtx) ? e1->dest : e2->dest; + } + if (tmp == BB_END (bb)) + break; + } + } + + if (XINT (SET_SRC (pat), 1) == UNSPECV_TEND) + { + if (tend_bb != NULL) + return; + tend_bb = bb; + } + } + } + + /* Either we successfully remove the FPR clobbers here or we are not + able to do anything for this TX. Both cases don't qualify for + another look. */ + cfun->machine->tbegin_p = false; + + if (tbegin_bb == NULL || tend_bb == NULL) + return; + + calculate_dominance_info (CDI_POST_DOMINATORS); + result = dominated_by_p (CDI_POST_DOMINATORS, tbegin_bb, tend_bb); + free_dominance_info (CDI_POST_DOMINATORS); + + if (!result) + return; + + PATTERN (tbegin_insn) = XVECEXP (PATTERN (tbegin_insn), 0, 0); + INSN_CODE (tbegin_insn) = -1; + df_insn_rescan (tbegin_insn); + + return; + } + /* Update frame layout. Recompute actual register save data based on current info and update regs_ever_live for the special registers. May be called multiple times, but may never cause *more* registers *************** s390_init_frame_layout (void) *** 7774,7780 **** static void s390_update_frame_layout (void) { ! int clobbered_regs[16]; s390_register_info (clobbered_regs); --- 7974,7980 ---- static void s390_update_frame_layout (void) { ! int clobbered_regs[32]; s390_register_info (clobbered_regs); *************** s390_emit_prologue (void) *** 8204,8211 **** int offset; int next_fpr = 0; ! /* Complete frame layout. */ s390_update_frame_layout (); /* Annotate all constant pool references to let the scheduler know --- 8404,8413 ---- int offset; int next_fpr = 0; ! /* Try to get rid of the FPR clobbers. */ ! s390_optimize_nonescaping_tx (); + /* Complete frame layout. */ s390_update_frame_layout (); /* Annotate all constant pool references to let the scheduler know *************** s390_gimplify_va_arg (tree valist, tree *** 9353,9358 **** --- 9555,9845 ---- return build_va_arg_indirect_ref (addr); } + /* Emit rtl for the tbegin or tbegin_retry (RETRY != NULL_RTX) + expanders. + DEST - Register location where CC will be stored. + TDB - Pointer to a 256 byte area where to store the transaction. + diagnostic block. NULL if TDB is not needed. + RETRY - Retry count value. If non-NULL a retry loop for CC2 + is emitted + CLOBBER_FPRS_P - If true clobbers for all FPRs are emitted as part + of the tbegin instruction pattern. */ + + void + s390_expand_tbegin (rtx dest, rtx tdb, rtx retry, bool clobber_fprs_p) + { + const int CC0 = 1 << 3; + const int CC1 = 1 << 2; + const int CC3 = 1 << 0; + rtx abort_label = gen_label_rtx (); + rtx leave_label = gen_label_rtx (); + rtx retry_reg = gen_reg_rtx (SImode); + rtx retry_label = NULL_RTX; + rtx jump; + rtx very_unlikely = GEN_INT (REG_BR_PROB_BASE / 100 - 1); + + if (retry != NULL_RTX) + { + emit_move_insn (retry_reg, retry); + retry_label = gen_label_rtx (); + emit_label (retry_label); + } + + if (clobber_fprs_p) + emit_insn (gen_tbegin_1 (tdb, + gen_rtx_CONST_INT (VOIDmode, TBEGIN_MASK))); + else + emit_insn (gen_tbegin_nofloat_1 (tdb, + gen_rtx_CONST_INT (VOIDmode, TBEGIN_MASK))); + + jump = s390_emit_jump (abort_label, + gen_rtx_NE (VOIDmode, + gen_rtx_REG (CCRAWmode, CC_REGNUM), + gen_rtx_CONST_INT (VOIDmode, CC0))); + + JUMP_LABEL (jump) = abort_label; + LABEL_NUSES (abort_label) = 1; + add_reg_note (jump, REG_BR_PROB, very_unlikely); + + /* Initialize CC return value. */ + emit_move_insn (dest, const0_rtx); + + s390_emit_jump (leave_label, NULL_RTX); + LABEL_NUSES (leave_label) = 1; + emit_barrier (); + + /* Abort handler code. */ + + emit_label (abort_label); + if (retry != NULL_RTX) + { + rtx count = gen_reg_rtx (SImode); + jump = s390_emit_jump (leave_label, + gen_rtx_EQ (VOIDmode, + gen_rtx_REG (CCRAWmode, CC_REGNUM), + gen_rtx_CONST_INT (VOIDmode, CC1 | CC3))); + LABEL_NUSES (leave_label) = 2; + add_reg_note (jump, REG_BR_PROB, very_unlikely); + + /* CC2 - transient failure. Perform retry with ppa. */ + emit_move_insn (count, retry); + emit_insn (gen_subsi3 (count, count, retry_reg)); + emit_insn (gen_tx_assist (count)); + jump = emit_jump_insn (gen_doloop_si64 (retry_label, + retry_reg, + retry_reg)); + JUMP_LABEL (jump) = retry_label; + LABEL_NUSES (retry_label) = 1; + } + + emit_move_insn (dest, gen_rtx_UNSPEC (SImode, + gen_rtvec (1, gen_rtx_REG (CCRAWmode, + CC_REGNUM)), + UNSPEC_CC_TO_INT)); + emit_label (leave_label); + } + + /* Builtins. */ + + enum s390_builtin + { + S390_BUILTIN_TBEGIN, + S390_BUILTIN_TBEGIN_NOFLOAT, + S390_BUILTIN_TBEGIN_RETRY, + S390_BUILTIN_TBEGIN_RETRY_NOFLOAT, + S390_BUILTIN_TBEGINC, + S390_BUILTIN_TEND, + S390_BUILTIN_TABORT, + S390_BUILTIN_NON_TX_STORE, + S390_BUILTIN_TX_NESTING_DEPTH, + S390_BUILTIN_TX_ASSIST, + + S390_BUILTIN_max + }; + + static enum insn_code const code_for_builtin[S390_BUILTIN_max] = { + CODE_FOR_tbegin, + CODE_FOR_tbegin_nofloat, + CODE_FOR_tbegin_retry, + CODE_FOR_tbegin_retry_nofloat, + CODE_FOR_tbeginc, + CODE_FOR_tend, + CODE_FOR_tabort, + CODE_FOR_ntstg, + CODE_FOR_etnd, + CODE_FOR_tx_assist + }; + + static void + s390_init_builtins (void) + { + tree ftype, uint64_type; + + /* void foo (void) */ + ftype = build_function_type_list (void_type_node, NULL_TREE); + add_builtin_function ("__builtin_tbeginc", ftype, S390_BUILTIN_TBEGINC, + BUILT_IN_MD, NULL, NULL_TREE); + + /* void foo (int) */ + ftype = build_function_type_list (void_type_node, integer_type_node, + NULL_TREE); + add_builtin_function ("__builtin_tabort", ftype, + S390_BUILTIN_TABORT, BUILT_IN_MD, NULL, NULL_TREE); + add_builtin_function ("__builtin_tx_assist", ftype, + S390_BUILTIN_TX_ASSIST, BUILT_IN_MD, NULL, NULL_TREE); + + /* int foo (void *) */ + ftype = build_function_type_list (integer_type_node, ptr_type_node, NULL_TREE); + add_builtin_function ("__builtin_tbegin", ftype, S390_BUILTIN_TBEGIN, + BUILT_IN_MD, NULL, NULL_TREE); + add_builtin_function ("__builtin_tbegin_nofloat", ftype, + S390_BUILTIN_TBEGIN_NOFLOAT, + BUILT_IN_MD, NULL, NULL_TREE); + + /* int foo (void *, int) */ + ftype = build_function_type_list (integer_type_node, ptr_type_node, + integer_type_node, NULL_TREE); + add_builtin_function ("__builtin_tbegin_retry", ftype, + S390_BUILTIN_TBEGIN_RETRY, + BUILT_IN_MD, + NULL, NULL_TREE); + add_builtin_function ("__builtin_tbegin_retry_nofloat", ftype, + S390_BUILTIN_TBEGIN_RETRY_NOFLOAT, + BUILT_IN_MD, + NULL, NULL_TREE); + + /* int foo (void) */ + ftype = build_function_type_list (integer_type_node, NULL_TREE); + add_builtin_function ("__builtin_tx_nesting_depth", ftype, + S390_BUILTIN_TX_NESTING_DEPTH, + BUILT_IN_MD, NULL, NULL_TREE); + add_builtin_function ("__builtin_tend", ftype, + S390_BUILTIN_TEND, BUILT_IN_MD, NULL, NULL_TREE); + + /* void foo (uint64_t *, uint64_t) */ + if (TARGET_64BIT) + uint64_type = long_unsigned_type_node; + else + uint64_type = long_long_unsigned_type_node; + + ftype = build_function_type_list (void_type_node, + build_pointer_type (uint64_type), + uint64_type, NULL_TREE); + add_builtin_function ("__builtin_non_tx_store", ftype, + S390_BUILTIN_NON_TX_STORE, + BUILT_IN_MD, NULL, NULL_TREE); + } + + /* Expand an expression EXP that calls a built-in function, + with result going to TARGET if that's convenient + (and in mode MODE if that's convenient). + SUBTARGET may be used as the target for computing one of EXP's operands. + IGNORE is nonzero if the value is to be ignored. */ + + static rtx + s390_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED, + enum machine_mode mode ATTRIBUTE_UNUSED, + int ignore ATTRIBUTE_UNUSED) + { + #define MAX_ARGS 2 + + tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); + unsigned int fcode = DECL_FUNCTION_CODE (fndecl); + enum insn_code icode; + rtx op[MAX_ARGS], pat; + int arity; + bool nonvoid; + tree arg; + call_expr_arg_iterator iter; + + if (fcode >= S390_BUILTIN_max) + internal_error ("bad builtin fcode"); + icode = code_for_builtin[fcode]; + if (icode == 0) + internal_error ("bad builtin fcode"); + + if (!TARGET_HTM) + error ("Transactional execution builtins not enabled (-mhtm)\n"); + + /* Set a flag in the machine specific cfun part in order to support + saving/restoring of FPRs. */ + if (fcode == S390_BUILTIN_TBEGIN || fcode == S390_BUILTIN_TBEGIN_RETRY) + cfun->machine->tbegin_p = true; + + nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node; + + arity = 0; + FOR_EACH_CALL_EXPR_ARG (arg, iter, exp) + { + const struct insn_operand_data *insn_op; + + if (arg == error_mark_node) + return NULL_RTX; + if (arity >= MAX_ARGS) + return NULL_RTX; + + insn_op = &insn_data[icode].operand[arity + nonvoid]; + + op[arity] = expand_expr (arg, NULL_RTX, insn_op->mode, EXPAND_NORMAL); + + if (!(*insn_op->predicate) (op[arity], insn_op->mode)) + { + if (insn_op->predicate == memory_operand) + { + /* Don't move a NULL pointer into a register. Otherwise + we have to rely on combine being able to move it back + in order to get an immediate 0 in the instruction. */ + if (op[arity] != const0_rtx) + op[arity] = copy_to_mode_reg (Pmode, op[arity]); + op[arity] = gen_rtx_MEM (insn_op->mode, op[arity]); + } + else + op[arity] = copy_to_mode_reg (insn_op->mode, op[arity]); + } + + arity++; + } + + if (nonvoid) + { + enum machine_mode tmode = insn_data[icode].operand[0].mode; + if (!target + || GET_MODE (target) != tmode + || !(*insn_data[icode].operand[0].predicate) (target, tmode)) + target = gen_reg_rtx (tmode); + } + + switch (arity) + { + case 0: + pat = GEN_FCN (icode) (target); + break; + case 1: + if (nonvoid) + pat = GEN_FCN (icode) (target, op[0]); + else + pat = GEN_FCN (icode) (op[0]); + break; + case 2: + if (nonvoid) + pat = GEN_FCN (icode) (target, op[0], op[1]); + else + pat = GEN_FCN (icode) (op[0], op[1]); + break; + default: + gcc_unreachable (); + } + if (!pat) + return NULL_RTX; + emit_insn (pat); + + if (nonvoid) + return target; + else + return const0_rtx; + } + + /* Output assembly code for the trampoline template to stdio stream FILE. *************** s390_loop_unroll_adjust (unsigned nunrol *** 11008,11013 **** --- 11495,11505 ---- #undef TARGET_RETURN_IN_MEMORY #define TARGET_RETURN_IN_MEMORY s390_return_in_memory + #undef TARGET_INIT_BUILTINS + #define TARGET_INIT_BUILTINS s390_init_builtins + #undef TARGET_EXPAND_BUILTIN + #define TARGET_EXPAND_BUILTIN s390_expand_builtin + #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA s390_output_addr_const_extra diff -Nrcpad gcc-4.8.1/gcc/config/s390/s390.h gcc-4.8.2/gcc/config/s390/s390.h *** gcc-4.8.1/gcc/config/s390/s390.h Tue Mar 5 12:02:06 2013 --- gcc-4.8.2/gcc/config/s390/s390.h Fri Aug 2 15:41:10 2013 *************** enum processor_flags *** 34,40 **** PF_DFP = 16, PF_Z10 = 32, PF_Z196 = 64, ! PF_ZEC12 = 128 }; /* This is necessary to avoid a warning about comparing different enum --- 34,41 ---- PF_DFP = 16, PF_Z10 = 32, PF_Z196 = 64, ! PF_ZEC12 = 128, ! PF_TX = 256 }; /* This is necessary to avoid a warning about comparing different enum *************** enum processor_flags *** 61,66 **** --- 62,69 ---- (s390_arch_flags & PF_Z196) #define TARGET_CPU_ZEC12 \ (s390_arch_flags & PF_ZEC12) + #define TARGET_CPU_HTM \ + (s390_arch_flags & PF_TX) /* These flags indicate that the generated code should run on a cpu providing the respective hardware facility when run in *************** enum processor_flags *** 78,83 **** --- 81,87 ---- (TARGET_ZARCH && TARGET_CPU_Z196) #define TARGET_ZEC12 \ (TARGET_ZARCH && TARGET_CPU_ZEC12) + #define TARGET_HTM (TARGET_OPT_HTM) #define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196) *************** enum processor_flags *** 93,115 **** #define TARGET_TPF 0 /* Target CPU builtins. */ ! #define TARGET_CPU_CPP_BUILTINS() \ ! do \ ! { \ ! builtin_assert ("cpu=s390"); \ ! builtin_assert ("machine=s390"); \ ! builtin_define ("__s390__"); \ ! if (TARGET_ZARCH) \ ! builtin_define ("__zarch__"); \ ! if (TARGET_64BIT) \ ! builtin_define ("__s390x__"); \ ! if (TARGET_LONG_DOUBLE_128) \ ! builtin_define ("__LONG_DOUBLE_128__"); \ ! } \ while (0) #ifdef DEFAULT_TARGET_64BIT ! #define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP) #else #define TARGET_DEFAULT 0 #endif --- 97,121 ---- #define TARGET_TPF 0 /* Target CPU builtins. */ ! #define TARGET_CPU_CPP_BUILTINS() \ ! do \ ! { \ ! builtin_assert ("cpu=s390"); \ ! builtin_assert ("machine=s390"); \ ! builtin_define ("__s390__"); \ ! if (TARGET_ZARCH) \ ! builtin_define ("__zarch__"); \ ! if (TARGET_64BIT) \ ! builtin_define ("__s390x__"); \ ! if (TARGET_LONG_DOUBLE_128) \ ! builtin_define ("__LONG_DOUBLE_128__"); \ ! if (TARGET_HTM) \ ! builtin_define ("__HTM__"); \ ! } \ while (0) #ifdef DEFAULT_TARGET_64BIT ! #define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP | MASK_OPT_HTM) #else #define TARGET_DEFAULT 0 #endif *************** enum processor_flags *** 164,169 **** --- 170,180 ---- #define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \ | S390_TDC_NEGATIVE_INFINITY ) + /* This is used by float.h to define the float_t and double_t data + types. For historical reasons both are double on s390 what cannot + be changed anymore. */ + #define TARGET_FLT_EVAL_METHOD 1 + /* Target machine storage layout. */ /* Everything is big-endian. */ diff -Nrcpad gcc-4.8.1/gcc/config/s390/s390.md gcc-4.8.2/gcc/config/s390/s390.md *** gcc-4.8.1/gcc/config/s390/s390.md Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/s390/s390.md Mon Oct 7 07:45:12 2013 *************** *** 59,69 **** (define_c_enum "unspec" [ ; Miscellaneous UNSPEC_ROUND - UNSPEC_CCU_TO_INT - UNSPEC_CCZ_TO_INT UNSPEC_ICM UNSPEC_TIE ; GOT/PLT and lt-relative accesses UNSPEC_LTREL_OFFSET UNSPEC_LTREL_BASE --- 59,75 ---- (define_c_enum "unspec" [ ; Miscellaneous UNSPEC_ROUND UNSPEC_ICM UNSPEC_TIE + ; Convert CC into a str comparison result and copy it into an + ; integer register + ; cc0->0, cc1->1, cc2->-1, (cc3->-1) + UNSPEC_STRCMPCC_TO_INT + + ; Copy CC as is into the lower 2 bits of an integer register + UNSPEC_CC_TO_INT + ; GOT/PLT and lt-relative accesses UNSPEC_LTREL_OFFSET UNSPEC_LTREL_BASE *************** *** 138,143 **** --- 144,158 ---- ; Atomic Support UNSPECV_CAS UNSPECV_ATOMIC_OP + + ; Transactional Execution support + UNSPECV_TBEGIN + UNSPECV_TBEGINC + UNSPECV_TEND + UNSPECV_TABORT + UNSPECV_ETND + UNSPECV_NTSTG + UNSPECV_PPA ]) ;; *************** *** 191,196 **** --- 206,214 ---- (PFPO_OP1_TYPE_SHIFT 8) ]) + ; Immediate operands for tbegin and tbeginc + (define_constants [(TBEGIN_MASK 65292)]) ; 0xff0c + (define_constants [(TBEGINC_MASK 65288)]) ; 0xff08 ;; Instruction operand type as used in the Principles of Operation. ;; Used to determine defaults for length and other attribute values. *************** *** 2246,2264 **** (define_insn "movcc" [(set (match_operand:CC 0 "nonimmediate_operand" "=d,c,d,d,d,R,T") ! (match_operand:CC 1 "nonimmediate_operand" "d,d,c,R,T,d,d"))] "" "@ lr\t%0,%1 tmh\t%1,12288 ipm\t%0 ! st\t%0,%1 ! sty\t%0,%1 ! l\t%1,%0 ! ly\t%1,%0" [(set_attr "op_type" "RR,RI,RRE,RX,RXY,RX,RXY") ! (set_attr "type" "lr,*,*,store,store,load,load") ! (set_attr "z10prop" "z10_fr_E1,z10_super,*,z10_rec,z10_rec,z10_fwd_A3,z10_fwd_A3") (set_attr "z196prop" "*,*,z196_ends,*,*,*,*")]) ; --- 2264,2282 ---- (define_insn "movcc" [(set (match_operand:CC 0 "nonimmediate_operand" "=d,c,d,d,d,R,T") ! (match_operand:CC 1 "nonimmediate_operand" " d,d,c,R,T,d,d"))] "" "@ lr\t%0,%1 tmh\t%1,12288 ipm\t%0 ! l\t%0,%1 ! ly\t%0,%1 ! st\t%1,%0 ! sty\t%1,%0" [(set_attr "op_type" "RR,RI,RRE,RX,RXY,RX,RXY") ! (set_attr "type" "lr,*,*,load,load,store,store") ! (set_attr "z10prop" "z10_fr_E1,z10_super,*,z10_fwd_A3,z10_fwd_A3,z10_rec,z10_rec") (set_attr "z196prop" "*,*,z196_ends,*,*,*,*")]) ; *************** *** 2578,2584 **** (use (reg:SI 0))]) (parallel [(set (match_operand:SI 0 "register_operand" "=d") ! (unspec:SI [(reg:CCU CC_REGNUM)] UNSPEC_CCU_TO_INT)) (clobber (reg:CC CC_REGNUM))])] "" { --- 2596,2602 ---- (use (reg:SI 0))]) (parallel [(set (match_operand:SI 0 "register_operand" "=d") ! (unspec:SI [(reg:CCU CC_REGNUM)] UNSPEC_STRCMPCC_TO_INT)) (clobber (reg:CC CC_REGNUM))])] "" { *************** *** 2820,2826 **** (match_dup 2)] UNSPEC_TDC_INSN)) (set (match_operand:SI 0 "register_operand" "=d") ! (unspec:SI [(reg:CCZ CC_REGNUM)] UNSPEC_CCZ_TO_INT))] "TARGET_HARD_FLOAT" { operands[2] = GEN_INT (S390_TDC_SIGNBIT_SET); --- 2838,2844 ---- (match_dup 2)] UNSPEC_TDC_INSN)) (set (match_operand:SI 0 "register_operand" "=d") ! (unspec:SI [(reg:CCZ CC_REGNUM)] UNSPEC_CC_TO_INT))] "TARGET_HARD_FLOAT" { operands[2] = GEN_INT (S390_TDC_SIGNBIT_SET); *************** *** 2832,2843 **** (match_dup 2)] UNSPEC_TDC_INSN)) (set (match_operand:SI 0 "register_operand" "=d") ! (unspec:SI [(reg:CCZ CC_REGNUM)] UNSPEC_CCZ_TO_INT))] "TARGET_HARD_FLOAT" { operands[2] = GEN_INT (S390_TDC_INFINITY); }) ; This insn is used to generate all variants of the Test Data Class ; instruction, namely tcxb, tcdb, and tceb. The insn's first operand ; is the register to be tested and the second one is the bit mask --- 2850,2870 ---- (match_dup 2)] UNSPEC_TDC_INSN)) (set (match_operand:SI 0 "register_operand" "=d") ! (unspec:SI [(reg:CCZ CC_REGNUM)] UNSPEC_CC_TO_INT))] "TARGET_HARD_FLOAT" { operands[2] = GEN_INT (S390_TDC_INFINITY); }) + (define_insn_and_split "*cc_to_int" + [(set (match_operand:SI 0 "register_operand" "=d") + (unspec:SI [(match_operand 1 "register_operand" "0")] + UNSPEC_CC_TO_INT))] + "operands != NULL" + "#" + "reload_completed" + [(set (match_dup 0) (lshiftrt:SI (match_dup 0) (const_int 28)))]) + ; This insn is used to generate all variants of the Test Data Class ; instruction, namely tcxb, tcdb, and tceb. The insn's first operand ; is the register to be tested and the second one is the bit mask *************** *** 2853,2866 **** [(set_attr "op_type" "RXE") (set_attr "type" "fsimp")]) - (define_insn_and_split "*ccz_to_int" - [(set (match_operand:SI 0 "register_operand" "=d") - (unspec:SI [(match_operand:CCZ 1 "register_operand" "0")] - UNSPEC_CCZ_TO_INT))] - "" - "#" - "reload_completed" - [(set (match_dup 0) (lshiftrt:SI (match_dup 0) (const_int 28)))]) ; --- 2880,2885 ---- *************** *** 3205,3211 **** (define_insn_and_split "cmpint" [(set (match_operand:SI 0 "register_operand" "=d") (unspec:SI [(match_operand:CCU 1 "register_operand" "0")] ! UNSPEC_CCU_TO_INT)) (clobber (reg:CC CC_REGNUM))] "" "#" --- 3224,3230 ---- (define_insn_and_split "cmpint" [(set (match_operand:SI 0 "register_operand" "=d") (unspec:SI [(match_operand:CCU 1 "register_operand" "0")] ! UNSPEC_STRCMPCC_TO_INT)) (clobber (reg:CC CC_REGNUM))] "" "#" *************** *** 3218,3227 **** (define_insn_and_split "*cmpint_cc" [(set (reg CC_REGNUM) (compare (unspec:SI [(match_operand:CCU 1 "register_operand" "0")] ! UNSPEC_CCU_TO_INT) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=d") ! (unspec:SI [(match_dup 1)] UNSPEC_CCU_TO_INT))] "s390_match_ccmode (insn, CCSmode)" "#" "&& reload_completed" --- 3237,3246 ---- (define_insn_and_split "*cmpint_cc" [(set (reg CC_REGNUM) (compare (unspec:SI [(match_operand:CCU 1 "register_operand" "0")] ! UNSPEC_STRCMPCC_TO_INT) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=d") ! (unspec:SI [(match_dup 1)] UNSPEC_STRCMPCC_TO_INT))] "s390_match_ccmode (insn, CCSmode)" "#" "&& reload_completed" *************** *** 3238,3244 **** (define_insn_and_split "*cmpint_sign" [(set (match_operand:DI 0 "register_operand" "=d") (sign_extend:DI (unspec:SI [(match_operand:CCU 1 "register_operand" "0")] ! UNSPEC_CCU_TO_INT))) (clobber (reg:CC CC_REGNUM))] "TARGET_ZARCH" "#" --- 3257,3263 ---- (define_insn_and_split "*cmpint_sign" [(set (match_operand:DI 0 "register_operand" "=d") (sign_extend:DI (unspec:SI [(match_operand:CCU 1 "register_operand" "0")] ! UNSPEC_STRCMPCC_TO_INT))) (clobber (reg:CC CC_REGNUM))] "TARGET_ZARCH" "#" *************** *** 3252,3262 **** [(set (reg CC_REGNUM) (compare (ashiftrt:DI (ashift:DI (subreg:DI (unspec:SI [(match_operand:CCU 1 "register_operand" "0")] ! UNSPEC_CCU_TO_INT) 0) (const_int 32)) (const_int 32)) (const_int 0))) (set (match_operand:DI 0 "register_operand" "=d") ! (sign_extend:DI (unspec:SI [(match_dup 1)] UNSPEC_CCU_TO_INT)))] "s390_match_ccmode (insn, CCSmode) && TARGET_ZARCH" "#" "&& reload_completed" --- 3271,3281 ---- [(set (reg CC_REGNUM) (compare (ashiftrt:DI (ashift:DI (subreg:DI (unspec:SI [(match_operand:CCU 1 "register_operand" "0")] ! UNSPEC_STRCMPCC_TO_INT) 0) (const_int 32)) (const_int 32)) (const_int 0))) (set (match_operand:DI 0 "register_operand" "=d") ! (sign_extend:DI (unspec:SI [(match_dup 1)] UNSPEC_STRCMPCC_TO_INT)))] "s390_match_ccmode (insn, CCSmode) && TARGET_ZARCH" "#" "&& reload_completed" *************** *** 5507,5513 **** (if_then_else:GPR (match_operator 1 "s390_comparison" [(match_operand 2 "cc_reg_operand" " c,c, c, c, c, c, c") ! (const_int 0)]) (match_operand:GPR 3 "nonimmediate_operand" " d,0,QS, 0, d, 0,QS") (match_operand:GPR 4 "nonimmediate_operand" " 0,d, 0,QS, 0, d,QS")))] "TARGET_Z196" --- 5526,5532 ---- (if_then_else:GPR (match_operator 1 "s390_comparison" [(match_operand 2 "cc_reg_operand" " c,c, c, c, c, c, c") ! (match_operand 5 "const_int_operand" "")]) (match_operand:GPR 3 "nonimmediate_operand" " d,0,QS, 0, d, 0,QS") (match_operand:GPR 4 "nonimmediate_operand" " 0,d, 0,QS, 0, d,QS")))] "TARGET_Z196" *************** *** 7907,7913 **** (define_insn "*cjump_64" [(set (pc) (if_then_else ! (match_operator 1 "s390_comparison" [(reg CC_REGNUM) (const_int 0)]) (label_ref (match_operand 0 "" "")) (pc)))] "TARGET_CPU_ZARCH" --- 7926,7933 ---- (define_insn "*cjump_64" [(set (pc) (if_then_else ! (match_operator 1 "s390_comparison" [(reg CC_REGNUM) ! (match_operand 2 "const_int_operand" "")]) (label_ref (match_operand 0 "" "")) (pc)))] "TARGET_CPU_ZARCH" *************** *** 7926,7932 **** (define_insn "*cjump_31" [(set (pc) (if_then_else ! (match_operator 1 "s390_comparison" [(reg CC_REGNUM) (const_int 0)]) (label_ref (match_operand 0 "" "")) (pc)))] "!TARGET_CPU_ZARCH" --- 7946,7953 ---- (define_insn "*cjump_31" [(set (pc) (if_then_else ! (match_operator 1 "s390_comparison" [(reg CC_REGNUM) ! (match_operand 2 "const_int_operand" "")]) (label_ref (match_operand 0 "" "")) (pc)))] "!TARGET_CPU_ZARCH" *************** *** 9795,9797 **** --- 9816,10032 ---- "cpsdr\t%0,%2,%1" [(set_attr "op_type" "RRF") (set_attr "type" "fsimp")]) + + + ;; + ;;- Transactional execution instructions + ;; + + ; This splitter helps combine to make use of CC directly when + ; comparing the integer result of a tbegin builtin with a constant. + ; The unspec is already removed by canonicalize_comparison. So this + ; splitters only job is to turn the PARALLEL into separate insns + ; again. Unfortunately this only works with the very first cc/int + ; compare since combine is not able to deal with data flow across + ; basic block boundaries. + + ; It needs to be an insn pattern as well since combine does not apply + ; the splitter directly. Combine would only use it if it actually + ; would reduce the number of instructions. + (define_insn_and_split "*ccraw_to_int" + [(set (pc) + (if_then_else + (match_operator 0 "s390_eqne_operator" + [(reg:CCRAW CC_REGNUM) + (match_operand 1 "const_int_operand" "")]) + (label_ref (match_operand 2 "" "")) + (pc))) + (set (match_operand:SI 3 "register_operand" "=d") + (unspec:SI [(reg:CCRAW CC_REGNUM)] UNSPEC_CC_TO_INT))] + "" + "#" + "" + [(set (match_dup 3) + (unspec:SI [(reg:CCRAW CC_REGNUM)] UNSPEC_CC_TO_INT)) + (set (pc) + (if_then_else (match_op_dup 0 [(reg:CCRAW CC_REGNUM) (match_dup 1)]) + (label_ref (match_dup 2)) + (pc)))] + "") + + ; Non-constrained transaction begin + + (define_expand "tbegin" + [(match_operand:SI 0 "register_operand" "") + (match_operand:BLK 1 "memory_operand" "")] + "TARGET_HTM" + { + s390_expand_tbegin (operands[0], operands[1], NULL_RTX, true); + DONE; + }) + + (define_expand "tbegin_nofloat" + [(match_operand:SI 0 "register_operand" "") + (match_operand:BLK 1 "memory_operand" "")] + "TARGET_HTM" + { + s390_expand_tbegin (operands[0], operands[1], NULL_RTX, false); + DONE; + }) + + (define_expand "tbegin_retry" + [(match_operand:SI 0 "register_operand" "") + (match_operand:BLK 1 "memory_operand" "") + (match_operand:SI 2 "general_operand" "")] + "TARGET_HTM" + { + s390_expand_tbegin (operands[0], operands[1], operands[2], true); + DONE; + }) + + (define_expand "tbegin_retry_nofloat" + [(match_operand:SI 0 "register_operand" "") + (match_operand:BLK 1 "memory_operand" "") + (match_operand:SI 2 "general_operand" "")] + "TARGET_HTM" + { + s390_expand_tbegin (operands[0], operands[1], operands[2], false); + DONE; + }) + + (define_insn "tbegin_1" + [(set (reg:CCRAW CC_REGNUM) + (unspec_volatile:CCRAW [(match_operand:BLK 0 "memory_operand" "=Q") + (match_operand 1 "const_int_operand" " D")] + UNSPECV_TBEGIN)) + (clobber (reg:DF 16)) + (clobber (reg:DF 17)) + (clobber (reg:DF 18)) + (clobber (reg:DF 19)) + (clobber (reg:DF 20)) + (clobber (reg:DF 21)) + (clobber (reg:DF 22)) + (clobber (reg:DF 23)) + (clobber (reg:DF 24)) + (clobber (reg:DF 25)) + (clobber (reg:DF 26)) + (clobber (reg:DF 27)) + (clobber (reg:DF 28)) + (clobber (reg:DF 29)) + (clobber (reg:DF 30)) + (clobber (reg:DF 31))] + ; CONST_OK_FOR_CONSTRAINT_P does not work with D constraint since D is + ; not supposed to be used for immediates (see genpreds.c). + "TARGET_HTM && INTVAL (operands[1]) >= 0 && INTVAL (operands[1]) <= 0xffff" + "tbegin\t%0,%x1" + [(set_attr "op_type" "SIL")]) + + ; Same as above but without the FPR clobbers + (define_insn "tbegin_nofloat_1" + [(set (reg:CCRAW CC_REGNUM) + (unspec_volatile:CCRAW [(match_operand:BLK 0 "memory_operand" "=Q") + (match_operand 1 "const_int_operand" " D")] + UNSPECV_TBEGIN))] + "TARGET_HTM && INTVAL (operands[1]) >= 0 && INTVAL (operands[1]) <= 0xffff" + "tbegin\t%0,%x1" + [(set_attr "op_type" "SIL")]) + + + ; Constrained transaction begin + + (define_expand "tbeginc" + [(set (reg:CCRAW CC_REGNUM) + (unspec_volatile:CCRAW [(const_int TBEGINC_MASK)] + UNSPECV_TBEGINC))] + "TARGET_HTM" + "") + + (define_insn "*tbeginc_1" + [(set (reg:CCRAW CC_REGNUM) + (unspec_volatile:CCRAW [(match_operand 0 "const_int_operand" " D")] + UNSPECV_TBEGINC))] + "TARGET_HTM && INTVAL (operands[0]) >= 0 && INTVAL (operands[0]) <= 0xffff" + "tbeginc\t0,%x0" + [(set_attr "op_type" "SIL")]) + + ; Transaction end + + (define_expand "tend" + [(set (reg:CCRAW CC_REGNUM) + (unspec_volatile:CCRAW [(const_int 0)] UNSPECV_TEND)) + (set (match_operand:SI 0 "register_operand" "") + (unspec:SI [(reg:CCRAW CC_REGNUM)] UNSPEC_CC_TO_INT))] + "TARGET_HTM" + "") + + (define_insn "*tend_1" + [(set (reg:CCRAW CC_REGNUM) + (unspec_volatile:CCRAW [(const_int 0)] UNSPECV_TEND))] + "TARGET_HTM" + "tend" + [(set_attr "op_type" "S")]) + + ; Transaction abort + + (define_expand "tabort" + [(unspec_volatile [(match_operand:SI 0 "shift_count_or_setmem_operand" "")] + UNSPECV_TABORT)] + "TARGET_HTM && operands != NULL" + { + if (CONST_INT_P (operands[0]) + && INTVAL (operands[0]) >= 0 && INTVAL (operands[0]) <= 255) + { + error ("Invalid transaction abort code: " HOST_WIDE_INT_PRINT_DEC + ". Values in range 0 through 255 are reserved.", + INTVAL (operands[0])); + FAIL; + } + }) + + (define_insn "*tabort_1" + [(unspec_volatile [(match_operand:SI 0 "shift_count_or_setmem_operand" "Y")] + UNSPECV_TABORT)] + "TARGET_HTM && operands != NULL" + "tabort\t%Y0" + [(set_attr "op_type" "S")]) + + ; Transaction extract nesting depth + + (define_insn "etnd" + [(set (match_operand:SI 0 "register_operand" "=d") + (unspec_volatile:SI [(const_int 0)] UNSPECV_ETND))] + "TARGET_HTM" + "etnd\t%0" + [(set_attr "op_type" "RRE")]) + + ; Non-transactional store + + (define_insn "ntstg" + [(set (match_operand:DI 0 "memory_operand" "=RT") + (unspec_volatile:DI [(match_operand:DI 1 "register_operand" "d")] + UNSPECV_NTSTG))] + "TARGET_HTM" + "ntstg\t%1,%0" + [(set_attr "op_type" "RXY")]) + + ; Transaction perform processor assist + + (define_expand "tx_assist" + [(set (match_dup 1) (const_int 0)) + (unspec_volatile [(match_operand:SI 0 "register_operand" "") + (match_dup 1) + (const_int 1)] + UNSPECV_PPA)] + "TARGET_HTM" + { + operands[1] = gen_reg_rtx (SImode); + }) + + (define_insn "*ppa" + [(unspec_volatile [(match_operand:SI 0 "register_operand" "d") + (match_operand:SI 1 "register_operand" "d") + (match_operand 2 "const_int_operand" "I")] + UNSPECV_PPA)] + "TARGET_HTM && INTVAL (operands[2]) < 16" + "ppa\t%0,%1,1" + [(set_attr "op_type" "RRF")]) diff -Nrcpad gcc-4.8.1/gcc/config/s390/s390.opt gcc-4.8.2/gcc/config/s390/s390.opt *** gcc-4.8.1/gcc/config/s390/s390.opt Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/config/s390/s390.opt Fri Aug 2 15:41:10 2013 *************** mlong-double-64 *** 104,109 **** --- 104,113 ---- Target Report RejectNegative Negative(mlong-double-128) InverseMask(LONG_DOUBLE_128) Use 64-bit long double + mhtm + Target Report Mask(OPT_HTM) + Use hardware transactional execution instructions + mpacked-stack Target Report Mask(PACKED_STACK) Use packed stack layout diff -Nrcpad gcc-4.8.1/gcc/config/s390/s390intrin.h gcc-4.8.2/gcc/config/s390/s390intrin.h *** gcc-4.8.1/gcc/config/s390/s390intrin.h Thu Jan 1 00:00:00 1970 --- gcc-4.8.2/gcc/config/s390/s390intrin.h Wed Aug 14 19:44:27 2013 *************** *** 0 **** --- 1,33 ---- + /* S/390 System z specific intrinsics + Copyright (C) 2013 Free Software Foundation, Inc. + Contributed by Andreas Krebbel (Andreas.Krebbel@de.ibm.com) + + This file is part of GCC. + + GCC is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation; either version 3, or (at your option) any later + version. + + GCC is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License + along with GCC; see the file COPYING3. If not see + . */ + + #ifndef _S390INTRIN_H + #define _S390INTRIN_H + + #ifndef __s390__ + #error s390intrin.h included on wrong platform/compiler + #endif + + #ifdef __HTM__ + #include + #endif + + + #endif /* _S390INTRIN_H*/ diff -Nrcpad gcc-4.8.1/gcc/config/sh/sh.md gcc-4.8.2/gcc/config/sh/sh.md *** gcc-4.8.1/gcc/config/sh/sh.md Mon May 6 19:53:56 2013 --- gcc-4.8.2/gcc/config/sh/sh.md Fri Sep 13 08:38:22 2013 *************** label: *** 6834,6843 **** ;; If movqi_reg_reg is specified as an alternative of movqi, movqi will be ;; selected to copy QImode regs. If one of them happens to be allocated ;; on the stack, reload will stick to movqi insn and generate wrong ! ;; displacement addressing because of the generic m alternatives. ! ;; With the movqi_reg_reg being specified before movqi it will be initially ! ;; picked to load/store regs. If the regs regs are on the stack reload will ! ;; try other insns and not stick to movqi_reg_reg. ;; The same applies to the movhi variants. ;; ;; Notice, that T bit is not allowed as a mov src operand here. This is to --- 6834,6844 ---- ;; If movqi_reg_reg is specified as an alternative of movqi, movqi will be ;; selected to copy QImode regs. If one of them happens to be allocated ;; on the stack, reload will stick to movqi insn and generate wrong ! ;; displacement addressing because of the generic m alternatives. ! ;; With the movqi_reg_reg being specified before movqi it will be initially ! ;; picked to load/store regs. If the regs regs are on the stack reload ! ;; try other insns and not stick to movqi_reg_reg, unless there were spilled ! ;; pseudos in which case 'm' constraints pertain. ;; The same applies to the movhi variants. ;; ;; Notice, that T bit is not allowed as a mov src operand here. This is to *************** label: *** 6849,6859 **** ;; reloading MAC subregs otherwise. For that probably special patterns ;; would be required. (define_insn "*mov_reg_reg" ! [(set (match_operand:QIHI 0 "arith_reg_dest" "=r") ! (match_operand:QIHI 1 "register_operand" "r"))] "TARGET_SH1 && !t_reg_operand (operands[1], VOIDmode)" ! "mov %1,%0" ! [(set_attr "type" "move")]) ;; FIXME: The non-SH2A and SH2A variants should be combined by adding ;; "enabled" attribute as it is done in other targets. --- 6850,6863 ---- ;; reloading MAC subregs otherwise. For that probably special patterns ;; would be required. (define_insn "*mov_reg_reg" ! [(set (match_operand:QIHI 0 "arith_reg_dest" "=r,m,*z") ! (match_operand:QIHI 1 "register_operand" "r,*z,m"))] "TARGET_SH1 && !t_reg_operand (operands[1], VOIDmode)" ! "@ ! mov %1,%0 ! mov. %1,%0 ! mov. %1,%0" ! [(set_attr "type" "move,store,load")]) ;; FIXME: The non-SH2A and SH2A variants should be combined by adding ;; "enabled" attribute as it is done in other targets. *************** label: *** 12073,12082 **** ;; FMA (fused multiply-add) patterns (define_expand "fmasf4" ! [(set (match_operand:SF 0 "fp_arith_reg_operand" "") ! (fma:SF (match_operand:SF 1 "fp_arith_reg_operand" "") ! (match_operand:SF 2 "fp_arith_reg_operand" "") ! (match_operand:SF 3 "fp_arith_reg_operand" "")))] "TARGET_SH2E || TARGET_SHMEDIA_FPU" { if (TARGET_SH2E) --- 12077,12086 ---- ;; FMA (fused multiply-add) patterns (define_expand "fmasf4" ! [(set (match_operand:SF 0 "fp_arith_reg_operand") ! (fma:SF (match_operand:SF 1 "fp_arith_reg_operand") ! (match_operand:SF 2 "fp_arith_reg_operand") ! (match_operand:SF 3 "fp_arith_reg_operand")))] "TARGET_SH2E || TARGET_SHMEDIA_FPU" { if (TARGET_SH2E) *************** label: *** 12107,12112 **** --- 12111,12153 ---- "fmac.s %1, %2, %0" [(set_attr "type" "fparith_media")]) + ;; For some cases such as 'a * b + a' the FMA pattern is not generated by + ;; previous transformations. If FMA is generally allowed, let the combine + ;; pass utilize it. + (define_insn_and_split "*fmasf4" + [(set (match_operand:SF 0 "fp_arith_reg_operand" "=f") + (plus:SF (mult:SF (match_operand:SF 1 "fp_arith_reg_operand" "%w") + (match_operand:SF 2 "fp_arith_reg_operand" "f")) + (match_operand:SF 3 "arith_reg_operand" "0"))) + (use (match_operand:PSI 4 "fpscr_operand"))] + "TARGET_SH2E && flag_fp_contract_mode != FP_CONTRACT_OFF" + "fmac %1,%2,%0" + "&& can_create_pseudo_p ()" + [(parallel [(set (match_dup 0) + (fma:SF (match_dup 1) (match_dup 2) (match_dup 3))) + (use (match_dup 4))])] + { + /* Change 'b * a + a' into 'a * b + a'. + This is better for register allocation. */ + if (REGNO (operands[2]) == REGNO (operands[3])) + { + rtx tmp = operands[1]; + operands[1] = operands[2]; + operands[2] = tmp; + } + } + [(set_attr "type" "fp") + (set_attr "fp_mode" "single")]) + + (define_insn "*fmasf4_media" + [(set (match_operand:SF 0 "fp_arith_reg_operand" "=f") + (plus:SF (mult:SF (match_operand:SF 1 "fp_arith_reg_operand" "%f") + (match_operand:SF 2 "fp_arith_reg_operand" "f")) + (match_operand:SF 3 "fp_arith_reg_operand" "0")))] + "TARGET_SHMEDIA_FPU && flag_fp_contract_mode != FP_CONTRACT_OFF" + "fmac.s %1, %2, %0" + [(set_attr "type" "fparith_media")]) + (define_expand "divsf3" [(set (match_operand:SF 0 "arith_reg_operand" "") (div:SF (match_operand:SF 1 "arith_reg_operand" "") diff -Nrcpad gcc-4.8.1/gcc/config/sparc/sparc.c gcc-4.8.2/gcc/config/sparc/sparc.c *** gcc-4.8.1/gcc/config/sparc/sparc.c Mon Apr 15 08:31:12 2013 --- gcc-4.8.2/gcc/config/sparc/sparc.c Fri Aug 2 21:42:26 2013 *************** sparc_emit_membar_for_model (enum memmod *** 11174,11179 **** --- 11174,11184 ---- /* Total Store Ordering: all memory transactions with store semantics are followed by an implied StoreStore. */ implied |= StoreStore; + + /* If we're not looking for a raw barrer (before+after), then atomic + operations get the benefit of being both load and store. */ + if (load_store == 3 && before_after == 1) + implied |= StoreLoad; /* FALLTHRU */ case SMM_PSO: diff -Nrcpad gcc-4.8.1/gcc/config.gcc gcc-4.8.2/gcc/config.gcc *** gcc-4.8.1/gcc/config.gcc Wed Mar 13 09:47:41 2013 --- gcc-4.8.2/gcc/config.gcc Thu Oct 3 00:47:24 2013 *************** s390*-*-*) *** 452,457 **** --- 452,458 ---- cpu_type=s390 need_64bit_hwint=yes extra_options="${extra_options} fused-madd.opt" + extra_headers="s390intrin.h htmintrin.h htmxlintrin.h" ;; # Note the 'l'; we need to be able to match e.g. "shle" or "shl". sh[123456789lbe]*-*-* | sh-*-*) *************** case ${target} in *** 734,739 **** --- 735,741 ---- yes) thread_file='rtems' ;; esac extra_options="${extra_options} rtems.opt" + default_use_cxa_atexit=yes use_gcc_stdint=wrap ;; *-*-uclinux*) *************** hppa*64*-*-linux*) *** 1057,1063 **** tm_file="pa/pa64-start.h ${tm_file} dbxelf.h elfos.h gnu-user.h linux.h \ glibc-stdint.h pa/pa-linux.h pa/pa64-regs.h pa/pa-64.h \ pa/pa64-linux.h" - tmake_file="${tmake_file} pa/t-linux" gas=yes gnu_ld=yes need_64bit_hwint=yes ;; --- 1059,1064 ---- *************** powerpc-*-rtems*) *** 2066,2085 **** extra_options="${extra_options} rs6000/sysv4.opt" tmake_file="rs6000/t-fprules rs6000/t-rtems t-rtems rs6000/t-ppccomm" ;; ! powerpc-*-linux* | powerpc64-*-linux*) tm_file="${tm_file} dbxelf.h elfos.h freebsd-spec.h rs6000/sysv4.h" extra_options="${extra_options} rs6000/sysv4.opt" tmake_file="rs6000/t-fprules rs6000/t-ppcos ${tmake_file} rs6000/t-ppccomm" maybe_biarch=yes case ${target} in ! powerpc64-*-linux*spe* | powerpc64-*-linux*paired*) echo "*** Configuration ${target} not supported" 1>&2 exit 1 ;; ! powerpc-*-linux*spe* | powerpc-*-linux*paired*) maybe_biarch= ;; ! powerpc64-*-linux*) test x$with_cpu != x || cpu_is_64bit=yes maybe_biarch=always ;; --- 2067,2090 ---- extra_options="${extra_options} rs6000/sysv4.opt" tmake_file="rs6000/t-fprules rs6000/t-rtems t-rtems rs6000/t-ppccomm" ;; ! powerpc*-*-linux*) tm_file="${tm_file} dbxelf.h elfos.h freebsd-spec.h rs6000/sysv4.h" extra_options="${extra_options} rs6000/sysv4.opt" tmake_file="rs6000/t-fprules rs6000/t-ppcos ${tmake_file} rs6000/t-ppccomm" + case ${target} in + powerpc*le-*-*) + tm_file="${tm_file} rs6000/sysv4le.h" ;; + esac maybe_biarch=yes case ${target} in ! powerpc64*-*-linux*spe* | powerpc64*-*-linux*paired*) echo "*** Configuration ${target} not supported" 1>&2 exit 1 ;; ! powerpc*-*-linux*spe* | powerpc*-*-linux*paired*) maybe_biarch= ;; ! powerpc64*-*-linux*) test x$with_cpu != x || cpu_is_64bit=yes maybe_biarch=always ;; diff -Nrcpad gcc-4.8.1/gcc/config.in gcc-4.8.2/gcc/config.in *** gcc-4.8.1/gcc/config.in Fri May 31 09:09:26 2013 --- gcc-4.8.2/gcc/config.in Wed Oct 16 07:27:58 2013 *************** *** 1228,1234 **** #endif ! /* Define if your AIX linker supports a large TOC. */ #ifndef USED_FOR_TARGET #undef HAVE_LD_LARGE_TOC #endif --- 1228,1234 ---- #endif ! /* Define if your PowerPC64 linker supports a large TOC. */ #ifndef USED_FOR_TARGET #undef HAVE_LD_LARGE_TOC #endif diff -Nrcpad gcc-4.8.1/gcc/configure gcc-4.8.2/gcc/configure *** gcc-4.8.1/gcc/configure Wed May 8 11:36:36 2013 --- gcc-4.8.2/gcc/configure Wed Jun 19 01:18:38 2013 *************** a: *** 23281,23313 **** tls_first_major=0 tls_first_minor=0 ;; ! powerpc-*-*) ! conftest_s=' ! .section ".tdata","awT",@progbits ! .align 2 ! ld0: .space 4 ! ld1: .space 4 ! x1: .space 4 ! x2: .space 4 ! x3: .space 4 ! .text ! addi 3,31,ld0@got@tlsgd ! bl __tls_get_addr ! addi 3,31,x1@got@tlsld ! bl __tls_get_addr ! addi 9,3,x1@dtprel ! addis 9,3,x2@dtprel@ha ! addi 9,9,x2@dtprel@l ! lwz 9,x3@got@tprel(31) ! add 9,9,x@tls ! addi 9,2,x1@tprel ! addis 9,2,x2@tprel@ha ! addi 9,9,x2@tprel@l' ! tls_first_major=2 ! tls_first_minor=14 ! tls_as_opt="-a32 --fatal-warnings" ! ;; ! powerpc64-*-*) conftest_s=' .section ".tdata","awT",@progbits .align 3 --- 23281,23287 ---- tls_first_major=0 tls_first_minor=0 ;; ! powerpc64*-*-*) conftest_s=' .section ".tdata","awT",@progbits .align 3 *************** x3: .space 8 *** 23341,23346 **** --- 23315,23346 ---- tls_first_minor=14 tls_as_opt="-a64 --fatal-warnings" ;; + powerpc*-*-*) + conftest_s=' + .section ".tdata","awT",@progbits + .align 2 + ld0: .space 4 + ld1: .space 4 + x1: .space 4 + x2: .space 4 + x3: .space 4 + .text + addi 3,31,ld0@got@tlsgd + bl __tls_get_addr + addi 3,31,x1@got@tlsld + bl __tls_get_addr + addi 9,3,x1@dtprel + addis 9,3,x2@dtprel@ha + addi 9,9,x2@dtprel@l + lwz 9,x3@got@tprel(31) + add 9,9,x@tls + addi 9,2,x1@tprel + addis 9,2,x2@tprel@ha + addi 9,9,x2@tprel@l' + tls_first_major=2 + tls_first_minor=14 + tls_as_opt="-a32 --fatal-warnings" + ;; s390-*-*) conftest_s=' .section ".tdata","awT",@progbits *************** fi *** 26472,26477 **** --- 26472,26480 ---- case "$target:$tm_file" in powerpc64-*-freebsd* | powerpc64*-*-linux* | powerpc*-*-linux*rs6000/biarch64.h*) case "$target" in + *le-*-linux*) + emul_name="-melf64lppc" + ;; *-*-linux*) emul_name="-melf64ppc" ;; diff -Nrcpad gcc-4.8.1/gcc/configure.ac gcc-4.8.2/gcc/configure.ac *** gcc-4.8.1/gcc/configure.ac Wed May 8 11:36:36 2013 --- gcc-4.8.2/gcc/configure.ac Wed Jun 19 01:18:38 2013 *************** a: *** 3044,3076 **** tls_first_major=0 tls_first_minor=0 ;; ! powerpc-*-*) ! conftest_s=' ! .section ".tdata","awT",@progbits ! .align 2 ! ld0: .space 4 ! ld1: .space 4 ! x1: .space 4 ! x2: .space 4 ! x3: .space 4 ! .text ! addi 3,31,ld0@got@tlsgd ! bl __tls_get_addr ! addi 3,31,x1@got@tlsld ! bl __tls_get_addr ! addi 9,3,x1@dtprel ! addis 9,3,x2@dtprel@ha ! addi 9,9,x2@dtprel@l ! lwz 9,x3@got@tprel(31) ! add 9,9,x@tls ! addi 9,2,x1@tprel ! addis 9,2,x2@tprel@ha ! addi 9,9,x2@tprel@l' ! tls_first_major=2 ! tls_first_minor=14 ! tls_as_opt="-a32 --fatal-warnings" ! ;; ! powerpc64-*-*) conftest_s=' .section ".tdata","awT",@progbits .align 3 --- 3044,3050 ---- tls_first_major=0 tls_first_minor=0 ;; ! powerpc64*-*-*) conftest_s=' .section ".tdata","awT",@progbits .align 3 *************** x3: .space 8 *** 3104,3109 **** --- 3078,3109 ---- tls_first_minor=14 tls_as_opt="-a64 --fatal-warnings" ;; + powerpc*-*-*) + conftest_s=' + .section ".tdata","awT",@progbits + .align 2 + ld0: .space 4 + ld1: .space 4 + x1: .space 4 + x2: .space 4 + x3: .space 4 + .text + addi 3,31,ld0@got@tlsgd + bl __tls_get_addr + addi 3,31,x1@got@tlsld + bl __tls_get_addr + addi 9,3,x1@dtprel + addis 9,3,x2@dtprel@ha + addi 9,9,x2@dtprel@l + lwz 9,x3@got@tprel(31) + add 9,9,x@tls + addi 9,2,x1@tprel + addis 9,2,x2@tprel@ha + addi 9,9,x2@tprel@l' + tls_first_major=2 + tls_first_minor=14 + tls_as_opt="-a32 --fatal-warnings" + ;; s390-*-*) conftest_s=' .section ".tdata","awT",@progbits *************** fi *** 4507,4512 **** --- 4507,4515 ---- case "$target:$tm_file" in powerpc64-*-freebsd* | powerpc64*-*-linux* | powerpc*-*-linux*rs6000/biarch64.h*) case "$target" in + *le-*-linux*) + emul_name="-melf64lppc" + ;; *-*-linux*) emul_name="-melf64ppc" ;; *************** EOF *** 4611,4617 **** ]) if test x"$gcc_cv_ld_large_toc" = xyes; then AC_DEFINE(HAVE_LD_LARGE_TOC, 1, ! [Define if your AIX linker supports a large TOC.]) fi ;; esac --- 4614,4620 ---- ]) if test x"$gcc_cv_ld_large_toc" = xyes; then AC_DEFINE(HAVE_LD_LARGE_TOC, 1, ! [Define if your PowerPC64 linker supports a large TOC.]) fi ;; esac diff -Nrcpad gcc-4.8.1/gcc/cp/ChangeLog gcc-4.8.2/gcc/cp/ChangeLog *** gcc-4.8.1/gcc/cp/ChangeLog Fri May 31 09:02:01 2013 --- gcc-4.8.2/gcc/cp/ChangeLog Wed Oct 16 07:20:01 2013 *************** *** 1,3 **** --- 1,151 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + + 2013-10-08 Paolo Carlini + + PR c++/58568 + * semantics.c (begin_lambda_type): Check return value of xref_tag + for error_mark_node; tidy. + * decl.c (grokdeclarator): Tweak error message. + + 2013-10-02 Paolo Carlini + + PR c++/58535 + * parser.c (cp_parser_function_specifier_opt): Upon error about + virtual templates don't set ds_virtual. + + 2013-09-18 Paolo Carlini + + PR c++/58457 + * class.c (instantiate_type): Loosen a bit the gcc_assert. + + 2013-09-13 Jason Merrill + + PR c++/58273 + * pt.c (any_type_dependent_elements_p): Actually check for + type-dependence, not value-dependence. + + 2013-09-09 Jakub Jelinek + + PR c++/58325 + * init.c (build_vec_delete): Call mark_rvalue_use on base. + + 2013-08-20 Jason Merrill + + PR c++/58119 + * cp-tree.h (WILDCARD_TYPE_P): Split out from... + (MAYBE_CLASS_TYPE_P): ...here. + * cvt.c (build_expr_type_conversion): Don't complain about a + template that can't match the desired type category. + + 2013-08-17 Jason Merrill + + PR c++/58083 + * name-lookup.c (push_class_level_binding_1): It's OK to push a + lambda type after the enclosing type is complete. + + 2013-08-06 Jason Merrill + + PR c++/57825 + * tree.c (strip_typedefs) [METHOD_TYPE]: Preserve ref-qualifier. + + 2013-07-29 Jason Merrill + + PR c++/57901 + * semantics.c (build_data_member_initialization, constexpr_fn_retval): + Use break_out_target_exprs instead of unshare_expr. + + PR c++/58022 + * typeck2.c (abstract_virtuals_error_sfinae): Don't remember + lookup in SFINAE context. + + 2013-07-25 Paolo Carlini + + PR c++/57981 + * decl.c (check_default_argument): Take a tsubst_flags_t parameter. + (grokparms): Adjust. + * parser.c (cp_parser_late_parse_one_default_arg): Likewise. + * pt.c (tsubst_default_argument, tsubst_default_arguments): Take + a tsubst_flags_t parameter. + (tsubst_decl): Adjust. + * call.c (convert_default_arg): Likewise. + * cp-tree.h (check_default_argument, tsubst_default_argument): + Update declarations. + + 2013-07-12 Jason Merrill + + * init.c (build_vec_init): Value-initialize the rest of the array. + + 2013-07-09 Jason Merrill + + PR c++/57526 + * semantics.c (lambda_capture_field_type): Build a DECLTYPE_TYPE + if the variable type uses 'auto'. + + PR c++/57437 + * typeck.c (check_return_expr): Lambda proxies aren't eligible + for nrv or return by move. + + PR c++/57532 + * parser.c (cp_parser_ref_qualifier_opt): Don't tentatively parse + a ref-qualifier in C++98 mode. + + PR c++/57545 + * pt.c (convert_nontype_argument) [INTEGER_CST]: Force the + argument to have the exact type of the parameter. + + PR c++/57551 + * semantics.c (cxx_eval_indirect_ref): Don't try to look through + a POINTER_PLUS_EXPR for type punning diagnostic. + + PR c++/57831 + * pt.c (tsubst_copy): Handle USING_DECL. + + 2013-07-08 Jason Merrill + + PR c++/57550 + * pt.c (fn_type_unification): Only defer during substitution. + (type_unification_real): Defer during defarg substitution, + add checks parm to pass back deferred checks. + (unify, do_auto_deduction): Adjust. + * semantics.c (reopen_deferring_access_checks): New. + * cp-tree.h: Declare it. + + 2013-07-05 Paolo Carlini + + PR c++/57645 + * class.c (deduce_noexcept_on_destructors): Save, set, and restore + TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) around the main loop over the + destructors. + + 2013-07-03 Jakub Jelinek + + PR c++/57771 + * parser.c (cp_parser_postfix_expression) + Temporarily set parser->greater_than_is_operator_p for + cp_parser_expression and restore from saved value afterwards. + + 2013-06-21 Paolo Carlini + + PR c++/53211 + * pt.c (type_dependent_expression_p): Handle an array of unknown + bound depending on a variadic parameter. + * parser.c (cp_parser_range_for): Revert PR56794 changes. + + 2013-05-31 Jason Merrill + + PR c++/57319 + * class.c (vbase_has_user_provided_move_assign): New. + * method.c (synthesized_method_walk): Check it. + * cp-tree.h: Declare it. + + PR c++/56930 + * call.c (convert_like_real): Use cp_convert_and_check. + * cvt.c (cp_convert_and_check): Use maybe_constant_value. + * semantics.c (cxx_eval_constant_expression): Handle LTGT_EXPR. + (potential_constant_expression_1): Handle OMP_ATOMIC*. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/gcc/cp/call.c gcc-4.8.2/gcc/cp/call.c *** gcc-4.8.1/gcc/cp/call.c Tue May 14 12:51:17 2013 --- gcc-4.8.2/gcc/cp/call.c Thu Jul 25 15:07:27 2013 *************** convert_like_real (conversion *convs, tr *** 6195,6202 **** if (convs->check_narrowing) check_narrowing (totype, expr); ! if (issue_conversion_warnings && (complain & tf_warning)) ! expr = convert_and_check (totype, expr); else expr = convert (totype, expr); --- 6195,6202 ---- if (convs->check_narrowing) check_narrowing (totype, expr); ! if (issue_conversion_warnings) ! expr = cp_convert_and_check (totype, expr, complain); else expr = convert (totype, expr); *************** convert_default_arg (tree type, tree arg *** 6390,6396 **** push_defarg_context (fn); if (fn && DECL_TEMPLATE_INFO (fn)) ! arg = tsubst_default_argument (fn, type, arg); /* Due to: --- 6390,6396 ---- push_defarg_context (fn); if (fn && DECL_TEMPLATE_INFO (fn)) ! arg = tsubst_default_argument (fn, type, arg, complain); /* Due to: diff -Nrcpad gcc-4.8.1/gcc/cp/class.c gcc-4.8.2/gcc/cp/class.c *** gcc-4.8.1/gcc/cp/class.c Mon Apr 1 19:05:21 2013 --- gcc-4.8.2/gcc/cp/class.c Wed Sep 18 18:13:15 2013 *************** deduce_noexcept_on_destructor (tree dtor *** 4574,4588 **** static void deduce_noexcept_on_destructors (tree t) { - tree fns; - /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail out now. */ if (!CLASSTYPE_METHOD_VEC (t)) return; ! for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns)) deduce_noexcept_on_destructor (OVL_CURRENT (fns)); } /* Subroutine of set_one_vmethod_tm_attributes. Search base classes --- 4574,4593 ---- static void deduce_noexcept_on_destructors (tree t) { /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail out now. */ if (!CLASSTYPE_METHOD_VEC (t)) return; ! bool saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t); ! ! /* Avoid early exit from synthesized_method_walk (c++/57645). */ ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = true; ! ! for (tree fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns)) deduce_noexcept_on_destructor (OVL_CURRENT (fns)); + + TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = saved_nontrivial_dtor; } /* Subroutine of set_one_vmethod_tm_attributes. Search base classes *************** type_has_user_provided_default_construct *** 4833,4838 **** --- 4838,4881 ---- return false; } + /* TYPE is being used as a virtual base, and has a non-trivial move + assignment. Return true if this is due to there being a user-provided + move assignment in TYPE or one of its subobjects; if there isn't, then + multiple move assignment can't cause any harm. */ + + bool + vbase_has_user_provided_move_assign (tree type) + { + /* Does the type itself have a user-provided move assignment operator? */ + for (tree fns + = lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR)); + fns; fns = OVL_NEXT (fns)) + { + tree fn = OVL_CURRENT (fns); + if (move_fn_p (fn) && user_provided_p (fn)) + return true; + } + + /* Do any of its bases? */ + tree binfo = TYPE_BINFO (type); + tree base_binfo; + for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) + if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo))) + return true; + + /* Or non-static data members? */ + for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + { + if (TREE_CODE (field) == FIELD_DECL + && CLASS_TYPE_P (TREE_TYPE (field)) + && vbase_has_user_provided_move_assign (TREE_TYPE (field))) + return true; + } + + /* Seems not. */ + return false; + } + /* If default-initialization leaves part of TYPE uninitialized, returns a DECL for the field or TYPE itself (DR 253). */ *************** instantiate_type (tree lhstype, tree rhs *** 7465,7471 **** dependent on overload resolution. */ gcc_assert (TREE_CODE (rhs) == ADDR_EXPR || TREE_CODE (rhs) == COMPONENT_REF ! || really_overloaded_fn (rhs) || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL)); /* This should really only be used when attempting to distinguish --- 7508,7514 ---- dependent on overload resolution. */ gcc_assert (TREE_CODE (rhs) == ADDR_EXPR || TREE_CODE (rhs) == COMPONENT_REF ! || is_overloaded_fn (rhs) || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL)); /* This should really only be used when attempting to distinguish diff -Nrcpad gcc-4.8.1/gcc/cp/cp-tree.h gcc-4.8.2/gcc/cp/cp-tree.h *** gcc-4.8.1/gcc/cp/cp-tree.h Wed Apr 24 15:42:20 2013 --- gcc-4.8.2/gcc/cp/cp-tree.h Tue Aug 20 12:59:37 2013 *************** enum languages { lang_c, lang_cplusplus, *** 1211,1227 **** /* The _DECL for this _TYPE. */ #define TYPE_MAIN_DECL(NODE) (TYPE_STUB_DECL (TYPE_MAIN_VARIANT (NODE))) ! /* Nonzero if T is a class (or struct or union) type. Also nonzero ! for template type parameters, typename types, and instantiated ! template template parameters. Keep these checks in ascending code ! order. */ ! #define MAYBE_CLASS_TYPE_P(T) \ (TREE_CODE (T) == TEMPLATE_TYPE_PARM \ || TREE_CODE (T) == TYPENAME_TYPE \ || TREE_CODE (T) == TYPEOF_TYPE \ || TREE_CODE (T) == BOUND_TEMPLATE_TEMPLATE_PARM \ ! || TREE_CODE (T) == DECLTYPE_TYPE \ ! || CLASS_TYPE_P (T)) /* Set CLASS_TYPE_P for T to VAL. T must be a class, struct, or union type. */ --- 1211,1230 ---- /* The _DECL for this _TYPE. */ #define TYPE_MAIN_DECL(NODE) (TYPE_STUB_DECL (TYPE_MAIN_VARIANT (NODE))) ! /* Nonzero if T is a type that could resolve to any kind of concrete type ! at instantiation time. */ ! #define WILDCARD_TYPE_P(T) \ (TREE_CODE (T) == TEMPLATE_TYPE_PARM \ || TREE_CODE (T) == TYPENAME_TYPE \ || TREE_CODE (T) == TYPEOF_TYPE \ || TREE_CODE (T) == BOUND_TEMPLATE_TEMPLATE_PARM \ ! || TREE_CODE (T) == DECLTYPE_TYPE) ! ! /* Nonzero if T is a class (or struct or union) type. Also nonzero ! for template type parameters, typename types, and instantiated ! template template parameters. Keep these checks in ascending code ! order. */ ! #define MAYBE_CLASS_TYPE_P(T) (WILDCARD_TYPE_P (T) || CLASS_TYPE_P (T)) /* Set CLASS_TYPE_P for T to VAL. T must be a class, struct, or union type. */ *************** extern tree in_class_defaulted_default_c *** 5057,5062 **** --- 5060,5066 ---- extern bool user_provided_p (tree); extern bool type_has_user_provided_constructor (tree); extern bool type_has_user_provided_default_constructor (tree); + extern bool vbase_has_user_provided_move_assign (tree); extern tree default_init_uninitialized_part (tree); extern bool trivial_default_constructor_is_constexpr (tree); extern bool type_has_constexpr_default_constructor (tree); *************** extern tree static_fn_type (tree); *** 5177,5183 **** extern void revert_static_member_fn (tree); extern void fixup_anonymous_aggr (tree); extern tree compute_array_index_type (tree, tree, tsubst_flags_t); ! extern tree check_default_argument (tree, tree); typedef int (*walk_namespaces_fn) (tree, void *); extern int walk_namespaces (walk_namespaces_fn, void *); --- 5181,5187 ---- extern void revert_static_member_fn (tree); extern void fixup_anonymous_aggr (tree); extern tree compute_array_index_type (tree, tree, tsubst_flags_t); ! extern tree check_default_argument (tree, tree, tsubst_flags_t); typedef int (*walk_namespaces_fn) (tree, void *); extern int walk_namespaces (walk_namespaces_fn, void *); *************** extern tree maybe_process_partial_specia *** 5452,5458 **** extern tree most_specialized_instantiation (tree); extern void print_candidates (tree); extern void instantiate_pending_templates (int); ! extern tree tsubst_default_argument (tree, tree, tree); extern tree tsubst (tree, tree, tsubst_flags_t, tree); extern tree tsubst_copy_and_build (tree, tree, tsubst_flags_t, tree, bool, bool); --- 5456,5463 ---- extern tree most_specialized_instantiation (tree); extern void print_candidates (tree); extern void instantiate_pending_templates (int); ! extern tree tsubst_default_argument (tree, tree, tree, ! tsubst_flags_t); extern tree tsubst (tree, tree, tsubst_flags_t, tree); extern tree tsubst_copy_and_build (tree, tree, tsubst_flags_t, tree, bool, bool); *************** extern void resume_deferring_access_chec *** 5585,5590 **** --- 5590,5596 ---- extern void stop_deferring_access_checks (void); extern void pop_deferring_access_checks (void); extern vec *get_deferred_access_checks (void); + extern void reopen_deferring_access_checks (vec *); extern void pop_to_parent_deferring_access_checks (void); extern bool perform_access_checks (vec *, tsubst_flags_t); diff -Nrcpad gcc-4.8.1/gcc/cp/cvt.c gcc-4.8.2/gcc/cp/cvt.c *** gcc-4.8.1/gcc/cp/cvt.c Wed Feb 20 09:02:35 2013 --- gcc-4.8.2/gcc/cp/cvt.c Tue Aug 20 12:59:37 2013 *************** cp_convert_and_check (tree type, tree ex *** 620,625 **** --- 620,628 ---- if (TREE_TYPE (expr) == type) return expr; + + if (TREE_CODE (expr) == SIZEOF_EXPR) + expr = maybe_constant_value (expr); result = cp_convert (type, expr, complain); *************** build_expr_type_conversion (int desires, *** 1580,1596 **** if (DECL_NONCONVERTING_P (cand)) continue; - if (TREE_CODE (cand) == TEMPLATE_DECL) - { - if (complain) - { - error ("ambiguous default type conversion from %qT", - basetype); - error (" candidate conversions include %qD", cand); - } - return error_mark_node; - } - candidate = non_reference (TREE_TYPE (TREE_TYPE (cand))); switch (TREE_CODE (candidate)) --- 1583,1588 ---- *************** build_expr_type_conversion (int desires, *** 1624,1634 **** --- 1616,1638 ---- break; default: + /* A wildcard could be instantiated to match any desired + type, but we can't deduce the template argument. */ + if (WILDCARD_TYPE_P (candidate)) + win = true; break; } if (win) { + if (TREE_CODE (cand) == TEMPLATE_DECL) + { + if (complain) + error ("default type conversion can't deduce template" + " argument for %qD", cand); + return error_mark_node; + } + if (winner) { if (complain) diff -Nrcpad gcc-4.8.1/gcc/cp/decl.c gcc-4.8.2/gcc/cp/decl.c *** gcc-4.8.1/gcc/cp/decl.c Thu May 16 15:09:07 2013 --- gcc-4.8.2/gcc/cp/decl.c Tue Oct 8 22:29:49 2013 *************** grokdeclarator (const cp_declarator *dec *** 8780,8787 **** && !uniquely_derived_from_p (ctype, current_class_type)) { ! error ("type %qT is not derived from type %qT", ! ctype, current_class_type); return error_mark_node; } } --- 8780,8787 ---- && !uniquely_derived_from_p (ctype, current_class_type)) { ! error ("invalid use of qualified-name %<%T::%D%>", ! qualifying_scope, decl); return error_mark_node; } } *************** local_variable_p_walkfn (tree *tp, int * *** 10878,10884 **** DECL, if there is no DECL available. */ tree ! check_default_argument (tree decl, tree arg) { tree var; tree decl_type; --- 10878,10884 ---- DECL, if there is no DECL available. */ tree ! check_default_argument (tree decl, tree arg, tsubst_flags_t complain) { tree var; tree decl_type; *************** check_default_argument (tree decl, tree *** 10910,10922 **** A default argument expression is implicitly converted to the parameter type. */ ++cp_unevaluated_operand; ! perform_implicit_conversion_flags (decl_type, arg, tf_warning_or_error, LOOKUP_IMPLICIT); --cp_unevaluated_operand; if (warn_zero_as_null_pointer_constant && TYPE_PTR_OR_PTRMEM_P (decl_type) && null_ptr_cst_p (arg) && maybe_warn_zero_as_null_pointer_constant (arg, input_location)) return nullptr_node; --- 10910,10923 ---- A default argument expression is implicitly converted to the parameter type. */ ++cp_unevaluated_operand; ! perform_implicit_conversion_flags (decl_type, arg, complain, LOOKUP_IMPLICIT); --cp_unevaluated_operand; if (warn_zero_as_null_pointer_constant && TYPE_PTR_OR_PTRMEM_P (decl_type) && null_ptr_cst_p (arg) + && (complain & tf_warning) && maybe_warn_zero_as_null_pointer_constant (arg, input_location)) return nullptr_node; *************** check_default_argument (tree decl, tree *** 10930,10939 **** var = cp_walk_tree_without_duplicates (&arg, local_variable_p_walkfn, NULL); if (var) { ! if (DECL_NAME (var) == this_identifier) ! permerror (input_location, "default argument %qE uses %qD", arg, var); ! else ! error ("default argument %qE uses local variable %qD", arg, var); return error_mark_node; } --- 10931,10944 ---- var = cp_walk_tree_without_duplicates (&arg, local_variable_p_walkfn, NULL); if (var) { ! if (complain & tf_warning_or_error) ! { ! if (DECL_NAME (var) == this_identifier) ! permerror (input_location, "default argument %qE uses %qD", ! arg, var); ! else ! error ("default argument %qE uses local variable %qD", arg, var); ! } return error_mark_node; } *************** grokparms (tree parmlist, tree *parms) *** 11084,11090 **** if (any_error) init = NULL_TREE; else if (init && !processing_template_decl) ! init = check_default_argument (decl, init); } DECL_CHAIN (decl) = decls; --- 11089,11095 ---- if (any_error) init = NULL_TREE; else if (init && !processing_template_decl) ! init = check_default_argument (decl, init, tf_warning_or_error); } DECL_CHAIN (decl) = decls; diff -Nrcpad gcc-4.8.1/gcc/cp/init.c gcc-4.8.2/gcc/cp/init.c *** gcc-4.8.1/gcc/cp/init.c Thu Apr 25 16:25:04 2013 --- gcc-4.8.2/gcc/cp/init.c Mon Sep 9 17:12:50 2013 *************** build_vec_init (tree base, tree maxindex *** 3524,3529 **** --- 3524,3531 ---- /* Clear out INIT so that we don't get confused below. */ init = NULL_TREE; + /* Any elements without explicit initializers get {}. */ + explicit_value_init_p = true; } else if (from_array) { *************** build_vec_delete (tree base, tree maxind *** 4062,4067 **** --- 4064,4070 ---- tree cookie_addr; tree size_ptr_type = build_pointer_type (sizetype); + base = mark_rvalue_use (base); if (TREE_SIDE_EFFECTS (base)) { base_init = get_target_expr (base); diff -Nrcpad gcc-4.8.1/gcc/cp/method.c gcc-4.8.2/gcc/cp/method.c *** gcc-4.8.1/gcc/cp/method.c Tue Feb 12 20:47:15 2013 --- gcc-4.8.2/gcc/cp/method.c Fri May 31 13:03:45 2013 *************** synthesized_method_walk (tree ctype, spe *** 1340,1346 **** if (diag && assign_p && move_p && BINFO_VIRTUAL_P (base_binfo) && rval && TREE_CODE (rval) == FUNCTION_DECL ! && move_fn_p (rval) && !trivial_fn_p (rval)) warning (OPT_Wvirtual_move_assign, "defaulted move assignment for %qT calls a non-trivial " "move assignment operator for virtual base %qT", --- 1340,1347 ---- if (diag && assign_p && move_p && BINFO_VIRTUAL_P (base_binfo) && rval && TREE_CODE (rval) == FUNCTION_DECL ! && move_fn_p (rval) && !trivial_fn_p (rval) ! && vbase_has_user_provided_move_assign (basetype)) warning (OPT_Wvirtual_move_assign, "defaulted move assignment for %qT calls a non-trivial " "move assignment operator for virtual base %qT", diff -Nrcpad gcc-4.8.1/gcc/cp/name-lookup.c gcc-4.8.2/gcc/cp/name-lookup.c *** gcc-4.8.1/gcc/cp/name-lookup.c Wed Feb 27 18:13:24 2013 --- gcc-4.8.2/gcc/cp/name-lookup.c Sun Aug 18 01:07:02 2013 *************** push_class_level_binding_1 (tree name, t *** 3015,3022 **** if (name == error_mark_node) return false; ! /* Check for invalid member names. */ ! gcc_assert (TYPE_BEING_DEFINED (current_class_type)); /* Check that we're pushing into the right binding level. */ gcc_assert (current_class_type == class_binding_level->this_entity); --- 3015,3024 ---- if (name == error_mark_node) return false; ! /* Check for invalid member names. But don't worry about a default ! argument-scope lambda being pushed after the class is complete. */ ! gcc_assert (TYPE_BEING_DEFINED (current_class_type) ! || LAMBDA_TYPE_P (TREE_TYPE (decl))); /* Check that we're pushing into the right binding level. */ gcc_assert (current_class_type == class_binding_level->this_entity); diff -Nrcpad gcc-4.8.1/gcc/cp/parser.c gcc-4.8.2/gcc/cp/parser.c *** gcc-4.8.1/gcc/cp/parser.c Tue May 14 20:37:48 2013 --- gcc-4.8.2/gcc/cp/parser.c Wed Oct 2 18:27:30 2013 *************** cp_parser_postfix_expression (cp_parser *** 5438,5448 **** --- 5438,5455 ---- /* Restore the old message. */ parser->type_definition_forbidden_message = saved_message; + bool saved_greater_than_is_operator_p + = parser->greater_than_is_operator_p; + parser->greater_than_is_operator_p = true; + /* And the expression which is being cast. */ cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); expression = cp_parser_expression (parser, /*cast_p=*/true, & idk); cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); + parser->greater_than_is_operator_p + = saved_greater_than_is_operator_p; + /* Only type conversions to integral or enumeration types can be used in constant-expressions. */ if (!cast_valid_in_integral_constant_expression_p (type) *************** cp_parser_range_for (cp_parser *parser, *** 9595,9604 **** range_expr = error_mark_node; stmt = begin_range_for_stmt (scope, init); finish_range_for_decl (stmt, range_decl, range_expr); ! if (range_expr != error_mark_node ! && !type_dependent_expression_p (range_expr) ! /* The length of an array might be dependent. */ ! && COMPLETE_TYPE_P (complete_type (TREE_TYPE (range_expr))) /* do_auto_deduction doesn't mess with template init-lists. */ && !BRACE_ENCLOSED_INITIALIZER_P (range_expr)) do_range_for_auto_deduction (range_decl, range_expr); --- 9602,9608 ---- range_expr = error_mark_node; stmt = begin_range_for_stmt (scope, init); finish_range_for_decl (stmt, range_decl, range_expr); ! if (!type_dependent_expression_p (range_expr) /* do_auto_deduction doesn't mess with template init-lists. */ && !BRACE_ENCLOSED_INITIALIZER_P (range_expr)) do_range_for_auto_deduction (range_decl, range_expr); *************** cp_parser_function_specifier_opt (cp_par *** 11135,11141 **** A member function template shall not be virtual. */ if (PROCESSING_REAL_TEMPLATE_DECL_P ()) error_at (token->location, "templates may not be %"); ! set_and_check_decl_spec_loc (decl_specs, ds_virtual, token); break; case RID_EXPLICIT: --- 11139,11146 ---- A member function template shall not be virtual. */ if (PROCESSING_REAL_TEMPLATE_DECL_P ()) error_at (token->location, "templates may not be %"); ! else ! set_and_check_decl_spec_loc (decl_specs, ds_virtual, token); break; case RID_EXPLICIT: *************** cp_parser_ref_qualifier_seq_opt (cp_pars *** 16982,16987 **** --- 16987,16997 ---- { cp_ref_qualifier ref_qual = REF_QUAL_NONE; cp_token *token = cp_lexer_peek_token (parser->lexer); + + /* Don't try to parse bitwise '&' as a ref-qualifier (c++/57532). */ + if (cxx_dialect < cxx11 && cp_parser_parsing_tentatively (parser)) + return ref_qual; + switch (token->type) { case CPP_AND: *************** cp_parser_late_parse_one_default_arg (cp *** 22557,22563 **** /* In a non-template class, check conversions now. In a template, we'll wait and instantiate these as needed. */ if (TREE_CODE (decl) == PARM_DECL) ! parsed_arg = check_default_argument (parmtype, parsed_arg); else { int flags = LOOKUP_IMPLICIT; --- 22567,22574 ---- /* In a non-template class, check conversions now. In a template, we'll wait and instantiate these as needed. */ if (TREE_CODE (decl) == PARM_DECL) ! parsed_arg = check_default_argument (parmtype, parsed_arg, ! tf_warning_or_error); else { int flags = LOOKUP_IMPLICIT; diff -Nrcpad gcc-4.8.1/gcc/cp/pt.c gcc-4.8.2/gcc/cp/pt.c *** gcc-4.8.1/gcc/cp/pt.c Fri May 24 13:25:44 2013 --- gcc-4.8.2/gcc/cp/pt.c Fri Sep 13 22:22:31 2013 *************** static int maybe_adjust_types_for_deduct *** 138,143 **** --- 138,144 ---- tree); static int type_unification_real (tree, tree, tree, const tree *, unsigned int, int, unification_kind_t, int, + vec **, bool); static void note_template_header (int); static tree convert_nontype_argument_function (tree, tree); *************** static int coerce_template_template_parm *** 183,189 **** tree, tree); static bool template_template_parm_bindings_ok_p (tree, tree); static int template_args_equal (tree, tree); ! static void tsubst_default_arguments (tree); static tree for_each_template_parm_r (tree *, int *, void *); static tree copy_default_args_to_explicit_spec_1 (tree, tree); static void copy_default_args_to_explicit_spec (tree); --- 184,190 ---- tree, tree); static bool template_template_parm_bindings_ok_p (tree, tree); static int template_args_equal (tree, tree); ! static void tsubst_default_arguments (tree, tsubst_flags_t); static tree for_each_template_parm_r (tree *, int *, void *); static tree copy_default_args_to_explicit_spec_1 (tree, tree); static void copy_default_args_to_explicit_spec (tree); *************** convert_nontype_argument (tree type, tre *** 5612,5617 **** --- 5613,5622 ---- else return NULL_TREE; } + + /* Avoid typedef problems. */ + if (TREE_TYPE (expr) != type) + expr = fold_convert (type, expr); } /* [temp.arg.nontype]/5, bullet 2 *************** tsubst_aggr_type (tree t, *** 9859,9865 **** FN), which has the indicated TYPE. */ tree ! tsubst_default_argument (tree fn, tree type, tree arg) { tree saved_class_ptr = NULL_TREE; tree saved_class_ref = NULL_TREE; --- 9864,9870 ---- FN), which has the indicated TYPE. */ tree ! tsubst_default_argument (tree fn, tree type, tree arg, tsubst_flags_t complain) { tree saved_class_ptr = NULL_TREE; tree saved_class_ref = NULL_TREE; *************** tsubst_default_argument (tree fn, tree t *** 9899,9905 **** stack. */ ++function_depth; arg = tsubst_expr (arg, DECL_TI_ARGS (fn), ! tf_warning_or_error, NULL_TREE, /*integral_constant_expression_p=*/false); --function_depth; pop_deferring_access_checks(); --- 9904,9910 ---- stack. */ ++function_depth; arg = tsubst_expr (arg, DECL_TI_ARGS (fn), ! complain, NULL_TREE, /*integral_constant_expression_p=*/false); --function_depth; pop_deferring_access_checks(); *************** tsubst_default_argument (tree fn, tree t *** 9911,9922 **** cp_function_chain->x_current_class_ref = saved_class_ref; } ! if (errorcount+sorrycount > errs) inform (input_location, " when instantiating default argument for call to %D", fn); /* Make sure the default argument is reasonable. */ ! arg = check_default_argument (type, arg); pop_access_scope (fn); --- 9916,9928 ---- cp_function_chain->x_current_class_ref = saved_class_ref; } ! if (errorcount+sorrycount > errs ! && (complain & tf_warning_or_error)) inform (input_location, " when instantiating default argument for call to %D", fn); /* Make sure the default argument is reasonable. */ ! arg = check_default_argument (type, arg, complain); pop_access_scope (fn); *************** tsubst_default_argument (tree fn, tree t *** 9926,9932 **** /* Substitute into all the default arguments for FN. */ static void ! tsubst_default_arguments (tree fn) { tree arg; tree tmpl_args; --- 9932,9938 ---- /* Substitute into all the default arguments for FN. */ static void ! tsubst_default_arguments (tree fn, tsubst_flags_t complain) { tree arg; tree tmpl_args; *************** tsubst_default_arguments (tree fn) *** 9947,9953 **** if (TREE_PURPOSE (arg)) TREE_PURPOSE (arg) = tsubst_default_argument (fn, TREE_VALUE (arg), ! TREE_PURPOSE (arg)); } /* Substitute the ARGS into the T, which is a _DECL. Return the --- 9953,9960 ---- if (TREE_PURPOSE (arg)) TREE_PURPOSE (arg) = tsubst_default_argument (fn, TREE_VALUE (arg), ! TREE_PURPOSE (arg), ! complain); } /* Substitute the ARGS into the T, which is a _DECL. Return the *************** tsubst_decl (tree t, tree args, tsubst_f *** 10298,10304 **** if (!member && !PRIMARY_TEMPLATE_P (gen_tmpl) && !uses_template_parms (argvec)) ! tsubst_default_arguments (r); } else DECL_TEMPLATE_INFO (r) = NULL_TREE; --- 10305,10311 ---- if (!member && !PRIMARY_TEMPLATE_P (gen_tmpl) && !uses_template_parms (argvec)) ! tsubst_default_arguments (r, complain); } else DECL_TEMPLATE_INFO (r) = NULL_TREE; *************** tsubst_copy (tree t, tree args, tsubst_f *** 12507,12512 **** --- 12514,12522 ---- case TYPE_DECL: return tsubst (t, args, complain, in_decl); + case USING_DECL: + t = DECL_NAME (t); + /* Fall through. */ case IDENTIFIER_NODE: if (IDENTIFIER_TYPENAME_P (t)) { *************** fn_type_unification (tree fn, *** 14974,14980 **** return error_mark_node; tinst = build_tree_list (fn, NULL_TREE); ++deduction_depth; - push_deferring_access_checks (dk_deferred); gcc_assert (TREE_CODE (fn) == TEMPLATE_DECL); --- 14984,14989 ---- *************** fn_type_unification (tree fn, *** 15066,15073 **** --- 15075,15087 ---- } processing_template_decl += incomplete; input_location = DECL_SOURCE_LOCATION (fn); + /* Ignore any access checks; we'll see them again in + instantiate_template and they might have the wrong + access path at this point. */ + push_deferring_access_checks (dk_deferred); fntype = tsubst (TREE_TYPE (fn), explicit_targs, complain | tf_partial, NULL_TREE); + pop_deferring_access_checks (); input_location = loc; processing_template_decl -= incomplete; pop_tinst_level (); *************** fn_type_unification (tree fn, *** 15075,15086 **** if (fntype == error_mark_node) goto fail; - /* Throw away these access checks; we'll see them again in - instantiate_template and they might have the wrong - access path at this point. */ - pop_deferring_access_checks (); - push_deferring_access_checks (dk_deferred); - /* Place the explicitly specified arguments in TARGS. */ for (i = NUM_TMPL_ARGS (explicit_targs); i--;) TREE_VEC_ELT (targs, i) = TREE_VEC_ELT (explicit_targs, i); --- 15089,15094 ---- *************** fn_type_unification (tree fn, *** 15106,15114 **** callers must be ready to deal with unification failures in any event. */ ok = !type_unification_real (DECL_INNERMOST_TEMPLATE_PARMS (fn), targs, parms, args, nargs, /*subr=*/0, ! strict, flags, explain_p); if (!ok) goto fail; --- 15114,15128 ---- callers must be ready to deal with unification failures in any event. */ + /* type_unification_real will pass back any access checks from default + template argument substitution. */ + vec *checks; + checks = NULL; + ok = !type_unification_real (DECL_INNERMOST_TEMPLATE_PARMS (fn), targs, parms, args, nargs, /*subr=*/0, ! strict, flags, &checks, explain_p); ! if (!ok) goto fail; *************** fn_type_unification (tree fn, *** 15155,15170 **** excessive_deduction_depth = true; goto fail; } decl = instantiate_template (fn, targs, complain); pop_tinst_level (); if (decl == error_mark_node) goto fail; ! /* Now perform any access checks encountered during deduction, such as ! for default template arguments. */ push_access_scope (decl); ! ok = perform_deferred_access_checks (complain); pop_access_scope (decl); if (!ok) goto fail; --- 15169,15191 ---- excessive_deduction_depth = true; goto fail; } + + /* Also collect access checks from the instantiation. */ + reopen_deferring_access_checks (checks); + decl = instantiate_template (fn, targs, complain); + + checks = get_deferred_access_checks (); + pop_deferring_access_checks (); + pop_tinst_level (); if (decl == error_mark_node) goto fail; ! /* Now perform any access checks encountered during substitution. */ push_access_scope (decl); ! ok = perform_access_checks (checks, complain); pop_access_scope (decl); if (!ok) goto fail; *************** fn_type_unification (tree fn, *** 15193,15199 **** r = decl; fail: - pop_deferring_access_checks (); --deduction_depth; if (excessive_deduction_depth) { --- 15214,15219 ---- *************** unify_one_argument (tree tparms, tree ta *** 15454,15460 **** If SUBR is 1, we're being called recursively (to unify the arguments of a function or method parameter of a function ! template). */ static int type_unification_real (tree tparms, --- 15474,15483 ---- If SUBR is 1, we're being called recursively (to unify the arguments of a function or method parameter of a function ! template). ! ! CHECKS is a pointer to a vector of access checks encountered while ! substituting default template arguments. */ static int type_unification_real (tree tparms, *************** type_unification_real (tree tparms, *** 15465,15470 **** --- 15488,15494 ---- int subr, unification_kind_t strict, int flags, + vec **checks, bool explain_p) { tree parm, arg; *************** type_unification_real (tree tparms, *** 15604,15609 **** --- 15628,15634 ---- { tree parm = TREE_VALUE (TREE_VEC_ELT (tparms, i)); tree arg = TREE_PURPOSE (TREE_VEC_ELT (tparms, i)); + reopen_deferring_access_checks (*checks); location_t save_loc = input_location; if (DECL_P (parm)) input_location = DECL_SOURCE_LOCATION (parm); *************** type_unification_real (tree tparms, *** 15611,15616 **** --- 15636,15643 ---- arg = convert_template_argument (parm, arg, targs, complain, i, NULL_TREE); input_location = save_loc; + *checks = get_deferred_access_checks (); + pop_deferring_access_checks (); if (arg == error_mark_node) return 1; else *************** unify (tree tparms, tree targs, tree par *** 17078,17084 **** return type_unification_real (tparms, targs, TYPE_ARG_TYPES (parm), args, nargs, 1, DEDUCE_EXACT, ! LOOKUP_NORMAL, explain_p); } case OFFSET_TYPE: --- 17105,17111 ---- return type_unification_real (tparms, targs, TYPE_ARG_TYPES (parm), args, nargs, 1, DEDUCE_EXACT, ! LOOKUP_NORMAL, NULL, explain_p); } case OFFSET_TYPE: *************** type_dependent_expression_p (tree expres *** 19888,19893 **** --- 19915,19943 ---- && VAR_HAD_UNKNOWN_BOUND (expression)) return true; + /* An array of unknown bound depending on a variadic parameter, eg: + + template + void foo (Args... args) + { + int arr[] = { args... }; + } + + template + void bar () + { + int arr[] = { vals... }; + } + + If the array has no length and has an initializer, it must be that + we couldn't determine its length in cp_complete_array_type because + it is dependent. */ + if (TREE_CODE (expression) == VAR_DECL + && TREE_CODE (TREE_TYPE (expression)) == ARRAY_TYPE + && !TYPE_DOMAIN (TREE_TYPE (expression)) + && DECL_INITIAL (expression)) + return true; + if (TREE_TYPE (expression) == unknown_type_node) { if (TREE_CODE (expression) == ADDR_EXPR) *************** bool *** 20077,20083 **** any_type_dependent_elements_p (const_tree list) { for (; list; list = TREE_CHAIN (list)) ! if (value_dependent_expression_p (TREE_VALUE (list))) return true; return false; --- 20127,20133 ---- any_type_dependent_elements_p (const_tree list) { for (; list; list = TREE_CHAIN (list)) ! if (type_dependent_expression_p (TREE_VALUE (list))) return true; return false; *************** do_auto_deduction (tree type, tree init, *** 20626,20632 **** = build_tree_list (NULL_TREE, TYPE_NAME (auto_node)); val = type_unification_real (tparms, targs, parms, args, 1, 0, DEDUCE_CALL, LOOKUP_NORMAL, ! /*explain_p=*/false); if (val > 0) { if (processing_template_decl) --- 20676,20682 ---- = build_tree_list (NULL_TREE, TYPE_NAME (auto_node)); val = type_unification_real (tparms, targs, parms, args, 1, 0, DEDUCE_CALL, LOOKUP_NORMAL, ! NULL, /*explain_p=*/false); if (val > 0) { if (processing_template_decl) diff -Nrcpad gcc-4.8.1/gcc/cp/semantics.c gcc-4.8.2/gcc/cp/semantics.c *** gcc-4.8.1/gcc/cp/semantics.c Tue May 14 12:51:17 2013 --- gcc-4.8.2/gcc/cp/semantics.c Tue Oct 8 22:29:49 2013 *************** push_deferring_access_checks (deferring_ *** 155,160 **** --- 155,171 ---- } } + /* Save the current deferred access states and start deferred access + checking, continuing the set of deferred checks in CHECKS. */ + + void + reopen_deferring_access_checks (vec * checks) + { + push_deferring_access_checks (dk_deferred); + if (!deferred_access_no_check) + deferred_access_stack->last().deferred_access_checks = checks; + } + /* Resume deferring access checks again after we stopped doing this previously. */ *************** build_data_member_initialization (tree t *** 5945,5951 **** || TREE_CODE (t) == MODIFY_EXPR) { member = TREE_OPERAND (t, 0); ! init = unshare_expr (TREE_OPERAND (t, 1)); } else if (TREE_CODE (t) == CALL_EXPR) { --- 5956,5962 ---- || TREE_CODE (t) == MODIFY_EXPR) { member = TREE_OPERAND (t, 0); ! init = break_out_target_exprs (TREE_OPERAND (t, 1)); } else if (TREE_CODE (t) == CALL_EXPR) { *************** build_data_member_initialization (tree t *** 5953,5959 **** /* We don't use build_cplus_new here because it complains about abstract bases. Leaving the call unwrapped means that it has the wrong type, but cxx_eval_constant_expression doesn't care. */ ! init = unshare_expr (t); } else if (TREE_CODE (t) == DECL_EXPR) /* Declaring a temporary, don't add it to the CONSTRUCTOR. */ --- 5964,5970 ---- /* We don't use build_cplus_new here because it complains about abstract bases. Leaving the call unwrapped means that it has the wrong type, but cxx_eval_constant_expression doesn't care. */ ! init = break_out_target_exprs (t); } else if (TREE_CODE (t) == DECL_EXPR) /* Declaring a temporary, don't add it to the CONSTRUCTOR. */ *************** constexpr_fn_retval (tree body) *** 6190,6196 **** } case RETURN_EXPR: ! return unshare_expr (TREE_OPERAND (body, 0)); case DECL_EXPR: if (TREE_CODE (DECL_EXPR_DECL (body)) == USING_DECL) --- 6201,6207 ---- } case RETURN_EXPR: ! return break_out_target_exprs (TREE_OPERAND (body, 0)); case DECL_EXPR: if (TREE_CODE (DECL_EXPR_DECL (body)) == USING_DECL) *************** cxx_eval_indirect_ref (const constexpr_c *** 7635,7645 **** { tree sub = op0; STRIP_NOPS (sub); - if (TREE_CODE (sub) == POINTER_PLUS_EXPR) - { - sub = TREE_OPERAND (sub, 0); - STRIP_NOPS (sub); - } if (TREE_CODE (sub) == ADDR_EXPR) { /* We couldn't fold to a constant value. Make sure it's not --- 7646,7651 ---- *************** cxx_eval_constant_expression (const cons *** 7990,7995 **** --- 7996,8002 ---- case UNGT_EXPR: case UNGE_EXPR: case UNEQ_EXPR: + case LTGT_EXPR: case RANGE_EXPR: case COMPLEX_EXPR: r = cxx_eval_binary_expression (call, t, allow_non_constant, addr, *************** potential_constant_expression_1 (tree t, *** 8846,8851 **** --- 8853,8864 ---- } return false; + case OMP_ATOMIC: + case OMP_ATOMIC_READ: + case OMP_ATOMIC_CAPTURE_OLD: + case OMP_ATOMIC_CAPTURE_NEW: + return false; + default: if (objc_is_property_ref (t)) return false; *************** begin_lambda_type (tree lambda) *** 8994,8999 **** --- 9007,9014 ---- name, /*scope=*/ts_lambda, /*template_header_p=*/false); + if (type == error_mark_node) + return error_mark_node; } /* Designate it as a struct so that we can use aggregate initialization. */ *************** begin_lambda_type (tree lambda) *** 9008,9015 **** /* Start the class. */ type = begin_class_definition (type); - if (type == error_mark_node) - return error_mark_node; return type; } --- 9023,9028 ---- *************** lambda_capture_field_type (tree expr) *** 9065,9071 **** { tree type; if (type_dependent_expression_p (expr) ! && !(TREE_TYPE (expr) && TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE)) { type = cxx_make_type (DECLTYPE_TYPE); DECLTYPE_TYPE_EXPR (type) = expr; --- 9078,9085 ---- { tree type; if (type_dependent_expression_p (expr) ! && !(TREE_TYPE (expr) && TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE ! && !type_uses_auto (TREE_TYPE (expr)))) { type = cxx_make_type (DECLTYPE_TYPE); DECLTYPE_TYPE_EXPR (type) = expr; diff -Nrcpad gcc-4.8.1/gcc/cp/tree.c gcc-4.8.2/gcc/cp/tree.c *** gcc-4.8.1/gcc/cp/tree.c Fri May 24 13:25:51 2013 --- gcc-4.8.2/gcc/cp/tree.c Wed Aug 7 01:18:57 2013 *************** strip_typedefs (tree t) *** 1220,1225 **** --- 1220,1227 ---- result = build_method_type_directly (class_type, type, TREE_CHAIN (arg_types)); + result + = build_ref_qualified_type (result, type_memfn_rqual (t)); } else { diff -Nrcpad gcc-4.8.1/gcc/cp/typeck.c gcc-4.8.2/gcc/cp/typeck.c *** gcc-4.8.1/gcc/cp/typeck.c Mon May 13 19:34:15 2013 --- gcc-4.8.2/gcc/cp/typeck.c Tue Jul 9 17:52:34 2013 *************** check_return_expr (tree retval, bool *no *** 8307,8313 **** && TREE_CODE (retval) == VAR_DECL && DECL_CONTEXT (retval) == current_function_decl && ! TREE_STATIC (retval) ! && ! DECL_ANON_UNION_VAR_P (retval) && (DECL_ALIGN (retval) >= DECL_ALIGN (result)) /* The cv-unqualified type of the returned value must be the same as the cv-unqualified return type of the --- 8307,8314 ---- && TREE_CODE (retval) == VAR_DECL && DECL_CONTEXT (retval) == current_function_decl && ! TREE_STATIC (retval) ! /* And not a lambda or anonymous union proxy. */ ! && !DECL_HAS_VALUE_EXPR_P (retval) && (DECL_ALIGN (retval) >= DECL_ALIGN (result)) /* The cv-unqualified type of the returned value must be the same as the cv-unqualified return type of the *************** check_return_expr (tree retval, bool *no *** 8352,8358 **** Note that these conditions are similar to, but not as strict as, the conditions for the named return value optimization. */ if ((cxx_dialect != cxx98) ! && (TREE_CODE (retval) == VAR_DECL || TREE_CODE (retval) == PARM_DECL) && DECL_CONTEXT (retval) == current_function_decl && !TREE_STATIC (retval) --- 8353,8360 ---- Note that these conditions are similar to, but not as strict as, the conditions for the named return value optimization. */ if ((cxx_dialect != cxx98) ! && ((TREE_CODE (retval) == VAR_DECL ! && !DECL_HAS_VALUE_EXPR_P (retval)) || TREE_CODE (retval) == PARM_DECL) && DECL_CONTEXT (retval) == current_function_decl && !TREE_STATIC (retval) diff -Nrcpad gcc-4.8.1/gcc/cp/typeck2.c gcc-4.8.2/gcc/cp/typeck2.c *** gcc-4.8.1/gcc/cp/typeck2.c Thu Apr 11 16:05:02 2013 --- gcc-4.8.2/gcc/cp/typeck2.c Tue Jul 30 13:30:12 2013 *************** abstract_virtuals_error_sfinae (tree dec *** 262,268 **** so that we can check again once it is completed. This makes sense only for objects for which we have a declaration or at least a name. */ ! if (!COMPLETE_TYPE_P (type)) { void **slot; struct pending_abstract_type *pat; --- 262,268 ---- so that we can check again once it is completed. This makes sense only for objects for which we have a declaration or at least a name. */ ! if (!COMPLETE_TYPE_P (type) && (complain & tf_error)) { void **slot; struct pending_abstract_type *pat; diff -Nrcpad gcc-4.8.1/gcc/doc/aot-compile.1 gcc-4.8.2/gcc/doc/aot-compile.1 *** gcc-4.8.1/gcc/doc/aot-compile.1 Fri May 31 09:58:17 2013 --- gcc-4.8.2/gcc/doc/aot-compile.1 Wed Oct 16 08:16:31 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "AOT-COMPILE 1" ! .TH AOT-COMPILE 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "AOT-COMPILE 1" ! .TH AOT-COMPILE 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.8.1/gcc/doc/avr-mmcu.texi gcc-4.8.2/gcc/doc/avr-mmcu.texi *** gcc-4.8.1/gcc/doc/avr-mmcu.texi Thu Feb 28 09:03:09 2013 --- gcc-4.8.2/gcc/doc/avr-mmcu.texi Wed Jul 10 12:36:36 2013 *************** *** 38,44 **** @item avr5 ``Enhanced'' devices with 16@tie{}KiB up to 64@tie{}KiB of program memory. ! @*@var{mcu}@tie{}= @code{ata5790}, @code{ata5790n}, @code{ata5795}, @code{atmega16}, @code{atmega16a}, @code{atmega16hva}, @code{atmega16hva}, @code{atmega16hva2}, @code{atmega16hva2}, @code{atmega16hvb}, @code{atmega16hvb}, @code{atmega16hvbrevb}, @code{atmega16m1}, @code{atmega16m1}, @code{atmega16u4}, @code{atmega16u4}, @code{atmega161}, @code{atmega162}, @code{atmega163}, @code{atmega164a}, @code{atmega164p}, @code{atmega164pa}, @code{atmega165}, @code{atmega165a}, @code{atmega165p}, @code{atmega165pa}, @code{atmega168}, @code{atmega168a}, @code{atmega168p}, @code{atmega168pa}, @code{atmega169}, @code{atmega169a}, @code{atmega169p}, @code{atmega169pa}, @code{atmega26hvg}, @code{atmega32}, @code{atmega32a}, @code{atmega32a}, @code{atmega32c1}, @code{atmega32c1}, @code{atmega32hvb}, @code{atmega32hvb}, @code{atmega32hvbrevb}, @code{atmega32m1}, @code{atmega32m1}, @code{atmega32u4}, @code{atmega32u4}, @code{atmega32u6}, @code{atmega32u6}, @code{atmega323}, @code{atmega324a}, @code{atmega324p}, @code{atmega324pa}, @code{atmega325}, @code{atmega325a}, @code{atmega325p}, @code{atmega3250}, @code{atmega3250a}, @code{atmega3250p}, @code{atmega3250pa}, @code{atmega328}, @code{atmega328p}, @code{atmega329}, @code{atmega329a}, @code{atmega329p}, @code{atmega329pa}, @code{atmega3290}, @code{atmega3290a}, @code{atmega3290p}, @code{atmega3290pa}, @code{atmega406}, @code{atmega48hvf}, @code{atmega64}, @code{atmega64a}, @code{atmega64c1}, @code{atmega64c1}, @code{atmega64hve}, @code{atmega64m1}, @code{atmega64m1}, @code{atmega64rfa2}, @code{atmega64rfr2}, @code{atmega640}, @code{atmega644}, @code{atmega644a}, @code{atmega644p}, @code{atmega644pa}, @code{atmega645}, @code{atmega645a}, @code{atmega645p}, @code{atmega6450}, @code{atmega6450a}, @code{atmega6450p}, @code{atmega649}, @code{atmega649a}, @code{atmega649p}, @code{atmega6490}, @code{atmega6490a}, @code{atmega6490p}, @code{at90can32}, @code{at90can64}, @code{at90pwm161}, @code{at90pwm216}, @code{at90pwm316}, @code{at90scr100}, @code{at90usb646}, @code{at90usb647}, @code{at94k}, @code{m3000}. @item avr51 ``Enhanced'' devices with 128@tie{}KiB of program memory. --- 38,44 ---- @item avr5 ``Enhanced'' devices with 16@tie{}KiB up to 64@tie{}KiB of program memory. ! @*@var{mcu}@tie{}= @code{ata5790}, @code{ata5790n}, @code{ata5795}, @code{atmega16}, @code{atmega16a}, @code{atmega16hva}, @code{atmega16hva2}, @code{atmega16hvb}, @code{atmega16hvbrevb}, @code{atmega16m1}, @code{atmega16u4}, @code{atmega161}, @code{atmega162}, @code{atmega163}, @code{atmega164a}, @code{atmega164p}, @code{atmega164pa}, @code{atmega165}, @code{atmega165a}, @code{atmega165p}, @code{atmega165pa}, @code{atmega168}, @code{atmega168a}, @code{atmega168p}, @code{atmega168pa}, @code{atmega169}, @code{atmega169a}, @code{atmega169p}, @code{atmega169pa}, @code{atmega26hvg}, @code{atmega32}, @code{atmega32a}, @code{atmega32c1}, @code{atmega32hvb}, @code{atmega32hvbrevb}, @code{atmega32m1}, @code{atmega32u4}, @code{atmega32u6}, @code{atmega323}, @code{atmega324a}, @code{atmega324p}, @code{atmega324pa}, @code{atmega325}, @code{atmega325a}, @code{atmega325p}, @code{atmega3250}, @code{atmega3250a}, @code{atmega3250p}, @code{atmega3250pa}, @code{atmega328}, @code{atmega328p}, @code{atmega329}, @code{atmega329a}, @code{atmega329p}, @code{atmega329pa}, @code{atmega3290}, @code{atmega3290a}, @code{atmega3290p}, @code{atmega3290pa}, @code{atmega406}, @code{atmega48hvf}, @code{atmega64}, @code{atmega64a}, @code{atmega64c1}, @code{atmega64hve}, @code{atmega64m1}, @code{atmega64rfa2}, @code{atmega64rfr2}, @code{atmega640}, @code{atmega644}, @code{atmega644a}, @code{atmega644p}, @code{atmega644pa}, @code{atmega645}, @code{atmega645a}, @code{atmega645p}, @code{atmega6450}, @code{atmega6450a}, @code{atmega6450p}, @code{atmega649}, @code{atmega649a}, @code{atmega649p}, @code{atmega6490}, @code{atmega6490a}, @code{atmega6490p}, @code{at90can32}, @code{at90can64}, @code{at90pwm161}, @code{at90pwm216}, @code{at90pwm316}, @code{at90scr100}, @code{at90usb646}, @code{at90usb647}, @code{at94k}, @code{m3000}. @item avr51 ``Enhanced'' devices with 128@tie{}KiB of program memory. diff -Nrcpad gcc-4.8.1/gcc/doc/cpp.1 gcc-4.8.2/gcc/doc/cpp.1 *** gcc-4.8.1/gcc/doc/cpp.1 Fri May 31 09:14:50 2013 --- gcc-4.8.2/gcc/doc/cpp.1 Wed Oct 16 07:33:29 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "CPP 1" ! .TH CPP 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "CPP 1" ! .TH CPP 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** Wherever possible, you should use a prep *** 172,182 **** you are writing in. Modern versions of the \s-1GNU\s0 assembler have macro facilities. Most high level programming languages have their own conditional compilation and inclusion mechanism. If all else fails, ! try a true general text processor, such as \s-1GNU\s0 M4. .PP ! C preprocessors vary in some details. This manual discusses the \s-1GNU\s0 C preprocessor, which provides a small superset of the features of \s-1ISO\s0 ! Standard C. In its default mode, the \s-1GNU\s0 C preprocessor does not do a few things required by the standard. These are features which are rarely, if ever, used, and may cause surprising changes to the meaning of a program which does not expect them. To get strict \s-1ISO\s0 Standard C, --- 181,191 ---- you are writing in. Modern versions of the \s-1GNU\s0 assembler have macro facilities. Most high level programming languages have their own conditional compilation and inclusion mechanism. If all else fails, ! try a true general text processor, such as \s-1GNU M4.\s0 .PP ! C preprocessors vary in some details. This manual discusses the \s-1GNU C\s0 preprocessor, which provides a small superset of the features of \s-1ISO\s0 ! Standard C. In its default mode, the \s-1GNU C\s0 preprocessor does not do a few things required by the standard. These are features which are rarely, if ever, used, and may cause surprising changes to the meaning of a program which does not expect them. To get strict \s-1ISO\s0 Standard C, *************** differences that do exist are detailed i *** 193,199 **** Mode\fR. .PP For clarity, unless noted otherwise, references to \fB\s-1CPP\s0\fR in this ! manual refer to \s-1GNU\s0 \s-1CPP\s0. .SH "OPTIONS" .IX Header "OPTIONS" The C preprocessor expects two file names as arguments, \fIinfile\fR and --- 202,208 ---- Mode\fR. .PP For clarity, unless noted otherwise, references to \fB\s-1CPP\s0\fR in this ! manual refer to \s-1GNU CPP.\s0 .SH "OPTIONS" .IX Header "OPTIONS" The C preprocessor expects two file names as arguments, \fIinfile\fR and *************** get trigraph conversion without warnings *** 297,303 **** .IP "\fB\-Wtraditional\fR" 4 .IX Item "-Wtraditional" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO\s0 C. Also warn about \s-1ISO\s0 C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" --- 306,312 ---- .IP "\fB\-Wtraditional\fR" 4 .IX Item "-Wtraditional" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C equivalent, and problematic constructs which should be avoided. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" *************** in finding bugs in your own code, theref *** 350,356 **** responsible for the system library, you may want to see them. .IP "\fB\-w\fR" 4 .IX Item "-w" ! Suppress all warnings, including those which \s-1GNU\s0 \s-1CPP\s0 issues by default. .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" Issue all the mandatory diagnostics listed in the C standard. Some of --- 359,365 ---- responsible for the system library, you may want to see them. .IP "\fB\-w\fR" 4 .IX Item "-w" ! Suppress all warnings, including those which \s-1GNU CPP\s0 issues by default. .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" Issue all the mandatory diagnostics listed in the C standard. Some of *************** may be one of: *** 522,528 **** .el .IP "\f(CWiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! The \s-1ISO\s0 C standard from 1990. \fBc90\fR is the customary shorthand for this version of the standard. .Sp The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR. --- 531,537 ---- .el .IP "\f(CWiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! The \s-1ISO C\s0 standard from 1990. \fBc90\fR is the customary shorthand for this version of the standard. .Sp The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR. *************** The 1990 C standard, as amended in 1994. *** 544,550 **** .el .IP "\f(CWc9x\fR" 4 .IX Item "c9x" .PD ! The revised \s-1ISO\s0 C standard, published in December 1999. Before publication, this was known as C9X. .ie n .IP """iso9899:2011""" 4 .el .IP "\f(CWiso9899:2011\fR" 4 --- 553,559 ---- .el .IP "\f(CWc9x\fR" 4 .IX Item "c9x" .PD ! The revised \s-1ISO C\s0 standard, published in December 1999. Before publication, this was known as C9X. .ie n .IP """iso9899:2011""" 4 .el .IP "\f(CWiso9899:2011\fR" 4 *************** publication, this was known as C9X. *** 557,563 **** .el .IP "\f(CWc1x\fR" 4 .IX Item "c1x" .PD ! The revised \s-1ISO\s0 C standard, published in December 2011. Before publication, this was known as C1X. .ie n .IP """gnu90""" 4 .el .IP "\f(CWgnu90\fR" 4 --- 566,572 ---- .el .IP "\f(CWc1x\fR" 4 .IX Item "c1x" .PD ! The revised \s-1ISO C\s0 standard, published in December 2011. Before publication, this was known as C1X. .ie n .IP """gnu90""" 4 .el .IP "\f(CWgnu90\fR" 4 *************** The 2011 C standard plus \s-1GNU\s0 exte *** 589,595 **** .ie n .IP """c++98""" 4 .el .IP "\f(CWc++98\fR" 4 .IX Item "c++98" ! The 1998 \s-1ISO\s0 \*(C+ standard plus amendments. .ie n .IP """gnu++98""" 4 .el .IP "\f(CWgnu++98\fR" 4 .IX Item "gnu++98" --- 598,604 ---- .ie n .IP """c++98""" 4 .el .IP "\f(CWc++98\fR" 4 .IX Item "c++98" ! The 1998 \s-1ISO \*(C+\s0 standard plus amendments. .ie n .IP """gnu++98""" 4 .el .IP "\f(CWgnu++98\fR" 4 .IX Item "gnu++98" *************** Accept \fB$\fR in identifiers. *** 718,724 **** .IP "\fB\-fextended\-identifiers\fR" 4 .IX Item "-fextended-identifiers" Accept universal character names in identifiers. This option is ! experimental; in a future version of \s-1GCC\s0, it will be enabled by default for C99 and \*(C+. .IP "\fB\-fno\-canonical\-system\-headers\fR" 4 .IX Item "-fno-canonical-system-headers" --- 727,733 ---- .IP "\fB\-fextended\-identifiers\fR" 4 .IX Item "-fextended-identifiers" Accept universal character names in identifiers. This option is ! experimental; in a future version of \s-1GCC,\s0 it will be enabled by default for C99 and \*(C+. .IP "\fB\-fno\-canonical\-system\-headers\fR" 4 .IX Item "-fno-canonical-system-headers" *************** line. If the value is less than 1 or gr *** 745,751 **** ignored. The default is 8. .IP "\fB\-fdebug\-cpp\fR" 4 .IX Item "-fdebug-cpp" ! This option is only useful for debugging \s-1GCC\s0. When used with \&\fB\-E\fR, dumps debugging information about location maps. Every token in the output is preceded by the dump of the map its location belongs to. The dump of the map holding the location of a token would --- 754,760 ---- ignored. The default is 8. .IP "\fB\-fdebug\-cpp\fR" 4 .IX Item "-fdebug-cpp" ! This option is only useful for debugging \s-1GCC. \s0 When used with \&\fB\-E\fR, dumps debugging information about location maps. Every token in the output is preceded by the dump of the map its location belongs to. The dump of the map holding the location of a token would *************** Note that \-ftrack\-macro\-expansion=2 i *** 778,789 **** .IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fexec-charset=charset" Set the execution character set, used for string and character ! constants. The default is \s-1UTF\-8\s0. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. .IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fwide-exec-charset=charset" Set the wide execution character set, used for wide string and ! character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16\s0, whichever corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with \&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have --- 787,798 ---- .IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fexec-charset=charset" Set the execution character set, used for string and character ! constants. The default is \s-1UTF\-8. \s0\fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. .IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fwide-exec-charset=charset" Set the wide execution character set, used for wide string and ! character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16,\s0 whichever corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with \&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have *************** problems with encodings that do not fit *** 791,799 **** .IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4 .IX Item "-finput-charset=charset" Set the input character set, used for translation from the character ! set of the input file to the source character set used by \s-1GCC\s0. If the locale does not specify, or \s-1GCC\s0 cannot get this information from the ! locale, the default is \s-1UTF\-8\s0. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. --- 800,808 ---- .IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4 .IX Item "-finput-charset=charset" Set the input character set, used for translation from the character ! set of the input file to the source character set used by \s-1GCC. \s0 If the locale does not specify, or \s-1GCC\s0 cannot get this information from the ! locale, the default is \s-1UTF\-8. \s0 This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. *************** Cancel an assertion with the predicate \ *** 830,836 **** .IX Item "-dCHARS" \&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters, and must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of \s-1GCC\s0, and so are silently ignored. If you specify characters whose behavior conflicts, the result is undefined. .RS 4 --- 839,845 ---- .IX Item "-dCHARS" \&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters, and must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of \s-1GCC,\s0 and so are silently ignored. If you specify characters whose behavior conflicts, the result is undefined. .RS 4 *************** The \fB\-CC\fR option is generally used *** 906,912 **** .IP "\fB\-traditional\-cpp\fR" 4 .IX Item "-traditional-cpp" Try to imitate the behavior of old-fashioned C preprocessors, as ! opposed to \s-1ISO\s0 C preprocessors. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" Process trigraph sequences. --- 915,921 ---- .IP "\fB\-traditional\-cpp\fR" 4 .IX Item "-traditional-cpp" Try to imitate the behavior of old-fashioned C preprocessors, as ! opposed to \s-1ISO C\s0 preprocessors. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" Process trigraph sequences. *************** Print text describing all the command li *** 924,930 **** preprocessing anything. .IP "\fB\-v\fR" 4 .IX Item "-v" ! Verbose mode. Print out \s-1GNU\s0 \s-1CPP\s0's version number at the beginning of execution, and report the final form of the include path. .IP "\fB\-H\fR" 4 .IX Item "-H" --- 933,939 ---- preprocessing anything. .IP "\fB\-v\fR" 4 .IX Item "-v" ! Verbose mode. Print out \s-1GNU CPP\s0's version number at the beginning of execution, and report the final form of the include path. .IP "\fB\-H\fR" 4 .IX Item "-H" *************** header file is printed with \fB...x\fR a *** 939,945 **** .IP "\fB\-\-version\fR" 4 .IX Item "--version" .PD ! Print out \s-1GNU\s0 \s-1CPP\s0's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. .SH "ENVIRONMENT" .IX Header "ENVIRONMENT" --- 948,954 ---- .IP "\fB\-\-version\fR" 4 .IX Item "--version" .PD ! Print out \s-1GNU CPP\s0's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. .SH "ENVIRONMENT" .IX Header "ENVIRONMENT" *************** Note that you can also specify places to *** 951,957 **** \&\fB\-I\fR, and control dependency output with options like \&\fB\-M\fR. These take precedence over environment variables, which in turn take precedence over the ! configuration of \s-1GCC\s0. .IP "\fB\s-1CPATH\s0\fR" 4 .IX Item "CPATH" .PD 0 --- 960,966 ---- \&\fB\-I\fR, and control dependency output with options like \&\fB\-M\fR. These take precedence over environment variables, which in turn take precedence over the ! configuration of \s-1GCC.\s0 .IP "\fB\s-1CPATH\s0\fR" 4 .IX Item "CPATH" .PD 0 diff -Nrcpad gcc-4.8.1/gcc/doc/cpp.info gcc-4.8.2/gcc/doc/cpp.info *** gcc-4.8.1/gcc/doc/cpp.info Fri May 31 09:58:13 2013 --- gcc-4.8.2/gcc/doc/cpp.info Wed Oct 16 08:15:47 2013 *************** *** 1,5 **** ! This is doc/cpp.info, produced by makeinfo version 4.13 from ! /d/gcc-4.8.1/gcc-4.8.1/gcc/doc/cpp.texi. Copyright (C) 1987-2013 Free Software Foundation, Inc. --- 1,4 ---- ! This is cpp.info, produced by makeinfo version 5.1 from cpp.texi. Copyright (C) 1987-2013 Free Software Foundation, Inc. *************** are (a) (see below), and the Back-Cover *** 19,27 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. ! INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * Cpp: (cpp). The GNU C preprocessor. --- 18,25 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * Cpp: (cpp). The GNU C preprocessor. *************** useful on its own. *** 57,63 **** * Option Index:: * Concept Index:: ! --- The Detailed Node Listing --- Overview --- 55,61 ---- * Option Index:: * Concept Index:: ! -- The Detailed Node Listing -- Overview *************** Obsolete Features *** 132,137 **** --- 130,136 ---- * Obsolete Features:: + Copyright (C) 1987-2013 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document *************** are (a) (see below), and the Back-Cover *** 150,157 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development.  File: cpp.info, Node: Overview, Next: Header Files, Prev: Top, Up: Top --- 149,156 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development.  File: cpp.info, Node: Overview, Next: Header Files, Prev: Top, Up: Top *************** File: cpp.info, Node: Overview, Next: *** 159,169 **** 1 Overview ********** ! The C preprocessor, often known as "cpp", is a "macro processor" that ! is used automatically by the C compiler to transform your program ! before compilation. It is called a macro processor because it allows ! you to define "macros", which are brief abbreviations for longer ! constructs. The C preprocessor is intended to be used only with C, C++, and Objective-C source code. In the past, it has been abused as a general --- 158,167 ---- 1 Overview ********** ! The C preprocessor, often known as "cpp", is a "macro processor" that is ! used automatically by the C compiler to transform your program before ! compilation. It is called a macro processor because it allows you to ! define "macros", which are brief abbreviations for longer constructs. The C preprocessor is intended to be used only with C, C++, and Objective-C source code. In the past, it has been abused as a general *************** will be removed, and the Makefile will n *** 176,182 **** Having said that, you can often get away with using cpp on things which are not C. Other Algol-ish programming languages are often safe ! (Pascal, Ada, etc.) So is assembly, with caution. `-traditional-cpp' mode preserves more white space, and is otherwise more permissive. Many of the problems can be avoided by writing C or C++ style comments instead of native language comments, and keeping macros simple. --- 174,180 ---- Having said that, you can often get away with using cpp on things which are not C. Other Algol-ish programming languages are often safe ! (Pascal, Ada, etc.) So is assembly, with caution. '-traditional-cpp' mode preserves more white space, and is otherwise more permissive. Many of the problems can be avoided by writing C or C++ style comments instead of native language comments, and keeping macros simple. *************** instead of native language comments, and *** 184,191 **** Wherever possible, you should use a preprocessor geared to the language you are writing in. Modern versions of the GNU assembler have macro facilities. Most high level programming languages have their own ! conditional compilation and inclusion mechanism. If all else fails, ! try a true general text processor, such as GNU M4. C preprocessors vary in some details. This manual discusses the GNU C preprocessor, which provides a small superset of the features of ISO --- 182,189 ---- Wherever possible, you should use a preprocessor geared to the language you are writing in. Modern versions of the GNU assembler have macro facilities. Most high level programming languages have their own ! conditional compilation and inclusion mechanism. If all else fails, try ! a true general text processor, such as GNU M4. C preprocessors vary in some details. This manual discusses the GNU C preprocessor, which provides a small superset of the features of ISO *************** Standard C. In its default mode, the GN *** 193,201 **** few things required by the standard. These are features which are rarely, if ever, used, and may cause surprising changes to the meaning of a program which does not expect them. To get strict ISO Standard C, ! you should use the `-std=c90', `-std=c99' or `-std=c11' options, depending on which version of the standard you want. To get all the ! mandatory diagnostics, you must also use `-pedantic'. *Note Invocation::. This manual describes the behavior of the ISO preprocessor. To --- 191,199 ---- few things required by the standard. These are features which are rarely, if ever, used, and may cause surprising changes to the meaning of a program which does not expect them. To get strict ISO Standard C, ! you should use the '-std=c90', '-std=c99' or '-std=c11' options, depending on which version of the standard you want. To get all the ! mandatory diagnostics, you must also use '-pedantic'. *Note Invocation::. This manual describes the behavior of the ISO preprocessor. To *************** does not conflict with traditional seman *** 204,210 **** preprocessor should behave the same way. The various differences that do exist are detailed in the section *note Traditional Mode::. ! For clarity, unless noted otherwise, references to `CPP' in this manual refer to GNU CPP. * Menu: --- 202,208 ---- preprocessor should behave the same way. The various differences that do exist are detailed in the section *note Traditional Mode::. ! For clarity, unless noted otherwise, references to 'CPP' in this manual refer to GNU CPP. * Menu: *************** there are really at least four. *** 226,267 **** The files input to CPP might be in any character set at all. CPP's very first action, before it even looks for line boundaries, is to ! convert the file into the character set it uses for internal ! processing. That set is what the C standard calls the "source" ! character set. It must be isomorphic with ISO 10646, also known as ! Unicode. CPP uses the UTF-8 encoding of Unicode. The character sets of the input files are specified using the ! `-finput-charset=' option. All preprocessing work (the subject of the rest of this manual) is carried out in the source character set. If you request textual output ! from the preprocessor with the `-E' option, it will be in UTF-8. After preprocessing is complete, string and character constants are ! converted again, into the "execution" character set. This character ! set is under control of the user; the default is UTF-8, matching the ! source character set. Wide string and character constants have their ! own character set, which is not called out specifically in the ! standard. Again, it is under control of the user. The default is ! UTF-16 or UTF-32, whichever fits in the target's `wchar_t' type, in the ! target machine's byte order.(1) Octal and hexadecimal escape sequences ! do not undergo conversion; '\x12' has the value 0x12 regardless of the currently selected execution character set. All other escapes are replaced by the character in the source character set that they represent, then converted to the execution character set, just like unescaped characters. ! Unless the experimental `-fextended-identifiers' option is used, GCC ! does not permit the use of characters outside the ASCII range, nor `\u' ! and `\U' escapes, in identifiers. Even with that option, characters ! outside the ASCII range can only be specified with the `\u' and `\U' escapes, not used directly in identifiers. ---------- Footnotes ---------- (1) UTF-16 does not meet the requirements of the C standard for a ! wide character set, but the choice of 16-bit `wchar_t' is enshrined in some system ABIs so we cannot fix this.  --- 224,265 ---- The files input to CPP might be in any character set at all. CPP's very first action, before it even looks for line boundaries, is to ! convert the file into the character set it uses for internal processing. ! That set is what the C standard calls the "source" character set. It ! must be isomorphic with ISO 10646, also known as Unicode. CPP uses the ! UTF-8 encoding of Unicode. The character sets of the input files are specified using the ! '-finput-charset=' option. All preprocessing work (the subject of the rest of this manual) is carried out in the source character set. If you request textual output ! from the preprocessor with the '-E' option, it will be in UTF-8. After preprocessing is complete, string and character constants are ! converted again, into the "execution" character set. This character set ! is under control of the user; the default is UTF-8, matching the source ! character set. Wide string and character constants have their own ! character set, which is not called out specifically in the standard. ! Again, it is under control of the user. The default is UTF-16 or ! UTF-32, whichever fits in the target's 'wchar_t' type, in the target ! machine's byte order.(1) Octal and hexadecimal escape sequences do not ! undergo conversion; '\x12' has the value 0x12 regardless of the currently selected execution character set. All other escapes are replaced by the character in the source character set that they represent, then converted to the execution character set, just like unescaped characters. ! Unless the experimental '-fextended-identifiers' option is used, GCC ! does not permit the use of characters outside the ASCII range, nor '\u' ! and '\U' escapes, in identifiers. Even with that option, characters ! outside the ASCII range can only be specified with the '\u' and '\U' escapes, not used directly in identifiers. ---------- Footnotes ---------- (1) UTF-16 does not meet the requirements of the C standard for a ! wide character set, but the choice of 16-bit 'wchar_t' is enshrined in some system ABIs so we cannot fix this.  *************** standard. *** 281,315 **** 1. The input file is read into memory and broken into lines. Different systems use different conventions to indicate the end of ! a line. GCC accepts the ASCII control sequences `LF', `CR LF' and ! `CR' as end-of-line markers. These are the canonical sequences used by Unix, DOS and VMS, and the classic Mac OS (before OSX) ! respectively. You may therefore safely copy source code written ! on any of those systems to a different one and use it without conversion. (GCC may lose track of the current line number if a file doesn't consistently use one convention, as sometimes happens when it is edited on computers with different conventions that share a network file system.) ! If the last line of any input file lacks an end-of-line marker, ! the end of the file is considered to implicitly supply one. The C standard says that this condition provokes undefined behavior, so GCC will emit a warning message. 2. If trigraphs are enabled, they are replaced by their corresponding single characters. By default GCC ignores trigraphs, but if you ! request a strictly conforming mode with the `-std' option, or you ! specify the `-trigraphs' option, then it converts them. ! These are nine three-character sequences, all starting with `??', that are defined by ISO C to stand for single characters. They ! permit obsolete systems that lack some of C's punctuation to use ! C. For example, `??/' stands for `\', so '??/n' is a character constant for a newline. Trigraphs are not popular and many compilers implement them incorrectly. Portable code should not rely on trigraphs being ! either converted or ignored. With `-Wtrigraphs' GCC will warn you when a trigraph may change the meaning of your program if it were converted. *Note Wtrigraphs::. --- 279,313 ---- 1. The input file is read into memory and broken into lines. Different systems use different conventions to indicate the end of ! a line. GCC accepts the ASCII control sequences 'LF', 'CR LF' and ! 'CR' as end-of-line markers. These are the canonical sequences used by Unix, DOS and VMS, and the classic Mac OS (before OSX) ! respectively. You may therefore safely copy source code written on ! any of those systems to a different one and use it without conversion. (GCC may lose track of the current line number if a file doesn't consistently use one convention, as sometimes happens when it is edited on computers with different conventions that share a network file system.) ! If the last line of any input file lacks an end-of-line marker, the ! end of the file is considered to implicitly supply one. The C standard says that this condition provokes undefined behavior, so GCC will emit a warning message. 2. If trigraphs are enabled, they are replaced by their corresponding single characters. By default GCC ignores trigraphs, but if you ! request a strictly conforming mode with the '-std' option, or you ! specify the '-trigraphs' option, then it converts them. ! These are nine three-character sequences, all starting with '??', that are defined by ISO C to stand for single characters. They ! permit obsolete systems that lack some of C's punctuation to use C. ! For example, '??/' stands for '\', so '??/n' is a character constant for a newline. Trigraphs are not popular and many compilers implement them incorrectly. Portable code should not rely on trigraphs being ! either converted or ignored. With '-Wtrigraphs' GCC will warn you when a trigraph may change the meaning of your program if it were converted. *Note Wtrigraphs::. *************** standard. *** 317,324 **** from being confused with a trigraph by inserting a backslash between the question marks, or by separating the string literal at the trigraph and making use of string literal concatenation. ! "(??\?)" is the string `(???)', not `(?]'. Traditional C ! compilers do not recognize these idioms. The nine trigraphs and their replacements are --- 315,322 ---- from being confused with a trigraph by inserting a backslash between the question marks, or by separating the string literal at the trigraph and making use of string literal concatenation. ! "(??\?)" is the string '(???)', not '(?]'. Traditional C compilers ! do not recognize these idioms. The nine trigraphs and their replacements are *************** standard. *** 327,333 **** 3. Continued lines are merged into one long line. ! A continued line is a line which ends with a backslash, `\'. The backslash is removed and the following line is joined with the current one. No space is inserted, so you may split a line anywhere, even in the middle of a word. (It is generally more --- 325,331 ---- 3. Continued lines are merged into one long line. ! A continued line is a line which ends with a backslash, '\'. The backslash is removed and the following line is joined with the current one. No space is inserted, so you may split a line anywhere, even in the middle of a word. (It is generally more *************** standard. *** 338,354 **** If there is white space between a backslash and the end of a line, that is still a continued line. However, as this is usually the ! result of an editing mistake, and many compilers will not accept ! it as a continued line, GCC will warn you about it. 4. All comments are replaced with single spaces. ! There are two kinds of comments. "Block comments" begin with `/*' ! and continue until the next `*/'. Block comments do not nest: /* this is /* one comment */ text outside comment ! "Line comments" begin with `//' and continue to the end of the current line. Line comments do not nest either, but it does not matter, because they would end in the same place anyway. --- 336,352 ---- If there is white space between a backslash and the end of a line, that is still a continued line. However, as this is usually the ! result of an editing mistake, and many compilers will not accept it ! as a continued line, GCC will warn you about it. 4. All comments are replaced with single spaces. ! There are two kinds of comments. "Block comments" begin with '/*' ! and continue until the next '*/'. Block comments do not nest: /* this is /* one comment */ text outside comment ! "Line comments" begin with '//' and continue to the end of the current line. Line comments do not nest either, but it does not matter, because they would end in the same place anyway. *************** comment. *** 371,377 **** oops! this isn't a comment anymore */ Comments are not recognized within string literals. "/* blah */" is ! the string constant `/* blah */', not an empty string. Line comments are not in the 1989 edition of the C standard, but they are recognized by GCC as an extension. In C++ and in the 1999 edition --- 369,375 ---- oops! this isn't a comment anymore */ Comments are not recognized within string literals. "/* blah */" is ! the string constant '/* blah */', not an empty string. Line comments are not in the 1989 edition of the C standard, but they are recognized by GCC as an extension. In C++ and in the 1999 edition *************** of the C standard, they are an official *** 380,387 **** Since these transformations happen before all other processing, you can split a line mechanically with backslash-newline anywhere. You can comment out the end of a line. You can continue a line comment onto the ! next line with backslash-newline. You can even split `/*', `*/', and ! `//' onto multiple lines with backslash-newline. For example: /\ * --- 378,385 ---- Since these transformations happen before all other processing, you can split a line mechanically with backslash-newline anywhere. You can comment out the end of a line. You can continue a line comment onto the ! next line with backslash-newline. You can even split '/*', '*/', and ! '//' onto multiple lines with backslash-newline. For example: /\ * *************** next line with backslash-newline. You c *** 391,397 **** O 10\ 20 ! is equivalent to `#define FOO 1020'. All these tricks are extremely confusing and should not be used in code intended to be readable. There is no way to prevent a backslash at the end of a line from --- 389,395 ---- O 10\ 20 ! is equivalent to '#define FOO 1020'. All these tricks are extremely confusing and should not be used in code intended to be readable. There is no way to prevent a backslash at the end of a line from *************** token of any kind. Tokens do not have t *** 412,426 **** but it is often necessary to avoid ambiguities. When faced with a sequence of characters that has more than one ! possible tokenization, the preprocessor is greedy. It always makes ! each token, starting from the left, as big as possible before moving on ! to the next token. For instance, `a+++++b' is interpreted as ! `a ++ ++ + b', not as `a ++ + ++ b', even though the latter ! tokenization could be part of a valid C program and the former could ! not. Once the input file is broken into tokens, the token boundaries never ! change, except when the `##' preprocessing operator is used to paste tokens together. *Note Concatenation::. For example, #define foo() bar --- 410,423 ---- but it is often necessary to avoid ambiguities. When faced with a sequence of characters that has more than one ! possible tokenization, the preprocessor is greedy. It always makes each ! token, starting from the left, as big as possible before moving on to ! the next token. For instance, 'a+++++b' is interpreted as ! 'a ++ ++ + b', not as 'a ++ + ++ b', even though the latter tokenization ! could be part of a valid C program and the former could not. Once the input file is broken into tokens, the token boundaries never ! change, except when the '##' preprocessing operator is used to paste tokens together. *Note Concatenation::. For example, #define foo() bar *************** preprocessing token becomes one compiler *** 434,445 **** Preprocessing tokens fall into five broad classes: identifiers, preprocessing numbers, string literals, punctuators, and other. An ! "identifier" is the same as an identifier in C: any sequence of ! letters, digits, or underscores, which begins with a letter or ! underscore. Keywords of C have no significance to the preprocessor; ! they are ordinary identifiers. You can define a macro whose name is a ! keyword, for instance. The only identifier which can be considered a ! preprocessing keyword is `defined'. *Note Defined::. This is mostly true of other languages which use the C preprocessor. However, a few of the keywords of C++ are significant even in the --- 431,442 ---- Preprocessing tokens fall into five broad classes: identifiers, preprocessing numbers, string literals, punctuators, and other. An ! "identifier" is the same as an identifier in C: any sequence of letters, ! digits, or underscores, which begins with a letter or underscore. ! Keywords of C have no significance to the preprocessor; they are ! ordinary identifiers. You can define a macro whose name is a keyword, ! for instance. The only identifier which can be considered a ! preprocessing keyword is 'defined'. *Note Defined::. This is mostly true of other languages which use the C preprocessor. However, a few of the keywords of C++ are significant even in the *************** preprocessor. *Note C++ Named Operators *** 449,462 **** part of the "basic source character set", at the implementation's discretion (such as accented Latin letters, Greek letters, or Chinese ideograms). This may be done with an extended character set, or the ! `\u' and `\U' escape sequences. The implementation of this feature in ! GCC is experimental; such characters are only accepted in the `\u' and ! `\U' forms and only if `-fextended-identifiers' is used. ! As an extension, GCC treats `$' as a letter. This is for ! compatibility with some systems, such as VMS, where `$' is commonly ! used in system-defined function and object names. `$' is not a letter ! in strictly conforming mode, or if you specify the `-$' option. *Note Invocation::. A "preprocessing number" has a rather bizarre definition. The --- 446,459 ---- part of the "basic source character set", at the implementation's discretion (such as accented Latin letters, Greek letters, or Chinese ideograms). This may be done with an extended character set, or the ! '\u' and '\U' escape sequences. The implementation of this feature in ! GCC is experimental; such characters are only accepted in the '\u' and ! '\U' forms and only if '-fextended-identifiers' is used. ! As an extension, GCC treats '$' as a letter. This is for ! compatibility with some systems, such as VMS, where '$' is commonly used ! in system-defined function and object names. '$' is not a letter in ! strictly conforming mode, or if you specify the '-$' option. *Note Invocation::. A "preprocessing number" has a rather bizarre definition. The *************** one expects of C, but also a number of o *** 465,473 **** initially recognize as a number. Formally, preprocessing numbers begin with an optional period, a required decimal digit, and then continue with any sequence of letters, digits, underscores, periods, and ! exponents. Exponents are the two-character sequences `e+', `e-', `E+', ! `E-', `p+', `p-', `P+', and `P-'. (The exponents that begin with `p' ! or `P' are new to C99. They are used for hexadecimal floating-point constants.) The purpose of this unusual definition is to isolate the preprocessor --- 462,470 ---- initially recognize as a number. Formally, preprocessing numbers begin with an optional period, a required decimal digit, and then continue with any sequence of letters, digits, underscores, periods, and ! exponents. Exponents are the two-character sequences 'e+', 'e-', 'E+', ! 'E-', 'p+', 'p-', 'P+', and 'P-'. (The exponents that begin with 'p' or ! 'P' are new to C99. They are used for hexadecimal floating-point constants.) The purpose of this unusual definition is to isolate the preprocessor *************** from the full complexity of numeric cons *** 475,496 **** distinguish between lexically valid and invalid floating-point numbers, which is complicated. The definition also permits you to split an identifier at any position and get exactly two tokens, which can then be ! pasted back together with the `##' operator. It's possible for preprocessing numbers to cause programs to be ! misinterpreted. For example, `0xE+12' is a preprocessing number which does not translate to any valid numeric constant, therefore a syntax ! error. It does not mean `0xE + 12', which is what you might have intended. "String literals" are string constants, character constants, and ! header file names (the argument of `#include').(1) String constants ! and character constants are straightforward: "..." or '...'. In either ! case embedded quotes should be escaped with a backslash: '\'' is the ! character constant for `''. There is no limit on the length of a character constant, but the value of a character constant that contains ! more than one character is implementation-defined. *Note ! Implementation Details::. Header file names either look like string constants, "...", or are written with angle brackets instead, <...>. In either case, backslash --- 472,493 ---- distinguish between lexically valid and invalid floating-point numbers, which is complicated. The definition also permits you to split an identifier at any position and get exactly two tokens, which can then be ! pasted back together with the '##' operator. It's possible for preprocessing numbers to cause programs to be ! misinterpreted. For example, '0xE+12' is a preprocessing number which does not translate to any valid numeric constant, therefore a syntax ! error. It does not mean '0xE + 12', which is what you might have intended. "String literals" are string constants, character constants, and ! header file names (the argument of '#include').(1) String constants and ! character constants are straightforward: "..." or '...'. In either case ! embedded quotes should be escaped with a backslash: '\'' is the ! character constant for '''. There is no limit on the length of a character constant, but the value of a character constant that contains ! more than one character is implementation-defined. *Note Implementation ! Details::. Header file names either look like string constants, "...", or are written with angle brackets instead, <...>. In either case, backslash *************** Operation::. *** 501,519 **** No string literal may extend past the end of a line. Older versions of GCC accepted multi-line string constants. You may use continued ! lines instead, or string constant concatenation. *Note Differences ! from previous versions::. "Punctuators" are all the usual bits of punctuation which are meaningful to C and C++. All but three of the punctuation characters in ! ASCII are C punctuators. The exceptions are `@', `$', and ``'. In addition, all the two- and three-character operators are punctuators. ! There are also six "digraphs", which the C++ standard calls ! "alternative tokens", which are merely alternate ways to spell other ! punctuators. This is a second attempt to work around missing ! punctuation in obsolete systems. It has no negative side effects, ! unlike trigraphs, but does not cover as much ground. The digraphs and ! their corresponding normal punctuators are: Digraph: <% %> <: :> %: %:%: Punctuator: { } [ ] # ## --- 498,516 ---- No string literal may extend past the end of a line. Older versions of GCC accepted multi-line string constants. You may use continued ! lines instead, or string constant concatenation. *Note Differences from ! previous versions::. "Punctuators" are all the usual bits of punctuation which are meaningful to C and C++. All but three of the punctuation characters in ! ASCII are C punctuators. The exceptions are '@', '$', and '`'. In addition, all the two- and three-character operators are punctuators. ! There are also six "digraphs", which the C++ standard calls "alternative ! tokens", which are merely alternate ways to spell other punctuators. ! This is a second attempt to work around missing punctuation in obsolete ! systems. It has no negative side effects, unlike trigraphs, but does ! not cover as much ground. The digraphs and their corresponding normal ! punctuators are: Digraph: <% %> <: :> %: %:%: Punctuator: { } [ ] # ## *************** their corresponding normal punctuators a *** 521,532 **** Any other single character is considered "other". It is passed on to the preprocessor's output unmolested. The C compiler will almost certainly reject source code containing "other" tokens. In ASCII, the ! only other characters are `@', `$', ``', and control characters other ! than NUL (all bits zero). (Note that `$' is normally considered a ! letter.) All characters with the high bit set (numeric range ! 0x7F-0xFF) are also "other" in the present implementation. This will ! change when proper support for international character sets is added to ! GCC. NUL is a special case because of the high probability that its appearance is accidental, and because it may be invisible to the user --- 518,528 ---- Any other single character is considered "other". It is passed on to the preprocessor's output unmolested. The C compiler will almost certainly reject source code containing "other" tokens. In ASCII, the ! only other characters are '@', '$', '`', and control characters other ! than NUL (all bits zero). (Note that '$' is normally considered a ! letter.) All characters with the high bit set (numeric range 0x7F-0xFF) ! are also "other" in the present implementation. This will change when ! proper support for international character sets is added to GCC. NUL is a special case because of the high probability that its appearance is accidental, and because it may be invisible to the user *************** have the same meaning. *** 538,546 **** #define X^@1 #define X 1 ! (where `^@' is ASCII NUL). Within string or character constants, NULs ! are preserved. In the latter two cases the preprocessor emits a ! warning message. ---------- Footnotes ---------- --- 534,542 ---- #define X^@1 #define X 1 ! (where '^@' is ASCII NUL). Within string or character constants, NULs ! are preserved. In the latter two cases the preprocessor emits a warning ! message. ---------- Footnotes ---------- *************** and "macros" to be expanded. Its primar *** 574,581 **** program according to various conditions. * Line control. If you use a program to combine or rearrange source ! files into an intermediate file which is then compiled, you can ! use line control to inform the compiler where each source line originally came from. * Diagnostics. You can detect problems at compile time and issue --- 570,577 ---- program according to various conditions. * Line control. If you use a program to combine or rearrange source ! files into an intermediate file which is then compiled, you can use ! line control to inform the compiler where each source line originally came from. * Diagnostics. You can detect problems at compile time and issue *************** and "macros" to be expanded. Its primar *** 584,599 **** There are a few more, less useful, features. Except for expansion of predefined macros, all these operations are ! triggered with "preprocessing directives". Preprocessing directives ! are lines in your program that start with `#'. Whitespace is allowed ! before and after the `#'. The `#' is followed by an identifier, the ! "directive name". It specifies the operation to perform. Directives ! are commonly referred to as `#NAME' where NAME is the directive name. ! For example, `#define' is the directive that defines a macro. ! The `#' which begins a directive cannot come from a macro expansion. ! Also, the directive name is not macro expanded. Thus, if `foo' is ! defined as a macro expanding to `define', that does not make `#foo' a valid preprocessing directive. The set of valid directive names is fixed. Programs cannot define --- 580,595 ---- There are a few more, less useful, features. Except for expansion of predefined macros, all these operations are ! triggered with "preprocessing directives". Preprocessing directives are ! lines in your program that start with '#'. Whitespace is allowed before ! and after the '#'. The '#' is followed by an identifier, the "directive ! name". It specifies the operation to perform. Directives are commonly ! referred to as '#NAME' where NAME is the directive name. For example, ! '#define' is the directive that defines a macro. ! The '#' which begins a directive cannot come from a macro expansion. ! Also, the directive name is not macro expanded. Thus, if 'foo' is ! defined as a macro expanding to 'define', that does not make '#foo' a valid preprocessing directive. The set of valid directive names is fixed. Programs cannot define *************** new preprocessing directives. *** 601,608 **** Some directives require arguments; these make up the rest of the directive line and must be separated from the directive name by ! whitespace. For example, `#define' must be followed by a macro name ! and the intended expansion of the macro. A preprocessing directive cannot cover more than one line. The line may, however, be continued with backslash-newline, or by a block comment --- 597,604 ---- Some directives require arguments; these make up the rest of the directive line and must be separated from the directive name by ! whitespace. For example, '#define' must be followed by a macro name and ! the intended expansion of the macro. A preprocessing directive cannot cover more than one line. The line may, however, be continued with backslash-newline, or by a block comment *************** File: cpp.info, Node: Header Files, Ne *** 619,625 **** A header file is a file containing C declarations and macro definitions (*note Macros::) to be shared between several source files. You request the use of a header file in your program by "including" it, with the C ! preprocessing directive `#include'. Header files serve two purposes. --- 615,621 ---- A header file is a file containing C declarations and macro definitions (*note Macros::) to be shared between several source files. You request the use of a header file in your program by "including" it, with the C ! preprocessing directive '#include'. Header files serve two purposes. *************** preprocessing directive `#include'. *** 630,637 **** * Your own header files contain declarations for interfaces between the source files of your program. Each time you have a group of ! related declarations and macro definitions all or most of which ! are needed in several different source files, it is a good idea to create a header file for them. Including a header file produces the same results as copying the --- 626,633 ---- * Your own header files contain declarations for interfaces between the source files of your program. Each time you have a group of ! related declarations and macro definitions all or most of which are ! needed in several different source files, it is a good idea to create a header file for them. Including a header file produces the same results as copying the *************** as the risk that a failure to find one c *** 645,651 **** inconsistencies within a program. In C, the usual convention is to give header files names that end ! with `.h'. It is most portable to use only letters, digits, dashes, and underscores in header file names, and at most one dot. * Menu: --- 641,647 ---- inconsistencies within a program. In C, the usual convention is to give header files names that end ! with '.h'. It is most portable to use only letters, digits, dashes, and underscores in header file names, and at most one dot. * Menu: *************** File: cpp.info, Node: Include Syntax, *** 666,698 **** ================== Both user and system header files are included using the preprocessing ! directive `#include'. It has two variants: ! `#include ' This variant is used for system header files. It searches for a file named FILE in a standard list of system directories. You can ! prepend directories to this list with the `-I' option (*note Invocation::). ! `#include "FILE"' This variant is used for header files of your own program. It searches for a file named FILE first in the directory containing the current file, then in the quote directories and then the same ! directories used for `'. You can prepend directories to the ! list of quote directories with the `-iquote' option. ! The argument of `#include', whether delimited with quote marks or angle brackets, behaves like a string constant in that comments are not ! recognized, and macro names are not expanded. Thus, `#include ' ! specifies inclusion of a system header file named `x/*y'. However, if backslashes occur within FILE, they are considered ordinary text characters, not escape characters. None of the character escape sequences appropriate to string constants in C are processed. ! Thus, `#include "x\n\\y"' specifies a filename containing three ! backslashes. (Some systems interpret `\' as a pathname separator. All ! of these also interpret `/' the same way. It is most portable to use ! only `/'.) It is an error if there is anything (other than comments) on the line after the file name. --- 662,694 ---- ================== Both user and system header files are included using the preprocessing ! directive '#include'. It has two variants: ! '#include ' This variant is used for system header files. It searches for a file named FILE in a standard list of system directories. You can ! prepend directories to this list with the '-I' option (*note Invocation::). ! '#include "FILE"' This variant is used for header files of your own program. It searches for a file named FILE first in the directory containing the current file, then in the quote directories and then the same ! directories used for ''. You can prepend directories to the ! list of quote directories with the '-iquote' option. ! The argument of '#include', whether delimited with quote marks or angle brackets, behaves like a string constant in that comments are not ! recognized, and macro names are not expanded. Thus, '#include ' ! specifies inclusion of a system header file named 'x/*y'. However, if backslashes occur within FILE, they are considered ordinary text characters, not escape characters. None of the character escape sequences appropriate to string constants in C are processed. ! Thus, '#include "x\n\\y"' specifies a filename containing three ! backslashes. (Some systems interpret '\' as a pathname separator. All ! of these also interpret '/' the same way. It is most portable to use ! only '/'.) It is an error if there is anything (other than comments) on the line after the file name. *************** File: cpp.info, Node: Include Operation *** 703,719 **** 2.2 Include Operation ===================== ! The `#include' directive works by directing the C preprocessor to scan the specified file as input before continuing with the rest of the current file. The output from the preprocessor contains the output already generated, followed by the output resulting from the included file, followed by the output that comes from the text after the ! `#include' directive. For example, if you have a header file ! `header.h' as follows, char *test (void); ! and a main program called `program.c' that uses the header file, like this, int x; --- 699,715 ---- 2.2 Include Operation ===================== ! The '#include' directive works by directing the C preprocessor to scan the specified file as input before continuing with the rest of the current file. The output from the preprocessor contains the output already generated, followed by the output resulting from the included file, followed by the output that comes from the text after the ! '#include' directive. For example, if you have a header file 'header.h' ! as follows, char *test (void); ! and a main program called 'program.c' that uses the header file, like this, int x; *************** this, *** 725,731 **** puts (test ()); } ! the compiler will see the same token stream as it would if `program.c' read int x; --- 721,727 ---- puts (test ()); } ! the compiler will see the same token stream as it would if 'program.c' read int x; *************** the file. *** 751,757 **** syntactic units--function declarations or definitions, type declarations, etc. ! The line following the `#include' directive is always treated as a separate line by the C preprocessor, even if the included file lacks a final newline. --- 747,753 ---- syntactic units--function declarations or definitions, type declarations, etc. ! The line following the '#include' directive is always treated as a separate line by the C preprocessor, even if the included file lacks a final newline. *************** File: cpp.info, Node: Search Path, Nex *** 763,769 **** GCC looks in several different places for headers. On a normal Unix system, if you do not instruct it otherwise, it will look for headers ! requested with `#include ' in: /usr/local/include LIBDIR/gcc/TARGET/VERSION/include --- 759,765 ---- GCC looks in several different places for headers. On a normal Unix system, if you do not instruct it otherwise, it will look for headers ! requested with '#include ' in: /usr/local/include LIBDIR/gcc/TARGET/VERSION/include *************** requested with `#include ' in: *** 771,784 **** /usr/include For C++ programs, it will also look in ! `LIBDIR/../include/c++/VERSION', first. In the above, TARGET is the canonical name of the system GCC was configured to compile code for; often but not always the same as the canonical name of the system it runs on. VERSION is the version of GCC in use. ! You can add to this list with the `-IDIR' command line option. All ! the directories named by `-I' are searched, in left-to-right order, ! _before_ the default directories. The only exception is when `dir' is already searched by default. In this case, the option is ignored and the search order for system directories remains unchanged. --- 767,780 ---- /usr/include For C++ programs, it will also look in ! 'LIBDIR/../include/c++/VERSION', first. In the above, TARGET is the canonical name of the system GCC was configured to compile code for; often but not always the same as the canonical name of the system it runs on. VERSION is the version of GCC in use. ! You can add to this list with the '-IDIR' command line option. All ! the directories named by '-I' are searched, in left-to-right order, ! _before_ the default directories. The only exception is when 'dir' is already searched by default. In this case, the option is ignored and the search order for system directories remains unchanged. *************** Thus, it is possible for a directory to *** 788,825 **** chain if it was specified in both the quote and bracket chains. You can prevent GCC from searching any of the default directories ! with the `-nostdinc' option. This is useful when you are compiling an operating system kernel or some other program that does not use the ! standard C library facilities, or the standard C library itself. `-I' ! options are not ignored as described above when `-nostdinc' is in effect. ! GCC looks for headers requested with `#include "FILE"' first in the directory containing the current file, then in the directories as ! specified by `-iquote' options, then in the same places it would have looked for a header requested with angle brackets. For example, if ! `/usr/include/sys/stat.h' contains `#include "types.h"', GCC looks for ! `types.h' first in `/usr/include/sys', then in its usual search path. ! `#line' (*note Line Control::) does not change GCC's idea of the directory containing the current file. ! You may put `-I-' at any point in your list of `-I' options. This ! has two effects. First, directories appearing before the `-I-' in the list are searched only for headers requested with quote marks. ! Directories after `-I-' are searched for all headers. Second, the directory containing the current file is not searched for anything, ! unless it happens to be one of the directories named by an `-I' switch. ! `-I-' is deprecated, `-iquote' should be used instead. ! `-I. -I-' is not the same as no `-I' options at all, and does not ! cause the same behavior for `<>' includes that `""' includes get with ! no special options. `-I.' searches the compiler's current working directory for header files. That may or may not be the same as the directory containing the current file. ! If you need to look for headers in a directory named `-', write ! `-I./-'. There are several more ways to adjust the header search path. They are generally less useful. *Note Invocation::. --- 784,821 ---- chain if it was specified in both the quote and bracket chains. You can prevent GCC from searching any of the default directories ! with the '-nostdinc' option. This is useful when you are compiling an operating system kernel or some other program that does not use the ! standard C library facilities, or the standard C library itself. '-I' ! options are not ignored as described above when '-nostdinc' is in effect. ! GCC looks for headers requested with '#include "FILE"' first in the directory containing the current file, then in the directories as ! specified by '-iquote' options, then in the same places it would have looked for a header requested with angle brackets. For example, if ! '/usr/include/sys/stat.h' contains '#include "types.h"', GCC looks for ! 'types.h' first in '/usr/include/sys', then in its usual search path. ! '#line' (*note Line Control::) does not change GCC's idea of the directory containing the current file. ! You may put '-I-' at any point in your list of '-I' options. This ! has two effects. First, directories appearing before the '-I-' in the list are searched only for headers requested with quote marks. ! Directories after '-I-' are searched for all headers. Second, the directory containing the current file is not searched for anything, ! unless it happens to be one of the directories named by an '-I' switch. ! '-I-' is deprecated, '-iquote' should be used instead. ! '-I. -I-' is not the same as no '-I' options at all, and does not ! cause the same behavior for '<>' includes that '""' includes get with no ! special options. '-I.' searches the compiler's current working directory for header files. That may or may not be the same as the directory containing the current file. ! If you need to look for headers in a directory named '-', write ! '-I./-'. There are several more ways to adjust the header search path. They are generally less useful. *Note Invocation::. *************** contents of the file in a conditional, l *** 848,867 **** This construct is commonly known as a "wrapper #ifndef". When the header is included again, the conditional will be false, because ! `FILE_FOO_SEEN' is defined. The preprocessor will skip over the entire contents of the file, and the compiler will not see it twice. CPP optimizes even further. It remembers when a header file has a ! wrapper `#ifndef'. If a subsequent `#include' specifies that header, ! and the macro in the `#ifndef' is still defined, it does not bother to rescan the file at all. You can put comments outside the wrapper. They will not interfere with this optimization. ! The macro `FILE_FOO_SEEN' is called the "controlling macro" or ! "guard macro". In a user header file, the macro name should not begin ! with `_'. In a system header file, it should begin with `__' to avoid conflicts with user programs. In any kind of header file, the macro name should contain the name of the file and some additional text, to avoid conflicts with other header files. --- 844,863 ---- This construct is commonly known as a "wrapper #ifndef". When the header is included again, the conditional will be false, because ! 'FILE_FOO_SEEN' is defined. The preprocessor will skip over the entire contents of the file, and the compiler will not see it twice. CPP optimizes even further. It remembers when a header file has a ! wrapper '#ifndef'. If a subsequent '#include' specifies that header, ! and the macro in the '#ifndef' is still defined, it does not bother to rescan the file at all. You can put comments outside the wrapper. They will not interfere with this optimization. ! The macro 'FILE_FOO_SEEN' is called the "controlling macro" or "guard ! macro". In a user header file, the macro name should not begin with ! '_'. In a system header file, it should begin with '__' to avoid conflicts with user programs. In any kind of header file, the macro name should contain the name of the file and some additional text, to avoid conflicts with other header files. *************** File: cpp.info, Node: Alternatives to W *** 873,907 **** =================================== CPP supports two more ways of indicating that a header file should be ! read only once. Neither one is as portable as a wrapper `#ifndef' and we recommend you do not use them in new programs, with the caveat that ! `#import' is standard practice in Objective-C. ! CPP supports a variant of `#include' called `#import' which includes ! a file, but does so at most once. If you use `#import' instead of ! `#include', then you don't need the conditionals inside the header file ! to prevent multiple inclusion of the contents. `#import' is standard ! in Objective-C, but is considered a deprecated extension in C and C++. ! `#import' is not a well designed feature. It requires the users of ! a header file to know that it should only be included once. It is much better for the header file's implementor to write the file so that users ! don't need to know this. Using a wrapper `#ifndef' accomplishes this goal. ! In the present implementation, a single use of `#import' will ! prevent the file from ever being read again, by either `#import' or ! `#include'. You should not rely on this; do not use both `#import' and ! `#include' to refer to the same header file. Another way to prevent a header file from being included more than ! once is with the `#pragma once' directive. If `#pragma once' is seen when scanning a header file, that file will never be read again, no matter what. ! `#pragma once' does not have the problems that `#import' does, but ! it is not recognized by all preprocessors, so you cannot rely on it in ! a portable program.  File: cpp.info, Node: Computed Includes, Next: Wrapper Headers, Prev: Alternatives to Wrapper #ifndef, Up: Header Files --- 869,903 ---- =================================== CPP supports two more ways of indicating that a header file should be ! read only once. Neither one is as portable as a wrapper '#ifndef' and we recommend you do not use them in new programs, with the caveat that ! '#import' is standard practice in Objective-C. ! CPP supports a variant of '#include' called '#import' which includes ! a file, but does so at most once. If you use '#import' instead of ! '#include', then you don't need the conditionals inside the header file ! to prevent multiple inclusion of the contents. '#import' is standard in ! Objective-C, but is considered a deprecated extension in C and C++. ! '#import' is not a well designed feature. It requires the users of a ! header file to know that it should only be included once. It is much better for the header file's implementor to write the file so that users ! don't need to know this. Using a wrapper '#ifndef' accomplishes this goal. ! In the present implementation, a single use of '#import' will prevent ! the file from ever being read again, by either '#import' or '#include'. ! You should not rely on this; do not use both '#import' and '#include' to ! refer to the same header file. Another way to prevent a header file from being included more than ! once is with the '#pragma once' directive. If '#pragma once' is seen when scanning a header file, that file will never be read again, no matter what. ! '#pragma once' does not have the problems that '#import' does, but it ! is not recognized by all preprocessors, so you cannot rely on it in a ! portable program.  File: cpp.info, Node: Computed Includes, Next: Wrapper Headers, Prev: Alternatives to Wrapper #ifndef, Up: Header Files *************** systems, for instance. You could do thi *** 925,951 **** That rapidly becomes tedious. Instead, the preprocessor offers the ability to use a macro for the header name. This is called a "computed include". Instead of writing a header name as the direct argument of ! `#include', you simply put a macro name there instead: #define SYSTEM_H "system_1.h" ... #include SYSTEM_H ! `SYSTEM_H' will be expanded, and the preprocessor will look for ! `system_1.h' as if the `#include' had been written that way originally. ! `SYSTEM_H' could be defined by your Makefile with a `-D' option. ! You must be careful when you define the macro. `#define' saves tokens, not text. The preprocessor has no way of knowing that the macro ! will be used as the argument of `#include', so it generates ordinary tokens, not a header name. This is unlikely to cause problems if you use double-quote includes, which are close enough to string constants. If you use angle brackets, however, you may have trouble. The syntax of a computed include is actually a bit more general than ! the above. If the first non-whitespace character after `#include' is ! not `"' or `<', then the entire line is macro-expanded like running ! text would be. If the line expands to a single string constant, the contents of that string constant are the file to be included. CPP does not re-examine --- 921,947 ---- That rapidly becomes tedious. Instead, the preprocessor offers the ability to use a macro for the header name. This is called a "computed include". Instead of writing a header name as the direct argument of ! '#include', you simply put a macro name there instead: #define SYSTEM_H "system_1.h" ... #include SYSTEM_H ! 'SYSTEM_H' will be expanded, and the preprocessor will look for ! 'system_1.h' as if the '#include' had been written that way originally. ! 'SYSTEM_H' could be defined by your Makefile with a '-D' option. ! You must be careful when you define the macro. '#define' saves tokens, not text. The preprocessor has no way of knowing that the macro ! will be used as the argument of '#include', so it generates ordinary tokens, not a header name. This is unlikely to cause problems if you use double-quote includes, which are close enough to string constants. If you use angle brackets, however, you may have trouble. The syntax of a computed include is actually a bit more general than ! the above. If the first non-whitespace character after '#include' is ! not '"' or '<', then the entire line is macro-expanded like running text ! would be. If the line expands to a single string constant, the contents of that string constant are the file to be included. CPP does not re-examine *************** escapes in the string. Therefore *** 955,974 **** #define HEADER "a\"b" #include HEADER ! looks for a file named `a\"b'. CPP searches for the file according to the rules for double-quoted includes. ! If the line expands to a token stream beginning with a `<' token and ! including a `>' token, then the tokens between the `<' and the first ! `>' are combined to form the filename to be included. Any whitespace between tokens is reduced to a single space; then any space after the ! initial `<' is retained, but a trailing space before the closing `>' is ignored. CPP searches for the file according to the rules for angle-bracket includes. In either case, if there are any tokens on the line after the file ! name, an error occurs and the directive is not processed. It is also ! an error if the result of expansion does not match either of the two expected forms. These rules are implementation-defined behavior according to the C --- 951,970 ---- #define HEADER "a\"b" #include HEADER ! looks for a file named 'a\"b'. CPP searches for the file according to the rules for double-quoted includes. ! If the line expands to a token stream beginning with a '<' token and ! including a '>' token, then the tokens between the '<' and the first '>' ! are combined to form the filename to be included. Any whitespace between tokens is reduced to a single space; then any space after the ! initial '<' is retained, but a trailing space before the closing '>' is ignored. CPP searches for the file according to the rules for angle-bracket includes. In either case, if there are any tokens on the line after the file ! name, an error occurs and the directive is not processed. It is also an ! error if the result of expansion does not match either of the two expected forms. These rules are implementation-defined behavior according to the C *************** File: cpp.info, Node: Wrapper Headers, *** 984,1031 **** =================== Sometimes it is necessary to adjust the contents of a system-provided ! header file without editing it directly. GCC's `fixincludes' operation does this, for example. One way to do that would be to create a new header file with the same name and insert it in the search path before the original header. That works fine as long as you're willing to replace the old header entirely. But what if you want to refer to the old header from the new one? ! You cannot simply include the old header with `#include'. That will start from the beginning, and find your new header again. If your header is not protected from multiple inclusion (*note Once-Only Headers::), it will recurse infinitely and cause a fatal error. You could include the old header with an absolute pathname: #include "/usr/include/old-header.h" ! This works, but is not clean; should the system headers ever move, ! you would have to edit the new headers to match. There is no way to solve this problem within the C standard, but you ! can use the GNU extension `#include_next'. It means, "Include the ! _next_ file with this name". This directive works like `#include' ! except in searching for the specified file: it starts searching the ! list of header file directories _after_ the directory in which the ! current file was found. ! Suppose you specify `-I /usr/local/include', and the list of ! directories to search also includes `/usr/include'; and suppose both ! directories contain `signal.h'. Ordinary `#include ' finds ! the file under `/usr/local/include'. If that file contains ! `#include_next ', it starts searching after that directory, ! and finds the file in `/usr/include'. ! `#include_next' does not distinguish between `' and `"FILE"' ! inclusion, nor does it check that the file you specify has the same ! name as the current file. It simply looks for the file named, starting ! with the directory in the search path after the one where the current ! file was found. ! The use of `#include_next' can lead to great confusion. We ! recommend it be used only when there is no other alternative. In ! particular, it should not be used in the headers belonging to a specific ! program; it should be used only to make global corrections along the ! lines of `fixincludes'.  File: cpp.info, Node: System Headers, Prev: Wrapper Headers, Up: Header Files --- 980,1027 ---- =================== Sometimes it is necessary to adjust the contents of a system-provided ! header file without editing it directly. GCC's 'fixincludes' operation does this, for example. One way to do that would be to create a new header file with the same name and insert it in the search path before the original header. That works fine as long as you're willing to replace the old header entirely. But what if you want to refer to the old header from the new one? ! You cannot simply include the old header with '#include'. That will start from the beginning, and find your new header again. If your header is not protected from multiple inclusion (*note Once-Only Headers::), it will recurse infinitely and cause a fatal error. You could include the old header with an absolute pathname: #include "/usr/include/old-header.h" ! This works, but is not clean; should the system headers ever move, you ! would have to edit the new headers to match. There is no way to solve this problem within the C standard, but you ! can use the GNU extension '#include_next'. It means, "Include the ! _next_ file with this name". This directive works like '#include' ! except in searching for the specified file: it starts searching the list ! of header file directories _after_ the directory in which the current ! file was found. ! Suppose you specify '-I /usr/local/include', and the list of ! directories to search also includes '/usr/include'; and suppose both ! directories contain 'signal.h'. Ordinary '#include ' finds ! the file under '/usr/local/include'. If that file contains ! '#include_next ', it starts searching after that directory, ! and finds the file in '/usr/include'. ! '#include_next' does not distinguish between '' and '"FILE"' ! inclusion, nor does it check that the file you specify has the same name ! as the current file. It simply looks for the file named, starting with ! the directory in the search path after the one where the current file ! was found. ! The use of '#include_next' can lead to great confusion. We recommend ! it be used only when there is no other alternative. In particular, it ! should not be used in the headers belonging to a specific program; it ! should be used only to make global corrections along the lines of ! 'fixincludes'.  File: cpp.info, Node: System Headers, Prev: Wrapper Headers, Up: Header Files *************** File: cpp.info, Node: System Headers, *** 1036,1073 **** The header files declaring interfaces to the operating system and runtime libraries often cannot be written in strictly conforming C. Therefore, GCC gives code found in "system headers" special treatment. ! All warnings, other than those generated by `#warning' (*note Diagnostics::), are suppressed while GCC is processing a system header. Macros defined in a system header are immune to a few warnings wherever ! they are expanded. This immunity is granted on an ad-hoc basis, when ! we find that a warning generates lots of false positives because of ! code in macros defined in system headers. Normally, only the headers found in specific directories are ! considered system headers. These directories are determined when GCC ! is compiled. There are, however, two ways to make normal headers into system headers. ! The `-isystem' command line option adds its argument to the list of ! directories to search for headers, just like `-I'. Any headers found ! in that directory will be considered system headers. ! All directories named by `-isystem' are searched _after_ all ! directories named by `-I', no matter what their order was on the ! command line. If the same directory is named by both `-I' and ! `-isystem', the `-I' option is ignored. GCC provides an informative ! message when this occurs if `-v' is used. ! There is also a directive, `#pragma GCC system_header', which tells ! GCC to consider the rest of the current include file a system header, ! no matter where it was found. Code that comes before the `#pragma' in ! the file will not be affected. `#pragma GCC system_header' has no ! effect in the primary source file. On very old systems, some of the pre-defined system header directories get even more special treatment. GNU C++ considers code in ! headers found in those directories to be surrounded by an `extern "C"' ! block. There is no way to request this behavior with a `#pragma', or from the command line.  --- 1032,1069 ---- The header files declaring interfaces to the operating system and runtime libraries often cannot be written in strictly conforming C. Therefore, GCC gives code found in "system headers" special treatment. ! All warnings, other than those generated by '#warning' (*note Diagnostics::), are suppressed while GCC is processing a system header. Macros defined in a system header are immune to a few warnings wherever ! they are expanded. This immunity is granted on an ad-hoc basis, when we ! find that a warning generates lots of false positives because of code in ! macros defined in system headers. Normally, only the headers found in specific directories are ! considered system headers. These directories are determined when GCC is ! compiled. There are, however, two ways to make normal headers into system headers. ! The '-isystem' command line option adds its argument to the list of ! directories to search for headers, just like '-I'. Any headers found in ! that directory will be considered system headers. ! All directories named by '-isystem' are searched _after_ all ! directories named by '-I', no matter what their order was on the command ! line. If the same directory is named by both '-I' and '-isystem', the ! '-I' option is ignored. GCC provides an informative message when this ! occurs if '-v' is used. ! There is also a directive, '#pragma GCC system_header', which tells ! GCC to consider the rest of the current include file a system header, no ! matter where it was found. Code that comes before the '#pragma' in the ! file will not be affected. '#pragma GCC system_header' has no effect in ! the primary source file. On very old systems, some of the pre-defined system header directories get even more special treatment. GNU C++ considers code in ! headers found in those directories to be surrounded by an 'extern "C"' ! block. There is no way to request this behavior with a '#pragma', or from the command line.  *************** File: cpp.info, Node: Macros, Next: Co *** 1078,1094 **** A "macro" is a fragment of code which has been given a name. Whenever the name is used, it is replaced by the contents of the macro. There ! are two kinds of macros. They differ mostly in what they look like ! when they are used. "Object-like" macros resemble data objects when ! used, "function-like" macros resemble function calls. You may define any valid identifier as a macro, even if it is a C keyword. The preprocessor does not know anything about keywords. This ! can be useful if you wish to hide a keyword such as `const' from an older compiler that does not understand it. However, the preprocessor ! operator `defined' (*note Defined::) can never be defined as a macro, ! and C++'s named operators (*note C++ Named Operators::) cannot be ! macros when you are compiling C++. * Menu: --- 1074,1090 ---- A "macro" is a fragment of code which has been given a name. Whenever the name is used, it is replaced by the contents of the macro. There ! are two kinds of macros. They differ mostly in what they look like when ! they are used. "Object-like" macros resemble data objects when used, ! "function-like" macros resemble function calls. You may define any valid identifier as a macro, even if it is a C keyword. The preprocessor does not know anything about keywords. This ! can be useful if you wish to hide a keyword such as 'const' from an older compiler that does not understand it. However, the preprocessor ! operator 'defined' (*note Defined::) can never be defined as a macro, ! and C++'s named operators (*note C++ Named Operators::) cannot be macros ! when you are compiling C++. * Menu: *************** a code fragment. It is called object-li *** 1114,1134 **** object in code that uses it. They are most commonly used to give symbolic names to numeric constants. ! You create macros with the `#define' directive. `#define' is followed by the name of the macro and then the token sequence it should be an abbreviation for, which is variously referred to as the macro's "body", "expansion" or "replacement list". For example, #define BUFFER_SIZE 1024 ! defines a macro named `BUFFER_SIZE' as an abbreviation for the token ! `1024'. If somewhere after this `#define' directive there comes a C statement of the form foo = (char *) malloc (BUFFER_SIZE); then the C preprocessor will recognize and "expand" the macro ! `BUFFER_SIZE'. The C compiler will see the same tokens as it would if you had written foo = (char *) malloc (1024); --- 1110,1130 ---- object in code that uses it. They are most commonly used to give symbolic names to numeric constants. ! You create macros with the '#define' directive. '#define' is followed by the name of the macro and then the token sequence it should be an abbreviation for, which is variously referred to as the macro's "body", "expansion" or "replacement list". For example, #define BUFFER_SIZE 1024 ! defines a macro named 'BUFFER_SIZE' as an abbreviation for the token ! '1024'. If somewhere after this '#define' directive there comes a C statement of the form foo = (char *) malloc (BUFFER_SIZE); then the C preprocessor will recognize and "expand" the macro ! 'BUFFER_SIZE'. The C compiler will see the same tokens as it would if you had written foo = (char *) malloc (1024); *************** you had written *** 1137,1143 **** easier to read when it is possible to tell at a glance which names are macros. ! The macro's body ends at the end of the `#define' line. You may continue the definition onto multiple lines, if necessary, using backslash-newline. When the macro is expanded, however, it will all come out on one line. For example, --- 1133,1139 ---- easier to read when it is possible to tell at a glance which names are macros. ! The macro's body ends at the end of the '#define' line. You may continue the definition onto multiple lines, if necessary, using backslash-newline. When the macro is expanded, however, it will all come out on one line. For example, *************** macros to expand. For example, *** 1179,1196 **** ==> BUFSIZE ==> 1024 ! `TABLESIZE' is expanded first to produce `BUFSIZE', then that macro is ! expanded to produce the final result, `1024'. ! Notice that `BUFSIZE' was not defined when `TABLESIZE' was defined. ! The `#define' for `TABLESIZE' uses exactly the expansion you ! specify--in this case, `BUFSIZE'--and does not check to see whether it ! too contains macro names. Only when you _use_ `TABLESIZE' is the ! result of its expansion scanned for more macro names. ! This makes a difference if you change the definition of `BUFSIZE' at ! some point in the source file. `TABLESIZE', defined as shown, will ! always expand using the definition of `BUFSIZE' that is currently in effect: #define BUFSIZE 1020 --- 1175,1192 ---- ==> BUFSIZE ==> 1024 ! 'TABLESIZE' is expanded first to produce 'BUFSIZE', then that macro is ! expanded to produce the final result, '1024'. ! Notice that 'BUFSIZE' was not defined when 'TABLESIZE' was defined. ! The '#define' for 'TABLESIZE' uses exactly the expansion you specify--in ! this case, 'BUFSIZE'--and does not check to see whether it too contains ! macro names. Only when you _use_ 'TABLESIZE' is the result of its ! expansion scanned for more macro names. ! This makes a difference if you change the definition of 'BUFSIZE' at ! some point in the source file. 'TABLESIZE', defined as shown, will ! always expand using the definition of 'BUFSIZE' that is currently in effect: #define BUFSIZE 1020 *************** effect: *** 1198,1204 **** #undef BUFSIZE #define BUFSIZE 37 ! Now `TABLESIZE' expands (in two stages) to `37'. If the expansion of a macro contains its own name, either directly or via intermediate macros, it is not expanded again when the expansion is --- 1194,1200 ---- #undef BUFSIZE #define BUFSIZE 37 ! Now 'TABLESIZE' expands (in two stages) to '37'. If the expansion of a macro contains its own name, either directly or via intermediate macros, it is not expanded again when the expansion is *************** File: cpp.info, Node: Function-like Mac *** 1212,1219 **** ======================== You can also define macros whose use looks like a function call. These ! are called "function-like macros". To define a function-like macro, ! you use the same `#define' directive, but you put a pair of parentheses immediately after the macro name. For example, #define lang_init() c_init() --- 1208,1215 ---- ======================== You can also define macros whose use looks like a function call. These ! are called "function-like macros". To define a function-like macro, you ! use the same '#define' directive, but you put a pair of parentheses immediately after the macro name. For example, #define lang_init() c_init() *************** same name, and you wish to use the funct *** 1231,1239 **** foo(); funcptr = foo; ! Here the call to `foo()' will use the macro, but the function ! pointer will get the address of the real function. If the macro were to ! be expanded, it would cause a syntax error. If you put spaces between the macro name and the parentheses in the macro definition, that does not define a function-like macro, it defines --- 1227,1235 ---- foo(); funcptr = foo; ! Here the call to 'foo()' will use the macro, but the function pointer ! will get the address of the real function. If the macro were to be ! expanded, it would cause a syntax error. If you put spaces between the macro name and the parentheses in the macro definition, that does not define a function-like macro, it defines *************** parentheses. *** 1246,1252 **** The first two pairs of parentheses in this expansion come from the macro. The third is the pair that was originally after the macro ! invocation. Since `lang_init' is an object-like macro, it does not consume those parentheses.  --- 1242,1248 ---- The first two pairs of parentheses in this expansion come from the macro. The third is the pair that was originally after the macro ! invocation. Since 'lang_init' is an object-like macro, it does not consume those parentheses.  *************** File: cpp.info, Node: Macro Arguments, *** 1255,1265 **** 3.3 Macro Arguments =================== ! Function-like macros can take "arguments", just like true functions. ! To define a macro that uses arguments, you insert "parameters" between ! the pair of parentheses in the macro definition that make the macro ! function-like. The parameters must be valid C identifiers, separated ! by commas and optionally whitespace. To invoke a macro that takes arguments, you write the name of the macro followed by a list of "actual arguments" in parentheses, separated --- 1251,1261 ---- 3.3 Macro Arguments =================== ! Function-like macros can take "arguments", just like true functions. To ! define a macro that uses arguments, you insert "parameters" between the ! pair of parentheses in the macro definition that make the macro ! function-like. The parameters must be valid C identifiers, separated by ! commas and optionally whitespace. To invoke a macro that takes arguments, you write the name of the macro followed by a list of "actual arguments" in parentheses, separated *************** prevent a comma from separating argument *** 1291,1309 **** macro (array[x = y, x + 1]) ! passes two arguments to `macro': `array[x = y' and `x + 1]'. If you ! want to supply `array[x = y, x + 1]' as an argument, you can write it ! as `array[(x = y, x + 1)]', which is equivalent C code. All arguments to a macro are completely macro-expanded before they are substituted into the macro body. After substitution, the complete text is scanned again for macros to expand, including the arguments. ! This rule may seem strange, but it is carefully designed so you need ! not worry about whether any function call is actually a macro ! invocation. You can run into trouble if you try to be too clever, ! though. *Note Argument Prescan::, for detailed discussion. ! For example, `min (min (a, b), c)' is first expanded to min (((a) < (b) ? (a) : (b)), (c)) --- 1287,1305 ---- macro (array[x = y, x + 1]) ! passes two arguments to 'macro': 'array[x = y' and 'x + 1]'. If you ! want to supply 'array[x = y, x + 1]' as an argument, you can write it as ! 'array[(x = y, x + 1)]', which is equivalent C code. All arguments to a macro are completely macro-expanded before they are substituted into the macro body. After substitution, the complete text is scanned again for macros to expand, including the arguments. ! This rule may seem strange, but it is carefully designed so you need not ! worry about whether any function call is actually a macro invocation. ! You can run into trouble if you try to be too clever, though. *Note ! Argument Prescan::, for detailed discussion. ! For example, 'min (min (a, b), c)' is first expanded to min (((a) < (b) ? (a) : (b)), (c)) *************** and then to *** 1319,1340 **** preprocessor (but many macros will then expand to invalid code). You cannot leave out arguments entirely; if a macro takes two arguments, there must be exactly one comma at the top level of its argument list. ! Here are some silly examples using `min': min(, b) ==> (( ) < (b) ? ( ) : (b)) min(a, ) ==> ((a ) < ( ) ? (a ) : ( )) min(,) ==> (( ) < ( ) ? ( ) : ( )) min((,),) ==> (((,)) < ( ) ? ((,)) : ( )) ! min() error--> macro "min" requires 2 arguments, but only 1 given ! min(,,) error--> macro "min" passed 3 arguments, but takes just 2 ! Whitespace is not a preprocessing token, so if a macro `foo' takes ! one argument, `foo ()' and `foo ( )' both supply it an empty argument. Previous GNU preprocessor implementations and documentation were ! incorrect on this point, insisting that a function-like macro that ! takes a single argument be passed a space if an empty argument was ! required. Macro parameters appearing inside string literals are not replaced by their corresponding actual arguments. --- 1315,1335 ---- preprocessor (but many macros will then expand to invalid code). You cannot leave out arguments entirely; if a macro takes two arguments, there must be exactly one comma at the top level of its argument list. ! Here are some silly examples using 'min': min(, b) ==> (( ) < (b) ? ( ) : (b)) min(a, ) ==> ((a ) < ( ) ? (a ) : ( )) min(,) ==> (( ) < ( ) ? ( ) : ( )) min((,),) ==> (((,)) < ( ) ? ((,)) : ( )) ! min() error-> macro "min" requires 2 arguments, but only 1 given ! min(,,) error-> macro "min" passed 3 arguments, but takes just 2 ! Whitespace is not a preprocessing token, so if a macro 'foo' takes ! one argument, 'foo ()' and 'foo ( )' both supply it an empty argument. Previous GNU preprocessor implementations and documentation were ! incorrect on this point, insisting that a function-like macro that takes ! a single argument be passed a space if an empty argument was required. Macro parameters appearing inside string literals are not replaced by their corresponding actual arguments. *************** File: cpp.info, Node: Stringification, *** 1350,1357 **** Sometimes you may want to convert a macro argument into a string constant. Parameters are not replaced inside string constants, but you ! can use the `#' preprocessing operator instead. When a macro parameter ! is used with a leading `#', the preprocessor replaces it with the literal text of the actual argument, converted to a string constant. Unlike normal parameter replacement, the argument is not macro-expanded first. This is called "stringification". --- 1345,1352 ---- Sometimes you may want to convert a macro argument into a string constant. Parameters are not replaced inside string constants, but you ! can use the '#' preprocessing operator instead. When a macro parameter ! is used with a leading '#', the preprocessor replaces it with the literal text of the actual argument, converted to a string constant. Unlike normal parameter replacement, the argument is not macro-expanded first. This is called "stringification". *************** first. This is called "stringification" *** 1359,1367 **** There is no way to combine an argument with surrounding text and stringify it all together. Instead, you can write a series of adjacent string constants and stringified arguments. The preprocessor will ! replace the stringified arguments with string constants. The C ! compiler will then combine all the adjacent string constants into one ! long string. Here is an example of a macro definition that uses stringification: --- 1354,1362 ---- There is no way to combine an argument with surrounding text and stringify it all together. Instead, you can write a series of adjacent string constants and stringified arguments. The preprocessor will ! replace the stringified arguments with string constants. The C compiler ! will then combine all the adjacent string constants into one long ! string. Here is an example of a macro definition that uses stringification: *************** long string. *** 1373,1395 **** ==> do { if (x == 0) fprintf (stderr, "Warning: " "x == 0" "\n"); } while (0); ! The argument for `EXP' is substituted once, as-is, into the `if' ! statement, and once, stringified, into the argument to `fprintf'. If ! `x' were a macro, it would be expanded in the `if' statement, but not ! in the string. ! The `do' and `while (0)' are a kludge to make it possible to write ! `WARN_IF (ARG);', which the resemblance of `WARN_IF' to a function ! would make C programmers want to do; see *note Swallowing the ! Semicolon::. Stringification in C involves more than putting double-quote characters around the fragment. The preprocessor backslash-escapes the ! quotes surrounding embedded string constants, and all backslashes ! within string and character constants, in order to get a valid C string ! constant with the proper contents. Thus, stringifying `p = "foo\n";' results in "p = \"foo\\n\";". However, backslashes that are not inside ! string or character constants are not duplicated: `\n' by itself stringifies to "\n". All leading and trailing whitespace in text being stringified is --- 1368,1389 ---- ==> do { if (x == 0) fprintf (stderr, "Warning: " "x == 0" "\n"); } while (0); ! The argument for 'EXP' is substituted once, as-is, into the 'if' ! statement, and once, stringified, into the argument to 'fprintf'. If ! 'x' were a macro, it would be expanded in the 'if' statement, but not in ! the string. ! The 'do' and 'while (0)' are a kludge to make it possible to write ! 'WARN_IF (ARG);', which the resemblance of 'WARN_IF' to a function would ! make C programmers want to do; see *note Swallowing the Semicolon::. Stringification in C involves more than putting double-quote characters around the fragment. The preprocessor backslash-escapes the ! quotes surrounding embedded string constants, and all backslashes within ! string and character constants, in order to get a valid C string ! constant with the proper contents. Thus, stringifying 'p = "foo\n";' results in "p = \"foo\\n\";". However, backslashes that are not inside ! string or character constants are not duplicated: '\n' by itself stringifies to "\n". All leading and trailing whitespace in text being stringified is *************** you have to use two levels of macros. *** 1414,1424 **** ==> str (4) ==> "4" ! `s' is stringified when it is used in `str', so it is not ! macro-expanded first. But `s' is an ordinary argument to `xstr', so it ! is completely macro-expanded before `xstr' itself is expanded (*note ! Argument Prescan::). Therefore, by the time `str' gets to its ! argument, it has already been macro-expanded.  File: cpp.info, Node: Concatenation, Next: Variadic Macros, Prev: Stringification, Up: Macros --- 1408,1418 ---- ==> str (4) ==> "4" ! 's' is stringified when it is used in 'str', so it is not ! macro-expanded first. But 's' is an ordinary argument to 'xstr', so it ! is completely macro-expanded before 'xstr' itself is expanded (*note ! Argument Prescan::). Therefore, by the time 'str' gets to its argument, ! it has already been macro-expanded.  File: cpp.info, Node: Concatenation, Next: Variadic Macros, Prev: Stringification, Up: Macros *************** File: cpp.info, Node: Concatenation, N *** 1427,1465 **** ================= It is often useful to merge two tokens into one while expanding macros. ! This is called "token pasting" or "token concatenation". The `##' preprocessing operator performs token pasting. When a macro is ! expanded, the two tokens on either side of each `##' operator are ! combined into a single token, which then replaces the `##' and the two original tokens in the macro expansion. Usually both will be identifiers, or one will be an identifier and the other a preprocessing number. When pasted, they make a longer identifier. This isn't the only valid case. It is also possible to concatenate two numbers (or a ! number and a name, such as `1.5' and `e3') into a number. Also, ! multi-character operators such as `+=' can be formed by token pasting. However, two tokens that don't together form a valid token cannot be ! pasted together. For example, you cannot concatenate `x' with `+' in either order. If you try, the preprocessor issues a warning and emits the two tokens. Whether it puts white space between the tokens is ! undefined. It is common to find unnecessary uses of `##' in complex macros. If you get this warning, it is likely that you can simply ! remove the `##'. ! Both the tokens combined by `##' could come from the macro body, but you could just as well write them as one token in the first place. Token pasting is most useful when one or both of the tokens comes from a ! macro argument. If either of the tokens next to an `##' is a parameter ! name, it is replaced by its actual argument before `##' executes. As with stringification, the actual argument is not macro-expanded first. ! If the argument is empty, that `##' has no effect. Keep in mind that the C preprocessor converts comments to whitespace before macros are even considered. Therefore, you cannot create a ! comment by concatenating `/' and `*'. You can put as much whitespace ! between `##' and its operands as you like, including comments, and you ! can put comments in arguments that will be concatenated. However, it ! is an error if `##' appears at either end of a macro body. Consider a C program that interprets named commands. There probably needs to be a table of commands, perhaps an array of structures declared --- 1421,1459 ---- ================= It is often useful to merge two tokens into one while expanding macros. ! This is called "token pasting" or "token concatenation". The '##' preprocessing operator performs token pasting. When a macro is ! expanded, the two tokens on either side of each '##' operator are ! combined into a single token, which then replaces the '##' and the two original tokens in the macro expansion. Usually both will be identifiers, or one will be an identifier and the other a preprocessing number. When pasted, they make a longer identifier. This isn't the only valid case. It is also possible to concatenate two numbers (or a ! number and a name, such as '1.5' and 'e3') into a number. Also, ! multi-character operators such as '+=' can be formed by token pasting. However, two tokens that don't together form a valid token cannot be ! pasted together. For example, you cannot concatenate 'x' with '+' in either order. If you try, the preprocessor issues a warning and emits the two tokens. Whether it puts white space between the tokens is ! undefined. It is common to find unnecessary uses of '##' in complex macros. If you get this warning, it is likely that you can simply ! remove the '##'. ! Both the tokens combined by '##' could come from the macro body, but you could just as well write them as one token in the first place. Token pasting is most useful when one or both of the tokens comes from a ! macro argument. If either of the tokens next to an '##' is a parameter ! name, it is replaced by its actual argument before '##' executes. As with stringification, the actual argument is not macro-expanded first. ! If the argument is empty, that '##' has no effect. Keep in mind that the C preprocessor converts comments to whitespace before macros are even considered. Therefore, you cannot create a ! comment by concatenating '/' and '*'. You can put as much whitespace ! between '##' and its operands as you like, including comments, and you ! can put comments in arguments that will be concatenated. However, it is ! an error if '##' appears at either end of a macro body. Consider a C program that interprets named commands. There probably needs to be a table of commands, perhaps an array of structures declared *************** as follows: *** 1478,1489 **** ... }; ! It would be cleaner not to have to give each command name twice, ! once in the string constant and once in the function name. A macro ! which takes the name of a command as an argument can make this ! unnecessary. The string constant can be created with stringification, ! and the function name by concatenating the argument with `_command'. ! Here is how it is done: #define COMMAND(NAME) { #NAME, NAME ## _command } --- 1472,1483 ---- ... }; ! It would be cleaner not to have to give each command name twice, once ! in the string constant and once in the function name. A macro which ! takes the name of a command as an argument can make this unnecessary. ! The string constant can be created with stringification, and the ! function name by concatenating the argument with '_command'. Here is ! how it is done: #define COMMAND(NAME) { #NAME, NAME ## _command } *************** a function. Here is an example: *** 1509,1515 **** This kind of macro is called "variadic". When the macro is invoked, all the tokens in its argument list after the last named argument (this macro has none), including any commas, become the "variable argument". ! This sequence of tokens replaces the identifier `__VA_ARGS__' in the macro body wherever it appears. Thus, we have this expansion: eprintf ("%s:%d: ", input_file, lineno) --- 1503,1509 ---- This kind of macro is called "variadic". When the macro is invoked, all the tokens in its argument list after the last named argument (this macro has none), including any commas, become the "variable argument". ! This sequence of tokens replaces the identifier '__VA_ARGS__' in the macro body wherever it appears. Thus, we have this expansion: eprintf ("%s:%d: ", input_file, lineno) *************** macro body wherever it appears. Thus, w *** 1517,1539 **** The variable argument is completely macro-expanded before it is inserted into the macro expansion, just like an ordinary argument. You ! may use the `#' and `##' operators to stringify the variable argument ! or to paste its leading or trailing token with another token. (But see ! below for an important special case for `##'.) If your macro is complicated, you may want a more descriptive name ! for the variable argument than `__VA_ARGS__'. CPP permits this, as an ! extension. You may write an argument name immediately before the ! `...'; that name is used for the variable argument. The `eprintf' ! macro above could be written #define eprintf(args...) fprintf (stderr, args) ! using this extension. You cannot use `__VA_ARGS__' and this extension in the same macro. You can have named arguments as well as variable arguments in a ! variadic macro. We could define `eprintf' like this, instead: #define eprintf(format, ...) fprintf (stderr, format, __VA_ARGS__) --- 1511,1533 ---- The variable argument is completely macro-expanded before it is inserted into the macro expansion, just like an ordinary argument. You ! may use the '#' and '##' operators to stringify the variable argument or ! to paste its leading or trailing token with another token. (But see ! below for an important special case for '##'.) If your macro is complicated, you may want a more descriptive name ! for the variable argument than '__VA_ARGS__'. CPP permits this, as an ! extension. You may write an argument name immediately before the '...'; ! that name is used for the variable argument. The 'eprintf' macro above ! could be written #define eprintf(args...) fprintf (stderr, args) ! using this extension. You cannot use '__VA_ARGS__' and this extension in the same macro. You can have named arguments as well as variable arguments in a ! variadic macro. We could define 'eprintf' like this, instead: #define eprintf(format, ...) fprintf (stderr, format, __VA_ARGS__) *************** This formulation looks more descriptive, *** 1541,1548 **** flexible: you must now supply at least one argument after the format string. In standard C, you cannot omit the comma separating the named argument from the variable arguments. Furthermore, if you leave the ! variable argument empty, you will get a syntax error, because there ! will be an extra comma after the format string. eprintf("success!\n", ); ==> fprintf(stderr, "success!\n", ); --- 1535,1542 ---- flexible: you must now supply at least one argument after the format string. In standard C, you cannot omit the comma separating the named argument from the variable arguments. Furthermore, if you leave the ! variable argument empty, you will get a syntax error, because there will ! be an extra comma after the format string. eprintf("success!\n", ); ==> fprintf(stderr, "success!\n", ); *************** First, you are allowed to leave the vari *** 1553,1598 **** eprintf ("success!\n") ==> fprintf(stderr, "success!\n", ); ! Second, the `##' token paste operator has a special meaning when placed between a comma and a variable argument. If you write #define eprintf(format, ...) fprintf (stderr, format, ##__VA_ARGS__) ! and the variable argument is left out when the `eprintf' macro is used, ! then the comma before the `##' will be deleted. This does _not_ happen ! if you pass an empty argument, nor does it happen if the token ! preceding `##' is anything other than a comma. eprintf ("success!\n") ==> fprintf(stderr, "success!\n"); The above explanation is ambiguous about the case where the only macro ! parameter is a variable arguments parameter, as it is meaningless to ! try to distinguish whether no argument at all is an empty argument or a ! missing argument. In this case the C99 standard is clear that the ! comma must remain, however the existing GCC extension used to swallow ! the comma. So CPP retains the comma when conforming to a specific C standard, and drops it otherwise. ! C99 mandates that the only place the identifier `__VA_ARGS__' can appear is in the replacement list of a variadic macro. It may not be ! used as a macro name, macro argument name, or within a different type ! of macro. It may also be forbidden in open text; the standard is ambiguous. We recommend you avoid using it except for its defined purpose. Variadic macros are a new feature in C99. GNU CPP has supported them ! for a long time, but only with a named variable argument (`args...', ! not `...' and `__VA_ARGS__'). If you are concerned with portability to previous versions of GCC, you should use only named variable arguments. On the other hand, if you are concerned with portability to other ! conforming implementations of C99, you should use only `__VA_ARGS__'. Previous versions of CPP implemented the comma-deletion extension much more generally. We have restricted it in this release to minimize the differences from C99. To get the same effect with both this and ! previous versions of GCC, the token preceding the special `##' must be ! a comma, and there must be white space between that comma and whatever comes immediately before it: #define eprintf(format, args...) fprintf (stderr, format , ##args) --- 1547,1592 ---- eprintf ("success!\n") ==> fprintf(stderr, "success!\n", ); ! Second, the '##' token paste operator has a special meaning when placed between a comma and a variable argument. If you write #define eprintf(format, ...) fprintf (stderr, format, ##__VA_ARGS__) ! and the variable argument is left out when the 'eprintf' macro is used, ! then the comma before the '##' will be deleted. This does _not_ happen ! if you pass an empty argument, nor does it happen if the token preceding ! '##' is anything other than a comma. eprintf ("success!\n") ==> fprintf(stderr, "success!\n"); The above explanation is ambiguous about the case where the only macro ! parameter is a variable arguments parameter, as it is meaningless to try ! to distinguish whether no argument at all is an empty argument or a ! missing argument. In this case the C99 standard is clear that the comma ! must remain, however the existing GCC extension used to swallow the ! comma. So CPP retains the comma when conforming to a specific C standard, and drops it otherwise. ! C99 mandates that the only place the identifier '__VA_ARGS__' can appear is in the replacement list of a variadic macro. It may not be ! used as a macro name, macro argument name, or within a different type of ! macro. It may also be forbidden in open text; the standard is ambiguous. We recommend you avoid using it except for its defined purpose. Variadic macros are a new feature in C99. GNU CPP has supported them ! for a long time, but only with a named variable argument ('args...', not ! '...' and '__VA_ARGS__'). If you are concerned with portability to previous versions of GCC, you should use only named variable arguments. On the other hand, if you are concerned with portability to other ! conforming implementations of C99, you should use only '__VA_ARGS__'. Previous versions of CPP implemented the comma-deletion extension much more generally. We have restricted it in this release to minimize the differences from C99. To get the same effect with both this and ! previous versions of GCC, the token preceding the special '##' must be a ! comma, and there must be white space between that comma and whatever comes immediately before it: #define eprintf(format, args...) fprintf (stderr, format , ##args) *************** File: cpp.info, Node: Standard Predefin *** 1626,1650 **** -------------------------------- The standard predefined macros are specified by the relevant language ! standards, so they are available with all compilers that implement ! those standards. Older compilers may not provide all of them. Their ! names all start with double underscores. ! `__FILE__' This macro expands to the name of the current input file, in the form of a C string constant. This is the path by which the preprocessor opened the file, not the short name specified in ! `#include' or as the input file name argument. For example, ! `"/usr/local/include/myheader.h"' is a possible expansion of this macro. ! `__LINE__' ! This macro expands to the current input line number, in the form ! of a decimal integer constant. While we call it a predefined ! macro, it's a pretty strange macro, since its "definition" changes ! with each new line of source code. ! `__FILE__' and `__LINE__' are useful in generating an error message to report an inconsistency detected by the program; the message can state the source line at which the inconsistency was detected. For example, --- 1620,1644 ---- -------------------------------- The standard predefined macros are specified by the relevant language ! standards, so they are available with all compilers that implement those ! standards. Older compilers may not provide all of them. Their names ! all start with double underscores. ! '__FILE__' This macro expands to the name of the current input file, in the form of a C string constant. This is the path by which the preprocessor opened the file, not the short name specified in ! '#include' or as the input file name argument. For example, ! '"/usr/local/include/myheader.h"' is a possible expansion of this macro. ! '__LINE__' ! This macro expands to the current input line number, in the form of ! a decimal integer constant. While we call it a predefined macro, ! it's a pretty strange macro, since its "definition" changes with ! each new line of source code. ! '__FILE__' and '__LINE__' are useful in generating an error message to report an inconsistency detected by the program; the message can state the source line at which the inconsistency was detected. For example, *************** example, *** 1654,1755 **** "%d at %s, line %d.", length, __FILE__, __LINE__); ! An `#include' directive changes the expansions of `__FILE__' and ! `__LINE__' to correspond to the included file. At the end of that ! file, when processing resumes on the input file that contained the ! `#include' directive, the expansions of `__FILE__' and `__LINE__' ! revert to the values they had before the `#include' (but `__LINE__' is ! then incremented by one as processing moves to the line after the ! `#include'). ! A `#line' directive changes `__LINE__', and may change `__FILE__' as well. *Note Line Control::. ! C99 introduces `__func__', and GCC has provided `__FUNCTION__' for a ! long time. Both of these are strings containing the name of the ! current function (there are slight semantic differences; see the GCC ! manual). Neither of them is a macro; the preprocessor does not know the ! name of the current function. They tend to be useful in conjunction ! with `__FILE__' and `__LINE__', though. ! `__DATE__' This macro expands to a string constant that describes the date on which the preprocessor is being run. The string constant contains ! eleven characters and looks like `"Feb 12 1996"'. If the day of the month is less than 10, it is padded with a space on the left. If GCC cannot determine the current date, it will emit a warning ! message (once per compilation) and `__DATE__' will expand to ! `"??? ?? ????"'. ! `__TIME__' This macro expands to a string constant that describes the time at which the preprocessor is being run. The string constant contains ! eight characters and looks like `"23:59:01"'. If GCC cannot determine the current time, it will emit a warning ! message (once per compilation) and `__TIME__' will expand to ! `"??:??:??"'. ! `__STDC__' In normal operation, this macro expands to the constant 1, to signify that this compiler conforms to ISO Standard C. If GNU CPP is used with a compiler other than GCC, this is not necessarily true; however, the preprocessor always conforms to the standard ! unless the `-traditional-cpp' option is used. ! This macro is not defined if the `-traditional-cpp' option is used. On some hosts, the system compiler uses a different convention, ! where `__STDC__' is normally 0, but is 1 if the user specifies strict conformance to the C Standard. CPP follows the host ! convention when processing system header files, but when ! processing user files `__STDC__' is always 1. This has been ! reported to cause problems; for instance, some versions of Solaris ! provide X Windows headers that expect `__STDC__' to be either ! undefined or 1. *Note Invocation::. ! `__STDC_VERSION__' This macro expands to the C Standard's version number, a long ! integer constant of the form `YYYYMML' where YYYY and MM are the year and month of the Standard version. This signifies which version of the C Standard the compiler conforms to. Like ! `__STDC__', this is not necessarily accurate for the entire implementation, unless GNU CPP is being used with GCC. ! The value `199409L' signifies the 1989 C standard as amended in ! 1994, which is the current default; the value `199901L' signifies ! the 1999 revision of the C standard. Support for the 1999 ! revision is not yet complete. ! This macro is not defined if the `-traditional-cpp' option is ! used, nor when compiling C++ or Objective-C. ! `__STDC_HOSTED__' This macro is defined, with value 1, if the compiler's target is a "hosted environment". A hosted environment has the complete facilities of the standard C library available. ! `__cplusplus' This macro is defined when the C++ compiler is in use. You can use ! `__cplusplus' to test whether a header is compiled by a C compiler ! or a C++ compiler. This macro is similar to `__STDC_VERSION__', in ! that it expands to a version number. A fully conforming ! implementation of the 1998 C++ standard will define this macro to ! `199711L'. The GNU C++ compiler is not yet fully conforming, so ! it uses `1' instead. It is hoped to complete the implementation ! of standard C++ in the near future. ! `__OBJC__' This macro is defined, with value 1, when the Objective-C compiler ! is in use. You can use `__OBJC__' to test whether a header is compiled by a C compiler or an Objective-C compiler. ! `__ASSEMBLER__' This macro is defined with value 1 when preprocessing assembly language. -  File: cpp.info, Node: Common Predefined Macros, Next: System-specific Predefined Macros, Prev: Standard Predefined Macros, Up: Predefined Macros --- 1648,1746 ---- "%d at %s, line %d.", length, __FILE__, __LINE__); ! An '#include' directive changes the expansions of '__FILE__' and ! '__LINE__' to correspond to the included file. At the end of that file, ! when processing resumes on the input file that contained the '#include' ! directive, the expansions of '__FILE__' and '__LINE__' revert to the ! values they had before the '#include' (but '__LINE__' is then ! incremented by one as processing moves to the line after the ! '#include'). ! A '#line' directive changes '__LINE__', and may change '__FILE__' as well. *Note Line Control::. ! C99 introduces '__func__', and GCC has provided '__FUNCTION__' for a ! long time. Both of these are strings containing the name of the current ! function (there are slight semantic differences; see the GCC manual). ! Neither of them is a macro; the preprocessor does not know the name of ! the current function. They tend to be useful in conjunction with ! '__FILE__' and '__LINE__', though. ! '__DATE__' This macro expands to a string constant that describes the date on which the preprocessor is being run. The string constant contains ! eleven characters and looks like '"Feb 12 1996"'. If the day of the month is less than 10, it is padded with a space on the left. If GCC cannot determine the current date, it will emit a warning ! message (once per compilation) and '__DATE__' will expand to ! '"??? ?? ????"'. ! '__TIME__' This macro expands to a string constant that describes the time at which the preprocessor is being run. The string constant contains ! eight characters and looks like '"23:59:01"'. If GCC cannot determine the current time, it will emit a warning ! message (once per compilation) and '__TIME__' will expand to ! '"??:??:??"'. ! '__STDC__' In normal operation, this macro expands to the constant 1, to signify that this compiler conforms to ISO Standard C. If GNU CPP is used with a compiler other than GCC, this is not necessarily true; however, the preprocessor always conforms to the standard ! unless the '-traditional-cpp' option is used. ! This macro is not defined if the '-traditional-cpp' option is used. On some hosts, the system compiler uses a different convention, ! where '__STDC__' is normally 0, but is 1 if the user specifies strict conformance to the C Standard. CPP follows the host ! convention when processing system header files, but when processing ! user files '__STDC__' is always 1. This has been reported to cause ! problems; for instance, some versions of Solaris provide X Windows ! headers that expect '__STDC__' to be either undefined or 1. *Note ! Invocation::. ! '__STDC_VERSION__' This macro expands to the C Standard's version number, a long ! integer constant of the form 'YYYYMML' where YYYY and MM are the year and month of the Standard version. This signifies which version of the C Standard the compiler conforms to. Like ! '__STDC__', this is not necessarily accurate for the entire implementation, unless GNU CPP is being used with GCC. ! The value '199409L' signifies the 1989 C standard as amended in ! 1994, which is the current default; the value '199901L' signifies ! the 1999 revision of the C standard. Support for the 1999 revision ! is not yet complete. ! This macro is not defined if the '-traditional-cpp' option is used, ! nor when compiling C++ or Objective-C. ! '__STDC_HOSTED__' This macro is defined, with value 1, if the compiler's target is a "hosted environment". A hosted environment has the complete facilities of the standard C library available. ! '__cplusplus' This macro is defined when the C++ compiler is in use. You can use ! '__cplusplus' to test whether a header is compiled by a C compiler ! or a C++ compiler. This macro is similar to '__STDC_VERSION__', in ! that it expands to a version number. Depending on the language ! standard selected, the value of the macro is '199711L', as mandated ! by the 1998 C++ standard, or '201103L', per the 2011 C++ standard. ! '__OBJC__' This macro is defined, with value 1, when the Objective-C compiler ! is in use. You can use '__OBJC__' to test whether a header is compiled by a C compiler or an Objective-C compiler. ! '__ASSEMBLER__' This macro is defined with value 1 when preprocessing assembly language.  File: cpp.info, Node: Common Predefined Macros, Next: System-specific Predefined Macros, Prev: Standard Predefined Macros, Up: Predefined Macros *************** with the same meanings regardless of the *** 1761,1802 **** which you are using GNU C or GNU Fortran. Their names all start with double underscores. ! `__COUNTER__' This macro expands to sequential integral values starting from 0. ! In conjunction with the `##' operator, this provides a convenient ! means to generate unique identifiers. Care must be taken to ! ensure that `__COUNTER__' is not expanded prior to inclusion of precompiled headers which use it. Otherwise, the precompiled headers will not be used. ! `__GFORTRAN__' The GNU Fortran compiler defines this. ! `__GNUC__' ! `__GNUC_MINOR__' ! `__GNUC_PATCHLEVEL__' These macros are defined by all GNU compilers that use the C preprocessor: C, C++, Objective-C and Fortran. Their values are the major version, minor version, and patch level of the compiler, as integer constants. For example, GCC 3.2.1 will define ! `__GNUC__' to 3, `__GNUC_MINOR__' to 2, and `__GNUC_PATCHLEVEL__' ! to 1. These macros are also defined if you invoke the ! preprocessor directly. ! `__GNUC_PATCHLEVEL__' is new to GCC 3.0; it is also present in the widely-used development snapshots leading up to 3.0 (which identify themselves as GCC 2.96 or 2.97, depending on which snapshot you have). If all you need to know is whether or not your program is being compiled by GCC, or a non-GCC compiler that claims to accept the ! GNU C dialects, you can simply test `__GNUC__'. If you need to write code which depends on a specific version, you must be more ! careful. Each time the minor version is increased, the patch ! level is reset to zero; each time the major version is increased ! (which happens rarely), the minor version and patch level are ! reset. If you wish to use the predefined macros directly in the ! conditional, you will need to write it like this: /* Test for GCC > 3.2.0 */ #if __GNUC__ > 3 || \ --- 1752,1793 ---- which you are using GNU C or GNU Fortran. Their names all start with double underscores. ! '__COUNTER__' This macro expands to sequential integral values starting from 0. ! In conjunction with the '##' operator, this provides a convenient ! means to generate unique identifiers. Care must be taken to ensure ! that '__COUNTER__' is not expanded prior to inclusion of precompiled headers which use it. Otherwise, the precompiled headers will not be used. ! '__GFORTRAN__' The GNU Fortran compiler defines this. ! '__GNUC__' ! '__GNUC_MINOR__' ! '__GNUC_PATCHLEVEL__' These macros are defined by all GNU compilers that use the C preprocessor: C, C++, Objective-C and Fortran. Their values are the major version, minor version, and patch level of the compiler, as integer constants. For example, GCC 3.2.1 will define ! '__GNUC__' to 3, '__GNUC_MINOR__' to 2, and '__GNUC_PATCHLEVEL__' ! to 1. These macros are also defined if you invoke the preprocessor ! directly. ! '__GNUC_PATCHLEVEL__' is new to GCC 3.0; it is also present in the widely-used development snapshots leading up to 3.0 (which identify themselves as GCC 2.96 or 2.97, depending on which snapshot you have). If all you need to know is whether or not your program is being compiled by GCC, or a non-GCC compiler that claims to accept the ! GNU C dialects, you can simply test '__GNUC__'. If you need to write code which depends on a specific version, you must be more ! careful. Each time the minor version is increased, the patch level ! is reset to zero; each time the major version is increased (which ! happens rarely), the minor version and patch level are reset. If ! you wish to use the predefined macros directly in the conditional, ! you will need to write it like this: /* Test for GCC > 3.2.0 */ #if __GNUC__ > 3 || \ *************** double underscores. *** 1816,1863 **** Many people find this form easier to understand. ! `__GNUG__' The GNU C++ compiler defines this. Testing it is equivalent to ! testing `(__GNUC__ && __cplusplus)'. ! `__STRICT_ANSI__' ! GCC defines this macro if and only if the `-ansi' switch, or a ! `-std' switch specifying strict conformance to some version of ISO ! C or ISO C++, was specified when GCC was invoked. It is defined ! to `1'. This macro exists primarily to direct GNU libc's header ! files to restrict their definitions to the minimal set found in ! the 1989 C standard. ! `__BASE_FILE__' This macro expands to the name of the main input file, in the form of a C string constant. This is the source file that was specified on the command line of the preprocessor or C compiler. ! `__INCLUDE_LEVEL__' This macro expands to a decimal integer constant that represents the depth of nesting in include files. The value of this macro is ! incremented on every `#include' directive and decremented at the end of every included file. It starts out at 0, its value within the base file specified on the command line. ! `__ELF__' This macro is defined if the target uses the ELF object format. ! `__VERSION__' ! This macro expands to a string constant which describes the ! version of the compiler in use. You should not rely on its ! contents having any particular form, but it can be counted on to ! contain at least the release number. ! `__OPTIMIZE__' ! `__OPTIMIZE_SIZE__' ! `__NO_INLINE__' ! These macros describe the compilation mode. `__OPTIMIZE__' is ! defined in all optimizing compilations. `__OPTIMIZE_SIZE__' is defined if the compiler is optimizing for size, not speed. ! `__NO_INLINE__' is defined if no functions will be inlined into their callers (when not optimizing, or when inlining has been ! specifically disabled by `-fno-inline'). These macros cause certain GNU header files to provide optimized definitions, using macros or inline functions, of system library --- 1807,1854 ---- Many people find this form easier to understand. ! '__GNUG__' The GNU C++ compiler defines this. Testing it is equivalent to ! testing '(__GNUC__ && __cplusplus)'. ! '__STRICT_ANSI__' ! GCC defines this macro if and only if the '-ansi' switch, or a ! '-std' switch specifying strict conformance to some version of ISO ! C or ISO C++, was specified when GCC was invoked. It is defined to ! '1'. This macro exists primarily to direct GNU libc's header files ! to restrict their definitions to the minimal set found in the 1989 ! C standard. ! '__BASE_FILE__' This macro expands to the name of the main input file, in the form of a C string constant. This is the source file that was specified on the command line of the preprocessor or C compiler. ! '__INCLUDE_LEVEL__' This macro expands to a decimal integer constant that represents the depth of nesting in include files. The value of this macro is ! incremented on every '#include' directive and decremented at the end of every included file. It starts out at 0, its value within the base file specified on the command line. ! '__ELF__' This macro is defined if the target uses the ELF object format. ! '__VERSION__' ! This macro expands to a string constant which describes the version ! of the compiler in use. You should not rely on its contents having ! any particular form, but it can be counted on to contain at least ! the release number. ! '__OPTIMIZE__' ! '__OPTIMIZE_SIZE__' ! '__NO_INLINE__' ! These macros describe the compilation mode. '__OPTIMIZE__' is ! defined in all optimizing compilations. '__OPTIMIZE_SIZE__' is defined if the compiler is optimizing for size, not speed. ! '__NO_INLINE__' is defined if no functions will be inlined into their callers (when not optimizing, or when inlining has been ! specifically disabled by '-fno-inline'). These macros cause certain GNU header files to provide optimized definitions, using macros or inline functions, of system library *************** double underscores. *** 1865,2080 **** make sure that programs will execute with the same effect whether or not they are defined. If they are defined, their value is 1. ! `__GNUC_GNU_INLINE__' ! GCC defines this macro if functions declared `inline' will be handled in GCC's traditional gnu90 mode. Object files will contain ! externally visible definitions of all functions declared `inline' ! without `extern' or `static'. They will not contain any ! definitions of any functions declared `extern inline'. ! `__GNUC_STDC_INLINE__' ! GCC defines this macro if functions declared `inline' will be handled according to the ISO C99 standard. Object files will contain externally visible definitions of all functions declared ! `extern inline'. They will not contain definitions of any ! functions declared `inline' without `extern'. ! If this macro is defined, GCC supports the `gnu_inline' function attribute as a way to always get the gnu90 behavior. Support for ! this and `__GNUC_GNU_INLINE__' was added in GCC 4.1.3. If neither ! macro is defined, an older version of GCC is being used: `inline' ! functions will be compiled in gnu90 mode, and the `gnu_inline' function attribute will not be recognized. ! `__CHAR_UNSIGNED__' ! GCC defines this macro if and only if the data type `char' is unsigned on the target machine. It exists to cause the standard ! header file `limits.h' to work correctly. You should not use this macro yourself; instead, refer to the standard macros defined in ! `limits.h'. ! `__WCHAR_UNSIGNED__' ! Like `__CHAR_UNSIGNED__', this macro is defined if and only if the ! data type `wchar_t' is unsigned and the front-end is in C++ mode. ! `__REGISTER_PREFIX__' This macro expands to a single token (not a string constant) which is the prefix applied to CPU register names in assembly language for this target. You can use it to write assembly that is usable ! in multiple environments. For example, in the `m68k-aout' ! environment it expands to nothing, but in the `m68k-coff' ! environment it expands to a single `%'. ! `__USER_LABEL_PREFIX__' This macro expands to a single token which is the prefix applied to user labels (symbols visible to C code) in assembly. For example, ! in the `m68k-aout' environment it expands to an `_', but in the ! `m68k-coff' environment it expands to nothing. This macro will have the correct definition even if ! `-f(no-)underscores' is in use, but it will not be correct if target-specific options that adjust this prefix are used (e.g. the ! OSF/rose `-mno-underscores' option). ! `__SIZE_TYPE__' ! `__PTRDIFF_TYPE__' ! `__WCHAR_TYPE__' ! `__WINT_TYPE__' ! `__INTMAX_TYPE__' ! `__UINTMAX_TYPE__' ! `__SIG_ATOMIC_TYPE__' ! `__INT8_TYPE__' ! `__INT16_TYPE__' ! `__INT32_TYPE__' ! `__INT64_TYPE__' ! `__UINT8_TYPE__' ! `__UINT16_TYPE__' ! `__UINT32_TYPE__' ! `__UINT64_TYPE__' ! `__INT_LEAST8_TYPE__' ! `__INT_LEAST16_TYPE__' ! `__INT_LEAST32_TYPE__' ! `__INT_LEAST64_TYPE__' ! `__UINT_LEAST8_TYPE__' ! `__UINT_LEAST16_TYPE__' ! `__UINT_LEAST32_TYPE__' ! `__UINT_LEAST64_TYPE__' ! `__INT_FAST8_TYPE__' ! `__INT_FAST16_TYPE__' ! `__INT_FAST32_TYPE__' ! `__INT_FAST64_TYPE__' ! `__UINT_FAST8_TYPE__' ! `__UINT_FAST16_TYPE__' ! `__UINT_FAST32_TYPE__' ! `__UINT_FAST64_TYPE__' ! `__INTPTR_TYPE__' ! `__UINTPTR_TYPE__' These macros are defined to the correct underlying types for the ! `size_t', `ptrdiff_t', `wchar_t', `wint_t', `intmax_t', ! `uintmax_t', `sig_atomic_t', `int8_t', `int16_t', `int32_t', ! `int64_t', `uint8_t', `uint16_t', `uint32_t', `uint64_t', ! `int_least8_t', `int_least16_t', `int_least32_t', `int_least64_t', ! `uint_least8_t', `uint_least16_t', `uint_least32_t', ! `uint_least64_t', `int_fast8_t', `int_fast16_t', `int_fast32_t', ! `int_fast64_t', `uint_fast8_t', `uint_fast16_t', `uint_fast32_t', ! `uint_fast64_t', `intptr_t', and `uintptr_t' typedefs, respectively. They exist to make the standard header files ! `stddef.h', `stdint.h', and `wchar.h' work correctly. You should not use these macros directly; instead, include the appropriate headers and use the typedefs. Some of these macros may not be ! defined on particular systems if GCC does not provide a `stdint.h' header on those systems. ! `__CHAR_BIT__' Defined to the number of bits used in the representation of the ! `char' data type. It exists to make the standard header given numerical limits work correctly. You should not use this macro directly; instead, include the appropriate headers. ! `__SCHAR_MAX__' ! `__WCHAR_MAX__' ! `__SHRT_MAX__' ! `__INT_MAX__' ! `__LONG_MAX__' ! `__LONG_LONG_MAX__' ! `__WINT_MAX__' ! `__SIZE_MAX__' ! `__PTRDIFF_MAX__' ! `__INTMAX_MAX__' ! `__UINTMAX_MAX__' ! `__SIG_ATOMIC_MAX__' ! `__INT8_MAX__' ! `__INT16_MAX__' ! `__INT32_MAX__' ! `__INT64_MAX__' ! `__UINT8_MAX__' ! `__UINT16_MAX__' ! `__UINT32_MAX__' ! `__UINT64_MAX__' ! `__INT_LEAST8_MAX__' ! `__INT_LEAST16_MAX__' ! `__INT_LEAST32_MAX__' ! `__INT_LEAST64_MAX__' ! `__UINT_LEAST8_MAX__' ! `__UINT_LEAST16_MAX__' ! `__UINT_LEAST32_MAX__' ! `__UINT_LEAST64_MAX__' ! `__INT_FAST8_MAX__' ! `__INT_FAST16_MAX__' ! `__INT_FAST32_MAX__' ! `__INT_FAST64_MAX__' ! `__UINT_FAST8_MAX__' ! `__UINT_FAST16_MAX__' ! `__UINT_FAST32_MAX__' ! `__UINT_FAST64_MAX__' ! `__INTPTR_MAX__' ! `__UINTPTR_MAX__' ! `__WCHAR_MIN__' ! `__WINT_MIN__' ! `__SIG_ATOMIC_MIN__' ! Defined to the maximum value of the `signed char', `wchar_t', ! `signed short', `signed int', `signed long', `signed long long', ! `wint_t', `size_t', `ptrdiff_t', `intmax_t', `uintmax_t', ! `sig_atomic_t', `int8_t', `int16_t', `int32_t', `int64_t', ! `uint8_t', `uint16_t', `uint32_t', `uint64_t', `int_least8_t', ! `int_least16_t', `int_least32_t', `int_least64_t', ! `uint_least8_t', `uint_least16_t', `uint_least32_t', ! `uint_least64_t', `int_fast8_t', `int_fast16_t', `int_fast32_t', ! `int_fast64_t', `uint_fast8_t', `uint_fast16_t', `uint_fast32_t', ! `uint_fast64_t', `intptr_t', and `uintptr_t' types and to the ! minimum value of the `wchar_t', `wint_t', and `sig_atomic_t' types ! respectively. They exist to make the standard header given ! numerical limits work correctly. You should not use these macros ! directly; instead, include the appropriate headers. Some of these ! macros may not be defined on particular systems if GCC does not ! provide a `stdint.h' header on those systems. ! `__INT8_C' ! `__INT16_C' ! `__INT32_C' ! `__INT64_C' ! `__UINT8_C' ! `__UINT16_C' ! `__UINT32_C' ! `__UINT64_C' ! `__INTMAX_C' ! `__UINTMAX_C' ! Defined to implementations of the standard `stdint.h' macros with ! the same names without the leading `__'. They exist the make the implementation of that header work correctly. You should not use these macros directly; instead, include the appropriate headers. Some of these macros may not be defined on particular systems if ! GCC does not provide a `stdint.h' header on those systems. ! `__SIZEOF_INT__' ! `__SIZEOF_LONG__' ! `__SIZEOF_LONG_LONG__' ! `__SIZEOF_SHORT__' ! `__SIZEOF_POINTER__' ! `__SIZEOF_FLOAT__' ! `__SIZEOF_DOUBLE__' ! `__SIZEOF_LONG_DOUBLE__' ! `__SIZEOF_SIZE_T__' ! `__SIZEOF_WCHAR_T__' ! `__SIZEOF_WINT_T__' ! `__SIZEOF_PTRDIFF_T__' ! Defined to the number of bytes of the C standard data types: `int', ! `long', `long long', `short', `void *', `float', `double', `long ! double', `size_t', `wchar_t', `wint_t' and `ptrdiff_t'. ! `__BYTE_ORDER__' ! `__ORDER_LITTLE_ENDIAN__' ! `__ORDER_BIG_ENDIAN__' ! `__ORDER_PDP_ENDIAN__' ! `__BYTE_ORDER__' is defined to one of the values ! `__ORDER_LITTLE_ENDIAN__', `__ORDER_BIG_ENDIAN__', or ! `__ORDER_PDP_ENDIAN__' to reflect the layout of multi-byte and ! multi-word quantities in memory. If `__BYTE_ORDER__' is equal to ! `__ORDER_LITTLE_ENDIAN__' or `__ORDER_BIG_ENDIAN__', then multi-byte and multi-word quantities are laid out identically: the byte (word) at the lowest address is the least significant or most significant byte (word) of the quantity, respectively. If ! `__BYTE_ORDER__' is equal to `__ORDER_PDP_ENDIAN__', then bytes in 16-bit words are laid out in a little-endian fashion, whereas the 16-bit subwords of a 32-bit quantity are laid out in big-endian fashion. --- 1856,2071 ---- make sure that programs will execute with the same effect whether or not they are defined. If they are defined, their value is 1. ! '__GNUC_GNU_INLINE__' ! GCC defines this macro if functions declared 'inline' will be handled in GCC's traditional gnu90 mode. Object files will contain ! externally visible definitions of all functions declared 'inline' ! without 'extern' or 'static'. They will not contain any ! definitions of any functions declared 'extern inline'. ! '__GNUC_STDC_INLINE__' ! GCC defines this macro if functions declared 'inline' will be handled according to the ISO C99 standard. Object files will contain externally visible definitions of all functions declared ! 'extern inline'. They will not contain definitions of any ! functions declared 'inline' without 'extern'. ! If this macro is defined, GCC supports the 'gnu_inline' function attribute as a way to always get the gnu90 behavior. Support for ! this and '__GNUC_GNU_INLINE__' was added in GCC 4.1.3. If neither ! macro is defined, an older version of GCC is being used: 'inline' ! functions will be compiled in gnu90 mode, and the 'gnu_inline' function attribute will not be recognized. ! '__CHAR_UNSIGNED__' ! GCC defines this macro if and only if the data type 'char' is unsigned on the target machine. It exists to cause the standard ! header file 'limits.h' to work correctly. You should not use this macro yourself; instead, refer to the standard macros defined in ! 'limits.h'. ! '__WCHAR_UNSIGNED__' ! Like '__CHAR_UNSIGNED__', this macro is defined if and only if the ! data type 'wchar_t' is unsigned and the front-end is in C++ mode. ! '__REGISTER_PREFIX__' This macro expands to a single token (not a string constant) which is the prefix applied to CPU register names in assembly language for this target. You can use it to write assembly that is usable ! in multiple environments. For example, in the 'm68k-aout' ! environment it expands to nothing, but in the 'm68k-coff' ! environment it expands to a single '%'. ! '__USER_LABEL_PREFIX__' This macro expands to a single token which is the prefix applied to user labels (symbols visible to C code) in assembly. For example, ! in the 'm68k-aout' environment it expands to an '_', but in the ! 'm68k-coff' environment it expands to nothing. This macro will have the correct definition even if ! '-f(no-)underscores' is in use, but it will not be correct if target-specific options that adjust this prefix are used (e.g. the ! OSF/rose '-mno-underscores' option). ! '__SIZE_TYPE__' ! '__PTRDIFF_TYPE__' ! '__WCHAR_TYPE__' ! '__WINT_TYPE__' ! '__INTMAX_TYPE__' ! '__UINTMAX_TYPE__' ! '__SIG_ATOMIC_TYPE__' ! '__INT8_TYPE__' ! '__INT16_TYPE__' ! '__INT32_TYPE__' ! '__INT64_TYPE__' ! '__UINT8_TYPE__' ! '__UINT16_TYPE__' ! '__UINT32_TYPE__' ! '__UINT64_TYPE__' ! '__INT_LEAST8_TYPE__' ! '__INT_LEAST16_TYPE__' ! '__INT_LEAST32_TYPE__' ! '__INT_LEAST64_TYPE__' ! '__UINT_LEAST8_TYPE__' ! '__UINT_LEAST16_TYPE__' ! '__UINT_LEAST32_TYPE__' ! '__UINT_LEAST64_TYPE__' ! '__INT_FAST8_TYPE__' ! '__INT_FAST16_TYPE__' ! '__INT_FAST32_TYPE__' ! '__INT_FAST64_TYPE__' ! '__UINT_FAST8_TYPE__' ! '__UINT_FAST16_TYPE__' ! '__UINT_FAST32_TYPE__' ! '__UINT_FAST64_TYPE__' ! '__INTPTR_TYPE__' ! '__UINTPTR_TYPE__' These macros are defined to the correct underlying types for the ! 'size_t', 'ptrdiff_t', 'wchar_t', 'wint_t', 'intmax_t', ! 'uintmax_t', 'sig_atomic_t', 'int8_t', 'int16_t', 'int32_t', ! 'int64_t', 'uint8_t', 'uint16_t', 'uint32_t', 'uint64_t', ! 'int_least8_t', 'int_least16_t', 'int_least32_t', 'int_least64_t', ! 'uint_least8_t', 'uint_least16_t', 'uint_least32_t', ! 'uint_least64_t', 'int_fast8_t', 'int_fast16_t', 'int_fast32_t', ! 'int_fast64_t', 'uint_fast8_t', 'uint_fast16_t', 'uint_fast32_t', ! 'uint_fast64_t', 'intptr_t', and 'uintptr_t' typedefs, respectively. They exist to make the standard header files ! 'stddef.h', 'stdint.h', and 'wchar.h' work correctly. You should not use these macros directly; instead, include the appropriate headers and use the typedefs. Some of these macros may not be ! defined on particular systems if GCC does not provide a 'stdint.h' header on those systems. ! '__CHAR_BIT__' Defined to the number of bits used in the representation of the ! 'char' data type. It exists to make the standard header given numerical limits work correctly. You should not use this macro directly; instead, include the appropriate headers. ! '__SCHAR_MAX__' ! '__WCHAR_MAX__' ! '__SHRT_MAX__' ! '__INT_MAX__' ! '__LONG_MAX__' ! '__LONG_LONG_MAX__' ! '__WINT_MAX__' ! '__SIZE_MAX__' ! '__PTRDIFF_MAX__' ! '__INTMAX_MAX__' ! '__UINTMAX_MAX__' ! '__SIG_ATOMIC_MAX__' ! '__INT8_MAX__' ! '__INT16_MAX__' ! '__INT32_MAX__' ! '__INT64_MAX__' ! '__UINT8_MAX__' ! '__UINT16_MAX__' ! '__UINT32_MAX__' ! '__UINT64_MAX__' ! '__INT_LEAST8_MAX__' ! '__INT_LEAST16_MAX__' ! '__INT_LEAST32_MAX__' ! '__INT_LEAST64_MAX__' ! '__UINT_LEAST8_MAX__' ! '__UINT_LEAST16_MAX__' ! '__UINT_LEAST32_MAX__' ! '__UINT_LEAST64_MAX__' ! '__INT_FAST8_MAX__' ! '__INT_FAST16_MAX__' ! '__INT_FAST32_MAX__' ! '__INT_FAST64_MAX__' ! '__UINT_FAST8_MAX__' ! '__UINT_FAST16_MAX__' ! '__UINT_FAST32_MAX__' ! '__UINT_FAST64_MAX__' ! '__INTPTR_MAX__' ! '__UINTPTR_MAX__' ! '__WCHAR_MIN__' ! '__WINT_MIN__' ! '__SIG_ATOMIC_MIN__' ! Defined to the maximum value of the 'signed char', 'wchar_t', ! 'signed short', 'signed int', 'signed long', 'signed long long', ! 'wint_t', 'size_t', 'ptrdiff_t', 'intmax_t', 'uintmax_t', ! 'sig_atomic_t', 'int8_t', 'int16_t', 'int32_t', 'int64_t', ! 'uint8_t', 'uint16_t', 'uint32_t', 'uint64_t', 'int_least8_t', ! 'int_least16_t', 'int_least32_t', 'int_least64_t', 'uint_least8_t', ! 'uint_least16_t', 'uint_least32_t', 'uint_least64_t', ! 'int_fast8_t', 'int_fast16_t', 'int_fast32_t', 'int_fast64_t', ! 'uint_fast8_t', 'uint_fast16_t', 'uint_fast32_t', 'uint_fast64_t', ! 'intptr_t', and 'uintptr_t' types and to the minimum value of the ! 'wchar_t', 'wint_t', and 'sig_atomic_t' types respectively. They ! exist to make the standard header given numerical limits work ! correctly. You should not use these macros directly; instead, ! include the appropriate headers. Some of these macros may not be ! defined on particular systems if GCC does not provide a 'stdint.h' ! header on those systems. ! '__INT8_C' ! '__INT16_C' ! '__INT32_C' ! '__INT64_C' ! '__UINT8_C' ! '__UINT16_C' ! '__UINT32_C' ! '__UINT64_C' ! '__INTMAX_C' ! '__UINTMAX_C' ! Defined to implementations of the standard 'stdint.h' macros with ! the same names without the leading '__'. They exist the make the implementation of that header work correctly. You should not use these macros directly; instead, include the appropriate headers. Some of these macros may not be defined on particular systems if ! GCC does not provide a 'stdint.h' header on those systems. ! '__SIZEOF_INT__' ! '__SIZEOF_LONG__' ! '__SIZEOF_LONG_LONG__' ! '__SIZEOF_SHORT__' ! '__SIZEOF_POINTER__' ! '__SIZEOF_FLOAT__' ! '__SIZEOF_DOUBLE__' ! '__SIZEOF_LONG_DOUBLE__' ! '__SIZEOF_SIZE_T__' ! '__SIZEOF_WCHAR_T__' ! '__SIZEOF_WINT_T__' ! '__SIZEOF_PTRDIFF_T__' ! Defined to the number of bytes of the C standard data types: 'int', ! 'long', 'long long', 'short', 'void *', 'float', 'double', 'long ! double', 'size_t', 'wchar_t', 'wint_t' and 'ptrdiff_t'. ! '__BYTE_ORDER__' ! '__ORDER_LITTLE_ENDIAN__' ! '__ORDER_BIG_ENDIAN__' ! '__ORDER_PDP_ENDIAN__' ! '__BYTE_ORDER__' is defined to one of the values ! '__ORDER_LITTLE_ENDIAN__', '__ORDER_BIG_ENDIAN__', or ! '__ORDER_PDP_ENDIAN__' to reflect the layout of multi-byte and ! multi-word quantities in memory. If '__BYTE_ORDER__' is equal to ! '__ORDER_LITTLE_ENDIAN__' or '__ORDER_BIG_ENDIAN__', then multi-byte and multi-word quantities are laid out identically: the byte (word) at the lowest address is the least significant or most significant byte (word) of the quantity, respectively. If ! '__BYTE_ORDER__' is equal to '__ORDER_PDP_ENDIAN__', then bytes in 16-bit words are laid out in a little-endian fashion, whereas the 16-bit subwords of a 32-bit quantity are laid out in big-endian fashion. *************** double underscores. *** 2084,2189 **** /* Test for a little-endian machine */ #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ! `__FLOAT_WORD_ORDER__' ! `__FLOAT_WORD_ORDER__' is defined to one of the values ! `__ORDER_LITTLE_ENDIAN__' or `__ORDER_BIG_ENDIAN__' to reflect the layout of the words of multi-word floating-point quantities. ! `__DEPRECATED' This macro is defined, with value 1, when compiling a C++ source file with warnings about deprecated constructs enabled. These warnings are enabled by default, but can be disabled with ! `-Wno-deprecated'. ! `__EXCEPTIONS' This macro is defined, with value 1, when compiling a C++ source ! file with exceptions enabled. If `-fno-exceptions' is used when compiling the file, then this macro is not defined. ! `__GXX_RTTI' This macro is defined, with value 1, when compiling a C++ source ! file with runtime type identification enabled. If `-fno-rtti' is used when compiling the file, then this macro is not defined. ! `__USING_SJLJ_EXCEPTIONS__' This macro is defined, with value 1, if the compiler uses the old ! mechanism based on `setjmp' and `longjmp' for exception handling. ! `__GXX_EXPERIMENTAL_CXX0X__' This macro is defined when compiling a C++ source file with the ! option `-std=c++0x' or `-std=gnu++0x'. It indicates that some ! features likely to be included in C++0x are available. Note that these features are experimental, and may change or be removed in future versions of GCC. ! `__GXX_WEAK__' This macro is defined when compiling a C++ source file. It has the value 1 if the compiler will use weak symbols, COMDAT sections, or other similar techniques to collapse symbols with "vague linkage" that are defined in multiple translation units. If the compiler ! will not collapse such symbols, this macro is defined with value ! 0. In general, user code should not need to make use of this ! macro; the purpose of this macro is to ease implementation of the ! C++ runtime library provided with G++. ! `__NEXT_RUNTIME__' This macro is defined, with value 1, if (and only if) the NeXT ! runtime (as in `-fnext-runtime') is in use for Objective-C. If ! the GNU runtime is used, this macro is not defined, so that you ! can use this macro to determine which runtime (NeXT or GNU) is ! being used. ! `__LP64__' ! `_LP64' These macros are defined, with value 1, if (and only if) the ! compilation is for a target where `long int' and pointer both use ! 64-bits and `int' uses 32-bit. ! `__SSP__' ! This macro is defined, with value 1, when `-fstack-protector' is in use. ! `__SSP_ALL__' ! This macro is defined, with value 2, when `-fstack-protector-all' is in use. ! `__SANITIZE_ADDRESS__' ! This macro is defined, with value 1, when `-fsanitize=address' is in use. ! `__TIMESTAMP__' ! This macro expands to a string constant that describes the date ! and time of the last modification of the current source file. The ! string constant contains abbreviated day of the week, month, day ! of the month, time in hh:mm:ss form, year and looks like ! `"Sun Sep 16 01:03:52 1973"'. If the day of the month is less ! than 10, it is padded with a space on the left. If GCC cannot determine the current date, it will emit a warning ! message (once per compilation) and `__TIMESTAMP__' will expand to ! `"??? ??? ?? ??:??:?? ????"'. ! `__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1' ! `__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2' ! `__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4' ! `__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8' ! `__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16' These macros are defined when the target processor supports atomic compare and swap operations on operands 1, 2, 4, 8 or 16 bytes in length, respectively. ! `__GCC_HAVE_DWARF2_CFI_ASM' This macro is defined when the compiler is emitting Dwarf2 CFI directives to the assembler. When this is defined, it is possible to emit those same directives in inline assembly. ! `__FP_FAST_FMA' ! `__FP_FAST_FMAF' ! `__FP_FAST_FMAL' These macros are defined with value 1 if the backend supports the ! `fma', `fmaf', and `fmal' builtin functions, so that the include ! file `math.h' can define the macros `FP_FAST_FMA', `FP_FAST_FMAF', ! and `FP_FAST_FMAL' for compatibility with the 1999 C standard.  File: cpp.info, Node: System-specific Predefined Macros, Next: C++ Named Operators, Prev: Common Predefined Macros, Up: Predefined Macros --- 2075,2179 ---- /* Test for a little-endian machine */ #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ! '__FLOAT_WORD_ORDER__' ! '__FLOAT_WORD_ORDER__' is defined to one of the values ! '__ORDER_LITTLE_ENDIAN__' or '__ORDER_BIG_ENDIAN__' to reflect the layout of the words of multi-word floating-point quantities. ! '__DEPRECATED' This macro is defined, with value 1, when compiling a C++ source file with warnings about deprecated constructs enabled. These warnings are enabled by default, but can be disabled with ! '-Wno-deprecated'. ! '__EXCEPTIONS' This macro is defined, with value 1, when compiling a C++ source ! file with exceptions enabled. If '-fno-exceptions' is used when compiling the file, then this macro is not defined. ! '__GXX_RTTI' This macro is defined, with value 1, when compiling a C++ source ! file with runtime type identification enabled. If '-fno-rtti' is used when compiling the file, then this macro is not defined. ! '__USING_SJLJ_EXCEPTIONS__' This macro is defined, with value 1, if the compiler uses the old ! mechanism based on 'setjmp' and 'longjmp' for exception handling. ! '__GXX_EXPERIMENTAL_CXX0X__' This macro is defined when compiling a C++ source file with the ! option '-std=c++0x' or '-std=gnu++0x'. It indicates that some ! features likely to be included in C++0x are available. Note that these features are experimental, and may change or be removed in future versions of GCC. ! '__GXX_WEAK__' This macro is defined when compiling a C++ source file. It has the value 1 if the compiler will use weak symbols, COMDAT sections, or other similar techniques to collapse symbols with "vague linkage" that are defined in multiple translation units. If the compiler ! will not collapse such symbols, this macro is defined with value 0. ! In general, user code should not need to make use of this macro; ! the purpose of this macro is to ease implementation of the C++ ! runtime library provided with G++. ! '__NEXT_RUNTIME__' This macro is defined, with value 1, if (and only if) the NeXT ! runtime (as in '-fnext-runtime') is in use for Objective-C. If the ! GNU runtime is used, this macro is not defined, so that you can use ! this macro to determine which runtime (NeXT or GNU) is being used. ! '__LP64__' ! '_LP64' These macros are defined, with value 1, if (and only if) the ! compilation is for a target where 'long int' and pointer both use ! 64-bits and 'int' uses 32-bit. ! '__SSP__' ! This macro is defined, with value 1, when '-fstack-protector' is in use. ! '__SSP_ALL__' ! This macro is defined, with value 2, when '-fstack-protector-all' is in use. ! '__SANITIZE_ADDRESS__' ! This macro is defined, with value 1, when '-fsanitize=address' is in use. ! '__TIMESTAMP__' ! This macro expands to a string constant that describes the date and ! time of the last modification of the current source file. The ! string constant contains abbreviated day of the week, month, day of ! the month, time in hh:mm:ss form, year and looks like ! '"Sun Sep 16 01:03:52 1973"'. If the day of the month is less than ! 10, it is padded with a space on the left. If GCC cannot determine the current date, it will emit a warning ! message (once per compilation) and '__TIMESTAMP__' will expand to ! '"??? ??? ?? ??:??:?? ????"'. ! '__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1' ! '__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2' ! '__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4' ! '__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8' ! '__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16' These macros are defined when the target processor supports atomic compare and swap operations on operands 1, 2, 4, 8 or 16 bytes in length, respectively. ! '__GCC_HAVE_DWARF2_CFI_ASM' This macro is defined when the compiler is emitting Dwarf2 CFI directives to the assembler. When this is defined, it is possible to emit those same directives in inline assembly. ! '__FP_FAST_FMA' ! '__FP_FAST_FMAF' ! '__FP_FAST_FMAL' These macros are defined with value 1 if the backend supports the ! 'fma', 'fmaf', and 'fmal' builtin functions, so that the include ! file 'math.h' can define the macros 'FP_FAST_FMA', 'FP_FAST_FMAF', ! and 'FP_FAST_FMAL' for compatibility with the 1999 C standard.  File: cpp.info, Node: System-specific Predefined Macros, Next: C++ Named Operators, Prev: Common Predefined Macros, Up: Predefined Macros *************** File: cpp.info, Node: System-specific P *** 2194,2216 **** The C preprocessor normally predefines several macros that indicate what type of system and machine is in use. They are obviously different on each target supported by GCC. This manual, being for all systems and ! machines, cannot tell you what their names are, but you can use `cpp -dM' to see them all. *Note Invocation::. All system-specific predefined macros expand to a constant value, so you can test them with ! either `#ifdef' or `#if'. The C standard requires that all system-specific macros be part of the "reserved namespace". All names which begin with two underscores, or an underscore and a capital letter, are reserved for the compiler and library to use as they wish. However, historically system-specific macros have had names with no special prefix; for instance, it is common ! to find `unix' defined on Unix systems. For all such macros, GCC provides a parallel macro with two underscores added at the beginning ! and the end. If `unix' is defined, `__unix__' will be defined too. ! There will never be more than two underscores; the parallel of `_mips' ! is `__mips__'. ! When the `-ansi' option, or any `-std' option that requests strict conformance, is given to the compiler, all the system-specific predefined macros outside the reserved namespace are suppressed. The parallel macros, inside the reserved namespace, remain defined. --- 2184,2206 ---- The C preprocessor normally predefines several macros that indicate what type of system and machine is in use. They are obviously different on each target supported by GCC. This manual, being for all systems and ! machines, cannot tell you what their names are, but you can use 'cpp -dM' to see them all. *Note Invocation::. All system-specific predefined macros expand to a constant value, so you can test them with ! either '#ifdef' or '#if'. The C standard requires that all system-specific macros be part of the "reserved namespace". All names which begin with two underscores, or an underscore and a capital letter, are reserved for the compiler and library to use as they wish. However, historically system-specific macros have had names with no special prefix; for instance, it is common ! to find 'unix' defined on Unix systems. For all such macros, GCC provides a parallel macro with two underscores added at the beginning ! and the end. If 'unix' is defined, '__unix__' will be defined too. ! There will never be more than two underscores; the parallel of '_mips' ! is '__mips__'. ! When the '-ansi' option, or any '-std' option that requests strict conformance, is given to the compiler, all the system-specific predefined macros outside the reserved namespace are suppressed. The parallel macros, inside the reserved namespace, remain defined. *************** encourage you to correct older code to u *** 2221,2227 **** you find it. We don't recommend you use the system-specific macros that are in the reserved namespace, either. It is better in the long run to check specifically for features you need, using a tool such as ! `autoconf'.  File: cpp.info, Node: C++ Named Operators, Prev: System-specific Predefined Macros, Up: Predefined Macros --- 2211,2217 ---- you find it. We don't recommend you use the system-specific macros that are in the reserved namespace, either. It is better in the long run to check specifically for features you need, using a tool such as ! 'autoconf'.  File: cpp.info, Node: C++ Named Operators, Prev: System-specific Predefined Macros, Up: Predefined Macros *************** File: cpp.info, Node: C++ Named Operato *** 2232,2256 **** In C++, there are eleven keywords which are simply alternate spellings of operators normally written with punctuation. These keywords are treated as such even in the preprocessor. They function as operators in ! `#if', and they cannot be defined as macros or poisoned. In C, you can request that those keywords take their C++ meaning by including ! `iso646.h'. That header defines each one as a normal object-like macro expanding to the appropriate punctuator. These are the named operators and their corresponding punctuators: Named Operator Punctuator ! `and' `&&' ! `and_eq' `&=' ! `bitand' `&' ! `bitor' `|' ! `compl' `~' ! `not' `!' ! `not_eq' `!=' ! `or' `||' ! `or_eq' `|=' ! `xor' `^' ! `xor_eq' `^='  File: cpp.info, Node: Undefining and Redefining Macros, Next: Directives Within Macro Arguments, Prev: Predefined Macros, Up: Macros --- 2222,2246 ---- In C++, there are eleven keywords which are simply alternate spellings of operators normally written with punctuation. These keywords are treated as such even in the preprocessor. They function as operators in ! '#if', and they cannot be defined as macros or poisoned. In C, you can request that those keywords take their C++ meaning by including ! 'iso646.h'. That header defines each one as a normal object-like macro expanding to the appropriate punctuator. These are the named operators and their corresponding punctuators: Named Operator Punctuator ! 'and' '&&' ! 'and_eq' '&=' ! 'bitand' '&' ! 'bitor' '|' ! 'compl' '~' ! 'not' '!' ! 'not_eq' '!=' ! 'or' '||' ! 'or_eq' '|=' ! 'xor' '^' ! 'xor_eq' '^='  File: cpp.info, Node: Undefining and Redefining Macros, Next: Directives Within Macro Arguments, Prev: Predefined Macros, Up: Macros *************** File: cpp.info, Node: Undefining and Re *** 2258,2268 **** 3.8 Undefining and Redefining Macros ==================================== ! If a macro ceases to be useful, it may be "undefined" with the `#undef' ! directive. `#undef' takes a single argument, the name of the macro to undefine. You use the bare macro name, even if the macro is ! function-like. It is an error if anything appears on the line after ! the macro name. `#undef' has no effect if the name is not a macro. #define FOO 4 x = FOO; ==> x = 4; --- 2248,2258 ---- 3.8 Undefining and Redefining Macros ==================================== ! If a macro ceases to be useful, it may be "undefined" with the '#undef' ! directive. '#undef' takes a single argument, the name of the macro to undefine. You use the bare macro name, even if the macro is ! function-like. It is an error if anything appears on the line after the ! macro name. '#undef' has no effect if the name is not a macro. #define FOO 4 x = FOO; ==> x = 4; *************** the macro name. `#undef' has no effect *** 2270,2287 **** x = FOO; ==> x = FOO; Once a macro has been undefined, that identifier may be "redefined" ! as a macro by a subsequent `#define' directive. The new definition ! need not have any resemblance to the old definition. However, if an identifier which is currently a macro is redefined, then the new definition must be "effectively the same" as the old one. Two macro definitions are effectively the same if: * Both are the same type of macro (object- or function-like). - * All the tokens of the replacement list are the same. - * If there are any parameters, they are the same. - * Whitespace appears in the same places in both. It need not be exactly the same amount of whitespace, though. Remember that comments count as whitespace. --- 2260,2274 ---- x = FOO; ==> x = FOO; Once a macro has been undefined, that identifier may be "redefined" ! as a macro by a subsequent '#define' directive. The new definition need ! not have any resemblance to the old definition. However, if an identifier which is currently a macro is redefined, then the new definition must be "effectively the same" as the old one. Two macro definitions are effectively the same if: * Both are the same type of macro (object- or function-like). * All the tokens of the replacement list are the same. * If there are any parameters, they are the same. * Whitespace appears in the same places in both. It need not be exactly the same amount of whitespace, though. Remember that comments count as whitespace. *************** These definitions are effectively the sa *** 2290,2296 **** #define FOUR (2 + 2) #define FOUR (2 + 2) #define FOUR (2 /* two */ + 2) ! but these are not: #define FOUR (2 + 2) #define FOUR ( 2+2 ) #define FOUR (2 * 2) --- 2277,2283 ---- #define FOUR (2 + 2) #define FOUR (2 + 2) #define FOUR (2 /* two */ + 2) ! but these are not: #define FOUR (2 + 2) #define FOUR ( 2+2 ) #define FOUR (2 * 2) *************** these cases is undefined. *** 2316,2326 **** Versions of CPP prior to 3.2 would reject such constructs with an error message. This was the only syntactic difference between normal functions and function-like macros, so it seemed attractive to remove ! this limitation, and people would often be surprised that they could ! not use macros in this way. Moreover, sometimes people would use conditional compilation in the argument list to a normal library ! function like `printf', only to find that after a library upgrade ! `printf' had changed to be a function-like macro, and their code would no longer compile. So from version 3.2 we changed CPP to successfully process arbitrary directives within macro arguments in exactly the same way as it would have processed the directive were the function-like --- 2303,2313 ---- Versions of CPP prior to 3.2 would reject such constructs with an error message. This was the only syntactic difference between normal functions and function-like macros, so it seemed attractive to remove ! this limitation, and people would often be surprised that they could not ! use macros in this way. Moreover, sometimes people would use conditional compilation in the argument list to a normal library ! function like 'printf', only to find that after a library upgrade ! 'printf' had changed to be a function-like macro, and their code would no longer compile. So from version 3.2 we changed CPP to successfully process arbitrary directives within macro arguments in exactly the same way as it would have processed the directive were the function-like *************** outside of it. For example, *** 2391,2399 **** strange(stderr) p, 35) ==> fprintf (stderr, "%s %d", p, 35) ! The ability to piece together a macro call can be useful, but the ! use of unbalanced open parentheses in a macro body is just confusing, ! and should be avoided.  File: cpp.info, Node: Operator Precedence Problems, Next: Swallowing the Semicolon, Prev: Misnesting, Up: Macro Pitfalls --- 2378,2386 ---- strange(stderr) p, 35) ==> fprintf (stderr, "%s %d", p, 35) ! The ability to piece together a macro call can be useful, but the use ! of unbalanced open parentheses in a macro body is just confusing, and ! should be avoided.  File: cpp.info, Node: Operator Precedence Problems, Next: Swallowing the Semicolon, Prev: Misnesting, Up: Macro Pitfalls *************** way. *** 2412,2419 **** #define ceil_div(x, y) (x + y - 1) / y whose purpose is to divide, rounding up. (One use for this operation is ! to compute how many `int' objects are needed to hold a certain number ! of `char' objects.) Then suppose it is used as follows: a = ceil_div (b & c, sizeof (int)); ==> a = (b & c + sizeof (int) - 1) / sizeof (int); --- 2399,2406 ---- #define ceil_div(x, y) (x + y - 1) / y whose purpose is to divide, rounding up. (One use for this operation is ! to compute how many 'int' objects are needed to hold a certain number of ! 'char' objects.) Then suppose it is used as follows: a = ceil_div (b & c, sizeof (int)); ==> a = (b & c + sizeof (int) - 1) / sizeof (int); *************** Defining the macro as *** 2433,2451 **** provides the desired result. ! Unintended grouping can result in another way. Consider `sizeof ceil_div(1, 2)'. That has the appearance of a C expression that would ! compute the size of the type of `ceil_div (1, 2)', but in fact it means something very different. Here is what it expands to: sizeof ((1) + (2) - 1) / (2) This would take the size of an integer and divide it by two. The ! precedence rules have put the division outside the `sizeof' when it was intended to be inside. Parentheses around the entire macro definition prevent such problems. ! Here, then, is the recommended way to define `ceil_div': #define ceil_div(x, y) (((x) + (y) - 1) / (y)) --- 2420,2438 ---- provides the desired result. ! Unintended grouping can result in another way. Consider 'sizeof ceil_div(1, 2)'. That has the appearance of a C expression that would ! compute the size of the type of 'ceil_div (1, 2)', but in fact it means something very different. Here is what it expands to: sizeof ((1) + (2) - 1) / (2) This would take the size of an integer and divide it by two. The ! precedence rules have put the division outside the 'sizeof' when it was intended to be inside. Parentheses around the entire macro definition prevent such problems. ! Here, then, is the recommended way to define 'ceil_div': #define ceil_div(x, y) (((x) + (y) - 1) / (y)) *************** File: cpp.info, Node: Swallowing the Se *** 2457,2463 **** Often it is desirable to define a macro that expands into a compound statement. Consider, for example, the following macro, that advances a ! pointer (the argument `p' says where to find it) across whitespace characters: #define SKIP_SPACES(p, limit) \ --- 2444,2450 ---- Often it is desirable to define a macro that expands into a compound statement. Consider, for example, the following macro, that advances a ! pointer (the argument 'p' says where to find it) across whitespace characters: #define SKIP_SPACES(p, limit) \ *************** Here backslash-newline is used to split *** 2470,2483 **** be a single logical line, so that it resembles the way such code would be laid out if not part of a macro definition. ! A call to this macro might be `SKIP_SPACES (p, lim)'. Strictly speaking, the call expands to a compound statement, which is a complete statement with no need for a semicolon to end it. However, since it looks like a function call, it minimizes confusion if you can use it ! like a function call, writing a semicolon afterward, as in `SKIP_SPACES (p, lim);' ! This can cause trouble before `else' statements, because the semicolon is actually a null statement. Suppose you write if (*p != 0) --- 2457,2470 ---- be a single logical line, so that it resembles the way such code would be laid out if not part of a macro definition. ! A call to this macro might be 'SKIP_SPACES (p, lim)'. Strictly speaking, the call expands to a compound statement, which is a complete statement with no need for a semicolon to end it. However, since it looks like a function call, it minimizes confusion if you can use it ! like a function call, writing a semicolon afterward, as in 'SKIP_SPACES (p, lim);' ! This can cause trouble before 'else' statements, because the semicolon is actually a null statement. Suppose you write if (*p != 0) *************** semicolon is actually a null statement. *** 2485,2495 **** else ... The presence of two statements--the compound statement and a null ! statement--in between the `if' condition and the `else' makes invalid C code. ! The definition of the macro `SKIP_SPACES' can be altered to solve ! this problem, using a `do ... while' statement. Here is how: #define SKIP_SPACES(p, limit) \ do { char *lim = (limit); \ --- 2472,2482 ---- else ... The presence of two statements--the compound statement and a null ! statement--in between the 'if' condition and the 'else' makes invalid C code. ! The definition of the macro 'SKIP_SPACES' can be altered to solve ! this problem, using a 'do ... while' statement. Here is how: #define SKIP_SPACES(p, limit) \ do { char *lim = (limit); \ *************** this problem, using a `do ... while' sta *** 2498,2504 **** p--; break; }}} \ while (0) ! Now `SKIP_SPACES (p, lim);' expands into do {...} while (0); --- 2485,2491 ---- p--; break; }}} \ while (0) ! Now 'SKIP_SPACES (p, lim);' expands into do {...} while (0); *************** File: cpp.info, Node: Duplication of Si *** 2511,2522 **** 3.10.4 Duplication of Side Effects ---------------------------------- ! Many C programs define a macro `min', for "minimum", like this: #define min(X, Y) ((X) < (Y) ? (X) : (Y)) ! When you use this macro with an argument containing a side effect, ! as shown here, next = min (x + y, foo (z)); --- 2498,2509 ---- 3.10.4 Duplication of Side Effects ---------------------------------- ! Many C programs define a macro 'min', for "minimum", like this: #define min(X, Y) ((X) < (Y) ? (X) : (Y)) ! When you use this macro with an argument containing a side effect, as ! shown here, next = min (x + y, foo (z)); *************** it expands as follows: *** 2524,2540 **** next = ((x + y) < (foo (z)) ? (x + y) : (foo (z))); ! where `x + y' has been substituted for `X' and `foo (z)' for `Y'. ! The function `foo' is used only once in the statement as it appears ! in the program, but the expression `foo (z)' has been substituted twice ! into the macro expansion. As a result, `foo' might be called two times ! when the statement is executed. If it has side effects or if it takes ! a long time to compute, the results might not be what you intended. We ! say that `min' is an "unsafe" macro. ! The best solution to this problem is to define `min' in a way that ! computes the value of `foo (z)' only once. The C language offers no standard way to do this, but it can be done with GNU extensions as follows: --- 2511,2527 ---- next = ((x + y) < (foo (z)) ? (x + y) : (foo (z))); ! where 'x + y' has been substituted for 'X' and 'foo (z)' for 'Y'. ! The function 'foo' is used only once in the statement as it appears ! in the program, but the expression 'foo (z)' has been substituted twice ! into the macro expansion. As a result, 'foo' might be called two times ! when the statement is executed. If it has side effects or if it takes a ! long time to compute, the results might not be what you intended. We ! say that 'min' is an "unsafe" macro. ! The best solution to this problem is to define 'min' in a way that ! computes the value of 'foo (z)' only once. The C language offers no standard way to do this, but it can be done with GNU extensions as follows: *************** follows: *** 2543,2549 **** typeof (Y) y_ = (Y); \ (x_ < y_) ? x_ : y_; }) ! The `({ ... })' notation produces a compound statement that acts as an expression. Its value is the value of its last statement. This permits us to define local variables and assign each argument to one. The local variables have underscores after their names to reduce the --- 2530,2536 ---- typeof (Y) y_ = (Y); \ (x_ < y_) ? x_ : y_; }) ! The '({ ... })' notation produces a compound statement that acts as an expression. Its value is the value of its last statement. This permits us to define local variables and assign each argument to one. The local variables have underscores after their names to reduce the *************** risk of conflict with an identifier of w *** 2551,2559 **** avoid this entirely). Now each argument is evaluated exactly once. If you do not wish to use GNU C extensions, the only solution is to ! be careful when _using_ the macro `min'. For example, you can ! calculate the value of `foo (z)', save it in a variable, and use that ! variable in `min': #define min(X, Y) ((X) < (Y) ? (X) : (Y)) ... --- 2538,2546 ---- avoid this entirely). Now each argument is evaluated exactly once. If you do not wish to use GNU C extensions, the only solution is to ! be careful when _using_ the macro 'min'. For example, you can calculate ! the value of 'foo (z)', save it in a variable, and use that variable in ! 'min': #define min(X, Y) ((X) < (Y) ? (X) : (Y)) ... *************** variable in `min': *** 2562,2568 **** next = min (x + y, tem); } ! (where we assume that `foo' returns type `int').  File: cpp.info, Node: Self-Referential Macros, Next: Argument Prescan, Prev: Duplication of Side Effects, Up: Macro Pitfalls --- 2549,2555 ---- next = min (x + y, tem); } ! (where we assume that 'foo' returns type 'int').  File: cpp.info, Node: Self-Referential Macros, Next: Argument Prescan, Prev: Duplication of Side Effects, Up: Macro Pitfalls *************** preprocessor output unchanged. Consider *** 2579,2620 **** #define foo (4 + foo) ! where `foo' is also a variable in your program. ! Following the ordinary rules, each reference to `foo' will expand ! into `(4 + foo)'; then this will be rescanned and will expand into `(4 ! + (4 + foo))'; and so on until the computer runs out of memory. The self-reference rule cuts this process short after one step, at ! `(4 + foo)'. Therefore, this macro definition has the possibly useful ! effect of causing the program to add 4 to the value of `foo' wherever ! `foo' is referred to. In most cases, it is a bad idea to take advantage of this feature. A ! person reading the program who sees that `foo' is a variable will not expect that it is a macro as well. The reader will come across the ! identifier `foo' in the program and think its value should be that of ! the variable `foo', whereas in fact the value is four greater. One common, useful use of self-reference is to create a macro which expands to itself. If you write #define EPERM EPERM ! then the macro `EPERM' expands to `EPERM'. Effectively, it is left alone by the preprocessor whenever it's used in running text. You can ! tell that it's a macro with `#ifdef'. You might do this if you want to ! define numeric constants with an `enum', but have `#ifdef' be true for each constant. ! If a macro `x' expands to use a macro `y', and the expansion of `y' ! refers to the macro `x', that is an "indirect self-reference" of `x'. ! `x' is not expanded in this case either. Thus, if we have #define x (4 + y) #define y (2 * x) ! then `x' and `y' expand as follows: x ==> (4 + y) ==> (4 + (2 * x)) --- 2566,2607 ---- #define foo (4 + foo) ! where 'foo' is also a variable in your program. ! Following the ordinary rules, each reference to 'foo' will expand ! into '(4 + foo)'; then this will be rescanned and will expand into '(4 + ! (4 + foo))'; and so on until the computer runs out of memory. The self-reference rule cuts this process short after one step, at ! '(4 + foo)'. Therefore, this macro definition has the possibly useful ! effect of causing the program to add 4 to the value of 'foo' wherever ! 'foo' is referred to. In most cases, it is a bad idea to take advantage of this feature. A ! person reading the program who sees that 'foo' is a variable will not expect that it is a macro as well. The reader will come across the ! identifier 'foo' in the program and think its value should be that of ! the variable 'foo', whereas in fact the value is four greater. One common, useful use of self-reference is to create a macro which expands to itself. If you write #define EPERM EPERM ! then the macro 'EPERM' expands to 'EPERM'. Effectively, it is left alone by the preprocessor whenever it's used in running text. You can ! tell that it's a macro with '#ifdef'. You might do this if you want to ! define numeric constants with an 'enum', but have '#ifdef' be true for each constant. ! If a macro 'x' expands to use a macro 'y', and the expansion of 'y' ! refers to the macro 'x', that is an "indirect self-reference" of 'x'. ! 'x' is not expanded in this case either. Thus, if we have #define x (4 + y) #define y (2 * x) ! then 'x' and 'y' expand as follows: x ==> (4 + y) ==> (4 + (2 * x)) *************** same results. *** 2647,2674 **** You might expect the double scan to change the results when a self-referential macro is used in an argument of another macro (*note ! Self-Referential Macros::): the self-referential macro would be ! expanded once in the first scan, and a second time in the second scan. ! However, this is not what happens. The self-references that do not ! expand in the first scan are marked so that they will not expand in the ! second scan either. You might wonder, "Why mention the prescan, if it makes no ! difference? And why not skip it and make the preprocessor faster?" ! The answer is that the prescan does make a difference in three special cases: * Nested calls to a macro. We say that "nested" calls to a macro occur when a macro's argument ! contains a call to that very macro. For example, if `f' is a macro ! that expects one argument, `f (f (1))' is a nested pair of calls to ! `f'. The desired expansion is made by expanding `f (1)' and ! substituting that into the definition of `f'. The prescan causes ! the expected result to happen. Without the prescan, `f (1)' itself ! would be substituted as an argument, and the inner use of `f' would ! appear during the main scan as an indirect self-reference and ! would not be expanded. * Macros that call other macros that stringify or concatenate. --- 2634,2661 ---- You might expect the double scan to change the results when a self-referential macro is used in an argument of another macro (*note ! Self-Referential Macros::): the self-referential macro would be expanded ! once in the first scan, and a second time in the second scan. However, ! this is not what happens. The self-references that do not expand in the ! first scan are marked so that they will not expand in the second scan ! either. You might wonder, "Why mention the prescan, if it makes no ! difference? And why not skip it and make the preprocessor faster?" The ! answer is that the prescan does make a difference in three special cases: * Nested calls to a macro. We say that "nested" calls to a macro occur when a macro's argument ! contains a call to that very macro. For example, if 'f' is a macro ! that expects one argument, 'f (f (1))' is a nested pair of calls to ! 'f'. The desired expansion is made by expanding 'f (1)' and ! substituting that into the definition of 'f'. The prescan causes ! the expected result to happen. Without the prescan, 'f (1)' itself ! would be substituted as an argument, and the inner use of 'f' would ! appear during the main scan as an indirect self-reference and would ! not be expanded. * Macros that call other macros that stringify or concatenate. *************** cases: *** 2683,2690 **** #define TABLESIZE 1024 #define BUFSIZE TABLESIZE ! then `AFTERX(BUFSIZE)' expands to `X_BUFSIZE', and ! `XAFTERX(BUFSIZE)' expands to `X_1024'. (Not to `X_TABLESIZE'. Prescan always does a complete expansion.) * Macros used in arguments, whose expansions contain unshielded --- 2670,2677 ---- #define TABLESIZE 1024 #define BUFSIZE TABLESIZE ! then 'AFTERX(BUFSIZE)' expands to 'X_BUFSIZE', and ! 'XAFTERX(BUFSIZE)' expands to 'X_1024'. (Not to 'X_TABLESIZE'. Prescan always does a complete expansion.) * Macros used in arguments, whose expansions contain unshielded *************** cases: *** 2697,2705 **** #define bar(x) lose(x) #define lose(x) (1 + (x)) ! We would like `bar(foo)' to turn into `(1 + (foo))', which would ! then turn into `(1 + (a,b))'. Instead, `bar(foo)' expands into ! `lose(a,b)', and you get an error because `lose' requires a single argument. In this case, the problem is easily solved by the same parentheses that ought to be used to prevent misnesting of arithmetic operations: --- 2684,2692 ---- #define bar(x) lose(x) #define lose(x) (1 + (x)) ! We would like 'bar(foo)' to turn into '(1 + (foo))', which would ! then turn into '(1 + (a,b))'. Instead, 'bar(foo)' expands into ! 'lose(a,b)', and you get an error because 'lose' requires a single argument. In this case, the problem is easily solved by the same parentheses that ought to be used to prevent misnesting of arithmetic operations: *************** cases: *** 2708,2717 **** or #define bar(x) lose((x)) ! The extra pair of parentheses prevents the comma in `foo''s definition from being interpreted as an argument separator. -  File: cpp.info, Node: Newlines in Arguments, Prev: Argument Prescan, Up: Macro Pitfalls --- 2695,2703 ---- or #define bar(x) lose((x)) ! The extra pair of parentheses prevents the comma in 'foo''s definition from being interpreted as an argument separator.  File: cpp.info, Node: Newlines in Arguments, Prev: Argument Prescan, Up: Macro Pitfalls *************** different to the line containing the arg *** 2732,2738 **** ignored (), syntax error); ! The syntax error triggered by the tokens `syntax error' results in an error message citing line three--the line of ignore_second_arg-- even though the problematic code comes from line five. --- 2718,2724 ---- ignored (), syntax error); ! The syntax error triggered by the tokens 'syntax error' results in an error message citing line three--the line of ignore_second_arg-- even though the problematic code comes from line five. *************** File: cpp.info, Node: Conditionals, Ne *** 2744,2770 **** 4 Conditionals ************** ! A "conditional" is a directive that instructs the preprocessor to ! select whether or not to include a chunk of code in the final token ! stream passed to the compiler. Preprocessor conditionals can test ! arithmetic expressions, or whether a name is defined as a macro, or both ! simultaneously using the special `defined' operator. ! A conditional in the C preprocessor resembles in some ways an `if' statement in C, but it is important to understand the difference between ! them. The condition in an `if' statement is tested during the ! execution of your program. Its purpose is to allow your program to ! behave differently from run to run, depending on the data it is ! operating on. The condition in a preprocessing conditional directive is ! tested when your program is compiled. Its purpose is to allow different ! code to be included in the program depending on the situation at the ! time of compilation. However, the distinction is becoming less clear. Modern compilers ! often do test `if' statements when a program is compiled, if their conditions are known not to vary at run time, and eliminate code which can never be executed. If you can count on your compiler to do this, ! you may find that your program is more readable if you use `if' statements with constant conditions (perhaps determined by macros). Of course, you can only use this to exclude code, not type definitions or other preprocessing directives, and you can only do it if the code --- 2730,2756 ---- 4 Conditionals ************** ! A "conditional" is a directive that instructs the preprocessor to select ! whether or not to include a chunk of code in the final token stream ! passed to the compiler. Preprocessor conditionals can test arithmetic ! expressions, or whether a name is defined as a macro, or both ! simultaneously using the special 'defined' operator. ! A conditional in the C preprocessor resembles in some ways an 'if' statement in C, but it is important to understand the difference between ! them. The condition in an 'if' statement is tested during the execution ! of your program. Its purpose is to allow your program to behave ! differently from run to run, depending on the data it is operating on. ! The condition in a preprocessing conditional directive is tested when ! your program is compiled. Its purpose is to allow different code to be ! included in the program depending on the situation at the time of ! compilation. However, the distinction is becoming less clear. Modern compilers ! often do test 'if' statements when a program is compiled, if their conditions are known not to vary at run time, and eliminate code which can never be executed. If you can count on your compiler to do this, ! you may find that your program is more readable if you use 'if' statements with constant conditions (perhaps determined by macros). Of course, you can only use this to exclude code, not type definitions or other preprocessing directives, and you can only do it if the code *************** There are three general reasons to use a *** 2792,2810 **** one operating system may be erroneous on another operating system; for example, it might refer to data types or constants that do not exist on the other system. When this happens, it is not enough to ! avoid executing the invalid code. Its mere presence will cause ! the compiler to reject the program. With a preprocessing ! conditional, the offending code can be effectively excised from ! the program when it is not valid. * You may want to be able to compile the same source file into two different programs. One version might make frequent time-consuming consistency checks on its intermediate data, or print the values of those data for debugging, and the other not. ! * A conditional whose condition is always false is one way to ! exclude code from the program but keep it as a sort of comment for ! future reference. Simple programs that do not need system-specific logic or complex debugging hooks generally will not need to use preprocessing --- 2778,2796 ---- one operating system may be erroneous on another operating system; for example, it might refer to data types or constants that do not exist on the other system. When this happens, it is not enough to ! avoid executing the invalid code. Its mere presence will cause the ! compiler to reject the program. With a preprocessing conditional, ! the offending code can be effectively excised from the program when ! it is not valid. * You may want to be able to compile the same source file into two different programs. One version might make frequent time-consuming consistency checks on its intermediate data, or print the values of those data for debugging, and the other not. ! * A conditional whose condition is always false is one way to exclude ! code from the program but keep it as a sort of comment for future ! reference. Simple programs that do not need system-specific logic or complex debugging hooks generally will not need to use preprocessing *************** File: cpp.info, Node: Conditional Synta *** 2817,2823 **** ====================== A conditional in the C preprocessor begins with a "conditional ! directive": `#if', `#ifdef' or `#ifndef'. * Menu: --- 2803,2809 ---- ====================== A conditional in the C preprocessor begins with a "conditional ! directive": '#if', '#ifdef' or '#ifndef'. * Menu: *************** included in the output of the preprocess *** 2846,2857 **** defined. We say that the conditional "succeeds" if MACRO is defined, "fails" if it is not. ! The CONTROLLED TEXT inside of a conditional can include ! preprocessing directives. They are executed only if the conditional ! succeeds. You can nest conditional groups inside other conditional ! groups, but they must be completely nested. In other words, `#endif' ! always matches the nearest `#ifdef' (or `#ifndef', or `#if'). Also, ! you cannot start a conditional group in one file and end it in another. Even if a conditional fails, the CONTROLLED TEXT inside it is still run through initial transformations and tokenization. Therefore, it --- 2832,2843 ---- defined. We say that the conditional "succeeds" if MACRO is defined, "fails" if it is not. ! The CONTROLLED TEXT inside of a conditional can include preprocessing ! directives. They are executed only if the conditional succeeds. You ! can nest conditional groups inside other conditional groups, but they ! must be completely nested. In other words, '#endif' always matches the ! nearest '#ifdef' (or '#ifndef', or '#if'). Also, you cannot start a ! conditional group in one file and end it in another. Even if a conditional fails, the CONTROLLED TEXT inside it is still run through initial transformations and tokenization. Therefore, it *************** must all be lexically valid C. Normally *** 2859,2876 **** that all comments and string literals inside a failing conditional group must still be properly ended. ! The comment following the `#endif' is not required, but it is a good practice if there is a lot of CONTROLLED TEXT, because it helps people ! match the `#endif' to the corresponding `#ifdef'. Older programs ! sometimes put MACRO directly after the `#endif' without enclosing it in a comment. This is invalid code according to the C standard. CPP ! accepts it with a warning. It never affects which `#ifndef' the ! `#endif' matches. ! Sometimes you wish to use some code if a macro is _not_ defined. ! You can do this by writing `#ifndef' instead of `#ifdef'. One common ! use of `#ifndef' is to include code only the first time a header file ! is included. *Note Once-Only Headers::. Macro definitions can vary between compilations for several reasons. Here are some samples. --- 2845,2862 ---- that all comments and string literals inside a failing conditional group must still be properly ended. ! The comment following the '#endif' is not required, but it is a good practice if there is a lot of CONTROLLED TEXT, because it helps people ! match the '#endif' to the corresponding '#ifdef'. Older programs ! sometimes put MACRO directly after the '#endif' without enclosing it in a comment. This is invalid code according to the C standard. CPP ! accepts it with a warning. It never affects which '#ifndef' the ! '#endif' matches. ! Sometimes you wish to use some code if a macro is _not_ defined. You ! can do this by writing '#ifndef' instead of '#ifdef'. One common use of ! '#ifndef' is to include code only the first time a header file is ! included. *Note Once-Only Headers::. Macro definitions can vary between compilations for several reasons. Here are some samples. *************** Here are some samples. *** 2884,2903 **** conditionals to avoid using a system feature on a machine where it is not implemented. ! * Macros can be defined or undefined with the `-D' and `-U' command line options when you compile the program. You can arrange to compile the same source file into two different programs by choosing a macro name to specify which program you want, writing ! conditionals to test whether or how this macro is defined, and ! then controlling the state of the macro with command line options, perhaps set in the Makefile. *Note Invocation::. * Your program might have a special header file (often called ! `config.h') that is adjusted when the program is compiled. It can ! define or not define macros depending on the features of the ! system and the desired capabilities of the program. The ! adjustment can be automated by a tool such as `autoconf', or done ! by hand.  File: cpp.info, Node: If, Next: Defined, Prev: Ifdef, Up: Conditional Syntax --- 2870,2888 ---- conditionals to avoid using a system feature on a machine where it is not implemented. ! * Macros can be defined or undefined with the '-D' and '-U' command line options when you compile the program. You can arrange to compile the same source file into two different programs by choosing a macro name to specify which program you want, writing ! conditionals to test whether or how this macro is defined, and then ! controlling the state of the macro with command line options, perhaps set in the Makefile. *Note Invocation::. * Your program might have a special header file (often called ! 'config.h') that is adjusted when the program is compiled. It can ! define or not define macros depending on the features of the system ! and the desired capabilities of the program. The adjustment can be ! automated by a tool such as 'autoconf', or done by hand.  File: cpp.info, Node: If, Next: Defined, Prev: Ifdef, Up: Conditional Syntax *************** File: cpp.info, Node: If, Next: Define *** 2905,2911 **** 4.2.2 If -------- ! The `#if' directive allows you to test the value of an arithmetic expression, rather than the mere existence of one macro. Its syntax is #if EXPRESSION --- 2890,2896 ---- 4.2.2 If -------- ! The '#if' directive allows you to test the value of an arithmetic expression, rather than the mere existence of one macro. Its syntax is #if EXPRESSION *************** restrictions. It may contain *** 2924,2952 **** * Arithmetic operators for addition, subtraction, multiplication, division, bitwise operations, shifts, comparisons, and logical ! operations (`&&' and `||'). The latter two obey the usual short-circuiting rules of standard C. * Macros. All macros in the expression are expanded before actual computation of the expression's value begins. ! * Uses of the `defined' operator, which lets you check whether macros ! are defined in the middle of an `#if'. * Identifiers that are not macros, which are all considered to be the ! number zero. This allows you to write `#if MACRO' instead of ! `#ifdef MACRO', if you know that MACRO, when defined, will always have a nonzero value. Function-like macros used without their function call parentheses are also treated as zero. ! In some contexts this shortcut is undesirable. The `-Wundef' option causes GCC to warn whenever it encounters an identifier ! which is not a macro in an `#if'. The preprocessor does not know anything about types in the language. ! Therefore, `sizeof' operators are not recognized in `#if', and neither ! are `enum' constants. They will be taken as identifiers which are not ! macros, and replaced by zero. In the case of `sizeof', this is likely to cause the expression to be invalid. The preprocessor calculates the value of EXPRESSION. It carries out --- 2909,2937 ---- * Arithmetic operators for addition, subtraction, multiplication, division, bitwise operations, shifts, comparisons, and logical ! operations ('&&' and '||'). The latter two obey the usual short-circuiting rules of standard C. * Macros. All macros in the expression are expanded before actual computation of the expression's value begins. ! * Uses of the 'defined' operator, which lets you check whether macros ! are defined in the middle of an '#if'. * Identifiers that are not macros, which are all considered to be the ! number zero. This allows you to write '#if MACRO' instead of ! '#ifdef MACRO', if you know that MACRO, when defined, will always have a nonzero value. Function-like macros used without their function call parentheses are also treated as zero. ! In some contexts this shortcut is undesirable. The '-Wundef' option causes GCC to warn whenever it encounters an identifier ! which is not a macro in an '#if'. The preprocessor does not know anything about types in the language. ! Therefore, 'sizeof' operators are not recognized in '#if', and neither ! are 'enum' constants. They will be taken as identifiers which are not ! macros, and replaced by zero. In the case of 'sizeof', this is likely to cause the expression to be invalid. The preprocessor calculates the value of EXPRESSION. It carries out *************** all calculations in the widest integer t *** 2954,2960 **** most machines supported by GCC this is 64 bits. This is not the same rule as the compiler uses to calculate the value of a constant expression, and may give different results in some cases. If the value ! comes out to be nonzero, the `#if' succeeds and the CONTROLLED TEXT is included; otherwise it is skipped.  --- 2939,2945 ---- most machines supported by GCC this is 64 bits. This is not the same rule as the compiler uses to calculate the value of a constant expression, and may give different results in some cases. If the value ! comes out to be nonzero, the '#if' succeeds and the CONTROLLED TEXT is included; otherwise it is skipped.  *************** File: cpp.info, Node: Defined, Next: E *** 2963,2996 **** 4.2.3 Defined ------------- ! The special operator `defined' is used in `#if' and `#elif' expressions ! to test whether a certain name is defined as a macro. `defined NAME' ! and `defined (NAME)' are both expressions whose value is 1 if NAME is ! defined as a macro at the current point in the program, and 0 ! otherwise. Thus, `#if defined MACRO' is precisely equivalent to ! `#ifdef MACRO'. ! `defined' is useful when you wish to test more than one macro for existence at once. For example, #if defined (__vax__) || defined (__ns16000__) ! would succeed if either of the names `__vax__' or `__ns16000__' is defined as a macro. Conditionals written like this: #if defined BUFSIZE && BUFSIZE >= 1024 ! can generally be simplified to just `#if BUFSIZE >= 1024', since if ! `BUFSIZE' is not defined, it will be interpreted as having the value zero. ! If the `defined' operator appears as a result of a macro expansion, the C standard says the behavior is undefined. GNU cpp treats it as a ! genuine `defined' operator and evaluates it normally. It will warn wherever your code uses this feature if you use the command-line option ! `-pedantic', since other compilers may handle it differently.  File: cpp.info, Node: Else, Next: Elif, Prev: Defined, Up: Conditional Syntax --- 2948,2980 ---- 4.2.3 Defined ------------- ! The special operator 'defined' is used in '#if' and '#elif' expressions ! to test whether a certain name is defined as a macro. 'defined NAME' ! and 'defined (NAME)' are both expressions whose value is 1 if NAME is ! defined as a macro at the current point in the program, and 0 otherwise. ! Thus, '#if defined MACRO' is precisely equivalent to '#ifdef MACRO'. ! 'defined' is useful when you wish to test more than one macro for existence at once. For example, #if defined (__vax__) || defined (__ns16000__) ! would succeed if either of the names '__vax__' or '__ns16000__' is defined as a macro. Conditionals written like this: #if defined BUFSIZE && BUFSIZE >= 1024 ! can generally be simplified to just '#if BUFSIZE >= 1024', since if ! 'BUFSIZE' is not defined, it will be interpreted as having the value zero. ! If the 'defined' operator appears as a result of a macro expansion, the C standard says the behavior is undefined. GNU cpp treats it as a ! genuine 'defined' operator and evaluates it normally. It will warn wherever your code uses this feature if you use the command-line option ! '-pedantic', since other compilers may handle it differently.  File: cpp.info, Node: Else, Next: Elif, Prev: Defined, Up: Conditional Syntax *************** File: cpp.info, Node: Else, Next: Elif *** 2998,3004 **** 4.2.4 Else ---------- ! The `#else' directive can be added to a conditional to provide alternative text to be used if the condition fails. This is what it looks like: --- 2982,2988 ---- 4.2.4 Else ---------- ! The '#else' directive can be added to a conditional to provide alternative text to be used if the condition fails. This is what it looks like: *************** looks like: *** 3011,3017 **** If EXPRESSION is nonzero, the TEXT-IF-TRUE is included and the TEXT-IF-FALSE is skipped. If EXPRESSION is zero, the opposite happens. ! You can use `#else' with `#ifdef' and `#ifndef', too.  File: cpp.info, Node: Elif, Prev: Else, Up: Conditional Syntax --- 2995,3001 ---- If EXPRESSION is nonzero, the TEXT-IF-TRUE is included and the TEXT-IF-FALSE is skipped. If EXPRESSION is zero, the opposite happens. ! You can use '#else' with '#ifdef' and '#ifndef', too.  File: cpp.info, Node: Elif, Prev: Else, Up: Conditional Syntax *************** two possible alternatives. For example, *** 3032,3039 **** #endif /* X != 2 */ #endif /* X != 1 */ ! Another conditional directive, `#elif', allows this to be ! abbreviated as follows: #if X == 1 ... --- 3016,3023 ---- #endif /* X != 2 */ #endif /* X != 1 */ ! Another conditional directive, '#elif', allows this to be abbreviated ! as follows: #if X == 1 ... *************** abbreviated as follows: *** 3043,3062 **** ... #endif /* X != 2 and X != 1*/ ! `#elif' stands for "else if". Like `#else', it goes in the middle ! of a conditional group and subdivides it; it does not require a ! matching `#endif' of its own. Like `#if', the `#elif' directive ! includes an expression to be tested. The text following the `#elif' is ! processed only if the original `#if'-condition failed and the `#elif' ! condition succeeds. ! More than one `#elif' can go in the same conditional group. Then ! the text after each `#elif' is processed only if the `#elif' condition ! succeeds after the original `#if' and all previous `#elif' directives within it have failed. ! `#else' is allowed after any number of `#elif' directives, but ! `#elif' may not follow `#else'.  File: cpp.info, Node: Deleted Code, Prev: Conditional Syntax, Up: Conditionals --- 3027,3046 ---- ... #endif /* X != 2 and X != 1*/ ! '#elif' stands for "else if". Like '#else', it goes in the middle of ! a conditional group and subdivides it; it does not require a matching ! '#endif' of its own. Like '#if', the '#elif' directive includes an ! expression to be tested. The text following the '#elif' is processed ! only if the original '#if'-condition failed and the '#elif' condition ! succeeds. ! More than one '#elif' can go in the same conditional group. Then the ! text after each '#elif' is processed only if the '#elif' condition ! succeeds after the original '#if' and all previous '#elif' directives within it have failed. ! '#else' is allowed after any number of '#elif' directives, but ! '#elif' may not follow '#else'.  File: cpp.info, Node: Deleted Code, Prev: Conditional Syntax, Up: Conditionals *************** code will end the commenting-out. The p *** 3071,3090 **** syntax errors. One way to avoid this problem is to use an always-false conditional ! instead. For instance, put `#if 0' before the deleted code and ! `#endif' after it. This works even if the code being turned off ! contains conditionals, but they must be entire conditionals (balanced ! `#if' and `#endif'). ! Some people use `#ifdef notdef' instead. This is risky, because ! `notdef' might be accidentally defined as a macro, and then the ! conditional would succeed. `#if 0' can be counted on to fail. ! Do not use `#if 0' for comments which are not C code. Use a real ! comment, instead. The interior of `#if 0' must consist of complete tokens; in particular, single-quote characters must balance. Comments often contain unbalanced single-quote characters (known in English as ! apostrophes). These confuse `#if 0'. They don't confuse `/*'.  File: cpp.info, Node: Diagnostics, Next: Line Control, Prev: Conditionals, Up: Top --- 3055,3074 ---- syntax errors. One way to avoid this problem is to use an always-false conditional ! instead. For instance, put '#if 0' before the deleted code and '#endif' ! after it. This works even if the code being turned off contains ! conditionals, but they must be entire conditionals (balanced '#if' and ! '#endif'). ! Some people use '#ifdef notdef' instead. This is risky, because ! 'notdef' might be accidentally defined as a macro, and then the ! conditional would succeed. '#if 0' can be counted on to fail. ! Do not use '#if 0' for comments which are not C code. Use a real ! comment, instead. The interior of '#if 0' must consist of complete tokens; in particular, single-quote characters must balance. Comments often contain unbalanced single-quote characters (known in English as ! apostrophes). These confuse '#if 0'. They don't confuse '/*'.  File: cpp.info, Node: Diagnostics, Next: Line Control, Prev: Conditionals, Up: Top *************** File: cpp.info, Node: Diagnostics, Nex *** 3092,3102 **** 5 Diagnostics ************* ! The directive `#error' causes the preprocessor to report a fatal error. ! The tokens forming the rest of the line following `#error' are used as the error message. ! You would use `#error' inside of a conditional that detects a combination of parameters which you know the program does not properly support. For example, if you know that the program will not run properly on a VAX, you might write --- 3076,3086 ---- 5 Diagnostics ************* ! The directive '#error' causes the preprocessor to report a fatal error. ! The tokens forming the rest of the line following '#error' are used as the error message. ! You would use '#error' inside of a conditional that detects a combination of parameters which you know the program does not properly support. For example, if you know that the program will not run properly on a VAX, you might write *************** properly on a VAX, you might write *** 3107,3130 **** If you have several configuration parameters that must be set up by the installation in a consistent way, you can use conditionals to detect ! an inconsistency and report it with `#error'. For example, #if !defined(FOO) && defined(BAR) #error "BAR requires FOO." #endif ! The directive `#warning' is like `#error', but causes the preprocessor to issue a warning and continue preprocessing. The tokens ! following `#warning' are used as the warning message. ! You might use `#warning' in obsolete header files, with a message directing the user to the header file which should be used instead. ! Neither `#error' nor `#warning' macro-expands its argument. ! Internal whitespace sequences are each replaced with a single space. ! The line must consist of complete tokens. It is wisest to make the ! argument of these directives be a single string constant; this avoids ! problems with apostrophes and the like.  File: cpp.info, Node: Line Control, Next: Pragmas, Prev: Diagnostics, Up: Top --- 3091,3114 ---- If you have several configuration parameters that must be set up by the installation in a consistent way, you can use conditionals to detect ! an inconsistency and report it with '#error'. For example, #if !defined(FOO) && defined(BAR) #error "BAR requires FOO." #endif ! The directive '#warning' is like '#error', but causes the preprocessor to issue a warning and continue preprocessing. The tokens ! following '#warning' are used as the warning message. ! You might use '#warning' in obsolete header files, with a message directing the user to the header file which should be used instead. ! Neither '#error' nor '#warning' macro-expands its argument. Internal ! whitespace sequences are each replaced with a single space. The line ! must consist of complete tokens. It is wisest to make the argument of ! these directives be a single string constant; this avoids problems with ! apostrophes and the like.  File: cpp.info, Node: Line Control, Next: Pragmas, Prev: Diagnostics, Up: Top *************** reported as having appeared on the line *** 3139,3197 **** outermost macro was used. We intend to be more accurate in the future. If you write a program which generates source code, such as the ! `bison' parser generator, you may want to adjust the preprocessor's notion of the current file name and line number by hand. Parts of the ! output from `bison' are generated from scratch, other parts come from a ! standard parser file. The rest are copied verbatim from `bison''s ! input. You would like compiler error messages and symbolic debuggers ! to be able to refer to `bison''s input file. ! `bison' or any such program can arrange this by writing `#line' ! directives into the output file. `#line' is a directive that specifies the original line number and source file name for subsequent input in ! the current preprocessor input file. `#line' has three variants: ! `#line LINENUM' LINENUM is a non-negative decimal integer constant. It specifies the line number which should be reported for the following line of input. Subsequent lines are counted from LINENUM. ! `#line LINENUM FILENAME' ! LINENUM is the same as for the first form, and has the same ! effect. In addition, FILENAME is a string constant. The ! following line and all subsequent lines are reported to come from ! the file it specifies, until something else happens to change that. ! FILENAME is interpreted according to the normal rules for a string ! constant: backslash escapes are interpreted. This is different ! from `#include'. ! Previous versions of CPP did not interpret escapes in `#line'; we have changed it because the standard requires they be interpreted, and most other compilers do. ! `#line ANYTHING ELSE' ANYTHING ELSE is checked for macro calls, which are expanded. The result should match one of the above two forms. ! `#line' directives alter the results of the `__FILE__' and ! `__LINE__' predefined macros from that point on. *Note Standard ! Predefined Macros::. They do not have any effect on `#include''s idea ! of the directory containing the current file. This is a change from ! GCC 2.95. Previously, a file reading - #line 1 "../src/gram.y" #include "gram.h" ! would search for `gram.h' in `../src', then the `-I' chain; the ! directory containing the physical source file would not be searched. ! In GCC 3.0 and later, the `#include' is not affected by the presence of ! a `#line' referring to a different directory. We made this change because the old behavior caused problems when generated source files were transported between machines. For instance, it is common practice to ship generated parsers with a source release, so that people building the distribution do not need to have yacc or ! Bison installed. These files frequently have `#line' directives referring to the directory tree of the system where the distribution was created. If GCC tries to search for headers in those directories, the build is likely to fail. --- 3123,3180 ---- outermost macro was used. We intend to be more accurate in the future. If you write a program which generates source code, such as the ! 'bison' parser generator, you may want to adjust the preprocessor's notion of the current file name and line number by hand. Parts of the ! output from 'bison' are generated from scratch, other parts come from a ! standard parser file. The rest are copied verbatim from 'bison''s ! input. You would like compiler error messages and symbolic debuggers to ! be able to refer to 'bison''s input file. ! 'bison' or any such program can arrange this by writing '#line' ! directives into the output file. '#line' is a directive that specifies the original line number and source file name for subsequent input in ! the current preprocessor input file. '#line' has three variants: ! '#line LINENUM' LINENUM is a non-negative decimal integer constant. It specifies the line number which should be reported for the following line of input. Subsequent lines are counted from LINENUM. ! '#line LINENUM FILENAME' ! LINENUM is the same as for the first form, and has the same effect. ! In addition, FILENAME is a string constant. The following line and ! all subsequent lines are reported to come from the file it ! specifies, until something else happens to change that. FILENAME ! is interpreted according to the normal rules for a string constant: ! backslash escapes are interpreted. This is different from ! '#include'. ! Previous versions of CPP did not interpret escapes in '#line'; we have changed it because the standard requires they be interpreted, and most other compilers do. ! '#line ANYTHING ELSE' ANYTHING ELSE is checked for macro calls, which are expanded. The result should match one of the above two forms. ! '#line' directives alter the results of the '__FILE__' and '__LINE__' ! predefined macros from that point on. *Note Standard Predefined ! Macros::. They do not have any effect on '#include''s idea of the ! directory containing the current file. This is a change from GCC 2.95. ! Previously, a file reading #include "gram.h" ! would search for 'gram.h' in '../src', then the '-I' chain; the ! directory containing the physical source file would not be searched. In ! GCC 3.0 and later, the '#include' is not affected by the presence of a ! '#line' referring to a different directory. We made this change because the old behavior caused problems when generated source files were transported between machines. For instance, it is common practice to ship generated parsers with a source release, so that people building the distribution do not need to have yacc or ! Bison installed. These files frequently have '#line' directives referring to the directory tree of the system where the distribution was created. If GCC tries to search for headers in those directories, the build is likely to fail. *************** build is likely to fail. *** 3200,3206 **** in the same directory as its source and it attempts to include a header which would be visible searching from the directory containing the source file. However, this problem is easily solved with an additional ! `-I' switch on the command line. The failures caused by the old semantics could sometimes be corrected only by editing the generated files, which is difficult and error-prone. --- 3183,3189 ---- in the same directory as its source and it attempts to include a header which would be visible searching from the directory containing the source file. However, this problem is easily solved with an additional ! '-I' switch on the command line. The failures caused by the old semantics could sometimes be corrected only by editing the generated files, which is difficult and error-prone. *************** File: cpp.info, Node: Pragmas, Next: O *** 3210,3257 **** 7 Pragmas ********* ! The `#pragma' directive is the method specified by the C standard for providing additional information to the compiler, beyond what is conveyed in the language itself. Three forms of this directive ! (commonly known as "pragmas") are specified by the 1999 C standard. A ! C compiler is free to attach any meaning it likes to other pragmas. GCC has historically preferred to use extensions to the syntax of the ! language, such as `__attribute__', for this purpose. However, GCC does define a few pragmas of its own. These mostly have effects on the entire translation unit or source file. In GCC version 3, all GNU-defined, supported pragmas have been given ! a `GCC' prefix. This is in line with the `STDC' prefix on all pragmas defined by C99. For backward compatibility, pragmas which were ! recognized by previous versions are still recognized without the `GCC' ! prefix, but that usage is deprecated. Some older pragmas are ! deprecated in their entirety. They are not recognized with the `GCC' ! prefix. *Note Obsolete Features::. ! C99 introduces the `_Pragma' operator. This feature addresses a ! major problem with `#pragma': being a directive, it cannot be produced ! as the result of macro expansion. `_Pragma' is an operator, much like ! `sizeof' or `defined', and can be embedded in a macro. ! Its syntax is `_Pragma (STRING-LITERAL)', where STRING-LITERAL can ! be either a normal or wide-character string literal. It is ! destringized, by replacing all `\\' with a single `\' and all `\"' with ! a `"'. The result is then processed as if it had appeared as the right ! hand side of a `#pragma' directive. For example, _Pragma ("GCC dependency \"parse.y\"") ! has the same effect as `#pragma GCC dependency "parse.y"'. The same effect could be achieved using macros, for example #define DO_PRAGMA(x) _Pragma (#x) DO_PRAGMA (GCC dependency "parse.y") ! The standard is unclear on where a `_Pragma' operator can appear. The preprocessor does not accept it within a preprocessing conditional ! directive like `#if'. To be safe, you are probably best keeping it out ! of directives other than `#define', and putting it on a line of its own. This manual documents the pragmas which are meaningful to the preprocessor itself. Other pragmas are meaningful to the C or C++ --- 3193,3240 ---- 7 Pragmas ********* ! The '#pragma' directive is the method specified by the C standard for providing additional information to the compiler, beyond what is conveyed in the language itself. Three forms of this directive ! (commonly known as "pragmas") are specified by the 1999 C standard. A C ! compiler is free to attach any meaning it likes to other pragmas. GCC has historically preferred to use extensions to the syntax of the ! language, such as '__attribute__', for this purpose. However, GCC does define a few pragmas of its own. These mostly have effects on the entire translation unit or source file. In GCC version 3, all GNU-defined, supported pragmas have been given ! a 'GCC' prefix. This is in line with the 'STDC' prefix on all pragmas defined by C99. For backward compatibility, pragmas which were ! recognized by previous versions are still recognized without the 'GCC' ! prefix, but that usage is deprecated. Some older pragmas are deprecated ! in their entirety. They are not recognized with the 'GCC' prefix. ! *Note Obsolete Features::. ! C99 introduces the '_Pragma' operator. This feature addresses a ! major problem with '#pragma': being a directive, it cannot be produced ! as the result of macro expansion. '_Pragma' is an operator, much like ! 'sizeof' or 'defined', and can be embedded in a macro. ! Its syntax is '_Pragma (STRING-LITERAL)', where STRING-LITERAL can be ! either a normal or wide-character string literal. It is destringized, ! by replacing all '\\' with a single '\' and all '\"' with a '"'. The ! result is then processed as if it had appeared as the right hand side of ! a '#pragma' directive. For example, _Pragma ("GCC dependency \"parse.y\"") ! has the same effect as '#pragma GCC dependency "parse.y"'. The same effect could be achieved using macros, for example #define DO_PRAGMA(x) _Pragma (#x) DO_PRAGMA (GCC dependency "parse.y") ! The standard is unclear on where a '_Pragma' operator can appear. The preprocessor does not accept it within a preprocessing conditional ! directive like '#if'. To be safe, you are probably best keeping it out ! of directives other than '#define', and putting it on a line of its own. This manual documents the pragmas which are meaningful to the preprocessor itself. Other pragmas are meaningful to the C or C++ *************** compilers. They are documented in the G *** 3259,3266 **** GCC plugins may provide their own pragmas. ! `#pragma GCC dependency' ! `#pragma GCC dependency' allows you to check the relative dates of the current file and another file. If the other file is more recent than the current file, a warning is issued. This is useful if the current file is derived from the other file, and should be --- 3242,3249 ---- GCC plugins may provide their own pragmas. ! '#pragma GCC dependency' ! '#pragma GCC dependency' allows you to check the relative dates of the current file and another file. If the other file is more recent than the current file, a warning is issued. This is useful if the current file is derived from the other file, and should be *************** compilers. They are documented in the G *** 3271,3281 **** #pragma GCC dependency "parse.y" #pragma GCC dependency "/usr/include/time.h" rerun fixincludes ! `#pragma GCC poison' Sometimes, there is an identifier that you want to remove completely from your program, and make sure that it never creeps back in. To enforce this, you can "poison" the identifier with ! this pragma. `#pragma GCC poison' is followed by a list of identifiers to poison. If any of those identifiers appears anywhere in the source after the directive, it is a hard error. For example, --- 3254,3264 ---- #pragma GCC dependency "parse.y" #pragma GCC dependency "/usr/include/time.h" rerun fixincludes ! '#pragma GCC poison' Sometimes, there is an identifier that you want to remove completely from your program, and make sure that it never creeps back in. To enforce this, you can "poison" the identifier with ! this pragma. '#pragma GCC poison' is followed by a list of identifiers to poison. If any of those identifiers appears anywhere in the source after the directive, it is a hard error. For example, *************** compilers. They are documented in the G *** 3286,3294 **** will produce an error. If a poisoned identifier appears as part of the expansion of a ! macro which was defined before the identifier was poisoned, it ! will _not_ cause an error. This lets you poison an identifier ! without worrying about system headers defining macros that use it. For example, --- 3269,3277 ---- will produce an error. If a poisoned identifier appears as part of the expansion of a ! macro which was defined before the identifier was poisoned, it will ! _not_ cause an error. This lets you poison an identifier without ! worrying about system headers defining macros that use it. For example, *************** compilers. They are documented in the G *** 3298,3317 **** will not produce an error. ! `#pragma GCC system_header' This pragma takes no arguments. It causes the rest of the code in the current file to be treated as if it came from a system header. *Note System Headers::. ! `#pragma GCC warning' ! `#pragma GCC error' ! `#pragma GCC warning "message"' causes the preprocessor to issue a ! warning diagnostic with the text `message'. The message contained ! in the pragma must be a single string literal. Similarly, ! `#pragma GCC error "message"' issues an error message. Unlike the ! `#warning' and `#error' directives, these pragmas can be embedded ! in preprocessor macros using `_Pragma'. !  File: cpp.info, Node: Other Directives, Next: Preprocessor Output, Prev: Pragmas, Up: Top --- 3281,3299 ---- will not produce an error. ! '#pragma GCC system_header' This pragma takes no arguments. It causes the rest of the code in the current file to be treated as if it came from a system header. *Note System Headers::. ! '#pragma GCC warning' ! '#pragma GCC error' ! '#pragma GCC warning "message"' causes the preprocessor to issue a ! warning diagnostic with the text 'message'. The message contained ! in the pragma must be a single string literal. Similarly, '#pragma ! GCC error "message"' issues an error message. Unlike the ! '#warning' and '#error' directives, these pragmas can be embedded ! in preprocessor macros using '_Pragma'.  File: cpp.info, Node: Other Directives, Next: Preprocessor Output, Prev: Pragmas, Up: Top *************** File: cpp.info, Node: Other Directives, *** 3319,3339 **** 8 Other Directives ****************** ! The `#ident' directive takes one argument, a string constant. On some systems, that string constant is copied into a special segment of the ! object file. On other systems, the directive is ignored. The `#sccs' ! directive is a synonym for `#ident'. These directives are not part of the C standard, but they are not official GNU extensions either. What historical information we have been able to find, suggests they originated with System V. ! The "null directive" consists of a `#' followed by a newline, with only whitespace (including comments) in between. A null directive is understood as a preprocessing directive but has no effect on the preprocessor output. The primary significance of the existence of the ! null directive is that an input line consisting of just a `#' will ! produce no output, rather than a line of output containing just a `#'. Supposedly some old C programs contain such lines.  --- 3301,3321 ---- 8 Other Directives ****************** ! The '#ident' directive takes one argument, a string constant. On some systems, that string constant is copied into a special segment of the ! object file. On other systems, the directive is ignored. The '#sccs' ! directive is a synonym for '#ident'. These directives are not part of the C standard, but they are not official GNU extensions either. What historical information we have been able to find, suggests they originated with System V. ! The "null directive" consists of a '#' followed by a newline, with only whitespace (including comments) in between. A null directive is understood as a preprocessing directive but has no effect on the preprocessor output. The primary significance of the existence of the ! null directive is that an input line consisting of just a '#' will ! produce no output, rather than a line of output containing just a '#'. Supposedly some old C programs contain such lines.  *************** that the following line originated in fi *** 3375,3413 **** FILENAME will never contain any non-printing characters; they are replaced with octal escape sequences. ! After the file name comes zero or more flags, which are `1', `2', ! `3', or `4'. If there are multiple flags, spaces separate them. Here is what the flags mean: ! `1' This indicates the start of a new file. ! ! `2' This indicates returning to a file (after having included another file). ! ! `3' This indicates that the following text comes from a system header file, so certain warnings should be suppressed. ! ! `4' This indicates that the following text should be treated as being ! wrapped in an implicit `extern "C"' block. As an extension, the preprocessor accepts linemarkers in non-assembler input files. They are treated like the corresponding ! `#line' directive, (*note Line Control::), except that trailing flags are permitted, and are interpreted with the meanings described above. If multiple flags are given, they must be in ascending order. Some directives may be duplicated in the output of the preprocessor. ! These are `#ident' (always), `#pragma' (only if the preprocessor does ! not handle the pragma itself), and `#define' and `#undef' (with certain ! debugging options). If this happens, the `#' of the directive will always be in the first column, and there will be no space between the ! `#' and the directive name. If macro expansion happens to generate tokens which might be mistaken for a duplicated directive, a space will ! be inserted between the `#' and the directive name.  File: cpp.info, Node: Traditional Mode, Next: Implementation Details, Prev: Preprocessor Output, Up: Top --- 3357,3392 ---- FILENAME will never contain any non-printing characters; they are replaced with octal escape sequences. ! After the file name comes zero or more flags, which are '1', '2', ! '3', or '4'. If there are multiple flags, spaces separate them. Here is what the flags mean: ! '1' This indicates the start of a new file. ! '2' This indicates returning to a file (after having included another file). ! '3' This indicates that the following text comes from a system header file, so certain warnings should be suppressed. ! '4' This indicates that the following text should be treated as being ! wrapped in an implicit 'extern "C"' block. As an extension, the preprocessor accepts linemarkers in non-assembler input files. They are treated like the corresponding ! '#line' directive, (*note Line Control::), except that trailing flags are permitted, and are interpreted with the meanings described above. If multiple flags are given, they must be in ascending order. Some directives may be duplicated in the output of the preprocessor. ! These are '#ident' (always), '#pragma' (only if the preprocessor does ! not handle the pragma itself), and '#define' and '#undef' (with certain ! debugging options). If this happens, the '#' of the directive will always be in the first column, and there will be no space between the ! '#' and the directive name. If macro expansion happens to generate tokens which might be mistaken for a duplicated directive, a space will ! be inserted between the '#' and the directive name.  File: cpp.info, Node: Traditional Mode, Next: Implementation Details, Prev: Preprocessor Output, Up: Top *************** File: cpp.info, Node: Traditional Mode, *** 3417,3423 **** Traditional (pre-standard) C preprocessing is rather different from the preprocessing specified by the standard. When GCC is given the ! `-traditional-cpp' option, it attempts to emulate a traditional preprocessor. GCC versions 3.2 and later only support traditional mode semantics in --- 3396,3402 ---- Traditional (pre-standard) C preprocessing is rather different from the preprocessing specified by the standard. When GCC is given the ! '-traditional-cpp' option, it attempts to emulate a traditional preprocessor. GCC versions 3.2 and later only support traditional mode semantics in *************** simply treated as a stream of text with *** 3450,3480 **** This implementation does not treat trigraphs (*note trigraphs::) specially since they were an invention of the standards committee. It ! handles arbitrarily-positioned escaped newlines properly and splices ! the lines as you would expect; many traditional preprocessors did not ! do this. The form of horizontal whitespace in the input file is preserved in the output. In particular, hard tabs remain hard tabs. This can be useful if, for example, you are preprocessing a Makefile. Traditional CPP only recognizes C-style block comments, and treats ! the `/*' sequence as introducing a comment only if it lies outside quoted text. Quoted text is introduced by the usual single and double ! quotes, and also by an initial `<' in a `#include' directive. Traditionally, comments are completely removed and are not replaced ! with a space. Since a traditional compiler does its own tokenization ! of the output of the preprocessor, this means that comments can ! effectively be used as token paste operators. However, comments behave ! like separators for text handled by the preprocessor itself, since it ! doesn't re-lex its input. For example, in #if foo/**/bar ! `foo' and `bar' are distinct identifiers and expanded separately if ! they happen to be macros. In other words, this directive is equivalent ! to #if foo bar --- 3429,3458 ---- This implementation does not treat trigraphs (*note trigraphs::) specially since they were an invention of the standards committee. It ! handles arbitrarily-positioned escaped newlines properly and splices the ! lines as you would expect; many traditional preprocessors did not do ! this. The form of horizontal whitespace in the input file is preserved in the output. In particular, hard tabs remain hard tabs. This can be useful if, for example, you are preprocessing a Makefile. Traditional CPP only recognizes C-style block comments, and treats ! the '/*' sequence as introducing a comment only if it lies outside quoted text. Quoted text is introduced by the usual single and double ! quotes, and also by an initial '<' in a '#include' directive. Traditionally, comments are completely removed and are not replaced ! with a space. Since a traditional compiler does its own tokenization of ! the output of the preprocessor, this means that comments can effectively ! be used as token paste operators. However, comments behave like ! separators for text handled by the preprocessor itself, since it doesn't ! re-lex its input. For example, in #if foo/**/bar ! 'foo' and 'bar' are distinct identifiers and expanded separately if they ! happen to be macros. In other words, this directive is equivalent to #if foo bar *************** with replacement text that contains an u *** 3488,3494 **** you attempt to compile preprocessed output containing an unmatched quote you will get a syntax error. ! However, all preprocessing directives other than `#define' require matching quotes. For example: #define m This macro's fine and has an unmatched quote --- 3466,3472 ---- you attempt to compile preprocessed output containing an unmatched quote you will get a syntax error. ! However, all preprocessing directives other than '#define' require matching quotes. For example: #define m This macro's fine and has an unmatched quote *************** can run together with the text after the *** 3519,3534 **** single token. Normally comments are removed from the replacement text after the ! macro is expanded, but if the `-CC' option is passed on the command ! line comments are preserved. (In fact, the current implementation ! removes comments even before saving the macro replacement text, but it ! careful to do it in such a way that the observed effect is identical ! even in the function-like macro case.) ! The ISO stringification operator `#' and token paste operator `##' ! have no special meaning. As explained later, an effect similar to ! these operators can be obtained in a different way. Macro names that ! are embedded in quotes, either from the main file or after macro replacement, do not expand. CPP replaces an unquoted object-like macro name with its replacement --- 3497,3512 ---- single token. Normally comments are removed from the replacement text after the ! macro is expanded, but if the '-CC' option is passed on the command line ! comments are preserved. (In fact, the current implementation removes ! comments even before saving the macro replacement text, but it careful ! to do it in such a way that the observed effect is identical even in the ! function-like macro case.) ! The ISO stringification operator '#' and token paste operator '##' ! have no special meaning. As explained later, an effect similar to these ! operators can be obtained in a different way. Macro names that are ! embedded in quotes, either from the main file or after macro replacement, do not expand. CPP replaces an unquoted object-like macro name with its replacement *************** invocation. *** 3548,3570 **** Function-like macros are similar in form but quite different in behavior to their ISO counterparts. Their arguments are contained within parentheses, are comma-separated, and can cross physical lines. ! Commas within nested parentheses are not treated as argument ! separators. Similarly, a quote in an argument cannot be left unclosed; ! a following comma or parenthesis that comes before the closing quote is ! treated like any other character. There is no facility for handling ! variadic macros. This implementation removes all comments from macro arguments, unless ! the `-C' option is given. The form of all other horizontal whitespace in arguments is preserved, including leading and trailing whitespace. In particular f( ) ! is treated as an invocation of the macro `f' with a single argument consisting of a single space. If you want to invoke a function-like ! macro that takes no arguments, you must not leave any whitespace ! between the parentheses. If a macro argument crosses a new line, the new line is replaced with a space when forming the argument. If the previous line contained an --- 3526,3547 ---- Function-like macros are similar in form but quite different in behavior to their ISO counterparts. Their arguments are contained within parentheses, are comma-separated, and can cross physical lines. ! Commas within nested parentheses are not treated as argument separators. ! Similarly, a quote in an argument cannot be left unclosed; a following ! comma or parenthesis that comes before the closing quote is treated like ! any other character. There is no facility for handling variadic macros. This implementation removes all comments from macro arguments, unless ! the '-C' option is given. The form of all other horizontal whitespace in arguments is preserved, including leading and trailing whitespace. In particular f( ) ! is treated as an invocation of the macro 'f' with a single argument consisting of a single space. If you want to invoke a function-like ! macro that takes no arguments, you must not leave any whitespace between ! the parentheses. If a macro argument crosses a new line, the new line is replaced with a space when forming the argument. If the previous line contained an *************** File: cpp.info, Node: Traditional misce *** 3595,3610 **** Here are some things to be aware of when using the traditional preprocessor. ! * Preprocessing directives are recognized only when their leading ! `#' appears in the first column. There can be no whitespace ! between the beginning of the line and the `#', but whitespace can ! follow the `#'. ! * A true traditional C preprocessor does not recognize `#error' or ! `#pragma', and may not recognize `#elif'. CPP supports all the directives in traditional mode that it supports in ISO mode, including extensions, with the exception that the effects of ! `#pragma GCC poison' are undefined. * __STDC__ is not defined. --- 3572,3587 ---- Here are some things to be aware of when using the traditional preprocessor. ! * Preprocessing directives are recognized only when their leading '#' ! appears in the first column. There can be no whitespace between ! the beginning of the line and the '#', but whitespace can follow ! the '#'. ! * A true traditional C preprocessor does not recognize '#error' or ! '#pragma', and may not recognize '#elif'. CPP supports all the directives in traditional mode that it supports in ISO mode, including extensions, with the exception that the effects of ! '#pragma GCC poison' are undefined. * __STDC__ is not defined. *************** preprocessor. *** 3613,3619 **** * If a line that looks like a directive appears within macro arguments, the behavior is undefined. -  File: cpp.info, Node: Traditional warnings, Prev: Traditional miscellany, Up: Traditional Mode --- 3590,3595 ---- *************** File: cpp.info, Node: Traditional warni *** 3621,3644 **** ========================= You can request warnings about features that did not exist, or worked ! differently, in traditional C with the `-Wtraditional' option. GCC ! does not warn about features of ISO C which you must use when you are ! using a conforming compiler, such as the `#' and `##' operators. ! Presently `-Wtraditional' warns about: * Macro parameters that appear within string literals in the macro ! body. In traditional C macro replacement takes place within ! string literals, but does not in ISO C. * In traditional C, some preprocessor directives did not exist. Traditional preprocessors would only consider a line to be a ! directive if the `#' appeared in column 1 on the line. Therefore ! `-Wtraditional' warns about directives that traditional C ! understands but would ignore because the `#' does not appear as the first character on the line. It also suggests you hide directives ! like `#pragma' not understood by traditional C by indenting them. ! Some traditional implementations would not recognize `#elif', so it suggests avoiding it altogether. * A function-like macro that appears without an argument list. In --- 3597,3620 ---- ========================= You can request warnings about features that did not exist, or worked ! differently, in traditional C with the '-Wtraditional' option. GCC does ! not warn about features of ISO C which you must use when you are using a ! conforming compiler, such as the '#' and '##' operators. ! Presently '-Wtraditional' warns about: * Macro parameters that appear within string literals in the macro ! body. In traditional C macro replacement takes place within string ! literals, but does not in ISO C. * In traditional C, some preprocessor directives did not exist. Traditional preprocessors would only consider a line to be a ! directive if the '#' appeared in column 1 on the line. Therefore ! '-Wtraditional' warns about directives that traditional C ! understands but would ignore because the '#' does not appear as the first character on the line. It also suggests you hide directives ! like '#pragma' not understood by traditional C by indenting them. ! Some traditional implementations would not recognize '#elif', so it suggests avoiding it altogether. * A function-like macro that appears without an argument list. In *************** using a conforming compiler, such as the *** 3647,3658 **** * The unary plus operator. This did not exist in traditional C. ! * The `U' and `LL' integer constant suffixes, which were not ! available in traditional C. (Traditional C does support the `L' suffix for simple long integer constants.) You are not warned about uses of these suffixes in macros defined in system headers. ! For instance, `UINT_MAX' may well be defined as `4294967295U', but ! you will not be warned if you use `UINT_MAX'. You can usually avoid the warning, and the related warning about constants which are so large that they are unsigned, by writing the --- 3623,3634 ---- * The unary plus operator. This did not exist in traditional C. ! * The 'U' and 'LL' integer constant suffixes, which were not ! available in traditional C. (Traditional C does support the 'L' suffix for simple long integer constants.) You are not warned about uses of these suffixes in macros defined in system headers. ! For instance, 'UINT_MAX' may well be defined as '4294967295U', but ! you will not be warned if you use 'UINT_MAX'. You can usually avoid the warning, and the related warning about constants which are so large that they are unsigned, by writing the *************** File: cpp.info, Node: Implementation-de *** 3688,3757 **** ==================================== This is how CPP behaves in all the cases which the C standard describes ! as "implementation-defined". This term means that the implementation ! is free to do what it likes, but must document its choice and stick to ! it. * The mapping of physical source file multi-byte characters to the execution character set. The input character set can be specified using the ! `-finput-charset' option, while the execution character set may be ! controlled using the `-fexec-charset' and `-fwide-exec-charset' options. ! * Identifier characters. The C and C++ standards allow identifiers ! to be composed of `_' and the alphanumeric characters. C++ and ! C99 also allow universal character names, and C99 further permits ! implementation-defined characters. GCC currently only permits ! universal character names if `-fextended-identifiers' is used, ! because the implementation of universal character names in ! identifiers is experimental. ! GCC allows the `$' character in identifiers as an extension for ! most targets. This is true regardless of the `std=' switch, since this extension cannot conflict with standards-conforming programs. When preprocessing assembler, however, dollars are not identifier characters by default. ! Currently the targets that by default do not permit `$' are AVR, IP2K, MMIX, MIPS Irix 3, ARM aout, and PowerPC targets for the AIX operating system. ! You can override the default with `-fdollars-in-identifiers' or ! `fno-dollars-in-identifiers'. *Note fdollars-in-identifiers::. * Non-empty sequences of whitespace characters. In textual output, each whitespace sequence is collapsed to a single space. For aesthetic reasons, the first token on each non-directive line of output is preceded with sufficient spaces ! that it appears in the same column as it did in the original ! source file. * The numeric value of character constants in preprocessor expressions. The preprocessor and compiler interpret character constants in the ! same way; i.e. escape sequences such as `\a' are given the values they would have on the target machine. The compiler evaluates a multi-character character constant a ! character at a time, shifting the previous value left by the ! number of bits per target character, and then or-ing in the ! bit-pattern of the new character truncated to the width of a ! target character. The final bit-pattern is given type `int', and ! is therefore signed, regardless of whether single characters are ! signed or not (a slight change from versions 3.1 and earlier of ! GCC). If there are more characters in the constant than would fit ! in the target `int' the compiler issues a warning, and the excess ! leading characters are ignored. ! For example, `'ab'' for a target with an 8-bit `char' would be interpreted as ! `(int) ((unsigned char) 'a' * 256 + (unsigned char) 'b')', and ! `'\234a'' as ! `(int) ((unsigned char) '\234' * 256 + (unsigned char) 'a')'. * Source file inclusion. --- 3664,3733 ---- ==================================== This is how CPP behaves in all the cases which the C standard describes ! as "implementation-defined". This term means that the implementation is ! free to do what it likes, but must document its choice and stick to it. * The mapping of physical source file multi-byte characters to the execution character set. The input character set can be specified using the ! '-finput-charset' option, while the execution character set may be ! controlled using the '-fexec-charset' and '-fwide-exec-charset' options. ! * Identifier characters. ! The C and C++ standards allow identifiers to be composed of '_' and ! the alphanumeric characters. C++ and C99 also allow universal ! character names, and C99 further permits implementation-defined ! characters. GCC currently only permits universal character names ! if '-fextended-identifiers' is used, because the implementation of ! universal character names in identifiers is experimental. ! ! GCC allows the '$' character in identifiers as an extension for ! most targets. This is true regardless of the 'std=' switch, since this extension cannot conflict with standards-conforming programs. When preprocessing assembler, however, dollars are not identifier characters by default. ! Currently the targets that by default do not permit '$' are AVR, IP2K, MMIX, MIPS Irix 3, ARM aout, and PowerPC targets for the AIX operating system. ! You can override the default with '-fdollars-in-identifiers' or ! 'fno-dollars-in-identifiers'. *Note fdollars-in-identifiers::. * Non-empty sequences of whitespace characters. In textual output, each whitespace sequence is collapsed to a single space. For aesthetic reasons, the first token on each non-directive line of output is preceded with sufficient spaces ! that it appears in the same column as it did in the original source ! file. * The numeric value of character constants in preprocessor expressions. The preprocessor and compiler interpret character constants in the ! same way; i.e. escape sequences such as '\a' are given the values they would have on the target machine. The compiler evaluates a multi-character character constant a ! character at a time, shifting the previous value left by the number ! of bits per target character, and then or-ing in the bit-pattern of ! the new character truncated to the width of a target character. ! The final bit-pattern is given type 'int', and is therefore signed, ! regardless of whether single characters are signed or not (a slight ! change from versions 3.1 and earlier of GCC). If there are more ! characters in the constant than would fit in the target 'int' the ! compiler issues a warning, and the excess leading characters are ! ignored. ! For example, ''ab'' for a target with an 8-bit 'char' would be interpreted as ! '(int) ((unsigned char) 'a' * 256 + (unsigned char) 'b')', and ! ''\234a'' as ! '(int) ((unsigned char) '\234' * 256 + (unsigned char) 'a')'. * Source file inclusion. *************** it. *** 3759,3777 **** *note Include Operation::. * Interpretation of the filename resulting from a macro-expanded ! `#include' directive. *Note Computed Includes::. ! * Treatment of a `#pragma' directive that after macro-expansion results in a standard pragma. ! No macro expansion occurs on any `#pragma' directive line, so the question does not arise. Note that GCC does not yet implement any of the standard pragmas. -  File: cpp.info, Node: Implementation limits, Next: Obsolete Features, Prev: Implementation-defined behavior, Up: Implementation Details --- 3735,3752 ---- *note Include Operation::. * Interpretation of the filename resulting from a macro-expanded ! '#include' directive. *Note Computed Includes::. ! * Treatment of a '#pragma' directive that after macro-expansion results in a standard pragma. ! No macro expansion occurs on any '#pragma' directive line, so the question does not arise. Note that GCC does not yet implement any of the standard pragmas.  File: cpp.info, Node: Implementation limits, Next: Obsolete Features, Prev: Implementation-defined behavior, Up: Implementation Details *************** limit, please report that as a bug. *No *** 3786,3797 **** Where we say something is limited "only by available memory", that means that internal data structures impose no intrinsic limit, and space ! is allocated with `malloc' or equivalent. The actual limit will therefore depend on many things, such as the size of other things allocated by the compiler at the same time, the amount of memory consumed by other processes on the same computer, etc. ! * Nesting levels of `#include' files. We impose an arbitrary limit of 200 levels, to avoid runaway recursion. The standard requires at least 15 levels. --- 3761,3772 ---- Where we say something is limited "only by available memory", that means that internal data structures impose no intrinsic limit, and space ! is allocated with 'malloc' or equivalent. The actual limit will therefore depend on many things, such as the size of other things allocated by the compiler at the same time, the amount of memory consumed by other processes on the same computer, etc. ! * Nesting levels of '#include' files. We impose an arbitrary limit of 200 levels, to avoid runaway recursion. The standard requires at least 15 levels. *************** consumed by other processes on the same *** 3817,3826 **** The standard requires at least 4095 be possible. CPP is limited only by available memory. ! * Number of parameters in a macro definition and arguments in a ! macro call. ! We allow `USHRT_MAX', which is no smaller than 65,535. The minimum required by the standard is 127. * Number of characters on a logical source line. --- 3792,3801 ---- The standard requires at least 4095 be possible. CPP is limited only by available memory. ! * Number of parameters in a macro definition and arguments in a macro ! call. ! We allow 'USHRT_MAX', which is no smaller than 65,535. The minimum required by the standard is 127. * Number of characters on a logical source line. *************** consumed by other processes on the same *** 3832,3842 **** * Maximum size of a source file. The standard does not specify any lower limit on the maximum size ! of a source file. GNU cpp maps files into memory, so it is ! limited by the available address space. This is generally at ! least two gigabytes. Depending on the operating system, the size ! of physical memory may or may not be a limitation. !  File: cpp.info, Node: Obsolete Features, Next: Differences from previous versions, Prev: Implementation limits, Up: Implementation Details --- 3807,3816 ---- * Maximum size of a source file. The standard does not specify any lower limit on the maximum size ! of a source file. GNU cpp maps files into memory, so it is limited ! by the available address space. This is generally at least two ! gigabytes. Depending on the operating system, the size of physical ! memory may or may not be a limitation.  File: cpp.info, Node: Obsolete Features, Next: Differences from previous versions, Prev: Implementation limits, Up: Implementation Details *************** File: cpp.info, Node: Obsolete Features *** 3845,3852 **** ====================== CPP has some features which are present mainly for compatibility with ! older programs. We discourage their use in new code. In some cases, ! we plan to remove the feature in a future version of GCC. 11.3.1 Assertions ----------------- --- 3819,3826 ---- ====================== CPP has some features which are present mainly for compatibility with ! older programs. We discourage their use in new code. In some cases, we ! plan to remove the feature in a future version of GCC. 11.3.1 Assertions ----------------- *************** define them with preprocessing directive *** 3860,3867 **** the compiler's target system and we added them for compatibility with existing compilers. In practice they are just as unpredictable as the system-specific predefined macros. In addition, they are not part of ! any standard, and only a few compilers support them. Therefore, the ! use of assertions is *less* portable than the use of system-specific predefined macros. We recommend you do not use them at all. An assertion looks like this: --- 3834,3841 ---- the compiler's target system and we added them for compatibility with existing compilers. In practice they are just as unpredictable as the system-specific predefined macros. In addition, they are not part of ! any standard, and only a few compilers support them. Therefore, the use ! of assertions is *less* portable than the use of system-specific predefined macros. We recommend you do not use them at all. An assertion looks like this: *************** PREDICATE must be a single identifier. *** 3872,3883 **** tokens; all characters are significant except for leading and trailing whitespace, and differences in internal whitespace sequences are ignored. (This is similar to the rules governing macro redefinition.) ! Thus, `(x + y)' is different from `(x+y)' but equivalent to ! `( x + y )'. Parentheses do not nest inside an answer. ! To test an assertion, you write it in an `#if'. For example, this ! conditional succeeds if either `vax' or `ns16000' has been asserted as ! an answer for `machine'. #if #machine (vax) || #machine (ns16000) --- 3846,3857 ---- tokens; all characters are significant except for leading and trailing whitespace, and differences in internal whitespace sequences are ignored. (This is similar to the rules governing macro redefinition.) ! Thus, '(x + y)' is different from '(x+y)' but equivalent to '( x + y )'. ! Parentheses do not nest inside an answer. ! To test an assertion, you write it in an '#if'. For example, this ! conditional succeeds if either 'vax' or 'ns16000' has been asserted as ! an answer for 'machine'. #if #machine (vax) || #machine (ns16000) *************** omitting the answer in the conditional: *** 3886,3893 **** #if #machine ! Assertions are made with the `#assert' directive. Its sole argument ! is the assertion to make, without the leading `#' that identifies assertions in conditionals. #assert PREDICATE (ANSWER) --- 3860,3867 ---- #if #machine ! Assertions are made with the '#assert' directive. Its sole argument ! is the assertion to make, without the leading '#' that identifies assertions in conditionals. #assert PREDICATE (ANSWER) *************** answers. Subsequent assertions do not o *** 3897,3911 **** same predicate. All the answers for any given predicate are simultaneously true. ! Assertions can be canceled with the `#unassert' directive. It has ! the same syntax as `#assert'. In that form it cancels only the answer ! which was specified on the `#unassert' line; other answers for that predicate remain true. You can cancel an entire predicate by leaving out the answer: #unassert PREDICATE ! In either form, if no such assertion has been made, `#unassert' has no effect. You can also make or cancel assertions using command line options. --- 3871,3885 ---- same predicate. All the answers for any given predicate are simultaneously true. ! Assertions can be canceled with the '#unassert' directive. It has ! the same syntax as '#assert'. In that form it cancels only the answer ! which was specified on the '#unassert' line; other answers for that predicate remain true. You can cancel an entire predicate by leaving out the answer: #unassert PREDICATE ! In either form, if no such assertion has been made, '#unassert' has no effect. You can also make or cancel assertions using command line options. *************** File: cpp.info, Node: Differences from *** 3918,3925 **** ======================================= This section details behavior which has changed from previous versions ! of CPP. We do not plan to change it again in the near future, but we ! do not promise not to, either. The "previous versions" discussed here are 2.95 and before. The behavior of GCC 3.0 is mostly the same as the behavior of the widely --- 3892,3899 ---- ======================================= This section details behavior which has changed from previous versions ! of CPP. We do not plan to change it again in the near future, but we do ! not promise not to, either. The "previous versions" discussed here are 2.95 and before. The behavior of GCC 3.0 is mostly the same as the behavior of the widely *************** they generally represent bugs in the sna *** 3928,3975 **** * -I- deprecated ! This option has been deprecated in 4.0. `-iquote' is meant to replace the need for this option. ! * Order of evaluation of `#' and `##' operators The standard does not specify the order of evaluation of a chain of ! `##' operators, nor whether `#' is evaluated before, after, or at ! the same time as `##'. You should therefore not write any code which depends on any specific ordering. It is possible to guarantee an ordering, if you need one, by suitable use of nested macros. ! An example of where this might matter is pasting the arguments `1', ! `e' and `-2'. This would be fine for left-to-right pasting, but ! right-to-left pasting would produce an invalid token `e-2'. ! GCC 3.0 evaluates `#' and `##' at the same time and strictly left ! to right. Older versions evaluated all `#' operators first, then ! all `##' operators, in an unreliable order. * The form of whitespace between tokens in preprocessor output *Note Preprocessor Output::, for the current textual format. This is also the format used by stringification. Normally, the ! preprocessor communicates tokens directly to the compiler's ! parser, and whitespace does not come up at all. ! Older versions of GCC preserved all whitespace provided by the ! user and inserted lots more whitespace of their own, because they ! could not accurately predict when extra spaces were needed to ! prevent accidental token pasting. * Optional argument when invoking rest argument macros As an extension, GCC permits you to omit the variable arguments ! entirely when you use a variable argument macro. This is ! forbidden by the 1999 C standard, and will provoke a pedantic ! warning with GCC 3.0. Previous versions accepted it silently. ! * `##' swallowing preceding text in rest argument macros ! Formerly, in a macro expansion, if `##' appeared before a variable arguments parameter, and the set of tokens specified for that argument in the macro invocation was empty, previous versions of CPP would back up and remove the preceding sequence of --- 3902,3949 ---- * -I- deprecated ! This option has been deprecated in 4.0. '-iquote' is meant to replace the need for this option. ! * Order of evaluation of '#' and '##' operators The standard does not specify the order of evaluation of a chain of ! '##' operators, nor whether '#' is evaluated before, after, or at ! the same time as '##'. You should therefore not write any code which depends on any specific ordering. It is possible to guarantee an ordering, if you need one, by suitable use of nested macros. ! An example of where this might matter is pasting the arguments '1', ! 'e' and '-2'. This would be fine for left-to-right pasting, but ! right-to-left pasting would produce an invalid token 'e-2'. ! GCC 3.0 evaluates '#' and '##' at the same time and strictly left ! to right. Older versions evaluated all '#' operators first, then ! all '##' operators, in an unreliable order. * The form of whitespace between tokens in preprocessor output *Note Preprocessor Output::, for the current textual format. This is also the format used by stringification. Normally, the ! preprocessor communicates tokens directly to the compiler's parser, ! and whitespace does not come up at all. ! Older versions of GCC preserved all whitespace provided by the user ! and inserted lots more whitespace of their own, because they could ! not accurately predict when extra spaces were needed to prevent ! accidental token pasting. * Optional argument when invoking rest argument macros As an extension, GCC permits you to omit the variable arguments ! entirely when you use a variable argument macro. This is forbidden ! by the 1999 C standard, and will provoke a pedantic warning with ! GCC 3.0. Previous versions accepted it silently. ! * '##' swallowing preceding text in rest argument macros ! Formerly, in a macro expansion, if '##' appeared before a variable arguments parameter, and the set of tokens specified for that argument in the macro invocation was empty, previous versions of CPP would back up and remove the preceding sequence of *************** they generally represent bugs in the sna *** 3977,4007 **** extension is in direct conflict with the 1999 C standard and has been drastically pared back. ! In the current version of the preprocessor, if `##' appears between a comma and a variable arguments parameter, and the variable argument is omitted entirely, the comma will be removed from the expansion. If the variable argument is empty, or the token before ! `##' is not a comma, then `##' behaves as a normal token paste. ! * `#line' and `#include' ! The `#line' directive used to change GCC's notion of the ! "directory containing the current file", used by `#include' with a double-quoted header file name. In 3.0 and later, it does not. *Note Line Control::, for further explanation. ! * Syntax of `#line' ! In GCC 2.95 and previous, the string constant argument to `#line' ! was treated the same way as the argument to `#include': backslash ! escapes were not honored, and the string ended at the second `"'. This is not compliant with the C standard. In GCC 3.0, an attempt ! was made to correct the behavior, so that the string was treated ! as a real string constant, but it turned out to be buggy. In 3.1, ! the bugs have been fixed. (We are not fixing the bugs in 3.0 ! because they affect relatively few people and the fix is quite ! invasive.) !  File: cpp.info, Node: Invocation, Next: Environment Variables, Prev: Implementation Details, Up: Top --- 3951,3979 ---- extension is in direct conflict with the 1999 C standard and has been drastically pared back. ! In the current version of the preprocessor, if '##' appears between a comma and a variable arguments parameter, and the variable argument is omitted entirely, the comma will be removed from the expansion. If the variable argument is empty, or the token before ! '##' is not a comma, then '##' behaves as a normal token paste. ! * '#line' and '#include' ! The '#line' directive used to change GCC's notion of the "directory ! containing the current file", used by '#include' with a double-quoted header file name. In 3.0 and later, it does not. *Note Line Control::, for further explanation. ! * Syntax of '#line' ! In GCC 2.95 and previous, the string constant argument to '#line' ! was treated the same way as the argument to '#include': backslash ! escapes were not honored, and the string ended at the second '"'. This is not compliant with the C standard. In GCC 3.0, an attempt ! was made to correct the behavior, so that the string was treated as ! a real string constant, but it turned out to be buggy. In 3.1, the ! bugs have been fixed. (We are not fixing the bugs in 3.0 because ! they affect relatively few people and the fix is quite invasive.)  File: cpp.info, Node: Invocation, Next: Environment Variables, Prev: Implementation Details, Up: Top *************** here are also acceptable to the C compil *** 4016,4054 **** except that the C compiler has different rules for specifying the output file. ! _Note:_ Whether you use the preprocessor by way of `gcc' or `cpp', the "compiler driver" is run first. This program's purpose is to translate your command into invocations of the programs that do the actual work. Their command line interfaces are similar but not identical to the documented interface, and may change without notice. The C preprocessor expects two file names as arguments, INFILE and ! OUTFILE. The preprocessor reads INFILE together with any other files ! it specifies with `#include'. All the output generated by the combined input files is written in OUTFILE. ! Either INFILE or OUTFILE may be `-', which as INFILE means to read from standard input and as OUTFILE means to write to standard output. ! Also, if either file is omitted, it means the same as if `-' had been specified for that file. ! Unless otherwise noted, or the option ends in `=', all options which take an argument may have that argument appear either immediately after ! the option, or with a space between option and argument: `-Ifoo' and ! `-I foo' have the same effect. Many options have multi-letter names; therefore multiple ! single-letter options may _not_ be grouped: `-dM' is very different from ! `-d -M'. ! `-D NAME' ! Predefine NAME as a macro, with definition `1'. ! `-D NAME=DEFINITION' The contents of DEFINITION are tokenized and processed as if they ! appeared during translation phase three in a `#define' directive. ! In particular, the definition will be truncated by embedded ! newline characters. If you are invoking the preprocessor from a shell or shell-like program you may need to use the shell's quoting syntax to protect --- 3988,4026 ---- except that the C compiler has different rules for specifying the output file. ! _Note:_ Whether you use the preprocessor by way of 'gcc' or 'cpp', the "compiler driver" is run first. This program's purpose is to translate your command into invocations of the programs that do the actual work. Their command line interfaces are similar but not identical to the documented interface, and may change without notice. The C preprocessor expects two file names as arguments, INFILE and ! OUTFILE. The preprocessor reads INFILE together with any other files it ! specifies with '#include'. All the output generated by the combined input files is written in OUTFILE. ! Either INFILE or OUTFILE may be '-', which as INFILE means to read from standard input and as OUTFILE means to write to standard output. ! Also, if either file is omitted, it means the same as if '-' had been specified for that file. ! Unless otherwise noted, or the option ends in '=', all options which take an argument may have that argument appear either immediately after ! the option, or with a space between option and argument: '-Ifoo' and '-I ! foo' have the same effect. Many options have multi-letter names; therefore multiple ! single-letter options may _not_ be grouped: '-dM' is very different from ! '-d -M'. ! '-D NAME' ! Predefine NAME as a macro, with definition '1'. ! '-D NAME=DEFINITION' The contents of DEFINITION are tokenized and processed as if they ! appeared during translation phase three in a '#define' directive. ! In particular, the definition will be truncated by embedded newline ! characters. If you are invoking the preprocessor from a shell or shell-like program you may need to use the shell's quoting syntax to protect *************** single-letter options may _not_ be group *** 4057,4132 **** If you wish to define a function-like macro on the command line, write its argument list with surrounding parentheses before the equals sign (if any). Parentheses are meaningful to most shells, ! so you will need to quote the option. With `sh' and `csh', ! `-D'NAME(ARGS...)=DEFINITION'' works. ! `-D' and `-U' options are processed in the order they are given on ! the command line. All `-imacros FILE' and `-include FILE' options ! are processed after all `-D' and `-U' options. ! `-U NAME' ! Cancel any previous definition of NAME, either built in or ! provided with a `-D' option. ! `-undef' Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined. *Note Standard Predefined Macros::. ! `-I DIR' ! Add the directory DIR to the list of directories to be searched ! for header files. *Note Search Path::. Directories named by `-I' ! are searched before the standard system include directories. If ! the directory DIR is a standard system include directory, the ! option is ignored to ensure that the default search order for ! system directories and the special treatment of system headers are ! not defeated (*note System Headers::) . If DIR begins with `=', ! then the `=' will be replaced by the sysroot prefix; see ! `--sysroot' and `-isysroot'. ! `-o FILE' Write output to FILE. This is the same as specifying FILE as the ! second non-option argument to `cpp'. `gcc' has a different interpretation of a second non-option argument, so you must use ! `-o' to specify the output file. ! `-Wall' Turns on all optional warnings which are desirable for normal code. ! At present this is `-Wcomment', `-Wtrigraphs', `-Wmultichar' and a ! warning about integer promotion causing a change of sign in `#if' expressions. Note that many of the preprocessor's warnings are on by default and have no options to control them. ! `-Wcomment' ! `-Wcomments' ! Warn whenever a comment-start sequence `/*' appears in a `/*' ! comment, or whenever a backslash-newline appears in a `//' comment. (Both forms have the same effect.) ! `-Wtrigraphs' Most trigraphs in comments cannot affect the meaning of the program. However, a trigraph that would form an escaped newline ! (`??/' at the end of a line) can, by changing where the comment begins or ends. Therefore, only trigraphs that would form escaped newlines produce warnings inside a comment. ! This option is implied by `-Wall'. If `-Wall' is not given, this option is still enabled unless trigraphs are enabled. To get ! trigraph conversion without warnings, but get the other `-Wall' ! warnings, use `-trigraphs -Wall -Wno-trigraphs'. ! `-Wtraditional' Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. *Note Traditional Mode::. ! `-Wundef' Warn whenever an identifier which is not a macro is encountered in ! an `#if' directive, outside of `defined'. Such identifiers are replaced with zero. ! `-Wunused-macros' Warn about macros defined in the main file that are unused. A macro is "used" if it is expanded or tested for existence at least once. The preprocessor will also warn if the macro has not been --- 4029,4104 ---- If you wish to define a function-like macro on the command line, write its argument list with surrounding parentheses before the equals sign (if any). Parentheses are meaningful to most shells, ! so you will need to quote the option. With 'sh' and 'csh', ! '-D'NAME(ARGS...)=DEFINITION'' works. ! '-D' and '-U' options are processed in the order they are given on ! the command line. All '-imacros FILE' and '-include FILE' options ! are processed after all '-D' and '-U' options. ! '-U NAME' ! Cancel any previous definition of NAME, either built in or provided ! with a '-D' option. ! '-undef' Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined. *Note Standard Predefined Macros::. ! '-I DIR' ! Add the directory DIR to the list of directories to be searched for ! header files. *Note Search Path::. Directories named by '-I' are ! searched before the standard system include directories. If the ! directory DIR is a standard system include directory, the option is ! ignored to ensure that the default search order for system ! directories and the special treatment of system headers are not ! defeated (*note System Headers::) . If DIR begins with '=', then ! the '=' will be replaced by the sysroot prefix; see '--sysroot' and ! '-isysroot'. ! '-o FILE' Write output to FILE. This is the same as specifying FILE as the ! second non-option argument to 'cpp'. 'gcc' has a different interpretation of a second non-option argument, so you must use ! '-o' to specify the output file. ! '-Wall' Turns on all optional warnings which are desirable for normal code. ! At present this is '-Wcomment', '-Wtrigraphs', '-Wmultichar' and a ! warning about integer promotion causing a change of sign in '#if' expressions. Note that many of the preprocessor's warnings are on by default and have no options to control them. ! '-Wcomment' ! '-Wcomments' ! Warn whenever a comment-start sequence '/*' appears in a '/*' ! comment, or whenever a backslash-newline appears in a '//' comment. (Both forms have the same effect.) ! '-Wtrigraphs' Most trigraphs in comments cannot affect the meaning of the program. However, a trigraph that would form an escaped newline ! ('??/' at the end of a line) can, by changing where the comment begins or ends. Therefore, only trigraphs that would form escaped newlines produce warnings inside a comment. ! This option is implied by '-Wall'. If '-Wall' is not given, this option is still enabled unless trigraphs are enabled. To get ! trigraph conversion without warnings, but get the other '-Wall' ! warnings, use '-trigraphs -Wall -Wno-trigraphs'. ! '-Wtraditional' Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. *Note Traditional Mode::. ! '-Wundef' Warn whenever an identifier which is not a macro is encountered in ! an '#if' directive, outside of 'defined'. Such identifiers are replaced with zero. ! '-Wunused-macros' Warn about macros defined in the main file that are unused. A macro is "used" if it is expanded or tested for existence at least once. The preprocessor will also warn if the macro has not been *************** single-letter options may _not_ be group *** 4145,4153 **** #if defined the_macro_causing_the_warning #endif ! `-Wendif-labels' ! Warn whenever an `#else' or an `#endif' are followed by text. ! This usually happens in code of the form #if FOO ... --- 4117,4125 ---- #if defined the_macro_causing_the_warning #endif ! '-Wendif-labels' ! Warn whenever an '#else' or an '#endif' are followed by text. This ! usually happens in code of the form #if FOO ... *************** single-letter options may _not_ be group *** 4155,4246 **** ... #endif FOO ! The second and third `FOO' should be in comments, but often are not in older programs. This warning is on by default. ! `-Werror' Make all warnings into hard errors. Source code which triggers warnings will be rejected. ! `-Wsystem-headers' Issue warnings for code in system headers. These are normally unhelpful in finding bugs in your own code, therefore suppressed. If you are responsible for the system library, you may want to see them. ! `-w' Suppress all warnings, including those which GNU CPP issues by default. ! `-pedantic' ! Issue all the mandatory diagnostics listed in the C standard. ! Some of them are left out by default, since they trigger ! frequently on harmless code. ! `-pedantic-errors' Issue all the mandatory diagnostics, and make all mandatory diagnostics into errors. This includes mandatory diagnostics that ! GCC issues without `-pedantic' but treats as warnings. ! `-M' Instead of outputting the result of preprocessing, output a rule ! suitable for `make' describing the dependencies of the main source ! file. The preprocessor outputs one `make' rule containing the object file name for that source file, a colon, and the names of ! all the included files, including those coming from `-include' or ! `-imacros' command line options. ! Unless specified explicitly (with `-MT' or `-MQ'), the object file name consists of the name of the source file with any suffix replaced with object file suffix and with any leading directory parts removed. If there are many included files then the rule is ! split into several lines using `\'-newline. The rule has no commands. ! This option does not suppress the preprocessor's debug output, ! such as `-dM'. To avoid mixing such debug output with the ! dependency rules you should explicitly specify the dependency ! output file with `-MF', or use an environment variable like ! `DEPENDENCIES_OUTPUT' (*note Environment Variables::). Debug ! output will still be sent to the regular output stream as normal. ! Passing `-M' to the driver implies `-E', and suppresses warnings ! with an implicit `-w'. ! `-MM' ! Like `-M' but do not mention header files that are found in system ! header directories, nor header files that are included, directly ! or indirectly, from such a header. This implies that the choice of angle brackets or double quotes in ! an `#include' directive does not in itself determine whether that ! header will appear in `-MM' dependency output. This is a slight change in semantics from GCC versions 3.0 and earlier. ! `-MF FILE' ! When used with `-M' or `-MM', specifies a file to write the ! dependencies to. If no `-MF' switch is given the preprocessor sends the rules to the same place it would have sent preprocessed output. ! When used with the driver options `-MD' or `-MMD', `-MF' overrides the default dependency output file. ! `-MG' ! In conjunction with an option such as `-M' requesting dependency ! generation, `-MG' assumes missing header files are generated files ! and adds them to the dependency list without raising an error. ! The dependency filename is taken directly from the `#include' ! directive without prepending any path. `-MG' also suppresses ! preprocessed output, as a missing header file renders this useless. This feature is used in automatic updating of makefiles. ! `-MP' This option instructs CPP to add a phony target for each dependency other than the main file, causing each to depend on nothing. These ! dummy rules work around errors `make' gives if you remove header ! files without updating the `Makefile' to match. This is typical output: --- 4127,4218 ---- ... #endif FOO ! The second and third 'FOO' should be in comments, but often are not in older programs. This warning is on by default. ! '-Werror' Make all warnings into hard errors. Source code which triggers warnings will be rejected. ! '-Wsystem-headers' Issue warnings for code in system headers. These are normally unhelpful in finding bugs in your own code, therefore suppressed. If you are responsible for the system library, you may want to see them. ! '-w' Suppress all warnings, including those which GNU CPP issues by default. ! '-pedantic' ! Issue all the mandatory diagnostics listed in the C standard. Some ! of them are left out by default, since they trigger frequently on ! harmless code. ! '-pedantic-errors' Issue all the mandatory diagnostics, and make all mandatory diagnostics into errors. This includes mandatory diagnostics that ! GCC issues without '-pedantic' but treats as warnings. ! '-M' Instead of outputting the result of preprocessing, output a rule ! suitable for 'make' describing the dependencies of the main source ! file. The preprocessor outputs one 'make' rule containing the object file name for that source file, a colon, and the names of ! all the included files, including those coming from '-include' or ! '-imacros' command line options. ! Unless specified explicitly (with '-MT' or '-MQ'), the object file name consists of the name of the source file with any suffix replaced with object file suffix and with any leading directory parts removed. If there are many included files then the rule is ! split into several lines using '\'-newline. The rule has no commands. ! This option does not suppress the preprocessor's debug output, such ! as '-dM'. To avoid mixing such debug output with the dependency ! rules you should explicitly specify the dependency output file with ! '-MF', or use an environment variable like 'DEPENDENCIES_OUTPUT' ! (*note Environment Variables::). Debug output will still be sent ! to the regular output stream as normal. ! Passing '-M' to the driver implies '-E', and suppresses warnings ! with an implicit '-w'. ! '-MM' ! Like '-M' but do not mention header files that are found in system ! header directories, nor header files that are included, directly or ! indirectly, from such a header. This implies that the choice of angle brackets or double quotes in ! an '#include' directive does not in itself determine whether that ! header will appear in '-MM' dependency output. This is a slight change in semantics from GCC versions 3.0 and earlier. ! '-MF FILE' ! When used with '-M' or '-MM', specifies a file to write the ! dependencies to. If no '-MF' switch is given the preprocessor sends the rules to the same place it would have sent preprocessed output. ! When used with the driver options '-MD' or '-MMD', '-MF' overrides the default dependency output file. ! '-MG' ! In conjunction with an option such as '-M' requesting dependency ! generation, '-MG' assumes missing header files are generated files ! and adds them to the dependency list without raising an error. The ! dependency filename is taken directly from the '#include' directive ! without prepending any path. '-MG' also suppresses preprocessed ! output, as a missing header file renders this useless. This feature is used in automatic updating of makefiles. ! '-MP' This option instructs CPP to add a phony target for each dependency other than the main file, causing each to depend on nothing. These ! dummy rules work around errors 'make' gives if you remove header ! files without updating the 'Makefile' to match. This is typical output: *************** single-letter options may _not_ be group *** 4248,4689 **** test.h: ! `-MT TARGET' Change the target of the rule emitted by dependency generation. By default CPP takes the name of the main input file, deletes any ! directory components and any file suffix such as `.c', and appends the platform's usual object suffix. The result is the target. ! An `-MT' option will set the target to be exactly the string you specify. If you want multiple targets, you can specify them as a ! single argument to `-MT', or use multiple `-MT' options. ! For example, `-MT '$(objpfx)foo.o'' might give $(objpfx)foo.o: foo.c ! `-MQ TARGET' ! Same as `-MT', but it quotes any characters which are special to ! Make. `-MQ '$(objpfx)foo.o'' gives $$(objpfx)foo.o: foo.c The default target is automatically quoted, as if it were given ! with `-MQ'. ! `-MD' ! `-MD' is equivalent to `-M -MF FILE', except that `-E' is not ! implied. The driver determines FILE based on whether an `-o' ! option is given. If it is, the driver uses its argument but with ! a suffix of `.d', otherwise it takes the name of the input file, ! removes any directory components and suffix, and applies a `.d' suffix. ! If `-MD' is used in conjunction with `-E', any `-o' switch is understood to specify the dependency output file (*note -MF: ! dashMF.), but if used without `-E', each `-o' is understood to specify a target object file. ! Since `-E' is not implied, `-MD' can be used to generate a dependency output file as a side-effect of the compilation process. ! `-MMD' ! Like `-MD' except mention only user header files, not system ! header files. ! `-x c' ! `-x c++' ! `-x objective-c' ! `-x assembler-with-cpp' Specify the source language: C, C++, Objective-C, or assembly. ! This has nothing to do with standards conformance or extensions; ! it merely selects which base syntax to expect. If you give none ! of these options, cpp will deduce the language from the extension ! of the source file: `.c', `.cc', `.m', or `.S'. Some other common extensions for C++ and assembly are also recognized. If cpp does not recognize the extension, it will treat the file as C; this is the most generic mode. ! _Note:_ Previous versions of cpp accepted a `-lang' option which selected both the language and the standards conformance level. ! This option has been removed, because it conflicts with the `-l' option. ! `-std=STANDARD' ! `-ansi' Specify the standard to which the code should conform. Currently CPP knows about C and C++ standards; others may be added in the future. STANDARD may be one of: ! `c90' ! `c89' ! `iso9899:1990' ! The ISO C standard from 1990. `c90' is the customary shorthand for this version of the standard. ! The `-ansi' option is equivalent to `-std=c90'. ! `iso9899:199409' The 1990 C standard, as amended in 1994. ! `iso9899:1999' ! `c99' ! `iso9899:199x' ! `c9x' The revised ISO C standard, published in December 1999. Before publication, this was known as C9X. ! `iso9899:2011' ! `c11' ! `c1x' The revised ISO C standard, published in December 2011. Before publication, this was known as C1X. ! `gnu90' ! `gnu89' The 1990 C standard plus GNU extensions. This is the default. ! `gnu99' ! `gnu9x' The 1999 C standard plus GNU extensions. ! `gnu11' ! `gnu1x' The 2011 C standard plus GNU extensions. ! `c++98' The 1998 ISO C++ standard plus amendments. ! `gnu++98' ! The same as `-std=c++98' plus GNU extensions. This is the default for C++ code. ! `-I-' ! Split the include path. Any directories specified with `-I' ! options before `-I-' are searched only for headers requested with ! `#include "FILE"'; they are not searched for `#include '. ! If additional directories are specified with `-I' options after ! the `-I-', those directories are searched for all `#include' directives. ! In addition, `-I-' inhibits the use of the directory of the current ! file directory as the first search directory for `#include "FILE"'. *Note Search Path::. This option has been deprecated. ! `-nostdinc' Do not search the standard system directories for header files. ! Only the directories you have specified with `-I' options (and the directory of the current file, if appropriate) are searched. ! `-nostdinc++' Do not search for header files in the C++-specific standard directories, but do still search the other standard directories. (This option is used when building the C++ library.) ! `-include FILE' ! Process FILE as if `#include "file"' appeared as the first line of ! the primary source file. However, the first directory searched ! for FILE is the preprocessor's working directory _instead of_ the directory containing the main source file. If not found there, it ! is searched for in the remainder of the `#include "..."' search chain as normal. ! If multiple `-include' options are given, the files are included ! in the order they appear on the command line. ! `-imacros FILE' ! Exactly like `-include', except that any output produced by scanning FILE is thrown away. Macros it defines remain defined. This allows you to acquire all the macros from a header without also processing its declarations. ! All files specified by `-imacros' are processed before all files ! specified by `-include'. ! `-idirafter DIR' Search DIR for header files, but do it _after_ all directories ! specified with `-I' and the standard system directories have been exhausted. DIR is treated as a system include directory. If DIR ! begins with `=', then the `=' will be replaced by the sysroot ! prefix; see `--sysroot' and `-isysroot'. ! `-iprefix PREFIX' ! Specify PREFIX as the prefix for subsequent `-iwithprefix' ! options. If the prefix represents a directory, you should include ! the final `/'. ! `-iwithprefix DIR' ! `-iwithprefixbefore DIR' ! Append DIR to the prefix specified previously with `-iprefix', and add the resulting directory to the include search path. ! `-iwithprefixbefore' puts it in the same place `-I' would; ! `-iwithprefix' puts it where `-idirafter' would. ! `-isysroot DIR' ! This option is like the `--sysroot' option, but applies only to header files (except for Darwin targets, where it applies to both ! header files and libraries). See the `--sysroot' option for more information. ! `-imultilib DIR' Use DIR as a subdirectory of the directory containing target-specific C++ headers. ! `-isystem DIR' Search DIR for header files, after all directories specified by ! `-I' but before the standard system directories. Mark it as a system directory, so that it gets the same special treatment as is applied to the standard system directories. *Note System ! Headers::. If DIR begins with `=', then the `=' will be replaced ! by the sysroot prefix; see `--sysroot' and `-isysroot'. ! `-iquote DIR' ! Search DIR only for header files requested with `#include "FILE"'; ! they are not searched for `#include ', before all ! directories specified by `-I' and before the standard system ! directories. *Note Search Path::. If DIR begins with `=', then ! the `=' will be replaced by the sysroot prefix; see `--sysroot' ! and `-isysroot'. ! `-fdirectives-only' When preprocessing, handle directives, but do not expand macros. ! The option's behavior depends on the `-E' and `-fpreprocessed' options. ! With `-E', preprocessing is limited to the handling of directives ! such as `#define', `#ifdef', and `#error'. Other preprocessor ! operations, such as macro expansion and trigraph conversion are ! not performed. In addition, the `-dD' option is implicitly ! enabled. ! With `-fpreprocessed', predefinition of command line and most ! builtin macros is disabled. Macros such as `__LINE__', which are contextually dependent, are handled normally. This enables ! compilation of files previously preprocessed with `-E -fdirectives-only'. ! With both `-E' and `-fpreprocessed', the rules for ! `-fpreprocessed' take precedence. This enables full preprocessing ! of files previously preprocessed with `-E -fdirectives-only'. ! `-fdollars-in-identifiers' ! Accept `$' in identifiers. *Note Identifier characters::. ! `-fextended-identifiers' Accept universal character names in identifiers. This option is experimental; in a future version of GCC, it will be enabled by default for C99 and C++. ! `-fno-canonical-system-headers' When preprocessing, do not shorten system header paths with canonicalization. ! `-fpreprocessed' Indicate to the preprocessor that the input file has already been preprocessed. This suppresses things like macro expansion, trigraph conversion, escaped newline splicing, and processing of most directives. The preprocessor still recognizes and removes ! comments, so that you can pass a file preprocessed with `-C' to ! the compiler without problems. In this mode the integrated preprocessor is little more than a tokenizer for the front ends. ! `-fpreprocessed' is implicit if the input file has one of the ! extensions `.i', `.ii' or `.mi'. These are the extensions that ! GCC uses for preprocessed files created by `-save-temps'. ! `-ftabstop=WIDTH' Set the distance between tab stops. This helps the preprocessor report correct column numbers in warnings or errors, even if tabs appear on the line. If the value is less than 1 or greater than 100, the option is ignored. The default is 8. ! `-fdebug-cpp' ! This option is only useful for debugging GCC. When used with ! `-E', dumps debugging information about location maps. Every ! token in the output is preceded by the dump of the map its location ! belongs to. The dump of the map holding the location of a token ! would be: ! {`P':`/file/path';`F':`/includer/path';`L':LINE_NUM;`C':COL_NUM;`S':SYSTEM_HEADER_P;`M':MAP_ADDRESS;`E':MACRO_EXPANSION_P,`loc':LOCATION} ! When used without `-E', this option has no effect. ! `-ftrack-macro-expansion[=LEVEL]' ! Track locations of tokens across macro expansions. This allows the compiler to emit diagnostic about the current macro expansion stack ! when a compilation error occurs in a macro expansion. Using this ! option makes the preprocessor and the compiler consume more ! memory. The LEVEL parameter can be used to choose the level of ! precision of token location tracking thus decreasing the memory ! consumption if necessary. Value `0' of LEVEL de-activates this ! option just as if no `-ftrack-macro-expansion' was present on the ! command line. Value `1' tracks tokens locations in a degraded mode ! for the sake of minimal memory overhead. In this mode all tokens ! resulting from the expansion of an argument of a function-like ! macro have the same location. Value `2' tracks tokens locations ! completely. This value is the most memory hungry. When this ! option is given no argument, the default parameter value is `2'. Note that -ftrack-macro-expansion=2 is activated by default. ! `-fexec-charset=CHARSET' Set the execution character set, used for string and character constants. The default is UTF-8. CHARSET can be any encoding ! supported by the system's `iconv' library routine. ! `-fwide-exec-charset=CHARSET' Set the wide execution character set, used for wide string and character constants. The default is UTF-32 or UTF-16, whichever ! corresponds to the width of `wchar_t'. As with `-fexec-charset', ! CHARSET can be any encoding supported by the system's `iconv' library routine; however, you will have problems with encodings ! that do not fit exactly in `wchar_t'. ! `-finput-charset=CHARSET' Set the input character set, used for translation from the ! character set of the input file to the source character set used ! by GCC. If the locale does not specify, or GCC cannot get this information from the locale, the default is UTF-8. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. CHARSET can be any encoding supported by the system's ! `iconv' library routine. ! `-fworking-directory' Enable generation of linemarkers in the preprocessor output that will let the compiler know the current working directory at the time of preprocessing. When this option is enabled, the preprocessor will emit, after the initial linemarker, a second linemarker with the current working directory followed by two slashes. GCC will use this directory, when it's present in the ! preprocessed input, as the directory emitted as the current ! working directory in some debugging information formats. This ! option is implicitly enabled if debugging information is enabled, ! but this can be inhibited with the negated form ! `-fno-working-directory'. If the `-P' flag is present in the ! command line, this option has no effect, since no `#line' ! directives are emitted whatsoever. ! `-fno-show-column' Do not print column numbers in diagnostics. This may be necessary if diagnostics are being scanned by a program that does not ! understand the column numbers, such as `dejagnu'. ! `-A PREDICATE=ANSWER' Make an assertion with the predicate PREDICATE and answer ANSWER. ! This form is preferred to the older form `-A PREDICATE(ANSWER)', which is still supported, because it does not use shell special characters. *Note Obsolete Features::. ! `-A -PREDICATE=ANSWER' Cancel an assertion with the predicate PREDICATE and answer ANSWER. ! `-dCHARS' ! CHARS is a sequence of one or more of the following characters, ! and must not be preceded by a space. Other characters are ! interpreted by the compiler proper, or reserved for future ! versions of GCC, and so are silently ignored. If you specify ! characters whose behavior conflicts, the result is undefined. ! `M' ! Instead of the normal output, generate a list of `#define' directives for all the macros defined during the execution of ! the preprocessor, including predefined macros. This gives ! you a way of finding out what is predefined in your version ! of the preprocessor. Assuming you have no file `foo.h', the ! command touch foo.h; cpp -dM foo.h will show all the predefined macros. ! If you use `-dM' without the `-E' option, `-dM' is ! interpreted as a synonym for `-fdump-rtl-mach'. *Note ! Debugging Options: (gcc)Debugging Options. ! `D' ! Like `M' except in two respects: it does _not_ include the ! predefined macros, and it outputs _both_ the `#define' directives and the result of preprocessing. Both kinds of output go to the standard output file. ! `N' ! Like `D', but emit only the macro names, not their expansions. ! `I' ! Output `#include' directives in addition to the result of preprocessing. ! `U' ! Like `D' except that only macros that are expanded, or whose definedness is tested in preprocessor directives, are output; the output is delayed until the use or test of the macro; and ! `#undef' directives are also output for macros tested but undefined at the time. ! `-P' Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers. *Note Preprocessor Output::. ! `-C' Do not discard comments. All comments are passed through to the ! output file, except for comments in processed directives, which ! are deleted along with the directive. ! You should be prepared for side effects when using `-C'; it causes the preprocessor to treat comments as tokens in their own right. For example, comments appearing at the start of what would be a directive line have the effect of turning that line into an ordinary source line, since the first token on the line is no ! longer a `#'. ! `-CC' Do not discard comments, including during macro expansion. This is ! like `-C', except that comments contained within macros are also passed through to the output file where the macro is expanded. ! In addition to the side-effects of the `-C' option, the `-CC' ! option causes all C++-style comments inside a macro to be ! converted to C-style comments. This is to prevent later use of ! that macro from inadvertently commenting out the remainder of the ! source line. ! The `-CC' option is generally used to support lint comments. ! `-traditional-cpp' Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO C preprocessors. *Note Traditional Mode::. ! `-trigraphs' Process trigraph sequences. *Note Initial processing::. ! `-remap' Enable special code to work around file systems which only permit very short file names, such as MS-DOS. ! `--help' ! `--target-help' Print text describing all the command line options instead of preprocessing anything. ! `-v' Verbose mode. Print out GNU CPP's version number at the beginning of execution, and report the final form of the include path. ! `-H' Print the name of each header file used, in addition to other normal activities. Each name is indented to show how deep in the ! `#include' stack it is. Precompiled header files are also ! printed, even if they are found to be invalid; an invalid ! precompiled header file is printed with `...x' and a valid one ! with `...!' . ! `-version' ! `--version' Print out GNU CPP's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. --- 4220,4656 ---- test.h: ! '-MT TARGET' ! Change the target of the rule emitted by dependency generation. By default CPP takes the name of the main input file, deletes any ! directory components and any file suffix such as '.c', and appends the platform's usual object suffix. The result is the target. ! An '-MT' option will set the target to be exactly the string you specify. If you want multiple targets, you can specify them as a ! single argument to '-MT', or use multiple '-MT' options. ! For example, '-MT '$(objpfx)foo.o'' might give $(objpfx)foo.o: foo.c ! '-MQ TARGET' ! ! Same as '-MT', but it quotes any characters which are special to ! Make. '-MQ '$(objpfx)foo.o'' gives $$(objpfx)foo.o: foo.c The default target is automatically quoted, as if it were given ! with '-MQ'. ! '-MD' ! '-MD' is equivalent to '-M -MF FILE', except that '-E' is not ! implied. The driver determines FILE based on whether an '-o' ! option is given. If it is, the driver uses its argument but with a ! suffix of '.d', otherwise it takes the name of the input file, ! removes any directory components and suffix, and applies a '.d' suffix. ! If '-MD' is used in conjunction with '-E', any '-o' switch is understood to specify the dependency output file (*note -MF: ! dashMF.), but if used without '-E', each '-o' is understood to specify a target object file. ! Since '-E' is not implied, '-MD' can be used to generate a dependency output file as a side-effect of the compilation process. ! '-MMD' ! Like '-MD' except mention only user header files, not system header ! files. ! '-x c' ! '-x c++' ! '-x objective-c' ! '-x assembler-with-cpp' Specify the source language: C, C++, Objective-C, or assembly. ! This has nothing to do with standards conformance or extensions; it ! merely selects which base syntax to expect. If you give none of ! these options, cpp will deduce the language from the extension of ! the source file: '.c', '.cc', '.m', or '.S'. Some other common extensions for C++ and assembly are also recognized. If cpp does not recognize the extension, it will treat the file as C; this is the most generic mode. ! _Note:_ Previous versions of cpp accepted a '-lang' option which selected both the language and the standards conformance level. ! This option has been removed, because it conflicts with the '-l' option. ! '-std=STANDARD' ! '-ansi' Specify the standard to which the code should conform. Currently CPP knows about C and C++ standards; others may be added in the future. STANDARD may be one of: ! 'c90' ! 'c89' ! 'iso9899:1990' ! The ISO C standard from 1990. 'c90' is the customary shorthand for this version of the standard. ! The '-ansi' option is equivalent to '-std=c90'. ! 'iso9899:199409' The 1990 C standard, as amended in 1994. ! 'iso9899:1999' ! 'c99' ! 'iso9899:199x' ! 'c9x' The revised ISO C standard, published in December 1999. Before publication, this was known as C9X. ! 'iso9899:2011' ! 'c11' ! 'c1x' The revised ISO C standard, published in December 2011. Before publication, this was known as C1X. ! 'gnu90' ! 'gnu89' The 1990 C standard plus GNU extensions. This is the default. ! 'gnu99' ! 'gnu9x' The 1999 C standard plus GNU extensions. ! 'gnu11' ! 'gnu1x' The 2011 C standard plus GNU extensions. ! 'c++98' The 1998 ISO C++ standard plus amendments. ! 'gnu++98' ! The same as '-std=c++98' plus GNU extensions. This is the default for C++ code. ! '-I-' ! Split the include path. Any directories specified with '-I' ! options before '-I-' are searched only for headers requested with ! '#include "FILE"'; they are not searched for '#include '. If ! additional directories are specified with '-I' options after the ! '-I-', those directories are searched for all '#include' directives. ! In addition, '-I-' inhibits the use of the directory of the current ! file directory as the first search directory for '#include "FILE"'. *Note Search Path::. This option has been deprecated. ! '-nostdinc' Do not search the standard system directories for header files. ! Only the directories you have specified with '-I' options (and the directory of the current file, if appropriate) are searched. ! '-nostdinc++' Do not search for header files in the C++-specific standard directories, but do still search the other standard directories. (This option is used when building the C++ library.) ! '-include FILE' ! Process FILE as if '#include "file"' appeared as the first line of ! the primary source file. However, the first directory searched for ! FILE is the preprocessor's working directory _instead of_ the directory containing the main source file. If not found there, it ! is searched for in the remainder of the '#include "..."' search chain as normal. ! If multiple '-include' options are given, the files are included in ! the order they appear on the command line. ! '-imacros FILE' ! Exactly like '-include', except that any output produced by scanning FILE is thrown away. Macros it defines remain defined. This allows you to acquire all the macros from a header without also processing its declarations. ! All files specified by '-imacros' are processed before all files ! specified by '-include'. ! '-idirafter DIR' Search DIR for header files, but do it _after_ all directories ! specified with '-I' and the standard system directories have been exhausted. DIR is treated as a system include directory. If DIR ! begins with '=', then the '=' will be replaced by the sysroot ! prefix; see '--sysroot' and '-isysroot'. ! '-iprefix PREFIX' ! Specify PREFIX as the prefix for subsequent '-iwithprefix' options. ! If the prefix represents a directory, you should include the final ! '/'. ! '-iwithprefix DIR' ! '-iwithprefixbefore DIR' ! Append DIR to the prefix specified previously with '-iprefix', and add the resulting directory to the include search path. ! '-iwithprefixbefore' puts it in the same place '-I' would; ! '-iwithprefix' puts it where '-idirafter' would. ! '-isysroot DIR' ! This option is like the '--sysroot' option, but applies only to header files (except for Darwin targets, where it applies to both ! header files and libraries). See the '--sysroot' option for more information. ! '-imultilib DIR' Use DIR as a subdirectory of the directory containing target-specific C++ headers. ! '-isystem DIR' Search DIR for header files, after all directories specified by ! '-I' but before the standard system directories. Mark it as a system directory, so that it gets the same special treatment as is applied to the standard system directories. *Note System ! Headers::. If DIR begins with '=', then the '=' will be replaced ! by the sysroot prefix; see '--sysroot' and '-isysroot'. ! '-iquote DIR' ! Search DIR only for header files requested with '#include "FILE"'; ! they are not searched for '#include ', before all directories ! specified by '-I' and before the standard system directories. ! *Note Search Path::. If DIR begins with '=', then the '=' will be ! replaced by the sysroot prefix; see '--sysroot' and '-isysroot'. ! '-fdirectives-only' When preprocessing, handle directives, but do not expand macros. ! The option's behavior depends on the '-E' and '-fpreprocessed' options. ! With '-E', preprocessing is limited to the handling of directives ! such as '#define', '#ifdef', and '#error'. Other preprocessor ! operations, such as macro expansion and trigraph conversion are not ! performed. In addition, the '-dD' option is implicitly enabled. ! With '-fpreprocessed', predefinition of command line and most ! builtin macros is disabled. Macros such as '__LINE__', which are contextually dependent, are handled normally. This enables ! compilation of files previously preprocessed with '-E -fdirectives-only'. ! With both '-E' and '-fpreprocessed', the rules for '-fpreprocessed' ! take precedence. This enables full preprocessing of files ! previously preprocessed with '-E -fdirectives-only'. ! '-fdollars-in-identifiers' ! Accept '$' in identifiers. *Note Identifier characters::. ! '-fextended-identifiers' Accept universal character names in identifiers. This option is experimental; in a future version of GCC, it will be enabled by default for C99 and C++. ! '-fno-canonical-system-headers' When preprocessing, do not shorten system header paths with canonicalization. ! '-fpreprocessed' Indicate to the preprocessor that the input file has already been preprocessed. This suppresses things like macro expansion, trigraph conversion, escaped newline splicing, and processing of most directives. The preprocessor still recognizes and removes ! comments, so that you can pass a file preprocessed with '-C' to the ! compiler without problems. In this mode the integrated preprocessor is little more than a tokenizer for the front ends. ! '-fpreprocessed' is implicit if the input file has one of the ! extensions '.i', '.ii' or '.mi'. These are the extensions that GCC ! uses for preprocessed files created by '-save-temps'. ! '-ftabstop=WIDTH' Set the distance between tab stops. This helps the preprocessor report correct column numbers in warnings or errors, even if tabs appear on the line. If the value is less than 1 or greater than 100, the option is ignored. The default is 8. ! '-fdebug-cpp' ! This option is only useful for debugging GCC. When used with '-E', ! dumps debugging information about location maps. Every token in ! the output is preceded by the dump of the map its location belongs ! to. The dump of the map holding the location of a token would be: ! {'P':/file/path;'F':/includer/path;'L':LINE_NUM;'C':COL_NUM;'S':SYSTEM_HEADER_P;'M':MAP_ADDRESS;'E':MACRO_EXPANSION_P,'loc':LOCATION} ! When used without '-E', this option has no effect. ! '-ftrack-macro-expansion[=LEVEL]' ! Track locations of tokens across macro expansions. This allows the compiler to emit diagnostic about the current macro expansion stack ! when a compilation error occurs in a macro expansion. Using this ! option makes the preprocessor and the compiler consume more memory. ! The LEVEL parameter can be used to choose the level of precision of ! token location tracking thus decreasing the memory consumption if ! necessary. Value '0' of LEVEL de-activates this option just as if ! no '-ftrack-macro-expansion' was present on the command line. ! Value '1' tracks tokens locations in a degraded mode for the sake ! of minimal memory overhead. In this mode all tokens resulting from ! the expansion of an argument of a function-like macro have the same ! location. Value '2' tracks tokens locations completely. This ! value is the most memory hungry. When this option is given no ! argument, the default parameter value is '2'. Note that -ftrack-macro-expansion=2 is activated by default. ! '-fexec-charset=CHARSET' Set the execution character set, used for string and character constants. The default is UTF-8. CHARSET can be any encoding ! supported by the system's 'iconv' library routine. ! '-fwide-exec-charset=CHARSET' Set the wide execution character set, used for wide string and character constants. The default is UTF-32 or UTF-16, whichever ! corresponds to the width of 'wchar_t'. As with '-fexec-charset', ! CHARSET can be any encoding supported by the system's 'iconv' library routine; however, you will have problems with encodings ! that do not fit exactly in 'wchar_t'. ! '-finput-charset=CHARSET' Set the input character set, used for translation from the ! character set of the input file to the source character set used by ! GCC. If the locale does not specify, or GCC cannot get this information from the locale, the default is UTF-8. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. CHARSET can be any encoding supported by the system's ! 'iconv' library routine. ! '-fworking-directory' Enable generation of linemarkers in the preprocessor output that will let the compiler know the current working directory at the time of preprocessing. When this option is enabled, the preprocessor will emit, after the initial linemarker, a second linemarker with the current working directory followed by two slashes. GCC will use this directory, when it's present in the ! preprocessed input, as the directory emitted as the current working ! directory in some debugging information formats. This option is ! implicitly enabled if debugging information is enabled, but this ! can be inhibited with the negated form '-fno-working-directory'. ! If the '-P' flag is present in the command line, this option has no ! effect, since no '#line' directives are emitted whatsoever. ! '-fno-show-column' Do not print column numbers in diagnostics. This may be necessary if diagnostics are being scanned by a program that does not ! understand the column numbers, such as 'dejagnu'. ! '-A PREDICATE=ANSWER' Make an assertion with the predicate PREDICATE and answer ANSWER. ! This form is preferred to the older form '-A PREDICATE(ANSWER)', which is still supported, because it does not use shell special characters. *Note Obsolete Features::. ! '-A -PREDICATE=ANSWER' Cancel an assertion with the predicate PREDICATE and answer ANSWER. ! '-dCHARS' ! CHARS is a sequence of one or more of the following characters, and ! must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of GCC, and ! so are silently ignored. If you specify characters whose behavior ! conflicts, the result is undefined. ! 'M' ! Instead of the normal output, generate a list of '#define' directives for all the macros defined during the execution of ! the preprocessor, including predefined macros. This gives you ! a way of finding out what is predefined in your version of the ! preprocessor. Assuming you have no file 'foo.h', the command touch foo.h; cpp -dM foo.h will show all the predefined macros. ! If you use '-dM' without the '-E' option, '-dM' is interpreted ! as a synonym for '-fdump-rtl-mach'. *Note (gcc)Debugging ! Options::. ! 'D' ! Like 'M' except in two respects: it does _not_ include the ! predefined macros, and it outputs _both_ the '#define' directives and the result of preprocessing. Both kinds of output go to the standard output file. ! 'N' ! Like 'D', but emit only the macro names, not their expansions. ! 'I' ! Output '#include' directives in addition to the result of preprocessing. ! 'U' ! Like 'D' except that only macros that are expanded, or whose definedness is tested in preprocessor directives, are output; the output is delayed until the use or test of the macro; and ! '#undef' directives are also output for macros tested but undefined at the time. ! '-P' Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers. *Note Preprocessor Output::. ! '-C' Do not discard comments. All comments are passed through to the ! output file, except for comments in processed directives, which are ! deleted along with the directive. ! You should be prepared for side effects when using '-C'; it causes the preprocessor to treat comments as tokens in their own right. For example, comments appearing at the start of what would be a directive line have the effect of turning that line into an ordinary source line, since the first token on the line is no ! longer a '#'. ! '-CC' Do not discard comments, including during macro expansion. This is ! like '-C', except that comments contained within macros are also passed through to the output file where the macro is expanded. ! In addition to the side-effects of the '-C' option, the '-CC' ! option causes all C++-style comments inside a macro to be converted ! to C-style comments. This is to prevent later use of that macro ! from inadvertently commenting out the remainder of the source line. ! The '-CC' option is generally used to support lint comments. ! '-traditional-cpp' Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO C preprocessors. *Note Traditional Mode::. ! '-trigraphs' Process trigraph sequences. *Note Initial processing::. ! '-remap' Enable special code to work around file systems which only permit very short file names, such as MS-DOS. ! '--help' ! '--target-help' Print text describing all the command line options instead of preprocessing anything. ! '-v' Verbose mode. Print out GNU CPP's version number at the beginning of execution, and report the final form of the include path. ! '-H' Print the name of each header file used, in addition to other normal activities. Each name is indented to show how deep in the ! '#include' stack it is. Precompiled header files are also printed, ! even if they are found to be invalid; an invalid precompiled header ! file is printed with '...x' and a valid one with '...!' . ! '-version' ! '--version' Print out GNU CPP's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. *************** operates. You can use them to specify d *** 4698,4757 **** when searching for include files, or to control dependency output. Note that you can also specify places to search using options such as ! `-I', and control dependency output with options like `-M' (*note Invocation::). These take precedence over environment variables, which in turn take precedence over the configuration of GCC. ! `CPATH' ! `C_INCLUDE_PATH' ! `CPLUS_INCLUDE_PATH' ! `OBJC_INCLUDE_PATH' Each variable's value is a list of directories separated by a ! special character, much like `PATH', in which to look for header ! files. The special character, `PATH_SEPARATOR', is target-dependent and determined at GCC build time. For Microsoft Windows-based targets it is a semicolon, and for almost all other targets it is a colon. ! `CPATH' specifies a list of directories to be searched as if ! specified with `-I', but after any paths given with `-I' options ! on the command line. This environment variable is used regardless ! of which language is being preprocessed. The remaining environment variables apply only when preprocessing the particular language indicated. Each specifies a list of ! directories to be searched as if specified with `-isystem', but ! after any paths given with `-isystem' options on the command line. In all these variables, an empty element instructs the compiler to ! search its current working directory. Empty elements can appear ! at the beginning or end of a path. For instance, if the value of ! `CPATH' is `:/special/include', that has the same effect as ! `-I. -I/special/include'. See also *note Search Path::. ! `DEPENDENCIES_OUTPUT' If this variable is set, its value specifies how to output dependencies for Make based on the non-system header files processed by the compiler. System header files are ignored in the dependency output. ! The value of `DEPENDENCIES_OUTPUT' can be just a file name, in which case the Make rules are written to that file, guessing the target name from the source file name. Or the value can have the ! form `FILE TARGET', in which case the rules are written to file FILE using TARGET as the target name. In other words, this environment variable is equivalent to ! combining the options `-MM' and `-MF' (*note Invocation::), with ! an optional `-MT' switch too. ! `SUNPRO_DEPENDENCIES' ! This variable is the same as `DEPENDENCIES_OUTPUT' (see above), ! except that system header files are not ignored, so it implies ! `-M' rather than `-MM'. However, the dependence on the main input ! file is omitted. *Note Invocation::.  File: cpp.info, Node: GNU Free Documentation License, Next: Index of Directives, Prev: Environment Variables, Up: Top --- 4665,4724 ---- when searching for include files, or to control dependency output. Note that you can also specify places to search using options such as ! '-I', and control dependency output with options like '-M' (*note Invocation::). These take precedence over environment variables, which in turn take precedence over the configuration of GCC. ! 'CPATH' ! 'C_INCLUDE_PATH' ! 'CPLUS_INCLUDE_PATH' ! 'OBJC_INCLUDE_PATH' Each variable's value is a list of directories separated by a ! special character, much like 'PATH', in which to look for header ! files. The special character, 'PATH_SEPARATOR', is target-dependent and determined at GCC build time. For Microsoft Windows-based targets it is a semicolon, and for almost all other targets it is a colon. ! 'CPATH' specifies a list of directories to be searched as if ! specified with '-I', but after any paths given with '-I' options on ! the command line. This environment variable is used regardless of ! which language is being preprocessed. The remaining environment variables apply only when preprocessing the particular language indicated. Each specifies a list of ! directories to be searched as if specified with '-isystem', but ! after any paths given with '-isystem' options on the command line. In all these variables, an empty element instructs the compiler to ! search its current working directory. Empty elements can appear at ! the beginning or end of a path. For instance, if the value of ! 'CPATH' is ':/special/include', that has the same effect as ! '-I. -I/special/include'. See also *note Search Path::. ! 'DEPENDENCIES_OUTPUT' If this variable is set, its value specifies how to output dependencies for Make based on the non-system header files processed by the compiler. System header files are ignored in the dependency output. ! The value of 'DEPENDENCIES_OUTPUT' can be just a file name, in which case the Make rules are written to that file, guessing the target name from the source file name. Or the value can have the ! form 'FILE TARGET', in which case the rules are written to file FILE using TARGET as the target name. In other words, this environment variable is equivalent to ! combining the options '-MM' and '-MF' (*note Invocation::), with an ! optional '-MT' switch too. ! 'SUNPRO_DEPENDENCIES' ! This variable is the same as 'DEPENDENCIES_OUTPUT' (see above), ! except that system header files are not ignored, so it implies '-M' ! rather than '-MM'. However, the dependence on the main input file ! is omitted. *Note Invocation::.  File: cpp.info, Node: GNU Free Documentation License, Next: Index of Directives, Prev: Environment Variables, Up: Top *************** GNU Free Documentation License *** 4762,4768 **** Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 4729,4735 ---- Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU Free Documentation License *** 4787,4807 **** free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. ! We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it ! can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You ! accept the license if you copy, modify or distribute the work in a ! way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with --- 4754,4774 ---- free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. We ! recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it can ! be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You accept ! the license if you copy, modify or distribute the work in a way ! requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with *************** GNU Free Documentation License *** 4819,4830 **** regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in ! the notice that says that the Document is released under this ! License. If a section does not fit the above definition of ! Secondary then it is not allowed to be designated as Invariant. ! The Document may contain zero Invariant Sections. If the Document ! does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice --- 4786,4797 ---- regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in the ! notice that says that the Document is released under this License. ! If a section does not fit the above definition of Secondary then it ! is not allowed to be designated as Invariant. The Document may ! contain zero Invariant Sections. If the Document does not identify ! any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice *************** GNU Free Documentation License *** 4835,4861 **** A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images ! composed of pixels) generic paint programs or (for drawings) some ! widely available drawing editor, and that is suitable for input to ! text formatters or for automatic translation to a variety of ! formats suitable for input to text formatters. A copy made in an ! otherwise Transparent file format whose markup, or absence of ! markup, has been arranged to thwart or discourage subsequent ! modification by readers is not Transparent. An image format is ! not Transparent if used for any substantial amount of text. A ! copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and ! standard-conforming simple HTML, PostScript or PDF designed for ! human modification. Examples of transparent image formats include ! PNG, XCF and JPG. Opaque formats include proprietary formats that ! can be read and edited only by proprietary word processors, SGML or ! XML for which the DTD and/or processing tools are not generally ! available, and the machine-generated HTML, PostScript or PDF ! produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the --- 4802,4828 ---- A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images composed ! of pixels) generic paint programs or (for drawings) some widely ! available drawing editor, and that is suitable for input to text ! formatters or for automatic translation to a variety of formats ! suitable for input to text formatters. A copy made in an otherwise ! Transparent file format whose markup, or absence of markup, has ! been arranged to thwart or discourage subsequent modification by ! readers is not Transparent. An image format is not Transparent if ! used for any substantial amount of text. A copy that is not ! "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and standard-conforming ! simple HTML, PostScript or PDF designed for human modification. ! Examples of transparent image formats include PNG, XCF and JPG. ! Opaque formats include proprietary formats that can be read and ! edited only by proprietary word processors, SGML or XML for which ! the DTD and/or processing tools are not generally available, and ! the machine-generated HTML, PostScript or PDF produced by some word ! processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the *************** GNU Free Documentation License *** 4893,4900 **** may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow ! the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. --- 4860,4867 ---- may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow the ! conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. *************** GNU Free Documentation License *** 4908,4919 **** these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the ! title equally prominent and visible. You may add other material ! on the covers in addition. Copying with changes limited to the ! covers, as long as they preserve the title of the Document and ! satisfy these conditions, can be treated as verbatim copying in ! other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit --- 4875,4885 ---- these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the title ! equally prominent and visible. You may add other material on the ! covers in addition. Copying with changes limited to the covers, as ! long as they preserve the title of the Document and satisfy these ! conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit *************** GNU Free Documentation License *** 4921,4960 **** adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a ! machine-readable Transparent copy along with each Opaque copy, or ! state in or with each Opaque copy a computer-network location from ! which the general network-using public has access to download ! using public-standard network protocols a complete Transparent ! copy of the Document, free of added material. If you use the ! latter option, you must take reasonably prudent steps, when you ! begin distribution of Opaque copies in quantity, to ensure that ! this Transparent copy will remain thus accessible at the stated ! location until at least one year after the last time you ! distribute an Opaque copy (directly or through your agents or ! retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of ! copies, to give them a chance to provide you with an updated ! version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with ! the Modified Version filling the role of the Document, thus ! licensing distribution and modification of the Modified Version to ! whoever possesses a copy of it. In addition, you must do these ! things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of ! previous versions (which should, if there were any, be listed ! in the History section of the Document). You may use the ! same title as a previous version if the original publisher of ! that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in --- 4887,4925 ---- adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a machine-readable ! Transparent copy along with each Opaque copy, or state in or with ! each Opaque copy a computer-network location from which the general ! network-using public has access to download using public-standard ! network protocols a complete Transparent copy of the Document, free ! of added material. If you use the latter option, you must take ! reasonably prudent steps, when you begin distribution of Opaque ! copies in quantity, to ensure that this Transparent copy will ! remain thus accessible at the stated location until at least one ! year after the last time you distribute an Opaque copy (directly or ! through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of copies, ! to give them a chance to provide you with an updated version of the ! Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with the ! Modified Version filling the role of the Document, thus licensing ! distribution and modification of the Modified Version to whoever ! possesses a copy of it. In addition, you must do these things in ! the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of previous ! versions (which should, if there were any, be listed in the ! History section of the Document). You may use the same title ! as a previous version if the original publisher of that ! version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in *************** GNU Free Documentation License *** 4984,5014 **** I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on ! the Title Page. If there is no section Entitled "History" in ! the Document, create one stating the title, year, authors, ! and publisher of the Document as given on its Title Page, ! then add an item describing the Modified Version as stated in ! the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in ! the "History" section. You may omit a network location for a ! work that was published at least four years before the ! Document itself, or if the original publisher of the version ! it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the ! section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, ! unaltered in their text and in their titles. Section numbers ! or the equivalent are not considered part of the section ! titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. --- 4949,4978 ---- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on the ! Title Page. If there is no section Entitled "History" in the ! Document, create one stating the title, year, authors, and ! publisher of the Document as given on its Title Page, then add ! an item describing the Modified Version as stated in the ! previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in the ! "History" section. You may omit a network location for a work ! that was published at least four years before the Document ! itself, or if the original publisher of the version it refers ! to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the section ! all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, unaltered ! in their text and in their titles. Section numbers or the ! equivalent are not considered part of the section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. *************** GNU Free Documentation License *** 5021,5031 **** If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option ! designate some or all of these sections as invariant. To do this, ! add their titles to the list of Invariant Sections in the Modified ! Version's license notice. These titles must be distinct from any ! other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various --- 4985,4995 ---- If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option designate ! some or all of these sections as invariant. To do this, add their ! titles to the list of Invariant Sections in the Modified Version's ! license notice. These titles must be distinct from any other ! section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various *************** GNU Free Documentation License *** 5034,5048 **** definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end ! of the list of Cover Texts in the Modified Version. Only one ! passage of Front-Cover Text and one of Back-Cover Text may be ! added by (or through arrangements made by) any one entity. If the ! Document already includes a cover text for the same cover, ! previously added by you or by arrangement made by the same entity ! you are acting on behalf of, you may not add another; but you may ! replace the old one, on explicit permission from the previous ! publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to --- 4998,5012 ---- definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end of ! the list of Cover Texts in the Modified Version. Only one passage ! of Front-Cover Text and one of Back-Cover Text may be added by (or ! through arrangements made by) any one entity. If the Document ! already includes a cover text for the same cover, previously added ! by you or by arrangement made by the same entity you are acting on ! behalf of, you may not add another; but you may replace the old ! one, on explicit permission from the previous publisher that added ! the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to *************** GNU Free Documentation License *** 5052,5059 **** You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination ! all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. --- 5016,5023 ---- You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination all ! of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. *************** GNU Free Documentation License *** 5080,5099 **** documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the ! documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow ! this License in all other respects regarding verbatim copying of ! that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of ! a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this --- 5044,5063 ---- documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the documents ! in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow this ! License in all other respects regarding verbatim copying of that ! document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of a ! storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this *************** GNU Free Documentation License *** 5138,5145 **** However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 5102,5109 ---- However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** GNU Free Documentation License *** 5151,5183 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, receipt of a copy of some or all of ! the same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! `http://www.gnu.org/copyleft/'. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If ! the Document does not specify a version number of this License, ! you may choose any version ever published (not as a draft) by the ! Free Software Foundation. If the Document specifies that a proxy ! can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also --- 5115,5147 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, receipt of a copy of some or all of the ! same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! . Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If the ! Document does not specify a version number of this License, you may ! choose any version ever published (not as a draft) by the Free ! Software Foundation. If the Document specifies that a proxy can ! decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also *************** GNU Free Documentation License *** 5207,5213 **** site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. - ADDENDUM: How to use this License for your documents ==================================================== --- 5171,5176 ---- *************** notices just after the title page: *** 5224,5230 **** Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts --- 5187,5193 ---- Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts *************** combination of the three, merge those tw *** 5235,5243 **** situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of ! free software license, such as the GNU General Public License, to ! permit their use in free software.  File: cpp.info, Node: Index of Directives, Next: Option Index, Prev: GNU Free Documentation License, Up: Top --- 5198,5206 ---- situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of free ! software license, such as the GNU General Public License, to permit ! their use in free software.  File: cpp.info, Node: Index of Directives, Next: Option Index, Prev: GNU Free Documentation License, Up: Top *************** Index of Directives *** 5266,5273 **** * #pragma GCC dependency: Pragmas. (line 55) * #pragma GCC error: Pragmas. (line 100) * #pragma GCC poison: Pragmas. (line 67) - * #pragma GCC system_header <1>: Pragmas. (line 94) * #pragma GCC system_header: System Headers. (line 31) * #pragma GCC warning: Pragmas. (line 99) * #sccs: Other Directives. (line 6) * #unassert: Obsolete Features. (line 59) --- 5229,5236 ---- * #pragma GCC dependency: Pragmas. (line 55) * #pragma GCC error: Pragmas. (line 100) * #pragma GCC poison: Pragmas. (line 67) * #pragma GCC system_header: System Headers. (line 31) + * #pragma GCC system_header <1>: Pragmas. (line 94) * #pragma GCC warning: Pragmas. (line 99) * #sccs: Other Directives. (line 6) * #unassert: Obsolete Features. (line 59) *************** Option Index *** 5282,5377 **** ************ CPP's command line options and environment variables are indexed here ! without any initial `-' or `--'. [index] * Menu: ! * A: Invocation. (line 568) ! * ansi: Invocation. (line 308) ! * C: Invocation. (line 627) ! * C_INCLUDE_PATH: Environment Variables. ! (line 16) * CPATH: Environment Variables. (line 15) * CPLUS_INCLUDE_PATH: Environment Variables. (line 17) ! * D: Invocation. (line 39) ! * dD: Invocation. (line 600) * DEPENDENCIES_OUTPUT: Environment Variables. (line 44) ! * dI: Invocation. (line 609) ! * dM: Invocation. (line 584) ! * dN: Invocation. (line 606) ! * dU: Invocation. (line 613) ! * fdebug-cpp: Invocation. (line 497) ! * fdirectives-only: Invocation. (line 444) ! * fdollars-in-identifiers: Invocation. (line 466) * fexec-charset: Invocation. (line 525) ! * fextended-identifiers: Invocation. (line 469) * finput-charset: Invocation. (line 538) ! * fno-canonical-system-headers: Invocation. (line 474) ! * fno-show-column: Invocation. (line 563) * fno-working-directory: Invocation. (line 548) ! * fpreprocessed: Invocation. (line 478) ! * ftabstop: Invocation. (line 491) * ftrack-macro-expansion: Invocation. (line 507) * fwide-exec-charset: Invocation. (line 530) * fworking-directory: Invocation. (line 548) ! * H: Invocation. (line 672) ! * help: Invocation. (line 664) ! * I: Invocation. (line 71) ! * I-: Invocation. (line 357) ! * idirafter: Invocation. (line 399) ! * imacros: Invocation. (line 390) ! * imultilib: Invocation. (line 424) ! * include: Invocation. (line 379) ! * iprefix: Invocation. (line 406) ! * iquote: Invocation. (line 436) ! * isysroot: Invocation. (line 418) ! * isystem: Invocation. (line 428) ! * iwithprefix: Invocation. (line 412) ! * iwithprefixbefore: Invocation. (line 412) ! * M: Invocation. (line 180) ! * MD: Invocation. (line 269) ! * MF: Invocation. (line 215) ! * MG: Invocation. (line 224) ! * MM: Invocation. (line 205) ! * MMD: Invocation. (line 285) ! * MP: Invocation. (line 234) ! * MQ: Invocation. (line 260) ! * MT: Invocation. (line 246) ! * nostdinc: Invocation. (line 369) ! * nostdinc++: Invocation. (line 374) ! * o: Invocation. (line 82) * OBJC_INCLUDE_PATH: Environment Variables. (line 18) ! * P: Invocation. (line 620) ! * pedantic: Invocation. (line 170) ! * pedantic-errors: Invocation. (line 175) ! * remap: Invocation. (line 659) ! * std=: Invocation. (line 308) * SUNPRO_DEPENDENCIES: Environment Variables. (line 60) ! * target-help: Invocation. (line 664) ! * traditional-cpp: Invocation. (line 652) ! * trigraphs: Invocation. (line 656) ! * U: Invocation. (line 62) ! * undef: Invocation. (line 66) ! * v: Invocation. (line 668) ! * version: Invocation. (line 681) ! * w: Invocation. (line 166) ! * Wall: Invocation. (line 88) ! * Wcomment: Invocation. (line 96) ! * Wcomments: Invocation. (line 96) ! * Wendif-labels: Invocation. (line 143) ! * Werror: Invocation. (line 156) ! * Wsystem-headers: Invocation. (line 160) ! * Wtraditional: Invocation. (line 113) ! * Wtrigraphs: Invocation. (line 101) ! * Wundef: Invocation. (line 119) ! * Wunused-macros: Invocation. (line 124) ! * x: Invocation. (line 292)  File: cpp.info, Node: Concept Index, Prev: Option Index, Up: Top --- 5245,5340 ---- ************ CPP's command line options and environment variables are indexed here ! without any initial '-' or '--'. [index] * Menu: ! * A: Invocation. (line 567) ! * ansi: Invocation. (line 311) ! * C: Invocation. (line 625) * CPATH: Environment Variables. (line 15) * CPLUS_INCLUDE_PATH: Environment Variables. (line 17) ! * C_INCLUDE_PATH: Environment Variables. ! (line 16) ! * D: Invocation. (line 40) ! * dD: Invocation. (line 598) * DEPENDENCIES_OUTPUT: Environment Variables. (line 44) ! * dI: Invocation. (line 607) ! * dM: Invocation. (line 583) ! * dN: Invocation. (line 604) ! * dU: Invocation. (line 611) ! * fdebug-cpp: Invocation. (line 498) ! * fdirectives-only: Invocation. (line 446) ! * fdollars-in-identifiers: Invocation. (line 467) * fexec-charset: Invocation. (line 525) ! * fextended-identifiers: Invocation. (line 470) * finput-charset: Invocation. (line 538) ! * fno-canonical-system-headers: Invocation. (line 475) ! * fno-show-column: Invocation. (line 562) * fno-working-directory: Invocation. (line 548) ! * fpreprocessed: Invocation. (line 479) ! * ftabstop: Invocation. (line 492) * ftrack-macro-expansion: Invocation. (line 507) * fwide-exec-charset: Invocation. (line 530) * fworking-directory: Invocation. (line 548) ! * H: Invocation. (line 669) ! * help: Invocation. (line 661) ! * I: Invocation. (line 72) ! * I-: Invocation. (line 360) ! * idirafter: Invocation. (line 402) ! * imacros: Invocation. (line 393) ! * imultilib: Invocation. (line 427) ! * include: Invocation. (line 382) ! * iprefix: Invocation. (line 409) ! * iquote: Invocation. (line 439) ! * isysroot: Invocation. (line 421) ! * isystem: Invocation. (line 431) ! * iwithprefix: Invocation. (line 415) ! * iwithprefixbefore: Invocation. (line 415) ! * M: Invocation. (line 181) ! * MD: Invocation. (line 272) ! * MF: Invocation. (line 216) ! * MG: Invocation. (line 225) ! * MM: Invocation. (line 206) ! * MMD: Invocation. (line 288) ! * MP: Invocation. (line 235) ! * MQ: Invocation. (line 262) ! * MT: Invocation. (line 247) ! * nostdinc: Invocation. (line 372) ! * nostdinc++: Invocation. (line 377) ! * o: Invocation. (line 83) * OBJC_INCLUDE_PATH: Environment Variables. (line 18) ! * P: Invocation. (line 618) ! * pedantic: Invocation. (line 171) ! * pedantic-errors: Invocation. (line 176) ! * remap: Invocation. (line 656) ! * std=: Invocation. (line 311) * SUNPRO_DEPENDENCIES: Environment Variables. (line 60) ! * target-help: Invocation. (line 661) ! * traditional-cpp: Invocation. (line 649) ! * trigraphs: Invocation. (line 653) ! * U: Invocation. (line 63) ! * undef: Invocation. (line 67) ! * v: Invocation. (line 665) ! * version: Invocation. (line 677) ! * w: Invocation. (line 167) ! * Wall: Invocation. (line 89) ! * Wcomment: Invocation. (line 97) ! * Wcomments: Invocation. (line 97) ! * Wendif-labels: Invocation. (line 144) ! * Werror: Invocation. (line 157) ! * Wsystem-headers: Invocation. (line 161) ! * Wtraditional: Invocation. (line 114) ! * Wtrigraphs: Invocation. (line 102) ! * Wundef: Invocation. (line 120) ! * Wunused-macros: Invocation. (line 125) ! * x: Invocation. (line 295)  File: cpp.info, Node: Concept Index, Prev: Option Index, Up: Top *************** Concept Index *** 5382,5391 **** [index] * Menu: ! * # operator: Stringification. (line 6) ! * ## operator: Concatenation. (line 6) ! * _Pragma: Pragmas. (line 25) ! * alternative tokens: Tokenization. (line 106) * arguments: Macro Arguments. (line 6) * arguments in macro definitions: Macro Arguments. (line 6) * assertions: Obsolete Features. (line 13) --- 5345,5354 ---- [index] * Menu: ! * '#' operator: Stringification. (line 6) ! * '##' operator: Concatenation. (line 6) ! * '_Pragma': Pragmas. (line 25) ! * alternative tokens: Tokenization. (line 105) * arguments: Macro Arguments. (line 6) * arguments in macro definitions: Macro Arguments. (line 6) * assertions: Obsolete Features. (line 13) *************** Concept Index *** 5393,5399 **** * backslash-newline: Initial processing. (line 61) * block comments: Initial processing. (line 77) * C++ named operators: C++ Named Operators. (line 6) ! * character constants: Tokenization. (line 85) * character set, execution: Invocation. (line 525) * character set, input: Invocation. (line 538) * character set, wide execution: Invocation. (line 530) --- 5356,5362 ---- * backslash-newline: Initial processing. (line 61) * block comments: Initial processing. (line 77) * C++ named operators: C++ Named Operators. (line 6) ! * character constants: Tokenization. (line 84) * character set, execution: Invocation. (line 525) * character set, input: Invocation. (line 538) * character set, wide execution: Invocation. (line 530) *************** Concept Index *** 5408,5421 **** * conditionals: Conditionals. (line 6) * continued lines: Initial processing. (line 61) * controlling macro: Once-Only Headers. (line 35) ! * defined: Defined. (line 6) * dependencies for make as output: Environment Variables. (line 45) ! * dependencies, make: Invocation. (line 180) * diagnostic: Diagnostics. (line 6) * differences from previous versions: Differences from previous versions. (line 6) ! * digraphs: Tokenization. (line 106) * directive line: The preprocessing language. (line 6) * directive name: The preprocessing language. --- 5371,5386 ---- * conditionals: Conditionals. (line 6) * continued lines: Initial processing. (line 61) * controlling macro: Once-Only Headers. (line 35) ! * 'defined': Defined. (line 6) * dependencies for make as output: Environment Variables. (line 45) ! * dependencies for make as output <1>: Environment Variables. ! (line 61) ! * dependencies, 'make': Invocation. (line 181) * diagnostic: Diagnostics. (line 6) * differences from previous versions: Differences from previous versions. (line 6) ! * digraphs: Tokenization. (line 105) * directive line: The preprocessing language. (line 6) * directive name: The preprocessing language. *************** Concept Index *** 5433,5447 **** * grouping options: Invocation. (line 34) * guard macro: Once-Only Headers. (line 35) * header file: Header Files. (line 6) ! * header file names: Tokenization. (line 85) ! * identifiers: Tokenization. (line 34) * implementation limits: Implementation limits. (line 6) * implementation-defined behavior: Implementation-defined behavior. (line 6) * including just once: Once-Only Headers. (line 6) * invocation: Invocation. (line 6) ! * iso646.h: C++ Named Operators. (line 6) * line comments: Initial processing. (line 77) * line control: Line Control. (line 6) * line endings: Initial processing. (line 14) --- 5398,5412 ---- * grouping options: Invocation. (line 34) * guard macro: Once-Only Headers. (line 35) * header file: Header Files. (line 6) ! * header file names: Tokenization. (line 84) ! * identifiers: Tokenization. (line 33) * implementation limits: Implementation limits. (line 6) * implementation-defined behavior: Implementation-defined behavior. (line 6) * including just once: Once-Only Headers. (line 6) * invocation: Invocation. (line 6) ! * 'iso646.h': C++ Named Operators. (line 6) * line comments: Initial processing. (line 77) * line control: Line Control. (line 6) * line endings: Initial processing. (line 14) *************** Concept Index *** 5452,5468 **** * macros in include: Computed Includes. (line 6) * macros with arguments: Macro Arguments. (line 6) * macros with variable arguments: Variadic Macros. (line 6) ! * make: Invocation. (line 180) * manifest constants: Object-like Macros. (line 6) * named operators: C++ Named Operators. (line 6) * newlines in macro arguments: Newlines in Arguments. (line 6) * null directive: Other Directives. (line 15) ! * numbers: Tokenization. (line 61) * object-like macro: Object-like Macros. (line 6) ! * options: Invocation. (line 38) * options, grouping: Invocation. (line 34) ! * other tokens: Tokenization. (line 120) * output format: Preprocessor Output. (line 12) * overriding a header file: Wrapper Headers. (line 6) * parentheses in macro bodies: Operator Precedence Problems. --- 5417,5433 ---- * macros in include: Computed Includes. (line 6) * macros with arguments: Macro Arguments. (line 6) * macros with variable arguments: Variadic Macros. (line 6) ! * 'make': Invocation. (line 181) * manifest constants: Object-like Macros. (line 6) * named operators: C++ Named Operators. (line 6) * newlines in macro arguments: Newlines in Arguments. (line 6) * null directive: Other Directives. (line 15) ! * numbers: Tokenization. (line 60) * object-like macro: Object-like Macros. (line 6) ! * options: Invocation. (line 39) * options, grouping: Invocation. (line 34) ! * other tokens: Tokenization. (line 119) * output format: Preprocessor Output. (line 12) * overriding a header file: Wrapper Headers. (line 6) * parentheses in macro bodies: Operator Precedence Problems. *************** Concept Index *** 5474,5484 **** * predicates: Obsolete Features. (line 26) * preprocessing directives: The preprocessing language. (line 6) ! * preprocessing numbers: Tokenization. (line 61) * preprocessing tokens: Tokenization. (line 6) * prescan of macro arguments: Argument Prescan. (line 6) * problems with macros: Macro Pitfalls. (line 6) ! * punctuators: Tokenization. (line 106) * redefining macros: Undefining and Redefining Macros. (line 6) * repeated inclusion: Once-Only Headers. (line 6) --- 5439,5449 ---- * predicates: Obsolete Features. (line 26) * preprocessing directives: The preprocessing language. (line 6) ! * preprocessing numbers: Tokenization. (line 60) * preprocessing tokens: Tokenization. (line 6) * prescan of macro arguments: Argument Prescan. (line 6) * problems with macros: Macro Pitfalls. (line 6) ! * punctuators: Tokenization. (line 105) * redefining macros: Undefining and Redefining Macros. (line 6) * repeated inclusion: Once-Only Headers. (line 6) *************** Concept Index *** 5494,5505 **** (line 6) * standard predefined macros.: Standard Predefined Macros. (line 6) ! * string constants: Tokenization. (line 85) ! * string literals: Tokenization. (line 85) * stringification: Stringification. (line 6) * symbolic constants: Object-like Macros. (line 6) - * system header files <1>: System Headers. (line 6) * system header files: Header Files. (line 13) * system-specific predefined macros: System-specific Predefined Macros. (line 6) * testing predicates: Obsolete Features. (line 37) --- 5459,5470 ---- (line 6) * standard predefined macros.: Standard Predefined Macros. (line 6) ! * string constants: Tokenization. (line 84) ! * string literals: Tokenization. (line 84) * stringification: Stringification. (line 6) * symbolic constants: Object-like Macros. (line 6) * system header files: Header Files. (line 13) + * system header files <1>: System Headers. (line 6) * system-specific predefined macros: System-specific Predefined Macros. (line 6) * testing predicates: Obsolete Features. (line 37) *************** Concept Index *** 5513,5597 **** (line 6) * variable number of arguments: Variadic Macros. (line 6) * variadic macros: Variadic Macros. (line 6) ! * wrapper #ifndef: Once-Only Headers. (line 6) * wrapper headers: Wrapper Headers. (line 6)  Tag Table: ! Node: Top982 ! Node: Overview3587 ! Node: Character sets6420 ! Ref: Character sets-Footnote-18603 ! Node: Initial processing8784 ! Ref: trigraphs10343 ! Node: Tokenization14545 ! Ref: Tokenization-Footnote-121681 ! Node: The preprocessing language21792 ! Node: Header Files24670 ! Node: Include Syntax26586 ! Node: Include Operation28223 ! Node: Search Path30071 ! Node: Once-Only Headers33272 ! Node: Alternatives to Wrapper #ifndef34931 ! Node: Computed Includes36674 ! Node: Wrapper Headers39832 ! Node: System Headers42258 ! Node: Macros44308 ! Node: Object-like Macros45449 ! Node: Function-like Macros49039 ! Node: Macro Arguments50655 ! Node: Stringification54800 ! Node: Concatenation58006 ! Node: Variadic Macros61114 ! Node: Predefined Macros65901 ! Node: Standard Predefined Macros66489 ! Node: Common Predefined Macros72426 ! Node: System-specific Predefined Macros90049 ! Node: C++ Named Operators92072 ! Node: Undefining and Redefining Macros93036 ! Node: Directives Within Macro Arguments95140 ! Node: Macro Pitfalls96688 ! Node: Misnesting97221 ! Node: Operator Precedence Problems98333 ! Node: Swallowing the Semicolon100199 ! Node: Duplication of Side Effects102222 ! Node: Self-Referential Macros104405 ! Node: Argument Prescan106814 ! Node: Newlines in Arguments110568 ! Node: Conditionals111519 ! Node: Conditional Uses113349 ! Node: Conditional Syntax114707 ! Node: Ifdef115027 ! Node: If118188 ! Node: Defined120492 ! Node: Else121775 ! Node: Elif122345 ! Node: Deleted Code123634 ! Node: Diagnostics124881 ! Node: Line Control126428 ! Node: Pragmas130232 ! Node: Other Directives134988 ! Node: Preprocessor Output136038 ! Node: Traditional Mode139239 ! Node: Traditional lexical analysis140297 ! Node: Traditional macros142800 ! Node: Traditional miscellany146602 ! Node: Traditional warnings147599 ! Node: Implementation Details149796 ! Node: Implementation-defined behavior150417 ! Ref: Identifier characters151169 ! Node: Implementation limits154247 ! Node: Obsolete Features156921 ! Node: Differences from previous versions159809 ! Node: Invocation164017 ! Ref: Wtrigraphs168469 ! Ref: dashMF173244 ! Ref: fdollars-in-identifiers182975 ! Node: Environment Variables192844 ! Node: GNU Free Documentation License195810 ! Node: Index of Directives220974 ! Node: Option Index223054 ! Node: Concept Index229457  End Tag Table --- 5478,5562 ---- (line 6) * variable number of arguments: Variadic Macros. (line 6) * variadic macros: Variadic Macros. (line 6) ! * wrapper '#ifndef': Once-Only Headers. (line 6) * wrapper headers: Wrapper Headers. (line 6)  Tag Table: ! Node: Top945 ! Node: Overview3549 ! Node: Character sets6383 ! Ref: Character sets-Footnote-18564 ! Node: Initial processing8745 ! Ref: trigraphs10304 ! Node: Tokenization14504 ! Ref: Tokenization-Footnote-121638 ! Node: The preprocessing language21749 ! Node: Header Files24628 ! Node: Include Syntax26544 ! Node: Include Operation28181 ! Node: Search Path30029 ! Node: Once-Only Headers33230 ! Node: Alternatives to Wrapper #ifndef34889 ! Node: Computed Includes36631 ! Node: Wrapper Headers39789 ! Node: System Headers42212 ! Node: Macros44262 ! Node: Object-like Macros45403 ! Node: Function-like Macros48993 ! Node: Macro Arguments50609 ! Node: Stringification54752 ! Node: Concatenation57958 ! Node: Variadic Macros61066 ! Node: Predefined Macros65853 ! Node: Standard Predefined Macros66441 ! Node: Common Predefined Macros72276 ! Node: System-specific Predefined Macros89896 ! Node: C++ Named Operators91919 ! Node: Undefining and Redefining Macros92883 ! Node: Directives Within Macro Arguments94981 ! Node: Macro Pitfalls96529 ! Node: Misnesting97062 ! Node: Operator Precedence Problems98174 ! Node: Swallowing the Semicolon100040 ! Node: Duplication of Side Effects102063 ! Node: Self-Referential Macros104246 ! Node: Argument Prescan106655 ! Node: Newlines in Arguments110410 ! Node: Conditionals111361 ! Node: Conditional Uses113190 ! Node: Conditional Syntax114548 ! Node: Ifdef114868 ! Node: If118025 ! Node: Defined120329 ! Node: Else121610 ! Node: Elif122180 ! Node: Deleted Code123469 ! Node: Diagnostics124716 ! Node: Line Control126265 ! Node: Pragmas130040 ! Node: Other Directives134794 ! Node: Preprocessor Output135844 ! Node: Traditional Mode139042 ! Node: Traditional lexical analysis140100 ! Node: Traditional macros142603 ! Node: Traditional miscellany146404 ! Node: Traditional warnings147400 ! Node: Implementation Details149597 ! Node: Implementation-defined behavior150218 ! Ref: Identifier characters150968 ! Node: Implementation limits154046 ! Node: Obsolete Features156719 ! Node: Differences from previous versions159606 ! Node: Invocation163808 ! Ref: Wtrigraphs168260 ! Ref: dashMF173037 ! Ref: fdollars-in-identifiers182779 ! Node: Environment Variables192606 ! Node: GNU Free Documentation License195572 ! Node: Index of Directives220716 ! Node: Option Index222796 ! Node: Concept Index229199  End Tag Table diff -Nrcpad gcc-4.8.1/gcc/doc/cpp.texi gcc-4.8.2/gcc/doc/cpp.texi *** gcc-4.8.1/gcc/doc/cpp.texi Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/doc/cpp.texi Wed Jun 19 09:03:22 2013 *************** facilities of the standard C library ava *** 1926,1936 **** This macro is defined when the C++ compiler is in use. You can use @code{__cplusplus} to test whether a header is compiled by a C compiler or a C++ compiler. This macro is similar to @code{__STDC_VERSION__}, in ! that it expands to a version number. A fully conforming implementation ! of the 1998 C++ standard will define this macro to @code{199711L}. The ! GNU C++ compiler is not yet fully conforming, so it uses @code{1} ! instead. It is hoped to complete the implementation of standard C++ ! in the near future. @item __OBJC__ This macro is defined, with value 1, when the Objective-C compiler is in --- 1926,1934 ---- This macro is defined when the C++ compiler is in use. You can use @code{__cplusplus} to test whether a header is compiled by a C compiler or a C++ compiler. This macro is similar to @code{__STDC_VERSION__}, in ! that it expands to a version number. Depending on the language standard ! selected, the value of the macro is @code{199711L}, as mandated by the ! 1998 C++ standard, or @code{201103L}, per the 2011 C++ standard. @item __OBJC__ This macro is defined, with value 1, when the Objective-C compiler is in diff -Nrcpad gcc-4.8.1/gcc/doc/cppinternals.info gcc-4.8.2/gcc/doc/cppinternals.info *** gcc-4.8.1/gcc/doc/cppinternals.info Fri May 31 09:58:14 2013 --- gcc-4.8.2/gcc/doc/cppinternals.info Wed Oct 16 08:16:24 2013 *************** *** 1,12 **** ! This is doc/cppinternals.info, produced by makeinfo version 4.13 from ! /d/gcc-4.8.1/gcc-4.8.1/gcc/doc/cppinternals.texi. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * Cpplib: (cppinternals). Cpplib internals. END-INFO-DIR-ENTRY ! This file documents the internals of the GNU C Preprocessor. Copyright (C) 2000-2013 Free Software Foundation, Inc. --- 1,12 ---- ! This is cppinternals.info, produced by makeinfo version 5.1 from ! cppinternals.texi. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * Cpplib: (cppinternals). Cpplib internals. END-INFO-DIR-ENTRY ! This file documents the internals of the GNU C Preprocessor. Copyright (C) 2000-2013 Free Software Foundation, Inc. *************** preserved on all copies. *** 16,23 **** Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also ! that the entire resulting derived work is distributed under the terms ! of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified --- 16,23 ---- Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also ! that the entire resulting derived work is distributed under the terms of ! a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified *************** preprocessor in previous versions of GCC *** 46,54 **** as the fundamental unit. This brief manual documents the internals of cpplib, and explains ! some of the tricky issues. It is intended that, along with the ! comments in the source code, a reasonably competent C programmer should ! be able to figure out what the code is doing, and why things have been implemented the way they have. * Menu: --- 46,54 ---- as the fundamental unit. This brief manual documents the internals of cpplib, and explains ! some of the tricky issues. It is intended that, along with the comments ! in the source code, a reasonably competent C programmer should be able ! to figure out what the code is doing, and why things have been implemented the way they have. * Menu: *************** File: cppinternals.info, Node: Conventi *** 69,85 **** Conventions *********** ! cpplib has two interfaces--one is exposed internally only, and the ! other is for both internal and external use. The convention is that functions and types that are exposed to ! multiple files internally are prefixed with `_cpp_', and are to be ! found in the file `internal.h'. Functions and types exposed to external ! clients are in `cpplib.h', and prefixed with `cpp_'. For historical reasons this is no longer quite true, but we should strive to stick to it. ! We are striving to reduce the information exposed in `cpplib.h' to the bare minimum necessary, and then to keep it there. This makes clear exactly what external clients are entitled to assume, and allows us to change internals in the future without worrying whether library clients --- 69,85 ---- Conventions *********** ! cpplib has two interfaces--one is exposed internally only, and the other ! is for both internal and external use. The convention is that functions and types that are exposed to ! multiple files internally are prefixed with '_cpp_', and are to be found ! in the file 'internal.h'. Functions and types exposed to external ! clients are in 'cpplib.h', and prefixed with 'cpp_'. For historical reasons this is no longer quite true, but we should strive to stick to it. ! We are striving to reduce the information exposed in 'cpplib.h' to the bare minimum necessary, and then to keep it there. This makes clear exactly what external clients are entitled to assume, and allows us to change internals in the future without worrying whether library clients *************** The Lexer *** 95,101 **** Overview ======== ! The lexer is contained in the file `lex.c'. It is a hand-coded lexer, and not implemented as a state machine. It can understand C, C++ and Objective-C source code, and has been extended to allow reasonably successful preprocessing of assembly language. The lexer does not make --- 95,101 ---- Overview ======== ! The lexer is contained in the file 'lex.c'. It is a hand-coded lexer, and not implemented as a state machine. It can understand C, C++ and Objective-C source code, and has been extended to allow reasonably successful preprocessing of assembly language. The lexer does not make *************** them as they are encountered in a single *** 104,120 **** returns preprocessing tokens individually, not a line at a time. It is mostly transparent to users of the library, since the library's ! interface for obtaining the next token, `cpp_get_token', takes care of lexing new tokens, handling directives, and expanding macros as necessary. However, the lexer does expose some functionality so that clients of the library can easily spell a given token, such as ! `cpp_spell_token' and `cpp_token_len'. These functions are useful when generating diagnostics, and for emitting the preprocessed output. Lexing a token ============== ! Lexing of an individual token is handled by `_cpp_lex_direct' and its subroutines. In its current form the code is quite complicated, with read ahead characters and such-like, since it strives to not step back in the character stream in preparation for handling non-ASCII file --- 104,120 ---- returns preprocessing tokens individually, not a line at a time. It is mostly transparent to users of the library, since the library's ! interface for obtaining the next token, 'cpp_get_token', takes care of lexing new tokens, handling directives, and expanding macros as necessary. However, the lexer does expose some functionality so that clients of the library can easily spell a given token, such as ! 'cpp_spell_token' and 'cpp_token_len'. These functions are useful when generating diagnostics, and for emitting the preprocessed output. Lexing a token ============== ! Lexing of an individual token is handled by '_cpp_lex_direct' and its subroutines. In its current form the code is quite complicated, with read ahead characters and such-like, since it strives to not step back in the character stream in preparation for handling non-ASCII file *************** encodings. The current plan is to conve *** 122,187 **** before processing them. This complexity is therefore unnecessary and will be removed, so I'll not discuss it further here. ! The job of `_cpp_lex_direct' is simply to lex a token. It is not responsible for issues like directive handling, returning lookahead tokens directly, multiple-include optimization, or conditional block ! skipping. It necessarily has a minor ro^le to play in memory ! management of lexed lines. I discuss these issues in a separate section ! (*note Lexing a line::). The lexer places the token it lexes into storage pointed to by the ! variable `cur_token', and then increments it. This variable is important for correct diagnostic positioning. Unless a specific line and column are passed to the diagnostic routines, they will examine the ! `line' and `col' values of the token just before the location that ! `cur_token' points to, and use that location to report the diagnostic. The lexer does not consider whitespace to be a token in its own right. If whitespace (other than a new line) precedes a token, it sets ! the `PREV_WHITE' bit in the token's flags. Each token has its `line' ! and `col' variables set to the line and column of the first character ! of the token. This line number is the line number in the translation ! unit, and can be converted to a source (file, line) pair using the line ! map code. ! The first token on a logical, i.e. unescaped, line has the flag ! `BOL' set for beginning-of-line. This flag is intended for internal ! use, both to distinguish a `#' that begins a directive from one that ! doesn't, and to generate a call-back to clients that want to be ! notified about the start of every non-directive line with tokens on it. ! Clients cannot reliably determine this for themselves: the first token ! might be a macro, and the tokens of a macro expansion do not have the ! `BOL' flag set. The macro expansion may even be empty, and the next ! token on the line certainly won't have the `BOL' flag set. New lines are treated specially; exactly how the lexer handles them is context-dependent. The C standard mandates that directives are terminated by the first unescaped newline character, even if it appears in the middle of a macro expansion. Therefore, if the state variable ! `in_directive' is set, the lexer returns a `CPP_EOF' token, which is ! normally used to indicate end-of-file, to indicate end-of-directive. ! In a directive a `CPP_EOF' token never means end-of-file. ! Conveniently, if the caller was `collect_args', it already handles ! `CPP_EOF' as if it were end-of-file, and reports an error about an ! unterminated macro argument list. The C standard also specifies that a new line in the middle of the arguments to a macro is treated as whitespace. This white space is important in case the macro argument is stringified. The state variable ! `parsing_args' is nonzero when the preprocessor is collecting the arguments to a macro call. It is set to 1 when looking for the opening parenthesis to a function-like macro, and 2 when collecting the actual arguments up to the closing parenthesis, since these two cases need to be distinguished sometimes. One such time is here: the lexer sets the ! `PREV_WHITE' flag of a token if it meets a new line when `parsing_args' is set to 2. It doesn't set it if it meets a new line when ! `parsing_args' is 1, since then code like #define foo() bar foo baz ! would be output with an erroneous space before `baz': foo baz --- 122,187 ---- before processing them. This complexity is therefore unnecessary and will be removed, so I'll not discuss it further here. ! The job of '_cpp_lex_direct' is simply to lex a token. It is not responsible for issues like directive handling, returning lookahead tokens directly, multiple-include optimization, or conditional block ! skipping. It necessarily has a minor ro^le to play in memory management ! of lexed lines. I discuss these issues in a separate section (*note ! Lexing a line::). The lexer places the token it lexes into storage pointed to by the ! variable 'cur_token', and then increments it. This variable is important for correct diagnostic positioning. Unless a specific line and column are passed to the diagnostic routines, they will examine the ! 'line' and 'col' values of the token just before the location that ! 'cur_token' points to, and use that location to report the diagnostic. The lexer does not consider whitespace to be a token in its own right. If whitespace (other than a new line) precedes a token, it sets ! the 'PREV_WHITE' bit in the token's flags. Each token has its 'line' ! and 'col' variables set to the line and column of the first character of ! the token. This line number is the line number in the translation unit, ! and can be converted to a source (file, line) pair using the line map ! code. ! The first token on a logical, i.e. unescaped, line has the flag 'BOL' ! set for beginning-of-line. This flag is intended for internal use, both ! to distinguish a '#' that begins a directive from one that doesn't, and ! to generate a call-back to clients that want to be notified about the ! start of every non-directive line with tokens on it. Clients cannot ! reliably determine this for themselves: the first token might be a ! macro, and the tokens of a macro expansion do not have the 'BOL' flag ! set. The macro expansion may even be empty, and the next token on the ! line certainly won't have the 'BOL' flag set. New lines are treated specially; exactly how the lexer handles them is context-dependent. The C standard mandates that directives are terminated by the first unescaped newline character, even if it appears in the middle of a macro expansion. Therefore, if the state variable ! 'in_directive' is set, the lexer returns a 'CPP_EOF' token, which is ! normally used to indicate end-of-file, to indicate end-of-directive. In ! a directive a 'CPP_EOF' token never means end-of-file. Conveniently, if ! the caller was 'collect_args', it already handles 'CPP_EOF' as if it ! were end-of-file, and reports an error about an unterminated macro ! argument list. The C standard also specifies that a new line in the middle of the arguments to a macro is treated as whitespace. This white space is important in case the macro argument is stringified. The state variable ! 'parsing_args' is nonzero when the preprocessor is collecting the arguments to a macro call. It is set to 1 when looking for the opening parenthesis to a function-like macro, and 2 when collecting the actual arguments up to the closing parenthesis, since these two cases need to be distinguished sometimes. One such time is here: the lexer sets the ! 'PREV_WHITE' flag of a token if it meets a new line when 'parsing_args' is set to 2. It doesn't set it if it meets a new line when ! 'parsing_args' is 1, since then code like #define foo() bar foo baz ! would be output with an erroneous space before 'baz': foo baz *************** would be output with an erroneous space *** 190,277 **** correct in the preprocessor; there are plenty of tests in the testsuite for corner cases like this. ! The lexer is written to treat each of `\r', `\n', `\r\n' and `\n\r' as a single new line indicator. This allows it to transparently preprocess MS-DOS, Macintosh and Unix files without their needing to pass through a special filter beforehand. ! We also decided to treat a backslash, either `\' or the trigraph ! `??/', separated from one of the above newline indicators by ! non-comment whitespace only, as intending to escape the newline. It ! tends to be a typing mistake, and cannot reasonably be mistaken for ! anything else in any of the C-family grammars. Since handling it this ! way is not strictly conforming to the ISO standard, the library issues a ! warning wherever it encounters it. Handling newlines like this is made simpler by doing it in one place ! only. The function `handle_newline' takes care of all newline ! characters, and `skip_escaped_newlines' takes care of arbitrarily long ! sequences of escaped newlines, deferring to `handle_newline' to handle the newlines themselves. The most painful aspect of lexing ISO-standard C and C++ is handling trigraphs and backlash-escaped newlines. Trigraphs are processed before any interpretation of the meaning of a character is made, and unfortunately there is a trigraph representation for a backslash, so it ! is possible for the trigraph `??/' to introduce an escaped newline. Escaped newlines are tedious because theoretically they can occur ! anywhere--between the `+' and `=' of the `+=' token, within the ! characters of an identifier, and even between the `*' and `/' that terminates a comment. Moreover, you cannot be sure there is just one--there might be an arbitrarily long sequence of them. ! So, for example, the routine that lexes a number, `parse_number', cannot assume that it can scan forwards until the first non-number ! character and be done with it, because this could be the `\' ! introducing an escaped newline, or the `?' introducing the trigraph ! sequence that represents the `\' of an escaped newline. If it ! encounters a `?' or `\', it calls `skip_escaped_newlines' to skip over ! any potential escaped newlines before checking whether the number has ! been finished. ! Similarly code in the main body of `_cpp_lex_direct' cannot simply ! check for a `=' after a `+' character to determine whether it has a ! `+=' token; it needs to be prepared for an escaped newline of some ! sort. Such cases use the function `get_effective_char', which returns ! the first character after any intervening escaped newlines. The lexer needs to keep track of the correct column position, ! including counting tabs as specified by the `-ftabstop=' option. This should be done even within C-style comments; they can appear in the middle of a line, and we want to report diagnostics in the correct position for text appearing after the end of the comment. ! Some identifiers, such as `__VA_ARGS__' and poisoned identifiers, ! may be invalid and require a diagnostic. However, if they appear in a ! macro expansion we don't want to complain with each use of the macro. ! It is therefore best to catch them during the lexing stage, in ! `parse_identifier'. In both cases, whether a diagnostic is needed or not is dependent upon the lexer's state. For example, we don't want to issue a diagnostic for re-poisoning a poisoned identifier, or for using ! `__VA_ARGS__' in the expansion of a variable-argument macro. Therefore ! `parse_identifier' makes use of state flags to determine whether a diagnostic is appropriate. Since we change state on a per-token basis, and don't lex whole lines at a time, this is not a problem. Another place where state flags are used to change behavior is whilst ! lexing header names. Normally, a `<' would be lexed as a single token. ! After a `#include' directive, though, it should be lexed as a single ! token as far as the nearest `>' character. Note that we don't allow ! the terminators of header names to be escaped; the first `"' or `>' terminates the header name. Interpretation of some character sequences depends upon whether we are lexing C, C++ or Objective-C, and on the revision of the standard in ! force. For example, `::' is a single token in C++, but in C it is two ! separate `:' tokens and almost certainly a syntax error. Such cases ! are handled by `_cpp_lex_direct' based upon command-line flags stored ! in the `cpp_options' structure. Once a token has been lexed, it leads an independent existence. The spelling of numbers, identifiers and strings is copied to permanent storage from the original input buffer, so a token remains valid and ! correct even if its source buffer is freed with `_cpp_pop_buffer'. The storage holding the spellings of such tokens remains until the client program calls cpp_destroy, probably at the end of the translation unit. --- 190,276 ---- correct in the preprocessor; there are plenty of tests in the testsuite for corner cases like this. ! The lexer is written to treat each of '\r', '\n', '\r\n' and '\n\r' as a single new line indicator. This allows it to transparently preprocess MS-DOS, Macintosh and Unix files without their needing to pass through a special filter beforehand. ! We also decided to treat a backslash, either '\' or the trigraph ! '??/', separated from one of the above newline indicators by non-comment ! whitespace only, as intending to escape the newline. It tends to be a ! typing mistake, and cannot reasonably be mistaken for anything else in ! any of the C-family grammars. Since handling it this way is not ! strictly conforming to the ISO standard, the library issues a warning ! wherever it encounters it. Handling newlines like this is made simpler by doing it in one place ! only. The function 'handle_newline' takes care of all newline ! characters, and 'skip_escaped_newlines' takes care of arbitrarily long ! sequences of escaped newlines, deferring to 'handle_newline' to handle the newlines themselves. The most painful aspect of lexing ISO-standard C and C++ is handling trigraphs and backlash-escaped newlines. Trigraphs are processed before any interpretation of the meaning of a character is made, and unfortunately there is a trigraph representation for a backslash, so it ! is possible for the trigraph '??/' to introduce an escaped newline. Escaped newlines are tedious because theoretically they can occur ! anywhere--between the '+' and '=' of the '+=' token, within the ! characters of an identifier, and even between the '*' and '/' that terminates a comment. Moreover, you cannot be sure there is just one--there might be an arbitrarily long sequence of them. ! So, for example, the routine that lexes a number, 'parse_number', cannot assume that it can scan forwards until the first non-number ! character and be done with it, because this could be the '\' introducing ! an escaped newline, or the '?' introducing the trigraph sequence that ! represents the '\' of an escaped newline. If it encounters a '?' or ! '\', it calls 'skip_escaped_newlines' to skip over any potential escaped ! newlines before checking whether the number has been finished. ! Similarly code in the main body of '_cpp_lex_direct' cannot simply ! check for a '=' after a '+' character to determine whether it has a '+=' ! token; it needs to be prepared for an escaped newline of some sort. ! Such cases use the function 'get_effective_char', which returns the ! first character after any intervening escaped newlines. The lexer needs to keep track of the correct column position, ! including counting tabs as specified by the '-ftabstop=' option. This should be done even within C-style comments; they can appear in the middle of a line, and we want to report diagnostics in the correct position for text appearing after the end of the comment. ! Some identifiers, such as '__VA_ARGS__' and poisoned identifiers, may ! be invalid and require a diagnostic. However, if they appear in a macro ! expansion we don't want to complain with each use of the macro. It is ! therefore best to catch them during the lexing stage, in ! 'parse_identifier'. In both cases, whether a diagnostic is needed or not is dependent upon the lexer's state. For example, we don't want to issue a diagnostic for re-poisoning a poisoned identifier, or for using ! '__VA_ARGS__' in the expansion of a variable-argument macro. Therefore ! 'parse_identifier' makes use of state flags to determine whether a diagnostic is appropriate. Since we change state on a per-token basis, and don't lex whole lines at a time, this is not a problem. Another place where state flags are used to change behavior is whilst ! lexing header names. Normally, a '<' would be lexed as a single token. ! After a '#include' directive, though, it should be lexed as a single ! token as far as the nearest '>' character. Note that we don't allow the ! terminators of header names to be escaped; the first '"' or '>' terminates the header name. Interpretation of some character sequences depends upon whether we are lexing C, C++ or Objective-C, and on the revision of the standard in ! force. For example, '::' is a single token in C++, but in C it is two ! separate ':' tokens and almost certainly a syntax error. Such cases are ! handled by '_cpp_lex_direct' based upon command-line flags stored in the ! 'cpp_options' structure. Once a token has been lexed, it leads an independent existence. The spelling of numbers, identifiers and strings is copied to permanent storage from the original input buffer, so a token remains valid and ! correct even if its source buffer is freed with '_cpp_pop_buffer'. The storage holding the spellings of such tokens remains until the client program calls cpp_destroy, probably at the end of the translation unit. *************** to cpplib itself internally. *** 288,296 **** token stream. For example, after the name of a function-like macro, it wants to check the next token to see if it is an opening parenthesis. Another example is that, after reading the first few tokens of a ! `#pragma' directive and not recognizing it as a registered pragma, it wants to backtrack and allow the user-defined handler for unknown ! pragmas to access the full `#pragma' token stream. The stand-alone preprocessor wants to be able to test the current token with the previous one to see if a space needs to be inserted to preserve their separate tokenization upon re-lexing (paste avoidance), so it needs to --- 287,295 ---- token stream. For example, after the name of a function-like macro, it wants to check the next token to see if it is an opening parenthesis. Another example is that, after reading the first few tokens of a ! '#pragma' directive and not recognizing it as a registered pragma, it wants to backtrack and allow the user-defined handler for unknown ! pragmas to access the full '#pragma' token stream. The stand-alone preprocessor wants to be able to test the current token with the previous one to see if a space needs to be inserted to preserve their separate tokenization upon re-lexing (paste avoidance), so it needs to *************** to jump back to a prior position in that *** 303,310 **** preprocessor lex all tokens on a line consecutively into a token buffer, which I call a "token run", and when meeting an unescaped new line (newlines within comments do not count either), to start lexing back at ! the beginning of the run. Note that we do _not_ lex a line of tokens ! at once; if we did that `parse_identifier' would not have state flags available to warn about invalid identifiers (*note Invalid identifiers::). --- 302,309 ---- preprocessor lex all tokens on a line consecutively into a token buffer, which I call a "token run", and when meeting an unescaped new line (newlines within comments do not count either), to start lexing back at ! the beginning of the run. Note that we do _not_ lex a line of tokens at ! once; if we did that 'parse_identifier' would not have state flags available to warn about invalid identifiers (*note Invalid identifiers::). *************** identifiers::). *** 312,336 **** line is valid, but since each logical line overwrites the tokens of the previous line, tokens from prior lines are unavailable. In particular, since a directive only occupies a single logical line, this means that ! the directive handlers like the `#pragma' handler can jump around in ! the directive's tokens if necessary. Two issues remain: what about tokens that arise from macro ! expansions, and what happens when we have a long line that overflows ! the token run? Since we promise clients that we preserve the validity of pointers that we have already returned for tokens that appeared earlier in the ! line, we cannot reallocate the run. Instead, on overflow it is ! expanded by chaining a new token run on to the end of the existing one. The tokens forming a macro's replacement list are collected by the ! `#define' handler, and placed in storage that is only freed by ! `cpp_destroy'. So if a macro is expanded in the line of tokens, the pointers to the tokens of its expansion that are returned will always remain valid. However, macros are a little trickier than that, since they give rise to three sources of fresh tokens. They are the built-in ! macros like `__LINE__', and the `#' and `##' operators for stringification and token pasting. I handled this by allocating space for these tokens from the lexer's token run chain. This means they automatically receive the same lifetime guarantees as lexed tokens, and --- 311,335 ---- line is valid, but since each logical line overwrites the tokens of the previous line, tokens from prior lines are unavailable. In particular, since a directive only occupies a single logical line, this means that ! the directive handlers like the '#pragma' handler can jump around in the ! directive's tokens if necessary. Two issues remain: what about tokens that arise from macro ! expansions, and what happens when we have a long line that overflows the ! token run? Since we promise clients that we preserve the validity of pointers that we have already returned for tokens that appeared earlier in the ! line, we cannot reallocate the run. Instead, on overflow it is expanded ! by chaining a new token run on to the end of the existing one. The tokens forming a macro's replacement list are collected by the ! '#define' handler, and placed in storage that is only freed by ! 'cpp_destroy'. So if a macro is expanded in the line of tokens, the pointers to the tokens of its expansion that are returned will always remain valid. However, macros are a little trickier than that, since they give rise to three sources of fresh tokens. They are the built-in ! macros like '__LINE__', and the '#' and '##' operators for stringification and token pasting. I handled this by allocating space for these tokens from the lexer's token run chain. This means they automatically receive the same lifetime guarantees as lexed tokens, and *************** management issues, but not all. The ope *** 341,360 **** function-like macro name might lie on a different line, and the front ends definitely want the ability to look ahead past the end of the current line. So cpplib only moves back to the start of the token run ! at the end of a line if the variable `keep_tokens' is zero. Line-buffering is quite natural for the preprocessor, and as a result the only time cpplib needs to increment this variable is whilst looking for the opening parenthesis to, and reading the arguments of, a ! function-like macro. In the near future cpplib will export an ! interface to increment and decrement this variable, so that clients can ! share full control over the lifetime of token pointers too. ! The routine `_cpp_lex_token' handles moving to new token runs, ! calling `_cpp_lex_direct' to lex new tokens, or returning previously-lexed tokens if we stepped back in the token stream. It also ! checks each token for the `BOL' flag, which might indicate a directive that needs to be handled, or require a start-of-line call-back to be ! made. `_cpp_lex_token' also handles skipping over tokens in failed conditional blocks, and invalidates the control macro of the multiple-include optimization if a token was successfully lexed outside a directive. In other words, its callers do not need to concern --- 340,359 ---- function-like macro name might lie on a different line, and the front ends definitely want the ability to look ahead past the end of the current line. So cpplib only moves back to the start of the token run ! at the end of a line if the variable 'keep_tokens' is zero. Line-buffering is quite natural for the preprocessor, and as a result the only time cpplib needs to increment this variable is whilst looking for the opening parenthesis to, and reading the arguments of, a ! function-like macro. In the near future cpplib will export an interface ! to increment and decrement this variable, so that clients can share full ! control over the lifetime of token pointers too. ! The routine '_cpp_lex_token' handles moving to new token runs, ! calling '_cpp_lex_direct' to lex new tokens, or returning previously-lexed tokens if we stepped back in the token stream. It also ! checks each token for the 'BOL' flag, which might indicate a directive that needs to be handled, or require a start-of-line call-back to be ! made. '_cpp_lex_token' also handles skipping over tokens in failed conditional blocks, and invalidates the control macro of the multiple-include optimization if a token was successfully lexed outside a directive. In other words, its callers do not need to concern *************** Hash Nodes *** 368,377 **** When cpplib encounters an "identifier", it generates a hash code for it and stores it in the hash table. By "identifier" we mean tokens with ! type `CPP_NAME'; this includes identifiers in the usual C sense, as ! well as keywords, directive names, macro names and so on. For example, ! all of `pragma', `int', `foo' and `__GNUC__' are identifiers and hashed ! when lexed. Each node in the hash table contain various information about the identifier it represents. For example, its length and type. At any one --- 367,376 ---- When cpplib encounters an "identifier", it generates a hash code for it and stores it in the hash table. By "identifier" we mean tokens with ! type 'CPP_NAME'; this includes identifiers in the usual C sense, as well ! as keywords, directive names, macro names and so on. For example, all ! of 'pragma', 'int', 'foo' and '__GNUC__' are identifiers and hashed when ! lexed. Each node in the hash table contain various information about the identifier it represents. For example, its length and type. At any one *************** time, each identifier falls into exactly *** 380,425 **** * Macros These have been declared to be macros, either on the command line ! or with `#define'. A few, such as `__TIME__' are built-ins ! entered in the hash table during initialization. The hash node ! for a normal macro points to a structure with more information ! about the macro, such as whether it is function-like, how many ! arguments it takes, and its expansion. Built-in macros are ! flagged as special, and instead contain an enum indicating which ! of the various built-in macros it is. * Assertions ! Assertions are in a separate namespace to macros. To enforce ! this, cpp actually prepends a `#' character before hashing and ! entering it in the hash table. An assertion's node points to a ! chain of answers to that assertion. * Void Everything else falls into this category--an identifier that is not currently a macro, or a macro that has since been undefined with ! `#undef'. When preprocessing C++, this category also includes the named ! operators, such as `xor'. In expressions these behave like the operators they represent, but in contexts where the spelling of a token matters they are spelt differently. This spelling distinction is relevant when they are operands of the stringizing ! and pasting macro operators `#' and `##'. Named operator hash nodes are flagged, both to catch the spelling distinction and to prevent them from being defined as macros. The same identifiers share the same hash node. Since each identifier token, after lexing, contains a pointer to its hash node, this is used to provide rapid lookup of various information. For example, when ! parsing a `#define' statement, CPP flags each argument's identifier ! hash node with the index of that argument. This makes duplicated ! argument checking an O(1) operation for each argument. Similarly, for ! each identifier in the macro's expansion, lookup to see if it is an ! argument, and which argument it is, is also an O(1) operation. Further, ! each directive name, such as `endif', has an associated directive enum ! stored in its hash node, so that directive lookup is also O(1).  File: cppinternals.info, Node: Macro Expansion, Next: Token Spacing, Prev: Hash Nodes, Up: Top --- 379,424 ---- * Macros These have been declared to be macros, either on the command line ! or with '#define'. A few, such as '__TIME__' are built-ins entered ! in the hash table during initialization. The hash node for a ! normal macro points to a structure with more information about the ! macro, such as whether it is function-like, how many arguments it ! takes, and its expansion. Built-in macros are flagged as special, ! and instead contain an enum indicating which of the various ! built-in macros it is. * Assertions ! Assertions are in a separate namespace to macros. To enforce this, ! cpp actually prepends a '#' character before hashing and entering ! it in the hash table. An assertion's node points to a chain of ! answers to that assertion. * Void Everything else falls into this category--an identifier that is not currently a macro, or a macro that has since been undefined with ! '#undef'. When preprocessing C++, this category also includes the named ! operators, such as 'xor'. In expressions these behave like the operators they represent, but in contexts where the spelling of a token matters they are spelt differently. This spelling distinction is relevant when they are operands of the stringizing ! and pasting macro operators '#' and '##'. Named operator hash nodes are flagged, both to catch the spelling distinction and to prevent them from being defined as macros. The same identifiers share the same hash node. Since each identifier token, after lexing, contains a pointer to its hash node, this is used to provide rapid lookup of various information. For example, when ! parsing a '#define' statement, CPP flags each argument's identifier hash ! node with the index of that argument. This makes duplicated argument ! checking an O(1) operation for each argument. Similarly, for each ! identifier in the macro's expansion, lookup to see if it is an argument, ! and which argument it is, is also an O(1) operation. Further, each ! directive name, such as 'endif', has an associated directive enum stored ! in its hash node, so that directive lookup is also O(1).  File: cppinternals.info, Node: Macro Expansion, Next: Token Spacing, Prev: Hash Nodes, Up: Top *************** and situations that render what you thou *** 432,460 **** the preprocessor's expansion algorithm wrong in quite subtle ways. I strongly recommend you have a good grasp of how the C and C++ ! standards require macros to be expanded before diving into this ! section, let alone the code!. If you don't have a clear mental picture ! of how things like nested macro expansion, stringification and token ! pasting are supposed to work, damage to your sanity can quickly result. Internal representation of macros ================================= The preprocessor stores macro expansions in tokenized form. This saves ! repeated lexing passes during expansion, at the cost of a small ! increase in memory consumption on average. The tokens are stored ! contiguously in memory, so a pointer to the first one and a token count ! is all you need to get the replacement list of a macro. If the macro is a function-like macro the preprocessor also stores its parameters, in the form of an ordered list of pointers to the hash table entry of each parameter's identifier. Further, in the macro's stored expansion each occurrence of a parameter is replaced with a ! special token of type `CPP_MACRO_ARG'. Each such token holds the index ! of the parameter it represents in the parameter list, which allows ! rapid replacement of parameters with their arguments during expansion. Despite this optimization it is still necessary to store the original ! parameters to the macro, both for dumping with e.g., `-dD', and to warn about non-trivial macro redefinitions when the parameter names have changed. --- 431,459 ---- the preprocessor's expansion algorithm wrong in quite subtle ways. I strongly recommend you have a good grasp of how the C and C++ ! standards require macros to be expanded before diving into this section, ! let alone the code!. If you don't have a clear mental picture of how ! things like nested macro expansion, stringification and token pasting ! are supposed to work, damage to your sanity can quickly result. Internal representation of macros ================================= The preprocessor stores macro expansions in tokenized form. This saves ! repeated lexing passes during expansion, at the cost of a small increase ! in memory consumption on average. The tokens are stored contiguously in ! memory, so a pointer to the first one and a token count is all you need ! to get the replacement list of a macro. If the macro is a function-like macro the preprocessor also stores its parameters, in the form of an ordered list of pointers to the hash table entry of each parameter's identifier. Further, in the macro's stored expansion each occurrence of a parameter is replaced with a ! special token of type 'CPP_MACRO_ARG'. Each such token holds the index ! of the parameter it represents in the parameter list, which allows rapid ! replacement of parameters with their arguments during expansion. Despite this optimization it is still necessary to store the original ! parameters to the macro, both for dumping with e.g., '-dD', and to warn about non-trivial macro redefinitions when the parameter names have changed. *************** Macro expansion overview *** 462,517 **** ======================== The preprocessor maintains a "context stack", implemented as a linked ! list of `cpp_context' structures, which together represent the macro ! expansion state at any one time. The `struct cpp_reader' member ! variable `context' points to the current top of this stack. The top normally holds the unexpanded replacement list of the innermost macro under expansion, except when cpplib is about to pre-expand an argument, in which case it holds that argument's unexpanded tokens. When there are no macros under expansion, cpplib is in "base ! context". All contexts other than the base context contain a ! contiguous list of tokens delimited by a starting and ending token. ! When not in base context, cpplib obtains the next token from the list ! of the top context. If there are no tokens left in the list, it pops ! that context off the stack, and subsequent ones if necessary, until an ! unexhausted context is found or it returns to base context. In base ! context, cpplib reads tokens directly from the lexer. If it encounters an identifier that is both a macro and enabled for expansion, cpplib prepares to push a new context for that macro on the ! stack by calling the routine `enter_macro_context'. When this routine returns, the new context will contain the unexpanded tokens of the replacement list of that macro. In the case of function-like macros, ! `enter_macro_context' also replaces any parameters in the replacement ! list, stored as `CPP_MACRO_ARG' tokens, with the appropriate macro argument. If the standard requires that the parameter be replaced with its expanded argument, the argument will have been fully macro expanded first. ! `enter_macro_context' also handles special macros like `__LINE__'. Although these macros expand to a single token which cannot contain any ! further macros, for reasons of token spacing (*note Token Spacing::) ! and simplicity of implementation, cpplib handles these special macros ! by pushing a context containing just that one token. ! The final thing that `enter_macro_context' does before returning is ! to mark the macro disabled for expansion (except for special macros ! like `__TIME__'). The macro is re-enabled when its context is later ! popped from the context stack, as described above. This strict ! ordering ensures that a macro is disabled whilst its expansion is being ! scanned, but that it is _not_ disabled whilst any arguments to it are ! being expanded. Scanning the replacement list for macros to expand ================================================== ! The C standard states that, after any parameters have been replaced ! with their possibly-expanded arguments, the replacement list is scanned ! for nested macros. Further, any identifiers in the replacement list ! that are not expanded during this scan are never again eligible for ! expansion in the future, if the reason they were not expanded is that ! the macro in question was disabled. Clearly this latter condition can only apply to tokens resulting from argument pre-expansion. Other tokens never have an opportunity to be --- 461,516 ---- ======================== The preprocessor maintains a "context stack", implemented as a linked ! list of 'cpp_context' structures, which together represent the macro ! expansion state at any one time. The 'struct cpp_reader' member ! variable 'context' points to the current top of this stack. The top normally holds the unexpanded replacement list of the innermost macro under expansion, except when cpplib is about to pre-expand an argument, in which case it holds that argument's unexpanded tokens. When there are no macros under expansion, cpplib is in "base ! context". All contexts other than the base context contain a contiguous ! list of tokens delimited by a starting and ending token. When not in ! base context, cpplib obtains the next token from the list of the top ! context. If there are no tokens left in the list, it pops that context ! off the stack, and subsequent ones if necessary, until an unexhausted ! context is found or it returns to base context. In base context, cpplib ! reads tokens directly from the lexer. If it encounters an identifier that is both a macro and enabled for expansion, cpplib prepares to push a new context for that macro on the ! stack by calling the routine 'enter_macro_context'. When this routine returns, the new context will contain the unexpanded tokens of the replacement list of that macro. In the case of function-like macros, ! 'enter_macro_context' also replaces any parameters in the replacement ! list, stored as 'CPP_MACRO_ARG' tokens, with the appropriate macro argument. If the standard requires that the parameter be replaced with its expanded argument, the argument will have been fully macro expanded first. ! 'enter_macro_context' also handles special macros like '__LINE__'. Although these macros expand to a single token which cannot contain any ! further macros, for reasons of token spacing (*note Token Spacing::) and ! simplicity of implementation, cpplib handles these special macros by ! pushing a context containing just that one token. ! The final thing that 'enter_macro_context' does before returning is ! to mark the macro disabled for expansion (except for special macros like ! '__TIME__'). The macro is re-enabled when its context is later popped ! from the context stack, as described above. This strict ordering ! ensures that a macro is disabled whilst its expansion is being scanned, ! but that it is _not_ disabled whilst any arguments to it are being ! expanded. Scanning the replacement list for macros to expand ================================================== ! The C standard states that, after any parameters have been replaced with ! their possibly-expanded arguments, the replacement list is scanned for ! nested macros. Further, any identifiers in the replacement list that ! are not expanded during this scan are never again eligible for expansion ! in the future, if the reason they were not expanded is that the macro in ! question was disabled. Clearly this latter condition can only apply to tokens resulting from argument pre-expansion. Other tokens never have an opportunity to be *************** looking for the _next_ token do we pop i *** 530,556 **** lower context. This makes backing up by one token easy, but more importantly ensures that the macro corresponding to the current context is still disabled when we are considering the last token of its ! replacement list for expansion (or indeed expanding it). As an ! example, which illustrates many of the points above, consider #define foo(x) bar x foo(foo) (2) ! which fully expands to `bar foo (2)'. During pre-expansion of the ! argument, `foo' does not expand even though the macro is enabled, since it has no following parenthesis [pre-expansion of an argument only uses tokens from that argument; it cannot take tokens from whatever follows ! the macro invocation]. This still leaves the argument token `foo' eligible for future expansion. Then, when re-scanning after argument ! replacement, the token `foo' is rejected for expansion, and marked ! ineligible for future expansion, since the macro is now disabled. It ! is disabled because the replacement list `bar foo' of the macro is ! still on the context stack. If instead the algorithm looked for an opening parenthesis first and then tested whether the macro were disabled it would be subtly wrong. ! In the example above, the replacement list of `foo' would be popped in ! the process of finding the parenthesis, re-enabling `foo' and expanding it a second time. Looking for a function-like macro's opening parenthesis --- 529,555 ---- lower context. This makes backing up by one token easy, but more importantly ensures that the macro corresponding to the current context is still disabled when we are considering the last token of its ! replacement list for expansion (or indeed expanding it). As an example, ! which illustrates many of the points above, consider #define foo(x) bar x foo(foo) (2) ! which fully expands to 'bar foo (2)'. During pre-expansion of the ! argument, 'foo' does not expand even though the macro is enabled, since it has no following parenthesis [pre-expansion of an argument only uses tokens from that argument; it cannot take tokens from whatever follows ! the macro invocation]. This still leaves the argument token 'foo' eligible for future expansion. Then, when re-scanning after argument ! replacement, the token 'foo' is rejected for expansion, and marked ! ineligible for future expansion, since the macro is now disabled. It is ! disabled because the replacement list 'bar foo' of the macro is still on ! the context stack. If instead the algorithm looked for an opening parenthesis first and then tested whether the macro were disabled it would be subtly wrong. ! In the example above, the replacement list of 'foo' would be popped in ! the process of finding the parenthesis, re-enabling 'foo' and expanding it a second time. Looking for a function-like macro's opening parenthesis *************** Function-like macros only expand when im *** 560,577 **** parenthesis. To do this cpplib needs to temporarily disable macros and read the next token. Unfortunately, because of spacing issues (*note Token Spacing::), there can be fake padding tokens in-between, and if ! the next real token is not a parenthesis cpplib needs to be able to ! back up that one token as well as retain the information in any ! intervening padding tokens. Backing up more than one token when macros are involved is not permitted by cpplib, because in general it might involve issues like restoring popped contexts onto the context stack, which are too hard. ! Instead, searching for the parenthesis is handled by a special ! function, `funlike_invocation_p', which remembers padding information ! as it reads tokens. If the next real token is not an opening ! parenthesis, it backs up that one token, and then pushes an extra ! context just containing the padding information if necessary. Marking tokens ineligible for future expansion ============================================== --- 559,576 ---- parenthesis. To do this cpplib needs to temporarily disable macros and read the next token. Unfortunately, because of spacing issues (*note Token Spacing::), there can be fake padding tokens in-between, and if ! the next real token is not a parenthesis cpplib needs to be able to back ! up that one token as well as retain the information in any intervening ! padding tokens. Backing up more than one token when macros are involved is not permitted by cpplib, because in general it might involve issues like restoring popped contexts onto the context stack, which are too hard. ! Instead, searching for the parenthesis is handled by a special function, ! 'funlike_invocation_p', which remembers padding information as it reads ! tokens. If the next real token is not an opening parenthesis, it backs ! up that one token, and then pushes an extra context just containing the ! padding information if necessary. Marking tokens ineligible for future expansion ============================================== *************** Marking tokens ineligible for future exp *** 579,590 **** As discussed above, cpplib needs a way of marking tokens as unexpandable. Since the tokens cpplib handles are read-only once they have been lexed, it instead makes a copy of the token and adds the flag ! `NO_EXPAND' to the copy. For efficiency and to simplify memory management by avoiding having to remember to free these tokens, they are allocated as temporary tokens from the lexer's current token run (*note Lexing a line::) using the ! function `_cpp_temp_token'. The tokens are then re-used once the current line of tokens has been read in. This might sound unsafe. However, tokens runs are not re-used at the --- 578,589 ---- As discussed above, cpplib needs a way of marking tokens as unexpandable. Since the tokens cpplib handles are read-only once they have been lexed, it instead makes a copy of the token and adds the flag ! 'NO_EXPAND' to the copy. For efficiency and to simplify memory management by avoiding having to remember to free these tokens, they are allocated as temporary tokens from the lexer's current token run (*note Lexing a line::) using the ! function '_cpp_temp_token'. The tokens are then re-used once the current line of tokens has been read in. This might sound unsafe. However, tokens runs are not re-used at the *************** both for aesthetic reasons and because i *** 619,638 **** still try to abuse the preprocessor for things like Fortran source and Makefiles. ! For now, just notice that when tokens are added (or removed, as ! shown by the `EMPTY' example) from the original lexed token stream, we ! need to check for accidental token pasting. We call this "paste ! avoidance". Token addition and removal can only occur because of macro ! expansion, but accidental pasting can occur in many places: both before ! and after each macro replacement, each argument replacement, and ! additionally each token created by the `#' and `##' operators. ! Look at how the preprocessor gets whitespace output correct ! normally. The `cpp_token' structure contains a flags byte, and one of ! those flags is `PREV_WHITE'. This is flagged by the lexer, and ! indicates that the token was preceded by whitespace of some form other ! than a new line. The stand-alone preprocessor can use this flag to ! decide whether to insert a space between tokens in the output. Now consider the result of the following macro expansion: --- 618,637 ---- still try to abuse the preprocessor for things like Fortran source and Makefiles. ! For now, just notice that when tokens are added (or removed, as shown ! by the 'EMPTY' example) from the original lexed token stream, we need to ! check for accidental token pasting. We call this "paste avoidance". ! Token addition and removal can only occur because of macro expansion, ! but accidental pasting can occur in many places: both before and after ! each macro replacement, each argument replacement, and additionally each ! token created by the '#' and '##' operators. ! Look at how the preprocessor gets whitespace output correct normally. ! The 'cpp_token' structure contains a flags byte, and one of those flags ! is 'PREV_WHITE'. This is flagged by the lexer, and indicates that the ! token was preceded by whitespace of some form other than a new line. ! The stand-alone preprocessor can use this flag to decide whether to ! insert a space between tokens in the output. Now consider the result of the following macro expansion: *************** decide whether to insert a space between *** 640,679 **** sum = add (1,2, 3); ==> sum = 1 + 2 +3; ! The interesting thing here is that the tokens `1' and `2' are output ! with a preceding space, and `3' is output without a preceding space, ! but when lexed none of these tokens had that property. Careful ! consideration reveals that `1' gets its preceding whitespace from the ! space preceding `add' in the macro invocation, _not_ replacement list. ! `2' gets its whitespace from the space preceding the parameter `y' in ! the macro replacement list, and `3' has no preceding space because ! parameter `z' has none in the replacement list. Once lexed, tokens are effectively fixed and cannot be altered, since pointers to them might be held in many places, in particular by in-progress macro expansions. So instead of modifying the two tokens ! above, the preprocessor inserts a special token, which I call a ! "padding token", into the token stream to indicate that spacing of the ! subsequent token is special. The preprocessor inserts padding tokens ! in front of every macro expansion and expanded macro argument. These ! point to a "source token" from which the subsequent real token should ! inherit its spacing. In the above example, the source tokens are `add' ! in the macro invocation, and `y' and `z' in the macro replacement list, ! respectively. ! It is quite easy to get multiple padding tokens in a row, for ! example if a macro's first replacement token expands straight into ! another macro. #define foo bar #define bar baz [foo] ==> [baz] ! Here, two padding tokens are generated with sources the `foo' token ! between the brackets, and the `bar' token from foo's replacement list, ! respectively. Clearly the first padding token is the one to use, so ! the output code should contain a rule that the first padding token in a sequence is the one that matters. But what if a macro expansion is left? Adjusting the above example --- 639,677 ---- sum = add (1,2, 3); ==> sum = 1 + 2 +3; ! The interesting thing here is that the tokens '1' and '2' are output ! with a preceding space, and '3' is output without a preceding space, but ! when lexed none of these tokens had that property. Careful ! consideration reveals that '1' gets its preceding whitespace from the ! space preceding 'add' in the macro invocation, _not_ replacement list. ! '2' gets its whitespace from the space preceding the parameter 'y' in ! the macro replacement list, and '3' has no preceding space because ! parameter 'z' has none in the replacement list. Once lexed, tokens are effectively fixed and cannot be altered, since pointers to them might be held in many places, in particular by in-progress macro expansions. So instead of modifying the two tokens ! above, the preprocessor inserts a special token, which I call a "padding ! token", into the token stream to indicate that spacing of the subsequent ! token is special. The preprocessor inserts padding tokens in front of ! every macro expansion and expanded macro argument. These point to a ! "source token" from which the subsequent real token should inherit its ! spacing. In the above example, the source tokens are 'add' in the macro ! invocation, and 'y' and 'z' in the macro replacement list, respectively. ! It is quite easy to get multiple padding tokens in a row, for example ! if a macro's first replacement token expands straight into another ! macro. #define foo bar #define bar baz [foo] ==> [baz] ! Here, two padding tokens are generated with sources the 'foo' token ! between the brackets, and the 'bar' token from foo's replacement list, ! respectively. Clearly the first padding token is the one to use, so the ! output code should contain a rule that the first padding token in a sequence is the one that matters. But what if a macro expansion is left? Adjusting the above example *************** slightly: *** 685,697 **** [foo] EMPTY; ==> [ baz] ; ! As shown, now there should be a space before `baz' and the semicolon in the output. ! The rules we decided above fail for `baz': we generate three padding ! tokens, one per macro invocation, before the token `baz'. We would ! then have it take its spacing from the first of these, which carries ! source token `foo' with no leading space. It is vital that cpplib get spacing correct in these examples since any of these macro expansions could be stringified, where spacing --- 683,695 ---- [foo] EMPTY; ==> [ baz] ; ! As shown, now there should be a space before 'baz' and the semicolon in the output. ! The rules we decided above fail for 'baz': we generate three padding ! tokens, one per macro invocation, before the token 'baz'. We would then ! have it take its spacing from the first of these, which carries source ! token 'foo' with no leading space. It is vital that cpplib get spacing correct in these examples since any of these macro expansions could be stringified, where spacing *************** matters. *** 699,709 **** So, this demonstrates that not just entering macro and argument expansions, but leaving them requires special handling too. I made ! cpplib insert a padding token with a `NULL' source token when leaving macro expansions, as well as after each replaced argument in a macro's replacement list. It also inserts appropriate padding tokens on either ! side of tokens created by the `#' and `##' operators. I expanded the ! rule so that, if we see a padding token with a `NULL' source token, _and_ that source token has no leading space, then we behave as if we have seen no padding tokens at all. A quick check shows this rule will then get the above example correct as well. --- 697,707 ---- So, this demonstrates that not just entering macro and argument expansions, but leaving them requires special handling too. I made ! cpplib insert a padding token with a 'NULL' source token when leaving macro expansions, as well as after each replaced argument in a macro's replacement list. It also inserts appropriate padding tokens on either ! side of tokens created by the '#' and '##' operators. I expanded the ! rule so that, if we see a padding token with a 'NULL' source token, _and_ that source token has no leading space, then we behave as if we have seen no padding tokens at all. A quick check shows this rule will then get the above example correct as well. *************** implementation of paste avoidance easy: *** 715,721 **** preprocessor is fixing up spacing because of padding tokens, and it turns out that no space is needed, it has to take the extra step to check that a space is not needed after all to avoid an accidental paste. ! The function `cpp_avoid_paste' advises whether a space is required between two consecutive tokens. To avoid excessive spacing, it tries hard to only require a space if one is likely to be necessary, but for reasons of efficiency it is slightly conservative and might recommend a --- 713,719 ---- preprocessor is fixing up spacing because of padding tokens, and it turns out that no space is needed, it has to take the extra step to check that a space is not needed after all to avoid an accidental paste. ! The function 'cpp_avoid_paste' advises whether a space is required between two consecutive tokens. To avoid excessive spacing, it tries hard to only require a space if one is likely to be necessary, but for reasons of efficiency it is slightly conservative and might recommend a *************** There are three reasonable requirements *** 734,740 **** the line number of a token passed to it: * The source line it was lexed on. - * The line it is output on. This can be different to the line it was lexed on if, for example, there are intervening escaped newlines or C-style comments. For example: --- 732,737 ---- *************** the line number of a token passed to it: *** 749,762 **** name, or possibly the line of the closing parenthesis in the case of function-like macro expansion. ! The `cpp_token' structure contains `line' and `col' members. The lexer fills these in with the line and column of the first character of the token. Consequently, but maybe unexpectedly, a token from the replacement list of a macro expansion carries the location of the token ! within the `#define' directive, because cpplib expands a macro by returning pointers to the tokens in its replacement list. The current ! implementation of cpplib assigns tokens created from built-in macros ! and the `#' and `##' operators the location of the most recently lexed token. This is a because they are allocated from the lexer's token runs, and because of the way the diagnostic routines infer the appropriate location to report. --- 746,759 ---- name, or possibly the line of the closing parenthesis in the case of function-like macro expansion. ! The 'cpp_token' structure contains 'line' and 'col' members. The lexer fills these in with the line and column of the first character of the token. Consequently, but maybe unexpectedly, a token from the replacement list of a macro expansion carries the location of the token ! within the '#define' directive, because cpplib expands a macro by returning pointers to the tokens in its replacement list. The current ! implementation of cpplib assigns tokens created from built-in macros and ! the '#' and '##' operators the location of the most recently lexed token. This is a because they are allocated from the lexer's token runs, and because of the way the diagnostic routines infer the appropriate location to report. *************** line other than the first. *** 778,787 **** To solve these issues, cpplib provides a callback that is generated whenever it lexes a preprocessing token that starts a new logical line ! other than a directive. It passes this token (which may be a `CPP_EOF' token indicating the end of the translation unit) to the callback ! routine, which can then use the line and column of this token to ! produce correct output. Representation of line numbers ============================== --- 775,784 ---- To solve these issues, cpplib provides a callback that is generated whenever it lexes a preprocessing token that starts a new logical line ! other than a directive. It passes this token (which may be a 'CPP_EOF' token indicating the end of the translation unit) to the callback ! routine, which can then use the line and column of this token to produce ! correct output. Representation of line numbers ============================== *************** starts counting from one. *** 801,815 **** translation unit. With some simple infrastructure, it is straight forward to map from this to the original source file and line number pair, saving space whenever line number information needs to be saved. ! The code the implements this mapping lies in the files `line-map.c' and ! `line-map.h'. Command-line macros and assertions are implemented by pushing a ! buffer containing the right hand side of an equivalent `#define' or ! `#assert' directive. Some built-in macros are handled similarly. ! Since these are all processed before the first line of the main input ! file, it will typically have an assigned line closer to twenty than to ! one.  File: cppinternals.info, Node: Guard Macros, Next: Files, Prev: Line Numbering, Up: Top --- 798,811 ---- translation unit. With some simple infrastructure, it is straight forward to map from this to the original source file and line number pair, saving space whenever line number information needs to be saved. ! The code the implements this mapping lies in the files 'line-map.c' and ! 'line-map.h'. Command-line macros and assertions are implemented by pushing a ! buffer containing the right hand side of an equivalent '#define' or ! '#assert' directive. Some built-in macros are handled similarly. Since ! these are all processed before the first line of the main input file, it ! will typically have an assigned line closer to twenty than to one.  File: cppinternals.info, Node: Guard Macros, Next: Files, Prev: Line Numbering, Up: Top *************** Header files are often of the form *** 826,832 **** to prevent the compiler from processing them more than once. The preprocessor notices such header files, so that if the header file ! appears in a subsequent `#include' directive and `FOO' is defined, then it is ignored and it doesn't preprocess or even re-open the file a second time. This is referred to as the "multiple include optimization". --- 822,828 ---- to prevent the compiler from processing them more than once. The preprocessor notices such header files, so that if the header file ! appears in a subsequent '#include' directive and 'FOO' is defined, then it is ignored and it doesn't preprocess or even re-open the file a second time. This is referred to as the "multiple include optimization". *************** inclusion would result in no tokens to r *** 837,848 **** directives to process. Therefore the current implementation imposes requirements and makes some allowances as follows: ! 1. There must be no tokens outside the controlling `#if'-`#endif' pair, but whitespace and comments are permitted. ! 2. There must be no directives outside the controlling directive ! pair, but the "null directive" (a line containing nothing other ! than a single `#' and possibly whitespace) is permitted. 3. The opening directive must be of the form --- 833,844 ---- directives to process. Therefore the current implementation imposes requirements and makes some allowances as follows: ! 1. There must be no tokens outside the controlling '#if'-'#endif' pair, but whitespace and comments are permitted. ! 2. There must be no directives outside the controlling directive pair, ! but the "null directive" (a line containing nothing other than a ! single '#' and possibly whitespace) is permitted. 3. The opening directive must be of the form *************** requirements and makes some allowances a *** 852,921 **** #if !defined FOO [equivalently, #if !defined(FOO)] ! 4. In the second form above, the tokens forming the `#if' expression must have come directly from the source file--no macro expansion must have been involved. This is because macro definitions can ! change, and tracking whether or not a relevant change has been ! made is not worth the implementation cost. ! 5. There can be no `#else' or `#elif' directives at the outer conditional block level, because they would probably contain something of interest to a subsequent pass. First, when pushing a new file on the buffer stack, ! `_stack_include_file' sets the controlling macro `mi_cmacro' to `NULL', ! and sets `mi_valid' to `true'. This indicates that the preprocessor ! has not yet encountered anything that would invalidate the ! multiple-include optimization. As described in the next few ! paragraphs, these two variables having these values effectively ! indicates top-of-file. When about to return a token that is not part of a directive, ! `_cpp_lex_token' sets `mi_valid' to `false'. This enforces the constraint that tokens outside the controlling conditional block invalidate the optimization. ! The `do_if', when appropriate, and `do_ifndef' directive handlers ! pass the controlling macro to the function `push_conditional'. cpplib maintains a stack of nested conditional blocks, and after processing ! every opening conditional this function pushes an `if_stack' structure onto the stack. In this structure it records the controlling macro for the block, provided there is one and we're at top-of-file (as described ! above). If an `#elif' or `#else' directive is encountered, the ! controlling macro for that block is cleared to `NULL'. Otherwise, it ! survives until the `#endif' closing the block, upon which `do_endif' ! sets `mi_valid' to true and stores the controlling macro in `mi_cmacro'. ! `_cpp_handle_directive' clears `mi_valid' when processing any directive other than an opening conditional and the null directive. With this, and requiring top-of-file to record a controlling macro, and ! no `#else' or `#elif' for it to survive and be copied to `mi_cmacro' by ! `do_endif', we have enforced the absence of directives outside the main conditional block for the optimization to be on. ! Note that whilst we are inside the conditional block, `mi_valid' is ! likely to be reset to `false', but this does not matter since the ! closing `#endif' restores it to `true' if appropriate. ! Finally, since `_cpp_lex_direct' pops the file off the buffer stack ! at `EOF' without returning a token, if the `#endif' directive was not ! followed by any tokens, `mi_valid' is `true' and `_cpp_pop_file_buffer' remembers the controlling macro associated with the file. Subsequent ! calls to `stack_include_file' result in no buffer being pushed if the controlling macro is defined, effecting the optimization. A quick word on how we handle the #if !defined FOO ! case. `_cpp_parse_expr' and `parse_defined' take steps to see whether ! the three stages `!', `defined-expression' and `end-of-directive' occur ! in order in a `#if' expression. If so, they return the guard macro to ! `do_if' in the variable `mi_ind_cmacro', and otherwise set it to `NULL'. ! `enter_macro_context' sets `mi_valid' to false, so if a macro was ! expanded whilst parsing any part of the expression, then the ! top-of-file test in `push_conditional' fails and the optimization is ! turned off.  File: cppinternals.info, Node: Files, Next: Concept Index, Prev: Guard Macros, Up: Top --- 848,915 ---- #if !defined FOO [equivalently, #if !defined(FOO)] ! 4. In the second form above, the tokens forming the '#if' expression must have come directly from the source file--no macro expansion must have been involved. This is because macro definitions can ! change, and tracking whether or not a relevant change has been made ! is not worth the implementation cost. ! 5. There can be no '#else' or '#elif' directives at the outer conditional block level, because they would probably contain something of interest to a subsequent pass. First, when pushing a new file on the buffer stack, ! '_stack_include_file' sets the controlling macro 'mi_cmacro' to 'NULL', ! and sets 'mi_valid' to 'true'. This indicates that the preprocessor has ! not yet encountered anything that would invalidate the multiple-include ! optimization. As described in the next few paragraphs, these two ! variables having these values effectively indicates top-of-file. When about to return a token that is not part of a directive, ! '_cpp_lex_token' sets 'mi_valid' to 'false'. This enforces the constraint that tokens outside the controlling conditional block invalidate the optimization. ! The 'do_if', when appropriate, and 'do_ifndef' directive handlers ! pass the controlling macro to the function 'push_conditional'. cpplib maintains a stack of nested conditional blocks, and after processing ! every opening conditional this function pushes an 'if_stack' structure onto the stack. In this structure it records the controlling macro for the block, provided there is one and we're at top-of-file (as described ! above). If an '#elif' or '#else' directive is encountered, the ! controlling macro for that block is cleared to 'NULL'. Otherwise, it ! survives until the '#endif' closing the block, upon which 'do_endif' ! sets 'mi_valid' to true and stores the controlling macro in 'mi_cmacro'. ! '_cpp_handle_directive' clears 'mi_valid' when processing any directive other than an opening conditional and the null directive. With this, and requiring top-of-file to record a controlling macro, and ! no '#else' or '#elif' for it to survive and be copied to 'mi_cmacro' by ! 'do_endif', we have enforced the absence of directives outside the main conditional block for the optimization to be on. ! Note that whilst we are inside the conditional block, 'mi_valid' is ! likely to be reset to 'false', but this does not matter since the ! closing '#endif' restores it to 'true' if appropriate. ! Finally, since '_cpp_lex_direct' pops the file off the buffer stack ! at 'EOF' without returning a token, if the '#endif' directive was not ! followed by any tokens, 'mi_valid' is 'true' and '_cpp_pop_file_buffer' remembers the controlling macro associated with the file. Subsequent ! calls to 'stack_include_file' result in no buffer being pushed if the controlling macro is defined, effecting the optimization. A quick word on how we handle the #if !defined FOO ! case. '_cpp_parse_expr' and 'parse_defined' take steps to see whether ! the three stages '!', 'defined-expression' and 'end-of-directive' occur ! in order in a '#if' expression. If so, they return the guard macro to ! 'do_if' in the variable 'mi_ind_cmacro', and otherwise set it to 'NULL'. ! 'enter_macro_context' sets 'mi_valid' to false, so if a macro was ! expanded whilst parsing any part of the expression, then the top-of-file ! test in 'push_conditional' fails and the optimization is turned off.  File: cppinternals.info, Node: Files, Next: Concept Index, Prev: Guard Macros, Up: Top *************** File Handling *** 924,936 **** ************* Fairly obviously, the file handling code of cpplib resides in the file ! `files.c'. It takes care of the details of file searching, opening, reading and caching, for both the main source file and all the headers it recursively includes. The basic strategy is to minimize the number of system calls. On ! many systems, the basic `open ()' and `fstat ()' system calls can be ! quite expensive. For every `#include'-d file, we need to try all the directories in the search path until we find a match. Some projects, such as glibc, pass twenty or thirty include paths on the command line, so this can rapidly become time consuming. --- 918,930 ---- ************* Fairly obviously, the file handling code of cpplib resides in the file ! 'files.c'. It takes care of the details of file searching, opening, reading and caching, for both the main source file and all the headers it recursively includes. The basic strategy is to minimize the number of system calls. On ! many systems, the basic 'open ()' and 'fstat ()' system calls can be ! quite expensive. For every '#include'-d file, we need to try all the directories in the search path until we find a match. Some projects, such as glibc, pass twenty or thirty include paths on the command line, so this can rapidly become time consuming. *************** repeating the filesystem queries whilst *** 942,986 **** For each file we try to open, we store the constructed path in a splay tree. This path first undergoes simplification by the function ! `_cpp_simplify_pathname'. For example, `/usr/include/bits/../foo.h' is ! simplified to `/usr/include/foo.h' before we enter it in the splay tree ! and try to `open ()' the file. CPP will then find subsequent uses of ! `foo.h', even as `/usr/include/foo.h', in the splay tree and save ! system calls. ! Further, it is likely the file contents have also been cached, ! saving a `read ()' system call. We don't bother caching the contents of ! header files that are re-inclusion protected, and whose re-inclusion ! macro is defined when we leave the header file for the first time. If ! the host supports it, we try to map suitably large files into memory, ! rather than reading them in directly. The include paths are internally stored on a null-terminated ! singly-linked list, starting with the `"header.h"' directory search ! chain, which then links into the `' directory chain. ! Files included with the `' syntax start the lookup directly ! in the second half of this chain. However, files included with the ! `"foo.h"' syntax start at the beginning of the chain, but with one ! extra directory prepended. This is the directory of the current file; ! the one containing the `#include' directive. Prepending this directory ! on a per-file basis is handled by the function `search_from'. Note that a header included with a directory component, such as ! `#include "mydir/foo.h"' and opened as ! `/usr/local/include/mydir/foo.h', will have the complete path minus the ! basename `foo.h' as the current directory. Enough information is stored in the splay tree that CPP can immediately tell whether it can skip the header file because of the ! multiple include optimization, whether the file didn't exist or ! couldn't be opened for some reason, or whether the header was flagged ! not to be re-used, as it is with the obsolete `#import' directive. For the benefit of MS-DOS filesystems with an 8.3 filename limitation, CPP offers the ability to treat various include file names as aliases for the real header files with shorter names. The map from ! one to the other is found in a special file called `header.gcc', stored in the command line (or system) include directories to which the mapping applies. This may be higher up the directory tree than the full path to the file minus the base name. --- 936,980 ---- For each file we try to open, we store the constructed path in a splay tree. This path first undergoes simplification by the function ! '_cpp_simplify_pathname'. For example, '/usr/include/bits/../foo.h' is ! simplified to '/usr/include/foo.h' before we enter it in the splay tree ! and try to 'open ()' the file. CPP will then find subsequent uses of ! 'foo.h', even as '/usr/include/foo.h', in the splay tree and save system ! calls. ! Further, it is likely the file contents have also been cached, saving ! a 'read ()' system call. We don't bother caching the contents of header ! files that are re-inclusion protected, and whose re-inclusion macro is ! defined when we leave the header file for the first time. If the host ! supports it, we try to map suitably large files into memory, rather than ! reading them in directly. The include paths are internally stored on a null-terminated ! singly-linked list, starting with the '"header.h"' directory search ! chain, which then links into the '' directory chain. ! Files included with the '' syntax start the lookup directly in ! the second half of this chain. However, files included with the ! '"foo.h"' syntax start at the beginning of the chain, but with one extra ! directory prepended. This is the directory of the current file; the one ! containing the '#include' directive. Prepending this directory on a ! per-file basis is handled by the function 'search_from'. Note that a header included with a directory component, such as ! '#include "mydir/foo.h"' and opened as '/usr/local/include/mydir/foo.h', ! will have the complete path minus the basename 'foo.h' as the current ! directory. Enough information is stored in the splay tree that CPP can immediately tell whether it can skip the header file because of the ! multiple include optimization, whether the file didn't exist or couldn't ! be opened for some reason, or whether the header was flagged not to be ! re-used, as it is with the obsolete '#import' directive. For the benefit of MS-DOS filesystems with an 8.3 filename limitation, CPP offers the ability to treat various include file names as aliases for the real header files with shorter names. The map from ! one to the other is found in a special file called 'header.gcc', stored in the command line (or system) include directories to which the mapping applies. This may be higher up the directory tree than the full path to the file minus the base name. *************** Concept Index *** 996,1002 **** * assertions: Hash Nodes. (line 6) * controlling macros: Guard Macros. (line 6) ! * escaped newlines: Lexer. (line 6) * files: Files. (line 6) * guard macros: Guard Macros. (line 6) * hash table: Hash Nodes. (line 6) --- 990,996 ---- * assertions: Hash Nodes. (line 6) * controlling macros: Guard Macros. (line 6) ! * escaped newlines: Lexer. (line 5) * files: Files. (line 6) * guard macros: Guard Macros. (line 6) * hash table: Hash Nodes. (line 6) *************** Concept Index *** 1004,1010 **** * identifiers: Hash Nodes. (line 6) * interface: Conventions. (line 6) * lexer: Lexer. (line 6) ! * line numbers: Line Numbering. (line 6) * macro expansion: Macro Expansion. (line 6) * macro representation (internal): Macro Expansion. (line 19) * macros: Hash Nodes. (line 6) --- 998,1004 ---- * identifiers: Hash Nodes. (line 6) * interface: Conventions. (line 6) * lexer: Lexer. (line 6) ! * line numbers: Line Numbering. (line 5) * macro expansion: Macro Expansion. (line 6) * macro representation (internal): Macro Expansion. (line 19) * macros: Hash Nodes. (line 6) *************** Concept Index *** 1013,1035 **** * newlines: Lexer. (line 6) * paste avoidance: Token Spacing. (line 6) * spacing: Token Spacing. (line 6) ! * token run: Lexer. (line 192) * token spacing: Token Spacing. (line 6)  Tag Table: ! Node: Top944 ! Node: Conventions2629 ! Node: Lexer3571 ! Ref: Invalid identifiers11484 ! Ref: Lexing a line13433 ! Node: Hash Nodes18206 ! Node: Macro Expansion21085 ! Node: Token Spacing30032 ! Node: Line Numbering35892 ! Node: Guard Macros39977 ! Node: Files44768 ! Node: Concept Index48234  End Tag Table --- 1007,1029 ---- * newlines: Lexer. (line 6) * paste avoidance: Token Spacing. (line 6) * spacing: Token Spacing. (line 6) ! * token run: Lexer. (line 191) * token spacing: Token Spacing. (line 6)  Tag Table: ! Node: Top905 ! Node: Conventions2590 ! Node: Lexer3532 ! Ref: Invalid identifiers11447 ! Ref: Lexing a line13397 ! Node: Hash Nodes18170 ! Node: Macro Expansion21049 ! Node: Token Spacing29997 ! Node: Line Numbering35854 ! Node: Guard Macros39939 ! Node: Files44730 ! Node: Concept Index48196  End Tag Table diff -Nrcpad gcc-4.8.1/gcc/doc/extend.texi gcc-4.8.2/gcc/doc/extend.texi *** gcc-4.8.1/gcc/doc/extend.texi Thu Mar 28 14:07:55 2013 --- gcc-4.8.2/gcc/doc/extend.texi Mon Oct 7 07:45:12 2013 *************** This built-in function performs an atomi *** 7412,7417 **** --- 7412,7419 ---- the byte at @code{*@var{ptr}}. The byte is set to some implementation defined nonzero ``set'' value and the return value is @code{true} if and only if the previous contents were ``set''. + It should be only used for operands of type @code{bool} or @code{char}. For + other types only part of the value may be set. All memory models are valid. *************** All memory models are valid. *** 7421,7426 **** --- 7423,7432 ---- This built-in function performs an atomic clear operation on @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0. + It should be only used for operands of type @code{bool} or @code{char} and + in conjunction with @code{__atomic_test_and_set}. + For other types it may only clear partially. If the type is not @code{bool} + prefer using @code{__atomic_store}. The valid memory model variants are @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and *************** End lock elision on a lock variable. *** 7492,7509 **** Memory model must be @code{__ATOMIC_RELEASE} or stronger. @end table ! When a lock acquire fails it's required for good performance to abort the transaction quickly. This can be done with a @code{_mm_pause} @smallexample #include // For _mm_pause /* Acquire lock with lock elision */ while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE)) _mm_pause(); /* Abort failed transaction */ ... /* Free lock with lock elision */ ! __atomic_clear(&lockvar, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE); @end smallexample @node Object Size Checking --- 7498,7517 ---- Memory model must be @code{__ATOMIC_RELEASE} or stronger. @end table ! When a lock acquire fails it is required for good performance to abort the transaction quickly. This can be done with a @code{_mm_pause} @smallexample #include // For _mm_pause + int lockvar; + /* Acquire lock with lock elision */ while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE)) _mm_pause(); /* Abort failed transaction */ ... /* Free lock with lock elision */ ! __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE); @end smallexample @node Object Size Checking *************** instructions, but allow the compiler to *** 8786,8791 **** --- 8794,8800 ---- * PowerPC Built-in Functions:: * PowerPC AltiVec/VSX Built-in Functions:: * RX Built-in Functions:: + * S/390 System z Built-in Functions:: * SH Built-in Functions:: * SPARC VIS Built-in Functions:: * SPU Built-in Functions:: *************** bit in the processor status word. *** 14026,14031 **** --- 14035,14154 ---- Generates the @code{wait} machine instruction. @end deftypefn + @node S/390 System z Built-in Functions + @subsection S/390 System z Built-in Functions + @deftypefn {Built-in Function} int __builtin_tbegin (void*) + Generates the @code{tbegin} machine instruction starting a + non-constraint hardware transaction. If the parameter is non-NULL the + memory area is used to store the transaction diagnostic buffer and + will be passed as first operand to @code{tbegin}. This buffer can be + defined using the @code{struct __htm_tdb} C struct defined in + @code{htmintrin.h} and must reside on a double-word boundary. The + second tbegin operand is set to @code{0xff0c}. This enables + save/restore of all GPRs and disables aborts for FPR and AR + manipulations inside the transaction body. The condition code set by + the tbegin instruction is returned as integer value. The tbegin + instruction by definition overwrites the content of all FPRs. The + compiler will generate code which saves and restores the FPRs. For + soft-float code it is recommended to used the @code{*_nofloat} + variant. In order to prevent a TDB from being written it is required + to pass an constant zero value as parameter. Passing the zero value + through a variable is not sufficient. Although modifications of + access registers inside the transaction will not trigger an + transaction abort it is not supported to actually modify them. Access + registers do not get saved when entering a transaction. They will have + undefined state when reaching the abort code. + @end deftypefn + + Macros for the possible return codes of tbegin are defined in the + @code{htmintrin.h} header file: + + @table @code + @item _HTM_TBEGIN_STARTED + @code{tbegin} has been executed as part of normal processing. The + transaction body is supposed to be executed. + @item _HTM_TBEGIN_INDETERMINATE + The transaction was aborted due to an indeterminate condition which + might be persistent. + @item _HTM_TBEGIN_TRANSIENT + The transaction aborted due to a transient failure. The transaction + should be re-executed in that case. + @item _HTM_TBEGIN_PERSISTENT + The transaction aborted due to a persistent failure. Re-execution + under same circumstances will not be productive. + @end table + + @defmac _HTM_FIRST_USER_ABORT_CODE + The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h} + specifies the first abort code which can be used for + @code{__builtin_tabort}. Values below this threshold are reserved for + machine use. + @end defmac + + @deftp {Data type} {struct __htm_tdb} + The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes + the structure of the transaction diagnostic block as specified in the + Principles of Operation manual chapter 5-91. + @end deftp + + @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*) + Same as @code{__builtin_tbegin} but without FPR saves and restores. + Using this variant in code making use of FPRs will leave the FPRs in + undefined state when entering the transaction abort handler code. + @end deftypefn + + @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int) + In addition to @code{__builtin_tbegin} a loop for transient failures + is generated. If tbegin returns a condition code of 2 the transaction + will be retried as often as specified in the second argument. The + perform processor assist instruction is used to tell the CPU about the + number of fails so far. + @end deftypefn + + @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int) + Same as @code{__builtin_tbegin_retry} but without FPR saves and + restores. Using this variant in code making use of FPRs will leave + the FPRs in undefined state when entering the transaction abort + handler code. + @end deftypefn + + @deftypefn {Built-in Function} void __builtin_tbeginc (void) + Generates the @code{tbeginc} machine instruction starting a constraint + hardware transaction. The second operand is set to @code{0xff08}. + @end deftypefn + + @deftypefn {Built-in Function} int __builtin_tend (void) + Generates the @code{tend} machine instruction finishing a transaction + and making the changes visible to other threads. The condition code + generated by tend is returned as integer value. + @end deftypefn + + @deftypefn {Built-in Function} void __builtin_tabort (int) + Generates the @code{tabort} machine instruction with the specified + abort code. Abort codes from 0 through 255 are reserved and will + result in an error message. + @end deftypefn + + @deftypefn {Built-in Function} void __builtin_tx_assist (int) + Generates the @code{ppa rX,rY,1} machine instruction. Where the + integer parameter is loaded into rX and a value of zero is loaded into + rY. The integer parameter specifies the number of times the + transaction repeatedly aborted. + @end deftypefn + + @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void) + Generates the @code{etnd} machine instruction. The current nesting + depth is returned as integer value. For a nesting depth of 0 the code + is not executed as part of an transaction. + @end deftypefn + + @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t) + + Generates the @code{ntstg} machine instruction. The second argument + is written to the first arguments location. The store operation will + not be rolled-back in case of an transaction abort. + @end deftypefn + @node SH Built-in Functions @subsection SH Built-in Functions The following built-in functions are supported on the SH1, SH2, SH3 and SH4 diff -Nrcpad gcc-4.8.1/gcc/doc/fsf-funding.7 gcc-4.8.2/gcc/doc/fsf-funding.7 *** gcc-4.8.1/gcc/doc/fsf-funding.7 Fri May 31 09:14:52 2013 --- gcc-4.8.2/gcc/doc/fsf-funding.7 Wed Oct 16 07:33:31 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "FSF-FUNDING 7" ! .TH FSF-FUNDING 7 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "FSF-FUNDING 7" ! .TH FSF-FUNDING 7 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.8.1/gcc/doc/g++.1 gcc-4.8.2/gcc/doc/g++.1 *** gcc-4.8.1/gcc/doc/g++.1 Fri May 31 09:58:16 2013 --- gcc-4.8.2/gcc/doc/g++.1 Wed Oct 16 08:16:31 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "GCC 1" ! .TH GCC 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "GCC 1" ! .TH GCC 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** Only the most useful options are listed *** 145,151 **** remainder. \fBg++\fR accepts mostly the same options as \fBgcc\fR. .SH "DESCRIPTION" .IX Header "DESCRIPTION" ! When you invoke \s-1GCC\s0, it normally does preprocessing, compilation, assembly and linking. The \*(L"overall options\*(R" allow you to stop this process at an intermediate stage. For example, the \fB\-c\fR option says not to run the linker. Then the output consists of object files --- 154,160 ---- remainder. \fBg++\fR accepts mostly the same options as \fBgcc\fR. .SH "DESCRIPTION" .IX Header "DESCRIPTION" ! When you invoke \s-1GCC,\s0 it normally does preprocessing, compilation, assembly and linking. The \*(L"overall options\*(R" allow you to stop this process at an intermediate stage. For example, the \fB\-c\fR option says not to run the linker. Then the output consists of object files *************** option. *** 1333,1339 **** .IX Item "language" Display the options supported for \fIlanguage\fR, where \&\fIlanguage\fR is the name of one of the languages supported in this ! version of \s-1GCC\s0. .IP "\fBcommon\fR" 4 .IX Item "common" Display the options that are common to all languages. --- 1342,1348 ---- .IX Item "language" Display the options supported for \fIlanguage\fR, where \&\fIlanguage\fR is the name of one of the languages supported in this ! version of \s-1GCC.\s0 .IP "\fBcommon\fR" 4 .IX Item "common" Display the options that are common to all languages. *************** or \fB/./\fR, or make the path absolute *** 1430,1436 **** prefix. .IP "\fB\-\-version\fR" 4 .IX Item "--version" ! Display the version number and copyrights of the invoked \s-1GCC\s0. .IP "\fB\-wrapper\fR" 4 .IX Item "-wrapper" Invoke all subcommands under a wrapper program. The name of the --- 1439,1445 ---- prefix. .IP "\fB\-\-version\fR" 4 .IX Item "--version" ! Display the version number and copyrights of the invoked \s-1GCC.\s0 .IP "\fB\-wrapper\fR" 4 .IX Item "-wrapper" Invoke all subcommands under a wrapper program. The name of the *************** the shared object file is used to identi *** 1452,1458 **** purposes of argument parsing (See \&\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR below). Each plugin should define the callback functions specified in the ! Plugins \s-1API\s0. .IP "\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR" 4 .IX Item "-fplugin-arg-name-key=value" Define an argument called \fIkey\fR with a value of \fIvalue\fR --- 1461,1467 ---- purposes of argument parsing (See \&\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR below). Each plugin should define the callback functions specified in the ! Plugins \s-1API.\s0 .IP "\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR" 4 .IX Item "-fplugin-arg-name-key=value" Define an argument called \fIkey\fR with a value of \fIvalue\fR *************** backslash) may be included by prefixing *** 1482,1488 **** with a backslash. The \fIfile\fR may itself contain additional @\fIfile\fR options; any such options will be processed recursively. .SS "Compiling \*(C+ Programs" ! .IX Subsection "Compiling Programs" \&\*(C+ source files conventionally use one of the suffixes \fB.C\fR, \&\fB.cc\fR, \fB.cpp\fR, \fB.CPP\fR, \fB.c++\fR, \fB.cp\fR, or \&\fB.cxx\fR; \*(C+ header files often use \fB.hh\fR, \fB.hpp\fR, --- 1491,1497 ---- with a backslash. The \fIfile\fR may itself contain additional @\fIfile\fR options; any such options will be processed recursively. .SS "Compiling \*(C+ Programs" ! .IX Subsection "Compiling Programs" \&\*(C+ source files conventionally use one of the suffixes \fB.C\fR, \&\fB.cc\fR, \fB.cpp\fR, \fB.CPP\fR, \fB.c++\fR, \fB.cp\fR, or \&\fB.cxx\fR; \*(C+ header files often use \fB.hh\fR, \fB.hpp\fR, *************** accepts: *** 1515,1522 **** In C mode, this is equivalent to \fB\-std=c90\fR. In \*(C+ mode, it is equivalent to \fB\-std=c++98\fR. .Sp ! This turns off certain features of \s-1GCC\s0 that are incompatible with \s-1ISO\s0 ! C90 (when compiling C code), or of standard \*(C+ (when compiling \*(C+ code), such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, and predefined macros such as \f(CW\*(C`unix\*(C'\fR and \f(CW\*(C`vax\*(C'\fR that identify the type of system you are using. It also enables the undesirable and --- 1524,1531 ---- In C mode, this is equivalent to \fB\-std=c90\fR. In \*(C+ mode, it is equivalent to \fB\-std=c++98\fR. .Sp ! This turns off certain features of \s-1GCC\s0 that are incompatible with \s-1ISO ! C90 \s0(when compiling C code), or of standard \*(C+ (when compiling \*(C+ code), such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, and predefined macros such as \f(CW\*(C`unix\*(C'\fR and \f(CW\*(C`vax\*(C'\fR that identify the type of system you are using. It also enables the undesirable and *************** the \f(CW\*(C`inline\*(C'\fR keyword. *** 1526,1532 **** .Sp The alternate keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_extension_\|_\*(C'\fR, \&\f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR continue to work despite ! \&\fB\-ansi\fR. You would not want to use them in an \s-1ISO\s0 C program, of course, but it is useful to put them in header files that might be included in compilations done with \fB\-ansi\fR. Alternate predefined macros such as \f(CW\*(C`_\|_unix_\|_\*(C'\fR and \f(CW\*(C`_\|_vax_\|_\*(C'\fR are also available, with or --- 1535,1541 ---- .Sp The alternate keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_extension_\|_\*(C'\fR, \&\f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR continue to work despite ! \&\fB\-ansi\fR. You would not want to use them in an \s-1ISO C\s0 program, of course, but it is useful to put them in header files that might be included in compilations done with \fB\-ansi\fR. Alternate predefined macros such as \f(CW\*(C`_\|_unix_\|_\*(C'\fR and \f(CW\*(C`_\|_vax_\|_\*(C'\fR are also available, with or *************** from declaring certain functions or defi *** 1543,1549 **** programs that might use these names for other things. .Sp Functions that are normally built in but do not have semantics ! defined by \s-1ISO\s0 C (such as \f(CW\*(C`alloca\*(C'\fR and \f(CW\*(C`ffs\*(C'\fR) are not built-in functions when \fB\-ansi\fR is used. .IP "\fB\-std=\fR" 4 .IX Item "-std=" --- 1552,1558 ---- programs that might use these names for other things. .Sp Functions that are normally built in but do not have semantics ! defined by \s-1ISO C \s0(such as \f(CW\*(C`alloca\*(C'\fR and \f(CW\*(C`ffs\*(C'\fR) are not built-in functions when \fB\-ansi\fR is used. .IP "\fB\-std=\fR" 4 .IX Item "-std=" *************** The compiler can accept several base sta *** 1556,1564 **** compiler accepts all programs following that standard plus those using \s-1GNU\s0 extensions that do not contradict it. For example, \&\fB\-std=c90\fR turns off certain features of \s-1GCC\s0 that are ! incompatible with \s-1ISO\s0 C90, such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, but not other \s-1GNU\s0 extensions that do not have a meaning in ! \&\s-1ISO\s0 C90, such as omitting the middle term of a \f(CW\*(C`?:\*(C'\fR expression. On the other hand, when a \s-1GNU\s0 dialect of a standard is specified, all features supported by the compiler are enabled, even when those features change the meaning of the base standard. As a result, some --- 1565,1573 ---- compiler accepts all programs following that standard plus those using \s-1GNU\s0 extensions that do not contradict it. For example, \&\fB\-std=c90\fR turns off certain features of \s-1GCC\s0 that are ! incompatible with \s-1ISO C90,\s0 such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, but not other \s-1GNU\s0 extensions that do not have a meaning in ! \&\s-1ISO C90,\s0 such as omitting the middle term of a \f(CW\*(C`?:\*(C'\fR expression. On the other hand, when a \s-1GNU\s0 dialect of a standard is specified, all features supported by the compiler are enabled, even when those features change the meaning of the base standard. As a result, some *************** A value for this option must be provided *** 1578,1588 **** .IP "\fBiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! Support all \s-1ISO\s0 C90 programs (certain \s-1GNU\s0 extensions that conflict ! with \s-1ISO\s0 C90 are disabled). Same as \fB\-ansi\fR for C code. .IP "\fBiso9899:199409\fR" 4 .IX Item "iso9899:199409" ! \&\s-1ISO\s0 C90 as modified in amendment 1. .IP "\fBc99\fR" 4 .IX Item "c99" .PD 0 --- 1587,1597 ---- .IP "\fBiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! Support all \s-1ISO C90\s0 programs (certain \s-1GNU\s0 extensions that conflict ! with \s-1ISO C90\s0 are disabled). Same as \fB\-ansi\fR for C code. .IP "\fBiso9899:199409\fR" 4 .IX Item "iso9899:199409" ! \&\s-1ISO C90\s0 as modified in amendment 1. .IP "\fBc99\fR" 4 .IX Item "c99" .PD 0 *************** with \s-1ISO\s0 C90 are disabled). Same *** 1593,1599 **** .IP "\fBiso9899:199x\fR" 4 .IX Item "iso9899:199x" .PD ! \&\s-1ISO\s0 C99. Note that this standard is not yet fully supported; see <\fBhttp://gcc.gnu.org/c99status.html\fR> for more information. The names \fBc9x\fR and \fBiso9899:199x\fR are deprecated. .IP "\fBc11\fR" 4 --- 1602,1608 ---- .IP "\fBiso9899:199x\fR" 4 .IX Item "iso9899:199x" .PD ! \&\s-1ISO C99. \s0 Note that this standard is not yet fully supported; see <\fBhttp://gcc.gnu.org/c99status.html\fR> for more information. The names \fBc9x\fR and \fBiso9899:199x\fR are deprecated. .IP "\fBc11\fR" 4 *************** names \fBc9x\fR and \fBiso9899:199x\fR a *** 1604,1610 **** .IP "\fBiso9899:2011\fR" 4 .IX Item "iso9899:2011" .PD ! \&\s-1ISO\s0 C11, the 2011 revision of the \s-1ISO\s0 C standard. Support is incomplete and experimental. The name \fBc1x\fR is deprecated. .IP "\fBgnu90\fR" 4 --- 1613,1619 ---- .IP "\fBiso9899:2011\fR" 4 .IX Item "iso9899:2011" .PD ! \&\s-1ISO C11,\s0 the 2011 revision of the \s-1ISO C\s0 standard. Support is incomplete and experimental. The name \fBc1x\fR is deprecated. .IP "\fBgnu90\fR" 4 *************** deprecated. *** 1613,1619 **** .IP "\fBgnu89\fR" 4 .IX Item "gnu89" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO\s0 C90 (including some C99 features). This is the default for C code. .IP "\fBgnu99\fR" 4 .IX Item "gnu99" --- 1622,1628 ---- .IP "\fBgnu89\fR" 4 .IX Item "gnu89" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO C90 \s0(including some C99 features). This is the default for C code. .IP "\fBgnu99\fR" 4 .IX Item "gnu99" *************** is the default for C code. *** 1621,1627 **** .IP "\fBgnu9x\fR" 4 .IX Item "gnu9x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO\s0 C99. When \s-1ISO\s0 C99 is fully implemented in \s-1GCC\s0, this will become the default. The name \fBgnu9x\fR is deprecated. .IP "\fBgnu11\fR" 4 .IX Item "gnu11" --- 1630,1636 ---- .IP "\fBgnu9x\fR" 4 .IX Item "gnu9x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO C99. \s0 When \s-1ISO C99\s0 is fully implemented in \s-1GCC,\s0 this will become the default. The name \fBgnu9x\fR is deprecated. .IP "\fBgnu11\fR" 4 .IX Item "gnu11" *************** this will become the default. The name *** 1629,1635 **** .IP "\fBgnu1x\fR" 4 .IX Item "gnu1x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO\s0 C11. Support is incomplete and experimental. The name \fBgnu1x\fR is deprecated. .IP "\fBc++98\fR" 4 .IX Item "c++98" --- 1638,1644 ---- .IP "\fBgnu1x\fR" 4 .IX Item "gnu1x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO C11. \s0 Support is incomplete and experimental. The name \fBgnu1x\fR is deprecated. .IP "\fBc++98\fR" 4 .IX Item "c++98" *************** name \fBgnu1x\fR is deprecated. *** 1637,1643 **** .IP "\fBc++03\fR" 4 .IX Item "c++03" .PD ! The 1998 \s-1ISO\s0 \*(C+ standard plus the 2003 technical corrigendum and some additional defect reports. Same as \fB\-ansi\fR for \*(C+ code. .IP "\fBgnu++98\fR" 4 .IX Item "gnu++98" --- 1646,1652 ---- .IP "\fBc++03\fR" 4 .IX Item "c++03" .PD ! The 1998 \s-1ISO \*(C+\s0 standard plus the 2003 technical corrigendum and some additional defect reports. Same as \fB\-ansi\fR for \*(C+ code. .IP "\fBgnu++98\fR" 4 .IX Item "gnu++98" *************** additional defect reports. Same as \fB\- *** 1653,1659 **** .IP "\fBc++0x\fR" 4 .IX Item "c++0x" .PD ! The 2011 \s-1ISO\s0 \*(C+ standard plus amendments. Support for \*(C+11 is still experimental, and may change in incompatible ways in future releases. The name \fBc++0x\fR is deprecated. .IP "\fBgnu++11\fR" 4 --- 1662,1668 ---- .IP "\fBc++0x\fR" 4 .IX Item "c++0x" .PD ! The 2011 \s-1ISO \*(C+\s0 standard plus amendments. Support for \*(C+11 is still experimental, and may change in incompatible ways in future releases. The name \fBc++0x\fR is deprecated. .IP "\fBgnu++11\fR" 4 *************** experimental, and may change in incompat *** 1667,1673 **** The name \fBgnu++0x\fR is deprecated. .IP "\fBc++1y\fR" 4 .IX Item "c++1y" ! The next revision of the \s-1ISO\s0 \*(C+ standard, tentatively planned for 2017. Support is highly experimental, and will almost certainly change in incompatible ways in future releases. .IP "\fBgnu++1y\fR" 4 --- 1676,1682 ---- The name \fBgnu++0x\fR is deprecated. .IP "\fBc++1y\fR" 4 .IX Item "c++1y" ! The next revision of the \s-1ISO \*(C+\s0 standard, tentatively planned for 2017. Support is highly experimental, and will almost certainly change in incompatible ways in future releases. .IP "\fBgnu++1y\fR" 4 *************** C99 mode. Using this option is roughly *** 1691,1697 **** The option \fB\-fno\-gnu89\-inline\fR explicitly tells \s-1GCC\s0 to use the C99 semantics for \f(CW\*(C`inline\*(C'\fR when in C99 or gnu99 mode (i.e., it specifies the default behavior). This option was first supported in ! \&\s-1GCC\s0 4.3. This option is not supported in \fB\-std=c90\fR or \&\fB\-std=gnu90\fR mode. .Sp The preprocessor macros \f(CW\*(C`_\|_GNUC_GNU_INLINE_\|_\*(C'\fR and --- 1700,1706 ---- The option \fB\-fno\-gnu89\-inline\fR explicitly tells \s-1GCC\s0 to use the C99 semantics for \f(CW\*(C`inline\*(C'\fR when in C99 or gnu99 mode (i.e., it specifies the default behavior). This option was first supported in ! \&\s-1GCC 4.3. \s0 This option is not supported in \fB\-std=c90\fR or \&\fB\-std=gnu90\fR mode. .Sp The preprocessor macros \f(CW\*(C`_\|_GNUC_GNU_INLINE_\|_\*(C'\fR and *************** In \*(C+, this switch only affects the \ *** 1731,1737 **** use the \fB\-fno\-gnu\-keywords\fR flag instead, which has the same effect. In C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this switch only affects the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, since ! \&\f(CW\*(C`inline\*(C'\fR is a standard keyword in \s-1ISO\s0 C99. .IP "\fB\-fno\-builtin\fR" 4 .IX Item "-fno-builtin" .PD 0 --- 1740,1746 ---- use the \fB\-fno\-gnu\-keywords\fR flag instead, which has the same effect. In C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this switch only affects the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, since ! \&\f(CW\*(C`inline\*(C'\fR is a standard keyword in \s-1ISO C99.\s0 .IP "\fB\-fno\-builtin\fR" 4 .IX Item "-fno-builtin" .PD 0 *************** known not to modify global memory. *** 1759,1765 **** With the \fB\-fno\-builtin\-\fR\fIfunction\fR option only the built-in function \fIfunction\fR is disabled. \fIfunction\fR must not begin with \fB_\|_builtin_\fR. If a ! function is named that is not built-in in this version of \s-1GCC\s0, this option is ignored. There is no corresponding \&\fB\-fbuiltin\-\fR\fIfunction\fR option; if you wish to enable built-in functions selectively when using \fB\-fno\-builtin\fR or --- 1768,1774 ---- With the \fB\-fno\-builtin\-\fR\fIfunction\fR option only the built-in function \fIfunction\fR is disabled. \fIfunction\fR must not begin with \fB_\|_builtin_\fR. If a ! function is named that is not built-in in this version of \s-1GCC,\s0 this option is ignored. There is no corresponding \&\fB\-fbuiltin\-\fR\fIfunction\fR option; if you wish to enable built-in functions selectively when using \fB\-fno\-builtin\fR or *************** When the option \fB\-fgnu\-tm\fR is spec *** 1797,1803 **** generates code for the Linux variant of Intel's current Transactional Memory \s-1ABI\s0 specification document (Revision 1.1, May 6 2009). This is an experimental feature whose interface may change in future versions ! of \s-1GCC\s0, as the official specification changes. Please note that not all architectures are supported for this feature. .Sp For more information on \s-1GCC\s0's support for transactional memory, --- 1806,1812 ---- generates code for the Linux variant of Intel's current Transactional Memory \s-1ABI\s0 specification document (Revision 1.1, May 6 2009). This is an experimental feature whose interface may change in future versions ! of \s-1GCC,\s0 as the official specification changes. Please note that not all architectures are supported for this feature. .Sp For more information on \s-1GCC\s0's support for transactional memory, *************** fields declared using a typedef. This *** 1831,1838 **** supported for C, not \*(C+. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" ! Support \s-1ISO\s0 C trigraphs. The \fB\-ansi\fR option (and \fB\-std\fR ! options for strict \s-1ISO\s0 C conformance) implies \fB\-trigraphs\fR. .IP "\fB\-traditional\fR" 4 .IX Item "-traditional" .PD 0 --- 1840,1847 ---- supported for C, not \*(C+. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" ! Support \s-1ISO C\s0 trigraphs. The \fB\-ansi\fR option (and \fB\-std\fR ! options for strict \s-1ISO C\s0 conformance) implies \fB\-trigraphs\fR. .IP "\fB\-traditional\fR" 4 .IX Item "-traditional" .PD 0 *************** options for strict \s-1ISO\s0 C conforma *** 1841,1848 **** .PD Formerly, these options caused \s-1GCC\s0 to attempt to emulate a pre-standard C compiler. They are now only supported with the \fB\-E\fR switch. ! The preprocessor continues to support a pre-standard mode. See the \s-1GNU\s0 ! \&\s-1CPP\s0 manual for details. .IP "\fB\-fcond\-mismatch\fR" 4 .IX Item "-fcond-mismatch" Allow conditional expressions with mismatched types in the second and --- 1850,1857 ---- .PD Formerly, these options caused \s-1GCC\s0 to attempt to emulate a pre-standard C compiler. They are now only supported with the \fB\-E\fR switch. ! The preprocessor continues to support a pre-standard mode. See the \s-1GNU ! CPP\s0 manual for details. .IP "\fB\-fcond\-mismatch\fR" 4 .IX Item "-fcond-mismatch" Allow conditional expressions with mismatched types in the second and *************** declaration does not use either \f(CW\*( *** 1893,1899 **** default, such a bit-field is signed, because this is consistent: the basic integer types such as \f(CW\*(C`int\*(C'\fR are signed types. .SS "Options Controlling \*(C+ Dialect" ! .IX Subsection "Options Controlling Dialect" This section describes the command-line options that are only meaningful for \*(C+ programs. You can also use most of the \s-1GNU\s0 compiler options regardless of what language your program is in. For example, you --- 1902,1908 ---- default, such a bit-field is signed, because this is consistent: the basic integer types such as \f(CW\*(C`int\*(C'\fR are signed types. .SS "Options Controlling \*(C+ Dialect" ! .IX Subsection "Options Controlling Dialect" This section describes the command-line options that are only meaningful for \*(C+ programs. You can also use most of the \s-1GNU\s0 compiler options regardless of what language your program is in. For example, you *************** might compile a file \f(CW\*(C`firstClas *** 1905,1916 **** .PP In this example, only \fB\-frepo\fR is an option meant only for \*(C+ programs; you can use the other options with any ! language supported by \s-1GCC\s0. .PP Here is a list of options that are \fIonly\fR for compiling \*(C+ programs: .IP "\fB\-fabi\-version=\fR\fIn\fR" 4 .IX Item "-fabi-version=n" ! Use version \fIn\fR of the \*(C+ \s-1ABI\s0. The default is version 2. .Sp Version 0 refers to the version conforming most closely to the \*(C+ \s-1ABI\s0 specification. Therefore, the \s-1ABI\s0 obtained using version 0 --- 1914,1925 ---- .PP In this example, only \fB\-frepo\fR is an option meant only for \*(C+ programs; you can use the other options with any ! language supported by \s-1GCC.\s0 .PP Here is a list of options that are \fIonly\fR for compiling \*(C+ programs: .IP "\fB\-fabi\-version=\fR\fIn\fR" 4 .IX Item "-fabi-version=n" ! Use version \fIn\fR of the \*(C+ \s-1ABI. \s0 The default is version 2. .Sp Version 0 refers to the version conforming most closely to the \*(C+ \s-1ABI\s0 specification. Therefore, the \s-1ABI\s0 obtained using version 0 *************** Inject friend functions into the enclosi *** 1985,1991 **** visible outside the scope of the class in which they are declared. Friend functions were documented to work this way in the old Annotated \&\*(C+ Reference Manual, and versions of G++ before 4.1 always worked ! that way. However, in \s-1ISO\s0 \*(C+ a friend function that is not declared in an enclosing scope can only be found using argument dependent lookup. This option causes friends to be injected as they were in earlier releases. --- 1994,2000 ---- visible outside the scope of the class in which they are declared. Friend functions were documented to work this way in the old Annotated \&\*(C+ Reference Manual, and versions of G++ before 4.1 always worked ! that way. However, in \s-1ISO \*(C+\s0 a friend function that is not declared in an enclosing scope can only be found using argument dependent lookup. This option causes friends to be injected as they were in earlier releases. *************** controlled by \fB#pragma implementation\ *** 2069,2080 **** errors if these functions are not inlined everywhere they are called. .IP "\fB\-fms\-extensions\fR" 4 .IX Item "-fms-extensions" ! Disable Wpedantic warnings about constructs used in \s-1MFC\s0, such as implicit int and getting a pointer to member function via non-standard syntax. .IP "\fB\-fno\-nonansi\-builtins\fR" 4 .IX Item "-fno-nonansi-builtins" Disable built-in declarations of functions that are not mandated by ! \&\s-1ANSI/ISO\s0 C. These include \f(CW\*(C`ffs\*(C'\fR, \f(CW\*(C`alloca\*(C'\fR, \f(CW\*(C`_exit\*(C'\fR, \&\f(CW\*(C`index\*(C'\fR, \f(CW\*(C`bzero\*(C'\fR, \f(CW\*(C`conjf\*(C'\fR, and other related functions. .IP "\fB\-fnothrow\-opt\fR" 4 .IX Item "-fnothrow-opt" --- 2078,2089 ---- errors if these functions are not inlined everywhere they are called. .IP "\fB\-fms\-extensions\fR" 4 .IX Item "-fms-extensions" ! Disable Wpedantic warnings about constructs used in \s-1MFC,\s0 such as implicit int and getting a pointer to member function via non-standard syntax. .IP "\fB\-fno\-nonansi\-builtins\fR" 4 .IX Item "-fno-nonansi-builtins" Disable built-in declarations of functions that are not mandated by ! \&\s-1ANSI/ISO C. \s0 These include \f(CW\*(C`ffs\*(C'\fR, \f(CW\*(C`alloca\*(C'\fR, \f(CW\*(C`_exit\*(C'\fR, \&\f(CW\*(C`index\*(C'\fR, \f(CW\*(C`bzero\*(C'\fR, \f(CW\*(C`conjf\*(C'\fR, and other related functions. .IP "\fB\-fnothrow\-opt\fR" 4 .IX Item "-fnothrow-opt" *************** warning or error to \fIn\fR. The defaul *** 2148,2154 **** .IX Item "-ftemplate-depth=n" Set the maximum instantiation depth for template classes to \fIn\fR. A limit on the template instantiation depth is needed to detect ! endless recursions during template class instantiation. \s-1ANSI/ISO\s0 \*(C+ conforming programs must not rely on a maximum depth greater than 17 (changed to 1024 in \*(C+11). The default value is 900, as the compiler can run out of stack space before hitting 1024 in some situations. --- 2157,2163 ---- .IX Item "-ftemplate-depth=n" Set the maximum instantiation depth for template classes to \fIn\fR. A limit on the template instantiation depth is needed to detect ! endless recursions during template class instantiation. \s-1ANSI/ISO \*(C+\s0 conforming programs must not rely on a maximum depth greater than 17 (changed to 1024 in \*(C+11). The default value is 900, as the compiler can run out of stack space before hitting 1024 in some situations. *************** are taken in different shared objects. *** 2179,2185 **** The effect of this is that \s-1GCC\s0 may, effectively, mark inline methods with \&\f(CW\*(C`_\|_attribute_\|_ ((visibility ("hidden")))\*(C'\fR so that they do not appear in the export table of a \s-1DSO\s0 and do not require a \s-1PLT\s0 indirection ! when used within the \s-1DSO\s0. Enabling this option can have a dramatic effect on load and link times of a \s-1DSO\s0 as it massively reduces the size of the dynamic export table when the library makes heavy use of templates. .Sp --- 2188,2194 ---- The effect of this is that \s-1GCC\s0 may, effectively, mark inline methods with \&\f(CW\*(C`_\|_attribute_\|_ ((visibility ("hidden")))\*(C'\fR so that they do not appear in the export table of a \s-1DSO\s0 and do not require a \s-1PLT\s0 indirection ! when used within the \s-1DSO. \s0 Enabling this option can have a dramatic effect on load and link times of a \s-1DSO\s0 as it massively reduces the size of the dynamic export table when the library makes heavy use of templates. .Sp *************** Do not assume \fBinline\fR for functions *** 2250,2258 **** functions have linkage like inline functions; they just aren't inlined by default. .IP "\fB\-Wabi\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wabi (C, Objective-C, and Objective- only)" Warn when G++ generates code that is probably not compatible with the ! vendor-neutral \*(C+ \s-1ABI\s0. Although an effort has been made to warn about all such cases, there are probably some cases that are not warned about, even though G++ is generating incompatible code. There may also be cases where warnings are emitted even though the code that is generated --- 2259,2267 ---- functions have linkage like inline functions; they just aren't inlined by default. .IP "\fB\-Wabi\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wabi (C, Objective-C, and Objective- only)" Warn when G++ generates code that is probably not compatible with the ! vendor-neutral \*(C+ \s-1ABI. \s0 Although an effort has been made to warn about all such cases, there are probably some cases that are not warned about, even though G++ is generating incompatible code. There may also be cases where warnings are emitted even though the code that is generated *************** This is on by default for all pre\-\*(C+ *** 2464,2470 **** \&\fB\-std=c++98\fR, \fB\-std=gnu++98\fR, \fB\-std=gnu++11\fR, \&\fB\-std=gnu++1y\fR. This option is off by default ! for \s-1ISO\s0 \*(C+11 onwards (\fB\-std=c++11\fR, ...). .PP The following \fB\-W...\fR options are not affected by \fB\-Wall\fR. .IP "\fB\-Weffc++\fR (\*(C+ and Objective\-\*(C+ only)" 4 --- 2473,2479 ---- \&\fB\-std=c++98\fR, \fB\-std=gnu++98\fR, \fB\-std=gnu++11\fR, \&\fB\-std=gnu++1y\fR. This option is off by default ! for \s-1ISO \*(C+11\s0 onwards (\fB\-std=c++11\fR, ...). .PP The following \fB\-W...\fR options are not affected by \fB\-Wall\fR. .IP "\fB\-Weffc++\fR (\*(C+ and Objective\-\*(C+ only)" 4 *************** For example, you might compile a file \f *** 2578,2584 **** .PP In this example, \fB\-fgnu\-runtime\fR is an option meant only for Objective-C and Objective\-\*(C+ programs; you can use the other options with ! any language supported by \s-1GCC\s0. .PP Note that since Objective-C is an extension of the C language, Objective-C compilations may also use options specific to the C front-end (e.g., --- 2587,2593 ---- .PP In this example, \fB\-fgnu\-runtime\fR is an option meant only for Objective-C and Objective\-\*(C+ programs; you can use the other options with ! any language supported by \s-1GCC.\s0 .PP Note that since Objective-C is an extension of the C language, Objective-C compilations may also use options specific to the C front-end (e.g., *************** runtime. This is the default for most t *** 2603,2609 **** .IP "\fB\-fnext\-runtime\fR" 4 .IX Item "-fnext-runtime" Generate output compatible with the NeXT runtime. This is the default ! for NeXT-based systems, including Darwin and Mac \s-1OS\s0 X. The macro \&\f(CW\*(C`_\|_NEXT_RUNTIME_\|_\*(C'\fR is predefined if (and only if) this option is used. .IP "\fB\-fno\-nil\-receivers\fR" 4 --- 2612,2618 ---- .IP "\fB\-fnext\-runtime\fR" 4 .IX Item "-fnext-runtime" Generate output compatible with the NeXT runtime. This is the default ! for NeXT-based systems, including Darwin and Mac \s-1OS X. \s0 The macro \&\f(CW\*(C`_\|_NEXT_RUNTIME_\|_\*(C'\fR is predefined if (and only if) this option is used. .IP "\fB\-fno\-nil\-receivers\fR" 4 *************** This option is currently supported only *** 2620,2626 **** case, Version 0 is the traditional (32\-bit) \s-1ABI\s0 without support for properties and other Objective-C 2.0 additions. Version 1 is the traditional (32\-bit) \s-1ABI\s0 with support for properties and other ! Objective-C 2.0 additions. Version 2 is the modern (64\-bit) \s-1ABI\s0. If nothing is specified, the default is Version 0 on 32\-bit target machines, and Version 2 on 64\-bit target machines. .IP "\fB\-fobjc\-call\-cxx\-cdtors\fR" 4 --- 2629,2635 ---- case, Version 0 is the traditional (32\-bit) \s-1ABI\s0 without support for properties and other Objective-C 2.0 additions. Version 1 is the traditional (32\-bit) \s-1ABI\s0 with support for properties and other ! Objective-C 2.0 additions. Version 2 is the modern (64\-bit) \s-1ABI. \s0 If nothing is specified, the default is Version 0 on 32\-bit target machines, and Version 2 on 64\-bit target machines. .IP "\fB\-fobjc\-call\-cxx\-cdtors\fR" 4 *************** by the runtime immediately after a new o *** 2644,2650 **** the \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods are invoked immediately before the runtime deallocates an object instance. .Sp ! As of this writing, only the NeXT runtime on Mac \s-1OS\s0 X 10.4 and later has support for invoking the \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and \&\f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods. .IP "\fB\-fobjc\-direct\-dispatch\fR" 4 --- 2653,2659 ---- the \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods are invoked immediately before the runtime deallocates an object instance. .Sp ! As of this writing, only the NeXT runtime on Mac \s-1OS X 10.4\s0 and later has support for invoking the \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and \&\f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods. .IP "\fB\-fobjc\-direct\-dispatch\fR" 4 *************** is required to use the Objective-C keywo *** 2659,2665 **** \&\f(CW@throw\fR, \f(CW@catch\fR, \f(CW@finally\fR and \&\f(CW@synchronized\fR. This option is available with both the \s-1GNU\s0 runtime and the NeXT runtime (but not available in conjunction with ! the NeXT runtime on Mac \s-1OS\s0 X 10.2 and earlier). .IP "\fB\-fobjc\-gc\fR" 4 .IX Item "-fobjc-gc" Enable garbage collection (\s-1GC\s0) in Objective-C and Objective\-\*(C+ --- 2668,2674 ---- \&\f(CW@throw\fR, \f(CW@catch\fR, \f(CW@finally\fR and \&\f(CW@synchronized\fR. This option is available with both the \s-1GNU\s0 runtime and the NeXT runtime (but not available in conjunction with ! the NeXT runtime on Mac \s-1OS X 10.2\s0 and earlier). .IP "\fB\-fobjc\-gc\fR" 4 .IX Item "-fobjc-gc" Enable garbage collection (\s-1GC\s0) in Objective-C and Objective\-\*(C+ *************** programs. This option is only available *** 2668,2690 **** does not require special compiler flags. .IP "\fB\-fobjc\-nilcheck\fR" 4 .IX Item "-fobjc-nilcheck" ! For the NeXT runtime with version 2 of the \s-1ABI\s0, check for a nil receiver in method invocations before doing the actual method call. This is the default and can be disabled using \&\fB\-fno\-objc\-nilcheck\fR. Class methods and super calls are never checked for nil in this way no matter what this flag is set to. Currently this flag does nothing when the \s-1GNU\s0 runtime, or an older ! version of the NeXT runtime \s-1ABI\s0, is used. .IP "\fB\-fobjc\-std=objc1\fR" 4 .IX Item "-fobjc-std=objc1" Conform to the language syntax of Objective-C 1.0, the language ! recognized by \s-1GCC\s0 4.0. This only affects the Objective-C additions to the C/\*(C+ language; it does not affect conformance to C/\*(C+ standards, which is controlled by the separate C/\*(C+ dialect option flags. When this option is used with the Objective-C or Objective\-\*(C+ compiler, ! any Objective-C syntax that is not recognized by \s-1GCC\s0 4.0 is rejected. This is useful if you need to make sure that your Objective-C code can ! be compiled with older versions of \s-1GCC\s0. .IP "\fB\-freplace\-objc\-classes\fR" 4 .IX Item "-freplace-objc-classes" Emit a special marker instructing \fB\f(BIld\fB\|(1)\fR not to statically link in --- 2677,2699 ---- does not require special compiler flags. .IP "\fB\-fobjc\-nilcheck\fR" 4 .IX Item "-fobjc-nilcheck" ! For the NeXT runtime with version 2 of the \s-1ABI,\s0 check for a nil receiver in method invocations before doing the actual method call. This is the default and can be disabled using \&\fB\-fno\-objc\-nilcheck\fR. Class methods and super calls are never checked for nil in this way no matter what this flag is set to. Currently this flag does nothing when the \s-1GNU\s0 runtime, or an older ! version of the NeXT runtime \s-1ABI,\s0 is used. .IP "\fB\-fobjc\-std=objc1\fR" 4 .IX Item "-fobjc-std=objc1" Conform to the language syntax of Objective-C 1.0, the language ! recognized by \s-1GCC 4.0. \s0 This only affects the Objective-C additions to the C/\*(C+ language; it does not affect conformance to C/\*(C+ standards, which is controlled by the separate C/\*(C+ dialect option flags. When this option is used with the Objective-C or Objective\-\*(C+ compiler, ! any Objective-C syntax that is not recognized by \s-1GCC 4.0\s0 is rejected. This is useful if you need to make sure that your Objective-C code can ! be compiled with older versions of \s-1GCC.\s0 .IP "\fB\-freplace\-objc\-classes\fR" 4 .IX Item "-freplace-objc-classes" Emit a special marker instructing \fB\f(BIld\fB\|(1)\fR not to statically link in *************** run time instead. This is used in conju *** 2693,2699 **** debugging mode, where the object file in question may be recompiled and dynamically reloaded in the course of program execution, without the need to restart the program itself. Currently, Fix-and-Continue functionality ! is only available in conjunction with the NeXT runtime on Mac \s-1OS\s0 X 10.3 and later. .IP "\fB\-fzero\-link\fR" 4 .IX Item "-fzero-link" --- 2702,2708 ---- debugging mode, where the object file in question may be recompiled and dynamically reloaded in the course of program execution, without the need to restart the program itself. Currently, Fix-and-Continue functionality ! is only available in conjunction with the NeXT runtime on Mac \s-1OS X 10.3\s0 and later. .IP "\fB\-fzero\-link\fR" 4 .IX Item "-fzero-link" *************** honor these options. *** 2772,2778 **** .IX Item "-fmessage-length=n" Try to format error messages so that they fit on lines of about \fIn\fR characters. The default is 72 characters for \fBg++\fR and 0 for the rest of ! the front ends supported by \s-1GCC\s0. If \fIn\fR is zero, then no line-wrapping is done; each error message appears on a single line. .IP "\fB\-fdiagnostics\-show\-location=once\fR" 4 --- 2781,2787 ---- .IX Item "-fmessage-length=n" Try to format error messages so that they fit on lines of about \fIn\fR characters. The default is 72 characters for \fBg++\fR and 0 for the rest of ! the front ends supported by \s-1GCC. \s0 If \fIn\fR is zero, then no line-wrapping is done; each error message appears on a single line. .IP "\fB\-fdiagnostics\-show\-location=once\fR" 4 *************** are not inherently erroneous but that ar *** 2807,2813 **** may have been an error. .PP The following language-independent options do not enable specific ! warnings but control the kinds of diagnostics produced by \s-1GCC\s0. .IP "\fB\-fsyntax\-only\fR" 4 .IX Item "-fsyntax-only" Check the code for syntax errors, but don't do anything beyond that. --- 2816,2822 ---- may have been an error. .PP The following language-independent options do not enable specific ! warnings but control the kinds of diagnostics produced by \s-1GCC.\s0 .IP "\fB\-fsyntax\-only\fR" 4 .IX Item "-fsyntax-only" Check the code for syntax errors, but don't do anything beyond that. *************** warns that an unrecognized option is pre *** 2873,2886 **** .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" .PD ! Issue all the warnings demanded by strict \s-1ISO\s0 C and \s-1ISO\s0 \*(C+; reject all programs that use forbidden extensions, and some other ! programs that do not follow \s-1ISO\s0 C and \s-1ISO\s0 \*(C+. For \s-1ISO\s0 C, follows the ! version of the \s-1ISO\s0 C standard specified by any \fB\-std\fR option used. .Sp ! Valid \s-1ISO\s0 C and \s-1ISO\s0 \*(C+ programs should compile properly with or without this option (though a rare few require \fB\-ansi\fR or a ! \&\fB\-std\fR option specifying the required version of \s-1ISO\s0 C). However, without this option, certain \s-1GNU\s0 extensions and traditional C and \*(C+ features are supported as well. With this option, they are rejected. .Sp --- 2882,2895 ---- .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" .PD ! Issue all the warnings demanded by strict \s-1ISO C\s0 and \s-1ISO \*(C+\s0; reject all programs that use forbidden extensions, and some other ! programs that do not follow \s-1ISO C\s0 and \s-1ISO \*(C+. \s0 For \s-1ISO C,\s0 follows the ! version of the \s-1ISO C\s0 standard specified by any \fB\-std\fR option used. .Sp ! Valid \s-1ISO C\s0 and \s-1ISO \*(C+\s0 programs should compile properly with or without this option (though a rare few require \fB\-ansi\fR or a ! \&\fB\-std\fR option specifying the required version of \s-1ISO C\s0). However, without this option, certain \s-1GNU\s0 extensions and traditional C and \*(C+ features are supported as well. With this option, they are rejected. .Sp *************** warnings are also disabled in the expres *** 2890,2913 **** \&\f(CW\*(C`_\|_extension_\|_\*(C'\fR. However, only system header files should use these escape routes; application programs should avoid them. .Sp ! Some users try to use \fB\-Wpedantic\fR to check programs for strict \s-1ISO\s0 ! C conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all\-\-\-only those for which ! \&\s-1ISO\s0 C \fIrequires\fR a diagnostic, and some others for which diagnostics have been added. .Sp ! A feature to report any failure to conform to \s-1ISO\s0 C might be useful in some instances, but would require considerable additional work and would be quite different from \fB\-Wpedantic\fR. We don't have plans to support such a feature in the near future. .Sp Where the standard specified with \fB\-std\fR represents a \s-1GNU\s0 extended dialect of C, such as \fBgnu90\fR or \fBgnu99\fR, there is a ! corresponding \fIbase standard\fR, the version of \s-1ISO\s0 C on which the \s-1GNU\s0 extended dialect is based. Warnings from \fB\-Wpedantic\fR are given where they are required by the base standard. (It does not make sense ! for such warnings to be given only for features not in the specified \s-1GNU\s0 ! C dialect, since by definition the \s-1GNU\s0 dialects of C include all features the compiler supports with the given option, and there would be nothing to warn about.) .IP "\fB\-pedantic\-errors\fR" 4 --- 2899,2922 ---- \&\f(CW\*(C`_\|_extension_\|_\*(C'\fR. However, only system header files should use these escape routes; application programs should avoid them. .Sp ! Some users try to use \fB\-Wpedantic\fR to check programs for strict \s-1ISO ! C\s0 conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all\-\-\-only those for which ! \&\s-1ISO C \s0\fIrequires\fR a diagnostic, and some others for which diagnostics have been added. .Sp ! A feature to report any failure to conform to \s-1ISO C\s0 might be useful in some instances, but would require considerable additional work and would be quite different from \fB\-Wpedantic\fR. We don't have plans to support such a feature in the near future. .Sp Where the standard specified with \fB\-std\fR represents a \s-1GNU\s0 extended dialect of C, such as \fBgnu90\fR or \fBgnu99\fR, there is a ! corresponding \fIbase standard\fR, the version of \s-1ISO C\s0 on which the \s-1GNU\s0 extended dialect is based. Warnings from \fB\-Wpedantic\fR are given where they are required by the base standard. (It does not make sense ! for such warnings to be given only for features not in the specified \s-1GNU ! C\s0 dialect, since by definition the \s-1GNU\s0 dialects of C include all features the compiler supports with the given option, and there would be nothing to warn about.) .IP "\fB\-pedantic\-errors\fR" 4 *************** functions without the attribute specifie *** 3074,3080 **** \&\fB\-ffreestanding\fR or \fB\-fno\-builtin\fR. .Sp The formats are checked against the format features supported by \s-1GNU\s0 ! libc version 2.2. These include all \s-1ISO\s0 C90 and C99 features, as well as features from the Single Unix Specification and some \s-1BSD\s0 and \s-1GNU\s0 extensions. Other library implementations may not support all these features; \s-1GCC\s0 does not support warning about features that go beyond a --- 3083,3089 ---- \&\fB\-ffreestanding\fR or \fB\-fno\-builtin\fR. .Sp The formats are checked against the format features supported by \s-1GNU\s0 ! libc version 2.2. These include all \s-1ISO C90\s0 and C99 features, as well as features from the Single Unix Specification and some \s-1BSD\s0 and \s-1GNU\s0 extensions. Other library implementations may not support all these features; \s-1GCC\s0 does not support warning about features that go beyond a *************** enabled by default and it is made into a *** 3186,3197 **** Same as \fB\-Wimplicit\-int\fR and \fB\-Wimplicit\-function\-declaration\fR. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wignored\-qualifiers\fR (C and \*(C+ only)" 4 ! .IX Item "-Wignored-qualifiers (C and only)" Warn if the return type of a function has a type qualifier ! such as \f(CW\*(C`const\*(C'\fR. For \s-1ISO\s0 C such a type qualifier has no effect, since the value returned by a function is not an lvalue. For \*(C+, the warning is only emitted for scalar types or \f(CW\*(C`void\*(C'\fR. ! \&\s-1ISO\s0 C prohibits qualified \f(CW\*(C`void\*(C'\fR return types on function definitions, so such return types always receive a warning even without this option. .Sp --- 3195,3206 ---- Same as \fB\-Wimplicit\-int\fR and \fB\-Wimplicit\-function\-declaration\fR. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wignored\-qualifiers\fR (C and \*(C+ only)" 4 ! .IX Item "-Wignored-qualifiers (C and only)" Warn if the return type of a function has a type qualifier ! such as \f(CW\*(C`const\*(C'\fR. For \s-1ISO C\s0 such a type qualifier has no effect, since the value returned by a function is not an lvalue. For \*(C+, the warning is only emitted for scalar types or \f(CW\*(C`void\*(C'\fR. ! \&\s-1ISO C\s0 prohibits qualified \f(CW\*(C`void\*(C'\fR return types on function definitions, so such return types always receive a warning even without this option. .Sp *************** between \fB\-Wswitch\fR and this option *** 3358,3366 **** warning about an omitted enumeration code even if there is a \&\f(CW\*(C`default\*(C'\fR label. .IP "\fB\-Wsync\-nand\fR (C and \*(C+ only)" 4 ! .IX Item "-Wsync-nand (C and only)" Warn when \f(CW\*(C`_\|_sync_fetch_and_nand\*(C'\fR and \f(CW\*(C`_\|_sync_nand_and_fetch\*(C'\fR ! built-in functions are used. These functions changed semantics in \s-1GCC\s0 4.4. .IP "\fB\-Wtrigraphs\fR" 4 .IX Item "-Wtrigraphs" Warn if any trigraphs are encountered that might change the meaning of --- 3367,3375 ---- warning about an omitted enumeration code even if there is a \&\f(CW\*(C`default\*(C'\fR label. .IP "\fB\-Wsync\-nand\fR (C and \*(C+ only)" 4 ! .IX Item "-Wsync-nand (C and only)" Warn when \f(CW\*(C`_\|_sync_fetch_and_nand\*(C'\fR and \f(CW\*(C`_\|_sync_nand_and_fetch\*(C'\fR ! built-in functions are used. These functions changed semantics in \s-1GCC 4.4.\s0 .IP "\fB\-Wtrigraphs\fR" 4 .IX Item "-Wtrigraphs" Warn if any trigraphs are encountered that might change the meaning of *************** This warning is enabled by \fB\-Wall\fR. *** 3397,3403 **** .Sp To suppress this warning use the \fBunused\fR attribute. .IP "\fB\-Wunused\-local\-typedefs\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wunused-local-typedefs (C, Objective-C, and Objective- only)" Warn when a typedef locally defined in a function is not used. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wunused\-parameter\fR" 4 --- 3406,3412 ---- .Sp To suppress this warning use the \fBunused\fR attribute. .IP "\fB\-Wunused\-local\-typedefs\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wunused-local-typedefs (C, Objective-C, and Objective- only)" Warn when a typedef locally defined in a function is not used. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wunused\-parameter\fR" 4 *************** This warning is enabled by \fB\-Wall\fR *** 3504,3510 **** .IP "\fB\-Wunknown\-pragmas\fR" 4 .IX Item "-Wunknown-pragmas" Warn when a \f(CW\*(C`#pragma\*(C'\fR directive is encountered that is not understood by ! \&\s-1GCC\s0. If this command-line option is used, warnings are even issued for unknown pragmas in system header files. This is not the case if the warnings are only enabled by the \fB\-Wall\fR command-line option. .IP "\fB\-Wno\-pragmas\fR" 4 --- 3513,3519 ---- .IP "\fB\-Wunknown\-pragmas\fR" 4 .IX Item "-Wunknown-pragmas" Warn when a \f(CW\*(C`#pragma\*(C'\fR directive is encountered that is not understood by ! \&\s-1GCC. \s0 If this command-line option is used, warnings are even issued for unknown pragmas in system header files. This is not the case if the warnings are only enabled by the \fB\-Wall\fR command-line option. .IP "\fB\-Wno\-pragmas\fR" 4 *************** probably mistaken. *** 3705,3717 **** .IP "\fB\-Wtraditional\fR (C and Objective-C only)" 4 .IX Item "-Wtraditional (C and Objective-C only)" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO\s0 C. Also warn about \s-1ISO\s0 C constructs that have no traditional C equivalent, and/or problematic constructs that should be avoided. .RS 4 .IP "\(bu" 4 Macro parameters that appear within string literals in the macro body. In traditional C macro replacement takes place within string literals, ! but in \s-1ISO\s0 C it does not. .IP "\(bu" 4 In traditional C, some preprocessor directives did not exist. Traditional preprocessors only considered a line to be a directive --- 3714,3726 ---- .IP "\fB\-Wtraditional\fR (C and Objective-C only)" 4 .IX Item "-Wtraditional (C and Objective-C only)" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C equivalent, and/or problematic constructs that should be avoided. .RS 4 .IP "\(bu" 4 Macro parameters that appear within string literals in the macro body. In traditional C macro replacement takes place within string literals, ! but in \s-1ISO C\s0 it does not. .IP "\(bu" 4 In traditional C, some preprocessor directives did not exist. Traditional preprocessors only considered a line to be a directive *************** versa. The absence of these prototypes *** 3766,3774 **** C causes serious problems. This is a subset of the possible conversion warnings; for the full set use \fB\-Wtraditional\-conversion\fR. .IP "\(bu" 4 ! Use of \s-1ISO\s0 C style function definitions. This warning intentionally is \&\fInot\fR issued for prototype declarations or variadic functions ! because these \s-1ISO\s0 C features appear in your code when using libiberty's traditional C compatibility macros, \f(CW\*(C`PARAMS\*(C'\fR and \&\f(CW\*(C`VPARAMS\*(C'\fR. This warning is also bypassed for nested functions because that feature is already a \s-1GCC\s0 extension and thus not relevant to --- 3775,3783 ---- C causes serious problems. This is a subset of the possible conversion warnings; for the full set use \fB\-Wtraditional\-conversion\fR. .IP "\(bu" 4 ! Use of \s-1ISO C\s0 style function definitions. This warning intentionally is \&\fInot\fR issued for prototype declarations or variadic functions ! because these \s-1ISO C\s0 features appear in your code when using libiberty's traditional C compatibility macros, \f(CW\*(C`PARAMS\*(C'\fR and \&\f(CW\*(C`VPARAMS\*(C'\fR. This warning is also bypassed for nested functions because that feature is already a \s-1GCC\s0 extension and thus not relevant to *************** except when the same as the default prom *** 3786,3794 **** .IP "\fB\-Wdeclaration\-after\-statement\fR (C and Objective-C only)" 4 .IX Item "-Wdeclaration-after-statement (C and Objective-C only)" Warn when a declaration is found after a statement in a block. This ! construct, known from \*(C+, was introduced with \s-1ISO\s0 C99 and is by default ! allowed in \s-1GCC\s0. It is not supported by \s-1ISO\s0 C90 and was not supported by ! \&\s-1GCC\s0 versions before \s-1GCC\s0 3.0. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" Warn if an undefined identifier is evaluated in an \fB#if\fR directive. --- 3795,3803 ---- .IP "\fB\-Wdeclaration\-after\-statement\fR (C and Objective-C only)" 4 .IX Item "-Wdeclaration-after-statement (C and Objective-C only)" Warn when a declaration is found after a statement in a block. This ! construct, known from \*(C+, was introduced with \s-1ISO C99\s0 and is by default ! allowed in \s-1GCC. \s0 It is not supported by \s-1ISO C90\s0 and was not supported by ! \&\s-1GCC\s0 versions before \s-1GCC 3.0. \s0 .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" Warn if an undefined identifier is evaluated in an \fB#if\fR directive. *************** which depend on the \s-1MS\s0 runtime. *** 3865,3871 **** .IP "\fB\-Wpointer\-arith\fR" 4 .IX Item "-Wpointer-arith" Warn about anything that depends on the \*(L"size of\*(R" a function type or ! of \f(CW\*(C`void\*(C'\fR. \s-1GNU\s0 C assigns these types a size of 1, for convenience in calculations with \f(CW\*(C`void *\*(C'\fR pointers and pointers to functions. In \*(C+, warn also when an arithmetic operation involves \&\f(CW\*(C`NULL\*(C'\fR. This warning is also enabled by \fB\-Wpedantic\fR. --- 3874,3880 ---- .IP "\fB\-Wpointer\-arith\fR" 4 .IX Item "-Wpointer-arith" Warn about anything that depends on the \*(L"size of\*(R" a function type or ! of \f(CW\*(C`void\*(C'\fR. \s-1GNU C\s0 assigns these types a size of 1, for convenience in calculations with \f(CW\*(C`void *\*(C'\fR pointers and pointers to functions. In \*(C+, warn also when an arithmetic operation involves \&\f(CW\*(C`NULL\*(C'\fR. This warning is also enabled by \fB\-Wpedantic\fR. *************** Warn whenever a function call is cast to *** 3882,3895 **** For example, warn if \f(CW\*(C`int malloc()\*(C'\fR is cast to \f(CW\*(C`anything *\*(C'\fR. .IP "\fB\-Wc++\-compat\fR (C and Objective-C only)" 4 .IX Item "-Wc++-compat (C and Objective-C only)" ! Warn about \s-1ISO\s0 C constructs that are outside of the common subset of ! \&\s-1ISO\s0 C and \s-1ISO\s0 \*(C+, e.g. request for implicit conversion from \&\f(CW\*(C`void *\*(C'\fR to a pointer to non\-\f(CW\*(C`void\*(C'\fR type. .IP "\fB\-Wc++11\-compat\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wc++11-compat ( and Objective- only)" ! Warn about \*(C+ constructs whose meaning differs between \s-1ISO\s0 \*(C+ 1998 ! and \s-1ISO\s0 \*(C+ 2011, e.g., identifiers in \s-1ISO\s0 \*(C+ 1998 that are keywords ! in \s-1ISO\s0 \*(C+ 2011. This warning turns on \fB\-Wnarrowing\fR and is enabled by \fB\-Wall\fR. .IP "\fB\-Wcast\-qual\fR" 4 .IX Item "-Wcast-qual" --- 3891,3904 ---- For example, warn if \f(CW\*(C`int malloc()\*(C'\fR is cast to \f(CW\*(C`anything *\*(C'\fR. .IP "\fB\-Wc++\-compat\fR (C and Objective-C only)" 4 .IX Item "-Wc++-compat (C and Objective-C only)" ! Warn about \s-1ISO C\s0 constructs that are outside of the common subset of ! \&\s-1ISO C\s0 and \s-1ISO \*(C+,\s0 e.g. request for implicit conversion from \&\f(CW\*(C`void *\*(C'\fR to a pointer to non\-\f(CW\*(C`void\*(C'\fR type. .IP "\fB\-Wc++11\-compat\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wc++11-compat ( and Objective- only)" ! Warn about \*(C+ constructs whose meaning differs between \s-1ISO \*(C+ 1998\s0 ! and \s-1ISO \*(C+ 2011,\s0 e.g., identifiers in \s-1ISO \*(C+ 1998\s0 that are keywords ! in \s-1ISO \*(C+ 2011. \s0 This warning turns on \fB\-Wnarrowing\fR and is enabled by \fB\-Wall\fR. .IP "\fB\-Wcast\-qual\fR" 4 .IX Item "-Wcast-qual" *************** Usually they indicate a typo in the user *** 4114,4138 **** implementation-defined values, and should not be used in portable code. .IP "\fB\-Wnormalized=\fR" 4 .IX Item "-Wnormalized=" ! In \s-1ISO\s0 C and \s-1ISO\s0 \*(C+, two identifiers are different if they are different sequences of characters. However, sometimes when characters outside the basic \s-1ASCII\s0 character set are used, you can have two different character sequences that look the same. To avoid confusion, ! the \s-1ISO\s0 10646 standard sets out some \fInormalization rules\fR which when applied ensure that two sequences that look the same are turned into the same sequence. \s-1GCC\s0 can warn you if you are using identifiers that have not been normalized; this option controls that warning. .Sp ! There are four levels of warning supported by \s-1GCC\s0. The default is \&\fB\-Wnormalized=nfc\fR, which warns about any identifier that is ! not in the \s-1ISO\s0 10646 \*(L"C\*(R" normalized form, \fI\s-1NFC\s0\fR. \s-1NFC\s0 is the recommended form for most uses. .Sp Unfortunately, there are some characters allowed in identifiers by ! \&\s-1ISO\s0 C and \s-1ISO\s0 \*(C+ that, when turned into \s-1NFC\s0, are not allowed in identifiers. That is, there's no way to use these symbols in portable ! \&\s-1ISO\s0 C or \*(C+ and have all your identifiers in \s-1NFC\s0. ! \&\fB\-Wnormalized=id\fR suppresses the warning for these characters. It is hoped that future versions of the standards involved will correct this, which is why this option is not the default. .Sp --- 4123,4147 ---- implementation-defined values, and should not be used in portable code. .IP "\fB\-Wnormalized=\fR" 4 .IX Item "-Wnormalized=" ! In \s-1ISO C\s0 and \s-1ISO \*(C+,\s0 two identifiers are different if they are different sequences of characters. However, sometimes when characters outside the basic \s-1ASCII\s0 character set are used, you can have two different character sequences that look the same. To avoid confusion, ! the \s-1ISO 10646\s0 standard sets out some \fInormalization rules\fR which when applied ensure that two sequences that look the same are turned into the same sequence. \s-1GCC\s0 can warn you if you are using identifiers that have not been normalized; this option controls that warning. .Sp ! There are four levels of warning supported by \s-1GCC. \s0 The default is \&\fB\-Wnormalized=nfc\fR, which warns about any identifier that is ! not in the \s-1ISO 10646 \*(L"C\*(R"\s0 normalized form, \fI\s-1NFC\s0\fR. \s-1NFC\s0 is the recommended form for most uses. .Sp Unfortunately, there are some characters allowed in identifiers by ! \&\s-1ISO C\s0 and \s-1ISO \*(C+\s0 that, when turned into \s-1NFC,\s0 are not allowed in identifiers. That is, there's no way to use these symbols in portable ! \&\s-1ISO C\s0 or \*(C+ and have all your identifiers in \s-1NFC. ! \&\s0\fB\-Wnormalized=id\fR suppresses the warning for these characters. It is hoped that future versions of the standards involved will correct this, which is why this option is not the default. .Sp *************** You can switch the warning off for all c *** 4141,4151 **** are using some other normalization scheme (like \*(L"D\*(R"), because otherwise you can easily create bugs that are literally impossible to see. .Sp ! Some characters in \s-1ISO\s0 10646 have distinct meanings but look identical in some fonts or display methodologies, especially once formatting has ! been applied. For instance \f(CW\*(C`\eu207F\*(C'\fR, \*(L"\s-1SUPERSCRIPT\s0 \s-1LATIN\s0 \s-1SMALL\s0 ! \&\s-1LETTER\s0 N\*(R", displays just like a regular \f(CW\*(C`n\*(C'\fR that has been ! placed in a superscript. \s-1ISO\s0 10646 defines the \fI\s-1NFKC\s0\fR normalization scheme to convert all these into a standard form as well, and \s-1GCC\s0 warns if your code is not in \s-1NFKC\s0 if you use \&\fB\-Wnormalized=nfkc\fR. This warning is comparable to warning --- 4150,4160 ---- are using some other normalization scheme (like \*(L"D\*(R"), because otherwise you can easily create bugs that are literally impossible to see. .Sp ! Some characters in \s-1ISO 10646\s0 have distinct meanings but look identical in some fonts or display methodologies, especially once formatting has ! been applied. For instance \f(CW\*(C`\eu207F\*(C'\fR, \*(L"\s-1SUPERSCRIPT LATIN SMALL ! LETTER N\*(R",\s0 displays just like a regular \f(CW\*(C`n\*(C'\fR that has been ! placed in a superscript. \s-1ISO 10646\s0 defines the \fI\s-1NFKC\s0\fR normalization scheme to convert all these into a standard form as well, and \s-1GCC\s0 warns if your code is not in \s-1NFKC\s0 if you use \&\fB\-Wnormalized=nfkc\fR. This warning is comparable to warning *************** have the packed attribute: *** 4194,4202 **** .IP "\fB\-Wpacked\-bitfield\-compat\fR" 4 .IX Item "-Wpacked-bitfield-compat" The 4.1, 4.2 and 4.3 series of \s-1GCC\s0 ignore the \f(CW\*(C`packed\*(C'\fR attribute ! on bit-fields of type \f(CW\*(C`char\*(C'\fR. This has been fixed in \s-1GCC\s0 4.4 but the change can lead to differences in the structure layout. \s-1GCC\s0 ! informs you when the offset of such a field has changed in \s-1GCC\s0 4.4. For example there is no longer a 4\-bit padding between field \f(CW\*(C`a\*(C'\fR and \f(CW\*(C`b\*(C'\fR in this structure: .Sp --- 4203,4211 ---- .IP "\fB\-Wpacked\-bitfield\-compat\fR" 4 .IX Item "-Wpacked-bitfield-compat" The 4.1, 4.2 and 4.3 series of \s-1GCC\s0 ignore the \f(CW\*(C`packed\*(C'\fR attribute ! on bit-fields of type \f(CW\*(C`char\*(C'\fR. This has been fixed in \s-1GCC 4.4\s0 but the change can lead to differences in the structure layout. \s-1GCC\s0 ! informs you when the offset of such a field has changed in \s-1GCC 4.4.\s0 For example there is no longer a 4\-bit padding between field \f(CW\*(C`a\*(C'\fR and \f(CW\*(C`b\*(C'\fR in this structure: .Sp *************** warnings produced by \fB\-Winline\fR to *** 4243,4249 **** .IP "\fB\-Wno\-invalid\-offsetof\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wno-invalid-offsetof ( and Objective- only)" Suppress warnings from applying the \fBoffsetof\fR macro to a non-POD ! type. According to the 1998 \s-1ISO\s0 \*(C+ standard, applying \fBoffsetof\fR to a non-POD type is undefined. In existing \*(C+ implementations, however, \fBoffsetof\fR typically gives meaningful results even when applied to certain kinds of non-POD types (such as a simple --- 4252,4258 ---- .IP "\fB\-Wno\-invalid\-offsetof\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wno-invalid-offsetof ( and Objective- only)" Suppress warnings from applying the \fBoffsetof\fR macro to a non-POD ! type. According to the 1998 \s-1ISO \*(C+\s0 standard, applying \fBoffsetof\fR to a non-POD type is undefined. In existing \*(C+ implementations, however, \fBoffsetof\fR typically gives meaningful results even when applied to certain kinds of non-POD types (such as a simple *************** the search path but can't be used. *** 4270,4281 **** .IP "\fB\-Wlong\-long\fR" 4 .IX Item "-Wlong-long" Warn if \fBlong long\fR type is used. This is enabled by either ! \&\fB\-Wpedantic\fR or \fB\-Wtraditional\fR in \s-1ISO\s0 C90 and \*(C+98 modes. To inhibit the warning messages, use \fB\-Wno\-long\-long\fR. .IP "\fB\-Wvariadic\-macros\fR" 4 .IX Item "-Wvariadic-macros" ! Warn if variadic macros are used in pedantic \s-1ISO\s0 C90 mode, or the \s-1GNU\s0 ! alternate syntax when in pedantic \s-1ISO\s0 C99 mode. This is default. To inhibit the warning messages, use \fB\-Wno\-variadic\-macros\fR. .IP "\fB\-Wvarargs\fR" 4 .IX Item "-Wvarargs" --- 4279,4290 ---- .IP "\fB\-Wlong\-long\fR" 4 .IX Item "-Wlong-long" Warn if \fBlong long\fR type is used. This is enabled by either ! \&\fB\-Wpedantic\fR or \fB\-Wtraditional\fR in \s-1ISO C90\s0 and \*(C+98 modes. To inhibit the warning messages, use \fB\-Wno\-long\-long\fR. .IP "\fB\-Wvariadic\-macros\fR" 4 .IX Item "-Wvariadic-macros" ! Warn if variadic macros are used in pedantic \s-1ISO C90\s0 mode, or the \s-1GNU\s0 ! alternate syntax when in pedantic \s-1ISO C99\s0 mode. This is default. To inhibit the warning messages, use \fB\-Wno\-variadic\-macros\fR. .IP "\fB\-Wvarargs\fR" 4 .IX Item "-Wvarargs" *************** standard's minimum limit, but very porta *** 4342,4348 **** using longer strings. .Sp The limit applies \fIafter\fR string constant concatenation, and does ! not count the trailing \s-1NUL\s0. In C90, the limit was 509 characters; in C99, it was raised to 4095. \*(C+98 does not specify a normative minimum maximum, so we do not diagnose overlength strings in \*(C+. .Sp --- 4351,4357 ---- using longer strings. .Sp The limit applies \fIafter\fR string constant concatenation, and does ! not count the trailing \s-1NUL. \s0 In C90, the limit was 509 characters; in C99, it was raised to 4095. \*(C+98 does not specify a normative minimum maximum, so we do not diagnose overlength strings in \*(C+. .Sp *************** either your program or \s-1GCC:\s0 *** 4362,4368 **** .IP "\fB\-g\fR" 4 .IX Item "-g" Produce debugging information in the operating system's native format ! (stabs, \s-1COFF\s0, \s-1XCOFF\s0, or \s-1DWARF\s0 2). \s-1GDB\s0 can work with this debugging information. .Sp On most systems that use stabs format, \fB\-g\fR enables use of extra --- 4371,4377 ---- .IP "\fB\-g\fR" 4 .IX Item "-g" Produce debugging information in the operating system's native format ! (stabs, \s-1COFF, XCOFF,\s0 or \s-1DWARF 2\s0). \s-1GDB\s0 can work with this debugging information. .Sp On most systems that use stabs format, \fB\-g\fR enables use of extra *************** be useful, this option requires a debugg *** 4395,4402 **** files. .IP "\fB\-ggdb\fR" 4 .IX Item "-ggdb" ! Produce debugging information for use by \s-1GDB\s0. This means to use the ! most expressive format available (\s-1DWARF\s0 2, stabs, or the native format if neither of those are supported), including \s-1GDB\s0 extensions if at all possible. .IP "\fB\-gpubnames\fR" 4 --- 4404,4411 ---- files. .IP "\fB\-ggdb\fR" 4 .IX Item "-ggdb" ! Produce debugging information for use by \s-1GDB. \s0 This means to use the ! most expressive format available (\s-1DWARF 2,\s0 stabs, or the native format if neither of those are supported), including \s-1GDB\s0 extensions if at all possible. .IP "\fB\-gpubnames\fR" 4 *************** Generate dwarf .debug_pubnames and .debu *** 4406,4413 **** .IX Item "-gstabs" Produce debugging information in stabs format (if that is supported), without \s-1GDB\s0 extensions. This is the format used by \s-1DBX\s0 on most \s-1BSD\s0 ! systems. On \s-1MIPS\s0, Alpha and System V Release 4 systems this option ! produces stabs debugging output that is not understood by \s-1DBX\s0 or \s-1SDB\s0. On System V Release 4 systems this option requires the \s-1GNU\s0 assembler. .IP "\fB\-feliminate\-unused\-debug\-symbols\fR" 4 .IX Item "-feliminate-unused-debug-symbols" --- 4415,4422 ---- .IX Item "-gstabs" Produce debugging information in stabs format (if that is supported), without \s-1GDB\s0 extensions. This is the format used by \s-1DBX\s0 on most \s-1BSD\s0 ! systems. On \s-1MIPS,\s0 Alpha and System V Release 4 systems this option ! produces stabs debugging output that is not understood by \s-1DBX\s0 or \s-1SDB.\s0 On System V Release 4 systems this option requires the \s-1GNU\s0 assembler. .IP "\fB\-feliminate\-unused\-debug\-symbols\fR" 4 .IX Item "-feliminate-unused-debug-symbols" *************** System V Release 4. *** 4444,4450 **** .IP "\fB\-gxcoff\fR" 4 .IX Item "-gxcoff" Produce debugging information in \s-1XCOFF\s0 format (if that is supported). ! This is the format used by the \s-1DBX\s0 debugger on \s-1IBM\s0 \s-1RS/6000\s0 systems. .IP "\fB\-gxcoff+\fR" 4 .IX Item "-gxcoff+" Produce debugging information in \s-1XCOFF\s0 format (if that is supported), --- 4453,4459 ---- .IP "\fB\-gxcoff\fR" 4 .IX Item "-gxcoff" Produce debugging information in \s-1XCOFF\s0 format (if that is supported). ! This is the format used by the \s-1DBX\s0 debugger on \s-1IBM RS/6000\s0 systems. .IP "\fB\-gxcoff+\fR" 4 .IX Item "-gxcoff+" Produce debugging information in \s-1XCOFF\s0 format (if that is supported), *************** The value of \fIversion\fR may be either *** 4459,4467 **** for most targets is 4. .Sp Note that with \s-1DWARF\s0 Version 2, some ports require and always ! use some non-conflicting \s-1DWARF\s0 3 extensions in the unwind tables. .Sp ! Version 4 may require \s-1GDB\s0 7.0 and \fB\-fvar\-tracking\-assignments\fR for maximum benefit. .IP "\fB\-grecord\-gcc\-switches\fR" 4 .IX Item "-grecord-gcc-switches" --- 4468,4476 ---- for most targets is 4. .Sp Note that with \s-1DWARF\s0 Version 2, some ports require and always ! use some non-conflicting \s-1DWARF 3\s0 extensions in the unwind tables. .Sp ! Version 4 may require \s-1GDB 7.0\s0 and \fB\-fvar\-tracking\-assignments\fR for maximum benefit. .IP "\fB\-grecord\-gcc\-switches\fR" 4 .IX Item "-grecord-gcc-switches" *************** debug information in version 1 of the \s *** 4523,4529 **** different from version 2), and it would have been too confusing. That debug format is long obsolete, but the option cannot be changed now. Instead use an additional \fB\-g\fR\fIlevel\fR option to change the ! debug level for \s-1DWARF\s0. .IP "\fB\-gtoggle\fR" 4 .IX Item "-gtoggle" Turn off generation of debug info, if leaving out this option --- 4532,4538 ---- different from version 2), and it would have been too confusing. That debug format is long obsolete, but the option cannot be changed now. Instead use an additional \fB\-g\fR\fIlevel\fR option to change the ! debug level for \s-1DWARF.\s0 .IP "\fB\-gtoggle\fR" 4 .IX Item "-gtoggle" Turn off generation of debug info, if leaving out this option *************** When this option is passed to the compil *** 4591,4599 **** other than debugging the compiler proper. .IP "\fB\-feliminate\-dwarf2\-dups\fR" 4 .IX Item "-feliminate-dwarf2-dups" ! Compress \s-1DWARF\s0 2 debugging information by eliminating duplicated information about each symbol. This option only makes sense when ! generating \s-1DWARF\s0 2 debugging information with \fB\-gdwarf\-2\fR. .IP "\fB\-femit\-struct\-debug\-baseonly\fR" 4 .IX Item "-femit-struct-debug-baseonly" Emit debug information for struct-like types --- 4600,4608 ---- other than debugging the compiler proper. .IP "\fB\-feliminate\-dwarf2\-dups\fR" 4 .IX Item "-feliminate-dwarf2-dups" ! Compress \s-1DWARF 2\s0 debugging information by eliminating duplicated information about each symbol. This option only makes sense when ! generating \s-1DWARF 2\s0 debugging information with \fB\-gdwarf\-2\fR. .IP "\fB\-femit\-struct\-debug\-baseonly\fR" 4 .IX Item "-femit-struct-debug-baseonly" Emit debug information for struct-like types *************** but at significant potential loss in typ *** 4605,4611 **** See \fB\-femit\-struct\-debug\-reduced\fR for a less aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF\s0 2. .IP "\fB\-femit\-struct\-debug\-reduced\fR" 4 .IX Item "-femit-struct-debug-reduced" Emit debug information for struct-like types --- 4614,4620 ---- See \fB\-femit\-struct\-debug\-reduced\fR for a less aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF 2.\s0 .IP "\fB\-femit\-struct\-debug\-reduced\fR" 4 .IX Item "-femit-struct-debug-reduced" Emit debug information for struct-like types *************** with some potential loss in type informa *** 4618,4624 **** See \fB\-femit\-struct\-debug\-baseonly\fR for a more aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF\s0 2. .IP "\fB\-femit\-struct\-debug\-detailed\fR[\fB=\fR\fIspec-list\fR]" 4 .IX Item "-femit-struct-debug-detailed[=spec-list]" Specify the struct-like types --- 4627,4633 ---- See \fB\-femit\-struct\-debug\-baseonly\fR for a more aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF 2.\s0 .IP "\fB\-femit\-struct\-debug\-detailed\fR[\fB=\fR\fIspec-list\fR]" 4 .IX Item "-femit-struct-debug-detailed[=spec-list]" Specify the struct-like types *************** You may need to experiment to determine *** 4664,4670 **** .Sp The default is \fB\-femit\-struct\-debug\-detailed=all\fR. .Sp ! This option works only with \s-1DWARF\s0 2. .IP "\fB\-fno\-merge\-debug\-strings\fR" 4 .IX Item "-fno-merge-debug-strings" Direct the linker to not merge together strings in the debugging --- 4673,4679 ---- .Sp The default is \fB\-femit\-struct\-debug\-detailed=all\fR. .Sp ! This option works only with \s-1DWARF 2.\s0 .IP "\fB\-fno\-merge\-debug\-strings\fR" 4 .IX Item "-fno-merge-debug-strings" Direct the linker to not merge together strings in the debugging *************** When compiling files in directory \fI\fI *** 4678,4685 **** information describing them as in \fI\fInew\fI\fR instead. .IP "\fB\-fno\-dwarf2\-cfi\-asm\fR" 4 .IX Item "-fno-dwarf2-cfi-asm" ! Emit \s-1DWARF\s0 2 unwind info as compiler generated \f(CW\*(C`.eh_frame\*(C'\fR section ! instead of using \s-1GAS\s0 \f(CW\*(C`.cfi_*\*(C'\fR directives. .IP "\fB\-p\fR" 4 .IX Item "-p" Generate extra code to write profile information suitable for the --- 4687,4694 ---- information describing them as in \fI\fInew\fI\fR instead. .IP "\fB\-fno\-dwarf2\-cfi\-asm\fR" 4 .IX Item "-fno-dwarf2-cfi-asm" ! Emit \s-1DWARF 2\s0 unwind info as compiler generated \f(CW\*(C`.eh_frame\*(C'\fR section ! instead of using \s-1GAS \s0\f(CW\*(C`.cfi_*\*(C'\fR directives. .IP "\fB\-p\fR" 4 .IX Item "-p" Generate extra code to write profile information suitable for the *************** For example, with \fB\-fdbg\-cnt=dce:10, *** 4836,4842 **** .IX Item "-fdisable-kind-pass=range-list" .PD This is a set of options that are used to explicitly disable/enable ! optimization passes. These options are intended for use for debugging \s-1GCC\s0. Compiler users should use regular options for enabling/disabling passes instead. .RS 4 --- 4845,4851 ---- .IX Item "-fdisable-kind-pass=range-list" .PD This is a set of options that are used to explicitly disable/enable ! optimization passes. These options are intended for use for debugging \s-1GCC.\s0 Compiler users should use regular options for enabling/disabling passes instead. .RS 4 *************** by some other path. *** 5310,5316 **** When dumping pretty-printed trees, this option inhibits dumping the bodies of control structures. .Sp ! When dumping \s-1RTL\s0, print the \s-1RTL\s0 in slim (condensed) form instead of the default LISP-like representation. .IP "\fBraw\fR" 4 .IX Item "raw" --- 5319,5325 ---- When dumping pretty-printed trees, this option inhibits dumping the bodies of control structures. .Sp ! When dumping \s-1RTL,\s0 print the \s-1RTL\s0 in slim (condensed) form instead of the default LISP-like representation. .IP "\fBraw\fR" 4 .IX Item "raw" *************** Enable showing virtual operands for ever *** 5345,5351 **** Enable showing line numbers for statements. .IP "\fBuid\fR" 4 .IX Item "uid" ! Enable showing the unique \s-1ID\s0 (\f(CW\*(C`DECL_UID\*(C'\fR) for each variable. .IP "\fBverbose\fR" 4 .IX Item "verbose" Enable showing the tree dump for each statement. --- 5354,5360 ---- Enable showing line numbers for statements. .IP "\fBuid\fR" 4 .IX Item "uid" ! Enable showing the unique \s-1ID \s0(\f(CW\*(C`DECL_UID\*(C'\fR) for each variable. .IP "\fBverbose\fR" 4 .IX Item "verbose" Enable showing the tree dump for each statement. *************** Dump aliasing information for each funct *** 5423,5429 **** appending \fI.alias\fR to the source file name. .IP "\fBccp\fR" 4 .IX Item "ccp" ! Dump each function after \s-1CCP\s0. The file name is made by appending \&\fI.ccp\fR to the source file name. .IP "\fBstoreccp\fR" 4 .IX Item "storeccp" --- 5432,5438 ---- appending \fI.alias\fR to the source file name. .IP "\fBccp\fR" 4 .IX Item "ccp" ! Dump each function after \s-1CCP. \s0 The file name is made by appending \&\fI.ccp\fR to the source file name. .IP "\fBstoreccp\fR" 4 .IX Item "storeccp" *************** Print the compiler's built-in specs\-\-\ *** 5850,5856 **** is used when \s-1GCC\s0 itself is being built.) .IP "\fB\-fno\-eliminate\-unused\-debug\-types\fR" 4 .IX Item "-fno-eliminate-unused-debug-types" ! Normally, when producing \s-1DWARF\s0 2 output, \s-1GCC\s0 avoids producing debug symbol output for types that are nowhere used in the source file being compiled. Sometimes it is useful to have \s-1GCC\s0 emit debugging information for all types declared in a compilation --- 5859,5865 ---- is used when \s-1GCC\s0 itself is being built.) .IP "\fB\-fno\-eliminate\-unused\-debug\-types\fR" 4 .IX Item "-fno-eliminate-unused-debug-types" ! Normally, when producing \s-1DWARF 2\s0 output, \s-1GCC\s0 avoids producing debug symbol output for types that are nowhere used in the source file being compiled. Sometimes it is useful to have \s-1GCC\s0 emit debugging information for all types declared in a compilation *************** function calls and pops them all at once *** 6046,6052 **** Disabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR. .IP "\fB\-fforward\-propagate\fR" 4 .IX Item "-fforward-propagate" ! Perform a forward propagation pass on \s-1RTL\s0. The pass tries to combine two instructions and checks if the result can be simplified. If loop unrolling is active, two passes are performed and the second is scheduled after loop unrolling. --- 6055,6061 ---- Disabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR. .IP "\fB\-fforward\-propagate\fR" 4 .IX Item "-fforward-propagate" ! Perform a forward propagation pass on \s-1RTL. \s0 The pass tries to combine two instructions and checks if the result can be simplified. If loop unrolling is active, two passes are performed and the second is scheduled after loop unrolling. *************** restore frame pointers; it also makes an *** 6072,6078 **** in many functions. \fBIt also makes debugging impossible on some machines.\fR .Sp ! On some machines, such as the \s-1VAX\s0, this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The machine-description macro \f(CW\*(C`FRAME_POINTER_REQUIRED\*(C'\fR controls --- 6081,6087 ---- in many functions. \fBIt also makes debugging impossible on some machines.\fR .Sp ! On some machines, such as the \s-1VAX,\s0 this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The machine-description macro \f(CW\*(C`FRAME_POINTER_REQUIRED\*(C'\fR controls *************** attribute or declspec *** 6191,6197 **** In C, emit \f(CW\*(C`static\*(C'\fR functions that are declared \f(CW\*(C`inline\*(C'\fR into the object file, even if the function has been inlined into all of its callers. This switch does not affect functions using the ! \&\f(CW\*(C`extern inline\*(C'\fR extension in \s-1GNU\s0 C90. In \*(C+, emit any and all inline functions into the object file. .IP "\fB\-fkeep\-static\-consts\fR" 4 .IX Item "-fkeep-static-consts" --- 6200,6206 ---- In C, emit \f(CW\*(C`static\*(C'\fR functions that are declared \f(CW\*(C`inline\*(C'\fR into the object file, even if the function has been inlined into all of its callers. This switch does not affect functions using the ! \&\f(CW\*(C`extern inline\*(C'\fR extension in \s-1GNU C90. \s0 In \*(C+, emit any and all inline functions into the object file. .IP "\fB\-fkeep\-static\-consts\fR" 4 .IX Item "-fkeep-static-consts" *************** The default is \fB\-ffunction\-cse\fR *** 6256,6262 **** .IP "\fB\-fno\-zero\-initialized\-in\-bss\fR" 4 .IX Item "-fno-zero-initialized-in-bss" If the target supports a \s-1BSS\s0 section, \s-1GCC\s0 by default puts variables that ! are initialized to zero into \s-1BSS\s0. This can save space in the resulting code. .Sp This option turns off this behavior because some programs explicitly --- 6265,6271 ---- .IP "\fB\-fno\-zero\-initialized\-in\-bss\fR" 4 .IX Item "-fno-zero-initialized-in-bss" If the target supports a \s-1BSS\s0 section, \s-1GCC\s0 by default puts variables that ! are initialized to zero into \s-1BSS. \s0 This can save space in the resulting code. .Sp This option turns off this behavior because some programs explicitly *************** instructions to support this. Enabled b *** 6400,6410 **** higher on architectures that support this. .IP "\fB\-fdce\fR" 4 .IX Item "-fdce" ! Perform dead code elimination (\s-1DCE\s0) on \s-1RTL\s0. Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fdse\fR" 4 .IX Item "-fdse" ! Perform dead store elimination (\s-1DSE\s0) on \s-1RTL\s0. Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fif\-conversion\fR" 4 .IX Item "-fif-conversion" --- 6409,6419 ---- higher on architectures that support this. .IP "\fB\-fdce\fR" 4 .IX Item "-fdce" ! Perform dead code elimination (\s-1DCE\s0) on \s-1RTL.\s0 Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fdse\fR" 4 .IX Item "-fdse" ! Perform dead store elimination (\s-1DSE\s0) on \s-1RTL.\s0 Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fif\-conversion\fR" 4 .IX Item "-fif-conversion" *************** at \fB\-O\fR and higher. *** 6737,6743 **** Perform full redundancy elimination (\s-1FRE\s0) on trees. The difference between \s-1FRE\s0 and \s-1PRE\s0 is that \s-1FRE\s0 only considers expressions that are computed on all paths leading to the redundant computation. ! This analysis is faster than \s-1PRE\s0, though it exposes fewer redundancies. This flag is enabled by default at \fB\-O\fR and higher. .IP "\fB\-ftree\-phiprop\fR" 4 .IX Item "-ftree-phiprop" --- 6746,6752 ---- Perform full redundancy elimination (\s-1FRE\s0) on trees. The difference between \s-1FRE\s0 and \s-1PRE\s0 is that \s-1FRE\s0 only considers expressions that are computed on all paths leading to the redundant computation. ! This analysis is faster than \s-1PRE,\s0 though it exposes fewer redundancies. This flag is enabled by default at \fB\-O\fR and higher. .IP "\fB\-ftree\-phiprop\fR" 4 .IX Item "-ftree-phiprop" *************** infrastructure. *** 6964,6970 **** Enable the identity transformation for graphite. For every SCoP we generate the polyhedral representation and transform it back to gimple. Using \&\fB\-fgraphite\-identity\fR we can check the costs or benefits of the ! \&\s-1GIMPLE\s0 \-> \s-1GRAPHITE\s0 \-> \s-1GIMPLE\s0 transformation. Some minimal optimizations are also performed by the code generator CLooG, like index splitting and dead code elimination in loops. .IP "\fB\-floop\-nest\-optimize\fR" 4 --- 6973,6979 ---- Enable the identity transformation for graphite. For every SCoP we generate the polyhedral representation and transform it back to gimple. Using \&\fB\-fgraphite\-identity\fR we can check the costs or benefits of the ! \&\s-1GIMPLE \-\s0> \s-1GRAPHITE \-\s0> \s-1GIMPLE\s0 transformation. Some minimal optimizations are also performed by the code generator CLooG, like index splitting and dead code elimination in loops. .IP "\fB\-floop\-nest\-optimize\fR" 4 *************** targets. *** 7467,7473 **** Constructs webs as commonly used for register allocation purposes and assign each web individual pseudo register. This allows the register allocation pass to operate on pseudos directly, but also strengthens several other optimization ! passes, such as \s-1CSE\s0, loop optimizer and trivial dead code remover. It can, however, make debugging impossible, since variables no longer stay in a \&\*(L"home register\*(R". .Sp --- 7476,7482 ---- Constructs webs as commonly used for register allocation purposes and assign each web individual pseudo register. This allows the register allocation pass to operate on pseudos directly, but also strengthens several other optimization ! passes, such as \s-1CSE,\s0 loop optimizer and trivial dead code remover. It can, however, make debugging impossible, since variables no longer stay in a \&\*(L"home register\*(R". .Sp *************** information. *** 7485,7491 **** .IP "\fB\-flto[=\fR\fIn\fR\fB]\fR" 4 .IX Item "-flto[=n]" This option runs the standard link-time optimizer. When invoked ! with source code, it generates \s-1GIMPLE\s0 (one of \s-1GCC\s0's internal representations) and writes it to special \s-1ELF\s0 sections in the object file. When the object files are linked together, all the function bodies are read from these \s-1ELF\s0 sections and instantiated as if they --- 7494,7500 ---- .IP "\fB\-flto[=\fR\fIn\fR\fB]\fR" 4 .IX Item "-flto[=n]" This option runs the standard link-time optimizer. When invoked ! with source code, it generates \s-1GIMPLE \s0(one of \s-1GCC\s0's internal representations) and writes it to special \s-1ELF\s0 sections in the object file. When the object files are linked together, all the function bodies are read from these \s-1ELF\s0 sections and instantiated as if they *************** participating in the same link with the *** 7579,7585 **** .Sp If \s-1LTO\s0 encounters objects with C linkage declared with incompatible types in separate translation units to be linked together (undefined ! behavior according to \s-1ISO\s0 C99 6.2.7), a non-fatal diagnostic may be issued. The behavior is still undefined at run time. .Sp Another feature of \s-1LTO\s0 is that it is possible to apply interprocedural --- 7588,7594 ---- .Sp If \s-1LTO\s0 encounters objects with C linkage declared with incompatible types in separate translation units to be linked together (undefined ! behavior according to \s-1ISO C99 6.2.7\s0), a non-fatal diagnostic may be issued. The behavior is still undefined at run time. .Sp Another feature of \s-1LTO\s0 is that it is possible to apply interprocedural *************** The current implementation of \s-1LTO\s0 *** 7632,7638 **** attempt to generate bytecode that is portable between different types of hosts. The bytecode files are versioned and there is a strict version check, so bytecode files generated in one version of ! \&\s-1GCC\s0 will not work with an older/newer version of \s-1GCC\s0. .Sp Link-time optimization does not work well with generation of debugging information. Combining \fB\-flto\fR with --- 7641,7647 ---- attempt to generate bytecode that is portable between different types of hosts. The bytecode files are versioned and there is a strict version check, so bytecode files generated in one version of ! \&\s-1GCC\s0 will not work with an older/newer version of \s-1GCC.\s0 .Sp Link-time optimization does not work well with generation of debugging information. Combining \fB\-flto\fR with *************** and the object code. This makes them usa *** 7705,7712 **** linking. This option is effective only when compiling with \fB\-flto\fR and is ignored at link time. .Sp ! \&\fB\-fno\-fat\-lto\-objects\fR improves compilation time over plain \s-1LTO\s0, but ! requires the complete toolchain to be aware of \s-1LTO\s0. It requires a linker with linker plugin support for basic functionality. Additionally, \&\fBnm\fR, \fBar\fR and \fBranlib\fR need to support linker plugins to allow a full-featured build environment --- 7714,7721 ---- linking. This option is effective only when compiling with \fB\-flto\fR and is ignored at link time. .Sp ! \&\fB\-fno\-fat\-lto\-objects\fR improves compilation time over plain \s-1LTO,\s0 but ! requires the complete toolchain to be aware of \s-1LTO.\s0 It requires a linker with linker plugin support for basic functionality. Additionally, \&\fBnm\fR, \fBar\fR and \fBranlib\fR need to support linker plugins to allow a full-featured build environment *************** them to store all pertinent intermediate *** 7811,7825 **** .IP "\fB\-fexcess\-precision=\fR\fIstyle\fR" 4 .IX Item "-fexcess-precision=style" This option allows further control over excess precision on machines ! where floating-point registers have more precision than the \s-1IEEE\s0 ! \&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR types and the processor does not support operations rounding to those types. By default, \&\fB\-fexcess\-precision=fast\fR is in effect; this means that operations are carried out in the precision of the registers and that it is unpredictable when rounding to the types specified in the source code takes place. When compiling C, if \&\fB\-fexcess\-precision=standard\fR is specified then excess ! precision follows the rules specified in \s-1ISO\s0 C99; in particular, both casts and assignments cause values to be rounded to their semantic types (whereas \fB\-ffloat\-store\fR only affects assignments). This option is enabled by default for C if a strict --- 7820,7834 ---- .IP "\fB\-fexcess\-precision=\fR\fIstyle\fR" 4 .IX Item "-fexcess-precision=style" This option allows further control over excess precision on machines ! where floating-point registers have more precision than the \s-1IEEE ! \&\s0\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR types and the processor does not support operations rounding to those types. By default, \&\fB\-fexcess\-precision=fast\fR is in effect; this means that operations are carried out in the precision of the registers and that it is unpredictable when rounding to the types specified in the source code takes place. When compiling C, if \&\fB\-fexcess\-precision=standard\fR is specified then excess ! precision follows the rules specified in \s-1ISO C99\s0; in particular, both casts and assignments cause values to be rounded to their semantic types (whereas \fB\-ffloat\-store\fR only affects assignments). This option is enabled by default for C if a strict *************** The default is \fB\-fno\-unsafe\-math\-o *** 7883,7889 **** .IP "\fB\-fassociative\-math\fR" 4 .IX Item "-fassociative-math" Allow re-association of operands in series of floating-point operations. ! This violates the \s-1ISO\s0 C and \*(C+ language standard by possibly changing computation result. \s-1NOTE:\s0 re-ordering may change the sign of zero as well as ignore NaNs and inhibit or create underflow or overflow (and thus cannot be used on code that relies on rounding behavior like --- 7892,7898 ---- .IP "\fB\-fassociative\-math\fR" 4 .IX Item "-fassociative-math" Allow re-association of operands in series of floating-point operations. ! This violates the \s-1ISO C\s0 and \*(C+ language standard by possibly changing computation result. \s-1NOTE:\s0 re-ordering may change the sign of zero as well as ignore NaNs and inhibit or create underflow or overflow (and thus cannot be used on code that relies on rounding behavior like *************** whether the result of a complex multipli *** 7986,7993 **** default is \fB\-fno\-cx\-limited\-range\fR, but is enabled by \&\fB\-ffast\-math\fR. .Sp ! This option controls the default setting of the \s-1ISO\s0 C99 ! \&\f(CW\*(C`CX_LIMITED_RANGE\*(C'\fR pragma. Nevertheless, the option applies to all languages. .IP "\fB\-fcx\-fortran\-rules\fR" 4 .IX Item "-fcx-fortran-rules" --- 7995,8002 ---- default is \fB\-fno\-cx\-limited\-range\fR, but is enabled by \&\fB\-ffast\-math\fR. .Sp ! This option controls the default setting of the \s-1ISO C99 ! \&\s0\f(CW\*(C`CX_LIMITED_RANGE\*(C'\fR pragma. Nevertheless, the option applies to all languages. .IP "\fB\-fcx\-fortran\-rules\fR" 4 .IX Item "-fcx-fortran-rules" *************** optimization is not done. *** 8231,8237 **** .IP "\fBmax-gcse-insertion-ratio\fR" 4 .IX Item "max-gcse-insertion-ratio" If the ratio of expression insertions to deletions is larger than this value ! for any expression, then \s-1RTL\s0 \s-1PRE\s0 inserts or removes the expression and thus leaves partially redundant computations in the instruction stream. The default value is 20. .IP "\fBmax-pending-list-length\fR" 4 .IX Item "max-pending-list-length" --- 8240,8246 ---- .IP "\fBmax-gcse-insertion-ratio\fR" 4 .IX Item "max-gcse-insertion-ratio" If the ratio of expression insertions to deletions is larger than this value ! for any expression, then \s-1RTL PRE\s0 inserts or removes the expression and thus leaves partially redundant computations in the instruction stream. The default value is 20. .IP "\fBmax-pending-list-length\fR" 4 .IX Item "max-pending-list-length" *************** when modulo scheduling a loop. Larger v *** 8246,8252 **** compilation time. .IP "\fBmax-inline-insns-single\fR" 4 .IX Item "max-inline-insns-single" ! Several parameters control the tree inliner used in \s-1GCC\s0. This number sets the maximum number of instructions (counted in \s-1GCC\s0's internal representation) in a single function that the tree inliner considers for inlining. This only affects functions declared --- 8255,8261 ---- compilation time. .IP "\fBmax-inline-insns-single\fR" 4 .IX Item "max-inline-insns-single" ! Several parameters control the tree inliner used in \s-1GCC.\s0 This number sets the maximum number of instructions (counted in \s-1GCC\s0's internal representation) in a single function that the tree inliner considers for inlining. This only affects functions declared *************** Tuning this may improve compilation spee *** 8593,8599 **** generation. .Sp The default is 30% + 70% * (\s-1RAM/1GB\s0) with an upper bound of 100% when ! \&\s-1RAM\s0 >= 1GB. If \f(CW\*(C`getrlimit\*(C'\fR is available, the notion of \*(L"\s-1RAM\s0\*(R" is the smallest of actual \s-1RAM\s0 and \f(CW\*(C`RLIMIT_DATA\*(C'\fR or \f(CW\*(C`RLIMIT_AS\*(C'\fR. If \&\s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a particular platform, the lower bound of 30% is used. Setting this parameter and --- 8602,8608 ---- generation. .Sp The default is 30% + 70% * (\s-1RAM/1GB\s0) with an upper bound of 100% when ! \&\s-1RAM \s0>= 1GB. If \f(CW\*(C`getrlimit\*(C'\fR is available, the notion of \*(L"\s-1RAM\*(R"\s0 is the smallest of actual \s-1RAM\s0 and \f(CW\*(C`RLIMIT_DATA\*(C'\fR or \f(CW\*(C`RLIMIT_AS\*(C'\fR. If \&\s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a particular platform, the lower bound of 30% is used. Setting this parameter and *************** by \fBggc-min-expand\fR% beyond \fBggc-m *** 8608,8614 **** tuning this may improve compilation speed, and has no effect on code generation. .Sp ! The default is the smaller of \s-1RAM/8\s0, \s-1RLIMIT_RSS\s0, or a limit that tries to ensure that \s-1RLIMIT_DATA\s0 or \s-1RLIMIT_AS\s0 are not exceeded, but with a lower bound of 4096 (four megabytes) and an upper bound of 131072 (128 megabytes). If \s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a --- 8617,8623 ---- tuning this may improve compilation speed, and has no effect on code generation. .Sp ! The default is the smaller of \s-1RAM/8, RLIMIT_RSS,\s0 or a limit that tries to ensure that \s-1RLIMIT_DATA\s0 or \s-1RLIMIT_AS\s0 are not exceeded, but with a lower bound of 4096 (four megabytes) and an upper bound of 131072 (128 megabytes). If \s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a *************** The number of partitions should exceed t *** 8900,8906 **** The default value is 32. .IP "\fBlto-minpartition\fR" 4 .IX Item "lto-minpartition" ! Size of minimal partition for \s-1WHOPR\s0 (in estimated instructions). This prevents expenses of splitting very small programs into too many partitions. .IP "\fBcxx-max-namespaces-for-diagnostic-help\fR" 4 --- 8909,8915 ---- The default value is 32. .IP "\fBlto-minpartition\fR" 4 .IX Item "lto-minpartition" ! Size of minimal partition for \s-1WHOPR \s0(in estimated instructions). This prevents expenses of splitting very small programs into too many partitions. .IP "\fBcxx-max-namespaces-for-diagnostic-help\fR" 4 *************** get trigraph conversion without warnings *** 9092,9098 **** .IP "\fB\-Wtraditional\fR" 4 .IX Item "-Wtraditional" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO\s0 C. Also warn about \s-1ISO\s0 C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" --- 9101,9107 ---- .IP "\fB\-Wtraditional\fR" 4 .IX Item "-Wtraditional" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C equivalent, and problematic constructs which should be avoided. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" *************** in finding bugs in your own code, theref *** 9145,9151 **** responsible for the system library, you may want to see them. .IP "\fB\-w\fR" 4 .IX Item "-w" ! Suppress all warnings, including those which \s-1GNU\s0 \s-1CPP\s0 issues by default. .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" Issue all the mandatory diagnostics listed in the C standard. Some of --- 9154,9160 ---- responsible for the system library, you may want to see them. .IP "\fB\-w\fR" 4 .IX Item "-w" ! Suppress all warnings, including those which \s-1GNU CPP\s0 issues by default. .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" Issue all the mandatory diagnostics listed in the C standard. Some of *************** This option allows use of a precompiled *** 9285,9294 **** \&\f(CW\*(C`#pragma GCC pch_preprocess "\f(CIfilename\f(CW"\*(C'\fR in the output to mark the place where the precompiled header was found, and its \fIfilename\fR. When \fB\-fpreprocessed\fR is in use, \s-1GCC\s0 recognizes this \f(CW\*(C`#pragma\*(C'\fR ! and loads the \s-1PCH\s0. .Sp This option is off by default, because the resulting preprocessed output ! is only really suitable as input to \s-1GCC\s0. It is switched on by \&\fB\-save\-temps\fR. .Sp You should not write this \f(CW\*(C`#pragma\*(C'\fR in your own code, but it is --- 9294,9303 ---- \&\f(CW\*(C`#pragma GCC pch_preprocess "\f(CIfilename\f(CW"\*(C'\fR in the output to mark the place where the precompiled header was found, and its \fIfilename\fR. When \fB\-fpreprocessed\fR is in use, \s-1GCC\s0 recognizes this \f(CW\*(C`#pragma\*(C'\fR ! and loads the \s-1PCH.\s0 .Sp This option is off by default, because the resulting preprocessed output ! is only really suitable as input to \s-1GCC. \s0 It is switched on by \&\fB\-save\-temps\fR. .Sp You should not write this \f(CW\*(C`#pragma\*(C'\fR in your own code, but it is *************** may be one of: *** 9341,9347 **** .el .IP "\f(CWiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! The \s-1ISO\s0 C standard from 1990. \fBc90\fR is the customary shorthand for this version of the standard. .Sp The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR. --- 9350,9356 ---- .el .IP "\f(CWiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! The \s-1ISO C\s0 standard from 1990. \fBc90\fR is the customary shorthand for this version of the standard. .Sp The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR. *************** The 1990 C standard, as amended in 1994. *** 9363,9369 **** .el .IP "\f(CWc9x\fR" 4 .IX Item "c9x" .PD ! The revised \s-1ISO\s0 C standard, published in December 1999. Before publication, this was known as C9X. .ie n .IP """iso9899:2011""" 4 .el .IP "\f(CWiso9899:2011\fR" 4 --- 9372,9378 ---- .el .IP "\f(CWc9x\fR" 4 .IX Item "c9x" .PD ! The revised \s-1ISO C\s0 standard, published in December 1999. Before publication, this was known as C9X. .ie n .IP """iso9899:2011""" 4 .el .IP "\f(CWiso9899:2011\fR" 4 *************** publication, this was known as C9X. *** 9376,9382 **** .el .IP "\f(CWc1x\fR" 4 .IX Item "c1x" .PD ! The revised \s-1ISO\s0 C standard, published in December 2011. Before publication, this was known as C1X. .ie n .IP """gnu90""" 4 .el .IP "\f(CWgnu90\fR" 4 --- 9385,9391 ---- .el .IP "\f(CWc1x\fR" 4 .IX Item "c1x" .PD ! The revised \s-1ISO C\s0 standard, published in December 2011. Before publication, this was known as C1X. .ie n .IP """gnu90""" 4 .el .IP "\f(CWgnu90\fR" 4 *************** The 2011 C standard plus \s-1GNU\s0 exte *** 9408,9414 **** .ie n .IP """c++98""" 4 .el .IP "\f(CWc++98\fR" 4 .IX Item "c++98" ! The 1998 \s-1ISO\s0 \*(C+ standard plus amendments. .ie n .IP """gnu++98""" 4 .el .IP "\f(CWgnu++98\fR" 4 .IX Item "gnu++98" --- 9417,9423 ---- .ie n .IP """c++98""" 4 .el .IP "\f(CWc++98\fR" 4 .IX Item "c++98" ! The 1998 \s-1ISO \*(C+\s0 standard plus amendments. .ie n .IP """gnu++98""" 4 .el .IP "\f(CWgnu++98\fR" 4 .IX Item "gnu++98" *************** Accept \fB$\fR in identifiers. *** 9534,9540 **** .IP "\fB\-fextended\-identifiers\fR" 4 .IX Item "-fextended-identifiers" Accept universal character names in identifiers. This option is ! experimental; in a future version of \s-1GCC\s0, it will be enabled by default for C99 and \*(C+. .IP "\fB\-fno\-canonical\-system\-headers\fR" 4 .IX Item "-fno-canonical-system-headers" --- 9543,9549 ---- .IP "\fB\-fextended\-identifiers\fR" 4 .IX Item "-fextended-identifiers" Accept universal character names in identifiers. This option is ! experimental; in a future version of \s-1GCC,\s0 it will be enabled by default for C99 and \*(C+. .IP "\fB\-fno\-canonical\-system\-headers\fR" 4 .IX Item "-fno-canonical-system-headers" *************** line. If the value is less than 1 or gr *** 9561,9567 **** ignored. The default is 8. .IP "\fB\-fdebug\-cpp\fR" 4 .IX Item "-fdebug-cpp" ! This option is only useful for debugging \s-1GCC\s0. When used with \&\fB\-E\fR, dumps debugging information about location maps. Every token in the output is preceded by the dump of the map its location belongs to. The dump of the map holding the location of a token would --- 9570,9576 ---- ignored. The default is 8. .IP "\fB\-fdebug\-cpp\fR" 4 .IX Item "-fdebug-cpp" ! This option is only useful for debugging \s-1GCC. \s0 When used with \&\fB\-E\fR, dumps debugging information about location maps. Every token in the output is preceded by the dump of the map its location belongs to. The dump of the map holding the location of a token would *************** Note that \-ftrack\-macro\-expansion=2 i *** 9594,9605 **** .IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fexec-charset=charset" Set the execution character set, used for string and character ! constants. The default is \s-1UTF\-8\s0. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. .IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fwide-exec-charset=charset" Set the wide execution character set, used for wide string and ! character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16\s0, whichever corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with \&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have --- 9603,9614 ---- .IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fexec-charset=charset" Set the execution character set, used for string and character ! constants. The default is \s-1UTF\-8. \s0\fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. .IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fwide-exec-charset=charset" Set the wide execution character set, used for wide string and ! character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16,\s0 whichever corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with \&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have *************** problems with encodings that do not fit *** 9607,9615 **** .IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4 .IX Item "-finput-charset=charset" Set the input character set, used for translation from the character ! set of the input file to the source character set used by \s-1GCC\s0. If the locale does not specify, or \s-1GCC\s0 cannot get this information from the ! locale, the default is \s-1UTF\-8\s0. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. --- 9616,9624 ---- .IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4 .IX Item "-finput-charset=charset" Set the input character set, used for translation from the character ! set of the input file to the source character set used by \s-1GCC. \s0 If the locale does not specify, or \s-1GCC\s0 cannot get this information from the ! locale, the default is \s-1UTF\-8. \s0 This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. *************** Cancel an assertion with the predicate \ *** 9646,9652 **** .IX Item "-dCHARS" \&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters, and must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of \s-1GCC\s0, and so are silently ignored. If you specify characters whose behavior conflicts, the result is undefined. .RS 4 --- 9655,9661 ---- .IX Item "-dCHARS" \&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters, and must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of \s-1GCC,\s0 and so are silently ignored. If you specify characters whose behavior conflicts, the result is undefined. .RS 4 *************** The \fB\-CC\fR option is generally used *** 9722,9733 **** .IP "\fB\-traditional\-cpp\fR" 4 .IX Item "-traditional-cpp" Try to imitate the behavior of old-fashioned C preprocessors, as ! opposed to \s-1ISO\s0 C preprocessors. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" Process trigraph sequences. These are three-character sequences, all starting with \fB??\fR, that ! are defined by \s-1ISO\s0 C to stand for single characters. For example, \&\fB??/\fR stands for \fB\e\fR, so \fB'??/n'\fR is a character constant for a newline. By default, \s-1GCC\s0 ignores trigraphs, but in standard-conforming modes it converts them. See the \fB\-std\fR and --- 9731,9742 ---- .IP "\fB\-traditional\-cpp\fR" 4 .IX Item "-traditional-cpp" Try to imitate the behavior of old-fashioned C preprocessors, as ! opposed to \s-1ISO C\s0 preprocessors. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" Process trigraph sequences. These are three-character sequences, all starting with \fB??\fR, that ! are defined by \s-1ISO C\s0 to stand for single characters. For example, \&\fB??/\fR stands for \fB\e\fR, so \fB'??/n'\fR is a character constant for a newline. By default, \s-1GCC\s0 ignores trigraphs, but in standard-conforming modes it converts them. See the \fB\-std\fR and *************** Print text describing all the command li *** 9753,9759 **** preprocessing anything. .IP "\fB\-v\fR" 4 .IX Item "-v" ! Verbose mode. Print out \s-1GNU\s0 \s-1CPP\s0's version number at the beginning of execution, and report the final form of the include path. .IP "\fB\-H\fR" 4 .IX Item "-H" --- 9762,9768 ---- preprocessing anything. .IP "\fB\-v\fR" 4 .IX Item "-v" ! Verbose mode. Print out \s-1GNU CPP\s0's version number at the beginning of execution, and report the final form of the include path. .IP "\fB\-H\fR" 4 .IX Item "-H" *************** header file is printed with \fB...x\fR a *** 9768,9774 **** .IP "\fB\-\-version\fR" 4 .IX Item "--version" .PD ! Print out \s-1GNU\s0 \s-1CPP\s0's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. .SS "Passing Options to the Assembler" .IX Subsection "Passing Options to the Assembler" --- 9777,9783 ---- .IP "\fB\-\-version\fR" 4 .IX Item "--version" .PD ! Print out \s-1GNU CPP\s0's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. .SS "Passing Options to the Assembler" .IX Subsection "Passing Options to the Assembler" *************** This is the mode used for floating-point *** 10377,10383 **** round-to-nearest-or-even rounding mode. .IP "\fBint\fR" 4 .IX Item "int" ! This is the mode used to perform integer calculations in the \s-1FPU\s0, e.g. integer multiply, or integer multiply-and-accumulate. .RE .RS 4 --- 10386,10392 ---- round-to-nearest-or-even rounding mode. .IP "\fBint\fR" 4 .IX Item "int" ! This is the mode used to perform integer calculations in the \s-1FPU,\s0 e.g. integer multiply, or integer multiply-and-accumulate. .RE .RS 4 *************** These \fB\-m\fR options are defined for *** 10428,10434 **** architectures: .IP "\fB\-mabi=\fR\fIname\fR" 4 .IX Item "-mabi=name" ! Generate code for the specified \s-1ABI\s0. Permissible values are: \fBapcs-gnu\fR, \&\fBatpcs\fR, \fBaapcs\fR, \fBaapcs-linux\fR and \fBiwmmxt\fR. .IP "\fB\-mapcs\-frame\fR" 4 .IX Item "-mapcs-frame" --- 10437,10443 ---- architectures: .IP "\fB\-mabi=\fR\fIname\fR" 4 .IX Item "-mabi=name" ! Generate code for the specified \s-1ABI. \s0 Permissible values are: \fBapcs-gnu\fR, \&\fBatpcs\fR, \fBaapcs\fR, \fBaapcs-linux\fR and \fBiwmmxt\fR. .IP "\fB\-mapcs\-frame\fR" 4 .IX Item "-mapcs-frame" *************** and uses FPU-specific calling convention *** 10471,10477 **** .Sp The default depends on the specific target configuration. Note that the hard-float and soft-float ABIs are not link-compatible; you must ! compile your entire program with the same \s-1ABI\s0, and link with a compatible set of libraries. .IP "\fB\-mlittle\-endian\fR" 4 .IX Item "-mlittle-endian" --- 10480,10486 ---- .Sp The default depends on the specific target configuration. Note that the hard-float and soft-float ABIs are not link-compatible; you must ! compile your entire program with the same \s-1ABI,\s0 and link with a compatible set of libraries. .IP "\fB\-mlittle\-endian\fR" 4 .IX Item "-mlittle-endian" *************** If the selected floating-point hardware *** 10585,10591 **** (e.g. \fB\-mfpu\fR=\fBneon\fR), note that floating-point operations are not generated by \s-1GCC\s0's auto-vectorization pass unless \&\fB\-funsafe\-math\-optimizations\fR is also specified. This is ! because \s-1NEON\s0 hardware does not fully implement the \s-1IEEE\s0 754 standard for floating-point arithmetic (in particular denormal values are treated as zero), so the use of \s-1NEON\s0 instructions may lead to a loss of precision. .IP "\fB\-mfp16\-format=\fR\fIname\fR" 4 --- 10594,10600 ---- (e.g. \fB\-mfpu\fR=\fBneon\fR), note that floating-point operations are not generated by \s-1GCC\s0's auto-vectorization pass unless \&\fB\-funsafe\-math\-optimizations\fR is also specified. This is ! because \s-1NEON\s0 hardware does not fully implement the \s-1IEEE 754\s0 standard for floating-point arithmetic (in particular denormal values are treated as zero), so the use of \s-1NEON\s0 instructions may lead to a loss of precision. .IP "\fB\-mfp16\-format=\fR\fIname\fR" 4 *************** The default for this option is@tie{}\f(C *** 10805,10811 **** .el .IP "\f(CWavr5\fR" 4 .IX Item "avr5" \&\*(L"Enhanced\*(R" devices with 16@tie{}KiB up to 64@tie{}KiB of program memory. ! \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`ata5790\*(C'\fR, \f(CW\*(C`ata5790n\*(C'\fR, \f(CW\*(C`ata5795\*(C'\fR, \f(CW\*(C`atmega16\*(C'\fR, \f(CW\*(C`atmega16a\*(C'\fR, \f(CW\*(C`atmega16hva\*(C'\fR, \f(CW\*(C`atmega16hva\*(C'\fR, \f(CW\*(C`atmega16hva2\*(C'\fR, \f(CW\*(C`atmega16hva2\*(C'\fR, \f(CW\*(C`atmega16hvb\*(C'\fR, \f(CW\*(C`atmega16hvb\*(C'\fR, \f(CW\*(C`atmega16hvbrevb\*(C'\fR, \f(CW\*(C`atmega16m1\*(C'\fR, \f(CW\*(C`atmega16m1\*(C'\fR, \f(CW\*(C`atmega16u4\*(C'\fR, \f(CW\*(C`atmega16u4\*(C'\fR, \f(CW\*(C`atmega161\*(C'\fR, \f(CW\*(C`atmega162\*(C'\fR, \f(CW\*(C`atmega163\*(C'\fR, \f(CW\*(C`atmega164a\*(C'\fR, \f(CW\*(C`atmega164p\*(C'\fR, \f(CW\*(C`atmega164pa\*(C'\fR, \f(CW\*(C`atmega165\*(C'\fR, \f(CW\*(C`atmega165a\*(C'\fR, \f(CW\*(C`atmega165p\*(C'\fR, \f(CW\*(C`atmega165pa\*(C'\fR, \f(CW\*(C`atmega168\*(C'\fR, \f(CW\*(C`atmega168a\*(C'\fR, \f(CW\*(C`atmega168p\*(C'\fR, \f(CW\*(C`atmega168pa\*(C'\fR, \f(CW\*(C`atmega169\*(C'\fR, \f(CW\*(C`atmega169a\*(C'\fR, \f(CW\*(C`atmega169p\*(C'\fR, \f(CW\*(C`atmega169pa\*(C'\fR, \f(CW\*(C`atmega26hvg\*(C'\fR, \f(CW\*(C`atmega32\*(C'\fR, \f(CW\*(C`atmega32a\*(C'\fR, \f(CW\*(C`atmega32a\*(C'\fR, \f(CW\*(C`atmega32c1\*(C'\fR, \f(CW\*(C`atmega32c1\*(C'\fR, \f(CW\*(C`atmega32hvb\*(C'\fR, \f(CW\*(C`atmega32hvb\*(C'\fR, \f(CW\*(C`atmega32hvbrevb\*(C'\fR, \f(CW\*(C`atmega32m1\*(C'\fR, \f(CW\*(C`atmega32m1\*(C'\fR, \f(CW\*(C`atmega32u4\*(C'\fR, \f(CW\*(C`atmega32u4\*(C'\fR, \f(CW\*(C`atmega32u6\*(C'\fR, \f(CW\*(C`atmega32u6\*(C'\fR, \f(CW\*(C`atmega323\*(C'\fR, \f(CW\*(C`atmega324a\*(C'\fR, \f(CW\*(C`atmega324p\*(C'\fR, \f(CW\*(C`atmega324pa\*(C'\fR, \f(CW\*(C`atmega325\*(C'\fR, \f(CW\*(C`atmega325a\*(C'\fR, \f(CW\*(C`atmega325p\*(C'\fR, \f(CW\*(C`atmega3250\*(C'\fR, \f(CW\*(C`atmega3250a\*(C'\fR, \f(CW\*(C`atmega3250p\*(C'\fR, \f(CW\*(C`atmega3250pa\*(C'\fR, \f(CW\*(C`atmega328\*(C'\fR, \f(CW\*(C`atmega328p\*(C'\fR, \f(CW\*(C`atmega329\*(C'\fR, \f(CW\*(C`atmega329a\*(C'\fR, \f(CW\*(C`atmega329p\*(C'\fR, \f(CW\*(C`atmega329pa\*(C'\fR, \f(CW\*(C`atmega3290\*(C'\fR, \f(CW\*(C`atmega3290a\*(C'\fR, \f(CW\*(C`atmega3290p\*(C'\fR, \f(CW\*(C`atmega3290pa\*(C'\fR, \f(CW\*(C`atmega406\*(C'\fR, \f(CW\*(C`atmega48hvf\*(C'\fR, \f(CW\*(C`atmega64\*(C'\fR, \f(CW\*(C`atmega64a\*(C'\fR, \f(CW\*(C`atmega64c1\*(C'\fR, \f(CW\*(C`atmega64c1\*(C'\fR, \f(CW\*(C`atmega64hve\*(C'\fR, \f(CW\*(C`atmega64m1\*(C'\fR, \f(CW\*(C`atmega64m1\*(C'\fR, \f(CW\*(C`atmega64rfa2\*(C'\fR, \f(CW\*(C`atmega64rfr2\*(C'\fR, \f(CW\*(C`atmega640\*(C'\fR, \f(CW\*(C`atmega644\*(C'\fR, \f(CW\*(C`atmega644a\*(C'\fR, \f(CW\*(C`atmega644p\*(C'\fR, \f(CW\*(C`atmega644pa\*(C'\fR, \f(CW\*(C`atmega645\*(C'\fR, \f(CW\*(C`atmega645a\*(C'\fR, \f(CW\*(C`atmega645p\*(C'\fR, \f(CW\*(C`atmega6450\*(C'\fR, \f(CW\*(C`atmega6450a\*(C'\fR, \f(CW\*(C`atmega6450p\*(C'\fR, \f(CW\*(C`atmega649\*(C'\fR, \f(CW\*(C`atmega649a\*(C'\fR, \f(CW\*(C`atmega649p\*(C'\fR, \f(CW\*(C`atmega6490\*(C'\fR, \f(CW\*(C`atmega6490a\*(C'\fR, \f(CW\*(C`atmega6490p\*(C'\fR, \f(CW\*(C`at90can32\*(C'\fR, \f(CW\*(C`at90can64\*(C'\fR, \f(CW\*(C`at90pwm161\*(C'\fR, \f(CW\*(C`at90pwm216\*(C'\fR, \f(CW\*(C`at90pwm316\*(C'\fR, \f(CW\*(C`at90scr100\*(C'\fR, \f(CW\*(C`at90usb646\*(C'\fR, \f(CW\*(C`at90usb647\*(C'\fR, \f(CW\*(C`at94k\*(C'\fR, \f(CW\*(C`m3000\*(C'\fR. .ie n .IP """avr51""" 4 .el .IP "\f(CWavr51\fR" 4 .IX Item "avr51" --- 10814,10820 ---- .el .IP "\f(CWavr5\fR" 4 .IX Item "avr5" \&\*(L"Enhanced\*(R" devices with 16@tie{}KiB up to 64@tie{}KiB of program memory. ! \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`ata5790\*(C'\fR, \f(CW\*(C`ata5790n\*(C'\fR, \f(CW\*(C`ata5795\*(C'\fR, \f(CW\*(C`atmega16\*(C'\fR, \f(CW\*(C`atmega16a\*(C'\fR, \f(CW\*(C`atmega16hva\*(C'\fR, \f(CW\*(C`atmega16hva2\*(C'\fR, \f(CW\*(C`atmega16hvb\*(C'\fR, \f(CW\*(C`atmega16hvbrevb\*(C'\fR, \f(CW\*(C`atmega16m1\*(C'\fR, \f(CW\*(C`atmega16u4\*(C'\fR, \f(CW\*(C`atmega161\*(C'\fR, \f(CW\*(C`atmega162\*(C'\fR, \f(CW\*(C`atmega163\*(C'\fR, \f(CW\*(C`atmega164a\*(C'\fR, \f(CW\*(C`atmega164p\*(C'\fR, \f(CW\*(C`atmega164pa\*(C'\fR, \f(CW\*(C`atmega165\*(C'\fR, \f(CW\*(C`atmega165a\*(C'\fR, \f(CW\*(C`atmega165p\*(C'\fR, \f(CW\*(C`atmega165pa\*(C'\fR, \f(CW\*(C`atmega168\*(C'\fR, \f(CW\*(C`atmega168a\*(C'\fR, \f(CW\*(C`atmega168p\*(C'\fR, \f(CW\*(C`atmega168pa\*(C'\fR, \f(CW\*(C`atmega169\*(C'\fR, \f(CW\*(C`atmega169a\*(C'\fR, \f(CW\*(C`atmega169p\*(C'\fR, \f(CW\*(C`atmega169pa\*(C'\fR, \f(CW\*(C`atmega26hvg\*(C'\fR, \f(CW\*(C`atmega32\*(C'\fR, \f(CW\*(C`atmega32a\*(C'\fR, \f(CW\*(C`atmega32c1\*(C'\fR, \f(CW\*(C`atmega32hvb\*(C'\fR, \f(CW\*(C`atmega32hvbrevb\*(C'\fR, \f(CW\*(C`atmega32m1\*(C'\fR, \f(CW\*(C`atmega32u4\*(C'\fR, \f(CW\*(C`atmega32u6\*(C'\fR, \f(CW\*(C`atmega323\*(C'\fR, \f(CW\*(C`atmega324a\*(C'\fR, \f(CW\*(C`atmega324p\*(C'\fR, \f(CW\*(C`atmega324pa\*(C'\fR, \f(CW\*(C`atmega325\*(C'\fR, \f(CW\*(C`atmega325a\*(C'\fR, \f(CW\*(C`atmega325p\*(C'\fR, \f(CW\*(C`atmega3250\*(C'\fR, \f(CW\*(C`atmega3250a\*(C'\fR, \f(CW\*(C`atmega3250p\*(C'\fR, \f(CW\*(C`atmega3250pa\*(C'\fR, \f(CW\*(C`atmega328\*(C'\fR, \f(CW\*(C`atmega328p\*(C'\fR, \f(CW\*(C`atmega329\*(C'\fR, \f(CW\*(C`atmega329a\*(C'\fR, \f(CW\*(C`atmega329p\*(C'\fR, \f(CW\*(C`atmega329pa\*(C'\fR, \f(CW\*(C`atmega3290\*(C'\fR, \f(CW\*(C`atmega3290a\*(C'\fR, \f(CW\*(C`atmega3290p\*(C'\fR, \f(CW\*(C`atmega3290pa\*(C'\fR, \f(CW\*(C`atmega406\*(C'\fR, \f(CW\*(C`atmega48hvf\*(C'\fR, \f(CW\*(C`atmega64\*(C'\fR, \f(CW\*(C`atmega64a\*(C'\fR, \f(CW\*(C`atmega64c1\*(C'\fR, \f(CW\*(C`atmega64hve\*(C'\fR, \f(CW\*(C`atmega64m1\*(C'\fR, \f(CW\*(C`atmega64rfa2\*(C'\fR, \f(CW\*(C`atmega64rfr2\*(C'\fR, \f(CW\*(C`atmega640\*(C'\fR, \f(CW\*(C`atmega644\*(C'\fR, \f(CW\*(C`atmega644a\*(C'\fR, \f(CW\*(C`atmega644p\*(C'\fR, \f(CW\*(C`atmega644pa\*(C'\fR, \f(CW\*(C`atmega645\*(C'\fR, \f(CW\*(C`atmega645a\*(C'\fR, \f(CW\*(C`atmega645p\*(C'\fR, \f(CW\*(C`atmega6450\*(C'\fR, \f(CW\*(C`atmega6450a\*(C'\fR, \f(CW\*(C`atmega6450p\*(C'\fR, \f(CW\*(C`atmega649\*(C'\fR, \f(CW\*(C`atmega649a\*(C'\fR, \f(CW\*(C`atmega649p\*(C'\fR, \f(CW\*(C`atmega6490\*(C'\fR, \f(CW\*(C`atmega6490a\*(C'\fR, \f(CW\*(C`atmega6490p\*(C'\fR, \f(CW\*(C`at90can32\*(C'\fR, \f(CW\*(C`at90can64\*(C'\fR, \f(CW\*(C`at90pwm161\*(C'\fR, \f(CW\*(C`at90pwm216\*(C'\fR, \f(CW\*(C`at90pwm316\*(C'\fR, \f(CW\*(C`at90scr100\*(C'\fR, \f(CW\*(C`at90usb646\*(C'\fR, \f(CW\*(C`at90usb647\*(C'\fR, \f(CW\*(C`at94k\*(C'\fR, \f(CW\*(C`m3000\*(C'\fR. .ie n .IP """avr51""" 4 .el .IP "\f(CWavr51\fR" 4 .IX Item "avr51" *************** The default for this option is@tie{}\f(C *** 10814,10846 **** .ie n .IP """avr6""" 4 .el .IP "\f(CWavr6\fR" 4 .IX Item "avr6" ! \&\*(L"Enhanced\*(R" devices with 3\-byte \s-1PC\s0, i.e. with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega2560\*(C'\fR, \f(CW\*(C`atmega2561\*(C'\fR. .ie n .IP """avrxmega2""" 4 .el .IP "\f(CWavrxmega2\fR" 4 .IX Item "avrxmega2" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 8@tie{}KiB and up to 64@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt112sl\*(C'\fR, \f(CW\*(C`atmxt224\*(C'\fR, \f(CW\*(C`atmxt224e\*(C'\fR, \f(CW\*(C`atmxt336s\*(C'\fR, \f(CW\*(C`atxmega16a4\*(C'\fR, \f(CW\*(C`atxmega16a4u\*(C'\fR, \f(CW\*(C`atxmega16c4\*(C'\fR, \f(CW\*(C`atxmega16d4\*(C'\fR, \f(CW\*(C`atxmega16x1\*(C'\fR, \f(CW\*(C`atxmega32a4\*(C'\fR, \f(CW\*(C`atxmega32a4u\*(C'\fR, \f(CW\*(C`atxmega32c4\*(C'\fR, \f(CW\*(C`atxmega32d4\*(C'\fR, \f(CW\*(C`atxmega32e5\*(C'\fR, \f(CW\*(C`atxmega32x1\*(C'\fR. .ie n .IP """avrxmega4""" 4 .el .IP "\f(CWavrxmega4\fR" 4 .IX Item "avrxmega4" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a3\*(C'\fR, \f(CW\*(C`atxmega64a3u\*(C'\fR, \f(CW\*(C`atxmega64a4u\*(C'\fR, \f(CW\*(C`atxmega64b1\*(C'\fR, \f(CW\*(C`atxmega64b3\*(C'\fR, \f(CW\*(C`atxmega64c3\*(C'\fR, \f(CW\*(C`atxmega64d3\*(C'\fR, \f(CW\*(C`atxmega64d4\*(C'\fR. .ie n .IP """avrxmega5""" 4 .el .IP "\f(CWavrxmega5\fR" 4 .IX Item "avrxmega5" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM\s0. ! \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a1\*(C'\fR, \f(CW\*(C`atxmega64a1u\*(C'\fR. .ie n .IP """avrxmega6""" 4 .el .IP "\f(CWavrxmega6\fR" 4 .IX Item "avrxmega6" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt540s\*(C'\fR, \f(CW\*(C`atmxt540sreva\*(C'\fR, \f(CW\*(C`atxmega128a3\*(C'\fR, \f(CW\*(C`atxmega128a3u\*(C'\fR, \f(CW\*(C`atxmega128b1\*(C'\fR, \f(CW\*(C`atxmega128b3\*(C'\fR, \f(CW\*(C`atxmega128c3\*(C'\fR, \f(CW\*(C`atxmega128d3\*(C'\fR, \f(CW\*(C`atxmega128d4\*(C'\fR, \f(CW\*(C`atxmega192a3\*(C'\fR, \f(CW\*(C`atxmega192a3u\*(C'\fR, \f(CW\*(C`atxmega192c3\*(C'\fR, \f(CW\*(C`atxmega192d3\*(C'\fR, \f(CW\*(C`atxmega256a3\*(C'\fR, \f(CW\*(C`atxmega256a3b\*(C'\fR, \f(CW\*(C`atxmega256a3bu\*(C'\fR, \f(CW\*(C`atxmega256a3u\*(C'\fR, \f(CW\*(C`atxmega256c3\*(C'\fR, \f(CW\*(C`atxmega256d3\*(C'\fR, \f(CW\*(C`atxmega384c3\*(C'\fR, \f(CW\*(C`atxmega384d3\*(C'\fR. .ie n .IP """avrxmega7""" 4 .el .IP "\f(CWavrxmega7\fR" 4 .IX Item "avrxmega7" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM\s0. ! \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega128a1\*(C'\fR, \f(CW\*(C`atxmega128a1u\*(C'\fR, \f(CW\*(C`atxmega128a4u\*(C'\fR. .ie n .IP """avr1""" 4 .el .IP "\f(CWavr1\fR" 4 .IX Item "avr1" --- 10823,10855 ---- .ie n .IP """avr6""" 4 .el .IP "\f(CWavr6\fR" 4 .IX Item "avr6" ! \&\*(L"Enhanced\*(R" devices with 3\-byte \s-1PC,\s0 i.e. with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega2560\*(C'\fR, \f(CW\*(C`atmega2561\*(C'\fR. .ie n .IP """avrxmega2""" 4 .el .IP "\f(CWavrxmega2\fR" 4 .IX Item "avrxmega2" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 8@tie{}KiB and up to 64@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt112sl\*(C'\fR, \f(CW\*(C`atmxt224\*(C'\fR, \f(CW\*(C`atmxt224e\*(C'\fR, \f(CW\*(C`atmxt336s\*(C'\fR, \f(CW\*(C`atxmega16a4\*(C'\fR, \f(CW\*(C`atxmega16a4u\*(C'\fR, \f(CW\*(C`atxmega16c4\*(C'\fR, \f(CW\*(C`atxmega16d4\*(C'\fR, \f(CW\*(C`atxmega16x1\*(C'\fR, \f(CW\*(C`atxmega32a4\*(C'\fR, \f(CW\*(C`atxmega32a4u\*(C'\fR, \f(CW\*(C`atxmega32c4\*(C'\fR, \f(CW\*(C`atxmega32d4\*(C'\fR, \f(CW\*(C`atxmega32e5\*(C'\fR, \f(CW\*(C`atxmega32x1\*(C'\fR. .ie n .IP """avrxmega4""" 4 .el .IP "\f(CWavrxmega4\fR" 4 .IX Item "avrxmega4" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a3\*(C'\fR, \f(CW\*(C`atxmega64a3u\*(C'\fR, \f(CW\*(C`atxmega64a4u\*(C'\fR, \f(CW\*(C`atxmega64b1\*(C'\fR, \f(CW\*(C`atxmega64b3\*(C'\fR, \f(CW\*(C`atxmega64c3\*(C'\fR, \f(CW\*(C`atxmega64d3\*(C'\fR, \f(CW\*(C`atxmega64d4\*(C'\fR. .ie n .IP """avrxmega5""" 4 .el .IP "\f(CWavrxmega5\fR" 4 .IX Item "avrxmega5" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM. ! \&\s0\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a1\*(C'\fR, \f(CW\*(C`atxmega64a1u\*(C'\fR. .ie n .IP """avrxmega6""" 4 .el .IP "\f(CWavrxmega6\fR" 4 .IX Item "avrxmega6" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt540s\*(C'\fR, \f(CW\*(C`atmxt540sreva\*(C'\fR, \f(CW\*(C`atxmega128a3\*(C'\fR, \f(CW\*(C`atxmega128a3u\*(C'\fR, \f(CW\*(C`atxmega128b1\*(C'\fR, \f(CW\*(C`atxmega128b3\*(C'\fR, \f(CW\*(C`atxmega128c3\*(C'\fR, \f(CW\*(C`atxmega128d3\*(C'\fR, \f(CW\*(C`atxmega128d4\*(C'\fR, \f(CW\*(C`atxmega192a3\*(C'\fR, \f(CW\*(C`atxmega192a3u\*(C'\fR, \f(CW\*(C`atxmega192c3\*(C'\fR, \f(CW\*(C`atxmega192d3\*(C'\fR, \f(CW\*(C`atxmega256a3\*(C'\fR, \f(CW\*(C`atxmega256a3b\*(C'\fR, \f(CW\*(C`atxmega256a3bu\*(C'\fR, \f(CW\*(C`atxmega256a3u\*(C'\fR, \f(CW\*(C`atxmega256c3\*(C'\fR, \f(CW\*(C`atxmega256d3\*(C'\fR, \f(CW\*(C`atxmega384c3\*(C'\fR, \f(CW\*(C`atxmega384d3\*(C'\fR. .ie n .IP """avrxmega7""" 4 .el .IP "\f(CWavrxmega7\fR" 4 .IX Item "avrxmega7" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM. ! \&\s0\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega128a1\*(C'\fR, \f(CW\*(C`atxmega128a1u\*(C'\fR, \f(CW\*(C`atxmega128a4u\*(C'\fR. .ie n .IP """avr1""" 4 .el .IP "\f(CWavr1\fR" 4 .IX Item "avr1" *************** command-line option. *** 11043,11049 **** .IX Item "-" tables you can specify the \fB\-fno\-jump\-tables\fR command-line option. .IP "\-" 4 ! .IX Item "-" .PD 0 .ie n .IP "\-" 4 .el .IP "\-" 4 --- 11052,11058 ---- .IX Item "-" tables you can specify the \fB\-fno\-jump\-tables\fR command-line option. .IP "\-" 4 ! .IX Item "-" .PD 0 .ie n .IP "\-" 4 .el .IP "\-" 4 *************** The definition of these macros is affect *** 11224,11230 **** .el .IP "\f(CW_\|_AVR_SP8_\|_\fR" 4 .IX Item "__AVR_SP8__" .PD ! The device has the \s-1SPH\s0 (high part of stack pointer) special function register or has an 8\-bit stack pointer, respectively. The definition of these macros is affected by \f(CW\*(C`\-mmcu=\*(C'\fR and in the cases of \f(CW\*(C`\-mmcu=avr2\*(C'\fR and \f(CW\*(C`\-mmcu=avr25\*(C'\fR also --- 11233,11239 ---- .el .IP "\f(CW_\|_AVR_SP8_\|_\fR" 4 .IX Item "__AVR_SP8__" .PD ! The device has the \s-1SPH \s0(high part of stack pointer) special function register or has an 8\-bit stack pointer, respectively. The definition of these macros is affected by \f(CW\*(C`\-mmcu=\*(C'\fR and in the cases of \f(CW\*(C`\-mmcu=avr2\*(C'\fR and \f(CW\*(C`\-mmcu=avr25\*(C'\fR also *************** This macro reflects the \f(CW\*(C`\-mno\ *** 11257,11263 **** .el .IP "\f(CW_\|_AVR_ERRATA_SKIP_JMP_CALL_\|_\fR" 4 .IX Item "__AVR_ERRATA_SKIP_JMP_CALL__" .PD ! Some \s-1AVR\s0 devices (\s-1AT90S8515\s0, ATmega103) must not skip 32\-bit instructions because of a hardware erratum. Skip instructions are \&\f(CW\*(C`SBRS\*(C'\fR, \f(CW\*(C`SBRC\*(C'\fR, \f(CW\*(C`SBIS\*(C'\fR, \f(CW\*(C`SBIC\*(C'\fR and \f(CW\*(C`CPSE\*(C'\fR. The second macro is only defined if \f(CW\*(C`_\|_AVR_HAVE_JMP_CALL_\|_\*(C'\fR is also --- 11266,11272 ---- .el .IP "\f(CW_\|_AVR_ERRATA_SKIP_JMP_CALL_\|_\fR" 4 .IX Item "__AVR_ERRATA_SKIP_JMP_CALL__" .PD ! Some \s-1AVR\s0 devices (\s-1AT90S8515,\s0 ATmega103) must not skip 32\-bit instructions because of a hardware erratum. Skip instructions are \&\f(CW\*(C`SBRS\*(C'\fR, \f(CW\*(C`SBRC\*(C'\fR, \f(CW\*(C`SBIS\*(C'\fR, \f(CW\*(C`SBIC\*(C'\fR and \f(CW\*(C`CPSE\*(C'\fR. The second macro is only defined if \f(CW\*(C`_\|_AVR_HAVE_JMP_CALL_\|_\*(C'\fR is also *************** should be used instead of \f(CW\*(C`main *** 11445,11452 **** This option can only be used in conjunction with \fB\-mmulticore\fR. .IP "\fB\-msdram\fR" 4 .IX Item "-msdram" ! Build a standalone application for \s-1SDRAM\s0. Proper start files and ! link scripts are used to put the application into \s-1SDRAM\s0, and the macro \&\f(CW\*(C`_\|_BFIN_SDRAM\*(C'\fR is defined. The loader should initialize \s-1SDRAM\s0 before loading the application. .IP "\fB\-micplb\fR" 4 --- 11454,11461 ---- This option can only be used in conjunction with \fB\-mmulticore\fR. .IP "\fB\-msdram\fR" 4 .IX Item "-msdram" ! Build a standalone application for \s-1SDRAM.\s0 Proper start files and ! link scripts are used to put the application into \s-1SDRAM,\s0 and the macro \&\f(CW\*(C`_\|_BFIN_SDRAM\*(C'\fR is defined. The loader should initialize \s-1SDRAM\s0 before loading the application. .IP "\fB\-micplb\fR" 4 *************** These options are defined specifically f *** 11505,11511 **** .PD Generate code for the specified architecture. The choices for \&\fIarchitecture-type\fR are \fBv3\fR, \fBv8\fR and \fBv10\fR for ! respectively \s-1ETRAX\s0\ 4, \s-1ETRAX\s0\ 100, and \s-1ETRAX\s0\ 100\ \s-1LX\s0. Default is \fBv0\fR except for cris-axis-linux-gnu, where the default is \&\fBv10\fR. .IP "\fB\-mtune=\fR\fIarchitecture-type\fR" 4 --- 11514,11520 ---- .PD Generate code for the specified architecture. The choices for \&\fIarchitecture-type\fR are \fBv3\fR, \fBv8\fR and \fBv10\fR for ! respectively \s-1ETRAX\s0\ 4, \s-1ETRAX\s0\ 100, and \s-1ETRAX\s0\ 100\ \s-1LX.\s0 Default is \fBv0\fR except for cris-axis-linux-gnu, where the default is \&\fBv10\fR. .IP "\fB\-mtune=\fR\fIarchitecture-type\fR" 4 *************** or storage for local variables needs to *** 11598,11604 **** With \fB\-fpic\fR and \fB\-fPIC\fR, don't generate (do generate) instruction sequences that load addresses for functions from the \s-1PLT\s0 part of the \s-1GOT\s0 rather than (traditional on other architectures) calls to the ! \&\s-1PLT\s0. The default is \fB\-mgotplt\fR. .IP "\fB\-melf\fR" 4 .IX Item "-melf" Legacy no-op option only recognized with the cris-axis-elf and --- 11607,11613 ---- With \fB\-fpic\fR and \fB\-fPIC\fR, don't generate (do generate) instruction sequences that load addresses for functions from the \s-1PLT\s0 part of the \s-1GOT\s0 rather than (traditional on other architectures) calls to the ! \&\s-1PLT. \s0 The default is \fB\-mgotplt\fR. .IP "\fB\-melf\fR" 4 .IX Item "-melf" Legacy no-op option only recognized with the cris-axis-elf and *************** However, \fBfar\fR is not valid with \fB *** 11654,11660 **** These options are defined for all architectures running the Darwin operating system. .PP ! \&\s-1FSF\s0 \s-1GCC\s0 on Darwin does not create \*(L"fat\*(R" object files; it creates an object file for the single architecture that \s-1GCC\s0 was built to target. Apple's \s-1GCC\s0 on Darwin does create \*(L"fat\*(R" files if multiple \&\fB\-arch\fR options are used; it does so by running the compiler or --- 11663,11669 ---- These options are defined for all architectures running the Darwin operating system. .PP ! \&\s-1FSF GCC\s0 on Darwin does not create \*(L"fat\*(R" object files; it creates an object file for the single architecture that \s-1GCC\s0 was built to target. Apple's \s-1GCC\s0 on Darwin does create \*(L"fat\*(R" files if multiple \&\fB\-arch\fR options are used; it does so by running the compiler or *************** warn about constructs contained within h *** 11714,11720 **** .IX Item "-gused" Emit debugging information for symbols that are used. For stabs debugging format, this enables \fB\-feliminate\-unused\-debug\-symbols\fR. ! This is by default \s-1ON\s0. .IP "\fB\-gfull\fR" 4 .IX Item "-gfull" Emit debugging information for all symbols and types. --- 11723,11729 ---- .IX Item "-gused" Emit debugging information for symbols that are used. For stabs debugging format, this enables \fB\-feliminate\-unused\-debug\-symbols\fR. ! This is by default \s-1ON.\s0 .IP "\fB\-gfull\fR" 4 .IX Item "-gfull" Emit debugging information for all symbols and types. *************** an executable when linking, using the Da *** 11790,11796 **** This causes \s-1GCC\s0's output file to have the \fI\s-1ALL\s0\fR subtype, instead of one controlled by the \fB\-mcpu\fR or \fB\-march\fR option. .IP "\fB\-allowable_client\fR \fIclient_name\fR" 4 ! .IX Item "-allowable_client client_name" .PD 0 .IP "\fB\-client_name\fR" 4 .IX Item "-client_name" --- 11799,11805 ---- This causes \s-1GCC\s0's output file to have the \fI\s-1ALL\s0\fR subtype, instead of one controlled by the \fB\-mcpu\fR or \fB\-march\fR option. .IP "\fB\-allowable_client\fR \fIclient_name\fR" 4 ! .IX Item "-allowable_client client_name" .PD 0 .IP "\fB\-client_name\fR" 4 .IX Item "-client_name" *************** compilers call this option \fB\-ieee_wit *** 11964,11970 **** .IP "\fB\-mieee\-with\-inexact\fR" 4 .IX Item "-mieee-with-inexact" This is like \fB\-mieee\fR except the generated code also maintains ! the \s-1IEEE\s0 \fIinexact-flag\fR. Turning on this option causes the generated code to implement fully-compliant \s-1IEEE\s0 math. In addition to \&\f(CW\*(C`_IEEE_FP\*(C'\fR, \f(CW\*(C`_IEEE_FP_EXACT\*(C'\fR is defined as a preprocessor macro. On some Alpha implementations the resulting code may execute --- 11973,11979 ---- .IP "\fB\-mieee\-with\-inexact\fR" 4 .IX Item "-mieee-with-inexact" This is like \fB\-mieee\fR except the generated code also maintains ! the \s-1IEEE \s0\fIinexact-flag\fR. Turning on this option causes the generated code to implement fully-compliant \s-1IEEE\s0 math. In addition to \&\f(CW\*(C`_IEEE_FP\*(C'\fR, \f(CW\*(C`_IEEE_FP_EXACT\*(C'\fR is defined as a preprocessor macro. On some Alpha implementations the resulting code may execute *************** before it can find the variables and con *** 12090,12097 **** .IP "\fB\-mno\-max\fR" 4 .IX Item "-mno-max" .PD ! Indicate whether \s-1GCC\s0 should generate code to use the optional \s-1BWX\s0, ! \&\s-1CIX\s0, \s-1FIX\s0 and \s-1MAX\s0 instruction sets. The default is to use the instruction sets supported by the \s-1CPU\s0 type specified via \fB\-mcpu=\fR option or that of the \s-1CPU\s0 on which \s-1GCC\s0 was built if none is specified. .IP "\fB\-mfloat\-vax\fR" 4 --- 12099,12106 ---- .IP "\fB\-mno\-max\fR" 4 .IX Item "-mno-max" .PD ! Indicate whether \s-1GCC\s0 should generate code to use the optional \s-1BWX, ! CIX, FIX\s0 and \s-1MAX\s0 instruction sets. The default is to use the instruction sets supported by the \s-1CPU\s0 type specified via \fB\-mcpu=\fR option or that of the \s-1CPU\s0 on which \s-1GCC\s0 was built if none is specified. .IP "\fB\-mfloat\-vax\fR" 4 *************** of the \s-1CPU\s0 on which \s-1GCC\s0 wa *** 12100,12106 **** .IP "\fB\-mfloat\-ieee\fR" 4 .IX Item "-mfloat-ieee" .PD ! Generate code that uses (does not use) \s-1VAX\s0 F and G floating-point arithmetic instead of \s-1IEEE\s0 single and double precision. .IP "\fB\-mexplicit\-relocs\fR" 4 .IX Item "-mexplicit-relocs" --- 12109,12115 ---- .IP "\fB\-mfloat\-ieee\fR" 4 .IX Item "-mfloat-ieee" .PD ! Generate code that uses (does not use) \s-1VAX F\s0 and G floating-point arithmetic instead of \s-1IEEE\s0 single and double precision. .IP "\fB\-mexplicit\-relocs\fR" 4 .IX Item "-mexplicit-relocs" *************** The default is \fB\-mlarge\-text\fR. *** 12155,12161 **** Set the instruction set and instruction scheduling parameters for machine type \fIcpu_type\fR. You can specify either the \fB\s-1EV\s0\fR style name or the corresponding chip number. \s-1GCC\s0 supports scheduling ! parameters for the \s-1EV4\s0, \s-1EV5\s0 and \s-1EV6\s0 family of processors and chooses the default values for the instruction set from the processor you specify. If you do not specify a processor type, \s-1GCC\s0 defaults to the processor on which the compiler was built. --- 12164,12170 ---- Set the instruction set and instruction scheduling parameters for machine type \fIcpu_type\fR. You can specify either the \fB\s-1EV\s0\fR style name or the corresponding chip number. \s-1GCC\s0 supports scheduling ! parameters for the \s-1EV4, EV5\s0 and \s-1EV6\s0 family of processors and chooses the default values for the instruction set from the processor you specify. If you do not specify a processor type, \s-1GCC\s0 defaults to the processor on which the compiler was built. *************** Schedules as an \s-1EV5\s0 and supports *** 12200,12213 **** .IP "\fB21264\fR" 4 .IX Item "21264" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX\s0, \s-1FIX\s0, and \s-1MAX\s0 extensions. .IP "\fBev67\fR" 4 .IX Item "ev67" .PD 0 .IP "\fB21264a\fR" 4 .IX Item "21264a" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX\s0, \s-1CIX\s0, \s-1FIX\s0, and \s-1MAX\s0 extensions. .RE .RS 4 .Sp --- 12209,12222 ---- .IP "\fB21264\fR" 4 .IX Item "21264" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX, FIX,\s0 and \s-1MAX\s0 extensions. .IP "\fBev67\fR" 4 .IX Item "ev67" .PD 0 .IP "\fB21264a\fR" 4 .IX Item "21264a" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX, CIX, FIX,\s0 and \s-1MAX\s0 extensions. .RE .RS 4 .Sp *************** A decimal number representing clock cycl *** 12248,12256 **** .IX Item "main" .PD The compiler contains estimates of the number of clock cycles for ! \&\*(L"typical\*(R" \s-1EV4\s0 & \s-1EV5\s0 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main memory. ! Note that L3 is only valid for \s-1EV5\s0. .RE .RS 4 .RE --- 12257,12265 ---- .IX Item "main" .PD The compiler contains estimates of the number of clock cycles for ! \&\*(L"typical\*(R" \s-1EV4 & EV5\s0 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main memory. ! Note that L3 is only valid for \s-1EV5.\s0 .RE .RS 4 .RE *************** Use multiply and add/subtract instructio *** 12323,12329 **** Do not use multiply and add/subtract instructions. .IP "\fB\-mfdpic\fR" 4 .IX Item "-mfdpic" ! Select the \s-1FDPIC\s0 \s-1ABI\s0, which uses function descriptors to represent pointers to functions. Without any PIC/PIE\-related options, it implies \fB\-fPIE\fR. With \fB\-fpic\fR or \fB\-fpie\fR, it assumes \s-1GOT\s0 entries and small data are within a 12\-bit range from the --- 12332,12338 ---- Do not use multiply and add/subtract instructions. .IP "\fB\-mfdpic\fR" 4 .IX Item "-mfdpic" ! Select the \s-1FDPIC ABI,\s0 which uses function descriptors to represent pointers to functions. Without any PIC/PIE\-related options, it implies \fB\-fPIE\fR. With \fB\-fpic\fR or \fB\-fpie\fR, it assumes \s-1GOT\s0 entries and small data are within a 12\-bit range from the *************** Assume a large \s-1TLS\s0 segment when g *** 12346,12352 **** Do not assume a large \s-1TLS\s0 segment when generating thread-local code. .IP "\fB\-mgprel\-ro\fR" 4 .IX Item "-mgprel-ro" ! Enable the use of \f(CW\*(C`GPREL\*(C'\fR relocations in the \s-1FDPIC\s0 \s-1ABI\s0 for data that is known to be in read-only sections. It's enabled by default, except for \fB\-fpic\fR or \fB\-fpie\fR: even though it may help make the global offset table smaller, it trades 1 instruction for 4. --- 12355,12361 ---- Do not assume a large \s-1TLS\s0 segment when generating thread-local code. .IP "\fB\-mgprel\-ro\fR" 4 .IX Item "-mgprel-ro" ! Enable the use of \f(CW\*(C`GPREL\*(C'\fR relocations in the \s-1FDPIC ABI\s0 for data that is known to be in read-only sections. It's enabled by default, except for \fB\-fpic\fR or \fB\-fpie\fR: even though it may help make the global offset table smaller, it trades 1 instruction for 4. *************** Select the processor type for which to g *** 12490,12496 **** These \fB\-m\fR options are defined for GNU/Linux targets: .IP "\fB\-mglibc\fR" 4 .IX Item "-mglibc" ! Use the \s-1GNU\s0 C library. This is the default except on \fB*\-*\-linux\-*uclibc*\fR and \fB*\-*\-linux\-*android*\fR targets. .IP "\fB\-muclibc\fR" 4 .IX Item "-muclibc" --- 12499,12505 ---- These \fB\-m\fR options are defined for GNU/Linux targets: .IP "\fB\-mglibc\fR" 4 .IX Item "-mglibc" ! Use the \s-1GNU C\s0 library. This is the default except on \fB*\-*\-linux\-*uclibc*\fR and \fB*\-*\-linux\-*android*\fR targets. .IP "\fB\-muclibc\fR" 4 .IX Item "-muclibc" *************** These \fB\-m\fR options are defined for *** 12569,12576 **** .IP "\fB\-march=\fR\fIarchitecture-type\fR" 4 .IX Item "-march=architecture-type" Generate code for the specified architecture. The choices for ! \&\fIarchitecture-type\fR are \fB1.0\fR for \s-1PA\s0 1.0, \fB1.1\fR for \s-1PA\s0 ! 1.1, and \fB2.0\fR for \s-1PA\s0 2.0 processors. Refer to \&\fI/usr/lib/sched.models\fR on an HP-UX system to determine the proper architecture option for your machine. Code compiled for lower numbered architectures runs on higher numbered architectures, but not the --- 12578,12585 ---- .IP "\fB\-march=\fR\fIarchitecture-type\fR" 4 .IX Item "-march=architecture-type" Generate code for the specified architecture. The choices for ! \&\fIarchitecture-type\fR are \fB1.0\fR for \s-1PA 1.0, \s0\fB1.1\fR for \s-1PA ! 1.1,\s0 and \fB2.0\fR for \s-1PA 2.0\s0 processors. Refer to \&\fI/usr/lib/sched.models\fR on an HP-UX system to determine the proper architecture option for your machine. Code compiled for lower numbered architectures runs on higher numbered architectures, but not the *************** floating-point operations, the compiler *** 12603,12609 **** .IP "\fB\-mdisable\-indexing\fR" 4 .IX Item "-mdisable-indexing" Prevent the compiler from using indexing address modes. This avoids some ! rather obscure problems when compiling \s-1MIG\s0 generated code under \s-1MACH\s0. .IP "\fB\-mno\-space\-regs\fR" 4 .IX Item "-mno-space-regs" Generate code that assumes the target has no space registers. This allows --- 12612,12618 ---- .IP "\fB\-mdisable\-indexing\fR" 4 .IX Item "-mdisable-indexing" Prevent the compiler from using indexing address modes. This avoids some ! rather obscure problems when compiling \s-1MIG\s0 generated code under \s-1MACH.\s0 .IP "\fB\-mno\-space\-regs\fR" 4 .IX Item "-mno-space-regs" Generate code that assumes the target has no space registers. This allows *************** cross-compilation. *** 12660,12676 **** \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC\s0, with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-msio\fR" 4 .IX Item "-msio" ! Generate the predefine, \f(CW\*(C`_SIO\*(C'\fR, for server \s-1IO\s0. The default is \&\fB\-mwsio\fR. This generates the predefines, \f(CW\*(C`_\|_hp9000s700\*(C'\fR, ! \&\f(CW\*(C`_\|_hp9000s700_\|_\*(C'\fR and \f(CW\*(C`_WSIO\*(C'\fR, for workstation \s-1IO\s0. These options are available under HP-UX and HI-UX. .IP "\fB\-mgnu\-ld\fR" 4 .IX Item "-mgnu-ld" ! Use options specific to \s-1GNU\s0 \fBld\fR. This passes \fB\-shared\fR to \fBld\fR when building a shared library. It is the default when \s-1GCC\s0 is configured, explicitly or implicitly, with the \s-1GNU\s0 linker. This option does not --- 12669,12685 ---- \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC,\s0 with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-msio\fR" 4 .IX Item "-msio" ! Generate the predefine, \f(CW\*(C`_SIO\*(C'\fR, for server \s-1IO. \s0 The default is \&\fB\-mwsio\fR. This generates the predefines, \f(CW\*(C`_\|_hp9000s700\*(C'\fR, ! \&\f(CW\*(C`_\|_hp9000s700_\|_\*(C'\fR and \f(CW\*(C`_WSIO\*(C'\fR, for workstation \s-1IO. \s0 These options are available under HP-UX and HI-UX. .IP "\fB\-mgnu\-ld\fR" 4 .IX Item "-mgnu-ld" ! Use options specific to \s-1GNU \s0\fBld\fR. This passes \fB\-shared\fR to \fBld\fR when building a shared library. It is the default when \s-1GCC\s0 is configured, explicitly or implicitly, with the \s-1GNU\s0 linker. This option does not *************** The \fBld\fR that is called is determine *** 12680,12689 **** \&\fB\-\-with\-ld\fR configure option, \s-1GCC\s0's program search path, and finally by the user's \fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available ! on the 64\-bit HP-UX \s-1GCC\s0, i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mhp\-ld\fR" 4 .IX Item "-mhp-ld" ! Use options specific to \s-1HP\s0 \fBld\fR. This passes \fB\-b\fR to \fBld\fR when building a shared library and passes \fB+Accept TypeMismatch\fR to \fBld\fR on all links. It is the default when \s-1GCC\s0 is configured, explicitly or --- 12689,12698 ---- \&\fB\-\-with\-ld\fR configure option, \s-1GCC\s0's program search path, and finally by the user's \fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available ! on the 64\-bit HP-UX \s-1GCC,\s0 i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mhp\-ld\fR" 4 .IX Item "-mhp-ld" ! Use options specific to \s-1HP \s0\fBld\fR. This passes \fB\-b\fR to \fBld\fR when building a shared library and passes \fB+Accept TypeMismatch\fR to \fBld\fR on all links. It is the default when \s-1GCC\s0 is configured, explicitly or *************** The \fBld\fR that is called is determine *** 12694,12700 **** configure option, \s-1GCC\s0's program search path, and finally by the user's \&\fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available on the 64\-bit ! HP-UX \s-1GCC\s0, i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mlong\-calls\fR" 4 .IX Item "-mlong-calls" Generate code that uses long call sequences. This ensures that a call --- 12703,12709 ---- configure option, \s-1GCC\s0's program search path, and finally by the user's \&\fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available on the 64\-bit ! HP-UX \s-1GCC,\s0 i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mlong\-calls\fR" 4 .IX Item "-mlong-calls" Generate code that uses long call sequences. This ensures that a call *************** long calls only when the distance from t *** 12703,12709 **** of the function or translation unit, as the case may be, exceeds a predefined limit set by the branch type being used. The limits for normal calls are 7,600,000 and 240,000 bytes, respectively for the ! \&\s-1PA\s0 2.0 and \s-1PA\s0 1.X architectures. Sibcalls are always limited at 240,000 bytes. .Sp Distances are measured from the beginning of functions when using the --- 12712,12718 ---- of the function or translation unit, as the case may be, exceeds a predefined limit set by the branch type being used. The limits for normal calls are 7,600,000 and 240,000 bytes, respectively for the ! \&\s-1PA 2.0\s0 and \s-1PA 1.X\s0 architectures. Sibcalls are always limited at 240,000 bytes. .Sp Distances are measured from the beginning of functions when using the *************** is available on HP-UX 10.10 and later. *** 12731,12737 **** \&\fB95\fR for HP-UX 10.10 though to 11.00, and \fB98\fR for HP-UX 11.11 and later. .Sp ! \&\fB\-munix=93\fR provides the same predefines as \s-1GCC\s0 3.3 and 3.4. \&\fB\-munix=95\fR provides additional predefines for \f(CW\*(C`XOPEN_UNIX\*(C'\fR and \f(CW\*(C`_XOPEN_SOURCE_EXTENDED\*(C'\fR, and the startfile \fIunix95.o\fR. \&\fB\-munix=98\fR provides additional predefines for \f(CW\*(C`_XOPEN_UNIX\*(C'\fR, --- 12740,12746 ---- \&\fB95\fR for HP-UX 10.10 though to 11.00, and \fB98\fR for HP-UX 11.11 and later. .Sp ! \&\fB\-munix=93\fR provides the same predefines as \s-1GCC 3.3\s0 and 3.4. \&\fB\-munix=95\fR provides additional predefines for \f(CW\*(C`XOPEN_UNIX\*(C'\fR and \f(CW\*(C`_XOPEN_SOURCE_EXTENDED\*(C'\fR, and the startfile \fIunix95.o\fR. \&\fB\-munix=98\fR provides additional predefines for \f(CW\*(C`_XOPEN_UNIX\*(C'\fR, *************** produces code optimized for the local ma *** 12795,12804 **** of the selected instruction set. .IP "\fBi386\fR" 4 .IX Item "i386" ! Original Intel i386 \s-1CPU\s0. .IP "\fBi486\fR" 4 .IX Item "i486" ! Intel i486 \s-1CPU\s0. (No scheduling is implemented for this chip.) .IP "\fBi586\fR" 4 .IX Item "i586" .PD 0 --- 12804,12813 ---- of the selected instruction set. .IP "\fBi386\fR" 4 .IX Item "i386" ! Original Intel i386 \s-1CPU.\s0 .IP "\fBi486\fR" 4 .IX Item "i486" ! Intel i486 \s-1CPU. \s0(No scheduling is implemented for this chip.) .IP "\fBi586\fR" 4 .IX Item "i586" .PD 0 *************** Intel i486 \s-1CPU\s0. (No scheduling i *** 12808,12817 **** Intel Pentium \s-1CPU\s0 with no \s-1MMX\s0 support. .IP "\fBpentium-mmx\fR" 4 .IX Item "pentium-mmx" ! Intel Pentium \s-1MMX\s0 \s-1CPU\s0, based on Pentium core with \s-1MMX\s0 instruction set support. .IP "\fBpentiumpro\fR" 4 .IX Item "pentiumpro" ! Intel Pentium Pro \s-1CPU\s0. .IP "\fBi686\fR" 4 .IX Item "i686" When used with \fB\-march\fR, the Pentium Pro --- 12817,12826 ---- Intel Pentium \s-1CPU\s0 with no \s-1MMX\s0 support. .IP "\fBpentium-mmx\fR" 4 .IX Item "pentium-mmx" ! Intel Pentium \s-1MMX CPU,\s0 based on Pentium core with \s-1MMX\s0 instruction set support. .IP "\fBpentiumpro\fR" 4 .IX Item "pentiumpro" ! Intel Pentium Pro \s-1CPU.\s0 .IP "\fBi686\fR" 4 .IX Item "i686" When used with \fB\-march\fR, the Pentium Pro *************** instruction set is used, so the code run *** 12819,12825 **** When used with \fB\-mtune\fR, it has the same meaning as \fBgeneric\fR. .IP "\fBpentium2\fR" 4 .IX Item "pentium2" ! Intel Pentium \s-1II\s0 \s-1CPU\s0, based on Pentium Pro core with \s-1MMX\s0 instruction set support. .IP "\fBpentium3\fR" 4 .IX Item "pentium3" --- 12828,12834 ---- When used with \fB\-mtune\fR, it has the same meaning as \fBgeneric\fR. .IP "\fBpentium2\fR" 4 .IX Item "pentium2" ! Intel Pentium \s-1II CPU,\s0 based on Pentium Pro core with \s-1MMX\s0 instruction set support. .IP "\fBpentium3\fR" 4 .IX Item "pentium3" *************** support. *** 12827,12891 **** .IP "\fBpentium3m\fR" 4 .IX Item "pentium3m" .PD ! Intel Pentium \s-1III\s0 \s-1CPU\s0, based on Pentium Pro core with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. .IP "\fBpentium-m\fR" 4 .IX Item "pentium-m" ! Intel Pentium M; low-power version of Intel Pentium \s-1III\s0 \s-1CPU\s0 ! with \s-1MMX\s0, \s-1SSE\s0 and \s-1SSE2\s0 instruction set support. Used by Centrino notebooks. .IP "\fBpentium4\fR" 4 .IX Item "pentium4" .PD 0 .IP "\fBpentium4m\fR" 4 .IX Item "pentium4m" .PD ! Intel Pentium 4 \s-1CPU\s0 with \s-1MMX\s0, \s-1SSE\s0 and \s-1SSE2\s0 instruction set support. .IP "\fBprescott\fR" 4 .IX Item "prescott" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBnocona\fR" 4 .IX Item "nocona" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, ! \&\s-1SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBcore2\fR" 4 .IX Item "core2" ! Intel Core 2 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBcorei7\fR" 4 .IX Item "corei7" ! Intel Core i7 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1 ! and \s-1SSE4\s0.2 instruction set support. .IP "\fBcorei7\-avx\fR" 4 .IX Item "corei7-avx" ! Intel Core i7 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1AVX\s0, \s-1AES\s0 and \s-1PCLMUL\s0 instruction set support. .IP "\fBcore-avx-i\fR" 4 .IX Item "core-avx-i" ! Intel Core \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1AVX\s0, \s-1AES\s0, \s-1PCLMUL\s0, \s-1FSGSBASE\s0, \s-1RDRND\s0 and F16C instruction set support. .IP "\fBatom\fR" 4 .IX Item "atom" ! Intel Atom \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBk6\fR" 4 .IX Item "k6" ! \&\s-1AMD\s0 K6 \s-1CPU\s0 with \s-1MMX\s0 instruction set support. .IP "\fBk6\-2\fR" 4 .IX Item "k6-2" .PD 0 .IP "\fBk6\-3\fR" 4 .IX Item "k6-3" .PD ! Improved versions of \s-1AMD\s0 K6 \s-1CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBathlon\fR" 4 .IX Item "athlon" .PD 0 .IP "\fBathlon-tbird\fR" 4 .IX Item "athlon-tbird" .PD ! \&\s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX\s0, 3dNOW!, enhanced 3DNow! and \s-1SSE\s0 prefetch instructions support. .IP "\fBathlon\-4\fR" 4 .IX Item "athlon-4" --- 12836,12905 ---- .IP "\fBpentium3m\fR" 4 .IX Item "pentium3m" .PD ! Intel Pentium \s-1III CPU,\s0 based on Pentium Pro core with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. .IP "\fBpentium-m\fR" 4 .IX Item "pentium-m" ! Intel Pentium M; low-power version of Intel Pentium \s-1III CPU\s0 ! with \s-1MMX, SSE\s0 and \s-1SSE2\s0 instruction set support. Used by Centrino notebooks. .IP "\fBpentium4\fR" 4 .IX Item "pentium4" .PD 0 .IP "\fBpentium4m\fR" 4 .IX Item "pentium4m" .PD ! Intel Pentium 4 \s-1CPU\s0 with \s-1MMX, SSE\s0 and \s-1SSE2\s0 instruction set support. .IP "\fBprescott\fR" 4 .IX Item "prescott" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with \s-1MMX, SSE, SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBnocona\fR" 4 .IX Item "nocona" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, ! SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBcore2\fR" 4 .IX Item "core2" ! Intel Core 2 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBcorei7\fR" 4 .IX Item "corei7" ! Intel Core i7 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1\s0 ! and \s-1SSE4.2\s0 instruction set support. .IP "\fBcorei7\-avx\fR" 4 .IX Item "corei7-avx" ! Intel Core i7 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, AVX, AES\s0 and \s-1PCLMUL\s0 instruction set support. .IP "\fBcore-avx-i\fR" 4 .IX Item "core-avx-i" ! Intel Core \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND\s0 and F16C instruction set support. + .IP "\fBcore\-avx2\fR" 4 + .IX Item "core-avx2" + Intel Core \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, + SSE4.1, SSE4.2, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2\s0 + and F16C instruction set support. .IP "\fBatom\fR" 4 .IX Item "atom" ! Intel Atom \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBk6\fR" 4 .IX Item "k6" ! \&\s-1AMD K6 CPU\s0 with \s-1MMX\s0 instruction set support. .IP "\fBk6\-2\fR" 4 .IX Item "k6-2" .PD 0 .IP "\fBk6\-3\fR" 4 .IX Item "k6-3" .PD ! Improved versions of \s-1AMD K6 CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBathlon\fR" 4 .IX Item "athlon" .PD 0 .IP "\fBathlon-tbird\fR" 4 .IX Item "athlon-tbird" .PD ! \&\s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX,\s0 3dNOW!, enhanced 3DNow! and \s-1SSE\s0 prefetch instructions support. .IP "\fBathlon\-4\fR" 4 .IX Item "athlon-4" *************** support. *** 12895,12901 **** .IP "\fBathlon-mp\fR" 4 .IX Item "athlon-mp" .PD ! Improved \s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX\s0, 3DNow!, enhanced 3DNow! and full \s-1SSE\s0 instruction set support. .IP "\fBk8\fR" 4 .IX Item "k8" --- 12909,12915 ---- .IP "\fBathlon-mp\fR" 4 .IX Item "athlon-mp" .PD ! Improved \s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX,\s0 3DNow!, enhanced 3DNow! and full \s-1SSE\s0 instruction set support. .IP "\fBk8\fR" 4 .IX Item "k8" *************** instruction set support. *** 12907,12915 **** .IP "\fBathlon-fx\fR" 4 .IX Item "athlon-fx" .PD ! Processors based on the \s-1AMD\s0 K8 core with x86\-64 instruction set support, including the \s-1AMD\s0 Opteron, Athlon 64, and Athlon 64 \s-1FX\s0 processors. ! (This supersets \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, 3DNow!, enhanced 3DNow! and 64\-bit instruction set extensions.) .IP "\fBk8\-sse3\fR" 4 .IX Item "k8-sse3" --- 12921,12929 ---- .IP "\fBathlon-fx\fR" 4 .IX Item "athlon-fx" .PD ! Processors based on the \s-1AMD K8\s0 core with x86\-64 instruction set support, including the \s-1AMD\s0 Opteron, Athlon 64, and Athlon 64 \s-1FX\s0 processors. ! (This supersets \s-1MMX, SSE, SSE2,\s0 3DNow!, enhanced 3DNow! and 64\-bit instruction set extensions.) .IP "\fBk8\-sse3\fR" 4 .IX Item "k8-sse3" *************** instruction set extensions.) *** 12919,12925 **** .IP "\fBathlon64\-sse3\fR" 4 .IX Item "athlon64-sse3" .PD ! Improved versions of \s-1AMD\s0 K8 cores with \s-1SSE3\s0 instruction set support. .IP "\fBamdfam10\fR" 4 .IX Item "amdfam10" .PD 0 --- 12933,12939 ---- .IP "\fBathlon64\-sse3\fR" 4 .IX Item "athlon64-sse3" .PD ! Improved versions of \s-1AMD K8\s0 cores with \s-1SSE3\s0 instruction set support. .IP "\fBamdfam10\fR" 4 .IX Item "amdfam10" .PD 0 *************** Improved versions of \s-1AMD\s0 K8 cores *** 12927,12976 **** .IX Item "barcelona" .PD CPUs based on \s-1AMD\s0 Family 10h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, 3DNow!, enhanced 3DNow!, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver1\fR" 4 .IX Item "bdver1" CPUs based on \s-1AMD\s0 Family 15h cores with x86\-64 instruction set support. (This ! supersets \s-1FMA4\s0, \s-1AVX\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1AES\s0, \s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, ! \&\s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver2\fR" 4 .IX Item "bdver2" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI\s0, \s-1TBM\s0, F16C, \s-1FMA\s0, \s-1AVX\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1AES\s0, \s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MMX\s0, \s-1SSE\s0, ! \&\s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver3\fR" 4 .IX Item "bdver3" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI\s0, \s-1TBM\s0, F16C, \s-1FMA\s0, \s-1AVX\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1AES\s0, \s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MMX\s0, \s-1SSE\s0, ! \&\s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions. .IP "\fBbtver1\fR" 4 .IX Item "btver1" CPUs based on \s-1AMD\s0 Family 14h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, \s-1SSE4A\s0, \s-1CX16\s0, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbtver2\fR" 4 .IX Item "btver2" CPUs based on \s-1AMD\s0 Family 16h cores with x86\-64 instruction set support. This ! includes \s-1MOVBE\s0, F16C, \s-1BMI\s0, \s-1AVX\s0, \s-1PCL_MUL\s0, \s-1AES\s0, \s-1SSE4\s0.2, \s-1SSE4\s0.1, \s-1CX16\s0, \s-1ABM\s0, ! \&\s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE3\s0, \s-1SSE2\s0, \s-1SSE\s0, \s-1MMX\s0 and 64\-bit instruction set extensions. .IP "\fBwinchip\-c6\fR" 4 .IX Item "winchip-c6" ! \&\s-1IDT\s0 WinChip C6 \s-1CPU\s0, dealt in same way as i486 with additional \s-1MMX\s0 instruction set support. .IP "\fBwinchip2\fR" 4 .IX Item "winchip2" ! \&\s-1IDT\s0 WinChip 2 \s-1CPU\s0, dealt in same way as i486 with additional \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBc3\fR" 4 .IX Item "c3" ! \&\s-1VIA\s0 C3 \s-1CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. (No scheduling is implemented for this chip.) .IP "\fBc3\-2\fR" 4 .IX Item "c3-2" ! \&\s-1VIA\s0 C3\-2 (Nehemiah/C5XL) \s-1CPU\s0 with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. (No scheduling is implemented for this chip.) .IP "\fBgeode\fR" 4 --- 12941,12990 ---- .IX Item "barcelona" .PD CPUs based on \s-1AMD\s0 Family 10h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX, SSE, SSE2, SSE3, SSE4A,\s0 3DNow!, enhanced 3DNow!, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver1\fR" 4 .IX Item "bdver1" CPUs based on \s-1AMD\s0 Family 15h cores with x86\-64 instruction set support. (This ! supersets \s-1FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, ! SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver2\fR" 4 .IX Item "bdver2" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, ! SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver3\fR" 4 .IX Item "bdver3" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, ! SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions. .IP "\fBbtver1\fR" 4 .IX Item "btver1" CPUs based on \s-1AMD\s0 Family 14h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbtver2\fR" 4 .IX Item "btver2" CPUs based on \s-1AMD\s0 Family 16h cores with x86\-64 instruction set support. This ! includes \s-1MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM, ! SSE4A, SSSE3, SSE3, SSE2, SSE, MMX\s0 and 64\-bit instruction set extensions. .IP "\fBwinchip\-c6\fR" 4 .IX Item "winchip-c6" ! \&\s-1IDT\s0 WinChip C6 \s-1CPU,\s0 dealt in same way as i486 with additional \s-1MMX\s0 instruction set support. .IP "\fBwinchip2\fR" 4 .IX Item "winchip2" ! \&\s-1IDT\s0 WinChip 2 \s-1CPU,\s0 dealt in same way as i486 with additional \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBc3\fR" 4 .IX Item "c3" ! \&\s-1VIA C3 CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. (No scheduling is implemented for this chip.) .IP "\fBc3\-2\fR" 4 .IX Item "c3-2" ! \&\s-1VIA C3\-2 \s0(Nehemiah/C5XL) \s-1CPU\s0 with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. (No scheduling is implemented for this chip.) .IP "\fBgeode\fR" 4 *************** of your application will have, then you *** 13004,13010 **** .Sp As new processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you upgrade to a newer version of ! \&\s-1GCC\s0, code generation controlled by this option will change to reflect the processors that are most common at the time that version of \s-1GCC\s0 is released. .Sp --- 13018,13024 ---- .Sp As new processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you upgrade to a newer version of ! \&\s-1GCC,\s0 code generation controlled by this option will change to reflect the processors that are most common at the time that version of \s-1GCC\s0 is released. .Sp *************** comparison is unordered. *** 13087,13093 **** .IX Item "-msoft-float" Generate output containing library calls for floating point. .Sp ! \&\fBWarning:\fR the requisite libraries are not part of \s-1GCC\s0. Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for --- 13101,13107 ---- .IX Item "-msoft-float" Generate output containing library calls for floating point. .Sp ! \&\fBWarning:\fR the requisite libraries are not part of \s-1GCC.\s0 Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for *************** Do not use the \s-1FPU\s0 registers for *** 13102,13109 **** .Sp The usual calling convention has functions return values of types \&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR in an \s-1FPU\s0 register, even if there ! is no \s-1FPU\s0. The idea is that the operating system should emulate ! an \s-1FPU\s0. .Sp The option \fB\-mno\-fp\-ret\-in\-387\fR causes such values to be returned in ordinary \s-1CPU\s0 registers instead. --- 13116,13123 ---- .Sp The usual calling convention has functions return values of types \&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR in an \s-1FPU\s0 register, even if there ! is no \s-1FPU. \s0 The idea is that the operating system should emulate ! an \s-1FPU.\s0 .Sp The option \fB\-mno\-fp\-ret\-in\-387\fR causes such values to be returned in ordinary \s-1CPU\s0 registers instead. *************** so \fB\-m96bit\-long\-double\fR is the d *** 13148,13154 **** .Sp Modern architectures (Pentium and newer) prefer \f(CW\*(C`long double\*(C'\fR to be aligned to an 8\- or 16\-byte boundary. In arrays or structures ! conforming to the \s-1ABI\s0, this is not possible. So specifying \&\fB\-m128bit\-long\-double\fR aligns \f(CW\*(C`long double\*(C'\fR to a 16\-byte boundary by padding the \f(CW\*(C`long double\*(C'\fR with an additional 32\-bit zero. --- 13162,13168 ---- .Sp Modern architectures (Pentium and newer) prefer \f(CW\*(C`long double\*(C'\fR to be aligned to an 8\- or 16\-byte boundary. In arrays or structures ! conforming to the \s-1ABI,\s0 this is not possible. So specifying \&\fB\-m128bit\-long\-double\fR aligns \f(CW\*(C`long double\*(C'\fR to a 16\-byte boundary by padding the \f(CW\*(C`long double\*(C'\fR with an additional 32\-bit zero. *************** its \s-1ABI\s0 specifies that \f(CW\*(C` *** 13159,13165 **** Notice that neither of these options enable any extra precision over the x87 standard of 80 bits for a \f(CW\*(C`long double\*(C'\fR. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI\s0, this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking --- 13173,13179 ---- Notice that neither of these options enable any extra precision over the x87 standard of 80 bits for a \f(CW\*(C`long double\*(C'\fR. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI,\s0 this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking *************** These switches control the size of \f(CW *** 13175,13181 **** of 64 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the \f(CW\*(C`double\*(C'\fR type. This is the default for Bionic C library. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI\s0, this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking --- 13189,13195 ---- of 64 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the \f(CW\*(C`double\*(C'\fR type. This is the default for Bionic C library. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI,\s0 this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking *************** Studio compilers until version 12. Late *** 13239,13245 **** with Studio 12 Update@tie{}1) follow the \s-1ABI\s0 used by other x86 targets, which is the default on Solaris@tie{}10 and later. \fIOnly\fR use this option if you need to remain compatible with existing code produced by those ! previous compiler versions or older versions of \s-1GCC\s0. .IP "\fB\-mpc32\fR" 4 .IX Item "-mpc32" .PD 0 --- 13253,13259 ---- with Studio 12 Update@tie{}1) follow the \s-1ABI\s0 used by other x86 targets, which is the default on Solaris@tie{}10 and later. \fIOnly\fR use this option if you need to remain compatible with existing code produced by those ! previous compiler versions or older versions of \s-1GCC.\s0 .IP "\fB\-mpc32\fR" 4 .IX Item "-mpc32" .PD 0 *************** the one specified by \fB\-mpreferred\-st *** 13300,13306 **** .Sp On Pentium and Pentium Pro, \f(CW\*(C`double\*(C'\fR and \f(CW\*(C`long double\*(C'\fR values should be aligned to an 8\-byte boundary (see \fB\-malign\-double\fR) or ! suffer significant run time performance penalties. On Pentium \s-1III\s0, the Streaming \s-1SIMD\s0 Extension (\s-1SSE\s0) data type \f(CW\*(C`_\|_m128\*(C'\fR may not work properly if it is not 16\-byte aligned. .Sp --- 13314,13320 ---- .Sp On Pentium and Pentium Pro, \f(CW\*(C`double\*(C'\fR and \f(CW\*(C`long double\*(C'\fR values should be aligned to an 8\-byte boundary (see \fB\-malign\-double\fR) or ! suffer significant run time performance penalties. On Pentium \s-1III,\s0 the Streaming \s-1SIMD\s0 Extension (\s-1SSE\s0) data type \f(CW\*(C`_\|_m128\*(C'\fR may not work properly if it is not 16\-byte aligned. .Sp *************** preferred alignment to \fB\-mpreferred\- *** 13428,13436 **** .IP "\fB\-mno\-tbm\fR" 4 .IX Item "-mno-tbm" .PD ! These switches enable or disable the use of instructions in the \s-1MMX\s0, \s-1SSE\s0, ! \&\s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1AVX\s0, \s-1AVX2\s0, \s-1AES\s0, \s-1PCLMUL\s0, \s-1FSGSBASE\s0, \s-1RDRND\s0, F16C, ! \&\s-1FMA\s0, \s-1SSE4A\s0, \s-1FMA4\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1ABM\s0, \s-1BMI\s0, \s-1BMI2\s0, \s-1LZCNT\s0, \s-1RTM\s0 or 3DNow! extended instruction sets. These extensions are also available as built-in functions: see \&\fBX86 Built-in Functions\fR, for details of the functions enabled and --- 13442,13450 ---- .IP "\fB\-mno\-tbm\fR" 4 .IX Item "-mno-tbm" .PD ! These switches enable or disable the use of instructions in the \s-1MMX, SSE, ! SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, F16C, ! FMA, SSE4A, FMA4, XOP, LWP, ABM, BMI, BMI2, LZCNT, RTM\s0 or 3DNow! extended instruction sets. These extensions are also available as built-in functions: see \&\fBX86 Built-in Functions\fR, for details of the functions enabled and *************** This option enables generation of \f(CW\ *** 13487,13493 **** Early Intel Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4 G1 step in December 2005, lacked the \f(CW\*(C`LAHF\*(C'\fR and \f(CW\*(C`SAHF\*(C'\fR instructions ! which were supported by \s-1AMD64\s0. These are load and store instructions, respectively, for certain status flags. In 64\-bit mode, the \f(CW\*(C`SAHF\*(C'\fR instruction is used to optimize \f(CW\*(C`fmod\*(C'\fR, \&\f(CW\*(C`drem\*(C'\fR, and \f(CW\*(C`remainder\*(C'\fR built-in functions; --- 13501,13507 ---- Early Intel Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4 G1 step in December 2005, lacked the \f(CW\*(C`LAHF\*(C'\fR and \f(CW\*(C`SAHF\*(C'\fR instructions ! which were supported by \s-1AMD64.\s0 These are load and store instructions, respectively, for certain status flags. In 64\-bit mode, the \f(CW\*(C`SAHF\*(C'\fR instruction is used to optimize \f(CW\*(C`fmod\*(C'\fR, \&\f(CW\*(C`drem\*(C'\fR, and \f(CW\*(C`remainder\*(C'\fR built-in functions; *************** external library. Supported values for *** 13563,13569 **** for the Intel short vector math library and \fBacml\fR for the \s-1AMD\s0 math core library. To use this option, both \fB\-ftree\-vectorize\fR and ! \&\fB\-funsafe\-math\-optimizations\fR have to be enabled, and an \s-1SVML\s0 or \s-1ACML\s0 ABI-compatible library must be specified at link time. .Sp \&\s-1GCC\s0 currently emits calls to \f(CW\*(C`vmldExp2\*(C'\fR, --- 13577,13583 ---- for the Intel short vector math library and \fBacml\fR for the \s-1AMD\s0 math core library. To use this option, both \fB\-ftree\-vectorize\fR and ! \&\fB\-funsafe\-math\-optimizations\fR have to be enabled, and an \s-1SVML\s0 or \s-1ACML \s0 ABI-compatible library must be specified at link time. .Sp \&\s-1GCC\s0 currently emits calls to \f(CW\*(C`vmldExp2\*(C'\fR, *************** when \fB\-mveclibabi=acml\fR is used. *** 13586,13592 **** .IX Item "-mabi=name" Generate code for the specified calling convention. Permissible values are \fBsysv\fR for the \s-1ABI\s0 used on GNU/Linux and other systems, and ! \&\fBms\fR for the Microsoft \s-1ABI\s0. The default is to use the Microsoft \&\s-1ABI\s0 when targeting Microsoft Windows and the SysV \s-1ABI\s0 on all other systems. You can control this behavior for a specific function by using the function attribute \fBms_abi\fR/\fBsysv_abi\fR. --- 13600,13606 ---- .IX Item "-mabi=name" Generate code for the specified calling convention. Permissible values are \fBsysv\fR for the \s-1ABI\s0 used on GNU/Linux and other systems, and ! \&\fBms\fR for the Microsoft \s-1ABI. \s0 The default is to use the Microsoft \&\s-1ABI\s0 when targeting Microsoft Windows and the SysV \s-1ABI\s0 on all other systems. You can control this behavior for a specific function by using the function attribute \fBms_abi\fR/\fBsysv_abi\fR. *************** or whether the thread base pointer must *** 13685,13691 **** is valid depends on the operating system, and whether it maps the segment to cover the entire \s-1TLS\s0 area. .Sp ! For systems that use the \s-1GNU\s0 C Library, the default is on. .IP "\fB\-msse2avx\fR" 4 .IX Item "-msse2avx" .PD 0 --- 13699,13705 ---- is valid depends on the operating system, and whether it maps the segment to cover the entire \s-1TLS\s0 area. .Sp ! For systems that use the \s-1GNU C\s0 Library, the default is on. .IP "\fB\-msse2avx\fR" 4 .IX Item "-msse2avx" .PD 0 *************** appropriately. *** 13834,13840 **** This option is available for MinGW targets. It specifies that the executable flag for the stack used by nested functions isn't set. This is necessary for binaries running in kernel mode of ! Microsoft Windows, as there the User32 \s-1API\s0, which is used to set executable privileges, isn't available. .IP "\fB\-fwritable\-relocated\-rdata\fR" 4 .IX Item "-fwritable-relocated-rdata" --- 13848,13854 ---- This option is available for MinGW targets. It specifies that the executable flag for the stack used by nested functions isn't set. This is necessary for binaries running in kernel mode of ! Microsoft Windows, as there the User32 \s-1API,\s0 which is used to set executable privileges, isn't available. .IP "\fB\-fwritable\-relocated\-rdata\fR" 4 .IX Item "-fwritable-relocated-rdata" *************** Generate (or don't) code for the \s-1GNU *** 13881,13887 **** .IP "\fB\-mno\-pic\fR" 4 .IX Item "-mno-pic" Generate code that does not use a global pointer register. The result ! is not position independent code, and violates the \s-1IA\-64\s0 \s-1ABI\s0. .IP "\fB\-mvolatile\-asm\-stop\fR" 4 .IX Item "-mvolatile-asm-stop" .PD 0 --- 13895,13901 ---- .IP "\fB\-mno\-pic\fR" 4 .IX Item "-mno-pic" Generate code that does not use a global pointer register. The result ! is not position independent code, and violates the \s-1IA\-64 ABI.\s0 .IP "\fB\-mvolatile\-asm\-stop\fR" 4 .IX Item "-mvolatile-asm-stop" .PD 0 *************** instructions. The default is to use the *** 13961,13967 **** .IP "\fB\-mdwarf2\-asm\fR" 4 .IX Item "-mdwarf2-asm" .PD ! Don't (or do) generate assembler code for the \s-1DWARF\s0 2 line number debugging info. This may be useful when not using the \s-1GNU\s0 assembler. .IP "\fB\-mearly\-stop\-bits\fR" 4 .IX Item "-mearly-stop-bits" --- 13975,13981 ---- .IP "\fB\-mdwarf2\-asm\fR" 4 .IX Item "-mdwarf2-asm" .PD ! Don't (or do) generate assembler code for the \s-1DWARF 2\s0 line number debugging info. This may be useful when not using the \s-1GNU\s0 assembler. .IP "\fB\-mearly\-stop\-bits\fR" 4 .IX Item "-mearly-stop-bits" *************** Specify bit size of immediate \s-1TLS\s0 *** 13985,13991 **** 64. .IP "\fB\-mtune=\fR\fIcpu-type\fR" 4 .IX Item "-mtune=cpu-type" ! Tune the instruction scheduling for a particular \s-1CPU\s0, Valid values are \&\fBitanium\fR, \fBitanium1\fR, \fBmerced\fR, \fBitanium2\fR, and \fBmckinley\fR. .IP "\fB\-milp32\fR" 4 --- 13999,14005 ---- 64. .IP "\fB\-mtune=\fR\fIcpu-type\fR" 4 .IX Item "-mtune=cpu-type" ! Tune the instruction scheduling for a particular \s-1CPU,\s0 Valid values are \&\fBitanium\fR, \fBitanium1\fR, \fBmerced\fR, \fBitanium2\fR, and \fBmckinley\fR. .IP "\fB\-milp32\fR" 4 *************** have to be emulated by software on the 6 *** 14434,14440 **** does not have code to emulate those instructions. .IP "\fB\-mcpu32\fR" 4 .IX Item "-mcpu32" ! Generate output for a \s-1CPU32\s0. This is the default when the compiler is configured for CPU32\-based systems. It is equivalent to \fB\-march=cpu32\fR. .Sp --- 14448,14454 ---- does not have code to emulate those instructions. .IP "\fB\-mcpu32\fR" 4 .IX Item "-mcpu32" ! Generate output for a \s-1CPU32. \s0 This is the default when the compiler is configured for CPU32\-based systems. It is equivalent to \fB\-march=cpu32\fR. .Sp *************** Use this option for microcontrollers wit *** 14443,14458 **** 68336, 68340, 68341, 68349 and 68360. .IP "\fB\-m5200\fR" 4 .IX Item "-m5200" ! Generate output for a 520X ColdFire \s-1CPU\s0. This is the default when the compiler is configured for 520X\-based systems. It is equivalent to \fB\-mcpu=5206\fR, and is now deprecated in favor of that option. .Sp Use this option for microcontroller with a 5200 core, including ! the \s-1MCF5202\s0, \s-1MCF5203\s0, \s-1MCF5204\s0 and \s-1MCF5206\s0. .IP "\fB\-m5206e\fR" 4 .IX Item "-m5206e" ! Generate output for a 5206e ColdFire \s-1CPU\s0. The option is now deprecated in favor of the equivalent \fB\-mcpu=5206e\fR. .IP "\fB\-m528x\fR" 4 .IX Item "-m528x" --- 14457,14472 ---- 68336, 68340, 68341, 68349 and 68360. .IP "\fB\-m5200\fR" 4 .IX Item "-m5200" ! Generate output for a 520X ColdFire \s-1CPU. \s0 This is the default when the compiler is configured for 520X\-based systems. It is equivalent to \fB\-mcpu=5206\fR, and is now deprecated in favor of that option. .Sp Use this option for microcontroller with a 5200 core, including ! the \s-1MCF5202, MCF5203, MCF5204\s0 and \s-1MCF5206.\s0 .IP "\fB\-m5206e\fR" 4 .IX Item "-m5206e" ! Generate output for a 5206e ColdFire \s-1CPU. \s0 The option is now deprecated in favor of the equivalent \fB\-mcpu=5206e\fR. .IP "\fB\-m528x\fR" 4 .IX Item "-m528x" *************** The option is now deprecated in favor of *** 14461,14475 **** \&\fB\-mcpu=528x\fR. .IP "\fB\-m5307\fR" 4 .IX Item "-m5307" ! Generate output for a ColdFire 5307 \s-1CPU\s0. The option is now deprecated in favor of the equivalent \fB\-mcpu=5307\fR. .IP "\fB\-m5407\fR" 4 .IX Item "-m5407" ! Generate output for a ColdFire 5407 \s-1CPU\s0. The option is now deprecated in favor of the equivalent \fB\-mcpu=5407\fR. .IP "\fB\-mcfv4e\fR" 4 .IX Item "-mcfv4e" ! Generate output for a ColdFire V4e family \s-1CPU\s0 (e.g. 547x/548x). This includes use of hardware floating-point instructions. The option is equivalent to \fB\-mcpu=547x\fR, and is now deprecated in favor of that option. --- 14475,14489 ---- \&\fB\-mcpu=528x\fR. .IP "\fB\-m5307\fR" 4 .IX Item "-m5307" ! Generate output for a ColdFire 5307 \s-1CPU. \s0 The option is now deprecated in favor of the equivalent \fB\-mcpu=5307\fR. .IP "\fB\-m5407\fR" 4 .IX Item "-m5407" ! Generate output for a ColdFire 5407 \s-1CPU. \s0 The option is now deprecated in favor of the equivalent \fB\-mcpu=5407\fR. .IP "\fB\-mcfv4e\fR" 4 .IX Item "-mcfv4e" ! Generate output for a ColdFire V4e family \s-1CPU \s0(e.g. 547x/548x). This includes use of hardware floating-point instructions. The option is equivalent to \fB\-mcpu=547x\fR, and is now deprecated in favor of that option. *************** The option is equivalent to \fB\-march=6 *** 14496,14509 **** .IX Item "-m68881" .PD Generate floating-point instructions. This is the default for 68020 ! and above, and for ColdFire devices that have an \s-1FPU\s0. It defines the macro \fB_\|_HAVE_68881_\|_\fR on M680x0 targets and \fB_\|_mcffpu_\|_\fR on ColdFire targets. .IP "\fB\-msoft\-float\fR" 4 .IX Item "-msoft-float" Do not generate floating-point instructions; use library calls instead. This is the default for 68000, 68010, and 68832 targets. It is also ! the default for ColdFire devices that have no \s-1FPU\s0. .IP "\fB\-mdiv\fR" 4 .IX Item "-mdiv" .PD 0 --- 14510,14523 ---- .IX Item "-m68881" .PD Generate floating-point instructions. This is the default for 68020 ! and above, and for ColdFire devices that have an \s-1FPU. \s0 It defines the macro \fB_\|_HAVE_68881_\|_\fR on M680x0 targets and \fB_\|_mcffpu_\|_\fR on ColdFire targets. .IP "\fB\-msoft\-float\fR" 4 .IX Item "-msoft-float" Do not generate floating-point instructions; use library calls instead. This is the default for 68000, 68010, and 68832 targets. It is also ! the default for ColdFire devices that have no \s-1FPU.\s0 .IP "\fB\-mdiv\fR" 4 .IX Item "-mdiv" .PD 0 *************** the default for ColdFire devices that ha *** 14513,14520 **** Generate (do not generate) ColdFire hardware divide and remainder instructions. If \fB\-march\fR is used without \fB\-mcpu\fR, the default is \*(L"on\*(R" for ColdFire architectures and \*(L"off\*(R" for M680x0 ! architectures. Otherwise, the default is taken from the target \s-1CPU\s0 ! (either the default \s-1CPU\s0, or the one specified by \fB\-mcpu\fR). For example, the default is \*(L"off\*(R" for \fB\-mcpu=5206\fR and \*(L"on\*(R" for \&\fB\-mcpu=5206e\fR. .Sp --- 14527,14534 ---- Generate (do not generate) ColdFire hardware divide and remainder instructions. If \fB\-march\fR is used without \fB\-mcpu\fR, the default is \*(L"on\*(R" for ColdFire architectures and \*(L"off\*(R" for M680x0 ! architectures. Otherwise, the default is taken from the target \s-1CPU ! \&\s0(either the default \s-1CPU,\s0 or the one specified by \fB\-mcpu\fR). For example, the default is \*(L"off\*(R" for \fB\-mcpu=5206\fR and \*(L"on\*(R" for \&\fB\-mcpu=5206e\fR. .Sp *************** that works if the \s-1GOT\s0 has more th *** 14633,14639 **** larger and slower than code generated without this option. On M680x0 processors, this option is not needed; \fB\-fPIC\fR suffices. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT\s0. While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: --- 14647,14653 ---- larger and slower than code generated without this option. On M680x0 processors, this option is not needed; \fB\-fPIC\fR suffices. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT.\s0 While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: *************** useful unless you also provide \f(CW\*(C *** 14775,14781 **** Selects one of the built-in core configurations. Each MeP chip has one or more modules in it; each module has a core \s-1CPU\s0 and a variety of coprocessors, optional instructions, and peripherals. The ! \&\f(CW\*(C`MeP\-Integrator\*(C'\fR tool, not part of \s-1GCC\s0, provides these configurations through this option; using this option is the same as using all the corresponding command-line options. The default configuration is \f(CW\*(C`default\*(C'\fR. --- 14789,14795 ---- Selects one of the built-in core configurations. Each MeP chip has one or more modules in it; each module has a core \s-1CPU\s0 and a variety of coprocessors, optional instructions, and peripherals. The ! \&\f(CW\*(C`MeP\-Integrator\*(C'\fR tool, not part of \s-1GCC,\s0 provides these configurations through this option; using this option is the same as using all the corresponding command-line options. The default configuration is \f(CW\*(C`default\*(C'\fR. *************** Do not optimize block moves, use \f(CW\* *** 14878,14884 **** This option is deprecated. Use \fB\-fno\-zero\-initialized\-in\-bss\fR instead. .IP "\fB\-mcpu=\fR\fIcpu-type\fR" 4 .IX Item "-mcpu=cpu-type" ! Use features of, and schedule code for, the given \s-1CPU\s0. Supported values are in the format \fBv\fR\fIX\fR\fB.\fR\fI\s-1YY\s0\fR\fB.\fR\fIZ\fR, where \fIX\fR is a major version, \fI\s-1YY\s0\fR is the minor version, and \&\fIZ\fR is compatibility code. Example values are \fBv3.00.a\fR, --- 14892,14898 ---- This option is deprecated. Use \fB\-fno\-zero\-initialized\-in\-bss\fR instead. .IP "\fB\-mcpu=\fR\fIcpu-type\fR" 4 .IX Item "-mcpu=cpu-type" ! Use features of, and schedule code for, the given \s-1CPU.\s0 Supported values are in the format \fBv\fR\fIX\fR\fB.\fR\fI\s-1YY\s0\fR\fB.\fR\fIZ\fR, where \fIX\fR is a major version, \fI\s-1YY\s0\fR is the minor version, and \&\fIZ\fR is compatibility code. Example values are \fBv3.00.a\fR, *************** configurations. *** 14964,14970 **** .IP "\fB\-march=\fR\fIarch\fR" 4 .IX Item "-march=arch" Generate code that runs on \fIarch\fR, which can be the name of a ! generic \s-1MIPS\s0 \s-1ISA\s0, or the name of a particular processor. The \s-1ISA\s0 names are: \&\fBmips1\fR, \fBmips2\fR, \fBmips3\fR, \fBmips4\fR, \&\fBmips32\fR, \fBmips32r2\fR, \fBmips64\fR and \fBmips64r2\fR. --- 14978,14984 ---- .IP "\fB\-march=\fR\fIarch\fR" 4 .IX Item "-march=arch" Generate code that runs on \fIarch\fR, which can be the name of a ! generic \s-1MIPS ISA,\s0 or the name of a particular processor. The \s-1ISA\s0 names are: \&\fBmips1\fR, \fBmips2\fR, \fBmips3\fR, \fBmips4\fR, \&\fBmips32\fR, \fBmips32r2\fR, \fBmips64\fR and \fBmips64r2\fR. *************** The processor names are: *** 14992,14998 **** \&\fBvr5000\fR, \fBvr5400\fR, \fBvr5500\fR, \&\fBxlr\fR and \fBxlp\fR. The special value \fBfrom-abi\fR selects the ! most compatible architecture for the selected \s-1ABI\s0 (that is, \&\fBmips1\fR for 32\-bit ABIs and \fBmips3\fR for 64\-bit ABIs). .Sp The native Linux/GNU toolchain also supports the value \fBnative\fR, --- 15006,15012 ---- \&\fBvr5000\fR, \fBvr5400\fR, \fBvr5500\fR, \&\fBxlr\fR and \fBxlp\fR. The special value \fBfrom-abi\fR selects the ! most compatible architecture for the selected \s-1ABI \s0(that is, \&\fBmips1\fR for 32\-bit ABIs and \fBmips3\fR for 64\-bit ABIs). .Sp The native Linux/GNU toolchain also supports the value \fBnative\fR, *************** Equivalent to \fB\-march=mips64r2\fR. *** 15073,15079 **** .IX Item "-mno-mips16" .PD Generate (do not generate) \s-1MIPS16\s0 code. If \s-1GCC\s0 is targeting a ! \&\s-1MIPS32\s0 or \s-1MIPS64\s0 architecture, it makes use of the MIPS16e \s-1ASE\s0. .Sp \&\s-1MIPS16\s0 code generation can also be controlled on a per-function basis by means of \f(CW\*(C`mips16\*(C'\fR and \f(CW\*(C`nomips16\*(C'\fR attributes. --- 15087,15093 ---- .IX Item "-mno-mips16" .PD Generate (do not generate) \s-1MIPS16\s0 code. If \s-1GCC\s0 is targeting a ! \&\s-1MIPS32\s0 or \s-1MIPS64\s0 architecture, it makes use of the MIPS16e \s-1ASE.\s0 .Sp \&\s-1MIPS16\s0 code generation can also be controlled on a per-function basis by means of \f(CW\*(C`mips16\*(C'\fR and \f(CW\*(C`nomips16\*(C'\fR attributes. *************** Require (do not require) that non\-MIPS1 *** 15094,15100 **** For example, non\-MIPS16 code cannot jump directly to \s-1MIPS16\s0 code; it must either use a call or an indirect jump. \fB\-minterlink\-mips16\fR therefore disables direct jumps unless \s-1GCC\s0 knows that the target of the ! jump is not \s-1MIPS16\s0. .IP "\fB\-mabi=32\fR" 4 .IX Item "-mabi=32" .PD 0 --- 15108,15114 ---- For example, non\-MIPS16 code cannot jump directly to \s-1MIPS16\s0 code; it must either use a call or an indirect jump. \fB\-minterlink\-mips16\fR therefore disables direct jumps unless \s-1GCC\s0 knows that the target of the ! jump is not \s-1MIPS16.\s0 .IP "\fB\-mabi=32\fR" 4 .IX Item "-mabi=32" .PD 0 *************** jump is not \s-1MIPS16\s0. *** 15107,15119 **** .IP "\fB\-mabi=eabi\fR" 4 .IX Item "-mabi=eabi" .PD ! Generate code for the given \s-1ABI\s0. .Sp Note that the \s-1EABI\s0 has a 32\-bit and a 64\-bit variant. \s-1GCC\s0 normally generates 64\-bit code when you select a 64\-bit architecture, but you can use \fB\-mgp32\fR to get 32\-bit code instead. .Sp ! For information about the O64 \s-1ABI\s0, see <\fBhttp://gcc.gnu.org/projects/mipso64\-abi.html\fR>. .Sp \&\s-1GCC\s0 supports a variant of the o32 \s-1ABI\s0 in which floating-point registers --- 15121,15133 ---- .IP "\fB\-mabi=eabi\fR" 4 .IX Item "-mabi=eabi" .PD ! Generate code for the given \s-1ABI.\s0 .Sp Note that the \s-1EABI\s0 has a 32\-bit and a 64\-bit variant. \s-1GCC\s0 normally generates 64\-bit code when you select a 64\-bit architecture, but you can use \fB\-mgp32\fR to get 32\-bit code instead. .Sp ! For information about the O64 \s-1ABI,\s0 see <\fBhttp://gcc.gnu.org/projects/mipso64\-abi.html\fR>. .Sp \&\s-1GCC\s0 supports a variant of the o32 \s-1ABI\s0 in which floating-point registers *************** executables both smaller and quicker. *** 15169,15175 **** .PD Assume (do not assume) that the static and dynamic linkers support PLTs and copy relocations. This option only affects ! \&\fB\-mno\-shared \-mabicalls\fR. For the n64 \s-1ABI\s0, this option has no effect without \fB\-msym32\fR. .Sp You can make \fB\-mplt\fR the default by configuring --- 15183,15189 ---- .PD Assume (do not assume) that the static and dynamic linkers support PLTs and copy relocations. This option only affects ! \&\fB\-mno\-shared \-mabicalls\fR. For the n64 \s-1ABI,\s0 this option has no effect without \fB\-msym32\fR. .Sp You can make \fB\-mplt\fR the default by configuring *************** You can make \fB\-mplt\fR the default by *** 15184,15190 **** Lift (do not lift) the usual restrictions on the size of the global offset table. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT\s0. While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: --- 15198,15204 ---- Lift (do not lift) the usual restrictions on the size of the global offset table. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT.\s0 While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: *************** configurations; see the installation doc *** 15265,15272 **** .IP "\fB\-mno\-dsp\fR" 4 .IX Item "-mno-dsp" .PD ! Use (do not use) revision 1 of the \s-1MIPS\s0 \s-1DSP\s0 \s-1ASE\s0. ! This option defines the preprocessor macro \fB_\|_mips_dsp\fR. It also defines \&\fB_\|_mips_dsp_rev\fR to 1. .IP "\fB\-mdspr2\fR" 4 --- 15279,15286 ---- .IP "\fB\-mno\-dsp\fR" 4 .IX Item "-mno-dsp" .PD ! Use (do not use) revision 1 of the \s-1MIPS DSP ASE. ! \s0 This option defines the preprocessor macro \fB_\|_mips_dsp\fR. It also defines \&\fB_\|_mips_dsp_rev\fR to 1. .IP "\fB\-mdspr2\fR" 4 *************** preprocessor macro \fB_\|_mips_dsp\fR. *** 15275,15282 **** .IP "\fB\-mno\-dspr2\fR" 4 .IX Item "-mno-dspr2" .PD ! Use (do not use) revision 2 of the \s-1MIPS\s0 \s-1DSP\s0 \s-1ASE\s0. ! This option defines the preprocessor macros \fB_\|_mips_dsp\fR and \fB_\|_mips_dspr2\fR. It also defines \fB_\|_mips_dsp_rev\fR to 2. .IP "\fB\-msmartmips\fR" 4 --- 15289,15296 ---- .IP "\fB\-mno\-dspr2\fR" 4 .IX Item "-mno-dspr2" .PD ! Use (do not use) revision 2 of the \s-1MIPS DSP ASE. ! \s0 This option defines the preprocessor macros \fB_\|_mips_dsp\fR and \fB_\|_mips_dspr2\fR. It also defines \fB_\|_mips_dsp_rev\fR to 2. .IP "\fB\-msmartmips\fR" 4 *************** It also defines \fB_\|_mips_dsp_rev\fR t *** 15285,15291 **** .IP "\fB\-mno\-smartmips\fR" 4 .IX Item "-mno-smartmips" .PD ! Use (do not use) the \s-1MIPS\s0 SmartMIPS \s-1ASE\s0. .IP "\fB\-mpaired\-single\fR" 4 .IX Item "-mpaired-single" .PD 0 --- 15299,15305 ---- .IP "\fB\-mno\-smartmips\fR" 4 .IX Item "-mno-smartmips" .PD ! Use (do not use) the \s-1MIPS\s0 SmartMIPS \s-1ASE.\s0 .IP "\fB\-mpaired\-single\fR" 4 .IX Item "-mpaired-single" .PD 0 *************** hardware floating-point support to be en *** 15310,15316 **** .IP "\fB\-mno\-mips3d\fR" 4 .IX Item "-mno-mips3d" .PD ! Use (do not use) the \s-1MIPS\-3D\s0 \s-1ASE\s0. The option \fB\-mips3d\fR implies \fB\-mpaired\-single\fR. .IP "\fB\-mmt\fR" 4 .IX Item "-mmt" --- 15324,15330 ---- .IP "\fB\-mno\-mips3d\fR" 4 .IX Item "-mno-mips3d" .PD ! Use (do not use) the \s-1MIPS\-3D ASE. \s0 The option \fB\-mips3d\fR implies \fB\-mpaired\-single\fR. .IP "\fB\-mmt\fR" 4 .IX Item "-mmt" *************** Use (do not use) \s-1MT\s0 Multithreadin *** 15325,15331 **** .IP "\fB\-mno\-mcu\fR" 4 .IX Item "-mno-mcu" .PD ! Use (do not use) the \s-1MIPS\s0 \s-1MCU\s0 \s-1ASE\s0 instructions. .IP "\fB\-mlong64\fR" 4 .IX Item "-mlong64" Force \f(CW\*(C`long\*(C'\fR types to be 64 bits wide. See \fB\-mlong32\fR for --- 15339,15345 ---- .IP "\fB\-mno\-mcu\fR" 4 .IX Item "-mno-mcu" .PD ! Use (do not use) the \s-1MIPS MCU ASE\s0 instructions. .IP "\fB\-mlong64\fR" 4 .IX Item "-mlong64" Force \f(CW\*(C`long\*(C'\fR types to be 64 bits wide. See \fB\-mlong32\fR for *************** determined. *** 15336,15342 **** Force \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`int\*(C'\fR, and pointer types to be 32 bits wide. .Sp The default size of \f(CW\*(C`int\*(C'\fRs, \f(CW\*(C`long\*(C'\fRs and pointers depends on ! the \s-1ABI\s0. All the supported ABIs use 32\-bit \f(CW\*(C`int\*(C'\fRs. The n64 \s-1ABI\s0 uses 64\-bit \f(CW\*(C`long\*(C'\fRs, as does the 64\-bit \s-1EABI\s0; the others use 32\-bit \f(CW\*(C`long\*(C'\fRs. Pointers are the same size as \f(CW\*(C`long\*(C'\fRs, or the same size as integer registers, whichever is smaller. --- 15350,15356 ---- Force \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`int\*(C'\fR, and pointer types to be 32 bits wide. .Sp The default size of \f(CW\*(C`int\*(C'\fRs, \f(CW\*(C`long\*(C'\fRs and pointers depends on ! the \s-1ABI. \s0 All the supported ABIs use 32\-bit \f(CW\*(C`int\*(C'\fRs. The n64 \s-1ABI\s0 uses 64\-bit \f(CW\*(C`long\*(C'\fRs, as does the 64\-bit \s-1EABI\s0; the others use 32\-bit \f(CW\*(C`long\*(C'\fRs. Pointers are the same size as \f(CW\*(C`long\*(C'\fRs, or the same size as integer registers, whichever is smaller. *************** or the same size as integer registers, w *** 15347,15353 **** .IX Item "-mno-sym32" .PD Assume (do not assume) that all symbols have 32\-bit values, regardless ! of the selected \s-1ABI\s0. This option is useful in combination with \&\fB\-mabi=64\fR and \fB\-mno\-abicalls\fR because it allows \s-1GCC\s0 to generate shorter and faster references to symbolic addresses. .IP "\fB\-G\fR \fInum\fR" 4 --- 15361,15367 ---- .IX Item "-mno-sym32" .PD Assume (do not assume) that all symbols have 32\-bit values, regardless ! of the selected \s-1ABI. \s0 This option is useful in combination with \&\fB\-mabi=64\fR and \fB\-mno\-abicalls\fR because it allows \s-1GCC\s0 to generate shorter and faster references to symbolic addresses. .IP "\fB\-G\fR \fInum\fR" 4 *************** but other instructions must not do so. *** 15452,15464 **** and 4KSd processors when the code TLBs have the Read Inhibit bit set. It is also useful on processors that can be configured to have a dual instruction/data \s-1SRAM\s0 interface and that, like the M4K, automatically ! redirect PC-relative loads to the instruction \s-1RAM\s0. .IP "\fB\-mcode\-readable=no\fR" 4 .IX Item "-mcode-readable=no" Instructions must not access executable sections. This option can be useful on targets that are configured to have a dual instruction/data \&\s-1SRAM\s0 interface but that (unlike the M4K) do not automatically redirect ! PC-relative loads to the instruction \s-1RAM\s0. .RE .RS 4 .RE --- 15466,15478 ---- and 4KSd processors when the code TLBs have the Read Inhibit bit set. It is also useful on processors that can be configured to have a dual instruction/data \s-1SRAM\s0 interface and that, like the M4K, automatically ! redirect PC-relative loads to the instruction \s-1RAM.\s0 .IP "\fB\-mcode\-readable=no\fR" 4 .IX Item "-mcode-readable=no" Instructions must not access executable sections. This option can be useful on targets that are configured to have a dual instruction/data \&\s-1SRAM\s0 interface but that (unlike the M4K) do not automatically redirect ! PC-relative loads to the instruction \s-1RAM.\s0 .RE .RS 4 .RE *************** The default is \fB\-mcheck\-zero\-divisi *** 15500,15506 **** .PD \&\s-1MIPS\s0 systems check for division by zero by generating either a conditional trap or a break instruction. Using traps results in ! smaller code, but is only supported on \s-1MIPS\s0 \s-1II\s0 and later. Also, some versions of the Linux kernel have a bug that prevents trap from generating the proper signal (\f(CW\*(C`SIGFPE\*(C'\fR). Use \fB\-mdivide\-traps\fR to allow conditional traps on architectures that support them and --- 15514,15520 ---- .PD \&\s-1MIPS\s0 systems check for division by zero by generating either a conditional trap or a break instruction. Using traps results in ! smaller code, but is only supported on \s-1MIPS II\s0 and later. Also, some versions of the Linux kernel have a bug that prevents trap from generating the proper signal (\f(CW\*(C`SIGFPE\*(C'\fR). Use \fB\-mdivide\-traps\fR to allow conditional traps on architectures that support them and *************** This option has no effect on abicalls co *** 15538,15544 **** .IX Item "-mno-mad" .PD Enable (disable) use of the \f(CW\*(C`mad\*(C'\fR, \f(CW\*(C`madu\*(C'\fR and \f(CW\*(C`mul\*(C'\fR ! instructions, as provided by the R4650 \s-1ISA\s0. .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" .PD 0 --- 15552,15558 ---- .IX Item "-mno-mad" .PD Enable (disable) use of the \f(CW\*(C`mad\*(C'\fR, \f(CW\*(C`madu\*(C'\fR and \f(CW\*(C`mul\*(C'\fR ! instructions, as provided by the R4650 \s-1ISA.\s0 .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" .PD 0 *************** assembler files (with a \fB.s\fR suffix) *** 15566,15572 **** .IX Item "-mno-fix-24k" .PD Work around the 24K E48 (lost data on stores during refill) errata. ! The workarounds are implemented by the assembler rather than by \s-1GCC\s0. .IP "\fB\-mfix\-r4000\fR" 4 .IX Item "-mfix-r4000" .PD 0 --- 15580,15586 ---- .IX Item "-mno-fix-24k" .PD Work around the 24K E48 (lost data on stores during refill) errata. ! The workarounds are implemented by the assembler rather than by \s-1GCC.\s0 .IP "\fB\-mfix\-r4000\fR" 4 .IX Item "-mfix-r4000" .PD 0 *************** instructions. These errata are handled *** 15645,15654 **** .RE .IP "\fB\-mfix\-vr4130\fR" 4 .IX Item "-mfix-vr4130" ! Work around the \s-1VR4130\s0 \f(CW\*(C`mflo\*(C'\fR/\f(CW\*(C`mfhi\*(C'\fR errata. The ! workarounds are implemented by the assembler rather than by \s-1GCC\s0, although \s-1GCC\s0 avoids using \f(CW\*(C`mflo\*(C'\fR and \f(CW\*(C`mfhi\*(C'\fR if the ! \&\s-1VR4130\s0 \f(CW\*(C`macc\*(C'\fR, \f(CW\*(C`macchi\*(C'\fR, \f(CW\*(C`dmacc\*(C'\fR and \f(CW\*(C`dmacchi\*(C'\fR instructions are available instead. .IP "\fB\-mfix\-sb1\fR" 4 .IX Item "-mfix-sb1" --- 15659,15668 ---- .RE .IP "\fB\-mfix\-vr4130\fR" 4 .IX Item "-mfix-vr4130" ! Work around the \s-1VR4130 \s0\f(CW\*(C`mflo\*(C'\fR/\f(CW\*(C`mfhi\*(C'\fR errata. The ! workarounds are implemented by the assembler rather than by \s-1GCC,\s0 although \s-1GCC\s0 avoids using \f(CW\*(C`mflo\*(C'\fR and \f(CW\*(C`mfhi\*(C'\fR if the ! \&\s-1VR4130 \s0\f(CW\*(C`macc\*(C'\fR, \f(CW\*(C`macchi\*(C'\fR, \f(CW\*(C`dmacc\*(C'\fR and \f(CW\*(C`dmacchi\*(C'\fR instructions are available instead. .IP "\fB\-mfix\-sb1\fR" 4 .IX Item "-mfix-sb1" *************** instructions are available instead. *** 15656,15662 **** .IP "\fB\-mno\-fix\-sb1\fR" 4 .IX Item "-mno-fix-sb1" .PD ! Work around certain \s-1SB\-1\s0 \s-1CPU\s0 core errata. (This flag currently works around the \s-1SB\-1\s0 revision 2 \&\*(L"F1\*(R" and \*(L"F2\*(R" floating-point errata.) .IP "\fB\-mr10k\-cache\-barrier=\fR\fIsetting\fR" 4 --- 15670,15676 ---- .IP "\fB\-mno\-fix\-sb1\fR" 4 .IX Item "-mno-fix-sb1" .PD ! Work around certain \s-1SB\-1 CPU\s0 core errata. (This flag currently works around the \s-1SB\-1\s0 revision 2 \&\*(L"F1\*(R" and \*(L"F2\*(R" floating-point errata.) .IP "\fB\-mr10k\-cache\-barrier=\fR\fIsetting\fR" 4 *************** Specifies whether \s-1FP\s0 exceptions a *** 15767,15773 **** The default is that \s-1FP\s0 exceptions are enabled. .Sp ! For instance, on the \s-1SB\-1\s0, if \s-1FP\s0 exceptions are disabled, and we are emitting 64\-bit code, then we can use both \s-1FP\s0 pipes. Otherwise, we can only use one \&\s-1FP\s0 pipe. .IP "\fB\-mvr4130\-align\fR" 4 --- 15781,15787 ---- The default is that \s-1FP\s0 exceptions are enabled. .Sp ! For instance, on the \s-1SB\-1,\s0 if \s-1FP\s0 exceptions are disabled, and we are emitting 64\-bit code, then we can use both \s-1FP\s0 pipes. Otherwise, we can only use one \&\s-1FP\s0 pipe. .IP "\fB\-mvr4130\-align\fR" 4 *************** instructions together if the first one i *** 15781,15787 **** option is enabled, \s-1GCC\s0 aligns pairs of instructions that it thinks should execute in parallel. .Sp ! This option only has an effect when optimizing for the \s-1VR4130\s0. It normally makes code faster, but at the expense of making it bigger. It is enabled by default at optimization level \fB\-O3\fR. .IP "\fB\-msynci\fR" 4 --- 15795,15801 ---- option is enabled, \s-1GCC\s0 aligns pairs of instructions that it thinks should execute in parallel. .Sp ! This option only has an effect when optimizing for the \s-1VR4130.\s0 It normally makes code faster, but at the expense of making it bigger. It is enabled by default at optimization level \fB\-O3\fR. .IP "\fB\-msynci\fR" 4 *************** to the \f(CW\*(C`rE\*(C'\fR epsilon regi *** 15870,15876 **** .PD Generate code that passes function parameters and return values that (in the called function) are seen as registers \f(CW$0\fR and up, as opposed to ! the \s-1GNU\s0 \s-1ABI\s0 which uses global registers \f(CW$231\fR and up. .IP "\fB\-mzero\-extend\fR" 4 .IX Item "-mzero-extend" .PD 0 --- 15884,15890 ---- .PD Generate code that passes function parameters and return values that (in the called function) are seen as registers \f(CW$0\fR and up, as opposed to ! the \s-1GNU ABI\s0 which uses global registers \f(CW$231\fR and up. .IP "\fB\-mzero\-extend\fR" 4 .IX Item "-mzero-extend" .PD 0 *************** Do not generate code using features spec *** 15954,15960 **** is the default. .IP "\fB\-mam33\-2\fR" 4 .IX Item "-mam33-2" ! Generate code using features specific to the \s-1AM33/2\s0.0 processor. .IP "\fB\-mam34\fR" 4 .IX Item "-mam34" Generate code using features specific to the \s-1AM34\s0 processor. --- 15968,15974 ---- is the default. .IP "\fB\-mam33\-2\fR" 4 .IX Item "-mam33-2" ! Generate code using features specific to the \s-1AM33/2.0\s0 processor. .IP "\fB\-mam34\fR" 4 .IX Item "-mam34" Generate code using features specific to the \s-1AM34\s0 processor. *************** Return floating-point results in ac0 (fr *** 16034,16046 **** Return floating-point results in memory. This is the default. .IP "\fB\-m40\fR" 4 .IX Item "-m40" ! Generate code for a \s-1PDP\-11/40\s0. .IP "\fB\-m45\fR" 4 .IX Item "-m45" ! Generate code for a \s-1PDP\-11/45\s0. This is the default. .IP "\fB\-m10\fR" 4 .IX Item "-m10" ! Generate code for a \s-1PDP\-11/10\s0. .IP "\fB\-mbcopy\-builtin\fR" 4 .IX Item "-mbcopy-builtin" Use inline \f(CW\*(C`movmemhi\*(C'\fR patterns for copying memory. This is the --- 16048,16060 ---- Return floating-point results in memory. This is the default. .IP "\fB\-m40\fR" 4 .IX Item "-m40" ! Generate code for a \s-1PDP\-11/40.\s0 .IP "\fB\-m45\fR" 4 .IX Item "-m45" ! Generate code for a \s-1PDP\-11/45. \s0 This is the default. .IP "\fB\-m10\fR" 4 .IX Item "-m10" ! Generate code for a \s-1PDP\-11/10.\s0 .IP "\fB\-mbcopy\-builtin\fR" 4 .IX Item "-mbcopy-builtin" Use inline \f(CW\*(C`movmemhi\*(C'\fR patterns for copying memory. This is the *************** for \fIae_type\fR are \fB\s-1ANY\s0\fR, *** 16112,16125 **** generated with this option runs on any of the other \s-1AE\s0 types. The code is not as efficient as it would be if compiled for a specific \&\s-1AE\s0 type, and some types of operation (e.g., multiplication) do not ! work properly on all types of \s-1AE\s0. .Sp ! \&\fB\-mae=MUL\fR selects a \s-1MUL\s0 \s-1AE\s0 type. This is the most useful \s-1AE\s0 type for compiled code, and is the default. .Sp ! \&\fB\-mae=MAC\fR selects a DSP-style \s-1MAC\s0 \s-1AE\s0. Code compiled with this option may suffer from poor performance of byte (char) manipulation, ! since the \s-1DSP\s0 \s-1AE\s0 does not provide hardware support for byte load/stores. .IP "\fB\-msymbol\-as\-address\fR" 4 .IX Item "-msymbol-as-address" Enable the compiler to directly use a symbol name as an address in a --- 16126,16139 ---- generated with this option runs on any of the other \s-1AE\s0 types. The code is not as efficient as it would be if compiled for a specific \&\s-1AE\s0 type, and some types of operation (e.g., multiplication) do not ! work properly on all types of \s-1AE.\s0 .Sp ! \&\fB\-mae=MUL\fR selects a \s-1MUL AE\s0 type. This is the most useful \s-1AE\s0 type for compiled code, and is the default. .Sp ! \&\fB\-mae=MAC\fR selects a DSP-style \s-1MAC AE. \s0 Code compiled with this option may suffer from poor performance of byte (char) manipulation, ! since the \s-1DSP AE\s0 does not provide hardware support for byte load/stores. .IP "\fB\-msymbol\-as\-address\fR" 4 .IX Item "-msymbol-as-address" Enable the compiler to directly use a symbol name as an address in a *************** rather than being permanently enabled. *** 16132,16138 **** .IX Item "-mno-inefficient-warnings" Disables warnings about the generation of inefficient code. These warnings can be generated, for example, when compiling code that ! performs byte-level memory operations on the \s-1MAC\s0 \s-1AE\s0 type. The \s-1MAC\s0 \s-1AE\s0 has no hardware support for byte-level memory operations, so all byte load/stores must be synthesized from word load/store operations. This is inefficient and a warning is generated to indicate --- 16146,16152 ---- .IX Item "-mno-inefficient-warnings" Disables warnings about the generation of inefficient code. These warnings can be generated, for example, when compiling code that ! performs byte-level memory operations on the \s-1MAC AE\s0 type. The \s-1MAC AE\s0 has no hardware support for byte-level memory operations, so all byte load/stores must be synthesized from word load/store operations. This is inefficient and a warning is generated to indicate *************** The \f(CW\*(C`g13\*(C'\fR option is for *** 16165,16174 **** only on the \s-1RL78/G13\s0 targets. The \f(CW\*(C`rl78\*(C'\fR option is for the standard hardware multiplication defined in the \s-1RL78\s0 software manual. .PP ! \fI\s-1IBM\s0 \s-1RS/6000\s0 and PowerPC Options\fR .IX Subsection "IBM RS/6000 and PowerPC Options" .PP ! These \fB\-m\fR options are defined for the \s-1IBM\s0 \s-1RS/6000\s0 and PowerPC: .IP "\fB\-mpowerpc\-gpopt\fR" 4 .IX Item "-mpowerpc-gpopt" .PD 0 --- 16179,16188 ---- only on the \s-1RL78/G13\s0 targets. The \f(CW\*(C`rl78\*(C'\fR option is for the standard hardware multiplication defined in the \s-1RL78\s0 software manual. .PP ! \fI\s-1IBM RS/6000\s0 and PowerPC Options\fR .IX Subsection "IBM RS/6000 and PowerPC Options" .PP ! These \fB\-m\fR options are defined for the \s-1IBM RS/6000\s0 and PowerPC: .IP "\fB\-mpowerpc\-gpopt\fR" 4 .IX Item "-mpowerpc-gpopt" .PD 0 *************** These \fB\-m\fR options are defined for *** 16213,16219 **** .PD You use these options to specify which instructions are available on the processor you are using. The default value of these options is ! determined when configuring \s-1GCC\s0. Specifying the \&\fB\-mcpu=\fR\fIcpu_type\fR overrides the specification of these options. We recommend you use the \fB\-mcpu=\fR\fIcpu_type\fR option rather than the options listed above. --- 16227,16233 ---- .PD You use these options to specify which instructions are available on the processor you are using. The default value of these options is ! determined when configuring \s-1GCC. \s0 Specifying the \&\fB\-mcpu=\fR\fIcpu_type\fR overrides the specification of these options. We recommend you use the \fB\-mcpu=\fR\fIcpu_type\fR option rather than the options listed above. *************** capabilities. If you wish to set an ind *** 16293,16299 **** value, you may specify it after the \fB\-mcpu\fR option, like \&\fB\-mcpu=970 \-mno\-altivec\fR. .Sp ! On \s-1AIX\s0, the \fB\-maltivec\fR and \fB\-mpowerpc64\fR options are not enabled or disabled by the \fB\-mcpu\fR option at present because \&\s-1AIX\s0 does not have full support for these options. You may still enable or disable them individually if you're sure it'll work in your --- 16307,16313 ---- value, you may specify it after the \fB\-mcpu\fR option, like \&\fB\-mcpu=970 \-mno\-altivec\fR. .Sp ! On \s-1AIX,\s0 the \fB\-maltivec\fR and \fB\-mpowerpc64\fR options are not enabled or disabled by the \fB\-mcpu\fR option at present because \&\s-1AIX\s0 does not have full support for these options. You may still enable or disable them individually if you're sure it'll work in your *************** Generate code that allows \fBld\fR and \ *** 16351,16364 **** to build executables and shared libraries with non-executable \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections. This is a PowerPC ! 32\-bit \s-1SYSV\s0 \s-1ABI\s0 option. .IP "\fB\-mbss\-plt\fR" 4 .IX Item "-mbss-plt" ! Generate code that uses a \s-1BSS\s0 \f(CW\*(C`.plt\*(C'\fR section that \fBld.so\fR fills in, and requires \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections that are both writable and executable. ! This is a PowerPC 32\-bit \s-1SYSV\s0 \s-1ABI\s0 option. .IP "\fB\-misel\fR" 4 .IX Item "-misel" .PD 0 --- 16365,16378 ---- to build executables and shared libraries with non-executable \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections. This is a PowerPC ! 32\-bit \s-1SYSV ABI\s0 option. .IP "\fB\-mbss\-plt\fR" 4 .IX Item "-mbss-plt" ! Generate code that uses a \s-1BSS \s0\f(CW\*(C`.plt\*(C'\fR section that \fBld.so\fR fills in, and requires \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections that are both writable and executable. ! This is a PowerPC 32\-bit \s-1SYSV ABI\s0 option. .IP "\fB\-misel\fR" 4 .IX Item "-misel" .PD 0 *************** pointer to 64 bits, and generates code f *** 16441,16452 **** .IP "\fB\-mminimal\-toc\fR" 4 .IX Item "-mminimal-toc" .PD ! Modify generation of the \s-1TOC\s0 (Table Of Contents), which is created for every executable file. The \fB\-mfull\-toc\fR option is selected by default. In that case, \s-1GCC\s0 allocates at least one \s-1TOC\s0 entry for each unique non-automatic variable reference in your program. \s-1GCC\s0 ! also places floating-point constants in the \s-1TOC\s0. However, only ! 16,384 entries are available in the \s-1TOC\s0. .Sp If you receive a linker error message that saying you have overflowed the available \s-1TOC\s0 space, you can reduce the amount of \s-1TOC\s0 space used --- 16455,16466 ---- .IP "\fB\-mminimal\-toc\fR" 4 .IX Item "-mminimal-toc" .PD ! Modify generation of the \s-1TOC \s0(Table Of Contents), which is created for every executable file. The \fB\-mfull\-toc\fR option is selected by default. In that case, \s-1GCC\s0 allocates at least one \s-1TOC\s0 entry for each unique non-automatic variable reference in your program. \s-1GCC\s0 ! also places floating-point constants in the \s-1TOC. \s0 However, only ! 16,384 entries are available in the \s-1TOC.\s0 .Sp If you receive a linker error message that saying you have overflowed the available \s-1TOC\s0 space, you can reduce the amount of \s-1TOC\s0 space used *************** with the \fB\-mno\-fp\-in\-toc\fR and \f *** 16454,16460 **** \&\fB\-mno\-fp\-in\-toc\fR prevents \s-1GCC\s0 from putting floating-point constants in the \s-1TOC\s0 and \fB\-mno\-sum\-in\-toc\fR forces \s-1GCC\s0 to generate code to calculate the sum of an address and a constant at ! run time instead of putting that sum into the \s-1TOC\s0. You may specify one or both of these options. Each causes \s-1GCC\s0 to produce very slightly slower and larger code at the expense of conserving \s-1TOC\s0 space. .Sp --- 16468,16474 ---- \&\fB\-mno\-fp\-in\-toc\fR prevents \s-1GCC\s0 from putting floating-point constants in the \s-1TOC\s0 and \fB\-mno\-sum\-in\-toc\fR forces \s-1GCC\s0 to generate code to calculate the sum of an address and a constant at ! run time instead of putting that sum into the \s-1TOC. \s0 You may specify one or both of these options. Each causes \s-1GCC\s0 to produce very slightly slower and larger code at the expense of conserving \s-1TOC\s0 space. .Sp *************** only on files that contain less frequent *** 16470,16476 **** .IP "\fB\-maix32\fR" 4 .IX Item "-maix32" .PD ! Enable 64\-bit \s-1AIX\s0 \s-1ABI\s0 and calling convention: 64\-bit pointers, 64\-bit \&\f(CW\*(C`long\*(C'\fR type, and the infrastructure needed to support them. Specifying \fB\-maix64\fR implies \fB\-mpowerpc64\fR, while \fB\-maix32\fR disables the 64\-bit \s-1ABI\s0 and --- 16484,16490 ---- .IP "\fB\-maix32\fR" 4 .IX Item "-maix32" .PD ! Enable 64\-bit \s-1AIX ABI\s0 and calling convention: 64\-bit pointers, 64\-bit \&\f(CW\*(C`long\*(C'\fR type, and the infrastructure needed to support them. Specifying \fB\-maix64\fR implies \fB\-mpowerpc64\fR, while \fB\-maix32\fR disables the 64\-bit \s-1ABI\s0 and *************** implies \fB\-mno\-powerpc64\fR. \s-1GCC *** 16481,16488 **** .IP "\fB\-mno\-xl\-compat\fR" 4 .IX Item "-mno-xl-compat" .PD ! Produce code that conforms more closely to \s-1IBM\s0 \s-1XL\s0 compiler semantics ! when using AIX-compatible \s-1ABI\s0. Pass floating-point arguments to prototyped functions beyond the register save area (\s-1RSA\s0) on the stack in addition to argument FPRs. Do not assume that most significant double in 128\-bit long double value is properly rounded when comparing --- 16495,16502 ---- .IP "\fB\-mno\-xl\-compat\fR" 4 .IX Item "-mno-xl-compat" .PD ! Produce code that conforms more closely to \s-1IBM XL\s0 compiler semantics ! when using AIX-compatible \s-1ABI. \s0 Pass floating-point arguments to prototyped functions beyond the register save area (\s-1RSA\s0) on the stack in addition to argument FPRs. Do not assume that most significant double in 128\-bit long double value is properly rounded when comparing *************** support routines. *** 16491,16506 **** .Sp The \s-1AIX\s0 calling convention was extended but not initially documented to handle an obscure K&R C case of calling a function that takes the ! address of its arguments with fewer arguments than declared. \s-1IBM\s0 \s-1XL\s0 compilers access floating-point arguments that do not fit in the \&\s-1RSA\s0 from the stack when a subroutine is compiled without optimization. Because always storing floating-point arguments on the stack is inefficient and rarely needed, this option is not enabled by ! default and only is necessary when calling subroutines compiled by \s-1IBM\s0 ! \&\s-1XL\s0 compilers without optimization. .IP "\fB\-mpe\fR" 4 .IX Item "-mpe" ! Support \fI\s-1IBM\s0 \s-1RS/6000\s0 \s-1SP\s0\fR \fIParallel Environment\fR (\s-1PE\s0). Link an application written to use message passing with special startup code to enable the application to run. The system must have \s-1PE\s0 installed in the standard location (\fI/usr/lpp/ppe.poe/\fR), or the \fIspecs\fR file --- 16505,16520 ---- .Sp The \s-1AIX\s0 calling convention was extended but not initially documented to handle an obscure K&R C case of calling a function that takes the ! address of its arguments with fewer arguments than declared. \s-1IBM XL\s0 compilers access floating-point arguments that do not fit in the \&\s-1RSA\s0 from the stack when a subroutine is compiled without optimization. Because always storing floating-point arguments on the stack is inefficient and rarely needed, this option is not enabled by ! default and only is necessary when calling subroutines compiled by \s-1IBM ! XL\s0 compilers without optimization. .IP "\fB\-mpe\fR" 4 .IX Item "-mpe" ! Support \fI\s-1IBM RS/6000 SP\s0\fR \fIParallel Environment\fR (\s-1PE\s0). Link an application written to use message passing with special startup code to enable the application to run. The system must have \s-1PE\s0 installed in the standard location (\fI/usr/lpp/ppe.poe/\fR), or the \fIspecs\fR file *************** option are incompatible. *** 16514,16524 **** .IP "\fB\-malign\-power\fR" 4 .IX Item "-malign-power" .PD ! On \s-1AIX\s0, 32\-bit Darwin, and 64\-bit PowerPC GNU/Linux, the option \&\fB\-malign\-natural\fR overrides the ABI-defined alignment of larger types, such as floating-point doubles, on their natural size-based boundary. The option \fB\-malign\-power\fR instructs \s-1GCC\s0 to follow the ABI-specified ! alignment rules. \s-1GCC\s0 defaults to the standard alignment defined in the \s-1ABI\s0. .Sp On 64\-bit Darwin, natural alignment is the default, and \fB\-malign\-power\fR is not supported. --- 16528,16538 ---- .IP "\fB\-malign\-power\fR" 4 .IX Item "-malign-power" .PD ! On \s-1AIX,\s0 32\-bit Darwin, and 64\-bit PowerPC GNU/Linux, the option \&\fB\-malign\-natural\fR overrides the ABI-defined alignment of larger types, such as floating-point doubles, on their natural size-based boundary. The option \fB\-malign\-power\fR instructs \s-1GCC\s0 to follow the ABI-specified ! alignment rules. \s-1GCC\s0 defaults to the standard alignment defined in the \s-1ABI.\s0 .Sp On 64\-bit Darwin, natural alignment is the default, and \fB\-malign\-power\fR is not supported. *************** Specify type of floating-point unit. Va *** 16552,16558 **** and \fBdp_full\fR (equivalent to \fB\-mdouble\-float\fR). .IP "\fB\-mxilinx\-fpu\fR" 4 .IX Item "-mxilinx-fpu" ! Perform optimizations for the floating-point unit on Xilinx \s-1PPC\s0 405/440. .IP "\fB\-mmultiple\fR" 4 .IX Item "-mmultiple" .PD 0 --- 16566,16572 ---- and \fBdp_full\fR (equivalent to \fB\-mdouble\-float\fR). .IP "\fB\-mxilinx\-fpu\fR" 4 .IX Item "-mxilinx-fpu" ! Perform optimizations for the floating-point unit on Xilinx \s-1PPC 405/440.\s0 .IP "\fB\-mmultiple\fR" 4 .IX Item "-mmultiple" .PD 0 *************** mapped to \fB\-ffp\-contract=off\fR. *** 16623,16629 **** .IX Item "-mno-mulhw" .PD Generate code that uses (does not use) the half-word multiply and ! multiply-accumulate instructions on the \s-1IBM\s0 405, 440, 464 and 476 processors. These instructions are generated by default when targeting those processors. .IP "\fB\-mdlmzb\fR" 4 --- 16637,16643 ---- .IX Item "-mno-mulhw" .PD Generate code that uses (does not use) the half-word multiply and ! multiply-accumulate instructions on the \s-1IBM 405, 440, 464\s0 and 476 processors. These instructions are generated by default when targeting those processors. .IP "\fB\-mdlmzb\fR" 4 *************** processors. *** 16633,16639 **** .IX Item "-mno-dlmzb" .PD Generate code that uses (does not use) the string-search \fBdlmzb\fR ! instruction on the \s-1IBM\s0 405, 440, 464 and 476 processors. This instruction is generated by default when targeting those processors. .IP "\fB\-mno\-bit\-align\fR" 4 .IX Item "-mno-bit-align" --- 16647,16653 ---- .IX Item "-mno-dlmzb" .PD Generate code that uses (does not use) the string-search \fBdlmzb\fR ! instruction on the \s-1IBM 405, 440, 464\s0 and 476 processors. This instruction is generated by default when targeting those processors. .IP "\fB\-mno\-bit\-align\fR" 4 .IX Item "-mno-bit-align" *************** processor in big-endian mode. The \fB\- *** 16713,16719 **** the same as \fB\-mbig\fR. .IP "\fB\-mdynamic\-no\-pic\fR" 4 .IX Item "-mdynamic-no-pic" ! On Darwin and Mac \s-1OS\s0 X systems, compile code so that it is not relocatable, but that its external references are relocatable. The resulting code is suitable for applications, but not shared libraries. --- 16727,16733 ---- the same as \fB\-mbig\fR. .IP "\fB\-mdynamic\-no\-pic\fR" 4 .IX Item "-mdynamic-no-pic" ! On Darwin and Mac \s-1OS X\s0 systems, compile code so that it is not relocatable, but that its external references are relocatable. The resulting code is suitable for applications, but not shared libraries. *************** On System V.4 and embedded PowerPC syste *** 16819,16829 **** OpenBSD operating system. .IP "\fB\-maix\-struct\-return\fR" 4 .IX Item "-maix-struct-return" ! Return all structures in memory (as specified by the \s-1AIX\s0 \s-1ABI\s0). .IP "\fB\-msvr4\-struct\-return\fR" 4 .IX Item "-msvr4-struct-return" Return structures smaller than 8 bytes in registers (as specified by the ! \&\s-1SVR4\s0 \s-1ABI\s0). .IP "\fB\-mabi=\fR\fIabi-type\fR" 4 .IX Item "-mabi=abi-type" Extend the current \s-1ABI\s0 with a particular extension, or remove such extension. --- 16833,16843 ---- OpenBSD operating system. .IP "\fB\-maix\-struct\-return\fR" 4 .IX Item "-maix-struct-return" ! Return all structures in memory (as specified by the \s-1AIX ABI\s0). .IP "\fB\-msvr4\-struct\-return\fR" 4 .IX Item "-msvr4-struct-return" Return structures smaller than 8 bytes in registers (as specified by the ! \&\s-1SVR4 ABI\s0). .IP "\fB\-mabi=\fR\fIabi-type\fR" 4 .IX Item "-mabi=abi-type" Extend the current \s-1ABI\s0 with a particular extension, or remove such extension. *************** Valid values are \fIaltivec\fR, \fIno-al *** 16831,16846 **** \&\fIno-spe\fR, \fIibmlongdouble\fR, \fIieeelongdouble\fR. .IP "\fB\-mabi=spe\fR" 4 .IX Item "-mabi=spe" ! Extend the current \s-1ABI\s0 with \s-1SPE\s0 \s-1ABI\s0 extensions. This does not change ! the default \s-1ABI\s0, instead it adds the \s-1SPE\s0 \s-1ABI\s0 extensions to the current ! \&\s-1ABI\s0. .IP "\fB\-mabi=no\-spe\fR" 4 .IX Item "-mabi=no-spe" ! Disable Book-E \s-1SPE\s0 \s-1ABI\s0 extensions for the current \s-1ABI\s0. .IP "\fB\-mabi=ibmlongdouble\fR" 4 .IX Item "-mabi=ibmlongdouble" Change the current \s-1ABI\s0 to use \s-1IBM\s0 extended-precision long double. ! This is a PowerPC 32\-bit \s-1SYSV\s0 \s-1ABI\s0 option. .IP "\fB\-mabi=ieeelongdouble\fR" 4 .IX Item "-mabi=ieeelongdouble" Change the current \s-1ABI\s0 to use \s-1IEEE\s0 extended-precision long double. --- 16845,16860 ---- \&\fIno-spe\fR, \fIibmlongdouble\fR, \fIieeelongdouble\fR. .IP "\fB\-mabi=spe\fR" 4 .IX Item "-mabi=spe" ! Extend the current \s-1ABI\s0 with \s-1SPE ABI\s0 extensions. This does not change ! the default \s-1ABI,\s0 instead it adds the \s-1SPE ABI\s0 extensions to the current ! \&\s-1ABI.\s0 .IP "\fB\-mabi=no\-spe\fR" 4 .IX Item "-mabi=no-spe" ! Disable Book-E \s-1SPE ABI\s0 extensions for the current \s-1ABI.\s0 .IP "\fB\-mabi=ibmlongdouble\fR" 4 .IX Item "-mabi=ibmlongdouble" Change the current \s-1ABI\s0 to use \s-1IBM\s0 extended-precision long double. ! This is a PowerPC 32\-bit \s-1SYSV ABI\s0 option. .IP "\fB\-mabi=ieeelongdouble\fR" 4 .IX Item "-mabi=ieeelongdouble" Change the current \s-1ABI\s0 to use \s-1IEEE\s0 extended-precision long double. *************** On Darwin/PPC systems, \f(CW\*(C`#pragma *** 16995,17001 **** callee, L42\*(C'\fR, plus a \fIbranch island\fR (glue code). The two target addresses represent the callee and the branch island. The Darwin/PPC linker prefers the first address and generates a \f(CW\*(C`bl ! callee\*(C'\fR if the \s-1PPC\s0 \f(CW\*(C`bl\*(C'\fR instruction reaches the callee directly; otherwise, the linker generates \f(CW\*(C`bl L42\*(C'\fR to call the branch island. The branch island is appended to the body of the calling function; it computes the full 32\-bit address of the callee --- 17009,17015 ---- callee, L42\*(C'\fR, plus a \fIbranch island\fR (glue code). The two target addresses represent the callee and the branch island. The Darwin/PPC linker prefers the first address and generates a \f(CW\*(C`bl ! callee\*(C'\fR if the \s-1PPC \s0\f(CW\*(C`bl\*(C'\fR instruction reaches the callee directly; otherwise, the linker generates \f(CW\*(C`bl L42\*(C'\fR to call the branch island. The branch island is appended to the body of the calling function; it computes the full 32\-bit address of the callee *************** which handle the double-precision recipr *** 17067,17073 **** .PD Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the PowerPC ! \&\s-1ABI\s0. Selecting \fB\-mcpu=power6\fR, \fB\-mcpu=power7\fR or \&\fB\-mcpu=power8\fR automatically selects \fB\-mrecip\-precision\fR. The double-precision square root estimate instructions are not generated by default on low-precision machines, since they do not provide an --- 17081,17087 ---- .PD Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the PowerPC ! \&\s-1ABI. \s0 Selecting \fB\-mcpu=power6\fR, \fB\-mcpu=power7\fR or \&\fB\-mcpu=power8\fR automatically selects \fB\-mrecip\-precision\fR. The double-precision square root estimate instructions are not generated by default on low-precision machines, since they do not provide an *************** values, however, so the \s-1FPU\s0 hardw *** 17164,17175 **** .Sp \&\fINote\fR If the \fB\-fpu\fR option is enabled then \&\fB\-funsafe\-math\-optimizations\fR is also enabled automatically. ! This is because the \s-1RX\s0 \s-1FPU\s0 instructions are themselves unsafe. .IP "\fB\-mcpu=\fR\fIname\fR" 4 .IX Item "-mcpu=name" ! Selects the type of \s-1RX\s0 \s-1CPU\s0 to be targeted. Currently three types are supported, the generic \fI\s-1RX600\s0\fR and \fI\s-1RX200\s0\fR series hardware and ! the specific \fI\s-1RX610\s0\fR \s-1CPU\s0. The default is \fI\s-1RX600\s0\fR. .Sp The only difference between \fI\s-1RX600\s0\fR and \fI\s-1RX610\s0\fR is that the \&\fI\s-1RX610\s0\fR does not support the \f(CW\*(C`MVTIPL\*(C'\fR instruction. --- 17178,17189 ---- .Sp \&\fINote\fR If the \fB\-fpu\fR option is enabled then \&\fB\-funsafe\-math\-optimizations\fR is also enabled automatically. ! This is because the \s-1RX FPU\s0 instructions are themselves unsafe. .IP "\fB\-mcpu=\fR\fIname\fR" 4 .IX Item "-mcpu=name" ! Selects the type of \s-1RX CPU\s0 to be targeted. Currently three types are supported, the generic \fI\s-1RX600\s0\fR and \fI\s-1RX200\s0\fR series hardware and ! the specific \fI\s-1RX610\s0\fR \s-1CPU. \s0 The default is \fI\s-1RX600\s0\fR. .Sp The only difference between \fI\s-1RX600\s0\fR and \fI\s-1RX610\s0\fR is that the \&\fI\s-1RX610\s0\fR does not support the \f(CW\*(C`MVTIPL\*(C'\fR instruction. *************** type. This is the default. *** 17355,17361 **** Store (do not store) the address of the caller's frame as backchain pointer into the callee's stack frame. A backchain may be needed to allow debugging using tools that do not understand ! \&\s-1DWARF\s0 2 call frame information. When \fB\-mno\-packed\-stack\fR is in effect, the backchain pointer is stored at the bottom of the stack frame; when \fB\-mpacked\-stack\fR is in effect, the backchain is placed into the topmost word of the 96/160 byte register --- 17369,17375 ---- Store (do not store) the address of the caller's frame as backchain pointer into the callee's stack frame. A backchain may be needed to allow debugging using tools that do not understand ! \&\s-1DWARF 2\s0 call frame information. When \fB\-mno\-packed\-stack\fR is in effect, the backchain pointer is stored at the bottom of the stack frame; when \fB\-mpacked\-stack\fR is in effect, the backchain is placed into the topmost word of the 96/160 byte register *************** register is always saved two words below *** 17387,17393 **** .Sp As long as the stack frame backchain is not used, code generated with \&\fB\-mpacked\-stack\fR is call-compatible with code generated with ! \&\fB\-mno\-packed\-stack\fR. Note that some non-FSF releases of \s-1GCC\s0 2.95 for S/390 or zSeries generated code that uses the stack frame backchain at run time, not just for debugging purposes. Such code is not call-compatible with code compiled with \fB\-mpacked\-stack\fR. Also, note that the --- 17401,17407 ---- .Sp As long as the stack frame backchain is not used, code generated with \&\fB\-mpacked\-stack\fR is call-compatible with code generated with ! \&\fB\-mno\-packed\-stack\fR. Note that some non-FSF releases of \s-1GCC 2.95\s0 for S/390 or zSeries generated code that uses the stack frame backchain at run time, not just for debugging purposes. Such code is not call-compatible with code compiled with \fB\-mpacked\-stack\fR. Also, note that the *************** which does not have this limitation. *** 17414,17421 **** .IX Item "-m31" .PD When \fB\-m31\fR is specified, generate code compliant to the ! GNU/Linux for S/390 \s-1ABI\s0. When \fB\-m64\fR is specified, generate ! code compliant to the GNU/Linux for zSeries \s-1ABI\s0. This allows \s-1GCC\s0 in particular to generate 64\-bit instructions. For the \fBs390\fR targets, the default is \fB\-m31\fR, while the \fBs390x\fR targets default to \fB\-m64\fR. --- 17428,17435 ---- .IX Item "-m31" .PD When \fB\-m31\fR is specified, generate code compliant to the ! GNU/Linux for S/390 \s-1ABI. \s0 When \fB\-m64\fR is specified, generate ! code compliant to the GNU/Linux for zSeries \s-1ABI. \s0 This allows \s-1GCC\s0 in particular to generate 64\-bit instructions. For the \fBs390\fR targets, the default is \fB\-m31\fR, while the \fBs390x\fR targets default to \fB\-m64\fR. *************** targets default to \fB\-m64\fR. *** 17428,17438 **** When \fB\-mzarch\fR is specified, generate code using the instructions available on z/Architecture. When \fB\-mesa\fR is specified, generate code using the ! instructions available on \s-1ESA/390\s0. Note that \fB\-mesa\fR is not possible with \fB\-m64\fR. ! When generating code compliant to the GNU/Linux for S/390 \s-1ABI\s0, the default is \fB\-mesa\fR. When generating code compliant ! to the GNU/Linux for zSeries \s-1ABI\s0, the default is \fB\-mzarch\fR. .IP "\fB\-mmvcle\fR" 4 .IX Item "-mmvcle" .PD 0 --- 17442,17452 ---- When \fB\-mzarch\fR is specified, generate code using the instructions available on z/Architecture. When \fB\-mesa\fR is specified, generate code using the ! instructions available on \s-1ESA/390. \s0 Note that \fB\-mesa\fR is not possible with \fB\-m64\fR. ! When generating code compliant to the GNU/Linux for S/390 \s-1ABI,\s0 the default is \fB\-mesa\fR. When generating code compliant ! to the GNU/Linux for zSeries \s-1ABI,\s0 the default is \fB\-mzarch\fR. .IP "\fB\-mmvcle\fR" 4 .IX Item "-mmvcle" .PD 0 *************** The default is the value used for \fB\-m *** 17472,17480 **** .IP "\fB\-mno\-tpf\-trace\fR" 4 .IX Item "-mno-tpf-trace" .PD ! Generate code that adds (does not add) in \s-1TPF\s0 \s-1OS\s0 specific branches to trace routines in the operating system. This option is off by default, even ! when compiling for the \s-1TPF\s0 \s-1OS\s0. .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" .PD 0 --- 17486,17494 ---- .IP "\fB\-mno\-tpf\-trace\fR" 4 .IX Item "-mno-tpf-trace" .PD ! Generate code that adds (does not add) in \s-1TPF OS\s0 specific branches to trace routines in the operating system. This option is off by default, even ! when compiling for the \s-1TPF OS.\s0 .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" .PD 0 *************** Specify the \s-1SCORE7D\s0 as the target *** 17553,17568 **** These \fB\-m\fR options are defined for the \s-1SH\s0 implementations: .IP "\fB\-m1\fR" 4 .IX Item "-m1" ! Generate code for the \s-1SH1\s0. .IP "\fB\-m2\fR" 4 .IX Item "-m2" ! Generate code for the \s-1SH2\s0. .IP "\fB\-m2e\fR" 4 .IX Item "-m2e" Generate code for the SH2e. .IP "\fB\-m2a\-nofpu\fR" 4 .IX Item "-m2a-nofpu" ! Generate code for the SH2a without \s-1FPU\s0, or for a SH2a\-FPU in such a way that the floating-point unit is not used. .IP "\fB\-m2a\-single\-only\fR" 4 .IX Item "-m2a-single-only" --- 17567,17582 ---- These \fB\-m\fR options are defined for the \s-1SH\s0 implementations: .IP "\fB\-m1\fR" 4 .IX Item "-m1" ! Generate code for the \s-1SH1.\s0 .IP "\fB\-m2\fR" 4 .IX Item "-m2" ! Generate code for the \s-1SH2.\s0 .IP "\fB\-m2e\fR" 4 .IX Item "-m2e" Generate code for the SH2e. .IP "\fB\-m2a\-nofpu\fR" 4 .IX Item "-m2a-nofpu" ! Generate code for the SH2a without \s-1FPU,\s0 or for a SH2a\-FPU in such a way that the floating-point unit is not used. .IP "\fB\-m2a\-single\-only\fR" 4 .IX Item "-m2a-single-only" *************** Generate code for the SH2a\-FPU assuming *** 17578,17584 **** double-precision mode by default. .IP "\fB\-m3\fR" 4 .IX Item "-m3" ! Generate code for the \s-1SH3\s0. .IP "\fB\-m3e\fR" 4 .IX Item "-m3e" Generate code for the SH3e. --- 17592,17598 ---- double-precision mode by default. .IP "\fB\-m3\fR" 4 .IX Item "-m3" ! Generate code for the \s-1SH3.\s0 .IP "\fB\-m3e\fR" 4 .IX Item "-m3e" Generate code for the SH3e. *************** Generate code for the \s-1SH4\s0 assumin *** 17595,17601 **** single-precision mode by default. .IP "\fB\-m4\fR" 4 .IX Item "-m4" ! Generate code for the \s-1SH4\s0. .IP "\fB\-m4a\-nofpu\fR" 4 .IX Item "-m4a-nofpu" Generate code for the SH4al\-dsp, or for a SH4a in such a way that the --- 17609,17615 ---- single-precision mode by default. .IP "\fB\-m4\fR" 4 .IX Item "-m4" ! Generate code for the \s-1SH4.\s0 .IP "\fB\-m4a\-nofpu\fR" 4 .IX Item "-m4a-nofpu" Generate code for the SH4al\-dsp, or for a SH4a in such a way that the *************** Use 32\-bit offsets in \f(CW\*(C`switch\ *** 17637,17643 **** 16\-bit offsets. .IP "\fB\-mbitops\fR" 4 .IX Item "-mbitops" ! Enable the use of bit manipulation instructions on \s-1SH2A\s0. .IP "\fB\-mfmovd\fR" 4 .IX Item "-mfmovd" Enable the use of the instruction \f(CW\*(C`fmovd\*(C'\fR. Check \fB\-mdalign\fR for --- 17651,17657 ---- 16\-bit offsets. .IP "\fB\-mbitops\fR" 4 .IX Item "-mbitops" ! Enable the use of bit manipulation instructions on \s-1SH2A.\s0 .IP "\fB\-mfmovd\fR" 4 .IX Item "-mfmovd" Enable the use of the instruction \f(CW\*(C`fmovd\*(C'\fR. Check \fB\-mdalign\fR for *************** Dump instruction size and location in th *** 17687,17693 **** .IP "\fB\-mpadstruct\fR" 4 .IX Item "-mpadstruct" This option is deprecated. It pads structures to multiple of 4 bytes, ! which is incompatible with the \s-1SH\s0 \s-1ABI\s0. .IP "\fB\-matomic\-model=\fR\fImodel\fR" 4 .IX Item "-matomic-model=model" Sets the model of atomic operations and additional parameters as a comma --- 17701,17707 ---- .IP "\fB\-mpadstruct\fR" 4 .IX Item "-mpadstruct" This option is deprecated. It pads structures to multiple of 4 bytes, ! which is incompatible with the \s-1SH ABI.\s0 .IP "\fB\-matomic\-model=\fR\fImodel\fR" 4 .IX Item "-matomic-model=model" Sets the model of atomic operations and additional parameters as a comma *************** Generate GNU/Linux compatible gUSA softw *** 17704,17710 **** built-in functions. The generated atomic sequences require additional support from the interrupt/exception handling code of the system and are only suitable for SH3* and SH4* single-core systems. This option is enabled by default when ! the target is \f(CW\*(C`sh\-*\-linux*\*(C'\fR and SH3* or SH4*. When the target is \s-1SH4A\s0, this option will also partially utilize the hardware atomic instructions \&\f(CW\*(C`movli.l\*(C'\fR and \f(CW\*(C`movco.l\*(C'\fR to create more efficient code, unless \&\fBstrict\fR is specified. --- 17718,17724 ---- built-in functions. The generated atomic sequences require additional support from the interrupt/exception handling code of the system and are only suitable for SH3* and SH4* single-core systems. This option is enabled by default when ! the target is \f(CW\*(C`sh\-*\-linux*\*(C'\fR and SH3* or SH4*. When the target is \s-1SH4A,\s0 this option will also partially utilize the hardware atomic instructions \&\f(CW\*(C`movli.l\*(C'\fR and \f(CW\*(C`movco.l\*(C'\fR to create more efficient code, unless \&\fBstrict\fR is specified. *************** For targets other than SHmedia \fIstrate *** 17845,17864 **** .IX Item "call-div1" Calls a library function that uses the single-step division instruction \&\f(CW\*(C`div1\*(C'\fR to perform the operation. Division by zero calculates an ! unspecified result and does not trap. This is the default except for \s-1SH4\s0, ! \&\s-1SH2A\s0 and SHcompact. .IP "\fBcall-fp\fR" 4 .IX Item "call-fp" Calls a library function that performs the operation in double precision floating point. Division by zero causes a floating-point exception. This is ! the default for SHcompact with \s-1FPU\s0. Specifying this for targets that do not have a double precision \s-1FPU\s0 will default to \f(CW\*(C`call\-div1\*(C'\fR. .IP "\fBcall-table\fR" 4 .IX Item "call-table" Calls a library function that uses a lookup table for small divisors and the \f(CW\*(C`div1\*(C'\fR instruction with case distinction for larger divisors. Division by zero calculates an unspecified result and does not trap. This is the default ! for \s-1SH4\s0. Specifying this for targets that do not have dynamic shift instructions will default to \f(CW\*(C`call\-div1\*(C'\fR. .RE .RS 4 --- 17859,17878 ---- .IX Item "call-div1" Calls a library function that uses the single-step division instruction \&\f(CW\*(C`div1\*(C'\fR to perform the operation. Division by zero calculates an ! unspecified result and does not trap. This is the default except for \s-1SH4, ! SH2A\s0 and SHcompact. .IP "\fBcall-fp\fR" 4 .IX Item "call-fp" Calls a library function that performs the operation in double precision floating point. Division by zero causes a floating-point exception. This is ! the default for SHcompact with \s-1FPU. \s0 Specifying this for targets that do not have a double precision \s-1FPU\s0 will default to \f(CW\*(C`call\-div1\*(C'\fR. .IP "\fBcall-table\fR" 4 .IX Item "call-table" Calls a library function that uses a lookup table for small divisors and the \f(CW\*(C`div1\*(C'\fR instruction with case distinction for larger divisors. Division by zero calculates an unspecified result and does not trap. This is the default ! for \s-1SH4. \s0 Specifying this for targets that do not have dynamic shift instructions will default to \f(CW\*(C`call\-div1\*(C'\fR. .RE .RS 4 *************** specified separated by a comma. *** 17892,17901 **** Enable the use of the indexed addressing mode for SHmedia32/SHcompact. This is only safe if the hardware and/or \s-1OS\s0 implement 32\-bit wrap-around semantics for the indexed addressing mode. The architecture allows the ! implementation of processors with 64\-bit \s-1MMU\s0, which the \s-1OS\s0 could use to get 32\-bit addressing, but since no current hardware implementation supports this or any other way to make the indexed addressing mode safe to use in ! the 32\-bit \s-1ABI\s0, the default is \fB\-mno\-indexed\-addressing\fR. .IP "\fB\-mgettrcost=\fR\fInumber\fR" 4 .IX Item "-mgettrcost=number" Set the cost assumed for the \f(CW\*(C`gettr\*(C'\fR instruction to \fInumber\fR. --- 17906,17915 ---- Enable the use of the indexed addressing mode for SHmedia32/SHcompact. This is only safe if the hardware and/or \s-1OS\s0 implement 32\-bit wrap-around semantics for the indexed addressing mode. The architecture allows the ! implementation of processors with 64\-bit \s-1MMU,\s0 which the \s-1OS\s0 could use to get 32\-bit addressing, but since no current hardware implementation supports this or any other way to make the indexed addressing mode safe to use in ! the 32\-bit \s-1ABI,\s0 the default is \fB\-mno\-indexed\-addressing\fR. .IP "\fB\-mgettrcost=\fR\fInumber\fR" 4 .IX Item "-mgettrcost=number" Set the cost assumed for the \f(CW\*(C`gettr\*(C'\fR instruction to \fInumber\fR. *************** the compiler are always valid to load wi *** 17932,17938 **** but with assembler and/or linker tricks it is possible to generate symbols that cause \f(CW\*(C`ptabs\*(C'\fR or \f(CW\*(C`ptrel\*(C'\fR to trap. This option is only meaningful when \fB\-mno\-pt\-fixed\fR is in effect. ! It prevents cross-basic-block \s-1CSE\s0, hoisting and most scheduling of symbol loads. The default is \fB\-mno\-invalid\-symbols\fR. .IP "\fB\-mbranch\-cost=\fR\fInum\fR" 4 .IX Item "-mbranch-cost=num" --- 17946,17952 ---- but with assembler and/or linker tricks it is possible to generate symbols that cause \f(CW\*(C`ptabs\*(C'\fR or \f(CW\*(C`ptrel\*(C'\fR to trap. This option is only meaningful when \fB\-mno\-pt\-fixed\fR is in effect. ! It prevents cross-basic-block \s-1CSE,\s0 hoisting and most scheduling of symbol loads. The default is \fB\-mno\-invalid\-symbols\fR. .IP "\fB\-mbranch\-cost=\fR\fInum\fR" 4 .IX Item "-mbranch-cost=num" *************** is being compiled for. *** 17949,17955 **** Assume (do not assume) that zero displacement conditional branch instructions \&\f(CW\*(C`bt\*(C'\fR and \f(CW\*(C`bf\*(C'\fR are fast. If \fB\-mzdcbranch\fR is specified, the compiler will try to prefer zero displacement branch code sequences. This is ! enabled by default when generating code for \s-1SH4\s0 and \s-1SH4A\s0. It can be explicitly disabled by specifying \fB\-mno\-zdcbranch\fR. .IP "\fB\-mcbranchdi\fR" 4 .IX Item "-mcbranchdi" --- 17963,17969 ---- Assume (do not assume) that zero displacement conditional branch instructions \&\f(CW\*(C`bt\*(C'\fR and \f(CW\*(C`bf\*(C'\fR are fast. If \fB\-mzdcbranch\fR is specified, the compiler will try to prefer zero displacement branch code sequences. This is ! enabled by default when generating code for \s-1SH4\s0 and \s-1SH4A. \s0 It can be explicitly disabled by specifying \fB\-mno\-zdcbranch\fR. .IP "\fB\-mcbranchdi\fR" 4 .IX Item "-mcbranchdi" *************** mapped to \fB\-ffp\-contract=off\fR. *** 17979,17985 **** Allow or disallow the compiler to emit the \f(CW\*(C`fsca\*(C'\fR instruction for sine and cosine approximations. The option \f(CW\*(C`\-mfsca\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR. It is enabled by default ! when generating code for \s-1SH4A\s0. Using \f(CW\*(C`\-mno\-fsca\*(C'\fR disables sine and cosine approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR is in effect. .IP "\fB\-mfsrra\fR" 4 .IX Item "-mfsrra" --- 17993,17999 ---- Allow or disallow the compiler to emit the \f(CW\*(C`fsca\*(C'\fR instruction for sine and cosine approximations. The option \f(CW\*(C`\-mfsca\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR. It is enabled by default ! when generating code for \s-1SH4A. \s0 Using \f(CW\*(C`\-mno\-fsca\*(C'\fR disables sine and cosine approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR is in effect. .IP "\fB\-mfsrra\fR" 4 .IX Item "-mfsrra" *************** Allow or disallow the compiler to emit t *** 17991,17997 **** reciprocal square root approximations. The option \f(CW\*(C`\-mfsrra\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \&\f(CW\*(C`\-ffinite\-math\-only\*(C'\fR. It is enabled by default when generating code for ! \&\s-1SH4A\s0. Using \f(CW\*(C`\-mno\-fsrra\*(C'\fR disables reciprocal square root approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \f(CW\*(C`\-ffinite\-math\-only\*(C'\fR are in effect. .IP "\fB\-mpretend\-cmove\fR" 4 --- 18005,18011 ---- reciprocal square root approximations. The option \f(CW\*(C`\-mfsrra\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \&\f(CW\*(C`\-ffinite\-math\-only\*(C'\fR. It is enabled by default when generating code for ! \&\s-1SH4A. \s0 Using \f(CW\*(C`\-mno\-fsrra\*(C'\fR disables reciprocal square root approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \f(CW\*(C`\-ffinite\-math\-only\*(C'\fR are in effect. .IP "\fB\-mpretend\-cmove\fR" 4 *************** These \fB\-m\fR options are supported on *** 18039,18045 **** .IX Item "-mapp-regs" .PD Specify \fB\-mapp\-regs\fR to generate output using the global registers ! 2 through 4, which the \s-1SPARC\s0 \s-1SVR4\s0 \s-1ABI\s0 reserves for applications. This is the default. .Sp To be fully \s-1SVR4\s0 ABI-compliant at the cost of some performance loss, --- 18053,18059 ---- .IX Item "-mapp-regs" .PD Specify \fB\-mapp\-regs\fR to generate output using the global registers ! 2 through 4, which the \s-1SPARC SVR4 ABI\s0 reserves for applications. This is the default. .Sp To be fully \s-1SVR4\s0 ABI-compliant at the cost of some performance loss, *************** cross-compilation. The embedded targets *** 18084,18090 **** \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC\s0, with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-mhard\-quad\-float\fR" 4 .IX Item "-mhard-quad-float" --- 18098,18104 ---- \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC,\s0 with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-mhard\-quad\-float\fR" 4 .IX Item "-mhard-quad-float" *************** instructions. *** 18094,18100 **** .IX Item "-msoft-quad-float" Generate output containing library calls for quad-word (long double) floating-point instructions. The functions called are those specified ! in the \s-1SPARC\s0 \s-1ABI\s0. This is the default. .Sp As of this writing, there are no \s-1SPARC\s0 implementations that have hardware support for the quad-word floating-point instructions. They all invoke --- 18108,18114 ---- .IX Item "-msoft-quad-float" Generate output containing library calls for quad-word (long double) floating-point instructions. The functions called are those specified ! in the \s-1SPARC ABI. \s0 This is the default. .Sp As of this writing, there are no \s-1SPARC\s0 implementations that have hardware support for the quad-word floating-point instructions. They all invoke *************** With \fB\-mfaster\-structs\fR, the compi *** 18126,18135 **** should have 8\-byte alignment. This enables the use of pairs of \&\f(CW\*(C`ldd\*(C'\fR and \f(CW\*(C`std\*(C'\fR instructions for copies in structure assignment, in place of twice as many \f(CW\*(C`ld\*(C'\fR and \f(CW\*(C`st\*(C'\fR pairs. ! However, the use of this changed alignment directly violates the \s-1SPARC\s0 ! \&\s-1ABI\s0. Thus, it's intended only for use on targets where the developer acknowledges that their resulting code is not directly in line with ! the rules of the \s-1ABI\s0. .IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4 .IX Item "-mcpu=cpu_type" Set the instruction set, register set, and instruction scheduling parameters --- 18140,18149 ---- should have 8\-byte alignment. This enables the use of pairs of \&\f(CW\*(C`ldd\*(C'\fR and \f(CW\*(C`std\*(C'\fR instructions for copies in structure assignment, in place of twice as many \f(CW\*(C`ld\*(C'\fR and \f(CW\*(C`st\*(C'\fR pairs. ! However, the use of this changed alignment directly violates the \s-1SPARC ! ABI. \s0 Thus, it's intended only for use on targets where the developer acknowledges that their resulting code is not directly in line with ! the rules of the \s-1ABI.\s0 .IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4 .IX Item "-mcpu=cpu_type" Set the instruction set, register set, and instruction scheduling parameters *************** SPARCStation 1, 2, \s-1IPX\s0 etc. *** 18179,18200 **** With \fB\-mcpu=v8\fR, \s-1GCC\s0 generates code for the V8 variant of the \s-1SPARC\s0 architecture. The only difference from V7 code is that the compiler emits the integer multiply and integer divide instructions which exist in \s-1SPARC\-V8\s0 ! but not in \s-1SPARC\-V7\s0. With \fB\-mcpu=supersparc\fR, the compiler additionally optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series. .Sp With \fB\-mcpu=sparclite\fR, \s-1GCC\s0 generates code for the SPARClite variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, integer divide step ! and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClite but not in \s-1SPARC\-V7\s0. With \fB\-mcpu=f930\fR, the compiler additionally optimizes it for the ! Fujitsu \s-1MB86930\s0 chip, which is the original SPARClite, with no \s-1FPU\s0. With \&\fB\-mcpu=f934\fR, the compiler additionally optimizes it for the Fujitsu ! \&\s-1MB86934\s0 chip, which is the more recent SPARClite with \s-1FPU\s0. .Sp With \fB\-mcpu=sparclet\fR, \s-1GCC\s0 generates code for the SPARClet variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, multiply/accumulate, integer divide step and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClet ! but not in \s-1SPARC\-V7\s0. With \fB\-mcpu=tsc701\fR, the compiler additionally optimizes it for the \s-1TEMIC\s0 SPARClet chip. .Sp With \fB\-mcpu=v9\fR, \s-1GCC\s0 generates code for the V9 variant of the \s-1SPARC\s0 --- 18193,18214 ---- With \fB\-mcpu=v8\fR, \s-1GCC\s0 generates code for the V8 variant of the \s-1SPARC\s0 architecture. The only difference from V7 code is that the compiler emits the integer multiply and integer divide instructions which exist in \s-1SPARC\-V8\s0 ! but not in \s-1SPARC\-V7. \s0 With \fB\-mcpu=supersparc\fR, the compiler additionally optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series. .Sp With \fB\-mcpu=sparclite\fR, \s-1GCC\s0 generates code for the SPARClite variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, integer divide step ! and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClite but not in \s-1SPARC\-V7.\s0 With \fB\-mcpu=f930\fR, the compiler additionally optimizes it for the ! Fujitsu \s-1MB86930\s0 chip, which is the original SPARClite, with no \s-1FPU. \s0 With \&\fB\-mcpu=f934\fR, the compiler additionally optimizes it for the Fujitsu ! \&\s-1MB86934\s0 chip, which is the more recent SPARClite with \s-1FPU.\s0 .Sp With \fB\-mcpu=sparclet\fR, \s-1GCC\s0 generates code for the SPARClet variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, multiply/accumulate, integer divide step and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClet ! but not in \s-1SPARC\-V7. \s0 With \fB\-mcpu=tsc701\fR, the compiler additionally optimizes it for the \s-1TEMIC\s0 SPARClet chip. .Sp With \fB\-mcpu=v9\fR, \s-1GCC\s0 generates code for the V9 variant of the \s-1SPARC\s0 *************** native Solaris and GNU/Linux toolchains, *** 18230,18236 **** .IP "\fB\-mno\-v8plus\fR" 4 .IX Item "-mno-v8plus" .PD ! With \fB\-mv8plus\fR, \s-1GCC\s0 generates code for the \s-1SPARC\-V8+\s0 \s-1ABI\s0. The difference from the V8 \s-1ABI\s0 is that the global and out registers are considered 64 bits wide. This is enabled by default on Solaris in 32\-bit mode for all \s-1SPARC\-V9\s0 processors. --- 18244,18250 ---- .IP "\fB\-mno\-v8plus\fR" 4 .IX Item "-mno-v8plus" .PD ! With \fB\-mv8plus\fR, \s-1GCC\s0 generates code for the \s-1SPARC\-V8+ ABI. \s0 The difference from the V8 \s-1ABI\s0 is that the global and out registers are considered 64 bits wide. This is enabled by default on Solaris in 32\-bit mode for all \s-1SPARC\-V9\s0 processors. *************** This option suppresses generation of the *** 18674,18682 **** v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture. .Sp ! This option is enabled by default when the \s-1RH850\s0 \s-1ABI\s0 is in use (see \fB\-mrh850\-abi\fR), and disabled by default when the ! \&\s-1GCC\s0 \s-1ABI\s0 is in use. If \f(CW\*(C`CALLT\*(C'\fR instructions are being generated then the C preprocessor symbol \f(CW\*(C`_\|_V850_CALLT_\|_\*(C'\fR will be defined. .IP "\fB\-mrelax\fR" 4 .IX Item "-mrelax" --- 18688,18696 ---- v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture. .Sp ! This option is enabled by default when the \s-1RH850 ABI\s0 is in use (see \fB\-mrh850\-abi\fR), and disabled by default when the ! \&\s-1GCC ABI\s0 is in use. If \f(CW\*(C`CALLT\*(C'\fR instructions are being generated then the C preprocessor symbol \f(CW\*(C`_\|_V850_CALLT_\|_\*(C'\fR will be defined. .IP "\fB\-mrelax\fR" 4 .IX Item "-mrelax" *************** selected because its use is still experi *** 18716,18722 **** .IP "\fB\-mghs\fR" 4 .IX Item "-mghs" .PD ! Enables support for the \s-1RH850\s0 version of the V850 \s-1ABI\s0. This is the default. With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 --- 18730,18736 ---- .IP "\fB\-mghs\fR" 4 .IX Item "-mghs" .PD ! Enables support for the \s-1RH850\s0 version of the V850 \s-1ABI. \s0 This is the default. With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 *************** When this version of the \s-1ABI\s0 is e *** 18741,18747 **** .RE .IP "\fB\-mgcc\-abi\fR" 4 .IX Item "-mgcc-abi" ! Enables support for the old \s-1GCC\s0 version of the V850 \s-1ABI\s0. With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 --- 18755,18761 ---- .RE .IP "\fB\-mgcc\-abi\fR" 4 .IX Item "-mgcc-abi" ! Enables support for the old \s-1GCC\s0 version of the V850 \s-1ABI. \s0 With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 *************** kernel code. *** 18931,18937 **** Control the treatment of literal pools. The default is \&\fB\-mno\-text\-section\-literals\fR, which places literals in a separate section in the output file. This allows the literal pool to be placed ! in a data \s-1RAM/ROM\s0, and it also allows the linker to combine literal pools from separate object files to remove redundant literals and improve code size. With \fB\-mtext\-section\-literals\fR, the literals are interspersed in the text section in order to keep them as close as --- 18945,18951 ---- Control the treatment of literal pools. The default is \&\fB\-mno\-text\-section\-literals\fR, which places literals in a separate section in the output file. This allows the literal pool to be placed ! in a data \s-1RAM/ROM,\s0 and it also allows the linker to combine literal pools from separate object files to remove redundant literals and improve code size. With \fB\-mtext\-section\-literals\fR, the literals are interspersed in the text section in order to keep them as close as *************** You normally do not need to enable this *** 19116,19122 **** that needs this handling enables it on your behalf. .IP "\fB\-fasynchronous\-unwind\-tables\fR" 4 .IX Item "-fasynchronous-unwind-tables" ! Generate unwind table in \s-1DWARF\s0 2 format, if supported by target machine. The table is exact at each instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debugger or garbage collector). .IP "\fB\-fpcc\-struct\-return\fR" 4 --- 19130,19136 ---- that needs this handling enables it on your behalf. .IP "\fB\-fasynchronous\-unwind\-tables\fR" 4 .IX Item "-fasynchronous-unwind-tables" ! Generate unwind table in \s-1DWARF 2\s0 format, if supported by target machine. The table is exact at each instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debugger or garbage collector). .IP "\fB\-fpcc\-struct\-return\fR" 4 *************** Use it to conform to a non-default appli *** 19174,19180 **** .IX Item "-fshort-wchar" Override the underlying type for \fBwchar_t\fR to be \fBshort unsigned int\fR instead of the default for the target. This option is ! useful for building programs to run under \s-1WINE\s0. .Sp \&\fBWarning:\fR the \fB\-fshort\-wchar\fR switch causes \s-1GCC\s0 to generate code that is not binary compatible with code generated without that switch. --- 19188,19194 ---- .IX Item "-fshort-wchar" Override the underlying type for \fBwchar_t\fR to be \fBshort unsigned int\fR instead of the default for the target. This option is ! useful for building programs to run under \s-1WINE.\s0 .Sp \&\fBWarning:\fR the \fB\-fshort\-wchar\fR switch causes \s-1GCC\s0 to generate code that is not binary compatible with code generated without that switch. *************** such variables in different compilation *** 19187,19193 **** in a common block. This is the behavior specified by \fB\-fcommon\fR, and is the default for \s-1GCC\s0 on most targets. ! On the other hand, this behavior is not required by \s-1ISO\s0 C, and on some targets may carry a speed or code size penalty on variable references. The \fB\-fno\-common\fR option specifies that the compiler should place uninitialized global variables in the data section of the object file, --- 19201,19207 ---- in a common block. This is the behavior specified by \fB\-fcommon\fR, and is the default for \s-1GCC\s0 on most targets. ! On the other hand, this behavior is not required by \s-1ISO C,\s0 and on some targets may carry a speed or code size penalty on variable references. The \fB\-fno\-common\fR option specifies that the compiler should place uninitialized global variables in the data section of the object file, *************** the \s-1GOT\s0 size for the linked execu *** 19243,19253 **** maximum size, you get an error message from the linker indicating that \&\fB\-fpic\fR does not work; in that case, recompile with \fB\-fPIC\fR instead. (These maximums are 8k on the \s-1SPARC\s0 and 32k ! on the m68k and \s-1RS/6000\s0. The 386 has no such limit.) .Sp Position-independent code requires special support, and therefore works only on certain machines. For the 386, \s-1GCC\s0 supports \s-1PIC\s0 for System V ! but not for the Sun 386i. Code generated for the \s-1IBM\s0 \s-1RS/6000\s0 is always position-independent. .Sp When this flag is set, the macros \f(CW\*(C`_\|_pic_\|_\*(C'\fR and \f(CW\*(C`_\|_PIC_\|_\*(C'\fR --- 19257,19267 ---- maximum size, you get an error message from the linker indicating that \&\fB\-fpic\fR does not work; in that case, recompile with \fB\-fPIC\fR instead. (These maximums are 8k on the \s-1SPARC\s0 and 32k ! on the m68k and \s-1RS/6000. \s0 The 386 has no such limit.) .Sp Position-independent code requires special support, and therefore works only on certain machines. For the 386, \s-1GCC\s0 supports \s-1PIC\s0 for System V ! but not for the Sun 386i. Code generated for the \s-1IBM RS/6000\s0 is always position-independent. .Sp When this flag is set, the macros \f(CW\*(C`_\|_pic_\|_\*(C'\fR and \f(CW\*(C`_\|_PIC_\|_\*(C'\fR *************** are defined to 1. *** 19257,19263 **** If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the size of the global offset table. This option makes a difference on the m68k, ! PowerPC and \s-1SPARC\s0. .Sp Position-independent code requires special support, and therefore works only on certain machines. --- 19271,19277 ---- If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the size of the global offset table. This option makes a difference on the m68k, ! PowerPC and \s-1SPARC.\s0 .Sp Position-independent code requires special support, and therefore works only on certain machines. *************** name, such as \f(CW\*(C`vector blah *** 19407,19413 **** internal mangled name (e.g., \f(CW\*(C`_Z4blahRSt6vectorIiSaIiEE\*(C'\fR). The match is done on substrings: if the \fIsym\fR parameter is a substring of the function name, it is considered to be a match. For C99 and \*(C+ ! extended identifiers, the function name must be given in \s-1UTF\-8\s0, not using universal character names. .IP "\fB\-fstack\-check\fR" 4 .IX Item "-fstack-check" --- 19421,19427 ---- internal mangled name (e.g., \f(CW\*(C`_Z4blahRSt6vectorIiSaIiEE\*(C'\fR). The match is done on substrings: if the \fIsym\fR parameter is a substring of the function name, it is considered to be a match. For C99 and \*(C+ ! extended identifiers, the function name must be given in \s-1UTF\-8,\s0 not using universal character names. .IP "\fB\-fstack\-check\fR" 4 .IX Item "-fstack-check" *************** usage so the only other commonly used op *** 19517,19523 **** The default if \fB\-fvisibility\fR isn't specified is \&\f(CW\*(C`default\*(C'\fR, i.e., make every symbol public\-\-\-this causes the same behavior as previous versions of ! \&\s-1GCC\s0. .Sp A good explanation of the benefits offered by ensuring \s-1ELF\s0 symbols have the correct visibility is given by \*(L"How To Write --- 19531,19537 ---- The default if \fB\-fvisibility\fR isn't specified is \&\f(CW\*(C`default\*(C'\fR, i.e., make every symbol public\-\-\-this causes the same behavior as previous versions of ! \&\s-1GCC.\s0 .Sp A good explanation of the benefits offered by ensuring \s-1ELF\s0 symbols have the correct visibility is given by \*(L"How To Write *************** always specify visibility when it is not *** 19542,19548 **** only for use within the local \s-1DSO\s0 should \fBalways\fR be marked explicitly as hidden as so to avoid \s-1PLT\s0 indirection overheads\-\-\-making this abundantly clear also aids readability and self-documentation of the code. ! Note that due to \s-1ISO\s0 \*(C+ specification requirements, \f(CW\*(C`operator new\*(C'\fR and \&\f(CW\*(C`operator delete\*(C'\fR must always be of default visibility. .Sp Be aware that headers from outside your project, in particular system --- 19556,19562 ---- only for use within the local \s-1DSO\s0 should \fBalways\fR be marked explicitly as hidden as so to avoid \s-1PLT\s0 indirection overheads\-\-\-making this abundantly clear also aids readability and self-documentation of the code. ! Note that due to \s-1ISO \*(C+\s0 specification requirements, \f(CW\*(C`operator new\*(C'\fR and \&\f(CW\*(C`operator delete\*(C'\fR must always be of default visibility. .Sp Be aware that headers from outside your project, in particular system *************** before including any such headers. *** 19554,19560 **** \&\fBextern\fR declarations are not affected by \fB\-fvisibility\fR, so a lot of code can be recompiled with \fB\-fvisibility=hidden\fR with no modifications. However, this means that calls to \f(CW\*(C`extern\*(C'\fR ! functions with no explicit visibility use the \s-1PLT\s0, so it is more effective to use \f(CW\*(C`_\|_attribute ((visibility))\*(C'\fR and/or \&\f(CW\*(C`#pragma GCC visibility\*(C'\fR to tell the compiler which \f(CW\*(C`extern\*(C'\fR declarations should be treated as hidden. --- 19568,19574 ---- \&\fBextern\fR declarations are not affected by \fB\-fvisibility\fR, so a lot of code can be recompiled with \fB\-fvisibility=hidden\fR with no modifications. However, this means that calls to \f(CW\*(C`extern\*(C'\fR ! functions with no explicit visibility use the \s-1PLT,\s0 so it is more effective to use \f(CW\*(C`_\|_attribute ((visibility))\*(C'\fR and/or \&\f(CW\*(C`#pragma GCC visibility\*(C'\fR to tell the compiler which \f(CW\*(C`extern\*(C'\fR declarations should be treated as hidden. *************** aspects of the compilation environment. *** 19614,19620 **** Note that you can also specify places to search using options such as \&\fB\-B\fR, \fB\-I\fR and \fB\-L\fR. These take precedence over places specified using environment variables, which ! in turn take precedence over those specified by the configuration of \s-1GCC\s0. .IP "\fB\s-1LANG\s0\fR" 4 .IX Item "LANG" .PD 0 --- 19628,19634 ---- Note that you can also specify places to search using options such as \&\fB\-B\fR, \fB\-I\fR and \fB\-L\fR. These take precedence over places specified using environment variables, which ! in turn take precedence over those specified by the configuration of \s-1GCC.\s0 .IP "\fB\s-1LANG\s0\fR" 4 .IX Item "LANG" .PD 0 *************** national conventions. \s-1GCC\s0 inspec *** 19631,19637 **** \&\fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR if it has been configured to do so. These locale categories can be set to any value supported by your installation. A typical value is \fBen_GB.UTF\-8\fR for English in the United ! Kingdom encoded in \s-1UTF\-8\s0. .Sp The \fB\s-1LC_CTYPE\s0\fR environment variable specifies character classification. \s-1GCC\s0 uses it to determine the character boundaries in --- 19645,19651 ---- \&\fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR if it has been configured to do so. These locale categories can be set to any value supported by your installation. A typical value is \fBen_GB.UTF\-8\fR for English in the United ! Kingdom encoded in \s-1UTF\-8.\s0 .Sp The \fB\s-1LC_CTYPE\s0\fR environment variable specifies character classification. \s-1GCC\s0 uses it to determine the character boundaries in *************** and the Info entries for \fIgcc\fR, \fIc *** 19811,19817 **** .IX Header "AUTHOR" See the Info entry for \fBgcc\fR, or <\fBhttp://gcc.gnu.org/onlinedocs/gcc/Contributors.html\fR>, ! for contributors to \s-1GCC\s0. .SH "COPYRIGHT" .IX Header "COPYRIGHT" Copyright (c) 1988\-2013 Free Software Foundation, Inc. --- 19825,19831 ---- .IX Header "AUTHOR" See the Info entry for \fBgcc\fR, or <\fBhttp://gcc.gnu.org/onlinedocs/gcc/Contributors.html\fR>, ! for contributors to \s-1GCC.\s0 .SH "COPYRIGHT" .IX Header "COPYRIGHT" Copyright (c) 1988\-2013 Free Software Foundation, Inc. diff -Nrcpad gcc-4.8.1/gcc/doc/gc-analyze.1 gcc-4.8.2/gcc/doc/gc-analyze.1 *** gcc-4.8.1/gcc/doc/gc-analyze.1 Fri May 31 09:47:33 2013 --- gcc-4.8.2/gcc/doc/gc-analyze.1 Wed Oct 16 08:05:51 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "GC-ANALYZE 1" ! .TH GC-ANALYZE 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "GC-ANALYZE 1" ! .TH GC-ANALYZE 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.8.1/gcc/doc/gcc.1 gcc-4.8.2/gcc/doc/gcc.1 *** gcc-4.8.1/gcc/doc/gcc.1 Fri May 31 09:58:16 2013 --- gcc-4.8.2/gcc/doc/gcc.1 Wed Oct 16 08:16:31 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "GCC 1" ! .TH GCC 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "GCC 1" ! .TH GCC 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** Only the most useful options are listed *** 145,151 **** remainder. \fBg++\fR accepts mostly the same options as \fBgcc\fR. .SH "DESCRIPTION" .IX Header "DESCRIPTION" ! When you invoke \s-1GCC\s0, it normally does preprocessing, compilation, assembly and linking. The \*(L"overall options\*(R" allow you to stop this process at an intermediate stage. For example, the \fB\-c\fR option says not to run the linker. Then the output consists of object files --- 154,160 ---- remainder. \fBg++\fR accepts mostly the same options as \fBgcc\fR. .SH "DESCRIPTION" .IX Header "DESCRIPTION" ! When you invoke \s-1GCC,\s0 it normally does preprocessing, compilation, assembly and linking. The \*(L"overall options\*(R" allow you to stop this process at an intermediate stage. For example, the \fB\-c\fR option says not to run the linker. Then the output consists of object files *************** option. *** 1333,1339 **** .IX Item "language" Display the options supported for \fIlanguage\fR, where \&\fIlanguage\fR is the name of one of the languages supported in this ! version of \s-1GCC\s0. .IP "\fBcommon\fR" 4 .IX Item "common" Display the options that are common to all languages. --- 1342,1348 ---- .IX Item "language" Display the options supported for \fIlanguage\fR, where \&\fIlanguage\fR is the name of one of the languages supported in this ! version of \s-1GCC.\s0 .IP "\fBcommon\fR" 4 .IX Item "common" Display the options that are common to all languages. *************** or \fB/./\fR, or make the path absolute *** 1430,1436 **** prefix. .IP "\fB\-\-version\fR" 4 .IX Item "--version" ! Display the version number and copyrights of the invoked \s-1GCC\s0. .IP "\fB\-wrapper\fR" 4 .IX Item "-wrapper" Invoke all subcommands under a wrapper program. The name of the --- 1439,1445 ---- prefix. .IP "\fB\-\-version\fR" 4 .IX Item "--version" ! Display the version number and copyrights of the invoked \s-1GCC.\s0 .IP "\fB\-wrapper\fR" 4 .IX Item "-wrapper" Invoke all subcommands under a wrapper program. The name of the *************** the shared object file is used to identi *** 1452,1458 **** purposes of argument parsing (See \&\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR below). Each plugin should define the callback functions specified in the ! Plugins \s-1API\s0. .IP "\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR" 4 .IX Item "-fplugin-arg-name-key=value" Define an argument called \fIkey\fR with a value of \fIvalue\fR --- 1461,1467 ---- purposes of argument parsing (See \&\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR below). Each plugin should define the callback functions specified in the ! Plugins \s-1API.\s0 .IP "\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR" 4 .IX Item "-fplugin-arg-name-key=value" Define an argument called \fIkey\fR with a value of \fIvalue\fR *************** backslash) may be included by prefixing *** 1482,1488 **** with a backslash. The \fIfile\fR may itself contain additional @\fIfile\fR options; any such options will be processed recursively. .SS "Compiling \*(C+ Programs" ! .IX Subsection "Compiling Programs" \&\*(C+ source files conventionally use one of the suffixes \fB.C\fR, \&\fB.cc\fR, \fB.cpp\fR, \fB.CPP\fR, \fB.c++\fR, \fB.cp\fR, or \&\fB.cxx\fR; \*(C+ header files often use \fB.hh\fR, \fB.hpp\fR, --- 1491,1497 ---- with a backslash. The \fIfile\fR may itself contain additional @\fIfile\fR options; any such options will be processed recursively. .SS "Compiling \*(C+ Programs" ! .IX Subsection "Compiling Programs" \&\*(C+ source files conventionally use one of the suffixes \fB.C\fR, \&\fB.cc\fR, \fB.cpp\fR, \fB.CPP\fR, \fB.c++\fR, \fB.cp\fR, or \&\fB.cxx\fR; \*(C+ header files often use \fB.hh\fR, \fB.hpp\fR, *************** accepts: *** 1515,1522 **** In C mode, this is equivalent to \fB\-std=c90\fR. In \*(C+ mode, it is equivalent to \fB\-std=c++98\fR. .Sp ! This turns off certain features of \s-1GCC\s0 that are incompatible with \s-1ISO\s0 ! C90 (when compiling C code), or of standard \*(C+ (when compiling \*(C+ code), such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, and predefined macros such as \f(CW\*(C`unix\*(C'\fR and \f(CW\*(C`vax\*(C'\fR that identify the type of system you are using. It also enables the undesirable and --- 1524,1531 ---- In C mode, this is equivalent to \fB\-std=c90\fR. In \*(C+ mode, it is equivalent to \fB\-std=c++98\fR. .Sp ! This turns off certain features of \s-1GCC\s0 that are incompatible with \s-1ISO ! C90 \s0(when compiling C code), or of standard \*(C+ (when compiling \*(C+ code), such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, and predefined macros such as \f(CW\*(C`unix\*(C'\fR and \f(CW\*(C`vax\*(C'\fR that identify the type of system you are using. It also enables the undesirable and *************** the \f(CW\*(C`inline\*(C'\fR keyword. *** 1526,1532 **** .Sp The alternate keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_extension_\|_\*(C'\fR, \&\f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR continue to work despite ! \&\fB\-ansi\fR. You would not want to use them in an \s-1ISO\s0 C program, of course, but it is useful to put them in header files that might be included in compilations done with \fB\-ansi\fR. Alternate predefined macros such as \f(CW\*(C`_\|_unix_\|_\*(C'\fR and \f(CW\*(C`_\|_vax_\|_\*(C'\fR are also available, with or --- 1535,1541 ---- .Sp The alternate keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_extension_\|_\*(C'\fR, \&\f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR continue to work despite ! \&\fB\-ansi\fR. You would not want to use them in an \s-1ISO C\s0 program, of course, but it is useful to put them in header files that might be included in compilations done with \fB\-ansi\fR. Alternate predefined macros such as \f(CW\*(C`_\|_unix_\|_\*(C'\fR and \f(CW\*(C`_\|_vax_\|_\*(C'\fR are also available, with or *************** from declaring certain functions or defi *** 1543,1549 **** programs that might use these names for other things. .Sp Functions that are normally built in but do not have semantics ! defined by \s-1ISO\s0 C (such as \f(CW\*(C`alloca\*(C'\fR and \f(CW\*(C`ffs\*(C'\fR) are not built-in functions when \fB\-ansi\fR is used. .IP "\fB\-std=\fR" 4 .IX Item "-std=" --- 1552,1558 ---- programs that might use these names for other things. .Sp Functions that are normally built in but do not have semantics ! defined by \s-1ISO C \s0(such as \f(CW\*(C`alloca\*(C'\fR and \f(CW\*(C`ffs\*(C'\fR) are not built-in functions when \fB\-ansi\fR is used. .IP "\fB\-std=\fR" 4 .IX Item "-std=" *************** The compiler can accept several base sta *** 1556,1564 **** compiler accepts all programs following that standard plus those using \s-1GNU\s0 extensions that do not contradict it. For example, \&\fB\-std=c90\fR turns off certain features of \s-1GCC\s0 that are ! incompatible with \s-1ISO\s0 C90, such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, but not other \s-1GNU\s0 extensions that do not have a meaning in ! \&\s-1ISO\s0 C90, such as omitting the middle term of a \f(CW\*(C`?:\*(C'\fR expression. On the other hand, when a \s-1GNU\s0 dialect of a standard is specified, all features supported by the compiler are enabled, even when those features change the meaning of the base standard. As a result, some --- 1565,1573 ---- compiler accepts all programs following that standard plus those using \s-1GNU\s0 extensions that do not contradict it. For example, \&\fB\-std=c90\fR turns off certain features of \s-1GCC\s0 that are ! incompatible with \s-1ISO C90,\s0 such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, but not other \s-1GNU\s0 extensions that do not have a meaning in ! \&\s-1ISO C90,\s0 such as omitting the middle term of a \f(CW\*(C`?:\*(C'\fR expression. On the other hand, when a \s-1GNU\s0 dialect of a standard is specified, all features supported by the compiler are enabled, even when those features change the meaning of the base standard. As a result, some *************** A value for this option must be provided *** 1578,1588 **** .IP "\fBiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! Support all \s-1ISO\s0 C90 programs (certain \s-1GNU\s0 extensions that conflict ! with \s-1ISO\s0 C90 are disabled). Same as \fB\-ansi\fR for C code. .IP "\fBiso9899:199409\fR" 4 .IX Item "iso9899:199409" ! \&\s-1ISO\s0 C90 as modified in amendment 1. .IP "\fBc99\fR" 4 .IX Item "c99" .PD 0 --- 1587,1597 ---- .IP "\fBiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! Support all \s-1ISO C90\s0 programs (certain \s-1GNU\s0 extensions that conflict ! with \s-1ISO C90\s0 are disabled). Same as \fB\-ansi\fR for C code. .IP "\fBiso9899:199409\fR" 4 .IX Item "iso9899:199409" ! \&\s-1ISO C90\s0 as modified in amendment 1. .IP "\fBc99\fR" 4 .IX Item "c99" .PD 0 *************** with \s-1ISO\s0 C90 are disabled). Same *** 1593,1599 **** .IP "\fBiso9899:199x\fR" 4 .IX Item "iso9899:199x" .PD ! \&\s-1ISO\s0 C99. Note that this standard is not yet fully supported; see <\fBhttp://gcc.gnu.org/c99status.html\fR> for more information. The names \fBc9x\fR and \fBiso9899:199x\fR are deprecated. .IP "\fBc11\fR" 4 --- 1602,1608 ---- .IP "\fBiso9899:199x\fR" 4 .IX Item "iso9899:199x" .PD ! \&\s-1ISO C99. \s0 Note that this standard is not yet fully supported; see <\fBhttp://gcc.gnu.org/c99status.html\fR> for more information. The names \fBc9x\fR and \fBiso9899:199x\fR are deprecated. .IP "\fBc11\fR" 4 *************** names \fBc9x\fR and \fBiso9899:199x\fR a *** 1604,1610 **** .IP "\fBiso9899:2011\fR" 4 .IX Item "iso9899:2011" .PD ! \&\s-1ISO\s0 C11, the 2011 revision of the \s-1ISO\s0 C standard. Support is incomplete and experimental. The name \fBc1x\fR is deprecated. .IP "\fBgnu90\fR" 4 --- 1613,1619 ---- .IP "\fBiso9899:2011\fR" 4 .IX Item "iso9899:2011" .PD ! \&\s-1ISO C11,\s0 the 2011 revision of the \s-1ISO C\s0 standard. Support is incomplete and experimental. The name \fBc1x\fR is deprecated. .IP "\fBgnu90\fR" 4 *************** deprecated. *** 1613,1619 **** .IP "\fBgnu89\fR" 4 .IX Item "gnu89" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO\s0 C90 (including some C99 features). This is the default for C code. .IP "\fBgnu99\fR" 4 .IX Item "gnu99" --- 1622,1628 ---- .IP "\fBgnu89\fR" 4 .IX Item "gnu89" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO C90 \s0(including some C99 features). This is the default for C code. .IP "\fBgnu99\fR" 4 .IX Item "gnu99" *************** is the default for C code. *** 1621,1627 **** .IP "\fBgnu9x\fR" 4 .IX Item "gnu9x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO\s0 C99. When \s-1ISO\s0 C99 is fully implemented in \s-1GCC\s0, this will become the default. The name \fBgnu9x\fR is deprecated. .IP "\fBgnu11\fR" 4 .IX Item "gnu11" --- 1630,1636 ---- .IP "\fBgnu9x\fR" 4 .IX Item "gnu9x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO C99. \s0 When \s-1ISO C99\s0 is fully implemented in \s-1GCC,\s0 this will become the default. The name \fBgnu9x\fR is deprecated. .IP "\fBgnu11\fR" 4 .IX Item "gnu11" *************** this will become the default. The name *** 1629,1635 **** .IP "\fBgnu1x\fR" 4 .IX Item "gnu1x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO\s0 C11. Support is incomplete and experimental. The name \fBgnu1x\fR is deprecated. .IP "\fBc++98\fR" 4 .IX Item "c++98" --- 1638,1644 ---- .IP "\fBgnu1x\fR" 4 .IX Item "gnu1x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO C11. \s0 Support is incomplete and experimental. The name \fBgnu1x\fR is deprecated. .IP "\fBc++98\fR" 4 .IX Item "c++98" *************** name \fBgnu1x\fR is deprecated. *** 1637,1643 **** .IP "\fBc++03\fR" 4 .IX Item "c++03" .PD ! The 1998 \s-1ISO\s0 \*(C+ standard plus the 2003 technical corrigendum and some additional defect reports. Same as \fB\-ansi\fR for \*(C+ code. .IP "\fBgnu++98\fR" 4 .IX Item "gnu++98" --- 1646,1652 ---- .IP "\fBc++03\fR" 4 .IX Item "c++03" .PD ! The 1998 \s-1ISO \*(C+\s0 standard plus the 2003 technical corrigendum and some additional defect reports. Same as \fB\-ansi\fR for \*(C+ code. .IP "\fBgnu++98\fR" 4 .IX Item "gnu++98" *************** additional defect reports. Same as \fB\- *** 1653,1659 **** .IP "\fBc++0x\fR" 4 .IX Item "c++0x" .PD ! The 2011 \s-1ISO\s0 \*(C+ standard plus amendments. Support for \*(C+11 is still experimental, and may change in incompatible ways in future releases. The name \fBc++0x\fR is deprecated. .IP "\fBgnu++11\fR" 4 --- 1662,1668 ---- .IP "\fBc++0x\fR" 4 .IX Item "c++0x" .PD ! The 2011 \s-1ISO \*(C+\s0 standard plus amendments. Support for \*(C+11 is still experimental, and may change in incompatible ways in future releases. The name \fBc++0x\fR is deprecated. .IP "\fBgnu++11\fR" 4 *************** experimental, and may change in incompat *** 1667,1673 **** The name \fBgnu++0x\fR is deprecated. .IP "\fBc++1y\fR" 4 .IX Item "c++1y" ! The next revision of the \s-1ISO\s0 \*(C+ standard, tentatively planned for 2017. Support is highly experimental, and will almost certainly change in incompatible ways in future releases. .IP "\fBgnu++1y\fR" 4 --- 1676,1682 ---- The name \fBgnu++0x\fR is deprecated. .IP "\fBc++1y\fR" 4 .IX Item "c++1y" ! The next revision of the \s-1ISO \*(C+\s0 standard, tentatively planned for 2017. Support is highly experimental, and will almost certainly change in incompatible ways in future releases. .IP "\fBgnu++1y\fR" 4 *************** C99 mode. Using this option is roughly *** 1691,1697 **** The option \fB\-fno\-gnu89\-inline\fR explicitly tells \s-1GCC\s0 to use the C99 semantics for \f(CW\*(C`inline\*(C'\fR when in C99 or gnu99 mode (i.e., it specifies the default behavior). This option was first supported in ! \&\s-1GCC\s0 4.3. This option is not supported in \fB\-std=c90\fR or \&\fB\-std=gnu90\fR mode. .Sp The preprocessor macros \f(CW\*(C`_\|_GNUC_GNU_INLINE_\|_\*(C'\fR and --- 1700,1706 ---- The option \fB\-fno\-gnu89\-inline\fR explicitly tells \s-1GCC\s0 to use the C99 semantics for \f(CW\*(C`inline\*(C'\fR when in C99 or gnu99 mode (i.e., it specifies the default behavior). This option was first supported in ! \&\s-1GCC 4.3. \s0 This option is not supported in \fB\-std=c90\fR or \&\fB\-std=gnu90\fR mode. .Sp The preprocessor macros \f(CW\*(C`_\|_GNUC_GNU_INLINE_\|_\*(C'\fR and *************** In \*(C+, this switch only affects the \ *** 1731,1737 **** use the \fB\-fno\-gnu\-keywords\fR flag instead, which has the same effect. In C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this switch only affects the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, since ! \&\f(CW\*(C`inline\*(C'\fR is a standard keyword in \s-1ISO\s0 C99. .IP "\fB\-fno\-builtin\fR" 4 .IX Item "-fno-builtin" .PD 0 --- 1740,1746 ---- use the \fB\-fno\-gnu\-keywords\fR flag instead, which has the same effect. In C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this switch only affects the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, since ! \&\f(CW\*(C`inline\*(C'\fR is a standard keyword in \s-1ISO C99.\s0 .IP "\fB\-fno\-builtin\fR" 4 .IX Item "-fno-builtin" .PD 0 *************** known not to modify global memory. *** 1759,1765 **** With the \fB\-fno\-builtin\-\fR\fIfunction\fR option only the built-in function \fIfunction\fR is disabled. \fIfunction\fR must not begin with \fB_\|_builtin_\fR. If a ! function is named that is not built-in in this version of \s-1GCC\s0, this option is ignored. There is no corresponding \&\fB\-fbuiltin\-\fR\fIfunction\fR option; if you wish to enable built-in functions selectively when using \fB\-fno\-builtin\fR or --- 1768,1774 ---- With the \fB\-fno\-builtin\-\fR\fIfunction\fR option only the built-in function \fIfunction\fR is disabled. \fIfunction\fR must not begin with \fB_\|_builtin_\fR. If a ! function is named that is not built-in in this version of \s-1GCC,\s0 this option is ignored. There is no corresponding \&\fB\-fbuiltin\-\fR\fIfunction\fR option; if you wish to enable built-in functions selectively when using \fB\-fno\-builtin\fR or *************** When the option \fB\-fgnu\-tm\fR is spec *** 1797,1803 **** generates code for the Linux variant of Intel's current Transactional Memory \s-1ABI\s0 specification document (Revision 1.1, May 6 2009). This is an experimental feature whose interface may change in future versions ! of \s-1GCC\s0, as the official specification changes. Please note that not all architectures are supported for this feature. .Sp For more information on \s-1GCC\s0's support for transactional memory, --- 1806,1812 ---- generates code for the Linux variant of Intel's current Transactional Memory \s-1ABI\s0 specification document (Revision 1.1, May 6 2009). This is an experimental feature whose interface may change in future versions ! of \s-1GCC,\s0 as the official specification changes. Please note that not all architectures are supported for this feature. .Sp For more information on \s-1GCC\s0's support for transactional memory, *************** fields declared using a typedef. This *** 1831,1838 **** supported for C, not \*(C+. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" ! Support \s-1ISO\s0 C trigraphs. The \fB\-ansi\fR option (and \fB\-std\fR ! options for strict \s-1ISO\s0 C conformance) implies \fB\-trigraphs\fR. .IP "\fB\-traditional\fR" 4 .IX Item "-traditional" .PD 0 --- 1840,1847 ---- supported for C, not \*(C+. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" ! Support \s-1ISO C\s0 trigraphs. The \fB\-ansi\fR option (and \fB\-std\fR ! options for strict \s-1ISO C\s0 conformance) implies \fB\-trigraphs\fR. .IP "\fB\-traditional\fR" 4 .IX Item "-traditional" .PD 0 *************** options for strict \s-1ISO\s0 C conforma *** 1841,1848 **** .PD Formerly, these options caused \s-1GCC\s0 to attempt to emulate a pre-standard C compiler. They are now only supported with the \fB\-E\fR switch. ! The preprocessor continues to support a pre-standard mode. See the \s-1GNU\s0 ! \&\s-1CPP\s0 manual for details. .IP "\fB\-fcond\-mismatch\fR" 4 .IX Item "-fcond-mismatch" Allow conditional expressions with mismatched types in the second and --- 1850,1857 ---- .PD Formerly, these options caused \s-1GCC\s0 to attempt to emulate a pre-standard C compiler. They are now only supported with the \fB\-E\fR switch. ! The preprocessor continues to support a pre-standard mode. See the \s-1GNU ! CPP\s0 manual for details. .IP "\fB\-fcond\-mismatch\fR" 4 .IX Item "-fcond-mismatch" Allow conditional expressions with mismatched types in the second and *************** declaration does not use either \f(CW\*( *** 1893,1899 **** default, such a bit-field is signed, because this is consistent: the basic integer types such as \f(CW\*(C`int\*(C'\fR are signed types. .SS "Options Controlling \*(C+ Dialect" ! .IX Subsection "Options Controlling Dialect" This section describes the command-line options that are only meaningful for \*(C+ programs. You can also use most of the \s-1GNU\s0 compiler options regardless of what language your program is in. For example, you --- 1902,1908 ---- default, such a bit-field is signed, because this is consistent: the basic integer types such as \f(CW\*(C`int\*(C'\fR are signed types. .SS "Options Controlling \*(C+ Dialect" ! .IX Subsection "Options Controlling Dialect" This section describes the command-line options that are only meaningful for \*(C+ programs. You can also use most of the \s-1GNU\s0 compiler options regardless of what language your program is in. For example, you *************** might compile a file \f(CW\*(C`firstClas *** 1905,1916 **** .PP In this example, only \fB\-frepo\fR is an option meant only for \*(C+ programs; you can use the other options with any ! language supported by \s-1GCC\s0. .PP Here is a list of options that are \fIonly\fR for compiling \*(C+ programs: .IP "\fB\-fabi\-version=\fR\fIn\fR" 4 .IX Item "-fabi-version=n" ! Use version \fIn\fR of the \*(C+ \s-1ABI\s0. The default is version 2. .Sp Version 0 refers to the version conforming most closely to the \*(C+ \s-1ABI\s0 specification. Therefore, the \s-1ABI\s0 obtained using version 0 --- 1914,1925 ---- .PP In this example, only \fB\-frepo\fR is an option meant only for \*(C+ programs; you can use the other options with any ! language supported by \s-1GCC.\s0 .PP Here is a list of options that are \fIonly\fR for compiling \*(C+ programs: .IP "\fB\-fabi\-version=\fR\fIn\fR" 4 .IX Item "-fabi-version=n" ! Use version \fIn\fR of the \*(C+ \s-1ABI. \s0 The default is version 2. .Sp Version 0 refers to the version conforming most closely to the \*(C+ \s-1ABI\s0 specification. Therefore, the \s-1ABI\s0 obtained using version 0 *************** Inject friend functions into the enclosi *** 1985,1991 **** visible outside the scope of the class in which they are declared. Friend functions were documented to work this way in the old Annotated \&\*(C+ Reference Manual, and versions of G++ before 4.1 always worked ! that way. However, in \s-1ISO\s0 \*(C+ a friend function that is not declared in an enclosing scope can only be found using argument dependent lookup. This option causes friends to be injected as they were in earlier releases. --- 1994,2000 ---- visible outside the scope of the class in which they are declared. Friend functions were documented to work this way in the old Annotated \&\*(C+ Reference Manual, and versions of G++ before 4.1 always worked ! that way. However, in \s-1ISO \*(C+\s0 a friend function that is not declared in an enclosing scope can only be found using argument dependent lookup. This option causes friends to be injected as they were in earlier releases. *************** controlled by \fB#pragma implementation\ *** 2069,2080 **** errors if these functions are not inlined everywhere they are called. .IP "\fB\-fms\-extensions\fR" 4 .IX Item "-fms-extensions" ! Disable Wpedantic warnings about constructs used in \s-1MFC\s0, such as implicit int and getting a pointer to member function via non-standard syntax. .IP "\fB\-fno\-nonansi\-builtins\fR" 4 .IX Item "-fno-nonansi-builtins" Disable built-in declarations of functions that are not mandated by ! \&\s-1ANSI/ISO\s0 C. These include \f(CW\*(C`ffs\*(C'\fR, \f(CW\*(C`alloca\*(C'\fR, \f(CW\*(C`_exit\*(C'\fR, \&\f(CW\*(C`index\*(C'\fR, \f(CW\*(C`bzero\*(C'\fR, \f(CW\*(C`conjf\*(C'\fR, and other related functions. .IP "\fB\-fnothrow\-opt\fR" 4 .IX Item "-fnothrow-opt" --- 2078,2089 ---- errors if these functions are not inlined everywhere they are called. .IP "\fB\-fms\-extensions\fR" 4 .IX Item "-fms-extensions" ! Disable Wpedantic warnings about constructs used in \s-1MFC,\s0 such as implicit int and getting a pointer to member function via non-standard syntax. .IP "\fB\-fno\-nonansi\-builtins\fR" 4 .IX Item "-fno-nonansi-builtins" Disable built-in declarations of functions that are not mandated by ! \&\s-1ANSI/ISO C. \s0 These include \f(CW\*(C`ffs\*(C'\fR, \f(CW\*(C`alloca\*(C'\fR, \f(CW\*(C`_exit\*(C'\fR, \&\f(CW\*(C`index\*(C'\fR, \f(CW\*(C`bzero\*(C'\fR, \f(CW\*(C`conjf\*(C'\fR, and other related functions. .IP "\fB\-fnothrow\-opt\fR" 4 .IX Item "-fnothrow-opt" *************** warning or error to \fIn\fR. The defaul *** 2148,2154 **** .IX Item "-ftemplate-depth=n" Set the maximum instantiation depth for template classes to \fIn\fR. A limit on the template instantiation depth is needed to detect ! endless recursions during template class instantiation. \s-1ANSI/ISO\s0 \*(C+ conforming programs must not rely on a maximum depth greater than 17 (changed to 1024 in \*(C+11). The default value is 900, as the compiler can run out of stack space before hitting 1024 in some situations. --- 2157,2163 ---- .IX Item "-ftemplate-depth=n" Set the maximum instantiation depth for template classes to \fIn\fR. A limit on the template instantiation depth is needed to detect ! endless recursions during template class instantiation. \s-1ANSI/ISO \*(C+\s0 conforming programs must not rely on a maximum depth greater than 17 (changed to 1024 in \*(C+11). The default value is 900, as the compiler can run out of stack space before hitting 1024 in some situations. *************** are taken in different shared objects. *** 2179,2185 **** The effect of this is that \s-1GCC\s0 may, effectively, mark inline methods with \&\f(CW\*(C`_\|_attribute_\|_ ((visibility ("hidden")))\*(C'\fR so that they do not appear in the export table of a \s-1DSO\s0 and do not require a \s-1PLT\s0 indirection ! when used within the \s-1DSO\s0. Enabling this option can have a dramatic effect on load and link times of a \s-1DSO\s0 as it massively reduces the size of the dynamic export table when the library makes heavy use of templates. .Sp --- 2188,2194 ---- The effect of this is that \s-1GCC\s0 may, effectively, mark inline methods with \&\f(CW\*(C`_\|_attribute_\|_ ((visibility ("hidden")))\*(C'\fR so that they do not appear in the export table of a \s-1DSO\s0 and do not require a \s-1PLT\s0 indirection ! when used within the \s-1DSO. \s0 Enabling this option can have a dramatic effect on load and link times of a \s-1DSO\s0 as it massively reduces the size of the dynamic export table when the library makes heavy use of templates. .Sp *************** Do not assume \fBinline\fR for functions *** 2250,2258 **** functions have linkage like inline functions; they just aren't inlined by default. .IP "\fB\-Wabi\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wabi (C, Objective-C, and Objective- only)" Warn when G++ generates code that is probably not compatible with the ! vendor-neutral \*(C+ \s-1ABI\s0. Although an effort has been made to warn about all such cases, there are probably some cases that are not warned about, even though G++ is generating incompatible code. There may also be cases where warnings are emitted even though the code that is generated --- 2259,2267 ---- functions have linkage like inline functions; they just aren't inlined by default. .IP "\fB\-Wabi\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wabi (C, Objective-C, and Objective- only)" Warn when G++ generates code that is probably not compatible with the ! vendor-neutral \*(C+ \s-1ABI. \s0 Although an effort has been made to warn about all such cases, there are probably some cases that are not warned about, even though G++ is generating incompatible code. There may also be cases where warnings are emitted even though the code that is generated *************** This is on by default for all pre\-\*(C+ *** 2464,2470 **** \&\fB\-std=c++98\fR, \fB\-std=gnu++98\fR, \fB\-std=gnu++11\fR, \&\fB\-std=gnu++1y\fR. This option is off by default ! for \s-1ISO\s0 \*(C+11 onwards (\fB\-std=c++11\fR, ...). .PP The following \fB\-W...\fR options are not affected by \fB\-Wall\fR. .IP "\fB\-Weffc++\fR (\*(C+ and Objective\-\*(C+ only)" 4 --- 2473,2479 ---- \&\fB\-std=c++98\fR, \fB\-std=gnu++98\fR, \fB\-std=gnu++11\fR, \&\fB\-std=gnu++1y\fR. This option is off by default ! for \s-1ISO \*(C+11\s0 onwards (\fB\-std=c++11\fR, ...). .PP The following \fB\-W...\fR options are not affected by \fB\-Wall\fR. .IP "\fB\-Weffc++\fR (\*(C+ and Objective\-\*(C+ only)" 4 *************** For example, you might compile a file \f *** 2578,2584 **** .PP In this example, \fB\-fgnu\-runtime\fR is an option meant only for Objective-C and Objective\-\*(C+ programs; you can use the other options with ! any language supported by \s-1GCC\s0. .PP Note that since Objective-C is an extension of the C language, Objective-C compilations may also use options specific to the C front-end (e.g., --- 2587,2593 ---- .PP In this example, \fB\-fgnu\-runtime\fR is an option meant only for Objective-C and Objective\-\*(C+ programs; you can use the other options with ! any language supported by \s-1GCC.\s0 .PP Note that since Objective-C is an extension of the C language, Objective-C compilations may also use options specific to the C front-end (e.g., *************** runtime. This is the default for most t *** 2603,2609 **** .IP "\fB\-fnext\-runtime\fR" 4 .IX Item "-fnext-runtime" Generate output compatible with the NeXT runtime. This is the default ! for NeXT-based systems, including Darwin and Mac \s-1OS\s0 X. The macro \&\f(CW\*(C`_\|_NEXT_RUNTIME_\|_\*(C'\fR is predefined if (and only if) this option is used. .IP "\fB\-fno\-nil\-receivers\fR" 4 --- 2612,2618 ---- .IP "\fB\-fnext\-runtime\fR" 4 .IX Item "-fnext-runtime" Generate output compatible with the NeXT runtime. This is the default ! for NeXT-based systems, including Darwin and Mac \s-1OS X. \s0 The macro \&\f(CW\*(C`_\|_NEXT_RUNTIME_\|_\*(C'\fR is predefined if (and only if) this option is used. .IP "\fB\-fno\-nil\-receivers\fR" 4 *************** This option is currently supported only *** 2620,2626 **** case, Version 0 is the traditional (32\-bit) \s-1ABI\s0 without support for properties and other Objective-C 2.0 additions. Version 1 is the traditional (32\-bit) \s-1ABI\s0 with support for properties and other ! Objective-C 2.0 additions. Version 2 is the modern (64\-bit) \s-1ABI\s0. If nothing is specified, the default is Version 0 on 32\-bit target machines, and Version 2 on 64\-bit target machines. .IP "\fB\-fobjc\-call\-cxx\-cdtors\fR" 4 --- 2629,2635 ---- case, Version 0 is the traditional (32\-bit) \s-1ABI\s0 without support for properties and other Objective-C 2.0 additions. Version 1 is the traditional (32\-bit) \s-1ABI\s0 with support for properties and other ! Objective-C 2.0 additions. Version 2 is the modern (64\-bit) \s-1ABI. \s0 If nothing is specified, the default is Version 0 on 32\-bit target machines, and Version 2 on 64\-bit target machines. .IP "\fB\-fobjc\-call\-cxx\-cdtors\fR" 4 *************** by the runtime immediately after a new o *** 2644,2650 **** the \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods are invoked immediately before the runtime deallocates an object instance. .Sp ! As of this writing, only the NeXT runtime on Mac \s-1OS\s0 X 10.4 and later has support for invoking the \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and \&\f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods. .IP "\fB\-fobjc\-direct\-dispatch\fR" 4 --- 2653,2659 ---- the \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods are invoked immediately before the runtime deallocates an object instance. .Sp ! As of this writing, only the NeXT runtime on Mac \s-1OS X 10.4\s0 and later has support for invoking the \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and \&\f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods. .IP "\fB\-fobjc\-direct\-dispatch\fR" 4 *************** is required to use the Objective-C keywo *** 2659,2665 **** \&\f(CW@throw\fR, \f(CW@catch\fR, \f(CW@finally\fR and \&\f(CW@synchronized\fR. This option is available with both the \s-1GNU\s0 runtime and the NeXT runtime (but not available in conjunction with ! the NeXT runtime on Mac \s-1OS\s0 X 10.2 and earlier). .IP "\fB\-fobjc\-gc\fR" 4 .IX Item "-fobjc-gc" Enable garbage collection (\s-1GC\s0) in Objective-C and Objective\-\*(C+ --- 2668,2674 ---- \&\f(CW@throw\fR, \f(CW@catch\fR, \f(CW@finally\fR and \&\f(CW@synchronized\fR. This option is available with both the \s-1GNU\s0 runtime and the NeXT runtime (but not available in conjunction with ! the NeXT runtime on Mac \s-1OS X 10.2\s0 and earlier). .IP "\fB\-fobjc\-gc\fR" 4 .IX Item "-fobjc-gc" Enable garbage collection (\s-1GC\s0) in Objective-C and Objective\-\*(C+ *************** programs. This option is only available *** 2668,2690 **** does not require special compiler flags. .IP "\fB\-fobjc\-nilcheck\fR" 4 .IX Item "-fobjc-nilcheck" ! For the NeXT runtime with version 2 of the \s-1ABI\s0, check for a nil receiver in method invocations before doing the actual method call. This is the default and can be disabled using \&\fB\-fno\-objc\-nilcheck\fR. Class methods and super calls are never checked for nil in this way no matter what this flag is set to. Currently this flag does nothing when the \s-1GNU\s0 runtime, or an older ! version of the NeXT runtime \s-1ABI\s0, is used. .IP "\fB\-fobjc\-std=objc1\fR" 4 .IX Item "-fobjc-std=objc1" Conform to the language syntax of Objective-C 1.0, the language ! recognized by \s-1GCC\s0 4.0. This only affects the Objective-C additions to the C/\*(C+ language; it does not affect conformance to C/\*(C+ standards, which is controlled by the separate C/\*(C+ dialect option flags. When this option is used with the Objective-C or Objective\-\*(C+ compiler, ! any Objective-C syntax that is not recognized by \s-1GCC\s0 4.0 is rejected. This is useful if you need to make sure that your Objective-C code can ! be compiled with older versions of \s-1GCC\s0. .IP "\fB\-freplace\-objc\-classes\fR" 4 .IX Item "-freplace-objc-classes" Emit a special marker instructing \fB\f(BIld\fB\|(1)\fR not to statically link in --- 2677,2699 ---- does not require special compiler flags. .IP "\fB\-fobjc\-nilcheck\fR" 4 .IX Item "-fobjc-nilcheck" ! For the NeXT runtime with version 2 of the \s-1ABI,\s0 check for a nil receiver in method invocations before doing the actual method call. This is the default and can be disabled using \&\fB\-fno\-objc\-nilcheck\fR. Class methods and super calls are never checked for nil in this way no matter what this flag is set to. Currently this flag does nothing when the \s-1GNU\s0 runtime, or an older ! version of the NeXT runtime \s-1ABI,\s0 is used. .IP "\fB\-fobjc\-std=objc1\fR" 4 .IX Item "-fobjc-std=objc1" Conform to the language syntax of Objective-C 1.0, the language ! recognized by \s-1GCC 4.0. \s0 This only affects the Objective-C additions to the C/\*(C+ language; it does not affect conformance to C/\*(C+ standards, which is controlled by the separate C/\*(C+ dialect option flags. When this option is used with the Objective-C or Objective\-\*(C+ compiler, ! any Objective-C syntax that is not recognized by \s-1GCC 4.0\s0 is rejected. This is useful if you need to make sure that your Objective-C code can ! be compiled with older versions of \s-1GCC.\s0 .IP "\fB\-freplace\-objc\-classes\fR" 4 .IX Item "-freplace-objc-classes" Emit a special marker instructing \fB\f(BIld\fB\|(1)\fR not to statically link in *************** run time instead. This is used in conju *** 2693,2699 **** debugging mode, where the object file in question may be recompiled and dynamically reloaded in the course of program execution, without the need to restart the program itself. Currently, Fix-and-Continue functionality ! is only available in conjunction with the NeXT runtime on Mac \s-1OS\s0 X 10.3 and later. .IP "\fB\-fzero\-link\fR" 4 .IX Item "-fzero-link" --- 2702,2708 ---- debugging mode, where the object file in question may be recompiled and dynamically reloaded in the course of program execution, without the need to restart the program itself. Currently, Fix-and-Continue functionality ! is only available in conjunction with the NeXT runtime on Mac \s-1OS X 10.3\s0 and later. .IP "\fB\-fzero\-link\fR" 4 .IX Item "-fzero-link" *************** honor these options. *** 2772,2778 **** .IX Item "-fmessage-length=n" Try to format error messages so that they fit on lines of about \fIn\fR characters. The default is 72 characters for \fBg++\fR and 0 for the rest of ! the front ends supported by \s-1GCC\s0. If \fIn\fR is zero, then no line-wrapping is done; each error message appears on a single line. .IP "\fB\-fdiagnostics\-show\-location=once\fR" 4 --- 2781,2787 ---- .IX Item "-fmessage-length=n" Try to format error messages so that they fit on lines of about \fIn\fR characters. The default is 72 characters for \fBg++\fR and 0 for the rest of ! the front ends supported by \s-1GCC. \s0 If \fIn\fR is zero, then no line-wrapping is done; each error message appears on a single line. .IP "\fB\-fdiagnostics\-show\-location=once\fR" 4 *************** are not inherently erroneous but that ar *** 2807,2813 **** may have been an error. .PP The following language-independent options do not enable specific ! warnings but control the kinds of diagnostics produced by \s-1GCC\s0. .IP "\fB\-fsyntax\-only\fR" 4 .IX Item "-fsyntax-only" Check the code for syntax errors, but don't do anything beyond that. --- 2816,2822 ---- may have been an error. .PP The following language-independent options do not enable specific ! warnings but control the kinds of diagnostics produced by \s-1GCC.\s0 .IP "\fB\-fsyntax\-only\fR" 4 .IX Item "-fsyntax-only" Check the code for syntax errors, but don't do anything beyond that. *************** warns that an unrecognized option is pre *** 2873,2886 **** .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" .PD ! Issue all the warnings demanded by strict \s-1ISO\s0 C and \s-1ISO\s0 \*(C+; reject all programs that use forbidden extensions, and some other ! programs that do not follow \s-1ISO\s0 C and \s-1ISO\s0 \*(C+. For \s-1ISO\s0 C, follows the ! version of the \s-1ISO\s0 C standard specified by any \fB\-std\fR option used. .Sp ! Valid \s-1ISO\s0 C and \s-1ISO\s0 \*(C+ programs should compile properly with or without this option (though a rare few require \fB\-ansi\fR or a ! \&\fB\-std\fR option specifying the required version of \s-1ISO\s0 C). However, without this option, certain \s-1GNU\s0 extensions and traditional C and \*(C+ features are supported as well. With this option, they are rejected. .Sp --- 2882,2895 ---- .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" .PD ! Issue all the warnings demanded by strict \s-1ISO C\s0 and \s-1ISO \*(C+\s0; reject all programs that use forbidden extensions, and some other ! programs that do not follow \s-1ISO C\s0 and \s-1ISO \*(C+. \s0 For \s-1ISO C,\s0 follows the ! version of the \s-1ISO C\s0 standard specified by any \fB\-std\fR option used. .Sp ! Valid \s-1ISO C\s0 and \s-1ISO \*(C+\s0 programs should compile properly with or without this option (though a rare few require \fB\-ansi\fR or a ! \&\fB\-std\fR option specifying the required version of \s-1ISO C\s0). However, without this option, certain \s-1GNU\s0 extensions and traditional C and \*(C+ features are supported as well. With this option, they are rejected. .Sp *************** warnings are also disabled in the expres *** 2890,2913 **** \&\f(CW\*(C`_\|_extension_\|_\*(C'\fR. However, only system header files should use these escape routes; application programs should avoid them. .Sp ! Some users try to use \fB\-Wpedantic\fR to check programs for strict \s-1ISO\s0 ! C conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all\-\-\-only those for which ! \&\s-1ISO\s0 C \fIrequires\fR a diagnostic, and some others for which diagnostics have been added. .Sp ! A feature to report any failure to conform to \s-1ISO\s0 C might be useful in some instances, but would require considerable additional work and would be quite different from \fB\-Wpedantic\fR. We don't have plans to support such a feature in the near future. .Sp Where the standard specified with \fB\-std\fR represents a \s-1GNU\s0 extended dialect of C, such as \fBgnu90\fR or \fBgnu99\fR, there is a ! corresponding \fIbase standard\fR, the version of \s-1ISO\s0 C on which the \s-1GNU\s0 extended dialect is based. Warnings from \fB\-Wpedantic\fR are given where they are required by the base standard. (It does not make sense ! for such warnings to be given only for features not in the specified \s-1GNU\s0 ! C dialect, since by definition the \s-1GNU\s0 dialects of C include all features the compiler supports with the given option, and there would be nothing to warn about.) .IP "\fB\-pedantic\-errors\fR" 4 --- 2899,2922 ---- \&\f(CW\*(C`_\|_extension_\|_\*(C'\fR. However, only system header files should use these escape routes; application programs should avoid them. .Sp ! Some users try to use \fB\-Wpedantic\fR to check programs for strict \s-1ISO ! C\s0 conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all\-\-\-only those for which ! \&\s-1ISO C \s0\fIrequires\fR a diagnostic, and some others for which diagnostics have been added. .Sp ! A feature to report any failure to conform to \s-1ISO C\s0 might be useful in some instances, but would require considerable additional work and would be quite different from \fB\-Wpedantic\fR. We don't have plans to support such a feature in the near future. .Sp Where the standard specified with \fB\-std\fR represents a \s-1GNU\s0 extended dialect of C, such as \fBgnu90\fR or \fBgnu99\fR, there is a ! corresponding \fIbase standard\fR, the version of \s-1ISO C\s0 on which the \s-1GNU\s0 extended dialect is based. Warnings from \fB\-Wpedantic\fR are given where they are required by the base standard. (It does not make sense ! for such warnings to be given only for features not in the specified \s-1GNU ! C\s0 dialect, since by definition the \s-1GNU\s0 dialects of C include all features the compiler supports with the given option, and there would be nothing to warn about.) .IP "\fB\-pedantic\-errors\fR" 4 *************** functions without the attribute specifie *** 3074,3080 **** \&\fB\-ffreestanding\fR or \fB\-fno\-builtin\fR. .Sp The formats are checked against the format features supported by \s-1GNU\s0 ! libc version 2.2. These include all \s-1ISO\s0 C90 and C99 features, as well as features from the Single Unix Specification and some \s-1BSD\s0 and \s-1GNU\s0 extensions. Other library implementations may not support all these features; \s-1GCC\s0 does not support warning about features that go beyond a --- 3083,3089 ---- \&\fB\-ffreestanding\fR or \fB\-fno\-builtin\fR. .Sp The formats are checked against the format features supported by \s-1GNU\s0 ! libc version 2.2. These include all \s-1ISO C90\s0 and C99 features, as well as features from the Single Unix Specification and some \s-1BSD\s0 and \s-1GNU\s0 extensions. Other library implementations may not support all these features; \s-1GCC\s0 does not support warning about features that go beyond a *************** enabled by default and it is made into a *** 3186,3197 **** Same as \fB\-Wimplicit\-int\fR and \fB\-Wimplicit\-function\-declaration\fR. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wignored\-qualifiers\fR (C and \*(C+ only)" 4 ! .IX Item "-Wignored-qualifiers (C and only)" Warn if the return type of a function has a type qualifier ! such as \f(CW\*(C`const\*(C'\fR. For \s-1ISO\s0 C such a type qualifier has no effect, since the value returned by a function is not an lvalue. For \*(C+, the warning is only emitted for scalar types or \f(CW\*(C`void\*(C'\fR. ! \&\s-1ISO\s0 C prohibits qualified \f(CW\*(C`void\*(C'\fR return types on function definitions, so such return types always receive a warning even without this option. .Sp --- 3195,3206 ---- Same as \fB\-Wimplicit\-int\fR and \fB\-Wimplicit\-function\-declaration\fR. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wignored\-qualifiers\fR (C and \*(C+ only)" 4 ! .IX Item "-Wignored-qualifiers (C and only)" Warn if the return type of a function has a type qualifier ! such as \f(CW\*(C`const\*(C'\fR. For \s-1ISO C\s0 such a type qualifier has no effect, since the value returned by a function is not an lvalue. For \*(C+, the warning is only emitted for scalar types or \f(CW\*(C`void\*(C'\fR. ! \&\s-1ISO C\s0 prohibits qualified \f(CW\*(C`void\*(C'\fR return types on function definitions, so such return types always receive a warning even without this option. .Sp *************** between \fB\-Wswitch\fR and this option *** 3358,3366 **** warning about an omitted enumeration code even if there is a \&\f(CW\*(C`default\*(C'\fR label. .IP "\fB\-Wsync\-nand\fR (C and \*(C+ only)" 4 ! .IX Item "-Wsync-nand (C and only)" Warn when \f(CW\*(C`_\|_sync_fetch_and_nand\*(C'\fR and \f(CW\*(C`_\|_sync_nand_and_fetch\*(C'\fR ! built-in functions are used. These functions changed semantics in \s-1GCC\s0 4.4. .IP "\fB\-Wtrigraphs\fR" 4 .IX Item "-Wtrigraphs" Warn if any trigraphs are encountered that might change the meaning of --- 3367,3375 ---- warning about an omitted enumeration code even if there is a \&\f(CW\*(C`default\*(C'\fR label. .IP "\fB\-Wsync\-nand\fR (C and \*(C+ only)" 4 ! .IX Item "-Wsync-nand (C and only)" Warn when \f(CW\*(C`_\|_sync_fetch_and_nand\*(C'\fR and \f(CW\*(C`_\|_sync_nand_and_fetch\*(C'\fR ! built-in functions are used. These functions changed semantics in \s-1GCC 4.4.\s0 .IP "\fB\-Wtrigraphs\fR" 4 .IX Item "-Wtrigraphs" Warn if any trigraphs are encountered that might change the meaning of *************** This warning is enabled by \fB\-Wall\fR. *** 3397,3403 **** .Sp To suppress this warning use the \fBunused\fR attribute. .IP "\fB\-Wunused\-local\-typedefs\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wunused-local-typedefs (C, Objective-C, and Objective- only)" Warn when a typedef locally defined in a function is not used. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wunused\-parameter\fR" 4 --- 3406,3412 ---- .Sp To suppress this warning use the \fBunused\fR attribute. .IP "\fB\-Wunused\-local\-typedefs\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wunused-local-typedefs (C, Objective-C, and Objective- only)" Warn when a typedef locally defined in a function is not used. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wunused\-parameter\fR" 4 *************** This warning is enabled by \fB\-Wall\fR *** 3504,3510 **** .IP "\fB\-Wunknown\-pragmas\fR" 4 .IX Item "-Wunknown-pragmas" Warn when a \f(CW\*(C`#pragma\*(C'\fR directive is encountered that is not understood by ! \&\s-1GCC\s0. If this command-line option is used, warnings are even issued for unknown pragmas in system header files. This is not the case if the warnings are only enabled by the \fB\-Wall\fR command-line option. .IP "\fB\-Wno\-pragmas\fR" 4 --- 3513,3519 ---- .IP "\fB\-Wunknown\-pragmas\fR" 4 .IX Item "-Wunknown-pragmas" Warn when a \f(CW\*(C`#pragma\*(C'\fR directive is encountered that is not understood by ! \&\s-1GCC. \s0 If this command-line option is used, warnings are even issued for unknown pragmas in system header files. This is not the case if the warnings are only enabled by the \fB\-Wall\fR command-line option. .IP "\fB\-Wno\-pragmas\fR" 4 *************** probably mistaken. *** 3705,3717 **** .IP "\fB\-Wtraditional\fR (C and Objective-C only)" 4 .IX Item "-Wtraditional (C and Objective-C only)" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO\s0 C. Also warn about \s-1ISO\s0 C constructs that have no traditional C equivalent, and/or problematic constructs that should be avoided. .RS 4 .IP "\(bu" 4 Macro parameters that appear within string literals in the macro body. In traditional C macro replacement takes place within string literals, ! but in \s-1ISO\s0 C it does not. .IP "\(bu" 4 In traditional C, some preprocessor directives did not exist. Traditional preprocessors only considered a line to be a directive --- 3714,3726 ---- .IP "\fB\-Wtraditional\fR (C and Objective-C only)" 4 .IX Item "-Wtraditional (C and Objective-C only)" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C equivalent, and/or problematic constructs that should be avoided. .RS 4 .IP "\(bu" 4 Macro parameters that appear within string literals in the macro body. In traditional C macro replacement takes place within string literals, ! but in \s-1ISO C\s0 it does not. .IP "\(bu" 4 In traditional C, some preprocessor directives did not exist. Traditional preprocessors only considered a line to be a directive *************** versa. The absence of these prototypes *** 3766,3774 **** C causes serious problems. This is a subset of the possible conversion warnings; for the full set use \fB\-Wtraditional\-conversion\fR. .IP "\(bu" 4 ! Use of \s-1ISO\s0 C style function definitions. This warning intentionally is \&\fInot\fR issued for prototype declarations or variadic functions ! because these \s-1ISO\s0 C features appear in your code when using libiberty's traditional C compatibility macros, \f(CW\*(C`PARAMS\*(C'\fR and \&\f(CW\*(C`VPARAMS\*(C'\fR. This warning is also bypassed for nested functions because that feature is already a \s-1GCC\s0 extension and thus not relevant to --- 3775,3783 ---- C causes serious problems. This is a subset of the possible conversion warnings; for the full set use \fB\-Wtraditional\-conversion\fR. .IP "\(bu" 4 ! Use of \s-1ISO C\s0 style function definitions. This warning intentionally is \&\fInot\fR issued for prototype declarations or variadic functions ! because these \s-1ISO C\s0 features appear in your code when using libiberty's traditional C compatibility macros, \f(CW\*(C`PARAMS\*(C'\fR and \&\f(CW\*(C`VPARAMS\*(C'\fR. This warning is also bypassed for nested functions because that feature is already a \s-1GCC\s0 extension and thus not relevant to *************** except when the same as the default prom *** 3786,3794 **** .IP "\fB\-Wdeclaration\-after\-statement\fR (C and Objective-C only)" 4 .IX Item "-Wdeclaration-after-statement (C and Objective-C only)" Warn when a declaration is found after a statement in a block. This ! construct, known from \*(C+, was introduced with \s-1ISO\s0 C99 and is by default ! allowed in \s-1GCC\s0. It is not supported by \s-1ISO\s0 C90 and was not supported by ! \&\s-1GCC\s0 versions before \s-1GCC\s0 3.0. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" Warn if an undefined identifier is evaluated in an \fB#if\fR directive. --- 3795,3803 ---- .IP "\fB\-Wdeclaration\-after\-statement\fR (C and Objective-C only)" 4 .IX Item "-Wdeclaration-after-statement (C and Objective-C only)" Warn when a declaration is found after a statement in a block. This ! construct, known from \*(C+, was introduced with \s-1ISO C99\s0 and is by default ! allowed in \s-1GCC. \s0 It is not supported by \s-1ISO C90\s0 and was not supported by ! \&\s-1GCC\s0 versions before \s-1GCC 3.0. \s0 .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" Warn if an undefined identifier is evaluated in an \fB#if\fR directive. *************** which depend on the \s-1MS\s0 runtime. *** 3865,3871 **** .IP "\fB\-Wpointer\-arith\fR" 4 .IX Item "-Wpointer-arith" Warn about anything that depends on the \*(L"size of\*(R" a function type or ! of \f(CW\*(C`void\*(C'\fR. \s-1GNU\s0 C assigns these types a size of 1, for convenience in calculations with \f(CW\*(C`void *\*(C'\fR pointers and pointers to functions. In \*(C+, warn also when an arithmetic operation involves \&\f(CW\*(C`NULL\*(C'\fR. This warning is also enabled by \fB\-Wpedantic\fR. --- 3874,3880 ---- .IP "\fB\-Wpointer\-arith\fR" 4 .IX Item "-Wpointer-arith" Warn about anything that depends on the \*(L"size of\*(R" a function type or ! of \f(CW\*(C`void\*(C'\fR. \s-1GNU C\s0 assigns these types a size of 1, for convenience in calculations with \f(CW\*(C`void *\*(C'\fR pointers and pointers to functions. In \*(C+, warn also when an arithmetic operation involves \&\f(CW\*(C`NULL\*(C'\fR. This warning is also enabled by \fB\-Wpedantic\fR. *************** Warn whenever a function call is cast to *** 3882,3895 **** For example, warn if \f(CW\*(C`int malloc()\*(C'\fR is cast to \f(CW\*(C`anything *\*(C'\fR. .IP "\fB\-Wc++\-compat\fR (C and Objective-C only)" 4 .IX Item "-Wc++-compat (C and Objective-C only)" ! Warn about \s-1ISO\s0 C constructs that are outside of the common subset of ! \&\s-1ISO\s0 C and \s-1ISO\s0 \*(C+, e.g. request for implicit conversion from \&\f(CW\*(C`void *\*(C'\fR to a pointer to non\-\f(CW\*(C`void\*(C'\fR type. .IP "\fB\-Wc++11\-compat\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wc++11-compat ( and Objective- only)" ! Warn about \*(C+ constructs whose meaning differs between \s-1ISO\s0 \*(C+ 1998 ! and \s-1ISO\s0 \*(C+ 2011, e.g., identifiers in \s-1ISO\s0 \*(C+ 1998 that are keywords ! in \s-1ISO\s0 \*(C+ 2011. This warning turns on \fB\-Wnarrowing\fR and is enabled by \fB\-Wall\fR. .IP "\fB\-Wcast\-qual\fR" 4 .IX Item "-Wcast-qual" --- 3891,3904 ---- For example, warn if \f(CW\*(C`int malloc()\*(C'\fR is cast to \f(CW\*(C`anything *\*(C'\fR. .IP "\fB\-Wc++\-compat\fR (C and Objective-C only)" 4 .IX Item "-Wc++-compat (C and Objective-C only)" ! Warn about \s-1ISO C\s0 constructs that are outside of the common subset of ! \&\s-1ISO C\s0 and \s-1ISO \*(C+,\s0 e.g. request for implicit conversion from \&\f(CW\*(C`void *\*(C'\fR to a pointer to non\-\f(CW\*(C`void\*(C'\fR type. .IP "\fB\-Wc++11\-compat\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wc++11-compat ( and Objective- only)" ! Warn about \*(C+ constructs whose meaning differs between \s-1ISO \*(C+ 1998\s0 ! and \s-1ISO \*(C+ 2011,\s0 e.g., identifiers in \s-1ISO \*(C+ 1998\s0 that are keywords ! in \s-1ISO \*(C+ 2011. \s0 This warning turns on \fB\-Wnarrowing\fR and is enabled by \fB\-Wall\fR. .IP "\fB\-Wcast\-qual\fR" 4 .IX Item "-Wcast-qual" *************** Usually they indicate a typo in the user *** 4114,4138 **** implementation-defined values, and should not be used in portable code. .IP "\fB\-Wnormalized=\fR" 4 .IX Item "-Wnormalized=" ! In \s-1ISO\s0 C and \s-1ISO\s0 \*(C+, two identifiers are different if they are different sequences of characters. However, sometimes when characters outside the basic \s-1ASCII\s0 character set are used, you can have two different character sequences that look the same. To avoid confusion, ! the \s-1ISO\s0 10646 standard sets out some \fInormalization rules\fR which when applied ensure that two sequences that look the same are turned into the same sequence. \s-1GCC\s0 can warn you if you are using identifiers that have not been normalized; this option controls that warning. .Sp ! There are four levels of warning supported by \s-1GCC\s0. The default is \&\fB\-Wnormalized=nfc\fR, which warns about any identifier that is ! not in the \s-1ISO\s0 10646 \*(L"C\*(R" normalized form, \fI\s-1NFC\s0\fR. \s-1NFC\s0 is the recommended form for most uses. .Sp Unfortunately, there are some characters allowed in identifiers by ! \&\s-1ISO\s0 C and \s-1ISO\s0 \*(C+ that, when turned into \s-1NFC\s0, are not allowed in identifiers. That is, there's no way to use these symbols in portable ! \&\s-1ISO\s0 C or \*(C+ and have all your identifiers in \s-1NFC\s0. ! \&\fB\-Wnormalized=id\fR suppresses the warning for these characters. It is hoped that future versions of the standards involved will correct this, which is why this option is not the default. .Sp --- 4123,4147 ---- implementation-defined values, and should not be used in portable code. .IP "\fB\-Wnormalized=\fR" 4 .IX Item "-Wnormalized=" ! In \s-1ISO C\s0 and \s-1ISO \*(C+,\s0 two identifiers are different if they are different sequences of characters. However, sometimes when characters outside the basic \s-1ASCII\s0 character set are used, you can have two different character sequences that look the same. To avoid confusion, ! the \s-1ISO 10646\s0 standard sets out some \fInormalization rules\fR which when applied ensure that two sequences that look the same are turned into the same sequence. \s-1GCC\s0 can warn you if you are using identifiers that have not been normalized; this option controls that warning. .Sp ! There are four levels of warning supported by \s-1GCC. \s0 The default is \&\fB\-Wnormalized=nfc\fR, which warns about any identifier that is ! not in the \s-1ISO 10646 \*(L"C\*(R"\s0 normalized form, \fI\s-1NFC\s0\fR. \s-1NFC\s0 is the recommended form for most uses. .Sp Unfortunately, there are some characters allowed in identifiers by ! \&\s-1ISO C\s0 and \s-1ISO \*(C+\s0 that, when turned into \s-1NFC,\s0 are not allowed in identifiers. That is, there's no way to use these symbols in portable ! \&\s-1ISO C\s0 or \*(C+ and have all your identifiers in \s-1NFC. ! \&\s0\fB\-Wnormalized=id\fR suppresses the warning for these characters. It is hoped that future versions of the standards involved will correct this, which is why this option is not the default. .Sp *************** You can switch the warning off for all c *** 4141,4151 **** are using some other normalization scheme (like \*(L"D\*(R"), because otherwise you can easily create bugs that are literally impossible to see. .Sp ! Some characters in \s-1ISO\s0 10646 have distinct meanings but look identical in some fonts or display methodologies, especially once formatting has ! been applied. For instance \f(CW\*(C`\eu207F\*(C'\fR, \*(L"\s-1SUPERSCRIPT\s0 \s-1LATIN\s0 \s-1SMALL\s0 ! \&\s-1LETTER\s0 N\*(R", displays just like a regular \f(CW\*(C`n\*(C'\fR that has been ! placed in a superscript. \s-1ISO\s0 10646 defines the \fI\s-1NFKC\s0\fR normalization scheme to convert all these into a standard form as well, and \s-1GCC\s0 warns if your code is not in \s-1NFKC\s0 if you use \&\fB\-Wnormalized=nfkc\fR. This warning is comparable to warning --- 4150,4160 ---- are using some other normalization scheme (like \*(L"D\*(R"), because otherwise you can easily create bugs that are literally impossible to see. .Sp ! Some characters in \s-1ISO 10646\s0 have distinct meanings but look identical in some fonts or display methodologies, especially once formatting has ! been applied. For instance \f(CW\*(C`\eu207F\*(C'\fR, \*(L"\s-1SUPERSCRIPT LATIN SMALL ! LETTER N\*(R",\s0 displays just like a regular \f(CW\*(C`n\*(C'\fR that has been ! placed in a superscript. \s-1ISO 10646\s0 defines the \fI\s-1NFKC\s0\fR normalization scheme to convert all these into a standard form as well, and \s-1GCC\s0 warns if your code is not in \s-1NFKC\s0 if you use \&\fB\-Wnormalized=nfkc\fR. This warning is comparable to warning *************** have the packed attribute: *** 4194,4202 **** .IP "\fB\-Wpacked\-bitfield\-compat\fR" 4 .IX Item "-Wpacked-bitfield-compat" The 4.1, 4.2 and 4.3 series of \s-1GCC\s0 ignore the \f(CW\*(C`packed\*(C'\fR attribute ! on bit-fields of type \f(CW\*(C`char\*(C'\fR. This has been fixed in \s-1GCC\s0 4.4 but the change can lead to differences in the structure layout. \s-1GCC\s0 ! informs you when the offset of such a field has changed in \s-1GCC\s0 4.4. For example there is no longer a 4\-bit padding between field \f(CW\*(C`a\*(C'\fR and \f(CW\*(C`b\*(C'\fR in this structure: .Sp --- 4203,4211 ---- .IP "\fB\-Wpacked\-bitfield\-compat\fR" 4 .IX Item "-Wpacked-bitfield-compat" The 4.1, 4.2 and 4.3 series of \s-1GCC\s0 ignore the \f(CW\*(C`packed\*(C'\fR attribute ! on bit-fields of type \f(CW\*(C`char\*(C'\fR. This has been fixed in \s-1GCC 4.4\s0 but the change can lead to differences in the structure layout. \s-1GCC\s0 ! informs you when the offset of such a field has changed in \s-1GCC 4.4.\s0 For example there is no longer a 4\-bit padding between field \f(CW\*(C`a\*(C'\fR and \f(CW\*(C`b\*(C'\fR in this structure: .Sp *************** warnings produced by \fB\-Winline\fR to *** 4243,4249 **** .IP "\fB\-Wno\-invalid\-offsetof\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wno-invalid-offsetof ( and Objective- only)" Suppress warnings from applying the \fBoffsetof\fR macro to a non-POD ! type. According to the 1998 \s-1ISO\s0 \*(C+ standard, applying \fBoffsetof\fR to a non-POD type is undefined. In existing \*(C+ implementations, however, \fBoffsetof\fR typically gives meaningful results even when applied to certain kinds of non-POD types (such as a simple --- 4252,4258 ---- .IP "\fB\-Wno\-invalid\-offsetof\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wno-invalid-offsetof ( and Objective- only)" Suppress warnings from applying the \fBoffsetof\fR macro to a non-POD ! type. According to the 1998 \s-1ISO \*(C+\s0 standard, applying \fBoffsetof\fR to a non-POD type is undefined. In existing \*(C+ implementations, however, \fBoffsetof\fR typically gives meaningful results even when applied to certain kinds of non-POD types (such as a simple *************** the search path but can't be used. *** 4270,4281 **** .IP "\fB\-Wlong\-long\fR" 4 .IX Item "-Wlong-long" Warn if \fBlong long\fR type is used. This is enabled by either ! \&\fB\-Wpedantic\fR or \fB\-Wtraditional\fR in \s-1ISO\s0 C90 and \*(C+98 modes. To inhibit the warning messages, use \fB\-Wno\-long\-long\fR. .IP "\fB\-Wvariadic\-macros\fR" 4 .IX Item "-Wvariadic-macros" ! Warn if variadic macros are used in pedantic \s-1ISO\s0 C90 mode, or the \s-1GNU\s0 ! alternate syntax when in pedantic \s-1ISO\s0 C99 mode. This is default. To inhibit the warning messages, use \fB\-Wno\-variadic\-macros\fR. .IP "\fB\-Wvarargs\fR" 4 .IX Item "-Wvarargs" --- 4279,4290 ---- .IP "\fB\-Wlong\-long\fR" 4 .IX Item "-Wlong-long" Warn if \fBlong long\fR type is used. This is enabled by either ! \&\fB\-Wpedantic\fR or \fB\-Wtraditional\fR in \s-1ISO C90\s0 and \*(C+98 modes. To inhibit the warning messages, use \fB\-Wno\-long\-long\fR. .IP "\fB\-Wvariadic\-macros\fR" 4 .IX Item "-Wvariadic-macros" ! Warn if variadic macros are used in pedantic \s-1ISO C90\s0 mode, or the \s-1GNU\s0 ! alternate syntax when in pedantic \s-1ISO C99\s0 mode. This is default. To inhibit the warning messages, use \fB\-Wno\-variadic\-macros\fR. .IP "\fB\-Wvarargs\fR" 4 .IX Item "-Wvarargs" *************** standard's minimum limit, but very porta *** 4342,4348 **** using longer strings. .Sp The limit applies \fIafter\fR string constant concatenation, and does ! not count the trailing \s-1NUL\s0. In C90, the limit was 509 characters; in C99, it was raised to 4095. \*(C+98 does not specify a normative minimum maximum, so we do not diagnose overlength strings in \*(C+. .Sp --- 4351,4357 ---- using longer strings. .Sp The limit applies \fIafter\fR string constant concatenation, and does ! not count the trailing \s-1NUL. \s0 In C90, the limit was 509 characters; in C99, it was raised to 4095. \*(C+98 does not specify a normative minimum maximum, so we do not diagnose overlength strings in \*(C+. .Sp *************** either your program or \s-1GCC:\s0 *** 4362,4368 **** .IP "\fB\-g\fR" 4 .IX Item "-g" Produce debugging information in the operating system's native format ! (stabs, \s-1COFF\s0, \s-1XCOFF\s0, or \s-1DWARF\s0 2). \s-1GDB\s0 can work with this debugging information. .Sp On most systems that use stabs format, \fB\-g\fR enables use of extra --- 4371,4377 ---- .IP "\fB\-g\fR" 4 .IX Item "-g" Produce debugging information in the operating system's native format ! (stabs, \s-1COFF, XCOFF,\s0 or \s-1DWARF 2\s0). \s-1GDB\s0 can work with this debugging information. .Sp On most systems that use stabs format, \fB\-g\fR enables use of extra *************** be useful, this option requires a debugg *** 4395,4402 **** files. .IP "\fB\-ggdb\fR" 4 .IX Item "-ggdb" ! Produce debugging information for use by \s-1GDB\s0. This means to use the ! most expressive format available (\s-1DWARF\s0 2, stabs, or the native format if neither of those are supported), including \s-1GDB\s0 extensions if at all possible. .IP "\fB\-gpubnames\fR" 4 --- 4404,4411 ---- files. .IP "\fB\-ggdb\fR" 4 .IX Item "-ggdb" ! Produce debugging information for use by \s-1GDB. \s0 This means to use the ! most expressive format available (\s-1DWARF 2,\s0 stabs, or the native format if neither of those are supported), including \s-1GDB\s0 extensions if at all possible. .IP "\fB\-gpubnames\fR" 4 *************** Generate dwarf .debug_pubnames and .debu *** 4406,4413 **** .IX Item "-gstabs" Produce debugging information in stabs format (if that is supported), without \s-1GDB\s0 extensions. This is the format used by \s-1DBX\s0 on most \s-1BSD\s0 ! systems. On \s-1MIPS\s0, Alpha and System V Release 4 systems this option ! produces stabs debugging output that is not understood by \s-1DBX\s0 or \s-1SDB\s0. On System V Release 4 systems this option requires the \s-1GNU\s0 assembler. .IP "\fB\-feliminate\-unused\-debug\-symbols\fR" 4 .IX Item "-feliminate-unused-debug-symbols" --- 4415,4422 ---- .IX Item "-gstabs" Produce debugging information in stabs format (if that is supported), without \s-1GDB\s0 extensions. This is the format used by \s-1DBX\s0 on most \s-1BSD\s0 ! systems. On \s-1MIPS,\s0 Alpha and System V Release 4 systems this option ! produces stabs debugging output that is not understood by \s-1DBX\s0 or \s-1SDB.\s0 On System V Release 4 systems this option requires the \s-1GNU\s0 assembler. .IP "\fB\-feliminate\-unused\-debug\-symbols\fR" 4 .IX Item "-feliminate-unused-debug-symbols" *************** System V Release 4. *** 4444,4450 **** .IP "\fB\-gxcoff\fR" 4 .IX Item "-gxcoff" Produce debugging information in \s-1XCOFF\s0 format (if that is supported). ! This is the format used by the \s-1DBX\s0 debugger on \s-1IBM\s0 \s-1RS/6000\s0 systems. .IP "\fB\-gxcoff+\fR" 4 .IX Item "-gxcoff+" Produce debugging information in \s-1XCOFF\s0 format (if that is supported), --- 4453,4459 ---- .IP "\fB\-gxcoff\fR" 4 .IX Item "-gxcoff" Produce debugging information in \s-1XCOFF\s0 format (if that is supported). ! This is the format used by the \s-1DBX\s0 debugger on \s-1IBM RS/6000\s0 systems. .IP "\fB\-gxcoff+\fR" 4 .IX Item "-gxcoff+" Produce debugging information in \s-1XCOFF\s0 format (if that is supported), *************** The value of \fIversion\fR may be either *** 4459,4467 **** for most targets is 4. .Sp Note that with \s-1DWARF\s0 Version 2, some ports require and always ! use some non-conflicting \s-1DWARF\s0 3 extensions in the unwind tables. .Sp ! Version 4 may require \s-1GDB\s0 7.0 and \fB\-fvar\-tracking\-assignments\fR for maximum benefit. .IP "\fB\-grecord\-gcc\-switches\fR" 4 .IX Item "-grecord-gcc-switches" --- 4468,4476 ---- for most targets is 4. .Sp Note that with \s-1DWARF\s0 Version 2, some ports require and always ! use some non-conflicting \s-1DWARF 3\s0 extensions in the unwind tables. .Sp ! Version 4 may require \s-1GDB 7.0\s0 and \fB\-fvar\-tracking\-assignments\fR for maximum benefit. .IP "\fB\-grecord\-gcc\-switches\fR" 4 .IX Item "-grecord-gcc-switches" *************** debug information in version 1 of the \s *** 4523,4529 **** different from version 2), and it would have been too confusing. That debug format is long obsolete, but the option cannot be changed now. Instead use an additional \fB\-g\fR\fIlevel\fR option to change the ! debug level for \s-1DWARF\s0. .IP "\fB\-gtoggle\fR" 4 .IX Item "-gtoggle" Turn off generation of debug info, if leaving out this option --- 4532,4538 ---- different from version 2), and it would have been too confusing. That debug format is long obsolete, but the option cannot be changed now. Instead use an additional \fB\-g\fR\fIlevel\fR option to change the ! debug level for \s-1DWARF.\s0 .IP "\fB\-gtoggle\fR" 4 .IX Item "-gtoggle" Turn off generation of debug info, if leaving out this option *************** When this option is passed to the compil *** 4591,4599 **** other than debugging the compiler proper. .IP "\fB\-feliminate\-dwarf2\-dups\fR" 4 .IX Item "-feliminate-dwarf2-dups" ! Compress \s-1DWARF\s0 2 debugging information by eliminating duplicated information about each symbol. This option only makes sense when ! generating \s-1DWARF\s0 2 debugging information with \fB\-gdwarf\-2\fR. .IP "\fB\-femit\-struct\-debug\-baseonly\fR" 4 .IX Item "-femit-struct-debug-baseonly" Emit debug information for struct-like types --- 4600,4608 ---- other than debugging the compiler proper. .IP "\fB\-feliminate\-dwarf2\-dups\fR" 4 .IX Item "-feliminate-dwarf2-dups" ! Compress \s-1DWARF 2\s0 debugging information by eliminating duplicated information about each symbol. This option only makes sense when ! generating \s-1DWARF 2\s0 debugging information with \fB\-gdwarf\-2\fR. .IP "\fB\-femit\-struct\-debug\-baseonly\fR" 4 .IX Item "-femit-struct-debug-baseonly" Emit debug information for struct-like types *************** but at significant potential loss in typ *** 4605,4611 **** See \fB\-femit\-struct\-debug\-reduced\fR for a less aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF\s0 2. .IP "\fB\-femit\-struct\-debug\-reduced\fR" 4 .IX Item "-femit-struct-debug-reduced" Emit debug information for struct-like types --- 4614,4620 ---- See \fB\-femit\-struct\-debug\-reduced\fR for a less aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF 2.\s0 .IP "\fB\-femit\-struct\-debug\-reduced\fR" 4 .IX Item "-femit-struct-debug-reduced" Emit debug information for struct-like types *************** with some potential loss in type informa *** 4618,4624 **** See \fB\-femit\-struct\-debug\-baseonly\fR for a more aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF\s0 2. .IP "\fB\-femit\-struct\-debug\-detailed\fR[\fB=\fR\fIspec-list\fR]" 4 .IX Item "-femit-struct-debug-detailed[=spec-list]" Specify the struct-like types --- 4627,4633 ---- See \fB\-femit\-struct\-debug\-baseonly\fR for a more aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF 2.\s0 .IP "\fB\-femit\-struct\-debug\-detailed\fR[\fB=\fR\fIspec-list\fR]" 4 .IX Item "-femit-struct-debug-detailed[=spec-list]" Specify the struct-like types *************** You may need to experiment to determine *** 4664,4670 **** .Sp The default is \fB\-femit\-struct\-debug\-detailed=all\fR. .Sp ! This option works only with \s-1DWARF\s0 2. .IP "\fB\-fno\-merge\-debug\-strings\fR" 4 .IX Item "-fno-merge-debug-strings" Direct the linker to not merge together strings in the debugging --- 4673,4679 ---- .Sp The default is \fB\-femit\-struct\-debug\-detailed=all\fR. .Sp ! This option works only with \s-1DWARF 2.\s0 .IP "\fB\-fno\-merge\-debug\-strings\fR" 4 .IX Item "-fno-merge-debug-strings" Direct the linker to not merge together strings in the debugging *************** When compiling files in directory \fI\fI *** 4678,4685 **** information describing them as in \fI\fInew\fI\fR instead. .IP "\fB\-fno\-dwarf2\-cfi\-asm\fR" 4 .IX Item "-fno-dwarf2-cfi-asm" ! Emit \s-1DWARF\s0 2 unwind info as compiler generated \f(CW\*(C`.eh_frame\*(C'\fR section ! instead of using \s-1GAS\s0 \f(CW\*(C`.cfi_*\*(C'\fR directives. .IP "\fB\-p\fR" 4 .IX Item "-p" Generate extra code to write profile information suitable for the --- 4687,4694 ---- information describing them as in \fI\fInew\fI\fR instead. .IP "\fB\-fno\-dwarf2\-cfi\-asm\fR" 4 .IX Item "-fno-dwarf2-cfi-asm" ! Emit \s-1DWARF 2\s0 unwind info as compiler generated \f(CW\*(C`.eh_frame\*(C'\fR section ! instead of using \s-1GAS \s0\f(CW\*(C`.cfi_*\*(C'\fR directives. .IP "\fB\-p\fR" 4 .IX Item "-p" Generate extra code to write profile information suitable for the *************** For example, with \fB\-fdbg\-cnt=dce:10, *** 4836,4842 **** .IX Item "-fdisable-kind-pass=range-list" .PD This is a set of options that are used to explicitly disable/enable ! optimization passes. These options are intended for use for debugging \s-1GCC\s0. Compiler users should use regular options for enabling/disabling passes instead. .RS 4 --- 4845,4851 ---- .IX Item "-fdisable-kind-pass=range-list" .PD This is a set of options that are used to explicitly disable/enable ! optimization passes. These options are intended for use for debugging \s-1GCC.\s0 Compiler users should use regular options for enabling/disabling passes instead. .RS 4 *************** by some other path. *** 5310,5316 **** When dumping pretty-printed trees, this option inhibits dumping the bodies of control structures. .Sp ! When dumping \s-1RTL\s0, print the \s-1RTL\s0 in slim (condensed) form instead of the default LISP-like representation. .IP "\fBraw\fR" 4 .IX Item "raw" --- 5319,5325 ---- When dumping pretty-printed trees, this option inhibits dumping the bodies of control structures. .Sp ! When dumping \s-1RTL,\s0 print the \s-1RTL\s0 in slim (condensed) form instead of the default LISP-like representation. .IP "\fBraw\fR" 4 .IX Item "raw" *************** Enable showing virtual operands for ever *** 5345,5351 **** Enable showing line numbers for statements. .IP "\fBuid\fR" 4 .IX Item "uid" ! Enable showing the unique \s-1ID\s0 (\f(CW\*(C`DECL_UID\*(C'\fR) for each variable. .IP "\fBverbose\fR" 4 .IX Item "verbose" Enable showing the tree dump for each statement. --- 5354,5360 ---- Enable showing line numbers for statements. .IP "\fBuid\fR" 4 .IX Item "uid" ! Enable showing the unique \s-1ID \s0(\f(CW\*(C`DECL_UID\*(C'\fR) for each variable. .IP "\fBverbose\fR" 4 .IX Item "verbose" Enable showing the tree dump for each statement. *************** Dump aliasing information for each funct *** 5423,5429 **** appending \fI.alias\fR to the source file name. .IP "\fBccp\fR" 4 .IX Item "ccp" ! Dump each function after \s-1CCP\s0. The file name is made by appending \&\fI.ccp\fR to the source file name. .IP "\fBstoreccp\fR" 4 .IX Item "storeccp" --- 5432,5438 ---- appending \fI.alias\fR to the source file name. .IP "\fBccp\fR" 4 .IX Item "ccp" ! Dump each function after \s-1CCP. \s0 The file name is made by appending \&\fI.ccp\fR to the source file name. .IP "\fBstoreccp\fR" 4 .IX Item "storeccp" *************** Print the compiler's built-in specs\-\-\ *** 5850,5856 **** is used when \s-1GCC\s0 itself is being built.) .IP "\fB\-fno\-eliminate\-unused\-debug\-types\fR" 4 .IX Item "-fno-eliminate-unused-debug-types" ! Normally, when producing \s-1DWARF\s0 2 output, \s-1GCC\s0 avoids producing debug symbol output for types that are nowhere used in the source file being compiled. Sometimes it is useful to have \s-1GCC\s0 emit debugging information for all types declared in a compilation --- 5859,5865 ---- is used when \s-1GCC\s0 itself is being built.) .IP "\fB\-fno\-eliminate\-unused\-debug\-types\fR" 4 .IX Item "-fno-eliminate-unused-debug-types" ! Normally, when producing \s-1DWARF 2\s0 output, \s-1GCC\s0 avoids producing debug symbol output for types that are nowhere used in the source file being compiled. Sometimes it is useful to have \s-1GCC\s0 emit debugging information for all types declared in a compilation *************** function calls and pops them all at once *** 6046,6052 **** Disabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR. .IP "\fB\-fforward\-propagate\fR" 4 .IX Item "-fforward-propagate" ! Perform a forward propagation pass on \s-1RTL\s0. The pass tries to combine two instructions and checks if the result can be simplified. If loop unrolling is active, two passes are performed and the second is scheduled after loop unrolling. --- 6055,6061 ---- Disabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR. .IP "\fB\-fforward\-propagate\fR" 4 .IX Item "-fforward-propagate" ! Perform a forward propagation pass on \s-1RTL. \s0 The pass tries to combine two instructions and checks if the result can be simplified. If loop unrolling is active, two passes are performed and the second is scheduled after loop unrolling. *************** restore frame pointers; it also makes an *** 6072,6078 **** in many functions. \fBIt also makes debugging impossible on some machines.\fR .Sp ! On some machines, such as the \s-1VAX\s0, this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The machine-description macro \f(CW\*(C`FRAME_POINTER_REQUIRED\*(C'\fR controls --- 6081,6087 ---- in many functions. \fBIt also makes debugging impossible on some machines.\fR .Sp ! On some machines, such as the \s-1VAX,\s0 this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The machine-description macro \f(CW\*(C`FRAME_POINTER_REQUIRED\*(C'\fR controls *************** attribute or declspec *** 6191,6197 **** In C, emit \f(CW\*(C`static\*(C'\fR functions that are declared \f(CW\*(C`inline\*(C'\fR into the object file, even if the function has been inlined into all of its callers. This switch does not affect functions using the ! \&\f(CW\*(C`extern inline\*(C'\fR extension in \s-1GNU\s0 C90. In \*(C+, emit any and all inline functions into the object file. .IP "\fB\-fkeep\-static\-consts\fR" 4 .IX Item "-fkeep-static-consts" --- 6200,6206 ---- In C, emit \f(CW\*(C`static\*(C'\fR functions that are declared \f(CW\*(C`inline\*(C'\fR into the object file, even if the function has been inlined into all of its callers. This switch does not affect functions using the ! \&\f(CW\*(C`extern inline\*(C'\fR extension in \s-1GNU C90. \s0 In \*(C+, emit any and all inline functions into the object file. .IP "\fB\-fkeep\-static\-consts\fR" 4 .IX Item "-fkeep-static-consts" *************** The default is \fB\-ffunction\-cse\fR *** 6256,6262 **** .IP "\fB\-fno\-zero\-initialized\-in\-bss\fR" 4 .IX Item "-fno-zero-initialized-in-bss" If the target supports a \s-1BSS\s0 section, \s-1GCC\s0 by default puts variables that ! are initialized to zero into \s-1BSS\s0. This can save space in the resulting code. .Sp This option turns off this behavior because some programs explicitly --- 6265,6271 ---- .IP "\fB\-fno\-zero\-initialized\-in\-bss\fR" 4 .IX Item "-fno-zero-initialized-in-bss" If the target supports a \s-1BSS\s0 section, \s-1GCC\s0 by default puts variables that ! are initialized to zero into \s-1BSS. \s0 This can save space in the resulting code. .Sp This option turns off this behavior because some programs explicitly *************** instructions to support this. Enabled b *** 6400,6410 **** higher on architectures that support this. .IP "\fB\-fdce\fR" 4 .IX Item "-fdce" ! Perform dead code elimination (\s-1DCE\s0) on \s-1RTL\s0. Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fdse\fR" 4 .IX Item "-fdse" ! Perform dead store elimination (\s-1DSE\s0) on \s-1RTL\s0. Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fif\-conversion\fR" 4 .IX Item "-fif-conversion" --- 6409,6419 ---- higher on architectures that support this. .IP "\fB\-fdce\fR" 4 .IX Item "-fdce" ! Perform dead code elimination (\s-1DCE\s0) on \s-1RTL.\s0 Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fdse\fR" 4 .IX Item "-fdse" ! Perform dead store elimination (\s-1DSE\s0) on \s-1RTL.\s0 Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fif\-conversion\fR" 4 .IX Item "-fif-conversion" *************** at \fB\-O\fR and higher. *** 6737,6743 **** Perform full redundancy elimination (\s-1FRE\s0) on trees. The difference between \s-1FRE\s0 and \s-1PRE\s0 is that \s-1FRE\s0 only considers expressions that are computed on all paths leading to the redundant computation. ! This analysis is faster than \s-1PRE\s0, though it exposes fewer redundancies. This flag is enabled by default at \fB\-O\fR and higher. .IP "\fB\-ftree\-phiprop\fR" 4 .IX Item "-ftree-phiprop" --- 6746,6752 ---- Perform full redundancy elimination (\s-1FRE\s0) on trees. The difference between \s-1FRE\s0 and \s-1PRE\s0 is that \s-1FRE\s0 only considers expressions that are computed on all paths leading to the redundant computation. ! This analysis is faster than \s-1PRE,\s0 though it exposes fewer redundancies. This flag is enabled by default at \fB\-O\fR and higher. .IP "\fB\-ftree\-phiprop\fR" 4 .IX Item "-ftree-phiprop" *************** infrastructure. *** 6964,6970 **** Enable the identity transformation for graphite. For every SCoP we generate the polyhedral representation and transform it back to gimple. Using \&\fB\-fgraphite\-identity\fR we can check the costs or benefits of the ! \&\s-1GIMPLE\s0 \-> \s-1GRAPHITE\s0 \-> \s-1GIMPLE\s0 transformation. Some minimal optimizations are also performed by the code generator CLooG, like index splitting and dead code elimination in loops. .IP "\fB\-floop\-nest\-optimize\fR" 4 --- 6973,6979 ---- Enable the identity transformation for graphite. For every SCoP we generate the polyhedral representation and transform it back to gimple. Using \&\fB\-fgraphite\-identity\fR we can check the costs or benefits of the ! \&\s-1GIMPLE \-\s0> \s-1GRAPHITE \-\s0> \s-1GIMPLE\s0 transformation. Some minimal optimizations are also performed by the code generator CLooG, like index splitting and dead code elimination in loops. .IP "\fB\-floop\-nest\-optimize\fR" 4 *************** targets. *** 7467,7473 **** Constructs webs as commonly used for register allocation purposes and assign each web individual pseudo register. This allows the register allocation pass to operate on pseudos directly, but also strengthens several other optimization ! passes, such as \s-1CSE\s0, loop optimizer and trivial dead code remover. It can, however, make debugging impossible, since variables no longer stay in a \&\*(L"home register\*(R". .Sp --- 7476,7482 ---- Constructs webs as commonly used for register allocation purposes and assign each web individual pseudo register. This allows the register allocation pass to operate on pseudos directly, but also strengthens several other optimization ! passes, such as \s-1CSE,\s0 loop optimizer and trivial dead code remover. It can, however, make debugging impossible, since variables no longer stay in a \&\*(L"home register\*(R". .Sp *************** information. *** 7485,7491 **** .IP "\fB\-flto[=\fR\fIn\fR\fB]\fR" 4 .IX Item "-flto[=n]" This option runs the standard link-time optimizer. When invoked ! with source code, it generates \s-1GIMPLE\s0 (one of \s-1GCC\s0's internal representations) and writes it to special \s-1ELF\s0 sections in the object file. When the object files are linked together, all the function bodies are read from these \s-1ELF\s0 sections and instantiated as if they --- 7494,7500 ---- .IP "\fB\-flto[=\fR\fIn\fR\fB]\fR" 4 .IX Item "-flto[=n]" This option runs the standard link-time optimizer. When invoked ! with source code, it generates \s-1GIMPLE \s0(one of \s-1GCC\s0's internal representations) and writes it to special \s-1ELF\s0 sections in the object file. When the object files are linked together, all the function bodies are read from these \s-1ELF\s0 sections and instantiated as if they *************** participating in the same link with the *** 7579,7585 **** .Sp If \s-1LTO\s0 encounters objects with C linkage declared with incompatible types in separate translation units to be linked together (undefined ! behavior according to \s-1ISO\s0 C99 6.2.7), a non-fatal diagnostic may be issued. The behavior is still undefined at run time. .Sp Another feature of \s-1LTO\s0 is that it is possible to apply interprocedural --- 7588,7594 ---- .Sp If \s-1LTO\s0 encounters objects with C linkage declared with incompatible types in separate translation units to be linked together (undefined ! behavior according to \s-1ISO C99 6.2.7\s0), a non-fatal diagnostic may be issued. The behavior is still undefined at run time. .Sp Another feature of \s-1LTO\s0 is that it is possible to apply interprocedural *************** The current implementation of \s-1LTO\s0 *** 7632,7638 **** attempt to generate bytecode that is portable between different types of hosts. The bytecode files are versioned and there is a strict version check, so bytecode files generated in one version of ! \&\s-1GCC\s0 will not work with an older/newer version of \s-1GCC\s0. .Sp Link-time optimization does not work well with generation of debugging information. Combining \fB\-flto\fR with --- 7641,7647 ---- attempt to generate bytecode that is portable between different types of hosts. The bytecode files are versioned and there is a strict version check, so bytecode files generated in one version of ! \&\s-1GCC\s0 will not work with an older/newer version of \s-1GCC.\s0 .Sp Link-time optimization does not work well with generation of debugging information. Combining \fB\-flto\fR with *************** and the object code. This makes them usa *** 7705,7712 **** linking. This option is effective only when compiling with \fB\-flto\fR and is ignored at link time. .Sp ! \&\fB\-fno\-fat\-lto\-objects\fR improves compilation time over plain \s-1LTO\s0, but ! requires the complete toolchain to be aware of \s-1LTO\s0. It requires a linker with linker plugin support for basic functionality. Additionally, \&\fBnm\fR, \fBar\fR and \fBranlib\fR need to support linker plugins to allow a full-featured build environment --- 7714,7721 ---- linking. This option is effective only when compiling with \fB\-flto\fR and is ignored at link time. .Sp ! \&\fB\-fno\-fat\-lto\-objects\fR improves compilation time over plain \s-1LTO,\s0 but ! requires the complete toolchain to be aware of \s-1LTO.\s0 It requires a linker with linker plugin support for basic functionality. Additionally, \&\fBnm\fR, \fBar\fR and \fBranlib\fR need to support linker plugins to allow a full-featured build environment *************** them to store all pertinent intermediate *** 7811,7825 **** .IP "\fB\-fexcess\-precision=\fR\fIstyle\fR" 4 .IX Item "-fexcess-precision=style" This option allows further control over excess precision on machines ! where floating-point registers have more precision than the \s-1IEEE\s0 ! \&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR types and the processor does not support operations rounding to those types. By default, \&\fB\-fexcess\-precision=fast\fR is in effect; this means that operations are carried out in the precision of the registers and that it is unpredictable when rounding to the types specified in the source code takes place. When compiling C, if \&\fB\-fexcess\-precision=standard\fR is specified then excess ! precision follows the rules specified in \s-1ISO\s0 C99; in particular, both casts and assignments cause values to be rounded to their semantic types (whereas \fB\-ffloat\-store\fR only affects assignments). This option is enabled by default for C if a strict --- 7820,7834 ---- .IP "\fB\-fexcess\-precision=\fR\fIstyle\fR" 4 .IX Item "-fexcess-precision=style" This option allows further control over excess precision on machines ! where floating-point registers have more precision than the \s-1IEEE ! \&\s0\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR types and the processor does not support operations rounding to those types. By default, \&\fB\-fexcess\-precision=fast\fR is in effect; this means that operations are carried out in the precision of the registers and that it is unpredictable when rounding to the types specified in the source code takes place. When compiling C, if \&\fB\-fexcess\-precision=standard\fR is specified then excess ! precision follows the rules specified in \s-1ISO C99\s0; in particular, both casts and assignments cause values to be rounded to their semantic types (whereas \fB\-ffloat\-store\fR only affects assignments). This option is enabled by default for C if a strict *************** The default is \fB\-fno\-unsafe\-math\-o *** 7883,7889 **** .IP "\fB\-fassociative\-math\fR" 4 .IX Item "-fassociative-math" Allow re-association of operands in series of floating-point operations. ! This violates the \s-1ISO\s0 C and \*(C+ language standard by possibly changing computation result. \s-1NOTE:\s0 re-ordering may change the sign of zero as well as ignore NaNs and inhibit or create underflow or overflow (and thus cannot be used on code that relies on rounding behavior like --- 7892,7898 ---- .IP "\fB\-fassociative\-math\fR" 4 .IX Item "-fassociative-math" Allow re-association of operands in series of floating-point operations. ! This violates the \s-1ISO C\s0 and \*(C+ language standard by possibly changing computation result. \s-1NOTE:\s0 re-ordering may change the sign of zero as well as ignore NaNs and inhibit or create underflow or overflow (and thus cannot be used on code that relies on rounding behavior like *************** whether the result of a complex multipli *** 7986,7993 **** default is \fB\-fno\-cx\-limited\-range\fR, but is enabled by \&\fB\-ffast\-math\fR. .Sp ! This option controls the default setting of the \s-1ISO\s0 C99 ! \&\f(CW\*(C`CX_LIMITED_RANGE\*(C'\fR pragma. Nevertheless, the option applies to all languages. .IP "\fB\-fcx\-fortran\-rules\fR" 4 .IX Item "-fcx-fortran-rules" --- 7995,8002 ---- default is \fB\-fno\-cx\-limited\-range\fR, but is enabled by \&\fB\-ffast\-math\fR. .Sp ! This option controls the default setting of the \s-1ISO C99 ! \&\s0\f(CW\*(C`CX_LIMITED_RANGE\*(C'\fR pragma. Nevertheless, the option applies to all languages. .IP "\fB\-fcx\-fortran\-rules\fR" 4 .IX Item "-fcx-fortran-rules" *************** optimization is not done. *** 8231,8237 **** .IP "\fBmax-gcse-insertion-ratio\fR" 4 .IX Item "max-gcse-insertion-ratio" If the ratio of expression insertions to deletions is larger than this value ! for any expression, then \s-1RTL\s0 \s-1PRE\s0 inserts or removes the expression and thus leaves partially redundant computations in the instruction stream. The default value is 20. .IP "\fBmax-pending-list-length\fR" 4 .IX Item "max-pending-list-length" --- 8240,8246 ---- .IP "\fBmax-gcse-insertion-ratio\fR" 4 .IX Item "max-gcse-insertion-ratio" If the ratio of expression insertions to deletions is larger than this value ! for any expression, then \s-1RTL PRE\s0 inserts or removes the expression and thus leaves partially redundant computations in the instruction stream. The default value is 20. .IP "\fBmax-pending-list-length\fR" 4 .IX Item "max-pending-list-length" *************** when modulo scheduling a loop. Larger v *** 8246,8252 **** compilation time. .IP "\fBmax-inline-insns-single\fR" 4 .IX Item "max-inline-insns-single" ! Several parameters control the tree inliner used in \s-1GCC\s0. This number sets the maximum number of instructions (counted in \s-1GCC\s0's internal representation) in a single function that the tree inliner considers for inlining. This only affects functions declared --- 8255,8261 ---- compilation time. .IP "\fBmax-inline-insns-single\fR" 4 .IX Item "max-inline-insns-single" ! Several parameters control the tree inliner used in \s-1GCC.\s0 This number sets the maximum number of instructions (counted in \s-1GCC\s0's internal representation) in a single function that the tree inliner considers for inlining. This only affects functions declared *************** Tuning this may improve compilation spee *** 8593,8599 **** generation. .Sp The default is 30% + 70% * (\s-1RAM/1GB\s0) with an upper bound of 100% when ! \&\s-1RAM\s0 >= 1GB. If \f(CW\*(C`getrlimit\*(C'\fR is available, the notion of \*(L"\s-1RAM\s0\*(R" is the smallest of actual \s-1RAM\s0 and \f(CW\*(C`RLIMIT_DATA\*(C'\fR or \f(CW\*(C`RLIMIT_AS\*(C'\fR. If \&\s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a particular platform, the lower bound of 30% is used. Setting this parameter and --- 8602,8608 ---- generation. .Sp The default is 30% + 70% * (\s-1RAM/1GB\s0) with an upper bound of 100% when ! \&\s-1RAM \s0>= 1GB. If \f(CW\*(C`getrlimit\*(C'\fR is available, the notion of \*(L"\s-1RAM\*(R"\s0 is the smallest of actual \s-1RAM\s0 and \f(CW\*(C`RLIMIT_DATA\*(C'\fR or \f(CW\*(C`RLIMIT_AS\*(C'\fR. If \&\s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a particular platform, the lower bound of 30% is used. Setting this parameter and *************** by \fBggc-min-expand\fR% beyond \fBggc-m *** 8608,8614 **** tuning this may improve compilation speed, and has no effect on code generation. .Sp ! The default is the smaller of \s-1RAM/8\s0, \s-1RLIMIT_RSS\s0, or a limit that tries to ensure that \s-1RLIMIT_DATA\s0 or \s-1RLIMIT_AS\s0 are not exceeded, but with a lower bound of 4096 (four megabytes) and an upper bound of 131072 (128 megabytes). If \s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a --- 8617,8623 ---- tuning this may improve compilation speed, and has no effect on code generation. .Sp ! The default is the smaller of \s-1RAM/8, RLIMIT_RSS,\s0 or a limit that tries to ensure that \s-1RLIMIT_DATA\s0 or \s-1RLIMIT_AS\s0 are not exceeded, but with a lower bound of 4096 (four megabytes) and an upper bound of 131072 (128 megabytes). If \s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a *************** The number of partitions should exceed t *** 8900,8906 **** The default value is 32. .IP "\fBlto-minpartition\fR" 4 .IX Item "lto-minpartition" ! Size of minimal partition for \s-1WHOPR\s0 (in estimated instructions). This prevents expenses of splitting very small programs into too many partitions. .IP "\fBcxx-max-namespaces-for-diagnostic-help\fR" 4 --- 8909,8915 ---- The default value is 32. .IP "\fBlto-minpartition\fR" 4 .IX Item "lto-minpartition" ! Size of minimal partition for \s-1WHOPR \s0(in estimated instructions). This prevents expenses of splitting very small programs into too many partitions. .IP "\fBcxx-max-namespaces-for-diagnostic-help\fR" 4 *************** get trigraph conversion without warnings *** 9092,9098 **** .IP "\fB\-Wtraditional\fR" 4 .IX Item "-Wtraditional" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO\s0 C. Also warn about \s-1ISO\s0 C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" --- 9101,9107 ---- .IP "\fB\-Wtraditional\fR" 4 .IX Item "-Wtraditional" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C equivalent, and problematic constructs which should be avoided. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" *************** in finding bugs in your own code, theref *** 9145,9151 **** responsible for the system library, you may want to see them. .IP "\fB\-w\fR" 4 .IX Item "-w" ! Suppress all warnings, including those which \s-1GNU\s0 \s-1CPP\s0 issues by default. .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" Issue all the mandatory diagnostics listed in the C standard. Some of --- 9154,9160 ---- responsible for the system library, you may want to see them. .IP "\fB\-w\fR" 4 .IX Item "-w" ! Suppress all warnings, including those which \s-1GNU CPP\s0 issues by default. .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" Issue all the mandatory diagnostics listed in the C standard. Some of *************** This option allows use of a precompiled *** 9285,9294 **** \&\f(CW\*(C`#pragma GCC pch_preprocess "\f(CIfilename\f(CW"\*(C'\fR in the output to mark the place where the precompiled header was found, and its \fIfilename\fR. When \fB\-fpreprocessed\fR is in use, \s-1GCC\s0 recognizes this \f(CW\*(C`#pragma\*(C'\fR ! and loads the \s-1PCH\s0. .Sp This option is off by default, because the resulting preprocessed output ! is only really suitable as input to \s-1GCC\s0. It is switched on by \&\fB\-save\-temps\fR. .Sp You should not write this \f(CW\*(C`#pragma\*(C'\fR in your own code, but it is --- 9294,9303 ---- \&\f(CW\*(C`#pragma GCC pch_preprocess "\f(CIfilename\f(CW"\*(C'\fR in the output to mark the place where the precompiled header was found, and its \fIfilename\fR. When \fB\-fpreprocessed\fR is in use, \s-1GCC\s0 recognizes this \f(CW\*(C`#pragma\*(C'\fR ! and loads the \s-1PCH.\s0 .Sp This option is off by default, because the resulting preprocessed output ! is only really suitable as input to \s-1GCC. \s0 It is switched on by \&\fB\-save\-temps\fR. .Sp You should not write this \f(CW\*(C`#pragma\*(C'\fR in your own code, but it is *************** may be one of: *** 9341,9347 **** .el .IP "\f(CWiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! The \s-1ISO\s0 C standard from 1990. \fBc90\fR is the customary shorthand for this version of the standard. .Sp The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR. --- 9350,9356 ---- .el .IP "\f(CWiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! The \s-1ISO C\s0 standard from 1990. \fBc90\fR is the customary shorthand for this version of the standard. .Sp The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR. *************** The 1990 C standard, as amended in 1994. *** 9363,9369 **** .el .IP "\f(CWc9x\fR" 4 .IX Item "c9x" .PD ! The revised \s-1ISO\s0 C standard, published in December 1999. Before publication, this was known as C9X. .ie n .IP """iso9899:2011""" 4 .el .IP "\f(CWiso9899:2011\fR" 4 --- 9372,9378 ---- .el .IP "\f(CWc9x\fR" 4 .IX Item "c9x" .PD ! The revised \s-1ISO C\s0 standard, published in December 1999. Before publication, this was known as C9X. .ie n .IP """iso9899:2011""" 4 .el .IP "\f(CWiso9899:2011\fR" 4 *************** publication, this was known as C9X. *** 9376,9382 **** .el .IP "\f(CWc1x\fR" 4 .IX Item "c1x" .PD ! The revised \s-1ISO\s0 C standard, published in December 2011. Before publication, this was known as C1X. .ie n .IP """gnu90""" 4 .el .IP "\f(CWgnu90\fR" 4 --- 9385,9391 ---- .el .IP "\f(CWc1x\fR" 4 .IX Item "c1x" .PD ! The revised \s-1ISO C\s0 standard, published in December 2011. Before publication, this was known as C1X. .ie n .IP """gnu90""" 4 .el .IP "\f(CWgnu90\fR" 4 *************** The 2011 C standard plus \s-1GNU\s0 exte *** 9408,9414 **** .ie n .IP """c++98""" 4 .el .IP "\f(CWc++98\fR" 4 .IX Item "c++98" ! The 1998 \s-1ISO\s0 \*(C+ standard plus amendments. .ie n .IP """gnu++98""" 4 .el .IP "\f(CWgnu++98\fR" 4 .IX Item "gnu++98" --- 9417,9423 ---- .ie n .IP """c++98""" 4 .el .IP "\f(CWc++98\fR" 4 .IX Item "c++98" ! The 1998 \s-1ISO \*(C+\s0 standard plus amendments. .ie n .IP """gnu++98""" 4 .el .IP "\f(CWgnu++98\fR" 4 .IX Item "gnu++98" *************** Accept \fB$\fR in identifiers. *** 9534,9540 **** .IP "\fB\-fextended\-identifiers\fR" 4 .IX Item "-fextended-identifiers" Accept universal character names in identifiers. This option is ! experimental; in a future version of \s-1GCC\s0, it will be enabled by default for C99 and \*(C+. .IP "\fB\-fno\-canonical\-system\-headers\fR" 4 .IX Item "-fno-canonical-system-headers" --- 9543,9549 ---- .IP "\fB\-fextended\-identifiers\fR" 4 .IX Item "-fextended-identifiers" Accept universal character names in identifiers. This option is ! experimental; in a future version of \s-1GCC,\s0 it will be enabled by default for C99 and \*(C+. .IP "\fB\-fno\-canonical\-system\-headers\fR" 4 .IX Item "-fno-canonical-system-headers" *************** line. If the value is less than 1 or gr *** 9561,9567 **** ignored. The default is 8. .IP "\fB\-fdebug\-cpp\fR" 4 .IX Item "-fdebug-cpp" ! This option is only useful for debugging \s-1GCC\s0. When used with \&\fB\-E\fR, dumps debugging information about location maps. Every token in the output is preceded by the dump of the map its location belongs to. The dump of the map holding the location of a token would --- 9570,9576 ---- ignored. The default is 8. .IP "\fB\-fdebug\-cpp\fR" 4 .IX Item "-fdebug-cpp" ! This option is only useful for debugging \s-1GCC. \s0 When used with \&\fB\-E\fR, dumps debugging information about location maps. Every token in the output is preceded by the dump of the map its location belongs to. The dump of the map holding the location of a token would *************** Note that \-ftrack\-macro\-expansion=2 i *** 9594,9605 **** .IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fexec-charset=charset" Set the execution character set, used for string and character ! constants. The default is \s-1UTF\-8\s0. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. .IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fwide-exec-charset=charset" Set the wide execution character set, used for wide string and ! character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16\s0, whichever corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with \&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have --- 9603,9614 ---- .IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fexec-charset=charset" Set the execution character set, used for string and character ! constants. The default is \s-1UTF\-8. \s0\fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. .IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fwide-exec-charset=charset" Set the wide execution character set, used for wide string and ! character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16,\s0 whichever corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with \&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have *************** problems with encodings that do not fit *** 9607,9615 **** .IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4 .IX Item "-finput-charset=charset" Set the input character set, used for translation from the character ! set of the input file to the source character set used by \s-1GCC\s0. If the locale does not specify, or \s-1GCC\s0 cannot get this information from the ! locale, the default is \s-1UTF\-8\s0. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. --- 9616,9624 ---- .IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4 .IX Item "-finput-charset=charset" Set the input character set, used for translation from the character ! set of the input file to the source character set used by \s-1GCC. \s0 If the locale does not specify, or \s-1GCC\s0 cannot get this information from the ! locale, the default is \s-1UTF\-8. \s0 This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. *************** Cancel an assertion with the predicate \ *** 9646,9652 **** .IX Item "-dCHARS" \&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters, and must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of \s-1GCC\s0, and so are silently ignored. If you specify characters whose behavior conflicts, the result is undefined. .RS 4 --- 9655,9661 ---- .IX Item "-dCHARS" \&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters, and must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of \s-1GCC,\s0 and so are silently ignored. If you specify characters whose behavior conflicts, the result is undefined. .RS 4 *************** The \fB\-CC\fR option is generally used *** 9722,9733 **** .IP "\fB\-traditional\-cpp\fR" 4 .IX Item "-traditional-cpp" Try to imitate the behavior of old-fashioned C preprocessors, as ! opposed to \s-1ISO\s0 C preprocessors. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" Process trigraph sequences. These are three-character sequences, all starting with \fB??\fR, that ! are defined by \s-1ISO\s0 C to stand for single characters. For example, \&\fB??/\fR stands for \fB\e\fR, so \fB'??/n'\fR is a character constant for a newline. By default, \s-1GCC\s0 ignores trigraphs, but in standard-conforming modes it converts them. See the \fB\-std\fR and --- 9731,9742 ---- .IP "\fB\-traditional\-cpp\fR" 4 .IX Item "-traditional-cpp" Try to imitate the behavior of old-fashioned C preprocessors, as ! opposed to \s-1ISO C\s0 preprocessors. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" Process trigraph sequences. These are three-character sequences, all starting with \fB??\fR, that ! are defined by \s-1ISO C\s0 to stand for single characters. For example, \&\fB??/\fR stands for \fB\e\fR, so \fB'??/n'\fR is a character constant for a newline. By default, \s-1GCC\s0 ignores trigraphs, but in standard-conforming modes it converts them. See the \fB\-std\fR and *************** Print text describing all the command li *** 9753,9759 **** preprocessing anything. .IP "\fB\-v\fR" 4 .IX Item "-v" ! Verbose mode. Print out \s-1GNU\s0 \s-1CPP\s0's version number at the beginning of execution, and report the final form of the include path. .IP "\fB\-H\fR" 4 .IX Item "-H" --- 9762,9768 ---- preprocessing anything. .IP "\fB\-v\fR" 4 .IX Item "-v" ! Verbose mode. Print out \s-1GNU CPP\s0's version number at the beginning of execution, and report the final form of the include path. .IP "\fB\-H\fR" 4 .IX Item "-H" *************** header file is printed with \fB...x\fR a *** 9768,9774 **** .IP "\fB\-\-version\fR" 4 .IX Item "--version" .PD ! Print out \s-1GNU\s0 \s-1CPP\s0's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. .SS "Passing Options to the Assembler" .IX Subsection "Passing Options to the Assembler" --- 9777,9783 ---- .IP "\fB\-\-version\fR" 4 .IX Item "--version" .PD ! Print out \s-1GNU CPP\s0's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. .SS "Passing Options to the Assembler" .IX Subsection "Passing Options to the Assembler" *************** This is the mode used for floating-point *** 10377,10383 **** round-to-nearest-or-even rounding mode. .IP "\fBint\fR" 4 .IX Item "int" ! This is the mode used to perform integer calculations in the \s-1FPU\s0, e.g. integer multiply, or integer multiply-and-accumulate. .RE .RS 4 --- 10386,10392 ---- round-to-nearest-or-even rounding mode. .IP "\fBint\fR" 4 .IX Item "int" ! This is the mode used to perform integer calculations in the \s-1FPU,\s0 e.g. integer multiply, or integer multiply-and-accumulate. .RE .RS 4 *************** These \fB\-m\fR options are defined for *** 10428,10434 **** architectures: .IP "\fB\-mabi=\fR\fIname\fR" 4 .IX Item "-mabi=name" ! Generate code for the specified \s-1ABI\s0. Permissible values are: \fBapcs-gnu\fR, \&\fBatpcs\fR, \fBaapcs\fR, \fBaapcs-linux\fR and \fBiwmmxt\fR. .IP "\fB\-mapcs\-frame\fR" 4 .IX Item "-mapcs-frame" --- 10437,10443 ---- architectures: .IP "\fB\-mabi=\fR\fIname\fR" 4 .IX Item "-mabi=name" ! Generate code for the specified \s-1ABI. \s0 Permissible values are: \fBapcs-gnu\fR, \&\fBatpcs\fR, \fBaapcs\fR, \fBaapcs-linux\fR and \fBiwmmxt\fR. .IP "\fB\-mapcs\-frame\fR" 4 .IX Item "-mapcs-frame" *************** and uses FPU-specific calling convention *** 10471,10477 **** .Sp The default depends on the specific target configuration. Note that the hard-float and soft-float ABIs are not link-compatible; you must ! compile your entire program with the same \s-1ABI\s0, and link with a compatible set of libraries. .IP "\fB\-mlittle\-endian\fR" 4 .IX Item "-mlittle-endian" --- 10480,10486 ---- .Sp The default depends on the specific target configuration. Note that the hard-float and soft-float ABIs are not link-compatible; you must ! compile your entire program with the same \s-1ABI,\s0 and link with a compatible set of libraries. .IP "\fB\-mlittle\-endian\fR" 4 .IX Item "-mlittle-endian" *************** If the selected floating-point hardware *** 10585,10591 **** (e.g. \fB\-mfpu\fR=\fBneon\fR), note that floating-point operations are not generated by \s-1GCC\s0's auto-vectorization pass unless \&\fB\-funsafe\-math\-optimizations\fR is also specified. This is ! because \s-1NEON\s0 hardware does not fully implement the \s-1IEEE\s0 754 standard for floating-point arithmetic (in particular denormal values are treated as zero), so the use of \s-1NEON\s0 instructions may lead to a loss of precision. .IP "\fB\-mfp16\-format=\fR\fIname\fR" 4 --- 10594,10600 ---- (e.g. \fB\-mfpu\fR=\fBneon\fR), note that floating-point operations are not generated by \s-1GCC\s0's auto-vectorization pass unless \&\fB\-funsafe\-math\-optimizations\fR is also specified. This is ! because \s-1NEON\s0 hardware does not fully implement the \s-1IEEE 754\s0 standard for floating-point arithmetic (in particular denormal values are treated as zero), so the use of \s-1NEON\s0 instructions may lead to a loss of precision. .IP "\fB\-mfp16\-format=\fR\fIname\fR" 4 *************** The default for this option is@tie{}\f(C *** 10805,10811 **** .el .IP "\f(CWavr5\fR" 4 .IX Item "avr5" \&\*(L"Enhanced\*(R" devices with 16@tie{}KiB up to 64@tie{}KiB of program memory. ! \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`ata5790\*(C'\fR, \f(CW\*(C`ata5790n\*(C'\fR, \f(CW\*(C`ata5795\*(C'\fR, \f(CW\*(C`atmega16\*(C'\fR, \f(CW\*(C`atmega16a\*(C'\fR, \f(CW\*(C`atmega16hva\*(C'\fR, \f(CW\*(C`atmega16hva\*(C'\fR, \f(CW\*(C`atmega16hva2\*(C'\fR, \f(CW\*(C`atmega16hva2\*(C'\fR, \f(CW\*(C`atmega16hvb\*(C'\fR, \f(CW\*(C`atmega16hvb\*(C'\fR, \f(CW\*(C`atmega16hvbrevb\*(C'\fR, \f(CW\*(C`atmega16m1\*(C'\fR, \f(CW\*(C`atmega16m1\*(C'\fR, \f(CW\*(C`atmega16u4\*(C'\fR, \f(CW\*(C`atmega16u4\*(C'\fR, \f(CW\*(C`atmega161\*(C'\fR, \f(CW\*(C`atmega162\*(C'\fR, \f(CW\*(C`atmega163\*(C'\fR, \f(CW\*(C`atmega164a\*(C'\fR, \f(CW\*(C`atmega164p\*(C'\fR, \f(CW\*(C`atmega164pa\*(C'\fR, \f(CW\*(C`atmega165\*(C'\fR, \f(CW\*(C`atmega165a\*(C'\fR, \f(CW\*(C`atmega165p\*(C'\fR, \f(CW\*(C`atmega165pa\*(C'\fR, \f(CW\*(C`atmega168\*(C'\fR, \f(CW\*(C`atmega168a\*(C'\fR, \f(CW\*(C`atmega168p\*(C'\fR, \f(CW\*(C`atmega168pa\*(C'\fR, \f(CW\*(C`atmega169\*(C'\fR, \f(CW\*(C`atmega169a\*(C'\fR, \f(CW\*(C`atmega169p\*(C'\fR, \f(CW\*(C`atmega169pa\*(C'\fR, \f(CW\*(C`atmega26hvg\*(C'\fR, \f(CW\*(C`atmega32\*(C'\fR, \f(CW\*(C`atmega32a\*(C'\fR, \f(CW\*(C`atmega32a\*(C'\fR, \f(CW\*(C`atmega32c1\*(C'\fR, \f(CW\*(C`atmega32c1\*(C'\fR, \f(CW\*(C`atmega32hvb\*(C'\fR, \f(CW\*(C`atmega32hvb\*(C'\fR, \f(CW\*(C`atmega32hvbrevb\*(C'\fR, \f(CW\*(C`atmega32m1\*(C'\fR, \f(CW\*(C`atmega32m1\*(C'\fR, \f(CW\*(C`atmega32u4\*(C'\fR, \f(CW\*(C`atmega32u4\*(C'\fR, \f(CW\*(C`atmega32u6\*(C'\fR, \f(CW\*(C`atmega32u6\*(C'\fR, \f(CW\*(C`atmega323\*(C'\fR, \f(CW\*(C`atmega324a\*(C'\fR, \f(CW\*(C`atmega324p\*(C'\fR, \f(CW\*(C`atmega324pa\*(C'\fR, \f(CW\*(C`atmega325\*(C'\fR, \f(CW\*(C`atmega325a\*(C'\fR, \f(CW\*(C`atmega325p\*(C'\fR, \f(CW\*(C`atmega3250\*(C'\fR, \f(CW\*(C`atmega3250a\*(C'\fR, \f(CW\*(C`atmega3250p\*(C'\fR, \f(CW\*(C`atmega3250pa\*(C'\fR, \f(CW\*(C`atmega328\*(C'\fR, \f(CW\*(C`atmega328p\*(C'\fR, \f(CW\*(C`atmega329\*(C'\fR, \f(CW\*(C`atmega329a\*(C'\fR, \f(CW\*(C`atmega329p\*(C'\fR, \f(CW\*(C`atmega329pa\*(C'\fR, \f(CW\*(C`atmega3290\*(C'\fR, \f(CW\*(C`atmega3290a\*(C'\fR, \f(CW\*(C`atmega3290p\*(C'\fR, \f(CW\*(C`atmega3290pa\*(C'\fR, \f(CW\*(C`atmega406\*(C'\fR, \f(CW\*(C`atmega48hvf\*(C'\fR, \f(CW\*(C`atmega64\*(C'\fR, \f(CW\*(C`atmega64a\*(C'\fR, \f(CW\*(C`atmega64c1\*(C'\fR, \f(CW\*(C`atmega64c1\*(C'\fR, \f(CW\*(C`atmega64hve\*(C'\fR, \f(CW\*(C`atmega64m1\*(C'\fR, \f(CW\*(C`atmega64m1\*(C'\fR, \f(CW\*(C`atmega64rfa2\*(C'\fR, \f(CW\*(C`atmega64rfr2\*(C'\fR, \f(CW\*(C`atmega640\*(C'\fR, \f(CW\*(C`atmega644\*(C'\fR, \f(CW\*(C`atmega644a\*(C'\fR, \f(CW\*(C`atmega644p\*(C'\fR, \f(CW\*(C`atmega644pa\*(C'\fR, \f(CW\*(C`atmega645\*(C'\fR, \f(CW\*(C`atmega645a\*(C'\fR, \f(CW\*(C`atmega645p\*(C'\fR, \f(CW\*(C`atmega6450\*(C'\fR, \f(CW\*(C`atmega6450a\*(C'\fR, \f(CW\*(C`atmega6450p\*(C'\fR, \f(CW\*(C`atmega649\*(C'\fR, \f(CW\*(C`atmega649a\*(C'\fR, \f(CW\*(C`atmega649p\*(C'\fR, \f(CW\*(C`atmega6490\*(C'\fR, \f(CW\*(C`atmega6490a\*(C'\fR, \f(CW\*(C`atmega6490p\*(C'\fR, \f(CW\*(C`at90can32\*(C'\fR, \f(CW\*(C`at90can64\*(C'\fR, \f(CW\*(C`at90pwm161\*(C'\fR, \f(CW\*(C`at90pwm216\*(C'\fR, \f(CW\*(C`at90pwm316\*(C'\fR, \f(CW\*(C`at90scr100\*(C'\fR, \f(CW\*(C`at90usb646\*(C'\fR, \f(CW\*(C`at90usb647\*(C'\fR, \f(CW\*(C`at94k\*(C'\fR, \f(CW\*(C`m3000\*(C'\fR. .ie n .IP """avr51""" 4 .el .IP "\f(CWavr51\fR" 4 .IX Item "avr51" --- 10814,10820 ---- .el .IP "\f(CWavr5\fR" 4 .IX Item "avr5" \&\*(L"Enhanced\*(R" devices with 16@tie{}KiB up to 64@tie{}KiB of program memory. ! \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`ata5790\*(C'\fR, \f(CW\*(C`ata5790n\*(C'\fR, \f(CW\*(C`ata5795\*(C'\fR, \f(CW\*(C`atmega16\*(C'\fR, \f(CW\*(C`atmega16a\*(C'\fR, \f(CW\*(C`atmega16hva\*(C'\fR, \f(CW\*(C`atmega16hva2\*(C'\fR, \f(CW\*(C`atmega16hvb\*(C'\fR, \f(CW\*(C`atmega16hvbrevb\*(C'\fR, \f(CW\*(C`atmega16m1\*(C'\fR, \f(CW\*(C`atmega16u4\*(C'\fR, \f(CW\*(C`atmega161\*(C'\fR, \f(CW\*(C`atmega162\*(C'\fR, \f(CW\*(C`atmega163\*(C'\fR, \f(CW\*(C`atmega164a\*(C'\fR, \f(CW\*(C`atmega164p\*(C'\fR, \f(CW\*(C`atmega164pa\*(C'\fR, \f(CW\*(C`atmega165\*(C'\fR, \f(CW\*(C`atmega165a\*(C'\fR, \f(CW\*(C`atmega165p\*(C'\fR, \f(CW\*(C`atmega165pa\*(C'\fR, \f(CW\*(C`atmega168\*(C'\fR, \f(CW\*(C`atmega168a\*(C'\fR, \f(CW\*(C`atmega168p\*(C'\fR, \f(CW\*(C`atmega168pa\*(C'\fR, \f(CW\*(C`atmega169\*(C'\fR, \f(CW\*(C`atmega169a\*(C'\fR, \f(CW\*(C`atmega169p\*(C'\fR, \f(CW\*(C`atmega169pa\*(C'\fR, \f(CW\*(C`atmega26hvg\*(C'\fR, \f(CW\*(C`atmega32\*(C'\fR, \f(CW\*(C`atmega32a\*(C'\fR, \f(CW\*(C`atmega32c1\*(C'\fR, \f(CW\*(C`atmega32hvb\*(C'\fR, \f(CW\*(C`atmega32hvbrevb\*(C'\fR, \f(CW\*(C`atmega32m1\*(C'\fR, \f(CW\*(C`atmega32u4\*(C'\fR, \f(CW\*(C`atmega32u6\*(C'\fR, \f(CW\*(C`atmega323\*(C'\fR, \f(CW\*(C`atmega324a\*(C'\fR, \f(CW\*(C`atmega324p\*(C'\fR, \f(CW\*(C`atmega324pa\*(C'\fR, \f(CW\*(C`atmega325\*(C'\fR, \f(CW\*(C`atmega325a\*(C'\fR, \f(CW\*(C`atmega325p\*(C'\fR, \f(CW\*(C`atmega3250\*(C'\fR, \f(CW\*(C`atmega3250a\*(C'\fR, \f(CW\*(C`atmega3250p\*(C'\fR, \f(CW\*(C`atmega3250pa\*(C'\fR, \f(CW\*(C`atmega328\*(C'\fR, \f(CW\*(C`atmega328p\*(C'\fR, \f(CW\*(C`atmega329\*(C'\fR, \f(CW\*(C`atmega329a\*(C'\fR, \f(CW\*(C`atmega329p\*(C'\fR, \f(CW\*(C`atmega329pa\*(C'\fR, \f(CW\*(C`atmega3290\*(C'\fR, \f(CW\*(C`atmega3290a\*(C'\fR, \f(CW\*(C`atmega3290p\*(C'\fR, \f(CW\*(C`atmega3290pa\*(C'\fR, \f(CW\*(C`atmega406\*(C'\fR, \f(CW\*(C`atmega48hvf\*(C'\fR, \f(CW\*(C`atmega64\*(C'\fR, \f(CW\*(C`atmega64a\*(C'\fR, \f(CW\*(C`atmega64c1\*(C'\fR, \f(CW\*(C`atmega64hve\*(C'\fR, \f(CW\*(C`atmega64m1\*(C'\fR, \f(CW\*(C`atmega64rfa2\*(C'\fR, \f(CW\*(C`atmega64rfr2\*(C'\fR, \f(CW\*(C`atmega640\*(C'\fR, \f(CW\*(C`atmega644\*(C'\fR, \f(CW\*(C`atmega644a\*(C'\fR, \f(CW\*(C`atmega644p\*(C'\fR, \f(CW\*(C`atmega644pa\*(C'\fR, \f(CW\*(C`atmega645\*(C'\fR, \f(CW\*(C`atmega645a\*(C'\fR, \f(CW\*(C`atmega645p\*(C'\fR, \f(CW\*(C`atmega6450\*(C'\fR, \f(CW\*(C`atmega6450a\*(C'\fR, \f(CW\*(C`atmega6450p\*(C'\fR, \f(CW\*(C`atmega649\*(C'\fR, \f(CW\*(C`atmega649a\*(C'\fR, \f(CW\*(C`atmega649p\*(C'\fR, \f(CW\*(C`atmega6490\*(C'\fR, \f(CW\*(C`atmega6490a\*(C'\fR, \f(CW\*(C`atmega6490p\*(C'\fR, \f(CW\*(C`at90can32\*(C'\fR, \f(CW\*(C`at90can64\*(C'\fR, \f(CW\*(C`at90pwm161\*(C'\fR, \f(CW\*(C`at90pwm216\*(C'\fR, \f(CW\*(C`at90pwm316\*(C'\fR, \f(CW\*(C`at90scr100\*(C'\fR, \f(CW\*(C`at90usb646\*(C'\fR, \f(CW\*(C`at90usb647\*(C'\fR, \f(CW\*(C`at94k\*(C'\fR, \f(CW\*(C`m3000\*(C'\fR. .ie n .IP """avr51""" 4 .el .IP "\f(CWavr51\fR" 4 .IX Item "avr51" *************** The default for this option is@tie{}\f(C *** 10814,10846 **** .ie n .IP """avr6""" 4 .el .IP "\f(CWavr6\fR" 4 .IX Item "avr6" ! \&\*(L"Enhanced\*(R" devices with 3\-byte \s-1PC\s0, i.e. with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega2560\*(C'\fR, \f(CW\*(C`atmega2561\*(C'\fR. .ie n .IP """avrxmega2""" 4 .el .IP "\f(CWavrxmega2\fR" 4 .IX Item "avrxmega2" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 8@tie{}KiB and up to 64@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt112sl\*(C'\fR, \f(CW\*(C`atmxt224\*(C'\fR, \f(CW\*(C`atmxt224e\*(C'\fR, \f(CW\*(C`atmxt336s\*(C'\fR, \f(CW\*(C`atxmega16a4\*(C'\fR, \f(CW\*(C`atxmega16a4u\*(C'\fR, \f(CW\*(C`atxmega16c4\*(C'\fR, \f(CW\*(C`atxmega16d4\*(C'\fR, \f(CW\*(C`atxmega16x1\*(C'\fR, \f(CW\*(C`atxmega32a4\*(C'\fR, \f(CW\*(C`atxmega32a4u\*(C'\fR, \f(CW\*(C`atxmega32c4\*(C'\fR, \f(CW\*(C`atxmega32d4\*(C'\fR, \f(CW\*(C`atxmega32e5\*(C'\fR, \f(CW\*(C`atxmega32x1\*(C'\fR. .ie n .IP """avrxmega4""" 4 .el .IP "\f(CWavrxmega4\fR" 4 .IX Item "avrxmega4" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a3\*(C'\fR, \f(CW\*(C`atxmega64a3u\*(C'\fR, \f(CW\*(C`atxmega64a4u\*(C'\fR, \f(CW\*(C`atxmega64b1\*(C'\fR, \f(CW\*(C`atxmega64b3\*(C'\fR, \f(CW\*(C`atxmega64c3\*(C'\fR, \f(CW\*(C`atxmega64d3\*(C'\fR, \f(CW\*(C`atxmega64d4\*(C'\fR. .ie n .IP """avrxmega5""" 4 .el .IP "\f(CWavrxmega5\fR" 4 .IX Item "avrxmega5" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM\s0. ! \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a1\*(C'\fR, \f(CW\*(C`atxmega64a1u\*(C'\fR. .ie n .IP """avrxmega6""" 4 .el .IP "\f(CWavrxmega6\fR" 4 .IX Item "avrxmega6" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt540s\*(C'\fR, \f(CW\*(C`atmxt540sreva\*(C'\fR, \f(CW\*(C`atxmega128a3\*(C'\fR, \f(CW\*(C`atxmega128a3u\*(C'\fR, \f(CW\*(C`atxmega128b1\*(C'\fR, \f(CW\*(C`atxmega128b3\*(C'\fR, \f(CW\*(C`atxmega128c3\*(C'\fR, \f(CW\*(C`atxmega128d3\*(C'\fR, \f(CW\*(C`atxmega128d4\*(C'\fR, \f(CW\*(C`atxmega192a3\*(C'\fR, \f(CW\*(C`atxmega192a3u\*(C'\fR, \f(CW\*(C`atxmega192c3\*(C'\fR, \f(CW\*(C`atxmega192d3\*(C'\fR, \f(CW\*(C`atxmega256a3\*(C'\fR, \f(CW\*(C`atxmega256a3b\*(C'\fR, \f(CW\*(C`atxmega256a3bu\*(C'\fR, \f(CW\*(C`atxmega256a3u\*(C'\fR, \f(CW\*(C`atxmega256c3\*(C'\fR, \f(CW\*(C`atxmega256d3\*(C'\fR, \f(CW\*(C`atxmega384c3\*(C'\fR, \f(CW\*(C`atxmega384d3\*(C'\fR. .ie n .IP """avrxmega7""" 4 .el .IP "\f(CWavrxmega7\fR" 4 .IX Item "avrxmega7" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM\s0. ! \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega128a1\*(C'\fR, \f(CW\*(C`atxmega128a1u\*(C'\fR, \f(CW\*(C`atxmega128a4u\*(C'\fR. .ie n .IP """avr1""" 4 .el .IP "\f(CWavr1\fR" 4 .IX Item "avr1" --- 10823,10855 ---- .ie n .IP """avr6""" 4 .el .IP "\f(CWavr6\fR" 4 .IX Item "avr6" ! \&\*(L"Enhanced\*(R" devices with 3\-byte \s-1PC,\s0 i.e. with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega2560\*(C'\fR, \f(CW\*(C`atmega2561\*(C'\fR. .ie n .IP """avrxmega2""" 4 .el .IP "\f(CWavrxmega2\fR" 4 .IX Item "avrxmega2" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 8@tie{}KiB and up to 64@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt112sl\*(C'\fR, \f(CW\*(C`atmxt224\*(C'\fR, \f(CW\*(C`atmxt224e\*(C'\fR, \f(CW\*(C`atmxt336s\*(C'\fR, \f(CW\*(C`atxmega16a4\*(C'\fR, \f(CW\*(C`atxmega16a4u\*(C'\fR, \f(CW\*(C`atxmega16c4\*(C'\fR, \f(CW\*(C`atxmega16d4\*(C'\fR, \f(CW\*(C`atxmega16x1\*(C'\fR, \f(CW\*(C`atxmega32a4\*(C'\fR, \f(CW\*(C`atxmega32a4u\*(C'\fR, \f(CW\*(C`atxmega32c4\*(C'\fR, \f(CW\*(C`atxmega32d4\*(C'\fR, \f(CW\*(C`atxmega32e5\*(C'\fR, \f(CW\*(C`atxmega32x1\*(C'\fR. .ie n .IP """avrxmega4""" 4 .el .IP "\f(CWavrxmega4\fR" 4 .IX Item "avrxmega4" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a3\*(C'\fR, \f(CW\*(C`atxmega64a3u\*(C'\fR, \f(CW\*(C`atxmega64a4u\*(C'\fR, \f(CW\*(C`atxmega64b1\*(C'\fR, \f(CW\*(C`atxmega64b3\*(C'\fR, \f(CW\*(C`atxmega64c3\*(C'\fR, \f(CW\*(C`atxmega64d3\*(C'\fR, \f(CW\*(C`atxmega64d4\*(C'\fR. .ie n .IP """avrxmega5""" 4 .el .IP "\f(CWavrxmega5\fR" 4 .IX Item "avrxmega5" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM. ! \&\s0\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a1\*(C'\fR, \f(CW\*(C`atxmega64a1u\*(C'\fR. .ie n .IP """avrxmega6""" 4 .el .IP "\f(CWavrxmega6\fR" 4 .IX Item "avrxmega6" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt540s\*(C'\fR, \f(CW\*(C`atmxt540sreva\*(C'\fR, \f(CW\*(C`atxmega128a3\*(C'\fR, \f(CW\*(C`atxmega128a3u\*(C'\fR, \f(CW\*(C`atxmega128b1\*(C'\fR, \f(CW\*(C`atxmega128b3\*(C'\fR, \f(CW\*(C`atxmega128c3\*(C'\fR, \f(CW\*(C`atxmega128d3\*(C'\fR, \f(CW\*(C`atxmega128d4\*(C'\fR, \f(CW\*(C`atxmega192a3\*(C'\fR, \f(CW\*(C`atxmega192a3u\*(C'\fR, \f(CW\*(C`atxmega192c3\*(C'\fR, \f(CW\*(C`atxmega192d3\*(C'\fR, \f(CW\*(C`atxmega256a3\*(C'\fR, \f(CW\*(C`atxmega256a3b\*(C'\fR, \f(CW\*(C`atxmega256a3bu\*(C'\fR, \f(CW\*(C`atxmega256a3u\*(C'\fR, \f(CW\*(C`atxmega256c3\*(C'\fR, \f(CW\*(C`atxmega256d3\*(C'\fR, \f(CW\*(C`atxmega384c3\*(C'\fR, \f(CW\*(C`atxmega384d3\*(C'\fR. .ie n .IP """avrxmega7""" 4 .el .IP "\f(CWavrxmega7\fR" 4 .IX Item "avrxmega7" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM. ! \&\s0\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega128a1\*(C'\fR, \f(CW\*(C`atxmega128a1u\*(C'\fR, \f(CW\*(C`atxmega128a4u\*(C'\fR. .ie n .IP """avr1""" 4 .el .IP "\f(CWavr1\fR" 4 .IX Item "avr1" *************** command-line option. *** 11043,11049 **** .IX Item "-" tables you can specify the \fB\-fno\-jump\-tables\fR command-line option. .IP "\-" 4 ! .IX Item "-" .PD 0 .ie n .IP "\-" 4 .el .IP "\-" 4 --- 11052,11058 ---- .IX Item "-" tables you can specify the \fB\-fno\-jump\-tables\fR command-line option. .IP "\-" 4 ! .IX Item "-" .PD 0 .ie n .IP "\-" 4 .el .IP "\-" 4 *************** The definition of these macros is affect *** 11224,11230 **** .el .IP "\f(CW_\|_AVR_SP8_\|_\fR" 4 .IX Item "__AVR_SP8__" .PD ! The device has the \s-1SPH\s0 (high part of stack pointer) special function register or has an 8\-bit stack pointer, respectively. The definition of these macros is affected by \f(CW\*(C`\-mmcu=\*(C'\fR and in the cases of \f(CW\*(C`\-mmcu=avr2\*(C'\fR and \f(CW\*(C`\-mmcu=avr25\*(C'\fR also --- 11233,11239 ---- .el .IP "\f(CW_\|_AVR_SP8_\|_\fR" 4 .IX Item "__AVR_SP8__" .PD ! The device has the \s-1SPH \s0(high part of stack pointer) special function register or has an 8\-bit stack pointer, respectively. The definition of these macros is affected by \f(CW\*(C`\-mmcu=\*(C'\fR and in the cases of \f(CW\*(C`\-mmcu=avr2\*(C'\fR and \f(CW\*(C`\-mmcu=avr25\*(C'\fR also *************** This macro reflects the \f(CW\*(C`\-mno\ *** 11257,11263 **** .el .IP "\f(CW_\|_AVR_ERRATA_SKIP_JMP_CALL_\|_\fR" 4 .IX Item "__AVR_ERRATA_SKIP_JMP_CALL__" .PD ! Some \s-1AVR\s0 devices (\s-1AT90S8515\s0, ATmega103) must not skip 32\-bit instructions because of a hardware erratum. Skip instructions are \&\f(CW\*(C`SBRS\*(C'\fR, \f(CW\*(C`SBRC\*(C'\fR, \f(CW\*(C`SBIS\*(C'\fR, \f(CW\*(C`SBIC\*(C'\fR and \f(CW\*(C`CPSE\*(C'\fR. The second macro is only defined if \f(CW\*(C`_\|_AVR_HAVE_JMP_CALL_\|_\*(C'\fR is also --- 11266,11272 ---- .el .IP "\f(CW_\|_AVR_ERRATA_SKIP_JMP_CALL_\|_\fR" 4 .IX Item "__AVR_ERRATA_SKIP_JMP_CALL__" .PD ! Some \s-1AVR\s0 devices (\s-1AT90S8515,\s0 ATmega103) must not skip 32\-bit instructions because of a hardware erratum. Skip instructions are \&\f(CW\*(C`SBRS\*(C'\fR, \f(CW\*(C`SBRC\*(C'\fR, \f(CW\*(C`SBIS\*(C'\fR, \f(CW\*(C`SBIC\*(C'\fR and \f(CW\*(C`CPSE\*(C'\fR. The second macro is only defined if \f(CW\*(C`_\|_AVR_HAVE_JMP_CALL_\|_\*(C'\fR is also *************** should be used instead of \f(CW\*(C`main *** 11445,11452 **** This option can only be used in conjunction with \fB\-mmulticore\fR. .IP "\fB\-msdram\fR" 4 .IX Item "-msdram" ! Build a standalone application for \s-1SDRAM\s0. Proper start files and ! link scripts are used to put the application into \s-1SDRAM\s0, and the macro \&\f(CW\*(C`_\|_BFIN_SDRAM\*(C'\fR is defined. The loader should initialize \s-1SDRAM\s0 before loading the application. .IP "\fB\-micplb\fR" 4 --- 11454,11461 ---- This option can only be used in conjunction with \fB\-mmulticore\fR. .IP "\fB\-msdram\fR" 4 .IX Item "-msdram" ! Build a standalone application for \s-1SDRAM.\s0 Proper start files and ! link scripts are used to put the application into \s-1SDRAM,\s0 and the macro \&\f(CW\*(C`_\|_BFIN_SDRAM\*(C'\fR is defined. The loader should initialize \s-1SDRAM\s0 before loading the application. .IP "\fB\-micplb\fR" 4 *************** These options are defined specifically f *** 11505,11511 **** .PD Generate code for the specified architecture. The choices for \&\fIarchitecture-type\fR are \fBv3\fR, \fBv8\fR and \fBv10\fR for ! respectively \s-1ETRAX\s0\ 4, \s-1ETRAX\s0\ 100, and \s-1ETRAX\s0\ 100\ \s-1LX\s0. Default is \fBv0\fR except for cris-axis-linux-gnu, where the default is \&\fBv10\fR. .IP "\fB\-mtune=\fR\fIarchitecture-type\fR" 4 --- 11514,11520 ---- .PD Generate code for the specified architecture. The choices for \&\fIarchitecture-type\fR are \fBv3\fR, \fBv8\fR and \fBv10\fR for ! respectively \s-1ETRAX\s0\ 4, \s-1ETRAX\s0\ 100, and \s-1ETRAX\s0\ 100\ \s-1LX.\s0 Default is \fBv0\fR except for cris-axis-linux-gnu, where the default is \&\fBv10\fR. .IP "\fB\-mtune=\fR\fIarchitecture-type\fR" 4 *************** or storage for local variables needs to *** 11598,11604 **** With \fB\-fpic\fR and \fB\-fPIC\fR, don't generate (do generate) instruction sequences that load addresses for functions from the \s-1PLT\s0 part of the \s-1GOT\s0 rather than (traditional on other architectures) calls to the ! \&\s-1PLT\s0. The default is \fB\-mgotplt\fR. .IP "\fB\-melf\fR" 4 .IX Item "-melf" Legacy no-op option only recognized with the cris-axis-elf and --- 11607,11613 ---- With \fB\-fpic\fR and \fB\-fPIC\fR, don't generate (do generate) instruction sequences that load addresses for functions from the \s-1PLT\s0 part of the \s-1GOT\s0 rather than (traditional on other architectures) calls to the ! \&\s-1PLT. \s0 The default is \fB\-mgotplt\fR. .IP "\fB\-melf\fR" 4 .IX Item "-melf" Legacy no-op option only recognized with the cris-axis-elf and *************** However, \fBfar\fR is not valid with \fB *** 11654,11660 **** These options are defined for all architectures running the Darwin operating system. .PP ! \&\s-1FSF\s0 \s-1GCC\s0 on Darwin does not create \*(L"fat\*(R" object files; it creates an object file for the single architecture that \s-1GCC\s0 was built to target. Apple's \s-1GCC\s0 on Darwin does create \*(L"fat\*(R" files if multiple \&\fB\-arch\fR options are used; it does so by running the compiler or --- 11663,11669 ---- These options are defined for all architectures running the Darwin operating system. .PP ! \&\s-1FSF GCC\s0 on Darwin does not create \*(L"fat\*(R" object files; it creates an object file for the single architecture that \s-1GCC\s0 was built to target. Apple's \s-1GCC\s0 on Darwin does create \*(L"fat\*(R" files if multiple \&\fB\-arch\fR options are used; it does so by running the compiler or *************** warn about constructs contained within h *** 11714,11720 **** .IX Item "-gused" Emit debugging information for symbols that are used. For stabs debugging format, this enables \fB\-feliminate\-unused\-debug\-symbols\fR. ! This is by default \s-1ON\s0. .IP "\fB\-gfull\fR" 4 .IX Item "-gfull" Emit debugging information for all symbols and types. --- 11723,11729 ---- .IX Item "-gused" Emit debugging information for symbols that are used. For stabs debugging format, this enables \fB\-feliminate\-unused\-debug\-symbols\fR. ! This is by default \s-1ON.\s0 .IP "\fB\-gfull\fR" 4 .IX Item "-gfull" Emit debugging information for all symbols and types. *************** an executable when linking, using the Da *** 11790,11796 **** This causes \s-1GCC\s0's output file to have the \fI\s-1ALL\s0\fR subtype, instead of one controlled by the \fB\-mcpu\fR or \fB\-march\fR option. .IP "\fB\-allowable_client\fR \fIclient_name\fR" 4 ! .IX Item "-allowable_client client_name" .PD 0 .IP "\fB\-client_name\fR" 4 .IX Item "-client_name" --- 11799,11805 ---- This causes \s-1GCC\s0's output file to have the \fI\s-1ALL\s0\fR subtype, instead of one controlled by the \fB\-mcpu\fR or \fB\-march\fR option. .IP "\fB\-allowable_client\fR \fIclient_name\fR" 4 ! .IX Item "-allowable_client client_name" .PD 0 .IP "\fB\-client_name\fR" 4 .IX Item "-client_name" *************** compilers call this option \fB\-ieee_wit *** 11964,11970 **** .IP "\fB\-mieee\-with\-inexact\fR" 4 .IX Item "-mieee-with-inexact" This is like \fB\-mieee\fR except the generated code also maintains ! the \s-1IEEE\s0 \fIinexact-flag\fR. Turning on this option causes the generated code to implement fully-compliant \s-1IEEE\s0 math. In addition to \&\f(CW\*(C`_IEEE_FP\*(C'\fR, \f(CW\*(C`_IEEE_FP_EXACT\*(C'\fR is defined as a preprocessor macro. On some Alpha implementations the resulting code may execute --- 11973,11979 ---- .IP "\fB\-mieee\-with\-inexact\fR" 4 .IX Item "-mieee-with-inexact" This is like \fB\-mieee\fR except the generated code also maintains ! the \s-1IEEE \s0\fIinexact-flag\fR. Turning on this option causes the generated code to implement fully-compliant \s-1IEEE\s0 math. In addition to \&\f(CW\*(C`_IEEE_FP\*(C'\fR, \f(CW\*(C`_IEEE_FP_EXACT\*(C'\fR is defined as a preprocessor macro. On some Alpha implementations the resulting code may execute *************** before it can find the variables and con *** 12090,12097 **** .IP "\fB\-mno\-max\fR" 4 .IX Item "-mno-max" .PD ! Indicate whether \s-1GCC\s0 should generate code to use the optional \s-1BWX\s0, ! \&\s-1CIX\s0, \s-1FIX\s0 and \s-1MAX\s0 instruction sets. The default is to use the instruction sets supported by the \s-1CPU\s0 type specified via \fB\-mcpu=\fR option or that of the \s-1CPU\s0 on which \s-1GCC\s0 was built if none is specified. .IP "\fB\-mfloat\-vax\fR" 4 --- 12099,12106 ---- .IP "\fB\-mno\-max\fR" 4 .IX Item "-mno-max" .PD ! Indicate whether \s-1GCC\s0 should generate code to use the optional \s-1BWX, ! CIX, FIX\s0 and \s-1MAX\s0 instruction sets. The default is to use the instruction sets supported by the \s-1CPU\s0 type specified via \fB\-mcpu=\fR option or that of the \s-1CPU\s0 on which \s-1GCC\s0 was built if none is specified. .IP "\fB\-mfloat\-vax\fR" 4 *************** of the \s-1CPU\s0 on which \s-1GCC\s0 wa *** 12100,12106 **** .IP "\fB\-mfloat\-ieee\fR" 4 .IX Item "-mfloat-ieee" .PD ! Generate code that uses (does not use) \s-1VAX\s0 F and G floating-point arithmetic instead of \s-1IEEE\s0 single and double precision. .IP "\fB\-mexplicit\-relocs\fR" 4 .IX Item "-mexplicit-relocs" --- 12109,12115 ---- .IP "\fB\-mfloat\-ieee\fR" 4 .IX Item "-mfloat-ieee" .PD ! Generate code that uses (does not use) \s-1VAX F\s0 and G floating-point arithmetic instead of \s-1IEEE\s0 single and double precision. .IP "\fB\-mexplicit\-relocs\fR" 4 .IX Item "-mexplicit-relocs" *************** The default is \fB\-mlarge\-text\fR. *** 12155,12161 **** Set the instruction set and instruction scheduling parameters for machine type \fIcpu_type\fR. You can specify either the \fB\s-1EV\s0\fR style name or the corresponding chip number. \s-1GCC\s0 supports scheduling ! parameters for the \s-1EV4\s0, \s-1EV5\s0 and \s-1EV6\s0 family of processors and chooses the default values for the instruction set from the processor you specify. If you do not specify a processor type, \s-1GCC\s0 defaults to the processor on which the compiler was built. --- 12164,12170 ---- Set the instruction set and instruction scheduling parameters for machine type \fIcpu_type\fR. You can specify either the \fB\s-1EV\s0\fR style name or the corresponding chip number. \s-1GCC\s0 supports scheduling ! parameters for the \s-1EV4, EV5\s0 and \s-1EV6\s0 family of processors and chooses the default values for the instruction set from the processor you specify. If you do not specify a processor type, \s-1GCC\s0 defaults to the processor on which the compiler was built. *************** Schedules as an \s-1EV5\s0 and supports *** 12200,12213 **** .IP "\fB21264\fR" 4 .IX Item "21264" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX\s0, \s-1FIX\s0, and \s-1MAX\s0 extensions. .IP "\fBev67\fR" 4 .IX Item "ev67" .PD 0 .IP "\fB21264a\fR" 4 .IX Item "21264a" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX\s0, \s-1CIX\s0, \s-1FIX\s0, and \s-1MAX\s0 extensions. .RE .RS 4 .Sp --- 12209,12222 ---- .IP "\fB21264\fR" 4 .IX Item "21264" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX, FIX,\s0 and \s-1MAX\s0 extensions. .IP "\fBev67\fR" 4 .IX Item "ev67" .PD 0 .IP "\fB21264a\fR" 4 .IX Item "21264a" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX, CIX, FIX,\s0 and \s-1MAX\s0 extensions. .RE .RS 4 .Sp *************** A decimal number representing clock cycl *** 12248,12256 **** .IX Item "main" .PD The compiler contains estimates of the number of clock cycles for ! \&\*(L"typical\*(R" \s-1EV4\s0 & \s-1EV5\s0 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main memory. ! Note that L3 is only valid for \s-1EV5\s0. .RE .RS 4 .RE --- 12257,12265 ---- .IX Item "main" .PD The compiler contains estimates of the number of clock cycles for ! \&\*(L"typical\*(R" \s-1EV4 & EV5\s0 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main memory. ! Note that L3 is only valid for \s-1EV5.\s0 .RE .RS 4 .RE *************** Use multiply and add/subtract instructio *** 12323,12329 **** Do not use multiply and add/subtract instructions. .IP "\fB\-mfdpic\fR" 4 .IX Item "-mfdpic" ! Select the \s-1FDPIC\s0 \s-1ABI\s0, which uses function descriptors to represent pointers to functions. Without any PIC/PIE\-related options, it implies \fB\-fPIE\fR. With \fB\-fpic\fR or \fB\-fpie\fR, it assumes \s-1GOT\s0 entries and small data are within a 12\-bit range from the --- 12332,12338 ---- Do not use multiply and add/subtract instructions. .IP "\fB\-mfdpic\fR" 4 .IX Item "-mfdpic" ! Select the \s-1FDPIC ABI,\s0 which uses function descriptors to represent pointers to functions. Without any PIC/PIE\-related options, it implies \fB\-fPIE\fR. With \fB\-fpic\fR or \fB\-fpie\fR, it assumes \s-1GOT\s0 entries and small data are within a 12\-bit range from the *************** Assume a large \s-1TLS\s0 segment when g *** 12346,12352 **** Do not assume a large \s-1TLS\s0 segment when generating thread-local code. .IP "\fB\-mgprel\-ro\fR" 4 .IX Item "-mgprel-ro" ! Enable the use of \f(CW\*(C`GPREL\*(C'\fR relocations in the \s-1FDPIC\s0 \s-1ABI\s0 for data that is known to be in read-only sections. It's enabled by default, except for \fB\-fpic\fR or \fB\-fpie\fR: even though it may help make the global offset table smaller, it trades 1 instruction for 4. --- 12355,12361 ---- Do not assume a large \s-1TLS\s0 segment when generating thread-local code. .IP "\fB\-mgprel\-ro\fR" 4 .IX Item "-mgprel-ro" ! Enable the use of \f(CW\*(C`GPREL\*(C'\fR relocations in the \s-1FDPIC ABI\s0 for data that is known to be in read-only sections. It's enabled by default, except for \fB\-fpic\fR or \fB\-fpie\fR: even though it may help make the global offset table smaller, it trades 1 instruction for 4. *************** Select the processor type for which to g *** 12490,12496 **** These \fB\-m\fR options are defined for GNU/Linux targets: .IP "\fB\-mglibc\fR" 4 .IX Item "-mglibc" ! Use the \s-1GNU\s0 C library. This is the default except on \fB*\-*\-linux\-*uclibc*\fR and \fB*\-*\-linux\-*android*\fR targets. .IP "\fB\-muclibc\fR" 4 .IX Item "-muclibc" --- 12499,12505 ---- These \fB\-m\fR options are defined for GNU/Linux targets: .IP "\fB\-mglibc\fR" 4 .IX Item "-mglibc" ! Use the \s-1GNU C\s0 library. This is the default except on \fB*\-*\-linux\-*uclibc*\fR and \fB*\-*\-linux\-*android*\fR targets. .IP "\fB\-muclibc\fR" 4 .IX Item "-muclibc" *************** These \fB\-m\fR options are defined for *** 12569,12576 **** .IP "\fB\-march=\fR\fIarchitecture-type\fR" 4 .IX Item "-march=architecture-type" Generate code for the specified architecture. The choices for ! \&\fIarchitecture-type\fR are \fB1.0\fR for \s-1PA\s0 1.0, \fB1.1\fR for \s-1PA\s0 ! 1.1, and \fB2.0\fR for \s-1PA\s0 2.0 processors. Refer to \&\fI/usr/lib/sched.models\fR on an HP-UX system to determine the proper architecture option for your machine. Code compiled for lower numbered architectures runs on higher numbered architectures, but not the --- 12578,12585 ---- .IP "\fB\-march=\fR\fIarchitecture-type\fR" 4 .IX Item "-march=architecture-type" Generate code for the specified architecture. The choices for ! \&\fIarchitecture-type\fR are \fB1.0\fR for \s-1PA 1.0, \s0\fB1.1\fR for \s-1PA ! 1.1,\s0 and \fB2.0\fR for \s-1PA 2.0\s0 processors. Refer to \&\fI/usr/lib/sched.models\fR on an HP-UX system to determine the proper architecture option for your machine. Code compiled for lower numbered architectures runs on higher numbered architectures, but not the *************** floating-point operations, the compiler *** 12603,12609 **** .IP "\fB\-mdisable\-indexing\fR" 4 .IX Item "-mdisable-indexing" Prevent the compiler from using indexing address modes. This avoids some ! rather obscure problems when compiling \s-1MIG\s0 generated code under \s-1MACH\s0. .IP "\fB\-mno\-space\-regs\fR" 4 .IX Item "-mno-space-regs" Generate code that assumes the target has no space registers. This allows --- 12612,12618 ---- .IP "\fB\-mdisable\-indexing\fR" 4 .IX Item "-mdisable-indexing" Prevent the compiler from using indexing address modes. This avoids some ! rather obscure problems when compiling \s-1MIG\s0 generated code under \s-1MACH.\s0 .IP "\fB\-mno\-space\-regs\fR" 4 .IX Item "-mno-space-regs" Generate code that assumes the target has no space registers. This allows *************** cross-compilation. *** 12660,12676 **** \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC\s0, with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-msio\fR" 4 .IX Item "-msio" ! Generate the predefine, \f(CW\*(C`_SIO\*(C'\fR, for server \s-1IO\s0. The default is \&\fB\-mwsio\fR. This generates the predefines, \f(CW\*(C`_\|_hp9000s700\*(C'\fR, ! \&\f(CW\*(C`_\|_hp9000s700_\|_\*(C'\fR and \f(CW\*(C`_WSIO\*(C'\fR, for workstation \s-1IO\s0. These options are available under HP-UX and HI-UX. .IP "\fB\-mgnu\-ld\fR" 4 .IX Item "-mgnu-ld" ! Use options specific to \s-1GNU\s0 \fBld\fR. This passes \fB\-shared\fR to \fBld\fR when building a shared library. It is the default when \s-1GCC\s0 is configured, explicitly or implicitly, with the \s-1GNU\s0 linker. This option does not --- 12669,12685 ---- \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC,\s0 with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-msio\fR" 4 .IX Item "-msio" ! Generate the predefine, \f(CW\*(C`_SIO\*(C'\fR, for server \s-1IO. \s0 The default is \&\fB\-mwsio\fR. This generates the predefines, \f(CW\*(C`_\|_hp9000s700\*(C'\fR, ! \&\f(CW\*(C`_\|_hp9000s700_\|_\*(C'\fR and \f(CW\*(C`_WSIO\*(C'\fR, for workstation \s-1IO. \s0 These options are available under HP-UX and HI-UX. .IP "\fB\-mgnu\-ld\fR" 4 .IX Item "-mgnu-ld" ! Use options specific to \s-1GNU \s0\fBld\fR. This passes \fB\-shared\fR to \fBld\fR when building a shared library. It is the default when \s-1GCC\s0 is configured, explicitly or implicitly, with the \s-1GNU\s0 linker. This option does not *************** The \fBld\fR that is called is determine *** 12680,12689 **** \&\fB\-\-with\-ld\fR configure option, \s-1GCC\s0's program search path, and finally by the user's \fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available ! on the 64\-bit HP-UX \s-1GCC\s0, i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mhp\-ld\fR" 4 .IX Item "-mhp-ld" ! Use options specific to \s-1HP\s0 \fBld\fR. This passes \fB\-b\fR to \fBld\fR when building a shared library and passes \fB+Accept TypeMismatch\fR to \fBld\fR on all links. It is the default when \s-1GCC\s0 is configured, explicitly or --- 12689,12698 ---- \&\fB\-\-with\-ld\fR configure option, \s-1GCC\s0's program search path, and finally by the user's \fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available ! on the 64\-bit HP-UX \s-1GCC,\s0 i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mhp\-ld\fR" 4 .IX Item "-mhp-ld" ! Use options specific to \s-1HP \s0\fBld\fR. This passes \fB\-b\fR to \fBld\fR when building a shared library and passes \fB+Accept TypeMismatch\fR to \fBld\fR on all links. It is the default when \s-1GCC\s0 is configured, explicitly or *************** The \fBld\fR that is called is determine *** 12694,12700 **** configure option, \s-1GCC\s0's program search path, and finally by the user's \&\fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available on the 64\-bit ! HP-UX \s-1GCC\s0, i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mlong\-calls\fR" 4 .IX Item "-mlong-calls" Generate code that uses long call sequences. This ensures that a call --- 12703,12709 ---- configure option, \s-1GCC\s0's program search path, and finally by the user's \&\fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available on the 64\-bit ! HP-UX \s-1GCC,\s0 i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mlong\-calls\fR" 4 .IX Item "-mlong-calls" Generate code that uses long call sequences. This ensures that a call *************** long calls only when the distance from t *** 12703,12709 **** of the function or translation unit, as the case may be, exceeds a predefined limit set by the branch type being used. The limits for normal calls are 7,600,000 and 240,000 bytes, respectively for the ! \&\s-1PA\s0 2.0 and \s-1PA\s0 1.X architectures. Sibcalls are always limited at 240,000 bytes. .Sp Distances are measured from the beginning of functions when using the --- 12712,12718 ---- of the function or translation unit, as the case may be, exceeds a predefined limit set by the branch type being used. The limits for normal calls are 7,600,000 and 240,000 bytes, respectively for the ! \&\s-1PA 2.0\s0 and \s-1PA 1.X\s0 architectures. Sibcalls are always limited at 240,000 bytes. .Sp Distances are measured from the beginning of functions when using the *************** is available on HP-UX 10.10 and later. *** 12731,12737 **** \&\fB95\fR for HP-UX 10.10 though to 11.00, and \fB98\fR for HP-UX 11.11 and later. .Sp ! \&\fB\-munix=93\fR provides the same predefines as \s-1GCC\s0 3.3 and 3.4. \&\fB\-munix=95\fR provides additional predefines for \f(CW\*(C`XOPEN_UNIX\*(C'\fR and \f(CW\*(C`_XOPEN_SOURCE_EXTENDED\*(C'\fR, and the startfile \fIunix95.o\fR. \&\fB\-munix=98\fR provides additional predefines for \f(CW\*(C`_XOPEN_UNIX\*(C'\fR, --- 12740,12746 ---- \&\fB95\fR for HP-UX 10.10 though to 11.00, and \fB98\fR for HP-UX 11.11 and later. .Sp ! \&\fB\-munix=93\fR provides the same predefines as \s-1GCC 3.3\s0 and 3.4. \&\fB\-munix=95\fR provides additional predefines for \f(CW\*(C`XOPEN_UNIX\*(C'\fR and \f(CW\*(C`_XOPEN_SOURCE_EXTENDED\*(C'\fR, and the startfile \fIunix95.o\fR. \&\fB\-munix=98\fR provides additional predefines for \f(CW\*(C`_XOPEN_UNIX\*(C'\fR, *************** produces code optimized for the local ma *** 12795,12804 **** of the selected instruction set. .IP "\fBi386\fR" 4 .IX Item "i386" ! Original Intel i386 \s-1CPU\s0. .IP "\fBi486\fR" 4 .IX Item "i486" ! Intel i486 \s-1CPU\s0. (No scheduling is implemented for this chip.) .IP "\fBi586\fR" 4 .IX Item "i586" .PD 0 --- 12804,12813 ---- of the selected instruction set. .IP "\fBi386\fR" 4 .IX Item "i386" ! Original Intel i386 \s-1CPU.\s0 .IP "\fBi486\fR" 4 .IX Item "i486" ! Intel i486 \s-1CPU. \s0(No scheduling is implemented for this chip.) .IP "\fBi586\fR" 4 .IX Item "i586" .PD 0 *************** Intel i486 \s-1CPU\s0. (No scheduling i *** 12808,12817 **** Intel Pentium \s-1CPU\s0 with no \s-1MMX\s0 support. .IP "\fBpentium-mmx\fR" 4 .IX Item "pentium-mmx" ! Intel Pentium \s-1MMX\s0 \s-1CPU\s0, based on Pentium core with \s-1MMX\s0 instruction set support. .IP "\fBpentiumpro\fR" 4 .IX Item "pentiumpro" ! Intel Pentium Pro \s-1CPU\s0. .IP "\fBi686\fR" 4 .IX Item "i686" When used with \fB\-march\fR, the Pentium Pro --- 12817,12826 ---- Intel Pentium \s-1CPU\s0 with no \s-1MMX\s0 support. .IP "\fBpentium-mmx\fR" 4 .IX Item "pentium-mmx" ! Intel Pentium \s-1MMX CPU,\s0 based on Pentium core with \s-1MMX\s0 instruction set support. .IP "\fBpentiumpro\fR" 4 .IX Item "pentiumpro" ! Intel Pentium Pro \s-1CPU.\s0 .IP "\fBi686\fR" 4 .IX Item "i686" When used with \fB\-march\fR, the Pentium Pro *************** instruction set is used, so the code run *** 12819,12825 **** When used with \fB\-mtune\fR, it has the same meaning as \fBgeneric\fR. .IP "\fBpentium2\fR" 4 .IX Item "pentium2" ! Intel Pentium \s-1II\s0 \s-1CPU\s0, based on Pentium Pro core with \s-1MMX\s0 instruction set support. .IP "\fBpentium3\fR" 4 .IX Item "pentium3" --- 12828,12834 ---- When used with \fB\-mtune\fR, it has the same meaning as \fBgeneric\fR. .IP "\fBpentium2\fR" 4 .IX Item "pentium2" ! Intel Pentium \s-1II CPU,\s0 based on Pentium Pro core with \s-1MMX\s0 instruction set support. .IP "\fBpentium3\fR" 4 .IX Item "pentium3" *************** support. *** 12827,12891 **** .IP "\fBpentium3m\fR" 4 .IX Item "pentium3m" .PD ! Intel Pentium \s-1III\s0 \s-1CPU\s0, based on Pentium Pro core with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. .IP "\fBpentium-m\fR" 4 .IX Item "pentium-m" ! Intel Pentium M; low-power version of Intel Pentium \s-1III\s0 \s-1CPU\s0 ! with \s-1MMX\s0, \s-1SSE\s0 and \s-1SSE2\s0 instruction set support. Used by Centrino notebooks. .IP "\fBpentium4\fR" 4 .IX Item "pentium4" .PD 0 .IP "\fBpentium4m\fR" 4 .IX Item "pentium4m" .PD ! Intel Pentium 4 \s-1CPU\s0 with \s-1MMX\s0, \s-1SSE\s0 and \s-1SSE2\s0 instruction set support. .IP "\fBprescott\fR" 4 .IX Item "prescott" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBnocona\fR" 4 .IX Item "nocona" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, ! \&\s-1SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBcore2\fR" 4 .IX Item "core2" ! Intel Core 2 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBcorei7\fR" 4 .IX Item "corei7" ! Intel Core i7 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1 ! and \s-1SSE4\s0.2 instruction set support. .IP "\fBcorei7\-avx\fR" 4 .IX Item "corei7-avx" ! Intel Core i7 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1AVX\s0, \s-1AES\s0 and \s-1PCLMUL\s0 instruction set support. .IP "\fBcore-avx-i\fR" 4 .IX Item "core-avx-i" ! Intel Core \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1AVX\s0, \s-1AES\s0, \s-1PCLMUL\s0, \s-1FSGSBASE\s0, \s-1RDRND\s0 and F16C instruction set support. .IP "\fBatom\fR" 4 .IX Item "atom" ! Intel Atom \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBk6\fR" 4 .IX Item "k6" ! \&\s-1AMD\s0 K6 \s-1CPU\s0 with \s-1MMX\s0 instruction set support. .IP "\fBk6\-2\fR" 4 .IX Item "k6-2" .PD 0 .IP "\fBk6\-3\fR" 4 .IX Item "k6-3" .PD ! Improved versions of \s-1AMD\s0 K6 \s-1CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBathlon\fR" 4 .IX Item "athlon" .PD 0 .IP "\fBathlon-tbird\fR" 4 .IX Item "athlon-tbird" .PD ! \&\s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX\s0, 3dNOW!, enhanced 3DNow! and \s-1SSE\s0 prefetch instructions support. .IP "\fBathlon\-4\fR" 4 .IX Item "athlon-4" --- 12836,12905 ---- .IP "\fBpentium3m\fR" 4 .IX Item "pentium3m" .PD ! Intel Pentium \s-1III CPU,\s0 based on Pentium Pro core with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. .IP "\fBpentium-m\fR" 4 .IX Item "pentium-m" ! Intel Pentium M; low-power version of Intel Pentium \s-1III CPU\s0 ! with \s-1MMX, SSE\s0 and \s-1SSE2\s0 instruction set support. Used by Centrino notebooks. .IP "\fBpentium4\fR" 4 .IX Item "pentium4" .PD 0 .IP "\fBpentium4m\fR" 4 .IX Item "pentium4m" .PD ! Intel Pentium 4 \s-1CPU\s0 with \s-1MMX, SSE\s0 and \s-1SSE2\s0 instruction set support. .IP "\fBprescott\fR" 4 .IX Item "prescott" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with \s-1MMX, SSE, SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBnocona\fR" 4 .IX Item "nocona" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, ! SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBcore2\fR" 4 .IX Item "core2" ! Intel Core 2 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBcorei7\fR" 4 .IX Item "corei7" ! Intel Core i7 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1\s0 ! and \s-1SSE4.2\s0 instruction set support. .IP "\fBcorei7\-avx\fR" 4 .IX Item "corei7-avx" ! Intel Core i7 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, AVX, AES\s0 and \s-1PCLMUL\s0 instruction set support. .IP "\fBcore-avx-i\fR" 4 .IX Item "core-avx-i" ! Intel Core \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND\s0 and F16C instruction set support. + .IP "\fBcore\-avx2\fR" 4 + .IX Item "core-avx2" + Intel Core \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, + SSE4.1, SSE4.2, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2\s0 + and F16C instruction set support. .IP "\fBatom\fR" 4 .IX Item "atom" ! Intel Atom \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBk6\fR" 4 .IX Item "k6" ! \&\s-1AMD K6 CPU\s0 with \s-1MMX\s0 instruction set support. .IP "\fBk6\-2\fR" 4 .IX Item "k6-2" .PD 0 .IP "\fBk6\-3\fR" 4 .IX Item "k6-3" .PD ! Improved versions of \s-1AMD K6 CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBathlon\fR" 4 .IX Item "athlon" .PD 0 .IP "\fBathlon-tbird\fR" 4 .IX Item "athlon-tbird" .PD ! \&\s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX,\s0 3dNOW!, enhanced 3DNow! and \s-1SSE\s0 prefetch instructions support. .IP "\fBathlon\-4\fR" 4 .IX Item "athlon-4" *************** support. *** 12895,12901 **** .IP "\fBathlon-mp\fR" 4 .IX Item "athlon-mp" .PD ! Improved \s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX\s0, 3DNow!, enhanced 3DNow! and full \s-1SSE\s0 instruction set support. .IP "\fBk8\fR" 4 .IX Item "k8" --- 12909,12915 ---- .IP "\fBathlon-mp\fR" 4 .IX Item "athlon-mp" .PD ! Improved \s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX,\s0 3DNow!, enhanced 3DNow! and full \s-1SSE\s0 instruction set support. .IP "\fBk8\fR" 4 .IX Item "k8" *************** instruction set support. *** 12907,12915 **** .IP "\fBathlon-fx\fR" 4 .IX Item "athlon-fx" .PD ! Processors based on the \s-1AMD\s0 K8 core with x86\-64 instruction set support, including the \s-1AMD\s0 Opteron, Athlon 64, and Athlon 64 \s-1FX\s0 processors. ! (This supersets \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, 3DNow!, enhanced 3DNow! and 64\-bit instruction set extensions.) .IP "\fBk8\-sse3\fR" 4 .IX Item "k8-sse3" --- 12921,12929 ---- .IP "\fBathlon-fx\fR" 4 .IX Item "athlon-fx" .PD ! Processors based on the \s-1AMD K8\s0 core with x86\-64 instruction set support, including the \s-1AMD\s0 Opteron, Athlon 64, and Athlon 64 \s-1FX\s0 processors. ! (This supersets \s-1MMX, SSE, SSE2,\s0 3DNow!, enhanced 3DNow! and 64\-bit instruction set extensions.) .IP "\fBk8\-sse3\fR" 4 .IX Item "k8-sse3" *************** instruction set extensions.) *** 12919,12925 **** .IP "\fBathlon64\-sse3\fR" 4 .IX Item "athlon64-sse3" .PD ! Improved versions of \s-1AMD\s0 K8 cores with \s-1SSE3\s0 instruction set support. .IP "\fBamdfam10\fR" 4 .IX Item "amdfam10" .PD 0 --- 12933,12939 ---- .IP "\fBathlon64\-sse3\fR" 4 .IX Item "athlon64-sse3" .PD ! Improved versions of \s-1AMD K8\s0 cores with \s-1SSE3\s0 instruction set support. .IP "\fBamdfam10\fR" 4 .IX Item "amdfam10" .PD 0 *************** Improved versions of \s-1AMD\s0 K8 cores *** 12927,12976 **** .IX Item "barcelona" .PD CPUs based on \s-1AMD\s0 Family 10h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, 3DNow!, enhanced 3DNow!, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver1\fR" 4 .IX Item "bdver1" CPUs based on \s-1AMD\s0 Family 15h cores with x86\-64 instruction set support. (This ! supersets \s-1FMA4\s0, \s-1AVX\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1AES\s0, \s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, ! \&\s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver2\fR" 4 .IX Item "bdver2" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI\s0, \s-1TBM\s0, F16C, \s-1FMA\s0, \s-1AVX\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1AES\s0, \s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MMX\s0, \s-1SSE\s0, ! \&\s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver3\fR" 4 .IX Item "bdver3" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI\s0, \s-1TBM\s0, F16C, \s-1FMA\s0, \s-1AVX\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1AES\s0, \s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MMX\s0, \s-1SSE\s0, ! \&\s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions. .IP "\fBbtver1\fR" 4 .IX Item "btver1" CPUs based on \s-1AMD\s0 Family 14h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, \s-1SSE4A\s0, \s-1CX16\s0, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbtver2\fR" 4 .IX Item "btver2" CPUs based on \s-1AMD\s0 Family 16h cores with x86\-64 instruction set support. This ! includes \s-1MOVBE\s0, F16C, \s-1BMI\s0, \s-1AVX\s0, \s-1PCL_MUL\s0, \s-1AES\s0, \s-1SSE4\s0.2, \s-1SSE4\s0.1, \s-1CX16\s0, \s-1ABM\s0, ! \&\s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE3\s0, \s-1SSE2\s0, \s-1SSE\s0, \s-1MMX\s0 and 64\-bit instruction set extensions. .IP "\fBwinchip\-c6\fR" 4 .IX Item "winchip-c6" ! \&\s-1IDT\s0 WinChip C6 \s-1CPU\s0, dealt in same way as i486 with additional \s-1MMX\s0 instruction set support. .IP "\fBwinchip2\fR" 4 .IX Item "winchip2" ! \&\s-1IDT\s0 WinChip 2 \s-1CPU\s0, dealt in same way as i486 with additional \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBc3\fR" 4 .IX Item "c3" ! \&\s-1VIA\s0 C3 \s-1CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. (No scheduling is implemented for this chip.) .IP "\fBc3\-2\fR" 4 .IX Item "c3-2" ! \&\s-1VIA\s0 C3\-2 (Nehemiah/C5XL) \s-1CPU\s0 with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. (No scheduling is implemented for this chip.) .IP "\fBgeode\fR" 4 --- 12941,12990 ---- .IX Item "barcelona" .PD CPUs based on \s-1AMD\s0 Family 10h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX, SSE, SSE2, SSE3, SSE4A,\s0 3DNow!, enhanced 3DNow!, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver1\fR" 4 .IX Item "bdver1" CPUs based on \s-1AMD\s0 Family 15h cores with x86\-64 instruction set support. (This ! supersets \s-1FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, ! SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver2\fR" 4 .IX Item "bdver2" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, ! SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver3\fR" 4 .IX Item "bdver3" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, ! SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions. .IP "\fBbtver1\fR" 4 .IX Item "btver1" CPUs based on \s-1AMD\s0 Family 14h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbtver2\fR" 4 .IX Item "btver2" CPUs based on \s-1AMD\s0 Family 16h cores with x86\-64 instruction set support. This ! includes \s-1MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM, ! SSE4A, SSSE3, SSE3, SSE2, SSE, MMX\s0 and 64\-bit instruction set extensions. .IP "\fBwinchip\-c6\fR" 4 .IX Item "winchip-c6" ! \&\s-1IDT\s0 WinChip C6 \s-1CPU,\s0 dealt in same way as i486 with additional \s-1MMX\s0 instruction set support. .IP "\fBwinchip2\fR" 4 .IX Item "winchip2" ! \&\s-1IDT\s0 WinChip 2 \s-1CPU,\s0 dealt in same way as i486 with additional \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBc3\fR" 4 .IX Item "c3" ! \&\s-1VIA C3 CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. (No scheduling is implemented for this chip.) .IP "\fBc3\-2\fR" 4 .IX Item "c3-2" ! \&\s-1VIA C3\-2 \s0(Nehemiah/C5XL) \s-1CPU\s0 with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. (No scheduling is implemented for this chip.) .IP "\fBgeode\fR" 4 *************** of your application will have, then you *** 13004,13010 **** .Sp As new processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you upgrade to a newer version of ! \&\s-1GCC\s0, code generation controlled by this option will change to reflect the processors that are most common at the time that version of \s-1GCC\s0 is released. .Sp --- 13018,13024 ---- .Sp As new processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you upgrade to a newer version of ! \&\s-1GCC,\s0 code generation controlled by this option will change to reflect the processors that are most common at the time that version of \s-1GCC\s0 is released. .Sp *************** comparison is unordered. *** 13087,13093 **** .IX Item "-msoft-float" Generate output containing library calls for floating point. .Sp ! \&\fBWarning:\fR the requisite libraries are not part of \s-1GCC\s0. Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for --- 13101,13107 ---- .IX Item "-msoft-float" Generate output containing library calls for floating point. .Sp ! \&\fBWarning:\fR the requisite libraries are not part of \s-1GCC.\s0 Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for *************** Do not use the \s-1FPU\s0 registers for *** 13102,13109 **** .Sp The usual calling convention has functions return values of types \&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR in an \s-1FPU\s0 register, even if there ! is no \s-1FPU\s0. The idea is that the operating system should emulate ! an \s-1FPU\s0. .Sp The option \fB\-mno\-fp\-ret\-in\-387\fR causes such values to be returned in ordinary \s-1CPU\s0 registers instead. --- 13116,13123 ---- .Sp The usual calling convention has functions return values of types \&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR in an \s-1FPU\s0 register, even if there ! is no \s-1FPU. \s0 The idea is that the operating system should emulate ! an \s-1FPU.\s0 .Sp The option \fB\-mno\-fp\-ret\-in\-387\fR causes such values to be returned in ordinary \s-1CPU\s0 registers instead. *************** so \fB\-m96bit\-long\-double\fR is the d *** 13148,13154 **** .Sp Modern architectures (Pentium and newer) prefer \f(CW\*(C`long double\*(C'\fR to be aligned to an 8\- or 16\-byte boundary. In arrays or structures ! conforming to the \s-1ABI\s0, this is not possible. So specifying \&\fB\-m128bit\-long\-double\fR aligns \f(CW\*(C`long double\*(C'\fR to a 16\-byte boundary by padding the \f(CW\*(C`long double\*(C'\fR with an additional 32\-bit zero. --- 13162,13168 ---- .Sp Modern architectures (Pentium and newer) prefer \f(CW\*(C`long double\*(C'\fR to be aligned to an 8\- or 16\-byte boundary. In arrays or structures ! conforming to the \s-1ABI,\s0 this is not possible. So specifying \&\fB\-m128bit\-long\-double\fR aligns \f(CW\*(C`long double\*(C'\fR to a 16\-byte boundary by padding the \f(CW\*(C`long double\*(C'\fR with an additional 32\-bit zero. *************** its \s-1ABI\s0 specifies that \f(CW\*(C` *** 13159,13165 **** Notice that neither of these options enable any extra precision over the x87 standard of 80 bits for a \f(CW\*(C`long double\*(C'\fR. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI\s0, this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking --- 13173,13179 ---- Notice that neither of these options enable any extra precision over the x87 standard of 80 bits for a \f(CW\*(C`long double\*(C'\fR. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI,\s0 this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking *************** These switches control the size of \f(CW *** 13175,13181 **** of 64 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the \f(CW\*(C`double\*(C'\fR type. This is the default for Bionic C library. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI\s0, this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking --- 13189,13195 ---- of 64 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the \f(CW\*(C`double\*(C'\fR type. This is the default for Bionic C library. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI,\s0 this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking *************** Studio compilers until version 12. Late *** 13239,13245 **** with Studio 12 Update@tie{}1) follow the \s-1ABI\s0 used by other x86 targets, which is the default on Solaris@tie{}10 and later. \fIOnly\fR use this option if you need to remain compatible with existing code produced by those ! previous compiler versions or older versions of \s-1GCC\s0. .IP "\fB\-mpc32\fR" 4 .IX Item "-mpc32" .PD 0 --- 13253,13259 ---- with Studio 12 Update@tie{}1) follow the \s-1ABI\s0 used by other x86 targets, which is the default on Solaris@tie{}10 and later. \fIOnly\fR use this option if you need to remain compatible with existing code produced by those ! previous compiler versions or older versions of \s-1GCC.\s0 .IP "\fB\-mpc32\fR" 4 .IX Item "-mpc32" .PD 0 *************** the one specified by \fB\-mpreferred\-st *** 13300,13306 **** .Sp On Pentium and Pentium Pro, \f(CW\*(C`double\*(C'\fR and \f(CW\*(C`long double\*(C'\fR values should be aligned to an 8\-byte boundary (see \fB\-malign\-double\fR) or ! suffer significant run time performance penalties. On Pentium \s-1III\s0, the Streaming \s-1SIMD\s0 Extension (\s-1SSE\s0) data type \f(CW\*(C`_\|_m128\*(C'\fR may not work properly if it is not 16\-byte aligned. .Sp --- 13314,13320 ---- .Sp On Pentium and Pentium Pro, \f(CW\*(C`double\*(C'\fR and \f(CW\*(C`long double\*(C'\fR values should be aligned to an 8\-byte boundary (see \fB\-malign\-double\fR) or ! suffer significant run time performance penalties. On Pentium \s-1III,\s0 the Streaming \s-1SIMD\s0 Extension (\s-1SSE\s0) data type \f(CW\*(C`_\|_m128\*(C'\fR may not work properly if it is not 16\-byte aligned. .Sp *************** preferred alignment to \fB\-mpreferred\- *** 13428,13436 **** .IP "\fB\-mno\-tbm\fR" 4 .IX Item "-mno-tbm" .PD ! These switches enable or disable the use of instructions in the \s-1MMX\s0, \s-1SSE\s0, ! \&\s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1AVX\s0, \s-1AVX2\s0, \s-1AES\s0, \s-1PCLMUL\s0, \s-1FSGSBASE\s0, \s-1RDRND\s0, F16C, ! \&\s-1FMA\s0, \s-1SSE4A\s0, \s-1FMA4\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1ABM\s0, \s-1BMI\s0, \s-1BMI2\s0, \s-1LZCNT\s0, \s-1RTM\s0 or 3DNow! extended instruction sets. These extensions are also available as built-in functions: see \&\fBX86 Built-in Functions\fR, for details of the functions enabled and --- 13442,13450 ---- .IP "\fB\-mno\-tbm\fR" 4 .IX Item "-mno-tbm" .PD ! These switches enable or disable the use of instructions in the \s-1MMX, SSE, ! SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, F16C, ! FMA, SSE4A, FMA4, XOP, LWP, ABM, BMI, BMI2, LZCNT, RTM\s0 or 3DNow! extended instruction sets. These extensions are also available as built-in functions: see \&\fBX86 Built-in Functions\fR, for details of the functions enabled and *************** This option enables generation of \f(CW\ *** 13487,13493 **** Early Intel Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4 G1 step in December 2005, lacked the \f(CW\*(C`LAHF\*(C'\fR and \f(CW\*(C`SAHF\*(C'\fR instructions ! which were supported by \s-1AMD64\s0. These are load and store instructions, respectively, for certain status flags. In 64\-bit mode, the \f(CW\*(C`SAHF\*(C'\fR instruction is used to optimize \f(CW\*(C`fmod\*(C'\fR, \&\f(CW\*(C`drem\*(C'\fR, and \f(CW\*(C`remainder\*(C'\fR built-in functions; --- 13501,13507 ---- Early Intel Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4 G1 step in December 2005, lacked the \f(CW\*(C`LAHF\*(C'\fR and \f(CW\*(C`SAHF\*(C'\fR instructions ! which were supported by \s-1AMD64.\s0 These are load and store instructions, respectively, for certain status flags. In 64\-bit mode, the \f(CW\*(C`SAHF\*(C'\fR instruction is used to optimize \f(CW\*(C`fmod\*(C'\fR, \&\f(CW\*(C`drem\*(C'\fR, and \f(CW\*(C`remainder\*(C'\fR built-in functions; *************** external library. Supported values for *** 13563,13569 **** for the Intel short vector math library and \fBacml\fR for the \s-1AMD\s0 math core library. To use this option, both \fB\-ftree\-vectorize\fR and ! \&\fB\-funsafe\-math\-optimizations\fR have to be enabled, and an \s-1SVML\s0 or \s-1ACML\s0 ABI-compatible library must be specified at link time. .Sp \&\s-1GCC\s0 currently emits calls to \f(CW\*(C`vmldExp2\*(C'\fR, --- 13577,13583 ---- for the Intel short vector math library and \fBacml\fR for the \s-1AMD\s0 math core library. To use this option, both \fB\-ftree\-vectorize\fR and ! \&\fB\-funsafe\-math\-optimizations\fR have to be enabled, and an \s-1SVML\s0 or \s-1ACML \s0 ABI-compatible library must be specified at link time. .Sp \&\s-1GCC\s0 currently emits calls to \f(CW\*(C`vmldExp2\*(C'\fR, *************** when \fB\-mveclibabi=acml\fR is used. *** 13586,13592 **** .IX Item "-mabi=name" Generate code for the specified calling convention. Permissible values are \fBsysv\fR for the \s-1ABI\s0 used on GNU/Linux and other systems, and ! \&\fBms\fR for the Microsoft \s-1ABI\s0. The default is to use the Microsoft \&\s-1ABI\s0 when targeting Microsoft Windows and the SysV \s-1ABI\s0 on all other systems. You can control this behavior for a specific function by using the function attribute \fBms_abi\fR/\fBsysv_abi\fR. --- 13600,13606 ---- .IX Item "-mabi=name" Generate code for the specified calling convention. Permissible values are \fBsysv\fR for the \s-1ABI\s0 used on GNU/Linux and other systems, and ! \&\fBms\fR for the Microsoft \s-1ABI. \s0 The default is to use the Microsoft \&\s-1ABI\s0 when targeting Microsoft Windows and the SysV \s-1ABI\s0 on all other systems. You can control this behavior for a specific function by using the function attribute \fBms_abi\fR/\fBsysv_abi\fR. *************** or whether the thread base pointer must *** 13685,13691 **** is valid depends on the operating system, and whether it maps the segment to cover the entire \s-1TLS\s0 area. .Sp ! For systems that use the \s-1GNU\s0 C Library, the default is on. .IP "\fB\-msse2avx\fR" 4 .IX Item "-msse2avx" .PD 0 --- 13699,13705 ---- is valid depends on the operating system, and whether it maps the segment to cover the entire \s-1TLS\s0 area. .Sp ! For systems that use the \s-1GNU C\s0 Library, the default is on. .IP "\fB\-msse2avx\fR" 4 .IX Item "-msse2avx" .PD 0 *************** appropriately. *** 13834,13840 **** This option is available for MinGW targets. It specifies that the executable flag for the stack used by nested functions isn't set. This is necessary for binaries running in kernel mode of ! Microsoft Windows, as there the User32 \s-1API\s0, which is used to set executable privileges, isn't available. .IP "\fB\-fwritable\-relocated\-rdata\fR" 4 .IX Item "-fwritable-relocated-rdata" --- 13848,13854 ---- This option is available for MinGW targets. It specifies that the executable flag for the stack used by nested functions isn't set. This is necessary for binaries running in kernel mode of ! Microsoft Windows, as there the User32 \s-1API,\s0 which is used to set executable privileges, isn't available. .IP "\fB\-fwritable\-relocated\-rdata\fR" 4 .IX Item "-fwritable-relocated-rdata" *************** Generate (or don't) code for the \s-1GNU *** 13881,13887 **** .IP "\fB\-mno\-pic\fR" 4 .IX Item "-mno-pic" Generate code that does not use a global pointer register. The result ! is not position independent code, and violates the \s-1IA\-64\s0 \s-1ABI\s0. .IP "\fB\-mvolatile\-asm\-stop\fR" 4 .IX Item "-mvolatile-asm-stop" .PD 0 --- 13895,13901 ---- .IP "\fB\-mno\-pic\fR" 4 .IX Item "-mno-pic" Generate code that does not use a global pointer register. The result ! is not position independent code, and violates the \s-1IA\-64 ABI.\s0 .IP "\fB\-mvolatile\-asm\-stop\fR" 4 .IX Item "-mvolatile-asm-stop" .PD 0 *************** instructions. The default is to use the *** 13961,13967 **** .IP "\fB\-mdwarf2\-asm\fR" 4 .IX Item "-mdwarf2-asm" .PD ! Don't (or do) generate assembler code for the \s-1DWARF\s0 2 line number debugging info. This may be useful when not using the \s-1GNU\s0 assembler. .IP "\fB\-mearly\-stop\-bits\fR" 4 .IX Item "-mearly-stop-bits" --- 13975,13981 ---- .IP "\fB\-mdwarf2\-asm\fR" 4 .IX Item "-mdwarf2-asm" .PD ! Don't (or do) generate assembler code for the \s-1DWARF 2\s0 line number debugging info. This may be useful when not using the \s-1GNU\s0 assembler. .IP "\fB\-mearly\-stop\-bits\fR" 4 .IX Item "-mearly-stop-bits" *************** Specify bit size of immediate \s-1TLS\s0 *** 13985,13991 **** 64. .IP "\fB\-mtune=\fR\fIcpu-type\fR" 4 .IX Item "-mtune=cpu-type" ! Tune the instruction scheduling for a particular \s-1CPU\s0, Valid values are \&\fBitanium\fR, \fBitanium1\fR, \fBmerced\fR, \fBitanium2\fR, and \fBmckinley\fR. .IP "\fB\-milp32\fR" 4 --- 13999,14005 ---- 64. .IP "\fB\-mtune=\fR\fIcpu-type\fR" 4 .IX Item "-mtune=cpu-type" ! Tune the instruction scheduling for a particular \s-1CPU,\s0 Valid values are \&\fBitanium\fR, \fBitanium1\fR, \fBmerced\fR, \fBitanium2\fR, and \fBmckinley\fR. .IP "\fB\-milp32\fR" 4 *************** have to be emulated by software on the 6 *** 14434,14440 **** does not have code to emulate those instructions. .IP "\fB\-mcpu32\fR" 4 .IX Item "-mcpu32" ! Generate output for a \s-1CPU32\s0. This is the default when the compiler is configured for CPU32\-based systems. It is equivalent to \fB\-march=cpu32\fR. .Sp --- 14448,14454 ---- does not have code to emulate those instructions. .IP "\fB\-mcpu32\fR" 4 .IX Item "-mcpu32" ! Generate output for a \s-1CPU32. \s0 This is the default when the compiler is configured for CPU32\-based systems. It is equivalent to \fB\-march=cpu32\fR. .Sp *************** Use this option for microcontrollers wit *** 14443,14458 **** 68336, 68340, 68341, 68349 and 68360. .IP "\fB\-m5200\fR" 4 .IX Item "-m5200" ! Generate output for a 520X ColdFire \s-1CPU\s0. This is the default when the compiler is configured for 520X\-based systems. It is equivalent to \fB\-mcpu=5206\fR, and is now deprecated in favor of that option. .Sp Use this option for microcontroller with a 5200 core, including ! the \s-1MCF5202\s0, \s-1MCF5203\s0, \s-1MCF5204\s0 and \s-1MCF5206\s0. .IP "\fB\-m5206e\fR" 4 .IX Item "-m5206e" ! Generate output for a 5206e ColdFire \s-1CPU\s0. The option is now deprecated in favor of the equivalent \fB\-mcpu=5206e\fR. .IP "\fB\-m528x\fR" 4 .IX Item "-m528x" --- 14457,14472 ---- 68336, 68340, 68341, 68349 and 68360. .IP "\fB\-m5200\fR" 4 .IX Item "-m5200" ! Generate output for a 520X ColdFire \s-1CPU. \s0 This is the default when the compiler is configured for 520X\-based systems. It is equivalent to \fB\-mcpu=5206\fR, and is now deprecated in favor of that option. .Sp Use this option for microcontroller with a 5200 core, including ! the \s-1MCF5202, MCF5203, MCF5204\s0 and \s-1MCF5206.\s0 .IP "\fB\-m5206e\fR" 4 .IX Item "-m5206e" ! Generate output for a 5206e ColdFire \s-1CPU. \s0 The option is now deprecated in favor of the equivalent \fB\-mcpu=5206e\fR. .IP "\fB\-m528x\fR" 4 .IX Item "-m528x" *************** The option is now deprecated in favor of *** 14461,14475 **** \&\fB\-mcpu=528x\fR. .IP "\fB\-m5307\fR" 4 .IX Item "-m5307" ! Generate output for a ColdFire 5307 \s-1CPU\s0. The option is now deprecated in favor of the equivalent \fB\-mcpu=5307\fR. .IP "\fB\-m5407\fR" 4 .IX Item "-m5407" ! Generate output for a ColdFire 5407 \s-1CPU\s0. The option is now deprecated in favor of the equivalent \fB\-mcpu=5407\fR. .IP "\fB\-mcfv4e\fR" 4 .IX Item "-mcfv4e" ! Generate output for a ColdFire V4e family \s-1CPU\s0 (e.g. 547x/548x). This includes use of hardware floating-point instructions. The option is equivalent to \fB\-mcpu=547x\fR, and is now deprecated in favor of that option. --- 14475,14489 ---- \&\fB\-mcpu=528x\fR. .IP "\fB\-m5307\fR" 4 .IX Item "-m5307" ! Generate output for a ColdFire 5307 \s-1CPU. \s0 The option is now deprecated in favor of the equivalent \fB\-mcpu=5307\fR. .IP "\fB\-m5407\fR" 4 .IX Item "-m5407" ! Generate output for a ColdFire 5407 \s-1CPU. \s0 The option is now deprecated in favor of the equivalent \fB\-mcpu=5407\fR. .IP "\fB\-mcfv4e\fR" 4 .IX Item "-mcfv4e" ! Generate output for a ColdFire V4e family \s-1CPU \s0(e.g. 547x/548x). This includes use of hardware floating-point instructions. The option is equivalent to \fB\-mcpu=547x\fR, and is now deprecated in favor of that option. *************** The option is equivalent to \fB\-march=6 *** 14496,14509 **** .IX Item "-m68881" .PD Generate floating-point instructions. This is the default for 68020 ! and above, and for ColdFire devices that have an \s-1FPU\s0. It defines the macro \fB_\|_HAVE_68881_\|_\fR on M680x0 targets and \fB_\|_mcffpu_\|_\fR on ColdFire targets. .IP "\fB\-msoft\-float\fR" 4 .IX Item "-msoft-float" Do not generate floating-point instructions; use library calls instead. This is the default for 68000, 68010, and 68832 targets. It is also ! the default for ColdFire devices that have no \s-1FPU\s0. .IP "\fB\-mdiv\fR" 4 .IX Item "-mdiv" .PD 0 --- 14510,14523 ---- .IX Item "-m68881" .PD Generate floating-point instructions. This is the default for 68020 ! and above, and for ColdFire devices that have an \s-1FPU. \s0 It defines the macro \fB_\|_HAVE_68881_\|_\fR on M680x0 targets and \fB_\|_mcffpu_\|_\fR on ColdFire targets. .IP "\fB\-msoft\-float\fR" 4 .IX Item "-msoft-float" Do not generate floating-point instructions; use library calls instead. This is the default for 68000, 68010, and 68832 targets. It is also ! the default for ColdFire devices that have no \s-1FPU.\s0 .IP "\fB\-mdiv\fR" 4 .IX Item "-mdiv" .PD 0 *************** the default for ColdFire devices that ha *** 14513,14520 **** Generate (do not generate) ColdFire hardware divide and remainder instructions. If \fB\-march\fR is used without \fB\-mcpu\fR, the default is \*(L"on\*(R" for ColdFire architectures and \*(L"off\*(R" for M680x0 ! architectures. Otherwise, the default is taken from the target \s-1CPU\s0 ! (either the default \s-1CPU\s0, or the one specified by \fB\-mcpu\fR). For example, the default is \*(L"off\*(R" for \fB\-mcpu=5206\fR and \*(L"on\*(R" for \&\fB\-mcpu=5206e\fR. .Sp --- 14527,14534 ---- Generate (do not generate) ColdFire hardware divide and remainder instructions. If \fB\-march\fR is used without \fB\-mcpu\fR, the default is \*(L"on\*(R" for ColdFire architectures and \*(L"off\*(R" for M680x0 ! architectures. Otherwise, the default is taken from the target \s-1CPU ! \&\s0(either the default \s-1CPU,\s0 or the one specified by \fB\-mcpu\fR). For example, the default is \*(L"off\*(R" for \fB\-mcpu=5206\fR and \*(L"on\*(R" for \&\fB\-mcpu=5206e\fR. .Sp *************** that works if the \s-1GOT\s0 has more th *** 14633,14639 **** larger and slower than code generated without this option. On M680x0 processors, this option is not needed; \fB\-fPIC\fR suffices. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT\s0. While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: --- 14647,14653 ---- larger and slower than code generated without this option. On M680x0 processors, this option is not needed; \fB\-fPIC\fR suffices. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT.\s0 While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: *************** useful unless you also provide \f(CW\*(C *** 14775,14781 **** Selects one of the built-in core configurations. Each MeP chip has one or more modules in it; each module has a core \s-1CPU\s0 and a variety of coprocessors, optional instructions, and peripherals. The ! \&\f(CW\*(C`MeP\-Integrator\*(C'\fR tool, not part of \s-1GCC\s0, provides these configurations through this option; using this option is the same as using all the corresponding command-line options. The default configuration is \f(CW\*(C`default\*(C'\fR. --- 14789,14795 ---- Selects one of the built-in core configurations. Each MeP chip has one or more modules in it; each module has a core \s-1CPU\s0 and a variety of coprocessors, optional instructions, and peripherals. The ! \&\f(CW\*(C`MeP\-Integrator\*(C'\fR tool, not part of \s-1GCC,\s0 provides these configurations through this option; using this option is the same as using all the corresponding command-line options. The default configuration is \f(CW\*(C`default\*(C'\fR. *************** Do not optimize block moves, use \f(CW\* *** 14878,14884 **** This option is deprecated. Use \fB\-fno\-zero\-initialized\-in\-bss\fR instead. .IP "\fB\-mcpu=\fR\fIcpu-type\fR" 4 .IX Item "-mcpu=cpu-type" ! Use features of, and schedule code for, the given \s-1CPU\s0. Supported values are in the format \fBv\fR\fIX\fR\fB.\fR\fI\s-1YY\s0\fR\fB.\fR\fIZ\fR, where \fIX\fR is a major version, \fI\s-1YY\s0\fR is the minor version, and \&\fIZ\fR is compatibility code. Example values are \fBv3.00.a\fR, --- 14892,14898 ---- This option is deprecated. Use \fB\-fno\-zero\-initialized\-in\-bss\fR instead. .IP "\fB\-mcpu=\fR\fIcpu-type\fR" 4 .IX Item "-mcpu=cpu-type" ! Use features of, and schedule code for, the given \s-1CPU.\s0 Supported values are in the format \fBv\fR\fIX\fR\fB.\fR\fI\s-1YY\s0\fR\fB.\fR\fIZ\fR, where \fIX\fR is a major version, \fI\s-1YY\s0\fR is the minor version, and \&\fIZ\fR is compatibility code. Example values are \fBv3.00.a\fR, *************** configurations. *** 14964,14970 **** .IP "\fB\-march=\fR\fIarch\fR" 4 .IX Item "-march=arch" Generate code that runs on \fIarch\fR, which can be the name of a ! generic \s-1MIPS\s0 \s-1ISA\s0, or the name of a particular processor. The \s-1ISA\s0 names are: \&\fBmips1\fR, \fBmips2\fR, \fBmips3\fR, \fBmips4\fR, \&\fBmips32\fR, \fBmips32r2\fR, \fBmips64\fR and \fBmips64r2\fR. --- 14978,14984 ---- .IP "\fB\-march=\fR\fIarch\fR" 4 .IX Item "-march=arch" Generate code that runs on \fIarch\fR, which can be the name of a ! generic \s-1MIPS ISA,\s0 or the name of a particular processor. The \s-1ISA\s0 names are: \&\fBmips1\fR, \fBmips2\fR, \fBmips3\fR, \fBmips4\fR, \&\fBmips32\fR, \fBmips32r2\fR, \fBmips64\fR and \fBmips64r2\fR. *************** The processor names are: *** 14992,14998 **** \&\fBvr5000\fR, \fBvr5400\fR, \fBvr5500\fR, \&\fBxlr\fR and \fBxlp\fR. The special value \fBfrom-abi\fR selects the ! most compatible architecture for the selected \s-1ABI\s0 (that is, \&\fBmips1\fR for 32\-bit ABIs and \fBmips3\fR for 64\-bit ABIs). .Sp The native Linux/GNU toolchain also supports the value \fBnative\fR, --- 15006,15012 ---- \&\fBvr5000\fR, \fBvr5400\fR, \fBvr5500\fR, \&\fBxlr\fR and \fBxlp\fR. The special value \fBfrom-abi\fR selects the ! most compatible architecture for the selected \s-1ABI \s0(that is, \&\fBmips1\fR for 32\-bit ABIs and \fBmips3\fR for 64\-bit ABIs). .Sp The native Linux/GNU toolchain also supports the value \fBnative\fR, *************** Equivalent to \fB\-march=mips64r2\fR. *** 15073,15079 **** .IX Item "-mno-mips16" .PD Generate (do not generate) \s-1MIPS16\s0 code. If \s-1GCC\s0 is targeting a ! \&\s-1MIPS32\s0 or \s-1MIPS64\s0 architecture, it makes use of the MIPS16e \s-1ASE\s0. .Sp \&\s-1MIPS16\s0 code generation can also be controlled on a per-function basis by means of \f(CW\*(C`mips16\*(C'\fR and \f(CW\*(C`nomips16\*(C'\fR attributes. --- 15087,15093 ---- .IX Item "-mno-mips16" .PD Generate (do not generate) \s-1MIPS16\s0 code. If \s-1GCC\s0 is targeting a ! \&\s-1MIPS32\s0 or \s-1MIPS64\s0 architecture, it makes use of the MIPS16e \s-1ASE.\s0 .Sp \&\s-1MIPS16\s0 code generation can also be controlled on a per-function basis by means of \f(CW\*(C`mips16\*(C'\fR and \f(CW\*(C`nomips16\*(C'\fR attributes. *************** Require (do not require) that non\-MIPS1 *** 15094,15100 **** For example, non\-MIPS16 code cannot jump directly to \s-1MIPS16\s0 code; it must either use a call or an indirect jump. \fB\-minterlink\-mips16\fR therefore disables direct jumps unless \s-1GCC\s0 knows that the target of the ! jump is not \s-1MIPS16\s0. .IP "\fB\-mabi=32\fR" 4 .IX Item "-mabi=32" .PD 0 --- 15108,15114 ---- For example, non\-MIPS16 code cannot jump directly to \s-1MIPS16\s0 code; it must either use a call or an indirect jump. \fB\-minterlink\-mips16\fR therefore disables direct jumps unless \s-1GCC\s0 knows that the target of the ! jump is not \s-1MIPS16.\s0 .IP "\fB\-mabi=32\fR" 4 .IX Item "-mabi=32" .PD 0 *************** jump is not \s-1MIPS16\s0. *** 15107,15119 **** .IP "\fB\-mabi=eabi\fR" 4 .IX Item "-mabi=eabi" .PD ! Generate code for the given \s-1ABI\s0. .Sp Note that the \s-1EABI\s0 has a 32\-bit and a 64\-bit variant. \s-1GCC\s0 normally generates 64\-bit code when you select a 64\-bit architecture, but you can use \fB\-mgp32\fR to get 32\-bit code instead. .Sp ! For information about the O64 \s-1ABI\s0, see <\fBhttp://gcc.gnu.org/projects/mipso64\-abi.html\fR>. .Sp \&\s-1GCC\s0 supports a variant of the o32 \s-1ABI\s0 in which floating-point registers --- 15121,15133 ---- .IP "\fB\-mabi=eabi\fR" 4 .IX Item "-mabi=eabi" .PD ! Generate code for the given \s-1ABI.\s0 .Sp Note that the \s-1EABI\s0 has a 32\-bit and a 64\-bit variant. \s-1GCC\s0 normally generates 64\-bit code when you select a 64\-bit architecture, but you can use \fB\-mgp32\fR to get 32\-bit code instead. .Sp ! For information about the O64 \s-1ABI,\s0 see <\fBhttp://gcc.gnu.org/projects/mipso64\-abi.html\fR>. .Sp \&\s-1GCC\s0 supports a variant of the o32 \s-1ABI\s0 in which floating-point registers *************** executables both smaller and quicker. *** 15169,15175 **** .PD Assume (do not assume) that the static and dynamic linkers support PLTs and copy relocations. This option only affects ! \&\fB\-mno\-shared \-mabicalls\fR. For the n64 \s-1ABI\s0, this option has no effect without \fB\-msym32\fR. .Sp You can make \fB\-mplt\fR the default by configuring --- 15183,15189 ---- .PD Assume (do not assume) that the static and dynamic linkers support PLTs and copy relocations. This option only affects ! \&\fB\-mno\-shared \-mabicalls\fR. For the n64 \s-1ABI,\s0 this option has no effect without \fB\-msym32\fR. .Sp You can make \fB\-mplt\fR the default by configuring *************** You can make \fB\-mplt\fR the default by *** 15184,15190 **** Lift (do not lift) the usual restrictions on the size of the global offset table. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT\s0. While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: --- 15198,15204 ---- Lift (do not lift) the usual restrictions on the size of the global offset table. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT.\s0 While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: *************** configurations; see the installation doc *** 15265,15272 **** .IP "\fB\-mno\-dsp\fR" 4 .IX Item "-mno-dsp" .PD ! Use (do not use) revision 1 of the \s-1MIPS\s0 \s-1DSP\s0 \s-1ASE\s0. ! This option defines the preprocessor macro \fB_\|_mips_dsp\fR. It also defines \&\fB_\|_mips_dsp_rev\fR to 1. .IP "\fB\-mdspr2\fR" 4 --- 15279,15286 ---- .IP "\fB\-mno\-dsp\fR" 4 .IX Item "-mno-dsp" .PD ! Use (do not use) revision 1 of the \s-1MIPS DSP ASE. ! \s0 This option defines the preprocessor macro \fB_\|_mips_dsp\fR. It also defines \&\fB_\|_mips_dsp_rev\fR to 1. .IP "\fB\-mdspr2\fR" 4 *************** preprocessor macro \fB_\|_mips_dsp\fR. *** 15275,15282 **** .IP "\fB\-mno\-dspr2\fR" 4 .IX Item "-mno-dspr2" .PD ! Use (do not use) revision 2 of the \s-1MIPS\s0 \s-1DSP\s0 \s-1ASE\s0. ! This option defines the preprocessor macros \fB_\|_mips_dsp\fR and \fB_\|_mips_dspr2\fR. It also defines \fB_\|_mips_dsp_rev\fR to 2. .IP "\fB\-msmartmips\fR" 4 --- 15289,15296 ---- .IP "\fB\-mno\-dspr2\fR" 4 .IX Item "-mno-dspr2" .PD ! Use (do not use) revision 2 of the \s-1MIPS DSP ASE. ! \s0 This option defines the preprocessor macros \fB_\|_mips_dsp\fR and \fB_\|_mips_dspr2\fR. It also defines \fB_\|_mips_dsp_rev\fR to 2. .IP "\fB\-msmartmips\fR" 4 *************** It also defines \fB_\|_mips_dsp_rev\fR t *** 15285,15291 **** .IP "\fB\-mno\-smartmips\fR" 4 .IX Item "-mno-smartmips" .PD ! Use (do not use) the \s-1MIPS\s0 SmartMIPS \s-1ASE\s0. .IP "\fB\-mpaired\-single\fR" 4 .IX Item "-mpaired-single" .PD 0 --- 15299,15305 ---- .IP "\fB\-mno\-smartmips\fR" 4 .IX Item "-mno-smartmips" .PD ! Use (do not use) the \s-1MIPS\s0 SmartMIPS \s-1ASE.\s0 .IP "\fB\-mpaired\-single\fR" 4 .IX Item "-mpaired-single" .PD 0 *************** hardware floating-point support to be en *** 15310,15316 **** .IP "\fB\-mno\-mips3d\fR" 4 .IX Item "-mno-mips3d" .PD ! Use (do not use) the \s-1MIPS\-3D\s0 \s-1ASE\s0. The option \fB\-mips3d\fR implies \fB\-mpaired\-single\fR. .IP "\fB\-mmt\fR" 4 .IX Item "-mmt" --- 15324,15330 ---- .IP "\fB\-mno\-mips3d\fR" 4 .IX Item "-mno-mips3d" .PD ! Use (do not use) the \s-1MIPS\-3D ASE. \s0 The option \fB\-mips3d\fR implies \fB\-mpaired\-single\fR. .IP "\fB\-mmt\fR" 4 .IX Item "-mmt" *************** Use (do not use) \s-1MT\s0 Multithreadin *** 15325,15331 **** .IP "\fB\-mno\-mcu\fR" 4 .IX Item "-mno-mcu" .PD ! Use (do not use) the \s-1MIPS\s0 \s-1MCU\s0 \s-1ASE\s0 instructions. .IP "\fB\-mlong64\fR" 4 .IX Item "-mlong64" Force \f(CW\*(C`long\*(C'\fR types to be 64 bits wide. See \fB\-mlong32\fR for --- 15339,15345 ---- .IP "\fB\-mno\-mcu\fR" 4 .IX Item "-mno-mcu" .PD ! Use (do not use) the \s-1MIPS MCU ASE\s0 instructions. .IP "\fB\-mlong64\fR" 4 .IX Item "-mlong64" Force \f(CW\*(C`long\*(C'\fR types to be 64 bits wide. See \fB\-mlong32\fR for *************** determined. *** 15336,15342 **** Force \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`int\*(C'\fR, and pointer types to be 32 bits wide. .Sp The default size of \f(CW\*(C`int\*(C'\fRs, \f(CW\*(C`long\*(C'\fRs and pointers depends on ! the \s-1ABI\s0. All the supported ABIs use 32\-bit \f(CW\*(C`int\*(C'\fRs. The n64 \s-1ABI\s0 uses 64\-bit \f(CW\*(C`long\*(C'\fRs, as does the 64\-bit \s-1EABI\s0; the others use 32\-bit \f(CW\*(C`long\*(C'\fRs. Pointers are the same size as \f(CW\*(C`long\*(C'\fRs, or the same size as integer registers, whichever is smaller. --- 15350,15356 ---- Force \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`int\*(C'\fR, and pointer types to be 32 bits wide. .Sp The default size of \f(CW\*(C`int\*(C'\fRs, \f(CW\*(C`long\*(C'\fRs and pointers depends on ! the \s-1ABI. \s0 All the supported ABIs use 32\-bit \f(CW\*(C`int\*(C'\fRs. The n64 \s-1ABI\s0 uses 64\-bit \f(CW\*(C`long\*(C'\fRs, as does the 64\-bit \s-1EABI\s0; the others use 32\-bit \f(CW\*(C`long\*(C'\fRs. Pointers are the same size as \f(CW\*(C`long\*(C'\fRs, or the same size as integer registers, whichever is smaller. *************** or the same size as integer registers, w *** 15347,15353 **** .IX Item "-mno-sym32" .PD Assume (do not assume) that all symbols have 32\-bit values, regardless ! of the selected \s-1ABI\s0. This option is useful in combination with \&\fB\-mabi=64\fR and \fB\-mno\-abicalls\fR because it allows \s-1GCC\s0 to generate shorter and faster references to symbolic addresses. .IP "\fB\-G\fR \fInum\fR" 4 --- 15361,15367 ---- .IX Item "-mno-sym32" .PD Assume (do not assume) that all symbols have 32\-bit values, regardless ! of the selected \s-1ABI. \s0 This option is useful in combination with \&\fB\-mabi=64\fR and \fB\-mno\-abicalls\fR because it allows \s-1GCC\s0 to generate shorter and faster references to symbolic addresses. .IP "\fB\-G\fR \fInum\fR" 4 *************** but other instructions must not do so. *** 15452,15464 **** and 4KSd processors when the code TLBs have the Read Inhibit bit set. It is also useful on processors that can be configured to have a dual instruction/data \s-1SRAM\s0 interface and that, like the M4K, automatically ! redirect PC-relative loads to the instruction \s-1RAM\s0. .IP "\fB\-mcode\-readable=no\fR" 4 .IX Item "-mcode-readable=no" Instructions must not access executable sections. This option can be useful on targets that are configured to have a dual instruction/data \&\s-1SRAM\s0 interface but that (unlike the M4K) do not automatically redirect ! PC-relative loads to the instruction \s-1RAM\s0. .RE .RS 4 .RE --- 15466,15478 ---- and 4KSd processors when the code TLBs have the Read Inhibit bit set. It is also useful on processors that can be configured to have a dual instruction/data \s-1SRAM\s0 interface and that, like the M4K, automatically ! redirect PC-relative loads to the instruction \s-1RAM.\s0 .IP "\fB\-mcode\-readable=no\fR" 4 .IX Item "-mcode-readable=no" Instructions must not access executable sections. This option can be useful on targets that are configured to have a dual instruction/data \&\s-1SRAM\s0 interface but that (unlike the M4K) do not automatically redirect ! PC-relative loads to the instruction \s-1RAM.\s0 .RE .RS 4 .RE *************** The default is \fB\-mcheck\-zero\-divisi *** 15500,15506 **** .PD \&\s-1MIPS\s0 systems check for division by zero by generating either a conditional trap or a break instruction. Using traps results in ! smaller code, but is only supported on \s-1MIPS\s0 \s-1II\s0 and later. Also, some versions of the Linux kernel have a bug that prevents trap from generating the proper signal (\f(CW\*(C`SIGFPE\*(C'\fR). Use \fB\-mdivide\-traps\fR to allow conditional traps on architectures that support them and --- 15514,15520 ---- .PD \&\s-1MIPS\s0 systems check for division by zero by generating either a conditional trap or a break instruction. Using traps results in ! smaller code, but is only supported on \s-1MIPS II\s0 and later. Also, some versions of the Linux kernel have a bug that prevents trap from generating the proper signal (\f(CW\*(C`SIGFPE\*(C'\fR). Use \fB\-mdivide\-traps\fR to allow conditional traps on architectures that support them and *************** This option has no effect on abicalls co *** 15538,15544 **** .IX Item "-mno-mad" .PD Enable (disable) use of the \f(CW\*(C`mad\*(C'\fR, \f(CW\*(C`madu\*(C'\fR and \f(CW\*(C`mul\*(C'\fR ! instructions, as provided by the R4650 \s-1ISA\s0. .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" .PD 0 --- 15552,15558 ---- .IX Item "-mno-mad" .PD Enable (disable) use of the \f(CW\*(C`mad\*(C'\fR, \f(CW\*(C`madu\*(C'\fR and \f(CW\*(C`mul\*(C'\fR ! instructions, as provided by the R4650 \s-1ISA.\s0 .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" .PD 0 *************** assembler files (with a \fB.s\fR suffix) *** 15566,15572 **** .IX Item "-mno-fix-24k" .PD Work around the 24K E48 (lost data on stores during refill) errata. ! The workarounds are implemented by the assembler rather than by \s-1GCC\s0. .IP "\fB\-mfix\-r4000\fR" 4 .IX Item "-mfix-r4000" .PD 0 --- 15580,15586 ---- .IX Item "-mno-fix-24k" .PD Work around the 24K E48 (lost data on stores during refill) errata. ! The workarounds are implemented by the assembler rather than by \s-1GCC.\s0 .IP "\fB\-mfix\-r4000\fR" 4 .IX Item "-mfix-r4000" .PD 0 *************** instructions. These errata are handled *** 15645,15654 **** .RE .IP "\fB\-mfix\-vr4130\fR" 4 .IX Item "-mfix-vr4130" ! Work around the \s-1VR4130\s0 \f(CW\*(C`mflo\*(C'\fR/\f(CW\*(C`mfhi\*(C'\fR errata. The ! workarounds are implemented by the assembler rather than by \s-1GCC\s0, although \s-1GCC\s0 avoids using \f(CW\*(C`mflo\*(C'\fR and \f(CW\*(C`mfhi\*(C'\fR if the ! \&\s-1VR4130\s0 \f(CW\*(C`macc\*(C'\fR, \f(CW\*(C`macchi\*(C'\fR, \f(CW\*(C`dmacc\*(C'\fR and \f(CW\*(C`dmacchi\*(C'\fR instructions are available instead. .IP "\fB\-mfix\-sb1\fR" 4 .IX Item "-mfix-sb1" --- 15659,15668 ---- .RE .IP "\fB\-mfix\-vr4130\fR" 4 .IX Item "-mfix-vr4130" ! Work around the \s-1VR4130 \s0\f(CW\*(C`mflo\*(C'\fR/\f(CW\*(C`mfhi\*(C'\fR errata. The ! workarounds are implemented by the assembler rather than by \s-1GCC,\s0 although \s-1GCC\s0 avoids using \f(CW\*(C`mflo\*(C'\fR and \f(CW\*(C`mfhi\*(C'\fR if the ! \&\s-1VR4130 \s0\f(CW\*(C`macc\*(C'\fR, \f(CW\*(C`macchi\*(C'\fR, \f(CW\*(C`dmacc\*(C'\fR and \f(CW\*(C`dmacchi\*(C'\fR instructions are available instead. .IP "\fB\-mfix\-sb1\fR" 4 .IX Item "-mfix-sb1" *************** instructions are available instead. *** 15656,15662 **** .IP "\fB\-mno\-fix\-sb1\fR" 4 .IX Item "-mno-fix-sb1" .PD ! Work around certain \s-1SB\-1\s0 \s-1CPU\s0 core errata. (This flag currently works around the \s-1SB\-1\s0 revision 2 \&\*(L"F1\*(R" and \*(L"F2\*(R" floating-point errata.) .IP "\fB\-mr10k\-cache\-barrier=\fR\fIsetting\fR" 4 --- 15670,15676 ---- .IP "\fB\-mno\-fix\-sb1\fR" 4 .IX Item "-mno-fix-sb1" .PD ! Work around certain \s-1SB\-1 CPU\s0 core errata. (This flag currently works around the \s-1SB\-1\s0 revision 2 \&\*(L"F1\*(R" and \*(L"F2\*(R" floating-point errata.) .IP "\fB\-mr10k\-cache\-barrier=\fR\fIsetting\fR" 4 *************** Specifies whether \s-1FP\s0 exceptions a *** 15767,15773 **** The default is that \s-1FP\s0 exceptions are enabled. .Sp ! For instance, on the \s-1SB\-1\s0, if \s-1FP\s0 exceptions are disabled, and we are emitting 64\-bit code, then we can use both \s-1FP\s0 pipes. Otherwise, we can only use one \&\s-1FP\s0 pipe. .IP "\fB\-mvr4130\-align\fR" 4 --- 15781,15787 ---- The default is that \s-1FP\s0 exceptions are enabled. .Sp ! For instance, on the \s-1SB\-1,\s0 if \s-1FP\s0 exceptions are disabled, and we are emitting 64\-bit code, then we can use both \s-1FP\s0 pipes. Otherwise, we can only use one \&\s-1FP\s0 pipe. .IP "\fB\-mvr4130\-align\fR" 4 *************** instructions together if the first one i *** 15781,15787 **** option is enabled, \s-1GCC\s0 aligns pairs of instructions that it thinks should execute in parallel. .Sp ! This option only has an effect when optimizing for the \s-1VR4130\s0. It normally makes code faster, but at the expense of making it bigger. It is enabled by default at optimization level \fB\-O3\fR. .IP "\fB\-msynci\fR" 4 --- 15795,15801 ---- option is enabled, \s-1GCC\s0 aligns pairs of instructions that it thinks should execute in parallel. .Sp ! This option only has an effect when optimizing for the \s-1VR4130.\s0 It normally makes code faster, but at the expense of making it bigger. It is enabled by default at optimization level \fB\-O3\fR. .IP "\fB\-msynci\fR" 4 *************** to the \f(CW\*(C`rE\*(C'\fR epsilon regi *** 15870,15876 **** .PD Generate code that passes function parameters and return values that (in the called function) are seen as registers \f(CW$0\fR and up, as opposed to ! the \s-1GNU\s0 \s-1ABI\s0 which uses global registers \f(CW$231\fR and up. .IP "\fB\-mzero\-extend\fR" 4 .IX Item "-mzero-extend" .PD 0 --- 15884,15890 ---- .PD Generate code that passes function parameters and return values that (in the called function) are seen as registers \f(CW$0\fR and up, as opposed to ! the \s-1GNU ABI\s0 which uses global registers \f(CW$231\fR and up. .IP "\fB\-mzero\-extend\fR" 4 .IX Item "-mzero-extend" .PD 0 *************** Do not generate code using features spec *** 15954,15960 **** is the default. .IP "\fB\-mam33\-2\fR" 4 .IX Item "-mam33-2" ! Generate code using features specific to the \s-1AM33/2\s0.0 processor. .IP "\fB\-mam34\fR" 4 .IX Item "-mam34" Generate code using features specific to the \s-1AM34\s0 processor. --- 15968,15974 ---- is the default. .IP "\fB\-mam33\-2\fR" 4 .IX Item "-mam33-2" ! Generate code using features specific to the \s-1AM33/2.0\s0 processor. .IP "\fB\-mam34\fR" 4 .IX Item "-mam34" Generate code using features specific to the \s-1AM34\s0 processor. *************** Return floating-point results in ac0 (fr *** 16034,16046 **** Return floating-point results in memory. This is the default. .IP "\fB\-m40\fR" 4 .IX Item "-m40" ! Generate code for a \s-1PDP\-11/40\s0. .IP "\fB\-m45\fR" 4 .IX Item "-m45" ! Generate code for a \s-1PDP\-11/45\s0. This is the default. .IP "\fB\-m10\fR" 4 .IX Item "-m10" ! Generate code for a \s-1PDP\-11/10\s0. .IP "\fB\-mbcopy\-builtin\fR" 4 .IX Item "-mbcopy-builtin" Use inline \f(CW\*(C`movmemhi\*(C'\fR patterns for copying memory. This is the --- 16048,16060 ---- Return floating-point results in memory. This is the default. .IP "\fB\-m40\fR" 4 .IX Item "-m40" ! Generate code for a \s-1PDP\-11/40.\s0 .IP "\fB\-m45\fR" 4 .IX Item "-m45" ! Generate code for a \s-1PDP\-11/45. \s0 This is the default. .IP "\fB\-m10\fR" 4 .IX Item "-m10" ! Generate code for a \s-1PDP\-11/10.\s0 .IP "\fB\-mbcopy\-builtin\fR" 4 .IX Item "-mbcopy-builtin" Use inline \f(CW\*(C`movmemhi\*(C'\fR patterns for copying memory. This is the *************** for \fIae_type\fR are \fB\s-1ANY\s0\fR, *** 16112,16125 **** generated with this option runs on any of the other \s-1AE\s0 types. The code is not as efficient as it would be if compiled for a specific \&\s-1AE\s0 type, and some types of operation (e.g., multiplication) do not ! work properly on all types of \s-1AE\s0. .Sp ! \&\fB\-mae=MUL\fR selects a \s-1MUL\s0 \s-1AE\s0 type. This is the most useful \s-1AE\s0 type for compiled code, and is the default. .Sp ! \&\fB\-mae=MAC\fR selects a DSP-style \s-1MAC\s0 \s-1AE\s0. Code compiled with this option may suffer from poor performance of byte (char) manipulation, ! since the \s-1DSP\s0 \s-1AE\s0 does not provide hardware support for byte load/stores. .IP "\fB\-msymbol\-as\-address\fR" 4 .IX Item "-msymbol-as-address" Enable the compiler to directly use a symbol name as an address in a --- 16126,16139 ---- generated with this option runs on any of the other \s-1AE\s0 types. The code is not as efficient as it would be if compiled for a specific \&\s-1AE\s0 type, and some types of operation (e.g., multiplication) do not ! work properly on all types of \s-1AE.\s0 .Sp ! \&\fB\-mae=MUL\fR selects a \s-1MUL AE\s0 type. This is the most useful \s-1AE\s0 type for compiled code, and is the default. .Sp ! \&\fB\-mae=MAC\fR selects a DSP-style \s-1MAC AE. \s0 Code compiled with this option may suffer from poor performance of byte (char) manipulation, ! since the \s-1DSP AE\s0 does not provide hardware support for byte load/stores. .IP "\fB\-msymbol\-as\-address\fR" 4 .IX Item "-msymbol-as-address" Enable the compiler to directly use a symbol name as an address in a *************** rather than being permanently enabled. *** 16132,16138 **** .IX Item "-mno-inefficient-warnings" Disables warnings about the generation of inefficient code. These warnings can be generated, for example, when compiling code that ! performs byte-level memory operations on the \s-1MAC\s0 \s-1AE\s0 type. The \s-1MAC\s0 \s-1AE\s0 has no hardware support for byte-level memory operations, so all byte load/stores must be synthesized from word load/store operations. This is inefficient and a warning is generated to indicate --- 16146,16152 ---- .IX Item "-mno-inefficient-warnings" Disables warnings about the generation of inefficient code. These warnings can be generated, for example, when compiling code that ! performs byte-level memory operations on the \s-1MAC AE\s0 type. The \s-1MAC AE\s0 has no hardware support for byte-level memory operations, so all byte load/stores must be synthesized from word load/store operations. This is inefficient and a warning is generated to indicate *************** The \f(CW\*(C`g13\*(C'\fR option is for *** 16165,16174 **** only on the \s-1RL78/G13\s0 targets. The \f(CW\*(C`rl78\*(C'\fR option is for the standard hardware multiplication defined in the \s-1RL78\s0 software manual. .PP ! \fI\s-1IBM\s0 \s-1RS/6000\s0 and PowerPC Options\fR .IX Subsection "IBM RS/6000 and PowerPC Options" .PP ! These \fB\-m\fR options are defined for the \s-1IBM\s0 \s-1RS/6000\s0 and PowerPC: .IP "\fB\-mpowerpc\-gpopt\fR" 4 .IX Item "-mpowerpc-gpopt" .PD 0 --- 16179,16188 ---- only on the \s-1RL78/G13\s0 targets. The \f(CW\*(C`rl78\*(C'\fR option is for the standard hardware multiplication defined in the \s-1RL78\s0 software manual. .PP ! \fI\s-1IBM RS/6000\s0 and PowerPC Options\fR .IX Subsection "IBM RS/6000 and PowerPC Options" .PP ! These \fB\-m\fR options are defined for the \s-1IBM RS/6000\s0 and PowerPC: .IP "\fB\-mpowerpc\-gpopt\fR" 4 .IX Item "-mpowerpc-gpopt" .PD 0 *************** These \fB\-m\fR options are defined for *** 16213,16219 **** .PD You use these options to specify which instructions are available on the processor you are using. The default value of these options is ! determined when configuring \s-1GCC\s0. Specifying the \&\fB\-mcpu=\fR\fIcpu_type\fR overrides the specification of these options. We recommend you use the \fB\-mcpu=\fR\fIcpu_type\fR option rather than the options listed above. --- 16227,16233 ---- .PD You use these options to specify which instructions are available on the processor you are using. The default value of these options is ! determined when configuring \s-1GCC. \s0 Specifying the \&\fB\-mcpu=\fR\fIcpu_type\fR overrides the specification of these options. We recommend you use the \fB\-mcpu=\fR\fIcpu_type\fR option rather than the options listed above. *************** capabilities. If you wish to set an ind *** 16293,16299 **** value, you may specify it after the \fB\-mcpu\fR option, like \&\fB\-mcpu=970 \-mno\-altivec\fR. .Sp ! On \s-1AIX\s0, the \fB\-maltivec\fR and \fB\-mpowerpc64\fR options are not enabled or disabled by the \fB\-mcpu\fR option at present because \&\s-1AIX\s0 does not have full support for these options. You may still enable or disable them individually if you're sure it'll work in your --- 16307,16313 ---- value, you may specify it after the \fB\-mcpu\fR option, like \&\fB\-mcpu=970 \-mno\-altivec\fR. .Sp ! On \s-1AIX,\s0 the \fB\-maltivec\fR and \fB\-mpowerpc64\fR options are not enabled or disabled by the \fB\-mcpu\fR option at present because \&\s-1AIX\s0 does not have full support for these options. You may still enable or disable them individually if you're sure it'll work in your *************** Generate code that allows \fBld\fR and \ *** 16351,16364 **** to build executables and shared libraries with non-executable \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections. This is a PowerPC ! 32\-bit \s-1SYSV\s0 \s-1ABI\s0 option. .IP "\fB\-mbss\-plt\fR" 4 .IX Item "-mbss-plt" ! Generate code that uses a \s-1BSS\s0 \f(CW\*(C`.plt\*(C'\fR section that \fBld.so\fR fills in, and requires \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections that are both writable and executable. ! This is a PowerPC 32\-bit \s-1SYSV\s0 \s-1ABI\s0 option. .IP "\fB\-misel\fR" 4 .IX Item "-misel" .PD 0 --- 16365,16378 ---- to build executables and shared libraries with non-executable \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections. This is a PowerPC ! 32\-bit \s-1SYSV ABI\s0 option. .IP "\fB\-mbss\-plt\fR" 4 .IX Item "-mbss-plt" ! Generate code that uses a \s-1BSS \s0\f(CW\*(C`.plt\*(C'\fR section that \fBld.so\fR fills in, and requires \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections that are both writable and executable. ! This is a PowerPC 32\-bit \s-1SYSV ABI\s0 option. .IP "\fB\-misel\fR" 4 .IX Item "-misel" .PD 0 *************** pointer to 64 bits, and generates code f *** 16441,16452 **** .IP "\fB\-mminimal\-toc\fR" 4 .IX Item "-mminimal-toc" .PD ! Modify generation of the \s-1TOC\s0 (Table Of Contents), which is created for every executable file. The \fB\-mfull\-toc\fR option is selected by default. In that case, \s-1GCC\s0 allocates at least one \s-1TOC\s0 entry for each unique non-automatic variable reference in your program. \s-1GCC\s0 ! also places floating-point constants in the \s-1TOC\s0. However, only ! 16,384 entries are available in the \s-1TOC\s0. .Sp If you receive a linker error message that saying you have overflowed the available \s-1TOC\s0 space, you can reduce the amount of \s-1TOC\s0 space used --- 16455,16466 ---- .IP "\fB\-mminimal\-toc\fR" 4 .IX Item "-mminimal-toc" .PD ! Modify generation of the \s-1TOC \s0(Table Of Contents), which is created for every executable file. The \fB\-mfull\-toc\fR option is selected by default. In that case, \s-1GCC\s0 allocates at least one \s-1TOC\s0 entry for each unique non-automatic variable reference in your program. \s-1GCC\s0 ! also places floating-point constants in the \s-1TOC. \s0 However, only ! 16,384 entries are available in the \s-1TOC.\s0 .Sp If you receive a linker error message that saying you have overflowed the available \s-1TOC\s0 space, you can reduce the amount of \s-1TOC\s0 space used *************** with the \fB\-mno\-fp\-in\-toc\fR and \f *** 16454,16460 **** \&\fB\-mno\-fp\-in\-toc\fR prevents \s-1GCC\s0 from putting floating-point constants in the \s-1TOC\s0 and \fB\-mno\-sum\-in\-toc\fR forces \s-1GCC\s0 to generate code to calculate the sum of an address and a constant at ! run time instead of putting that sum into the \s-1TOC\s0. You may specify one or both of these options. Each causes \s-1GCC\s0 to produce very slightly slower and larger code at the expense of conserving \s-1TOC\s0 space. .Sp --- 16468,16474 ---- \&\fB\-mno\-fp\-in\-toc\fR prevents \s-1GCC\s0 from putting floating-point constants in the \s-1TOC\s0 and \fB\-mno\-sum\-in\-toc\fR forces \s-1GCC\s0 to generate code to calculate the sum of an address and a constant at ! run time instead of putting that sum into the \s-1TOC. \s0 You may specify one or both of these options. Each causes \s-1GCC\s0 to produce very slightly slower and larger code at the expense of conserving \s-1TOC\s0 space. .Sp *************** only on files that contain less frequent *** 16470,16476 **** .IP "\fB\-maix32\fR" 4 .IX Item "-maix32" .PD ! Enable 64\-bit \s-1AIX\s0 \s-1ABI\s0 and calling convention: 64\-bit pointers, 64\-bit \&\f(CW\*(C`long\*(C'\fR type, and the infrastructure needed to support them. Specifying \fB\-maix64\fR implies \fB\-mpowerpc64\fR, while \fB\-maix32\fR disables the 64\-bit \s-1ABI\s0 and --- 16484,16490 ---- .IP "\fB\-maix32\fR" 4 .IX Item "-maix32" .PD ! Enable 64\-bit \s-1AIX ABI\s0 and calling convention: 64\-bit pointers, 64\-bit \&\f(CW\*(C`long\*(C'\fR type, and the infrastructure needed to support them. Specifying \fB\-maix64\fR implies \fB\-mpowerpc64\fR, while \fB\-maix32\fR disables the 64\-bit \s-1ABI\s0 and *************** implies \fB\-mno\-powerpc64\fR. \s-1GCC *** 16481,16488 **** .IP "\fB\-mno\-xl\-compat\fR" 4 .IX Item "-mno-xl-compat" .PD ! Produce code that conforms more closely to \s-1IBM\s0 \s-1XL\s0 compiler semantics ! when using AIX-compatible \s-1ABI\s0. Pass floating-point arguments to prototyped functions beyond the register save area (\s-1RSA\s0) on the stack in addition to argument FPRs. Do not assume that most significant double in 128\-bit long double value is properly rounded when comparing --- 16495,16502 ---- .IP "\fB\-mno\-xl\-compat\fR" 4 .IX Item "-mno-xl-compat" .PD ! Produce code that conforms more closely to \s-1IBM XL\s0 compiler semantics ! when using AIX-compatible \s-1ABI. \s0 Pass floating-point arguments to prototyped functions beyond the register save area (\s-1RSA\s0) on the stack in addition to argument FPRs. Do not assume that most significant double in 128\-bit long double value is properly rounded when comparing *************** support routines. *** 16491,16506 **** .Sp The \s-1AIX\s0 calling convention was extended but not initially documented to handle an obscure K&R C case of calling a function that takes the ! address of its arguments with fewer arguments than declared. \s-1IBM\s0 \s-1XL\s0 compilers access floating-point arguments that do not fit in the \&\s-1RSA\s0 from the stack when a subroutine is compiled without optimization. Because always storing floating-point arguments on the stack is inefficient and rarely needed, this option is not enabled by ! default and only is necessary when calling subroutines compiled by \s-1IBM\s0 ! \&\s-1XL\s0 compilers without optimization. .IP "\fB\-mpe\fR" 4 .IX Item "-mpe" ! Support \fI\s-1IBM\s0 \s-1RS/6000\s0 \s-1SP\s0\fR \fIParallel Environment\fR (\s-1PE\s0). Link an application written to use message passing with special startup code to enable the application to run. The system must have \s-1PE\s0 installed in the standard location (\fI/usr/lpp/ppe.poe/\fR), or the \fIspecs\fR file --- 16505,16520 ---- .Sp The \s-1AIX\s0 calling convention was extended but not initially documented to handle an obscure K&R C case of calling a function that takes the ! address of its arguments with fewer arguments than declared. \s-1IBM XL\s0 compilers access floating-point arguments that do not fit in the \&\s-1RSA\s0 from the stack when a subroutine is compiled without optimization. Because always storing floating-point arguments on the stack is inefficient and rarely needed, this option is not enabled by ! default and only is necessary when calling subroutines compiled by \s-1IBM ! XL\s0 compilers without optimization. .IP "\fB\-mpe\fR" 4 .IX Item "-mpe" ! Support \fI\s-1IBM RS/6000 SP\s0\fR \fIParallel Environment\fR (\s-1PE\s0). Link an application written to use message passing with special startup code to enable the application to run. The system must have \s-1PE\s0 installed in the standard location (\fI/usr/lpp/ppe.poe/\fR), or the \fIspecs\fR file *************** option are incompatible. *** 16514,16524 **** .IP "\fB\-malign\-power\fR" 4 .IX Item "-malign-power" .PD ! On \s-1AIX\s0, 32\-bit Darwin, and 64\-bit PowerPC GNU/Linux, the option \&\fB\-malign\-natural\fR overrides the ABI-defined alignment of larger types, such as floating-point doubles, on their natural size-based boundary. The option \fB\-malign\-power\fR instructs \s-1GCC\s0 to follow the ABI-specified ! alignment rules. \s-1GCC\s0 defaults to the standard alignment defined in the \s-1ABI\s0. .Sp On 64\-bit Darwin, natural alignment is the default, and \fB\-malign\-power\fR is not supported. --- 16528,16538 ---- .IP "\fB\-malign\-power\fR" 4 .IX Item "-malign-power" .PD ! On \s-1AIX,\s0 32\-bit Darwin, and 64\-bit PowerPC GNU/Linux, the option \&\fB\-malign\-natural\fR overrides the ABI-defined alignment of larger types, such as floating-point doubles, on their natural size-based boundary. The option \fB\-malign\-power\fR instructs \s-1GCC\s0 to follow the ABI-specified ! alignment rules. \s-1GCC\s0 defaults to the standard alignment defined in the \s-1ABI.\s0 .Sp On 64\-bit Darwin, natural alignment is the default, and \fB\-malign\-power\fR is not supported. *************** Specify type of floating-point unit. Va *** 16552,16558 **** and \fBdp_full\fR (equivalent to \fB\-mdouble\-float\fR). .IP "\fB\-mxilinx\-fpu\fR" 4 .IX Item "-mxilinx-fpu" ! Perform optimizations for the floating-point unit on Xilinx \s-1PPC\s0 405/440. .IP "\fB\-mmultiple\fR" 4 .IX Item "-mmultiple" .PD 0 --- 16566,16572 ---- and \fBdp_full\fR (equivalent to \fB\-mdouble\-float\fR). .IP "\fB\-mxilinx\-fpu\fR" 4 .IX Item "-mxilinx-fpu" ! Perform optimizations for the floating-point unit on Xilinx \s-1PPC 405/440.\s0 .IP "\fB\-mmultiple\fR" 4 .IX Item "-mmultiple" .PD 0 *************** mapped to \fB\-ffp\-contract=off\fR. *** 16623,16629 **** .IX Item "-mno-mulhw" .PD Generate code that uses (does not use) the half-word multiply and ! multiply-accumulate instructions on the \s-1IBM\s0 405, 440, 464 and 476 processors. These instructions are generated by default when targeting those processors. .IP "\fB\-mdlmzb\fR" 4 --- 16637,16643 ---- .IX Item "-mno-mulhw" .PD Generate code that uses (does not use) the half-word multiply and ! multiply-accumulate instructions on the \s-1IBM 405, 440, 464\s0 and 476 processors. These instructions are generated by default when targeting those processors. .IP "\fB\-mdlmzb\fR" 4 *************** processors. *** 16633,16639 **** .IX Item "-mno-dlmzb" .PD Generate code that uses (does not use) the string-search \fBdlmzb\fR ! instruction on the \s-1IBM\s0 405, 440, 464 and 476 processors. This instruction is generated by default when targeting those processors. .IP "\fB\-mno\-bit\-align\fR" 4 .IX Item "-mno-bit-align" --- 16647,16653 ---- .IX Item "-mno-dlmzb" .PD Generate code that uses (does not use) the string-search \fBdlmzb\fR ! instruction on the \s-1IBM 405, 440, 464\s0 and 476 processors. This instruction is generated by default when targeting those processors. .IP "\fB\-mno\-bit\-align\fR" 4 .IX Item "-mno-bit-align" *************** processor in big-endian mode. The \fB\- *** 16713,16719 **** the same as \fB\-mbig\fR. .IP "\fB\-mdynamic\-no\-pic\fR" 4 .IX Item "-mdynamic-no-pic" ! On Darwin and Mac \s-1OS\s0 X systems, compile code so that it is not relocatable, but that its external references are relocatable. The resulting code is suitable for applications, but not shared libraries. --- 16727,16733 ---- the same as \fB\-mbig\fR. .IP "\fB\-mdynamic\-no\-pic\fR" 4 .IX Item "-mdynamic-no-pic" ! On Darwin and Mac \s-1OS X\s0 systems, compile code so that it is not relocatable, but that its external references are relocatable. The resulting code is suitable for applications, but not shared libraries. *************** On System V.4 and embedded PowerPC syste *** 16819,16829 **** OpenBSD operating system. .IP "\fB\-maix\-struct\-return\fR" 4 .IX Item "-maix-struct-return" ! Return all structures in memory (as specified by the \s-1AIX\s0 \s-1ABI\s0). .IP "\fB\-msvr4\-struct\-return\fR" 4 .IX Item "-msvr4-struct-return" Return structures smaller than 8 bytes in registers (as specified by the ! \&\s-1SVR4\s0 \s-1ABI\s0). .IP "\fB\-mabi=\fR\fIabi-type\fR" 4 .IX Item "-mabi=abi-type" Extend the current \s-1ABI\s0 with a particular extension, or remove such extension. --- 16833,16843 ---- OpenBSD operating system. .IP "\fB\-maix\-struct\-return\fR" 4 .IX Item "-maix-struct-return" ! Return all structures in memory (as specified by the \s-1AIX ABI\s0). .IP "\fB\-msvr4\-struct\-return\fR" 4 .IX Item "-msvr4-struct-return" Return structures smaller than 8 bytes in registers (as specified by the ! \&\s-1SVR4 ABI\s0). .IP "\fB\-mabi=\fR\fIabi-type\fR" 4 .IX Item "-mabi=abi-type" Extend the current \s-1ABI\s0 with a particular extension, or remove such extension. *************** Valid values are \fIaltivec\fR, \fIno-al *** 16831,16846 **** \&\fIno-spe\fR, \fIibmlongdouble\fR, \fIieeelongdouble\fR. .IP "\fB\-mabi=spe\fR" 4 .IX Item "-mabi=spe" ! Extend the current \s-1ABI\s0 with \s-1SPE\s0 \s-1ABI\s0 extensions. This does not change ! the default \s-1ABI\s0, instead it adds the \s-1SPE\s0 \s-1ABI\s0 extensions to the current ! \&\s-1ABI\s0. .IP "\fB\-mabi=no\-spe\fR" 4 .IX Item "-mabi=no-spe" ! Disable Book-E \s-1SPE\s0 \s-1ABI\s0 extensions for the current \s-1ABI\s0. .IP "\fB\-mabi=ibmlongdouble\fR" 4 .IX Item "-mabi=ibmlongdouble" Change the current \s-1ABI\s0 to use \s-1IBM\s0 extended-precision long double. ! This is a PowerPC 32\-bit \s-1SYSV\s0 \s-1ABI\s0 option. .IP "\fB\-mabi=ieeelongdouble\fR" 4 .IX Item "-mabi=ieeelongdouble" Change the current \s-1ABI\s0 to use \s-1IEEE\s0 extended-precision long double. --- 16845,16860 ---- \&\fIno-spe\fR, \fIibmlongdouble\fR, \fIieeelongdouble\fR. .IP "\fB\-mabi=spe\fR" 4 .IX Item "-mabi=spe" ! Extend the current \s-1ABI\s0 with \s-1SPE ABI\s0 extensions. This does not change ! the default \s-1ABI,\s0 instead it adds the \s-1SPE ABI\s0 extensions to the current ! \&\s-1ABI.\s0 .IP "\fB\-mabi=no\-spe\fR" 4 .IX Item "-mabi=no-spe" ! Disable Book-E \s-1SPE ABI\s0 extensions for the current \s-1ABI.\s0 .IP "\fB\-mabi=ibmlongdouble\fR" 4 .IX Item "-mabi=ibmlongdouble" Change the current \s-1ABI\s0 to use \s-1IBM\s0 extended-precision long double. ! This is a PowerPC 32\-bit \s-1SYSV ABI\s0 option. .IP "\fB\-mabi=ieeelongdouble\fR" 4 .IX Item "-mabi=ieeelongdouble" Change the current \s-1ABI\s0 to use \s-1IEEE\s0 extended-precision long double. *************** On Darwin/PPC systems, \f(CW\*(C`#pragma *** 16995,17001 **** callee, L42\*(C'\fR, plus a \fIbranch island\fR (glue code). The two target addresses represent the callee and the branch island. The Darwin/PPC linker prefers the first address and generates a \f(CW\*(C`bl ! callee\*(C'\fR if the \s-1PPC\s0 \f(CW\*(C`bl\*(C'\fR instruction reaches the callee directly; otherwise, the linker generates \f(CW\*(C`bl L42\*(C'\fR to call the branch island. The branch island is appended to the body of the calling function; it computes the full 32\-bit address of the callee --- 17009,17015 ---- callee, L42\*(C'\fR, plus a \fIbranch island\fR (glue code). The two target addresses represent the callee and the branch island. The Darwin/PPC linker prefers the first address and generates a \f(CW\*(C`bl ! callee\*(C'\fR if the \s-1PPC \s0\f(CW\*(C`bl\*(C'\fR instruction reaches the callee directly; otherwise, the linker generates \f(CW\*(C`bl L42\*(C'\fR to call the branch island. The branch island is appended to the body of the calling function; it computes the full 32\-bit address of the callee *************** which handle the double-precision recipr *** 17067,17073 **** .PD Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the PowerPC ! \&\s-1ABI\s0. Selecting \fB\-mcpu=power6\fR, \fB\-mcpu=power7\fR or \&\fB\-mcpu=power8\fR automatically selects \fB\-mrecip\-precision\fR. The double-precision square root estimate instructions are not generated by default on low-precision machines, since they do not provide an --- 17081,17087 ---- .PD Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the PowerPC ! \&\s-1ABI. \s0 Selecting \fB\-mcpu=power6\fR, \fB\-mcpu=power7\fR or \&\fB\-mcpu=power8\fR automatically selects \fB\-mrecip\-precision\fR. The double-precision square root estimate instructions are not generated by default on low-precision machines, since they do not provide an *************** values, however, so the \s-1FPU\s0 hardw *** 17164,17175 **** .Sp \&\fINote\fR If the \fB\-fpu\fR option is enabled then \&\fB\-funsafe\-math\-optimizations\fR is also enabled automatically. ! This is because the \s-1RX\s0 \s-1FPU\s0 instructions are themselves unsafe. .IP "\fB\-mcpu=\fR\fIname\fR" 4 .IX Item "-mcpu=name" ! Selects the type of \s-1RX\s0 \s-1CPU\s0 to be targeted. Currently three types are supported, the generic \fI\s-1RX600\s0\fR and \fI\s-1RX200\s0\fR series hardware and ! the specific \fI\s-1RX610\s0\fR \s-1CPU\s0. The default is \fI\s-1RX600\s0\fR. .Sp The only difference between \fI\s-1RX600\s0\fR and \fI\s-1RX610\s0\fR is that the \&\fI\s-1RX610\s0\fR does not support the \f(CW\*(C`MVTIPL\*(C'\fR instruction. --- 17178,17189 ---- .Sp \&\fINote\fR If the \fB\-fpu\fR option is enabled then \&\fB\-funsafe\-math\-optimizations\fR is also enabled automatically. ! This is because the \s-1RX FPU\s0 instructions are themselves unsafe. .IP "\fB\-mcpu=\fR\fIname\fR" 4 .IX Item "-mcpu=name" ! Selects the type of \s-1RX CPU\s0 to be targeted. Currently three types are supported, the generic \fI\s-1RX600\s0\fR and \fI\s-1RX200\s0\fR series hardware and ! the specific \fI\s-1RX610\s0\fR \s-1CPU. \s0 The default is \fI\s-1RX600\s0\fR. .Sp The only difference between \fI\s-1RX600\s0\fR and \fI\s-1RX610\s0\fR is that the \&\fI\s-1RX610\s0\fR does not support the \f(CW\*(C`MVTIPL\*(C'\fR instruction. *************** type. This is the default. *** 17355,17361 **** Store (do not store) the address of the caller's frame as backchain pointer into the callee's stack frame. A backchain may be needed to allow debugging using tools that do not understand ! \&\s-1DWARF\s0 2 call frame information. When \fB\-mno\-packed\-stack\fR is in effect, the backchain pointer is stored at the bottom of the stack frame; when \fB\-mpacked\-stack\fR is in effect, the backchain is placed into the topmost word of the 96/160 byte register --- 17369,17375 ---- Store (do not store) the address of the caller's frame as backchain pointer into the callee's stack frame. A backchain may be needed to allow debugging using tools that do not understand ! \&\s-1DWARF 2\s0 call frame information. When \fB\-mno\-packed\-stack\fR is in effect, the backchain pointer is stored at the bottom of the stack frame; when \fB\-mpacked\-stack\fR is in effect, the backchain is placed into the topmost word of the 96/160 byte register *************** register is always saved two words below *** 17387,17393 **** .Sp As long as the stack frame backchain is not used, code generated with \&\fB\-mpacked\-stack\fR is call-compatible with code generated with ! \&\fB\-mno\-packed\-stack\fR. Note that some non-FSF releases of \s-1GCC\s0 2.95 for S/390 or zSeries generated code that uses the stack frame backchain at run time, not just for debugging purposes. Such code is not call-compatible with code compiled with \fB\-mpacked\-stack\fR. Also, note that the --- 17401,17407 ---- .Sp As long as the stack frame backchain is not used, code generated with \&\fB\-mpacked\-stack\fR is call-compatible with code generated with ! \&\fB\-mno\-packed\-stack\fR. Note that some non-FSF releases of \s-1GCC 2.95\s0 for S/390 or zSeries generated code that uses the stack frame backchain at run time, not just for debugging purposes. Such code is not call-compatible with code compiled with \fB\-mpacked\-stack\fR. Also, note that the *************** which does not have this limitation. *** 17414,17421 **** .IX Item "-m31" .PD When \fB\-m31\fR is specified, generate code compliant to the ! GNU/Linux for S/390 \s-1ABI\s0. When \fB\-m64\fR is specified, generate ! code compliant to the GNU/Linux for zSeries \s-1ABI\s0. This allows \s-1GCC\s0 in particular to generate 64\-bit instructions. For the \fBs390\fR targets, the default is \fB\-m31\fR, while the \fBs390x\fR targets default to \fB\-m64\fR. --- 17428,17435 ---- .IX Item "-m31" .PD When \fB\-m31\fR is specified, generate code compliant to the ! GNU/Linux for S/390 \s-1ABI. \s0 When \fB\-m64\fR is specified, generate ! code compliant to the GNU/Linux for zSeries \s-1ABI. \s0 This allows \s-1GCC\s0 in particular to generate 64\-bit instructions. For the \fBs390\fR targets, the default is \fB\-m31\fR, while the \fBs390x\fR targets default to \fB\-m64\fR. *************** targets default to \fB\-m64\fR. *** 17428,17438 **** When \fB\-mzarch\fR is specified, generate code using the instructions available on z/Architecture. When \fB\-mesa\fR is specified, generate code using the ! instructions available on \s-1ESA/390\s0. Note that \fB\-mesa\fR is not possible with \fB\-m64\fR. ! When generating code compliant to the GNU/Linux for S/390 \s-1ABI\s0, the default is \fB\-mesa\fR. When generating code compliant ! to the GNU/Linux for zSeries \s-1ABI\s0, the default is \fB\-mzarch\fR. .IP "\fB\-mmvcle\fR" 4 .IX Item "-mmvcle" .PD 0 --- 17442,17452 ---- When \fB\-mzarch\fR is specified, generate code using the instructions available on z/Architecture. When \fB\-mesa\fR is specified, generate code using the ! instructions available on \s-1ESA/390. \s0 Note that \fB\-mesa\fR is not possible with \fB\-m64\fR. ! When generating code compliant to the GNU/Linux for S/390 \s-1ABI,\s0 the default is \fB\-mesa\fR. When generating code compliant ! to the GNU/Linux for zSeries \s-1ABI,\s0 the default is \fB\-mzarch\fR. .IP "\fB\-mmvcle\fR" 4 .IX Item "-mmvcle" .PD 0 *************** The default is the value used for \fB\-m *** 17472,17480 **** .IP "\fB\-mno\-tpf\-trace\fR" 4 .IX Item "-mno-tpf-trace" .PD ! Generate code that adds (does not add) in \s-1TPF\s0 \s-1OS\s0 specific branches to trace routines in the operating system. This option is off by default, even ! when compiling for the \s-1TPF\s0 \s-1OS\s0. .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" .PD 0 --- 17486,17494 ---- .IP "\fB\-mno\-tpf\-trace\fR" 4 .IX Item "-mno-tpf-trace" .PD ! Generate code that adds (does not add) in \s-1TPF OS\s0 specific branches to trace routines in the operating system. This option is off by default, even ! when compiling for the \s-1TPF OS.\s0 .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" .PD 0 *************** Specify the \s-1SCORE7D\s0 as the target *** 17553,17568 **** These \fB\-m\fR options are defined for the \s-1SH\s0 implementations: .IP "\fB\-m1\fR" 4 .IX Item "-m1" ! Generate code for the \s-1SH1\s0. .IP "\fB\-m2\fR" 4 .IX Item "-m2" ! Generate code for the \s-1SH2\s0. .IP "\fB\-m2e\fR" 4 .IX Item "-m2e" Generate code for the SH2e. .IP "\fB\-m2a\-nofpu\fR" 4 .IX Item "-m2a-nofpu" ! Generate code for the SH2a without \s-1FPU\s0, or for a SH2a\-FPU in such a way that the floating-point unit is not used. .IP "\fB\-m2a\-single\-only\fR" 4 .IX Item "-m2a-single-only" --- 17567,17582 ---- These \fB\-m\fR options are defined for the \s-1SH\s0 implementations: .IP "\fB\-m1\fR" 4 .IX Item "-m1" ! Generate code for the \s-1SH1.\s0 .IP "\fB\-m2\fR" 4 .IX Item "-m2" ! Generate code for the \s-1SH2.\s0 .IP "\fB\-m2e\fR" 4 .IX Item "-m2e" Generate code for the SH2e. .IP "\fB\-m2a\-nofpu\fR" 4 .IX Item "-m2a-nofpu" ! Generate code for the SH2a without \s-1FPU,\s0 or for a SH2a\-FPU in such a way that the floating-point unit is not used. .IP "\fB\-m2a\-single\-only\fR" 4 .IX Item "-m2a-single-only" *************** Generate code for the SH2a\-FPU assuming *** 17578,17584 **** double-precision mode by default. .IP "\fB\-m3\fR" 4 .IX Item "-m3" ! Generate code for the \s-1SH3\s0. .IP "\fB\-m3e\fR" 4 .IX Item "-m3e" Generate code for the SH3e. --- 17592,17598 ---- double-precision mode by default. .IP "\fB\-m3\fR" 4 .IX Item "-m3" ! Generate code for the \s-1SH3.\s0 .IP "\fB\-m3e\fR" 4 .IX Item "-m3e" Generate code for the SH3e. *************** Generate code for the \s-1SH4\s0 assumin *** 17595,17601 **** single-precision mode by default. .IP "\fB\-m4\fR" 4 .IX Item "-m4" ! Generate code for the \s-1SH4\s0. .IP "\fB\-m4a\-nofpu\fR" 4 .IX Item "-m4a-nofpu" Generate code for the SH4al\-dsp, or for a SH4a in such a way that the --- 17609,17615 ---- single-precision mode by default. .IP "\fB\-m4\fR" 4 .IX Item "-m4" ! Generate code for the \s-1SH4.\s0 .IP "\fB\-m4a\-nofpu\fR" 4 .IX Item "-m4a-nofpu" Generate code for the SH4al\-dsp, or for a SH4a in such a way that the *************** Use 32\-bit offsets in \f(CW\*(C`switch\ *** 17637,17643 **** 16\-bit offsets. .IP "\fB\-mbitops\fR" 4 .IX Item "-mbitops" ! Enable the use of bit manipulation instructions on \s-1SH2A\s0. .IP "\fB\-mfmovd\fR" 4 .IX Item "-mfmovd" Enable the use of the instruction \f(CW\*(C`fmovd\*(C'\fR. Check \fB\-mdalign\fR for --- 17651,17657 ---- 16\-bit offsets. .IP "\fB\-mbitops\fR" 4 .IX Item "-mbitops" ! Enable the use of bit manipulation instructions on \s-1SH2A.\s0 .IP "\fB\-mfmovd\fR" 4 .IX Item "-mfmovd" Enable the use of the instruction \f(CW\*(C`fmovd\*(C'\fR. Check \fB\-mdalign\fR for *************** Dump instruction size and location in th *** 17687,17693 **** .IP "\fB\-mpadstruct\fR" 4 .IX Item "-mpadstruct" This option is deprecated. It pads structures to multiple of 4 bytes, ! which is incompatible with the \s-1SH\s0 \s-1ABI\s0. .IP "\fB\-matomic\-model=\fR\fImodel\fR" 4 .IX Item "-matomic-model=model" Sets the model of atomic operations and additional parameters as a comma --- 17701,17707 ---- .IP "\fB\-mpadstruct\fR" 4 .IX Item "-mpadstruct" This option is deprecated. It pads structures to multiple of 4 bytes, ! which is incompatible with the \s-1SH ABI.\s0 .IP "\fB\-matomic\-model=\fR\fImodel\fR" 4 .IX Item "-matomic-model=model" Sets the model of atomic operations and additional parameters as a comma *************** Generate GNU/Linux compatible gUSA softw *** 17704,17710 **** built-in functions. The generated atomic sequences require additional support from the interrupt/exception handling code of the system and are only suitable for SH3* and SH4* single-core systems. This option is enabled by default when ! the target is \f(CW\*(C`sh\-*\-linux*\*(C'\fR and SH3* or SH4*. When the target is \s-1SH4A\s0, this option will also partially utilize the hardware atomic instructions \&\f(CW\*(C`movli.l\*(C'\fR and \f(CW\*(C`movco.l\*(C'\fR to create more efficient code, unless \&\fBstrict\fR is specified. --- 17718,17724 ---- built-in functions. The generated atomic sequences require additional support from the interrupt/exception handling code of the system and are only suitable for SH3* and SH4* single-core systems. This option is enabled by default when ! the target is \f(CW\*(C`sh\-*\-linux*\*(C'\fR and SH3* or SH4*. When the target is \s-1SH4A,\s0 this option will also partially utilize the hardware atomic instructions \&\f(CW\*(C`movli.l\*(C'\fR and \f(CW\*(C`movco.l\*(C'\fR to create more efficient code, unless \&\fBstrict\fR is specified. *************** For targets other than SHmedia \fIstrate *** 17845,17864 **** .IX Item "call-div1" Calls a library function that uses the single-step division instruction \&\f(CW\*(C`div1\*(C'\fR to perform the operation. Division by zero calculates an ! unspecified result and does not trap. This is the default except for \s-1SH4\s0, ! \&\s-1SH2A\s0 and SHcompact. .IP "\fBcall-fp\fR" 4 .IX Item "call-fp" Calls a library function that performs the operation in double precision floating point. Division by zero causes a floating-point exception. This is ! the default for SHcompact with \s-1FPU\s0. Specifying this for targets that do not have a double precision \s-1FPU\s0 will default to \f(CW\*(C`call\-div1\*(C'\fR. .IP "\fBcall-table\fR" 4 .IX Item "call-table" Calls a library function that uses a lookup table for small divisors and the \f(CW\*(C`div1\*(C'\fR instruction with case distinction for larger divisors. Division by zero calculates an unspecified result and does not trap. This is the default ! for \s-1SH4\s0. Specifying this for targets that do not have dynamic shift instructions will default to \f(CW\*(C`call\-div1\*(C'\fR. .RE .RS 4 --- 17859,17878 ---- .IX Item "call-div1" Calls a library function that uses the single-step division instruction \&\f(CW\*(C`div1\*(C'\fR to perform the operation. Division by zero calculates an ! unspecified result and does not trap. This is the default except for \s-1SH4, ! SH2A\s0 and SHcompact. .IP "\fBcall-fp\fR" 4 .IX Item "call-fp" Calls a library function that performs the operation in double precision floating point. Division by zero causes a floating-point exception. This is ! the default for SHcompact with \s-1FPU. \s0 Specifying this for targets that do not have a double precision \s-1FPU\s0 will default to \f(CW\*(C`call\-div1\*(C'\fR. .IP "\fBcall-table\fR" 4 .IX Item "call-table" Calls a library function that uses a lookup table for small divisors and the \f(CW\*(C`div1\*(C'\fR instruction with case distinction for larger divisors. Division by zero calculates an unspecified result and does not trap. This is the default ! for \s-1SH4. \s0 Specifying this for targets that do not have dynamic shift instructions will default to \f(CW\*(C`call\-div1\*(C'\fR. .RE .RS 4 *************** specified separated by a comma. *** 17892,17901 **** Enable the use of the indexed addressing mode for SHmedia32/SHcompact. This is only safe if the hardware and/or \s-1OS\s0 implement 32\-bit wrap-around semantics for the indexed addressing mode. The architecture allows the ! implementation of processors with 64\-bit \s-1MMU\s0, which the \s-1OS\s0 could use to get 32\-bit addressing, but since no current hardware implementation supports this or any other way to make the indexed addressing mode safe to use in ! the 32\-bit \s-1ABI\s0, the default is \fB\-mno\-indexed\-addressing\fR. .IP "\fB\-mgettrcost=\fR\fInumber\fR" 4 .IX Item "-mgettrcost=number" Set the cost assumed for the \f(CW\*(C`gettr\*(C'\fR instruction to \fInumber\fR. --- 17906,17915 ---- Enable the use of the indexed addressing mode for SHmedia32/SHcompact. This is only safe if the hardware and/or \s-1OS\s0 implement 32\-bit wrap-around semantics for the indexed addressing mode. The architecture allows the ! implementation of processors with 64\-bit \s-1MMU,\s0 which the \s-1OS\s0 could use to get 32\-bit addressing, but since no current hardware implementation supports this or any other way to make the indexed addressing mode safe to use in ! the 32\-bit \s-1ABI,\s0 the default is \fB\-mno\-indexed\-addressing\fR. .IP "\fB\-mgettrcost=\fR\fInumber\fR" 4 .IX Item "-mgettrcost=number" Set the cost assumed for the \f(CW\*(C`gettr\*(C'\fR instruction to \fInumber\fR. *************** the compiler are always valid to load wi *** 17932,17938 **** but with assembler and/or linker tricks it is possible to generate symbols that cause \f(CW\*(C`ptabs\*(C'\fR or \f(CW\*(C`ptrel\*(C'\fR to trap. This option is only meaningful when \fB\-mno\-pt\-fixed\fR is in effect. ! It prevents cross-basic-block \s-1CSE\s0, hoisting and most scheduling of symbol loads. The default is \fB\-mno\-invalid\-symbols\fR. .IP "\fB\-mbranch\-cost=\fR\fInum\fR" 4 .IX Item "-mbranch-cost=num" --- 17946,17952 ---- but with assembler and/or linker tricks it is possible to generate symbols that cause \f(CW\*(C`ptabs\*(C'\fR or \f(CW\*(C`ptrel\*(C'\fR to trap. This option is only meaningful when \fB\-mno\-pt\-fixed\fR is in effect. ! It prevents cross-basic-block \s-1CSE,\s0 hoisting and most scheduling of symbol loads. The default is \fB\-mno\-invalid\-symbols\fR. .IP "\fB\-mbranch\-cost=\fR\fInum\fR" 4 .IX Item "-mbranch-cost=num" *************** is being compiled for. *** 17949,17955 **** Assume (do not assume) that zero displacement conditional branch instructions \&\f(CW\*(C`bt\*(C'\fR and \f(CW\*(C`bf\*(C'\fR are fast. If \fB\-mzdcbranch\fR is specified, the compiler will try to prefer zero displacement branch code sequences. This is ! enabled by default when generating code for \s-1SH4\s0 and \s-1SH4A\s0. It can be explicitly disabled by specifying \fB\-mno\-zdcbranch\fR. .IP "\fB\-mcbranchdi\fR" 4 .IX Item "-mcbranchdi" --- 17963,17969 ---- Assume (do not assume) that zero displacement conditional branch instructions \&\f(CW\*(C`bt\*(C'\fR and \f(CW\*(C`bf\*(C'\fR are fast. If \fB\-mzdcbranch\fR is specified, the compiler will try to prefer zero displacement branch code sequences. This is ! enabled by default when generating code for \s-1SH4\s0 and \s-1SH4A. \s0 It can be explicitly disabled by specifying \fB\-mno\-zdcbranch\fR. .IP "\fB\-mcbranchdi\fR" 4 .IX Item "-mcbranchdi" *************** mapped to \fB\-ffp\-contract=off\fR. *** 17979,17985 **** Allow or disallow the compiler to emit the \f(CW\*(C`fsca\*(C'\fR instruction for sine and cosine approximations. The option \f(CW\*(C`\-mfsca\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR. It is enabled by default ! when generating code for \s-1SH4A\s0. Using \f(CW\*(C`\-mno\-fsca\*(C'\fR disables sine and cosine approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR is in effect. .IP "\fB\-mfsrra\fR" 4 .IX Item "-mfsrra" --- 17993,17999 ---- Allow or disallow the compiler to emit the \f(CW\*(C`fsca\*(C'\fR instruction for sine and cosine approximations. The option \f(CW\*(C`\-mfsca\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR. It is enabled by default ! when generating code for \s-1SH4A. \s0 Using \f(CW\*(C`\-mno\-fsca\*(C'\fR disables sine and cosine approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR is in effect. .IP "\fB\-mfsrra\fR" 4 .IX Item "-mfsrra" *************** Allow or disallow the compiler to emit t *** 17991,17997 **** reciprocal square root approximations. The option \f(CW\*(C`\-mfsrra\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \&\f(CW\*(C`\-ffinite\-math\-only\*(C'\fR. It is enabled by default when generating code for ! \&\s-1SH4A\s0. Using \f(CW\*(C`\-mno\-fsrra\*(C'\fR disables reciprocal square root approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \f(CW\*(C`\-ffinite\-math\-only\*(C'\fR are in effect. .IP "\fB\-mpretend\-cmove\fR" 4 --- 18005,18011 ---- reciprocal square root approximations. The option \f(CW\*(C`\-mfsrra\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \&\f(CW\*(C`\-ffinite\-math\-only\*(C'\fR. It is enabled by default when generating code for ! \&\s-1SH4A. \s0 Using \f(CW\*(C`\-mno\-fsrra\*(C'\fR disables reciprocal square root approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \f(CW\*(C`\-ffinite\-math\-only\*(C'\fR are in effect. .IP "\fB\-mpretend\-cmove\fR" 4 *************** These \fB\-m\fR options are supported on *** 18039,18045 **** .IX Item "-mapp-regs" .PD Specify \fB\-mapp\-regs\fR to generate output using the global registers ! 2 through 4, which the \s-1SPARC\s0 \s-1SVR4\s0 \s-1ABI\s0 reserves for applications. This is the default. .Sp To be fully \s-1SVR4\s0 ABI-compliant at the cost of some performance loss, --- 18053,18059 ---- .IX Item "-mapp-regs" .PD Specify \fB\-mapp\-regs\fR to generate output using the global registers ! 2 through 4, which the \s-1SPARC SVR4 ABI\s0 reserves for applications. This is the default. .Sp To be fully \s-1SVR4\s0 ABI-compliant at the cost of some performance loss, *************** cross-compilation. The embedded targets *** 18084,18090 **** \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC\s0, with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-mhard\-quad\-float\fR" 4 .IX Item "-mhard-quad-float" --- 18098,18104 ---- \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC,\s0 with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-mhard\-quad\-float\fR" 4 .IX Item "-mhard-quad-float" *************** instructions. *** 18094,18100 **** .IX Item "-msoft-quad-float" Generate output containing library calls for quad-word (long double) floating-point instructions. The functions called are those specified ! in the \s-1SPARC\s0 \s-1ABI\s0. This is the default. .Sp As of this writing, there are no \s-1SPARC\s0 implementations that have hardware support for the quad-word floating-point instructions. They all invoke --- 18108,18114 ---- .IX Item "-msoft-quad-float" Generate output containing library calls for quad-word (long double) floating-point instructions. The functions called are those specified ! in the \s-1SPARC ABI. \s0 This is the default. .Sp As of this writing, there are no \s-1SPARC\s0 implementations that have hardware support for the quad-word floating-point instructions. They all invoke *************** With \fB\-mfaster\-structs\fR, the compi *** 18126,18135 **** should have 8\-byte alignment. This enables the use of pairs of \&\f(CW\*(C`ldd\*(C'\fR and \f(CW\*(C`std\*(C'\fR instructions for copies in structure assignment, in place of twice as many \f(CW\*(C`ld\*(C'\fR and \f(CW\*(C`st\*(C'\fR pairs. ! However, the use of this changed alignment directly violates the \s-1SPARC\s0 ! \&\s-1ABI\s0. Thus, it's intended only for use on targets where the developer acknowledges that their resulting code is not directly in line with ! the rules of the \s-1ABI\s0. .IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4 .IX Item "-mcpu=cpu_type" Set the instruction set, register set, and instruction scheduling parameters --- 18140,18149 ---- should have 8\-byte alignment. This enables the use of pairs of \&\f(CW\*(C`ldd\*(C'\fR and \f(CW\*(C`std\*(C'\fR instructions for copies in structure assignment, in place of twice as many \f(CW\*(C`ld\*(C'\fR and \f(CW\*(C`st\*(C'\fR pairs. ! However, the use of this changed alignment directly violates the \s-1SPARC ! ABI. \s0 Thus, it's intended only for use on targets where the developer acknowledges that their resulting code is not directly in line with ! the rules of the \s-1ABI.\s0 .IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4 .IX Item "-mcpu=cpu_type" Set the instruction set, register set, and instruction scheduling parameters *************** SPARCStation 1, 2, \s-1IPX\s0 etc. *** 18179,18200 **** With \fB\-mcpu=v8\fR, \s-1GCC\s0 generates code for the V8 variant of the \s-1SPARC\s0 architecture. The only difference from V7 code is that the compiler emits the integer multiply and integer divide instructions which exist in \s-1SPARC\-V8\s0 ! but not in \s-1SPARC\-V7\s0. With \fB\-mcpu=supersparc\fR, the compiler additionally optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series. .Sp With \fB\-mcpu=sparclite\fR, \s-1GCC\s0 generates code for the SPARClite variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, integer divide step ! and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClite but not in \s-1SPARC\-V7\s0. With \fB\-mcpu=f930\fR, the compiler additionally optimizes it for the ! Fujitsu \s-1MB86930\s0 chip, which is the original SPARClite, with no \s-1FPU\s0. With \&\fB\-mcpu=f934\fR, the compiler additionally optimizes it for the Fujitsu ! \&\s-1MB86934\s0 chip, which is the more recent SPARClite with \s-1FPU\s0. .Sp With \fB\-mcpu=sparclet\fR, \s-1GCC\s0 generates code for the SPARClet variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, multiply/accumulate, integer divide step and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClet ! but not in \s-1SPARC\-V7\s0. With \fB\-mcpu=tsc701\fR, the compiler additionally optimizes it for the \s-1TEMIC\s0 SPARClet chip. .Sp With \fB\-mcpu=v9\fR, \s-1GCC\s0 generates code for the V9 variant of the \s-1SPARC\s0 --- 18193,18214 ---- With \fB\-mcpu=v8\fR, \s-1GCC\s0 generates code for the V8 variant of the \s-1SPARC\s0 architecture. The only difference from V7 code is that the compiler emits the integer multiply and integer divide instructions which exist in \s-1SPARC\-V8\s0 ! but not in \s-1SPARC\-V7. \s0 With \fB\-mcpu=supersparc\fR, the compiler additionally optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series. .Sp With \fB\-mcpu=sparclite\fR, \s-1GCC\s0 generates code for the SPARClite variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, integer divide step ! and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClite but not in \s-1SPARC\-V7.\s0 With \fB\-mcpu=f930\fR, the compiler additionally optimizes it for the ! Fujitsu \s-1MB86930\s0 chip, which is the original SPARClite, with no \s-1FPU. \s0 With \&\fB\-mcpu=f934\fR, the compiler additionally optimizes it for the Fujitsu ! \&\s-1MB86934\s0 chip, which is the more recent SPARClite with \s-1FPU.\s0 .Sp With \fB\-mcpu=sparclet\fR, \s-1GCC\s0 generates code for the SPARClet variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, multiply/accumulate, integer divide step and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClet ! but not in \s-1SPARC\-V7. \s0 With \fB\-mcpu=tsc701\fR, the compiler additionally optimizes it for the \s-1TEMIC\s0 SPARClet chip. .Sp With \fB\-mcpu=v9\fR, \s-1GCC\s0 generates code for the V9 variant of the \s-1SPARC\s0 *************** native Solaris and GNU/Linux toolchains, *** 18230,18236 **** .IP "\fB\-mno\-v8plus\fR" 4 .IX Item "-mno-v8plus" .PD ! With \fB\-mv8plus\fR, \s-1GCC\s0 generates code for the \s-1SPARC\-V8+\s0 \s-1ABI\s0. The difference from the V8 \s-1ABI\s0 is that the global and out registers are considered 64 bits wide. This is enabled by default on Solaris in 32\-bit mode for all \s-1SPARC\-V9\s0 processors. --- 18244,18250 ---- .IP "\fB\-mno\-v8plus\fR" 4 .IX Item "-mno-v8plus" .PD ! With \fB\-mv8plus\fR, \s-1GCC\s0 generates code for the \s-1SPARC\-V8+ ABI. \s0 The difference from the V8 \s-1ABI\s0 is that the global and out registers are considered 64 bits wide. This is enabled by default on Solaris in 32\-bit mode for all \s-1SPARC\-V9\s0 processors. *************** This option suppresses generation of the *** 18674,18682 **** v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture. .Sp ! This option is enabled by default when the \s-1RH850\s0 \s-1ABI\s0 is in use (see \fB\-mrh850\-abi\fR), and disabled by default when the ! \&\s-1GCC\s0 \s-1ABI\s0 is in use. If \f(CW\*(C`CALLT\*(C'\fR instructions are being generated then the C preprocessor symbol \f(CW\*(C`_\|_V850_CALLT_\|_\*(C'\fR will be defined. .IP "\fB\-mrelax\fR" 4 .IX Item "-mrelax" --- 18688,18696 ---- v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture. .Sp ! This option is enabled by default when the \s-1RH850 ABI\s0 is in use (see \fB\-mrh850\-abi\fR), and disabled by default when the ! \&\s-1GCC ABI\s0 is in use. If \f(CW\*(C`CALLT\*(C'\fR instructions are being generated then the C preprocessor symbol \f(CW\*(C`_\|_V850_CALLT_\|_\*(C'\fR will be defined. .IP "\fB\-mrelax\fR" 4 .IX Item "-mrelax" *************** selected because its use is still experi *** 18716,18722 **** .IP "\fB\-mghs\fR" 4 .IX Item "-mghs" .PD ! Enables support for the \s-1RH850\s0 version of the V850 \s-1ABI\s0. This is the default. With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 --- 18730,18736 ---- .IP "\fB\-mghs\fR" 4 .IX Item "-mghs" .PD ! Enables support for the \s-1RH850\s0 version of the V850 \s-1ABI. \s0 This is the default. With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 *************** When this version of the \s-1ABI\s0 is e *** 18741,18747 **** .RE .IP "\fB\-mgcc\-abi\fR" 4 .IX Item "-mgcc-abi" ! Enables support for the old \s-1GCC\s0 version of the V850 \s-1ABI\s0. With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 --- 18755,18761 ---- .RE .IP "\fB\-mgcc\-abi\fR" 4 .IX Item "-mgcc-abi" ! Enables support for the old \s-1GCC\s0 version of the V850 \s-1ABI. \s0 With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 *************** kernel code. *** 18931,18937 **** Control the treatment of literal pools. The default is \&\fB\-mno\-text\-section\-literals\fR, which places literals in a separate section in the output file. This allows the literal pool to be placed ! in a data \s-1RAM/ROM\s0, and it also allows the linker to combine literal pools from separate object files to remove redundant literals and improve code size. With \fB\-mtext\-section\-literals\fR, the literals are interspersed in the text section in order to keep them as close as --- 18945,18951 ---- Control the treatment of literal pools. The default is \&\fB\-mno\-text\-section\-literals\fR, which places literals in a separate section in the output file. This allows the literal pool to be placed ! in a data \s-1RAM/ROM,\s0 and it also allows the linker to combine literal pools from separate object files to remove redundant literals and improve code size. With \fB\-mtext\-section\-literals\fR, the literals are interspersed in the text section in order to keep them as close as *************** You normally do not need to enable this *** 19116,19122 **** that needs this handling enables it on your behalf. .IP "\fB\-fasynchronous\-unwind\-tables\fR" 4 .IX Item "-fasynchronous-unwind-tables" ! Generate unwind table in \s-1DWARF\s0 2 format, if supported by target machine. The table is exact at each instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debugger or garbage collector). .IP "\fB\-fpcc\-struct\-return\fR" 4 --- 19130,19136 ---- that needs this handling enables it on your behalf. .IP "\fB\-fasynchronous\-unwind\-tables\fR" 4 .IX Item "-fasynchronous-unwind-tables" ! Generate unwind table in \s-1DWARF 2\s0 format, if supported by target machine. The table is exact at each instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debugger or garbage collector). .IP "\fB\-fpcc\-struct\-return\fR" 4 *************** Use it to conform to a non-default appli *** 19174,19180 **** .IX Item "-fshort-wchar" Override the underlying type for \fBwchar_t\fR to be \fBshort unsigned int\fR instead of the default for the target. This option is ! useful for building programs to run under \s-1WINE\s0. .Sp \&\fBWarning:\fR the \fB\-fshort\-wchar\fR switch causes \s-1GCC\s0 to generate code that is not binary compatible with code generated without that switch. --- 19188,19194 ---- .IX Item "-fshort-wchar" Override the underlying type for \fBwchar_t\fR to be \fBshort unsigned int\fR instead of the default for the target. This option is ! useful for building programs to run under \s-1WINE.\s0 .Sp \&\fBWarning:\fR the \fB\-fshort\-wchar\fR switch causes \s-1GCC\s0 to generate code that is not binary compatible with code generated without that switch. *************** such variables in different compilation *** 19187,19193 **** in a common block. This is the behavior specified by \fB\-fcommon\fR, and is the default for \s-1GCC\s0 on most targets. ! On the other hand, this behavior is not required by \s-1ISO\s0 C, and on some targets may carry a speed or code size penalty on variable references. The \fB\-fno\-common\fR option specifies that the compiler should place uninitialized global variables in the data section of the object file, --- 19201,19207 ---- in a common block. This is the behavior specified by \fB\-fcommon\fR, and is the default for \s-1GCC\s0 on most targets. ! On the other hand, this behavior is not required by \s-1ISO C,\s0 and on some targets may carry a speed or code size penalty on variable references. The \fB\-fno\-common\fR option specifies that the compiler should place uninitialized global variables in the data section of the object file, *************** the \s-1GOT\s0 size for the linked execu *** 19243,19253 **** maximum size, you get an error message from the linker indicating that \&\fB\-fpic\fR does not work; in that case, recompile with \fB\-fPIC\fR instead. (These maximums are 8k on the \s-1SPARC\s0 and 32k ! on the m68k and \s-1RS/6000\s0. The 386 has no such limit.) .Sp Position-independent code requires special support, and therefore works only on certain machines. For the 386, \s-1GCC\s0 supports \s-1PIC\s0 for System V ! but not for the Sun 386i. Code generated for the \s-1IBM\s0 \s-1RS/6000\s0 is always position-independent. .Sp When this flag is set, the macros \f(CW\*(C`_\|_pic_\|_\*(C'\fR and \f(CW\*(C`_\|_PIC_\|_\*(C'\fR --- 19257,19267 ---- maximum size, you get an error message from the linker indicating that \&\fB\-fpic\fR does not work; in that case, recompile with \fB\-fPIC\fR instead. (These maximums are 8k on the \s-1SPARC\s0 and 32k ! on the m68k and \s-1RS/6000. \s0 The 386 has no such limit.) .Sp Position-independent code requires special support, and therefore works only on certain machines. For the 386, \s-1GCC\s0 supports \s-1PIC\s0 for System V ! but not for the Sun 386i. Code generated for the \s-1IBM RS/6000\s0 is always position-independent. .Sp When this flag is set, the macros \f(CW\*(C`_\|_pic_\|_\*(C'\fR and \f(CW\*(C`_\|_PIC_\|_\*(C'\fR *************** are defined to 1. *** 19257,19263 **** If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the size of the global offset table. This option makes a difference on the m68k, ! PowerPC and \s-1SPARC\s0. .Sp Position-independent code requires special support, and therefore works only on certain machines. --- 19271,19277 ---- If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the size of the global offset table. This option makes a difference on the m68k, ! PowerPC and \s-1SPARC.\s0 .Sp Position-independent code requires special support, and therefore works only on certain machines. *************** name, such as \f(CW\*(C`vector blah *** 19407,19413 **** internal mangled name (e.g., \f(CW\*(C`_Z4blahRSt6vectorIiSaIiEE\*(C'\fR). The match is done on substrings: if the \fIsym\fR parameter is a substring of the function name, it is considered to be a match. For C99 and \*(C+ ! extended identifiers, the function name must be given in \s-1UTF\-8\s0, not using universal character names. .IP "\fB\-fstack\-check\fR" 4 .IX Item "-fstack-check" --- 19421,19427 ---- internal mangled name (e.g., \f(CW\*(C`_Z4blahRSt6vectorIiSaIiEE\*(C'\fR). The match is done on substrings: if the \fIsym\fR parameter is a substring of the function name, it is considered to be a match. For C99 and \*(C+ ! extended identifiers, the function name must be given in \s-1UTF\-8,\s0 not using universal character names. .IP "\fB\-fstack\-check\fR" 4 .IX Item "-fstack-check" *************** usage so the only other commonly used op *** 19517,19523 **** The default if \fB\-fvisibility\fR isn't specified is \&\f(CW\*(C`default\*(C'\fR, i.e., make every symbol public\-\-\-this causes the same behavior as previous versions of ! \&\s-1GCC\s0. .Sp A good explanation of the benefits offered by ensuring \s-1ELF\s0 symbols have the correct visibility is given by \*(L"How To Write --- 19531,19537 ---- The default if \fB\-fvisibility\fR isn't specified is \&\f(CW\*(C`default\*(C'\fR, i.e., make every symbol public\-\-\-this causes the same behavior as previous versions of ! \&\s-1GCC.\s0 .Sp A good explanation of the benefits offered by ensuring \s-1ELF\s0 symbols have the correct visibility is given by \*(L"How To Write *************** always specify visibility when it is not *** 19542,19548 **** only for use within the local \s-1DSO\s0 should \fBalways\fR be marked explicitly as hidden as so to avoid \s-1PLT\s0 indirection overheads\-\-\-making this abundantly clear also aids readability and self-documentation of the code. ! Note that due to \s-1ISO\s0 \*(C+ specification requirements, \f(CW\*(C`operator new\*(C'\fR and \&\f(CW\*(C`operator delete\*(C'\fR must always be of default visibility. .Sp Be aware that headers from outside your project, in particular system --- 19556,19562 ---- only for use within the local \s-1DSO\s0 should \fBalways\fR be marked explicitly as hidden as so to avoid \s-1PLT\s0 indirection overheads\-\-\-making this abundantly clear also aids readability and self-documentation of the code. ! Note that due to \s-1ISO \*(C+\s0 specification requirements, \f(CW\*(C`operator new\*(C'\fR and \&\f(CW\*(C`operator delete\*(C'\fR must always be of default visibility. .Sp Be aware that headers from outside your project, in particular system *************** before including any such headers. *** 19554,19560 **** \&\fBextern\fR declarations are not affected by \fB\-fvisibility\fR, so a lot of code can be recompiled with \fB\-fvisibility=hidden\fR with no modifications. However, this means that calls to \f(CW\*(C`extern\*(C'\fR ! functions with no explicit visibility use the \s-1PLT\s0, so it is more effective to use \f(CW\*(C`_\|_attribute ((visibility))\*(C'\fR and/or \&\f(CW\*(C`#pragma GCC visibility\*(C'\fR to tell the compiler which \f(CW\*(C`extern\*(C'\fR declarations should be treated as hidden. --- 19568,19574 ---- \&\fBextern\fR declarations are not affected by \fB\-fvisibility\fR, so a lot of code can be recompiled with \fB\-fvisibility=hidden\fR with no modifications. However, this means that calls to \f(CW\*(C`extern\*(C'\fR ! functions with no explicit visibility use the \s-1PLT,\s0 so it is more effective to use \f(CW\*(C`_\|_attribute ((visibility))\*(C'\fR and/or \&\f(CW\*(C`#pragma GCC visibility\*(C'\fR to tell the compiler which \f(CW\*(C`extern\*(C'\fR declarations should be treated as hidden. *************** aspects of the compilation environment. *** 19614,19620 **** Note that you can also specify places to search using options such as \&\fB\-B\fR, \fB\-I\fR and \fB\-L\fR. These take precedence over places specified using environment variables, which ! in turn take precedence over those specified by the configuration of \s-1GCC\s0. .IP "\fB\s-1LANG\s0\fR" 4 .IX Item "LANG" .PD 0 --- 19628,19634 ---- Note that you can also specify places to search using options such as \&\fB\-B\fR, \fB\-I\fR and \fB\-L\fR. These take precedence over places specified using environment variables, which ! in turn take precedence over those specified by the configuration of \s-1GCC.\s0 .IP "\fB\s-1LANG\s0\fR" 4 .IX Item "LANG" .PD 0 *************** national conventions. \s-1GCC\s0 inspec *** 19631,19637 **** \&\fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR if it has been configured to do so. These locale categories can be set to any value supported by your installation. A typical value is \fBen_GB.UTF\-8\fR for English in the United ! Kingdom encoded in \s-1UTF\-8\s0. .Sp The \fB\s-1LC_CTYPE\s0\fR environment variable specifies character classification. \s-1GCC\s0 uses it to determine the character boundaries in --- 19645,19651 ---- \&\fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR if it has been configured to do so. These locale categories can be set to any value supported by your installation. A typical value is \fBen_GB.UTF\-8\fR for English in the United ! Kingdom encoded in \s-1UTF\-8.\s0 .Sp The \fB\s-1LC_CTYPE\s0\fR environment variable specifies character classification. \s-1GCC\s0 uses it to determine the character boundaries in *************** and the Info entries for \fIgcc\fR, \fIc *** 19811,19817 **** .IX Header "AUTHOR" See the Info entry for \fBgcc\fR, or <\fBhttp://gcc.gnu.org/onlinedocs/gcc/Contributors.html\fR>, ! for contributors to \s-1GCC\s0. .SH "COPYRIGHT" .IX Header "COPYRIGHT" Copyright (c) 1988\-2013 Free Software Foundation, Inc. --- 19825,19831 ---- .IX Header "AUTHOR" See the Info entry for \fBgcc\fR, or <\fBhttp://gcc.gnu.org/onlinedocs/gcc/Contributors.html\fR>, ! for contributors to \s-1GCC.\s0 .SH "COPYRIGHT" .IX Header "COPYRIGHT" Copyright (c) 1988\-2013 Free Software Foundation, Inc. diff -Nrcpad gcc-4.8.1/gcc/doc/gcc.info gcc-4.8.2/gcc/doc/gcc.info *** gcc-4.8.1/gcc/doc/gcc.info Fri May 31 09:58:13 2013 --- gcc-4.8.2/gcc/doc/gcc.info Wed Oct 16 08:15:58 2013 *************** *** 1,5 **** ! This is doc/gcc.info, produced by makeinfo version 4.13 from ! /d/gcc-4.8.1/gcc-4.8.1/gcc/doc/gcc.texi. Copyright (C) 1988-2013 Free Software Foundation, Inc. --- 1,4 ---- ! This is gcc.info, produced by makeinfo version 5.1 from gcc.texi. Copyright (C) 1988-2013 Free Software Foundation, Inc. *************** Free Documentation License". *** 17,32 **** (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. ! INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * gcc: (gcc). The GNU Compiler Collection. * g++: (gcc). The GNU C++ compiler. ! * gcov: (gcc) Gcov. `gcov'--a test coverage program. END-INFO-DIR-ENTRY This file documents the use of the GNU compilers. Copyright (C) 1988-2013 Free Software Foundation, Inc. --- 16,31 ---- (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU software. ! Copies published by the Free Software Foundation raise funds for GNU ! development. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * gcc: (gcc). The GNU Compiler Collection. * g++: (gcc). The GNU C++ compiler. ! * gcov: (gcc) Gcov. 'gcov'--a test coverage program. END-INFO-DIR-ENTRY + This file documents the use of the GNU compilers. Copyright (C) 1988-2013 Free Software Foundation, Inc. *************** Free Documentation License". *** 45,54 **** (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. !  File: gcc.info, Node: Top, Next: G++ and GCC, Up: (DIR) --- 44,52 ---- (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU software. ! Copies published by the Free Software Foundation raise funds for GNU ! development.  File: gcc.info, Node: Top, Next: G++ and GCC, Up: (DIR) *************** Introduction *** 58,64 **** This manual documents how to use the GNU compilers, as well as their features and incompatibilities, and how to report bugs. It corresponds ! to the compilers (GCC) version 4.8.1. The internals of the GNU compilers, including how to port them to new targets and some information about how to write front ends for new languages, are documented in a separate manual. *Note Introduction: (gccint)Top. --- 56,62 ---- This manual documents how to use the GNU compilers, as well as their features and incompatibilities, and how to report bugs. It corresponds ! to the compilers (GCC) version 4.8.2. The internals of the GNU compilers, including how to port them to new targets and some information about how to write front ends for new languages, are documented in a separate manual. *Note Introduction: (gccint)Top. *************** documented in a separate manual. *Note *** 67,80 **** * G++ and GCC:: You can compile C or C++ programs. * Standards:: Language standards supported by GCC. ! * Invoking GCC:: Command options supported by `gcc'. * C Implementation:: How GCC implements the ISO C specification. * C++ Implementation:: How GCC implements the ISO C++ specification. * C Extensions:: GNU extensions to the C language family. * C++ Extensions:: GNU extensions to the C++ language. * Objective-C:: GNU Objective-C runtime features. * Compatibility:: Binary Compatibility ! * Gcov:: `gcov'---a test coverage program. * Trouble:: If you have trouble using GCC. * Bugs:: How, why and where to report bugs. * Service:: How to find suppliers of support for GCC. --- 65,78 ---- * G++ and GCC:: You can compile C or C++ programs. * Standards:: Language standards supported by GCC. ! * Invoking GCC:: Command options supported by 'gcc'. * C Implementation:: How GCC implements the ISO C specification. * C++ Implementation:: How GCC implements the ISO C++ specification. * C Extensions:: GNU extensions to the C language family. * C++ Extensions:: GNU extensions to the C++ language. * Objective-C:: GNU Objective-C runtime features. * Compatibility:: Binary Compatibility ! * Gcov:: 'gcov'--a test coverage program. * Trouble:: If you have trouble using GCC. * Bugs:: How, why and where to report bugs. * Service:: How to find suppliers of support for GCC. *************** documented in a separate manual. *Note *** 92,98 **** * Keyword Index:: Index of concepts and symbol names.  ! File: gcc.info, Node: G++ and GCC, Next: Standards, Prev: Top, Up: Top 1 Programming Languages Supported by GCC **************************************** --- 90,96 ---- * Keyword Index:: Index of concepts and symbol names.  ! File: gcc.info, Node: G++ and GCC, Next: Standards, Up: Top 1 Programming Languages Supported by GCC **************************************** *************** published in 1990. This standard was ra *** 155,166 **** (ISO/IEC 9899:1990) later in 1990. There were no technical differences between these publications, although the sections of the ANSI standard were renumbered and became clauses in the ISO standard. This standard, ! in both its forms, is commonly known as "C89", or occasionally as ! "C90", from the dates of ratification. The ANSI standard, but not the ! ISO standard, also came with a Rationale document. To select this ! standard in GCC, use one of the options `-ansi', `-std=c90' or ! `-std=iso9899:1990'; to obtain all the diagnostics required by the ! standard, you should also specify `-pedantic' (or `-pedantic-errors' if you want them to be errors rather than warnings). *Note Options Controlling C Dialect: C Dialect Options. --- 153,164 ---- (ISO/IEC 9899:1990) later in 1990. There were no technical differences between these publications, although the sections of the ANSI standard were renumbered and became clauses in the ISO standard. This standard, ! in both its forms, is commonly known as "C89", or occasionally as "C90", ! from the dates of ratification. The ANSI standard, but not the ISO ! standard, also came with a Rationale document. To select this standard ! in GCC, use one of the options '-ansi', '-std=c90' or ! '-std=iso9899:1990'; to obtain all the diagnostics required by the ! standard, you should also specify '-pedantic' (or '-pedantic-errors' if you want them to be errors rather than warnings). *Note Options Controlling C Dialect: C Dialect Options. *************** Corrigenda published in 1994 and 1996. *** 169,186 **** uncorrected version. An amendment to the 1990 standard was published in 1995. This ! amendment added digraphs and `__STDC_VERSION__' to the language, but otherwise concerned the library. This amendment is commonly known as "AMD1"; the amended standard is sometimes known as "C94" or "C95". To ! select this standard in GCC, use the option `-std=iso9899:199409' ! (with, as for other standard versions, `-pedantic' to receive all ! required diagnostics). A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and is commonly known as "C99". GCC has incomplete support ! for this standard version; see `http://gcc.gnu.org/c99status.html' for ! details. To select this standard, use `-std=c99' or ! `-std=iso9899:1999'. (While in development, drafts of this standard version were referred to as "C9X".) Errors in the 1999 ISO C standard were corrected in three Technical --- 167,184 ---- uncorrected version. An amendment to the 1990 standard was published in 1995. This ! amendment added digraphs and '__STDC_VERSION__' to the language, but otherwise concerned the library. This amendment is commonly known as "AMD1"; the amended standard is sometimes known as "C94" or "C95". To ! select this standard in GCC, use the option '-std=iso9899:199409' (with, ! as for other standard versions, '-pedantic' to receive all required ! diagnostics). A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and is commonly known as "C99". GCC has incomplete support ! for this standard version; see for ! details. To select this standard, use '-std=c99' or ! '-std=iso9899:1999'. (While in development, drafts of this standard version were referred to as "C9X".) Errors in the 1999 ISO C standard were corrected in three Technical *************** Corrigenda published in 2001, 2004 and 2 *** 188,228 **** uncorrected version. A fourth version of the C standard, known as "C11", was published in ! 2011 as ISO/IEC 9899:2011. GCC has limited incomplete support for ! parts of this standard, enabled with `-std=c11' or `-std=iso9899:2011'. (While in development, drafts of this standard version were referred to as "C1X".) ! By default, GCC provides some extensions to the C language that on ! rare occasions conflict with the C standard. *Note Extensions to the C ! Language Family: C Extensions. Use of the `-std' options listed above will disable these extensions where they conflict with the C standard version selected. You may also select an extended version of the C ! language explicitly with `-std=gnu90' (for C90 with GNU extensions), ! `-std=gnu99' (for C99 with GNU extensions) or `-std=gnu11' (for C11 ! with GNU extensions). The default, if no C language dialect options ! are given, is `-std=gnu90'; this will change to `-std=gnu99' or ! `-std=gnu11' in some future release when the C99 or C11 support is ! complete. Some features that are part of the C99 standard are accepted ! as extensions in C90 mode, and some features that are part of the C11 ! standard are accepted as extensions in C90 and C99 modes. The ISO C standard defines (in clause 4) two classes of conforming ! implementation. A "conforming hosted implementation" supports the ! whole standard including all the library facilities; a "conforming ! freestanding implementation" is only required to provide certain ! library facilities: those in `', `', `', ! and `'; since AMD1, also those in `'; since C99, ! also those in `' and `'; and since C11, also those ! in `' and `'. In addition, complex types, ! added in C99, are not required for freestanding implementations. The ! standard also defines two environments for programs, a "freestanding environment", required of all implementations and which may not have library facilities beyond those required of freestanding implementations, where the handling of program startup and termination are implementation-defined, and a "hosted environment", which is not required, in which all the library facilities are provided and startup ! is through a function `int main (void)' or `int main (int, char *[])'. An OS kernel would be a freestanding environment; a program using the facilities of an operating system would normally be in a hosted implementation. --- 186,226 ---- uncorrected version. A fourth version of the C standard, known as "C11", was published in ! 2011 as ISO/IEC 9899:2011. GCC has limited incomplete support for parts ! of this standard, enabled with '-std=c11' or '-std=iso9899:2011'. (While in development, drafts of this standard version were referred to as "C1X".) ! By default, GCC provides some extensions to the C language that on rare ! occasions conflict with the C standard. *Note Extensions to the C ! Language Family: C Extensions. Use of the '-std' options listed above will disable these extensions where they conflict with the C standard version selected. You may also select an extended version of the C ! language explicitly with '-std=gnu90' (for C90 with GNU extensions), ! '-std=gnu99' (for C99 with GNU extensions) or '-std=gnu11' (for C11 with ! GNU extensions). The default, if no C language dialect options are ! given, is '-std=gnu90'; this will change to '-std=gnu99' or '-std=gnu11' ! in some future release when the C99 or C11 support is complete. Some ! features that are part of the C99 standard are accepted as extensions in ! C90 mode, and some features that are part of the C11 standard are ! accepted as extensions in C90 and C99 modes. The ISO C standard defines (in clause 4) two classes of conforming ! implementation. A "conforming hosted implementation" supports the whole ! standard including all the library facilities; a "conforming ! freestanding implementation" is only required to provide certain library ! facilities: those in '', '', '', and ! ''; since AMD1, also those in ''; since C99, also ! those in '' and ''; and since C11, also those in ! '' and ''. In addition, complex types, added ! in C99, are not required for freestanding implementations. The standard ! also defines two environments for programs, a "freestanding environment", required of all implementations and which may not have library facilities beyond those required of freestanding implementations, where the handling of program startup and termination are implementation-defined, and a "hosted environment", which is not required, in which all the library facilities are provided and startup ! is through a function 'int main (void)' or 'int main (int, char *[])'. An OS kernel would be a freestanding environment; a program using the facilities of an operating system would normally be in a hosted implementation. *************** implementation. *** 230,240 **** GCC aims towards being usable as a conforming freestanding implementation, or as the compiler for a conforming hosted implementation. By default, it will act as the compiler for a hosted ! implementation, defining `__STDC_HOSTED__' as `1' and presuming that when the names of ISO C functions are used, they have the semantics defined in the standard. To make it act as a conforming freestanding implementation for a freestanding environment, use the option ! `-ffreestanding'; it will then define `__STDC_HOSTED__' to `0' and not make assumptions about the meanings of function names from the standard library, with exceptions noted below. To build an OS kernel, you may well still need to make your own arrangements for linking and startup. --- 228,238 ---- GCC aims towards being usable as a conforming freestanding implementation, or as the compiler for a conforming hosted implementation. By default, it will act as the compiler for a hosted ! implementation, defining '__STDC_HOSTED__' as '1' and presuming that when the names of ISO C functions are used, they have the semantics defined in the standard. To make it act as a conforming freestanding implementation for a freestanding environment, use the option ! '-ffreestanding'; it will then define '__STDC_HOSTED__' to '0' and not make assumptions about the meanings of function names from the standard library, with exceptions noted below. To build an OS kernel, you may well still need to make your own arrangements for linking and startup. *************** environment, you will need to find them *** 247,260 **** GNU C library). *Note Standard Libraries: Standard Libraries. Most of the compiler support routines used by GCC are present in ! `libgcc', but there are a few exceptions. GCC requires the ! freestanding environment provide `memcpy', `memmove', `memset' and ! `memcmp'. Finally, if `__builtin_trap' is used, and the target does ! not implement the `trap' pattern, then GCC will emit a call to `abort'. For references to Technical Corrigenda, Rationale documents and information concerning the history of C that is available online, see ! `http://gcc.gnu.org/readings.html' 2.2 C++ language ================ --- 245,258 ---- GNU C library). *Note Standard Libraries: Standard Libraries. Most of the compiler support routines used by GCC are present in ! 'libgcc', but there are a few exceptions. GCC requires the freestanding ! environment provide 'memcpy', 'memmove', 'memset' and 'memcmp'. ! Finally, if '__builtin_trap' is used, and the target does not implement ! the 'trap' pattern, then GCC will emit a call to 'abort'. For references to Technical Corrigenda, Rationale documents and information concerning the history of C that is available online, see ! 2.2 C++ language ================ *************** experimental support for the second ISO *** 264,365 **** The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998) and amended by a Technical Corrigenda published in ! 2003 (ISO/IEC 14882:2003). These standards are referred to as C++98 and ! C++03, respectively. GCC implements the majority of C++98 (`export' is a notable exception) and most of the changes in C++03. To select this ! standard in GCC, use one of the options `-ansi', `-std=c++98', or ! `-std=c++03'; to obtain all the diagnostics required by the standard, ! you should also specify `-pedantic' (or `-pedantic-errors' if you want them to be errors rather than warnings). ! A revised ISO C++ standard was published in 2011 as ISO/IEC ! 14882:2011, and is referred to as C++11; before its publication it was ! commonly referred to as C++0x. C++11 contains several changes to the ! C++ language, most of which have been implemented in an experimental ! C++11 mode in GCC. For information regarding the C++11 features ! available in the experimental C++11 mode, see ! `http://gcc.gnu.org/projects/cxx0x.html'. To select this standard in ! GCC, use the option `-std=c++11'; to obtain all the diagnostics ! required by the standard, you should also specify `-pedantic' (or ! `-pedantic-errors' if you want them to be errors rather than warnings). More information about the C++ standards is available on the ISO C++ ! committee's web site at `http://www.open-std.org/jtc1/sc22/wg21/'. By default, GCC provides some extensions to the C++ language; *Note ! Options Controlling C++ Dialect: C++ Dialect Options. Use of the ! `-std' option listed above will disable these extensions. You may also ! select an extended version of the C++ language explicitly with ! `-std=gnu++98' (for C++98 with GNU extensions) or `-std=gnu++11' (for ! C++11 with GNU extensions). The default, if no C++ language dialect ! options are given, is `-std=gnu++98'. 2.3 Objective-C and Objective-C++ languages =========================================== ! GCC supports "traditional" Objective-C (also known as "Objective-C ! 1.0") and contains support for the Objective-C exception and ! synchronization syntax. It has also support for a number of ! "Objective-C 2.0" language extensions, including properties, fast ! enumeration (only for Objective-C), method attributes and the @optional ! and @required keywords in protocols. GCC supports Objective-C++ and ! features available in Objective-C are also available in Objective-C++. GCC by default uses the GNU Objective-C runtime library, which is part ! of GCC and is not the same as the Apple/NeXT Objective-C runtime ! library used on Apple systems. There are a number of differences ! documented in this manual. The options `-fgnu-runtime' and ! `-fnext-runtime' allow you to switch between producing output that ! works with the GNU Objective-C runtime library and output that works ! with the Apple/NeXT Objective-C runtime library. There is no formal written standard for Objective-C or Objective-C++. The authoritative manual on traditional Objective-C (1.0) is ! "Object-Oriented Programming and the Objective-C Language", available ! at a number of web sites: ! * `http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf' is the original NeXTstep document; ! ! * `http://objc.toodarkpark.net' is the same document in another format; ! ! * ! `http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/' has an updated version but make sure you search for "Object Oriented Programming and the Objective-C Programming Language 1.0", not documentation on the newer "Objective-C 2.0" language The Objective-C exception and synchronization syntax (that is, the keywords @try, @throw, @catch, @finally and @synchronized) is supported ! by GCC and is enabled with the option `-fobjc-exceptions'. The syntax is briefly documented in this manual and in the Objective-C 2.0 manuals from Apple. The Objective-C 2.0 language extensions and features are automatically enabled; they include properties (via the @property, @synthesize and @dynamic keywords), fast enumeration (not available in Objective-C++), ! attributes for methods (such as deprecated, noreturn, sentinel, ! format), the unused attribute for method arguments, the @package ! keyword for instance variables and the @optional and @required keywords ! in protocols. You can disable all these Objective-C 2.0 language ! extensions with the option `-fobjc-std=objc1', which causes the ! compiler to recognize the same Objective-C language syntax recognized ! by GCC 4.0, and to produce an error if one of the new features is used. GCC has currently no support for non-fragile instance variables. The authoritative manual on Objective-C 2.0 is available from Apple: ! * ! `http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/' For more information concerning the history of Objective-C that is ! available online, see `http://gcc.gnu.org/readings.html' 2.4 Go language =============== As of the GCC 4.7.1 release, GCC supports the Go 1 language standard, ! described at `http://golang.org/doc/go1.html'. 2.5 References for other languages ================================== --- 262,361 ---- The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998) and amended by a Technical Corrigenda published in ! 2003 (ISO/IEC 14882:2003). These standards are referred to as C++98 and ! C++03, respectively. GCC implements the majority of C++98 ('export' is a notable exception) and most of the changes in C++03. To select this ! standard in GCC, use one of the options '-ansi', '-std=c++98', or ! '-std=c++03'; to obtain all the diagnostics required by the standard, ! you should also specify '-pedantic' (or '-pedantic-errors' if you want them to be errors rather than warnings). ! A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011, ! and is referred to as C++11; before its publication it was commonly ! referred to as C++0x. C++11 contains several changes to the C++ ! language, most of which have been implemented in an experimental C++11 ! mode in GCC. For information regarding the C++11 features available in ! the experimental C++11 mode, see ! . To select this standard in ! GCC, use the option '-std=c++11'; to obtain all the diagnostics required ! by the standard, you should also specify '-pedantic' (or ! '-pedantic-errors' if you want them to be errors rather than warnings). More information about the C++ standards is available on the ISO C++ ! committee's web site at . By default, GCC provides some extensions to the C++ language; *Note ! Options Controlling C++ Dialect: C++ Dialect Options. Use of the '-std' ! option listed above will disable these extensions. You may also select ! an extended version of the C++ language explicitly with '-std=gnu++98' ! (for C++98 with GNU extensions) or '-std=gnu++11' (for C++11 with GNU ! extensions). The default, if no C++ language dialect options are given, ! is '-std=gnu++98'. 2.3 Objective-C and Objective-C++ languages =========================================== ! GCC supports "traditional" Objective-C (also known as "Objective-C 1.0") ! and contains support for the Objective-C exception and synchronization ! syntax. It has also support for a number of "Objective-C 2.0" language ! extensions, including properties, fast enumeration (only for ! Objective-C), method attributes and the @optional and @required keywords ! in protocols. GCC supports Objective-C++ and features available in ! Objective-C are also available in Objective-C++. GCC by default uses the GNU Objective-C runtime library, which is part ! of GCC and is not the same as the Apple/NeXT Objective-C runtime library ! used on Apple systems. There are a number of differences documented in ! this manual. The options '-fgnu-runtime' and '-fnext-runtime' allow you ! to switch between producing output that works with the GNU Objective-C ! runtime library and output that works with the Apple/NeXT Objective-C ! runtime library. There is no formal written standard for Objective-C or Objective-C++. The authoritative manual on traditional Objective-C (1.0) is ! "Object-Oriented Programming and the Objective-C Language", available at ! a number of web sites: ! * is the original NeXTstep document; ! * is the same document in another format; ! * ! has an updated version but make sure you search for "Object Oriented Programming and the Objective-C Programming Language 1.0", not documentation on the newer "Objective-C 2.0" language The Objective-C exception and synchronization syntax (that is, the keywords @try, @throw, @catch, @finally and @synchronized) is supported ! by GCC and is enabled with the option '-fobjc-exceptions'. The syntax is briefly documented in this manual and in the Objective-C 2.0 manuals from Apple. The Objective-C 2.0 language extensions and features are automatically enabled; they include properties (via the @property, @synthesize and @dynamic keywords), fast enumeration (not available in Objective-C++), ! attributes for methods (such as deprecated, noreturn, sentinel, format), ! the unused attribute for method arguments, the @package keyword for ! instance variables and the @optional and @required keywords in ! protocols. You can disable all these Objective-C 2.0 language ! extensions with the option '-fobjc-std=objc1', which causes the compiler ! to recognize the same Objective-C language syntax recognized by GCC 4.0, ! and to produce an error if one of the new features is used. GCC has currently no support for non-fragile instance variables. The authoritative manual on Objective-C 2.0 is available from Apple: ! * ! For more information concerning the history of Objective-C that is ! available online, see 2.4 Go language =============== As of the GCC 4.7.1 release, GCC supports the Go 1 language standard, ! described at . 2.5 References for other languages ================================== *************** conformance and compatibility of the Ada *** 371,377 **** supported by GNU Fortran. *Note Compatibility with the Java Platform: (gcj)Compatibility, for ! details of compatibility between `gcj' and the Java Platform.  File: gcc.info, Node: Invoking GCC, Next: C Implementation, Prev: Standards, Up: Top --- 367,373 ---- supported by GNU Fortran. *Note Compatibility with the Java Platform: (gcj)Compatibility, for ! details of compatibility between 'gcj' and the Java Platform.  File: gcc.info, Node: Invoking GCC, Next: C Implementation, Prev: Standards, Up: Top *************** File: gcc.info, Node: Invoking GCC, Ne *** 381,389 **** When you invoke GCC, it normally does preprocessing, compilation, assembly and linking. The "overall options" allow you to stop this ! process at an intermediate stage. For example, the `-c' option says ! not to run the linker. Then the output consists of object files output ! by the assembler. Other options are passed on to one stage of processing. Some options control the preprocessor and others the compiler itself. Yet other --- 377,385 ---- When you invoke GCC, it normally does preprocessing, compilation, assembly and linking. The "overall options" allow you to stop this ! process at an intermediate stage. For example, the '-c' option says not ! to run the linker. Then the output consists of object files output by ! the assembler. Other options are passed on to one stage of processing. Some options control the preprocessor and others the compiler itself. Yet other *************** that option with all supported languages *** 399,418 **** *Note Compiling C++ Programs: Invoking G++, for a summary of special options for compiling C++ programs. ! The `gcc' program accepts options and file names as operands. Many options have multi-letter names; therefore multiple single-letter ! options may _not_ be grouped: `-dv' is very different from `-d -v'. You can mix options and other arguments. For the most part, the order you use doesn't matter. Order does matter when you use several options ! of the same kind; for example, if you specify `-L' more than once, the ! directories are searched in the order specified. Also, the placement ! of the `-l' option is significant. ! Many options have long names starting with `-f' or with `-W'--for ! example, `-fmove-loop-invariants', `-Wformat' and so on. Most of these ! have both positive and negative forms; the negative form of `-ffoo' is ! `-fno-foo'. This manual documents only one of these two forms, whichever one is not the default. *Note Option Index::, for an index to GCC's options. --- 395,414 ---- *Note Compiling C++ Programs: Invoking G++, for a summary of special options for compiling C++ programs. ! The 'gcc' program accepts options and file names as operands. Many options have multi-letter names; therefore multiple single-letter ! options may _not_ be grouped: '-dv' is very different from '-d -v'. You can mix options and other arguments. For the most part, the order you use doesn't matter. Order does matter when you use several options ! of the same kind; for example, if you specify '-L' more than once, the ! directories are searched in the order specified. Also, the placement of ! the '-l' option is significant. ! Many options have long names starting with '-f' or with '-W'--for ! example, '-fmove-loop-invariants', '-Wformat' and so on. Most of these ! have both positive and negative forms; the negative form of '-ffoo' is ! '-fno-foo'. This manual documents only one of these two forms, whichever one is not the default. *Note Option Index::, for an index to GCC's options. *************** _Code Generation Options_ *** 1316,1322 **** -ftrapv -fwrapv -fbounds-check -fvisibility -fstrict-volatile-bitfields -fsync-libcalls - * Menu: * Overall Options:: Controlling the kind of output: --- 1312,1317 ---- *************** File: gcc.info, Node: Overall Options, *** 1349,1478 **** Compilation can involve up to four stages: preprocessing, compilation proper, assembly and linking, always in that order. GCC is capable of preprocessing and compiling several files either into several assembler ! input files, or into one assembler input file; then each assembler ! input file produces an object file, and linking combines all the object ! files (those newly compiled, and those specified as input) into an ! executable file. For any given input file, the file name suffix determines what kind of compilation is done: ! `FILE.c' C source code that must be preprocessed. ! `FILE.i' C source code that should not be preprocessed. ! `FILE.ii' C++ source code that should not be preprocessed. ! `FILE.m' Objective-C source code. Note that you must link with the ! `libobjc' library to make an Objective-C program work. ! `FILE.mi' Objective-C source code that should not be preprocessed. ! `FILE.mm' ! `FILE.M' Objective-C++ source code. Note that you must link with the ! `libobjc' library to make an Objective-C++ program work. Note ! that `.M' refers to a literal capital M. ! `FILE.mii' Objective-C++ source code that should not be preprocessed. ! `FILE.h' C, C++, Objective-C or Objective-C++ header file to be turned into a precompiled header (default), or C, C++ header file to be turned ! into an Ada spec (via the `-fdump-ada-spec' switch). ! `FILE.cc' ! `FILE.cp' ! `FILE.cxx' ! `FILE.cpp' ! `FILE.CPP' ! `FILE.c++' ! `FILE.C' ! C++ source code that must be preprocessed. Note that in `.cxx', ! the last two letters must both be literally `x'. Likewise, `.C' refers to a literal capital C. ! `FILE.mm' ! `FILE.M' Objective-C++ source code that must be preprocessed. ! `FILE.mii' Objective-C++ source code that should not be preprocessed. ! `FILE.hh' ! `FILE.H' ! `FILE.hp' ! `FILE.hxx' ! `FILE.hpp' ! `FILE.HPP' ! `FILE.h++' ! `FILE.tcc' C++ header file to be turned into a precompiled header or Ada spec. ! `FILE.f' ! `FILE.for' ! `FILE.ftn' Fixed form Fortran source code that should not be preprocessed. ! `FILE.F' ! `FILE.FOR' ! `FILE.fpp' ! `FILE.FPP' ! `FILE.FTN' Fixed form Fortran source code that must be preprocessed (with the traditional preprocessor). ! `FILE.f90' ! `FILE.f95' ! `FILE.f03' ! `FILE.f08' Free form Fortran source code that should not be preprocessed. ! `FILE.F90' ! `FILE.F95' ! `FILE.F03' ! `FILE.F08' Free form Fortran source code that must be preprocessed (with the traditional preprocessor). ! `FILE.go' Go source code. ! `FILE.ads' Ada source code file that contains a library unit declaration (a declaration of a package, subprogram, or generic, or a generic instantiation), or a library unit renaming declaration (a package, generic, or subprogram renaming declaration). Such files are also called "specs". ! `FILE.adb' Ada source code file containing a library unit body (a subprogram or package body). Such files are also called "bodies". ! `FILE.s' Assembler code. ! `FILE.S' ! `FILE.sx' Assembler code that must be preprocessed. ! `OTHER' ! An object file to be fed straight into linking. Any file name ! with no recognized suffix is treated this way. ! You can specify the input language explicitly with the `-x' option: ! `-x LANGUAGE' Specify explicitly the LANGUAGE for the following input files (rather than letting the compiler choose a default based on the file name suffix). This option applies to all following input ! files until the next `-x' option. Possible values for LANGUAGE are: c c-header cpp-output c++ c++-header c++-cpp-output --- 1344,1473 ---- Compilation can involve up to four stages: preprocessing, compilation proper, assembly and linking, always in that order. GCC is capable of preprocessing and compiling several files either into several assembler ! input files, or into one assembler input file; then each assembler input ! file produces an object file, and linking combines all the object files ! (those newly compiled, and those specified as input) into an executable ! file. For any given input file, the file name suffix determines what kind of compilation is done: ! 'FILE.c' C source code that must be preprocessed. ! 'FILE.i' C source code that should not be preprocessed. ! 'FILE.ii' C++ source code that should not be preprocessed. ! 'FILE.m' Objective-C source code. Note that you must link with the ! 'libobjc' library to make an Objective-C program work. ! 'FILE.mi' Objective-C source code that should not be preprocessed. ! 'FILE.mm' ! 'FILE.M' Objective-C++ source code. Note that you must link with the ! 'libobjc' library to make an Objective-C++ program work. Note that ! '.M' refers to a literal capital M. ! 'FILE.mii' Objective-C++ source code that should not be preprocessed. ! 'FILE.h' C, C++, Objective-C or Objective-C++ header file to be turned into a precompiled header (default), or C, C++ header file to be turned ! into an Ada spec (via the '-fdump-ada-spec' switch). ! 'FILE.cc' ! 'FILE.cp' ! 'FILE.cxx' ! 'FILE.cpp' ! 'FILE.CPP' ! 'FILE.c++' ! 'FILE.C' ! C++ source code that must be preprocessed. Note that in '.cxx', ! the last two letters must both be literally 'x'. Likewise, '.C' refers to a literal capital C. ! 'FILE.mm' ! 'FILE.M' Objective-C++ source code that must be preprocessed. ! 'FILE.mii' Objective-C++ source code that should not be preprocessed. ! 'FILE.hh' ! 'FILE.H' ! 'FILE.hp' ! 'FILE.hxx' ! 'FILE.hpp' ! 'FILE.HPP' ! 'FILE.h++' ! 'FILE.tcc' C++ header file to be turned into a precompiled header or Ada spec. ! 'FILE.f' ! 'FILE.for' ! 'FILE.ftn' Fixed form Fortran source code that should not be preprocessed. ! 'FILE.F' ! 'FILE.FOR' ! 'FILE.fpp' ! 'FILE.FPP' ! 'FILE.FTN' Fixed form Fortran source code that must be preprocessed (with the traditional preprocessor). ! 'FILE.f90' ! 'FILE.f95' ! 'FILE.f03' ! 'FILE.f08' Free form Fortran source code that should not be preprocessed. ! 'FILE.F90' ! 'FILE.F95' ! 'FILE.F03' ! 'FILE.F08' Free form Fortran source code that must be preprocessed (with the traditional preprocessor). ! 'FILE.go' Go source code. ! 'FILE.ads' Ada source code file that contains a library unit declaration (a declaration of a package, subprogram, or generic, or a generic instantiation), or a library unit renaming declaration (a package, generic, or subprogram renaming declaration). Such files are also called "specs". ! 'FILE.adb' Ada source code file containing a library unit body (a subprogram or package body). Such files are also called "bodies". ! 'FILE.s' Assembler code. ! 'FILE.S' ! 'FILE.sx' Assembler code that must be preprocessed. ! 'OTHER' ! An object file to be fed straight into linking. Any file name with ! no recognized suffix is treated this way. ! You can specify the input language explicitly with the '-x' option: ! '-x LANGUAGE' Specify explicitly the LANGUAGE for the following input files (rather than letting the compiler choose a default based on the file name suffix). This option applies to all following input ! files until the next '-x' option. Possible values for LANGUAGE are: c c-header cpp-output c++ c++-header c++-cpp-output *************** compilation is done: *** 1484,1622 **** go java ! `-x none' Turn off any specification of a language, so that subsequent files are handled according to their file name suffixes (as they are if ! `-x' has not been used at all). ! `-pass-exit-codes' ! Normally the `gcc' program exits with the code of 1 if any phase ! of the compiler returns a non-success return code. If you specify ! `-pass-exit-codes', the `gcc' program instead returns with the numerically highest error produced by any phase returning an error indication. The C, C++, and Fortran front ends return 4 if an internal compiler error is encountered. ! If you only want some of the stages of compilation, you can use `-x' ! (or filename suffixes) to tell `gcc' where to start, and one of the ! options `-c', `-S', or `-E' to say where `gcc' is to stop. Note that ! some combinations (for example, `-x cpp-output -E') instruct `gcc' to ! do nothing at all. ! `-c' Compile or assemble the source files, but do not link. The linking stage simply is not done. The ultimate output is in the form of an object file for each source file. By default, the object file name for a source file is made by ! replacing the suffix `.c', `.i', `.s', etc., with `.o'. Unrecognized input files, not requiring compilation or assembly, are ignored. ! `-S' Stop after the stage of compilation proper; do not assemble. The output is in the form of an assembler code file for each non-assembler input file specified. By default, the assembler file name for a source file is made by ! replacing the suffix `.c', `.i', etc., with `.s'. Input files that don't require compilation are ignored. ! `-E' ! Stop after the preprocessing stage; do not run the compiler ! proper. The output is in the form of preprocessed source code, ! which is sent to the standard output. Input files that don't require preprocessing are ignored. ! `-o FILE' ! Place output in file FILE. This applies to whatever sort of ! output is being produced, whether it be an executable file, an ! object file, an assembler file or preprocessed C code. ! If `-o' is not specified, the default is to put an executable file ! in `a.out', the object file for `SOURCE.SUFFIX' in `SOURCE.o', its ! assembler file in `SOURCE.s', a precompiled header file in ! `SOURCE.SUFFIX.gch', and all preprocessed C source on standard output. ! `-v' Print (on standard error output) the commands executed to run the stages of compilation. Also print the version number of the compiler driver program and of the preprocessor and the compiler proper. ! `-###' ! Like `-v' except the commands are not executed and arguments are ! quoted unless they contain only alphanumeric characters or `./-_'. This is useful for shell scripts to capture the driver-generated command lines. ! `-pipe' Use pipes rather than temporary files for communication between the various stages of compilation. This fails to work on some systems where the assembler is unable to read from a pipe; but the GNU assembler has no trouble. ! `--help' Print (on the standard output) a description of the command-line ! options understood by `gcc'. If the `-v' option is also specified ! then `--help' is also passed on to the various processes invoked ! by `gcc', so that they can display the command-line options they ! accept. If the `-Wextra' option has also been specified (prior to ! the `--help' option), then command-line options that have no documentation associated with them are also displayed. ! `--target-help' Print (on the standard output) a description of target-specific command-line options for each tool. For some targets extra target-specific information may also be printed. ! `--help={CLASS|[^]QUALIFIER}[,...]' Print (on the standard output) a description of the command-line options understood by the compiler that fit into all specified classes and qualifiers. These are the supported classes: ! `optimizers' Display all of the optimization options supported by the compiler. ! `warnings' Display all of the options controlling warning messages produced by the compiler. ! `target' ! Display target-specific options. Unlike the `--target-help' option however, target-specific options of the linker and assembler are not displayed. This is because those tools do ! not currently support the extended `--help=' syntax. ! `params' ! Display the values recognized by the `--param' option. ! LANGUAGE Display the options supported for LANGUAGE, where LANGUAGE is the name of one of the languages supported in this version of GCC. ! `common' Display the options that are common to all languages. These are the supported qualifiers: ! `undocumented' Display only those options that are undocumented. ! `joined' Display options taking an argument that appears after an equal sign in the same continuous piece of text, such as: ! `--help=target'. ! `separate' Display options taking an argument that appears as a separate ! word following the original option, such as: `-o output-file'. Thus for example to display all the undocumented target-specific switches supported by the compiler, use: --- 1479,1617 ---- go java ! '-x none' Turn off any specification of a language, so that subsequent files are handled according to their file name suffixes (as they are if ! '-x' has not been used at all). ! '-pass-exit-codes' ! Normally the 'gcc' program exits with the code of 1 if any phase of ! the compiler returns a non-success return code. If you specify ! '-pass-exit-codes', the 'gcc' program instead returns with the numerically highest error produced by any phase returning an error indication. The C, C++, and Fortran front ends return 4 if an internal compiler error is encountered. ! If you only want some of the stages of compilation, you can use '-x' ! (or filename suffixes) to tell 'gcc' where to start, and one of the ! options '-c', '-S', or '-E' to say where 'gcc' is to stop. Note that ! some combinations (for example, '-x cpp-output -E') instruct 'gcc' to do ! nothing at all. ! '-c' Compile or assemble the source files, but do not link. The linking stage simply is not done. The ultimate output is in the form of an object file for each source file. By default, the object file name for a source file is made by ! replacing the suffix '.c', '.i', '.s', etc., with '.o'. Unrecognized input files, not requiring compilation or assembly, are ignored. ! '-S' Stop after the stage of compilation proper; do not assemble. The output is in the form of an assembler code file for each non-assembler input file specified. By default, the assembler file name for a source file is made by ! replacing the suffix '.c', '.i', etc., with '.s'. Input files that don't require compilation are ignored. ! '-E' ! Stop after the preprocessing stage; do not run the compiler proper. ! The output is in the form of preprocessed source code, which is ! sent to the standard output. Input files that don't require preprocessing are ignored. ! '-o FILE' ! Place output in file FILE. This applies to whatever sort of output ! is being produced, whether it be an executable file, an object ! file, an assembler file or preprocessed C code. ! If '-o' is not specified, the default is to put an executable file ! in 'a.out', the object file for 'SOURCE.SUFFIX' in 'SOURCE.o', its ! assembler file in 'SOURCE.s', a precompiled header file in ! 'SOURCE.SUFFIX.gch', and all preprocessed C source on standard output. ! '-v' Print (on standard error output) the commands executed to run the stages of compilation. Also print the version number of the compiler driver program and of the preprocessor and the compiler proper. ! '-###' ! Like '-v' except the commands are not executed and arguments are ! quoted unless they contain only alphanumeric characters or './-_'. This is useful for shell scripts to capture the driver-generated command lines. ! '-pipe' Use pipes rather than temporary files for communication between the various stages of compilation. This fails to work on some systems where the assembler is unable to read from a pipe; but the GNU assembler has no trouble. ! '--help' Print (on the standard output) a description of the command-line ! options understood by 'gcc'. If the '-v' option is also specified ! then '--help' is also passed on to the various processes invoked by ! 'gcc', so that they can display the command-line options they ! accept. If the '-Wextra' option has also been specified (prior to ! the '--help' option), then command-line options that have no documentation associated with them are also displayed. ! '--target-help' Print (on the standard output) a description of target-specific command-line options for each tool. For some targets extra target-specific information may also be printed. ! '--help={CLASS|[^]QUALIFIER}[,...]' Print (on the standard output) a description of the command-line options understood by the compiler that fit into all specified classes and qualifiers. These are the supported classes: ! 'optimizers' Display all of the optimization options supported by the compiler. ! 'warnings' Display all of the options controlling warning messages produced by the compiler. ! 'target' ! Display target-specific options. Unlike the '--target-help' option however, target-specific options of the linker and assembler are not displayed. This is because those tools do ! not currently support the extended '--help=' syntax. ! 'params' ! Display the values recognized by the '--param' option. ! LANGUAGE Display the options supported for LANGUAGE, where LANGUAGE is the name of one of the languages supported in this version of GCC. ! 'common' Display the options that are common to all languages. These are the supported qualifiers: ! 'undocumented' Display only those options that are undocumented. ! 'joined' Display options taking an argument that appears after an equal sign in the same continuous piece of text, such as: ! '--help=target'. ! 'separate' Display options taking an argument that appears as a separate ! word following the original option, such as: '-o output-file'. Thus for example to display all the undocumented target-specific switches supported by the compiler, use: *************** do nothing at all. *** 1624,1636 **** --help=target,undocumented The sense of a qualifier can be inverted by prefixing it with the ! `^' character, so for example to display all binary warning ! options (i.e., ones that are either on or off and that do not take ! an argument) that have a description, use: --help=warnings,^joined,^undocumented ! The argument to `--help=' should not consist solely of inverted qualifiers. Combining several classes is possible, although this usually --- 1619,1631 ---- --help=target,undocumented The sense of a qualifier can be inverted by prefixing it with the ! '^' character, so for example to display all binary warning options ! (i.e., ones that are either on or off and that do not take an ! argument) that have a description, use: --help=warnings,^joined,^undocumented ! The argument to '--help=' should not consist solely of inverted qualifiers. Combining several classes is possible, although this usually *************** do nothing at all. *** 1641,1658 **** --help=target,optimizers ! The `--help=' option can be repeated on the command line. Each successive use displays its requested class of options, skipping those that have already been displayed. ! If the `-Q' option appears on the command line before the ! `--help=' option, then the descriptive text displayed by `--help=' ! is changed. Instead of describing the displayed options, an indication is given as to whether the option is enabled, disabled or set to a specific value (assuming that the compiler knows this ! at the point where the `--help=' option is used). ! Here is a truncated example from the ARM port of `gcc': % gcc -Q -mabi=2 --help=target -c The following options are target specific: --- 1636,1653 ---- --help=target,optimizers ! The '--help=' option can be repeated on the command line. Each successive use displays its requested class of options, skipping those that have already been displayed. ! If the '-Q' option appears on the command line before the '--help=' ! option, then the descriptive text displayed by '--help=' is ! changed. Instead of describing the displayed options, an indication is given as to whether the option is enabled, disabled or set to a specific value (assuming that the compiler knows this ! at the point where the '--help=' option is used). ! Here is a truncated example from the ARM port of 'gcc': % gcc -Q -mabi=2 --help=target -c The following options are target specific: *************** do nothing at all. *** 1662,1732 **** The output is sensitive to the effects of previous command-line options, so for example it is possible to find out which ! optimizations are enabled at `-O2' by using: -Q -O2 --help=optimizers Alternatively you can discover which binary optimizations are ! enabled by `-O3' by using: gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts diff /tmp/O2-opts /tmp/O3-opts | grep enabled ! `-no-canonical-prefixes' ! Do not expand any symbolic links, resolve references to `/../' or ! `/./', or make the path absolute when generating a relative prefix. ! `--version' Display the version number and copyrights of the invoked GCC. ! `-wrapper' Invoke all subcommands under a wrapper program. The name of the wrapper program and its parameters are passed as a comma separated list. gcc -c t.c -wrapper gdb,--args ! This invokes all subprograms of `gcc' under `gdb --args', thus the ! invocation of `cc1' is `gdb --args cc1 ...'. ! `-fplugin=NAME.so' ! Load the plugin code in file NAME.so, assumed to be a shared ! object to be dlopen'd by the compiler. The base name of the ! shared object file is used to identify the plugin for the purposes ! of argument parsing (See `-fplugin-arg-NAME-KEY=VALUE' below). ! Each plugin should define the callback functions specified in the ! Plugins API. ! `-fplugin-arg-NAME-KEY=VALUE' Define an argument called KEY with a value of VALUE for the plugin called NAME. ! `-fdump-ada-spec[-slim]' For C and C++ source and include files, generate corresponding Ada ! specs. *Note Generating Ada Bindings for C and C++ headers: ! (gnat_ugn)Generating Ada Bindings for C and C++ headers, which ! provides detailed documentation on this feature. ! `-fdump-go-spec=FILE' For input files in any language, generate corresponding Go ! declarations in FILE. This generates Go `const', `type', `var', ! and `func' declarations which may be a useful way to start writing a Go interface to code written in some other language. ! `@FILE' ! Read command-line options from FILE. The options read are ! inserted in place of the original @FILE option. If FILE does not ! exist, or cannot be read, then the option will be treated ! literally, and not removed. Options in FILE are separated by whitespace. A whitespace character may be included in an option by surrounding the entire ! option in either single or double quotes. Any character ! (including a backslash) may be included by prefixing the character ! to be included with a backslash. The FILE may itself contain ! additional @FILE options; any such options will be processed ! recursively.  File: gcc.info, Node: Invoking G++, Next: C Dialect Options, Prev: Overall Options, Up: Invoking GCC --- 1657,1724 ---- The output is sensitive to the effects of previous command-line options, so for example it is possible to find out which ! optimizations are enabled at '-O2' by using: -Q -O2 --help=optimizers Alternatively you can discover which binary optimizations are ! enabled by '-O3' by using: gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts diff /tmp/O2-opts /tmp/O3-opts | grep enabled ! '-no-canonical-prefixes' ! Do not expand any symbolic links, resolve references to '/../' or ! '/./', or make the path absolute when generating a relative prefix. ! '--version' Display the version number and copyrights of the invoked GCC. ! '-wrapper' Invoke all subcommands under a wrapper program. The name of the wrapper program and its parameters are passed as a comma separated list. gcc -c t.c -wrapper gdb,--args ! This invokes all subprograms of 'gcc' under 'gdb --args', thus the ! invocation of 'cc1' is 'gdb --args cc1 ...'. ! '-fplugin=NAME.so' ! Load the plugin code in file NAME.so, assumed to be a shared object ! to be dlopen'd by the compiler. The base name of the shared object ! file is used to identify the plugin for the purposes of argument ! parsing (See '-fplugin-arg-NAME-KEY=VALUE' below). Each plugin ! should define the callback functions specified in the Plugins API. ! '-fplugin-arg-NAME-KEY=VALUE' Define an argument called KEY with a value of VALUE for the plugin called NAME. ! '-fdump-ada-spec[-slim]' For C and C++ source and include files, generate corresponding Ada ! specs. *Note (gnat_ugn)Generating Ada Bindings for C and C++ ! headers::, which provides detailed documentation on this feature. ! '-fdump-go-spec=FILE' For input files in any language, generate corresponding Go ! declarations in FILE. This generates Go 'const', 'type', 'var', ! and 'func' declarations which may be a useful way to start writing a Go interface to code written in some other language. ! '@FILE' ! Read command-line options from FILE. The options read are inserted ! in place of the original @FILE option. If FILE does not exist, or ! cannot be read, then the option will be treated literally, and not ! removed. Options in FILE are separated by whitespace. A whitespace character may be included in an option by surrounding the entire ! option in either single or double quotes. Any character (including ! a backslash) may be included by prefixing the character to be ! included with a backslash. The FILE may itself contain additional ! @FILE options; any such options will be processed recursively.  File: gcc.info, Node: Invoking G++, Next: C Dialect Options, Prev: Overall Options, Up: Invoking GCC *************** File: gcc.info, Node: Invoking G++, Ne *** 1734,1754 **** 3.3 Compiling C++ Programs ========================== ! C++ source files conventionally use one of the suffixes `.C', `.cc', ! `.cpp', `.CPP', `.c++', `.cp', or `.cxx'; C++ header files often use ! `.hh', `.hpp', `.H', or (for shared template code) `.tcc'; and ! preprocessed C++ files use the suffix `.ii'. GCC recognizes files with these names and compiles them as C++ programs even if you call the ! compiler the same way as for compiling C programs (usually with the ! name `gcc'). ! However, the use of `gcc' does not add the C++ library. `g++' is a program that calls GCC and automatically specifies linking against the ! C++ library. It treats `.c', `.h' and `.i' files as C++ source files ! instead of C source files unless `-x' is used. This program is also ! useful when precompiling a C header file with a `.h' extension for use ! in C++ compilations. On many systems, `g++' is also installed with the ! name `c++'. When you compile C++ programs, you may specify many of the same command-line options that you use for compiling programs in any --- 1726,1746 ---- 3.3 Compiling C++ Programs ========================== ! C++ source files conventionally use one of the suffixes '.C', '.cc', ! '.cpp', '.CPP', '.c++', '.cp', or '.cxx'; C++ header files often use ! '.hh', '.hpp', '.H', or (for shared template code) '.tcc'; and ! preprocessed C++ files use the suffix '.ii'. GCC recognizes files with these names and compiles them as C++ programs even if you call the ! compiler the same way as for compiling C programs (usually with the name ! 'gcc'). ! However, the use of 'gcc' does not add the C++ library. 'g++' is a program that calls GCC and automatically specifies linking against the ! C++ library. It treats '.c', '.h' and '.i' files as C++ source files ! instead of C source files unless '-x' is used. This program is also ! useful when precompiling a C header file with a '.h' extension for use ! in C++ compilations. On many systems, 'g++' is also installed with the ! name 'c++'. When you compile C++ programs, you may specify many of the same command-line options that you use for compiling programs in any *************** The following options control the dialec *** 1769,2029 **** from C, such as C++, Objective-C and Objective-C++) that the compiler accepts: ! `-ansi' ! In C mode, this is equivalent to `-std=c90'. In C++ mode, it is ! equivalent to `-std=c++98'. This turns off certain features of GCC that are incompatible with ! ISO C90 (when compiling C code), or of standard C++ (when ! compiling C++ code), such as the `asm' and `typeof' keywords, and ! predefined macros such as `unix' and `vax' that identify the type ! of system you are using. It also enables the undesirable and ! rarely used ISO trigraph feature. For the C compiler, it disables ! recognition of C++ style `//' comments as well as the `inline' ! keyword. ! The alternate keywords `__asm__', `__extension__', `__inline__' ! and `__typeof__' continue to work despite `-ansi'. You would not ! want to use them in an ISO C program, of course, but it is useful ! to put them in header files that might be included in compilations ! done with `-ansi'. Alternate predefined macros such as `__unix__' ! and `__vax__' are also available, with or without `-ansi'. ! The `-ansi' option does not cause non-ISO programs to be rejected ! gratuitously. For that, `-Wpedantic' is required in addition to ! `-ansi'. *Note Warning Options::. ! The macro `__STRICT_ANSI__' is predefined when the `-ansi' option is used. Some header files may notice this macro and refrain from ! declaring certain functions or defining certain macros that the ! ISO standard doesn't call for; this is to avoid interfering with ! any programs that might use these names for other things. Functions that are normally built in but do not have semantics ! defined by ISO C (such as `alloca' and `ffs') are not built-in ! functions when `-ansi' is used. *Note Other built-in functions provided by GCC: Other Builtins, for details of the functions affected. ! `-std=' ! Determine the language standard. *Note Language Standards Supported by GCC: Standards, for details of these standard ! versions. This option is currently only supported when compiling ! C or C++. ! The compiler can accept several base standards, such as `c90' or ! `c++98', and GNU dialects of those standards, such as `gnu90' or ! `gnu++98'. When a base standard is specified, the compiler ! accepts all programs following that standard plus those using GNU ! extensions that do not contradict it. For example, `-std=c90' turns off certain features of GCC that are incompatible with ISO ! C90, such as the `asm' and `typeof' keywords, but not other GNU extensions that do not have a meaning in ISO C90, such as omitting ! the middle term of a `?:' expression. On the other hand, when a GNU dialect of a standard is specified, all features supported by the compiler are enabled, even when those features change the meaning of the base standard. As a result, some strict-conforming programs may be rejected. The particular standard is used by ! `-Wpedantic' to identify which features are GNU extensions given ! that version of the standard. For example `-std=gnu90 -Wpedantic' ! warns about C++ style `//' comments, while `-std=gnu99 -Wpedantic' does not. A value for this option must be provided; possible values are ! `c90' ! `c89' ! `iso9899:1990' Support all ISO C90 programs (certain GNU extensions that ! conflict with ISO C90 are disabled). Same as `-ansi' for C code. ! `iso9899:199409' ISO C90 as modified in amendment 1. ! `c99' ! `c9x' ! `iso9899:1999' ! `iso9899:199x' ISO C99. Note that this standard is not yet fully supported; ! see `http://gcc.gnu.org/c99status.html' for more information. ! The names `c9x' and `iso9899:199x' are deprecated. ! `c11' ! `c1x' ! `iso9899:2011' ISO C11, the 2011 revision of the ISO C standard. Support is ! incomplete and experimental. The name `c1x' is deprecated. ! `gnu90' ! `gnu89' ! GNU dialect of ISO C90 (including some C99 features). This is the default for C code. ! `gnu99' ! `gnu9x' GNU dialect of ISO C99. When ISO C99 is fully implemented in ! GCC, this will become the default. The name `gnu9x' is deprecated. ! `gnu11' ! `gnu1x' GNU dialect of ISO C11. Support is incomplete and ! experimental. The name `gnu1x' is deprecated. ! `c++98' ! `c++03' The 1998 ISO C++ standard plus the 2003 technical corrigendum ! and some additional defect reports. Same as `-ansi' for C++ code. ! `gnu++98' ! `gnu++03' ! GNU dialect of `-std=c++98'. This is the default for C++ code. ! `c++11' ! `c++0x' The 2011 ISO C++ standard plus amendments. Support for C++11 is still experimental, and may change in incompatible ways in ! future releases. The name `c++0x' is deprecated. ! `gnu++11' ! `gnu++0x' ! GNU dialect of `-std=c++11'. Support for C++11 is still experimental, and may change in incompatible ways in future ! releases. The name `gnu++0x' is deprecated. ! `c++1y' ! The next revision of the ISO C++ standard, tentatively ! planned for 2017. Support is highly experimental, and will ! almost certainly change in incompatible ways in future ! releases. ! `gnu++1y' ! GNU dialect of `-std=c++1y'. Support is highly experimental, and will almost certainly change in incompatible ways in future releases. ! `-fgnu89-inline' ! The option `-fgnu89-inline' tells GCC to use the traditional GNU ! semantics for `inline' functions when in C99 mode. *Note An ! Inline Function is As Fast As a Macro: Inline. This option is ! accepted and ignored by GCC versions 4.1.3 up to but not including ! 4.3. In GCC versions 4.3 and later it changes the behavior of GCC ! in C99 mode. Using this option is roughly equivalent to adding the ! `gnu_inline' function attribute to all inline functions (*note Function Attributes::). ! The option `-fno-gnu89-inline' explicitly tells GCC to use the C99 ! semantics for `inline' when in C99 or gnu99 mode (i.e., it specifies the default behavior). This option was first supported ! in GCC 4.3. This option is not supported in `-std=c90' or ! `-std=gnu90' mode. ! The preprocessor macros `__GNUC_GNU_INLINE__' and ! `__GNUC_STDC_INLINE__' may be used to check which semantics are in ! effect for `inline' functions. *Note Common Predefined Macros: ! (cpp)Common Predefined Macros. ! `-aux-info FILENAME' Output to the given filename prototyped declarations for all functions declared and/or defined in a translation unit, including those in header files. This option is silently ignored in any language other than C. Besides declarations, the file indicates, in comments, the origin ! of each declaration (source file and line), whether the ! declaration was implicit, prototyped or unprototyped (`I', `N' for ! new or `O' for old, respectively, in the first character after the ! line number and the colon), and whether it came from a declaration ! or a definition (`C' or `F', respectively, in the following ! character). In the case of function definitions, a K&R-style list ! of arguments followed by their declarations is also provided, ! inside comments, after the declaration. ! `-fallow-parameterless-variadic-functions' Accept variadic functions without named parameters. Although it is possible to define such a function, this is not very useful as it is not possible to read the arguments. This is only supported for C as this construct is allowed by C++. ! `-fno-asm' ! Do not recognize `asm', `inline' or `typeof' as a keyword, so that code can use these words as identifiers. You can use the keywords ! `__asm__', `__inline__' and `__typeof__' instead. `-ansi' implies ! `-fno-asm'. ! In C++, this switch only affects the `typeof' keyword, since `asm' ! and `inline' are standard keywords. You may want to use the ! `-fno-gnu-keywords' flag instead, which has the same effect. In ! C99 mode (`-std=c99' or `-std=gnu99'), this switch only affects ! the `asm' and `typeof' keywords, since `inline' is a standard ! keyword in ISO C99. ! `-fno-builtin' ! `-fno-builtin-FUNCTION' Don't recognize built-in functions that do not begin with ! `__builtin_' as prefix. *Note Other built-in functions provided ! by GCC: Other Builtins, for details of the functions affected, ! including those which are not built-in functions when `-ansi' or ! `-std' options for strict ISO C conformance are used because they do not have an ISO standard meaning. GCC normally generates special code to handle certain built-in ! functions more efficiently; for instance, calls to `alloca' may become single instructions which adjust the stack directly, and ! calls to `memcpy' may become inline copy loops. The resulting ! code is often both smaller and faster, but since the function ! calls no longer appear as such, you cannot set a breakpoint on ! those calls, nor can you change the behavior of the functions by ! linking with a different library. In addition, when a function is ! recognized as a built-in function, GCC may use information about ! that function to warn about problems with calls to that function, ! or to generate more efficient code, even if the resulting code ! still contains calls to that function. For example, warnings are ! given with `-Wformat' for bad calls to `printf' when `printf' is ! built in and `strlen' is known not to modify global memory. ! With the `-fno-builtin-FUNCTION' option only the built-in function ! FUNCTION is disabled. FUNCTION must not begin with `__builtin_'. ! If a function is named that is not built-in in this version of ! GCC, this option is ignored. There is no corresponding ! `-fbuiltin-FUNCTION' option; if you wish to enable built-in ! functions selectively when using `-fno-builtin' or ! `-ffreestanding', you may define macros such as: #define abs(n) __builtin_abs ((n)) #define strcpy(d, s) __builtin_strcpy ((d), (s)) ! `-fhosted' Assert that compilation targets a hosted environment. This implies ! `-fbuiltin'. A hosted environment is one in which the entire ! standard library is available, and in which `main' has a return ! type of `int'. Examples are nearly everything except a kernel. ! This is equivalent to `-fno-freestanding'. - `-ffreestanding' Assert that compilation targets a freestanding environment. This ! implies `-fno-builtin'. A freestanding environment is one in ! which the standard library may not exist, and program startup may ! not necessarily be at `main'. The most obvious example is an OS ! kernel. This is equivalent to `-fno-hosted'. *Note Language Standards Supported by GCC: Standards, for details of freestanding and hosted environments. ! `-fopenmp' ! Enable handling of OpenMP directives `#pragma omp' in C/C++ and ! `!$omp' in Fortran. When `-fopenmp' is specified, the compiler ! generates parallel code according to the OpenMP Application ! Program Interface v3.0 `http://www.openmp.org/'. This option ! implies `-pthread', and thus is only supported on targets that ! have support for `-pthread'. ! `-fgnu-tm' ! When the option `-fgnu-tm' is specified, the compiler generates code for the Linux variant of Intel's current Transactional Memory ABI specification document (Revision 1.1, May 6 2009). This is an experimental feature whose interface may change in future versions --- 1761,2021 ---- from C, such as C++, Objective-C and Objective-C++) that the compiler accepts: ! '-ansi' ! In C mode, this is equivalent to '-std=c90'. In C++ mode, it is ! equivalent to '-std=c++98'. This turns off certain features of GCC that are incompatible with ! ISO C90 (when compiling C code), or of standard C++ (when compiling ! C++ code), such as the 'asm' and 'typeof' keywords, and predefined ! macros such as 'unix' and 'vax' that identify the type of system ! you are using. It also enables the undesirable and rarely used ISO ! trigraph feature. For the C compiler, it disables recognition of ! C++ style '//' comments as well as the 'inline' keyword. ! The alternate keywords '__asm__', '__extension__', '__inline__' and ! '__typeof__' continue to work despite '-ansi'. You would not want ! to use them in an ISO C program, of course, but it is useful to put ! them in header files that might be included in compilations done ! with '-ansi'. Alternate predefined macros such as '__unix__' and ! '__vax__' are also available, with or without '-ansi'. ! The '-ansi' option does not cause non-ISO programs to be rejected ! gratuitously. For that, '-Wpedantic' is required in addition to ! '-ansi'. *Note Warning Options::. ! The macro '__STRICT_ANSI__' is predefined when the '-ansi' option is used. Some header files may notice this macro and refrain from ! declaring certain functions or defining certain macros that the ISO ! standard doesn't call for; this is to avoid interfering with any ! programs that might use these names for other things. Functions that are normally built in but do not have semantics ! defined by ISO C (such as 'alloca' and 'ffs') are not built-in ! functions when '-ansi' is used. *Note Other built-in functions provided by GCC: Other Builtins, for details of the functions affected. ! '-std=' ! Determine the language standard. *Note Language Standards Supported by GCC: Standards, for details of these standard ! versions. This option is currently only supported when compiling C ! or C++. ! The compiler can accept several base standards, such as 'c90' or ! 'c++98', and GNU dialects of those standards, such as 'gnu90' or ! 'gnu++98'. When a base standard is specified, the compiler accepts ! all programs following that standard plus those using GNU ! extensions that do not contradict it. For example, '-std=c90' turns off certain features of GCC that are incompatible with ISO ! C90, such as the 'asm' and 'typeof' keywords, but not other GNU extensions that do not have a meaning in ISO C90, such as omitting ! the middle term of a '?:' expression. On the other hand, when a GNU dialect of a standard is specified, all features supported by the compiler are enabled, even when those features change the meaning of the base standard. As a result, some strict-conforming programs may be rejected. The particular standard is used by ! '-Wpedantic' to identify which features are GNU extensions given ! that version of the standard. For example '-std=gnu90 -Wpedantic' ! warns about C++ style '//' comments, while '-std=gnu99 -Wpedantic' does not. A value for this option must be provided; possible values are ! 'c90' ! 'c89' ! 'iso9899:1990' Support all ISO C90 programs (certain GNU extensions that ! conflict with ISO C90 are disabled). Same as '-ansi' for C code. ! 'iso9899:199409' ISO C90 as modified in amendment 1. ! 'c99' ! 'c9x' ! 'iso9899:1999' ! 'iso9899:199x' ISO C99. Note that this standard is not yet fully supported; ! see for more information. ! The names 'c9x' and 'iso9899:199x' are deprecated. ! 'c11' ! 'c1x' ! 'iso9899:2011' ISO C11, the 2011 revision of the ISO C standard. Support is ! incomplete and experimental. The name 'c1x' is deprecated. ! 'gnu90' ! 'gnu89' ! GNU dialect of ISO C90 (including some C99 features). This is the default for C code. ! 'gnu99' ! 'gnu9x' GNU dialect of ISO C99. When ISO C99 is fully implemented in ! GCC, this will become the default. The name 'gnu9x' is deprecated. ! 'gnu11' ! 'gnu1x' GNU dialect of ISO C11. Support is incomplete and ! experimental. The name 'gnu1x' is deprecated. ! 'c++98' ! 'c++03' The 1998 ISO C++ standard plus the 2003 technical corrigendum ! and some additional defect reports. Same as '-ansi' for C++ code. ! 'gnu++98' ! 'gnu++03' ! GNU dialect of '-std=c++98'. This is the default for C++ code. ! 'c++11' ! 'c++0x' The 2011 ISO C++ standard plus amendments. Support for C++11 is still experimental, and may change in incompatible ways in ! future releases. The name 'c++0x' is deprecated. ! 'gnu++11' ! 'gnu++0x' ! GNU dialect of '-std=c++11'. Support for C++11 is still experimental, and may change in incompatible ways in future ! releases. The name 'gnu++0x' is deprecated. ! 'c++1y' ! The next revision of the ISO C++ standard, tentatively planned ! for 2017. Support is highly experimental, and will almost ! certainly change in incompatible ways in future releases. ! 'gnu++1y' ! GNU dialect of '-std=c++1y'. Support is highly experimental, and will almost certainly change in incompatible ways in future releases. ! '-fgnu89-inline' ! The option '-fgnu89-inline' tells GCC to use the traditional GNU ! semantics for 'inline' functions when in C99 mode. *Note An Inline ! Function is As Fast As a Macro: Inline. This option is accepted ! and ignored by GCC versions 4.1.3 up to but not including 4.3. In ! GCC versions 4.3 and later it changes the behavior of GCC in C99 ! mode. Using this option is roughly equivalent to adding the ! 'gnu_inline' function attribute to all inline functions (*note Function Attributes::). ! The option '-fno-gnu89-inline' explicitly tells GCC to use the C99 ! semantics for 'inline' when in C99 or gnu99 mode (i.e., it specifies the default behavior). This option was first supported ! in GCC 4.3. This option is not supported in '-std=c90' or ! '-std=gnu90' mode. ! The preprocessor macros '__GNUC_GNU_INLINE__' and ! '__GNUC_STDC_INLINE__' may be used to check which semantics are in ! effect for 'inline' functions. *Note (cpp)Common Predefined ! Macros::. ! '-aux-info FILENAME' Output to the given filename prototyped declarations for all functions declared and/or defined in a translation unit, including those in header files. This option is silently ignored in any language other than C. Besides declarations, the file indicates, in comments, the origin ! of each declaration (source file and line), whether the declaration ! was implicit, prototyped or unprototyped ('I', 'N' for new or 'O' ! for old, respectively, in the first character after the line number ! and the colon), and whether it came from a declaration or a ! definition ('C' or 'F', respectively, in the following character). ! In the case of function definitions, a K&R-style list of arguments ! followed by their declarations is also provided, inside comments, ! after the declaration. ! '-fallow-parameterless-variadic-functions' Accept variadic functions without named parameters. Although it is possible to define such a function, this is not very useful as it is not possible to read the arguments. This is only supported for C as this construct is allowed by C++. ! '-fno-asm' ! Do not recognize 'asm', 'inline' or 'typeof' as a keyword, so that code can use these words as identifiers. You can use the keywords ! '__asm__', '__inline__' and '__typeof__' instead. '-ansi' implies ! '-fno-asm'. ! In C++, this switch only affects the 'typeof' keyword, since 'asm' ! and 'inline' are standard keywords. You may want to use the ! '-fno-gnu-keywords' flag instead, which has the same effect. In ! C99 mode ('-std=c99' or '-std=gnu99'), this switch only affects the ! 'asm' and 'typeof' keywords, since 'inline' is a standard keyword ! in ISO C99. ! '-fno-builtin' ! '-fno-builtin-FUNCTION' Don't recognize built-in functions that do not begin with ! '__builtin_' as prefix. *Note Other built-in functions provided by ! GCC: Other Builtins, for details of the functions affected, ! including those which are not built-in functions when '-ansi' or ! '-std' options for strict ISO C conformance are used because they do not have an ISO standard meaning. GCC normally generates special code to handle certain built-in ! functions more efficiently; for instance, calls to 'alloca' may become single instructions which adjust the stack directly, and ! calls to 'memcpy' may become inline copy loops. The resulting code ! is often both smaller and faster, but since the function calls no ! longer appear as such, you cannot set a breakpoint on those calls, ! nor can you change the behavior of the functions by linking with a ! different library. In addition, when a function is recognized as a ! built-in function, GCC may use information about that function to ! warn about problems with calls to that function, or to generate ! more efficient code, even if the resulting code still contains ! calls to that function. For example, warnings are given with ! '-Wformat' for bad calls to 'printf' when 'printf' is built in and ! 'strlen' is known not to modify global memory. ! With the '-fno-builtin-FUNCTION' option only the built-in function ! FUNCTION is disabled. FUNCTION must not begin with '__builtin_'. ! If a function is named that is not built-in in this version of GCC, ! this option is ignored. There is no corresponding ! '-fbuiltin-FUNCTION' option; if you wish to enable built-in ! functions selectively when using '-fno-builtin' or ! '-ffreestanding', you may define macros such as: #define abs(n) __builtin_abs ((n)) #define strcpy(d, s) __builtin_strcpy ((d), (s)) ! '-fhosted' ! Assert that compilation targets a hosted environment. This implies ! '-fbuiltin'. A hosted environment is one in which the entire ! standard library is available, and in which 'main' has a return ! type of 'int'. Examples are nearly everything except a kernel. ! This is equivalent to '-fno-freestanding'. ! ! '-ffreestanding' Assert that compilation targets a freestanding environment. This ! implies '-fno-builtin'. A freestanding environment is one in which ! the standard library may not exist, and program startup may not ! necessarily be at 'main'. The most obvious example is an OS ! kernel. This is equivalent to '-fno-hosted'. *Note Language Standards Supported by GCC: Standards, for details of freestanding and hosted environments. ! '-fopenmp' ! Enable handling of OpenMP directives '#pragma omp' in C/C++ and ! '!$omp' in Fortran. When '-fopenmp' is specified, the compiler ! generates parallel code according to the OpenMP Application Program ! Interface v3.0 . This option implies ! '-pthread', and thus is only supported on targets that have support ! for '-pthread'. ! '-fgnu-tm' ! When the option '-fgnu-tm' is specified, the compiler generates code for the Linux variant of Intel's current Transactional Memory ABI specification document (Revision 1.1, May 6 2009). This is an experimental feature whose interface may change in future versions *************** accepts: *** 2035,2043 **** libitm. Note that the transactional memory feature is not supported with ! non-call exceptions (`-fnon-call-exceptions'). ! `-fms-extensions' Accept some non-standard constructs used in Microsoft header files. In C++ code, this allows member names in structures to be similar --- 2027,2035 ---- libitm. Note that the transactional memory feature is not supported with ! non-call exceptions ('-fnon-call-exceptions'). ! '-fms-extensions' Accept some non-standard constructs used in Microsoft header files. In C++ code, this allows member names in structures to be similar *************** accepts: *** 2052,2121 **** accepted with this option. *Note Unnamed struct/union fields within structs/unions: Unnamed Fields, for details. ! `-fplan9-extensions' Accept some non-standard constructs used in Plan 9 code. ! This enables `-fms-extensions', permits passing pointers to structures with anonymous fields to functions that expect pointers to elements of the type of the field, and permits referring to anonymous fields declared using a typedef. *Note Unnamed struct/union fields within structs/unions: Unnamed Fields, for details. This is only supported for C, not C++. ! `-trigraphs' ! Support ISO C trigraphs. The `-ansi' option (and `-std' options ! for strict ISO C conformance) implies `-trigraphs'. ! `-traditional' ! `-traditional-cpp' Formerly, these options caused GCC to attempt to emulate a ! pre-standard C compiler. They are now only supported with the ! `-E' switch. The preprocessor continues to support a pre-standard ! mode. See the GNU CPP manual for details. ! `-fcond-mismatch' Allow conditional expressions with mismatched types in the second and third arguments. The value of such an expression is void. This option is not supported for C++. ! `-flax-vector-conversions' Allow implicit conversions between vectors with differing numbers of elements and/or incompatible element types. This option should not be used for new code. ! `-funsigned-char' ! Let the type `char' be unsigned, like `unsigned char'. ! Each kind of machine has a default for what `char' should be. It ! is either like `unsigned char' by default or like `signed char' by default. ! Ideally, a portable program should always use `signed char' or ! `unsigned char' when it depends on the signedness of an object. ! But many programs have been written to use plain `char' and expect it to be signed, or expect it to be unsigned, depending on the machines they were written for. This option, and its inverse, let you make such a program work with the opposite default. ! The type `char' is always a distinct type from each of `signed ! char' or `unsigned char', even though its behavior is always just like one of those two. ! `-fsigned-char' ! Let the type `char' be signed, like `signed char'. ! Note that this is equivalent to `-fno-unsigned-char', which is the ! negative form of `-funsigned-char'. Likewise, the option ! `-fno-signed-char' is equivalent to `-funsigned-char'. ! `-fsigned-bitfields' ! `-funsigned-bitfields' ! `-fno-signed-bitfields' ! `-fno-unsigned-bitfields' These options control whether a bit-field is signed or unsigned, ! when the declaration does not use either `signed' or `unsigned'. ! By default, such a bit-field is signed, because this is ! consistent: the basic integer types such as `int' are signed types.  File: gcc.info, Node: C++ Dialect Options, Next: Objective-C and Objective-C++ Dialect Options, Prev: C Dialect Options, Up: Invoking GCC --- 2044,2113 ---- accepted with this option. *Note Unnamed struct/union fields within structs/unions: Unnamed Fields, for details. ! '-fplan9-extensions' Accept some non-standard constructs used in Plan 9 code. ! This enables '-fms-extensions', permits passing pointers to structures with anonymous fields to functions that expect pointers to elements of the type of the field, and permits referring to anonymous fields declared using a typedef. *Note Unnamed struct/union fields within structs/unions: Unnamed Fields, for details. This is only supported for C, not C++. ! '-trigraphs' ! Support ISO C trigraphs. The '-ansi' option (and '-std' options ! for strict ISO C conformance) implies '-trigraphs'. ! '-traditional' ! '-traditional-cpp' Formerly, these options caused GCC to attempt to emulate a ! pre-standard C compiler. They are now only supported with the '-E' ! switch. The preprocessor continues to support a pre-standard mode. ! See the GNU CPP manual for details. ! '-fcond-mismatch' Allow conditional expressions with mismatched types in the second and third arguments. The value of such an expression is void. This option is not supported for C++. ! '-flax-vector-conversions' Allow implicit conversions between vectors with differing numbers of elements and/or incompatible element types. This option should not be used for new code. ! '-funsigned-char' ! Let the type 'char' be unsigned, like 'unsigned char'. ! Each kind of machine has a default for what 'char' should be. It ! is either like 'unsigned char' by default or like 'signed char' by default. ! Ideally, a portable program should always use 'signed char' or ! 'unsigned char' when it depends on the signedness of an object. ! But many programs have been written to use plain 'char' and expect it to be signed, or expect it to be unsigned, depending on the machines they were written for. This option, and its inverse, let you make such a program work with the opposite default. ! The type 'char' is always a distinct type from each of 'signed ! char' or 'unsigned char', even though its behavior is always just like one of those two. ! '-fsigned-char' ! Let the type 'char' be signed, like 'signed char'. ! Note that this is equivalent to '-fno-unsigned-char', which is the ! negative form of '-funsigned-char'. Likewise, the option ! '-fno-signed-char' is equivalent to '-funsigned-char'. ! '-fsigned-bitfields' ! '-funsigned-bitfields' ! '-fno-signed-bitfields' ! '-fno-unsigned-bitfields' These options control whether a bit-field is signed or unsigned, ! when the declaration does not use either 'signed' or 'unsigned'. ! By default, such a bit-field is signed, because this is consistent: ! the basic integer types such as 'int' are signed types.  File: gcc.info, Node: C++ Dialect Options, Next: Objective-C and Objective-C++ Dialect Options, Prev: C Dialect Options, Up: Invoking GCC *************** File: gcc.info, Node: C++ Dialect Optio *** 2126,2142 **** This section describes the command-line options that are only meaningful for C++ programs. You can also use most of the GNU compiler options regardless of what language your program is in. For example, you might ! compile a file `firstClass.C' like this: g++ -g -frepo -O -c firstClass.C ! In this example, only `-frepo' is an option meant only for C++ ! programs; you can use the other options with any language supported by ! GCC. Here is a list of options that are _only_ for compiling C++ programs: ! `-fabi-version=N' Use version N of the C++ ABI. The default is version 2. Version 0 refers to the version conforming most closely to the C++ --- 2118,2133 ---- This section describes the command-line options that are only meaningful for C++ programs. You can also use most of the GNU compiler options regardless of what language your program is in. For example, you might ! compile a file 'firstClass.C' like this: g++ -g -frepo -O -c firstClass.C ! In this example, only '-frepo' is an option meant only for C++ programs; ! you can use the other options with any language supported by GCC. Here is a list of options that are _only_ for compiling C++ programs: ! '-fabi-version=N' Use version N of the C++ ABI. The default is version 2. Version 0 refers to the version conforming most closely to the C++ *************** GCC. *** 2165,2195 **** argument packs, const/static_cast, prefix ++ and -, and a class scope function used as a template argument. ! See also `-Wabi'. ! `-fno-access-control' Turn off all access checking. This switch is mainly useful for working around bugs in the access control code. ! `-fcheck-new' ! Check that the pointer returned by `operator new' is non-null before attempting to modify the storage allocated. This check is normally unnecessary because the C++ standard specifies that ! `operator new' only returns `0' if it is declared `throw()', in ! which case the compiler always checks the return value even ! without this option. In all other cases, when `operator new' has ! a non-empty exception specification, memory exhaustion is ! signalled by throwing `std::bad_alloc'. See also `new (nothrow)'. ! `-fconstexpr-depth=N' Set the maximum nested evaluation depth for C++11 constexpr functions to N. A limit is needed to detect endless recursion during constant expression evaluation. The minimum specified by the standard is 512. ! `-fdeduce-init-list' Enable deduction of a template type parameter as ! `std::initializer_list' from a brace-enclosed initializer list, i.e. template auto forward(T t) -> decltype (realfn (t)) --- 2156,2186 ---- argument packs, const/static_cast, prefix ++ and -, and a class scope function used as a template argument. ! See also '-Wabi'. ! '-fno-access-control' Turn off all access checking. This switch is mainly useful for working around bugs in the access control code. ! '-fcheck-new' ! Check that the pointer returned by 'operator new' is non-null before attempting to modify the storage allocated. This check is normally unnecessary because the C++ standard specifies that ! 'operator new' only returns '0' if it is declared 'throw()', in ! which case the compiler always checks the return value even without ! this option. In all other cases, when 'operator new' has a ! non-empty exception specification, memory exhaustion is signalled ! by throwing 'std::bad_alloc'. See also 'new (nothrow)'. ! '-fconstexpr-depth=N' Set the maximum nested evaluation depth for C++11 constexpr functions to N. A limit is needed to detect endless recursion during constant expression evaluation. The minimum specified by the standard is 512. ! '-fdeduce-init-list' Enable deduction of a template type parameter as ! 'std::initializer_list' from a brace-enclosed initializer list, i.e. template auto forward(T t) -> decltype (realfn (t)) *************** GCC. *** 2208,2268 **** option is deprecated, and may be removed in a future version of G++. ! `-ffriend-injection' Inject friend functions into the enclosing namespace, so that they are visible outside the scope of the class in which they are ! declared. Friend functions were documented to work this way in ! the old Annotated C++ Reference Manual, and versions of G++ before ! 4.1 always worked that way. However, in ISO C++ a friend function ! that is not declared in an enclosing scope can only be found using argument dependent lookup. This option causes friends to be injected as they were in earlier releases. This option is for compatibility, and may be removed in a future release of G++. ! `-fno-elide-constructors' The C++ standard allows an implementation to omit creating a temporary that is only used to initialize another object of the same type. Specifying this option disables that optimization, and forces G++ to call the copy constructor in all cases. ! `-fno-enforce-eh-specs' Don't generate code to check for violation of exception ! specifications at run time. This option violates the C++ ! standard, but may be useful for reducing code size in production ! builds, much like defining `NDEBUG'. This does not give user code ! permission to throw exceptions in violation of the exception ! specifications; the compiler still optimizes based on the ! specifications, so throwing an unexpected exception results in ! undefined behavior at run time. ! `-fextern-tls-init' ! `-fno-extern-tls-init' ! The C++11 and OpenMP standards allow `thread_local' and ! `threadprivate' variables to have dynamic (runtime) ! initialization. To support this, any use of such a variable goes ! through a wrapper function that performs any necessary ! initialization. When the use and definition of the variable are ! in the same translation unit, this overhead can be optimized away, ! but when the use is in a different translation unit there is ! significant overhead even if the variable doesn't actually need ! dynamic initialization. If the programmer can be sure that no use ! of the variable in a non-defining TU needs to trigger dynamic ! initialization (either because the variable is statically ! initialized, or a use of the variable in the defining TU will be ! executed before any uses in another TU), they can avoid this ! overhead with the `-fno-extern-tls-init' option. On targets that support symbol aliases, the default is ! `-fextern-tls-init'. On targets that do not support symbol ! aliases, the default is `-fno-extern-tls-init'. ! `-ffor-scope' ! `-fno-for-scope' ! If `-ffor-scope' is specified, the scope of variables declared in ! a for-init-statement is limited to the `for' loop itself, as ! specified by the C++ standard. If `-fno-for-scope' is specified, the scope of variables declared in a for-init-statement extends to the end of the enclosing scope, as was the case in old versions of G++, and other (traditional) implementations of C++. --- 2199,2258 ---- option is deprecated, and may be removed in a future version of G++. ! '-ffriend-injection' Inject friend functions into the enclosing namespace, so that they are visible outside the scope of the class in which they are ! declared. Friend functions were documented to work this way in the ! old Annotated C++ Reference Manual, and versions of G++ before 4.1 ! always worked that way. However, in ISO C++ a friend function that ! is not declared in an enclosing scope can only be found using argument dependent lookup. This option causes friends to be injected as they were in earlier releases. This option is for compatibility, and may be removed in a future release of G++. ! '-fno-elide-constructors' The C++ standard allows an implementation to omit creating a temporary that is only used to initialize another object of the same type. Specifying this option disables that optimization, and forces G++ to call the copy constructor in all cases. ! '-fno-enforce-eh-specs' Don't generate code to check for violation of exception ! specifications at run time. This option violates the C++ standard, ! but may be useful for reducing code size in production builds, much ! like defining 'NDEBUG'. This does not give user code permission to ! throw exceptions in violation of the exception specifications; the ! compiler still optimizes based on the specifications, so throwing ! an unexpected exception results in undefined behavior at run time. ! '-fextern-tls-init' ! '-fno-extern-tls-init' ! The C++11 and OpenMP standards allow 'thread_local' and ! 'threadprivate' variables to have dynamic (runtime) initialization. ! To support this, any use of such a variable goes through a wrapper ! function that performs any necessary initialization. When the use ! and definition of the variable are in the same translation unit, ! this overhead can be optimized away, but when the use is in a ! different translation unit there is significant overhead even if ! the variable doesn't actually need dynamic initialization. If the ! programmer can be sure that no use of the variable in a ! non-defining TU needs to trigger dynamic initialization (either ! because the variable is statically initialized, or a use of the ! variable in the defining TU will be executed before any uses in ! another TU), they can avoid this overhead with the ! '-fno-extern-tls-init' option. On targets that support symbol aliases, the default is ! '-fextern-tls-init'. On targets that do not support symbol ! aliases, the default is '-fno-extern-tls-init'. ! '-ffor-scope' ! '-fno-for-scope' ! If '-ffor-scope' is specified, the scope of variables declared in a ! for-init-statement is limited to the 'for' loop itself, as ! specified by the C++ standard. If '-fno-for-scope' is specified, the scope of variables declared in a for-init-statement extends to the end of the enclosing scope, as was the case in old versions of G++, and other (traditional) implementations of C++. *************** GCC. *** 2271,2415 **** but to allow and give a warning for old-style code that would otherwise be invalid, or have different behavior. ! `-fno-gnu-keywords' ! Do not recognize `typeof' as a keyword, so that code can use this ! word as an identifier. You can use the keyword `__typeof__' ! instead. `-ansi' implies `-fno-gnu-keywords'. ! `-fno-implicit-templates' Never emit code for non-inline templates that are instantiated implicitly (i.e. by use); only emit code for explicit instantiations. *Note Template Instantiation::, for more information. ! `-fno-implicit-inline-templates' Don't emit code for implicit instantiations of inline templates, either. The default is to handle inlines differently so that compiles with and without optimization need the same set of explicit instantiations. ! `-fno-implement-inlines' To save space, do not emit out-of-line copies of inline functions ! controlled by `#pragma implementation'. This causes linker errors if these functions are not inlined everywhere they are called. ! `-fms-extensions' Disable Wpedantic warnings about constructs used in MFC, such as implicit int and getting a pointer to member function via non-standard syntax. ! `-fno-nonansi-builtins' Disable built-in declarations of functions that are not mandated by ! ANSI/ISO C. These include `ffs', `alloca', `_exit', `index', ! `bzero', `conjf', and other related functions. ! `-fnothrow-opt' ! Treat a `throw()' exception specification as if it were a ! `noexcept' specification to reduce or eliminate the text size overhead relative to a function with no exception specification. If the function has local variables of types with non-trivial destructors, the exception specification actually makes the function smaller because the EH cleanups for those variables can be optimized away. The semantic effect is that an exception thrown ! out of a function with such an exception specification results in ! a call to `terminate' rather than `unexpected'. ! `-fno-operator-names' ! Do not treat the operator name keywords `and', `bitand', `bitor', ! `compl', `not', `or' and `xor' as synonyms as keywords. ! `-fno-optional-diags' ! Disable diagnostics that the standard says a compiler does not ! need to issue. Currently, the only such diagnostic issued by G++ ! is the one for a name having multiple meanings within a class. ! `-fpermissive' Downgrade some diagnostics about nonconformant code from errors to ! warnings. Thus, using `-fpermissive' allows some nonconforming code to compile. ! `-fno-pretty-templates' When an error message refers to a specialization of a function template, the compiler normally prints the signature of the template followed by the template arguments and any typedefs or ! typenames in the signature (e.g. `void f(T) [with T = int]' rather ! than `void f(int)') so that it's clear which template is involved. When an error message refers to a specialization of a class template, the compiler omits any template arguments that match the default template arguments for that template. If either of these behaviors make it harder to understand the error message rather ! than easier, you can use `-fno-pretty-templates' to disable them. ! `-frepo' Enable automatic template instantiation at link time. This option ! also implies `-fno-implicit-templates'. *Note Template Instantiation::, for more information. ! `-fno-rtti' Disable generation of information about every class with virtual functions for use by the C++ run-time type identification features ! (`dynamic_cast' and `typeid'). If you don't use those parts of ! the language, you can save some space by using this flag. Note ! that exception handling uses the same information, but G++ ! generates it as needed. The `dynamic_cast' operator can still be ! used for casts that do not require run-time type information, i.e. ! casts to `void *' or to unambiguous base classes. ! `-fstats' Emit statistics about front-end processing at the end of the compilation. This information is generally only useful to the G++ development team. ! `-fstrict-enums' Allow the compiler to optimize using the assumption that a value of enumerated type can only be one of the values of the enumeration (as defined in the C++ standard; basically, a value that can be represented in the minimum number of bits needed to represent all the enumerators). This assumption may not be valid if the program ! uses a cast to convert an arbitrary integer value to the ! enumerated type. ! `-ftemplate-backtrace-limit=N' Set the maximum number of template instantiation notes for a single warning or error to N. The default value is 10. ! `-ftemplate-depth=N' Set the maximum instantiation depth for template classes to N. A limit on the template instantiation depth is needed to detect endless recursions during template class instantiation. ANSI/ISO C++ conforming programs must not rely on a maximum depth greater than 17 (changed to 1024 in C++11). The default value is 900, as ! the compiler can run out of stack space before hitting 1024 in ! some situations. ! `-fno-threadsafe-statics' Do not emit the extra code to use the routines specified in the C++ ABI for thread-safe initialization of local statics. You can use this option to reduce code size slightly in code that doesn't need to be thread-safe. ! `-fuse-cxa-atexit' Register destructors for objects with static storage duration with ! the `__cxa_atexit' function rather than the `atexit' function. This option is required for fully standards-compliant handling of static destructors, but only works if your C library supports ! `__cxa_atexit'. ! `-fno-use-cxa-get-exception-ptr' ! Don't use the `__cxa_get_exception_ptr' runtime routine. This ! causes `std::uncaught_exception' to be incorrect, but is necessary if the runtime routine is not available. ! `-fvisibility-inlines-hidden' This switch declares that the user does not attempt to compare pointers to inline functions or methods where the addresses of the two functions are taken in different shared objects. The effect of this is that GCC may, effectively, mark inline ! methods with `__attribute__ ((visibility ("hidden")))' so that ! they do not appear in the export table of a DSO and do not require ! a PLT indirection when used within the DSO. Enabling this option ! can have a dramatic effect on load and link times of a DSO as it massively reduces the size of the dynamic export table when the library makes heavy use of templates. --- 2261,2405 ---- but to allow and give a warning for old-style code that would otherwise be invalid, or have different behavior. ! '-fno-gnu-keywords' ! Do not recognize 'typeof' as a keyword, so that code can use this ! word as an identifier. You can use the keyword '__typeof__' ! instead. '-ansi' implies '-fno-gnu-keywords'. ! '-fno-implicit-templates' Never emit code for non-inline templates that are instantiated implicitly (i.e. by use); only emit code for explicit instantiations. *Note Template Instantiation::, for more information. ! '-fno-implicit-inline-templates' Don't emit code for implicit instantiations of inline templates, either. The default is to handle inlines differently so that compiles with and without optimization need the same set of explicit instantiations. ! '-fno-implement-inlines' To save space, do not emit out-of-line copies of inline functions ! controlled by '#pragma implementation'. This causes linker errors if these functions are not inlined everywhere they are called. ! '-fms-extensions' Disable Wpedantic warnings about constructs used in MFC, such as implicit int and getting a pointer to member function via non-standard syntax. ! '-fno-nonansi-builtins' Disable built-in declarations of functions that are not mandated by ! ANSI/ISO C. These include 'ffs', 'alloca', '_exit', 'index', ! 'bzero', 'conjf', and other related functions. ! '-fnothrow-opt' ! Treat a 'throw()' exception specification as if it were a ! 'noexcept' specification to reduce or eliminate the text size overhead relative to a function with no exception specification. If the function has local variables of types with non-trivial destructors, the exception specification actually makes the function smaller because the EH cleanups for those variables can be optimized away. The semantic effect is that an exception thrown ! out of a function with such an exception specification results in a ! call to 'terminate' rather than 'unexpected'. ! '-fno-operator-names' ! Do not treat the operator name keywords 'and', 'bitand', 'bitor', ! 'compl', 'not', 'or' and 'xor' as synonyms as keywords. ! '-fno-optional-diags' ! Disable diagnostics that the standard says a compiler does not need ! to issue. Currently, the only such diagnostic issued by G++ is the ! one for a name having multiple meanings within a class. ! '-fpermissive' Downgrade some diagnostics about nonconformant code from errors to ! warnings. Thus, using '-fpermissive' allows some nonconforming code to compile. ! '-fno-pretty-templates' When an error message refers to a specialization of a function template, the compiler normally prints the signature of the template followed by the template arguments and any typedefs or ! typenames in the signature (e.g. 'void f(T) [with T = int]' rather ! than 'void f(int)') so that it's clear which template is involved. When an error message refers to a specialization of a class template, the compiler omits any template arguments that match the default template arguments for that template. If either of these behaviors make it harder to understand the error message rather ! than easier, you can use '-fno-pretty-templates' to disable them. ! '-frepo' Enable automatic template instantiation at link time. This option ! also implies '-fno-implicit-templates'. *Note Template Instantiation::, for more information. ! '-fno-rtti' Disable generation of information about every class with virtual functions for use by the C++ run-time type identification features ! ('dynamic_cast' and 'typeid'). If you don't use those parts of the ! language, you can save some space by using this flag. Note that ! exception handling uses the same information, but G++ generates it ! as needed. The 'dynamic_cast' operator can still be used for casts ! that do not require run-time type information, i.e. casts to 'void ! *' or to unambiguous base classes. ! '-fstats' Emit statistics about front-end processing at the end of the compilation. This information is generally only useful to the G++ development team. ! '-fstrict-enums' Allow the compiler to optimize using the assumption that a value of enumerated type can only be one of the values of the enumeration (as defined in the C++ standard; basically, a value that can be represented in the minimum number of bits needed to represent all the enumerators). This assumption may not be valid if the program ! uses a cast to convert an arbitrary integer value to the enumerated ! type. ! '-ftemplate-backtrace-limit=N' Set the maximum number of template instantiation notes for a single warning or error to N. The default value is 10. ! '-ftemplate-depth=N' Set the maximum instantiation depth for template classes to N. A limit on the template instantiation depth is needed to detect endless recursions during template class instantiation. ANSI/ISO C++ conforming programs must not rely on a maximum depth greater than 17 (changed to 1024 in C++11). The default value is 900, as ! the compiler can run out of stack space before hitting 1024 in some ! situations. ! '-fno-threadsafe-statics' Do not emit the extra code to use the routines specified in the C++ ABI for thread-safe initialization of local statics. You can use this option to reduce code size slightly in code that doesn't need to be thread-safe. ! '-fuse-cxa-atexit' Register destructors for objects with static storage duration with ! the '__cxa_atexit' function rather than the 'atexit' function. This option is required for fully standards-compliant handling of static destructors, but only works if your C library supports ! '__cxa_atexit'. ! '-fno-use-cxa-get-exception-ptr' ! Don't use the '__cxa_get_exception_ptr' runtime routine. This ! causes 'std::uncaught_exception' to be incorrect, but is necessary if the runtime routine is not available. ! '-fvisibility-inlines-hidden' This switch declares that the user does not attempt to compare pointers to inline functions or methods where the addresses of the two functions are taken in different shared objects. The effect of this is that GCC may, effectively, mark inline ! methods with '__attribute__ ((visibility ("hidden")))' so that they ! do not appear in the export table of a DSO and do not require a PLT ! indirection when used within the DSO. Enabling this option can ! have a dramatic effect on load and link times of a DSO as it massively reduces the size of the dynamic export table when the library makes heavy use of templates. *************** GCC. *** 2428,2441 **** option as their linkage might otherwise cross a shared library boundary. *Note Template Instantiation::. ! `-fvisibility-ms-compat' This flag attempts to use visibility settings to make GCC's C++ linkage model compatible with that of Microsoft Visual Studio. The flag makes these changes to GCC's linkage model: ! 1. It sets the default visibility to `hidden', like ! `-fvisibility=hidden'. 2. Types, but not their members, are not hidden by default. --- 2418,2431 ---- option as their linkage might otherwise cross a shared library boundary. *Note Template Instantiation::. ! '-fvisibility-ms-compat' This flag attempts to use visibility settings to make GCC's C++ linkage model compatible with that of Microsoft Visual Studio. The flag makes these changes to GCC's linkage model: ! 1. It sets the default visibility to 'hidden', like ! '-fvisibility=hidden'. 2. Types, but not their members, are not hidden by default. *************** GCC. *** 2444,2450 **** shared object: those declarations are permitted if they are permitted when this option is not used. ! In new code it is better to use `-fvisibility=hidden' and export those classes that are intended to be externally visible. Unfortunately it is possible for code to rely, perhaps accidentally, on the Visual Studio behavior. --- 2434,2440 ---- shared object: those declarations are permitted if they are permitted when this option is not used. ! In new code it is better to use '-fvisibility=hidden' and export those classes that are intended to be externally visible. Unfortunately it is possible for code to rely, perhaps accidentally, on the Visual Studio behavior. *************** GCC. *** 2457,2484 **** given, it is a violation of the ODR to define types with the same name differently. ! `-fno-weak' Do not use weak symbol support, even if it is provided by the linker. By default, G++ uses weak symbols if they are available. This option exists only for testing, and should not be used by end-users; it results in inferior code and has no benefits. This option may be removed in a future release of G++. ! `-nostdinc++' ! Do not search for header files in the standard directories ! specific to C++, but do still search the other standard ! directories. (This option is used when building the C++ library.) In addition, these optimization, warning, and code generation options have meanings only for C++ programs: ! `-fno-default-inline' ! Do not assume `inline' for functions defined inside a class scope. *Note Options That Control Optimization: Optimize Options. Note that these functions have linkage like inline functions; they just aren't inlined by default. ! `-Wabi (C, Objective-C, C++ and Objective-C++ only)' Warn when G++ generates code that is probably not compatible with the vendor-neutral C++ ABI. Although an effort has been made to warn about all such cases, there are probably some cases that are --- 2447,2474 ---- given, it is a violation of the ODR to define types with the same name differently. ! '-fno-weak' Do not use weak symbol support, even if it is provided by the linker. By default, G++ uses weak symbols if they are available. This option exists only for testing, and should not be used by end-users; it results in inferior code and has no benefits. This option may be removed in a future release of G++. ! '-nostdinc++' ! Do not search for header files in the standard directories specific ! to C++, but do still search the other standard directories. (This ! option is used when building the C++ library.) In addition, these optimization, warning, and code generation options have meanings only for C++ programs: ! '-fno-default-inline' ! Do not assume 'inline' for functions defined inside a class scope. *Note Options That Control Optimization: Optimize Options. Note that these functions have linkage like inline functions; they just aren't inlined by default. ! '-Wabi (C, Objective-C, C++ and Objective-C++ only)' Warn when G++ generates code that is probably not compatible with the vendor-neutral C++ ABI. Although an effort has been made to warn about all such cases, there are probably some cases that are *************** have meanings only for C++ programs: *** 2490,2496 **** concerned about the fact that code generated by G++ may not be binary compatible with code generated by other compilers. ! The known incompatibilities in `-fabi-version=2' (the default) include: * A template with a non-type template parameter of reference --- 2480,2486 ---- concerned about the fact that code generated by G++ may not be binary compatible with code generated by other compilers. ! The known incompatibilities in '-fabi-version=2' (the default) include: * A template with a non-type template parameter of reference *************** have meanings only for C++ programs: *** 2499,2514 **** template struct S {}; void n (S) {2} ! This is fixed in `-fabi-version=3'. ! * SIMD vector types declared using `__attribute ! ((vector_size))' are mangled in a non-standard way that does ! not allow for overloading of functions taking vectors of ! different sizes. ! The mangling is changed in `-fabi-version=4'. ! The known incompatibilities in `-fabi-version=1' include: * Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack data into the same byte as a base class. For --- 2489,2503 ---- template struct S {}; void n (S) {2} ! This is fixed in '-fabi-version=3'. ! * SIMD vector types declared using '__attribute ((vector_size))' ! are mangled in a non-standard way that does not allow for ! overloading of functions taking vectors of different sizes. ! The mangling is changed in '-fabi-version=4'. ! The known incompatibilities in '-fabi-version=1' include: * Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack data into the same byte as a base class. For *************** have meanings only for C++ programs: *** 2517,2527 **** struct A { virtual void f(); int f1 : 1; }; struct B : public A { int f2 : 1; }; ! In this case, G++ places `B::f2' into the same byte as ! `A::f1'; other compilers do not. You can avoid this problem ! by explicitly padding `A' so that its size is a multiple of the byte size on your platform; that causes G++ and other ! compilers to lay out `B' identically. * Incorrect handling of tail-padding for virtual bases. G++ does not use tail padding when laying out virtual bases. For --- 2506,2516 ---- struct A { virtual void f(); int f1 : 1; }; struct B : public A { int f2 : 1; }; ! In this case, G++ places 'B::f2' into the same byte as ! 'A::f1'; other compilers do not. You can avoid this problem ! by explicitly padding 'A' so that its size is a multiple of the byte size on your platform; that causes G++ and other ! compilers to lay out 'B' identically. * Incorrect handling of tail-padding for virtual bases. G++ does not use tail padding when laying out virtual bases. For *************** have meanings only for C++ programs: *** 2531,2541 **** struct B { B(); char c2; }; struct C : public A, public virtual B {}; ! In this case, G++ does not place `B' into the tail-padding for ! `A'; other compilers do. You can avoid this problem by ! explicitly padding `A' so that its size is a multiple of its ! alignment (ignoring virtual base classes); that causes G++ ! and other compilers to lay out `C' identically. * Incorrect handling of bit-fields with declared widths greater than that of their underlying types, when the bit-fields --- 2520,2530 ---- struct B { B(); char c2; }; struct C : public A, public virtual B {}; ! In this case, G++ does not place 'B' into the tail-padding for ! 'A'; other compilers do. You can avoid this problem by ! explicitly padding 'A' so that its size is a multiple of its ! alignment (ignoring virtual base classes); that causes G++ and ! other compilers to lay out 'C' identically. * Incorrect handling of bit-fields with declared widths greater than that of their underlying types, when the bit-fields *************** have meanings only for C++ programs: *** 2543,2550 **** union U { int i : 4096; }; ! Assuming that an `int' does not have 4096 bits, G++ makes the ! union too small by the number of bits in an `int'. * Empty classes can be placed at incorrect offsets. For example: --- 2532,2539 ---- union U { int i : 4096; }; ! Assuming that an 'int' does not have 4096 bits, G++ makes the ! union too small by the number of bits in an 'int'. * Empty classes can be placed at incorrect offsets. For example: *************** have meanings only for C++ programs: *** 2558,2568 **** struct C : public B, public A {}; ! G++ places the `A' base class of `C' at a nonzero offset; it ! should be placed at offset zero. G++ mistakenly believes ! that the `A' data member of `B' is already at offset zero. ! * Names of template functions whose types involve `typename' or template template parameters can be mangled incorrectly. template --- 2547,2557 ---- struct C : public B, public A {}; ! G++ places the 'A' base class of 'C' at a nonzero offset; it ! should be placed at offset zero. G++ mistakenly believes that ! the 'A' data member of 'B' is already at offset zero. ! * Names of template functions whose types involve 'typename' or template template parameters can be mangled incorrectly. template *************** have meanings only for C++ programs: *** 2573,2613 **** Instantiations of these templates may be mangled incorrectly. ! It also warns about psABI-related changes. The known psABI ! changes at this point include: ! ! * For SysV/x86-64, unions with `long double' members are passed ! in memory as specified in psABI. For example: union U { long double ld; int i; }; ! `union U' is always passed in memory. ! ! `-Wctor-dtor-privacy (C++ and Objective-C++ only)' Warn when a class seems unusable because all the constructors or destructors in that class are private, and it has neither friends nor public static member functions. Also warn if there are no non-private methods, and there's at least one private member function that isn't a constructor or destructor. ! `-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)' ! Warn when `delete' is used to destroy an instance of a class that ! has virtual functions and non-virtual destructor. It is unsafe to delete an instance of a derived class through a pointer to a base class if the base class does not have a virtual destructor. This ! warning is enabled by `-Wall'. ! `-Wliteral-suffix (C++ and Objective-C++ only)' Warn when a string or character literal is followed by a ud-suffix which does not begin with an underscore. As a conforming extension, GCC treats such suffixes as separate preprocessing tokens in order to maintain backwards compatibility with code that ! uses formatting macros from `'. For example: #define __STDC_FORMAT_MACROS #include --- 2562,2600 ---- Instantiations of these templates may be mangled incorrectly. + It also warns about psABI-related changes. The known psABI changes + at this point include: ! * For SysV/x86-64, unions with 'long double' members are passed ! in memory as specified in psABI. For example: union U { long double ld; int i; }; ! 'union U' is always passed in memory. ! '-Wctor-dtor-privacy (C++ and Objective-C++ only)' Warn when a class seems unusable because all the constructors or destructors in that class are private, and it has neither friends nor public static member functions. Also warn if there are no non-private methods, and there's at least one private member function that isn't a constructor or destructor. ! '-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)' ! Warn when 'delete' is used to destroy an instance of a class that ! has virtual functions and non-virtual destructor. It is unsafe to delete an instance of a derived class through a pointer to a base class if the base class does not have a virtual destructor. This ! warning is enabled by '-Wall'. ! '-Wliteral-suffix (C++ and Objective-C++ only)' Warn when a string or character literal is followed by a ud-suffix which does not begin with an underscore. As a conforming extension, GCC treats such suffixes as separate preprocessing tokens in order to maintain backwards compatibility with code that ! uses formatting macros from ''. For example: #define __STDC_FORMAT_MACROS #include *************** have meanings only for C++ programs: *** 2618,2655 **** printf("My int64: %"PRId64"\n", i64); } ! In this case, `PRId64' is treated as a separate preprocessing token. This warning is enabled by default. ! `-Wnarrowing (C++ and Objective-C++ only)' Warn when a narrowing conversion prohibited by C++11 occurs within ! `{ }', e.g. int i = { 2.2 }; // error: narrowing from double to int ! This flag is included in `-Wall' and `-Wc++11-compat'. ! With `-std=c++11', `-Wno-narrowing' suppresses the diagnostic required by the standard. Note that this does not affect the meaning of well-formed code; narrowing conversions are still considered ill-formed in SFINAE context. ! `-Wnoexcept (C++ and Objective-C++ only)' Warn when a noexcept-expression evaluates to false because of a call to a function that does not have a non-throwing exception ! specification (i.e. `throw()' or `noexcept') but is known by the compiler to never throw an exception. ! `-Wnon-virtual-dtor (C++ and Objective-C++ only)' Warn when a class has virtual functions and an accessible non-virtual destructor, in which case it is possible but unsafe to ! delete an instance of a derived class through a pointer to the ! base class. This warning is also enabled if `-Weffc++' is ! specified. ! `-Wreorder (C++ and Objective-C++ only)' Warn when the order of member initializers given in the code does not match the order in which they must be executed. For instance: --- 2605,2641 ---- printf("My int64: %"PRId64"\n", i64); } ! In this case, 'PRId64' is treated as a separate preprocessing token. This warning is enabled by default. ! '-Wnarrowing (C++ and Objective-C++ only)' Warn when a narrowing conversion prohibited by C++11 occurs within ! '{ }', e.g. int i = { 2.2 }; // error: narrowing from double to int ! This flag is included in '-Wall' and '-Wc++11-compat'. ! With '-std=c++11', '-Wno-narrowing' suppresses the diagnostic required by the standard. Note that this does not affect the meaning of well-formed code; narrowing conversions are still considered ill-formed in SFINAE context. ! '-Wnoexcept (C++ and Objective-C++ only)' Warn when a noexcept-expression evaluates to false because of a call to a function that does not have a non-throwing exception ! specification (i.e. 'throw()' or 'noexcept') but is known by the compiler to never throw an exception. ! '-Wnon-virtual-dtor (C++ and Objective-C++ only)' Warn when a class has virtual functions and an accessible non-virtual destructor, in which case it is possible but unsafe to ! delete an instance of a derived class through a pointer to the base ! class. This warning is also enabled if '-Weffc++' is specified. ! '-Wreorder (C++ and Objective-C++ only)' Warn when the order of member initializers given in the code does not match the order in which they must be executed. For instance: *************** have meanings only for C++ programs: *** 2659,2740 **** A(): j (0), i (1) { } }; ! The compiler rearranges the member initializers for `i' and `j' to match the declaration order of the members, emitting a warning to ! that effect. This warning is enabled by `-Wall'. ! `-fext-numeric-literals (C++ and Objective-C++ only)' Accept imaginary, fixed-point, or machine-defined literal number suffixes as GNU extensions. When this option is turned off these suffixes are treated as C++11 user-defined literal numeric ! suffixes. This is on by default for all pre-C++11 dialects and ! all GNU dialects: `-std=c++98', `-std=gnu++98', `-std=gnu++11', ! `-std=gnu++1y'. This option is off by default for ISO C++11 ! onwards (`-std=c++11', ...). ! The following `-W...' options are not affected by `-Wall'. ! `-Weffc++ (C++ and Objective-C++ only)' Warn about violations of the following style guidelines from Scott ! Meyers' `Effective C++, Second Edition' book: ! ! * Item 11: Define a copy constructor and an assignment ! operator for classes with dynamically-allocated memory. ! * Item 12: Prefer initialization to assignment in constructors. ! * Item 14: Make destructors virtual in base classes. ! * Item 15: Have `operator=' return a reference to `*this'. ! * Item 23: Don't try to return a reference when you must ! return an object. Also warn about violations of the following style guidelines from ! Scott Meyers' `More Effective C++' book: ! * Item 6: Distinguish between prefix and postfix forms of increment and decrement operators. ! * Item 7: Never overload `&&', `||', or `,'. ! When selecting this option, be aware that the standard library ! headers do not obey all of these guidelines; use `grep -v' to filter out those warnings. ! `-Wstrict-null-sentinel (C++ and Objective-C++ only)' ! Warn about the use of an uncasted `NULL' as sentinel. When ! compiling only with GCC this is a valid sentinel, as `NULL' is ! defined to `__null'. Although it is a null pointer constant ! rather than a null pointer, it is guaranteed to be of the same ! size as a pointer. But this use is not portable across different ! compilers. ! `-Wno-non-template-friend (C++ and Objective-C++ only)' Disable warnings when non-templatized friend functions are declared within a template. Since the advent of explicit template specification support in G++, if the name of the friend is an ! unqualified-id (i.e., `friend foo(int)'), the C++ language specification demands that the friend declare or define an ordinary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit specification, unqualified-ids could be interpreted as a particular specialization of a templatized function. Because this non-conforming behavior is no longer the ! default behavior for G++, `-Wnon-template-friend' allows the compiler to check existing code for potential trouble spots and is on by default. This new compiler behavior can be turned off with ! `-Wno-non-template-friend', which keeps the conformant compiler code but disables the helpful warning. ! `-Wold-style-cast (C++ and Objective-C++ only)' Warn if an old-style (C-style) cast to a non-void type is used ! within a C++ program. The new-style casts (`dynamic_cast', ! `static_cast', `reinterpret_cast', and `const_cast') are less vulnerable to unintended effects and much easier to search for. ! `-Woverloaded-virtual (C++ and Objective-C++ only)' Warn when a function declaration hides virtual functions from a base class. For example, in: --- 2645,2723 ---- A(): j (0), i (1) { } }; ! The compiler rearranges the member initializers for 'i' and 'j' to match the declaration order of the members, emitting a warning to ! that effect. This warning is enabled by '-Wall'. ! '-fext-numeric-literals (C++ and Objective-C++ only)' Accept imaginary, fixed-point, or machine-defined literal number suffixes as GNU extensions. When this option is turned off these suffixes are treated as C++11 user-defined literal numeric ! suffixes. This is on by default for all pre-C++11 dialects and all ! GNU dialects: '-std=c++98', '-std=gnu++98', '-std=gnu++11', ! '-std=gnu++1y'. This option is off by default for ISO C++11 ! onwards ('-std=c++11', ...). ! The following '-W...' options are not affected by '-Wall'. ! '-Weffc++ (C++ and Objective-C++ only)' Warn about violations of the following style guidelines from Scott ! Meyers' 'Effective C++, Second Edition' book: ! * Item 11: Define a copy constructor and an assignment operator ! for classes with dynamically-allocated memory. ! * Item 12: Prefer initialization to assignment in constructors. ! * Item 14: Make destructors virtual in base classes. ! * Item 15: Have 'operator=' return a reference to '*this'. + * Item 23: Don't try to return a reference when you must return + an object. Also warn about violations of the following style guidelines from ! Scott Meyers' 'More Effective C++' book: ! * Item 6: Distinguish between prefix and postfix forms of increment and decrement operators. ! * Item 7: Never overload '&&', '||', or ','. When selecting this option, be aware that the standard library ! headers do not obey all of these guidelines; use 'grep -v' to filter out those warnings. ! '-Wstrict-null-sentinel (C++ and Objective-C++ only)' ! Warn about the use of an uncasted 'NULL' as sentinel. When ! compiling only with GCC this is a valid sentinel, as 'NULL' is ! defined to '__null'. Although it is a null pointer constant rather ! than a null pointer, it is guaranteed to be of the same size as a ! pointer. But this use is not portable across different compilers. ! '-Wno-non-template-friend (C++ and Objective-C++ only)' Disable warnings when non-templatized friend functions are declared within a template. Since the advent of explicit template specification support in G++, if the name of the friend is an ! unqualified-id (i.e., 'friend foo(int)'), the C++ language specification demands that the friend declare or define an ordinary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit specification, unqualified-ids could be interpreted as a particular specialization of a templatized function. Because this non-conforming behavior is no longer the ! default behavior for G++, '-Wnon-template-friend' allows the compiler to check existing code for potential trouble spots and is on by default. This new compiler behavior can be turned off with ! '-Wno-non-template-friend', which keeps the conformant compiler code but disables the helpful warning. ! '-Wold-style-cast (C++ and Objective-C++ only)' Warn if an old-style (C-style) cast to a non-void type is used ! within a C++ program. The new-style casts ('dynamic_cast', ! 'static_cast', 'reinterpret_cast', and 'const_cast') are less vulnerable to unintended effects and much easier to search for. ! '-Woverloaded-virtual (C++ and Objective-C++ only)' Warn when a function declaration hides virtual functions from a base class. For example, in: *************** have meanings only for C++ programs: *** 2746,2763 **** void f(int); }; ! the `A' class version of `f' is hidden in `B', and code like: B* b; b->f(); fails to compile. ! `-Wno-pmf-conversions (C++ and Objective-C++ only)' Disable the diagnostic for converting a bound pointer to member function to a plain pointer. ! `-Wsign-promo (C++ and Objective-C++ only)' Warn when overload resolution chooses a promotion from unsigned or enumerated type to a signed type, over a conversion to an unsigned type of the same size. Previous versions of G++ tried to preserve --- 2729,2746 ---- void f(int); }; ! the 'A' class version of 'f' is hidden in 'B', and code like: B* b; b->f(); fails to compile. ! '-Wno-pmf-conversions (C++ and Objective-C++ only)' Disable the diagnostic for converting a bound pointer to member function to a plain pointer. ! '-Wsign-promo (C++ and Objective-C++ only)' Warn when overload resolution chooses a promotion from unsigned or enumerated type to a signed type, over a conversion to an unsigned type of the same size. Previous versions of G++ tried to preserve *************** languages themselves. *Note Language St *** 2774,2975 **** Standards, for references.) This section describes the command-line options that are only ! meaningful for Objective-C and Objective-C++ programs. You can also ! use most of the language-independent GNU compiler options. For ! example, you might compile a file `some_class.m' like this: gcc -g -fgnu-runtime -O -c some_class.m ! In this example, `-fgnu-runtime' is an option meant only for ! Objective-C and Objective-C++ programs; you can use the other options ! with any language supported by GCC. Note that since Objective-C is an extension of the C language, Objective-C compilations may also use options specific to the C ! front-end (e.g., `-Wtraditional'). Similarly, Objective-C++ ! compilations may use C++-specific options (e.g., `-Wabi'). ! Here is a list of options that are _only_ for compiling Objective-C ! and Objective-C++ programs: ! `-fconstant-string-class=CLASS-NAME' Use CLASS-NAME as the name of the class to instantiate for each ! literal string specified with the syntax `@"..."'. The default ! class name is `NXConstantString' if the GNU runtime is being used, ! and `NSConstantString' if the NeXT runtime is being used (see ! below). The `-fconstant-cfstrings' option, if also present, ! overrides the `-fconstant-string-class' setting and cause `@"..."' literals to be laid out as constant CoreFoundation strings. ! `-fgnu-runtime' Generate object code compatible with the standard GNU Objective-C runtime. This is the default for most types of systems. ! `-fnext-runtime' Generate output compatible with the NeXT runtime. This is the ! default for NeXT-based systems, including Darwin and Mac OS X. ! The macro `__NEXT_RUNTIME__' is predefined if (and only if) this ! option is used. ! `-fno-nil-receivers' ! Assume that all Objective-C message dispatches (`[receiver message:arg]') in this translation unit ensure that the receiver is ! not `nil'. This allows for more efficient entry points in the runtime to be used. This option is only available in conjunction with the NeXT runtime and ABI version 0 or 1. ! `-fobjc-abi-version=N' Use version N of the Objective-C ABI for the selected runtime. This option is currently supported only for the NeXT runtime. In that case, Version 0 is the traditional (32-bit) ABI without support for properties and other Objective-C 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for properties and other Objective-C 2.0 additions. Version 2 is the ! modern (64-bit) ABI. If nothing is specified, the default is ! Version 0 on 32-bit target machines, and Version 2 on 64-bit ! target machines. ! `-fobjc-call-cxx-cdtors' For each Objective-C class, check if any of its instance variables is a C++ object with a non-trivial default constructor. If so, ! synthesize a special `- (id) .cxx_construct' instance method which runs non-trivial default constructors on any such instance ! variables, in order, and then return `self'. Similarly, check if any instance variable is a C++ object with a non-trivial ! destructor, and if so, synthesize a special `- (void) .cxx_destruct' method which runs all such default destructors, in reverse order. ! The `- (id) .cxx_construct' and `- (void) .cxx_destruct' methods ! thusly generated only operate on instance variables declared in ! the current Objective-C class, and not those inherited from superclasses. It is the responsibility of the Objective-C runtime to invoke all such methods in an object's inheritance hierarchy. ! The `- (id) .cxx_construct' methods are invoked by the runtime ! immediately after a new object instance is allocated; the `- ! (void) .cxx_destruct' methods are invoked immediately before the ! runtime deallocates an object instance. As of this writing, only the NeXT runtime on Mac OS X 10.4 and ! later has support for invoking the `- (id) .cxx_construct' and `- (void) .cxx_destruct' methods. ! `-fobjc-direct-dispatch' Allow fast jumps to the message dispatcher. On Darwin this is accomplished via the comm page. ! `-fobjc-exceptions' Enable syntactic support for structured exception handling in Objective-C, similar to what is offered by C++ and Java. This ! option is required to use the Objective-C keywords `@try', ! `@throw', `@catch', `@finally' and `@synchronized'. This option ! is available with both the GNU runtime and the NeXT runtime (but ! not available in conjunction with the NeXT runtime on Mac OS X ! 10.2 and earlier). ! `-fobjc-gc' Enable garbage collection (GC) in Objective-C and Objective-C++ programs. This option is only available with the NeXT runtime; the GNU runtime has a different garbage collection implementation that does not require special compiler flags. ! `-fobjc-nilcheck' For the NeXT runtime with version 2 of the ABI, check for a nil receiver in method invocations before doing the actual method call. ! This is the default and can be disabled using ! `-fno-objc-nilcheck'. Class methods and super calls are never ! checked for nil in this way no matter what this flag is set to. ! Currently this flag does nothing when the GNU runtime, or an older ! version of the NeXT runtime ABI, is used. ! `-fobjc-std=objc1' Conform to the language syntax of Objective-C 1.0, the language ! recognized by GCC 4.0. This only affects the Objective-C ! additions to the C/C++ language; it does not affect conformance to ! C/C++ standards, which is controlled by the separate C/C++ dialect ! option flags. When this option is used with the Objective-C or Objective-C++ compiler, any Objective-C syntax that is not recognized by GCC 4.0 is rejected. This is useful if you need to make sure that your Objective-C code can be compiled with older versions of GCC. ! `-freplace-objc-classes' ! Emit a special marker instructing `ld(1)' not to statically link in ! the resulting object file, and allow `dyld(1)' to load it in at ! run time instead. This is used in conjunction with the Fix-and-Continue debugging mode, where the object file in question ! may be recompiled and dynamically reloaded in the course of ! program execution, without the need to restart the program itself. Currently, Fix-and-Continue functionality is only available in conjunction with the NeXT runtime on Mac OS X 10.3 and later. ! `-fzero-link' When compiling for the NeXT runtime, the compiler ordinarily ! replaces calls to `objc_getClass("...")' (when the name of the class is known at compile time) with static class references that get initialized at load time, which improves run-time performance. ! Specifying the `-fzero-link' flag suppresses this behavior and ! causes calls to `objc_getClass("...")' to be retained. This is useful in Zero-Link debugging mode, since it allows for individual ! class implementations to be modified during program execution. ! The GNU runtime currently always retains calls to ! `objc_get_class("...")' regardless of command-line options. ! `-gen-decls' ! Dump interface declarations for all classes seen in the source ! file to a file named `SOURCENAME.decl'. ! `-Wassign-intercept (Objective-C and Objective-C++ only)' Warn whenever an Objective-C assignment is being intercepted by the garbage collector. ! `-Wno-protocol (Objective-C and Objective-C++ only)' ! If a class is declared to implement a protocol, a warning is ! issued for every method in the protocol that is not implemented by ! the class. The default behavior is to issue a warning for every ! method not explicitly implemented in the class, even if a method implementation is inherited from the superclass. If you use the ! `-Wno-protocol' option, then methods inherited from the superclass are considered to be implemented, and no warning is issued for them. ! `-Wselector (Objective-C and Objective-C++ only)' Warn if multiple methods of different types for the same selector are found during compilation. The check is performed on the list of methods in the final stage of compilation. Additionally, a check is performed for each selector appearing in a ! `@selector(...)' expression, and a corresponding method for that selector has been found during compilation. Because these checks scan the method table only at the end of compilation, these warnings are not produced if the final stage of compilation is not reached, for example because an error is found during compilation, ! or because the `-fsyntax-only' option is being used. ! `-Wstrict-selector-match (Objective-C and Objective-C++ only)' Warn if multiple methods with differing argument and/or return types are found for a given selector when attempting to send a ! message using this selector to a receiver of type `id' or `Class'. ! When this flag is off (which is the default behavior), the ! compiler omits such warnings if any differences found are confined ! to types that share the same size and alignment. ! `-Wundeclared-selector (Objective-C and Objective-C++ only)' ! Warn if a `@selector(...)' expression referring to an undeclared selector is found. A selector is considered undeclared if no ! method with that name has been declared before the ! `@selector(...)' expression, either explicitly in an `@interface' ! or `@protocol' declaration, or implicitly in an `@implementation' ! section. This option always performs its checks as soon as a ! `@selector(...)' expression is found, while `-Wselector' only ! performs its checks in the final stage of compilation. This also ! enforces the coding style convention that methods and selectors ! must be declared before being used. ! `-print-objc-runtime-info' Generate C header describing the largest structure that is passed by value, if any. -  File: gcc.info, Node: Language Independent Options, Next: Warning Options, Prev: Objective-C and Objective-C++ Dialect Options, Up: Invoking GCC --- 2757,2957 ---- Standards, for references.) This section describes the command-line options that are only ! meaningful for Objective-C and Objective-C++ programs. You can also use ! most of the language-independent GNU compiler options. For example, you ! might compile a file 'some_class.m' like this: gcc -g -fgnu-runtime -O -c some_class.m ! In this example, '-fgnu-runtime' is an option meant only for Objective-C ! and Objective-C++ programs; you can use the other options with any ! language supported by GCC. Note that since Objective-C is an extension of the C language, Objective-C compilations may also use options specific to the C ! front-end (e.g., '-Wtraditional'). Similarly, Objective-C++ ! compilations may use C++-specific options (e.g., '-Wabi'). ! Here is a list of options that are _only_ for compiling Objective-C and ! Objective-C++ programs: ! '-fconstant-string-class=CLASS-NAME' Use CLASS-NAME as the name of the class to instantiate for each ! literal string specified with the syntax '@"..."'. The default ! class name is 'NXConstantString' if the GNU runtime is being used, ! and 'NSConstantString' if the NeXT runtime is being used (see ! below). The '-fconstant-cfstrings' option, if also present, ! overrides the '-fconstant-string-class' setting and cause '@"..."' literals to be laid out as constant CoreFoundation strings. ! '-fgnu-runtime' Generate object code compatible with the standard GNU Objective-C runtime. This is the default for most types of systems. ! '-fnext-runtime' Generate output compatible with the NeXT runtime. This is the ! default for NeXT-based systems, including Darwin and Mac OS X. The ! macro '__NEXT_RUNTIME__' is predefined if (and only if) this option ! is used. ! '-fno-nil-receivers' ! Assume that all Objective-C message dispatches ('[receiver message:arg]') in this translation unit ensure that the receiver is ! not 'nil'. This allows for more efficient entry points in the runtime to be used. This option is only available in conjunction with the NeXT runtime and ABI version 0 or 1. ! '-fobjc-abi-version=N' Use version N of the Objective-C ABI for the selected runtime. This option is currently supported only for the NeXT runtime. In that case, Version 0 is the traditional (32-bit) ABI without support for properties and other Objective-C 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for properties and other Objective-C 2.0 additions. Version 2 is the ! modern (64-bit) ABI. If nothing is specified, the default is ! Version 0 on 32-bit target machines, and Version 2 on 64-bit target ! machines. ! '-fobjc-call-cxx-cdtors' For each Objective-C class, check if any of its instance variables is a C++ object with a non-trivial default constructor. If so, ! synthesize a special '- (id) .cxx_construct' instance method which runs non-trivial default constructors on any such instance ! variables, in order, and then return 'self'. Similarly, check if any instance variable is a C++ object with a non-trivial ! destructor, and if so, synthesize a special '- (void) .cxx_destruct' method which runs all such default destructors, in reverse order. ! The '- (id) .cxx_construct' and '- (void) .cxx_destruct' methods ! thusly generated only operate on instance variables declared in the ! current Objective-C class, and not those inherited from superclasses. It is the responsibility of the Objective-C runtime to invoke all such methods in an object's inheritance hierarchy. ! The '- (id) .cxx_construct' methods are invoked by the runtime ! immediately after a new object instance is allocated; the '- (void) ! .cxx_destruct' methods are invoked immediately before the runtime ! deallocates an object instance. As of this writing, only the NeXT runtime on Mac OS X 10.4 and ! later has support for invoking the '- (id) .cxx_construct' and '- (void) .cxx_destruct' methods. ! '-fobjc-direct-dispatch' Allow fast jumps to the message dispatcher. On Darwin this is accomplished via the comm page. ! '-fobjc-exceptions' Enable syntactic support for structured exception handling in Objective-C, similar to what is offered by C++ and Java. This ! option is required to use the Objective-C keywords '@try', ! '@throw', '@catch', '@finally' and '@synchronized'. This option is ! available with both the GNU runtime and the NeXT runtime (but not ! available in conjunction with the NeXT runtime on Mac OS X 10.2 and ! earlier). ! '-fobjc-gc' Enable garbage collection (GC) in Objective-C and Objective-C++ programs. This option is only available with the NeXT runtime; the GNU runtime has a different garbage collection implementation that does not require special compiler flags. ! '-fobjc-nilcheck' For the NeXT runtime with version 2 of the ABI, check for a nil receiver in method invocations before doing the actual method call. ! This is the default and can be disabled using '-fno-objc-nilcheck'. ! Class methods and super calls are never checked for nil in this way ! no matter what this flag is set to. Currently this flag does ! nothing when the GNU runtime, or an older version of the NeXT ! runtime ABI, is used. ! '-fobjc-std=objc1' Conform to the language syntax of Objective-C 1.0, the language ! recognized by GCC 4.0. This only affects the Objective-C additions ! to the C/C++ language; it does not affect conformance to C/C++ ! standards, which is controlled by the separate C/C++ dialect option ! flags. When this option is used with the Objective-C or Objective-C++ compiler, any Objective-C syntax that is not recognized by GCC 4.0 is rejected. This is useful if you need to make sure that your Objective-C code can be compiled with older versions of GCC. ! '-freplace-objc-classes' ! Emit a special marker instructing 'ld(1)' not to statically link in ! the resulting object file, and allow 'dyld(1)' to load it in at run ! time instead. This is used in conjunction with the Fix-and-Continue debugging mode, where the object file in question ! may be recompiled and dynamically reloaded in the course of program ! execution, without the need to restart the program itself. Currently, Fix-and-Continue functionality is only available in conjunction with the NeXT runtime on Mac OS X 10.3 and later. ! '-fzero-link' When compiling for the NeXT runtime, the compiler ordinarily ! replaces calls to 'objc_getClass("...")' (when the name of the class is known at compile time) with static class references that get initialized at load time, which improves run-time performance. ! Specifying the '-fzero-link' flag suppresses this behavior and ! causes calls to 'objc_getClass("...")' to be retained. This is useful in Zero-Link debugging mode, since it allows for individual ! class implementations to be modified during program execution. The ! GNU runtime currently always retains calls to ! 'objc_get_class("...")' regardless of command-line options. ! '-gen-decls' ! Dump interface declarations for all classes seen in the source file ! to a file named 'SOURCENAME.decl'. ! '-Wassign-intercept (Objective-C and Objective-C++ only)' Warn whenever an Objective-C assignment is being intercepted by the garbage collector. ! '-Wno-protocol (Objective-C and Objective-C++ only)' ! If a class is declared to implement a protocol, a warning is issued ! for every method in the protocol that is not implemented by the ! class. The default behavior is to issue a warning for every method ! not explicitly implemented in the class, even if a method implementation is inherited from the superclass. If you use the ! '-Wno-protocol' option, then methods inherited from the superclass are considered to be implemented, and no warning is issued for them. ! '-Wselector (Objective-C and Objective-C++ only)' Warn if multiple methods of different types for the same selector are found during compilation. The check is performed on the list of methods in the final stage of compilation. Additionally, a check is performed for each selector appearing in a ! '@selector(...)' expression, and a corresponding method for that selector has been found during compilation. Because these checks scan the method table only at the end of compilation, these warnings are not produced if the final stage of compilation is not reached, for example because an error is found during compilation, ! or because the '-fsyntax-only' option is being used. ! '-Wstrict-selector-match (Objective-C and Objective-C++ only)' Warn if multiple methods with differing argument and/or return types are found for a given selector when attempting to send a ! message using this selector to a receiver of type 'id' or 'Class'. ! When this flag is off (which is the default behavior), the compiler ! omits such warnings if any differences found are confined to types ! that share the same size and alignment. ! '-Wundeclared-selector (Objective-C and Objective-C++ only)' ! Warn if a '@selector(...)' expression referring to an undeclared selector is found. A selector is considered undeclared if no ! method with that name has been declared before the '@selector(...)' ! expression, either explicitly in an '@interface' or '@protocol' ! declaration, or implicitly in an '@implementation' section. This ! option always performs its checks as soon as a '@selector(...)' ! expression is found, while '-Wselector' only performs its checks in ! the final stage of compilation. This also enforces the coding ! style convention that methods and selectors must be declared before ! being used. ! '-print-objc-runtime-info' Generate C header describing the largest structure that is passed by value, if any.  File: gcc.info, Node: Language Independent Options, Next: Warning Options, Prev: Objective-C and Objective-C++ Dialect Options, Up: Invoking GCC *************** File: gcc.info, Node: Language Independ *** 2979,3019 **** Traditionally, diagnostic messages have been formatted irrespective of the output device's aspect (e.g. its width, ...). You can use the options described below to control the formatting algorithm for ! diagnostic messages, e.g. how many characters per line, how often ! source location information should be reported. Note that some ! language front ends may not honor these options. ! `-fmessage-length=N' Try to format error messages so that they fit on lines of about N ! characters. The default is 72 characters for `g++' and 0 for the rest of the front ends supported by GCC. If N is zero, then no line-wrapping is done; each error message appears on a single line. ! `-fdiagnostics-show-location=once' Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter to emit source location information _once_; that is, in case the message is too long to fit on a single physical line and has to be wrapped, the source location won't be emitted ! (as prefix) again, over and over, in subsequent continuation ! lines. This is the default behavior. ! `-fdiagnostics-show-location=every-line' Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter to emit the same source location information (as prefix) for physical lines that result from the process of breaking a message which is too long to fit on a single line. ! `-fno-diagnostics-show-option' By default, each diagnostic emitted includes text indicating the command-line option that directly controls the diagnostic (if such an option is known to the diagnostic machinery). Specifying the ! `-fno-diagnostics-show-option' flag suppresses that behavior. ! `-fno-diagnostics-show-caret' By default, each diagnostic emitted includes the original source ! line and a caret '^' indicating the column. This option ! suppresses this information. !  File: gcc.info, Node: Warning Options, Next: Debugging Options, Prev: Language Independent Options, Up: Invoking GCC --- 2961,3000 ---- Traditionally, diagnostic messages have been formatted irrespective of the output device's aspect (e.g. its width, ...). You can use the options described below to control the formatting algorithm for ! diagnostic messages, e.g. how many characters per line, how often source ! location information should be reported. Note that some language front ! ends may not honor these options. ! '-fmessage-length=N' Try to format error messages so that they fit on lines of about N ! characters. The default is 72 characters for 'g++' and 0 for the rest of the front ends supported by GCC. If N is zero, then no line-wrapping is done; each error message appears on a single line. ! '-fdiagnostics-show-location=once' Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter to emit source location information _once_; that is, in case the message is too long to fit on a single physical line and has to be wrapped, the source location won't be emitted ! (as prefix) again, over and over, in subsequent continuation lines. ! This is the default behavior. ! '-fdiagnostics-show-location=every-line' Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter to emit the same source location information (as prefix) for physical lines that result from the process of breaking a message which is too long to fit on a single line. ! '-fno-diagnostics-show-option' By default, each diagnostic emitted includes text indicating the command-line option that directly controls the diagnostic (if such an option is known to the diagnostic machinery). Specifying the ! '-fno-diagnostics-show-option' flag suppresses that behavior. ! '-fno-diagnostics-show-caret' By default, each diagnostic emitted includes the original source ! line and a caret '^' indicating the column. This option suppresses ! this information.  File: gcc.info, Node: Warning Options, Next: Debugging Options, Prev: Language Independent Options, Up: Invoking GCC *************** an error. *** 3028,3139 **** The following language-independent options do not enable specific warnings but control the kinds of diagnostics produced by GCC. ! `-fsyntax-only' Check the code for syntax errors, but don't do anything beyond that. ! `-fmax-errors=N' Limits the maximum number of error messages to N, at which point GCC bails out rather than attempting to continue processing the source code. If N is 0 (the default), there is no limit on the ! number of error messages produced. If `-Wfatal-errors' is also ! specified, then `-Wfatal-errors' takes precedence over this option. ! `-w' Inhibit all warning messages. ! `-Werror' Make all warnings into errors. ! `-Werror=' Make the specified warning into an error. The specifier for a ! warning is appended; for example `-Werror=switch' turns the ! warnings controlled by `-Wswitch' into errors. This switch takes a ! negative form, to be used to negate `-Werror' for specific ! warnings; for example `-Wno-error=switch' makes `-Wswitch' ! warnings not be errors, even when `-Werror' is in effect. The warning message for each controllable warning includes the option that controls the warning. That option can then be used ! with `-Werror=' and `-Wno-error=' as described above. (Printing ! of the option in the warning message can be disabled using the ! `-fno-diagnostics-show-option' flag.) ! Note that specifying `-Werror='FOO automatically implies `-W'FOO. ! However, `-Wno-error='FOO does not imply anything. ! `-Wfatal-errors' This option causes the compiler to abort compilation on the first error occurred rather than trying to keep going and printing further error messages. - You can request many specific warnings with options beginning with ! `-W', for example `-Wimplicit' to request warnings on implicit declarations. Each of these specific warning options also has a ! negative form beginning `-Wno-' to turn off warnings; for example, ! `-Wno-implicit'. This manual lists only one of the two forms, ! whichever is not the default. For further language-specific options ! also refer to *note C++ Dialect Options:: and *note Objective-C and ! Objective-C++ Dialect Options::. When an unrecognized warning option is requested (e.g., ! `-Wunknown-warning'), GCC emits a diagnostic stating that the option is ! not recognized. However, if the `-Wno-' form is used, the behavior is ! slightly different: no diagnostic is produced for ! `-Wno-unknown-warning' unless other diagnostics are being produced. ! This allows the use of new `-Wno-' options with old compilers, but if ! something goes wrong, the compiler warns that an unrecognized option is ! present. ! `-Wpedantic' ! `-pedantic' ! Issue all the warnings demanded by strict ISO C and ISO C++; ! reject all programs that use forbidden extensions, and some other ! programs that do not follow ISO C and ISO C++. For ISO C, follows ! the version of the ISO C standard specified by any `-std' option ! used. Valid ISO C and ISO C++ programs should compile properly with or ! without this option (though a rare few require `-ansi' or a `-std' ! option specifying the required version of ISO C). However, ! without this option, certain GNU extensions and traditional C and ! C++ features are supported as well. With this option, they are rejected. ! `-Wpedantic' does not cause warning messages for use of the ! alternate keywords whose names begin and end with `__'. Pedantic warnings are also disabled in the expression that follows ! `__extension__'. However, only system header files should use ! these escape routes; application programs should avoid them. ! *Note Alternate Keywords::. ! Some users try to use `-Wpedantic' to check programs for strict ISO C conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all--only those for which ISO C _requires_ a diagnostic, and some others for which diagnostics have been added. ! A feature to report any failure to conform to ISO C might be ! useful in some instances, but would require considerable ! additional work and would be quite different from `-Wpedantic'. ! We don't have plans to support such a feature in the near future. ! Where the standard specified with `-std' represents a GNU extended ! dialect of C, such as `gnu90' or `gnu99', there is a corresponding "base standard", the version of ISO C on which the GNU extended ! dialect is based. Warnings from `-Wpedantic' are given where they are required by the base standard. (It does not make sense for such warnings to be given only for features not in the specified GNU C dialect, since by definition the GNU dialects of C include ! all features the compiler supports with the given option, and ! there would be nothing to warn about.) ! `-pedantic-errors' ! Like `-Wpedantic', except that errors are produced rather than warnings. ! `-Wall' This enables all the warnings about constructions that some users consider questionable, and that are easy to avoid (or modify to prevent the warning), even in conjunction with macros. This also --- 3009,3117 ---- The following language-independent options do not enable specific warnings but control the kinds of diagnostics produced by GCC. ! '-fsyntax-only' Check the code for syntax errors, but don't do anything beyond that. ! '-fmax-errors=N' Limits the maximum number of error messages to N, at which point GCC bails out rather than attempting to continue processing the source code. If N is 0 (the default), there is no limit on the ! number of error messages produced. If '-Wfatal-errors' is also ! specified, then '-Wfatal-errors' takes precedence over this option. ! '-w' Inhibit all warning messages. ! '-Werror' Make all warnings into errors. ! '-Werror=' Make the specified warning into an error. The specifier for a ! warning is appended; for example '-Werror=switch' turns the ! warnings controlled by '-Wswitch' into errors. This switch takes a ! negative form, to be used to negate '-Werror' for specific ! warnings; for example '-Wno-error=switch' makes '-Wswitch' warnings ! not be errors, even when '-Werror' is in effect. The warning message for each controllable warning includes the option that controls the warning. That option can then be used ! with '-Werror=' and '-Wno-error=' as described above. (Printing of ! the option in the warning message can be disabled using the ! '-fno-diagnostics-show-option' flag.) ! Note that specifying '-Werror='FOO automatically implies '-W'FOO. ! However, '-Wno-error='FOO does not imply anything. ! '-Wfatal-errors' This option causes the compiler to abort compilation on the first error occurred rather than trying to keep going and printing further error messages. You can request many specific warnings with options beginning with ! '-W', for example '-Wimplicit' to request warnings on implicit declarations. Each of these specific warning options also has a ! negative form beginning '-Wno-' to turn off warnings; for example, ! '-Wno-implicit'. This manual lists only one of the two forms, whichever ! is not the default. For further language-specific options also refer to ! *note C++ Dialect Options:: and *note Objective-C and Objective-C++ ! Dialect Options::. When an unrecognized warning option is requested (e.g., ! '-Wunknown-warning'), GCC emits a diagnostic stating that the option is ! not recognized. However, if the '-Wno-' form is used, the behavior is ! slightly different: no diagnostic is produced for '-Wno-unknown-warning' ! unless other diagnostics are being produced. This allows the use of new ! '-Wno-' options with old compilers, but if something goes wrong, the ! compiler warns that an unrecognized option is present. ! '-Wpedantic' ! '-pedantic' ! Issue all the warnings demanded by strict ISO C and ISO C++; reject ! all programs that use forbidden extensions, and some other programs ! that do not follow ISO C and ISO C++. For ISO C, follows the ! version of the ISO C standard specified by any '-std' option used. Valid ISO C and ISO C++ programs should compile properly with or ! without this option (though a rare few require '-ansi' or a '-std' ! option specifying the required version of ISO C). However, without ! this option, certain GNU extensions and traditional C and C++ ! features are supported as well. With this option, they are rejected. ! '-Wpedantic' does not cause warning messages for use of the ! alternate keywords whose names begin and end with '__'. Pedantic warnings are also disabled in the expression that follows ! '__extension__'. However, only system header files should use ! these escape routes; application programs should avoid them. *Note ! Alternate Keywords::. ! Some users try to use '-Wpedantic' to check programs for strict ISO C conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all--only those for which ISO C _requires_ a diagnostic, and some others for which diagnostics have been added. ! A feature to report any failure to conform to ISO C might be useful ! in some instances, but would require considerable additional work ! and would be quite different from '-Wpedantic'. We don't have ! plans to support such a feature in the near future. ! Where the standard specified with '-std' represents a GNU extended ! dialect of C, such as 'gnu90' or 'gnu99', there is a corresponding "base standard", the version of ISO C on which the GNU extended ! dialect is based. Warnings from '-Wpedantic' are given where they are required by the base standard. (It does not make sense for such warnings to be given only for features not in the specified GNU C dialect, since by definition the GNU dialects of C include ! all features the compiler supports with the given option, and there ! would be nothing to warn about.) ! '-pedantic-errors' ! Like '-Wpedantic', except that errors are produced rather than warnings. ! '-Wall' This enables all the warnings about constructions that some users consider questionable, and that are easy to avoid (or modify to prevent the warning), even in conjunction with macros. This also *************** present. *** 3141,3150 **** Dialect Options:: and *note Objective-C and Objective-C++ Dialect Options::. ! `-Wall' turns on the following warning flags: -Waddress ! -Warray-bounds (only with `-O2') -Wc++11-compat -Wchar-subscripts -Wenum-compare (in C/ObjC; this is on by default in C++) --- 3119,3128 ---- Dialect Options:: and *note Objective-C and Objective-C++ Dialect Options::. ! '-Wall' turns on the following warning flags: -Waddress ! -Warray-bounds (only with -O2) -Wc++11-compat -Wchar-subscripts -Wenum-compare (in C/ObjC; this is on by default in C++) *************** present. *** 3152,3158 **** -Wimplicit-function-declaration (C and Objective-C only) -Wcomment -Wformat ! -Wmain (only for C/ObjC and unless `-ffreestanding') -Wmaybe-uninitialized -Wmissing-braces (only for C/ObjC) -Wnonnull --- 3130,3136 ---- -Wimplicit-function-declaration (C and Objective-C only) -Wcomment -Wformat ! -Wmain (only for C/ObjC and unless -ffreestanding) -Wmaybe-uninitialized -Wmissing-braces (only for C/ObjC) -Wnonnull *************** present. *** 3174,3190 **** -Wunused-variable -Wvolatile-register-var ! Note that some warning flags are not implied by `-Wall'. Some of them warn about constructions that users generally do not consider questionable, but which occasionally you might wish to check for; ! others warn about constructions that are necessary or hard to ! avoid in some cases, and there is no simple way to modify the code ! to suppress the warning. Some of them are enabled by `-Wextra' but many of them must be enabled individually. ! `-Wextra' This enables some extra warning flags that are not enabled by ! `-Wall'. (This option used to be called `-W'. The older name is still supported, but the newer name is more descriptive.) -Wclobbered --- 3152,3168 ---- -Wunused-variable -Wvolatile-register-var ! Note that some warning flags are not implied by '-Wall'. Some of them warn about constructions that users generally do not consider questionable, but which occasionally you might wish to check for; ! others warn about constructions that are necessary or hard to avoid ! in some cases, and there is no simple way to modify the code to ! suppress the warning. Some of them are enabled by '-Wextra' but many of them must be enabled individually. ! '-Wextra' This enables some extra warning flags that are not enabled by ! '-Wall'. (This option used to be called '-W'. The older name is still supported, but the newer name is more descriptive.) -Wclobbered *************** present. *** 3197,3210 **** -Wsign-compare -Wtype-limits -Wuninitialized ! -Wunused-parameter (only with `-Wunused' or `-Wall') ! -Wunused-but-set-parameter (only with `-Wunused' or `-Wall') ! The option `-Wextra' also prints warning messages for the ! following cases: ! * A pointer is compared against integer zero with `<', `<=', ! `>', or `>='. * (C++ only) An enumerator and a non-enumerator both appear in a conditional expression. --- 3175,3188 ---- -Wsign-compare -Wtype-limits -Wuninitialized ! -Wunused-parameter (only with -Wunused or -Wall) ! -Wunused-but-set-parameter (only with -Wunused or -Wall) ! The option '-Wextra' also prints warning messages for the following ! cases: ! * A pointer is compared against integer zero with '<', '<=', ! '>', or '>='. * (C++ only) An enumerator and a non-enumerator both appear in a conditional expression. *************** present. *** 3212,3440 **** * (C++ only) Ambiguous virtual bases. * (C++ only) Subscripting an array that has been declared ! `register'. * (C++ only) Taking the address of a variable that has been ! declared `register'. * (C++ only) A base class is not initialized in a derived class's copy constructor. ! ! `-Wchar-subscripts' ! Warn if an array subscript has type `char'. This is a common cause of error, as programmers often forget that this type is signed on ! some machines. This warning is enabled by `-Wall'. ! `-Wcomment' ! Warn whenever a comment-start sequence `/*' appears in a `/*' ! comment, or whenever a Backslash-Newline appears in a `//' comment. ! This warning is enabled by `-Wall'. ! `-Wno-coverage-mismatch' Warn if feedback profiles do not match when using the ! `-fprofile-use' option. If a source file is changed between ! compiling with `-fprofile-gen' and with `-fprofile-use', the files ! with the profile feedback can fail to match the source file and ! GCC cannot use the profile feedback information. By default, this warning is enabled and is treated as an error. ! `-Wno-coverage-mismatch' can be used to disable the warning or ! `-Wno-error=coverage-mismatch' can be used to disable the error. ! Disabling the error for this warning can result in poorly ! optimized code and is useful only in the case of very minor ! changes such as bug fixes to an existing code-base. Completely ! disabling the warning is not recommended. ! `-Wno-cpp' (C, Objective-C, C++, Objective-C++ and Fortran only) ! Suppress warning messages emitted by `#warning' directives. ! `-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)' ! Give a warning when a value of type `float' is implicitly promoted ! to `double'. CPUs with a 32-bit "single-precision" floating-point ! unit implement `float' in hardware, but emulate `double' in ! software. On such a machine, doing computations using `double' values is much more expensive because of the overhead required for software emulation. ! It is easy to accidentally do computations with `double' because ! floating-point literals are implicitly of type `double'. For example, in: float area(float radius) { return 3.14159 * radius * radius; } ! the compiler performs the entire computation with `double' because ! the floating-point literal is a `double'. ! `-Wformat' ! `-Wformat=N' ! Check calls to `printf' and `scanf', etc., to make sure that the arguments supplied have types appropriate to the format string specified, and that the conversions specified in the format string ! make sense. This includes standard functions, and others ! specified by format attributes (*note Function Attributes::), in ! the `printf', `scanf', `strftime' and `strfmon' (an X/Open ! extension, not in the C standard) families (or other ! target-specific families). Which functions are checked without ! format attributes having been specified depends on the standard ! version selected, and such checks of functions without the ! attribute specified are disabled by `-ffreestanding' or ! `-fno-builtin'. The formats are checked against the format features supported by GNU libc version 2.2. These include all ISO C90 and C99 features, ! as well as features from the Single Unix Specification and some ! BSD and GNU extensions. Other library implementations may not ! support all these features; GCC does not support warning about ! features that go beyond a particular library's limitations. ! However, if `-Wpedantic' is used with `-Wformat', warnings are ! given about format features not in the selected standard version ! (but not for `strfmon' formats, since those are not in any version ! of the C standard). *Note Options Controlling C Dialect: C ! Dialect Options. ! `-Wformat=1' ! `-Wformat' ! Option `-Wformat' is equivalent to `-Wformat=1', and ! `-Wno-format' is equivalent to `-Wformat=0'. Since ! `-Wformat' also checks for null format arguments for several ! functions, `-Wformat' also implies `-Wnonnull'. Some aspects ! of this level of format checking can be disabled by the ! options: `-Wno-format-contains-nul', ! `-Wno-format-extra-args', and `-Wno-format-zero-length'. ! `-Wformat' is enabled by `-Wall'. ! `-Wno-format-contains-nul' ! If `-Wformat' is specified, do not warn about format strings that contain NUL bytes. ! `-Wno-format-extra-args' ! If `-Wformat' is specified, do not warn about excess ! arguments to a `printf' or `scanf' format function. The C ! standard specifies that such arguments are ignored. Where the unused arguments lie between used arguments that are ! specified with `$' operand number specifications, normally warnings are still given, since the implementation could not ! know what type to pass to `va_arg' to skip the unused ! arguments. However, in the case of `scanf' formats, this option suppresses the warning if the unused arguments are all pointers, since the Single Unix Specification says that such unused arguments are allowed. ! `-Wno-format-zero-length' ! If `-Wformat' is specified, do not warn about zero-length formats. The C standard specifies that zero-length formats are allowed. ! `-Wformat=2' ! Enable `-Wformat' plus additional format checks. Currently ! equivalent to `-Wformat -Wformat-nonliteral -Wformat-security -Wformat-y2k'. ! `-Wformat-nonliteral' ! If `-Wformat' is specified, also warn if the format string is not a string literal and so cannot be checked, unless the ! format function takes its format arguments as a `va_list'. ! `-Wformat-security' ! If `-Wformat' is specified, also warn about uses of format functions that represent possible security problems. At ! present, this warns about calls to `printf' and `scanf' functions where the format string is not a string literal and ! there are no format arguments, as in `printf (foo);'. This may be a security hole if the format string came from ! untrusted input and contains `%n'. (This is currently a ! subset of what `-Wformat-nonliteral' warns about, but in ! future warnings may be added to `-Wformat-security' that are ! not included in `-Wformat-nonliteral'.) ! `-Wformat-y2k' ! If `-Wformat' is specified, also warn about `strftime' ! formats that may yield only a two-digit year. ! `-Wnonnull' ! Warn about passing a null pointer for arguments marked as ! requiring a non-null value by the `nonnull' function attribute. ! `-Wnonnull' is included in `-Wall' and `-Wformat'. It can be ! disabled with the `-Wno-nonnull' option. ! `-Winit-self (C, C++, Objective-C and Objective-C++ only)' Warn about uninitialized variables that are initialized with themselves. Note this option can only be used with the ! `-Wuninitialized' option. ! For example, GCC warns about `i' being uninitialized in the ! following snippet only when `-Winit-self' has been specified: int f() { int i = i; return i; } ! This warning is enabled by `-Wall' in C++. ! `-Wimplicit-int (C and Objective-C only)' Warn when a declaration does not specify a type. This warning is ! enabled by `-Wall'. ! `-Wimplicit-function-declaration (C and Objective-C only)' Give a warning whenever a function is used before being declared. ! In C99 mode (`-std=c99' or `-std=gnu99'), this warning is enabled ! by default and it is made into an error by `-pedantic-errors'. ! This warning is also enabled by `-Wall'. ! `-Wimplicit (C and Objective-C only)' ! Same as `-Wimplicit-int' and `-Wimplicit-function-declaration'. ! This warning is enabled by `-Wall'. ! `-Wignored-qualifiers (C and C++ only)' Warn if the return type of a function has a type qualifier such as ! `const'. For ISO C such a type qualifier has no effect, since the value returned by a function is not an lvalue. For C++, the ! warning is only emitted for scalar types or `void'. ISO C ! prohibits qualified `void' return types on function definitions, ! so such return types always receive a warning even without this option. ! This warning is also enabled by `-Wextra'. ! `-Wmain' ! Warn if the type of `main' is suspicious. `main' should be a function with external linkage, returning int, taking either zero arguments, two, or three arguments of appropriate types. This warning is enabled by default in C++ and is enabled by either ! `-Wall' or `-Wpedantic'. ! `-Wmissing-braces' Warn if an aggregate or union initializer is not fully bracketed. ! In the following example, the initializer for `a' is not fully ! bracketed, but that for `b' is fully bracketed. This warning is ! enabled by `-Wall' in C. int a[2][2] = { 0, 1, 2, 3 }; int b[2][2] = { { 0, 1 }, { 2, 3 } }; ! This warning is enabled by `-Wall'. ! `-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)' Warn if a user-supplied include directory does not exist. ! `-Wparentheses' Warn if parentheses are omitted in certain contexts, such as when there is an assignment in a context where a truth value is expected, or when operators are nested whose precedence people often get confused about. ! Also warn if a comparison like `x<=y<=z' appears; this is ! equivalent to `(x<=y ? 1 : 0) <= z', which is a different interpretation from that of ordinary mathematical notation. Also warn about constructions where there may be confusion to which ! `if' statement an `else' branch belongs. Here is an example of such a case: { --- 3190,3414 ---- * (C++ only) Ambiguous virtual bases. * (C++ only) Subscripting an array that has been declared ! 'register'. * (C++ only) Taking the address of a variable that has been ! declared 'register'. * (C++ only) A base class is not initialized in a derived class's copy constructor. ! '-Wchar-subscripts' ! Warn if an array subscript has type 'char'. This is a common cause of error, as programmers often forget that this type is signed on ! some machines. This warning is enabled by '-Wall'. ! '-Wcomment' ! Warn whenever a comment-start sequence '/*' appears in a '/*' ! comment, or whenever a Backslash-Newline appears in a '//' comment. ! This warning is enabled by '-Wall'. ! '-Wno-coverage-mismatch' Warn if feedback profiles do not match when using the ! '-fprofile-use' option. If a source file is changed between ! compiling with '-fprofile-gen' and with '-fprofile-use', the files ! with the profile feedback can fail to match the source file and GCC ! cannot use the profile feedback information. By default, this warning is enabled and is treated as an error. ! '-Wno-coverage-mismatch' can be used to disable the warning or ! '-Wno-error=coverage-mismatch' can be used to disable the error. ! Disabling the error for this warning can result in poorly optimized ! code and is useful only in the case of very minor changes such as ! bug fixes to an existing code-base. Completely disabling the ! warning is not recommended. ! '-Wno-cpp' (C, Objective-C, C++, Objective-C++ and Fortran only) ! Suppress warning messages emitted by '#warning' directives. ! '-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)' ! Give a warning when a value of type 'float' is implicitly promoted ! to 'double'. CPUs with a 32-bit "single-precision" floating-point ! unit implement 'float' in hardware, but emulate 'double' in ! software. On such a machine, doing computations using 'double' values is much more expensive because of the overhead required for software emulation. ! It is easy to accidentally do computations with 'double' because ! floating-point literals are implicitly of type 'double'. For example, in: float area(float radius) { return 3.14159 * radius * radius; } ! the compiler performs the entire computation with 'double' because ! the floating-point literal is a 'double'. ! '-Wformat' ! '-Wformat=N' ! Check calls to 'printf' and 'scanf', etc., to make sure that the arguments supplied have types appropriate to the format string specified, and that the conversions specified in the format string ! make sense. This includes standard functions, and others specified ! by format attributes (*note Function Attributes::), in the ! 'printf', 'scanf', 'strftime' and 'strfmon' (an X/Open extension, ! not in the C standard) families (or other target-specific ! families). Which functions are checked without format attributes ! having been specified depends on the standard version selected, and ! such checks of functions without the attribute specified are ! disabled by '-ffreestanding' or '-fno-builtin'. The formats are checked against the format features supported by GNU libc version 2.2. These include all ISO C90 and C99 features, ! as well as features from the Single Unix Specification and some BSD ! and GNU extensions. Other library implementations may not support ! all these features; GCC does not support warning about features ! that go beyond a particular library's limitations. However, if ! '-Wpedantic' is used with '-Wformat', warnings are given about ! format features not in the selected standard version (but not for ! 'strfmon' formats, since those are not in any version of the C ! standard). *Note Options Controlling C Dialect: C Dialect Options. ! '-Wformat=1' ! '-Wformat' ! Option '-Wformat' is equivalent to '-Wformat=1', and ! '-Wno-format' is equivalent to '-Wformat=0'. Since '-Wformat' ! also checks for null format arguments for several functions, ! '-Wformat' also implies '-Wnonnull'. Some aspects of this ! level of format checking can be disabled by the options: ! '-Wno-format-contains-nul', '-Wno-format-extra-args', and ! '-Wno-format-zero-length'. '-Wformat' is enabled by '-Wall'. ! '-Wno-format-contains-nul' ! If '-Wformat' is specified, do not warn about format strings that contain NUL bytes. ! '-Wno-format-extra-args' ! If '-Wformat' is specified, do not warn about excess arguments ! to a 'printf' or 'scanf' format function. The C standard ! specifies that such arguments are ignored. Where the unused arguments lie between used arguments that are ! specified with '$' operand number specifications, normally warnings are still given, since the implementation could not ! know what type to pass to 'va_arg' to skip the unused ! arguments. However, in the case of 'scanf' formats, this option suppresses the warning if the unused arguments are all pointers, since the Single Unix Specification says that such unused arguments are allowed. ! '-Wno-format-zero-length' ! If '-Wformat' is specified, do not warn about zero-length formats. The C standard specifies that zero-length formats are allowed. ! '-Wformat=2' ! Enable '-Wformat' plus additional format checks. Currently ! equivalent to '-Wformat -Wformat-nonliteral -Wformat-security -Wformat-y2k'. ! '-Wformat-nonliteral' ! If '-Wformat' is specified, also warn if the format string is not a string literal and so cannot be checked, unless the ! format function takes its format arguments as a 'va_list'. ! '-Wformat-security' ! If '-Wformat' is specified, also warn about uses of format functions that represent possible security problems. At ! present, this warns about calls to 'printf' and 'scanf' functions where the format string is not a string literal and ! there are no format arguments, as in 'printf (foo);'. This may be a security hole if the format string came from ! untrusted input and contains '%n'. (This is currently a ! subset of what '-Wformat-nonliteral' warns about, but in ! future warnings may be added to '-Wformat-security' that are ! not included in '-Wformat-nonliteral'.) ! '-Wformat-y2k' ! If '-Wformat' is specified, also warn about 'strftime' formats ! that may yield only a two-digit year. ! '-Wnonnull' ! Warn about passing a null pointer for arguments marked as requiring ! a non-null value by the 'nonnull' function attribute. ! '-Wnonnull' is included in '-Wall' and '-Wformat'. It can be ! disabled with the '-Wno-nonnull' option. ! '-Winit-self (C, C++, Objective-C and Objective-C++ only)' Warn about uninitialized variables that are initialized with themselves. Note this option can only be used with the ! '-Wuninitialized' option. ! For example, GCC warns about 'i' being uninitialized in the ! following snippet only when '-Winit-self' has been specified: int f() { int i = i; return i; } ! This warning is enabled by '-Wall' in C++. ! '-Wimplicit-int (C and Objective-C only)' Warn when a declaration does not specify a type. This warning is ! enabled by '-Wall'. ! '-Wimplicit-function-declaration (C and Objective-C only)' Give a warning whenever a function is used before being declared. ! In C99 mode ('-std=c99' or '-std=gnu99'), this warning is enabled ! by default and it is made into an error by '-pedantic-errors'. ! This warning is also enabled by '-Wall'. ! '-Wimplicit (C and Objective-C only)' ! Same as '-Wimplicit-int' and '-Wimplicit-function-declaration'. ! This warning is enabled by '-Wall'. ! '-Wignored-qualifiers (C and C++ only)' Warn if the return type of a function has a type qualifier such as ! 'const'. For ISO C such a type qualifier has no effect, since the value returned by a function is not an lvalue. For C++, the ! warning is only emitted for scalar types or 'void'. ISO C ! prohibits qualified 'void' return types on function definitions, so ! such return types always receive a warning even without this option. ! This warning is also enabled by '-Wextra'. ! '-Wmain' ! Warn if the type of 'main' is suspicious. 'main' should be a function with external linkage, returning int, taking either zero arguments, two, or three arguments of appropriate types. This warning is enabled by default in C++ and is enabled by either ! '-Wall' or '-Wpedantic'. ! '-Wmissing-braces' Warn if an aggregate or union initializer is not fully bracketed. ! In the following example, the initializer for 'a' is not fully ! bracketed, but that for 'b' is fully bracketed. This warning is ! enabled by '-Wall' in C. int a[2][2] = { 0, 1, 2, 3 }; int b[2][2] = { { 0, 1 }, { 2, 3 } }; ! This warning is enabled by '-Wall'. ! '-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)' Warn if a user-supplied include directory does not exist. ! '-Wparentheses' Warn if parentheses are omitted in certain contexts, such as when there is an assignment in a context where a truth value is expected, or when operators are nested whose precedence people often get confused about. ! Also warn if a comparison like 'x<=y<=z' appears; this is ! equivalent to '(x<=y ? 1 : 0) <= z', which is a different interpretation from that of ordinary mathematical notation. Also warn about constructions where there may be confusion to which ! 'if' statement an 'else' branch belongs. Here is an example of such a case: { *************** present. *** 3445,3458 **** bar (); } ! In C/C++, every `else' branch belongs to the innermost possible ! `if' statement, which in this example is `if (b)'. This is often not what the programmer expected, as illustrated in the above example by indentation the programmer chose. When there is the potential for this confusion, GCC issues a warning when this flag is specified. To eliminate the warning, add explicit braces around ! the innermost `if' statement so there is no way the `else' can ! belong to the enclosing `if'. The resulting code looks like this: { if (a) --- 3419,3432 ---- bar (); } ! In C/C++, every 'else' branch belongs to the innermost possible ! 'if' statement, which in this example is 'if (b)'. This is often not what the programmer expected, as illustrated in the above example by indentation the programmer chose. When there is the potential for this confusion, GCC issues a warning when this flag is specified. To eliminate the warning, add explicit braces around ! the innermost 'if' statement so there is no way the 'else' can ! belong to the enclosing 'if'. The resulting code looks like this: { if (a) *************** present. *** 3464,3478 **** } } ! Also warn for dangerous uses of the GNU extension to `?:' with ! omitted middle operand. When the condition in the `?': operator is a boolean expression, the omitted value is always 1. Often ! programmers expect it to be a value computed inside the ! conditional expression instead. ! This warning is enabled by `-Wall'. ! `-Wsequence-point' Warn about code that may have undefined semantics because of violations of sequence point rules in the C and C++ standards. --- 3438,3452 ---- } } ! Also warn for dangerous uses of the GNU extension to '?:' with ! omitted middle operand. When the condition in the '?': operator is a boolean expression, the omitted value is always 1. Often ! programmers expect it to be a value computed inside the conditional ! expression instead. ! This warning is enabled by '-Wall'. ! '-Wsequence-point' Warn about code that may have undefined semantics because of violations of sequence point rules in the C and C++ standards. *************** present. *** 3482,3511 **** program: those executed before the sequence point, and those executed after it. These occur after the evaluation of a full expression (one which is not part of a larger expression), after ! the evaluation of the first operand of a `&&', `||', `? :' or `,' (comma) operator, before a function is called (but after the evaluation of its arguments and the expression denoting the called ! function), and in certain other places. Other than as expressed ! by the sequence point rules, the order of evaluation of ! subexpressions of an expression is not specified. All these rules ! describe only a partial order rather than a total order, since, ! for example, if two functions are called within one expression ! with no sequence point between them, the order in which the ! functions are called is not specified. However, the standards ! committee have ruled that function calls do not overlap. It is not specified when between sequence points modifications to ! the values of objects take effect. Programs whose behavior ! depends on this have undefined behavior; the C and C++ standards ! specify that "Between the previous and next sequence point an ! object shall have its stored value modified at most once by the ! evaluation of an expression. Furthermore, the prior value shall ! be read only to determine the value to be stored.". If a program ! breaks these rules, the results on any particular implementation ! are entirely unpredictable. ! Examples of code with undefined behavior are `a = a++;', `a[n] = ! b[n++]' and `a[i++] = i;'. Some more complicated cases are not diagnosed by this option, and it may give an occasional false positive result, but in general it has been found fairly effective at detecting this sort of problem in programs. --- 3456,3485 ---- program: those executed before the sequence point, and those executed after it. These occur after the evaluation of a full expression (one which is not part of a larger expression), after ! the evaluation of the first operand of a '&&', '||', '? :' or ',' (comma) operator, before a function is called (but after the evaluation of its arguments and the expression denoting the called ! function), and in certain other places. Other than as expressed by ! the sequence point rules, the order of evaluation of subexpressions ! of an expression is not specified. All these rules describe only a ! partial order rather than a total order, since, for example, if two ! functions are called within one expression with no sequence point ! between them, the order in which the functions are called is not ! specified. However, the standards committee have ruled that ! function calls do not overlap. It is not specified when between sequence points modifications to ! the values of objects take effect. Programs whose behavior depends ! on this have undefined behavior; the C and C++ standards specify ! that "Between the previous and next sequence point an object shall ! have its stored value modified at most once by the evaluation of an ! expression. Furthermore, the prior value shall be read only to ! determine the value to be stored.". If a program breaks these ! rules, the results on any particular implementation are entirely ! unpredictable. ! Examples of code with undefined behavior are 'a = a++;', 'a[n] = ! b[n++]' and 'a[i++] = i;'. Some more complicated cases are not diagnosed by this option, and it may give an occasional false positive result, but in general it has been found fairly effective at detecting this sort of problem in programs. *************** present. *** 3514,3658 **** over the precise meaning of the sequence point rules in subtle cases. Links to discussions of the problem, including proposed formal definitions, may be found on the GCC readings page, at ! `http://gcc.gnu.org/readings.html'. ! This warning is enabled by `-Wall' for C and C++. ! `-Wno-return-local-addr' Do not warn about returning a pointer (or in C++, a reference) to a variable that goes out of scope after the function returns. ! `-Wreturn-type' Warn whenever a function is defined with a return type that ! defaults to `int'. Also warn about any `return' statement with no ! return value in a function whose return type is not `void' ! (falling off the end of the function body is considered returning ! without a value), and about a `return' statement with an ! expression in a function whose return type is `void'. For C++, a function without return type always produces a ! diagnostic message, even when `-Wno-return-type' is specified. ! The only exceptions are `main' and functions defined in system ! headers. ! This warning is enabled by `-Wall'. ! `-Wswitch' ! Warn whenever a `switch' statement has an index of enumerated type ! and lacks a `case' for one or more of the named codes of that ! enumeration. (The presence of a `default' label prevents this ! warning.) `case' labels outside the enumeration range also ! provoke warnings when this option is used (even if there is a ! `default' label). This warning is enabled by `-Wall'. ! `-Wswitch-default' ! Warn whenever a `switch' statement does not have a `default' case. ! `-Wswitch-enum' ! Warn whenever a `switch' statement has an index of enumerated type ! and lacks a `case' for one or more of the named codes of that ! enumeration. `case' labels outside the enumeration range also provoke warnings when this option is used. The only difference ! between `-Wswitch' and this option is that this option gives a warning about an omitted enumeration code even if there is a ! `default' label. ! `-Wsync-nand (C and C++ only)' ! Warn when `__sync_fetch_and_nand' and `__sync_nand_and_fetch' built-in functions are used. These functions changed semantics in GCC 4.4. ! `-Wtrigraphs' ! Warn if any trigraphs are encountered that might change the ! meaning of the program (trigraphs within comments are not warned ! about). This warning is enabled by `-Wall'. ! `-Wunused-but-set-parameter' Warn whenever a function parameter is assigned to, but otherwise unused (aside from its declaration). ! To suppress this warning use the `unused' attribute (*note ! Variable Attributes::). ! This warning is also enabled by `-Wunused' together with `-Wextra'. ! `-Wunused-but-set-variable' Warn whenever a local variable is assigned to, but otherwise unused ! (aside from its declaration). This warning is enabled by `-Wall'. ! To suppress this warning use the `unused' attribute (*note ! Variable Attributes::). ! This warning is also enabled by `-Wunused', which is enabled by ! `-Wall'. ! `-Wunused-function' Warn whenever a static function is declared but not defined or a non-inline static function is unused. This warning is enabled by ! `-Wall'. ! `-Wunused-label' Warn whenever a label is declared but not used. This warning is ! enabled by `-Wall'. ! To suppress this warning use the `unused' attribute (*note ! Variable Attributes::). ! `-Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)' Warn when a typedef locally defined in a function is not used. ! This warning is enabled by `-Wall'. ! `-Wunused-parameter' Warn whenever a function parameter is unused aside from its declaration. ! To suppress this warning use the `unused' attribute (*note ! Variable Attributes::). ! `-Wno-unused-result' Do not warn if a caller of a function marked with attribute ! `warn_unused_result' (*note Function Attributes::) does not use ! its return value. The default is `-Wunused-result'. ! `-Wunused-variable' Warn whenever a local variable or non-constant static variable is unused aside from its declaration. This warning is enabled by ! `-Wall'. ! To suppress this warning use the `unused' attribute (*note ! Variable Attributes::). ! `-Wunused-value' Warn whenever a statement computes a result that is explicitly not ! used. To suppress this warning cast the unused expression to ! `void'. This includes an expression-statement or the left-hand ! side of a comma expression that contains no side effects. For ! example, an expression such as `x[i,j]' causes a warning, while ! `x[(void)i,j]' does not. ! This warning is enabled by `-Wall'. ! `-Wunused' ! All the above `-Wunused' options combined. In order to get a warning about an unused function parameter, you ! must either specify `-Wextra -Wunused' (note that `-Wall' implies ! `-Wunused'), or separately specify `-Wunused-parameter'. ! `-Wuninitialized' Warn if an automatic variable is used without first being ! initialized or if a variable may be clobbered by a `setjmp' call. ! In C++, warn if a non-static reference or non-static `const' member appears in a class without constructors. ! If you want to warn about code that uses the uninitialized value ! of the variable in its own initializer, use the `-Winit-self' ! option. These warnings occur for individual uninitialized or clobbered elements of structure, union or array variables as well as for variables that are uninitialized or clobbered as a whole. They do ! not occur for variables or elements declared `volatile'. Because these warnings depend on optimization, the exact variables or elements for which there are warnings depends on the precise optimization options and version of GCC used. --- 3488,3630 ---- over the precise meaning of the sequence point rules in subtle cases. Links to discussions of the problem, including proposed formal definitions, may be found on the GCC readings page, at ! . ! This warning is enabled by '-Wall' for C and C++. ! '-Wno-return-local-addr' Do not warn about returning a pointer (or in C++, a reference) to a variable that goes out of scope after the function returns. ! '-Wreturn-type' Warn whenever a function is defined with a return type that ! defaults to 'int'. Also warn about any 'return' statement with no ! return value in a function whose return type is not 'void' (falling ! off the end of the function body is considered returning without a ! value), and about a 'return' statement with an expression in a ! function whose return type is 'void'. For C++, a function without return type always produces a ! diagnostic message, even when '-Wno-return-type' is specified. The ! only exceptions are 'main' and functions defined in system headers. ! This warning is enabled by '-Wall'. ! '-Wswitch' ! Warn whenever a 'switch' statement has an index of enumerated type ! and lacks a 'case' for one or more of the named codes of that ! enumeration. (The presence of a 'default' label prevents this ! warning.) 'case' labels outside the enumeration range also provoke ! warnings when this option is used (even if there is a 'default' ! label). This warning is enabled by '-Wall'. ! '-Wswitch-default' ! Warn whenever a 'switch' statement does not have a 'default' case. ! '-Wswitch-enum' ! Warn whenever a 'switch' statement has an index of enumerated type ! and lacks a 'case' for one or more of the named codes of that ! enumeration. 'case' labels outside the enumeration range also provoke warnings when this option is used. The only difference ! between '-Wswitch' and this option is that this option gives a warning about an omitted enumeration code even if there is a ! 'default' label. ! '-Wsync-nand (C and C++ only)' ! Warn when '__sync_fetch_and_nand' and '__sync_nand_and_fetch' built-in functions are used. These functions changed semantics in GCC 4.4. ! '-Wtrigraphs' ! Warn if any trigraphs are encountered that might change the meaning ! of the program (trigraphs within comments are not warned about). ! This warning is enabled by '-Wall'. ! '-Wunused-but-set-parameter' Warn whenever a function parameter is assigned to, but otherwise unused (aside from its declaration). ! To suppress this warning use the 'unused' attribute (*note Variable ! Attributes::). ! This warning is also enabled by '-Wunused' together with '-Wextra'. ! '-Wunused-but-set-variable' Warn whenever a local variable is assigned to, but otherwise unused ! (aside from its declaration). This warning is enabled by '-Wall'. ! To suppress this warning use the 'unused' attribute (*note Variable ! Attributes::). ! This warning is also enabled by '-Wunused', which is enabled by ! '-Wall'. ! '-Wunused-function' Warn whenever a static function is declared but not defined or a non-inline static function is unused. This warning is enabled by ! '-Wall'. ! '-Wunused-label' Warn whenever a label is declared but not used. This warning is ! enabled by '-Wall'. ! To suppress this warning use the 'unused' attribute (*note Variable ! Attributes::). ! '-Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)' Warn when a typedef locally defined in a function is not used. ! This warning is enabled by '-Wall'. ! '-Wunused-parameter' Warn whenever a function parameter is unused aside from its declaration. ! To suppress this warning use the 'unused' attribute (*note Variable ! Attributes::). ! '-Wno-unused-result' Do not warn if a caller of a function marked with attribute ! 'warn_unused_result' (*note Function Attributes::) does not use its ! return value. The default is '-Wunused-result'. ! '-Wunused-variable' Warn whenever a local variable or non-constant static variable is unused aside from its declaration. This warning is enabled by ! '-Wall'. ! To suppress this warning use the 'unused' attribute (*note Variable ! Attributes::). ! '-Wunused-value' Warn whenever a statement computes a result that is explicitly not ! used. To suppress this warning cast the unused expression to ! 'void'. This includes an expression-statement or the left-hand ! side of a comma expression that contains no side effects. For ! example, an expression such as 'x[i,j]' causes a warning, while ! 'x[(void)i,j]' does not. ! This warning is enabled by '-Wall'. ! '-Wunused' ! All the above '-Wunused' options combined. In order to get a warning about an unused function parameter, you ! must either specify '-Wextra -Wunused' (note that '-Wall' implies ! '-Wunused'), or separately specify '-Wunused-parameter'. ! '-Wuninitialized' Warn if an automatic variable is used without first being ! initialized or if a variable may be clobbered by a 'setjmp' call. ! In C++, warn if a non-static reference or non-static 'const' member appears in a class without constructors. ! If you want to warn about code that uses the uninitialized value of ! the variable in its own initializer, use the '-Winit-self' option. These warnings occur for individual uninitialized or clobbered elements of structure, union or array variables as well as for variables that are uninitialized or clobbered as a whole. They do ! not occur for variables or elements declared 'volatile'. Because these warnings depend on optimization, the exact variables or elements for which there are warnings depends on the precise optimization options and version of GCC used. *************** present. *** 3662,3676 **** computations may be deleted by data flow analysis before the warnings are printed. ! `-Wmaybe-uninitialized' For an automatic variable, if there exists a path from the function entry to a use of the variable that is initialized, but there exist some other paths for which the variable is not initialized, the ! compiler emits a warning if it cannot prove the uninitialized ! paths are not executed at run time. These warnings are made ! optional because GCC is not smart enough to see all the reasons ! why the code might be correct in spite of appearing to have an ! error. Here is one example of how this can happen: { int x; --- 3634,3648 ---- computations may be deleted by data flow analysis before the warnings are printed. ! '-Wmaybe-uninitialized' For an automatic variable, if there exists a path from the function entry to a use of the variable that is initialized, but there exist some other paths for which the variable is not initialized, the ! compiler emits a warning if it cannot prove the uninitialized paths ! are not executed at run time. These warnings are made optional ! because GCC is not smart enough to see all the reasons why the code ! might be correct in spite of appearing to have an error. Here is ! one example of how this can happen: { int x; *************** present. *** 3685,3764 **** foo (x); } ! If the value of `y' is always 1, 2 or 3, then `x' is always ! initialized, but GCC doesn't know this. To suppress the warning, you need to provide a default case with assert(0) or similar code. ! This option also warns when a non-volatile automatic variable ! might be changed by a call to `longjmp'. These warnings as well ! are possible only in optimizing compilation. ! The compiler sees only the calls to `setjmp'. It cannot know ! where `longjmp' will be called; in fact, a signal handler could ! call it at any point in the code. As a result, you may get a ! warning even when there is in fact no problem because `longjmp' ! cannot in fact be called at the place that would cause a problem. Some spurious warnings can be avoided if you declare all the ! functions you use that never return as `noreturn'. *Note Function Attributes::. ! This warning is enabled by `-Wall' or `-Wextra'. ! `-Wunknown-pragmas' ! Warn when a `#pragma' directive is encountered that is not understood by GCC. If this command-line option is used, warnings are even issued for unknown pragmas in system header files. This ! is not the case if the warnings are only enabled by the `-Wall' command-line option. ! `-Wno-pragmas' Do not warn about misuses of pragmas, such as incorrect parameters, invalid syntax, or conflicts between pragmas. See also ! `-Wunknown-pragmas'. ! `-Wstrict-aliasing' ! This option is only active when `-fstrict-aliasing' is active. It warns about code that might break the strict aliasing rules that ! the compiler is using for optimization. The warning does not ! catch all cases, but does attempt to catch the more common ! pitfalls. It is included in `-Wall'. It is equivalent to ! `-Wstrict-aliasing=3' ! `-Wstrict-aliasing=n' ! This option is only active when `-fstrict-aliasing' is active. It warns about code that might break the strict aliasing rules that the compiler is using for optimization. Higher levels correspond to higher accuracy (fewer false positives). Higher levels also ! correspond to more effort, similar to the way `-O' works. ! `-Wstrict-aliasing' is equivalent to `-Wstrict-aliasing=3'. Level 1: Most aggressive, quick, least accurate. Possibly useful ! when higher levels do not warn but `-fstrict-aliasing' still ! breaks the code, as it has very few false negatives. However, it ! has many false positives. Warns for all pointer conversions ! between possibly incompatible types, even if never dereferenced. ! Runs in the front end only. Level 2: Aggressive, quick, not too precise. May still have many false positives (not as many as level 1 though), and few false negatives (but possibly more than level 1). Unlike level 1, it ! only warns when an address is taken. Warns about incomplete ! types. Runs in the front end only. ! Level 3 (default for `-Wstrict-aliasing'): Should have very few false positives and few false negatives. Slightly slower than levels 1 or 2 when optimization is enabled. Takes care of the common pun+dereference pattern in the front end: ! `*(int*)&some_float'. If optimization is enabled, it also runs in the back end, where it deals with multiple statement cases using flow-sensitive points-to information. Only warns when the converted pointer is dereferenced. Does not warn about incomplete types. ! `-Wstrict-overflow' ! `-Wstrict-overflow=N' ! This option is only active when `-fstrict-overflow' is active. It warns about cases where the compiler optimizes based on the assumption that signed overflow does not occur. Note that it does not warn about all cases where the code might overflow: it only --- 3657,3735 ---- foo (x); } ! If the value of 'y' is always 1, 2 or 3, then 'x' is always ! initialized, but GCC doesn't know this. To suppress the warning, you need to provide a default case with assert(0) or similar code. ! This option also warns when a non-volatile automatic variable might ! be changed by a call to 'longjmp'. These warnings as well are ! possible only in optimizing compilation. ! The compiler sees only the calls to 'setjmp'. It cannot know where ! 'longjmp' will be called; in fact, a signal handler could call it ! at any point in the code. As a result, you may get a warning even ! when there is in fact no problem because 'longjmp' cannot in fact ! be called at the place that would cause a problem. Some spurious warnings can be avoided if you declare all the ! functions you use that never return as 'noreturn'. *Note Function Attributes::. ! This warning is enabled by '-Wall' or '-Wextra'. ! '-Wunknown-pragmas' ! Warn when a '#pragma' directive is encountered that is not understood by GCC. If this command-line option is used, warnings are even issued for unknown pragmas in system header files. This ! is not the case if the warnings are only enabled by the '-Wall' command-line option. ! '-Wno-pragmas' Do not warn about misuses of pragmas, such as incorrect parameters, invalid syntax, or conflicts between pragmas. See also ! '-Wunknown-pragmas'. ! '-Wstrict-aliasing' ! This option is only active when '-fstrict-aliasing' is active. It warns about code that might break the strict aliasing rules that ! the compiler is using for optimization. The warning does not catch ! all cases, but does attempt to catch the more common pitfalls. It ! is included in '-Wall'. It is equivalent to '-Wstrict-aliasing=3' ! '-Wstrict-aliasing=n' ! This option is only active when '-fstrict-aliasing' is active. It warns about code that might break the strict aliasing rules that the compiler is using for optimization. Higher levels correspond to higher accuracy (fewer false positives). Higher levels also ! correspond to more effort, similar to the way '-O' works. ! '-Wstrict-aliasing' is equivalent to '-Wstrict-aliasing=3'. Level 1: Most aggressive, quick, least accurate. Possibly useful ! when higher levels do not warn but '-fstrict-aliasing' still breaks ! the code, as it has very few false negatives. However, it has many ! false positives. Warns for all pointer conversions between ! possibly incompatible types, even if never dereferenced. Runs in ! the front end only. Level 2: Aggressive, quick, not too precise. May still have many false positives (not as many as level 1 though), and few false negatives (but possibly more than level 1). Unlike level 1, it ! only warns when an address is taken. Warns about incomplete types. ! Runs in the front end only. ! Level 3 (default for '-Wstrict-aliasing'): Should have very few false positives and few false negatives. Slightly slower than levels 1 or 2 when optimization is enabled. Takes care of the common pun+dereference pattern in the front end: ! '*(int*)&some_float'. If optimization is enabled, it also runs in the back end, where it deals with multiple statement cases using flow-sensitive points-to information. Only warns when the converted pointer is dereferenced. Does not warn about incomplete types. ! '-Wstrict-overflow' ! '-Wstrict-overflow=N' ! This option is only active when '-fstrict-overflow' is active. It warns about cases where the compiler optimizes based on the assumption that signed overflow does not occur. Note that it does not warn about all cases where the code might overflow: it only *************** present. *** 3775,3885 **** loop requires, in particular when determining whether a loop will be executed at all. ! `-Wstrict-overflow=1' ! Warn about cases that are both questionable and easy to ! avoid. For example, with `-fstrict-overflow', the compiler ! simplifies `x + 1 > x' to `1'. This level of ! `-Wstrict-overflow' is enabled by `-Wall'; higher levels are ! not, and must be explicitly requested. ! `-Wstrict-overflow=2' Also warn about other cases where a comparison is simplified ! to a constant. For example: `abs (x) >= 0'. This can only be ! simplified when `-fstrict-overflow' is in effect, because ! `abs (INT_MIN)' overflows to `INT_MIN', which is less than ! zero. `-Wstrict-overflow' (with no level) is the same as ! `-Wstrict-overflow=2'. ! `-Wstrict-overflow=3' Also warn about other cases where a comparison is simplified. ! For example: `x + 1 > 1' is simplified to `x > 0'. ! `-Wstrict-overflow=4' ! Also warn about other simplifications not covered by the ! above cases. For example: `(x * 10) / 5' is simplified to `x ! * 2'. ! `-Wstrict-overflow=5' ! Also warn about cases where the compiler reduces the ! magnitude of a constant involved in a comparison. For ! example: `x + 2 > y' is simplified to `x + 1 >= y'. This is ! reported only at the highest warning level because this ! simplification applies to many comparisons, so this warning ! level gives a very large number of false positives. ! `-Wsuggest-attribute=[pure|const|noreturn|format]' ! Warn for cases where adding an attribute may be beneficial. The attributes currently supported are listed below. ! `-Wsuggest-attribute=pure' ! `-Wsuggest-attribute=const' ! `-Wsuggest-attribute=noreturn' Warn about functions that might be candidates for attributes ! `pure', `const' or `noreturn'. The compiler only warns for functions visible in other compilation units or (in the case ! of `pure' and `const') if it cannot prove that the function ! returns normally. A function returns normally if it doesn't contain an infinite loop or return abnormally by throwing, ! calling `abort()' or trapping. This analysis requires option ! `-fipa-pure-const', which is enabled by default at `-O' and higher. Higher optimization levels improve the accuracy of the analysis. ! `-Wsuggest-attribute=format' ! `-Wmissing-format-attribute' Warn about function pointers that might be candidates for ! `format' attributes. Note these are only possible ! candidates, not absolute ones. GCC guesses that function ! pointers with `format' attributes that are used in ! assignment, initialization, parameter passing or return ! statements should have a corresponding `format' attribute in ! the resulting type. I.e. the left-hand side of the ! assignment or initialization, the type of the parameter ! variable, or the return type of the containing function ! respectively should also have a `format' attribute to avoid ! the warning. GCC also warns about function definitions that might be ! candidates for `format' attributes. Again, these are only ! possible candidates. GCC guesses that `format' attributes might be appropriate for any function that calls a function ! like `vprintf' or `vscanf', but this might not always be the ! case, and some functions for which `format' attributes are appropriate may not be detected. ! `-Warray-bounds' ! This option is only active when `-ftree-vrp' is active (default ! for `-O2' and above). It warns about subscripts to arrays that are ! always out of bounds. This warning is enabled by `-Wall'. ! `-Wno-div-by-zero' Do not warn about compile-time integer division by zero. ! Floating-point division by zero is not warned about, as it can be ! a legitimate way of obtaining infinities and NaNs. ! `-Wsystem-headers' Print warning messages for constructs found in system header files. Warnings from system headers are normally suppressed, on the assumption that they usually do not indicate real problems and would only make the compiler output harder to read. Using this command-line option tells GCC to emit warnings from system headers ! as if they occurred in user code. However, note that using ! `-Wall' in conjunction with this option does _not_ warn about ! unknown pragmas in system headers--for that, `-Wunknown-pragmas' ! must also be used. ! `-Wtrampolines' Warn about trampolines generated for pointers to nested functions. A trampoline is a small piece of data or code that is created at ! run time on the stack when the address of a nested function is ! taken, and is used to call the nested function indirectly. For ! some targets, it is made up of data only and thus requires no ! special treatment. But, for most targets, it is made up of code ! and thus requires the stack to be made executable in order for ! the program to work properly. ! `-Wfloat-equal' Warn if floating-point values are used in equality comparisons. The idea behind this is that sometimes it is convenient (for the --- 3746,3856 ---- loop requires, in particular when determining whether a loop will be executed at all. ! '-Wstrict-overflow=1' ! Warn about cases that are both questionable and easy to avoid. ! For example, with '-fstrict-overflow', the compiler simplifies ! 'x + 1 > x' to '1'. This level of '-Wstrict-overflow' is ! enabled by '-Wall'; higher levels are not, and must be ! explicitly requested. ! '-Wstrict-overflow=2' Also warn about other cases where a comparison is simplified ! to a constant. For example: 'abs (x) >= 0'. This can only be ! simplified when '-fstrict-overflow' is in effect, because 'abs ! (INT_MIN)' overflows to 'INT_MIN', which is less than zero. ! '-Wstrict-overflow' (with no level) is the same as ! '-Wstrict-overflow=2'. ! '-Wstrict-overflow=3' Also warn about other cases where a comparison is simplified. ! For example: 'x + 1 > 1' is simplified to 'x > 0'. ! '-Wstrict-overflow=4' ! Also warn about other simplifications not covered by the above ! cases. For example: '(x * 10) / 5' is simplified to 'x * 2'. ! '-Wstrict-overflow=5' ! Also warn about cases where the compiler reduces the magnitude ! of a constant involved in a comparison. For example: 'x + 2 > ! y' is simplified to 'x + 1 >= y'. This is reported only at ! the highest warning level because this simplification applies ! to many comparisons, so this warning level gives a very large ! number of false positives. ! '-Wsuggest-attribute=[pure|const|noreturn|format]' ! Warn for cases where adding an attribute may be beneficial. The attributes currently supported are listed below. ! '-Wsuggest-attribute=pure' ! '-Wsuggest-attribute=const' ! '-Wsuggest-attribute=noreturn' ! Warn about functions that might be candidates for attributes ! 'pure', 'const' or 'noreturn'. The compiler only warns for functions visible in other compilation units or (in the case ! of 'pure' and 'const') if it cannot prove that the function ! returns normally. A function returns normally if it doesn't contain an infinite loop or return abnormally by throwing, ! calling 'abort()' or trapping. This analysis requires option ! '-fipa-pure-const', which is enabled by default at '-O' and higher. Higher optimization levels improve the accuracy of the analysis. ! '-Wsuggest-attribute=format' ! '-Wmissing-format-attribute' ! Warn about function pointers that might be candidates for ! 'format' attributes. Note these are only possible candidates, ! not absolute ones. GCC guesses that function pointers with ! 'format' attributes that are used in assignment, ! initialization, parameter passing or return statements should ! have a corresponding 'format' attribute in the resulting type. ! I.e. the left-hand side of the assignment or initialization, ! the type of the parameter variable, or the return type of the ! containing function respectively should also have a 'format' ! attribute to avoid the warning. GCC also warns about function definitions that might be ! candidates for 'format' attributes. Again, these are only ! possible candidates. GCC guesses that 'format' attributes might be appropriate for any function that calls a function ! like 'vprintf' or 'vscanf', but this might not always be the ! case, and some functions for which 'format' attributes are appropriate may not be detected. ! '-Warray-bounds' ! This option is only active when '-ftree-vrp' is active (default for ! '-O2' and above). It warns about subscripts to arrays that are ! always out of bounds. This warning is enabled by '-Wall'. ! '-Wno-div-by-zero' Do not warn about compile-time integer division by zero. ! Floating-point division by zero is not warned about, as it can be a ! legitimate way of obtaining infinities and NaNs. ! '-Wsystem-headers' Print warning messages for constructs found in system header files. Warnings from system headers are normally suppressed, on the assumption that they usually do not indicate real problems and would only make the compiler output harder to read. Using this command-line option tells GCC to emit warnings from system headers ! as if they occurred in user code. However, note that using '-Wall' ! in conjunction with this option does _not_ warn about unknown ! pragmas in system headers--for that, '-Wunknown-pragmas' must also ! be used. ! '-Wtrampolines' Warn about trampolines generated for pointers to nested functions. A trampoline is a small piece of data or code that is created at ! run time on the stack when the address of a nested function is ! taken, and is used to call the nested function indirectly. For ! some targets, it is made up of data only and thus requires no ! special treatment. But, for most targets, it is made up of code ! and thus requires the stack to be made executable in order for the ! program to work properly. ! '-Wfloat-equal' Warn if floating-point values are used in equality comparisons. The idea behind this is that sometimes it is convenient (for the *************** present. *** 3888,3900 **** need to compute (by analyzing the code, or in some other way) the maximum or likely maximum error that the computation introduces, and allow for it when performing comparisons (and when producing ! output, but that's a different problem). In particular, instead ! of testing for equality, you should check to see whether the two values have ranges that overlap; and this is done with the relational operators, so equality comparisons are probably mistaken. ! `-Wtraditional (C and Objective-C only)' Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and/or problematic constructs that --- 3859,3871 ---- need to compute (by analyzing the code, or in some other way) the maximum or likely maximum error that the computation introduces, and allow for it when performing comparisons (and when producing ! output, but that's a different problem). In particular, instead of ! testing for equality, you should check to see whether the two values have ranges that overlap; and this is done with the relational operators, so equality comparisons are probably mistaken. ! '-Wtraditional (C and Objective-C only)' Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and/or problematic constructs that *************** present. *** 3906,3940 **** * In traditional C, some preprocessor directives did not exist. Traditional preprocessors only considered a line to be a ! directive if the `#' appeared in column 1 on the line. ! Therefore `-Wtraditional' warns about directives that ! traditional C understands but ignores because the `#' does ! not appear as the first character on the line. It also ! suggests you hide directives like `#pragma' not understood by traditional C by indenting them. Some traditional ! implementations do not recognize `#elif', so this option suggests avoiding it altogether. * A function-like macro that appears without arguments. * The unary plus operator. ! * The `U' integer constant suffix, or the `F' or `L' ! floating-point constant suffixes. (Traditional C does ! support the `L' suffix on integer constants.) Note, these ! suffixes appear in macros defined in the system headers of ! most modern systems, e.g. the `_MIN'/`_MAX' macros in ! `'. Use of these macros in user code might ! normally lead to spurious warnings, however GCC's integrated ! preprocessor has enough context to avoid warning in these ! cases. * A function declared external in one block and then used after the end of the block. ! * A `switch' statement has an operand of type `long'. ! * A non-`static' function declaration follows a `static' one. This construct is not accepted by some traditional C compilers. --- 3877,3910 ---- * In traditional C, some preprocessor directives did not exist. Traditional preprocessors only considered a line to be a ! directive if the '#' appeared in column 1 on the line. ! Therefore '-Wtraditional' warns about directives that ! traditional C understands but ignores because the '#' does not ! appear as the first character on the line. It also suggests ! you hide directives like '#pragma' not understood by traditional C by indenting them. Some traditional ! implementations do not recognize '#elif', so this option suggests avoiding it altogether. * A function-like macro that appears without arguments. * The unary plus operator. ! * The 'U' integer constant suffix, or the 'F' or 'L' ! floating-point constant suffixes. (Traditional C does support ! the 'L' suffix on integer constants.) Note, these suffixes ! appear in macros defined in the system headers of most modern ! systems, e.g. the '_MIN'/'_MAX' macros in ''. Use ! of these macros in user code might normally lead to spurious ! warnings, however GCC's integrated preprocessor has enough ! context to avoid warning in these cases. * A function declared external in one block and then used after the end of the block. ! * A 'switch' statement has an operand of type 'long'. ! * A non-'static' function declaration follows a 'static' one. This construct is not accepted by some traditional C compilers. *************** present. *** 3954,4092 **** * Initialization of unions. If the initializer is zero, the warning is omitted. This is done under the assumption that the zero initializer in user code appears conditioned on e.g. ! `__STDC__' to avoid missing initializer warnings and relies ! on default initialization to zero in the traditional C case. * Conversions by prototypes between fixed/floating-point values and vice versa. The absence of these prototypes when ! compiling with traditional C causes serious problems. This ! is a subset of the possible conversion warnings; for the full ! set use `-Wtraditional-conversion'. * Use of ISO C style function definitions. This warning intentionally is _not_ issued for prototype declarations or ! variadic functions because these ISO C features appear in ! your code when using libiberty's traditional C compatibility ! macros, `PARAMS' and `VPARAMS'. This warning is also ! bypassed for nested functions because that feature is already ! a GCC extension and thus not relevant to traditional C compatibility. ! `-Wtraditional-conversion (C and Objective-C only)' ! Warn if a prototype causes a type conversion that is different ! from what would happen to the same argument in the absence of a prototype. This includes conversions of fixed point to floating ! and vice versa, and conversions changing the width or signedness ! of a fixed-point argument except when the same as the default promotion. ! `-Wdeclaration-after-statement (C and Objective-C only)' Warn when a declaration is found after a statement in a block. This construct, known from C++, was introduced with ISO C99 and is by default allowed in GCC. It is not supported by ISO C90 and was not supported by GCC versions before GCC 3.0. *Note Mixed Declarations::. ! `-Wundef' ! Warn if an undefined identifier is evaluated in an `#if' directive. ! `-Wno-endif-labels' ! Do not warn whenever an `#else' or an `#endif' are followed by text. ! `-Wshadow' Warn whenever a local variable or type declaration shadows another variable, parameter, type, or class member (in C++), or whenever a ! built-in function is shadowed. Note that in C++, the compiler warns if a local variable shadows an explicit typedef, but not if it shadows a struct/class/enum. ! `-Wlarger-than=LEN' Warn whenever an object of larger than LEN bytes is defined. ! `-Wframe-larger-than=LEN' ! Warn if the size of a function frame is larger than LEN bytes. ! The computation done to determine the stack frame size is ! approximate and not conservative. The actual requirements may be ! somewhat greater than LEN even if you do not get a warning. In ! addition, any space allocated via `alloca', variable-length ! arrays, or related constructs is not included by the compiler when ! determining whether or not to issue a warning. ! `-Wno-free-nonheap-object' Do not warn when attempting to free an object that was not allocated on the heap. ! `-Wstack-usage=LEN' Warn if the stack usage of a function might be larger than LEN bytes. The computation done to determine the stack usage is ! conservative. Any space allocated via `alloca', variable-length arrays, or related constructs is included by the compiler when determining whether or not to issue a warning. ! The message is in keeping with the output of `-fstack-usage'. * If the stack usage is fully static but exceeds the specified amount, it's: warning: stack usage is 1120 bytes - * If the stack usage is (partly) dynamic but bounded, it's: warning: stack usage might be 1648 bytes - * If the stack usage is (partly) dynamic and not bounded, it's: warning: stack usage might be unbounded ! `-Wunsafe-loop-optimizations' Warn if the loop cannot be optimized because the compiler cannot assume anything on the bounds of the loop indices. With ! `-funsafe-loop-optimizations' warn if the compiler makes such assumptions. ! `-Wno-pedantic-ms-format (MinGW targets only)' ! When used in combination with `-Wformat' and `-pedantic' without GNU extensions, this option disables the warnings about non-ISO ! `printf' / `scanf' format width specifiers `I32', `I64', and `I' used on Windows targets, which depend on the MS runtime. ! `-Wpointer-arith' Warn about anything that depends on the "size of" a function type ! or of `void'. GNU C assigns these types a size of 1, for ! convenience in calculations with `void *' pointers and pointers to functions. In C++, warn also when an arithmetic operation involves ! `NULL'. This warning is also enabled by `-Wpedantic'. ! `-Wtype-limits' Warn if a comparison is always true or always false due to the limited range of the data type, but do not warn for constant ! expressions. For example, warn if an unsigned variable is ! compared against zero with `<' or `>='. This warning is also ! enabled by `-Wextra'. ! `-Wbad-function-cast (C and Objective-C only)' Warn whenever a function call is cast to a non-matching type. For ! example, warn if `int malloc()' is cast to `anything *'. ! `-Wc++-compat (C and Objective-C only)' Warn about ISO C constructs that are outside of the common subset of ISO C and ISO C++, e.g. request for implicit conversion from ! `void *' to a pointer to non-`void' type. ! `-Wc++11-compat (C++ and Objective-C++ only)' Warn about C++ constructs whose meaning differs between ISO C++ 1998 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are ! keywords in ISO C++ 2011. This warning turns on `-Wnarrowing' and ! is enabled by `-Wall'. ! `-Wcast-qual' Warn whenever a pointer is cast so as to remove a type qualifier ! from the target type. For example, warn if a `const char *' is ! cast to an ordinary `char *'. Also warn when making a cast that introduces a type qualifier in an ! unsafe way. For example, casting `char **' to `const char **' is unsafe, as in this example: /* p is char ** value. */ --- 3924,4060 ---- * Initialization of unions. If the initializer is zero, the warning is omitted. This is done under the assumption that the zero initializer in user code appears conditioned on e.g. ! '__STDC__' to avoid missing initializer warnings and relies on ! default initialization to zero in the traditional C case. * Conversions by prototypes between fixed/floating-point values and vice versa. The absence of these prototypes when ! compiling with traditional C causes serious problems. This is ! a subset of the possible conversion warnings; for the full set ! use '-Wtraditional-conversion'. * Use of ISO C style function definitions. This warning intentionally is _not_ issued for prototype declarations or ! variadic functions because these ISO C features appear in your ! code when using libiberty's traditional C compatibility ! macros, 'PARAMS' and 'VPARAMS'. This warning is also bypassed ! for nested functions because that feature is already a GCC ! extension and thus not relevant to traditional C compatibility. ! '-Wtraditional-conversion (C and Objective-C only)' ! Warn if a prototype causes a type conversion that is different from ! what would happen to the same argument in the absence of a prototype. This includes conversions of fixed point to floating ! and vice versa, and conversions changing the width or signedness of ! a fixed-point argument except when the same as the default promotion. ! '-Wdeclaration-after-statement (C and Objective-C only)' Warn when a declaration is found after a statement in a block. This construct, known from C++, was introduced with ISO C99 and is by default allowed in GCC. It is not supported by ISO C90 and was not supported by GCC versions before GCC 3.0. *Note Mixed Declarations::. ! '-Wundef' ! Warn if an undefined identifier is evaluated in an '#if' directive. ! '-Wno-endif-labels' ! Do not warn whenever an '#else' or an '#endif' are followed by text. ! '-Wshadow' Warn whenever a local variable or type declaration shadows another variable, parameter, type, or class member (in C++), or whenever a ! built-in function is shadowed. Note that in C++, the compiler warns if a local variable shadows an explicit typedef, but not if it shadows a struct/class/enum. ! '-Wlarger-than=LEN' Warn whenever an object of larger than LEN bytes is defined. ! '-Wframe-larger-than=LEN' ! Warn if the size of a function frame is larger than LEN bytes. The ! computation done to determine the stack frame size is approximate ! and not conservative. The actual requirements may be somewhat ! greater than LEN even if you do not get a warning. In addition, ! any space allocated via 'alloca', variable-length arrays, or ! related constructs is not included by the compiler when determining ! whether or not to issue a warning. ! '-Wno-free-nonheap-object' Do not warn when attempting to free an object that was not allocated on the heap. ! '-Wstack-usage=LEN' Warn if the stack usage of a function might be larger than LEN bytes. The computation done to determine the stack usage is ! conservative. Any space allocated via 'alloca', variable-length arrays, or related constructs is included by the compiler when determining whether or not to issue a warning. ! The message is in keeping with the output of '-fstack-usage'. * If the stack usage is fully static but exceeds the specified amount, it's: warning: stack usage is 1120 bytes * If the stack usage is (partly) dynamic but bounded, it's: warning: stack usage might be 1648 bytes * If the stack usage is (partly) dynamic and not bounded, it's: warning: stack usage might be unbounded ! '-Wunsafe-loop-optimizations' Warn if the loop cannot be optimized because the compiler cannot assume anything on the bounds of the loop indices. With ! '-funsafe-loop-optimizations' warn if the compiler makes such assumptions. ! '-Wno-pedantic-ms-format (MinGW targets only)' ! When used in combination with '-Wformat' and '-pedantic' without GNU extensions, this option disables the warnings about non-ISO ! 'printf' / 'scanf' format width specifiers 'I32', 'I64', and 'I' used on Windows targets, which depend on the MS runtime. ! '-Wpointer-arith' Warn about anything that depends on the "size of" a function type ! or of 'void'. GNU C assigns these types a size of 1, for ! convenience in calculations with 'void *' pointers and pointers to functions. In C++, warn also when an arithmetic operation involves ! 'NULL'. This warning is also enabled by '-Wpedantic'. ! '-Wtype-limits' Warn if a comparison is always true or always false due to the limited range of the data type, but do not warn for constant ! expressions. For example, warn if an unsigned variable is compared ! against zero with '<' or '>='. This warning is also enabled by ! '-Wextra'. ! '-Wbad-function-cast (C and Objective-C only)' Warn whenever a function call is cast to a non-matching type. For ! example, warn if 'int malloc()' is cast to 'anything *'. ! '-Wc++-compat (C and Objective-C only)' Warn about ISO C constructs that are outside of the common subset of ISO C and ISO C++, e.g. request for implicit conversion from ! 'void *' to a pointer to non-'void' type. ! '-Wc++11-compat (C++ and Objective-C++ only)' Warn about C++ constructs whose meaning differs between ISO C++ 1998 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are ! keywords in ISO C++ 2011. This warning turns on '-Wnarrowing' and ! is enabled by '-Wall'. ! '-Wcast-qual' Warn whenever a pointer is cast so as to remove a type qualifier ! from the target type. For example, warn if a 'const char *' is ! cast to an ordinary 'char *'. Also warn when making a cast that introduces a type qualifier in an ! unsafe way. For example, casting 'char **' to 'const char **' is unsafe, as in this example: /* p is char ** value. */ *************** present. *** 4096,4260 **** /* Now char** pointer points to read-only memory. */ **p = 'b'; ! `-Wcast-align' ! Warn whenever a pointer is cast such that the required alignment ! of the target is increased. For example, warn if a `char *' is ! cast to an `int *' on machines where integers can only be accessed ! at two- or four-byte boundaries. ! `-Wwrite-strings' ! When compiling C, give string constants the type `const ! char[LENGTH]' so that copying the address of one into a ! non-`const' `char *' pointer produces a warning. These warnings ! help you find at compile time code that can try to write into a ! string constant, but only if you have been very careful about ! using `const' in declarations and prototypes. Otherwise, it is ! just a nuisance. This is why we did not make `-Wall' request these ! warnings. When compiling C++, warn about the deprecated conversion from ! string literals to `char *'. This warning is enabled by default for C++ programs. ! `-Wclobbered' ! Warn for variables that might be changed by `longjmp' or `vfork'. ! This warning is also enabled by `-Wextra'. ! `-Wconversion' ! Warn for implicit conversions that may alter a value. This includes ! conversions between real and integer, like `abs (x)' when `x' is ! `double'; conversions between signed and unsigned, like `unsigned ! ui = -1'; and conversions to smaller types, like `sqrtf (M_PI)'. ! Do not warn for explicit casts like `abs ((int) x)' and `ui = ! (unsigned) -1', or if the value is not changed by the conversion ! like in `abs (2.0)'. Warnings about conversions between signed ! and unsigned integers can be disabled by using ! `-Wno-sign-conversion'. For C++, also warn for confusing overload resolution for user-defined conversions; and conversions that never use a type ! conversion operator: conversions to `void', the same type, a base ! class or a reference to them. Warnings about conversions between signed and unsigned integers are disabled by default in C++ unless ! `-Wsign-conversion' is explicitly enabled. ! `-Wno-conversion-null (C++ and Objective-C++ only)' ! Do not warn for conversions between `NULL' and non-pointer types. ! `-Wconversion-null' is enabled by default. ! `-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)' Warn when a literal '0' is used as null pointer constant. This can ! be useful to facilitate the conversion to `nullptr' in C++11. ! `-Wuseless-cast (C++ and Objective-C++ only)' Warn when an expression is casted to its own type. ! `-Wempty-body' ! Warn if an empty body occurs in an `if', `else' or `do while' ! statement. This warning is also enabled by `-Wextra'. ! `-Wenum-compare' Warn about a comparison between values of different enumerated types. In C++ enumeral mismatches in conditional expressions are also diagnosed and the warning is enabled by default. In C this ! warning is enabled by `-Wall'. ! `-Wjump-misses-init (C, Objective-C only)' ! Warn if a `goto' statement or a `switch' statement jumps forward across the initialization of a variable, or jumps backward to a label after the variable has been initialized. This only warns about variables that are initialized when they are declared. This warning is only supported for C and Objective-C; in C++ this sort of branch is an error in any case. ! `-Wjump-misses-init' is included in `-Wc++-compat'. It can be ! disabled with the `-Wno-jump-misses-init' option. ! `-Wsign-compare' Warn when a comparison between signed and unsigned values could produce an incorrect result when the signed value is converted to ! unsigned. This warning is also enabled by `-Wextra'; to get the ! other warnings of `-Wextra' without this warning, use `-Wextra -Wno-sign-compare'. ! `-Wsign-conversion' Warn for implicit conversions that may change the sign of an integer value, like assigning a signed integer expression to an ! unsigned integer variable. An explicit cast silences the warning. ! In C, this option is enabled also by `-Wconversion'. ! `-Wsizeof-pointer-memaccess' Warn for suspicious length parameters to certain string and memory ! built-in functions if the argument uses `sizeof'. This warning ! warns e.g. about `memset (ptr, 0, sizeof (ptr));' if `ptr' is not an array, but a pointer, and suggests a possible fix, or about ! `memcpy (&foo, ptr, sizeof (&foo));'. This warning is enabled by ! `-Wall'. ! `-Waddress' ! Warn about suspicious uses of memory addresses. These include using ! the address of a function in a conditional expression, such as ! `void func(void); if (func)', and comparisons against the memory ! address of a string literal, such as `if (x == "abc")'. Such uses typically indicate a programmer error: the address of a function always evaluates to true, so their use in a conditional usually indicate that the programmer forgot the parentheses in a function call; and comparisons against string literals result in unspecified behavior and are not portable in C, so they usually indicate that ! the programmer intended to use `strcmp'. This warning is enabled ! by `-Wall'. ! `-Wlogical-op' Warn about suspicious uses of logical operators in expressions. This includes using logical operators in contexts where a bit-wise operator is likely to be expected. ! `-Waggregate-return' Warn if any functions that return structures or unions are defined or called. (In languages where you can return an array, this also elicits a warning.) ! `-Wno-aggressive-loop-optimizations' Warn if in a loop with constant number of iterations the compiler detects undefined behavior in some statement during one or more of the iterations. ! `-Wno-attributes' ! Do not warn if an unexpected `__attribute__' is used, such as unrecognized attributes, function attributes applied to variables, etc. This does not stop errors for incorrect use of supported attributes. ! `-Wno-builtin-macro-redefined' Do not warn if certain built-in macros are redefined. This ! suppresses warnings for redefinition of `__TIMESTAMP__', ! `__TIME__', `__DATE__', `__FILE__', and `__BASE_FILE__'. ! `-Wstrict-prototypes (C and Objective-C only)' Warn if a function is declared or defined without specifying the argument types. (An old-style function definition is permitted without a warning if preceded by a declaration that specifies the argument types.) ! `-Wold-style-declaration (C and Objective-C only)' Warn for obsolescent usages, according to the C Standard, in a ! declaration. For example, warn if storage-class specifiers like ! `static' are not the first things in a declaration. This warning ! is also enabled by `-Wextra'. ! `-Wold-style-definition (C and Objective-C only)' Warn if an old-style function definition is used. A warning is given even if there is a previous prototype. ! `-Wmissing-parameter-type (C and Objective-C only)' A function parameter is declared without a type specifier in K&R-style functions: void foo(bar) { } ! This warning is also enabled by `-Wextra'. ! `-Wmissing-prototypes (C and Objective-C only)' Warn if a global function is defined without a previous prototype declaration. This warning is issued even if the definition itself provides a prototype. Use this option to detect global functions --- 4064,4227 ---- /* Now char** pointer points to read-only memory. */ **p = 'b'; ! '-Wcast-align' ! Warn whenever a pointer is cast such that the required alignment of ! the target is increased. For example, warn if a 'char *' is cast ! to an 'int *' on machines where integers can only be accessed at ! two- or four-byte boundaries. ! '-Wwrite-strings' ! When compiling C, give string constants the type 'const ! char[LENGTH]' so that copying the address of one into a non-'const' ! 'char *' pointer produces a warning. These warnings help you find ! at compile time code that can try to write into a string constant, ! but only if you have been very careful about using 'const' in ! declarations and prototypes. Otherwise, it is just a nuisance. ! This is why we did not make '-Wall' request these warnings. When compiling C++, warn about the deprecated conversion from ! string literals to 'char *'. This warning is enabled by default for C++ programs. ! '-Wclobbered' ! Warn for variables that might be changed by 'longjmp' or 'vfork'. ! This warning is also enabled by '-Wextra'. ! '-Wconversion' ! Warn for implicit conversions that may alter a value. This ! includes conversions between real and integer, like 'abs (x)' when ! 'x' is 'double'; conversions between signed and unsigned, like ! 'unsigned ui = -1'; and conversions to smaller types, like 'sqrtf ! (M_PI)'. Do not warn for explicit casts like 'abs ((int) x)' and ! 'ui = (unsigned) -1', or if the value is not changed by the ! conversion like in 'abs (2.0)'. Warnings about conversions between ! signed and unsigned integers can be disabled by using ! '-Wno-sign-conversion'. For C++, also warn for confusing overload resolution for user-defined conversions; and conversions that never use a type ! conversion operator: conversions to 'void', the same type, a base ! class or a reference to them. Warnings about conversions between signed and unsigned integers are disabled by default in C++ unless ! '-Wsign-conversion' is explicitly enabled. ! '-Wno-conversion-null (C++ and Objective-C++ only)' ! Do not warn for conversions between 'NULL' and non-pointer types. ! '-Wconversion-null' is enabled by default. ! '-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)' Warn when a literal '0' is used as null pointer constant. This can ! be useful to facilitate the conversion to 'nullptr' in C++11. ! '-Wuseless-cast (C++ and Objective-C++ only)' Warn when an expression is casted to its own type. ! '-Wempty-body' ! Warn if an empty body occurs in an 'if', 'else' or 'do while' ! statement. This warning is also enabled by '-Wextra'. ! '-Wenum-compare' Warn about a comparison between values of different enumerated types. In C++ enumeral mismatches in conditional expressions are also diagnosed and the warning is enabled by default. In C this ! warning is enabled by '-Wall'. ! '-Wjump-misses-init (C, Objective-C only)' ! Warn if a 'goto' statement or a 'switch' statement jumps forward across the initialization of a variable, or jumps backward to a label after the variable has been initialized. This only warns about variables that are initialized when they are declared. This warning is only supported for C and Objective-C; in C++ this sort of branch is an error in any case. ! '-Wjump-misses-init' is included in '-Wc++-compat'. It can be ! disabled with the '-Wno-jump-misses-init' option. ! '-Wsign-compare' Warn when a comparison between signed and unsigned values could produce an incorrect result when the signed value is converted to ! unsigned. This warning is also enabled by '-Wextra'; to get the ! other warnings of '-Wextra' without this warning, use '-Wextra -Wno-sign-compare'. ! '-Wsign-conversion' Warn for implicit conversions that may change the sign of an integer value, like assigning a signed integer expression to an ! unsigned integer variable. An explicit cast silences the warning. ! In C, this option is enabled also by '-Wconversion'. ! '-Wsizeof-pointer-memaccess' Warn for suspicious length parameters to certain string and memory ! built-in functions if the argument uses 'sizeof'. This warning ! warns e.g. about 'memset (ptr, 0, sizeof (ptr));' if 'ptr' is not an array, but a pointer, and suggests a possible fix, or about ! 'memcpy (&foo, ptr, sizeof (&foo));'. This warning is enabled by ! '-Wall'. ! '-Waddress' ! Warn about suspicious uses of memory addresses. These include ! using the address of a function in a conditional expression, such ! as 'void func(void); if (func)', and comparisons against the memory ! address of a string literal, such as 'if (x == "abc")'. Such uses typically indicate a programmer error: the address of a function always evaluates to true, so their use in a conditional usually indicate that the programmer forgot the parentheses in a function call; and comparisons against string literals result in unspecified behavior and are not portable in C, so they usually indicate that ! the programmer intended to use 'strcmp'. This warning is enabled ! by '-Wall'. ! '-Wlogical-op' Warn about suspicious uses of logical operators in expressions. This includes using logical operators in contexts where a bit-wise operator is likely to be expected. ! '-Waggregate-return' Warn if any functions that return structures or unions are defined or called. (In languages where you can return an array, this also elicits a warning.) ! '-Wno-aggressive-loop-optimizations' Warn if in a loop with constant number of iterations the compiler detects undefined behavior in some statement during one or more of the iterations. ! '-Wno-attributes' ! Do not warn if an unexpected '__attribute__' is used, such as unrecognized attributes, function attributes applied to variables, etc. This does not stop errors for incorrect use of supported attributes. ! '-Wno-builtin-macro-redefined' Do not warn if certain built-in macros are redefined. This ! suppresses warnings for redefinition of '__TIMESTAMP__', ! '__TIME__', '__DATE__', '__FILE__', and '__BASE_FILE__'. ! '-Wstrict-prototypes (C and Objective-C only)' Warn if a function is declared or defined without specifying the argument types. (An old-style function definition is permitted without a warning if preceded by a declaration that specifies the argument types.) ! '-Wold-style-declaration (C and Objective-C only)' Warn for obsolescent usages, according to the C Standard, in a ! declaration. For example, warn if storage-class specifiers like ! 'static' are not the first things in a declaration. This warning ! is also enabled by '-Wextra'. ! '-Wold-style-definition (C and Objective-C only)' Warn if an old-style function definition is used. A warning is given even if there is a previous prototype. ! '-Wmissing-parameter-type (C and Objective-C only)' A function parameter is declared without a type specifier in K&R-style functions: void foo(bar) { } ! This warning is also enabled by '-Wextra'. ! '-Wmissing-prototypes (C and Objective-C only)' Warn if a global function is defined without a previous prototype declaration. This warning is issued even if the definition itself provides a prototype. Use this option to detect global functions *************** present. *** 4262,4283 **** This option is not valid for C++ because all function declarations provide prototypes and a non-matching declaration will declare an overload rather than conflict with an earlier declaration. Use ! `-Wmissing-declarations' to detect missing declarations in C++. ! `-Wmissing-declarations' Warn if a global function is defined without a previous declaration. Do so even if the definition itself provides a ! prototype. Use this option to detect global functions that are ! not declared in header files. In C, no warnings are issued for functions with previous non-prototype declarations; use ! `-Wmissing-prototype' to detect missing prototypes. In C++, no warnings are issued for function templates, or for inline functions, or for functions in anonymous namespaces. ! `-Wmissing-field-initializers' Warn if a structure's initializer has some fields missing. For ! example, the following code causes such a warning, because `x.h' ! is implicitly zero: struct s { int f, g, h; }; struct s x = { 3, 4 }; --- 4229,4250 ---- This option is not valid for C++ because all function declarations provide prototypes and a non-matching declaration will declare an overload rather than conflict with an earlier declaration. Use ! '-Wmissing-declarations' to detect missing declarations in C++. ! '-Wmissing-declarations' Warn if a global function is defined without a previous declaration. Do so even if the definition itself provides a ! prototype. Use this option to detect global functions that are not ! declared in header files. In C, no warnings are issued for functions with previous non-prototype declarations; use ! '-Wmissing-prototype' to detect missing prototypes. In C++, no warnings are issued for function templates, or for inline functions, or for functions in anonymous namespaces. ! '-Wmissing-field-initializers' Warn if a structure's initializer has some fields missing. For ! example, the following code causes such a warning, because 'x.h' is ! implicitly zero: struct s { int f, g, h; }; struct s x = { 3, 4 }; *************** present. *** 4288,4373 **** struct s { int f, g, h; }; struct s x = { .f = 3, .g = 4 }; ! This warning is included in `-Wextra'. To get other `-Wextra' ! warnings without this one, use `-Wextra -Wno-missing-field-initializers'. ! `-Wno-multichar' ! Do not warn if a multicharacter constant (`'FOOF'') is used. Usually they indicate a typo in the user's code, as they have implementation-defined values, and should not be used in portable code. ! `-Wnormalized=' In ISO C and ISO C++, two identifiers are different if they are different sequences of characters. However, sometimes when characters outside the basic ASCII character set are used, you can have two different character sequences that look the same. To avoid confusion, the ISO 10646 standard sets out some "normalization rules" which when applied ensure that two sequences ! that look the same are turned into the same sequence. GCC can ! warn you if you are using identifiers that have not been ! normalized; this option controls that warning. There are four levels of warning supported by GCC. The default is ! `-Wnormalized=nfc', which warns about any identifier that is not ! in the ISO 10646 "C" normalized form, "NFC". NFC is the ! recommended form for most uses. Unfortunately, there are some characters allowed in identifiers by ISO C and ISO C++ that, when turned into NFC, are not allowed in identifiers. That is, there's no way to use these symbols in portable ISO C or C++ and have all your identifiers in NFC. ! `-Wnormalized=id' suppresses the warning for these characters. It is hoped that future versions of the standards involved will correct this, which is why this option is not the default. You can switch the warning off for all characters by writing ! `-Wnormalized=none'. You should only do this if you are using ! some other normalization scheme (like "D"), because otherwise you ! can easily create bugs that are literally impossible to see. Some characters in ISO 10646 have distinct meanings but look identical in some fonts or display methodologies, especially once ! formatting has been applied. For instance `\u207F', "SUPERSCRIPT ! LATIN SMALL LETTER N", displays just like a regular `n' that has been placed in a superscript. ISO 10646 defines the "NFKC" normalization scheme to convert all these into a standard form as well, and GCC warns if your code is not in NFKC if you use ! `-Wnormalized=nfkc'. This warning is comparable to warning about every identifier that contains the letter O because it might be confused with the digit 0, and so is not the default, but may be useful as a local coding convention if the programming environment cannot be fixed to display these characters distinctly. ! `-Wno-deprecated' Do not warn about usage of deprecated features. *Note Deprecated Features::. ! `-Wno-deprecated-declarations' Do not warn about uses of functions (*note Function Attributes::), variables (*note Variable Attributes::), and types (*note Type ! Attributes::) marked as deprecated by using the `deprecated' attribute. ! `-Wno-overflow' Do not warn about compile-time overflow in constant expressions. ! `-Woverride-init (C and Objective-C only)' Warn if an initialized field without side effects is overridden when using designated initializers (*note Designated Initializers: Designated Inits.). ! This warning is included in `-Wextra'. To get other `-Wextra' ! warnings without this one, use `-Wextra -Wno-override-init'. ! `-Wpacked' Warn if a structure is given the packed attribute, but the packed attribute has no effect on the layout or size of the structure. Such structures may be mis-aligned for little benefit. For ! instance, in this code, the variable `f.x' in `struct bar' is ! misaligned even though `struct bar' does not itself have the ! packed attribute: struct foo { int x; --- 4255,4340 ---- struct s { int f, g, h; }; struct s x = { .f = 3, .g = 4 }; ! This warning is included in '-Wextra'. To get other '-Wextra' ! warnings without this one, use '-Wextra -Wno-missing-field-initializers'. ! '-Wno-multichar' ! Do not warn if a multicharacter constant (''FOOF'') is used. Usually they indicate a typo in the user's code, as they have implementation-defined values, and should not be used in portable code. ! '-Wnormalized=' In ISO C and ISO C++, two identifiers are different if they are different sequences of characters. However, sometimes when characters outside the basic ASCII character set are used, you can have two different character sequences that look the same. To avoid confusion, the ISO 10646 standard sets out some "normalization rules" which when applied ensure that two sequences ! that look the same are turned into the same sequence. GCC can warn ! you if you are using identifiers that have not been normalized; ! this option controls that warning. There are four levels of warning supported by GCC. The default is ! '-Wnormalized=nfc', which warns about any identifier that is not in ! the ISO 10646 "C" normalized form, "NFC". NFC is the recommended ! form for most uses. Unfortunately, there are some characters allowed in identifiers by ISO C and ISO C++ that, when turned into NFC, are not allowed in identifiers. That is, there's no way to use these symbols in portable ISO C or C++ and have all your identifiers in NFC. ! '-Wnormalized=id' suppresses the warning for these characters. It is hoped that future versions of the standards involved will correct this, which is why this option is not the default. You can switch the warning off for all characters by writing ! '-Wnormalized=none'. You should only do this if you are using some ! other normalization scheme (like "D"), because otherwise you can ! easily create bugs that are literally impossible to see. Some characters in ISO 10646 have distinct meanings but look identical in some fonts or display methodologies, especially once ! formatting has been applied. For instance '\u207F', "SUPERSCRIPT ! LATIN SMALL LETTER N", displays just like a regular 'n' that has been placed in a superscript. ISO 10646 defines the "NFKC" normalization scheme to convert all these into a standard form as well, and GCC warns if your code is not in NFKC if you use ! '-Wnormalized=nfkc'. This warning is comparable to warning about every identifier that contains the letter O because it might be confused with the digit 0, and so is not the default, but may be useful as a local coding convention if the programming environment cannot be fixed to display these characters distinctly. ! '-Wno-deprecated' Do not warn about usage of deprecated features. *Note Deprecated Features::. ! '-Wno-deprecated-declarations' Do not warn about uses of functions (*note Function Attributes::), variables (*note Variable Attributes::), and types (*note Type ! Attributes::) marked as deprecated by using the 'deprecated' attribute. ! '-Wno-overflow' Do not warn about compile-time overflow in constant expressions. ! '-Woverride-init (C and Objective-C only)' Warn if an initialized field without side effects is overridden when using designated initializers (*note Designated Initializers: Designated Inits.). ! This warning is included in '-Wextra'. To get other '-Wextra' ! warnings without this one, use '-Wextra -Wno-override-init'. ! '-Wpacked' Warn if a structure is given the packed attribute, but the packed attribute has no effect on the layout or size of the structure. Such structures may be mis-aligned for little benefit. For ! instance, in this code, the variable 'f.x' in 'struct bar' is ! misaligned even though 'struct bar' does not itself have the packed ! attribute: struct foo { int x; *************** present. *** 4378,4390 **** struct foo f; }; ! `-Wpacked-bitfield-compat' ! The 4.1, 4.2 and 4.3 series of GCC ignore the `packed' attribute ! on bit-fields of type `char'. This has been fixed in GCC 4.4 but ! the change can lead to differences in the structure layout. GCC informs you when the offset of such a field has changed in GCC 4.4. ! For example there is no longer a 4-bit padding between field `a' ! and `b' in this structure: struct foo { --- 4345,4357 ---- struct foo f; }; ! '-Wpacked-bitfield-compat' ! The 4.1, 4.2 and 4.3 series of GCC ignore the 'packed' attribute on ! bit-fields of type 'char'. This has been fixed in GCC 4.4 but the ! change can lead to differences in the structure layout. GCC informs you when the offset of such a field has changed in GCC 4.4. ! For example there is no longer a 4-bit padding between field 'a' ! and 'b' in this structure: struct foo { *************** present. *** 4393,4421 **** } __attribute__ ((packed)); This warning is enabled by default. Use ! `-Wno-packed-bitfield-compat' to disable this warning. ! `-Wpadded' Warn if padding is included in a structure, either to align an element of the structure or to align the whole structure. Sometimes when this happens it is possible to rearrange the fields of the structure to reduce the padding and so make the structure smaller. ! `-Wredundant-decls' ! Warn if anything is declared more than once in the same scope, ! even in cases where multiple declaration is valid and changes ! nothing. ! `-Wnested-externs (C and Objective-C only)' ! Warn if an `extern' declaration is encountered within a function. ! `-Wno-inherited-variadic-ctor' Suppress warnings about use of C++11 inheriting constructors when the base class inherited from has a C variadic constructor; the warning is on by default because the ellipsis is not inherited. ! `-Winline' Warn if a function that is declared as inline cannot be inlined. Even with this option, the compiler does not warn about failures to inline functions declared in system headers. --- 4360,4387 ---- } __attribute__ ((packed)); This warning is enabled by default. Use ! '-Wno-packed-bitfield-compat' to disable this warning. ! '-Wpadded' Warn if padding is included in a structure, either to align an element of the structure or to align the whole structure. Sometimes when this happens it is possible to rearrange the fields of the structure to reduce the padding and so make the structure smaller. ! '-Wredundant-decls' ! Warn if anything is declared more than once in the same scope, even ! in cases where multiple declaration is valid and changes nothing. ! '-Wnested-externs (C and Objective-C only)' ! Warn if an 'extern' declaration is encountered within a function. ! '-Wno-inherited-variadic-ctor' Suppress warnings about use of C++11 inheriting constructors when the base class inherited from has a C variadic constructor; the warning is on by default because the ellipsis is not inherited. ! '-Winline' Warn if a function that is declared as inline cannot be inlined. Even with this option, the compiler does not warn about failures to inline functions declared in system headers. *************** present. *** 4425,4506 **** account the size of the function being inlined and the amount of inlining that has already been done in the current function. Therefore, seemingly insignificant changes in the source program ! can cause the warnings produced by `-Winline' to appear or disappear. ! `-Wno-invalid-offsetof (C++ and Objective-C++ only)' ! Suppress warnings from applying the `offsetof' macro to a non-POD ! type. According to the 1998 ISO C++ standard, applying `offsetof' to a non-POD type is undefined. In existing C++ implementations, ! however, `offsetof' typically gives meaningful results even when applied to certain kinds of non-POD types (such as a simple ! `struct' that fails to be a POD type only by virtue of having a constructor). This flag is for users who are aware that they are ! writing nonportable code and who have deliberately chosen to ! ignore the warning about it. ! The restrictions on `offsetof' may be relaxed in a future version of the C++ standard. ! `-Wno-int-to-pointer-cast' Suppress warnings from casts to pointer type of an integer of a ! different size. In C++, casting to a pointer type of smaller size ! is an error. `Wint-to-pointer-cast' is enabled by default. ! `-Wno-pointer-to-int-cast (C and Objective-C only)' Suppress warnings from casts from a pointer to an integer type of a different size. ! `-Winvalid-pch' ! Warn if a precompiled header (*note Precompiled Headers::) is ! found in the search path but can't be used. ! `-Wlong-long' ! Warn if `long long' type is used. This is enabled by either ! `-Wpedantic' or `-Wtraditional' in ISO C90 and C++98 modes. To ! inhibit the warning messages, use `-Wno-long-long'. ! `-Wvariadic-macros' Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU alternate syntax when in pedantic ISO C99 mode. This is default. To inhibit the warning messages, use ! `-Wno-variadic-macros'. ! `-Wvarargs' Warn upon questionable usage of the macros used to handle variable ! arguments like `va_start'. This is default. To inhibit the ! warning messages, use `-Wno-varargs'. ! `-Wvector-operation-performance' Warn if vector operation is not implemented via SIMD capabilities of the architecture. Mainly useful for the performance tuning. ! Vector operation can be implemented `piecewise', which means that ! the scalar operation is performed on every vector element; `in parallel', which means that the vector operation is implemented using scalars of wider type, which normally is more performance ! efficient; and `as a single scalar', which means that vector fits into a scalar type. ! `-Wno-virtual-move-assign' Suppress warnings about inheriting from a virtual base with a non-trivial C++11 move assignment operator. This is dangerous because if the virtual base is reachable along more than one path, ! it will be moved multiple times, which can mean both objects end ! up in the moved-from state. If the move assignment operator is written to avoid moving from a moved-from object, this warning can be disabled. ! `-Wvla' ! Warn if variable length array is used in the code. `-Wno-vla' ! prevents the `-Wpedantic' warning of the variable length array. ! `-Wvolatile-register-var' Warn if a register variable is declared volatile. The volatile modifier does not inhibit all optimizations that may eliminate ! reads and/or writes to register variables. This warning is ! enabled by `-Wall'. ! `-Wdisabled-optimization' Warn if a requested optimization pass is disabled. This warning does not generally indicate that there is anything wrong with your code; it merely indicates that GCC's optimizers are unable to --- 4391,4472 ---- account the size of the function being inlined and the amount of inlining that has already been done in the current function. Therefore, seemingly insignificant changes in the source program ! can cause the warnings produced by '-Winline' to appear or disappear. ! '-Wno-invalid-offsetof (C++ and Objective-C++ only)' ! Suppress warnings from applying the 'offsetof' macro to a non-POD ! type. According to the 1998 ISO C++ standard, applying 'offsetof' to a non-POD type is undefined. In existing C++ implementations, ! however, 'offsetof' typically gives meaningful results even when applied to certain kinds of non-POD types (such as a simple ! 'struct' that fails to be a POD type only by virtue of having a constructor). This flag is for users who are aware that they are ! writing nonportable code and who have deliberately chosen to ignore ! the warning about it. ! The restrictions on 'offsetof' may be relaxed in a future version of the C++ standard. ! '-Wno-int-to-pointer-cast' Suppress warnings from casts to pointer type of an integer of a ! different size. In C++, casting to a pointer type of smaller size ! is an error. 'Wint-to-pointer-cast' is enabled by default. ! '-Wno-pointer-to-int-cast (C and Objective-C only)' Suppress warnings from casts from a pointer to an integer type of a different size. ! '-Winvalid-pch' ! Warn if a precompiled header (*note Precompiled Headers::) is found ! in the search path but can't be used. ! '-Wlong-long' ! Warn if 'long long' type is used. This is enabled by either ! '-Wpedantic' or '-Wtraditional' in ISO C90 and C++98 modes. To ! inhibit the warning messages, use '-Wno-long-long'. ! '-Wvariadic-macros' Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU alternate syntax when in pedantic ISO C99 mode. This is default. To inhibit the warning messages, use ! '-Wno-variadic-macros'. ! '-Wvarargs' Warn upon questionable usage of the macros used to handle variable ! arguments like 'va_start'. This is default. To inhibit the ! warning messages, use '-Wno-varargs'. ! '-Wvector-operation-performance' Warn if vector operation is not implemented via SIMD capabilities of the architecture. Mainly useful for the performance tuning. ! Vector operation can be implemented 'piecewise', which means that ! the scalar operation is performed on every vector element; 'in parallel', which means that the vector operation is implemented using scalars of wider type, which normally is more performance ! efficient; and 'as a single scalar', which means that vector fits into a scalar type. ! '-Wno-virtual-move-assign' Suppress warnings about inheriting from a virtual base with a non-trivial C++11 move assignment operator. This is dangerous because if the virtual base is reachable along more than one path, ! it will be moved multiple times, which can mean both objects end up ! in the moved-from state. If the move assignment operator is written to avoid moving from a moved-from object, this warning can be disabled. ! '-Wvla' ! Warn if variable length array is used in the code. '-Wno-vla' ! prevents the '-Wpedantic' warning of the variable length array. ! '-Wvolatile-register-var' Warn if a register variable is declared volatile. The volatile modifier does not inhibit all optimizations that may eliminate ! reads and/or writes to register variables. This warning is enabled ! by '-Wall'. ! '-Wdisabled-optimization' Warn if a requested optimization pass is disabled. This warning does not generally indicate that there is anything wrong with your code; it merely indicates that GCC's optimizers are unable to *************** present. *** 4509,4530 **** the optimization itself is likely to take inordinate amounts of time. ! `-Wpointer-sign (C and Objective-C only)' Warn for pointer argument passing or assignment with different signedness. This option is only supported for C and Objective-C. ! It is implied by `-Wall' and by `-Wpedantic', which can be ! disabled with `-Wno-pointer-sign'. ! `-Wstack-protector' ! This option is only active when `-fstack-protector' is active. It warns about functions that are not protected against stack smashing. ! `-Wno-mudflap' Suppress warnings about constructs that cannot be instrumented by ! `-fmudflap'. ! `-Woverlength-strings' Warn about string constants that are longer than the "minimum maximum" length specified in the C standard. Modern compilers generally allow string constants that are much longer than the --- 4475,4496 ---- the optimization itself is likely to take inordinate amounts of time. ! '-Wpointer-sign (C and Objective-C only)' Warn for pointer argument passing or assignment with different signedness. This option is only supported for C and Objective-C. ! It is implied by '-Wall' and by '-Wpedantic', which can be disabled ! with '-Wno-pointer-sign'. ! '-Wstack-protector' ! This option is only active when '-fstack-protector' is active. It warns about functions that are not protected against stack smashing. ! '-Wno-mudflap' Suppress warnings about constructs that cannot be instrumented by ! '-fmudflap'. ! '-Woverlength-strings' Warn about string constants that are longer than the "minimum maximum" length specified in the C standard. Modern compilers generally allow string constants that are much longer than the *************** present. *** 4536,4549 **** in C99, it was raised to 4095. C++98 does not specify a normative minimum maximum, so we do not diagnose overlength strings in C++. ! This option is implied by `-Wpedantic', and can be disabled with ! `-Wno-overlength-strings'. - `-Wunsuffixed-float-constants (C and Objective-C only)' Issue a warning for any floating constant that does not have a ! suffix. When used together with `-Wsystem-headers' it warns about such constants in system header files. This can be useful when ! preparing code to use with the `FLOAT_CONST_DECIMAL64' pragma from the decimal floating-point extension to C99.  --- 4502,4516 ---- in C99, it was raised to 4095. C++98 does not specify a normative minimum maximum, so we do not diagnose overlength strings in C++. ! This option is implied by '-Wpedantic', and can be disabled with ! '-Wno-overlength-strings'. ! ! '-Wunsuffixed-float-constants (C and Objective-C only)' Issue a warning for any floating constant that does not have a ! suffix. When used together with '-Wsystem-headers' it warns about such constants in system header files. This can be useful when ! preparing code to use with the 'FLOAT_CONST_DECIMAL64' pragma from the decimal floating-point extension to C99.  *************** File: gcc.info, Node: Debugging Options *** 4555,4574 **** GCC has various special options that are used for debugging either your program or GCC: ! `-g' Produce debugging information in the operating system's native format (stabs, COFF, XCOFF, or DWARF 2). GDB can work with this debugging information. ! On most systems that use stabs format, `-g' enables use of extra debugging information that only GDB can use; this extra information makes debugging work better in GDB but probably makes other debuggers crash or refuse to read the program. If you want to control for certain whether to generate the extra information, use ! `-gstabs+', `-gstabs', `-gxcoff+', `-gxcoff', or `-gvms' (see below). ! GCC allows you to use `-g' with `-O'. The shortcuts taken by optimized code may occasionally produce surprising results: some variables you declared may not exist at all; flow of control may briefly move where you did not expect it; some statements may not --- 4522,4541 ---- GCC has various special options that are used for debugging either your program or GCC: ! '-g' Produce debugging information in the operating system's native format (stabs, COFF, XCOFF, or DWARF 2). GDB can work with this debugging information. ! On most systems that use stabs format, '-g' enables use of extra debugging information that only GDB can use; this extra information makes debugging work better in GDB but probably makes other debuggers crash or refuse to read the program. If you want to control for certain whether to generate the extra information, use ! '-gstabs+', '-gstabs', '-gxcoff+', '-gxcoff', or '-gvms' (see below). ! GCC allows you to use '-g' with '-O'. The shortcuts taken by optimized code may occasionally produce surprising results: some variables you declared may not exist at all; flow of control may briefly move where you did not expect it; some statements may not *************** program or GCC: *** 4583,4650 **** The following options are useful when GCC is generated with the capability for more than one debugging format. ! `-gsplit-dwarf' Separate as much dwarf debugging information as possible into a separate output file with the extension .dwo. This option allows the build system to avoid linking files with debug information. To be useful, this option requires a debugger capable of reading .dwo files. ! `-ggdb' Produce debugging information for use by GDB. This means to use ! the most expressive format available (DWARF 2, stabs, or the ! native format if neither of those are supported), including GDB ! extensions if at all possible. ! `-gpubnames' Generate dwarf .debug_pubnames and .debug_pubtypes sections. ! `-gstabs' Produce debugging information in stabs format (if that is ! supported), without GDB extensions. This is the format used by ! DBX on most BSD systems. On MIPS, Alpha and System V Release 4 ! systems this option produces stabs debugging output that is not ! understood by DBX or SDB. On System V Release 4 systems this ! option requires the GNU assembler. ! `-feliminate-unused-debug-symbols' Produce debugging information in stabs format (if that is supported), for only symbols that are actually used. ! `-femit-class-debug-always' Instead of emitting debugging information for a C++ class in only ! one object file, emit it in all object files using the class. ! This option should be used only with debuggers that are unable to ! handle the way GCC normally emits debugging information for ! classes because using this option increases the size of debugging information by as much as a factor of two. ! `-fdebug-types-section' When using DWARF Version 4 or higher, type DIEs can be put into ! their own `.debug_types' section instead of making them part of the ! `.debug_info' section. It is more efficient to put them in a separate comdat sections since the linker can then remove ! duplicates. But not all DWARF consumers support `.debug_types' ! sections yet and on some objects `.debug_types' produces larger instead of smaller debugging information. ! `-gstabs+' Produce debugging information in stabs format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make other debuggers crash or refuse to read the program. ! `-gcoff' Produce debugging information in COFF format (if that is supported). This is the format used by SDB on most System V systems prior to System V Release 4. ! `-gxcoff' Produce debugging information in XCOFF format (if that is supported). This is the format used by the DBX debugger on IBM RS/6000 systems. ! `-gxcoff+' Produce debugging information in XCOFF format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make --- 4550,4617 ---- The following options are useful when GCC is generated with the capability for more than one debugging format. ! '-gsplit-dwarf' Separate as much dwarf debugging information as possible into a separate output file with the extension .dwo. This option allows the build system to avoid linking files with debug information. To be useful, this option requires a debugger capable of reading .dwo files. ! '-ggdb' Produce debugging information for use by GDB. This means to use ! the most expressive format available (DWARF 2, stabs, or the native ! format if neither of those are supported), including GDB extensions ! if at all possible. ! '-gpubnames' Generate dwarf .debug_pubnames and .debug_pubtypes sections. ! '-gstabs' Produce debugging information in stabs format (if that is ! supported), without GDB extensions. This is the format used by DBX ! on most BSD systems. On MIPS, Alpha and System V Release 4 systems ! this option produces stabs debugging output that is not understood ! by DBX or SDB. On System V Release 4 systems this option requires ! the GNU assembler. ! '-feliminate-unused-debug-symbols' Produce debugging information in stabs format (if that is supported), for only symbols that are actually used. ! '-femit-class-debug-always' Instead of emitting debugging information for a C++ class in only ! one object file, emit it in all object files using the class. This ! option should be used only with debuggers that are unable to handle ! the way GCC normally emits debugging information for classes ! because using this option increases the size of debugging information by as much as a factor of two. ! '-fdebug-types-section' When using DWARF Version 4 or higher, type DIEs can be put into ! their own '.debug_types' section instead of making them part of the ! '.debug_info' section. It is more efficient to put them in a separate comdat sections since the linker can then remove ! duplicates. But not all DWARF consumers support '.debug_types' ! sections yet and on some objects '.debug_types' produces larger instead of smaller debugging information. ! '-gstabs+' Produce debugging information in stabs format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make other debuggers crash or refuse to read the program. ! '-gcoff' Produce debugging information in COFF format (if that is supported). This is the format used by SDB on most System V systems prior to System V Release 4. ! '-gxcoff' Produce debugging information in XCOFF format (if that is supported). This is the format used by the DBX debugger on IBM RS/6000 systems. ! '-gxcoff+' Produce debugging information in XCOFF format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make *************** program or GCC: *** 4652,4658 **** assemblers other than the GNU assembler (GAS) to fail with an error. ! `-gdwarf-VERSION' Produce debugging information in DWARF format (if that is supported). The value of VERSION may be either 2, 3 or 4; the default version for most targets is 4. --- 4619,4625 ---- assemblers other than the GNU assembler (GAS) to fail with an error. ! '-gdwarf-VERSION' Produce debugging information in DWARF format (if that is supported). The value of VERSION may be either 2, 3 or 4; the default version for most targets is 4. *************** program or GCC: *** 4660,4706 **** Note that with DWARF Version 2, some ports require and always use some non-conflicting DWARF 3 extensions in the unwind tables. ! Version 4 may require GDB 7.0 and `-fvar-tracking-assignments' for maximum benefit. ! `-grecord-gcc-switches' This switch causes the command-line options used to invoke the compiler that may affect code generation to be appended to the DW_AT_producer attribute in DWARF debugging information. The options are concatenated with spaces separating them from each other and from the compiler version. See also ! `-frecord-gcc-switches' for another way of storing compiler ! options into the object file. This is the default. ! `-gno-record-gcc-switches' Disallow appending command-line options to the DW_AT_producer attribute in DWARF debugging information. ! `-gstrict-dwarf' Disallow using extensions of later DWARF standard version than ! selected with `-gdwarf-VERSION'. On most targets using non-conflicting DWARF extensions from later standard versions is allowed. ! `-gno-strict-dwarf' Allow using extensions of later DWARF standard version than ! selected with `-gdwarf-VERSION'. ! `-gvms' Produce debugging information in Alpha/VMS debug format (if that is supported). This is the format used by DEBUG on Alpha/VMS systems. ! `-gLEVEL' ! `-ggdbLEVEL' ! `-gstabsLEVEL' ! `-gcoffLEVEL' ! `-gxcoffLEVEL' ! `-gvmsLEVEL' Request debugging information and also use LEVEL to specify how much information. The default level is 2. ! Level 0 produces no debug information at all. Thus, `-g0' negates ! `-g'. Level 1 produces minimal information, enough for making backtraces in parts of the program that you don't plan to debug. This --- 4627,4673 ---- Note that with DWARF Version 2, some ports require and always use some non-conflicting DWARF 3 extensions in the unwind tables. ! Version 4 may require GDB 7.0 and '-fvar-tracking-assignments' for maximum benefit. ! '-grecord-gcc-switches' This switch causes the command-line options used to invoke the compiler that may affect code generation to be appended to the DW_AT_producer attribute in DWARF debugging information. The options are concatenated with spaces separating them from each other and from the compiler version. See also ! '-frecord-gcc-switches' for another way of storing compiler options ! into the object file. This is the default. ! '-gno-record-gcc-switches' Disallow appending command-line options to the DW_AT_producer attribute in DWARF debugging information. ! '-gstrict-dwarf' Disallow using extensions of later DWARF standard version than ! selected with '-gdwarf-VERSION'. On most targets using non-conflicting DWARF extensions from later standard versions is allowed. ! '-gno-strict-dwarf' Allow using extensions of later DWARF standard version than ! selected with '-gdwarf-VERSION'. ! '-gvms' Produce debugging information in Alpha/VMS debug format (if that is supported). This is the format used by DEBUG on Alpha/VMS systems. ! '-gLEVEL' ! '-ggdbLEVEL' ! '-gstabsLEVEL' ! '-gcoffLEVEL' ! '-gxcoffLEVEL' ! '-gvmsLEVEL' Request debugging information and also use LEVEL to specify how much information. The default level is 2. ! Level 0 produces no debug information at all. Thus, '-g0' negates ! '-g'. Level 1 produces minimal information, enough for making backtraces in parts of the program that you don't plan to debug. This *************** program or GCC: *** 4709,4808 **** Level 3 includes extra information, such as all the macro definitions present in the program. Some debuggers support macro ! expansion when you use `-g3'. ! `-gdwarf-2' does not accept a concatenated debug level, because ! GCC used to support an option `-gdwarf' that meant to generate ! debug information in version 1 of the DWARF format (which is very different from version 2), and it would have been too confusing. That debug format is long obsolete, but the option cannot be ! changed now. Instead use an additional `-gLEVEL' option to change the debug level for DWARF. ! `-gtoggle' Turn off generation of debug info, if leaving out this option generates it, or turn it on at level 2 otherwise. The position of this argument in the command line does not matter; it takes effect ! after all other options are processed, and it does so only once, ! no matter how many times it is given. This is mainly intended to ! be used with `-fcompare-debug'. ! `-fsanitize=address' Enable AddressSanitizer, a fast memory error detector. Memory access instructions will be instrumented to detect out-of-bounds and use-after-free bugs. See ! `http://code.google.com/p/address-sanitizer/' for more details. ! `-fsanitize=thread' Enable ThreadSanitizer, a fast data race detector. Memory access instructions will be instrumented to detect data race bugs. See ! `http://code.google.com/p/data-race-test/wiki/ThreadSanitizer' for more details. ! `-fdump-final-insns[=FILE]' Dump the final internal representation (RTL) to FILE. If the ! optional argument is omitted (or if FILE is `.'), the name of the ! dump file is determined by appending `.gkd' to the compilation output file name. ! `-fcompare-debug[=OPTS]' If no error occurs during compilation, run the compiler a second ! time, adding OPTS and `-fcompare-debug-second' to the arguments passed to the second compilation. Dump the final internal representation in both compilations, and print an error if they differ. ! If the equal sign is omitted, the default `-gtoggle' is used. ! The environment variable `GCC_COMPARE_DEBUG', if defined, non-empty ! and nonzero, implicitly enables `-fcompare-debug'. If ! `GCC_COMPARE_DEBUG' is defined to a string starting with a dash, ! then it is used for OPTS, otherwise the default `-gtoggle' is used. ! `-fcompare-debug=', with the equal sign but without OPTS, is ! equivalent to `-fno-compare-debug', which disables the dumping of the final representation and the second compilation, preventing ! even `GCC_COMPARE_DEBUG' from taking effect. ! To verify full coverage during `-fcompare-debug' testing, set ! `GCC_COMPARE_DEBUG' to say `-fcompare-debug-not-overridden', which GCC rejects as an invalid option in any actual compilation (rather than preprocessing, assembly or linking). To get just a warning, ! setting `GCC_COMPARE_DEBUG' to `-w%n-fcompare-debug not ! overridden' will do. ! `-fcompare-debug-second' This option is implicitly passed to the compiler for the second ! compilation requested by `-fcompare-debug', along with options to silence warnings, and omitting other options that would cause side-effect compiler outputs to files or to the standard output. Dump files and preserved temporary files are renamed so as to ! contain the `.gk' additional extension during the second compilation, to avoid overwriting those generated by the first. When this option is passed to the compiler driver, it causes the _first_ compilation to be skipped, which makes it useful for little other than debugging the compiler proper. ! `-feliminate-dwarf2-dups' Compress DWARF 2 debugging information by eliminating duplicated information about each symbol. This option only makes sense when ! generating DWARF 2 debugging information with `-gdwarf-2'. ! `-femit-struct-debug-baseonly' Emit debug information for struct-like types only when the base name of the compilation source file matches the base name of file in which the struct is defined. This option substantially reduces the size of debugging information, but at significant potential loss in type information ! to the debugger. See `-femit-struct-debug-reduced' for a less ! aggressive option. See `-femit-struct-debug-detailed' for more detailed control. This option works only with DWARF 2. ! `-femit-struct-debug-reduced' Emit debug information for struct-like types only when the base name of the compilation source file matches the base name of file in which the type is defined, unless the struct is a template or --- 4676,4775 ---- Level 3 includes extra information, such as all the macro definitions present in the program. Some debuggers support macro ! expansion when you use '-g3'. ! '-gdwarf-2' does not accept a concatenated debug level, because GCC ! used to support an option '-gdwarf' that meant to generate debug ! information in version 1 of the DWARF format (which is very different from version 2), and it would have been too confusing. That debug format is long obsolete, but the option cannot be ! changed now. Instead use an additional '-gLEVEL' option to change the debug level for DWARF. ! '-gtoggle' Turn off generation of debug info, if leaving out this option generates it, or turn it on at level 2 otherwise. The position of this argument in the command line does not matter; it takes effect ! after all other options are processed, and it does so only once, no ! matter how many times it is given. This is mainly intended to be ! used with '-fcompare-debug'. ! '-fsanitize=address' Enable AddressSanitizer, a fast memory error detector. Memory access instructions will be instrumented to detect out-of-bounds and use-after-free bugs. See ! for more details. ! '-fsanitize=thread' Enable ThreadSanitizer, a fast data race detector. Memory access instructions will be instrumented to detect data race bugs. See ! for more details. ! '-fdump-final-insns[=FILE]' Dump the final internal representation (RTL) to FILE. If the ! optional argument is omitted (or if FILE is '.'), the name of the ! dump file is determined by appending '.gkd' to the compilation output file name. ! '-fcompare-debug[=OPTS]' If no error occurs during compilation, run the compiler a second ! time, adding OPTS and '-fcompare-debug-second' to the arguments passed to the second compilation. Dump the final internal representation in both compilations, and print an error if they differ. ! If the equal sign is omitted, the default '-gtoggle' is used. ! The environment variable 'GCC_COMPARE_DEBUG', if defined, non-empty ! and nonzero, implicitly enables '-fcompare-debug'. If ! 'GCC_COMPARE_DEBUG' is defined to a string starting with a dash, ! then it is used for OPTS, otherwise the default '-gtoggle' is used. ! '-fcompare-debug=', with the equal sign but without OPTS, is ! equivalent to '-fno-compare-debug', which disables the dumping of the final representation and the second compilation, preventing ! even 'GCC_COMPARE_DEBUG' from taking effect. ! To verify full coverage during '-fcompare-debug' testing, set ! 'GCC_COMPARE_DEBUG' to say '-fcompare-debug-not-overridden', which GCC rejects as an invalid option in any actual compilation (rather than preprocessing, assembly or linking). To get just a warning, ! setting 'GCC_COMPARE_DEBUG' to '-w%n-fcompare-debug not overridden' ! will do. ! '-fcompare-debug-second' This option is implicitly passed to the compiler for the second ! compilation requested by '-fcompare-debug', along with options to silence warnings, and omitting other options that would cause side-effect compiler outputs to files or to the standard output. Dump files and preserved temporary files are renamed so as to ! contain the '.gk' additional extension during the second compilation, to avoid overwriting those generated by the first. When this option is passed to the compiler driver, it causes the _first_ compilation to be skipped, which makes it useful for little other than debugging the compiler proper. ! '-feliminate-dwarf2-dups' Compress DWARF 2 debugging information by eliminating duplicated information about each symbol. This option only makes sense when ! generating DWARF 2 debugging information with '-gdwarf-2'. ! '-femit-struct-debug-baseonly' Emit debug information for struct-like types only when the base name of the compilation source file matches the base name of file in which the struct is defined. This option substantially reduces the size of debugging information, but at significant potential loss in type information ! to the debugger. See '-femit-struct-debug-reduced' for a less ! aggressive option. See '-femit-struct-debug-detailed' for more detailed control. This option works only with DWARF 2. ! '-femit-struct-debug-reduced' Emit debug information for struct-like types only when the base name of the compilation source file matches the base name of file in which the type is defined, unless the struct is a template or *************** program or GCC: *** 4810,5074 **** This option significantly reduces the size of debugging information, with some potential loss in type information to the ! debugger. See `-femit-struct-debug-baseonly' for a more ! aggressive option. See `-femit-struct-debug-detailed' for more ! detailed control. This option works only with DWARF 2. ! `-femit-struct-debug-detailed[=SPEC-LIST]' Specify the struct-like types for which the compiler generates debug information. The intent is to reduce duplicate struct debug information between different object files within the same program. ! This option is a detailed version of `-femit-struct-debug-reduced' ! and `-femit-struct-debug-baseonly', which serves for most needs. A specification has the syntax ! [`dir:'|`ind:'][`ord:'|`gen:'](`any'|`sys'|`base'|`none') The optional first word limits the specification to structs that ! are used directly (`dir:') or used indirectly (`ind:'). A struct type is used directly when it is the type of a variable, member. ! Indirect uses arise through pointers to structs. That is, when ! use of an incomplete struct is valid, the use is indirect. An ! example is `struct one direct; struct two * indirect;'. The optional second word limits the specification to ordinary ! structs (`ord:') or generic structs (`gen:'). Generic structs are a bit complicated to explain. For C++, these are non-explicit ! specializations of template classes, or non-template classes ! within the above. Other programming languages have generics, but ! `-femit-struct-debug-detailed' does not yet implement them. The third word specifies the source files for those structs for which the compiler should emit debug information. The values ! `none' and `any' have the normal meaning. The value `base' means that the base of name of the file in which the type declaration appears must match the base of the name of the main compilation ! file. In practice, this means that when compiling `foo.c', debug information is generated for types declared in that file and ! `foo.h', but not other header files. The value `sys' means those ! types satisfying `base' or declared in system or compiler headers. You may need to experiment to determine the best settings for your application. ! The default is `-femit-struct-debug-detailed=all'. This option works only with DWARF 2. ! `-fno-merge-debug-strings' Direct the linker to not merge together strings in the debugging information that are identical in different object files. Merging is not supported by all assemblers or linkers. Merging decreases ! the size of the debug information in the output file at the cost ! of increasing link processing time. Merging is enabled by default. ! `-fdebug-prefix-map=OLD=NEW' ! When compiling files in directory `OLD', record debugging ! information describing them as in `NEW' instead. ! `-fno-dwarf2-cfi-asm' ! Emit DWARF 2 unwind info as compiler generated `.eh_frame' section ! instead of using GAS `.cfi_*' directives. ! `-p' Generate extra code to write profile information suitable for the ! analysis program `prof'. You must use this option when compiling the source files you want data about, and you must also use it when linking. ! `-pg' Generate extra code to write profile information suitable for the ! analysis program `gprof'. You must use this option when compiling the source files you want data about, and you must also use it when linking. ! `-Q' Makes the compiler print out each function name as it is compiled, and print some statistics about each pass when it finishes. ! `-ftime-report' ! Makes the compiler print some statistics about the time consumed ! by each pass when it finishes. ! `-fmem-report' Makes the compiler print some statistics about permanent memory allocation when it finishes. ! `-fmem-report-wpa' Makes the compiler print some statistics about permanent memory allocation for the WPA phase only. ! `-fpre-ipa-mem-report' ! ! `-fpost-ipa-mem-report' Makes the compiler print some statistics about permanent memory allocation before or after interprocedural optimization. ! `-fprofile-report' Makes the compiler print some statistics about consistency of the (estimated) profile and effect of individual passes. ! `-fstack-usage' Makes the compiler output stack usage information for the program, on a per-function basis. The filename for the dump is made by ! appending `.su' to the AUXNAME. AUXNAME is generated from the ! name of the output file, if explicitly specified and it is not an executable, otherwise it is the basename of the source file. An entry is made up of three fields: * The name of the function. - * A number of bytes. ! * One or more qualifiers: `static', `dynamic', `bounded'. ! ! The qualifier `static' means that the function manipulates the stack statically: a fixed number of bytes are allocated for the frame on function entry and released on function exit; no stack adjustments are otherwise made in the function. The second field is this fixed number of bytes. ! The qualifier `dynamic' means that the function manipulates the stack dynamically: in addition to the static allocation described above, stack adjustments are made in the body of the function, for example to push/pop arguments around function calls. If the ! qualifier `bounded' is also present, the amount of these adjustments is bounded at compile time and the second field is an upper bound of the total amount of stack used by the function. If it is not present, the amount of these adjustments is not bounded at compile time and the second field only represents the bounded part. ! `-fprofile-arcs' Add code so that program flow "arcs" are instrumented. During execution the program records how many times each branch and call is executed and how many times it is taken or returns. When the compiled program exits it saves this data to a file called ! `AUXNAME.gcda' for each source file. The data may be used for ! profile-directed optimizations (`-fbranch-probabilities'), or for ! test coverage analysis (`-ftest-coverage'). Each object file's AUXNAME is generated from the name of the output file, if explicitly specified and it is not the final executable, otherwise ! it is the basename of the source file. In both cases any suffix ! is removed (e.g. `foo.gcda' for input file `dir/foo.c', or ! `dir/foo.gcda' for output file specified as `-o dir/foo.o'). ! *Note Cross-profiling::. - `--coverage' This option is used to compile and link code instrumented for ! coverage analysis. The option is a synonym for `-fprofile-arcs' ! `-ftest-coverage' (when compiling) and `-lgcov' (when linking). See the documentation for those options for more details. ! * Compile the source files with `-fprofile-arcs' plus optimization and code generation options. For test coverage ! analysis, use the additional `-ftest-coverage' option. You ! do not need to profile every source file in a program. ! * Link your object files with `-lgcov' or `-fprofile-arcs' (the latter implies the former). * Run the program on a representative workload to generate the arc profile information. This may be repeated any number of times. You can run concurrent instances of your program, and ! provided that the file system supports locking, the data ! files will be correctly updated. Also `fork' calls are ! detected and correctly handled (double counting will not ! happen). * For profile-directed optimizations, compile the source files again with the same optimization and code generation options ! plus `-fbranch-probabilities' (*note Options that Control Optimization: Optimize Options.). ! * For test coverage analysis, use `gcov' to produce human ! readable information from the `.gcno' and `.gcda' files. ! Refer to the `gcov' documentation for further information. ! ! With `-fprofile-arcs', for each function of your program GCC creates a program flow graph, then finds a spanning tree for the graph. Only arcs that are not on the spanning tree have to be instrumented: the compiler adds code to count the number of times ! that these arcs are executed. When an arc is the only exit or ! only entrance to a block, the instrumentation code can be added to ! the block; otherwise, a new basic block must be created to hold ! the instrumentation code. ! `-ftest-coverage' ! Produce a notes file that the `gcov' code-coverage utility (*note ! `gcov'--a Test Coverage Program: Gcov.) can use to show program ! coverage. Each source file's note file is called `AUXNAME.gcno'. ! Refer to the `-fprofile-arcs' option above for a description of AUXNAME and instructions on how to generate test coverage data. Coverage data matches the source files more closely if you do not optimize. ! `-fdbg-cnt-list' Print the name and the counter upper bound for all debug counters. ! `-fdbg-cnt=COUNTER-VALUE-LIST' Set the internal debug counter upper bound. COUNTER-VALUE-LIST is a comma-separated list of NAME:VALUE pairs which sets the upper ! bound of each debug counter NAME to VALUE. All debug counters ! have the initial upper bound of `UINT_MAX'; thus `dbg_cnt()' ! returns true always unless the upper bound is set by this option. ! For example, with `-fdbg-cnt=dce:10,tail_call:0', `dbg_cnt(dce)' returns true only for first 10 invocations. ! `-fenable-KIND-PASS' ! `-fdisable-KIND-PASS=RANGE-LIST' This is a set of options that are used to explicitly disable/enable optimization passes. These options are intended for use for ! debugging GCC. Compiler users should use regular options for enabling/disabling passes instead. ! `-fdisable-ipa-PASS' ! Disable IPA pass PASS. PASS is the pass name. If the same ! pass is statically invoked in the compiler multiple times, ! the pass name should be appended with a sequential number ! starting from 1. ! `-fdisable-rtl-PASS' ! `-fdisable-rtl-PASS=RANGE-LIST' Disable RTL pass PASS. PASS is the pass name. If the same ! pass is statically invoked in the compiler multiple times, ! the pass name should be appended with a sequential number ! starting from 1. RANGE-LIST is a comma-separated list of ! function ranges or assembler names. Each range is a number ! pair separated by a colon. The range is inclusive in both ! ends. If the range is trivial, the number pair can be ! simplified as a single number. If the function's call graph ! node's UID falls within one of the specified ranges, the PASS ! is disabled for that function. The UID is shown in the ! function header of a dump file, and the pass names can be ! dumped by using option `-fdump-passes'. ! `-fdisable-tree-PASS' ! `-fdisable-tree-PASS=RANGE-LIST' ! Disable tree pass PASS. See `-fdisable-rtl' for the description of option arguments. ! `-fenable-ipa-PASS' Enable IPA pass PASS. PASS is the pass name. If the same ! pass is statically invoked in the compiler multiple times, ! the pass name should be appended with a sequential number ! starting from 1. ! `-fenable-rtl-PASS' ! `-fenable-rtl-PASS=RANGE-LIST' ! Enable RTL pass PASS. See `-fdisable-rtl' for option argument description and examples. ! `-fenable-tree-PASS' ! `-fenable-tree-PASS=RANGE-LIST' ! Enable tree pass PASS. See `-fdisable-rtl' for the description of option arguments. - Here are some examples showing uses of these options. --- 4777,5037 ---- This option significantly reduces the size of debugging information, with some potential loss in type information to the ! debugger. See '-femit-struct-debug-baseonly' for a more aggressive ! option. See '-femit-struct-debug-detailed' for more detailed ! control. This option works only with DWARF 2. ! '-femit-struct-debug-detailed[=SPEC-LIST]' Specify the struct-like types for which the compiler generates debug information. The intent is to reduce duplicate struct debug information between different object files within the same program. ! This option is a detailed version of '-femit-struct-debug-reduced' ! and '-femit-struct-debug-baseonly', which serves for most needs. A specification has the syntax ! ['dir:'|'ind:']['ord:'|'gen:']('any'|'sys'|'base'|'none') The optional first word limits the specification to structs that ! are used directly ('dir:') or used indirectly ('ind:'). A struct type is used directly when it is the type of a variable, member. ! Indirect uses arise through pointers to structs. That is, when use ! of an incomplete struct is valid, the use is indirect. An example ! is 'struct one direct; struct two * indirect;'. The optional second word limits the specification to ordinary ! structs ('ord:') or generic structs ('gen:'). Generic structs are a bit complicated to explain. For C++, these are non-explicit ! specializations of template classes, or non-template classes within ! the above. Other programming languages have generics, but ! '-femit-struct-debug-detailed' does not yet implement them. The third word specifies the source files for those structs for which the compiler should emit debug information. The values ! 'none' and 'any' have the normal meaning. The value 'base' means that the base of name of the file in which the type declaration appears must match the base of the name of the main compilation ! file. In practice, this means that when compiling 'foo.c', debug information is generated for types declared in that file and ! 'foo.h', but not other header files. The value 'sys' means those ! types satisfying 'base' or declared in system or compiler headers. You may need to experiment to determine the best settings for your application. ! The default is '-femit-struct-debug-detailed=all'. This option works only with DWARF 2. ! '-fno-merge-debug-strings' Direct the linker to not merge together strings in the debugging information that are identical in different object files. Merging is not supported by all assemblers or linkers. Merging decreases ! the size of the debug information in the output file at the cost of ! increasing link processing time. Merging is enabled by default. ! '-fdebug-prefix-map=OLD=NEW' ! When compiling files in directory 'OLD', record debugging ! information describing them as in 'NEW' instead. ! '-fno-dwarf2-cfi-asm' ! Emit DWARF 2 unwind info as compiler generated '.eh_frame' section ! instead of using GAS '.cfi_*' directives. ! '-p' Generate extra code to write profile information suitable for the ! analysis program 'prof'. You must use this option when compiling the source files you want data about, and you must also use it when linking. ! '-pg' Generate extra code to write profile information suitable for the ! analysis program 'gprof'. You must use this option when compiling the source files you want data about, and you must also use it when linking. ! '-Q' Makes the compiler print out each function name as it is compiled, and print some statistics about each pass when it finishes. ! '-ftime-report' ! Makes the compiler print some statistics about the time consumed by ! each pass when it finishes. ! '-fmem-report' Makes the compiler print some statistics about permanent memory allocation when it finishes. ! '-fmem-report-wpa' Makes the compiler print some statistics about permanent memory allocation for the WPA phase only. ! '-fpre-ipa-mem-report' ! '-fpost-ipa-mem-report' Makes the compiler print some statistics about permanent memory allocation before or after interprocedural optimization. ! '-fprofile-report' Makes the compiler print some statistics about consistency of the (estimated) profile and effect of individual passes. ! '-fstack-usage' Makes the compiler output stack usage information for the program, on a per-function basis. The filename for the dump is made by ! appending '.su' to the AUXNAME. AUXNAME is generated from the name ! of the output file, if explicitly specified and it is not an executable, otherwise it is the basename of the source file. An entry is made up of three fields: * The name of the function. * A number of bytes. + * One or more qualifiers: 'static', 'dynamic', 'bounded'. ! The qualifier 'static' means that the function manipulates the stack statically: a fixed number of bytes are allocated for the frame on function entry and released on function exit; no stack adjustments are otherwise made in the function. The second field is this fixed number of bytes. ! The qualifier 'dynamic' means that the function manipulates the stack dynamically: in addition to the static allocation described above, stack adjustments are made in the body of the function, for example to push/pop arguments around function calls. If the ! qualifier 'bounded' is also present, the amount of these adjustments is bounded at compile time and the second field is an upper bound of the total amount of stack used by the function. If it is not present, the amount of these adjustments is not bounded at compile time and the second field only represents the bounded part. ! '-fprofile-arcs' Add code so that program flow "arcs" are instrumented. During execution the program records how many times each branch and call is executed and how many times it is taken or returns. When the compiled program exits it saves this data to a file called ! 'AUXNAME.gcda' for each source file. The data may be used for ! profile-directed optimizations ('-fbranch-probabilities'), or for ! test coverage analysis ('-ftest-coverage'). Each object file's AUXNAME is generated from the name of the output file, if explicitly specified and it is not the final executable, otherwise ! it is the basename of the source file. In both cases any suffix is ! removed (e.g. 'foo.gcda' for input file 'dir/foo.c', or ! 'dir/foo.gcda' for output file specified as '-o dir/foo.o'). *Note ! Cross-profiling::. ! ! '--coverage' This option is used to compile and link code instrumented for ! coverage analysis. The option is a synonym for '-fprofile-arcs' ! '-ftest-coverage' (when compiling) and '-lgcov' (when linking). See the documentation for those options for more details. ! * Compile the source files with '-fprofile-arcs' plus optimization and code generation options. For test coverage ! analysis, use the additional '-ftest-coverage' option. You do ! not need to profile every source file in a program. ! * Link your object files with '-lgcov' or '-fprofile-arcs' (the latter implies the former). * Run the program on a representative workload to generate the arc profile information. This may be repeated any number of times. You can run concurrent instances of your program, and ! provided that the file system supports locking, the data files ! will be correctly updated. Also 'fork' calls are detected and ! correctly handled (double counting will not happen). * For profile-directed optimizations, compile the source files again with the same optimization and code generation options ! plus '-fbranch-probabilities' (*note Options that Control Optimization: Optimize Options.). ! * For test coverage analysis, use 'gcov' to produce human ! readable information from the '.gcno' and '.gcda' files. ! Refer to the 'gcov' documentation for further information. ! With '-fprofile-arcs', for each function of your program GCC creates a program flow graph, then finds a spanning tree for the graph. Only arcs that are not on the spanning tree have to be instrumented: the compiler adds code to count the number of times ! that these arcs are executed. When an arc is the only exit or only ! entrance to a block, the instrumentation code can be added to the ! block; otherwise, a new basic block must be created to hold the ! instrumentation code. ! '-ftest-coverage' ! Produce a notes file that the 'gcov' code-coverage utility (*note ! 'gcov'--a Test Coverage Program: Gcov.) can use to show program ! coverage. Each source file's note file is called 'AUXNAME.gcno'. ! Refer to the '-fprofile-arcs' option above for a description of AUXNAME and instructions on how to generate test coverage data. Coverage data matches the source files more closely if you do not optimize. ! '-fdbg-cnt-list' Print the name and the counter upper bound for all debug counters. ! '-fdbg-cnt=COUNTER-VALUE-LIST' Set the internal debug counter upper bound. COUNTER-VALUE-LIST is a comma-separated list of NAME:VALUE pairs which sets the upper ! bound of each debug counter NAME to VALUE. All debug counters have ! the initial upper bound of 'UINT_MAX'; thus 'dbg_cnt()' returns ! true always unless the upper bound is set by this option. For ! example, with '-fdbg-cnt=dce:10,tail_call:0', 'dbg_cnt(dce)' returns true only for first 10 invocations. ! '-fenable-KIND-PASS' ! '-fdisable-KIND-PASS=RANGE-LIST' ! This is a set of options that are used to explicitly disable/enable optimization passes. These options are intended for use for ! debugging GCC. Compiler users should use regular options for enabling/disabling passes instead. ! '-fdisable-ipa-PASS' ! Disable IPA pass PASS. PASS is the pass name. If the same ! pass is statically invoked in the compiler multiple times, the ! pass name should be appended with a sequential number starting ! from 1. ! '-fdisable-rtl-PASS' ! '-fdisable-rtl-PASS=RANGE-LIST' Disable RTL pass PASS. PASS is the pass name. If the same ! pass is statically invoked in the compiler multiple times, the ! pass name should be appended with a sequential number starting ! from 1. RANGE-LIST is a comma-separated list of function ! ranges or assembler names. Each range is a number pair ! separated by a colon. The range is inclusive in both ends. ! If the range is trivial, the number pair can be simplified as ! a single number. If the function's call graph node's UID ! falls within one of the specified ranges, the PASS is disabled ! for that function. The UID is shown in the function header of ! a dump file, and the pass names can be dumped by using option ! '-fdump-passes'. ! '-fdisable-tree-PASS' ! '-fdisable-tree-PASS=RANGE-LIST' ! Disable tree pass PASS. See '-fdisable-rtl' for the description of option arguments. ! '-fenable-ipa-PASS' Enable IPA pass PASS. PASS is the pass name. If the same ! pass is statically invoked in the compiler multiple times, the ! pass name should be appended with a sequential number starting ! from 1. ! '-fenable-rtl-PASS' ! '-fenable-rtl-PASS=RANGE-LIST' ! Enable RTL pass PASS. See '-fdisable-rtl' for option argument description and examples. ! '-fenable-tree-PASS' ! '-fenable-tree-PASS=RANGE-LIST' ! Enable tree pass PASS. See '-fdisable-rtl' for the description of option arguments. Here are some examples showing uses of these options. *************** program or GCC: *** 5087,5422 **** # enable tree full unroll -fenable-tree-unroll ! `-dLETTERS' ! `-fdump-rtl-PASS' ! `-fdump-rtl-PASS=FILENAME' Says to make debugging dumps during compilation at times specified by LETTERS. This is used for debugging the RTL-based passes of the compiler. The file names for most of the dumps are made by appending a pass number and a word to the DUMPNAME, and the files ! are created in the directory of the output file. In case of ! `=FILENAME' option, the dump is output on the given file instead ! of the pass numbered dump files. Note that the pass number is computed statically as passes get registered into the pass manager. ! Thus the numbering is not related to the dynamic order of ! execution of passes. In particular, a pass installed by a plugin ! could have a number over 200 even if it executed quite early. ! DUMPNAME is generated from the name of the output file, if ! explicitly specified and it is not an executable, otherwise it is ! the basename of the source file. These switches may have different ! effects when `-E' is used for preprocessing. ! Debug dumps can be enabled with a `-fdump-rtl' switch or some `-d' option LETTERS. Here are the possible letters for use in PASS and LETTERS, and their meanings: ! `-fdump-rtl-alignments' Dump after branch alignments have been computed. ! `-fdump-rtl-asmcons' Dump after fixing rtl statements that have unsatisfied in/out constraints. ! `-fdump-rtl-auto_inc_dec' Dump after auto-inc-dec discovery. This pass is only run on architectures that have auto inc or auto dec instructions. ! `-fdump-rtl-barriers' Dump after cleaning up the barrier instructions. ! `-fdump-rtl-bbpart' Dump after partitioning hot and cold basic blocks. ! `-fdump-rtl-bbro' Dump after block reordering. ! `-fdump-rtl-btl1' ! `-fdump-rtl-btl2' ! `-fdump-rtl-btl1' and `-fdump-rtl-btl2' enable dumping after the two branch target load optimization passes. ! `-fdump-rtl-bypass' Dump after jump bypassing and control flow optimizations. ! `-fdump-rtl-combine' Dump after the RTL instruction combination pass. ! `-fdump-rtl-compgotos' Dump after duplicating the computed gotos. ! `-fdump-rtl-ce1' ! `-fdump-rtl-ce2' ! `-fdump-rtl-ce3' ! `-fdump-rtl-ce1', `-fdump-rtl-ce2', and `-fdump-rtl-ce3' enable dumping after the three if conversion passes. ! `-fdump-rtl-cprop_hardreg' Dump after hard register copy propagation. ! `-fdump-rtl-csa' Dump after combining stack adjustments. ! `-fdump-rtl-cse1' ! `-fdump-rtl-cse2' ! `-fdump-rtl-cse1' and `-fdump-rtl-cse2' enable dumping after the two common subexpression elimination passes. ! `-fdump-rtl-dce' Dump after the standalone dead code elimination passes. ! `-fdump-rtl-dbr' Dump after delayed branch scheduling. ! `-fdump-rtl-dce1' ! `-fdump-rtl-dce2' ! `-fdump-rtl-dce1' and `-fdump-rtl-dce2' enable dumping after the two dead store elimination passes. ! `-fdump-rtl-eh' Dump after finalization of EH handling code. ! `-fdump-rtl-eh_ranges' Dump after conversion of EH handling range regions. ! `-fdump-rtl-expand' Dump after RTL generation. ! `-fdump-rtl-fwprop1' ! `-fdump-rtl-fwprop2' ! `-fdump-rtl-fwprop1' and `-fdump-rtl-fwprop2' enable dumping after the two forward propagation passes. ! `-fdump-rtl-gcse1' ! `-fdump-rtl-gcse2' ! `-fdump-rtl-gcse1' and `-fdump-rtl-gcse2' enable dumping ! after global common subexpression elimination. ! `-fdump-rtl-init-regs' Dump after the initialization of the registers. ! `-fdump-rtl-initvals' Dump after the computation of the initial value sets. ! `-fdump-rtl-into_cfglayout' Dump after converting to cfglayout mode. ! `-fdump-rtl-ira' Dump after iterated register allocation. ! `-fdump-rtl-jump' Dump after the second jump optimization. ! `-fdump-rtl-loop2' ! `-fdump-rtl-loop2' enables dumping after the rtl loop optimization passes. ! `-fdump-rtl-mach' Dump after performing the machine dependent reorganization pass, if that pass exists. ! `-fdump-rtl-mode_sw' Dump after removing redundant mode switches. ! `-fdump-rtl-rnreg' Dump after register renumbering. ! `-fdump-rtl-outof_cfglayout' Dump after converting from cfglayout mode. ! `-fdump-rtl-peephole2' Dump after the peephole pass. ! `-fdump-rtl-postreload' Dump after post-reload optimizations. ! `-fdump-rtl-pro_and_epilogue' Dump after generating the function prologues and epilogues. ! `-fdump-rtl-regmove' Dump after the register move pass. ! `-fdump-rtl-sched1' ! `-fdump-rtl-sched2' ! `-fdump-rtl-sched1' and `-fdump-rtl-sched2' enable dumping after the basic block scheduling passes. ! `-fdump-rtl-see' Dump after sign extension elimination. ! `-fdump-rtl-seqabstr' Dump after common sequence discovery. ! `-fdump-rtl-shorten' Dump after shortening branches. ! `-fdump-rtl-sibling' Dump after sibling call optimizations. ! `-fdump-rtl-split1' ! `-fdump-rtl-split2' ! `-fdump-rtl-split3' ! `-fdump-rtl-split4' ! `-fdump-rtl-split5' ! `-fdump-rtl-split1', `-fdump-rtl-split2', ! `-fdump-rtl-split3', `-fdump-rtl-split4' and ! `-fdump-rtl-split5' enable dumping after five rounds of ! instruction splitting. ! `-fdump-rtl-sms' Dump after modulo scheduling. This pass is only run on some architectures. ! `-fdump-rtl-stack' Dump after conversion from GCC's "flat register file" registers to the x87's stack-like registers. This pass is only run on x86 variants. ! `-fdump-rtl-subreg1' ! `-fdump-rtl-subreg2' ! `-fdump-rtl-subreg1' and `-fdump-rtl-subreg2' enable dumping after the two subreg expansion passes. ! `-fdump-rtl-unshare' Dump after all rtl has been unshared. ! `-fdump-rtl-vartrack' Dump after variable tracking. ! `-fdump-rtl-vregs' Dump after converting virtual registers to hard registers. ! `-fdump-rtl-web' Dump after live range splitting. ! `-fdump-rtl-regclass' ! `-fdump-rtl-subregs_of_mode_init' ! `-fdump-rtl-subregs_of_mode_finish' ! `-fdump-rtl-dfinit' ! `-fdump-rtl-dfinish' These dumps are defined but always produce empty files. ! `-da' ! `-fdump-rtl-all' Produce all the dumps listed above. ! `-dA' Annotate the assembler output with miscellaneous debugging information. ! `-dD' Dump all macro definitions, at the end of preprocessing, in addition to normal output. ! `-dH' Produce a core dump whenever an error occurs. ! `-dp' Annotate the assembler output with a comment indicating which pattern and alternative is used. The length of each instruction is also printed. ! `-dP' Dump the RTL in the assembler output as a comment before each ! instruction. Also turns on `-dp' annotation. ! `-dx' Just generate RTL for a function instead of compiling it. ! Usually used with `-fdump-rtl-expand'. ! `-fdump-noaddr' ! When doing debugging dumps, suppress address output. This makes ! it more feasible to use diff on debugging dumps for compiler invocations with different compiler binaries and/or different text / bss / data / heap / stack / dso start locations. ! `-fdump-unnumbered' When doing debugging dumps, suppress instruction numbers and address output. This makes it more feasible to use diff on ! debugging dumps for compiler invocations with different options, ! in particular with and without `-g'. ! `-fdump-unnumbered-links' ! When doing debugging dumps (see `-d' option above), suppress instruction numbers for the links to the previous and next instructions in a sequence. ! `-fdump-translation-unit (C++ only)' ! `-fdump-translation-unit-OPTIONS (C++ only)' Dump a representation of the tree structure for the entire translation unit to a file. The file name is made by appending ! `.tu' to the source file name, and the file is created in the same ! directory as the output file. If the `-OPTIONS' form is used, OPTIONS controls the details of the dump as described for the ! `-fdump-tree' options. ! `-fdump-class-hierarchy (C++ only)' ! `-fdump-class-hierarchy-OPTIONS (C++ only)' Dump a representation of each class's hierarchy and virtual function table layout to a file. The file name is made by ! appending `.class' to the source file name, and the file is ! created in the same directory as the output file. If the ! `-OPTIONS' form is used, OPTIONS controls the details of the dump ! as described for the `-fdump-tree' options. ! `-fdump-ipa-SWITCH' Control the dumping at various stages of inter-procedural analysis language tree to a file. The file name is generated by appending a switch specific suffix to the source file name, and the file is created in the same directory as the output file. The following dumps are possible: ! `all' Enables all inter-procedural analysis dumps. ! `cgraph' Dumps information about call-graph optimization, unused function removal, and inlining decisions. ! `inline' Dump after function inlining. ! ! `-fdump-passes' Dump the list of optimization passes that are turned on and off by the current command-line options. ! `-fdump-statistics-OPTION' Enable and control dumping of pass statistics in a separate file. The file name is generated by appending a suffix ending in ! `.statistics' to the source file name, and the file is created in ! the same directory as the output file. If the `-OPTION' form is ! used, `-stats' causes counters to be summed over the whole ! compilation unit while `-details' dumps every event as the passes generate them. The default with no option is to sum counters for each function compiled. ! `-fdump-tree-SWITCH' ! `-fdump-tree-SWITCH-OPTIONS' ! `-fdump-tree-SWITCH-OPTIONS=FILENAME' Control the dumping at various stages of processing the intermediate language tree to a file. The file name is generated by appending a switch-specific suffix to the source file name, and ! the file is created in the same directory as the output file. In ! case of `=FILENAME' option, the dump is output on the given file ! instead of the auto named dump files. If the `-OPTIONS' form is ! used, OPTIONS is a list of `-' separated options which control the details of the dump. Not all options are applicable to all dumps; those that are not meaningful are ignored. The following options are available ! `address' Print the address of each node. Usually this is not meaningful as it changes according to the environment and ! source file. Its primary use is for tying up a dump file ! with a debug environment. ! ! `asmname' ! If `DECL_ASSEMBLER_NAME' has been set for a given decl, use ! that in the dump instead of `DECL_NAME'. Its primary use is ease of use working backward from mangled names in the assembly file. ! ! `slim' When dumping front-end intermediate representations, inhibit dumping of members of a scope or body of a function merely because that scope has been reached. Only dump such items --- 5050,5381 ---- # enable tree full unroll -fenable-tree-unroll ! '-dLETTERS' ! '-fdump-rtl-PASS' ! '-fdump-rtl-PASS=FILENAME' Says to make debugging dumps during compilation at times specified by LETTERS. This is used for debugging the RTL-based passes of the compiler. The file names for most of the dumps are made by appending a pass number and a word to the DUMPNAME, and the files ! are created in the directory of the output file. In case of ! '=FILENAME' option, the dump is output on the given file instead of ! the pass numbered dump files. Note that the pass number is computed statically as passes get registered into the pass manager. ! Thus the numbering is not related to the dynamic order of execution ! of passes. In particular, a pass installed by a plugin could have ! a number over 200 even if it executed quite early. DUMPNAME is ! generated from the name of the output file, if explicitly specified ! and it is not an executable, otherwise it is the basename of the ! source file. These switches may have different effects when '-E' ! is used for preprocessing. ! Debug dumps can be enabled with a '-fdump-rtl' switch or some '-d' option LETTERS. Here are the possible letters for use in PASS and LETTERS, and their meanings: ! '-fdump-rtl-alignments' Dump after branch alignments have been computed. ! '-fdump-rtl-asmcons' Dump after fixing rtl statements that have unsatisfied in/out constraints. ! '-fdump-rtl-auto_inc_dec' Dump after auto-inc-dec discovery. This pass is only run on architectures that have auto inc or auto dec instructions. ! '-fdump-rtl-barriers' Dump after cleaning up the barrier instructions. ! '-fdump-rtl-bbpart' Dump after partitioning hot and cold basic blocks. ! '-fdump-rtl-bbro' Dump after block reordering. ! '-fdump-rtl-btl1' ! '-fdump-rtl-btl2' ! '-fdump-rtl-btl1' and '-fdump-rtl-btl2' enable dumping after the two branch target load optimization passes. ! '-fdump-rtl-bypass' Dump after jump bypassing and control flow optimizations. ! '-fdump-rtl-combine' Dump after the RTL instruction combination pass. ! '-fdump-rtl-compgotos' Dump after duplicating the computed gotos. ! '-fdump-rtl-ce1' ! '-fdump-rtl-ce2' ! '-fdump-rtl-ce3' ! '-fdump-rtl-ce1', '-fdump-rtl-ce2', and '-fdump-rtl-ce3' enable dumping after the three if conversion passes. ! '-fdump-rtl-cprop_hardreg' Dump after hard register copy propagation. ! '-fdump-rtl-csa' Dump after combining stack adjustments. ! '-fdump-rtl-cse1' ! '-fdump-rtl-cse2' ! '-fdump-rtl-cse1' and '-fdump-rtl-cse2' enable dumping after the two common subexpression elimination passes. ! '-fdump-rtl-dce' Dump after the standalone dead code elimination passes. ! '-fdump-rtl-dbr' Dump after delayed branch scheduling. ! '-fdump-rtl-dce1' ! '-fdump-rtl-dce2' ! '-fdump-rtl-dce1' and '-fdump-rtl-dce2' enable dumping after the two dead store elimination passes. ! '-fdump-rtl-eh' Dump after finalization of EH handling code. ! '-fdump-rtl-eh_ranges' Dump after conversion of EH handling range regions. ! '-fdump-rtl-expand' Dump after RTL generation. ! '-fdump-rtl-fwprop1' ! '-fdump-rtl-fwprop2' ! '-fdump-rtl-fwprop1' and '-fdump-rtl-fwprop2' enable dumping after the two forward propagation passes. ! '-fdump-rtl-gcse1' ! '-fdump-rtl-gcse2' ! '-fdump-rtl-gcse1' and '-fdump-rtl-gcse2' enable dumping after ! global common subexpression elimination. ! '-fdump-rtl-init-regs' Dump after the initialization of the registers. ! '-fdump-rtl-initvals' Dump after the computation of the initial value sets. ! '-fdump-rtl-into_cfglayout' Dump after converting to cfglayout mode. ! '-fdump-rtl-ira' Dump after iterated register allocation. ! '-fdump-rtl-jump' Dump after the second jump optimization. ! '-fdump-rtl-loop2' ! '-fdump-rtl-loop2' enables dumping after the rtl loop optimization passes. ! '-fdump-rtl-mach' Dump after performing the machine dependent reorganization pass, if that pass exists. ! '-fdump-rtl-mode_sw' Dump after removing redundant mode switches. ! '-fdump-rtl-rnreg' Dump after register renumbering. ! '-fdump-rtl-outof_cfglayout' Dump after converting from cfglayout mode. ! '-fdump-rtl-peephole2' Dump after the peephole pass. ! '-fdump-rtl-postreload' Dump after post-reload optimizations. ! '-fdump-rtl-pro_and_epilogue' Dump after generating the function prologues and epilogues. ! '-fdump-rtl-regmove' Dump after the register move pass. ! '-fdump-rtl-sched1' ! '-fdump-rtl-sched2' ! '-fdump-rtl-sched1' and '-fdump-rtl-sched2' enable dumping after the basic block scheduling passes. ! '-fdump-rtl-see' Dump after sign extension elimination. ! '-fdump-rtl-seqabstr' Dump after common sequence discovery. ! '-fdump-rtl-shorten' Dump after shortening branches. ! '-fdump-rtl-sibling' Dump after sibling call optimizations. ! '-fdump-rtl-split1' ! '-fdump-rtl-split2' ! '-fdump-rtl-split3' ! '-fdump-rtl-split4' ! '-fdump-rtl-split5' ! '-fdump-rtl-split1', '-fdump-rtl-split2', '-fdump-rtl-split3', ! '-fdump-rtl-split4' and '-fdump-rtl-split5' enable dumping ! after five rounds of instruction splitting. ! '-fdump-rtl-sms' Dump after modulo scheduling. This pass is only run on some architectures. ! '-fdump-rtl-stack' Dump after conversion from GCC's "flat register file" registers to the x87's stack-like registers. This pass is only run on x86 variants. ! '-fdump-rtl-subreg1' ! '-fdump-rtl-subreg2' ! '-fdump-rtl-subreg1' and '-fdump-rtl-subreg2' enable dumping after the two subreg expansion passes. ! '-fdump-rtl-unshare' Dump after all rtl has been unshared. ! '-fdump-rtl-vartrack' Dump after variable tracking. ! '-fdump-rtl-vregs' Dump after converting virtual registers to hard registers. ! '-fdump-rtl-web' Dump after live range splitting. ! '-fdump-rtl-regclass' ! '-fdump-rtl-subregs_of_mode_init' ! '-fdump-rtl-subregs_of_mode_finish' ! '-fdump-rtl-dfinit' ! '-fdump-rtl-dfinish' These dumps are defined but always produce empty files. ! '-da' ! '-fdump-rtl-all' Produce all the dumps listed above. ! '-dA' Annotate the assembler output with miscellaneous debugging information. ! '-dD' Dump all macro definitions, at the end of preprocessing, in addition to normal output. ! '-dH' Produce a core dump whenever an error occurs. ! '-dp' Annotate the assembler output with a comment indicating which pattern and alternative is used. The length of each instruction is also printed. ! '-dP' Dump the RTL in the assembler output as a comment before each ! instruction. Also turns on '-dp' annotation. ! '-dx' Just generate RTL for a function instead of compiling it. ! Usually used with '-fdump-rtl-expand'. ! '-fdump-noaddr' ! When doing debugging dumps, suppress address output. This makes it ! more feasible to use diff on debugging dumps for compiler invocations with different compiler binaries and/or different text / bss / data / heap / stack / dso start locations. ! '-fdump-unnumbered' When doing debugging dumps, suppress instruction numbers and address output. This makes it more feasible to use diff on ! debugging dumps for compiler invocations with different options, in ! particular with and without '-g'. ! '-fdump-unnumbered-links' ! When doing debugging dumps (see '-d' option above), suppress instruction numbers for the links to the previous and next instructions in a sequence. ! '-fdump-translation-unit (C++ only)' ! '-fdump-translation-unit-OPTIONS (C++ only)' Dump a representation of the tree structure for the entire translation unit to a file. The file name is made by appending ! '.tu' to the source file name, and the file is created in the same ! directory as the output file. If the '-OPTIONS' form is used, OPTIONS controls the details of the dump as described for the ! '-fdump-tree' options. ! '-fdump-class-hierarchy (C++ only)' ! '-fdump-class-hierarchy-OPTIONS (C++ only)' Dump a representation of each class's hierarchy and virtual function table layout to a file. The file name is made by ! appending '.class' to the source file name, and the file is created ! in the same directory as the output file. If the '-OPTIONS' form ! is used, OPTIONS controls the details of the dump as described for ! the '-fdump-tree' options. ! '-fdump-ipa-SWITCH' Control the dumping at various stages of inter-procedural analysis language tree to a file. The file name is generated by appending a switch specific suffix to the source file name, and the file is created in the same directory as the output file. The following dumps are possible: ! 'all' Enables all inter-procedural analysis dumps. ! 'cgraph' Dumps information about call-graph optimization, unused function removal, and inlining decisions. ! 'inline' Dump after function inlining. ! '-fdump-passes' Dump the list of optimization passes that are turned on and off by the current command-line options. ! '-fdump-statistics-OPTION' Enable and control dumping of pass statistics in a separate file. The file name is generated by appending a suffix ending in ! '.statistics' to the source file name, and the file is created in ! the same directory as the output file. If the '-OPTION' form is ! used, '-stats' causes counters to be summed over the whole ! compilation unit while '-details' dumps every event as the passes generate them. The default with no option is to sum counters for each function compiled. ! '-fdump-tree-SWITCH' ! '-fdump-tree-SWITCH-OPTIONS' ! '-fdump-tree-SWITCH-OPTIONS=FILENAME' Control the dumping at various stages of processing the intermediate language tree to a file. The file name is generated by appending a switch-specific suffix to the source file name, and ! the file is created in the same directory as the output file. In ! case of '=FILENAME' option, the dump is output on the given file ! instead of the auto named dump files. If the '-OPTIONS' form is ! used, OPTIONS is a list of '-' separated options which control the details of the dump. Not all options are applicable to all dumps; those that are not meaningful are ignored. The following options are available ! 'address' Print the address of each node. Usually this is not meaningful as it changes according to the environment and ! source file. Its primary use is for tying up a dump file with ! a debug environment. ! 'asmname' ! If 'DECL_ASSEMBLER_NAME' has been set for a given decl, use ! that in the dump instead of 'DECL_NAME'. Its primary use is ease of use working backward from mangled names in the assembly file. ! 'slim' When dumping front-end intermediate representations, inhibit dumping of members of a scope or body of a function merely because that scope has been reached. Only dump such items *************** program or GCC: *** 5427,5803 **** When dumping RTL, print the RTL in slim (condensed) form instead of the default LISP-like representation. ! ! `raw' Print a raw representation of the tree. By default, trees are pretty-printed into a C-like representation. ! ! `details' ! Enable more detailed dumps (not honored by every dump ! option). Also include information from the optimization ! passes. ! ! `stats' Enable dumping various statistics about the pass (not honored by every dump option). ! ! `blocks' Enable showing basic block boundaries (disabled in raw dumps). ! ! `graph' For each of the other indicated dump files ! (`-fdump-rtl-PASS'), dump a representation of the control ! flow graph suitable for viewing with GraphViz to ! `FILE.PASSID.PASS.dot'. Each function in the file is pretty-printed as a subgraph, so that GraphViz can render them all in a single plot. ! This option currently only works for RTL dumps, and the RTL ! is always dumped in slim form. ! ! `vops' Enable showing virtual operands for every statement. ! ! `lineno' Enable showing line numbers for statements. ! ! `uid' ! Enable showing the unique ID (`DECL_UID') for each variable. ! ! `verbose' Enable showing the tree dump for each statement. ! ! `eh' Enable showing the EH region number holding each statement. ! ! `scev' Enable showing scalar evolution analysis details. ! ! `optimized' Enable showing optimization information (only available in certain passes). ! ! `missed' ! Enable showing missed optimization information (only ! available in certain passes). ! ! `notes' ! Enable other detailed optimization information (only ! available in certain passes). ! ! `=FILENAME' Instead of an auto named dump file, output into the given file ! name. The file names `stdout' and `stderr' are treated specially and are considered already open standard streams. For example, gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump -fdump-tree-pre=stderr file.c ! outputs vectorizer dump into `foo.dump', while the PRE dump is ! output on to `stderr'. If two conflicting dump filenames are given for the same pass, then the latter option overrides the earlier one. ! `all' ! Turn on all options, except `raw', `slim', `verbose' and ! `lineno'. ! `optall' ! Turn on all optimization options, i.e., `optimized', ! `missed', and `note'. The following tree dumps are possible: - `original' - Dump before any tree based optimization, to `FILE.original'. ! `optimized' ! Dump after all tree based optimization, to `FILE.optimized'. ! `gimple' ! Dump each function before and after the gimplification pass ! to a file. The file name is made by appending `.gimple' to ! the source file name. ! `cfg' Dump the control flow graph of each function to a file. The ! file name is made by appending `.cfg' to the source file name. ! `ch' Dump each function after copying loop headers. The file name ! is made by appending `.ch' to the source file name. ! `ssa' ! Dump SSA related information to a file. The file name is ! made by appending `.ssa' to the source file name. ! `alias' ! Dump aliasing information for each function. The file name ! is made by appending `.alias' to the source file name. ! `ccp' Dump each function after CCP. The file name is made by ! appending `.ccp' to the source file name. ! `storeccp' Dump each function after STORE-CCP. The file name is made by ! appending `.storeccp' to the source file name. ! `pre' Dump trees after partial redundancy elimination. The file ! name is made by appending `.pre' to the source file name. ! `fre' Dump trees after full redundancy elimination. The file name ! is made by appending `.fre' to the source file name. ! `copyprop' Dump trees after copy propagation. The file name is made by ! appending `.copyprop' to the source file name. ! `store_copyprop' Dump trees after store copy-propagation. The file name is ! made by appending `.store_copyprop' to the source file name. ! `dce' ! Dump each function after dead code elimination. The file ! name is made by appending `.dce' to the source file name. ! `mudflap' Dump each function after adding mudflap instrumentation. The ! file name is made by appending `.mudflap' to the source file name. ! `sra' Dump each function after performing scalar replacement of ! aggregates. The file name is made by appending `.sra' to the source file name. ! `sink' Dump each function after performing code sinking. The file ! name is made by appending `.sink' to the source file name. ! `dom' Dump each function after applying dominator tree ! optimizations. The file name is made by appending `.dom' to the source file name. ! `dse' ! Dump each function after applying dead store elimination. ! The file name is made by appending `.dse' to the source file ! name. ! `phiopt' Dump each function after optimizing PHI nodes into straightline code. The file name is made by appending ! `.phiopt' to the source file name. ! `forwprop' Dump each function after forward propagating single use ! variables. The file name is made by appending `.forwprop' to the source file name. ! `copyrename' Dump each function after applying the copy rename optimization. The file name is made by appending ! `.copyrename' to the source file name. ! `nrv' Dump each function after applying the named return value optimization on generic trees. The file name is made by ! appending `.nrv' to the source file name. ! `vect' ! Dump each function after applying vectorization of loops. ! The file name is made by appending `.vect' to the source file name. ! `slp' Dump each function after applying vectorization of basic ! blocks. The file name is made by appending `.slp' to the source file name. ! `vrp' ! Dump each function after Value Range Propagation (VRP). The ! file name is made by appending `.vrp' to the source file name. ! `all' ! Enable all the available tree dumps with the flags provided ! in this option. ! `-fopt-info' ! `-fopt-info-OPTIONS' ! `-fopt-info-OPTIONS=FILENAME' ! Controls optimization dumps from various optimization passes. If ! the `-OPTIONS' form is used, OPTIONS is a list of `-' separated options to select the dump details and optimizations. If OPTIONS ! is not specified, it defaults to `all' for details and `optall' ! for optimization groups. If the FILENAME is not specified, it ! defaults to `stderr'. Note that the output FILENAME will be ! overwritten in case of multiple translation units. If a combined ! output from multiple translation units is desired, `stderr' should ! be used instead. The options can be divided into two groups, 1) options describing the verbosity of the dump, and 2) options describing which ! optimizations should be included. The options from both the groups ! can be freely mixed as they are non-overlapping. However, in case of any conflicts, the latter options override the earlier options ! on the command line. Though multiple -fopt-info options are ! accepted, only one of them can have `=filename'. If other filenames are provided then all but the first one are ignored. The dump verbosity has the following options ! `optimized' Print information when an optimization is successfully ! applied. It is up to a pass to decide which information is ! relevant. For example, the vectorizer passes print the source location of loops which got successfully vectorized. ! ! `missed' ! Print information about missed optimizations. Individual passes control which information to include in the output. For example, gcc -O2 -ftree-vectorize -fopt-info-vec-missed ! will print information about missed optimization ! opportunities from vectorization passes on stderr. ! ! `note' Print verbose information about optimizations, such as certain transformations, more detailed messages about decisions etc. ! ! `all' ! Print detailed optimization information. This includes OPTIMIZED, MISSED, and NOTE. The second set of options describes a group of optimizations and may include one or more of the following. ! `ipa' Enable dumps from all interprocedural optimizations. ! ! `loop' Enable dumps from all loop optimizations. ! ! `inline' Enable dumps from all inlining optimizations. ! ! `vec' Enable dumps from all vectorization optimizations. For example, gcc -O3 -fopt-info-missed=missed.all outputs missed optimization report from all the passes into ! `missed.all'. As another example, gcc -O3 -fopt-info-inline-optimized-missed=inline.txt will output information about missed optimizations as well as ! optimized locations from all the inlining passes into `inline.txt'. ! If the FILENAME is provided, then the dumps from all the ! applicable optimizations are concatenated into the `filename'. ! Otherwise the dump is output onto `stderr'. If OPTIONS is omitted, ! it defaults to `all-optall', which means dump all available ! optimization info from all the passes. In the following example, ! all optimization info is output on to `stderr'. gcc -O3 -fopt-info ! Note that `-fopt-info-vec-missed' behaves the same as ! `-fopt-info-missed-vec'. As another example, consider gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt ! Here the two output filenames `vec.miss' and `loop.opt' are in ! conflict since only one output file is allowed. In this case, only the first option takes effect and the subsequent options are ! ignored. Thus only the `vec.miss' is produced which cotaints dumps from the vectorizer about missed opportunities. ! `-ftree-vectorizer-verbose=N' This option is deprecated and is implemented in terms of ! `-fopt-info'. Please use `-fopt-info-KIND' form instead, where ! KIND is one of the valid opt-info options. It prints additional optimization information. For N=0 no diagnostic information is reported. If N=1 the vectorizer reports each loop that got vectorized, and the total number of loops that got vectorized. If N=2 the vectorizer reports locations which could not be vectorized ! and the reasons for those. For any higher verbosity levels all the analysis and transformation information from the vectorizer is reported. ! Note that the information output by `-ftree-vectorizer-verbose' ! option is sent to `stderr'. If the equivalent form ! `-fopt-info-OPTIONS=FILENAME' is used then the output is sent into FILENAME instead. ! `-frandom-seed=STRING' This option provides a seed that GCC uses in place of random numbers in generating certain symbol names that have to be different in every compiled file. It is also used to place unique stamps in coverage data files and the object files that produce ! them. You can use the `-frandom-seed' option to produce reproducibly identical object files. The STRING should be different for every file you compile. ! `-fsched-verbose=N' On targets that use instruction scheduling, this option controls the amount of debugging output the scheduler prints. This information is written to standard error, unless ! `-fdump-rtl-sched1' or `-fdump-rtl-sched2' is specified, in which ! case it is output to the usual dump listing file, `.sched1' or ! `.sched2' respectively. However for N greater than nine, the output is always printed to standard error. ! For N greater than zero, `-fsched-verbose' outputs the same ! information as `-fdump-rtl-sched1' and `-fdump-rtl-sched2'. For N greater than one, it also output basic block probabilities, detailed ready list information and unit/insn info. For N greater than two, it includes RTL at abort point, control-flow and regions ! info. And for N over four, `-fsched-verbose' also includes dependence info. ! `-save-temps' ! `-save-temps=cwd' Store the usual "temporary" intermediate files permanently; place them in the current directory and name them based on the source ! file. Thus, compiling `foo.c' with `-c -save-temps' produces files ! `foo.i' and `foo.s', as well as `foo.o'. This creates a ! preprocessed `foo.i' output file even though the compiler now normally uses an integrated preprocessor. ! When used in combination with the `-x' command-line option, ! `-save-temps' is sensible enough to avoid over writing an input source file with the same extension as an intermediate file. The corresponding intermediate file may be obtained by renaming the ! source file before using `-save-temps'. If you invoke GCC in parallel, compiling several different source files that share a common base name in different subdirectories or the same source file compiled for multiple output destinations, it ! is likely that the different parallel compilers will interfere ! with each other, and overwrite the temporary files. For instance: gcc -save-temps -o outdir1/foo.o indir1/foo.c& gcc -save-temps -o outdir2/foo.o indir2/foo.c& ! may result in `foo.i' and `foo.o' being written to simultaneously by both compilers. ! `-save-temps=obj' Store the usual "temporary" intermediate files permanently. If the ! `-o' option is used, the temporary files are based on the object ! file. If the `-o' option is not used, the `-save-temps=obj' ! switch behaves like `-save-temps'. For example: --- 5386,5740 ---- When dumping RTL, print the RTL in slim (condensed) form instead of the default LISP-like representation. ! 'raw' Print a raw representation of the tree. By default, trees are pretty-printed into a C-like representation. ! 'details' ! Enable more detailed dumps (not honored by every dump option). ! Also include information from the optimization passes. ! 'stats' Enable dumping various statistics about the pass (not honored by every dump option). ! 'blocks' Enable showing basic block boundaries (disabled in raw dumps). ! 'graph' For each of the other indicated dump files ! ('-fdump-rtl-PASS'), dump a representation of the control flow ! graph suitable for viewing with GraphViz to ! 'FILE.PASSID.PASS.dot'. Each function in the file is pretty-printed as a subgraph, so that GraphViz can render them all in a single plot. ! This option currently only works for RTL dumps, and the RTL is ! always dumped in slim form. ! 'vops' Enable showing virtual operands for every statement. ! 'lineno' Enable showing line numbers for statements. ! 'uid' ! Enable showing the unique ID ('DECL_UID') for each variable. ! 'verbose' Enable showing the tree dump for each statement. ! 'eh' Enable showing the EH region number holding each statement. ! 'scev' Enable showing scalar evolution analysis details. ! 'optimized' Enable showing optimization information (only available in certain passes). ! 'missed' ! Enable showing missed optimization information (only available ! in certain passes). ! 'notes' ! Enable other detailed optimization information (only available ! in certain passes). ! '=FILENAME' Instead of an auto named dump file, output into the given file ! name. The file names 'stdout' and 'stderr' are treated specially and are considered already open standard streams. For example, gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump -fdump-tree-pre=stderr file.c ! outputs vectorizer dump into 'foo.dump', while the PRE dump is ! output on to 'stderr'. If two conflicting dump filenames are given for the same pass, then the latter option overrides the earlier one. ! 'all' ! Turn on all options, except 'raw', 'slim', 'verbose' and ! 'lineno'. ! 'optall' ! Turn on all optimization options, i.e., 'optimized', 'missed', ! and 'note'. The following tree dumps are possible: ! 'original' ! Dump before any tree based optimization, to 'FILE.original'. ! 'optimized' ! Dump after all tree based optimization, to 'FILE.optimized'. ! 'gimple' ! Dump each function before and after the gimplification pass to ! a file. The file name is made by appending '.gimple' to the ! source file name. ! ! 'cfg' Dump the control flow graph of each function to a file. The ! file name is made by appending '.cfg' to the source file name. ! 'ch' Dump each function after copying loop headers. The file name ! is made by appending '.ch' to the source file name. ! 'ssa' ! Dump SSA related information to a file. The file name is made ! by appending '.ssa' to the source file name. ! 'alias' ! Dump aliasing information for each function. The file name is ! made by appending '.alias' to the source file name. ! 'ccp' Dump each function after CCP. The file name is made by ! appending '.ccp' to the source file name. ! 'storeccp' Dump each function after STORE-CCP. The file name is made by ! appending '.storeccp' to the source file name. ! 'pre' Dump trees after partial redundancy elimination. The file ! name is made by appending '.pre' to the source file name. ! 'fre' Dump trees after full redundancy elimination. The file name ! is made by appending '.fre' to the source file name. ! 'copyprop' Dump trees after copy propagation. The file name is made by ! appending '.copyprop' to the source file name. ! 'store_copyprop' Dump trees after store copy-propagation. The file name is ! made by appending '.store_copyprop' to the source file name. ! 'dce' ! Dump each function after dead code elimination. The file name ! is made by appending '.dce' to the source file name. ! 'mudflap' Dump each function after adding mudflap instrumentation. The ! file name is made by appending '.mudflap' to the source file name. ! 'sra' Dump each function after performing scalar replacement of ! aggregates. The file name is made by appending '.sra' to the source file name. ! 'sink' Dump each function after performing code sinking. The file ! name is made by appending '.sink' to the source file name. ! 'dom' Dump each function after applying dominator tree ! optimizations. The file name is made by appending '.dom' to the source file name. ! 'dse' ! Dump each function after applying dead store elimination. The ! file name is made by appending '.dse' to the source file name. ! 'phiopt' Dump each function after optimizing PHI nodes into straightline code. The file name is made by appending ! '.phiopt' to the source file name. ! 'forwprop' Dump each function after forward propagating single use ! variables. The file name is made by appending '.forwprop' to the source file name. ! 'copyrename' Dump each function after applying the copy rename optimization. The file name is made by appending ! '.copyrename' to the source file name. ! 'nrv' Dump each function after applying the named return value optimization on generic trees. The file name is made by ! appending '.nrv' to the source file name. ! 'vect' ! Dump each function after applying vectorization of loops. The ! file name is made by appending '.vect' to the source file name. ! 'slp' Dump each function after applying vectorization of basic ! blocks. The file name is made by appending '.slp' to the source file name. ! 'vrp' ! Dump each function after Value Range Propagation (VRP). The ! file name is made by appending '.vrp' to the source file name. ! 'all' ! Enable all the available tree dumps with the flags provided in ! this option. ! '-fopt-info' ! '-fopt-info-OPTIONS' ! '-fopt-info-OPTIONS=FILENAME' ! Controls optimization dumps from various optimization passes. If ! the '-OPTIONS' form is used, OPTIONS is a list of '-' separated options to select the dump details and optimizations. If OPTIONS ! is not specified, it defaults to 'all' for details and 'optall' for ! optimization groups. If the FILENAME is not specified, it defaults ! to 'stderr'. Note that the output FILENAME will be overwritten in ! case of multiple translation units. If a combined output from ! multiple translation units is desired, 'stderr' should be used ! instead. The options can be divided into two groups, 1) options describing the verbosity of the dump, and 2) options describing which ! optimizations should be included. The options from both the groups ! can be freely mixed as they are non-overlapping. However, in case of any conflicts, the latter options override the earlier options ! on the command line. Though multiple -fopt-info options are ! accepted, only one of them can have '=filename'. If other filenames are provided then all but the first one are ignored. The dump verbosity has the following options ! 'optimized' Print information when an optimization is successfully ! applied. It is up to a pass to decide which information is ! relevant. For example, the vectorizer passes print the source location of loops which got successfully vectorized. ! 'missed' ! Print information about missed optimizations. Individual passes control which information to include in the output. For example, gcc -O2 -ftree-vectorize -fopt-info-vec-missed ! will print information about missed optimization opportunities ! from vectorization passes on stderr. ! 'note' Print verbose information about optimizations, such as certain transformations, more detailed messages about decisions etc. ! 'all' ! Print detailed optimization information. This includes OPTIMIZED, MISSED, and NOTE. The second set of options describes a group of optimizations and may include one or more of the following. ! 'ipa' Enable dumps from all interprocedural optimizations. ! 'loop' Enable dumps from all loop optimizations. ! 'inline' Enable dumps from all inlining optimizations. ! 'vec' Enable dumps from all vectorization optimizations. For example, gcc -O3 -fopt-info-missed=missed.all outputs missed optimization report from all the passes into ! 'missed.all'. As another example, gcc -O3 -fopt-info-inline-optimized-missed=inline.txt will output information about missed optimizations as well as ! optimized locations from all the inlining passes into 'inline.txt'. ! If the FILENAME is provided, then the dumps from all the applicable ! optimizations are concatenated into the 'filename'. Otherwise the ! dump is output onto 'stderr'. If OPTIONS is omitted, it defaults ! to 'all-optall', which means dump all available optimization info ! from all the passes. In the following example, all optimization ! info is output on to 'stderr'. gcc -O3 -fopt-info ! Note that '-fopt-info-vec-missed' behaves the same as ! '-fopt-info-missed-vec'. As another example, consider gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt ! Here the two output filenames 'vec.miss' and 'loop.opt' are in ! conflict since only one output file is allowed. In this case, only the first option takes effect and the subsequent options are ! ignored. Thus only the 'vec.miss' is produced which cotaints dumps from the vectorizer about missed opportunities. ! '-ftree-vectorizer-verbose=N' This option is deprecated and is implemented in terms of ! '-fopt-info'. Please use '-fopt-info-KIND' form instead, where ! KIND is one of the valid opt-info options. It prints additional optimization information. For N=0 no diagnostic information is reported. If N=1 the vectorizer reports each loop that got vectorized, and the total number of loops that got vectorized. If N=2 the vectorizer reports locations which could not be vectorized ! and the reasons for those. For any higher verbosity levels all the analysis and transformation information from the vectorizer is reported. ! Note that the information output by '-ftree-vectorizer-verbose' ! option is sent to 'stderr'. If the equivalent form ! '-fopt-info-OPTIONS=FILENAME' is used then the output is sent into FILENAME instead. ! '-frandom-seed=STRING' This option provides a seed that GCC uses in place of random numbers in generating certain symbol names that have to be different in every compiled file. It is also used to place unique stamps in coverage data files and the object files that produce ! them. You can use the '-frandom-seed' option to produce reproducibly identical object files. The STRING should be different for every file you compile. ! '-fsched-verbose=N' On targets that use instruction scheduling, this option controls the amount of debugging output the scheduler prints. This information is written to standard error, unless ! '-fdump-rtl-sched1' or '-fdump-rtl-sched2' is specified, in which ! case it is output to the usual dump listing file, '.sched1' or ! '.sched2' respectively. However for N greater than nine, the output is always printed to standard error. ! For N greater than zero, '-fsched-verbose' outputs the same ! information as '-fdump-rtl-sched1' and '-fdump-rtl-sched2'. For N greater than one, it also output basic block probabilities, detailed ready list information and unit/insn info. For N greater than two, it includes RTL at abort point, control-flow and regions ! info. And for N over four, '-fsched-verbose' also includes dependence info. ! '-save-temps' ! '-save-temps=cwd' Store the usual "temporary" intermediate files permanently; place them in the current directory and name them based on the source ! file. Thus, compiling 'foo.c' with '-c -save-temps' produces files ! 'foo.i' and 'foo.s', as well as 'foo.o'. This creates a ! preprocessed 'foo.i' output file even though the compiler now normally uses an integrated preprocessor. ! When used in combination with the '-x' command-line option, ! '-save-temps' is sensible enough to avoid over writing an input source file with the same extension as an intermediate file. The corresponding intermediate file may be obtained by renaming the ! source file before using '-save-temps'. If you invoke GCC in parallel, compiling several different source files that share a common base name in different subdirectories or the same source file compiled for multiple output destinations, it ! is likely that the different parallel compilers will interfere with ! each other, and overwrite the temporary files. For instance: gcc -save-temps -o outdir1/foo.o indir1/foo.c& gcc -save-temps -o outdir2/foo.o indir2/foo.c& ! may result in 'foo.i' and 'foo.o' being written to simultaneously by both compilers. ! '-save-temps=obj' Store the usual "temporary" intermediate files permanently. If the ! '-o' option is used, the temporary files are based on the object ! file. If the '-o' option is not used, the '-save-temps=obj' switch ! behaves like '-save-temps'. For example: *************** program or GCC: *** 5805,5814 **** gcc -save-temps=obj -c bar.c -o dir/xbar.o gcc -save-temps=obj foobar.c -o dir2/yfoobar ! creates `foo.i', `foo.s', `dir/xbar.i', `dir/xbar.s', ! `dir2/yfoobar.i', `dir2/yfoobar.s', and `dir2/yfoobar.o'. ! `-time[=FILE]' Report the CPU time taken by each subprocess in the compilation sequence. For C source files, this is the compiler proper and assembler (plus the linker if linking is done). --- 5742,5751 ---- gcc -save-temps=obj -c bar.c -o dir/xbar.o gcc -save-temps=obj foobar.c -o dir2/yfoobar ! creates 'foo.i', 'foo.s', 'dir/xbar.i', 'dir/xbar.s', ! 'dir2/yfoobar.i', 'dir2/yfoobar.s', and 'dir2/yfoobar.o'. ! '-time[=FILE]' Report the CPU time taken by each subprocess in the compilation sequence. For C source files, this is the compiler proper and assembler (plus the linker if linking is done). *************** program or GCC: *** 5824,5831 **** time", time spent executing operating system routines on behalf of the program. Both numbers are in seconds. ! With the specification of an output file, the output is appended ! to the named file, and it looks like this: 0.12 0.01 cc1 OPTIONS 0.00 0.01 as OPTIONS --- 5761,5768 ---- time", time spent executing operating system routines on behalf of the program. Both numbers are in seconds. ! With the specification of an output file, the output is appended to ! the named file, and it looks like this: 0.12 0.01 cc1 OPTIONS 0.00 0.01 as OPTIONS *************** program or GCC: *** 5835,5952 **** one can later tell what file was being compiled, and with which options. ! `-fvar-tracking' ! Run variable tracking pass. It computes where variables are ! stored at each position in code. Better debugging information is ! then generated (if the debugging information format supports this information). ! It is enabled by default when compiling with optimization (`-Os', ! `-O', `-O2', ...), debugging information (`-g') and the debug info format supports it. ! `-fvar-tracking-assignments' Annotate assignments to user variables early in the compilation and attempt to carry the annotations over throughout the compilation all the way to the end, in an attempt to improve debug information ! while optimizing. Use of `-gdwarf-4' is recommended along with it. It can be enabled even if var-tracking is disabled, in which case annotations are created and maintained, but discarded at the end. ! `-fvar-tracking-assignments-toggle' ! Toggle `-fvar-tracking-assignments', in the same way that ! `-gtoggle' toggles `-g'. ! `-print-file-name=LIBRARY' ! Print the full absolute name of the library file LIBRARY that ! would be used when linking--and don't do anything else. With this option, GCC does not compile or link anything; it just prints the file name. ! `-print-multi-directory' Print the directory name corresponding to the multilib selected by any other switches present in the command line. This directory is ! supposed to exist in `GCC_EXEC_PREFIX'. ! `-print-multi-lib' Print the mapping from multilib directory names to compiler switches that enable them. The directory name is separated from ! the switches by `;', and each switch starts with an `@' instead of ! the `-', without spaces between multiple switches. This is supposed to ease shell processing. ! `-print-multi-os-directory' Print the path to OS libraries for the selected multilib, relative ! to some `lib' subdirectory. If OS libraries are present in the ! `lib' subdirectory and no multilibs are used, this is usually just ! `.', if OS libraries are present in `libSUFFIX' sibling ! directories this prints e.g. `../lib64', `../lib' or `../lib32', ! or if OS libraries are present in `lib/SUBDIR' subdirectories it ! prints e.g. `amd64', `sparcv9' or `ev6'. ! `-print-multiarch' ! Print the path to OS libraries for the selected multiarch, ! relative to some `lib' subdirectory. ! `-print-prog-name=PROGRAM' ! Like `-print-file-name', but searches for a program such as `cpp'. ! `-print-libgcc-file-name' ! Same as `-print-file-name=libgcc.a'. ! This is useful when you use `-nostdlib' or `-nodefaultlibs' but ! you do want to link with `libgcc.a'. You can do: gcc -nostdlib FILES... `gcc -print-libgcc-file-name` ! `-print-search-dirs' Print the name of the configured installation directory and a list ! of program and library directories `gcc' searches--and don't do anything else. ! This is useful when `gcc' prints the error message `installation problem, cannot exec cpp0: No such file or directory'. To resolve ! this you either need to put `cpp0' and the other compiler ! components where `gcc' expects to find them, or you can set the ! environment variable `GCC_EXEC_PREFIX' to the directory where you ! installed them. Don't forget the trailing `/'. *Note Environment Variables::. ! `-print-sysroot' ! Print the target sysroot directory that is used during ! compilation. This is the target sysroot specified either at ! configure time or using the `--sysroot' option, possibly with an ! extra suffix that depends on compilation options. If no target ! sysroot is specified, the option prints nothing. ! `-print-sysroot-headers-suffix' Print the suffix added to the target sysroot when searching for headers, or give an error if the compiler is not configured with such a suffix--and don't do anything else. ! `-dumpmachine' Print the compiler's target machine (for example, ! `i686-pc-linux-gnu')--and don't do anything else. ! `-dumpversion' ! Print the compiler version (for example, `3.0')--and don't do anything else. ! `-dumpspecs' Print the compiler's built-in specs--and don't do anything else. (This is used when GCC itself is being built.) *Note Spec Files::. ! `-fno-eliminate-unused-debug-types' ! Normally, when producing DWARF 2 output, GCC avoids producing ! debug symbol output for types that are nowhere used in the source ! file being compiled. Sometimes it is useful to have GCC emit ! debugging information for all types declared in a compilation ! unit, regardless of whether or not they are actually used in that ! compilation unit, for example if, in the debugger, you want to ! cast a value to a type that is not actually used in your program ! (but is declared). More often, however, this results in a ! significant amount of wasted space.  File: gcc.info, Node: Optimize Options, Next: Preprocessor Options, Prev: Debugging Options, Up: Invoking GCC --- 5772,5889 ---- one can later tell what file was being compiled, and with which options. ! '-fvar-tracking' ! Run variable tracking pass. It computes where variables are stored ! at each position in code. Better debugging information is then ! generated (if the debugging information format supports this information). ! It is enabled by default when compiling with optimization ('-Os', ! '-O', '-O2', ...), debugging information ('-g') and the debug info format supports it. ! '-fvar-tracking-assignments' Annotate assignments to user variables early in the compilation and attempt to carry the annotations over throughout the compilation all the way to the end, in an attempt to improve debug information ! while optimizing. Use of '-gdwarf-4' is recommended along with it. It can be enabled even if var-tracking is disabled, in which case annotations are created and maintained, but discarded at the end. ! '-fvar-tracking-assignments-toggle' ! Toggle '-fvar-tracking-assignments', in the same way that ! '-gtoggle' toggles '-g'. ! '-print-file-name=LIBRARY' ! Print the full absolute name of the library file LIBRARY that would ! be used when linking--and don't do anything else. With this option, GCC does not compile or link anything; it just prints the file name. ! '-print-multi-directory' Print the directory name corresponding to the multilib selected by any other switches present in the command line. This directory is ! supposed to exist in 'GCC_EXEC_PREFIX'. ! '-print-multi-lib' Print the mapping from multilib directory names to compiler switches that enable them. The directory name is separated from ! the switches by ';', and each switch starts with an '@' instead of ! the '-', without spaces between multiple switches. This is supposed to ease shell processing. ! '-print-multi-os-directory' Print the path to OS libraries for the selected multilib, relative ! to some 'lib' subdirectory. If OS libraries are present in the ! 'lib' subdirectory and no multilibs are used, this is usually just ! '.', if OS libraries are present in 'libSUFFIX' sibling directories ! this prints e.g. '../lib64', '../lib' or '../lib32', or if OS ! libraries are present in 'lib/SUBDIR' subdirectories it prints e.g. ! 'amd64', 'sparcv9' or 'ev6'. ! '-print-multiarch' ! Print the path to OS libraries for the selected multiarch, relative ! to some 'lib' subdirectory. ! '-print-prog-name=PROGRAM' ! Like '-print-file-name', but searches for a program such as 'cpp'. ! '-print-libgcc-file-name' ! Same as '-print-file-name=libgcc.a'. ! This is useful when you use '-nostdlib' or '-nodefaultlibs' but you ! do want to link with 'libgcc.a'. You can do: gcc -nostdlib FILES... `gcc -print-libgcc-file-name` ! '-print-search-dirs' Print the name of the configured installation directory and a list ! of program and library directories 'gcc' searches--and don't do anything else. ! This is useful when 'gcc' prints the error message 'installation problem, cannot exec cpp0: No such file or directory'. To resolve ! this you either need to put 'cpp0' and the other compiler ! components where 'gcc' expects to find them, or you can set the ! environment variable 'GCC_EXEC_PREFIX' to the directory where you ! installed them. Don't forget the trailing '/'. *Note Environment Variables::. ! '-print-sysroot' ! Print the target sysroot directory that is used during compilation. ! This is the target sysroot specified either at configure time or ! using the '--sysroot' option, possibly with an extra suffix that ! depends on compilation options. If no target sysroot is specified, ! the option prints nothing. ! '-print-sysroot-headers-suffix' Print the suffix added to the target sysroot when searching for headers, or give an error if the compiler is not configured with such a suffix--and don't do anything else. ! '-dumpmachine' Print the compiler's target machine (for example, ! 'i686-pc-linux-gnu')--and don't do anything else. ! '-dumpversion' ! Print the compiler version (for example, '3.0')--and don't do anything else. ! '-dumpspecs' Print the compiler's built-in specs--and don't do anything else. (This is used when GCC itself is being built.) *Note Spec Files::. ! '-fno-eliminate-unused-debug-types' ! Normally, when producing DWARF 2 output, GCC avoids producing debug ! symbol output for types that are nowhere used in the source file ! being compiled. Sometimes it is useful to have GCC emit debugging ! information for all types declared in a compilation unit, ! regardless of whether or not they are actually used in that ! compilation unit, for example if, in the debugger, you want to cast ! a value to a type that is not actually used in your program (but is ! declared). More often, however, this results in a significant ! amount of wasted space.  File: gcc.info, Node: Optimize Options, Next: Preprocessor Options, Prev: Debugging Options, Up: Invoking GCC *************** between statements, you can then assign *** 5963,6000 **** change the program counter to any other statement in the function and get exactly the results you expect from the source code. ! Turning on optimization flags makes the compiler attempt to improve ! the performance and/or code size at the expense of compilation time and possibly the ability to debug the program. The compiler performs optimization based on the knowledge it has of the program. Compiling multiple files at once to a single output file mode ! allows the compiler to use information gained from all of the files ! when compiling each of them. Not all optimizations are controlled directly by a flag. Only optimizations that have a flag are listed in this section. ! Most optimizations are only enabled if an `-O' level is set on the command line. Otherwise they are disabled, even if individual optimization flags are specified. Depending on the target and how GCC was configured, a slightly ! different set of optimizations may be enabled at each `-O' level than ! those listed here. You can invoke GCC with `-Q --help=optimizers' to find out the exact set of optimizations that are enabled at each level. *Note Overall Options::, for examples. ! `-O' ! `-O1' Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a large function. ! With `-O', the compiler tries to reduce code size and execution time, without performing any optimizations that take a great deal of compilation time. ! `-O' turns on the following optimization flags: -fauto-inc-dec -fcompare-elim -fcprop-registers --- 5900,5937 ---- change the program counter to any other statement in the function and get exactly the results you expect from the source code. ! Turning on optimization flags makes the compiler attempt to improve the ! performance and/or code size at the expense of compilation time and possibly the ability to debug the program. The compiler performs optimization based on the knowledge it has of the program. Compiling multiple files at once to a single output file mode ! allows the compiler to use information gained from all of the files when ! compiling each of them. Not all optimizations are controlled directly by a flag. Only optimizations that have a flag are listed in this section. ! Most optimizations are only enabled if an '-O' level is set on the command line. Otherwise they are disabled, even if individual optimization flags are specified. Depending on the target and how GCC was configured, a slightly ! different set of optimizations may be enabled at each '-O' level than ! those listed here. You can invoke GCC with '-Q --help=optimizers' to find out the exact set of optimizations that are enabled at each level. *Note Overall Options::, for examples. ! '-O' ! '-O1' Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a large function. ! With '-O', the compiler tries to reduce code size and execution time, without performing any optimizations that take a great deal of compilation time. ! '-O' turns on the following optimization flags: -fauto-inc-dec -fcompare-elim -fcprop-registers *************** find out the exact set of optimizations *** 6027,6042 **** -ftree-ter -funit-at-a-time ! `-O' also turns on `-fomit-frame-pointer' on machines where doing so does not interfere with debugging. ! `-O2' Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-speed tradeoff. As ! compared to `-O', this option increases both compilation time and the performance of the generated code. ! `-O2' turns on all optimization flags specified by `-O'. It also turns on the following optimization flags: -fthread-jumps -falign-functions -falign-jumps --- 5964,5979 ---- -ftree-ter -funit-at-a-time ! '-O' also turns on '-fomit-frame-pointer' on machines where doing so does not interfere with debugging. ! '-O2' Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-speed tradeoff. As ! compared to '-O', this option increases both compilation time and the performance of the generated code. ! '-O2' turns on all optimization flags specified by '-O'. It also turns on the following optimization flags: -fthread-jumps -falign-functions -falign-jumps *************** find out the exact set of optimizations *** 6065,6264 **** -ftree-pre -ftree-vrp ! Please note the warning under `-fgcse' about invoking `-O2' on programs that use computed gotos. ! `-O3' ! Optimize yet more. `-O3' turns on all optimizations specified by ! `-O2' and also turns on the `-finline-functions', ! `-funswitch-loops', `-fpredictive-commoning', ! `-fgcse-after-reload', `-ftree-vectorize', `-fvect-cost-model', ! `-ftree-partial-pre' and `-fipa-cp-clone' options. ! `-O0' Reduce compilation time and make debugging produce the expected results. This is the default. ! `-Os' ! Optimize for size. `-Os' enables all `-O2' optimizations that do not typically increase code size. It also performs further optimizations designed to reduce code size. ! `-Os' disables the following optimization flags: -falign-functions -falign-jumps -falign-loops -falign-labels -freorder-blocks -freorder-blocks-and-partition -fprefetch-loop-arrays -ftree-vect-loop-version ! `-Ofast' ! Disregard strict standards compliance. `-Ofast' enables all `-O3' optimizations. It also enables optimizations that are not valid ! for all standard-compliant programs. It turns on `-ffast-math' ! and the Fortran-specific `-fno-protect-parens' and ! `-fstack-arrays'. ! `-Og' ! Optimize debugging experience. `-Og' enables optimizations that ! do not interfere with debugging. It should be the optimization ! level of choice for the standard edit-compile-debug cycle, offering ! a reasonable level of optimization while maintaining fast ! compilation and a good debugging experience. ! If you use multiple `-O' options, with or without level numbers, the last such option is the one that is effective. ! Options of the form `-fFLAG' specify machine-independent flags. Most flags have both positive and negative forms; the negative form of ! `-ffoo' is `-fno-foo'. In the table below, only one of the forms is ! listed--the one you typically use. You can figure out the other form ! by either removing `no-' or adding it. The following options control specific optimizations. They are either ! activated by `-O' options or are related to ones that are. You can use the following flags in the rare cases when "fine-tuning" of optimizations to be performed is desired. ! `-fno-default-inline' Do not make member functions inline by default merely because they ! are defined inside the class scope (C++ only). Otherwise, when ! you specify `-O', member functions defined inside class scope are ! compiled inline by default; i.e., you don't need to add `inline' ! in front of the member function name. ! `-fno-defer-pop' Always pop the arguments to each function call as soon as that function returns. For machines that must pop arguments after a function call, the compiler normally lets arguments accumulate on the stack for several function calls and pops them all at once. ! Disabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fforward-propagate' Perform a forward propagation pass on RTL. The pass tries to combine two instructions and checks if the result can be simplified. If loop unrolling is active, two passes are performed and the second is scheduled after loop unrolling. ! This option is enabled by default at optimization levels `-O', ! `-O2', `-O3', `-Os'. ! `-ffp-contract=STYLE' ! `-ffp-contract=off' disables floating-point expression contraction. ! `-ffp-contract=fast' enables floating-point expression contraction such as forming of fused multiply-add operations if the target has ! native support for them. `-ffp-contract=on' enables ! floating-point expression contraction if allowed by the language ! standard. This is currently not implemented and treated equal to ! `-ffp-contract=off'. ! The default is `-ffp-contract=fast'. ! `-fomit-frame-pointer' ! Don't keep the frame pointer in a register for functions that ! don't need one. This avoids the instructions to save, set up and ! restore frame pointers; it also makes an extra register available ! in many functions. *It also makes debugging impossible on some ! machines.* On some machines, such as the VAX, this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The ! machine-description macro `FRAME_POINTER_REQUIRED' controls ! whether a target machine supports this flag. *Note Register ! Usage: (gccint)Registers. Starting with GCC version 4.6, the default setting (when not ! optimizing for size) for 32-bit GNU/Linux x86 and 32-bit Darwin ! x86 targets has been changed to `-fomit-frame-pointer'. The ! default can be reverted to `-fno-omit-frame-pointer' by ! configuring GCC with the `--enable-frame-pointer' configure option. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-foptimize-sibling-calls' Optimize sibling and tail recursive calls. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fno-inline' ! Do not expand any functions inline apart from those marked with ! the `always_inline' attribute. This is the default when not optimizing. ! Single functions can be exempted from inlining by marking them ! with the `noinline' attribute. ! `-finline-small-functions' Integrate functions into their callers when their body is smaller than expected function call code (so overall size of program gets smaller). The compiler heuristically decides which functions are simple enough to be worth integrating in this way. This inlining applies to all functions, even those not declared inline. ! Enabled at level `-O2'. ! `-findirect-inlining' Inline also indirect calls that are discovered to be known at compile time thanks to previous inlining. This option has any effect only when inlining itself is turned on by the ! `-finline-functions' or `-finline-small-functions' options. ! Enabled at level `-O2'. ! `-finline-functions' Consider all functions for inlining, even if they are not declared inline. The compiler heuristically decides which functions are worth integrating in this way. If all calls to a given function are integrated, and the function ! is declared `static', then the function is normally not output as assembler code in its own right. ! Enabled at level `-O3'. ! `-finline-functions-called-once' ! Consider all `static' functions called once for inlining into their ! caller even if they are not marked `inline'. If a call to a given function is integrated, then the function is not output as assembler code in its own right. ! Enabled at levels `-O1', `-O2', `-O3' and `-Os'. ! `-fearly-inlining' ! Inline functions marked by `always_inline' and functions whose ! body seems smaller than the function call overhead early before ! doing `-fprofile-generate' instrumentation and real inlining pass. ! Doing so makes profiling significantly cheaper and usually ! inlining faster on programs having large chains of nested wrapper ! functions. Enabled by default. ! `-fipa-sra' Perform interprocedural scalar replacement of aggregates, removal of unused parameters and replacement of parameters passed by reference by parameters passed by value. ! Enabled at levels `-O2', `-O3' and `-Os'. ! `-finline-limit=N' By default, GCC limits the size of functions that can be inlined. This flag allows coarse control of this limit. N is the size of functions that can be inlined in number of pseudo instructions. Inlining is actually controlled by a number of parameters, which ! may be specified individually by using `--param NAME=VALUE'. The ! `-finline-limit=N' option sets some of these parameters as follows: ! `max-inline-insns-single' is set to N/2. ! ! `max-inline-insns-auto' is set to N/2. See below for a documentation of the individual parameters controlling inlining and for the defaults of these parameters. ! _Note:_ there may be no value to `-finline-limit' that results in default behavior. _Note:_ pseudo instruction represents, in this particular context, --- 6002,6197 ---- -ftree-pre -ftree-vrp ! Please note the warning under '-fgcse' about invoking '-O2' on programs that use computed gotos. ! '-O3' ! Optimize yet more. '-O3' turns on all optimizations specified by ! '-O2' and also turns on the '-finline-functions', ! '-funswitch-loops', '-fpredictive-commoning', ! '-fgcse-after-reload', '-ftree-vectorize', '-fvect-cost-model', ! '-ftree-partial-pre' and '-fipa-cp-clone' options. ! '-O0' Reduce compilation time and make debugging produce the expected results. This is the default. ! '-Os' ! Optimize for size. '-Os' enables all '-O2' optimizations that do not typically increase code size. It also performs further optimizations designed to reduce code size. ! '-Os' disables the following optimization flags: -falign-functions -falign-jumps -falign-loops -falign-labels -freorder-blocks -freorder-blocks-and-partition -fprefetch-loop-arrays -ftree-vect-loop-version ! '-Ofast' ! Disregard strict standards compliance. '-Ofast' enables all '-O3' optimizations. It also enables optimizations that are not valid ! for all standard-compliant programs. It turns on '-ffast-math' and ! the Fortran-specific '-fno-protect-parens' and '-fstack-arrays'. ! '-Og' ! Optimize debugging experience. '-Og' enables optimizations that do ! not interfere with debugging. It should be the optimization level ! of choice for the standard edit-compile-debug cycle, offering a ! reasonable level of optimization while maintaining fast compilation ! and a good debugging experience. ! If you use multiple '-O' options, with or without level numbers, the last such option is the one that is effective. ! Options of the form '-fFLAG' specify machine-independent flags. Most flags have both positive and negative forms; the negative form of ! '-ffoo' is '-fno-foo'. In the table below, only one of the forms is ! listed--the one you typically use. You can figure out the other form by ! either removing 'no-' or adding it. The following options control specific optimizations. They are either ! activated by '-O' options or are related to ones that are. You can use the following flags in the rare cases when "fine-tuning" of optimizations to be performed is desired. ! '-fno-default-inline' Do not make member functions inline by default merely because they ! are defined inside the class scope (C++ only). Otherwise, when you ! specify '-O', member functions defined inside class scope are ! compiled inline by default; i.e., you don't need to add 'inline' in ! front of the member function name. ! '-fno-defer-pop' Always pop the arguments to each function call as soon as that function returns. For machines that must pop arguments after a function call, the compiler normally lets arguments accumulate on the stack for several function calls and pops them all at once. ! Disabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fforward-propagate' Perform a forward propagation pass on RTL. The pass tries to combine two instructions and checks if the result can be simplified. If loop unrolling is active, two passes are performed and the second is scheduled after loop unrolling. ! This option is enabled by default at optimization levels '-O', ! '-O2', '-O3', '-Os'. ! '-ffp-contract=STYLE' ! '-ffp-contract=off' disables floating-point expression contraction. ! '-ffp-contract=fast' enables floating-point expression contraction such as forming of fused multiply-add operations if the target has ! native support for them. '-ffp-contract=on' enables floating-point ! expression contraction if allowed by the language standard. This ! is currently not implemented and treated equal to ! '-ffp-contract=off'. ! The default is '-ffp-contract=fast'. ! '-fomit-frame-pointer' ! Don't keep the frame pointer in a register for functions that don't ! need one. This avoids the instructions to save, set up and restore ! frame pointers; it also makes an extra register available in many ! functions. *It also makes debugging impossible on some machines.* On some machines, such as the VAX, this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The ! machine-description macro 'FRAME_POINTER_REQUIRED' controls whether ! a target machine supports this flag. *Note Register Usage: ! (gccint)Registers. Starting with GCC version 4.6, the default setting (when not ! optimizing for size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 ! targets has been changed to '-fomit-frame-pointer'. The default ! can be reverted to '-fno-omit-frame-pointer' by configuring GCC ! with the '--enable-frame-pointer' configure option. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-foptimize-sibling-calls' Optimize sibling and tail recursive calls. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fno-inline' ! Do not expand any functions inline apart from those marked with the ! 'always_inline' attribute. This is the default when not optimizing. ! Single functions can be exempted from inlining by marking them with ! the 'noinline' attribute. ! '-finline-small-functions' Integrate functions into their callers when their body is smaller than expected function call code (so overall size of program gets smaller). The compiler heuristically decides which functions are simple enough to be worth integrating in this way. This inlining applies to all functions, even those not declared inline. ! Enabled at level '-O2'. ! '-findirect-inlining' Inline also indirect calls that are discovered to be known at compile time thanks to previous inlining. This option has any effect only when inlining itself is turned on by the ! '-finline-functions' or '-finline-small-functions' options. ! Enabled at level '-O2'. ! '-finline-functions' Consider all functions for inlining, even if they are not declared inline. The compiler heuristically decides which functions are worth integrating in this way. If all calls to a given function are integrated, and the function ! is declared 'static', then the function is normally not output as assembler code in its own right. ! Enabled at level '-O3'. ! '-finline-functions-called-once' ! Consider all 'static' functions called once for inlining into their ! caller even if they are not marked 'inline'. If a call to a given function is integrated, then the function is not output as assembler code in its own right. ! Enabled at levels '-O1', '-O2', '-O3' and '-Os'. ! '-fearly-inlining' ! Inline functions marked by 'always_inline' and functions whose body ! seems smaller than the function call overhead early before doing ! '-fprofile-generate' instrumentation and real inlining pass. Doing ! so makes profiling significantly cheaper and usually inlining ! faster on programs having large chains of nested wrapper functions. Enabled by default. ! '-fipa-sra' Perform interprocedural scalar replacement of aggregates, removal of unused parameters and replacement of parameters passed by reference by parameters passed by value. ! Enabled at levels '-O2', '-O3' and '-Os'. ! '-finline-limit=N' By default, GCC limits the size of functions that can be inlined. This flag allows coarse control of this limit. N is the size of functions that can be inlined in number of pseudo instructions. Inlining is actually controlled by a number of parameters, which ! may be specified individually by using '--param NAME=VALUE'. The ! '-finline-limit=N' option sets some of these parameters as follows: ! 'max-inline-insns-single' is set to N/2. ! 'max-inline-insns-auto' is set to N/2. See below for a documentation of the individual parameters controlling inlining and for the defaults of these parameters. ! _Note:_ there may be no value to '-finline-limit' that results in default behavior. _Note:_ pseudo instruction represents, in this particular context, *************** optimizations to be performed is desired *** 6266,6327 **** represent a count of assembly instructions and as such its exact meaning might change from one release to an another. ! `-fno-keep-inline-dllexport' ! This is a more fine-grained version of `-fkeep-inline-functions', which applies only to functions that are declared using the ! `dllexport' attribute or declspec (*Note Declaring Attributes of Functions: Function Attributes.) ! `-fkeep-inline-functions' ! In C, emit `static' functions that are declared `inline' into the object file, even if the function has been inlined into all of its ! callers. This switch does not affect functions using the `extern inline' extension in GNU C90. In C++, emit any and all inline functions into the object file. ! `-fkeep-static-consts' ! Emit variables declared `static const' when optimization isn't turned on, even if the variables aren't referenced. GCC enables this option by default. If you want to force the compiler to check if a variable is referenced, regardless of whether or not optimization is turned on, use the ! `-fno-keep-static-consts' option. ! `-fmerge-constants' Attempt to merge identical constants (string constants and floating-point constants) across compilation units. This option is the default for optimized compilation if the ! assembler and linker support it. Use `-fno-merge-constants' to inhibit this behavior. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fmerge-all-constants' Attempt to merge identical constants and identical variables. ! This option implies `-fmerge-constants'. In addition to ! `-fmerge-constants' this considers e.g. even constant initialized arrays or initialized constant variables with integral or floating-point types. Languages like C or C++ require each variable, including multiple instances of the same variable in recursive calls, to have distinct locations, so using this option results in non-conforming behavior. ! `-fmodulo-sched' Perform swing modulo scheduling immediately before the first scheduling pass. This pass looks at innermost loops and reorders their instructions by overlapping different iterations. ! `-fmodulo-sched-allow-regmoves' Perform more aggressive SMS-based modulo scheduling with register ! moves allowed. By setting this flag certain anti-dependences ! edges are deleted, which triggers the generation of reg-moves ! based on the life-range analysis. This option is effective only ! with `-fmodulo-sched' enabled. ! `-fno-branch-count-reg' Do not use "decrement and branch" instructions on a count register, but instead generate a sequence of instructions that decrement a register, compare it against zero, then branch based upon the --- 6199,6260 ---- represent a count of assembly instructions and as such its exact meaning might change from one release to an another. ! '-fno-keep-inline-dllexport' ! This is a more fine-grained version of '-fkeep-inline-functions', which applies only to functions that are declared using the ! 'dllexport' attribute or declspec (*Note Declaring Attributes of Functions: Function Attributes.) ! '-fkeep-inline-functions' ! In C, emit 'static' functions that are declared 'inline' into the object file, even if the function has been inlined into all of its ! callers. This switch does not affect functions using the 'extern inline' extension in GNU C90. In C++, emit any and all inline functions into the object file. ! '-fkeep-static-consts' ! Emit variables declared 'static const' when optimization isn't turned on, even if the variables aren't referenced. GCC enables this option by default. If you want to force the compiler to check if a variable is referenced, regardless of whether or not optimization is turned on, use the ! '-fno-keep-static-consts' option. ! '-fmerge-constants' Attempt to merge identical constants (string constants and floating-point constants) across compilation units. This option is the default for optimized compilation if the ! assembler and linker support it. Use '-fno-merge-constants' to inhibit this behavior. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fmerge-all-constants' Attempt to merge identical constants and identical variables. ! This option implies '-fmerge-constants'. In addition to ! '-fmerge-constants' this considers e.g. even constant initialized arrays or initialized constant variables with integral or floating-point types. Languages like C or C++ require each variable, including multiple instances of the same variable in recursive calls, to have distinct locations, so using this option results in non-conforming behavior. ! '-fmodulo-sched' Perform swing modulo scheduling immediately before the first scheduling pass. This pass looks at innermost loops and reorders their instructions by overlapping different iterations. ! '-fmodulo-sched-allow-regmoves' Perform more aggressive SMS-based modulo scheduling with register ! moves allowed. By setting this flag certain anti-dependences edges ! are deleted, which triggers the generation of reg-moves based on ! the life-range analysis. This option is effective only with ! '-fmodulo-sched' enabled. ! '-fno-branch-count-reg' Do not use "decrement and branch" instructions on a count register, but instead generate a sequence of instructions that decrement a register, compare it against zero, then branch based upon the *************** optimizations to be performed is desired *** 6329,6337 **** support such instructions, which include x86, PowerPC, IA-64 and S/390. ! The default is `-fbranch-count-reg'. ! `-fno-function-cse' Do not put function addresses in registers; make each instruction that calls a constant function contain the function's address explicitly. --- 6262,6270 ---- support such instructions, which include x86, PowerPC, IA-64 and S/390. ! The default is '-fbranch-count-reg'. ! '-fno-function-cse' Do not put function addresses in registers; make each instruction that calls a constant function contain the function's address explicitly. *************** optimizations to be performed is desired *** 6340,6953 **** that alter the assembler output may be confused by the optimizations performed when this option is not used. ! The default is `-ffunction-cse' ! `-fno-zero-initialized-in-bss' ! If the target supports a BSS section, GCC by default puts ! variables that are initialized to zero into BSS. This can save ! space in the resulting code. This option turns off this behavior because some programs explicitly rely on variables going to the data section--e.g., so that the resulting executable can find the beginning of that section and/or make assumptions based on that. ! The default is `-fzero-initialized-in-bss'. ! `-fmudflap -fmudflapth -fmudflapir' For front-ends that support it (C and C++), instrument all risky pointer/array dereferencing operations, some standard library string/heap functions, and some other associated constructs with range/validity tests. Modules so instrumented should be immune to buffer overflows, invalid heap use, and some other classes of C/C++ programming errors. The instrumentation relies on a separate ! runtime library (`libmudflap'), which is linked into a program if ! `-fmudflap' is given at link time. Run-time behavior of the ! instrumented program is controlled by the `MUDFLAP_OPTIONS' ! environment variable. See `env MUDFLAP_OPTIONS=-help a.out' for its options. ! Use `-fmudflapth' instead of `-fmudflap' to compile and to link if ! your program is multi-threaded. Use `-fmudflapir', in addition to ! `-fmudflap' or `-fmudflapth', if instrumentation should ignore pointer reads. This produces less instrumentation (and therefore faster execution) and still provides some protection against ! outright memory corrupting writes, but allows erroneously read ! data to propagate within a program. ! `-fthread-jumps' Perform optimizations that check to see if a jump branches to a location where another comparison subsumed by the first is found. If so, the first branch is redirected to either the destination of ! the second branch or a point immediately following it, depending ! on whether the condition is known to be true or false. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fsplit-wide-types' ! When using a type that occupies multiple registers, such as `long long' on a 32-bit system, split the registers apart and allocate them independently. This normally generates better code for those types, but may make debugging more difficult. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fcse-follow-jumps' In common subexpression elimination (CSE), scan through jump instructions when the target of the jump is not reached by any ! other path. For example, when CSE encounters an `if' statement ! with an `else' clause, CSE follows the jump when the condition tested is false. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fcse-skip-blocks' ! This is similar to `-fcse-follow-jumps', but causes CSE to follow jumps that conditionally skip over blocks. When CSE encounters a ! simple `if' statement with no else clause, `-fcse-skip-blocks' ! causes CSE to follow the jump around the body of the `if'. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-frerun-cse-after-loop' Re-run common subexpression elimination after loop optimizations are performed. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fgcse' Perform a global common subexpression elimination pass. This pass also performs global constant and copy propagation. _Note:_ When compiling a program using computed gotos, a GCC extension, you may get better run-time performance if you disable the global common subexpression elimination pass by adding ! `-fno-gcse' to the command line. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fgcse-lm' ! When `-fgcse-lm' is enabled, global common subexpression elimination attempts to move loads that are only killed by stores into themselves. This allows a loop containing a load/store ! sequence to be changed to a load outside the loop, and a ! copy/store within the loop. ! Enabled by default when `-fgcse' is enabled. ! `-fgcse-sm' ! When `-fgcse-sm' is enabled, a store motion pass is run after global common subexpression elimination. This pass attempts to move stores out of loops. When used in conjunction with ! `-fgcse-lm', loops containing a load/store sequence can be changed to a load before the loop and a store after the loop. Not enabled at any optimization level. ! `-fgcse-las' ! When `-fgcse-las' is enabled, the global common subexpression elimination pass eliminates redundant loads that come after stores to the same memory location (both partial and full redundancies). Not enabled at any optimization level. ! `-fgcse-after-reload' ! When `-fgcse-after-reload' is enabled, a redundant load elimination pass is performed after reload. The purpose of this pass is to clean up redundant spilling. ! `-faggressive-loop-optimizations' This option tells the loop optimizer to use language constraints to ! derive bounds for the number of iterations of a loop. This ! assumes that loop code does not invoke undefined behavior by for ! example causing signed integer overflows or out-of-bound array ! accesses. The bounds for the number of iterations of a loop are ! used to guide loop unrolling and peeling and loop exit test ! optimizations. This option is enabled by default. ! `-funsafe-loop-optimizations' ! This option tells the loop optimizer to assume that loop indices ! do not overflow, and that loops with nontrivial exit condition are ! not infinite. This enables a wider range of loop optimizations ! even if the loop optimizer itself cannot prove that these ! assumptions are valid. If you use `-Wunsafe-loop-optimizations', ! the compiler warns you if it finds this kind of loop. ! `-fcrossjumping' Perform cross-jumping transformation. This transformation unifies ! equivalent code and saves code size. The resulting code may or ! may not perform better than without cross-jumping. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fauto-inc-dec' Combine increments or decrements of addresses with memory accesses. This pass is always skipped on architectures that do not have ! instructions to support this. Enabled by default at `-O' and higher on architectures that support this. ! `-fdce' Perform dead code elimination (DCE) on RTL. Enabled by default at ! `-O' and higher. ! `-fdse' ! Perform dead store elimination (DSE) on RTL. Enabled by default ! at `-O' and higher. ! `-fif-conversion' Attempt to transform conditional jumps into branch-less ! equivalents. This includes use of conditional moves, min, max, ! set flags and abs instructions, and some tricks doable by standard ! arithmetics. The use of conditional execution on chips where it ! is available is controlled by `if-conversion2'. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fif-conversion2' Use conditional execution (where available) to transform conditional jumps into branch-less equivalents. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fdelete-null-pointer-checks' Assume that programs cannot safely dereference null pointers, and that no code or data element resides there. This enables simple constant folding optimizations at all optimization levels. In ! addition, other optimization passes in GCC use this flag to ! control global dataflow analyses that eliminate useless checks for ! null pointers; these assume that if a pointer is checked after it ! has already been dereferenced, it cannot be null. Note however that in some environments this assumption is not true. ! Use `-fno-delete-null-pointer-checks' to disable this optimization for programs that depend on that behavior. Some targets, especially embedded ones, disable this option at all ! levels. Otherwise it is enabled at all levels: `-O0', `-O1', ! `-O2', `-O3', `-Os'. Passes that use the information are enabled independently at different optimization levels. ! `-fdevirtualize' Attempt to convert calls to virtual functions to direct calls. This is done both within a procedure and interprocedurally as part ! of indirect inlining (`-findirect-inlining') and interprocedural ! constant propagation (`-fipa-cp'). Enabled at levels `-O2', ! `-O3', `-Os'. ! `-fexpensive-optimizations' Perform a number of minor optimizations that are relatively expensive. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-free' Attempt to remove redundant extension instructions. This is especially helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit registers after writing to their lower 32-bit half. ! Enabled for x86 at levels `-O2', `-O3'. ! `-foptimize-register-move' ! `-fregmove' Attempt to reassign register numbers in move instructions and as operands of other simple instructions in order to maximize the amount of register tying. This is especially helpful on machines with two-operand instructions. ! Note `-fregmove' and `-foptimize-register-move' are the same optimization. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fira-algorithm=ALGORITHM' Use the specified coloring algorithm for the integrated register ! allocator. The ALGORITHM argument can be `priority', which ! specifies Chow's priority coloring, or `CB', which specifies Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented for all architectures, but for those targets that do support it, it is the default because it generates better code. ! `-fira-region=REGION' Use specified regions for the integrated register allocator. The REGION argument should be one of the following: ! `all' Use all loops as register allocation regions. This can give the best results for machines with a small and/or irregular register set. ! `mixed' ! Use all loops except for loops with small register pressure ! as the regions. This value usually gives the best results in most cases and for most architectures, and is enabled by ! default when compiling with optimization for speed (`-O', ! `-O2', ...). ! `one' Use all functions as a single region. This typically results ! in the smallest code size, and is enabled by default for ! `-Os' or `-O0'. ! ! `-fira-hoist-pressure' Use IRA to evaluate register pressure in the code hoisting pass for decisions to hoist expressions. This option usually results in smaller code, but it can slow the compiler down. ! This option is enabled at level `-Os' for all targets. ! `-fira-loop-pressure' Use IRA to evaluate register pressure in loops for decisions to ! move loop invariants. This option usually results in generation ! of faster and smaller code on machines with large register files ! (>= 32 registers), but it can slow the compiler down. ! This option is enabled at level `-O3' for some targets. ! `-fno-ira-share-save-slots' Disable sharing of stack slots used for saving call-used hard registers living through a call. Each hard register gets a separate stack slot, and as a result function stack frames are larger. ! `-fno-ira-share-spill-slots' Disable sharing of stack slots allocated for pseudo-registers. Each pseudo-register that does not get a hard register gets a separate stack slot, and as a result function stack frames are larger. ! `-fira-verbose=N' Control the verbosity of the dump file for the integrated register allocator. The default value is 5. If the value N is greater or equal to 10, the dump output is sent to stderr using the same format as N minus 10. ! `-fdelayed-branch' If supported for the target machine, attempt to reorder instructions to exploit instruction slots available after delayed branch instructions. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fschedule-insns' If supported for the target machine, attempt to reorder instructions to eliminate execution stalls due to required data being unavailable. This helps machines that have slow floating ! point or memory load instructions by allowing other instructions ! to be issued until the result of the load or floating-point instruction is required. ! Enabled at levels `-O2', `-O3'. ! `-fschedule-insns2' ! Similar to `-fschedule-insns', but requests an additional pass of instruction scheduling after register allocation has been done. This is especially useful on machines with a relatively small number of registers and where memory load instructions take more than one cycle. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fno-sched-interblock' Don't schedule instructions across basic blocks. This is normally enabled by default when scheduling before register allocation, i.e. ! with `-fschedule-insns' or at `-O2' or higher. ! `-fno-sched-spec' Don't allow speculative motion of non-load instructions. This is normally enabled by default when scheduling before register ! allocation, i.e. with `-fschedule-insns' or at `-O2' or higher. ! `-fsched-pressure' Enable register pressure sensitive insn scheduling before register allocation. This only makes sense when scheduling before register ! allocation is enabled, i.e. with `-fschedule-insns' or at `-O2' or higher. Usage of this option can improve the generated code and decrease its size by preventing register pressure increase above the number of available hard registers and subsequent spills in register allocation. ! `-fsched-spec-load' Allow speculative motion of some load instructions. This only makes sense when scheduling before register allocation, i.e. with ! `-fschedule-insns' or at `-O2' or higher. ! `-fsched-spec-load-dangerous' Allow speculative motion of more load instructions. This only makes sense when scheduling before register allocation, i.e. with ! `-fschedule-insns' or at `-O2' or higher. ! `-fsched-stalled-insns' ! `-fsched-stalled-insns=N' Define how many insns (if any) can be moved prematurely from the queue of stalled insns into the ready list during the second ! scheduling pass. `-fno-sched-stalled-insns' means that no insns ! are moved prematurely, `-fsched-stalled-insns=0' means there is no limit on how many queued insns can be moved prematurely. ! `-fsched-stalled-insns' without a value is equivalent to ! `-fsched-stalled-insns=1'. ! `-fsched-stalled-insns-dep' ! `-fsched-stalled-insns-dep=N' Define how many insn groups (cycles) are examined for a dependency on a stalled insn that is a candidate for premature removal from the queue of stalled insns. This has an effect only during the ! second scheduling pass, and only if `-fsched-stalled-insns' is ! used. `-fno-sched-stalled-insns-dep' is equivalent to ! `-fsched-stalled-insns-dep=0'. `-fsched-stalled-insns-dep' ! without a value is equivalent to `-fsched-stalled-insns-dep=1'. ! `-fsched2-use-superblocks' When scheduling after register allocation, use superblock scheduling. This allows motion across basic block boundaries, ! resulting in faster schedules. This option is experimental, as ! not all machine descriptions used by GCC model the CPU closely ! enough to avoid unreliable results from the algorithm. This only makes sense when scheduling after register allocation, ! i.e. with `-fschedule-insns2' or at `-O2' or higher. ! `-fsched-group-heuristic' Enable the group heuristic in the scheduler. This heuristic favors the instruction that belongs to a schedule group. This is enabled ! by default when scheduling is enabled, i.e. with `-fschedule-insns' ! or `-fschedule-insns2' or at `-O2' or higher. ! `-fsched-critical-path-heuristic' Enable the critical-path heuristic in the scheduler. This heuristic favors instructions on the critical path. This is enabled by default when scheduling is enabled, i.e. with ! `-fschedule-insns' or `-fschedule-insns2' or at `-O2' or higher. ! `-fsched-spec-insn-heuristic' Enable the speculative instruction heuristic in the scheduler. This heuristic favors speculative instructions with greater ! dependency weakness. This is enabled by default when scheduling ! is enabled, i.e. with `-fschedule-insns' or `-fschedule-insns2' ! or at `-O2' or higher. ! `-fsched-rank-heuristic' Enable the rank heuristic in the scheduler. This heuristic favors the instruction belonging to a basic block with greater size or frequency. This is enabled by default when scheduling is enabled, ! i.e. with `-fschedule-insns' or `-fschedule-insns2' or at `-O2' ! or higher. ! `-fsched-last-insn-heuristic' Enable the last-instruction heuristic in the scheduler. This ! heuristic favors the instruction that is less dependent on the ! last instruction scheduled. This is enabled by default when ! scheduling is enabled, i.e. with `-fschedule-insns' or ! `-fschedule-insns2' or at `-O2' or higher. ! `-fsched-dep-count-heuristic' Enable the dependent-count heuristic in the scheduler. This heuristic favors the instruction that has more instructions depending on it. This is enabled by default when scheduling is ! enabled, i.e. with `-fschedule-insns' or `-fschedule-insns2' or ! at `-O2' or higher. ! `-freschedule-modulo-scheduled-loops' ! Modulo scheduling is performed before traditional scheduling. If ! a loop is modulo scheduled, later scheduling passes may change its schedule. Use this option to control that behavior. ! `-fselective-scheduling' Schedule instructions using selective scheduling algorithm. Selective scheduling runs instead of the first scheduler pass. ! `-fselective-scheduling2' Schedule instructions using selective scheduling algorithm. Selective scheduling runs instead of the second scheduler pass. ! `-fsel-sched-pipelining' Enable software pipelining of innermost loops during selective scheduling. This option has no effect unless one of ! `-fselective-scheduling' or `-fselective-scheduling2' is turned on. ! `-fsel-sched-pipelining-outer-loops' When pipelining loops during selective scheduling, also pipeline outer loops. This option has no effect unless ! `-fsel-sched-pipelining' is turned on. ! `-fshrink-wrap' ! Emit function prologues only before parts of the function that ! need it, rather than at the top of the function. This flag is ! enabled by default at `-O' and higher. ! `-fcaller-saves' Enable allocation of values to registers that are clobbered by function calls, by emitting extra instructions to save and restore ! the registers around such calls. Such allocation is done only ! when it seems to result in better code. This option is always enabled by default on certain machines, usually those which have no call-preserved registers to use instead. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fcombine-stack-adjustments' Tracks stack adjustments (pushes and pops) and stack memory references and then tries to find ways to combine them. ! Enabled by default at `-O1' and higher. ! `-fconserve-stack' Attempt to minimize stack usage. The compiler attempts to use less stack space, even if that makes the program slower. This option ! implies setting the `large-stack-frame' parameter to 100 and the ! `large-stack-frame-growth' parameter to 400. ! `-ftree-reassoc' ! Perform reassociation on trees. This flag is enabled by default ! at `-O' and higher. ! `-ftree-pre' Perform partial redundancy elimination (PRE) on trees. This flag ! is enabled by default at `-O2' and `-O3'. ! `-ftree-partial-pre' Make partial redundancy elimination (PRE) more aggressive. This ! flag is enabled by default at `-O3'. ! `-ftree-forwprop' Perform forward propagation on trees. This flag is enabled by ! default at `-O' and higher. ! `-ftree-fre' Perform full redundancy elimination (FRE) on trees. The difference ! between FRE and PRE is that FRE only considers expressions that ! are computed on all paths leading to the redundant computation. ! This analysis is faster than PRE, though it exposes fewer ! redundancies. This flag is enabled by default at `-O' and higher. ! `-ftree-phiprop' Perform hoisting of loads from conditional pointers on trees. This ! pass is enabled by default at `-O' and higher. ! `-fhoist-adjacent-loads' Speculatively hoist loads from both branches of an if-then-else if ! the loads are from adjacent locations in the same structure and ! the target architecture has a conditional move instruction. This ! flag is enabled by default at `-O2' and higher. ! `-ftree-copy-prop' Perform copy propagation on trees. This pass eliminates unnecessary copy operations. This flag is enabled by default at ! `-O' and higher. ! `-fipa-pure-const' Discover which functions are pure or constant. Enabled by default ! at `-O' and higher. ! `-fipa-reference' Discover which static variables do not escape the compilation unit. ! Enabled by default at `-O' and higher. ! `-fipa-pta' Perform interprocedural pointer analysis and interprocedural modification and reference analysis. This option can cause ! excessive memory and compile-time usage on large compilation ! units. It is not enabled by default at any optimization level. ! `-fipa-profile' Perform interprocedural profile propagation. The functions called ! only from cold functions are marked as cold. Also functions ! executed once (such as `cold', `noreturn', static constructors or ! destructors) are identified. Cold functions and loop less parts of functions executed once are then optimized for size. Enabled by ! default at `-O' and higher. ! `-fipa-cp' Perform interprocedural constant propagation. This optimization analyzes the program to determine when values passed to functions are constants and then optimizes accordingly. This optimization can substantially increase performance if the application has constants passed to functions. This flag is enabled by default at ! `-O2', `-Os' and `-O3'. ! `-fipa-cp-clone' Perform function cloning to make interprocedural constant propagation stronger. When enabled, interprocedural constant propagation performs function cloning when externally visible function can be called with constant arguments. Because this optimization can create multiple copies of functions, it may ! significantly increase code size (see `--param ipcp-unit-growth=VALUE'). This flag is enabled by default at ! `-O3'. ! `-ftree-sink' ! Perform forward store motion on trees. This flag is enabled by ! default at `-O' and higher. ! `-ftree-bit-ccp' Perform sparse conditional bit constant propagation on trees and propagate pointer alignment information. This pass only operates ! on local scalar variables and is enabled by default at `-O' and ! higher. It requires that `-ftree-ccp' is enabled. ! `-ftree-ccp' Perform sparse conditional constant propagation (CCP) on trees. ! This pass only operates on local scalar variables and is enabled ! by default at `-O' and higher. ! `-ftree-switch-conversion' Perform conversion of simple initializations in a switch to initializations from a scalar array. This flag is enabled by ! default at `-O2' and higher. ! `-ftree-tail-merge' Look for identical code sequences. When found, replace one with a jump to the other. This optimization is known as tail merging or ! cross jumping. This flag is enabled by default at `-O2' and higher. The compilation time in this pass can be limited using ! `max-tail-merge-comparisons' parameter and ! `max-tail-merge-iterations' parameter. ! `-ftree-dce' ! Perform dead code elimination (DCE) on trees. This flag is ! enabled by default at `-O' and higher. ! `-ftree-builtin-call-dce' Perform conditional dead code elimination (DCE) for calls to ! built-in functions that may set `errno' but are otherwise ! side-effect free. This flag is enabled by default at `-O2' and ! higher if `-Os' is not also specified. ! `-ftree-dominator-opts' Perform a variety of simple scalar cleanups (constant/copy propagation, redundancy elimination, range propagation and expression simplification) based on a dominator tree traversal. ! This also performs jump threading (to reduce jumps to jumps). This ! flag is enabled by default at `-O' and higher. ! `-ftree-dse' Perform dead store elimination (DSE) on trees. A dead store is a store into a memory location that is later overwritten by another store without any intervening loads. In this case the earlier ! store can be deleted. This flag is enabled by default at `-O' and higher. ! `-ftree-ch' Perform loop header copying on trees. This is beneficial since it increases effectiveness of code motion optimizations. It also ! saves one jump. This flag is enabled by default at `-O' and ! higher. It is not enabled for `-Os', since it usually increases code size. ! `-ftree-loop-optimize' Perform loop optimizations on trees. This flag is enabled by ! default at `-O' and higher. ! `-ftree-loop-linear' Perform loop interchange transformations on tree. Same as ! `-floop-interchange'. To use this code transformation, GCC has to ! be configured with `--with-ppl' and `--with-cloog' to enable the Graphite loop transformation infrastructure. ! `-floop-interchange' Perform loop interchange transformations on loops. Interchanging two nested loops switches the inner and outer loops. For example, given a loop like: --- 6273,6885 ---- that alter the assembler output may be confused by the optimizations performed when this option is not used. ! The default is '-ffunction-cse' ! '-fno-zero-initialized-in-bss' ! If the target supports a BSS section, GCC by default puts variables ! that are initialized to zero into BSS. This can save space in the ! resulting code. This option turns off this behavior because some programs explicitly rely on variables going to the data section--e.g., so that the resulting executable can find the beginning of that section and/or make assumptions based on that. ! The default is '-fzero-initialized-in-bss'. ! '-fmudflap -fmudflapth -fmudflapir' For front-ends that support it (C and C++), instrument all risky pointer/array dereferencing operations, some standard library string/heap functions, and some other associated constructs with range/validity tests. Modules so instrumented should be immune to buffer overflows, invalid heap use, and some other classes of C/C++ programming errors. The instrumentation relies on a separate ! runtime library ('libmudflap'), which is linked into a program if ! '-fmudflap' is given at link time. Run-time behavior of the ! instrumented program is controlled by the 'MUDFLAP_OPTIONS' ! environment variable. See 'env MUDFLAP_OPTIONS=-help a.out' for its options. ! Use '-fmudflapth' instead of '-fmudflap' to compile and to link if ! your program is multi-threaded. Use '-fmudflapir', in addition to ! '-fmudflap' or '-fmudflapth', if instrumentation should ignore pointer reads. This produces less instrumentation (and therefore faster execution) and still provides some protection against ! outright memory corrupting writes, but allows erroneously read data ! to propagate within a program. ! '-fthread-jumps' Perform optimizations that check to see if a jump branches to a location where another comparison subsumed by the first is found. If so, the first branch is redirected to either the destination of ! the second branch or a point immediately following it, depending on ! whether the condition is known to be true or false. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fsplit-wide-types' ! When using a type that occupies multiple registers, such as 'long long' on a 32-bit system, split the registers apart and allocate them independently. This normally generates better code for those types, but may make debugging more difficult. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fcse-follow-jumps' In common subexpression elimination (CSE), scan through jump instructions when the target of the jump is not reached by any ! other path. For example, when CSE encounters an 'if' statement ! with an 'else' clause, CSE follows the jump when the condition tested is false. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fcse-skip-blocks' ! This is similar to '-fcse-follow-jumps', but causes CSE to follow jumps that conditionally skip over blocks. When CSE encounters a ! simple 'if' statement with no else clause, '-fcse-skip-blocks' ! causes CSE to follow the jump around the body of the 'if'. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-frerun-cse-after-loop' Re-run common subexpression elimination after loop optimizations are performed. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fgcse' Perform a global common subexpression elimination pass. This pass also performs global constant and copy propagation. _Note:_ When compiling a program using computed gotos, a GCC extension, you may get better run-time performance if you disable the global common subexpression elimination pass by adding ! '-fno-gcse' to the command line. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fgcse-lm' ! When '-fgcse-lm' is enabled, global common subexpression elimination attempts to move loads that are only killed by stores into themselves. This allows a loop containing a load/store ! sequence to be changed to a load outside the loop, and a copy/store ! within the loop. ! Enabled by default when '-fgcse' is enabled. ! '-fgcse-sm' ! When '-fgcse-sm' is enabled, a store motion pass is run after global common subexpression elimination. This pass attempts to move stores out of loops. When used in conjunction with ! '-fgcse-lm', loops containing a load/store sequence can be changed to a load before the loop and a store after the loop. Not enabled at any optimization level. ! '-fgcse-las' ! When '-fgcse-las' is enabled, the global common subexpression elimination pass eliminates redundant loads that come after stores to the same memory location (both partial and full redundancies). Not enabled at any optimization level. ! '-fgcse-after-reload' ! When '-fgcse-after-reload' is enabled, a redundant load elimination pass is performed after reload. The purpose of this pass is to clean up redundant spilling. ! '-faggressive-loop-optimizations' This option tells the loop optimizer to use language constraints to ! derive bounds for the number of iterations of a loop. This assumes ! that loop code does not invoke undefined behavior by for example ! causing signed integer overflows or out-of-bound array accesses. ! The bounds for the number of iterations of a loop are used to guide ! loop unrolling and peeling and loop exit test optimizations. This ! option is enabled by default. ! '-funsafe-loop-optimizations' ! This option tells the loop optimizer to assume that loop indices do ! not overflow, and that loops with nontrivial exit condition are not ! infinite. This enables a wider range of loop optimizations even if ! the loop optimizer itself cannot prove that these assumptions are ! valid. If you use '-Wunsafe-loop-optimizations', the compiler ! warns you if it finds this kind of loop. ! '-fcrossjumping' Perform cross-jumping transformation. This transformation unifies ! equivalent code and saves code size. The resulting code may or may ! not perform better than without cross-jumping. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fauto-inc-dec' Combine increments or decrements of addresses with memory accesses. This pass is always skipped on architectures that do not have ! instructions to support this. Enabled by default at '-O' and higher on architectures that support this. ! '-fdce' Perform dead code elimination (DCE) on RTL. Enabled by default at ! '-O' and higher. ! '-fdse' ! Perform dead store elimination (DSE) on RTL. Enabled by default at ! '-O' and higher. ! '-fif-conversion' Attempt to transform conditional jumps into branch-less ! equivalents. This includes use of conditional moves, min, max, set ! flags and abs instructions, and some tricks doable by standard ! arithmetics. The use of conditional execution on chips where it is ! available is controlled by 'if-conversion2'. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fif-conversion2' Use conditional execution (where available) to transform conditional jumps into branch-less equivalents. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fdelete-null-pointer-checks' Assume that programs cannot safely dereference null pointers, and that no code or data element resides there. This enables simple constant folding optimizations at all optimization levels. In ! addition, other optimization passes in GCC use this flag to control ! global dataflow analyses that eliminate useless checks for null ! pointers; these assume that if a pointer is checked after it has ! already been dereferenced, it cannot be null. Note however that in some environments this assumption is not true. ! Use '-fno-delete-null-pointer-checks' to disable this optimization for programs that depend on that behavior. Some targets, especially embedded ones, disable this option at all ! levels. Otherwise it is enabled at all levels: '-O0', '-O1', ! '-O2', '-O3', '-Os'. Passes that use the information are enabled independently at different optimization levels. ! '-fdevirtualize' Attempt to convert calls to virtual functions to direct calls. This is done both within a procedure and interprocedurally as part ! of indirect inlining ('-findirect-inlining') and interprocedural ! constant propagation ('-fipa-cp'). Enabled at levels '-O2', '-O3', ! '-Os'. ! '-fexpensive-optimizations' Perform a number of minor optimizations that are relatively expensive. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-free' Attempt to remove redundant extension instructions. This is especially helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit registers after writing to their lower 32-bit half. ! Enabled for x86 at levels '-O2', '-O3'. ! '-foptimize-register-move' ! '-fregmove' Attempt to reassign register numbers in move instructions and as operands of other simple instructions in order to maximize the amount of register tying. This is especially helpful on machines with two-operand instructions. ! Note '-fregmove' and '-foptimize-register-move' are the same optimization. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fira-algorithm=ALGORITHM' Use the specified coloring algorithm for the integrated register ! allocator. The ALGORITHM argument can be 'priority', which ! specifies Chow's priority coloring, or 'CB', which specifies Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented for all architectures, but for those targets that do support it, it is the default because it generates better code. ! '-fira-region=REGION' Use specified regions for the integrated register allocator. The REGION argument should be one of the following: ! 'all' Use all loops as register allocation regions. This can give the best results for machines with a small and/or irregular register set. ! 'mixed' ! Use all loops except for loops with small register pressure as ! the regions. This value usually gives the best results in most cases and for most architectures, and is enabled by ! default when compiling with optimization for speed ('-O', ! '-O2', ...). ! 'one' Use all functions as a single region. This typically results ! in the smallest code size, and is enabled by default for '-Os' ! or '-O0'. ! '-fira-hoist-pressure' Use IRA to evaluate register pressure in the code hoisting pass for decisions to hoist expressions. This option usually results in smaller code, but it can slow the compiler down. ! This option is enabled at level '-Os' for all targets. ! '-fira-loop-pressure' Use IRA to evaluate register pressure in loops for decisions to ! move loop invariants. This option usually results in generation of ! faster and smaller code on machines with large register files (>= ! 32 registers), but it can slow the compiler down. ! This option is enabled at level '-O3' for some targets. ! '-fno-ira-share-save-slots' Disable sharing of stack slots used for saving call-used hard registers living through a call. Each hard register gets a separate stack slot, and as a result function stack frames are larger. ! '-fno-ira-share-spill-slots' Disable sharing of stack slots allocated for pseudo-registers. Each pseudo-register that does not get a hard register gets a separate stack slot, and as a result function stack frames are larger. ! '-fira-verbose=N' Control the verbosity of the dump file for the integrated register allocator. The default value is 5. If the value N is greater or equal to 10, the dump output is sent to stderr using the same format as N minus 10. ! '-fdelayed-branch' If supported for the target machine, attempt to reorder instructions to exploit instruction slots available after delayed branch instructions. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fschedule-insns' If supported for the target machine, attempt to reorder instructions to eliminate execution stalls due to required data being unavailable. This helps machines that have slow floating ! point or memory load instructions by allowing other instructions to ! be issued until the result of the load or floating-point instruction is required. ! Enabled at levels '-O2', '-O3'. ! '-fschedule-insns2' ! Similar to '-fschedule-insns', but requests an additional pass of instruction scheduling after register allocation has been done. This is especially useful on machines with a relatively small number of registers and where memory load instructions take more than one cycle. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fno-sched-interblock' Don't schedule instructions across basic blocks. This is normally enabled by default when scheduling before register allocation, i.e. ! with '-fschedule-insns' or at '-O2' or higher. ! '-fno-sched-spec' Don't allow speculative motion of non-load instructions. This is normally enabled by default when scheduling before register ! allocation, i.e. with '-fschedule-insns' or at '-O2' or higher. ! '-fsched-pressure' Enable register pressure sensitive insn scheduling before register allocation. This only makes sense when scheduling before register ! allocation is enabled, i.e. with '-fschedule-insns' or at '-O2' or higher. Usage of this option can improve the generated code and decrease its size by preventing register pressure increase above the number of available hard registers and subsequent spills in register allocation. ! '-fsched-spec-load' Allow speculative motion of some load instructions. This only makes sense when scheduling before register allocation, i.e. with ! '-fschedule-insns' or at '-O2' or higher. ! '-fsched-spec-load-dangerous' Allow speculative motion of more load instructions. This only makes sense when scheduling before register allocation, i.e. with ! '-fschedule-insns' or at '-O2' or higher. ! '-fsched-stalled-insns' ! '-fsched-stalled-insns=N' Define how many insns (if any) can be moved prematurely from the queue of stalled insns into the ready list during the second ! scheduling pass. '-fno-sched-stalled-insns' means that no insns ! are moved prematurely, '-fsched-stalled-insns=0' means there is no limit on how many queued insns can be moved prematurely. ! '-fsched-stalled-insns' without a value is equivalent to ! '-fsched-stalled-insns=1'. ! '-fsched-stalled-insns-dep' ! '-fsched-stalled-insns-dep=N' Define how many insn groups (cycles) are examined for a dependency on a stalled insn that is a candidate for premature removal from the queue of stalled insns. This has an effect only during the ! second scheduling pass, and only if '-fsched-stalled-insns' is ! used. '-fno-sched-stalled-insns-dep' is equivalent to ! '-fsched-stalled-insns-dep=0'. '-fsched-stalled-insns-dep' without ! a value is equivalent to '-fsched-stalled-insns-dep=1'. ! '-fsched2-use-superblocks' When scheduling after register allocation, use superblock scheduling. This allows motion across basic block boundaries, ! resulting in faster schedules. This option is experimental, as not ! all machine descriptions used by GCC model the CPU closely enough ! to avoid unreliable results from the algorithm. This only makes sense when scheduling after register allocation, ! i.e. with '-fschedule-insns2' or at '-O2' or higher. ! '-fsched-group-heuristic' Enable the group heuristic in the scheduler. This heuristic favors the instruction that belongs to a schedule group. This is enabled ! by default when scheduling is enabled, i.e. with '-fschedule-insns' ! or '-fschedule-insns2' or at '-O2' or higher. ! '-fsched-critical-path-heuristic' Enable the critical-path heuristic in the scheduler. This heuristic favors instructions on the critical path. This is enabled by default when scheduling is enabled, i.e. with ! '-fschedule-insns' or '-fschedule-insns2' or at '-O2' or higher. ! '-fsched-spec-insn-heuristic' Enable the speculative instruction heuristic in the scheduler. This heuristic favors speculative instructions with greater ! dependency weakness. This is enabled by default when scheduling is ! enabled, i.e. with '-fschedule-insns' or '-fschedule-insns2' or at ! '-O2' or higher. ! '-fsched-rank-heuristic' Enable the rank heuristic in the scheduler. This heuristic favors the instruction belonging to a basic block with greater size or frequency. This is enabled by default when scheduling is enabled, ! i.e. with '-fschedule-insns' or '-fschedule-insns2' or at '-O2' or ! higher. ! '-fsched-last-insn-heuristic' Enable the last-instruction heuristic in the scheduler. This ! heuristic favors the instruction that is less dependent on the last ! instruction scheduled. This is enabled by default when scheduling ! is enabled, i.e. with '-fschedule-insns' or '-fschedule-insns2' or ! at '-O2' or higher. ! '-fsched-dep-count-heuristic' Enable the dependent-count heuristic in the scheduler. This heuristic favors the instruction that has more instructions depending on it. This is enabled by default when scheduling is ! enabled, i.e. with '-fschedule-insns' or '-fschedule-insns2' or at ! '-O2' or higher. ! '-freschedule-modulo-scheduled-loops' ! Modulo scheduling is performed before traditional scheduling. If a ! loop is modulo scheduled, later scheduling passes may change its schedule. Use this option to control that behavior. ! '-fselective-scheduling' Schedule instructions using selective scheduling algorithm. Selective scheduling runs instead of the first scheduler pass. ! '-fselective-scheduling2' Schedule instructions using selective scheduling algorithm. Selective scheduling runs instead of the second scheduler pass. ! '-fsel-sched-pipelining' Enable software pipelining of innermost loops during selective scheduling. This option has no effect unless one of ! '-fselective-scheduling' or '-fselective-scheduling2' is turned on. ! '-fsel-sched-pipelining-outer-loops' When pipelining loops during selective scheduling, also pipeline outer loops. This option has no effect unless ! '-fsel-sched-pipelining' is turned on. ! '-fshrink-wrap' ! Emit function prologues only before parts of the function that need ! it, rather than at the top of the function. This flag is enabled ! by default at '-O' and higher. ! '-fcaller-saves' Enable allocation of values to registers that are clobbered by function calls, by emitting extra instructions to save and restore ! the registers around such calls. Such allocation is done only when ! it seems to result in better code. This option is always enabled by default on certain machines, usually those which have no call-preserved registers to use instead. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fcombine-stack-adjustments' Tracks stack adjustments (pushes and pops) and stack memory references and then tries to find ways to combine them. ! Enabled by default at '-O1' and higher. ! '-fconserve-stack' Attempt to minimize stack usage. The compiler attempts to use less stack space, even if that makes the program slower. This option ! implies setting the 'large-stack-frame' parameter to 100 and the ! 'large-stack-frame-growth' parameter to 400. ! '-ftree-reassoc' ! Perform reassociation on trees. This flag is enabled by default at ! '-O' and higher. ! '-ftree-pre' Perform partial redundancy elimination (PRE) on trees. This flag ! is enabled by default at '-O2' and '-O3'. ! '-ftree-partial-pre' Make partial redundancy elimination (PRE) more aggressive. This ! flag is enabled by default at '-O3'. ! '-ftree-forwprop' Perform forward propagation on trees. This flag is enabled by ! default at '-O' and higher. ! '-ftree-fre' Perform full redundancy elimination (FRE) on trees. The difference ! between FRE and PRE is that FRE only considers expressions that are ! computed on all paths leading to the redundant computation. This ! analysis is faster than PRE, though it exposes fewer redundancies. ! This flag is enabled by default at '-O' and higher. ! '-ftree-phiprop' Perform hoisting of loads from conditional pointers on trees. This ! pass is enabled by default at '-O' and higher. ! '-fhoist-adjacent-loads' Speculatively hoist loads from both branches of an if-then-else if ! the loads are from adjacent locations in the same structure and the ! target architecture has a conditional move instruction. This flag ! is enabled by default at '-O2' and higher. ! '-ftree-copy-prop' Perform copy propagation on trees. This pass eliminates unnecessary copy operations. This flag is enabled by default at ! '-O' and higher. ! '-fipa-pure-const' Discover which functions are pure or constant. Enabled by default ! at '-O' and higher. ! '-fipa-reference' Discover which static variables do not escape the compilation unit. ! Enabled by default at '-O' and higher. ! '-fipa-pta' Perform interprocedural pointer analysis and interprocedural modification and reference analysis. This option can cause ! excessive memory and compile-time usage on large compilation units. ! It is not enabled by default at any optimization level. ! '-fipa-profile' Perform interprocedural profile propagation. The functions called ! only from cold functions are marked as cold. Also functions ! executed once (such as 'cold', 'noreturn', static constructors or ! destructors) are identified. Cold functions and loop less parts of functions executed once are then optimized for size. Enabled by ! default at '-O' and higher. ! '-fipa-cp' Perform interprocedural constant propagation. This optimization analyzes the program to determine when values passed to functions are constants and then optimizes accordingly. This optimization can substantially increase performance if the application has constants passed to functions. This flag is enabled by default at ! '-O2', '-Os' and '-O3'. ! '-fipa-cp-clone' Perform function cloning to make interprocedural constant propagation stronger. When enabled, interprocedural constant propagation performs function cloning when externally visible function can be called with constant arguments. Because this optimization can create multiple copies of functions, it may ! significantly increase code size (see '--param ipcp-unit-growth=VALUE'). This flag is enabled by default at ! '-O3'. ! '-ftree-sink' ! Perform forward store motion on trees. This flag is enabled by ! default at '-O' and higher. ! '-ftree-bit-ccp' Perform sparse conditional bit constant propagation on trees and propagate pointer alignment information. This pass only operates ! on local scalar variables and is enabled by default at '-O' and ! higher. It requires that '-ftree-ccp' is enabled. ! '-ftree-ccp' Perform sparse conditional constant propagation (CCP) on trees. ! This pass only operates on local scalar variables and is enabled by ! default at '-O' and higher. ! '-ftree-switch-conversion' Perform conversion of simple initializations in a switch to initializations from a scalar array. This flag is enabled by ! default at '-O2' and higher. ! '-ftree-tail-merge' Look for identical code sequences. When found, replace one with a jump to the other. This optimization is known as tail merging or ! cross jumping. This flag is enabled by default at '-O2' and higher. The compilation time in this pass can be limited using ! 'max-tail-merge-comparisons' parameter and ! 'max-tail-merge-iterations' parameter. ! '-ftree-dce' ! Perform dead code elimination (DCE) on trees. This flag is enabled ! by default at '-O' and higher. ! '-ftree-builtin-call-dce' Perform conditional dead code elimination (DCE) for calls to ! built-in functions that may set 'errno' but are otherwise ! side-effect free. This flag is enabled by default at '-O2' and ! higher if '-Os' is not also specified. ! '-ftree-dominator-opts' Perform a variety of simple scalar cleanups (constant/copy propagation, redundancy elimination, range propagation and expression simplification) based on a dominator tree traversal. ! This also performs jump threading (to reduce jumps to jumps). This ! flag is enabled by default at '-O' and higher. ! '-ftree-dse' Perform dead store elimination (DSE) on trees. A dead store is a store into a memory location that is later overwritten by another store without any intervening loads. In this case the earlier ! store can be deleted. This flag is enabled by default at '-O' and higher. ! '-ftree-ch' Perform loop header copying on trees. This is beneficial since it increases effectiveness of code motion optimizations. It also ! saves one jump. This flag is enabled by default at '-O' and ! higher. It is not enabled for '-Os', since it usually increases code size. ! '-ftree-loop-optimize' Perform loop optimizations on trees. This flag is enabled by ! default at '-O' and higher. ! '-ftree-loop-linear' Perform loop interchange transformations on tree. Same as ! '-floop-interchange'. To use this code transformation, GCC has to ! be configured with '--with-ppl' and '--with-cloog' to enable the Graphite loop transformation infrastructure. ! '-floop-interchange' Perform loop interchange transformations on loops. Interchanging two nested loops switches the inner and outer loops. For example, given a loop like: *************** optimizations to be performed is desired *** 6962,6982 **** A(J, I) = A(J, I) * C ENDDO ENDDO ! which can be beneficial when `N' is larger than the caches, ! because in Fortran, the elements of an array are stored in memory contiguously by column, and the original loop iterates over rows, potentially creating at each access a cache miss. This optimization applies to all the languages supported by GCC and is not limited to Fortran. To use this code transformation, GCC has ! to be configured with `--with-ppl' and `--with-cloog' to enable the Graphite loop transformation infrastructure. ! `-floop-strip-mine' Perform loop strip mining transformations on loops. Strip mining splits a loop into two nested loops. The outer loop has strides equal to the strip size and the inner loop has strides of the original loop within a strip. The strip length can be changed ! using the `loop-block-tile-size' parameter. For example, given a loop like: DO I = 1, N A(I) = A(I) + C --- 6894,6914 ---- A(J, I) = A(J, I) * C ENDDO ENDDO ! which can be beneficial when 'N' is larger than the caches, because ! in Fortran, the elements of an array are stored in memory contiguously by column, and the original loop iterates over rows, potentially creating at each access a cache miss. This optimization applies to all the languages supported by GCC and is not limited to Fortran. To use this code transformation, GCC has ! to be configured with '--with-ppl' and '--with-cloog' to enable the Graphite loop transformation infrastructure. ! '-floop-strip-mine' Perform loop strip mining transformations on loops. Strip mining splits a loop into two nested loops. The outer loop has strides equal to the strip size and the inner loop has strides of the original loop within a strip. The strip length can be changed ! using the 'loop-block-tile-size' parameter. For example, given a loop like: DO I = 1, N A(I) = A(I) + C *************** optimizations to be performed is desired *** 6987,7002 **** A(I) = A(I) + C ENDDO ENDDO ! This optimization applies to all the languages supported by GCC ! and is not limited to Fortran. To use this code transformation, ! GCC has to be configured with `--with-ppl' and `--with-cloog' to ! enable the Graphite loop transformation infrastructure. ! `-floop-block' Perform loop blocking transformations on loops. Blocking strip mines each loop in the loop nest such that the memory accesses of the element loops fit inside caches. The strip length can be ! changed using the `loop-block-tile-size' parameter. For example, given a loop like: DO I = 1, N DO J = 1, M --- 6919,6934 ---- A(I) = A(I) + C ENDDO ENDDO ! This optimization applies to all the languages supported by GCC and ! is not limited to Fortran. To use this code transformation, GCC ! has to be configured with '--with-ppl' and '--with-cloog' to enable ! the Graphite loop transformation infrastructure. ! '-floop-block' Perform loop blocking transformations on loops. Blocking strip mines each loop in the loop nest such that the memory accesses of the element loops fit inside caches. The strip length can be ! changed using the 'loop-block-tile-size' parameter. For example, given a loop like: DO I = 1, N DO J = 1, M *************** optimizations to be performed is desired *** 7013,7058 **** ENDDO ENDDO ENDDO ! which can be beneficial when `M' is larger than the caches, ! because the innermost loop iterates over a smaller amount of data ! which can be kept in the caches. This optimization applies to all ! the languages supported by GCC and is not limited to Fortran. To ! use this code transformation, GCC has to be configured with ! `--with-ppl' and `--with-cloog' to enable the Graphite loop transformation infrastructure. ! `-fgraphite-identity' ! Enable the identity transformation for graphite. For every SCoP ! we generate the polyhedral representation and transform it back to ! gimple. Using `-fgraphite-identity' we can check the costs or benefits of the GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations are also performed by the code generator CLooG, like index splitting and dead code elimination in loops. ! `-floop-nest-optimize' Enable the ISL based loop nest optimizer. This is a generic loop nest optimizer based on the Pluto optimization algorithms. It calculates a loop structure optimized for data-locality and parallelism. This option is experimental. ! `-floop-parallelize-all' Use the Graphite data dependence analysis to identify loops that can be parallelized. Parallelize all the loops that can be analyzed to not contain loop carried dependences without checking that it is profitable to parallelize the loops. ! `-fcheck-data-deps' Compare the results of several data dependence analyzers. This option is used for debugging the data dependence analyzers. ! `-ftree-loop-if-convert' Attempt to transform conditional jumps in the innermost loops to branch-less equivalents. The intent is to remove control-flow from the innermost loops in order to improve the ability of the vectorization pass to handle these loops. This is enabled by default if vectorization is enabled. ! `-ftree-loop-if-convert-stores' Attempt to also if-convert conditional jumps containing memory writes. This transformation can be unsafe for multi-threaded programs as it transforms conditional memory writes into --- 6945,6990 ---- ENDDO ENDDO ENDDO ! which can be beneficial when 'M' is larger than the caches, because ! the innermost loop iterates over a smaller amount of data which can ! be kept in the caches. This optimization applies to all the ! languages supported by GCC and is not limited to Fortran. To use ! this code transformation, GCC has to be configured with ! '--with-ppl' and '--with-cloog' to enable the Graphite loop transformation infrastructure. ! '-fgraphite-identity' ! Enable the identity transformation for graphite. For every SCoP we ! generate the polyhedral representation and transform it back to ! gimple. Using '-fgraphite-identity' we can check the costs or benefits of the GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations are also performed by the code generator CLooG, like index splitting and dead code elimination in loops. ! '-floop-nest-optimize' Enable the ISL based loop nest optimizer. This is a generic loop nest optimizer based on the Pluto optimization algorithms. It calculates a loop structure optimized for data-locality and parallelism. This option is experimental. ! '-floop-parallelize-all' Use the Graphite data dependence analysis to identify loops that can be parallelized. Parallelize all the loops that can be analyzed to not contain loop carried dependences without checking that it is profitable to parallelize the loops. ! '-fcheck-data-deps' Compare the results of several data dependence analyzers. This option is used for debugging the data dependence analyzers. ! '-ftree-loop-if-convert' Attempt to transform conditional jumps in the innermost loops to branch-less equivalents. The intent is to remove control-flow from the innermost loops in order to improve the ability of the vectorization pass to handle these loops. This is enabled by default if vectorization is enabled. ! '-ftree-loop-if-convert-stores' Attempt to also if-convert conditional jumps containing memory writes. This transformation can be unsafe for multi-threaded programs as it transforms conditional memory writes into *************** optimizations to be performed is desired *** 7065,7075 **** A[i] = cond ? expr : A[i]; potentially producing data races. ! `-ftree-loop-distribution' ! Perform loop distribution. This flag can improve cache ! performance on big loop bodies and allow further loop ! optimizations, like parallelization or vectorization, to take ! place. For example, the loop DO I = 1, N A(I) = B(I) + C D(I) = E(I) * F --- 6997,7007 ---- A[i] = cond ? expr : A[i]; potentially producing data races. ! '-ftree-loop-distribution' ! Perform loop distribution. This flag can improve cache performance ! on big loop bodies and allow further loop optimizations, like ! parallelization or vectorization, to take place. For example, the ! loop DO I = 1, N A(I) = B(I) + C D(I) = E(I) * F *************** optimizations to be performed is desired *** 7082,7093 **** D(I) = E(I) * F ENDDO ! `-ftree-loop-distribute-patterns' Perform loop distribution of patterns that can be code generated ! with calls to a library. This flag is enabled by default at `-O3'. ! This pass distributes the initialization loops and generates a ! call to memset zero. For example, the loop DO I = 1, N A(I) = 0 B(I) = A(I) + I --- 7014,7025 ---- D(I) = E(I) * F ENDDO ! '-ftree-loop-distribute-patterns' Perform loop distribution of patterns that can be code generated ! with calls to a library. This flag is enabled by default at '-O3'. ! This pass distributes the initialization loops and generates a call ! to memset zero. For example, the loop DO I = 1, N A(I) = 0 B(I) = A(I) + I *************** optimizations to be performed is desired *** 7102,7267 **** and the initialization loop is transformed into a call to memset zero. ! `-ftree-loop-im' Perform loop invariant motion on trees. This pass moves only invariants that are hard to handle at RTL level (function calls, operations that expand to nontrivial sequences of insns). With ! `-funswitch-loops' it also moves operands of conditions that are invariant out of the loop, so that we can use just trivial invariantness analysis in loop unswitching. The pass also includes store motion. ! `-ftree-loop-ivcanon' Create a canonical counter for number of iterations in loops for which determining number of iterations requires complicated analysis. Later optimizations then may determine the number easily. Useful especially in connection with unrolling. ! `-fivopts' Perform induction variable optimizations (strength reduction, induction variable merging and induction variable elimination) on trees. ! `-ftree-parallelize-loops=n' Parallelize loops, i.e., split their iteration space to run in n threads. This is only possible for loops whose iterations are independent and can be arbitrarily reordered. The optimization is only profitable on multiprocessor machines, for loops that are CPU-intensive, rather than constrained e.g. by memory bandwidth. ! This option implies `-pthread', and thus is only supported on ! targets that have support for `-pthread'. ! `-ftree-pta' Perform function-local points-to analysis on trees. This flag is ! enabled by default at `-O' and higher. ! `-ftree-sra' Perform scalar replacement of aggregates. This pass replaces structure references with scalars to prevent committing structures ! to memory too early. This flag is enabled by default at `-O' and higher. ! `-ftree-copyrename' Perform copy renaming on trees. This pass attempts to rename compiler temporaries to other variables at copy locations, usually resulting in variable names which more closely resemble the ! original variables. This flag is enabled by default at `-O' and higher. ! `-ftree-coalesce-inlined-vars' ! Tell the copyrename pass (see `-ftree-copyrename') to attempt to combine small user-defined variables too, but only if they were inlined from other functions. It is a more limited form of ! `-ftree-coalesce-vars'. This may harm debug information of such inlined variables, but it will keep variables of the inlined-into function apart from each other, such that they are more likely to contain the expected values in a debugging session. This was the default in GCC versions older than 4.7. ! `-ftree-coalesce-vars' ! Tell the copyrename pass (see `-ftree-copyrename') to attempt to combine small user-defined variables too, instead of just compiler temporaries. This may severely limit the ability to debug an ! optimized program compiled with `-fno-var-tracking-assignments'. In the negated form, this flag prevents SSA coalescing of user variables, including inlined ones. This option is enabled by default. ! `-ftree-ter' Perform temporary expression replacement during the SSA->normal ! phase. Single use/single def temporaries are replaced at their ! use location with their defining expression. This results in ! non-GIMPLE code, but gives the expanders much more complex trees ! to work on resulting in better RTL generation. This is enabled by ! default at `-O' and higher. ! `-ftree-slsr' ! Perform straight-line strength reduction on trees. This ! recognizes related expressions involving multiplications and ! replaces them by less expensive calculations when possible. This ! is enabled by default at `-O' and higher. ! `-ftree-vectorize' ! Perform loop vectorization on trees. This flag is enabled by ! default at `-O3'. ! `-ftree-slp-vectorize' ! Perform basic block vectorization on trees. This flag is enabled ! by default at `-O3' and when `-ftree-vectorize' is enabled. ! `-ftree-vect-loop-version' Perform loop versioning when doing loop vectorization on trees. When a loop appears to be vectorizable except that data alignment or data dependence cannot be determined at compile time, then vectorized and non-vectorized versions of the loop are generated along with run-time checks for alignment or dependence to control which version is executed. This option is enabled by default ! except at level `-Os' where it is disabled. ! `-fvect-cost-model' Enable cost model for vectorization. This option is enabled by ! default at `-O3'. ! `-ftree-vrp' Perform Value Range Propagation on trees. This is similar to the constant propagation pass, but instead of values, ranges of values are propagated. This allows the optimizers to remove unnecessary ! range checks like array bound checks and null pointer checks. ! This is enabled by default at `-O2' and higher. Null pointer check ! elimination is only done if `-fdelete-null-pointer-checks' is enabled. ! `-ftracer' Perform tail duplication to enlarge superblock size. This ! transformation simplifies the control flow of the function ! allowing other optimizations to do a better job. ! `-funroll-loops' Unroll loops whose number of iterations can be determined at ! compile time or upon entry to the loop. `-funroll-loops' implies ! `-frerun-cse-after-loop'. This option makes code larger, and may or may not make it run faster. ! `-funroll-all-loops' Unroll all loops, even if their number of iterations is uncertain when the loop is entered. This usually makes programs run more ! slowly. `-funroll-all-loops' implies the same options as ! `-funroll-loops', ! `-fsplit-ivs-in-unroller' Enables expression of values of induction variables in later iterations of the unrolled loop using the value in the first iteration. This breaks long dependency chains, thus improving efficiency of the scheduling passes. ! A combination of `-fweb' and CSE is often sufficient to obtain the ! same effect. However, that is not reliable in cases where the ! loop body is more complicated than a single basic block. It also ! does not work at all on some architectures due to restrictions in ! the CSE pass. This optimization is enabled by default. ! `-fvariable-expansion-in-unroller' With this option, the compiler creates multiple copies of some ! local variables when unrolling a loop, which can result in ! superior code. ! `-fpartial-inlining' Inline parts of functions. This option has any effect only when ! inlining itself is turned on by the `-finline-functions' or ! `-finline-small-functions' options. ! Enabled at level `-O2'. ! `-fpredictive-commoning' Perform predictive commoning optimization, i.e., reusing computations (especially memory loads and stores) performed in previous iterations of loops. ! This option is enabled at level `-O3'. ! `-fprefetch-loop-arrays' If supported by the target machine, generate instructions to prefetch memory to improve the performance of loops that access large arrays. --- 7034,7199 ---- and the initialization loop is transformed into a call to memset zero. ! '-ftree-loop-im' Perform loop invariant motion on trees. This pass moves only invariants that are hard to handle at RTL level (function calls, operations that expand to nontrivial sequences of insns). With ! '-funswitch-loops' it also moves operands of conditions that are invariant out of the loop, so that we can use just trivial invariantness analysis in loop unswitching. The pass also includes store motion. ! '-ftree-loop-ivcanon' Create a canonical counter for number of iterations in loops for which determining number of iterations requires complicated analysis. Later optimizations then may determine the number easily. Useful especially in connection with unrolling. ! '-fivopts' Perform induction variable optimizations (strength reduction, induction variable merging and induction variable elimination) on trees. ! '-ftree-parallelize-loops=n' Parallelize loops, i.e., split their iteration space to run in n threads. This is only possible for loops whose iterations are independent and can be arbitrarily reordered. The optimization is only profitable on multiprocessor machines, for loops that are CPU-intensive, rather than constrained e.g. by memory bandwidth. ! This option implies '-pthread', and thus is only supported on ! targets that have support for '-pthread'. ! '-ftree-pta' Perform function-local points-to analysis on trees. This flag is ! enabled by default at '-O' and higher. ! '-ftree-sra' Perform scalar replacement of aggregates. This pass replaces structure references with scalars to prevent committing structures ! to memory too early. This flag is enabled by default at '-O' and higher. ! '-ftree-copyrename' Perform copy renaming on trees. This pass attempts to rename compiler temporaries to other variables at copy locations, usually resulting in variable names which more closely resemble the ! original variables. This flag is enabled by default at '-O' and higher. ! '-ftree-coalesce-inlined-vars' ! Tell the copyrename pass (see '-ftree-copyrename') to attempt to combine small user-defined variables too, but only if they were inlined from other functions. It is a more limited form of ! '-ftree-coalesce-vars'. This may harm debug information of such inlined variables, but it will keep variables of the inlined-into function apart from each other, such that they are more likely to contain the expected values in a debugging session. This was the default in GCC versions older than 4.7. ! '-ftree-coalesce-vars' ! Tell the copyrename pass (see '-ftree-copyrename') to attempt to combine small user-defined variables too, instead of just compiler temporaries. This may severely limit the ability to debug an ! optimized program compiled with '-fno-var-tracking-assignments'. In the negated form, this flag prevents SSA coalescing of user variables, including inlined ones. This option is enabled by default. ! '-ftree-ter' Perform temporary expression replacement during the SSA->normal ! phase. Single use/single def temporaries are replaced at their use ! location with their defining expression. This results in ! non-GIMPLE code, but gives the expanders much more complex trees to ! work on resulting in better RTL generation. This is enabled by ! default at '-O' and higher. ! '-ftree-slsr' ! Perform straight-line strength reduction on trees. This recognizes ! related expressions involving multiplications and replaces them by ! less expensive calculations when possible. This is enabled by ! default at '-O' and higher. ! '-ftree-vectorize' ! Perform loop vectorization on trees. This flag is enabled by ! default at '-O3'. ! '-ftree-slp-vectorize' ! Perform basic block vectorization on trees. This flag is enabled ! by default at '-O3' and when '-ftree-vectorize' is enabled. ! '-ftree-vect-loop-version' Perform loop versioning when doing loop vectorization on trees. When a loop appears to be vectorizable except that data alignment or data dependence cannot be determined at compile time, then vectorized and non-vectorized versions of the loop are generated along with run-time checks for alignment or dependence to control which version is executed. This option is enabled by default ! except at level '-Os' where it is disabled. ! '-fvect-cost-model' Enable cost model for vectorization. This option is enabled by ! default at '-O3'. ! '-ftree-vrp' Perform Value Range Propagation on trees. This is similar to the constant propagation pass, but instead of values, ranges of values are propagated. This allows the optimizers to remove unnecessary ! range checks like array bound checks and null pointer checks. This ! is enabled by default at '-O2' and higher. Null pointer check ! elimination is only done if '-fdelete-null-pointer-checks' is enabled. ! '-ftracer' Perform tail duplication to enlarge superblock size. This ! transformation simplifies the control flow of the function allowing ! other optimizations to do a better job. ! '-funroll-loops' Unroll loops whose number of iterations can be determined at ! compile time or upon entry to the loop. '-funroll-loops' implies ! '-frerun-cse-after-loop'. This option makes code larger, and may or may not make it run faster. ! '-funroll-all-loops' Unroll all loops, even if their number of iterations is uncertain when the loop is entered. This usually makes programs run more ! slowly. '-funroll-all-loops' implies the same options as ! '-funroll-loops', ! '-fsplit-ivs-in-unroller' Enables expression of values of induction variables in later iterations of the unrolled loop using the value in the first iteration. This breaks long dependency chains, thus improving efficiency of the scheduling passes. ! A combination of '-fweb' and CSE is often sufficient to obtain the ! same effect. However, that is not reliable in cases where the loop ! body is more complicated than a single basic block. It also does ! not work at all on some architectures due to restrictions in the ! CSE pass. This optimization is enabled by default. ! '-fvariable-expansion-in-unroller' With this option, the compiler creates multiple copies of some ! local variables when unrolling a loop, which can result in superior ! code. ! '-fpartial-inlining' Inline parts of functions. This option has any effect only when ! inlining itself is turned on by the '-finline-functions' or ! '-finline-small-functions' options. ! Enabled at level '-O2'. ! '-fpredictive-commoning' Perform predictive commoning optimization, i.e., reusing computations (especially memory loads and stores) performed in previous iterations of loops. ! This option is enabled at level '-O3'. ! '-fprefetch-loop-arrays' If supported by the target machine, generate instructions to prefetch memory to improve the performance of loops that access large arrays. *************** optimizations to be performed is desired *** 7269,7342 **** This option may generate better or worse code; results are highly dependent on the structure of loops within the source code. ! Disabled at level `-Os'. ! `-fno-peephole' ! `-fno-peephole2' Disable any machine-specific peephole optimizations. The ! difference between `-fno-peephole' and `-fno-peephole2' is in how they are implemented in the compiler; some targets use one, some use the other, a few use both. ! `-fpeephole' is enabled by default. `-fpeephole2' enabled at ! levels `-O2', `-O3', `-Os'. ! `-fno-guess-branch-probability' Do not guess branch probabilities using heuristics. GCC uses heuristics to guess branch probabilities if they are not ! provided by profiling feedback (`-fprofile-arcs'). These heuristics are based on the control flow graph. If some branch ! probabilities are specified by `__builtin_expect', then the heuristics are used to guess branch probabilities for the rest of ! the control flow graph, taking the `__builtin_expect' info into account. The interactions between the heuristics and ! `__builtin_expect' can be complex, and in some cases, it may be useful to disable the heuristics so that the effects of ! `__builtin_expect' are easier to understand. ! The default is `-fguess-branch-probability' at levels `-O', `-O2', ! `-O3', `-Os'. ! `-freorder-blocks' Reorder basic blocks in the compiled function in order to reduce number of taken branches and improve code locality. ! Enabled at levels `-O2', `-O3'. ! `-freorder-blocks-and-partition' ! In addition to reordering basic blocks in the compiled function, ! in order to reduce number of taken branches, partitions hot and ! cold basic blocks into separate sections of the assembly and .o ! files, to improve paging and cache locality performance. This optimization is automatically turned off in the presence of exception handling, for linkonce sections, for functions with a user-defined section attribute and on any architecture that does not support named sections. ! `-freorder-functions' Reorder functions in the object file in order to improve code locality. This is implemented by using special subsections ! `.text.hot' for most frequently executed functions and ! `.text.unlikely' for unlikely executed functions. Reordering is done by the linker so object file format must support named sections and linker must place them in a reasonable way. Also profile feedback must be available to make this option ! effective. See `-fprofile-arcs' for details. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fstrict-aliasing' Allow the compiler to assume the strictest aliasing rules applicable to the language being compiled. For C (and C++), this activates optimizations based on the type of expressions. In ! particular, an object of one type is assumed never to reside at ! the same address as an object of a different type, unless the ! types are almost the same. For example, an `unsigned int' can ! alias an `int', but not a `void*' or a `double'. A character type ! may alias any other type. Pay special attention to code like this: union a_union { --- 7201,7274 ---- This option may generate better or worse code; results are highly dependent on the structure of loops within the source code. ! Disabled at level '-Os'. ! '-fno-peephole' ! '-fno-peephole2' Disable any machine-specific peephole optimizations. The ! difference between '-fno-peephole' and '-fno-peephole2' is in how they are implemented in the compiler; some targets use one, some use the other, a few use both. ! '-fpeephole' is enabled by default. '-fpeephole2' enabled at ! levels '-O2', '-O3', '-Os'. ! '-fno-guess-branch-probability' Do not guess branch probabilities using heuristics. GCC uses heuristics to guess branch probabilities if they are not ! provided by profiling feedback ('-fprofile-arcs'). These heuristics are based on the control flow graph. If some branch ! probabilities are specified by '__builtin_expect', then the heuristics are used to guess branch probabilities for the rest of ! the control flow graph, taking the '__builtin_expect' info into account. The interactions between the heuristics and ! '__builtin_expect' can be complex, and in some cases, it may be useful to disable the heuristics so that the effects of ! '__builtin_expect' are easier to understand. ! The default is '-fguess-branch-probability' at levels '-O', '-O2', ! '-O3', '-Os'. ! '-freorder-blocks' Reorder basic blocks in the compiled function in order to reduce number of taken branches and improve code locality. ! Enabled at levels '-O2', '-O3'. ! '-freorder-blocks-and-partition' ! In addition to reordering basic blocks in the compiled function, in ! order to reduce number of taken branches, partitions hot and cold ! basic blocks into separate sections of the assembly and .o files, ! to improve paging and cache locality performance. This optimization is automatically turned off in the presence of exception handling, for linkonce sections, for functions with a user-defined section attribute and on any architecture that does not support named sections. ! '-freorder-functions' Reorder functions in the object file in order to improve code locality. This is implemented by using special subsections ! '.text.hot' for most frequently executed functions and ! '.text.unlikely' for unlikely executed functions. Reordering is done by the linker so object file format must support named sections and linker must place them in a reasonable way. Also profile feedback must be available to make this option ! effective. See '-fprofile-arcs' for details. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fstrict-aliasing' Allow the compiler to assume the strictest aliasing rules applicable to the language being compiled. For C (and C++), this activates optimizations based on the type of expressions. In ! particular, an object of one type is assumed never to reside at the ! same address as an object of a different type, unless the types are ! almost the same. For example, an 'unsigned int' can alias an ! 'int', but not a 'void*' or a 'double'. A character type may alias ! any other type. Pay special attention to code like this: union a_union { *************** optimizations to be performed is desired *** 7351,7357 **** } The practice of reading from a different union member than the one most recently written to (called "type-punning") is common. Even ! with `-fstrict-aliasing', type-punning is allowed, provided the memory is accessed through the union type. So, the code above works as expected. *Note Structures unions enumerations and bit-fields implementation::. However, this code might not: --- 7283,7289 ---- } The practice of reading from a different union member than the one most recently written to (called "type-punning") is common. Even ! with '-fstrict-aliasing', type-punning is allowed, provided the memory is accessed through the union type. So, the code above works as expected. *Note Structures unions enumerations and bit-fields implementation::. However, this code might not: *************** optimizations to be performed is desired *** 7371,7388 **** return ((union a_union *) &d)->i; } ! The `-fstrict-aliasing' option is enabled at levels `-O2', `-O3', ! `-Os'. ! `-fstrict-overflow' Allow the compiler to assume strict signed overflow rules, depending on the language being compiled. For C (and C++) this means that overflow when doing arithmetic with signed numbers is undefined, which means that the compiler may assume that it does not happen. This permits various optimizations. For example, the ! compiler assumes that an expression like `i + 10 > i' is always ! true for signed `i'. This assumption is only valid if signed ! overflow is undefined, as the expression is false if `i + 10' overflows when using twos complement arithmetic. When this option is in effect any attempt to determine whether an operation on signed numbers overflows must be written carefully to not actually --- 7303,7320 ---- return ((union a_union *) &d)->i; } ! The '-fstrict-aliasing' option is enabled at levels '-O2', '-O3', ! '-Os'. ! '-fstrict-overflow' Allow the compiler to assume strict signed overflow rules, depending on the language being compiled. For C (and C++) this means that overflow when doing arithmetic with signed numbers is undefined, which means that the compiler may assume that it does not happen. This permits various optimizations. For example, the ! compiler assumes that an expression like 'i + 10 > i' is always ! true for signed 'i'. This assumption is only valid if signed ! overflow is undefined, as the expression is false if 'i + 10' overflows when using twos complement arithmetic. When this option is in effect any attempt to determine whether an operation on signed numbers overflows must be written carefully to not actually *************** optimizations to be performed is desired *** 7392,7496 **** semantics: given a pointer to an object, if adding an offset to that pointer does not produce a pointer to the same object, the addition is undefined. This permits the compiler to conclude that ! `p + u > p' is always true for a pointer `p' and unsigned integer ! `u'. This assumption is only valid because pointer wraparound is ! undefined, as the expression is false if `p + u' overflows using twos complement arithmetic. ! See also the `-fwrapv' option. Using `-fwrapv' means that integer ! signed overflow is fully defined: it wraps. When `-fwrapv' is ! used, there is no difference between `-fstrict-overflow' and ! `-fno-strict-overflow' for integers. With `-fwrapv' certain types of overflow are permitted. For example, if the compiler gets an overflow when doing arithmetic on constants, the overflowed value ! can still be used with `-fwrapv', but not otherwise. ! The `-fstrict-overflow' option is enabled at levels `-O2', `-O3', ! `-Os'. ! `-falign-functions' ! `-falign-functions=N' Align the start of functions to the next power-of-two greater than ! N, skipping up to N bytes. For instance, `-falign-functions=32' aligns functions to the next 32-byte boundary, but ! `-falign-functions=24' aligns to the next 32-byte boundary only if this can be done by skipping 23 bytes or less. ! `-fno-align-functions' and `-falign-functions=1' are equivalent ! and mean that functions are not aligned. ! Some assemblers only support this flag when N is a power of two; ! in that case, it is rounded up. If N is not specified or is zero, use a machine-dependent default. ! Enabled at levels `-O2', `-O3'. ! `-falign-labels' ! `-falign-labels=N' Align all branch targets to a power-of-two boundary, skipping up to ! N bytes like `-falign-functions'. This option can easily make ! code slower, because it must insert dummy operations for when the ! branch target is reached in the usual flow of the code. ! `-fno-align-labels' and `-falign-labels=1' are equivalent and mean that labels are not aligned. ! If `-falign-loops' or `-falign-jumps' are applicable and are greater than this value, then their values are used instead. If N is not specified or is zero, use a machine-dependent default ! which is very likely to be `1', meaning no alignment. ! Enabled at levels `-O2', `-O3'. ! `-falign-loops' ! `-falign-loops=N' ! Align loops to a power-of-two boundary, skipping up to N bytes ! like `-falign-functions'. If the loops are executed many times, ! this makes up for any execution of the dummy operations. ! `-fno-align-loops' and `-falign-loops=1' are equivalent and mean that loops are not aligned. If N is not specified or is zero, use a machine-dependent default. ! Enabled at levels `-O2', `-O3'. ! `-falign-jumps' ! `-falign-jumps=N' Align branch targets to a power-of-two boundary, for branch targets where the targets can only be reached by jumping, skipping up to N ! bytes like `-falign-functions'. In this case, no dummy operations need be executed. ! `-fno-align-jumps' and `-falign-jumps=1' are equivalent and mean that loops are not aligned. If N is not specified or is zero, use a machine-dependent default. ! Enabled at levels `-O2', `-O3'. ! `-funit-at-a-time' ! This option is left for compatibility reasons. `-funit-at-a-time' ! has no effect, while `-fno-unit-at-a-time' implies ! `-fno-toplevel-reorder' and `-fno-section-anchors'. Enabled by default. ! `-fno-toplevel-reorder' ! Do not reorder top-level functions, variables, and `asm' statements. Output them in the same order that they appear in the input file. When this option is used, unreferenced static variables are not removed. This option is intended to support existing code that relies on a particular ordering. For new code, it is better to use attributes. ! Enabled at level `-O0'. When disabled explicitly, it also implies ! `-fno-section-anchors', which is otherwise enabled at `-O0' on some targets. ! `-fweb' Constructs webs as commonly used for register allocation purposes and assign each web individual pseudo register. This allows the register allocation pass to operate on pseudos directly, but also --- 7324,7428 ---- semantics: given a pointer to an object, if adding an offset to that pointer does not produce a pointer to the same object, the addition is undefined. This permits the compiler to conclude that ! 'p + u > p' is always true for a pointer 'p' and unsigned integer ! 'u'. This assumption is only valid because pointer wraparound is ! undefined, as the expression is false if 'p + u' overflows using twos complement arithmetic. ! See also the '-fwrapv' option. Using '-fwrapv' means that integer ! signed overflow is fully defined: it wraps. When '-fwrapv' is ! used, there is no difference between '-fstrict-overflow' and ! '-fno-strict-overflow' for integers. With '-fwrapv' certain types of overflow are permitted. For example, if the compiler gets an overflow when doing arithmetic on constants, the overflowed value ! can still be used with '-fwrapv', but not otherwise. ! The '-fstrict-overflow' option is enabled at levels '-O2', '-O3', ! '-Os'. ! '-falign-functions' ! '-falign-functions=N' Align the start of functions to the next power-of-two greater than ! N, skipping up to N bytes. For instance, '-falign-functions=32' aligns functions to the next 32-byte boundary, but ! '-falign-functions=24' aligns to the next 32-byte boundary only if this can be done by skipping 23 bytes or less. ! '-fno-align-functions' and '-falign-functions=1' are equivalent and ! mean that functions are not aligned. ! Some assemblers only support this flag when N is a power of two; in ! that case, it is rounded up. If N is not specified or is zero, use a machine-dependent default. ! Enabled at levels '-O2', '-O3'. ! '-falign-labels' ! '-falign-labels=N' Align all branch targets to a power-of-two boundary, skipping up to ! N bytes like '-falign-functions'. This option can easily make code ! slower, because it must insert dummy operations for when the branch ! target is reached in the usual flow of the code. ! '-fno-align-labels' and '-falign-labels=1' are equivalent and mean that labels are not aligned. ! If '-falign-loops' or '-falign-jumps' are applicable and are greater than this value, then their values are used instead. If N is not specified or is zero, use a machine-dependent default ! which is very likely to be '1', meaning no alignment. ! Enabled at levels '-O2', '-O3'. ! '-falign-loops' ! '-falign-loops=N' ! Align loops to a power-of-two boundary, skipping up to N bytes like ! '-falign-functions'. If the loops are executed many times, this ! makes up for any execution of the dummy operations. ! '-fno-align-loops' and '-falign-loops=1' are equivalent and mean that loops are not aligned. If N is not specified or is zero, use a machine-dependent default. ! Enabled at levels '-O2', '-O3'. ! '-falign-jumps' ! '-falign-jumps=N' Align branch targets to a power-of-two boundary, for branch targets where the targets can only be reached by jumping, skipping up to N ! bytes like '-falign-functions'. In this case, no dummy operations need be executed. ! '-fno-align-jumps' and '-falign-jumps=1' are equivalent and mean that loops are not aligned. If N is not specified or is zero, use a machine-dependent default. ! Enabled at levels '-O2', '-O3'. ! '-funit-at-a-time' ! This option is left for compatibility reasons. '-funit-at-a-time' ! has no effect, while '-fno-unit-at-a-time' implies ! '-fno-toplevel-reorder' and '-fno-section-anchors'. Enabled by default. ! '-fno-toplevel-reorder' ! Do not reorder top-level functions, variables, and 'asm' statements. Output them in the same order that they appear in the input file. When this option is used, unreferenced static variables are not removed. This option is intended to support existing code that relies on a particular ordering. For new code, it is better to use attributes. ! Enabled at level '-O0'. When disabled explicitly, it also implies ! '-fno-section-anchors', which is otherwise enabled at '-O0' on some targets. ! '-fweb' Constructs webs as commonly used for register allocation purposes and assign each web individual pseudo register. This allows the register allocation pass to operate on pseudos directly, but also *************** optimizations to be performed is desired *** 7499,7518 **** debugging impossible, since variables no longer stay in a "home register". ! Enabled by default with `-funroll-loops'. ! `-fwhole-program' Assume that the current compilation unit represents the whole program being compiled. All public functions and variables with ! the exception of `main' and those merged by attribute ! `externally_visible' become static functions and in effect are optimized more aggressively by interprocedural optimizers. ! This option should not be used in combination with `-flto'. Instead relying on a linker plugin should provide safer and more precise information. ! `-flto[=N]' This option runs the standard link-time optimizer. When invoked with source code, it generates GIMPLE (one of GCC's internal representations) and writes it to special ELF sections in the --- 7431,7450 ---- debugging impossible, since variables no longer stay in a "home register". ! Enabled by default with '-funroll-loops'. ! '-fwhole-program' Assume that the current compilation unit represents the whole program being compiled. All public functions and variables with ! the exception of 'main' and those merged by attribute ! 'externally_visible' become static functions and in effect are optimized more aggressively by interprocedural optimizers. ! This option should not be used in combination with '-flto'. Instead relying on a linker plugin should provide safer and more precise information. ! '-flto[=N]' This option runs the standard link-time optimizer. When invoked with source code, it generates GIMPLE (one of GCC's internal representations) and writes it to special ELF sections in the *************** optimizations to be performed is desired *** 7520,7526 **** function bodies are read from these ELF sections and instantiated as if they had been part of the same translation unit. ! To use the link-time optimizer, `-flto' needs to be specified at compile time and during the final link. For example: gcc -c -O2 -flto foo.c --- 7452,7458 ---- function bodies are read from these ELF sections and instantiated as if they had been part of the same translation unit. ! To use the link-time optimizer, '-flto' needs to be specified at compile time and during the final link. For example: gcc -c -O2 -flto foo.c *************** optimizations to be performed is desired *** 7528,7571 **** gcc -o myprog -flto -O2 foo.o bar.o The first two invocations to GCC save a bytecode representation of ! GIMPLE into special ELF sections inside `foo.o' and `bar.o'. The ! final invocation reads the GIMPLE bytecode from `foo.o' and ! `bar.o', merges the two files into a single internal image, and ! compiles the result as usual. Since both `foo.o' and `bar.o' are merged into a single image, this causes all the interprocedural analyses and optimizations in GCC to work across the two files as if they were a single one. This means, for example, that the ! inliner is able to inline functions in `bar.o' into functions in ! `foo.o' and vice-versa. Another (simpler) way to enable link-time optimization is: gcc -o myprog -flto -O2 foo.c bar.c ! The above generates bytecode for `foo.c' and `bar.c', merges them together into a single GIMPLE representation and optimizes them as ! usual to produce `myprog'. The only important thing to keep in mind is that to enable ! link-time optimizations the `-flto' flag needs to be passed to ! both the compile and the link commands. To make whole program optimization effective, it is necessary to make certain whole program assumptions. The compiler needs to know what functions and variables can be accessed by libraries and ! runtime outside of the link-time optimized unit. When supported ! by the linker, the linker plugin (see `-fuse-linker-plugin') ! passes information to the compiler about used and externally ! visible symbols. When the linker plugin is not available, ! `-fwhole-program' should be used to allow the compiler to make these assumptions, which leads to more aggressive optimization decisions. ! Note that when a file is compiled with `-flto', the generated object file is larger than a regular object file because it contains GIMPLE bytecodes and the usual final code. This means that object files with LTO information can be linked as normal ! object files; if `-flto' is not passed to the linker, no interprocedural optimizations are applied. Additionally, the optimization flags used to compile individual --- 7460,7503 ---- gcc -o myprog -flto -O2 foo.o bar.o The first two invocations to GCC save a bytecode representation of ! GIMPLE into special ELF sections inside 'foo.o' and 'bar.o'. The ! final invocation reads the GIMPLE bytecode from 'foo.o' and ! 'bar.o', merges the two files into a single internal image, and ! compiles the result as usual. Since both 'foo.o' and 'bar.o' are merged into a single image, this causes all the interprocedural analyses and optimizations in GCC to work across the two files as if they were a single one. This means, for example, that the ! inliner is able to inline functions in 'bar.o' into functions in ! 'foo.o' and vice-versa. Another (simpler) way to enable link-time optimization is: gcc -o myprog -flto -O2 foo.c bar.c ! The above generates bytecode for 'foo.c' and 'bar.c', merges them together into a single GIMPLE representation and optimizes them as ! usual to produce 'myprog'. The only important thing to keep in mind is that to enable ! link-time optimizations the '-flto' flag needs to be passed to both ! the compile and the link commands. To make whole program optimization effective, it is necessary to make certain whole program assumptions. The compiler needs to know what functions and variables can be accessed by libraries and ! runtime outside of the link-time optimized unit. When supported by ! the linker, the linker plugin (see '-fuse-linker-plugin') passes ! information to the compiler about used and externally visible ! symbols. When the linker plugin is not available, ! '-fwhole-program' should be used to allow the compiler to make these assumptions, which leads to more aggressive optimization decisions. ! Note that when a file is compiled with '-flto', the generated object file is larger than a regular object file because it contains GIMPLE bytecodes and the usual final code. This means that object files with LTO information can be linked as normal ! object files; if '-flto' is not passed to the linker, no interprocedural optimizations are applied. Additionally, the optimization flags used to compile individual *************** optimizations to be performed is desired *** 7577,7587 **** gcc -o myprog -flto -O3 foo.o bar.o This produces individual object files with unoptimized assembler ! code, but the resulting binary `myprog' is optimized at `-O3'. ! If, instead, the final binary is generated without `-flto', then ! `myprog' is not optimized. ! When producing the final binary with `-flto', GCC only applies link-time optimizations to those files that contain bytecode. Therefore, you can mix and match object files and libraries with GIMPLE bytecodes and final object code. GCC automatically selects --- 7509,7519 ---- gcc -o myprog -flto -O3 foo.o bar.o This produces individual object files with unoptimized assembler ! code, but the resulting binary 'myprog' is optimized at '-O3'. If, ! instead, the final binary is generated without '-flto', then ! 'myprog' is not optimized. ! When producing the final binary with '-flto', GCC only applies link-time optimizations to those files that contain bytecode. Therefore, you can mix and match object files and libraries with GIMPLE bytecodes and final object code. GCC automatically selects *************** optimizations to be performed is desired *** 7591,7606 **** There are some code generation flags preserved by GCC when generating bytecodes, as they need to be used during the final link stage. Currently, the following options are saved into the GIMPLE ! bytecode files: `-fPIC', `-fcommon' and all the `-m' target flags. At link time, these options are read in and reapplied. Note that the current implementation makes no attempt to recognize conflicting values for these options. If different files have ! conflicting option values (e.g., one file is compiled with `-fPIC' and another isn't), the compiler simply uses the last value read ! from the bytecode files. It is recommended, then, that you ! compile all the files participating in the same link with the same ! options. If LTO encounters objects with C linkage declared with incompatible types in separate translation units to be linked together --- 7523,7537 ---- There are some code generation flags preserved by GCC when generating bytecodes, as they need to be used during the final link stage. Currently, the following options are saved into the GIMPLE ! bytecode files: '-fPIC', '-fcommon' and all the '-m' target flags. At link time, these options are read in and reapplied. Note that the current implementation makes no attempt to recognize conflicting values for these options. If different files have ! conflicting option values (e.g., one file is compiled with '-fPIC' and another isn't), the compiler simply uses the last value read ! from the bytecode files. It is recommended, then, that you compile ! all the files participating in the same link with the same options. If LTO encounters objects with C linkage declared with incompatible types in separate translation units to be linked together *************** optimizations to be performed is desired *** 7619,7655 **** gfortran -c -flto baz.f90 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran ! Notice that the final link is done with `g++' to get the C++ ! runtime libraries and `-lgfortran' is added to get the Fortran runtime libraries. In general, when mixing languages in LTO mode, you should use the same link command options as when mixing languages in a regular (non-LTO) compilation; all you need to add ! is `-flto' to all the compile and link commands. If object files containing GIMPLE bytecode are stored in a library ! archive, say `libfoo.a', it is possible to extract and use them in an LTO link if you are using a linker with plugin support. To ! enable this feature, use the flag `-fuse-linker-plugin' at link time: gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo With the linker plugin enabled, the linker extracts the needed ! GIMPLE files from `libfoo.a' and passes them on to the running GCC to make them part of the aggregated GIMPLE image to be optimized. If you are not using a linker with plugin support and/or do not ! enable the linker plugin, then the objects inside `libfoo.a' are extracted and linked as usual, but they do not participate in the LTO optimization process. Link-time optimizations do not require the presence of the whole ! program to operate. If the program does not require any symbols ! to be exported, it is possible to combine `-flto' and ! `-fwhole-program' to allow the interprocedural optimizers to use ! more aggressive assumptions which may lead to improved ! optimization opportunities. Use of `-fwhole-program' is not ! needed when linker plugin is active (see `-fuse-linker-plugin'). The current implementation of LTO makes no attempt to generate bytecode that is portable between different types of hosts. The --- 7550,7586 ---- gfortran -c -flto baz.f90 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran ! Notice that the final link is done with 'g++' to get the C++ ! runtime libraries and '-lgfortran' is added to get the Fortran runtime libraries. In general, when mixing languages in LTO mode, you should use the same link command options as when mixing languages in a regular (non-LTO) compilation; all you need to add ! is '-flto' to all the compile and link commands. If object files containing GIMPLE bytecode are stored in a library ! archive, say 'libfoo.a', it is possible to extract and use them in an LTO link if you are using a linker with plugin support. To ! enable this feature, use the flag '-fuse-linker-plugin' at link time: gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo With the linker plugin enabled, the linker extracts the needed ! GIMPLE files from 'libfoo.a' and passes them on to the running GCC to make them part of the aggregated GIMPLE image to be optimized. If you are not using a linker with plugin support and/or do not ! enable the linker plugin, then the objects inside 'libfoo.a' are extracted and linked as usual, but they do not participate in the LTO optimization process. Link-time optimizations do not require the presence of the whole ! program to operate. If the program does not require any symbols to ! be exported, it is possible to combine '-flto' and ! '-fwhole-program' to allow the interprocedural optimizers to use ! more aggressive assumptions which may lead to improved optimization ! opportunities. Use of '-fwhole-program' is not needed when linker ! plugin is active (see '-fuse-linker-plugin'). The current implementation of LTO makes no attempt to generate bytecode that is portable between different types of hosts. The *************** optimizations to be performed is desired *** 7658,7747 **** with an older/newer version of GCC. Link-time optimization does not work well with generation of ! debugging information. Combining `-flto' with `-g' is currently experimental and expected to produce wrong results. ! If you specify the optional N, the optimization and code ! generation done at link time is executed in parallel using N ! parallel jobs by utilizing an installed `make' program. The ! environment variable `MAKE' may be used to override the program ! used. The default value for N is 1. ! You can also specify `-flto=jobserver' to use GNU make's job ! server mode to determine the number of parallel jobs. This is ! useful when the Makefile calling GCC is already executing in ! parallel. You must prepend a `+' to the command recipe in the ! parent Makefile for this to work. This option likely only works ! if `MAKE' is GNU make. This option is disabled by default. ! `-flto-partition=ALG' Specify the partitioning algorithm used by the link-time optimizer. ! The value is either `1to1' to specify a partitioning mirroring the ! original source files or `balanced' to specify partitioning into ! equally sized chunks (whenever possible) or `max' to create new ! partition for every symbol where possible. Specifying `none' as ! an algorithm disables partitioning and streaming completely. The ! default value is `balanced'. While `1to1' can be used as an ! workaround for various code ordering issues, the `max' ! partitioning is intended for internal testing only. ! `-flto-compression-level=N' This option specifies the level of compression used for intermediate language written to LTO object files, and is only ! meaningful in conjunction with LTO mode (`-flto'). Valid values are 0 (no compression) to 9 (maximum compression). Values outside this range are clamped to either 0 or 9. If the option is not given, a default balanced compression setting is used. ! `-flto-report' Prints a report with internal details on the workings of the ! link-time optimizer. The contents of this report vary from ! version to version. It is meant to be useful to GCC developers ! when processing object files in LTO mode (via `-flto'). Disabled by default. ! `-fuse-linker-plugin' Enables the use of a linker plugin during link-time optimization. This option relies on plugin support in the linker, which is available in gold or in GNU ld 2.21 or newer. This option enables the extraction of object files with GIMPLE ! bytecode out of library archives. This improves the quality of optimization by exposing more code to the link-time optimizer. This information specifies what symbols can be accessed externally (by non-LTO object or during dynamic linking). Resulting code quality improvements on binaries (and shared libraries that use ! hidden visibility) are similar to `-fwhole-program'. See `-flto' for a description of the effect of this flag and how to use it. This option is enabled by default when LTO support in GCC is enabled and GCC was configured for use with a linker supporting plugins (GNU ld 2.21 or newer or gold). ! `-ffat-lto-objects' ! Fat LTO objects are object files that contain both the ! intermediate language and the object code. This makes them usable ! for both LTO linking and normal linking. This option is effective ! only when compiling with `-flto' and is ignored at link time. ! `-fno-fat-lto-objects' improves compilation time over plain LTO, ! but requires the complete toolchain to be aware of LTO. It ! requires a linker with linker plugin support for basic ! functionality. Additionally, `nm', `ar' and `ranlib' need to ! support linker plugins to allow a full-featured build environment ! (capable of building static libraries etc). GCC provides the ! `gcc-ar', `gcc-nm', `gcc-ranlib' wrappers to pass the right options ! to these tools. With non fat LTO makefiles need to be modified to ! use them. ! The default is `-ffat-lto-objects' but this default is intended to change in future releases when linker plugin enabled environments become more common. ! `-fcompare-elim' After register allocation and post-register allocation instruction splitting, identify arithmetic instructions that compute processor flags similar to a comparison operation based on that arithmetic. --- 7589,7676 ---- with an older/newer version of GCC. Link-time optimization does not work well with generation of ! debugging information. Combining '-flto' with '-g' is currently experimental and expected to produce wrong results. ! If you specify the optional N, the optimization and code generation ! done at link time is executed in parallel using N parallel jobs by ! utilizing an installed 'make' program. The environment variable ! 'MAKE' may be used to override the program used. The default value ! for N is 1. ! You can also specify '-flto=jobserver' to use GNU make's job server ! mode to determine the number of parallel jobs. This is useful when ! the Makefile calling GCC is already executing in parallel. You ! must prepend a '+' to the command recipe in the parent Makefile for ! this to work. This option likely only works if 'MAKE' is GNU make. This option is disabled by default. ! '-flto-partition=ALG' Specify the partitioning algorithm used by the link-time optimizer. ! The value is either '1to1' to specify a partitioning mirroring the ! original source files or 'balanced' to specify partitioning into ! equally sized chunks (whenever possible) or 'max' to create new ! partition for every symbol where possible. Specifying 'none' as an ! algorithm disables partitioning and streaming completely. The ! default value is 'balanced'. While '1to1' can be used as an ! workaround for various code ordering issues, the 'max' partitioning ! is intended for internal testing only. ! '-flto-compression-level=N' This option specifies the level of compression used for intermediate language written to LTO object files, and is only ! meaningful in conjunction with LTO mode ('-flto'). Valid values are 0 (no compression) to 9 (maximum compression). Values outside this range are clamped to either 0 or 9. If the option is not given, a default balanced compression setting is used. ! '-flto-report' Prints a report with internal details on the workings of the ! link-time optimizer. The contents of this report vary from version ! to version. It is meant to be useful to GCC developers when ! processing object files in LTO mode (via '-flto'). Disabled by default. ! '-fuse-linker-plugin' Enables the use of a linker plugin during link-time optimization. This option relies on plugin support in the linker, which is available in gold or in GNU ld 2.21 or newer. This option enables the extraction of object files with GIMPLE ! bytecode out of library archives. This improves the quality of optimization by exposing more code to the link-time optimizer. This information specifies what symbols can be accessed externally (by non-LTO object or during dynamic linking). Resulting code quality improvements on binaries (and shared libraries that use ! hidden visibility) are similar to '-fwhole-program'. See '-flto' for a description of the effect of this flag and how to use it. This option is enabled by default when LTO support in GCC is enabled and GCC was configured for use with a linker supporting plugins (GNU ld 2.21 or newer or gold). ! '-ffat-lto-objects' ! Fat LTO objects are object files that contain both the intermediate ! language and the object code. This makes them usable for both LTO ! linking and normal linking. This option is effective only when ! compiling with '-flto' and is ignored at link time. ! '-fno-fat-lto-objects' improves compilation time over plain LTO, ! but requires the complete toolchain to be aware of LTO. It requires ! a linker with linker plugin support for basic functionality. ! Additionally, 'nm', 'ar' and 'ranlib' need to support linker ! plugins to allow a full-featured build environment (capable of ! building static libraries etc). GCC provides the 'gcc-ar', ! 'gcc-nm', 'gcc-ranlib' wrappers to pass the right options to these ! tools. With non fat LTO makefiles need to be modified to use them. ! The default is '-ffat-lto-objects' but this default is intended to change in future releases when linker plugin enabled environments become more common. ! '-fcompare-elim' After register allocation and post-register allocation instruction splitting, identify arithmetic instructions that compute processor flags similar to a comparison operation based on that arithmetic. *************** optimizations to be performed is desired *** 7751,8073 **** represent the comparison operation before register allocation is complete. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fuse-ld=bfd' ! Use the `bfd' linker instead of the default linker. ! `-fuse-ld=gold' ! Use the `gold' linker instead of the default linker. ! `-fcprop-registers' After register allocation and post-register allocation instruction splitting, perform a copy-propagation pass to try to reduce scheduling dependencies and occasionally eliminate the copy. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fprofile-correction' Profiles collected using an instrumented binary for multi-threaded ! programs may be inconsistent due to missed counter updates. When this option is specified, GCC uses heuristics to correct or smooth ! out such inconsistencies. By default, GCC emits an error message when an inconsistent profile is detected. ! `-fprofile-dir=PATH' Set the directory to search for the profile data files in to PATH. This option affects only the profile data generated by ! `-fprofile-generate', `-ftest-coverage', `-fprofile-arcs' and used ! by `-fprofile-use' and `-fbranch-probabilities' and its related options. Both absolute and relative paths can be used. By default, GCC uses the current directory as PATH, thus the profile data file appears in the same directory as the object file. ! `-fprofile-generate' ! `-fprofile-generate=PATH' Enable options usually used for instrumenting application to produce profile useful for later recompilation with profile ! feedback based optimization. You must use `-fprofile-generate' both when compiling and when linking your program. ! The following options are enabled: `-fprofile-arcs', ! `-fprofile-values', `-fvpt'. If PATH is specified, GCC looks at the PATH to find the profile ! feedback data files. See `-fprofile-dir'. ! `-fprofile-use' ! `-fprofile-use=PATH' Enable profile feedback directed optimizations, and optimizations generally profitable only with profile feedback available. ! The following options are enabled: `-fbranch-probabilities', ! `-fvpt', `-funroll-loops', `-fpeel-loops', `-ftracer', ! `-ftree-vectorize', `ftree-loop-distribute-patterns' By default, GCC emits an error message if the feedback profiles do ! not match the source code. This error can be turned into a ! warning by using `-Wcoverage-mismatch'. Note this may result in ! poorly optimized code. If PATH is specified, GCC looks at the PATH to find the profile ! feedback data files. See `-fprofile-dir'. The following options control compiler behavior regarding floating-point arithmetic. These options trade off between speed and correctness. All must be specifically enabled. ! `-ffloat-store' Do not store floating-point variables in registers, and inhibit other options that might change whether a floating-point value is taken from a register or memory. This option prevents undesirable excess precision on machines such as the 68000 where the floating registers (of the 68881) keep more ! precision than a `double' is supposed to have. Similarly for the x86 architecture. For most programs, the excess precision does only good, but a few programs rely on the precise definition of ! IEEE floating point. Use `-ffloat-store' for such programs, after modifying them to store all pertinent intermediate computations into variables. ! `-fexcess-precision=STYLE' This option allows further control over excess precision on machines where floating-point registers have more precision than ! the IEEE `float' and `double' types and the processor does not support operations rounding to those types. By default, ! `-fexcess-precision=fast' is in effect; this means that operations are carried out in the precision of the registers and that it is unpredictable when rounding to the types specified in the source code takes place. When compiling C, if ! `-fexcess-precision=standard' is specified then excess precision follows the rules specified in ISO C99; in particular, both casts and assignments cause values to be rounded to their semantic types ! (whereas `-ffloat-store' only affects assignments). This option ! is enabled by default for C if a strict conformance option such as ! `-std=c99' is used. ! `-fexcess-precision=standard' is not implemented for languages ! other than C, and has no effect if `-funsafe-math-optimizations' ! or `-ffast-math' is specified. On the x86, it also has no effect ! if `-mfpmath=sse' or `-mfpmath=sse+387' is specified; in the ! former case, IEEE semantics apply without excess precision, and in ! the latter, rounding is unpredictable. ! `-ffast-math' ! Sets `-fno-math-errno', `-funsafe-math-optimizations', ! `-ffinite-math-only', `-fno-rounding-math', `-fno-signaling-nans' ! and `-fcx-limited-range'. ! This option causes the preprocessor macro `__FAST_MATH__' to be defined. ! This option is not turned on by any `-O' option besides `-Ofast' ! since it can result in incorrect output for programs that depend ! on an exact implementation of IEEE or ISO rules/specifications for ! math functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. ! `-fno-math-errno' ! Do not set `errno' after calling math functions that are executed ! with a single instruction, e.g., `sqrt'. A program that relies on IEEE exceptions for math error handling may want to use this flag for speed while maintaining IEEE arithmetic compatibility. ! This option is not turned on by any `-O' option since it can ! result in incorrect output for programs that depend on an exact implementation of IEEE or ISO rules/specifications for math ! functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. ! The default is `-fmath-errno'. ! On Darwin systems, the math library never sets `errno'. There is therefore no reason for the compiler to consider the possibility ! that it might, and `-fno-math-errno' is the default. - `-funsafe-math-optimizations' Allow optimizations for floating-point arithmetic that (a) assume that arguments and results are valid and (b) may violate IEEE or ANSI standards. When used at link-time, it may include libraries or startup files that change the default FPU control word or other similar optimizations. ! This option is not turned on by any `-O' option since it can ! result in incorrect output for programs that depend on an exact implementation of IEEE or ISO rules/specifications for math ! functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. Enables ! `-fno-signed-zeros', `-fno-trapping-math', `-fassociative-math' ! and `-freciprocal-math'. ! The default is `-fno-unsafe-math-optimizations'. - `-fassociative-math' Allow re-association of operands in series of floating-point operations. This violates the ISO C and C++ language standard by ! possibly changing computation result. NOTE: re-ordering may ! change the sign of zero as well as ignore NaNs and inhibit or ! create underflow or overflow (and thus cannot be used on code that ! relies on rounding behavior like `(x + 2**52) - 2**52'. May also ! reorder floating-point comparisons and thus may not be used when ! ordered comparisons are required. This option requires that both ! `-fno-signed-zeros' and `-fno-trapping-math' be in effect. ! Moreover, it doesn't make much sense with `-frounding-math'. For Fortran the option is automatically enabled when both ! `-fno-signed-zeros' and `-fno-trapping-math' are in effect. ! The default is `-fno-associative-math'. - `-freciprocal-math' Allow the reciprocal of a value to be used instead of dividing by ! the value if this enables optimizations. For example `x / y' can ! be replaced with `x * (1/y)', which is useful if `(1/y)' is ! subject to common subexpression elimination. Note that this loses precision and increases the number of flops operating on the value. ! The default is `-fno-reciprocal-math'. ! `-ffinite-math-only' Allow optimizations for floating-point arithmetic that assume that arguments and results are not NaNs or +-Infs. ! This option is not turned on by any `-O' option since it can ! result in incorrect output for programs that depend on an exact implementation of IEEE or ISO rules/specifications for math ! functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. ! The default is `-fno-finite-math-only'. ! `-fno-signed-zeros' Allow optimizations for floating-point arithmetic that ignore the signedness of zero. IEEE arithmetic specifies the behavior of distinct +0.0 and -0.0 values, which then prohibits simplification of expressions such as x+0.0 or 0.0*x (even with ! `-ffinite-math-only'). This option implies that the sign of a ! zero result isn't significant. ! The default is `-fsigned-zeros'. ! `-fno-trapping-math' Compile code assuming that floating-point operations cannot ! generate user-visible traps. These traps include division by ! zero, overflow, underflow, inexact result and invalid operation. ! This option requires that `-fno-signaling-nans' be in effect. ! Setting this option may allow faster code if one relies on ! "non-stop" IEEE arithmetic, for example. ! This option should never be turned on by any `-O' option since it ! can result in incorrect output for programs that depend on an ! exact implementation of IEEE or ISO rules/specifications for math functions. ! The default is `-ftrapping-math'. ! `-frounding-math' Disable transformations and optimizations that assume default floating-point rounding behavior. This is round-to-zero for all ! floating point to integer conversions, and round-to-nearest for ! all other arithmetic truncations. This option should be specified ! for programs that change the FP rounding mode dynamically, or that ! may be executed with a non-default rounding mode. This option ! disables constant folding of floating-point expressions at compile ! time (which may be affected by rounding mode) and arithmetic transformations that are unsafe in the presence of sign-dependent rounding modes. ! The default is `-fno-rounding-math'. This option is experimental and does not currently guarantee to disable all GCC optimizations that are affected by rounding mode. Future versions of GCC may provide finer control of this setting ! using C99's `FENV_ACCESS' pragma. This command-line option will ! be used to specify the default state for `FENV_ACCESS'. ! `-fsignaling-nans' Compile code assuming that IEEE signaling NaNs may generate user-visible traps during floating-point operations. Setting this option disables optimizations that may change the number of exceptions visible with signaling NaNs. This option implies ! `-ftrapping-math'. ! This option causes the preprocessor macro `__SUPPORT_SNAN__' to be defined. ! The default is `-fno-signaling-nans'. This option is experimental and does not currently guarantee to disable all GCC optimizations that affect signaling NaN behavior. ! `-fsingle-precision-constant' Treat floating-point constants as single precision instead of implicitly converting them to double-precision constants. ! `-fcx-limited-range' When enabled, this option states that a range reduction step is not needed when performing complex division. Also, there is no ! checking whether the result of a complex multiplication or ! division is `NaN + I*NaN', with an attempt to rescue the situation ! in that case. The default is `-fno-cx-limited-range', but is ! enabled by `-ffast-math'. This option controls the default setting of the ISO C99 ! `CX_LIMITED_RANGE' pragma. Nevertheless, the option applies to ! all languages. ! `-fcx-fortran-rules' Complex multiplication and division follow Fortran rules. Range reduction is done as part of complex division, but there is no ! checking whether the result of a complex multiplication or ! division is `NaN + I*NaN', with an attempt to rescue the situation ! in that case. ! ! The default is `-fno-cx-fortran-rules'. The following options control optimizations that may improve ! performance, but are not enabled by any `-O' options. This section includes experimental options that may produce broken code. ! `-fbranch-probabilities' ! After running a program compiled with `-fprofile-arcs' (*note ! Options for Debugging Your Program or `gcc': Debugging Options.), ! you can compile it a second time using `-fbranch-probabilities', ! to improve optimizations based on the number of times each branch ! was taken. When a program compiled with `-fprofile-arcs' exits, ! it saves arc execution counts to a file called `SOURCENAME.gcda' ! for each source file. The information in this data file is very dependent on the structure of the generated code, so you must use the same source code and the same optimization options for both compilations. ! With `-fbranch-probabilities', GCC puts a `REG_BR_PROB' note on ! each `JUMP_INSN' and `CALL_INSN'. These can be used to improve optimization. Currently, they are only used in one place: in ! `reorg.c', instead of guessing which path a branch is most likely ! to take, the `REG_BR_PROB' values are used to exactly determine which path is taken more often. ! `-fprofile-values' ! If combined with `-fprofile-arcs', it adds code so that some data about values of expressions in the program is gathered. ! With `-fbranch-probabilities', it reads back the data gathered ! from profiling values of expressions for usage in optimizations. ! Enabled with `-fprofile-generate' and `-fprofile-use'. ! `-fvpt' ! If combined with `-fprofile-arcs', this option instructs the compiler to add code to gather information about values of expressions. ! With `-fbranch-probabilities', it reads back the data gathered and actually performs the optimizations based on them. Currently the optimizations include specialization of division operations using the knowledge about the value of the denominator. ! `-frename-registers' Attempt to avoid false dependencies in scheduled code by making use of registers left over after register allocation. This optimization most benefits processors with lots of registers. --- 7680,8006 ---- represent the comparison operation before register allocation is complete. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fuse-ld=bfd' ! Use the 'bfd' linker instead of the default linker. ! '-fuse-ld=gold' ! Use the 'gold' linker instead of the default linker. ! '-fcprop-registers' After register allocation and post-register allocation instruction splitting, perform a copy-propagation pass to try to reduce scheduling dependencies and occasionally eliminate the copy. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fprofile-correction' Profiles collected using an instrumented binary for multi-threaded ! programs may be inconsistent due to missed counter updates. When this option is specified, GCC uses heuristics to correct or smooth ! out such inconsistencies. By default, GCC emits an error message when an inconsistent profile is detected. ! '-fprofile-dir=PATH' ! Set the directory to search for the profile data files in to PATH. This option affects only the profile data generated by ! '-fprofile-generate', '-ftest-coverage', '-fprofile-arcs' and used ! by '-fprofile-use' and '-fbranch-probabilities' and its related options. Both absolute and relative paths can be used. By default, GCC uses the current directory as PATH, thus the profile data file appears in the same directory as the object file. ! '-fprofile-generate' ! '-fprofile-generate=PATH' ! Enable options usually used for instrumenting application to produce profile useful for later recompilation with profile ! feedback based optimization. You must use '-fprofile-generate' both when compiling and when linking your program. ! The following options are enabled: '-fprofile-arcs', ! '-fprofile-values', '-fvpt'. If PATH is specified, GCC looks at the PATH to find the profile ! feedback data files. See '-fprofile-dir'. ! '-fprofile-use' ! '-fprofile-use=PATH' Enable profile feedback directed optimizations, and optimizations generally profitable only with profile feedback available. ! The following options are enabled: '-fbranch-probabilities', ! '-fvpt', '-funroll-loops', '-fpeel-loops', '-ftracer', ! '-ftree-vectorize', 'ftree-loop-distribute-patterns' By default, GCC emits an error message if the feedback profiles do ! not match the source code. This error can be turned into a warning ! by using '-Wcoverage-mismatch'. Note this may result in poorly ! optimized code. If PATH is specified, GCC looks at the PATH to find the profile ! feedback data files. See '-fprofile-dir'. The following options control compiler behavior regarding floating-point arithmetic. These options trade off between speed and correctness. All must be specifically enabled. ! '-ffloat-store' Do not store floating-point variables in registers, and inhibit other options that might change whether a floating-point value is taken from a register or memory. This option prevents undesirable excess precision on machines such as the 68000 where the floating registers (of the 68881) keep more ! precision than a 'double' is supposed to have. Similarly for the x86 architecture. For most programs, the excess precision does only good, but a few programs rely on the precise definition of ! IEEE floating point. Use '-ffloat-store' for such programs, after modifying them to store all pertinent intermediate computations into variables. ! '-fexcess-precision=STYLE' This option allows further control over excess precision on machines where floating-point registers have more precision than ! the IEEE 'float' and 'double' types and the processor does not support operations rounding to those types. By default, ! '-fexcess-precision=fast' is in effect; this means that operations are carried out in the precision of the registers and that it is unpredictable when rounding to the types specified in the source code takes place. When compiling C, if ! '-fexcess-precision=standard' is specified then excess precision follows the rules specified in ISO C99; in particular, both casts and assignments cause values to be rounded to their semantic types ! (whereas '-ffloat-store' only affects assignments). This option is ! enabled by default for C if a strict conformance option such as ! '-std=c99' is used. ! '-fexcess-precision=standard' is not implemented for languages ! other than C, and has no effect if '-funsafe-math-optimizations' or ! '-ffast-math' is specified. On the x86, it also has no effect if ! '-mfpmath=sse' or '-mfpmath=sse+387' is specified; in the former ! case, IEEE semantics apply without excess precision, and in the ! latter, rounding is unpredictable. ! '-ffast-math' ! Sets '-fno-math-errno', '-funsafe-math-optimizations', ! '-ffinite-math-only', '-fno-rounding-math', '-fno-signaling-nans' ! and '-fcx-limited-range'. ! This option causes the preprocessor macro '__FAST_MATH__' to be defined. ! This option is not turned on by any '-O' option besides '-Ofast' ! since it can result in incorrect output for programs that depend on ! an exact implementation of IEEE or ISO rules/specifications for ! math functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. ! '-fno-math-errno' ! Do not set 'errno' after calling math functions that are executed ! with a single instruction, e.g., 'sqrt'. A program that relies on IEEE exceptions for math error handling may want to use this flag for speed while maintaining IEEE arithmetic compatibility. ! This option is not turned on by any '-O' option since it can result ! in incorrect output for programs that depend on an exact implementation of IEEE or ISO rules/specifications for math ! functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. ! The default is '-fmath-errno'. ! On Darwin systems, the math library never sets 'errno'. There is therefore no reason for the compiler to consider the possibility ! that it might, and '-fno-math-errno' is the default. ! ! '-funsafe-math-optimizations' Allow optimizations for floating-point arithmetic that (a) assume that arguments and results are valid and (b) may violate IEEE or ANSI standards. When used at link-time, it may include libraries or startup files that change the default FPU control word or other similar optimizations. ! This option is not turned on by any '-O' option since it can result ! in incorrect output for programs that depend on an exact implementation of IEEE or ISO rules/specifications for math ! functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. Enables ! '-fno-signed-zeros', '-fno-trapping-math', '-fassociative-math' and ! '-freciprocal-math'. ! The default is '-fno-unsafe-math-optimizations'. ! ! '-fassociative-math' Allow re-association of operands in series of floating-point operations. This violates the ISO C and C++ language standard by ! possibly changing computation result. NOTE: re-ordering may change ! the sign of zero as well as ignore NaNs and inhibit or create ! underflow or overflow (and thus cannot be used on code that relies ! on rounding behavior like '(x + 2**52) - 2**52'. May also reorder ! floating-point comparisons and thus may not be used when ordered ! comparisons are required. This option requires that both ! '-fno-signed-zeros' and '-fno-trapping-math' be in effect. ! Moreover, it doesn't make much sense with '-frounding-math'. For Fortran the option is automatically enabled when both ! '-fno-signed-zeros' and '-fno-trapping-math' are in effect. ! The default is '-fno-associative-math'. ! ! '-freciprocal-math' Allow the reciprocal of a value to be used instead of dividing by ! the value if this enables optimizations. For example 'x / y' can ! be replaced with 'x * (1/y)', which is useful if '(1/y)' is subject ! to common subexpression elimination. Note that this loses precision and increases the number of flops operating on the value. ! The default is '-fno-reciprocal-math'. ! '-ffinite-math-only' Allow optimizations for floating-point arithmetic that assume that arguments and results are not NaNs or +-Infs. ! This option is not turned on by any '-O' option since it can result ! in incorrect output for programs that depend on an exact implementation of IEEE or ISO rules/specifications for math ! functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. ! The default is '-fno-finite-math-only'. ! '-fno-signed-zeros' Allow optimizations for floating-point arithmetic that ignore the signedness of zero. IEEE arithmetic specifies the behavior of distinct +0.0 and -0.0 values, which then prohibits simplification of expressions such as x+0.0 or 0.0*x (even with ! '-ffinite-math-only'). This option implies that the sign of a zero ! result isn't significant. ! The default is '-fsigned-zeros'. ! '-fno-trapping-math' Compile code assuming that floating-point operations cannot ! generate user-visible traps. These traps include division by zero, ! overflow, underflow, inexact result and invalid operation. This ! option requires that '-fno-signaling-nans' be in effect. Setting ! this option may allow faster code if one relies on "non-stop" IEEE ! arithmetic, for example. ! This option should never be turned on by any '-O' option since it ! can result in incorrect output for programs that depend on an exact ! implementation of IEEE or ISO rules/specifications for math functions. ! The default is '-ftrapping-math'. ! '-frounding-math' Disable transformations and optimizations that assume default floating-point rounding behavior. This is round-to-zero for all ! floating point to integer conversions, and round-to-nearest for all ! other arithmetic truncations. This option should be specified for ! programs that change the FP rounding mode dynamically, or that may ! be executed with a non-default rounding mode. This option disables ! constant folding of floating-point expressions at compile time ! (which may be affected by rounding mode) and arithmetic transformations that are unsafe in the presence of sign-dependent rounding modes. ! The default is '-fno-rounding-math'. This option is experimental and does not currently guarantee to disable all GCC optimizations that are affected by rounding mode. Future versions of GCC may provide finer control of this setting ! using C99's 'FENV_ACCESS' pragma. This command-line option will be ! used to specify the default state for 'FENV_ACCESS'. ! '-fsignaling-nans' Compile code assuming that IEEE signaling NaNs may generate user-visible traps during floating-point operations. Setting this option disables optimizations that may change the number of exceptions visible with signaling NaNs. This option implies ! '-ftrapping-math'. ! This option causes the preprocessor macro '__SUPPORT_SNAN__' to be defined. ! The default is '-fno-signaling-nans'. This option is experimental and does not currently guarantee to disable all GCC optimizations that affect signaling NaN behavior. ! '-fsingle-precision-constant' Treat floating-point constants as single precision instead of implicitly converting them to double-precision constants. ! '-fcx-limited-range' When enabled, this option states that a range reduction step is not needed when performing complex division. Also, there is no ! checking whether the result of a complex multiplication or division ! is 'NaN + I*NaN', with an attempt to rescue the situation in that ! case. The default is '-fno-cx-limited-range', but is enabled by ! '-ffast-math'. This option controls the default setting of the ISO C99 ! 'CX_LIMITED_RANGE' pragma. Nevertheless, the option applies to all ! languages. ! '-fcx-fortran-rules' Complex multiplication and division follow Fortran rules. Range reduction is done as part of complex division, but there is no ! checking whether the result of a complex multiplication or division ! is 'NaN + I*NaN', with an attempt to rescue the situation in that ! case. + The default is '-fno-cx-fortran-rules'. The following options control optimizations that may improve ! performance, but are not enabled by any '-O' options. This section includes experimental options that may produce broken code. ! '-fbranch-probabilities' ! After running a program compiled with '-fprofile-arcs' (*note ! Options for Debugging Your Program or 'gcc': Debugging Options.), ! you can compile it a second time using '-fbranch-probabilities', to ! improve optimizations based on the number of times each branch was ! taken. When a program compiled with '-fprofile-arcs' exits, it ! saves arc execution counts to a file called 'SOURCENAME.gcda' for ! each source file. The information in this data file is very dependent on the structure of the generated code, so you must use the same source code and the same optimization options for both compilations. ! With '-fbranch-probabilities', GCC puts a 'REG_BR_PROB' note on ! each 'JUMP_INSN' and 'CALL_INSN'. These can be used to improve optimization. Currently, they are only used in one place: in ! 'reorg.c', instead of guessing which path a branch is most likely ! to take, the 'REG_BR_PROB' values are used to exactly determine which path is taken more often. ! '-fprofile-values' ! If combined with '-fprofile-arcs', it adds code so that some data about values of expressions in the program is gathered. ! With '-fbranch-probabilities', it reads back the data gathered from ! profiling values of expressions for usage in optimizations. ! Enabled with '-fprofile-generate' and '-fprofile-use'. ! '-fvpt' ! If combined with '-fprofile-arcs', this option instructs the compiler to add code to gather information about values of expressions. ! With '-fbranch-probabilities', it reads back the data gathered and actually performs the optimizations based on them. Currently the optimizations include specialization of division operations using the knowledge about the value of the denominator. ! '-frename-registers' Attempt to avoid false dependencies in scheduled code by making use of registers left over after register allocation. This optimization most benefits processors with lots of registers. *************** includes experimental options that may p *** 8075,8124 **** however, it can make debugging impossible, since variables no longer stay in a "home register". ! Enabled by default with `-funroll-loops' and `-fpeel-loops'. ! `-ftracer' Perform tail duplication to enlarge superblock size. This ! transformation simplifies the control flow of the function ! allowing other optimizations to do a better job. ! Enabled with `-fprofile-use'. ! `-funroll-loops' Unroll loops whose number of iterations can be determined at ! compile time or upon entry to the loop. `-funroll-loops' implies ! `-frerun-cse-after-loop', `-fweb' and `-frename-registers'. It ! also turns on complete loop peeling (i.e. complete removal of ! loops with a small constant number of iterations). This option ! makes code larger, and may or may not make it run faster. ! Enabled with `-fprofile-use'. ! `-funroll-all-loops' Unroll all loops, even if their number of iterations is uncertain when the loop is entered. This usually makes programs run more ! slowly. `-funroll-all-loops' implies the same options as ! `-funroll-loops'. ! `-fpeel-loops' Peels loops for which there is enough information that they do not roll much (from profile feedback). It also turns on complete loop peeling (i.e. complete removal of loops with small constant number of iterations). ! Enabled with `-fprofile-use'. ! `-fmove-loop-invariants' Enables the loop invariant motion pass in the RTL loop optimizer. ! Enabled at level `-O1' ! `-funswitch-loops' Move branches with loop invariant conditions out of the loop, with duplicates of the loop on both branches (modified according to result of the condition). ! `-ffunction-sections' ! `-fdata-sections' Place each function or data item into its own section in the output file if the target supports arbitrary sections. The name of the function or the name of the data item determines the section's name --- 8008,8057 ---- however, it can make debugging impossible, since variables no longer stay in a "home register". ! Enabled by default with '-funroll-loops' and '-fpeel-loops'. ! '-ftracer' Perform tail duplication to enlarge superblock size. This ! transformation simplifies the control flow of the function allowing ! other optimizations to do a better job. ! Enabled with '-fprofile-use'. ! '-funroll-loops' Unroll loops whose number of iterations can be determined at ! compile time or upon entry to the loop. '-funroll-loops' implies ! '-frerun-cse-after-loop', '-fweb' and '-frename-registers'. It ! also turns on complete loop peeling (i.e. complete removal of loops ! with a small constant number of iterations). This option makes ! code larger, and may or may not make it run faster. ! Enabled with '-fprofile-use'. ! '-funroll-all-loops' Unroll all loops, even if their number of iterations is uncertain when the loop is entered. This usually makes programs run more ! slowly. '-funroll-all-loops' implies the same options as ! '-funroll-loops'. ! '-fpeel-loops' Peels loops for which there is enough information that they do not roll much (from profile feedback). It also turns on complete loop peeling (i.e. complete removal of loops with small constant number of iterations). ! Enabled with '-fprofile-use'. ! '-fmove-loop-invariants' Enables the loop invariant motion pass in the RTL loop optimizer. ! Enabled at level '-O1' ! '-funswitch-loops' Move branches with loop invariant conditions out of the loop, with duplicates of the loop on both branches (modified according to result of the condition). ! '-ffunction-sections' ! '-fdata-sections' Place each function or data item into its own section in the output file if the target supports arbitrary sections. The name of the function or the name of the data item determines the section's name *************** includes experimental options that may p *** 8132,8182 **** Only use these options when there are significant benefits from doing so. When you specify these options, the assembler and linker ! create larger object and executable files and are also slower. ! You cannot use `gprof' on all systems if you specify this option, ! and you may have problems with debugging if you specify both this ! option and `-g'. ! `-fbranch-target-load-optimize' Perform branch target register load optimization before prologue / epilogue threading. The use of target registers can typically be exposed only during reload, thus hoisting loads out of loops and doing inter-block scheduling needs a separate optimization pass. ! `-fbranch-target-load-optimize2' Perform branch target register load optimization after prologue / epilogue threading. ! `-fbtr-bb-exclusive' When performing branch target register load optimization, don't reuse branch target registers within any basic block. ! `-fstack-protector' Emit extra code to check for buffer overflows, such as stack smashing attacks. This is done by adding a guard variable to functions with vulnerable objects. This includes functions that ! call `alloca', and functions with buffers larger than 8 bytes. ! The guards are initialized when a function is entered and then ! checked when the function exits. If a guard check fails, an error ! message is printed and the program exits. ! `-fstack-protector-all' ! Like `-fstack-protector' except that all functions are protected. ! `-fsection-anchors' Try to reduce the number of symbolic address calculations by using shared "anchor" symbols to address nearby objects. This ! transformation can help to reduce the number of GOT entries and ! GOT accesses on some targets. ! For example, the implementation of the following function `foo': static int a, b, c; int foo (void) { return a + b + c; } usually calculates the addresses of all three variables, but if you ! compile it with `-fsection-anchors', it accesses the variables ! from a common anchor point instead. The effect is similar to the following pseudocode (which isn't valid C): int foo (void) --- 8065,8115 ---- Only use these options when there are significant benefits from doing so. When you specify these options, the assembler and linker ! create larger object and executable files and are also slower. You ! cannot use 'gprof' on all systems if you specify this option, and ! you may have problems with debugging if you specify both this ! option and '-g'. ! '-fbranch-target-load-optimize' Perform branch target register load optimization before prologue / epilogue threading. The use of target registers can typically be exposed only during reload, thus hoisting loads out of loops and doing inter-block scheduling needs a separate optimization pass. ! '-fbranch-target-load-optimize2' Perform branch target register load optimization after prologue / epilogue threading. ! '-fbtr-bb-exclusive' When performing branch target register load optimization, don't reuse branch target registers within any basic block. ! '-fstack-protector' Emit extra code to check for buffer overflows, such as stack smashing attacks. This is done by adding a guard variable to functions with vulnerable objects. This includes functions that ! call 'alloca', and functions with buffers larger than 8 bytes. The ! guards are initialized when a function is entered and then checked ! when the function exits. If a guard check fails, an error message ! is printed and the program exits. ! '-fstack-protector-all' ! Like '-fstack-protector' except that all functions are protected. ! '-fsection-anchors' Try to reduce the number of symbolic address calculations by using shared "anchor" symbols to address nearby objects. This ! transformation can help to reduce the number of GOT entries and GOT ! accesses on some targets. ! For example, the implementation of the following function 'foo': static int a, b, c; int foo (void) { return a + b + c; } usually calculates the addresses of all three variables, but if you ! compile it with '-fsection-anchors', it accesses the variables from ! a common anchor point instead. The effect is similar to the following pseudocode (which isn't valid C): int foo (void) *************** includes experimental options that may p *** 8187,8198 **** Not all targets support this option. ! `--param NAME=VALUE' In some places, GCC uses various constants to control the amount of optimization that is done. For example, GCC does not inline functions that contain more than a certain number of instructions. You can control some of these constants on the command line using ! the `--param' option. The names of specific parameters, and the meaning of the values, are tied to the internals of the compiler, and are subject to --- 8120,8131 ---- Not all targets support this option. ! '--param NAME=VALUE' In some places, GCC uses various constants to control the amount of optimization that is done. For example, GCC does not inline functions that contain more than a certain number of instructions. You can control some of these constants on the command line using ! the '--param' option. The names of specific parameters, and the meaning of the values, are tied to the internals of the compiler, and are subject to *************** includes experimental options that may p *** 8201,8232 **** In each case, the VALUE is an integer. The allowable choices for NAME are: ! `predictable-branch-outcome' When branch is predicted to be taken with probability lower than this threshold (in percent), then it is considered well ! predictable. The default is 10. ! `max-crossjump-edges' The maximum number of incoming edges to consider for ! cross-jumping. The algorithm used by `-fcrossjumping' is O(N^2) in the number of edges incoming to each block. Increasing values mean more aggressive optimization, making the compilation time increase with probably small improvement in executable size. ! `min-crossjump-insns' ! The minimum number of instructions that must be matched at ! the end of two blocks before cross-jumping is performed on ! them. This value is ignored in the case where all ! instructions in the block being cross-jumped from are ! matched. The default value is 5. ! `max-grow-copy-bb-insns' The maximum code size expansion factor when copying basic blocks instead of jumping. The expansion is relative to a jump instruction. The default value is 8. ! `max-goto-duplication-insns' The maximum number of instructions to duplicate to a block that jumps to a computed goto. To avoid O(N^2) behavior in a number of passes, GCC factors computed gotos early in the --- 8134,8165 ---- In each case, the VALUE is an integer. The allowable choices for NAME are: ! 'predictable-branch-outcome' When branch is predicted to be taken with probability lower than this threshold (in percent), then it is considered well ! predictable. The default is 10. ! 'max-crossjump-edges' The maximum number of incoming edges to consider for ! cross-jumping. The algorithm used by '-fcrossjumping' is O(N^2) in the number of edges incoming to each block. Increasing values mean more aggressive optimization, making the compilation time increase with probably small improvement in executable size. ! 'min-crossjump-insns' ! The minimum number of instructions that must be matched at the ! end of two blocks before cross-jumping is performed on them. ! This value is ignored in the case where all instructions in ! the block being cross-jumped from are matched. The default ! value is 5. ! 'max-grow-copy-bb-insns' The maximum code size expansion factor when copying basic blocks instead of jumping. The expansion is relative to a jump instruction. The default value is 8. ! 'max-goto-duplication-insns' The maximum number of instructions to duplicate to a block that jumps to a computed goto. To avoid O(N^2) behavior in a number of passes, GCC factors computed gotos early in the *************** includes experimental options that may p *** 8235,8241 **** than max-goto-duplication-insns are unfactored. The default value is 8. ! `max-delay-slot-insn-search' The maximum number of instructions to consider when looking for an instruction to fill a delay slot. If more than this arbitrary number of instructions are searched, the time --- 8168,8174 ---- than max-goto-duplication-insns are unfactored. The default value is 8. ! 'max-delay-slot-insn-search' The maximum number of instructions to consider when looking for an instruction to fill a delay slot. If more than this arbitrary number of instructions are searched, the time *************** includes experimental options that may p *** 8244,8425 **** optimization, making the compilation time increase with probably small improvement in execution time. ! `max-delay-slot-live-search' When trying to fill delay slots, the maximum number of ! instructions to consider when searching for a block with ! valid live register information. Increasing this arbitrarily ! chosen value means more aggressive optimization, increasing ! the compilation time. This parameter should be removed when ! the delay slot code is rewritten to maintain the control-flow graph. ! `max-gcse-memory' ! The approximate maximum amount of memory that can be ! allocated in order to perform the global common subexpression elimination optimization. If more memory than specified is required, the optimization is not done. ! `max-gcse-insertion-ratio' If the ratio of expression insertions to deletions is larger than this value for any expression, then RTL PRE inserts or removes the expression and thus leaves partially redundant computations in the instruction stream. The default value is 20. ! `max-pending-list-length' The maximum number of pending dependencies scheduling allows before flushing the current state and starting over. Large functions with few branches or calls can create excessively large lists which needlessly consume memory and resources. ! `max-modulo-backtrack-attempts' The maximum number of backtrack attempts the scheduler should make when modulo scheduling a loop. Larger values can exponentially increase compilation time. ! `max-inline-insns-single' ! Several parameters control the tree inliner used in GCC. ! This number sets the maximum number of instructions (counted ! in GCC's internal representation) in a single function that ! the tree inliner considers for inlining. This only affects functions declared inline and methods implemented in a class declaration (C++). The default value is 400. ! `max-inline-insns-auto' ! When you use `-finline-functions' (included in `-O3'), a lot of functions that would otherwise not be considered for inlining by the compiler are investigated. To those functions, a different (more restrictive) limit compared to functions declared inline can be applied. The default value is 40. ! `inline-min-speedup' When estimated performance improvement of caller + callee runtime exceeds this threshold (in precent), the function can ! be inlined regardless the limit on `--param ! max-inline-insns-single' and `--param max-inline-insns-auto'. ! `large-function-insns' The limit specifying really large functions. For functions ! larger than this limit after inlining, inlining is ! constrained by `--param large-function-growth'. This ! parameter is useful primarily to avoid extreme compilation ! time caused by non-linear algorithms used by the back end. ! The default value is 2700. ! `large-function-growth' Specifies maximal growth of large function caused by inlining in percents. The default value is 100 which limits large function growth to 2.0 times the original size. ! `large-unit-insns' ! The limit specifying large translation unit. Growth caused ! by inlining of units larger than this limit is limited by ! `--param inline-unit-growth'. For small units this might be too tight. For example, consider a unit consisting of ! function A that is inline and B that just calls A three ! times. If B is small relative to A, the growth of unit is ! 300\% and yet such inlining is very sane. For very large ! units consisting of small inlineable functions, however, the ! overall unit growth limit is needed to avoid exponential ! explosion of code size. Thus for smaller units, the size is ! increased to `--param large-unit-insns' before applying ! `--param inline-unit-growth'. The default is 10000. ! `inline-unit-growth' Specifies maximal overall growth of the compilation unit ! caused by inlining. The default value is 30 which limits ! unit growth to 1.3 times the original size. ! `ipcp-unit-growth' Specifies maximal overall growth of the compilation unit caused by interprocedural constant propagation. The default ! value is 10 which limits unit growth to 1.1 times the ! original size. ! `large-stack-frame' The limit specifying large stack frames. While inlining the ! algorithm is trying to not grow past this limit too much. ! The default value is 256 bytes. ! `large-stack-frame-growth' Specifies maximal growth of large stack frames caused by inlining in percents. The default value is 1000 which limits large stack frame growth to 11 times the original size. ! `max-inline-insns-recursive' ! `max-inline-insns-recursive-auto' Specifies the maximum number of instructions an out-of-line copy of a self-recursive inline function can grow into by performing recursive inlining. ! For functions declared inline, `--param max-inline-insns-recursive' is taken into account. For ! functions not declared inline, recursive inlining happens ! only when `-finline-functions' (included in `-O3') is enabled ! and `--param max-inline-insns-recursive-auto' is used. The default value is 450. ! `max-inline-recursive-depth' ! `max-inline-recursive-depth-auto' Specifies the maximum recursion depth used for recursive inlining. ! For functions declared inline, `--param max-inline-recursive-depth' is taken into account. For ! functions not declared inline, recursive inlining happens ! only when `-finline-functions' (included in `-O3') is enabled ! and `--param max-inline-recursive-depth-auto' is used. The default value is 8. ! `min-inline-recursive-probability' ! Recursive inlining is profitable only for function having ! deep recursion in average and can hurt for function having ! little recursion depth by increasing the prologue size or ! complexity of function body to other optimizers. ! When profile feedback is available (see `-fprofile-generate') the actual recursion depth can be guessed from probability that function recurses via a given call expression. This parameter limits inlining only to call expressions whose probability exceeds the given threshold (in percents). The default value is 10. ! `early-inlining-insns' Specify growth that the early inliner can make. In effect it increases the amount of inlining for code having a large abstraction penalty. The default value is 10. ! `max-early-inliner-iterations' ! `max-early-inliner-iterations' Limit of iterations of the early inliner. This basically bounds the number of nested indirect calls the early inliner can resolve. Deeper chains are still handled by late inlining. ! `comdat-sharing-probability' ! `comdat-sharing-probability' Probability (in percent) that C++ inline function with comdat visibility are shared across multiple compilation units. The default value is 20. ! `min-vect-loop-bound' The minimum number of iterations under which loops are not ! vectorized when `-ftree-vectorize' is used. The number of iterations after vectorization needs to be greater than the value specified by this option to allow vectorization. The default value is 0. ! `gcse-cost-distance-ratio' Scaling factor in calculation of maximum distance an expression can be moved by GCSE optimizations. This is currently supported only in the code hoisting pass. The bigger the ratio, the more aggressive code hoisting is with simple expressions, i.e., the expressions that have cost less ! than `gcse-unrestricted-cost'. Specifying 0 disables ! hoisting of simple expressions. The default value is 10. ! `gcse-unrestricted-cost' Cost, roughly measured as the cost of a single typical machine instruction, at which GCSE optimizations do not constrain the distance an expression can travel. This is currently --- 8177,8358 ---- optimization, making the compilation time increase with probably small improvement in execution time. ! 'max-delay-slot-live-search' When trying to fill delay slots, the maximum number of ! instructions to consider when searching for a block with valid ! live register information. Increasing this arbitrarily chosen ! value means more aggressive optimization, increasing the ! compilation time. This parameter should be removed when the ! delay slot code is rewritten to maintain the control-flow graph. ! 'max-gcse-memory' ! The approximate maximum amount of memory that can be allocated ! in order to perform the global common subexpression elimination optimization. If more memory than specified is required, the optimization is not done. ! 'max-gcse-insertion-ratio' If the ratio of expression insertions to deletions is larger than this value for any expression, then RTL PRE inserts or removes the expression and thus leaves partially redundant computations in the instruction stream. The default value is 20. ! 'max-pending-list-length' The maximum number of pending dependencies scheduling allows before flushing the current state and starting over. Large functions with few branches or calls can create excessively large lists which needlessly consume memory and resources. ! 'max-modulo-backtrack-attempts' The maximum number of backtrack attempts the scheduler should make when modulo scheduling a loop. Larger values can exponentially increase compilation time. ! 'max-inline-insns-single' ! Several parameters control the tree inliner used in GCC. This ! number sets the maximum number of instructions (counted in ! GCC's internal representation) in a single function that the ! tree inliner considers for inlining. This only affects functions declared inline and methods implemented in a class declaration (C++). The default value is 400. ! 'max-inline-insns-auto' ! When you use '-finline-functions' (included in '-O3'), a lot of functions that would otherwise not be considered for inlining by the compiler are investigated. To those functions, a different (more restrictive) limit compared to functions declared inline can be applied. The default value is 40. ! 'inline-min-speedup' When estimated performance improvement of caller + callee runtime exceeds this threshold (in precent), the function can ! be inlined regardless the limit on '--param ! max-inline-insns-single' and '--param max-inline-insns-auto'. ! 'large-function-insns' The limit specifying really large functions. For functions ! larger than this limit after inlining, inlining is constrained ! by '--param large-function-growth'. This parameter is useful ! primarily to avoid extreme compilation time caused by ! non-linear algorithms used by the back end. The default value ! is 2700. ! 'large-function-growth' Specifies maximal growth of large function caused by inlining in percents. The default value is 100 which limits large function growth to 2.0 times the original size. ! 'large-unit-insns' ! The limit specifying large translation unit. Growth caused by ! inlining of units larger than this limit is limited by ! '--param inline-unit-growth'. For small units this might be too tight. For example, consider a unit consisting of ! function A that is inline and B that just calls A three times. ! If B is small relative to A, the growth of unit is 300\% and ! yet such inlining is very sane. For very large units ! consisting of small inlineable functions, however, the overall ! unit growth limit is needed to avoid exponential explosion of ! code size. Thus for smaller units, the size is increased to ! '--param large-unit-insns' before applying '--param ! inline-unit-growth'. The default is 10000. ! 'inline-unit-growth' Specifies maximal overall growth of the compilation unit ! caused by inlining. The default value is 30 which limits unit ! growth to 1.3 times the original size. ! 'ipcp-unit-growth' Specifies maximal overall growth of the compilation unit caused by interprocedural constant propagation. The default ! value is 10 which limits unit growth to 1.1 times the original ! size. ! 'large-stack-frame' The limit specifying large stack frames. While inlining the ! algorithm is trying to not grow past this limit too much. The ! default value is 256 bytes. ! 'large-stack-frame-growth' Specifies maximal growth of large stack frames caused by inlining in percents. The default value is 1000 which limits large stack frame growth to 11 times the original size. ! 'max-inline-insns-recursive' ! 'max-inline-insns-recursive-auto' Specifies the maximum number of instructions an out-of-line copy of a self-recursive inline function can grow into by performing recursive inlining. ! For functions declared inline, '--param max-inline-insns-recursive' is taken into account. For ! functions not declared inline, recursive inlining happens only ! when '-finline-functions' (included in '-O3') is enabled and ! '--param max-inline-insns-recursive-auto' is used. The default value is 450. ! 'max-inline-recursive-depth' ! 'max-inline-recursive-depth-auto' Specifies the maximum recursion depth used for recursive inlining. ! For functions declared inline, '--param max-inline-recursive-depth' is taken into account. For ! functions not declared inline, recursive inlining happens only ! when '-finline-functions' (included in '-O3') is enabled and ! '--param max-inline-recursive-depth-auto' is used. The default value is 8. ! 'min-inline-recursive-probability' ! Recursive inlining is profitable only for function having deep ! recursion in average and can hurt for function having little ! recursion depth by increasing the prologue size or complexity ! of function body to other optimizers. ! When profile feedback is available (see '-fprofile-generate') the actual recursion depth can be guessed from probability that function recurses via a given call expression. This parameter limits inlining only to call expressions whose probability exceeds the given threshold (in percents). The default value is 10. ! 'early-inlining-insns' Specify growth that the early inliner can make. In effect it increases the amount of inlining for code having a large abstraction penalty. The default value is 10. ! 'max-early-inliner-iterations' ! 'max-early-inliner-iterations' Limit of iterations of the early inliner. This basically bounds the number of nested indirect calls the early inliner can resolve. Deeper chains are still handled by late inlining. ! 'comdat-sharing-probability' ! 'comdat-sharing-probability' Probability (in percent) that C++ inline function with comdat visibility are shared across multiple compilation units. The default value is 20. ! 'min-vect-loop-bound' The minimum number of iterations under which loops are not ! vectorized when '-ftree-vectorize' is used. The number of iterations after vectorization needs to be greater than the value specified by this option to allow vectorization. The default value is 0. ! 'gcse-cost-distance-ratio' Scaling factor in calculation of maximum distance an expression can be moved by GCSE optimizations. This is currently supported only in the code hoisting pass. The bigger the ratio, the more aggressive code hoisting is with simple expressions, i.e., the expressions that have cost less ! than 'gcse-unrestricted-cost'. Specifying 0 disables hoisting ! of simple expressions. The default value is 10. ! 'gcse-unrestricted-cost' Cost, roughly measured as the cost of a single typical machine instruction, at which GCSE optimizations do not constrain the distance an expression can travel. This is currently *************** includes experimental options that may p *** 8428,8575 **** allows all expressions to travel unrestricted distances. The default value is 3. ! `max-hoist-depth' The depth of search in the dominator tree for expressions to hoist. This is used to avoid quadratic behavior in hoisting algorithm. The value of 0 does not limit on the search, but may slow down compilation of huge functions. The default value is 30. ! `max-tail-merge-comparisons' The maximum amount of similar bbs to compare a bb with. This ! is used to avoid quadratic behavior in tree tail merging. ! The default value is 10. ! `max-tail-merge-iterations' The maximum amount of iterations of the pass over the ! function. This is used to limit compilation time in tree ! tail merging. The default value is 2. ! `max-unrolled-insns' The maximum number of instructions that a loop may have to be unrolled. If a loop is unrolled, this parameter also determines how many times the loop code is unrolled. ! `max-average-unrolled-insns' The maximum number of instructions biased by probabilities of their execution that a loop may have to be unrolled. If a loop is unrolled, this parameter also determines how many times the loop code is unrolled. ! `max-unroll-times' The maximum number of unrollings of a single loop. ! `max-peeled-insns' The maximum number of instructions that a loop may have to be peeled. If a loop is peeled, this parameter also determines how many times the loop code is peeled. ! `max-peel-times' The maximum number of peelings of a single loop. ! `max-peel-branches' The maximum number of branches on the hot path through the peeled sequence. ! `max-completely-peeled-insns' The maximum number of insns of a completely peeled loop. ! `max-completely-peel-times' The maximum number of iterations of a loop to be suitable for complete peeling. ! `max-completely-peel-loop-nest-depth' The maximum depth of a loop nest suitable for complete peeling. ! `max-unswitch-insns' The maximum number of insns of an unswitched loop. ! `max-unswitch-level' The maximum number of branches unswitched in a single loop. ! `lim-expensive' The minimum cost of an expensive expression in the loop invariant motion. ! `iv-consider-all-candidates-bound' Bound on number of candidates for induction variables, below which all candidates are considered for each use in induction variable optimizations. If there are more candidates than this, only the most relevant ones are considered to avoid quadratic time complexity. ! `iv-max-considered-uses' The induction variable optimizations give up on loops that contain more induction variable uses. ! `iv-always-prune-cand-set-bound' If the number of candidates in the set is smaller than this value, always try to remove unnecessary ivs from the set when adding a new one. ! `scev-max-expr-size' Bound on size of expressions used in the scalar evolutions analyzer. Large expressions slow the analyzer. ! `scev-max-expr-complexity' Bound on the complexity of the expressions in the scalar evolutions analyzer. Complex expressions slow the analyzer. ! `omega-max-vars' The maximum number of variables in an Omega constraint system. The default value is 128. ! `omega-max-geqs' The maximum number of inequalities in an Omega constraint system. The default value is 256. ! `omega-max-eqs' The maximum number of equalities in an Omega constraint system. The default value is 128. ! `omega-max-wild-cards' ! The maximum number of wildcard variables that the Omega ! solver is able to insert. The default value is 18. ! `omega-hash-table-size' The size of the hash table in the Omega solver. The default value is 550. ! `omega-max-keys' The maximal number of keys used by the Omega solver. The default value is 500. ! `omega-eliminate-redundant-constraints' When set to 1, use expensive methods to eliminate all redundant constraints. The default value is 0. ! `vect-max-version-for-alignment-checks' The maximum number of run-time checks that can be performed when doing loop versioning for alignment in the vectorizer. ! See option `-ftree-vect-loop-version' for more information. ! `vect-max-version-for-alias-checks' The maximum number of run-time checks that can be performed when doing loop versioning for alias in the vectorizer. See ! option `-ftree-vect-loop-version' for more information. ! `max-iterations-to-track' The maximum number of iterations of a loop the brute-force ! algorithm for analysis of the number of iterations of the ! loop tries to evaluate. ! `hot-bb-count-ws-permille' A basic block profile count is considered hot if it ! contributes to the given permillage (i.e. 0...1000) of the entire profiled execution. ! `hot-bb-frequency-fraction' Select fraction of the entry block frequency of executions of basic block in function given basic block needs to have to be considered hot. ! `max-predicted-iterations' The maximum number of loop iterations we predict statically. This is useful in cases where a function contains a single loop with known bound and another loop with unknown bound. --- 8361,8508 ---- allows all expressions to travel unrestricted distances. The default value is 3. ! 'max-hoist-depth' The depth of search in the dominator tree for expressions to hoist. This is used to avoid quadratic behavior in hoisting algorithm. The value of 0 does not limit on the search, but may slow down compilation of huge functions. The default value is 30. ! 'max-tail-merge-comparisons' The maximum amount of similar bbs to compare a bb with. This ! is used to avoid quadratic behavior in tree tail merging. The ! default value is 10. ! 'max-tail-merge-iterations' The maximum amount of iterations of the pass over the ! function. This is used to limit compilation time in tree tail ! merging. The default value is 2. ! 'max-unrolled-insns' The maximum number of instructions that a loop may have to be unrolled. If a loop is unrolled, this parameter also determines how many times the loop code is unrolled. ! 'max-average-unrolled-insns' The maximum number of instructions biased by probabilities of their execution that a loop may have to be unrolled. If a loop is unrolled, this parameter also determines how many times the loop code is unrolled. ! 'max-unroll-times' The maximum number of unrollings of a single loop. ! 'max-peeled-insns' The maximum number of instructions that a loop may have to be peeled. If a loop is peeled, this parameter also determines how many times the loop code is peeled. ! 'max-peel-times' The maximum number of peelings of a single loop. ! 'max-peel-branches' The maximum number of branches on the hot path through the peeled sequence. ! 'max-completely-peeled-insns' The maximum number of insns of a completely peeled loop. ! 'max-completely-peel-times' The maximum number of iterations of a loop to be suitable for complete peeling. ! 'max-completely-peel-loop-nest-depth' The maximum depth of a loop nest suitable for complete peeling. ! 'max-unswitch-insns' The maximum number of insns of an unswitched loop. ! 'max-unswitch-level' The maximum number of branches unswitched in a single loop. ! 'lim-expensive' The minimum cost of an expensive expression in the loop invariant motion. ! 'iv-consider-all-candidates-bound' Bound on number of candidates for induction variables, below which all candidates are considered for each use in induction variable optimizations. If there are more candidates than this, only the most relevant ones are considered to avoid quadratic time complexity. ! 'iv-max-considered-uses' The induction variable optimizations give up on loops that contain more induction variable uses. ! 'iv-always-prune-cand-set-bound' If the number of candidates in the set is smaller than this value, always try to remove unnecessary ivs from the set when adding a new one. ! 'scev-max-expr-size' Bound on size of expressions used in the scalar evolutions analyzer. Large expressions slow the analyzer. ! 'scev-max-expr-complexity' Bound on the complexity of the expressions in the scalar evolutions analyzer. Complex expressions slow the analyzer. ! 'omega-max-vars' The maximum number of variables in an Omega constraint system. The default value is 128. ! 'omega-max-geqs' The maximum number of inequalities in an Omega constraint system. The default value is 256. ! 'omega-max-eqs' The maximum number of equalities in an Omega constraint system. The default value is 128. ! 'omega-max-wild-cards' ! The maximum number of wildcard variables that the Omega solver ! is able to insert. The default value is 18. ! 'omega-hash-table-size' The size of the hash table in the Omega solver. The default value is 550. ! 'omega-max-keys' The maximal number of keys used by the Omega solver. The default value is 500. ! 'omega-eliminate-redundant-constraints' When set to 1, use expensive methods to eliminate all redundant constraints. The default value is 0. ! 'vect-max-version-for-alignment-checks' The maximum number of run-time checks that can be performed when doing loop versioning for alignment in the vectorizer. ! See option '-ftree-vect-loop-version' for more information. ! 'vect-max-version-for-alias-checks' The maximum number of run-time checks that can be performed when doing loop versioning for alias in the vectorizer. See ! option '-ftree-vect-loop-version' for more information. ! 'max-iterations-to-track' The maximum number of iterations of a loop the brute-force ! algorithm for analysis of the number of iterations of the loop ! tries to evaluate. ! 'hot-bb-count-ws-permille' A basic block profile count is considered hot if it ! contributes to the given permillage (i.e. 0...1000) of the entire profiled execution. ! 'hot-bb-frequency-fraction' Select fraction of the entry block frequency of executions of basic block in function given basic block needs to have to be considered hot. ! 'max-predicted-iterations' The maximum number of loop iterations we predict statically. This is useful in cases where a function contains a single loop with known bound and another loop with unknown bound. *************** includes experimental options that may p *** 8578,8633 **** means that the loop without bounds appears artificially cold relative to the other one. ! `align-threshold' Select fraction of the maximal frequency of executions of a basic block in a function to align the basic block. ! `align-loop-iterations' A loop expected to iterate at least the selected number of iterations is aligned. ! `tracer-dynamic-coverage' ! `tracer-dynamic-coverage-feedback' This value is used to limit superblock formation once the given percentage of executed instructions is covered. This limits unnecessary code size expansion. ! The `tracer-dynamic-coverage-feedback' is used only when profile feedback is available. The real profiles (as opposed to statically estimated ones) are much less balanced allowing the threshold to be larger value. ! `tracer-max-code-growth' Stop tail duplication once code growth has reached given ! percentage. This is a rather artificial limit, as most of ! the duplicates are eliminated later in cross jumping, so it ! may be set to much higher values than is the desired code ! growth. - `tracer-min-branch-ratio' Stop reverse growth when the reverse probability of best edge is less than this threshold (in percent). ! `tracer-min-branch-ratio' ! `tracer-min-branch-ratio-feedback' Stop forward growth if the best edge has probability lower than this threshold. ! Similarly to `tracer-dynamic-coverage' two values are ! present, one for compilation for profile feedback and one for compilation without. The value for compilation with profile feedback needs to be more conservative (higher) in order to make tracer effective. ! `max-cse-path-length' The maximum number of basic blocks on path that CSE considers. The default is 10. ! `max-cse-insns' The maximum number of instructions CSE processes before flushing. The default is 1000. ! `ggc-min-expand' GCC uses a garbage collector to manage its own memory allocation. This parameter specifies the minimum percentage by which the garbage collector's heap should be allowed to --- 8511,8572 ---- means that the loop without bounds appears artificially cold relative to the other one. ! 'align-threshold' ! Select fraction of the maximal frequency of executions of a basic block in a function to align the basic block. ! 'align-loop-iterations' ! A loop expected to iterate at least the selected number of iterations is aligned. ! 'tracer-dynamic-coverage' ! 'tracer-dynamic-coverage-feedback' ! This value is used to limit superblock formation once the given percentage of executed instructions is covered. This limits unnecessary code size expansion. ! The 'tracer-dynamic-coverage-feedback' is used only when profile feedback is available. The real profiles (as opposed to statically estimated ones) are much less balanced allowing the threshold to be larger value. ! 'tracer-max-code-growth' Stop tail duplication once code growth has reached given ! percentage. This is a rather artificial limit, as most of the ! duplicates are eliminated later in cross jumping, so it may be ! set to much higher values than is the desired code growth. ! ! 'tracer-min-branch-ratio' Stop reverse growth when the reverse probability of best edge is less than this threshold (in percent). ! 'tracer-min-branch-ratio' ! 'tracer-min-branch-ratio-feedback' ! Stop forward growth if the best edge has probability lower than this threshold. ! Similarly to 'tracer-dynamic-coverage' two values are present, ! one for compilation for profile feedback and one for compilation without. The value for compilation with profile feedback needs to be more conservative (higher) in order to make tracer effective. ! 'max-cse-path-length' ! The maximum number of basic blocks on path that CSE considers. The default is 10. ! 'max-cse-insns' The maximum number of instructions CSE processes before flushing. The default is 1000. ! 'ggc-min-expand' ! GCC uses a garbage collector to manage its own memory allocation. This parameter specifies the minimum percentage by which the garbage collector's heap should be allowed to *************** includes experimental options that may p *** 8635,8654 **** compilation speed; it has no effect on code generation. The default is 30% + 70% * (RAM/1GB) with an upper bound of ! 100% when RAM >= 1GB. If `getrlimit' is available, the ! notion of "RAM" is the smallest of actual RAM and ! `RLIMIT_DATA' or `RLIMIT_AS'. If GCC is not able to ! calculate RAM on a particular platform, the lower bound of ! 30% is used. Setting this parameter and `ggc-min-heapsize' ! to zero causes a full collection to occur at every ! opportunity. This is extremely slow, but can be useful for ! debugging. - `ggc-min-heapsize' Minimum size of the garbage collector's heap before it begins bothering to collect garbage. The first collection occurs ! after the heap expands by `ggc-min-expand'% beyond ! `ggc-min-heapsize'. Again, tuning this may improve compilation speed, and has no effect on code generation. The default is the smaller of RAM/8, RLIMIT_RSS, or a limit --- 8574,8593 ---- compilation speed; it has no effect on code generation. The default is 30% + 70% * (RAM/1GB) with an upper bound of ! 100% when RAM >= 1GB. If 'getrlimit' is available, the notion ! of "RAM" is the smallest of actual RAM and 'RLIMIT_DATA' or ! 'RLIMIT_AS'. If GCC is not able to calculate RAM on a ! particular platform, the lower bound of 30% is used. Setting ! this parameter and 'ggc-min-heapsize' to zero causes a full ! collection to occur at every opportunity. This is extremely ! slow, but can be useful for debugging. ! ! 'ggc-min-heapsize' Minimum size of the garbage collector's heap before it begins bothering to collect garbage. The first collection occurs ! after the heap expands by 'ggc-min-expand'% beyond ! 'ggc-min-heapsize'. Again, tuning this may improve compilation speed, and has no effect on code generation. The default is the smaller of RAM/8, RLIMIT_RSS, or a limit *************** includes experimental options that may p *** 8658,8817 **** to calculate RAM on a particular platform, the lower bound is used. Setting this parameter very large effectively disables garbage collection. Setting this parameter and ! `ggc-min-expand' to zero causes a full collection to occur at every opportunity. ! `max-reload-search-insns' The maximum number of instruction reload should look backward for equivalent register. Increasing values mean more aggressive optimization, making the compilation time increase with probably slightly better performance. The default value is 100. ! `max-cselib-memory-locations' ! The maximum number of memory locations cselib should take ! into account. Increasing values mean more aggressive ! optimization, making the compilation time increase with ! probably slightly better performance. The default value is ! 500. - `reorder-blocks-duplicate' - `reorder-blocks-duplicate-feedback' Used by the basic block reordering pass to decide whether to use unconditional branch or duplicate the code on its destination. Code is duplicated when its estimated size is smaller than this value multiplied by the estimated size of unconditional jump in the hot spots of the program. ! The `reorder-block-duplicate-feedback' is used only when ! profile feedback is available. It may be set to higher ! values than `reorder-block-duplicate' since information about ! the hot spots is more accurate. ! `max-sched-ready-insns' The maximum number of instructions ready to be issued the scheduler should consider at any given time during the first scheduling pass. Increasing values mean more thorough searches, making the compilation time increase with probably little benefit. The default value is 100. ! `max-sched-region-blocks' The maximum number of blocks in a region to be considered for interblock scheduling. The default value is 10. ! `max-pipeline-region-blocks' The maximum number of blocks in a region to be considered for pipelining in the selective scheduler. The default value is 15. ! `max-sched-region-insns' The maximum number of insns in a region to be considered for interblock scheduling. The default value is 100. ! `max-pipeline-region-insns' The maximum number of insns in a region to be considered for pipelining in the selective scheduler. The default value is 200. ! `min-spec-prob' The minimum probability (in percents) of reaching a source block for interblock speculative scheduling. The default value is 40. ! `max-sched-extend-regions-iters' The maximum number of iterations through CFG to extend regions. A value of 0 (the default) disables region extensions. ! `max-sched-insn-conflict-delay' The maximum conflict delay for an insn to be considered for speculative motion. The default value is 3. ! `sched-spec-prob-cutoff' The minimal probability of speculation success (in percents), ! so that speculative insns are scheduled. The default value ! is 40. ! `sched-spec-state-edge-prob-cutoff' ! The minimum probability an edge must have for the scheduler ! to save its state across it. The default value is 10. ! `sched-mem-true-dep-cost' Minimal distance (in CPU cycles) between store and load targeting same memory locations. The default value is 1. ! `selsched-max-lookahead' The maximum size of the lookahead window of selective scheduling. It is a depth of search for available instructions. The default value is 50. ! `selsched-max-sched-times' The maximum number of times that an instruction is scheduled during selective scheduling. This is the limit on the number of iterations through which the instruction may be pipelined. The default value is 2. ! `selsched-max-insns-to-rename' ! The maximum number of best instructions in the ready list ! that are considered for renaming in the selective scheduler. ! The default value is 2. ! `sms-min-sc' The minimum value of stage count that swing modulo scheduler generates. The default value is 2. ! `max-last-value-rtl' The maximum size measured as number of RTLs that can be ! recorded in an expression in combiner for a pseudo register ! as last known value of that register. The default is 10000. ! `integer-share-limit' Small integer constants can use a shared data structure, ! reducing the compiler's memory usage and increasing its ! speed. This sets the maximum value of a shared integer ! constant. The default value is 256. ! `ssp-buffer-size' The minimum size of buffers (i.e. arrays) that receive stack ! smashing protection when `-fstack-protection' is used. ! `max-jump-thread-duplication-stmts' Maximum number of statements allowed in a block that needs to be duplicated when threading jumps. ! `max-fields-for-field-sensitive' Maximum number of fields in a structure treated in a field sensitive manner during pointer analysis. The default is zero ! for `-O0' and `-O1', and 100 for `-Os', `-O2', and `-O3'. ! `prefetch-latency' Estimate on average number of instructions that are executed before prefetch finishes. The distance prefetched ahead is proportional to this constant. Increasing this number may also lead to less streams being prefetched (see ! `simultaneous-prefetches'). ! `simultaneous-prefetches' Maximum number of prefetches that can run at the same time. ! `l1-cache-line-size' The size of cache line in L1 cache, in bytes. ! `l1-cache-size' The size of L1 cache, in kilobytes. ! `l2-cache-size' The size of L2 cache, in kilobytes. ! `min-insn-to-prefetch-ratio' The minimum ratio between the number of instructions and the number of prefetches to enable prefetching in a loop. ! `prefetch-min-insn-to-mem-ratio' The minimum ratio between the number of instructions and the number of memory references to enable prefetching in a loop. ! `use-canonical-types' Whether the compiler should use the "canonical" type system. By default, this should always be 1, which uses a more efficient internal mechanism for comparing types in C++ and --- 8597,8756 ---- to calculate RAM on a particular platform, the lower bound is used. Setting this parameter very large effectively disables garbage collection. Setting this parameter and ! 'ggc-min-expand' to zero causes a full collection to occur at every opportunity. ! 'max-reload-search-insns' The maximum number of instruction reload should look backward for equivalent register. Increasing values mean more aggressive optimization, making the compilation time increase with probably slightly better performance. The default value is 100. ! 'max-cselib-memory-locations' ! The maximum number of memory locations cselib should take into ! account. Increasing values mean more aggressive optimization, ! making the compilation time increase with probably slightly ! better performance. The default value is 500. ! ! 'reorder-blocks-duplicate' ! 'reorder-blocks-duplicate-feedback' Used by the basic block reordering pass to decide whether to use unconditional branch or duplicate the code on its destination. Code is duplicated when its estimated size is smaller than this value multiplied by the estimated size of unconditional jump in the hot spots of the program. ! The 'reorder-block-duplicate-feedback' is used only when ! profile feedback is available. It may be set to higher values ! than 'reorder-block-duplicate' since information about the hot ! spots is more accurate. ! 'max-sched-ready-insns' The maximum number of instructions ready to be issued the scheduler should consider at any given time during the first scheduling pass. Increasing values mean more thorough searches, making the compilation time increase with probably little benefit. The default value is 100. ! 'max-sched-region-blocks' The maximum number of blocks in a region to be considered for interblock scheduling. The default value is 10. ! 'max-pipeline-region-blocks' The maximum number of blocks in a region to be considered for pipelining in the selective scheduler. The default value is 15. ! 'max-sched-region-insns' The maximum number of insns in a region to be considered for interblock scheduling. The default value is 100. ! 'max-pipeline-region-insns' The maximum number of insns in a region to be considered for pipelining in the selective scheduler. The default value is 200. ! 'min-spec-prob' The minimum probability (in percents) of reaching a source block for interblock speculative scheduling. The default value is 40. ! 'max-sched-extend-regions-iters' The maximum number of iterations through CFG to extend regions. A value of 0 (the default) disables region extensions. ! 'max-sched-insn-conflict-delay' The maximum conflict delay for an insn to be considered for speculative motion. The default value is 3. ! 'sched-spec-prob-cutoff' The minimal probability of speculation success (in percents), ! so that speculative insns are scheduled. The default value is ! 40. ! 'sched-spec-state-edge-prob-cutoff' ! The minimum probability an edge must have for the scheduler to ! save its state across it. The default value is 10. ! 'sched-mem-true-dep-cost' Minimal distance (in CPU cycles) between store and load targeting same memory locations. The default value is 1. ! 'selsched-max-lookahead' The maximum size of the lookahead window of selective scheduling. It is a depth of search for available instructions. The default value is 50. ! 'selsched-max-sched-times' The maximum number of times that an instruction is scheduled during selective scheduling. This is the limit on the number of iterations through which the instruction may be pipelined. The default value is 2. ! 'selsched-max-insns-to-rename' ! The maximum number of best instructions in the ready list that ! are considered for renaming in the selective scheduler. The ! default value is 2. ! 'sms-min-sc' The minimum value of stage count that swing modulo scheduler generates. The default value is 2. ! 'max-last-value-rtl' The maximum size measured as number of RTLs that can be ! recorded in an expression in combiner for a pseudo register as ! last known value of that register. The default is 10000. ! 'integer-share-limit' Small integer constants can use a shared data structure, ! reducing the compiler's memory usage and increasing its speed. ! This sets the maximum value of a shared integer constant. The ! default value is 256. ! 'ssp-buffer-size' The minimum size of buffers (i.e. arrays) that receive stack ! smashing protection when '-fstack-protection' is used. ! 'max-jump-thread-duplication-stmts' Maximum number of statements allowed in a block that needs to be duplicated when threading jumps. ! 'max-fields-for-field-sensitive' Maximum number of fields in a structure treated in a field sensitive manner during pointer analysis. The default is zero ! for '-O0' and '-O1', and 100 for '-Os', '-O2', and '-O3'. ! 'prefetch-latency' Estimate on average number of instructions that are executed before prefetch finishes. The distance prefetched ahead is proportional to this constant. Increasing this number may also lead to less streams being prefetched (see ! 'simultaneous-prefetches'). ! 'simultaneous-prefetches' Maximum number of prefetches that can run at the same time. ! 'l1-cache-line-size' The size of cache line in L1 cache, in bytes. ! 'l1-cache-size' The size of L1 cache, in kilobytes. ! 'l2-cache-size' The size of L2 cache, in kilobytes. ! 'min-insn-to-prefetch-ratio' The minimum ratio between the number of instructions and the number of prefetches to enable prefetching in a loop. ! 'prefetch-min-insn-to-mem-ratio' The minimum ratio between the number of instructions and the number of memory references to enable prefetching in a loop. ! 'use-canonical-types' Whether the compiler should use the "canonical" type system. By default, this should always be 1, which uses a more efficient internal mechanism for comparing types in C++ and *************** includes experimental options that may p *** 8819,8833 **** are causing compilation failures, set this value to 0 to disable canonical types. ! `switch-conversion-max-branch-ratio' ! Switch initialization conversion refuses to create arrays ! that are bigger than `switch-conversion-max-branch-ratio' ! times the number of branches in the switch. ! `max-partial-antic-length' Maximum length of the partial antic set computed during the tree partial redundancy elimination optimization ! (`-ftree-pre') when optimizing at `-O3' and above. For some sorts of source code the enhanced partial redundancy elimination optimization can run away, consuming all of the memory available on the host machine. This parameter sets a --- 8758,8772 ---- are causing compilation failures, set this value to 0 to disable canonical types. ! 'switch-conversion-max-branch-ratio' ! Switch initialization conversion refuses to create arrays that ! are bigger than 'switch-conversion-max-branch-ratio' times the ! number of branches in the switch. ! 'max-partial-antic-length' Maximum length of the partial antic set computed during the tree partial redundancy elimination optimization ! ('-ftree-pre') when optimizing at '-O3' and above. For some sorts of source code the enhanced partial redundancy elimination optimization can run away, consuming all of the memory available on the host machine. This parameter sets a *************** includes experimental options that may p *** 8835,8863 **** prevents the runaway behavior. Setting a value of 0 for this parameter allows an unlimited set length. ! `sccvn-max-scc-size' Maximum size of a strongly connected component (SCC) during SCCVN processing. If this limit is hit, SCCVN processing for the whole function is not done and optimizations depending on it are disabled. The default maximum SCC size is 10000. ! `sccvn-max-alias-queries-per-access' ! Maximum number of alias-oracle queries we perform when ! looking for redundancies for loads and stores. If this limit ! is hit the search is aborted and the load or store is not ! considered redundant. The number of queries is ! algorithmically limited to the number of stores on all paths ! from the load to the function entry. The default maxmimum ! number of queries is 1000. ! `ira-max-loops-num' IRA uses regional register allocation by default. If a function contains more loops than the number given by this parameter, only at most the given number of the most frequently-executed loops form regions for regional register allocation. The default value of the parameter is 100. ! `ira-max-conflict-table-size' Although IRA uses a sophisticated algorithm to compress the conflict table, the table can still require excessive amounts of memory for huge functions. If the conflict table for a --- 8774,8802 ---- prevents the runaway behavior. Setting a value of 0 for this parameter allows an unlimited set length. ! 'sccvn-max-scc-size' Maximum size of a strongly connected component (SCC) during SCCVN processing. If this limit is hit, SCCVN processing for the whole function is not done and optimizations depending on it are disabled. The default maximum SCC size is 10000. ! 'sccvn-max-alias-queries-per-access' ! Maximum number of alias-oracle queries we perform when looking ! for redundancies for loads and stores. If this limit is hit ! the search is aborted and the load or store is not considered ! redundant. The number of queries is algorithmically limited ! to the number of stores on all paths from the load to the ! function entry. The default maxmimum number of queries is ! 1000. ! 'ira-max-loops-num' IRA uses regional register allocation by default. If a function contains more loops than the number given by this parameter, only at most the given number of the most frequently-executed loops form regions for regional register allocation. The default value of the parameter is 100. ! 'ira-max-conflict-table-size' Although IRA uses a sophisticated algorithm to compress the conflict table, the table can still require excessive amounts of memory for huge functions. If the conflict table for a *************** includes experimental options that may p *** 8867,8907 **** building a pseudo-register conflict table. The default value of the parameter is 2000. ! `ira-loop-reserved-regs' ! IRA can be used to evaluate more accurate register pressure ! in loops for decisions to move loop invariants (see `-O3'). ! The number of available registers reserved for some other ! purposes is given by this parameter. The default value of ! the parameter is 2, which is the minimal number of registers needed by typical instructions. This value is the best found from numerous experiments. ! `loop-invariant-max-bbs-in-loop' Loop invariant motion can be very expensive, both in compilation time and in amount of needed compile-time memory, ! with very large loops. Loops with more basic blocks than ! this parameter won't have loop invariant motion optimization ! performed on them. The default value of the parameter is ! 1000 for `-O1' and 10000 for `-O2' and above. ! `loop-max-datarefs-for-datadeps' Building data dapendencies is expensive for very large loops. This parameter limits the number of data references in loops ! that are considered for data dependence analysis. These ! large loops are no handled by the optimizations using loop ! data dependencies. The default value is 1000. ! `max-vartrack-size' Sets a maximum number of hash table slots to use during variable tracking dataflow analysis of any function. If this limit is exceeded with variable tracking at assignments enabled, analysis for that function is retried without it, after removing all debug insns from the function. If the limit is exceeded even without debug insns, var tracking ! analysis is completely disabled for the function. Setting ! the parameter to zero makes it unlimited. ! `max-vartrack-expr-depth' Sets a maximum number of recursion levels when attempting to map variable names or debug temporaries to value expressions. This trades compilation time for more complete debug --- 8806,8846 ---- building a pseudo-register conflict table. The default value of the parameter is 2000. ! 'ira-loop-reserved-regs' ! IRA can be used to evaluate more accurate register pressure in ! loops for decisions to move loop invariants (see '-O3'). The ! number of available registers reserved for some other purposes ! is given by this parameter. The default value of the ! parameter is 2, which is the minimal number of registers needed by typical instructions. This value is the best found from numerous experiments. ! 'loop-invariant-max-bbs-in-loop' Loop invariant motion can be very expensive, both in compilation time and in amount of needed compile-time memory, ! with very large loops. Loops with more basic blocks than this ! parameter won't have loop invariant motion optimization ! performed on them. The default value of the parameter is 1000 ! for '-O1' and 10000 for '-O2' and above. ! 'loop-max-datarefs-for-datadeps' Building data dapendencies is expensive for very large loops. This parameter limits the number of data references in loops ! that are considered for data dependence analysis. These large ! loops are no handled by the optimizations using loop data ! dependencies. The default value is 1000. ! 'max-vartrack-size' Sets a maximum number of hash table slots to use during variable tracking dataflow analysis of any function. If this limit is exceeded with variable tracking at assignments enabled, analysis for that function is retried without it, after removing all debug insns from the function. If the limit is exceeded even without debug insns, var tracking ! analysis is completely disabled for the function. Setting the ! parameter to zero makes it unlimited. ! 'max-vartrack-expr-depth' Sets a maximum number of recursion levels when attempting to map variable names or debug temporaries to value expressions. This trades compilation time for more complete debug *************** includes experimental options that may p *** 8911,9044 **** compiler to find more complex debug expressions, but compile time and memory use may grow. The default is 12. ! `min-nondebug-insn-uid' Use uids starting at this parameter for nondebug insns. The range below the parameter is reserved exclusively for debug ! insns created by `-fvar-tracking-assignments', but debug ! insns may get (non-overlapping) uids above it if the reserved ! range is exhausted. ! `ipa-sra-ptr-growth-factor' IPA-SRA replaces a pointer to an aggregate with one or more new parameters only when their cumulative size is less or ! equal to `ipa-sra-ptr-growth-factor' times the size of the original pointer parameter. ! `tm-max-aggregate-size' ! When making copies of thread-local variables in a ! transaction, this parameter specifies the size in bytes after ! which variables are saved with the logging functions as ! opposed to save/restore code sequence pairs. This option ! only applies when using `-fgnu-tm'. ! `graphite-max-nb-scop-params' To avoid exponential effects in the Graphite loop transforms, the number of parameters in a Static Control Part (SCoP) is bounded. The default value is 10 parameters. A variable ! whose value is unknown at compilation time and defined ! outside a SCoP is a parameter of the SCoP. ! `graphite-max-bbs-per-function' To avoid exponential effects in the detection of SCoPs, the size of the functions analyzed by Graphite is bounded. The default value is 100 basic blocks. ! `loop-block-tile-size' Loop blocking or strip mining transforms, enabled with ! `-floop-block' or `-floop-strip-mine', strip mine each loop ! in the loop nest by a given number of iterations. The strip ! length can be changed using the `loop-block-tile-size' parameter. The default value is 51 iterations. ! `ipa-cp-value-list-size' IPA-CP attempts to track all possible values and types passed to a function's parameter in order to propagate them and ! perform devirtualization. `ipa-cp-value-list-size' is the maximum number of values and types it stores per one formal parameter of a function. ! `lto-partitions' Specify desired number of partitions produced during WHOPR compilation. The number of partitions should exceed the number of CPUs used for compilation. The default value is 32. ! `lto-minpartition' Size of minimal partition for WHOPR (in estimated ! instructions). This prevents expenses of splitting very ! small programs into too many partitions. ! `cxx-max-namespaces-for-diagnostic-help' The maximum number of namespaces to consult for suggestions when C++ name lookup fails for an identifier. The default is 1000. ! `sink-frequency-threshold' The maximum relative execution frequency (in percents) of the ! target block relative to a statement's original block to ! allow statement sinking of a statement. Larger numbers ! result in more aggressive statement sinking. The default ! value is 75. A small positive adjustment is applied for ! statements with memory operands as those are even more ! profitable so sink. ! `max-stores-to-sink' The maximum number of conditional stores paires that can be ! sunk. Set to 0 if either vectorization (`-ftree-vectorize') ! or if-conversion (`-ftree-loop-if-convert') is disabled. The default is 2. ! `allow-load-data-races' ! Allow optimizers to introduce new data races on loads. Set ! to 1 to allow, otherwise to 0. This option is enabled by ! default unless implicitly set by the `-fmemory-model=' option. ! `allow-store-data-races' Allow optimizers to introduce new data races on stores. Set to 1 to allow, otherwise to 0. This option is enabled by ! default unless implicitly set by the `-fmemory-model=' option. ! `allow-packed-load-data-races' Allow optimizers to introduce new data races on packed data loads. Set to 1 to allow, otherwise to 0. This option is enabled by default unless implicitly set by the ! `-fmemory-model=' option. ! `allow-packed-store-data-races' Allow optimizers to introduce new data races on packed data stores. Set to 1 to allow, otherwise to 0. This option is enabled by default unless implicitly set by the ! `-fmemory-model=' option. ! `case-values-threshold' The smallest number of different values for which it is best ! to use a jump-table instead of a tree of conditional ! branches. If the value is 0, use the default for the ! machine. The default is 0. ! `tree-reassoc-width' Set the maximum number of instructions executed in parallel in ! reassociated tree. This parameter overrides target dependent heuristics used by default if has non zero value. ! `sched-pressure-algorithm' Choose between the two available implementations of ! `-fsched-pressure'. Algorithm 1 is the original implementation and is the more likely to prevent instructions from being reordered. Algorithm 2 was designed to be a compromise between the relatively conservative approach taken ! by algorithm 1 and the rather aggressive approach taken by ! the default scheduler. It relies more heavily on having a ! regular register file and accurate register pressure classes. ! See `haifa-sched.c' in the GCC sources for more details. The default choice depends on the target. ! `max-slsr-cand-scan' Set the maximum number of existing candidates that will be considered when seeking a basis for a new straight-line strength reduction candidate. -  File: gcc.info, Node: Preprocessor Options, Next: Assembler Options, Prev: Optimize Options, Up: Invoking GCC --- 8850,8981 ---- compiler to find more complex debug expressions, but compile time and memory use may grow. The default is 12. ! 'min-nondebug-insn-uid' Use uids starting at this parameter for nondebug insns. The range below the parameter is reserved exclusively for debug ! insns created by '-fvar-tracking-assignments', but debug insns ! may get (non-overlapping) uids above it if the reserved range ! is exhausted. ! 'ipa-sra-ptr-growth-factor' IPA-SRA replaces a pointer to an aggregate with one or more new parameters only when their cumulative size is less or ! equal to 'ipa-sra-ptr-growth-factor' times the size of the original pointer parameter. ! 'tm-max-aggregate-size' ! When making copies of thread-local variables in a transaction, ! this parameter specifies the size in bytes after which ! variables are saved with the logging functions as opposed to ! save/restore code sequence pairs. This option only applies ! when using '-fgnu-tm'. ! 'graphite-max-nb-scop-params' To avoid exponential effects in the Graphite loop transforms, the number of parameters in a Static Control Part (SCoP) is bounded. The default value is 10 parameters. A variable ! whose value is unknown at compilation time and defined outside ! a SCoP is a parameter of the SCoP. ! 'graphite-max-bbs-per-function' To avoid exponential effects in the detection of SCoPs, the size of the functions analyzed by Graphite is bounded. The default value is 100 basic blocks. ! 'loop-block-tile-size' Loop blocking or strip mining transforms, enabled with ! '-floop-block' or '-floop-strip-mine', strip mine each loop in ! the loop nest by a given number of iterations. The strip ! length can be changed using the 'loop-block-tile-size' parameter. The default value is 51 iterations. ! 'ipa-cp-value-list-size' IPA-CP attempts to track all possible values and types passed to a function's parameter in order to propagate them and ! perform devirtualization. 'ipa-cp-value-list-size' is the maximum number of values and types it stores per one formal parameter of a function. ! 'lto-partitions' Specify desired number of partitions produced during WHOPR compilation. The number of partitions should exceed the number of CPUs used for compilation. The default value is 32. ! 'lto-minpartition' Size of minimal partition for WHOPR (in estimated ! instructions). This prevents expenses of splitting very small ! programs into too many partitions. ! 'cxx-max-namespaces-for-diagnostic-help' The maximum number of namespaces to consult for suggestions when C++ name lookup fails for an identifier. The default is 1000. ! 'sink-frequency-threshold' The maximum relative execution frequency (in percents) of the ! target block relative to a statement's original block to allow ! statement sinking of a statement. Larger numbers result in ! more aggressive statement sinking. The default value is 75. ! A small positive adjustment is applied for statements with ! memory operands as those are even more profitable so sink. ! 'max-stores-to-sink' The maximum number of conditional stores paires that can be ! sunk. Set to 0 if either vectorization ('-ftree-vectorize') ! or if-conversion ('-ftree-loop-if-convert') is disabled. The default is 2. ! 'allow-load-data-races' ! Allow optimizers to introduce new data races on loads. Set to ! 1 to allow, otherwise to 0. This option is enabled by default ! unless implicitly set by the '-fmemory-model=' option. ! 'allow-store-data-races' Allow optimizers to introduce new data races on stores. Set to 1 to allow, otherwise to 0. This option is enabled by ! default unless implicitly set by the '-fmemory-model=' option. ! 'allow-packed-load-data-races' Allow optimizers to introduce new data races on packed data loads. Set to 1 to allow, otherwise to 0. This option is enabled by default unless implicitly set by the ! '-fmemory-model=' option. ! 'allow-packed-store-data-races' Allow optimizers to introduce new data races on packed data stores. Set to 1 to allow, otherwise to 0. This option is enabled by default unless implicitly set by the ! '-fmemory-model=' option. ! 'case-values-threshold' The smallest number of different values for which it is best ! to use a jump-table instead of a tree of conditional branches. ! If the value is 0, use the default for the machine. The ! default is 0. ! 'tree-reassoc-width' Set the maximum number of instructions executed in parallel in ! reassociated tree. This parameter overrides target dependent heuristics used by default if has non zero value. ! 'sched-pressure-algorithm' Choose between the two available implementations of ! '-fsched-pressure'. Algorithm 1 is the original implementation and is the more likely to prevent instructions from being reordered. Algorithm 2 was designed to be a compromise between the relatively conservative approach taken ! by algorithm 1 and the rather aggressive approach taken by the ! default scheduler. It relies more heavily on having a regular ! register file and accurate register pressure classes. See ! 'haifa-sched.c' in the GCC sources for more details. The default choice depends on the target. ! 'max-slsr-cand-scan' Set the maximum number of existing candidates that will be considered when seeking a basis for a new straight-line strength reduction candidate.  File: gcc.info, Node: Preprocessor Options, Next: Assembler Options, Prev: Optimize Options, Up: Invoking GCC *************** File: gcc.info, Node: Preprocessor Opti *** 9048,9097 **** These options control the C preprocessor, which is run on each C source file before actual compilation. ! If you use the `-E' option, nothing is done except preprocessing. ! Some of these options make sense only together with `-E' because they ! cause the preprocessor output to be unsuitable for actual compilation. ! `-Wp,OPTION' ! You can use `-Wp,OPTION' to bypass the compiler driver and pass OPTION directly through to the preprocessor. If OPTION contains commas, it is split into multiple options at the commas. However, many options are modified, translated or interpreted by the ! compiler driver before being passed to the preprocessor, and `-Wp' forcibly bypasses this phase. The preprocessor's direct interface is undocumented and subject to change, so whenever possible you ! should avoid using `-Wp' and let the driver handle the options instead. ! `-Xpreprocessor OPTION' Pass OPTION as an option to the preprocessor. You can use this to supply system-specific preprocessor options that GCC does not recognize. If you want to pass an option that takes an argument, you must use ! `-Xpreprocessor' twice, once for the option and once for the argument. ! `-no-integrated-cpp' Perform preprocessing as a separate pass before compilation. By default, GCC performs preprocessing as an integrated part of input tokenization and parsing. If this option is provided, the ! appropriate language front end (`cc1', `cc1plus', or `cc1obj' for C, C++, and Objective-C, respectively) is instead invoked twice, once for preprocessing only and once for actual compilation of the preprocessed input. This option may be useful in conjunction with ! the `-B' or `-wrapper' options to specify an alternate ! preprocessor or perform additional processing of the program ! source between normal preprocessing and compilation. ! `-D NAME' ! Predefine NAME as a macro, with definition `1'. ! `-D NAME=DEFINITION' The contents of DEFINITION are tokenized and processed as if they ! appeared during translation phase three in a `#define' directive. ! In particular, the definition will be truncated by embedded ! newline characters. If you are invoking the preprocessor from a shell or shell-like program you may need to use the shell's quoting syntax to protect --- 8985,9034 ---- These options control the C preprocessor, which is run on each C source file before actual compilation. ! If you use the '-E' option, nothing is done except preprocessing. Some ! of these options make sense only together with '-E' because they cause ! the preprocessor output to be unsuitable for actual compilation. ! '-Wp,OPTION' ! You can use '-Wp,OPTION' to bypass the compiler driver and pass OPTION directly through to the preprocessor. If OPTION contains commas, it is split into multiple options at the commas. However, many options are modified, translated or interpreted by the ! compiler driver before being passed to the preprocessor, and '-Wp' forcibly bypasses this phase. The preprocessor's direct interface is undocumented and subject to change, so whenever possible you ! should avoid using '-Wp' and let the driver handle the options instead. ! '-Xpreprocessor OPTION' Pass OPTION as an option to the preprocessor. You can use this to supply system-specific preprocessor options that GCC does not recognize. If you want to pass an option that takes an argument, you must use ! '-Xpreprocessor' twice, once for the option and once for the argument. ! '-no-integrated-cpp' Perform preprocessing as a separate pass before compilation. By default, GCC performs preprocessing as an integrated part of input tokenization and parsing. If this option is provided, the ! appropriate language front end ('cc1', 'cc1plus', or 'cc1obj' for C, C++, and Objective-C, respectively) is instead invoked twice, once for preprocessing only and once for actual compilation of the preprocessed input. This option may be useful in conjunction with ! the '-B' or '-wrapper' options to specify an alternate preprocessor ! or perform additional processing of the program source between ! normal preprocessing and compilation. ! '-D NAME' ! Predefine NAME as a macro, with definition '1'. ! '-D NAME=DEFINITION' The contents of DEFINITION are tokenized and processed as if they ! appeared during translation phase three in a '#define' directive. ! In particular, the definition will be truncated by embedded newline ! characters. If you are invoking the preprocessor from a shell or shell-like program you may need to use the shell's quoting syntax to protect *************** cause the preprocessor output to be unsu *** 9100,9173 **** If you wish to define a function-like macro on the command line, write its argument list with surrounding parentheses before the equals sign (if any). Parentheses are meaningful to most shells, ! so you will need to quote the option. With `sh' and `csh', ! `-D'NAME(ARGS...)=DEFINITION'' works. ! `-D' and `-U' options are processed in the order they are given on ! the command line. All `-imacros FILE' and `-include FILE' options ! are processed after all `-D' and `-U' options. ! `-U NAME' ! Cancel any previous definition of NAME, either built in or ! provided with a `-D' option. ! `-undef' Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined. ! `-I DIR' ! Add the directory DIR to the list of directories to be searched ! for header files. Directories named by `-I' are searched before ! the standard system include directories. If the directory DIR is ! a standard system include directory, the option is ignored to ! ensure that the default search order for system directories and ! the special treatment of system headers are not defeated . If DIR ! begins with `=', then the `=' will be replaced by the sysroot ! prefix; see `--sysroot' and `-isysroot'. ! `-o FILE' Write output to FILE. This is the same as specifying FILE as the ! second non-option argument to `cpp'. `gcc' has a different interpretation of a second non-option argument, so you must use ! `-o' to specify the output file. ! `-Wall' Turns on all optional warnings which are desirable for normal code. ! At present this is `-Wcomment', `-Wtrigraphs', `-Wmultichar' and a ! warning about integer promotion causing a change of sign in `#if' expressions. Note that many of the preprocessor's warnings are on by default and have no options to control them. ! `-Wcomment' ! `-Wcomments' ! Warn whenever a comment-start sequence `/*' appears in a `/*' ! comment, or whenever a backslash-newline appears in a `//' comment. (Both forms have the same effect.) ! `-Wtrigraphs' Most trigraphs in comments cannot affect the meaning of the program. However, a trigraph that would form an escaped newline ! (`??/' at the end of a line) can, by changing where the comment begins or ends. Therefore, only trigraphs that would form escaped newlines produce warnings inside a comment. ! This option is implied by `-Wall'. If `-Wall' is not given, this option is still enabled unless trigraphs are enabled. To get ! trigraph conversion without warnings, but get the other `-Wall' ! warnings, use `-trigraphs -Wall -Wno-trigraphs'. ! `-Wtraditional' Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. ! `-Wundef' Warn whenever an identifier which is not a macro is encountered in ! an `#if' directive, outside of `defined'. Such identifiers are replaced with zero. ! `-Wunused-macros' Warn about macros defined in the main file that are unused. A macro is "used" if it is expanded or tested for existence at least once. The preprocessor will also warn if the macro has not been --- 9037,9110 ---- If you wish to define a function-like macro on the command line, write its argument list with surrounding parentheses before the equals sign (if any). Parentheses are meaningful to most shells, ! so you will need to quote the option. With 'sh' and 'csh', ! '-D'NAME(ARGS...)=DEFINITION'' works. ! '-D' and '-U' options are processed in the order they are given on ! the command line. All '-imacros FILE' and '-include FILE' options ! are processed after all '-D' and '-U' options. ! '-U NAME' ! Cancel any previous definition of NAME, either built in or provided ! with a '-D' option. ! '-undef' Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined. ! '-I DIR' ! Add the directory DIR to the list of directories to be searched for ! header files. Directories named by '-I' are searched before the ! standard system include directories. If the directory DIR is a ! standard system include directory, the option is ignored to ensure ! that the default search order for system directories and the ! special treatment of system headers are not defeated . If DIR ! begins with '=', then the '=' will be replaced by the sysroot ! prefix; see '--sysroot' and '-isysroot'. ! '-o FILE' Write output to FILE. This is the same as specifying FILE as the ! second non-option argument to 'cpp'. 'gcc' has a different interpretation of a second non-option argument, so you must use ! '-o' to specify the output file. ! '-Wall' Turns on all optional warnings which are desirable for normal code. ! At present this is '-Wcomment', '-Wtrigraphs', '-Wmultichar' and a ! warning about integer promotion causing a change of sign in '#if' expressions. Note that many of the preprocessor's warnings are on by default and have no options to control them. ! '-Wcomment' ! '-Wcomments' ! Warn whenever a comment-start sequence '/*' appears in a '/*' ! comment, or whenever a backslash-newline appears in a '//' comment. (Both forms have the same effect.) ! '-Wtrigraphs' Most trigraphs in comments cannot affect the meaning of the program. However, a trigraph that would form an escaped newline ! ('??/' at the end of a line) can, by changing where the comment begins or ends. Therefore, only trigraphs that would form escaped newlines produce warnings inside a comment. ! This option is implied by '-Wall'. If '-Wall' is not given, this option is still enabled unless trigraphs are enabled. To get ! trigraph conversion without warnings, but get the other '-Wall' ! warnings, use '-trigraphs -Wall -Wno-trigraphs'. ! '-Wtraditional' Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. ! '-Wundef' Warn whenever an identifier which is not a macro is encountered in ! an '#if' directive, outside of 'defined'. Such identifiers are replaced with zero. ! '-Wunused-macros' Warn about macros defined in the main file that are unused. A macro is "used" if it is expanded or tested for existence at least once. The preprocessor will also warn if the macro has not been *************** cause the preprocessor output to be unsu *** 9186,9194 **** #if defined the_macro_causing_the_warning #endif ! `-Wendif-labels' ! Warn whenever an `#else' or an `#endif' are followed by text. ! This usually happens in code of the form #if FOO ... --- 9123,9131 ---- #if defined the_macro_causing_the_warning #endif ! '-Wendif-labels' ! Warn whenever an '#else' or an '#endif' are followed by text. This ! usually happens in code of the form #if FOO ... *************** cause the preprocessor output to be unsu *** 9196,9287 **** ... #endif FOO ! The second and third `FOO' should be in comments, but often are not in older programs. This warning is on by default. ! `-Werror' Make all warnings into hard errors. Source code which triggers warnings will be rejected. ! `-Wsystem-headers' Issue warnings for code in system headers. These are normally unhelpful in finding bugs in your own code, therefore suppressed. If you are responsible for the system library, you may want to see them. ! `-w' Suppress all warnings, including those which GNU CPP issues by default. ! `-pedantic' ! Issue all the mandatory diagnostics listed in the C standard. ! Some of them are left out by default, since they trigger ! frequently on harmless code. ! `-pedantic-errors' Issue all the mandatory diagnostics, and make all mandatory diagnostics into errors. This includes mandatory diagnostics that ! GCC issues without `-pedantic' but treats as warnings. ! `-M' Instead of outputting the result of preprocessing, output a rule ! suitable for `make' describing the dependencies of the main source ! file. The preprocessor outputs one `make' rule containing the object file name for that source file, a colon, and the names of ! all the included files, including those coming from `-include' or ! `-imacros' command line options. ! Unless specified explicitly (with `-MT' or `-MQ'), the object file name consists of the name of the source file with any suffix replaced with object file suffix and with any leading directory parts removed. If there are many included files then the rule is ! split into several lines using `\'-newline. The rule has no commands. ! This option does not suppress the preprocessor's debug output, ! such as `-dM'. To avoid mixing such debug output with the ! dependency rules you should explicitly specify the dependency ! output file with `-MF', or use an environment variable like ! `DEPENDENCIES_OUTPUT' (*note Environment Variables::). Debug ! output will still be sent to the regular output stream as normal. ! Passing `-M' to the driver implies `-E', and suppresses warnings ! with an implicit `-w'. ! `-MM' ! Like `-M' but do not mention header files that are found in system ! header directories, nor header files that are included, directly ! or indirectly, from such a header. This implies that the choice of angle brackets or double quotes in ! an `#include' directive does not in itself determine whether that ! header will appear in `-MM' dependency output. This is a slight change in semantics from GCC versions 3.0 and earlier. ! `-MF FILE' ! When used with `-M' or `-MM', specifies a file to write the ! dependencies to. If no `-MF' switch is given the preprocessor sends the rules to the same place it would have sent preprocessed output. ! When used with the driver options `-MD' or `-MMD', `-MF' overrides the default dependency output file. ! `-MG' ! In conjunction with an option such as `-M' requesting dependency ! generation, `-MG' assumes missing header files are generated files ! and adds them to the dependency list without raising an error. ! The dependency filename is taken directly from the `#include' ! directive without prepending any path. `-MG' also suppresses ! preprocessed output, as a missing header file renders this useless. This feature is used in automatic updating of makefiles. ! `-MP' This option instructs CPP to add a phony target for each dependency other than the main file, causing each to depend on nothing. These ! dummy rules work around errors `make' gives if you remove header ! files without updating the `Makefile' to match. This is typical output: --- 9133,9224 ---- ... #endif FOO ! The second and third 'FOO' should be in comments, but often are not in older programs. This warning is on by default. ! '-Werror' Make all warnings into hard errors. Source code which triggers warnings will be rejected. ! '-Wsystem-headers' Issue warnings for code in system headers. These are normally unhelpful in finding bugs in your own code, therefore suppressed. If you are responsible for the system library, you may want to see them. ! '-w' Suppress all warnings, including those which GNU CPP issues by default. ! '-pedantic' ! Issue all the mandatory diagnostics listed in the C standard. Some ! of them are left out by default, since they trigger frequently on ! harmless code. ! '-pedantic-errors' Issue all the mandatory diagnostics, and make all mandatory diagnostics into errors. This includes mandatory diagnostics that ! GCC issues without '-pedantic' but treats as warnings. ! '-M' Instead of outputting the result of preprocessing, output a rule ! suitable for 'make' describing the dependencies of the main source ! file. The preprocessor outputs one 'make' rule containing the object file name for that source file, a colon, and the names of ! all the included files, including those coming from '-include' or ! '-imacros' command line options. ! Unless specified explicitly (with '-MT' or '-MQ'), the object file name consists of the name of the source file with any suffix replaced with object file suffix and with any leading directory parts removed. If there are many included files then the rule is ! split into several lines using '\'-newline. The rule has no commands. ! This option does not suppress the preprocessor's debug output, such ! as '-dM'. To avoid mixing such debug output with the dependency ! rules you should explicitly specify the dependency output file with ! '-MF', or use an environment variable like 'DEPENDENCIES_OUTPUT' ! (*note Environment Variables::). Debug output will still be sent ! to the regular output stream as normal. ! Passing '-M' to the driver implies '-E', and suppresses warnings ! with an implicit '-w'. ! '-MM' ! Like '-M' but do not mention header files that are found in system ! header directories, nor header files that are included, directly or ! indirectly, from such a header. This implies that the choice of angle brackets or double quotes in ! an '#include' directive does not in itself determine whether that ! header will appear in '-MM' dependency output. This is a slight change in semantics from GCC versions 3.0 and earlier. ! '-MF FILE' ! When used with '-M' or '-MM', specifies a file to write the ! dependencies to. If no '-MF' switch is given the preprocessor sends the rules to the same place it would have sent preprocessed output. ! When used with the driver options '-MD' or '-MMD', '-MF' overrides the default dependency output file. ! '-MG' ! In conjunction with an option such as '-M' requesting dependency ! generation, '-MG' assumes missing header files are generated files ! and adds them to the dependency list without raising an error. The ! dependency filename is taken directly from the '#include' directive ! without prepending any path. '-MG' also suppresses preprocessed ! output, as a missing header file renders this useless. This feature is used in automatic updating of makefiles. ! '-MP' This option instructs CPP to add a phony target for each dependency other than the main file, causing each to depend on nothing. These ! dummy rules work around errors 'make' gives if you remove header ! files without updating the 'Makefile' to match. This is typical output: *************** cause the preprocessor output to be unsu *** 9289,9338 **** test.h: ! `-MT TARGET' Change the target of the rule emitted by dependency generation. By default CPP takes the name of the main input file, deletes any ! directory components and any file suffix such as `.c', and appends the platform's usual object suffix. The result is the target. ! An `-MT' option will set the target to be exactly the string you specify. If you want multiple targets, you can specify them as a ! single argument to `-MT', or use multiple `-MT' options. ! For example, `-MT '$(objpfx)foo.o'' might give $(objpfx)foo.o: foo.c ! `-MQ TARGET' ! Same as `-MT', but it quotes any characters which are special to ! Make. `-MQ '$(objpfx)foo.o'' gives $$(objpfx)foo.o: foo.c The default target is automatically quoted, as if it were given ! with `-MQ'. ! `-MD' ! `-MD' is equivalent to `-M -MF FILE', except that `-E' is not ! implied. The driver determines FILE based on whether an `-o' ! option is given. If it is, the driver uses its argument but with ! a suffix of `.d', otherwise it takes the name of the input file, ! removes any directory components and suffix, and applies a `.d' suffix. ! If `-MD' is used in conjunction with `-E', any `-o' switch is understood to specify the dependency output file (*note -MF: ! dashMF.), but if used without `-E', each `-o' is understood to specify a target object file. ! Since `-E' is not implied, `-MD' can be used to generate a dependency output file as a side-effect of the compilation process. ! `-MMD' ! Like `-MD' except mention only user header files, not system ! header files. ! `-fpch-deps' When using precompiled headers (*note Precompiled Headers::), this flag will cause the dependency-output flags to also list the files from the precompiled header's dependencies. If not specified only --- 9226,9277 ---- test.h: ! '-MT TARGET' ! Change the target of the rule emitted by dependency generation. By default CPP takes the name of the main input file, deletes any ! directory components and any file suffix such as '.c', and appends the platform's usual object suffix. The result is the target. ! An '-MT' option will set the target to be exactly the string you specify. If you want multiple targets, you can specify them as a ! single argument to '-MT', or use multiple '-MT' options. ! For example, '-MT '$(objpfx)foo.o'' might give $(objpfx)foo.o: foo.c ! '-MQ TARGET' ! ! Same as '-MT', but it quotes any characters which are special to ! Make. '-MQ '$(objpfx)foo.o'' gives $$(objpfx)foo.o: foo.c The default target is automatically quoted, as if it were given ! with '-MQ'. ! '-MD' ! '-MD' is equivalent to '-M -MF FILE', except that '-E' is not ! implied. The driver determines FILE based on whether an '-o' ! option is given. If it is, the driver uses its argument but with a ! suffix of '.d', otherwise it takes the name of the input file, ! removes any directory components and suffix, and applies a '.d' suffix. ! If '-MD' is used in conjunction with '-E', any '-o' switch is understood to specify the dependency output file (*note -MF: ! dashMF.), but if used without '-E', each '-o' is understood to specify a target object file. ! Since '-E' is not implied, '-MD' can be used to generate a dependency output file as a side-effect of the compilation process. ! '-MMD' ! Like '-MD' except mention only user header files, not system header ! files. ! '-fpch-deps' When using precompiled headers (*note Precompiled Headers::), this flag will cause the dependency-output flags to also list the files from the precompiled header's dependencies. If not specified only *************** cause the preprocessor output to be unsu *** 9340,9763 **** used to create it because those files are not consulted when a precompiled header is used. ! `-fpch-preprocess' This option allows use of a precompiled header (*note Precompiled ! Headers::) together with `-E'. It inserts a special `#pragma', ! `#pragma GCC pch_preprocess "FILENAME"' in the output to mark the place where the precompiled header was found, and its FILENAME. ! When `-fpreprocessed' is in use, GCC recognizes this `#pragma' and loads the PCH. This option is off by default, because the resulting preprocessed output is only really suitable as input to GCC. It is switched on ! by `-save-temps'. ! You should not write this `#pragma' in your own code, but it is safe to edit the filename if the PCH file is available in a different location. The filename may be absolute or it may be relative to GCC's current directory. ! `-x c' ! `-x c++' ! `-x objective-c' ! `-x assembler-with-cpp' Specify the source language: C, C++, Objective-C, or assembly. ! This has nothing to do with standards conformance or extensions; ! it merely selects which base syntax to expect. If you give none ! of these options, cpp will deduce the language from the extension ! of the source file: `.c', `.cc', `.m', or `.S'. Some other common extensions for C++ and assembly are also recognized. If cpp does not recognize the extension, it will treat the file as C; this is the most generic mode. ! _Note:_ Previous versions of cpp accepted a `-lang' option which selected both the language and the standards conformance level. ! This option has been removed, because it conflicts with the `-l' option. ! `-std=STANDARD' ! `-ansi' Specify the standard to which the code should conform. Currently CPP knows about C and C++ standards; others may be added in the future. STANDARD may be one of: ! `c90' ! `c89' ! `iso9899:1990' ! The ISO C standard from 1990. `c90' is the customary shorthand for this version of the standard. ! The `-ansi' option is equivalent to `-std=c90'. ! `iso9899:199409' The 1990 C standard, as amended in 1994. ! `iso9899:1999' ! `c99' ! `iso9899:199x' ! `c9x' The revised ISO C standard, published in December 1999. Before publication, this was known as C9X. ! `iso9899:2011' ! `c11' ! `c1x' The revised ISO C standard, published in December 2011. Before publication, this was known as C1X. ! `gnu90' ! `gnu89' The 1990 C standard plus GNU extensions. This is the default. ! `gnu99' ! `gnu9x' The 1999 C standard plus GNU extensions. ! `gnu11' ! `gnu1x' The 2011 C standard plus GNU extensions. ! `c++98' The 1998 ISO C++ standard plus amendments. ! `gnu++98' ! The same as `-std=c++98' plus GNU extensions. This is the default for C++ code. ! `-I-' ! Split the include path. Any directories specified with `-I' ! options before `-I-' are searched only for headers requested with ! `#include "FILE"'; they are not searched for `#include '. ! If additional directories are specified with `-I' options after ! the `-I-', those directories are searched for all `#include' directives. ! In addition, `-I-' inhibits the use of the directory of the current ! file directory as the first search directory for `#include "FILE"'. This option has been deprecated. ! `-nostdinc' Do not search the standard system directories for header files. ! Only the directories you have specified with `-I' options (and the directory of the current file, if appropriate) are searched. ! `-nostdinc++' Do not search for header files in the C++-specific standard directories, but do still search the other standard directories. (This option is used when building the C++ library.) ! `-include FILE' ! Process FILE as if `#include "file"' appeared as the first line of ! the primary source file. However, the first directory searched ! for FILE is the preprocessor's working directory _instead of_ the directory containing the main source file. If not found there, it ! is searched for in the remainder of the `#include "..."' search chain as normal. ! If multiple `-include' options are given, the files are included ! in the order they appear on the command line. ! `-imacros FILE' ! Exactly like `-include', except that any output produced by scanning FILE is thrown away. Macros it defines remain defined. This allows you to acquire all the macros from a header without also processing its declarations. ! All files specified by `-imacros' are processed before all files ! specified by `-include'. ! `-idirafter DIR' Search DIR for header files, but do it _after_ all directories ! specified with `-I' and the standard system directories have been exhausted. DIR is treated as a system include directory. If DIR ! begins with `=', then the `=' will be replaced by the sysroot ! prefix; see `--sysroot' and `-isysroot'. ! `-iprefix PREFIX' ! Specify PREFIX as the prefix for subsequent `-iwithprefix' ! options. If the prefix represents a directory, you should include ! the final `/'. ! `-iwithprefix DIR' ! `-iwithprefixbefore DIR' ! Append DIR to the prefix specified previously with `-iprefix', and add the resulting directory to the include search path. ! `-iwithprefixbefore' puts it in the same place `-I' would; ! `-iwithprefix' puts it where `-idirafter' would. ! `-isysroot DIR' ! This option is like the `--sysroot' option, but applies only to header files (except for Darwin targets, where it applies to both ! header files and libraries). See the `--sysroot' option for more information. ! `-imultilib DIR' Use DIR as a subdirectory of the directory containing target-specific C++ headers. ! `-isystem DIR' Search DIR for header files, after all directories specified by ! `-I' but before the standard system directories. Mark it as a system directory, so that it gets the same special treatment as is applied to the standard system directories. If DIR begins with ! `=', then the `=' will be replaced by the sysroot prefix; see ! `--sysroot' and `-isysroot'. ! `-iquote DIR' ! Search DIR only for header files requested with `#include "FILE"'; ! they are not searched for `#include ', before all ! directories specified by `-I' and before the standard system ! directories. If DIR begins with `=', then the `=' will be replaced ! by the sysroot prefix; see `--sysroot' and `-isysroot'. ! `-fdirectives-only' When preprocessing, handle directives, but do not expand macros. ! The option's behavior depends on the `-E' and `-fpreprocessed' options. ! With `-E', preprocessing is limited to the handling of directives ! such as `#define', `#ifdef', and `#error'. Other preprocessor ! operations, such as macro expansion and trigraph conversion are ! not performed. In addition, the `-dD' option is implicitly ! enabled. ! With `-fpreprocessed', predefinition of command line and most ! builtin macros is disabled. Macros such as `__LINE__', which are contextually dependent, are handled normally. This enables ! compilation of files previously preprocessed with `-E -fdirectives-only'. ! With both `-E' and `-fpreprocessed', the rules for ! `-fpreprocessed' take precedence. This enables full preprocessing ! of files previously preprocessed with `-E -fdirectives-only'. ! `-fdollars-in-identifiers' ! Accept `$' in identifiers. ! `-fextended-identifiers' Accept universal character names in identifiers. This option is experimental; in a future version of GCC, it will be enabled by default for C99 and C++. ! `-fno-canonical-system-headers' When preprocessing, do not shorten system header paths with canonicalization. ! `-fpreprocessed' Indicate to the preprocessor that the input file has already been preprocessed. This suppresses things like macro expansion, trigraph conversion, escaped newline splicing, and processing of most directives. The preprocessor still recognizes and removes ! comments, so that you can pass a file preprocessed with `-C' to ! the compiler without problems. In this mode the integrated preprocessor is little more than a tokenizer for the front ends. ! `-fpreprocessed' is implicit if the input file has one of the ! extensions `.i', `.ii' or `.mi'. These are the extensions that ! GCC uses for preprocessed files created by `-save-temps'. ! `-ftabstop=WIDTH' Set the distance between tab stops. This helps the preprocessor report correct column numbers in warnings or errors, even if tabs appear on the line. If the value is less than 1 or greater than 100, the option is ignored. The default is 8. ! `-fdebug-cpp' ! This option is only useful for debugging GCC. When used with ! `-E', dumps debugging information about location maps. Every ! token in the output is preceded by the dump of the map its location ! belongs to. The dump of the map holding the location of a token ! would be: ! {`P':`/file/path';`F':`/includer/path';`L':LINE_NUM;`C':COL_NUM;`S':SYSTEM_HEADER_P;`M':MAP_ADDRESS;`E':MACRO_EXPANSION_P,`loc':LOCATION} ! When used without `-E', this option has no effect. ! `-ftrack-macro-expansion[=LEVEL]' ! Track locations of tokens across macro expansions. This allows the compiler to emit diagnostic about the current macro expansion stack ! when a compilation error occurs in a macro expansion. Using this ! option makes the preprocessor and the compiler consume more ! memory. The LEVEL parameter can be used to choose the level of ! precision of token location tracking thus decreasing the memory ! consumption if necessary. Value `0' of LEVEL de-activates this ! option just as if no `-ftrack-macro-expansion' was present on the ! command line. Value `1' tracks tokens locations in a degraded mode ! for the sake of minimal memory overhead. In this mode all tokens ! resulting from the expansion of an argument of a function-like ! macro have the same location. Value `2' tracks tokens locations ! completely. This value is the most memory hungry. When this ! option is given no argument, the default parameter value is `2'. Note that -ftrack-macro-expansion=2 is activated by default. ! `-fexec-charset=CHARSET' Set the execution character set, used for string and character constants. The default is UTF-8. CHARSET can be any encoding ! supported by the system's `iconv' library routine. ! `-fwide-exec-charset=CHARSET' Set the wide execution character set, used for wide string and character constants. The default is UTF-32 or UTF-16, whichever ! corresponds to the width of `wchar_t'. As with `-fexec-charset', ! CHARSET can be any encoding supported by the system's `iconv' library routine; however, you will have problems with encodings ! that do not fit exactly in `wchar_t'. ! `-finput-charset=CHARSET' Set the input character set, used for translation from the ! character set of the input file to the source character set used ! by GCC. If the locale does not specify, or GCC cannot get this information from the locale, the default is UTF-8. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. CHARSET can be any encoding supported by the system's ! `iconv' library routine. ! `-fworking-directory' Enable generation of linemarkers in the preprocessor output that will let the compiler know the current working directory at the time of preprocessing. When this option is enabled, the preprocessor will emit, after the initial linemarker, a second linemarker with the current working directory followed by two slashes. GCC will use this directory, when it's present in the ! preprocessed input, as the directory emitted as the current ! working directory in some debugging information formats. This ! option is implicitly enabled if debugging information is enabled, ! but this can be inhibited with the negated form ! `-fno-working-directory'. If the `-P' flag is present in the ! command line, this option has no effect, since no `#line' ! directives are emitted whatsoever. ! `-fno-show-column' Do not print column numbers in diagnostics. This may be necessary if diagnostics are being scanned by a program that does not ! understand the column numbers, such as `dejagnu'. ! `-A PREDICATE=ANSWER' Make an assertion with the predicate PREDICATE and answer ANSWER. ! This form is preferred to the older form `-A PREDICATE(ANSWER)', which is still supported, because it does not use shell special characters. ! `-A -PREDICATE=ANSWER' Cancel an assertion with the predicate PREDICATE and answer ANSWER. ! `-dCHARS' ! CHARS is a sequence of one or more of the following characters, ! and must not be preceded by a space. Other characters are ! interpreted by the compiler proper, or reserved for future ! versions of GCC, and so are silently ignored. If you specify ! characters whose behavior conflicts, the result is undefined. ! `M' ! Instead of the normal output, generate a list of `#define' directives for all the macros defined during the execution of ! the preprocessor, including predefined macros. This gives ! you a way of finding out what is predefined in your version ! of the preprocessor. Assuming you have no file `foo.h', the ! command touch foo.h; cpp -dM foo.h will show all the predefined macros. ! If you use `-dM' without the `-E' option, `-dM' is ! interpreted as a synonym for `-fdump-rtl-mach'. *Note ! Debugging Options: (gcc)Debugging Options. ! `D' ! Like `M' except in two respects: it does _not_ include the ! predefined macros, and it outputs _both_ the `#define' directives and the result of preprocessing. Both kinds of output go to the standard output file. ! `N' ! Like `D', but emit only the macro names, not their expansions. ! `I' ! Output `#include' directives in addition to the result of preprocessing. ! `U' ! Like `D' except that only macros that are expanded, or whose definedness is tested in preprocessor directives, are output; the output is delayed until the use or test of the macro; and ! `#undef' directives are also output for macros tested but undefined at the time. ! `-P' Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers. ! `-C' Do not discard comments. All comments are passed through to the ! output file, except for comments in processed directives, which ! are deleted along with the directive. ! You should be prepared for side effects when using `-C'; it causes the preprocessor to treat comments as tokens in their own right. For example, comments appearing at the start of what would be a directive line have the effect of turning that line into an ordinary source line, since the first token on the line is no ! longer a `#'. ! `-CC' Do not discard comments, including during macro expansion. This is ! like `-C', except that comments contained within macros are also passed through to the output file where the macro is expanded. ! In addition to the side-effects of the `-C' option, the `-CC' ! option causes all C++-style comments inside a macro to be ! converted to C-style comments. This is to prevent later use of ! that macro from inadvertently commenting out the remainder of the ! source line. ! The `-CC' option is generally used to support lint comments. ! `-traditional-cpp' Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO C preprocessors. ! `-trigraphs' Process trigraph sequences. These are three-character sequences, ! all starting with `??', that are defined by ISO C to stand for ! single characters. For example, `??/' stands for `\', so `'??/n'' is a character constant for a newline. By default, GCC ignores trigraphs, but in standard-conforming modes it converts them. See ! the `-std' and `-ansi' options. The nine trigraphs and their replacements are Trigraph: ??( ??) ??< ??> ??= ??/ ??' ??! ??- Replacement: [ ] { } # \ ^ | ~ ! `-remap' Enable special code to work around file systems which only permit very short file names, such as MS-DOS. ! `--help' ! `--target-help' Print text describing all the command line options instead of preprocessing anything. ! `-v' Verbose mode. Print out GNU CPP's version number at the beginning of execution, and report the final form of the include path. ! `-H' Print the name of each header file used, in addition to other normal activities. Each name is indented to show how deep in the ! `#include' stack it is. Precompiled header files are also ! printed, even if they are found to be invalid; an invalid ! precompiled header file is printed with `...x' and a valid one ! with `...!' . ! `-version' ! `--version' Print out GNU CPP's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. --- 9279,9696 ---- used to create it because those files are not consulted when a precompiled header is used. ! '-fpch-preprocess' This option allows use of a precompiled header (*note Precompiled ! Headers::) together with '-E'. It inserts a special '#pragma', ! '#pragma GCC pch_preprocess "FILENAME"' in the output to mark the place where the precompiled header was found, and its FILENAME. ! When '-fpreprocessed' is in use, GCC recognizes this '#pragma' and loads the PCH. This option is off by default, because the resulting preprocessed output is only really suitable as input to GCC. It is switched on ! by '-save-temps'. ! You should not write this '#pragma' in your own code, but it is safe to edit the filename if the PCH file is available in a different location. The filename may be absolute or it may be relative to GCC's current directory. ! '-x c' ! '-x c++' ! '-x objective-c' ! '-x assembler-with-cpp' Specify the source language: C, C++, Objective-C, or assembly. ! This has nothing to do with standards conformance or extensions; it ! merely selects which base syntax to expect. If you give none of ! these options, cpp will deduce the language from the extension of ! the source file: '.c', '.cc', '.m', or '.S'. Some other common extensions for C++ and assembly are also recognized. If cpp does not recognize the extension, it will treat the file as C; this is the most generic mode. ! _Note:_ Previous versions of cpp accepted a '-lang' option which selected both the language and the standards conformance level. ! This option has been removed, because it conflicts with the '-l' option. ! '-std=STANDARD' ! '-ansi' Specify the standard to which the code should conform. Currently CPP knows about C and C++ standards; others may be added in the future. STANDARD may be one of: ! 'c90' ! 'c89' ! 'iso9899:1990' ! The ISO C standard from 1990. 'c90' is the customary shorthand for this version of the standard. ! The '-ansi' option is equivalent to '-std=c90'. ! 'iso9899:199409' The 1990 C standard, as amended in 1994. ! 'iso9899:1999' ! 'c99' ! 'iso9899:199x' ! 'c9x' The revised ISO C standard, published in December 1999. Before publication, this was known as C9X. ! 'iso9899:2011' ! 'c11' ! 'c1x' The revised ISO C standard, published in December 2011. Before publication, this was known as C1X. ! 'gnu90' ! 'gnu89' The 1990 C standard plus GNU extensions. This is the default. ! 'gnu99' ! 'gnu9x' The 1999 C standard plus GNU extensions. ! 'gnu11' ! 'gnu1x' The 2011 C standard plus GNU extensions. ! 'c++98' The 1998 ISO C++ standard plus amendments. ! 'gnu++98' ! The same as '-std=c++98' plus GNU extensions. This is the default for C++ code. ! '-I-' ! Split the include path. Any directories specified with '-I' ! options before '-I-' are searched only for headers requested with ! '#include "FILE"'; they are not searched for '#include '. If ! additional directories are specified with '-I' options after the ! '-I-', those directories are searched for all '#include' directives. ! In addition, '-I-' inhibits the use of the directory of the current ! file directory as the first search directory for '#include "FILE"'. This option has been deprecated. ! '-nostdinc' Do not search the standard system directories for header files. ! Only the directories you have specified with '-I' options (and the directory of the current file, if appropriate) are searched. ! '-nostdinc++' Do not search for header files in the C++-specific standard directories, but do still search the other standard directories. (This option is used when building the C++ library.) ! '-include FILE' ! Process FILE as if '#include "file"' appeared as the first line of ! the primary source file. However, the first directory searched for ! FILE is the preprocessor's working directory _instead of_ the directory containing the main source file. If not found there, it ! is searched for in the remainder of the '#include "..."' search chain as normal. ! If multiple '-include' options are given, the files are included in ! the order they appear on the command line. ! '-imacros FILE' ! Exactly like '-include', except that any output produced by scanning FILE is thrown away. Macros it defines remain defined. This allows you to acquire all the macros from a header without also processing its declarations. ! All files specified by '-imacros' are processed before all files ! specified by '-include'. ! '-idirafter DIR' Search DIR for header files, but do it _after_ all directories ! specified with '-I' and the standard system directories have been exhausted. DIR is treated as a system include directory. If DIR ! begins with '=', then the '=' will be replaced by the sysroot ! prefix; see '--sysroot' and '-isysroot'. ! '-iprefix PREFIX' ! Specify PREFIX as the prefix for subsequent '-iwithprefix' options. ! If the prefix represents a directory, you should include the final ! '/'. ! '-iwithprefix DIR' ! '-iwithprefixbefore DIR' ! Append DIR to the prefix specified previously with '-iprefix', and add the resulting directory to the include search path. ! '-iwithprefixbefore' puts it in the same place '-I' would; ! '-iwithprefix' puts it where '-idirafter' would. ! '-isysroot DIR' ! This option is like the '--sysroot' option, but applies only to header files (except for Darwin targets, where it applies to both ! header files and libraries). See the '--sysroot' option for more information. ! '-imultilib DIR' Use DIR as a subdirectory of the directory containing target-specific C++ headers. ! '-isystem DIR' Search DIR for header files, after all directories specified by ! '-I' but before the standard system directories. Mark it as a system directory, so that it gets the same special treatment as is applied to the standard system directories. If DIR begins with ! '=', then the '=' will be replaced by the sysroot prefix; see ! '--sysroot' and '-isysroot'. ! '-iquote DIR' ! Search DIR only for header files requested with '#include "FILE"'; ! they are not searched for '#include ', before all directories ! specified by '-I' and before the standard system directories. If ! DIR begins with '=', then the '=' will be replaced by the sysroot ! prefix; see '--sysroot' and '-isysroot'. ! '-fdirectives-only' When preprocessing, handle directives, but do not expand macros. ! The option's behavior depends on the '-E' and '-fpreprocessed' options. ! With '-E', preprocessing is limited to the handling of directives ! such as '#define', '#ifdef', and '#error'. Other preprocessor ! operations, such as macro expansion and trigraph conversion are not ! performed. In addition, the '-dD' option is implicitly enabled. ! With '-fpreprocessed', predefinition of command line and most ! builtin macros is disabled. Macros such as '__LINE__', which are contextually dependent, are handled normally. This enables ! compilation of files previously preprocessed with '-E -fdirectives-only'. ! With both '-E' and '-fpreprocessed', the rules for '-fpreprocessed' ! take precedence. This enables full preprocessing of files ! previously preprocessed with '-E -fdirectives-only'. ! '-fdollars-in-identifiers' ! Accept '$' in identifiers. ! '-fextended-identifiers' Accept universal character names in identifiers. This option is experimental; in a future version of GCC, it will be enabled by default for C99 and C++. ! '-fno-canonical-system-headers' When preprocessing, do not shorten system header paths with canonicalization. ! '-fpreprocessed' Indicate to the preprocessor that the input file has already been preprocessed. This suppresses things like macro expansion, trigraph conversion, escaped newline splicing, and processing of most directives. The preprocessor still recognizes and removes ! comments, so that you can pass a file preprocessed with '-C' to the ! compiler without problems. In this mode the integrated preprocessor is little more than a tokenizer for the front ends. ! '-fpreprocessed' is implicit if the input file has one of the ! extensions '.i', '.ii' or '.mi'. These are the extensions that GCC ! uses for preprocessed files created by '-save-temps'. ! '-ftabstop=WIDTH' Set the distance between tab stops. This helps the preprocessor report correct column numbers in warnings or errors, even if tabs appear on the line. If the value is less than 1 or greater than 100, the option is ignored. The default is 8. ! '-fdebug-cpp' ! This option is only useful for debugging GCC. When used with '-E', ! dumps debugging information about location maps. Every token in ! the output is preceded by the dump of the map its location belongs ! to. The dump of the map holding the location of a token would be: ! {'P':/file/path;'F':/includer/path;'L':LINE_NUM;'C':COL_NUM;'S':SYSTEM_HEADER_P;'M':MAP_ADDRESS;'E':MACRO_EXPANSION_P,'loc':LOCATION} ! When used without '-E', this option has no effect. ! '-ftrack-macro-expansion[=LEVEL]' ! Track locations of tokens across macro expansions. This allows the compiler to emit diagnostic about the current macro expansion stack ! when a compilation error occurs in a macro expansion. Using this ! option makes the preprocessor and the compiler consume more memory. ! The LEVEL parameter can be used to choose the level of precision of ! token location tracking thus decreasing the memory consumption if ! necessary. Value '0' of LEVEL de-activates this option just as if ! no '-ftrack-macro-expansion' was present on the command line. ! Value '1' tracks tokens locations in a degraded mode for the sake ! of minimal memory overhead. In this mode all tokens resulting from ! the expansion of an argument of a function-like macro have the same ! location. Value '2' tracks tokens locations completely. This ! value is the most memory hungry. When this option is given no ! argument, the default parameter value is '2'. Note that -ftrack-macro-expansion=2 is activated by default. ! '-fexec-charset=CHARSET' Set the execution character set, used for string and character constants. The default is UTF-8. CHARSET can be any encoding ! supported by the system's 'iconv' library routine. ! '-fwide-exec-charset=CHARSET' Set the wide execution character set, used for wide string and character constants. The default is UTF-32 or UTF-16, whichever ! corresponds to the width of 'wchar_t'. As with '-fexec-charset', ! CHARSET can be any encoding supported by the system's 'iconv' library routine; however, you will have problems with encodings ! that do not fit exactly in 'wchar_t'. ! '-finput-charset=CHARSET' Set the input character set, used for translation from the ! character set of the input file to the source character set used by ! GCC. If the locale does not specify, or GCC cannot get this information from the locale, the default is UTF-8. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. CHARSET can be any encoding supported by the system's ! 'iconv' library routine. ! '-fworking-directory' Enable generation of linemarkers in the preprocessor output that will let the compiler know the current working directory at the time of preprocessing. When this option is enabled, the preprocessor will emit, after the initial linemarker, a second linemarker with the current working directory followed by two slashes. GCC will use this directory, when it's present in the ! preprocessed input, as the directory emitted as the current working ! directory in some debugging information formats. This option is ! implicitly enabled if debugging information is enabled, but this ! can be inhibited with the negated form '-fno-working-directory'. ! If the '-P' flag is present in the command line, this option has no ! effect, since no '#line' directives are emitted whatsoever. ! '-fno-show-column' Do not print column numbers in diagnostics. This may be necessary if diagnostics are being scanned by a program that does not ! understand the column numbers, such as 'dejagnu'. ! '-A PREDICATE=ANSWER' Make an assertion with the predicate PREDICATE and answer ANSWER. ! This form is preferred to the older form '-A PREDICATE(ANSWER)', which is still supported, because it does not use shell special characters. ! '-A -PREDICATE=ANSWER' Cancel an assertion with the predicate PREDICATE and answer ANSWER. ! '-dCHARS' ! CHARS is a sequence of one or more of the following characters, and ! must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of GCC, and ! so are silently ignored. If you specify characters whose behavior ! conflicts, the result is undefined. ! 'M' ! Instead of the normal output, generate a list of '#define' directives for all the macros defined during the execution of ! the preprocessor, including predefined macros. This gives you ! a way of finding out what is predefined in your version of the ! preprocessor. Assuming you have no file 'foo.h', the command touch foo.h; cpp -dM foo.h will show all the predefined macros. ! If you use '-dM' without the '-E' option, '-dM' is interpreted ! as a synonym for '-fdump-rtl-mach'. *Note (gcc)Debugging ! Options::. ! 'D' ! Like 'M' except in two respects: it does _not_ include the ! predefined macros, and it outputs _both_ the '#define' directives and the result of preprocessing. Both kinds of output go to the standard output file. ! 'N' ! Like 'D', but emit only the macro names, not their expansions. ! 'I' ! Output '#include' directives in addition to the result of preprocessing. ! 'U' ! Like 'D' except that only macros that are expanded, or whose definedness is tested in preprocessor directives, are output; the output is delayed until the use or test of the macro; and ! '#undef' directives are also output for macros tested but undefined at the time. ! '-P' Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers. ! '-C' Do not discard comments. All comments are passed through to the ! output file, except for comments in processed directives, which are ! deleted along with the directive. ! You should be prepared for side effects when using '-C'; it causes the preprocessor to treat comments as tokens in their own right. For example, comments appearing at the start of what would be a directive line have the effect of turning that line into an ordinary source line, since the first token on the line is no ! longer a '#'. ! '-CC' Do not discard comments, including during macro expansion. This is ! like '-C', except that comments contained within macros are also passed through to the output file where the macro is expanded. ! In addition to the side-effects of the '-C' option, the '-CC' ! option causes all C++-style comments inside a macro to be converted ! to C-style comments. This is to prevent later use of that macro ! from inadvertently commenting out the remainder of the source line. ! The '-CC' option is generally used to support lint comments. ! '-traditional-cpp' Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO C preprocessors. ! '-trigraphs' Process trigraph sequences. These are three-character sequences, ! all starting with '??', that are defined by ISO C to stand for ! single characters. For example, '??/' stands for '\', so ''??/n'' is a character constant for a newline. By default, GCC ignores trigraphs, but in standard-conforming modes it converts them. See ! the '-std' and '-ansi' options. The nine trigraphs and their replacements are Trigraph: ??( ??) ??< ??> ??= ??/ ??' ??! ??- Replacement: [ ] { } # \ ^ | ~ ! '-remap' Enable special code to work around file systems which only permit very short file names, such as MS-DOS. ! '--help' ! '--target-help' Print text describing all the command line options instead of preprocessing anything. ! '-v' Verbose mode. Print out GNU CPP's version number at the beginning of execution, and report the final form of the include path. ! '-H' Print the name of each header file used, in addition to other normal activities. Each name is indented to show how deep in the ! '#include' stack it is. Precompiled header files are also printed, ! even if they are found to be invalid; an invalid precompiled header ! file is printed with '...x' and a valid one with '...!' . ! '-version' ! '--version' Print out GNU CPP's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. *************** File: gcc.info, Node: Assembler Options *** 9769,9786 **** You can pass options to the assembler. ! `-Wa,OPTION' Pass OPTION as an option to the assembler. If OPTION contains commas, it is split into multiple options at the commas. ! `-Xassembler OPTION' Pass OPTION as an option to the assembler. You can use this to supply system-specific assembler options that GCC does not recognize. If you want to pass an option that takes an argument, you must use ! `-Xassembler' twice, once for the option and once for the argument. !  File: gcc.info, Node: Link Options, Next: Directory Options, Prev: Assembler Options, Up: Invoking GCC --- 9702,9718 ---- You can pass options to the assembler. ! '-Wa,OPTION' Pass OPTION as an option to the assembler. If OPTION contains commas, it is split into multiple options at the commas. ! '-Xassembler OPTION' Pass OPTION as an option to the assembler. You can use this to supply system-specific assembler options that GCC does not recognize. If you want to pass an option that takes an argument, you must use ! '-Xassembler' twice, once for the option and once for the argument.  File: gcc.info, Node: Link Options, Next: Directory Options, Prev: Assembler Options, Up: Invoking GCC *************** These options come into play when the co *** 9792,10026 **** an executable output file. They are meaningless if the compiler is not doing a link step. ! `OBJECT-FILE-NAME' A file name that does not end in a special recognized suffix is considered to name an object file or library. (Object files are distinguished from libraries by the linker according to the file contents.) If linking is done, these object files are used as input to the linker. ! `-c' ! `-S' ! `-E' If any of these options is used, then the linker is not run, and object file names should not be used as arguments. *Note Overall Options::. ! `-lLIBRARY' ! `-l LIBRARY' Search the library named LIBRARY when linking. (The second alternative with the library as a separate argument is only for POSIX compliance and is not recommended.) It makes a difference where in the command you write this option; ! the linker searches and processes libraries and object files in ! the order they are specified. Thus, `foo.o -lz bar.o' searches ! library `z' after file `foo.o' but before `bar.o'. If `bar.o' ! refers to functions in `z', those functions may not be loaded. The linker searches a standard list of directories for the library, ! which is actually a file named `libLIBRARY.a'. The linker then uses this file as if it had been specified precisely by name. The directories searched include several standard system ! directories plus any that you specify with `-L'. Normally the files found this way are library files--archive files ! whose members are object files. The linker handles an archive ! file by scanning through it for members which define symbols that ! have so far been referenced but not defined. But if the file that ! is found is an ordinary object file, it is linked in the usual ! fashion. The only difference between using an `-l' option and ! specifying a file name is that `-l' surrounds LIBRARY with `lib' ! and `.a' and searches several directories. ! `-lobjc' ! You need this special case of the `-l' option in order to link an Objective-C or Objective-C++ program. ! `-nostartfiles' Do not use the standard system startup files when linking. The ! standard system libraries are used normally, unless `-nostdlib' or ! `-nodefaultlibs' is used. ! `-nodefaultlibs' Do not use the standard system libraries when linking. Only the libraries you specify are passed to the linker, and options specifying linkage of the system libraries, such as ! `-static-libgcc' or `-shared-libgcc', are ignored. The standard ! startup files are used normally, unless `-nostartfiles' is used. ! The compiler may generate calls to `memcmp', `memset', `memcpy' ! and `memmove'. These entries are usually resolved by entries in ! libc. These entry points should be supplied through some other ! mechanism when this option is specified. ! `-nostdlib' Do not use the standard system startup files or libraries when linking. No startup files and only the libraries you specify are passed to the linker, and options specifying linkage of the system ! libraries, such as `-static-libgcc' or `-shared-libgcc', are ignored. ! The compiler may generate calls to `memcmp', `memset', `memcpy' ! and `memmove'. These entries are usually resolved by entries in ! libc. These entry points should be supplied through some other ! mechanism when this option is specified. ! One of the standard libraries bypassed by `-nostdlib' and ! `-nodefaultlibs' is `libgcc.a', a library of internal subroutines which GCC uses to overcome shortcomings of particular machines, or special needs for some languages. (*Note Interfacing to GCC ! Output: (gccint)Interface, for more discussion of `libgcc.a'.) In ! most cases, you need `libgcc.a' even when you want to avoid other ! standard libraries. In other words, when you specify `-nostdlib' ! or `-nodefaultlibs' you should usually specify `-lgcc' as well. This ensures that you have no unresolved references to internal GCC ! library subroutines. (An example of such an internal subroutine ! is `__main', used to ensure C++ constructors are called; *note ! `collect2': (gccint)Collect2.) ! `-pie' Produce a position independent executable on targets that support ! it. For predictable results, you must also specify the same set ! of options used for compilation (`-fpie', `-fPIE', or model suboptions) when you specify this linker option. ! `-rdynamic' ! Pass the flag `-export-dynamic' to the ELF linker, on targets that ! support it. This instructs the linker to add all symbols, not only ! used ones, to the dynamic symbol table. This option is needed for ! some uses of `dlopen' or to allow obtaining backtraces from within a program. ! `-s' Remove all symbol table and relocation information from the executable. ! `-static' ! On systems that support dynamic linking, this prevents linking ! with the shared libraries. On other systems, this option has no ! effect. ! `-shared' ! Produce a shared object which can then be linked with other ! objects to form an executable. Not all systems support this ! option. For predictable results, you must also specify the same ! set of options used for compilation (`-fpic', `-fPIC', or model ! suboptions) when you specify this linker option.(1) ! `-shared-libgcc' ! `-static-libgcc' ! On systems that provide `libgcc' as a shared library, these options force the use of either the shared or static version, respectively. ! If no shared version of `libgcc' was built when the compiler was configured, these options have no effect. There are several situations in which an application should use the ! shared `libgcc' instead of the static version. The most common of these is when the application wishes to throw and catch exceptions across different shared libraries. In that case, each of the libraries as well as the application itself should use the shared ! `libgcc'. Therefore, the G++ and GCJ drivers automatically add ! `-shared-libgcc' whenever you build a shared library or a main ! executable, because C++ and Java programs typically use ! exceptions, so this is the right thing to do. ! If, instead, you use the GCC driver to create shared libraries, ! you may find that they are not always linked with the shared ! `libgcc'. If GCC finds, at its configuration time, that you have ! a non-GNU linker or a GNU linker that does not support option ! `--eh-frame-hdr', it links the shared version of `libgcc' into shared libraries by default. Otherwise, it takes advantage of the linker and optimizes away the linking with the shared version of ! `libgcc', linking with the static version of libgcc by default. This allows exceptions to propagate through such shared libraries, without incurring relocation costs at library load time. However, if a library or main executable is supposed to throw or catch exceptions, you must link it using the G++ or GCJ driver, as appropriate for the languages used in the program, or using the ! option `-shared-libgcc', such that it is linked with the shared ! `libgcc'. ! `-static-libasan' ! When the `-fsanitize=address' option is used to link a program, ! the GCC driver automatically links against `libasan'. If ! `libasan' is available as a shared library, and the `-static' ! option is not used, then this links against the shared version of ! `libasan'. The `-static-libasan' option directs the GCC driver to ! link `libasan' statically, without necessarily linking other ! libraries statically. ! `-static-libtsan' ! When the `-fsanitize=thread' option is used to link a program, the ! GCC driver automatically links against `libtsan'. If `libtsan' is ! available as a shared library, and the `-static' option is not ! used, then this links against the shared version of `libtsan'. ! The `-static-libtsan' option directs the GCC driver to link ! `libtsan' statically, without necessarily linking other libraries ! statically. ! `-static-libstdc++' ! When the `g++' program is used to link a C++ program, it normally ! automatically links against `libstdc++'. If `libstdc++' is ! available as a shared library, and the `-static' option is not ! used, then this links against the shared version of `libstdc++'. That is normally fine. However, it is sometimes useful to freeze ! the version of `libstdc++' used by the program without going all ! the way to a fully static link. The `-static-libstdc++' option ! directs the `g++' driver to link `libstdc++' statically, without necessarily linking other libraries statically. ! `-symbolic' Bind references to global symbols when building a shared object. ! Warn about any unresolved references (unless overridden by the ! link editor option `-Xlinker -z -Xlinker defs'). Only a few ! systems support this option. ! `-T SCRIPT' Use SCRIPT as the linker script. This option is supported by most systems using the GNU linker. On some targets, such as bare-board ! targets without an operating system, the `-T' option may be required when linking to avoid references to undefined symbols. ! `-Xlinker OPTION' ! Pass OPTION as an option to the linker. You can use this to ! supply system-specific linker options that GCC does not recognize. If you want to pass an option that takes a separate argument, you ! must use `-Xlinker' twice, once for the option and once for the ! argument. For example, to pass `-assert definitions', you must ! write `-Xlinker -assert -Xlinker definitions'. It does not work ! to write `-Xlinker "-assert definitions"', because this passes the entire string as a single argument, which is not what the linker expects. When using the GNU linker, it is usually more convenient to pass ! arguments to linker options using the `OPTION=VALUE' syntax than ! as separate arguments. For example, you can specify `-Xlinker ! -Map=output.map' rather than `-Xlinker -Map -Xlinker output.map'. Other linkers may not support this syntax for command-line options. ! `-Wl,OPTION' ! Pass OPTION as an option to the linker. If OPTION contains ! commas, it is split into multiple options at the commas. You can ! use this syntax to pass an argument to the option. For example, ! `-Wl,-Map,output.map' passes `-Map output.map' to the linker. ! When using the GNU linker, you can also get the same effect with ! `-Wl,-Map=output.map'. ! `-u SYMBOL' ! Pretend the symbol SYMBOL is undefined, to force linking of ! library modules to define it. You can use `-u' multiple times with different symbols to force loading of additional library modules. ! ---------- Footnotes ---------- ! (1) On some systems, `gcc -shared' needs to build supplementary stub ! code for constructors to work. On multi-libbed systems, `gcc -shared' must select the correct support libraries to link against. Failing to supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary is innocuous. --- 9724,9955 ---- an executable output file. They are meaningless if the compiler is not doing a link step. ! 'OBJECT-FILE-NAME' A file name that does not end in a special recognized suffix is considered to name an object file or library. (Object files are distinguished from libraries by the linker according to the file contents.) If linking is done, these object files are used as input to the linker. ! '-c' ! '-S' ! '-E' If any of these options is used, then the linker is not run, and object file names should not be used as arguments. *Note Overall Options::. ! '-lLIBRARY' ! '-l LIBRARY' Search the library named LIBRARY when linking. (The second alternative with the library as a separate argument is only for POSIX compliance and is not recommended.) It makes a difference where in the command you write this option; ! the linker searches and processes libraries and object files in the ! order they are specified. Thus, 'foo.o -lz bar.o' searches library ! 'z' after file 'foo.o' but before 'bar.o'. If 'bar.o' refers to ! functions in 'z', those functions may not be loaded. The linker searches a standard list of directories for the library, ! which is actually a file named 'libLIBRARY.a'. The linker then uses this file as if it had been specified precisely by name. The directories searched include several standard system ! directories plus any that you specify with '-L'. Normally the files found this way are library files--archive files ! whose members are object files. The linker handles an archive file ! by scanning through it for members which define symbols that have ! so far been referenced but not defined. But if the file that is ! found is an ordinary object file, it is linked in the usual ! fashion. The only difference between using an '-l' option and ! specifying a file name is that '-l' surrounds LIBRARY with 'lib' ! and '.a' and searches several directories. ! '-lobjc' ! You need this special case of the '-l' option in order to link an Objective-C or Objective-C++ program. ! '-nostartfiles' Do not use the standard system startup files when linking. The ! standard system libraries are used normally, unless '-nostdlib' or ! '-nodefaultlibs' is used. ! '-nodefaultlibs' Do not use the standard system libraries when linking. Only the libraries you specify are passed to the linker, and options specifying linkage of the system libraries, such as ! '-static-libgcc' or '-shared-libgcc', are ignored. The standard ! startup files are used normally, unless '-nostartfiles' is used. ! The compiler may generate calls to 'memcmp', 'memset', 'memcpy' and ! 'memmove'. These entries are usually resolved by entries in libc. ! These entry points should be supplied through some other mechanism ! when this option is specified. ! '-nostdlib' Do not use the standard system startup files or libraries when linking. No startup files and only the libraries you specify are passed to the linker, and options specifying linkage of the system ! libraries, such as '-static-libgcc' or '-shared-libgcc', are ignored. ! The compiler may generate calls to 'memcmp', 'memset', 'memcpy' and ! 'memmove'. These entries are usually resolved by entries in libc. ! These entry points should be supplied through some other mechanism ! when this option is specified. ! One of the standard libraries bypassed by '-nostdlib' and ! '-nodefaultlibs' is 'libgcc.a', a library of internal subroutines which GCC uses to overcome shortcomings of particular machines, or special needs for some languages. (*Note Interfacing to GCC ! Output: (gccint)Interface, for more discussion of 'libgcc.a'.) In ! most cases, you need 'libgcc.a' even when you want to avoid other ! standard libraries. In other words, when you specify '-nostdlib' ! or '-nodefaultlibs' you should usually specify '-lgcc' as well. This ensures that you have no unresolved references to internal GCC ! library subroutines. (An example of such an internal subroutine is ! '__main', used to ensure C++ constructors are called; *note ! 'collect2': (gccint)Collect2.) ! '-pie' Produce a position independent executable on targets that support ! it. For predictable results, you must also specify the same set of ! options used for compilation ('-fpie', '-fPIE', or model suboptions) when you specify this linker option. ! '-rdynamic' ! Pass the flag '-export-dynamic' to the ELF linker, on targets that ! support it. This instructs the linker to add all symbols, not only ! used ones, to the dynamic symbol table. This option is needed for ! some uses of 'dlopen' or to allow obtaining backtraces from within a program. ! '-s' Remove all symbol table and relocation information from the executable. ! '-static' ! On systems that support dynamic linking, this prevents linking with ! the shared libraries. On other systems, this option has no effect. ! '-shared' ! Produce a shared object which can then be linked with other objects ! to form an executable. Not all systems support this option. For ! predictable results, you must also specify the same set of options ! used for compilation ('-fpic', '-fPIC', or model suboptions) when ! you specify this linker option.(1) ! '-shared-libgcc' ! '-static-libgcc' ! On systems that provide 'libgcc' as a shared library, these options force the use of either the shared or static version, respectively. ! If no shared version of 'libgcc' was built when the compiler was configured, these options have no effect. There are several situations in which an application should use the ! shared 'libgcc' instead of the static version. The most common of these is when the application wishes to throw and catch exceptions across different shared libraries. In that case, each of the libraries as well as the application itself should use the shared ! 'libgcc'. Therefore, the G++ and GCJ drivers automatically add ! '-shared-libgcc' whenever you build a shared library or a main ! executable, because C++ and Java programs typically use exceptions, ! so this is the right thing to do. ! If, instead, you use the GCC driver to create shared libraries, you ! may find that they are not always linked with the shared 'libgcc'. ! If GCC finds, at its configuration time, that you have a non-GNU ! linker or a GNU linker that does not support option ! '--eh-frame-hdr', it links the shared version of 'libgcc' into shared libraries by default. Otherwise, it takes advantage of the linker and optimizes away the linking with the shared version of ! 'libgcc', linking with the static version of libgcc by default. This allows exceptions to propagate through such shared libraries, without incurring relocation costs at library load time. However, if a library or main executable is supposed to throw or catch exceptions, you must link it using the G++ or GCJ driver, as appropriate for the languages used in the program, or using the ! option '-shared-libgcc', such that it is linked with the shared ! 'libgcc'. ! '-static-libasan' ! When the '-fsanitize=address' option is used to link a program, the ! GCC driver automatically links against 'libasan'. If 'libasan' is ! available as a shared library, and the '-static' option is not ! used, then this links against the shared version of 'libasan'. The ! '-static-libasan' option directs the GCC driver to link 'libasan' ! statically, without necessarily linking other libraries statically. ! '-static-libtsan' ! When the '-fsanitize=thread' option is used to link a program, the ! GCC driver automatically links against 'libtsan'. If 'libtsan' is ! available as a shared library, and the '-static' option is not ! used, then this links against the shared version of 'libtsan'. The ! '-static-libtsan' option directs the GCC driver to link 'libtsan' ! statically, without necessarily linking other libraries statically. ! '-static-libstdc++' ! When the 'g++' program is used to link a C++ program, it normally ! automatically links against 'libstdc++'. If 'libstdc++' is ! available as a shared library, and the '-static' option is not ! used, then this links against the shared version of 'libstdc++'. That is normally fine. However, it is sometimes useful to freeze ! the version of 'libstdc++' used by the program without going all ! the way to a fully static link. The '-static-libstdc++' option ! directs the 'g++' driver to link 'libstdc++' statically, without necessarily linking other libraries statically. ! '-symbolic' Bind references to global symbols when building a shared object. ! Warn about any unresolved references (unless overridden by the link ! editor option '-Xlinker -z -Xlinker defs'). Only a few systems ! support this option. ! '-T SCRIPT' Use SCRIPT as the linker script. This option is supported by most systems using the GNU linker. On some targets, such as bare-board ! targets without an operating system, the '-T' option may be required when linking to avoid references to undefined symbols. ! '-Xlinker OPTION' ! Pass OPTION as an option to the linker. You can use this to supply ! system-specific linker options that GCC does not recognize. If you want to pass an option that takes a separate argument, you ! must use '-Xlinker' twice, once for the option and once for the ! argument. For example, to pass '-assert definitions', you must ! write '-Xlinker -assert -Xlinker definitions'. It does not work to ! write '-Xlinker "-assert definitions"', because this passes the entire string as a single argument, which is not what the linker expects. When using the GNU linker, it is usually more convenient to pass ! arguments to linker options using the 'OPTION=VALUE' syntax than as ! separate arguments. For example, you can specify '-Xlinker ! -Map=output.map' rather than '-Xlinker -Map -Xlinker output.map'. Other linkers may not support this syntax for command-line options. ! '-Wl,OPTION' ! Pass OPTION as an option to the linker. If OPTION contains commas, ! it is split into multiple options at the commas. You can use this ! syntax to pass an argument to the option. For example, ! '-Wl,-Map,output.map' passes '-Map output.map' to the linker. When ! using the GNU linker, you can also get the same effect with ! '-Wl,-Map=output.map'. ! '-u SYMBOL' ! Pretend the symbol SYMBOL is undefined, to force linking of library ! modules to define it. You can use '-u' multiple times with different symbols to force loading of additional library modules. ! ---------- Footnotes ---------- ! (1) On some systems, 'gcc -shared' needs to build supplementary stub ! code for constructors to work. On multi-libbed systems, 'gcc -shared' must select the correct support libraries to link against. Failing to supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary is innocuous. *************** File: gcc.info, Node: Directory Options *** 10034,10169 **** These options specify directories to search for header files, for libraries and for parts of the compiler: ! `-IDIR' Add the directory DIR to the head of the list of directories to be searched for header files. This can be used to override a system ! header file, substituting your own version, since these ! directories are searched before the system header file ! directories. However, you should not use this option to add ! directories that contain vendor-supplied system header files (use ! `-isystem' for that). If you use more than one `-I' option, the ! directories are scanned in left-to-right order; the standard ! system directories come after. If a standard system include directory, or a directory specified ! with `-isystem', is also specified with `-I', the `-I' option is ! ignored. The directory is still searched but as a system ! directory at its normal position in the system include chain. ! This is to ensure that GCC's procedure to fix buggy system headers ! and the ordering for the `include_next' directive are not ! inadvertently changed. If you really need to change the search ! order for system directories, use the `-nostdinc' and/or ! `-isystem' options. ! `-iplugindir=DIR' Set the directory to search for plugins that are passed by ! `-fplugin=NAME' instead of `-fplugin=PATH/NAME.so'. This option ! is not meant to be used by the user, but only passed by the driver. ! `-iquoteDIR' Add the directory DIR to the head of the list of directories to be ! searched for header files only for the case of `#include "FILE"'; ! they are not searched for `#include ', otherwise just like ! `-I'. ! `-LDIR' Add directory DIR to the list of directories to be searched for ! `-l'. ! `-BPREFIX' This option specifies where to find the executables, libraries, include files, and data files of the compiler itself. The compiler driver program runs one or more of the subprograms ! `cpp', `cc1', `as' and `ld'. It tries PREFIX as a prefix for each ! program it tries to run, both with and without `MACHINE/VERSION/' (*note Target Options::). For each subprogram to be run, the compiler driver first tries the ! `-B' prefix, if any. If that name is not found, or if `-B' is not ! specified, the driver tries two standard prefixes, `/usr/lib/gcc/' ! and `/usr/local/lib/gcc/'. If neither of those results in a file name that is found, the unmodified program name is searched for ! using the directories specified in your `PATH' environment variable. ! The compiler checks to see if the path provided by the `-B' refers to a directory, and if necessary it adds a directory separator character at the end of the path. ! `-B' prefixes that effectively specify directory names also apply to libraries in the linker, because the compiler translates these ! options into `-L' options for the linker. They also apply to ! includes files in the preprocessor, because the compiler ! translates these options into `-isystem' options for the ! preprocessor. In this case, the compiler appends `include' to the ! prefix. ! The runtime support file `libgcc.a' can also be searched for using ! the `-B' prefix, if needed. If it is not found there, the two standard prefixes above are tried, and that is all. The file is left out of the link if it is not found by those means. ! Another way to specify a prefix much like the `-B' prefix is to use ! the environment variable `GCC_EXEC_PREFIX'. *Note Environment Variables::. ! As a special kludge, if the path provided by `-B' is ! `[dir/]stageN/', where N is a number in the range 0 to 9, then it ! is replaced by `[dir/]include'. This is to help with boot-strapping the compiler. ! `-specs=FILE' ! Process FILE after the compiler reads in the standard `specs' ! file, in order to override the defaults which the `gcc' driver ! program uses when determining what switches to pass to `cc1', ! `cc1plus', `as', `ld', etc. More than one `-specs=FILE' can be ! specified on the command line, and they are processed in order, ! from left to right. ! `--sysroot=DIR' Use DIR as the logical root directory for headers and libraries. For example, if the compiler normally searches for headers in ! `/usr/include' and libraries in `/usr/lib', it instead searches ! `DIR/usr/include' and `DIR/usr/lib'. ! If you use both this option and the `-isysroot' option, then the ! `--sysroot' option applies to libraries, but the `-isysroot' ! option applies to header files. The GNU linker (beginning with version 2.16) has the necessary support for this option. If your linker does not support this ! option, the header file aspect of `--sysroot' still works, but the library aspect does not. ! `--no-sysroot-suffix' For some targets, a suffix is added to the root directory specified ! with `--sysroot', depending on the other options used, so that ! headers may for example be found in `DIR/SUFFIX/usr/include' ! instead of `DIR/usr/include'. This option disables the addition of such a suffix. ! `-I-' ! This option has been deprecated. Please use `-iquote' instead for ! `-I' directories before the `-I-' and remove the `-I-'. Any ! directories you specify with `-I' options before the `-I-' option ! are searched only for the case of `#include "FILE"'; they are not ! searched for `#include '. ! If additional directories are specified with `-I' options after ! the `-I-', these directories are searched for all `#include' ! directives. (Ordinarily _all_ `-I' directories are used this way.) ! In addition, the `-I-' option inhibits the use of the current directory (where the current input file came from) as the first ! search directory for `#include "FILE"'. There is no way to ! override this effect of `-I-'. With `-I.' you can specify searching the directory that is current when the compiler is invoked. That is not exactly the same as what the preprocessor does by default, but it is often satisfactory. ! `-I-' does not inhibit the use of the standard system directories ! for header files. Thus, `-I-' and `-nostdinc' are independent.  File: gcc.info, Node: Spec Files, Next: Target Options, Prev: Directory Options, Up: Invoking GCC --- 9963,10095 ---- These options specify directories to search for header files, for libraries and for parts of the compiler: ! '-IDIR' Add the directory DIR to the head of the list of directories to be searched for header files. This can be used to override a system ! header file, substituting your own version, since these directories ! are searched before the system header file directories. However, ! you should not use this option to add directories that contain ! vendor-supplied system header files (use '-isystem' for that). If ! you use more than one '-I' option, the directories are scanned in ! left-to-right order; the standard system directories come after. If a standard system include directory, or a directory specified ! with '-isystem', is also specified with '-I', the '-I' option is ! ignored. The directory is still searched but as a system directory ! at its normal position in the system include chain. This is to ! ensure that GCC's procedure to fix buggy system headers and the ! ordering for the 'include_next' directive are not inadvertently ! changed. If you really need to change the search order for system ! directories, use the '-nostdinc' and/or '-isystem' options. ! '-iplugindir=DIR' Set the directory to search for plugins that are passed by ! '-fplugin=NAME' instead of '-fplugin=PATH/NAME.so'. This option is ! not meant to be used by the user, but only passed by the driver. ! '-iquoteDIR' Add the directory DIR to the head of the list of directories to be ! searched for header files only for the case of '#include "FILE"'; ! they are not searched for '#include ', otherwise just like ! '-I'. ! '-LDIR' Add directory DIR to the list of directories to be searched for ! '-l'. ! '-BPREFIX' This option specifies where to find the executables, libraries, include files, and data files of the compiler itself. The compiler driver program runs one or more of the subprograms ! 'cpp', 'cc1', 'as' and 'ld'. It tries PREFIX as a prefix for each ! program it tries to run, both with and without 'MACHINE/VERSION/' (*note Target Options::). For each subprogram to be run, the compiler driver first tries the ! '-B' prefix, if any. If that name is not found, or if '-B' is not ! specified, the driver tries two standard prefixes, '/usr/lib/gcc/' ! and '/usr/local/lib/gcc/'. If neither of those results in a file name that is found, the unmodified program name is searched for ! using the directories specified in your 'PATH' environment variable. ! The compiler checks to see if the path provided by the '-B' refers to a directory, and if necessary it adds a directory separator character at the end of the path. ! '-B' prefixes that effectively specify directory names also apply to libraries in the linker, because the compiler translates these ! options into '-L' options for the linker. They also apply to ! includes files in the preprocessor, because the compiler translates ! these options into '-isystem' options for the preprocessor. In ! this case, the compiler appends 'include' to the prefix. ! The runtime support file 'libgcc.a' can also be searched for using ! the '-B' prefix, if needed. If it is not found there, the two standard prefixes above are tried, and that is all. The file is left out of the link if it is not found by those means. ! Another way to specify a prefix much like the '-B' prefix is to use ! the environment variable 'GCC_EXEC_PREFIX'. *Note Environment Variables::. ! As a special kludge, if the path provided by '-B' is ! '[dir/]stageN/', where N is a number in the range 0 to 9, then it ! is replaced by '[dir/]include'. This is to help with boot-strapping the compiler. ! '-specs=FILE' ! Process FILE after the compiler reads in the standard 'specs' file, ! in order to override the defaults which the 'gcc' driver program ! uses when determining what switches to pass to 'cc1', 'cc1plus', ! 'as', 'ld', etc. More than one '-specs=FILE' can be specified on ! the command line, and they are processed in order, from left to ! right. ! '--sysroot=DIR' Use DIR as the logical root directory for headers and libraries. For example, if the compiler normally searches for headers in ! '/usr/include' and libraries in '/usr/lib', it instead searches ! 'DIR/usr/include' and 'DIR/usr/lib'. ! If you use both this option and the '-isysroot' option, then the ! '--sysroot' option applies to libraries, but the '-isysroot' option ! applies to header files. The GNU linker (beginning with version 2.16) has the necessary support for this option. If your linker does not support this ! option, the header file aspect of '--sysroot' still works, but the library aspect does not. ! '--no-sysroot-suffix' For some targets, a suffix is added to the root directory specified ! with '--sysroot', depending on the other options used, so that ! headers may for example be found in 'DIR/SUFFIX/usr/include' ! instead of 'DIR/usr/include'. This option disables the addition of such a suffix. ! '-I-' ! This option has been deprecated. Please use '-iquote' instead for ! '-I' directories before the '-I-' and remove the '-I-'. Any ! directories you specify with '-I' options before the '-I-' option ! are searched only for the case of '#include "FILE"'; they are not ! searched for '#include '. ! If additional directories are specified with '-I' options after the ! '-I-', these directories are searched for all '#include' ! directives. (Ordinarily _all_ '-I' directories are used this way.) ! In addition, the '-I-' option inhibits the use of the current directory (where the current input file came from) as the first ! search directory for '#include "FILE"'. There is no way to ! override this effect of '-I-'. With '-I.' you can specify searching the directory that is current when the compiler is invoked. That is not exactly the same as what the preprocessor does by default, but it is often satisfactory. ! '-I-' does not inhibit the use of the standard system directories ! for header files. Thus, '-I-' and '-nostdinc' are independent.  File: gcc.info, Node: Spec Files, Next: Target Options, Prev: Directory Options, Up: Invoking GCC *************** File: gcc.info, Node: Spec Files, Next *** 10171,10209 **** 3.15 Specifying subprocesses and the switches to pass to them ============================================================= ! `gcc' is a driver program. It performs its job by invoking a sequence of other programs to do the work of compiling, assembling and linking. GCC interprets its command-line parameters and uses these to deduce ! which programs it should invoke, and which command-line options it ! ought to place on their command lines. This behavior is controlled by ! "spec strings". In most cases there is one spec string for each ! program that GCC can invoke, but a few programs have multiple spec ! strings to control their behavior. The spec strings built into GCC can ! be overridden by using the `-specs=' command-line switch to specify a ! spec file. "Spec files" are plaintext files that are used to construct spec strings. They consist of a sequence of directives separated by blank lines. The type of directive is determined by the first non-whitespace character on the line, which can be one of the following: ! `%COMMAND' Issues a COMMAND to the spec file processor. The commands that can appear here are: ! `%include ' Search for FILE and insert its text at the current point in the specs file. ! `%include_noerr ' ! Just like `%include', but do not generate an error message if the include file cannot be found. ! `%rename OLD_NAME NEW_NAME' Rename the spec string OLD_NAME to NEW_NAME. ! ! `*[SPEC_NAME]:' This tells the compiler to create, override or delete the named spec string. All lines after this directive up to the next directive or blank line are considered to be the text for the spec --- 10097,10133 ---- 3.15 Specifying subprocesses and the switches to pass to them ============================================================= ! 'gcc' is a driver program. It performs its job by invoking a sequence of other programs to do the work of compiling, assembling and linking. GCC interprets its command-line parameters and uses these to deduce ! which programs it should invoke, and which command-line options it ought ! to place on their command lines. This behavior is controlled by "spec ! strings". In most cases there is one spec string for each program that ! GCC can invoke, but a few programs have multiple spec strings to control ! their behavior. The spec strings built into GCC can be overridden by ! using the '-specs=' command-line switch to specify a spec file. "Spec files" are plaintext files that are used to construct spec strings. They consist of a sequence of directives separated by blank lines. The type of directive is determined by the first non-whitespace character on the line, which can be one of the following: ! '%COMMAND' Issues a COMMAND to the spec file processor. The commands that can appear here are: ! '%include ' Search for FILE and insert its text at the current point in the specs file. ! '%include_noerr ' ! Just like '%include', but do not generate an error message if the include file cannot be found. ! '%rename OLD_NAME NEW_NAME' Rename the spec string OLD_NAME to NEW_NAME. ! '*[SPEC_NAME]:' This tells the compiler to create, override or delete the named spec string. All lines after this directive up to the next directive or blank line are considered to be the text for the spec *************** character on the line, which can be one *** 10212,10222 **** Otherwise, if the spec does not currently exist a new spec is created. If the spec does exist then its contents are overridden by the text of this directive, unless the first character of that ! text is the `+' character, in which case the text is appended to the spec. ! `[SUFFIX]:' ! Creates a new `[SUFFIX] spec' pair. All lines after this directive and up to the next directive or blank line are considered to make up the spec string for the indicated suffix. When the compiler encounters an input file with the named suffix, it processes the --- 10136,10146 ---- Otherwise, if the spec does not currently exist a new spec is created. If the spec does exist then its contents are overridden by the text of this directive, unless the first character of that ! text is the '+' character, in which case the text is appended to the spec. ! '[SUFFIX]:' ! Creates a new '[SUFFIX] spec' pair. All lines after this directive and up to the next directive or blank line are considered to make up the spec string for the indicated suffix. When the compiler encounters an input file with the named suffix, it processes the *************** character on the line, which can be one *** 10226,10242 **** .ZZ: z-compile -input %i ! This says that any input file whose name ends in `.ZZ' should be ! passed to the program `z-compile', which should be invoked with the ! command-line switch `-input' and with the result of performing the ! `%i' substitution. (See below.) As an alternative to providing a spec string, the text following a suffix directive can be one of the following: ! `@LANGUAGE' This says that the suffix is an alias for a known LANGUAGE. ! This is similar to using the `-x' command-line switch to GCC to specify a language explicitly. For example: .ZZ: --- 10150,10166 ---- .ZZ: z-compile -input %i ! This says that any input file whose name ends in '.ZZ' should be ! passed to the program 'z-compile', which should be invoked with the ! command-line switch '-input' and with the result of performing the ! '%i' substitution. (See below.) As an alternative to providing a spec string, the text following a suffix directive can be one of the following: ! '@LANGUAGE' This says that the suffix is an alias for a known LANGUAGE. ! This is similar to using the '-x' command-line switch to GCC to specify a language explicitly. For example: .ZZ: *************** character on the line, which can be one *** 10244,10250 **** Says that .ZZ files are, in fact, C++ source files. ! `#NAME' This causes an error messages saying: NAME compiler not installed on this system. --- 10168,10174 ---- Says that .ZZ files are, in fact, C++ source files. ! '#NAME' This causes an error messages saying: NAME compiler not installed on this system. *************** character on the line, which can be one *** 10255,10261 **** effectively possible to override earlier entries using this technique. - GCC has the following spec strings built into it. Spec files can override these strings or create their own. Note that individual targets can also add their own spec strings to this list. --- 10179,10184 ---- *************** targets can also add their own spec stri *** 10271,10277 **** libgcc Decides which GCC support library to pass to the linker linker Sets the name of the linker predefines Defines to be passed to the C preprocessor ! signed_char Defines to pass to CPP to say whether `char' is signed by default startfile Object files to include at the start of the link --- 10194,10200 ---- libgcc Decides which GCC support library to pass to the linker linker Sets the name of the linker predefines Defines to be passed to the C preprocessor ! signed_char Defines to pass to CPP to say whether char is signed by default startfile Object files to include at the start of the link *************** targets can also add their own spec stri *** 10282,10574 **** *lib: --start-group -lgcc -lc -leval1 --end-group %(old_lib) ! This example renames the spec called `lib' to `old_lib' and then ! overrides the previous definition of `lib' with a new one. The new definition adds in some extra command-line options before including the text of the old definition. "Spec strings" are a list of command-line options to be passed to their corresponding program. In addition, the spec strings can contain ! `%'-prefixed sequences to substitute variable text or to conditionally insert text into the command line. Using these constructs it is possible to generate quite complex command lines. ! Here is a table of all defined `%'-sequences for spec strings. Note that spaces are not generated automatically around the results of expanding these sequences. Therefore you can concatenate them together or combine them with constant text in a single argument. ! `%%' ! Substitute one `%' into the program name or argument. ! `%i' Substitute the name of the input file being processed. ! `%b' ! Substitute the basename of the input file being processed. This ! is the substring up to (and not including) the last period and not including the directory. ! `%B' ! This is the same as `%b', but include the file suffix (text after the last period). ! `%d' ! Marks the argument containing or following the `%d' as a temporary file name, so that that file is deleted if GCC exits successfully. ! Unlike `%g', this contributes no text to the argument. ! `%gSUFFIX' Substitute a file name that has suffix SUFFIX and is chosen once ! per compilation, and mark the argument in the same way as `%d'. ! To reduce exposure to denial-of-service attacks, the file name is ! now chosen in a way that is hard to predict even when previously ! chosen file names are known. For example, `%g.s ... %g.o ... %g.s' ! might turn into `ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s'. SUFFIX ! matches the regexp `[.A-Za-z]*' or the special string `%O', which ! is treated exactly as if `%O' had been preprocessed. Previously, ! `%g' was simply substituted with a file name chosen once per ! compilation, without regard to any appended suffix (which was ! therefore treated just like ordinary text), making such attacks ! more likely to succeed. ! `%uSUFFIX' ! Like `%g', but generates a new temporary file name each time it appears instead of once per compilation. ! `%USUFFIX' ! Substitutes the last file name generated with `%uSUFFIX', generating a new one if there is no such last file name. In the ! absence of any `%uSUFFIX', this is just like `%gSUFFIX', except ! they don't share the same suffix _space_, so `%g.s ... %U.s ... %g.s ... %U.s' involves the generation of two distinct file names, ! one for each `%g.s' and another for each `%U.s'. Previously, `%U' was simply substituted with a file name chosen for the previous ! `%u', without regard to any appended suffix. ! `%jSUFFIX' ! Substitutes the name of the `HOST_BIT_BUCKET', if any, and if it is ! writable, and if `-save-temps' is not used; otherwise, substitute ! the name of a temporary file, just like `%u'. This temporary file is not meant for communication between processes, but rather as a junk disposal mechanism. ! `%|SUFFIX' ! `%mSUFFIX' ! Like `%g', except if `-pipe' is in effect. In that case `%|' ! substitutes a single dash and `%m' substitutes nothing at all. These are the two most common ways to instruct a program that it should read from standard input or write to standard output. If ! you need something more elaborate you can use an `%{pipe:`X'}' ! construct: see for example `f/lang-specs.h'. ! `%.SUFFIX' Substitutes .SUFFIX for the suffixes of a matched switch's args ! when it is subsequently output with `%*'. SUFFIX is terminated by the next space or %. ! `%w' ! Marks the argument containing or following the `%w' as the designated output file of this compilation. This puts the argument ! into the sequence of arguments that `%o' substitutes. ! `%o' Substitutes the names of all the output files, with spaces automatically placed around them. You should write spaces around ! the `%o' as well or the results are undefined. `%o' is for use in the specs for running the linker. Input files whose names have no recognized suffix are not compiled at all, but they are included among the output files, so they are linked. ! `%O' ! Substitutes the suffix for object files. Note that this is ! handled specially when it immediately follows `%g, %u, or %U', ! because of the need for those to form complete file names. The ! handling is such that `%O' is treated exactly as if it had already ! been substituted, except that `%g, %u, and %U' do not currently ! support additional SUFFIX characters following `%O' as they do ! following, for example, `.o'. ! `%p' Substitutes the standard macro predefinitions for the current ! target machine. Use this when running `cpp'. ! `%P' ! Like `%p', but puts `__' before and after the name of each ! predefined macro, except for macros that start with `__' or with ! `_L', where L is an uppercase letter. This is for ISO C. ! `%I' ! Substitute any of `-iprefix' (made from `GCC_EXEC_PREFIX'), ! `-isysroot' (made from `TARGET_SYSTEM_ROOT'), `-isystem' (made ! from `COMPILER_PATH' and `-B' options) and `-imultilib' as ! necessary. ! `%s' Current argument is the name of a library or startup file of some sort. Search for that file in a standard list of directories and substitute the full name found. The current working directory is included in the list of directories scanned. ! `%T' Current argument is the name of a linker script. Search for that ! file in the current list of directories to scan for libraries. If ! the file is located insert a `--script' option into the command line followed by the full path name found. If the file is not found then generate an error message. Note: the current working directory is not searched. ! `%eSTR' Print STR as an error message. STR is terminated by a newline. Use this when inconsistent options are detected. ! `%(NAME)' Substitute the contents of spec string NAME at this point. ! `%x{OPTION}' ! Accumulate an option for `%X'. ! `%X' ! Output the accumulated linker options specified by `-Wl' or a `%x' spec string. ! `%Y' ! Output the accumulated assembler options specified by `-Wa'. ! `%Z' ! Output the accumulated preprocessor options specified by `-Wp'. ! `%a' ! Process the `asm' spec. This is used to compute the switches to ! be passed to the assembler. ! `%A' ! Process the `asm_final' spec. This is a spec string for passing switches to an assembler post-processor, if such a program is needed. ! `%l' ! Process the `link' spec. This is the spec for computing the command line passed to the linker. Typically it makes use of the ! `%L %G %S %D and %E' sequences. ! `%D' ! Dump out a `-L' option for each directory that GCC believes might contain startup files. If the target supports multilibs then the current multilib directory is prepended to each of these paths. ! `%L' ! Process the `lib' spec. This is a spec string for deciding which libraries are included on the command line to the linker. ! `%G' ! Process the `libgcc' spec. This is a spec string for deciding which GCC support library is included on the command line to the linker. ! `%S' ! Process the `startfile' spec. This is a spec for deciding which object files are the first ones passed to the linker. Typically ! this might be a file named `crt0.o'. ! `%E' ! Process the `endfile' spec. This is a spec string that specifies the last object files that are passed to the linker. ! `%C' ! Process the `cpp' spec. This is used to construct the arguments ! to be passed to the C preprocessor. ! `%1' ! Process the `cc1' spec. This is used to construct the options to ! be passed to the actual C compiler (`cc1'). ! `%2' ! Process the `cc1plus' spec. This is used to construct the options ! to be passed to the actual C++ compiler (`cc1plus'). ! `%*' ! Substitute the variable part of a matched option. See below. ! Note that each comma in the substituted string is replaced by a ! single space. ! `%<`S'' ! Remove all occurrences of `-S' from the command line. Note--this ! command is position dependent. `%' commands in the spec string ! before this one see `-S', `%' commands in the spec string after this one do not. ! `%:FUNCTION(ARGS)' Call the named function FUNCTION, passing it ARGS. ARGS is first processed as a nested spec string, then split into an argument vector in the usual fashion. The function returns a string which ! is processed as if it had appeared literally as part of the ! current spec. The following built-in spec functions are provided: ! ``getenv'' ! The `getenv' spec function takes two arguments: an environment variable name and a string. If the environment variable is not defined, a fatal error is issued. Otherwise, the return value is the value of the environment variable concatenated ! with the string. For example, if `TOPDIR' is defined as ! `/path/to/top', then: %:getenv(TOPDIR /include) ! expands to `/path/to/top/include'. ! ``if-exists'' ! The `if-exists' spec function takes one argument, an absolute ! pathname to a file. If the file exists, `if-exists' returns the pathname. Here is a small example of its usage: *startfile: crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s ! ``if-exists-else'' ! The `if-exists-else' spec function is similar to the ! `if-exists' spec function, except that it takes two ! arguments. The first argument is an absolute pathname to a ! file. If the file exists, `if-exists-else' returns the ! pathname. If it does not exist, it returns the second ! argument. This way, `if-exists-else' can be used to select ! one file or another, based on the existence of the first. ! Here is a small example of its usage: *startfile: crt0%O%s %:if-exists(crti%O%s) \ %:if-exists-else(crtbeginT%O%s crtbegin%O%s) ! ``replace-outfile'' ! The `replace-outfile' spec function takes two arguments. It looks for the first argument in the outfiles array and ! replaces it with the second argument. Here is a small ! example of its usage: %{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)} ! ``remove-outfile'' ! The `remove-outfile' spec function takes one argument. It ! looks for the first argument in the outfiles array and ! removes it. Here is a small example its usage: %:remove-outfile(-lm) ! ``pass-through-libs'' ! The `pass-through-libs' spec function takes any number of ! arguments. It finds any `-l' options and any non-options ! ending in `.a' (which it assumes are the names of linker ! input library archive files) and returns a result containing ! all the found arguments each prepended by ! `-plugin-opt=-pass-through=' and joined by spaces. This list ! is intended to be passed to the LTO linker plugin. %:pass-through-libs(%G %L %G) ! ``print-asm-header'' ! The `print-asm-header' function takes no arguments and simply prints a banner like: Assembler options --- 10205,10496 ---- *lib: --start-group -lgcc -lc -leval1 --end-group %(old_lib) ! This example renames the spec called 'lib' to 'old_lib' and then ! overrides the previous definition of 'lib' with a new one. The new definition adds in some extra command-line options before including the text of the old definition. "Spec strings" are a list of command-line options to be passed to their corresponding program. In addition, the spec strings can contain ! '%'-prefixed sequences to substitute variable text or to conditionally insert text into the command line. Using these constructs it is possible to generate quite complex command lines. ! Here is a table of all defined '%'-sequences for spec strings. Note that spaces are not generated automatically around the results of expanding these sequences. Therefore you can concatenate them together or combine them with constant text in a single argument. ! '%%' ! Substitute one '%' into the program name or argument. ! '%i' Substitute the name of the input file being processed. ! '%b' ! Substitute the basename of the input file being processed. This is ! the substring up to (and not including) the last period and not including the directory. ! '%B' ! This is the same as '%b', but include the file suffix (text after the last period). ! '%d' ! Marks the argument containing or following the '%d' as a temporary file name, so that that file is deleted if GCC exits successfully. ! Unlike '%g', this contributes no text to the argument. ! '%gSUFFIX' Substitute a file name that has suffix SUFFIX and is chosen once ! per compilation, and mark the argument in the same way as '%d'. To ! reduce exposure to denial-of-service attacks, the file name is now ! chosen in a way that is hard to predict even when previously chosen ! file names are known. For example, '%g.s ... %g.o ... %g.s' might ! turn into 'ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s'. SUFFIX matches the ! regexp '[.A-Za-z]*' or the special string '%O', which is treated ! exactly as if '%O' had been preprocessed. Previously, '%g' was ! simply substituted with a file name chosen once per compilation, ! without regard to any appended suffix (which was therefore treated ! just like ordinary text), making such attacks more likely to ! succeed. ! '%uSUFFIX' ! Like '%g', but generates a new temporary file name each time it appears instead of once per compilation. ! '%USUFFIX' ! Substitutes the last file name generated with '%uSUFFIX', generating a new one if there is no such last file name. In the ! absence of any '%uSUFFIX', this is just like '%gSUFFIX', except ! they don't share the same suffix _space_, so '%g.s ... %U.s ... %g.s ... %U.s' involves the generation of two distinct file names, ! one for each '%g.s' and another for each '%U.s'. Previously, '%U' was simply substituted with a file name chosen for the previous ! '%u', without regard to any appended suffix. ! '%jSUFFIX' ! Substitutes the name of the 'HOST_BIT_BUCKET', if any, and if it is ! writable, and if '-save-temps' is not used; otherwise, substitute ! the name of a temporary file, just like '%u'. This temporary file is not meant for communication between processes, but rather as a junk disposal mechanism. ! '%|SUFFIX' ! '%mSUFFIX' ! Like '%g', except if '-pipe' is in effect. In that case '%|' ! substitutes a single dash and '%m' substitutes nothing at all. These are the two most common ways to instruct a program that it should read from standard input or write to standard output. If ! you need something more elaborate you can use an '%{pipe:'X'}' ! construct: see for example 'f/lang-specs.h'. ! '%.SUFFIX' Substitutes .SUFFIX for the suffixes of a matched switch's args ! when it is subsequently output with '%*'. SUFFIX is terminated by the next space or %. ! '%w' ! Marks the argument containing or following the '%w' as the designated output file of this compilation. This puts the argument ! into the sequence of arguments that '%o' substitutes. ! '%o' Substitutes the names of all the output files, with spaces automatically placed around them. You should write spaces around ! the '%o' as well or the results are undefined. '%o' is for use in the specs for running the linker. Input files whose names have no recognized suffix are not compiled at all, but they are included among the output files, so they are linked. ! '%O' ! Substitutes the suffix for object files. Note that this is handled ! specially when it immediately follows '%g, %u, or %U', because of ! the need for those to form complete file names. The handling is ! such that '%O' is treated exactly as if it had already been ! substituted, except that '%g, %u, and %U' do not currently support ! additional SUFFIX characters following '%O' as they do following, ! for example, '.o'. ! '%p' Substitutes the standard macro predefinitions for the current ! target machine. Use this when running 'cpp'. ! '%P' ! Like '%p', but puts '__' before and after the name of each ! predefined macro, except for macros that start with '__' or with ! '_L', where L is an uppercase letter. This is for ISO C. ! '%I' ! Substitute any of '-iprefix' (made from 'GCC_EXEC_PREFIX'), ! '-isysroot' (made from 'TARGET_SYSTEM_ROOT'), '-isystem' (made from ! 'COMPILER_PATH' and '-B' options) and '-imultilib' as necessary. ! '%s' Current argument is the name of a library or startup file of some sort. Search for that file in a standard list of directories and substitute the full name found. The current working directory is included in the list of directories scanned. ! '%T' Current argument is the name of a linker script. Search for that ! file in the current list of directories to scan for libraries. If ! the file is located insert a '--script' option into the command line followed by the full path name found. If the file is not found then generate an error message. Note: the current working directory is not searched. ! '%eSTR' Print STR as an error message. STR is terminated by a newline. Use this when inconsistent options are detected. ! '%(NAME)' Substitute the contents of spec string NAME at this point. ! '%x{OPTION}' ! Accumulate an option for '%X'. ! '%X' ! Output the accumulated linker options specified by '-Wl' or a '%x' spec string. ! '%Y' ! Output the accumulated assembler options specified by '-Wa'. ! '%Z' ! Output the accumulated preprocessor options specified by '-Wp'. ! '%a' ! Process the 'asm' spec. This is used to compute the switches to be ! passed to the assembler. ! '%A' ! Process the 'asm_final' spec. This is a spec string for passing switches to an assembler post-processor, if such a program is needed. ! '%l' ! Process the 'link' spec. This is the spec for computing the command line passed to the linker. Typically it makes use of the ! '%L %G %S %D and %E' sequences. ! '%D' ! Dump out a '-L' option for each directory that GCC believes might contain startup files. If the target supports multilibs then the current multilib directory is prepended to each of these paths. ! '%L' ! Process the 'lib' spec. This is a spec string for deciding which libraries are included on the command line to the linker. ! '%G' ! Process the 'libgcc' spec. This is a spec string for deciding which GCC support library is included on the command line to the linker. ! '%S' ! Process the 'startfile' spec. This is a spec for deciding which object files are the first ones passed to the linker. Typically ! this might be a file named 'crt0.o'. ! '%E' ! Process the 'endfile' spec. This is a spec string that specifies the last object files that are passed to the linker. ! '%C' ! Process the 'cpp' spec. This is used to construct the arguments to ! be passed to the C preprocessor. ! '%1' ! Process the 'cc1' spec. This is used to construct the options to ! be passed to the actual C compiler ('cc1'). ! '%2' ! Process the 'cc1plus' spec. This is used to construct the options ! to be passed to the actual C++ compiler ('cc1plus'). ! '%*' ! Substitute the variable part of a matched option. See below. Note ! that each comma in the substituted string is replaced by a single ! space. ! '% --- 11476,11525 ---- In order to facilitate indirect jump on devices with more than 128 Ki bytes of program memory space, there is a special function register ! called 'EIND' that serves as most significant part of the target address ! when 'EICALL' or 'EIJMP' instructions are used. ! Indirect jumps and calls on these devices are handled as follows by the ! compiler and are subject to some limitations: ! * The compiler never sets 'EIND'. ! * The compiler uses 'EIND' implicitely in 'EICALL'/'EIJMP' ! instructions or might read 'EIND' directly in order to emulate an ! indirect call/jump by means of a 'RET' instruction. ! * The compiler assumes that 'EIND' never changes during the startup ! code or during the application. In particular, 'EIND' is not saved/restored in function or interrupt service routine prologue/epilogue. * For indirect calls to functions and computed goto, the linker ! generates _stubs_. Stubs are jump pads sometimes also called ! _trampolines_. Thus, the indirect call/jump jumps to such a stub. The stub contains a direct jump to the desired address. * Linker relaxation must be turned on so that the linker will ! generate the stubs correctly an all situaltion. See the compiler ! option '-mrelax' and the linler option '--relax'. There are corner ! cases where the linker is supposed to generate stubs but aborts ! without relaxation and without a helpful error message. ! * The default linker script is arranged for code with 'EIND = 0'. If ! code is supposed to work for a setup with 'EIND != 0', a custom linker script has to be used in order to place the sections whose ! name start with '.trampolines' into the segment where 'EIND' points ! to. ! * The startup code from libgcc never sets 'EIND'. Notice that ! startup code is a blend of code from libgcc and AVR-LibC. For the ! impact of AVR-LibC on 'EIND', see the AVR-LibC user manual (http://nongnu.org/avr-libc/user-manual/). ! * It is legitimate for user-specific startup code to set up 'EIND' early, for example by means of initialization code located in ! section '.init3'. Such code runs prior to general startup code that initializes RAM and calls constructors, but after the bit of ! startup code from AVR-LibC that sets 'EIND' to the segment where the vector table is located. #include *************** the compiler and are subject to some lim *** 11618,11652 **** "out %i0,r24" :: "n" (&EIND) : "r24","memory"); } ! The `__trampolines_start' symbol is defined in the linker script. * Stubs are generated automatically by the linker if the following two conditions are met: ! - The address of a label is taken by means of the `gs' modifier (short for _generate stubs_) like so: LDI r24, lo8(gs(FUNC)) LDI r25, hi8(gs(FUNC)) - - The final location of that label is in a code segment _outside_ the segment where the stubs are located. ! * The compiler emits such `gs' modifiers for code labels in the following situations: - Taking address of a function or code label. - - Computed goto. ! ! - If prologue-save function is used, see `-mcall-prologues' command-line option. ! ! - Switch/case dispatch tables. If you do not want such dispatch ! tables you can specify the `-fno-jump-tables' command-line option. - - C and C++ constructors/destructors called during startup/shutdown. ! ! - If the tools hit a `gs()' modifier explained above. * Jumping to non-symbolic addresses like so is _not_ supported: --- 11531,11560 ---- "out %i0,r24" :: "n" (&EIND) : "r24","memory"); } ! The '__trampolines_start' symbol is defined in the linker script. * Stubs are generated automatically by the linker if the following two conditions are met: ! ! - The address of a label is taken by means of the 'gs' modifier (short for _generate stubs_) like so: LDI r24, lo8(gs(FUNC)) LDI r25, hi8(gs(FUNC)) - The final location of that label is in a code segment _outside_ the segment where the stubs are located. ! * The compiler emits such 'gs' modifiers for code labels in the following situations: - Taking address of a function or code label. - Computed goto. ! - If prologue-save function is used, see '-mcall-prologues' command-line option. ! - Switch/case dispatch tables. If you do not want such dispatch ! tables you can specify the '-fno-jump-tables' command-line option. - C and C++ constructors/destructors called during startup/shutdown. ! - If the tools hit a 'gs()' modifier explained above. * Jumping to non-symbolic addresses like so is _not_ supported: *************** the compiler and are subject to some lim *** 11657,11663 **** } Instead, a stub has to be set up, i.e. the function has to be ! called through a symbol (`func_4' in the example): int main (void) { --- 11565,11571 ---- } Instead, a stub has to be set up, i.e. the function has to be ! called through a symbol ('func_4' in the example): int main (void) { *************** the compiler and are subject to some lim *** 11667,11706 **** return func_4(); } ! and the application be linked with `-Wl,--defsym,func_4=0x4'. ! Alternatively, `func_4' can be defined in the linker script. ! 3.17.4.2 Handling of the `RAMPD', `RAMPX', `RAMPY' and `RAMPZ' Special Function Registers ......................................................................................... Some AVR devices support memories larger than the 64 KiB range that can be accessed with 16-bit pointers. To access memory locations outside ! this 64 KiB range, the contentent of a `RAMP' register is used as high ! part of the address: The `X', `Y', `Z' address register is concatenated ! with the `RAMPX', `RAMPY', `RAMPZ' special function register, ! respectively, to get a wide address. Similarly, `RAMPD' is used together with direct addressing. ! * The startup code initializes the `RAMP' special function registers with zero. * If a *note named address space: AVR Named Address Spaces. other ! than generic or `__flash' is used, then `RAMPZ' is set as needed before the operation. ! * If the device supports RAM larger than 64 KiB and the compiler ! needs to change `RAMPZ' to accomplish an operation, `RAMPZ' is ! reset to zero after the operation. ! * If the device comes with a specific `RAMP' register, the ISR prologue/epilogue saves/restores that SFR and initializes it with zero in case the ISR code might (implicitly) use it. ! * RAM larger than 64 KiB is not supported by GCC for AVR targets. ! If you use inline assembler to read from locations outside the ! 16-bit address range and change one of the `RAMP' registers, you ! must reset it to zero after the access. ! 3.17.4.3 AVR Built-in Macros ............................ --- 11575,11613 ---- return func_4(); } ! and the application be linked with '-Wl,--defsym,func_4=0x4'. ! Alternatively, 'func_4' can be defined in the linker script. ! 3.17.4.2 Handling of the 'RAMPD', 'RAMPX', 'RAMPY' and 'RAMPZ' Special Function Registers ......................................................................................... Some AVR devices support memories larger than the 64 KiB range that can be accessed with 16-bit pointers. To access memory locations outside ! this 64 KiB range, the contentent of a 'RAMP' register is used as high ! part of the address: The 'X', 'Y', 'Z' address register is concatenated ! with the 'RAMPX', 'RAMPY', 'RAMPZ' special function register, ! respectively, to get a wide address. Similarly, 'RAMPD' is used together with direct addressing. ! * The startup code initializes the 'RAMP' special function registers with zero. * If a *note named address space: AVR Named Address Spaces. other ! than generic or '__flash' is used, then 'RAMPZ' is set as needed before the operation. ! * If the device supports RAM larger than 64 and the compiler needs ! to change 'RAMPZ' to accomplish an operation, 'RAMPZ' is reset to ! zero after the operation. ! * If the device comes with a specific 'RAMP' register, the ISR prologue/epilogue saves/restores that SFR and initializes it with zero in case the ISR code might (implicitly) use it. ! * RAM larger than 64 is not supported by GCC for AVR targets. If ! you use inline assembler to read from locations outside the 16-bit ! address range and change one of the 'RAMP' registers, you must ! reset it to zero after the access. 3.17.4.3 AVR Built-in Macros ............................ *************** together with direct addressing. *** 11708,11821 **** GCC defines several built-in macros so that the user code can test for the presence or absence of features. Almost any of the following built-in macros are deduced from device capabilities and thus triggered ! by the `-mmcu=' command-line option. For even more AVR-specific built-in macros see *note AVR Named Address Spaces:: and *note AVR Built-in Functions::. ! `__AVR_ARCH__' Build-in macro that resolves to a decimal number that identifies ! the architecture and depends on the `-mmcu=MCU' option. Possible values are: ! `2', `25', `3', `31', `35', `4', `5', `51', `6', `102', `104', ! `105', `106', `107' ! for MCU=`avr2', `avr25', `avr3', `avr31', `avr35', `avr4', `avr5', ! `avr51', `avr6', `avrxmega2', `avrxmega4', `avrxmega5', ! `avrxmega6', `avrxmega7', respectively. If MCU specifies a ! device, this built-in macro is set accordingly. For example, with ! `-mmcu=atmega8' the macro will be defined to `4'. ! `__AVR_DEVICE__' ! Setting `-mmcu=DEVICE' defines this built-in macro which reflects ! the device's name. For example, `-mmcu=atmega8' defines the ! built-in macro `__AVR_ATmega8__', `-mmcu=attiny261a' defines ! `__AVR_ATtiny261A__', etc. ! The built-in macros' names follow the scheme `__AVR_DEVICE__' ! where DEVICE is the device name as from the AVR user manual. The difference between DEVICE in the built-in macro and DEVICE in ! `-mmcu=DEVICE' is that the latter is always lowercase. If DEVICE is not a device but only a core architecture like ! `avr51', this macro will not be defined. ! `__AVR_XMEGA__' The device / architecture belongs to the XMEGA family of devices. ! `__AVR_HAVE_ELPM__' ! The device has the the `ELPM' instruction. ! `__AVR_HAVE_ELPMX__' ! The device has the `ELPM RN,Z' and `ELPM RN,Z+' instructions. ! `__AVR_HAVE_MOVW__' ! The device has the `MOVW' instruction to perform 16-bit register-register moves. ! `__AVR_HAVE_LPMX__' ! The device has the `LPM RN,Z' and `LPM RN,Z+' instructions. ! `__AVR_HAVE_MUL__' The device has a hardware multiplier. ! `__AVR_HAVE_JMP_CALL__' ! The device has the `JMP' and `CALL' instructions. This is the ! case for devices with at least 16 KiB of program memory. ! `__AVR_HAVE_EIJMP_EICALL__' ! `__AVR_3_BYTE_PC__' ! The device has the `EIJMP' and `EICALL' instructions. This is the case for devices with more than 128 KiB of program memory. This also means that the program counter (PC) is 3 bytes wide. ! `__AVR_2_BYTE_PC__' ! The program counter (PC) is 2 bytes wide. This is the case for devices with up to 128 KiB of program memory. ! `__AVR_HAVE_8BIT_SP__' ! `__AVR_HAVE_16BIT_SP__' The stack pointer (SP) register is treated as 8-bit respectively ! 16-bit register by the compiler. The definition of these macros ! is affected by `-mtiny-stack'. ! `__AVR_HAVE_SPH__' ! `__AVR_SP8__' The device has the SPH (high part of stack pointer) special ! function register or has an 8-bit stack pointer, respectively. ! The definition of these macros is affected by `-mmcu=' and in the ! cases of `-mmcu=avr2' and `-mmcu=avr25' also by `-msp8'. ! `__AVR_HAVE_RAMPD__' ! `__AVR_HAVE_RAMPX__' ! `__AVR_HAVE_RAMPY__' ! `__AVR_HAVE_RAMPZ__' ! The device has the `RAMPD', `RAMPX', `RAMPY', `RAMPZ' special function register, respectively. ! `__NO_INTERRUPTS__' ! This macro reflects the `-mno-interrupts' command line option. ! `__AVR_ERRATA_SKIP__' ! `__AVR_ERRATA_SKIP_JMP_CALL__' Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit instructions because of a hardware erratum. Skip instructions are ! `SBRS', `SBRC', `SBIS', `SBIC' and `CPSE'. The second macro is ! only defined if `__AVR_HAVE_JMP_CALL__' is also set. ! `__AVR_SFR_OFFSET__=OFFSET' Instructions that can address I/O special function registers ! directly like `IN', `OUT', `SBI', etc. may use a different address ! as if addressed by an instruction to access RAM like `LD' or ! `STS'. This offset depends on the device architecture and has to ! be subtracted from the RAM address in order to get the respective I/O address. ! `__WITH_AVRLIBC__' The compiler is configured to be used together with AVR-Libc. See ! the `--with-avrlibc' configure option. !  File: gcc.info, Node: Blackfin Options, Next: C6X Options, Prev: AVR Options, Up: Submodel Options --- 11615,11727 ---- GCC defines several built-in macros so that the user code can test for the presence or absence of features. Almost any of the following built-in macros are deduced from device capabilities and thus triggered ! by the '-mmcu=' command-line option. For even more AVR-specific built-in macros see *note AVR Named Address Spaces:: and *note AVR Built-in Functions::. ! '__AVR_ARCH__' Build-in macro that resolves to a decimal number that identifies ! the architecture and depends on the '-mmcu=MCU' option. Possible values are: ! '2', '25', '3', '31', '35', '4', '5', '51', '6', '102', '104', ! '105', '106', '107' ! for MCU='avr2', 'avr25', 'avr3', 'avr31', 'avr35', 'avr4', 'avr5', ! 'avr51', 'avr6', 'avrxmega2', 'avrxmega4', 'avrxmega5', ! 'avrxmega6', 'avrxmega7', respectively. If MCU specifies a device, ! this built-in macro is set accordingly. For example, with ! '-mmcu=atmega8' the macro will be defined to '4'. ! '__AVR_DEVICE__' ! Setting '-mmcu=DEVICE' defines this built-in macro which reflects ! the device's name. For example, '-mmcu=atmega8' defines the ! built-in macro '__AVR_ATmega8__', '-mmcu=attiny261a' defines ! '__AVR_ATtiny261A__', etc. ! The built-in macros' names follow the scheme '__AVR_DEVICE__' where ! DEVICE is the device name as from the AVR user manual. The difference between DEVICE in the built-in macro and DEVICE in ! '-mmcu=DEVICE' is that the latter is always lowercase. If DEVICE is not a device but only a core architecture like ! 'avr51', this macro will not be defined. ! '__AVR_XMEGA__' The device / architecture belongs to the XMEGA family of devices. ! '__AVR_HAVE_ELPM__' ! The device has the the 'ELPM' instruction. ! '__AVR_HAVE_ELPMX__' ! The device has the 'ELPM RN,Z' and 'ELPM RN,Z+' instructions. ! '__AVR_HAVE_MOVW__' ! The device has the 'MOVW' instruction to perform 16-bit register-register moves. ! '__AVR_HAVE_LPMX__' ! The device has the 'LPM RN,Z' and 'LPM RN,Z+' instructions. ! '__AVR_HAVE_MUL__' The device has a hardware multiplier. ! '__AVR_HAVE_JMP_CALL__' ! The device has the 'JMP' and 'CALL' instructions. This is the case ! for devices with at least 16 KiB of program memory. ! '__AVR_HAVE_EIJMP_EICALL__' ! '__AVR_3_BYTE_PC__' ! The device has the 'EIJMP' and 'EICALL' instructions. This is the case for devices with more than 128 KiB of program memory. This also means that the program counter (PC) is 3 bytes wide. ! '__AVR_2_BYTE_PC__' ! The program counter (PC) is 2 bytes wide. This is the case for devices with up to 128 KiB of program memory. ! '__AVR_HAVE_8BIT_SP__' ! '__AVR_HAVE_16BIT_SP__' The stack pointer (SP) register is treated as 8-bit respectively ! 16-bit register by the compiler. The definition of these macros is ! affected by '-mtiny-stack'. ! '__AVR_HAVE_SPH__' ! '__AVR_SP8__' The device has the SPH (high part of stack pointer) special ! function register or has an 8-bit stack pointer, respectively. The ! definition of these macros is affected by '-mmcu=' and in the cases ! of '-mmcu=avr2' and '-mmcu=avr25' also by '-msp8'. ! '__AVR_HAVE_RAMPD__' ! '__AVR_HAVE_RAMPX__' ! '__AVR_HAVE_RAMPY__' ! '__AVR_HAVE_RAMPZ__' ! The device has the 'RAMPD', 'RAMPX', 'RAMPY', 'RAMPZ' special function register, respectively. ! '__NO_INTERRUPTS__' ! This macro reflects the '-mno-interrupts' command line option. ! '__AVR_ERRATA_SKIP__' ! '__AVR_ERRATA_SKIP_JMP_CALL__' Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit instructions because of a hardware erratum. Skip instructions are ! 'SBRS', 'SBRC', 'SBIS', 'SBIC' and 'CPSE'. The second macro is ! only defined if '__AVR_HAVE_JMP_CALL__' is also set. ! '__AVR_SFR_OFFSET__=OFFSET' Instructions that can address I/O special function registers ! directly like 'IN', 'OUT', 'SBI', etc. may use a different address ! as if addressed by an instruction to access RAM like 'LD' or 'STS'. ! This offset depends on the device architecture and has to be ! subtracted from the RAM address in order to get the respective I/O address. ! '__WITH_AVRLIBC__' The compiler is configured to be used together with AVR-Libc. See ! the '--with-avrlibc' configure option.  File: gcc.info, Node: Blackfin Options, Next: C6X Options, Prev: AVR Options, Up: Submodel Options *************** File: gcc.info, Node: Blackfin Options, *** 11823,11943 **** 3.17.5 Blackfin Options ----------------------- ! `-mcpu=CPU[-SIREVISION]' Specifies the name of the target Blackfin processor. Currently, ! CPU can be one of `bf512', `bf514', `bf516', `bf518', `bf522', ! `bf523', `bf524', `bf525', `bf526', `bf527', `bf531', `bf532', ! `bf533', `bf534', `bf536', `bf537', `bf538', `bf539', `bf542', ! `bf544', `bf547', `bf548', `bf549', `bf542m', `bf544m', `bf547m', ! `bf548m', `bf549m', `bf561', `bf592'. The optional SIREVISION specifies the silicon revision of the target Blackfin processor. Any workarounds available for the ! targeted silicon revision are enabled. If SIREVISION is `none', ! no workarounds are enabled. If SIREVISION is `any', all ! workarounds for the targeted processor are enabled. The ! `__SILICON_REVISION__' macro is defined to two hexadecimal digits ! representing the major and minor numbers in the silicon revision. ! If SIREVISION is `none', the `__SILICON_REVISION__' is not ! defined. If SIREVISION is `any', the `__SILICON_REVISION__' is ! defined to be `0xffff'. If this optional SIREVISION is not used, ! GCC assumes the latest known silicon revision of the targeted ! Blackfin processor. GCC defines a preprocessor macro for the specified CPU. For the ! `bfin-elf' toolchain, this option causes the hardware BSP provided ! by libgloss to be linked in if `-msim' is not given. ! Without this option, `bf532' is used as the processor by default. ! Note that support for `bf561' is incomplete. For `bf561', only ! the preprocessor macro is defined. ! `-msim' Specifies that the program will be run on the simulator. This causes the simulator BSP provided by libgloss to be linked in. ! This option has effect only for `bfin-elf' toolchain. Certain ! other options, such as `-mid-shared-library' and `-mfdpic', imply ! `-msim'. ! `-momit-leaf-frame-pointer' Don't keep the frame pointer in a register for leaf functions. This avoids the instructions to save, set up and restore frame pointers and makes an extra register available in leaf functions. ! The option `-fomit-frame-pointer' removes the frame pointer for ! all functions, which might make debugging harder. ! `-mspecld-anomaly' When enabled, the compiler ensures that the generated code does not ! contain speculative loads after jump instructions. If this option ! is used, `__WORKAROUND_SPECULATIVE_LOADS' is defined. ! `-mno-specld-anomaly' Don't generate extra code to prevent speculative loads from occurring. ! `-mcsync-anomaly' When enabled, the compiler ensures that the generated code does not contain CSYNC or SSYNC instructions too soon after conditional ! branches. If this option is used, ! `__WORKAROUND_SPECULATIVE_SYNCS' is defined. ! `-mno-csync-anomaly' Don't generate extra code to prevent CSYNC or SSYNC instructions from occurring too soon after a conditional branch. ! `-mlow-64k' When enabled, the compiler is free to take advantage of the knowledge that the entire program fits into the low 64k of memory. ! `-mno-low-64k' Assume that the program is arbitrarily large. This is the default. ! `-mstack-check-l1' Do stack checking using information placed into L1 scratchpad memory by the uClinux kernel. ! `-mid-shared-library' Generate code that supports shared libraries via the library ID method. This allows for execute in place and shared libraries in an environment without virtual memory management. This option ! implies `-fPIC'. With a `bfin-elf' target, this option implies ! `-msim'. ! `-mno-id-shared-library' Generate code that doesn't assume ID-based shared libraries are being used. This is the default. ! `-mleaf-id-shared-library' Generate code that supports shared libraries via the library ID method, but assumes that this library or executable won't link ! against any other ID shared libraries. That allows the compiler ! to use faster code for jumps and calls. ! `-mno-leaf-id-shared-library' Do not assume that the code being compiled won't link against any ID shared libraries. Slower code is generated for jump and call insns. ! `-mshared-library-id=n' Specifies the identification number of the ID-based shared library being compiled. Specifying a value of 0 generates more compact code; specifying other values forces the allocation of that number ! to the current library but is no more space- or time-efficient ! than omitting this option. ! `-msep-data' Generate code that allows the data segment to be located in a different area of memory from the text segment. This allows for execute in place in an environment without virtual memory management by eliminating relocations against the text section. ! `-mno-sep-data' Generate code that assumes that the data segment follows the text segment. This is the default. ! `-mlong-calls' ! `-mno-long-calls' Tells the compiler to perform function calls by first loading the address of the function into a register and then performing a subroutine call on this register. This switch is needed if the --- 11729,11848 ---- 3.17.5 Blackfin Options ----------------------- ! '-mcpu=CPU[-SIREVISION]' Specifies the name of the target Blackfin processor. Currently, ! CPU can be one of 'bf512', 'bf514', 'bf516', 'bf518', 'bf522', ! 'bf523', 'bf524', 'bf525', 'bf526', 'bf527', 'bf531', 'bf532', ! 'bf533', 'bf534', 'bf536', 'bf537', 'bf538', 'bf539', 'bf542', ! 'bf544', 'bf547', 'bf548', 'bf549', 'bf542m', 'bf544m', 'bf547m', ! 'bf548m', 'bf549m', 'bf561', 'bf592'. The optional SIREVISION specifies the silicon revision of the target Blackfin processor. Any workarounds available for the ! targeted silicon revision are enabled. If SIREVISION is 'none', no ! workarounds are enabled. If SIREVISION is 'any', all workarounds ! for the targeted processor are enabled. The '__SILICON_REVISION__' ! macro is defined to two hexadecimal digits representing the major ! and minor numbers in the silicon revision. If SIREVISION is ! 'none', the '__SILICON_REVISION__' is not defined. If SIREVISION ! is 'any', the '__SILICON_REVISION__' is defined to be '0xffff'. If ! this optional SIREVISION is not used, GCC assumes the latest known ! silicon revision of the targeted Blackfin processor. GCC defines a preprocessor macro for the specified CPU. For the ! 'bfin-elf' toolchain, this option causes the hardware BSP provided ! by libgloss to be linked in if '-msim' is not given. ! Without this option, 'bf532' is used as the processor by default. ! Note that support for 'bf561' is incomplete. For 'bf561', only the ! preprocessor macro is defined. ! '-msim' Specifies that the program will be run on the simulator. This causes the simulator BSP provided by libgloss to be linked in. ! This option has effect only for 'bfin-elf' toolchain. Certain ! other options, such as '-mid-shared-library' and '-mfdpic', imply ! '-msim'. ! '-momit-leaf-frame-pointer' Don't keep the frame pointer in a register for leaf functions. This avoids the instructions to save, set up and restore frame pointers and makes an extra register available in leaf functions. ! The option '-fomit-frame-pointer' removes the frame pointer for all ! functions, which might make debugging harder. ! '-mspecld-anomaly' When enabled, the compiler ensures that the generated code does not ! contain speculative loads after jump instructions. If this option ! is used, '__WORKAROUND_SPECULATIVE_LOADS' is defined. ! '-mno-specld-anomaly' Don't generate extra code to prevent speculative loads from occurring. ! '-mcsync-anomaly' When enabled, the compiler ensures that the generated code does not contain CSYNC or SSYNC instructions too soon after conditional ! branches. If this option is used, '__WORKAROUND_SPECULATIVE_SYNCS' ! is defined. ! '-mno-csync-anomaly' Don't generate extra code to prevent CSYNC or SSYNC instructions from occurring too soon after a conditional branch. ! '-mlow-64k' When enabled, the compiler is free to take advantage of the knowledge that the entire program fits into the low 64k of memory. ! '-mno-low-64k' Assume that the program is arbitrarily large. This is the default. ! '-mstack-check-l1' Do stack checking using information placed into L1 scratchpad memory by the uClinux kernel. ! '-mid-shared-library' Generate code that supports shared libraries via the library ID method. This allows for execute in place and shared libraries in an environment without virtual memory management. This option ! implies '-fPIC'. With a 'bfin-elf' target, this option implies ! '-msim'. ! '-mno-id-shared-library' Generate code that doesn't assume ID-based shared libraries are being used. This is the default. ! '-mleaf-id-shared-library' Generate code that supports shared libraries via the library ID method, but assumes that this library or executable won't link ! against any other ID shared libraries. That allows the compiler to ! use faster code for jumps and calls. ! '-mno-leaf-id-shared-library' Do not assume that the code being compiled won't link against any ID shared libraries. Slower code is generated for jump and call insns. ! '-mshared-library-id=n' Specifies the identification number of the ID-based shared library being compiled. Specifying a value of 0 generates more compact code; specifying other values forces the allocation of that number ! to the current library but is no more space- or time-efficient than ! omitting this option. ! '-msep-data' Generate code that allows the data segment to be located in a different area of memory from the text segment. This allows for execute in place in an environment without virtual memory management by eliminating relocations against the text section. ! '-mno-sep-data' Generate code that assumes that the data segment follows the text segment. This is the default. ! '-mlong-calls' ! '-mno-long-calls' Tells the compiler to perform function calls by first loading the address of the function into a register and then performing a subroutine call on this register. This switch is needed if the *************** File: gcc.info, Node: Blackfin Options, *** 11945,12000 **** offset-based version of subroutine call instruction. This feature is not enabled by default. Specifying ! `-mno-long-calls' restores the default behavior. Note these switches have no effect on how the compiler generates code to handle function calls via function pointers. ! `-mfast-fp' ! Link with the fast floating-point library. This library relaxes some of the IEEE floating-point standard's rules for checking inputs against Not-a-Number (NAN), in the interest of performance. ! `-minline-plt' Enable inlining of PLT entries in function calls to functions that ! are not known to bind locally. It has no effect without `-mfdpic'. ! `-mmulticore' Build a standalone application for multicore Blackfin processors. This option causes proper start files and link scripts supporting ! multicore to be used, and defines the macro `__BFIN_MULTICORE'. ! It can only be used with `-mcpu=bf561[-SIREVISION]'. ! This option can be used with `-mcorea' or `-mcoreb', which selects ! the one-application-per-core programming model. Without `-mcorea' ! or `-mcoreb', the single-application/dual-core programming model ! is used. In this model, the main function of Core B should be ! named as `coreb_main'. If this option is not used, the single-core application programming model is used. ! `-mcorea' Build a standalone application for Core A of BF561 when using the ! one-application-per-core programming model. Proper start files and link scripts are used to support Core A, and the macro ! `__BFIN_COREA' is defined. This option can only be used in ! conjunction with `-mmulticore'. ! `-mcoreb' Build a standalone application for Core B of BF561 when using the ! one-application-per-core programming model. Proper start files and link scripts are used to support Core B, and the macro ! `__BFIN_COREB' is defined. When this option is used, `coreb_main' ! should be used instead of `main'. This option can only be used in ! conjunction with `-mmulticore'. ! `-msdram' Build a standalone application for SDRAM. Proper start files and link scripts are used to put the application into SDRAM, and the ! macro `__BFIN_SDRAM' is defined. The loader should initialize SDRAM before loading the application. ! `-micplb' Assume that ICPLBs are enabled at run time. This has an effect on certain anomaly workarounds. For Linux targets, the default is to assume ICPLBs are enabled; for standalone applications the default --- 11850,11905 ---- offset-based version of subroutine call instruction. This feature is not enabled by default. Specifying ! '-mno-long-calls' restores the default behavior. Note these switches have no effect on how the compiler generates code to handle function calls via function pointers. ! '-mfast-fp' ! Link with the fast floating-point library. This library relaxes some of the IEEE floating-point standard's rules for checking inputs against Not-a-Number (NAN), in the interest of performance. ! '-minline-plt' Enable inlining of PLT entries in function calls to functions that ! are not known to bind locally. It has no effect without '-mfdpic'. ! '-mmulticore' Build a standalone application for multicore Blackfin processors. This option causes proper start files and link scripts supporting ! multicore to be used, and defines the macro '__BFIN_MULTICORE'. It ! can only be used with '-mcpu=bf561[-SIREVISION]'. ! This option can be used with '-mcorea' or '-mcoreb', which selects ! the one-application-per-core programming model. Without '-mcorea' ! or '-mcoreb', the single-application/dual-core programming model is ! used. In this model, the main function of Core B should be named ! as 'coreb_main'. If this option is not used, the single-core application programming model is used. ! '-mcorea' Build a standalone application for Core A of BF561 when using the ! one-application-per-core programming model. Proper start files and link scripts are used to support Core A, and the macro ! '__BFIN_COREA' is defined. This option can only be used in ! conjunction with '-mmulticore'. ! '-mcoreb' Build a standalone application for Core B of BF561 when using the ! one-application-per-core programming model. Proper start files and link scripts are used to support Core B, and the macro ! '__BFIN_COREB' is defined. When this option is used, 'coreb_main' ! should be used instead of 'main'. This option can only be used in ! conjunction with '-mmulticore'. ! '-msdram' Build a standalone application for SDRAM. Proper start files and link scripts are used to put the application into SDRAM, and the ! macro '__BFIN_SDRAM' is defined. The loader should initialize SDRAM before loading the application. ! '-micplb' Assume that ICPLBs are enabled at run time. This has an effect on certain anomaly workarounds. For Linux targets, the default is to assume ICPLBs are enabled; for standalone applications the default *************** File: gcc.info, Node: C6X Options, Nex *** 12006,12045 **** 3.17.6 C6X Options ------------------ ! `-march=NAME' This specifies the name of the target architecture. GCC uses this name to determine what kind of instructions it can emit when ! generating assembly code. Permissible names are: `c62x', `c64x', ! `c64x+', `c67x', `c67x+', `c674x'. ! `-mbig-endian' Generate code for a big-endian target. ! `-mlittle-endian' Generate code for a little-endian target. This is the default. ! `-msim' Choose startup files and linker script suitable for the simulator. ! `-msdata=default' ! Put small global and static data in the `.neardata' section, which ! is pointed to by register `B14'. Put small uninitialized global ! and static data in the `.bss' section, which is adjacent to the ! `.neardata' section. Put small read-only data into the `.rodata' section. The corresponding sections used for large pieces of data ! are `.fardata', `.far' and `.const'. ! `-msdata=all' Put all data, not just small objects, into the sections reserved ! for small data, and use addressing relative to the `B14' register to access them. ! `-msdata=none' Make no use of the sections reserved for small data, and use absolute addresses to access all data. Put all initialized global ! and static data in the `.fardata' section, and all uninitialized ! data in the `.far' section. Put all constant data into the ! `.const' section.  File: gcc.info, Node: CRIS Options, Next: CR16 Options, Prev: C6X Options, Up: Submodel Options --- 11911,11950 ---- 3.17.6 C6X Options ------------------ ! '-march=NAME' This specifies the name of the target architecture. GCC uses this name to determine what kind of instructions it can emit when ! generating assembly code. Permissible names are: 'c62x', 'c64x', ! 'c64x+', 'c67x', 'c67x+', 'c674x'. ! '-mbig-endian' Generate code for a big-endian target. ! '-mlittle-endian' Generate code for a little-endian target. This is the default. ! '-msim' Choose startup files and linker script suitable for the simulator. ! '-msdata=default' ! Put small global and static data in the '.neardata' section, which ! is pointed to by register 'B14'. Put small uninitialized global ! and static data in the '.bss' section, which is adjacent to the ! '.neardata' section. Put small read-only data into the '.rodata' section. The corresponding sections used for large pieces of data ! are '.fardata', '.far' and '.const'. ! '-msdata=all' Put all data, not just small objects, into the sections reserved ! for small data, and use addressing relative to the 'B14' register to access them. ! '-msdata=none' Make no use of the sections reserved for small data, and use absolute addresses to access all data. Put all initialized global ! and static data in the '.fardata' section, and all uninitialized ! data in the '.far' section. Put all constant data into the ! '.const' section.  File: gcc.info, Node: CRIS Options, Next: CR16 Options, Prev: C6X Options, Up: Submodel Options *************** File: gcc.info, Node: CRIS Options, Ne *** 12049,12148 **** These options are defined specifically for the CRIS ports. ! `-march=ARCHITECTURE-TYPE' ! `-mcpu=ARCHITECTURE-TYPE' Generate code for the specified architecture. The choices for ! ARCHITECTURE-TYPE are `v3', `v8' and `v10' for respectively ! ETRAX 4, ETRAX 100, and ETRAX 100 LX. Default is `v0' except for ! cris-axis-linux-gnu, where the default is `v10'. ! `-mtune=ARCHITECTURE-TYPE' Tune to ARCHITECTURE-TYPE everything applicable about the generated code, except for the ABI and the set of available instructions. The choices for ARCHITECTURE-TYPE are the same as for ! `-march=ARCHITECTURE-TYPE'. ! `-mmax-stack-frame=N' Warn when the stack frame of a function exceeds N bytes. ! `-metrax4' ! `-metrax100' ! The options `-metrax4' and `-metrax100' are synonyms for ! `-march=v3' and `-march=v8' respectively. ! `-mmul-bug-workaround' ! `-mno-mul-bug-workaround' ! Work around a bug in the `muls' and `mulu' instructions for CPU models where it applies. This option is active by default. ! `-mpdebug' Enable CRIS-specific verbose debug-related information in the assembly code. This option also has the effect of turning off the ! `#NO_APP' formatted-code indicator to the assembler at the beginning of the assembly file. ! `-mcc-init' ! Do not use condition-code results from previous instruction; ! always emit compare and test instructions before use of condition ! codes. ! `-mno-side-effects' Do not emit instructions with side effects in addressing modes other than post-increment. ! `-mstack-align' ! `-mno-stack-align' ! `-mdata-align' ! `-mno-data-align' ! `-mconst-align' ! `-mno-const-align' ! These options (`no-' options) arrange (eliminate arrangements) for the stack frame, individual data and constants to be aligned for the maximum single data access size for the chosen CPU model. The default is to arrange for 32-bit alignment. ABI details such as structure layout are not affected by these options. ! `-m32-bit' ! `-m16-bit' ! `-m8-bit' Similar to the stack- data- and const-align options above, these ! options arrange for stack frame, writable data and constants to ! all be 32-bit, 16-bit or 8-bit aligned. The default is 32-bit alignment. ! `-mno-prologue-epilogue' ! `-mprologue-epilogue' ! With `-mno-prologue-epilogue', the normal function prologue and epilogue which set up the stack frame are omitted and no return instructions or return sequences are generated in the code. Use this option only together with visual inspection of the compiled ! code: no warnings or errors are generated when call-saved ! registers must be saved, or storage for local variables needs to ! be allocated. ! `-mno-gotplt' ! `-mgotplt' ! With `-fpic' and `-fPIC', don't generate (do generate) instruction sequences that load addresses for functions from the PLT part of the GOT rather than (traditional on other architectures) calls to ! the PLT. The default is `-mgotplt'. ! `-melf' Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-gnu targets. ! `-mlinux' Legacy no-op option only recognized with the cris-axis-linux-gnu target. ! `-sim' This option, recognized for the cris-axis-elf, arranges to link with input-output functions from a simulator library. Code, initialized data and zero-initialized data are allocated consecutively. ! `-sim2' ! Like `-sim', but pass linker options to locate initialized data at 0x40000000 and zero-initialized data at 0x80000000.  --- 11954,12052 ---- These options are defined specifically for the CRIS ports. ! '-march=ARCHITECTURE-TYPE' ! '-mcpu=ARCHITECTURE-TYPE' Generate code for the specified architecture. The choices for ! ARCHITECTURE-TYPE are 'v3', 'v8' and 'v10' for respectively ! ETRAX 4, ETRAX 100, and ETRAX 100 LX. Default is 'v0' except for ! cris-axis-linux-gnu, where the default is 'v10'. ! '-mtune=ARCHITECTURE-TYPE' Tune to ARCHITECTURE-TYPE everything applicable about the generated code, except for the ABI and the set of available instructions. The choices for ARCHITECTURE-TYPE are the same as for ! '-march=ARCHITECTURE-TYPE'. ! '-mmax-stack-frame=N' Warn when the stack frame of a function exceeds N bytes. ! '-metrax4' ! '-metrax100' ! The options '-metrax4' and '-metrax100' are synonyms for ! '-march=v3' and '-march=v8' respectively. ! '-mmul-bug-workaround' ! '-mno-mul-bug-workaround' ! Work around a bug in the 'muls' and 'mulu' instructions for CPU models where it applies. This option is active by default. ! '-mpdebug' Enable CRIS-specific verbose debug-related information in the assembly code. This option also has the effect of turning off the ! '#NO_APP' formatted-code indicator to the assembler at the beginning of the assembly file. ! '-mcc-init' ! Do not use condition-code results from previous instruction; always ! emit compare and test instructions before use of condition codes. ! '-mno-side-effects' Do not emit instructions with side effects in addressing modes other than post-increment. ! '-mstack-align' ! '-mno-stack-align' ! '-mdata-align' ! '-mno-data-align' ! '-mconst-align' ! '-mno-const-align' ! These options ('no-' options) arrange (eliminate arrangements) for the stack frame, individual data and constants to be aligned for the maximum single data access size for the chosen CPU model. The default is to arrange for 32-bit alignment. ABI details such as structure layout are not affected by these options. ! '-m32-bit' ! '-m16-bit' ! '-m8-bit' Similar to the stack- data- and const-align options above, these ! options arrange for stack frame, writable data and constants to all ! be 32-bit, 16-bit or 8-bit aligned. The default is 32-bit alignment. ! '-mno-prologue-epilogue' ! '-mprologue-epilogue' ! With '-mno-prologue-epilogue', the normal function prologue and epilogue which set up the stack frame are omitted and no return instructions or return sequences are generated in the code. Use this option only together with visual inspection of the compiled ! code: no warnings or errors are generated when call-saved registers ! must be saved, or storage for local variables needs to be ! allocated. ! '-mno-gotplt' ! '-mgotplt' ! With '-fpic' and '-fPIC', don't generate (do generate) instruction sequences that load addresses for functions from the PLT part of the GOT rather than (traditional on other architectures) calls to ! the PLT. The default is '-mgotplt'. ! '-melf' Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-gnu targets. ! '-mlinux' Legacy no-op option only recognized with the cris-axis-linux-gnu target. ! '-sim' This option, recognized for the cris-axis-elf, arranges to link with input-output functions from a simulator library. Code, initialized data and zero-initialized data are allocated consecutively. ! '-sim2' ! Like '-sim', but pass linker options to locate initialized data at 0x40000000 and zero-initialized data at 0x80000000.  *************** File: gcc.info, Node: CR16 Options, Ne *** 12153,12181 **** These options are defined specifically for the CR16 ports. ! `-mmac' ! Enable the use of multiply-accumulate instructions. Disabled by default. ! `-mcr16cplus' ! `-mcr16c' ! Generate code for CR16C or CR16C+ architecture. CR16C+ architecture ! is default. ! `-msim' Links the library libsim.a which is in compatible with simulator. Applicable to ELF compiler only. ! `-mint32' Choose integer type as 32-bit wide. ! `-mbit-ops' ! Generates `sbit'/`cbit' instructions for bit manipulations. ! `-mdata-model=MODEL' ! Choose a data model. The choices for MODEL are `near', `far' or ! `medium'. `medium' is default. However, `far' is not valid with ! `-mcr16c', as the CR16C architecture does not support the far data model.  --- 12057,12085 ---- These options are defined specifically for the CR16 ports. ! '-mmac' ! Enable the use of multiply-accumulate instructions. Disabled by default. ! '-mcr16cplus' ! '-mcr16c' ! Generate code for CR16C or CR16C+ architecture. CR16C+ ! architecture is default. ! '-msim' Links the library libsim.a which is in compatible with simulator. Applicable to ELF compiler only. ! '-mint32' Choose integer type as 32-bit wide. ! '-mbit-ops' ! Generates 'sbit'/'cbit' instructions for bit manipulations. ! '-mdata-model=MODEL' ! Choose a data model. The choices for MODEL are 'near', 'far' or ! 'medium'. 'medium' is default. However, 'far' is not valid with ! '-mcr16c', as the CR16C architecture does not support the far data model.  *************** operating system. *** 12189,12227 **** FSF GCC on Darwin does not create "fat" object files; it creates an object file for the single architecture that GCC was built to target. ! Apple's GCC on Darwin does create "fat" files if multiple `-arch' options are used; it does so by running the compiler or linker multiple ! times and joining the results together with `lipo'. ! The subtype of the file created (like `ppc7400' or `ppc970' or `i686') is determined by the flags that specify the ISA that GCC is targeting, ! like `-mcpu' or `-march'. The `-force_cpusubtype_ALL' option can be used to override this. The Darwin tools vary in their behavior when presented with an ISA ! mismatch. The assembler, `as', only permits instructions to be used that are valid for the subtype of the file it is generating, so you ! cannot put 64-bit instructions in a `ppc750' object file. The linker ! for shared libraries, `/usr/bin/libtool', fails and prints an error if asked to create a shared library with a less restrictive subtype than ! its input files (for instance, trying to put a `ppc970' object file in ! a `ppc7400' library). The linker for executables, `ld', quietly gives ! the executable the most restrictive subtype of any of its input files. ! `-FDIR' Add the framework directory DIR to the head of the list of directories to be searched for header files. These directories are ! interleaved with those specified by `-I' options and are scanned ! in a left-to-right order. A framework directory is a directory with frameworks in it. A ! framework is a directory with a `Headers' and/or `PrivateHeaders' ! directory contained directly in it that ends in `.framework'. The name of a framework is the name of this directory excluding the ! `.framework'. Headers associated with the framework are found in ! one of those two directories, with `Headers' being searched first. A subframework is a framework directory that is in a framework's ! `Frameworks' directory. Includes of subframework headers can only appear in a header of a framework that contains the subframework, or in a sibling subframework header. Two subframeworks are siblings if they occur in the same framework. A subframework --- 12093,12131 ---- FSF GCC on Darwin does not create "fat" object files; it creates an object file for the single architecture that GCC was built to target. ! Apple's GCC on Darwin does create "fat" files if multiple '-arch' options are used; it does so by running the compiler or linker multiple ! times and joining the results together with 'lipo'. ! The subtype of the file created (like 'ppc7400' or 'ppc970' or 'i686') is determined by the flags that specify the ISA that GCC is targeting, ! like '-mcpu' or '-march'. The '-force_cpusubtype_ALL' option can be used to override this. The Darwin tools vary in their behavior when presented with an ISA ! mismatch. The assembler, 'as', only permits instructions to be used that are valid for the subtype of the file it is generating, so you ! cannot put 64-bit instructions in a 'ppc750' object file. The linker ! for shared libraries, '/usr/bin/libtool', fails and prints an error if asked to create a shared library with a less restrictive subtype than ! its input files (for instance, trying to put a 'ppc970' object file in a ! 'ppc7400' library). The linker for executables, 'ld', quietly gives the ! executable the most restrictive subtype of any of its input files. ! '-FDIR' Add the framework directory DIR to the head of the list of directories to be searched for header files. These directories are ! interleaved with those specified by '-I' options and are scanned in ! a left-to-right order. A framework directory is a directory with frameworks in it. A ! framework is a directory with a 'Headers' and/or 'PrivateHeaders' ! directory contained directly in it that ends in '.framework'. The name of a framework is the name of this directory excluding the ! '.framework'. Headers associated with the framework are found in ! one of those two directories, with 'Headers' being searched first. A subframework is a framework directory that is in a framework's ! 'Frameworks' directory. Includes of subframework headers can only appear in a header of a framework that contains the subframework, or in a sibling subframework header. Two subframeworks are siblings if they occur in the same framework. A subframework *************** the executable the most restrictive subt *** 12229,12379 **** if this is violated. Currently a subframework cannot have subframeworks; in the future, the mechanism may be extended to support this. The standard frameworks can be found in ! `/System/Library/Frameworks' and `/Library/Frameworks'. An ! example include looks like `#include ', where ! `Framework' denotes the name of the framework and `header.h' is ! found in the `PrivateHeaders' or `Headers' directory. ! `-iframeworkDIR' ! Like `-F' except the directory is a treated as a system directory. ! The main difference between this `-iframework' and `-F' is that ! with `-iframework' the compiler does not warn about constructs contained within header files found via DIR. This option is valid only for the C family of languages. ! `-gused' Emit debugging information for symbols that are used. For stabs ! debugging format, this enables `-feliminate-unused-debug-symbols'. This is by default ON. ! `-gfull' Emit debugging information for all symbols and types. ! `-mmacosx-version-min=VERSION' ! The earliest version of MacOS X that this executable will run on ! is VERSION. Typical values of VERSION include `10.1', `10.2', and ! `10.3.9'. If the compiler was built to use the system's headers by default, then the default for this option is the system version on which the compiler is running, otherwise the default is to make choices that are compatible with as many systems and code bases as possible. ! `-mkernel' ! Enable kernel development mode. The `-mkernel' option sets ! `-static', `-fno-common', `-fno-cxa-atexit', `-fno-exceptions', ! `-fno-non-call-exceptions', `-fapple-kext', `-fno-weak' and ! `-fno-rtti' where applicable. This mode also sets `-mno-altivec', ! `-msoft-float', `-fno-builtin' and `-mlong-branch' for PowerPC targets. ! `-mone-byte-bool' ! Override the defaults for `bool' so that `sizeof(bool)==1'. By ! default `sizeof(bool)' is `4' when compiling for Darwin/PowerPC ! and `1' when compiling for Darwin/x86, so this option has no ! effect on x86. ! *Warning:* The `-mone-byte-bool' switch causes GCC to generate ! code that is not binary compatible with code generated without ! that switch. Using this switch may require recompiling all other modules in a program, including system libraries. Use this switch to conform to a non-default data model. ! `-mfix-and-continue' ! `-ffix-and-continue' ! `-findirect-data' Generate code suitable for fast turnaround development, such as to ! allow GDB to dynamically load `.o' files into already-running ! programs. `-findirect-data' and `-ffix-and-continue' are provided for backwards compatibility. ! `-all_load' Loads all members of static archive libraries. See man ld(1) for more information. ! `-arch_errors_fatal' Cause the errors having to do with files that have the wrong architecture to be fatal. ! `-bind_at_load' Causes the output file to be marked such that the dynamic linker will bind all undefined references when the file is loaded or launched. ! `-bundle' Produce a Mach-o bundle format file. See man ld(1) for more information. ! `-bundle_loader EXECUTABLE' This option specifies the EXECUTABLE that will load the build output file being linked. See man ld(1) for more information. ! `-dynamiclib' When passed this option, GCC produces a dynamic library instead of ! an executable when linking, using the Darwin `libtool' command. ! `-force_cpusubtype_ALL' This causes GCC's output file to have the ALL subtype, instead of ! one controlled by the `-mcpu' or `-march' option. ! `-allowable_client CLIENT_NAME' ! `-client_name' ! `-compatibility_version' ! `-current_version' ! `-dead_strip' ! `-dependency-file' ! `-dylib_file' ! `-dylinker_install_name' ! `-dynamic' ! `-exported_symbols_list' ! `-filelist' ! `-flat_namespace' ! `-force_flat_namespace' ! `-headerpad_max_install_names' ! `-image_base' ! `-init' ! `-install_name' ! `-keep_private_externs' ! `-multi_module' ! `-multiply_defined' ! `-multiply_defined_unused' ! `-noall_load' ! `-no_dead_strip_inits_and_terms' ! `-nofixprebinding' ! `-nomultidefs' ! `-noprebind' ! `-noseglinkedit' ! `-pagezero_size' ! `-prebind' ! `-prebind_all_twolevel_modules' ! `-private_bundle' ! `-read_only_relocs' ! `-sectalign' ! `-sectobjectsymbols' ! `-whyload' ! `-seg1addr' ! `-sectcreate' ! `-sectobjectsymbols' ! `-sectorder' ! `-segaddr' ! `-segs_read_only_addr' ! `-segs_read_write_addr' ! `-seg_addr_table' ! `-seg_addr_table_filename' ! `-seglinkedit' ! `-segprot' ! `-segs_read_only_addr' ! `-segs_read_write_addr' ! `-single_module' ! `-static' ! `-sub_library' ! `-sub_umbrella' ! `-twolevel_namespace' ! `-umbrella' ! `-undefined' ! `-unexported_symbols_list' ! `-weak_reference_mismatches' ! `-whatsloaded' These options are passed to the Darwin linker. The Darwin linker man page describes them in detail. --- 12133,12283 ---- if this is violated. Currently a subframework cannot have subframeworks; in the future, the mechanism may be extended to support this. The standard frameworks can be found in ! '/System/Library/Frameworks' and '/Library/Frameworks'. An example ! include looks like '#include ', where ! 'Framework' denotes the name of the framework and 'header.h' is ! found in the 'PrivateHeaders' or 'Headers' directory. ! '-iframeworkDIR' ! Like '-F' except the directory is a treated as a system directory. ! The main difference between this '-iframework' and '-F' is that ! with '-iframework' the compiler does not warn about constructs contained within header files found via DIR. This option is valid only for the C family of languages. ! '-gused' Emit debugging information for symbols that are used. For stabs ! debugging format, this enables '-feliminate-unused-debug-symbols'. This is by default ON. ! '-gfull' Emit debugging information for all symbols and types. ! '-mmacosx-version-min=VERSION' ! The earliest version of MacOS X that this executable will run on is ! VERSION. Typical values of VERSION include '10.1', '10.2', and ! '10.3.9'. If the compiler was built to use the system's headers by default, then the default for this option is the system version on which the compiler is running, otherwise the default is to make choices that are compatible with as many systems and code bases as possible. ! '-mkernel' ! Enable kernel development mode. The '-mkernel' option sets ! '-static', '-fno-common', '-fno-cxa-atexit', '-fno-exceptions', ! '-fno-non-call-exceptions', '-fapple-kext', '-fno-weak' and ! '-fno-rtti' where applicable. This mode also sets '-mno-altivec', ! '-msoft-float', '-fno-builtin' and '-mlong-branch' for PowerPC targets. ! '-mone-byte-bool' ! Override the defaults for 'bool' so that 'sizeof(bool)==1'. By ! default 'sizeof(bool)' is '4' when compiling for Darwin/PowerPC and ! '1' when compiling for Darwin/x86, so this option has no effect on ! x86. ! *Warning:* The '-mone-byte-bool' switch causes GCC to generate code ! that is not binary compatible with code generated without that ! switch. Using this switch may require recompiling all other modules in a program, including system libraries. Use this switch to conform to a non-default data model. ! '-mfix-and-continue' ! '-ffix-and-continue' ! '-findirect-data' Generate code suitable for fast turnaround development, such as to ! allow GDB to dynamically load '.o' files into already-running ! programs. '-findirect-data' and '-ffix-and-continue' are provided for backwards compatibility. ! '-all_load' Loads all members of static archive libraries. See man ld(1) for more information. ! '-arch_errors_fatal' Cause the errors having to do with files that have the wrong architecture to be fatal. ! '-bind_at_load' Causes the output file to be marked such that the dynamic linker will bind all undefined references when the file is loaded or launched. ! '-bundle' Produce a Mach-o bundle format file. See man ld(1) for more information. ! '-bundle_loader EXECUTABLE' This option specifies the EXECUTABLE that will load the build output file being linked. See man ld(1) for more information. ! '-dynamiclib' When passed this option, GCC produces a dynamic library instead of ! an executable when linking, using the Darwin 'libtool' command. ! '-force_cpusubtype_ALL' This causes GCC's output file to have the ALL subtype, instead of ! one controlled by the '-mcpu' or '-march' option. ! '-allowable_client CLIENT_NAME' ! '-client_name' ! '-compatibility_version' ! '-current_version' ! '-dead_strip' ! '-dependency-file' ! '-dylib_file' ! '-dylinker_install_name' ! '-dynamic' ! '-exported_symbols_list' ! '-filelist' ! '-flat_namespace' ! '-force_flat_namespace' ! '-headerpad_max_install_names' ! '-image_base' ! '-init' ! '-install_name' ! '-keep_private_externs' ! '-multi_module' ! '-multiply_defined' ! '-multiply_defined_unused' ! '-noall_load' ! '-no_dead_strip_inits_and_terms' ! '-nofixprebinding' ! '-nomultidefs' ! '-noprebind' ! '-noseglinkedit' ! '-pagezero_size' ! '-prebind' ! '-prebind_all_twolevel_modules' ! '-private_bundle' ! '-read_only_relocs' ! '-sectalign' ! '-sectobjectsymbols' ! '-whyload' ! '-seg1addr' ! '-sectcreate' ! '-sectobjectsymbols' ! '-sectorder' ! '-segaddr' ! '-segs_read_only_addr' ! '-segs_read_write_addr' ! '-seg_addr_table' ! '-seg_addr_table_filename' ! '-seglinkedit' ! '-segprot' ! '-segs_read_only_addr' ! '-segs_read_write_addr' ! '-single_module' ! '-static' ! '-sub_library' ! '-sub_umbrella' ! '-twolevel_namespace' ! '-umbrella' ! '-undefined' ! '-unexported_symbols_list' ! '-weak_reference_mismatches' ! '-whatsloaded' These options are passed to the Darwin linker. The Darwin linker man page describes them in detail. *************** File: gcc.info, Node: DEC Alpha Options *** 12383,12525 **** 3.17.10 DEC Alpha Options ------------------------- ! These `-m' options are defined for the DEC Alpha implementations: ! `-mno-soft-float' ! `-msoft-float' Use (do not use) the hardware floating-point instructions for ! floating-point operations. When `-msoft-float' is specified, ! functions in `libgcc.a' are used to perform floating-point operations. Unless they are replaced by routines that emulate the floating-point operations, or compiled in such a way as to call such emulations routines, these routines issue floating-point ! operations. If you are compiling for an Alpha without floating-point operations, you must ensure that the library is built so as not to call them. Note that Alpha implementations without floating-point operations are required to have floating-point registers. ! `-mfp-reg' ! `-mno-fp-regs' Generate code that uses (does not use) the floating-point register ! set. `-mno-fp-regs' implies `-msoft-float'. If the floating-point register set is not used, floating-point operands are passed in integer registers as if they were integers and floating-point ! results are passed in `$0' instead of `$f0'. This is a non-standard calling sequence, so any function with a floating-point argument or return value called by code compiled ! with `-mno-fp-regs' must also be compiled with that option. A typical use of this option is building a kernel that does not use, and hence need not save and restore, any floating-point registers. ! `-mieee' ! The Alpha architecture implements floating-point hardware ! optimized for maximum performance. It is mostly compliant with ! the IEEE floating-point standard. However, for full compliance, ! software assistance is required. This option generates code fully IEEE-compliant code _except_ that the INEXACT-FLAG is not maintained (see below). If this option is turned on, the ! preprocessor macro `_IEEE_FP' is defined during compilation. The resulting code is less efficient but is able to correctly support denormalized numbers and exceptional IEEE values such as not-a-number and plus/minus infinity. Other Alpha compilers call ! this option `-ieee_with_no_inexact'. ! `-mieee-with-inexact' ! This is like `-mieee' except the generated code also maintains the IEEE INEXACT-FLAG. Turning on this option causes the generated code to implement fully-compliant IEEE math. In addition to ! `_IEEE_FP', `_IEEE_FP_EXACT' is defined as a preprocessor macro. On some Alpha implementations the resulting code may execute significantly slower than the code generated by default. Since there is very little code that depends on the INEXACT-FLAG, you should normally not specify this option. Other Alpha compilers ! call this option `-ieee_with_inexact'. ! `-mfp-trap-mode=TRAP-MODE' This option controls what floating-point related traps are enabled. ! Other Alpha compilers call this option `-fptm TRAP-MODE'. The ! trap mode can be set to one of four values: ! `n' ! This is the default (normal) setting. The only traps that ! are enabled are the ones that cannot be disabled in software (e.g., division by zero trap). ! `u' ! In addition to the traps enabled by `n', underflow traps are enabled as well. ! `su' ! Like `u', but the instructions are marked to be safe for software completion (see Alpha architecture manual for details). ! `sui' ! Like `su', but inexact traps are enabled as well. ! `-mfp-rounding-mode=ROUNDING-MODE' Selects the IEEE rounding mode. Other Alpha compilers call this ! option `-fprm ROUNDING-MODE'. The ROUNDING-MODE can be one of: ! `n' ! Normal IEEE rounding mode. Floating-point numbers are ! rounded towards the nearest machine number or towards the ! even machine number in case of a tie. ! `m' Round towards minus infinity. ! `c' Chopped rounding mode. Floating-point numbers are rounded towards zero. ! `d' Dynamic rounding mode. A field in the floating-point control register (FPCR, see Alpha architecture reference manual) controls the rounding mode in effect. The C library initializes this register for rounding towards plus infinity. ! Thus, unless your program modifies the FPCR, `d' corresponds to round towards plus infinity. ! `-mtrap-precision=TRAP-PRECISION' In the Alpha architecture, floating-point traps are imprecise. This means without software assistance it is impossible to recover from a floating trap and program execution normally needs to be ! terminated. GCC can generate code that can assist operating ! system trap handlers in determining the exact location that caused ! a floating-point trap. Depending on the requirements of an application, different levels of precisions can be selected: ! `p' Program precision. This option is the default and means a trap handler can only identify which program caused a floating-point exception. ! `f' Function precision. The trap handler can determine the function that caused a floating-point exception. ! `i' Instruction precision. The trap handler can determine the exact instruction that caused a floating-point exception. Other Alpha compilers provide the equivalent options called ! `-scope_safe' and `-resumption_safe'. ! `-mieee-conformant' This option marks the generated code as IEEE conformant. You must ! not use this option unless you also specify `-mtrap-precision=i' ! and either `-mfp-trap-mode=su' or `-mfp-trap-mode=sui'. Its only ! effect is to emit the line `.eflag 48' in the function prologue of the generated assembly file. ! `-mbuild-constants' ! Normally GCC examines a 32- or 64-bit integer constant to see if ! it can construct it from smaller constants in two or three instructions. If it cannot, it outputs the constant as a literal and generates code to load it from the data segment at run time. --- 12287,12429 ---- 3.17.10 DEC Alpha Options ------------------------- ! These '-m' options are defined for the DEC Alpha implementations: ! '-mno-soft-float' ! '-msoft-float' Use (do not use) the hardware floating-point instructions for ! floating-point operations. When '-msoft-float' is specified, ! functions in 'libgcc.a' are used to perform floating-point operations. Unless they are replaced by routines that emulate the floating-point operations, or compiled in such a way as to call such emulations routines, these routines issue floating-point ! operations. If you are compiling for an Alpha without floating-point operations, you must ensure that the library is built so as not to call them. Note that Alpha implementations without floating-point operations are required to have floating-point registers. ! '-mfp-reg' ! '-mno-fp-regs' Generate code that uses (does not use) the floating-point register ! set. '-mno-fp-regs' implies '-msoft-float'. If the floating-point register set is not used, floating-point operands are passed in integer registers as if they were integers and floating-point ! results are passed in '$0' instead of '$f0'. This is a non-standard calling sequence, so any function with a floating-point argument or return value called by code compiled ! with '-mno-fp-regs' must also be compiled with that option. A typical use of this option is building a kernel that does not use, and hence need not save and restore, any floating-point registers. ! '-mieee' ! The Alpha architecture implements floating-point hardware optimized ! for maximum performance. It is mostly compliant with the IEEE ! floating-point standard. However, for full compliance, software ! assistance is required. This option generates code fully IEEE-compliant code _except_ that the INEXACT-FLAG is not maintained (see below). If this option is turned on, the ! preprocessor macro '_IEEE_FP' is defined during compilation. The resulting code is less efficient but is able to correctly support denormalized numbers and exceptional IEEE values such as not-a-number and plus/minus infinity. Other Alpha compilers call ! this option '-ieee_with_no_inexact'. ! '-mieee-with-inexact' ! This is like '-mieee' except the generated code also maintains the IEEE INEXACT-FLAG. Turning on this option causes the generated code to implement fully-compliant IEEE math. In addition to ! '_IEEE_FP', '_IEEE_FP_EXACT' is defined as a preprocessor macro. On some Alpha implementations the resulting code may execute significantly slower than the code generated by default. Since there is very little code that depends on the INEXACT-FLAG, you should normally not specify this option. Other Alpha compilers ! call this option '-ieee_with_inexact'. ! '-mfp-trap-mode=TRAP-MODE' This option controls what floating-point related traps are enabled. ! Other Alpha compilers call this option '-fptm TRAP-MODE'. The trap ! mode can be set to one of four values: ! 'n' ! This is the default (normal) setting. The only traps that are ! enabled are the ones that cannot be disabled in software (e.g., division by zero trap). ! 'u' ! In addition to the traps enabled by 'n', underflow traps are enabled as well. ! 'su' ! Like 'u', but the instructions are marked to be safe for software completion (see Alpha architecture manual for details). ! 'sui' ! Like 'su', but inexact traps are enabled as well. ! '-mfp-rounding-mode=ROUNDING-MODE' Selects the IEEE rounding mode. Other Alpha compilers call this ! option '-fprm ROUNDING-MODE'. The ROUNDING-MODE can be one of: ! 'n' ! Normal IEEE rounding mode. Floating-point numbers are rounded ! towards the nearest machine number or towards the even machine ! number in case of a tie. ! 'm' Round towards minus infinity. ! 'c' Chopped rounding mode. Floating-point numbers are rounded towards zero. ! 'd' Dynamic rounding mode. A field in the floating-point control register (FPCR, see Alpha architecture reference manual) controls the rounding mode in effect. The C library initializes this register for rounding towards plus infinity. ! Thus, unless your program modifies the FPCR, 'd' corresponds to round towards plus infinity. ! '-mtrap-precision=TRAP-PRECISION' In the Alpha architecture, floating-point traps are imprecise. This means without software assistance it is impossible to recover from a floating trap and program execution normally needs to be ! terminated. GCC can generate code that can assist operating system ! trap handlers in determining the exact location that caused a ! floating-point trap. Depending on the requirements of an application, different levels of precisions can be selected: ! 'p' Program precision. This option is the default and means a trap handler can only identify which program caused a floating-point exception. ! 'f' Function precision. The trap handler can determine the function that caused a floating-point exception. ! 'i' Instruction precision. The trap handler can determine the exact instruction that caused a floating-point exception. Other Alpha compilers provide the equivalent options called ! '-scope_safe' and '-resumption_safe'. ! '-mieee-conformant' This option marks the generated code as IEEE conformant. You must ! not use this option unless you also specify '-mtrap-precision=i' ! and either '-mfp-trap-mode=su' or '-mfp-trap-mode=sui'. Its only ! effect is to emit the line '.eflag 48' in the function prologue of the generated assembly file. ! '-mbuild-constants' ! Normally GCC examines a 32- or 64-bit integer constant to see if it ! can construct it from smaller constants in two or three instructions. If it cannot, it outputs the constant as a literal and generates code to load it from the data segment at run time. *************** These `-m' options are defined for the D *** 12532,12670 **** before it can find the variables and constants in its own data segment. ! `-mbwx' ! `-mno-bwx' ! `-mcix' ! `-mno-cix' ! `-mfix' ! `-mno-fix' ! `-mmax' ! `-mno-max' Indicate whether GCC should generate code to use the optional BWX, CIX, FIX and MAX instruction sets. The default is to use the ! instruction sets supported by the CPU type specified via `-mcpu=' option or that of the CPU on which GCC was built if none is specified. ! `-mfloat-vax' ! `-mfloat-ieee' Generate code that uses (does not use) VAX F and G floating-point arithmetic instead of IEEE single and double precision. ! `-mexplicit-relocs' ! `-mno-explicit-relocs' Older Alpha assemblers provided no way to generate symbol relocations except via assembler macros. Use of these macros does not allow optimal instruction scheduling. GNU binutils as of version 2.12 supports a new syntax that allows the compiler to explicitly mark which relocations should apply to which instructions. This option is mostly useful for debugging, as GCC ! detects the capabilities of the assembler when it is built and ! sets the default accordingly. ! `-msmall-data' ! `-mlarge-data' ! When `-mexplicit-relocs' is in effect, static data is accessed via ! "gp-relative" relocations. When `-msmall-data' is used, objects 8 bytes long or smaller are placed in a "small data area" (the ! `.sdata' and `.sbss' sections) and are accessed via 16-bit ! relocations off of the `$gp' register. This limits the size of ! the small data area to 64KB, but allows the variables to be ! directly accessed via a single instruction. ! The default is `-mlarge-data'. With this option the data area is limited to just below 2GB. Programs that require more than 2GB of ! data must use `malloc' or `mmap' to allocate the data in the heap instead of in the program's data segment. ! When generating code for shared libraries, `-fpic' implies ! `-msmall-data' and `-fPIC' implies `-mlarge-data'. ! `-msmall-text' ! `-mlarge-text' ! When `-msmall-text' is used, the compiler assumes that the code of the entire program (or shared library) fits in 4MB, and is thus ! reachable with a branch instruction. When `-msmall-data' is used, ! the compiler can assume that all local symbols share the same ! `$gp' value, and thus reduce the number of instructions required ! for a function call from 4 to 1. ! The default is `-mlarge-text'. ! `-mcpu=CPU_TYPE' Set the instruction set and instruction scheduling parameters for ! machine type CPU_TYPE. You can specify either the `EV' style name or the corresponding chip number. GCC supports scheduling parameters for the EV4, EV5 and EV6 family of processors and chooses the default values for the instruction set from the ! processor you specify. If you do not specify a processor type, ! GCC defaults to the processor on which the compiler was built. Supported values for CPU_TYPE are ! `ev4' ! `ev45' ! `21064' Schedules as an EV4 and has no instruction set extensions. ! `ev5' ! `21164' Schedules as an EV5 and has no instruction set extensions. ! `ev56' ! `21164a' Schedules as an EV5 and supports the BWX extension. ! `pca56' ! `21164pc' ! `21164PC' Schedules as an EV5 and supports the BWX and MAX extensions. ! `ev6' ! `21264' Schedules as an EV6 and supports the BWX, FIX, and MAX extensions. ! `ev67' ! `21264a' Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions. ! Native toolchains also support the value `native', which selects the best architecture option for the host processor. ! `-mcpu=native' has no effect if GCC does not recognize the processor. ! `-mtune=CPU_TYPE' Set only the instruction scheduling parameters for machine type CPU_TYPE. The instruction set is not changed. ! Native toolchains also support the value `native', which selects the best architecture option for the host processor. ! `-mtune=native' has no effect if GCC does not recognize the processor. ! `-mmemory-latency=TIME' Sets the latency the scheduler should assume for typical memory references as seen by the application. This number is highly ! dependent on the memory access patterns used by the application ! and the size of the external cache on the machine. Valid options for TIME are ! `NUMBER' A decimal number representing clock cycles. ! `L1' ! `L2' ! `L3' ! `main' The compiler contains estimates of the number of clock cycles for "typical" EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main memory. Note that L3 is only valid for EV5. -  File: gcc.info, Node: FR30 Options, Next: FRV Options, Prev: DEC Alpha Options, Up: Submodel Options --- 12436,12573 ---- before it can find the variables and constants in its own data segment. ! '-mbwx' ! '-mno-bwx' ! '-mcix' ! '-mno-cix' ! '-mfix' ! '-mno-fix' ! '-mmax' ! '-mno-max' Indicate whether GCC should generate code to use the optional BWX, CIX, FIX and MAX instruction sets. The default is to use the ! instruction sets supported by the CPU type specified via '-mcpu=' option or that of the CPU on which GCC was built if none is specified. ! '-mfloat-vax' ! '-mfloat-ieee' Generate code that uses (does not use) VAX F and G floating-point arithmetic instead of IEEE single and double precision. ! '-mexplicit-relocs' ! '-mno-explicit-relocs' Older Alpha assemblers provided no way to generate symbol relocations except via assembler macros. Use of these macros does not allow optimal instruction scheduling. GNU binutils as of version 2.12 supports a new syntax that allows the compiler to explicitly mark which relocations should apply to which instructions. This option is mostly useful for debugging, as GCC ! detects the capabilities of the assembler when it is built and sets ! the default accordingly. ! '-msmall-data' ! '-mlarge-data' ! When '-mexplicit-relocs' is in effect, static data is accessed via ! "gp-relative" relocations. When '-msmall-data' is used, objects 8 bytes long or smaller are placed in a "small data area" (the ! '.sdata' and '.sbss' sections) and are accessed via 16-bit ! relocations off of the '$gp' register. This limits the size of the ! small data area to 64KB, but allows the variables to be directly ! accessed via a single instruction. ! The default is '-mlarge-data'. With this option the data area is limited to just below 2GB. Programs that require more than 2GB of ! data must use 'malloc' or 'mmap' to allocate the data in the heap instead of in the program's data segment. ! When generating code for shared libraries, '-fpic' implies ! '-msmall-data' and '-fPIC' implies '-mlarge-data'. ! '-msmall-text' ! '-mlarge-text' ! When '-msmall-text' is used, the compiler assumes that the code of the entire program (or shared library) fits in 4MB, and is thus ! reachable with a branch instruction. When '-msmall-data' is used, ! the compiler can assume that all local symbols share the same '$gp' ! value, and thus reduce the number of instructions required for a ! function call from 4 to 1. ! The default is '-mlarge-text'. ! '-mcpu=CPU_TYPE' Set the instruction set and instruction scheduling parameters for ! machine type CPU_TYPE. You can specify either the 'EV' style name or the corresponding chip number. GCC supports scheduling parameters for the EV4, EV5 and EV6 family of processors and chooses the default values for the instruction set from the ! processor you specify. If you do not specify a processor type, GCC ! defaults to the processor on which the compiler was built. Supported values for CPU_TYPE are ! 'ev4' ! 'ev45' ! '21064' Schedules as an EV4 and has no instruction set extensions. ! 'ev5' ! '21164' Schedules as an EV5 and has no instruction set extensions. ! 'ev56' ! '21164a' Schedules as an EV5 and supports the BWX extension. ! 'pca56' ! '21164pc' ! '21164PC' Schedules as an EV5 and supports the BWX and MAX extensions. ! 'ev6' ! '21264' Schedules as an EV6 and supports the BWX, FIX, and MAX extensions. ! 'ev67' ! '21264a' Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions. ! Native toolchains also support the value 'native', which selects the best architecture option for the host processor. ! '-mcpu=native' has no effect if GCC does not recognize the processor. ! '-mtune=CPU_TYPE' Set only the instruction scheduling parameters for machine type CPU_TYPE. The instruction set is not changed. ! Native toolchains also support the value 'native', which selects the best architecture option for the host processor. ! '-mtune=native' has no effect if GCC does not recognize the processor. ! '-mmemory-latency=TIME' Sets the latency the scheduler should assume for typical memory references as seen by the application. This number is highly ! dependent on the memory access patterns used by the application and ! the size of the external cache on the machine. Valid options for TIME are ! 'NUMBER' A decimal number representing clock cycles. ! 'L1' ! 'L2' ! 'L3' ! 'main' The compiler contains estimates of the number of clock cycles for "typical" EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main memory. Note that L3 is only valid for EV5.  File: gcc.info, Node: FR30 Options, Next: FRV Options, Prev: DEC Alpha Options, Up: Submodel Options *************** File: gcc.info, Node: FR30 Options, Ne *** 12673,12905 **** These options are defined specifically for the FR30 port. ! `-msmall-model' Use the small address space model. This can produce smaller code, but it does assume that all symbolic values and addresses fit into a 20-bit range. ! `-mno-lsim' Assume that runtime support has been provided and so there is no ! need to include the simulator library (`libsim.a') on the linker command line. -  File: gcc.info, Node: FRV Options, Next: GNU/Linux Options, Prev: FR30 Options, Up: Submodel Options 3.17.12 FRV Options ------------------- ! `-mgpr-32' Only use the first 32 general-purpose registers. ! `-mgpr-64' Use all 64 general-purpose registers. ! `-mfpr-32' Use only the first 32 floating-point registers. ! `-mfpr-64' Use all 64 floating-point registers. ! `-mhard-float' Use hardware instructions for floating-point operations. ! `-msoft-float' Use library routines for floating-point operations. ! `-malloc-cc' Dynamically allocate condition code registers. ! `-mfixed-cc' Do not try to dynamically allocate condition code registers, only ! use `icc0' and `fcc0'. - `-mdword' Change ABI to use double word insns. ! `-mno-dword' Do not use double word instructions. ! `-mdouble' Use floating-point double instructions. ! `-mno-double' Do not use floating-point double instructions. ! `-mmedia' Use media instructions. ! `-mno-media' Do not use media instructions. ! `-mmuladd' Use multiply and add/subtract instructions. ! `-mno-muladd' Do not use multiply and add/subtract instructions. ! `-mfdpic' Select the FDPIC ABI, which uses function descriptors to represent pointers to functions. Without any PIC/PIE-related options, it ! implies `-fPIE'. With `-fpic' or `-fpie', it assumes GOT entries ! and small data are within a 12-bit range from the GOT base ! address; with `-fPIC' or `-fPIE', GOT offsets are computed with 32 ! bits. With a `bfin-elf' target, this option implies `-msim'. - `-minline-plt' Enable inlining of PLT entries in function calls to functions that ! are not known to bind locally. It has no effect without `-mfdpic'. It's enabled by default if optimizing for speed and compiling for ! shared libraries (i.e., `-fPIC' or `-fpic'), or when an ! optimization option such as `-O3' or above is present in the command line. ! `-mTLS' Assume a large TLS segment when generating thread-local code. ! `-mtls' Do not assume a large TLS segment when generating thread-local code. ! `-mgprel-ro' ! Enable the use of `GPREL' relocations in the FDPIC ABI for data that is known to be in read-only sections. It's enabled by ! default, except for `-fpic' or `-fpie': even though it may help make the global offset table smaller, it trades 1 instruction for ! 4. With `-fPIC' or `-fPIE', it trades 3 instructions for 4, one ! of which may be shared by multiple symbols, and it avoids the need ! for a GOT entry for the referenced symbol, so it's more likely to ! be a win. If it is not, `-mno-gprel-ro' can be used to disable it. - `-multilib-library-pic' Link with the (library, not FD) pic libraries. It's implied by ! `-mlibrary-pic', as well as by `-fPIC' and `-fpic' without ! `-mfdpic'. You should never have to use it explicitly. - `-mlinked-fp' Follow the EABI requirement of always creating a frame pointer whenever a stack frame is allocated. This option is enabled by ! default and can be disabled with `-mno-linked-fp'. - `-mlong-calls' Use indirect addressing to call functions outside the current compilation unit. This allows the functions to be placed anywhere within the 32-bit address space. ! `-malign-labels' Try to align labels to an 8-byte boundary by inserting NOPs into the previous packet. This option only has an effect when VLIW packing is enabled. It doesn't create new packets; it merely adds NOPs to existing ones. ! `-mlibrary-pic' Generate position-independent EABI code. ! `-macc-4' Use only the first four media accumulator registers. ! `-macc-8' Use all eight media accumulator registers. ! `-mpack' Pack VLIW instructions. ! `-mno-pack' Do not pack VLIW instructions. ! `-mno-eflags' Do not mark ABI switches in e_flags. ! `-mcond-move' Enable the use of conditional-move instructions (default). ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. - `-mno-cond-move' Disable the use of conditional-move instructions. ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. - `-mscc' Enable the use of conditional set instructions (default). ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. - `-mno-scc' Disable the use of conditional set instructions. ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. - `-mcond-exec' Enable the use of conditional execution (default). ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. - `-mno-cond-exec' Disable the use of conditional execution. ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. - `-mvliw-branch' Run a pass to pack branches into VLIW instructions (default). ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. - `-mno-vliw-branch' Do not run a pass to pack branches into VLIW instructions. ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. ! `-mmulti-cond-exec' ! Enable optimization of `&&' and `||' in conditional execution (default). ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. ! `-mno-multi-cond-exec' ! Disable optimization of `&&' and `||' in conditional execution. ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. - `-mnested-cond-exec' Enable nested conditional execution optimizations (default). ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. - `-mno-nested-cond-exec' Disable nested conditional execution optimizations. ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. ! `-moptimize-membar' ! This switch removes redundant `membar' instructions from the compiler-generated code. It is enabled by default. ! `-mno-optimize-membar' ! This switch disables the automatic removal of redundant `membar' instructions from the generated code. ! `-mtomcat-stats' Cause gas to print out tomcat statistics. ! `-mcpu=CPU' ! Select the processor type for which to generate code. Possible ! values are `frv', `fr550', `tomcat', `fr500', `fr450', `fr405', ! `fr400', `fr300' and `simple'.  File: gcc.info, Node: GNU/Linux Options, Next: H8/300 Options, Prev: FRV Options, Up: Submodel Options --- 12576,12853 ---- These options are defined specifically for the FR30 port. ! '-msmall-model' Use the small address space model. This can produce smaller code, but it does assume that all symbolic values and addresses fit into a 20-bit range. ! '-mno-lsim' Assume that runtime support has been provided and so there is no ! need to include the simulator library ('libsim.a') on the linker command line.  File: gcc.info, Node: FRV Options, Next: GNU/Linux Options, Prev: FR30 Options, Up: Submodel Options 3.17.12 FRV Options ------------------- ! '-mgpr-32' ! Only use the first 32 general-purpose registers. ! '-mgpr-64' ! Use all 64 general-purpose registers. ! '-mfpr-32' ! Use only the first 32 floating-point registers. ! '-mfpr-64' ! Use all 64 floating-point registers. ! '-mhard-float' ! Use hardware instructions for floating-point operations. ! '-msoft-float' ! Use library routines for floating-point operations. ! '-malloc-cc' ! Dynamically allocate condition code registers. ! '-mfixed-cc' ! Do not try to dynamically allocate condition code registers, only ! use 'icc0' and 'fcc0'. ! ! '-mdword' Change ABI to use double word insns. ! '-mno-dword' ! Do not use double word instructions. ! '-mdouble' ! Use floating-point double instructions. ! '-mno-double' ! Do not use floating-point double instructions. ! '-mmedia' ! Use media instructions. ! '-mno-media' ! Do not use media instructions. ! '-mmuladd' ! Use multiply and add/subtract instructions. ! '-mno-muladd' ! Do not use multiply and add/subtract instructions. ! '-mfdpic' ! Select the FDPIC ABI, which uses function descriptors to represent pointers to functions. Without any PIC/PIE-related options, it ! implies '-fPIE'. With '-fpic' or '-fpie', it assumes GOT entries ! and small data are within a 12-bit range from the GOT base address; ! with '-fPIC' or '-fPIE', GOT offsets are computed with 32 bits. ! With a 'bfin-elf' target, this option implies '-msim'. ! ! '-minline-plt' Enable inlining of PLT entries in function calls to functions that ! are not known to bind locally. It has no effect without '-mfdpic'. It's enabled by default if optimizing for speed and compiling for ! shared libraries (i.e., '-fPIC' or '-fpic'), or when an ! optimization option such as '-O3' or above is present in the command line. ! '-mTLS' ! Assume a large TLS segment when generating thread-local code. ! '-mtls' ! Do not assume a large TLS segment when generating thread-local code. ! '-mgprel-ro' ! ! Enable the use of 'GPREL' relocations in the FDPIC ABI for data that is known to be in read-only sections. It's enabled by ! default, except for '-fpic' or '-fpie': even though it may help make the global offset table smaller, it trades 1 instruction for ! 4. With '-fPIC' or '-fPIE', it trades 3 instructions for 4, one of ! which may be shared by multiple symbols, and it avoids the need for ! a GOT entry for the referenced symbol, so it's more likely to be a ! win. If it is not, '-mno-gprel-ro' can be used to disable it. ! ! '-multilib-library-pic' Link with the (library, not FD) pic libraries. It's implied by ! '-mlibrary-pic', as well as by '-fPIC' and '-fpic' without ! '-mfdpic'. You should never have to use it explicitly. ! ! '-mlinked-fp' Follow the EABI requirement of always creating a frame pointer whenever a stack frame is allocated. This option is enabled by ! default and can be disabled with '-mno-linked-fp'. ! ! '-mlong-calls' Use indirect addressing to call functions outside the current compilation unit. This allows the functions to be placed anywhere within the 32-bit address space. ! '-malign-labels' ! Try to align labels to an 8-byte boundary by inserting NOPs into the previous packet. This option only has an effect when VLIW packing is enabled. It doesn't create new packets; it merely adds NOPs to existing ones. ! '-mlibrary-pic' ! Generate position-independent EABI code. ! '-macc-4' ! Use only the first four media accumulator registers. ! '-macc-8' ! Use all eight media accumulator registers. ! '-mpack' ! Pack VLIW instructions. ! '-mno-pack' ! Do not pack VLIW instructions. ! '-mno-eflags' ! Do not mark ABI switches in e_flags. ! '-mcond-move' ! Enable the use of conditional-move instructions (default). ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mno-cond-move' Disable the use of conditional-move instructions. ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mscc' Enable the use of conditional set instructions (default). ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mno-scc' Disable the use of conditional set instructions. ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mcond-exec' Enable the use of conditional execution (default). ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mno-cond-exec' Disable the use of conditional execution. ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mvliw-branch' Run a pass to pack branches into VLIW instructions (default). ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mno-vliw-branch' Do not run a pass to pack branches into VLIW instructions. ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! '-mmulti-cond-exec' ! ! Enable optimization of '&&' and '||' in conditional execution (default). ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! '-mno-multi-cond-exec' ! Disable optimization of '&&' and '||' in conditional execution. ! ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mnested-cond-exec' Enable nested conditional execution optimizations (default). ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mno-nested-cond-exec' Disable nested conditional execution optimizations. ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! '-moptimize-membar' ! ! This switch removes redundant 'membar' instructions from the compiler-generated code. It is enabled by default. ! '-mno-optimize-membar' ! ! This switch disables the automatic removal of redundant 'membar' instructions from the generated code. ! '-mtomcat-stats' ! Cause gas to print out tomcat statistics. ! '-mcpu=CPU' + Select the processor type for which to generate code. Possible + values are 'frv', 'fr550', 'tomcat', 'fr500', 'fr450', 'fr405', + 'fr400', 'fr300' and 'simple'.  File: gcc.info, Node: GNU/Linux Options, Next: H8/300 Options, Prev: FRV Options, Up: Submodel Options *************** File: gcc.info, Node: GNU/Linux Options *** 12907,12989 **** 3.17.13 GNU/Linux Options ------------------------- ! These `-m' options are defined for GNU/Linux targets: ! `-mglibc' Use the GNU C library. This is the default except on ! `*-*-linux-*uclibc*' and `*-*-linux-*android*' targets. ! `-muclibc' ! Use uClibc C library. This is the default on `*-*-linux-*uclibc*' targets. ! `-mbionic' ! Use Bionic C library. This is the default on ! `*-*-linux-*android*' targets. ! `-mandroid' ! Compile code compatible with Android platform. This is the ! default on `*-*-linux-*android*' targets. ! When compiling, this option enables `-mbionic', `-fPIC', ! `-fno-exceptions' and `-fno-rtti' by default. When linking, this option makes the GCC driver pass Android-specific options to the linker. Finally, this option causes the preprocessor macro ! `__ANDROID__' to be defined. ! `-tno-android-cc' ! Disable compilation effects of `-mandroid', i.e., do not enable ! `-mbionic', `-fPIC', `-fno-exceptions' and `-fno-rtti' by default. ! `-tno-android-ld' ! Disable linking effects of `-mandroid', i.e., pass standard Linux linking options to the linker. -  File: gcc.info, Node: H8/300 Options, Next: HPPA Options, Prev: GNU/Linux Options, Up: Submodel Options 3.17.14 H8/300 Options ---------------------- ! These `-m' options are defined for the H8/300 implementations: ! `-mrelax' Shorten some address references at link time, when possible; uses ! the linker option `-relax'. *Note `ld' and the H8/300: ! (ld)H8/300, for a fuller description. ! `-mh' Generate code for the H8/300H. ! `-ms' Generate code for the H8S. ! `-mn' Generate code for the H8S and H8/300H in the normal mode. This ! switch must be used either with `-mh' or `-ms'. ! `-ms2600' Generate code for the H8S/2600. This switch must be used with ! `-ms'. ! `-mexr' Extended registers are stored on stack before execution of function ! with monitor attribute. Default option is `-mexr'. This option is valid only for H8S targets. ! `-mno-exr' Extended registers are not stored on stack before execution of ! function with monitor attribute. Default option is `-mno-exr'. This option is valid only for H8S targets. ! `-mint32' ! Make `int' data 32 bits by default. ! `-malign-300' On the H8/300H and H8S, use the same alignment rules as for the H8/300. The default for the H8/300H and H8S is to align longs and ! floats on 4-byte boundaries. `-malign-300' causes them to be aligned on 2-byte boundaries. This option has no effect on the H8/300. --- 12855,12936 ---- 3.17.13 GNU/Linux Options ------------------------- ! These '-m' options are defined for GNU/Linux targets: ! '-mglibc' Use the GNU C library. This is the default except on ! '*-*-linux-*uclibc*' and '*-*-linux-*android*' targets. ! '-muclibc' ! Use uClibc C library. This is the default on '*-*-linux-*uclibc*' targets. ! '-mbionic' ! Use Bionic C library. This is the default on '*-*-linux-*android*' ! targets. ! '-mandroid' ! Compile code compatible with Android platform. This is the default ! on '*-*-linux-*android*' targets. ! When compiling, this option enables '-mbionic', '-fPIC', ! '-fno-exceptions' and '-fno-rtti' by default. When linking, this option makes the GCC driver pass Android-specific options to the linker. Finally, this option causes the preprocessor macro ! '__ANDROID__' to be defined. ! '-tno-android-cc' ! Disable compilation effects of '-mandroid', i.e., do not enable ! '-mbionic', '-fPIC', '-fno-exceptions' and '-fno-rtti' by default. ! '-tno-android-ld' ! Disable linking effects of '-mandroid', i.e., pass standard Linux linking options to the linker.  File: gcc.info, Node: H8/300 Options, Next: HPPA Options, Prev: GNU/Linux Options, Up: Submodel Options 3.17.14 H8/300 Options ---------------------- ! These '-m' options are defined for the H8/300 implementations: ! '-mrelax' Shorten some address references at link time, when possible; uses ! the linker option '-relax'. *Note 'ld' and the H8/300: (ld)H8/300, ! for a fuller description. ! '-mh' Generate code for the H8/300H. ! '-ms' Generate code for the H8S. ! '-mn' Generate code for the H8S and H8/300H in the normal mode. This ! switch must be used either with '-mh' or '-ms'. ! '-ms2600' Generate code for the H8S/2600. This switch must be used with ! '-ms'. ! '-mexr' Extended registers are stored on stack before execution of function ! with monitor attribute. Default option is '-mexr'. This option is valid only for H8S targets. ! '-mno-exr' Extended registers are not stored on stack before execution of ! function with monitor attribute. Default option is '-mno-exr'. This option is valid only for H8S targets. ! '-mint32' ! Make 'int' data 32 bits by default. ! '-malign-300' On the H8/300H and H8S, use the same alignment rules as for the H8/300. The default for the H8/300H and H8S is to align longs and ! floats on 4-byte boundaries. '-malign-300' causes them to be aligned on 2-byte boundaries. This option has no effect on the H8/300. *************** File: gcc.info, Node: HPPA Options, Ne *** 12993,13139 **** 3.17.15 HPPA Options -------------------- ! These `-m' options are defined for the HPPA family of computers: ! `-march=ARCHITECTURE-TYPE' Generate code for the specified architecture. The choices for ! ARCHITECTURE-TYPE are `1.0' for PA 1.0, `1.1' for PA 1.1, and ! `2.0' for PA 2.0 processors. Refer to `/usr/lib/sched.models' on ! an HP-UX system to determine the proper architecture option for ! your machine. Code compiled for lower numbered architectures runs ! on higher numbered architectures, but not the other way around. ! `-mpa-risc-1-0' ! `-mpa-risc-1-1' ! `-mpa-risc-2-0' ! Synonyms for `-march=1.0', `-march=1.1', and `-march=2.0' respectively. ! `-mbig-switch' ! Generate code suitable for big switch tables. Use this option ! only if the assembler/linker complain about out-of-range branches ! within a switch table. ! `-mjump-in-delay' Fill delay slots of function calls with unconditional jump instructions by modifying the return pointer for the function call to be the target of the conditional jump. ! `-mdisable-fpregs' Prevent floating-point registers from being used in any manner. This is necessary for compiling kernels that perform lazy context switching of floating-point registers. If you use this option and attempt to perform floating-point operations, the compiler aborts. ! `-mdisable-indexing' Prevent the compiler from using indexing address modes. This avoids some rather obscure problems when compiling MIG generated code under MACH. ! `-mno-space-regs' ! Generate code that assumes the target has no space registers. ! This allows GCC to generate faster indirect calls and use unscaled ! index address modes. Such code is suitable for level 0 PA systems and kernels. ! `-mfast-indirect-calls' Generate code that assumes calls never cross space boundaries. This allows GCC to emit code that performs faster indirect calls. This option does not work in the presence of shared libraries or nested functions. ! `-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator cannot use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! `-mlong-load-store' Generate 3-instruction load and store sequences as sometimes ! required by the HP-UX 10 linker. This is equivalent to the `+k' option to the HP compilers. ! `-mportable-runtime' Use the portable calling conventions proposed by HP for ELF systems. ! `-mgas' Enable the use of assembler directives only GAS understands. ! `-mschedule=CPU-TYPE' Schedule code according to the constraints for the machine type ! CPU-TYPE. The choices for CPU-TYPE are `700' `7100', `7100LC', ! `7200', `7300' and `8000'. Refer to `/usr/lib/sched.models' on an HP-UX system to determine the proper scheduling option for your ! machine. The default scheduling is `8000'. ! `-mlinker-opt' Enable the optimization pass in the HP-UX linker. Note this makes ! symbolic debugging impossible. It also triggers a bug in the ! HP-UX 8 and HP-UX 9 linkers in which they give bogus error ! messages when linking some programs. ! `-msoft-float' Generate output containing library calls for floating point. *Warning:* the requisite libraries are not available for all HPPA ! targets. Normally the facilities of the machine's usual C ! compiler are used, but this cannot be done directly in ! cross-compilation. You must make your own arrangements to provide ! suitable library functions for cross-compilation. ! `-msoft-float' changes the calling convention in the output file; therefore, it is only useful if you compile _all_ of a program with ! this option. In particular, you need to compile `libgcc.a', the ! library that comes with GCC, with `-msoft-float' in order for this to work. ! `-msio' ! Generate the predefine, `_SIO', for server IO. The default is ! `-mwsio'. This generates the predefines, `__hp9000s700', ! `__hp9000s700__' and `_WSIO', for workstation IO. These options are available under HP-UX and HI-UX. ! `-mgnu-ld' ! Use options specific to GNU `ld'. This passes `-shared' to `ld' when building a shared library. It is the default when GCC is configured, explicitly or implicitly, with the GNU linker. This ! option does not affect which `ld' is called; it only changes what ! parameters are passed to that `ld'. The `ld' that is called is ! determined by the `--with-ld' configure option, GCC's program ! search path, and finally by the user's `PATH'. The linker used by ! GCC can be printed using `which `gcc -print-prog-name=ld`'. This option is only available on the 64-bit HP-UX GCC, i.e. configured ! with `hppa*64*-*-hpux*'. ! `-mhp-ld' ! Use options specific to HP `ld'. This passes `-b' to `ld' when ! building a shared library and passes `+Accept TypeMismatch' to ! `ld' on all links. It is the default when GCC is configured, ! explicitly or implicitly, with the HP linker. This option does ! not affect which `ld' is called; it only changes what parameters ! are passed to that `ld'. The `ld' that is called is determined by ! the `--with-ld' configure option, GCC's program search path, and ! finally by the user's `PATH'. The linker used by GCC can be ! printed using `which `gcc -print-prog-name=ld`'. This option is only available on the 64-bit HP-UX GCC, i.e. configured with ! `hppa*64*-*-hpux*'. ! `-mlong-calls' Generate code that uses long call sequences. This ensures that a call is always able to reach linker generated stubs. The default ! is to generate long calls only when the distance from the call ! site to the beginning of the function or translation unit, as the ! case may be, exceeds a predefined limit set by the branch type ! being used. The limits for normal calls are 7,600,000 and 240,000 ! bytes, respectively for the PA 2.0 and PA 1.X architectures. ! Sibcalls are always limited at 240,000 bytes. Distances are measured from the beginning of functions when using ! the `-ffunction-sections' option, or when using the `-mgas' and ! `-mno-portable-runtime' options together under HP-UX with the SOM linker. It is normally not desirable to use this option as it degrades --- 12940,13086 ---- 3.17.15 HPPA Options -------------------- ! These '-m' options are defined for the HPPA family of computers: ! '-march=ARCHITECTURE-TYPE' Generate code for the specified architecture. The choices for ! ARCHITECTURE-TYPE are '1.0' for PA 1.0, '1.1' for PA 1.1, and '2.0' ! for PA 2.0 processors. Refer to '/usr/lib/sched.models' on an ! HP-UX system to determine the proper architecture option for your ! machine. Code compiled for lower numbered architectures runs on ! higher numbered architectures, but not the other way around. ! '-mpa-risc-1-0' ! '-mpa-risc-1-1' ! '-mpa-risc-2-0' ! Synonyms for '-march=1.0', '-march=1.1', and '-march=2.0' respectively. ! '-mbig-switch' ! Generate code suitable for big switch tables. Use this option only ! if the assembler/linker complain about out-of-range branches within ! a switch table. ! '-mjump-in-delay' Fill delay slots of function calls with unconditional jump instructions by modifying the return pointer for the function call to be the target of the conditional jump. ! '-mdisable-fpregs' Prevent floating-point registers from being used in any manner. This is necessary for compiling kernels that perform lazy context switching of floating-point registers. If you use this option and attempt to perform floating-point operations, the compiler aborts. ! '-mdisable-indexing' Prevent the compiler from using indexing address modes. This avoids some rather obscure problems when compiling MIG generated code under MACH. ! '-mno-space-regs' ! Generate code that assumes the target has no space registers. This ! allows GCC to generate faster indirect calls and use unscaled index ! address modes. Such code is suitable for level 0 PA systems and kernels. ! '-mfast-indirect-calls' Generate code that assumes calls never cross space boundaries. This allows GCC to emit code that performs faster indirect calls. This option does not work in the presence of shared libraries or nested functions. ! '-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator cannot use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! '-mlong-load-store' Generate 3-instruction load and store sequences as sometimes ! required by the HP-UX 10 linker. This is equivalent to the '+k' option to the HP compilers. ! '-mportable-runtime' Use the portable calling conventions proposed by HP for ELF systems. ! '-mgas' Enable the use of assembler directives only GAS understands. ! '-mschedule=CPU-TYPE' Schedule code according to the constraints for the machine type ! CPU-TYPE. The choices for CPU-TYPE are '700' '7100', '7100LC', ! '7200', '7300' and '8000'. Refer to '/usr/lib/sched.models' on an HP-UX system to determine the proper scheduling option for your ! machine. The default scheduling is '8000'. ! '-mlinker-opt' Enable the optimization pass in the HP-UX linker. Note this makes ! symbolic debugging impossible. It also triggers a bug in the HP-UX ! 8 and HP-UX 9 linkers in which they give bogus error messages when ! linking some programs. ! '-msoft-float' Generate output containing library calls for floating point. *Warning:* the requisite libraries are not available for all HPPA ! targets. Normally the facilities of the machine's usual C compiler ! are used, but this cannot be done directly in cross-compilation. ! You must make your own arrangements to provide suitable library ! functions for cross-compilation. ! '-msoft-float' changes the calling convention in the output file; therefore, it is only useful if you compile _all_ of a program with ! this option. In particular, you need to compile 'libgcc.a', the ! library that comes with GCC, with '-msoft-float' in order for this to work. ! '-msio' ! Generate the predefine, '_SIO', for server IO. The default is ! '-mwsio'. This generates the predefines, '__hp9000s700', ! '__hp9000s700__' and '_WSIO', for workstation IO. These options are available under HP-UX and HI-UX. ! '-mgnu-ld' ! Use options specific to GNU 'ld'. This passes '-shared' to 'ld' when building a shared library. It is the default when GCC is configured, explicitly or implicitly, with the GNU linker. This ! option does not affect which 'ld' is called; it only changes what ! parameters are passed to that 'ld'. The 'ld' that is called is ! determined by the '--with-ld' configure option, GCC's program ! search path, and finally by the user's 'PATH'. The linker used by ! GCC can be printed using 'which `gcc -print-prog-name=ld`'. This option is only available on the 64-bit HP-UX GCC, i.e. configured ! with 'hppa*64*-*-hpux*'. ! '-mhp-ld' ! Use options specific to HP 'ld'. This passes '-b' to 'ld' when ! building a shared library and passes '+Accept TypeMismatch' to 'ld' ! on all links. It is the default when GCC is configured, explicitly ! or implicitly, with the HP linker. This option does not affect ! which 'ld' is called; it only changes what parameters are passed to ! that 'ld'. The 'ld' that is called is determined by the ! '--with-ld' configure option, GCC's program search path, and ! finally by the user's 'PATH'. The linker used by GCC can be ! printed using 'which `gcc -print-prog-name=ld`'. This option is only available on the 64-bit HP-UX GCC, i.e. configured with ! 'hppa*64*-*-hpux*'. ! '-mlong-calls' Generate code that uses long call sequences. This ensures that a call is always able to reach linker generated stubs. The default ! is to generate long calls only when the distance from the call site ! to the beginning of the function or translation unit, as the case ! may be, exceeds a predefined limit set by the branch type being ! used. The limits for normal calls are 7,600,000 and 240,000 bytes, ! respectively for the PA 2.0 and PA 1.X architectures. Sibcalls are ! always limited at 240,000 bytes. Distances are measured from the beginning of functions when using ! the '-ffunction-sections' option, or when using the '-mgas' and ! '-mno-portable-runtime' options together under HP-UX with the SOM linker. It is normally not desirable to use this option as it degrades *************** These `-m' options are defined for the H *** 13147,13196 **** However, an indirect call is used on 32-bit ELF systems in pic code and it is quite long. ! `-munix=UNIX-STD' Generate compiler predefines and select a startfile for the ! specified UNIX standard. The choices for UNIX-STD are `93', `95' ! and `98'. `93' is supported on all HP-UX versions. `95' is ! available on HP-UX 10.10 and later. `98' is available on HP-UX ! 11.11 and later. The default values are `93' for HP-UX 10.00, ! `95' for HP-UX 10.10 though to 11.00, and `98' for HP-UX 11.11 and later. ! `-munix=93' provides the same predefines as GCC 3.3 and 3.4. ! `-munix=95' provides additional predefines for `XOPEN_UNIX' and ! `_XOPEN_SOURCE_EXTENDED', and the startfile `unix95.o'. ! `-munix=98' provides additional predefines for `_XOPEN_UNIX', ! `_XOPEN_SOURCE_EXTENDED', `_INCLUDE__STDC_A1_SOURCE' and ! `_INCLUDE_XOPEN_SOURCE_500', and the startfile `unix98.o'. It is _important_ to note that this option changes the interfaces for various library routines. It also affects the operational ! behavior of the C library. Thus, _extreme_ care is needed in ! using this option. Library code that is intended to operate with more than one UNIX standard must test, set and restore the variable __XPG4_EXTENDED_MASK as appropriate. Most GNU software doesn't provide this capability. ! `-nolibdld' Suppress the generation of link options to search libdld.sl when ! the `-static' option is specified on HP-UX 10 and later. ! `-static' The HP-UX implementation of setlocale in libc has a dependency on libdld.sl. There isn't an archive version of libdld.sl. Thus, ! when the `-static' option is specified, special link options are needed to resolve this dependency. On HP-UX 10 and later, the GCC driver adds the necessary options to ! link with libdld.sl when the `-static' option is specified. This ! causes the resulting binary to be dynamic. On the 64-bit port, ! the linkers generate dynamic binaries by default in any case. The ! `-nolibdld' option can be used to prevent the GCC driver from adding these link options. ! `-threads' Add support for multithreading with the "dce thread" library under HP-UX. This option sets flags for both the preprocessor and linker. --- 13094,13143 ---- However, an indirect call is used on 32-bit ELF systems in pic code and it is quite long. ! '-munix=UNIX-STD' Generate compiler predefines and select a startfile for the ! specified UNIX standard. The choices for UNIX-STD are '93', '95' ! and '98'. '93' is supported on all HP-UX versions. '95' is ! available on HP-UX 10.10 and later. '98' is available on HP-UX ! 11.11 and later. The default values are '93' for HP-UX 10.00, '95' ! for HP-UX 10.10 though to 11.00, and '98' for HP-UX 11.11 and later. ! '-munix=93' provides the same predefines as GCC 3.3 and 3.4. ! '-munix=95' provides additional predefines for 'XOPEN_UNIX' and ! '_XOPEN_SOURCE_EXTENDED', and the startfile 'unix95.o'. ! '-munix=98' provides additional predefines for '_XOPEN_UNIX', ! '_XOPEN_SOURCE_EXTENDED', '_INCLUDE__STDC_A1_SOURCE' and ! '_INCLUDE_XOPEN_SOURCE_500', and the startfile 'unix98.o'. It is _important_ to note that this option changes the interfaces for various library routines. It also affects the operational ! behavior of the C library. Thus, _extreme_ care is needed in using ! this option. Library code that is intended to operate with more than one UNIX standard must test, set and restore the variable __XPG4_EXTENDED_MASK as appropriate. Most GNU software doesn't provide this capability. ! '-nolibdld' Suppress the generation of link options to search libdld.sl when ! the '-static' option is specified on HP-UX 10 and later. ! '-static' The HP-UX implementation of setlocale in libc has a dependency on libdld.sl. There isn't an archive version of libdld.sl. Thus, ! when the '-static' option is specified, special link options are needed to resolve this dependency. On HP-UX 10 and later, the GCC driver adds the necessary options to ! link with libdld.sl when the '-static' option is specified. This ! causes the resulting binary to be dynamic. On the 64-bit port, the ! linkers generate dynamic binaries by default in any case. The ! '-nolibdld' option can be used to prevent the GCC driver from adding these link options. ! '-threads' Add support for multithreading with the "dce thread" library under HP-UX. This option sets flags for both the preprocessor and linker. *************** File: gcc.info, Node: i386 and x86-64 O *** 13201,13408 **** 3.17.16 Intel 386 and AMD x86-64 Options ---------------------------------------- ! These `-m' options are defined for the i386 and x86-64 family of computers: ! `-march=CPU-TYPE' Generate instructions for the machine type CPU-TYPE. In contrast ! to `-mtune=CPU-TYPE', which merely tunes the generated code for ! the specified CPU-TYPE, `-march=CPU-TYPE' allows GCC to generate ! code that may not run at all on processors other than the one ! indicated. Specifying `-march=CPU-TYPE' implies `-mtune=CPU-TYPE'. The choices for CPU-TYPE are: ! `native' This selects the CPU to generate code for at compilation time by determining the processor type of the compiling machine. ! Using `-march=native' enables all instruction subsets ! supported by the local machine (hence the result might not ! run on different machines). Using `-mtune=native' produces ! code optimized for the local machine under the constraints of ! the selected instruction set. ! `i386' Original Intel i386 CPU. ! `i486' Intel i486 CPU. (No scheduling is implemented for this chip.) ! `i586' ! `pentium' Intel Pentium CPU with no MMX support. ! `pentium-mmx' Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support. ! `pentiumpro' Intel Pentium Pro CPU. ! `i686' ! When used with `-march', the Pentium Pro instruction set is used, so the code runs on all i686 family chips. When used ! with `-mtune', it has the same meaning as `generic'. ! `pentium2' Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set support. ! `pentium3' ! `pentium3m' Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction set support. ! `pentium-m' Intel Pentium M; low-power version of Intel Pentium III CPU with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks. ! `pentium4' ! `pentium4m' Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support. ! `prescott' Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction set support. ! `nocona' Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE, SSE2 and SSE3 instruction set support. ! `core2' Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support. ! `corei7' Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1 and SSE4.2 instruction set support. ! `corei7-avx' Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AES and PCLMUL instruction set support. ! `core-avx-i' Intel Core CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C instruction set support. ! `atom' ! Intel Atom CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 ! and SSSE3 instruction set support. ! `k6' AMD K6 CPU with MMX instruction set support. ! `k6-2' ! `k6-3' Improved versions of AMD K6 CPU with MMX and 3DNow! instruction set support. ! `athlon' ! `athlon-tbird' AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and SSE prefetch instructions support. ! `athlon-4' ! `athlon-xp' ! `athlon-mp' Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow! and full SSE instruction set support. ! `k8' ! `opteron' ! `athlon64' ! `athlon-fx' Processors based on the AMD K8 core with x86-64 instruction set support, including the AMD Opteron, Athlon 64, and Athlon 64 FX processors. (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow! and 64-bit instruction set extensions.) ! `k8-sse3' ! `opteron-sse3' ! `athlon64-sse3' Improved versions of AMD K8 cores with SSE3 instruction set support. ! `amdfam10' ! `barcelona' ! CPUs based on AMD Family 10h cores with x86-64 instruction ! set support. (This supersets MMX, SSE, SSE2, SSE3, SSE4A, ! 3DNow!, enhanced 3DNow!, ABM and 64-bit instruction set ! extensions.) ! ! `bdver1' ! CPUs based on AMD Family 15h cores with x86-64 instruction ! set support. (This supersets FMA4, AVX, XOP, LWP, AES, ! PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, ! SSE4.2, ABM and 64-bit instruction set extensions.) ! `bdver2' AMD Family 15h core based CPUs with x86-64 instruction set support. (This supersets BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.) ! ! `bdver3' AMD Family 15h core based CPUs with x86-64 instruction set support. (This supersets BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions. ! `btver1' ! CPUs based on AMD Family 14h cores with x86-64 instruction ! set support. (This supersets MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4A, CX16, ABM and 64-bit instruction set extensions.) ! `btver2' ! CPUs based on AMD Family 16h cores with x86-64 instruction ! set support. This includes MOVBE, F16C, BMI, AVX, PCL_MUL, ! AES, SSE4.2, SSE4.1, CX16, ABM, SSE4A, SSSE3, SSE3, SSE2, ! SSE, MMX and 64-bit instruction set extensions. ! `winchip-c6' IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction set support. ! `winchip2' IDT WinChip 2 CPU, dealt in same way as i486 with additional ! MMX and 3DNow! instruction set support. ! `c3' VIA C3 CPU with MMX and 3DNow! instruction set support. (No scheduling is implemented for this chip.) ! `c3-2' VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support. (No scheduling is implemented for this chip.) ! `geode' AMD Geode embedded processor with MMX and 3DNow! instruction set support. ! `-mtune=CPU-TYPE' Tune to CPU-TYPE everything applicable about the generated code, except for the ABI and the set of available instructions. While ! picking a specific CPU-TYPE schedules things appropriately for ! that particular chip, the compiler does not generate any code that cannot run on the default machine type unless you use a ! `-march=CPU-TYPE' option. For example, if GCC is configured for ! i686-pc-linux-gnu then `-mtune=pentium4' generates code that is tuned for Pentium 4 but still runs on i686 machines. ! The choices for CPU-TYPE are the same as for `-march'. In ! addition, `-mtune' supports an extra choice for CPU-TYPE: ! `generic' Produce code optimized for the most common IA32/AMD64/EM64T processors. If you know the CPU on which your code will run, ! then you should use the corresponding `-mtune' or `-march' ! option instead of `-mtune=generic'. But, if you do not know ! exactly what CPU users of your application will have, then ! you should use this option. As new processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you --- 13148,13357 ---- 3.17.16 Intel 386 and AMD x86-64 Options ---------------------------------------- ! These '-m' options are defined for the i386 and x86-64 family of computers: ! '-march=CPU-TYPE' Generate instructions for the machine type CPU-TYPE. In contrast ! to '-mtune=CPU-TYPE', which merely tunes the generated code for the ! specified CPU-TYPE, '-march=CPU-TYPE' allows GCC to generate code ! that may not run at all on processors other than the one indicated. ! Specifying '-march=CPU-TYPE' implies '-mtune=CPU-TYPE'. The choices for CPU-TYPE are: ! 'native' This selects the CPU to generate code for at compilation time by determining the processor type of the compiling machine. ! Using '-march=native' enables all instruction subsets ! supported by the local machine (hence the result might not run ! on different machines). Using '-mtune=native' produces code ! optimized for the local machine under the constraints of the ! selected instruction set. ! 'i386' Original Intel i386 CPU. ! 'i486' Intel i486 CPU. (No scheduling is implemented for this chip.) ! 'i586' ! 'pentium' Intel Pentium CPU with no MMX support. ! 'pentium-mmx' Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support. ! 'pentiumpro' Intel Pentium Pro CPU. ! 'i686' ! When used with '-march', the Pentium Pro instruction set is used, so the code runs on all i686 family chips. When used ! with '-mtune', it has the same meaning as 'generic'. ! 'pentium2' Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set support. ! 'pentium3' ! 'pentium3m' Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction set support. ! 'pentium-m' Intel Pentium M; low-power version of Intel Pentium III CPU with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks. ! 'pentium4' ! 'pentium4m' Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support. ! 'prescott' Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction set support. ! 'nocona' Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE, SSE2 and SSE3 instruction set support. ! 'core2' Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support. ! 'corei7' Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1 and SSE4.2 instruction set support. ! 'corei7-avx' Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AES and PCLMUL instruction set support. ! 'core-avx-i' Intel Core CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C instruction set support. ! 'core-avx2' ! Intel Core CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, ! SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AES, PCLMUL, FSGSBASE, ! RDRND, FMA, BMI, BMI2 and F16C instruction set support. ! 'atom' ! Intel Atom CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, ! SSE3 and SSSE3 instruction set support. ! ! 'k6' AMD K6 CPU with MMX instruction set support. ! 'k6-2' ! 'k6-3' Improved versions of AMD K6 CPU with MMX and 3DNow! instruction set support. ! 'athlon' ! 'athlon-tbird' AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and SSE prefetch instructions support. ! 'athlon-4' ! 'athlon-xp' ! 'athlon-mp' Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow! and full SSE instruction set support. ! 'k8' ! 'opteron' ! 'athlon64' ! 'athlon-fx' Processors based on the AMD K8 core with x86-64 instruction set support, including the AMD Opteron, Athlon 64, and Athlon 64 FX processors. (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow! and 64-bit instruction set extensions.) ! 'k8-sse3' ! 'opteron-sse3' ! 'athlon64-sse3' Improved versions of AMD K8 cores with SSE3 instruction set support. ! 'amdfam10' ! 'barcelona' ! CPUs based on AMD Family 10h cores with x86-64 instruction set ! support. (This supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, ! enhanced 3DNow!, ABM and 64-bit instruction set extensions.) ! 'bdver1' ! CPUs based on AMD Family 15h cores with x86-64 instruction set ! support. (This supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, ! CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM ! and 64-bit instruction set extensions.) ! 'bdver2' AMD Family 15h core based CPUs with x86-64 instruction set support. (This supersets BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.) ! 'bdver3' AMD Family 15h core based CPUs with x86-64 instruction set support. (This supersets BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions. ! 'btver1' ! CPUs based on AMD Family 14h cores with x86-64 instruction set ! support. (This supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, ! CX16, ABM and 64-bit instruction set extensions.) ! 'btver2' ! CPUs based on AMD Family 16h cores with x86-64 instruction set ! support. This includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, ! SSE4.2, SSE4.1, CX16, ABM, SSE4A, SSSE3, SSE3, SSE2, SSE, MMX ! and 64-bit instruction set extensions. ! 'winchip-c6' IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction set support. ! 'winchip2' IDT WinChip 2 CPU, dealt in same way as i486 with additional ! MMX and 3DNow! instruction set support. ! 'c3' VIA C3 CPU with MMX and 3DNow! instruction set support. (No scheduling is implemented for this chip.) ! 'c3-2' VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support. (No scheduling is implemented for this chip.) ! 'geode' AMD Geode embedded processor with MMX and 3DNow! instruction set support. ! '-mtune=CPU-TYPE' Tune to CPU-TYPE everything applicable about the generated code, except for the ABI and the set of available instructions. While ! picking a specific CPU-TYPE schedules things appropriately for that ! particular chip, the compiler does not generate any code that cannot run on the default machine type unless you use a ! '-march=CPU-TYPE' option. For example, if GCC is configured for ! i686-pc-linux-gnu then '-mtune=pentium4' generates code that is tuned for Pentium 4 but still runs on i686 machines. ! The choices for CPU-TYPE are the same as for '-march'. In ! addition, '-mtune' supports an extra choice for CPU-TYPE: ! 'generic' Produce code optimized for the most common IA32/AMD64/EM64T processors. If you know the CPU on which your code will run, ! then you should use the corresponding '-mtune' or '-march' ! option instead of '-mtune=generic'. But, if you do not know ! exactly what CPU users of your application will have, then you ! should use this option. As new processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you *************** computers: *** 13410,13466 **** by this option will change to reflect the processors that are most common at the time that version of GCC is released. ! There is no `-march=generic' option because `-march' ! indicates the instruction set the compiler can use, and there ! is no generic instruction set applicable to all processors. ! In contrast, `-mtune' indicates the processor (or, in this ! case, collection of processors) for which the code is ! optimized. ! `-mcpu=CPU-TYPE' ! A deprecated synonym for `-mtune'. ! `-mfpmath=UNIT' Generate floating-point arithmetic for selected unit UNIT. The choices for UNIT are: ! `387' ! Use the standard 387 floating-point coprocessor present on ! the majority of chips and emulated otherwise. Code compiled ! with this option runs almost everywhere. The temporary ! results are computed in 80-bit precision instead of the ! precision specified by the type, resulting in slightly ! different results compared to most of other chips. See ! `-ffloat-store' for more detailed description. This is the default choice for i386 compiler. ! `sse' Use scalar floating-point instructions present in the SSE ! instruction set. This instruction set is supported by ! Pentium III and newer chips, and in the AMD line by Athlon-4, ! Athlon XP and Athlon MP chips. The earlier version of the SSE instruction set supports only single-precision arithmetic, thus the double and extended-precision arithmetic are still done using 387. A later version, present only in Pentium 4 and AMD x86-64 chips, supports double-precision arithmetic too. ! For the i386 compiler, you must use `-march=CPU-TYPE', `-msse' ! or `-msse2' switches to enable SSE extensions and make this option effective. For the x86-64 compiler, these extensions are enabled by default. The resulting code should be considerably faster in the ! majority of cases and avoid the numerical instability ! problems of 387 code, but may break some existing code that ! expects temporaries to be 80 bits. This is the default choice for the x86-64 compiler. ! `sse,387' ! `sse+387' ! `both' Attempt to utilize both instruction sets at once. This effectively doubles the amount of available registers, and on chips with separate execution units for 387 and SSE the --- 13359,13414 ---- by this option will change to reflect the processors that are most common at the time that version of GCC is released. ! There is no '-march=generic' option because '-march' indicates ! the instruction set the compiler can use, and there is no ! generic instruction set applicable to all processors. In ! contrast, '-mtune' indicates the processor (or, in this case, ! collection of processors) for which the code is optimized. ! '-mcpu=CPU-TYPE' ! A deprecated synonym for '-mtune'. ! '-mfpmath=UNIT' Generate floating-point arithmetic for selected unit UNIT. The choices for UNIT are: ! '387' ! Use the standard 387 floating-point coprocessor present on the ! majority of chips and emulated otherwise. Code compiled with ! this option runs almost everywhere. The temporary results are ! computed in 80-bit precision instead of the precision ! specified by the type, resulting in slightly different results ! compared to most of other chips. See '-ffloat-store' for more ! detailed description. This is the default choice for i386 compiler. ! 'sse' Use scalar floating-point instructions present in the SSE ! instruction set. This instruction set is supported by Pentium ! III and newer chips, and in the AMD line by Athlon-4, Athlon ! XP and Athlon MP chips. The earlier version of the SSE instruction set supports only single-precision arithmetic, thus the double and extended-precision arithmetic are still done using 387. A later version, present only in Pentium 4 and AMD x86-64 chips, supports double-precision arithmetic too. ! For the i386 compiler, you must use '-march=CPU-TYPE', '-msse' ! or '-msse2' switches to enable SSE extensions and make this option effective. For the x86-64 compiler, these extensions are enabled by default. The resulting code should be considerably faster in the ! majority of cases and avoid the numerical instability problems ! of 387 code, but may break some existing code that expects ! temporaries to be 80 bits. This is the default choice for the x86-64 compiler. ! 'sse,387' ! 'sse+387' ! 'both' Attempt to utilize both instruction sets at once. This effectively doubles the amount of available registers, and on chips with separate execution units for 387 and SSE the *************** computers: *** 13469,13641 **** not model separate functional units well, resulting in unstable performance. ! `-masm=DIALECT' Output assembly instructions using selected DIALECT. Supported ! choices are `intel' or `att' (the default). Darwin does not ! support `intel'. ! `-mieee-fp' ! `-mno-ieee-fp' Control whether or not the compiler uses IEEE floating-point comparisons. These correctly handle the case where the result of a comparison is unordered. ! `-msoft-float' Generate output containing library calls for floating point. *Warning:* the requisite libraries are not part of GCC. Normally ! the facilities of the machine's usual C compiler are used, but ! this can't be done directly in cross-compilation. You must make ! your own arrangements to provide suitable library functions for cross-compilation. On machines where a function returns floating-point results in the 80387 register stack, some floating-point opcodes may be emitted ! even if `-msoft-float' is used. ! `-mno-fp-ret-in-387' Do not use the FPU registers for return values of functions. The usual calling convention has functions return values of types ! `float' and `double' in an FPU register, even if there is no FPU. The idea is that the operating system should emulate an FPU. ! The option `-mno-fp-ret-in-387' causes such values to be returned in ordinary CPU registers instead. ! `-mno-fancy-math-387' ! Some 387 emulators do not support the `sin', `cos' and `sqrt' instructions for the 387. Specify this option to avoid generating ! those instructions. This option is the default on FreeBSD, ! OpenBSD and NetBSD. This option is overridden when `-march' ! indicates that the target CPU always has an FPU and so the ! instruction does not need emulation. These instructions are not ! generated unless you also use the `-funsafe-math-optimizations' ! switch. ! `-malign-double' ! `-mno-align-double' ! Control whether GCC aligns `double', `long double', and `long ! long' variables on a two-word boundary or a one-word boundary. ! Aligning `double' variables on a two-word boundary produces code ! that runs somewhat faster on a Pentium at the expense of more ! memory. ! On x86-64, `-malign-double' is enabled by default. ! *Warning:* if you use the `-malign-double' switch, structures containing the above types are aligned differently than the published application binary interface specifications for the 386 and are not binary compatible with structures in code compiled without that switch. ! `-m96bit-long-double' ! `-m128bit-long-double' ! These switches control the size of `long double' type. The i386 application binary interface specifies the size to be 96 bits, so ! `-m96bit-long-double' is the default in 32-bit mode. ! Modern architectures (Pentium and newer) prefer `long double' to ! be aligned to an 8- or 16-byte boundary. In arrays or structures conforming to the ABI, this is not possible. So specifying ! `-m128bit-long-double' aligns `long double' to a 16-byte boundary ! by padding the `long double' with an additional 32-bit zero. ! In the x86-64 compiler, `-m128bit-long-double' is the default ! choice as its ABI specifies that `long double' is aligned on 16-byte boundary. Notice that neither of these options enable any extra precision ! over the x87 standard of 80 bits for a `long double'. *Warning:* if you override the default value for your target ABI, ! this changes the size of structures and arrays containing `long double' variables, as well as modifying the function calling ! convention for functions taking `long double'. Hence they are not binary-compatible with code compiled without that switch. ! `-mlong-double-64' ! `-mlong-double-80' ! These switches control the size of `long double' type. A size of ! 64 bits makes the `long double' type equivalent to the `double' ! type. This is the default for Bionic C library. *Warning:* if you override the default value for your target ABI, ! this changes the size of structures and arrays containing `long double' variables, as well as modifying the function calling ! convention for functions taking `long double'. Hence they are not binary-compatible with code compiled without that switch. ! `-mlarge-data-threshold=THRESHOLD' ! When `-mcmodel=medium' is specified, data objects larger than ! THRESHOLD are placed in the large data section. This value must ! be the same across all objects linked into the binary, and ! defaults to 65535. ! `-mrtd' Use a different function-calling convention, in which functions ! that take a fixed number of arguments return with the `ret NUM' instruction, which pops their arguments while returning. This saves one instruction in the caller since there is no need to pop the arguments there. You can specify that an individual function is called with this ! calling sequence with the function attribute `stdcall'. You can ! also override the `-mrtd' option by using the function attribute ! `cdecl'. *Note Function Attributes::. *Warning:* this calling convention is incompatible with the one normally used on Unix, so you cannot use it if you need to call libraries compiled with the Unix compiler. Also, you must provide function prototypes for all functions that ! take variable numbers of arguments (including `printf'); otherwise incorrect code is generated for calls to those functions. In addition, seriously incorrect code results if you call a function with too many arguments. (Normally, extra arguments are harmlessly ignored.) ! `-mregparm=NUM' Control how many registers are used to pass integer arguments. By default, no registers are used to pass arguments, and at most 3 registers can be used. You can control this behavior for a ! specific function by using the function attribute `regparm'. ! *Note Function Attributes::. *Warning:* if you use this switch, and NUM is nonzero, then you must build all modules with the same value, including any libraries. This includes the system libraries and startup modules. ! `-msseregparm' Use SSE register passing conventions for float and double arguments and return values. You can control this behavior for a specific ! function by using the function attribute `sseregparm'. *Note Function Attributes::. *Warning:* if you use this switch then you must build all modules with the same value, including any libraries. This includes the system libraries and startup modules. ! `-mvect8-ret-in-mem' Return 8-byte vectors in memory instead of MMX registers. This is the default on Solaris 8 and 9 and VxWorks to match the ABI of the Sun Studio compilers until version 12. Later compiler versions ! (starting with Studio 12 Update 1) follow the ABI used by other ! x86 targets, which is the default on Solaris 10 and later. _Only_ ! use this option if you need to remain compatible with existing ! code produced by those previous compiler versions or older ! versions of GCC. - `-mpc32' - `-mpc64' - `-mpc80' Set 80387 floating-point precision to 32, 64 or 80 bits. When ! `-mpc32' is specified, the significands of results of floating-point operations are rounded to 24 bits (single ! precision); `-mpc64' rounds the significands of results of floating-point operations to 53 bits (double precision) and ! `-mpc80' rounds the significands of results of floating-point operations to 64 bits (extended double precision), which is the default. When this option is used, floating-point operations in higher precisions are not available to the programmer without --- 13417,13588 ---- not model separate functional units well, resulting in unstable performance. ! '-masm=DIALECT' Output assembly instructions using selected DIALECT. Supported ! choices are 'intel' or 'att' (the default). Darwin does not ! support 'intel'. ! '-mieee-fp' ! '-mno-ieee-fp' Control whether or not the compiler uses IEEE floating-point comparisons. These correctly handle the case where the result of a comparison is unordered. ! '-msoft-float' Generate output containing library calls for floating point. *Warning:* the requisite libraries are not part of GCC. Normally ! the facilities of the machine's usual C compiler are used, but this ! can't be done directly in cross-compilation. You must make your ! own arrangements to provide suitable library functions for cross-compilation. On machines where a function returns floating-point results in the 80387 register stack, some floating-point opcodes may be emitted ! even if '-msoft-float' is used. ! '-mno-fp-ret-in-387' Do not use the FPU registers for return values of functions. The usual calling convention has functions return values of types ! 'float' and 'double' in an FPU register, even if there is no FPU. The idea is that the operating system should emulate an FPU. ! The option '-mno-fp-ret-in-387' causes such values to be returned in ordinary CPU registers instead. ! '-mno-fancy-math-387' ! Some 387 emulators do not support the 'sin', 'cos' and 'sqrt' instructions for the 387. Specify this option to avoid generating ! those instructions. This option is the default on FreeBSD, OpenBSD ! and NetBSD. This option is overridden when '-march' indicates that ! the target CPU always has an FPU and so the instruction does not ! need emulation. These instructions are not generated unless you ! also use the '-funsafe-math-optimizations' switch. ! '-malign-double' ! '-mno-align-double' ! Control whether GCC aligns 'double', 'long double', and 'long long' ! variables on a two-word boundary or a one-word boundary. Aligning ! 'double' variables on a two-word boundary produces code that runs ! somewhat faster on a Pentium at the expense of more memory. ! On x86-64, '-malign-double' is enabled by default. ! *Warning:* if you use the '-malign-double' switch, structures containing the above types are aligned differently than the published application binary interface specifications for the 386 and are not binary compatible with structures in code compiled without that switch. ! '-m96bit-long-double' ! '-m128bit-long-double' ! These switches control the size of 'long double' type. The i386 application binary interface specifies the size to be 96 bits, so ! '-m96bit-long-double' is the default in 32-bit mode. ! Modern architectures (Pentium and newer) prefer 'long double' to be ! aligned to an 8- or 16-byte boundary. In arrays or structures conforming to the ABI, this is not possible. So specifying ! '-m128bit-long-double' aligns 'long double' to a 16-byte boundary ! by padding the 'long double' with an additional 32-bit zero. ! In the x86-64 compiler, '-m128bit-long-double' is the default ! choice as its ABI specifies that 'long double' is aligned on 16-byte boundary. Notice that neither of these options enable any extra precision ! over the x87 standard of 80 bits for a 'long double'. *Warning:* if you override the default value for your target ABI, ! this changes the size of structures and arrays containing 'long double' variables, as well as modifying the function calling ! convention for functions taking 'long double'. Hence they are not binary-compatible with code compiled without that switch. ! '-mlong-double-64' ! '-mlong-double-80' ! These switches control the size of 'long double' type. A size of ! 64 bits makes the 'long double' type equivalent to the 'double' ! type. This is the default for Bionic C library. *Warning:* if you override the default value for your target ABI, ! this changes the size of structures and arrays containing 'long double' variables, as well as modifying the function calling ! convention for functions taking 'long double'. Hence they are not binary-compatible with code compiled without that switch. ! '-mlarge-data-threshold=THRESHOLD' ! When '-mcmodel=medium' is specified, data objects larger than ! THRESHOLD are placed in the large data section. This value must be ! the same across all objects linked into the binary, and defaults to ! 65535. ! '-mrtd' Use a different function-calling convention, in which functions ! that take a fixed number of arguments return with the 'ret NUM' instruction, which pops their arguments while returning. This saves one instruction in the caller since there is no need to pop the arguments there. You can specify that an individual function is called with this ! calling sequence with the function attribute 'stdcall'. You can ! also override the '-mrtd' option by using the function attribute ! 'cdecl'. *Note Function Attributes::. *Warning:* this calling convention is incompatible with the one normally used on Unix, so you cannot use it if you need to call libraries compiled with the Unix compiler. Also, you must provide function prototypes for all functions that ! take variable numbers of arguments (including 'printf'); otherwise incorrect code is generated for calls to those functions. In addition, seriously incorrect code results if you call a function with too many arguments. (Normally, extra arguments are harmlessly ignored.) ! '-mregparm=NUM' Control how many registers are used to pass integer arguments. By default, no registers are used to pass arguments, and at most 3 registers can be used. You can control this behavior for a ! specific function by using the function attribute 'regparm'. *Note ! Function Attributes::. *Warning:* if you use this switch, and NUM is nonzero, then you must build all modules with the same value, including any libraries. This includes the system libraries and startup modules. ! '-msseregparm' Use SSE register passing conventions for float and double arguments and return values. You can control this behavior for a specific ! function by using the function attribute 'sseregparm'. *Note Function Attributes::. *Warning:* if you use this switch then you must build all modules with the same value, including any libraries. This includes the system libraries and startup modules. ! '-mvect8-ret-in-mem' Return 8-byte vectors in memory instead of MMX registers. This is the default on Solaris 8 and 9 and VxWorks to match the ABI of the Sun Studio compilers until version 12. Later compiler versions ! (starting with Studio 12 Update 1) follow the ABI used by other x86 ! targets, which is the default on Solaris 10 and later. _Only_ use ! this option if you need to remain compatible with existing code ! produced by those previous compiler versions or older versions of ! GCC. ! ! '-mpc32' ! '-mpc64' ! '-mpc80' Set 80387 floating-point precision to 32, 64 or 80 bits. When ! '-mpc32' is specified, the significands of results of floating-point operations are rounded to 24 bits (single ! precision); '-mpc64' rounds the significands of results of floating-point operations to 53 bits (double precision) and ! '-mpc80' rounds the significands of results of floating-point operations to 64 bits (extended double precision), which is the default. When this option is used, floating-point operations in higher precisions are not available to the programmer without *************** computers: *** 13643,13672 **** Setting the rounding of floating-point operations to less than the default 80 bits can speed some programs by 2% or more. Note that ! some mathematical libraries assume that extended-precision ! (80-bit) floating-point operations are enabled by default; ! routines in such libraries could suffer significant loss of ! accuracy, typically through so-called "catastrophic cancellation", ! when this option is used to set the precision to less than ! extended precision. ! `-mstackrealign' ! Realign the stack at entry. On the Intel x86, the `-mstackrealign' option generates an alternate prologue and epilogue that realigns ! the run-time stack if necessary. This supports mixing legacy ! codes that keep 4-byte stack alignment with modern codes that keep 16-byte stack alignment for SSE compatibility. See also the ! attribute `force_align_arg_pointer', applicable to individual functions. ! `-mpreferred-stack-boundary=NUM' Attempt to keep the stack boundary aligned to a 2 raised to NUM ! byte boundary. If `-mpreferred-stack-boundary' is not specified, the default is 4 (16 bytes or 128 bits). *Warning:* When generating code for the x86-64 architecture with ! SSE extensions disabled, `-mpreferred-stack-boundary=3' can be ! used to keep the stack boundary aligned to 8 byte boundary. Since x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and intended to be used in controlled environment where stack space is important limitation. This option will lead --- 13590,13618 ---- Setting the rounding of floating-point operations to less than the default 80 bits can speed some programs by 2% or more. Note that ! some mathematical libraries assume that extended-precision (80-bit) ! floating-point operations are enabled by default; routines in such ! libraries could suffer significant loss of accuracy, typically ! through so-called "catastrophic cancellation", when this option is ! used to set the precision to less than extended precision. ! '-mstackrealign' ! Realign the stack at entry. On the Intel x86, the '-mstackrealign' option generates an alternate prologue and epilogue that realigns ! the run-time stack if necessary. This supports mixing legacy codes ! that keep 4-byte stack alignment with modern codes that keep 16-byte stack alignment for SSE compatibility. See also the ! attribute 'force_align_arg_pointer', applicable to individual functions. ! '-mpreferred-stack-boundary=NUM' Attempt to keep the stack boundary aligned to a 2 raised to NUM ! byte boundary. If '-mpreferred-stack-boundary' is not specified, the default is 4 (16 bytes or 128 bits). *Warning:* When generating code for the x86-64 architecture with ! SSE extensions disabled, '-mpreferred-stack-boundary=3' can be used ! to keep the stack boundary aligned to 8 byte boundary. Since x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and intended to be used in controlled environment where stack space is important limitation. This option will lead *************** computers: *** 13676,13789 **** misaligned memory access traps. In addition, variable arguments will be handled incorrectly for 16 byte aligned objects (including x87 long double and __int128), leading to wrong results. You must ! build all modules with `-mpreferred-stack-boundary=3', including any libraries. This includes the system libraries and startup modules. ! `-mincoming-stack-boundary=NUM' Assume the incoming stack is aligned to a 2 raised to NUM byte ! boundary. If `-mincoming-stack-boundary' is not specified, the ! one specified by `-mpreferred-stack-boundary' is used. ! On Pentium and Pentium Pro, `double' and `long double' values ! should be aligned to an 8-byte boundary (see `-malign-double') or ! suffer significant run time performance penalties. On Pentium ! III, the Streaming SIMD Extension (SSE) data type `__m128' may not ! work properly if it is not 16-byte aligned. To ensure proper alignment of this values on the stack, the stack ! boundary must be as aligned as that required by any value stored ! on the stack. Further, every function must be generated such that ! it keeps the stack aligned. Thus calling a function compiled with ! a higher preferred stack boundary from a function compiled with a ! lower preferred stack boundary most likely misaligns the stack. ! It is recommended that libraries that use callbacks always use the default setting. This extra alignment does consume extra stack space, and generally increases code size. Code that is sensitive to stack space usage, such as embedded systems and operating system kernels, may want to ! reduce the preferred alignment to `-mpreferred-stack-boundary=2'. ! `-mmmx' ! `-mno-mmx' ! `-msse' ! `-mno-sse' ! `-msse2' ! `-mno-sse2' ! `-msse3' ! `-mno-sse3' ! `-mssse3' ! `-mno-ssse3' ! `-msse4.1' ! `-mno-sse4.1' ! `-msse4.2' ! `-mno-sse4.2' ! `-msse4' ! `-mno-sse4' ! `-mavx' ! `-mno-avx' ! `-mavx2' ! `-mno-avx2' ! `-maes' ! `-mno-aes' ! `-mpclmul' ! `-mno-pclmul' ! `-mfsgsbase' ! `-mno-fsgsbase' ! `-mrdrnd' ! `-mno-rdrnd' ! `-mf16c' ! `-mno-f16c' ! `-mfma' ! `-mno-fma' ! `-msse4a' ! `-mno-sse4a' ! `-mfma4' ! `-mno-fma4' ! `-mxop' ! `-mno-xop' ! `-mlwp' ! `-mno-lwp' ! `-m3dnow' ! `-mno-3dnow' ! `-mpopcnt' ! `-mno-popcnt' ! `-mabm' ! `-mno-abm' ! `-mbmi' ! `-mbmi2' ! `-mno-bmi' ! `-mno-bmi2' ! `-mlzcnt' ! `-mno-lzcnt' ! `-mrtm' ! `-mtbm' ! `-mno-tbm' These switches enable or disable the use of instructions in the MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM, BMI, BMI2, ! LZCNT, RTM or 3DNow! extended instruction sets. These extensions are also available as built-in functions: see *note X86 Built-in Functions::, for details of the functions enabled and disabled by these switches. To generate SSE/SSE2 instructions automatically from floating-point ! code (as opposed to 387 instructions), see `-mfpmath=sse'. ! GCC depresses SSEx instructions when `-mavx' is used. Instead, it generates new AVX instructions or AVX equivalence for all SSEx instructions when needed. These options enable GCC to use these extended instructions in ! generated code, even without `-mfpmath=sse'. Applications that perform run-time CPU detection must compile separate files for each supported architecture, using the appropriate flags. In particular, the file containing the CPU detection code should be compiled without these options. ! `-mcld' ! This option instructs GCC to emit a `cld' instruction in the prologue of functions that use string instructions. String instructions depend on the DF flag to select between autoincrement or autodecrement mode. While the ABI specifies the DF flag to be --- 13622,13735 ---- misaligned memory access traps. In addition, variable arguments will be handled incorrectly for 16 byte aligned objects (including x87 long double and __int128), leading to wrong results. You must ! build all modules with '-mpreferred-stack-boundary=3', including any libraries. This includes the system libraries and startup modules. ! '-mincoming-stack-boundary=NUM' Assume the incoming stack is aligned to a 2 raised to NUM byte ! boundary. If '-mincoming-stack-boundary' is not specified, the one ! specified by '-mpreferred-stack-boundary' is used. ! On Pentium and Pentium Pro, 'double' and 'long double' values ! should be aligned to an 8-byte boundary (see '-malign-double') or ! suffer significant run time performance penalties. On Pentium III, ! the Streaming SIMD Extension (SSE) data type '__m128' may not work ! properly if it is not 16-byte aligned. To ensure proper alignment of this values on the stack, the stack ! boundary must be as aligned as that required by any value stored on ! the stack. Further, every function must be generated such that it ! keeps the stack aligned. Thus calling a function compiled with a ! higher preferred stack boundary from a function compiled with a ! lower preferred stack boundary most likely misaligns the stack. It ! is recommended that libraries that use callbacks always use the default setting. This extra alignment does consume extra stack space, and generally increases code size. Code that is sensitive to stack space usage, such as embedded systems and operating system kernels, may want to ! reduce the preferred alignment to '-mpreferred-stack-boundary=2'. ! '-mmmx' ! '-mno-mmx' ! '-msse' ! '-mno-sse' ! '-msse2' ! '-mno-sse2' ! '-msse3' ! '-mno-sse3' ! '-mssse3' ! '-mno-ssse3' ! '-msse4.1' ! '-mno-sse4.1' ! '-msse4.2' ! '-mno-sse4.2' ! '-msse4' ! '-mno-sse4' ! '-mavx' ! '-mno-avx' ! '-mavx2' ! '-mno-avx2' ! '-maes' ! '-mno-aes' ! '-mpclmul' ! '-mno-pclmul' ! '-mfsgsbase' ! '-mno-fsgsbase' ! '-mrdrnd' ! '-mno-rdrnd' ! '-mf16c' ! '-mno-f16c' ! '-mfma' ! '-mno-fma' ! '-msse4a' ! '-mno-sse4a' ! '-mfma4' ! '-mno-fma4' ! '-mxop' ! '-mno-xop' ! '-mlwp' ! '-mno-lwp' ! '-m3dnow' ! '-mno-3dnow' ! '-mpopcnt' ! '-mno-popcnt' ! '-mabm' ! '-mno-abm' ! '-mbmi' ! '-mbmi2' ! '-mno-bmi' ! '-mno-bmi2' ! '-mlzcnt' ! '-mno-lzcnt' ! '-mrtm' ! '-mtbm' ! '-mno-tbm' These switches enable or disable the use of instructions in the MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM, BMI, BMI2, ! LZCNT, RTM or 3DNow! extended instruction sets. These extensions are also available as built-in functions: see *note X86 Built-in Functions::, for details of the functions enabled and disabled by these switches. To generate SSE/SSE2 instructions automatically from floating-point ! code (as opposed to 387 instructions), see '-mfpmath=sse'. ! GCC depresses SSEx instructions when '-mavx' is used. Instead, it generates new AVX instructions or AVX equivalence for all SSEx instructions when needed. These options enable GCC to use these extended instructions in ! generated code, even without '-mfpmath=sse'. Applications that perform run-time CPU detection must compile separate files for each supported architecture, using the appropriate flags. In particular, the file containing the CPU detection code should be compiled without these options. ! '-mcld' ! This option instructs GCC to emit a 'cld' instruction in the prologue of functions that use string instructions. String instructions depend on the DF flag to select between autoincrement or autodecrement mode. While the ABI specifies the DF flag to be *************** computers: *** 13792,14083 **** dispatchers. The exception handler can be invoked with the DF flag set, which leads to wrong direction mode when string instructions are used. This option can be enabled by default on 32-bit x86 ! targets by configuring GCC with the `--enable-cld' configure ! option. Generation of `cld' instructions can be suppressed with ! the `-mno-cld' compiler option in this case. ! `-mvzeroupper' ! This option instructs GCC to emit a `vzeroupper' instruction ! before a transfer of control flow out of the function to minimize ! the AVX to SSE transition penalty as well as remove unnecessary ! `zeroupper' intrinsics. ! `-mprefer-avx128' This option instructs GCC to use 128-bit AVX instructions instead of 256-bit AVX instructions in the auto-vectorizer. ! `-mcx16' ! This option enables GCC to generate `CMPXCHG16B' instructions. ! `CMPXCHG16B' allows for atomic operations on 128-bit double ! quadword (or oword) data types. This is useful for ! high-resolution counters that can be updated by multiple ! processors (or cores). This instruction is generated as part of ! atomic built-in functions: see *note __sync Builtins:: or *note ! __atomic Builtins:: for details. ! `-msahf' ! This option enables generation of `SAHF' instructions in 64-bit code. Early Intel Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4 G1 step in December 2005, lacked the ! `LAHF' and `SAHF' instructions which were supported by AMD64. These are load and store instructions, respectively, for certain ! status flags. In 64-bit mode, the `SAHF' instruction is used to ! optimize `fmod', `drem', and `remainder' built-in functions; see *note Other Builtins:: for details. ! `-mmovbe' ! This option enables use of the `movbe' instruction to implement ! `__builtin_bswap32' and `__builtin_bswap64'. ! `-mcrc32' ! This option enables built-in functions `__builtin_ia32_crc32qi', ! `__builtin_ia32_crc32hi', `__builtin_ia32_crc32si' and ! `__builtin_ia32_crc32di' to generate the `crc32' machine instruction. ! `-mrecip' ! This option enables use of `RCPSS' and `RSQRTSS' instructions (and ! their vectorized variants `RCPPS' and `RSQRTPS') with an ! additional Newton-Raphson step to increase precision instead of ! `DIVSS' and `SQRTSS' (and their vectorized variants) for ! single-precision floating-point arguments. These instructions are ! generated only when `-funsafe-math-optimizations' is enabled ! together with `-finite-math-only' and `-fno-trapping-math'. Note ! that while the throughput of the sequence is higher than the ! throughput of the non-reciprocal instruction, the precision of the ! sequence can be decreased by up to 2 ulp (i.e. the inverse of 1.0 ! equals 0.99999994). ! Note that GCC implements `1.0f/sqrtf(X)' in terms of `RSQRTSS' (or ! `RSQRTPS') already with `-ffast-math' (or the above option ! combination), and doesn't need `-mrecip'. Also note that GCC emits the above sequence with additional Newton-Raphson step for vectorized single-float division and ! vectorized `sqrtf(X)' already with `-ffast-math' (or the above ! option combination), and doesn't need `-mrecip'. ! `-mrecip=OPT' This option controls which reciprocal estimate instructions may be used. OPT is a comma-separated list of options, which may be ! preceded by a `!' to invert the option: ! `all' Enable all estimate instructions. ! `default' ! Enable the default instructions, equivalent to `-mrecip'. ! `none' ! Disable all estimate instructions, equivalent to `-mno-recip'. ! `div' Enable the approximation for scalar division. ! `vec-div' Enable the approximation for vectorized division. ! `sqrt' Enable the approximation for scalar square root. ! `vec-sqrt' Enable the approximation for vectorized square root. ! So, for example, `-mrecip=all,!sqrt' enables all of the reciprocal approximations, except for square root. ! `-mveclibabi=TYPE' Specifies the ABI type to use for vectorizing intrinsics using an ! external library. Supported values for TYPE are `svml' for the ! Intel short vector math library and `acml' for the AMD math core ! library. To use this option, both `-ftree-vectorize' and ! `-funsafe-math-optimizations' have to be enabled, and an SVML or ACML ABI-compatible library must be specified at link time. ! GCC currently emits calls to `vmldExp2', `vmldLn2', `vmldLog102', ! `vmldLog102', `vmldPow2', `vmldTanh2', `vmldTan2', `vmldAtan2', ! `vmldAtanh2', `vmldCbrt2', `vmldSinh2', `vmldSin2', `vmldAsinh2', ! `vmldAsin2', `vmldCosh2', `vmldCos2', `vmldAcosh2', `vmldAcos2', ! `vmlsExp4', `vmlsLn4', `vmlsLog104', `vmlsLog104', `vmlsPow4', ! `vmlsTanh4', `vmlsTan4', `vmlsAtan4', `vmlsAtanh4', `vmlsCbrt4', ! `vmlsSinh4', `vmlsSin4', `vmlsAsinh4', `vmlsAsin4', `vmlsCosh4', ! `vmlsCos4', `vmlsAcosh4' and `vmlsAcos4' for corresponding ! function type when `-mveclibabi=svml' is used, and `__vrd2_sin', ! `__vrd2_cos', `__vrd2_exp', `__vrd2_log', `__vrd2_log2', ! `__vrd2_log10', `__vrs4_sinf', `__vrs4_cosf', `__vrs4_expf', ! `__vrs4_logf', `__vrs4_log2f', `__vrs4_log10f' and `__vrs4_powf' ! for the corresponding function type when `-mveclibabi=acml' is used. ! `-mabi=NAME' Generate code for the specified calling convention. Permissible ! values are `sysv' for the ABI used on GNU/Linux and other systems, ! and `ms' for the Microsoft ABI. The default is to use the ! Microsoft ABI when targeting Microsoft Windows and the SysV ABI on ! all other systems. You can control this behavior for a specific ! function by using the function attribute `ms_abi'/`sysv_abi'. ! *Note Function Attributes::. ! `-mtls-dialect=TYPE' ! Generate code to access thread-local storage using the `gnu' or ! `gnu2' conventions. `gnu' is the conservative default; `gnu2' is more efficient, but it may add compile- and run-time requirements that cannot be satisfied on all systems. ! `-mpush-args' ! `-mno-push-args' Use PUSH operations to store outgoing parameters. This method is ! shorter and usually equally fast as method using SUB/MOV ! operations and is enabled by default. In some cases disabling it ! may improve performance because of improved scheduling and reduced dependencies. ! `-maccumulate-outgoing-args' If enabled, the maximum amount of space required for outgoing arguments is computed in the function prologue. This is faster on most modern CPUs because of reduced dependencies, improved scheduling and reduced stack usage when the preferred stack boundary is not equal to 2. The drawback is a notable increase in ! code size. This switch implies `-mno-push-args'. ! `-mthreads' ! Support thread-safe exception handling on MinGW. Programs that ! rely on thread-safe exception handling must compile and link all ! code with the `-mthreads' option. When compiling, `-mthreads' ! defines `-D_MT'; when linking, it links in a special thread helper ! library `-lmingwthrd' which cleans up per-thread ! exception-handling data. ! `-mno-align-stringops' Do not align the destination of inlined string operations. This switch reduces code size and improves performance in case the destination is already aligned, but GCC doesn't know about it. ! `-minline-all-stringops' By default GCC inlines string operations only when the destination is known to be aligned to least a 4-byte boundary. This enables more inlining and increases code size, but may improve performance ! of code that depends on fast `memcpy', `strlen', and `memset' for short lengths. ! `-minline-stringops-dynamically' For string operations of unknown size, use run-time checks with inline code for small blocks and a library call for large blocks. ! `-mstringop-strategy=ALG' Override the internal decision heuristic for the particular algorithm to use for inlining string operations. The allowed values for ALG are: ! `rep_byte' ! `rep_4byte' ! `rep_8byte' ! Expand using i386 `rep' prefix of the specified size. ! `byte_loop' ! `loop' ! `unrolled_loop' Expand into an inline loop. ! `libcall' Always use a library call. ! `-momit-leaf-frame-pointer' Don't keep the frame pointer in a register for leaf functions. This avoids the instructions to save, set up, and restore frame pointers and makes an extra register available in leaf functions. ! The option `-fomit-leaf-frame-pointer' removes the frame pointer for leaf functions, which might make debugging harder. ! `-mtls-direct-seg-refs' ! `-mno-tls-direct-seg-refs' Controls whether TLS variables may be accessed with offsets from ! the TLS segment register (`%gs' for 32-bit, `%fs' for 64-bit), or whether the thread base pointer must be added. Whether or not this is valid depends on the operating system, and whether it maps the segment to cover the entire TLS area. For systems that use the GNU C Library, the default is on. ! `-msse2avx' ! `-mno-sse2avx' Specify that the assembler should encode SSE instructions with VEX ! prefix. The option `-mavx' turns this on by default. ! `-mfentry' ! `-mno-fentry' ! If profiling is active (`-pg'), put the profiling counter call before the prologue. Note: On x86 architectures the attribute ! `ms_hook_prologue' isn't possible at the moment for `-mfentry' and ! `-pg'. ! `-m8bit-idiv' ! `-mno-8bit-idiv' On some processors, like Intel Atom, 8-bit unsigned integer divide is much faster than 32-bit/64-bit integer divide. This option generates a run-time check. If both dividend and divisor are within range of 0 to 255, 8-bit unsigned integer divide is used instead of 32-bit/64-bit integer divide. ! `-mavx256-split-unaligned-load' ! `-mavx256-split-unaligned-store' Split 32-byte AVX unaligned load and store. ! ! These `-m' switches are supported in addition to the above on x86-64 processors in 64-bit environments. ! `-m32' ! `-m64' ! `-mx32' ! Generate code for a 32-bit or 64-bit environment. The `-m32' ! option sets `int', `long', and pointer types to 32 bits, and generates code that runs on any i386 system. ! The `-m64' option sets `int' to 32 bits and `long' and pointer types to 64 bits, and generates code for the x86-64 architecture. ! For Darwin only the `-m64' option also turns off the `-fno-pic' ! and `-mdynamic-no-pic' options. ! The `-mx32' option sets `int', `long', and pointer types to 32 bits, and generates code for the x86-64 architecture. ! `-mno-red-zone' ! Do not use a so-called "red zone" for x86-64 code. The red zone ! is mandated by the x86-64 ABI; it is a 128-byte area beyond the location of the stack pointer that is not modified by signal or interrupt handlers and therefore can be used for temporary data ! without adjusting the stack pointer. The flag `-mno-red-zone' disables this red zone. ! `-mcmodel=small' ! Generate code for the small code model: the program and its ! symbols must be linked in the lower 2 GB of the address space. ! Pointers are 64 bits. Programs can be statically or dynamically ! linked. This is the default code model. ! `-mcmodel=kernel' Generate code for the kernel code model. The kernel runs in the negative 2 GB of the address space. This model has to be used for Linux kernel code. ! `-mcmodel=medium' Generate code for the medium model: the program is linked in the lower 2 GB of the address space. Small symbols are also placed ! there. Symbols with sizes larger than `-mlarge-data-threshold' ! are put into large data or BSS sections and can be located above ! 2GB. Programs can be statically or dynamically linked. ! `-mcmodel=large' Generate code for the large model. This model makes no assumptions about addresses and sizes of sections. ! `-maddress-mode=long' Generate code for long address mode. This is only supported for 64-bit and x32 environments. It is the default address mode for 64-bit environments. ! `-maddress-mode=short' Generate code for short address mode. This is only supported for 32-bit and x32 environments. It is the default address mode for 32-bit and x32 environments. --- 13738,14027 ---- dispatchers. The exception handler can be invoked with the DF flag set, which leads to wrong direction mode when string instructions are used. This option can be enabled by default on 32-bit x86 ! targets by configuring GCC with the '--enable-cld' configure ! option. Generation of 'cld' instructions can be suppressed with ! the '-mno-cld' compiler option in this case. ! '-mvzeroupper' ! This option instructs GCC to emit a 'vzeroupper' instruction before ! a transfer of control flow out of the function to minimize the AVX ! to SSE transition penalty as well as remove unnecessary 'zeroupper' ! intrinsics. ! '-mprefer-avx128' This option instructs GCC to use 128-bit AVX instructions instead of 256-bit AVX instructions in the auto-vectorizer. ! '-mcx16' ! This option enables GCC to generate 'CMPXCHG16B' instructions. ! 'CMPXCHG16B' allows for atomic operations on 128-bit double ! quadword (or oword) data types. This is useful for high-resolution ! counters that can be updated by multiple processors (or cores). ! This instruction is generated as part of atomic built-in functions: ! see *note __sync Builtins:: or *note __atomic Builtins:: for ! details. ! '-msahf' ! This option enables generation of 'SAHF' instructions in 64-bit code. Early Intel Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4 G1 step in December 2005, lacked the ! 'LAHF' and 'SAHF' instructions which were supported by AMD64. These are load and store instructions, respectively, for certain ! status flags. In 64-bit mode, the 'SAHF' instruction is used to ! optimize 'fmod', 'drem', and 'remainder' built-in functions; see *note Other Builtins:: for details. ! '-mmovbe' ! This option enables use of the 'movbe' instruction to implement ! '__builtin_bswap32' and '__builtin_bswap64'. ! '-mcrc32' ! This option enables built-in functions '__builtin_ia32_crc32qi', ! '__builtin_ia32_crc32hi', '__builtin_ia32_crc32si' and ! '__builtin_ia32_crc32di' to generate the 'crc32' machine instruction. ! '-mrecip' ! This option enables use of 'RCPSS' and 'RSQRTSS' instructions (and ! their vectorized variants 'RCPPS' and 'RSQRTPS') with an additional ! Newton-Raphson step to increase precision instead of 'DIVSS' and ! 'SQRTSS' (and their vectorized variants) for single-precision ! floating-point arguments. These instructions are generated only ! when '-funsafe-math-optimizations' is enabled together with ! '-finite-math-only' and '-fno-trapping-math'. Note that while the ! throughput of the sequence is higher than the throughput of the ! non-reciprocal instruction, the precision of the sequence can be ! decreased by up to 2 ulp (i.e. the inverse of 1.0 equals ! 0.99999994). ! Note that GCC implements '1.0f/sqrtf(X)' in terms of 'RSQRTSS' (or ! 'RSQRTPS') already with '-ffast-math' (or the above option ! combination), and doesn't need '-mrecip'. Also note that GCC emits the above sequence with additional Newton-Raphson step for vectorized single-float division and ! vectorized 'sqrtf(X)' already with '-ffast-math' (or the above ! option combination), and doesn't need '-mrecip'. ! '-mrecip=OPT' This option controls which reciprocal estimate instructions may be used. OPT is a comma-separated list of options, which may be ! preceded by a '!' to invert the option: ! 'all' Enable all estimate instructions. ! 'default' ! Enable the default instructions, equivalent to '-mrecip'. ! 'none' ! Disable all estimate instructions, equivalent to '-mno-recip'. ! 'div' Enable the approximation for scalar division. ! 'vec-div' Enable the approximation for vectorized division. ! 'sqrt' Enable the approximation for scalar square root. ! 'vec-sqrt' Enable the approximation for vectorized square root. ! So, for example, '-mrecip=all,!sqrt' enables all of the reciprocal approximations, except for square root. ! '-mveclibabi=TYPE' Specifies the ABI type to use for vectorizing intrinsics using an ! external library. Supported values for TYPE are 'svml' for the ! Intel short vector math library and 'acml' for the AMD math core ! library. To use this option, both '-ftree-vectorize' and ! '-funsafe-math-optimizations' have to be enabled, and an SVML or ACML ABI-compatible library must be specified at link time. ! GCC currently emits calls to 'vmldExp2', 'vmldLn2', 'vmldLog102', ! 'vmldLog102', 'vmldPow2', 'vmldTanh2', 'vmldTan2', 'vmldAtan2', ! 'vmldAtanh2', 'vmldCbrt2', 'vmldSinh2', 'vmldSin2', 'vmldAsinh2', ! 'vmldAsin2', 'vmldCosh2', 'vmldCos2', 'vmldAcosh2', 'vmldAcos2', ! 'vmlsExp4', 'vmlsLn4', 'vmlsLog104', 'vmlsLog104', 'vmlsPow4', ! 'vmlsTanh4', 'vmlsTan4', 'vmlsAtan4', 'vmlsAtanh4', 'vmlsCbrt4', ! 'vmlsSinh4', 'vmlsSin4', 'vmlsAsinh4', 'vmlsAsin4', 'vmlsCosh4', ! 'vmlsCos4', 'vmlsAcosh4' and 'vmlsAcos4' for corresponding function ! type when '-mveclibabi=svml' is used, and '__vrd2_sin', ! '__vrd2_cos', '__vrd2_exp', '__vrd2_log', '__vrd2_log2', ! '__vrd2_log10', '__vrs4_sinf', '__vrs4_cosf', '__vrs4_expf', ! '__vrs4_logf', '__vrs4_log2f', '__vrs4_log10f' and '__vrs4_powf' ! for the corresponding function type when '-mveclibabi=acml' is used. ! '-mabi=NAME' Generate code for the specified calling convention. Permissible ! values are 'sysv' for the ABI used on GNU/Linux and other systems, ! and 'ms' for the Microsoft ABI. The default is to use the Microsoft ! ABI when targeting Microsoft Windows and the SysV ABI on all other ! systems. You can control this behavior for a specific function by ! using the function attribute 'ms_abi'/'sysv_abi'. *Note Function ! Attributes::. ! '-mtls-dialect=TYPE' ! Generate code to access thread-local storage using the 'gnu' or ! 'gnu2' conventions. 'gnu' is the conservative default; 'gnu2' is more efficient, but it may add compile- and run-time requirements that cannot be satisfied on all systems. ! '-mpush-args' ! '-mno-push-args' Use PUSH operations to store outgoing parameters. This method is ! shorter and usually equally fast as method using SUB/MOV operations ! and is enabled by default. In some cases disabling it may improve ! performance because of improved scheduling and reduced dependencies. ! '-maccumulate-outgoing-args' If enabled, the maximum amount of space required for outgoing arguments is computed in the function prologue. This is faster on most modern CPUs because of reduced dependencies, improved scheduling and reduced stack usage when the preferred stack boundary is not equal to 2. The drawback is a notable increase in ! code size. This switch implies '-mno-push-args'. ! '-mthreads' ! Support thread-safe exception handling on MinGW. Programs that rely ! on thread-safe exception handling must compile and link all code ! with the '-mthreads' option. When compiling, '-mthreads' defines ! '-D_MT'; when linking, it links in a special thread helper library ! '-lmingwthrd' which cleans up per-thread exception-handling data. ! '-mno-align-stringops' Do not align the destination of inlined string operations. This switch reduces code size and improves performance in case the destination is already aligned, but GCC doesn't know about it. ! '-minline-all-stringops' By default GCC inlines string operations only when the destination is known to be aligned to least a 4-byte boundary. This enables more inlining and increases code size, but may improve performance ! of code that depends on fast 'memcpy', 'strlen', and 'memset' for short lengths. ! '-minline-stringops-dynamically' For string operations of unknown size, use run-time checks with inline code for small blocks and a library call for large blocks. ! '-mstringop-strategy=ALG' Override the internal decision heuristic for the particular algorithm to use for inlining string operations. The allowed values for ALG are: ! 'rep_byte' ! 'rep_4byte' ! 'rep_8byte' ! Expand using i386 'rep' prefix of the specified size. ! 'byte_loop' ! 'loop' ! 'unrolled_loop' Expand into an inline loop. ! 'libcall' Always use a library call. ! '-momit-leaf-frame-pointer' Don't keep the frame pointer in a register for leaf functions. This avoids the instructions to save, set up, and restore frame pointers and makes an extra register available in leaf functions. ! The option '-fomit-leaf-frame-pointer' removes the frame pointer for leaf functions, which might make debugging harder. ! '-mtls-direct-seg-refs' ! '-mno-tls-direct-seg-refs' Controls whether TLS variables may be accessed with offsets from ! the TLS segment register ('%gs' for 32-bit, '%fs' for 64-bit), or whether the thread base pointer must be added. Whether or not this is valid depends on the operating system, and whether it maps the segment to cover the entire TLS area. For systems that use the GNU C Library, the default is on. ! '-msse2avx' ! '-mno-sse2avx' Specify that the assembler should encode SSE instructions with VEX ! prefix. The option '-mavx' turns this on by default. ! '-mfentry' ! '-mno-fentry' ! If profiling is active ('-pg'), put the profiling counter call before the prologue. Note: On x86 architectures the attribute ! 'ms_hook_prologue' isn't possible at the moment for '-mfentry' and ! '-pg'. ! '-m8bit-idiv' ! '-mno-8bit-idiv' On some processors, like Intel Atom, 8-bit unsigned integer divide is much faster than 32-bit/64-bit integer divide. This option generates a run-time check. If both dividend and divisor are within range of 0 to 255, 8-bit unsigned integer divide is used instead of 32-bit/64-bit integer divide. ! '-mavx256-split-unaligned-load' ! '-mavx256-split-unaligned-store' Split 32-byte AVX unaligned load and store. ! These '-m' switches are supported in addition to the above on x86-64 processors in 64-bit environments. ! '-m32' ! '-m64' ! '-mx32' ! Generate code for a 32-bit or 64-bit environment. The '-m32' ! option sets 'int', 'long', and pointer types to 32 bits, and generates code that runs on any i386 system. ! The '-m64' option sets 'int' to 32 bits and 'long' and pointer types to 64 bits, and generates code for the x86-64 architecture. ! For Darwin only the '-m64' option also turns off the '-fno-pic' and ! '-mdynamic-no-pic' options. ! The '-mx32' option sets 'int', 'long', and pointer types to 32 bits, and generates code for the x86-64 architecture. ! '-mno-red-zone' ! Do not use a so-called "red zone" for x86-64 code. The red zone is ! mandated by the x86-64 ABI; it is a 128-byte area beyond the location of the stack pointer that is not modified by signal or interrupt handlers and therefore can be used for temporary data ! without adjusting the stack pointer. The flag '-mno-red-zone' disables this red zone. ! '-mcmodel=small' ! Generate code for the small code model: the program and its symbols ! must be linked in the lower 2 GB of the address space. Pointers ! are 64 bits. Programs can be statically or dynamically linked. ! This is the default code model. ! '-mcmodel=kernel' Generate code for the kernel code model. The kernel runs in the negative 2 GB of the address space. This model has to be used for Linux kernel code. ! '-mcmodel=medium' Generate code for the medium model: the program is linked in the lower 2 GB of the address space. Small symbols are also placed ! there. Symbols with sizes larger than '-mlarge-data-threshold' are ! put into large data or BSS sections and can be located above 2GB. ! Programs can be statically or dynamically linked. ! '-mcmodel=large' Generate code for the large model. This model makes no assumptions about addresses and sizes of sections. ! '-maddress-mode=long' Generate code for long address mode. This is only supported for 64-bit and x32 environments. It is the default address mode for 64-bit environments. ! '-maddress-mode=short' Generate code for short address mode. This is only supported for 32-bit and x32 environments. It is the default address mode for 32-bit and x32 environments. *************** File: gcc.info, Node: i386 and x86-64 W *** 14090,14152 **** These additional options are available for Microsoft Windows targets: ! `-mconsole' This option specifies that a console application is to be ! generated, by instructing the linker to set the PE header ! subsystem type required for console applications. This option is ! available for Cygwin and MinGW targets and is enabled by default ! on those targets. ! `-mdll' This option is available for Cygwin and MinGW targets. It specifies that a DLL--a dynamic link library--is to be generated, enabling the selection of the required runtime startup object and entry point. ! `-mnop-fun-dllimport' This option is available for Cygwin and MinGW targets. It ! specifies that the `dllimport' attribute should be ignored. ! `-mthread' ! This option is available for MinGW targets. It specifies that MinGW-specific thread support is to be used. ! `-municode' This option is available for MinGW-w64 targets. It causes the ! `UNICODE' preprocessor macro to be predefined, and chooses Unicode-capable runtime startup code. ! `-mwin32' This option is available for Cygwin and MinGW targets. It specifies that the typical Microsoft Windows predefined macros are to be set in the pre-processor, but does not influence the choice of runtime library/startup code. ! `-mwindows' This option is available for Cygwin and MinGW targets. It specifies that a GUI application is to be generated by instructing the linker to set the PE header subsystem type appropriately. ! `-fno-set-stack-executable' ! This option is available for MinGW targets. It specifies that the executable flag for the stack used by nested functions isn't set. This is necessary for binaries running in kernel mode of Microsoft Windows, as there the User32 API, which is used to set executable privileges, isn't available. ! `-fwritable-relocated-rdata' This option is available for MinGW and Cygwin targets. It specifies that relocated-data in read-only section is put into .data section. This is a necessary for older runtimes not supporting modification of .rdata sections for pseudo-relocation. ! `-mpe-aligned-commons' This option is available for Cygwin and MinGW targets. It ! specifies that the GNU extension to the PE file format that ! permits the correct alignment of COMMON variables should be used ! when generating code. It is enabled by default if GCC detects ! that the target assembler found during configuration supports the ! feature. See also under *note i386 and x86-64 Options:: for standard options. --- 14034,14095 ---- These additional options are available for Microsoft Windows targets: ! '-mconsole' This option specifies that a console application is to be ! generated, by instructing the linker to set the PE header subsystem ! type required for console applications. This option is available ! for Cygwin and MinGW targets and is enabled by default on those ! targets. ! '-mdll' This option is available for Cygwin and MinGW targets. It specifies that a DLL--a dynamic link library--is to be generated, enabling the selection of the required runtime startup object and entry point. ! '-mnop-fun-dllimport' This option is available for Cygwin and MinGW targets. It ! specifies that the 'dllimport' attribute should be ignored. ! '-mthread' ! This option is available for MinGW targets. It specifies that MinGW-specific thread support is to be used. ! '-municode' This option is available for MinGW-w64 targets. It causes the ! 'UNICODE' preprocessor macro to be predefined, and chooses Unicode-capable runtime startup code. ! '-mwin32' This option is available for Cygwin and MinGW targets. It specifies that the typical Microsoft Windows predefined macros are to be set in the pre-processor, but does not influence the choice of runtime library/startup code. ! '-mwindows' This option is available for Cygwin and MinGW targets. It specifies that a GUI application is to be generated by instructing the linker to set the PE header subsystem type appropriately. ! '-fno-set-stack-executable' ! This option is available for MinGW targets. It specifies that the executable flag for the stack used by nested functions isn't set. This is necessary for binaries running in kernel mode of Microsoft Windows, as there the User32 API, which is used to set executable privileges, isn't available. ! '-fwritable-relocated-rdata' This option is available for MinGW and Cygwin targets. It specifies that relocated-data in read-only section is put into .data section. This is a necessary for older runtimes not supporting modification of .rdata sections for pseudo-relocation. ! '-mpe-aligned-commons' This option is available for Cygwin and MinGW targets. It ! specifies that the GNU extension to the PE file format that permits ! the correct alignment of COMMON variables should be used when ! generating code. It is enabled by default if GCC detects that the ! target assembler found during configuration supports the feature. See also under *note i386 and x86-64 Options:: for standard options. *************** File: gcc.info, Node: IA-64 Options, N *** 14156,14420 **** 3.17.18 IA-64 Options --------------------- ! These are the `-m' options defined for the Intel IA-64 architecture. ! `-mbig-endian' Generate code for a big-endian target. This is the default for HP-UX. ! `-mlittle-endian' Generate code for a little-endian target. This is the default for AIX5 and GNU/Linux. ! `-mgnu-as' ! `-mno-gnu-as' Generate (or don't) code for the GNU assembler. This is the default. ! `-mgnu-ld' ! `-mno-gnu-ld' Generate (or don't) code for the GNU linker. This is the default. ! `-mno-pic' Generate code that does not use a global pointer register. The result is not position independent code, and violates the IA-64 ABI. ! `-mvolatile-asm-stop' ! `-mno-volatile-asm-stop' Generate (or don't) a stop bit immediately before and after volatile asm statements. ! `-mregister-names' ! `-mno-register-names' ! Generate (or don't) `in', `loc', and `out' register names for the stacked registers. This may make assembler output more readable. ! `-mno-sdata' ! `-msdata' Disable (or enable) optimizations that use the small data section. This may be useful for working around optimizer bugs. ! `-mconstant-gp' Generate code that uses a single constant global pointer value. This is useful when compiling kernel code. ! `-mauto-pic' Generate code that is self-relocatable. This implies ! `-mconstant-gp'. This is useful when compiling firmware code. ! `-minline-float-divide-min-latency' ! Generate code for inline divides of floating-point values using ! the minimum latency algorithm. ! `-minline-float-divide-max-throughput' ! Generate code for inline divides of floating-point values using ! the maximum throughput algorithm. ! `-mno-inline-float-divide' Do not generate inline code for divides of floating-point values. ! `-minline-int-divide-min-latency' Generate code for inline divides of integer values using the minimum latency algorithm. ! `-minline-int-divide-max-throughput' Generate code for inline divides of integer values using the maximum throughput algorithm. ! `-mno-inline-int-divide' Do not generate inline code for divides of integer values. ! `-minline-sqrt-min-latency' Generate code for inline square roots using the minimum latency algorithm. ! `-minline-sqrt-max-throughput' Generate code for inline square roots using the maximum throughput algorithm. ! `-mno-inline-sqrt' ! Do not generate inline code for `sqrt'. ! `-mfused-madd' ! `-mno-fused-madd' Do (don't) generate code that uses the fused multiply/add or multiply/subtract instructions. The default is to use these instructions. ! `-mno-dwarf2-asm' ! `-mdwarf2-asm' Don't (or do) generate assembler code for the DWARF 2 line number debugging info. This may be useful when not using the GNU assembler. ! `-mearly-stop-bits' ! `-mno-early-stop-bits' Allow stop bits to be placed earlier than immediately preceding the instruction that triggered the stop bit. This can improve instruction scheduling, but does not always do so. ! `-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator cannot use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! `-mtls-size=TLS-SIZE' Specify bit size of immediate TLS offsets. Valid values are 14, 22, and 64. ! `-mtune=CPU-TYPE' Tune the instruction scheduling for a particular CPU, Valid values ! are `itanium', `itanium1', `merced', `itanium2', and `mckinley'. ! `-milp32' ! `-mlp64' Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits. These are HP-UX specific flags. ! `-mno-sched-br-data-spec' ! `-msched-br-data-spec' (Dis/En)able data speculative scheduling before reload. This ! results in generation of `ld.a' instructions and the corresponding ! check instructions (`ld.c' / `chk.a'). The default is 'disable'. ! `-msched-ar-data-spec' ! `-mno-sched-ar-data-spec' (En/Dis)able data speculative scheduling after reload. This ! results in generation of `ld.a' instructions and the corresponding ! check instructions (`ld.c' / `chk.a'). The default is 'enable'. ! `-mno-sched-control-spec' ! `-msched-control-spec' (Dis/En)able control speculative scheduling. This feature is ! available only during region scheduling (i.e. before reload). ! This results in generation of the `ld.s' instructions and the ! corresponding check instructions `chk.s'. The default is 'disable'. ! `-msched-br-in-data-spec' ! `-mno-sched-br-in-data-spec' (En/Dis)able speculative scheduling of the instructions that are dependent on the data speculative loads before reload. This is ! effective only with `-msched-br-data-spec' enabled. The default ! is 'enable'. ! `-msched-ar-in-data-spec' ! `-mno-sched-ar-in-data-spec' (En/Dis)able speculative scheduling of the instructions that are dependent on the data speculative loads after reload. This is ! effective only with `-msched-ar-data-spec' enabled. The default ! is 'enable'. ! `-msched-in-control-spec' ! `-mno-sched-in-control-spec' (En/Dis)able speculative scheduling of the instructions that are ! dependent on the control speculative loads. This is effective ! only with `-msched-control-spec' enabled. The default is 'enable'. ! `-mno-sched-prefer-non-data-spec-insns' ! `-msched-prefer-non-data-spec-insns' If enabled, data-speculative instructions are chosen for schedule only if there are no other choices at the moment. This makes the ! use of the data speculation much more conservative. The default ! is 'disable'. ! `-mno-sched-prefer-non-control-spec-insns' ! `-msched-prefer-non-control-spec-insns' If enabled, control-speculative instructions are chosen for schedule only if there are no other choices at the moment. This makes the use of the control speculation much more conservative. The default is 'disable'. ! `-mno-sched-count-spec-in-critical-path' ! `-msched-count-spec-in-critical-path' If enabled, speculative dependencies are considered during computation of the instructions priorities. This makes the use of the speculation a bit more conservative. The default is 'disable'. ! `-msched-spec-ldc' Use a simple data speculation check. This option is on by default. ! `-msched-control-spec-ldc' Use a simple check for control speculation. This option is on by default. ! `-msched-stop-bits-after-every-cycle' ! Place a stop bit after every cycle when scheduling. This option ! is on by default. ! `-msched-fp-mem-deps-zero-cost' ! Assume that floating-point stores and loads are not likely to ! cause a conflict when placed into the same instruction group. ! This option is disabled by default. ! `-msel-sched-dont-check-control-spec' Generate checks for control speculation in selective scheduling. This flag is disabled by default. ! `-msched-max-memory-insns=MAX-INSNS' Limit on the number of memory insns per instruction group, giving ! lower priority to subsequent memory insns attempting to schedule ! in the same instruction group. Frequently useful to prevent cache bank conflicts. The default value is 1. ! `-msched-max-memory-insns-hard-limit' ! Makes the limit specified by `msched-max-memory-insns' a hard limit, disallowing more than that number in an instruction group. Otherwise, the limit is "soft", meaning that non-memory operations are preferred when the limit is reached, but memory operations may still be scheduled. -  File: gcc.info, Node: LM32 Options, Next: M32C Options, Prev: IA-64 Options, Up: Submodel Options 3.17.19 LM32 Options -------------------- ! These `-m' options are defined for the LatticeMico32 architecture: ! `-mbarrel-shift-enabled' Enable barrel-shift instructions. ! `-mdivide-enabled' Enable divide and modulus instructions. ! `-mmultiply-enabled' Enable multiply instructions. ! `-msign-extend-enabled' Enable sign extend instructions. ! `-muser-enabled' Enable user-defined instructions. -  File: gcc.info, Node: M32C Options, Next: M32R/D Options, Prev: LM32 Options, Up: Submodel Options 3.17.20 M32C Options -------------------- ! `-mcpu=NAME' Select the CPU for which code is generated. NAME may be one of ! `r8c' for the R8C/Tiny series, `m16c' for the M16C (up to /60) ! series, `m32cm' for the M16C/80 series, or `m32c' for the M32C/80 series. ! `-msim' Specifies that the program will be run on the simulator. This ! causes an alternate runtime library to be linked in which ! supports, for example, file I/O. You must not use this option ! when generating programs that will run on real hardware; you must provide your own runtime library for whatever I/O functions are needed. ! `-memregs=NUMBER' Specifies the number of memory-based pseudo-registers GCC uses during code generation. These pseudo-registers are used like real registers, so there is a tradeoff between GCC's ability to fit the --- 14099,14361 ---- 3.17.18 IA-64 Options --------------------- ! These are the '-m' options defined for the Intel IA-64 architecture. ! '-mbig-endian' Generate code for a big-endian target. This is the default for HP-UX. ! '-mlittle-endian' Generate code for a little-endian target. This is the default for AIX5 and GNU/Linux. ! '-mgnu-as' ! '-mno-gnu-as' Generate (or don't) code for the GNU assembler. This is the default. ! '-mgnu-ld' ! '-mno-gnu-ld' Generate (or don't) code for the GNU linker. This is the default. ! '-mno-pic' Generate code that does not use a global pointer register. The result is not position independent code, and violates the IA-64 ABI. ! '-mvolatile-asm-stop' ! '-mno-volatile-asm-stop' Generate (or don't) a stop bit immediately before and after volatile asm statements. ! '-mregister-names' ! '-mno-register-names' ! Generate (or don't) 'in', 'loc', and 'out' register names for the stacked registers. This may make assembler output more readable. ! '-mno-sdata' ! '-msdata' Disable (or enable) optimizations that use the small data section. This may be useful for working around optimizer bugs. ! '-mconstant-gp' Generate code that uses a single constant global pointer value. This is useful when compiling kernel code. ! '-mauto-pic' Generate code that is self-relocatable. This implies ! '-mconstant-gp'. This is useful when compiling firmware code. ! '-minline-float-divide-min-latency' ! Generate code for inline divides of floating-point values using the ! minimum latency algorithm. ! '-minline-float-divide-max-throughput' ! Generate code for inline divides of floating-point values using the ! maximum throughput algorithm. ! '-mno-inline-float-divide' Do not generate inline code for divides of floating-point values. ! '-minline-int-divide-min-latency' Generate code for inline divides of integer values using the minimum latency algorithm. ! '-minline-int-divide-max-throughput' Generate code for inline divides of integer values using the maximum throughput algorithm. ! '-mno-inline-int-divide' Do not generate inline code for divides of integer values. ! '-minline-sqrt-min-latency' Generate code for inline square roots using the minimum latency algorithm. ! '-minline-sqrt-max-throughput' Generate code for inline square roots using the maximum throughput algorithm. ! '-mno-inline-sqrt' ! Do not generate inline code for 'sqrt'. ! '-mfused-madd' ! '-mno-fused-madd' Do (don't) generate code that uses the fused multiply/add or multiply/subtract instructions. The default is to use these instructions. ! '-mno-dwarf2-asm' ! '-mdwarf2-asm' Don't (or do) generate assembler code for the DWARF 2 line number debugging info. This may be useful when not using the GNU assembler. ! '-mearly-stop-bits' ! '-mno-early-stop-bits' Allow stop bits to be placed earlier than immediately preceding the instruction that triggered the stop bit. This can improve instruction scheduling, but does not always do so. ! '-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator cannot use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! '-mtls-size=TLS-SIZE' Specify bit size of immediate TLS offsets. Valid values are 14, 22, and 64. ! '-mtune=CPU-TYPE' Tune the instruction scheduling for a particular CPU, Valid values ! are 'itanium', 'itanium1', 'merced', 'itanium2', and 'mckinley'. ! '-milp32' ! '-mlp64' Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits. These are HP-UX specific flags. ! '-mno-sched-br-data-spec' ! '-msched-br-data-spec' (Dis/En)able data speculative scheduling before reload. This ! results in generation of 'ld.a' instructions and the corresponding ! check instructions ('ld.c' / 'chk.a'). The default is 'disable'. ! '-msched-ar-data-spec' ! '-mno-sched-ar-data-spec' (En/Dis)able data speculative scheduling after reload. This ! results in generation of 'ld.a' instructions and the corresponding ! check instructions ('ld.c' / 'chk.a'). The default is 'enable'. ! '-mno-sched-control-spec' ! '-msched-control-spec' (Dis/En)able control speculative scheduling. This feature is ! available only during region scheduling (i.e. before reload). This ! results in generation of the 'ld.s' instructions and the ! corresponding check instructions 'chk.s'. The default is 'disable'. ! '-msched-br-in-data-spec' ! '-mno-sched-br-in-data-spec' (En/Dis)able speculative scheduling of the instructions that are dependent on the data speculative loads before reload. This is ! effective only with '-msched-br-data-spec' enabled. The default is ! 'enable'. ! '-msched-ar-in-data-spec' ! '-mno-sched-ar-in-data-spec' (En/Dis)able speculative scheduling of the instructions that are dependent on the data speculative loads after reload. This is ! effective only with '-msched-ar-data-spec' enabled. The default is ! 'enable'. ! '-msched-in-control-spec' ! '-mno-sched-in-control-spec' (En/Dis)able speculative scheduling of the instructions that are ! dependent on the control speculative loads. This is effective only ! with '-msched-control-spec' enabled. The default is 'enable'. ! '-mno-sched-prefer-non-data-spec-insns' ! '-msched-prefer-non-data-spec-insns' If enabled, data-speculative instructions are chosen for schedule only if there are no other choices at the moment. This makes the ! use of the data speculation much more conservative. The default is ! 'disable'. ! '-mno-sched-prefer-non-control-spec-insns' ! '-msched-prefer-non-control-spec-insns' If enabled, control-speculative instructions are chosen for schedule only if there are no other choices at the moment. This makes the use of the control speculation much more conservative. The default is 'disable'. ! '-mno-sched-count-spec-in-critical-path' ! '-msched-count-spec-in-critical-path' If enabled, speculative dependencies are considered during computation of the instructions priorities. This makes the use of the speculation a bit more conservative. The default is 'disable'. ! '-msched-spec-ldc' Use a simple data speculation check. This option is on by default. ! '-msched-control-spec-ldc' Use a simple check for control speculation. This option is on by default. ! '-msched-stop-bits-after-every-cycle' ! Place a stop bit after every cycle when scheduling. This option is ! on by default. ! '-msched-fp-mem-deps-zero-cost' ! Assume that floating-point stores and loads are not likely to cause ! a conflict when placed into the same instruction group. This ! option is disabled by default. ! '-msel-sched-dont-check-control-spec' Generate checks for control speculation in selective scheduling. This flag is disabled by default. ! '-msched-max-memory-insns=MAX-INSNS' Limit on the number of memory insns per instruction group, giving ! lower priority to subsequent memory insns attempting to schedule in ! the same instruction group. Frequently useful to prevent cache bank conflicts. The default value is 1. ! '-msched-max-memory-insns-hard-limit' ! Makes the limit specified by 'msched-max-memory-insns' a hard limit, disallowing more than that number in an instruction group. Otherwise, the limit is "soft", meaning that non-memory operations are preferred when the limit is reached, but memory operations may still be scheduled.  File: gcc.info, Node: LM32 Options, Next: M32C Options, Prev: IA-64 Options, Up: Submodel Options 3.17.19 LM32 Options -------------------- ! These '-m' options are defined for the LatticeMico32 architecture: ! '-mbarrel-shift-enabled' Enable barrel-shift instructions. ! '-mdivide-enabled' Enable divide and modulus instructions. ! '-mmultiply-enabled' Enable multiply instructions. ! '-msign-extend-enabled' Enable sign extend instructions. ! '-muser-enabled' Enable user-defined instructions.  File: gcc.info, Node: M32C Options, Next: M32R/D Options, Prev: LM32 Options, Up: Submodel Options 3.17.20 M32C Options -------------------- ! '-mcpu=NAME' Select the CPU for which code is generated. NAME may be one of ! 'r8c' for the R8C/Tiny series, 'm16c' for the M16C (up to /60) ! series, 'm32cm' for the M16C/80 series, or 'm32c' for the M32C/80 series. ! '-msim' Specifies that the program will be run on the simulator. This ! causes an alternate runtime library to be linked in which supports, ! for example, file I/O. You must not use this option when ! generating programs that will run on real hardware; you must provide your own runtime library for whatever I/O functions are needed. ! '-memregs=NUMBER' Specifies the number of memory-based pseudo-registers GCC uses during code generation. These pseudo-registers are used like real registers, so there is a tradeoff between GCC's ability to fit the *************** File: gcc.info, Node: M32C Options, Ne *** 14424,14773 **** that, you must not use this option with GCC's default runtime libraries. -  File: gcc.info, Node: M32R/D Options, Next: M680x0 Options, Prev: M32C Options, Up: Submodel Options 3.17.21 M32R/D Options ---------------------- ! These `-m' options are defined for Renesas M32R/D architectures: ! `-m32r2' Generate code for the M32R/2. ! `-m32rx' Generate code for the M32R/X. ! `-m32r' Generate code for the M32R. This is the default. ! `-mmodel=small' Assume all objects live in the lower 16MB of memory (so that their ! addresses can be loaded with the `ld24' instruction), and assume ! all subroutines are reachable with the `bl' instruction. This is the default. The addressability of a particular object can be set with the ! `model' attribute. ! `-mmodel=medium' Assume objects may be anywhere in the 32-bit address space (the ! compiler generates `seth/add3' instructions to load their ! addresses), and assume all subroutines are reachable with the `bl' instruction. ! `-mmodel=large' Assume objects may be anywhere in the 32-bit address space (the ! compiler generates `seth/add3' instructions to load their addresses), and assume subroutines may not be reachable with the ! `bl' instruction (the compiler generates the much slower ! `seth/add3/jl' instruction sequence). ! `-msdata=none' Disable use of the small data area. Variables are put into one of ! `.data', `.bss', or `.rodata' (unless the `section' attribute has been specified). This is the default. ! The small data area consists of sections `.sdata' and `.sbss'. Objects may be explicitly put in the small data area with the ! `section' attribute using one of these sections. ! `-msdata=sdata' Put small global and static data in the small data area, but do not generate special code to reference them. ! `-msdata=use' Put small global and static data in the small data area, and generate special instructions to reference them. ! `-G NUM' Put global and static objects less than or equal to NUM bytes into the small data or BSS sections instead of the normal data or BSS ! sections. The default value of NUM is 8. The `-msdata' option ! must be set to one of `sdata' or `use' for this option to have any effect. ! All modules should be compiled with the same `-G NUM' value. Compiling with different values of NUM may or may not work; if it doesn't the linker gives an error message--incorrect code is not generated. ! `-mdebug' Makes the M32R-specific code in the compiler display some statistics that might help in debugging programs. ! `-malign-loops' Align all loops to a 32-byte boundary. ! `-mno-align-loops' Do not enforce a 32-byte alignment for loops. This is the default. ! `-missue-rate=NUMBER' Issue NUMBER instructions per cycle. NUMBER can only be 1 or 2. ! `-mbranch-cost=NUMBER' NUMBER can only be 1 or 2. If it is 1 then branches are preferred over conditional code, if it is 2, then the opposite applies. ! `-mflush-trap=NUMBER' Specifies the trap number to use to flush the cache. The default is 12. Valid numbers are between 0 and 15 inclusive. ! `-mno-flush-trap' Specifies that the cache cannot be flushed by using a trap. ! `-mflush-func=NAME' Specifies the name of the operating system function to call to flush the cache. The default is __flush_cache_, but a function call is only used if a trap is not available. ! `-mno-flush-func' Indicates that there is no OS function for flushing the cache. -  File: gcc.info, Node: M680x0 Options, Next: MCore Options, Prev: M32R/D Options, Up: Submodel Options 3.17.22 M680x0 Options ---------------------- ! These are the `-m' options defined for M680x0 and ColdFire processors. The default settings depend on which architecture was selected when the compiler was configured; the defaults for the most common choices are given below. ! `-march=ARCH' Generate code for a specific M680x0 or ColdFire instruction set architecture. Permissible values of ARCH for M680x0 architectures ! are: `68000', `68010', `68020', `68030', `68040', `68060' and ! `cpu32'. ColdFire architectures are selected according to Freescale's ISA classification and the permissible values are: ! `isaa', `isaaplus', `isab' and `isac'. ! GCC defines a macro `__mcfARCH__' whenever it is generating code for a ColdFire target. The ARCH in this macro is one of the ! `-march' arguments given above. ! When used together, `-march' and `-mtune' select code that runs on a family of similar processors but that is optimized for a particular microarchitecture. ! `-mcpu=CPU' Generate code for a specific M680x0 or ColdFire processor. The ! M680x0 CPUs are: `68000', `68010', `68020', `68030', `68040', ! `68060', `68302', `68332' and `cpu32'. The ColdFire CPUs are ! given by the table below, which also classifies the CPUs into ! families: ! *Family* *`-mcpu' arguments* ! `51' `51' `51ac' `51ag' `51cn' `51em' `51je' `51jf' `51jg' ! `51jm' `51mm' `51qe' `51qm' ! `5206' `5202' `5204' `5206' ! `5206e' `5206e' ! `5208' `5207' `5208' ! `5211a' `5210a' `5211a' ! `5213' `5211' `5212' `5213' ! `5216' `5214' `5216' ! `52235' `52230' `52231' `52232' `52233' `52234' `52235' ! `5225' `5224' `5225' ! `52259' `52252' `52254' `52255' `52256' `52258' `52259' ! `5235' `5232' `5233' `5234' `5235' `523x' ! `5249' `5249' ! `5250' `5250' ! `5271' `5270' `5271' ! `5272' `5272' ! `5275' `5274' `5275' ! `5282' `5280' `5281' `5282' `528x' ! `53017' `53011' `53012' `53013' `53014' `53015' `53016' ! `53017' ! `5307' `5307' ! `5329' `5327' `5328' `5329' `532x' ! `5373' `5372' `5373' `537x' ! `5407' `5407' ! `5475' `5470' `5471' `5472' `5473' `5474' `5475' `547x' ! `5480' `5481' `5482' `5483' `5484' `5485' ! `-mcpu=CPU' overrides `-march=ARCH' if ARCH is compatible with ! CPU. Other combinations of `-mcpu' and `-march' are rejected. ! GCC defines the macro `__mcf_cpu_CPU' when ColdFire target CPU is ! selected. It also defines `__mcf_family_FAMILY', where the value of FAMILY is given by the table above. ! `-mtune=TUNE' Tune the code for a particular microarchitecture within the ! constraints set by `-march' and `-mcpu'. The M680x0 ! microarchitectures are: `68000', `68010', `68020', `68030', ! `68040', `68060' and `cpu32'. The ColdFire microarchitectures ! are: `cfv1', `cfv2', `cfv3', `cfv4' and `cfv4e'. ! You can also use `-mtune=68020-40' for code that needs to run relatively well on 68020, 68030 and 68040 targets. ! `-mtune=68020-60' is similar but includes 68060 targets as well. ! These two options select the same tuning decisions as `-m68020-40' ! and `-m68020-60' respectively. ! GCC defines the macros `__mcARCH' and `__mcARCH__' when tuning for ! 680x0 architecture ARCH. It also defines `mcARCH' unless either ! `-ansi' or a non-GNU `-std' option is used. If GCC is tuning for ! a range of architectures, as selected by `-mtune=68020-40' or ! `-mtune=68020-60', it defines the macros for every architecture in the range. ! GCC also defines the macro `__mUARCH__' when tuning for ColdFire microarchitecture UARCH, where UARCH is one of the arguments given above. ! `-m68000' ! `-mc68000' ! Generate output for a 68000. This is the default when the ! compiler is configured for 68000-based systems. It is equivalent ! to `-march=68000'. Use this option for microcontrollers with a 68000 or EC000 core, including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356. ! `-m68010' ! Generate output for a 68010. This is the default when the ! compiler is configured for 68010-based systems. It is equivalent ! to `-march=68010'. ! `-m68020' ! `-mc68020' ! Generate output for a 68020. This is the default when the ! compiler is configured for 68020-based systems. It is equivalent ! to `-march=68020'. ! `-m68030' ! Generate output for a 68030. This is the default when the ! compiler is configured for 68030-based systems. It is equivalent ! to `-march=68030'. ! `-m68040' ! Generate output for a 68040. This is the default when the ! compiler is configured for 68040-based systems. It is equivalent ! to `-march=68040'. This option inhibits the use of 68881/68882 instructions that have to be emulated by software on the 68040. Use this option if your 68040 does not have code to emulate those instructions. ! `-m68060' ! Generate output for a 68060. This is the default when the ! compiler is configured for 68060-based systems. It is equivalent ! to `-march=68060'. This option inhibits the use of 68020 and 68881/68882 instructions ! that have to be emulated by software on the 68060. Use this ! option if your 68060 does not have code to emulate those ! instructions. ! `-mcpu32' ! Generate output for a CPU32. This is the default when the ! compiler is configured for CPU32-based systems. It is equivalent ! to `-march=cpu32'. Use this option for microcontrollers with a CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360. ! `-m5200' Generate output for a 520X ColdFire CPU. This is the default when the compiler is configured for 520X-based systems. It is ! equivalent to `-mcpu=5206', and is now deprecated in favor of that option. ! Use this option for microcontroller with a 5200 core, including ! the MCF5202, MCF5203, MCF5204 and MCF5206. ! `-m5206e' Generate output for a 5206e ColdFire CPU. The option is now ! deprecated in favor of the equivalent `-mcpu=5206e'. ! `-m528x' Generate output for a member of the ColdFire 528X family. The ! option is now deprecated in favor of the equivalent `-mcpu=528x'. ! `-m5307' Generate output for a ColdFire 5307 CPU. The option is now ! deprecated in favor of the equivalent `-mcpu=5307'. ! `-m5407' Generate output for a ColdFire 5407 CPU. The option is now ! deprecated in favor of the equivalent `-mcpu=5407'. ! `-mcfv4e' Generate output for a ColdFire V4e family CPU (e.g. 547x/548x). This includes use of hardware floating-point instructions. The ! option is equivalent to `-mcpu=547x', and is now deprecated in favor of that option. ! `-m68020-40' Generate output for a 68040, without using any of the new instructions. This results in code that can run relatively efficiently on either a 68020/68881 or a 68030 or a 68040. The ! generated code does use the 68881 instructions that are emulated ! on the 68040. ! The option is equivalent to `-march=68020' `-mtune=68020-40'. ! `-m68020-60' Generate output for a 68060, without using any of the new instructions. This results in code that can run relatively efficiently on either a 68020/68881 or a 68030 or a 68040. The ! generated code does use the 68881 instructions that are emulated ! on the 68060. ! The option is equivalent to `-march=68020' `-mtune=68020-60'. ! `-mhard-float' ! `-m68881' Generate floating-point instructions. This is the default for 68020 and above, and for ColdFire devices that have an FPU. It ! defines the macro `__HAVE_68881__' on M680x0 targets and ! `__mcffpu__' on ColdFire targets. ! `-msoft-float' Do not generate floating-point instructions; use library calls instead. This is the default for 68000, 68010, and 68832 targets. It is also the default for ColdFire devices that have no FPU. ! `-mdiv' ! `-mno-div' Generate (do not generate) ColdFire hardware divide and remainder ! instructions. If `-march' is used without `-mcpu', the default is ! "on" for ColdFire architectures and "off" for M680x0 ! architectures. Otherwise, the default is taken from the target CPU ! (either the default CPU, or the one specified by `-mcpu'). For ! example, the default is "off" for `-mcpu=5206' and "on" for ! `-mcpu=5206e'. ! GCC defines the macro `__mcfhwdiv__' when this option is enabled. ! `-mshort' ! Consider type `int' to be 16 bits wide, like `short int'. Additionally, parameters passed on the stack are also aligned to a 16-bit boundary even on targets whose API mandates promotion to 32-bit. ! `-mno-short' ! Do not consider type `int' to be 16 bits wide. This is the default. ! `-mnobitfield' ! `-mno-bitfield' ! Do not use the bit-field instructions. The `-m68000', `-mcpu32' ! and `-m5200' options imply `-mnobitfield'. ! `-mbitfield' ! Do use the bit-field instructions. The `-m68020' option implies ! `-mbitfield'. This is the default if you use a configuration designed for a 68020. ! `-mrtd' Use a different function-calling convention, in which functions ! that take a fixed number of arguments return with the `rtd' instruction, which pops their arguments while returning. This saves one instruction in the caller since there is no need to pop the arguments there. --- 14365,14708 ---- that, you must not use this option with GCC's default runtime libraries.  File: gcc.info, Node: M32R/D Options, Next: M680x0 Options, Prev: M32C Options, Up: Submodel Options 3.17.21 M32R/D Options ---------------------- ! These '-m' options are defined for Renesas M32R/D architectures: ! '-m32r2' Generate code for the M32R/2. ! '-m32rx' Generate code for the M32R/X. ! '-m32r' Generate code for the M32R. This is the default. ! '-mmodel=small' Assume all objects live in the lower 16MB of memory (so that their ! addresses can be loaded with the 'ld24' instruction), and assume ! all subroutines are reachable with the 'bl' instruction. This is the default. The addressability of a particular object can be set with the ! 'model' attribute. ! '-mmodel=medium' Assume objects may be anywhere in the 32-bit address space (the ! compiler generates 'seth/add3' instructions to load their ! addresses), and assume all subroutines are reachable with the 'bl' instruction. ! '-mmodel=large' Assume objects may be anywhere in the 32-bit address space (the ! compiler generates 'seth/add3' instructions to load their addresses), and assume subroutines may not be reachable with the ! 'bl' instruction (the compiler generates the much slower ! 'seth/add3/jl' instruction sequence). ! '-msdata=none' Disable use of the small data area. Variables are put into one of ! '.data', '.bss', or '.rodata' (unless the 'section' attribute has been specified). This is the default. ! The small data area consists of sections '.sdata' and '.sbss'. Objects may be explicitly put in the small data area with the ! 'section' attribute using one of these sections. ! '-msdata=sdata' Put small global and static data in the small data area, but do not generate special code to reference them. ! '-msdata=use' Put small global and static data in the small data area, and generate special instructions to reference them. ! '-G NUM' Put global and static objects less than or equal to NUM bytes into the small data or BSS sections instead of the normal data or BSS ! sections. The default value of NUM is 8. The '-msdata' option ! must be set to one of 'sdata' or 'use' for this option to have any effect. ! All modules should be compiled with the same '-G NUM' value. Compiling with different values of NUM may or may not work; if it doesn't the linker gives an error message--incorrect code is not generated. ! '-mdebug' Makes the M32R-specific code in the compiler display some statistics that might help in debugging programs. ! '-malign-loops' Align all loops to a 32-byte boundary. ! '-mno-align-loops' Do not enforce a 32-byte alignment for loops. This is the default. ! '-missue-rate=NUMBER' Issue NUMBER instructions per cycle. NUMBER can only be 1 or 2. ! '-mbranch-cost=NUMBER' NUMBER can only be 1 or 2. If it is 1 then branches are preferred over conditional code, if it is 2, then the opposite applies. ! '-mflush-trap=NUMBER' Specifies the trap number to use to flush the cache. The default is 12. Valid numbers are between 0 and 15 inclusive. ! '-mno-flush-trap' Specifies that the cache cannot be flushed by using a trap. ! '-mflush-func=NAME' Specifies the name of the operating system function to call to flush the cache. The default is __flush_cache_, but a function call is only used if a trap is not available. ! '-mno-flush-func' Indicates that there is no OS function for flushing the cache.  File: gcc.info, Node: M680x0 Options, Next: MCore Options, Prev: M32R/D Options, Up: Submodel Options 3.17.22 M680x0 Options ---------------------- ! These are the '-m' options defined for M680x0 and ColdFire processors. The default settings depend on which architecture was selected when the compiler was configured; the defaults for the most common choices are given below. ! '-march=ARCH' Generate code for a specific M680x0 or ColdFire instruction set architecture. Permissible values of ARCH for M680x0 architectures ! are: '68000', '68010', '68020', '68030', '68040', '68060' and ! 'cpu32'. ColdFire architectures are selected according to Freescale's ISA classification and the permissible values are: ! 'isaa', 'isaaplus', 'isab' and 'isac'. ! GCC defines a macro '__mcfARCH__' whenever it is generating code for a ColdFire target. The ARCH in this macro is one of the ! '-march' arguments given above. ! When used together, '-march' and '-mtune' select code that runs on a family of similar processors but that is optimized for a particular microarchitecture. ! '-mcpu=CPU' Generate code for a specific M680x0 or ColdFire processor. The ! M680x0 CPUs are: '68000', '68010', '68020', '68030', '68040', ! '68060', '68302', '68332' and 'cpu32'. The ColdFire CPUs are given ! by the table below, which also classifies the CPUs into families: ! *Family* *'-mcpu' arguments* ! '51' '51' '51ac' '51ag' '51cn' '51em' '51je' '51jf' '51jg' ! '51jm' '51mm' '51qe' '51qm' ! '5206' '5202' '5204' '5206' ! '5206e' '5206e' ! '5208' '5207' '5208' ! '5211a' '5210a' '5211a' ! '5213' '5211' '5212' '5213' ! '5216' '5214' '5216' ! '52235' '52230' '52231' '52232' '52233' '52234' '52235' ! '5225' '5224' '5225' ! '52259' '52252' '52254' '52255' '52256' '52258' '52259' ! '5235' '5232' '5233' '5234' '5235' '523x' ! '5249' '5249' ! '5250' '5250' ! '5271' '5270' '5271' ! '5272' '5272' ! '5275' '5274' '5275' ! '5282' '5280' '5281' '5282' '528x' ! '53017' '53011' '53012' '53013' '53014' '53015' '53016' '53017' ! '5307' '5307' ! '5329' '5327' '5328' '5329' '532x' ! '5373' '5372' '5373' '537x' ! '5407' '5407' ! '5475' '5470' '5471' '5472' '5473' '5474' '5475' '547x' '5480' ! '5481' '5482' '5483' '5484' '5485' ! '-mcpu=CPU' overrides '-march=ARCH' if ARCH is compatible with CPU. ! Other combinations of '-mcpu' and '-march' are rejected. ! GCC defines the macro '__mcf_cpu_CPU' when ColdFire target CPU is ! selected. It also defines '__mcf_family_FAMILY', where the value of FAMILY is given by the table above. ! '-mtune=TUNE' Tune the code for a particular microarchitecture within the ! constraints set by '-march' and '-mcpu'. The M680x0 ! microarchitectures are: '68000', '68010', '68020', '68030', ! '68040', '68060' and 'cpu32'. The ColdFire microarchitectures are: ! 'cfv1', 'cfv2', 'cfv3', 'cfv4' and 'cfv4e'. ! You can also use '-mtune=68020-40' for code that needs to run relatively well on 68020, 68030 and 68040 targets. ! '-mtune=68020-60' is similar but includes 68060 targets as well. ! These two options select the same tuning decisions as '-m68020-40' ! and '-m68020-60' respectively. ! GCC defines the macros '__mcARCH' and '__mcARCH__' when tuning for ! 680x0 architecture ARCH. It also defines 'mcARCH' unless either ! '-ansi' or a non-GNU '-std' option is used. If GCC is tuning for a ! range of architectures, as selected by '-mtune=68020-40' or ! '-mtune=68020-60', it defines the macros for every architecture in the range. ! GCC also defines the macro '__mUARCH__' when tuning for ColdFire microarchitecture UARCH, where UARCH is one of the arguments given above. ! '-m68000' ! '-mc68000' ! Generate output for a 68000. This is the default when the compiler ! is configured for 68000-based systems. It is equivalent to ! '-march=68000'. Use this option for microcontrollers with a 68000 or EC000 core, including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356. ! '-m68010' ! Generate output for a 68010. This is the default when the compiler ! is configured for 68010-based systems. It is equivalent to ! '-march=68010'. ! '-m68020' ! '-mc68020' ! Generate output for a 68020. This is the default when the compiler ! is configured for 68020-based systems. It is equivalent to ! '-march=68020'. ! '-m68030' ! Generate output for a 68030. This is the default when the compiler ! is configured for 68030-based systems. It is equivalent to ! '-march=68030'. ! '-m68040' ! Generate output for a 68040. This is the default when the compiler ! is configured for 68040-based systems. It is equivalent to ! '-march=68040'. This option inhibits the use of 68881/68882 instructions that have to be emulated by software on the 68040. Use this option if your 68040 does not have code to emulate those instructions. ! '-m68060' ! Generate output for a 68060. This is the default when the compiler ! is configured for 68060-based systems. It is equivalent to ! '-march=68060'. This option inhibits the use of 68020 and 68881/68882 instructions ! that have to be emulated by software on the 68060. Use this option ! if your 68060 does not have code to emulate those instructions. ! '-mcpu32' ! Generate output for a CPU32. This is the default when the compiler ! is configured for CPU32-based systems. It is equivalent to ! '-march=cpu32'. Use this option for microcontrollers with a CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360. ! '-m5200' Generate output for a 520X ColdFire CPU. This is the default when the compiler is configured for 520X-based systems. It is ! equivalent to '-mcpu=5206', and is now deprecated in favor of that option. ! Use this option for microcontroller with a 5200 core, including the ! MCF5202, MCF5203, MCF5204 and MCF5206. ! '-m5206e' Generate output for a 5206e ColdFire CPU. The option is now ! deprecated in favor of the equivalent '-mcpu=5206e'. ! '-m528x' Generate output for a member of the ColdFire 528X family. The ! option is now deprecated in favor of the equivalent '-mcpu=528x'. ! '-m5307' Generate output for a ColdFire 5307 CPU. The option is now ! deprecated in favor of the equivalent '-mcpu=5307'. ! '-m5407' Generate output for a ColdFire 5407 CPU. The option is now ! deprecated in favor of the equivalent '-mcpu=5407'. ! '-mcfv4e' Generate output for a ColdFire V4e family CPU (e.g. 547x/548x). This includes use of hardware floating-point instructions. The ! option is equivalent to '-mcpu=547x', and is now deprecated in favor of that option. ! '-m68020-40' Generate output for a 68040, without using any of the new instructions. This results in code that can run relatively efficiently on either a 68020/68881 or a 68030 or a 68040. The ! generated code does use the 68881 instructions that are emulated on ! the 68040. ! The option is equivalent to '-march=68020' '-mtune=68020-40'. ! '-m68020-60' Generate output for a 68060, without using any of the new instructions. This results in code that can run relatively efficiently on either a 68020/68881 or a 68030 or a 68040. The ! generated code does use the 68881 instructions that are emulated on ! the 68060. ! The option is equivalent to '-march=68020' '-mtune=68020-60'. ! '-mhard-float' ! '-m68881' Generate floating-point instructions. This is the default for 68020 and above, and for ColdFire devices that have an FPU. It ! defines the macro '__HAVE_68881__' on M680x0 targets and ! '__mcffpu__' on ColdFire targets. ! '-msoft-float' Do not generate floating-point instructions; use library calls instead. This is the default for 68000, 68010, and 68832 targets. It is also the default for ColdFire devices that have no FPU. ! '-mdiv' ! '-mno-div' Generate (do not generate) ColdFire hardware divide and remainder ! instructions. If '-march' is used without '-mcpu', the default is ! "on" for ColdFire architectures and "off" for M680x0 architectures. ! Otherwise, the default is taken from the target CPU (either the ! default CPU, or the one specified by '-mcpu'). For example, the ! default is "off" for '-mcpu=5206' and "on" for '-mcpu=5206e'. ! GCC defines the macro '__mcfhwdiv__' when this option is enabled. ! '-mshort' ! Consider type 'int' to be 16 bits wide, like 'short int'. Additionally, parameters passed on the stack are also aligned to a 16-bit boundary even on targets whose API mandates promotion to 32-bit. ! '-mno-short' ! Do not consider type 'int' to be 16 bits wide. This is the default. ! '-mnobitfield' ! '-mno-bitfield' ! Do not use the bit-field instructions. The '-m68000', '-mcpu32' ! and '-m5200' options imply '-mnobitfield'. ! '-mbitfield' ! Do use the bit-field instructions. The '-m68020' option implies ! '-mbitfield'. This is the default if you use a configuration designed for a 68020. ! '-mrtd' Use a different function-calling convention, in which functions ! that take a fixed number of arguments return with the 'rtd' instruction, which pops their arguments while returning. This saves one instruction in the caller since there is no need to pop the arguments there. *************** given below. *** 14777,14854 **** compiled with the Unix compiler. Also, you must provide function prototypes for all functions that ! take variable numbers of arguments (including `printf'); otherwise incorrect code is generated for calls to those functions. In addition, seriously incorrect code results if you call a function with too many arguments. (Normally, extra arguments are harmlessly ignored.) ! The `rtd' instruction is supported by the 68010, 68020, 68030, 68040, 68060 and CPU32 processors, but not by the 68000 or 5200. ! `-mno-rtd' ! Do not use the calling conventions selected by `-mrtd'. This is the default. ! `-malign-int' ! `-mno-align-int' ! Control whether GCC aligns `int', `long', `long long', `float', ! `double', and `long double' variables on a 32-bit boundary ! (`-malign-int') or a 16-bit boundary (`-mno-align-int'). Aligning variables on 32-bit boundaries produces code that runs somewhat faster on processors with 32-bit busses at the expense of more memory. ! *Warning:* if you use the `-malign-int' switch, GCC aligns structures containing the above types differently than most published application binary interface specifications for the m68k. ! `-mpcrel' Use the pc-relative addressing mode of the 68000 directly, instead of using a global offset table. At present, this option implies ! `-fpic', allowing at most a 16-bit offset for pc-relative ! addressing. `-fPIC' is not presently supported with `-mpcrel', though this could be supported for 68020 and higher processors. ! `-mno-strict-align' ! `-mstrict-align' Do not (do) assume that unaligned memory references are handled by the system. ! `-msep-data' Generate code that allows the data segment to be located in a different area of memory from the text segment. This allows for execute-in-place in an environment without virtual memory ! management. This option implies `-fPIC'. ! `-mno-sep-data' Generate code that assumes that the data segment follows the text segment. This is the default. ! `-mid-shared-library' Generate code that supports shared libraries via the library ID method. This allows for execute-in-place and shared libraries in an environment without virtual memory management. This option ! implies `-fPIC'. ! `-mno-id-shared-library' Generate code that doesn't assume ID-based shared libraries are being used. This is the default. ! `-mshared-library-id=n' Specifies the identification number of the ID-based shared library being compiled. Specifying a value of 0 generates more compact code; specifying other values forces the allocation of that number to the current library, but is no more space- or time-efficient than omitting this option. ! `-mxgot' ! `-mno-xgot' When generating position-independent code for ColdFire, generate code that works if the GOT has more than 8192 entries. This code is larger and slower than code generated without this option. On ! M680x0 processors, this option is not needed; `-fPIC' suffices. GCC normally uses a single instruction to load values from the GOT. While this is relatively efficient, it only works if the GOT is --- 14712,14789 ---- compiled with the Unix compiler. Also, you must provide function prototypes for all functions that ! take variable numbers of arguments (including 'printf'); otherwise incorrect code is generated for calls to those functions. In addition, seriously incorrect code results if you call a function with too many arguments. (Normally, extra arguments are harmlessly ignored.) ! The 'rtd' instruction is supported by the 68010, 68020, 68030, 68040, 68060 and CPU32 processors, but not by the 68000 or 5200. ! '-mno-rtd' ! Do not use the calling conventions selected by '-mrtd'. This is the default. ! '-malign-int' ! '-mno-align-int' ! Control whether GCC aligns 'int', 'long', 'long long', 'float', ! 'double', and 'long double' variables on a 32-bit boundary ! ('-malign-int') or a 16-bit boundary ('-mno-align-int'). Aligning variables on 32-bit boundaries produces code that runs somewhat faster on processors with 32-bit busses at the expense of more memory. ! *Warning:* if you use the '-malign-int' switch, GCC aligns structures containing the above types differently than most published application binary interface specifications for the m68k. ! '-mpcrel' Use the pc-relative addressing mode of the 68000 directly, instead of using a global offset table. At present, this option implies ! '-fpic', allowing at most a 16-bit offset for pc-relative ! addressing. '-fPIC' is not presently supported with '-mpcrel', though this could be supported for 68020 and higher processors. ! '-mno-strict-align' ! '-mstrict-align' Do not (do) assume that unaligned memory references are handled by the system. ! '-msep-data' Generate code that allows the data segment to be located in a different area of memory from the text segment. This allows for execute-in-place in an environment without virtual memory ! management. This option implies '-fPIC'. ! '-mno-sep-data' Generate code that assumes that the data segment follows the text segment. This is the default. ! '-mid-shared-library' Generate code that supports shared libraries via the library ID method. This allows for execute-in-place and shared libraries in an environment without virtual memory management. This option ! implies '-fPIC'. ! '-mno-id-shared-library' Generate code that doesn't assume ID-based shared libraries are being used. This is the default. ! '-mshared-library-id=n' Specifies the identification number of the ID-based shared library being compiled. Specifying a value of 0 generates more compact code; specifying other values forces the allocation of that number to the current library, but is no more space- or time-efficient than omitting this option. ! '-mxgot' ! '-mno-xgot' When generating position-independent code for ColdFire, generate code that works if the GOT has more than 8192 entries. This code is larger and slower than code generated without this option. On ! M680x0 processors, this option is not needed; '-fPIC' suffices. GCC normally uses a single instruction to load values from the GOT. While this is relatively efficient, it only works if the GOT is *************** given below. *** 14857,15064 **** relocation truncated to fit: R_68K_GOT16O foobar ! If this happens, you should recompile your code with `-mxgot'. It should then work with very large GOTs. However, code generated ! with `-mxgot' is less efficient, since it takes 4 instructions to fetch the value of a global symbol. Note that some linkers, including newer versions of the GNU linker, can create multiple GOTs and sort GOT entries. If you have such a ! linker, you should only need to use `-mxgot' when compiling a single object file that accesses more than 8192 GOT entries. Very few do. These options have no effect unless GCC is generating position-independent code. -  File: gcc.info, Node: MCore Options, Next: MeP Options, Prev: M680x0 Options, Up: Submodel Options 3.17.23 MCore Options --------------------- ! These are the `-m' options defined for the Motorola M*Core processors. ! `-mhardlit' ! `-mno-hardlit' Inline constants into the code stream if it can be done in two instructions or less. ! `-mdiv' ! `-mno-div' Use the divide instruction. (Enabled by default). ! `-mrelax-immediate' ! `-mno-relax-immediate' Allow arbitrary-sized immediates in bit operations. ! `-mwide-bitfields' ! `-mno-wide-bitfields' ! Always treat bit-fields as `int'-sized. ! `-m4byte-functions' ! `-mno-4byte-functions' Force all functions to be aligned to a 4-byte boundary. ! `-mcallgraph-data' ! `-mno-callgraph-data' Emit callgraph information. ! `-mslow-bytes' ! `-mno-slow-bytes' Prefer word access when reading byte quantities. ! `-mlittle-endian' ! `-mbig-endian' Generate code for a little-endian target. ! `-m210' ! `-m340' Generate code for the 210 processor. ! `-mno-lsim' Assume that runtime support has been provided and so omit the ! simulator library (`libsim.a)' from the linker command line. ! `-mstack-increment=SIZE' Set the maximum amount for a single stack increment operation. Large values can increase the speed of programs that contain functions that need a large amount of stack space, but they can also trigger a segmentation fault if the stack is extended too much. The default value is 0x1000. -  File: gcc.info, Node: MeP Options, Next: MicroBlaze Options, Prev: MCore Options, Up: Submodel Options 3.17.24 MeP Options ------------------- ! `-mabsdiff' ! Enables the `abs' instruction, which is the absolute difference between two registers. ! `-mall-opts' Enables all the optional instructions--average, multiply, divide, bit operations, leading zero, absolute difference, min/max, clip, and saturation. ! `-maverage' ! Enables the `ave' instruction, which computes the average of two registers. ! `-mbased=N' ! Variables of size N bytes or smaller are placed in the `.based' ! section by default. Based variables use the `$tp' register as a ! base register, and there is a 128-byte limit to the `.based' section. ! `-mbitops' ! Enables the bit operation instructions--bit test (`btstm'), set ! (`bsetm'), clear (`bclrm'), invert (`bnotm'), and test-and-set ! (`tas'). ! `-mc=NAME' Selects which section constant data is placed in. NAME may be ! `tiny', `near', or `far'. ! `-mclip' ! Enables the `clip' instruction. Note that `-mclip' is not useful ! unless you also provide `-mminmax'. ! `-mconfig=NAME' Selects one of the built-in core configurations. Each MeP chip has ! one or more modules in it; each module has a core CPU and a ! variety of coprocessors, optional instructions, and peripherals. ! The `MeP-Integrator' tool, not part of GCC, provides these configurations through this option; using this option is the same as using all the corresponding command-line options. The default ! configuration is `default'. ! `-mcop' Enables the coprocessor instructions. By default, this is a 32-bit coprocessor. Note that the coprocessor is normally enabled via the ! `-mconfig=' option. ! `-mcop32' Enables the 32-bit coprocessor's instructions. ! `-mcop64' Enables the 64-bit coprocessor's instructions. ! `-mivc2' Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor. ! `-mdc' ! Causes constant variables to be placed in the `.near' section. ! `-mdiv' ! Enables the `div' and `divu' instructions. ! `-meb' Generate big-endian code. ! `-mel' Generate little-endian code. ! `-mio-volatile' ! Tells the compiler that any variable marked with the `io' ! attribute is to be considered volatile. ! `-ml' ! Causes variables to be assigned to the `.far' section by default. ! `-mleadz' ! Enables the `leadz' (leading zero) instruction. ! `-mm' ! Causes variables to be assigned to the `.near' section by default. ! `-mminmax' ! Enables the `min' and `max' instructions. ! `-mmult' Enables the multiplication and multiply-accumulate instructions. ! `-mno-opts' ! Disables all the optional instructions enabled by `-mall-opts'. ! `-mrepeat' ! Enables the `repeat' and `erepeat' instructions, used for low-overhead looping. ! `-ms' ! Causes all variables to default to the `.tiny' section. Note that there is a 65536-byte limit to this section. Accesses to these ! variables use the `%gp' base register. ! `-msatur' Enables the saturation instructions. Note that the compiler does not currently generate these itself, but this option is included ! for compatibility with other tools, like `as'. ! `-msdram' Link the SDRAM-based runtime instead of the default ROM-based runtime. ! `-msim' Link the simulator runtime libraries. ! `-msimnovec' Link the simulator runtime libraries, excluding built-in support for reset and exception vectors and tables. ! `-mtf' ! Causes all functions to default to the `.far' section. Without ! this option, functions default to the `.near' section. ! ! `-mtiny=N' ! Variables that are N bytes or smaller are allocated to the `.tiny' ! section. These variables use the `$gp' base register. The ! default for this option is 4, but note that there's a 65536-byte ! limit to the `.tiny' section.  File: gcc.info, Node: MicroBlaze Options, Next: MIPS Options, Prev: MeP Options, Up: Submodel Options --- 14792,14996 ---- relocation truncated to fit: R_68K_GOT16O foobar ! If this happens, you should recompile your code with '-mxgot'. It should then work with very large GOTs. However, code generated ! with '-mxgot' is less efficient, since it takes 4 instructions to fetch the value of a global symbol. Note that some linkers, including newer versions of the GNU linker, can create multiple GOTs and sort GOT entries. If you have such a ! linker, you should only need to use '-mxgot' when compiling a single object file that accesses more than 8192 GOT entries. Very few do. These options have no effect unless GCC is generating position-independent code.  File: gcc.info, Node: MCore Options, Next: MeP Options, Prev: M680x0 Options, Up: Submodel Options 3.17.23 MCore Options --------------------- ! These are the '-m' options defined for the Motorola M*Core processors. ! '-mhardlit' ! '-mno-hardlit' Inline constants into the code stream if it can be done in two instructions or less. ! '-mdiv' ! '-mno-div' Use the divide instruction. (Enabled by default). ! '-mrelax-immediate' ! '-mno-relax-immediate' Allow arbitrary-sized immediates in bit operations. ! '-mwide-bitfields' ! '-mno-wide-bitfields' ! Always treat bit-fields as 'int'-sized. ! '-m4byte-functions' ! '-mno-4byte-functions' Force all functions to be aligned to a 4-byte boundary. ! '-mcallgraph-data' ! '-mno-callgraph-data' Emit callgraph information. ! '-mslow-bytes' ! '-mno-slow-bytes' Prefer word access when reading byte quantities. ! '-mlittle-endian' ! '-mbig-endian' Generate code for a little-endian target. ! '-m210' ! '-m340' Generate code for the 210 processor. ! '-mno-lsim' Assume that runtime support has been provided and so omit the ! simulator library ('libsim.a)' from the linker command line. ! '-mstack-increment=SIZE' Set the maximum amount for a single stack increment operation. Large values can increase the speed of programs that contain functions that need a large amount of stack space, but they can also trigger a segmentation fault if the stack is extended too much. The default value is 0x1000.  File: gcc.info, Node: MeP Options, Next: MicroBlaze Options, Prev: MCore Options, Up: Submodel Options 3.17.24 MeP Options ------------------- ! '-mabsdiff' ! Enables the 'abs' instruction, which is the absolute difference between two registers. ! '-mall-opts' Enables all the optional instructions--average, multiply, divide, bit operations, leading zero, absolute difference, min/max, clip, and saturation. ! '-maverage' ! Enables the 'ave' instruction, which computes the average of two registers. ! '-mbased=N' ! Variables of size N bytes or smaller are placed in the '.based' ! section by default. Based variables use the '$tp' register as a ! base register, and there is a 128-byte limit to the '.based' section. ! '-mbitops' ! Enables the bit operation instructions--bit test ('btstm'), set ! ('bsetm'), clear ('bclrm'), invert ('bnotm'), and test-and-set ! ('tas'). ! '-mc=NAME' Selects which section constant data is placed in. NAME may be ! 'tiny', 'near', or 'far'. ! '-mclip' ! Enables the 'clip' instruction. Note that '-mclip' is not useful ! unless you also provide '-mminmax'. ! '-mconfig=NAME' Selects one of the built-in core configurations. Each MeP chip has ! one or more modules in it; each module has a core CPU and a variety ! of coprocessors, optional instructions, and peripherals. The ! 'MeP-Integrator' tool, not part of GCC, provides these configurations through this option; using this option is the same as using all the corresponding command-line options. The default ! configuration is 'default'. ! '-mcop' Enables the coprocessor instructions. By default, this is a 32-bit coprocessor. Note that the coprocessor is normally enabled via the ! '-mconfig=' option. ! '-mcop32' Enables the 32-bit coprocessor's instructions. ! '-mcop64' Enables the 64-bit coprocessor's instructions. ! '-mivc2' Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor. ! '-mdc' ! Causes constant variables to be placed in the '.near' section. ! '-mdiv' ! Enables the 'div' and 'divu' instructions. ! '-meb' Generate big-endian code. ! '-mel' Generate little-endian code. ! '-mio-volatile' ! Tells the compiler that any variable marked with the 'io' attribute ! is to be considered volatile. ! '-ml' ! Causes variables to be assigned to the '.far' section by default. ! '-mleadz' ! Enables the 'leadz' (leading zero) instruction. ! '-mm' ! Causes variables to be assigned to the '.near' section by default. ! '-mminmax' ! Enables the 'min' and 'max' instructions. ! '-mmult' Enables the multiplication and multiply-accumulate instructions. ! '-mno-opts' ! Disables all the optional instructions enabled by '-mall-opts'. ! '-mrepeat' ! Enables the 'repeat' and 'erepeat' instructions, used for low-overhead looping. ! '-ms' ! Causes all variables to default to the '.tiny' section. Note that there is a 65536-byte limit to this section. Accesses to these ! variables use the '%gp' base register. ! '-msatur' Enables the saturation instructions. Note that the compiler does not currently generate these itself, but this option is included ! for compatibility with other tools, like 'as'. ! '-msdram' Link the SDRAM-based runtime instead of the default ROM-based runtime. ! '-msim' Link the simulator runtime libraries. ! '-msimnovec' Link the simulator runtime libraries, excluding built-in support for reset and exception vectors and tables. ! '-mtf' ! Causes all functions to default to the '.far' section. Without ! this option, functions default to the '.near' section. + '-mtiny=N' + Variables that are N bytes or smaller are allocated to the '.tiny' + section. These variables use the '$gp' base register. The default + for this option is 4, but note that there's a 65536-byte limit to + the '.tiny' section.  File: gcc.info, Node: MicroBlaze Options, Next: MIPS Options, Prev: MeP Options, Up: Submodel Options *************** File: gcc.info, Node: MicroBlaze Option *** 15066,15157 **** 3.17.25 MicroBlaze Options -------------------------- ! `-msoft-float' Use software emulation for floating point (default). ! `-mhard-float' Use hardware floating-point instructions. ! `-mmemcpy' ! Do not optimize block moves, use `memcpy'. ! `-mno-clearbss' ! This option is deprecated. Use `-fno-zero-initialized-in-bss' instead. ! `-mcpu=CPU-TYPE' ! Use features of, and schedule code for, the given CPU. Supported ! values are in the format `vX.YY.Z', where X is a major version, YY is the minor version, and Z is compatibility code. Example values ! are `v3.00.a', `v4.00.b', `v5.00.a', `v5.00.b', `v5.00.b', ! `v6.00.a'. ! `-mxl-soft-mul' Use software multiply emulation (default). ! `-mxl-soft-div' Use software emulation for divides (default). ! `-mxl-barrel-shift' Use the hardware barrel shifter. ! `-mxl-pattern-compare' Use pattern compare instructions. ! `-msmall-divides' Use table lookup optimization for small signed integer divisions. ! `-mxl-stack-check' ! This option is deprecated. Use `-fstack-check' instead. ! `-mxl-gp-opt' ! Use GP-relative `.sdata'/`.sbss' sections. ! `-mxl-multiply-high' Use multiply high instructions for high part of 32x32 multiply. ! `-mxl-float-convert' Use hardware floating-point conversion instructions. ! `-mxl-float-sqrt' Use hardware floating-point square root instruction. ! `-mbig-endian' Generate code for a big-endian target. ! `-mlittle-endian' Generate code for a little-endian target. ! `-mxl-reorder' Use reorder instructions (swap and byte reversed load/store). ! `-mxl-mode-APP-MODEL' Select application model APP-MODEL. Valid models are ! `executable' ! normal executable (default), uses startup code `crt0.o'. ! `xmdstub' for use with Xilinx Microprocessor Debugger (XMD) based ! software intrusive debug agent called xmdstub. This uses ! startup file `crt1.o' and sets the start address of the program to 0x800. ! `bootstrap' for applications that are loaded using a bootloader. This ! model uses startup file `crt2.o' which does not contain a ! processor reset vector handler. This is suitable for transferring control on a processor reset to the bootloader rather than the application. ! `novectors' for applications that do not require any of the MicroBlaze ! vectors. This option may be useful for applications running ! within a monitoring application. This model uses `crt3.o' as a startup file. ! Option `-xl-mode-APP-MODEL' is a deprecated alias for ! `-mxl-mode-APP-MODEL'. !  File: gcc.info, Node: MIPS Options, Next: MMIX Options, Prev: MicroBlaze Options, Up: Submodel Options --- 14998,15088 ---- 3.17.25 MicroBlaze Options -------------------------- ! '-msoft-float' Use software emulation for floating point (default). ! '-mhard-float' Use hardware floating-point instructions. ! '-mmemcpy' ! Do not optimize block moves, use 'memcpy'. ! '-mno-clearbss' ! This option is deprecated. Use '-fno-zero-initialized-in-bss' instead. ! '-mcpu=CPU-TYPE' ! Use features of, and schedule code for, the given CPU. Supported ! values are in the format 'vX.YY.Z', where X is a major version, YY is the minor version, and Z is compatibility code. Example values ! are 'v3.00.a', 'v4.00.b', 'v5.00.a', 'v5.00.b', 'v5.00.b', ! 'v6.00.a'. ! '-mxl-soft-mul' Use software multiply emulation (default). ! '-mxl-soft-div' Use software emulation for divides (default). ! '-mxl-barrel-shift' Use the hardware barrel shifter. ! '-mxl-pattern-compare' Use pattern compare instructions. ! '-msmall-divides' Use table lookup optimization for small signed integer divisions. ! '-mxl-stack-check' ! This option is deprecated. Use '-fstack-check' instead. ! '-mxl-gp-opt' ! Use GP-relative '.sdata'/'.sbss' sections. ! '-mxl-multiply-high' Use multiply high instructions for high part of 32x32 multiply. ! '-mxl-float-convert' Use hardware floating-point conversion instructions. ! '-mxl-float-sqrt' Use hardware floating-point square root instruction. ! '-mbig-endian' Generate code for a big-endian target. ! '-mlittle-endian' Generate code for a little-endian target. ! '-mxl-reorder' Use reorder instructions (swap and byte reversed load/store). ! '-mxl-mode-APP-MODEL' Select application model APP-MODEL. Valid models are ! 'executable' ! normal executable (default), uses startup code 'crt0.o'. ! 'xmdstub' for use with Xilinx Microprocessor Debugger (XMD) based ! software intrusive debug agent called xmdstub. This uses ! startup file 'crt1.o' and sets the start address of the program to 0x800. ! 'bootstrap' for applications that are loaded using a bootloader. This ! model uses startup file 'crt2.o' which does not contain a ! processor reset vector handler. This is suitable for transferring control on a processor reset to the bootloader rather than the application. ! 'novectors' for applications that do not require any of the MicroBlaze ! vectors. This option may be useful for applications running ! within a monitoring application. This model uses 'crt3.o' as a startup file. ! Option '-xl-mode-APP-MODEL' is a deprecated alias for ! '-mxl-mode-APP-MODEL'.  File: gcc.info, Node: MIPS Options, Next: MMIX Options, Prev: MicroBlaze Options, Up: Submodel Options *************** File: gcc.info, Node: MIPS Options, Ne *** 15159,15350 **** 3.17.26 MIPS Options -------------------- ! `-EB' Generate big-endian code. ! `-EL' ! Generate little-endian code. This is the default for `mips*el-*-*' configurations. ! `-march=ARCH' ! Generate code that runs on ARCH, which can be the name of a ! generic MIPS ISA, or the name of a particular processor. The ISA ! names are: `mips1', `mips2', `mips3', `mips4', `mips32', ! `mips32r2', `mips64' and `mips64r2'. The processor names are: ! `4kc', `4km', `4kp', `4ksc', `4kec', `4kem', `4kep', `4ksd', ! `5kc', `5kf', `20kc', `24kc', `24kf2_1', `24kf1_1', `24kec', ! `24kef2_1', `24kef1_1', `34kc', `34kf2_1', `34kf1_1', `34kn', ! `74kc', `74kf2_1', `74kf1_1', `74kf3_2', `1004kc', `1004kf2_1', ! `1004kf1_1', `loongson2e', `loongson2f', `loongson3a', `m4k', ! `octeon', `octeon+', `octeon2', `orion', `r2000', `r3000', ! `r3900', `r4000', `r4400', `r4600', `r4650', `r4700', `r6000', ! `r8000', `rm7000', `rm9000', `r10000', `r12000', `r14000', ! `r16000', `sb1', `sr71000', `vr4100', `vr4111', `vr4120', ! `vr4130', `vr4300', `vr5000', `vr5400', `vr5500', `xlr' and `xlp'. ! The special value `from-abi' selects the most compatible ! architecture for the selected ABI (that is, `mips1' for 32-bit ! ABIs and `mips3' for 64-bit ABIs). ! The native Linux/GNU toolchain also supports the value `native', which selects the best architecture option for the host processor. ! `-march=native' has no effect if GCC does not recognize the processor. ! In processor names, a final `000' can be abbreviated as `k' (for ! example, `-march=r2k'). Prefixes are optional, and `vr' may be ! written `r'. ! Names of the form `Nf2_1' refer to processors with FPUs clocked at ! half the rate of the core, names of the form `Nf1_1' refer to processors with FPUs clocked at the same rate as the core, and ! names of the form `Nf3_2' refer to processors with FPUs clocked a ratio of 3:2 with respect to the core. For compatibility reasons, ! `Nf' is accepted as a synonym for `Nf2_1' while `Nx' and `Bfx' are ! accepted as synonyms for `Nf1_1'. GCC defines two macros based on the value of this option. The ! first is `_MIPS_ARCH', which gives the name of target ! architecture, as a string. The second has the form ! `_MIPS_ARCH_FOO', where FOO is the capitalized value of ! `_MIPS_ARCH'. For example, `-march=r2000' sets `_MIPS_ARCH' to ! `"r2000"' and defines the macro `_MIPS_ARCH_R2000'. ! Note that the `_MIPS_ARCH' macro uses the processor names given above. In other words, it has the full prefix and does not ! abbreviate `000' as `k'. In the case of `from-abi', the macro ! names the resolved architecture (either `"mips1"' or `"mips3"'). ! It names the default architecture when no `-march' option is given. ! `-mtune=ARCH' Optimize for ARCH. Among other things, this option controls the way instructions are scheduled, and the perceived cost of arithmetic operations. The list of ARCH values is the same as for ! `-march'. When this option is not used, GCC optimizes for the processor ! specified by `-march'. By using `-march' and `-mtune' together, ! it is possible to generate code that runs on a family of ! processors, but optimize the code for one particular member of ! that family. ! `-mtune' defines the macros `_MIPS_TUNE' and `_MIPS_TUNE_FOO', ! which work in the same way as the `-march' ones described above. ! `-mips1' ! Equivalent to `-march=mips1'. ! `-mips2' ! Equivalent to `-march=mips2'. ! `-mips3' ! Equivalent to `-march=mips3'. ! `-mips4' ! Equivalent to `-march=mips4'. ! `-mips32' ! Equivalent to `-march=mips32'. ! `-mips32r2' ! Equivalent to `-march=mips32r2'. ! `-mips64' ! Equivalent to `-march=mips64'. ! `-mips64r2' ! Equivalent to `-march=mips64r2'. ! `-mips16' ! `-mno-mips16' Generate (do not generate) MIPS16 code. If GCC is targeting a MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE. MIPS16 code generation can also be controlled on a per-function ! basis by means of `mips16' and `nomips16' attributes. *Note Function Attributes::, for more information. ! `-mflip-mips16' Generate MIPS16 code on alternating functions. This option is provided for regression testing of mixed MIPS16/non-MIPS16 code generation, and is not intended for ordinary use in compiling user code. ! `-minterlink-mips16' ! `-mno-interlink-mips16' Require (do not require) that non-MIPS16 code be link-compatible with MIPS16 code. For example, non-MIPS16 code cannot jump directly to MIPS16 code; it must either use a call or an indirect jump. ! `-minterlink-mips16' therefore disables direct jumps unless GCC knows that the target of the jump is not MIPS16. ! `-mabi=32' ! `-mabi=o64' ! `-mabi=n32' ! `-mabi=64' ! `-mabi=eabi' Generate code for the given ABI. Note that the EABI has a 32-bit and a 64-bit variant. GCC normally generates 64-bit code when you select a 64-bit architecture, but ! you can use `-mgp32' to get 32-bit code instead. For information about the O64 ABI, see ! `http://gcc.gnu.org/projects/mipso64-abi.html'. GCC supports a variant of the o32 ABI in which floating-point registers are 64 rather than 32 bits wide. You can select this ! combination with `-mabi=32' `-mfp64'. This ABI relies on the ! `mthc1' and `mfhc1' instructions and is therefore only supported for MIPS32R2 processors. The register assignments for arguments and return values remain the same, but each scalar value is passed in a single 64-bit register rather than a pair of 32-bit registers. For example, scalar ! floating-point values are returned in `$f0' only, not a ! `$f0'/`$f1' pair. The set of call-saved registers also remains ! the same, but all 64 bits are saved. ! `-mabicalls' ! `-mno-abicalls' Generate (do not generate) code that is suitable for SVR4-style ! dynamic objects. `-mabicalls' is the default for SVR4-based systems. ! `-mshared' ! `-mno-shared' Generate (do not generate) code that is fully position-independent, and that can therefore be linked into shared libraries. This ! option only affects `-mabicalls'. ! All `-mabicalls' code has traditionally been position-independent, ! regardless of options like `-fPIC' and `-fpic'. However, as an extension, the GNU toolchain allows executables to use absolute accesses for locally-binding symbols. It can also use shorter GP initialization sequences and generate direct calls to ! locally-defined functions. This mode is selected by `-mno-shared'. ! `-mno-shared' depends on binutils 2.16 or higher and generates objects that can only be linked by the GNU linker. However, the option does not affect the ABI of the final executable; it only ! affects the ABI of relocatable objects. Using `-mno-shared' generally makes executables both smaller and quicker. ! `-mshared' is the default. ! `-mplt' ! `-mno-plt' Assume (do not assume) that the static and dynamic linkers support ! PLTs and copy relocations. This option only affects `-mno-shared -mabicalls'. For the n64 ABI, this option has no effect without ! `-msym32'. ! You can make `-mplt' the default by configuring GCC with ! `--with-mips-plt'. The default is `-mno-plt' otherwise. ! `-mxgot' ! `-mno-xgot' Lift (do not lift) the usual restrictions on the size of the global offset table. --- 15090,15280 ---- 3.17.26 MIPS Options -------------------- ! '-EB' Generate big-endian code. ! '-EL' ! Generate little-endian code. This is the default for 'mips*el-*-*' configurations. ! '-march=ARCH' ! Generate code that runs on ARCH, which can be the name of a generic ! MIPS ISA, or the name of a particular processor. The ISA names ! are: 'mips1', 'mips2', 'mips3', 'mips4', 'mips32', 'mips32r2', ! 'mips64' and 'mips64r2'. The processor names are: '4kc', '4km', ! '4kp', '4ksc', '4kec', '4kem', '4kep', '4ksd', '5kc', '5kf', ! '20kc', '24kc', '24kf2_1', '24kf1_1', '24kec', '24kef2_1', ! '24kef1_1', '34kc', '34kf2_1', '34kf1_1', '34kn', '74kc', ! '74kf2_1', '74kf1_1', '74kf3_2', '1004kc', '1004kf2_1', ! '1004kf1_1', 'loongson2e', 'loongson2f', 'loongson3a', 'm4k', ! 'octeon', 'octeon+', 'octeon2', 'orion', 'r2000', 'r3000', 'r3900', ! 'r4000', 'r4400', 'r4600', 'r4650', 'r4700', 'r6000', 'r8000', ! 'rm7000', 'rm9000', 'r10000', 'r12000', 'r14000', 'r16000', 'sb1', ! 'sr71000', 'vr4100', 'vr4111', 'vr4120', 'vr4130', 'vr4300', ! 'vr5000', 'vr5400', 'vr5500', 'xlr' and 'xlp'. The special value ! 'from-abi' selects the most compatible architecture for the ! selected ABI (that is, 'mips1' for 32-bit ABIs and 'mips3' for ! 64-bit ABIs). ! The native Linux/GNU toolchain also supports the value 'native', which selects the best architecture option for the host processor. ! '-march=native' has no effect if GCC does not recognize the processor. ! In processor names, a final '000' can be abbreviated as 'k' (for ! example, '-march=r2k'). Prefixes are optional, and 'vr' may be ! written 'r'. ! Names of the form 'Nf2_1' refer to processors with FPUs clocked at ! half the rate of the core, names of the form 'Nf1_1' refer to processors with FPUs clocked at the same rate as the core, and ! names of the form 'Nf3_2' refer to processors with FPUs clocked a ratio of 3:2 with respect to the core. For compatibility reasons, ! 'Nf' is accepted as a synonym for 'Nf2_1' while 'Nx' and 'Bfx' are ! accepted as synonyms for 'Nf1_1'. GCC defines two macros based on the value of this option. The ! first is '_MIPS_ARCH', which gives the name of target architecture, ! as a string. The second has the form '_MIPS_ARCH_FOO', where FOO ! is the capitalized value of '_MIPS_ARCH'. For example, ! '-march=r2000' sets '_MIPS_ARCH' to '"r2000"' and defines the macro ! '_MIPS_ARCH_R2000'. ! Note that the '_MIPS_ARCH' macro uses the processor names given above. In other words, it has the full prefix and does not ! abbreviate '000' as 'k'. In the case of 'from-abi', the macro ! names the resolved architecture (either '"mips1"' or '"mips3"'). ! It names the default architecture when no '-march' option is given. ! '-mtune=ARCH' Optimize for ARCH. Among other things, this option controls the way instructions are scheduled, and the perceived cost of arithmetic operations. The list of ARCH values is the same as for ! '-march'. When this option is not used, GCC optimizes for the processor ! specified by '-march'. By using '-march' and '-mtune' together, it ! is possible to generate code that runs on a family of processors, ! but optimize the code for one particular member of that family. ! '-mtune' defines the macros '_MIPS_TUNE' and '_MIPS_TUNE_FOO', ! which work in the same way as the '-march' ones described above. ! '-mips1' ! Equivalent to '-march=mips1'. ! '-mips2' ! Equivalent to '-march=mips2'. ! '-mips3' ! Equivalent to '-march=mips3'. ! '-mips4' ! Equivalent to '-march=mips4'. ! '-mips32' ! Equivalent to '-march=mips32'. ! '-mips32r2' ! Equivalent to '-march=mips32r2'. ! '-mips64' ! Equivalent to '-march=mips64'. ! '-mips64r2' ! Equivalent to '-march=mips64r2'. ! '-mips16' ! '-mno-mips16' Generate (do not generate) MIPS16 code. If GCC is targeting a MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE. MIPS16 code generation can also be controlled on a per-function ! basis by means of 'mips16' and 'nomips16' attributes. *Note Function Attributes::, for more information. ! '-mflip-mips16' Generate MIPS16 code on alternating functions. This option is provided for regression testing of mixed MIPS16/non-MIPS16 code generation, and is not intended for ordinary use in compiling user code. ! '-minterlink-mips16' ! '-mno-interlink-mips16' Require (do not require) that non-MIPS16 code be link-compatible with MIPS16 code. For example, non-MIPS16 code cannot jump directly to MIPS16 code; it must either use a call or an indirect jump. ! '-minterlink-mips16' therefore disables direct jumps unless GCC knows that the target of the jump is not MIPS16. ! '-mabi=32' ! '-mabi=o64' ! '-mabi=n32' ! '-mabi=64' ! '-mabi=eabi' Generate code for the given ABI. Note that the EABI has a 32-bit and a 64-bit variant. GCC normally generates 64-bit code when you select a 64-bit architecture, but ! you can use '-mgp32' to get 32-bit code instead. For information about the O64 ABI, see ! . GCC supports a variant of the o32 ABI in which floating-point registers are 64 rather than 32 bits wide. You can select this ! combination with '-mabi=32' '-mfp64'. This ABI relies on the ! 'mthc1' and 'mfhc1' instructions and is therefore only supported for MIPS32R2 processors. The register assignments for arguments and return values remain the same, but each scalar value is passed in a single 64-bit register rather than a pair of 32-bit registers. For example, scalar ! floating-point values are returned in '$f0' only, not a '$f0'/'$f1' ! pair. The set of call-saved registers also remains the same, but ! all 64 bits are saved. ! '-mabicalls' ! '-mno-abicalls' Generate (do not generate) code that is suitable for SVR4-style ! dynamic objects. '-mabicalls' is the default for SVR4-based systems. ! '-mshared' ! '-mno-shared' Generate (do not generate) code that is fully position-independent, and that can therefore be linked into shared libraries. This ! option only affects '-mabicalls'. ! All '-mabicalls' code has traditionally been position-independent, ! regardless of options like '-fPIC' and '-fpic'. However, as an extension, the GNU toolchain allows executables to use absolute accesses for locally-binding symbols. It can also use shorter GP initialization sequences and generate direct calls to ! locally-defined functions. This mode is selected by '-mno-shared'. ! '-mno-shared' depends on binutils 2.16 or higher and generates objects that can only be linked by the GNU linker. However, the option does not affect the ABI of the final executable; it only ! affects the ABI of relocatable objects. Using '-mno-shared' generally makes executables both smaller and quicker. ! '-mshared' is the default. ! '-mplt' ! '-mno-plt' Assume (do not assume) that the static and dynamic linkers support ! PLTs and copy relocations. This option only affects '-mno-shared -mabicalls'. For the n64 ABI, this option has no effect without ! '-msym32'. ! You can make '-mplt' the default by configuring GCC with ! '--with-mips-plt'. The default is '-mno-plt' otherwise. ! '-mxgot' ! '-mno-xgot' Lift (do not lift) the usual restrictions on the size of the global offset table. *************** File: gcc.info, Node: MIPS Options, Ne *** 15355,15567 **** relocation truncated to fit: R_MIPS_GOT16 foobar ! If this happens, you should recompile your code with `-mxgot'. This works with very large GOTs, although the code is also less efficient, since it takes three instructions to fetch the value of a global symbol. Note that some linkers can create multiple GOTs. If you have such ! a linker, you should only need to use `-mxgot' when a single object file accesses more than 64k's worth of GOT entries. Very few do. These options have no effect unless GCC is generating position independent code. ! `-mgp32' Assume that general-purpose registers are 32 bits wide. ! `-mgp64' Assume that general-purpose registers are 64 bits wide. ! `-mfp32' Assume that floating-point registers are 32 bits wide. ! `-mfp64' Assume that floating-point registers are 64 bits wide. ! `-mhard-float' Use floating-point coprocessor instructions. ! `-msoft-float' Do not use floating-point coprocessor instructions. Implement floating-point calculations using library calls instead. ! `-mno-float' ! Equivalent to `-msoft-float', but additionally asserts that the program being compiled does not perform any floating-point operations. This option is presently supported only by some bare-metal MIPS configurations, where it may select a special set of libraries that lack all floating-point support (including, for ! example, the floating-point `printf' formats). If code compiled ! with `-mno-float' accidentally contains floating-point operations, it is likely to suffer a link-time or run-time failure. ! `-msingle-float' Assume that the floating-point coprocessor only supports single-precision operations. ! `-mdouble-float' Assume that the floating-point coprocessor supports double-precision operations. This is the default. ! `-mllsc' ! `-mno-llsc' ! Use (do not use) `ll', `sc', and `sync' instructions to implement atomic memory built-in functions. When neither option is specified, GCC uses the instructions if the target architecture supports them. ! `-mllsc' is useful if the runtime environment can emulate the ! instructions and `-mno-llsc' can be useful when compiling for nonstandard ISAs. You can make either option the default by ! configuring GCC with `--with-llsc' and `--without-llsc' ! respectively. `--with-llsc' is the default for some configurations; see the installation documentation for details. ! `-mdsp' ! `-mno-dsp' Use (do not use) revision 1 of the MIPS DSP ASE. *Note MIPS DSP Built-in Functions::. This option defines the preprocessor macro ! `__mips_dsp'. It also defines `__mips_dsp_rev' to 1. ! `-mdspr2' ! `-mno-dspr2' Use (do not use) revision 2 of the MIPS DSP ASE. *Note MIPS DSP Built-in Functions::. This option defines the preprocessor macros ! `__mips_dsp' and `__mips_dspr2'. It also defines `__mips_dsp_rev' to 2. ! `-msmartmips' ! `-mno-smartmips' Use (do not use) the MIPS SmartMIPS ASE. ! `-mpaired-single' ! `-mno-paired-single' Use (do not use) paired-single floating-point instructions. *Note MIPS Paired-Single Support::. This option requires hardware floating-point support to be enabled. ! `-mdmx' ! `-mno-mdmx' Use (do not use) MIPS Digital Media Extension instructions. This option can only be used when generating 64-bit code and requires hardware floating-point support to be enabled. ! `-mips3d' ! `-mno-mips3d' Use (do not use) the MIPS-3D ASE. *Note MIPS-3D Built-in ! Functions::. The option `-mips3d' implies `-mpaired-single'. ! `-mmt' ! `-mno-mt' Use (do not use) MT Multithreading instructions. ! `-mmcu' ! `-mno-mcu' Use (do not use) the MIPS MCU ASE instructions. ! `-mlong64' ! Force `long' types to be 64 bits wide. See `-mlong32' for an explanation of the default and the way that the pointer size is determined. ! `-mlong32' ! Force `long', `int', and pointer types to be 32 bits wide. ! The default size of `int's, `long's and pointers depends on the ! ABI. All the supported ABIs use 32-bit `int's. The n64 ABI uses ! 64-bit `long's, as does the 64-bit EABI; the others use 32-bit ! `long's. Pointers are the same size as `long's, or the same size as integer registers, whichever is smaller. ! `-msym32' ! `-mno-sym32' Assume (do not assume) that all symbols have 32-bit values, regardless of the selected ABI. This option is useful in ! combination with `-mabi=64' and `-mno-abicalls' because it allows GCC to generate shorter and faster references to symbolic addresses. ! `-G NUM' Put definitions of externally-visible data in a small data section if that data is no bigger than NUM bytes. GCC can then generate ! more efficient accesses to the data; see `-mgpopt' for details. ! The default `-G' option depends on the configuration. ! `-mlocal-sdata' ! `-mno-local-sdata' ! Extend (do not extend) the `-G' behavior to local data too, such ! as to static variables in C. `-mlocal-sdata' is the default for ! all configurations. ! If the linker complains that an application is using too much ! small data, you might want to try rebuilding the less ! performance-critical parts with `-mno-local-sdata'. You might ! also want to build large libraries with `-mno-local-sdata', so ! that the libraries leave more room for the main program. ! `-mextern-sdata' ! `-mno-extern-sdata' Assume (do not assume) that externally-defined data is in a small ! data section if the size of that data is within the `-G' limit. ! `-mextern-sdata' is the default for all configurations. ! If you compile a module MOD with `-mextern-sdata' `-G NUM' ! `-mgpopt', and MOD references a variable VAR that is no bigger ! than NUM bytes, you must make sure that VAR is placed in a small ! data section. If VAR is defined by another module, you must ! either compile that module with a high-enough `-G' setting or ! attach a `section' attribute to VAR's definition. If VAR is ! common, you must link the application with a high-enough `-G' ! setting. The easiest way of satisfying these restrictions is to compile and ! link every module with the same `-G' option. However, you may ! wish to build a library that supports several different small data limits. You can do this by compiling the library with the highest ! supported `-G' setting and additionally using `-mno-extern-sdata' to stop the library from making assumptions about externally-defined data. ! `-mgpopt' ! `-mno-gpopt' ! Use (do not use) GP-relative accesses for symbols that are known ! to be in a small data section; see `-G', `-mlocal-sdata' and ! `-mextern-sdata'. `-mgpopt' is the default for all configurations. ! `-mno-gpopt' is useful for cases where the `$gp' register might ! not hold the value of `_gp'. For example, if the code is part of ! a library that might be used in a boot monitor, programs that call ! boot monitor routines pass an unknown value in `$gp'. (In such situations, the boot monitor itself is usually compiled with ! `-G0'.) ! `-mno-gpopt' implies `-mno-local-sdata' and `-mno-extern-sdata'. ! `-membedded-data' ! `-mno-embedded-data' ! Allocate variables to the read-only data section first if ! possible, then next in the small data section if possible, ! otherwise in data. This gives slightly slower code than the ! default, but reduces the amount of RAM required when executing, ! and thus may be preferred for some embedded systems. ! `-muninit-const-in-rodata' ! `-mno-uninit-const-in-rodata' ! Put uninitialized `const' variables in the read-only data section. This option is only meaningful in conjunction with ! `-membedded-data'. ! `-mcode-readable=SETTING' Specify whether GCC may generate code that reads from executable sections. There are three possible settings: ! `-mcode-readable=yes' Instructions may freely access executable sections. This is the default setting. ! `-mcode-readable=pcrel' MIPS16 PC-relative load instructions can access executable sections, but other instructions must not do so. This option is useful on 4KSc and 4KSd processors when the code TLBs have --- 15285,15496 ---- relocation truncated to fit: R_MIPS_GOT16 foobar ! If this happens, you should recompile your code with '-mxgot'. This works with very large GOTs, although the code is also less efficient, since it takes three instructions to fetch the value of a global symbol. Note that some linkers can create multiple GOTs. If you have such ! a linker, you should only need to use '-mxgot' when a single object file accesses more than 64k's worth of GOT entries. Very few do. These options have no effect unless GCC is generating position independent code. ! '-mgp32' Assume that general-purpose registers are 32 bits wide. ! '-mgp64' Assume that general-purpose registers are 64 bits wide. ! '-mfp32' Assume that floating-point registers are 32 bits wide. ! '-mfp64' Assume that floating-point registers are 64 bits wide. ! '-mhard-float' Use floating-point coprocessor instructions. ! '-msoft-float' Do not use floating-point coprocessor instructions. Implement floating-point calculations using library calls instead. ! '-mno-float' ! Equivalent to '-msoft-float', but additionally asserts that the program being compiled does not perform any floating-point operations. This option is presently supported only by some bare-metal MIPS configurations, where it may select a special set of libraries that lack all floating-point support (including, for ! example, the floating-point 'printf' formats). If code compiled ! with '-mno-float' accidentally contains floating-point operations, it is likely to suffer a link-time or run-time failure. ! '-msingle-float' Assume that the floating-point coprocessor only supports single-precision operations. ! '-mdouble-float' Assume that the floating-point coprocessor supports double-precision operations. This is the default. ! '-mllsc' ! '-mno-llsc' ! Use (do not use) 'll', 'sc', and 'sync' instructions to implement atomic memory built-in functions. When neither option is specified, GCC uses the instructions if the target architecture supports them. ! '-mllsc' is useful if the runtime environment can emulate the ! instructions and '-mno-llsc' can be useful when compiling for nonstandard ISAs. You can make either option the default by ! configuring GCC with '--with-llsc' and '--without-llsc' ! respectively. '--with-llsc' is the default for some configurations; see the installation documentation for details. ! '-mdsp' ! '-mno-dsp' Use (do not use) revision 1 of the MIPS DSP ASE. *Note MIPS DSP Built-in Functions::. This option defines the preprocessor macro ! '__mips_dsp'. It also defines '__mips_dsp_rev' to 1. ! '-mdspr2' ! '-mno-dspr2' Use (do not use) revision 2 of the MIPS DSP ASE. *Note MIPS DSP Built-in Functions::. This option defines the preprocessor macros ! '__mips_dsp' and '__mips_dspr2'. It also defines '__mips_dsp_rev' to 2. ! '-msmartmips' ! '-mno-smartmips' Use (do not use) the MIPS SmartMIPS ASE. ! '-mpaired-single' ! '-mno-paired-single' Use (do not use) paired-single floating-point instructions. *Note MIPS Paired-Single Support::. This option requires hardware floating-point support to be enabled. ! '-mdmx' ! '-mno-mdmx' Use (do not use) MIPS Digital Media Extension instructions. This option can only be used when generating 64-bit code and requires hardware floating-point support to be enabled. ! '-mips3d' ! '-mno-mips3d' Use (do not use) the MIPS-3D ASE. *Note MIPS-3D Built-in ! Functions::. The option '-mips3d' implies '-mpaired-single'. ! '-mmt' ! '-mno-mt' Use (do not use) MT Multithreading instructions. ! '-mmcu' ! '-mno-mcu' Use (do not use) the MIPS MCU ASE instructions. ! '-mlong64' ! Force 'long' types to be 64 bits wide. See '-mlong32' for an explanation of the default and the way that the pointer size is determined. ! '-mlong32' ! Force 'long', 'int', and pointer types to be 32 bits wide. ! The default size of 'int's, 'long's and pointers depends on the ! ABI. All the supported ABIs use 32-bit 'int's. The n64 ABI uses ! 64-bit 'long's, as does the 64-bit EABI; the others use 32-bit ! 'long's. Pointers are the same size as 'long's, or the same size as integer registers, whichever is smaller. ! '-msym32' ! '-mno-sym32' Assume (do not assume) that all symbols have 32-bit values, regardless of the selected ABI. This option is useful in ! combination with '-mabi=64' and '-mno-abicalls' because it allows GCC to generate shorter and faster references to symbolic addresses. ! '-G NUM' Put definitions of externally-visible data in a small data section if that data is no bigger than NUM bytes. GCC can then generate ! more efficient accesses to the data; see '-mgpopt' for details. ! The default '-G' option depends on the configuration. ! '-mlocal-sdata' ! '-mno-local-sdata' ! Extend (do not extend) the '-G' behavior to local data too, such as ! to static variables in C. '-mlocal-sdata' is the default for all ! configurations. ! If the linker complains that an application is using too much small ! data, you might want to try rebuilding the less ! performance-critical parts with '-mno-local-sdata'. You might also ! want to build large libraries with '-mno-local-sdata', so that the ! libraries leave more room for the main program. ! '-mextern-sdata' ! '-mno-extern-sdata' Assume (do not assume) that externally-defined data is in a small ! data section if the size of that data is within the '-G' limit. ! '-mextern-sdata' is the default for all configurations. ! If you compile a module MOD with '-mextern-sdata' '-G NUM' ! '-mgpopt', and MOD references a variable VAR that is no bigger than ! NUM bytes, you must make sure that VAR is placed in a small data ! section. If VAR is defined by another module, you must either ! compile that module with a high-enough '-G' setting or attach a ! 'section' attribute to VAR's definition. If VAR is common, you ! must link the application with a high-enough '-G' setting. The easiest way of satisfying these restrictions is to compile and ! link every module with the same '-G' option. However, you may wish ! to build a library that supports several different small data limits. You can do this by compiling the library with the highest ! supported '-G' setting and additionally using '-mno-extern-sdata' to stop the library from making assumptions about externally-defined data. ! '-mgpopt' ! '-mno-gpopt' ! Use (do not use) GP-relative accesses for symbols that are known to ! be in a small data section; see '-G', '-mlocal-sdata' and ! '-mextern-sdata'. '-mgpopt' is the default for all configurations. ! '-mno-gpopt' is useful for cases where the '$gp' register might not ! hold the value of '_gp'. For example, if the code is part of a ! library that might be used in a boot monitor, programs that call ! boot monitor routines pass an unknown value in '$gp'. (In such situations, the boot monitor itself is usually compiled with ! '-G0'.) ! '-mno-gpopt' implies '-mno-local-sdata' and '-mno-extern-sdata'. ! '-membedded-data' ! '-mno-embedded-data' ! Allocate variables to the read-only data section first if possible, ! then next in the small data section if possible, otherwise in data. ! This gives slightly slower code than the default, but reduces the ! amount of RAM required when executing, and thus may be preferred ! for some embedded systems. ! '-muninit-const-in-rodata' ! '-mno-uninit-const-in-rodata' ! Put uninitialized 'const' variables in the read-only data section. This option is only meaningful in conjunction with ! '-membedded-data'. ! '-mcode-readable=SETTING' Specify whether GCC may generate code that reads from executable sections. There are three possible settings: ! '-mcode-readable=yes' Instructions may freely access executable sections. This is the default setting. ! '-mcode-readable=pcrel' MIPS16 PC-relative load instructions can access executable sections, but other instructions must not do so. This option is useful on 4KSc and 4KSd processors when the code TLBs have *************** File: gcc.info, Node: MIPS Options, Ne *** 15570,15722 **** interface and that, like the M4K, automatically redirect PC-relative loads to the instruction RAM. ! `-mcode-readable=no' ! Instructions must not access executable sections. This ! option can be useful on targets that are configured to have a ! dual instruction/data SRAM interface but that (unlike the ! M4K) do not automatically redirect PC-relative loads to the instruction RAM. ! `-msplit-addresses' ! `-mno-split-addresses' ! Enable (disable) use of the `%hi()' and `%lo()' assembler relocation operators. This option has been superseded by ! `-mexplicit-relocs' but is retained for backwards compatibility. ! `-mexplicit-relocs' ! `-mno-explicit-relocs' Use (do not use) assembler relocation operators when dealing with symbolic addresses. The alternative, selected by ! `-mno-explicit-relocs', is to use assembler macros instead. ! `-mexplicit-relocs' is the default if GCC was configured to use an assembler that supports relocation operators. ! `-mcheck-zero-division' ! `-mno-check-zero-division' Trap (do not trap) on integer division by zero. ! The default is `-mcheck-zero-division'. ! `-mdivide-traps' ! `-mdivide-breaks' MIPS systems check for division by zero by generating either a conditional trap or a break instruction. Using traps results in smaller code, but is only supported on MIPS II and later. Also, some versions of the Linux kernel have a bug that prevents trap ! from generating the proper signal (`SIGFPE'). Use ! `-mdivide-traps' to allow conditional traps on architectures that ! support them and `-mdivide-breaks' to force the use of breaks. ! The default is usually `-mdivide-traps', but this can be ! overridden at configure time using `--with-divide=breaks'. ! Divide-by-zero checks can be completely disabled using ! `-mno-check-zero-division'. ! `-mmemcpy' ! `-mno-memcpy' ! Force (do not force) the use of `memcpy()' for non-trivial block ! moves. The default is `-mno-memcpy', which allows GCC to inline most constant-sized copies. ! `-mlong-calls' ! `-mno-long-calls' ! Disable (do not disable) use of the `jal' instruction. Calling ! functions using `jal' is more efficient but requires the caller ! and callee to be in the same 256 megabyte segment. This option has no effect on abicalls code. The default is ! `-mno-long-calls'. ! `-mmad' ! `-mno-mad' ! Enable (disable) use of the `mad', `madu' and `mul' instructions, as provided by the R4650 ISA. ! `-mfused-madd' ! `-mno-fused-madd' Enable (disable) use of the floating-point multiply-accumulate instructions, when they are available. The default is ! `-mfused-madd'. On the R8000 CPU when multiply-accumulate instructions are used, ! the intermediate product is calculated to infinite precision and ! is not subject to the FCSR Flush to Zero bit. This may be ! undesirable in some circumstances. On other processors the result ! is numerically identical to the equivalent computation using ! separate multiply, add, subtract and negate instructions. ! `-nocpp' Tell the MIPS assembler to not run its preprocessor over user ! assembler files (with a `.s' suffix) when assembling them. ! ! `-mfix-24k' ! `-mno-fix-24k' Work around the 24K E48 (lost data on stores during refill) errata. The workarounds are implemented by the assembler rather than by GCC. ! `-mfix-r4000' ! `-mno-fix-r4000' Work around certain R4000 CPU errata: ! - A double-word or a variable shift may give an incorrect ! result if executed immediately after starting an integer ! division. ! ! - A double-word or a variable shift may give an incorrect ! result if executed while an integer multiplication is in ! progress. ! ! - An integer division may give an incorrect result if started ! in a delay slot of a taken branch or a jump. ! `-mfix-r4400' ! `-mno-fix-r4400' Work around certain R4400 CPU errata: ! - A double-word or a variable shift may give an incorrect ! result if executed immediately after starting an integer ! division. ! `-mfix-r10000' ! `-mno-fix-r10000' Work around certain R10000 errata: ! - `ll'/`sc' sequences may not behave atomically on revisions prior to 3.0. They may deadlock on revisions 2.6 and earlier. This option can only be used if the target architecture supports ! branch-likely instructions. `-mfix-r10000' is the default when ! `-march=r10000' is used; `-mno-fix-r10000' is the default otherwise. ! `-mfix-vr4120' ! `-mno-fix-vr4120' Work around certain VR4120 errata: ! - `dmultu' does not always produce the correct result. ! ! - `div' and `ddiv' do not always produce the correct result if one of the operands is negative. The workarounds for the division errata rely on special functions ! in `libgcc.a'. At present, these functions are only provided by ! the `mips64vr*-elf' configurations. Other VR4120 errata require a NOP to be inserted between certain pairs of instructions. These errata are handled by the assembler, not by GCC itself. ! `-mfix-vr4130' ! Work around the VR4130 `mflo'/`mfhi' errata. The workarounds are implemented by the assembler rather than by GCC, although GCC ! avoids using `mflo' and `mfhi' if the VR4130 `macc', `macchi', ! `dmacc' and `dmacchi' instructions are available instead. ! `-mfix-sb1' ! `-mno-fix-sb1' Work around certain SB-1 CPU core errata. (This flag currently works around the SB-1 revision 2 "F1" and "F2" floating-point errata.) ! `-mr10k-cache-barrier=SETTING' Specify whether GCC should insert cache barriers to avoid the side-effects of speculation on R10K processors. --- 15499,15643 ---- interface and that, like the M4K, automatically redirect PC-relative loads to the instruction RAM. ! '-mcode-readable=no' ! Instructions must not access executable sections. This option ! can be useful on targets that are configured to have a dual ! instruction/data SRAM interface but that (unlike the M4K) do ! not automatically redirect PC-relative loads to the instruction RAM. ! '-msplit-addresses' ! '-mno-split-addresses' ! Enable (disable) use of the '%hi()' and '%lo()' assembler relocation operators. This option has been superseded by ! '-mexplicit-relocs' but is retained for backwards compatibility. ! '-mexplicit-relocs' ! '-mno-explicit-relocs' Use (do not use) assembler relocation operators when dealing with symbolic addresses. The alternative, selected by ! '-mno-explicit-relocs', is to use assembler macros instead. ! '-mexplicit-relocs' is the default if GCC was configured to use an assembler that supports relocation operators. ! '-mcheck-zero-division' ! '-mno-check-zero-division' Trap (do not trap) on integer division by zero. ! The default is '-mcheck-zero-division'. ! '-mdivide-traps' ! '-mdivide-breaks' MIPS systems check for division by zero by generating either a conditional trap or a break instruction. Using traps results in smaller code, but is only supported on MIPS II and later. Also, some versions of the Linux kernel have a bug that prevents trap ! from generating the proper signal ('SIGFPE'). Use '-mdivide-traps' ! to allow conditional traps on architectures that support them and ! '-mdivide-breaks' to force the use of breaks. ! The default is usually '-mdivide-traps', but this can be overridden ! at configure time using '--with-divide=breaks'. Divide-by-zero ! checks can be completely disabled using '-mno-check-zero-division'. ! '-mmemcpy' ! '-mno-memcpy' ! Force (do not force) the use of 'memcpy()' for non-trivial block ! moves. The default is '-mno-memcpy', which allows GCC to inline most constant-sized copies. ! '-mlong-calls' ! '-mno-long-calls' ! Disable (do not disable) use of the 'jal' instruction. Calling ! functions using 'jal' is more efficient but requires the caller and ! callee to be in the same 256 megabyte segment. This option has no effect on abicalls code. The default is ! '-mno-long-calls'. ! '-mmad' ! '-mno-mad' ! Enable (disable) use of the 'mad', 'madu' and 'mul' instructions, as provided by the R4650 ISA. ! '-mfused-madd' ! '-mno-fused-madd' Enable (disable) use of the floating-point multiply-accumulate instructions, when they are available. The default is ! '-mfused-madd'. On the R8000 CPU when multiply-accumulate instructions are used, ! the intermediate product is calculated to infinite precision and is ! not subject to the FCSR Flush to Zero bit. This may be undesirable ! in some circumstances. On other processors the result is ! numerically identical to the equivalent computation using separate ! multiply, add, subtract and negate instructions. ! '-nocpp' Tell the MIPS assembler to not run its preprocessor over user ! assembler files (with a '.s' suffix) when assembling them. ! '-mfix-24k' ! '-mno-fix-24k' Work around the 24K E48 (lost data on stores during refill) errata. The workarounds are implemented by the assembler rather than by GCC. ! '-mfix-r4000' ! '-mno-fix-r4000' Work around certain R4000 CPU errata: ! - A double-word or a variable shift may give an incorrect result ! if executed immediately after starting an integer division. ! - A double-word or a variable shift may give an incorrect result ! if executed while an integer multiplication is in progress. ! - An integer division may give an incorrect result if started in ! a delay slot of a taken branch or a jump. ! '-mfix-r4400' ! '-mno-fix-r4400' Work around certain R4400 CPU errata: ! - A double-word or a variable shift may give an incorrect result ! if executed immediately after starting an integer division. ! '-mfix-r10000' ! '-mno-fix-r10000' Work around certain R10000 errata: ! - 'll'/'sc' sequences may not behave atomically on revisions prior to 3.0. They may deadlock on revisions 2.6 and earlier. This option can only be used if the target architecture supports ! branch-likely instructions. '-mfix-r10000' is the default when ! '-march=r10000' is used; '-mno-fix-r10000' is the default otherwise. ! '-mfix-vr4120' ! '-mno-fix-vr4120' Work around certain VR4120 errata: ! - 'dmultu' does not always produce the correct result. ! - 'div' and 'ddiv' do not always produce the correct result if one of the operands is negative. The workarounds for the division errata rely on special functions ! in 'libgcc.a'. At present, these functions are only provided by ! the 'mips64vr*-elf' configurations. Other VR4120 errata require a NOP to be inserted between certain pairs of instructions. These errata are handled by the assembler, not by GCC itself. ! '-mfix-vr4130' ! Work around the VR4130 'mflo'/'mfhi' errata. The workarounds are implemented by the assembler rather than by GCC, although GCC ! avoids using 'mflo' and 'mfhi' if the VR4130 'macc', 'macchi', ! 'dmacc' and 'dmacchi' instructions are available instead. ! '-mfix-sb1' ! '-mno-fix-sb1' Work around certain SB-1 CPU core errata. (This flag currently works around the SB-1 revision 2 "F1" and "F2" floating-point errata.) ! '-mr10k-cache-barrier=SETTING' Specify whether GCC should insert cache barriers to avoid the side-effects of speculation on R10K processors. *************** File: gcc.info, Node: MIPS Options, Ne *** 15728,15746 **** This problem only affects kernel stores and, depending on the system, kernel loads. As an example, a speculatively-executed ! store may load the target memory into cache and mark the cache ! line as dirty, even if the store itself is later aborted. If a ! DMA operation writes to the same area of memory before the "dirty" ! line is flushed, the cached data overwrites the DMA-ed data. See ! the R10K processor manual for a full description, including other potential problems. ! One workaround is to insert cache barrier instructions before ! every memory access that might be speculatively executed and that ! might have side effects even if aborted. ! `-mr10k-cache-barrier=SETTING' controls GCC's implementation of ! this workaround. It assumes that aborted accesses to any byte in ! the following regions does not have side effects: 1. the memory occupied by the current function's stack frame; --- 15649,15667 ---- This problem only affects kernel stores and, depending on the system, kernel loads. As an example, a speculatively-executed ! store may load the target memory into cache and mark the cache line ! as dirty, even if the store itself is later aborted. If a DMA ! operation writes to the same area of memory before the "dirty" line ! is flushed, the cached data overwrites the DMA-ed data. See the ! R10K processor manual for a full description, including other potential problems. ! One workaround is to insert cache barrier instructions before every ! memory access that might be speculatively executed and that might ! have side effects even if aborted. '-mr10k-cache-barrier=SETTING' ! controls GCC's implementation of this workaround. It assumes that ! aborted accesses to any byte in the following regions does not have ! side effects: 1. the memory occupied by the current function's stack frame; *************** File: gcc.info, Node: MIPS Options, Ne *** 15756,15800 **** void foo (void); ! then the implementation of `foo' must allow `j foo' and `jal foo' to be executed speculatively. GCC honors this restriction for functions it compiles itself. It expects non-GCC functions (such as hand-written assembly code) to do the same. The option has three forms: ! `-mr10k-cache-barrier=load-store' Insert a cache barrier before a load or store that might be speculatively executed and that might have side effects even if aborted. ! `-mr10k-cache-barrier=store' Insert a cache barrier before a store that might be speculatively executed and that might have side effects even if aborted. ! `-mr10k-cache-barrier=none' Disable the insertion of cache barriers. This is the default setting. ! `-mflush-func=FUNC' ! `-mno-flush-func' Specifies the function to call to flush the I and D caches, or to not call any such function. If called, the function must take the ! same arguments as the common `_flush_func()', that is, the address of the memory range for which the cache is being flushed, the size of the memory range, and the number 3 (to flush both caches). The default depends on the target GCC was configured for, but commonly ! is either `_flush_func' or `__cpu_flush'. ! `mbranch-cost=NUM' Set the cost of branches to roughly NUM "simple" instructions. This cost is only a heuristic and is not guaranteed to produce consistent results across releases. A zero cost redundantly ! selects the default, which is based on the `-mtune' setting. ! `-mbranch-likely' ! `-mno-branch-likely' Enable or disable use of Branch Likely instructions, regardless of the default for the selected architecture. By default, Branch Likely instructions may be generated if they are supported by the --- 15677,15721 ---- void foo (void); ! then the implementation of 'foo' must allow 'j foo' and 'jal foo' to be executed speculatively. GCC honors this restriction for functions it compiles itself. It expects non-GCC functions (such as hand-written assembly code) to do the same. The option has three forms: ! '-mr10k-cache-barrier=load-store' Insert a cache barrier before a load or store that might be speculatively executed and that might have side effects even if aborted. ! '-mr10k-cache-barrier=store' Insert a cache barrier before a store that might be speculatively executed and that might have side effects even if aborted. ! '-mr10k-cache-barrier=none' Disable the insertion of cache barriers. This is the default setting. ! '-mflush-func=FUNC' ! '-mno-flush-func' Specifies the function to call to flush the I and D caches, or to not call any such function. If called, the function must take the ! same arguments as the common '_flush_func()', that is, the address of the memory range for which the cache is being flushed, the size of the memory range, and the number 3 (to flush both caches). The default depends on the target GCC was configured for, but commonly ! is either '_flush_func' or '__cpu_flush'. ! 'mbranch-cost=NUM' Set the cost of branches to roughly NUM "simple" instructions. This cost is only a heuristic and is not guaranteed to produce consistent results across releases. A zero cost redundantly ! selects the default, which is based on the '-mtune' setting. ! '-mbranch-likely' ! '-mno-branch-likely' Enable or disable use of Branch Likely instructions, regardless of the default for the selected architecture. By default, Branch Likely instructions may be generated if they are supported by the *************** File: gcc.info, Node: MIPS Options, Ne *** 15804,15811 **** default because the MIPS32 and MIPS64 architectures specifically deprecate their use. ! `-mfp-exceptions' ! `-mno-fp-exceptions' Specifies whether FP exceptions are enabled. This affects how FP instructions are scheduled for some processors. The default is that FP exceptions are enabled. --- 15725,15732 ---- default because the MIPS32 and MIPS64 architectures specifically deprecate their use. ! '-mfp-exceptions' ! '-mno-fp-exceptions' Specifies whether FP exceptions are enabled. This affects how FP instructions are scheduled for some processors. The default is that FP exceptions are enabled. *************** File: gcc.info, Node: MIPS Options, Ne *** 15814,15821 **** are emitting 64-bit code, then we can use both FP pipes. Otherwise, we can only use one FP pipe. ! `-mvr4130-align' ! `-mno-vr4130-align' The VR4130 pipeline is two-way superscalar, but can only issue two instructions together if the first one is 8-byte aligned. When this option is enabled, GCC aligns pairs of instructions that it --- 15735,15742 ---- are emitting 64-bit code, then we can use both FP pipes. Otherwise, we can only use one FP pipe. ! '-mvr4130-align' ! '-mno-vr4130-align' The VR4130 pipeline is two-way superscalar, but can only issue two instructions together if the first one is 8-byte aligned. When this option is enabled, GCC aligns pairs of instructions that it *************** File: gcc.info, Node: MIPS Options, Ne *** 15823,15873 **** This option only has an effect when optimizing for the VR4130. It normally makes code faster, but at the expense of making it bigger. ! It is enabled by default at optimization level `-O3'. ! `-msynci' ! `-mno-synci' ! Enable (disable) generation of `synci' instructions on ! architectures that support it. The `synci' instructions (if ! enabled) are generated when `__builtin___clear_cache()' is compiled. ! This option defaults to `-mno-synci', but the default can be ! overridden by configuring with `--with-synci'. When compiling code for single processor systems, it is generally ! safe to use `synci'. However, on many multi-core (SMP) systems, it does not invalidate the instruction caches on all cores and may lead to undefined behavior. ! `-mrelax-pic-calls' ! `-mno-relax-pic-calls' Try to turn PIC calls that are normally dispatched via register ! `$25' into direct calls. This is only possible if the linker can resolve the destination at link-time and if the destination is within range for a direct call. ! `-mrelax-pic-calls' is the default if GCC was configured to use an ! assembler and a linker that support the `.reloc' assembly ! directive and `-mexplicit-relocs' is in effect. With ! `-mno-explicit-relocs', this optimization can be performed by the ! assembler and the linker alone without help from the compiler. ! ! `-mmcount-ra-address' ! `-mno-mcount-ra-address' ! Emit (do not emit) code that allows `_mcount' to modify the ! calling function's return address. When enabled, this option ! extends the usual `_mcount' interface with a new RA-ADDRESS ! parameter, which has type `intptr_t *' and is passed in register ! `$12'. `_mcount' can then modify the return address by doing both ! of the following: ! * Returning the new address in register `$31'. ! * Storing the new address in `*RA-ADDRESS', if RA-ADDRESS is nonnull. ! The default is `-mno-mcount-ra-address'. !  File: gcc.info, Node: MMIX Options, Next: MN10300 Options, Prev: MIPS Options, Up: Submodel Options --- 15744,15791 ---- This option only has an effect when optimizing for the VR4130. It normally makes code faster, but at the expense of making it bigger. ! It is enabled by default at optimization level '-O3'. ! '-msynci' ! '-mno-synci' ! Enable (disable) generation of 'synci' instructions on ! architectures that support it. The 'synci' instructions (if ! enabled) are generated when '__builtin___clear_cache()' is compiled. ! This option defaults to '-mno-synci', but the default can be ! overridden by configuring with '--with-synci'. When compiling code for single processor systems, it is generally ! safe to use 'synci'. However, on many multi-core (SMP) systems, it does not invalidate the instruction caches on all cores and may lead to undefined behavior. ! '-mrelax-pic-calls' ! '-mno-relax-pic-calls' Try to turn PIC calls that are normally dispatched via register ! '$25' into direct calls. This is only possible if the linker can resolve the destination at link-time and if the destination is within range for a direct call. ! '-mrelax-pic-calls' is the default if GCC was configured to use an ! assembler and a linker that support the '.reloc' assembly directive ! and '-mexplicit-relocs' is in effect. With '-mno-explicit-relocs', ! this optimization can be performed by the assembler and the linker ! alone without help from the compiler. ! '-mmcount-ra-address' ! '-mno-mcount-ra-address' ! Emit (do not emit) code that allows '_mcount' to modify the calling ! function's return address. When enabled, this option extends the ! usual '_mcount' interface with a new RA-ADDRESS parameter, which ! has type 'intptr_t *' and is passed in register '$12'. '_mcount' ! can then modify the return address by doing both of the following: ! * Returning the new address in register '$31'. ! * Storing the new address in '*RA-ADDRESS', if RA-ADDRESS is nonnull. ! The default is '-mno-mcount-ra-address'.  File: gcc.info, Node: MMIX Options, Next: MN10300 Options, Prev: MIPS Options, Up: Submodel Options *************** File: gcc.info, Node: MMIX Options, Ne *** 15877,15928 **** These options are defined for the MMIX: ! `-mlibfuncs' ! `-mno-libfuncs' Specify that intrinsic library functions are being compiled, passing all values in registers, no matter the size. ! `-mepsilon' ! `-mno-epsilon' Generate floating-point comparison instructions that compare with ! respect to the `rE' epsilon register. ! `-mabi=mmixware' ! `-mabi=gnu' Generate code that passes function parameters and return values ! that (in the called function) are seen as registers `$0' and up, ! as opposed to the GNU ABI which uses global registers `$231' and ! up. ! `-mzero-extend' ! `-mno-zero-extend' When reading data from memory in sizes shorter than 64 bits, use (do not use) zero-extending load instructions by default, rather than sign-extending ones. ! `-mknuthdiv' ! `-mno-knuthdiv' Make the result of a division yielding a remainder have the same ! sign as the divisor. With the default, `-mno-knuthdiv', the sign of the remainder follows the sign of the dividend. Both methods are arithmetically valid, the latter being almost exclusively used. ! `-mtoplevel-symbols' ! `-mno-toplevel-symbols' ! Prepend (do not prepend) a `:' to all global symbols, so the ! assembly code can be used with the `PREFIX' assembly directive. ! `-melf' Generate an executable in the ELF format, rather than the default ! `mmo' format used by the `mmix' simulator. ! `-mbranch-predict' ! `-mno-branch-predict' Use (do not use) the probable-branch instructions, when static branch prediction indicates a probable branch. ! `-mbase-addresses' ! `-mno-base-addresses' Generate (do not generate) code that uses _base addresses_. Using a base address automatically generates a request (handled by the assembler and the linker) for a constant to be set up in a global --- 15795,15845 ---- These options are defined for the MMIX: ! '-mlibfuncs' ! '-mno-libfuncs' Specify that intrinsic library functions are being compiled, passing all values in registers, no matter the size. ! '-mepsilon' ! '-mno-epsilon' Generate floating-point comparison instructions that compare with ! respect to the 'rE' epsilon register. ! '-mabi=mmixware' ! '-mabi=gnu' Generate code that passes function parameters and return values ! that (in the called function) are seen as registers '$0' and up, as ! opposed to the GNU ABI which uses global registers '$231' and up. ! '-mzero-extend' ! '-mno-zero-extend' When reading data from memory in sizes shorter than 64 bits, use (do not use) zero-extending load instructions by default, rather than sign-extending ones. ! '-mknuthdiv' ! '-mno-knuthdiv' Make the result of a division yielding a remainder have the same ! sign as the divisor. With the default, '-mno-knuthdiv', the sign of the remainder follows the sign of the dividend. Both methods are arithmetically valid, the latter being almost exclusively used. ! '-mtoplevel-symbols' ! '-mno-toplevel-symbols' ! Prepend (do not prepend) a ':' to all global symbols, so the ! assembly code can be used with the 'PREFIX' assembly directive. ! '-melf' Generate an executable in the ELF format, rather than the default ! 'mmo' format used by the 'mmix' simulator. ! '-mbranch-predict' ! '-mno-branch-predict' Use (do not use) the probable-branch instructions, when static branch prediction indicates a probable branch. ! '-mbase-addresses' ! '-mno-base-addresses' Generate (do not generate) code that uses _base addresses_. Using a base address automatically generates a request (handled by the assembler and the linker) for a constant to be set up in a global *************** These options are defined for the MMIX: *** 15930,15940 **** requests within the range 0 to 255 from the value held in the register. The generally leads to short and fast code, but the number of different data items that can be addressed is limited. ! This means that a program that uses lots of static data may ! require `-mno-base-addresses'. ! `-msingle-exit' ! `-mno-single-exit' Force (do not force) generated code to have a single exit point in each function. --- 15847,15857 ---- requests within the range 0 to 255 from the value held in the register. The generally leads to short and fast code, but the number of different data items that can be addressed is limited. ! This means that a program that uses lots of static data may require ! '-mno-base-addresses'. ! '-msingle-exit' ! '-mno-single-exit' Force (do not force) generated code to have a single exit point in each function. *************** File: gcc.info, Node: MN10300 Options, *** 15944,16016 **** 3.17.28 MN10300 Options ----------------------- ! These `-m' options are defined for Matsushita MN10300 architectures: ! `-mmult-bug' Generate code to avoid bugs in the multiply instructions for the MN10300 processors. This is the default. ! `-mno-mult-bug' ! Do not generate code to avoid bugs in the multiply instructions ! for the MN10300 processors. ! `-mam33' Generate code using features specific to the AM33 processor. ! `-mno-am33' ! Do not generate code using features specific to the AM33 ! processor. This is the default. ! `-mam33-2' Generate code using features specific to the AM33/2.0 processor. ! `-mam34' Generate code using features specific to the AM34 processor. ! `-mtune=CPU-TYPE' Use the timing characteristics of the indicated CPU type when scheduling instructions. This does not change the targeted ! processor type. The CPU type must be one of `mn10300', `am33', ! `am33-2' or `am34'. ! `-mreturn-pointer-on-d0' When generating a function that returns a pointer, return the ! pointer in both `a0' and `d0'. Otherwise, the pointer is returned ! only in `a0', and attempts to call such functions without a prototype result in errors. Note that this option is on by ! default; use `-mno-return-pointer-on-d0' to disable it. ! `-mno-crt0' Do not link in the C run-time initialization object file. ! `-mrelax' Indicate to the linker that it should perform a relaxation optimization pass to shorten branches, calls and absolute memory ! addresses. This option only has an effect when used on the ! command line for the final link step. This option makes symbolic debugging impossible. ! `-mliw' ! Allow the compiler to generate _Long Instruction Word_ ! instructions if the target is the `AM33' or later. This is the ! default. This option defines the preprocessor macro `__LIW__'. ! `-mnoliw' Do not allow the compiler to generate _Long Instruction Word_ instructions. This option defines the preprocessor macro ! `__NO_LIW__'. ! `-msetlb' Allow the compiler to generate the _SETLB_ and _Lcc_ instructions ! if the target is the `AM33' or later. This is the default. This ! option defines the preprocessor macro `__SETLB__'. ! `-mnosetlb' Do not allow the compiler to generate _SETLB_ or _Lcc_ instructions. This option defines the preprocessor macro ! `__NO_SETLB__'. !  File: gcc.info, Node: Moxie Options, Next: PDP-11 Options, Prev: MN10300 Options, Up: Submodel Options --- 15861,15932 ---- 3.17.28 MN10300 Options ----------------------- ! These '-m' options are defined for Matsushita MN10300 architectures: ! '-mmult-bug' Generate code to avoid bugs in the multiply instructions for the MN10300 processors. This is the default. ! '-mno-mult-bug' ! Do not generate code to avoid bugs in the multiply instructions for ! the MN10300 processors. ! '-mam33' Generate code using features specific to the AM33 processor. ! '-mno-am33' ! Do not generate code using features specific to the AM33 processor. ! This is the default. ! '-mam33-2' Generate code using features specific to the AM33/2.0 processor. ! '-mam34' Generate code using features specific to the AM34 processor. ! '-mtune=CPU-TYPE' Use the timing characteristics of the indicated CPU type when scheduling instructions. This does not change the targeted ! processor type. The CPU type must be one of 'mn10300', 'am33', ! 'am33-2' or 'am34'. ! '-mreturn-pointer-on-d0' When generating a function that returns a pointer, return the ! pointer in both 'a0' and 'd0'. Otherwise, the pointer is returned ! only in 'a0', and attempts to call such functions without a prototype result in errors. Note that this option is on by ! default; use '-mno-return-pointer-on-d0' to disable it. ! '-mno-crt0' Do not link in the C run-time initialization object file. ! '-mrelax' Indicate to the linker that it should perform a relaxation optimization pass to shorten branches, calls and absolute memory ! addresses. This option only has an effect when used on the command ! line for the final link step. This option makes symbolic debugging impossible. ! '-mliw' ! Allow the compiler to generate _Long Instruction Word_ instructions ! if the target is the 'AM33' or later. This is the default. This ! option defines the preprocessor macro '__LIW__'. ! '-mnoliw' Do not allow the compiler to generate _Long Instruction Word_ instructions. This option defines the preprocessor macro ! '__NO_LIW__'. ! '-msetlb' Allow the compiler to generate the _SETLB_ and _Lcc_ instructions ! if the target is the 'AM33' or later. This is the default. This ! option defines the preprocessor macro '__SETLB__'. ! '-mnosetlb' Do not allow the compiler to generate _SETLB_ or _Lcc_ instructions. This option defines the preprocessor macro ! '__NO_SETLB__'.  File: gcc.info, Node: Moxie Options, Next: PDP-11 Options, Prev: MN10300 Options, Up: Submodel Options *************** File: gcc.info, Node: Moxie Options, N *** 16018,16034 **** 3.17.29 Moxie Options --------------------- ! `-meb' ! Generate big-endian code. This is the default for `moxie-*-*' configurations. ! `-mel' Generate little-endian code. ! `-mno-crt0' Do not link in the C run-time initialization object file. -  File: gcc.info, Node: PDP-11 Options, Next: picoChip Options, Prev: Moxie Options, Up: Submodel Options --- 15934,15949 ---- 3.17.29 Moxie Options --------------------- ! '-meb' ! Generate big-endian code. This is the default for 'moxie-*-*' configurations. ! '-mel' Generate little-endian code. ! '-mno-crt0' Do not link in the C run-time initialization object file.  File: gcc.info, Node: PDP-11 Options, Next: picoChip Options, Prev: Moxie Options, Up: Submodel Options *************** File: gcc.info, Node: PDP-11 Options, *** 16037,16108 **** These options are defined for the PDP-11: ! `-mfpu' Use hardware FPP floating point. This is the default. (FIS floating point on the PDP-11/40 is not supported.) ! `-msoft-float' Do not use hardware floating point. ! `-mac0' Return floating-point results in ac0 (fr0 in Unix assembler syntax). ! `-mno-ac0' Return floating-point results in memory. This is the default. ! `-m40' Generate code for a PDP-11/40. ! `-m45' Generate code for a PDP-11/45. This is the default. ! `-m10' Generate code for a PDP-11/10. ! `-mbcopy-builtin' ! Use inline `movmemhi' patterns for copying memory. This is the default. ! `-mbcopy' ! Do not use inline `movmemhi' patterns for copying memory. ! `-mint16' ! `-mno-int32' ! Use 16-bit `int'. This is the default. ! `-mint32' ! `-mno-int16' ! Use 32-bit `int'. ! `-mfloat64' ! `-mno-float32' ! Use 64-bit `float'. This is the default. ! `-mfloat32' ! `-mno-float64' ! Use 32-bit `float'. ! `-mabshi' ! Use `abshi2' pattern. This is the default. ! `-mno-abshi' ! Do not use `abshi2' pattern. ! `-mbranch-expensive' Pretend that branches are expensive. This is for experimenting with code generation only. ! `-mbranch-cheap' Do not pretend that branches are expensive. This is the default. ! `-munix-asm' Use Unix assembler syntax. This is the default when configured for ! `pdp11-*-bsd'. ! `-mdec-asm' Use DEC assembler syntax. This is the default when configured for ! any PDP-11 target other than `pdp11-*-bsd'.  File: gcc.info, Node: picoChip Options, Next: PowerPC Options, Prev: PDP-11 Options, Up: Submodel Options --- 15952,16023 ---- These options are defined for the PDP-11: ! '-mfpu' Use hardware FPP floating point. This is the default. (FIS floating point on the PDP-11/40 is not supported.) ! '-msoft-float' Do not use hardware floating point. ! '-mac0' Return floating-point results in ac0 (fr0 in Unix assembler syntax). ! '-mno-ac0' Return floating-point results in memory. This is the default. ! '-m40' Generate code for a PDP-11/40. ! '-m45' Generate code for a PDP-11/45. This is the default. ! '-m10' Generate code for a PDP-11/10. ! '-mbcopy-builtin' ! Use inline 'movmemhi' patterns for copying memory. This is the default. ! '-mbcopy' ! Do not use inline 'movmemhi' patterns for copying memory. ! '-mint16' ! '-mno-int32' ! Use 16-bit 'int'. This is the default. ! '-mint32' ! '-mno-int16' ! Use 32-bit 'int'. ! '-mfloat64' ! '-mno-float32' ! Use 64-bit 'float'. This is the default. ! '-mfloat32' ! '-mno-float64' ! Use 32-bit 'float'. ! '-mabshi' ! Use 'abshi2' pattern. This is the default. ! '-mno-abshi' ! Do not use 'abshi2' pattern. ! '-mbranch-expensive' Pretend that branches are expensive. This is for experimenting with code generation only. ! '-mbranch-cheap' Do not pretend that branches are expensive. This is the default. ! '-munix-asm' Use Unix assembler syntax. This is the default when configured for ! 'pdp11-*-bsd'. ! '-mdec-asm' Use DEC assembler syntax. This is the default when configured for ! any PDP-11 target other than 'pdp11-*-bsd'.  File: gcc.info, Node: picoChip Options, Next: PowerPC Options, Prev: PDP-11 Options, Up: Submodel Options *************** File: gcc.info, Node: picoChip Options, *** 16110,16155 **** 3.17.31 picoChip Options ------------------------ ! These `-m' options are defined for picoChip implementations: ! `-mae=AE_TYPE' Set the instruction set, register set, and instruction scheduling parameters for array element type AE_TYPE. Supported values for ! AE_TYPE are `ANY', `MUL', and `MAC'. ! `-mae=ANY' selects a completely generic AE type. Code generated with this option runs on any of the other AE types. The code is ! not as efficient as it would be if compiled for a specific AE ! type, and some types of operation (e.g., multiplication) do not ! work properly on all types of AE. ! `-mae=MUL' selects a MUL AE type. This is the most useful AE type for compiled code, and is the default. ! `-mae=MAC' selects a DSP-style MAC AE. Code compiled with this option may suffer from poor performance of byte (char) manipulation, since the DSP AE does not provide hardware support for byte load/stores. ! `-msymbol-as-address' Enable the compiler to directly use a symbol name as an address in ! a load/store instruction, without first loading it into a ! register. Typically, the use of this option generates larger ! programs, which run faster than when the option isn't used. ! However, the results vary from program to program, so it is left ! as a user option, rather than being permanently enabled. ! `-mno-inefficient-warnings' Disables warnings about the generation of inefficient code. These warnings can be generated, for example, when compiling code that performs byte-level memory operations on the MAC AE type. The MAC ! AE has no hardware support for byte-level memory operations, so ! all byte load/stores must be synthesized from word load/store operations. This is inefficient and a warning is generated to ! indicate that you should rewrite the code to avoid byte ! operations, or to target an AE type that has the necessary ! hardware support. This option disables these warnings. !  File: gcc.info, Node: PowerPC Options, Next: RL78 Options, Prev: picoChip Options, Up: Submodel Options --- 16025,16069 ---- 3.17.31 picoChip Options ------------------------ ! These '-m' options are defined for picoChip implementations: ! '-mae=AE_TYPE' Set the instruction set, register set, and instruction scheduling parameters for array element type AE_TYPE. Supported values for ! AE_TYPE are 'ANY', 'MUL', and 'MAC'. ! '-mae=ANY' selects a completely generic AE type. Code generated with this option runs on any of the other AE types. The code is ! not as efficient as it would be if compiled for a specific AE type, ! and some types of operation (e.g., multiplication) do not work ! properly on all types of AE. ! '-mae=MUL' selects a MUL AE type. This is the most useful AE type for compiled code, and is the default. ! '-mae=MAC' selects a DSP-style MAC AE. Code compiled with this option may suffer from poor performance of byte (char) manipulation, since the DSP AE does not provide hardware support for byte load/stores. ! '-msymbol-as-address' Enable the compiler to directly use a symbol name as an address in ! a load/store instruction, without first loading it into a register. ! Typically, the use of this option generates larger programs, which ! run faster than when the option isn't used. However, the results ! vary from program to program, so it is left as a user option, ! rather than being permanently enabled. ! '-mno-inefficient-warnings' Disables warnings about the generation of inefficient code. These warnings can be generated, for example, when compiling code that performs byte-level memory operations on the MAC AE type. The MAC ! AE has no hardware support for byte-level memory operations, so all ! byte load/stores must be synthesized from word load/store operations. This is inefficient and a warning is generated to ! indicate that you should rewrite the code to avoid byte operations, ! or to target an AE type that has the necessary hardware support. ! This option disables these warnings.  File: gcc.info, Node: PowerPC Options, Next: RL78 Options, Prev: picoChip Options, Up: Submodel Options *************** File: gcc.info, Node: RL78 Options, Ne *** 16165,16274 **** 3.17.33 RL78 Options -------------------- ! `-msim' Links in additional target libraries to support operation within a simulator. ! `-mmul=none' ! `-mmul=g13' ! `-mmul=rl78' Specifies the type of hardware multiplication support to be used. ! The default is `none', which uses software multiplication ! functions. The `g13' option is for the hardware multiply/divide ! peripheral only on the RL78/G13 targets. The `rl78' option is for the standard hardware multiplication defined in the RL78 software manual. -  File: gcc.info, Node: RS/6000 and PowerPC Options, Next: RX Options, Prev: RL78 Options, Up: Submodel Options 3.17.34 IBM RS/6000 and PowerPC Options --------------------------------------- ! These `-m' options are defined for the IBM RS/6000 and PowerPC: ! `-mpowerpc-gpopt' ! `-mno-powerpc-gpopt' ! `-mpowerpc-gfxopt' ! `-mno-powerpc-gfxopt' ! `-mpowerpc64' ! `-mno-powerpc64' ! `-mmfcrf' ! `-mno-mfcrf' ! `-mpopcntb' ! `-mno-popcntb' ! `-mpopcntd' ! `-mno-popcntd' ! `-mfprnd' ! `-mno-fprnd' ! `-mcmpb' ! `-mno-cmpb' ! `-mmfpgpr' ! `-mno-mfpgpr' ! `-mhard-dfp' ! `-mno-hard-dfp' You use these options to specify which instructions are available ! on the processor you are using. The default value of these ! options is determined when configuring GCC. Specifying the ! `-mcpu=CPU_TYPE' overrides the specification of these options. We ! recommend you use the `-mcpu=CPU_TYPE' option rather than the options listed above. ! Specifying `-mpowerpc-gpopt' allows GCC to use the optional ! PowerPC architecture instructions in the General Purpose group, ! including floating-point square root. Specifying ! `-mpowerpc-gfxopt' allows GCC to use the optional PowerPC ! architecture instructions in the Graphics group, including ! floating-point select. ! The `-mmfcrf' option allows GCC to generate the move from ! condition register field instruction implemented on the POWER4 ! processor and other processors that support the PowerPC V2.01 ! architecture. The `-mpopcntb' option allows GCC to generate the ! popcount and double-precision FP reciprocal estimate instruction ! implemented on the POWER5 processor and other processors that ! support the PowerPC V2.02 architecture. The `-mpopcntd' option ! allows GCC to generate the popcount instruction implemented on the ! POWER7 processor and other processors that support the PowerPC ! V2.06 architecture. The `-mfprnd' option allows GCC to generate ! the FP round to integer instructions implemented on the POWER5+ ! processor and other processors that support the PowerPC V2.03 ! architecture. The `-mcmpb' option allows GCC to generate the ! compare bytes instruction implemented on the POWER6 processor and ! other processors that support the PowerPC V2.05 architecture. The ! `-mmfpgpr' option allows GCC to generate the FP move to/from general-purpose register instructions implemented on the POWER6X processor and other processors that support the extended PowerPC ! V2.05 architecture. The `-mhard-dfp' option allows GCC to ! generate the decimal floating-point instructions implemented on ! some POWER processors. ! The `-mpowerpc64' option allows GCC to generate the additional 64-bit instructions that are found in the full PowerPC64 architecture and to treat GPRs as 64-bit, doubleword quantities. ! GCC defaults to `-mno-powerpc64'. ! `-mcpu=CPU_TYPE' Set architecture type, register usage, and instruction scheduling parameters for machine type CPU_TYPE. Supported values for ! CPU_TYPE are `401', `403', `405', `405fp', `440', `440fp', `464', ! `464fp', `476', `476fp', `505', `601', `602', `603', `603e', ! `604', `604e', `620', `630', `740', `7400', `7450', `750', `801', ! `821', `823', `860', `970', `8540', `a2', `e300c2', `e300c3', ! `e500mc', `e500mc64', `e5500', `e6500', `ec603e', `G3', `G4', `G5', ! `titan', `power3', `power4', `power5', `power5+', `power6', ! `power6x', `power7', `power8', `powerpc', `powerpc64', and `rs64'. ! `-mcpu=powerpc', and `-mcpu=powerpc64' specify pure 32-bit PowerPC ! and 64-bit PowerPC architecture machine types, with an ! appropriate, generic processor model assumed for scheduling ! purposes. The other options specify a specific processor. Code generated ! under those options runs best on that processor, and may not run ! at all on others. ! The `-mcpu' options automatically enable or disable the following options: -maltivec -mfprnd -mhard-float -mmfcrf -mmultiple --- 16079,16185 ---- 3.17.33 RL78 Options -------------------- ! '-msim' Links in additional target libraries to support operation within a simulator. ! '-mmul=none' ! '-mmul=g13' ! '-mmul=rl78' Specifies the type of hardware multiplication support to be used. ! The default is 'none', which uses software multiplication ! functions. The 'g13' option is for the hardware multiply/divide ! peripheral only on the RL78/G13 targets. The 'rl78' option is for the standard hardware multiplication defined in the RL78 software manual.  File: gcc.info, Node: RS/6000 and PowerPC Options, Next: RX Options, Prev: RL78 Options, Up: Submodel Options 3.17.34 IBM RS/6000 and PowerPC Options --------------------------------------- ! These '-m' options are defined for the IBM RS/6000 and PowerPC: ! '-mpowerpc-gpopt' ! '-mno-powerpc-gpopt' ! '-mpowerpc-gfxopt' ! '-mno-powerpc-gfxopt' ! '-mpowerpc64' ! '-mno-powerpc64' ! '-mmfcrf' ! '-mno-mfcrf' ! '-mpopcntb' ! '-mno-popcntb' ! '-mpopcntd' ! '-mno-popcntd' ! '-mfprnd' ! '-mno-fprnd' ! '-mcmpb' ! '-mno-cmpb' ! '-mmfpgpr' ! '-mno-mfpgpr' ! '-mhard-dfp' ! '-mno-hard-dfp' You use these options to specify which instructions are available ! on the processor you are using. The default value of these options ! is determined when configuring GCC. Specifying the ! '-mcpu=CPU_TYPE' overrides the specification of these options. We ! recommend you use the '-mcpu=CPU_TYPE' option rather than the options listed above. ! Specifying '-mpowerpc-gpopt' allows GCC to use the optional PowerPC ! architecture instructions in the General Purpose group, including ! floating-point square root. Specifying '-mpowerpc-gfxopt' allows ! GCC to use the optional PowerPC architecture instructions in the ! Graphics group, including floating-point select. ! The '-mmfcrf' option allows GCC to generate the move from condition ! register field instruction implemented on the POWER4 processor and ! other processors that support the PowerPC V2.01 architecture. The ! '-mpopcntb' option allows GCC to generate the popcount and ! double-precision FP reciprocal estimate instruction implemented on ! the POWER5 processor and other processors that support the PowerPC ! V2.02 architecture. The '-mpopcntd' option allows GCC to generate ! the popcount instruction implemented on the POWER7 processor and ! other processors that support the PowerPC V2.06 architecture. The ! '-mfprnd' option allows GCC to generate the FP round to integer ! instructions implemented on the POWER5+ processor and other ! processors that support the PowerPC V2.03 architecture. The ! '-mcmpb' option allows GCC to generate the compare bytes ! instruction implemented on the POWER6 processor and other ! processors that support the PowerPC V2.05 architecture. The ! '-mmfpgpr' option allows GCC to generate the FP move to/from general-purpose register instructions implemented on the POWER6X processor and other processors that support the extended PowerPC ! V2.05 architecture. The '-mhard-dfp' option allows GCC to generate ! the decimal floating-point instructions implemented on some POWER ! processors. ! The '-mpowerpc64' option allows GCC to generate the additional 64-bit instructions that are found in the full PowerPC64 architecture and to treat GPRs as 64-bit, doubleword quantities. ! GCC defaults to '-mno-powerpc64'. ! '-mcpu=CPU_TYPE' Set architecture type, register usage, and instruction scheduling parameters for machine type CPU_TYPE. Supported values for ! CPU_TYPE are '401', '403', '405', '405fp', '440', '440fp', '464', ! '464fp', '476', '476fp', '505', '601', '602', '603', '603e', '604', ! '604e', '620', '630', '740', '7400', '7450', '750', '801', '821', ! '823', '860', '970', '8540', 'a2', 'e300c2', 'e300c3', 'e500mc', ! 'e500mc64', 'e5500', 'e6500', 'ec603e', 'G3', 'G4', 'G5', 'titan', ! 'power3', 'power4', 'power5', 'power5+', 'power6', 'power6x', ! 'power7', 'power8', 'powerpc', 'powerpc64', and 'rs64'. ! '-mcpu=powerpc', and '-mcpu=powerpc64' specify pure 32-bit PowerPC ! and 64-bit PowerPC architecture machine types, with an appropriate, ! generic processor model assumed for scheduling purposes. The other options specify a specific processor. Code generated ! under those options runs best on that processor, and may not run at ! all on others. ! The '-mcpu' options automatically enable or disable the following options: -maltivec -mfprnd -mhard-float -mmfcrf -mmultiple *************** These `-m' options are defined for the I *** 16280,16375 **** compiler versions, depending on what setting seems to produce optimal code for that CPU; it doesn't necessarily reflect the actual hardware's capabilities. If you wish to set an individual ! option to a particular value, you may specify it after the `-mcpu' ! option, like `-mcpu=970 -mno-altivec'. ! On AIX, the `-maltivec' and `-mpowerpc64' options are not enabled ! or disabled by the `-mcpu' option at present because AIX does not have full support for these options. You may still enable or disable them individually if you're sure it'll work in your environment. ! `-mtune=CPU_TYPE' Set the instruction scheduling parameters for machine type CPU_TYPE, but do not set the architecture type or register usage, ! as `-mcpu=CPU_TYPE' does. The same values for CPU_TYPE are used ! for `-mtune' as for `-mcpu'. If both are specified, the code ! generated uses the architecture and registers set by `-mcpu', but ! the scheduling parameters set by `-mtune'. ! `-mcmodel=small' Generate PowerPC64 code for the small model: The TOC is limited to 64k. ! `-mcmodel=medium' Generate PowerPC64 code for the medium model: The TOC and other static data may be up to a total of 4G in size. ! `-mcmodel=large' Generate PowerPC64 code for the large model: The TOC may be up to 4G in size. Other data and code is only limited by the 64-bit address space. ! `-maltivec' ! `-mno-altivec' Generate code that uses (does not use) AltiVec instructions, and also enable the use of built-in functions that allow more direct access to the AltiVec instruction set. You may also need to set ! `-mabi=altivec' to adjust the current ABI with AltiVec ABI enhancements. ! `-mvrsave' ! `-mno-vrsave' Generate VRSAVE instructions when generating AltiVec code. ! `-mgen-cell-microcode' Generate Cell microcode instructions. ! `-mwarn-cell-microcode' ! Warn when a Cell microcode instruction is emitted. An example of ! a Cell microcode instruction is a variable shift. ! `-msecure-plt' ! Generate code that allows `ld' and `ld.so' to build executables ! and shared libraries with non-executable `.plt' and `.got' ! sections. This is a PowerPC 32-bit SYSV ABI option. ! `-mbss-plt' ! Generate code that uses a BSS `.plt' section that `ld.so' fills ! in, and requires `.plt' and `.got' sections that are both writable ! and executable. This is a PowerPC 32-bit SYSV ABI option. ! `-misel' ! `-mno-isel' This switch enables or disables the generation of ISEL instructions. ! `-misel=YES/NO' ! This switch has been deprecated. Use `-misel' and `-mno-isel' instead. ! `-mspe' ! `-mno-spe' This switch enables or disables the generation of SPE simd instructions. ! `-mpaired' ! `-mno-paired' This switch enables or disables the generation of PAIRED simd instructions. ! `-mspe=YES/NO' ! This option has been deprecated. Use `-mspe' and `-mno-spe' instead. ! `-mvsx' ! `-mno-vsx' Generate code that uses (does not use) vector/scalar (VSX) instructions, and also enable the use of built-in functions that allow more direct access to the VSX instruction set. ! `-mfloat-gprs=YES/SINGLE/DOUBLE/NO' ! `-mfloat-gprs' This switch enables or disables the generation of floating-point operations on the general-purpose registers for architectures that support it. --- 16191,16286 ---- compiler versions, depending on what setting seems to produce optimal code for that CPU; it doesn't necessarily reflect the actual hardware's capabilities. If you wish to set an individual ! option to a particular value, you may specify it after the '-mcpu' ! option, like '-mcpu=970 -mno-altivec'. ! On AIX, the '-maltivec' and '-mpowerpc64' options are not enabled ! or disabled by the '-mcpu' option at present because AIX does not have full support for these options. You may still enable or disable them individually if you're sure it'll work in your environment. ! '-mtune=CPU_TYPE' Set the instruction scheduling parameters for machine type CPU_TYPE, but do not set the architecture type or register usage, ! as '-mcpu=CPU_TYPE' does. The same values for CPU_TYPE are used ! for '-mtune' as for '-mcpu'. If both are specified, the code ! generated uses the architecture and registers set by '-mcpu', but ! the scheduling parameters set by '-mtune'. ! '-mcmodel=small' Generate PowerPC64 code for the small model: The TOC is limited to 64k. ! '-mcmodel=medium' Generate PowerPC64 code for the medium model: The TOC and other static data may be up to a total of 4G in size. ! '-mcmodel=large' Generate PowerPC64 code for the large model: The TOC may be up to 4G in size. Other data and code is only limited by the 64-bit address space. ! '-maltivec' ! '-mno-altivec' Generate code that uses (does not use) AltiVec instructions, and also enable the use of built-in functions that allow more direct access to the AltiVec instruction set. You may also need to set ! '-mabi=altivec' to adjust the current ABI with AltiVec ABI enhancements. ! '-mvrsave' ! '-mno-vrsave' Generate VRSAVE instructions when generating AltiVec code. ! '-mgen-cell-microcode' Generate Cell microcode instructions. ! '-mwarn-cell-microcode' ! Warn when a Cell microcode instruction is emitted. An example of a ! Cell microcode instruction is a variable shift. ! '-msecure-plt' ! Generate code that allows 'ld' and 'ld.so' to build executables and ! shared libraries with non-executable '.plt' and '.got' sections. ! This is a PowerPC 32-bit SYSV ABI option. ! '-mbss-plt' ! Generate code that uses a BSS '.plt' section that 'ld.so' fills in, ! and requires '.plt' and '.got' sections that are both writable and ! executable. This is a PowerPC 32-bit SYSV ABI option. ! '-misel' ! '-mno-isel' This switch enables or disables the generation of ISEL instructions. ! '-misel=YES/NO' ! This switch has been deprecated. Use '-misel' and '-mno-isel' instead. ! '-mspe' ! '-mno-spe' This switch enables or disables the generation of SPE simd instructions. ! '-mpaired' ! '-mno-paired' This switch enables or disables the generation of PAIRED simd instructions. ! '-mspe=YES/NO' ! This option has been deprecated. Use '-mspe' and '-mno-spe' instead. ! '-mvsx' ! '-mno-vsx' Generate code that uses (does not use) vector/scalar (VSX) instructions, and also enable the use of built-in functions that allow more direct access to the VSX instruction set. ! '-mfloat-gprs=YES/SINGLE/DOUBLE/NO' ! '-mfloat-gprs' This switch enables or disables the generation of floating-point operations on the general-purpose registers for architectures that support it. *************** These `-m' options are defined for the I *** 16385,16405 **** This option is currently only available on the MPC854x. ! `-m32' ! `-m64' Generate code for 32-bit or 64-bit environments of Darwin and SVR4 targets (including GNU/Linux). The 32-bit environment sets int, long and pointer to 32 bits and generates code that runs on any PowerPC variant. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits, and generates code for PowerPC64, as ! for `-mpowerpc64'. ! `-mfull-toc' ! `-mno-fp-in-toc' ! `-mno-sum-in-toc' ! `-mminimal-toc' Modify generation of the TOC (Table Of Contents), which is created ! for every executable file. The `-mfull-toc' option is selected by default. In that case, GCC allocates at least one TOC entry for each unique non-automatic variable reference in your program. GCC also places floating-point constants in the TOC. However, only --- 16296,16316 ---- This option is currently only available on the MPC854x. ! '-m32' ! '-m64' Generate code for 32-bit or 64-bit environments of Darwin and SVR4 targets (including GNU/Linux). The 32-bit environment sets int, long and pointer to 32 bits and generates code that runs on any PowerPC variant. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits, and generates code for PowerPC64, as ! for '-mpowerpc64'. ! '-mfull-toc' ! '-mno-fp-in-toc' ! '-mno-sum-in-toc' ! '-mminimal-toc' Modify generation of the TOC (Table Of Contents), which is created ! for every executable file. The '-mfull-toc' option is selected by default. In that case, GCC allocates at least one TOC entry for each unique non-automatic variable reference in your program. GCC also places floating-point constants in the TOC. However, only *************** These `-m' options are defined for the I *** 16407,16438 **** If you receive a linker error message that saying you have overflowed the available TOC space, you can reduce the amount of ! TOC space used with the `-mno-fp-in-toc' and `-mno-sum-in-toc' ! options. `-mno-fp-in-toc' prevents GCC from putting floating-point ! constants in the TOC and `-mno-sum-in-toc' forces GCC to generate code to calculate the sum of an address and a constant at run time instead of putting that sum into the TOC. You may specify one or both of these options. Each causes GCC to produce very slightly slower and larger code at the expense of conserving TOC space. ! If you still run out of space in the TOC even when you specify ! both of these options, specify `-mminimal-toc' instead. This ! option causes GCC to make only one TOC entry for every file. When ! you specify this option, GCC produces code that is slower and ! larger but which uses extremely little TOC space. You may wish to ! use this option only on files that contain less ! frequently-executed code. ! `-maix64' ! `-maix32' Enable 64-bit AIX ABI and calling convention: 64-bit pointers, ! 64-bit `long' type, and the infrastructure needed to support them. ! Specifying `-maix64' implies `-mpowerpc64', while `-maix32' ! disables the 64-bit ABI and implies `-mno-powerpc64'. GCC ! defaults to `-maix32'. ! `-mxl-compat' ! `-mno-xl-compat' Produce code that conforms more closely to IBM XL compiler semantics when using AIX-compatible ABI. Pass floating-point arguments to prototyped functions beyond the register save area --- 16318,16349 ---- If you receive a linker error message that saying you have overflowed the available TOC space, you can reduce the amount of ! TOC space used with the '-mno-fp-in-toc' and '-mno-sum-in-toc' ! options. '-mno-fp-in-toc' prevents GCC from putting floating-point ! constants in the TOC and '-mno-sum-in-toc' forces GCC to generate code to calculate the sum of an address and a constant at run time instead of putting that sum into the TOC. You may specify one or both of these options. Each causes GCC to produce very slightly slower and larger code at the expense of conserving TOC space. ! If you still run out of space in the TOC even when you specify both ! of these options, specify '-mminimal-toc' instead. This option ! causes GCC to make only one TOC entry for every file. When you ! specify this option, GCC produces code that is slower and larger ! but which uses extremely little TOC space. You may wish to use ! this option only on files that contain less frequently-executed ! code. ! '-maix64' ! '-maix32' Enable 64-bit AIX ABI and calling convention: 64-bit pointers, ! 64-bit 'long' type, and the infrastructure needed to support them. ! Specifying '-maix64' implies '-mpowerpc64', while '-maix32' ! disables the 64-bit ABI and implies '-mno-powerpc64'. GCC defaults ! to '-maix32'. ! '-mxl-compat' ! '-mno-xl-compat' Produce code that conforms more closely to IBM XL compiler semantics when using AIX-compatible ABI. Pass floating-point arguments to prototyped functions beyond the register save area *************** These `-m' options are defined for the I *** 16444,16867 **** The AIX calling convention was extended but not initially documented to handle an obscure K&R C case of calling a function that takes the address of its arguments with fewer arguments than ! declared. IBM XL compilers access floating-point arguments that ! do not fit in the RSA from the stack when a subroutine is compiled without optimization. Because always storing floating-point arguments on the stack is inefficient and rarely needed, this ! option is not enabled by default and only is necessary when ! calling subroutines compiled by IBM XL compilers without ! optimization. ! `-mpe' Support "IBM RS/6000 SP" "Parallel Environment" (PE). Link an application written to use message passing with special startup code to enable the application to run. The system must have PE ! installed in the standard location (`/usr/lpp/ppe.poe/'), or the ! `specs' file must be overridden with the `-specs=' option to specify the appropriate directory location. The Parallel ! Environment does not support threads, so the `-mpe' option and the ! `-pthread' option are incompatible. ! `-malign-natural' ! `-malign-power' On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option ! `-malign-natural' overrides the ABI-defined alignment of larger types, such as floating-point doubles, on their natural size-based ! boundary. The option `-malign-power' instructs GCC to follow the ABI-specified alignment rules. GCC defaults to the standard alignment defined in the ABI. On 64-bit Darwin, natural alignment is the default, and ! `-malign-power' is not supported. ! `-msoft-float' ! `-mhard-float' Generate code that does not use (uses) the floating-point register set. Software floating-point emulation is provided if you use the ! `-msoft-float' option, and pass the option to GCC when linking. ! `-msingle-float' ! `-mdouble-float' Generate code for single- or double-precision floating-point ! operations. `-mdouble-float' implies `-msingle-float'. ! `-msimple-fpu' ! Do not generate `sqrt' and `div' instructions for hardware floating-point unit. ! `-mfpu=NAME' Specify type of floating-point unit. Valid values for NAME are ! `sp_lite' (equivalent to `-msingle-float -msimple-fpu'), `dp_lite' ! (equivalent to `-mdouble-float -msimple-fpu'), `sp_full' ! (equivalent to `-msingle-float'), and `dp_full' (equivalent to ! `-mdouble-float'). ! `-mxilinx-fpu' Perform optimizations for the floating-point unit on Xilinx PPC 405/440. ! `-mmultiple' ! `-mno-multiple' Generate code that uses (does not use) the load multiple word instructions and the store multiple word instructions. These instructions are generated by default on POWER systems, and not ! generated on PowerPC systems. Do not use `-mmultiple' on ! little-endian PowerPC systems, since those instructions do not ! work when the processor is in little-endian mode. The exceptions ! are PPC740 and PPC750 which permit these instructions in ! little-endian mode. ! `-mstring' ! `-mno-string' Generate code that uses (does not use) the load string instructions and the store string word instructions to save multiple registers and do small block moves. These instructions are generated by ! default on POWER systems, and not generated on PowerPC systems. ! Do not use `-mstring' on little-endian PowerPC systems, since those instructions do not work when the processor is in little-endian mode. The exceptions are PPC740 and PPC750 which permit these instructions in little-endian mode. ! `-mupdate' ! `-mno-update' Generate code that uses (does not use) the load or store instructions that update the base register to the address of the calculated memory location. These instructions are generated by ! default. If you use `-mno-update', there is a small window ! between the time that the stack pointer is updated and the address ! of the previous frame is stored, which means code that walks the ! stack frame across interrupts or signals may get corrupted data. ! `-mavoid-indexed-addresses' ! `-mno-avoid-indexed-addresses' Generate code that tries to avoid (not avoid) the use of indexed ! load or store instructions. These instructions can incur a performance penalty on Power6 processors in certain situations, such as when stepping through large arrays that cross a 16M boundary. This option is enabled by default when targeting Power6 and disabled otherwise. ! `-mfused-madd' ! `-mno-fused-madd' Generate code that uses (does not use) the floating-point multiply and accumulate instructions. These instructions are generated by default if hardware floating point is used. The machine-dependent ! `-mfused-madd' option is now mapped to the machine-independent ! `-ffp-contract=fast' option, and `-mno-fused-madd' is mapped to ! `-ffp-contract=off'. ! `-mmulhw' ! `-mno-mulhw' Generate code that uses (does not use) the half-word multiply and multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors. These instructions are generated by default when targeting those processors. ! `-mdlmzb' ! `-mno-dlmzb' ! Generate code that uses (does not use) the string-search `dlmzb' instruction on the IBM 405, 440, 464 and 476 processors. This instruction is generated by default when targeting those processors. ! `-mno-bit-align' ! `-mbit-align' On System V.4 and embedded PowerPC systems do not (do) force structures and unions that contain bit-fields to be aligned to the base type of the bit-field. For example, by default a structure containing nothing but 8 ! `unsigned' bit-fields of length 1 is aligned to a 4-byte boundary ! and has a size of 4 bytes. By using `-mno-bit-align', the structure is aligned to a 1-byte boundary and is 1 byte in size. ! `-mno-strict-align' ! `-mstrict-align' On System V.4 and embedded PowerPC systems do not (do) assume that unaligned memory references are handled by the system. ! `-mrelocatable' ! `-mno-relocatable' Generate code that allows (does not allow) a static executable to be relocated to a different address at run time. A simple embedded PowerPC system loader should relocate the entire contents of ! `.got2' and 4-byte locations listed in the `.fixup' section, a table of 32-bit addresses generated by this option. For this to work, all objects linked together must be compiled with ! `-mrelocatable' or `-mrelocatable-lib'. `-mrelocatable' code aligns the stack to an 8-byte boundary. ! `-mrelocatable-lib' ! `-mno-relocatable-lib' ! Like `-mrelocatable', `-mrelocatable-lib' generates a `.fixup' section to allow static executables to be relocated at run time, ! but `-mrelocatable-lib' does not use the smaller stack alignment ! of `-mrelocatable'. Objects compiled with `-mrelocatable-lib' may ! be linked with objects compiled with any combination of the ! `-mrelocatable' options. ! `-mno-toc' ! `-mtoc' On System V.4 and embedded PowerPC systems do not (do) assume that register 2 contains a pointer to a global area pointing to the addresses used in the program. ! `-mlittle' ! `-mlittle-endian' On System V.4 and embedded PowerPC systems compile code for the ! processor in little-endian mode. The `-mlittle-endian' option is ! the same as `-mlittle'. ! `-mbig' ! `-mbig-endian' On System V.4 and embedded PowerPC systems compile code for the ! processor in big-endian mode. The `-mbig-endian' option is the ! same as `-mbig'. ! `-mdynamic-no-pic' On Darwin and Mac OS X systems, compile code so that it is not relocatable, but that its external references are relocatable. The resulting code is suitable for applications, but not shared libraries. ! `-msingle-pic-base' Treat the register used for PIC addressing as read-only, rather than loading it in the prologue for each function. The runtime system is responsible for initializing this register with an appropriate value before execution begins. ! `-mprioritize-restricted-insns=PRIORITY' ! This option controls the priority that is assigned to ! dispatch-slot restricted instructions during the second scheduling ! pass. The argument PRIORITY takes the value `0', `1', or `2' to ! assign no, highest, or second-highest (respectively) priority to ! dispatch-slot restricted instructions. ! `-msched-costly-dep=DEPENDENCE_TYPE' ! This option controls which dependences are considered costly by ! the target during instruction scheduling. The argument ! DEPENDENCE_TYPE takes one of the following values: ! `no' No dependence is costly. ! `all' All dependences are costly. ! `true_store_to_load' A true dependence from store to load is costly. ! `store_to_load' Any dependence from store to load is costly. ! NUMBER Any dependence for which the latency is greater than or equal to NUMBER is costly. ! `-minsert-sched-nops=SCHEME' This option controls which NOP insertion scheme is used during the second scheduling pass. The argument SCHEME takes one of the following values: ! `no' Don't insert NOPs. ! `pad' Pad with NOPs any dispatch group that has vacant issue slots, according to the scheduler's grouping. ! `regroup_exact' Insert NOPs to force costly dependent insns into separate groups. Insert exactly as many NOPs as needed to force an insn to a new group, according to the estimated processor grouping. ! NUMBER Insert NOPs to force costly dependent insns into separate groups. Insert NUMBER NOPs to force an insn to a new group. ! `-mcall-sysv' On System V.4 and embedded PowerPC systems compile code using calling conventions that adhere to the March 1995 draft of the System V Application Binary Interface, PowerPC processor supplement. This is the default unless you configured GCC using ! `powerpc-*-eabiaix'. ! `-mcall-sysv-eabi' ! `-mcall-eabi' ! Specify both `-mcall-sysv' and `-meabi' options. ! `-mcall-sysv-noeabi' ! Specify both `-mcall-sysv' and `-mno-eabi' options. ! `-mcall-aixdesc' On System V.4 and embedded PowerPC systems compile code for the AIX operating system. ! `-mcall-linux' On System V.4 and embedded PowerPC systems compile code for the Linux-based GNU system. ! `-mcall-freebsd' On System V.4 and embedded PowerPC systems compile code for the FreeBSD operating system. ! `-mcall-netbsd' On System V.4 and embedded PowerPC systems compile code for the NetBSD operating system. ! `-mcall-openbsd' On System V.4 and embedded PowerPC systems compile code for the OpenBSD operating system. ! `-maix-struct-return' Return all structures in memory (as specified by the AIX ABI). ! `-msvr4-struct-return' Return structures smaller than 8 bytes in registers (as specified by the SVR4 ABI). ! `-mabi=ABI-TYPE' Extend the current ABI with a particular extension, or remove such extension. Valid values are ALTIVEC, NO-ALTIVEC, SPE, NO-SPE, IBMLONGDOUBLE, IEEELONGDOUBLE. ! `-mabi=spe' Extend the current ABI with SPE ABI extensions. This does not change the default ABI, instead it adds the SPE ABI extensions to the current ABI. ! `-mabi=no-spe' Disable Book-E SPE ABI extensions for the current ABI. ! `-mabi=ibmlongdouble' Change the current ABI to use IBM extended-precision long double. This is a PowerPC 32-bit SYSV ABI option. ! `-mabi=ieeelongdouble' Change the current ABI to use IEEE extended-precision long double. This is a PowerPC 32-bit Linux ABI option. ! `-mprototype' ! `-mno-prototype' On System V.4 and embedded PowerPC systems assume that all calls to variable argument functions are properly prototyped. Otherwise, ! the compiler must insert an instruction before every ! non-prototyped call to set or clear bit 6 of the condition code ! register (CR) to indicate whether floating-point values are passed ! in the floating-point registers in case the function takes ! variable arguments. With `-mprototype', only calls to prototyped ! variable argument functions set or clear the bit. ! `-msim' On embedded PowerPC systems, assume that the startup module is ! called `sim-crt0.o' and that the standard C libraries are ! `libsim.a' and `libc.a'. This is the default for ! `powerpc-*-eabisim' configurations. ! `-mmvme' On embedded PowerPC systems, assume that the startup module is ! called `crt0.o' and the standard C libraries are `libmvme.a' and ! `libc.a'. ! `-mads' On embedded PowerPC systems, assume that the startup module is ! called `crt0.o' and the standard C libraries are `libads.a' and ! `libc.a'. ! `-myellowknife' On embedded PowerPC systems, assume that the startup module is ! called `crt0.o' and the standard C libraries are `libyk.a' and ! `libc.a'. ! `-mvxworks' On System V.4 and embedded PowerPC systems, specify that you are compiling for a VxWorks system. ! `-memb' On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags ! header to indicate that `eabi' extended relocations are used. ! `-meabi' ! `-mno-eabi' On System V.4 and embedded PowerPC systems do (do not) adhere to the Embedded Applications Binary Interface (EABI), which is a set of modifications to the System V.4 specifications. Selecting ! `-meabi' means that the stack is aligned to an 8-byte boundary, a ! function `__eabi' is called from `main' to set up the EABI ! environment, and the `-msdata' option can use both `r2' and `r13' ! to point to two separate small data areas. Selecting `-mno-eabi' means that the stack is aligned to a 16-byte boundary, no EABI ! initialization function is called from `main', and the `-msdata' ! option only uses `r13' to point to a single small data area. The ! `-meabi' option is on by default if you configured GCC using one ! of the `powerpc*-*-eabi*' options. ! `-msdata=eabi' On System V.4 and embedded PowerPC systems, put small initialized ! `const' global and static data in the `.sdata2' section, which is ! pointed to by register `r2'. Put small initialized non-`const' ! global and static data in the `.sdata' section, which is pointed ! to by register `r13'. Put small uninitialized global and static ! data in the `.sbss' section, which is adjacent to the `.sdata' ! section. The `-msdata=eabi' option is incompatible with the ! `-mrelocatable' option. The `-msdata=eabi' option also sets the ! `-memb' option. ! `-msdata=sysv' On System V.4 and embedded PowerPC systems, put small global and ! static data in the `.sdata' section, which is pointed to by ! register `r13'. Put small uninitialized global and static data in ! the `.sbss' section, which is adjacent to the `.sdata' section. ! The `-msdata=sysv' option is incompatible with the `-mrelocatable' option. ! `-msdata=default' ! `-msdata' ! On System V.4 and embedded PowerPC systems, if `-meabi' is used, ! compile code the same as `-msdata=eabi', otherwise compile code the ! same as `-msdata=sysv'. ! `-msdata=data' On System V.4 and embedded PowerPC systems, put small global data ! in the `.sdata' section. Put small uninitialized global data in ! the `.sbss' section. Do not use register `r13' to address small ! data however. This is the default behavior unless other `-msdata' options are used. ! `-msdata=none' ! `-mno-sdata' On embedded PowerPC systems, put all initialized global and static ! data in the `.data' section, and all uninitialized data in the ! `.bss' section. ! `-mblock-move-inline-limit=NUM' ! Inline all block moves (such as calls to `memcpy' or structure ! copies) less than or equal to NUM bytes. The minimum value for ! NUM is 32 bytes on 32-bit targets and 64 bytes on 64-bit targets. ! The default value is target-specific. ! `-G NUM' On embedded PowerPC systems, put global and static items less than or equal to NUM bytes into the small data or BSS sections instead ! of the normal data or BSS section. By default, NUM is 8. The `-G NUM' switch is also passed to the linker. All modules should be ! compiled with the same `-G NUM' value. ! `-mregnames' ! `-mno-regnames' On System V.4 and embedded PowerPC systems do (do not) emit register names in the assembly language output using symbolic forms. ! `-mlongcall' ! `-mno-longcall' By default assume that all calls are far away so that a longer and more expensive calling sequence is required. This is required for ! calls farther than 32 megabytes (33,554,432 bytes) from the ! current location. A short call is generated if the compiler knows ! the call cannot be that far away. This setting can be overridden ! by the `shortcall' function attribute, or by `#pragma longcall(0)'. Some linkers are capable of detecting out-of-range calls and generating glue code on the fly. On these systems, long calls are --- 16355,16776 ---- The AIX calling convention was extended but not initially documented to handle an obscure K&R C case of calling a function that takes the address of its arguments with fewer arguments than ! declared. IBM XL compilers access floating-point arguments that do ! not fit in the RSA from the stack when a subroutine is compiled without optimization. Because always storing floating-point arguments on the stack is inefficient and rarely needed, this ! option is not enabled by default and only is necessary when calling ! subroutines compiled by IBM XL compilers without optimization. ! '-mpe' Support "IBM RS/6000 SP" "Parallel Environment" (PE). Link an application written to use message passing with special startup code to enable the application to run. The system must have PE ! installed in the standard location ('/usr/lpp/ppe.poe/'), or the ! 'specs' file must be overridden with the '-specs=' option to specify the appropriate directory location. The Parallel ! Environment does not support threads, so the '-mpe' option and the ! '-pthread' option are incompatible. ! '-malign-natural' ! '-malign-power' On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option ! '-malign-natural' overrides the ABI-defined alignment of larger types, such as floating-point doubles, on their natural size-based ! boundary. The option '-malign-power' instructs GCC to follow the ABI-specified alignment rules. GCC defaults to the standard alignment defined in the ABI. On 64-bit Darwin, natural alignment is the default, and ! '-malign-power' is not supported. ! '-msoft-float' ! '-mhard-float' Generate code that does not use (uses) the floating-point register set. Software floating-point emulation is provided if you use the ! '-msoft-float' option, and pass the option to GCC when linking. ! '-msingle-float' ! '-mdouble-float' Generate code for single- or double-precision floating-point ! operations. '-mdouble-float' implies '-msingle-float'. ! '-msimple-fpu' ! Do not generate 'sqrt' and 'div' instructions for hardware floating-point unit. ! '-mfpu=NAME' Specify type of floating-point unit. Valid values for NAME are ! 'sp_lite' (equivalent to '-msingle-float -msimple-fpu'), 'dp_lite' ! (equivalent to '-mdouble-float -msimple-fpu'), 'sp_full' ! (equivalent to '-msingle-float'), and 'dp_full' (equivalent to ! '-mdouble-float'). ! '-mxilinx-fpu' Perform optimizations for the floating-point unit on Xilinx PPC 405/440. ! '-mmultiple' ! '-mno-multiple' Generate code that uses (does not use) the load multiple word instructions and the store multiple word instructions. These instructions are generated by default on POWER systems, and not ! generated on PowerPC systems. Do not use '-mmultiple' on ! little-endian PowerPC systems, since those instructions do not work ! when the processor is in little-endian mode. The exceptions are ! PPC740 and PPC750 which permit these instructions in little-endian ! mode. ! '-mstring' ! '-mno-string' Generate code that uses (does not use) the load string instructions and the store string word instructions to save multiple registers and do small block moves. These instructions are generated by ! default on POWER systems, and not generated on PowerPC systems. Do ! not use '-mstring' on little-endian PowerPC systems, since those instructions do not work when the processor is in little-endian mode. The exceptions are PPC740 and PPC750 which permit these instructions in little-endian mode. ! '-mupdate' ! '-mno-update' Generate code that uses (does not use) the load or store instructions that update the base register to the address of the calculated memory location. These instructions are generated by ! default. If you use '-mno-update', there is a small window between ! the time that the stack pointer is updated and the address of the ! previous frame is stored, which means code that walks the stack ! frame across interrupts or signals may get corrupted data. ! '-mavoid-indexed-addresses' ! '-mno-avoid-indexed-addresses' Generate code that tries to avoid (not avoid) the use of indexed ! load or store instructions. These instructions can incur a performance penalty on Power6 processors in certain situations, such as when stepping through large arrays that cross a 16M boundary. This option is enabled by default when targeting Power6 and disabled otherwise. ! '-mfused-madd' ! '-mno-fused-madd' Generate code that uses (does not use) the floating-point multiply and accumulate instructions. These instructions are generated by default if hardware floating point is used. The machine-dependent ! '-mfused-madd' option is now mapped to the machine-independent ! '-ffp-contract=fast' option, and '-mno-fused-madd' is mapped to ! '-ffp-contract=off'. ! '-mmulhw' ! '-mno-mulhw' Generate code that uses (does not use) the half-word multiply and multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors. These instructions are generated by default when targeting those processors. ! '-mdlmzb' ! '-mno-dlmzb' ! Generate code that uses (does not use) the string-search 'dlmzb' instruction on the IBM 405, 440, 464 and 476 processors. This instruction is generated by default when targeting those processors. ! '-mno-bit-align' ! '-mbit-align' On System V.4 and embedded PowerPC systems do not (do) force structures and unions that contain bit-fields to be aligned to the base type of the bit-field. For example, by default a structure containing nothing but 8 ! 'unsigned' bit-fields of length 1 is aligned to a 4-byte boundary ! and has a size of 4 bytes. By using '-mno-bit-align', the structure is aligned to a 1-byte boundary and is 1 byte in size. ! '-mno-strict-align' ! '-mstrict-align' On System V.4 and embedded PowerPC systems do not (do) assume that unaligned memory references are handled by the system. ! '-mrelocatable' ! '-mno-relocatable' Generate code that allows (does not allow) a static executable to be relocated to a different address at run time. A simple embedded PowerPC system loader should relocate the entire contents of ! '.got2' and 4-byte locations listed in the '.fixup' section, a table of 32-bit addresses generated by this option. For this to work, all objects linked together must be compiled with ! '-mrelocatable' or '-mrelocatable-lib'. '-mrelocatable' code aligns the stack to an 8-byte boundary. ! '-mrelocatable-lib' ! '-mno-relocatable-lib' ! Like '-mrelocatable', '-mrelocatable-lib' generates a '.fixup' section to allow static executables to be relocated at run time, ! but '-mrelocatable-lib' does not use the smaller stack alignment of ! '-mrelocatable'. Objects compiled with '-mrelocatable-lib' may be ! linked with objects compiled with any combination of the ! '-mrelocatable' options. ! '-mno-toc' ! '-mtoc' On System V.4 and embedded PowerPC systems do not (do) assume that register 2 contains a pointer to a global area pointing to the addresses used in the program. ! '-mlittle' ! '-mlittle-endian' On System V.4 and embedded PowerPC systems compile code for the ! processor in little-endian mode. The '-mlittle-endian' option is ! the same as '-mlittle'. ! '-mbig' ! '-mbig-endian' On System V.4 and embedded PowerPC systems compile code for the ! processor in big-endian mode. The '-mbig-endian' option is the ! same as '-mbig'. ! '-mdynamic-no-pic' On Darwin and Mac OS X systems, compile code so that it is not relocatable, but that its external references are relocatable. The resulting code is suitable for applications, but not shared libraries. ! '-msingle-pic-base' Treat the register used for PIC addressing as read-only, rather than loading it in the prologue for each function. The runtime system is responsible for initializing this register with an appropriate value before execution begins. ! '-mprioritize-restricted-insns=PRIORITY' ! This option controls the priority that is assigned to dispatch-slot ! restricted instructions during the second scheduling pass. The ! argument PRIORITY takes the value '0', '1', or '2' to assign no, ! highest, or second-highest (respectively) priority to dispatch-slot ! restricted instructions. ! '-msched-costly-dep=DEPENDENCE_TYPE' ! This option controls which dependences are considered costly by the ! target during instruction scheduling. The argument DEPENDENCE_TYPE ! takes one of the following values: ! 'no' No dependence is costly. ! 'all' All dependences are costly. ! 'true_store_to_load' A true dependence from store to load is costly. ! 'store_to_load' Any dependence from store to load is costly. ! NUMBER Any dependence for which the latency is greater than or equal to NUMBER is costly. ! '-minsert-sched-nops=SCHEME' This option controls which NOP insertion scheme is used during the second scheduling pass. The argument SCHEME takes one of the following values: ! 'no' Don't insert NOPs. ! 'pad' Pad with NOPs any dispatch group that has vacant issue slots, according to the scheduler's grouping. ! 'regroup_exact' Insert NOPs to force costly dependent insns into separate groups. Insert exactly as many NOPs as needed to force an insn to a new group, according to the estimated processor grouping. ! NUMBER Insert NOPs to force costly dependent insns into separate groups. Insert NUMBER NOPs to force an insn to a new group. ! '-mcall-sysv' On System V.4 and embedded PowerPC systems compile code using calling conventions that adhere to the March 1995 draft of the System V Application Binary Interface, PowerPC processor supplement. This is the default unless you configured GCC using ! 'powerpc-*-eabiaix'. ! '-mcall-sysv-eabi' ! '-mcall-eabi' ! Specify both '-mcall-sysv' and '-meabi' options. ! '-mcall-sysv-noeabi' ! Specify both '-mcall-sysv' and '-mno-eabi' options. ! '-mcall-aixdesc' On System V.4 and embedded PowerPC systems compile code for the AIX operating system. ! '-mcall-linux' On System V.4 and embedded PowerPC systems compile code for the Linux-based GNU system. ! '-mcall-freebsd' On System V.4 and embedded PowerPC systems compile code for the FreeBSD operating system. ! '-mcall-netbsd' On System V.4 and embedded PowerPC systems compile code for the NetBSD operating system. ! '-mcall-openbsd' On System V.4 and embedded PowerPC systems compile code for the OpenBSD operating system. ! '-maix-struct-return' Return all structures in memory (as specified by the AIX ABI). ! '-msvr4-struct-return' Return structures smaller than 8 bytes in registers (as specified by the SVR4 ABI). ! '-mabi=ABI-TYPE' Extend the current ABI with a particular extension, or remove such extension. Valid values are ALTIVEC, NO-ALTIVEC, SPE, NO-SPE, IBMLONGDOUBLE, IEEELONGDOUBLE. ! '-mabi=spe' Extend the current ABI with SPE ABI extensions. This does not change the default ABI, instead it adds the SPE ABI extensions to the current ABI. ! '-mabi=no-spe' Disable Book-E SPE ABI extensions for the current ABI. ! '-mabi=ibmlongdouble' Change the current ABI to use IBM extended-precision long double. This is a PowerPC 32-bit SYSV ABI option. ! '-mabi=ieeelongdouble' Change the current ABI to use IEEE extended-precision long double. This is a PowerPC 32-bit Linux ABI option. ! '-mprototype' ! '-mno-prototype' On System V.4 and embedded PowerPC systems assume that all calls to variable argument functions are properly prototyped. Otherwise, ! the compiler must insert an instruction before every non-prototyped ! call to set or clear bit 6 of the condition code register (CR) to ! indicate whether floating-point values are passed in the ! floating-point registers in case the function takes variable ! arguments. With '-mprototype', only calls to prototyped variable ! argument functions set or clear the bit. ! '-msim' On embedded PowerPC systems, assume that the startup module is ! called 'sim-crt0.o' and that the standard C libraries are ! 'libsim.a' and 'libc.a'. This is the default for ! 'powerpc-*-eabisim' configurations. ! '-mmvme' On embedded PowerPC systems, assume that the startup module is ! called 'crt0.o' and the standard C libraries are 'libmvme.a' and ! 'libc.a'. ! '-mads' On embedded PowerPC systems, assume that the startup module is ! called 'crt0.o' and the standard C libraries are 'libads.a' and ! 'libc.a'. ! '-myellowknife' On embedded PowerPC systems, assume that the startup module is ! called 'crt0.o' and the standard C libraries are 'libyk.a' and ! 'libc.a'. ! '-mvxworks' On System V.4 and embedded PowerPC systems, specify that you are compiling for a VxWorks system. ! '-memb' On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags ! header to indicate that 'eabi' extended relocations are used. ! '-meabi' ! '-mno-eabi' On System V.4 and embedded PowerPC systems do (do not) adhere to the Embedded Applications Binary Interface (EABI), which is a set of modifications to the System V.4 specifications. Selecting ! '-meabi' means that the stack is aligned to an 8-byte boundary, a ! function '__eabi' is called from 'main' to set up the EABI ! environment, and the '-msdata' option can use both 'r2' and 'r13' ! to point to two separate small data areas. Selecting '-mno-eabi' means that the stack is aligned to a 16-byte boundary, no EABI ! initialization function is called from 'main', and the '-msdata' ! option only uses 'r13' to point to a single small data area. The ! '-meabi' option is on by default if you configured GCC using one of ! the 'powerpc*-*-eabi*' options. ! '-msdata=eabi' On System V.4 and embedded PowerPC systems, put small initialized ! 'const' global and static data in the '.sdata2' section, which is ! pointed to by register 'r2'. Put small initialized non-'const' ! global and static data in the '.sdata' section, which is pointed to ! by register 'r13'. Put small uninitialized global and static data ! in the '.sbss' section, which is adjacent to the '.sdata' section. ! The '-msdata=eabi' option is incompatible with the '-mrelocatable' ! option. The '-msdata=eabi' option also sets the '-memb' option. ! '-msdata=sysv' On System V.4 and embedded PowerPC systems, put small global and ! static data in the '.sdata' section, which is pointed to by ! register 'r13'. Put small uninitialized global and static data in ! the '.sbss' section, which is adjacent to the '.sdata' section. ! The '-msdata=sysv' option is incompatible with the '-mrelocatable' option. ! '-msdata=default' ! '-msdata' ! On System V.4 and embedded PowerPC systems, if '-meabi' is used, ! compile code the same as '-msdata=eabi', otherwise compile code the ! same as '-msdata=sysv'. ! '-msdata=data' On System V.4 and embedded PowerPC systems, put small global data ! in the '.sdata' section. Put small uninitialized global data in ! the '.sbss' section. Do not use register 'r13' to address small ! data however. This is the default behavior unless other '-msdata' options are used. ! '-msdata=none' ! '-mno-sdata' On embedded PowerPC systems, put all initialized global and static ! data in the '.data' section, and all uninitialized data in the ! '.bss' section. ! '-mblock-move-inline-limit=NUM' ! Inline all block moves (such as calls to 'memcpy' or structure ! copies) less than or equal to NUM bytes. The minimum value for NUM ! is 32 bytes on 32-bit targets and 64 bytes on 64-bit targets. The ! default value is target-specific. ! '-G NUM' On embedded PowerPC systems, put global and static items less than or equal to NUM bytes into the small data or BSS sections instead ! of the normal data or BSS section. By default, NUM is 8. The '-G NUM' switch is also passed to the linker. All modules should be ! compiled with the same '-G NUM' value. ! '-mregnames' ! '-mno-regnames' On System V.4 and embedded PowerPC systems do (do not) emit register names in the assembly language output using symbolic forms. ! '-mlongcall' ! '-mno-longcall' By default assume that all calls are far away so that a longer and more expensive calling sequence is required. This is required for ! calls farther than 32 megabytes (33,554,432 bytes) from the current ! location. A short call is generated if the compiler knows the call ! cannot be that far away. This setting can be overridden by the ! 'shortcall' function attribute, or by '#pragma longcall(0)'. Some linkers are capable of detecting out-of-range calls and generating glue code on the fly. On these systems, long calls are *************** These `-m' options are defined for the I *** 16870,16884 **** planned to add this feature to the GNU linker for 32-bit PowerPC systems as well. ! On Darwin/PPC systems, `#pragma longcall' generates `jbsr callee, ! L42', plus a "branch island" (glue code). The two target ! addresses represent the callee and the branch island. The ! Darwin/PPC linker prefers the first address and generates a `bl ! callee' if the PPC `bl' instruction reaches the callee directly; ! otherwise, the linker generates `bl L42' to call the branch ! island. The branch island is appended to the body of the calling ! function; it computes the full 32-bit address of the callee and ! jumps to it. On Mach-O (Darwin) systems, this option directs the compiler emit to the glue for every direct call, and the Darwin linker decides --- 16779,16792 ---- planned to add this feature to the GNU linker for 32-bit PowerPC systems as well. ! On Darwin/PPC systems, '#pragma longcall' generates 'jbsr callee, ! L42', plus a "branch island" (glue code). The two target addresses ! represent the callee and the branch island. The Darwin/PPC linker ! prefers the first address and generates a 'bl callee' if the PPC ! 'bl' instruction reaches the callee directly; otherwise, the linker ! generates 'bl L42' to call the branch island. The branch island is ! appended to the body of the calling function; it computes the full ! 32-bit address of the callee and jumps to it. On Mach-O (Darwin) systems, this option directs the compiler emit to the glue for every direct call, and the Darwin linker decides *************** These `-m' options are defined for the I *** 16887,16996 **** In the future, GCC may ignore all longcall specifications when the linker is known to generate glue. ! `-mtls-markers' ! `-mno-tls-markers' ! Mark (do not mark) calls to `__tls_get_addr' with a relocation ! specifying the function argument. The relocation allows the ! linker to reliably associate function call with argument setup instructions for TLS optimization, which in turn allows GCC to better schedule the sequence. ! `-pthread' Adds support for multithreading with the "pthreads" library. This option sets flags for both the preprocessor and linker. ! `-mrecip' ! `-mno-recip' This option enables use of the reciprocal estimate and reciprocal square root estimate instructions with additional Newton-Raphson steps to increase precision instead of doing a divide or square root and divide for floating-point arguments. You should use the ! `-ffast-math' option when using `-mrecip' (or at least ! `-funsafe-math-optimizations', `-finite-math-only', ! `-freciprocal-math' and `-fno-trapping-math'). Note that while ! the throughput of the sequence is generally higher than the ! throughput of the non-reciprocal instruction, the precision of the ! sequence can be decreased by up to 2 ulp (i.e. the inverse of 1.0 ! equals 0.99999994) for reciprocal square roots. ! `-mrecip=OPT' This option controls which reciprocal estimate instructions may be used. OPT is a comma-separated list of options, which may be ! preceded by a `!' to invert the option: `all': enable all estimate ! instructions, `default': enable the default instructions, ! equivalent to `-mrecip', `none': disable all estimate ! instructions, equivalent to `-mno-recip'; `div': enable the ! reciprocal approximation instructions for both single and double ! precision; `divf': enable the single-precision reciprocal ! approximation instructions; `divd': enable the double-precision ! reciprocal approximation instructions; `rsqrt': enable the ! reciprocal square root approximation instructions for both single ! and double precision; `rsqrtf': enable the single-precision ! reciprocal square root approximation instructions; `rsqrtd': ! enable the double-precision reciprocal square root approximation ! instructions; ! So, for example, `-mrecip=all,!rsqrtd' enables all of the ! reciprocal estimate instructions, except for the `FRSQRTE', ! `XSRSQRTEDP', and `XVRSQRTEDP' instructions which handle the double-precision reciprocal square root calculations. ! `-mrecip-precision' ! `-mno-recip-precision' Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the PowerPC ! ABI. Selecting `-mcpu=power6', `-mcpu=power7' or `-mcpu=power8' ! automatically selects `-mrecip-precision'. The double-precision square root estimate instructions are not generated by default on low-precision machines, since they do not provide an estimate that converges after three steps. ! `-mveclibabi=TYPE' Specifies the ABI type to use for vectorizing intrinsics using an ! external library. The only type supported at present is `mass', which specifies to use IBM's Mathematical Acceleration Subsystem (MASS) libraries for vectorizing intrinsics using external ! libraries. GCC currently emits calls to `acosd2', `acosf4', ! `acoshd2', `acoshf4', `asind2', `asinf4', `asinhd2', `asinhf4', ! `atan2d2', `atan2f4', `atand2', `atanf4', `atanhd2', `atanhf4', ! `cbrtd2', `cbrtf4', `cosd2', `cosf4', `coshd2', `coshf4', ! `erfcd2', `erfcf4', `erfd2', `erff4', `exp2d2', `exp2f4', `expd2', ! `expf4', `expm1d2', `expm1f4', `hypotd2', `hypotf4', `lgammad2', ! `lgammaf4', `log10d2', `log10f4', `log1pd2', `log1pf4', `log2d2', ! `log2f4', `logd2', `logf4', `powd2', `powf4', `sind2', `sinf4', ! `sinhd2', `sinhf4', `sqrtd2', `sqrtf4', `tand2', `tanf4', ! `tanhd2', and `tanhf4' when generating code for power7. Both ! `-ftree-vectorize' and `-funsafe-math-optimizations' must also be ! enabled. The MASS libraries must be specified at link time. ! `-mfriz' ! `-mno-friz' ! Generate (do not generate) the `friz' instruction when the ! `-funsafe-math-optimizations' option is used to optimize rounding of floating-point values to 64-bit integer and back to floating ! point. The `friz' instruction does not return the same value if the floating-point number is too large to fit in an integer. ! `-mpointers-to-nested-functions' ! `-mno-pointers-to-nested-functions' Generate (do not generate) code to load up the static chain register (R11) when calling through a pointer on AIX and 64-bit Linux systems where a function pointer points to a 3-word descriptor giving the function address, TOC value to be loaded in register R2, and static chain value to be loaded in register R11. ! The `-mpointers-to-nested-functions' is on by default. You cannot call through pointers to nested functions or pointers to functions compiled in other languages that use the static chain if you use ! the `-mno-pointers-to-nested-functions'. ! `-msave-toc-indirect' ! `-mno-save-toc-indirect' Generate (do not generate) code to save the TOC value in the reserved stack location in the function prologue if the function calls through a pointer on AIX and 64-bit Linux systems. If the ! TOC value is not saved in the prologue, it is saved just before ! the call through the pointer. The `-mno-save-toc-indirect' option ! is the default.  File: gcc.info, Node: RX Options, Next: S/390 and zSeries Options, Prev: RS/6000 and PowerPC Options, Up: Submodel Options --- 16795,16903 ---- In the future, GCC may ignore all longcall specifications when the linker is known to generate glue. ! '-mtls-markers' ! '-mno-tls-markers' ! Mark (do not mark) calls to '__tls_get_addr' with a relocation ! specifying the function argument. The relocation allows the linker ! to reliably associate function call with argument setup instructions for TLS optimization, which in turn allows GCC to better schedule the sequence. ! '-pthread' Adds support for multithreading with the "pthreads" library. This option sets flags for both the preprocessor and linker. ! '-mrecip' ! '-mno-recip' This option enables use of the reciprocal estimate and reciprocal square root estimate instructions with additional Newton-Raphson steps to increase precision instead of doing a divide or square root and divide for floating-point arguments. You should use the ! '-ffast-math' option when using '-mrecip' (or at least ! '-funsafe-math-optimizations', '-finite-math-only', ! '-freciprocal-math' and '-fno-trapping-math'). Note that while the ! throughput of the sequence is generally higher than the throughput ! of the non-reciprocal instruction, the precision of the sequence ! can be decreased by up to 2 ulp (i.e. the inverse of 1.0 equals ! 0.99999994) for reciprocal square roots. ! '-mrecip=OPT' This option controls which reciprocal estimate instructions may be used. OPT is a comma-separated list of options, which may be ! preceded by a '!' to invert the option: 'all': enable all estimate ! instructions, 'default': enable the default instructions, ! equivalent to '-mrecip', 'none': disable all estimate instructions, ! equivalent to '-mno-recip'; 'div': enable the reciprocal ! approximation instructions for both single and double precision; ! 'divf': enable the single-precision reciprocal approximation ! instructions; 'divd': enable the double-precision reciprocal ! approximation instructions; 'rsqrt': enable the reciprocal square ! root approximation instructions for both single and double ! precision; 'rsqrtf': enable the single-precision reciprocal square ! root approximation instructions; 'rsqrtd': enable the ! double-precision reciprocal square root approximation instructions; ! So, for example, '-mrecip=all,!rsqrtd' enables all of the ! reciprocal estimate instructions, except for the 'FRSQRTE', ! 'XSRSQRTEDP', and 'XVRSQRTEDP' instructions which handle the double-precision reciprocal square root calculations. ! '-mrecip-precision' ! '-mno-recip-precision' Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the PowerPC ! ABI. Selecting '-mcpu=power6', '-mcpu=power7' or '-mcpu=power8' ! automatically selects '-mrecip-precision'. The double-precision square root estimate instructions are not generated by default on low-precision machines, since they do not provide an estimate that converges after three steps. ! '-mveclibabi=TYPE' Specifies the ABI type to use for vectorizing intrinsics using an ! external library. The only type supported at present is 'mass', which specifies to use IBM's Mathematical Acceleration Subsystem (MASS) libraries for vectorizing intrinsics using external ! libraries. GCC currently emits calls to 'acosd2', 'acosf4', ! 'acoshd2', 'acoshf4', 'asind2', 'asinf4', 'asinhd2', 'asinhf4', ! 'atan2d2', 'atan2f4', 'atand2', 'atanf4', 'atanhd2', 'atanhf4', ! 'cbrtd2', 'cbrtf4', 'cosd2', 'cosf4', 'coshd2', 'coshf4', 'erfcd2', ! 'erfcf4', 'erfd2', 'erff4', 'exp2d2', 'exp2f4', 'expd2', 'expf4', ! 'expm1d2', 'expm1f4', 'hypotd2', 'hypotf4', 'lgammad2', 'lgammaf4', ! 'log10d2', 'log10f4', 'log1pd2', 'log1pf4', 'log2d2', 'log2f4', ! 'logd2', 'logf4', 'powd2', 'powf4', 'sind2', 'sinf4', 'sinhd2', ! 'sinhf4', 'sqrtd2', 'sqrtf4', 'tand2', 'tanf4', 'tanhd2', and ! 'tanhf4' when generating code for power7. Both '-ftree-vectorize' ! and '-funsafe-math-optimizations' must also be enabled. The MASS ! libraries must be specified at link time. ! '-mfriz' ! '-mno-friz' ! Generate (do not generate) the 'friz' instruction when the ! '-funsafe-math-optimizations' option is used to optimize rounding of floating-point values to 64-bit integer and back to floating ! point. The 'friz' instruction does not return the same value if the floating-point number is too large to fit in an integer. ! '-mpointers-to-nested-functions' ! '-mno-pointers-to-nested-functions' Generate (do not generate) code to load up the static chain register (R11) when calling through a pointer on AIX and 64-bit Linux systems where a function pointer points to a 3-word descriptor giving the function address, TOC value to be loaded in register R2, and static chain value to be loaded in register R11. ! The '-mpointers-to-nested-functions' is on by default. You cannot call through pointers to nested functions or pointers to functions compiled in other languages that use the static chain if you use ! the '-mno-pointers-to-nested-functions'. ! '-msave-toc-indirect' ! '-mno-save-toc-indirect' Generate (do not generate) code to save the TOC value in the reserved stack location in the function prologue if the function calls through a pointer on AIX and 64-bit Linux systems. If the ! TOC value is not saved in the prologue, it is saved just before the ! call through the pointer. The '-mno-save-toc-indirect' option is ! the default.  File: gcc.info, Node: RX Options, Next: S/390 and zSeries Options, Prev: RS/6000 and PowerPC Options, Up: Submodel Options *************** File: gcc.info, Node: RX Options, Next *** 17000,17050 **** These command-line options are defined for RX targets: ! `-m64bit-doubles' ! `-m32bit-doubles' ! Make the `double' data type be 64 bits (`-m64bit-doubles') or 32 ! bits (`-m32bit-doubles') in size. The default is ! `-m32bit-doubles'. _Note_ RX floating-point hardware only works ! on 32-bit values, which is why the default is `-m32bit-doubles'. ! `-fpu' ! `-nofpu' ! Enables (`-fpu') or disables (`-nofpu') the use of RX floating-point hardware. The default is enabled for the RX600 series and disabled for the RX200 series. Floating-point instructions are only generated for 32-bit ! floating-point values, however, so the FPU hardware is not used ! for doubles if the `-m64bit-doubles' option is used. ! _Note_ If the `-fpu' option is enabled then ! `-funsafe-math-optimizations' is also enabled automatically. This is because the RX FPU instructions are themselves unsafe. ! `-mcpu=NAME' Selects the type of RX CPU to be targeted. Currently three types are supported, the generic RX600 and RX200 series hardware and the ! specific RX610 CPU. The default is RX600. The only difference between RX600 and RX610 is that the RX610 does ! not support the `MVTIPL' instruction. The RX200 series does not have a hardware floating-point unit and ! so `-nofpu' is enabled by default when this type is selected. ! `-mbig-endian-data' ! `-mlittle-endian-data' Store data (but not code) in the big-endian format. The default is ! `-mlittle-endian-data', i.e. to store data in the little-endian format. ! `-msmall-data-limit=N' Specifies the maximum size in bytes of global and static variables which can be placed into the small data area. Using the small data area can lead to smaller and faster code, but the size of area is limited and it is up to the programmer to ensure that the area does not overflow. Also when the small data area is used one of the ! RX's registers (usually `r13') is reserved for use pointing to this area, so it is no longer available for use by the compiler. This could result in slower and/or larger code if variables are pushed onto the stack instead of being held in this register. --- 16907,16957 ---- These command-line options are defined for RX targets: ! '-m64bit-doubles' ! '-m32bit-doubles' ! Make the 'double' data type be 64 bits ('-m64bit-doubles') or 32 ! bits ('-m32bit-doubles') in size. The default is ! '-m32bit-doubles'. _Note_ RX floating-point hardware only works on ! 32-bit values, which is why the default is '-m32bit-doubles'. ! '-fpu' ! '-nofpu' ! Enables ('-fpu') or disables ('-nofpu') the use of RX floating-point hardware. The default is enabled for the RX600 series and disabled for the RX200 series. Floating-point instructions are only generated for 32-bit ! floating-point values, however, so the FPU hardware is not used for ! doubles if the '-m64bit-doubles' option is used. ! _Note_ If the '-fpu' option is enabled then ! '-funsafe-math-optimizations' is also enabled automatically. This is because the RX FPU instructions are themselves unsafe. ! '-mcpu=NAME' Selects the type of RX CPU to be targeted. Currently three types are supported, the generic RX600 and RX200 series hardware and the ! specific RX610 CPU. The default is RX600. The only difference between RX600 and RX610 is that the RX610 does ! not support the 'MVTIPL' instruction. The RX200 series does not have a hardware floating-point unit and ! so '-nofpu' is enabled by default when this type is selected. ! '-mbig-endian-data' ! '-mlittle-endian-data' Store data (but not code) in the big-endian format. The default is ! '-mlittle-endian-data', i.e. to store data in the little-endian format. ! '-msmall-data-limit=N' Specifies the maximum size in bytes of global and static variables which can be placed into the small data area. Using the small data area can lead to smaller and faster code, but the size of area is limited and it is up to the programmer to ensure that the area does not overflow. Also when the small data area is used one of the ! RX's registers (usually 'r13') is reserved for use pointing to this area, so it is no longer available for use by the compiler. This could result in slower and/or larger code if variables are pushed onto the stack instead of being held in this register. *************** These command-line options are defined f *** 17055,17079 **** The default value is zero, which disables this feature. Note, this feature is not enabled by default with higher optimization levels ! (`-O2' etc) because of the potentially detrimental effects of reserving a register. It is up to the programmer to experiment and discover whether this feature is of benefit to their program. See ! the description of the `-mpid' option for a description of how the actual register to hold the small data area pointer is chosen. ! `-msim' ! `-mno-sim' Use the simulator runtime. The default is to use the libgloss board-specific runtime. ! `-mas100-syntax' ! `-mno-as100-syntax' When generating assembler output use a syntax that is compatible ! with Renesas's AS100 assembler. This syntax can also be handled ! by the GAS assembler, but it has some restrictions so it is not generated by default. ! `-mmax-constant-size=N' Specifies the maximum size, in bytes, of a constant that can be used as an operand in a RX instruction. Although the RX instruction set does allow constants of up to 4 bytes in length to --- 16962,16986 ---- The default value is zero, which disables this feature. Note, this feature is not enabled by default with higher optimization levels ! ('-O2' etc) because of the potentially detrimental effects of reserving a register. It is up to the programmer to experiment and discover whether this feature is of benefit to their program. See ! the description of the '-mpid' option for a description of how the actual register to hold the small data area pointer is chosen. ! '-msim' ! '-mno-sim' Use the simulator runtime. The default is to use the libgloss board-specific runtime. ! '-mas100-syntax' ! '-mno-as100-syntax' When generating assembler output use a syntax that is compatible ! with Renesas's AS100 assembler. This syntax can also be handled by ! the GAS assembler, but it has some restrictions so it is not generated by default. ! '-mmax-constant-size=N' Specifies the maximum size, in bytes, of a constant that can be used as an operand in a RX instruction. Although the RX instruction set does allow constants of up to 4 bytes in length to *************** These command-line options are defined f *** 17086,17114 **** The value N can be between 0 and 4. A value of 0 (the default) or 4 means that constants of any size are allowed. ! `-mrelax' Enable linker relaxation. Linker relaxation is a process whereby the linker attempts to reduce the size of a program by finding shorter versions of various instructions. Disabled by default. ! `-mint-register=N' Specify the number of registers to reserve for fast interrupt ! handler functions. The value N can be between 0 and 4. A value ! of 1 means that register `r13' is reserved for the exclusive use ! of fast interrupt handlers. A value of 2 reserves `r13' and ! `r12'. A value of 3 reserves `r13', `r12' and `r11', and a value ! of 4 reserves `r13' through `r10'. A value of 0, the default, ! does not reserve any registers. ! `-msave-acc-in-interrupts' Specifies that interrupt handler functions should preserve the accumulator register. This is only necessary if normal code might use the accumulator register, for example because it performs 64-bit multiplications. The default is to ignore the accumulator as this makes the interrupt handlers faster. ! `-mpid' ! `-mno-pid' Enables the generation of position independent data. When enabled any access to constant data is done via an offset from a base address held in a register. This allows the location of constant --- 16993,17021 ---- The value N can be between 0 and 4. A value of 0 (the default) or 4 means that constants of any size are allowed. ! '-mrelax' Enable linker relaxation. Linker relaxation is a process whereby the linker attempts to reduce the size of a program by finding shorter versions of various instructions. Disabled by default. ! '-mint-register=N' Specify the number of registers to reserve for fast interrupt ! handler functions. The value N can be between 0 and 4. A value of ! 1 means that register 'r13' is reserved for the exclusive use of ! fast interrupt handlers. A value of 2 reserves 'r13' and 'r12'. A ! value of 3 reserves 'r13', 'r12' and 'r11', and a value of 4 ! reserves 'r13' through 'r10'. A value of 0, the default, does not ! reserve any registers. ! '-msave-acc-in-interrupts' Specifies that interrupt handler functions should preserve the accumulator register. This is only necessary if normal code might use the accumulator register, for example because it performs 64-bit multiplications. The default is to ignore the accumulator as this makes the interrupt handlers faster. ! '-mpid' ! '-mno-pid' Enables the generation of position independent data. When enabled any access to constant data is done via an offset from a base address held in a register. This allows the location of constant *************** These command-line options are defined f *** 17117,17153 **** tight memory constraints. Data that can be modified is not affected by this option. ! Note, using this feature reserves a register, usually `r13', for the constant data base address. This can result in slower and/or larger code, especially in complicated functions. The actual register chosen to hold the constant data base address ! depends upon whether the `-msmall-data-limit' and/or the ! `-mint-register' command-line options are enabled. Starting with ! register `r13' and proceeding downwards, registers are allocated ! first to satisfy the requirements of `-mint-register', then ! `-mpid' and finally `-msmall-data-limit'. Thus it is possible for ! the small data area register to be `r8' if both `-mint-register=4' ! and `-mpid' are specified on the command line. By default this feature is not enabled. The default can be ! restored via the `-mno-pid' command-line option. ! `-mno-warn-multiple-fast-interrupts' ! `-mwarn-multiple-fast-interrupts' Prevents GCC from issuing a warning message if it finds more than one fast interrupt handler when it is compiling a file. The ! default is to issue a warning for each extra fast interrupt ! handler found, as the RX only supports one such interrupt. ! ! _Note:_ The generic GCC command-line option `-ffixed-REG' has special ! significance to the RX port when used with the `interrupt' function ! attribute. This attribute indicates a function intended to process ! fast interrupts. GCC ensures that it only uses the registers `r10', ! `r11', `r12' and/or `r13' and only provided that the normal use of the ! corresponding registers have been restricted via the `-ffixed-REG' or ! `-mint-register' command-line options.  File: gcc.info, Node: S/390 and zSeries Options, Next: Score Options, Prev: RX Options, Up: Submodel Options --- 17024,17059 ---- tight memory constraints. Data that can be modified is not affected by this option. ! Note, using this feature reserves a register, usually 'r13', for the constant data base address. This can result in slower and/or larger code, especially in complicated functions. The actual register chosen to hold the constant data base address ! depends upon whether the '-msmall-data-limit' and/or the ! '-mint-register' command-line options are enabled. Starting with ! register 'r13' and proceeding downwards, registers are allocated ! first to satisfy the requirements of '-mint-register', then '-mpid' ! and finally '-msmall-data-limit'. Thus it is possible for the ! small data area register to be 'r8' if both '-mint-register=4' and ! '-mpid' are specified on the command line. By default this feature is not enabled. The default can be ! restored via the '-mno-pid' command-line option. ! '-mno-warn-multiple-fast-interrupts' ! '-mwarn-multiple-fast-interrupts' Prevents GCC from issuing a warning message if it finds more than one fast interrupt handler when it is compiling a file. The ! default is to issue a warning for each extra fast interrupt handler ! found, as the RX only supports one such interrupt. ! _Note:_ The generic GCC command-line option '-ffixed-REG' has special ! significance to the RX port when used with the 'interrupt' function ! attribute. This attribute indicates a function intended to process fast ! interrupts. GCC ensures that it only uses the registers 'r10', 'r11', ! 'r12' and/or 'r13' and only provided that the normal use of the ! corresponding registers have been restricted via the '-ffixed-REG' or ! '-mint-register' command-line options.  File: gcc.info, Node: S/390 and zSeries Options, Next: Score Options, Prev: RX Options, Up: Submodel Options *************** File: gcc.info, Node: S/390 and zSeries *** 17155,17325 **** 3.17.36 S/390 and zSeries Options --------------------------------- ! These are the `-m' options defined for the S/390 and zSeries architecture. ! `-mhard-float' ! `-msoft-float' Use (do not use) the hardware floating-point instructions and ! registers for floating-point operations. When `-msoft-float' is ! specified, functions in `libgcc.a' are used to perform ! floating-point operations. When `-mhard-float' is specified, the compiler generates IEEE floating-point instructions. This is the default. ! `-mhard-dfp' ! `-mno-hard-dfp' Use (do not use) the hardware decimal-floating-point instructions ! for decimal-floating-point operations. When `-mno-hard-dfp' is ! specified, functions in `libgcc.a' are used to perform ! decimal-floating-point operations. When `-mhard-dfp' is ! specified, the compiler generates decimal-floating-point hardware ! instructions. This is the default for `-march=z9-ec' or higher. ! `-mlong-double-64' ! `-mlong-double-128' ! These switches control the size of `long double' type. A size of ! 64 bits makes the `long double' type equivalent to the `double' ! type. This is the default. ! `-mbackchain' ! `-mno-backchain' ! Store (do not store) the address of the caller's frame as ! backchain pointer into the callee's stack frame. A backchain may ! be needed to allow debugging using tools that do not understand ! DWARF 2 call frame information. When `-mno-packed-stack' is in ! effect, the backchain pointer is stored at the bottom of the stack ! frame; when `-mpacked-stack' is in effect, the backchain is placed ! into the topmost word of the 96/160 byte register save area. ! In general, code compiled with `-mbackchain' is call-compatible ! with code compiled with `-mmo-backchain'; however, use of the backchain for debugging purposes usually requires that the whole ! binary is built with `-mbackchain'. Note that the combination of ! `-mbackchain', `-mpacked-stack' and `-mhard-float' is not ! supported. In order to build a linux kernel use `-msoft-float'. The default is to not maintain the backchain. ! `-mpacked-stack' ! `-mno-packed-stack' ! Use (do not use) the packed stack layout. When ! `-mno-packed-stack' is specified, the compiler uses the all fields ! of the 96/160 byte register save area only for their default ! purpose; unused fields still take up stack space. When ! `-mpacked-stack' is specified, register save slots are densely ! packed at the top of the register save area; unused space is ! reused for other purposes, allowing for more efficient use of the ! available stack space. However, when `-mbackchain' is also in ! effect, the topmost word of the save area is always used to store ! the backchain, and the return address register is always saved two ! words below the backchain. As long as the stack frame backchain is not used, code generated ! with `-mpacked-stack' is call-compatible with code generated with ! `-mno-packed-stack'. Note that some non-FSF releases of GCC 2.95 for S/390 or zSeries generated code that uses the stack frame backchain at run time, not just for debugging purposes. Such code ! is not call-compatible with code compiled with `-mpacked-stack'. ! Also, note that the combination of `-mbackchain', `-mpacked-stack' ! and `-mhard-float' is not supported. In order to build a linux ! kernel use `-msoft-float'. The default is to not use the packed stack layout. ! `-msmall-exec' ! `-mno-small-exec' ! Generate (or do not generate) code using the `bras' instruction to do subroutine calls. This only works reliably if the total executable size does not exceed 64k. The default is to use the ! `basr' instruction instead, which does not have this limitation. ! `-m64' ! `-m31' ! When `-m31' is specified, generate code compliant to the GNU/Linux ! for S/390 ABI. When `-m64' is specified, generate code compliant ! to the GNU/Linux for zSeries ABI. This allows GCC in particular ! to generate 64-bit instructions. For the `s390' targets, the ! default is `-m31', while the `s390x' targets default to `-m64'. ! `-mzarch' ! `-mesa' ! When `-mzarch' is specified, generate code using the instructions ! available on z/Architecture. When `-mesa' is specified, generate code using the instructions available on ESA/390. Note that ! `-mesa' is not possible with `-m64'. When generating code ! compliant to the GNU/Linux for S/390 ABI, the default is `-mesa'. When generating code compliant to the GNU/Linux for zSeries ABI, ! the default is `-mzarch'. ! `-mmvcle' ! `-mno-mvcle' ! Generate (or do not generate) code using the `mvcle' instruction ! to perform block moves. When `-mno-mvcle' is specified, use a ! `mvc' loop instead. This is the default unless optimizing for ! size. ! `-mdebug' ! `-mno-debug' Print (or do not print) additional debug information when compiling. The default is to not print debug information. ! `-march=CPU-TYPE' Generate code that runs on CPU-TYPE, which is the name of a system representing a certain processor type. Possible values for ! CPU-TYPE are `g5', `g6', `z900', `z990', `z9-109', `z9-ec' and ! `z10'. When generating code using the instructions available on ! z/Architecture, the default is `-march=z900'. Otherwise, the ! default is `-march=g5'. ! `-mtune=CPU-TYPE' Tune to CPU-TYPE everything applicable about the generated code, ! except for the ABI and the set of available instructions. The ! list of CPU-TYPE values is the same as for `-march'. The default ! is the value used for `-march'. ! `-mtpf-trace' ! `-mno-tpf-trace' Generate code that adds (does not add) in TPF OS specific branches to trace routines in the operating system. This option is off by default, even when compiling for the TPF OS. ! `-mfused-madd' ! `-mno-fused-madd' Generate code that uses (does not use) the floating-point multiply and accumulate instructions. These instructions are generated by default if hardware floating point is used. ! `-mwarn-framesize=FRAMESIZE' Emit a warning if the current function exceeds the given frame ! size. Because this is a compile-time check it doesn't need to be ! a real problem when the program runs. It is intended to identify functions that most probably cause a stack overflow. It is useful ! to be used in an environment with limited stack size e.g. the ! linux kernel. ! `-mwarn-dynamicstack' ! Emit a warning if the function calls `alloca' or uses dynamically-sized arrays. This is generally a bad idea with a limited stack size. ! `-mstack-guard=STACK-GUARD' ! `-mstack-size=STACK-SIZE' If these options are provided the S/390 back end emits additional instructions in the function prologue that trigger a trap if the ! stack size is STACK-GUARD bytes above the STACK-SIZE (remember ! that the stack on S/390 grows downward). If the STACK-GUARD ! option is omitted the smallest power of 2 larger than the frame ! size of the compiled function is chosen. These options are ! intended to be used to help debugging stack overflow problems. ! The additionally emitted code causes only little overhead and ! hence can also be used in production-like systems without greater ! performance degradation. The given values have to be exact powers ! of 2 and STACK-SIZE has to be greater than STACK-GUARD without ! exceeding 64k. In order to be efficient the extra code makes the ! assumption that the stack starts at an address aligned to the ! value given by STACK-SIZE. The STACK-GUARD option can only be ! used in conjunction with STACK-SIZE.  File: gcc.info, Node: Score Options, Next: SH Options, Prev: S/390 and zSeries Options, Up: Submodel Options --- 17061,17228 ---- 3.17.36 S/390 and zSeries Options --------------------------------- ! These are the '-m' options defined for the S/390 and zSeries architecture. ! '-mhard-float' ! '-msoft-float' Use (do not use) the hardware floating-point instructions and ! registers for floating-point operations. When '-msoft-float' is ! specified, functions in 'libgcc.a' are used to perform ! floating-point operations. When '-mhard-float' is specified, the compiler generates IEEE floating-point instructions. This is the default. ! '-mhard-dfp' ! '-mno-hard-dfp' Use (do not use) the hardware decimal-floating-point instructions ! for decimal-floating-point operations. When '-mno-hard-dfp' is ! specified, functions in 'libgcc.a' are used to perform ! decimal-floating-point operations. When '-mhard-dfp' is specified, ! the compiler generates decimal-floating-point hardware ! instructions. This is the default for '-march=z9-ec' or higher. ! '-mlong-double-64' ! '-mlong-double-128' ! These switches control the size of 'long double' type. A size of ! 64 bits makes the 'long double' type equivalent to the 'double' ! type. This is the default. ! '-mbackchain' ! '-mno-backchain' ! Store (do not store) the address of the caller's frame as backchain ! pointer into the callee's stack frame. A backchain may be needed ! to allow debugging using tools that do not understand DWARF 2 call ! frame information. When '-mno-packed-stack' is in effect, the ! backchain pointer is stored at the bottom of the stack frame; when ! '-mpacked-stack' is in effect, the backchain is placed into the ! topmost word of the 96/160 byte register save area. ! In general, code compiled with '-mbackchain' is call-compatible ! with code compiled with '-mmo-backchain'; however, use of the backchain for debugging purposes usually requires that the whole ! binary is built with '-mbackchain'. Note that the combination of ! '-mbackchain', '-mpacked-stack' and '-mhard-float' is not ! supported. In order to build a linux kernel use '-msoft-float'. The default is to not maintain the backchain. ! '-mpacked-stack' ! '-mno-packed-stack' ! Use (do not use) the packed stack layout. When '-mno-packed-stack' ! is specified, the compiler uses the all fields of the 96/160 byte ! register save area only for their default purpose; unused fields ! still take up stack space. When '-mpacked-stack' is specified, ! register save slots are densely packed at the top of the register ! save area; unused space is reused for other purposes, allowing for ! more efficient use of the available stack space. However, when ! '-mbackchain' is also in effect, the topmost word of the save area ! is always used to store the backchain, and the return address ! register is always saved two words below the backchain. As long as the stack frame backchain is not used, code generated ! with '-mpacked-stack' is call-compatible with code generated with ! '-mno-packed-stack'. Note that some non-FSF releases of GCC 2.95 for S/390 or zSeries generated code that uses the stack frame backchain at run time, not just for debugging purposes. Such code ! is not call-compatible with code compiled with '-mpacked-stack'. ! Also, note that the combination of '-mbackchain', '-mpacked-stack' ! and '-mhard-float' is not supported. In order to build a linux ! kernel use '-msoft-float'. The default is to not use the packed stack layout. ! '-msmall-exec' ! '-mno-small-exec' ! Generate (or do not generate) code using the 'bras' instruction to do subroutine calls. This only works reliably if the total executable size does not exceed 64k. The default is to use the ! 'basr' instruction instead, which does not have this limitation. ! '-m64' ! '-m31' ! When '-m31' is specified, generate code compliant to the GNU/Linux ! for S/390 ABI. When '-m64' is specified, generate code compliant ! to the GNU/Linux for zSeries ABI. This allows GCC in particular to ! generate 64-bit instructions. For the 's390' targets, the default ! is '-m31', while the 's390x' targets default to '-m64'. ! '-mzarch' ! '-mesa' ! When '-mzarch' is specified, generate code using the instructions ! available on z/Architecture. When '-mesa' is specified, generate code using the instructions available on ESA/390. Note that ! '-mesa' is not possible with '-m64'. When generating code ! compliant to the GNU/Linux for S/390 ABI, the default is '-mesa'. When generating code compliant to the GNU/Linux for zSeries ABI, ! the default is '-mzarch'. ! '-mmvcle' ! '-mno-mvcle' ! Generate (or do not generate) code using the 'mvcle' instruction to ! perform block moves. When '-mno-mvcle' is specified, use a 'mvc' ! loop instead. This is the default unless optimizing for size. ! '-mdebug' ! '-mno-debug' Print (or do not print) additional debug information when compiling. The default is to not print debug information. ! '-march=CPU-TYPE' Generate code that runs on CPU-TYPE, which is the name of a system representing a certain processor type. Possible values for ! CPU-TYPE are 'g5', 'g6', 'z900', 'z990', 'z9-109', 'z9-ec' and ! 'z10'. When generating code using the instructions available on ! z/Architecture, the default is '-march=z900'. Otherwise, the ! default is '-march=g5'. ! '-mtune=CPU-TYPE' Tune to CPU-TYPE everything applicable about the generated code, ! except for the ABI and the set of available instructions. The list ! of CPU-TYPE values is the same as for '-march'. The default is the ! value used for '-march'. ! '-mtpf-trace' ! '-mno-tpf-trace' Generate code that adds (does not add) in TPF OS specific branches to trace routines in the operating system. This option is off by default, even when compiling for the TPF OS. ! '-mfused-madd' ! '-mno-fused-madd' Generate code that uses (does not use) the floating-point multiply and accumulate instructions. These instructions are generated by default if hardware floating point is used. ! '-mwarn-framesize=FRAMESIZE' Emit a warning if the current function exceeds the given frame ! size. Because this is a compile-time check it doesn't need to be a ! real problem when the program runs. It is intended to identify functions that most probably cause a stack overflow. It is useful ! to be used in an environment with limited stack size e.g. the linux ! kernel. ! '-mwarn-dynamicstack' ! Emit a warning if the function calls 'alloca' or uses dynamically-sized arrays. This is generally a bad idea with a limited stack size. ! '-mstack-guard=STACK-GUARD' ! '-mstack-size=STACK-SIZE' If these options are provided the S/390 back end emits additional instructions in the function prologue that trigger a trap if the ! stack size is STACK-GUARD bytes above the STACK-SIZE (remember that ! the stack on S/390 grows downward). If the STACK-GUARD option is ! omitted the smallest power of 2 larger than the frame size of the ! compiled function is chosen. These options are intended to be used ! to help debugging stack overflow problems. The additionally ! emitted code causes only little overhead and hence can also be used ! in production-like systems without greater performance degradation. ! The given values have to be exact powers of 2 and STACK-SIZE has to ! be greater than STACK-GUARD without exceeding 64k. In order to be ! efficient the extra code makes the assumption that the stack starts ! at an address aligned to the value given by STACK-SIZE. The ! STACK-GUARD option can only be used in conjunction with STACK-SIZE.  File: gcc.info, Node: Score Options, Next: SH Options, Prev: S/390 and zSeries Options, Up: Submodel Options *************** File: gcc.info, Node: Score Options, N *** 17329,17360 **** These options are defined for Score implementations: ! `-meb' Compile code for big-endian mode. This is the default. ! `-mel' Compile code for little-endian mode. ! `-mnhwloop' ! Disable generation of `bcnz' instructions. ! `-muls' Enable generation of unaligned load and store instructions. ! `-mmac' ! Enable the use of multiply-accumulate instructions. Disabled by default. ! `-mscore5' Specify the SCORE5 as the target architecture. ! `-mscore5u' Specify the SCORE5U of the target architecture. ! `-mscore7' ! Specify the SCORE7 as the target architecture. This is the default. ! `-mscore7d' Specify the SCORE7D as the target architecture.  --- 17232,17264 ---- These options are defined for Score implementations: ! '-meb' Compile code for big-endian mode. This is the default. ! '-mel' Compile code for little-endian mode. ! '-mnhwloop' ! Disable generation of 'bcnz' instructions. ! '-muls' Enable generation of unaligned load and store instructions. ! '-mmac' ! Enable the use of multiply-accumulate instructions. Disabled by default. ! '-mscore5' Specify the SCORE5 as the target architecture. ! '-mscore5u' Specify the SCORE5U of the target architecture. ! '-mscore7' ! Specify the SCORE7 as the target architecture. This is the ! default. ! '-mscore7d' Specify the SCORE7D as the target architecture.  *************** File: gcc.info, Node: SH Options, Next *** 17363,17550 **** 3.17.38 SH Options ------------------ ! These `-m' options are defined for the SH implementations: ! `-m1' Generate code for the SH1. ! `-m2' Generate code for the SH2. ! `-m2e' Generate code for the SH2e. ! `-m2a-nofpu' ! Generate code for the SH2a without FPU, or for a SH2a-FPU in such ! a way that the floating-point unit is not used. ! `-m2a-single-only' Generate code for the SH2a-FPU, in such a way that no double-precision floating-point operations are used. ! `-m2a-single' Generate code for the SH2a-FPU assuming the floating-point unit is in single-precision mode by default. ! `-m2a' Generate code for the SH2a-FPU assuming the floating-point unit is in double-precision mode by default. ! `-m3' Generate code for the SH3. ! `-m3e' Generate code for the SH3e. ! `-m4-nofpu' Generate code for the SH4 without a floating-point unit. ! `-m4-single-only' Generate code for the SH4 with a floating-point unit that only supports single-precision arithmetic. ! `-m4-single' Generate code for the SH4 assuming the floating-point unit is in single-precision mode by default. ! `-m4' Generate code for the SH4. ! `-m4a-nofpu' Generate code for the SH4al-dsp, or for a SH4a in such a way that the floating-point unit is not used. ! `-m4a-single-only' Generate code for the SH4a, in such a way that no double-precision floating-point operations are used. ! `-m4a-single' Generate code for the SH4a assuming the floating-point unit is in single-precision mode by default. ! `-m4a' Generate code for the SH4a. ! `-m4al' ! Same as `-m4a-nofpu', except that it implicitly passes `-dsp' to the assembler. GCC doesn't generate any DSP instructions at the moment. ! `-mb' Compile code for the processor in big-endian mode. ! `-ml' Compile code for the processor in little-endian mode. ! `-mdalign' Align doubles at 64-bit boundaries. Note that this changes the calling conventions, and thus some functions from the standard C ! library do not work unless you recompile it first with `-mdalign'. ! `-mrelax' Shorten some address references at link time, when possible; uses ! the linker option `-relax'. ! `-mbigtable' ! Use 32-bit offsets in `switch' tables. The default is to use 16-bit offsets. ! `-mbitops' Enable the use of bit manipulation instructions on SH2A. ! `-mfmovd' ! Enable the use of the instruction `fmovd'. Check `-mdalign' for alignment constraints. ! `-mhitachi' Comply with the calling conventions defined by Renesas. ! `-mrenesas' Comply with the calling conventions defined by Renesas. ! `-mno-renesas' Comply with the calling conventions defined for GCC before the ! Renesas conventions were available. This option is the default ! for all targets of the SH toolchain. ! `-mnomacsave' ! Mark the `MAC' register as call-clobbered, even if `-mhitachi' is given. ! `-mieee' ! `-mno-ieee' Control the IEEE compliance of floating-point comparisons, which affects the handling of cases where the result of a comparison is ! unordered. By default `-mieee' is implicitly enabled. If ! `-ffinite-math-only' is enabled `-mno-ieee' is implicitly set, ! which results in faster floating-point greater-equal and ! less-equal comparisons. The implcit settings can be overridden by ! specifying either `-mieee' or `-mno-ieee'. ! `-minline-ic_invalidate' Inline code to invalidate instruction cache entries after setting up nested function trampolines. This option has no effect if ! `-musermode' is in effect and the selected code generation option ! (e.g. `-m4') does not allow the use of the `icbi' instruction. If the selected code generation option does not allow the use of the ! `icbi' instruction, and `-musermode' is not in effect, the inlined code manipulates the instruction cache address array directly with an associative write. This not only requires privileged mode at run time, but it also fails if the cache line had been mapped via the TLB and has become unmapped. ! `-misize' Dump instruction size and location in the assembly code. ! `-mpadstruct' This option is deprecated. It pads structures to multiple of 4 bytes, which is incompatible with the SH ABI. ! `-matomic-model=MODEL' Sets the model of atomic operations and additional parameters as a ! comma separated list. For details on the atomic built-in ! functions see *note __atomic Builtins::. The following models and ! parameters are supported: ! `none' Disable compiler generated atomic sequences and emit library calls for atomic operations. This is the default if the ! target is not `sh-*-linux*'. ! `soft-gusa' Generate GNU/Linux compatible gUSA software atomic sequences for the atomic built-in functions. The generated atomic sequences require additional support from the interrupt/exception handling code of the system and are only suitable for SH3* and SH4* single-core systems. This option ! is enabled by default when the target is `sh-*-linux*' and SH3* or SH4*. When the target is SH4A, this option will also ! partially utilize the hardware atomic instructions `movli.l' ! and `movco.l' to create more efficient code, unless `strict' is specified. ! `soft-tcb' Generate software atomic sequences that use a variable in the thread control block. This is a variation of the gUSA sequences which can also be used on SH1* and SH2* targets. ! The generated atomic sequences require additional support ! from the interrupt/exception handling code of the system and ! are only suitable for single-core systems. When using this ! model, the `gbr-offset=' parameter has to be specified as ! well. ! `soft-imask' Generate software atomic sequences that temporarily disable ! interrupts by setting `SR.IMASK = 1111'. This model works only when the program runs in privileged mode and is only ! suitable for single-core systems. Additional support from ! the interrupt/exception handling code of the system is not required. This model is enabled by default when the target is ! `sh-*-linux*' and SH1* or SH2*. ! `hard-llcs' ! Generate hardware atomic sequences using the `movli.l' and ! `movco.l' instructions only. This is only available on SH4A and is suitable for multi-core systems. Since the hardware instructions support only 32 bit atomic variables access to 8 or 16 bit variables is emulated with 32 bit accesses. Code --- 17267,17453 ---- 3.17.38 SH Options ------------------ ! These '-m' options are defined for the SH implementations: ! '-m1' Generate code for the SH1. ! '-m2' Generate code for the SH2. ! '-m2e' Generate code for the SH2e. ! '-m2a-nofpu' ! Generate code for the SH2a without FPU, or for a SH2a-FPU in such a ! way that the floating-point unit is not used. ! '-m2a-single-only' Generate code for the SH2a-FPU, in such a way that no double-precision floating-point operations are used. ! '-m2a-single' Generate code for the SH2a-FPU assuming the floating-point unit is in single-precision mode by default. ! '-m2a' Generate code for the SH2a-FPU assuming the floating-point unit is in double-precision mode by default. ! '-m3' Generate code for the SH3. ! '-m3e' Generate code for the SH3e. ! '-m4-nofpu' Generate code for the SH4 without a floating-point unit. ! '-m4-single-only' Generate code for the SH4 with a floating-point unit that only supports single-precision arithmetic. ! '-m4-single' Generate code for the SH4 assuming the floating-point unit is in single-precision mode by default. ! '-m4' Generate code for the SH4. ! '-m4a-nofpu' Generate code for the SH4al-dsp, or for a SH4a in such a way that the floating-point unit is not used. ! '-m4a-single-only' Generate code for the SH4a, in such a way that no double-precision floating-point operations are used. ! '-m4a-single' Generate code for the SH4a assuming the floating-point unit is in single-precision mode by default. ! '-m4a' Generate code for the SH4a. ! '-m4al' ! Same as '-m4a-nofpu', except that it implicitly passes '-dsp' to the assembler. GCC doesn't generate any DSP instructions at the moment. ! '-mb' Compile code for the processor in big-endian mode. ! '-ml' Compile code for the processor in little-endian mode. ! '-mdalign' Align doubles at 64-bit boundaries. Note that this changes the calling conventions, and thus some functions from the standard C ! library do not work unless you recompile it first with '-mdalign'. ! '-mrelax' Shorten some address references at link time, when possible; uses ! the linker option '-relax'. ! '-mbigtable' ! Use 32-bit offsets in 'switch' tables. The default is to use 16-bit offsets. ! '-mbitops' Enable the use of bit manipulation instructions on SH2A. ! '-mfmovd' ! Enable the use of the instruction 'fmovd'. Check '-mdalign' for alignment constraints. ! '-mhitachi' Comply with the calling conventions defined by Renesas. ! '-mrenesas' Comply with the calling conventions defined by Renesas. ! '-mno-renesas' Comply with the calling conventions defined for GCC before the ! Renesas conventions were available. This option is the default for ! all targets of the SH toolchain. ! '-mnomacsave' ! Mark the 'MAC' register as call-clobbered, even if '-mhitachi' is given. ! '-mieee' ! '-mno-ieee' Control the IEEE compliance of floating-point comparisons, which affects the handling of cases where the result of a comparison is ! unordered. By default '-mieee' is implicitly enabled. If ! '-ffinite-math-only' is enabled '-mno-ieee' is implicitly set, ! which results in faster floating-point greater-equal and less-equal ! comparisons. The implcit settings can be overridden by specifying ! either '-mieee' or '-mno-ieee'. ! '-minline-ic_invalidate' Inline code to invalidate instruction cache entries after setting up nested function trampolines. This option has no effect if ! '-musermode' is in effect and the selected code generation option ! (e.g. '-m4') does not allow the use of the 'icbi' instruction. If the selected code generation option does not allow the use of the ! 'icbi' instruction, and '-musermode' is not in effect, the inlined code manipulates the instruction cache address array directly with an associative write. This not only requires privileged mode at run time, but it also fails if the cache line had been mapped via the TLB and has become unmapped. ! '-misize' Dump instruction size and location in the assembly code. ! '-mpadstruct' This option is deprecated. It pads structures to multiple of 4 bytes, which is incompatible with the SH ABI. ! '-matomic-model=MODEL' Sets the model of atomic operations and additional parameters as a ! comma separated list. For details on the atomic built-in functions ! see *note __atomic Builtins::. The following models and parameters ! are supported: ! 'none' Disable compiler generated atomic sequences and emit library calls for atomic operations. This is the default if the ! target is not 'sh-*-linux*'. ! 'soft-gusa' Generate GNU/Linux compatible gUSA software atomic sequences for the atomic built-in functions. The generated atomic sequences require additional support from the interrupt/exception handling code of the system and are only suitable for SH3* and SH4* single-core systems. This option ! is enabled by default when the target is 'sh-*-linux*' and SH3* or SH4*. When the target is SH4A, this option will also ! partially utilize the hardware atomic instructions 'movli.l' ! and 'movco.l' to create more efficient code, unless 'strict' is specified. ! 'soft-tcb' Generate software atomic sequences that use a variable in the thread control block. This is a variation of the gUSA sequences which can also be used on SH1* and SH2* targets. ! The generated atomic sequences require additional support from ! the interrupt/exception handling code of the system and are ! only suitable for single-core systems. When using this model, ! the 'gbr-offset=' parameter has to be specified as well. ! 'soft-imask' Generate software atomic sequences that temporarily disable ! interrupts by setting 'SR.IMASK = 1111'. This model works only when the program runs in privileged mode and is only ! suitable for single-core systems. Additional support from the ! interrupt/exception handling code of the system is not required. This model is enabled by default when the target is ! 'sh-*-linux*' and SH1* or SH2*. ! 'hard-llcs' ! Generate hardware atomic sequences using the 'movli.l' and ! 'movco.l' instructions only. This is only available on SH4A and is suitable for multi-core systems. Since the hardware instructions support only 32 bit atomic variables access to 8 or 16 bit variables is emulated with 32 bit accesses. Code *************** These `-m' options are defined for the S *** 17554,17604 **** interrupt/exception handling code of the system is not required for this model. ! `gbr-offset=' This parameter specifies the offset in bytes of the variable in the thread control block structure that should be used by ! the generated atomic sequences when the `soft-tcb' model has been selected. For other models this parameter is ignored. ! The specified value must be an integer multiple of four and ! in the range 0-1020. ! `strict' ! This parameter prevents mixed usage of multiple atomic ! models, even though they would be compatible, and will make ! the compiler generate atomic sequences of the specified model only. ! ! `-mtas' ! Generate the `tas.b' opcode for `__atomic_test_and_set'. Notice that depending on the particular hardware and software configuration this can degrade overall performance due to the ! operand cache line flushes that are implied by the `tas.b' ! instruction. On multi-core SH4A processors the `tas.b' ! instruction must be used with caution since it can result in data ! corruption for certain cache configurations. ! `-mspace' ! Optimize for space instead of speed. Implied by `-Os'. ! `-mprefergot' When generating position-independent code, emit function calls using the Global Offset Table instead of the Procedure Linkage Table. ! `-musermode' Don't generate privileged mode only code. This option implies ! `-mno-inline-ic_invalidate' if the inlined code would not work in ! user mode. This is the default when the target is `sh-*-linux*'. ! `-multcost=NUMBER' Set the cost to assume for a multiply insn. ! `-mdiv=STRATEGY' Set the division strategy to be used for integer division operations. For SHmedia STRATEGY can be one of: ! `fp' Performs the operation in floating point. This has a very high latency, but needs only a few instructions, so it might be a good choice if your code has enough easily-exploitable --- 17457,17506 ---- interrupt/exception handling code of the system is not required for this model. ! 'gbr-offset=' This parameter specifies the offset in bytes of the variable in the thread control block structure that should be used by ! the generated atomic sequences when the 'soft-tcb' model has been selected. For other models this parameter is ignored. ! The specified value must be an integer multiple of four and in ! the range 0-1020. ! 'strict' ! This parameter prevents mixed usage of multiple atomic models, ! even though they would be compatible, and will make the ! compiler generate atomic sequences of the specified model only. ! '-mtas' ! Generate the 'tas.b' opcode for '__atomic_test_and_set'. Notice that depending on the particular hardware and software configuration this can degrade overall performance due to the ! operand cache line flushes that are implied by the 'tas.b' ! instruction. On multi-core SH4A processors the 'tas.b' instruction ! must be used with caution since it can result in data corruption ! for certain cache configurations. ! '-mspace' ! Optimize for space instead of speed. Implied by '-Os'. ! '-mprefergot' When generating position-independent code, emit function calls using the Global Offset Table instead of the Procedure Linkage Table. ! '-musermode' Don't generate privileged mode only code. This option implies ! '-mno-inline-ic_invalidate' if the inlined code would not work in ! user mode. This is the default when the target is 'sh-*-linux*'. ! '-multcost=NUMBER' Set the cost to assume for a multiply insn. ! '-mdiv=STRATEGY' Set the division strategy to be used for integer division operations. For SHmedia STRATEGY can be one of: ! 'fp' Performs the operation in floating point. This has a very high latency, but needs only a few instructions, so it might be a good choice if your code has enough easily-exploitable *************** These `-m' options are defined for the S *** 17606,17643 **** instructions together with other instructions. Division by zero causes a floating-point exception. ! `inv' Uses integer operations to calculate the inverse of the divisor, and then multiplies the dividend with the inverse. This strategy allows CSE and hoisting of the inverse calculation. Division by zero calculates an unspecified result, but does not trap. ! `inv:minlat' ! A variant of `inv' where, if no CSE or hoisting opportunities have been found, or if the entire operation has been hoisted to the same place, the last stages of the inverse calculation are intertwined with the final multiply to reduce the overall latency, at the expense of using a few more instructions, and thus offering fewer scheduling opportunities with other code. ! `call' Calls a library function that usually implements the ! `inv:minlat' strategy. This gives high code density for ! `m5-*media-nofpu' compilations. ! `call2' Uses a different entry point of the same library function, where it assumes that a pointer to a lookup table has already been set up, which exposes the pointer load to CSE and code hoisting optimizations. ! `inv:call' ! `inv:call2' ! `inv:fp' ! Use the `inv' algorithm for initial code generation, but if ! the code stays unoptimized, revert to the `call', `call2', or ! `fp' strategies, respectively. Note that the potentially-trapping side effect of division by zero is carried by a separate instruction, so it is possible that all the integer instructions are hoisted out, but the marker for --- 17508,17545 ---- instructions together with other instructions. Division by zero causes a floating-point exception. ! 'inv' Uses integer operations to calculate the inverse of the divisor, and then multiplies the dividend with the inverse. This strategy allows CSE and hoisting of the inverse calculation. Division by zero calculates an unspecified result, but does not trap. ! 'inv:minlat' ! A variant of 'inv' where, if no CSE or hoisting opportunities have been found, or if the entire operation has been hoisted to the same place, the last stages of the inverse calculation are intertwined with the final multiply to reduce the overall latency, at the expense of using a few more instructions, and thus offering fewer scheduling opportunities with other code. ! 'call' Calls a library function that usually implements the ! 'inv:minlat' strategy. This gives high code density for ! 'm5-*media-nofpu' compilations. ! 'call2' Uses a different entry point of the same library function, where it assumes that a pointer to a lookup table has already been set up, which exposes the pointer load to CSE and code hoisting optimizations. ! 'inv:call' ! 'inv:call2' ! 'inv:fp' ! Use the 'inv' algorithm for initial code generation, but if ! the code stays unoptimized, revert to the 'call', 'call2', or ! 'fp' strategies, respectively. Note that the potentially-trapping side effect of division by zero is carried by a separate instruction, so it is possible that all the integer instructions are hoisted out, but the marker for *************** These `-m' options are defined for the S *** 17645,17712 **** floating-point operations or a call is not possible in that case. ! `inv20u' ! `inv20l' ! Variants of the `inv:minlat' strategy. In the case that the inverse calculation is not separated from the multiply, they speed up division where the dividend fits into 20 bits (plus ! sign where applicable) by inserting a test to skip a number ! of operations in this case; this test slows down the case of ! larger dividends. `inv20u' assumes the case of a such a ! small dividend to be unlikely, and `inv20l' assumes it to be ! likely. ! For targets other than SHmedia STRATEGY can be one of: ! `call-div1' Calls a library function that uses the single-step division ! instruction `div1' to perform the operation. Division by ! zero calculates an unspecified result and does not trap. ! This is the default except for SH4, SH2A and SHcompact. ! `call-fp' ! Calls a library function that performs the operation in ! double precision floating point. Division by zero causes a floating-point exception. This is the default for SHcompact ! with FPU. Specifying this for targets that do not have a ! double precision FPU will default to `call-div1'. ! `call-table' Calls a library function that uses a lookup table for small ! divisors and the `div1' instruction with case distinction for larger divisors. Division by zero calculates an unspecified result and does not trap. This is the default for SH4. Specifying this for targets that do not have dynamic shift ! instructions will default to `call-div1'. ! When a division strategy has not been specified the default strategy will be selected based on the current target. For SH2A ! the default strategy is to use the `divs' and `divu' instructions instead of library function calls. ! `-maccumulate-outgoing-args' Reserve space once for outgoing arguments in the function prologue ! rather than around each call. Generally beneficial for ! performance and size. Also needed for unwinding to avoid changing ! the stack frame around conditional code. ! `-mdivsi3_libfunc=NAME' Set the name of the library function used for 32-bit signed ! division to NAME. This only affects the name used in the `call' ! and `inv:call' division strategies, and the compiler still expects ! the same sets of input/output/clobbered registers as if this ! option were not present. ! `-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator can not use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! `-mindexed-addressing' Enable the use of the indexed addressing mode for SHmedia32/SHcompact. This is only safe if the hardware and/or OS implement 32-bit wrap-around semantics for the indexed addressing --- 17547,17611 ---- floating-point operations or a call is not possible in that case. ! 'inv20u' ! 'inv20l' ! Variants of the 'inv:minlat' strategy. In the case that the inverse calculation is not separated from the multiply, they speed up division where the dividend fits into 20 bits (plus ! sign where applicable) by inserting a test to skip a number of ! operations in this case; this test slows down the case of ! larger dividends. 'inv20u' assumes the case of a such a small ! dividend to be unlikely, and 'inv20l' assumes it to be likely. For targets other than SHmedia STRATEGY can be one of: ! 'call-div1' Calls a library function that uses the single-step division ! instruction 'div1' to perform the operation. Division by zero ! calculates an unspecified result and does not trap. This is ! the default except for SH4, SH2A and SHcompact. ! 'call-fp' ! Calls a library function that performs the operation in double ! precision floating point. Division by zero causes a floating-point exception. This is the default for SHcompact ! with FPU. Specifying this for targets that do not have a ! double precision FPU will default to 'call-div1'. ! 'call-table' Calls a library function that uses a lookup table for small ! divisors and the 'div1' instruction with case distinction for larger divisors. Division by zero calculates an unspecified result and does not trap. This is the default for SH4. Specifying this for targets that do not have dynamic shift ! instructions will default to 'call-div1'. When a division strategy has not been specified the default strategy will be selected based on the current target. For SH2A ! the default strategy is to use the 'divs' and 'divu' instructions instead of library function calls. ! '-maccumulate-outgoing-args' Reserve space once for outgoing arguments in the function prologue ! rather than around each call. Generally beneficial for performance ! and size. Also needed for unwinding to avoid changing the stack ! frame around conditional code. ! '-mdivsi3_libfunc=NAME' Set the name of the library function used for 32-bit signed ! division to NAME. This only affects the name used in the 'call' ! and 'inv:call' division strategies, and the compiler still expects ! the same sets of input/output/clobbered registers as if this option ! were not present. ! '-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator can not use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! '-mindexed-addressing' Enable the use of the indexed addressing mode for SHmedia32/SHcompact. This is only safe if the hardware and/or OS implement 32-bit wrap-around semantics for the indexed addressing *************** These `-m' options are defined for the S *** 17714,17845 **** with 64-bit MMU, which the OS could use to get 32-bit addressing, but since no current hardware implementation supports this or any other way to make the indexed addressing mode safe to use in the ! 32-bit ABI, the default is `-mno-indexed-addressing'. ! `-mgettrcost=NUMBER' ! Set the cost assumed for the `gettr' instruction to NUMBER. The ! default is 2 if `-mpt-fixed' is in effect, 100 otherwise. ! `-mpt-fixed' ! Assume `pt*' instructions won't trap. This generally generates better-scheduled code, but is unsafe on current hardware. The ! current architecture definition says that `ptabs' and `ptrel' trap when the target anded with 3 is 3. This has the unintentional effect of making it unsafe to schedule these instructions before a branch, or hoist them out of a loop. For example, ! `__do_global_ctors', a part of `libgcc' that runs constructors at program startup, calls functions in a list which is delimited by ! -1. With the `-mpt-fixed' option, the `ptabs' is done before ! testing against -1. That means that all the constructors run a ! bit more quickly, but when the loop comes to the end of the list, ! the program crashes because `ptabs' loads -1 into a target ! register. Since this option is unsafe for any hardware implementing the ! current architecture specification, the default is ! `-mno-pt-fixed'. Unless specified explicitly with `-mgettrcost', ! `-mno-pt-fixed' also implies `-mgettrcost=100'; this deters ! register allocation from using target registers for storing ! ordinary integers. ! `-minvalid-symbols' Assume symbols might be invalid. Ordinary function symbols generated by the compiler are always valid to load with ! `movi'/`shori'/`ptabs' or `movi'/`shori'/`ptrel', but with assembler and/or linker tricks it is possible to generate symbols ! that cause `ptabs' or `ptrel' to trap. This option is only ! meaningful when `-mno-pt-fixed' is in effect. It prevents cross-basic-block CSE, hoisting and most scheduling of symbol ! loads. The default is `-mno-invalid-symbols'. ! `-mbranch-cost=NUM' Assume NUM to be the cost for a branch instruction. Higher numbers make the compiler try to generate more branch-free code if possible. If not specified the value is selected depending on the processor type that is being compiled for. ! `-mzdcbranch' ! `-mno-zdcbranch' Assume (do not assume) that zero displacement conditional branch ! instructions `bt' and `bf' are fast. If `-mzdcbranch' is ! specified, the compiler will try to prefer zero displacement ! branch code sequences. This is enabled by default when generating ! code for SH4 and SH4A. It can be explicitly disabled by ! specifying `-mno-zdcbranch'. ! `-mcbranchdi' ! Enable the `cbranchdi4' instruction pattern. ! `-mcmpeqdi' ! Emit the `cmpeqdi_t' instruction pattern even when `-mcbranchdi' ! is in effect. ! `-mfused-madd' ! `-mno-fused-madd' Generate code that uses (does not use) the floating-point multiply and accumulate instructions. These instructions are generated by default if hardware floating point is used. The machine-dependent ! `-mfused-madd' option is now mapped to the machine-independent ! `-ffp-contract=fast' option, and `-mno-fused-madd' is mapped to ! `-ffp-contract=off'. ! `-mfsca' ! `-mno-fsca' ! Allow or disallow the compiler to emit the `fsca' instruction for ! sine and cosine approximations. The option `-mfsca' must be used ! in combination with `-funsafe-math-optimizations'. It is enabled ! by default when generating code for SH4A. Using `-mno-fsca' disables sine and cosine approximations even if ! `-funsafe-math-optimizations' is in effect. ! `-mfsrra' ! `-mno-fsrra' ! Allow or disallow the compiler to emit the `fsrra' instruction for ! reciprocal square root approximations. The option `-mfsrra' must ! be used in combination with `-funsafe-math-optimizations' and ! `-ffinite-math-only'. It is enabled by default when generating ! code for SH4A. Using `-mno-fsrra' disables reciprocal square root ! approximations even if `-funsafe-math-optimizations' and ! `-ffinite-math-only' are in effect. ! `-mpretend-cmove' Prefer zero-displacement conditional branches for conditional move instruction patterns. This can result in faster code on the SH4 processor. -  File: gcc.info, Node: Solaris 2 Options, Next: SPARC Options, Prev: SH Options, Up: Submodel Options 3.17.39 Solaris 2 Options ------------------------- ! These `-m' options are supported on Solaris 2: ! `-mimpure-text' ! `-mimpure-text', used in addition to `-shared', tells the compiler ! to not pass `-z text' to the linker when linking a shared object. Using this option, you can link position-dependent code into a shared object. ! `-mimpure-text' suppresses the "relocations remain against allocatable but non-writable sections" linker error message. However, the necessary relocations trigger copy-on-write, and the shared object is not actually shared across processes. Instead of ! using `-mimpure-text', you should compile all source code with ! `-fpic' or `-fPIC'. ! These switches are supported in addition to the above on Solaris 2: ! `-pthreads' Add support for multithreading using the POSIX threads library. This option sets flags for both the preprocessor and linker. This ! option does not affect the thread safety of object code produced ! by the compiler or that of libraries supplied with it. ! `-pthread' ! This is a synonym for `-pthreads'.  File: gcc.info, Node: SPARC Options, Next: SPU Options, Prev: Solaris 2 Options, Up: Submodel Options --- 17613,17740 ---- with 64-bit MMU, which the OS could use to get 32-bit addressing, but since no current hardware implementation supports this or any other way to make the indexed addressing mode safe to use in the ! 32-bit ABI, the default is '-mno-indexed-addressing'. ! '-mgettrcost=NUMBER' ! Set the cost assumed for the 'gettr' instruction to NUMBER. The ! default is 2 if '-mpt-fixed' is in effect, 100 otherwise. ! '-mpt-fixed' ! Assume 'pt*' instructions won't trap. This generally generates better-scheduled code, but is unsafe on current hardware. The ! current architecture definition says that 'ptabs' and 'ptrel' trap when the target anded with 3 is 3. This has the unintentional effect of making it unsafe to schedule these instructions before a branch, or hoist them out of a loop. For example, ! '__do_global_ctors', a part of 'libgcc' that runs constructors at program startup, calls functions in a list which is delimited by ! -1. With the '-mpt-fixed' option, the 'ptabs' is done before ! testing against -1. That means that all the constructors run a bit ! more quickly, but when the loop comes to the end of the list, the ! program crashes because 'ptabs' loads -1 into a target register. Since this option is unsafe for any hardware implementing the ! current architecture specification, the default is '-mno-pt-fixed'. ! Unless specified explicitly with '-mgettrcost', '-mno-pt-fixed' ! also implies '-mgettrcost=100'; this deters register allocation ! from using target registers for storing ordinary integers. ! '-minvalid-symbols' Assume symbols might be invalid. Ordinary function symbols generated by the compiler are always valid to load with ! 'movi'/'shori'/'ptabs' or 'movi'/'shori'/'ptrel', but with assembler and/or linker tricks it is possible to generate symbols ! that cause 'ptabs' or 'ptrel' to trap. This option is only ! meaningful when '-mno-pt-fixed' is in effect. It prevents cross-basic-block CSE, hoisting and most scheduling of symbol ! loads. The default is '-mno-invalid-symbols'. ! '-mbranch-cost=NUM' Assume NUM to be the cost for a branch instruction. Higher numbers make the compiler try to generate more branch-free code if possible. If not specified the value is selected depending on the processor type that is being compiled for. ! '-mzdcbranch' ! '-mno-zdcbranch' Assume (do not assume) that zero displacement conditional branch ! instructions 'bt' and 'bf' are fast. If '-mzdcbranch' is ! specified, the compiler will try to prefer zero displacement branch ! code sequences. This is enabled by default when generating code ! for SH4 and SH4A. It can be explicitly disabled by specifying ! '-mno-zdcbranch'. ! '-mcbranchdi' ! Enable the 'cbranchdi4' instruction pattern. ! '-mcmpeqdi' ! Emit the 'cmpeqdi_t' instruction pattern even when '-mcbranchdi' is ! in effect. ! '-mfused-madd' ! '-mno-fused-madd' Generate code that uses (does not use) the floating-point multiply and accumulate instructions. These instructions are generated by default if hardware floating point is used. The machine-dependent ! '-mfused-madd' option is now mapped to the machine-independent ! '-ffp-contract=fast' option, and '-mno-fused-madd' is mapped to ! '-ffp-contract=off'. ! '-mfsca' ! '-mno-fsca' ! Allow or disallow the compiler to emit the 'fsca' instruction for ! sine and cosine approximations. The option '-mfsca' must be used ! in combination with '-funsafe-math-optimizations'. It is enabled ! by default when generating code for SH4A. Using '-mno-fsca' disables sine and cosine approximations even if ! '-funsafe-math-optimizations' is in effect. ! '-mfsrra' ! '-mno-fsrra' ! Allow or disallow the compiler to emit the 'fsrra' instruction for ! reciprocal square root approximations. The option '-mfsrra' must ! be used in combination with '-funsafe-math-optimizations' and ! '-ffinite-math-only'. It is enabled by default when generating ! code for SH4A. Using '-mno-fsrra' disables reciprocal square root ! approximations even if '-funsafe-math-optimizations' and ! '-ffinite-math-only' are in effect. ! '-mpretend-cmove' Prefer zero-displacement conditional branches for conditional move instruction patterns. This can result in faster code on the SH4 processor.  File: gcc.info, Node: Solaris 2 Options, Next: SPARC Options, Prev: SH Options, Up: Submodel Options 3.17.39 Solaris 2 Options ------------------------- ! These '-m' options are supported on Solaris 2: ! '-mimpure-text' ! '-mimpure-text', used in addition to '-shared', tells the compiler ! to not pass '-z text' to the linker when linking a shared object. Using this option, you can link position-dependent code into a shared object. ! '-mimpure-text' suppresses the "relocations remain against allocatable but non-writable sections" linker error message. However, the necessary relocations trigger copy-on-write, and the shared object is not actually shared across processes. Instead of ! using '-mimpure-text', you should compile all source code with ! '-fpic' or '-fPIC'. These switches are supported in addition to the above on Solaris 2: ! '-pthreads' Add support for multithreading using the POSIX threads library. This option sets flags for both the preprocessor and linker. This ! option does not affect the thread safety of object code produced by ! the compiler or that of libraries supplied with it. ! '-pthread' ! This is a synonym for '-pthreads'.  File: gcc.info, Node: SPARC Options, Next: SPU Options, Prev: Solaris 2 Options, Up: Submodel Options *************** File: gcc.info, Node: SPARC Options, N *** 17847,17904 **** 3.17.40 SPARC Options --------------------- ! These `-m' options are supported on the SPARC: ! `-mno-app-regs' ! `-mapp-regs' ! Specify `-mapp-regs' to generate output using the global registers 2 through 4, which the SPARC SVR4 ABI reserves for applications. This is the default. To be fully SVR4 ABI-compliant at the cost of some performance ! loss, specify `-mno-app-regs'. You should compile libraries and system software with this option. ! `-mflat' ! `-mno-flat' ! With `-mflat', the compiler does not generate save/restore instructions and uses a "flat" or single register window model. This model is compatible with the regular register window model. ! The local registers and the input registers (0-5) are still ! treated as "call-saved" registers and are saved on the stack as ! needed. ! With `-mno-flat' (the default), the compiler generates save/restore instructions (except for leaf functions). This is the normal operating mode. ! `-mfpu' ! `-mhard-float' Generate output containing floating-point instructions. This is the default. ! `-mno-fpu' ! `-msoft-float' Generate output containing library calls for floating point. *Warning:* the requisite libraries are not available for all SPARC ! targets. Normally the facilities of the machine's usual C ! compiler are used, but this cannot be done directly in ! cross-compilation. You must make your own arrangements to provide ! suitable library functions for cross-compilation. The embedded ! targets `sparc-*-aout' and `sparclite-*-*' do provide software floating-point support. ! `-msoft-float' changes the calling convention in the output file; therefore, it is only useful if you compile _all_ of a program with ! this option. In particular, you need to compile `libgcc.a', the ! library that comes with GCC, with `-msoft-float' in order for this to work. ! `-mhard-quad-float' Generate output containing quad-word (long double) floating-point instructions. ! `-msoft-quad-float' Generate output containing library calls for quad-word (long double) floating-point instructions. The functions called are those specified in the SPARC ABI. This is the default. --- 17742,17798 ---- 3.17.40 SPARC Options --------------------- ! These '-m' options are supported on the SPARC: ! '-mno-app-regs' ! '-mapp-regs' ! Specify '-mapp-regs' to generate output using the global registers 2 through 4, which the SPARC SVR4 ABI reserves for applications. This is the default. To be fully SVR4 ABI-compliant at the cost of some performance ! loss, specify '-mno-app-regs'. You should compile libraries and system software with this option. ! '-mflat' ! '-mno-flat' ! With '-mflat', the compiler does not generate save/restore instructions and uses a "flat" or single register window model. This model is compatible with the regular register window model. ! The local registers and the input registers (0-5) are still treated ! as "call-saved" registers and are saved on the stack as needed. ! With '-mno-flat' (the default), the compiler generates save/restore instructions (except for leaf functions). This is the normal operating mode. ! '-mfpu' ! '-mhard-float' Generate output containing floating-point instructions. This is the default. ! '-mno-fpu' ! '-msoft-float' Generate output containing library calls for floating point. *Warning:* the requisite libraries are not available for all SPARC ! targets. Normally the facilities of the machine's usual C compiler ! are used, but this cannot be done directly in cross-compilation. ! You must make your own arrangements to provide suitable library ! functions for cross-compilation. The embedded targets ! 'sparc-*-aout' and 'sparclite-*-*' do provide software floating-point support. ! '-msoft-float' changes the calling convention in the output file; therefore, it is only useful if you compile _all_ of a program with ! this option. In particular, you need to compile 'libgcc.a', the ! library that comes with GCC, with '-msoft-float' in order for this to work. ! '-mhard-quad-float' Generate output containing quad-word (long double) floating-point instructions. ! '-msoft-quad-float' Generate output containing library calls for quad-word (long double) floating-point instructions. The functions called are those specified in the SPARC ABI. This is the default. *************** These `-m' options are supported on the *** 17908,17921 **** They all invoke a trap handler for one of these instructions, and then the trap handler emulates the effect of the instruction. Because of the trap handler overhead, this is much slower than ! calling the ABI library routines. Thus the `-msoft-quad-float' option is the default. ! `-mno-unaligned-doubles' ! `-munaligned-doubles' Assume that doubles have 8-byte alignment. This is the default. ! With `-munaligned-doubles', GCC assumes that doubles have 8-byte alignment only if they are contained in another type, or if they have an absolute address. Otherwise, it assumes they have 4-byte alignment. Specifying this option avoids some rare compatibility --- 17802,17815 ---- They all invoke a trap handler for one of these instructions, and then the trap handler emulates the effect of the instruction. Because of the trap handler overhead, this is much slower than ! calling the ABI library routines. Thus the '-msoft-quad-float' option is the default. ! '-mno-unaligned-doubles' ! '-munaligned-doubles' Assume that doubles have 8-byte alignment. This is the default. ! With '-munaligned-doubles', GCC assumes that doubles have 8-byte alignment only if they are contained in another type, or if they have an absolute address. Otherwise, it assumes they have 4-byte alignment. Specifying this option avoids some rare compatibility *************** These `-m' options are supported on the *** 17923,18149 **** default because it results in a performance loss, especially for floating-point code. ! `-mno-faster-structs' ! `-mfaster-structs' ! With `-mfaster-structs', the compiler assumes that structures should have 8-byte alignment. This enables the use of pairs of ! `ldd' and `std' instructions for copies in structure assignment, ! in place of twice as many `ld' and `st' pairs. However, the use ! of this changed alignment directly violates the SPARC ABI. Thus, ! it's intended only for use on targets where the developer ! acknowledges that their resulting code is not directly in line with ! the rules of the ABI. ! `-mcpu=CPU_TYPE' Set the instruction set, register set, and instruction scheduling parameters for machine type CPU_TYPE. Supported values for ! CPU_TYPE are `v7', `cypress', `v8', `supersparc', `hypersparc', ! `leon', `sparclite', `f930', `f934', `sparclite86x', `sparclet', ! `tsc701', `v9', `ultrasparc', `ultrasparc3', `niagara', ! `niagara2', `niagara3', and `niagara4'. Native Solaris and GNU/Linux toolchains also support the value ! `native', which selects the best architecture option for the host ! processor. `-mcpu=native' has no effect if GCC does not recognize the processor. Default instruction scheduling parameters are used for values that ! select an architecture and not an implementation. These are `v7', ! `v8', `sparclite', `sparclet', `v9'. Here is a list of each supported architecture and their supported implementations. ! v7 cypress ! v8 supersparc, hypersparc, leon ! sparclite f930, f934, sparclite86x ! sparclet tsc701 ! v9 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4 By default (unless configured otherwise), GCC generates code for ! the V7 variant of the SPARC architecture. With `-mcpu=cypress', the compiler additionally optimizes it for the Cypress CY7C602 chip, as used in the SPARCStation/SPARCServer 3xx series. This is also appropriate for the older SPARCStation 1, 2, IPX etc. ! With `-mcpu=v8', GCC generates code for the V8 variant of the SPARC architecture. The only difference from V7 code is that the ! compiler emits the integer multiply and integer divide ! instructions which exist in SPARC-V8 but not in SPARC-V7. With ! `-mcpu=supersparc', the compiler additionally optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series. ! With `-mcpu=sparclite', GCC generates code for the SPARClite ! variant of the SPARC architecture. This adds the integer ! multiply, integer divide step and scan (`ffs') instructions which ! exist in SPARClite but not in SPARC-V7. With `-mcpu=f930', the ! compiler additionally optimizes it for the Fujitsu MB86930 chip, ! which is the original SPARClite, with no FPU. With `-mcpu=f934', ! the compiler additionally optimizes it for the Fujitsu MB86934 ! chip, which is the more recent SPARClite with FPU. ! With `-mcpu=sparclet', GCC generates code for the SPARClet variant of the SPARC architecture. This adds the integer multiply, ! multiply/accumulate, integer divide step and scan (`ffs') instructions which exist in SPARClet but not in SPARC-V7. With ! `-mcpu=tsc701', the compiler additionally optimizes it for the TEMIC SPARClet chip. ! With `-mcpu=v9', GCC generates code for the V9 variant of the SPARC architecture. This adds 64-bit integer and floating-point move instructions, 3 additional floating-point condition code registers ! and conditional move instructions. With `-mcpu=ultrasparc', the compiler additionally optimizes it for the Sun UltraSPARC I/II/IIi ! chips. With `-mcpu=ultrasparc3', the compiler additionally optimizes it for the Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ ! chips. With `-mcpu=niagara', the compiler additionally optimizes ! it for Sun UltraSPARC T1 chips. With `-mcpu=niagara2', the compiler additionally optimizes it for Sun UltraSPARC T2 chips. ! With `-mcpu=niagara3', the compiler additionally optimizes it for ! Sun UltraSPARC T3 chips. With `-mcpu=niagara4', the compiler additionally optimizes it for Sun UltraSPARC T4 chips. ! `-mtune=CPU_TYPE' Set the instruction scheduling parameters for machine type CPU_TYPE, but do not set the instruction set or register set that ! the option `-mcpu=CPU_TYPE' does. ! The same values for `-mcpu=CPU_TYPE' can be used for ! `-mtune=CPU_TYPE', but the only useful values are those that ! select a particular CPU implementation. Those are `cypress', ! `supersparc', `hypersparc', `leon', `f930', `f934', ! `sparclite86x', `tsc701', `ultrasparc', `ultrasparc3', `niagara', ! `niagara2', `niagara3' and `niagara4'. With native Solaris and ! GNU/Linux toolchains, `native' can also be used. ! `-mv8plus' ! `-mno-v8plus' ! With `-mv8plus', GCC generates code for the SPARC-V8+ ABI. The difference from the V8 ABI is that the global and out registers are considered 64 bits wide. This is enabled by default on Solaris in 32-bit mode for all SPARC-V9 processors. ! `-mvis' ! `-mno-vis' ! With `-mvis', GCC generates code that takes advantage of the UltraSPARC Visual Instruction Set extensions. The default is ! `-mno-vis'. ! `-mvis2' ! `-mno-vis2' ! With `-mvis2', GCC generates code that takes advantage of version 2.0 of the UltraSPARC Visual Instruction Set extensions. The ! default is `-mvis2' when targeting a cpu that supports such ! instructions, such as UltraSPARC-III and later. Setting `-mvis2' ! also sets `-mvis'. ! `-mvis3' ! `-mno-vis3' ! With `-mvis3', GCC generates code that takes advantage of version 3.0 of the UltraSPARC Visual Instruction Set extensions. The ! default is `-mvis3' when targeting a cpu that supports such ! instructions, such as niagara-3 and later. Setting `-mvis3' also ! sets `-mvis2' and `-mvis'. ! `-mcbcond' ! `-mno-cbcond' ! With `-mcbcond', GCC generates code that takes advantage of compare-and-branch instructions, as defined in the Sparc ! Architecture 2011. The default is `-mcbcond' when targeting a cpu that supports such instructions, such as niagara-4 and later. ! `-mpopc' ! `-mno-popc' ! With `-mpopc', GCC generates code that takes advantage of the ! UltraSPARC population count instruction. The default is `-mpopc' when targeting a cpu that supports such instructions, such as Niagara-2 and later. ! `-mfmaf' ! `-mno-fmaf' ! With `-mfmaf', GCC generates code that takes advantage of the UltraSPARC Fused Multiply-Add Floating-point extensions. The ! default is `-mfmaf' when targeting a cpu that supports such instructions, such as Niagara-3 and later. ! `-mfix-at697f' Enable the documented workaround for the single erratum of the Atmel AT697F processor (which corresponds to erratum #13 of the AT697E processor). ! These `-m' options are supported in addition to the above on SPARC-V9 processors in 64-bit environments: ! `-m32' ! `-m64' Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits. ! `-mcmodel=WHICH' Set the code model to one of ! `medlow' The Medium/Low code model: 64-bit addresses, programs must be linked in the low 32 bits of memory. Programs can be statically or dynamically linked. ! `medmid' The Medium/Middle code model: 64-bit addresses, programs must be linked in the low 44 bits of memory, the text and data segments must be less than 2GB in size and the data segment must be located within 2GB of the text segment. ! `medany' ! The Medium/Anywhere code model: 64-bit addresses, programs ! may be linked anywhere in memory, the text and data segments ! must be less than 2GB in size and the data segment must be ! located within 2GB of the text segment. ! `embmedany' The Medium/Anywhere code model for embedded systems: 64-bit addresses, the text and data segments must be less than 2GB in size, both starting anywhere in memory (determined at link ! time). The global register %g4 points to the base of the ! data segment. Programs are statically linked and PIC is not supported. ! `-mmemory-model=MEM-MODEL' Set the memory model in force on the processor to one of ! `default' The default memory model for the processor and operating system. ! `rmo' Relaxed Memory Order ! `pso' Partial Store Order ! `tso' Total Store Order ! `sc' Sequential Consistency ! These memory models are formally defined in Appendix D of the ! Sparc V9 architecture manual, as set in the processor's ! `PSTATE.MM' field. ! `-mstack-bias' ! `-mno-stack-bias' ! With `-mstack-bias', GCC assumes that the stack pointer, and frame pointer if present, are offset by -2047 which must be added back when making stack frame references. This is the default in 64-bit mode. Otherwise, assume no such offset is present. --- 17817,18043 ---- default because it results in a performance loss, especially for floating-point code. ! '-mno-faster-structs' ! '-mfaster-structs' ! With '-mfaster-structs', the compiler assumes that structures should have 8-byte alignment. This enables the use of pairs of ! 'ldd' and 'std' instructions for copies in structure assignment, in ! place of twice as many 'ld' and 'st' pairs. However, the use of ! this changed alignment directly violates the SPARC ABI. Thus, it's ! intended only for use on targets where the developer acknowledges ! that their resulting code is not directly in line with the rules of ! the ABI. ! '-mcpu=CPU_TYPE' Set the instruction set, register set, and instruction scheduling parameters for machine type CPU_TYPE. Supported values for ! CPU_TYPE are 'v7', 'cypress', 'v8', 'supersparc', 'hypersparc', ! 'leon', 'sparclite', 'f930', 'f934', 'sparclite86x', 'sparclet', ! 'tsc701', 'v9', 'ultrasparc', 'ultrasparc3', 'niagara', 'niagara2', ! 'niagara3', and 'niagara4'. Native Solaris and GNU/Linux toolchains also support the value ! 'native', which selects the best architecture option for the host ! processor. '-mcpu=native' has no effect if GCC does not recognize the processor. Default instruction scheduling parameters are used for values that ! select an architecture and not an implementation. These are 'v7', ! 'v8', 'sparclite', 'sparclet', 'v9'. Here is a list of each supported architecture and their supported implementations. ! v7 cypress ! v8 supersparc, hypersparc, leon ! sparclite f930, f934, sparclite86x ! sparclet tsc701 ! v9 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4 By default (unless configured otherwise), GCC generates code for ! the V7 variant of the SPARC architecture. With '-mcpu=cypress', the compiler additionally optimizes it for the Cypress CY7C602 chip, as used in the SPARCStation/SPARCServer 3xx series. This is also appropriate for the older SPARCStation 1, 2, IPX etc. ! With '-mcpu=v8', GCC generates code for the V8 variant of the SPARC architecture. The only difference from V7 code is that the ! compiler emits the integer multiply and integer divide instructions ! which exist in SPARC-V8 but not in SPARC-V7. With ! '-mcpu=supersparc', the compiler additionally optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series. ! With '-mcpu=sparclite', GCC generates code for the SPARClite ! variant of the SPARC architecture. This adds the integer multiply, ! integer divide step and scan ('ffs') instructions which exist in ! SPARClite but not in SPARC-V7. With '-mcpu=f930', the compiler ! additionally optimizes it for the Fujitsu MB86930 chip, which is ! the original SPARClite, with no FPU. With '-mcpu=f934', the ! compiler additionally optimizes it for the Fujitsu MB86934 chip, ! which is the more recent SPARClite with FPU. ! With '-mcpu=sparclet', GCC generates code for the SPARClet variant of the SPARC architecture. This adds the integer multiply, ! multiply/accumulate, integer divide step and scan ('ffs') instructions which exist in SPARClet but not in SPARC-V7. With ! '-mcpu=tsc701', the compiler additionally optimizes it for the TEMIC SPARClet chip. ! With '-mcpu=v9', GCC generates code for the V9 variant of the SPARC architecture. This adds 64-bit integer and floating-point move instructions, 3 additional floating-point condition code registers ! and conditional move instructions. With '-mcpu=ultrasparc', the compiler additionally optimizes it for the Sun UltraSPARC I/II/IIi ! chips. With '-mcpu=ultrasparc3', the compiler additionally optimizes it for the Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ ! chips. With '-mcpu=niagara', the compiler additionally optimizes ! it for Sun UltraSPARC T1 chips. With '-mcpu=niagara2', the compiler additionally optimizes it for Sun UltraSPARC T2 chips. ! With '-mcpu=niagara3', the compiler additionally optimizes it for ! Sun UltraSPARC T3 chips. With '-mcpu=niagara4', the compiler additionally optimizes it for Sun UltraSPARC T4 chips. ! '-mtune=CPU_TYPE' Set the instruction scheduling parameters for machine type CPU_TYPE, but do not set the instruction set or register set that ! the option '-mcpu=CPU_TYPE' does. ! The same values for '-mcpu=CPU_TYPE' can be used for ! '-mtune=CPU_TYPE', but the only useful values are those that select ! a particular CPU implementation. Those are 'cypress', ! 'supersparc', 'hypersparc', 'leon', 'f930', 'f934', 'sparclite86x', ! 'tsc701', 'ultrasparc', 'ultrasparc3', 'niagara', 'niagara2', ! 'niagara3' and 'niagara4'. With native Solaris and GNU/Linux ! toolchains, 'native' can also be used. ! '-mv8plus' ! '-mno-v8plus' ! With '-mv8plus', GCC generates code for the SPARC-V8+ ABI. The difference from the V8 ABI is that the global and out registers are considered 64 bits wide. This is enabled by default on Solaris in 32-bit mode for all SPARC-V9 processors. ! '-mvis' ! '-mno-vis' ! With '-mvis', GCC generates code that takes advantage of the UltraSPARC Visual Instruction Set extensions. The default is ! '-mno-vis'. ! '-mvis2' ! '-mno-vis2' ! With '-mvis2', GCC generates code that takes advantage of version 2.0 of the UltraSPARC Visual Instruction Set extensions. The ! default is '-mvis2' when targeting a cpu that supports such ! instructions, such as UltraSPARC-III and later. Setting '-mvis2' ! also sets '-mvis'. ! '-mvis3' ! '-mno-vis3' ! With '-mvis3', GCC generates code that takes advantage of version 3.0 of the UltraSPARC Visual Instruction Set extensions. The ! default is '-mvis3' when targeting a cpu that supports such ! instructions, such as niagara-3 and later. Setting '-mvis3' also ! sets '-mvis2' and '-mvis'. ! '-mcbcond' ! '-mno-cbcond' ! With '-mcbcond', GCC generates code that takes advantage of compare-and-branch instructions, as defined in the Sparc ! Architecture 2011. The default is '-mcbcond' when targeting a cpu that supports such instructions, such as niagara-4 and later. ! '-mpopc' ! '-mno-popc' ! With '-mpopc', GCC generates code that takes advantage of the ! UltraSPARC population count instruction. The default is '-mpopc' when targeting a cpu that supports such instructions, such as Niagara-2 and later. ! '-mfmaf' ! '-mno-fmaf' ! With '-mfmaf', GCC generates code that takes advantage of the UltraSPARC Fused Multiply-Add Floating-point extensions. The ! default is '-mfmaf' when targeting a cpu that supports such instructions, such as Niagara-3 and later. ! '-mfix-at697f' Enable the documented workaround for the single erratum of the Atmel AT697F processor (which corresponds to erratum #13 of the AT697E processor). ! These '-m' options are supported in addition to the above on SPARC-V9 processors in 64-bit environments: ! '-m32' ! '-m64' Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits. ! '-mcmodel=WHICH' Set the code model to one of ! 'medlow' The Medium/Low code model: 64-bit addresses, programs must be linked in the low 32 bits of memory. Programs can be statically or dynamically linked. ! 'medmid' The Medium/Middle code model: 64-bit addresses, programs must be linked in the low 44 bits of memory, the text and data segments must be less than 2GB in size and the data segment must be located within 2GB of the text segment. ! 'medany' ! The Medium/Anywhere code model: 64-bit addresses, programs may ! be linked anywhere in memory, the text and data segments must ! be less than 2GB in size and the data segment must be located ! within 2GB of the text segment. ! 'embmedany' The Medium/Anywhere code model for embedded systems: 64-bit addresses, the text and data segments must be less than 2GB in size, both starting anywhere in memory (determined at link ! time). The global register %g4 points to the base of the data ! segment. Programs are statically linked and PIC is not supported. ! '-mmemory-model=MEM-MODEL' Set the memory model in force on the processor to one of ! 'default' The default memory model for the processor and operating system. ! 'rmo' Relaxed Memory Order ! 'pso' Partial Store Order ! 'tso' Total Store Order ! 'sc' Sequential Consistency ! These memory models are formally defined in Appendix D of the Sparc ! V9 architecture manual, as set in the processor's 'PSTATE.MM' ! field. ! '-mstack-bias' ! '-mno-stack-bias' ! With '-mstack-bias', GCC assumes that the stack pointer, and frame pointer if present, are offset by -2047 which must be added back when making stack frame references. This is the default in 64-bit mode. Otherwise, assume no such offset is present. *************** File: gcc.info, Node: SPU Options, Nex *** 18154,18265 **** 3.17.41 SPU Options ------------------- ! These `-m' options are supported on the SPU: - `-mwarn-reloc' - `-merror-reloc' The loader for SPU does not handle dynamic relocations. By default, GCC gives an error when it generates code that requires a ! dynamic relocation. `-mno-error-reloc' disables the error, ! `-mwarn-reloc' generates a warning instead. - `-msafe-dma' - `-munsafe-dma' Instructions that initiate or test completion of DMA must not be reordered with respect to loads and stores of the memory that is ! being accessed. With `-munsafe-dma' you must use the `volatile' keyword to protect memory accesses, but that can lead to ! inefficient code in places where the memory is known to not ! change. Rather than mark the memory as volatile, you can use ! `-msafe-dma' to tell the compiler to treat the DMA instructions as ! potentially affecting all memory. - `-mbranch-hints' By default, GCC generates a branch hint instruction to avoid pipeline stalls for always-taken or probably-taken branches. A hint is not generated closer than 8 instructions away from its branch. There is little reason to disable them, except for debugging purposes, or to make an object a little bit smaller. ! `-msmall-mem' ! `-mlarge-mem' By default, GCC generates code assuming that addresses are never ! larger than 18 bits. With `-mlarge-mem' code is generated that assumes a full 32-bit address. ! `-mstdmain' By default, GCC links against startup code that assumes the SPU-style main function interface (which has an unconventional ! parameter list). With `-mstdmain', GCC links your program against ! startup code that assumes a C99-style interface to `main', ! including a local copy of `argv' strings. ! `-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator cannot use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! `-mea32' ! `-mea64' Compile code assuming that pointers to the PPU address space ! accessed via the `__ea' named address space qualifier are either ! 32 or 64 bits wide. The default is 32 bits. As this is an ABI-changing option, all object code in an executable must be compiled with the same setting. ! `-maddress-space-conversion' ! `-mno-address-space-conversion' ! Allow/disallow treating the `__ea' address space as superset of ! the generic address space. This enables explicit type casts ! between `__ea' and generic pointer as well as implicit conversions ! of generic pointers to `__ea' pointers. The default is to allow address space pointer conversions. ! `-mcache-size=CACHE-SIZE' This option controls the version of libgcc that the compiler links ! to an executable and selects a software-managed cache for ! accessing variables in the `__ea' address space with a particular ! cache size. Possible options for CACHE-SIZE are `8', `16', `32', ! `64' and `128'. The default cache size is 64KB. ! `-matomic-updates' ! `-mno-atomic-updates' This option controls the version of libgcc that the compiler links to an executable and selects whether atomic updates to the software-managed cache of PPU-side variables are used. If you use atomic updates, changes to a PPU variable from SPU code using the ! `__ea' named address space qualifier do not interfere with changes to other PPU variables residing in the same cache line from PPU code. If you do not use atomic updates, such interference may occur; however, writing back cache lines is more efficient. The default behavior is to use atomic updates. ! `-mdual-nops' ! `-mdual-nops=N' By default, GCC inserts nops to increase dual issue when it expects it to increase performance. N can be a value from 0 to 10. A smaller N inserts fewer nops. 10 is the default, 0 is the same as ! `-mno-dual-nops'. Disabled with `-Os'. ! `-mhint-max-nops=N' Maximum number of nops to insert for a branch hint. A branch hint must be at least 8 instructions away from the branch it is affecting. GCC inserts up to N nops to enforce this, otherwise it does not generate the branch hint. ! `-mhint-max-distance=N' The encoding of the branch hint instruction limits the hint to be ! within 256 instructions of the branch it is affecting. By ! default, GCC makes sure it is within 125. ! `-msafe-hints' Work around a hardware bug that causes the SPU to stall ! indefinitely. By default, GCC inserts the `hbrp' instruction to make sure this stall won't happen. -  File: gcc.info, Node: System V Options, Next: TILE-Gx Options, Prev: SPU Options, Up: Submodel Options --- 18048,18163 ---- 3.17.41 SPU Options ------------------- ! These '-m' options are supported on the SPU: ! ! '-mwarn-reloc' ! '-merror-reloc' The loader for SPU does not handle dynamic relocations. By default, GCC gives an error when it generates code that requires a ! dynamic relocation. '-mno-error-reloc' disables the error, ! '-mwarn-reloc' generates a warning instead. ! ! '-msafe-dma' ! '-munsafe-dma' Instructions that initiate or test completion of DMA must not be reordered with respect to loads and stores of the memory that is ! being accessed. With '-munsafe-dma' you must use the 'volatile' keyword to protect memory accesses, but that can lead to ! inefficient code in places where the memory is known to not change. ! Rather than mark the memory as volatile, you can use '-msafe-dma' ! to tell the compiler to treat the DMA instructions as potentially ! affecting all memory. ! ! '-mbranch-hints' By default, GCC generates a branch hint instruction to avoid pipeline stalls for always-taken or probably-taken branches. A hint is not generated closer than 8 instructions away from its branch. There is little reason to disable them, except for debugging purposes, or to make an object a little bit smaller. ! '-msmall-mem' ! '-mlarge-mem' ! By default, GCC generates code assuming that addresses are never ! larger than 18 bits. With '-mlarge-mem' code is generated that assumes a full 32-bit address. ! '-mstdmain' ! By default, GCC links against startup code that assumes the SPU-style main function interface (which has an unconventional ! parameter list). With '-mstdmain', GCC links your program against ! startup code that assumes a C99-style interface to 'main', ! including a local copy of 'argv' strings. ! '-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator cannot use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! '-mea32' ! '-mea64' Compile code assuming that pointers to the PPU address space ! accessed via the '__ea' named address space qualifier are either 32 ! or 64 bits wide. The default is 32 bits. As this is an ABI-changing option, all object code in an executable must be compiled with the same setting. ! '-maddress-space-conversion' ! '-mno-address-space-conversion' ! Allow/disallow treating the '__ea' address space as superset of the ! generic address space. This enables explicit type casts between ! '__ea' and generic pointer as well as implicit conversions of ! generic pointers to '__ea' pointers. The default is to allow address space pointer conversions. ! '-mcache-size=CACHE-SIZE' This option controls the version of libgcc that the compiler links ! to an executable and selects a software-managed cache for accessing ! variables in the '__ea' address space with a particular cache size. ! Possible options for CACHE-SIZE are '8', '16', '32', '64' and ! '128'. The default cache size is 64KB. ! '-matomic-updates' ! '-mno-atomic-updates' This option controls the version of libgcc that the compiler links to an executable and selects whether atomic updates to the software-managed cache of PPU-side variables are used. If you use atomic updates, changes to a PPU variable from SPU code using the ! '__ea' named address space qualifier do not interfere with changes to other PPU variables residing in the same cache line from PPU code. If you do not use atomic updates, such interference may occur; however, writing back cache lines is more efficient. The default behavior is to use atomic updates. ! '-mdual-nops' ! '-mdual-nops=N' By default, GCC inserts nops to increase dual issue when it expects it to increase performance. N can be a value from 0 to 10. A smaller N inserts fewer nops. 10 is the default, 0 is the same as ! '-mno-dual-nops'. Disabled with '-Os'. ! '-mhint-max-nops=N' Maximum number of nops to insert for a branch hint. A branch hint must be at least 8 instructions away from the branch it is affecting. GCC inserts up to N nops to enforce this, otherwise it does not generate the branch hint. ! '-mhint-max-distance=N' The encoding of the branch hint instruction limits the hint to be ! within 256 instructions of the branch it is affecting. By default, ! GCC makes sure it is within 125. ! '-msafe-hints' Work around a hardware bug that causes the SPU to stall ! indefinitely. By default, GCC inserts the 'hbrp' instruction to make sure this stall won't happen.  File: gcc.info, Node: System V Options, Next: TILE-Gx Options, Prev: SPU Options, Up: Submodel Options *************** File: gcc.info, Node: System V Options, *** 18269,18291 **** These additional options are available on System V Release 4 for compatibility with other compilers on those systems: ! `-G' ! Create a shared object. It is recommended that `-symbolic' or ! `-shared' be used instead. ! `-Qy' Identify the versions of each tool used by the compiler, in a ! `.ident' assembler directive in the output. ! `-Qn' ! Refrain from adding `.ident' directives to the output file (this is the default). ! `-YP,DIRS' ! Search the directories DIRS, and no others, for libraries ! specified with `-l'. ! `-Ym,DIR' Look in the directory DIR to find the M4 preprocessor. The assembler uses this option. --- 18167,18189 ---- These additional options are available on System V Release 4 for compatibility with other compilers on those systems: ! '-G' ! Create a shared object. It is recommended that '-symbolic' or ! '-shared' be used instead. ! '-Qy' Identify the versions of each tool used by the compiler, in a ! '.ident' assembler directive in the output. ! '-Qn' ! Refrain from adding '.ident' directives to the output file (this is the default). ! '-YP,DIRS' ! Search the directories DIRS, and no others, for libraries specified ! with '-l'. ! '-Ym,DIR' Look in the directory DIR to find the M4 preprocessor. The assembler uses this option. *************** File: gcc.info, Node: TILE-Gx Options, *** 18295,18317 **** 3.17.43 TILE-Gx Options ----------------------- ! These `-m' options are supported on the TILE-Gx: ! `-mcmodel=small' Generate code for the small model. The distance for direct calls is limited to 500M in either direction. PC-relative addresses are 32 bits. Absolute addresses support the full address range. ! `-mcmodel=large' Generate code for the large model. There is no limitation on call distance, pc-relative addresses, or absolute addresses. ! `-mcpu=NAME' Selects the type of CPU to be targeted. Currently the only ! supported type is `tilegx'. ! `-m32' ! `-m64' Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long, and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits. --- 18193,18215 ---- 3.17.43 TILE-Gx Options ----------------------- ! These '-m' options are supported on the TILE-Gx: ! '-mcmodel=small' Generate code for the small model. The distance for direct calls is limited to 500M in either direction. PC-relative addresses are 32 bits. Absolute addresses support the full address range. ! '-mcmodel=large' Generate code for the large model. There is no limitation on call distance, pc-relative addresses, or absolute addresses. ! '-mcpu=NAME' Selects the type of CPU to be targeted. Currently the only ! supported type is 'tilegx'. ! '-m32' ! '-m64' Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long, and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits. *************** File: gcc.info, Node: TILEPro Options, *** 18322,18334 **** 3.17.44 TILEPro Options ----------------------- ! These `-m' options are supported on the TILEPro: ! `-mcpu=NAME' Selects the type of CPU to be targeted. Currently the only ! supported type is `tilepro'. ! `-m32' Generate code for a 32-bit environment, which sets int, long, and pointer to 32 bits. This is the only supported behavior so the flag is essentially ignored. --- 18220,18232 ---- 3.17.44 TILEPro Options ----------------------- ! These '-m' options are supported on the TILEPro: ! '-mcpu=NAME' Selects the type of CPU to be targeted. Currently the only ! supported type is 'tilepro'. ! '-m32' Generate code for a 32-bit environment, which sets int, long, and pointer to 32 bits. This is the only supported behavior so the flag is essentially ignored. *************** File: gcc.info, Node: V850 Options, Ne *** 18339,18466 **** 3.17.45 V850 Options -------------------- ! These `-m' options are defined for V850 implementations: ! `-mlong-calls' ! `-mno-long-calls' Treat all calls as being far away (near). If calls are assumed to be far away, the compiler always loads the function's address into a register, and calls indirect through the pointer. ! `-mno-ep' ! `-mep' Do not optimize (do optimize) basic blocks that use the same index ! pointer 4 or more times to copy pointer into the `ep' register, and ! use the shorter `sld' and `sst' instructions. The `-mep' option ! is on by default if you optimize. ! `-mno-prolog-function' ! `-mprolog-function' Do not use (do use) external functions to save and restore ! registers at the prologue and epilogue of a function. The ! external functions are slower, but use less code space if more ! than one function saves the same number of registers. The ! `-mprolog-function' option is on by default if you optimize. ! `-mspace' Try to make the code as small as possible. At present, this just ! turns on the `-mep' and `-mprolog-function' options. ! `-mtda=N' Put static or global variables whose size is N bytes or less into ! the tiny data area that register `ep' points to. The tiny data area can hold up to 256 bytes in total (128 bytes for byte references). ! `-msda=N' Put static or global variables whose size is N bytes or less into ! the small data area that register `gp' points to. The small data area can hold up to 64 kilobytes. ! `-mzda=N' Put static or global variables whose size is N bytes or less into the first 32 kilobytes of memory. ! `-mv850' Specify that the target processor is the V850. ! `-mv850e3v5' Specify that the target processor is the V850E3V5. The ! preprocessor constant `__v850e3v5__' is defined if this option is used. ! `-mv850e2v4' Specify that the target processor is the V850E3V5. This is an ! alias for the `-mv850e3v5' option. ! `-mv850e2v3' Specify that the target processor is the V850E2V3. The ! preprocessor constant `__v850e2v3__' is defined if this option is used. ! `-mv850e2' Specify that the target processor is the V850E2. The preprocessor ! constant `__v850e2__' is defined if this option is used. ! `-mv850e1' Specify that the target processor is the V850E1. The preprocessor ! constants `__v850e1__' and `__v850e__' are defined if this option is used. ! `-mv850es' ! Specify that the target processor is the V850ES. This is an alias ! for the `-mv850e1' option. ! `-mv850e' Specify that the target processor is the V850E. The preprocessor ! constant `__v850e__' is defined if this option is used. ! If neither `-mv850' nor `-mv850e' nor `-mv850e1' nor `-mv850e2' ! nor `-mv850e2v3' nor `-mv850e3v5' are defined then a default ! target processor is chosen and the relevant `__v850*__' ! preprocessor constant is defined. ! The preprocessor constants `__v850' and `__v851__' are always defined, regardless of which processor variant is the target. ! `-mdisable-callt' ! `-mno-disable-callt' ! This option suppresses generation of the `CALLT' instruction for the v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture. ! This option is enabled by default when the RH850 ABI is in use ! (see `-mrh850-abi'), and disabled by default when the GCC ABI is ! in use. If `CALLT' instructions are being generated then the C ! preprocessor symbol `__V850_CALLT__' will be defined. ! `-mrelax' ! `-mno-relax' ! Pass on (or do not pass on) the `-mrelax' command line option to the assembler. ! `-mlong-jumps' ! `-mno-long-jumps' Disable (or re-enable) the generation of PC-relative jump instructions. ! `-msoft-float' ! `-mhard-float' Disable (or re-enable) the generation of hardware floating point instructions. This option is only significant when the target ! architecture is `V850E2V3' or higher. If hardware floating point instructions are being generated then the C preprocessor symbol ! `__FPU_OK__' will be defined, otherwise the symbol `__NO_FPU__' will be defined. ! `-mloop' Enables the use of the e3v5 LOOP instruction. The use of this instruction is not enabled by default when the e3v5 architecture is selected because its use is still experimental. ! `-mrh850-abi' ! `-mghs' ! Enables support for the RH850 version of the V850 ABI. This is the default. With this version of the ABI the following rules apply: * Integer sized structures and unions are returned via a memory --- 18237,18364 ---- 3.17.45 V850 Options -------------------- ! These '-m' options are defined for V850 implementations: ! '-mlong-calls' ! '-mno-long-calls' Treat all calls as being far away (near). If calls are assumed to be far away, the compiler always loads the function's address into a register, and calls indirect through the pointer. ! '-mno-ep' ! '-mep' Do not optimize (do optimize) basic blocks that use the same index ! pointer 4 or more times to copy pointer into the 'ep' register, and ! use the shorter 'sld' and 'sst' instructions. The '-mep' option is ! on by default if you optimize. ! '-mno-prolog-function' ! '-mprolog-function' Do not use (do use) external functions to save and restore ! registers at the prologue and epilogue of a function. The external ! functions are slower, but use less code space if more than one ! function saves the same number of registers. The ! '-mprolog-function' option is on by default if you optimize. ! '-mspace' Try to make the code as small as possible. At present, this just ! turns on the '-mep' and '-mprolog-function' options. ! '-mtda=N' Put static or global variables whose size is N bytes or less into ! the tiny data area that register 'ep' points to. The tiny data area can hold up to 256 bytes in total (128 bytes for byte references). ! '-msda=N' Put static or global variables whose size is N bytes or less into ! the small data area that register 'gp' points to. The small data area can hold up to 64 kilobytes. ! '-mzda=N' Put static or global variables whose size is N bytes or less into the first 32 kilobytes of memory. ! '-mv850' Specify that the target processor is the V850. ! '-mv850e3v5' Specify that the target processor is the V850E3V5. The ! preprocessor constant '__v850e3v5__' is defined if this option is used. ! '-mv850e2v4' Specify that the target processor is the V850E3V5. This is an ! alias for the '-mv850e3v5' option. ! '-mv850e2v3' Specify that the target processor is the V850E2V3. The ! preprocessor constant '__v850e2v3__' is defined if this option is used. ! '-mv850e2' Specify that the target processor is the V850E2. The preprocessor ! constant '__v850e2__' is defined if this option is used. ! '-mv850e1' Specify that the target processor is the V850E1. The preprocessor ! constants '__v850e1__' and '__v850e__' are defined if this option is used. ! '-mv850es' ! Specify that the target processor is the V850ES. This is an alias ! for the '-mv850e1' option. ! '-mv850e' Specify that the target processor is the V850E. The preprocessor ! constant '__v850e__' is defined if this option is used. ! If neither '-mv850' nor '-mv850e' nor '-mv850e1' nor '-mv850e2' nor ! '-mv850e2v3' nor '-mv850e3v5' are defined then a default target ! processor is chosen and the relevant '__v850*__' preprocessor ! constant is defined. ! The preprocessor constants '__v850' and '__v851__' are always defined, regardless of which processor variant is the target. ! '-mdisable-callt' ! '-mno-disable-callt' ! This option suppresses generation of the 'CALLT' instruction for the v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture. ! This option is enabled by default when the RH850 ABI is in use (see ! '-mrh850-abi'), and disabled by default when the GCC ABI is in use. ! If 'CALLT' instructions are being generated then the C preprocessor ! symbol '__V850_CALLT__' will be defined. ! '-mrelax' ! '-mno-relax' ! Pass on (or do not pass on) the '-mrelax' command line option to the assembler. ! '-mlong-jumps' ! '-mno-long-jumps' Disable (or re-enable) the generation of PC-relative jump instructions. ! '-msoft-float' ! '-mhard-float' Disable (or re-enable) the generation of hardware floating point instructions. This option is only significant when the target ! architecture is 'V850E2V3' or higher. If hardware floating point instructions are being generated then the C preprocessor symbol ! '__FPU_OK__' will be defined, otherwise the symbol '__NO_FPU__' will be defined. ! '-mloop' Enables the use of the e3v5 LOOP instruction. The use of this instruction is not enabled by default when the e3v5 architecture is selected because its use is still experimental. ! '-mrh850-abi' ! '-mghs' ! Enables support for the RH850 version of the V850 ABI. This is the default. With this version of the ABI the following rules apply: * Integer sized structures and unions are returned via a memory *************** These `-m' options are defined for V850 *** 18471,18491 **** * Functions are aligned to 16-bit boundaries. ! * The `-m8byte-align' command line option is supported. ! * The `-mdisable-callt' command line option is enabled by ! default. The `-mno-disable-callt' command line option is not supported. When this version of the ABI is enabled the C preprocessor symbol ! `__V850_RH850_ABI__' is defined. ! `-mgcc-abi' ! Enables support for the old GCC version of the V850 ABI. With this version of the ABI the following rules apply: * Integer sized structures and unions are returned in register ! `r10'. * Large structures and unions (more than 8 bytes in size) are passed by reference. --- 18369,18389 ---- * Functions are aligned to 16-bit boundaries. ! * The '-m8byte-align' command line option is supported. ! * The '-mdisable-callt' command line option is enabled by ! default. The '-mno-disable-callt' command line option is not supported. When this version of the ABI is enabled the C preprocessor symbol ! '__V850_RH850_ABI__' is defined. ! '-mgcc-abi' ! Enables support for the old GCC version of the V850 ABI. With this version of the ABI the following rules apply: * Integer sized structures and unions are returned in register ! 'r10'. * Large structures and unions (more than 8 bytes in size) are passed by reference. *************** These `-m' options are defined for V850 *** 18493,18543 **** * Functions are aligned to 32-bit boundaries, unless optimizing for size. ! * The `-m8byte-align' command line option is not supported. ! * The `-mdisable-callt' command line option is supported but not enabled by default. When this version of the ABI is enabled the C preprocessor symbol ! `__V850_GCC_ABI__' is defined. ! `-m8byte-align' ! `-mno-8byte-align' ! Enables support for `doubles' and `long long' types to be aligned on 8-byte boundaries. The default is to restrict the alignment of ! all objects to at most 4-bytes. When `-m8byte-align' is in effect ! the C preprocessor symbol `__V850_8BYTE_ALIGN__' will be defined. ! `-mbig-switch' ! Generate code suitable for big switch tables. Use this option ! only if the assembler/linker complain about out of range branches ! within a switch table. ! `-mapp-regs' This option causes r2 and r5 to be used in the code generated by the compiler. This setting is the default. ! `-mno-app-regs' This option causes r2 and r5 to be treated as fixed registers. -  File: gcc.info, Node: VAX Options, Next: VMS Options, Prev: V850 Options, Up: Submodel Options 3.17.46 VAX Options ------------------- ! These `-m' options are defined for the VAX: ! `-munix' ! Do not output certain jump instructions (`aobleq' and so on) that the Unix assembler for the VAX cannot handle across long ranges. ! `-mgnu' Do output those jump instructions, on the assumption that the GNU assembler is being used. ! `-mg' Output code for G-format floating-point numbers instead of D-format. --- 18391,18440 ---- * Functions are aligned to 32-bit boundaries, unless optimizing for size. ! * The '-m8byte-align' command line option is not supported. ! * The '-mdisable-callt' command line option is supported but not enabled by default. When this version of the ABI is enabled the C preprocessor symbol ! '__V850_GCC_ABI__' is defined. ! '-m8byte-align' ! '-mno-8byte-align' ! Enables support for 'doubles' and 'long long' types to be aligned on 8-byte boundaries. The default is to restrict the alignment of ! all objects to at most 4-bytes. When '-m8byte-align' is in effect ! the C preprocessor symbol '__V850_8BYTE_ALIGN__' will be defined. ! '-mbig-switch' ! Generate code suitable for big switch tables. Use this option only ! if the assembler/linker complain about out of range branches within ! a switch table. ! '-mapp-regs' This option causes r2 and r5 to be used in the code generated by the compiler. This setting is the default. ! '-mno-app-regs' This option causes r2 and r5 to be treated as fixed registers.  File: gcc.info, Node: VAX Options, Next: VMS Options, Prev: V850 Options, Up: Submodel Options 3.17.46 VAX Options ------------------- ! These '-m' options are defined for the VAX: ! '-munix' ! Do not output certain jump instructions ('aobleq' and so on) that the Unix assembler for the VAX cannot handle across long ranges. ! '-mgnu' Do output those jump instructions, on the assumption that the GNU assembler is being used. ! '-mg' Output code for G-format floating-point numbers instead of D-format. *************** File: gcc.info, Node: VMS Options, Nex *** 18547,18570 **** 3.17.47 VMS Options ------------------- ! These `-m' options are defined for the VMS implementations: ! `-mvms-return-codes' ! Return VMS condition codes from `main'. The default is to return POSIX-style condition (e.g. error) codes. ! `-mdebug-main=PREFIX' Flag the first routine whose name starts with PREFIX as the main routine for the debugger. ! `-mmalloc64' Default to 64-bit memory allocation routines. ! `-mpointer-size=SIZE' ! Set the default size of pointers. Possible options for SIZE are ! `32' or `short' for 32 bit pointers, `64' or `long' for 64 bit ! pointers, and `no' for supporting only 32 bit pointers. The later ! option disables `pragma pointer_size'.  File: gcc.info, Node: VxWorks Options, Next: x86-64 Options, Prev: VMS Options, Up: Submodel Options --- 18444,18467 ---- 3.17.47 VMS Options ------------------- ! These '-m' options are defined for the VMS implementations: ! '-mvms-return-codes' ! Return VMS condition codes from 'main'. The default is to return POSIX-style condition (e.g. error) codes. ! '-mdebug-main=PREFIX' Flag the first routine whose name starts with PREFIX as the main routine for the debugger. ! '-mmalloc64' Default to 64-bit memory allocation routines. ! '-mpointer-size=SIZE' ! Set the default size of pointers. Possible options for SIZE are ! '32' or 'short' for 32 bit pointers, '64' or 'long' for 64 bit ! pointers, and 'no' for supporting only 32 bit pointers. The later ! option disables 'pragma pointer_size'.  File: gcc.info, Node: VxWorks Options, Next: x86-64 Options, Prev: VMS Options, Up: Submodel Options *************** The options in this section are defined *** 18576,18603 **** Options specific to the target hardware are listed with the other options for that target. ! `-mrtp' GCC can generate code for both VxWorks kernels and real time processes (RTPs). This option switches from the former to the ! latter. It also defines the preprocessor macro `__RTP__'. ! `-non-static' Link an RTP executable against shared libraries rather than static ! libraries. The options `-static' and `-shared' can also be used ! for RTPs (*note Link Options::); `-static' is the default. ! `-Bstatic' ! `-Bdynamic' These options are passed down to the linker. They are defined for compatibility with Diab. ! `-Xbind-lazy' Enable lazy binding of function calls. This option is equivalent ! to `-Wl,-z,now' and is defined for compatibility with Diab. ! `-Xbind-now' ! Disable lazy binding of function calls. This option is the ! default and is defined for compatibility with Diab.  File: gcc.info, Node: x86-64 Options, Next: Xstormy16 Options, Prev: VxWorks Options, Up: Submodel Options --- 18473,18500 ---- Options specific to the target hardware are listed with the other options for that target. ! '-mrtp' GCC can generate code for both VxWorks kernels and real time processes (RTPs). This option switches from the former to the ! latter. It also defines the preprocessor macro '__RTP__'. ! '-non-static' Link an RTP executable against shared libraries rather than static ! libraries. The options '-static' and '-shared' can also be used ! for RTPs (*note Link Options::); '-static' is the default. ! '-Bstatic' ! '-Bdynamic' These options are passed down to the linker. They are defined for compatibility with Diab. ! '-Xbind-lazy' Enable lazy binding of function calls. This option is equivalent ! to '-Wl,-z,now' and is defined for compatibility with Diab. ! '-Xbind-now' ! Disable lazy binding of function calls. This option is the default ! and is defined for compatibility with Diab.  File: gcc.info, Node: x86-64 Options, Next: Xstormy16 Options, Prev: VxWorks Options, Up: Submodel Options *************** File: gcc.info, Node: Xstormy16 Options *** 18615,18621 **** These options are defined for Xstormy16: ! `-msim' Choose startup files and linker script suitable for the simulator.  --- 18512,18518 ---- These options are defined for Xstormy16: ! '-msim' Choose startup files and linker script suitable for the simulator.  *************** File: gcc.info, Node: Xtensa Options, *** 18626,18709 **** These options are supported for Xtensa targets: ! `-mconst16' ! `-mno-const16' ! Enable or disable use of `CONST16' instructions for loading ! constant values. The `CONST16' instruction is currently not a ! standard option from Tensilica. When enabled, `CONST16' ! instructions are always used in place of the standard `L32R' ! instructions. The use of `CONST16' is enabled by default only if ! the `L32R' instruction is not available. ! `-mfused-madd' ! `-mno-fused-madd' Enable or disable use of fused multiply/add and multiply/subtract instructions in the floating-point option. This has no effect if the floating-point option is not also enabled. Disabling fused ! multiply/add and multiply/subtract instructions forces the ! compiler to use separate instructions for the multiply and ! add/subtract operations. This may be desirable in some cases ! where strict IEEE 754-compliant results are required: the fused ! multiply add/subtract instructions do not round the intermediate ! result, thereby producing results with _more_ bits of precision ! than specified by the IEEE standard. Disabling fused multiply ! add/subtract instructions also ensures that the program output is ! not sensitive to the compiler's ability to combine multiply and ! add/subtract operations. ! `-mserialize-volatile' ! `-mno-serialize-volatile' ! When this option is enabled, GCC inserts `MEMW' instructions before ! `volatile' memory references to guarantee sequential consistency. ! The default is `-mserialize-volatile'. Use ! `-mno-serialize-volatile' to omit the `MEMW' instructions. ! `-mforce-no-pic' For targets, like GNU/Linux, where all user-mode Xtensa code must be position-independent code (PIC), this option disables PIC for compiling kernel code. ! `-mtext-section-literals' ! `-mno-text-section-literals' Control the treatment of literal pools. The default is ! `-mno-text-section-literals', which places literals in a separate section in the output file. This allows the literal pool to be placed in a data RAM/ROM, and it also allows the linker to combine literal pools from separate object files to remove redundant ! literals and improve code size. With `-mtext-section-literals', the literals are interspersed in the text section in order to keep them as close as possible to their references. This may be necessary for large assembly files. ! `-mtarget-align' ! `-mno-target-align' When this option is enabled, GCC instructs the assembler to automatically align instructions to reduce branch penalties at the expense of some code density. The assembler attempts to widen density instructions to align branch targets and the instructions following call instructions. If there are not enough preceding safe density instructions to align a target, no widening is ! performed. The default is `-mtarget-align'. These options do not ! affect the treatment of auto-aligned instructions like `LOOP', which the assembler always aligns, either by widening density instructions or by inserting NOP instructions. ! `-mlongcalls' ! `-mno-longcalls' When this option is enabled, GCC instructs the assembler to translate direct calls to indirect calls unless it can determine that the target of a direct call is in the range allowed by the call instruction. This translation typically occurs for calls to functions in other source files. Specifically, the assembler ! translates a direct `CALL' instruction into an `L32R' followed by ! a `CALLX' instruction. The default is `-mno-longcalls'. This ! option should be used in programs where the call target can ! potentially be out of range. This option is implemented in the ! assembler, not the compiler, so the assembly code generated by GCC ! still shows direct call instructions--look at the disassembled ! object code to see the actual instructions. Note that the ! assembler uses an indirect call for every cross-file call, not ! just those that really are out of range.  File: gcc.info, Node: zSeries Options, Prev: Xtensa Options, Up: Submodel Options --- 18523,18606 ---- These options are supported for Xtensa targets: ! '-mconst16' ! '-mno-const16' ! Enable or disable use of 'CONST16' instructions for loading ! constant values. The 'CONST16' instruction is currently not a ! standard option from Tensilica. When enabled, 'CONST16' ! instructions are always used in place of the standard 'L32R' ! instructions. The use of 'CONST16' is enabled by default only if ! the 'L32R' instruction is not available. ! '-mfused-madd' ! '-mno-fused-madd' Enable or disable use of fused multiply/add and multiply/subtract instructions in the floating-point option. This has no effect if the floating-point option is not also enabled. Disabling fused ! multiply/add and multiply/subtract instructions forces the compiler ! to use separate instructions for the multiply and add/subtract ! operations. This may be desirable in some cases where strict IEEE ! 754-compliant results are required: the fused multiply add/subtract ! instructions do not round the intermediate result, thereby ! producing results with _more_ bits of precision than specified by ! the IEEE standard. Disabling fused multiply add/subtract ! instructions also ensures that the program output is not sensitive ! to the compiler's ability to combine multiply and add/subtract ! operations. ! '-mserialize-volatile' ! '-mno-serialize-volatile' ! When this option is enabled, GCC inserts 'MEMW' instructions before ! 'volatile' memory references to guarantee sequential consistency. ! The default is '-mserialize-volatile'. Use ! '-mno-serialize-volatile' to omit the 'MEMW' instructions. ! '-mforce-no-pic' For targets, like GNU/Linux, where all user-mode Xtensa code must be position-independent code (PIC), this option disables PIC for compiling kernel code. ! '-mtext-section-literals' ! '-mno-text-section-literals' Control the treatment of literal pools. The default is ! '-mno-text-section-literals', which places literals in a separate section in the output file. This allows the literal pool to be placed in a data RAM/ROM, and it also allows the linker to combine literal pools from separate object files to remove redundant ! literals and improve code size. With '-mtext-section-literals', the literals are interspersed in the text section in order to keep them as close as possible to their references. This may be necessary for large assembly files. ! '-mtarget-align' ! '-mno-target-align' When this option is enabled, GCC instructs the assembler to automatically align instructions to reduce branch penalties at the expense of some code density. The assembler attempts to widen density instructions to align branch targets and the instructions following call instructions. If there are not enough preceding safe density instructions to align a target, no widening is ! performed. The default is '-mtarget-align'. These options do not ! affect the treatment of auto-aligned instructions like 'LOOP', which the assembler always aligns, either by widening density instructions or by inserting NOP instructions. ! '-mlongcalls' ! '-mno-longcalls' When this option is enabled, GCC instructs the assembler to translate direct calls to indirect calls unless it can determine that the target of a direct call is in the range allowed by the call instruction. This translation typically occurs for calls to functions in other source files. Specifically, the assembler ! translates a direct 'CALL' instruction into an 'L32R' followed by a ! 'CALLX' instruction. The default is '-mno-longcalls'. This option ! should be used in programs where the call target can potentially be ! out of range. This option is implemented in the assembler, not the ! compiler, so the assembly code generated by GCC still shows direct ! call instructions--look at the disassembled object code to see the ! actual instructions. Note that the assembler uses an indirect call ! for every cross-file call, not just those that really are out of ! range.  File: gcc.info, Node: zSeries Options, Prev: Xtensa Options, Up: Submodel Options *************** File: gcc.info, Node: Code Gen Options, *** 18719,18753 **** 3.18 Options for Code Generation Conventions ============================================ ! These machine-independent options control the interface conventions ! used in code generation. Most of them have both positive and negative forms; the negative form ! of `-ffoo' is `-fno-foo'. In the table below, only one of the forms is listed--the one that is not the default. You can figure out the other ! form by either removing `no-' or adding it. ! `-fbounds-check' For front ends that support it, generate additional code to check that indices used to access arrays are within the declared range. This is currently only supported by the Java and Fortran front ends, where this option defaults to true and false respectively. ! `-fstack-reuse=REUSE-LEVEL' ! This option controls stack space reuse for user declared ! local/auto variables and compiler generated temporaries. ! REUSE_LEVEL can be `all', `named_vars', or `none'. `all' enables ! stack reuse for all local variables and temporaries, `named_vars' ! enables the reuse only for user defined local variables with ! names, and `none' disables stack reuse completely. The default ! value is `all'. The option is needed when the program extends the ! lifetime of a scoped local variable or a compiler generated ! temporary beyond the end point defined by the language. When a ! lifetime of a variable ends, and if the variable lives in memory, ! the optimizing compiler has the freedom to reuse its stack space ! with other temporaries or scoped local variables whose live range ! does not overlap with it. Legacy code extending local lifetime ! will likely to break with the stack reuse optimization. For example, --- 18616,18650 ---- 3.18 Options for Code Generation Conventions ============================================ ! These machine-independent options control the interface conventions used ! in code generation. Most of them have both positive and negative forms; the negative form ! of '-ffoo' is '-fno-foo'. In the table below, only one of the forms is listed--the one that is not the default. You can figure out the other ! form by either removing 'no-' or adding it. ! '-fbounds-check' For front ends that support it, generate additional code to check that indices used to access arrays are within the declared range. This is currently only supported by the Java and Fortran front ends, where this option defaults to true and false respectively. ! '-fstack-reuse=REUSE-LEVEL' ! This option controls stack space reuse for user declared local/auto ! variables and compiler generated temporaries. REUSE_LEVEL can be ! 'all', 'named_vars', or 'none'. 'all' enables stack reuse for all ! local variables and temporaries, 'named_vars' enables the reuse ! only for user defined local variables with names, and 'none' ! disables stack reuse completely. The default value is 'all'. The ! option is needed when the program extends the lifetime of a scoped ! local variable or a compiler generated temporary beyond the end ! point defined by the language. When a lifetime of a variable ends, ! and if the variable lives in memory, the optimizing compiler has ! the freedom to reuse its stack space with other temporaries or ! scoped local variables whose live range does not overlap with it. ! Legacy code extending local lifetime will likely to break with the ! stack reuse optimization. For example, *************** form by either removing `no-' or adding *** 18799,18818 **** } The lifetime of a compiler generated temporary is well defined by ! the C++ standard. When a lifetime of a temporary ends, and if the temporary lives in memory, the optimizing compiler has the freedom to reuse its stack space with other temporaries or scoped local ! variables whose live range does not overlap with it. However some of the legacy code relies on the behavior of older compilers in which temporaries' stack space is not reused, the aggressive stack ! reuse can lead to runtime errors. This option is used to control the temporary stack reuse optimization. ! `-ftrapv' This option generates traps for signed overflow on addition, subtraction, multiplication operations. ! `-fwrapv' This option instructs the compiler to assume that signed arithmetic overflow of addition, subtraction and multiplication wraps around using twos-complement representation. This flag enables some --- 18696,18715 ---- } The lifetime of a compiler generated temporary is well defined by ! the C++ standard. When a lifetime of a temporary ends, and if the temporary lives in memory, the optimizing compiler has the freedom to reuse its stack space with other temporaries or scoped local ! variables whose live range does not overlap with it. However some of the legacy code relies on the behavior of older compilers in which temporaries' stack space is not reused, the aggressive stack ! reuse can lead to runtime errors. This option is used to control the temporary stack reuse optimization. ! '-ftrapv' This option generates traps for signed overflow on addition, subtraction, multiplication operations. ! '-fwrapv' This option instructs the compiler to assume that signed arithmetic overflow of addition, subtraction and multiplication wraps around using twos-complement representation. This flag enables some *************** form by either removing `no-' or adding *** 18820,18849 **** default for the Java front end, as required by the Java language specification. ! `-fexceptions' Enable exception handling. Generates extra code needed to ! propagate exceptions. For some targets, this implies GCC ! generates frame unwind information for all functions, which can ! produce significant data size overhead, although it does not ! affect execution. If you do not specify this option, GCC enables ! it by default for languages like C++ that normally require ! exception handling, and disables it for languages like C that do ! not normally require it. However, you may need to enable this ! option when compiling C code that needs to interoperate properly ! with exception handlers written in C++. You may also wish to ! disable this option if you are compiling older C++ programs that ! don't use exception handling. ! `-fnon-call-exceptions' Generate code that allows trapping instructions to throw exceptions. Note that this requires platform-specific runtime support that does not exist everywhere. Moreover, it only allows ! _trapping_ instructions to throw exceptions, i.e. memory ! references or floating-point instructions. It does not allow ! exceptions to be thrown from arbitrary signal handlers such as ! `SIGALRM'. ! `-fdelete-dead-exceptions' Consider that instructions that may throw exceptions but don't otherwise contribute to the execution of the program can be optimized away. This option is enabled by default for the Ada --- 18717,18745 ---- default for the Java front end, as required by the Java language specification. ! '-fexceptions' Enable exception handling. Generates extra code needed to ! propagate exceptions. For some targets, this implies GCC generates ! frame unwind information for all functions, which can produce ! significant data size overhead, although it does not affect ! execution. If you do not specify this option, GCC enables it by ! default for languages like C++ that normally require exception ! handling, and disables it for languages like C that do not normally ! require it. However, you may need to enable this option when ! compiling C code that needs to interoperate properly with exception ! handlers written in C++. You may also wish to disable this option ! if you are compiling older C++ programs that don't use exception ! handling. ! '-fnon-call-exceptions' Generate code that allows trapping instructions to throw exceptions. Note that this requires platform-specific runtime support that does not exist everywhere. Moreover, it only allows ! _trapping_ instructions to throw exceptions, i.e. memory references ! or floating-point instructions. It does not allow exceptions to be ! thrown from arbitrary signal handlers such as 'SIGALRM'. ! '-fdelete-dead-exceptions' Consider that instructions that may throw exceptions but don't otherwise contribute to the execution of the program can be optimized away. This option is enabled by default for the Ada *************** form by either removing `no-' or adding *** 18851,18875 **** Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels. ! `-funwind-tables' ! Similar to `-fexceptions', except that it just generates any needed static data, but does not affect the generated code in any other way. You normally do not need to enable this option; instead, a language processor that needs this handling enables it on your behalf. ! `-fasynchronous-unwind-tables' Generate unwind table in DWARF 2 format, if supported by target machine. The table is exact at each instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debugger or garbage collector). ! `-fpcc-struct-return' ! Return "short" `struct' and `union' values in memory like longer ! ones, rather than in registers. This convention is less ! efficient, but it has the advantage of allowing intercallability ! between GCC-compiled files and files compiled with other ! compilers, particularly the Portable C Compiler (pcc). The precise convention for returning structures in memory depends on the target configuration macros. --- 18747,18771 ---- Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels. ! '-funwind-tables' ! Similar to '-fexceptions', except that it just generates any needed static data, but does not affect the generated code in any other way. You normally do not need to enable this option; instead, a language processor that needs this handling enables it on your behalf. ! '-fasynchronous-unwind-tables' Generate unwind table in DWARF 2 format, if supported by target machine. The table is exact at each instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debugger or garbage collector). ! '-fpcc-struct-return' ! Return "short" 'struct' and 'union' values in memory like longer ! ones, rather than in registers. This convention is less efficient, ! but it has the advantage of allowing intercallability between ! GCC-compiled files and files compiled with other compilers, ! particularly the Portable C Compiler (pcc). The precise convention for returning structures in memory depends on the target configuration macros. *************** form by either removing `no-' or adding *** 18877,18985 **** Short structures and unions are those whose size and alignment match that of some integer type. ! *Warning:* code compiled with the `-fpcc-struct-return' switch is not binary compatible with code compiled with the ! `-freg-struct-return' switch. Use it to conform to a non-default application binary interface. ! `-freg-struct-return' ! Return `struct' and `union' values in registers when possible. This is more efficient for small structures than ! `-fpcc-struct-return'. ! If you specify neither `-fpcc-struct-return' nor ! `-freg-struct-return', GCC defaults to whichever convention is standard for the target. If there is no standard convention, GCC ! defaults to `-fpcc-struct-return', except on targets where GCC is the principal compiler. In those cases, we can choose the standard, and we chose the more efficient register return alternative. ! *Warning:* code compiled with the `-freg-struct-return' switch is not binary compatible with code compiled with the ! `-fpcc-struct-return' switch. Use it to conform to a non-default application binary interface. ! `-fshort-enums' ! Allocate to an `enum' type only as many bytes as it needs for the ! declared range of possible values. Specifically, the `enum' type is equivalent to the smallest integer type that has enough room. ! *Warning:* the `-fshort-enums' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface. ! `-fshort-double' ! Use the same size for `double' as for `float'. ! *Warning:* the `-fshort-double' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface. ! `-fshort-wchar' ! Override the underlying type for `wchar_t' to be `short unsigned int' instead of the default for the target. This option is useful for building programs to run under WINE. ! *Warning:* the `-fshort-wchar' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface. ! `-fno-common' In C code, controls the placement of uninitialized global variables. Unix C compilers have traditionally permitted multiple definitions of such variables in different compilation units by placing the variables in a common block. This is the behavior ! specified by `-fcommon', and is the default for GCC on most targets. On the other hand, this behavior is not required by ISO C, and on some targets may carry a speed or code size penalty on ! variable references. The `-fno-common' option specifies that the compiler should place uninitialized global variables in the data section of the object file, rather than generating them as common blocks. This has the effect that if the same variable is declared ! (without `extern') in two different compilations, you get a multiple-definition error when you link them. In this case, you ! must compile with `-fcommon' instead. Compiling with ! `-fno-common' is useful on targets for which it provides better ! performance, or if you wish to verify that the program will work ! on other systems that always treat uninitialized variable ! declarations this way. ! `-fno-ident' ! Ignore the `#ident' directive. ! `-finhibit-size-directive' ! Don't output a `.size' assembler directive, or anything else that would cause trouble if the function is split in the middle, and the two halves are placed at locations far apart in memory. This ! option is used when compiling `crtstuff.c'; you should not need to use it for anything else. ! `-fverbose-asm' Put extra commentary information in the generated assembly code to make it more readable. This option is generally only of use to those who actually need to read the generated assembly code (perhaps while debugging the compiler itself). ! `-fno-verbose-asm', the default, causes the extra information to ! be omitted and is useful when comparing two assembler files. ! `-frecord-gcc-switches' This switch causes the command line used to invoke the compiler to be recorded into the object file that is being created. This switch is only implemented on some targets and the exact format of the recording is target and binary file format dependent, but it usually takes the form of a section containing ASCII text. This ! switch is related to the `-fverbose-asm' switch, but that switch only records information in the assembler output file as comments, so it never reaches the object file. See also ! `-grecord-gcc-switches' for another way of storing compiler ! options into the object file. ! `-fpic' Generate position-independent code (PIC) suitable for use in a shared library, if supported for the target machine. Such code accesses all constant addresses through a global offset table --- 18773,18880 ---- Short structures and unions are those whose size and alignment match that of some integer type. ! *Warning:* code compiled with the '-fpcc-struct-return' switch is not binary compatible with code compiled with the ! '-freg-struct-return' switch. Use it to conform to a non-default application binary interface. ! '-freg-struct-return' ! Return 'struct' and 'union' values in registers when possible. This is more efficient for small structures than ! '-fpcc-struct-return'. ! If you specify neither '-fpcc-struct-return' nor ! '-freg-struct-return', GCC defaults to whichever convention is standard for the target. If there is no standard convention, GCC ! defaults to '-fpcc-struct-return', except on targets where GCC is the principal compiler. In those cases, we can choose the standard, and we chose the more efficient register return alternative. ! *Warning:* code compiled with the '-freg-struct-return' switch is not binary compatible with code compiled with the ! '-fpcc-struct-return' switch. Use it to conform to a non-default application binary interface. ! '-fshort-enums' ! Allocate to an 'enum' type only as many bytes as it needs for the ! declared range of possible values. Specifically, the 'enum' type is equivalent to the smallest integer type that has enough room. ! *Warning:* the '-fshort-enums' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface. ! '-fshort-double' ! Use the same size for 'double' as for 'float'. ! *Warning:* the '-fshort-double' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface. ! '-fshort-wchar' ! Override the underlying type for 'wchar_t' to be 'short unsigned int' instead of the default for the target. This option is useful for building programs to run under WINE. ! *Warning:* the '-fshort-wchar' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface. ! '-fno-common' In C code, controls the placement of uninitialized global variables. Unix C compilers have traditionally permitted multiple definitions of such variables in different compilation units by placing the variables in a common block. This is the behavior ! specified by '-fcommon', and is the default for GCC on most targets. On the other hand, this behavior is not required by ISO C, and on some targets may carry a speed or code size penalty on ! variable references. The '-fno-common' option specifies that the compiler should place uninitialized global variables in the data section of the object file, rather than generating them as common blocks. This has the effect that if the same variable is declared ! (without 'extern') in two different compilations, you get a multiple-definition error when you link them. In this case, you ! must compile with '-fcommon' instead. Compiling with '-fno-common' ! is useful on targets for which it provides better performance, or ! if you wish to verify that the program will work on other systems ! that always treat uninitialized variable declarations this way. ! '-fno-ident' ! Ignore the '#ident' directive. ! '-finhibit-size-directive' ! Don't output a '.size' assembler directive, or anything else that would cause trouble if the function is split in the middle, and the two halves are placed at locations far apart in memory. This ! option is used when compiling 'crtstuff.c'; you should not need to use it for anything else. ! '-fverbose-asm' Put extra commentary information in the generated assembly code to make it more readable. This option is generally only of use to those who actually need to read the generated assembly code (perhaps while debugging the compiler itself). ! '-fno-verbose-asm', the default, causes the extra information to be ! omitted and is useful when comparing two assembler files. ! '-frecord-gcc-switches' This switch causes the command line used to invoke the compiler to be recorded into the object file that is being created. This switch is only implemented on some targets and the exact format of the recording is target and binary file format dependent, but it usually takes the form of a section containing ASCII text. This ! switch is related to the '-fverbose-asm' switch, but that switch only records information in the assembler output file as comments, so it never reaches the object file. See also ! '-grecord-gcc-switches' for another way of storing compiler options ! into the object file. ! '-fpic' Generate position-independent code (PIC) suitable for use in a shared library, if supported for the target machine. Such code accesses all constant addresses through a global offset table *************** form by either removing `no-' or adding *** 18987,18994 **** program starts (the dynamic loader is not part of GCC; it is part of the operating system). If the GOT size for the linked executable exceeds a machine-specific maximum size, you get an ! error message from the linker indicating that `-fpic' does not ! work; in that case, recompile with `-fPIC' instead. (These maximums are 8k on the SPARC and 32k on the m68k and RS/6000. The 386 has no such limit.) --- 18882,18889 ---- program starts (the dynamic loader is not part of GCC; it is part of the operating system). If the GOT size for the linked executable exceeds a machine-specific maximum size, you get an ! error message from the linker indicating that '-fpic' does not ! work; in that case, recompile with '-fPIC' instead. (These maximums are 8k on the SPARC and 32k on the m68k and RS/6000. The 386 has no such limit.) *************** form by either removing `no-' or adding *** 18997,19049 **** System V but not for the Sun 386i. Code generated for the IBM RS/6000 is always position-independent. ! When this flag is set, the macros `__pic__' and `__PIC__' are defined to 1. ! `-fPIC' If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the ! size of the global offset table. This option makes a difference ! on the m68k, PowerPC and SPARC. Position-independent code requires special support, and therefore works only on certain machines. ! When this flag is set, the macros `__pic__' and `__PIC__' are defined to 2. ! `-fpie' ! `-fPIE' ! These options are similar to `-fpic' and `-fPIC', but generated position independent code can be only linked into executables. ! Usually these options are used when `-pie' GCC option is used during linking. ! `-fpie' and `-fPIE' both define the macros `__pie__' and ! `__PIE__'. The macros have the value 1 for `-fpie' and 2 for ! `-fPIE'. ! `-fno-jump-tables' Do not use jump tables for switch statements even where it would be more efficient than other code generation strategies. This option ! is of use in conjunction with `-fpic' or `-fPIC' for building code that forms part of a dynamic linker and cannot reference the address of a jump table. On some targets, jump tables do not require a GOT and this option is not needed. ! `-ffixed-REG' Treat the register named REG as a fixed register; generated code should never refer to it (except perhaps as a stack pointer, frame pointer or in some other fixed role). REG must be the name of a register. The register names accepted ! are machine-specific and are defined in the `REGISTER_NAMES' macro in the machine description macro file. This flag does not have a negative form, because it specifies a three-way choice. ! `-fcall-used-REG' Treat the register named REG as an allocable register that is clobbered by function calls. It may be allocated for temporaries or variables that do not live across a call. Functions compiled --- 18892,18943 ---- System V but not for the Sun 386i. Code generated for the IBM RS/6000 is always position-independent. ! When this flag is set, the macros '__pic__' and '__PIC__' are defined to 1. ! '-fPIC' If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the ! size of the global offset table. This option makes a difference on ! the m68k, PowerPC and SPARC. Position-independent code requires special support, and therefore works only on certain machines. ! When this flag is set, the macros '__pic__' and '__PIC__' are defined to 2. ! '-fpie' ! '-fPIE' ! These options are similar to '-fpic' and '-fPIC', but generated position independent code can be only linked into executables. ! Usually these options are used when '-pie' GCC option is used during linking. ! '-fpie' and '-fPIE' both define the macros '__pie__' and '__PIE__'. ! The macros have the value 1 for '-fpie' and 2 for '-fPIE'. ! '-fno-jump-tables' Do not use jump tables for switch statements even where it would be more efficient than other code generation strategies. This option ! is of use in conjunction with '-fpic' or '-fPIC' for building code that forms part of a dynamic linker and cannot reference the address of a jump table. On some targets, jump tables do not require a GOT and this option is not needed. ! '-ffixed-REG' Treat the register named REG as a fixed register; generated code should never refer to it (except perhaps as a stack pointer, frame pointer or in some other fixed role). REG must be the name of a register. The register names accepted ! are machine-specific and are defined in the 'REGISTER_NAMES' macro in the machine description macro file. This flag does not have a negative form, because it specifies a three-way choice. ! '-fcall-used-REG' Treat the register named REG as an allocable register that is clobbered by function calls. It may be allocated for temporaries or variables that do not live across a call. Functions compiled *************** form by either removing `no-' or adding *** 19057,19063 **** This flag does not have a negative form, because it specifies a three-way choice. ! `-fcall-saved-REG' Treat the register named REG as an allocable register saved by functions. It may be allocated even for temporaries or variables that live across a call. Functions compiled this way save and --- 18951,18957 ---- This flag does not have a negative form, because it specifies a three-way choice. ! '-fcall-saved-REG' Treat the register named REG as an allocable register saved by functions. It may be allocated even for temporaries or variables that live across a call. Functions compiled this way save and *************** form by either removing `no-' or adding *** 19074,19080 **** This flag does not have a negative form, because it specifies a three-way choice. ! `-fpack-struct[=N]' Without a value specified, pack all structure members together without holes. When a value is specified (which must be a small power of two), pack structure members according to this value, --- 18968,18974 ---- This flag does not have a negative form, because it specifies a three-way choice. ! '-fpack-struct[=N]' Without a value specified, pack all structure members together without holes. When a value is specified (which must be a small power of two), pack structure members according to this value, *************** form by either removing `no-' or adding *** 19082,19098 **** alignment requirements larger than this are output potentially unaligned at the next fitting location. ! *Warning:* the `-fpack-struct' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Additionally, it makes the code suboptimal. Use it to conform to a non-default application binary interface. ! `-finstrument-functions' Generate instrumentation calls for entry and exit to functions. Just after function entry and just before function exit, the following profiling functions are called with the address of the current function and its call site. (On some platforms, ! `__builtin_return_address' does not work beyond the current function, so the call site information may not be available to the profiling functions otherwise.) --- 18976,18992 ---- alignment requirements larger than this are output potentially unaligned at the next fitting location. ! *Warning:* the '-fpack-struct' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Additionally, it makes the code suboptimal. Use it to conform to a non-default application binary interface. ! '-finstrument-functions' Generate instrumentation calls for entry and exit to functions. Just after function entry and just before function exit, the following profiling functions are called with the address of the current function and its call site. (On some platforms, ! '__builtin_return_address' does not work beyond the current function, so the call site information may not be available to the profiling functions otherwise.) *************** form by either removing `no-' or adding *** 19105,19131 **** function, which may be looked up exactly in the symbol table. This instrumentation is also done for functions expanded inline in ! other functions. The profiling calls indicate where, ! conceptually, the inline function is entered and exited. This ! means that addressable versions of such functions must be ! available. If all your uses of a function are expanded inline, ! this may mean an additional expansion of code size. If you use ! `extern inline' in your C code, an addressable version of such ! functions must be provided. (This is normally the case anyway, ! but if you get lucky and the optimizer always expands the ! functions inline, you might have gotten away without providing ! static copies.) ! A function may be given the attribute `no_instrument_function', in which case this instrumentation is not done. This can be used, for example, for the profiling functions listed above, high-priority interrupt routines, and any functions from which the profiling functions cannot safely be called (perhaps signal handlers, if the profiling routines generate output or allocate memory). ! `-finstrument-functions-exclude-file-list=FILE,FILE,...' Set the list of functions that are excluded from instrumentation ! (see the description of `-finstrument-functions'). If the file that contains a function definition matches with one of FILE, then that function is not instrumented. The match is done on substrings: if the FILE parameter is a substring of the file name, --- 18999,19025 ---- function, which may be looked up exactly in the symbol table. This instrumentation is also done for functions expanded inline in ! other functions. The profiling calls indicate where, conceptually, ! the inline function is entered and exited. This means that ! addressable versions of such functions must be available. If all ! your uses of a function are expanded inline, this may mean an ! additional expansion of code size. If you use 'extern inline' in ! your C code, an addressable version of such functions must be ! provided. (This is normally the case anyway, but if you get lucky ! and the optimizer always expands the functions inline, you might ! have gotten away without providing static copies.) ! A function may be given the attribute 'no_instrument_function', in which case this instrumentation is not done. This can be used, for example, for the profiling functions listed above, high-priority interrupt routines, and any functions from which the profiling functions cannot safely be called (perhaps signal handlers, if the profiling routines generate output or allocate memory). ! '-finstrument-functions-exclude-file-list=FILE,FILE,...' ! Set the list of functions that are excluded from instrumentation ! (see the description of '-finstrument-functions'). If the file that contains a function definition matches with one of FILE, then that function is not instrumented. The match is done on substrings: if the FILE parameter is a substring of the file name, *************** form by either removing `no-' or adding *** 19136,19177 **** -finstrument-functions-exclude-file-list=/bits/stl,include/sys excludes any inline function defined in files whose pathnames ! contain `/bits/stl' or `include/sys'. ! If, for some reason, you want to include letter `','' in one of ! SYM, write `'\,''. For example, ! `-finstrument-functions-exclude-file-list='\,\,tmp'' (note the single quote surrounding the option). ! `-finstrument-functions-exclude-function-list=SYM,SYM,...' ! This is similar to `-finstrument-functions-exclude-file-list', but this option sets the list of function names to be excluded from instrumentation. The function name to be matched is its ! user-visible name, such as `vector blah(const vector ! &)', not the internal mangled name (e.g., ! `_Z4blahRSt6vectorIiSaIiEE'). The match is done on substrings: if ! the SYM parameter is a substring of the function name, it is ! considered to be a match. For C99 and C++ extended identifiers, ! the function name must be given in UTF-8, not using universal ! character names. ! `-fstack-check' Generate code to verify that you do not go beyond the boundary of the stack. You should specify this flag if you are running in an environment with multiple threads, but you only rarely need to ! specify it in a single-threaded environment since stack overflow ! is automatically detected on nearly all systems if there is only ! one stack. Note that this switch does not actually cause checking to be done; the operating system or the language runtime must do that. The switch causes generation of code to ensure that they see the stack being extended. ! You can additionally specify a string parameter: `no' means no ! checking, `generic' means force the use of old-style checking, ! `specific' means use the best checking method and is equivalent to ! bare `-fstack-check'. Old-style checking is a generic mechanism that requires no specific target support in the compiler but comes with the following --- 19030,19071 ---- -finstrument-functions-exclude-file-list=/bits/stl,include/sys excludes any inline function defined in files whose pathnames ! contain '/bits/stl' or 'include/sys'. ! If, for some reason, you want to include letter '','' in one of ! SYM, write ''\,''. For example, ! '-finstrument-functions-exclude-file-list='\,\,tmp'' (note the single quote surrounding the option). ! '-finstrument-functions-exclude-function-list=SYM,SYM,...' ! ! This is similar to '-finstrument-functions-exclude-file-list', but this option sets the list of function names to be excluded from instrumentation. The function name to be matched is its ! user-visible name, such as 'vector blah(const vector &)', ! not the internal mangled name (e.g., '_Z4blahRSt6vectorIiSaIiEE'). ! The match is done on substrings: if the SYM parameter is a ! substring of the function name, it is considered to be a match. ! For C99 and C++ extended identifiers, the function name must be ! given in UTF-8, not using universal character names. ! '-fstack-check' Generate code to verify that you do not go beyond the boundary of the stack. You should specify this flag if you are running in an environment with multiple threads, but you only rarely need to ! specify it in a single-threaded environment since stack overflow is ! automatically detected on nearly all systems if there is only one ! stack. Note that this switch does not actually cause checking to be done; the operating system or the language runtime must do that. The switch causes generation of code to ensure that they see the stack being extended. ! You can additionally specify a string parameter: 'no' means no ! checking, 'generic' means force the use of old-style checking, ! 'specific' means use the best checking method and is equivalent to ! bare '-fstack-check'. Old-style checking is a generic mechanism that requires no specific target support in the compiler but comes with the following *************** form by either removing `no-' or adding *** 19181,19200 **** always allocated dynamically if their size exceeds a fixed threshold. ! 2. Fixed limit on the size of the static frame of functions: ! when it is topped by a particular function, stack checking is ! not reliable and a warning is issued by the compiler. ! 3. Inefficiency: because of both the modified allocation ! strategy and the generic implementation, code performance is ! hampered. Note that old-style stack checking is also the fallback method for ! `specific' if no target support has been added in the compiler. ! `-fstack-limit-register=REG' ! `-fstack-limit-symbol=SYM' ! `-fno-stack-limit' Generate code to ensure that the stack does not grow beyond a certain value, either the value of a register or the address of a symbol. If a larger stack is required, a signal is raised at run --- 19075,19093 ---- always allocated dynamically if their size exceeds a fixed threshold. ! 2. Fixed limit on the size of the static frame of functions: when ! it is topped by a particular function, stack checking is not ! reliable and a warning is issued by the compiler. ! 3. Inefficiency: because of both the modified allocation strategy ! and the generic implementation, code performance is hampered. Note that old-style stack checking is also the fallback method for ! 'specific' if no target support has been added in the compiler. ! '-fstack-limit-register=REG' ! '-fstack-limit-symbol=SYM' ! '-fno-stack-limit' Generate code to ensure that the stack does not grow beyond a certain value, either the value of a register or the address of a symbol. If a larger stack is required, a signal is raised at run *************** form by either removing `no-' or adding *** 19202,19251 **** overruns the boundary, so it is possible to catch the signal without taking special precautions. ! For instance, if the stack starts at absolute address `0x80000000' and grows downwards, you can use the flags ! `-fstack-limit-symbol=__stack_limit' and ! `-Wl,--defsym,__stack_limit=0x7ffe0000' to enforce a stack limit ! of 128KB. Note that this may only work with the GNU linker. ! `-fsplit-stack' Generate code to automatically split the stack before it overflows. The resulting program has a discontiguous stack which can only overflow if the program is unable to allocate any more memory. This is most useful when running threaded programs, as it is no longer necessary to calculate a good stack size to use for each ! thread. This is currently only implemented for the i386 and ! x86_64 back ends running GNU/Linux. ! When code compiled with `-fsplit-stack' calls code compiled ! without `-fsplit-stack', there may not be much stack space ! available for the latter code to run. If compiling all code, ! including library code, with `-fsplit-stack' is not an option, ! then the linker can fix up these calls so that the code compiled ! without `-fsplit-stack' always has a large stack. Support for ! this is implemented in the gold linker in GNU binutils release 2.21 ! and later. ! `-fleading-underscore' ! This option and its counterpart, `-fno-leading-underscore', forcibly change the way C symbols are represented in the object file. One use is to help link with legacy assembly code. ! *Warning:* the `-fleading-underscore' switch causes GCC to ! generate code that is not binary compatible with code generated ! without that switch. Use it to conform to a non-default ! application binary interface. Not all targets provide complete ! support for this switch. ! `-ftls-model=MODEL' Alter the thread-local storage model to be used (*note Thread-Local::). The MODEL argument should be one of ! `global-dynamic', `local-dynamic', `initial-exec' or `local-exec'. ! The default without `-fpic' is `initial-exec'; with `-fpic' the ! default is `global-dynamic'. ! `-fvisibility=DEFAULT|INTERNAL|HIDDEN|PROTECTED' Set the default ELF image symbol visibility to the specified option--all symbols are marked with this unless overridden within the code. Using this feature can very substantially improve --- 19095,19144 ---- overruns the boundary, so it is possible to catch the signal without taking special precautions. ! For instance, if the stack starts at absolute address '0x80000000' and grows downwards, you can use the flags ! '-fstack-limit-symbol=__stack_limit' and ! '-Wl,--defsym,__stack_limit=0x7ffe0000' to enforce a stack limit of ! 128KB. Note that this may only work with the GNU linker. ! '-fsplit-stack' Generate code to automatically split the stack before it overflows. The resulting program has a discontiguous stack which can only overflow if the program is unable to allocate any more memory. This is most useful when running threaded programs, as it is no longer necessary to calculate a good stack size to use for each ! thread. This is currently only implemented for the i386 and x86_64 ! back ends running GNU/Linux. ! When code compiled with '-fsplit-stack' calls code compiled without ! '-fsplit-stack', there may not be much stack space available for ! the latter code to run. If compiling all code, including library ! code, with '-fsplit-stack' is not an option, then the linker can ! fix up these calls so that the code compiled without ! '-fsplit-stack' always has a large stack. Support for this is ! implemented in the gold linker in GNU binutils release 2.21 and ! later. ! '-fleading-underscore' ! This option and its counterpart, '-fno-leading-underscore', forcibly change the way C symbols are represented in the object file. One use is to help link with legacy assembly code. ! *Warning:* the '-fleading-underscore' switch causes GCC to generate ! code that is not binary compatible with code generated without that ! switch. Use it to conform to a non-default application binary ! interface. Not all targets provide complete support for this ! switch. ! '-ftls-model=MODEL' Alter the thread-local storage model to be used (*note Thread-Local::). The MODEL argument should be one of ! 'global-dynamic', 'local-dynamic', 'initial-exec' or 'local-exec'. ! The default without '-fpic' is 'initial-exec'; with '-fpic' the ! default is 'global-dynamic'. ! '-fvisibility=DEFAULT|INTERNAL|HIDDEN|PROTECTED' Set the default ELF image symbol visibility to the specified option--all symbols are marked with this unless overridden within the code. Using this feature can very substantially improve *************** form by either removing `no-' or adding *** 19254,19283 **** clashes. It is *strongly* recommended that you use this in any shared objects you distribute. ! Despite the nomenclature, `default' always means public; i.e., available to be linked against from outside the shared object. ! `protected' and `internal' are pretty useless in real-world usage ! so the only other commonly used option is `hidden'. The default ! if `-fvisibility' isn't specified is `default', i.e., make every symbol public--this causes the same behavior as previous versions of GCC. A good explanation of the benefits offered by ensuring ELF symbols have the correct visibility is given by "How To Write Shared Libraries" by Ulrich Drepper (which can be found at ! `http://people.redhat.com/~drepper/')--however a superior solution made possible by this option to marking things hidden when the default is public is to make the default hidden and mark things public. This is the norm with DLLs on Windows and with ! `-fvisibility=hidden' and `__attribute__ ! ((visibility("default")))' instead of `__declspec(dllexport)' you ! get almost identical semantics with identical syntax. This is a ! great boon to those working with cross-platform projects. For those adding visibility support to existing code, you may find ! `#pragma GCC visibility' of use. This works by you enclosing the declarations you wish to set visibility for with (for example) ! `#pragma GCC visibility push(hidden)' and `#pragma GCC visibility pop'. Bear in mind that symbol visibility should be viewed *as part of the API interface contract* and thus all new code should always specify visibility when it is not the default; i.e., --- 19147,19176 ---- clashes. It is *strongly* recommended that you use this in any shared objects you distribute. ! Despite the nomenclature, 'default' always means public; i.e., available to be linked against from outside the shared object. ! 'protected' and 'internal' are pretty useless in real-world usage ! so the only other commonly used option is 'hidden'. The default if ! '-fvisibility' isn't specified is 'default', i.e., make every symbol public--this causes the same behavior as previous versions of GCC. A good explanation of the benefits offered by ensuring ELF symbols have the correct visibility is given by "How To Write Shared Libraries" by Ulrich Drepper (which can be found at ! )--however a superior solution made possible by this option to marking things hidden when the default is public is to make the default hidden and mark things public. This is the norm with DLLs on Windows and with ! '-fvisibility=hidden' and '__attribute__ ((visibility("default")))' ! instead of '__declspec(dllexport)' you get almost identical ! semantics with identical syntax. This is a great boon to those ! working with cross-platform projects. For those adding visibility support to existing code, you may find ! '#pragma GCC visibility' of use. This works by you enclosing the declarations you wish to set visibility for with (for example) ! '#pragma GCC visibility push(hidden)' and '#pragma GCC visibility pop'. Bear in mind that symbol visibility should be viewed *as part of the API interface contract* and thus all new code should always specify visibility when it is not the default; i.e., *************** form by either removing `no-' or adding *** 19285,19327 **** marked explicitly as hidden as so to avoid PLT indirection overheads--making this abundantly clear also aids readability and self-documentation of the code. Note that due to ISO C++ ! specification requirements, `operator new' and `operator delete' must always be of default visibility. Be aware that headers from outside your project, in particular system headers and headers from any other library you use, may not ! be expecting to be compiled with visibility other than the ! default. You may need to explicitly say `#pragma GCC visibility push(default)' before including any such headers. ! `extern' declarations are not affected by `-fvisibility', so a lot ! of code can be recompiled with `-fvisibility=hidden' with no ! modifications. However, this means that calls to `extern' functions with no explicit visibility use the PLT, so it is more ! effective to use `__attribute ((visibility))' and/or `#pragma GCC ! visibility' to tell the compiler which `extern' declarations ! should be treated as hidden. ! Note that `-fvisibility' does affect C++ vague linkage entities. ! This means that, for instance, an exception class that is be ! thrown between DSOs must be explicitly marked with default ! visibility so that the `type_info' nodes are unified between the ! DSOs. An overview of these techniques, their benefits and how to use them ! is at `http://gcc.gnu.org/wiki/Visibility'. ! `-fstrict-volatile-bitfields' This option should be used if accesses to volatile bit-fields (or other structure fields, although the compiler usually honors those types anyway) should use a single access of the width of the field's type, aligned to a natural alignment if possible. For example, targets with memory-mapped peripheral registers might require all such accesses to be 16 bits wide; with this flag you ! can declare all peripheral bit-fields as `unsigned short' ! (assuming short is 16 bits on these targets) to force GCC to use ! 16-bit accesses instead of, perhaps, a more efficient 32-bit ! access. If this option is disabled, the compiler uses the most efficient instruction. In the previous example, that might be a 32-bit load --- 19178,19218 ---- marked explicitly as hidden as so to avoid PLT indirection overheads--making this abundantly clear also aids readability and self-documentation of the code. Note that due to ISO C++ ! specification requirements, 'operator new' and 'operator delete' must always be of default visibility. Be aware that headers from outside your project, in particular system headers and headers from any other library you use, may not ! be expecting to be compiled with visibility other than the default. ! You may need to explicitly say '#pragma GCC visibility push(default)' before including any such headers. ! 'extern' declarations are not affected by '-fvisibility', so a lot ! of code can be recompiled with '-fvisibility=hidden' with no ! modifications. However, this means that calls to 'extern' functions with no explicit visibility use the PLT, so it is more ! effective to use '__attribute ((visibility))' and/or '#pragma GCC ! visibility' to tell the compiler which 'extern' declarations should ! be treated as hidden. ! Note that '-fvisibility' does affect C++ vague linkage entities. ! This means that, for instance, an exception class that is be thrown ! between DSOs must be explicitly marked with default visibility so ! that the 'type_info' nodes are unified between the DSOs. An overview of these techniques, their benefits and how to use them ! is at . ! '-fstrict-volatile-bitfields' This option should be used if accesses to volatile bit-fields (or other structure fields, although the compiler usually honors those types anyway) should use a single access of the width of the field's type, aligned to a natural alignment if possible. For example, targets with memory-mapped peripheral registers might require all such accesses to be 16 bits wide; with this flag you ! can declare all peripheral bit-fields as 'unsigned short' (assuming ! short is 16 bits on these targets) to force GCC to use 16-bit ! accesses instead of, perhaps, a more efficient 32-bit access. If this option is disabled, the compiler uses the most efficient instruction. In the previous example, that might be a 32-bit load *************** form by either removing `no-' or adding *** 19331,19338 **** If the target requires strict alignment, and honoring the field type would require violating this alignment, a warning is issued. ! If the field has `packed' attribute, the access is done without ! honoring the field type. If the field doesn't have `packed' attribute, the access is done honoring the field type. In both cases, GCC assumes that the user knows something about the target hardware that it is unaware of. --- 19222,19229 ---- If the target requires strict alignment, and honoring the field type would require violating this alignment, a warning is issued. ! If the field has 'packed' attribute, the access is done without ! honoring the field type. If the field doesn't have 'packed' attribute, the access is done honoring the field type. In both cases, GCC assumes that the user knows something about the target hardware that it is unaware of. *************** form by either removing `no-' or adding *** 19340,19354 **** The default value of this option is determined by the application binary interface for the target processor. ! `-fsync-libcalls' This option controls whether any out-of-line instance of the ! `__sync' family of functions may be used to implement the C++11 ! `__atomic' family of functions. The default value of this option is enabled, thus the only useful ! form of the option is `-fno-sync-libcalls'. This option is used in ! the implementation of the `libatomic' runtime library. !  File: gcc.info, Node: Environment Variables, Next: Precompiled Headers, Prev: Code Gen Options, Up: Invoking GCC --- 19231,19244 ---- The default value of this option is determined by the application binary interface for the target processor. ! '-fsync-libcalls' This option controls whether any out-of-line instance of the ! '__sync' family of functions may be used to implement the C++11 ! '__atomic' family of functions. The default value of this option is enabled, thus the only useful ! form of the option is '-fno-sync-libcalls'. This option is used in ! the implementation of the 'libatomic' runtime library.  File: gcc.info, Node: Environment Variables, Next: Precompiled Headers, Prev: Code Gen Options, Up: Invoking GCC *************** File: gcc.info, Node: Environment Varia *** 19358,19532 **** This section describes several environment variables that affect how GCC operates. Some of them work by specifying directories or prefixes to ! use when searching for various kinds of files. Some are used to ! specify other aspects of the compilation environment. Note that you can also specify places to search using options such as ! `-B', `-I' and `-L' (*note Directory Options::). These take precedence over places specified using environment variables, which in turn take precedence over those specified by the configuration of GCC. *Note ! Controlling the Compilation Driver `gcc': (gccint)Driver. ! `LANG' ! `LC_CTYPE' ! `LC_MESSAGES' ! `LC_ALL' These environment variables control the way that GCC uses localization information which allows GCC to work with different national conventions. GCC inspects the locale categories ! `LC_CTYPE' and `LC_MESSAGES' if it has been configured to do so. These locale categories can be set to any value supported by your ! installation. A typical value is `en_GB.UTF-8' for English in the United Kingdom encoded in UTF-8. ! The `LC_CTYPE' environment variable specifies character classification. GCC uses it to determine the character boundaries in a string; this is needed for some multibyte encodings that contain quote and escape characters that are otherwise interpreted as a string end or escape. ! The `LC_MESSAGES' environment variable specifies the language to use in diagnostic messages. ! If the `LC_ALL' environment variable is set, it overrides the value ! of `LC_CTYPE' and `LC_MESSAGES'; otherwise, `LC_CTYPE' and ! `LC_MESSAGES' default to the value of the `LANG' environment variable. If none of these variables are set, GCC defaults to traditional C English behavior. ! `TMPDIR' ! If `TMPDIR' is set, it specifies the directory to use for temporary files. GCC uses temporary files to hold the output of one stage of compilation which is to be used as input to the next stage: for example, the output of the preprocessor, which is the input to the compiler proper. ! `GCC_COMPARE_DEBUG' ! Setting `GCC_COMPARE_DEBUG' is nearly equivalent to passing ! `-fcompare-debug' to the compiler driver. See the documentation ! of this option for more details. ! `GCC_EXEC_PREFIX' ! If `GCC_EXEC_PREFIX' is set, it specifies a prefix to use in the names of the subprograms executed by the compiler. No slash is added when this prefix is combined with the name of a subprogram, but you can specify a prefix that ends with a slash if you wish. ! If `GCC_EXEC_PREFIX' is not set, GCC attempts to figure out an appropriate prefix to use based on the pathname it is invoked with. If GCC cannot find the subprogram using the specified prefix, it tries looking in the usual places for the subprogram. ! The default value of `GCC_EXEC_PREFIX' is `PREFIX/lib/gcc/' where ! PREFIX is the prefix to the installed compiler. In many cases ! PREFIX is the value of `prefix' when you ran the `configure' script. ! Other prefixes specified with `-B' take precedence over this prefix. ! This prefix is also used for finding files such as `crt0.o' that are used for linking. In addition, the prefix is used in an unusual way in finding the directories to search for header files. For each of the standard ! directories whose name normally begins with `/usr/local/lib/gcc' ! (more precisely, with the value of `GCC_INCLUDE_DIR'), GCC tries replacing that beginning with the specified prefix to produce an ! alternate directory name. Thus, with `-Bfoo/', GCC searches ! `foo/bar' just before it searches the standard directory ! `/usr/local/lib/bar'. If a standard directory begins with the configured PREFIX then the value of PREFIX is replaced by ! `GCC_EXEC_PREFIX' when looking for header files. ! `COMPILER_PATH' ! The value of `COMPILER_PATH' is a colon-separated list of ! directories, much like `PATH'. GCC tries the directories thus specified when searching for subprograms, if it can't find the ! subprograms using `GCC_EXEC_PREFIX'. ! `LIBRARY_PATH' ! The value of `LIBRARY_PATH' is a colon-separated list of ! directories, much like `PATH'. When configured as a native compiler, GCC tries the directories thus specified when searching for special linker files, if it can't find them using ! `GCC_EXEC_PREFIX'. Linking using GCC also uses these directories ! when searching for ordinary libraries for the `-l' option (but ! directories specified with `-L' come first). ! `LANG' This variable is used to pass locale information to the compiler. One way in which this information is used is to determine the character set to be used when character literals, string literals and comments are parsed in C and C++. When the compiler is configured to allow multibyte characters, the following values for ! `LANG' are recognized: ! `C-JIS' Recognize JIS characters. ! ! `C-SJIS' Recognize SJIS characters. ! ! `C-EUCJP' Recognize EUCJP characters. ! If `LANG' is not defined, or if it has some other value, then the ! compiler uses `mblen' and `mbtowc' as defined by the default ! locale to recognize and translate multibyte characters. Some additional environment variables affect the behavior of the preprocessor. ! `CPATH' ! `C_INCLUDE_PATH' ! `CPLUS_INCLUDE_PATH' ! `OBJC_INCLUDE_PATH' Each variable's value is a list of directories separated by a ! special character, much like `PATH', in which to look for header ! files. The special character, `PATH_SEPARATOR', is target-dependent and determined at GCC build time. For Microsoft Windows-based targets it is a semicolon, and for almost all other targets it is a colon. ! `CPATH' specifies a list of directories to be searched as if ! specified with `-I', but after any paths given with `-I' options ! on the command line. This environment variable is used regardless ! of which language is being preprocessed. The remaining environment variables apply only when preprocessing the particular language indicated. Each specifies a list of ! directories to be searched as if specified with `-isystem', but ! after any paths given with `-isystem' options on the command line. In all these variables, an empty element instructs the compiler to ! search its current working directory. Empty elements can appear ! at the beginning or end of a path. For instance, if the value of ! `CPATH' is `:/special/include', that has the same effect as ! `-I. -I/special/include'. ! `DEPENDENCIES_OUTPUT' If this variable is set, its value specifies how to output dependencies for Make based on the non-system header files processed by the compiler. System header files are ignored in the dependency output. ! The value of `DEPENDENCIES_OUTPUT' can be just a file name, in which case the Make rules are written to that file, guessing the target name from the source file name. Or the value can have the ! form `FILE TARGET', in which case the rules are written to file FILE using TARGET as the target name. In other words, this environment variable is equivalent to ! combining the options `-MM' and `-MF' (*note Preprocessor ! Options::), with an optional `-MT' switch too. ! `SUNPRO_DEPENDENCIES' ! This variable is the same as `DEPENDENCIES_OUTPUT' (see above), ! except that system header files are not ignored, so it implies ! `-M' rather than `-MM'. However, the dependence on the main input ! file is omitted. *Note Preprocessor Options::.  File: gcc.info, Node: Precompiled Headers, Prev: Environment Variables, Up: Invoking GCC --- 19248,19420 ---- This section describes several environment variables that affect how GCC operates. Some of them work by specifying directories or prefixes to ! use when searching for various kinds of files. Some are used to specify ! other aspects of the compilation environment. Note that you can also specify places to search using options such as ! '-B', '-I' and '-L' (*note Directory Options::). These take precedence over places specified using environment variables, which in turn take precedence over those specified by the configuration of GCC. *Note ! Controlling the Compilation Driver 'gcc': (gccint)Driver. ! 'LANG' ! 'LC_CTYPE' ! 'LC_MESSAGES' ! 'LC_ALL' These environment variables control the way that GCC uses localization information which allows GCC to work with different national conventions. GCC inspects the locale categories ! 'LC_CTYPE' and 'LC_MESSAGES' if it has been configured to do so. These locale categories can be set to any value supported by your ! installation. A typical value is 'en_GB.UTF-8' for English in the United Kingdom encoded in UTF-8. ! The 'LC_CTYPE' environment variable specifies character classification. GCC uses it to determine the character boundaries in a string; this is needed for some multibyte encodings that contain quote and escape characters that are otherwise interpreted as a string end or escape. ! The 'LC_MESSAGES' environment variable specifies the language to use in diagnostic messages. ! If the 'LC_ALL' environment variable is set, it overrides the value ! of 'LC_CTYPE' and 'LC_MESSAGES'; otherwise, 'LC_CTYPE' and ! 'LC_MESSAGES' default to the value of the 'LANG' environment variable. If none of these variables are set, GCC defaults to traditional C English behavior. ! 'TMPDIR' ! If 'TMPDIR' is set, it specifies the directory to use for temporary files. GCC uses temporary files to hold the output of one stage of compilation which is to be used as input to the next stage: for example, the output of the preprocessor, which is the input to the compiler proper. ! 'GCC_COMPARE_DEBUG' ! Setting 'GCC_COMPARE_DEBUG' is nearly equivalent to passing ! '-fcompare-debug' to the compiler driver. See the documentation of ! this option for more details. ! 'GCC_EXEC_PREFIX' ! If 'GCC_EXEC_PREFIX' is set, it specifies a prefix to use in the names of the subprograms executed by the compiler. No slash is added when this prefix is combined with the name of a subprogram, but you can specify a prefix that ends with a slash if you wish. ! If 'GCC_EXEC_PREFIX' is not set, GCC attempts to figure out an appropriate prefix to use based on the pathname it is invoked with. If GCC cannot find the subprogram using the specified prefix, it tries looking in the usual places for the subprogram. ! The default value of 'GCC_EXEC_PREFIX' is 'PREFIX/lib/gcc/' where ! PREFIX is the prefix to the installed compiler. In many cases ! PREFIX is the value of 'prefix' when you ran the 'configure' script. ! Other prefixes specified with '-B' take precedence over this prefix. ! This prefix is also used for finding files such as 'crt0.o' that are used for linking. In addition, the prefix is used in an unusual way in finding the directories to search for header files. For each of the standard ! directories whose name normally begins with '/usr/local/lib/gcc' ! (more precisely, with the value of 'GCC_INCLUDE_DIR'), GCC tries replacing that beginning with the specified prefix to produce an ! alternate directory name. Thus, with '-Bfoo/', GCC searches ! 'foo/bar' just before it searches the standard directory ! '/usr/local/lib/bar'. If a standard directory begins with the configured PREFIX then the value of PREFIX is replaced by ! 'GCC_EXEC_PREFIX' when looking for header files. ! 'COMPILER_PATH' ! The value of 'COMPILER_PATH' is a colon-separated list of ! directories, much like 'PATH'. GCC tries the directories thus specified when searching for subprograms, if it can't find the ! subprograms using 'GCC_EXEC_PREFIX'. ! 'LIBRARY_PATH' ! The value of 'LIBRARY_PATH' is a colon-separated list of ! directories, much like 'PATH'. When configured as a native compiler, GCC tries the directories thus specified when searching for special linker files, if it can't find them using ! 'GCC_EXEC_PREFIX'. Linking using GCC also uses these directories ! when searching for ordinary libraries for the '-l' option (but ! directories specified with '-L' come first). ! 'LANG' This variable is used to pass locale information to the compiler. One way in which this information is used is to determine the character set to be used when character literals, string literals and comments are parsed in C and C++. When the compiler is configured to allow multibyte characters, the following values for ! 'LANG' are recognized: ! 'C-JIS' Recognize JIS characters. ! 'C-SJIS' Recognize SJIS characters. ! 'C-EUCJP' Recognize EUCJP characters. ! If 'LANG' is not defined, or if it has some other value, then the ! compiler uses 'mblen' and 'mbtowc' as defined by the default locale ! to recognize and translate multibyte characters. Some additional environment variables affect the behavior of the preprocessor. ! 'CPATH' ! 'C_INCLUDE_PATH' ! 'CPLUS_INCLUDE_PATH' ! 'OBJC_INCLUDE_PATH' Each variable's value is a list of directories separated by a ! special character, much like 'PATH', in which to look for header ! files. The special character, 'PATH_SEPARATOR', is target-dependent and determined at GCC build time. For Microsoft Windows-based targets it is a semicolon, and for almost all other targets it is a colon. ! 'CPATH' specifies a list of directories to be searched as if ! specified with '-I', but after any paths given with '-I' options on ! the command line. This environment variable is used regardless of ! which language is being preprocessed. The remaining environment variables apply only when preprocessing the particular language indicated. Each specifies a list of ! directories to be searched as if specified with '-isystem', but ! after any paths given with '-isystem' options on the command line. In all these variables, an empty element instructs the compiler to ! search its current working directory. Empty elements can appear at ! the beginning or end of a path. For instance, if the value of ! 'CPATH' is ':/special/include', that has the same effect as ! '-I. -I/special/include'. ! 'DEPENDENCIES_OUTPUT' If this variable is set, its value specifies how to output dependencies for Make based on the non-system header files processed by the compiler. System header files are ignored in the dependency output. ! The value of 'DEPENDENCIES_OUTPUT' can be just a file name, in which case the Make rules are written to that file, guessing the target name from the source file name. Or the value can have the ! form 'FILE TARGET', in which case the rules are written to file FILE using TARGET as the target name. In other words, this environment variable is equivalent to ! combining the options '-MM' and '-MF' (*note Preprocessor ! Options::), with an optional '-MT' switch too. ! 'SUNPRO_DEPENDENCIES' ! This variable is the same as 'DEPENDENCIES_OUTPUT' (see above), ! except that system header files are not ignored, so it implies '-M' ! rather than '-MM'. However, the dependence on the main input file ! is omitted. *Note Preprocessor Options::.  File: gcc.info, Node: Precompiled Headers, Prev: Environment Variables, Up: Invoking GCC *************** build the project. To make builds faste *** 19541,19586 **** "precompile" a header file. To create a precompiled header file, simply compile it as you would any ! other file, if necessary using the `-x' option to make the driver treat ! it as a C or C++ header file. You may want to use a tool like `make' ! to keep the precompiled header up-to-date when the headers it contains change. ! A precompiled header file is searched for when `#include' is seen in the compilation. As it searches for the included file (*note Search Path: (cpp)Search Path.) the compiler looks for a precompiled header in each directory just before it looks for the include file in that directory. The name searched for is the name specified in the ! `#include' with `.gch' appended. If the precompiled header file can't be used, it is ignored. ! For instance, if you have `#include "all.h"', and you have `all.h.gch' ! in the same directory as `all.h', then the precompiled header file is used if possible, and the original header is used otherwise. Alternatively, you might decide to put the precompiled header file in a ! directory and use `-I' to ensure that directory is searched before (or instead of) the directory containing the original header. Then, if you want to check that the precompiled header file is always used, you can put a file of the same name as the original header in this directory ! containing an `#error' command. ! This also works with `-include'. So yet another way to use ! precompiled headers, good for projects not designed with precompiled ! header files in mind, is to simply take most of the header files used by ! a project, include them from another header file, precompile that header ! file, and `-include' the precompiled header. If the header files have ! guards against multiple inclusion, they are skipped because they've ! already been included (in the precompiled header). ! If you need to precompile the same header file for different ! languages, targets, or compiler options, you can instead make a ! _directory_ named like `all.h.gch', and put each precompiled header in ! the directory, perhaps using `-o'. It doesn't matter what you call the ! files in the directory; every precompiled header in the directory is ! considered. The first precompiled header encountered in the directory ! that is valid for this compilation is used; they're searched in no ! particular order. There are many other possibilities, limited only by your imagination, good sense, and the constraints of your build system. --- 19429,19473 ---- "precompile" a header file. To create a precompiled header file, simply compile it as you would any ! other file, if necessary using the '-x' option to make the driver treat ! it as a C or C++ header file. You may want to use a tool like 'make' to ! keep the precompiled header up-to-date when the headers it contains change. ! A precompiled header file is searched for when '#include' is seen in the compilation. As it searches for the included file (*note Search Path: (cpp)Search Path.) the compiler looks for a precompiled header in each directory just before it looks for the include file in that directory. The name searched for is the name specified in the ! '#include' with '.gch' appended. If the precompiled header file can't be used, it is ignored. ! For instance, if you have '#include "all.h"', and you have 'all.h.gch' ! in the same directory as 'all.h', then the precompiled header file is used if possible, and the original header is used otherwise. Alternatively, you might decide to put the precompiled header file in a ! directory and use '-I' to ensure that directory is searched before (or instead of) the directory containing the original header. Then, if you want to check that the precompiled header file is always used, you can put a file of the same name as the original header in this directory ! containing an '#error' command. ! This also works with '-include'. So yet another way to use precompiled ! headers, good for projects not designed with precompiled header files in ! mind, is to simply take most of the header files used by a project, ! include them from another header file, precompile that header file, and ! '-include' the precompiled header. If the header files have guards ! against multiple inclusion, they are skipped because they've already ! been included (in the precompiled header). ! If you need to precompile the same header file for different languages, ! targets, or compiler options, you can instead make a _directory_ named ! like 'all.h.gch', and put each precompiled header in the directory, ! perhaps using '-o'. It doesn't matter what you call the files in the ! directory; every precompiled header in the directory is considered. The ! first precompiled header encountered in the directory that is valid for ! this compilation is used; they're searched in no particular order. There are many other possibilities, limited only by your imagination, good sense, and the constraints of your build system. *************** good sense, and the constraints of your *** 19607,19625 **** usually means that they don't appear in the precompiled header at all. ! The `-D' option is one way to define a macro before a precompiled ! header is included; using a `#define' can also do it. There are ! also some options that define macros implicitly, like `-O' and ! `-Wdeprecated'; the same rule applies to macros defined this way. * If debugging information is output when using the precompiled ! header, using `-g' or similar, the same kind of debugging information must have been output when building the precompiled ! header. However, a precompiled header built using `-g' can be ! used in a compilation when no debugging information is being ! output. ! * The same `-m' options must generally be used when building and using the precompiled header. *Note Submodel Options::, for any cases where this rule is relaxed. --- 19494,19511 ---- usually means that they don't appear in the precompiled header at all. ! The '-D' option is one way to define a macro before a precompiled ! header is included; using a '#define' can also do it. There are ! also some options that define macros implicitly, like '-O' and ! '-Wdeprecated'; the same rule applies to macros defined this way. * If debugging information is output when using the precompiled ! header, using '-g' or similar, the same kind of debugging information must have been output when building the precompiled ! header. However, a precompiled header built using '-g' can be used ! in a compilation when no debugging information is being output. ! * The same '-m' options must generally be used when building and using the precompiled header. *Note Submodel Options::, for any cases where this rule is relaxed. *************** good sense, and the constraints of your *** 19628,19646 **** -fexceptions ! * Some other command-line options starting with `-f', `-p', or `-O' must be defined in the same way as when the precompiled header was generated. At present, it's not clear which options are safe to change and which are not; the safest choice is to use exactly the ! same options when generating and using the precompiled header. ! The following are known to be safe: -fmessage-length= -fpreprocessed -fsched-interblock -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous -fsched-verbose=NUMBER -fschedule-insns -fvisibility= -pedantic-errors - For all of these except the last, the compiler automatically ignores the precompiled header if the conditions aren't met. If you find an option combination that doesn't work and doesn't cause the precompiled --- 19514,19531 ---- -fexceptions ! * Some other command-line options starting with '-f', '-p', or '-O' must be defined in the same way as when the precompiled header was generated. At present, it's not clear which options are safe to change and which are not; the safest choice is to use exactly the ! same options when generating and using the precompiled header. The ! following are known to be safe: -fmessage-length= -fpreprocessed -fsched-interblock -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous -fsched-verbose=NUMBER -fschedule-insns -fvisibility= -pedantic-errors For all of these except the last, the compiler automatically ignores the precompiled header if the conditions aren't met. If you find an option combination that doesn't work and doesn't cause the precompiled *************** header to be ignored, please consider fi *** 19648,19657 **** Bugs::. If you do use differing options when generating and using the ! precompiled header, the actual behavior is a mixture of the behavior ! for the options. For instance, if you use `-g' to generate the ! precompiled header but not when using it, you may or may not get ! debugging information for routines in the precompiled header.  File: gcc.info, Node: C Implementation, Next: C++ Implementation, Prev: Invoking GCC, Up: Top --- 19533,19542 ---- Bugs::. If you do use differing options when generating and using the ! precompiled header, the actual behavior is a mixture of the behavior for ! the options. For instance, if you use '-g' to generate the precompiled ! header but not when using it, you may or may not get debugging ! information for routines in the precompiled header.  File: gcc.info, Node: C Implementation, Next: C++ Implementation, Prev: Invoking GCC, Up: Top *************** standard. *** 19669,19680 **** Some choices depend on the externally determined ABI for the platform (including standard character encodings) which GCC follows; these are listed as "determined by ABI" below. *Note Binary Compatibility: ! Compatibility, and `http://gcc.gnu.org/readings.html'. Some choices ! are documented in the preprocessor manual. *Note ! Implementation-defined behavior: (cpp)Implementation-defined behavior. ! Some choices are made by the library and operating system (or other ! environment when compiling for a freestanding environment); refer to ! their documentation for details. * Menu: --- 19554,19565 ---- Some choices depend on the externally determined ABI for the platform (including standard character encodings) which GCC follows; these are listed as "determined by ABI" below. *Note Binary Compatibility: ! Compatibility, and . Some choices are ! documented in the preprocessor manual. *Note Implementation-defined ! behavior: (cpp)Implementation-defined behavior. Some choices are made ! by the library and operating system (or other environment when compiling ! for a freestanding environment); refer to their documentation for ! details. * Menu: *************** File: gcc.info, Node: Translation imple *** 19701,19719 **** 4.1 Translation =============== ! * `How a diagnostic is identified (C90 3.7, C99 3.10, C90 and C99 5.1.1.3).' Diagnostics consist of all the output sent to stderr by GCC. ! * `Whether each nonempty sequence of white-space characters other than new-line is retained or replaced by one space character in translation phase 3 (C90 and C99 5.1.1.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. -  File: gcc.info, Node: Environment implementation, Next: Identifiers implementation, Prev: Translation implementation, Up: C Implementation --- 19586,19603 ---- 4.1 Translation =============== ! * 'How a diagnostic is identified (C90 3.7, C99 3.10, C90 and C99 5.1.1.3).' Diagnostics consist of all the output sent to stderr by GCC. ! * 'Whether each nonempty sequence of white-space characters other than new-line is retained or replaced by one space character in translation phase 3 (C90 and C99 5.1.1.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior.  File: gcc.info, Node: Environment implementation, Next: Identifiers implementation, Prev: Translation implementation, Up: C Implementation *************** File: gcc.info, Node: Environment imple *** 19723,19813 **** The behavior of most of these points are dependent on the implementation of the C library, and are not defined by GCC itself. ! * `The mapping between physical source file multibyte characters and the source character set in translation phase 1 (C90 and C99 5.1.1.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. -  File: gcc.info, Node: Identifiers implementation, Next: Characters implementation, Prev: Environment implementation, Up: C Implementation 4.3 Identifiers =============== ! * `Which additional multibyte characters may appear in identifiers and their correspondence to universal character names (C99 6.4.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * `The number of significant initial characters in an identifier ! (C90 6.1.2, C90 and C99 5.2.4.1, C99 6.4.2).' For internal names, all characters are significant. For external names, the number of significant characters are defined by the linker; for almost all targets, all characters are significant. ! * `Whether case distinctions are significant in an identifier with external linkage (C90 6.1.2).' This is a property of the linker. C99 requires that case distinctions are always significant in identifiers with external linkage and systems without this property are not supported by GCC. -  File: gcc.info, Node: Characters implementation, Next: Integers implementation, Prev: Identifiers implementation, Up: C Implementation 4.4 Characters ============== ! * `The number of bits in a byte (C90 3.4, C99 3.6).' Determined by ABI. ! * `The values of the members of the execution character set (C90 and C99 5.2.1).' Determined by ABI. ! * `The unique value of the member of the execution character set produced for each of the standard alphabetic escape sequences (C90 and C99 5.2.2).' Determined by ABI. ! * `The value of a `char' object into which has been stored any character other than a member of the basic execution character set (C90 6.1.2.5, C99 6.2.5).' Determined by ABI. ! * `Which of `signed char' or `unsigned char' has the same range, ! representation, and behavior as "plain" `char' (C90 6.1.2.5, C90 6.2.1.1, C99 6.2.5, C99 6.3.1.1).' ! Determined by ABI. The options `-funsigned-char' and ! `-fsigned-char' change the default. *Note Options Controlling C Dialect: C Dialect Options. ! * `The mapping of members of the source character set (in character constants and string literals) to members of the execution character set (C90 6.1.3.4, C99 6.4.4.4, C90 and C99 5.1.1.2).' Determined by ABI. ! * `The value of an integer character constant containing more than one character or containing a character or escape sequence that ! does not map to a single-byte execution character (C90 6.1.3.4, ! C99 6.4.4.4).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * `The value of a wide character constant containing more than one multibyte character, or containing a multibyte character or escape sequence not represented in the extended execution character set (C90 6.1.3.4, C99 6.4.4.4).' --- 19607,19695 ---- The behavior of most of these points are dependent on the implementation of the C library, and are not defined by GCC itself. ! * 'The mapping between physical source file multibyte characters and the source character set in translation phase 1 (C90 and C99 5.1.1.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior.  File: gcc.info, Node: Identifiers implementation, Next: Characters implementation, Prev: Environment implementation, Up: C Implementation 4.3 Identifiers =============== ! * 'Which additional multibyte characters may appear in identifiers and their correspondence to universal character names (C99 6.4.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * 'The number of significant initial characters in an identifier (C90 ! 6.1.2, C90 and C99 5.2.4.1, C99 6.4.2).' For internal names, all characters are significant. For external names, the number of significant characters are defined by the linker; for almost all targets, all characters are significant. ! * 'Whether case distinctions are significant in an identifier with external linkage (C90 6.1.2).' This is a property of the linker. C99 requires that case distinctions are always significant in identifiers with external linkage and systems without this property are not supported by GCC.  File: gcc.info, Node: Characters implementation, Next: Integers implementation, Prev: Identifiers implementation, Up: C Implementation 4.4 Characters ============== ! * 'The number of bits in a byte (C90 3.4, C99 3.6).' Determined by ABI. ! * 'The values of the members of the execution character set (C90 and C99 5.2.1).' Determined by ABI. ! * 'The unique value of the member of the execution character set produced for each of the standard alphabetic escape sequences (C90 and C99 5.2.2).' Determined by ABI. ! * 'The value of a 'char' object into which has been stored any character other than a member of the basic execution character set (C90 6.1.2.5, C99 6.2.5).' Determined by ABI. ! * 'Which of 'signed char' or 'unsigned char' has the same range, ! representation, and behavior as "plain" 'char' (C90 6.1.2.5, C90 6.2.1.1, C99 6.2.5, C99 6.3.1.1).' ! Determined by ABI. The options '-funsigned-char' and ! '-fsigned-char' change the default. *Note Options Controlling C Dialect: C Dialect Options. ! * 'The mapping of members of the source character set (in character constants and string literals) to members of the execution character set (C90 6.1.3.4, C99 6.4.4.4, C90 and C99 5.1.1.2).' Determined by ABI. ! * 'The value of an integer character constant containing more than one character or containing a character or escape sequence that ! does not map to a single-byte execution character (C90 6.1.3.4, C99 ! 6.4.4.4).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * 'The value of a wide character constant containing more than one multibyte character, or containing a multibyte character or escape sequence not represented in the extended execution character set (C90 6.1.3.4, C99 6.4.4.4).' *************** File: gcc.info, Node: Characters implem *** 19815,19837 **** *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * `The current locale used to convert a wide character constant ! consisting of a single multibyte character that maps to a member ! of the extended execution character set into a corresponding wide character code (C90 6.1.3.4, C99 6.4.4.4).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * `The current locale used to convert a wide string literal into corresponding wide character codes (C90 6.1.4, C99 6.4.5).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * `The value of a string literal containing a multibyte character or ! escape sequence not represented in the execution character set ! (C90 6.1.4, C99 6.4.5).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. --- 19697,19719 ---- *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * 'The current locale used to convert a wide character constant ! consisting of a single multibyte character that maps to a member of ! the extended execution character set into a corresponding wide character code (C90 6.1.3.4, C99 6.4.4.4).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * 'The current locale used to convert a wide string literal into corresponding wide character codes (C90 6.1.4, C99 6.4.5).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * 'The value of a string literal containing a multibyte character or ! escape sequence not represented in the execution character set (C90 ! 6.1.4, C99 6.4.5).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. *************** File: gcc.info, Node: Integers implemen *** 19842,19853 **** 4.5 Integers ============ ! * `Any extended integer types that exist in the implementation (C99 6.2.5).' GCC does not support any extended integer types. ! * `Whether signed integer types are represented using sign and magnitude, two's complement, or one's complement, and whether the extraordinary value is a trap representation or an ordinary value (C99 6.2.6.2).' --- 19724,19735 ---- 4.5 Integers ============ ! * 'Any extended integer types that exist in the implementation (C99 6.2.5).' GCC does not support any extended integer types. ! * 'Whether signed integer types are represented using sign and magnitude, two's complement, or one's complement, and whether the extraordinary value is a trap representation or an ordinary value (C99 6.2.6.2).' *************** File: gcc.info, Node: Integers implemen *** 19855,19977 **** GCC supports only two's complement integer types, and all bit patterns are ordinary values. ! * `The rank of any extended integer type relative to another extended integer type with the same precision (C99 6.3.1.1).' GCC does not support any extended integer types. ! * `The result of, or the signal raised by, converting an integer to a signed integer type when the value cannot be represented in an object of that type (C90 6.2.1.2, C99 6.3.1.3).' For conversion to a type of width N, the value is reduced modulo 2^N to be within range of the type; no signal is raised. ! * `The results of some bitwise operations on signed integers (C90 6.3, C99 6.5).' Bitwise operators act on the representation of the value including both the sign and value bits, where the sign bit is considered ! immediately above the highest-value value bit. Signed `>>' acts ! on negative numbers by sign extension. GCC does not use the latitude given in C99 only to treat certain ! aspects of signed `<<' as undefined, but this is subject to change. ! * `The sign of the remainder on integer division (C90 6.3.5).' GCC always follows the C99 requirement that the result of division is truncated towards zero. -  File: gcc.info, Node: Floating point implementation, Next: Arrays and pointers implementation, Prev: Integers implementation, Up: C Implementation 4.6 Floating point ================== ! * `The accuracy of the floating-point operations and of the library ! functions in `' and `' that return floating-point results (C90 and C99 5.2.4.2.2).' The accuracy is unknown. ! * `The rounding behaviors characterized by non-standard values of ! `FLT_ROUNDS' (C90 and C99 5.2.4.2.2).' GCC does not use such values. ! * `The evaluation methods characterized by non-standard negative ! values of `FLT_EVAL_METHOD' (C99 5.2.4.2.2).' GCC does not use such values. ! * `The direction of rounding when an integer is converted to a floating-point number that cannot exactly represent the original value (C90 6.2.1.3, C99 6.3.1.4).' C99 Annex F is followed. ! * `The direction of rounding when a floating-point number is converted to a narrower floating-point number (C90 6.2.1.4, C99 6.3.1.5).' C99 Annex F is followed. ! * `How the nearest representable value or the larger or smaller representable value immediately adjacent to the nearest representable value is chosen for certain floating constants (C90 6.1.3.1, C99 6.4.4.2).' C99 Annex F is followed. ! * `Whether and how floating expressions are contracted when not ! disallowed by the `FP_CONTRACT' pragma (C99 6.5).' Expressions are currently only contracted if ! `-funsafe-math-optimizations' or `-ffast-math' are used. This is subject to change. ! * `The default state for the `FENV_ACCESS' pragma (C99 7.6.1).' This pragma is not implemented, but the default is to "off" unless ! `-frounding-math' is used in which case it is "on". ! * `Additional floating-point exceptions, rounding modes, environments, and classifications, and their macro names (C99 7.6, C99 7.12).' This is dependent on the implementation of the C library, and is not defined by GCC itself. ! * `The default state for the `FP_CONTRACT' pragma (C99 7.12.2).' This pragma is not implemented. Expressions are currently only ! contracted if `-funsafe-math-optimizations' or `-ffast-math' are used. This is subject to change. ! * `Whether the "inexact" floating-point exception can be raised when the rounded result actually does equal the mathematical result in an IEC 60559 conformant implementation (C99 F.9).' This is dependent on the implementation of the C library, and is not defined by GCC itself. ! * `Whether the "underflow" (and "inexact") floating-point exception ! can be raised when a result is tiny but not inexact in an IEC ! 60559 conformant implementation (C99 F.9).' This is dependent on the implementation of the C library, and is not defined by GCC itself. -  File: gcc.info, Node: Arrays and pointers implementation, Next: Hints implementation, Prev: Floating point implementation, Up: C Implementation 4.7 Arrays and pointers ======================= ! * `The result of converting a pointer to an integer or vice versa (C90 6.3.4, C99 6.3.2.3).' A cast from pointer to integer discards most-significant bits if --- 19737,19857 ---- GCC supports only two's complement integer types, and all bit patterns are ordinary values. ! * 'The rank of any extended integer type relative to another extended integer type with the same precision (C99 6.3.1.1).' GCC does not support any extended integer types. ! * 'The result of, or the signal raised by, converting an integer to a signed integer type when the value cannot be represented in an object of that type (C90 6.2.1.2, C99 6.3.1.3).' For conversion to a type of width N, the value is reduced modulo 2^N to be within range of the type; no signal is raised. ! * 'The results of some bitwise operations on signed integers (C90 6.3, C99 6.5).' Bitwise operators act on the representation of the value including both the sign and value bits, where the sign bit is considered ! immediately above the highest-value value bit. Signed '>>' acts on ! negative numbers by sign extension. GCC does not use the latitude given in C99 only to treat certain ! aspects of signed '<<' as undefined, but this is subject to change. ! * 'The sign of the remainder on integer division (C90 6.3.5).' GCC always follows the C99 requirement that the result of division is truncated towards zero.  File: gcc.info, Node: Floating point implementation, Next: Arrays and pointers implementation, Prev: Integers implementation, Up: C Implementation 4.6 Floating point ================== ! * 'The accuracy of the floating-point operations and of the library ! functions in '' and '' that return floating-point results (C90 and C99 5.2.4.2.2).' The accuracy is unknown. ! * 'The rounding behaviors characterized by non-standard values of ! 'FLT_ROUNDS' (C90 and C99 5.2.4.2.2).' GCC does not use such values. ! * 'The evaluation methods characterized by non-standard negative ! values of 'FLT_EVAL_METHOD' (C99 5.2.4.2.2).' GCC does not use such values. ! * 'The direction of rounding when an integer is converted to a floating-point number that cannot exactly represent the original value (C90 6.2.1.3, C99 6.3.1.4).' C99 Annex F is followed. ! * 'The direction of rounding when a floating-point number is converted to a narrower floating-point number (C90 6.2.1.4, C99 6.3.1.5).' C99 Annex F is followed. ! * 'How the nearest representable value or the larger or smaller representable value immediately adjacent to the nearest representable value is chosen for certain floating constants (C90 6.1.3.1, C99 6.4.4.2).' C99 Annex F is followed. ! * 'Whether and how floating expressions are contracted when not ! disallowed by the 'FP_CONTRACT' pragma (C99 6.5).' Expressions are currently only contracted if ! '-funsafe-math-optimizations' or '-ffast-math' are used. This is subject to change. ! * 'The default state for the 'FENV_ACCESS' pragma (C99 7.6.1).' This pragma is not implemented, but the default is to "off" unless ! '-frounding-math' is used in which case it is "on". ! * 'Additional floating-point exceptions, rounding modes, environments, and classifications, and their macro names (C99 7.6, C99 7.12).' This is dependent on the implementation of the C library, and is not defined by GCC itself. ! * 'The default state for the 'FP_CONTRACT' pragma (C99 7.12.2).' This pragma is not implemented. Expressions are currently only ! contracted if '-funsafe-math-optimizations' or '-ffast-math' are used. This is subject to change. ! * 'Whether the "inexact" floating-point exception can be raised when the rounded result actually does equal the mathematical result in an IEC 60559 conformant implementation (C99 F.9).' This is dependent on the implementation of the C library, and is not defined by GCC itself. ! * 'Whether the "underflow" (and "inexact") floating-point exception ! can be raised when a result is tiny but not inexact in an IEC 60559 ! conformant implementation (C99 F.9).' This is dependent on the implementation of the C library, and is not defined by GCC itself.  File: gcc.info, Node: Arrays and pointers implementation, Next: Hints implementation, Prev: Floating point implementation, Up: C Implementation 4.7 Arrays and pointers ======================= ! * 'The result of converting a pointer to an integer or vice versa (C90 6.3.4, C99 6.3.2.3).' A cast from pointer to integer discards most-significant bits if *************** File: gcc.info, Node: Arrays and pointe *** 19991,20007 **** integer arithmetic to avoid the undefined behavior of pointer arithmetic as proscribed in C99 6.5.6/8. ! * `The size of the result of subtracting two pointers to elements of the same array (C90 6.3.6, C99 6.5.6).' The value is as specified in the standard and the type is determined by the ABI. ! ---------- Footnotes ---------- ! ! (1) Future versions of GCC may zero-extend, or use a target-defined ! `ptr_extend' pattern. Do not rely on sign extension.  File: gcc.info, Node: Hints implementation, Next: Structures unions enumerations and bit-fields implementation, Prev: Arrays and pointers implementation, Up: C Implementation --- 19871,19886 ---- integer arithmetic to avoid the undefined behavior of pointer arithmetic as proscribed in C99 6.5.6/8. ! * 'The size of the result of subtracting two pointers to elements of the same array (C90 6.3.6, C99 6.5.6).' The value is as specified in the standard and the type is determined by the ABI. + ---------- Footnotes ---------- ! (1) Future versions of GCC may zero-extend, or use a target-defined ! 'ptr_extend' pattern. Do not rely on sign extension.  File: gcc.info, Node: Hints implementation, Next: Structures unions enumerations and bit-fields implementation, Prev: Arrays and pointers implementation, Up: C Implementation *************** File: gcc.info, Node: Hints implementat *** 20009,20096 **** 4.8 Hints ========= ! * `The extent to which suggestions made by using the `register' storage-class specifier are effective (C90 6.5.1, C99 6.7.1).' ! The `register' specifier affects code generation only in these ways: * When used as part of the register variable extension, see *note Explicit Reg Vars::. ! * When `-O0' is in use, the compiler allocates distinct stack ! memory for all variables that do not have the `register' ! storage-class specifier; if `register' is specified, the variable may have a shorter lifespan than the code would indicate and may never be placed in memory. ! * On some rare x86 targets, `setjmp' doesn't save the registers in all circumstances. In those cases, GCC doesn't allocate ! any variables in registers unless they are marked `register'. ! ! * `The extent to which suggestions made by using the inline function specifier are effective (C99 6.7.4).' ! GCC will not inline any functions if the `-fno-inline' option is ! used or if `-O0' is used. Otherwise, GCC may still be unable to ! inline a function for many reasons; the `-Winline' option may be used to determine if a function has not been inlined and why not. -  File: gcc.info, Node: Structures unions enumerations and bit-fields implementation, Next: Qualifiers implementation, Prev: Hints implementation, Up: C Implementation 4.9 Structures, unions, enumerations, and bit-fields ==================================================== ! * `A member of a union object is accessed using a member of a different type (C90 6.3.2.3).' The relevant bytes of the representation of the object are treated as an object of the type used for the access. *Note Type-punning::. This may be a trap representation. ! * `Whether a "plain" `int' bit-field is treated as a `signed int' ! bit-field or as an `unsigned int' bit-field (C90 6.5.2, C90 6.5.2.1, C99 6.7.2, C99 6.7.2.1).' ! By default it is treated as `signed int' but this may be changed ! by the `-funsigned-bitfields' option. ! * `Allowable bit-field types other than `_Bool', `signed int', and ! `unsigned int' (C99 6.7.2.1).' No other types are permitted in strictly conforming mode. ! * `Whether a bit-field can straddle a storage-unit boundary (C90 6.5.2.1, C99 6.7.2.1).' Determined by ABI. ! * `The order of allocation of bit-fields within a unit (C90 6.5.2.1, C99 6.7.2.1).' Determined by ABI. ! * `The alignment of non-bit-field members of structures (C90 ! 6.5.2.1, C99 6.7.2.1).' Determined by ABI. ! * `The integer type compatible with each enumerated type (C90 6.5.2.2, C99 6.7.2.2).' ! Normally, the type is `unsigned int' if there are no negative ! values in the enumeration, otherwise `int'. If `-fshort-enums' is specified, then if there are negative values it is the first of ! `signed char', `short' and `int' that can represent all the ! values, otherwise it is the first of `unsigned char', `unsigned ! short' and `unsigned int' that can represent all the values. ! ! On some targets, `-fshort-enums' is the default; this is ! determined by the ABI.  File: gcc.info, Node: Qualifiers implementation, Next: Declarators implementation, Prev: Structures unions enumerations and bit-fields implementation, Up: C Implementation --- 19888,19972 ---- 4.8 Hints ========= ! * 'The extent to which suggestions made by using the 'register' storage-class specifier are effective (C90 6.5.1, C99 6.7.1).' ! The 'register' specifier affects code generation only in these ways: * When used as part of the register variable extension, see *note Explicit Reg Vars::. ! * When '-O0' is in use, the compiler allocates distinct stack ! memory for all variables that do not have the 'register' ! storage-class specifier; if 'register' is specified, the variable may have a shorter lifespan than the code would indicate and may never be placed in memory. ! * On some rare x86 targets, 'setjmp' doesn't save the registers in all circumstances. In those cases, GCC doesn't allocate ! any variables in registers unless they are marked 'register'. ! * 'The extent to which suggestions made by using the inline function specifier are effective (C99 6.7.4).' ! GCC will not inline any functions if the '-fno-inline' option is ! used or if '-O0' is used. Otherwise, GCC may still be unable to ! inline a function for many reasons; the '-Winline' option may be used to determine if a function has not been inlined and why not.  File: gcc.info, Node: Structures unions enumerations and bit-fields implementation, Next: Qualifiers implementation, Prev: Hints implementation, Up: C Implementation 4.9 Structures, unions, enumerations, and bit-fields ==================================================== ! * 'A member of a union object is accessed using a member of a different type (C90 6.3.2.3).' The relevant bytes of the representation of the object are treated as an object of the type used for the access. *Note Type-punning::. This may be a trap representation. ! * 'Whether a "plain" 'int' bit-field is treated as a 'signed int' ! bit-field or as an 'unsigned int' bit-field (C90 6.5.2, C90 6.5.2.1, C99 6.7.2, C99 6.7.2.1).' ! By default it is treated as 'signed int' but this may be changed by ! the '-funsigned-bitfields' option. ! * 'Allowable bit-field types other than '_Bool', 'signed int', and ! 'unsigned int' (C99 6.7.2.1).' No other types are permitted in strictly conforming mode. ! * 'Whether a bit-field can straddle a storage-unit boundary (C90 6.5.2.1, C99 6.7.2.1).' Determined by ABI. ! * 'The order of allocation of bit-fields within a unit (C90 6.5.2.1, C99 6.7.2.1).' Determined by ABI. ! * 'The alignment of non-bit-field members of structures (C90 6.5.2.1, ! C99 6.7.2.1).' Determined by ABI. ! * 'The integer type compatible with each enumerated type (C90 6.5.2.2, C99 6.7.2.2).' ! Normally, the type is 'unsigned int' if there are no negative ! values in the enumeration, otherwise 'int'. If '-fshort-enums' is specified, then if there are negative values it is the first of ! 'signed char', 'short' and 'int' that can represent all the values, ! otherwise it is the first of 'unsigned char', 'unsigned short' and ! 'unsigned int' that can represent all the values. + On some targets, '-fshort-enums' is the default; this is determined + by the ABI.  File: gcc.info, Node: Qualifiers implementation, Next: Declarators implementation, Prev: Structures unions enumerations and bit-fields implementation, Up: C Implementation *************** File: gcc.info, Node: Qualifiers implem *** 20098,20109 **** 4.10 Qualifiers =============== ! * `What constitutes an access to an object that has volatile-qualified type (C90 6.5.3, C99 6.7.3).' Such an object is normally accessed by pointers and used for ! accessing hardware. In most expressions, it is intuitively ! obvious what is a read and what is a write. For example volatile int *dst = SOMEVALUE; volatile int *src = SOMEOTHERVALUE; --- 19974,19985 ---- 4.10 Qualifiers =============== ! * 'What constitutes an access to an object that has volatile-qualified type (C90 6.5.3, C99 6.7.3).' Such an object is normally accessed by pointers and used for ! accessing hardware. In most expressions, it is intuitively obvious ! what is a read and what is a write. For example volatile int *dst = SOMEVALUE; volatile int *src = SOMEOTHERVALUE; *************** File: gcc.info, Node: Qualifiers implem *** 20112,20118 **** will cause a read of the volatile object pointed to by SRC and store the value into the volatile object pointed to by DST. There is no guarantee that these reads and writes are atomic, especially ! for objects larger than `int'. However, if the volatile storage is not being modified, and the value of the volatile storage is not used, then the situation is --- 19988,19994 ---- will cause a read of the volatile object pointed to by SRC and store the value into the volatile object pointed to by DST. There is no guarantee that these reads and writes are atomic, especially ! for objects larger than 'int'. However, if the volatile storage is not being modified, and the value of the volatile storage is not used, then the situation is *************** File: gcc.info, Node: Qualifiers implem *** 20122,20128 **** *src; According to the C standard, such an expression is an rvalue whose ! type is the unqualified version of its original type, i.e. `int'. Whether GCC interprets this as a read of the volatile object being pointed to or only as a request to evaluate the expression for its side-effects depends on this type. --- 19998,20004 ---- *src; According to the C standard, such an expression is an rvalue whose ! type is the unqualified version of its original type, i.e. 'int'. Whether GCC interprets this as a read of the volatile object being pointed to or only as a request to evaluate the expression for its side-effects depends on this type. *************** File: gcc.info, Node: Qualifiers implem *** 20133,20163 **** by GCC as a read of the volatile object; in the other cases, the expression is only evaluated for its side-effects. -  File: gcc.info, Node: Declarators implementation, Next: Statements implementation, Prev: Qualifiers implementation, Up: C Implementation 4.11 Declarators ================ ! * `The maximum number of declarators that may modify an arithmetic, structure or union type (C90 6.5.4).' GCC is only limited by available memory. -  File: gcc.info, Node: Statements implementation, Next: Preprocessing directives implementation, Prev: Declarators implementation, Up: C Implementation 4.12 Statements =============== ! * `The maximum number of `case' values in a `switch' statement (C90 6.6.4.2).' GCC is only limited by available memory. -  File: gcc.info, Node: Preprocessing directives implementation, Next: Library functions implementation, Prev: Statements implementation, Up: C Implementation --- 20009,20036 ---- by GCC as a read of the volatile object; in the other cases, the expression is only evaluated for its side-effects.  File: gcc.info, Node: Declarators implementation, Next: Statements implementation, Prev: Qualifiers implementation, Up: C Implementation 4.11 Declarators ================ ! * 'The maximum number of declarators that may modify an arithmetic, structure or union type (C90 6.5.4).' GCC is only limited by available memory.  File: gcc.info, Node: Statements implementation, Next: Preprocessing directives implementation, Prev: Declarators implementation, Up: C Implementation 4.12 Statements =============== ! * 'The maximum number of 'case' values in a 'switch' statement (C90 6.6.4.2).' GCC is only limited by available memory.  File: gcc.info, Node: Preprocessing directives implementation, Next: Library functions implementation, Prev: Statements implementation, Up: C Implementation *************** File: gcc.info, Node: Preprocessing dir *** 20168,20215 **** behavior, for details of these aspects of implementation-defined behavior. ! * `How sequences in both forms of header names are mapped to headers or external source file names (C90 6.1.7, C99 6.4.7).' ! * `Whether the value of a character constant in a constant expression that controls conditional inclusion matches the value of the same character constant in the execution character set (C90 6.8.1, C99 6.10.1).' ! * `Whether the value of a single-character character constant in a constant expression that controls conditional inclusion may have a negative value (C90 6.8.1, C99 6.10.1).' ! * `The places that are searched for an included `<>' delimited header, and how the places are specified or the header is identified (C90 6.8.2, C99 6.10.2).' ! * `How the named source file is searched for in an included `""' delimited header (C90 6.8.2, C99 6.10.2).' ! * `The method by which preprocessing tokens (possibly resulting from ! macro expansion) in a `#include' directive are combined into a header name (C90 6.8.2, C99 6.10.2).' ! * `The nesting limit for `#include' processing (C90 6.8.2, C99 6.10.2).' ! * `Whether the `#' operator inserts a `\' character before the `\' character that begins a universal character name in a character constant or string literal (C99 6.10.3.2).' ! * `The behavior on each recognized non-`STDC #pragma' directive (C90 6.8.6, C99 6.10.6).' ! *Note Pragmas: (cpp)Pragmas, for details of pragmas accepted by ! GCC on all targets. *Note Pragmas Accepted by GCC: Pragmas, for details of target-specific pragmas. ! * `The definitions for `__DATE__' and `__TIME__' when respectively, the date and time of translation are not available (C90 6.8.8, C99 6.10.8).' -  File: gcc.info, Node: Library functions implementation, Next: Architecture implementation, Prev: Preprocessing directives implementation, Up: C Implementation --- 20041,20087 ---- behavior, for details of these aspects of implementation-defined behavior. ! * 'How sequences in both forms of header names are mapped to headers or external source file names (C90 6.1.7, C99 6.4.7).' ! * 'Whether the value of a character constant in a constant expression that controls conditional inclusion matches the value of the same character constant in the execution character set (C90 6.8.1, C99 6.10.1).' ! * 'Whether the value of a single-character character constant in a constant expression that controls conditional inclusion may have a negative value (C90 6.8.1, C99 6.10.1).' ! * 'The places that are searched for an included '<>' delimited header, and how the places are specified or the header is identified (C90 6.8.2, C99 6.10.2).' ! * 'How the named source file is searched for in an included '""' delimited header (C90 6.8.2, C99 6.10.2).' ! * 'The method by which preprocessing tokens (possibly resulting from ! macro expansion) in a '#include' directive are combined into a header name (C90 6.8.2, C99 6.10.2).' ! * 'The nesting limit for '#include' processing (C90 6.8.2, C99 6.10.2).' ! * 'Whether the '#' operator inserts a '\' character before the '\' character that begins a universal character name in a character constant or string literal (C99 6.10.3.2).' ! * 'The behavior on each recognized non-'STDC #pragma' directive (C90 6.8.6, C99 6.10.6).' ! *Note Pragmas: (cpp)Pragmas, for details of pragmas accepted by GCC ! on all targets. *Note Pragmas Accepted by GCC: Pragmas, for details of target-specific pragmas. ! * 'The definitions for '__DATE__' and '__TIME__' when respectively, the date and time of translation are not available (C90 6.8.8, C99 6.10.8).'  File: gcc.info, Node: Library functions implementation, Next: Architecture implementation, Prev: Preprocessing directives implementation, Up: C Implementation *************** File: gcc.info, Node: Library functions *** 20219,20256 **** The behavior of most of these points are dependent on the implementation of the C library, and are not defined by GCC itself. ! * `The null pointer constant to which the macro `NULL' expands (C90 7.1.6, C99 7.17).' ! In `', `NULL' expands to `((void *)0)'. GCC does not ! provide the other headers which define `NULL' and some library implementations may use other definitions in those headers. -  File: gcc.info, Node: Architecture implementation, Next: Locale-specific behavior implementation, Prev: Library functions implementation, Up: C Implementation 4.15 Architecture ================= ! * `The values or expressions assigned to the macros specified in the ! headers `', `', and `' (C90 and C99 5.2.4.2, C99 7.18.2, C99 7.18.3).' Determined by ABI. ! * `The number, order, and encoding of bytes in any object (when not explicitly specified in this International Standard) (C99 6.2.6.1).' Determined by ABI. ! * `The value of the result of the `sizeof' operator (C90 6.3.3.4, ! C99 6.5.3.4).' Determined by ABI. -  File: gcc.info, Node: Locale-specific behavior implementation, Prev: Architecture implementation, Up: C Implementation --- 20091,20126 ---- The behavior of most of these points are dependent on the implementation of the C library, and are not defined by GCC itself. ! * 'The null pointer constant to which the macro 'NULL' expands (C90 7.1.6, C99 7.17).' ! In '', 'NULL' expands to '((void *)0)'. GCC does not ! provide the other headers which define 'NULL' and some library implementations may use other definitions in those headers.  File: gcc.info, Node: Architecture implementation, Next: Locale-specific behavior implementation, Prev: Library functions implementation, Up: C Implementation 4.15 Architecture ================= ! * 'The values or expressions assigned to the macros specified in the ! headers '', '', and '' (C90 and C99 5.2.4.2, C99 7.18.2, C99 7.18.3).' Determined by ABI. ! * 'The number, order, and encoding of bytes in any object (when not explicitly specified in this International Standard) (C99 6.2.6.1).' Determined by ABI. ! * 'The value of the result of the 'sizeof' operator (C90 6.3.3.4, C99 ! 6.5.3.4).' Determined by ABI.  File: gcc.info, Node: Locale-specific behavior implementation, Prev: Architecture implementation, Up: C Implementation *************** File: gcc.info, Node: C++ Implementatio *** 20269,20288 **** A conforming implementation of ISO C++ is required to document its choice of behavior in each of the areas that are designated "implementation defined". The following lists all such areas, along ! with the section numbers from the ISO/IEC 14822:1998 and ISO/IEC ! 14822:2003 standards. Some areas are only implementation-defined in ! one version of the standard. Some choices depend on the externally determined ABI for the platform (including standard character encodings) which GCC follows; these are listed as "determined by ABI" below. *Note Binary Compatibility: ! Compatibility, and `http://gcc.gnu.org/readings.html'. Some choices ! are documented in the preprocessor manual. *Note ! Implementation-defined behavior: (cpp)Implementation-defined behavior. ! Some choices are documented in the corresponding document for the C ! language. *Note C Implementation::. Some choices are made by the ! library and operating system (or other environment when compiling for a ! freestanding environment); refer to their documentation for details. * Menu: --- 20139,20158 ---- A conforming implementation of ISO C++ is required to document its choice of behavior in each of the areas that are designated "implementation defined". The following lists all such areas, along ! with the section numbers from the ISO/IEC 14882:1998 and ISO/IEC ! 14882:2003 standards. Some areas are only implementation-defined in one ! version of the standard. Some choices depend on the externally determined ABI for the platform (including standard character encodings) which GCC follows; these are listed as "determined by ABI" below. *Note Binary Compatibility: ! Compatibility, and . Some choices are ! documented in the preprocessor manual. *Note Implementation-defined ! behavior: (cpp)Implementation-defined behavior. Some choices are ! documented in the corresponding document for the C language. *Note C ! Implementation::. Some choices are made by the library and operating ! system (or other environment when compiling for a freestanding ! environment); refer to their documentation for details. * Menu: *************** File: gcc.info, Node: Conditionally-sup *** 20295,20323 **** 5.1 Conditionally-supported behavior ==================================== ! `Each implementation shall include documentation that identifies all conditionally-supported constructs that it does not support (C++0x 1.4).' ! * `Whether an argument of class type with a non-trivial copy constructor or destructor can be passed to ... (C++0x 5.2.2).' Such argument passing is not supported. -  File: gcc.info, Node: Exception handling, Prev: Conditionally-supported behavior, Up: C++ Implementation 5.2 Exception handling ====================== ! * `In the situation where no matching handler is found, it is implementation-defined whether or not the stack is unwound before std::terminate() is called (C++98 15.5.1).' The stack is not unwound before std::terminate is called. -  File: gcc.info, Node: C Extensions, Next: C++ Extensions, Prev: C++ Implementation, Up: Top --- 20165,20191 ---- 5.1 Conditionally-supported behavior ==================================== ! 'Each implementation shall include documentation that identifies all conditionally-supported constructs that it does not support (C++0x 1.4).' ! * 'Whether an argument of class type with a non-trivial copy constructor or destructor can be passed to ... (C++0x 5.2.2).' Such argument passing is not supported.  File: gcc.info, Node: Exception handling, Prev: Conditionally-supported behavior, Up: C++ Implementation 5.2 Exception handling ====================== ! * 'In the situation where no matching handler is found, it is implementation-defined whether or not the stack is unwound before std::terminate() is called (C++98 15.5.1).' The stack is not unwound before std::terminate is called.  File: gcc.info, Node: C Extensions, Next: C++ Extensions, Prev: C++ Implementation, Up: Top *************** File: gcc.info, Node: C Extensions, Ne *** 20325,20334 **** ************************************* GNU C provides several language features not found in ISO standard C. ! (The `-pedantic' option directs GCC to print a warning message if any ! of these features is used.) To test for the availability of these ! features in conditional compilation, check for a predefined macro ! `__GNUC__', which is always defined under GCC. These extensions are available in C and Objective-C. Most of them are also available in C++. *Note Extensions to the C++ Language: C++ --- 20193,20202 ---- ************************************* GNU C provides several language features not found in ISO standard C. ! (The '-pedantic' option directs GCC to print a warning message if any of ! these features is used.) To test for the availability of these features ! in conditional compilation, check for a predefined macro '__GNUC__', ! which is always defined under GCC. These extensions are available in C and Objective-C. Most of them are also available in C++. *Note Extensions to the C++ Language: C++ *************** extensions, accepted by GCC in C90 mode *** 20344,20353 **** * Labels as Values:: Getting pointers to labels, and computed gotos. * Nested Functions:: As in Algol and Pascal, lexical scoping of functions. * Constructing Calls:: Dispatching a call to another function. ! * Typeof:: `typeof': referring to the type of an expression. ! * Conditionals:: Omitting the middle operand of a `?:' expression. ! * __int128:: 128-bit integers---`__int128'. ! * Long Long:: Double-word integers---`long long int'. * Complex:: Data types for complex numbers. * Floating Types:: Additional Floating Types. * Half-Precision:: Half-Precision Floating Point. --- 20212,20221 ---- * Labels as Values:: Getting pointers to labels, and computed gotos. * Nested Functions:: As in Algol and Pascal, lexical scoping of functions. * Constructing Calls:: Dispatching a call to another function. ! * Typeof:: 'typeof': referring to the type of an expression. ! * Conditionals:: Omitting the middle operand of a '?:' expression. ! * __int128:: 128-bit integers--'__int128'. ! * Long Long:: Double-word integers--'long long int'. * Complex:: Data types for complex numbers. * Floating Types:: Additional Floating Types. * Half-Precision:: Half-Precision Floating Point. *************** extensions, accepted by GCC in C90 mode *** 20361,20372 **** * Variadic Macros:: Macros with a variable number of arguments. * Escaped Newlines:: Slightly looser rules for escaped newlines. * Subscripting:: Any array can be subscripted, even if not an lvalue. ! * Pointer Arith:: Arithmetic on `void'-pointers and function pointers. * Initializers:: Non-constant initializers. * Compound Literals:: Compound literals give structures, unions or arrays as values. * Designated Inits:: Labeling elements of initializers. ! * Case Ranges:: `case 1 ... 9' and such. * Cast to Union:: Casting to union type from any member of the union. * Mixed Declarations:: Mixing declarations and code. * Function Attributes:: Declaring that functions have no side effects, --- 20229,20240 ---- * Variadic Macros:: Macros with a variable number of arguments. * Escaped Newlines:: Slightly looser rules for escaped newlines. * Subscripting:: Any array can be subscripted, even if not an lvalue. ! * Pointer Arith:: Arithmetic on 'void'-pointers and function pointers. * Initializers:: Non-constant initializers. * Compound Literals:: Compound literals give structures, unions or arrays as values. * Designated Inits:: Labeling elements of initializers. ! * Case Ranges:: 'case 1 ... 9' and such. * Cast to Union:: Casting to union type from any member of the union. * Mixed Declarations:: Mixing declarations and code. * Function Attributes:: Declaring that functions have no side effects, *************** extensions, accepted by GCC in C90 mode *** 20375,20398 **** * Function Prototypes:: Prototype declarations and old-style definitions. * C++ Comments:: C++ comments are recognized. * Dollar Signs:: Dollar sign is allowed in identifiers. ! * Character Escapes:: `\e' stands for the character . * Variable Attributes:: Specifying attributes of variables. * Type Attributes:: Specifying attributes of types. * Alignment:: Inquiring about the alignment of a type or variable. * Inline:: Defining inline functions (as fast as macros). * Volatiles:: What constitutes an access to a volatile object. * Extended Asm:: Assembler instructions with C expressions as operands. ! (With them you can define ``built-in'' functions.) * Constraints:: Constraints for asm operands * Asm Labels:: Specifying the assembler name to use for a C symbol. * Explicit Reg Vars:: Defining variables residing in specified registers. ! * Alternate Keywords:: `__const__', `__asm__', etc., for header files. ! * Incomplete Enums:: `enum foo;', with details to follow. * Function Names:: Printable strings which are the name of the current function. * Return Address:: Getting the return or frame address of a function. * Vector Extensions:: Using vector instructions through built-in functions. ! * Offsetof:: Special syntax for implementing `offsetof'. * __sync Builtins:: Legacy built-in functions for atomic memory access. * __atomic Builtins:: Atomic built-in functions with memory model. * x86 specific memory model extensions for transactional memory:: x86 memory models. --- 20243,20266 ---- * Function Prototypes:: Prototype declarations and old-style definitions. * C++ Comments:: C++ comments are recognized. * Dollar Signs:: Dollar sign is allowed in identifiers. ! * Character Escapes:: '\e' stands for the character . * Variable Attributes:: Specifying attributes of variables. * Type Attributes:: Specifying attributes of types. * Alignment:: Inquiring about the alignment of a type or variable. * Inline:: Defining inline functions (as fast as macros). * Volatiles:: What constitutes an access to a volatile object. * Extended Asm:: Assembler instructions with C expressions as operands. ! (With them you can define "built-in" functions.) * Constraints:: Constraints for asm operands * Asm Labels:: Specifying the assembler name to use for a C symbol. * Explicit Reg Vars:: Defining variables residing in specified registers. ! * Alternate Keywords:: '__const__', '__asm__', etc., for header files. ! * Incomplete Enums:: 'enum foo;', with details to follow. * Function Names:: Printable strings which are the name of the current function. * Return Address:: Getting the return or frame address of a function. * Vector Extensions:: Using vector instructions through built-in functions. ! * Offsetof:: Special syntax for implementing 'offsetof'. * __sync Builtins:: Legacy built-in functions for atomic memory access. * __atomic Builtins:: Atomic built-in functions with memory model. * x86 specific memory model extensions for transactional memory:: x86 memory models. *************** extensions, accepted by GCC in C90 mode *** 20404,20410 **** * Pragmas:: Pragmas accepted by GCC. * Unnamed Fields:: Unnamed struct/union fields within structs/unions. * Thread-Local:: Per-thread variables. ! * Binary constants:: Binary constants using the `0b' prefix.  File: gcc.info, Node: Statement Exprs, Next: Local Labels, Up: C Extensions --- 20272,20278 ---- * Pragmas:: Pragmas accepted by GCC. * Unnamed Fields:: Unnamed struct/union fields within structs/unions. * Thread-Local:: Per-thread variables. ! * Binary constants:: Binary constants using the '0b' prefix.  File: gcc.info, Node: Statement Exprs, Next: Local Labels, Up: C Extensions *************** example: *** 20426,20437 **** z; }) is a valid (though slightly more complex than necessary) expression for ! the absolute value of `foo ()'. The last thing in the compound statement should be an expression followed by a semicolon; the value of this subexpression serves as the value of the entire construct. (If you use some other kind of statement ! last within the braces, the construct has type `void', and thus effectively no value.) This feature is especially useful in making macro definitions "safe" --- 20294,20305 ---- z; }) is a valid (though slightly more complex than necessary) expression for ! the absolute value of 'foo ()'. The last thing in the compound statement should be an expression followed by a semicolon; the value of this subexpression serves as the value of the entire construct. (If you use some other kind of statement ! last within the braces, the construct has type 'void', and thus effectively no value.) This feature is especially useful in making macro definitions "safe" *************** follows: *** 20443,20449 **** But this definition computes either A or B twice, with bad results if the operand has side effects. In GNU C, if you know the type of the ! operands (here taken as `int'), you can define the macro safely as follows: #define maxint(a,b) \ --- 20311,20317 ---- But this definition computes either A or B twice, with bad results if the operand has side effects. In GNU C, if you know the type of the ! operands (here taken as 'int'), you can define the macro safely as follows: #define maxint(a,b) \ *************** the value of an enumeration constant, th *** 20454,20480 **** initial value of a static variable. If you don't know the type of the operand, you can still do this, but ! you must use `typeof' (*note Typeof::). In G++, the result value of a statement expression undergoes array and function pointer decay, and is returned by value to the enclosing ! expression. For instance, if `A' is a class, then A a; ({a;}).Foo () ! constructs a temporary `A' object to hold the result of the statement ! expression, and that is used to invoke `Foo'. Therefore the `this' ! pointer observed by `Foo' is not the address of `a'. In a statement expression, any temporaries created within a statement ! are destroyed at that statement's end. This makes statement ! expressions inside macros slightly different from function calls. In ! the latter case temporaries introduced during argument evaluation are ! destroyed at the end of the statement that includes the function call. ! In the statement expression case they are destroyed during the ! statement expression. For instance, #define macro(a) ({__typeof__(a) b = (a); b + 3; }) template T function(T a) { T b = a; return b + 3; } --- 20322,20348 ---- initial value of a static variable. If you don't know the type of the operand, you can still do this, but ! you must use 'typeof' (*note Typeof::). In G++, the result value of a statement expression undergoes array and function pointer decay, and is returned by value to the enclosing ! expression. For instance, if 'A' is a class, then A a; ({a;}).Foo () ! constructs a temporary 'A' object to hold the result of the statement ! expression, and that is used to invoke 'Foo'. Therefore the 'this' ! pointer observed by 'Foo' is not the address of 'a'. In a statement expression, any temporaries created within a statement ! are destroyed at that statement's end. This makes statement expressions ! inside macros slightly different from function calls. In the latter ! case temporaries introduced during argument evaluation are destroyed at ! the end of the statement that includes the function call. In the ! statement expression case they are destroyed during the statement ! expression. For instance, #define macro(a) ({__typeof__(a) b = (a); b + 3; }) template T function(T a) { T b = a; return b + 3; } *************** statement expression. For instance, *** 20485,20493 **** function (X ()); } ! has different places where temporaries are destroyed. For the `macro' ! case, the temporary `X' is destroyed just after the initialization of ! `b'. In the `function' case that temporary is destroyed when the function returns. These considerations mean that it is probably a bad idea to use --- 20353,20361 ---- function (X ()); } ! has different places where temporaries are destroyed. For the 'macro' ! case, the temporary 'X' is destroyed just after the initialization of ! 'b'. In the 'function' case that temporary is destroyed when the function returns. These considerations mean that it is probably a bad idea to use *************** work with C++. (Note that some versions *** 20496,20505 **** header files using statement expressions that lead to precisely this bug.) ! Jumping into a statement expression with `goto' or using a `switch' ! statement outside the statement expression with a `case' or `default' label inside the statement expression is not permitted. Jumping into a ! statement expression with a computed `goto' (*note Labels as Values::) has undefined behavior. Jumping out of a statement expression is permitted, but if the statement expression is part of a larger expression then it is unspecified which other subexpressions of that --- 20364,20373 ---- header files using statement expressions that lead to precisely this bug.) ! Jumping into a statement expression with 'goto' or using a 'switch' ! statement outside the statement expression with a 'case' or 'default' label inside the statement expression is not permitted. Jumping into a ! statement expression with a computed 'goto' (*note Labels as Values::) has undefined behavior. Jumping out of a statement expression is permitted, but if the statement expression is part of a larger expression then it is unspecified which other subexpressions of that *************** evaluation of other parts of the contain *** 20511,20519 **** foo (), (({ bar1 (); goto a; 0; }) + bar2 ()), baz(); ! calls `foo' and `bar1' and does not call `baz' but may or may not call ! `bar2'. If `bar2' is called, it is called after `foo' and before ! `bar1'.  File: gcc.info, Node: Local Labels, Next: Labels as Values, Prev: Statement Exprs, Up: C Extensions --- 20379,20387 ---- foo (), (({ bar1 (); goto a; 0; }) + bar2 ()), baz(); ! calls 'foo' and 'bar1' and does not call 'baz' but may or may not call ! 'bar2'. If 'bar2' is called, it is called after 'foo' and before ! 'bar1'.  File: gcc.info, Node: Local Labels, Next: Labels as Values, Prev: Statement Exprs, Up: C Extensions *************** File: gcc.info, Node: Local Labels, Ne *** 20523,20529 **** GCC allows you to declare "local labels" in any nested block scope. A local label is just like an ordinary label, but you can only reference ! it (with a `goto' statement, or by taking its address) within the block in which it is declared. A local label declaration looks like this: --- 20391,20397 ---- GCC allows you to declare "local labels" in any nested block scope. A local label is just like an ordinary label, but you can only reference ! it (with a 'goto' statement, or by taking its address) within the block in which it is declared. A local label declaration looks like this: *************** or *** 20537,20548 **** Local label declarations must come at the beginning of the block, before any ordinary declarations or statements. ! The label declaration defines the label _name_, but does not define ! the label itself. You must do this in the usual way, with `LABEL:', ! within the statements of the statement expression. The local label feature is useful for complex macros. If a macro ! contains nested loops, a `goto' can be useful for breaking out of them. However, an ordinary label whose scope is the whole function cannot be used: if the macro can be expanded several times in one function, the label is multiply defined in that function. A local label avoids this --- 20405,20416 ---- Local label declarations must come at the beginning of the block, before any ordinary declarations or statements. ! The label declaration defines the label _name_, but does not define the ! label itself. You must do this in the usual way, with 'LABEL:', within ! the statements of the statement expression. The local label feature is useful for complex macros. If a macro ! contains nested loops, a 'goto' can be useful for breaking out of them. However, an ordinary label whose scope is the whole function cannot be used: if the macro can be expanded several times in one function, the label is multiply defined in that function. A local label avoids this *************** File: gcc.info, Node: Labels as Values, *** 20591,20611 **** 6.3 Labels as Values ==================== ! You can get the address of a label defined in the current function (or ! a containing function) with the unary operator `&&'. The value has ! type `void *'. This value is a constant and can be used wherever a ! constant of that type is valid. For example: void *ptr; /* ... */ ptr = &&foo; To use these values, you need to be able to jump to one. This is done ! with the computed goto statement(1), `goto *EXP;'. For example, goto *ptr; ! Any expression of type `void *' is allowed. One way of using these constants is in initializing a static array that serves as a jump table: --- 20459,20479 ---- 6.3 Labels as Values ==================== ! You can get the address of a label defined in the current function (or a ! containing function) with the unary operator '&&'. The value has type ! 'void *'. This value is a constant and can be used wherever a constant ! of that type is valid. For example: void *ptr; /* ... */ ptr = &&foo; To use these values, you need to be able to jump to one. This is done ! with the computed goto statement(1), 'goto *EXP;'. For example, goto *ptr; ! Any expression of type 'void *' is allowed. One way of using these constants is in initializing a static array that serves as a jump table: *************** Note that this does not check whether th *** 20620,20632 **** indexing in C never does that. Such an array of label values serves a purpose much like that of the ! `switch' statement. The `switch' statement is cleaner, so use that ! rather than an array unless the problem does not fit a `switch' statement very well. Another use of label values is in an interpreter for threaded code. ! The labels within the interpreter function can be stored in the ! threaded code for super-fast dispatching. You may not use this mechanism to jump to code in a different function. If you do that, totally unpredictable things happen. The best way to --- 20488,20500 ---- indexing in C never does that. Such an array of label values serves a purpose much like that of the ! 'switch' statement. The 'switch' statement is cleaner, so use that ! rather than an array unless the problem does not fit a 'switch' statement very well. Another use of label values is in an interpreter for threaded code. ! The labels within the interpreter function can be stored in the threaded ! code for super-fast dispatching. You may not use this mechanism to jump to code in a different function. If you do that, totally unpredictable things happen. The best way to *************** This is more friendly to code living in *** 20643,20658 **** the number of dynamic relocations that are needed, and by consequence, allows the data to be read-only. ! The `&&foo' expressions for the same label might have different values ! if the containing function is inlined or cloned. If a program relies ! on them being always the same, ! `__attribute__((__noinline__,__noclone__))' should be used to prevent ! inlining and cloning. If `&&foo' is used in a static variable ! initializer, inlining and cloning is forbidden. ! ---------- Footnotes ---------- ! (1) The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C, where one can do more than simply store label addresses in label variables. --- 20511,20525 ---- the number of dynamic relocations that are needed, and by consequence, allows the data to be read-only. ! The '&&foo' expressions for the same label might have different values ! if the containing function is inlined or cloned. If a program relies on ! them being always the same, '__attribute__((__noinline__,__noclone__))' ! should be used to prevent inlining and cloning. If '&&foo' is used in a ! static variable initializer, inlining and cloning is forbidden. ! ---------- Footnotes ---------- ! (1) The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C, where one can do more than simply store label addresses in label variables. *************** Nested functions are supported as an ext *** 20667,20673 **** supported by GNU C++. The nested function's name is local to the block where it is defined. ! For example, here we define a nested function named `square', and call it twice: foo (double a, double b) --- 20534,20540 ---- supported by GNU C++. The nested function's name is local to the block where it is defined. ! For example, here we define a nested function named 'square', and call it twice: foo (double a, double b) *************** it twice: *** 20680,20686 **** The nested function can access all the variables of the containing function that are visible at the point of its definition. This is called "lexical scoping". For example, here we show a nested function ! which uses an inherited variable named `offset': bar (int *array, int offset, int size) { --- 20547,20553 ---- The nested function can access all the variables of the containing function that are visible at the point of its definition. This is called "lexical scoping". For example, here we show a nested function ! which uses an inherited variable named 'offset': bar (int *array, int offset, int size) { *************** function: *** 20708,20736 **** intermediate (store, size); } ! Here, the function `intermediate' receives the address of `store' as ! an argument. If `intermediate' calls `store', the arguments given to ! `store' are used to store into `array'. But this technique works only ! so long as the containing function (`hack', in this example) does not exit. If you try to call the nested function through its address after the ! containing function exits, all hell breaks loose. If you try to call ! it after a containing scope level exits, and if it refers to some of ! the variables that are no longer in scope, you may be lucky, but it's ! not wise to take the risk. If, however, the nested function does not ! refer to anything that has gone out of scope, you should be safe. GCC implements taking the address of a nested function using a technique called "trampolines". This technique was described in ! `Lexical Closures for C++' (Thomas M. Breuel, USENIX C++ Conference Proceedings, October 17-21, 1988). A nested function can jump to a label inherited from a containing function, provided the label is explicitly declared in the containing function (*note Local Labels::). Such a jump returns instantly to the ! containing function, exiting the nested function that did the `goto' ! and any intermediate functions as well. Here is an example: bar (int *array, int offset, int size) { --- 20575,20603 ---- intermediate (store, size); } ! Here, the function 'intermediate' receives the address of 'store' as an ! argument. If 'intermediate' calls 'store', the arguments given to ! 'store' are used to store into 'array'. But this technique works only ! so long as the containing function ('hack', in this example) does not exit. If you try to call the nested function through its address after the ! containing function exits, all hell breaks loose. If you try to call it ! after a containing scope level exits, and if it refers to some of the ! variables that are no longer in scope, you may be lucky, but it's not ! wise to take the risk. If, however, the nested function does not refer ! to anything that has gone out of scope, you should be safe. GCC implements taking the address of a nested function using a technique called "trampolines". This technique was described in ! 'Lexical Closures for C++' (Thomas M. Breuel, USENIX C++ Conference Proceedings, October 17-21, 1988). A nested function can jump to a label inherited from a containing function, provided the label is explicitly declared in the containing function (*note Local Labels::). Such a jump returns instantly to the ! containing function, exiting the nested function that did the 'goto' and ! any intermediate functions as well. Here is an example: bar (int *array, int offset, int size) { *************** and any intermediate functions as well. *** 20748,20762 **** /* ... */ return 0; ! /* Control comes here from `access' if it detects an error. */ failure: return -1; } ! A nested function always has no linkage. Declaring one with `extern' ! or `static' is erroneous. If you need to declare the nested function ! before its definition, use `auto' (which is otherwise meaningless for function declarations). bar (int *array, int offset, int size) --- 20615,20629 ---- /* ... */ return 0; ! /* Control comes here from 'access' if it detects an error. */ failure: return -1; } ! A nested function always has no linkage. Declaring one with 'extern' ! or 'static' is erroneous. If you need to declare the nested function ! before its definition, use 'auto' (which is otherwise meaningless for function declarations). bar (int *array, int offset, int size) *************** acting as mere forwarders for their argu *** 20794,20801 **** -- Built-in Function: void * __builtin_apply_args () This built-in function returns a pointer to data describing how to ! perform a call with the same arguments as are passed to the ! current function. The function saves the arg pointer register, structure value address, and all registers that might be used to pass arguments to --- 20661,20668 ---- -- Built-in Function: void * __builtin_apply_args () This built-in function returns a pointer to data describing how to ! perform a call with the same arguments as are passed to the current ! function. The function saves the arg pointer register, structure value address, and all registers that might be used to pass arguments to *************** acting as mere forwarders for their argu *** 20808,20814 **** parameters described by ARGUMENTS and SIZE. The value of ARGUMENTS should be the value returned by ! `__builtin_apply_args'. The argument SIZE specifies the size of the stack argument data, in bytes. This function returns a pointer to data describing how to return --- 20675,20681 ---- parameters described by ARGUMENTS and SIZE. The value of ARGUMENTS should be the value returned by ! '__builtin_apply_args'. The argument SIZE specifies the size of the stack argument data, in bytes. This function returns a pointer to data describing how to return *************** acting as mere forwarders for their argu *** 20816,20840 **** block of memory allocated on the stack. It is not always simple to compute the proper value for SIZE. The ! value is used by `__builtin_apply' to compute the amount of data that should be pushed on the stack and copied from the incoming argument area. -- Built-in Function: void __builtin_return (void *RESULT) This built-in function returns the value described by RESULT from the containing function. You should specify, for RESULT, a value ! returned by `__builtin_apply'. ! -- Built-in Function: __builtin_va_arg_pack () This built-in function represents all anonymous arguments of an inline function. It can be used only in inline functions that are always inlined, never compiled as a separate function, such as ! those using `__attribute__ ((__always_inline__))' or ! `__attribute__ ((__gnu_inline__))' extern inline functions. It ! must be only passed as last argument to some other function with ! variable arguments. This is useful for writing small wrapper ! inlines for variable argument functions, when using preprocessor ! macros is undesirable. For example: extern int myprintf (FILE *f, const char *format, ...); extern inline __attribute__ ((__gnu_inline__)) int myprintf (FILE *f, const char *format, ...) --- 20683,20707 ---- block of memory allocated on the stack. It is not always simple to compute the proper value for SIZE. The ! value is used by '__builtin_apply' to compute the amount of data that should be pushed on the stack and copied from the incoming argument area. -- Built-in Function: void __builtin_return (void *RESULT) This built-in function returns the value described by RESULT from the containing function. You should specify, for RESULT, a value ! returned by '__builtin_apply'. ! -- Built-in Function: __builtin_va_arg_pack () This built-in function represents all anonymous arguments of an inline function. It can be used only in inline functions that are always inlined, never compiled as a separate function, such as ! those using '__attribute__ ((__always_inline__))' or '__attribute__ ! ((__gnu_inline__))' extern inline functions. It must be only ! passed as last argument to some other function with variable ! arguments. This is useful for writing small wrapper inlines for ! variable argument functions, when using preprocessor macros is ! undesirable. For example: extern int myprintf (FILE *f, const char *format, ...); extern inline __attribute__ ((__gnu_inline__)) int myprintf (FILE *f, const char *format, ...) *************** acting as mere forwarders for their argu *** 20852,20861 **** This built-in function returns the number of anonymous arguments of an inline function. It can be used only in inline functions that are always inlined, never compiled as a separate function, such as ! those using `__attribute__ ((__always_inline__))' or ! `__attribute__ ((__gnu_inline__))' extern inline functions. For ! example following does link- or run-time checking of open ! arguments for optimized code: #ifdef __OPTIMIZE__ extern inline __attribute__((__gnu_inline__)) int myopen (const char *path, int oflag, ...) --- 20719,20728 ---- This built-in function returns the number of anonymous arguments of an inline function. It can be used only in inline functions that are always inlined, never compiled as a separate function, such as ! those using '__attribute__ ((__always_inline__))' or '__attribute__ ! ((__gnu_inline__))' extern inline functions. For example following ! does link- or run-time checking of open arguments for optimized ! code: #ifdef __OPTIMIZE__ extern inline __attribute__((__gnu_inline__)) int myopen (const char *path, int oflag, ...) *************** acting as mere forwarders for their argu *** 20883,20922 ****  File: gcc.info, Node: Typeof, Next: Conditionals, Prev: Constructing Calls, Up: C Extensions ! 6.6 Referring to a Type with `typeof' ===================================== ! Another way to refer to the type of an expression is with `typeof'. ! The syntax of using of this keyword looks like `sizeof', but the ! construct acts semantically like a type name defined with `typedef'. ! There are two ways of writing the argument to `typeof': with an expression or with a type. Here is an example with an expression: typeof (x[0](1)) ! This assumes that `x' is an array of pointers to functions; the type described is that of the values of the functions. Here is an example with a typename as the argument: typeof (int *) ! Here the type described is that of pointers to `int'. If you are writing a header file that must work when included in ISO C ! programs, write `__typeof__' instead of `typeof'. *Note Alternate Keywords::. ! A `typeof' construct can be used anywhere a typedef name can be used. For example, you can use it in a declaration, in a cast, or inside of ! `sizeof' or `typeof'. ! The operand of `typeof' is evaluated for its side effects if and only if it is an expression of variably modified type or the name of such a type. ! `typeof' is often useful in conjunction with statement expressions (*note Statement Exprs::). Here is how the two together can be used to define a safe "maximum" macro which operates on any arithmetic type and evaluates each of its arguments exactly once: --- 20750,20789 ----  File: gcc.info, Node: Typeof, Next: Conditionals, Prev: Constructing Calls, Up: C Extensions ! 6.6 Referring to a Type with 'typeof' ===================================== ! Another way to refer to the type of an expression is with 'typeof'. The ! syntax of using of this keyword looks like 'sizeof', but the construct ! acts semantically like a type name defined with 'typedef'. ! There are two ways of writing the argument to 'typeof': with an expression or with a type. Here is an example with an expression: typeof (x[0](1)) ! This assumes that 'x' is an array of pointers to functions; the type described is that of the values of the functions. Here is an example with a typename as the argument: typeof (int *) ! Here the type described is that of pointers to 'int'. If you are writing a header file that must work when included in ISO C ! programs, write '__typeof__' instead of 'typeof'. *Note Alternate Keywords::. ! A 'typeof' construct can be used anywhere a typedef name can be used. For example, you can use it in a declaration, in a cast, or inside of ! 'sizeof' or 'typeof'. ! The operand of 'typeof' is evaluated for its side effects if and only if it is an expression of variably modified type or the name of such a type. ! 'typeof' is often useful in conjunction with statement expressions (*note Statement Exprs::). Here is how the two together can be used to define a safe "maximum" macro which operates on any arithmetic type and evaluates each of its arguments exactly once: *************** evaluates each of its arguments exactly *** 20928,20949 **** The reason for using names that start with underscores for the local variables is to avoid conflicts with variable names that occur within ! the expressions that are substituted for `a' and `b'. Eventually we hope to design a new form of declaration syntax that allows you to ! declare variables whose scopes start only after their initializers; ! this will be a more reliable way to prevent such conflicts. ! Some more examples of the use of `typeof': ! * This declares `y' with the type of what `x' points to. typeof (*x) y; ! * This declares `y' as an array of such values. typeof (*x) y[4]; ! * This declares `y' as an array of pointers to characters: typeof (typeof (char *)[4]) y; --- 20795,20816 ---- The reason for using names that start with underscores for the local variables is to avoid conflicts with variable names that occur within ! the expressions that are substituted for 'a' and 'b'. Eventually we hope to design a new form of declaration syntax that allows you to ! declare variables whose scopes start only after their initializers; this ! will be a more reliable way to prevent such conflicts. ! Some more examples of the use of 'typeof': ! * This declares 'y' with the type of what 'x' points to. typeof (*x) y; ! * This declares 'y' as an array of such values. typeof (*x) y[4]; ! * This declares 'y' as an array of pointers to characters: typeof (typeof (char *)[4]) y; *************** Some more examples of the use of `typeof *** 20951,20957 **** char *y[4]; ! To see the meaning of the declaration using `typeof', and why it might be a useful way to write, rewrite it with these macros: #define pointer(T) typeof(T *) --- 20818,20824 ---- char *y[4]; ! To see the meaning of the declaration using 'typeof', and why it might be a useful way to write, rewrite it with these macros: #define pointer(T) typeof(T *) *************** Some more examples of the use of `typeof *** 20961,20978 **** array (pointer (char), 4) y; ! Thus, `array (pointer (char), 4)' is the type of arrays of 4 ! pointers to `char'. ! _Compatibility Note:_ In addition to `typeof', GCC 2 supported a more limited extension that permitted one to write typedef T = EXPR; with the effect of declaring T to have the type of the expression EXPR. This extension does not work with GCC 3 (versions between 3.0 and 3.2 ! crash; 3.2.1 and later give an error). Code that relies on it should ! be rewritten to use `typeof': typedef typeof(EXPR) T; --- 20828,20845 ---- array (pointer (char), 4) y; ! Thus, 'array (pointer (char), 4)' is the type of arrays of 4 ! pointers to 'char'. ! _Compatibility Note:_ In addition to 'typeof', GCC 2 supported a more limited extension that permitted one to write typedef T = EXPR; with the effect of declaring T to have the type of the expression EXPR. This extension does not work with GCC 3 (versions between 3.0 and 3.2 ! crash; 3.2.1 and later give an error). Code that relies on it should be ! rewritten to use 'typeof': typedef typeof(EXPR) T; *************** expression. *** 20992,20998 **** x ? : y ! has the value of `x' if that is nonzero; otherwise, the value of `y'. This example is perfectly equivalent to --- 20859,20865 ---- x ? : y ! has the value of 'x' if that is nonzero; otherwise, the value of 'y'. This example is perfectly equivalent to *************** has the value of `x' if that is nonzero; *** 21001,21009 **** In this simple case, the ability to omit the middle operand is not especially useful. When it becomes useful is when the first operand does, or may (if it is a macro argument), contain a side effect. Then ! repeating the operand in the middle would perform the side effect ! twice. Omitting the middle operand uses the value already computed ! without the undesirable effects of recomputing it.  File: gcc.info, Node: __int128, Next: Long Long, Prev: Conditionals, Up: C Extensions --- 20868,20876 ---- In this simple case, the ability to omit the middle operand is not especially useful. When it becomes useful is when the first operand does, or may (if it is a macro argument), contain a side effect. Then ! repeating the operand in the middle would perform the side effect twice. ! Omitting the middle operand uses the value already computed without the ! undesirable effects of recomputing it.  File: gcc.info, Node: __int128, Next: Long Long, Prev: Conditionals, Up: C Extensions *************** File: gcc.info, Node: __int128, Next: *** 21011,21022 **** 6.8 128-bit integers ==================== ! As an extension the integer scalar type `__int128' is supported for ! targets which have an integer mode wide enough to hold 128 bits. ! Simply write `__int128' for a signed 128-bit integer, or `unsigned ! __int128' for an unsigned 128-bit integer. There is no support in GCC ! for expressing an integer constant of type `__int128' for targets with ! `long long' integer less than 128 bits wide.  File: gcc.info, Node: Long Long, Next: Complex, Prev: __int128, Up: C Extensions --- 20878,20889 ---- 6.8 128-bit integers ==================== ! As an extension the integer scalar type '__int128' is supported for ! targets which have an integer mode wide enough to hold 128 bits. Simply ! write '__int128' for a signed 128-bit integer, or 'unsigned __int128' ! for an unsigned 128-bit integer. There is no support in GCC for ! expressing an integer constant of type '__int128' for targets with 'long ! long' integer less than 128 bits wide.  File: gcc.info, Node: Long Long, Next: Complex, Prev: __int128, Up: C Extensions *************** File: gcc.info, Node: Long Long, Next: *** 21026,21052 **** ISO C99 supports data types for integers that are at least 64 bits wide, and as an extension GCC supports them in C90 mode and in C++. Simply ! write `long long int' for a signed integer, or `unsigned long long int' ! for an unsigned integer. To make an integer constant of type `long ! long int', add the suffix `LL' to the integer. To make an integer ! constant of type `unsigned long long int', add the suffix `ULL' to the ! integer. You can use these types in arithmetic like any other integer types. ! Addition, subtraction, and bitwise boolean operations on these types ! are open-coded on all types of machines. Multiplication is open-coded ! if the machine supports a fullword-to-doubleword widening multiply instruction. Division and shifts are open-coded only on machines that provide special support. The operations that are not open-coded use special library routines that come with GCC. ! There may be pitfalls when you use `long long' types for function ! arguments without function prototypes. If a function expects type ! `int' for its argument, and you pass a value of type `long long int', confusion results because the caller and the subroutine disagree about ! the number of bytes for the argument. Likewise, if the function ! expects `long long int' and you pass `int'. The best way to avoid such ! problems is to use prototypes.  File: gcc.info, Node: Complex, Next: Floating Types, Prev: Long Long, Up: C Extensions --- 20893,20918 ---- ISO C99 supports data types for integers that are at least 64 bits wide, and as an extension GCC supports them in C90 mode and in C++. Simply ! write 'long long int' for a signed integer, or 'unsigned long long int' ! for an unsigned integer. To make an integer constant of type 'long long ! int', add the suffix 'LL' to the integer. To make an integer constant ! of type 'unsigned long long int', add the suffix 'ULL' to the integer. You can use these types in arithmetic like any other integer types. ! Addition, subtraction, and bitwise boolean operations on these types are ! open-coded on all types of machines. Multiplication is open-coded if ! the machine supports a fullword-to-doubleword widening multiply instruction. Division and shifts are open-coded only on machines that provide special support. The operations that are not open-coded use special library routines that come with GCC. ! There may be pitfalls when you use 'long long' types for function ! arguments without function prototypes. If a function expects type 'int' ! for its argument, and you pass a value of type 'long long int', confusion results because the caller and the subroutine disagree about ! the number of bytes for the argument. Likewise, if the function expects ! 'long long int' and you pass 'int'. The best way to avoid such problems ! is to use prototypes.  File: gcc.info, Node: Complex, Next: Floating Types, Prev: Long Long, Up: C Extensions *************** File: gcc.info, Node: Complex, Next: F *** 21055,21091 **** ==================== ISO C99 supports complex floating data types, and as an extension GCC ! supports them in C90 mode and in C++. GCC also supports complex ! integer data types which are not part of ISO C99. You can declare ! complex types using the keyword `_Complex'. As an extension, the older ! GNU keyword `__complex__' is also supported. ! For example, `_Complex double x;' declares `x' as a variable whose ! real part and imaginary part are both of type `double'. `_Complex ! short int y;' declares `y' to have real and imaginary parts of type ! `short int'; this is not likely to be useful, but it shows that the set ! of complex types is complete. ! To write a constant with a complex data type, use the suffix `i' or ! `j' (either one; they are equivalent). For example, `2.5fi' has type ! `_Complex float' and `3i' has type `_Complex int'. Such a constant always has a pure imaginary value, but you can form any complex value you like by adding one to a real constant. This is a GNU extension; if you have an ISO C99 conforming C library (such as the GNU C Library), and want to construct complex constants of floating type, you should ! include `' and use the macros `I' or `_Complex_I' instead. To extract the real part of a complex-valued expression EXP, write ! `__real__ EXP'. Likewise, use `__imag__' to extract the imaginary ! part. This is a GNU extension; for values of floating type, you should ! use the ISO C99 functions `crealf', `creal', `creall', `cimagf', ! `cimag' and `cimagl', declared in `' and also provided as ! built-in functions by GCC. ! The operator `~' performs complex conjugation when used on a value ! with a complex type. This is a GNU extension; for values of floating ! type, you should use the ISO C99 functions `conjf', `conj' and `conjl', ! declared in `' and also provided as built-in functions by GCC. GCC can allocate complex automatic variables in a noncontiguous --- 20921,20957 ---- ==================== ISO C99 supports complex floating data types, and as an extension GCC ! supports them in C90 mode and in C++. GCC also supports complex integer ! data types which are not part of ISO C99. You can declare complex types ! using the keyword '_Complex'. As an extension, the older GNU keyword ! '__complex__' is also supported. ! For example, '_Complex double x;' declares 'x' as a variable whose real ! part and imaginary part are both of type 'double'. '_Complex short int ! y;' declares 'y' to have real and imaginary parts of type 'short int'; ! this is not likely to be useful, but it shows that the set of complex ! types is complete. ! To write a constant with a complex data type, use the suffix 'i' or 'j' ! (either one; they are equivalent). For example, '2.5fi' has type ! '_Complex float' and '3i' has type '_Complex int'. Such a constant always has a pure imaginary value, but you can form any complex value you like by adding one to a real constant. This is a GNU extension; if you have an ISO C99 conforming C library (such as the GNU C Library), and want to construct complex constants of floating type, you should ! include '' and use the macros 'I' or '_Complex_I' instead. To extract the real part of a complex-valued expression EXP, write ! '__real__ EXP'. Likewise, use '__imag__' to extract the imaginary part. ! This is a GNU extension; for values of floating type, you should use the ! ISO C99 functions 'crealf', 'creal', 'creall', 'cimagf', 'cimag' and ! 'cimagl', declared in '' and also provided as built-in ! functions by GCC. ! The operator '~' performs complex conjugation when used on a value with ! a complex type. This is a GNU extension; for values of floating type, ! you should use the ISO C99 functions 'conjf', 'conj' and 'conjl', ! declared in '' and also provided as built-in functions by GCC. GCC can allocate complex automatic variables in a noncontiguous *************** the imaginary part is on the stack (or v *** 21094,21101 **** debug info format can represent this, so use of DWARF 2 is recommended. If you are using the stabs debug info format, GCC describes a noncontiguous complex variable as if it were two separate variables of ! noncomplex type. If the variable's actual name is `foo', the two ! fictitious variables are named `foo$real' and `foo$imag'. You can examine and set these two fictitious variables with your debugger.  --- 20960,20967 ---- debug info format can represent this, so use of DWARF 2 is recommended. If you are using the stabs debug info format, GCC describes a noncontiguous complex variable as if it were two separate variables of ! noncomplex type. If the variable's actual name is 'foo', the two ! fictitious variables are named 'foo$real' and 'foo$imag'. You can examine and set these two fictitious variables with your debugger.  *************** File: gcc.info, Node: Floating Types, *** 21104,21125 **** 6.11 Additional Floating Types ============================== ! As an extension, GNU C supports additional floating types, `__float80' ! and `__float128' to support 80-bit (`XFmode') and 128-bit (`TFmode') floating types. Support for additional types includes the arithmetic operators: add, subtract, multiply, divide; unary arithmetic operators; relational operators; equality operators; and conversions to and from ! integer and other floating types. Use a suffix `w' or `W' in a literal ! constant of type `__float80' and `q' or `Q' for `_float128'. You can declare complex types using the corresponding internal complex type, ! `XCmode' for `__float80' type and `TCmode' for `__float128' type: typedef _Complex float __attribute__((mode(TC))) _Complex128; typedef _Complex float __attribute__((mode(XC))) _Complex80; ! Not all targets support additional floating-point types. `__float80' ! and `__float128' types are supported on i386, x86_64 and IA-64 targets. ! The `__float128' type is supported on hppa HP-UX targets.  File: gcc.info, Node: Half-Precision, Next: Decimal Float, Prev: Floating Types, Up: C Extensions --- 20970,20991 ---- 6.11 Additional Floating Types ============================== ! As an extension, GNU C supports additional floating types, '__float80' ! and '__float128' to support 80-bit ('XFmode') and 128-bit ('TFmode') floating types. Support for additional types includes the arithmetic operators: add, subtract, multiply, divide; unary arithmetic operators; relational operators; equality operators; and conversions to and from ! integer and other floating types. Use a suffix 'w' or 'W' in a literal ! constant of type '__float80' and 'q' or 'Q' for '_float128'. You can declare complex types using the corresponding internal complex type, ! 'XCmode' for '__float80' type and 'TCmode' for '__float128' type: typedef _Complex float __attribute__((mode(TC))) _Complex128; typedef _Complex float __attribute__((mode(XC))) _Complex80; ! Not all targets support additional floating-point types. '__float80' ! and '__float128' types are supported on i386, x86_64 and IA-64 targets. ! The '__float128' type is supported on hppa HP-UX targets.  File: gcc.info, Node: Half-Precision, Next: Decimal Float, Prev: Floating Types, Up: C Extensions *************** File: gcc.info, Node: Half-Precision, *** 21128,21172 **** ================================== On ARM targets, GCC supports half-precision (16-bit) floating point via ! the `__fp16' type. You must enable this type explicitly with the ! `-mfp16-format' command-line option in order to use it. ARM supports two incompatible representations for half-precision floating-point values. You must choose one of the representations and use it consistently in your program. ! Specifying `-mfp16-format=ieee' selects the IEEE 754-2008 format. ! This format can represent normalized values in the range of 2^-14 to ! 65504. There are 11 bits of significand precision, approximately 3 ! decimal digits. ! Specifying `-mfp16-format=alternative' selects the ARM alternative ! format. This representation is similar to the IEEE format, but does ! not support infinities or NaNs. Instead, the range of exponents is extended, so that this format can represent normalized values in the ! range of 2^-14 to 131008. ! The `__fp16' type is a storage format only. For purposes of ! arithmetic and other operations, `__fp16' values in C or C++ ! expressions are automatically promoted to `float'. In addition, you ! cannot declare a function with a return value or parameters of type ! `__fp16'. ! Note that conversions from `double' to `__fp16' involve an ! intermediate conversion to `float'. Because of rounding, this can ! sometimes produce a different result than a direct conversion. ! ARM provides hardware support for conversions between `__fp16' and ! `float' values as an extension to VFP and NEON (Advanced SIMD). GCC generates code using these hardware instructions if you compile with options to select an FPU that provides them; for example, ! `-mfpu=neon-fp16 -mfloat-abi=softfp', in addition to the ! `-mfp16-format' option to select a half-precision format. ! Language-level support for the `__fp16' data type is independent of whether GCC generates code using hardware floating-point instructions. In cases where hardware support is not specified, GCC implements ! conversions between `__fp16' and `float' values as library calls.  File: gcc.info, Node: Decimal Float, Next: Hex Floats, Prev: Half-Precision, Up: C Extensions --- 20994,21037 ---- ================================== On ARM targets, GCC supports half-precision (16-bit) floating point via ! the '__fp16' type. You must enable this type explicitly with the ! '-mfp16-format' command-line option in order to use it. ARM supports two incompatible representations for half-precision floating-point values. You must choose one of the representations and use it consistently in your program. ! Specifying '-mfp16-format=ieee' selects the IEEE 754-2008 format. This ! format can represent normalized values in the range of 2^{-14} to 65504. ! There are 11 bits of significand precision, approximately 3 decimal ! digits. ! Specifying '-mfp16-format=alternative' selects the ARM alternative ! format. This representation is similar to the IEEE format, but does not ! support infinities or NaNs. Instead, the range of exponents is extended, so that this format can represent normalized values in the ! range of 2^{-14} to 131008. ! The '__fp16' type is a storage format only. For purposes of arithmetic ! and other operations, '__fp16' values in C or C++ expressions are ! automatically promoted to 'float'. In addition, you cannot declare a ! function with a return value or parameters of type '__fp16'. ! Note that conversions from 'double' to '__fp16' involve an intermediate ! conversion to 'float'. Because of rounding, this can sometimes produce ! a different result than a direct conversion. ! ARM provides hardware support for conversions between '__fp16' and ! 'float' values as an extension to VFP and NEON (Advanced SIMD). GCC generates code using these hardware instructions if you compile with options to select an FPU that provides them; for example, ! '-mfpu=neon-fp16 -mfloat-abi=softfp', in addition to the '-mfp16-format' ! option to select a half-precision format. ! Language-level support for the '__fp16' data type is independent of whether GCC generates code using hardware floating-point instructions. In cases where hardware support is not specified, GCC implements ! conversions between '__fp16' and 'float' values as library calls.  File: gcc.info, Node: Decimal Float, Next: Hex Floats, Prev: Half-Precision, Up: C Extensions *************** File: gcc.info, Node: Decimal Float, N *** 21174,21196 **** 6.13 Decimal Floating Types =========================== ! As an extension, GNU C supports decimal floating types as defined in ! the N1312 draft of ISO/IEC WDTR24732. Support for decimal floating ! types in GCC will evolve as the draft technical report changes. ! Calling conventions for any target might also change. Not all targets ! support decimal floating types. ! The decimal floating types are `_Decimal32', `_Decimal64', and ! `_Decimal128'. They use a radix of ten, unlike the floating types ! `float', `double', and `long double' whose radix is not specified by ! the C standard but is usually two. Support for decimal floating types includes the arithmetic operators add, subtract, multiply, divide; unary arithmetic operators; relational operators; equality operators; and conversions to and from integer and ! other floating types. Use a suffix `df' or `DF' in a literal constant ! of type `_Decimal32', `dd' or `DD' for `_Decimal64', and `dl' or `DL' ! for `_Decimal128'. GCC support of decimal float as specified by the draft technical report is incomplete: --- 21039,21061 ---- 6.13 Decimal Floating Types =========================== ! As an extension, GNU C supports decimal floating types as defined in the ! N1312 draft of ISO/IEC WDTR24732. Support for decimal floating types in ! GCC will evolve as the draft technical report changes. Calling ! conventions for any target might also change. Not all targets support ! decimal floating types. ! The decimal floating types are '_Decimal32', '_Decimal64', and ! '_Decimal128'. They use a radix of ten, unlike the floating types ! 'float', 'double', and 'long double' whose radix is not specified by the ! C standard but is usually two. Support for decimal floating types includes the arithmetic operators add, subtract, multiply, divide; unary arithmetic operators; relational operators; equality operators; and conversions to and from integer and ! other floating types. Use a suffix 'df' or 'DF' in a literal constant ! of type '_Decimal32', 'dd' or 'DD' for '_Decimal64', and 'dl' or 'DL' ! for '_Decimal128'. GCC support of decimal float as specified by the draft technical report is incomplete: *************** is incomplete: *** 21201,21212 **** technical report. * GCC does not provide the C library functionality associated with ! `math.h', `fenv.h', `stdio.h', `stdlib.h', and `wchar.h', which must come from a separate C library implementation. Because of ! this the GNU C compiler does not define macro `__STDC_DEC_FP__' to indicate that the implementation conforms to the technical report. ! Types `_Decimal32', `_Decimal64', and `_Decimal128' are supported by the DWARF 2 debug information format.  --- 21066,21077 ---- technical report. * GCC does not provide the C library functionality associated with ! 'math.h', 'fenv.h', 'stdio.h', 'stdlib.h', and 'wchar.h', which must come from a separate C library implementation. Because of ! this the GNU C compiler does not define macro '__STDC_DEC_FP__' to indicate that the implementation conforms to the technical report. ! Types '_Decimal32', '_Decimal64', and '_Decimal128' are supported by the DWARF 2 debug information format.  *************** File: gcc.info, Node: Hex Floats, Next *** 21216,21235 **** =============== ISO C99 supports floating-point numbers written not only in the usual ! decimal notation, such as `1.55e1', but also numbers such as `0x1.fp3' ! written in hexadecimal format. As a GNU extension, GCC supports this ! in C90 mode (except in some cases when strictly conforming) and in C++. ! In that format the `0x' hex introducer and the `p' or `P' exponent ! field are mandatory. The exponent is a decimal number that indicates ! the power of 2 by which the significant part is multiplied. Thus ! `0x1.f' is 1 15/16, `p3' multiplies it by 8, and the value of `0x1.fp3' ! is the same as `1.55e1'. Unlike for floating-point numbers in the decimal notation the exponent is always required in the hexadecimal notation. Otherwise the compiler ! would not be able to resolve the ambiguity of, e.g., `0x1.f'. This ! could mean `1.0f' or `1.9375' since `f' is also the extension for ! floating-point constants of type `float'.  File: gcc.info, Node: Fixed-Point, Next: Named Address Spaces, Prev: Hex Floats, Up: C Extensions --- 21081,21100 ---- =============== ISO C99 supports floating-point numbers written not only in the usual ! decimal notation, such as '1.55e1', but also numbers such as '0x1.fp3' ! written in hexadecimal format. As a GNU extension, GCC supports this in ! C90 mode (except in some cases when strictly conforming) and in C++. In ! that format the '0x' hex introducer and the 'p' or 'P' exponent field ! are mandatory. The exponent is a decimal number that indicates the ! power of 2 by which the significant part is multiplied. Thus '0x1.f' is ! 1 15/16, 'p3' multiplies it by 8, and the value of '0x1.fp3' is the same ! as '1.55e1'. Unlike for floating-point numbers in the decimal notation the exponent is always required in the hexadecimal notation. Otherwise the compiler ! would not be able to resolve the ambiguity of, e.g., '0x1.f'. This ! could mean '1.0f' or '1.9375' since 'f' is also the extension for ! floating-point constants of type 'float'.  File: gcc.info, Node: Fixed-Point, Next: Named Address Spaces, Prev: Hex Floats, Up: C Extensions *************** will evolve as the draft technical repor *** 21243,21319 **** for any target might also change. Not all targets support fixed-point types. ! The fixed-point types are `short _Fract', `_Fract', `long _Fract', ! `long long _Fract', `unsigned short _Fract', `unsigned _Fract', ! `unsigned long _Fract', `unsigned long long _Fract', `_Sat short ! _Fract', `_Sat _Fract', `_Sat long _Fract', `_Sat long long _Fract', ! `_Sat unsigned short _Fract', `_Sat unsigned _Fract', `_Sat unsigned ! long _Fract', `_Sat unsigned long long _Fract', `short _Accum', ! `_Accum', `long _Accum', `long long _Accum', `unsigned short _Accum', ! `unsigned _Accum', `unsigned long _Accum', `unsigned long long _Accum', ! `_Sat short _Accum', `_Sat _Accum', `_Sat long _Accum', `_Sat long long ! _Accum', `_Sat unsigned short _Accum', `_Sat unsigned _Accum', `_Sat ! unsigned long _Accum', `_Sat unsigned long long _Accum'. Fixed-point data values contain fractional and optional integral parts. The format of fixed-point data varies and depends on the target machine. Support for fixed-point types includes: ! * prefix and postfix increment and decrement operators (`++', `--') ! ! * unary arithmetic operators (`+', `-', `!') ! ! * binary arithmetic operators (`+', `-', `*', `/') ! ! * binary shift operators (`<<', `>>') ! ! * relational operators (`<', `<=', `>=', `>') ! ! * equality operators (`==', `!=') ! ! * assignment operators (`+=', `-=', `*=', `/=', `<<=', `>>=') ! * conversions to and from integer, floating-point, or fixed-point types Use a suffix in a fixed-point literal constant: ! * `hr' or `HR' for `short _Fract' and `_Sat short _Fract' ! ! * `r' or `R' for `_Fract' and `_Sat _Fract' ! ! * `lr' or `LR' for `long _Fract' and `_Sat long _Fract' ! ! * `llr' or `LLR' for `long long _Fract' and `_Sat long long _Fract' ! ! * `uhr' or `UHR' for `unsigned short _Fract' and `_Sat unsigned ! short _Fract' ! ! * `ur' or `UR' for `unsigned _Fract' and `_Sat unsigned _Fract' ! ! * `ulr' or `ULR' for `unsigned long _Fract' and `_Sat unsigned long _Fract' ! ! * `ullr' or `ULLR' for `unsigned long long _Fract' and `_Sat ! unsigned long long _Fract' ! ! * `hk' or `HK' for `short _Accum' and `_Sat short _Accum' ! ! * `k' or `K' for `_Accum' and `_Sat _Accum' ! ! * `lk' or `LK' for `long _Accum' and `_Sat long _Accum' ! ! * `llk' or `LLK' for `long long _Accum' and `_Sat long long _Accum' ! ! * `uhk' or `UHK' for `unsigned short _Accum' and `_Sat unsigned ! short _Accum' ! ! * `uk' or `UK' for `unsigned _Accum' and `_Sat unsigned _Accum' ! ! * `ulk' or `ULK' for `unsigned long _Accum' and `_Sat unsigned long _Accum' ! ! * `ullk' or `ULLK' for `unsigned long long _Accum' and `_Sat ! unsigned long long _Accum' GCC support of fixed-point types as specified by the draft technical report is incomplete: --- 21108,21162 ---- for any target might also change. Not all targets support fixed-point types. ! The fixed-point types are 'short _Fract', '_Fract', 'long _Fract', ! 'long long _Fract', 'unsigned short _Fract', 'unsigned _Fract', ! 'unsigned long _Fract', 'unsigned long long _Fract', '_Sat short ! _Fract', '_Sat _Fract', '_Sat long _Fract', '_Sat long long _Fract', ! '_Sat unsigned short _Fract', '_Sat unsigned _Fract', '_Sat unsigned ! long _Fract', '_Sat unsigned long long _Fract', 'short _Accum', ! '_Accum', 'long _Accum', 'long long _Accum', 'unsigned short _Accum', ! 'unsigned _Accum', 'unsigned long _Accum', 'unsigned long long _Accum', ! '_Sat short _Accum', '_Sat _Accum', '_Sat long _Accum', '_Sat long long ! _Accum', '_Sat unsigned short _Accum', '_Sat unsigned _Accum', '_Sat ! unsigned long _Accum', '_Sat unsigned long long _Accum'. Fixed-point data values contain fractional and optional integral parts. The format of fixed-point data varies and depends on the target machine. Support for fixed-point types includes: ! * prefix and postfix increment and decrement operators ('++', '--') ! * unary arithmetic operators ('+', '-', '!') ! * binary arithmetic operators ('+', '-', '*', '/') ! * binary shift operators ('<<', '>>') ! * relational operators ('<', '<=', '>=', '>') ! * equality operators ('==', '!=') ! * assignment operators ('+=', '-=', '*=', '/=', '<<=', '>>=') * conversions to and from integer, floating-point, or fixed-point types Use a suffix in a fixed-point literal constant: ! * 'hr' or 'HR' for 'short _Fract' and '_Sat short _Fract' ! * 'r' or 'R' for '_Fract' and '_Sat _Fract' ! * 'lr' or 'LR' for 'long _Fract' and '_Sat long _Fract' ! * 'llr' or 'LLR' for 'long long _Fract' and '_Sat long long _Fract' ! * 'uhr' or 'UHR' for 'unsigned short _Fract' and '_Sat unsigned short _Fract' ! * 'ur' or 'UR' for 'unsigned _Fract' and '_Sat unsigned _Fract' ! * 'ulr' or 'ULR' for 'unsigned long _Fract' and '_Sat unsigned long ! _Fract' ! * 'ullr' or 'ULLR' for 'unsigned long long _Fract' and '_Sat unsigned ! long long _Fract' ! * 'hk' or 'HK' for 'short _Accum' and '_Sat short _Accum' ! * 'k' or 'K' for '_Accum' and '_Sat _Accum' ! * 'lk' or 'LK' for 'long _Accum' and '_Sat long _Accum' ! * 'llk' or 'LLK' for 'long long _Accum' and '_Sat long long _Accum' ! * 'uhk' or 'UHK' for 'unsigned short _Accum' and '_Sat unsigned short _Accum' ! * 'uk' or 'UK' for 'unsigned _Accum' and '_Sat unsigned _Accum' ! * 'ulk' or 'ULK' for 'unsigned long _Accum' and '_Sat unsigned long ! _Accum' ! * 'ullk' or 'ULLK' for 'unsigned long long _Accum' and '_Sat unsigned ! long long _Accum' GCC support of fixed-point types as specified by the draft technical report is incomplete: *************** File: gcc.info, Node: Named Address Spa *** 21333,21344 **** As an extension, GNU C supports named address spaces as defined in the N1275 draft of ISO/IEC DTR 18037. Support for named address spaces in GCC will evolve as the draft technical report changes. Calling ! conventions for any target might also change. At present, only the ! AVR, SPU, M32C, and RL78 targets support address spaces other than the generic address space. Address space identifiers may be used exactly like any other C type ! qualifier (e.g., `const' or `volatile'). See the N1275 document for more details. 6.16.1 AVR Named Address Spaces --- 21176,21187 ---- As an extension, GNU C supports named address spaces as defined in the N1275 draft of ISO/IEC DTR 18037. Support for named address spaces in GCC will evolve as the draft technical report changes. Calling ! conventions for any target might also change. At present, only the AVR, ! SPU, M32C, and RL78 targets support address spaces other than the generic address space. Address space identifiers may be used exactly like any other C type ! qualifier (e.g., 'const' or 'volatile'). See the N1275 document for more details. 6.16.1 AVR Named Address Spaces *************** more details. *** 21346,21383 **** On the AVR target, there are several address spaces that can be used in order to put read-only data into the flash memory and access that data ! by means of the special instructions `LPM' or `ELPM' needed to read ! from flash. Per default, any data including read-only data is located in RAM (the generic address space) so that non-generic address spaces are needed to locate read-only data in flash memory _and_ to generate the right instructions to access this data without using (inline) assembler code. ! `__flash' ! The `__flash' qualifier locates data in the `.progmem.data' ! section. Data is read using the `LPM' instruction. Pointers to this address space are 16 bits wide. ! `__flash1' ! `__flash2' ! `__flash3' ! `__flash4' ! `__flash5' These are 16-bit address spaces locating data in section ! `.progmemN.data' where N refers to address space `__flashN'. The ! compiler sets the `RAMPZ' segment register appropriately before ! reading data by means of the `ELPM' instruction. ! `__memx' This is a 24-bit address space that linearizes flash and RAM: If ! the high bit of the address is set, data is read from RAM using ! the lower two bytes as RAM address. If the high bit of the ! address is clear, data is read from flash with `RAMPZ' set ! according to the high byte of the address. *Note ! `__builtin_avr_flash_segment': AVR Built-in Functions. ! Objects in this address space are located in `.progmemx.data'. Example --- 21189,21226 ---- On the AVR target, there are several address spaces that can be used in order to put read-only data into the flash memory and access that data ! by means of the special instructions 'LPM' or 'ELPM' needed to read from ! flash. Per default, any data including read-only data is located in RAM (the generic address space) so that non-generic address spaces are needed to locate read-only data in flash memory _and_ to generate the right instructions to access this data without using (inline) assembler code. ! '__flash' ! The '__flash' qualifier locates data in the '.progmem.data' ! section. Data is read using the 'LPM' instruction. Pointers to this address space are 16 bits wide. ! '__flash1' ! '__flash2' ! '__flash3' ! '__flash4' ! '__flash5' These are 16-bit address spaces locating data in section ! '.progmemN.data' where N refers to address space '__flashN'. The ! compiler sets the 'RAMPZ' segment register appropriately before ! reading data by means of the 'ELPM' instruction. ! '__memx' This is a 24-bit address space that linearizes flash and RAM: If ! the high bit of the address is set, data is read from RAM using the ! lower two bytes as RAM address. If the high bit of the address is ! clear, data is read from flash with 'RAMPZ' set according to the ! high byte of the address. *Note '__builtin_avr_flash_segment': AVR ! Built-in Functions. ! Objects in this address space are located in '.progmemx.data'. Example *************** not: *** 21425,21457 **** } #endif /* __FLASH */ ! Notice that attribute *note `progmem': AVR Variable Attributes. ! locates data in flash but accesses to these data read from generic ! address space, i.e. from RAM, so that you need special accessors like ! `pgm_read_byte' from AVR-LibC (http://nongnu.org/avr-libc/user-manual/) ! together with attribute `progmem'. Limitations and caveats ! * Reading across the 64 KiB section boundary of the `__flash' or ! `__flashN' address spaces shows undefined behavior. The only ! address space that supports reading across the 64 KiB flash ! segment boundaries is `__memx'. ! * If you use one of the `__flashN' address spaces you must arrange ! your linker script to locate the `.progmemN.data' sections according to your needs. * Any data or pointers to the non-generic address spaces must be ! qualified as `const', i.e. as read-only data. This still applies if the data in one of these address spaces like software version ! number or calibration lookup table are intended to be changed ! after load time by, say, a boot loader. In this case the right ! qualification is `const' `volatile' so that the compiler must not optimize away known values or insert them as immediates into operands of instructions. ! * The following code initializes a variable `pfoo' located in static storage with a 24-bit address: extern const __memx char foo; const __memx void *pfoo = &foo; --- 21268,21300 ---- } #endif /* __FLASH */ ! Notice that attribute *note 'progmem': AVR Variable Attributes. locates ! data in flash but accesses to these data read from generic address ! space, i.e. from RAM, so that you need special accessors like ! 'pgm_read_byte' from AVR-LibC (http://nongnu.org/avr-libc/user-manual/) ! together with attribute 'progmem'. Limitations and caveats ! * Reading across the 64 KiB section boundary of the '__flash' or ! '__flashN' address spaces shows undefined behavior. The only ! address space that supports reading across the 64 KiB flash segment ! boundaries is '__memx'. ! * If you use one of the '__flashN' address spaces you must arrange ! your linker script to locate the '.progmemN.data' sections according to your needs. * Any data or pointers to the non-generic address spaces must be ! qualified as 'const', i.e. as read-only data. This still applies if the data in one of these address spaces like software version ! number or calibration lookup table are intended to be changed after ! load time by, say, a boot loader. In this case the right ! qualification is 'const' 'volatile' so that the compiler must not optimize away known values or insert them as immediates into operands of instructions. ! * The following code initializes a variable 'pfoo' located in static storage with a 24-bit address: extern const __memx char foo; const __memx void *pfoo = &foo; *************** Limitations and caveats *** 21459,21477 **** Such code requires at least binutils 2.23, see PR13503 (http://sourceware.org/PR13503). - 6.16.2 M32C Named Address Spaces -------------------------------- On the M32C target, with the R8C and M16C CPU variants, variables ! qualified with `__far' are accessed using 32-bit addresses in order to ! access memory beyond the first 64 Ki bytes. If `__far' is used with ! the M32CM or M32C CPU variants, it has no effect. 6.16.3 RL78 Named Address Spaces -------------------------------- ! On the RL78 target, variables qualified with `__far' are accessed with 32-bit pointers (20-bit addresses) rather than the default 16-bit addresses. Non-far variables are assumed to appear in the topmost 64 KiB of the address space. --- 21302,21319 ---- Such code requires at least binutils 2.23, see PR13503 (http://sourceware.org/PR13503). 6.16.2 M32C Named Address Spaces -------------------------------- On the M32C target, with the R8C and M16C CPU variants, variables ! qualified with '__far' are accessed using 32-bit addresses in order to ! access memory beyond the first 64 Ki bytes. If '__far' is used with the ! M32CM or M32C CPU variants, it has no effect. 6.16.3 RL78 Named Address Spaces -------------------------------- ! On the RL78 target, variables qualified with '__far' are accessed with 32-bit pointers (20-bit addresses) rather than the default 16-bit addresses. Non-far variables are assumed to appear in the topmost 64 KiB of the address space. *************** addresses. Non-far variables are assume *** 21480,21493 **** ------------------------------- On the SPU target variables may be declared as belonging to another ! address space by qualifying the type with the `__ea' address space identifier: extern int __ea i; ! The compiler generates special code to access the variable `i'. It may ! use runtime library support, or generate special machine instructions ! to access that address space.  File: gcc.info, Node: Zero Length, Next: Empty Structures, Prev: Named Address Spaces, Up: C Extensions --- 21322,21335 ---- ------------------------------- On the SPU target variables may be declared as belonging to another ! address space by qualifying the type with the '__ea' address space identifier: extern int __ea i; ! The compiler generates special code to access the variable 'i'. It may ! use runtime library support, or generate special machine instructions to ! access that address space.  File: gcc.info, Node: Zero Length, Next: Empty Structures, Prev: Named Address Spaces, Up: C Extensions *************** variable-length object: *** 21508,21527 **** malloc (sizeof (struct line) + this_length); thisline->length = this_length; ! In ISO C90, you would have to give `contents' a length of 1, which ! means either you waste space or complicate the argument to `malloc'. In ISO C99, you would use a "flexible array member", which is slightly different in syntax and semantics: ! * Flexible array members are written as `contents[]' without the `0'. ! * Flexible array members have incomplete type, and so the `sizeof' operator may not be applied. As a quirk of the original ! implementation of zero-length arrays, `sizeof' evaluates to zero. * Flexible array members may only appear as the last member of a ! `struct' that is otherwise non-empty. * A structure containing a flexible array member, or a union containing such a structure (possibly recursively), may not be a --- 21350,21369 ---- malloc (sizeof (struct line) + this_length); thisline->length = this_length; ! In ISO C90, you would have to give 'contents' a length of 1, which ! means either you waste space or complicate the argument to 'malloc'. In ISO C99, you would use a "flexible array member", which is slightly different in syntax and semantics: ! * Flexible array members are written as 'contents[]' without the '0'. ! * Flexible array members have incomplete type, and so the 'sizeof' operator may not be applied. As a quirk of the original ! implementation of zero-length arrays, 'sizeof' evaluates to zero. * Flexible array members may only appear as the last member of a ! 'struct' that is otherwise non-empty. * A structure containing a flexible array member, or a union containing such a structure (possibly recursively), may not be a *************** this case) are ignored. *** 21540,21547 **** Instead GCC allows static initialization of flexible array members. This is equivalent to defining a new structure containing the original structure followed by an array of sufficient size to contain the data. ! E.g. in the following, `f1' is constructed as if it were declared like ! `f2'. struct f1 { int x; int y[]; --- 21382,21389 ---- Instead GCC allows static initialization of flexible array members. This is equivalent to defining a new structure containing the original structure followed by an array of sufficient size to contain the data. ! E.g. in the following, 'f1' is constructed as if it were declared like ! 'f2'. struct f1 { int x; int y[]; *************** E.g. in the following, `f1' is construct *** 21551,21568 **** struct f1 f1; int data[3]; } f2 = { { 1 }, { 2, 3, 4 } }; ! The convenience of this extension is that `f1' has the desired type, ! eliminating the need to consistently refer to `f2.f1'. This has symmetry with normal static arrays, in that an array of ! unknown size is also written with `[]'. Of course, this extension only makes sense if the extra data comes at ! the end of a top-level object, as otherwise we would be overwriting ! data at subsequent offsets. To avoid undue complication and confusion ! with initialization of deeply nested arrays, we simply disallow any ! non-empty initialization except when the structure is the top-level ! object. For example: struct foo { int x; int y[]; }; struct bar { struct foo z; }; --- 21393,21410 ---- struct f1 f1; int data[3]; } f2 = { { 1 }, { 2, 3, 4 } }; ! The convenience of this extension is that 'f1' has the desired type, ! eliminating the need to consistently refer to 'f2.f1'. This has symmetry with normal static arrays, in that an array of ! unknown size is also written with '[]'. Of course, this extension only makes sense if the extra data comes at ! the end of a top-level object, as otherwise we would be overwriting data ! at subsequent offsets. To avoid undue complication and confusion with ! initialization of deeply nested arrays, we simply disallow any non-empty ! initialization except when the structure is the top-level object. For ! example: struct foo { int x; int y[]; }; struct bar { struct foo z; }; *************** GCC permits a C structure to have no mem *** 21584,21591 **** }; The structure has size zero. In C++, empty structures are part of the ! language. G++ treats empty structures as if they had a single member ! of type `char'.  File: gcc.info, Node: Variable Length, Next: Variadic Macros, Prev: Empty Structures, Up: C Extensions --- 21426,21433 ---- }; The structure has size zero. In C++, empty structures are part of the ! language. G++ treats empty structures as if they had a single member of ! type 'char'.  File: gcc.info, Node: Variable Length, Next: Variadic Macros, Prev: Empty Structures, Up: C Extensions *************** declaration exits. For example: *** 21613,21629 **** storage. Jumping into the scope is not allowed; you get an error message for it. ! You can use the function `alloca' to get an effect much like ! variable-length arrays. The function `alloca' is available in many other C implementations (but not in all). On the other hand, variable-length arrays are more elegant. There are other differences between these two methods. Space allocated ! with `alloca' exists until the containing _function_ returns. The ! space for a variable-length array is deallocated as soon as the array ! name's scope ends. (If you use both variable-length arrays and ! `alloca' in the same function, deallocation of a variable-length array ! also deallocates anything more recently allocated with `alloca'.) You can also use variable-length arrays as arguments to functions: --- 21455,21471 ---- storage. Jumping into the scope is not allowed; you get an error message for it. ! You can use the function 'alloca' to get an effect much like ! variable-length arrays. The function 'alloca' is available in many other C implementations (but not in all). On the other hand, variable-length arrays are more elegant. There are other differences between these two methods. Space allocated ! with 'alloca' exists until the containing _function_ returns. The space ! for a variable-length array is deallocated as soon as the array name's ! scope ends. (If you use both variable-length arrays and 'alloca' in the ! same function, deallocation of a variable-length array also deallocates ! anything more recently allocated with 'alloca'.) You can also use variable-length arrays as arguments to functions: *************** also deallocates anything more recently *** 21635,21641 **** The length of an array is computed once when the storage is allocated and is remembered for the scope of the array in case you access it with ! `sizeof'. If you want to pass the array first and the length afterward, you can use a forward declaration in the parameter list--another GNU extension. --- 21477,21483 ---- The length of an array is computed once when the storage is allocated and is remembered for the scope of the array in case you access it with ! 'sizeof'. If you want to pass the array first and the length afterward, you can use a forward declaration in the parameter list--another GNU extension. *************** use a forward declaration in the paramet *** 21646,21654 **** /* ... */ } ! The `int len' before the semicolon is a "parameter forward ! declaration", and it serves the purpose of making the name `len' known ! when the declaration of `data' is parsed. You can write any number of such parameter forward declarations in the parameter list. They can be separated by commas or semicolons, but the --- 21488,21496 ---- /* ... */ } ! The 'int len' before the semicolon is a "parameter forward ! declaration", and it serves the purpose of making the name 'len' known ! when the declaration of 'data' is parsed. You can write any number of such parameter forward declarations in the parameter list. They can be separated by commas or semicolons, but the *************** example: *** 21670,21680 **** #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__) ! Here `...' is a "variable argument". In the invocation of such a ! macro, it represents the zero or more tokens until the closing ! parenthesis that ends the invocation, including any commas. This set of ! tokens replaces the identifier `__VA_ARGS__' in the macro body wherever ! it appears. See the CPP manual for more information. GCC has long supported variadic macros, and used a different syntax that allowed you to give a name to the variable arguments just like any --- 21512,21522 ---- #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__) ! Here '...' is a "variable argument". In the invocation of such a macro, ! it represents the zero or more tokens until the closing parenthesis that ! ends the invocation, including any commas. This set of tokens replaces ! the identifier '__VA_ARGS__' in the macro body wherever it appears. See ! the CPP manual for more information. GCC has long supported variadic macros, and used a different syntax that allowed you to give a name to the variable arguments just like any *************** be used with either of the above forms o *** 21690,21697 **** In standard C, you are not allowed to leave the variable argument out entirely; but you are allowed to pass an empty argument. For example, ! this invocation is invalid in ISO C, because there is no comma after ! the string: debug ("A message") --- 21532,21539 ---- In standard C, you are not allowed to leave the variable argument out entirely; but you are allowed to pass an empty argument. For example, ! this invocation is invalid in ISO C, because there is no comma after the ! string: debug ("A message") *************** the expansion of the macro still has the *** 21701,21712 **** string. To help solve this problem, CPP behaves specially for variable ! arguments used with the token paste operator, `##'. If instead you write #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__) ! and if the variable arguments are omitted or empty, the `##' operator causes the preprocessor to remove the comma before it. If you do provide some variable arguments in your macro invocation, GNU CPP does not complain about the paste operation and instead places the variable --- 21543,21554 ---- string. To help solve this problem, CPP behaves specially for variable ! arguments used with the token paste operator, '##'. If instead you write #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__) ! and if the variable arguments are omitted or empty, the '##' operator causes the preprocessor to remove the comma before it. If you do provide some variable arguments in your macro invocation, GNU CPP does not complain about the paste operation and instead places the variable *************** File: gcc.info, Node: Subscripting, Ne *** 21736,21747 **** 6.22 Non-Lvalue Arrays May Have Subscripts ========================================== ! In ISO C99, arrays that are not lvalues still decay to pointers, and ! may be subscripted, although they may not be modified or used after the ! next sequence point and the unary `&' operator may not be applied to ! them. As an extension, GNU C allows such arrays to be subscripted in ! C90 mode, though otherwise they do not decay to pointers outside C99 ! mode. For example, this is valid in GNU C though not valid in C90: struct foo {int a[4];}; --- 21578,21589 ---- 6.22 Non-Lvalue Arrays May Have Subscripts ========================================== ! In ISO C99, arrays that are not lvalues still decay to pointers, and may ! be subscripted, although they may not be modified or used after the next ! sequence point and the unary '&' operator may not be applied to them. ! As an extension, GNU C allows such arrays to be subscripted in C90 mode, ! though otherwise they do not decay to pointers outside C99 mode. For ! example, this is valid in GNU C though not valid in C90: struct foo {int a[4];}; *************** mode. For example, this is valid in GNU *** 21755,21772 ****  File: gcc.info, Node: Pointer Arith, Next: Initializers, Prev: Subscripting, Up: C Extensions ! 6.23 Arithmetic on `void'- and Function-Pointers ================================================ In GNU C, addition and subtraction operations are supported on pointers ! to `void' and on pointers to functions. This is done by treating the ! size of a `void' or of a function as 1. ! A consequence of this is that `sizeof' is also allowed on `void' and ! on function types, and returns 1. ! The option `-Wpointer-arith' requests a warning if these extensions ! are used.  File: gcc.info, Node: Initializers, Next: Compound Literals, Prev: Pointer Arith, Up: C Extensions --- 21597,21614 ----  File: gcc.info, Node: Pointer Arith, Next: Initializers, Prev: Subscripting, Up: C Extensions ! 6.23 Arithmetic on 'void'- and Function-Pointers ================================================ In GNU C, addition and subtraction operations are supported on pointers ! to 'void' and on pointers to functions. This is done by treating the ! size of a 'void' or of a function as 1. ! A consequence of this is that 'sizeof' is also allowed on 'void' and on ! function types, and returns 1. ! The option '-Wpointer-arith' requests a warning if these extensions are ! used.  File: gcc.info, Node: Initializers, Next: Compound Literals, Prev: Pointer Arith, Up: C Extensions *************** File: gcc.info, Node: Initializers, Ne *** 21774,21783 **** 6.24 Non-Constant Initializers ============================== ! As in standard C++ and ISO C99, the elements of an aggregate ! initializer for an automatic variable are not required to be constant ! expressions in GNU C. Here is an example of an initializer with ! run-time varying elements: foo (float f, float g) { --- 21616,21625 ---- 6.24 Non-Constant Initializers ============================== ! As in standard C++ and ISO C99, the elements of an aggregate initializer ! for an automatic variable are not required to be constant expressions in ! GNU C. Here is an example of an initializer with run-time varying ! elements: foo (float f, float g) { *************** initializer; it is an lvalue. As an ext *** 21798,21809 **** literals in C90 mode and in C++, though the semantics are somewhat different in C++. ! Usually, the specified type is a structure. Assume that `struct foo' ! and `structure' are declared as shown: struct foo {int a; char b[2];} structure; ! Here is an example of constructing a `struct foo' with a compound literal: structure = ((struct foo) {x + y, 'a', 0}); --- 21640,21651 ---- literals in C90 mode and in C++, though the semantics are somewhat different in C++. ! Usually, the specified type is a structure. Assume that 'struct foo' ! and 'structure' are declared as shown: struct foo {int a; char b[2];} structure; ! Here is an example of constructing a 'struct foo' with a compound literal: structure = ((struct foo) {x + y, 'a', 0}); *************** initializer, as shown here: *** 21828,21840 **** but then the compound literal is equivalent to a cast. As a GNU extension, GCC allows initialization of objects with static ! storage duration by compound literals (which is not possible in ISO ! C99, because the initializer is not a constant). It is handled as if ! the object is initialized only with the bracket enclosed list if the ! types of the compound literal and the object match. The initializer ! list of the compound literal must be constant. If the object being ! initialized has array type of unknown size, the size is determined by ! compound literal size. static struct foo x = (struct foo) {1, 'a', 'b'}; static int y[] = (int []) {1, 2, 3}; --- 21670,21682 ---- but then the compound literal is equivalent to a cast. As a GNU extension, GCC allows initialization of objects with static ! storage duration by compound literals (which is not possible in ISO C99, ! because the initializer is not a constant). It is handled as if the ! object is initialized only with the bracket enclosed list if the types ! of the compound literal and the object match. The initializer list of ! the compound literal must be constant. If the object being initialized ! has array type of unknown size, the size is determined by compound ! literal size. static struct foo x = (struct foo) {1, 'a', 'b'}; static int y[] = (int []) {1, 2, 3}; *************** The above lines are equivalent to the fo *** 21847,21865 **** In C, a compound literal designates an unnamed object with static or automatic storage duration. In C++, a compound literal designates a ! temporary object, which only lives until the end of its ! full-expression. As a result, well-defined C code that takes the ! address of a subobject of a compound literal can be undefined in C++. ! For instance, if the array compound literal example above appeared ! inside a function, any subsequent use of `foo' in C++ has undefined ! behavior because the lifetime of the array ends after the declaration ! of `foo'. As a result, the C++ compiler now rejects the conversion of ! a temporary array to a pointer. As an optimization, the C++ compiler sometimes gives array compound literals longer lifetimes: when the array either appears outside a ! function or has const-qualified type. If `foo' and its initializer had ! elements of `char *const' type rather than `char *', or if `foo' were a global variable, the array would have static storage duration. But it is probably safest just to avoid the use of array compound literals in code compiled as C++. --- 21689,21707 ---- In C, a compound literal designates an unnamed object with static or automatic storage duration. In C++, a compound literal designates a ! temporary object, which only lives until the end of its full-expression. ! As a result, well-defined C code that takes the address of a subobject ! of a compound literal can be undefined in C++. For instance, if the ! array compound literal example above appeared inside a function, any ! subsequent use of 'foo' in C++ has undefined behavior because the ! lifetime of the array ends after the declaration of 'foo'. As a result, ! the C++ compiler now rejects the conversion of a temporary array to a ! pointer. As an optimization, the C++ compiler sometimes gives array compound literals longer lifetimes: when the array either appears outside a ! function or has const-qualified type. If 'foo' and its initializer had ! elements of 'char *const' type rather than 'char *', or if 'foo' were a global variable, the array would have static storage duration. But it is probably safest just to avoid the use of array compound literals in code compiled as C++. *************** indices or structure field names they ap *** 21879,21885 **** an extension in C90 mode as well. This extension is not implemented in GNU C++. ! To specify an array index, write `[INDEX] =' before the element value. For example, int a[6] = { [4] = 29, [2] = 15 }; --- 21721,21727 ---- an extension in C90 mode as well. This extension is not implemented in GNU C++. ! To specify an array index, write '[INDEX] =' before the element value. For example, int a[6] = { [4] = 29, [2] = 15 }; *************** The index values must be constant expres *** 21892,21901 **** initialized is automatic. An alternative syntax for this that has been obsolete since GCC 2.5 but ! GCC still accepts is to write `[INDEX]' before the element value, with ! no `='. ! To initialize a range of elements to the same value, write `[FIRST ... LAST] = VALUE'. This is a GNU extension. For example, int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 }; --- 21734,21743 ---- initialized is automatic. An alternative syntax for this that has been obsolete since GCC 2.5 but ! GCC still accepts is to write '[INDEX]' before the element value, with ! no '='. ! To initialize a range of elements to the same value, write '[FIRST ... LAST] = VALUE'. This is a GNU extension. For example, int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 }; *************** Note that the length of the array is the *** 21907,21913 **** one. In a structure initializer, specify the name of a field to initialize ! with `.FIELDNAME =' before the element value. For example, given the following structure, struct point { int x, y; }; --- 21749,21755 ---- one. In a structure initializer, specify the name of a field to initialize ! with '.FIELDNAME =' before the element value. For example, given the following structure, struct point { int x, y; }; *************** is equivalent to *** 21921,21942 **** struct point p = { xvalue, yvalue }; Another syntax that has the same meaning, obsolete since GCC 2.5, is ! `FIELDNAME:', as shown here: struct point p = { y: yvalue, x: xvalue }; ! The `[INDEX]' or `.FIELDNAME' is known as a "designator". You can ! also use a designator (or the obsolete colon syntax) when initializing ! a union, to specify which element of the union should be used. For example, union foo { int i; double d; }; union foo f = { .d = 4 }; ! converts 4 to a `double' to store it in the union using the second ! element. By contrast, casting 4 to type `union foo' stores it into the ! union as the integer `i', since it is an integer. (*Note Cast to Union::.) You can combine this technique of naming elements with ordinary C --- 21763,21784 ---- struct point p = { xvalue, yvalue }; Another syntax that has the same meaning, obsolete since GCC 2.5, is ! 'FIELDNAME:', as shown here: struct point p = { y: yvalue, x: xvalue }; ! The '[INDEX]' or '.FIELDNAME' is known as a "designator". You can also ! use a designator (or the obsolete colon syntax) when initializing a ! union, to specify which element of the union should be used. For example, union foo { int i; double d; }; union foo f = { .d = 4 }; ! converts 4 to a 'double' to store it in the union using the second ! element. By contrast, casting 4 to type 'union foo' stores it into the ! union as the integer 'i', since it is an integer. (*Note Cast to Union::.) You can combine this technique of naming elements with ordinary C *************** is equivalent to *** 21950,21968 **** int a[6] = { 0, v1, v2, 0, v4, 0 }; ! Labeling the elements of an array initializer is especially useful ! when the indices are characters or belong to an `enum' type. For ! example: int whitespace[256] = { [' '] = 1, ['\t'] = 1, ['\h'] = 1, ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 }; ! You can also write a series of `.FIELDNAME' and `[INDEX]' designators ! before an `=' to specify a nested subobject to initialize; the list is ! taken relative to the subobject corresponding to the closest ! surrounding brace pair. For example, with the `struct point' ! declaration above: struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 }; --- 21792,21808 ---- int a[6] = { 0, v1, v2, 0, v4, 0 }; ! Labeling the elements of an array initializer is especially useful when ! the indices are characters or belong to an 'enum' type. For example: int whitespace[256] = { [' '] = 1, ['\t'] = 1, ['\h'] = 1, ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 }; ! You can also write a series of '.FIELDNAME' and '[INDEX]' designators ! before an '=' to specify a nested subobject to initialize; the list is ! taken relative to the subobject corresponding to the closest surrounding ! brace pair. For example, with the 'struct point' declaration above: struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 }; *************** File: gcc.info, Node: Case Ranges, Nex *** 21977,21995 **** 6.27 Case Ranges ================ ! You can specify a range of consecutive values in a single `case' label, like this: case LOW ... HIGH: ! This has the same effect as the proper number of individual `case' labels, one for each integer value from LOW to HIGH, inclusive. This feature is especially useful for ranges of ASCII character codes: case 'A' ... 'Z': ! *Be careful:* Write spaces around the `...', for otherwise it may be parsed wrong when you use it with integer values. For example, write this: --- 21817,21835 ---- 6.27 Case Ranges ================ ! You can specify a range of consecutive values in a single 'case' label, like this: case LOW ... HIGH: ! This has the same effect as the proper number of individual 'case' labels, one for each integer value from LOW to HIGH, inclusive. This feature is especially useful for ranges of ASCII character codes: case 'A' ... 'Z': ! *Be careful:* Write spaces around the '...', for otherwise it may be parsed wrong when you use it with integer values. For example, write this: *************** File: gcc.info, Node: Cast to Union, N *** 22006,22015 **** ========================= A cast to union type is similar to other casts, except that the type ! specified is a union type. You can specify the type either with `union ! TAG' or with a typedef name. A cast to union is actually a ! constructor, not a cast, and hence does not yield an lvalue like normal ! casts. (*Note Compound Literals::.) The types that may be cast to the union type are those of the members of the union. Thus, given the following union and variables: --- 21846,21855 ---- ========================= A cast to union type is similar to other casts, except that the type ! specified is a union type. You can specify the type either with 'union ! TAG' or with a typedef name. A cast to union is actually a constructor, ! not a cast, and hence does not yield an lvalue like normal casts. ! (*Note Compound Literals::.) The types that may be cast to the union type are those of the members of the union. Thus, given the following union and variables: *************** of the union. Thus, given the following *** 22018,22024 **** int x; double y; ! both `x' and `y' can be cast to type `union foo'. Using the cast as the right-hand side of an assignment to a variable of union type is equivalent to storing in a member of the union: --- 21858,21864 ---- int x; double y; ! both 'x' and 'y' can be cast to type 'union foo'. Using the cast as the right-hand side of an assignment to a variable of union type is equivalent to storing in a member of the union: *************** In GNU C, you declare certain things abo *** 22062,22252 **** program which help the compiler optimize function calls and check your code more carefully. ! The keyword `__attribute__' allows you to specify special attributes when making a declaration. This keyword is followed by an attribute specification inside double parentheses. The following attributes are ! currently defined for functions on all targets: `aligned', ! `alloc_size', `noreturn', `returns_twice', `noinline', `noclone', ! `always_inline', `flatten', `pure', `const', `nothrow', `sentinel', ! `format', `format_arg', `no_instrument_function', `no_split_stack', ! `section', `constructor', `destructor', `used', `unused', `deprecated', ! `weak', `malloc', `alias', `ifunc', `warn_unused_result', `nonnull', ! `gnu_inline', `externally_visible', `hot', `cold', `artificial', ! `no_sanitize_address', `no_address_safety_analysis', `error' and ! `warning'. Several other attributes are defined for functions on ! particular target systems. Other attributes, including `section' are supported for variables declarations (*note Variable Attributes::) and for types (*note Type Attributes::). GCC plugins may provide their own attributes. ! You may also specify attributes with `__' preceding and following each keyword. This allows you to use them in header files without being ! concerned about a possible macro of the same name. For example, you ! may use `__noreturn__' instead of `noreturn'. *Note Attribute Syntax::, for details of the exact syntax for using attributes. ! `alias ("TARGET")' ! The `alias' attribute causes the declaration to be emitted as an alias for another symbol, which must be specified. For instance, void __f () { /* Do something. */; } void f () __attribute__ ((weak, alias ("__f"))); ! defines `f' to be a weak alias for `__f'. In C++, the mangled ! name for the target must be used. It is an error if `__f' is not defined in the same translation unit. Not all target machines support this attribute. ! `aligned (ALIGNMENT)' This attribute specifies a minimum alignment for the function, measured in bytes. You cannot use this attribute to decrease the alignment of a function, only to increase it. However, when you explicitly specify a function alignment this overrides the effect of the ! `-falign-functions' (*note Optimize Options::) option for this function. ! Note that the effectiveness of `aligned' attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for functions to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) See your linker documentation for further information. ! The `aligned' attribute can also be used for variables and fields (*note Variable Attributes::.) ! `alloc_size' ! The `alloc_size' attribute is used to tell the compiler that the function return value points to memory, where the size is given by one or two of the functions parameters. GCC uses this information ! to improve the correctness of `__builtin_object_size'. ! The function parameter(s) denoting the allocated size are ! specified by one or two integer arguments supplied to the ! attribute. The allocated size is either the value of the single ! function argument specified or the product of the two function ! arguments specified. Argument numbering starts at one. For instance, void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2))) void my_realloc(void*, size_t) __attribute__((alloc_size(2))) ! declares that `my_calloc' returns memory of the size given by the ! product of parameter 1 and 2 and that `my_realloc' returns memory of the size given by parameter 2. ! `always_inline' Generally, functions are not inlined unless optimization is specified. For functions declared inline, this attribute inlines the function even if no optimization level is specified. ! `gnu_inline' This attribute should be used with a function that is also declared ! with the `inline' keyword. It directs GCC to treat the function ! as if it were defined in gnu90 mode even when compiling in C99 or gnu99 mode. ! If the function is declared `extern', then this definition of the function is used only for inlining. In no case is the function compiled as a standalone function, not even if you take its address explicitly. Such an address becomes an external reference, as if you had only declared the function, and had not defined it. This has almost the effect of a macro. The way to use this is to put a function definition in a header file with this attribute, and put ! another copy of the function, without `extern', in a library file. ! The definition in the header file causes most calls to the ! function to be inlined. If any uses of the function remain, they ! refer to the single copy in the library. Note that the two ! definitions of the functions need not be precisely the same, ! although if they do not have the same effect your program may ! behave oddly. ! In C, if the function is neither `extern' nor `static', then the function is compiled as a standalone function, as well as being inlined where possible. ! This is how GCC traditionally handled functions declared `inline'. ! Since ISO C99 specifies a different semantics for `inline', this function attribute is provided as a transition measure and as a useful feature in its own right. This attribute is available in ! GCC 4.1.3 and later. It is available if either of the ! preprocessor macros `__GNUC_GNU_INLINE__' or ! `__GNUC_STDC_INLINE__' are defined. *Note An Inline Function is ! As Fast As a Macro: Inline. ! In C++, this attribute does not depend on `extern' in any way, but ! it still requires the `inline' keyword to enable its special behavior. ! `artificial' This attribute is useful for small inline wrappers that if possible should appear during debugging as a unit. Depending on the debug info format it either means marking the function as artificial or using the caller location for all instructions within the inlined body. ! `bank_switch' When added to an interrupt handler with the M32C port, causes the prologue and epilogue to use bank switching to preserve the registers rather than saving them on the stack. ! `flatten' Generally, inlining into a function is limited. For a function marked with this attribute, every call inside this function is inlined, if possible. Whether the function itself is considered for inlining depends on its size and the current inlining parameters. ! `error ("MESSAGE")' If this attribute is used on a function declaration and a call to such a function is not eliminated through dead code elimination or other optimizations, an error that includes MESSAGE is diagnosed. This is useful for compile-time checking, especially together with ! `__builtin_constant_p' and inline functions where checking the ! inline function arguments is not possible through `extern char ! [(condition) ? 1 : -1];' tricks. While it is possible to leave ! the function undefined and thus invoke a link failure, when using ! this attribute the problem is diagnosed earlier and with exact ! location of the call even in presence of inline functions or when ! not emitting debugging information. ! `warning ("MESSAGE")' If this attribute is used on a function declaration and a call to such a function is not eliminated through dead code elimination or other optimizations, a warning that includes MESSAGE is diagnosed. This is useful for compile-time checking, especially together with ! `__builtin_constant_p' and inline functions. While it is possible ! to define the function with a message in `.gnu.warning*' section, ! when using this attribute the problem is diagnosed earlier and ! with exact location of the call even in presence of inline ! functions or when not emitting debugging information. ! `cdecl' ! On the Intel 386, the `cdecl' attribute causes the compiler to assume that the calling function pops off the stack space used to pass arguments. This is useful to override the effects of the ! `-mrtd' switch. ! `const' Many functions do not examine any values except their arguments, and have no effects except the return value. Basically this is ! just slightly more strict class than the `pure' attribute below, since function is not allowed to read global memory. Note that a function that has pointer arguments and examines the ! data pointed to must _not_ be declared `const'. Likewise, a ! function that calls a non-`const' function usually must not be ! `const'. It does not make sense for a `const' function to return ! `void'. ! The attribute `const' is not implemented in GCC versions earlier than 2.5. An alternative way to declare that a function has no side effects, which works in the current version and in some older versions, is as follows: --- 21902,22090 ---- program which help the compiler optimize function calls and check your code more carefully. ! The keyword '__attribute__' allows you to specify special attributes when making a declaration. This keyword is followed by an attribute specification inside double parentheses. The following attributes are ! currently defined for functions on all targets: 'aligned', 'alloc_size', ! 'noreturn', 'returns_twice', 'noinline', 'noclone', 'always_inline', ! 'flatten', 'pure', 'const', 'nothrow', 'sentinel', 'format', ! 'format_arg', 'no_instrument_function', 'no_split_stack', 'section', ! 'constructor', 'destructor', 'used', 'unused', 'deprecated', 'weak', ! 'malloc', 'alias', 'ifunc', 'warn_unused_result', 'nonnull', ! 'gnu_inline', 'externally_visible', 'hot', 'cold', 'artificial', ! 'no_sanitize_address', 'no_address_safety_analysis', 'error' and ! 'warning'. Several other attributes are defined for functions on ! particular target systems. Other attributes, including 'section' are supported for variables declarations (*note Variable Attributes::) and for types (*note Type Attributes::). GCC plugins may provide their own attributes. ! You may also specify attributes with '__' preceding and following each keyword. This allows you to use them in header files without being ! concerned about a possible macro of the same name. For example, you may ! use '__noreturn__' instead of 'noreturn'. *Note Attribute Syntax::, for details of the exact syntax for using attributes. ! 'alias ("TARGET")' ! The 'alias' attribute causes the declaration to be emitted as an alias for another symbol, which must be specified. For instance, void __f () { /* Do something. */; } void f () __attribute__ ((weak, alias ("__f"))); ! defines 'f' to be a weak alias for '__f'. In C++, the mangled name ! for the target must be used. It is an error if '__f' is not defined in the same translation unit. Not all target machines support this attribute. ! 'aligned (ALIGNMENT)' This attribute specifies a minimum alignment for the function, measured in bytes. You cannot use this attribute to decrease the alignment of a function, only to increase it. However, when you explicitly specify a function alignment this overrides the effect of the ! '-falign-functions' (*note Optimize Options::) option for this function. ! Note that the effectiveness of 'aligned' attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for functions to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) See your linker documentation for further information. ! The 'aligned' attribute can also be used for variables and fields (*note Variable Attributes::.) ! 'alloc_size' ! The 'alloc_size' attribute is used to tell the compiler that the function return value points to memory, where the size is given by one or two of the functions parameters. GCC uses this information ! to improve the correctness of '__builtin_object_size'. ! The function parameter(s) denoting the allocated size are specified ! by one or two integer arguments supplied to the attribute. The ! allocated size is either the value of the single function argument ! specified or the product of the two function arguments specified. ! Argument numbering starts at one. For instance, void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2))) void my_realloc(void*, size_t) __attribute__((alloc_size(2))) ! declares that 'my_calloc' returns memory of the size given by the ! product of parameter 1 and 2 and that 'my_realloc' returns memory of the size given by parameter 2. ! 'always_inline' Generally, functions are not inlined unless optimization is specified. For functions declared inline, this attribute inlines the function even if no optimization level is specified. ! 'gnu_inline' This attribute should be used with a function that is also declared ! with the 'inline' keyword. It directs GCC to treat the function as ! if it were defined in gnu90 mode even when compiling in C99 or gnu99 mode. ! If the function is declared 'extern', then this definition of the function is used only for inlining. In no case is the function compiled as a standalone function, not even if you take its address explicitly. Such an address becomes an external reference, as if you had only declared the function, and had not defined it. This has almost the effect of a macro. The way to use this is to put a function definition in a header file with this attribute, and put ! another copy of the function, without 'extern', in a library file. ! The definition in the header file causes most calls to the function ! to be inlined. If any uses of the function remain, they refer to ! the single copy in the library. Note that the two definitions of ! the functions need not be precisely the same, although if they do ! not have the same effect your program may behave oddly. ! In C, if the function is neither 'extern' nor 'static', then the function is compiled as a standalone function, as well as being inlined where possible. ! This is how GCC traditionally handled functions declared 'inline'. ! Since ISO C99 specifies a different semantics for 'inline', this function attribute is provided as a transition measure and as a useful feature in its own right. This attribute is available in ! GCC 4.1.3 and later. It is available if either of the preprocessor ! macros '__GNUC_GNU_INLINE__' or '__GNUC_STDC_INLINE__' are defined. ! *Note An Inline Function is As Fast As a Macro: Inline. ! In C++, this attribute does not depend on 'extern' in any way, but ! it still requires the 'inline' keyword to enable its special behavior. ! 'artificial' This attribute is useful for small inline wrappers that if possible should appear during debugging as a unit. Depending on the debug info format it either means marking the function as artificial or using the caller location for all instructions within the inlined body. ! 'bank_switch' When added to an interrupt handler with the M32C port, causes the prologue and epilogue to use bank switching to preserve the registers rather than saving them on the stack. ! 'flatten' Generally, inlining into a function is limited. For a function marked with this attribute, every call inside this function is inlined, if possible. Whether the function itself is considered for inlining depends on its size and the current inlining parameters. ! 'error ("MESSAGE")' If this attribute is used on a function declaration and a call to such a function is not eliminated through dead code elimination or other optimizations, an error that includes MESSAGE is diagnosed. This is useful for compile-time checking, especially together with ! '__builtin_constant_p' and inline functions where checking the ! inline function arguments is not possible through 'extern char ! [(condition) ? 1 : -1];' tricks. While it is possible to leave the ! function undefined and thus invoke a link failure, when using this ! attribute the problem is diagnosed earlier and with exact location ! of the call even in presence of inline functions or when not ! emitting debugging information. ! 'warning ("MESSAGE")' If this attribute is used on a function declaration and a call to such a function is not eliminated through dead code elimination or other optimizations, a warning that includes MESSAGE is diagnosed. This is useful for compile-time checking, especially together with ! '__builtin_constant_p' and inline functions. While it is possible ! to define the function with a message in '.gnu.warning*' section, ! when using this attribute the problem is diagnosed earlier and with ! exact location of the call even in presence of inline functions or ! when not emitting debugging information. ! 'cdecl' ! On the Intel 386, the 'cdecl' attribute causes the compiler to assume that the calling function pops off the stack space used to pass arguments. This is useful to override the effects of the ! '-mrtd' switch. ! 'const' Many functions do not examine any values except their arguments, and have no effects except the return value. Basically this is ! just slightly more strict class than the 'pure' attribute below, since function is not allowed to read global memory. Note that a function that has pointer arguments and examines the ! data pointed to must _not_ be declared 'const'. Likewise, a ! function that calls a non-'const' function usually must not be ! 'const'. It does not make sense for a 'const' function to return ! 'void'. ! The attribute 'const' is not implemented in GCC versions earlier than 2.5. An alternative way to declare that a function has no side effects, which works in the current version and in some older versions, is as follows: *************** attributes. *** 22256,22272 **** extern const intfn square; This approach does not work in GNU C++ from 2.6.0 on, since the ! language specifies that the `const' must be attached to the return value. ! `constructor' ! `destructor' ! `constructor (PRIORITY)' ! `destructor (PRIORITY)' ! The `constructor' attribute causes the function to be called ! automatically before execution enters `main ()'. Similarly, the ! `destructor' attribute causes the function to be called ! automatically after `main ()' completes or `exit ()' is called. Functions with these attributes are useful for initializing data that is used implicitly during the execution of the program. --- 22094,22110 ---- extern const intfn square; This approach does not work in GNU C++ from 2.6.0 on, since the ! language specifies that the 'const' must be attached to the return value. ! 'constructor' ! 'destructor' ! 'constructor (PRIORITY)' ! 'destructor (PRIORITY)' ! The 'constructor' attribute causes the function to be called ! automatically before execution enters 'main ()'. Similarly, the ! 'destructor' attribute causes the function to be called ! automatically after 'main ()' completes or 'exit ()' is called. Functions with these attributes are useful for initializing data that is used implicitly during the execution of the program. *************** attributes. *** 22283,22291 **** These attributes are not currently implemented for Objective-C. ! `deprecated' ! `deprecated (MSG)' ! The `deprecated' attribute results in a warning if the function is used anywhere in the source file. This is useful when identifying functions that are expected to be removed in a future version of a program. The warning also includes the location of the declaration --- 22121,22129 ---- These attributes are not currently implemented for Objective-C. ! 'deprecated' ! 'deprecated (MSG)' ! The 'deprecated' attribute results in a warning if the function is used anywhere in the source file. This is useful when identifying functions that are expected to be removed in a future version of a program. The warning also includes the location of the declaration *************** attributes. *** 22301,22336 **** argument, which must be a string, is printed in the warning if present. ! The `deprecated' attribute can also be used for variables and ! types (*note Variable Attributes::, *note Type Attributes::.) ! `disinterrupt' On Epiphany and MeP targets, this attribute causes the compiler to emit instructions to disable interrupts for the duration of the given function. ! `dllexport' ! On Microsoft Windows targets and Symbian OS targets the ! `dllexport' attribute causes the compiler to provide a global ! pointer to a pointer in a DLL, so that it can be referenced with ! the `dllimport' attribute. On Microsoft Windows targets, the ! pointer name is formed by combining `_imp__' and the function or ! variable name. ! You can use `__declspec(dllexport)' as a synonym for ! `__attribute__ ((dllexport))' for compatibility with other ! compilers. ! On systems that support the `visibility' attribute, this attribute also implies "default" visibility. It is an error to explicitly specify any other visibility. ! In previous versions of GCC, the `dllexport' attribute was ignored ! for inlined functions, unless the `-fkeep-inline-functions' flag had been used. The default behavior now is to emit all dllexported inline functions; however, this can cause object file-size bloat, in which case the old behavior can be restored by using ! `-fno-keep-inline-dllexport'. The attribute is also ignored for undefined symbols. --- 22139,22172 ---- argument, which must be a string, is printed in the warning if present. ! The 'deprecated' attribute can also be used for variables and types ! (*note Variable Attributes::, *note Type Attributes::.) ! 'disinterrupt' On Epiphany and MeP targets, this attribute causes the compiler to emit instructions to disable interrupts for the duration of the given function. ! 'dllexport' ! On Microsoft Windows targets and Symbian OS targets the 'dllexport' ! attribute causes the compiler to provide a global pointer to a ! pointer in a DLL, so that it can be referenced with the 'dllimport' ! attribute. On Microsoft Windows targets, the pointer name is ! formed by combining '_imp__' and the function or variable name. ! You can use '__declspec(dllexport)' as a synonym for '__attribute__ ! ((dllexport))' for compatibility with other compilers. ! On systems that support the 'visibility' attribute, this attribute also implies "default" visibility. It is an error to explicitly specify any other visibility. ! In previous versions of GCC, the 'dllexport' attribute was ignored ! for inlined functions, unless the '-fkeep-inline-functions' flag had been used. The default behavior now is to emit all dllexported inline functions; however, this can cause object file-size bloat, in which case the old behavior can be restored by using ! '-fno-keep-inline-dllexport'. The attribute is also ignored for undefined symbols. *************** attributes. *** 22341,22478 **** For Microsoft Windows targets there are alternative methods for including the symbol in the DLL's export table such as using a ! `.def' file with an `EXPORTS' section or, with GNU ld, using the ! `--export-all' linker flag. ! `dllimport' ! On Microsoft Windows and Symbian OS targets, the `dllimport' attribute causes the compiler to reference a function or variable via a global pointer to a pointer that is set up by the DLL ! exporting the symbol. The attribute implies `extern'. On Microsoft Windows targets, the pointer name is formed by combining ! `_imp__' and the function or variable name. ! You can use `__declspec(dllimport)' as a synonym for ! `__attribute__ ((dllimport))' for compatibility with other ! compilers. ! On systems that support the `visibility' attribute, this attribute also implies "default" visibility. It is an error to explicitly specify any other visibility. Currently, the attribute is ignored for inlined functions. If the attribute is applied to a symbol _definition_, an error is ! reported. If a symbol previously declared `dllimport' is later defined, the attribute is ignored in subsequent references, and a warning is emitted. The attribute is also overridden by a ! subsequent declaration as `dllexport'. ! When applied to C++ classes, the attribute marks non-inlined ! member functions and static data members as imports. However, the attribute is ignored for virtual methods to allow creation of vtables using thunks. ! On the SH Symbian OS target the `dllimport' attribute also has another affect--it can cause the vtable and run-time type information for a class to be exported. This happens when the class has a dllimported constructor or a non-inline, non-pure ! virtual function and, for either of those two conditions, the ! class also has an inline constructor or destructor and has a key ! function that is defined in the current translation unit. ! For Microsoft Windows targets the use of the `dllimport' attribute on functions is not necessary, but provides a small performance benefit by eliminating a thunk in the DLL. The use of the ! `dllimport' attribute on imported variables was required on older versions of the GNU linker, but can now be avoided by passing the ! `--enable-auto-import' switch to the GNU linker. As with functions, using the attribute for a variable eliminates a thunk in the DLL. One drawback to using this attribute is that a pointer to a ! _variable_ marked as `dllimport' cannot be used as a constant ! address. However, a pointer to a _function_ with the `dllimport' attribute can be used as a constant initializer; in this case, the address of a stub function in the import lib is referenced. On Microsoft Windows targets, the attribute can be disabled for ! functions by setting the `-mnop-fun-dllimport' flag. ! `eightbit_data' ! Use this attribute on the H8/300, H8/300H, and H8S to indicate ! that the specified variable should be placed into the eight-bit ! data section. The compiler generates more efficient code for ! certain operations on data in the eight-bit data area. Note the ! eight-bit data area is limited to 256 bytes of data. You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute to work correctly. ! `exception_handler' Use this attribute on the Blackfin to indicate that the specified function is an exception handler. The compiler generates function entry and exit sequences suitable for use in an exception handler when this attribute is present. ! `externally_visible' This attribute, attached to a global variable or function, ! nullifies the effect of the `-fwhole-program' command-line option, so the object remains visible outside the current compilation unit. ! If `-fwhole-program' is used together with `-flto' and `gold' is ! used as the linker plugin, `externally_visible' attributes are ! automatically added to functions (not variable yet due to a ! current `gold' issue) that are accessed outside of LTO objects ! according to resolution file produced by `gold'. For other ! linkers that cannot generate resolution file, explicit ! `externally_visible' attributes are still necessary. ! `far' ! On 68HC11 and 68HC12 the `far' attribute causes the compiler to ! use a calling convention that takes care of switching memory banks ! when entering and leaving a function. This calling convention is ! also the default when using the `-mlong-calls' option. ! On 68HC12 the compiler uses the `call' and `rtc' instructions to call and return from a function. On 68HC11 the compiler generates a sequence of instructions to invoke a board-specific routine to switch the memory bank and call ! the real function. The board-specific routine simulates a `call'. At the end of a function, it jumps to a board-specific routine ! instead of using `rts'. The board-specific return routine ! simulates the `rtc'. On MeP targets this causes the compiler to use a calling convention that assumes the called function is too far away for the built-in addressing modes. ! `fast_interrupt' Use this attribute on the M32C and RX ports to indicate that the specified function is a fast interrupt handler. This is just like ! the `interrupt' attribute, except that `freit' is used to return ! instead of `reit'. ! `fastcall' ! On the Intel 386, the `fastcall' attribute causes the compiler to pass the first argument (if of integral type) in the register ECX and the second argument (if of integral type) in the register EDX. Subsequent and other typed arguments are passed on the stack. The ! called function pops the arguments off the stack. If the number ! of arguments is variable all arguments are pushed on the stack. ! `thiscall' ! On the Intel 386, the `thiscall' attribute causes the compiler to pass the first argument (if of integral type) in the register ECX. ! Subsequent and other typed arguments are passed on the stack. The ! called function pops the arguments off the stack. If the number ! of arguments is variable all arguments are pushed on the stack. ! The `thiscall' attribute is intended for C++ non-static member ! functions. As a GCC extension, this calling convention can be ! used for C functions and for static member methods. ! `format (ARCHETYPE, STRING-INDEX, FIRST-TO-CHECK)' ! The `format' attribute specifies that a function takes `printf', ! `scanf', `strftime' or `strfmon' style arguments that should be type-checked against a format string. For example, the declaration: --- 22177,22313 ---- For Microsoft Windows targets there are alternative methods for including the symbol in the DLL's export table such as using a ! '.def' file with an 'EXPORTS' section or, with GNU ld, using the ! '--export-all' linker flag. ! 'dllimport' ! On Microsoft Windows and Symbian OS targets, the 'dllimport' attribute causes the compiler to reference a function or variable via a global pointer to a pointer that is set up by the DLL ! exporting the symbol. The attribute implies 'extern'. On Microsoft Windows targets, the pointer name is formed by combining ! '_imp__' and the function or variable name. ! You can use '__declspec(dllimport)' as a synonym for '__attribute__ ! ((dllimport))' for compatibility with other compilers. ! On systems that support the 'visibility' attribute, this attribute also implies "default" visibility. It is an error to explicitly specify any other visibility. Currently, the attribute is ignored for inlined functions. If the attribute is applied to a symbol _definition_, an error is ! reported. If a symbol previously declared 'dllimport' is later defined, the attribute is ignored in subsequent references, and a warning is emitted. The attribute is also overridden by a ! subsequent declaration as 'dllexport'. ! When applied to C++ classes, the attribute marks non-inlined member ! functions and static data members as imports. However, the attribute is ignored for virtual methods to allow creation of vtables using thunks. ! On the SH Symbian OS target the 'dllimport' attribute also has another affect--it can cause the vtable and run-time type information for a class to be exported. This happens when the class has a dllimported constructor or a non-inline, non-pure ! virtual function and, for either of those two conditions, the class ! also has an inline constructor or destructor and has a key function ! that is defined in the current translation unit. ! For Microsoft Windows targets the use of the 'dllimport' attribute on functions is not necessary, but provides a small performance benefit by eliminating a thunk in the DLL. The use of the ! 'dllimport' attribute on imported variables was required on older versions of the GNU linker, but can now be avoided by passing the ! '--enable-auto-import' switch to the GNU linker. As with functions, using the attribute for a variable eliminates a thunk in the DLL. One drawback to using this attribute is that a pointer to a ! _variable_ marked as 'dllimport' cannot be used as a constant ! address. However, a pointer to a _function_ with the 'dllimport' attribute can be used as a constant initializer; in this case, the address of a stub function in the import lib is referenced. On Microsoft Windows targets, the attribute can be disabled for ! functions by setting the '-mnop-fun-dllimport' flag. ! 'eightbit_data' ! Use this attribute on the H8/300, H8/300H, and H8S to indicate that ! the specified variable should be placed into the eight-bit data ! section. The compiler generates more efficient code for certain ! operations on data in the eight-bit data area. Note the eight-bit ! data area is limited to 256 bytes of data. You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute to work correctly. ! 'exception_handler' Use this attribute on the Blackfin to indicate that the specified function is an exception handler. The compiler generates function entry and exit sequences suitable for use in an exception handler when this attribute is present. ! 'externally_visible' This attribute, attached to a global variable or function, ! nullifies the effect of the '-fwhole-program' command-line option, so the object remains visible outside the current compilation unit. ! If '-fwhole-program' is used together with '-flto' and 'gold' is ! used as the linker plugin, 'externally_visible' attributes are ! automatically added to functions (not variable yet due to a current ! 'gold' issue) that are accessed outside of LTO objects according to ! resolution file produced by 'gold'. For other linkers that cannot ! generate resolution file, explicit 'externally_visible' attributes ! are still necessary. ! 'far' ! On 68HC11 and 68HC12 the 'far' attribute causes the compiler to use ! a calling convention that takes care of switching memory banks when ! entering and leaving a function. This calling convention is also ! the default when using the '-mlong-calls' option. ! On 68HC12 the compiler uses the 'call' and 'rtc' instructions to call and return from a function. On 68HC11 the compiler generates a sequence of instructions to invoke a board-specific routine to switch the memory bank and call ! the real function. The board-specific routine simulates a 'call'. At the end of a function, it jumps to a board-specific routine ! instead of using 'rts'. The board-specific return routine ! simulates the 'rtc'. On MeP targets this causes the compiler to use a calling convention that assumes the called function is too far away for the built-in addressing modes. ! 'fast_interrupt' Use this attribute on the M32C and RX ports to indicate that the specified function is a fast interrupt handler. This is just like ! the 'interrupt' attribute, except that 'freit' is used to return ! instead of 'reit'. ! 'fastcall' ! On the Intel 386, the 'fastcall' attribute causes the compiler to pass the first argument (if of integral type) in the register ECX and the second argument (if of integral type) in the register EDX. Subsequent and other typed arguments are passed on the stack. The ! called function pops the arguments off the stack. If the number of ! arguments is variable all arguments are pushed on the stack. ! 'thiscall' ! On the Intel 386, the 'thiscall' attribute causes the compiler to pass the first argument (if of integral type) in the register ECX. ! Subsequent and other typed arguments are passed on the stack. The ! called function pops the arguments off the stack. If the number of ! arguments is variable all arguments are pushed on the stack. The ! 'thiscall' attribute is intended for C++ non-static member ! functions. As a GCC extension, this calling convention can be used ! for C functions and for static member methods. ! 'format (ARCHETYPE, STRING-INDEX, FIRST-TO-CHECK)' ! The 'format' attribute specifies that a function takes 'printf', ! 'scanf', 'strftime' or 'strfmon' style arguments that should be type-checked against a format string. For example, the declaration: *************** attributes. *** 22480,22608 **** my_printf (void *my_object, const char *my_format, ...) __attribute__ ((format (printf, 2, 3))); ! causes the compiler to check the arguments in calls to `my_printf' ! for consistency with the `printf' style format string argument ! `my_format'. The parameter ARCHETYPE determines how the format string is ! interpreted, and should be `printf', `scanf', `strftime', ! `gnu_printf', `gnu_scanf', `gnu_strftime' or `strfmon'. (You can ! also use `__printf__', `__scanf__', `__strftime__' or ! `__strfmon__'.) On MinGW targets, `ms_printf', `ms_scanf', and ! `ms_strftime' are also present. ARCHETYPE values such as `printf' refer to the formats accepted by the system's C runtime library, ! while values prefixed with `gnu_' always refer to the formats accepted by the GNU C Library. On Microsoft Windows targets, ! values prefixed with `ms_' refer to the formats accepted by the ! `msvcrt.dll' library. The parameter STRING-INDEX specifies which argument is the format string argument (starting from 1), while ! FIRST-TO-CHECK is the number of the first argument to check ! against the format string. For functions where the arguments are ! not available to be checked (such as `vprintf'), specify the third parameter as zero. In this case the compiler only checks the ! format string for consistency. For `strftime' formats, the third parameter is required to be zero. Since non-static C++ methods ! have an implicit `this' argument, the arguments of such methods should be counted from two, not one, when giving values for STRING-INDEX and FIRST-TO-CHECK. ! In the example above, the format string (`my_format') is the second ! argument of the function `my_print', and the arguments to check start with the third argument, so the correct parameters for the format attribute are 2 and 3. ! The `format' attribute allows you to identify your own functions that take format strings as arguments, so that GCC can check the calls to these functions for errors. The compiler always (unless ! `-ffreestanding' or `-fno-builtin' is used) checks formats for the ! standard library functions `printf', `fprintf', `sprintf', ! `scanf', `fscanf', `sscanf', `strftime', `vprintf', `vfprintf' and ! `vsprintf' whenever such warnings are requested (using ! `-Wformat'), so there is no need to modify the header file ! `stdio.h'. In C99 mode, the functions `snprintf', `vsnprintf', ! `vscanf', `vfscanf' and `vsscanf' are also checked. Except in ! strictly conforming C standard modes, the X/Open function ! `strfmon' is also checked as are `printf_unlocked' and ! `fprintf_unlocked'. *Note Options Controlling C Dialect: C ! Dialect Options. ! For Objective-C dialects, `NSString' (or `__NSString__') is recognized in the same context. Declarations including these ! format attributes are parsed for correct syntax, however the ! result of checking of such format strings is not yet defined, and ! is not carried out by this version of the compiler. The target may also provide additional types of format checks. *Note Format Checks Specific to Particular Target Machines: Target Format Checks. ! `format_arg (STRING-INDEX)' ! The `format_arg' attribute specifies that a function takes a format ! string for a `printf', `scanf', `strftime' or `strfmon' style ! function and modifies it (for example, to translate it into ! another language), so the result can be passed to a `printf', ! `scanf', `strftime' or `strfmon' style function (with the ! remaining arguments to the format function the same as they would ! have been for the unmodified string). For example, the ! declaration: extern char * my_dgettext (char *my_domain, const char *my_format) __attribute__ ((format_arg (2))); ! causes the compiler to check the arguments in calls to a `printf', ! `scanf', `strftime' or `strfmon' type function, whose format ! string argument is a call to the `my_dgettext' function, for ! consistency with the format string argument `my_format'. If the ! `format_arg' attribute had not been specified, all the compiler ! could tell in such calls to format functions would be that the ! format string argument is not constant; this would generate a ! warning when `-Wformat-nonliteral' is used, but the calls could ! not be checked without the attribute. The parameter STRING-INDEX specifies which argument is the format string argument (starting from one). Since non-static C++ methods ! have an implicit `this' argument, the arguments of such methods should be counted from two. ! The `format_arg' attribute allows you to identify your own functions that modify format strings, so that GCC can check the ! calls to `printf', `scanf', `strftime' or `strfmon' type function whose operands are a call to one of your own function. The ! compiler always treats `gettext', `dgettext', and `dcgettext' in this manner except when strict ISO C support is requested by ! `-ansi' or an appropriate `-std' option, or `-ffreestanding' or ! `-fno-builtin' is used. *Note Options Controlling C Dialect: C Dialect Options. ! For Objective-C dialects, the `format-arg' attribute may refer to ! an `NSString' reference for compatibility with the `format' attribute above. ! The target may also allow additional types in `format-arg' attributes. *Note Format Checks Specific to Particular Target Machines: Target Format Checks. ! `function_vector' ! Use this attribute on the H8/300, H8/300H, and H8S to indicate ! that the specified function should be called through the function vector. Calling a function through the function vector reduces ! code size, however; the function vector has a limited size ! (maximum 128 entries on the H8/300 and 64 entries on the H8/300H ! and H8S) and shares space with the interrupt vector. On SH2A targets, this attribute declares a function to be called using the TBR relative addressing mode. The argument to this attribute is the entry number of the same function in a vector table containing all the TBR relative addressable functions. For ! correct operation the TBR must be setup accordingly to point to ! the start of the vector table before any functions with this ! attribute are invoked. Usually a good place to do the ! initialization is the startup routine. The TBR relative vector ! table can have at max 256 function entries. The jumps to these ! functions are generated using a SH2A specific, non delayed branch ! instruction JSR/N @(disp8,TBR). You must use GAS and GLD from GNU ! binutils version 2.7 or later for this attribute to work correctly. Please refer the example of M16C target, to see the use of this attribute while declaring a function, --- 22315,22441 ---- my_printf (void *my_object, const char *my_format, ...) __attribute__ ((format (printf, 2, 3))); ! causes the compiler to check the arguments in calls to 'my_printf' ! for consistency with the 'printf' style format string argument ! 'my_format'. The parameter ARCHETYPE determines how the format string is ! interpreted, and should be 'printf', 'scanf', 'strftime', ! 'gnu_printf', 'gnu_scanf', 'gnu_strftime' or 'strfmon'. (You can ! also use '__printf__', '__scanf__', '__strftime__' or ! '__strfmon__'.) On MinGW targets, 'ms_printf', 'ms_scanf', and ! 'ms_strftime' are also present. ARCHETYPE values such as 'printf' refer to the formats accepted by the system's C runtime library, ! while values prefixed with 'gnu_' always refer to the formats accepted by the GNU C Library. On Microsoft Windows targets, ! values prefixed with 'ms_' refer to the formats accepted by the ! 'msvcrt.dll' library. The parameter STRING-INDEX specifies which argument is the format string argument (starting from 1), while ! FIRST-TO-CHECK is the number of the first argument to check against ! the format string. For functions where the arguments are not ! available to be checked (such as 'vprintf'), specify the third parameter as zero. In this case the compiler only checks the ! format string for consistency. For 'strftime' formats, the third parameter is required to be zero. Since non-static C++ methods ! have an implicit 'this' argument, the arguments of such methods should be counted from two, not one, when giving values for STRING-INDEX and FIRST-TO-CHECK. ! In the example above, the format string ('my_format') is the second ! argument of the function 'my_print', and the arguments to check start with the third argument, so the correct parameters for the format attribute are 2 and 3. ! The 'format' attribute allows you to identify your own functions that take format strings as arguments, so that GCC can check the calls to these functions for errors. The compiler always (unless ! '-ffreestanding' or '-fno-builtin' is used) checks formats for the ! standard library functions 'printf', 'fprintf', 'sprintf', 'scanf', ! 'fscanf', 'sscanf', 'strftime', 'vprintf', 'vfprintf' and ! 'vsprintf' whenever such warnings are requested (using '-Wformat'), ! so there is no need to modify the header file 'stdio.h'. In C99 ! mode, the functions 'snprintf', 'vsnprintf', 'vscanf', 'vfscanf' ! and 'vsscanf' are also checked. Except in strictly conforming C ! standard modes, the X/Open function 'strfmon' is also checked as ! are 'printf_unlocked' and 'fprintf_unlocked'. *Note Options ! Controlling C Dialect: C Dialect Options. ! For Objective-C dialects, 'NSString' (or '__NSString__') is recognized in the same context. Declarations including these ! format attributes are parsed for correct syntax, however the result ! of checking of such format strings is not yet defined, and is not ! carried out by this version of the compiler. The target may also provide additional types of format checks. *Note Format Checks Specific to Particular Target Machines: Target Format Checks. ! 'format_arg (STRING-INDEX)' ! The 'format_arg' attribute specifies that a function takes a format ! string for a 'printf', 'scanf', 'strftime' or 'strfmon' style ! function and modifies it (for example, to translate it into another ! language), so the result can be passed to a 'printf', 'scanf', ! 'strftime' or 'strfmon' style function (with the remaining ! arguments to the format function the same as they would have been ! for the unmodified string). For example, the declaration: extern char * my_dgettext (char *my_domain, const char *my_format) __attribute__ ((format_arg (2))); ! causes the compiler to check the arguments in calls to a 'printf', ! 'scanf', 'strftime' or 'strfmon' type function, whose format string ! argument is a call to the 'my_dgettext' function, for consistency ! with the format string argument 'my_format'. If the 'format_arg' ! attribute had not been specified, all the compiler could tell in ! such calls to format functions would be that the format string ! argument is not constant; this would generate a warning when ! '-Wformat-nonliteral' is used, but the calls could not be checked ! without the attribute. The parameter STRING-INDEX specifies which argument is the format string argument (starting from one). Since non-static C++ methods ! have an implicit 'this' argument, the arguments of such methods should be counted from two. ! The 'format_arg' attribute allows you to identify your own functions that modify format strings, so that GCC can check the ! calls to 'printf', 'scanf', 'strftime' or 'strfmon' type function whose operands are a call to one of your own function. The ! compiler always treats 'gettext', 'dgettext', and 'dcgettext' in this manner except when strict ISO C support is requested by ! '-ansi' or an appropriate '-std' option, or '-ffreestanding' or ! '-fno-builtin' is used. *Note Options Controlling C Dialect: C Dialect Options. ! For Objective-C dialects, the 'format-arg' attribute may refer to ! an 'NSString' reference for compatibility with the 'format' attribute above. ! The target may also allow additional types in 'format-arg' attributes. *Note Format Checks Specific to Particular Target Machines: Target Format Checks. ! 'function_vector' ! Use this attribute on the H8/300, H8/300H, and H8S to indicate that ! the specified function should be called through the function vector. Calling a function through the function vector reduces ! code size, however; the function vector has a limited size (maximum ! 128 entries on the H8/300 and 64 entries on the H8/300H and H8S) ! and shares space with the interrupt vector. On SH2A targets, this attribute declares a function to be called using the TBR relative addressing mode. The argument to this attribute is the entry number of the same function in a vector table containing all the TBR relative addressable functions. For ! correct operation the TBR must be setup accordingly to point to the ! start of the vector table before any functions with this attribute ! are invoked. Usually a good place to do the initialization is the ! startup routine. The TBR relative vector table can have at max 256 ! function entries. The jumps to these functions are generated using ! a SH2A specific, non delayed branch instruction JSR/N @(disp8,TBR). ! You must use GAS and GLD from GNU binutils version 2.7 or later for ! this attribute to work correctly. Please refer the example of M16C target, to see the use of this attribute while declaring a function, *************** attributes. *** 22612,22624 **** being made to the same function, it saves 2 bytes of code per each of these calls. ! On M16C/M32C targets, the `function_vector' attribute declares a ! special page subroutine call function. Use of this attribute reduces the code size by 2 bytes for each call generated to the ! subroutine. The argument to the attribute is the vector number entry from the special page vector table which contains the 16 ! low-order bits of the subroutine's entry address. Each vector ! table has special page number (18 to 255) that is used in `jsrs' instructions. Jump addresses of the routines are generated by adding 0x0F0000 (in case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2-byte addresses set in the vector table. --- 22445,22457 ---- being made to the same function, it saves 2 bytes of code per each of these calls. ! On M16C/M32C targets, the 'function_vector' attribute declares a ! special page subroutine call function. Use of this attribute reduces the code size by 2 bytes for each call generated to the ! subroutine. The argument to the attribute is the vector number entry from the special page vector table which contains the 16 ! low-order bits of the subroutine's entry address. Each vector ! table has special page number (18 to 255) that is used in 'jsrs' instructions. Jump addresses of the routines are generated by adding 0x0F0000 (in case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2-byte addresses set in the vector table. *************** attributes. *** 22627,22633 **** 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF (for M32C). In the following example 2 bytes are saved for each call to ! function `foo'. void foo (void) __attribute__((function_vector(0x18))); void foo (void) --- 22460,22466 ---- 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF (for M32C). In the following example 2 bytes are saved for each call to ! function 'foo'. void foo (void) __attribute__((function_vector(0x18))); void foo (void) *************** attributes. *** 22644,22662 **** This attribute is ignored for R8C target. ! `ifunc ("RESOLVER")' ! The `ifunc' attribute is used to mark a function as an indirect function using the STT_GNU_IFUNC symbol type extension to the ELF standard. This allows the resolution of the symbol value to be determined dynamically at load time, and an optimized version of the routine can be selected for the particular processor or other system characteristics determined then. To use this attribute, ! first define the implementation functions available, and a ! resolver function that returns a pointer to the selected ! implementation function. The implementation functions' ! declarations must match the API of the function being implemented, ! the resolver's declaration is be a function returning pointer to ! void function returning void: void *my_memcpy (void *dst, const void *src, size_t len) { --- 22477,22495 ---- This attribute is ignored for R8C target. ! 'ifunc ("RESOLVER")' ! The 'ifunc' attribute is used to mark a function as an indirect function using the STT_GNU_IFUNC symbol type extension to the ELF standard. This allows the resolution of the symbol value to be determined dynamically at load time, and an optimized version of the routine can be selected for the particular processor or other system characteristics determined then. To use this attribute, ! first define the implementation functions available, and a resolver ! function that returns a pointer to the selected implementation ! function. The implementation functions' declarations must match ! the API of the function being implemented, the resolver's ! declaration is be a function returning pointer to void function ! returning void: void *my_memcpy (void *dst, const void *src, size_t len) { *************** attributes. *** 22684,22708 **** (at least version 2.20.1), and GNU C library (at least version 2.11.1). ! `interrupt' Use this attribute on the ARM, AVR, CR16, Epiphany, M32C, M32R/D, m68k, MeP, MIPS, RL78, RX and Xstormy16 ports to indicate that the ! specified function is an interrupt handler. The compiler ! generates function entry and exit sequences suitable for use in an ! interrupt handler when this attribute is present. With Epiphany ! targets it may also generate a special section with code to ! initialize the interrupt vector table. Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze, and SH processors can be specified via the ! `interrupt_handler' attribute. Note, on the AVR, the hardware globally disables interrupts when an interrupt is executed. The first instruction of an interrupt ! handler declared with this attribute is a `SEI' instruction to ! re-enable interrupts. See also the `signal' function attribute ! that does not insert a `SEI' instruction. If both `signal' and ! `interrupt' are specified for the same function, `signal' is silently ignored. Note, for the ARM, you can specify the kind of interrupt to be --- 22517,22541 ---- (at least version 2.20.1), and GNU C library (at least version 2.11.1). ! 'interrupt' Use this attribute on the ARM, AVR, CR16, Epiphany, M32C, M32R/D, m68k, MeP, MIPS, RL78, RX and Xstormy16 ports to indicate that the ! specified function is an interrupt handler. The compiler generates ! function entry and exit sequences suitable for use in an interrupt ! handler when this attribute is present. With Epiphany targets it ! may also generate a special section with code to initialize the ! interrupt vector table. Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze, and SH processors can be specified via the ! 'interrupt_handler' attribute. Note, on the AVR, the hardware globally disables interrupts when an interrupt is executed. The first instruction of an interrupt ! handler declared with this attribute is a 'SEI' instruction to ! re-enable interrupts. See also the 'signal' function attribute ! that does not insert a 'SEI' instruction. If both 'signal' and ! 'interrupt' are specified for the same function, 'signal' is silently ignored. Note, for the ARM, you can specify the kind of interrupt to be *************** attributes. *** 22711,22718 **** void f () __attribute__ ((interrupt ("IRQ"))); ! Permissible values for this parameter are: `IRQ', `FIQ', `SWI', ! `ABORT' and `UNDEF'. On ARMv7-M the interrupt type is ignored, and the attribute means the function may be called with a word-aligned stack pointer. --- 22544,22551 ---- void f () __attribute__ ((interrupt ("IRQ"))); ! Permissible values for this parameter are: 'IRQ', 'FIQ', 'SWI', ! 'ABORT' and 'UNDEF'. On ARMv7-M the interrupt type is ignored, and the attribute means the function may be called with a word-aligned stack pointer. *************** attributes. *** 22722,22745 **** void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler (); ! Permissible values for these parameters are: `reset', ! `software_exception', `page_miss', `timer0', `timer1', `message', ! `dma0', `dma1', `wand' and `swi'. Multiple parameters indicate that multiple entries in the interrupt vector table should be ! initialized for this function, i.e. for each parameter NAME, a ! jump to the function is emitted in the section ivt_entry_NAME. ! The parameter(s) may be omitted entirely, in which case no ! interrupt vector table entry is provided. Note, on Epiphany targets, interrupts are enabled inside the ! function unless the `disinterrupt' attribute is also specified. On Epiphany targets, you can also use the following attribute to modify the behavior of an interrupt handler: ! `forwarder_section' The interrupt handler may be in external memory which cannot ! be reached by a branch instruction, so generate a local ! memory trampoline to transfer control. The single parameter identifies the section where the trampoline is placed. The following examples are all valid uses of these attributes on --- 22555,22578 ---- void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler (); ! Permissible values for these parameters are: 'reset', ! 'software_exception', 'page_miss', 'timer0', 'timer1', 'message', ! 'dma0', 'dma1', 'wand' and 'swi'. Multiple parameters indicate that multiple entries in the interrupt vector table should be ! initialized for this function, i.e. for each parameter NAME, a jump ! to the function is emitted in the section ivt_entry_NAME. The ! parameter(s) may be omitted entirely, in which case no interrupt ! vector table entry is provided. Note, on Epiphany targets, interrupts are enabled inside the ! function unless the 'disinterrupt' attribute is also specified. On Epiphany targets, you can also use the following attribute to modify the behavior of an interrupt handler: ! 'forwarder_section' The interrupt handler may be in external memory which cannot ! be reached by a branch instruction, so generate a local memory ! trampoline to transfer control. The single parameter identifies the section where the trampoline is placed. The following examples are all valid uses of these attributes on *************** attributes. *** 22752,22771 **** void __attribute__ ((interrupt ("dma0, dma1"), forwarder_section ("tramp"))) external_dma_handler (); ! On MIPS targets, you can use the following attributes to modify ! the behavior of an interrupt handler: ! `use_shadow_register_set' Assume that the handler uses a shadow register set, instead of the main general-purpose registers. ! `keep_interrupts_masked' Keep interrupts masked for the whole function. Without this ! attribute, GCC tries to reenable interrupts for as much of ! the function as it can. ! `use_debug_exception_return' ! Return using the `deret' instruction. Interrupt handlers ! that don't have this attribute return using `eret' instead. You can use any combination of these attributes, as shown below: void __attribute__ ((interrupt)) v0 (); --- 22585,22604 ---- void __attribute__ ((interrupt ("dma0, dma1"), forwarder_section ("tramp"))) external_dma_handler (); ! On MIPS targets, you can use the following attributes to modify the ! behavior of an interrupt handler: ! 'use_shadow_register_set' Assume that the handler uses a shadow register set, instead of the main general-purpose registers. ! 'keep_interrupts_masked' Keep interrupts masked for the whole function. Without this ! attribute, GCC tries to reenable interrupts for as much of the ! function as it can. ! 'use_debug_exception_return' ! Return using the 'deret' instruction. Interrupt handlers that ! don't have this attribute return using 'eret' instead. You can use any combination of these attributes, as shown below: void __attribute__ ((interrupt)) v0 (); *************** attributes. *** 22782,23014 **** keep_interrupts_masked, use_debug_exception_return)) v7 (); ! On RL78, use `brk_interrupt' instead of `interrupt' for handlers ! intended to be used with the `BRK' opcode (i.e. those that must ! end with `RETB' instead of `RETI'). ! `interrupt_handler' ! Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, ! and SH to indicate that the specified function is an interrupt ! handler. The compiler generates function entry and exit sequences ! suitable for use in an interrupt handler when this attribute is ! present. ! `interrupt_thread' Use this attribute on fido, a subarchitecture of the m68k, to indicate that the specified function is an interrupt handler that is designed to run as a thread. The compiler omits generate prologue/epilogue sequences and replaces the return instruction ! with a `sleep' instruction. This attribute is available only on fido. ! `isr' Use this attribute on ARM to write Interrupt Service Routines. ! This is an alias to the `interrupt' attribute above. ! `kspisusp' ! When used together with `interrupt_handler', `exception_handler' ! or `nmi_handler', code is generated to load the stack pointer from ! the USP register in the function prologue. ! `l1_text' This attribute specifies a function to be placed into L1 ! Instruction SRAM. The function is put into a specific section ! named `.l1.text'. With `-mfdpic', function calls with a such function as the callee or caller uses inlined PLT. ! `l2' On the Blackfin, this attribute specifies a function to be placed into L2 SRAM. The function is put into a specific section named ! `.l1.text'. With `-mfdpic', callers of such functions use an inlined PLT. ! `leaf' Calls to external functions with this attribute must return to the current compilation unit only by return or by exception handling. In particular, leaf functions are not allowed to call callback ! function passed to it from the current compilation unit or ! directly call functions exported by the unit or longjmp into the ! unit. Leaf function might still call functions from other ! compilation units and thus they are not necessarily leaf in the ! sense that they contain no function calls at all. ! The attribute is intended for library functions to improve ! dataflow analysis. The compiler takes the hint that any data not ! escaping the current compilation unit can not be used or modified ! by the leaf function. For example, the `sin' function is a leaf ! function, but `qsort' is not. Note that leaf functions might invoke signals and signal handlers might be defined in the current compilation unit and use static variables. The only compliant way to write such a signal handler ! is to declare such variables `volatile'. ! The attribute has no effect on functions defined within the ! current compilation unit. This is to allow easy merging of ! multiple compilation units into one, for example, by using the ! link-time optimization. For this reason the attribute is not ! allowed on types to annotate indirect calls. ! `long_call/short_call' ! This attribute specifies how a particular function is called on ! ARM and Epiphany. Both attributes override the `-mlong-calls' ! (*note ARM Options::) command-line switch and `#pragma long_calls' ! settings. The `long_call' attribute indicates that the function might be far away from the call site and require a different (more ! expensive) calling sequence. The `short_call' attribute always ! places the offset to the function from the call site into the `BL' instruction directly. ! `longcall/shortcall' ! On the Blackfin, RS/6000 and PowerPC, the `longcall' attribute indicates that the function might be far away from the call site and require a different (more expensive) calling sequence. The ! `shortcall' attribute indicates that the function is always close enough for the shorter calling sequence to be used. These ! attributes override both the `-mlongcall' switch and, on the ! RS/6000 and PowerPC, the `#pragma longcall' setting. *Note RS/6000 and PowerPC Options::, for more information on whether long calls are necessary. ! `long_call/near/far' These attributes specify how a particular function is called on ! MIPS. The attributes override the `-mlong-calls' (*note MIPS ! Options::) command-line switch. The `long_call' and `far' attributes are synonyms, and cause the compiler to always call the function by first loading its address into a register, and then ! using the contents of that register. The `near' attribute has the opposite effect; it specifies that non-PIC calls should be made ! using the more efficient `jal' instruction. ! `malloc' ! The `malloc' attribute is used to tell the compiler that a function ! may be treated as if any non-`NULL' pointer it returns cannot ! alias any other pointer valid when the function returns and that ! the memory has undefined content. This often improves ! optimization. Standard functions with this property include ! `malloc' and `calloc'. `realloc'-like functions do not have this ! property as the memory pointed to does not have undefined content. ! `mips16/nomips16' ! On MIPS targets, you can use the `mips16' and `nomips16' function ! attributes to locally select or turn off MIPS16 code generation. ! A function with the `mips16' attribute is emitted as MIPS16 code, while MIPS16 code generation is disabled for functions with the ! `nomips16' attribute. These attributes override the `-mips16' and ! `-mno-mips16' options on the command line (*note MIPS Options::). When compiling files containing mixed MIPS16 and non-MIPS16 code, ! the preprocessor symbol `__mips16' reflects the setting on the command line, not that within individual functions. Mixed MIPS16 and non-MIPS16 code may interact badly with some GCC extensions ! such as `__builtin_apply' (*note Constructing Calls::). - `model (MODEL-NAME)' On the M32R/D, use this attribute to set the addressability of an object, and of the code generated for a function. The identifier ! MODEL-NAME is one of `small', `medium', or `large', representing each of the code models. Small model objects live in the lower 16MB of memory (so that their ! addresses can be loaded with the `ld24' instruction), and are ! callable with the `bl' instruction. Medium model objects may live anywhere in the 32-bit address space ! (the compiler generates `seth/add3' instructions to load their ! addresses), and are callable with the `bl' instruction. Large model objects may live anywhere in the 32-bit address space ! (the compiler generates `seth/add3' instructions to load their ! addresses), and may not be reachable with the `bl' instruction ! (the compiler generates the much slower `seth/add3/jl' instruction sequence). On IA-64, use this attribute to set the addressability of an object. At present, the only supported identifier for MODEL-NAME ! is `small', indicating addressability via "small" (22-bit) ! addresses (so that their addresses can be loaded with the `addl' instruction). Caveat: such addressing is by definition not position independent and hence this attribute must not be used for objects defined by shared libraries. ! `ms_abi/sysv_abi' On 32-bit and 64-bit (i?86|x86_64)-*-* targets, you can use an ABI ! attribute to indicate which calling convention should be used for ! a function. The `ms_abi' attribute tells the compiler to use the ! Microsoft ABI, while the `sysv_abi' attribute tells the compiler ! to use the ABI used on GNU/Linux and other systems. The default ! is to use the Microsoft ABI when targeting Windows. On all other systems, the default is the x86/AMD ABI. ! Note, the `ms_abi' attribute for Microsoft Windows 64-bit targets ! currently requires the `-maccumulate-outgoing-args' option. - `callee_pop_aggregate_return (NUMBER)' On 32-bit i?86-*-* targets, you can use this attribute to control how aggregates are returned in memory. If the caller is responsible for popping the hidden pointer together with the rest of the arguments, specify NUMBER equal to zero. If callee is ! responsible for popping the hidden pointer, specify NUMBER equal ! to one. The default i386 ABI assumes that the callee pops the stack for hidden pointer. However, on 32-bit i386 Microsoft Windows targets, the compiler assumes that the caller pops the stack for hidden pointer. ! `ms_hook_prologue' ! On 32-bit i[34567]86-*-* targets and 64-bit x86_64-*-* targets, ! you can use this function attribute to make GCC generate the "hot-patching" function prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2 and newer. ! `naked' Use this attribute on the ARM, AVR, MCORE, RX and SPU ports to indicate that the specified function does not need ! prologue/epilogue sequences generated by the compiler. It is up ! to the programmer to provide these sequences. The only statements ! that can be safely included in naked functions are `asm' ! statements that do not have operands. All other statements, ! including declarations of local variables, `if' statements, and so ! forth, should be avoided. Naked functions should be used to ! implement the body of an assembly function, while allowing the ! compiler to construct the requisite function declaration for the ! assembler. ! `near' ! On 68HC11 and 68HC12 the `near' attribute causes the compiler to ! use the normal calling convention based on `jsr' and `rts'. This ! attribute can be used to cancel the effect of the `-mlong-calls' option. On MeP targets this attribute causes the compiler to assume the called function is close enough to use the normal calling ! convention, overriding the `-mtf' command-line option. ! `nesting' ! Use this attribute together with `interrupt_handler', ! `exception_handler' or `nmi_handler' to indicate that the function entry code should enable nested interrupts or exceptions. ! `nmi_handler' Use this attribute on the Blackfin to indicate that the specified function is an NMI handler. The compiler generates function entry and exit sequences suitable for use in an NMI handler when this attribute is present. ! `no_instrument_function' ! If `-finstrument-functions' is given, profiling function calls are generated at entry and exit of most user-compiled functions. Functions with this attribute are not so instrumented. ! `no_split_stack' ! If `-fsplit-stack' is given, functions have a small prologue which decides whether to split the stack. Functions with the ! `no_split_stack' attribute do not have that prologue, and thus may run with only a small amount of stack space available. ! `noinline' This function attribute prevents a function from being considered for inlining. If the function does not have side-effects, there are optimizations other than inlining that cause function calls to --- 22615,22850 ---- keep_interrupts_masked, use_debug_exception_return)) v7 (); ! On RL78, use 'brk_interrupt' instead of 'interrupt' for handlers ! intended to be used with the 'BRK' opcode (i.e. those that must end ! with 'RETB' instead of 'RETI'). ! 'interrupt_handler' ! Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and ! SH to indicate that the specified function is an interrupt handler. ! The compiler generates function entry and exit sequences suitable ! for use in an interrupt handler when this attribute is present. ! 'interrupt_thread' Use this attribute on fido, a subarchitecture of the m68k, to indicate that the specified function is an interrupt handler that is designed to run as a thread. The compiler omits generate prologue/epilogue sequences and replaces the return instruction ! with a 'sleep' instruction. This attribute is available only on fido. ! 'isr' Use this attribute on ARM to write Interrupt Service Routines. ! This is an alias to the 'interrupt' attribute above. ! 'kspisusp' ! When used together with 'interrupt_handler', 'exception_handler' or ! 'nmi_handler', code is generated to load the stack pointer from the ! USP register in the function prologue. ! 'l1_text' This attribute specifies a function to be placed into L1 ! Instruction SRAM. The function is put into a specific section ! named '.l1.text'. With '-mfdpic', function calls with a such function as the callee or caller uses inlined PLT. ! 'l2' On the Blackfin, this attribute specifies a function to be placed into L2 SRAM. The function is put into a specific section named ! '.l1.text'. With '-mfdpic', callers of such functions use an inlined PLT. ! 'leaf' Calls to external functions with this attribute must return to the current compilation unit only by return or by exception handling. In particular, leaf functions are not allowed to call callback ! function passed to it from the current compilation unit or directly ! call functions exported by the unit or longjmp into the unit. Leaf ! function might still call functions from other compilation units ! and thus they are not necessarily leaf in the sense that they ! contain no function calls at all. ! The attribute is intended for library functions to improve dataflow ! analysis. The compiler takes the hint that any data not escaping ! the current compilation unit can not be used or modified by the ! leaf function. For example, the 'sin' function is a leaf function, ! but 'qsort' is not. Note that leaf functions might invoke signals and signal handlers might be defined in the current compilation unit and use static variables. The only compliant way to write such a signal handler ! is to declare such variables 'volatile'. ! The attribute has no effect on functions defined within the current ! compilation unit. This is to allow easy merging of multiple ! compilation units into one, for example, by using the link-time ! optimization. For this reason the attribute is not allowed on ! types to annotate indirect calls. ! 'long_call/short_call' ! This attribute specifies how a particular function is called on ARM ! and Epiphany. Both attributes override the '-mlong-calls' (*note ! ARM Options::) command-line switch and '#pragma long_calls' ! settings. The 'long_call' attribute indicates that the function might be far away from the call site and require a different (more ! expensive) calling sequence. The 'short_call' attribute always ! places the offset to the function from the call site into the 'BL' instruction directly. ! 'longcall/shortcall' ! On the Blackfin, RS/6000 and PowerPC, the 'longcall' attribute indicates that the function might be far away from the call site and require a different (more expensive) calling sequence. The ! 'shortcall' attribute indicates that the function is always close enough for the shorter calling sequence to be used. These ! attributes override both the '-mlongcall' switch and, on the ! RS/6000 and PowerPC, the '#pragma longcall' setting. *Note RS/6000 and PowerPC Options::, for more information on whether long calls are necessary. ! 'long_call/near/far' These attributes specify how a particular function is called on ! MIPS. The attributes override the '-mlong-calls' (*note MIPS ! Options::) command-line switch. The 'long_call' and 'far' attributes are synonyms, and cause the compiler to always call the function by first loading its address into a register, and then ! using the contents of that register. The 'near' attribute has the opposite effect; it specifies that non-PIC calls should be made ! using the more efficient 'jal' instruction. ! 'malloc' ! The 'malloc' attribute is used to tell the compiler that a function ! may be treated as if any non-'NULL' pointer it returns cannot alias ! any other pointer valid when the function returns and that the ! memory has undefined content. This often improves optimization. ! Standard functions with this property include 'malloc' and ! 'calloc'. 'realloc'-like functions do not have this property as ! the memory pointed to does not have undefined content. ! 'mips16/nomips16' ! ! On MIPS targets, you can use the 'mips16' and 'nomips16' function ! attributes to locally select or turn off MIPS16 code generation. A ! function with the 'mips16' attribute is emitted as MIPS16 code, while MIPS16 code generation is disabled for functions with the ! 'nomips16' attribute. These attributes override the '-mips16' and ! '-mno-mips16' options on the command line (*note MIPS Options::). When compiling files containing mixed MIPS16 and non-MIPS16 code, ! the preprocessor symbol '__mips16' reflects the setting on the command line, not that within individual functions. Mixed MIPS16 and non-MIPS16 code may interact badly with some GCC extensions ! such as '__builtin_apply' (*note Constructing Calls::). ! ! 'model (MODEL-NAME)' On the M32R/D, use this attribute to set the addressability of an object, and of the code generated for a function. The identifier ! MODEL-NAME is one of 'small', 'medium', or 'large', representing each of the code models. Small model objects live in the lower 16MB of memory (so that their ! addresses can be loaded with the 'ld24' instruction), and are ! callable with the 'bl' instruction. Medium model objects may live anywhere in the 32-bit address space ! (the compiler generates 'seth/add3' instructions to load their ! addresses), and are callable with the 'bl' instruction. Large model objects may live anywhere in the 32-bit address space ! (the compiler generates 'seth/add3' instructions to load their ! addresses), and may not be reachable with the 'bl' instruction (the ! compiler generates the much slower 'seth/add3/jl' instruction sequence). On IA-64, use this attribute to set the addressability of an object. At present, the only supported identifier for MODEL-NAME ! is 'small', indicating addressability via "small" (22-bit) ! addresses (so that their addresses can be loaded with the 'addl' instruction). Caveat: such addressing is by definition not position independent and hence this attribute must not be used for objects defined by shared libraries. ! 'ms_abi/sysv_abi' ! On 32-bit and 64-bit (i?86|x86_64)-*-* targets, you can use an ABI ! attribute to indicate which calling convention should be used for a ! function. The 'ms_abi' attribute tells the compiler to use the ! Microsoft ABI, while the 'sysv_abi' attribute tells the compiler to ! use the ABI used on GNU/Linux and other systems. The default is to ! use the Microsoft ABI when targeting Windows. On all other systems, the default is the x86/AMD ABI. ! Note, the 'ms_abi' attribute for Microsoft Windows 64-bit targets ! currently requires the '-maccumulate-outgoing-args' option. ! ! 'callee_pop_aggregate_return (NUMBER)' On 32-bit i?86-*-* targets, you can use this attribute to control how aggregates are returned in memory. If the caller is responsible for popping the hidden pointer together with the rest of the arguments, specify NUMBER equal to zero. If callee is ! responsible for popping the hidden pointer, specify NUMBER equal to ! one. The default i386 ABI assumes that the callee pops the stack for hidden pointer. However, on 32-bit i386 Microsoft Windows targets, the compiler assumes that the caller pops the stack for hidden pointer. ! 'ms_hook_prologue' ! ! On 32-bit i[34567]86-*-* targets and 64-bit x86_64-*-* targets, you ! can use this function attribute to make GCC generate the "hot-patching" function prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2 and newer. ! 'naked' Use this attribute on the ARM, AVR, MCORE, RX and SPU ports to indicate that the specified function does not need ! prologue/epilogue sequences generated by the compiler. It is up to ! the programmer to provide these sequences. The only statements ! that can be safely included in naked functions are 'asm' statements ! that do not have operands. All other statements, including ! declarations of local variables, 'if' statements, and so forth, ! should be avoided. Naked functions should be used to implement the ! body of an assembly function, while allowing the compiler to ! construct the requisite function declaration for the assembler. ! 'near' ! On 68HC11 and 68HC12 the 'near' attribute causes the compiler to ! use the normal calling convention based on 'jsr' and 'rts'. This ! attribute can be used to cancel the effect of the '-mlong-calls' option. On MeP targets this attribute causes the compiler to assume the called function is close enough to use the normal calling ! convention, overriding the '-mtf' command-line option. ! 'nesting' ! Use this attribute together with 'interrupt_handler', ! 'exception_handler' or 'nmi_handler' to indicate that the function entry code should enable nested interrupts or exceptions. ! 'nmi_handler' Use this attribute on the Blackfin to indicate that the specified function is an NMI handler. The compiler generates function entry and exit sequences suitable for use in an NMI handler when this attribute is present. ! 'no_instrument_function' ! If '-finstrument-functions' is given, profiling function calls are generated at entry and exit of most user-compiled functions. Functions with this attribute are not so instrumented. ! 'no_split_stack' ! If '-fsplit-stack' is given, functions have a small prologue which decides whether to split the stack. Functions with the ! 'no_split_stack' attribute do not have that prologue, and thus may run with only a small amount of stack space available. ! 'noinline' This function attribute prevents a function from being considered for inlining. If the function does not have side-effects, there are optimizations other than inlining that cause function calls to *************** attributes. *** 23019,23047 **** (*note Extended Asm::) in the called function, to serve as a special side-effect. ! `noclone' This function attribute prevents a function from being considered for cloning--a mechanism that produces specialized copies of functions and which is (currently) performed by interprocedural constant propagation. ! `nonnull (ARG-INDEX, ...)' ! The `nonnull' attribute specifies that some function parameters should be non-null pointers. For instance, the declaration: extern void * my_memcpy (void *dest, const void *src, size_t len) __attribute__((nonnull (1, 2))); ! causes the compiler to check that, in calls to `my_memcpy', arguments DEST and SRC are non-null. If the compiler determines that a null pointer is passed in an argument slot marked as ! non-null, and the `-Wnonnull' option is enabled, a warning is issued. The compiler may also choose to make optimizations based on the knowledge that certain function arguments will never be null. ! If no argument index list is given to the `nonnull' attribute, all pointer arguments are marked as non-null. To illustrate, the following declaration is equivalent to the previous example: --- 22855,22883 ---- (*note Extended Asm::) in the called function, to serve as a special side-effect. ! 'noclone' This function attribute prevents a function from being considered for cloning--a mechanism that produces specialized copies of functions and which is (currently) performed by interprocedural constant propagation. ! 'nonnull (ARG-INDEX, ...)' ! The 'nonnull' attribute specifies that some function parameters should be non-null pointers. For instance, the declaration: extern void * my_memcpy (void *dest, const void *src, size_t len) __attribute__((nonnull (1, 2))); ! causes the compiler to check that, in calls to 'my_memcpy', arguments DEST and SRC are non-null. If the compiler determines that a null pointer is passed in an argument slot marked as ! non-null, and the '-Wnonnull' option is enabled, a warning is issued. The compiler may also choose to make optimizations based on the knowledge that certain function arguments will never be null. ! If no argument index list is given to the 'nonnull' attribute, all pointer arguments are marked as non-null. To illustrate, the following declaration is equivalent to the previous example: *************** attributes. *** 23049,23059 **** my_memcpy (void *dest, const void *src, size_t len) __attribute__((nonnull)); ! `noreturn' ! A few standard library functions, such as `abort' and `exit', cannot return. GCC knows this automatically. Some programs define their own functions that never return. You can declare them ! `noreturn' to tell the compiler this fact. For example, void fatal () __attribute__ ((noreturn)); --- 22885,22895 ---- my_memcpy (void *dest, const void *src, size_t len) __attribute__((nonnull)); ! 'noreturn' ! A few standard library functions, such as 'abort' and 'exit', cannot return. GCC knows this automatically. Some programs define their own functions that never return. You can declare them ! 'noreturn' to tell the compiler this fact. For example, void fatal () __attribute__ ((noreturn)); *************** attributes. *** 23064,23089 **** exit (1); } ! The `noreturn' keyword tells the compiler to assume that `fatal' cannot return. It can then optimize without regard to what would ! happen if `fatal' ever did return. This makes slightly better code. More importantly, it helps avoid spurious warnings of uninitialized variables. ! The `noreturn' keyword does not affect the exceptional path when ! that applies: a `noreturn'-marked function may still return to the ! caller by throwing an exception or calling `longjmp'. Do not assume that registers saved by the calling function are ! restored before calling the `noreturn' function. ! It does not make sense for a `noreturn' function to have a return ! type other than `void'. ! The attribute `noreturn' is not implemented in GCC versions ! earlier than 2.5. An alternative way to declare that a function ! does not return, which works in the current version and in some ! older versions, is as follows: typedef void voidfn (); --- 22900,22925 ---- exit (1); } ! The 'noreturn' keyword tells the compiler to assume that 'fatal' cannot return. It can then optimize without regard to what would ! happen if 'fatal' ever did return. This makes slightly better code. More importantly, it helps avoid spurious warnings of uninitialized variables. ! The 'noreturn' keyword does not affect the exceptional path when ! that applies: a 'noreturn'-marked function may still return to the ! caller by throwing an exception or calling 'longjmp'. Do not assume that registers saved by the calling function are ! restored before calling the 'noreturn' function. ! It does not make sense for a 'noreturn' function to have a return ! type other than 'void'. ! The attribute 'noreturn' is not implemented in GCC versions earlier ! than 2.5. An alternative way to declare that a function does not ! return, which works in the current version and in some older ! versions, is as follows: typedef void voidfn (); *************** attributes. *** 23091,23120 **** This approach does not work in GNU C++. ! `nothrow' ! The `nothrow' attribute is used to inform the compiler that a function cannot throw an exception. For example, most functions in the standard C library can be guaranteed not to throw an exception ! with the notable exceptions of `qsort' and `bsearch' that take ! function pointer arguments. The `nothrow' attribute is not implemented in GCC versions earlier than 3.3. ! `nosave_low_regs' Use this attribute on SH targets to indicate that an ! `interrupt_handler' function should not save and restore registers R0..R7. This can be used on SH3* and SH4* targets that have a second R0..R7 register bank for non-reentrant interrupt handlers. ! `optimize' ! The `optimize' attribute is used to specify that a function is to be compiled with different optimization options than specified on the command line. Arguments can either be numbers or strings. Numbers are assumed to be an optimization level. Strings that ! begin with `O' are assumed to be an optimization option, while ! other options are assumed to be used with a `-f' prefix. You can ! also use the `#pragma GCC optimize' pragma to set the optimization options that affect more than one function. *Note Function ! Specific Option Pragmas::, for details about the `#pragma GCC optimize' pragma. This can be used for instance to have frequently-executed functions --- 22927,22956 ---- This approach does not work in GNU C++. ! 'nothrow' ! The 'nothrow' attribute is used to inform the compiler that a function cannot throw an exception. For example, most functions in the standard C library can be guaranteed not to throw an exception ! with the notable exceptions of 'qsort' and 'bsearch' that take ! function pointer arguments. The 'nothrow' attribute is not implemented in GCC versions earlier than 3.3. ! 'nosave_low_regs' Use this attribute on SH targets to indicate that an ! 'interrupt_handler' function should not save and restore registers R0..R7. This can be used on SH3* and SH4* targets that have a second R0..R7 register bank for non-reentrant interrupt handlers. ! 'optimize' ! The 'optimize' attribute is used to specify that a function is to be compiled with different optimization options than specified on the command line. Arguments can either be numbers or strings. Numbers are assumed to be an optimization level. Strings that ! begin with 'O' are assumed to be an optimization option, while ! other options are assumed to be used with a '-f' prefix. You can ! also use the '#pragma GCC optimize' pragma to set the optimization options that affect more than one function. *Note Function ! Specific Option Pragmas::, for details about the '#pragma GCC optimize' pragma. This can be used for instance to have frequently-executed functions *************** attributes. *** 23122,23216 **** faster and larger code, while other functions can be compiled with less aggressive options. ! `OS_main/OS_task' ! On AVR, functions with the `OS_main' or `OS_task' attribute do not save/restore any call-saved register in their prologue/epilogue. ! The `OS_main' attribute can be used when there _is guarantee_ that interrupts are disabled at the time when the function is entered. This saves resources when the stack pointer has to be changed to set up a frame for local variables. ! The `OS_task' attribute can be used when there is _no guarantee_ that interrupts are disabled at that time when the function is ! entered like for, e.g. task functions in a multi-threading ! operating system. In that case, changing the stack pointer register is guarded by save/clear/restore of the global interrupt enable flag. ! The differences to the `naked' function attribute are: ! * `naked' functions do not have a return instruction whereas ! `OS_main' and `OS_task' functions have a `RET' or `RETI' return instruction. ! ! * `naked' functions do not set up a frame for local variables ! or a frame pointer whereas `OS_main' and `OS_task' do this as needed. ! `pcs' ! The `pcs' attribute can be used to control the calling convention ! used for a function on ARM. The attribute takes an argument that specifies the calling convention to use. When compiling using the AAPCS ABI (or a variant of it) then valid ! values for the argument are `"aapcs"' and `"aapcs-vfp"'. In order ! to use a variant other than `"aapcs"' then the compiler must be permitted to use the appropriate co-processor registers (i.e., the ! VFP registers must be available in order to use `"aapcs-vfp"'). For example, /* Argument passed in r0, and result returned in r0+r1. */ double f2d (float) __attribute__((pcs("aapcs"))); ! Variadic functions always use the `"aapcs"' calling convention and the compiler rejects attempts to specify an alternative. ! `pure' Many functions have no effects except the return value and their return value depends only on the parameters and/or global variables. Such a function can be subject to common subexpression elimination and loop optimization just as an arithmetic operator would be. These functions should be declared with the attribute ! `pure'. For example, int square (int) __attribute__ ((pure)); ! says that the hypothetical function `square' is safe to call fewer times than the program says. ! Some of common examples of pure functions are `strlen' or `memcmp'. ! Interesting non-pure functions are functions with infinite loops ! or those depending on volatile memory or other system resource, ! that may change between two consecutive calls (such as `feof' in a multithreading environment). ! The attribute `pure' is not implemented in GCC versions earlier than 2.96. ! `hot' ! The `hot' attribute on a function is used to inform the compiler that the function is a hot spot of the compiled program. The function is optimized more aggressively and on many target it is placed into special subsection of the text section so all hot functions appears close together improving locality. ! When profile feedback is available, via `-fprofile-use', hot functions are automatically detected and this attribute is ignored. ! The `hot' attribute on functions is not implemented in GCC versions earlier than 4.3. ! The `hot' attribute on a label is used to inform the compiler that path following the label are more likely than paths that are not so annotated. This attribute is used in cases where ! `__builtin_expect' cannot be used, for instance with computed goto ! or `asm goto'. ! The `hot' attribute on labels is not implemented in GCC versions earlier than 4.8. ! `cold' ! The `cold' attribute on functions is used to inform the compiler that the function is unlikely to be executed. The function is optimized for size rather than speed and on many targets it is placed into special subsection of the text section so all cold --- 22958,23052 ---- faster and larger code, while other functions can be compiled with less aggressive options. ! 'OS_main/OS_task' ! On AVR, functions with the 'OS_main' or 'OS_task' attribute do not save/restore any call-saved register in their prologue/epilogue. ! The 'OS_main' attribute can be used when there _is guarantee_ that interrupts are disabled at the time when the function is entered. This saves resources when the stack pointer has to be changed to set up a frame for local variables. ! The 'OS_task' attribute can be used when there is _no guarantee_ that interrupts are disabled at that time when the function is ! entered like for, e.g. task functions in a multi-threading ! operating system. In that case, changing the stack pointer register is guarded by save/clear/restore of the global interrupt enable flag. ! The differences to the 'naked' function attribute are: ! * 'naked' functions do not have a return instruction whereas ! 'OS_main' and 'OS_task' functions have a 'RET' or 'RETI' return instruction. ! * 'naked' functions do not set up a frame for local variables or ! a frame pointer whereas 'OS_main' and 'OS_task' do this as needed. ! 'pcs' ! ! The 'pcs' attribute can be used to control the calling convention ! used for a function on ARM. The attribute takes an argument that specifies the calling convention to use. When compiling using the AAPCS ABI (or a variant of it) then valid ! values for the argument are '"aapcs"' and '"aapcs-vfp"'. In order ! to use a variant other than '"aapcs"' then the compiler must be permitted to use the appropriate co-processor registers (i.e., the ! VFP registers must be available in order to use '"aapcs-vfp"'). For example, /* Argument passed in r0, and result returned in r0+r1. */ double f2d (float) __attribute__((pcs("aapcs"))); ! Variadic functions always use the '"aapcs"' calling convention and the compiler rejects attempts to specify an alternative. ! 'pure' Many functions have no effects except the return value and their return value depends only on the parameters and/or global variables. Such a function can be subject to common subexpression elimination and loop optimization just as an arithmetic operator would be. These functions should be declared with the attribute ! 'pure'. For example, int square (int) __attribute__ ((pure)); ! says that the hypothetical function 'square' is safe to call fewer times than the program says. ! Some of common examples of pure functions are 'strlen' or 'memcmp'. ! Interesting non-pure functions are functions with infinite loops or ! those depending on volatile memory or other system resource, that ! may change between two consecutive calls (such as 'feof' in a multithreading environment). ! The attribute 'pure' is not implemented in GCC versions earlier than 2.96. ! 'hot' ! The 'hot' attribute on a function is used to inform the compiler that the function is a hot spot of the compiled program. The function is optimized more aggressively and on many target it is placed into special subsection of the text section so all hot functions appears close together improving locality. ! When profile feedback is available, via '-fprofile-use', hot functions are automatically detected and this attribute is ignored. ! The 'hot' attribute on functions is not implemented in GCC versions earlier than 4.3. ! The 'hot' attribute on a label is used to inform the compiler that path following the label are more likely than paths that are not so annotated. This attribute is used in cases where ! '__builtin_expect' cannot be used, for instance with computed goto ! or 'asm goto'. ! The 'hot' attribute on labels is not implemented in GCC versions earlier than 4.8. ! 'cold' ! The 'cold' attribute on functions is used to inform the compiler that the function is unlikely to be executed. The function is optimized for size rather than speed and on many targets it is placed into special subsection of the text section so all cold *************** attributes. *** 23218,23389 **** non-cold parts of program. The paths leading to call of cold functions within code are marked as unlikely by the branch prediction mechanism. It is thus useful to mark functions used to ! handle unlikely conditions, such as `perror', as cold to improve ! optimization of hot functions that do call marked functions in ! rare occasions. ! When profile feedback is available, via `-fprofile-use', cold functions are automatically detected and this attribute is ignored. ! The `cold' attribute on functions is not implemented in GCC versions earlier than 4.3. ! The `cold' attribute on labels is used to inform the compiler that the path following the label is unlikely to be executed. This ! attribute is used in cases where `__builtin_expect' cannot be ! used, for instance with computed goto or `asm goto'. ! The `cold' attribute on labels is not implemented in GCC versions earlier than 4.8. ! `no_sanitize_address' ! `no_address_safety_analysis' ! The `no_sanitize_address' attribute on functions is used to inform the compiler that it should not instrument memory accesses in the ! function when compiling with the `-fsanitize=address' option. The ! `no_address_safety_analysis' is a deprecated alias of the ! `no_sanitize_address' attribute, new code should use ! `no_sanitize_address'. ! `regparm (NUMBER)' ! On the Intel 386, the `regparm' attribute causes the compiler to ! pass arguments number one to NUMBER if they are of integral type ! in registers EAX, EDX, and ECX instead of on the stack. Functions that take a variable number of arguments continue to be passed all of their arguments on the stack. Beware that on some ELF systems this attribute is unsuitable for global functions in shared libraries with lazy binding (which is ! the default). Lazy binding sends the first call via resolving ! code in the loader, which might assume EAX, EDX and ECX can be clobbered, as per the standard calling conventions. Solaris 8 is affected by this. Systems with the GNU C Library version 2.1 or higher and FreeBSD are believed to be safe since the loaders there ! save EAX, EDX and ECX. (Lazy binding can be disabled with the linker or the loader if desired, to avoid the problem.) ! `sseregparm' ! On the Intel 386 with SSE support, the `sseregparm' attribute ! causes the compiler to pass up to 3 floating-point arguments in ! SSE registers instead of on the stack. Functions that take a ! variable number of arguments continue to pass all of their ! floating-point arguments on the stack. ! `force_align_arg_pointer' ! On the Intel x86, the `force_align_arg_pointer' attribute may be applied to individual function definitions, generating an alternate prologue and epilogue that realigns the run-time stack if necessary. This supports mixing legacy codes that run with a 4-byte aligned stack with modern codes that keep a 16-byte stack for SSE compatibility. ! `renesas' On SH targets this attribute specifies that the function or struct follows the Renesas ABI. ! `resbank' On the SH2A target, this attribute enables the high-speed register saving and restoration using a register bank for ! `interrupt_handler' routines. Saving to the bank is performed automatically after the CPU accepts an interrupt that uses a register bank. The nineteen 32-bit registers comprising general register R0 to R14, control register GBR, and system registers MACH, MACL, and PR ! and the vector table address offset are saved into a register ! bank. Register banks are stacked in first-in last-out (FILO) ! sequence. Restoration from the bank is executed by issuing a ! RESBANK instruction. ! `returns_twice' ! The `returns_twice' attribute tells the compiler that a function may return more than one time. The compiler ensures that all registers are dead before calling such a function and emits a warning about the variables that may be clobbered after the second ! return from the function. Examples of such functions are `setjmp' ! and `vfork'. The `longjmp'-like counterpart of such function, if ! any, might need to be marked with the `noreturn' attribute. ! `saveall' Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that all registers except the stack pointer should be saved in the prologue regardless of whether they are used or not. ! `save_volatiles' Use this attribute on the MicroBlaze to indicate that the function is an interrupt handler. All volatile registers (in addition to ! non-volatile registers) are saved in the function prologue. If ! the function is a leaf function, only volatiles used by the ! function are saved. A normal function return is generated instead ! of a return from interrupt. ! `section ("SECTION-NAME")' ! Normally, the compiler places the code it generates in the `text' section. Sometimes, however, you need additional sections, or you need certain particular functions to appear in special sections. ! The `section' attribute specifies that a function lives in a particular section. For example, the declaration: extern void foobar (void) __attribute__ ((section ("bar"))); ! puts the function `foobar' in the `bar' section. Some file formats do not support arbitrary sections so the ! `section' attribute is not available on all platforms. If you ! need to map the entire contents of a module to a particular ! section, consider using the facilities of the linker instead. ! `sentinel' ! This function attribute ensures that a parameter in a function ! call is an explicit `NULL'. The attribute is only valid on ! variadic functions. By default, the sentinel is located at ! position zero, the last parameter of the function call. If an ! optional integer position argument P is supplied to the attribute, ! the sentinel must be located at position P counting backwards from ! the end of the argument list. __attribute__ ((sentinel)) is equivalent to __attribute__ ((sentinel(0))) The attribute is automatically set with a position of 0 for the ! built-in functions `execl' and `execlp'. The built-in function ! `execle' has the attribute set with a position of 1. ! A valid `NULL' in this context is defined as zero with any pointer ! type. If your system defines the `NULL' macro with an integer type ! then you need to add an explicit cast. GCC replaces `stddef.h' with a copy that redefines NULL appropriately. The warnings for missing or incorrect sentinels are enabled with ! `-Wformat'. ! `short_call' ! See `long_call/short_call'. ! `shortcall' ! See `longcall/shortcall'. ! `signal' Use this attribute on the AVR to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. ! See also the `interrupt' function attribute. The AVR hardware globally disables interrupts when an interrupt is ! executed. Interrupt handler functions defined with the `signal' attribute do not re-enable interrupts. It is save to enable ! interrupts in a `signal' handler. This "save" only applies to the code generated by the compiler and not to the IRQ layout of the application which is responsibility of the application. ! If both `signal' and `interrupt' are specified for the same ! function, `signal' is silently ignored. ! `sp_switch' ! Use this attribute on the SH to indicate an `interrupt_handler' function should switch to an alternate stack. It expects a string argument that names a global variable holding the address of the alternate stack. --- 23054,23225 ---- non-cold parts of program. The paths leading to call of cold functions within code are marked as unlikely by the branch prediction mechanism. It is thus useful to mark functions used to ! handle unlikely conditions, such as 'perror', as cold to improve ! optimization of hot functions that do call marked functions in rare ! occasions. ! When profile feedback is available, via '-fprofile-use', cold functions are automatically detected and this attribute is ignored. ! The 'cold' attribute on functions is not implemented in GCC versions earlier than 4.3. ! The 'cold' attribute on labels is used to inform the compiler that the path following the label is unlikely to be executed. This ! attribute is used in cases where '__builtin_expect' cannot be used, ! for instance with computed goto or 'asm goto'. ! The 'cold' attribute on labels is not implemented in GCC versions earlier than 4.8. ! 'no_sanitize_address' ! 'no_address_safety_analysis' ! The 'no_sanitize_address' attribute on functions is used to inform the compiler that it should not instrument memory accesses in the ! function when compiling with the '-fsanitize=address' option. The ! 'no_address_safety_analysis' is a deprecated alias of the ! 'no_sanitize_address' attribute, new code should use ! 'no_sanitize_address'. ! 'regparm (NUMBER)' ! On the Intel 386, the 'regparm' attribute causes the compiler to ! pass arguments number one to NUMBER if they are of integral type in ! registers EAX, EDX, and ECX instead of on the stack. Functions that take a variable number of arguments continue to be passed all of their arguments on the stack. Beware that on some ELF systems this attribute is unsuitable for global functions in shared libraries with lazy binding (which is ! the default). Lazy binding sends the first call via resolving code ! in the loader, which might assume EAX, EDX and ECX can be clobbered, as per the standard calling conventions. Solaris 8 is affected by this. Systems with the GNU C Library version 2.1 or higher and FreeBSD are believed to be safe since the loaders there ! save EAX, EDX and ECX. (Lazy binding can be disabled with the linker or the loader if desired, to avoid the problem.) ! 'sseregparm' ! On the Intel 386 with SSE support, the 'sseregparm' attribute ! causes the compiler to pass up to 3 floating-point arguments in SSE ! registers instead of on the stack. Functions that take a variable ! number of arguments continue to pass all of their floating-point ! arguments on the stack. ! 'force_align_arg_pointer' ! On the Intel x86, the 'force_align_arg_pointer' attribute may be applied to individual function definitions, generating an alternate prologue and epilogue that realigns the run-time stack if necessary. This supports mixing legacy codes that run with a 4-byte aligned stack with modern codes that keep a 16-byte stack for SSE compatibility. ! 'renesas' On SH targets this attribute specifies that the function or struct follows the Renesas ABI. ! 'resbank' On the SH2A target, this attribute enables the high-speed register saving and restoration using a register bank for ! 'interrupt_handler' routines. Saving to the bank is performed automatically after the CPU accepts an interrupt that uses a register bank. The nineteen 32-bit registers comprising general register R0 to R14, control register GBR, and system registers MACH, MACL, and PR ! and the vector table address offset are saved into a register bank. ! Register banks are stacked in first-in last-out (FILO) sequence. ! Restoration from the bank is executed by issuing a RESBANK ! instruction. ! 'returns_twice' ! The 'returns_twice' attribute tells the compiler that a function may return more than one time. The compiler ensures that all registers are dead before calling such a function and emits a warning about the variables that may be clobbered after the second ! return from the function. Examples of such functions are 'setjmp' ! and 'vfork'. The 'longjmp'-like counterpart of such function, if ! any, might need to be marked with the 'noreturn' attribute. ! 'saveall' Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that all registers except the stack pointer should be saved in the prologue regardless of whether they are used or not. ! 'save_volatiles' Use this attribute on the MicroBlaze to indicate that the function is an interrupt handler. All volatile registers (in addition to ! non-volatile registers) are saved in the function prologue. If the ! function is a leaf function, only volatiles used by the function ! are saved. A normal function return is generated instead of a ! return from interrupt. ! 'section ("SECTION-NAME")' ! Normally, the compiler places the code it generates in the 'text' section. Sometimes, however, you need additional sections, or you need certain particular functions to appear in special sections. ! The 'section' attribute specifies that a function lives in a particular section. For example, the declaration: extern void foobar (void) __attribute__ ((section ("bar"))); ! puts the function 'foobar' in the 'bar' section. Some file formats do not support arbitrary sections so the ! 'section' attribute is not available on all platforms. If you need ! to map the entire contents of a module to a particular section, ! consider using the facilities of the linker instead. ! 'sentinel' ! This function attribute ensures that a parameter in a function call ! is an explicit 'NULL'. The attribute is only valid on variadic ! functions. By default, the sentinel is located at position zero, ! the last parameter of the function call. If an optional integer ! position argument P is supplied to the attribute, the sentinel must ! be located at position P counting backwards from the end of the ! argument list. __attribute__ ((sentinel)) is equivalent to __attribute__ ((sentinel(0))) The attribute is automatically set with a position of 0 for the ! built-in functions 'execl' and 'execlp'. The built-in function ! 'execle' has the attribute set with a position of 1. ! A valid 'NULL' in this context is defined as zero with any pointer ! type. If your system defines the 'NULL' macro with an integer type ! then you need to add an explicit cast. GCC replaces 'stddef.h' with a copy that redefines NULL appropriately. The warnings for missing or incorrect sentinels are enabled with ! '-Wformat'. ! 'short_call' ! See 'long_call/short_call'. ! 'shortcall' ! See 'longcall/shortcall'. ! 'signal' Use this attribute on the AVR to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. ! See also the 'interrupt' function attribute. The AVR hardware globally disables interrupts when an interrupt is ! executed. Interrupt handler functions defined with the 'signal' attribute do not re-enable interrupts. It is save to enable ! interrupts in a 'signal' handler. This "save" only applies to the code generated by the compiler and not to the IRQ layout of the application which is responsibility of the application. ! If both 'signal' and 'interrupt' are specified for the same ! function, 'signal' is silently ignored. ! 'sp_switch' ! Use this attribute on the SH to indicate an 'interrupt_handler' function should switch to an alternate stack. It expects a string argument that names a global variable holding the address of the alternate stack. *************** attributes. *** 23392,23757 **** void f () __attribute__ ((interrupt_handler, sp_switch ("alt_stack"))); ! `stdcall' ! On the Intel 386, the `stdcall' attribute causes the compiler to assume that the called function pops off the stack space used to pass arguments, unless it takes a variable number of arguments. ! `syscall_linkage' This attribute is used to modify the IA-64 calling convention by marking all input registers as live at all function exits. This makes it possible to restart a system call after an interrupt without having to save/restore the input registers. This also prevents kernel data from leaking into application code. ! `target' ! The `target' attribute is used to specify that a function is to be compiled with different target options than specified on the command line. This can be used for instance to have functions compiled with a different ISA (instruction set architecture) than ! the default. You can also use the `#pragma GCC target' pragma to set more than one function to be compiled with specific target options. *Note Function Specific Option Pragmas::, for details ! about the `#pragma GCC target' pragma. For instance on a 386, you could compile one function with ! `target("sse4.1,arch=core2")' and another with ! `target("sse4a,arch=amdfam10")'. This is equivalent to compiling ! the first function with `-msse4.1' and `-march=core2' options, and ! the second function with `-msse4a' and `-march=amdfam10' options. It is up to the user to make sure that a function is only invoked on a machine that supports the particular ISA it is compiled for ! (for example by using `cpuid' on 386 to determine what feature ! bits and architecture family are used). int core2_func (void) __attribute__ ((__target__ ("arch=core2"))); int sse3_func (void) __attribute__ ((__target__ ("sse3"))); On the 386, the following options are allowed: ! `abm' ! `no-abm' Enable/disable the generation of the advanced bit instructions. ! `aes' ! `no-aes' Enable/disable the generation of the AES instructions. ! `default' *Note Function Multiversioning::, where it is used to specify the default function version. ! `mmx' ! `no-mmx' Enable/disable the generation of the MMX instructions. ! `pclmul' ! `no-pclmul' Enable/disable the generation of the PCLMUL instructions. ! `popcnt' ! `no-popcnt' Enable/disable the generation of the POPCNT instruction. ! `sse' ! `no-sse' Enable/disable the generation of the SSE instructions. ! `sse2' ! `no-sse2' Enable/disable the generation of the SSE2 instructions. ! `sse3' ! `no-sse3' Enable/disable the generation of the SSE3 instructions. ! `sse4' ! `no-sse4' Enable/disable the generation of the SSE4 instructions (both SSE4.1 and SSE4.2). ! `sse4.1' ! `no-sse4.1' Enable/disable the generation of the sse4.1 instructions. ! `sse4.2' ! `no-sse4.2' Enable/disable the generation of the sse4.2 instructions. ! `sse4a' ! `no-sse4a' Enable/disable the generation of the SSE4A instructions. ! `fma4' ! `no-fma4' Enable/disable the generation of the FMA4 instructions. ! `xop' ! `no-xop' Enable/disable the generation of the XOP instructions. ! `lwp' ! `no-lwp' Enable/disable the generation of the LWP instructions. ! `ssse3' ! `no-ssse3' Enable/disable the generation of the SSSE3 instructions. ! `cld' ! `no-cld' Enable/disable the generation of the CLD before string moves. ! `fancy-math-387' ! `no-fancy-math-387' ! Enable/disable the generation of the `sin', `cos', and `sqrt' instructions on the 387 floating-point unit. ! `fused-madd' ! `no-fused-madd' Enable/disable the generation of the fused multiply/add instructions. ! `ieee-fp' ! `no-ieee-fp' Enable/disable the generation of floating point that depends on IEEE arithmetic. ! `inline-all-stringops' ! `no-inline-all-stringops' Enable/disable inlining of string operations. ! `inline-stringops-dynamically' ! `no-inline-stringops-dynamically' Enable/disable the generation of the inline code to do small string operations and calling the library routines for large operations. ! `align-stringops' ! `no-align-stringops' Do/do not align destination of inlined string operations. ! `recip' ! `no-recip' Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS instructions followed an additional Newton-Raphson step instead of doing a floating-point division. ! `arch=ARCH' ! Specify the architecture to generate code for in compiling ! the function. ! `tune=TUNE' Specify the architecture to tune for in compiling the function. ! `fpmath=FPMATH' Specify which floating-point unit to use. The ! `target("fpmath=sse,387")' option must be specified as ! `target("fpmath=sse+387")' because the comma would separate different options. On the PowerPC, the following options are allowed: ! `altivec' ! `no-altivec' Generate code that uses (does not use) AltiVec instructions. In 32-bit code, you cannot enable AltiVec instructions unless ! `-mabi=altivec' is used on the command line. ! `cmpb' ! `no-cmpb' Generate code that uses (does not use) the compare bytes instruction implemented on the POWER6 processor and other processors that support the PowerPC V2.05 architecture. ! `dlmzb' ! `no-dlmzb' Generate code that uses (does not use) the string-search ! `dlmzb' instruction on the IBM 405, 440, 464 and 476 processors. This instruction is generated by default when targeting those processors. ! `fprnd' ! `no-fprnd' Generate code that uses (does not use) the FP round to integer instructions implemented on the POWER5+ processor and other processors that support the PowerPC V2.03 architecture. ! `hard-dfp' ! `no-hard-dfp' Generate code that uses (does not use) the decimal floating-point instructions implemented on some POWER processors. ! `isel' ! `no-isel' Generate code that uses (does not use) ISEL instruction. ! `mfcrf' ! `no-mfcrf' Generate code that uses (does not use) the move from condition ! register field instruction implemented on the POWER4 ! processor and other processors that support the PowerPC V2.01 architecture. ! `mfpgpr' ! `no-mfpgpr' Generate code that uses (does not use) the FP move to/from general purpose register instructions implemented on the POWER6X processor and other processors that support the extended PowerPC V2.05 architecture. ! `mulhw' ! `no-mulhw' Generate code that uses (does not use) the half-word multiply and multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors. These instructions are generated by default when targeting those processors. ! `multiple' ! `no-multiple' Generate code that uses (does not use) the load multiple word instructions and the store multiple word instructions. ! `update' ! `no-update' Generate code that uses (does not use) the load or store instructions that update the base register to the address of the calculated memory location. ! `popcntb' ! `no-popcntb' Generate code that uses (does not use) the popcount and double-precision FP reciprocal estimate instruction implemented on the POWER5 processor and other processors that support the PowerPC V2.02 architecture. ! `popcntd' ! `no-popcntd' Generate code that uses (does not use) the popcount instruction implemented on the POWER7 processor and other processors that support the PowerPC V2.06 architecture. ! `powerpc-gfxopt' ! `no-powerpc-gfxopt' Generate code that uses (does not use) the optional PowerPC architecture instructions in the Graphics group, including floating-point select. ! `powerpc-gpopt' ! `no-powerpc-gpopt' Generate code that uses (does not use) the optional PowerPC architecture instructions in the General Purpose group, including floating-point square root. ! `recip-precision' ! `no-recip-precision' Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the powerpc ABI. ! `string' ! `no-string' Generate code that uses (does not use) the load string instructions and the store string word instructions to save multiple registers and do small block moves. ! `vsx' ! `no-vsx' Generate code that uses (does not use) vector/scalar (VSX) instructions, and also enable the use of built-in functions that allow more direct access to the VSX instruction set. In 32-bit code, you cannot enable VSX or AltiVec instructions ! unless `-mabi=altivec' is used on the command line. ! `friz' ! `no-friz' ! Generate (do not generate) the `friz' instruction when the ! `-funsafe-math-optimizations' option is used to optimize rounding a floating-point value to 64-bit integer and back to ! floating point. The `friz' instruction does not return the ! same value if the floating-point number is too large to fit ! in an integer. ! `avoid-indexed-addresses' ! `no-avoid-indexed-addresses' Generate code that tries to avoid (not avoid) the use of indexed load or store instructions. ! `paired' ! `no-paired' Generate code that uses (does not use) the generation of PAIRED simd instructions. ! `longcall' ! `no-longcall' Generate code that assumes (does not assume) that all calls are far away so that a longer more expensive calling sequence is required. ! `cpu=CPU' Specify the architecture to generate code for when compiling ! the function. If you select the `target("cpu=power7")' attribute when generating 32-bit code, VSX and AltiVec instructions are not generated unless you use the ! `-mabi=altivec' option on the command line. ! `tune=TUNE' Specify the architecture to tune for when compiling the ! function. If you do not specify the `target("tune=TUNE")' ! attribute and you do specify the `target("cpu=CPU")' ! attribute, compilation tunes for the CPU architecture, and ! not the default tuning specified on the command line. On the 386/x86_64 and PowerPC back ends, you can use either multiple strings to specify multiple options, or you can separate ! the option with a comma (`,'). On the 386/x86_64 and PowerPC back ends, the inliner does not inline a function that has different target options than the ! caller, unless the callee has a subset of the target options of ! the caller. For example a function declared with `target("sse3")' ! can inline a function with `target("sse2")', since `-msse3' ! implies `-msse2'. ! The `target' attribute is not implemented in GCC versions earlier ! than 4.4 for the i386/x86_64 and 4.6 for the PowerPC back ends. ! It is not currently implemented for other back ends. ! `tiny_data' Use this attribute on the H8/300H and H8S to indicate that the specified variable should be placed into the tiny data section. The compiler generates more efficient code for loads and stores on data in the tiny data section. Note the tiny data area is limited to slightly under 32KB of data. ! `trap_exit' ! Use this attribute on the SH for an `interrupt_handler' to return ! using `trapa' instead of `rte'. This attribute expects an integer argument specifying the trap number to be used. ! `trapa_handler' On SH targets this function attribute is similar to ! `interrupt_handler' but it does not save and restore all registers. ! `unused' This attribute, attached to a function, means that the function is meant to be possibly unused. GCC does not produce a warning for this function. ! `used' This attribute, attached to a function, means that code must be emitted for the function even if it appears that the function is not referenced. This is useful, for example, when the function is referenced only in inline assembly. When applied to a member function of a C++ class template, the ! attribute also means that the function is instantiated if the ! class itself is instantiated. ! `version_id' This IA-64 HP-UX attribute, attached to a global variable or function, renames a symbol to contain a version string, thus allowing for function level versioning. HP-UX system header files --- 23228,23593 ---- void f () __attribute__ ((interrupt_handler, sp_switch ("alt_stack"))); ! 'stdcall' ! On the Intel 386, the 'stdcall' attribute causes the compiler to assume that the called function pops off the stack space used to pass arguments, unless it takes a variable number of arguments. ! 'syscall_linkage' This attribute is used to modify the IA-64 calling convention by marking all input registers as live at all function exits. This makes it possible to restart a system call after an interrupt without having to save/restore the input registers. This also prevents kernel data from leaking into application code. ! 'target' ! The 'target' attribute is used to specify that a function is to be compiled with different target options than specified on the command line. This can be used for instance to have functions compiled with a different ISA (instruction set architecture) than ! the default. You can also use the '#pragma GCC target' pragma to set more than one function to be compiled with specific target options. *Note Function Specific Option Pragmas::, for details ! about the '#pragma GCC target' pragma. For instance on a 386, you could compile one function with ! 'target("sse4.1,arch=core2")' and another with ! 'target("sse4a,arch=amdfam10")'. This is equivalent to compiling ! the first function with '-msse4.1' and '-march=core2' options, and ! the second function with '-msse4a' and '-march=amdfam10' options. It is up to the user to make sure that a function is only invoked on a machine that supports the particular ISA it is compiled for ! (for example by using 'cpuid' on 386 to determine what feature bits ! and architecture family are used). int core2_func (void) __attribute__ ((__target__ ("arch=core2"))); int sse3_func (void) __attribute__ ((__target__ ("sse3"))); On the 386, the following options are allowed: ! 'abm' ! 'no-abm' Enable/disable the generation of the advanced bit instructions. ! 'aes' ! 'no-aes' Enable/disable the generation of the AES instructions. ! 'default' *Note Function Multiversioning::, where it is used to specify the default function version. ! 'mmx' ! 'no-mmx' Enable/disable the generation of the MMX instructions. ! 'pclmul' ! 'no-pclmul' Enable/disable the generation of the PCLMUL instructions. ! 'popcnt' ! 'no-popcnt' Enable/disable the generation of the POPCNT instruction. ! 'sse' ! 'no-sse' Enable/disable the generation of the SSE instructions. ! 'sse2' ! 'no-sse2' Enable/disable the generation of the SSE2 instructions. ! 'sse3' ! 'no-sse3' Enable/disable the generation of the SSE3 instructions. ! 'sse4' ! 'no-sse4' Enable/disable the generation of the SSE4 instructions (both SSE4.1 and SSE4.2). ! 'sse4.1' ! 'no-sse4.1' Enable/disable the generation of the sse4.1 instructions. ! 'sse4.2' ! 'no-sse4.2' Enable/disable the generation of the sse4.2 instructions. ! 'sse4a' ! 'no-sse4a' Enable/disable the generation of the SSE4A instructions. ! 'fma4' ! 'no-fma4' Enable/disable the generation of the FMA4 instructions. ! 'xop' ! 'no-xop' Enable/disable the generation of the XOP instructions. ! 'lwp' ! 'no-lwp' Enable/disable the generation of the LWP instructions. ! 'ssse3' ! 'no-ssse3' Enable/disable the generation of the SSSE3 instructions. ! 'cld' ! 'no-cld' Enable/disable the generation of the CLD before string moves. ! 'fancy-math-387' ! 'no-fancy-math-387' ! Enable/disable the generation of the 'sin', 'cos', and 'sqrt' instructions on the 387 floating-point unit. ! 'fused-madd' ! 'no-fused-madd' Enable/disable the generation of the fused multiply/add instructions. ! 'ieee-fp' ! 'no-ieee-fp' Enable/disable the generation of floating point that depends on IEEE arithmetic. ! 'inline-all-stringops' ! 'no-inline-all-stringops' Enable/disable inlining of string operations. ! 'inline-stringops-dynamically' ! 'no-inline-stringops-dynamically' Enable/disable the generation of the inline code to do small string operations and calling the library routines for large operations. ! 'align-stringops' ! 'no-align-stringops' Do/do not align destination of inlined string operations. ! 'recip' ! 'no-recip' Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS instructions followed an additional Newton-Raphson step instead of doing a floating-point division. ! 'arch=ARCH' ! Specify the architecture to generate code for in compiling the ! function. ! 'tune=TUNE' Specify the architecture to tune for in compiling the function. ! 'fpmath=FPMATH' Specify which floating-point unit to use. The ! 'target("fpmath=sse,387")' option must be specified as ! 'target("fpmath=sse+387")' because the comma would separate different options. On the PowerPC, the following options are allowed: ! 'altivec' ! 'no-altivec' Generate code that uses (does not use) AltiVec instructions. In 32-bit code, you cannot enable AltiVec instructions unless ! '-mabi=altivec' is used on the command line. ! 'cmpb' ! 'no-cmpb' Generate code that uses (does not use) the compare bytes instruction implemented on the POWER6 processor and other processors that support the PowerPC V2.05 architecture. ! 'dlmzb' ! 'no-dlmzb' Generate code that uses (does not use) the string-search ! 'dlmzb' instruction on the IBM 405, 440, 464 and 476 processors. This instruction is generated by default when targeting those processors. ! 'fprnd' ! 'no-fprnd' Generate code that uses (does not use) the FP round to integer instructions implemented on the POWER5+ processor and other processors that support the PowerPC V2.03 architecture. ! 'hard-dfp' ! 'no-hard-dfp' Generate code that uses (does not use) the decimal floating-point instructions implemented on some POWER processors. ! 'isel' ! 'no-isel' Generate code that uses (does not use) ISEL instruction. ! 'mfcrf' ! 'no-mfcrf' Generate code that uses (does not use) the move from condition ! register field instruction implemented on the POWER4 processor ! and other processors that support the PowerPC V2.01 architecture. ! 'mfpgpr' ! 'no-mfpgpr' Generate code that uses (does not use) the FP move to/from general purpose register instructions implemented on the POWER6X processor and other processors that support the extended PowerPC V2.05 architecture. ! 'mulhw' ! 'no-mulhw' Generate code that uses (does not use) the half-word multiply and multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors. These instructions are generated by default when targeting those processors. ! 'multiple' ! 'no-multiple' Generate code that uses (does not use) the load multiple word instructions and the store multiple word instructions. ! 'update' ! 'no-update' Generate code that uses (does not use) the load or store instructions that update the base register to the address of the calculated memory location. ! 'popcntb' ! 'no-popcntb' Generate code that uses (does not use) the popcount and double-precision FP reciprocal estimate instruction implemented on the POWER5 processor and other processors that support the PowerPC V2.02 architecture. ! 'popcntd' ! 'no-popcntd' Generate code that uses (does not use) the popcount instruction implemented on the POWER7 processor and other processors that support the PowerPC V2.06 architecture. ! 'powerpc-gfxopt' ! 'no-powerpc-gfxopt' Generate code that uses (does not use) the optional PowerPC architecture instructions in the Graphics group, including floating-point select. ! 'powerpc-gpopt' ! 'no-powerpc-gpopt' Generate code that uses (does not use) the optional PowerPC architecture instructions in the General Purpose group, including floating-point square root. ! 'recip-precision' ! 'no-recip-precision' Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the powerpc ABI. ! 'string' ! 'no-string' Generate code that uses (does not use) the load string instructions and the store string word instructions to save multiple registers and do small block moves. ! 'vsx' ! 'no-vsx' Generate code that uses (does not use) vector/scalar (VSX) instructions, and also enable the use of built-in functions that allow more direct access to the VSX instruction set. In 32-bit code, you cannot enable VSX or AltiVec instructions ! unless '-mabi=altivec' is used on the command line. ! 'friz' ! 'no-friz' ! Generate (do not generate) the 'friz' instruction when the ! '-funsafe-math-optimizations' option is used to optimize rounding a floating-point value to 64-bit integer and back to ! floating point. The 'friz' instruction does not return the ! same value if the floating-point number is too large to fit in ! an integer. ! 'avoid-indexed-addresses' ! 'no-avoid-indexed-addresses' Generate code that tries to avoid (not avoid) the use of indexed load or store instructions. ! 'paired' ! 'no-paired' Generate code that uses (does not use) the generation of PAIRED simd instructions. ! 'longcall' ! 'no-longcall' Generate code that assumes (does not assume) that all calls are far away so that a longer more expensive calling sequence is required. ! 'cpu=CPU' Specify the architecture to generate code for when compiling ! the function. If you select the 'target("cpu=power7")' attribute when generating 32-bit code, VSX and AltiVec instructions are not generated unless you use the ! '-mabi=altivec' option on the command line. ! 'tune=TUNE' Specify the architecture to tune for when compiling the ! function. If you do not specify the 'target("tune=TUNE")' ! attribute and you do specify the 'target("cpu=CPU")' ! attribute, compilation tunes for the CPU architecture, and not ! the default tuning specified on the command line. On the 386/x86_64 and PowerPC back ends, you can use either multiple strings to specify multiple options, or you can separate ! the option with a comma (','). On the 386/x86_64 and PowerPC back ends, the inliner does not inline a function that has different target options than the ! caller, unless the callee has a subset of the target options of the ! caller. For example a function declared with 'target("sse3")' can ! inline a function with 'target("sse2")', since '-msse3' implies ! '-msse2'. ! The 'target' attribute is not implemented in GCC versions earlier ! than 4.4 for the i386/x86_64 and 4.6 for the PowerPC back ends. It ! is not currently implemented for other back ends. ! 'tiny_data' Use this attribute on the H8/300H and H8S to indicate that the specified variable should be placed into the tiny data section. The compiler generates more efficient code for loads and stores on data in the tiny data section. Note the tiny data area is limited to slightly under 32KB of data. ! 'trap_exit' ! Use this attribute on the SH for an 'interrupt_handler' to return ! using 'trapa' instead of 'rte'. This attribute expects an integer argument specifying the trap number to be used. ! 'trapa_handler' On SH targets this function attribute is similar to ! 'interrupt_handler' but it does not save and restore all registers. ! 'unused' This attribute, attached to a function, means that the function is meant to be possibly unused. GCC does not produce a warning for this function. ! 'used' This attribute, attached to a function, means that code must be emitted for the function even if it appears that the function is not referenced. This is useful, for example, when the function is referenced only in inline assembly. When applied to a member function of a C++ class template, the ! attribute also means that the function is instantiated if the class ! itself is instantiated. ! 'version_id' This IA-64 HP-UX attribute, attached to a global variable or function, renames a symbol to contain a version string, thus allowing for function level versioning. HP-UX system header files *************** attributes. *** 23761,23767 **** Calls to FOO are mapped to calls to FOO{20040821}. ! `visibility ("VISIBILITY_TYPE")' This attribute affects the linkage of the declaration to which it is attached. There are four supported VISIBILITY_TYPE values: default, hidden, protected or internal visibility. --- 23597,23603 ---- Calls to FOO are mapped to calls to FOO{20040821}. ! 'visibility ("VISIBILITY_TYPE")' This attribute affects the linkage of the declaration to which it is attached. There are four supported VISIBILITY_TYPE values: default, hidden, protected or internal visibility. *************** attributes. *** 23770,23779 **** f () { /* Do something. */; } int i __attribute__ ((visibility ("hidden"))); ! The possible values of VISIBILITY_TYPE correspond to the ! visibility settings in the ELF gABI. ! "default" Default visibility is the normal case for the object file format. This value is available for the visibility attribute to override other options that may change the assumed --- 23606,23615 ---- f () { /* Do something. */; } int i __attribute__ ((visibility ("hidden"))); ! The possible values of VISIBILITY_TYPE correspond to the visibility ! settings in the ELF gABI. ! "default" Default visibility is the normal case for the object file format. This value is available for the visibility attribute to override other options that may change the assumed *************** attributes. *** 23789,23821 **** Default visibility corresponds to "external linkage" in the language. ! "hidden" Hidden visibility indicates that the entity declared has a new form of linkage, which we call "hidden linkage". Two declarations of an object with hidden linkage refer to the same object if they are in the same shared object. ! "internal" Internal visibility is like hidden visibility, but with additional processor specific semantics. Unless otherwise specified by the psABI, GCC defines internal visibility to mean that a function is _never_ called from another module. ! Compare this with hidden functions which, while they cannot ! be referenced directly by other modules, can be referenced indirectly via function pointers. By indicating that a ! function cannot be called from outside the module, GCC may ! for instance omit the load of a PIC register since it is known that the calling function loaded the correct value. ! "protected" Protected visibility is like default visibility except that it indicates that references within the defining module bind to the definition in that module. That is, the declared entity cannot be overridden by another module. - All visibilities are supported on many, but not all, ELF targets ! (supported when the assembler supports the `.visibility' pseudo-op). Default visibility is supported everywhere. Hidden visibility is supported on Darwin targets. --- 23625,23656 ---- Default visibility corresponds to "external linkage" in the language. ! "hidden" Hidden visibility indicates that the entity declared has a new form of linkage, which we call "hidden linkage". Two declarations of an object with hidden linkage refer to the same object if they are in the same shared object. ! "internal" Internal visibility is like hidden visibility, but with additional processor specific semantics. Unless otherwise specified by the psABI, GCC defines internal visibility to mean that a function is _never_ called from another module. ! Compare this with hidden functions which, while they cannot be ! referenced directly by other modules, can be referenced indirectly via function pointers. By indicating that a ! function cannot be called from outside the module, GCC may for ! instance omit the load of a PIC register since it is known that the calling function loaded the correct value. ! "protected" Protected visibility is like default visibility except that it indicates that references within the defining module bind to the definition in that module. That is, the declared entity cannot be overridden by another module. All visibilities are supported on many, but not all, ELF targets ! (supported when the assembler supports the '.visibility' pseudo-op). Default visibility is supported everywhere. Hidden visibility is supported on Darwin targets. *************** attributes. *** 23843,23849 **** A C++ namespace declaration can also have the visibility attribute. This attribute applies only to the particular namespace body, not to other definitions of the same namespace; it is equivalent to ! using `#pragma GCC visibility' before and after the namespace definition (*note Visibility Pragmas::). In C++, if a template argument has limited visibility, this --- 23678,23684 ---- A C++ namespace declaration can also have the visibility attribute. This attribute applies only to the particular namespace body, not to other definitions of the same namespace; it is equivalent to ! using '#pragma GCC visibility' before and after the namespace definition (*note Visibility Pragmas::). In C++, if a template argument has limited visibility, this *************** attributes. *** 23854,23871 **** If both the template and enclosing class have explicit visibility, the visibility from the template is used. ! `vliw' ! On MeP, the `vliw' attribute tells the compiler to emit instructions in VLIW mode instead of core mode. Note that this attribute is not allowed unless a VLIW coprocessor has been configured and enabled through command-line options. ! `warn_unused_result' ! The `warn_unused_result' attribute causes a warning to be emitted if a caller of the function with this attribute does not use its return value. This is useful for functions where not checking the result is either a security problem or always a bug, such as ! `realloc'. int fn () __attribute__ ((warn_unused_result)); int foo () --- 23689,23706 ---- If both the template and enclosing class have explicit visibility, the visibility from the template is used. ! 'vliw' ! On MeP, the 'vliw' attribute tells the compiler to emit instructions in VLIW mode instead of core mode. Note that this attribute is not allowed unless a VLIW coprocessor has been configured and enabled through command-line options. ! 'warn_unused_result' ! The 'warn_unused_result' attribute causes a warning to be emitted if a caller of the function with this attribute does not use its return value. This is useful for functions where not checking the result is either a security problem or always a bug, such as ! 'realloc'. int fn () __attribute__ ((warn_unused_result)); int foo () *************** attributes. *** 23877,23899 **** results in warning on line 5. ! `weak' ! The `weak' attribute causes the declaration to be emitted as a weak symbol rather than a global. This is primarily useful in defining library functions that can be overridden in user code, though it can also be used with non-function declarations. Weak symbols are supported for ELF targets, and also for a.out targets when using the GNU assembler and linker. ! `weakref' ! `weakref ("TARGET")' ! The `weakref' attribute marks a declaration as a weak reference. ! Without arguments, it should be accompanied by an `alias' attribute naming the target symbol. Optionally, the TARGET may be given as ! an argument to `weakref' itself. In either case, `weakref' ! implicitly marks the declaration as `weak'. Without a TARGET, ! given as an argument to `weakref' or to `alias', `weakref' is ! equivalent to `weak'. static int x() __attribute__ ((weakref ("y"))); /* is equivalent to... */ --- 23712,23734 ---- results in warning on line 5. ! 'weak' ! The 'weak' attribute causes the declaration to be emitted as a weak symbol rather than a global. This is primarily useful in defining library functions that can be overridden in user code, though it can also be used with non-function declarations. Weak symbols are supported for ELF targets, and also for a.out targets when using the GNU assembler and linker. ! 'weakref' ! 'weakref ("TARGET")' ! The 'weakref' attribute marks a declaration as a weak reference. ! Without arguments, it should be accompanied by an 'alias' attribute naming the target symbol. Optionally, the TARGET may be given as ! an argument to 'weakref' itself. In either case, 'weakref' ! implicitly marks the declaration as 'weak'. Without a TARGET, ! given as an argument to 'weakref' or to 'alias', 'weakref' is ! equivalent to 'weak'. static int x() __attribute__ ((weakref ("y"))); /* is equivalent to... */ *************** attributes. *** 23903,23911 **** static int x() __attribute__ ((alias ("y"))); A weak reference is an alias that does not by itself require a ! definition to be given for the target symbol. If the target ! symbol is only referenced through weak references, then it becomes ! a `weak' undefined symbol. If it is directly referenced, however, then such strong references prevail, and a definition is required for the symbol, not necessarily in the same translation unit. --- 23738,23746 ---- static int x() __attribute__ ((alias ("y"))); A weak reference is an alias that does not by itself require a ! definition to be given for the target symbol. If the target symbol ! is only referenced through weak references, then it becomes a ! 'weak' undefined symbol. If it is directly referenced, however, then such strong references prevail, and a definition is required for the symbol, not necessarily in the same translation unit. *************** attributes. *** 23914,23947 **** symbol, declaring it as weak, compiling the two separate translation units and performing a reloadable link on them. ! At present, a declaration to which `weakref' is attached can only ! be `static'. ! You can specify multiple attributes in a declaration by separating them by commas within the double parentheses or by immediately following an attribute declaration with another attribute declaration. ! Some people object to the `__attribute__' feature, suggesting that ISO ! C's `#pragma' should be used instead. At the time `__attribute__' was designed, there were two reasons for not doing this. ! 1. It is impossible to generate `#pragma' commands from a macro. ! 2. There is no telling what the same `#pragma' might mean in another compiler. These two reasons applied to almost any application that might have ! been proposed for `#pragma'. It was basically a mistake to use ! `#pragma' for _anything_. ! The ISO C99 standard includes `_Pragma', which now allows pragmas to ! be generated from macros. In addition, a `#pragma GCC' namespace is ! now in use for GCC-specific pragmas. However, it has been found ! convenient to use `__attribute__' to achieve a natural attachment of ! attributes to their corresponding declarations, whereas `#pragma GCC' ! is of use for constructs that do not naturally form part of the ! grammar. *Note Pragmas Accepted by GCC: Pragmas.  File: gcc.info, Node: Attribute Syntax, Next: Function Prototypes, Prev: Function Attributes, Up: C Extensions --- 23749,23781 ---- symbol, declaring it as weak, compiling the two separate translation units and performing a reloadable link on them. ! At present, a declaration to which 'weakref' is attached can only ! be 'static'. You can specify multiple attributes in a declaration by separating them by commas within the double parentheses or by immediately following an attribute declaration with another attribute declaration. ! Some people object to the '__attribute__' feature, suggesting that ISO ! C's '#pragma' should be used instead. At the time '__attribute__' was designed, there were two reasons for not doing this. ! 1. It is impossible to generate '#pragma' commands from a macro. ! 2. There is no telling what the same '#pragma' might mean in another compiler. These two reasons applied to almost any application that might have ! been proposed for '#pragma'. It was basically a mistake to use ! '#pragma' for _anything_. ! The ISO C99 standard includes '_Pragma', which now allows pragmas to be ! generated from macros. In addition, a '#pragma GCC' namespace is now in ! use for GCC-specific pragmas. However, it has been found convenient to ! use '__attribute__' to achieve a natural attachment of attributes to ! their corresponding declarations, whereas '#pragma GCC' is of use for ! constructs that do not naturally form part of the grammar. *Note ! Pragmas Accepted by GCC: Pragmas.  File: gcc.info, Node: Attribute Syntax, Next: Function Prototypes, Prev: Function Attributes, Up: C Extensions *************** File: gcc.info, Node: Attribute Syntax, *** 23949,23955 **** 6.31 Attribute Syntax ===================== ! This section describes the syntax with which `__attribute__' may be used, and the constructs to which attribute specifiers bind, for the C language. Some details may vary for C++ and Objective-C. Because of infelicities in the grammar for attributes, some forms described here --- 23783,23789 ---- 6.31 Attribute Syntax ===================== ! This section describes the syntax with which '__attribute__' may be used, and the constructs to which attribute specifiers bind, for the C language. Some details may vary for C++ and Objective-C. Because of infelicities in the grammar for attributes, some forms described here *************** may not be successfully parsed in all ca *** 23958,23965 **** There are some problems with the semantics of attributes in C++. For example, there are no manglings for attributes, although they may affect code generation, so problems may arise when attributed types are used in ! conjunction with templates or overloading. Similarly, `typeid' does ! not distinguish between types with different attributes. Support for attributes in C++ may be restricted in future to attributes on declarations only, but not on nested declarators. --- 23792,23799 ---- There are some problems with the semantics of attributes in C++. For example, there are no manglings for attributes, although they may affect code generation, so problems may arise when attributed types are used in ! conjunction with templates or overloading. Similarly, 'typeid' does not ! distinguish between types with different attributes. Support for attributes in C++ may be restricted in future to attributes on declarations only, but not on nested declarators. *************** semantics of attributes applying to vari *** 23969,23996 **** for details of the semantics of attributes applying to structure, union and enumerated types. ! An "attribute specifier" is of the form `__attribute__ ((ATTRIBUTE-LIST))'. An "attribute list" is a possibly empty ! comma-separated sequence of "attributes", where each attribute is one ! of the following: * Empty. Empty attributes are ignored. ! * A word (which may be an identifier such as `unused', or a reserved ! word such as `const'). * A word, followed by, in parentheses, parameters for the attribute. These parameters take one of the following forms: ! * An identifier. For example, `mode' attributes use this form. * An identifier followed by a comma and a non-empty ! comma-separated list of expressions. For example, `format' attributes use this form. * A possibly empty comma-separated list of expressions. For ! example, `format_arg' attributes use this form with the list ! being a single integer constant expression, and `alias' attributes use this form with the list being a single string constant. --- 23803,23830 ---- for details of the semantics of attributes applying to structure, union and enumerated types. ! An "attribute specifier" is of the form '__attribute__ ((ATTRIBUTE-LIST))'. An "attribute list" is a possibly empty ! comma-separated sequence of "attributes", where each attribute is one of ! the following: * Empty. Empty attributes are ignored. ! * A word (which may be an identifier such as 'unused', or a reserved ! word such as 'const'). * A word, followed by, in parentheses, parameters for the attribute. These parameters take one of the following forms: ! * An identifier. For example, 'mode' attributes use this form. * An identifier followed by a comma and a non-empty ! comma-separated list of expressions. For example, 'format' attributes use this form. * A possibly empty comma-separated list of expressions. For ! example, 'format_arg' attributes use this form with the list ! being a single integer constant expression, and 'alias' attributes use this form with the list being a single string constant. *************** of the following: *** 23998,24020 **** specifiers, not separated by any other tokens. In GNU C, an attribute specifier list may appear after the colon ! following a label, other than a `case' or `default' label. The only ! attribute it makes sense to use after a label is `unused'. This ! feature is intended for program-generated code that may contain unused ! labels, but which is compiled with `-Wall'. It is not normally ! appropriate to use in it human-written code, though it could be useful ! in cases where the code that jumps to the label is contained within an ! `#ifdef' conditional. GNU C++ only permits attributes on labels if the ! attribute specifier is immediately followed by a semicolon (i.e., the ! label applies to an empty statement). If the semicolon is missing, C++ ! label attributes are ambiguous, as it is permissible for a declaration, ! which could begin with an attribute list, to be labelled in C++. ! Declarations cannot be labelled in C90 or C99, so the ambiguity does ! not arise there. ! An attribute specifier list may appear as part of a `struct', `union' ! or `enum' specifier. It may go either immediately after the `struct', ! `union' or `enum' keyword, or after the closing brace. The former syntax is preferred. Where attribute specifiers follow the closing brace, they are considered to relate to the structure, union or enumerated type defined, not to any enclosing declaration the type --- 23832,23853 ---- specifiers, not separated by any other tokens. In GNU C, an attribute specifier list may appear after the colon ! following a label, other than a 'case' or 'default' label. The only ! attribute it makes sense to use after a label is 'unused'. This feature ! is intended for program-generated code that may contain unused labels, ! but which is compiled with '-Wall'. It is not normally appropriate to ! use in it human-written code, though it could be useful in cases where ! the code that jumps to the label is contained within an '#ifdef' ! conditional. GNU C++ only permits attributes on labels if the attribute ! specifier is immediately followed by a semicolon (i.e., the label ! applies to an empty statement). If the semicolon is missing, C++ label ! attributes are ambiguous, as it is permissible for a declaration, which ! could begin with an attribute list, to be labelled in C++. Declarations ! cannot be labelled in C90 or C99, so the ambiguity does not arise there. ! An attribute specifier list may appear as part of a 'struct', 'union' ! or 'enum' specifier. It may go either immediately after the 'struct', ! 'union' or 'enum' keyword, or after the closing brace. The former syntax is preferred. Where attribute specifiers follow the closing brace, they are considered to relate to the structure, union or enumerated type defined, not to any enclosing declaration the type *************** contain attribute specifiers, whether or *** 24036,24056 **** context contain storage class specifiers. (Some attributes, however, are essentially in the nature of storage class specifiers, and only make sense where storage class specifiers may be used; for example, ! `section'.) There is one necessary limitation to this syntax: the ! first old-style parameter declaration in a function definition cannot ! begin with an attribute specifier, because such an attribute applies to ! the function instead by syntax described below (which, however, is not ! yet implemented in this case). In some other cases, attribute ! specifiers are permitted by this grammar but not yet supported by the ! compiler. All attribute specifiers in this place relate to the ! declaration as a whole. In the obsolescent usage where a type of `int' ! is implied by the absence of type specifiers, such a list of specifiers ! and qualifiers may be an attribute specifier list with no other ! specifiers or qualifiers. At present, the first parameter in a function prototype must have some type specifier that is not an attribute specifier; this resolves an ! ambiguity in the interpretation of `void f(int (__attribute__((foo)) x))', but is subject to change. At present, if the parentheses of a function declarator contain only attributes then those attributes are ignored, rather than yielding an error or warning or implying a single --- 23869,23888 ---- context contain storage class specifiers. (Some attributes, however, are essentially in the nature of storage class specifiers, and only make sense where storage class specifiers may be used; for example, ! 'section'.) There is one necessary limitation to this syntax: the first ! old-style parameter declaration in a function definition cannot begin ! with an attribute specifier, because such an attribute applies to the ! function instead by syntax described below (which, however, is not yet ! implemented in this case). In some other cases, attribute specifiers ! are permitted by this grammar but not yet supported by the compiler. ! All attribute specifiers in this place relate to the declaration as a ! whole. In the obsolescent usage where a type of 'int' is implied by the ! absence of type specifiers, such a list of specifiers and qualifiers may ! be an attribute specifier list with no other specifiers or qualifiers. At present, the first parameter in a function prototype must have some type specifier that is not an attribute specifier; this resolves an ! ambiguity in the interpretation of 'void f(int (__attribute__((foo)) x))', but is subject to change. At present, if the parentheses of a function declarator contain only attributes then those attributes are ignored, rather than yielding an error or warning or implying a single *************** identifier before whose declarator they *** 24066,24087 **** __attribute__((format(printf, 1, 2))) d1 (const char *, ...), d2 (void) ! the `noreturn' attribute applies to all the functions declared; the ! `format' attribute only applies to `d1'. An attribute specifier list may appear immediately before the comma, ! `=' or semicolon terminating the declaration of an identifier other ! than a function definition. Such attribute specifiers apply to the ! declared object or function. Where an assembler name for an object or ! function is specified (*note Asm Labels::), the attribute must follow ! the `asm' specification. An attribute specifier list may, in future, be permitted to appear after the declarator in a function definition (before any old-style parameter declarations or the function body). Attribute specifiers may be mixed with type qualifiers appearing inside ! the `[]' of a parameter array declarator, in the C99 construct by which such qualifiers are applied to the pointer to which the array is implicitly converted. Such attribute specifiers apply to the pointer, not to the array, but at present this is not implemented and they are --- 23898,23919 ---- __attribute__((format(printf, 1, 2))) d1 (const char *, ...), d2 (void) ! the 'noreturn' attribute applies to all the functions declared; the ! 'format' attribute only applies to 'd1'. An attribute specifier list may appear immediately before the comma, ! '=' or semicolon terminating the declaration of an identifier other than ! a function definition. Such attribute specifiers apply to the declared ! object or function. Where an assembler name for an object or function ! is specified (*note Asm Labels::), the attribute must follow the 'asm' ! specification. An attribute specifier list may, in future, be permitted to appear after the declarator in a function definition (before any old-style parameter declarations or the function body). Attribute specifiers may be mixed with type qualifiers appearing inside ! the '[]' of a parameter array declarator, in the C99 construct by which such qualifiers are applied to the pointer to which the array is implicitly converted. Such attribute specifiers apply to the pointer, not to the array, but at present this is not implemented and they are *************** ignored. *** 24091,24117 **** declarator. At present, there are some limitations in this usage: the attributes correctly apply to the declarator, but for most individual attributes the semantics this implies are not implemented. When ! attribute specifiers follow the `*' of a pointer declarator, they may ! be mixed with any type qualifiers present. The following describes the formal semantics of this syntax. It makes the most sense if you are familiar with the formal specification of declarators in the ISO C standard. ! Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration `T D1', ! where `T' contains declaration specifiers that specify a type TYPE ! (such as `int') and `D1' is a declarator that contains an identifier ! IDENT. The type specified for IDENT for derived declarators whose type ! does not include an attribute specifier is as in the ISO C standard. ! If `D1' has the form `( ATTRIBUTE-SPECIFIER-LIST D )', and the ! declaration `T D' specifies the type "DERIVED-DECLARATOR-TYPE-LIST ! TYPE" for IDENT, then `T D1' specifies the type ! "DERIVED-DECLARATOR-TYPE-LIST ATTRIBUTE-SPECIFIER-LIST TYPE" for IDENT. ! If `D1' has the form `* TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-LIST ! D', and the declaration `T D' specifies the type ! "DERIVED-DECLARATOR-TYPE-LIST TYPE" for IDENT, then `T D1' specifies ! the type "DERIVED-DECLARATOR-TYPE-LIST TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-LIST pointer to TYPE" for IDENT. For example, --- 23923,23949 ---- declarator. At present, there are some limitations in this usage: the attributes correctly apply to the declarator, but for most individual attributes the semantics this implies are not implemented. When ! attribute specifiers follow the '*' of a pointer declarator, they may be ! mixed with any type qualifiers present. The following describes the formal semantics of this syntax. It makes the most sense if you are familiar with the formal specification of declarators in the ISO C standard. ! Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration 'T D1', ! where 'T' contains declaration specifiers that specify a type TYPE (such ! as 'int') and 'D1' is a declarator that contains an identifier IDENT. ! The type specified for IDENT for derived declarators whose type does not ! include an attribute specifier is as in the ISO C standard. ! If 'D1' has the form '( ATTRIBUTE-SPECIFIER-LIST D )', and the ! declaration 'T D' specifies the type "DERIVED-DECLARATOR-TYPE-LIST TYPE" ! for IDENT, then 'T D1' specifies the type "DERIVED-DECLARATOR-TYPE-LIST ! ATTRIBUTE-SPECIFIER-LIST TYPE" for IDENT. ! If 'D1' has the form '* TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-LIST D', ! and the declaration 'T D' specifies the type ! "DERIVED-DECLARATOR-TYPE-LIST TYPE" for IDENT, then 'T D1' specifies the ! type "DERIVED-DECLARATOR-TYPE-LIST TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-LIST pointer to TYPE" for IDENT. For example, *************** TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-L *** 24119,24131 **** void (__attribute__((noreturn)) ****f) (void); specifies the type "pointer to pointer to pointer to pointer to ! non-returning function returning `void'". As another example, char *__attribute__((aligned(8))) *f; ! specifies the type "pointer to 8-byte-aligned pointer to `char'". Note again that this does not work with most attributes; for example, the ! usage of `aligned' and `noreturn' attributes given above is not yet supported. For compatibility with existing code written for compiler versions that --- 23951,23963 ---- void (__attribute__((noreturn)) ****f) (void); specifies the type "pointer to pointer to pointer to pointer to ! non-returning function returning 'void'". As another example, char *__attribute__((aligned(8))) *f; ! specifies the type "pointer to 8-byte-aligned pointer to 'char'". Note again that this does not work with most attributes; for example, the ! usage of 'aligned' and 'noreturn' attributes given above is not yet supported. For compatibility with existing code written for compiler versions that *************** the attributes immediately before the id *** 24139,24146 **** attribute applied to a function return type is treated as applying to the function type, and such an attribute applied to an array element type is treated as applying to the array type. If an attribute that ! only applies to function types is applied to a pointer-to-function ! type, it is treated as applying to the pointer target type; if such an attribute is applied to a function return type that is not a pointer-to-function type, it is treated as applying to the function type. --- 23971,23978 ---- attribute applied to a function return type is treated as applying to the function type, and such an attribute applied to an array element type is treated as applying to the array type. If an attribute that ! only applies to function types is applied to a pointer-to-function type, ! it is treated as applying to the pointer target type; if such an attribute is applied to a function return type that is not a pointer-to-function type, it is treated as applying to the function type. *************** old-style non-prototype definition. Con *** 24172,24192 **** return x == 0; } ! Suppose the type `uid_t' happens to be `short'. ISO C does not allow this example, because subword arguments in old-style non-prototype definitions are promoted. Therefore in this example the function ! definition's argument is really an `int', which does not match the ! prototype argument type of `short'. This restriction of ISO C makes it hard to write code that is portable ! to traditional C compilers, because the programmer does not know ! whether the `uid_t' type is `short', `int', or `long'. Therefore, in ! cases like these GNU C allows a prototype to override a later old-style ! definition. More precisely, in GNU C, a function prototype argument ! type overrides the argument type specified by a later old-style ! definition if the former type is the same as the latter type before ! promotion. Thus in GNU C the above example is equivalent to the ! following: int isroot (uid_t); --- 24004,24023 ---- return x == 0; } ! Suppose the type 'uid_t' happens to be 'short'. ISO C does not allow this example, because subword arguments in old-style non-prototype definitions are promoted. Therefore in this example the function ! definition's argument is really an 'int', which does not match the ! prototype argument type of 'short'. This restriction of ISO C makes it hard to write code that is portable ! to traditional C compilers, because the programmer does not know whether ! the 'uid_t' type is 'short', 'int', or 'long'. Therefore, in cases like ! these GNU C allows a prototype to override a later old-style definition. ! More precisely, in GNU C, a function prototype argument type overrides ! the argument type specified by a later old-style definition if the ! former type is the same as the latter type before promotion. Thus in ! GNU C the above example is equivalent to the following: int isroot (uid_t); *************** File: gcc.info, Node: C++ Comments, Ne *** 24205,24216 **** 6.33 C++ Style Comments ======================= ! In GNU C, you may use C++ style comments, which start with `//' and continue until the end of the line. Many other C implementations allow such comments, and they are included in the 1999 C standard. However, ! C++ style comments are not recognized if you specify an `-std' option ! specifying a version of ISO C before C99, or `-ansi' (equivalent to ! `-std=c90').  File: gcc.info, Node: Dollar Signs, Next: Character Escapes, Prev: C++ Comments, Up: C Extensions --- 24036,24047 ---- 6.33 C++ Style Comments ======================= ! In GNU C, you may use C++ style comments, which start with '//' and continue until the end of the line. Many other C implementations allow such comments, and they are included in the 1999 C standard. However, ! C++ style comments are not recognized if you specify an '-std' option ! specifying a version of ISO C before C99, or '-ansi' (equivalent to ! '-std=c90').  File: gcc.info, Node: Dollar Signs, Next: Character Escapes, Prev: C++ Comments, Up: C Extensions *************** File: gcc.info, Node: Character Escapes *** 24229,24236 **** 6.35 The Character in Constants ===================================== ! You can use the sequence `\e' in a string or character constant to ! stand for the ASCII character .  File: gcc.info, Node: Variable Attributes, Next: Type Attributes, Prev: Character Escapes, Up: C Extensions --- 24060,24067 ---- 6.35 The Character in Constants ===================================== ! You can use the sequence '\e' in a string or character constant to stand ! for the ASCII character .  File: gcc.info, Node: Variable Attributes, Next: Type Attributes, Prev: Character Escapes, Up: C Extensions *************** File: gcc.info, Node: Variable Attribut *** 24238,24278 **** 6.36 Specifying Attributes of Variables ======================================= ! The keyword `__attribute__' allows you to specify special attributes of ! variables or structure fields. This keyword is followed by an ! attribute specification inside double parentheses. Some attributes are ! currently defined generically for variables. Other attributes are ! defined for variables on particular target systems. Other attributes ! are available for functions (*note Function Attributes::) and for types ! (*note Type Attributes::). Other front ends might define more ! attributes (*note Extensions to the C++ Language: C++ Extensions.). ! You may also specify attributes with `__' preceding and following each keyword. This allows you to use them in header files without being ! concerned about a possible macro of the same name. For example, you ! may use `__aligned__' instead of `aligned'. *Note Attribute Syntax::, for details of the exact syntax for using attributes. ! `aligned (ALIGNMENT)' This attribute specifies a minimum alignment for the variable or structure field, measured in bytes. For example, the declaration: int x __attribute__ ((aligned (16))) = 0; ! causes the compiler to allocate the global variable `x' on a 16-byte boundary. On a 68040, this could be used in conjunction ! with an `asm' expression to access the `move16' instruction which requires 16-byte aligned operands. You can also specify the alignment of structure fields. For ! example, to create a double-word aligned `int' pair, you could write: struct foo { int x[2] __attribute__ ((aligned (8))); }; ! This is an alternative to creating a union with a `double' member, which forces the union to be double-word aligned. As in the preceding examples, you can explicitly specify the --- 24069,24109 ---- 6.36 Specifying Attributes of Variables ======================================= ! The keyword '__attribute__' allows you to specify special attributes of ! variables or structure fields. This keyword is followed by an attribute ! specification inside double parentheses. Some attributes are currently ! defined generically for variables. Other attributes are defined for ! variables on particular target systems. Other attributes are available ! for functions (*note Function Attributes::) and for types (*note Type ! Attributes::). Other front ends might define more attributes (*note ! Extensions to the C++ Language: C++ Extensions.). ! You may also specify attributes with '__' preceding and following each keyword. This allows you to use them in header files without being ! concerned about a possible macro of the same name. For example, you may ! use '__aligned__' instead of 'aligned'. *Note Attribute Syntax::, for details of the exact syntax for using attributes. ! 'aligned (ALIGNMENT)' This attribute specifies a minimum alignment for the variable or structure field, measured in bytes. For example, the declaration: int x __attribute__ ((aligned (16))) = 0; ! causes the compiler to allocate the global variable 'x' on a 16-byte boundary. On a 68040, this could be used in conjunction ! with an 'asm' expression to access the 'move16' instruction which requires 16-byte aligned operands. You can also specify the alignment of structure fields. For ! example, to create a double-word aligned 'int' pair, you could write: struct foo { int x[2] __attribute__ ((aligned (8))); }; ! This is an alternative to creating a union with a 'double' member, which forces the union to be double-word aligned. As in the preceding examples, you can explicitly specify the *************** attributes. *** 24285,24291 **** supports vector operations. The default alignment is fixed for a particular target ABI. ! GCC also provides a target specific macro `__BIGGEST_ALIGNMENT__', which is the largest alignment ever used for any data type on the target machine you are compiling for. For example, you could write: --- 24116,24122 ---- supports vector operations. The default alignment is fixed for a particular target ABI. ! GCC also provides a target specific macro '__BIGGEST_ALIGNMENT__', which is the largest alignment ever used for any data type on the target machine you are compiling for. For example, you could write: *************** attributes. *** 24293,24352 **** short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__))); The compiler automatically sets the alignment for the declared ! variable or field to `__BIGGEST_ALIGNMENT__'. Doing this can ! often make copy operations more efficient, because the compiler can ! use whatever instructions copy the biggest chunks of memory when performing copies to or from the variables or fields that you have ! aligned this way. Note that the value of `__BIGGEST_ALIGNMENT__' may change depending on command-line options. ! When used on a struct, or struct member, the `aligned' attribute can only increase the alignment; in order to decrease it, the ! `packed' attribute must be specified as well. When used as part ! of a typedef, the `aligned' attribute can both increase and ! decrease alignment, and specifying the `packed' attribute ! generates a warning. ! Note that the effectiveness of `aligned' attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8-byte alignment, ! then specifying `aligned(16)' in an `__attribute__' still only provides you with 8-byte alignment. See your linker documentation for further information. ! The `aligned' attribute can also be used for functions (*note Function Attributes::.) ! `cleanup (CLEANUP_FUNCTION)' ! The `cleanup' attribute runs a function when the variable goes out of scope. This attribute can only be applied to auto function scope variables; it may not be applied to parameters or variables with static storage duration. The function must take one parameter, a pointer to a type compatible with the variable. The return value of the function (if any) is ignored. ! If `-fexceptions' is enabled, then CLEANUP_FUNCTION is run during the stack unwinding that happens during the processing of the ! exception. Note that the `cleanup' attribute does not allow the ! exception to be caught, only to perform an action. It is ! undefined what happens if CLEANUP_FUNCTION does not return ! normally. ! `common' ! `nocommon' ! The `common' attribute requests GCC to place a variable in ! "common" storage. The `nocommon' attribute requests the ! opposite--to allocate space for it directly. ! These attributes override the default chosen by the `-fno-common' ! and `-fcommon' flags respectively. ! `deprecated' ! `deprecated (MSG)' ! The `deprecated' attribute results in a warning if the variable is used anywhere in the source file. This is useful when identifying variables that are expected to be removed in a future version of a program. The warning also includes the location of the declaration --- 24124,24182 ---- short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__))); The compiler automatically sets the alignment for the declared ! variable or field to '__BIGGEST_ALIGNMENT__'. Doing this can often ! make copy operations more efficient, because the compiler can use ! whatever instructions copy the biggest chunks of memory when performing copies to or from the variables or fields that you have ! aligned this way. Note that the value of '__BIGGEST_ALIGNMENT__' may change depending on command-line options. ! When used on a struct, or struct member, the 'aligned' attribute can only increase the alignment; in order to decrease it, the ! 'packed' attribute must be specified as well. When used as part of ! a typedef, the 'aligned' attribute can both increase and decrease ! alignment, and specifying the 'packed' attribute generates a ! warning. ! Note that the effectiveness of 'aligned' attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8-byte alignment, ! then specifying 'aligned(16)' in an '__attribute__' still only provides you with 8-byte alignment. See your linker documentation for further information. ! The 'aligned' attribute can also be used for functions (*note Function Attributes::.) ! 'cleanup (CLEANUP_FUNCTION)' ! The 'cleanup' attribute runs a function when the variable goes out of scope. This attribute can only be applied to auto function scope variables; it may not be applied to parameters or variables with static storage duration. The function must take one parameter, a pointer to a type compatible with the variable. The return value of the function (if any) is ignored. ! If '-fexceptions' is enabled, then CLEANUP_FUNCTION is run during the stack unwinding that happens during the processing of the ! exception. Note that the 'cleanup' attribute does not allow the ! exception to be caught, only to perform an action. It is undefined ! what happens if CLEANUP_FUNCTION does not return normally. ! 'common' ! 'nocommon' ! The 'common' attribute requests GCC to place a variable in "common" ! storage. The 'nocommon' attribute requests the opposite--to ! allocate space for it directly. ! These attributes override the default chosen by the '-fno-common' ! and '-fcommon' flags respectively. ! 'deprecated' ! 'deprecated (MSG)' ! The 'deprecated' attribute results in a warning if the variable is used anywhere in the source file. This is useful when identifying variables that are expected to be removed in a future version of a program. The warning also includes the location of the declaration *************** attributes. *** 24362,24389 **** argument, which must be a string, is printed in the warning if present. ! The `deprecated' attribute can also be used for functions and ! types (*note Function Attributes::, *note Type Attributes::.) ! `mode (MODE)' This attribute specifies the data type for the declaration--whichever type corresponds to the mode MODE. This in ! effect lets you request an integer or floating-point type ! according to its width. ! You may also specify a mode of `byte' or `__byte__' to indicate ! the mode corresponding to a one-byte integer, `word' or `__word__' ! for the mode of a one-word integer, and `pointer' or `__pointer__' ! for the mode used to represent pointers. ! `packed' ! The `packed' attribute specifies that a variable or structure field should have the smallest possible alignment--one byte for a variable, and one bit for a field, unless you specify a larger ! value with the `aligned' attribute. ! Here is a structure in which the field `x' is packed, so that it ! immediately follows `a': struct foo { --- 24192,24219 ---- argument, which must be a string, is printed in the warning if present. ! The 'deprecated' attribute can also be used for functions and types ! (*note Function Attributes::, *note Type Attributes::.) ! 'mode (MODE)' This attribute specifies the data type for the declaration--whichever type corresponds to the mode MODE. This in ! effect lets you request an integer or floating-point type according ! to its width. ! You may also specify a mode of 'byte' or '__byte__' to indicate the ! mode corresponding to a one-byte integer, 'word' or '__word__' for ! the mode of a one-word integer, and 'pointer' or '__pointer__' for ! the mode used to represent pointers. ! 'packed' ! The 'packed' attribute specifies that a variable or structure field should have the smallest possible alignment--one byte for a variable, and one bit for a field, unless you specify a larger ! value with the 'aligned' attribute. ! Here is a structure in which the field 'x' is packed, so that it ! immediately follows 'a': struct foo { *************** attributes. *** 24391,24408 **** int x[2] __attribute__ ((packed)); }; ! _Note:_ The 4.1, 4.2 and 4.3 series of GCC ignore the `packed' ! attribute on bit-fields of type `char'. This has been fixed in ! GCC 4.4 but the change can lead to differences in the structure ! layout. See the documentation of `-Wpacked-bitfield-compat' for ! more information. ! `section ("SECTION-NAME")' Normally, the compiler places the objects it generates in sections ! like `data' and `bss'. Sometimes, however, you need additional sections, or you need certain particular variables to appear in special sections, for example to map to special hardware. The ! `section' attribute specifies that a variable (or function) lives in a particular section. For example, this small program uses several specific section names: --- 24221,24238 ---- int x[2] __attribute__ ((packed)); }; ! _Note:_ The 4.1, 4.2 and 4.3 series of GCC ignore the 'packed' ! attribute on bit-fields of type 'char'. This has been fixed in GCC ! 4.4 but the change can lead to differences in the structure layout. ! See the documentation of '-Wpacked-bitfield-compat' for more ! information. ! 'section ("SECTION-NAME")' Normally, the compiler places the objects it generates in sections ! like 'data' and 'bss'. Sometimes, however, you need additional sections, or you need certain particular variables to appear in special sections, for example to map to special hardware. The ! 'section' attribute specifies that a variable (or function) lives in a particular section. For example, this small program uses several specific section names: *************** attributes. *** 24424,24453 **** init_duart (&b); } ! Use the `section' attribute with _global_ variables and not ! _local_ variables, as shown in the example. ! You may use the `section' attribute with initialized or uninitialized global variables but the linker requires each object be defined once, with the exception that uninitialized variables ! tentatively go in the `common' (or `bss') section and can be ! multiply "defined". Using the `section' attribute changes what ! section the variable goes into and may cause the linker to issue ! an error if an uninitialized variable has multiple definitions. ! You can force a variable to be initialized with the `-fno-common' ! flag or the `nocommon' attribute. Some file formats do not support arbitrary sections so the ! `section' attribute is not available on all platforms. If you ! need to map the entire contents of a module to a particular ! section, consider using the facilities of the linker instead. ! `shared' On Microsoft Windows, in addition to putting variable definitions in a named section, the section can also be shared among all running copies of an executable or DLL. For example, this small program defines shared data by putting it in a named section ! `shared' and marking the section shareable: int foo __attribute__((section ("shared"), shared)) = 0; --- 24254,24283 ---- init_duart (&b); } ! Use the 'section' attribute with _global_ variables and not _local_ ! variables, as shown in the example. ! You may use the 'section' attribute with initialized or uninitialized global variables but the linker requires each object be defined once, with the exception that uninitialized variables ! tentatively go in the 'common' (or 'bss') section and can be ! multiply "defined". Using the 'section' attribute changes what ! section the variable goes into and may cause the linker to issue an ! error if an uninitialized variable has multiple definitions. You ! can force a variable to be initialized with the '-fno-common' flag ! or the 'nocommon' attribute. Some file formats do not support arbitrary sections so the ! 'section' attribute is not available on all platforms. If you need ! to map the entire contents of a module to a particular section, ! consider using the facilities of the linker instead. ! 'shared' On Microsoft Windows, in addition to putting variable definitions in a named section, the section can also be shared among all running copies of an executable or DLL. For example, this small program defines shared data by putting it in a named section ! 'shared' and marking the section shareable: int foo __attribute__((section ("shared"), shared)) = 0; *************** attributes. *** 24459,24486 **** return 0; } ! You may only use the `shared' attribute along with `section' ! attribute with a fully-initialized global definition because of ! the way linkers work. See `section' attribute for more ! information. ! The `shared' attribute is only available on Microsoft Windows. ! `tls_model ("TLS_MODEL")' ! The `tls_model' attribute sets thread-local storage model (*note ! Thread-Local::) of a particular `__thread' variable, overriding ! `-ftls-model=' command-line switch on a per-variable basis. The ! TLS_MODEL argument should be one of `global-dynamic', ! `local-dynamic', `initial-exec' or `local-exec'. Not all targets support this attribute. ! `unused' This attribute, attached to a variable, means that the variable is meant to be possibly unused. GCC does not produce a warning for this variable. ! `used' This attribute, attached to a variable, means that the variable must be emitted even if it appears that the variable is not referenced. --- 24289,24315 ---- return 0; } ! You may only use the 'shared' attribute along with 'section' ! attribute with a fully-initialized global definition because of the ! way linkers work. See 'section' attribute for more information. ! The 'shared' attribute is only available on Microsoft Windows. ! 'tls_model ("TLS_MODEL")' ! The 'tls_model' attribute sets thread-local storage model (*note ! Thread-Local::) of a particular '__thread' variable, overriding ! '-ftls-model=' command-line switch on a per-variable basis. The ! TLS_MODEL argument should be one of 'global-dynamic', ! 'local-dynamic', 'initial-exec' or 'local-exec'. Not all targets support this attribute. ! 'unused' This attribute, attached to a variable, means that the variable is meant to be possibly unused. GCC does not produce a warning for this variable. ! 'used' This attribute, attached to a variable, means that the variable must be emitted even if it appears that the variable is not referenced. *************** attributes. *** 24489,24520 **** attribute also means that the member is instantiated if the class itself is instantiated. ! `vector_size (BYTES)' ! This attribute specifies the vector size for the variable, ! measured in bytes. For example, the declaration: int foo __attribute__ ((vector_size (16))); ! causes the compiler to set the mode for `foo', to be 16 bytes, ! divided into `int' sized units. Assuming a 32-bit int (a vector of ! 4 units of 4 bytes), the corresponding mode of `foo' is V4SI. This attribute is only applicable to integral and float scalars, although arrays, pointers, and function return values are allowed in conjunction with this construct. ! Aggregates with this attribute are invalid, even if they are of ! the same size as a corresponding scalar. For example, the ! declaration: struct S { int a; }; struct S __attribute__ ((vector_size (16))) foo; is invalid even if the size of the structure is the same as the ! size of the `int'. ! `selectany' ! The `selectany' attribute causes an initialized global variable to have link-once semantics. When multiple definitions of the variable are encountered by the linker, the first is selected and the remainder are discarded. Following usage by the Microsoft --- 24318,24348 ---- attribute also means that the member is instantiated if the class itself is instantiated. ! 'vector_size (BYTES)' ! This attribute specifies the vector size for the variable, measured ! in bytes. For example, the declaration: int foo __attribute__ ((vector_size (16))); ! causes the compiler to set the mode for 'foo', to be 16 bytes, ! divided into 'int' sized units. Assuming a 32-bit int (a vector of ! 4 units of 4 bytes), the corresponding mode of 'foo' is V4SI. This attribute is only applicable to integral and float scalars, although arrays, pointers, and function return values are allowed in conjunction with this construct. ! Aggregates with this attribute are invalid, even if they are of the ! same size as a corresponding scalar. For example, the declaration: struct S { int a; }; struct S __attribute__ ((vector_size (16))) foo; is invalid even if the size of the structure is the same as the ! size of the 'int'. ! 'selectany' ! The 'selectany' attribute causes an initialized global variable to have link-once semantics. When multiple definitions of the variable are encountered by the linker, the first is selected and the remainder are discarded. Following usage by the Microsoft *************** attributes. *** 24529,24567 **** constructor and destructor are protected by a link-once guard variable. ! The `selectany' attribute is only available on Microsoft Windows ! targets. You can use `__declspec (selectany)' as a synonym for ! `__attribute__ ((selectany))' for compatibility with other compilers. ! `weak' ! The `weak' attribute is described in *note Function Attributes::. ! `dllimport' ! The `dllimport' attribute is described in *note Function Attributes::. ! `dllexport' ! The `dllexport' attribute is described in *note Function Attributes::. - 6.36.1 AVR Variable Attributes ------------------------------ ! `progmem' ! The `progmem' attribute is used on the AVR to place read-only data ! in the non-volatile program memory (flash). The `progmem' attribute accomplishes this by putting respective variables into a ! section whose name starts with `.progmem'. ! This attribute works similar to the `section' attribute but adds ! additional checking. Notice that just like the `section' ! attribute, `progmem' affects the location of the data but not how this data is accessed. ! In order to read data located with the `progmem' attribute ! (inline) assembler must be used. /* Use custom macros from AVR-LibC (http://nongnu.org/avr-libc/user-manual/) */ #include --- 24357,24394 ---- constructor and destructor are protected by a link-once guard variable. ! The 'selectany' attribute is only available on Microsoft Windows ! targets. You can use '__declspec (selectany)' as a synonym for ! '__attribute__ ((selectany))' for compatibility with other compilers. ! 'weak' ! The 'weak' attribute is described in *note Function Attributes::. ! 'dllimport' ! The 'dllimport' attribute is described in *note Function Attributes::. ! 'dllexport' ! The 'dllexport' attribute is described in *note Function Attributes::. 6.36.1 AVR Variable Attributes ------------------------------ ! 'progmem' ! The 'progmem' attribute is used on the AVR to place read-only data ! in the non-volatile program memory (flash). The 'progmem' attribute accomplishes this by putting respective variables into a ! section whose name starts with '.progmem'. ! This attribute works similar to the 'section' attribute but adds ! additional checking. Notice that just like the 'section' ! attribute, 'progmem' affects the location of the data but not how this data is accessed. ! In order to read data located with the 'progmem' attribute (inline) ! assembler must be used. /* Use custom macros from AVR-LibC (http://nongnu.org/avr-libc/user-manual/) */ #include *************** attributes. *** 24585,24690 **** Three attributes are currently defined for the Blackfin. ! `l1_data' ! `l1_data_A' ! `l1_data_B' Use these attributes on the Blackfin to place the variable into L1 ! Data SRAM. Variables with `l1_data' attribute are put into the ! specific section named `.l1.data'. Those with `l1_data_A' ! attribute are put into the specific section named `.l1.data.A'. ! Those with `l1_data_B' attribute are put into the specific section ! named `.l1.data.B'. ! `l2' Use this attribute on the Blackfin to place the variable into L2 ! SRAM. Variables with `l2' attribute are put into the specific ! section named `.l2.data'. 6.36.3 M32R/D Variable Attributes --------------------------------- One attribute is currently defined for the M32R/D. ! `model (MODEL-NAME)' Use this attribute on the M32R/D to set the addressability of an ! object. The identifier MODEL-NAME is one of `small', `medium', or ! `large', representing each of the code models. Small model objects live in the lower 16MB of memory (so that their ! addresses can be loaded with the `ld24' instruction). Medium and large model objects may live anywhere in the 32-bit ! address space (the compiler generates `seth/add3' instructions to load their addresses). 6.36.4 MeP Variable Attributes ------------------------------ ! The MeP target has a number of addressing modes and busses. The `near' space spans the standard memory space's first 16 megabytes (24 bits). ! The `far' space spans the entire 32-bit memory space. The `based' ! space is a 128-byte region in the memory space that is addressed ! relative to the `$tp' register. The `tiny' space is a 65536-byte ! region relative to the `$gp' register. In addition to these memory ! regions, the MeP target has a separate 16-bit control bus which is ! specified with `cb' attributes. ! `based' ! Any variable with the `based' attribute is assigned to the ! `.based' section, and is accessed with relative to the `$tp' ! register. ! `tiny' ! Likewise, the `tiny' attribute assigned variables to the `.tiny' ! section, relative to the `$gp' register. ! `near' ! Variables with the `near' attribute are assumed to have addresses that fit in a 24-bit addressing mode. This is the default for ! large variables (`-mtiny=4' is the default) but this attribute can ! override `-mtiny=' for small variables, or override `-ml'. ! `far' ! Variables with the `far' attribute are addressed using a full 32-bit address. Since this covers the entire memory space, this allows modules to make no assumptions about where variables might be stored. ! `io' ! `io (ADDR)' ! Variables with the `io' attribute are used to address ! memory-mapped peripherals. If an address is specified, the ! variable is assigned that address, else it is not assigned an ! address (it is assumed some other module assigns an address). ! Example: int timer_count __attribute__((io(0x123))); ! `cb' ! `cb (ADDR)' ! Variables with the `cb' attribute are used to access the control ! bus, using special instructions. `addr' indicates the control bus address. Example: int cpu_clock __attribute__((cb(0x123))); - 6.36.5 i386 Variable Attributes ------------------------------- Two attributes are currently defined for i386 configurations: ! `ms_struct' and `gcc_struct' ! `ms_struct' ! `gcc_struct' ! If `packed' is used on a structure, or if bit-fields are used, it may be that the Microsoft ABI lays out the structure differently than the way GCC normally does. Particularly when moving packed data between functions compiled with GCC and the native Microsoft ! compiler (either via function call or as data in a file), it may ! be necessary to access either format. ! Currently `-m[no-]ms-bitfields' is provided for the Microsoft Windows X86 compilers to match the native Microsoft compiler. The Microsoft structure layout algorithm is fairly simple with the --- 24412,24515 ---- Three attributes are currently defined for the Blackfin. ! 'l1_data' ! 'l1_data_A' ! 'l1_data_B' Use these attributes on the Blackfin to place the variable into L1 ! Data SRAM. Variables with 'l1_data' attribute are put into the ! specific section named '.l1.data'. Those with 'l1_data_A' ! attribute are put into the specific section named '.l1.data.A'. ! Those with 'l1_data_B' attribute are put into the specific section ! named '.l1.data.B'. ! 'l2' Use this attribute on the Blackfin to place the variable into L2 ! SRAM. Variables with 'l2' attribute are put into the specific ! section named '.l2.data'. 6.36.3 M32R/D Variable Attributes --------------------------------- One attribute is currently defined for the M32R/D. ! 'model (MODEL-NAME)' Use this attribute on the M32R/D to set the addressability of an ! object. The identifier MODEL-NAME is one of 'small', 'medium', or ! 'large', representing each of the code models. Small model objects live in the lower 16MB of memory (so that their ! addresses can be loaded with the 'ld24' instruction). Medium and large model objects may live anywhere in the 32-bit ! address space (the compiler generates 'seth/add3' instructions to load their addresses). 6.36.4 MeP Variable Attributes ------------------------------ ! The MeP target has a number of addressing modes and busses. The 'near' space spans the standard memory space's first 16 megabytes (24 bits). ! The 'far' space spans the entire 32-bit memory space. The 'based' space ! is a 128-byte region in the memory space that is addressed relative to ! the '$tp' register. The 'tiny' space is a 65536-byte region relative to ! the '$gp' register. In addition to these memory regions, the MeP target ! has a separate 16-bit control bus which is specified with 'cb' ! attributes. ! 'based' ! Any variable with the 'based' attribute is assigned to the '.based' ! section, and is accessed with relative to the '$tp' register. ! 'tiny' ! Likewise, the 'tiny' attribute assigned variables to the '.tiny' ! section, relative to the '$gp' register. ! 'near' ! Variables with the 'near' attribute are assumed to have addresses that fit in a 24-bit addressing mode. This is the default for ! large variables ('-mtiny=4' is the default) but this attribute can ! override '-mtiny=' for small variables, or override '-ml'. ! 'far' ! Variables with the 'far' attribute are addressed using a full 32-bit address. Since this covers the entire memory space, this allows modules to make no assumptions about where variables might be stored. ! 'io' ! 'io (ADDR)' ! Variables with the 'io' attribute are used to address memory-mapped ! peripherals. If an address is specified, the variable is assigned ! that address, else it is not assigned an address (it is assumed ! some other module assigns an address). Example: int timer_count __attribute__((io(0x123))); ! 'cb' ! 'cb (ADDR)' ! Variables with the 'cb' attribute are used to access the control ! bus, using special instructions. 'addr' indicates the control bus address. Example: int cpu_clock __attribute__((cb(0x123))); 6.36.5 i386 Variable Attributes ------------------------------- Two attributes are currently defined for i386 configurations: ! 'ms_struct' and 'gcc_struct' ! 'ms_struct' ! 'gcc_struct' ! ! If 'packed' is used on a structure, or if bit-fields are used, it may be that the Microsoft ABI lays out the structure differently than the way GCC normally does. Particularly when moving packed data between functions compiled with GCC and the native Microsoft ! compiler (either via function call or as data in a file), it may be ! necessary to access either format. ! Currently '-m[no-]ms-bitfields' is provided for the Microsoft Windows X86 compilers to match the native Microsoft compiler. The Microsoft structure layout algorithm is fairly simple with the *************** Two attributes are currently defined for *** 24696,24717 **** which they are declared: the first member has the lowest memory address and the last member the highest. ! 2. Every data object has an alignment requirement. The ! alignment requirement for all data except structures, unions, ! and arrays is either the size of the object or the current ! packing size (specified with either the `aligned' attribute ! or the `pack' pragma), whichever is less. For structures, ! unions, and arrays, the alignment requirement is the largest ! alignment requirement of its members. Every object is ! allocated an offset so that: offset % alignment_requirement == 0 ! 3. Adjacent bit-fields are packed into the same 1-, 2-, or ! 4-byte allocation unit if the integral types are the same ! size and if the next bit-field fits into the current ! allocation unit without crossing the boundary imposed by the ! common alignment requirements of the bit-fields. MSVC interprets zero-length bit-fields in the following ways: --- 24521,24542 ---- which they are declared: the first member has the lowest memory address and the last member the highest. ! 2. Every data object has an alignment requirement. The alignment ! requirement for all data except structures, unions, and arrays ! is either the size of the object or the current packing size ! (specified with either the 'aligned' attribute or the 'pack' ! pragma), whichever is less. For structures, unions, and ! arrays, the alignment requirement is the largest alignment ! requirement of its members. Every object is allocated an ! offset so that: offset % alignment_requirement == 0 ! 3. Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte ! allocation unit if the integral types are the same size and if ! the next bit-field fits into the current allocation unit ! without crossing the boundary imposed by the common alignment ! requirements of the bit-fields. MSVC interprets zero-length bit-fields in the following ways: *************** Two attributes are currently defined for *** 24727,24739 **** unsigned long bf_2 : 12; } t1; ! The size of `t1' is 8 bytes with the zero-length bit-field. ! If the zero-length bit-field were removed, `t1''s size would be 4 bytes. 2. If a zero-length bit-field is inserted after a bit-field, ! `foo', and the alignment of the zero-length bit-field is ! greater than the member that follows it, `bar', `bar' is aligned as the type of the zero-length bit-field. For example: --- 24552,24564 ---- unsigned long bf_2 : 12; } t1; ! The size of 't1' is 8 bytes with the zero-length bit-field. ! If the zero-length bit-field were removed, 't1''s size would be 4 bytes. 2. If a zero-length bit-field is inserted after a bit-field, ! 'foo', and the alignment of the zero-length bit-field is ! greater than the member that follows it, 'bar', 'bar' is aligned as the type of the zero-length bit-field. For example: *************** Two attributes are currently defined for *** 24752,24760 **** double bar; } t3; ! For `t2', `bar' is placed at offset 2, rather than offset 1. ! Accordingly, the size of `t2' is 4. For `t3', the zero-length ! bit-field does not affect the alignment of `bar' or, as a result, the size of the structure. Taking this into account, it is important to note the --- 24577,24585 ---- double bar; } t3; ! For 't2', 'bar' is placed at offset 2, rather than offset 1. ! Accordingly, the size of 't2' is 4. For 't3', the zero-length ! bit-field does not affect the alignment of 'bar' or, as a result, the size of the structure. Taking this into account, it is important to note the *************** Two attributes are currently defined for *** 24762,24768 **** 1. If a zero-length bit-field follows a normal bit-field, the type of the zero-length bit-field may affect the ! alignment of the structure as whole. For example, `t2' has a size of 4 bytes, since the zero-length bit-field follows a normal bit-field, and is of type short. --- 24587,24593 ---- 1. If a zero-length bit-field follows a normal bit-field, the type of the zero-length bit-field may affect the ! alignment of the structure as whole. For example, 't2' has a size of 4 bytes, since the zero-length bit-field follows a normal bit-field, and is of type short. *************** Two attributes are currently defined for *** 24776,24782 **** long : 0; } t4; ! Here, `t4' takes up 4 bytes. 3. Zero-length bit-fields following non-bit-field members are ignored: --- 24601,24607 ---- long : 0; } t4; ! Here, 't4' takes up 4 bytes. 3. Zero-length bit-fields following non-bit-field members are ignored: *************** Two attributes are currently defined for *** 24788,24811 **** char bar; } t5; ! Here, `t5' takes up 2 bytes. 6.36.6 PowerPC Variable Attributes ---------------------------------- Three attributes currently are defined for PowerPC configurations: ! `altivec', `ms_struct' and `gcc_struct'. For full documentation of the struct attributes please see the documentation in *note i386 Variable Attributes::. ! For documentation of `altivec' attribute please see the documentation in *note PowerPC Type Attributes::. 6.36.7 SPU Variable Attributes ------------------------------ ! The SPU supports the `spu_vector' attribute for variables. For documentation of this attribute please see the documentation in *note SPU Type Attributes::. --- 24613,24636 ---- char bar; } t5; ! Here, 't5' takes up 2 bytes. 6.36.6 PowerPC Variable Attributes ---------------------------------- Three attributes currently are defined for PowerPC configurations: ! 'altivec', 'ms_struct' and 'gcc_struct'. For full documentation of the struct attributes please see the documentation in *note i386 Variable Attributes::. ! For documentation of 'altivec' attribute please see the documentation in *note PowerPC Type Attributes::. 6.36.7 SPU Variable Attributes ------------------------------ ! The SPU supports the 'spu_vector' attribute for variables. For documentation of this attribute please see the documentation in *note SPU Type Attributes::. *************** SPU Type Attributes::. *** 24813,24827 **** ------------------------------------ One attribute is currently defined for xstormy16 configurations: ! `below100'. ! `below100' ! If a variable has the `below100' attribute (`BELOW100' is allowed ! also), GCC places the variable in the first 0x100 bytes of memory ! and use special opcodes to access it. Such variables are placed ! in either the `.bss_below100' section or the `.data_below100' ! section.  File: gcc.info, Node: Type Attributes, Next: Alignment, Prev: Variable Attributes, Up: C Extensions --- 24638,24651 ---- ------------------------------------ One attribute is currently defined for xstormy16 configurations: ! 'below100'. ! 'below100' + If a variable has the 'below100' attribute ('BELOW100' is allowed + also), GCC places the variable in the first 0x100 bytes of memory + and use special opcodes to access it. Such variables are placed in + either the '.bss_below100' section or the '.data_below100' section.  File: gcc.info, Node: Type Attributes, Next: Alignment, Prev: Variable Attributes, Up: C Extensions *************** File: gcc.info, Node: Type Attributes, *** 24829,24849 **** 6.37 Specifying Attributes of Types =================================== ! The keyword `__attribute__' allows you to specify special attributes of ! `struct' and `union' types when you define such types. This keyword is ! followed by an attribute specification inside double parentheses. ! Seven attributes are currently defined for types: `aligned', `packed', ! `transparent_union', `unused', `deprecated', `visibility', and ! `may_alias'. Other attributes are defined for functions (*note ! Function Attributes::) and for variables (*note Variable Attributes::). ! You may also specify any one of these attributes with `__' preceding and following its keyword. This allows you to use these attributes in header files without being concerned about a possible macro of the same ! name. For example, you may use `__aligned__' instead of `aligned'. You may specify type attributes in an enum, struct or union type ! declaration or definition, or for other types in a `typedef' declaration. For an enum, struct or union type, you may specify attributes either --- 24653,24673 ---- 6.37 Specifying Attributes of Types =================================== ! The keyword '__attribute__' allows you to specify special attributes of ! 'struct' and 'union' types when you define such types. This keyword is ! followed by an attribute specification inside double parentheses. Seven ! attributes are currently defined for types: 'aligned', 'packed', ! 'transparent_union', 'unused', 'deprecated', 'visibility', and ! 'may_alias'. Other attributes are defined for functions (*note Function ! Attributes::) and for variables (*note Variable Attributes::). ! You may also specify any one of these attributes with '__' preceding and following its keyword. This allows you to use these attributes in header files without being concerned about a possible macro of the same ! name. For example, you may use '__aligned__' instead of 'aligned'. You may specify type attributes in an enum, struct or union type ! declaration or definition, or for other types in a 'typedef' declaration. For an enum, struct or union type, you may specify attributes either *************** preferred. *** 24854,24860 **** *Note Attribute Syntax::, for details of the exact syntax for using attributes. ! `aligned (ALIGNMENT)' This attribute specifies a minimum alignment (in bytes) for variables of the specified type. For example, the declarations: --- 24678,24684 ---- *Note Attribute Syntax::, for details of the exact syntax for using attributes. ! 'aligned (ALIGNMENT)' This attribute specifies a minimum alignment (in bytes) for variables of the specified type. For example, the declarations: *************** attributes. *** 24862,24950 **** typedef int more_aligned_int __attribute__ ((aligned (8))); force the compiler to ensure (as far as it can) that each variable ! whose type is `struct S' or `more_aligned_int' is allocated and aligned _at least_ on a 8-byte boundary. On a SPARC, having all ! variables of type `struct S' aligned to 8-byte boundaries allows ! the compiler to use the `ldd' and `std' (doubleword load and ! store) instructions when copying one variable of type `struct S' to another, thus improving run-time efficiency. ! Note that the alignment of any given `struct' or `union' type is required by the ISO C standard to be at least a perfect multiple of the lowest common multiple of the alignments of all of the members ! of the `struct' or `union' in question. This means that you _can_ ! effectively adjust the alignment of a `struct' or `union' type by ! attaching an `aligned' attribute to any one of the members of such ! a type, but the notation illustrated in the example above is a ! more obvious, intuitive, and readable way to request the compiler ! to adjust the alignment of an entire `struct' or `union' type. As in the preceding example, you can explicitly specify the alignment (in bytes) that you wish the compiler to use for a given ! `struct' or `union' type. Alternatively, you can leave out the alignment factor and just ask the compiler to align a type to the maximum useful alignment for the target machine you are compiling for. For example, you could write: struct S { short f[3]; } __attribute__ ((aligned)); ! Whenever you leave out the alignment factor in an `aligned' attribute specification, the compiler automatically sets the alignment for the type to the largest alignment that is ever used for any data type on the target machine you are compiling for. Doing this can often make copy operations more efficient, because the compiler can use whatever instructions copy the biggest chunks ! of memory when performing copies to or from the variables that ! have types that you have aligned this way. ! In the example above, if the size of each `short' is 2 bytes, then ! the size of the entire `struct S' type is 6 bytes. The smallest power of two that is greater than or equal to that is 8, so the ! compiler sets the alignment for the entire `struct S' type to 8 bytes. Note that although you can ask the compiler to select a time-efficient alignment for a given type and then declare only ! individual stand-alone objects of that type, the compiler's ! ability to select a time-efficient alignment is primarily useful ! only when you plan to create arrays of variables having the ! relevant (efficiently aligned) type. If you declare or use arrays ! of variables of an efficiently-aligned type, then it is likely ! that your program also does pointer arithmetic (or subscripting, ! which amounts to the same thing) on pointers to the relevant type, ! and the code that the compiler generates for these pointer ! arithmetic operations is often more efficient for ! efficiently-aligned types than for other types. ! The `aligned' attribute can only increase the alignment; but you ! can decrease it by specifying `packed' as well. See below. ! Note that the effectiveness of `aligned' attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8-byte alignment, ! then specifying `aligned(16)' in an `__attribute__' still only provides you with 8-byte alignment. See your linker documentation for further information. ! `packed' ! This attribute, attached to `struct' or `union' type definition, specifies that each member (other than zero-width bit-fields) of the structure or union is placed to minimize the memory required. ! When attached to an `enum' definition, it indicates that the smallest integral type should be used. ! Specifying this attribute for `struct' and `union' types is ! equivalent to specifying the `packed' attribute on each of the ! structure or union members. Specifying the `-fshort-enums' flag ! on the line is equivalent to specifying the `packed' attribute on ! all `enum' definitions. ! In the following example `struct my_packed_struct''s members are ! packed closely together, but the internal layout of its `s' member ! is not packed--to do that, `struct my_unpacked_struct' needs to be packed too. struct my_unpacked_struct --- 24686,24774 ---- typedef int more_aligned_int __attribute__ ((aligned (8))); force the compiler to ensure (as far as it can) that each variable ! whose type is 'struct S' or 'more_aligned_int' is allocated and aligned _at least_ on a 8-byte boundary. On a SPARC, having all ! variables of type 'struct S' aligned to 8-byte boundaries allows ! the compiler to use the 'ldd' and 'std' (doubleword load and store) ! instructions when copying one variable of type 'struct S' to another, thus improving run-time efficiency. ! Note that the alignment of any given 'struct' or 'union' type is required by the ISO C standard to be at least a perfect multiple of the lowest common multiple of the alignments of all of the members ! of the 'struct' or 'union' in question. This means that you _can_ ! effectively adjust the alignment of a 'struct' or 'union' type by ! attaching an 'aligned' attribute to any one of the members of such ! a type, but the notation illustrated in the example above is a more ! obvious, intuitive, and readable way to request the compiler to ! adjust the alignment of an entire 'struct' or 'union' type. As in the preceding example, you can explicitly specify the alignment (in bytes) that you wish the compiler to use for a given ! 'struct' or 'union' type. Alternatively, you can leave out the alignment factor and just ask the compiler to align a type to the maximum useful alignment for the target machine you are compiling for. For example, you could write: struct S { short f[3]; } __attribute__ ((aligned)); ! Whenever you leave out the alignment factor in an 'aligned' attribute specification, the compiler automatically sets the alignment for the type to the largest alignment that is ever used for any data type on the target machine you are compiling for. Doing this can often make copy operations more efficient, because the compiler can use whatever instructions copy the biggest chunks ! of memory when performing copies to or from the variables that have ! types that you have aligned this way. ! In the example above, if the size of each 'short' is 2 bytes, then ! the size of the entire 'struct S' type is 6 bytes. The smallest power of two that is greater than or equal to that is 8, so the ! compiler sets the alignment for the entire 'struct S' type to 8 bytes. Note that although you can ask the compiler to select a time-efficient alignment for a given type and then declare only ! individual stand-alone objects of that type, the compiler's ability ! to select a time-efficient alignment is primarily useful only when ! you plan to create arrays of variables having the relevant ! (efficiently aligned) type. If you declare or use arrays of ! variables of an efficiently-aligned type, then it is likely that ! your program also does pointer arithmetic (or subscripting, which ! amounts to the same thing) on pointers to the relevant type, and ! the code that the compiler generates for these pointer arithmetic ! operations is often more efficient for efficiently-aligned types ! than for other types. ! The 'aligned' attribute can only increase the alignment; but you ! can decrease it by specifying 'packed' as well. See below. ! Note that the effectiveness of 'aligned' attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8-byte alignment, ! then specifying 'aligned(16)' in an '__attribute__' still only provides you with 8-byte alignment. See your linker documentation for further information. ! 'packed' ! This attribute, attached to 'struct' or 'union' type definition, specifies that each member (other than zero-width bit-fields) of the structure or union is placed to minimize the memory required. ! When attached to an 'enum' definition, it indicates that the smallest integral type should be used. ! Specifying this attribute for 'struct' and 'union' types is ! equivalent to specifying the 'packed' attribute on each of the ! structure or union members. Specifying the '-fshort-enums' flag on ! the line is equivalent to specifying the 'packed' attribute on all ! 'enum' definitions. ! In the following example 'struct my_packed_struct''s members are ! packed closely together, but the internal layout of its 's' member ! is not packed--to do that, 'struct my_unpacked_struct' needs to be packed too. struct my_unpacked_struct *************** attributes. *** 24960,24971 **** struct my_unpacked_struct s; }; ! You may only specify this attribute on the definition of an `enum', ! `struct' or `union', not on a `typedef' that does not also define the enumerated type, structure or union. ! `transparent_union' ! This attribute, attached to a `union' type definition, indicates that any function parameter having that union type causes calls to that function to be treated in a special way. --- 24784,24795 ---- struct my_unpacked_struct s; }; ! You may only specify this attribute on the definition of an 'enum', ! 'struct' or 'union', not on a 'typedef' that does not also define the enumerated type, structure or union. ! 'transparent_union' ! This attribute, attached to a 'union' type definition, indicates that any function parameter having that union type causes calls to that function to be treated in a special way. *************** attributes. *** 24975,24981 **** null pointer constant or a void pointer expression; and if the union contains a void pointer type, the corresponding argument can be any pointer expression. If the union member type is a pointer, ! qualifiers like `const' on the referenced type must be respected, just as with normal pointer conversions. Second, the argument is passed to the function using the calling --- 24799,24805 ---- null pointer constant or a void pointer expression; and if the union contains a void pointer type, the corresponding argument can be any pointer expression. If the union member type is a pointer, ! qualifiers like 'const' on the referenced type must be respected, just as with normal pointer conversions. Second, the argument is passed to the function using the calling *************** attributes. *** 24986,24998 **** Transparent unions are designed for library functions that have multiple interfaces for compatibility reasons. For example, ! suppose the `wait' function must accept either a value of type ! `int *' to comply with POSIX, or a value of type `union wait *' to ! comply with the 4.1BSD interface. If `wait''s parameter were ! `void *', `wait' would accept both kinds of arguments, but it ! would also accept any other pointer type and this would make ! argument type checking less useful. Instead, `' might ! define the interface as follows: typedef union __attribute__ ((__transparent_union__)) { --- 24810,24822 ---- Transparent unions are designed for library functions that have multiple interfaces for compatibility reasons. For example, ! suppose the 'wait' function must accept either a value of type 'int ! *' to comply with POSIX, or a value of type 'union wait *' to ! comply with the 4.1BSD interface. If 'wait''s parameter were 'void ! *', 'wait' would accept both kinds of arguments, but it would also ! accept any other pointer type and this would make argument type ! checking less useful. Instead, '' might define the ! interface as follows: typedef union __attribute__ ((__transparent_union__)) { *************** attributes. *** 25002,25023 **** pid_t wait (wait_status_ptr_t); ! This interface allows either `int *' or `union wait *' arguments ! to be passed, using the `int *' calling convention. The program ! can call `wait' with arguments of either type: int w1 () { int w; return wait (&w); } int w2 () { union wait w; return wait (&w); } ! With this interface, `wait''s implementation might look like this: pid_t wait (wait_status_ptr_t p) { return waitpid (-1, p.__ip, 0); } ! `unused' ! When attached to a type (including a `union' or a `struct'), this attribute means that variables of that type are meant to appear possibly unused. GCC does not produce a warning for any variables of that type, even if the variable appears to do nothing. This is --- 24826,24847 ---- pid_t wait (wait_status_ptr_t); ! This interface allows either 'int *' or 'union wait *' arguments to ! be passed, using the 'int *' calling convention. The program can ! call 'wait' with arguments of either type: int w1 () { int w; return wait (&w); } int w2 () { union wait w; return wait (&w); } ! With this interface, 'wait''s implementation might look like this: pid_t wait (wait_status_ptr_t p) { return waitpid (-1, p.__ip, 0); } ! 'unused' ! When attached to a type (including a 'union' or a 'struct'), this attribute means that variables of that type are meant to appear possibly unused. GCC does not produce a warning for any variables of that type, even if the variable appears to do nothing. This is *************** attributes. *** 25025,25041 **** defined and then not referenced, but contain constructors and destructors that have nontrivial bookkeeping functions. ! `deprecated' ! `deprecated (MSG)' ! The `deprecated' attribute results in a warning if the type is ! used anywhere in the source file. This is useful when identifying ! types that are expected to be removed in a future version of a ! program. If possible, the warning also includes the location of ! the declaration of the deprecated type, to enable users to easily ! find further information about why the type is deprecated, or what ! they should do instead. Note that the warnings only occur for ! uses and then only if the type is being applied to an identifier ! that itself is not being declared as deprecated. typedef int T1 __attribute__ ((deprecated)); T1 x; --- 24849,24865 ---- defined and then not referenced, but contain constructors and destructors that have nontrivial bookkeeping functions. ! 'deprecated' ! 'deprecated (MSG)' ! The 'deprecated' attribute results in a warning if the type is used ! anywhere in the source file. This is useful when identifying types ! that are expected to be removed in a future version of a program. ! If possible, the warning also includes the location of the ! declaration of the deprecated type, to enable users to easily find ! further information about why the type is deprecated, or what they ! should do instead. Note that the warnings only occur for uses and ! then only if the type is being applied to an identifier that itself ! is not being declared as deprecated. typedef int T1 __attribute__ ((deprecated)); T1 x; *************** attributes. *** 25050,25066 **** deprecated. Similarly for line 6. The optional MSG argument, which must be a string, is printed in the warning if present. ! The `deprecated' attribute can also be used for functions and variables (*note Function Attributes::, *note Variable Attributes::.) ! `may_alias' Accesses through pointers to types with this attribute are not ! subject to type-based alias analysis, but are instead assumed to ! be able to alias any other type of objects. In the context of ! section 6.5 paragraph 7 of the C99 standard, an lvalue expression dereferencing such a pointer is treated like having a character ! type. See `-fstrict-aliasing' for more information on aliasing issues. This extension exists to support some vector APIs, in which pointers to one vector type are permitted to alias pointers to a different vector type. --- 24874,24890 ---- deprecated. Similarly for line 6. The optional MSG argument, which must be a string, is printed in the warning if present. ! The 'deprecated' attribute can also be used for functions and variables (*note Function Attributes::, *note Variable Attributes::.) ! 'may_alias' Accesses through pointers to types with this attribute are not ! subject to type-based alias analysis, but are instead assumed to be ! able to alias any other type of objects. In the context of section ! 6.5 paragraph 7 of the C99 standard, an lvalue expression dereferencing such a pointer is treated like having a character ! type. See '-fstrict-aliasing' for more information on aliasing issues. This extension exists to support some vector APIs, in which pointers to one vector type are permitted to alias pointers to a different vector type. *************** attributes. *** 25086,25122 **** exit(0); } ! If you replaced `short_a' with `short' in the variable ! declaration, the above program would abort when compiled with ! `-fstrict-aliasing', which is on by default at `-O2' or above in recent GCC versions. ! `visibility' ! In C++, attribute visibility (*note Function Attributes::) can ! also be applied to class, struct, union and enum types. Unlike ! other type attributes, the attribute must appear between the ! initial keyword and the name of the type; it cannot appear after ! the body of the type. Note that the type visibility is applied to vague linkage entities associated with the class (vtable, typeinfo node, etc.). In particular, if a class is thrown as an exception in one shared object and caught in another, the class must have default ! visibility. Otherwise the two shared objects are unable to use ! the same typeinfo node and exception handling will break. ! To specify multiple attributes, separate them by commas within the ! double parentheses: for example, `__attribute__ ((aligned (16), packed))'. 6.37.1 ARM Type Attributes -------------------------- ! On those ARM targets that support `dllimport' (such as Symbian OS), you ! can use the `notshared' attribute to indicate that the virtual table ! and other similar data for a class should not be exported from a DLL. ! For example: class __declspec(notshared) C { public: --- 24910,24945 ---- exit(0); } ! If you replaced 'short_a' with 'short' in the variable declaration, ! the above program would abort when compiled with ! '-fstrict-aliasing', which is on by default at '-O2' or above in recent GCC versions. ! 'visibility' ! In C++, attribute visibility (*note Function Attributes::) can also ! be applied to class, struct, union and enum types. Unlike other ! type attributes, the attribute must appear between the initial ! keyword and the name of the type; it cannot appear after the body ! of the type. Note that the type visibility is applied to vague linkage entities associated with the class (vtable, typeinfo node, etc.). In particular, if a class is thrown as an exception in one shared object and caught in another, the class must have default ! visibility. Otherwise the two shared objects are unable to use the ! same typeinfo node and exception handling will break. To specify multiple attributes, separate them by commas within the ! double parentheses: for example, '__attribute__ ((aligned (16), packed))'. 6.37.1 ARM Type Attributes -------------------------- ! On those ARM targets that support 'dllimport' (such as Symbian OS), you ! can use the 'notshared' attribute to indicate that the virtual table and ! other similar data for a class should not be exported from a DLL. For ! example: class __declspec(notshared) C { public: *************** For example: *** 25127,25191 **** __declspec(dllexport) C::C() {} ! In this code, `C::C' is exported from the current DLL, but the virtual ! table for `C' is not exported. (You can use `__attribute__' instead of ! `__declspec' if you prefer, but most Symbian OS code uses `__declspec'.) 6.37.2 MeP Type Attributes -------------------------- Many of the MeP variable attributes may be applied to types as well. ! Specifically, the `based', `tiny', `near', and `far' attributes may be ! applied to either. The `io' and `cb' attributes may not be applied to types. 6.37.3 i386 Type Attributes --------------------------- Two attributes are currently defined for i386 configurations: ! `ms_struct' and `gcc_struct'. ! `ms_struct' ! `gcc_struct' ! If `packed' is used on a structure, or if bit-fields are used it may be that the Microsoft ABI packs them differently than GCC normally packs them. Particularly when moving packed data between functions compiled with GCC and the native Microsoft compiler (either via function call or as data in a file), it may be necessary to access either format. ! Currently `-m[no-]ms-bitfields' is provided for the Microsoft Windows X86 compilers to match the native Microsoft compiler. 6.37.4 PowerPC Type Attributes ------------------------------ Three attributes currently are defined for PowerPC configurations: ! `altivec', `ms_struct' and `gcc_struct'. ! For full documentation of the `ms_struct' and `gcc_struct' attributes please see the documentation in *note i386 Type Attributes::. ! The `altivec' attribute allows one to declare AltiVec vector data ! types supported by the AltiVec Programming Interface Manual. The ! attribute requires an argument to specify one of three vector types: ! `vector__', `pixel__' (always followed by unsigned short), and `bool__' ! (always followed by unsigned). __attribute__((altivec(vector__))) __attribute__((altivec(pixel__))) unsigned short __attribute__((altivec(bool__))) unsigned ! These attributes mainly are intended to support the `__vector', ! `__pixel', and `__bool' AltiVec keywords. 6.37.5 SPU Type Attributes -------------------------- ! The SPU supports the `spu_vector' attribute for types. This attribute allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU Language Extensions Specification. It is intended ! to support the `__vector' keyword.  File: gcc.info, Node: Alignment, Next: Inline, Prev: Type Attributes, Up: C Extensions --- 24950,25015 ---- __declspec(dllexport) C::C() {} ! In this code, 'C::C' is exported from the current DLL, but the virtual ! table for 'C' is not exported. (You can use '__attribute__' instead of ! '__declspec' if you prefer, but most Symbian OS code uses '__declspec'.) 6.37.2 MeP Type Attributes -------------------------- Many of the MeP variable attributes may be applied to types as well. ! Specifically, the 'based', 'tiny', 'near', and 'far' attributes may be ! applied to either. The 'io' and 'cb' attributes may not be applied to types. 6.37.3 i386 Type Attributes --------------------------- Two attributes are currently defined for i386 configurations: ! 'ms_struct' and 'gcc_struct'. ! 'ms_struct' ! 'gcc_struct' ! ! If 'packed' is used on a structure, or if bit-fields are used it may be that the Microsoft ABI packs them differently than GCC normally packs them. Particularly when moving packed data between functions compiled with GCC and the native Microsoft compiler (either via function call or as data in a file), it may be necessary to access either format. ! Currently '-m[no-]ms-bitfields' is provided for the Microsoft Windows X86 compilers to match the native Microsoft compiler. 6.37.4 PowerPC Type Attributes ------------------------------ Three attributes currently are defined for PowerPC configurations: ! 'altivec', 'ms_struct' and 'gcc_struct'. ! For full documentation of the 'ms_struct' and 'gcc_struct' attributes please see the documentation in *note i386 Type Attributes::. ! The 'altivec' attribute allows one to declare AltiVec vector data types ! supported by the AltiVec Programming Interface Manual. The attribute ! requires an argument to specify one of three vector types: 'vector__', ! 'pixel__' (always followed by unsigned short), and 'bool__' (always ! followed by unsigned). __attribute__((altivec(vector__))) __attribute__((altivec(pixel__))) unsigned short __attribute__((altivec(bool__))) unsigned ! These attributes mainly are intended to support the '__vector', ! '__pixel', and '__bool' AltiVec keywords. 6.37.5 SPU Type Attributes -------------------------- ! The SPU supports the 'spu_vector' attribute for types. This attribute allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU Language Extensions Specification. It is intended ! to support the '__vector' keyword.  File: gcc.info, Node: Alignment, Next: Inline, Prev: Type Attributes, Up: C Extensions *************** File: gcc.info, Node: Alignment, Next: *** 25193,25221 **** 6.38 Inquiring on Alignment of Types or Variables ================================================= ! The keyword `__alignof__' allows you to inquire about how an object is aligned, or the minimum alignment usually required by a type. Its ! syntax is just like `sizeof'. ! For example, if the target machine requires a `double' value to be ! aligned on an 8-byte boundary, then `__alignof__ (double)' is 8. This is true on many RISC machines. On more traditional machine designs, ! `__alignof__ (double)' is 4 or even 2. ! Some machines never actually require alignment; they allow reference ! to any data type even at an odd address. For these machines, ! `__alignof__' reports the smallest alignment that GCC gives the data ! type, usually as mandated by the target ABI. ! If the operand of `__alignof__' is an lvalue rather than a type, its value is the required alignment for its type, taking into account any ! minimum alignment specified with GCC's `__attribute__' extension (*note Variable Attributes::). For example, after this declaration: struct foo { int x; char y; } foo1; ! the value of `__alignof__ (foo1.y)' is 1, even though its actual ! alignment is probably 2 or 4, the same as `__alignof__ (int)'. It is an error to ask for the alignment of an incomplete type. --- 25017,25045 ---- 6.38 Inquiring on Alignment of Types or Variables ================================================= ! The keyword '__alignof__' allows you to inquire about how an object is aligned, or the minimum alignment usually required by a type. Its ! syntax is just like 'sizeof'. ! For example, if the target machine requires a 'double' value to be ! aligned on an 8-byte boundary, then '__alignof__ (double)' is 8. This is true on many RISC machines. On more traditional machine designs, ! '__alignof__ (double)' is 4 or even 2. ! Some machines never actually require alignment; they allow reference to ! any data type even at an odd address. For these machines, '__alignof__' ! reports the smallest alignment that GCC gives the data type, usually as ! mandated by the target ABI. ! If the operand of '__alignof__' is an lvalue rather than a type, its value is the required alignment for its type, taking into account any ! minimum alignment specified with GCC's '__attribute__' extension (*note Variable Attributes::). For example, after this declaration: struct foo { int x; char y; } foo1; ! the value of '__alignof__ (foo1.y)' is 1, even though its actual ! alignment is probably 2 or 4, the same as '__alignof__ (int)'. It is an error to ask for the alignment of an incomplete type. *************** File: gcc.info, Node: Inline, Next: Vo *** 25225,25249 **** 6.39 An Inline Function is As Fast As a Macro ============================================= ! By declaring a function inline, you can direct GCC to make calls to ! that function faster. One way GCC can achieve this is to integrate ! that function's code into the code for its callers. This makes ! execution faster by eliminating the function-call overhead; in ! addition, if any of the actual argument values are constant, their ! known values may permit simplifications at compile time so that not all ! of the inline function's code needs to be included. The effect on code ! size is less predictable; object code may be larger or smaller with ! function inlining, depending on the particular case. You can also ! direct GCC to try to integrate all "simple enough" functions into their ! callers with the option `-finline-functions'. GCC implements three different semantics of declaring a function ! inline. One is available with `-std=gnu89' or `-fgnu89-inline' or when ! `gnu_inline' attribute is present on all inline declarations, another ! when `-std=c99', `-std=c11', `-std=gnu99' or `-std=gnu11' (without ! `-fgnu89-inline'), and the third is used when compiling C++. ! To declare a function inline, use the `inline' keyword in its declaration, like this: static inline int --- 25049,25073 ---- 6.39 An Inline Function is As Fast As a Macro ============================================= ! By declaring a function inline, you can direct GCC to make calls to that ! function faster. One way GCC can achieve this is to integrate that ! function's code into the code for its callers. This makes execution ! faster by eliminating the function-call overhead; in addition, if any of ! the actual argument values are constant, their known values may permit ! simplifications at compile time so that not all of the inline function's ! code needs to be included. The effect on code size is less predictable; ! object code may be larger or smaller with function inlining, depending ! on the particular case. You can also direct GCC to try to integrate all ! "simple enough" functions into their callers with the option ! '-finline-functions'. GCC implements three different semantics of declaring a function ! inline. One is available with '-std=gnu89' or '-fgnu89-inline' or when ! 'gnu_inline' attribute is present on all inline declarations, another ! when '-std=c99', '-std=c11', '-std=gnu99' or '-std=gnu11' (without ! '-fgnu89-inline'), and the third is used when compiling C++. ! To declare a function inline, use the 'inline' keyword in its declaration, like this: static inline int *************** declaration, like this: *** 25253,25264 **** } If you are writing a header file to be included in ISO C90 programs, ! write `__inline__' instead of `inline'. *Note Alternate Keywords::. The three types of inlining behave similarly in two important cases: ! when the `inline' keyword is used on a `static' function, like the example above, and when a function is first declared without using the ! `inline' keyword and then is defined with `inline', like this: extern int inc (int *a); inline int --- 25077,25088 ---- } If you are writing a header file to be included in ISO C90 programs, ! write '__inline__' instead of 'inline'. *Note Alternate Keywords::. The three types of inlining behave similarly in two important cases: ! when the 'inline' keyword is used on a 'static' function, like the example above, and when a function is first declared without using the ! 'inline' keyword and then is defined with 'inline', like this: extern int inc (int *a); inline int *************** example above, and when a function is fi *** 25268,25328 **** } In both of these common cases, the program behaves the same as if you ! had not used the `inline' keyword, except for its speed. ! When a function is both inline and `static', if all calls to the function are integrated into the caller, and the function's address is never used, then the function's own assembler code is never referenced. In this case, GCC does not actually output assembler code for the ! function, unless you specify the option `-fkeep-inline-functions'. ! Some calls cannot be integrated for various reasons (in particular, ! calls that precede the function's definition cannot be integrated, and ! neither can recursive calls within the definition). If there is a ! nonintegrated call, then the function is compiled to assembler code as ! usual. The function must also be compiled as usual if the program ! refers to its address, because that can't be inlined. Note that certain usages in a function definition can make it unsuitable for inline substitution. Among these usages are: variadic ! functions, use of `alloca', use of variable-length data types (*note ! Variable Length::), use of computed goto (*note Labels as Values::), ! use of nonlocal goto, and nested functions (*note Nested Functions::). ! Using `-Winline' warns when a function marked `inline' could not be substituted, and gives the reason for the failure. As required by ISO C++, GCC considers member functions defined within the body of a class to be marked inline even if they are not explicitly ! declared with the `inline' keyword. You can override this with ! `-fno-default-inline'; *note Options Controlling C++ Dialect: C++ Dialect Options. GCC does not inline any functions when not optimizing unless you ! specify the `always_inline' attribute for the function, like this: /* Prototype. */ inline void foo (const char) __attribute__((always_inline)); The remainder of this section is specific to GNU C90 inlining. ! When an inline function is not `static', then the compiler must assume that there may be calls from other source files; since a global symbol can be defined only once in any program, the function must not be defined in the other source files, so the calls therein cannot be ! integrated. Therefore, a non-`static' inline function is always compiled on its own in the usual fashion. ! If you specify both `inline' and `extern' in the function definition, then the definition is used only for inlining. In no case is the function compiled on its own, not even if you refer to its address explicitly. Such an address becomes an external reference, as if you had only declared the function, and had not defined it. ! This combination of `inline' and `extern' has almost the effect of a macro. The way to use it is to put a function definition in a header file with these keywords, and put another copy of the definition ! (lacking `inline' and `extern') in a library file. The definition in ! the header file causes most calls to the function to be inlined. If ! any uses of the function remain, they refer to the single copy in the library.  --- 25092,25152 ---- } In both of these common cases, the program behaves the same as if you ! had not used the 'inline' keyword, except for its speed. ! When a function is both inline and 'static', if all calls to the function are integrated into the caller, and the function's address is never used, then the function's own assembler code is never referenced. In this case, GCC does not actually output assembler code for the ! function, unless you specify the option '-fkeep-inline-functions'. Some ! calls cannot be integrated for various reasons (in particular, calls ! that precede the function's definition cannot be integrated, and neither ! can recursive calls within the definition). If there is a nonintegrated ! call, then the function is compiled to assembler code as usual. The ! function must also be compiled as usual if the program refers to its ! address, because that can't be inlined. Note that certain usages in a function definition can make it unsuitable for inline substitution. Among these usages are: variadic ! functions, use of 'alloca', use of variable-length data types (*note ! Variable Length::), use of computed goto (*note Labels as Values::), use ! of nonlocal goto, and nested functions (*note Nested Functions::). ! Using '-Winline' warns when a function marked 'inline' could not be substituted, and gives the reason for the failure. As required by ISO C++, GCC considers member functions defined within the body of a class to be marked inline even if they are not explicitly ! declared with the 'inline' keyword. You can override this with ! '-fno-default-inline'; *note Options Controlling C++ Dialect: C++ Dialect Options. GCC does not inline any functions when not optimizing unless you ! specify the 'always_inline' attribute for the function, like this: /* Prototype. */ inline void foo (const char) __attribute__((always_inline)); The remainder of this section is specific to GNU C90 inlining. ! When an inline function is not 'static', then the compiler must assume that there may be calls from other source files; since a global symbol can be defined only once in any program, the function must not be defined in the other source files, so the calls therein cannot be ! integrated. Therefore, a non-'static' inline function is always compiled on its own in the usual fashion. ! If you specify both 'inline' and 'extern' in the function definition, then the definition is used only for inlining. In no case is the function compiled on its own, not even if you refer to its address explicitly. Such an address becomes an external reference, as if you had only declared the function, and had not defined it. ! This combination of 'inline' and 'extern' has almost the effect of a macro. The way to use it is to put a function definition in a header file with these keywords, and put another copy of the definition ! (lacking 'inline' and 'extern') in a library file. The definition in ! the header file causes most calls to the function to be inlined. If any ! uses of the function remain, they refer to the single copy in the library.  *************** allow you to violate the restriction on *** 25345,25362 **** between two sequence points. Accesses to non-volatile objects are not ordered with respect to ! volatile accesses. You cannot use a volatile object as a memory ! barrier to order a sequence of writes to non-volatile memory. For ! instance: int *ptr = SOMETHING; volatile int vobj; *ptr = SOMETHING; vobj = 1; ! Unless *PTR and VOBJ can be aliased, it is not guaranteed that the ! write to *PTR occurs by the time the update of VOBJ happens. If you ! need this guarantee, you must use a stronger memory barrier such as: int *ptr = SOMETHING; volatile int vobj; --- 25169,25185 ---- between two sequence points. Accesses to non-volatile objects are not ordered with respect to ! volatile accesses. You cannot use a volatile object as a memory barrier ! to order a sequence of writes to non-volatile memory. For instance: int *ptr = SOMETHING; volatile int vobj; *ptr = SOMETHING; vobj = 1; ! Unless *PTR and VOBJ can be aliased, it is not guaranteed that the write ! to *PTR occurs by the time the update of VOBJ happens. If you need this ! guarantee, you must use a stronger memory barrier such as: int *ptr = SOMETHING; volatile int vobj; *************** volatile object being pointed to. *** 25374,25382 **** Assignments are also expressions and have an rvalue. However when assigning to a scalar volatile, the volatile object is not reread, ! regardless of whether the assignment expression's rvalue is used or ! not. If the assignment's rvalue is used, the value is that assigned to ! the volatile object. For instance, there is no read of VOBJ in all the following cases: int obj; --- 25197,25205 ---- Assignments are also expressions and have an rvalue. However when assigning to a scalar volatile, the volatile object is not reread, ! regardless of whether the assignment expression's rvalue is used or not. ! If the assignment's rvalue is used, the value is that assigned to the ! volatile object. For instance, there is no read of VOBJ in all the following cases: int obj; *************** File: gcc.info, Node: Extended Asm, Ne *** 25403,25426 **** 6.41 Assembler Instructions with C Expression Operands ====================================================== ! In an assembler instruction using `asm', you can specify the operands ! of the instruction using C expressions. This means you need not guess which registers or memory locations contain the data you want to use. You must specify an assembler instruction template much like what appears in a machine description, plus an operand constraint string for each operand. ! For example, here is how to use the 68881's `fsinx' instruction: asm ("fsinx %1,%0" : "=f" (result) : "f" (angle)); ! Here `angle' is the C expression for the input operand while `result' ! is that of the output operand. Each has `"f"' as its operand ! constraint, saying that a floating-point register is required. The `=' ! in `=f' indicates that the operand is an output; all output operands' ! constraints must use `='. The constraints use the same language used ! in the machine description (*note Constraints::). Each operand is described by an operand-constraint string followed by the C expression in parentheses. A colon separates the assembler --- 25226,25249 ---- 6.41 Assembler Instructions with C Expression Operands ====================================================== ! In an assembler instruction using 'asm', you can specify the operands of ! the instruction using C expressions. This means you need not guess which registers or memory locations contain the data you want to use. You must specify an assembler instruction template much like what appears in a machine description, plus an operand constraint string for each operand. ! For example, here is how to use the 68881's 'fsinx' instruction: asm ("fsinx %1,%0" : "=f" (result) : "f" (angle)); ! Here 'angle' is the C expression for the input operand while 'result' is ! that of the output operand. Each has '"f"' as its operand constraint, ! saying that a floating-point register is required. The '=' in '=f' ! indicates that the operand is an output; all output operands' ! constraints must use '='. The constraints use the same language used in ! the machine description (*note Constraints::). Each operand is described by an operand-constraint string followed by the C expression in parentheses. A colon separates the assembler *************** operands would go. *** 25438,25444 **** operands using symbolic names which can be referenced within the assembler code. These names are specified inside square brackets preceding the constraint string, and can be referenced inside the ! assembler code using `%[NAME]' instead of a percentage sign followed by the operand number. Using named operands the above example could look like: --- 25261,25267 ---- operands using symbolic names which can be referenced within the assembler code. These names are specified inside square brackets preceding the constraint string, and can be referenced inside the ! assembler code using '%[NAME]' instead of a percentage sign followed by the operand number. Using named operands the above example could look like: *************** this. The input operands need not be lv *** 25456,25518 **** check whether the operands have data types that are reasonable for the instruction being executed. It does not parse the assembler instruction template and does not know what it means or even whether it is valid ! assembler input. The extended `asm' feature is most often used for machine instructions the compiler itself does not know exist. If the output expression cannot be directly addressed (for example, it is a bit-field), your constraint must allow a register. In that case, GCC ! uses the register as the output of the `asm', and then stores that register into the output. The ordinary output operands must be write-only; GCC assumes that the ! values in these operands before the instruction are dead and need not ! be generated. Extended asm supports input-output or read-write ! operands. Use the constraint character `+' to indicate such an operand ! and list it with the output operands. You may, as an alternative, logically split its function into two separate operands, one input operand and one write-only output operand. The connection between them is expressed by constraints that say they need to be in the same location when the instruction executes. You can use the same C expression for both operands, or different expressions. ! For example, here we write the (fictitious) `combine' instruction with ! `bar' as its read-only source operand and `foo' as its read-write destination: asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar)); ! The constraint `"0"' for operand 1 says that it must occupy the same location as operand 0. A number in constraint is allowed only in an input operand and it must refer to an output operand. Only a number in the constraint can guarantee that one operand is in ! the same place as another. The mere fact that `foo' is the value of ! both operands is not enough to guarantee that they are in the same ! place in the generated assembler code. The following does not work ! reliably: asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar)); Various optimizations or reloading could cause operands 0 and 1 to be in different registers; GCC knows no reason not to do so. For example, ! the compiler might find a copy of the value of `foo' in one register and use it for operand 1, but generate the output operand 0 in a different ! register (copying it afterward to `foo''s own address). Of course, since the register for operand 1 is not even mentioned in the assembler code, the result will not work, but GCC can't tell that. ! As of GCC version 3.1, one may write `[NAME]' instead of the operand number for a matching constraint. For example: asm ("cmoveq %1,%2,%[result]" : [result] "=r"(result) : "r" (test), "r"(new), "[result]"(old)); ! Sometimes you need to make an `asm' operand be a specific register, ! but there's no matching constraint letter for that register _by ! itself_. To force the operand into that register, use a local variable ! for the operand and specify the register in the variable declaration. ! *Note Explicit Reg Vars::. Then for the `asm' operand, use any ! register constraint letter that matches the register: register int *p1 asm ("r0") = ...; register int *p2 asm ("r1") = ...; --- 25279,25340 ---- check whether the operands have data types that are reasonable for the instruction being executed. It does not parse the assembler instruction template and does not know what it means or even whether it is valid ! assembler input. The extended 'asm' feature is most often used for machine instructions the compiler itself does not know exist. If the output expression cannot be directly addressed (for example, it is a bit-field), your constraint must allow a register. In that case, GCC ! uses the register as the output of the 'asm', and then stores that register into the output. The ordinary output operands must be write-only; GCC assumes that the ! values in these operands before the instruction are dead and need not be ! generated. Extended asm supports input-output or read-write operands. ! Use the constraint character '+' to indicate such an operand and list it ! with the output operands. You may, as an alternative, logically split its function into two separate operands, one input operand and one write-only output operand. The connection between them is expressed by constraints that say they need to be in the same location when the instruction executes. You can use the same C expression for both operands, or different expressions. ! For example, here we write the (fictitious) 'combine' instruction with ! 'bar' as its read-only source operand and 'foo' as its read-write destination: asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar)); ! The constraint '"0"' for operand 1 says that it must occupy the same location as operand 0. A number in constraint is allowed only in an input operand and it must refer to an output operand. Only a number in the constraint can guarantee that one operand is in ! the same place as another. The mere fact that 'foo' is the value of ! both operands is not enough to guarantee that they are in the same place ! in the generated assembler code. The following does not work reliably: asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar)); Various optimizations or reloading could cause operands 0 and 1 to be in different registers; GCC knows no reason not to do so. For example, ! the compiler might find a copy of the value of 'foo' in one register and use it for operand 1, but generate the output operand 0 in a different ! register (copying it afterward to 'foo''s own address). Of course, since the register for operand 1 is not even mentioned in the assembler code, the result will not work, but GCC can't tell that. ! As of GCC version 3.1, one may write '[NAME]' instead of the operand number for a matching constraint. For example: asm ("cmoveq %1,%2,%[result]" : [result] "=r"(result) : "r" (test), "r"(new), "[result]"(old)); ! Sometimes you need to make an 'asm' operand be a specific register, but ! there's no matching constraint letter for that register _by itself_. To ! force the operand into that register, use a local variable for the ! operand and specify the register in the variable declaration. *Note ! Explicit Reg Vars::. Then for the 'asm' operand, use any register ! constraint letter that matches the register: register int *p1 asm ("r0") = ...; register int *p2 asm ("r1") = ...; *************** register constraint letter that matches *** 25522,25532 **** In the above example, beware that a register that is call-clobbered by the target ABI will be overwritten by any function call in the assignment, including library calls for arithmetic operators. Also a ! register may be clobbered when generating some operations, like ! variable shift, memory copy or memory move on x86. Assuming it is a ! call-clobbered register, this may happen to `r0' above by the ! assignment to `p2'. If you have to use such a register, use temporary ! variables for expressions between the register assignment and use: int t1 = ...; register int *p1 asm ("r0") = ...; --- 25344,25354 ---- In the above example, beware that a register that is call-clobbered by the target ABI will be overwritten by any function call in the assignment, including library calls for arithmetic operators. Also a ! register may be clobbered when generating some operations, like variable ! shift, memory copy or memory move on x86. Assuming it is a ! call-clobbered register, this may happen to 'r0' above by the assignment ! to 'p2'. If you have to use such a register, use temporary variables ! for expressions between the register assignment and use: int t1 = ...; register int *p1 asm ("r0") = ...; *************** input or output operand. For example, y *** 25549,25589 **** describing a register class with one member if you mention that register in the clobber list. Variables declared to live in specific registers (*note Explicit Reg Vars::), and used as asm input or output operands ! must have no part mentioned in the clobber description. There is no ! way for you to specify that an input operand is modified without also specifying it as an output operand. Note that if all the output operands you specify are for this purpose (and hence unused), you then ! also need to specify `volatile' for the `asm' construct, as described ! below, to prevent GCC from deleting the `asm' statement as unused. If you refer to a particular hardware register from the assembler code, ! you probably have to list the register after the third colon to tell ! the compiler the register's value is modified. In some assemblers, the ! register names begin with `%'; to produce one `%' in the assembler ! code, you must write `%%' in the input. If your assembler instruction can alter the condition code register, ! add `cc' to the list of clobbered registers. GCC on some machines ! represents the condition codes as a specific hardware register; `cc' serves to name this register. On other machines, the condition code is ! handled differently, and specifying `cc' has no effect. But it is ! valid no matter what the machine. If your assembler instructions access memory in an unpredictable ! fashion, add `memory' to the list of clobbered registers. This causes GCC to not keep memory values cached in registers across the assembler instruction and not optimize stores or loads to that memory. You also ! should add the `volatile' keyword if the memory affected is not listed ! in the inputs or outputs of the `asm', as the `memory' clobber does not ! count as a side-effect of the `asm'. If you know how large the ! accessed memory is, you can add it as input or output but if this is ! not known, you should add `memory'. As an example, if you access ten ! bytes of a string, you can use a memory input like: {"m"( ({ struct { char x[10]; } *p = (void *)ptr ; *p; }) )}. Note that in the following example the memory input is necessary, ! otherwise GCC might optimize the store to `x' away: int foo () { int x = 42; --- 25371,25411 ---- describing a register class with one member if you mention that register in the clobber list. Variables declared to live in specific registers (*note Explicit Reg Vars::), and used as asm input or output operands ! must have no part mentioned in the clobber description. There is no way ! for you to specify that an input operand is modified without also specifying it as an output operand. Note that if all the output operands you specify are for this purpose (and hence unused), you then ! also need to specify 'volatile' for the 'asm' construct, as described ! below, to prevent GCC from deleting the 'asm' statement as unused. If you refer to a particular hardware register from the assembler code, ! you probably have to list the register after the third colon to tell the ! compiler the register's value is modified. In some assemblers, the ! register names begin with '%'; to produce one '%' in the assembler code, ! you must write '%%' in the input. If your assembler instruction can alter the condition code register, ! add 'cc' to the list of clobbered registers. GCC on some machines ! represents the condition codes as a specific hardware register; 'cc' serves to name this register. On other machines, the condition code is ! handled differently, and specifying 'cc' has no effect. But it is valid ! no matter what the machine. If your assembler instructions access memory in an unpredictable ! fashion, add 'memory' to the list of clobbered registers. This causes GCC to not keep memory values cached in registers across the assembler instruction and not optimize stores or loads to that memory. You also ! should add the 'volatile' keyword if the memory affected is not listed ! in the inputs or outputs of the 'asm', as the 'memory' clobber does not ! count as a side-effect of the 'asm'. If you know how large the accessed ! memory is, you can add it as input or output but if this is not known, ! you should add 'memory'. As an example, if you access ten bytes of a ! string, you can use a memory input like: {"m"( ({ struct { char x[10]; } *p = (void *)ptr ; *p; }) )}. Note that in the following example the memory input is necessary, ! otherwise GCC might optimize the store to 'x' away: int foo () { int x = 42; *************** otherwise GCC might optimize the store t *** 25594,25626 **** return result; } ! You can put multiple assembler instructions together in a single `asm' ! template, separated by the characters normally used in assembly code ! for the system. A combination that works in most places is a newline ! to break the line, plus a tab character to move to the instruction field ! (written as `\n\t'). Sometimes semicolons can be used, if the ! assembler allows semicolons as a line-breaking character. Note that ! some assembler dialects use semicolons to start a comment. The input operands are guaranteed not to use any of the clobbered registers, and ! neither do the output operands' addresses, so you can read and write ! the clobbered registers as many times as you like. Here is an example ! of multiple instructions in a template; it assumes the subroutine ! `_foo' accepts arguments in registers 9 and 10: asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo" : /* no outputs */ : "g" (from), "g" (to) : "r9", "r10"); ! Unless an output operand has the `&' constraint modifier, GCC may allocate it in the same register as an unrelated input operand, on the assumption the inputs are consumed before the outputs are produced. This assumption may be false if the assembler code actually consists of ! more than one instruction. In such a case, use `&' for each output operand that may not overlap an input. *Note Modifiers::. If you want to test the condition code produced by an assembler ! instruction, you must include a branch and a label in the `asm' construct, as follows: asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:" --- 25416,25448 ---- return result; } ! You can put multiple assembler instructions together in a single 'asm' ! template, separated by the characters normally used in assembly code for ! the system. A combination that works in most places is a newline to ! break the line, plus a tab character to move to the instruction field ! (written as '\n\t'). Sometimes semicolons can be used, if the assembler ! allows semicolons as a line-breaking character. Note that some ! assembler dialects use semicolons to start a comment. The input operands are guaranteed not to use any of the clobbered registers, and ! neither do the output operands' addresses, so you can read and write the ! clobbered registers as many times as you like. Here is an example of ! multiple instructions in a template; it assumes the subroutine '_foo' ! accepts arguments in registers 9 and 10: asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo" : /* no outputs */ : "g" (from), "g" (to) : "r9", "r10"); ! Unless an output operand has the '&' constraint modifier, GCC may allocate it in the same register as an unrelated input operand, on the assumption the inputs are consumed before the outputs are produced. This assumption may be false if the assembler code actually consists of ! more than one instruction. In such a case, use '&' for each output operand that may not overlap an input. *Note Modifiers::. If you want to test the condition code produced by an assembler ! instruction, you must include a branch and a label in the 'asm' construct, as follows: asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:" *************** construct, as follows: *** 25630,25641 **** This assumes your assembler supports local labels, as the GNU assembler and most Unix assemblers do. ! Speaking of labels, jumps from one `asm' to another are not supported. The compiler's optimizers do not know about these jumps, and therefore they cannot take account of them when deciding how to optimize. *Note Extended asm with goto::. ! Usually the most convenient way to use these `asm' instructions is to encapsulate them in macros that look like functions. For example, #define sin(x) \ --- 25452,25463 ---- This assumes your assembler supports local labels, as the GNU assembler and most Unix assemblers do. ! Speaking of labels, jumps from one 'asm' to another are not supported. The compiler's optimizers do not know about these jumps, and therefore they cannot take account of them when deciding how to optimize. *Note Extended asm with goto::. ! Usually the most convenient way to use these 'asm' instructions is to encapsulate them in macros that look like functions. For example, #define sin(x) \ *************** encapsulate them in macros that look lik *** 25643,25661 **** asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \ __value; }) ! Here the variable `__arg' is used to make sure that the instruction ! operates on a proper `double' value, and to accept only those arguments ! `x' that can convert automatically to a `double'. Another way to make sure the instruction operates on the correct data ! type is to use a cast in the `asm'. This is different from using a ! variable `__arg' in that it converts more different types. For ! example, if the desired type is `int', casting the argument to `int' ! accepts a pointer with no complaint, while assigning the argument to an ! `int' variable named `__arg' warns about using a pointer unless the ! caller explicitly casts it. ! If an `asm' has output operands, GCC assumes for optimization purposes the instruction has no side effects except to change the output operands. This does not mean instructions with a side effect cannot be used, but you must be careful, because the compiler may eliminate them --- 25465,25483 ---- asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \ __value; }) ! Here the variable '__arg' is used to make sure that the instruction ! operates on a proper 'double' value, and to accept only those arguments ! 'x' that can convert automatically to a 'double'. Another way to make sure the instruction operates on the correct data ! type is to use a cast in the 'asm'. This is different from using a ! variable '__arg' in that it converts more different types. For example, ! if the desired type is 'int', casting the argument to 'int' accepts a ! pointer with no complaint, while assigning the argument to an 'int' ! variable named '__arg' warns about using a pointer unless the caller ! explicitly casts it. ! If an 'asm' has output operands, GCC assumes for optimization purposes the instruction has no side effects except to change the output operands. This does not mean instructions with a side effect cannot be used, but you must be careful, because the compiler may eliminate them *************** if your instruction does have a side eff *** 25665,25672 **** appears not to change, the old value of the variable may be reused later if it happens to be found in a register. ! You can prevent an `asm' instruction from being deleted by writing the ! keyword `volatile' after the `asm'. For example: #define get_and_set_priority(new) \ ({ int __old; \ --- 25487,25494 ---- appears not to change, the old value of the variable may be reused later if it happens to be found in a register. ! You can prevent an 'asm' instruction from being deleted by writing the ! keyword 'volatile' after the 'asm'. For example: #define get_and_set_priority(new) \ ({ int __old; \ *************** keyword `volatile' after the `asm'. For *** 25674,25733 **** : "=g" (__old) : "g" (new)); \ __old; }) ! The `volatile' keyword indicates that the instruction has important ! side-effects. GCC does not delete a volatile `asm' if it is reachable. ! (The instruction can still be deleted if GCC can prove that control ! flow never reaches the location of the instruction.) Note that even a ! volatile `asm' instruction can be moved relative to other code, including across jump instructions. For example, on many targets there is a system register that can be set to control the rounding mode of floating-point operations. You might try setting it with a volatile ! `asm', like this PowerPC example: asm volatile("mtfsf 255,%0" : : "f" (fpenv)); sum = x + y; This does not work reliably, as the compiler may move the addition back ! before the volatile `asm'. To make it work you need to add an ! artificial dependency to the `asm' referencing a variable in the code you don't want moved, for example: asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv)); sum = x + y; ! Similarly, you can't expect a sequence of volatile `asm' instructions to remain perfectly consecutive. If you want consecutive output, use a ! single `asm'. Also, GCC performs some optimizations across a volatile ! `asm' instruction; GCC does not "forget everything" when it encounters ! a volatile `asm' instruction the way some other compilers do. ! An `asm' instruction without any output operands is treated ! identically to a volatile `asm' instruction. It is a natural idea to look for a way to give access to the condition code left by the assembler instruction. However, when we attempted to implement this, we found no way to make it work reliably. The problem ! is that output operands might need reloading, which result in ! additional following "store" instructions. On most machines, these ! instructions alter the condition code before there is time to test it. ! This problem doesn't arise for ordinary "test" and "compare" ! instructions because they don't have any output operands. For reasons similar to those described above, it is not possible to give an assembler instruction access to the condition code left by previous instructions. ! As of GCC version 4.5, `asm goto' may be used to have the assembly ! jump to one or more C labels. In this form, a fifth section after the clobber list contains a list of all C labels to which the assembly may ! jump. Each label operand is implicitly self-named. The `asm' is also assumed to fall through to the next statement. ! This form of `asm' is restricted to not have outputs. This is due to ! a internal restriction in the compiler that control transfer ! instructions cannot have outputs. This restriction on `asm goto' may ! be lifted in some future version of the compiler. In the meantime, ! `asm goto' may include a memory clobber, and so leave outputs in memory. int frob(int x) { --- 25496,25555 ---- : "=g" (__old) : "g" (new)); \ __old; }) ! The 'volatile' keyword indicates that the instruction has important ! side-effects. GCC does not delete a volatile 'asm' if it is reachable. ! (The instruction can still be deleted if GCC can prove that control flow ! never reaches the location of the instruction.) Note that even a ! volatile 'asm' instruction can be moved relative to other code, including across jump instructions. For example, on many targets there is a system register that can be set to control the rounding mode of floating-point operations. You might try setting it with a volatile ! 'asm', like this PowerPC example: asm volatile("mtfsf 255,%0" : : "f" (fpenv)); sum = x + y; This does not work reliably, as the compiler may move the addition back ! before the volatile 'asm'. To make it work you need to add an ! artificial dependency to the 'asm' referencing a variable in the code you don't want moved, for example: asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv)); sum = x + y; ! Similarly, you can't expect a sequence of volatile 'asm' instructions to remain perfectly consecutive. If you want consecutive output, use a ! single 'asm'. Also, GCC performs some optimizations across a volatile ! 'asm' instruction; GCC does not "forget everything" when it encounters a ! volatile 'asm' instruction the way some other compilers do. ! An 'asm' instruction without any output operands is treated identically ! to a volatile 'asm' instruction. It is a natural idea to look for a way to give access to the condition code left by the assembler instruction. However, when we attempted to implement this, we found no way to make it work reliably. The problem ! is that output operands might need reloading, which result in additional ! following "store" instructions. On most machines, these instructions ! alter the condition code before there is time to test it. This problem ! doesn't arise for ordinary "test" and "compare" instructions because ! they don't have any output operands. For reasons similar to those described above, it is not possible to give an assembler instruction access to the condition code left by previous instructions. ! As of GCC version 4.5, 'asm goto' may be used to have the assembly jump ! to one or more C labels. In this form, a fifth section after the clobber list contains a list of all C labels to which the assembly may ! jump. Each label operand is implicitly self-named. The 'asm' is also assumed to fall through to the next statement. ! This form of 'asm' is restricted to not have outputs. This is due to a ! internal restriction in the compiler that control transfer instructions ! cannot have outputs. This restriction on 'asm goto' may be lifted in ! some future version of the compiler. In the meantime, 'asm goto' may ! include a memory clobber, and so leave outputs in memory. int frob(int x) { *************** be lifted in some future version of the *** 25739,25749 **** return -1; } ! In this (inefficient) example, the `frob' instruction sets the carry ! bit to indicate an error. The `jc' instruction detects this and ! branches to the `error' label. Finally, the output of the `frob' ! instruction (`%r5') is stored into the memory for variable `y', which ! is later read by the `return' statement. void doit(void) { --- 25561,25571 ---- return -1; } ! In this (inefficient) example, the 'frob' instruction sets the carry bit ! to indicate an error. The 'jc' instruction detects this and branches to ! the 'error' label. Finally, the output of the 'frob' instruction ! ('%r5') is stored into the memory for variable 'y', which is later read ! by the 'return' statement. void doit(void) { *************** is later read by the `return' statement. *** 25767,25780 **** f3(i); } ! In this (also inefficient) example, the `mfsr' instruction reads an ! address from some out-of-band machine register, and the following `jmp' ! instruction branches to that address. The address read by the `mfsr' instruction is assumed to have been previously set via some application-specific mechanism to be one of the four values stored in ! the `doit_table' section. Finally, the `asm' is followed by a call to ! `__builtin_unreachable' to indicate that the `asm' does not in fact ! fall through. #define TRACE1(NUM) \ do { \ --- 25589,25602 ---- f3(i); } ! In this (also inefficient) example, the 'mfsr' instruction reads an ! address from some out-of-band machine register, and the following 'jmp' ! instruction branches to that address. The address read by the 'mfsr' instruction is assumed to have been previously set via some application-specific mechanism to be one of the four values stored in ! the 'doit_table' section. Finally, the 'asm' is followed by a call to ! '__builtin_unreachable' to indicate that the 'asm' does not in fact fall ! through. #define TRACE1(NUM) \ do { \ *************** fall through. *** 25787,25817 **** } while (0) #define TRACE TRACE1(__COUNTER__) ! In this example (which in fact inspired the `asm goto' feature) we want ! on rare occasions to call the `trace' function; on other occasions we'd ! like to keep the overhead to the absolute minimum. The normal code ! path consists of a single `nop' instruction. However, we record the ! address of this `nop' together with the address of a label that calls ! the `trace' function. This allows the `nop' instruction to be patched ! at run time to be an unconditional branch to the stored label. It is ! assumed that an optimizing compiler moves the labeled block out of ! line, to optimize the fall through path from the `asm'. If you are writing a header file that should be includable in ISO C ! programs, write `__asm__' instead of `asm'. *Note Alternate Keywords::. ! 6.41.1 Size of an `asm' ----------------------- Some targets require that GCC track the size of each instruction used in ! order to generate correct code. Because the final length of an `asm' ! is only known by the assembler, GCC must make an estimate as to how big ! it will be. The estimate is formed by counting the number of ! statements in the pattern of the `asm' and multiplying that by the ! length of the longest instruction on that processor. Statements in the ! `asm' are identified by newline characters and whatever statement ! separator characters are supported by the assembler; on most processors ! this is the `;' character. Normally, GCC's estimate is perfectly adequate to ensure that correct code is generated, but it is possible to confuse the compiler if you use --- 25609,25639 ---- } while (0) #define TRACE TRACE1(__COUNTER__) ! In this example (which in fact inspired the 'asm goto' feature) we want ! on rare occasions to call the 'trace' function; on other occasions we'd ! like to keep the overhead to the absolute minimum. The normal code path ! consists of a single 'nop' instruction. However, we record the address ! of this 'nop' together with the address of a label that calls the ! 'trace' function. This allows the 'nop' instruction to be patched at ! run time to be an unconditional branch to the stored label. It is ! assumed that an optimizing compiler moves the labeled block out of line, ! to optimize the fall through path from the 'asm'. If you are writing a header file that should be includable in ISO C ! programs, write '__asm__' instead of 'asm'. *Note Alternate Keywords::. ! 6.41.1 Size of an 'asm' ----------------------- Some targets require that GCC track the size of each instruction used in ! order to generate correct code. Because the final length of an 'asm' is ! only known by the assembler, GCC must make an estimate as to how big it ! will be. The estimate is formed by counting the number of statements in ! the pattern of the 'asm' and multiplying that by the length of the ! longest instruction on that processor. Statements in the 'asm' are ! identified by newline characters and whatever statement separator ! characters are supported by the assembler; on most processors this is ! the ';' character. Normally, GCC's estimate is perfectly adequate to ensure that correct code is generated, but it is possible to confuse the compiler if you use *************** label is unreachable. *** 25825,25865 **** --------------------------------------- On i386 targets, there are several rules on the usage of stack-like ! registers in the operands of an `asm'. These rules apply only to the operands that are stack-like registers: ! 1. Given a set of input registers that die in an `asm', it is ! necessary to know which are implicitly popped by the `asm', and which must be explicitly popped by GCC. ! An input register that is implicitly popped by the `asm' must be explicitly clobbered, unless it is constrained to match an output operand. ! 2. For any input register that is implicitly popped by an `asm', it is necessary to know how to adjust the stack to compensate for the ! pop. If any non-popped input is closer to the top of the ! reg-stack than the implicitly popped register, it would not be ! possible to know what the stack looked like--it's not clear how ! the rest of the stack "slides up". All implicitly popped input registers must be closer to the top of the reg-stack than any input that is not implicitly popped. ! It is possible that if an input dies in an `asm', the compiler might use the input register for an output reload. Consider this example: asm ("foo" : "=t" (a) : "f" (b)); ! This code says that input `b' is not popped by the `asm', and that ! the `asm' pushes a result onto the reg-stack, i.e., the stack is ! one deeper after the `asm' than it was before. But, it is ! possible that reload may think that it can use the same register ! for both the input and the output. ! To prevent this from happening, if any input operand uses the `f' ! constraint, all output register constraints must use the `&' early-clobber modifier. The example above would be correctly written as: --- 25647,25687 ---- --------------------------------------- On i386 targets, there are several rules on the usage of stack-like ! registers in the operands of an 'asm'. These rules apply only to the operands that are stack-like registers: ! 1. Given a set of input registers that die in an 'asm', it is ! necessary to know which are implicitly popped by the 'asm', and which must be explicitly popped by GCC. ! An input register that is implicitly popped by the 'asm' must be explicitly clobbered, unless it is constrained to match an output operand. ! 2. For any input register that is implicitly popped by an 'asm', it is necessary to know how to adjust the stack to compensate for the ! pop. If any non-popped input is closer to the top of the reg-stack ! than the implicitly popped register, it would not be possible to ! know what the stack looked like--it's not clear how the rest of the ! stack "slides up". All implicitly popped input registers must be closer to the top of the reg-stack than any input that is not implicitly popped. ! It is possible that if an input dies in an 'asm', the compiler might use the input register for an output reload. Consider this example: asm ("foo" : "=t" (a) : "f" (b)); ! This code says that input 'b' is not popped by the 'asm', and that ! the 'asm' pushes a result onto the reg-stack, i.e., the stack is ! one deeper after the 'asm' than it was before. But, it is possible ! that reload may think that it can use the same register for both ! the input and the output. ! To prevent this from happening, if any input operand uses the 'f' ! constraint, all output register constraints must use the '&' early-clobber modifier. The example above would be correctly written as: *************** operands that are stack-like registers: *** 25867,25921 **** asm ("foo" : "=&t" (a) : "f" (b)); 3. Some operands need to be in particular places on the stack. All ! output operands fall in this category--GCC has no other way to ! know which registers the outputs appear in unless you indicate ! this in the constraints. Output operands must specifically indicate which register an output ! appears in after an `asm'. `=f' is not allowed: the operand constraints must select a class with a single register. 4. Output operands may not be "inserted" between existing stack registers. Since no 387 opcode uses a read/write operand, all ! output operands are dead before the `asm', and are pushed by the ! `asm'. It makes no sense to push anywhere but the top of the reg-stack. Output operands must start at the top of the reg-stack: output operands may not "skip" a register. ! 5. Some `asm' statements may need extra stack space for internal calculations. This can be guaranteed by clobbering stack registers unrelated to the inputs and outputs. ! ! Here are a couple of reasonable `asm's to want to write. This `asm' takes one input, which is internally popped, and produces two outputs. asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp)); ! This `asm' takes two inputs, which are popped by the `fyl2xp1' opcode, ! and replaces them with one output. The `st(1)' clobber is necessary ! for the compiler to know that `fyl2xp1' pops both inputs. asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");  File: gcc.info, Node: Constraints, Next: Asm Labels, Prev: Extended Asm, Up: C Extensions ! 6.42 Constraints for `asm' Operands =================================== Here are specific details on what constraint letters you can use with ! `asm' operands. Constraints can say whether an operand may be in a register, and which kinds of register; whether the operand can be a ! memory reference, and which kinds of address; whether the operand may ! be an immediate constant, and which possible values it may have. ! Constraints can also require two operands to match. Side-effects ! aren't allowed in operands of inline `asm', unless `<' or `>' ! constraints are used, because there is no guarantee that the ! side-effects will happen exactly once in an instruction that can update ! the addressing register. * Menu: --- 25689,25741 ---- asm ("foo" : "=&t" (a) : "f" (b)); 3. Some operands need to be in particular places on the stack. All ! output operands fall in this category--GCC has no other way to know ! which registers the outputs appear in unless you indicate this in ! the constraints. Output operands must specifically indicate which register an output ! appears in after an 'asm'. '=f' is not allowed: the operand constraints must select a class with a single register. 4. Output operands may not be "inserted" between existing stack registers. Since no 387 opcode uses a read/write operand, all ! output operands are dead before the 'asm', and are pushed by the ! 'asm'. It makes no sense to push anywhere but the top of the reg-stack. Output operands must start at the top of the reg-stack: output operands may not "skip" a register. ! 5. Some 'asm' statements may need extra stack space for internal calculations. This can be guaranteed by clobbering stack registers unrelated to the inputs and outputs. ! Here are a couple of reasonable 'asm's to want to write. This 'asm' takes one input, which is internally popped, and produces two outputs. asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp)); ! This 'asm' takes two inputs, which are popped by the 'fyl2xp1' opcode, ! and replaces them with one output. The 'st(1)' clobber is necessary for ! the compiler to know that 'fyl2xp1' pops both inputs. asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");  File: gcc.info, Node: Constraints, Next: Asm Labels, Prev: Extended Asm, Up: C Extensions ! 6.42 Constraints for 'asm' Operands =================================== Here are specific details on what constraint letters you can use with ! 'asm' operands. Constraints can say whether an operand may be in a register, and which kinds of register; whether the operand can be a ! memory reference, and which kinds of address; whether the operand may be ! an immediate constant, and which possible values it may have. ! Constraints can also require two operands to match. Side-effects aren't ! allowed in operands of inline 'asm', unless '<' or '>' constraints are ! used, because there is no guarantee that the side-effects will happen ! exactly once in an instruction that can update the addressing register. * Menu: *************** whitespace *** 25941,25953 **** description even if they have different number of constraints and modifiers. ! `m' A memory operand is allowed, with any kind of address that the machine supports in general. Note that the letter used for the ! general memory constraint can be re-defined by a back end using ! the `TARGET_MEM_CONSTRAINT' macro. ! `o' A memory operand is allowed, but only if the address is "offsettable". This means that adding a small integer (actually, the width in bytes of the operand, as determined by its machine --- 25761,25773 ---- description even if they have different number of constraints and modifiers. ! 'm' A memory operand is allowed, with any kind of address that the machine supports in general. Note that the letter used for the ! general memory constraint can be re-defined by a back end using the ! 'TARGET_MEM_CONSTRAINT' macro. ! 'o' A memory operand is allowed, but only if the address is "offsettable". This means that adding a small integer (actually, the width in bytes of the operand, as determined by its machine *************** whitespace *** 25963,26074 **** on the other addressing modes that the machine supports. Note that in an output operand which can be matched by another ! operand, the constraint letter `o' is valid only when accompanied ! by both `<' (if the target machine has predecrement addressing) ! and `>' (if the target machine has preincrement addressing). ! `V' ! A memory operand that is not offsettable. In other words, ! anything that would fit the `m' constraint but not the `o' ! constraint. ! `<' ! A memory operand with autodecrement addressing (either ! predecrement or postdecrement) is allowed. In inline `asm' this ! constraint is only allowed if the operand is used exactly once in ! an instruction that can handle the side-effects. Not using an ! operand with `<' in constraint string in the inline `asm' pattern ! at all or using it in multiple instructions isn't valid, because ! the side-effects wouldn't be performed or would be performed more ! than once. Furthermore, on some targets the operand with `<' in ! constraint string must be accompanied by special instruction ! suffixes like `%U0' instruction suffix on PowerPC or `%P0' on ! IA-64. ! `>' ! A memory operand with autoincrement addressing (either ! preincrement or postincrement) is allowed. In inline `asm' the ! same restrictions as for `<' apply. ! `r' A register operand is allowed provided that it is in a general register. ! `i' An immediate integer operand (one with constant value) is allowed. This includes symbolic constants whose values will be known only at assembly time or later. ! `n' An immediate integer operand with a known numeric value is allowed. Many systems cannot support assembly-time constants for operands less than a word wide. Constraints for these operands should use ! `n' rather than `i'. ! `I', `J', `K', ... `P' ! Other letters in the range `I' through `P' may be defined in a machine-dependent fashion to permit immediate integer operands with explicit integer values in specified ranges. For example, on the ! 68000, `I' is defined to stand for the range of values 1 to 8. This is the range permitted as a shift count in the shift instructions. ! `E' ! An immediate floating operand (expression code `const_double') is allowed, but only if the target floating point format is the same as that of the host machine (on which the compiler is running). ! `F' ! An immediate floating operand (expression code `const_double' or ! `const_vector') is allowed. ! `G', `H' ! `G' and `H' may be defined in a machine-dependent fashion to ! permit immediate floating operands in particular ranges of values. ! `s' ! An immediate integer operand whose value is not an explicit ! integer is allowed. This might appear strange; if an insn allows a constant operand ! with a value not known at compile time, it certainly must allow ! any known value. So why use `s' instead of `i'? Sometimes it ! allows better code to be generated. For example, on the 68000 in a fullword instruction it is possible to use an immediate operand; but if the immediate value is between -128 and 127, better code results from loading the value into a ! register and using the register. This is because the load into ! the register can be done with a `moveq' instruction. We arrange ! for this to happen by defining the letter `K' to mean "any integer ! outside the range -128 to 127", and then specifying `Ks' in the operand constraints. ! `g' Any register, memory or immediate integer operand is allowed, except for registers that are not general registers. ! `X' Any operand whatsoever is allowed. ! `0', `1', `2', ... `9' An operand that matches the specified operand number is allowed. If a digit is used together with letters within the same alternative, the digit should come last. This number is allowed to be more than a single digit. If multiple digits are encountered consecutively, they are interpreted as a ! single decimal integer. There is scant chance for ambiguity, ! since to-date it has never been desirable that `10' be interpreted ! as matching either operand 1 _or_ operand 0. Should this be ! desired, one can use multiple alternatives instead. This is called a "matching constraint" and what it really means is that the assembler has only a single operand that fills two roles ! which `asm' distinguishes. For example, an add instruction uses ! two input operands and an output operand, but on most CISC ! machines an add instruction really has only two operands, one of ! them an input-output operand: addl #35,r12 --- 25783,25892 ---- on the other addressing modes that the machine supports. Note that in an output operand which can be matched by another ! operand, the constraint letter 'o' is valid only when accompanied ! by both '<' (if the target machine has predecrement addressing) and ! '>' (if the target machine has preincrement addressing). ! 'V' ! A memory operand that is not offsettable. In other words, anything ! that would fit the 'm' constraint but not the 'o' constraint. ! '<' ! A memory operand with autodecrement addressing (either predecrement ! or postdecrement) is allowed. In inline 'asm' this constraint is ! only allowed if the operand is used exactly once in an instruction ! that can handle the side-effects. Not using an operand with '<' in ! constraint string in the inline 'asm' pattern at all or using it in ! multiple instructions isn't valid, because the side-effects ! wouldn't be performed or would be performed more than once. ! Furthermore, on some targets the operand with '<' in constraint ! string must be accompanied by special instruction suffixes like ! '%U0' instruction suffix on PowerPC or '%P0' on IA-64. ! '>' ! A memory operand with autoincrement addressing (either preincrement ! or postincrement) is allowed. In inline 'asm' the same ! restrictions as for '<' apply. ! 'r' A register operand is allowed provided that it is in a general register. ! 'i' An immediate integer operand (one with constant value) is allowed. This includes symbolic constants whose values will be known only at assembly time or later. ! 'n' An immediate integer operand with a known numeric value is allowed. Many systems cannot support assembly-time constants for operands less than a word wide. Constraints for these operands should use ! 'n' rather than 'i'. ! 'I', 'J', 'K', ... 'P' ! Other letters in the range 'I' through 'P' may be defined in a machine-dependent fashion to permit immediate integer operands with explicit integer values in specified ranges. For example, on the ! 68000, 'I' is defined to stand for the range of values 1 to 8. This is the range permitted as a shift count in the shift instructions. ! 'E' ! An immediate floating operand (expression code 'const_double') is allowed, but only if the target floating point format is the same as that of the host machine (on which the compiler is running). ! 'F' ! An immediate floating operand (expression code 'const_double' or ! 'const_vector') is allowed. ! 'G', 'H' ! 'G' and 'H' may be defined in a machine-dependent fashion to permit ! immediate floating operands in particular ranges of values. ! 's' ! An immediate integer operand whose value is not an explicit integer ! is allowed. This might appear strange; if an insn allows a constant operand ! with a value not known at compile time, it certainly must allow any ! known value. So why use 's' instead of 'i'? Sometimes it allows ! better code to be generated. For example, on the 68000 in a fullword instruction it is possible to use an immediate operand; but if the immediate value is between -128 and 127, better code results from loading the value into a ! register and using the register. This is because the load into the ! register can be done with a 'moveq' instruction. We arrange for ! this to happen by defining the letter 'K' to mean "any integer ! outside the range -128 to 127", and then specifying 'Ks' in the operand constraints. ! 'g' Any register, memory or immediate integer operand is allowed, except for registers that are not general registers. ! 'X' Any operand whatsoever is allowed. ! '0', '1', '2', ... '9' An operand that matches the specified operand number is allowed. If a digit is used together with letters within the same alternative, the digit should come last. This number is allowed to be more than a single digit. If multiple digits are encountered consecutively, they are interpreted as a ! single decimal integer. There is scant chance for ambiguity, since ! to-date it has never been desirable that '10' be interpreted as ! matching either operand 1 _or_ operand 0. Should this be desired, ! one can use multiple alternatives instead. This is called a "matching constraint" and what it really means is that the assembler has only a single operand that fills two roles ! which 'asm' distinguishes. For example, an add instruction uses ! two input operands and an output operand, but on most CISC machines ! an add instruction really has only two operands, one of them an ! input-output operand: addl #35,r12 *************** whitespace *** 26078,26096 **** smaller number than the number of the operand that uses it in the constraint. ! `p' An operand that is a valid memory address is allowed. This is for "load address" and "push address" instructions. ! `p' in the constraint must be accompanied by `address_operand' as ! the predicate in the `match_operand'. This predicate interprets ! the mode specified in the `match_operand' as the mode of the memory reference for which the address would be valid. OTHER-LETTERS Other letters can be defined in machine-dependent fashion to stand for particular classes of registers or other arbitrary operand ! types. `d', `a' and `f' are defined on the 68000/68020 to stand for data, address and floating point registers.  --- 25896,25914 ---- smaller number than the number of the operand that uses it in the constraint. ! 'p' An operand that is a valid memory address is allowed. This is for "load address" and "push address" instructions. ! 'p' in the constraint must be accompanied by 'address_operand' as ! the predicate in the 'match_operand'. This predicate interprets ! the mode specified in the 'match_operand' as the mode of the memory reference for which the address would be valid. OTHER-LETTERS Other letters can be defined in machine-dependent fashion to stand for particular classes of registers or other arbitrary operand ! types. 'd', 'a' and 'f' are defined on the 68000/68020 to stand for data, address and floating point registers.  *************** alternative. *** 26114,26133 **** If all the operands fit any one alternative, the instruction is valid. Otherwise, for each alternative, the compiler counts how many ! instructions must be added to copy the operands so that that ! alternative applies. The alternative requiring the least copying is ! chosen. If two alternatives need the same amount of copying, the one ! that comes first is chosen. These choices can be altered with the `?' ! and `!' characters: ! `?' ! Disparage slightly the alternative that the `?' appears in, as a choice when no alternative applies exactly. The compiler regards ! this alternative as one unit more costly for each `?' that appears in it. ! `!' ! Disparage severely the alternative that the `!' appears in. This alternative can still be used if it fits without reloading, but if reloading is needed, some other alternative will be used. --- 25932,25951 ---- If all the operands fit any one alternative, the instruction is valid. Otherwise, for each alternative, the compiler counts how many ! instructions must be added to copy the operands so that that alternative ! applies. The alternative requiring the least copying is chosen. If two ! alternatives need the same amount of copying, the one that comes first ! is chosen. These choices can be altered with the '?' and '!' ! characters: ! '?' ! Disparage slightly the alternative that the '?' appears in, as a choice when no alternative applies exactly. The compiler regards ! this alternative as one unit more costly for each '?' that appears in it. ! '!' ! Disparage severely the alternative that the '!' appears in. This alternative can still be used if it fits without reloading, but if reloading is needed, some other alternative will be used. *************** File: gcc.info, Node: Modifiers, Next: *** 26139,26206 **** Here are constraint modifier characters. ! `=' Means that this operand is write-only for this instruction: the previous value is discarded and replaced by output data. ! `+' Means that this operand is both read and written by the instruction. When the compiler fixes up the operands to satisfy the constraints, it needs to know which operands are inputs to the instruction and ! which are outputs from it. `=' identifies an output; `+' identifies an operand that is both input and output; all other operands are assumed to be input only. ! If you specify `=' or `+' in a constraint, you put it in the first character of the constraint string. ! `&' Means (in a particular alternative) that this operand is an "earlyclobber" operand, which is modified before the instruction is ! finished using the input operands. Therefore, this operand may ! not lie in a register that is used as an input operand or as part ! of any memory address. ! `&' applies only to the alternative in which it is written. In constraints with multiple alternatives, sometimes one alternative ! requires `&' while others do not. See, for example, the `movdf' insn of the 68000. An input operand can be tied to an earlyclobber operand if its only use as an input occurs before the early result is written. Adding alternatives of this form often allows GCC to produce better code when only some of the inputs can be affected by the earlyclobber. ! See, for example, the `mulsi3' insn of the ARM. ! `&' does not obviate the need to write `='. ! `%' Declares the instruction to be commutative for this operand and the following operand. This means that the compiler may interchange the two operands if that is the cheapest way to make all operands fit the constraints. GCC can only handle one commutative pair in ! an asm; if you use more, the compiler may fail. Note that you ! need not use the modifier if the two alternatives are strictly identical; this would only waste time in the reload pass. The modifier is not operational after register allocation, so the ! result of `define_peephole2' and `define_split's performed after ! reload cannot rely on `%' to make the intended insn match. ! `#' Says that all following characters, up to the next comma, are to be ignored as a constraint. They are significant only for choosing register preferences. ! `*' Says that the following character should be ignored when choosing ! register preferences. `*' has no effect on the meaning of the constraint as a constraint, and no effect on reloading. For LRA ! `*' additionally disparages slightly the alternative if the following character matches the operand. -  File: gcc.info, Node: Machine Constraints, Prev: Modifiers, Up: Constraints --- 25957,26023 ---- Here are constraint modifier characters. ! '=' Means that this operand is write-only for this instruction: the previous value is discarded and replaced by output data. ! '+' Means that this operand is both read and written by the instruction. When the compiler fixes up the operands to satisfy the constraints, it needs to know which operands are inputs to the instruction and ! which are outputs from it. '=' identifies an output; '+' identifies an operand that is both input and output; all other operands are assumed to be input only. ! If you specify '=' or '+' in a constraint, you put it in the first character of the constraint string. ! '&' Means (in a particular alternative) that this operand is an "earlyclobber" operand, which is modified before the instruction is ! finished using the input operands. Therefore, this operand may not ! lie in a register that is used as an input operand or as part of ! any memory address. ! '&' applies only to the alternative in which it is written. In constraints with multiple alternatives, sometimes one alternative ! requires '&' while others do not. See, for example, the 'movdf' insn of the 68000. An input operand can be tied to an earlyclobber operand if its only use as an input occurs before the early result is written. Adding alternatives of this form often allows GCC to produce better code when only some of the inputs can be affected by the earlyclobber. ! See, for example, the 'mulsi3' insn of the ARM. ! '&' does not obviate the need to write '='. ! '%' Declares the instruction to be commutative for this operand and the following operand. This means that the compiler may interchange the two operands if that is the cheapest way to make all operands fit the constraints. GCC can only handle one commutative pair in ! an asm; if you use more, the compiler may fail. Note that you need ! not use the modifier if the two alternatives are strictly identical; this would only waste time in the reload pass. The modifier is not operational after register allocation, so the ! result of 'define_peephole2' and 'define_split's performed after ! reload cannot rely on '%' to make the intended insn match. ! '#' Says that all following characters, up to the next comma, are to be ignored as a constraint. They are significant only for choosing register preferences. ! '*' Says that the following character should be ignored when choosing ! register preferences. '*' has no effect on the meaning of the constraint as a constraint, and no effect on reloading. For LRA ! '*' additionally disparages slightly the alternative if the following character matches the operand.  File: gcc.info, Node: Machine Constraints, Prev: Modifiers, Up: Constraints *************** File: gcc.info, Node: Machine Constrain *** 26208,26701 **** ------------------------------------------ Whenever possible, you should use the general-purpose constraint letters ! in `asm' arguments, since they will convey meaning more readily to ! people reading your code. Failing that, use the constraint letters ! that usually have very similar meanings across architectures. The most ! commonly used constraints are `m' and `r' (for memory and general-purpose registers respectively; *note Simple Constraints::), and ! `I', usually the letter indicating the most common immediate-constant format. Each architecture defines additional constraints. These constraints are used by the compiler itself for instruction generation, as well as ! for `asm' statements; therefore, some of the constraints are not ! particularly useful for `asm'. Here is a summary of some of the machine-dependent constraints available on some particular machines; it ! includes both constraints that are useful for `asm' and constraints ! that aren't. The compiler source file mentioned in the table heading ! for each architecture is the definitive reference for the meanings of ! that architecture's constraints. ! ! _AArch64 family--`config/aarch64/constraints.md'_ ! `k' ! The stack pointer register (`SP') ! `w' Floating point or SIMD vector register ! `I' Integer constant that is valid as an immediate operand in an ! `ADD' instruction ! `J' Integer constant that is valid as an immediate operand in a ! `SUB' instruction (once negated) ! `K' Integer constant that can be used with a 32-bit logical instruction ! `L' Integer constant that can be used with a 64-bit logical instruction ! `M' Integer constant that is valid as an immediate operand in a ! 32-bit `MOV' pseudo instruction. The `MOV' may be assembled to one of several different machine instructions depending on the value ! `N' Integer constant that is valid as an immediate operand in a ! 64-bit `MOV' pseudo instruction ! `S' An absolute symbolic address or a label reference ! `Y' Floating point constant zero ! `Z' Integer constant zero ! `Usa' An absolute symbolic address ! `Ush' ! The high part (bits 12 and upwards) of the pc-relative ! address of a symbol within 4GB of the instruction ! `Q' A memory address which uses a single base register with no offset ! `Ump' ! A memory address suitable for a load/store pair instruction ! in SI, DI, SF and DF modes ! ! ! _ARM family--`config/arm/constraints.md'_ ! `w' VFP floating-point register ! `G' The floating-point constant 0.0 ! `I' Integer that is valid as an immediate operand in a data ! processing instruction. That is, an integer in the range 0 ! to 255 rotated by a multiple of 2 ! `J' Integer in the range -4095 to 4095 ! `K' ! Integer that satisfies constraint `I' when inverted (ones complement) ! `L' ! Integer that satisfies constraint `I' when negated (twos complement) ! `M' Integer in the range 0 to 32 ! `Q' A memory reference where the exact address is in a single ! register (``m'' is preferable for `asm' statements) ! `R' An item in the constant pool ! `S' A symbol in the text segment of the current file ! `Uv' A memory reference suitable for VFP load/store insns (reg+constant offset) ! `Uy' A memory reference suitable for iWMMXt load/store instructions. ! `Uq' A memory reference suitable for the ARMv4 ldrsb instruction. ! _AVR family--`config/avr/constraints.md'_ ! ! `l' Registers from r0 to r15 ! `a' Registers from r16 to r23 ! `d' Registers from r16 to r31 ! `w' Registers from r24 to r31. These registers can be used in ! `adiw' command ! `e' Pointer register (r26-r31) ! `b' Base pointer register (r28-r31) ! `q' Stack pointer register (SPH:SPL) ! `t' Temporary register r0 ! `x' Register pair X (r27:r26) ! `y' Register pair Y (r29:r28) ! `z' Register pair Z (r31:r30) ! `I' Constant greater than -1, less than 64 ! `J' Constant greater than -64, less than 1 ! `K' Constant integer 2 ! `L' Constant integer 0 ! `M' Constant that fits in 8 bits ! `N' Constant integer -1 ! `O' Constant integer 8, 16, or 24 ! `P' Constant integer 1 ! `G' A floating point constant 0.0 ! `Q' A memory address based on Y or Z pointer with displacement. ! _Epiphany--`config/epiphany/constraints.md'_ ! ! `U16' An unsigned 16-bit constant. ! `K' An unsigned 5-bit constant. ! `L' A signed 11-bit constant. ! `Cm1' ! A signed 11-bit constant added to -1. Can only match when ! the `-m1reg-REG' option is active. ! `Cl1' Left-shift of -1, i.e., a bit mask with a block of leading ones, the rest being a block of trailing zeroes. Can only ! match when the `-m1reg-REG' option is active. ! `Cr1' Right-shift of -1, i.e., a bit mask with a trailing block of ones, the rest being zeroes. Or to put it another way, one less than a power of two. Can only match when the ! `-m1reg-REG' option is active. ! `Cal' ! Constant for arithmetic/logical operations. This is like ! `i', except that for position independent code, no symbols / expressions needing relocations are allowed. ! `Csy' Symbolic constant for call/jump instruction. ! `Rcs' The register class usable in short insns. This is a register class constraint, and can thus drive register allocation. ! This constraint won't match unless `-mprefer-short-insn-regs' is in effect. ! `Rsc' The the register class of registers that can be used to hold a sibcall call address. I.e., a caller-saved register. ! `Rct' Core control register class. ! `Rgs' The register group usable in short insns. This constraint does not use a register class, so that it only passively matches suitable registers, and doesn't drive register allocation. ! `Rra' ! Matches the return address if it can be replaced with the ! link register. ! `Rcc' Matches the integer condition code register. ! `Sra' Matches the return address if it is in a stack slot. ! `Cfm' Matches control register values to switch fp mode, which are ! encapsulated in `UNSPEC_FP_MODE'. ! _CR16 Architecture--`config/cr16/cr16.h'_ ! `b' Registers from r0 to r14 (registers without stack pointer) ! `t' Register from r0 to r11 (all 16-bit registers) ! `p' Register from r12 to r15 (all 32-bit registers) ! `I' Signed constant that fits in 4 bits ! `J' Signed constant that fits in 5 bits ! `K' Signed constant that fits in 6 bits ! `L' Unsigned constant that fits in 4 bits ! `M' Signed constant that fits in 32 bits ! `N' Check for 64 bits wide constants for add/sub instructions ! `G' Floating point constant that is legal for store immediate ! _Hewlett-Packard PA-RISC--`config/pa/pa.h'_ ! ! `a' General register 1 ! `f' Floating point register ! `q' Shift amount register ! `x' Floating point register (deprecated) ! `y' Upper floating point register (32-bit), floating point register (64-bit) ! `Z' Any register ! `I' Signed 11-bit integer constant ! `J' Signed 14-bit integer constant ! `K' ! Integer constant that can be deposited with a `zdepi' instruction ! `L' Signed 5-bit integer constant ! `M' Integer constant 0 ! `N' ! Integer constant that can be loaded with a `ldil' instruction ! `O' Integer constant whose value plus one is a power of 2 ! `P' ! Integer constant that can be used for `and' operations in ! `depi' and `extru' instructions ! `S' Integer constant 31 ! `U' Integer constant 63 ! `G' Floating-point constant 0.0 ! `A' ! A `lo_sum' data-linkage-table memory operand ! `Q' A memory operand that can be used as the destination operand of an integer store instruction ! `R' A scaled or unscaled indexed memory operand ! `T' A memory operand for floating-point loads and stores ! `W' A register indirect memory operand ! _picoChip family--`picochip.h'_ ! ! `k' Stack register. ! `f' Pointer register. A register which can be used to access ! memory without supplying an offset. Any other register can ! be used to access memory, but will need a constant offset. ! In the case of the offset being zero, it is more efficient to ! use a pointer register, since this reduces code size. ! `t' A twin register. A register which may be paired with an adjacent register to create a 32-bit register. ! `a' Any absolute memory address (e.g., symbolic constant, symbolic constant + offset). ! `I' 4-bit signed integer. ! `J' 4-bit unsigned integer. ! `K' 8-bit signed integer. ! `M' Any constant whose absolute value is no greater than 4-bits. ! `N' 10-bit signed integer ! `O' 16-bit signed integer. ! ! _PowerPC and IBM RS6000--`config/rs6000/rs6000.h'_ ! ! `b' Address base register ! `d' Floating point register (containing 64-bit value) ! `f' Floating point register (containing 32-bit value) ! `v' Altivec vector register ! `wd' VSX vector register to hold vector double data ! `wf' VSX vector register to hold vector float data ! `ws' VSX vector register to hold scalar float data ! `wa' Any VSX register ! `h' ! `MQ', `CTR', or `LINK' register ! `q' ! `MQ' register ! `c' ! `CTR' register ! `l' ! `LINK' register ! `x' ! `CR' register (condition register) number 0 ! `y' ! `CR' register (condition register) ! `z' ! `XER[CA]' carry bit (part of the XER register) ! `I' Signed 16-bit constant ! `J' ! Unsigned 16-bit constant shifted left 16 bits (use `L' ! instead for `SImode' constants) ! `K' Unsigned 16-bit constant ! `L' Signed 16-bit constant shifted left 16 bits ! `M' Constant larger than 31 ! `N' Exact power of 2 ! `O' Zero ! `P' Constant whose negation is a signed 16-bit constant ! `G' Floating point constant that can be loaded into a register with one instruction per word ! `H' Integer/Floating point constant that can be loaded into a register using three instructions ! `m' ! Memory operand. Normally, `m' does not allow addresses that ! update the base register. If `<' or `>' constraint is also used, they are allowed and therefore on PowerPC targets in ! that case it is only safe to use `m<>' in an `asm' statement ! if that `asm' statement accesses the operand exactly once. ! The `asm' statement must also use `%U' as a placeholder for the "update" flag in the corresponding load or store instruction. For example: --- 26025,26509 ---- ------------------------------------------ Whenever possible, you should use the general-purpose constraint letters ! in 'asm' arguments, since they will convey meaning more readily to ! people reading your code. Failing that, use the constraint letters that ! usually have very similar meanings across architectures. The most ! commonly used constraints are 'm' and 'r' (for memory and general-purpose registers respectively; *note Simple Constraints::), and ! 'I', usually the letter indicating the most common immediate-constant format. Each architecture defines additional constraints. These constraints are used by the compiler itself for instruction generation, as well as ! for 'asm' statements; therefore, some of the constraints are not ! particularly useful for 'asm'. Here is a summary of some of the machine-dependent constraints available on some particular machines; it ! includes both constraints that are useful for 'asm' and constraints that ! aren't. The compiler source file mentioned in the table heading for ! each architecture is the definitive reference for the meanings of that ! architecture's constraints. ! _AArch64 family--'config/aarch64/constraints.md'_ ! 'k' ! The stack pointer register ('SP') ! 'w' Floating point or SIMD vector register ! 'I' Integer constant that is valid as an immediate operand in an ! 'ADD' instruction ! 'J' Integer constant that is valid as an immediate operand in a ! 'SUB' instruction (once negated) ! 'K' Integer constant that can be used with a 32-bit logical instruction ! 'L' Integer constant that can be used with a 64-bit logical instruction ! 'M' Integer constant that is valid as an immediate operand in a ! 32-bit 'MOV' pseudo instruction. The 'MOV' may be assembled to one of several different machine instructions depending on the value ! 'N' Integer constant that is valid as an immediate operand in a ! 64-bit 'MOV' pseudo instruction ! 'S' An absolute symbolic address or a label reference ! 'Y' Floating point constant zero ! 'Z' Integer constant zero ! 'Usa' An absolute symbolic address ! 'Ush' ! The high part (bits 12 and upwards) of the pc-relative address ! of a symbol within 4GB of the instruction ! 'Q' A memory address which uses a single base register with no offset ! 'Ump' ! A memory address suitable for a load/store pair instruction in ! SI, DI, SF and DF modes ! _ARM family--'config/arm/constraints.md'_ ! 'w' VFP floating-point register ! 'G' The floating-point constant 0.0 ! 'I' Integer that is valid as an immediate operand in a data ! processing instruction. That is, an integer in the range 0 to ! 255 rotated by a multiple of 2 ! 'J' Integer in the range -4095 to 4095 ! 'K' ! Integer that satisfies constraint 'I' when inverted (ones complement) ! 'L' ! Integer that satisfies constraint 'I' when negated (twos complement) ! 'M' Integer in the range 0 to 32 ! 'Q' A memory reference where the exact address is in a single ! register (''m'' is preferable for 'asm' statements) ! 'R' An item in the constant pool ! 'S' A symbol in the text segment of the current file ! 'Uv' A memory reference suitable for VFP load/store insns (reg+constant offset) ! 'Uy' A memory reference suitable for iWMMXt load/store instructions. ! 'Uq' A memory reference suitable for the ARMv4 ldrsb instruction. ! _AVR family--'config/avr/constraints.md'_ ! 'l' Registers from r0 to r15 ! 'a' Registers from r16 to r23 ! 'd' Registers from r16 to r31 ! 'w' Registers from r24 to r31. These registers can be used in ! 'adiw' command ! 'e' Pointer register (r26-r31) ! 'b' Base pointer register (r28-r31) ! 'q' Stack pointer register (SPH:SPL) ! 't' Temporary register r0 ! 'x' Register pair X (r27:r26) ! 'y' Register pair Y (r29:r28) ! 'z' Register pair Z (r31:r30) ! 'I' Constant greater than -1, less than 64 ! 'J' Constant greater than -64, less than 1 ! 'K' Constant integer 2 ! 'L' Constant integer 0 ! 'M' Constant that fits in 8 bits ! 'N' Constant integer -1 ! 'O' Constant integer 8, 16, or 24 ! 'P' Constant integer 1 ! 'G' A floating point constant 0.0 ! 'Q' A memory address based on Y or Z pointer with displacement. ! _Epiphany--'config/epiphany/constraints.md'_ ! 'U16' An unsigned 16-bit constant. ! 'K' An unsigned 5-bit constant. ! 'L' A signed 11-bit constant. ! 'Cm1' ! A signed 11-bit constant added to -1. Can only match when the ! '-m1reg-REG' option is active. ! 'Cl1' Left-shift of -1, i.e., a bit mask with a block of leading ones, the rest being a block of trailing zeroes. Can only ! match when the '-m1reg-REG' option is active. ! 'Cr1' Right-shift of -1, i.e., a bit mask with a trailing block of ones, the rest being zeroes. Or to put it another way, one less than a power of two. Can only match when the ! '-m1reg-REG' option is active. ! 'Cal' ! Constant for arithmetic/logical operations. This is like 'i', ! except that for position independent code, no symbols / expressions needing relocations are allowed. ! 'Csy' Symbolic constant for call/jump instruction. ! 'Rcs' The register class usable in short insns. This is a register class constraint, and can thus drive register allocation. ! This constraint won't match unless '-mprefer-short-insn-regs' is in effect. ! 'Rsc' The the register class of registers that can be used to hold a sibcall call address. I.e., a caller-saved register. ! 'Rct' Core control register class. ! 'Rgs' The register group usable in short insns. This constraint does not use a register class, so that it only passively matches suitable registers, and doesn't drive register allocation. ! 'Rra' ! Matches the return address if it can be replaced with the link ! register. ! 'Rcc' Matches the integer condition code register. ! 'Sra' Matches the return address if it is in a stack slot. ! 'Cfm' Matches control register values to switch fp mode, which are ! encapsulated in 'UNSPEC_FP_MODE'. ! _CR16 Architecture--'config/cr16/cr16.h'_ ! 'b' Registers from r0 to r14 (registers without stack pointer) ! 't' Register from r0 to r11 (all 16-bit registers) ! 'p' Register from r12 to r15 (all 32-bit registers) ! 'I' Signed constant that fits in 4 bits ! 'J' Signed constant that fits in 5 bits ! 'K' Signed constant that fits in 6 bits ! 'L' Unsigned constant that fits in 4 bits ! 'M' Signed constant that fits in 32 bits ! 'N' Check for 64 bits wide constants for add/sub instructions ! 'G' Floating point constant that is legal for store immediate ! _Hewlett-Packard PA-RISC--'config/pa/pa.h'_ ! 'a' General register 1 ! 'f' Floating point register ! 'q' Shift amount register ! 'x' Floating point register (deprecated) ! 'y' Upper floating point register (32-bit), floating point register (64-bit) ! 'Z' Any register ! 'I' Signed 11-bit integer constant ! 'J' Signed 14-bit integer constant ! 'K' ! Integer constant that can be deposited with a 'zdepi' instruction ! 'L' Signed 5-bit integer constant ! 'M' Integer constant 0 ! 'N' ! Integer constant that can be loaded with a 'ldil' instruction ! 'O' Integer constant whose value plus one is a power of 2 ! 'P' ! Integer constant that can be used for 'and' operations in ! 'depi' and 'extru' instructions ! 'S' Integer constant 31 ! 'U' Integer constant 63 ! 'G' Floating-point constant 0.0 ! 'A' ! A 'lo_sum' data-linkage-table memory operand ! 'Q' A memory operand that can be used as the destination operand of an integer store instruction ! 'R' A scaled or unscaled indexed memory operand ! 'T' A memory operand for floating-point loads and stores ! 'W' A register indirect memory operand ! _picoChip family--'picochip.h'_ ! 'k' Stack register. ! 'f' Pointer register. A register which can be used to access ! memory without supplying an offset. Any other register can be ! used to access memory, but will need a constant offset. In ! the case of the offset being zero, it is more efficient to use ! a pointer register, since this reduces code size. ! 't' A twin register. A register which may be paired with an adjacent register to create a 32-bit register. ! 'a' Any absolute memory address (e.g., symbolic constant, symbolic constant + offset). ! 'I' 4-bit signed integer. ! 'J' 4-bit unsigned integer. ! 'K' 8-bit signed integer. ! 'M' Any constant whose absolute value is no greater than 4-bits. ! 'N' 10-bit signed integer ! 'O' 16-bit signed integer. ! _PowerPC and IBM RS6000--'config/rs6000/rs6000.h'_ ! 'b' Address base register ! 'd' Floating point register (containing 64-bit value) ! 'f' Floating point register (containing 32-bit value) ! 'v' Altivec vector register ! 'wd' VSX vector register to hold vector double data ! 'wf' VSX vector register to hold vector float data ! 'ws' VSX vector register to hold scalar float data ! 'wa' Any VSX register ! 'h' ! 'MQ', 'CTR', or 'LINK' register ! 'q' ! 'MQ' register ! 'c' ! 'CTR' register ! 'l' ! 'LINK' register ! 'x' ! 'CR' register (condition register) number 0 ! 'y' ! 'CR' register (condition register) ! 'z' ! 'XER[CA]' carry bit (part of the XER register) ! 'I' Signed 16-bit constant ! 'J' ! Unsigned 16-bit constant shifted left 16 bits (use 'L' instead ! for 'SImode' constants) ! 'K' Unsigned 16-bit constant ! 'L' Signed 16-bit constant shifted left 16 bits ! 'M' Constant larger than 31 ! 'N' Exact power of 2 ! 'O' Zero ! 'P' Constant whose negation is a signed 16-bit constant ! 'G' Floating point constant that can be loaded into a register with one instruction per word ! 'H' Integer/Floating point constant that can be loaded into a register using three instructions ! 'm' ! Memory operand. Normally, 'm' does not allow addresses that ! update the base register. If '<' or '>' constraint is also used, they are allowed and therefore on PowerPC targets in ! that case it is only safe to use 'm<>' in an 'asm' statement ! if that 'asm' statement accesses the operand exactly once. ! The 'asm' statement must also use '%U' as a placeholder for the "update" flag in the corresponding load or store instruction. For example: *************** _PowerPC and IBM RS6000--`config/rs6000/ *** 26707,26792 **** is not. ! `es' ! A "stable" memory operand; that is, one which does not ! include any automodification of the base register. This used ! to be useful when `m' allowed automodification of the base ! register, but as those are now only allowed when `<' or `>' ! is used, `es' is basically the same as `m' without `<' and ! `>'. ! `Q' Memory operand that is an offset from a register (it is ! usually better to use `m' or `es' in `asm' statements) ! `Z' Memory operand that is an indexed or indirect from a register ! (it is usually better to use `m' or `es' in `asm' statements) ! `R' AIX TOC entry ! `a' ! Address operand that is an indexed or indirect from a ! register (`p' is preferable for `asm' statements) ! `S' Constant suitable as a 64-bit mask operand ! `T' Constant suitable as a 32-bit mask operand ! `U' System V Release 4 small data area reference ! `t' AND masks that can be performed by two rldic{l, r} instructions ! `W' Vector constant that does not require memory ! `j' Vector constant that is all zeros. ! ! _Intel 386--`config/i386/constraints.md'_ ! ! `R' Legacy register--the eight integer registers available on all ! i386 processors (`a', `b', `c', `d', `si', `di', `bp', `sp'). ! `q' ! Any register accessible as `Rl'. In 32-bit mode, `a', `b', ! `c', and `d'; in 64-bit mode, any integer register. ! `Q' ! Any register accessible as `Rh': `a', `b', `c', and `d'. ! `a' ! The `a' register. ! `b' ! The `b' register. ! `c' ! The `c' register. ! `d' ! The `d' register. ! `S' ! The `si' register. ! `D' ! The `di' register. ! `A' ! The `a' and `d' registers. This class is used for ! instructions that return double word results in the `ax:dx' ! register pair. Single word values will be allocated either ! in `ax' or `dx'. For example on i386 the following ! implements `rdtsc': unsigned long long rdtsc (void) { --- 26515,26597 ---- is not. ! 'es' ! A "stable" memory operand; that is, one which does not include ! any automodification of the base register. This used to be ! useful when 'm' allowed automodification of the base register, ! but as those are now only allowed when '<' or '>' is used, ! 'es' is basically the same as 'm' without '<' and '>'. ! 'Q' Memory operand that is an offset from a register (it is ! usually better to use 'm' or 'es' in 'asm' statements) ! 'Z' Memory operand that is an indexed or indirect from a register ! (it is usually better to use 'm' or 'es' in 'asm' statements) ! 'R' AIX TOC entry ! 'a' ! Address operand that is an indexed or indirect from a register ! ('p' is preferable for 'asm' statements) ! 'S' Constant suitable as a 64-bit mask operand ! 'T' Constant suitable as a 32-bit mask operand ! 'U' System V Release 4 small data area reference ! 't' AND masks that can be performed by two rldic{l, r} instructions ! 'W' Vector constant that does not require memory ! 'j' Vector constant that is all zeros. ! _Intel 386--'config/i386/constraints.md'_ ! 'R' Legacy register--the eight integer registers available on all ! i386 processors ('a', 'b', 'c', 'd', 'si', 'di', 'bp', 'sp'). ! 'q' ! Any register accessible as 'Rl'. In 32-bit mode, 'a', 'b', ! 'c', and 'd'; in 64-bit mode, any integer register. ! 'Q' ! Any register accessible as 'Rh': 'a', 'b', 'c', and 'd'. ! 'a' ! The 'a' register. ! 'b' ! The 'b' register. ! 'c' ! The 'c' register. ! 'd' ! The 'd' register. ! 'S' ! The 'si' register. ! 'D' ! The 'di' register. ! 'A' ! The 'a' and 'd' registers. This class is used for ! instructions that return double word results in the 'ax:dx' ! register pair. Single word values will be allocated either in ! 'ax' or 'dx'. For example on i386 the following implements ! 'rdtsc': unsigned long long rdtsc (void) { *************** _Intel 386--`config/i386/constraints.md' *** 26796,26802 **** } This is not correct on x86_64 as it would allocate tick in ! either `ax' or `dx'. You have to use the following variant instead: unsigned long long rdtsc (void) --- 26601,26607 ---- } This is not correct on x86_64 as it would allocate tick in ! either 'ax' or 'dx'. You have to use the following variant instead: unsigned long long rdtsc (void) *************** _Intel 386--`config/i386/constraints.md' *** 26806,28394 **** return ((unsigned long long)tickh << 32)|tickl; } ! `f' Any 80387 floating-point (stack) register. ! `t' ! Top of 80387 floating-point stack (`%st(0)'). ! `u' ! Second from top of 80387 floating-point stack (`%st(1)'). ! `y' Any MMX register. ! `x' Any SSE register. ! `Yz' ! First SSE register (`%xmm0'). ! `I' Integer constant in the range 0 ... 31, for 32-bit shifts. ! `J' Integer constant in the range 0 ... 63, for 64-bit shifts. ! `K' Signed 8-bit integer constant. ! `L' ! `0xFF' or `0xFFFF', for andsi as a zero-extending move. ! `M' ! 0, 1, 2, or 3 (shifts for the `lea' instruction). ! `N' ! Unsigned 8-bit integer constant (for `in' and `out' instructions). ! `G' Standard 80387 floating point constant. ! `C' Standard SSE floating point constant. ! `e' 32-bit signed integer constant, or a symbolic reference known to fit that range (for immediate operands in sign-extending x86-64 instructions). ! `Z' 32-bit unsigned integer constant, or a symbolic reference known to fit that range (for immediate operands in zero-extending x86-64 instructions). ! _Intel IA-64--`config/ia64/ia64.h'_ ! ! `a' ! General register `r0' to `r3' for `addl' instruction ! ! `b' Branch register ! `c' ! Predicate register (`c' as in "conditional") ! `d' Application register residing in M-unit ! `e' Application register residing in I-unit ! `f' Floating-point register ! `m' ! Memory operand. If used together with `<' or `>', the ! operand can have postincrement and postdecrement which ! require printing with `%Pn' on IA-64. ! `G' Floating-point constant 0.0 or 1.0 ! `I' 14-bit signed integer constant ! `J' 22-bit signed integer constant ! `K' 8-bit signed integer constant for logical instructions ! `L' 8-bit adjusted signed integer constant for compare pseudo-ops ! `M' 6-bit unsigned integer constant for shift counts ! `N' 9-bit signed integer constant for load and store postincrements ! `O' The constant zero ! `P' ! 0 or -1 for `dep' instruction ! `Q' Non-volatile memory for floating-point loads and stores ! `R' ! Integer constant in the range 1 to 4 for `shladd' instruction ! `S' Memory operand except postincrement and postdecrement. This ! is now roughly the same as `m' when not used together with `<' ! or `>'. ! ! _FRV--`config/frv/frv.h'_ ! `a' ! Register in the class `ACC_REGS' (`acc0' to `acc7'). ! `b' ! Register in the class `EVEN_ACC_REGS' (`acc0' to `acc7'). ! `c' ! Register in the class `CC_REGS' (`fcc0' to `fcc3' and `icc0' ! to `icc3'). ! `d' ! Register in the class `GPR_REGS' (`gr0' to `gr63'). ! `e' ! Register in the class `EVEN_REGS' (`gr0' to `gr63'). Odd ! registers are excluded not in the class but through the use ! of a machine mode larger than 4 bytes. ! `f' ! Register in the class `FPR_REGS' (`fr0' to `fr63'). ! `h' ! Register in the class `FEVEN_REGS' (`fr0' to `fr63'). Odd ! registers are excluded not in the class but through the use ! of a machine mode larger than 4 bytes. ! `l' ! Register in the class `LR_REG' (the `lr' register). ! `q' ! Register in the class `QUAD_REGS' (`gr2' to `gr63'). ! Register numbers not divisible by 4 are excluded not in the ! class but through the use of a machine mode larger than 8 ! bytes. ! `t' ! Register in the class `ICC_REGS' (`icc0' to `icc3'). ! `u' ! Register in the class `FCC_REGS' (`fcc0' to `fcc3'). ! `v' ! Register in the class `ICR_REGS' (`cc4' to `cc7'). ! `w' ! Register in the class `FCR_REGS' (`cc0' to `cc3'). ! `x' ! Register in the class `QUAD_FPR_REGS' (`fr0' to `fr63'). Register numbers not divisible by 4 are excluded not in the class but through the use of a machine mode larger than 8 bytes. ! `z' ! Register in the class `SPR_REGS' (`lcr' and `lr'). ! `A' ! Register in the class `QUAD_ACC_REGS' (`acc0' to `acc7'). ! `B' ! Register in the class `ACCG_REGS' (`accg0' to `accg7'). ! `C' ! Register in the class `CR_REGS' (`cc0' to `cc7'). ! `G' Floating point constant zero ! `I' 6-bit signed integer constant ! `J' 10-bit signed integer constant ! `L' 16-bit signed integer constant ! `M' 16-bit unsigned integer constant ! `N' 12-bit signed integer constant that is negative--i.e. in the range of -2048 to -1 ! `O' Constant zero ! `P' ! 12-bit signed integer constant that is greater than ! zero--i.e. in the range of 1 to 2047. ! ! ! _Blackfin family--`config/bfin/constraints.md'_ ! `a' P register ! `d' D register ! `z' A call clobbered P register. ! `qN' A single register. If N is in the range 0 to 7, the ! corresponding D register. If it is `A', then the register P0. ! `D' Even-numbered D register ! `W' Odd-numbered D register ! `e' Accumulator register. ! `A' Even-numbered accumulator register. ! `B' Odd-numbered accumulator register. ! `b' I register ! `v' B register ! `f' M register ! `c' ! Registers used for circular buffering, i.e. I, B, or L registers. ! `C' The CC register. ! `t' LT0 or LT1. ! `k' LC0 or LC1. ! `u' LB0 or LB1. ! `x' Any D, P, B, M, I or L register. ! `y' Additional registers typically used only in prologues and epilogues: RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP. ! `w' Any register except accumulators or CC. ! `Ksh' Signed 16 bit integer (in the range -32768 to 32767) ! `Kuh' Unsigned 16 bit integer (in the range 0 to 65535) ! `Ks7' Signed 7 bit integer (in the range -64 to 63) ! `Ku7' Unsigned 7 bit integer (in the range 0 to 127) ! `Ku5' Unsigned 5 bit integer (in the range 0 to 31) ! `Ks4' Signed 4 bit integer (in the range -8 to 7) ! `Ks3' Signed 3 bit integer (in the range -3 to 4) ! `Ku3' Unsigned 3 bit integer (in the range 0 to 7) ! `PN' Constant N, where N is a single-digit constant in the range 0 to 4. ! `PA' An integer equal to one of the MACFLAG_XXX constants that is suitable for use with either accumulator. ! `PB' An integer equal to one of the MACFLAG_XXX constants that is suitable for use only with accumulator A1. ! `M1' Constant 255. ! `M2' Constant 65535. ! `J' An integer constant with exactly a single bit set. ! `L' An integer constant with all bits set except exactly one. ! `H' ! `Q' Any SYMBOL_REF. ! _M32C--`config/m32c/m32c.c'_ ! ! `Rsp' ! `Rfb' ! `Rsb' ! `$sp', `$fb', `$sb'. ! `Rcr' Any control register, when they're 16 bits wide (nothing if control registers are 24 bits wide) ! `Rcl' Any control register, when they're 24 bits wide. ! `R0w' ! `R1w' ! `R2w' ! `R3w' $r0, $r1, $r2, $r3. ! `R02' $r0 or $r2, or $r2r0 for 32 bit values. ! `R13' $r1 or $r3, or $r3r1 for 32 bit values. ! `Rdi' A register that can hold a 64 bit value. ! `Rhl' $r0 or $r1 (registers with addressable high/low bytes) ! `R23' $r2 or $r3 ! `Raa' Address registers ! `Raw' Address registers when they're 16 bits wide. ! `Ral' Address registers when they're 24 bits wide. ! `Rqi' Registers that can hold QI values. ! `Rad' Registers that can be used with displacements ($a0, $a1, $sb). ! `Rsi' Registers that can hold 32 bit values. ! `Rhi' Registers that can hold 16 bit values. ! `Rhc' Registers chat can hold 16 bit values, including all control registers. ! `Rra' $r0 through R1, plus $a0 and $a1. ! `Rfl' The flags register. ! `Rmm' The memory-based pseudo-registers $mem0 through $mem15. ! `Rpi' Registers that can hold pointers (16 bit registers for r8c, m16c; 24 bit registers for m32cm, m32c). ! `Rpa' Matches multiple registers in a PARALLEL to form a larger register. Used to match function return values. ! `Is3' -8 ... 7 ! `IS1' -128 ... 127 ! `IS2' -32768 ... 32767 ! `IU2' 0 ... 65535 ! `In4' -8 ... -1 or 1 ... 8 ! `In5' -16 ... -1 or 1 ... 16 ! `In6' -32 ... -1 or 1 ... 32 ! `IM2' -65536 ... -1 ! `Ilb' An 8 bit value with exactly one bit set. ! `Ilw' A 16 bit value with exactly one bit set. ! `Sd' The common src/dest memory addressing modes. ! `Sa' Memory addressed using $a0 or $a1. ! `Si' Memory addressed with immediate addresses. ! `Ss' Memory addressed using the stack pointer ($sp). ! `Sf' Memory addressed using the frame base register ($fb). ! `Ss' Memory addressed using the small base register ($sb). ! `S1' $r1h ! _MeP--`config/mep/constraints.md'_ ! `a' The $sp register. ! `b' The $tp register. ! `c' Any control register. ! `d' Either the $hi or the $lo register. ! `em' Coprocessor registers that can be directly loaded ($c0-$c15). ! `ex' Coprocessor registers that can be moved to each other. ! `er' Coprocessor registers that can be moved to core registers. ! `h' The $hi register. ! `j' The $rpc register. ! `l' The $lo register. ! `t' Registers which can be used in $tp-relative addressing. ! `v' The $gp register. ! `x' The coprocessor registers. ! `y' The coprocessor control registers. ! `z' The $0 register. ! `A' User-defined register set A. ! `B' User-defined register set B. ! `C' User-defined register set C. ! `D' User-defined register set D. ! `I' Offsets for $gp-rel addressing. ! `J' Constants that can be used directly with boolean insns. ! `K' Constants that can be moved directly to registers. ! `L' Small constants that can be added to registers. ! `M' Long shift counts. ! `N' Small constants that can be compared to registers. ! `O' Constants that can be loaded into the top half of registers. ! `S' Signed 8-bit immediates. ! `T' Symbols encoded for $tp-rel or $gp-rel addressing. ! `U' Non-constant addresses for loading/saving coprocessor registers. ! `W' The top half of a symbol's value. ! `Y' A register indirect address without offset. ! `Z' Symbolic references to the control bus. ! _MicroBlaze--`config/microblaze/constraints.md'_ ! ! `d' ! A general register (`r0' to `r31'). ! ! `z' ! A status register (`rmsr', `$fcc1' to `$fcc7'). ! ! ! _MIPS--`config/mips/constraints.md'_ ! `d' ! An address register. This is equivalent to `r' unless generating MIPS16 code. ! `f' A floating-point register (if available). ! `h' ! Formerly the `hi' register. This constraint is no longer supported. ! `l' ! The `lo' register. Use this register to store values that are no bigger than a word. ! `x' ! The concatenated `hi' and `lo' registers. Use this register to store doubleword values. ! `c' A register suitable for use in an indirect jump. This will ! always be `$25' for `-mabicalls'. ! `v' ! Register `$3'. Do not use this constraint in new code; it is retained only for compatibility with glibc. ! `y' ! Equivalent to `r'; retained for backwards compatibility. ! `z' A floating-point condition code register. ! `I' A signed 16-bit constant (for arithmetic instructions). ! `J' Integer zero. ! `K' An unsigned 16-bit constant (for logic instructions). ! `L' A signed 32-bit constant in which the lower 16 bits are zero. ! Such constants can be loaded using `lui'. ! `M' ! A constant that cannot be loaded using `lui', `addiu' or ! `ori'. ! `N' A constant in the range -65535 to -1 (inclusive). ! `O' A signed 15-bit constant. ! `P' A constant in the range 1 to 65535 (inclusive). ! `G' Floating-point zero. ! `R' An address that can be used in a non-macro load or store. ! _Motorola 680x0--`config/m68k/constraints.md'_ ! ! `a' Address register ! `d' Data register ! `f' 68881 floating-point register, if available ! `I' Integer in the range 1 to 8 ! `J' 16-bit signed number ! `K' Signed number whose magnitude is greater than 0x80 ! `L' Integer in the range -8 to -1 ! `M' Signed number whose magnitude is greater than 0x100 ! `N' Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate ! `O' 16 (for rotate using swap) ! `P' Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate ! `R' Numbers that mov3q can handle ! `G' Floating point constant that is not a 68881 constant ! `S' Operands that satisfy 'm' when -mpcrel is in effect ! `T' Operands that satisfy 's' when -mpcrel is not in effect ! `Q' Address register indirect addressing mode ! `U' Register offset addressing ! `W' const_call_operand ! `Cs' symbol_ref or const ! `Ci' const_int ! `C0' const_int 0 ! `Cj' Range of signed numbers that don't fit in 16 bits ! `Cmvq' Integers valid for mvq ! `Capsw' Integers valid for a moveq followed by a swap ! `Cmvz' Integers valid for mvz ! `Cmvs' Integers valid for mvs ! `Ap' push_operand ! `Ac' Non-register operands allowed in clr ! ! _Moxie--`config/moxie/constraints.md'_ ! ! `A' An absolute address ! `B' An offset address ! `W' A register indirect memory operand ! `I' A constant in the range of 0 to 255. ! `N' A constant in the range of 0 to -255. ! _PDP-11--`config/pdp11/constraints.md'_ ! ! `a' ! Floating point registers AC0 through AC3. These can be ! loaded from/to memory with a single instruction. ! ! `d' Odd numbered general registers (R1, R3, R5). These are used for 16-bit multiply operations. ! `f' Any of the floating point registers (AC0 through AC5). ! `G' Floating point constant 0. ! `I' An integer constant that fits in 16 bits. ! `J' An integer constant whose low order 16 bits are zero. ! `K' An integer constant that does not meet the constraints for ! codes `I' or `J'. ! `L' The integer constant 1. ! `M' The integer constant -1. ! `N' The integer constant 0. ! `O' Integer constants -4 through -1 and 1 through 4; shifts by ! these amounts are handled as multiple single-bit shifts ! rather than a single variable-length shift. ! `Q' A memory reference which requires an additional word (address or offset) after the opcode. ! `R' A memory reference that is encoded within the opcode. ! _RL78--`config/rl78/constraints.md'_ ! ! `Int3' An integer constant in the range 1 ... 7. ! ! `Int8' An integer constant in the range 0 ... 255. ! ! `J' An integer constant in the range -255 ... 0 ! ! `K' The integer constant 1. ! ! `L' The integer constant -1. ! ! `M' The integer constant 0. ! ! `N' The integer constant 2. ! ! `O' The integer constant -2. ! ! `P' An integer constant in the range 1 ... 15. ! ! `Qbi' The built-in compare types-eq, ne, gtu, ltu, geu, and leu. ! ! `Qsc' The synthetic compare types-gt, lt, ge, and le. ! ! `Wab' A memory reference with an absolute address. ! ! `Wbc' ! A memory reference using `BC' as a base register, with an optional offset. ! ! `Wca' ! A memory reference using `AX', `BC', `DE', or `HL' for the address, for calls. ! ! `Wcv' A memory reference using any 16-bit register pair for the address, for calls. ! ! `Wd2' ! A memory reference using `DE' as a base register, with an optional offset. ! ! `Wde' ! A memory reference using `DE' as a base register, without any offset. ! ! `Wfr' Any memory reference to an address in the far address space. ! ! `Wh1' ! A memory reference using `HL' as a base register, with an optional one-byte offset. ! ! `Whb' ! A memory reference using `HL' as a base register, with `B' or ! `C' as the index register. ! ! `Whl' ! A memory reference using `HL' as a base register, without any offset. ! ! `Ws1' ! A memory reference using `SP' as a base register, with an optional one-byte offset. ! ! `Y' Any memory reference to an address in the near address space. ! ! `A' ! The `AX' register. ! ! `B' ! The `BC' register. ! ! `D' ! The `DE' register. ! ! `R' ! `A' through `L' registers. ! ! `S' ! The `SP' register. ! ! `T' ! The `HL' register. ! ! `Z08W' ! The 16-bit `R8' register. ! ! `Z10W' ! The 16-bit `R10' register. ! ! `Zint' ! The registers reserved for interrupts (`R24' to `R31'). ! ! `a' ! The `A' register. ! ! `b' ! The `B' register. ! ! `c' ! The `C' register. ! ! `d' ! The `D' register. ! ! `e' ! The `E' register. ! ! `h' ! The `H' register. ! ! `l' ! The `L' register. ! ! `v' The virtual registers. ! `w' ! The `PSW' register. ! ! `x' ! The `X' register. ! ! ! _RX--`config/rx/constraints.md'_ ! ! `Q' ! An address which does not involve register indirect ! addressing or pre/post increment/decrement addressing. ! `Symbol' A symbol reference. ! `Int08' A constant in the range -256 to 255, inclusive. ! `Sint08' A constant in the range -128 to 127, inclusive. ! `Sint16' A constant in the range -32768 to 32767, inclusive. ! `Sint24' A constant in the range -8388608 to 8388607, inclusive. ! `Uint04' A constant in the range 0 to 15, inclusive. ! _SPARC--`config/sparc/sparc.h'_ ! ! `f' ! Floating-point register on the SPARC-V8 architecture and ! lower floating-point register on the SPARC-V9 architecture. ! ! `e' ! Floating-point register. It is equivalent to `f' on the SPARC-V8 architecture and contains both lower and upper floating-point registers on the SPARC-V9 architecture. ! `c' Floating-point condition code register. ! `d' Lower floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! `b' Floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! `h' 64-bit global or out register for the SPARC-V8+ architecture. ! `C' The constant all-ones, for floating-point. ! `A' Signed 5-bit constant ! `D' A vector constant ! `I' Signed 13-bit constant ! `J' Zero ! `K' 32-bit constant with the low 12 bits clear (a constant that ! can be loaded with the `sethi' instruction) ! `L' ! A constant in the range supported by `movcc' instructions (11-bit signed immediate) ! `M' ! A constant in the range supported by `movrcc' instructions (10-bit signed immediate) ! `N' ! Same as `K', except that it verifies that bits that are not ! in the lower 32-bit range are all zero. Must be used instead ! of `K' for modes wider than `SImode' ! `O' The constant 4096 ! `G' Floating-point zero ! `H' Signed 13-bit constant, sign-extended to 32 or 64 bits ! `P' The constant -1 ! `Q' Floating-point constant whose integral representation can be moved into an integer register using a single sethi instruction ! `R' Floating-point constant whose integral representation can be moved into an integer register using a single mov instruction ! `S' Floating-point constant whose integral representation can be ! moved into an integer register using a high/lo_sum ! instruction sequence ! `T' Memory address aligned to an 8-byte boundary ! `U' Even register ! `W' ! Memory address for `e' constraint registers ! `w' Memory address with only a base register ! `Y' Vector zero ! ! _SPU--`config/spu/spu.h'_ ! ! `a' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 64 bit value. ! `c' An immediate for and/xor/or instructions. const_int is treated as a 64 bit value. ! `d' ! An immediate for the `iohl' instruction. const_int is ! treated as a 64 bit value. ! `f' ! An immediate which can be loaded with `fsmbi'. ! `A' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 32 bit value. ! `B' An immediate for most arithmetic instructions. const_int is treated as a 32 bit value. ! `C' An immediate for and/xor/or instructions. const_int is treated as a 32 bit value. ! `D' ! An immediate for the `iohl' instruction. const_int is ! treated as a 32 bit value. ! `I' A constant in the range [-64, 63] for shift/rotate instructions. ! `J' An unsigned 7-bit constant for conversion/nop/channel instructions. ! `K' A signed 10-bit constant for most arithmetic instructions. ! `M' ! A signed 16 bit immediate for `stop'. ! `N' ! An unsigned 16-bit constant for `iohl' and `fsmbi'. ! `O' An unsigned 7-bit constant whose 3 least significant bits are 0. ! `P' An unsigned 3-bit constant for 16-byte rotates and shifts ! `R' Call operand, reg, for indirect calls ! `S' Call operand, symbol, for relative calls. ! `T' Call operand, const_int, for absolute calls. ! `U' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is sign extended to 128 bit. ! `W' An immediate for shift and rotate instructions. const_int is treated as a 32 bit value. ! `Y' An immediate for and/xor/or instructions. const_int is sign extended as a 128 bit. ! `Z' ! An immediate for the `iohl' instruction. const_int is sign extended to 128 bit. ! ! _S/390 and zSeries--`config/s390/s390.h'_ ! ! `a' Address register (general purpose register except r0) ! `c' Condition code register ! `d' Data register (arbitrary general purpose register) ! `f' Floating-point register ! `I' Unsigned 8-bit constant (0-255) ! `J' Unsigned 12-bit constant (0-4095) ! `K' Signed 16-bit constant (-32768-32767) ! `L' Value appropriate as displacement. ! `(0..4095)' for short displacement ! ! `(-524288..524287)' for long displacement ! `M' Constant integer with a value of 0x7fffffff. ! `N' Multiple letter constraint followed by 4 parameter letters. ! `0..9:' number of the part counting from most to least significant ! ! `H,Q:' mode of the part ! ! `D,S,H:' mode of the containing operand ! ! `0,F:' value of the other parts (F--all bits set) ! The constraint matches if the specified part of a constant ! has a value different from its other parts. ! `Q' Memory reference without index register and with short displacement. ! `R' Memory reference with index register and short displacement. ! `S' Memory reference without index register but with long displacement. ! `T' Memory reference with index register and long displacement. ! `U' Pointer with short displacement. ! `W' Pointer with long displacement. ! `Y' Shift count operand. ! ! _Score family--`config/score/score.h'_ ! ! `d' Registers from r0 to r32. ! `e' Registers from r0 to r16. ! `t' r8--r11 or r22--r27 registers. ! `h' hi register. ! `l' lo register. ! `x' hi + lo register. ! `q' cnt register. ! `y' lcb register. ! `z' scb register. ! `a' cnt + lcb + scb register. ! `c' cr0--cr15 register. ! `b' cp1 registers. ! `f' cp2 registers. ! `i' cp3 registers. ! `j' cp1 + cp2 + cp3 registers. ! `I' High 16-bit constant (32-bit constant with 16 LSBs zero). ! `J' Unsigned 5 bit integer (in the range 0 to 31). ! `K' Unsigned 16 bit integer (in the range 0 to 65535). ! `L' Signed 16 bit integer (in the range -32768 to 32767). ! `M' Unsigned 14 bit integer (in the range 0 to 16383). ! `N' Signed 14 bit integer (in the range -8192 to 8191). ! `Z' Any SYMBOL_REF. ! _Xstormy16--`config/stormy16/stormy16.h'_ ! ! `a' Register r0. ! `b' Register r1. ! `c' Register r2. ! `d' Register r8. ! `e' Registers r0 through r7. ! `t' Registers r0 and r1. ! `y' The carry register. ! `z' Registers r8 and r9. ! `I' A constant between 0 and 3 inclusive. ! `J' A constant that has exactly one bit set. ! `K' A constant that has exactly one bit clear. ! `L' A constant between 0 and 255 inclusive. ! `M' A constant between -255 and 0 inclusive. ! `N' A constant between -3 and 0 inclusive. ! `O' A constant between 1 and 4 inclusive. ! `P' A constant between -4 and -1 inclusive. ! `Q' A memory reference that is a stack push. ! `R' A memory reference that is a stack pop. ! `S' A memory reference that refers to a constant address of known value. ! `T' The register indicated by Rx (not implemented yet). ! `U' A constant that is not between 2 and 15 inclusive. ! `Z' The constant 0. ! ! _TI C6X family--`config/c6x/constraints.md'_ ! ! `a' Register file A (A0-A31). ! `b' Register file B (B0-B31). ! `A' Predicate registers in register file A (A0-A2 on C64X and higher, A1 and A2 otherwise). ! `B' Predicate registers in register file B (B0-B2). ! `C' A call-used register in register file B (B0-B9, B16-B31). ! `Da' Register file A, excluding predicate registers (A3-A31, plus A0 if not C64X or higher). ! `Db' Register file B, excluding predicate registers (B3-B31). ! `Iu4' Integer constant in the range 0 ... 15. ! `Iu5' Integer constant in the range 0 ... 31. ! `In5' Integer constant in the range -31 ... 0. ! `Is5' Integer constant in the range -16 ... 15. ! `I5x' Integer constant that can be the operand of an ADDA or a SUBA insn. ! `IuB' Integer constant in the range 0 ... 65535. ! `IsB' Integer constant in the range -32768 ... 32767. ! `IsC' ! Integer constant in the range -2^20 ... 2^20 - 1. ! `Jc' Integer constant that is a valid mask for the clr instruction. ! `Js' Integer constant that is a valid mask for the set instruction. ! `Q' Memory location with A base register. ! `R' Memory location with B base register. ! `Z' Register B14 (aka DP). ! ! _TILE-Gx--`config/tilegx/constraints.md'_ ! ! `R00' ! `R01' ! `R02' ! `R03' ! `R04' ! `R05' ! `R06' ! `R07' ! `R08' ! `R09' ! `R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! `I' Signed 8-bit integer constant. ! `J' Signed 16-bit integer constant. ! `K' Unsigned 16-bit integer constant. ! `L' ! Integer constant that fits in one signed byte when ! incremented by one (-129 ... 126). ! `m' ! Memory operand. If used together with `<' or `>', the ! operand can have postincrement which requires printing with ! `%In' and `%in' on TILE-Gx. For example: asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val)); ! `M' A bit mask suitable for the BFINS instruction. ! `N' Integer constant that is a byte tiled out eight times. ! `O' The integer zero constant. ! `P' Integer constant that is a sign-extended byte tiled out as four shorts. ! `Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! `S' Integer constant that has all 1 bits consecutive and starting at bit 0. ! `T' A 16-bit fragment of a got, tls, or pc-relative reference. ! `U' ! Memory operand except postincrement. This is roughly the ! same as `m' when not used together with `<' or `>'. ! `W' An 8-element vector constant with identical elements. ! `Y' A 4-element vector constant with identical elements. ! `Z0' The integer constant 0xffffffff. ! `Z1' The integer constant 0xffffffff00000000. ! ! _TILEPro--`config/tilepro/constraints.md'_ ! ! `R00' ! `R01' ! `R02' ! `R03' ! `R04' ! `R05' ! `R06' ! `R07' ! `R08' ! `R09' ! `R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! `I' Signed 8-bit integer constant. ! `J' Signed 16-bit integer constant. ! `K' Nonzero integer constant with low 16 bits zero. ! `L' ! Integer constant that fits in one signed byte when ! incremented by one (-129 ... 126). ! `m' ! Memory operand. If used together with `<' or `>', the ! operand can have postincrement which requires printing with ! `%In' and `%in' on TILEPro. For example: asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val)); ! `M' A bit mask suitable for the MM instruction. ! `N' Integer constant that is a byte tiled out four times. ! `O' The integer zero constant. ! `P' ! Integer constant that is a sign-extended byte tiled out as ! two shorts. ! `Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! `T' A symbolic operand, or a 16-bit fragment of a got, tls, or pc-relative reference. ! `U' ! Memory operand except postincrement. This is roughly the ! same as `m' when not used together with `<' or `>'. ! `W' A 4-element vector constant with identical elements. ! `Y' A 2-element vector constant with identical elements. ! ! _Xtensa--`config/xtensa/constraints.md'_ ! ! `a' General-purpose 32-bit register ! `b' One-bit boolean register ! `A' MAC16 40-bit accumulator register ! `I' Signed 12-bit integer constant, for use in MOVI instructions ! `J' Signed 8-bit integer constant, for use in ADDI instructions ! `K' Integer constant valid for BccI instructions ! `L' Unsigned constant valid for BccUI instructions - -  File: gcc.info, Node: Asm Labels, Next: Explicit Reg Vars, Prev: Constraints, Up: C Extensions --- 26611,28116 ---- return ((unsigned long long)tickh << 32)|tickl; } ! 'f' Any 80387 floating-point (stack) register. ! 't' ! Top of 80387 floating-point stack ('%st(0)'). ! 'u' ! Second from top of 80387 floating-point stack ('%st(1)'). ! 'y' Any MMX register. ! 'x' Any SSE register. ! 'Yz' ! First SSE register ('%xmm0'). ! 'I' Integer constant in the range 0 ... 31, for 32-bit shifts. ! 'J' Integer constant in the range 0 ... 63, for 64-bit shifts. ! 'K' Signed 8-bit integer constant. ! 'L' ! '0xFF' or '0xFFFF', for andsi as a zero-extending move. ! 'M' ! 0, 1, 2, or 3 (shifts for the 'lea' instruction). ! 'N' ! Unsigned 8-bit integer constant (for 'in' and 'out' instructions). ! 'G' Standard 80387 floating point constant. ! 'C' Standard SSE floating point constant. ! 'e' 32-bit signed integer constant, or a symbolic reference known to fit that range (for immediate operands in sign-extending x86-64 instructions). ! 'Z' 32-bit unsigned integer constant, or a symbolic reference known to fit that range (for immediate operands in zero-extending x86-64 instructions). + _Intel IA-64--'config/ia64/ia64.h'_ + 'a' + General register 'r0' to 'r3' for 'addl' instruction ! 'b' Branch register ! 'c' ! Predicate register ('c' as in "conditional") ! 'd' Application register residing in M-unit ! 'e' Application register residing in I-unit ! 'f' Floating-point register ! 'm' ! Memory operand. If used together with '<' or '>', the operand ! can have postincrement and postdecrement which require ! printing with '%Pn' on IA-64. ! 'G' Floating-point constant 0.0 or 1.0 ! 'I' 14-bit signed integer constant ! 'J' 22-bit signed integer constant ! 'K' 8-bit signed integer constant for logical instructions ! 'L' 8-bit adjusted signed integer constant for compare pseudo-ops ! 'M' 6-bit unsigned integer constant for shift counts ! 'N' 9-bit signed integer constant for load and store postincrements ! 'O' The constant zero ! 'P' ! 0 or -1 for 'dep' instruction ! 'Q' Non-volatile memory for floating-point loads and stores ! 'R' ! Integer constant in the range 1 to 4 for 'shladd' instruction ! 'S' Memory operand except postincrement and postdecrement. This ! is now roughly the same as 'm' when not used together with '<' ! or '>'. ! _FRV--'config/frv/frv.h'_ ! 'a' ! Register in the class 'ACC_REGS' ('acc0' to 'acc7'). ! 'b' ! Register in the class 'EVEN_ACC_REGS' ('acc0' to 'acc7'). ! 'c' ! Register in the class 'CC_REGS' ('fcc0' to 'fcc3' and 'icc0' ! to 'icc3'). ! 'd' ! Register in the class 'GPR_REGS' ('gr0' to 'gr63'). ! 'e' ! Register in the class 'EVEN_REGS' ('gr0' to 'gr63'). Odd ! registers are excluded not in the class but through the use of ! a machine mode larger than 4 bytes. ! 'f' ! Register in the class 'FPR_REGS' ('fr0' to 'fr63'). ! 'h' ! Register in the class 'FEVEN_REGS' ('fr0' to 'fr63'). Odd ! registers are excluded not in the class but through the use of ! a machine mode larger than 4 bytes. ! 'l' ! Register in the class 'LR_REG' (the 'lr' register). ! 'q' ! Register in the class 'QUAD_REGS' ('gr2' to 'gr63'). Register ! numbers not divisible by 4 are excluded not in the class but ! through the use of a machine mode larger than 8 bytes. ! 't' ! Register in the class 'ICC_REGS' ('icc0' to 'icc3'). ! 'u' ! Register in the class 'FCC_REGS' ('fcc0' to 'fcc3'). ! 'v' ! Register in the class 'ICR_REGS' ('cc4' to 'cc7'). ! 'w' ! Register in the class 'FCR_REGS' ('cc0' to 'cc3'). ! 'x' ! Register in the class 'QUAD_FPR_REGS' ('fr0' to 'fr63'). Register numbers not divisible by 4 are excluded not in the class but through the use of a machine mode larger than 8 bytes. ! 'z' ! Register in the class 'SPR_REGS' ('lcr' and 'lr'). ! 'A' ! Register in the class 'QUAD_ACC_REGS' ('acc0' to 'acc7'). ! 'B' ! Register in the class 'ACCG_REGS' ('accg0' to 'accg7'). ! 'C' ! Register in the class 'CR_REGS' ('cc0' to 'cc7'). ! 'G' Floating point constant zero ! 'I' 6-bit signed integer constant ! 'J' 10-bit signed integer constant ! 'L' 16-bit signed integer constant ! 'M' 16-bit unsigned integer constant ! 'N' 12-bit signed integer constant that is negative--i.e. in the range of -2048 to -1 ! 'O' Constant zero ! 'P' ! 12-bit signed integer constant that is greater than zero--i.e. ! in the range of 1 to 2047. ! _Blackfin family--'config/bfin/constraints.md'_ ! 'a' P register ! 'd' D register ! 'z' A call clobbered P register. ! 'qN' A single register. If N is in the range 0 to 7, the ! corresponding D register. If it is 'A', then the register P0. ! 'D' Even-numbered D register ! 'W' Odd-numbered D register ! 'e' Accumulator register. ! 'A' Even-numbered accumulator register. ! 'B' Odd-numbered accumulator register. ! 'b' I register ! 'v' B register ! 'f' M register ! 'c' ! Registers used for circular buffering, i.e. I, B, or L registers. ! 'C' The CC register. ! 't' LT0 or LT1. ! 'k' LC0 or LC1. ! 'u' LB0 or LB1. ! 'x' Any D, P, B, M, I or L register. ! 'y' Additional registers typically used only in prologues and epilogues: RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP. ! 'w' Any register except accumulators or CC. ! 'Ksh' Signed 16 bit integer (in the range -32768 to 32767) ! 'Kuh' Unsigned 16 bit integer (in the range 0 to 65535) ! 'Ks7' Signed 7 bit integer (in the range -64 to 63) ! 'Ku7' Unsigned 7 bit integer (in the range 0 to 127) ! 'Ku5' Unsigned 5 bit integer (in the range 0 to 31) ! 'Ks4' Signed 4 bit integer (in the range -8 to 7) ! 'Ks3' Signed 3 bit integer (in the range -3 to 4) ! 'Ku3' Unsigned 3 bit integer (in the range 0 to 7) ! 'PN' Constant N, where N is a single-digit constant in the range 0 to 4. ! 'PA' An integer equal to one of the MACFLAG_XXX constants that is suitable for use with either accumulator. ! 'PB' An integer equal to one of the MACFLAG_XXX constants that is suitable for use only with accumulator A1. ! 'M1' Constant 255. ! 'M2' Constant 65535. ! 'J' An integer constant with exactly a single bit set. ! 'L' An integer constant with all bits set except exactly one. ! 'H' ! 'Q' Any SYMBOL_REF. ! _M32C--'config/m32c/m32c.c'_ ! 'Rsp' ! 'Rfb' ! 'Rsb' ! '$sp', '$fb', '$sb'. ! 'Rcr' Any control register, when they're 16 bits wide (nothing if control registers are 24 bits wide) ! 'Rcl' Any control register, when they're 24 bits wide. ! 'R0w' ! 'R1w' ! 'R2w' ! 'R3w' $r0, $r1, $r2, $r3. ! 'R02' $r0 or $r2, or $r2r0 for 32 bit values. ! 'R13' $r1 or $r3, or $r3r1 for 32 bit values. ! 'Rdi' A register that can hold a 64 bit value. ! 'Rhl' $r0 or $r1 (registers with addressable high/low bytes) ! 'R23' $r2 or $r3 ! 'Raa' Address registers ! 'Raw' Address registers when they're 16 bits wide. ! 'Ral' Address registers when they're 24 bits wide. ! 'Rqi' Registers that can hold QI values. ! 'Rad' Registers that can be used with displacements ($a0, $a1, $sb). ! 'Rsi' Registers that can hold 32 bit values. ! 'Rhi' Registers that can hold 16 bit values. ! 'Rhc' Registers chat can hold 16 bit values, including all control registers. ! 'Rra' $r0 through R1, plus $a0 and $a1. ! 'Rfl' The flags register. ! 'Rmm' The memory-based pseudo-registers $mem0 through $mem15. ! 'Rpi' Registers that can hold pointers (16 bit registers for r8c, m16c; 24 bit registers for m32cm, m32c). ! 'Rpa' Matches multiple registers in a PARALLEL to form a larger register. Used to match function return values. ! 'Is3' -8 ... 7 ! 'IS1' -128 ... 127 ! 'IS2' -32768 ... 32767 ! 'IU2' 0 ... 65535 ! 'In4' -8 ... -1 or 1 ... 8 ! 'In5' -16 ... -1 or 1 ... 16 ! 'In6' -32 ... -1 or 1 ... 32 ! 'IM2' -65536 ... -1 ! 'Ilb' An 8 bit value with exactly one bit set. ! 'Ilw' A 16 bit value with exactly one bit set. ! 'Sd' The common src/dest memory addressing modes. ! 'Sa' Memory addressed using $a0 or $a1. ! 'Si' Memory addressed with immediate addresses. ! 'Ss' Memory addressed using the stack pointer ($sp). ! 'Sf' Memory addressed using the frame base register ($fb). ! 'Ss' Memory addressed using the small base register ($sb). ! 'S1' $r1h ! _MeP--'config/mep/constraints.md'_ ! 'a' The $sp register. ! 'b' The $tp register. ! 'c' Any control register. ! 'd' Either the $hi or the $lo register. ! 'em' Coprocessor registers that can be directly loaded ($c0-$c15). ! 'ex' Coprocessor registers that can be moved to each other. ! 'er' Coprocessor registers that can be moved to core registers. ! 'h' The $hi register. ! 'j' The $rpc register. ! 'l' The $lo register. ! 't' Registers which can be used in $tp-relative addressing. ! 'v' The $gp register. ! 'x' The coprocessor registers. ! 'y' The coprocessor control registers. ! 'z' The $0 register. ! 'A' User-defined register set A. ! 'B' User-defined register set B. ! 'C' User-defined register set C. ! 'D' User-defined register set D. ! 'I' Offsets for $gp-rel addressing. ! 'J' Constants that can be used directly with boolean insns. ! 'K' Constants that can be moved directly to registers. ! 'L' Small constants that can be added to registers. ! 'M' Long shift counts. ! 'N' Small constants that can be compared to registers. ! 'O' Constants that can be loaded into the top half of registers. ! 'S' Signed 8-bit immediates. ! 'T' Symbols encoded for $tp-rel or $gp-rel addressing. ! 'U' Non-constant addresses for loading/saving coprocessor registers. ! 'W' The top half of a symbol's value. ! 'Y' A register indirect address without offset. ! 'Z' Symbolic references to the control bus. + _MicroBlaze--'config/microblaze/constraints.md'_ + 'd' + A general register ('r0' to 'r31'). ! 'z' ! A status register ('rmsr', '$fcc1' to '$fcc7'). ! _MIPS--'config/mips/constraints.md'_ ! 'd' ! An address register. This is equivalent to 'r' unless generating MIPS16 code. ! 'f' A floating-point register (if available). ! 'h' ! Formerly the 'hi' register. This constraint is no longer supported. ! 'l' ! The 'lo' register. Use this register to store values that are no bigger than a word. ! 'x' ! The concatenated 'hi' and 'lo' registers. Use this register to store doubleword values. ! 'c' A register suitable for use in an indirect jump. This will ! always be '$25' for '-mabicalls'. ! 'v' ! Register '$3'. Do not use this constraint in new code; it is retained only for compatibility with glibc. ! 'y' ! Equivalent to 'r'; retained for backwards compatibility. ! 'z' A floating-point condition code register. ! 'I' A signed 16-bit constant (for arithmetic instructions). ! 'J' Integer zero. ! 'K' An unsigned 16-bit constant (for logic instructions). ! 'L' A signed 32-bit constant in which the lower 16 bits are zero. ! Such constants can be loaded using 'lui'. ! 'M' ! A constant that cannot be loaded using 'lui', 'addiu' or ! 'ori'. ! 'N' A constant in the range -65535 to -1 (inclusive). ! 'O' A signed 15-bit constant. ! 'P' A constant in the range 1 to 65535 (inclusive). ! 'G' Floating-point zero. ! 'R' An address that can be used in a non-macro load or store. ! _Motorola 680x0--'config/m68k/constraints.md'_ ! 'a' Address register ! 'd' Data register ! 'f' 68881 floating-point register, if available ! 'I' Integer in the range 1 to 8 ! 'J' 16-bit signed number ! 'K' Signed number whose magnitude is greater than 0x80 ! 'L' Integer in the range -8 to -1 ! 'M' Signed number whose magnitude is greater than 0x100 ! 'N' Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate ! 'O' 16 (for rotate using swap) ! 'P' Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate ! 'R' Numbers that mov3q can handle ! 'G' Floating point constant that is not a 68881 constant ! 'S' Operands that satisfy 'm' when -mpcrel is in effect ! 'T' Operands that satisfy 's' when -mpcrel is not in effect ! 'Q' Address register indirect addressing mode ! 'U' Register offset addressing ! 'W' const_call_operand ! 'Cs' symbol_ref or const ! 'Ci' const_int ! 'C0' const_int 0 ! 'Cj' Range of signed numbers that don't fit in 16 bits ! 'Cmvq' Integers valid for mvq ! 'Capsw' Integers valid for a moveq followed by a swap ! 'Cmvz' Integers valid for mvz ! 'Cmvs' Integers valid for mvs ! 'Ap' push_operand ! 'Ac' Non-register operands allowed in clr ! _Moxie--'config/moxie/constraints.md'_ ! 'A' An absolute address ! 'B' An offset address ! 'W' A register indirect memory operand ! 'I' A constant in the range of 0 to 255. ! 'N' A constant in the range of 0 to -255. + _PDP-11--'config/pdp11/constraints.md'_ + 'a' + Floating point registers AC0 through AC3. These can be loaded + from/to memory with a single instruction. ! 'd' Odd numbered general registers (R1, R3, R5). These are used for 16-bit multiply operations. ! 'f' Any of the floating point registers (AC0 through AC5). ! 'G' Floating point constant 0. ! 'I' An integer constant that fits in 16 bits. ! 'J' An integer constant whose low order 16 bits are zero. ! 'K' An integer constant that does not meet the constraints for ! codes 'I' or 'J'. ! 'L' The integer constant 1. ! 'M' The integer constant -1. ! 'N' The integer constant 0. ! 'O' Integer constants -4 through -1 and 1 through 4; shifts by ! these amounts are handled as multiple single-bit shifts rather ! than a single variable-length shift. ! 'Q' A memory reference which requires an additional word (address or offset) after the opcode. ! 'R' A memory reference that is encoded within the opcode. + _RL78--'config/rl78/constraints.md'_ ! 'Int3' An integer constant in the range 1 ... 7. ! 'Int8' An integer constant in the range 0 ... 255. ! 'J' An integer constant in the range -255 ... 0 ! 'K' The integer constant 1. ! 'L' The integer constant -1. ! 'M' The integer constant 0. ! 'N' The integer constant 2. ! 'O' The integer constant -2. ! 'P' An integer constant in the range 1 ... 15. ! 'Qbi' The built-in compare types-eq, ne, gtu, ltu, geu, and leu. ! 'Qsc' The synthetic compare types-gt, lt, ge, and le. ! 'Wab' A memory reference with an absolute address. ! 'Wbc' ! A memory reference using 'BC' as a base register, with an optional offset. ! 'Wca' ! A memory reference using 'AX', 'BC', 'DE', or 'HL' for the address, for calls. ! 'Wcv' A memory reference using any 16-bit register pair for the address, for calls. ! 'Wd2' ! A memory reference using 'DE' as a base register, with an optional offset. ! 'Wde' ! A memory reference using 'DE' as a base register, without any offset. ! 'Wfr' Any memory reference to an address in the far address space. ! 'Wh1' ! A memory reference using 'HL' as a base register, with an optional one-byte offset. ! 'Whb' ! A memory reference using 'HL' as a base register, with 'B' or ! 'C' as the index register. ! 'Whl' ! A memory reference using 'HL' as a base register, without any offset. ! 'Ws1' ! A memory reference using 'SP' as a base register, with an optional one-byte offset. ! 'Y' Any memory reference to an address in the near address space. ! 'A' ! The 'AX' register. ! 'B' ! The 'BC' register. ! 'D' ! The 'DE' register. ! 'R' ! 'A' through 'L' registers. ! 'S' ! The 'SP' register. ! 'T' ! The 'HL' register. ! 'Z08W' ! The 16-bit 'R8' register. ! 'Z10W' ! The 16-bit 'R10' register. ! 'Zint' ! The registers reserved for interrupts ('R24' to 'R31'). ! 'a' ! The 'A' register. ! 'b' ! The 'B' register. ! 'c' ! The 'C' register. ! 'd' ! The 'D' register. ! 'e' ! The 'E' register. ! 'h' ! The 'H' register. ! 'l' ! The 'L' register. ! 'v' The virtual registers. + 'w' + The 'PSW' register. + 'x' + The 'X' register. ! _RX--'config/rx/constraints.md'_ ! 'Q' ! An address which does not involve register indirect addressing ! or pre/post increment/decrement addressing. ! 'Symbol' A symbol reference. ! 'Int08' A constant in the range -256 to 255, inclusive. ! 'Sint08' A constant in the range -128 to 127, inclusive. ! 'Sint16' A constant in the range -32768 to 32767, inclusive. ! 'Sint24' A constant in the range -8388608 to 8388607, inclusive. ! 'Uint04' A constant in the range 0 to 15, inclusive. + _SPARC--'config/sparc/sparc.h'_ + 'f' + Floating-point register on the SPARC-V8 architecture and lower + floating-point register on the SPARC-V9 architecture. ! 'e' ! Floating-point register. It is equivalent to 'f' on the SPARC-V8 architecture and contains both lower and upper floating-point registers on the SPARC-V9 architecture. ! 'c' Floating-point condition code register. ! 'd' Lower floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! 'b' Floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! 'h' 64-bit global or out register for the SPARC-V8+ architecture. ! 'C' The constant all-ones, for floating-point. ! 'A' Signed 5-bit constant ! 'D' A vector constant ! 'I' Signed 13-bit constant ! 'J' Zero ! 'K' 32-bit constant with the low 12 bits clear (a constant that ! can be loaded with the 'sethi' instruction) ! 'L' ! A constant in the range supported by 'movcc' instructions (11-bit signed immediate) ! 'M' ! A constant in the range supported by 'movrcc' instructions (10-bit signed immediate) ! 'N' ! Same as 'K', except that it verifies that bits that are not in ! the lower 32-bit range are all zero. Must be used instead of ! 'K' for modes wider than 'SImode' ! 'O' The constant 4096 ! 'G' Floating-point zero ! 'H' Signed 13-bit constant, sign-extended to 32 or 64 bits ! 'P' The constant -1 ! 'Q' Floating-point constant whose integral representation can be moved into an integer register using a single sethi instruction ! 'R' Floating-point constant whose integral representation can be moved into an integer register using a single mov instruction ! 'S' Floating-point constant whose integral representation can be ! moved into an integer register using a high/lo_sum instruction ! sequence ! 'T' Memory address aligned to an 8-byte boundary ! 'U' Even register ! 'W' ! Memory address for 'e' constraint registers ! 'w' Memory address with only a base register ! 'Y' Vector zero ! _SPU--'config/spu/spu.h'_ ! 'a' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 64 bit value. ! 'c' An immediate for and/xor/or instructions. const_int is treated as a 64 bit value. ! 'd' ! An immediate for the 'iohl' instruction. const_int is treated ! as a 64 bit value. ! 'f' ! An immediate which can be loaded with 'fsmbi'. ! 'A' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 32 bit value. ! 'B' An immediate for most arithmetic instructions. const_int is treated as a 32 bit value. ! 'C' An immediate for and/xor/or instructions. const_int is treated as a 32 bit value. ! 'D' ! An immediate for the 'iohl' instruction. const_int is treated ! as a 32 bit value. ! 'I' A constant in the range [-64, 63] for shift/rotate instructions. ! 'J' An unsigned 7-bit constant for conversion/nop/channel instructions. ! 'K' A signed 10-bit constant for most arithmetic instructions. ! 'M' ! A signed 16 bit immediate for 'stop'. ! 'N' ! An unsigned 16-bit constant for 'iohl' and 'fsmbi'. ! 'O' An unsigned 7-bit constant whose 3 least significant bits are 0. ! 'P' An unsigned 3-bit constant for 16-byte rotates and shifts ! 'R' Call operand, reg, for indirect calls ! 'S' Call operand, symbol, for relative calls. ! 'T' Call operand, const_int, for absolute calls. ! 'U' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is sign extended to 128 bit. ! 'W' An immediate for shift and rotate instructions. const_int is treated as a 32 bit value. ! 'Y' An immediate for and/xor/or instructions. const_int is sign extended as a 128 bit. ! 'Z' ! An immediate for the 'iohl' instruction. const_int is sign extended to 128 bit. ! _S/390 and zSeries--'config/s390/s390.h'_ ! 'a' Address register (general purpose register except r0) ! 'c' Condition code register ! 'd' Data register (arbitrary general purpose register) ! 'f' Floating-point register ! 'I' Unsigned 8-bit constant (0-255) ! 'J' Unsigned 12-bit constant (0-4095) ! 'K' Signed 16-bit constant (-32768-32767) ! 'L' Value appropriate as displacement. ! '(0..4095)' for short displacement ! '(-524288..524287)' for long displacement ! 'M' Constant integer with a value of 0x7fffffff. ! 'N' Multiple letter constraint followed by 4 parameter letters. ! '0..9:' number of the part counting from most to least significant ! 'H,Q:' mode of the part ! 'D,S,H:' mode of the containing operand ! '0,F:' value of the other parts (F--all bits set) ! The constraint matches if the specified part of a constant has ! a value different from its other parts. ! 'Q' Memory reference without index register and with short displacement. ! 'R' Memory reference with index register and short displacement. ! 'S' Memory reference without index register but with long displacement. ! 'T' Memory reference with index register and long displacement. ! 'U' Pointer with short displacement. ! 'W' Pointer with long displacement. ! 'Y' Shift count operand. ! _Score family--'config/score/score.h'_ ! 'd' Registers from r0 to r32. ! 'e' Registers from r0 to r16. ! 't' r8--r11 or r22--r27 registers. ! 'h' hi register. ! 'l' lo register. ! 'x' hi + lo register. ! 'q' cnt register. ! 'y' lcb register. ! 'z' scb register. ! 'a' cnt + lcb + scb register. ! 'c' cr0--cr15 register. ! 'b' cp1 registers. ! 'f' cp2 registers. ! 'i' cp3 registers. ! 'j' cp1 + cp2 + cp3 registers. ! 'I' High 16-bit constant (32-bit constant with 16 LSBs zero). ! 'J' Unsigned 5 bit integer (in the range 0 to 31). ! 'K' Unsigned 16 bit integer (in the range 0 to 65535). ! 'L' Signed 16 bit integer (in the range -32768 to 32767). ! 'M' Unsigned 14 bit integer (in the range 0 to 16383). ! 'N' Signed 14 bit integer (in the range -8192 to 8191). ! 'Z' Any SYMBOL_REF. ! _Xstormy16--'config/stormy16/stormy16.h'_ ! 'a' Register r0. ! 'b' Register r1. ! 'c' Register r2. ! 'd' Register r8. ! 'e' Registers r0 through r7. ! 't' Registers r0 and r1. ! 'y' The carry register. ! 'z' Registers r8 and r9. ! 'I' A constant between 0 and 3 inclusive. ! 'J' A constant that has exactly one bit set. ! 'K' A constant that has exactly one bit clear. ! 'L' A constant between 0 and 255 inclusive. ! 'M' A constant between -255 and 0 inclusive. ! 'N' A constant between -3 and 0 inclusive. ! 'O' A constant between 1 and 4 inclusive. ! 'P' A constant between -4 and -1 inclusive. ! 'Q' A memory reference that is a stack push. ! 'R' A memory reference that is a stack pop. ! 'S' A memory reference that refers to a constant address of known value. ! 'T' The register indicated by Rx (not implemented yet). ! 'U' A constant that is not between 2 and 15 inclusive. ! 'Z' The constant 0. ! _TI C6X family--'config/c6x/constraints.md'_ ! 'a' Register file A (A0-A31). ! 'b' Register file B (B0-B31). ! 'A' Predicate registers in register file A (A0-A2 on C64X and higher, A1 and A2 otherwise). ! 'B' Predicate registers in register file B (B0-B2). ! 'C' A call-used register in register file B (B0-B9, B16-B31). ! 'Da' Register file A, excluding predicate registers (A3-A31, plus A0 if not C64X or higher). ! 'Db' Register file B, excluding predicate registers (B3-B31). ! 'Iu4' Integer constant in the range 0 ... 15. ! 'Iu5' Integer constant in the range 0 ... 31. ! 'In5' Integer constant in the range -31 ... 0. ! 'Is5' Integer constant in the range -16 ... 15. ! 'I5x' Integer constant that can be the operand of an ADDA or a SUBA insn. ! 'IuB' Integer constant in the range 0 ... 65535. ! 'IsB' Integer constant in the range -32768 ... 32767. ! 'IsC' ! Integer constant in the range -2^{20} ... 2^{20} - 1. ! 'Jc' Integer constant that is a valid mask for the clr instruction. ! 'Js' Integer constant that is a valid mask for the set instruction. ! 'Q' Memory location with A base register. ! 'R' Memory location with B base register. ! 'Z' Register B14 (aka DP). ! _TILE-Gx--'config/tilegx/constraints.md'_ ! 'R00' ! 'R01' ! 'R02' ! 'R03' ! 'R04' ! 'R05' ! 'R06' ! 'R07' ! 'R08' ! 'R09' ! 'R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! 'I' Signed 8-bit integer constant. ! 'J' Signed 16-bit integer constant. ! 'K' Unsigned 16-bit integer constant. ! 'L' ! Integer constant that fits in one signed byte when incremented ! by one (-129 ... 126). ! 'm' ! Memory operand. If used together with '<' or '>', the operand ! can have postincrement which requires printing with '%In' and ! '%in' on TILE-Gx. For example: asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val)); ! 'M' A bit mask suitable for the BFINS instruction. ! 'N' Integer constant that is a byte tiled out eight times. ! 'O' The integer zero constant. ! 'P' Integer constant that is a sign-extended byte tiled out as four shorts. ! 'Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! 'S' Integer constant that has all 1 bits consecutive and starting at bit 0. ! 'T' A 16-bit fragment of a got, tls, or pc-relative reference. ! 'U' ! Memory operand except postincrement. This is roughly the same ! as 'm' when not used together with '<' or '>'. ! 'W' An 8-element vector constant with identical elements. ! 'Y' A 4-element vector constant with identical elements. ! 'Z0' The integer constant 0xffffffff. ! 'Z1' The integer constant 0xffffffff00000000. ! _TILEPro--'config/tilepro/constraints.md'_ ! 'R00' ! 'R01' ! 'R02' ! 'R03' ! 'R04' ! 'R05' ! 'R06' ! 'R07' ! 'R08' ! 'R09' ! 'R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! 'I' Signed 8-bit integer constant. ! 'J' Signed 16-bit integer constant. ! 'K' Nonzero integer constant with low 16 bits zero. ! 'L' ! Integer constant that fits in one signed byte when incremented ! by one (-129 ... 126). ! 'm' ! Memory operand. If used together with '<' or '>', the operand ! can have postincrement which requires printing with '%In' and ! '%in' on TILEPro. For example: asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val)); ! 'M' A bit mask suitable for the MM instruction. ! 'N' Integer constant that is a byte tiled out four times. ! 'O' The integer zero constant. ! 'P' ! Integer constant that is a sign-extended byte tiled out as two ! shorts. ! 'Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! 'T' A symbolic operand, or a 16-bit fragment of a got, tls, or pc-relative reference. ! 'U' ! Memory operand except postincrement. This is roughly the same ! as 'm' when not used together with '<' or '>'. ! 'W' A 4-element vector constant with identical elements. ! 'Y' A 2-element vector constant with identical elements. ! _Xtensa--'config/xtensa/constraints.md'_ ! 'a' General-purpose 32-bit register ! 'b' One-bit boolean register ! 'A' MAC16 40-bit accumulator register ! 'I' Signed 12-bit integer constant, for use in MOVI instructions ! 'J' Signed 8-bit integer constant, for use in ADDI instructions ! 'K' Integer constant valid for BccI instructions ! 'L' Unsigned constant valid for BccUI instructions  File: gcc.info, Node: Asm Labels, Next: Explicit Reg Vars, Prev: Constraints, Up: C Extensions *************** File: gcc.info, Node: Asm Labels, Next *** 28396,28408 **** ============================================= You can specify the name to be used in the assembler code for a C ! function or variable by writing the `asm' (or `__asm__') keyword after the declarator as follows: int foo asm ("myfoo") = 2; ! This specifies that the name to be used for the variable `foo' in the ! assembler code should be `myfoo' rather than the usual `_foo'. On systems where an underscore is normally prepended to the name of a C function or variable, this feature allows you to define names for the --- 28118,28130 ---- ============================================= You can specify the name to be used in the assembler code for a C ! function or variable by writing the 'asm' (or '__asm__') keyword after the declarator as follows: int foo asm ("myfoo") = 2; ! This specifies that the name to be used for the variable 'foo' in the ! assembler code should be 'myfoo' rather than the usual '_foo'. On systems where an underscore is normally prepended to the name of a C function or variable, this feature allows you to define names for the *************** Reg Vars::. GCC presently accepts such *** 28415,28423 **** probably be changed to issue an error, rather than a warning, in the future. ! You cannot use `asm' in this way in a function _definition_; but you ! can get the same effect by writing a declaration for the function ! before its definition and putting `asm' there, like this: extern func () asm ("FUNC"); --- 28137,28145 ---- probably be changed to issue an error, rather than a warning, in the future. ! You cannot use 'asm' in this way in a function _definition_; but you ! can get the same effect by writing a declaration for the function before ! its definition and putting 'asm' there, like this: extern func () asm ("FUNC"); *************** register variable should be allocated. *** 28448,28467 **** * Local register variables in specific registers do not reserve the registers, except at the point where they are used as input or ! output operands in an `asm' statement and the `asm' statement itself is not deleted. The compiler's data flow analysis is capable of determining where the specified registers contain live values, and where they are available for other uses. Stores into ! local register variables may be deleted when they appear to be ! dead according to dataflow analysis. References to local register variables may be deleted or moved or simplified. These local variables are sometimes convenient for use with the ! extended `asm' feature (*note Extended Asm::), if you want to ! write one output of the assembler instruction directly into a ! particular register. (This works provided the register you ! specify fits the constraints specified for that operand in the ! `asm'.) * Menu: --- 28170,28188 ---- * Local register variables in specific registers do not reserve the registers, except at the point where they are used as input or ! output operands in an 'asm' statement and the 'asm' statement itself is not deleted. The compiler's data flow analysis is capable of determining where the specified registers contain live values, and where they are available for other uses. Stores into ! local register variables may be deleted when they appear to be dead ! according to dataflow analysis. References to local register variables may be deleted or moved or simplified. These local variables are sometimes convenient for use with the ! extended 'asm' feature (*note Extended Asm::), if you want to write ! one output of the assembler instruction directly into a particular ! register. (This works provided the register you specify fits the ! constraints specified for that operand in the 'asm'.) * Menu: *************** You can define a global register variabl *** 28478,28496 **** register int *foo asm ("a5"); ! Here `a5' is the name of the register that should be used. Choose a register that is normally saved and restored by function calls on your machine, so that library routines will not clobber it. Naturally the register name is cpu-dependent, so you need to ! conditionalize your program according to cpu type. The register `a5' ! is a good choice on a 68000 for a variable of pointer type. On ! machines with register windows, be sure to choose a "global" register ! that is not affected magically by the function call mechanism. In addition, different operating systems on the same CPU may differ in how they name the registers; then you need additional conditionals. For ! example, some 68000 operating systems call this register `%a5'. Eventually there may be a way of asking the compiler to choose a register automatically, but first we need to figure out how it should --- 28199,28217 ---- register int *foo asm ("a5"); ! Here 'a5' is the name of the register that should be used. Choose a register that is normally saved and restored by function calls on your machine, so that library routines will not clobber it. Naturally the register name is cpu-dependent, so you need to ! conditionalize your program according to cpu type. The register 'a5' is ! a good choice on a 68000 for a variable of pointer type. On machines ! with register windows, be sure to choose a "global" register that is not ! affected magically by the function call mechanism. In addition, different operating systems on the same CPU may differ in how they name the registers; then you need additional conditionals. For ! example, some 68000 operating systems call this register '%a5'. Eventually there may be a way of asking the compiler to choose a register automatically, but first we need to figure out how it should *************** library routines may temporarily use the *** 28510,28529 **** (unless you recompile them specially for the task at hand). It is not safe for one function that uses a global register variable to ! call another such function `foo' by way of a third function `lose' that is compiled without knowledge of this variable (i.e. in a different source file in which the variable isn't declared). This is because ! `lose' might save the register and put some other value there. For example, you can't expect a global register variable to be available in ! the comparison-function that you pass to `qsort', since `qsort' might have put something else in that register. (If you are prepared to ! recompile `qsort' with the same global register variable, you can solve this problem.) ! If you want to recompile `qsort' or other source files that do not actually use your global register variable, so that they do not use that register for any other purpose, then it suffices to specify the compiler ! option `-ffixed-REG'. You need not actually add a global register declaration to their source code. A function that can alter the value of a global register variable --- 28231,28250 ---- (unless you recompile them specially for the task at hand). It is not safe for one function that uses a global register variable to ! call another such function 'foo' by way of a third function 'lose' that is compiled without knowledge of this variable (i.e. in a different source file in which the variable isn't declared). This is because ! 'lose' might save the register and put some other value there. For example, you can't expect a global register variable to be available in ! the comparison-function that you pass to 'qsort', since 'qsort' might have put something else in that register. (If you are prepared to ! recompile 'qsort' with the same global register variable, you can solve this problem.) ! If you want to recompile 'qsort' or other source files that do not actually use your global register variable, so that they do not use that register for any other purpose, then it suffices to specify the compiler ! option '-ffixed-REG'. You need not actually add a global register declaration to their source code. A function that can alter the value of a global register variable *************** return. Therefore, the function that is *** 28533,28545 **** of the program that uses the global register variable must explicitly save and restore the value that belongs to its caller. ! On most machines, `longjmp' restores to each global register variable ! the value it had at the time of the `setjmp'. On some machines, ! however, `longjmp' does not change the value of global register ! variables. To be portable, the function that called `setjmp' should make other arrangements to save the values of the global register ! variables, and to restore them in a `longjmp'. This way, the same ! thing happens regardless of what `longjmp' does. All global register variable declarations must precede all function definitions. If such a declaration could appear after function --- 28254,28266 ---- of the program that uses the global register variable must explicitly save and restore the value that belongs to its caller. ! On most machines, 'longjmp' restores to each global register variable ! the value it had at the time of the 'setjmp'. On some machines, ! however, 'longjmp' does not change the value of global register ! variables. To be portable, the function that called 'setjmp' should make other arrangements to save the values of the global register ! variables, and to restore them in a 'longjmp'. This way, the same thing ! happens regardless of what 'longjmp' does. All global register variable declarations must precede all function definitions. If such a declaration could appear after function *************** from being used for other purposes in th *** 28550,28558 **** executable file has no means to supply initial contents for a register. On the SPARC, there are reports that g3 ... g7 are suitable registers, ! but certain library functions, such as `getwd', as well as the ! subroutines for division and remainder, modify g3 and g4. g1 and g2 ! are local temporaries. On the 68000, a2 ... a5 should be suitable, as should d2 ... d7. Of course, it does not do to use more than a few of those. --- 28271,28279 ---- executable file has no means to supply initial contents for a register. On the SPARC, there are reports that g3 ... g7 are suitable registers, ! but certain library functions, such as 'getwd', as well as the ! subroutines for division and remainder, modify g3 and g4. g1 and g2 are ! local temporaries. On the 68000, a2 ... a5 should be suitable, as should d2 ... d7. Of course, it does not do to use more than a few of those. *************** this: *** 28568,28576 **** register int *foo asm ("a5"); ! Here `a5' is the name of the register that should be used. Note that ! this is the same syntax used for defining global register variables, ! but for a local variable it appears within a function. Naturally the register name is cpu-dependent, but this is not a problem, since specific registers are most often useful with explicit --- 28289,28297 ---- register int *foo asm ("a5"); ! Here 'a5' is the name of the register that should be used. Note that ! this is the same syntax used for defining global register variables, but ! for a local variable it appears within a function. Naturally the register name is cpu-dependent, but this is not a problem, since specific registers are most often useful with explicit *************** type. *** 28580,28586 **** In addition, operating systems on one type of cpu may differ in how they name the registers; then you need additional conditionals. For ! example, some 68000 operating systems call this register `%a5'. Defining such a register variable does not reserve the register; it remains available for other uses in places where flow control determines --- 28301,28307 ---- In addition, operating systems on one type of cpu may differ in how they name the registers; then you need additional conditionals. For ! example, some 68000 operating systems call this register '%a5'. Defining such a register variable does not reserve the register; it remains available for other uses in places where flow control determines *************** the variable's value is not live. *** 28589,28614 **** This option does not guarantee that GCC generates code that has this variable in the register you specify at all times. You may not code an explicit reference to this register in the _assembler instruction ! template_ part of an `asm' statement and assume it always refers to ! this variable. However, using the variable as an `asm' _operand_ ! guarantees that the specified register is used for the operand. ! Stores into local register variables may be deleted when they appear ! to be dead according to dataflow analysis. References to local ! register variables may be deleted or moved or simplified. As for global register variables, it's recommended that you choose a register that is normally saved and restored by function calls on your ! machine, so that library routines will not clobber it. A common ! pitfall is to initialize multiple call-clobbered registers with ! arbitrary expressions, where a function call or library call for an ! arithmetic operator overwrites a register value from a previous ! assignment, for example `r0' below: register int *p1 asm ("r0") = ...; register int *p2 asm ("r1") = ...; In those cases, a solution is to use a temporary variable for each ! arbitrary expression. *Note Example of asm with clobbered asm reg::.  File: gcc.info, Node: Alternate Keywords, Next: Incomplete Enums, Prev: Explicit Reg Vars, Up: C Extensions --- 28310,28335 ---- This option does not guarantee that GCC generates code that has this variable in the register you specify at all times. You may not code an explicit reference to this register in the _assembler instruction ! template_ part of an 'asm' statement and assume it always refers to this ! variable. However, using the variable as an 'asm' _operand_ guarantees ! that the specified register is used for the operand. ! Stores into local register variables may be deleted when they appear to ! be dead according to dataflow analysis. References to local register ! variables may be deleted or moved or simplified. As for global register variables, it's recommended that you choose a register that is normally saved and restored by function calls on your ! machine, so that library routines will not clobber it. A common pitfall ! is to initialize multiple call-clobbered registers with arbitrary ! expressions, where a function call or library call for an arithmetic ! operator overwrites a register value from a previous assignment, for ! example 'r0' below: register int *p1 asm ("r0") = ...; register int *p2 asm ("r1") = ...; In those cases, a solution is to use a temporary variable for each ! arbitrary expression. *Note Example of asm with clobbered asm reg::.  File: gcc.info, Node: Alternate Keywords, Next: Incomplete Enums, Prev: Explicit Reg Vars, Up: C Extensions *************** File: gcc.info, Node: Alternate Keyword *** 28616,28635 **** 6.45 Alternate Keywords ======================= ! `-ansi' and the various `-std' options disable certain keywords. This causes trouble when you want to use GNU C extensions, or a general-purpose header file that should be usable by all programs, ! including ISO C programs. The keywords `asm', `typeof' and `inline' ! are not available in programs compiled with `-ansi' or `-std' (although ! `inline' can be used in a program compiled with `-std=c99' or ! `-std=c11'). The ISO C99 keyword `restrict' is only available when ! `-std=gnu99' (which will eventually be the default) or `-std=c99' (or ! the equivalent `-std=iso9899:1999'), or an option for a later standard version, is used. ! The way to solve these problems is to put `__' at the beginning and ! end of each problematical keyword. For example, use `__asm__' instead ! of `asm', and `__inline__' instead of `inline'. Other C compilers won't accept these alternative keywords; if you want to compile with another compiler, you can define the alternate keywords --- 28337,28356 ---- 6.45 Alternate Keywords ======================= ! '-ansi' and the various '-std' options disable certain keywords. This causes trouble when you want to use GNU C extensions, or a general-purpose header file that should be usable by all programs, ! including ISO C programs. The keywords 'asm', 'typeof' and 'inline' are ! not available in programs compiled with '-ansi' or '-std' (although ! 'inline' can be used in a program compiled with '-std=c99' or ! '-std=c11'). The ISO C99 keyword 'restrict' is only available when ! '-std=gnu99' (which will eventually be the default) or '-std=c99' (or ! the equivalent '-std=iso9899:1999'), or an option for a later standard version, is used. ! The way to solve these problems is to put '__' at the beginning and end ! of each problematical keyword. For example, use '__asm__' instead of ! 'asm', and '__inline__' instead of 'inline'. Other C compilers won't accept these alternative keywords; if you want to compile with another compiler, you can define the alternate keywords *************** this: *** 28640,28666 **** #define __asm__ asm #endif ! `-pedantic' and other options cause warnings for many GNU C extensions. You can prevent such warnings within one expression by writing ! `__extension__' before the expression. `__extension__' has no effect aside from this.  File: gcc.info, Node: Incomplete Enums, Next: Function Names, Prev: Alternate Keywords, Up: C Extensions ! 6.46 Incomplete `enum' Types ============================ ! You can define an `enum' tag without specifying its possible values. This results in an incomplete type, much like what you get if you write ! `struct foo' without describing the elements. A later declaration that does specify the possible values completes the type. You can't allocate variables or storage using the type while it is incomplete. However, you can work with pointers to that type. This extension may not be very useful, but it makes the handling of ! `enum' more consistent with the way `struct' and `union' are handled. This extension is not supported by GNU C++. --- 28361,28387 ---- #define __asm__ asm #endif ! '-pedantic' and other options cause warnings for many GNU C extensions. You can prevent such warnings within one expression by writing ! '__extension__' before the expression. '__extension__' has no effect aside from this.  File: gcc.info, Node: Incomplete Enums, Next: Function Names, Prev: Alternate Keywords, Up: C Extensions ! 6.46 Incomplete 'enum' Types ============================ ! You can define an 'enum' tag without specifying its possible values. This results in an incomplete type, much like what you get if you write ! 'struct foo' without describing the elements. A later declaration that does specify the possible values completes the type. You can't allocate variables or storage using the type while it is incomplete. However, you can work with pointers to that type. This extension may not be very useful, but it makes the handling of ! 'enum' more consistent with the way 'struct' and 'union' are handled. This extension is not supported by GNU C++. *************** File: gcc.info, Node: Function Names, *** 28671,28692 **** ============================== GCC provides three magic variables that hold the name of the current ! function, as a string. The first of these is `__func__', which is part of the C99 standard: ! The identifier `__func__' is implicitly declared by the translator as ! if, immediately following the opening brace of each function ! definition, the declaration static const char __func__[] = "function-name"; appeared, where function-name is the name of the lexically-enclosing function. This name is the unadorned name of the function. ! `__FUNCTION__' is another name for `__func__'. Older versions of GCC ! recognize only this name. However, it is not standardized. For ! maximum portability, we recommend you use `__func__', but provide a ! fallback definition with the preprocessor: #if __STDC_VERSION__ < 199901L # if __GNUC__ >= 2 --- 28392,28413 ---- ============================== GCC provides three magic variables that hold the name of the current ! function, as a string. The first of these is '__func__', which is part of the C99 standard: ! The identifier '__func__' is implicitly declared by the translator as ! if, immediately following the opening brace of each function definition, ! the declaration static const char __func__[] = "function-name"; appeared, where function-name is the name of the lexically-enclosing function. This name is the unadorned name of the function. ! '__FUNCTION__' is another name for '__func__'. Older versions of GCC ! recognize only this name. However, it is not standardized. For maximum ! portability, we recommend you use '__func__', but provide a fallback ! definition with the preprocessor: #if __STDC_VERSION__ < 199901L # if __GNUC__ >= 2 *************** fallback definition with the preprocesso *** 28696,28703 **** # endif #endif ! In C, `__PRETTY_FUNCTION__' is yet another name for `__func__'. ! However, in C++, `__PRETTY_FUNCTION__' contains the type signature of the function as well as its bare name. For example, this program: extern "C" { --- 28417,28424 ---- # endif #endif ! In C, '__PRETTY_FUNCTION__' is yet another name for '__func__'. ! However, in C++, '__PRETTY_FUNCTION__' contains the type signature of the function as well as its bare name. For example, this program: extern "C" { *************** gives this output: *** 28726,28737 **** __FUNCTION__ = sub __PRETTY_FUNCTION__ = void a::sub(int) ! These identifiers are not preprocessor macros. In GCC 3.3 and ! earlier, in C only, `__FUNCTION__' and `__PRETTY_FUNCTION__' were ! treated as string literals; they could be used to initialize `char' ! arrays, and they could be concatenated with other string literals. GCC ! 3.4 and later treat them as variables, like `__func__'. In C++, ! `__FUNCTION__' and `__PRETTY_FUNCTION__' have always been variables.  File: gcc.info, Node: Return Address, Next: Vector Extensions, Prev: Function Names, Up: C Extensions --- 28447,28458 ---- __FUNCTION__ = sub __PRETTY_FUNCTION__ = void a::sub(int) ! These identifiers are not preprocessor macros. In GCC 3.3 and earlier, ! in C only, '__FUNCTION__' and '__PRETTY_FUNCTION__' were treated as ! string literals; they could be used to initialize 'char' arrays, and ! they could be concatenated with other string literals. GCC 3.4 and ! later treat them as variables, like '__func__'. In C++, '__FUNCTION__' ! and '__PRETTY_FUNCTION__' have always been variables.  File: gcc.info, Node: Return Address, Next: Vector Extensions, Prev: Function Names, Up: C Extensions *************** function. *** 28746,28792 **** LEVEL) This function returns the return address of the current function, or of one of its callers. The LEVEL argument is number of frames ! to scan up the call stack. A value of `0' yields the return ! address of the current function, a value of `1' yields the return address of the caller of the current function, and so forth. When inlining the expected behavior is that the function returns the address of the function that is returned to. To work around this ! behavior use the `noinline' function attribute. The LEVEL argument must be a constant integer. On some machines it may be impossible to determine the return address of any function other than the current one; in such cases, or when the top of the stack has been reached, this function ! returns `0' or a random value. In addition, ! `__builtin_frame_address' may be used to determine if the top of the stack has been reached. Additional post-processing of the returned value may be needed, see ! `__builtin_extract_return_addr'. This function should only be used with a nonzero argument for debugging purposes. -- Built-in Function: void * __builtin_extract_return_addr (void *ADDR) ! The address as returned by `__builtin_return_address' may have to be fed through this function to get the actual encoded address. ! For example, on the 31-bit S/390 platform the highest bit has to ! be masked out, or on SPARC platforms an offset has to be added for ! the true next instruction to be executed. If no fixup is needed, this function simply passes through ADDR. -- Built-in Function: void * __builtin_frob_return_address (void *ADDR) ! This function does the reverse of `__builtin_extract_return_addr'. -- Built-in Function: void * __builtin_frame_address (unsigned int LEVEL) ! This function is similar to `__builtin_return_address', but it returns the address of the function frame rather than the return ! address of the function. Calling `__builtin_frame_address' with a ! value of `0' yields the frame address of the current function, a ! value of `1' yields the frame address of the caller of the current function, and so forth. The frame is the area on the stack that holds local variables and --- 28467,28513 ---- LEVEL) This function returns the return address of the current function, or of one of its callers. The LEVEL argument is number of frames ! to scan up the call stack. A value of '0' yields the return ! address of the current function, a value of '1' yields the return address of the caller of the current function, and so forth. When inlining the expected behavior is that the function returns the address of the function that is returned to. To work around this ! behavior use the 'noinline' function attribute. The LEVEL argument must be a constant integer. On some machines it may be impossible to determine the return address of any function other than the current one; in such cases, or when the top of the stack has been reached, this function ! returns '0' or a random value. In addition, ! '__builtin_frame_address' may be used to determine if the top of the stack has been reached. Additional post-processing of the returned value may be needed, see ! '__builtin_extract_return_addr'. This function should only be used with a nonzero argument for debugging purposes. -- Built-in Function: void * __builtin_extract_return_addr (void *ADDR) ! The address as returned by '__builtin_return_address' may have to be fed through this function to get the actual encoded address. ! For example, on the 31-bit S/390 platform the highest bit has to be ! masked out, or on SPARC platforms an offset has to be added for the ! true next instruction to be executed. If no fixup is needed, this function simply passes through ADDR. -- Built-in Function: void * __builtin_frob_return_address (void *ADDR) ! This function does the reverse of '__builtin_extract_return_addr'. -- Built-in Function: void * __builtin_frame_address (unsigned int LEVEL) ! This function is similar to '__builtin_return_address', but it returns the address of the function frame rather than the return ! address of the function. Calling '__builtin_frame_address' with a ! value of '0' yields the frame address of the current function, a ! value of '1' yields the frame address of the caller of the current function, and so forth. The frame is the area on the stack that holds local variables and *************** function. *** 28795,28807 **** exact definition depends upon the processor and the calling convention. If the processor has a dedicated frame pointer register, and the function has a frame, then ! `__builtin_frame_address' returns the value of the frame pointer register. On some machines it may be impossible to determine the frame address of any function other than the current one; in such cases, or when the top of the stack has been reached, this function ! returns `0' if the first frame pointer is properly initialized by the startup code. This function should only be used with a nonzero argument for --- 28516,28528 ---- exact definition depends upon the processor and the calling convention. If the processor has a dedicated frame pointer register, and the function has a frame, then ! '__builtin_frame_address' returns the value of the frame pointer register. On some machines it may be impossible to determine the frame address of any function other than the current one; in such cases, or when the top of the stack has been reached, this function ! returns '0' if the first frame pointer is properly initialized by the startup code. This function should only be used with a nonzero argument for *************** same time. For example, on the i386 the *** 28819,28858 **** can be used this way. The first step in using these extensions is to provide the necessary ! data types. This should be done using an appropriate `typedef': typedef int v4si __attribute__ ((vector_size (16))); ! The `int' type specifies the base type, while the attribute specifies the vector size for the variable, measured in bytes. For example, the ! declaration above causes the compiler to set the mode for the `v4si' ! type to be 16 bytes wide and divided into `int' sized units. For a ! 32-bit `int' this means a vector of 4 units of 4 bytes, and the ! corresponding mode of `foo' is V4SI. ! The `vector_size' attribute is only applicable to integral and float scalars, although arrays, pointers, and function return values are ! allowed in conjunction with this construct. Only sizes that are a power of two are currently allowed. All the basic integer types can be used as base types, both as signed ! and as unsigned: `char', `short', `int', `long', `long long'. In ! addition, `float' and `double' can be used to build floating-point vector types. Specifying a combination that is not valid for the current architecture causes GCC to synthesize the instructions using a narrower mode. For ! example, if you specify a variable of type `V4SI' and your architecture does not allow for this specific SIMD type, GCC produces code that uses ! 4 `SIs'. The types defined in this manner can be used with a subset of normal C operations. Currently, GCC allows using the following operators on ! these types: `+, -, *, /, unary minus, ^, |, &, ~, %'. ! The operations behave like C++ `valarrays'. Addition is defined as ! the addition of the corresponding elements of the operands. For ! example, in the code below, each of the 4 elements in A is added to the corresponding 4 elements in B and the resulting vector is stored in C. typedef int v4si __attribute__ ((vector_size (16))); --- 28540,28579 ---- can be used this way. The first step in using these extensions is to provide the necessary ! data types. This should be done using an appropriate 'typedef': typedef int v4si __attribute__ ((vector_size (16))); ! The 'int' type specifies the base type, while the attribute specifies the vector size for the variable, measured in bytes. For example, the ! declaration above causes the compiler to set the mode for the 'v4si' ! type to be 16 bytes wide and divided into 'int' sized units. For a ! 32-bit 'int' this means a vector of 4 units of 4 bytes, and the ! corresponding mode of 'foo' is V4SI. ! The 'vector_size' attribute is only applicable to integral and float scalars, although arrays, pointers, and function return values are ! allowed in conjunction with this construct. Only sizes that are a power of two are currently allowed. All the basic integer types can be used as base types, both as signed ! and as unsigned: 'char', 'short', 'int', 'long', 'long long'. In ! addition, 'float' and 'double' can be used to build floating-point vector types. Specifying a combination that is not valid for the current architecture causes GCC to synthesize the instructions using a narrower mode. For ! example, if you specify a variable of type 'V4SI' and your architecture does not allow for this specific SIMD type, GCC produces code that uses ! 4 'SIs'. The types defined in this manner can be used with a subset of normal C operations. Currently, GCC allows using the following operators on ! these types: '+, -, *, /, unary minus, ^, |, &, ~, %'. ! The operations behave like C++ 'valarrays'. Addition is defined as the ! addition of the corresponding elements of the operands. For example, in ! the code below, each of the 4 elements in A is added to the corresponding 4 elements in B and the resulting vector is stored in C. typedef int v4si __attribute__ ((vector_size (16))); *************** minus or complement operators on a vecto *** 28867,28881 **** elements are the negative or complemented values of the corresponding elements in the operand. ! It is possible to use shifting operators `<<', `>>' on integer-type ! vectors. The operation is defined as following: `{a0, a1, ..., an} >> ! {b0, b1, ..., bn} == {a0 >> b0, a1 >> b1, ..., an >> bn}'. Vector operands must have the same number of elements. For convenience, it is allowed to use a binary vector operation where ! one operand is a scalar. In that case the compiler transforms the scalar operand into a vector where each element is the scalar from the ! operation. The transformation happens only if the scalar could be safely converted to the vector-element type. Consider the following code. --- 28588,28602 ---- elements are the negative or complemented values of the corresponding elements in the operand. ! It is possible to use shifting operators '<<', '>>' on integer-type ! vectors. The operation is defined as following: '{a0, a1, ..., an} >> ! {b0, b1, ..., bn} == {a0 >> b0, a1 >> b1, ..., an >> bn}'. Vector operands must have the same number of elements. For convenience, it is allowed to use a binary vector operation where ! one operand is a scalar. In that case the compiler transforms the scalar operand into a vector where each element is the scalar from the ! operation. The transformation happens only if the scalar could be safely converted to the vector-element type. Consider the following code. *************** code. *** 28889,28909 **** a = l + a; /* Error, cannot convert long to int. */ ! Vectors can be subscripted as if the vector were an array with the ! same number of elements and base type. Out of bound accesses invoke undefined behavior at run time. Warnings for out of bound accesses for ! vector subscription can be enabled with `-Warray-bounds'. ! Vector comparison is supported with standard comparison operators: ! `==, !=, <, <=, >, >='. Comparison operands can be vector expressions ! of integer-type or real-type. Comparison between integer-type vectors ! and real-type vectors are not supported. The result of the comparison ! is a vector of the same width and number of elements as the comparison operands with a signed integral element type. Vectors are compared element-wise producing 0 when comparison is false and -1 (constant of the appropriate type where all bits are set) ! otherwise. Consider the following example. typedef int v4si __attribute__ ((vector_size (16))); --- 28610,28630 ---- a = l + a; /* Error, cannot convert long to int. */ ! Vectors can be subscripted as if the vector were an array with the same ! number of elements and base type. Out of bound accesses invoke undefined behavior at run time. Warnings for out of bound accesses for ! vector subscription can be enabled with '-Warray-bounds'. ! Vector comparison is supported with standard comparison operators: '==, ! !=, <, <=, >, >='. Comparison operands can be vector expressions of ! integer-type or real-type. Comparison between integer-type vectors and ! real-type vectors are not supported. The result of the comparison is a ! vector of the same width and number of elements as the comparison operands with a signed integral element type. Vectors are compared element-wise producing 0 when comparison is false and -1 (constant of the appropriate type where all bits are set) ! otherwise. Consider the following example. typedef int v4si __attribute__ ((vector_size (16))); *************** otherwise. Consider the following exampl *** 28914,28925 **** c = a > b; /* The result would be {0, 0,-1, 0} */ c = a == b; /* The result would be {0,-1, 0,-1} */ ! Vector shuffling is available using functions `__builtin_shuffle (vec, ! mask)' and `__builtin_shuffle (vec0, vec1, mask)'. Both functions ! construct a permutation of elements from one or two vectors and return ! a vector of the same type as the input vector(s). The MASK is an ! integral vector with the same width (W) and element count (N) as the ! output vector. The elements of the input vectors are numbered in memory ordering of VEC0 beginning at 0 and VEC1 beginning at N. The elements of MASK are --- 28635,28646 ---- c = a > b; /* The result would be {0, 0,-1, 0} */ c = a == b; /* The result would be {0,-1, 0,-1} */ ! Vector shuffling is available using functions '__builtin_shuffle (vec, ! mask)' and '__builtin_shuffle (vec0, vec1, mask)'. Both functions ! construct a permutation of elements from one or two vectors and return a ! vector of the same type as the input vector(s). The MASK is an integral ! vector with the same width (W) and element count (N) as the output ! vector. The elements of the input vectors are numbered in memory ordering of VEC0 beginning at 0 and VEC1 beginning at N. The elements of MASK are *************** two-operand case. *** 28939,28950 **** res = __builtin_shuffle (a, mask1); /* res is {1,2,2,4} */ res = __builtin_shuffle (a, b, mask2); /* res is {1,5,3,6} */ ! Note that `__builtin_shuffle' is intentionally semantically compatible ! with the OpenCL `shuffle' and `shuffle2' functions. You can declare variables and use them in function calls and returns, ! as well as in assignments and some casts. You can specify a vector ! type as a return type for a function. Vector types can also be used as function arguments. It is possible to cast from one vector type to another, provided they are of the same size (in fact, you can also cast vectors to and from other datatypes of the same size). --- 28660,28671 ---- res = __builtin_shuffle (a, mask1); /* res is {1,2,2,4} */ res = __builtin_shuffle (a, b, mask2); /* res is {1,5,3,6} */ ! Note that '__builtin_shuffle' is intentionally semantically compatible ! with the OpenCL 'shuffle' and 'shuffle2' functions. You can declare variables and use them in function calls and returns, ! as well as in assignments and some casts. You can specify a vector type ! as a return type for a function. Vector types can also be used as function arguments. It is possible to cast from one vector type to another, provided they are of the same size (in fact, you can also cast vectors to and from other datatypes of the same size). *************** File: gcc.info, Node: Offsetof, Next: *** 28958,28979 **** 6.50 Offsetof ============= ! GCC implements for both C and C++ a syntactic extension to implement ! the `offsetof' macro. primary: ! "__builtin_offsetof" "(" `typename' "," offsetof_member_designator ")" offsetof_member_designator: ! `identifier' ! | offsetof_member_designator "." `identifier' ! | offsetof_member_designator "[" `expr' "]" This extension is sufficient such that #define offsetof(TYPE, MEMBER) __builtin_offsetof (TYPE, MEMBER) ! is a suitable definition of the `offsetof' macro. In C++, TYPE may be dependent. In either case, MEMBER may consist of a single identifier, or a sequence of member accesses and array references. --- 28679,28700 ---- 6.50 Offsetof ============= ! GCC implements for both C and C++ a syntactic extension to implement the ! 'offsetof' macro. primary: ! "__builtin_offsetof" "(" typename "," offsetof_member_designator ")" offsetof_member_designator: ! identifier ! | offsetof_member_designator "." identifier ! | offsetof_member_designator "[" expr "]" This extension is sufficient such that #define offsetof(TYPE, MEMBER) __builtin_offsetof (TYPE, MEMBER) ! is a suitable definition of the 'offsetof' macro. In C++, TYPE may be dependent. In either case, MEMBER may consist of a single identifier, or a sequence of member accesses and array references. *************** File: gcc.info, Node: __sync Builtins, *** 28984,29004 **** ============================================================== The following built-in functions are intended to be compatible with ! those described in the `Intel Itanium Processor-specific Application Binary Interface', section 7.4. As such, they depart from the normal ! GCC practice of using the `__builtin_' prefix, and further that they ! are overloaded such that they work on multiple types. ! The definition given in the Intel documentation allows only for the ! use of the types `int', `long', `long long' as well as their unsigned ! counterparts. GCC allows any integral scalar or pointer type that is ! 1, 2, 4 or 8 bytes in length. Not all operations are supported by all target processors. If a particular operation cannot be implemented on the target processor, a warning is generated and a call an external function is generated. The ! external function carries the same name as the built-in version, with ! an additional suffix `_N' where N is the size of the data type. In most cases, these built-in functions are considered a "full barrier". That is, no memory operand is moved across the operation, --- 28705,28725 ---- ============================================================== The following built-in functions are intended to be compatible with ! those described in the 'Intel Itanium Processor-specific Application Binary Interface', section 7.4. As such, they depart from the normal ! GCC practice of using the '__builtin_' prefix, and further that they are ! overloaded such that they work on multiple types. ! The definition given in the Intel documentation allows only for the use ! of the types 'int', 'long', 'long long' as well as their unsigned ! counterparts. GCC allows any integral scalar or pointer type that is 1, ! 2, 4 or 8 bytes in length. Not all operations are supported by all target processors. If a particular operation cannot be implemented on the target processor, a warning is generated and a call an external function is generated. The ! external function carries the same name as the built-in version, with an ! additional suffix '_N' where N is the size of the data type. In most cases, these built-in functions are considered a "full barrier". That is, no memory operand is moved across the operation, *************** operation and from queuing stores after *** 29008,29026 **** All of the routines are described in the Intel documentation to take "an optional list of variables protected by the memory barrier". It's ! not clear what is meant by that; it could mean that _only_ the ! following variables are protected, or it could mean that these variables ! should in addition be protected. At present GCC ignores this list and ! protects all variables that are globally accessible. If in the future ! we make some use of this list, an empty list will continue to mean all ! globally accessible variables. ! `TYPE __sync_fetch_and_add (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_fetch_and_sub (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_fetch_and_or (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_fetch_and_and (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_fetch_and_xor (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_fetch_and_nand (TYPE *ptr, TYPE value, ...)' These built-in functions perform the operation suggested by the name, and returns the value that had previously been in memory. That is, --- 28729,28747 ---- All of the routines are described in the Intel documentation to take "an optional list of variables protected by the memory barrier". It's ! not clear what is meant by that; it could mean that _only_ the following ! variables are protected, or it could mean that these variables should in ! addition be protected. At present GCC ignores this list and protects ! all variables that are globally accessible. If in the future we make ! some use of this list, an empty list will continue to mean all globally ! accessible variables. ! 'TYPE __sync_fetch_and_add (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_fetch_and_sub (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_fetch_and_or (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_fetch_and_and (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_fetch_and_xor (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_fetch_and_nand (TYPE *ptr, TYPE value, ...)' These built-in functions perform the operation suggested by the name, and returns the value that had previously been in memory. That is, *************** globally accessible variables. *** 29028,29075 **** { tmp = *ptr; *ptr OP= value; return tmp; } { tmp = *ptr; *ptr = ~(tmp & value); return tmp; } // nand ! _Note:_ GCC 4.4 and later implement `__sync_fetch_and_nand' as ! `*ptr = ~(tmp & value)' instead of `*ptr = ~tmp & value'. ! `TYPE __sync_add_and_fetch (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_sub_and_fetch (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_or_and_fetch (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_and_and_fetch (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_xor_and_fetch (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_nand_and_fetch (TYPE *ptr, TYPE value, ...)' These built-in functions perform the operation suggested by the name, and return the new value. That is, { *ptr OP= value; return *ptr; } { *ptr = ~(*ptr & value); return *ptr; } // nand ! _Note:_ GCC 4.4 and later implement `__sync_nand_and_fetch' as ! `*ptr = ~(*ptr & value)' instead of `*ptr = ~*ptr & value'. ! `bool __sync_bool_compare_and_swap (TYPE *ptr, TYPE oldval, TYPE newval, ...)' ! `TYPE __sync_val_compare_and_swap (TYPE *ptr, TYPE oldval, TYPE newval, ...)' These built-in functions perform an atomic compare and swap. That ! is, if the current value of `*PTR' is OLDVAL, then write NEWVAL ! into `*PTR'. The "bool" version returns true if the comparison is successful and NEWVAL is written. The "val" version returns the contents of ! `*PTR' before the operation. ! `__sync_synchronize (...)' This built-in function issues a full memory barrier. ! `TYPE __sync_lock_test_and_set (TYPE *ptr, TYPE value, ...)' ! This built-in function, as described by Intel, is not a ! traditional test-and-set operation, but rather an atomic exchange ! operation. It writes VALUE into `*PTR', and returns the previous ! contents of `*PTR'. Many targets have only minimal support for such locks, and do not support a full exchange operation. In this case, a target may support reduced functionality here by which the _only_ valid value to store is the immediate constant 1. The exact value actually ! stored in `*PTR' is implementation defined. This built-in function is not a full barrier, but rather an "acquire barrier". This means that references after the operation --- 28749,28796 ---- { tmp = *ptr; *ptr OP= value; return tmp; } { tmp = *ptr; *ptr = ~(tmp & value); return tmp; } // nand ! _Note:_ GCC 4.4 and later implement '__sync_fetch_and_nand' as ! '*ptr = ~(tmp & value)' instead of '*ptr = ~tmp & value'. ! 'TYPE __sync_add_and_fetch (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_sub_and_fetch (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_or_and_fetch (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_and_and_fetch (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_xor_and_fetch (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_nand_and_fetch (TYPE *ptr, TYPE value, ...)' These built-in functions perform the operation suggested by the name, and return the new value. That is, { *ptr OP= value; return *ptr; } { *ptr = ~(*ptr & value); return *ptr; } // nand ! _Note:_ GCC 4.4 and later implement '__sync_nand_and_fetch' as ! '*ptr = ~(*ptr & value)' instead of '*ptr = ~*ptr & value'. ! 'bool __sync_bool_compare_and_swap (TYPE *ptr, TYPE oldval, TYPE newval, ...)' ! 'TYPE __sync_val_compare_and_swap (TYPE *ptr, TYPE oldval, TYPE newval, ...)' These built-in functions perform an atomic compare and swap. That ! is, if the current value of '*PTR' is OLDVAL, then write NEWVAL ! into '*PTR'. The "bool" version returns true if the comparison is successful and NEWVAL is written. The "val" version returns the contents of ! '*PTR' before the operation. ! '__sync_synchronize (...)' This built-in function issues a full memory barrier. ! 'TYPE __sync_lock_test_and_set (TYPE *ptr, TYPE value, ...)' ! This built-in function, as described by Intel, is not a traditional ! test-and-set operation, but rather an atomic exchange operation. ! It writes VALUE into '*PTR', and returns the previous contents of ! '*PTR'. Many targets have only minimal support for such locks, and do not support a full exchange operation. In this case, a target may support reduced functionality here by which the _only_ valid value to store is the immediate constant 1. The exact value actually ! stored in '*PTR' is implementation defined. This built-in function is not a full barrier, but rather an "acquire barrier". This means that references after the operation *************** globally accessible variables. *** 29077,29092 **** previous memory stores may not be globally visible yet, and previous memory loads may not yet be satisfied. ! `void __sync_lock_release (TYPE *ptr, ...)' This built-in function releases the lock acquired by ! `__sync_lock_test_and_set'. Normally this means writing the ! constant 0 to `*PTR'. ! This built-in function is not a full barrier, but rather a ! "release barrier". This means that all previous memory stores are ! globally visible, and all previous memory loads have been ! satisfied, but following memory reads are not prevented from being ! speculated to before the barrier.  File: gcc.info, Node: __atomic Builtins, Next: x86 specific memory model extensions for transactional memory, Prev: __sync Builtins, Up: C Extensions --- 28798,28813 ---- previous memory stores may not be globally visible yet, and previous memory loads may not yet be satisfied. ! 'void __sync_lock_release (TYPE *ptr, ...)' This built-in function releases the lock acquired by ! '__sync_lock_test_and_set'. Normally this means writing the ! constant 0 to '*PTR'. ! This built-in function is not a full barrier, but rather a "release ! barrier". This means that all previous memory stores are globally ! visible, and all previous memory loads have been satisfied, but ! following memory reads are not prevented from being speculated to ! before the barrier.  File: gcc.info, Node: __atomic Builtins, Next: x86 specific memory model extensions for transactional memory, Prev: __sync Builtins, Up: C Extensions *************** File: gcc.info, Node: __atomic Builtins *** 29095,29112 **** ================================================================ The following built-in functions approximately match the requirements ! for C++11 memory model. Many are similar to the `__sync' prefixed built-in functions, but all also have a memory model parameter. These ! are all identified by being prefixed with `__atomic', and most are overloaded such that they work with multiple types. GCC allows any integral scalar or pointer type that is 1, 2, 4, or 8 ! bytes in length. 16-byte integral types are also allowed if `__int128' (*note __int128::) is supported by the architecture. Target architectures are encouraged to provide their own patterns for each of these built-in functions. If no target is provided, the ! original non-memory model set of `__sync' atomic built-in functions are utilized, along with any required synchronization fences surrounding it in order to achieve the proper behavior. Execution in this case is subject to the same restrictions as those built-in functions. --- 28816,28833 ---- ================================================================ The following built-in functions approximately match the requirements ! for C++11 memory model. Many are similar to the '__sync' prefixed built-in functions, but all also have a memory model parameter. These ! are all identified by being prefixed with '__atomic', and most are overloaded such that they work with multiple types. GCC allows any integral scalar or pointer type that is 1, 2, 4, or 8 ! bytes in length. 16-byte integral types are also allowed if '__int128' (*note __int128::) is supported by the architecture. Target architectures are encouraged to provide their own patterns for each of these built-in functions. If no target is provided, the ! original non-memory model set of '__sync' atomic built-in functions are utilized, along with any required synchronization fences surrounding it in order to achieve the proper behavior. Execution in this case is subject to the same restrictions as those built-in functions. *************** to be resolved at run time. *** 29119,29173 **** compare_exchange) all have a generic version as well. This generic version works on any data type. If the data type size maps to one of the integral sizes that may have lock free support, the generic version ! utilizes the lock free built-in function. Otherwise an external call ! is left to be resolved at run time. This external call is the same ! format with the addition of a `size_t' parameter inserted as the first parameter indicating the size of the object being pointed to. All objects must be the same size. There are 6 different memory models that can be specified. These map ! to the same names in the C++11 standard. Refer there or to the GCC ! wiki on atomic synchronization (http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync) for more detailed ! definitions. These memory models integrate both barriers to code ! motion as well as synchronization requirements with other threads. ! These are listed in approximately ascending order of strength. It is ! also possible to use target specific flags for memory model flags, like Hardware Lock Elision. ! `__ATOMIC_RELAXED' No barriers or synchronization. ! ! `__ATOMIC_CONSUME' Data dependency only for both barrier and synchronization with another thread. ! ! `__ATOMIC_ACQUIRE' Barrier to hoisting of code and synchronizes with release (or stronger) semantic stores from another thread. ! ! `__ATOMIC_RELEASE' Barrier to sinking of code and synchronizes with acquire (or stronger) semantic loads from another thread. ! ! `__ATOMIC_ACQ_REL' ! Full barrier in both directions and synchronizes with acquire ! loads and release stores in another thread. ! ! `__ATOMIC_SEQ_CST' ! Full barrier in both directions and synchronizes with acquire ! loads and release stores in all threads. When implementing patterns for these built-in functions, the memory model parameter can be ignored as long as the pattern implements the ! most restrictive `__ATOMIC_SEQ_CST' model. Any of the other memory ! models execute correctly with this memory model but they may not ! execute as efficiently as they could with a more appropriate ! implementation of the relaxed requirements. Note that the C++11 standard allows for the memory model parameter to be determined at run time rather than at compile time. These built-in ! functions map any run-time value to `__ATOMIC_SEQ_CST' rather than invoke a runtime library call or inline a switch statement. This is standard compliant, safe, and the simplest approach for now. --- 28840,28889 ---- compare_exchange) all have a generic version as well. This generic version works on any data type. If the data type size maps to one of the integral sizes that may have lock free support, the generic version ! utilizes the lock free built-in function. Otherwise an external call is ! left to be resolved at run time. This external call is the same format ! with the addition of a 'size_t' parameter inserted as the first parameter indicating the size of the object being pointed to. All objects must be the same size. There are 6 different memory models that can be specified. These map ! to the same names in the C++11 standard. Refer there or to the GCC wiki ! on atomic synchronization (http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync) for more detailed ! definitions. These memory models integrate both barriers to code motion ! as well as synchronization requirements with other threads. These are ! listed in approximately ascending order of strength. It is also ! possible to use target specific flags for memory model flags, like Hardware Lock Elision. ! '__ATOMIC_RELAXED' No barriers or synchronization. ! '__ATOMIC_CONSUME' Data dependency only for both barrier and synchronization with another thread. ! '__ATOMIC_ACQUIRE' Barrier to hoisting of code and synchronizes with release (or stronger) semantic stores from another thread. ! '__ATOMIC_RELEASE' Barrier to sinking of code and synchronizes with acquire (or stronger) semantic loads from another thread. ! '__ATOMIC_ACQ_REL' ! Full barrier in both directions and synchronizes with acquire loads ! and release stores in another thread. ! '__ATOMIC_SEQ_CST' ! Full barrier in both directions and synchronizes with acquire loads ! and release stores in all threads. When implementing patterns for these built-in functions, the memory model parameter can be ignored as long as the pattern implements the ! most restrictive '__ATOMIC_SEQ_CST' model. Any of the other memory ! models execute correctly with this memory model but they may not execute ! as efficiently as they could with a more appropriate implementation of ! the relaxed requirements. Note that the C++11 standard allows for the memory model parameter to be determined at run time rather than at compile time. These built-in ! functions map any run-time value to '__ATOMIC_SEQ_CST' rather than invoke a runtime library call or inline a switch statement. This is standard compliant, safe, and the simplest approach for now. *************** values ensures proper usage. *** 29178,29335 **** -- Built-in Function: TYPE __atomic_load_n (TYPE *ptr, int memmodel) This built-in function implements an atomic load operation. It ! returns the contents of `*PTR'. ! ! The valid memory model variants are `__ATOMIC_RELAXED', ! `__ATOMIC_SEQ_CST', `__ATOMIC_ACQUIRE', and `__ATOMIC_CONSUME'. -- Built-in Function: void __atomic_load (TYPE *ptr, TYPE *ret, int memmodel) This is the generic version of an atomic load. It returns the ! contents of `*PTR' in `*RET'. ! -- Built-in Function: void __atomic_store_n (TYPE *ptr, TYPE val, int memmodel) This built-in function implements an atomic store operation. It ! writes `VAL' into `*PTR'. ! ! The valid memory model variants are `__ATOMIC_RELAXED', ! `__ATOMIC_SEQ_CST', and `__ATOMIC_RELEASE'. -- Built-in Function: void __atomic_store (TYPE *ptr, TYPE *val, int memmodel) This is the generic version of an atomic store. It stores the ! value of `*VAL' into `*PTR'. ! -- Built-in Function: TYPE __atomic_exchange_n (TYPE *ptr, TYPE val, int memmodel) ! This built-in function implements an atomic exchange operation. ! It writes VAL into `*PTR', and returns the previous contents of ! `*PTR'. ! ! The valid memory model variants are `__ATOMIC_RELAXED', ! `__ATOMIC_SEQ_CST', `__ATOMIC_ACQUIRE', `__ATOMIC_RELEASE', and ! `__ATOMIC_ACQ_REL'. -- Built-in Function: void __atomic_exchange (TYPE *ptr, TYPE *val, TYPE *ret, int memmodel) This is the generic version of an atomic exchange. It stores the ! contents of `*VAL' into `*PTR'. The original value of `*PTR' is ! copied into `*RET'. ! ! -- Built-in Function: bool __atomic_compare_exchange_n (TYPE *ptr, ! TYPE *expected, TYPE desired, bool weak, int ! success_memmodel, int failure_memmodel) This built-in function implements an atomic compare and exchange ! operation. This compares the contents of `*PTR' with the contents ! of `*EXPECTED' and if equal, writes DESIRED into `*PTR'. If they ! are not equal, the current contents of `*PTR' is written into ! `*EXPECTED'. WEAK is true for weak compare_exchange, and false ! for the strong variation. Many targets only offer the strong ! variation and ignore the parameter. When in doubt, use the strong ! variation. ! True is returned if DESIRED is written into `*PTR' and the ! execution is considered to conform to the memory model specified ! by SUCCESS_MEMMODEL. There are no restrictions on what memory ! model can be used here. False is returned otherwise, and the execution is considered to ! conform to FAILURE_MEMMODEL. This memory model cannot be ! `__ATOMIC_RELEASE' nor `__ATOMIC_ACQ_REL'. It also cannot be a stronger model than that specified by SUCCESS_MEMMODEL. - -- Built-in Function: bool __atomic_compare_exchange (TYPE *ptr, TYPE ! *expected, TYPE *desired, bool weak, int success_memmodel, ! int failure_memmodel) This built-in function implements the generic version of ! `__atomic_compare_exchange'. The function is virtually identical ! to `__atomic_compare_exchange_n', except the desired value is also a pointer. ! ! -- Built-in Function: TYPE __atomic_add_fetch (TYPE *ptr, TYPE val, ! int memmodel) ! -- Built-in Function: TYPE __atomic_sub_fetch (TYPE *ptr, TYPE val, ! int memmodel) ! -- Built-in Function: TYPE __atomic_and_fetch (TYPE *ptr, TYPE val, ! int memmodel) ! -- Built-in Function: TYPE __atomic_xor_fetch (TYPE *ptr, TYPE val, ! int memmodel) -- Built-in Function: TYPE __atomic_or_fetch (TYPE *ptr, TYPE val, int memmodel) -- Built-in Function: TYPE __atomic_nand_fetch (TYPE *ptr, TYPE val, int memmodel) These built-in functions perform the operation suggested by the ! name, and return the result of the operation. That is, { *ptr OP= val; return *ptr; } All memory models are valid. ! ! -- Built-in Function: TYPE __atomic_fetch_add (TYPE *ptr, TYPE val, ! int memmodel) ! -- Built-in Function: TYPE __atomic_fetch_sub (TYPE *ptr, TYPE val, ! int memmodel) ! -- Built-in Function: TYPE __atomic_fetch_and (TYPE *ptr, TYPE val, ! int memmodel) ! -- Built-in Function: TYPE __atomic_fetch_xor (TYPE *ptr, TYPE val, ! int memmodel) -- Built-in Function: TYPE __atomic_fetch_or (TYPE *ptr, TYPE val, int memmodel) -- Built-in Function: TYPE __atomic_fetch_nand (TYPE *ptr, TYPE val, int memmodel) These built-in functions perform the operation suggested by the ! name, and return the value that had previously been in `*PTR'. That is, { tmp = *ptr; *ptr OP= val; return tmp; } All memory models are valid. - -- Built-in Function: bool __atomic_test_and_set (void *ptr, int memmodel) This built-in function performs an atomic test-and-set operation on ! the byte at `*PTR'. The byte is set to some implementation ! defined nonzero "set" value and the return value is `true' if and ! only if the previous contents were "set". All memory models are valid. - -- Built-in Function: void __atomic_clear (bool *ptr, int memmodel) - This built-in function performs an atomic clear operation on - `*PTR'. After the operation, `*PTR' contains 0. ! The valid memory model variants are `__ATOMIC_RELAXED', ! `__ATOMIC_SEQ_CST', and `__ATOMIC_RELEASE'. -- Built-in Function: void __atomic_thread_fence (int memmodel) This built-in function acts as a synchronization fence between threads based on the specified memory model. All memory orders are valid. - -- Built-in Function: void __atomic_signal_fence (int memmodel) This built-in function acts as a synchronization fence between a thread and signal handlers based in the same thread. All memory orders are valid. - -- Built-in Function: bool __atomic_always_lock_free (size_t size, - void *ptr) This built-in function returns true if objects of SIZE bytes always generate lock free atomic instructions for the target architecture. SIZE must resolve to a compile-time constant and the result also --- 28894,29047 ---- -- Built-in Function: TYPE __atomic_load_n (TYPE *ptr, int memmodel) This built-in function implements an atomic load operation. It ! returns the contents of '*PTR'. + The valid memory model variants are '__ATOMIC_RELAXED', + '__ATOMIC_SEQ_CST', '__ATOMIC_ACQUIRE', and '__ATOMIC_CONSUME'. -- Built-in Function: void __atomic_load (TYPE *ptr, TYPE *ret, int memmodel) This is the generic version of an atomic load. It returns the ! contents of '*PTR' in '*RET'. -- Built-in Function: void __atomic_store_n (TYPE *ptr, TYPE val, int memmodel) This built-in function implements an atomic store operation. It ! writes 'VAL' into '*PTR'. + The valid memory model variants are '__ATOMIC_RELAXED', + '__ATOMIC_SEQ_CST', and '__ATOMIC_RELEASE'. -- Built-in Function: void __atomic_store (TYPE *ptr, TYPE *val, int memmodel) This is the generic version of an atomic store. It stores the ! value of '*VAL' into '*PTR'. -- Built-in Function: TYPE __atomic_exchange_n (TYPE *ptr, TYPE val, int memmodel) ! This built-in function implements an atomic exchange operation. It ! writes VAL into '*PTR', and returns the previous contents of ! '*PTR'. + The valid memory model variants are '__ATOMIC_RELAXED', + '__ATOMIC_SEQ_CST', '__ATOMIC_ACQUIRE', '__ATOMIC_RELEASE', and + '__ATOMIC_ACQ_REL'. -- Built-in Function: void __atomic_exchange (TYPE *ptr, TYPE *val, TYPE *ret, int memmodel) This is the generic version of an atomic exchange. It stores the ! contents of '*VAL' into '*PTR'. The original value of '*PTR' is ! copied into '*RET'. ! -- Built-in Function: bool __atomic_compare_exchange_n (TYPE *ptr, TYPE ! *expected, TYPE desired, bool weak, int success_memmodel, int ! failure_memmodel) This built-in function implements an atomic compare and exchange ! operation. This compares the contents of '*PTR' with the contents ! of '*EXPECTED' and if equal, writes DESIRED into '*PTR'. If they ! are not equal, the current contents of '*PTR' is written into ! '*EXPECTED'. WEAK is true for weak compare_exchange, and false for ! the strong variation. Many targets only offer the strong variation ! and ignore the parameter. When in doubt, use the strong variation. ! True is returned if DESIRED is written into '*PTR' and the ! execution is considered to conform to the memory model specified by ! SUCCESS_MEMMODEL. There are no restrictions on what memory model ! can be used here. False is returned otherwise, and the execution is considered to ! conform to FAILURE_MEMMODEL. This memory model cannot be ! '__ATOMIC_RELEASE' nor '__ATOMIC_ACQ_REL'. It also cannot be a stronger model than that specified by SUCCESS_MEMMODEL. -- Built-in Function: bool __atomic_compare_exchange (TYPE *ptr, TYPE ! *expected, TYPE *desired, bool weak, int success_memmodel, int ! failure_memmodel) This built-in function implements the generic version of ! '__atomic_compare_exchange'. The function is virtually identical ! to '__atomic_compare_exchange_n', except the desired value is also a pointer. ! -- Built-in Function: TYPE __atomic_add_fetch (TYPE *ptr, TYPE val, int ! memmodel) ! -- Built-in Function: TYPE __atomic_sub_fetch (TYPE *ptr, TYPE val, int ! memmodel) ! -- Built-in Function: TYPE __atomic_and_fetch (TYPE *ptr, TYPE val, int ! memmodel) ! -- Built-in Function: TYPE __atomic_xor_fetch (TYPE *ptr, TYPE val, int ! memmodel) -- Built-in Function: TYPE __atomic_or_fetch (TYPE *ptr, TYPE val, int memmodel) -- Built-in Function: TYPE __atomic_nand_fetch (TYPE *ptr, TYPE val, int memmodel) These built-in functions perform the operation suggested by the ! name, and return the result of the operation. That is, { *ptr OP= val; return *ptr; } All memory models are valid. ! -- Built-in Function: TYPE __atomic_fetch_add (TYPE *ptr, TYPE val, int ! memmodel) ! -- Built-in Function: TYPE __atomic_fetch_sub (TYPE *ptr, TYPE val, int ! memmodel) ! -- Built-in Function: TYPE __atomic_fetch_and (TYPE *ptr, TYPE val, int ! memmodel) ! -- Built-in Function: TYPE __atomic_fetch_xor (TYPE *ptr, TYPE val, int ! memmodel) -- Built-in Function: TYPE __atomic_fetch_or (TYPE *ptr, TYPE val, int memmodel) -- Built-in Function: TYPE __atomic_fetch_nand (TYPE *ptr, TYPE val, int memmodel) These built-in functions perform the operation suggested by the ! name, and return the value that had previously been in '*PTR'. That is, { tmp = *ptr; *ptr OP= val; return tmp; } All memory models are valid. -- Built-in Function: bool __atomic_test_and_set (void *ptr, int memmodel) + This built-in function performs an atomic test-and-set operation on ! the byte at '*PTR'. The byte is set to some implementation defined ! nonzero "set" value and the return value is 'true' if and only if ! the previous contents were "set". It should be only used for ! operands of type 'bool' or 'char'. For other types only part of ! the value may be set. All memory models are valid. -- Built-in Function: void __atomic_clear (bool *ptr, int memmodel) ! This built-in function performs an atomic clear operation on ! '*PTR'. After the operation, '*PTR' contains 0. It should be only ! used for operands of type 'bool' or 'char' and in conjunction with ! '__atomic_test_and_set'. For other types it may only clear ! partially. If the type is not 'bool' prefer using ! '__atomic_store'. + The valid memory model variants are '__ATOMIC_RELAXED', + '__ATOMIC_SEQ_CST', and '__ATOMIC_RELEASE'. -- Built-in Function: void __atomic_thread_fence (int memmodel) + This built-in function acts as a synchronization fence between threads based on the specified memory model. All memory orders are valid. -- Built-in Function: void __atomic_signal_fence (int memmodel) + This built-in function acts as a synchronization fence between a thread and signal handlers based in the same thread. All memory orders are valid. + -- Built-in Function: bool __atomic_always_lock_free (size_t size, void + *ptr) This built-in function returns true if objects of SIZE bytes always generate lock free atomic instructions for the target architecture. SIZE must resolve to a compile-time constant and the result also *************** values ensures proper usage. *** 29341,29353 **** if (_atomic_always_lock_free (sizeof (long long), 0)) - -- Built-in Function: bool __atomic_is_lock_free (size_t size, void *ptr) This built-in function returns true if objects of SIZE bytes always ! generate lock free atomic instructions for the target ! architecture. If it is not known to be lock free a call is made ! to a runtime routine named `__atomic_is_lock_free'. PTR is an optional pointer to the object that may be used to determine alignment. A value of 0 indicates typical alignment --- 29053,29065 ---- if (_atomic_always_lock_free (sizeof (long long), 0)) -- Built-in Function: bool __atomic_is_lock_free (size_t size, void *ptr) + This built-in function returns true if objects of SIZE bytes always ! generate lock free atomic instructions for the target architecture. ! If it is not known to be lock free a call is made to a runtime ! routine named '__atomic_is_lock_free'. PTR is an optional pointer to the object that may be used to determine alignment. A value of 0 indicates typical alignment *************** The i386 architecture supports additiona *** 29363,29387 **** lock critical sections for hardware lock elision. These must be specified in addition to an existing memory model to atomic intrinsics. ! `__ATOMIC_HLE_ACQUIRE' Start lock elision on a lock variable. Memory model must be ! `__ATOMIC_ACQUIRE' or stronger. ! ! `__ATOMIC_HLE_RELEASE' End lock elision on a lock variable. Memory model must be ! `__ATOMIC_RELEASE' or stronger. ! When a lock acquire fails it's required for good performance to abort ! the transaction quickly. This can be done with a `_mm_pause' #include // For _mm_pause /* Acquire lock with lock elision */ while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE)) _mm_pause(); /* Abort failed transaction */ ... /* Free lock with lock elision */ ! __atomic_clear(&lockvar, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);  File: gcc.info, Node: Object Size Checking, Next: Other Builtins, Prev: x86 specific memory model extensions for transactional memory, Up: C Extensions --- 29075,29100 ---- lock critical sections for hardware lock elision. These must be specified in addition to an existing memory model to atomic intrinsics. ! '__ATOMIC_HLE_ACQUIRE' Start lock elision on a lock variable. Memory model must be ! '__ATOMIC_ACQUIRE' or stronger. ! '__ATOMIC_HLE_RELEASE' End lock elision on a lock variable. Memory model must be ! '__ATOMIC_RELEASE' or stronger. ! When a lock acquire fails it is required for good performance to abort ! the transaction quickly. This can be done with a '_mm_pause' #include // For _mm_pause + int lockvar; + /* Acquire lock with lock elision */ while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE)) _mm_pause(); /* Abort failed transaction */ ... /* Free lock with lock elision */ ! __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);  File: gcc.info, Node: Object Size Checking, Next: Other Builtins, Prev: x86 specific memory model extensions for transactional memory, Up: C Extensions *************** prevent some buffer overflow attacks. *** 29396,29411 **** TYPE) is a built-in construct that returns a constant number of bytes from PTR to the end of the object PTR pointer points to (if known ! at compile time). `__builtin_object_size' never evaluates its ! arguments for side-effects. If there are any side-effects in ! them, it returns `(size_t) -1' for TYPE 0 or 1 and `(size_t) 0' ! for TYPE 2 or 3. If there are multiple objects PTR can point to ! and all of them are known at compile time, the returned number is ! the maximum of remaining byte counts in those objects if TYPE & 2 ! is 0 and minimum if nonzero. If it is not possible to determine ! which objects PTR points to at compile time, ! `__builtin_object_size' should return `(size_t) -1' for TYPE 0 or ! 1 and `(size_t) 0' for TYPE 2 or 3. TYPE is an integer constant from 0 to 3. If the least significant bit is clear, objects are whole variables, if it is set, a closest --- 29109,29124 ---- TYPE) is a built-in construct that returns a constant number of bytes from PTR to the end of the object PTR pointer points to (if known ! at compile time). '__builtin_object_size' never evaluates its ! arguments for side-effects. If there are any side-effects in them, ! it returns '(size_t) -1' for TYPE 0 or 1 and '(size_t) 0' for TYPE ! 2 or 3. If there are multiple objects PTR can point to and all of ! them are known at compile time, the returned number is the maximum ! of remaining byte counts in those objects if TYPE & 2 is 0 and ! minimum if nonzero. If it is not possible to determine which ! objects PTR points to at compile time, '__builtin_object_size' ! should return '(size_t) -1' for TYPE 0 or 1 and '(size_t) 0' for ! TYPE 2 or 3. TYPE is an integer constant from 0 to 3. If the least significant bit is clear, objects are whole variables, if it is set, a closest *************** prevent some buffer overflow attacks. *** 29427,29441 **** assert (__builtin_object_size (q, 1) == sizeof (var.b)); There are built-in functions added for many common string operation ! functions, e.g., for `memcpy' `__builtin___memcpy_chk' built-in is provided. This built-in has an additional last argument, which is the number of bytes remaining in object the DEST argument points to or ! `(size_t) -1' if the size is not known. The built-in functions are optimized into the normal string functions ! like `memcpy' if the last argument is `(size_t) -1' or if it is known ! at compile time that the destination object will not be overflown. If ! the compiler can determine at compile time the object will be always overflown, it issues a warning. The intended use can be e.g. --- 29140,29154 ---- assert (__builtin_object_size (q, 1) == sizeof (var.b)); There are built-in functions added for many common string operation ! functions, e.g., for 'memcpy' '__builtin___memcpy_chk' built-in is provided. This built-in has an additional last argument, which is the number of bytes remaining in object the DEST argument points to or ! '(size_t) -1' if the size is not known. The built-in functions are optimized into the normal string functions ! like 'memcpy' if the last argument is '(size_t) -1' or if it is known at ! compile time that the destination object will not be overflown. If the ! compiler can determine at compile time the object will be always overflown, it issues a warning. The intended use can be e.g. *************** overflown, it issues a warning. *** 29462,29470 **** will abort the program at run time. */ memcpy (&buf[6], "abcde", 5); ! Such built-in functions are provided for `memcpy', `mempcpy', ! `memmove', `memset', `strcpy', `stpcpy', `strncpy', `strcat' and ! `strncat'. There are also checking built-in functions for formatted output functions. --- 29175,29183 ---- will abort the program at run time. */ memcpy (&buf[6], "abcde", 5); ! Such built-in functions are provided for 'memcpy', 'mempcpy', ! 'memmove', 'memset', 'strcpy', 'stpcpy', 'strncpy', 'strcat' and ! 'strncat'. There are also checking built-in functions for formatted output functions. *************** functions. *** 29476,29497 **** int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os, const char *fmt, va_list ap); ! The added FLAG argument is passed unchanged to `__sprintf_chk' etc. functions and can contain implementation specific flags on what additional security measures the checking function might take, such as ! handling `%n' differently. The OS argument is the object size S points to, like in the other ! built-in functions. There is a small difference in the behavior ! though, if OS is `(size_t) -1', the built-in functions are optimized ! into the non-checking functions only if FLAG is 0, otherwise the ! checking function is called with OS argument set to `(size_t) -1'. In addition to this, there are checking built-in functions ! `__builtin___printf_chk', `__builtin___vprintf_chk', ! `__builtin___fprintf_chk' and `__builtin___vfprintf_chk'. These have just one additional argument, FLAG, right before format string FMT. If ! the compiler is able to optimize them to `fputc' etc. functions, it does, otherwise the checking function is called and the FLAG argument passed to it. --- 29189,29210 ---- int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os, const char *fmt, va_list ap); ! The added FLAG argument is passed unchanged to '__sprintf_chk' etc. functions and can contain implementation specific flags on what additional security measures the checking function might take, such as ! handling '%n' differently. The OS argument is the object size S points to, like in the other ! built-in functions. There is a small difference in the behavior though, ! if OS is '(size_t) -1', the built-in functions are optimized into the ! non-checking functions only if FLAG is 0, otherwise the checking ! function is called with OS argument set to '(size_t) -1'. In addition to this, there are checking built-in functions ! '__builtin___printf_chk', '__builtin___vprintf_chk', ! '__builtin___fprintf_chk' and '__builtin___vfprintf_chk'. These have just one additional argument, FLAG, right before format string FMT. If ! the compiler is able to optimize them to 'fputc' etc. functions, it does, otherwise the checking function is called and the FLAG argument passed to it. *************** general use of these functions. *** 29510,29612 **** The remaining functions are provided for optimization purposes. GCC includes built-in versions of many of the functions in the standard ! C library. The versions prefixed with `__builtin_' are always treated ! as having the same meaning as the C library function even if you ! specify the `-fno-builtin' option. (*note C Dialect Options::) Many of ! these functions are only optimized in certain cases; if they are not ! optimized in a particular case, a call to the library function is ! emitted. ! Outside strict ISO C mode (`-ansi', `-std=c90', `-std=c99' or ! `-std=c11'), the functions `_exit', `alloca', `bcmp', `bzero', ! `dcgettext', `dgettext', `dremf', `dreml', `drem', `exp10f', `exp10l', ! `exp10', `ffsll', `ffsl', `ffs', `fprintf_unlocked', `fputs_unlocked', ! `gammaf', `gammal', `gamma', `gammaf_r', `gammal_r', `gamma_r', ! `gettext', `index', `isascii', `j0f', `j0l', `j0', `j1f', `j1l', `j1', ! `jnf', `jnl', `jn', `lgammaf_r', `lgammal_r', `lgamma_r', `mempcpy', ! `pow10f', `pow10l', `pow10', `printf_unlocked', `rindex', `scalbf', ! `scalbl', `scalb', `signbit', `signbitf', `signbitl', `signbitd32', ! `signbitd64', `signbitd128', `significandf', `significandl', ! `significand', `sincosf', `sincosl', `sincos', `stpcpy', `stpncpy', ! `strcasecmp', `strdup', `strfmon', `strncasecmp', `strndup', `toascii', ! `y0f', `y0l', `y0', `y1f', `y1l', `y1', `ynf', `ynl' and `yn' may be handled as built-in functions. All these functions have corresponding ! versions prefixed with `__builtin_', which may be used even in strict C90 mode. ! The ISO C99 functions `_Exit', `acoshf', `acoshl', `acosh', `asinhf', ! `asinhl', `asinh', `atanhf', `atanhl', `atanh', `cabsf', `cabsl', ! `cabs', `cacosf', `cacoshf', `cacoshl', `cacosh', `cacosl', `cacos', ! `cargf', `cargl', `carg', `casinf', `casinhf', `casinhl', `casinh', ! `casinl', `casin', `catanf', `catanhf', `catanhl', `catanh', `catanl', ! `catan', `cbrtf', `cbrtl', `cbrt', `ccosf', `ccoshf', `ccoshl', ! `ccosh', `ccosl', `ccos', `cexpf', `cexpl', `cexp', `cimagf', `cimagl', ! `cimag', `clogf', `clogl', `clog', `conjf', `conjl', `conj', ! `copysignf', `copysignl', `copysign', `cpowf', `cpowl', `cpow', ! `cprojf', `cprojl', `cproj', `crealf', `creall', `creal', `csinf', ! `csinhf', `csinhl', `csinh', `csinl', `csin', `csqrtf', `csqrtl', ! `csqrt', `ctanf', `ctanhf', `ctanhl', `ctanh', `ctanl', `ctan', ! `erfcf', `erfcl', `erfc', `erff', `erfl', `erf', `exp2f', `exp2l', ! `exp2', `expm1f', `expm1l', `expm1', `fdimf', `fdiml', `fdim', `fmaf', ! `fmal', `fmaxf', `fmaxl', `fmax', `fma', `fminf', `fminl', `fmin', ! `hypotf', `hypotl', `hypot', `ilogbf', `ilogbl', `ilogb', `imaxabs', ! `isblank', `iswblank', `lgammaf', `lgammal', `lgamma', `llabs', ! `llrintf', `llrintl', `llrint', `llroundf', `llroundl', `llround', ! `log1pf', `log1pl', `log1p', `log2f', `log2l', `log2', `logbf', ! `logbl', `logb', `lrintf', `lrintl', `lrint', `lroundf', `lroundl', ! `lround', `nearbyintf', `nearbyintl', `nearbyint', `nextafterf', ! `nextafterl', `nextafter', `nexttowardf', `nexttowardl', `nexttoward', ! `remainderf', `remainderl', `remainder', `remquof', `remquol', ! `remquo', `rintf', `rintl', `rint', `roundf', `roundl', `round', ! `scalblnf', `scalblnl', `scalbln', `scalbnf', `scalbnl', `scalbn', ! `snprintf', `tgammaf', `tgammal', `tgamma', `truncf', `truncl', `trunc', ! `vfscanf', `vscanf', `vsnprintf' and `vsscanf' are handled as built-in ! functions except in strict ISO C90 mode (`-ansi' or `-std=c90'). ! There are also built-in versions of the ISO C99 functions `acosf', ! `acosl', `asinf', `asinl', `atan2f', `atan2l', `atanf', `atanl', ! `ceilf', `ceill', `cosf', `coshf', `coshl', `cosl', `expf', `expl', ! `fabsf', `fabsl', `floorf', `floorl', `fmodf', `fmodl', `frexpf', ! `frexpl', `ldexpf', `ldexpl', `log10f', `log10l', `logf', `logl', ! `modfl', `modf', `powf', `powl', `sinf', `sinhf', `sinhl', `sinl', ! `sqrtf', `sqrtl', `tanf', `tanhf', `tanhl' and `tanl' that are recognized in any mode since ISO C90 reserves these names for the purpose to which ISO C99 puts them. All these functions have ! corresponding versions prefixed with `__builtin_'. ! The ISO C94 functions `iswalnum', `iswalpha', `iswcntrl', `iswdigit', ! `iswgraph', `iswlower', `iswprint', `iswpunct', `iswspace', `iswupper', ! `iswxdigit', `towlower' and `towupper' are handled as built-in functions ! except in strict ISO C90 mode (`-ansi' or `-std=c90'). ! The ISO C90 functions `abort', `abs', `acos', `asin', `atan2', `atan', ! `calloc', `ceil', `cosh', `cos', `exit', `exp', `fabs', `floor', `fmod', ! `fprintf', `fputs', `frexp', `fscanf', `isalnum', `isalpha', `iscntrl', ! `isdigit', `isgraph', `islower', `isprint', `ispunct', `isspace', ! `isupper', `isxdigit', `tolower', `toupper', `labs', `ldexp', `log10', ! `log', `malloc', `memchr', `memcmp', `memcpy', `memset', `modf', `pow', ! `printf', `putchar', `puts', `scanf', `sinh', `sin', `snprintf', ! `sprintf', `sqrt', `sscanf', `strcat', `strchr', `strcmp', `strcpy', ! `strcspn', `strlen', `strncat', `strncmp', `strncpy', `strpbrk', ! `strrchr', `strspn', `strstr', `tanh', `tan', `vfprintf', `vprintf' and ! `vsprintf' are all recognized as built-in functions unless ! `-fno-builtin' is specified (or `-fno-builtin-FUNCTION' is specified ! for an individual function). All of these functions have corresponding ! versions prefixed with `__builtin_'. GCC provides built-in versions of the ISO C99 floating-point comparison macros that avoid raising exceptions for unordered operands. They have ! the same names as the standard macros ( `isgreater', `isgreaterequal', ! `isless', `islessequal', `islessgreater', and `isunordered') , with ! `__builtin_' prefixed. We intend for a library implementor to be able ! to simply `#define' each standard macro to its built-in equivalent. In ! the same fashion, GCC provides `fpclassify', `isfinite', `isinf_sign' ! and `isnormal' built-ins used with `__builtin_' prefixed. The `isinf' ! and `isnan' built-in functions appear both with and without the ! `__builtin_' prefix. -- Built-in Function: int __builtin_types_compatible_p (TYPE1, TYPE2) ! You can use the built-in function `__builtin_types_compatible_p' to determine whether two types are the same. This built-in function returns 1 if the unqualified versions of the --- 29223,29325 ---- The remaining functions are provided for optimization purposes. GCC includes built-in versions of many of the functions in the standard ! C library. The versions prefixed with '__builtin_' are always treated ! as having the same meaning as the C library function even if you specify ! the '-fno-builtin' option. (*note C Dialect Options::) Many of these ! functions are only optimized in certain cases; if they are not optimized ! in a particular case, a call to the library function is emitted. ! Outside strict ISO C mode ('-ansi', '-std=c90', '-std=c99' or ! '-std=c11'), the functions '_exit', 'alloca', 'bcmp', 'bzero', ! 'dcgettext', 'dgettext', 'dremf', 'dreml', 'drem', 'exp10f', 'exp10l', ! 'exp10', 'ffsll', 'ffsl', 'ffs', 'fprintf_unlocked', 'fputs_unlocked', ! 'gammaf', 'gammal', 'gamma', 'gammaf_r', 'gammal_r', 'gamma_r', ! 'gettext', 'index', 'isascii', 'j0f', 'j0l', 'j0', 'j1f', 'j1l', 'j1', ! 'jnf', 'jnl', 'jn', 'lgammaf_r', 'lgammal_r', 'lgamma_r', 'mempcpy', ! 'pow10f', 'pow10l', 'pow10', 'printf_unlocked', 'rindex', 'scalbf', ! 'scalbl', 'scalb', 'signbit', 'signbitf', 'signbitl', 'signbitd32', ! 'signbitd64', 'signbitd128', 'significandf', 'significandl', ! 'significand', 'sincosf', 'sincosl', 'sincos', 'stpcpy', 'stpncpy', ! 'strcasecmp', 'strdup', 'strfmon', 'strncasecmp', 'strndup', 'toascii', ! 'y0f', 'y0l', 'y0', 'y1f', 'y1l', 'y1', 'ynf', 'ynl' and 'yn' may be handled as built-in functions. All these functions have corresponding ! versions prefixed with '__builtin_', which may be used even in strict C90 mode. ! The ISO C99 functions '_Exit', 'acoshf', 'acoshl', 'acosh', 'asinhf', ! 'asinhl', 'asinh', 'atanhf', 'atanhl', 'atanh', 'cabsf', 'cabsl', ! 'cabs', 'cacosf', 'cacoshf', 'cacoshl', 'cacosh', 'cacosl', 'cacos', ! 'cargf', 'cargl', 'carg', 'casinf', 'casinhf', 'casinhl', 'casinh', ! 'casinl', 'casin', 'catanf', 'catanhf', 'catanhl', 'catanh', 'catanl', ! 'catan', 'cbrtf', 'cbrtl', 'cbrt', 'ccosf', 'ccoshf', 'ccoshl', 'ccosh', ! 'ccosl', 'ccos', 'cexpf', 'cexpl', 'cexp', 'cimagf', 'cimagl', 'cimag', ! 'clogf', 'clogl', 'clog', 'conjf', 'conjl', 'conj', 'copysignf', ! 'copysignl', 'copysign', 'cpowf', 'cpowl', 'cpow', 'cprojf', 'cprojl', ! 'cproj', 'crealf', 'creall', 'creal', 'csinf', 'csinhf', 'csinhl', ! 'csinh', 'csinl', 'csin', 'csqrtf', 'csqrtl', 'csqrt', 'ctanf', ! 'ctanhf', 'ctanhl', 'ctanh', 'ctanl', 'ctan', 'erfcf', 'erfcl', 'erfc', ! 'erff', 'erfl', 'erf', 'exp2f', 'exp2l', 'exp2', 'expm1f', 'expm1l', ! 'expm1', 'fdimf', 'fdiml', 'fdim', 'fmaf', 'fmal', 'fmaxf', 'fmaxl', ! 'fmax', 'fma', 'fminf', 'fminl', 'fmin', 'hypotf', 'hypotl', 'hypot', ! 'ilogbf', 'ilogbl', 'ilogb', 'imaxabs', 'isblank', 'iswblank', ! 'lgammaf', 'lgammal', 'lgamma', 'llabs', 'llrintf', 'llrintl', 'llrint', ! 'llroundf', 'llroundl', 'llround', 'log1pf', 'log1pl', 'log1p', 'log2f', ! 'log2l', 'log2', 'logbf', 'logbl', 'logb', 'lrintf', 'lrintl', 'lrint', ! 'lroundf', 'lroundl', 'lround', 'nearbyintf', 'nearbyintl', 'nearbyint', ! 'nextafterf', 'nextafterl', 'nextafter', 'nexttowardf', 'nexttowardl', ! 'nexttoward', 'remainderf', 'remainderl', 'remainder', 'remquof', ! 'remquol', 'remquo', 'rintf', 'rintl', 'rint', 'roundf', 'roundl', ! 'round', 'scalblnf', 'scalblnl', 'scalbln', 'scalbnf', 'scalbnl', ! 'scalbn', 'snprintf', 'tgammaf', 'tgammal', 'tgamma', 'truncf', ! 'truncl', 'trunc', 'vfscanf', 'vscanf', 'vsnprintf' and 'vsscanf' are ! handled as built-in functions except in strict ISO C90 mode ('-ansi' or ! '-std=c90'). ! There are also built-in versions of the ISO C99 functions 'acosf', ! 'acosl', 'asinf', 'asinl', 'atan2f', 'atan2l', 'atanf', 'atanl', ! 'ceilf', 'ceill', 'cosf', 'coshf', 'coshl', 'cosl', 'expf', 'expl', ! 'fabsf', 'fabsl', 'floorf', 'floorl', 'fmodf', 'fmodl', 'frexpf', ! 'frexpl', 'ldexpf', 'ldexpl', 'log10f', 'log10l', 'logf', 'logl', ! 'modfl', 'modf', 'powf', 'powl', 'sinf', 'sinhf', 'sinhl', 'sinl', ! 'sqrtf', 'sqrtl', 'tanf', 'tanhf', 'tanhl' and 'tanl' that are recognized in any mode since ISO C90 reserves these names for the purpose to which ISO C99 puts them. All these functions have ! corresponding versions prefixed with '__builtin_'. ! The ISO C94 functions 'iswalnum', 'iswalpha', 'iswcntrl', 'iswdigit', ! 'iswgraph', 'iswlower', 'iswprint', 'iswpunct', 'iswspace', 'iswupper', ! 'iswxdigit', 'towlower' and 'towupper' are handled as built-in functions ! except in strict ISO C90 mode ('-ansi' or '-std=c90'). ! The ISO C90 functions 'abort', 'abs', 'acos', 'asin', 'atan2', 'atan', ! 'calloc', 'ceil', 'cosh', 'cos', 'exit', 'exp', 'fabs', 'floor', 'fmod', ! 'fprintf', 'fputs', 'frexp', 'fscanf', 'isalnum', 'isalpha', 'iscntrl', ! 'isdigit', 'isgraph', 'islower', 'isprint', 'ispunct', 'isspace', ! 'isupper', 'isxdigit', 'tolower', 'toupper', 'labs', 'ldexp', 'log10', ! 'log', 'malloc', 'memchr', 'memcmp', 'memcpy', 'memset', 'modf', 'pow', ! 'printf', 'putchar', 'puts', 'scanf', 'sinh', 'sin', 'snprintf', ! 'sprintf', 'sqrt', 'sscanf', 'strcat', 'strchr', 'strcmp', 'strcpy', ! 'strcspn', 'strlen', 'strncat', 'strncmp', 'strncpy', 'strpbrk', ! 'strrchr', 'strspn', 'strstr', 'tanh', 'tan', 'vfprintf', 'vprintf' and ! 'vsprintf' are all recognized as built-in functions unless ! '-fno-builtin' is specified (or '-fno-builtin-FUNCTION' is specified for ! an individual function). All of these functions have corresponding ! versions prefixed with '__builtin_'. GCC provides built-in versions of the ISO C99 floating-point comparison macros that avoid raising exceptions for unordered operands. They have ! the same names as the standard macros ( 'isgreater', 'isgreaterequal', ! 'isless', 'islessequal', 'islessgreater', and 'isunordered') , with ! '__builtin_' prefixed. We intend for a library implementor to be able ! to simply '#define' each standard macro to its built-in equivalent. In ! the same fashion, GCC provides 'fpclassify', 'isfinite', 'isinf_sign' ! and 'isnormal' built-ins used with '__builtin_' prefixed. The 'isinf' ! and 'isnan' built-in functions appear both with and without the ! '__builtin_' prefix. -- Built-in Function: int __builtin_types_compatible_p (TYPE1, TYPE2) ! ! You can use the built-in function '__builtin_types_compatible_p' to determine whether two types are the same. This built-in function returns 1 if the unqualified versions of the *************** and `isnan' built-in functions appear bo *** 29614,29634 **** compatible, 0 otherwise. The result of this built-in function can be used in integer constant expressions. ! This built-in function ignores top level qualifiers (e.g., `const', ! `volatile'). For example, `int' is equivalent to `const int'. ! The type `int[]' and `int[5]' are compatible. On the other hand, ! `int' and `char *' are not compatible, even if the size of their types, on the particular architecture are the same. Also, the amount of pointer indirection is taken into account when ! determining similarity. Consequently, `short *' is not similar to ! `short **'. Furthermore, two types that are typedefed are considered compatible if their underlying types are compatible. ! An `enum' type is not considered to be compatible with another ! `enum' type even if both are compatible with the same integer ! type; this is what the C standard specifies. For example, `enum ! {foo, bar}' is not similar to `enum {hot, dog}'. You typically use this function in code whose execution varies depending on the arguments' types. For example: --- 29327,29347 ---- compatible, 0 otherwise. The result of this built-in function can be used in integer constant expressions. ! This built-in function ignores top level qualifiers (e.g., 'const', ! 'volatile'). For example, 'int' is equivalent to 'const int'. ! The type 'int[]' and 'int[5]' are compatible. On the other hand, ! 'int' and 'char *' are not compatible, even if the size of their types, on the particular architecture are the same. Also, the amount of pointer indirection is taken into account when ! determining similarity. Consequently, 'short *' is not similar to ! 'short **'. Furthermore, two types that are typedefed are considered compatible if their underlying types are compatible. ! An 'enum' type is not considered to be compatible with another ! 'enum' type even if both are compatible with the same integer type; ! this is what the C standard specifies. For example, 'enum {foo, ! bar}' is not similar to 'enum {hot, dog}'. You typically use this function in code whose execution varies depending on the arguments' types. For example: *************** and `isnan' built-in functions appear bo *** 29649,29669 **** _Note:_ This construct is only available for C. - -- Built-in Function: TYPE __builtin_choose_expr (CONST_EXP, EXP1, EXP2) ! You can use the built-in function `__builtin_choose_expr' to evaluate code depending on the value of a constant expression. This built-in function returns EXP1 if CONST_EXP, which is an integer constant expression, is nonzero. Otherwise it returns EXP2. ! This built-in function is analogous to the `? :' operator in C, except that the expression returned has its type unaltered by ! promotion rules. Also, the built-in function does not evaluate ! the expression that is not chosen. For example, if CONST_EXP ! evaluates to true, EXP2 is not evaluated even if it has ! side-effects. This built-in function can return an lvalue if the chosen argument is an lvalue. --- 29362,29381 ---- _Note:_ This construct is only available for C. -- Built-in Function: TYPE __builtin_choose_expr (CONST_EXP, EXP1, EXP2) ! ! You can use the built-in function '__builtin_choose_expr' to evaluate code depending on the value of a constant expression. This built-in function returns EXP1 if CONST_EXP, which is an integer constant expression, is nonzero. Otherwise it returns EXP2. ! This built-in function is analogous to the '? :' operator in C, except that the expression returned has its type unaltered by ! promotion rules. Also, the built-in function does not evaluate the ! expression that is not chosen. For example, if CONST_EXP evaluates ! to true, EXP2 is not evaluated even if it has side-effects. This built-in function can return an lvalue if the chosen argument is an lvalue. *************** and `isnan' built-in functions appear bo *** 29690,29722 **** CONST_EXP) may still generate syntax errors. This may change in future revisions. - -- Built-in Function: TYPE __builtin_complex (REAL, IMAG) - The built-in function `__builtin_complex' is provided for use in - implementing the ISO C11 macros `CMPLXF', `CMPLX' and `CMPLXL'. - REAL and IMAG must have the same type, a real binary - floating-point type, and the result has the corresponding complex - type with real and imaginary parts REAL and IMAG. Unlike `REAL + - I * IMAG', this works even when infinities, NaNs and negative - zeros are involved. -- Built-in Function: int __builtin_constant_p (EXP) ! You can use the built-in function `__builtin_constant_p' to determine if a value is known to be constant at compile time and hence that GCC can perform constant-folding on expressions ! involving that value. The argument of the function is the value ! to test. The function returns the integer 1 if the argument is ! known to be a compile-time constant and 0 if it is not known to be ! a compile-time constant. A return of 0 does not indicate that the ! value is _not_ a constant, but merely that GCC cannot prove it is ! a constant with the specified value of the `-O' option. You typically use this function in an embedded application where memory is a critical resource. If you have some complex ! calculation, you may want it to be folded if it involves ! constants, but need to call a function if it does not. For ! example: #define Scale_Value(X) \ (__builtin_constant_p (X) \ --- 29402,29431 ---- CONST_EXP) may still generate syntax errors. This may change in future revisions. -- Built-in Function: TYPE __builtin_complex (REAL, IMAG) + The built-in function '__builtin_complex' is provided for use in + implementing the ISO C11 macros 'CMPLXF', 'CMPLX' and 'CMPLXL'. + REAL and IMAG must have the same type, a real binary floating-point + type, and the result has the corresponding complex type with real + and imaginary parts REAL and IMAG. Unlike 'REAL + I * IMAG', this + works even when infinities, NaNs and negative zeros are involved. -- Built-in Function: int __builtin_constant_p (EXP) ! You can use the built-in function '__builtin_constant_p' to determine if a value is known to be constant at compile time and hence that GCC can perform constant-folding on expressions ! involving that value. The argument of the function is the value to ! test. The function returns the integer 1 if the argument is known ! to be a compile-time constant and 0 if it is not known to be a ! compile-time constant. A return of 0 does not indicate that the ! value is _not_ a constant, but merely that GCC cannot prove it is a ! constant with the specified value of the '-O' option. You typically use this function in an embedded application where memory is a critical resource. If you have some complex ! calculation, you may want it to be folded if it involves constants, ! but need to call a function if it does not. For example: #define Scale_Value(X) \ (__builtin_constant_p (X) \ *************** and `isnan' built-in functions appear bo *** 29728,29736 **** never returns 1 when you call the inline function with a string constant or compound literal (*note Compound Literals::) and does not return 1 when you pass a constant numeric value to the inline ! function unless you specify the `-O' option. ! You may also use `__builtin_constant_p' in initializers for static data. For instance, you can write static const int table[] = { --- 29437,29445 ---- never returns 1 when you call the inline function with a string constant or compound literal (*note Compound Literals::) and does not return 1 when you pass a constant numeric value to the inline ! function unless you specify the '-O' option. ! You may also use '__builtin_constant_p' in initializers for static data. For instance, you can write static const int table[] = { *************** and `isnan' built-in functions appear bo *** 29740,29750 **** This is an acceptable initializer even if EXPRESSION is not a constant expression, including the case where ! `__builtin_constant_p' returns 1 because EXPRESSION can be folded to a constant but EXPRESSION contains operands that are not ! otherwise permitted in a static initializer (for example, `0 && ! foo ()'). GCC must be more conservative about evaluating the ! built-in in this case, because it has no opportunity to perform optimization. Previous versions of GCC did not accept this built-in in data --- 29449,29459 ---- This is an acceptable initializer even if EXPRESSION is not a constant expression, including the case where ! '__builtin_constant_p' returns 1 because EXPRESSION can be folded to a constant but EXPRESSION contains operands that are not ! otherwise permitted in a static initializer (for example, '0 && foo ! ()'). GCC must be more conservative about evaluating the built-in ! in this case, because it has no opportunity to perform optimization. Previous versions of GCC did not accept this built-in in data *************** and `isnan' built-in functions appear bo *** 29752,29763 **** 3.0.1. -- Built-in Function: long __builtin_expect (long EXP, long C) ! You may use `__builtin_expect' to provide the compiler with branch prediction information. In general, you should prefer to use ! actual profile feedback for this (`-fprofile-arcs'), as ! programmers are notoriously bad at predicting how their programs ! actually perform. However, there are applications in which this ! data is hard to collect. The return value is the value of EXP, which should be an integral expression. The semantics of the built-in are that it is expected --- 29461,29472 ---- 3.0.1. -- Built-in Function: long __builtin_expect (long EXP, long C) ! You may use '__builtin_expect' to provide the compiler with branch prediction information. In general, you should prefer to use ! actual profile feedback for this ('-fprofile-arcs'), as programmers ! are notoriously bad at predicting how their programs actually ! perform. However, there are applications in which this data is ! hard to collect. The return value is the value of EXP, which should be an integral expression. The semantics of the built-in are that it is expected *************** and `isnan' built-in functions appear bo *** 29766,29774 **** if (__builtin_expect (x, 0)) foo (); ! indicates that we do not expect to call `foo', since we expect `x' ! to be zero. Since you are limited to integral expressions for ! EXP, you should use constructions such as if (__builtin_expect (ptr != NULL, 1)) foo (*ptr); --- 29475,29483 ---- if (__builtin_expect (x, 0)) foo (); ! indicates that we do not expect to call 'foo', since we expect 'x' ! to be zero. Since you are limited to integral expressions for EXP, ! you should use constructions such as if (__builtin_expect (ptr != NULL, 1)) foo (*ptr); *************** and `isnan' built-in functions appear bo *** 29779,29798 **** This function causes the program to exit abnormally. GCC implements this function by using a target-dependent mechanism (such as intentionally executing an illegal instruction) or by ! calling `abort'. The mechanism used may vary from release to release so you should not rely on any particular implementation. -- Built-in Function: void __builtin_unreachable (void) ! If control flow reaches the point of the `__builtin_unreachable', the program is undefined. It is useful in situations where the compiler cannot deduce the unreachability of the code. ! One such case is immediately following an `asm' statement that either never terminates, or one that transfers control elsewhere and never returns. In this example, without the ! `__builtin_unreachable', GCC issues a warning that control reaches the end of a non-void function. It also generates code to return ! after the `asm'. int f (int c, int v) { --- 29488,29507 ---- This function causes the program to exit abnormally. GCC implements this function by using a target-dependent mechanism (such as intentionally executing an illegal instruction) or by ! calling 'abort'. The mechanism used may vary from release to release so you should not rely on any particular implementation. -- Built-in Function: void __builtin_unreachable (void) ! If control flow reaches the point of the '__builtin_unreachable', the program is undefined. It is useful in situations where the compiler cannot deduce the unreachability of the code. ! One such case is immediately following an 'asm' statement that either never terminates, or one that transfers control elsewhere and never returns. In this example, without the ! '__builtin_unreachable', GCC issues a warning that control reaches the end of a non-void function. It also generates code to return ! after the 'asm'. int f (int c, int v) { *************** and `isnan' built-in functions appear bo *** 29807,29820 **** } } ! Because the `asm' statement unconditionally transfers control out of the function, control never reaches the end of the function ! body. The `__builtin_unreachable' is in fact unreachable and communicates this fact to the compiler. ! Another use for `__builtin_unreachable' is following a call a function that never returns but that is not declared ! `__attribute__((noreturn))', as in this example: void function_that_never_returns (void); --- 29516,29529 ---- } } ! Because the 'asm' statement unconditionally transfers control out of the function, control never reaches the end of the function ! body. The '__builtin_unreachable' is in fact unreachable and communicates this fact to the compiler. ! Another use for '__builtin_unreachable' is following a call a function that never returns but that is not declared ! '__attribute__((noreturn))', as in this example: void function_that_never_returns (void); *************** and `isnan' built-in functions appear bo *** 29831,29837 **** } } - -- Built-in Function: void *__builtin_assume_aligned (const void *EXP, size_t ALIGN, ...) This function returns its first argument, and allows the compiler --- 29540,29545 ---- *************** and `isnan' built-in functions appear bo *** 29842,29888 **** void *x = __builtin_assume_aligned (arg, 16); ! means that the compiler can assume `x', set to `arg', is at least 16-byte aligned, while: void *x = __builtin_assume_aligned (arg, 32, 8); ! means that the compiler can assume for `x', set to `arg', that ! `(char *) x - 8' is 32-byte aligned. -- Built-in Function: int __builtin_LINE () ! This function is the equivalent to the preprocessor `__LINE__' macro and returns the line number of the invocation of the built-in. -- Built-in Function: int __builtin_FUNCTION () ! This function is the equivalent to the preprocessor `__FUNCTION__' macro and returns the function name the invocation of the built-in is in. -- Built-in Function: int __builtin_FILE () ! This function is the equivalent to the preprocessor `__FILE__' macro and returns the file name the invocation of the built-in is in. -- Built-in Function: void __builtin___clear_cache (char *BEGIN, char *END) This function is used to flush the processor's instruction cache ! for the region of memory between BEGIN inclusive and END ! exclusive. Some targets require that the instruction cache be ! flushed, after modifying memory containing code, in order to obtain ! deterministic behavior. If the target does not require instruction cache flushes, ! `__builtin___clear_cache' has no effect. Otherwise either instructions are emitted in-line to clear the instruction cache or ! a call to the `__clear_cache' function in libgcc is made. -- Built-in Function: void __builtin_prefetch (const void *ADDR, ...) ! This function is used to minimize cache-miss latency by moving ! data into a cache before it is accessed. You can insert calls to ! `__builtin_prefetch' into code for which you know addresses of ! data in memory that is likely to be accessed soon. If the target supports them, data prefetch instructions are generated. If the prefetch is done early enough before the access then the data will be in the cache by the time it is accessed. --- 29550,29596 ---- void *x = __builtin_assume_aligned (arg, 16); ! means that the compiler can assume 'x', set to 'arg', is at least 16-byte aligned, while: void *x = __builtin_assume_aligned (arg, 32, 8); ! means that the compiler can assume for 'x', set to 'arg', that ! '(char *) x - 8' is 32-byte aligned. -- Built-in Function: int __builtin_LINE () ! This function is the equivalent to the preprocessor '__LINE__' macro and returns the line number of the invocation of the built-in. -- Built-in Function: int __builtin_FUNCTION () ! This function is the equivalent to the preprocessor '__FUNCTION__' macro and returns the function name the invocation of the built-in is in. -- Built-in Function: int __builtin_FILE () ! This function is the equivalent to the preprocessor '__FILE__' macro and returns the file name the invocation of the built-in is in. -- Built-in Function: void __builtin___clear_cache (char *BEGIN, char *END) This function is used to flush the processor's instruction cache ! for the region of memory between BEGIN inclusive and END exclusive. ! Some targets require that the instruction cache be flushed, after ! modifying memory containing code, in order to obtain deterministic ! behavior. If the target does not require instruction cache flushes, ! '__builtin___clear_cache' has no effect. Otherwise either instructions are emitted in-line to clear the instruction cache or ! a call to the '__clear_cache' function in libgcc is made. -- Built-in Function: void __builtin_prefetch (const void *ADDR, ...) ! This function is used to minimize cache-miss latency by moving data ! into a cache before it is accessed. You can insert calls to ! '__builtin_prefetch' into code for which you know addresses of data ! in memory that is likely to be accessed soon. If the target supports them, data prefetch instructions are generated. If the prefetch is done early enough before the access then the data will be in the cache by the time it is accessed. *************** and `isnan' built-in functions appear bo *** 29910,29917 **** Data prefetch does not generate faults if ADDR is invalid, but the address expression itself must be valid. For example, a prefetch ! of `p->next' does not fault if `p->next' is not a valid address, ! but evaluation faults if `p' is not a valid address. If the target does not support data prefetch, the address expression is evaluated if it includes side effects but no other --- 29618,29625 ---- Data prefetch does not generate faults if ADDR is invalid, but the address expression itself must be valid. For example, a prefetch ! of 'p->next' does not fault if 'p->next' is not a valid address, ! but evaluation faults if 'p' is not a valid address. If the target does not support data prefetch, the address expression is evaluated if it includes side effects but no other *************** and `isnan' built-in functions appear bo *** 29919,29932 **** -- Built-in Function: double __builtin_huge_val (void) Returns a positive infinity, if supported by the floating-point ! format, else `DBL_MAX'. This function is suitable for ! implementing the ISO C macro `HUGE_VAL'. -- Built-in Function: float __builtin_huge_valf (void) ! Similar to `__builtin_huge_val', except the return type is `float'. -- Built-in Function: long double __builtin_huge_vall (void) ! Similar to `__builtin_huge_val', except the return type is `long double'. -- Built-in Function: int __builtin_fpclassify (int, int, int, int, --- 29627,29640 ---- -- Built-in Function: double __builtin_huge_val (void) Returns a positive infinity, if supported by the floating-point ! format, else 'DBL_MAX'. This function is suitable for implementing ! the ISO C macro 'HUGE_VAL'. -- Built-in Function: float __builtin_huge_valf (void) ! Similar to '__builtin_huge_val', except the return type is 'float'. -- Built-in Function: long double __builtin_huge_vall (void) ! Similar to '__builtin_huge_val', except the return type is 'long double'. -- Built-in Function: int __builtin_fpclassify (int, int, int, int, *************** and `isnan' built-in functions appear bo *** 29934,30017 **** This built-in implements the C99 fpclassify functionality. The first five int arguments should be the target library's notion of the possible FP classes and are used for return values. They must ! be constant values and they must appear in this order: `FP_NAN', ! `FP_INFINITE', `FP_NORMAL', `FP_SUBNORMAL' and `FP_ZERO'. The ellipsis is for exactly one floating-point value to classify. GCC treats the last argument as type-generic, which means it does not do default promotion from float to double. -- Built-in Function: double __builtin_inf (void) ! Similar to `__builtin_huge_val', except a warning is generated if the target floating-point format does not support infinities. -- Built-in Function: _Decimal32 __builtin_infd32 (void) ! Similar to `__builtin_inf', except the return type is `_Decimal32'. -- Built-in Function: _Decimal64 __builtin_infd64 (void) ! Similar to `__builtin_inf', except the return type is `_Decimal64'. -- Built-in Function: _Decimal128 __builtin_infd128 (void) ! Similar to `__builtin_inf', except the return type is ! `_Decimal128'. -- Built-in Function: float __builtin_inff (void) ! Similar to `__builtin_inf', except the return type is `float'. This function is suitable for implementing the ISO C99 macro ! `INFINITY'. -- Built-in Function: long double __builtin_infl (void) ! Similar to `__builtin_inf', except the return type is `long double'. -- Built-in Function: int __builtin_isinf_sign (...) ! Similar to `isinf', except the return value is negative for an ! argument of `-Inf'. Note while the parameter list is an ellipsis, this function only accepts exactly one floating-point argument. GCC treats this parameter as type-generic, which means it does not do default promotion from float to double. -- Built-in Function: double __builtin_nan (const char *str) ! This is an implementation of the ISO C99 function `nan'. ! Since ISO C99 defines this function in terms of `strtod', which we do not implement, a description of the parsing is in order. The ! string is parsed as by `strtol'; that is, the base is recognized by ! leading `0' or `0x' prefixes. The number parsed is placed in the ! significand such that the least significant bit of the number is ! at the least significant bit of the significand. The number is truncated to fit the significand field provided. The significand is forced to be a quiet NaN. This function, if given a string literal all of which would have ! been consumed by `strtol', is evaluated early enough that it is considered a compile-time constant. -- Built-in Function: _Decimal32 __builtin_nand32 (const char *str) ! Similar to `__builtin_nan', except the return type is `_Decimal32'. -- Built-in Function: _Decimal64 __builtin_nand64 (const char *str) ! Similar to `__builtin_nan', except the return type is `_Decimal64'. -- Built-in Function: _Decimal128 __builtin_nand128 (const char *str) ! Similar to `__builtin_nan', except the return type is ! `_Decimal128'. -- Built-in Function: float __builtin_nanf (const char *str) ! Similar to `__builtin_nan', except the return type is `float'. -- Built-in Function: long double __builtin_nanl (const char *str) ! Similar to `__builtin_nan', except the return type is `long double'. -- Built-in Function: double __builtin_nans (const char *str) ! Similar to `__builtin_nan', except the significand is forced to be ! a signaling NaN. The `nans' function is proposed by WG14 N965. -- Built-in Function: float __builtin_nansf (const char *str) ! Similar to `__builtin_nans', except the return type is `float'. -- Built-in Function: long double __builtin_nansl (const char *str) ! Similar to `__builtin_nans', except the return type is `long double'. -- Built-in Function: int __builtin_ffs (unsigned int x) --- 29642,29725 ---- This built-in implements the C99 fpclassify functionality. The first five int arguments should be the target library's notion of the possible FP classes and are used for return values. They must ! be constant values and they must appear in this order: 'FP_NAN', ! 'FP_INFINITE', 'FP_NORMAL', 'FP_SUBNORMAL' and 'FP_ZERO'. The ellipsis is for exactly one floating-point value to classify. GCC treats the last argument as type-generic, which means it does not do default promotion from float to double. -- Built-in Function: double __builtin_inf (void) ! Similar to '__builtin_huge_val', except a warning is generated if the target floating-point format does not support infinities. -- Built-in Function: _Decimal32 __builtin_infd32 (void) ! Similar to '__builtin_inf', except the return type is '_Decimal32'. -- Built-in Function: _Decimal64 __builtin_infd64 (void) ! Similar to '__builtin_inf', except the return type is '_Decimal64'. -- Built-in Function: _Decimal128 __builtin_infd128 (void) ! Similar to '__builtin_inf', except the return type is ! '_Decimal128'. -- Built-in Function: float __builtin_inff (void) ! Similar to '__builtin_inf', except the return type is 'float'. This function is suitable for implementing the ISO C99 macro ! 'INFINITY'. -- Built-in Function: long double __builtin_infl (void) ! Similar to '__builtin_inf', except the return type is 'long double'. -- Built-in Function: int __builtin_isinf_sign (...) ! Similar to 'isinf', except the return value is negative for an ! argument of '-Inf'. Note while the parameter list is an ellipsis, this function only accepts exactly one floating-point argument. GCC treats this parameter as type-generic, which means it does not do default promotion from float to double. -- Built-in Function: double __builtin_nan (const char *str) ! This is an implementation of the ISO C99 function 'nan'. ! Since ISO C99 defines this function in terms of 'strtod', which we do not implement, a description of the parsing is in order. The ! string is parsed as by 'strtol'; that is, the base is recognized by ! leading '0' or '0x' prefixes. The number parsed is placed in the ! significand such that the least significant bit of the number is at ! the least significant bit of the significand. The number is truncated to fit the significand field provided. The significand is forced to be a quiet NaN. This function, if given a string literal all of which would have ! been consumed by 'strtol', is evaluated early enough that it is considered a compile-time constant. -- Built-in Function: _Decimal32 __builtin_nand32 (const char *str) ! Similar to '__builtin_nan', except the return type is '_Decimal32'. -- Built-in Function: _Decimal64 __builtin_nand64 (const char *str) ! Similar to '__builtin_nan', except the return type is '_Decimal64'. -- Built-in Function: _Decimal128 __builtin_nand128 (const char *str) ! Similar to '__builtin_nan', except the return type is ! '_Decimal128'. -- Built-in Function: float __builtin_nanf (const char *str) ! Similar to '__builtin_nan', except the return type is 'float'. -- Built-in Function: long double __builtin_nanl (const char *str) ! Similar to '__builtin_nan', except the return type is 'long double'. -- Built-in Function: double __builtin_nans (const char *str) ! Similar to '__builtin_nan', except the significand is forced to be ! a signaling NaN. The 'nans' function is proposed by WG14 N965. -- Built-in Function: float __builtin_nansf (const char *str) ! Similar to '__builtin_nans', except the return type is 'float'. -- Built-in Function: long double __builtin_nansl (const char *str) ! Similar to '__builtin_nans', except the return type is 'long double'. -- Built-in Function: int __builtin_ffs (unsigned int x) *************** and `isnan' built-in functions appear bo *** 30038,30112 **** Returns the parity of X, i.e. the number of 1-bits in X modulo 2. -- Built-in Function: int __builtin_ffsl (unsigned long) ! Similar to `__builtin_ffs', except the argument type is `unsigned long'. -- Built-in Function: int __builtin_clzl (unsigned long) ! Similar to `__builtin_clz', except the argument type is `unsigned long'. -- Built-in Function: int __builtin_ctzl (unsigned long) ! Similar to `__builtin_ctz', except the argument type is `unsigned long'. -- Built-in Function: int __builtin_clrsbl (long) ! Similar to `__builtin_clrsb', except the argument type is `long'. -- Built-in Function: int __builtin_popcountl (unsigned long) ! Similar to `__builtin_popcount', except the argument type is ! `unsigned long'. -- Built-in Function: int __builtin_parityl (unsigned long) ! Similar to `__builtin_parity', except the argument type is ! `unsigned long'. -- Built-in Function: int __builtin_ffsll (unsigned long long) ! Similar to `__builtin_ffs', except the argument type is `unsigned long long'. -- Built-in Function: int __builtin_clzll (unsigned long long) ! Similar to `__builtin_clz', except the argument type is `unsigned long long'. -- Built-in Function: int __builtin_ctzll (unsigned long long) ! Similar to `__builtin_ctz', except the argument type is `unsigned long long'. -- Built-in Function: int __builtin_clrsbll (long long) ! Similar to `__builtin_clrsb', except the argument type is `long long'. -- Built-in Function: int __builtin_popcountll (unsigned long long) ! Similar to `__builtin_popcount', except the argument type is ! `unsigned long long'. -- Built-in Function: int __builtin_parityll (unsigned long long) ! Similar to `__builtin_parity', except the argument type is ! `unsigned long long'. -- Built-in Function: double __builtin_powi (double, int) Returns the first argument raised to the power of the second. ! Unlike the `pow' function no guarantees about precision and rounding are made. -- Built-in Function: float __builtin_powif (float, int) ! Similar to `__builtin_powi', except the argument and return types ! are `float'. -- Built-in Function: long double __builtin_powil (long double, int) ! Similar to `__builtin_powi', except the argument and return types ! are `long double'. -- Built-in Function: uint16_t __builtin_bswap16 (uint16_t x) Returns X with the order of the bytes reversed; for example, ! `0xaabb' becomes `0xbbaa'. Byte here always means exactly 8 bits. -- Built-in Function: uint32_t __builtin_bswap32 (uint32_t x) ! Similar to `__builtin_bswap16', except the argument and return types are 32 bit. -- Built-in Function: uint64_t __builtin_bswap64 (uint64_t x) ! Similar to `__builtin_bswap32', except the argument and return types are 64 bit.  --- 29746,29820 ---- Returns the parity of X, i.e. the number of 1-bits in X modulo 2. -- Built-in Function: int __builtin_ffsl (unsigned long) ! Similar to '__builtin_ffs', except the argument type is 'unsigned long'. -- Built-in Function: int __builtin_clzl (unsigned long) ! Similar to '__builtin_clz', except the argument type is 'unsigned long'. -- Built-in Function: int __builtin_ctzl (unsigned long) ! Similar to '__builtin_ctz', except the argument type is 'unsigned long'. -- Built-in Function: int __builtin_clrsbl (long) ! Similar to '__builtin_clrsb', except the argument type is 'long'. -- Built-in Function: int __builtin_popcountl (unsigned long) ! Similar to '__builtin_popcount', except the argument type is ! 'unsigned long'. -- Built-in Function: int __builtin_parityl (unsigned long) ! Similar to '__builtin_parity', except the argument type is ! 'unsigned long'. -- Built-in Function: int __builtin_ffsll (unsigned long long) ! Similar to '__builtin_ffs', except the argument type is 'unsigned long long'. -- Built-in Function: int __builtin_clzll (unsigned long long) ! Similar to '__builtin_clz', except the argument type is 'unsigned long long'. -- Built-in Function: int __builtin_ctzll (unsigned long long) ! Similar to '__builtin_ctz', except the argument type is 'unsigned long long'. -- Built-in Function: int __builtin_clrsbll (long long) ! Similar to '__builtin_clrsb', except the argument type is 'long long'. -- Built-in Function: int __builtin_popcountll (unsigned long long) ! Similar to '__builtin_popcount', except the argument type is ! 'unsigned long long'. -- Built-in Function: int __builtin_parityll (unsigned long long) ! Similar to '__builtin_parity', except the argument type is ! 'unsigned long long'. -- Built-in Function: double __builtin_powi (double, int) Returns the first argument raised to the power of the second. ! Unlike the 'pow' function no guarantees about precision and rounding are made. -- Built-in Function: float __builtin_powif (float, int) ! Similar to '__builtin_powi', except the argument and return types ! are 'float'. -- Built-in Function: long double __builtin_powil (long double, int) ! Similar to '__builtin_powi', except the argument and return types ! are 'long double'. -- Built-in Function: uint16_t __builtin_bswap16 (uint16_t x) Returns X with the order of the bytes reversed; for example, ! '0xaabb' becomes '0xbbaa'. Byte here always means exactly 8 bits. -- Built-in Function: uint32_t __builtin_bswap32 (uint32_t x) ! Similar to '__builtin_bswap16', except the argument and return types are 32 bit. -- Built-in Function: uint64_t __builtin_bswap64 (uint64_t x) ! Similar to '__builtin_bswap32', except the argument and return types are 64 bit.  *************** instructions, but allow the compiler to *** 30137,30142 **** --- 29845,29851 ---- * PowerPC Built-in Functions:: * PowerPC AltiVec/VSX Built-in Functions:: * RX Built-in Functions:: + * S/390 System z Built-in Functions:: * SH Built-in Functions:: * SPARC VIS Built-in Functions:: * SPU Built-in Functions:: *************** generate the machine instruction that is *** 30185,30193 **** long __builtin_alpha_zap (long, long) long __builtin_alpha_zapnot (long, long) ! The following built-in functions are always with `-mmax' or ! `-mcpu=CPU' where CPU is `pca56' or later. They all generate the ! machine instruction that is part of the name. long __builtin_alpha_pklb (long) long __builtin_alpha_pkwb (long) --- 29894,29902 ---- long __builtin_alpha_zap (long, long) long __builtin_alpha_zapnot (long, long) ! The following built-in functions are always with '-mmax' or '-mcpu=CPU' ! where CPU is 'pca56' or later. They all generate the machine ! instruction that is part of the name. long __builtin_alpha_pklb (long) long __builtin_alpha_pkwb (long) *************** machine instruction that is part of the *** 30203,30220 **** long __builtin_alpha_maxsw4 (long, long) long __builtin_alpha_perr (long, long) ! The following built-in functions are always with `-mcix' or ! `-mcpu=CPU' where CPU is `ev67' or later. They all generate the ! machine instruction that is part of the name. long __builtin_alpha_cttz (long) long __builtin_alpha_ctlz (long) long __builtin_alpha_ctpop (long) The following built-in functions are available on systems that use the ! OSF/1 PALcode. Normally they invoke the `rduniq' and `wruniq' PAL ! calls, but when invoked with `-mtls-kernel', they invoke `rdval' and ! `wrval'. void *__builtin_thread_pointer (void) void __builtin_set_thread_pointer (void *) --- 29912,29929 ---- long __builtin_alpha_maxsw4 (long, long) long __builtin_alpha_perr (long, long) ! The following built-in functions are always with '-mcix' or '-mcpu=CPU' ! where CPU is 'ev67' or later. They all generate the machine instruction ! that is part of the name. long __builtin_alpha_cttz (long) long __builtin_alpha_ctlz (long) long __builtin_alpha_ctpop (long) The following built-in functions are available on systems that use the ! OSF/1 PALcode. Normally they invoke the 'rduniq' and 'wruniq' PAL ! calls, but when invoked with '-mtls-kernel', they invoke 'rdval' and ! 'wrval'. void *__builtin_thread_pointer (void) void __builtin_set_thread_pointer (void *) *************** File: gcc.info, Node: ARM iWMMXt Built- *** 30226,30232 **** ------------------------------------ These built-in functions are available for the ARM family of processors ! when the `-mcpu=iwmmxt' switch is used: typedef int v2si __attribute__ ((vector_size (8))); typedef short v4hi __attribute__ ((vector_size (8))); --- 29935,29941 ---- ------------------------------------ These built-in functions are available for the ARM family of processors ! when the '-mcpu=iwmmxt' switch is used: typedef int v2si __attribute__ ((vector_size (8))); typedef short v4hi __attribute__ ((vector_size (8))); *************** File: gcc.info, Node: ARM NEON Intrinsi *** 30380,32963 **** -------------------------- These built-in intrinsics for the ARM Advanced SIMD extension are ! available when the `-mfpu=neon' switch is used: 6.56.3.1 Addition ................. * uint32x2_t vadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vadd.i32 D0, D0, D0' * uint16x4_t vadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vadd.i16 D0, D0, D0' * uint8x8_t vadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vadd.i8 D0, D0, D0' * int32x2_t vadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vadd.i32 D0, D0, D0' * int16x4_t vadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vadd.i16 D0, D0, D0' * int8x8_t vadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vadd.i8 D0, D0, D0' * float32x2_t vadd_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vadd.f32 D0, D0, D0' * uint64x1_t vadd_u64 (uint64x1_t, uint64x1_t) * int64x1_t vadd_s64 (int64x1_t, int64x1_t) * uint32x4_t vaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vadd.i32 Q0, Q0, Q0' * uint16x8_t vaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vadd.i16 Q0, Q0, Q0' * uint8x16_t vaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vadd.i8 Q0, Q0, Q0' * int32x4_t vaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vadd.i32 Q0, Q0, Q0' * int16x8_t vaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vadd.i16 Q0, Q0, Q0' * int8x16_t vaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vadd.i8 Q0, Q0, Q0' * uint64x2_t vaddq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vadd.i64 Q0, Q0, Q0' * int64x2_t vaddq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vadd.i64 Q0, Q0, Q0' * float32x4_t vaddq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vadd.f32 Q0, Q0, Q0' * uint64x2_t vaddl_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vaddl.u32 Q0, D0, D0' * uint32x4_t vaddl_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vaddl.u16 Q0, D0, D0' * uint16x8_t vaddl_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vaddl.u8 Q0, D0, D0' * int64x2_t vaddl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vaddl.s32 Q0, D0, D0' * int32x4_t vaddl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vaddl.s16 Q0, D0, D0' * int16x8_t vaddl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vaddl.s8 Q0, D0, D0' * uint64x2_t vaddw_u32 (uint64x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vaddw.u32 Q0, Q0, D0' * uint32x4_t vaddw_u16 (uint32x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vaddw.u16 Q0, Q0, D0' * uint16x8_t vaddw_u8 (uint16x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vaddw.u8 Q0, Q0, D0' * int64x2_t vaddw_s32 (int64x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vaddw.s32 Q0, Q0, D0' * int32x4_t vaddw_s16 (int32x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vaddw.s16 Q0, Q0, D0' * int16x8_t vaddw_s8 (int16x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vaddw.s8 Q0, Q0, D0' * uint32x2_t vhadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vhadd.u32 D0, D0, D0' * uint16x4_t vhadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vhadd.u16 D0, D0, D0' * uint8x8_t vhadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vhadd.u8 D0, D0, D0' * int32x2_t vhadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vhadd.s32 D0, D0, D0' * int16x4_t vhadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vhadd.s16 D0, D0, D0' * int8x8_t vhadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vhadd.s8 D0, D0, D0' * uint32x4_t vhaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vhadd.u32 Q0, Q0, Q0' * uint16x8_t vhaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vhadd.u16 Q0, Q0, Q0' * uint8x16_t vhaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vhadd.u8 Q0, Q0, Q0' * int32x4_t vhaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vhadd.s32 Q0, Q0, Q0' * int16x8_t vhaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vhadd.s16 Q0, Q0, Q0' * int8x16_t vhaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vhadd.s8 Q0, Q0, Q0' * uint32x2_t vrhadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vrhadd.u32 D0, D0, D0' * uint16x4_t vrhadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vrhadd.u16 D0, D0, D0' * uint8x8_t vrhadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vrhadd.u8 D0, D0, D0' * int32x2_t vrhadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vrhadd.s32 D0, D0, D0' * int16x4_t vrhadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vrhadd.s16 D0, D0, D0' * int8x8_t vrhadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vrhadd.s8 D0, D0, D0' * uint32x4_t vrhaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vrhadd.u32 Q0, Q0, Q0' * uint16x8_t vrhaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vrhadd.u16 Q0, Q0, Q0' * uint8x16_t vrhaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vrhadd.u8 Q0, Q0, Q0' * int32x4_t vrhaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vrhadd.s32 Q0, Q0, Q0' * int16x8_t vrhaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vrhadd.s16 Q0, Q0, Q0' * int8x16_t vrhaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vrhadd.s8 Q0, Q0, Q0' * uint32x2_t vqadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vqadd.u32 D0, D0, D0' * uint16x4_t vqadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vqadd.u16 D0, D0, D0' * uint8x8_t vqadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vqadd.u8 D0, D0, D0' * int32x2_t vqadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqadd.s32 D0, D0, D0' * int16x4_t vqadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqadd.s16 D0, D0, D0' * int8x8_t vqadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vqadd.s8 D0, D0, D0' * uint64x1_t vqadd_u64 (uint64x1_t, uint64x1_t) ! _Form of expected instruction(s):_ `vqadd.u64 D0, D0, D0' * int64x1_t vqadd_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vqadd.s64 D0, D0, D0' * uint32x4_t vqaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vqadd.u32 Q0, Q0, Q0' * uint16x8_t vqaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vqadd.u16 Q0, Q0, Q0' * uint8x16_t vqaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vqadd.u8 Q0, Q0, Q0' * int32x4_t vqaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqadd.s32 Q0, Q0, Q0' * int16x8_t vqaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqadd.s16 Q0, Q0, Q0' * int8x16_t vqaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vqadd.s8 Q0, Q0, Q0' * uint64x2_t vqaddq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vqadd.u64 Q0, Q0, Q0' * int64x2_t vqaddq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vqadd.s64 Q0, Q0, Q0' * uint32x2_t vaddhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vaddhn.i64 D0, Q0, Q0' * uint16x4_t vaddhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vaddhn.i32 D0, Q0, Q0' * uint8x8_t vaddhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vaddhn.i16 D0, Q0, Q0' * int32x2_t vaddhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vaddhn.i64 D0, Q0, Q0' * int16x4_t vaddhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vaddhn.i32 D0, Q0, Q0' * int8x8_t vaddhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vaddhn.i16 D0, Q0, Q0' * uint32x2_t vraddhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vraddhn.i64 D0, Q0, Q0' * uint16x4_t vraddhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vraddhn.i32 D0, Q0, Q0' * uint8x8_t vraddhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vraddhn.i16 D0, Q0, Q0' * int32x2_t vraddhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vraddhn.i64 D0, Q0, Q0' * int16x4_t vraddhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vraddhn.i32 D0, Q0, Q0' * int8x8_t vraddhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vraddhn.i16 D0, Q0, Q0' 6.56.3.2 Multiplication ....................... * uint32x2_t vmul_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmul.i32 D0, D0, D0' * uint16x4_t vmul_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmul.i16 D0, D0, D0' * uint8x8_t vmul_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmul.i8 D0, D0, D0' * int32x2_t vmul_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmul.i32 D0, D0, D0' * int16x4_t vmul_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmul.i16 D0, D0, D0' * int8x8_t vmul_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmul.i8 D0, D0, D0' * float32x2_t vmul_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vmul.f32 D0, D0, D0' * poly8x8_t vmul_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vmul.p8 D0, D0, D0' * uint32x4_t vmulq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vmul.i32 Q0, Q0, Q0' * uint16x8_t vmulq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vmul.i16 Q0, Q0, Q0' * uint8x16_t vmulq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vmul.i8 Q0, Q0, Q0' * int32x4_t vmulq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vmul.i32 Q0, Q0, Q0' * int16x8_t vmulq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vmul.i16 Q0, Q0, Q0' * int8x16_t vmulq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vmul.i8 Q0, Q0, Q0' * float32x4_t vmulq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vmul.f32 Q0, Q0, Q0' * poly8x16_t vmulq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vmul.p8 Q0, Q0, Q0' * int32x2_t vqdmulh_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqdmulh.s32 D0, D0, D0' * int16x4_t vqdmulh_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqdmulh.s16 D0, D0, D0' * int32x4_t vqdmulhq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqdmulh.s32 Q0, Q0, Q0' * int16x8_t vqdmulhq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqdmulh.s16 Q0, Q0, Q0' * int32x2_t vqrdmulh_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqrdmulh.s32 D0, D0, D0' * int16x4_t vqrdmulh_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqrdmulh.s16 D0, D0, D0' * int32x4_t vqrdmulhq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqrdmulh.s32 Q0, Q0, Q0' * int16x8_t vqrdmulhq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqrdmulh.s16 Q0, Q0, Q0' * uint64x2_t vmull_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmull.u32 Q0, D0, D0' * uint32x4_t vmull_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmull.u16 Q0, D0, D0' * uint16x8_t vmull_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmull.u8 Q0, D0, D0' * int64x2_t vmull_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmull.s32 Q0, D0, D0' * int32x4_t vmull_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmull.s16 Q0, D0, D0' * int16x8_t vmull_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmull.s8 Q0, D0, D0' * poly16x8_t vmull_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vmull.p8 Q0, D0, D0' * int64x2_t vqdmull_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqdmull.s32 Q0, D0, D0' * int32x4_t vqdmull_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqdmull.s16 Q0, D0, D0' 6.56.3.3 Multiply-accumulate ............................ * uint32x2_t vmla_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmla.i32 D0, D0, D0' * uint16x4_t vmla_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmla.i16 D0, D0, D0' * uint8x8_t vmla_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmla.i8 D0, D0, D0' * int32x2_t vmla_s32 (int32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmla.i32 D0, D0, D0' * int16x4_t vmla_s16 (int16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmla.i16 D0, D0, D0' * int8x8_t vmla_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmla.i8 D0, D0, D0' * float32x2_t vmla_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vmla.f32 D0, D0, D0' * uint32x4_t vmlaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vmla.i32 Q0, Q0, Q0' * uint16x8_t vmlaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vmla.i16 Q0, Q0, Q0' * uint8x16_t vmlaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vmla.i8 Q0, Q0, Q0' * int32x4_t vmlaq_s32 (int32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vmla.i32 Q0, Q0, Q0' * int16x8_t vmlaq_s16 (int16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vmla.i16 Q0, Q0, Q0' * int8x16_t vmlaq_s8 (int8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vmla.i8 Q0, Q0, Q0' * float32x4_t vmlaq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vmla.f32 Q0, Q0, Q0' * uint64x2_t vmlal_u32 (uint64x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmlal.u32 Q0, D0, D0' * uint32x4_t vmlal_u16 (uint32x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmlal.u16 Q0, D0, D0' * uint16x8_t vmlal_u8 (uint16x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmlal.u8 Q0, D0, D0' * int64x2_t vmlal_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmlal.s32 Q0, D0, D0' * int32x4_t vmlal_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmlal.s16 Q0, D0, D0' * int16x8_t vmlal_s8 (int16x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmlal.s8 Q0, D0, D0' * int64x2_t vqdmlal_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqdmlal.s32 Q0, D0, D0' * int32x4_t vqdmlal_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqdmlal.s16 Q0, D0, D0' 6.56.3.4 Multiply-subtract .......................... * uint32x2_t vmls_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmls.i32 D0, D0, D0' * uint16x4_t vmls_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmls.i16 D0, D0, D0' * uint8x8_t vmls_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmls.i8 D0, D0, D0' * int32x2_t vmls_s32 (int32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmls.i32 D0, D0, D0' * int16x4_t vmls_s16 (int16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmls.i16 D0, D0, D0' * int8x8_t vmls_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmls.i8 D0, D0, D0' * float32x2_t vmls_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vmls.f32 D0, D0, D0' * uint32x4_t vmlsq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vmls.i32 Q0, Q0, Q0' * uint16x8_t vmlsq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vmls.i16 Q0, Q0, Q0' * uint8x16_t vmlsq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vmls.i8 Q0, Q0, Q0' * int32x4_t vmlsq_s32 (int32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vmls.i32 Q0, Q0, Q0' * int16x8_t vmlsq_s16 (int16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vmls.i16 Q0, Q0, Q0' * int8x16_t vmlsq_s8 (int8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vmls.i8 Q0, Q0, Q0' * float32x4_t vmlsq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vmls.f32 Q0, Q0, Q0' * uint64x2_t vmlsl_u32 (uint64x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmlsl.u32 Q0, D0, D0' * uint32x4_t vmlsl_u16 (uint32x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmlsl.u16 Q0, D0, D0' * uint16x8_t vmlsl_u8 (uint16x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmlsl.u8 Q0, D0, D0' * int64x2_t vmlsl_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmlsl.s32 Q0, D0, D0' * int32x4_t vmlsl_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmlsl.s16 Q0, D0, D0' * int16x8_t vmlsl_s8 (int16x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmlsl.s8 Q0, D0, D0' * int64x2_t vqdmlsl_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqdmlsl.s32 Q0, D0, D0' * int32x4_t vqdmlsl_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqdmlsl.s16 Q0, D0, D0' 6.56.3.5 Fused-multiply-accumulate .................................. * float32x2_t vfma_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vfma.f32 D0, D0, D0' * float32x4_t vfmaq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vfma.f32 Q0, Q0, Q0' 6.56.3.6 Fused-multiply-subtract ................................ * float32x2_t vfms_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vfms.f32 D0, D0, D0' * float32x4_t vfmsq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vfms.f32 Q0, Q0, Q0' 6.56.3.7 Round to integral (to nearest, ties to even) ..................................................... * float32x2_t vrndn_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrintn.f32 D0, D0' * float32x4_t vrndqn_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrintn.f32 Q0, Q0' 6.56.3.8 Round to integral (to nearest, ties away from zero) ............................................................ * float32x2_t vrnda_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrinta.f32 D0, D0' * float32x4_t vrndqa_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrinta.f32 Q0, Q0' 6.56.3.9 Round to integral (towards +Inf) ......................................... * float32x2_t vrndp_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrintp.f32 D0, D0' * float32x4_t vrndqp_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrintp.f32 Q0, Q0' 6.56.3.10 Round to integral (towards -Inf) .......................................... * float32x2_t vrndm_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrintm.f32 D0, D0' * float32x4_t vrndqm_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrintm.f32 Q0, Q0' 6.56.3.11 Round to integral (towards 0) ....................................... * float32x2_t vrnd_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrintz.f32 D0, D0' * float32x4_t vrndq_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrintz.f32 Q0, Q0' 6.56.3.12 Subtraction ..................... * uint32x2_t vsub_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vsub.i32 D0, D0, D0' * uint16x4_t vsub_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vsub.i16 D0, D0, D0' * uint8x8_t vsub_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vsub.i8 D0, D0, D0' * int32x2_t vsub_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vsub.i32 D0, D0, D0' * int16x4_t vsub_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vsub.i16 D0, D0, D0' * int8x8_t vsub_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vsub.i8 D0, D0, D0' * float32x2_t vsub_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vsub.f32 D0, D0, D0' * uint64x1_t vsub_u64 (uint64x1_t, uint64x1_t) * int64x1_t vsub_s64 (int64x1_t, int64x1_t) * uint32x4_t vsubq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vsub.i32 Q0, Q0, Q0' * uint16x8_t vsubq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vsub.i16 Q0, Q0, Q0' * uint8x16_t vsubq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vsub.i8 Q0, Q0, Q0' * int32x4_t vsubq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vsub.i32 Q0, Q0, Q0' * int16x8_t vsubq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vsub.i16 Q0, Q0, Q0' * int8x16_t vsubq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vsub.i8 Q0, Q0, Q0' * uint64x2_t vsubq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vsub.i64 Q0, Q0, Q0' * int64x2_t vsubq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vsub.i64 Q0, Q0, Q0' * float32x4_t vsubq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vsub.f32 Q0, Q0, Q0' * uint64x2_t vsubl_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vsubl.u32 Q0, D0, D0' * uint32x4_t vsubl_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vsubl.u16 Q0, D0, D0' * uint16x8_t vsubl_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vsubl.u8 Q0, D0, D0' * int64x2_t vsubl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vsubl.s32 Q0, D0, D0' * int32x4_t vsubl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vsubl.s16 Q0, D0, D0' * int16x8_t vsubl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vsubl.s8 Q0, D0, D0' * uint64x2_t vsubw_u32 (uint64x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vsubw.u32 Q0, Q0, D0' * uint32x4_t vsubw_u16 (uint32x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vsubw.u16 Q0, Q0, D0' * uint16x8_t vsubw_u8 (uint16x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vsubw.u8 Q0, Q0, D0' * int64x2_t vsubw_s32 (int64x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vsubw.s32 Q0, Q0, D0' * int32x4_t vsubw_s16 (int32x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vsubw.s16 Q0, Q0, D0' * int16x8_t vsubw_s8 (int16x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vsubw.s8 Q0, Q0, D0' * uint32x2_t vhsub_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vhsub.u32 D0, D0, D0' * uint16x4_t vhsub_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vhsub.u16 D0, D0, D0' * uint8x8_t vhsub_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vhsub.u8 D0, D0, D0' * int32x2_t vhsub_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vhsub.s32 D0, D0, D0' * int16x4_t vhsub_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vhsub.s16 D0, D0, D0' * int8x8_t vhsub_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vhsub.s8 D0, D0, D0' * uint32x4_t vhsubq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vhsub.u32 Q0, Q0, Q0' * uint16x8_t vhsubq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vhsub.u16 Q0, Q0, Q0' * uint8x16_t vhsubq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vhsub.u8 Q0, Q0, Q0' * int32x4_t vhsubq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vhsub.s32 Q0, Q0, Q0' * int16x8_t vhsubq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vhsub.s16 Q0, Q0, Q0' * int8x16_t vhsubq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vhsub.s8 Q0, Q0, Q0' * uint32x2_t vqsub_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vqsub.u32 D0, D0, D0' * uint16x4_t vqsub_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vqsub.u16 D0, D0, D0' * uint8x8_t vqsub_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vqsub.u8 D0, D0, D0' * int32x2_t vqsub_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqsub.s32 D0, D0, D0' * int16x4_t vqsub_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqsub.s16 D0, D0, D0' * int8x8_t vqsub_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vqsub.s8 D0, D0, D0' * uint64x1_t vqsub_u64 (uint64x1_t, uint64x1_t) ! _Form of expected instruction(s):_ `vqsub.u64 D0, D0, D0' * int64x1_t vqsub_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vqsub.s64 D0, D0, D0' * uint32x4_t vqsubq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vqsub.u32 Q0, Q0, Q0' * uint16x8_t vqsubq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vqsub.u16 Q0, Q0, Q0' * uint8x16_t vqsubq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vqsub.u8 Q0, Q0, Q0' * int32x4_t vqsubq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqsub.s32 Q0, Q0, Q0' * int16x8_t vqsubq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqsub.s16 Q0, Q0, Q0' * int8x16_t vqsubq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vqsub.s8 Q0, Q0, Q0' * uint64x2_t vqsubq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vqsub.u64 Q0, Q0, Q0' * int64x2_t vqsubq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vqsub.s64 Q0, Q0, Q0' * uint32x2_t vsubhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vsubhn.i64 D0, Q0, Q0' * uint16x4_t vsubhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vsubhn.i32 D0, Q0, Q0' * uint8x8_t vsubhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vsubhn.i16 D0, Q0, Q0' * int32x2_t vsubhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vsubhn.i64 D0, Q0, Q0' * int16x4_t vsubhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vsubhn.i32 D0, Q0, Q0' * int8x8_t vsubhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vsubhn.i16 D0, Q0, Q0' * uint32x2_t vrsubhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vrsubhn.i64 D0, Q0, Q0' * uint16x4_t vrsubhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vrsubhn.i32 D0, Q0, Q0' * uint8x8_t vrsubhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vrsubhn.i16 D0, Q0, Q0' * int32x2_t vrsubhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vrsubhn.i64 D0, Q0, Q0' * int16x4_t vrsubhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vrsubhn.i32 D0, Q0, Q0' * int8x8_t vrsubhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vrsubhn.i16 D0, Q0, Q0' 6.56.3.13 Comparison (equal-to) ............................... * uint32x2_t vceq_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vceq.i32 D0, D0, D0' * uint16x4_t vceq_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vceq.i16 D0, D0, D0' * uint8x8_t vceq_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vceq.i8 D0, D0, D0' * uint32x2_t vceq_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vceq.i32 D0, D0, D0' * uint16x4_t vceq_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vceq.i16 D0, D0, D0' * uint8x8_t vceq_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vceq.i8 D0, D0, D0' * uint32x2_t vceq_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vceq.f32 D0, D0, D0' * uint8x8_t vceq_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vceq.i8 D0, D0, D0' * uint32x4_t vceqq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vceq.i32 Q0, Q0, Q0' * uint16x8_t vceqq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vceq.i16 Q0, Q0, Q0' * uint8x16_t vceqq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vceq.i8 Q0, Q0, Q0' * uint32x4_t vceqq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vceq.i32 Q0, Q0, Q0' * uint16x8_t vceqq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vceq.i16 Q0, Q0, Q0' * uint8x16_t vceqq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vceq.i8 Q0, Q0, Q0' * uint32x4_t vceqq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vceq.f32 Q0, Q0, Q0' * uint8x16_t vceqq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vceq.i8 Q0, Q0, Q0' 6.56.3.14 Comparison (greater-than-or-equal-to) ............................................... * uint32x2_t vcge_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vcge.s32 D0, D0, D0' * uint16x4_t vcge_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vcge.s16 D0, D0, D0' * uint8x8_t vcge_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vcge.s8 D0, D0, D0' * uint32x2_t vcge_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vcge.f32 D0, D0, D0' * uint32x2_t vcge_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vcge.u32 D0, D0, D0' * uint16x4_t vcge_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vcge.u16 D0, D0, D0' * uint8x8_t vcge_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vcge.u8 D0, D0, D0' * uint32x4_t vcgeq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vcge.s32 Q0, Q0, Q0' * uint16x8_t vcgeq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vcge.s16 Q0, Q0, Q0' * uint8x16_t vcgeq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vcge.s8 Q0, Q0, Q0' * uint32x4_t vcgeq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vcge.f32 Q0, Q0, Q0' * uint32x4_t vcgeq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vcge.u32 Q0, Q0, Q0' * uint16x8_t vcgeq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vcge.u16 Q0, Q0, Q0' * uint8x16_t vcgeq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vcge.u8 Q0, Q0, Q0' 6.56.3.15 Comparison (less-than-or-equal-to) ............................................ * uint32x2_t vcle_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vcge.s32 D0, D0, D0' * uint16x4_t vcle_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vcge.s16 D0, D0, D0' * uint8x8_t vcle_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vcge.s8 D0, D0, D0' * uint32x2_t vcle_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vcge.f32 D0, D0, D0' * uint32x2_t vcle_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vcge.u32 D0, D0, D0' * uint16x4_t vcle_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vcge.u16 D0, D0, D0' * uint8x8_t vcle_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vcge.u8 D0, D0, D0' * uint32x4_t vcleq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vcge.s32 Q0, Q0, Q0' * uint16x8_t vcleq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vcge.s16 Q0, Q0, Q0' * uint8x16_t vcleq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vcge.s8 Q0, Q0, Q0' * uint32x4_t vcleq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vcge.f32 Q0, Q0, Q0' * uint32x4_t vcleq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vcge.u32 Q0, Q0, Q0' * uint16x8_t vcleq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vcge.u16 Q0, Q0, Q0' * uint8x16_t vcleq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vcge.u8 Q0, Q0, Q0' 6.56.3.16 Comparison (greater-than) ................................... * uint32x2_t vcgt_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vcgt.s32 D0, D0, D0' * uint16x4_t vcgt_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vcgt.s16 D0, D0, D0' * uint8x8_t vcgt_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vcgt.s8 D0, D0, D0' * uint32x2_t vcgt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vcgt.f32 D0, D0, D0' * uint32x2_t vcgt_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vcgt.u32 D0, D0, D0' * uint16x4_t vcgt_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vcgt.u16 D0, D0, D0' * uint8x8_t vcgt_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vcgt.u8 D0, D0, D0' * uint32x4_t vcgtq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vcgt.s32 Q0, Q0, Q0' * uint16x8_t vcgtq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vcgt.s16 Q0, Q0, Q0' * uint8x16_t vcgtq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vcgt.s8 Q0, Q0, Q0' * uint32x4_t vcgtq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vcgt.f32 Q0, Q0, Q0' * uint32x4_t vcgtq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vcgt.u32 Q0, Q0, Q0' * uint16x8_t vcgtq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vcgt.u16 Q0, Q0, Q0' * uint8x16_t vcgtq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vcgt.u8 Q0, Q0, Q0' 6.56.3.17 Comparison (less-than) ................................ * uint32x2_t vclt_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vcgt.s32 D0, D0, D0' * uint16x4_t vclt_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vcgt.s16 D0, D0, D0' * uint8x8_t vclt_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vcgt.s8 D0, D0, D0' * uint32x2_t vclt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vcgt.f32 D0, D0, D0' * uint32x2_t vclt_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vcgt.u32 D0, D0, D0' * uint16x4_t vclt_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vcgt.u16 D0, D0, D0' * uint8x8_t vclt_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vcgt.u8 D0, D0, D0' * uint32x4_t vcltq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vcgt.s32 Q0, Q0, Q0' * uint16x8_t vcltq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vcgt.s16 Q0, Q0, Q0' * uint8x16_t vcltq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vcgt.s8 Q0, Q0, Q0' * uint32x4_t vcltq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vcgt.f32 Q0, Q0, Q0' * uint32x4_t vcltq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vcgt.u32 Q0, Q0, Q0' * uint16x8_t vcltq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vcgt.u16 Q0, Q0, Q0' * uint8x16_t vcltq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vcgt.u8 Q0, Q0, Q0' 6.56.3.18 Comparison (absolute greater-than-or-equal-to) ........................................................ * uint32x2_t vcage_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vacge.f32 D0, D0, D0' * uint32x4_t vcageq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vacge.f32 Q0, Q0, Q0' 6.56.3.19 Comparison (absolute less-than-or-equal-to) ..................................................... * uint32x2_t vcale_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vacge.f32 D0, D0, D0' * uint32x4_t vcaleq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vacge.f32 Q0, Q0, Q0' 6.56.3.20 Comparison (absolute greater-than) ............................................ * uint32x2_t vcagt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vacgt.f32 D0, D0, D0' * uint32x4_t vcagtq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vacgt.f32 Q0, Q0, Q0' 6.56.3.21 Comparison (absolute less-than) ......................................... * uint32x2_t vcalt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vacgt.f32 D0, D0, D0' * uint32x4_t vcaltq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vacgt.f32 Q0, Q0, Q0' 6.56.3.22 Test bits ................... * uint32x2_t vtst_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vtst.32 D0, D0, D0' * uint16x4_t vtst_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vtst.16 D0, D0, D0' * uint8x8_t vtst_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtst.8 D0, D0, D0' * uint32x2_t vtst_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vtst.32 D0, D0, D0' * uint16x4_t vtst_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vtst.16 D0, D0, D0' * uint8x8_t vtst_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vtst.8 D0, D0, D0' * uint8x8_t vtst_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vtst.8 D0, D0, D0' * uint32x4_t vtstq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vtst.32 Q0, Q0, Q0' * uint16x8_t vtstq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vtst.16 Q0, Q0, Q0' * uint8x16_t vtstq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vtst.8 Q0, Q0, Q0' * uint32x4_t vtstq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vtst.32 Q0, Q0, Q0' * uint16x8_t vtstq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vtst.16 Q0, Q0, Q0' * uint8x16_t vtstq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vtst.8 Q0, Q0, Q0' * uint8x16_t vtstq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vtst.8 Q0, Q0, Q0' 6.56.3.23 Absolute difference ............................. * uint32x2_t vabd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vabd.u32 D0, D0, D0' * uint16x4_t vabd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vabd.u16 D0, D0, D0' * uint8x8_t vabd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vabd.u8 D0, D0, D0' * int32x2_t vabd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vabd.s32 D0, D0, D0' * int16x4_t vabd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vabd.s16 D0, D0, D0' * int8x8_t vabd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vabd.s8 D0, D0, D0' * float32x2_t vabd_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vabd.f32 D0, D0, D0' * uint32x4_t vabdq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vabd.u32 Q0, Q0, Q0' * uint16x8_t vabdq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vabd.u16 Q0, Q0, Q0' * uint8x16_t vabdq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vabd.u8 Q0, Q0, Q0' * int32x4_t vabdq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vabd.s32 Q0, Q0, Q0' * int16x8_t vabdq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vabd.s16 Q0, Q0, Q0' * int8x16_t vabdq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vabd.s8 Q0, Q0, Q0' * float32x4_t vabdq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vabd.f32 Q0, Q0, Q0' * uint64x2_t vabdl_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vabdl.u32 Q0, D0, D0' * uint32x4_t vabdl_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vabdl.u16 Q0, D0, D0' * uint16x8_t vabdl_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vabdl.u8 Q0, D0, D0' * int64x2_t vabdl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vabdl.s32 Q0, D0, D0' * int32x4_t vabdl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vabdl.s16 Q0, D0, D0' * int16x8_t vabdl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vabdl.s8 Q0, D0, D0' 6.56.3.24 Absolute difference and accumulate ............................................ * uint32x2_t vaba_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vaba.u32 D0, D0, D0' * uint16x4_t vaba_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vaba.u16 D0, D0, D0' * uint8x8_t vaba_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vaba.u8 D0, D0, D0' * int32x2_t vaba_s32 (int32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vaba.s32 D0, D0, D0' * int16x4_t vaba_s16 (int16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vaba.s16 D0, D0, D0' * int8x8_t vaba_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vaba.s8 D0, D0, D0' * uint32x4_t vabaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vaba.u32 Q0, Q0, Q0' * uint16x8_t vabaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vaba.u16 Q0, Q0, Q0' * uint8x16_t vabaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vaba.u8 Q0, Q0, Q0' * int32x4_t vabaq_s32 (int32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vaba.s32 Q0, Q0, Q0' * int16x8_t vabaq_s16 (int16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vaba.s16 Q0, Q0, Q0' * int8x16_t vabaq_s8 (int8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vaba.s8 Q0, Q0, Q0' * uint64x2_t vabal_u32 (uint64x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vabal.u32 Q0, D0, D0' * uint32x4_t vabal_u16 (uint32x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vabal.u16 Q0, D0, D0' * uint16x8_t vabal_u8 (uint16x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vabal.u8 Q0, D0, D0' * int64x2_t vabal_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vabal.s32 Q0, D0, D0' * int32x4_t vabal_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vabal.s16 Q0, D0, D0' * int16x8_t vabal_s8 (int16x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vabal.s8 Q0, D0, D0' 6.56.3.25 Maximum ................. * uint32x2_t vmax_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmax.u32 D0, D0, D0' * uint16x4_t vmax_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmax.u16 D0, D0, D0' * uint8x8_t vmax_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmax.u8 D0, D0, D0' * int32x2_t vmax_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmax.s32 D0, D0, D0' * int16x4_t vmax_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmax.s16 D0, D0, D0' * int8x8_t vmax_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmax.s8 D0, D0, D0' * float32x2_t vmax_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vmax.f32 D0, D0, D0' * uint32x4_t vmaxq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vmax.u32 Q0, Q0, Q0' * uint16x8_t vmaxq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vmax.u16 Q0, Q0, Q0' * uint8x16_t vmaxq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vmax.u8 Q0, Q0, Q0' * int32x4_t vmaxq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vmax.s32 Q0, Q0, Q0' * int16x8_t vmaxq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vmax.s16 Q0, Q0, Q0' * int8x16_t vmaxq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vmax.s8 Q0, Q0, Q0' * float32x4_t vmaxq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vmax.f32 Q0, Q0, Q0' 6.56.3.26 Minimum ................. * uint32x2_t vmin_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmin.u32 D0, D0, D0' * uint16x4_t vmin_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmin.u16 D0, D0, D0' * uint8x8_t vmin_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmin.u8 D0, D0, D0' * int32x2_t vmin_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmin.s32 D0, D0, D0' * int16x4_t vmin_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmin.s16 D0, D0, D0' * int8x8_t vmin_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmin.s8 D0, D0, D0' * float32x2_t vmin_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vmin.f32 D0, D0, D0' * uint32x4_t vminq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vmin.u32 Q0, Q0, Q0' * uint16x8_t vminq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vmin.u16 Q0, Q0, Q0' * uint8x16_t vminq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vmin.u8 Q0, Q0, Q0' * int32x4_t vminq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vmin.s32 Q0, Q0, Q0' * int16x8_t vminq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vmin.s16 Q0, Q0, Q0' * int8x16_t vminq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vmin.s8 Q0, Q0, Q0' * float32x4_t vminq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vmin.f32 Q0, Q0, Q0' 6.56.3.27 Pairwise add ...................... * uint32x2_t vpadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vpadd.i32 D0, D0, D0' * uint16x4_t vpadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vpadd.i16 D0, D0, D0' * uint8x8_t vpadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vpadd.i8 D0, D0, D0' * int32x2_t vpadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vpadd.i32 D0, D0, D0' * int16x4_t vpadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vpadd.i16 D0, D0, D0' * int8x8_t vpadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vpadd.i8 D0, D0, D0' * float32x2_t vpadd_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vpadd.f32 D0, D0, D0' * uint64x1_t vpaddl_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vpaddl.u32 D0, D0' * uint32x2_t vpaddl_u16 (uint16x4_t) ! _Form of expected instruction(s):_ `vpaddl.u16 D0, D0' * uint16x4_t vpaddl_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vpaddl.u8 D0, D0' * int64x1_t vpaddl_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vpaddl.s32 D0, D0' * int32x2_t vpaddl_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vpaddl.s16 D0, D0' * int16x4_t vpaddl_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vpaddl.s8 D0, D0' * uint64x2_t vpaddlq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vpaddl.u32 Q0, Q0' * uint32x4_t vpaddlq_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vpaddl.u16 Q0, Q0' * uint16x8_t vpaddlq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vpaddl.u8 Q0, Q0' * int64x2_t vpaddlq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vpaddl.s32 Q0, Q0' * int32x4_t vpaddlq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vpaddl.s16 Q0, Q0' * int16x8_t vpaddlq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vpaddl.s8 Q0, Q0' 6.56.3.28 Pairwise add, single_opcode widen and accumulate .......................................................... * uint64x1_t vpadal_u32 (uint64x1_t, uint32x2_t) ! _Form of expected instruction(s):_ `vpadal.u32 D0, D0' * uint32x2_t vpadal_u16 (uint32x2_t, uint16x4_t) ! _Form of expected instruction(s):_ `vpadal.u16 D0, D0' * uint16x4_t vpadal_u8 (uint16x4_t, uint8x8_t) ! _Form of expected instruction(s):_ `vpadal.u8 D0, D0' * int64x1_t vpadal_s32 (int64x1_t, int32x2_t) ! _Form of expected instruction(s):_ `vpadal.s32 D0, D0' * int32x2_t vpadal_s16 (int32x2_t, int16x4_t) ! _Form of expected instruction(s):_ `vpadal.s16 D0, D0' * int16x4_t vpadal_s8 (int16x4_t, int8x8_t) ! _Form of expected instruction(s):_ `vpadal.s8 D0, D0' * uint64x2_t vpadalq_u32 (uint64x2_t, uint32x4_t) ! _Form of expected instruction(s):_ `vpadal.u32 Q0, Q0' * uint32x4_t vpadalq_u16 (uint32x4_t, uint16x8_t) ! _Form of expected instruction(s):_ `vpadal.u16 Q0, Q0' * uint16x8_t vpadalq_u8 (uint16x8_t, uint8x16_t) ! _Form of expected instruction(s):_ `vpadal.u8 Q0, Q0' * int64x2_t vpadalq_s32 (int64x2_t, int32x4_t) ! _Form of expected instruction(s):_ `vpadal.s32 Q0, Q0' * int32x4_t vpadalq_s16 (int32x4_t, int16x8_t) ! _Form of expected instruction(s):_ `vpadal.s16 Q0, Q0' * int16x8_t vpadalq_s8 (int16x8_t, int8x16_t) ! _Form of expected instruction(s):_ `vpadal.s8 Q0, Q0' 6.56.3.29 Folding maximum ......................... * uint32x2_t vpmax_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vpmax.u32 D0, D0, D0' * uint16x4_t vpmax_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vpmax.u16 D0, D0, D0' * uint8x8_t vpmax_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vpmax.u8 D0, D0, D0' * int32x2_t vpmax_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vpmax.s32 D0, D0, D0' * int16x4_t vpmax_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vpmax.s16 D0, D0, D0' * int8x8_t vpmax_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vpmax.s8 D0, D0, D0' * float32x2_t vpmax_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vpmax.f32 D0, D0, D0' 6.56.3.30 Folding minimum ......................... * uint32x2_t vpmin_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vpmin.u32 D0, D0, D0' * uint16x4_t vpmin_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vpmin.u16 D0, D0, D0' * uint8x8_t vpmin_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vpmin.u8 D0, D0, D0' * int32x2_t vpmin_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vpmin.s32 D0, D0, D0' * int16x4_t vpmin_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vpmin.s16 D0, D0, D0' * int8x8_t vpmin_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vpmin.s8 D0, D0, D0' * float32x2_t vpmin_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vpmin.f32 D0, D0, D0' 6.56.3.31 Reciprocal step ......................... * float32x2_t vrecps_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vrecps.f32 D0, D0, D0' * float32x4_t vrecpsq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vrecps.f32 Q0, Q0, Q0' * float32x2_t vrsqrts_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vrsqrts.f32 D0, D0, D0' * float32x4_t vrsqrtsq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vrsqrts.f32 Q0, Q0, Q0' 6.56.3.32 Vector shift left ........................... * uint32x2_t vshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vshl.u32 D0, D0, D0' * uint16x4_t vshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vshl.u16 D0, D0, D0' * uint8x8_t vshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vshl.u8 D0, D0, D0' * int32x2_t vshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vshl.s32 D0, D0, D0' * int16x4_t vshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vshl.s16 D0, D0, D0' * int8x8_t vshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vshl.s8 D0, D0, D0' * uint64x1_t vshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vshl.u64 D0, D0, D0' * int64x1_t vshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vshl.s64 D0, D0, D0' * uint32x4_t vshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vshl.u32 Q0, Q0, Q0' * uint16x8_t vshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vshl.u16 Q0, Q0, Q0' * uint8x16_t vshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vshl.u8 Q0, Q0, Q0' * int32x4_t vshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vshl.s32 Q0, Q0, Q0' * int16x8_t vshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vshl.s16 Q0, Q0, Q0' * int8x16_t vshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vshl.s8 Q0, Q0, Q0' * uint64x2_t vshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vshl.u64 Q0, Q0, Q0' * int64x2_t vshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vshl.s64 Q0, Q0, Q0' * uint32x2_t vrshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vrshl.u32 D0, D0, D0' * uint16x4_t vrshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vrshl.u16 D0, D0, D0' * uint8x8_t vrshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vrshl.u8 D0, D0, D0' * int32x2_t vrshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vrshl.s32 D0, D0, D0' * int16x4_t vrshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vrshl.s16 D0, D0, D0' * int8x8_t vrshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vrshl.s8 D0, D0, D0' * uint64x1_t vrshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vrshl.u64 D0, D0, D0' * int64x1_t vrshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vrshl.s64 D0, D0, D0' * uint32x4_t vrshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vrshl.u32 Q0, Q0, Q0' * uint16x8_t vrshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vrshl.u16 Q0, Q0, Q0' * uint8x16_t vrshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vrshl.u8 Q0, Q0, Q0' * int32x4_t vrshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vrshl.s32 Q0, Q0, Q0' * int16x8_t vrshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vrshl.s16 Q0, Q0, Q0' * int8x16_t vrshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vrshl.s8 Q0, Q0, Q0' * uint64x2_t vrshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vrshl.u64 Q0, Q0, Q0' * int64x2_t vrshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vrshl.s64 Q0, Q0, Q0' * uint32x2_t vqshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqshl.u32 D0, D0, D0' * uint16x4_t vqshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqshl.u16 D0, D0, D0' * uint8x8_t vqshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vqshl.u8 D0, D0, D0' * int32x2_t vqshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqshl.s32 D0, D0, D0' * int16x4_t vqshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqshl.s16 D0, D0, D0' * int8x8_t vqshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vqshl.s8 D0, D0, D0' * uint64x1_t vqshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vqshl.u64 D0, D0, D0' * int64x1_t vqshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vqshl.s64 D0, D0, D0' * uint32x4_t vqshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqshl.u32 Q0, Q0, Q0' * uint16x8_t vqshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqshl.u16 Q0, Q0, Q0' * uint8x16_t vqshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vqshl.u8 Q0, Q0, Q0' * int32x4_t vqshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqshl.s32 Q0, Q0, Q0' * int16x8_t vqshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqshl.s16 Q0, Q0, Q0' * int8x16_t vqshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vqshl.s8 Q0, Q0, Q0' * uint64x2_t vqshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vqshl.u64 Q0, Q0, Q0' * int64x2_t vqshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vqshl.s64 Q0, Q0, Q0' * uint32x2_t vqrshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqrshl.u32 D0, D0, D0' * uint16x4_t vqrshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqrshl.u16 D0, D0, D0' * uint8x8_t vqrshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vqrshl.u8 D0, D0, D0' * int32x2_t vqrshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqrshl.s32 D0, D0, D0' * int16x4_t vqrshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqrshl.s16 D0, D0, D0' * int8x8_t vqrshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vqrshl.s8 D0, D0, D0' * uint64x1_t vqrshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vqrshl.u64 D0, D0, D0' * int64x1_t vqrshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vqrshl.s64 D0, D0, D0' * uint32x4_t vqrshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqrshl.u32 Q0, Q0, Q0' * uint16x8_t vqrshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqrshl.u16 Q0, Q0, Q0' * uint8x16_t vqrshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vqrshl.u8 Q0, Q0, Q0' * int32x4_t vqrshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqrshl.s32 Q0, Q0, Q0' * int16x8_t vqrshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqrshl.s16 Q0, Q0, Q0' * int8x16_t vqrshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vqrshl.s8 Q0, Q0, Q0' * uint64x2_t vqrshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vqrshl.u64 Q0, Q0, Q0' * int64x2_t vqrshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vqrshl.s64 Q0, Q0, Q0' 6.56.3.33 Vector shift left by constant ....................................... * uint32x2_t vshl_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vshl.i32 D0, D0, #0' * uint16x4_t vshl_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vshl.i16 D0, D0, #0' * uint8x8_t vshl_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vshl.i8 D0, D0, #0' * int32x2_t vshl_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vshl.i32 D0, D0, #0' * int16x4_t vshl_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vshl.i16 D0, D0, #0' * int8x8_t vshl_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vshl.i8 D0, D0, #0' * uint64x1_t vshl_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ `vshl.i64 D0, D0, #0' * int64x1_t vshl_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ `vshl.i64 D0, D0, #0' * uint32x4_t vshlq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vshl.i32 Q0, Q0, #0' * uint16x8_t vshlq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vshl.i16 Q0, Q0, #0' * uint8x16_t vshlq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ `vshl.i8 Q0, Q0, #0' * int32x4_t vshlq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vshl.i32 Q0, Q0, #0' * int16x8_t vshlq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vshl.i16 Q0, Q0, #0' * int8x16_t vshlq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ `vshl.i8 Q0, Q0, #0' * uint64x2_t vshlq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vshl.i64 Q0, Q0, #0' * int64x2_t vshlq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vshl.i64 Q0, Q0, #0' * uint32x2_t vqshl_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vqshl.u32 D0, D0, #0' * uint16x4_t vqshl_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vqshl.u16 D0, D0, #0' * uint8x8_t vqshl_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vqshl.u8 D0, D0, #0' * int32x2_t vqshl_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vqshl.s32 D0, D0, #0' * int16x4_t vqshl_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vqshl.s16 D0, D0, #0' * int8x8_t vqshl_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vqshl.s8 D0, D0, #0' * uint64x1_t vqshl_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ `vqshl.u64 D0, D0, #0' * int64x1_t vqshl_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ `vqshl.s64 D0, D0, #0' * uint32x4_t vqshlq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vqshl.u32 Q0, Q0, #0' * uint16x8_t vqshlq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vqshl.u16 Q0, Q0, #0' * uint8x16_t vqshlq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ `vqshl.u8 Q0, Q0, #0' * int32x4_t vqshlq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vqshl.s32 Q0, Q0, #0' * int16x8_t vqshlq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vqshl.s16 Q0, Q0, #0' * int8x16_t vqshlq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ `vqshl.s8 Q0, Q0, #0' * uint64x2_t vqshlq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vqshl.u64 Q0, Q0, #0' * int64x2_t vqshlq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vqshl.s64 Q0, Q0, #0' * uint64x1_t vqshlu_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s64 D0, D0, #0' * uint32x2_t vqshlu_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s32 D0, D0, #0' * uint16x4_t vqshlu_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s16 D0, D0, #0' * uint8x8_t vqshlu_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s8 D0, D0, #0' * uint64x2_t vqshluq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s64 Q0, Q0, #0' * uint32x4_t vqshluq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s32 Q0, Q0, #0' * uint16x8_t vqshluq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s16 Q0, Q0, #0' * uint8x16_t vqshluq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s8 Q0, Q0, #0' * uint64x2_t vshll_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vshll.u32 Q0, D0, #0' * uint32x4_t vshll_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vshll.u16 Q0, D0, #0' * uint16x8_t vshll_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vshll.u8 Q0, D0, #0' * int64x2_t vshll_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vshll.s32 Q0, D0, #0' * int32x4_t vshll_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vshll.s16 Q0, D0, #0' * int16x8_t vshll_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vshll.s8 Q0, D0, #0' 6.56.3.34 Vector shift right by constant ........................................ * uint32x2_t vshr_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vshr.u32 D0, D0, #0' * uint16x4_t vshr_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vshr.u16 D0, D0, #0' * uint8x8_t vshr_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vshr.u8 D0, D0, #0' * int32x2_t vshr_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vshr.s32 D0, D0, #0' * int16x4_t vshr_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vshr.s16 D0, D0, #0' * int8x8_t vshr_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vshr.s8 D0, D0, #0' * uint64x1_t vshr_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ `vshr.u64 D0, D0, #0' * int64x1_t vshr_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ `vshr.s64 D0, D0, #0' * uint32x4_t vshrq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vshr.u32 Q0, Q0, #0' * uint16x8_t vshrq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vshr.u16 Q0, Q0, #0' * uint8x16_t vshrq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ `vshr.u8 Q0, Q0, #0' * int32x4_t vshrq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vshr.s32 Q0, Q0, #0' * int16x8_t vshrq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vshr.s16 Q0, Q0, #0' * int8x16_t vshrq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ `vshr.s8 Q0, Q0, #0' * uint64x2_t vshrq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vshr.u64 Q0, Q0, #0' * int64x2_t vshrq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vshr.s64 Q0, Q0, #0' * uint32x2_t vrshr_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vrshr.u32 D0, D0, #0' * uint16x4_t vrshr_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vrshr.u16 D0, D0, #0' * uint8x8_t vrshr_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vrshr.u8 D0, D0, #0' * int32x2_t vrshr_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vrshr.s32 D0, D0, #0' * int16x4_t vrshr_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vrshr.s16 D0, D0, #0' * int8x8_t vrshr_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vrshr.s8 D0, D0, #0' * uint64x1_t vrshr_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ `vrshr.u64 D0, D0, #0' * int64x1_t vrshr_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ `vrshr.s64 D0, D0, #0' * uint32x4_t vrshrq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vrshr.u32 Q0, Q0, #0' * uint16x8_t vrshrq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vrshr.u16 Q0, Q0, #0' * uint8x16_t vrshrq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ `vrshr.u8 Q0, Q0, #0' * int32x4_t vrshrq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vrshr.s32 Q0, Q0, #0' * int16x8_t vrshrq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vrshr.s16 Q0, Q0, #0' * int8x16_t vrshrq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ `vrshr.s8 Q0, Q0, #0' * uint64x2_t vrshrq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vrshr.u64 Q0, Q0, #0' * int64x2_t vrshrq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vrshr.s64 Q0, Q0, #0' * uint32x2_t vshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vshrn.i64 D0, Q0, #0' * uint16x4_t vshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vshrn.i32 D0, Q0, #0' * uint8x8_t vshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vshrn.i16 D0, Q0, #0' * int32x2_t vshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vshrn.i64 D0, Q0, #0' * int16x4_t vshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vshrn.i32 D0, Q0, #0' * int8x8_t vshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vshrn.i16 D0, Q0, #0' * uint32x2_t vrshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vrshrn.i64 D0, Q0, #0' * uint16x4_t vrshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vrshrn.i32 D0, Q0, #0' * uint8x8_t vrshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vrshrn.i16 D0, Q0, #0' * int32x2_t vrshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vrshrn.i64 D0, Q0, #0' * int16x4_t vrshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vrshrn.i32 D0, Q0, #0' * int8x8_t vrshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vrshrn.i16 D0, Q0, #0' * uint32x2_t vqshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vqshrn.u64 D0, Q0, #0' * uint16x4_t vqshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vqshrn.u32 D0, Q0, #0' * uint8x8_t vqshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vqshrn.u16 D0, Q0, #0' * int32x2_t vqshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vqshrn.s64 D0, Q0, #0' * int16x4_t vqshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vqshrn.s32 D0, Q0, #0' * int8x8_t vqshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vqshrn.s16 D0, Q0, #0' * uint32x2_t vqrshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vqrshrn.u64 D0, Q0, #0' * uint16x4_t vqrshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vqrshrn.u32 D0, Q0, #0' * uint8x8_t vqrshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vqrshrn.u16 D0, Q0, #0' * int32x2_t vqrshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vqrshrn.s64 D0, Q0, #0' * int16x4_t vqrshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vqrshrn.s32 D0, Q0, #0' * int8x8_t vqrshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vqrshrn.s16 D0, Q0, #0' * uint32x2_t vqshrun_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vqshrun.s64 D0, Q0, #0' * uint16x4_t vqshrun_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vqshrun.s32 D0, Q0, #0' * uint8x8_t vqshrun_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vqshrun.s16 D0, Q0, #0' * uint32x2_t vqrshrun_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vqrshrun.s64 D0, Q0, #0' * uint16x4_t vqrshrun_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vqrshrun.s32 D0, Q0, #0' * uint8x8_t vqrshrun_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vqrshrun.s16 D0, Q0, #0' 6.56.3.35 Vector shift right by constant and accumulate ....................................................... * uint32x2_t vsra_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vsra.u32 D0, D0, #0' * uint16x4_t vsra_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vsra.u16 D0, D0, #0' * uint8x8_t vsra_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vsra.u8 D0, D0, #0' * int32x2_t vsra_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vsra.s32 D0, D0, #0' * int16x4_t vsra_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vsra.s16 D0, D0, #0' * int8x8_t vsra_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ `vsra.s8 D0, D0, #0' * uint64x1_t vsra_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vsra.u64 D0, D0, #0' * int64x1_t vsra_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ `vsra.s64 D0, D0, #0' * uint32x4_t vsraq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vsra.u32 Q0, Q0, #0' * uint16x8_t vsraq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vsra.u16 Q0, Q0, #0' * uint8x16_t vsraq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vsra.u8 Q0, Q0, #0' * int32x4_t vsraq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ `vsra.s32 Q0, Q0, #0' * int16x8_t vsraq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ `vsra.s16 Q0, Q0, #0' * int8x16_t vsraq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ `vsra.s8 Q0, Q0, #0' * uint64x2_t vsraq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vsra.u64 Q0, Q0, #0' * int64x2_t vsraq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ `vsra.s64 Q0, Q0, #0' * uint32x2_t vrsra_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vrsra.u32 D0, D0, #0' * uint16x4_t vrsra_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vrsra.u16 D0, D0, #0' * uint8x8_t vrsra_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vrsra.u8 D0, D0, #0' * int32x2_t vrsra_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vrsra.s32 D0, D0, #0' * int16x4_t vrsra_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vrsra.s16 D0, D0, #0' * int8x8_t vrsra_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ `vrsra.s8 D0, D0, #0' * uint64x1_t vrsra_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vrsra.u64 D0, D0, #0' * int64x1_t vrsra_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ `vrsra.s64 D0, D0, #0' * uint32x4_t vrsraq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vrsra.u32 Q0, Q0, #0' * uint16x8_t vrsraq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vrsra.u16 Q0, Q0, #0' * uint8x16_t vrsraq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vrsra.u8 Q0, Q0, #0' * int32x4_t vrsraq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ `vrsra.s32 Q0, Q0, #0' * int16x8_t vrsraq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ `vrsra.s16 Q0, Q0, #0' * int8x16_t vrsraq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ `vrsra.s8 Q0, Q0, #0' * uint64x2_t vrsraq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vrsra.u64 Q0, Q0, #0' * int64x2_t vrsraq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ `vrsra.s64 Q0, Q0, #0' 6.56.3.36 Vector shift right and insert ....................................... * uint32x2_t vsri_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vsri.32 D0, D0, #0' * uint16x4_t vsri_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vsri.16 D0, D0, #0' * uint8x8_t vsri_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vsri.8 D0, D0, #0' * int32x2_t vsri_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vsri.32 D0, D0, #0' * int16x4_t vsri_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vsri.16 D0, D0, #0' * int8x8_t vsri_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ `vsri.8 D0, D0, #0' * uint64x1_t vsri_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vsri.64 D0, D0, #0' * int64x1_t vsri_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ `vsri.64 D0, D0, #0' * poly16x4_t vsri_n_p16 (poly16x4_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ `vsri.16 D0, D0, #0' * poly8x8_t vsri_n_p8 (poly8x8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ `vsri.8 D0, D0, #0' * uint32x4_t vsriq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vsri.32 Q0, Q0, #0' * uint16x8_t vsriq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vsri.16 Q0, Q0, #0' * uint8x16_t vsriq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vsri.8 Q0, Q0, #0' * int32x4_t vsriq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ `vsri.32 Q0, Q0, #0' * int16x8_t vsriq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ `vsri.16 Q0, Q0, #0' * int8x16_t vsriq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ `vsri.8 Q0, Q0, #0' * uint64x2_t vsriq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vsri.64 Q0, Q0, #0' * int64x2_t vsriq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ `vsri.64 Q0, Q0, #0' * poly16x8_t vsriq_n_p16 (poly16x8_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ `vsri.16 Q0, Q0, #0' * poly8x16_t vsriq_n_p8 (poly8x16_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ `vsri.8 Q0, Q0, #0' 6.56.3.37 Vector shift left and insert ...................................... * uint32x2_t vsli_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vsli.32 D0, D0, #0' * uint16x4_t vsli_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vsli.16 D0, D0, #0' * uint8x8_t vsli_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vsli.8 D0, D0, #0' * int32x2_t vsli_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vsli.32 D0, D0, #0' * int16x4_t vsli_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vsli.16 D0, D0, #0' * int8x8_t vsli_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ `vsli.8 D0, D0, #0' * uint64x1_t vsli_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vsli.64 D0, D0, #0' * int64x1_t vsli_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ `vsli.64 D0, D0, #0' * poly16x4_t vsli_n_p16 (poly16x4_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ `vsli.16 D0, D0, #0' * poly8x8_t vsli_n_p8 (poly8x8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ `vsli.8 D0, D0, #0' * uint32x4_t vsliq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vsli.32 Q0, Q0, #0' * uint16x8_t vsliq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vsli.16 Q0, Q0, #0' * uint8x16_t vsliq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vsli.8 Q0, Q0, #0' * int32x4_t vsliq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ `vsli.32 Q0, Q0, #0' * int16x8_t vsliq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ `vsli.16 Q0, Q0, #0' * int8x16_t vsliq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ `vsli.8 Q0, Q0, #0' * uint64x2_t vsliq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vsli.64 Q0, Q0, #0' * int64x2_t vsliq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ `vsli.64 Q0, Q0, #0' * poly16x8_t vsliq_n_p16 (poly16x8_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ `vsli.16 Q0, Q0, #0' * poly8x16_t vsliq_n_p8 (poly8x16_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ `vsli.8 Q0, Q0, #0' 6.56.3.38 Absolute value ........................ * float32x2_t vabs_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vabs.f32 D0, D0' * int32x2_t vabs_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vabs.s32 D0, D0' * int16x4_t vabs_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vabs.s16 D0, D0' * int8x8_t vabs_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vabs.s8 D0, D0' * float32x4_t vabsq_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vabs.f32 Q0, Q0' * int32x4_t vabsq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vabs.s32 Q0, Q0' * int16x8_t vabsq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vabs.s16 Q0, Q0' * int8x16_t vabsq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vabs.s8 Q0, Q0' * int32x2_t vqabs_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vqabs.s32 D0, D0' * int16x4_t vqabs_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vqabs.s16 D0, D0' * int8x8_t vqabs_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vqabs.s8 D0, D0' * int32x4_t vqabsq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vqabs.s32 Q0, Q0' * int16x8_t vqabsq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vqabs.s16 Q0, Q0' * int8x16_t vqabsq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vqabs.s8 Q0, Q0' 6.56.3.39 Negation .................. * float32x2_t vneg_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vneg.f32 D0, D0' * int32x2_t vneg_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vneg.s32 D0, D0' * int16x4_t vneg_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vneg.s16 D0, D0' * int8x8_t vneg_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vneg.s8 D0, D0' * float32x4_t vnegq_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vneg.f32 Q0, Q0' * int32x4_t vnegq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vneg.s32 Q0, Q0' * int16x8_t vnegq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vneg.s16 Q0, Q0' * int8x16_t vnegq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vneg.s8 Q0, Q0' * int32x2_t vqneg_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vqneg.s32 D0, D0' * int16x4_t vqneg_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vqneg.s16 D0, D0' * int8x8_t vqneg_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vqneg.s8 D0, D0' * int32x4_t vqnegq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vqneg.s32 Q0, Q0' * int16x8_t vqnegq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vqneg.s16 Q0, Q0' * int8x16_t vqnegq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vqneg.s8 Q0, Q0' 6.56.3.40 Bitwise not ..................... * uint32x2_t vmvn_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * uint16x4_t vmvn_u16 (uint16x4_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * uint8x8_t vmvn_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * int32x2_t vmvn_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * int16x4_t vmvn_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * int8x8_t vmvn_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * poly8x8_t vmvn_p8 (poly8x8_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * uint32x4_t vmvnq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' * uint16x8_t vmvnq_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' * uint8x16_t vmvnq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' * int32x4_t vmvnq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' * int16x8_t vmvnq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' * int8x16_t vmvnq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' * poly8x16_t vmvnq_p8 (poly8x16_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' 6.56.3.41 Count leading sign bits ................................. * int32x2_t vcls_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vcls.s32 D0, D0' * int16x4_t vcls_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vcls.s16 D0, D0' * int8x8_t vcls_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vcls.s8 D0, D0' * int32x4_t vclsq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vcls.s32 Q0, Q0' * int16x8_t vclsq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vcls.s16 Q0, Q0' * int8x16_t vclsq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vcls.s8 Q0, Q0' 6.56.3.42 Count leading zeros ............................. * uint32x2_t vclz_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vclz.i32 D0, D0' * uint16x4_t vclz_u16 (uint16x4_t) ! _Form of expected instruction(s):_ `vclz.i16 D0, D0' * uint8x8_t vclz_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vclz.i8 D0, D0' * int32x2_t vclz_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vclz.i32 D0, D0' * int16x4_t vclz_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vclz.i16 D0, D0' * int8x8_t vclz_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vclz.i8 D0, D0' * uint32x4_t vclzq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vclz.i32 Q0, Q0' * uint16x8_t vclzq_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vclz.i16 Q0, Q0' * uint8x16_t vclzq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vclz.i8 Q0, Q0' * int32x4_t vclzq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vclz.i32 Q0, Q0' * int16x8_t vclzq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vclz.i16 Q0, Q0' * int8x16_t vclzq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vclz.i8 Q0, Q0' 6.56.3.43 Count number of set bits .................................. * uint8x8_t vcnt_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vcnt.8 D0, D0' * int8x8_t vcnt_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vcnt.8 D0, D0' * poly8x8_t vcnt_p8 (poly8x8_t) ! _Form of expected instruction(s):_ `vcnt.8 D0, D0' * uint8x16_t vcntq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vcnt.8 Q0, Q0' * int8x16_t vcntq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vcnt.8 Q0, Q0' * poly8x16_t vcntq_p8 (poly8x16_t) ! _Form of expected instruction(s):_ `vcnt.8 Q0, Q0' 6.56.3.44 Reciprocal estimate ............................. * float32x2_t vrecpe_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrecpe.f32 D0, D0' * uint32x2_t vrecpe_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vrecpe.u32 D0, D0' * float32x4_t vrecpeq_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrecpe.f32 Q0, Q0' * uint32x4_t vrecpeq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vrecpe.u32 Q0, Q0' 6.56.3.45 Reciprocal square-root estimate ......................................... * float32x2_t vrsqrte_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrsqrte.f32 D0, D0' * uint32x2_t vrsqrte_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vrsqrte.u32 D0, D0' * float32x4_t vrsqrteq_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrsqrte.f32 Q0, Q0' * uint32x4_t vrsqrteq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vrsqrte.u32 Q0, Q0' 6.56.3.46 Get lanes from a vector ................................. * uint32_t vget_lane_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmov.32 R0, D0[0]' * uint16_t vget_lane_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmov.u16 R0, D0[0]' * uint8_t vget_lane_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vmov.u8 R0, D0[0]' * int32_t vget_lane_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vmov.32 R0, D0[0]' * int16_t vget_lane_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vmov.s16 R0, D0[0]' * int8_t vget_lane_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vmov.s8 R0, D0[0]' * float32_t vget_lane_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ `vmov.32 R0, D0[0]' * poly16_t vget_lane_p16 (poly16x4_t, const int) ! _Form of expected instruction(s):_ `vmov.u16 R0, D0[0]' * poly8_t vget_lane_p8 (poly8x8_t, const int) ! _Form of expected instruction(s):_ `vmov.u8 R0, D0[0]' * uint64_t vget_lane_u64 (uint64x1_t, const int) * int64_t vget_lane_s64 (int64x1_t, const int) * uint32_t vgetq_lane_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vmov.32 R0, D0[0]' * uint16_t vgetq_lane_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vmov.u16 R0, D0[0]' * uint8_t vgetq_lane_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ `vmov.u8 R0, D0[0]' * int32_t vgetq_lane_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vmov.32 R0, D0[0]' * int16_t vgetq_lane_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vmov.s16 R0, D0[0]' * int8_t vgetq_lane_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ `vmov.s8 R0, D0[0]' * float32_t vgetq_lane_f32 (float32x4_t, const int) ! _Form of expected instruction(s):_ `vmov.32 R0, D0[0]' * poly16_t vgetq_lane_p16 (poly16x8_t, const int) ! _Form of expected instruction(s):_ `vmov.u16 R0, D0[0]' * poly8_t vgetq_lane_p8 (poly8x16_t, const int) ! _Form of expected instruction(s):_ `vmov.u8 R0, D0[0]' * uint64_t vgetq_lane_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vmov R0, R0, D0' _or_ `fmrrd R0, R0, D0' * int64_t vgetq_lane_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vmov R0, R0, D0' _or_ `fmrrd R0, R0, D0' 6.56.3.47 Set lanes in a vector ............................... * uint32x2_t vset_lane_u32 (uint32_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmov.32 D0[0], R0' * uint16x4_t vset_lane_u16 (uint16_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmov.16 D0[0], R0' * uint8x8_t vset_lane_u8 (uint8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vmov.8 D0[0], R0' * int32x2_t vset_lane_s32 (int32_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmov.32 D0[0], R0' * int16x4_t vset_lane_s16 (int16_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmov.16 D0[0], R0' * int8x8_t vset_lane_s8 (int8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ `vmov.8 D0[0], R0' * float32x2_t vset_lane_f32 (float32_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmov.32 D0[0], R0' * poly16x4_t vset_lane_p16 (poly16_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ `vmov.16 D0[0], R0' * poly8x8_t vset_lane_p8 (poly8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ `vmov.8 D0[0], R0' * uint64x1_t vset_lane_u64 (uint64_t, uint64x1_t, const int) * int64x1_t vset_lane_s64 (int64_t, int64x1_t, const int) * uint32x4_t vsetq_lane_u32 (uint32_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vmov.32 D0[0], R0' * uint16x8_t vsetq_lane_u16 (uint16_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vmov.16 D0[0], R0' * uint8x16_t vsetq_lane_u8 (uint8_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vmov.8 D0[0], R0' * int32x4_t vsetq_lane_s32 (int32_t, int32x4_t, const int) ! _Form of expected instruction(s):_ `vmov.32 D0[0], R0' * int16x8_t vsetq_lane_s16 (int16_t, int16x8_t, const int) ! _Form of expected instruction(s):_ `vmov.16 D0[0], R0' * int8x16_t vsetq_lane_s8 (int8_t, int8x16_t, const int) ! _Form of expected instruction(s):_ `vmov.8 D0[0], R0' * float32x4_t vsetq_lane_f32 (float32_t, float32x4_t, const int) ! _Form of expected instruction(s):_ `vmov.32 D0[0], R0' * poly16x8_t vsetq_lane_p16 (poly16_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ `vmov.16 D0[0], R0' * poly8x16_t vsetq_lane_p8 (poly8_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ `vmov.8 D0[0], R0' * uint64x2_t vsetq_lane_u64 (uint64_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vmov D0, R0, R0' * int64x2_t vsetq_lane_s64 (int64_t, int64x2_t, const int) ! _Form of expected instruction(s):_ `vmov D0, R0, R0' 6.56.3.48 Create vector from literal bit pattern ................................................ --- 30089,32672 ---- -------------------------- These built-in intrinsics for the ARM Advanced SIMD extension are ! available when the '-mfpu=neon' switch is used: 6.56.3.1 Addition ................. * uint32x2_t vadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vadd.i32 D0, D0, D0' * uint16x4_t vadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vadd.i16 D0, D0, D0' * uint8x8_t vadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vadd.i8 D0, D0, D0' * int32x2_t vadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vadd.i32 D0, D0, D0' * int16x4_t vadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vadd.i16 D0, D0, D0' * int8x8_t vadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vadd.i8 D0, D0, D0' * float32x2_t vadd_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vadd.f32 D0, D0, D0' * uint64x1_t vadd_u64 (uint64x1_t, uint64x1_t) * int64x1_t vadd_s64 (int64x1_t, int64x1_t) * uint32x4_t vaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vadd.i32 Q0, Q0, Q0' * uint16x8_t vaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vadd.i16 Q0, Q0, Q0' * uint8x16_t vaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vadd.i8 Q0, Q0, Q0' * int32x4_t vaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vadd.i32 Q0, Q0, Q0' * int16x8_t vaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vadd.i16 Q0, Q0, Q0' * int8x16_t vaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vadd.i8 Q0, Q0, Q0' * uint64x2_t vaddq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vadd.i64 Q0, Q0, Q0' * int64x2_t vaddq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vadd.i64 Q0, Q0, Q0' * float32x4_t vaddq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vadd.f32 Q0, Q0, Q0' * uint64x2_t vaddl_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vaddl.u32 Q0, D0, D0' * uint32x4_t vaddl_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vaddl.u16 Q0, D0, D0' * uint16x8_t vaddl_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vaddl.u8 Q0, D0, D0' * int64x2_t vaddl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vaddl.s32 Q0, D0, D0' * int32x4_t vaddl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vaddl.s16 Q0, D0, D0' * int16x8_t vaddl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vaddl.s8 Q0, D0, D0' * uint64x2_t vaddw_u32 (uint64x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vaddw.u32 Q0, Q0, D0' * uint32x4_t vaddw_u16 (uint32x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vaddw.u16 Q0, Q0, D0' * uint16x8_t vaddw_u8 (uint16x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vaddw.u8 Q0, Q0, D0' * int64x2_t vaddw_s32 (int64x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vaddw.s32 Q0, Q0, D0' * int32x4_t vaddw_s16 (int32x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vaddw.s16 Q0, Q0, D0' * int16x8_t vaddw_s8 (int16x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vaddw.s8 Q0, Q0, D0' * uint32x2_t vhadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vhadd.u32 D0, D0, D0' * uint16x4_t vhadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vhadd.u16 D0, D0, D0' * uint8x8_t vhadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vhadd.u8 D0, D0, D0' * int32x2_t vhadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vhadd.s32 D0, D0, D0' * int16x4_t vhadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vhadd.s16 D0, D0, D0' * int8x8_t vhadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vhadd.s8 D0, D0, D0' * uint32x4_t vhaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vhadd.u32 Q0, Q0, Q0' * uint16x8_t vhaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vhadd.u16 Q0, Q0, Q0' * uint8x16_t vhaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vhadd.u8 Q0, Q0, Q0' * int32x4_t vhaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vhadd.s32 Q0, Q0, Q0' * int16x8_t vhaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vhadd.s16 Q0, Q0, Q0' * int8x16_t vhaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vhadd.s8 Q0, Q0, Q0' * uint32x2_t vrhadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vrhadd.u32 D0, D0, D0' * uint16x4_t vrhadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vrhadd.u16 D0, D0, D0' * uint8x8_t vrhadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vrhadd.u8 D0, D0, D0' * int32x2_t vrhadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vrhadd.s32 D0, D0, D0' * int16x4_t vrhadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vrhadd.s16 D0, D0, D0' * int8x8_t vrhadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vrhadd.s8 D0, D0, D0' * uint32x4_t vrhaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vrhadd.u32 Q0, Q0, Q0' * uint16x8_t vrhaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vrhadd.u16 Q0, Q0, Q0' * uint8x16_t vrhaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vrhadd.u8 Q0, Q0, Q0' * int32x4_t vrhaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vrhadd.s32 Q0, Q0, Q0' * int16x8_t vrhaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vrhadd.s16 Q0, Q0, Q0' * int8x16_t vrhaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vrhadd.s8 Q0, Q0, Q0' * uint32x2_t vqadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vqadd.u32 D0, D0, D0' * uint16x4_t vqadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vqadd.u16 D0, D0, D0' * uint8x8_t vqadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vqadd.u8 D0, D0, D0' * int32x2_t vqadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqadd.s32 D0, D0, D0' * int16x4_t vqadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqadd.s16 D0, D0, D0' * int8x8_t vqadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vqadd.s8 D0, D0, D0' * uint64x1_t vqadd_u64 (uint64x1_t, uint64x1_t) ! _Form of expected instruction(s):_ 'vqadd.u64 D0, D0, D0' * int64x1_t vqadd_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vqadd.s64 D0, D0, D0' * uint32x4_t vqaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vqadd.u32 Q0, Q0, Q0' * uint16x8_t vqaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vqadd.u16 Q0, Q0, Q0' * uint8x16_t vqaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vqadd.u8 Q0, Q0, Q0' * int32x4_t vqaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqadd.s32 Q0, Q0, Q0' * int16x8_t vqaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqadd.s16 Q0, Q0, Q0' * int8x16_t vqaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vqadd.s8 Q0, Q0, Q0' * uint64x2_t vqaddq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vqadd.u64 Q0, Q0, Q0' * int64x2_t vqaddq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vqadd.s64 Q0, Q0, Q0' * uint32x2_t vaddhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vaddhn.i64 D0, Q0, Q0' * uint16x4_t vaddhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vaddhn.i32 D0, Q0, Q0' * uint8x8_t vaddhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vaddhn.i16 D0, Q0, Q0' * int32x2_t vaddhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vaddhn.i64 D0, Q0, Q0' * int16x4_t vaddhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vaddhn.i32 D0, Q0, Q0' * int8x8_t vaddhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vaddhn.i16 D0, Q0, Q0' * uint32x2_t vraddhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vraddhn.i64 D0, Q0, Q0' * uint16x4_t vraddhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vraddhn.i32 D0, Q0, Q0' * uint8x8_t vraddhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vraddhn.i16 D0, Q0, Q0' * int32x2_t vraddhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vraddhn.i64 D0, Q0, Q0' * int16x4_t vraddhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vraddhn.i32 D0, Q0, Q0' * int8x8_t vraddhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vraddhn.i16 D0, Q0, Q0' 6.56.3.2 Multiplication ....................... * uint32x2_t vmul_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0' * uint16x4_t vmul_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0' * uint8x8_t vmul_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmul.i8 D0, D0, D0' * int32x2_t vmul_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0' * int16x4_t vmul_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0' * int8x8_t vmul_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmul.i8 D0, D0, D0' * float32x2_t vmul_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vmul.f32 D0, D0, D0' * poly8x8_t vmul_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vmul.p8 D0, D0, D0' * uint32x4_t vmulq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, Q0' * uint16x8_t vmulq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, Q0' * uint8x16_t vmulq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vmul.i8 Q0, Q0, Q0' * int32x4_t vmulq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, Q0' * int16x8_t vmulq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, Q0' * int8x16_t vmulq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vmul.i8 Q0, Q0, Q0' * float32x4_t vmulq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vmul.f32 Q0, Q0, Q0' * poly8x16_t vmulq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vmul.p8 Q0, Q0, Q0' * int32x2_t vqdmulh_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqdmulh.s32 D0, D0, D0' * int16x4_t vqdmulh_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqdmulh.s16 D0, D0, D0' * int32x4_t vqdmulhq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqdmulh.s32 Q0, Q0, Q0' * int16x8_t vqdmulhq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqdmulh.s16 Q0, Q0, Q0' * int32x2_t vqrdmulh_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s32 D0, D0, D0' * int16x4_t vqrdmulh_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s16 D0, D0, D0' * int32x4_t vqrdmulhq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s32 Q0, Q0, Q0' * int16x8_t vqrdmulhq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s16 Q0, Q0, Q0' * uint64x2_t vmull_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmull.u32 Q0, D0, D0' * uint32x4_t vmull_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmull.u16 Q0, D0, D0' * uint16x8_t vmull_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmull.u8 Q0, D0, D0' * int64x2_t vmull_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmull.s32 Q0, D0, D0' * int32x4_t vmull_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmull.s16 Q0, D0, D0' * int16x8_t vmull_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmull.s8 Q0, D0, D0' * poly16x8_t vmull_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vmull.p8 Q0, D0, D0' * int64x2_t vqdmull_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqdmull.s32 Q0, D0, D0' * int32x4_t vqdmull_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqdmull.s16 Q0, D0, D0' 6.56.3.3 Multiply-accumulate ............................ * uint32x2_t vmla_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0' * uint16x4_t vmla_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0' * uint8x8_t vmla_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmla.i8 D0, D0, D0' * int32x2_t vmla_s32 (int32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0' * int16x4_t vmla_s16 (int16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0' * int8x8_t vmla_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmla.i8 D0, D0, D0' * float32x2_t vmla_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vmla.f32 D0, D0, D0' * uint32x4_t vmlaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, Q0' * uint16x8_t vmlaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, Q0' * uint8x16_t vmlaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vmla.i8 Q0, Q0, Q0' * int32x4_t vmlaq_s32 (int32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, Q0' * int16x8_t vmlaq_s16 (int16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, Q0' * int8x16_t vmlaq_s8 (int8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vmla.i8 Q0, Q0, Q0' * float32x4_t vmlaq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vmla.f32 Q0, Q0, Q0' * uint64x2_t vmlal_u32 (uint64x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmlal.u32 Q0, D0, D0' * uint32x4_t vmlal_u16 (uint32x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmlal.u16 Q0, D0, D0' * uint16x8_t vmlal_u8 (uint16x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmlal.u8 Q0, D0, D0' * int64x2_t vmlal_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmlal.s32 Q0, D0, D0' * int32x4_t vmlal_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmlal.s16 Q0, D0, D0' * int16x8_t vmlal_s8 (int16x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmlal.s8 Q0, D0, D0' * int64x2_t vqdmlal_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqdmlal.s32 Q0, D0, D0' * int32x4_t vqdmlal_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqdmlal.s16 Q0, D0, D0' 6.56.3.4 Multiply-subtract .......................... * uint32x2_t vmls_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0' * uint16x4_t vmls_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0' * uint8x8_t vmls_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmls.i8 D0, D0, D0' * int32x2_t vmls_s32 (int32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0' * int16x4_t vmls_s16 (int16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0' * int8x8_t vmls_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmls.i8 D0, D0, D0' * float32x2_t vmls_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vmls.f32 D0, D0, D0' * uint32x4_t vmlsq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, Q0' * uint16x8_t vmlsq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, Q0' * uint8x16_t vmlsq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vmls.i8 Q0, Q0, Q0' * int32x4_t vmlsq_s32 (int32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, Q0' * int16x8_t vmlsq_s16 (int16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, Q0' * int8x16_t vmlsq_s8 (int8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vmls.i8 Q0, Q0, Q0' * float32x4_t vmlsq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vmls.f32 Q0, Q0, Q0' * uint64x2_t vmlsl_u32 (uint64x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmlsl.u32 Q0, D0, D0' * uint32x4_t vmlsl_u16 (uint32x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmlsl.u16 Q0, D0, D0' * uint16x8_t vmlsl_u8 (uint16x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmlsl.u8 Q0, D0, D0' * int64x2_t vmlsl_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmlsl.s32 Q0, D0, D0' * int32x4_t vmlsl_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmlsl.s16 Q0, D0, D0' * int16x8_t vmlsl_s8 (int16x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmlsl.s8 Q0, D0, D0' * int64x2_t vqdmlsl_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqdmlsl.s32 Q0, D0, D0' * int32x4_t vqdmlsl_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqdmlsl.s16 Q0, D0, D0' 6.56.3.5 Fused-multiply-accumulate .................................. * float32x2_t vfma_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vfma.f32 D0, D0, D0' * float32x4_t vfmaq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vfma.f32 Q0, Q0, Q0' 6.56.3.6 Fused-multiply-subtract ................................ * float32x2_t vfms_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vfms.f32 D0, D0, D0' * float32x4_t vfmsq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vfms.f32 Q0, Q0, Q0' 6.56.3.7 Round to integral (to nearest, ties to even) ..................................................... * float32x2_t vrndn_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrintn.f32 D0, D0' * float32x4_t vrndqn_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrintn.f32 Q0, Q0' 6.56.3.8 Round to integral (to nearest, ties away from zero) ............................................................ * float32x2_t vrnda_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrinta.f32 D0, D0' * float32x4_t vrndqa_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrinta.f32 Q0, Q0' 6.56.3.9 Round to integral (towards +Inf) ......................................... * float32x2_t vrndp_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrintp.f32 D0, D0' * float32x4_t vrndqp_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrintp.f32 Q0, Q0' 6.56.3.10 Round to integral (towards -Inf) .......................................... * float32x2_t vrndm_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrintm.f32 D0, D0' * float32x4_t vrndqm_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrintm.f32 Q0, Q0' 6.56.3.11 Round to integral (towards 0) ....................................... * float32x2_t vrnd_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrintz.f32 D0, D0' * float32x4_t vrndq_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrintz.f32 Q0, Q0' 6.56.3.12 Subtraction ..................... * uint32x2_t vsub_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vsub.i32 D0, D0, D0' * uint16x4_t vsub_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vsub.i16 D0, D0, D0' * uint8x8_t vsub_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vsub.i8 D0, D0, D0' * int32x2_t vsub_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vsub.i32 D0, D0, D0' * int16x4_t vsub_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vsub.i16 D0, D0, D0' * int8x8_t vsub_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vsub.i8 D0, D0, D0' * float32x2_t vsub_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vsub.f32 D0, D0, D0' * uint64x1_t vsub_u64 (uint64x1_t, uint64x1_t) * int64x1_t vsub_s64 (int64x1_t, int64x1_t) * uint32x4_t vsubq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vsub.i32 Q0, Q0, Q0' * uint16x8_t vsubq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vsub.i16 Q0, Q0, Q0' * uint8x16_t vsubq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vsub.i8 Q0, Q0, Q0' * int32x4_t vsubq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vsub.i32 Q0, Q0, Q0' * int16x8_t vsubq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vsub.i16 Q0, Q0, Q0' * int8x16_t vsubq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vsub.i8 Q0, Q0, Q0' * uint64x2_t vsubq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vsub.i64 Q0, Q0, Q0' * int64x2_t vsubq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vsub.i64 Q0, Q0, Q0' * float32x4_t vsubq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vsub.f32 Q0, Q0, Q0' * uint64x2_t vsubl_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vsubl.u32 Q0, D0, D0' * uint32x4_t vsubl_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vsubl.u16 Q0, D0, D0' * uint16x8_t vsubl_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vsubl.u8 Q0, D0, D0' * int64x2_t vsubl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vsubl.s32 Q0, D0, D0' * int32x4_t vsubl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vsubl.s16 Q0, D0, D0' * int16x8_t vsubl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vsubl.s8 Q0, D0, D0' * uint64x2_t vsubw_u32 (uint64x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vsubw.u32 Q0, Q0, D0' * uint32x4_t vsubw_u16 (uint32x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vsubw.u16 Q0, Q0, D0' * uint16x8_t vsubw_u8 (uint16x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vsubw.u8 Q0, Q0, D0' * int64x2_t vsubw_s32 (int64x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vsubw.s32 Q0, Q0, D0' * int32x4_t vsubw_s16 (int32x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vsubw.s16 Q0, Q0, D0' * int16x8_t vsubw_s8 (int16x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vsubw.s8 Q0, Q0, D0' * uint32x2_t vhsub_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vhsub.u32 D0, D0, D0' * uint16x4_t vhsub_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vhsub.u16 D0, D0, D0' * uint8x8_t vhsub_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vhsub.u8 D0, D0, D0' * int32x2_t vhsub_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vhsub.s32 D0, D0, D0' * int16x4_t vhsub_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vhsub.s16 D0, D0, D0' * int8x8_t vhsub_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vhsub.s8 D0, D0, D0' * uint32x4_t vhsubq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vhsub.u32 Q0, Q0, Q0' * uint16x8_t vhsubq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vhsub.u16 Q0, Q0, Q0' * uint8x16_t vhsubq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vhsub.u8 Q0, Q0, Q0' * int32x4_t vhsubq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vhsub.s32 Q0, Q0, Q0' * int16x8_t vhsubq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vhsub.s16 Q0, Q0, Q0' * int8x16_t vhsubq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vhsub.s8 Q0, Q0, Q0' * uint32x2_t vqsub_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vqsub.u32 D0, D0, D0' * uint16x4_t vqsub_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vqsub.u16 D0, D0, D0' * uint8x8_t vqsub_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vqsub.u8 D0, D0, D0' * int32x2_t vqsub_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqsub.s32 D0, D0, D0' * int16x4_t vqsub_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqsub.s16 D0, D0, D0' * int8x8_t vqsub_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vqsub.s8 D0, D0, D0' * uint64x1_t vqsub_u64 (uint64x1_t, uint64x1_t) ! _Form of expected instruction(s):_ 'vqsub.u64 D0, D0, D0' * int64x1_t vqsub_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vqsub.s64 D0, D0, D0' * uint32x4_t vqsubq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vqsub.u32 Q0, Q0, Q0' * uint16x8_t vqsubq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vqsub.u16 Q0, Q0, Q0' * uint8x16_t vqsubq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vqsub.u8 Q0, Q0, Q0' * int32x4_t vqsubq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqsub.s32 Q0, Q0, Q0' * int16x8_t vqsubq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqsub.s16 Q0, Q0, Q0' * int8x16_t vqsubq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vqsub.s8 Q0, Q0, Q0' * uint64x2_t vqsubq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vqsub.u64 Q0, Q0, Q0' * int64x2_t vqsubq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vqsub.s64 Q0, Q0, Q0' * uint32x2_t vsubhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vsubhn.i64 D0, Q0, Q0' * uint16x4_t vsubhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vsubhn.i32 D0, Q0, Q0' * uint8x8_t vsubhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vsubhn.i16 D0, Q0, Q0' * int32x2_t vsubhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vsubhn.i64 D0, Q0, Q0' * int16x4_t vsubhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vsubhn.i32 D0, Q0, Q0' * int8x8_t vsubhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vsubhn.i16 D0, Q0, Q0' * uint32x2_t vrsubhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vrsubhn.i64 D0, Q0, Q0' * uint16x4_t vrsubhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vrsubhn.i32 D0, Q0, Q0' * uint8x8_t vrsubhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vrsubhn.i16 D0, Q0, Q0' * int32x2_t vrsubhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vrsubhn.i64 D0, Q0, Q0' * int16x4_t vrsubhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vrsubhn.i32 D0, Q0, Q0' * int8x8_t vrsubhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vrsubhn.i16 D0, Q0, Q0' 6.56.3.13 Comparison (equal-to) ............................... * uint32x2_t vceq_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vceq.i32 D0, D0, D0' * uint16x4_t vceq_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vceq.i16 D0, D0, D0' * uint8x8_t vceq_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vceq.i8 D0, D0, D0' * uint32x2_t vceq_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vceq.i32 D0, D0, D0' * uint16x4_t vceq_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vceq.i16 D0, D0, D0' * uint8x8_t vceq_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vceq.i8 D0, D0, D0' * uint32x2_t vceq_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vceq.f32 D0, D0, D0' * uint8x8_t vceq_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vceq.i8 D0, D0, D0' * uint32x4_t vceqq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vceq.i32 Q0, Q0, Q0' * uint16x8_t vceqq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vceq.i16 Q0, Q0, Q0' * uint8x16_t vceqq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vceq.i8 Q0, Q0, Q0' * uint32x4_t vceqq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vceq.i32 Q0, Q0, Q0' * uint16x8_t vceqq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vceq.i16 Q0, Q0, Q0' * uint8x16_t vceqq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vceq.i8 Q0, Q0, Q0' * uint32x4_t vceqq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vceq.f32 Q0, Q0, Q0' * uint8x16_t vceqq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vceq.i8 Q0, Q0, Q0' 6.56.3.14 Comparison (greater-than-or-equal-to) ............................................... * uint32x2_t vcge_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vcge.s32 D0, D0, D0' * uint16x4_t vcge_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vcge.s16 D0, D0, D0' * uint8x8_t vcge_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vcge.s8 D0, D0, D0' * uint32x2_t vcge_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vcge.f32 D0, D0, D0' * uint32x2_t vcge_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vcge.u32 D0, D0, D0' * uint16x4_t vcge_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vcge.u16 D0, D0, D0' * uint8x8_t vcge_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vcge.u8 D0, D0, D0' * uint32x4_t vcgeq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vcge.s32 Q0, Q0, Q0' * uint16x8_t vcgeq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vcge.s16 Q0, Q0, Q0' * uint8x16_t vcgeq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vcge.s8 Q0, Q0, Q0' * uint32x4_t vcgeq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vcge.f32 Q0, Q0, Q0' * uint32x4_t vcgeq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vcge.u32 Q0, Q0, Q0' * uint16x8_t vcgeq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vcge.u16 Q0, Q0, Q0' * uint8x16_t vcgeq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vcge.u8 Q0, Q0, Q0' 6.56.3.15 Comparison (less-than-or-equal-to) ............................................ * uint32x2_t vcle_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vcge.s32 D0, D0, D0' * uint16x4_t vcle_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vcge.s16 D0, D0, D0' * uint8x8_t vcle_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vcge.s8 D0, D0, D0' * uint32x2_t vcle_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vcge.f32 D0, D0, D0' * uint32x2_t vcle_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vcge.u32 D0, D0, D0' * uint16x4_t vcle_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vcge.u16 D0, D0, D0' * uint8x8_t vcle_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vcge.u8 D0, D0, D0' * uint32x4_t vcleq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vcge.s32 Q0, Q0, Q0' * uint16x8_t vcleq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vcge.s16 Q0, Q0, Q0' * uint8x16_t vcleq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vcge.s8 Q0, Q0, Q0' * uint32x4_t vcleq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vcge.f32 Q0, Q0, Q0' * uint32x4_t vcleq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vcge.u32 Q0, Q0, Q0' * uint16x8_t vcleq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vcge.u16 Q0, Q0, Q0' * uint8x16_t vcleq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vcge.u8 Q0, Q0, Q0' 6.56.3.16 Comparison (greater-than) ................................... * uint32x2_t vcgt_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vcgt.s32 D0, D0, D0' * uint16x4_t vcgt_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vcgt.s16 D0, D0, D0' * uint8x8_t vcgt_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vcgt.s8 D0, D0, D0' * uint32x2_t vcgt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vcgt.f32 D0, D0, D0' * uint32x2_t vcgt_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vcgt.u32 D0, D0, D0' * uint16x4_t vcgt_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vcgt.u16 D0, D0, D0' * uint8x8_t vcgt_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vcgt.u8 D0, D0, D0' * uint32x4_t vcgtq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vcgt.s32 Q0, Q0, Q0' * uint16x8_t vcgtq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vcgt.s16 Q0, Q0, Q0' * uint8x16_t vcgtq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vcgt.s8 Q0, Q0, Q0' * uint32x4_t vcgtq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vcgt.f32 Q0, Q0, Q0' * uint32x4_t vcgtq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vcgt.u32 Q0, Q0, Q0' * uint16x8_t vcgtq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vcgt.u16 Q0, Q0, Q0' * uint8x16_t vcgtq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vcgt.u8 Q0, Q0, Q0' 6.56.3.17 Comparison (less-than) ................................ * uint32x2_t vclt_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vcgt.s32 D0, D0, D0' * uint16x4_t vclt_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vcgt.s16 D0, D0, D0' * uint8x8_t vclt_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vcgt.s8 D0, D0, D0' * uint32x2_t vclt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vcgt.f32 D0, D0, D0' * uint32x2_t vclt_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vcgt.u32 D0, D0, D0' * uint16x4_t vclt_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vcgt.u16 D0, D0, D0' * uint8x8_t vclt_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vcgt.u8 D0, D0, D0' * uint32x4_t vcltq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vcgt.s32 Q0, Q0, Q0' * uint16x8_t vcltq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vcgt.s16 Q0, Q0, Q0' * uint8x16_t vcltq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vcgt.s8 Q0, Q0, Q0' * uint32x4_t vcltq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vcgt.f32 Q0, Q0, Q0' * uint32x4_t vcltq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vcgt.u32 Q0, Q0, Q0' * uint16x8_t vcltq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vcgt.u16 Q0, Q0, Q0' * uint8x16_t vcltq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vcgt.u8 Q0, Q0, Q0' 6.56.3.18 Comparison (absolute greater-than-or-equal-to) ........................................................ * uint32x2_t vcage_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vacge.f32 D0, D0, D0' * uint32x4_t vcageq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vacge.f32 Q0, Q0, Q0' 6.56.3.19 Comparison (absolute less-than-or-equal-to) ..................................................... * uint32x2_t vcale_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vacge.f32 D0, D0, D0' * uint32x4_t vcaleq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vacge.f32 Q0, Q0, Q0' 6.56.3.20 Comparison (absolute greater-than) ............................................ * uint32x2_t vcagt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vacgt.f32 D0, D0, D0' * uint32x4_t vcagtq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vacgt.f32 Q0, Q0, Q0' 6.56.3.21 Comparison (absolute less-than) ......................................... * uint32x2_t vcalt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vacgt.f32 D0, D0, D0' * uint32x4_t vcaltq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vacgt.f32 Q0, Q0, Q0' 6.56.3.22 Test bits ................... * uint32x2_t vtst_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vtst.32 D0, D0, D0' * uint16x4_t vtst_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vtst.16 D0, D0, D0' * uint8x8_t vtst_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtst.8 D0, D0, D0' * uint32x2_t vtst_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vtst.32 D0, D0, D0' * uint16x4_t vtst_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vtst.16 D0, D0, D0' * uint8x8_t vtst_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtst.8 D0, D0, D0' * uint8x8_t vtst_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vtst.8 D0, D0, D0' * uint32x4_t vtstq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vtst.32 Q0, Q0, Q0' * uint16x8_t vtstq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vtst.16 Q0, Q0, Q0' * uint8x16_t vtstq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vtst.8 Q0, Q0, Q0' * uint32x4_t vtstq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vtst.32 Q0, Q0, Q0' * uint16x8_t vtstq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vtst.16 Q0, Q0, Q0' * uint8x16_t vtstq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vtst.8 Q0, Q0, Q0' * uint8x16_t vtstq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vtst.8 Q0, Q0, Q0' 6.56.3.23 Absolute difference ............................. * uint32x2_t vabd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vabd.u32 D0, D0, D0' * uint16x4_t vabd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vabd.u16 D0, D0, D0' * uint8x8_t vabd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vabd.u8 D0, D0, D0' * int32x2_t vabd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vabd.s32 D0, D0, D0' * int16x4_t vabd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vabd.s16 D0, D0, D0' * int8x8_t vabd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vabd.s8 D0, D0, D0' * float32x2_t vabd_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vabd.f32 D0, D0, D0' * uint32x4_t vabdq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vabd.u32 Q0, Q0, Q0' * uint16x8_t vabdq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vabd.u16 Q0, Q0, Q0' * uint8x16_t vabdq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vabd.u8 Q0, Q0, Q0' * int32x4_t vabdq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vabd.s32 Q0, Q0, Q0' * int16x8_t vabdq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vabd.s16 Q0, Q0, Q0' * int8x16_t vabdq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vabd.s8 Q0, Q0, Q0' * float32x4_t vabdq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vabd.f32 Q0, Q0, Q0' * uint64x2_t vabdl_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vabdl.u32 Q0, D0, D0' * uint32x4_t vabdl_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vabdl.u16 Q0, D0, D0' * uint16x8_t vabdl_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vabdl.u8 Q0, D0, D0' * int64x2_t vabdl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vabdl.s32 Q0, D0, D0' * int32x4_t vabdl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vabdl.s16 Q0, D0, D0' * int16x8_t vabdl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vabdl.s8 Q0, D0, D0' 6.56.3.24 Absolute difference and accumulate ............................................ * uint32x2_t vaba_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vaba.u32 D0, D0, D0' * uint16x4_t vaba_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vaba.u16 D0, D0, D0' * uint8x8_t vaba_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vaba.u8 D0, D0, D0' * int32x2_t vaba_s32 (int32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vaba.s32 D0, D0, D0' * int16x4_t vaba_s16 (int16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vaba.s16 D0, D0, D0' * int8x8_t vaba_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vaba.s8 D0, D0, D0' * uint32x4_t vabaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vaba.u32 Q0, Q0, Q0' * uint16x8_t vabaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vaba.u16 Q0, Q0, Q0' * uint8x16_t vabaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vaba.u8 Q0, Q0, Q0' * int32x4_t vabaq_s32 (int32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vaba.s32 Q0, Q0, Q0' * int16x8_t vabaq_s16 (int16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vaba.s16 Q0, Q0, Q0' * int8x16_t vabaq_s8 (int8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vaba.s8 Q0, Q0, Q0' * uint64x2_t vabal_u32 (uint64x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vabal.u32 Q0, D0, D0' * uint32x4_t vabal_u16 (uint32x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vabal.u16 Q0, D0, D0' * uint16x8_t vabal_u8 (uint16x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vabal.u8 Q0, D0, D0' * int64x2_t vabal_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vabal.s32 Q0, D0, D0' * int32x4_t vabal_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vabal.s16 Q0, D0, D0' * int16x8_t vabal_s8 (int16x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vabal.s8 Q0, D0, D0' 6.56.3.25 Maximum ................. * uint32x2_t vmax_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmax.u32 D0, D0, D0' * uint16x4_t vmax_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmax.u16 D0, D0, D0' * uint8x8_t vmax_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmax.u8 D0, D0, D0' * int32x2_t vmax_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmax.s32 D0, D0, D0' * int16x4_t vmax_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmax.s16 D0, D0, D0' * int8x8_t vmax_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmax.s8 D0, D0, D0' * float32x2_t vmax_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vmax.f32 D0, D0, D0' * uint32x4_t vmaxq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vmax.u32 Q0, Q0, Q0' * uint16x8_t vmaxq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vmax.u16 Q0, Q0, Q0' * uint8x16_t vmaxq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vmax.u8 Q0, Q0, Q0' * int32x4_t vmaxq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vmax.s32 Q0, Q0, Q0' * int16x8_t vmaxq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vmax.s16 Q0, Q0, Q0' * int8x16_t vmaxq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vmax.s8 Q0, Q0, Q0' * float32x4_t vmaxq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vmax.f32 Q0, Q0, Q0' 6.56.3.26 Minimum ................. * uint32x2_t vmin_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmin.u32 D0, D0, D0' * uint16x4_t vmin_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmin.u16 D0, D0, D0' * uint8x8_t vmin_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmin.u8 D0, D0, D0' * int32x2_t vmin_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmin.s32 D0, D0, D0' * int16x4_t vmin_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmin.s16 D0, D0, D0' * int8x8_t vmin_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmin.s8 D0, D0, D0' * float32x2_t vmin_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vmin.f32 D0, D0, D0' * uint32x4_t vminq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vmin.u32 Q0, Q0, Q0' * uint16x8_t vminq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vmin.u16 Q0, Q0, Q0' * uint8x16_t vminq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vmin.u8 Q0, Q0, Q0' * int32x4_t vminq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vmin.s32 Q0, Q0, Q0' * int16x8_t vminq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vmin.s16 Q0, Q0, Q0' * int8x16_t vminq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vmin.s8 Q0, Q0, Q0' * float32x4_t vminq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vmin.f32 Q0, Q0, Q0' 6.56.3.27 Pairwise add ...................... * uint32x2_t vpadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vpadd.i32 D0, D0, D0' * uint16x4_t vpadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vpadd.i16 D0, D0, D0' * uint8x8_t vpadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vpadd.i8 D0, D0, D0' * int32x2_t vpadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vpadd.i32 D0, D0, D0' * int16x4_t vpadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vpadd.i16 D0, D0, D0' * int8x8_t vpadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vpadd.i8 D0, D0, D0' * float32x2_t vpadd_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vpadd.f32 D0, D0, D0' * uint64x1_t vpaddl_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vpaddl.u32 D0, D0' * uint32x2_t vpaddl_u16 (uint16x4_t) ! _Form of expected instruction(s):_ 'vpaddl.u16 D0, D0' * uint16x4_t vpaddl_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vpaddl.u8 D0, D0' * int64x1_t vpaddl_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vpaddl.s32 D0, D0' * int32x2_t vpaddl_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vpaddl.s16 D0, D0' * int16x4_t vpaddl_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vpaddl.s8 D0, D0' * uint64x2_t vpaddlq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vpaddl.u32 Q0, Q0' * uint32x4_t vpaddlq_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vpaddl.u16 Q0, Q0' * uint16x8_t vpaddlq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vpaddl.u8 Q0, Q0' * int64x2_t vpaddlq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vpaddl.s32 Q0, Q0' * int32x4_t vpaddlq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vpaddl.s16 Q0, Q0' * int16x8_t vpaddlq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vpaddl.s8 Q0, Q0' 6.56.3.28 Pairwise add, single_opcode widen and accumulate .......................................................... * uint64x1_t vpadal_u32 (uint64x1_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vpadal.u32 D0, D0' * uint32x2_t vpadal_u16 (uint32x2_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vpadal.u16 D0, D0' * uint16x4_t vpadal_u8 (uint16x4_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vpadal.u8 D0, D0' * int64x1_t vpadal_s32 (int64x1_t, int32x2_t) ! _Form of expected instruction(s):_ 'vpadal.s32 D0, D0' * int32x2_t vpadal_s16 (int32x2_t, int16x4_t) ! _Form of expected instruction(s):_ 'vpadal.s16 D0, D0' * int16x4_t vpadal_s8 (int16x4_t, int8x8_t) ! _Form of expected instruction(s):_ 'vpadal.s8 D0, D0' * uint64x2_t vpadalq_u32 (uint64x2_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vpadal.u32 Q0, Q0' * uint32x4_t vpadalq_u16 (uint32x4_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vpadal.u16 Q0, Q0' * uint16x8_t vpadalq_u8 (uint16x8_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vpadal.u8 Q0, Q0' * int64x2_t vpadalq_s32 (int64x2_t, int32x4_t) ! _Form of expected instruction(s):_ 'vpadal.s32 Q0, Q0' * int32x4_t vpadalq_s16 (int32x4_t, int16x8_t) ! _Form of expected instruction(s):_ 'vpadal.s16 Q0, Q0' * int16x8_t vpadalq_s8 (int16x8_t, int8x16_t) ! _Form of expected instruction(s):_ 'vpadal.s8 Q0, Q0' 6.56.3.29 Folding maximum ......................... * uint32x2_t vpmax_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vpmax.u32 D0, D0, D0' * uint16x4_t vpmax_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vpmax.u16 D0, D0, D0' * uint8x8_t vpmax_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vpmax.u8 D0, D0, D0' * int32x2_t vpmax_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vpmax.s32 D0, D0, D0' * int16x4_t vpmax_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vpmax.s16 D0, D0, D0' * int8x8_t vpmax_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vpmax.s8 D0, D0, D0' * float32x2_t vpmax_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vpmax.f32 D0, D0, D0' 6.56.3.30 Folding minimum ......................... * uint32x2_t vpmin_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vpmin.u32 D0, D0, D0' * uint16x4_t vpmin_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vpmin.u16 D0, D0, D0' * uint8x8_t vpmin_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vpmin.u8 D0, D0, D0' * int32x2_t vpmin_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vpmin.s32 D0, D0, D0' * int16x4_t vpmin_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vpmin.s16 D0, D0, D0' * int8x8_t vpmin_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vpmin.s8 D0, D0, D0' * float32x2_t vpmin_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vpmin.f32 D0, D0, D0' 6.56.3.31 Reciprocal step ......................... * float32x2_t vrecps_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vrecps.f32 D0, D0, D0' * float32x4_t vrecpsq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vrecps.f32 Q0, Q0, Q0' * float32x2_t vrsqrts_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vrsqrts.f32 D0, D0, D0' * float32x4_t vrsqrtsq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vrsqrts.f32 Q0, Q0, Q0' 6.56.3.32 Vector shift left ........................... * uint32x2_t vshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vshl.u32 D0, D0, D0' * uint16x4_t vshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vshl.u16 D0, D0, D0' * uint8x8_t vshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vshl.u8 D0, D0, D0' * int32x2_t vshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vshl.s32 D0, D0, D0' * int16x4_t vshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vshl.s16 D0, D0, D0' * int8x8_t vshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vshl.s8 D0, D0, D0' * uint64x1_t vshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vshl.u64 D0, D0, D0' * int64x1_t vshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vshl.s64 D0, D0, D0' * uint32x4_t vshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vshl.u32 Q0, Q0, Q0' * uint16x8_t vshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vshl.u16 Q0, Q0, Q0' * uint8x16_t vshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vshl.u8 Q0, Q0, Q0' * int32x4_t vshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vshl.s32 Q0, Q0, Q0' * int16x8_t vshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vshl.s16 Q0, Q0, Q0' * int8x16_t vshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vshl.s8 Q0, Q0, Q0' * uint64x2_t vshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vshl.u64 Q0, Q0, Q0' * int64x2_t vshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vshl.s64 Q0, Q0, Q0' * uint32x2_t vrshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vrshl.u32 D0, D0, D0' * uint16x4_t vrshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vrshl.u16 D0, D0, D0' * uint8x8_t vrshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vrshl.u8 D0, D0, D0' * int32x2_t vrshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vrshl.s32 D0, D0, D0' * int16x4_t vrshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vrshl.s16 D0, D0, D0' * int8x8_t vrshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vrshl.s8 D0, D0, D0' * uint64x1_t vrshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vrshl.u64 D0, D0, D0' * int64x1_t vrshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vrshl.s64 D0, D0, D0' * uint32x4_t vrshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vrshl.u32 Q0, Q0, Q0' * uint16x8_t vrshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vrshl.u16 Q0, Q0, Q0' * uint8x16_t vrshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vrshl.u8 Q0, Q0, Q0' * int32x4_t vrshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vrshl.s32 Q0, Q0, Q0' * int16x8_t vrshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vrshl.s16 Q0, Q0, Q0' * int8x16_t vrshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vrshl.s8 Q0, Q0, Q0' * uint64x2_t vrshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vrshl.u64 Q0, Q0, Q0' * int64x2_t vrshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vrshl.s64 Q0, Q0, Q0' * uint32x2_t vqshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqshl.u32 D0, D0, D0' * uint16x4_t vqshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqshl.u16 D0, D0, D0' * uint8x8_t vqshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vqshl.u8 D0, D0, D0' * int32x2_t vqshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqshl.s32 D0, D0, D0' * int16x4_t vqshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqshl.s16 D0, D0, D0' * int8x8_t vqshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vqshl.s8 D0, D0, D0' * uint64x1_t vqshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vqshl.u64 D0, D0, D0' * int64x1_t vqshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vqshl.s64 D0, D0, D0' * uint32x4_t vqshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqshl.u32 Q0, Q0, Q0' * uint16x8_t vqshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqshl.u16 Q0, Q0, Q0' * uint8x16_t vqshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vqshl.u8 Q0, Q0, Q0' * int32x4_t vqshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqshl.s32 Q0, Q0, Q0' * int16x8_t vqshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqshl.s16 Q0, Q0, Q0' * int8x16_t vqshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vqshl.s8 Q0, Q0, Q0' * uint64x2_t vqshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vqshl.u64 Q0, Q0, Q0' * int64x2_t vqshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vqshl.s64 Q0, Q0, Q0' * uint32x2_t vqrshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqrshl.u32 D0, D0, D0' * uint16x4_t vqrshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqrshl.u16 D0, D0, D0' * uint8x8_t vqrshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vqrshl.u8 D0, D0, D0' * int32x2_t vqrshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqrshl.s32 D0, D0, D0' * int16x4_t vqrshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqrshl.s16 D0, D0, D0' * int8x8_t vqrshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vqrshl.s8 D0, D0, D0' * uint64x1_t vqrshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vqrshl.u64 D0, D0, D0' * int64x1_t vqrshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vqrshl.s64 D0, D0, D0' * uint32x4_t vqrshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqrshl.u32 Q0, Q0, Q0' * uint16x8_t vqrshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqrshl.u16 Q0, Q0, Q0' * uint8x16_t vqrshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vqrshl.u8 Q0, Q0, Q0' * int32x4_t vqrshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqrshl.s32 Q0, Q0, Q0' * int16x8_t vqrshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqrshl.s16 Q0, Q0, Q0' * int8x16_t vqrshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vqrshl.s8 Q0, Q0, Q0' * uint64x2_t vqrshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vqrshl.u64 Q0, Q0, Q0' * int64x2_t vqrshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vqrshl.s64 Q0, Q0, Q0' 6.56.3.33 Vector shift left by constant ....................................... * uint32x2_t vshl_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vshl.i32 D0, D0, #0' * uint16x4_t vshl_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vshl.i16 D0, D0, #0' * uint8x8_t vshl_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vshl.i8 D0, D0, #0' * int32x2_t vshl_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vshl.i32 D0, D0, #0' * int16x4_t vshl_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vshl.i16 D0, D0, #0' * int8x8_t vshl_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vshl.i8 D0, D0, #0' * uint64x1_t vshl_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vshl.i64 D0, D0, #0' * int64x1_t vshl_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ 'vshl.i64 D0, D0, #0' * uint32x4_t vshlq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vshl.i32 Q0, Q0, #0' * uint16x8_t vshlq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vshl.i16 Q0, Q0, #0' * uint8x16_t vshlq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vshl.i8 Q0, Q0, #0' * int32x4_t vshlq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vshl.i32 Q0, Q0, #0' * int16x8_t vshlq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vshl.i16 Q0, Q0, #0' * int8x16_t vshlq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ 'vshl.i8 Q0, Q0, #0' * uint64x2_t vshlq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vshl.i64 Q0, Q0, #0' * int64x2_t vshlq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vshl.i64 Q0, Q0, #0' * uint32x2_t vqshl_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u32 D0, D0, #0' * uint16x4_t vqshl_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u16 D0, D0, #0' * uint8x8_t vqshl_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u8 D0, D0, #0' * int32x2_t vqshl_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s32 D0, D0, #0' * int16x4_t vqshl_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s16 D0, D0, #0' * int8x8_t vqshl_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s8 D0, D0, #0' * uint64x1_t vqshl_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u64 D0, D0, #0' * int64x1_t vqshl_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s64 D0, D0, #0' * uint32x4_t vqshlq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u32 Q0, Q0, #0' * uint16x8_t vqshlq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u16 Q0, Q0, #0' * uint8x16_t vqshlq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u8 Q0, Q0, #0' * int32x4_t vqshlq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s32 Q0, Q0, #0' * int16x8_t vqshlq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s16 Q0, Q0, #0' * int8x16_t vqshlq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s8 Q0, Q0, #0' * uint64x2_t vqshlq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u64 Q0, Q0, #0' * int64x2_t vqshlq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s64 Q0, Q0, #0' * uint64x1_t vqshlu_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s64 D0, D0, #0' * uint32x2_t vqshlu_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s32 D0, D0, #0' * uint16x4_t vqshlu_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s16 D0, D0, #0' * uint8x8_t vqshlu_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s8 D0, D0, #0' * uint64x2_t vqshluq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s64 Q0, Q0, #0' * uint32x4_t vqshluq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s32 Q0, Q0, #0' * uint16x8_t vqshluq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s16 Q0, Q0, #0' * uint8x16_t vqshluq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s8 Q0, Q0, #0' * uint64x2_t vshll_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vshll.u32 Q0, D0, #0' * uint32x4_t vshll_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vshll.u16 Q0, D0, #0' * uint16x8_t vshll_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vshll.u8 Q0, D0, #0' * int64x2_t vshll_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vshll.s32 Q0, D0, #0' * int32x4_t vshll_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vshll.s16 Q0, D0, #0' * int16x8_t vshll_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vshll.s8 Q0, D0, #0' 6.56.3.34 Vector shift right by constant ........................................ * uint32x2_t vshr_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vshr.u32 D0, D0, #0' * uint16x4_t vshr_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vshr.u16 D0, D0, #0' * uint8x8_t vshr_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vshr.u8 D0, D0, #0' * int32x2_t vshr_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vshr.s32 D0, D0, #0' * int16x4_t vshr_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vshr.s16 D0, D0, #0' * int8x8_t vshr_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vshr.s8 D0, D0, #0' * uint64x1_t vshr_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vshr.u64 D0, D0, #0' * int64x1_t vshr_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ 'vshr.s64 D0, D0, #0' * uint32x4_t vshrq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vshr.u32 Q0, Q0, #0' * uint16x8_t vshrq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vshr.u16 Q0, Q0, #0' * uint8x16_t vshrq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vshr.u8 Q0, Q0, #0' * int32x4_t vshrq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vshr.s32 Q0, Q0, #0' * int16x8_t vshrq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vshr.s16 Q0, Q0, #0' * int8x16_t vshrq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ 'vshr.s8 Q0, Q0, #0' * uint64x2_t vshrq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vshr.u64 Q0, Q0, #0' * int64x2_t vshrq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vshr.s64 Q0, Q0, #0' * uint32x2_t vrshr_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u32 D0, D0, #0' * uint16x4_t vrshr_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u16 D0, D0, #0' * uint8x8_t vrshr_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u8 D0, D0, #0' * int32x2_t vrshr_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s32 D0, D0, #0' * int16x4_t vrshr_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s16 D0, D0, #0' * int8x8_t vrshr_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s8 D0, D0, #0' * uint64x1_t vrshr_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u64 D0, D0, #0' * int64x1_t vrshr_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s64 D0, D0, #0' * uint32x4_t vrshrq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u32 Q0, Q0, #0' * uint16x8_t vrshrq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u16 Q0, Q0, #0' * uint8x16_t vrshrq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u8 Q0, Q0, #0' * int32x4_t vrshrq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s32 Q0, Q0, #0' * int16x8_t vrshrq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s16 Q0, Q0, #0' * int8x16_t vrshrq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s8 Q0, Q0, #0' * uint64x2_t vrshrq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u64 Q0, Q0, #0' * int64x2_t vrshrq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s64 Q0, Q0, #0' * uint32x2_t vshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vshrn.i64 D0, Q0, #0' * uint16x4_t vshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vshrn.i32 D0, Q0, #0' * uint8x8_t vshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vshrn.i16 D0, Q0, #0' * int32x2_t vshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vshrn.i64 D0, Q0, #0' * int16x4_t vshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vshrn.i32 D0, Q0, #0' * int8x8_t vshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vshrn.i16 D0, Q0, #0' * uint32x2_t vrshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vrshrn.i64 D0, Q0, #0' * uint16x4_t vrshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vrshrn.i32 D0, Q0, #0' * uint8x8_t vrshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vrshrn.i16 D0, Q0, #0' * int32x2_t vrshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vrshrn.i64 D0, Q0, #0' * int16x4_t vrshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vrshrn.i32 D0, Q0, #0' * int8x8_t vrshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vrshrn.i16 D0, Q0, #0' * uint32x2_t vqshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vqshrn.u64 D0, Q0, #0' * uint16x4_t vqshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vqshrn.u32 D0, Q0, #0' * uint8x8_t vqshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vqshrn.u16 D0, Q0, #0' * int32x2_t vqshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vqshrn.s64 D0, Q0, #0' * int16x4_t vqshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vqshrn.s32 D0, Q0, #0' * int8x8_t vqshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vqshrn.s16 D0, Q0, #0' * uint32x2_t vqrshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vqrshrn.u64 D0, Q0, #0' * uint16x4_t vqrshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vqrshrn.u32 D0, Q0, #0' * uint8x8_t vqrshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vqrshrn.u16 D0, Q0, #0' * int32x2_t vqrshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vqrshrn.s64 D0, Q0, #0' * int16x4_t vqrshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vqrshrn.s32 D0, Q0, #0' * int8x8_t vqrshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vqrshrn.s16 D0, Q0, #0' * uint32x2_t vqshrun_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vqshrun.s64 D0, Q0, #0' * uint16x4_t vqshrun_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vqshrun.s32 D0, Q0, #0' * uint8x8_t vqshrun_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vqshrun.s16 D0, Q0, #0' * uint32x2_t vqrshrun_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vqrshrun.s64 D0, Q0, #0' * uint16x4_t vqrshrun_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vqrshrun.s32 D0, Q0, #0' * uint8x8_t vqrshrun_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vqrshrun.s16 D0, Q0, #0' 6.56.3.35 Vector shift right by constant and accumulate ....................................................... * uint32x2_t vsra_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vsra.u32 D0, D0, #0' * uint16x4_t vsra_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vsra.u16 D0, D0, #0' * uint8x8_t vsra_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vsra.u8 D0, D0, #0' * int32x2_t vsra_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vsra.s32 D0, D0, #0' * int16x4_t vsra_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vsra.s16 D0, D0, #0' * int8x8_t vsra_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vsra.s8 D0, D0, #0' * uint64x1_t vsra_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vsra.u64 D0, D0, #0' * int64x1_t vsra_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vsra.s64 D0, D0, #0' * uint32x4_t vsraq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vsra.u32 Q0, Q0, #0' * uint16x8_t vsraq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vsra.u16 Q0, Q0, #0' * uint8x16_t vsraq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vsra.u8 Q0, Q0, #0' * int32x4_t vsraq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vsra.s32 Q0, Q0, #0' * int16x8_t vsraq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vsra.s16 Q0, Q0, #0' * int8x16_t vsraq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vsra.s8 Q0, Q0, #0' * uint64x2_t vsraq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vsra.u64 Q0, Q0, #0' * int64x2_t vsraq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vsra.s64 Q0, Q0, #0' * uint32x2_t vrsra_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u32 D0, D0, #0' * uint16x4_t vrsra_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u16 D0, D0, #0' * uint8x8_t vrsra_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u8 D0, D0, #0' * int32x2_t vrsra_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s32 D0, D0, #0' * int16x4_t vrsra_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s16 D0, D0, #0' * int8x8_t vrsra_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s8 D0, D0, #0' * uint64x1_t vrsra_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u64 D0, D0, #0' * int64x1_t vrsra_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s64 D0, D0, #0' * uint32x4_t vrsraq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u32 Q0, Q0, #0' * uint16x8_t vrsraq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u16 Q0, Q0, #0' * uint8x16_t vrsraq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u8 Q0, Q0, #0' * int32x4_t vrsraq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s32 Q0, Q0, #0' * int16x8_t vrsraq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s16 Q0, Q0, #0' * int8x16_t vrsraq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s8 Q0, Q0, #0' * uint64x2_t vrsraq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u64 Q0, Q0, #0' * int64x2_t vrsraq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s64 Q0, Q0, #0' 6.56.3.36 Vector shift right and insert ....................................... * uint32x2_t vsri_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vsri.32 D0, D0, #0' * uint16x4_t vsri_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vsri.16 D0, D0, #0' * uint8x8_t vsri_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vsri.8 D0, D0, #0' * int32x2_t vsri_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vsri.32 D0, D0, #0' * int16x4_t vsri_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vsri.16 D0, D0, #0' * int8x8_t vsri_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vsri.8 D0, D0, #0' * uint64x1_t vsri_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vsri.64 D0, D0, #0' * int64x1_t vsri_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vsri.64 D0, D0, #0' * poly16x4_t vsri_n_p16 (poly16x4_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vsri.16 D0, D0, #0' * poly8x8_t vsri_n_p8 (poly8x8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vsri.8 D0, D0, #0' * uint32x4_t vsriq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vsri.32 Q0, Q0, #0' * uint16x8_t vsriq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vsri.16 Q0, Q0, #0' * uint8x16_t vsriq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vsri.8 Q0, Q0, #0' * int32x4_t vsriq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vsri.32 Q0, Q0, #0' * int16x8_t vsriq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vsri.16 Q0, Q0, #0' * int8x16_t vsriq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vsri.8 Q0, Q0, #0' * uint64x2_t vsriq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vsri.64 Q0, Q0, #0' * int64x2_t vsriq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vsri.64 Q0, Q0, #0' * poly16x8_t vsriq_n_p16 (poly16x8_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ 'vsri.16 Q0, Q0, #0' * poly8x16_t vsriq_n_p8 (poly8x16_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vsri.8 Q0, Q0, #0' 6.56.3.37 Vector shift left and insert ...................................... * uint32x2_t vsli_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vsli.32 D0, D0, #0' * uint16x4_t vsli_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vsli.16 D0, D0, #0' * uint8x8_t vsli_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vsli.8 D0, D0, #0' * int32x2_t vsli_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vsli.32 D0, D0, #0' * int16x4_t vsli_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vsli.16 D0, D0, #0' * int8x8_t vsli_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vsli.8 D0, D0, #0' * uint64x1_t vsli_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vsli.64 D0, D0, #0' * int64x1_t vsli_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vsli.64 D0, D0, #0' * poly16x4_t vsli_n_p16 (poly16x4_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vsli.16 D0, D0, #0' * poly8x8_t vsli_n_p8 (poly8x8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vsli.8 D0, D0, #0' * uint32x4_t vsliq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vsli.32 Q0, Q0, #0' * uint16x8_t vsliq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vsli.16 Q0, Q0, #0' * uint8x16_t vsliq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vsli.8 Q0, Q0, #0' * int32x4_t vsliq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vsli.32 Q0, Q0, #0' * int16x8_t vsliq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vsli.16 Q0, Q0, #0' * int8x16_t vsliq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vsli.8 Q0, Q0, #0' * uint64x2_t vsliq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vsli.64 Q0, Q0, #0' * int64x2_t vsliq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vsli.64 Q0, Q0, #0' * poly16x8_t vsliq_n_p16 (poly16x8_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ 'vsli.16 Q0, Q0, #0' * poly8x16_t vsliq_n_p8 (poly8x16_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vsli.8 Q0, Q0, #0' 6.56.3.38 Absolute value ........................ * float32x2_t vabs_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vabs.f32 D0, D0' * int32x2_t vabs_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vabs.s32 D0, D0' * int16x4_t vabs_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vabs.s16 D0, D0' * int8x8_t vabs_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vabs.s8 D0, D0' * float32x4_t vabsq_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vabs.f32 Q0, Q0' * int32x4_t vabsq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vabs.s32 Q0, Q0' * int16x8_t vabsq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vabs.s16 Q0, Q0' * int8x16_t vabsq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vabs.s8 Q0, Q0' * int32x2_t vqabs_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vqabs.s32 D0, D0' * int16x4_t vqabs_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vqabs.s16 D0, D0' * int8x8_t vqabs_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vqabs.s8 D0, D0' * int32x4_t vqabsq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vqabs.s32 Q0, Q0' * int16x8_t vqabsq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vqabs.s16 Q0, Q0' * int8x16_t vqabsq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vqabs.s8 Q0, Q0' 6.56.3.39 Negation .................. * float32x2_t vneg_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vneg.f32 D0, D0' * int32x2_t vneg_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vneg.s32 D0, D0' * int16x4_t vneg_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vneg.s16 D0, D0' * int8x8_t vneg_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vneg.s8 D0, D0' * float32x4_t vnegq_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vneg.f32 Q0, Q0' * int32x4_t vnegq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vneg.s32 Q0, Q0' * int16x8_t vnegq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vneg.s16 Q0, Q0' * int8x16_t vnegq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vneg.s8 Q0, Q0' * int32x2_t vqneg_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vqneg.s32 D0, D0' * int16x4_t vqneg_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vqneg.s16 D0, D0' * int8x8_t vqneg_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vqneg.s8 D0, D0' * int32x4_t vqnegq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vqneg.s32 Q0, Q0' * int16x8_t vqnegq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vqneg.s16 Q0, Q0' * int8x16_t vqnegq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vqneg.s8 Q0, Q0' 6.56.3.40 Bitwise not ..................... * uint32x2_t vmvn_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * uint16x4_t vmvn_u16 (uint16x4_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * uint8x8_t vmvn_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * int32x2_t vmvn_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * int16x4_t vmvn_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * int8x8_t vmvn_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * poly8x8_t vmvn_p8 (poly8x8_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * uint32x4_t vmvnq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' * uint16x8_t vmvnq_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' * uint8x16_t vmvnq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' * int32x4_t vmvnq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' * int16x8_t vmvnq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' * int8x16_t vmvnq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' * poly8x16_t vmvnq_p8 (poly8x16_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' 6.56.3.41 Count leading sign bits ................................. * int32x2_t vcls_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vcls.s32 D0, D0' * int16x4_t vcls_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vcls.s16 D0, D0' * int8x8_t vcls_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vcls.s8 D0, D0' * int32x4_t vclsq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vcls.s32 Q0, Q0' * int16x8_t vclsq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vcls.s16 Q0, Q0' * int8x16_t vclsq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vcls.s8 Q0, Q0' 6.56.3.42 Count leading zeros ............................. * uint32x2_t vclz_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vclz.i32 D0, D0' * uint16x4_t vclz_u16 (uint16x4_t) ! _Form of expected instruction(s):_ 'vclz.i16 D0, D0' * uint8x8_t vclz_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vclz.i8 D0, D0' * int32x2_t vclz_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vclz.i32 D0, D0' * int16x4_t vclz_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vclz.i16 D0, D0' * int8x8_t vclz_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vclz.i8 D0, D0' * uint32x4_t vclzq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vclz.i32 Q0, Q0' * uint16x8_t vclzq_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vclz.i16 Q0, Q0' * uint8x16_t vclzq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vclz.i8 Q0, Q0' * int32x4_t vclzq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vclz.i32 Q0, Q0' * int16x8_t vclzq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vclz.i16 Q0, Q0' * int8x16_t vclzq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vclz.i8 Q0, Q0' 6.56.3.43 Count number of set bits .................................. * uint8x8_t vcnt_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vcnt.8 D0, D0' * int8x8_t vcnt_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vcnt.8 D0, D0' * poly8x8_t vcnt_p8 (poly8x8_t) ! _Form of expected instruction(s):_ 'vcnt.8 D0, D0' * uint8x16_t vcntq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vcnt.8 Q0, Q0' * int8x16_t vcntq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vcnt.8 Q0, Q0' * poly8x16_t vcntq_p8 (poly8x16_t) ! _Form of expected instruction(s):_ 'vcnt.8 Q0, Q0' 6.56.3.44 Reciprocal estimate ............................. * float32x2_t vrecpe_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrecpe.f32 D0, D0' * uint32x2_t vrecpe_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vrecpe.u32 D0, D0' * float32x4_t vrecpeq_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrecpe.f32 Q0, Q0' * uint32x4_t vrecpeq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vrecpe.u32 Q0, Q0' 6.56.3.45 Reciprocal square-root estimate ......................................... * float32x2_t vrsqrte_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrsqrte.f32 D0, D0' * uint32x2_t vrsqrte_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vrsqrte.u32 D0, D0' * float32x4_t vrsqrteq_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrsqrte.f32 Q0, Q0' * uint32x4_t vrsqrteq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vrsqrte.u32 Q0, Q0' 6.56.3.46 Get lanes from a vector ................................. * uint32_t vget_lane_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]' * uint16_t vget_lane_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.u16 R0, D0[0]' * uint8_t vget_lane_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.u8 R0, D0[0]' * int32_t vget_lane_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]' * int16_t vget_lane_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.s16 R0, D0[0]' * int8_t vget_lane_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.s8 R0, D0[0]' * float32_t vget_lane_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]' * poly16_t vget_lane_p16 (poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.u16 R0, D0[0]' * poly8_t vget_lane_p8 (poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.u8 R0, D0[0]' * uint64_t vget_lane_u64 (uint64x1_t, const int) * int64_t vget_lane_s64 (int64x1_t, const int) * uint32_t vgetq_lane_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]' * uint16_t vgetq_lane_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.u16 R0, D0[0]' * uint8_t vgetq_lane_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vmov.u8 R0, D0[0]' * int32_t vgetq_lane_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]' * int16_t vgetq_lane_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.s16 R0, D0[0]' * int8_t vgetq_lane_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ 'vmov.s8 R0, D0[0]' * float32_t vgetq_lane_f32 (float32x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]' * poly16_t vgetq_lane_p16 (poly16x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.u16 R0, D0[0]' * poly8_t vgetq_lane_p8 (poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vmov.u8 R0, D0[0]' * uint64_t vgetq_lane_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vmov R0, R0, D0' _or_ 'fmrrd R0, R0, D0' * int64_t vgetq_lane_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vmov R0, R0, D0' _or_ 'fmrrd R0, R0, D0' 6.56.3.47 Set lanes in a vector ............................... * uint32x2_t vset_lane_u32 (uint32_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 D0[0], R0' * uint16x4_t vset_lane_u16 (uint16_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.16 D0[0], R0' * uint8x8_t vset_lane_u8 (uint8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.8 D0[0], R0' * int32x2_t vset_lane_s32 (int32_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 D0[0], R0' * int16x4_t vset_lane_s16 (int16_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.16 D0[0], R0' * int8x8_t vset_lane_s8 (int8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.8 D0[0], R0' * float32x2_t vset_lane_f32 (float32_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 D0[0], R0' * poly16x4_t vset_lane_p16 (poly16_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.16 D0[0], R0' * poly8x8_t vset_lane_p8 (poly8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.8 D0[0], R0' * uint64x1_t vset_lane_u64 (uint64_t, uint64x1_t, const int) * int64x1_t vset_lane_s64 (int64_t, int64x1_t, const int) * uint32x4_t vsetq_lane_u32 (uint32_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 D0[0], R0' * uint16x8_t vsetq_lane_u16 (uint16_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.16 D0[0], R0' * uint8x16_t vsetq_lane_u8 (uint8_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vmov.8 D0[0], R0' * int32x4_t vsetq_lane_s32 (int32_t, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 D0[0], R0' * int16x8_t vsetq_lane_s16 (int16_t, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.16 D0[0], R0' * int8x16_t vsetq_lane_s8 (int8_t, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vmov.8 D0[0], R0' * float32x4_t vsetq_lane_f32 (float32_t, float32x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 D0[0], R0' * poly16x8_t vsetq_lane_p16 (poly16_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.16 D0[0], R0' * poly8x16_t vsetq_lane_p8 (poly8_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vmov.8 D0[0], R0' * uint64x2_t vsetq_lane_u64 (uint64_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vmov D0, R0, R0' * int64x2_t vsetq_lane_s64 (int64_t, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vmov D0, R0, R0' 6.56.3.48 Create vector from literal bit pattern ................................................ *************** available when the `-mfpu=neon' switch i *** 32988,33173 **** ......................................... * uint32x2_t vdup_n_u32 (uint32_t) ! _Form of expected instruction(s):_ `vdup.32 D0, R0' * uint16x4_t vdup_n_u16 (uint16_t) ! _Form of expected instruction(s):_ `vdup.16 D0, R0' * uint8x8_t vdup_n_u8 (uint8_t) ! _Form of expected instruction(s):_ `vdup.8 D0, R0' * int32x2_t vdup_n_s32 (int32_t) ! _Form of expected instruction(s):_ `vdup.32 D0, R0' * int16x4_t vdup_n_s16 (int16_t) ! _Form of expected instruction(s):_ `vdup.16 D0, R0' * int8x8_t vdup_n_s8 (int8_t) ! _Form of expected instruction(s):_ `vdup.8 D0, R0' * float32x2_t vdup_n_f32 (float32_t) ! _Form of expected instruction(s):_ `vdup.32 D0, R0' * poly16x4_t vdup_n_p16 (poly16_t) ! _Form of expected instruction(s):_ `vdup.16 D0, R0' * poly8x8_t vdup_n_p8 (poly8_t) ! _Form of expected instruction(s):_ `vdup.8 D0, R0' * uint64x1_t vdup_n_u64 (uint64_t) * int64x1_t vdup_n_s64 (int64_t) * uint32x4_t vdupq_n_u32 (uint32_t) ! _Form of expected instruction(s):_ `vdup.32 Q0, R0' * uint16x8_t vdupq_n_u16 (uint16_t) ! _Form of expected instruction(s):_ `vdup.16 Q0, R0' * uint8x16_t vdupq_n_u8 (uint8_t) ! _Form of expected instruction(s):_ `vdup.8 Q0, R0' * int32x4_t vdupq_n_s32 (int32_t) ! _Form of expected instruction(s):_ `vdup.32 Q0, R0' * int16x8_t vdupq_n_s16 (int16_t) ! _Form of expected instruction(s):_ `vdup.16 Q0, R0' * int8x16_t vdupq_n_s8 (int8_t) ! _Form of expected instruction(s):_ `vdup.8 Q0, R0' * float32x4_t vdupq_n_f32 (float32_t) ! _Form of expected instruction(s):_ `vdup.32 Q0, R0' * poly16x8_t vdupq_n_p16 (poly16_t) ! _Form of expected instruction(s):_ `vdup.16 Q0, R0' * poly8x16_t vdupq_n_p8 (poly8_t) ! _Form of expected instruction(s):_ `vdup.8 Q0, R0' * uint64x2_t vdupq_n_u64 (uint64_t) * int64x2_t vdupq_n_s64 (int64_t) * uint32x2_t vmov_n_u32 (uint32_t) ! _Form of expected instruction(s):_ `vdup.32 D0, R0' * uint16x4_t vmov_n_u16 (uint16_t) ! _Form of expected instruction(s):_ `vdup.16 D0, R0' * uint8x8_t vmov_n_u8 (uint8_t) ! _Form of expected instruction(s):_ `vdup.8 D0, R0' * int32x2_t vmov_n_s32 (int32_t) ! _Form of expected instruction(s):_ `vdup.32 D0, R0' * int16x4_t vmov_n_s16 (int16_t) ! _Form of expected instruction(s):_ `vdup.16 D0, R0' * int8x8_t vmov_n_s8 (int8_t) ! _Form of expected instruction(s):_ `vdup.8 D0, R0' * float32x2_t vmov_n_f32 (float32_t) ! _Form of expected instruction(s):_ `vdup.32 D0, R0' * poly16x4_t vmov_n_p16 (poly16_t) ! _Form of expected instruction(s):_ `vdup.16 D0, R0' * poly8x8_t vmov_n_p8 (poly8_t) ! _Form of expected instruction(s):_ `vdup.8 D0, R0' * uint64x1_t vmov_n_u64 (uint64_t) * int64x1_t vmov_n_s64 (int64_t) * uint32x4_t vmovq_n_u32 (uint32_t) ! _Form of expected instruction(s):_ `vdup.32 Q0, R0' * uint16x8_t vmovq_n_u16 (uint16_t) ! _Form of expected instruction(s):_ `vdup.16 Q0, R0' * uint8x16_t vmovq_n_u8 (uint8_t) ! _Form of expected instruction(s):_ `vdup.8 Q0, R0' * int32x4_t vmovq_n_s32 (int32_t) ! _Form of expected instruction(s):_ `vdup.32 Q0, R0' * int16x8_t vmovq_n_s16 (int16_t) ! _Form of expected instruction(s):_ `vdup.16 Q0, R0' * int8x16_t vmovq_n_s8 (int8_t) ! _Form of expected instruction(s):_ `vdup.8 Q0, R0' * float32x4_t vmovq_n_f32 (float32_t) ! _Form of expected instruction(s):_ `vdup.32 Q0, R0' * poly16x8_t vmovq_n_p16 (poly16_t) ! _Form of expected instruction(s):_ `vdup.16 Q0, R0' * poly8x16_t vmovq_n_p8 (poly8_t) ! _Form of expected instruction(s):_ `vdup.8 Q0, R0' * uint64x2_t vmovq_n_u64 (uint64_t) * int64x2_t vmovq_n_s64 (int64_t) * uint32x2_t vdup_lane_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vdup.32 D0, D0[0]' * uint16x4_t vdup_lane_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vdup.16 D0, D0[0]' * uint8x8_t vdup_lane_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vdup.8 D0, D0[0]' * int32x2_t vdup_lane_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vdup.32 D0, D0[0]' * int16x4_t vdup_lane_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vdup.16 D0, D0[0]' * int8x8_t vdup_lane_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vdup.8 D0, D0[0]' * float32x2_t vdup_lane_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ `vdup.32 D0, D0[0]' * poly16x4_t vdup_lane_p16 (poly16x4_t, const int) ! _Form of expected instruction(s):_ `vdup.16 D0, D0[0]' * poly8x8_t vdup_lane_p8 (poly8x8_t, const int) ! _Form of expected instruction(s):_ `vdup.8 D0, D0[0]' * uint64x1_t vdup_lane_u64 (uint64x1_t, const int) * int64x1_t vdup_lane_s64 (int64x1_t, const int) * uint32x4_t vdupq_lane_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vdup.32 Q0, D0[0]' * uint16x8_t vdupq_lane_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vdup.16 Q0, D0[0]' * uint8x16_t vdupq_lane_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vdup.8 Q0, D0[0]' * int32x4_t vdupq_lane_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vdup.32 Q0, D0[0]' * int16x8_t vdupq_lane_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vdup.16 Q0, D0[0]' * int8x16_t vdupq_lane_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vdup.8 Q0, D0[0]' * float32x4_t vdupq_lane_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ `vdup.32 Q0, D0[0]' * poly16x8_t vdupq_lane_p16 (poly16x4_t, const int) ! _Form of expected instruction(s):_ `vdup.16 Q0, D0[0]' * poly8x16_t vdupq_lane_p8 (poly8x8_t, const int) ! _Form of expected instruction(s):_ `vdup.8 Q0, D0[0]' * uint64x2_t vdupq_lane_u64 (uint64x1_t, const int) --- 32697,32882 ---- ......................................... * uint32x2_t vdup_n_u32 (uint32_t) ! _Form of expected instruction(s):_ 'vdup.32 D0, R0' * uint16x4_t vdup_n_u16 (uint16_t) ! _Form of expected instruction(s):_ 'vdup.16 D0, R0' * uint8x8_t vdup_n_u8 (uint8_t) ! _Form of expected instruction(s):_ 'vdup.8 D0, R0' * int32x2_t vdup_n_s32 (int32_t) ! _Form of expected instruction(s):_ 'vdup.32 D0, R0' * int16x4_t vdup_n_s16 (int16_t) ! _Form of expected instruction(s):_ 'vdup.16 D0, R0' * int8x8_t vdup_n_s8 (int8_t) ! _Form of expected instruction(s):_ 'vdup.8 D0, R0' * float32x2_t vdup_n_f32 (float32_t) ! _Form of expected instruction(s):_ 'vdup.32 D0, R0' * poly16x4_t vdup_n_p16 (poly16_t) ! _Form of expected instruction(s):_ 'vdup.16 D0, R0' * poly8x8_t vdup_n_p8 (poly8_t) ! _Form of expected instruction(s):_ 'vdup.8 D0, R0' * uint64x1_t vdup_n_u64 (uint64_t) * int64x1_t vdup_n_s64 (int64_t) * uint32x4_t vdupq_n_u32 (uint32_t) ! _Form of expected instruction(s):_ 'vdup.32 Q0, R0' * uint16x8_t vdupq_n_u16 (uint16_t) ! _Form of expected instruction(s):_ 'vdup.16 Q0, R0' * uint8x16_t vdupq_n_u8 (uint8_t) ! _Form of expected instruction(s):_ 'vdup.8 Q0, R0' * int32x4_t vdupq_n_s32 (int32_t) ! _Form of expected instruction(s):_ 'vdup.32 Q0, R0' * int16x8_t vdupq_n_s16 (int16_t) ! _Form of expected instruction(s):_ 'vdup.16 Q0, R0' * int8x16_t vdupq_n_s8 (int8_t) ! _Form of expected instruction(s):_ 'vdup.8 Q0, R0' * float32x4_t vdupq_n_f32 (float32_t) ! _Form of expected instruction(s):_ 'vdup.32 Q0, R0' * poly16x8_t vdupq_n_p16 (poly16_t) ! _Form of expected instruction(s):_ 'vdup.16 Q0, R0' * poly8x16_t vdupq_n_p8 (poly8_t) ! _Form of expected instruction(s):_ 'vdup.8 Q0, R0' * uint64x2_t vdupq_n_u64 (uint64_t) * int64x2_t vdupq_n_s64 (int64_t) * uint32x2_t vmov_n_u32 (uint32_t) ! _Form of expected instruction(s):_ 'vdup.32 D0, R0' * uint16x4_t vmov_n_u16 (uint16_t) ! _Form of expected instruction(s):_ 'vdup.16 D0, R0' * uint8x8_t vmov_n_u8 (uint8_t) ! _Form of expected instruction(s):_ 'vdup.8 D0, R0' * int32x2_t vmov_n_s32 (int32_t) ! _Form of expected instruction(s):_ 'vdup.32 D0, R0' * int16x4_t vmov_n_s16 (int16_t) ! _Form of expected instruction(s):_ 'vdup.16 D0, R0' * int8x8_t vmov_n_s8 (int8_t) ! _Form of expected instruction(s):_ 'vdup.8 D0, R0' * float32x2_t vmov_n_f32 (float32_t) ! _Form of expected instruction(s):_ 'vdup.32 D0, R0' * poly16x4_t vmov_n_p16 (poly16_t) ! _Form of expected instruction(s):_ 'vdup.16 D0, R0' * poly8x8_t vmov_n_p8 (poly8_t) ! _Form of expected instruction(s):_ 'vdup.8 D0, R0' * uint64x1_t vmov_n_u64 (uint64_t) * int64x1_t vmov_n_s64 (int64_t) * uint32x4_t vmovq_n_u32 (uint32_t) ! _Form of expected instruction(s):_ 'vdup.32 Q0, R0' * uint16x8_t vmovq_n_u16 (uint16_t) ! _Form of expected instruction(s):_ 'vdup.16 Q0, R0' * uint8x16_t vmovq_n_u8 (uint8_t) ! _Form of expected instruction(s):_ 'vdup.8 Q0, R0' * int32x4_t vmovq_n_s32 (int32_t) ! _Form of expected instruction(s):_ 'vdup.32 Q0, R0' * int16x8_t vmovq_n_s16 (int16_t) ! _Form of expected instruction(s):_ 'vdup.16 Q0, R0' * int8x16_t vmovq_n_s8 (int8_t) ! _Form of expected instruction(s):_ 'vdup.8 Q0, R0' * float32x4_t vmovq_n_f32 (float32_t) ! _Form of expected instruction(s):_ 'vdup.32 Q0, R0' * poly16x8_t vmovq_n_p16 (poly16_t) ! _Form of expected instruction(s):_ 'vdup.16 Q0, R0' * poly8x16_t vmovq_n_p8 (poly8_t) ! _Form of expected instruction(s):_ 'vdup.8 Q0, R0' * uint64x2_t vmovq_n_u64 (uint64_t) * int64x2_t vmovq_n_s64 (int64_t) * uint32x2_t vdup_lane_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vdup.32 D0, D0[0]' * uint16x4_t vdup_lane_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vdup.16 D0, D0[0]' * uint8x8_t vdup_lane_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vdup.8 D0, D0[0]' * int32x2_t vdup_lane_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vdup.32 D0, D0[0]' * int16x4_t vdup_lane_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vdup.16 D0, D0[0]' * int8x8_t vdup_lane_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vdup.8 D0, D0[0]' * float32x2_t vdup_lane_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ 'vdup.32 D0, D0[0]' * poly16x4_t vdup_lane_p16 (poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vdup.16 D0, D0[0]' * poly8x8_t vdup_lane_p8 (poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vdup.8 D0, D0[0]' * uint64x1_t vdup_lane_u64 (uint64x1_t, const int) * int64x1_t vdup_lane_s64 (int64x1_t, const int) * uint32x4_t vdupq_lane_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vdup.32 Q0, D0[0]' * uint16x8_t vdupq_lane_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vdup.16 Q0, D0[0]' * uint8x16_t vdupq_lane_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vdup.8 Q0, D0[0]' * int32x4_t vdupq_lane_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vdup.32 Q0, D0[0]' * int16x8_t vdupq_lane_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vdup.16 Q0, D0[0]' * int8x16_t vdupq_lane_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vdup.8 Q0, D0[0]' * float32x4_t vdupq_lane_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ 'vdup.32 Q0, D0[0]' * poly16x8_t vdupq_lane_p16 (poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vdup.16 Q0, D0[0]' * poly8x16_t vdupq_lane_p8 (poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vdup.8 Q0, D0[0]' * uint64x2_t vdupq_lane_u64 (uint64x1_t, const int) *************** available when the `-mfpu=neon' switch i *** 33224,33254 **** * poly8x8_t vget_high_p8 (poly8x16_t) * uint32x2_t vget_low_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * uint16x4_t vget_low_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * uint8x8_t vget_low_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * int32x2_t vget_low_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * int16x4_t vget_low_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * int8x8_t vget_low_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * float32x2_t vget_low_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * poly16x4_t vget_low_p16 (poly16x8_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * poly8x8_t vget_low_p8 (poly8x16_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * uint64x1_t vget_low_u64 (uint64x2_t) --- 32933,32963 ---- * poly8x8_t vget_high_p8 (poly8x16_t) * uint32x2_t vget_low_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * uint16x4_t vget_low_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * uint8x8_t vget_low_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * int32x2_t vget_low_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * int16x4_t vget_low_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * int8x8_t vget_low_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * float32x2_t vget_low_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * poly16x4_t vget_low_p16 (poly16x8_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * poly8x8_t vget_low_p8 (poly8x16_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * uint64x1_t vget_low_u64 (uint64x2_t) *************** available when the `-mfpu=neon' switch i *** 33258,35746 **** ..................... * float32x2_t vcvt_f32_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vcvt.f32.u32 D0, D0' * float32x2_t vcvt_f32_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vcvt.f32.s32 D0, D0' * uint32x2_t vcvt_u32_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vcvt.u32.f32 D0, D0' * int32x2_t vcvt_s32_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vcvt.s32.f32 D0, D0' * float32x4_t vcvtq_f32_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vcvt.f32.u32 Q0, Q0' * float32x4_t vcvtq_f32_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vcvt.f32.s32 Q0, Q0' * uint32x4_t vcvtq_u32_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vcvt.u32.f32 Q0, Q0' * int32x4_t vcvtq_s32_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vcvt.s32.f32 Q0, Q0' * float32x2_t vcvt_n_f32_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vcvt.f32.u32 D0, D0, #0' * float32x2_t vcvt_n_f32_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vcvt.f32.s32 D0, D0, #0' * uint32x2_t vcvt_n_u32_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ `vcvt.u32.f32 D0, D0, #0' * int32x2_t vcvt_n_s32_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ `vcvt.s32.f32 D0, D0, #0' * float32x4_t vcvtq_n_f32_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vcvt.f32.u32 Q0, Q0, #0' * float32x4_t vcvtq_n_f32_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vcvt.f32.s32 Q0, Q0, #0' * uint32x4_t vcvtq_n_u32_f32 (float32x4_t, const int) ! _Form of expected instruction(s):_ `vcvt.u32.f32 Q0, Q0, #0' * int32x4_t vcvtq_n_s32_f32 (float32x4_t, const int) ! _Form of expected instruction(s):_ `vcvt.s32.f32 Q0, Q0, #0' 6.56.3.53 Move, single_opcode narrowing ....................................... * uint32x2_t vmovn_u64 (uint64x2_t) ! _Form of expected instruction(s):_ `vmovn.i64 D0, Q0' * uint16x4_t vmovn_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vmovn.i32 D0, Q0' * uint8x8_t vmovn_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vmovn.i16 D0, Q0' * int32x2_t vmovn_s64 (int64x2_t) ! _Form of expected instruction(s):_ `vmovn.i64 D0, Q0' * int16x4_t vmovn_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vmovn.i32 D0, Q0' * int8x8_t vmovn_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vmovn.i16 D0, Q0' * uint32x2_t vqmovn_u64 (uint64x2_t) ! _Form of expected instruction(s):_ `vqmovn.u64 D0, Q0' * uint16x4_t vqmovn_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vqmovn.u32 D0, Q0' * uint8x8_t vqmovn_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vqmovn.u16 D0, Q0' * int32x2_t vqmovn_s64 (int64x2_t) ! _Form of expected instruction(s):_ `vqmovn.s64 D0, Q0' * int16x4_t vqmovn_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vqmovn.s32 D0, Q0' * int8x8_t vqmovn_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vqmovn.s16 D0, Q0' * uint32x2_t vqmovun_s64 (int64x2_t) ! _Form of expected instruction(s):_ `vqmovun.s64 D0, Q0' * uint16x4_t vqmovun_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vqmovun.s32 D0, Q0' * uint8x8_t vqmovun_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vqmovun.s16 D0, Q0' 6.56.3.54 Move, single_opcode long .................................. * uint64x2_t vmovl_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vmovl.u32 Q0, D0' * uint32x4_t vmovl_u16 (uint16x4_t) ! _Form of expected instruction(s):_ `vmovl.u16 Q0, D0' * uint16x8_t vmovl_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vmovl.u8 Q0, D0' * int64x2_t vmovl_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vmovl.s32 Q0, D0' * int32x4_t vmovl_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vmovl.s16 Q0, D0' * int16x8_t vmovl_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vmovl.s8 Q0, D0' 6.56.3.55 Table lookup ...................... * poly8x8_t vtbl1_p8 (poly8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0}, D0' * int8x8_t vtbl1_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0}, D0' * uint8x8_t vtbl1_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0}, D0' * poly8x8_t vtbl2_p8 (poly8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1}, D0' * int8x8_t vtbl2_s8 (int8x8x2_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1}, D0' * uint8x8_t vtbl2_u8 (uint8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1}, D0' * poly8x8_t vtbl3_p8 (poly8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1, D2}, D0' * int8x8_t vtbl3_s8 (int8x8x3_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1, D2}, D0' * uint8x8_t vtbl3_u8 (uint8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1, D2}, D0' * poly8x8_t vtbl4_p8 (poly8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1, D2, D3}, D0' * int8x8_t vtbl4_s8 (int8x8x4_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1, D2, D3}, D0' * uint8x8_t vtbl4_u8 (uint8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1, D2, D3}, D0' 6.56.3.56 Extended table lookup ............................... * poly8x8_t vtbx1_p8 (poly8x8_t, poly8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0}, D0' * int8x8_t vtbx1_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0}, D0' * uint8x8_t vtbx1_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0}, D0' * poly8x8_t vtbx2_p8 (poly8x8_t, poly8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1}, D0' * int8x8_t vtbx2_s8 (int8x8_t, int8x8x2_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1}, D0' * uint8x8_t vtbx2_u8 (uint8x8_t, uint8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1}, D0' * poly8x8_t vtbx3_p8 (poly8x8_t, poly8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1, D2}, D0' * int8x8_t vtbx3_s8 (int8x8_t, int8x8x3_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1, D2}, D0' * uint8x8_t vtbx3_u8 (uint8x8_t, uint8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1, D2}, D0' * poly8x8_t vtbx4_p8 (poly8x8_t, poly8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1, D2, D3}, D0' * int8x8_t vtbx4_s8 (int8x8_t, int8x8x4_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1, D2, D3}, D0' * uint8x8_t vtbx4_u8 (uint8x8_t, uint8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1, D2, D3}, D0' 6.56.3.57 Multiply, lane ........................ * float32x2_t vmul_lane_f32 (float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmul.f32 D0, D0, D0[0]' * uint32x2_t vmul_lane_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmul.i32 D0, D0, D0[0]' * uint16x4_t vmul_lane_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmul.i16 D0, D0, D0[0]' * int32x2_t vmul_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmul.i32 D0, D0, D0[0]' * int16x4_t vmul_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmul.i16 D0, D0, D0[0]' * float32x4_t vmulq_lane_f32 (float32x4_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmul.f32 Q0, Q0, D0[0]' * uint32x4_t vmulq_lane_u32 (uint32x4_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmul.i32 Q0, Q0, D0[0]' * uint16x8_t vmulq_lane_u16 (uint16x8_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmul.i16 Q0, Q0, D0[0]' * int32x4_t vmulq_lane_s32 (int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmul.i32 Q0, Q0, D0[0]' * int16x8_t vmulq_lane_s16 (int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmul.i16 Q0, Q0, D0[0]' 6.56.3.58 Long multiply, lane ............................. * uint64x2_t vmull_lane_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmull.u32 Q0, D0, D0[0]' * uint32x4_t vmull_lane_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmull.u16 Q0, D0, D0[0]' * int64x2_t vmull_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmull.s32 Q0, D0, D0[0]' * int32x4_t vmull_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmull.s16 Q0, D0, D0[0]' 6.56.3.59 Saturating doubling long multiply, lane ................................................. * int64x2_t vqdmull_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqdmull.s32 Q0, D0, D0[0]' * int32x4_t vqdmull_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqdmull.s16 Q0, D0, D0[0]' 6.56.3.60 Saturating doubling multiply high, lane ................................................. * int32x4_t vqdmulhq_lane_s32 (int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqdmulhq_lane_s16 (int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqdmulh_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqdmulh.s32 D0, D0, D0[0]' * int16x4_t vqdmulh_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqdmulh.s16 D0, D0, D0[0]' * int32x4_t vqrdmulhq_lane_s32 (int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqrdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqrdmulhq_lane_s16 (int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqrdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqrdmulh_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqrdmulh.s32 D0, D0, D0[0]' * int16x4_t vqrdmulh_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqrdmulh.s16 D0, D0, D0[0]' 6.56.3.61 Multiply-accumulate, lane ................................... * float32x2_t vmla_lane_f32 (float32x2_t, float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmla.f32 D0, D0, D0[0]' ! * uint32x2_t vmla_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, ! const int) ! _Form of expected instruction(s):_ `vmla.i32 D0, D0, D0[0]' ! * uint16x4_t vmla_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, ! const int) ! _Form of expected instruction(s):_ `vmla.i16 D0, D0, D0[0]' * int32x2_t vmla_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmla.i32 D0, D0, D0[0]' * int16x4_t vmla_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmla.i16 D0, D0, D0[0]' * float32x4_t vmlaq_lane_f32 (float32x4_t, float32x4_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmla.f32 Q0, Q0, D0[0]' * uint32x4_t vmlaq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmla.i32 Q0, Q0, D0[0]' * uint16x8_t vmlaq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmla.i16 Q0, Q0, D0[0]' * int32x4_t vmlaq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmla.i32 Q0, Q0, D0[0]' * int16x8_t vmlaq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmla.i16 Q0, Q0, D0[0]' * uint64x2_t vmlal_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmlal.u32 Q0, D0, D0[0]' * uint32x4_t vmlal_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmlal.u16 Q0, D0, D0[0]' * int64x2_t vmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmlal.s32 Q0, D0, D0[0]' * int32x4_t vmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmlal.s16 Q0, D0, D0[0]' * int64x2_t vqdmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqdmlal.s32 Q0, D0, D0[0]' * int32x4_t vqdmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqdmlal.s16 Q0, D0, D0[0]' 6.56.3.62 Multiply-subtract, lane ................................. * float32x2_t vmls_lane_f32 (float32x2_t, float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmls.f32 D0, D0, D0[0]' ! * uint32x2_t vmls_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, ! const int) ! _Form of expected instruction(s):_ `vmls.i32 D0, D0, D0[0]' ! * uint16x4_t vmls_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, ! const int) ! _Form of expected instruction(s):_ `vmls.i16 D0, D0, D0[0]' * int32x2_t vmls_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmls.i32 D0, D0, D0[0]' * int16x4_t vmls_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmls.i16 D0, D0, D0[0]' * float32x4_t vmlsq_lane_f32 (float32x4_t, float32x4_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmls.f32 Q0, Q0, D0[0]' * uint32x4_t vmlsq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmls.i32 Q0, Q0, D0[0]' * uint16x8_t vmlsq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmls.i16 Q0, Q0, D0[0]' * int32x4_t vmlsq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmls.i32 Q0, Q0, D0[0]' * int16x8_t vmlsq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmls.i16 Q0, Q0, D0[0]' * uint64x2_t vmlsl_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmlsl.u32 Q0, D0, D0[0]' * uint32x4_t vmlsl_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmlsl.u16 Q0, D0, D0[0]' * int64x2_t vmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmlsl.s32 Q0, D0, D0[0]' * int32x4_t vmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmlsl.s16 Q0, D0, D0[0]' * int64x2_t vqdmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqdmlsl.s32 Q0, D0, D0[0]' * int32x4_t vqdmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqdmlsl.s16 Q0, D0, D0[0]' 6.56.3.63 Vector multiply by scalar ................................... * float32x2_t vmul_n_f32 (float32x2_t, float32_t) ! _Form of expected instruction(s):_ `vmul.f32 D0, D0, D0[0]' * uint32x2_t vmul_n_u32 (uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ `vmul.i32 D0, D0, D0[0]' * uint16x4_t vmul_n_u16 (uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ `vmul.i16 D0, D0, D0[0]' * int32x2_t vmul_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vmul.i32 D0, D0, D0[0]' * int16x4_t vmul_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vmul.i16 D0, D0, D0[0]' * float32x4_t vmulq_n_f32 (float32x4_t, float32_t) ! _Form of expected instruction(s):_ `vmul.f32 Q0, Q0, D0[0]' * uint32x4_t vmulq_n_u32 (uint32x4_t, uint32_t) ! _Form of expected instruction(s):_ `vmul.i32 Q0, Q0, D0[0]' * uint16x8_t vmulq_n_u16 (uint16x8_t, uint16_t) ! _Form of expected instruction(s):_ `vmul.i16 Q0, Q0, D0[0]' * int32x4_t vmulq_n_s32 (int32x4_t, int32_t) ! _Form of expected instruction(s):_ `vmul.i32 Q0, Q0, D0[0]' * int16x8_t vmulq_n_s16 (int16x8_t, int16_t) ! _Form of expected instruction(s):_ `vmul.i16 Q0, Q0, D0[0]' 6.56.3.64 Vector long multiply by scalar ........................................ * uint64x2_t vmull_n_u32 (uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ `vmull.u32 Q0, D0, D0[0]' * uint32x4_t vmull_n_u16 (uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ `vmull.u16 Q0, D0, D0[0]' * int64x2_t vmull_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vmull.s32 Q0, D0, D0[0]' * int32x4_t vmull_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vmull.s16 Q0, D0, D0[0]' 6.56.3.65 Vector saturating doubling long multiply by scalar ............................................................ * int64x2_t vqdmull_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vqdmull.s32 Q0, D0, D0[0]' * int32x4_t vqdmull_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vqdmull.s16 Q0, D0, D0[0]' 6.56.3.66 Vector saturating doubling multiply high by scalar ............................................................ * int32x4_t vqdmulhq_n_s32 (int32x4_t, int32_t) ! _Form of expected instruction(s):_ `vqdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqdmulhq_n_s16 (int16x8_t, int16_t) ! _Form of expected instruction(s):_ `vqdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqdmulh_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vqdmulh.s32 D0, D0, D0[0]' * int16x4_t vqdmulh_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vqdmulh.s16 D0, D0, D0[0]' * int32x4_t vqrdmulhq_n_s32 (int32x4_t, int32_t) ! _Form of expected instruction(s):_ `vqrdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqrdmulhq_n_s16 (int16x8_t, int16_t) ! _Form of expected instruction(s):_ `vqrdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqrdmulh_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vqrdmulh.s32 D0, D0, D0[0]' * int16x4_t vqrdmulh_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vqrdmulh.s16 D0, D0, D0[0]' 6.56.3.67 Vector multiply-accumulate by scalar .............................................. * float32x2_t vmla_n_f32 (float32x2_t, float32x2_t, float32_t) ! _Form of expected instruction(s):_ `vmla.f32 D0, D0, D0[0]' * uint32x2_t vmla_n_u32 (uint32x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ `vmla.i32 D0, D0, D0[0]' * uint16x4_t vmla_n_u16 (uint16x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ `vmla.i16 D0, D0, D0[0]' * int32x2_t vmla_n_s32 (int32x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vmla.i32 D0, D0, D0[0]' * int16x4_t vmla_n_s16 (int16x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vmla.i16 D0, D0, D0[0]' * float32x4_t vmlaq_n_f32 (float32x4_t, float32x4_t, float32_t) ! _Form of expected instruction(s):_ `vmla.f32 Q0, Q0, D0[0]' * uint32x4_t vmlaq_n_u32 (uint32x4_t, uint32x4_t, uint32_t) ! _Form of expected instruction(s):_ `vmla.i32 Q0, Q0, D0[0]' * uint16x8_t vmlaq_n_u16 (uint16x8_t, uint16x8_t, uint16_t) ! _Form of expected instruction(s):_ `vmla.i16 Q0, Q0, D0[0]' * int32x4_t vmlaq_n_s32 (int32x4_t, int32x4_t, int32_t) ! _Form of expected instruction(s):_ `vmla.i32 Q0, Q0, D0[0]' * int16x8_t vmlaq_n_s16 (int16x8_t, int16x8_t, int16_t) ! _Form of expected instruction(s):_ `vmla.i16 Q0, Q0, D0[0]' * uint64x2_t vmlal_n_u32 (uint64x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ `vmlal.u32 Q0, D0, D0[0]' * uint32x4_t vmlal_n_u16 (uint32x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ `vmlal.u16 Q0, D0, D0[0]' * int64x2_t vmlal_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vmlal.s32 Q0, D0, D0[0]' * int32x4_t vmlal_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vmlal.s16 Q0, D0, D0[0]' * int64x2_t vqdmlal_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vqdmlal.s32 Q0, D0, D0[0]' * int32x4_t vqdmlal_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vqdmlal.s16 Q0, D0, D0[0]' 6.56.3.68 Vector multiply-subtract by scalar ............................................ * float32x2_t vmls_n_f32 (float32x2_t, float32x2_t, float32_t) ! _Form of expected instruction(s):_ `vmls.f32 D0, D0, D0[0]' * uint32x2_t vmls_n_u32 (uint32x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ `vmls.i32 D0, D0, D0[0]' * uint16x4_t vmls_n_u16 (uint16x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ `vmls.i16 D0, D0, D0[0]' * int32x2_t vmls_n_s32 (int32x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vmls.i32 D0, D0, D0[0]' * int16x4_t vmls_n_s16 (int16x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vmls.i16 D0, D0, D0[0]' * float32x4_t vmlsq_n_f32 (float32x4_t, float32x4_t, float32_t) ! _Form of expected instruction(s):_ `vmls.f32 Q0, Q0, D0[0]' * uint32x4_t vmlsq_n_u32 (uint32x4_t, uint32x4_t, uint32_t) ! _Form of expected instruction(s):_ `vmls.i32 Q0, Q0, D0[0]' * uint16x8_t vmlsq_n_u16 (uint16x8_t, uint16x8_t, uint16_t) ! _Form of expected instruction(s):_ `vmls.i16 Q0, Q0, D0[0]' * int32x4_t vmlsq_n_s32 (int32x4_t, int32x4_t, int32_t) ! _Form of expected instruction(s):_ `vmls.i32 Q0, Q0, D0[0]' * int16x8_t vmlsq_n_s16 (int16x8_t, int16x8_t, int16_t) ! _Form of expected instruction(s):_ `vmls.i16 Q0, Q0, D0[0]' * uint64x2_t vmlsl_n_u32 (uint64x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ `vmlsl.u32 Q0, D0, D0[0]' * uint32x4_t vmlsl_n_u16 (uint32x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ `vmlsl.u16 Q0, D0, D0[0]' * int64x2_t vmlsl_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vmlsl.s32 Q0, D0, D0[0]' * int32x4_t vmlsl_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vmlsl.s16 Q0, D0, D0[0]' * int64x2_t vqdmlsl_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vqdmlsl.s32 Q0, D0, D0[0]' * int32x4_t vqdmlsl_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vqdmlsl.s16 Q0, D0, D0[0]' 6.56.3.69 Vector extract ........................ * uint32x2_t vext_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vext.32 D0, D0, D0, #0' * uint16x4_t vext_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vext.16 D0, D0, D0, #0' * uint8x8_t vext_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vext.8 D0, D0, D0, #0' * int32x2_t vext_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vext.32 D0, D0, D0, #0' * int16x4_t vext_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vext.16 D0, D0, D0, #0' * int8x8_t vext_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ `vext.8 D0, D0, D0, #0' * uint64x1_t vext_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vext.64 D0, D0, D0, #0' * int64x1_t vext_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ `vext.64 D0, D0, D0, #0' * float32x2_t vext_f32 (float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vext.32 D0, D0, D0, #0' * poly16x4_t vext_p16 (poly16x4_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ `vext.16 D0, D0, D0, #0' * poly8x8_t vext_p8 (poly8x8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ `vext.8 D0, D0, D0, #0' * uint32x4_t vextq_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vext.32 Q0, Q0, Q0, #0' * uint16x8_t vextq_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vext.16 Q0, Q0, Q0, #0' * uint8x16_t vextq_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vext.8 Q0, Q0, Q0, #0' * int32x4_t vextq_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ `vext.32 Q0, Q0, Q0, #0' * int16x8_t vextq_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ `vext.16 Q0, Q0, Q0, #0' * int8x16_t vextq_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ `vext.8 Q0, Q0, Q0, #0' * uint64x2_t vextq_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vext.64 Q0, Q0, Q0, #0' * int64x2_t vextq_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ `vext.64 Q0, Q0, Q0, #0' * float32x4_t vextq_f32 (float32x4_t, float32x4_t, const int) ! _Form of expected instruction(s):_ `vext.32 Q0, Q0, Q0, #0' * poly16x8_t vextq_p16 (poly16x8_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ `vext.16 Q0, Q0, Q0, #0' * poly8x16_t vextq_p8 (poly8x16_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ `vext.8 Q0, Q0, Q0, #0' 6.56.3.70 Reverse elements .......................... * uint32x2_t vrev64_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vrev64.32 D0, D0' * uint16x4_t vrev64_u16 (uint16x4_t) ! _Form of expected instruction(s):_ `vrev64.16 D0, D0' * uint8x8_t vrev64_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vrev64.8 D0, D0' * int32x2_t vrev64_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vrev64.32 D0, D0' * int16x4_t vrev64_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vrev64.16 D0, D0' * int8x8_t vrev64_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vrev64.8 D0, D0' * float32x2_t vrev64_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrev64.32 D0, D0' * poly16x4_t vrev64_p16 (poly16x4_t) ! _Form of expected instruction(s):_ `vrev64.16 D0, D0' * poly8x8_t vrev64_p8 (poly8x8_t) ! _Form of expected instruction(s):_ `vrev64.8 D0, D0' * uint32x4_t vrev64q_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vrev64.32 Q0, Q0' * uint16x8_t vrev64q_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vrev64.16 Q0, Q0' * uint8x16_t vrev64q_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vrev64.8 Q0, Q0' * int32x4_t vrev64q_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vrev64.32 Q0, Q0' * int16x8_t vrev64q_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vrev64.16 Q0, Q0' * int8x16_t vrev64q_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vrev64.8 Q0, Q0' * float32x4_t vrev64q_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrev64.32 Q0, Q0' * poly16x8_t vrev64q_p16 (poly16x8_t) ! _Form of expected instruction(s):_ `vrev64.16 Q0, Q0' * poly8x16_t vrev64q_p8 (poly8x16_t) ! _Form of expected instruction(s):_ `vrev64.8 Q0, Q0' * uint16x4_t vrev32_u16 (uint16x4_t) ! _Form of expected instruction(s):_ `vrev32.16 D0, D0' * int16x4_t vrev32_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vrev32.16 D0, D0' * uint8x8_t vrev32_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vrev32.8 D0, D0' * int8x8_t vrev32_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vrev32.8 D0, D0' * poly16x4_t vrev32_p16 (poly16x4_t) ! _Form of expected instruction(s):_ `vrev32.16 D0, D0' * poly8x8_t vrev32_p8 (poly8x8_t) ! _Form of expected instruction(s):_ `vrev32.8 D0, D0' * uint16x8_t vrev32q_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vrev32.16 Q0, Q0' * int16x8_t vrev32q_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vrev32.16 Q0, Q0' * uint8x16_t vrev32q_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vrev32.8 Q0, Q0' * int8x16_t vrev32q_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vrev32.8 Q0, Q0' * poly16x8_t vrev32q_p16 (poly16x8_t) ! _Form of expected instruction(s):_ `vrev32.16 Q0, Q0' * poly8x16_t vrev32q_p8 (poly8x16_t) ! _Form of expected instruction(s):_ `vrev32.8 Q0, Q0' * uint8x8_t vrev16_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vrev16.8 D0, D0' * int8x8_t vrev16_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vrev16.8 D0, D0' * poly8x8_t vrev16_p8 (poly8x8_t) ! _Form of expected instruction(s):_ `vrev16.8 D0, D0' * uint8x16_t vrev16q_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vrev16.8 Q0, Q0' * int8x16_t vrev16q_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vrev16.8 Q0, Q0' * poly8x16_t vrev16q_p8 (poly8x16_t) ! _Form of expected instruction(s):_ `vrev16.8 Q0, Q0' 6.56.3.71 Bit selection ....................... * uint32x2_t vbsl_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * uint16x4_t vbsl_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * uint8x8_t vbsl_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * int32x2_t vbsl_s32 (uint32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * int16x4_t vbsl_s16 (uint16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * int8x8_t vbsl_s8 (uint8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * uint64x1_t vbsl_u64 (uint64x1_t, uint64x1_t, uint64x1_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * int64x1_t vbsl_s64 (uint64x1_t, int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * float32x2_t vbsl_f32 (uint32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * poly16x4_t vbsl_p16 (uint16x4_t, poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * poly8x8_t vbsl_p8 (uint8x8_t, poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * uint32x4_t vbslq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * uint16x8_t vbslq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * uint8x16_t vbslq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * int32x4_t vbslq_s32 (uint32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * int16x8_t vbslq_s16 (uint16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * int8x16_t vbslq_s8 (uint8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * uint64x2_t vbslq_u64 (uint64x2_t, uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * int64x2_t vbslq_s64 (uint64x2_t, int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * float32x4_t vbslq_f32 (uint32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * poly16x8_t vbslq_p16 (uint16x8_t, poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * poly8x16_t vbslq_p8 (uint8x16_t, poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' 6.56.3.72 Transpose elements ............................ * uint16x4x2_t vtrn_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vtrn.16 D0, D1' * uint8x8x2_t vtrn_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtrn.8 D0, D1' * int16x4x2_t vtrn_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vtrn.16 D0, D1' * int8x8x2_t vtrn_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vtrn.8 D0, D1' * poly16x4x2_t vtrn_p16 (poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ `vtrn.16 D0, D1' * poly8x8x2_t vtrn_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vtrn.8 D0, D1' * float32x2x2_t vtrn_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * uint32x2x2_t vtrn_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * int32x2x2_t vtrn_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * uint32x4x2_t vtrnq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vtrn.32 Q0, Q1' * uint16x8x2_t vtrnq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vtrn.16 Q0, Q1' * uint8x16x2_t vtrnq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vtrn.8 Q0, Q1' * int32x4x2_t vtrnq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vtrn.32 Q0, Q1' * int16x8x2_t vtrnq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vtrn.16 Q0, Q1' * int8x16x2_t vtrnq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vtrn.8 Q0, Q1' * float32x4x2_t vtrnq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vtrn.32 Q0, Q1' * poly16x8x2_t vtrnq_p16 (poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ `vtrn.16 Q0, Q1' * poly8x16x2_t vtrnq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vtrn.8 Q0, Q1' 6.56.3.73 Zip elements ...................... * uint16x4x2_t vzip_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vzip.16 D0, D1' * uint8x8x2_t vzip_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vzip.8 D0, D1' * int16x4x2_t vzip_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vzip.16 D0, D1' * int8x8x2_t vzip_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vzip.8 D0, D1' * poly16x4x2_t vzip_p16 (poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ `vzip.16 D0, D1' * poly8x8x2_t vzip_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vzip.8 D0, D1' * float32x2x2_t vzip_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * uint32x2x2_t vzip_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * int32x2x2_t vzip_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * uint32x4x2_t vzipq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vzip.32 Q0, Q1' * uint16x8x2_t vzipq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vzip.16 Q0, Q1' * uint8x16x2_t vzipq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vzip.8 Q0, Q1' * int32x4x2_t vzipq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vzip.32 Q0, Q1' * int16x8x2_t vzipq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vzip.16 Q0, Q1' * int8x16x2_t vzipq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vzip.8 Q0, Q1' * float32x4x2_t vzipq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vzip.32 Q0, Q1' * poly16x8x2_t vzipq_p16 (poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ `vzip.16 Q0, Q1' * poly8x16x2_t vzipq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vzip.8 Q0, Q1' 6.56.3.74 Unzip elements ........................ * uint32x2x2_t vuzp_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * uint16x4x2_t vuzp_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vuzp.16 D0, D1' * uint8x8x2_t vuzp_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vuzp.8 D0, D1' * int32x2x2_t vuzp_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * int16x4x2_t vuzp_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vuzp.16 D0, D1' * int8x8x2_t vuzp_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vuzp.8 D0, D1' * float32x2x2_t vuzp_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * poly16x4x2_t vuzp_p16 (poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ `vuzp.16 D0, D1' * poly8x8x2_t vuzp_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vuzp.8 D0, D1' * uint32x4x2_t vuzpq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vuzp.32 Q0, Q1' * uint16x8x2_t vuzpq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vuzp.16 Q0, Q1' * uint8x16x2_t vuzpq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vuzp.8 Q0, Q1' * int32x4x2_t vuzpq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vuzp.32 Q0, Q1' * int16x8x2_t vuzpq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vuzp.16 Q0, Q1' * int8x16x2_t vuzpq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vuzp.8 Q0, Q1' * float32x4x2_t vuzpq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vuzp.32 Q0, Q1' * poly16x8x2_t vuzpq_p16 (poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ `vuzp.16 Q0, Q1' * poly8x16x2_t vuzpq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vuzp.8 Q0, Q1' 6.56.3.75 Element/structure loads, VLD1 variants ................................................ * uint32x2_t vld1_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0}, [R0]' * uint16x4_t vld1_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0}, [R0]' * uint8x8_t vld1_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0}, [R0]' * int32x2_t vld1_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0}, [R0]' * int16x4_t vld1_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0}, [R0]' * int8x8_t vld1_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0}, [R0]' * uint64x1_t vld1_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * int64x1_t vld1_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * float32x2_t vld1_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0}, [R0]' * poly16x4_t vld1_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0}, [R0]' * poly8x8_t vld1_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0}, [R0]' * uint32x4_t vld1q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0, D1}, [R0]' * uint16x8_t vld1q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0, D1}, [R0]' * uint8x16_t vld1q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0, D1}, [R0]' * int32x4_t vld1q_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0, D1}, [R0]' * int16x8_t vld1q_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0, D1}, [R0]' * int8x16_t vld1q_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0, D1}, [R0]' * uint64x2_t vld1q_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' * int64x2_t vld1q_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' * float32x4_t vld1q_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0, D1}, [R0]' * poly16x8_t vld1q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0, D1}, [R0]' * poly8x16_t vld1q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0, D1}, [R0]' * uint32x2_t vld1_lane_u32 (const uint32_t *, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vld1.32 {D0[0]}, [R0]' * uint16x4_t vld1_lane_u16 (const uint16_t *, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vld1.16 {D0[0]}, [R0]' * uint8x8_t vld1_lane_u8 (const uint8_t *, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vld1.8 {D0[0]}, [R0]' * int32x2_t vld1_lane_s32 (const int32_t *, int32x2_t, const int) ! _Form of expected instruction(s):_ `vld1.32 {D0[0]}, [R0]' * int16x4_t vld1_lane_s16 (const int16_t *, int16x4_t, const int) ! _Form of expected instruction(s):_ `vld1.16 {D0[0]}, [R0]' * int8x8_t vld1_lane_s8 (const int8_t *, int8x8_t, const int) ! _Form of expected instruction(s):_ `vld1.8 {D0[0]}, [R0]' * float32x2_t vld1_lane_f32 (const float32_t *, float32x2_t, const int) ! _Form of expected instruction(s):_ `vld1.32 {D0[0]}, [R0]' * poly16x4_t vld1_lane_p16 (const poly16_t *, poly16x4_t, const int) ! _Form of expected instruction(s):_ `vld1.16 {D0[0]}, [R0]' * poly8x8_t vld1_lane_p8 (const poly8_t *, poly8x8_t, const int) ! _Form of expected instruction(s):_ `vld1.8 {D0[0]}, [R0]' * uint64x1_t vld1_lane_u64 (const uint64_t *, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * int64x1_t vld1_lane_s64 (const int64_t *, int64x1_t, const int) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * uint32x4_t vld1q_lane_u32 (const uint32_t *, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vld1.32 {D0[0]}, [R0]' * uint16x8_t vld1q_lane_u16 (const uint16_t *, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vld1.16 {D0[0]}, [R0]' * uint8x16_t vld1q_lane_u8 (const uint8_t *, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vld1.8 {D0[0]}, [R0]' * int32x4_t vld1q_lane_s32 (const int32_t *, int32x4_t, const int) ! _Form of expected instruction(s):_ `vld1.32 {D0[0]}, [R0]' * int16x8_t vld1q_lane_s16 (const int16_t *, int16x8_t, const int) ! _Form of expected instruction(s):_ `vld1.16 {D0[0]}, [R0]' * int8x16_t vld1q_lane_s8 (const int8_t *, int8x16_t, const int) ! _Form of expected instruction(s):_ `vld1.8 {D0[0]}, [R0]' * float32x4_t vld1q_lane_f32 (const float32_t *, float32x4_t, const int) ! _Form of expected instruction(s):_ `vld1.32 {D0[0]}, [R0]' * poly16x8_t vld1q_lane_p16 (const poly16_t *, poly16x8_t, const int) ! _Form of expected instruction(s):_ `vld1.16 {D0[0]}, [R0]' * poly8x16_t vld1q_lane_p8 (const poly8_t *, poly8x16_t, const int) ! _Form of expected instruction(s):_ `vld1.8 {D0[0]}, [R0]' * uint64x2_t vld1q_lane_u64 (const uint64_t *, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * int64x2_t vld1q_lane_s64 (const int64_t *, int64x2_t, const int) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * uint32x2_t vld1_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0[]}, [R0]' * uint16x4_t vld1_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0[]}, [R0]' * uint8x8_t vld1_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0[]}, [R0]' * int32x2_t vld1_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0[]}, [R0]' * int16x4_t vld1_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0[]}, [R0]' * int8x8_t vld1_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0[]}, [R0]' * float32x2_t vld1_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0[]}, [R0]' * poly16x4_t vld1_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0[]}, [R0]' * poly8x8_t vld1_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0[]}, [R0]' * uint64x1_t vld1_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * int64x1_t vld1_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * uint32x4_t vld1q_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0[], D1[]}, [R0]' * uint16x8_t vld1q_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0[], D1[]}, [R0]' * uint8x16_t vld1q_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0[], D1[]}, [R0]' * int32x4_t vld1q_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0[], D1[]}, [R0]' * int16x8_t vld1q_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0[], D1[]}, [R0]' * int8x16_t vld1q_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0[], D1[]}, [R0]' * float32x4_t vld1q_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0[], D1[]}, [R0]' * poly16x8_t vld1q_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0[], D1[]}, [R0]' * poly8x16_t vld1q_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0[], D1[]}, [R0]' * uint64x2_t vld1q_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * int64x2_t vld1q_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' 6.56.3.76 Element/structure stores, VST1 variants ................................................. * void vst1_u32 (uint32_t *, uint32x2_t) ! _Form of expected instruction(s):_ `vst1.32 {D0}, [R0]' * void vst1_u16 (uint16_t *, uint16x4_t) ! _Form of expected instruction(s):_ `vst1.16 {D0}, [R0]' * void vst1_u8 (uint8_t *, uint8x8_t) ! _Form of expected instruction(s):_ `vst1.8 {D0}, [R0]' * void vst1_s32 (int32_t *, int32x2_t) ! _Form of expected instruction(s):_ `vst1.32 {D0}, [R0]' * void vst1_s16 (int16_t *, int16x4_t) ! _Form of expected instruction(s):_ `vst1.16 {D0}, [R0]' * void vst1_s8 (int8_t *, int8x8_t) ! _Form of expected instruction(s):_ `vst1.8 {D0}, [R0]' * void vst1_u64 (uint64_t *, uint64x1_t) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' * void vst1_s64 (int64_t *, int64x1_t) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' * void vst1_f32 (float32_t *, float32x2_t) ! _Form of expected instruction(s):_ `vst1.32 {D0}, [R0]' * void vst1_p16 (poly16_t *, poly16x4_t) ! _Form of expected instruction(s):_ `vst1.16 {D0}, [R0]' * void vst1_p8 (poly8_t *, poly8x8_t) ! _Form of expected instruction(s):_ `vst1.8 {D0}, [R0]' * void vst1q_u32 (uint32_t *, uint32x4_t) ! _Form of expected instruction(s):_ `vst1.32 {D0, D1}, [R0]' * void vst1q_u16 (uint16_t *, uint16x8_t) ! _Form of expected instruction(s):_ `vst1.16 {D0, D1}, [R0]' * void vst1q_u8 (uint8_t *, uint8x16_t) ! _Form of expected instruction(s):_ `vst1.8 {D0, D1}, [R0]' * void vst1q_s32 (int32_t *, int32x4_t) ! _Form of expected instruction(s):_ `vst1.32 {D0, D1}, [R0]' * void vst1q_s16 (int16_t *, int16x8_t) ! _Form of expected instruction(s):_ `vst1.16 {D0, D1}, [R0]' * void vst1q_s8 (int8_t *, int8x16_t) ! _Form of expected instruction(s):_ `vst1.8 {D0, D1}, [R0]' * void vst1q_u64 (uint64_t *, uint64x2_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1}, [R0]' * void vst1q_s64 (int64_t *, int64x2_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1}, [R0]' * void vst1q_f32 (float32_t *, float32x4_t) ! _Form of expected instruction(s):_ `vst1.32 {D0, D1}, [R0]' * void vst1q_p16 (poly16_t *, poly16x8_t) ! _Form of expected instruction(s):_ `vst1.16 {D0, D1}, [R0]' * void vst1q_p8 (poly8_t *, poly8x16_t) ! _Form of expected instruction(s):_ `vst1.8 {D0, D1}, [R0]' * void vst1_lane_u32 (uint32_t *, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vst1.32 {D0[0]}, [R0]' * void vst1_lane_u16 (uint16_t *, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vst1.16 {D0[0]}, [R0]' * void vst1_lane_u8 (uint8_t *, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vst1.8 {D0[0]}, [R0]' * void vst1_lane_s32 (int32_t *, int32x2_t, const int) ! _Form of expected instruction(s):_ `vst1.32 {D0[0]}, [R0]' * void vst1_lane_s16 (int16_t *, int16x4_t, const int) ! _Form of expected instruction(s):_ `vst1.16 {D0[0]}, [R0]' * void vst1_lane_s8 (int8_t *, int8x8_t, const int) ! _Form of expected instruction(s):_ `vst1.8 {D0[0]}, [R0]' * void vst1_lane_f32 (float32_t *, float32x2_t, const int) ! _Form of expected instruction(s):_ `vst1.32 {D0[0]}, [R0]' * void vst1_lane_p16 (poly16_t *, poly16x4_t, const int) ! _Form of expected instruction(s):_ `vst1.16 {D0[0]}, [R0]' * void vst1_lane_p8 (poly8_t *, poly8x8_t, const int) ! _Form of expected instruction(s):_ `vst1.8 {D0[0]}, [R0]' * void vst1_lane_s64 (int64_t *, int64x1_t, const int) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' * void vst1_lane_u64 (uint64_t *, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' * void vst1q_lane_u32 (uint32_t *, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vst1.32 {D0[0]}, [R0]' * void vst1q_lane_u16 (uint16_t *, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vst1.16 {D0[0]}, [R0]' * void vst1q_lane_u8 (uint8_t *, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vst1.8 {D0[0]}, [R0]' * void vst1q_lane_s32 (int32_t *, int32x4_t, const int) ! _Form of expected instruction(s):_ `vst1.32 {D0[0]}, [R0]' * void vst1q_lane_s16 (int16_t *, int16x8_t, const int) ! _Form of expected instruction(s):_ `vst1.16 {D0[0]}, [R0]' * void vst1q_lane_s8 (int8_t *, int8x16_t, const int) ! _Form of expected instruction(s):_ `vst1.8 {D0[0]}, [R0]' * void vst1q_lane_f32 (float32_t *, float32x4_t, const int) ! _Form of expected instruction(s):_ `vst1.32 {D0[0]}, [R0]' * void vst1q_lane_p16 (poly16_t *, poly16x8_t, const int) ! _Form of expected instruction(s):_ `vst1.16 {D0[0]}, [R0]' * void vst1q_lane_p8 (poly8_t *, poly8x16_t, const int) ! _Form of expected instruction(s):_ `vst1.8 {D0[0]}, [R0]' * void vst1q_lane_s64 (int64_t *, int64x2_t, const int) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' * void vst1q_lane_u64 (uint64_t *, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' 6.56.3.77 Element/structure loads, VLD2 variants ................................................ * uint32x2x2_t vld2_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0, D1}, [R0]' * uint16x4x2_t vld2_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0, D1}, [R0]' * uint8x8x2_t vld2_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0, D1}, [R0]' * int32x2x2_t vld2_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0, D1}, [R0]' * int16x4x2_t vld2_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0, D1}, [R0]' * int8x8x2_t vld2_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0, D1}, [R0]' * float32x2x2_t vld2_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0, D1}, [R0]' * poly16x4x2_t vld2_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0, D1}, [R0]' * poly8x8x2_t vld2_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0, D1}, [R0]' * uint64x1x2_t vld2_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' * int64x1x2_t vld2_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' * uint32x4x2_t vld2q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0, D1}, [R0]' * uint16x8x2_t vld2q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0, D1}, [R0]' * uint8x16x2_t vld2q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0, D1}, [R0]' * int32x4x2_t vld2q_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0, D1}, [R0]' * int16x8x2_t vld2q_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0, D1}, [R0]' * int8x16x2_t vld2q_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0, D1}, [R0]' * float32x4x2_t vld2q_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0, D1}, [R0]' * poly16x8x2_t vld2q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0, D1}, [R0]' * poly8x16x2_t vld2q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0, D1}, [R0]' * uint32x2x2_t vld2_lane_u32 (const uint32_t *, uint32x2x2_t, const int) ! _Form of expected instruction(s):_ `vld2.32 {D0[0], D1[0]}, [R0]' * uint16x4x2_t vld2_lane_u16 (const uint16_t *, uint16x4x2_t, const int) ! _Form of expected instruction(s):_ `vld2.16 {D0[0], D1[0]}, [R0]' * uint8x8x2_t vld2_lane_u8 (const uint8_t *, uint8x8x2_t, const int) ! _Form of expected instruction(s):_ `vld2.8 {D0[0], D1[0]}, [R0]' * int32x2x2_t vld2_lane_s32 (const int32_t *, int32x2x2_t, const int) ! _Form of expected instruction(s):_ `vld2.32 {D0[0], D1[0]}, [R0]' * int16x4x2_t vld2_lane_s16 (const int16_t *, int16x4x2_t, const int) ! _Form of expected instruction(s):_ `vld2.16 {D0[0], D1[0]}, [R0]' * int8x8x2_t vld2_lane_s8 (const int8_t *, int8x8x2_t, const int) ! _Form of expected instruction(s):_ `vld2.8 {D0[0], D1[0]}, [R0]' * float32x2x2_t vld2_lane_f32 (const float32_t *, float32x2x2_t, const int) ! _Form of expected instruction(s):_ `vld2.32 {D0[0], D1[0]}, [R0]' * poly16x4x2_t vld2_lane_p16 (const poly16_t *, poly16x4x2_t, const int) ! _Form of expected instruction(s):_ `vld2.16 {D0[0], D1[0]}, [R0]' * poly8x8x2_t vld2_lane_p8 (const poly8_t *, poly8x8x2_t, const int) ! _Form of expected instruction(s):_ `vld2.8 {D0[0], D1[0]}, [R0]' * int32x4x2_t vld2q_lane_s32 (const int32_t *, int32x4x2_t, const int) ! _Form of expected instruction(s):_ `vld2.32 {D0[0], D1[0]}, [R0]' * int16x8x2_t vld2q_lane_s16 (const int16_t *, int16x8x2_t, const int) ! _Form of expected instruction(s):_ `vld2.16 {D0[0], D1[0]}, [R0]' * uint32x4x2_t vld2q_lane_u32 (const uint32_t *, uint32x4x2_t, const int) ! _Form of expected instruction(s):_ `vld2.32 {D0[0], D1[0]}, [R0]' * uint16x8x2_t vld2q_lane_u16 (const uint16_t *, uint16x8x2_t, const int) ! _Form of expected instruction(s):_ `vld2.16 {D0[0], D1[0]}, [R0]' * float32x4x2_t vld2q_lane_f32 (const float32_t *, float32x4x2_t, const int) ! _Form of expected instruction(s):_ `vld2.32 {D0[0], D1[0]}, [R0]' * poly16x8x2_t vld2q_lane_p16 (const poly16_t *, poly16x8x2_t, const int) ! _Form of expected instruction(s):_ `vld2.16 {D0[0], D1[0]}, [R0]' * uint32x2x2_t vld2_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0[], D1[]}, [R0]' * uint16x4x2_t vld2_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0[], D1[]}, [R0]' * uint8x8x2_t vld2_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0[], D1[]}, [R0]' * int32x2x2_t vld2_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0[], D1[]}, [R0]' * int16x4x2_t vld2_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0[], D1[]}, [R0]' * int8x8x2_t vld2_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0[], D1[]}, [R0]' * float32x2x2_t vld2_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0[], D1[]}, [R0]' * poly16x4x2_t vld2_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0[], D1[]}, [R0]' * poly8x8x2_t vld2_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0[], D1[]}, [R0]' * uint64x1x2_t vld2_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' * int64x1x2_t vld2_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' 6.56.3.78 Element/structure stores, VST2 variants ................................................. * void vst2_u32 (uint32_t *, uint32x2x2_t) ! _Form of expected instruction(s):_ `vst2.32 {D0, D1}, [R0]' * void vst2_u16 (uint16_t *, uint16x4x2_t) ! _Form of expected instruction(s):_ `vst2.16 {D0, D1}, [R0]' * void vst2_u8 (uint8_t *, uint8x8x2_t) ! _Form of expected instruction(s):_ `vst2.8 {D0, D1}, [R0]' * void vst2_s32 (int32_t *, int32x2x2_t) ! _Form of expected instruction(s):_ `vst2.32 {D0, D1}, [R0]' * void vst2_s16 (int16_t *, int16x4x2_t) ! _Form of expected instruction(s):_ `vst2.16 {D0, D1}, [R0]' * void vst2_s8 (int8_t *, int8x8x2_t) ! _Form of expected instruction(s):_ `vst2.8 {D0, D1}, [R0]' * void vst2_f32 (float32_t *, float32x2x2_t) ! _Form of expected instruction(s):_ `vst2.32 {D0, D1}, [R0]' * void vst2_p16 (poly16_t *, poly16x4x2_t) ! _Form of expected instruction(s):_ `vst2.16 {D0, D1}, [R0]' * void vst2_p8 (poly8_t *, poly8x8x2_t) ! _Form of expected instruction(s):_ `vst2.8 {D0, D1}, [R0]' * void vst2_u64 (uint64_t *, uint64x1x2_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1}, [R0]' * void vst2_s64 (int64_t *, int64x1x2_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1}, [R0]' * void vst2q_u32 (uint32_t *, uint32x4x2_t) ! _Form of expected instruction(s):_ `vst2.32 {D0, D1}, [R0]' * void vst2q_u16 (uint16_t *, uint16x8x2_t) ! _Form of expected instruction(s):_ `vst2.16 {D0, D1}, [R0]' * void vst2q_u8 (uint8_t *, uint8x16x2_t) ! _Form of expected instruction(s):_ `vst2.8 {D0, D1}, [R0]' * void vst2q_s32 (int32_t *, int32x4x2_t) ! _Form of expected instruction(s):_ `vst2.32 {D0, D1}, [R0]' * void vst2q_s16 (int16_t *, int16x8x2_t) ! _Form of expected instruction(s):_ `vst2.16 {D0, D1}, [R0]' * void vst2q_s8 (int8_t *, int8x16x2_t) ! _Form of expected instruction(s):_ `vst2.8 {D0, D1}, [R0]' * void vst2q_f32 (float32_t *, float32x4x2_t) ! _Form of expected instruction(s):_ `vst2.32 {D0, D1}, [R0]' * void vst2q_p16 (poly16_t *, poly16x8x2_t) ! _Form of expected instruction(s):_ `vst2.16 {D0, D1}, [R0]' * void vst2q_p8 (poly8_t *, poly8x16x2_t) ! _Form of expected instruction(s):_ `vst2.8 {D0, D1}, [R0]' * void vst2_lane_u32 (uint32_t *, uint32x2x2_t, const int) ! _Form of expected instruction(s):_ `vst2.32 {D0[0], D1[0]}, [R0]' * void vst2_lane_u16 (uint16_t *, uint16x4x2_t, const int) ! _Form of expected instruction(s):_ `vst2.16 {D0[0], D1[0]}, [R0]' * void vst2_lane_u8 (uint8_t *, uint8x8x2_t, const int) ! _Form of expected instruction(s):_ `vst2.8 {D0[0], D1[0]}, [R0]' * void vst2_lane_s32 (int32_t *, int32x2x2_t, const int) ! _Form of expected instruction(s):_ `vst2.32 {D0[0], D1[0]}, [R0]' * void vst2_lane_s16 (int16_t *, int16x4x2_t, const int) ! _Form of expected instruction(s):_ `vst2.16 {D0[0], D1[0]}, [R0]' * void vst2_lane_s8 (int8_t *, int8x8x2_t, const int) ! _Form of expected instruction(s):_ `vst2.8 {D0[0], D1[0]}, [R0]' * void vst2_lane_f32 (float32_t *, float32x2x2_t, const int) ! _Form of expected instruction(s):_ `vst2.32 {D0[0], D1[0]}, [R0]' * void vst2_lane_p16 (poly16_t *, poly16x4x2_t, const int) ! _Form of expected instruction(s):_ `vst2.16 {D0[0], D1[0]}, [R0]' * void vst2_lane_p8 (poly8_t *, poly8x8x2_t, const int) ! _Form of expected instruction(s):_ `vst2.8 {D0[0], D1[0]}, [R0]' * void vst2q_lane_s32 (int32_t *, int32x4x2_t, const int) ! _Form of expected instruction(s):_ `vst2.32 {D0[0], D1[0]}, [R0]' * void vst2q_lane_s16 (int16_t *, int16x8x2_t, const int) ! _Form of expected instruction(s):_ `vst2.16 {D0[0], D1[0]}, [R0]' * void vst2q_lane_u32 (uint32_t *, uint32x4x2_t, const int) ! _Form of expected instruction(s):_ `vst2.32 {D0[0], D1[0]}, [R0]' * void vst2q_lane_u16 (uint16_t *, uint16x8x2_t, const int) ! _Form of expected instruction(s):_ `vst2.16 {D0[0], D1[0]}, [R0]' * void vst2q_lane_f32 (float32_t *, float32x4x2_t, const int) ! _Form of expected instruction(s):_ `vst2.32 {D0[0], D1[0]}, [R0]' * void vst2q_lane_p16 (poly16_t *, poly16x8x2_t, const int) ! _Form of expected instruction(s):_ `vst2.16 {D0[0], D1[0]}, [R0]' 6.56.3.79 Element/structure loads, VLD3 variants ................................................ * uint32x2x3_t vld3_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0, D1, D2}, [R0]' * uint16x4x3_t vld3_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0, D1, D2}, [R0]' * uint8x8x3_t vld3_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0, D1, D2}, [R0]' * int32x2x3_t vld3_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0, D1, D2}, [R0]' * int16x4x3_t vld3_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0, D1, D2}, [R0]' * int8x8x3_t vld3_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0, D1, D2}, [R0]' * float32x2x3_t vld3_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0, D1, D2}, [R0]' * poly16x4x3_t vld3_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0, D1, D2}, [R0]' * poly8x8x3_t vld3_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0, D1, D2}, [R0]' * uint64x1x3_t vld3_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2}, [R0]' * int64x1x3_t vld3_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2}, [R0]' * uint32x4x3_t vld3q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0, D1, D2}, [R0]' * uint16x8x3_t vld3q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0, D1, D2}, [R0]' * uint8x16x3_t vld3q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0, D1, D2}, [R0]' * int32x4x3_t vld3q_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0, D1, D2}, [R0]' * int16x8x3_t vld3q_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0, D1, D2}, [R0]' * int8x16x3_t vld3q_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0, D1, D2}, [R0]' * float32x4x3_t vld3q_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0, D1, D2}, [R0]' * poly16x8x3_t vld3q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0, D1, D2}, [R0]' * poly8x16x3_t vld3q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0, D1, D2}, [R0]' * uint32x2x3_t vld3_lane_u32 (const uint32_t *, uint32x2x3_t, const int) ! _Form of expected instruction(s):_ `vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * uint16x4x3_t vld3_lane_u16 (const uint16_t *, uint16x4x3_t, const int) ! _Form of expected instruction(s):_ `vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * uint8x8x3_t vld3_lane_u8 (const uint8_t *, uint8x8x3_t, const int) ! _Form of expected instruction(s):_ `vld3.8 {D0[0], D1[0], D2[0]}, [R0]' * int32x2x3_t vld3_lane_s32 (const int32_t *, int32x2x3_t, const int) ! _Form of expected instruction(s):_ `vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * int16x4x3_t vld3_lane_s16 (const int16_t *, int16x4x3_t, const int) ! _Form of expected instruction(s):_ `vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * int8x8x3_t vld3_lane_s8 (const int8_t *, int8x8x3_t, const int) ! _Form of expected instruction(s):_ `vld3.8 {D0[0], D1[0], D2[0]}, [R0]' * float32x2x3_t vld3_lane_f32 (const float32_t *, float32x2x3_t, const int) ! _Form of expected instruction(s):_ `vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * poly16x4x3_t vld3_lane_p16 (const poly16_t *, poly16x4x3_t, const int) ! _Form of expected instruction(s):_ `vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * poly8x8x3_t vld3_lane_p8 (const poly8_t *, poly8x8x3_t, const int) ! _Form of expected instruction(s):_ `vld3.8 {D0[0], D1[0], D2[0]}, [R0]' * int32x4x3_t vld3q_lane_s32 (const int32_t *, int32x4x3_t, const int) ! _Form of expected instruction(s):_ `vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * int16x8x3_t vld3q_lane_s16 (const int16_t *, int16x8x3_t, const int) ! _Form of expected instruction(s):_ `vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * uint32x4x3_t vld3q_lane_u32 (const uint32_t *, uint32x4x3_t, const int) ! _Form of expected instruction(s):_ `vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * uint16x8x3_t vld3q_lane_u16 (const uint16_t *, uint16x8x3_t, const int) ! _Form of expected instruction(s):_ `vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * float32x4x3_t vld3q_lane_f32 (const float32_t *, float32x4x3_t, const int) ! _Form of expected instruction(s):_ `vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * poly16x8x3_t vld3q_lane_p16 (const poly16_t *, poly16x8x3_t, const int) ! _Form of expected instruction(s):_ `vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * uint32x2x3_t vld3_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0[], D1[], D2[]}, [R0]' * uint16x4x3_t vld3_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0[], D1[], D2[]}, [R0]' * uint8x8x3_t vld3_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0[], D1[], D2[]}, [R0]' * int32x2x3_t vld3_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0[], D1[], D2[]}, [R0]' * int16x4x3_t vld3_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0[], D1[], D2[]}, [R0]' * int8x8x3_t vld3_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0[], D1[], D2[]}, [R0]' * float32x2x3_t vld3_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0[], D1[], D2[]}, [R0]' * poly16x4x3_t vld3_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0[], D1[], D2[]}, [R0]' * poly8x8x3_t vld3_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0[], D1[], D2[]}, [R0]' * uint64x1x3_t vld3_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2}, [R0]' * int64x1x3_t vld3_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2}, [R0]' 6.56.3.80 Element/structure stores, VST3 variants ................................................. * void vst3_u32 (uint32_t *, uint32x2x3_t) ! _Form of expected instruction(s):_ `vst3.32 {D0, D1, D2, D3}, [R0]' * void vst3_u16 (uint16_t *, uint16x4x3_t) ! _Form of expected instruction(s):_ `vst3.16 {D0, D1, D2, D3}, [R0]' * void vst3_u8 (uint8_t *, uint8x8x3_t) ! _Form of expected instruction(s):_ `vst3.8 {D0, D1, D2, D3}, [R0]' * void vst3_s32 (int32_t *, int32x2x3_t) ! _Form of expected instruction(s):_ `vst3.32 {D0, D1, D2, D3}, [R0]' * void vst3_s16 (int16_t *, int16x4x3_t) ! _Form of expected instruction(s):_ `vst3.16 {D0, D1, D2, D3}, [R0]' * void vst3_s8 (int8_t *, int8x8x3_t) ! _Form of expected instruction(s):_ `vst3.8 {D0, D1, D2, D3}, [R0]' * void vst3_f32 (float32_t *, float32x2x3_t) ! _Form of expected instruction(s):_ `vst3.32 {D0, D1, D2, D3}, [R0]' * void vst3_p16 (poly16_t *, poly16x4x3_t) ! _Form of expected instruction(s):_ `vst3.16 {D0, D1, D2, D3}, [R0]' * void vst3_p8 (poly8_t *, poly8x8x3_t) ! _Form of expected instruction(s):_ `vst3.8 {D0, D1, D2, D3}, [R0]' * void vst3_u64 (uint64_t *, uint64x1x3_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1, D2, D3}, [R0]' * void vst3_s64 (int64_t *, int64x1x3_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1, D2, D3}, [R0]' * void vst3q_u32 (uint32_t *, uint32x4x3_t) ! _Form of expected instruction(s):_ `vst3.32 {D0, D1, D2}, [R0]' * void vst3q_u16 (uint16_t *, uint16x8x3_t) ! _Form of expected instruction(s):_ `vst3.16 {D0, D1, D2}, [R0]' * void vst3q_u8 (uint8_t *, uint8x16x3_t) ! _Form of expected instruction(s):_ `vst3.8 {D0, D1, D2}, [R0]' * void vst3q_s32 (int32_t *, int32x4x3_t) ! _Form of expected instruction(s):_ `vst3.32 {D0, D1, D2}, [R0]' * void vst3q_s16 (int16_t *, int16x8x3_t) ! _Form of expected instruction(s):_ `vst3.16 {D0, D1, D2}, [R0]' * void vst3q_s8 (int8_t *, int8x16x3_t) ! _Form of expected instruction(s):_ `vst3.8 {D0, D1, D2}, [R0]' * void vst3q_f32 (float32_t *, float32x4x3_t) ! _Form of expected instruction(s):_ `vst3.32 {D0, D1, D2}, [R0]' * void vst3q_p16 (poly16_t *, poly16x8x3_t) ! _Form of expected instruction(s):_ `vst3.16 {D0, D1, D2}, [R0]' * void vst3q_p8 (poly8_t *, poly8x16x3_t) ! _Form of expected instruction(s):_ `vst3.8 {D0, D1, D2}, [R0]' * void vst3_lane_u32 (uint32_t *, uint32x2x3_t, const int) ! _Form of expected instruction(s):_ `vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_u16 (uint16_t *, uint16x4x3_t, const int) ! _Form of expected instruction(s):_ `vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_u8 (uint8_t *, uint8x8x3_t, const int) ! _Form of expected instruction(s):_ `vst3.8 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_s32 (int32_t *, int32x2x3_t, const int) ! _Form of expected instruction(s):_ `vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_s16 (int16_t *, int16x4x3_t, const int) ! _Form of expected instruction(s):_ `vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_s8 (int8_t *, int8x8x3_t, const int) ! _Form of expected instruction(s):_ `vst3.8 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_f32 (float32_t *, float32x2x3_t, const int) ! _Form of expected instruction(s):_ `vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_p16 (poly16_t *, poly16x4x3_t, const int) ! _Form of expected instruction(s):_ `vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_p8 (poly8_t *, poly8x8x3_t, const int) ! _Form of expected instruction(s):_ `vst3.8 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_s32 (int32_t *, int32x4x3_t, const int) ! _Form of expected instruction(s):_ `vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_s16 (int16_t *, int16x8x3_t, const int) ! _Form of expected instruction(s):_ `vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_u32 (uint32_t *, uint32x4x3_t, const int) ! _Form of expected instruction(s):_ `vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_u16 (uint16_t *, uint16x8x3_t, const int) ! _Form of expected instruction(s):_ `vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_f32 (float32_t *, float32x4x3_t, const int) ! _Form of expected instruction(s):_ `vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_p16 (poly16_t *, poly16x8x3_t, const int) ! _Form of expected instruction(s):_ `vst3.16 {D0[0], D1[0], D2[0]}, [R0]' 6.56.3.81 Element/structure loads, VLD4 variants ................................................ * uint32x2x4_t vld4_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0, D1, D2, D3}, [R0]' * uint16x4x4_t vld4_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0, D1, D2, D3}, [R0]' * uint8x8x4_t vld4_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0, D1, D2, D3}, [R0]' * int32x2x4_t vld4_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0, D1, D2, D3}, [R0]' * int16x4x4_t vld4_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0, D1, D2, D3}, [R0]' * int8x8x4_t vld4_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0, D1, D2, D3}, [R0]' * float32x2x4_t vld4_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0, D1, D2, D3}, [R0]' * poly16x4x4_t vld4_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0, D1, D2, D3}, [R0]' * poly8x8x4_t vld4_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0, D1, D2, D3}, [R0]' * uint64x1x4_t vld4_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2, D3}, [R0]' * int64x1x4_t vld4_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2, D3}, [R0]' * uint32x4x4_t vld4q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0, D1, D2, D3}, [R0]' * uint16x8x4_t vld4q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0, D1, D2, D3}, [R0]' * uint8x16x4_t vld4q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0, D1, D2, D3}, [R0]' * int32x4x4_t vld4q_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0, D1, D2, D3}, [R0]' * int16x8x4_t vld4q_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0, D1, D2, D3}, [R0]' * int8x16x4_t vld4q_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0, D1, D2, D3}, [R0]' * float32x4x4_t vld4q_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0, D1, D2, D3}, [R0]' * poly16x8x4_t vld4q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0, D1, D2, D3}, [R0]' * poly8x16x4_t vld4q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0, D1, D2, D3}, [R0]' * uint32x2x4_t vld4_lane_u32 (const uint32_t *, uint32x2x4_t, const int) ! _Form of expected instruction(s):_ `vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint16x4x4_t vld4_lane_u16 (const uint16_t *, uint16x4x4_t, const int) ! _Form of expected instruction(s):_ `vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint8x8x4_t vld4_lane_u8 (const uint8_t *, uint8x8x4_t, const int) ! _Form of expected instruction(s):_ `vld4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int32x2x4_t vld4_lane_s32 (const int32_t *, int32x2x4_t, const int) ! _Form of expected instruction(s):_ `vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int16x4x4_t vld4_lane_s16 (const int16_t *, int16x4x4_t, const int) ! _Form of expected instruction(s):_ `vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int8x8x4_t vld4_lane_s8 (const int8_t *, int8x8x4_t, const int) ! _Form of expected instruction(s):_ `vld4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * float32x2x4_t vld4_lane_f32 (const float32_t *, float32x2x4_t, const int) ! _Form of expected instruction(s):_ `vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * poly16x4x4_t vld4_lane_p16 (const poly16_t *, poly16x4x4_t, const int) ! _Form of expected instruction(s):_ `vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * poly8x8x4_t vld4_lane_p8 (const poly8_t *, poly8x8x4_t, const int) ! _Form of expected instruction(s):_ `vld4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int32x4x4_t vld4q_lane_s32 (const int32_t *, int32x4x4_t, const int) ! _Form of expected instruction(s):_ `vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int16x8x4_t vld4q_lane_s16 (const int16_t *, int16x8x4_t, const int) ! _Form of expected instruction(s):_ `vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint32x4x4_t vld4q_lane_u32 (const uint32_t *, uint32x4x4_t, const int) ! _Form of expected instruction(s):_ `vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint16x8x4_t vld4q_lane_u16 (const uint16_t *, uint16x8x4_t, const int) ! _Form of expected instruction(s):_ `vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * float32x4x4_t vld4q_lane_f32 (const float32_t *, float32x4x4_t, const int) ! _Form of expected instruction(s):_ `vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * poly16x8x4_t vld4q_lane_p16 (const poly16_t *, poly16x8x4_t, const int) ! _Form of expected instruction(s):_ `vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint32x2x4_t vld4_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0[], D1[], D2[], D3[]}, [R0]' * uint16x4x4_t vld4_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0[], D1[], D2[], D3[]}, [R0]' * uint8x8x4_t vld4_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0[], D1[], D2[], D3[]}, [R0]' * int32x2x4_t vld4_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0[], D1[], D2[], D3[]}, [R0]' * int16x4x4_t vld4_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0[], D1[], D2[], D3[]}, [R0]' * int8x8x4_t vld4_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0[], D1[], D2[], D3[]}, [R0]' * float32x2x4_t vld4_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0[], D1[], D2[], D3[]}, [R0]' * poly16x4x4_t vld4_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0[], D1[], D2[], D3[]}, [R0]' * poly8x8x4_t vld4_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0[], D1[], D2[], D3[]}, [R0]' * uint64x1x4_t vld4_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2, D3}, [R0]' * int64x1x4_t vld4_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2, D3}, [R0]' 6.56.3.82 Element/structure stores, VST4 variants ................................................. * void vst4_u32 (uint32_t *, uint32x2x4_t) ! _Form of expected instruction(s):_ `vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4_u16 (uint16_t *, uint16x4x4_t) ! _Form of expected instruction(s):_ `vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4_u8 (uint8_t *, uint8x8x4_t) ! _Form of expected instruction(s):_ `vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_s32 (int32_t *, int32x2x4_t) ! _Form of expected instruction(s):_ `vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4_s16 (int16_t *, int16x4x4_t) ! _Form of expected instruction(s):_ `vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4_s8 (int8_t *, int8x8x4_t) ! _Form of expected instruction(s):_ `vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_f32 (float32_t *, float32x2x4_t) ! _Form of expected instruction(s):_ `vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4_p16 (poly16_t *, poly16x4x4_t) ! _Form of expected instruction(s):_ `vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4_p8 (poly8_t *, poly8x8x4_t) ! _Form of expected instruction(s):_ `vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_u64 (uint64_t *, uint64x1x4_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1, D2, D3}, [R0]' * void vst4_s64 (int64_t *, int64x1x4_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1, D2, D3}, [R0]' * void vst4q_u32 (uint32_t *, uint32x4x4_t) ! _Form of expected instruction(s):_ `vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4q_u16 (uint16_t *, uint16x8x4_t) ! _Form of expected instruction(s):_ `vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4q_u8 (uint8_t *, uint8x16x4_t) ! _Form of expected instruction(s):_ `vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4q_s32 (int32_t *, int32x4x4_t) ! _Form of expected instruction(s):_ `vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4q_s16 (int16_t *, int16x8x4_t) ! _Form of expected instruction(s):_ `vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4q_s8 (int8_t *, int8x16x4_t) ! _Form of expected instruction(s):_ `vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4q_f32 (float32_t *, float32x4x4_t) ! _Form of expected instruction(s):_ `vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4q_p16 (poly16_t *, poly16x8x4_t) ! _Form of expected instruction(s):_ `vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4q_p8 (poly8_t *, poly8x16x4_t) ! _Form of expected instruction(s):_ `vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_lane_u32 (uint32_t *, uint32x2x4_t, const int) ! _Form of expected instruction(s):_ `vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_u16 (uint16_t *, uint16x4x4_t, const int) ! _Form of expected instruction(s):_ `vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_u8 (uint8_t *, uint8x8x4_t, const int) ! _Form of expected instruction(s):_ `vst4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_s32 (int32_t *, int32x2x4_t, const int) ! _Form of expected instruction(s):_ `vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_s16 (int16_t *, int16x4x4_t, const int) ! _Form of expected instruction(s):_ `vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_s8 (int8_t *, int8x8x4_t, const int) ! _Form of expected instruction(s):_ `vst4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_f32 (float32_t *, float32x2x4_t, const int) ! _Form of expected instruction(s):_ `vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_p16 (poly16_t *, poly16x4x4_t, const int) ! _Form of expected instruction(s):_ `vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_p8 (poly8_t *, poly8x8x4_t, const int) ! _Form of expected instruction(s):_ `vst4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_s32 (int32_t *, int32x4x4_t, const int) ! _Form of expected instruction(s):_ `vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_s16 (int16_t *, int16x8x4_t, const int) ! _Form of expected instruction(s):_ `vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_u32 (uint32_t *, uint32x4x4_t, const int) ! _Form of expected instruction(s):_ `vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_u16 (uint16_t *, uint16x8x4_t, const int) ! _Form of expected instruction(s):_ `vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_f32 (float32_t *, float32x4x4_t, const int) ! _Form of expected instruction(s):_ `vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_p16 (poly16_t *, poly16x8x4_t, const int) ! _Form of expected instruction(s):_ `vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' 6.56.3.83 Logical operations (AND) .................................. * uint32x2_t vand_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vand D0, D0, D0' * uint16x4_t vand_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vand D0, D0, D0' * uint8x8_t vand_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vand D0, D0, D0' * int32x2_t vand_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vand D0, D0, D0' * int16x4_t vand_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vand D0, D0, D0' * int8x8_t vand_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vand D0, D0, D0' * uint64x1_t vand_u64 (uint64x1_t, uint64x1_t) * int64x1_t vand_s64 (int64x1_t, int64x1_t) * uint32x4_t vandq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * uint16x8_t vandq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * uint8x16_t vandq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * int32x4_t vandq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * int16x8_t vandq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * int8x16_t vandq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * uint64x2_t vandq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * int64x2_t vandq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' 6.56.3.84 Logical operations (OR) ................................. * uint32x2_t vorr_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vorr D0, D0, D0' * uint16x4_t vorr_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vorr D0, D0, D0' * uint8x8_t vorr_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vorr D0, D0, D0' * int32x2_t vorr_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vorr D0, D0, D0' * int16x4_t vorr_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vorr D0, D0, D0' * int8x8_t vorr_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vorr D0, D0, D0' * uint64x1_t vorr_u64 (uint64x1_t, uint64x1_t) * int64x1_t vorr_s64 (int64x1_t, int64x1_t) * uint32x4_t vorrq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * uint16x8_t vorrq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * uint8x16_t vorrq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * int32x4_t vorrq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * int16x8_t vorrq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * int8x16_t vorrq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * uint64x2_t vorrq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * int64x2_t vorrq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' 6.56.3.85 Logical operations (exclusive OR) ........................................... * uint32x2_t veor_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `veor D0, D0, D0' * uint16x4_t veor_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `veor D0, D0, D0' * uint8x8_t veor_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `veor D0, D0, D0' * int32x2_t veor_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `veor D0, D0, D0' * int16x4_t veor_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `veor D0, D0, D0' * int8x8_t veor_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `veor D0, D0, D0' * uint64x1_t veor_u64 (uint64x1_t, uint64x1_t) * int64x1_t veor_s64 (int64x1_t, int64x1_t) * uint32x4_t veorq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * uint16x8_t veorq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * uint8x16_t veorq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * int32x4_t veorq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * int16x8_t veorq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * int8x16_t veorq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * uint64x2_t veorq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * int64x2_t veorq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' 6.56.3.86 Logical operations (AND-NOT) ...................................... * uint32x2_t vbic_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vbic D0, D0, D0' * uint16x4_t vbic_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vbic D0, D0, D0' * uint8x8_t vbic_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vbic D0, D0, D0' * int32x2_t vbic_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vbic D0, D0, D0' * int16x4_t vbic_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vbic D0, D0, D0' * int8x8_t vbic_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vbic D0, D0, D0' * uint64x1_t vbic_u64 (uint64x1_t, uint64x1_t) * int64x1_t vbic_s64 (int64x1_t, int64x1_t) * uint32x4_t vbicq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * uint16x8_t vbicq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * uint8x16_t vbicq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * int32x4_t vbicq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * int16x8_t vbicq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * int8x16_t vbicq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * uint64x2_t vbicq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * int64x2_t vbicq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' 6.56.3.87 Logical operations (OR-NOT) ..................................... * uint32x2_t vorn_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vorn D0, D0, D0' * uint16x4_t vorn_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vorn D0, D0, D0' * uint8x8_t vorn_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vorn D0, D0, D0' * int32x2_t vorn_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vorn D0, D0, D0' * int16x4_t vorn_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vorn D0, D0, D0' * int8x8_t vorn_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vorn D0, D0, D0' * uint64x1_t vorn_u64 (uint64x1_t, uint64x1_t) * int64x1_t vorn_s64 (int64x1_t, int64x1_t) * uint32x4_t vornq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * uint16x8_t vornq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * uint8x16_t vornq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * int32x4_t vornq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * int16x8_t vornq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * int8x16_t vornq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * uint64x2_t vornq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * int64x2_t vornq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' 6.56.3.88 Reinterpret casts ........................... --- 32967,35465 ---- ..................... * float32x2_t vcvt_f32_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vcvt.f32.u32 D0, D0' * float32x2_t vcvt_f32_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vcvt.f32.s32 D0, D0' * uint32x2_t vcvt_u32_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vcvt.u32.f32 D0, D0' * int32x2_t vcvt_s32_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vcvt.s32.f32 D0, D0' * float32x4_t vcvtq_f32_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vcvt.f32.u32 Q0, Q0' * float32x4_t vcvtq_f32_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vcvt.f32.s32 Q0, Q0' * uint32x4_t vcvtq_u32_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vcvt.u32.f32 Q0, Q0' * int32x4_t vcvtq_s32_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vcvt.s32.f32 Q0, Q0' * float32x2_t vcvt_n_f32_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vcvt.f32.u32 D0, D0, #0' * float32x2_t vcvt_n_f32_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vcvt.f32.s32 D0, D0, #0' * uint32x2_t vcvt_n_u32_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ 'vcvt.u32.f32 D0, D0, #0' * int32x2_t vcvt_n_s32_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ 'vcvt.s32.f32 D0, D0, #0' * float32x4_t vcvtq_n_f32_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vcvt.f32.u32 Q0, Q0, #0' * float32x4_t vcvtq_n_f32_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vcvt.f32.s32 Q0, Q0, #0' * uint32x4_t vcvtq_n_u32_f32 (float32x4_t, const int) ! _Form of expected instruction(s):_ 'vcvt.u32.f32 Q0, Q0, #0' * int32x4_t vcvtq_n_s32_f32 (float32x4_t, const int) ! _Form of expected instruction(s):_ 'vcvt.s32.f32 Q0, Q0, #0' 6.56.3.53 Move, single_opcode narrowing ....................................... * uint32x2_t vmovn_u64 (uint64x2_t) ! _Form of expected instruction(s):_ 'vmovn.i64 D0, Q0' * uint16x4_t vmovn_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vmovn.i32 D0, Q0' * uint8x8_t vmovn_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vmovn.i16 D0, Q0' * int32x2_t vmovn_s64 (int64x2_t) ! _Form of expected instruction(s):_ 'vmovn.i64 D0, Q0' * int16x4_t vmovn_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vmovn.i32 D0, Q0' * int8x8_t vmovn_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vmovn.i16 D0, Q0' * uint32x2_t vqmovn_u64 (uint64x2_t) ! _Form of expected instruction(s):_ 'vqmovn.u64 D0, Q0' * uint16x4_t vqmovn_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vqmovn.u32 D0, Q0' * uint8x8_t vqmovn_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vqmovn.u16 D0, Q0' * int32x2_t vqmovn_s64 (int64x2_t) ! _Form of expected instruction(s):_ 'vqmovn.s64 D0, Q0' * int16x4_t vqmovn_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vqmovn.s32 D0, Q0' * int8x8_t vqmovn_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vqmovn.s16 D0, Q0' * uint32x2_t vqmovun_s64 (int64x2_t) ! _Form of expected instruction(s):_ 'vqmovun.s64 D0, Q0' * uint16x4_t vqmovun_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vqmovun.s32 D0, Q0' * uint8x8_t vqmovun_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vqmovun.s16 D0, Q0' 6.56.3.54 Move, single_opcode long .................................. * uint64x2_t vmovl_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vmovl.u32 Q0, D0' * uint32x4_t vmovl_u16 (uint16x4_t) ! _Form of expected instruction(s):_ 'vmovl.u16 Q0, D0' * uint16x8_t vmovl_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vmovl.u8 Q0, D0' * int64x2_t vmovl_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vmovl.s32 Q0, D0' * int32x4_t vmovl_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vmovl.s16 Q0, D0' * int16x8_t vmovl_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vmovl.s8 Q0, D0' 6.56.3.55 Table lookup ...................... * poly8x8_t vtbl1_p8 (poly8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0}, D0' * int8x8_t vtbl1_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0}, D0' * uint8x8_t vtbl1_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0}, D0' * poly8x8_t vtbl2_p8 (poly8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1}, D0' * int8x8_t vtbl2_s8 (int8x8x2_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1}, D0' * uint8x8_t vtbl2_u8 (uint8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1}, D0' * poly8x8_t vtbl3_p8 (poly8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2}, D0' * int8x8_t vtbl3_s8 (int8x8x3_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2}, D0' * uint8x8_t vtbl3_u8 (uint8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2}, D0' * poly8x8_t vtbl4_p8 (poly8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2, D3}, D0' * int8x8_t vtbl4_s8 (int8x8x4_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2, D3}, D0' * uint8x8_t vtbl4_u8 (uint8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2, D3}, D0' 6.56.3.56 Extended table lookup ............................... * poly8x8_t vtbx1_p8 (poly8x8_t, poly8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0}, D0' * int8x8_t vtbx1_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0}, D0' * uint8x8_t vtbx1_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0}, D0' * poly8x8_t vtbx2_p8 (poly8x8_t, poly8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1}, D0' * int8x8_t vtbx2_s8 (int8x8_t, int8x8x2_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1}, D0' * uint8x8_t vtbx2_u8 (uint8x8_t, uint8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1}, D0' * poly8x8_t vtbx3_p8 (poly8x8_t, poly8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2}, D0' * int8x8_t vtbx3_s8 (int8x8_t, int8x8x3_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2}, D0' * uint8x8_t vtbx3_u8 (uint8x8_t, uint8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2}, D0' * poly8x8_t vtbx4_p8 (poly8x8_t, poly8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2, D3}, D0' * int8x8_t vtbx4_s8 (int8x8_t, int8x8x4_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2, D3}, D0' * uint8x8_t vtbx4_u8 (uint8x8_t, uint8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2, D3}, D0' 6.56.3.57 Multiply, lane ........................ * float32x2_t vmul_lane_f32 (float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmul.f32 D0, D0, D0[0]' * uint32x2_t vmul_lane_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0[0]' * uint16x4_t vmul_lane_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0[0]' * int32x2_t vmul_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0[0]' * int16x4_t vmul_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0[0]' * float32x4_t vmulq_lane_f32 (float32x4_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmul.f32 Q0, Q0, D0[0]' * uint32x4_t vmulq_lane_u32 (uint32x4_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, D0[0]' * uint16x8_t vmulq_lane_u16 (uint16x8_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, D0[0]' * int32x4_t vmulq_lane_s32 (int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, D0[0]' * int16x8_t vmulq_lane_s16 (int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, D0[0]' 6.56.3.58 Long multiply, lane ............................. * uint64x2_t vmull_lane_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmull.u32 Q0, D0, D0[0]' * uint32x4_t vmull_lane_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmull.u16 Q0, D0, D0[0]' * int64x2_t vmull_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmull.s32 Q0, D0, D0[0]' * int32x4_t vmull_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmull.s16 Q0, D0, D0[0]' 6.56.3.59 Saturating doubling long multiply, lane ................................................. * int64x2_t vqdmull_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqdmull.s32 Q0, D0, D0[0]' * int32x4_t vqdmull_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqdmull.s16 Q0, D0, D0[0]' 6.56.3.60 Saturating doubling multiply high, lane ................................................. * int32x4_t vqdmulhq_lane_s32 (int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqdmulhq_lane_s16 (int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqdmulh_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqdmulh.s32 D0, D0, D0[0]' * int16x4_t vqdmulh_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqdmulh.s16 D0, D0, D0[0]' * int32x4_t vqrdmulhq_lane_s32 (int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqrdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqrdmulhq_lane_s16 (int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqrdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqrdmulh_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqrdmulh.s32 D0, D0, D0[0]' * int16x4_t vqrdmulh_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqrdmulh.s16 D0, D0, D0[0]' 6.56.3.61 Multiply-accumulate, lane ................................... * float32x2_t vmla_lane_f32 (float32x2_t, float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmla.f32 D0, D0, D0[0]' ! * uint32x2_t vmla_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, const ! int) ! _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0[0]' ! * uint16x4_t vmla_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, const ! int) ! _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0[0]' * int32x2_t vmla_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0[0]' * int16x4_t vmla_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0[0]' * float32x4_t vmlaq_lane_f32 (float32x4_t, float32x4_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmla.f32 Q0, Q0, D0[0]' * uint32x4_t vmlaq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, D0[0]' * uint16x8_t vmlaq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, D0[0]' * int32x4_t vmlaq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, D0[0]' * int16x8_t vmlaq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, D0[0]' * uint64x2_t vmlal_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmlal.u32 Q0, D0, D0[0]' * uint32x4_t vmlal_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmlal.u16 Q0, D0, D0[0]' * int64x2_t vmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmlal.s32 Q0, D0, D0[0]' * int32x4_t vmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmlal.s16 Q0, D0, D0[0]' * int64x2_t vqdmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqdmlal.s32 Q0, D0, D0[0]' * int32x4_t vqdmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqdmlal.s16 Q0, D0, D0[0]' 6.56.3.62 Multiply-subtract, lane ................................. * float32x2_t vmls_lane_f32 (float32x2_t, float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmls.f32 D0, D0, D0[0]' ! * uint32x2_t vmls_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, const ! int) ! _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0[0]' ! * uint16x4_t vmls_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, const ! int) ! _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0[0]' * int32x2_t vmls_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0[0]' * int16x4_t vmls_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0[0]' * float32x4_t vmlsq_lane_f32 (float32x4_t, float32x4_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmls.f32 Q0, Q0, D0[0]' * uint32x4_t vmlsq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, D0[0]' * uint16x8_t vmlsq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, D0[0]' * int32x4_t vmlsq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, D0[0]' * int16x8_t vmlsq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, D0[0]' * uint64x2_t vmlsl_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmlsl.u32 Q0, D0, D0[0]' * uint32x4_t vmlsl_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmlsl.u16 Q0, D0, D0[0]' * int64x2_t vmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmlsl.s32 Q0, D0, D0[0]' * int32x4_t vmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmlsl.s16 Q0, D0, D0[0]' * int64x2_t vqdmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqdmlsl.s32 Q0, D0, D0[0]' * int32x4_t vqdmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqdmlsl.s16 Q0, D0, D0[0]' 6.56.3.63 Vector multiply by scalar ................................... * float32x2_t vmul_n_f32 (float32x2_t, float32_t) ! _Form of expected instruction(s):_ 'vmul.f32 D0, D0, D0[0]' * uint32x2_t vmul_n_u32 (uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0[0]' * uint16x4_t vmul_n_u16 (uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0[0]' * int32x2_t vmul_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0[0]' * int16x4_t vmul_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0[0]' * float32x4_t vmulq_n_f32 (float32x4_t, float32_t) ! _Form of expected instruction(s):_ 'vmul.f32 Q0, Q0, D0[0]' * uint32x4_t vmulq_n_u32 (uint32x4_t, uint32_t) ! _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, D0[0]' * uint16x8_t vmulq_n_u16 (uint16x8_t, uint16_t) ! _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, D0[0]' * int32x4_t vmulq_n_s32 (int32x4_t, int32_t) ! _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, D0[0]' * int16x8_t vmulq_n_s16 (int16x8_t, int16_t) ! _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, D0[0]' 6.56.3.64 Vector long multiply by scalar ........................................ * uint64x2_t vmull_n_u32 (uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ 'vmull.u32 Q0, D0, D0[0]' * uint32x4_t vmull_n_u16 (uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ 'vmull.u16 Q0, D0, D0[0]' * int64x2_t vmull_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vmull.s32 Q0, D0, D0[0]' * int32x4_t vmull_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vmull.s16 Q0, D0, D0[0]' 6.56.3.65 Vector saturating doubling long multiply by scalar ............................................................ * int64x2_t vqdmull_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vqdmull.s32 Q0, D0, D0[0]' * int32x4_t vqdmull_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vqdmull.s16 Q0, D0, D0[0]' 6.56.3.66 Vector saturating doubling multiply high by scalar ............................................................ * int32x4_t vqdmulhq_n_s32 (int32x4_t, int32_t) ! _Form of expected instruction(s):_ 'vqdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqdmulhq_n_s16 (int16x8_t, int16_t) ! _Form of expected instruction(s):_ 'vqdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqdmulh_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vqdmulh.s32 D0, D0, D0[0]' * int16x4_t vqdmulh_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vqdmulh.s16 D0, D0, D0[0]' * int32x4_t vqrdmulhq_n_s32 (int32x4_t, int32_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqrdmulhq_n_s16 (int16x8_t, int16_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqrdmulh_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s32 D0, D0, D0[0]' * int16x4_t vqrdmulh_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s16 D0, D0, D0[0]' 6.56.3.67 Vector multiply-accumulate by scalar .............................................. * float32x2_t vmla_n_f32 (float32x2_t, float32x2_t, float32_t) ! _Form of expected instruction(s):_ 'vmla.f32 D0, D0, D0[0]' * uint32x2_t vmla_n_u32 (uint32x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0[0]' * uint16x4_t vmla_n_u16 (uint16x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0[0]' * int32x2_t vmla_n_s32 (int32x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0[0]' * int16x4_t vmla_n_s16 (int16x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0[0]' * float32x4_t vmlaq_n_f32 (float32x4_t, float32x4_t, float32_t) ! _Form of expected instruction(s):_ 'vmla.f32 Q0, Q0, D0[0]' * uint32x4_t vmlaq_n_u32 (uint32x4_t, uint32x4_t, uint32_t) ! _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, D0[0]' * uint16x8_t vmlaq_n_u16 (uint16x8_t, uint16x8_t, uint16_t) ! _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, D0[0]' * int32x4_t vmlaq_n_s32 (int32x4_t, int32x4_t, int32_t) ! _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, D0[0]' * int16x8_t vmlaq_n_s16 (int16x8_t, int16x8_t, int16_t) ! _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, D0[0]' * uint64x2_t vmlal_n_u32 (uint64x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ 'vmlal.u32 Q0, D0, D0[0]' * uint32x4_t vmlal_n_u16 (uint32x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ 'vmlal.u16 Q0, D0, D0[0]' * int64x2_t vmlal_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vmlal.s32 Q0, D0, D0[0]' * int32x4_t vmlal_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vmlal.s16 Q0, D0, D0[0]' * int64x2_t vqdmlal_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vqdmlal.s32 Q0, D0, D0[0]' * int32x4_t vqdmlal_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vqdmlal.s16 Q0, D0, D0[0]' 6.56.3.68 Vector multiply-subtract by scalar ............................................ * float32x2_t vmls_n_f32 (float32x2_t, float32x2_t, float32_t) ! _Form of expected instruction(s):_ 'vmls.f32 D0, D0, D0[0]' * uint32x2_t vmls_n_u32 (uint32x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0[0]' * uint16x4_t vmls_n_u16 (uint16x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0[0]' * int32x2_t vmls_n_s32 (int32x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0[0]' * int16x4_t vmls_n_s16 (int16x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0[0]' * float32x4_t vmlsq_n_f32 (float32x4_t, float32x4_t, float32_t) ! _Form of expected instruction(s):_ 'vmls.f32 Q0, Q0, D0[0]' * uint32x4_t vmlsq_n_u32 (uint32x4_t, uint32x4_t, uint32_t) ! _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, D0[0]' * uint16x8_t vmlsq_n_u16 (uint16x8_t, uint16x8_t, uint16_t) ! _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, D0[0]' * int32x4_t vmlsq_n_s32 (int32x4_t, int32x4_t, int32_t) ! _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, D0[0]' * int16x8_t vmlsq_n_s16 (int16x8_t, int16x8_t, int16_t) ! _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, D0[0]' * uint64x2_t vmlsl_n_u32 (uint64x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ 'vmlsl.u32 Q0, D0, D0[0]' * uint32x4_t vmlsl_n_u16 (uint32x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ 'vmlsl.u16 Q0, D0, D0[0]' * int64x2_t vmlsl_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vmlsl.s32 Q0, D0, D0[0]' * int32x4_t vmlsl_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vmlsl.s16 Q0, D0, D0[0]' * int64x2_t vqdmlsl_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vqdmlsl.s32 Q0, D0, D0[0]' * int32x4_t vqdmlsl_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vqdmlsl.s16 Q0, D0, D0[0]' 6.56.3.69 Vector extract ........................ * uint32x2_t vext_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vext.32 D0, D0, D0, #0' * uint16x4_t vext_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vext.16 D0, D0, D0, #0' * uint8x8_t vext_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vext.8 D0, D0, D0, #0' * int32x2_t vext_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vext.32 D0, D0, D0, #0' * int16x4_t vext_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vext.16 D0, D0, D0, #0' * int8x8_t vext_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vext.8 D0, D0, D0, #0' * uint64x1_t vext_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vext.64 D0, D0, D0, #0' * int64x1_t vext_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vext.64 D0, D0, D0, #0' * float32x2_t vext_f32 (float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vext.32 D0, D0, D0, #0' * poly16x4_t vext_p16 (poly16x4_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vext.16 D0, D0, D0, #0' * poly8x8_t vext_p8 (poly8x8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vext.8 D0, D0, D0, #0' * uint32x4_t vextq_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vext.32 Q0, Q0, Q0, #0' * uint16x8_t vextq_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vext.16 Q0, Q0, Q0, #0' * uint8x16_t vextq_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vext.8 Q0, Q0, Q0, #0' * int32x4_t vextq_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vext.32 Q0, Q0, Q0, #0' * int16x8_t vextq_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vext.16 Q0, Q0, Q0, #0' * int8x16_t vextq_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vext.8 Q0, Q0, Q0, #0' * uint64x2_t vextq_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vext.64 Q0, Q0, Q0, #0' * int64x2_t vextq_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vext.64 Q0, Q0, Q0, #0' * float32x4_t vextq_f32 (float32x4_t, float32x4_t, const int) ! _Form of expected instruction(s):_ 'vext.32 Q0, Q0, Q0, #0' * poly16x8_t vextq_p16 (poly16x8_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ 'vext.16 Q0, Q0, Q0, #0' * poly8x16_t vextq_p8 (poly8x16_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vext.8 Q0, Q0, Q0, #0' 6.56.3.70 Reverse elements .......................... * uint32x2_t vrev64_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vrev64.32 D0, D0' * uint16x4_t vrev64_u16 (uint16x4_t) ! _Form of expected instruction(s):_ 'vrev64.16 D0, D0' * uint8x8_t vrev64_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vrev64.8 D0, D0' * int32x2_t vrev64_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vrev64.32 D0, D0' * int16x4_t vrev64_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vrev64.16 D0, D0' * int8x8_t vrev64_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vrev64.8 D0, D0' * float32x2_t vrev64_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrev64.32 D0, D0' * poly16x4_t vrev64_p16 (poly16x4_t) ! _Form of expected instruction(s):_ 'vrev64.16 D0, D0' * poly8x8_t vrev64_p8 (poly8x8_t) ! _Form of expected instruction(s):_ 'vrev64.8 D0, D0' * uint32x4_t vrev64q_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vrev64.32 Q0, Q0' * uint16x8_t vrev64q_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vrev64.16 Q0, Q0' * uint8x16_t vrev64q_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vrev64.8 Q0, Q0' * int32x4_t vrev64q_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vrev64.32 Q0, Q0' * int16x8_t vrev64q_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vrev64.16 Q0, Q0' * int8x16_t vrev64q_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vrev64.8 Q0, Q0' * float32x4_t vrev64q_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrev64.32 Q0, Q0' * poly16x8_t vrev64q_p16 (poly16x8_t) ! _Form of expected instruction(s):_ 'vrev64.16 Q0, Q0' * poly8x16_t vrev64q_p8 (poly8x16_t) ! _Form of expected instruction(s):_ 'vrev64.8 Q0, Q0' * uint16x4_t vrev32_u16 (uint16x4_t) ! _Form of expected instruction(s):_ 'vrev32.16 D0, D0' * int16x4_t vrev32_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vrev32.16 D0, D0' * uint8x8_t vrev32_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vrev32.8 D0, D0' * int8x8_t vrev32_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vrev32.8 D0, D0' * poly16x4_t vrev32_p16 (poly16x4_t) ! _Form of expected instruction(s):_ 'vrev32.16 D0, D0' * poly8x8_t vrev32_p8 (poly8x8_t) ! _Form of expected instruction(s):_ 'vrev32.8 D0, D0' * uint16x8_t vrev32q_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vrev32.16 Q0, Q0' * int16x8_t vrev32q_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vrev32.16 Q0, Q0' * uint8x16_t vrev32q_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vrev32.8 Q0, Q0' * int8x16_t vrev32q_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vrev32.8 Q0, Q0' * poly16x8_t vrev32q_p16 (poly16x8_t) ! _Form of expected instruction(s):_ 'vrev32.16 Q0, Q0' * poly8x16_t vrev32q_p8 (poly8x16_t) ! _Form of expected instruction(s):_ 'vrev32.8 Q0, Q0' * uint8x8_t vrev16_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vrev16.8 D0, D0' * int8x8_t vrev16_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vrev16.8 D0, D0' * poly8x8_t vrev16_p8 (poly8x8_t) ! _Form of expected instruction(s):_ 'vrev16.8 D0, D0' * uint8x16_t vrev16q_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vrev16.8 Q0, Q0' * int8x16_t vrev16q_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vrev16.8 Q0, Q0' * poly8x16_t vrev16q_p8 (poly8x16_t) ! _Form of expected instruction(s):_ 'vrev16.8 Q0, Q0' 6.56.3.71 Bit selection ....................... * uint32x2_t vbsl_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * uint16x4_t vbsl_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * uint8x8_t vbsl_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * int32x2_t vbsl_s32 (uint32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * int16x4_t vbsl_s16 (uint16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * int8x8_t vbsl_s8 (uint8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * uint64x1_t vbsl_u64 (uint64x1_t, uint64x1_t, uint64x1_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * int64x1_t vbsl_s64 (uint64x1_t, int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * float32x2_t vbsl_f32 (uint32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * poly16x4_t vbsl_p16 (uint16x4_t, poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * poly8x8_t vbsl_p8 (uint8x8_t, poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * uint32x4_t vbslq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * uint16x8_t vbslq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * uint8x16_t vbslq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * int32x4_t vbslq_s32 (uint32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * int16x8_t vbslq_s16 (uint16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * int8x16_t vbslq_s8 (uint8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * uint64x2_t vbslq_u64 (uint64x2_t, uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * int64x2_t vbslq_s64 (uint64x2_t, int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * float32x4_t vbslq_f32 (uint32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * poly16x8_t vbslq_p16 (uint16x8_t, poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * poly8x16_t vbslq_p8 (uint8x16_t, poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' 6.56.3.72 Transpose elements ............................ * uint16x4x2_t vtrn_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vtrn.16 D0, D1' * uint8x8x2_t vtrn_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtrn.8 D0, D1' * int16x4x2_t vtrn_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vtrn.16 D0, D1' * int8x8x2_t vtrn_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtrn.8 D0, D1' * poly16x4x2_t vtrn_p16 (poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ 'vtrn.16 D0, D1' * poly8x8x2_t vtrn_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vtrn.8 D0, D1' * float32x2x2_t vtrn_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * uint32x2x2_t vtrn_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * int32x2x2_t vtrn_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * uint32x4x2_t vtrnq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vtrn.32 Q0, Q1' * uint16x8x2_t vtrnq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vtrn.16 Q0, Q1' * uint8x16x2_t vtrnq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vtrn.8 Q0, Q1' * int32x4x2_t vtrnq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vtrn.32 Q0, Q1' * int16x8x2_t vtrnq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vtrn.16 Q0, Q1' * int8x16x2_t vtrnq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vtrn.8 Q0, Q1' * float32x4x2_t vtrnq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vtrn.32 Q0, Q1' * poly16x8x2_t vtrnq_p16 (poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ 'vtrn.16 Q0, Q1' * poly8x16x2_t vtrnq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vtrn.8 Q0, Q1' 6.56.3.73 Zip elements ...................... * uint16x4x2_t vzip_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vzip.16 D0, D1' * uint8x8x2_t vzip_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vzip.8 D0, D1' * int16x4x2_t vzip_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vzip.16 D0, D1' * int8x8x2_t vzip_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vzip.8 D0, D1' * poly16x4x2_t vzip_p16 (poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ 'vzip.16 D0, D1' * poly8x8x2_t vzip_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vzip.8 D0, D1' * float32x2x2_t vzip_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * uint32x2x2_t vzip_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * int32x2x2_t vzip_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * uint32x4x2_t vzipq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vzip.32 Q0, Q1' * uint16x8x2_t vzipq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vzip.16 Q0, Q1' * uint8x16x2_t vzipq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vzip.8 Q0, Q1' * int32x4x2_t vzipq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vzip.32 Q0, Q1' * int16x8x2_t vzipq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vzip.16 Q0, Q1' * int8x16x2_t vzipq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vzip.8 Q0, Q1' * float32x4x2_t vzipq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vzip.32 Q0, Q1' * poly16x8x2_t vzipq_p16 (poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ 'vzip.16 Q0, Q1' * poly8x16x2_t vzipq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vzip.8 Q0, Q1' 6.56.3.74 Unzip elements ........................ * uint32x2x2_t vuzp_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * uint16x4x2_t vuzp_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vuzp.16 D0, D1' * uint8x8x2_t vuzp_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vuzp.8 D0, D1' * int32x2x2_t vuzp_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * int16x4x2_t vuzp_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vuzp.16 D0, D1' * int8x8x2_t vuzp_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vuzp.8 D0, D1' * float32x2x2_t vuzp_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * poly16x4x2_t vuzp_p16 (poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ 'vuzp.16 D0, D1' * poly8x8x2_t vuzp_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vuzp.8 D0, D1' * uint32x4x2_t vuzpq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vuzp.32 Q0, Q1' * uint16x8x2_t vuzpq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vuzp.16 Q0, Q1' * uint8x16x2_t vuzpq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vuzp.8 Q0, Q1' * int32x4x2_t vuzpq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vuzp.32 Q0, Q1' * int16x8x2_t vuzpq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vuzp.16 Q0, Q1' * int8x16x2_t vuzpq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vuzp.8 Q0, Q1' * float32x4x2_t vuzpq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vuzp.32 Q0, Q1' * poly16x8x2_t vuzpq_p16 (poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ 'vuzp.16 Q0, Q1' * poly8x16x2_t vuzpq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vuzp.8 Q0, Q1' 6.56.3.75 Element/structure loads, VLD1 variants ................................................ * uint32x2_t vld1_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0}, [R0]' * uint16x4_t vld1_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0}, [R0]' * uint8x8_t vld1_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0}, [R0]' * int32x2_t vld1_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0}, [R0]' * int16x4_t vld1_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0}, [R0]' * int8x8_t vld1_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0}, [R0]' * uint64x1_t vld1_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * int64x1_t vld1_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * float32x2_t vld1_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0}, [R0]' * poly16x4_t vld1_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0}, [R0]' * poly8x8_t vld1_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0}, [R0]' * uint32x4_t vld1q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0, D1}, [R0]' * uint16x8_t vld1q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0, D1}, [R0]' * uint8x16_t vld1q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0, D1}, [R0]' * int32x4_t vld1q_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0, D1}, [R0]' * int16x8_t vld1q_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0, D1}, [R0]' * int8x16_t vld1q_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0, D1}, [R0]' * uint64x2_t vld1q_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' * int64x2_t vld1q_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' * float32x4_t vld1q_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0, D1}, [R0]' * poly16x8_t vld1q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0, D1}, [R0]' * poly8x16_t vld1q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0, D1}, [R0]' * uint32x2_t vld1_lane_u32 (const uint32_t *, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]' * uint16x4_t vld1_lane_u16 (const uint16_t *, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]' * uint8x8_t vld1_lane_u8 (const uint8_t *, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]' * int32x2_t vld1_lane_s32 (const int32_t *, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]' * int16x4_t vld1_lane_s16 (const int16_t *, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]' * int8x8_t vld1_lane_s8 (const int8_t *, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]' * float32x2_t vld1_lane_f32 (const float32_t *, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]' * poly16x4_t vld1_lane_p16 (const poly16_t *, poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]' * poly8x8_t vld1_lane_p8 (const poly8_t *, poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]' * uint64x1_t vld1_lane_u64 (const uint64_t *, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * int64x1_t vld1_lane_s64 (const int64_t *, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * uint32x4_t vld1q_lane_u32 (const uint32_t *, uint32x4_t, const int) ! ! _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]' * uint16x8_t vld1q_lane_u16 (const uint16_t *, uint16x8_t, const int) ! ! _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]' * uint8x16_t vld1q_lane_u8 (const uint8_t *, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]' * int32x4_t vld1q_lane_s32 (const int32_t *, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]' * int16x8_t vld1q_lane_s16 (const int16_t *, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]' * int8x16_t vld1q_lane_s8 (const int8_t *, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]' * float32x4_t vld1q_lane_f32 (const float32_t *, float32x4_t, const int) ! _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]' * poly16x8_t vld1q_lane_p16 (const poly16_t *, poly16x8_t, const int) ! ! _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]' * poly8x16_t vld1q_lane_p8 (const poly8_t *, poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]' * uint64x2_t vld1q_lane_u64 (const uint64_t *, uint64x2_t, const int) ! ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * int64x2_t vld1q_lane_s64 (const int64_t *, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * uint32x2_t vld1_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0[]}, [R0]' * uint16x4_t vld1_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0[]}, [R0]' * uint8x8_t vld1_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0[]}, [R0]' * int32x2_t vld1_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0[]}, [R0]' * int16x4_t vld1_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0[]}, [R0]' * int8x8_t vld1_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0[]}, [R0]' * float32x2_t vld1_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0[]}, [R0]' * poly16x4_t vld1_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0[]}, [R0]' * poly8x8_t vld1_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0[]}, [R0]' * uint64x1_t vld1_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * int64x1_t vld1_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * uint32x4_t vld1q_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0[], D1[]}, [R0]' * uint16x8_t vld1q_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0[], D1[]}, [R0]' * uint8x16_t vld1q_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0[], D1[]}, [R0]' * int32x4_t vld1q_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0[], D1[]}, [R0]' * int16x8_t vld1q_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0[], D1[]}, [R0]' * int8x16_t vld1q_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0[], D1[]}, [R0]' * float32x4_t vld1q_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0[], D1[]}, [R0]' * poly16x8_t vld1q_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0[], D1[]}, [R0]' * poly8x16_t vld1q_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0[], D1[]}, [R0]' * uint64x2_t vld1q_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * int64x2_t vld1q_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' 6.56.3.76 Element/structure stores, VST1 variants ................................................. * void vst1_u32 (uint32_t *, uint32x2_t) ! _Form of expected instruction(s):_ 'vst1.32 {D0}, [R0]' * void vst1_u16 (uint16_t *, uint16x4_t) ! _Form of expected instruction(s):_ 'vst1.16 {D0}, [R0]' * void vst1_u8 (uint8_t *, uint8x8_t) ! _Form of expected instruction(s):_ 'vst1.8 {D0}, [R0]' * void vst1_s32 (int32_t *, int32x2_t) ! _Form of expected instruction(s):_ 'vst1.32 {D0}, [R0]' * void vst1_s16 (int16_t *, int16x4_t) ! _Form of expected instruction(s):_ 'vst1.16 {D0}, [R0]' * void vst1_s8 (int8_t *, int8x8_t) ! _Form of expected instruction(s):_ 'vst1.8 {D0}, [R0]' * void vst1_u64 (uint64_t *, uint64x1_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' * void vst1_s64 (int64_t *, int64x1_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' * void vst1_f32 (float32_t *, float32x2_t) ! _Form of expected instruction(s):_ 'vst1.32 {D0}, [R0]' * void vst1_p16 (poly16_t *, poly16x4_t) ! _Form of expected instruction(s):_ 'vst1.16 {D0}, [R0]' * void vst1_p8 (poly8_t *, poly8x8_t) ! _Form of expected instruction(s):_ 'vst1.8 {D0}, [R0]' * void vst1q_u32 (uint32_t *, uint32x4_t) ! _Form of expected instruction(s):_ 'vst1.32 {D0, D1}, [R0]' * void vst1q_u16 (uint16_t *, uint16x8_t) ! _Form of expected instruction(s):_ 'vst1.16 {D0, D1}, [R0]' * void vst1q_u8 (uint8_t *, uint8x16_t) ! _Form of expected instruction(s):_ 'vst1.8 {D0, D1}, [R0]' * void vst1q_s32 (int32_t *, int32x4_t) ! _Form of expected instruction(s):_ 'vst1.32 {D0, D1}, [R0]' * void vst1q_s16 (int16_t *, int16x8_t) ! _Form of expected instruction(s):_ 'vst1.16 {D0, D1}, [R0]' * void vst1q_s8 (int8_t *, int8x16_t) ! _Form of expected instruction(s):_ 'vst1.8 {D0, D1}, [R0]' * void vst1q_u64 (uint64_t *, uint64x2_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]' * void vst1q_s64 (int64_t *, int64x2_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]' * void vst1q_f32 (float32_t *, float32x4_t) ! _Form of expected instruction(s):_ 'vst1.32 {D0, D1}, [R0]' * void vst1q_p16 (poly16_t *, poly16x8_t) ! _Form of expected instruction(s):_ 'vst1.16 {D0, D1}, [R0]' * void vst1q_p8 (poly8_t *, poly8x16_t) ! _Form of expected instruction(s):_ 'vst1.8 {D0, D1}, [R0]' * void vst1_lane_u32 (uint32_t *, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]' * void vst1_lane_u16 (uint16_t *, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]' * void vst1_lane_u8 (uint8_t *, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]' * void vst1_lane_s32 (int32_t *, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]' * void vst1_lane_s16 (int16_t *, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]' * void vst1_lane_s8 (int8_t *, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]' * void vst1_lane_f32 (float32_t *, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]' * void vst1_lane_p16 (poly16_t *, poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]' * void vst1_lane_p8 (poly8_t *, poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]' * void vst1_lane_s64 (int64_t *, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' * void vst1_lane_u64 (uint64_t *, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' * void vst1q_lane_u32 (uint32_t *, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]' * void vst1q_lane_u16 (uint16_t *, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]' * void vst1q_lane_u8 (uint8_t *, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]' * void vst1q_lane_s32 (int32_t *, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]' * void vst1q_lane_s16 (int16_t *, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]' * void vst1q_lane_s8 (int8_t *, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]' * void vst1q_lane_f32 (float32_t *, float32x4_t, const int) ! _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]' * void vst1q_lane_p16 (poly16_t *, poly16x8_t, const int) ! _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]' * void vst1q_lane_p8 (poly8_t *, poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]' * void vst1q_lane_s64 (int64_t *, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' * void vst1q_lane_u64 (uint64_t *, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' 6.56.3.77 Element/structure loads, VLD2 variants ................................................ * uint32x2x2_t vld2_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]' * uint16x4x2_t vld2_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]' * uint8x8x2_t vld2_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]' * int32x2x2_t vld2_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]' * int16x4x2_t vld2_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]' * int8x8x2_t vld2_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]' * float32x2x2_t vld2_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]' * poly16x4x2_t vld2_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]' * poly8x8x2_t vld2_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]' * uint64x1x2_t vld2_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' * int64x1x2_t vld2_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' * uint32x4x2_t vld2q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]' * uint16x8x2_t vld2q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]' * uint8x16x2_t vld2q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]' * int32x4x2_t vld2q_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]' * int16x8x2_t vld2q_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]' * int8x16x2_t vld2q_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]' * float32x4x2_t vld2q_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]' * poly16x8x2_t vld2q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]' * poly8x16x2_t vld2q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]' * uint32x2x2_t vld2_lane_u32 (const uint32_t *, uint32x2x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]' * uint16x4x2_t vld2_lane_u16 (const uint16_t *, uint16x4x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]' * uint8x8x2_t vld2_lane_u8 (const uint8_t *, uint8x8x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.8 {D0[0], D1[0]}, [R0]' * int32x2x2_t vld2_lane_s32 (const int32_t *, int32x2x2_t, const int) ! ! _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]' * int16x4x2_t vld2_lane_s16 (const int16_t *, int16x4x2_t, const int) ! ! _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]' * int8x8x2_t vld2_lane_s8 (const int8_t *, int8x8x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.8 {D0[0], D1[0]}, [R0]' * float32x2x2_t vld2_lane_f32 (const float32_t *, float32x2x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]' * poly16x4x2_t vld2_lane_p16 (const poly16_t *, poly16x4x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]' * poly8x8x2_t vld2_lane_p8 (const poly8_t *, poly8x8x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.8 {D0[0], D1[0]}, [R0]' * int32x4x2_t vld2q_lane_s32 (const int32_t *, int32x4x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]' * int16x8x2_t vld2q_lane_s16 (const int16_t *, int16x8x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]' * uint32x4x2_t vld2q_lane_u32 (const uint32_t *, uint32x4x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]' * uint16x8x2_t vld2q_lane_u16 (const uint16_t *, uint16x8x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]' * float32x4x2_t vld2q_lane_f32 (const float32_t *, float32x4x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]' * poly16x8x2_t vld2q_lane_p16 (const poly16_t *, poly16x8x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]' * uint32x2x2_t vld2_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0[], D1[]}, [R0]' * uint16x4x2_t vld2_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0[], D1[]}, [R0]' * uint8x8x2_t vld2_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0[], D1[]}, [R0]' * int32x2x2_t vld2_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0[], D1[]}, [R0]' * int16x4x2_t vld2_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0[], D1[]}, [R0]' * int8x8x2_t vld2_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0[], D1[]}, [R0]' * float32x2x2_t vld2_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0[], D1[]}, [R0]' * poly16x4x2_t vld2_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0[], D1[]}, [R0]' * poly8x8x2_t vld2_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0[], D1[]}, [R0]' * uint64x1x2_t vld2_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' * int64x1x2_t vld2_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' 6.56.3.78 Element/structure stores, VST2 variants ................................................. * void vst2_u32 (uint32_t *, uint32x2x2_t) ! _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]' * void vst2_u16 (uint16_t *, uint16x4x2_t) ! _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]' * void vst2_u8 (uint8_t *, uint8x8x2_t) ! _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]' * void vst2_s32 (int32_t *, int32x2x2_t) ! _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]' * void vst2_s16 (int16_t *, int16x4x2_t) ! _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]' * void vst2_s8 (int8_t *, int8x8x2_t) ! _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]' * void vst2_f32 (float32_t *, float32x2x2_t) ! _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]' * void vst2_p16 (poly16_t *, poly16x4x2_t) ! _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]' * void vst2_p8 (poly8_t *, poly8x8x2_t) ! _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]' * void vst2_u64 (uint64_t *, uint64x1x2_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]' * void vst2_s64 (int64_t *, int64x1x2_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]' * void vst2q_u32 (uint32_t *, uint32x4x2_t) ! _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]' * void vst2q_u16 (uint16_t *, uint16x8x2_t) ! _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]' * void vst2q_u8 (uint8_t *, uint8x16x2_t) ! _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]' * void vst2q_s32 (int32_t *, int32x4x2_t) ! _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]' * void vst2q_s16 (int16_t *, int16x8x2_t) ! _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]' * void vst2q_s8 (int8_t *, int8x16x2_t) ! _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]' * void vst2q_f32 (float32_t *, float32x4x2_t) ! _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]' * void vst2q_p16 (poly16_t *, poly16x8x2_t) ! _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]' * void vst2q_p8 (poly8_t *, poly8x16x2_t) ! _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]' * void vst2_lane_u32 (uint32_t *, uint32x2x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]' * void vst2_lane_u16 (uint16_t *, uint16x4x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]' * void vst2_lane_u8 (uint8_t *, uint8x8x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.8 {D0[0], D1[0]}, [R0]' * void vst2_lane_s32 (int32_t *, int32x2x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]' * void vst2_lane_s16 (int16_t *, int16x4x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]' * void vst2_lane_s8 (int8_t *, int8x8x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.8 {D0[0], D1[0]}, [R0]' * void vst2_lane_f32 (float32_t *, float32x2x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]' * void vst2_lane_p16 (poly16_t *, poly16x4x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]' * void vst2_lane_p8 (poly8_t *, poly8x8x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.8 {D0[0], D1[0]}, [R0]' * void vst2q_lane_s32 (int32_t *, int32x4x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]' * void vst2q_lane_s16 (int16_t *, int16x8x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]' * void vst2q_lane_u32 (uint32_t *, uint32x4x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]' * void vst2q_lane_u16 (uint16_t *, uint16x8x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]' * void vst2q_lane_f32 (float32_t *, float32x4x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]' * void vst2q_lane_p16 (poly16_t *, poly16x8x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]' 6.56.3.79 Element/structure loads, VLD3 variants ................................................ * uint32x2x3_t vld3_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]' * uint16x4x3_t vld3_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]' * uint8x8x3_t vld3_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]' * int32x2x3_t vld3_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]' * int16x4x3_t vld3_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]' * int8x8x3_t vld3_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]' * float32x2x3_t vld3_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]' * poly16x4x3_t vld3_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]' * poly8x8x3_t vld3_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]' * uint64x1x3_t vld3_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]' * int64x1x3_t vld3_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]' * uint32x4x3_t vld3q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]' * uint16x8x3_t vld3q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]' * uint8x16x3_t vld3q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]' * int32x4x3_t vld3q_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]' * int16x8x3_t vld3q_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]' * int8x16x3_t vld3q_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]' * float32x4x3_t vld3q_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]' * poly16x8x3_t vld3q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]' * poly8x16x3_t vld3q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]' * uint32x2x3_t vld3_lane_u32 (const uint32_t *, uint32x2x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * uint16x4x3_t vld3_lane_u16 (const uint16_t *, uint16x4x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * uint8x8x3_t vld3_lane_u8 (const uint8_t *, uint8x8x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.8 {D0[0], D1[0], D2[0]}, [R0]' * int32x2x3_t vld3_lane_s32 (const int32_t *, int32x2x3_t, const int) ! ! _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * int16x4x3_t vld3_lane_s16 (const int16_t *, int16x4x3_t, const int) ! ! _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * int8x8x3_t vld3_lane_s8 (const int8_t *, int8x8x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.8 {D0[0], D1[0], D2[0]}, [R0]' * float32x2x3_t vld3_lane_f32 (const float32_t *, float32x2x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * poly16x4x3_t vld3_lane_p16 (const poly16_t *, poly16x4x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * poly8x8x3_t vld3_lane_p8 (const poly8_t *, poly8x8x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.8 {D0[0], D1[0], D2[0]}, [R0]' * int32x4x3_t vld3q_lane_s32 (const int32_t *, int32x4x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * int16x8x3_t vld3q_lane_s16 (const int16_t *, int16x8x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * uint32x4x3_t vld3q_lane_u32 (const uint32_t *, uint32x4x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * uint16x8x3_t vld3q_lane_u16 (const uint16_t *, uint16x8x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * float32x4x3_t vld3q_lane_f32 (const float32_t *, float32x4x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * poly16x8x3_t vld3q_lane_p16 (const poly16_t *, poly16x8x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * uint32x2x3_t vld3_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0[], D1[], D2[]}, [R0]' * uint16x4x3_t vld3_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0[], D1[], D2[]}, [R0]' * uint8x8x3_t vld3_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0[], D1[], D2[]}, [R0]' * int32x2x3_t vld3_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0[], D1[], D2[]}, [R0]' * int16x4x3_t vld3_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0[], D1[], D2[]}, [R0]' * int8x8x3_t vld3_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0[], D1[], D2[]}, [R0]' * float32x2x3_t vld3_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0[], D1[], D2[]}, [R0]' * poly16x4x3_t vld3_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0[], D1[], D2[]}, [R0]' * poly8x8x3_t vld3_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0[], D1[], D2[]}, [R0]' * uint64x1x3_t vld3_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]' * int64x1x3_t vld3_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]' 6.56.3.80 Element/structure stores, VST3 variants ................................................. * void vst3_u32 (uint32_t *, uint32x2x3_t) ! _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2, D3}, [R0]' * void vst3_u16 (uint16_t *, uint16x4x3_t) ! _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2, D3}, [R0]' * void vst3_u8 (uint8_t *, uint8x8x3_t) ! _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2, D3}, [R0]' * void vst3_s32 (int32_t *, int32x2x3_t) ! _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2, D3}, [R0]' * void vst3_s16 (int16_t *, int16x4x3_t) ! _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2, D3}, [R0]' * void vst3_s8 (int8_t *, int8x8x3_t) ! _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2, D3}, [R0]' * void vst3_f32 (float32_t *, float32x2x3_t) ! _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2, D3}, [R0]' * void vst3_p16 (poly16_t *, poly16x4x3_t) ! _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2, D3}, [R0]' * void vst3_p8 (poly8_t *, poly8x8x3_t) ! _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2, D3}, [R0]' * void vst3_u64 (uint64_t *, uint64x1x3_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]' * void vst3_s64 (int64_t *, int64x1x3_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]' * void vst3q_u32 (uint32_t *, uint32x4x3_t) ! _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2}, [R0]' * void vst3q_u16 (uint16_t *, uint16x8x3_t) ! _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2}, [R0]' * void vst3q_u8 (uint8_t *, uint8x16x3_t) ! _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2}, [R0]' * void vst3q_s32 (int32_t *, int32x4x3_t) ! _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2}, [R0]' * void vst3q_s16 (int16_t *, int16x8x3_t) ! _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2}, [R0]' * void vst3q_s8 (int8_t *, int8x16x3_t) ! _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2}, [R0]' * void vst3q_f32 (float32_t *, float32x4x3_t) ! _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2}, [R0]' * void vst3q_p16 (poly16_t *, poly16x8x3_t) ! _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2}, [R0]' * void vst3q_p8 (poly8_t *, poly8x16x3_t) ! _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2}, [R0]' * void vst3_lane_u32 (uint32_t *, uint32x2x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_u16 (uint16_t *, uint16x4x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_u8 (uint8_t *, uint8x8x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.8 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_s32 (int32_t *, int32x2x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_s16 (int16_t *, int16x4x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_s8 (int8_t *, int8x8x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.8 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_f32 (float32_t *, float32x2x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_p16 (poly16_t *, poly16x4x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_p8 (poly8_t *, poly8x8x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.8 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_s32 (int32_t *, int32x4x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_s16 (int16_t *, int16x8x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_u32 (uint32_t *, uint32x4x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_u16 (uint16_t *, uint16x8x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_f32 (float32_t *, float32x4x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_p16 (poly16_t *, poly16x8x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]}, [R0]' 6.56.3.81 Element/structure loads, VLD4 variants ................................................ * uint32x2x4_t vld4_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]' * uint16x4x4_t vld4_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]' * uint8x8x4_t vld4_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]' * int32x2x4_t vld4_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]' * int16x4x4_t vld4_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]' * int8x8x4_t vld4_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]' * float32x2x4_t vld4_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]' * poly16x4x4_t vld4_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]' * poly8x8x4_t vld4_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]' * uint64x1x4_t vld4_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]' * int64x1x4_t vld4_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]' * uint32x4x4_t vld4q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]' * uint16x8x4_t vld4q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]' * uint8x16x4_t vld4q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]' * int32x4x4_t vld4q_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]' * int16x8x4_t vld4q_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]' * int8x16x4_t vld4q_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]' * float32x4x4_t vld4q_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]' * poly16x8x4_t vld4q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]' * poly8x16x4_t vld4q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]' * uint32x2x4_t vld4_lane_u32 (const uint32_t *, uint32x2x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint16x4x4_t vld4_lane_u16 (const uint16_t *, uint16x4x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint8x8x4_t vld4_lane_u8 (const uint8_t *, uint8x8x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int32x2x4_t vld4_lane_s32 (const int32_t *, int32x2x4_t, const int) ! ! _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int16x4x4_t vld4_lane_s16 (const int16_t *, int16x4x4_t, const int) ! ! _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int8x8x4_t vld4_lane_s8 (const int8_t *, int8x8x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * float32x2x4_t vld4_lane_f32 (const float32_t *, float32x2x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * poly16x4x4_t vld4_lane_p16 (const poly16_t *, poly16x4x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * poly8x8x4_t vld4_lane_p8 (const poly8_t *, poly8x8x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int32x4x4_t vld4q_lane_s32 (const int32_t *, int32x4x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int16x8x4_t vld4q_lane_s16 (const int16_t *, int16x8x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint32x4x4_t vld4q_lane_u32 (const uint32_t *, uint32x4x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint16x8x4_t vld4q_lane_u16 (const uint16_t *, uint16x8x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * float32x4x4_t vld4q_lane_f32 (const float32_t *, float32x4x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * poly16x8x4_t vld4q_lane_p16 (const poly16_t *, poly16x8x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint32x2x4_t vld4_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0[], D1[], D2[], D3[]}, [R0]' * uint16x4x4_t vld4_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0[], D1[], D2[], D3[]}, [R0]' * uint8x8x4_t vld4_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0[], D1[], D2[], D3[]}, [R0]' * int32x2x4_t vld4_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0[], D1[], D2[], D3[]}, [R0]' * int16x4x4_t vld4_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0[], D1[], D2[], D3[]}, [R0]' * int8x8x4_t vld4_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0[], D1[], D2[], D3[]}, [R0]' * float32x2x4_t vld4_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0[], D1[], D2[], D3[]}, [R0]' * poly16x4x4_t vld4_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0[], D1[], D2[], D3[]}, [R0]' * poly8x8x4_t vld4_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0[], D1[], D2[], D3[]}, [R0]' * uint64x1x4_t vld4_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]' * int64x1x4_t vld4_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]' 6.56.3.82 Element/structure stores, VST4 variants ................................................. * void vst4_u32 (uint32_t *, uint32x2x4_t) ! _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4_u16 (uint16_t *, uint16x4x4_t) ! _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4_u8 (uint8_t *, uint8x8x4_t) ! _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_s32 (int32_t *, int32x2x4_t) ! _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4_s16 (int16_t *, int16x4x4_t) ! _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4_s8 (int8_t *, int8x8x4_t) ! _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_f32 (float32_t *, float32x2x4_t) ! _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4_p16 (poly16_t *, poly16x4x4_t) ! _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4_p8 (poly8_t *, poly8x8x4_t) ! _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_u64 (uint64_t *, uint64x1x4_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]' * void vst4_s64 (int64_t *, int64x1x4_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]' * void vst4q_u32 (uint32_t *, uint32x4x4_t) ! _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4q_u16 (uint16_t *, uint16x8x4_t) ! _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4q_u8 (uint8_t *, uint8x16x4_t) ! _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4q_s32 (int32_t *, int32x4x4_t) ! _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4q_s16 (int16_t *, int16x8x4_t) ! _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4q_s8 (int8_t *, int8x16x4_t) ! _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4q_f32 (float32_t *, float32x4x4_t) ! _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4q_p16 (poly16_t *, poly16x8x4_t) ! _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4q_p8 (poly8_t *, poly8x16x4_t) ! _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_lane_u32 (uint32_t *, uint32x2x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_u16 (uint16_t *, uint16x4x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_u8 (uint8_t *, uint8x8x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_s32 (int32_t *, int32x2x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_s16 (int16_t *, int16x4x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_s8 (int8_t *, int8x8x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_f32 (float32_t *, float32x2x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_p16 (poly16_t *, poly16x4x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_p8 (poly8_t *, poly8x8x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_s32 (int32_t *, int32x4x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_s16 (int16_t *, int16x8x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_u32 (uint32_t *, uint32x4x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_u16 (uint16_t *, uint16x8x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_f32 (float32_t *, float32x4x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_p16 (poly16_t *, poly16x8x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' 6.56.3.83 Logical operations (AND) .................................. * uint32x2_t vand_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vand D0, D0, D0' * uint16x4_t vand_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vand D0, D0, D0' * uint8x8_t vand_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vand D0, D0, D0' * int32x2_t vand_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vand D0, D0, D0' * int16x4_t vand_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vand D0, D0, D0' * int8x8_t vand_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vand D0, D0, D0' * uint64x1_t vand_u64 (uint64x1_t, uint64x1_t) * int64x1_t vand_s64 (int64x1_t, int64x1_t) * uint32x4_t vandq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * uint16x8_t vandq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * uint8x16_t vandq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * int32x4_t vandq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * int16x8_t vandq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * int8x16_t vandq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * uint64x2_t vandq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * int64x2_t vandq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' 6.56.3.84 Logical operations (OR) ................................. * uint32x2_t vorr_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vorr D0, D0, D0' * uint16x4_t vorr_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vorr D0, D0, D0' * uint8x8_t vorr_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vorr D0, D0, D0' * int32x2_t vorr_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vorr D0, D0, D0' * int16x4_t vorr_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vorr D0, D0, D0' * int8x8_t vorr_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vorr D0, D0, D0' * uint64x1_t vorr_u64 (uint64x1_t, uint64x1_t) * int64x1_t vorr_s64 (int64x1_t, int64x1_t) * uint32x4_t vorrq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * uint16x8_t vorrq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * uint8x16_t vorrq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * int32x4_t vorrq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * int16x8_t vorrq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * int8x16_t vorrq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * uint64x2_t vorrq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * int64x2_t vorrq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' 6.56.3.85 Logical operations (exclusive OR) ........................................... * uint32x2_t veor_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'veor D0, D0, D0' * uint16x4_t veor_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'veor D0, D0, D0' * uint8x8_t veor_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'veor D0, D0, D0' * int32x2_t veor_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'veor D0, D0, D0' * int16x4_t veor_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'veor D0, D0, D0' * int8x8_t veor_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'veor D0, D0, D0' * uint64x1_t veor_u64 (uint64x1_t, uint64x1_t) * int64x1_t veor_s64 (int64x1_t, int64x1_t) * uint32x4_t veorq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * uint16x8_t veorq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * uint8x16_t veorq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * int32x4_t veorq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * int16x8_t veorq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * int8x16_t veorq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * uint64x2_t veorq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * int64x2_t veorq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' 6.56.3.86 Logical operations (AND-NOT) ...................................... * uint32x2_t vbic_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vbic D0, D0, D0' * uint16x4_t vbic_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vbic D0, D0, D0' * uint8x8_t vbic_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vbic D0, D0, D0' * int32x2_t vbic_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vbic D0, D0, D0' * int16x4_t vbic_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vbic D0, D0, D0' * int8x8_t vbic_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vbic D0, D0, D0' * uint64x1_t vbic_u64 (uint64x1_t, uint64x1_t) * int64x1_t vbic_s64 (int64x1_t, int64x1_t) * uint32x4_t vbicq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * uint16x8_t vbicq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * uint8x16_t vbicq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * int32x4_t vbicq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * int16x8_t vbicq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * int8x16_t vbicq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * uint64x2_t vbicq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * int64x2_t vbicq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' 6.56.3.87 Logical operations (OR-NOT) ..................................... * uint32x2_t vorn_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vorn D0, D0, D0' * uint16x4_t vorn_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vorn D0, D0, D0' * uint8x8_t vorn_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vorn D0, D0, D0' * int32x2_t vorn_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vorn D0, D0, D0' * int16x4_t vorn_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vorn D0, D0, D0' * int8x8_t vorn_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vorn D0, D0, D0' * uint64x1_t vorn_u64 (uint64x1_t, uint64x1_t) * int64x1_t vorn_s64 (int64x1_t, int64x1_t) * uint32x4_t vornq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * uint16x8_t vornq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * uint8x16_t vornq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * int32x4_t vornq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * int16x8_t vornq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * int8x16_t vornq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * uint64x2_t vornq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * int64x2_t vornq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' 6.56.3.88 Reinterpret casts ........................... *************** File: gcc.info, Node: AVR Built-in Func *** 36191,36205 **** 6.56.4 AVR Built-in Functions ----------------------------- ! For each built-in function for AVR, there is an equally named, ! uppercase built-in macro defined. That way users can easily query if or ! if not a specific built-in is implemented or not. For example, if ! `__builtin_avr_nop' is available the macro `__BUILTIN_AVR_NOP' is ! defined to `1' and undefined otherwise. The following built-in functions map to the respective machine ! instruction, i.e. `nop', `sei', `cli', `sleep', `wdr', `swap', `fmul', ! `fmuls' resp. `fmulsu'. The three `fmul*' built-ins are implemented as library call if no hardware multiplier is available. void __builtin_avr_nop (void) --- 35910,35924 ---- 6.56.4 AVR Built-in Functions ----------------------------- ! For each built-in function for AVR, there is an equally named, uppercase ! built-in macro defined. That way users can easily query if or if not a ! specific built-in is implemented or not. For example, if ! '__builtin_avr_nop' is available the macro '__BUILTIN_AVR_NOP' is ! defined to '1' and undefined otherwise. The following built-in functions map to the respective machine ! instruction, i.e. 'nop', 'sei', 'cli', 'sleep', 'wdr', 'swap', 'fmul', ! 'fmuls' resp. 'fmulsu'. The three 'fmul*' built-ins are implemented as library call if no hardware multiplier is available. void __builtin_avr_nop (void) *************** library call if no hardware multiplier i *** 36216,36249 **** implements void __builtin_avr_delay_cycles (unsigned long ticks) ! `ticks' is the number of ticks to delay execution. Note that this built-in does not take into account the effect of interrupts that might ! increase delay time. `ticks' must be a compile-time integer constant; delays with a variable number of cycles are not supported. char __builtin_avr_flash_segment (const __memx void*) This built-in takes a byte address to the 24-bit *note address space: ! AVR Named Address Spaces. `__memx' and returns the number of the flash ! segment (the 64 KiB chunk) where the address points to. Counting ! starts at `0'. If the address does not point to flash memory, return ! `-1'. unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val) ! Insert bits from BITS into VAL and return the resulting value. The nibbles of MAP determine how the insertion is performed: Let X be the N-th nibble of MAP ! 1. If X is `0xf', then the N-th bit of VAL is returned unaltered. 2. If X is in the range 0...7, then the N-th result bit is set to the X-th bit of BITS ! 3. If X is in the range 8...`0xe', then the N-th result bit is undefined. One typical use case for this built-in is adjusting input and output ! values to non-contiguous port layouts. Some examples: // same as val, bits is unused __builtin_avr_insert_bits (0xffffffff, bits, val) --- 35935,35967 ---- implements void __builtin_avr_delay_cycles (unsigned long ticks) ! 'ticks' is the number of ticks to delay execution. Note that this built-in does not take into account the effect of interrupts that might ! increase delay time. 'ticks' must be a compile-time integer constant; delays with a variable number of cycles are not supported. char __builtin_avr_flash_segment (const __memx void*) This built-in takes a byte address to the 24-bit *note address space: ! AVR Named Address Spaces. '__memx' and returns the number of the flash ! segment (the 64 KiB chunk) where the address points to. Counting starts ! at '0'. If the address does not point to flash memory, return '-1'. unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val) ! Insert bits from BITS into VAL and return the resulting value. The nibbles of MAP determine how the insertion is performed: Let X be the N-th nibble of MAP ! 1. If X is '0xf', then the N-th bit of VAL is returned unaltered. 2. If X is in the range 0...7, then the N-th result bit is set to the X-th bit of BITS ! 3. If X is in the range 8...'0xe', then the N-th result bit is undefined. One typical use case for this built-in is adjusting input and output ! values to non-contiguous port layouts. Some examples: // same as val, bits is unused __builtin_avr_insert_bits (0xffffffff, bits, val) *************** File: gcc.info, Node: Blackfin Built-in *** 36268,36274 **** ---------------------------------- Currently, there are two Blackfin-specific built-in functions. These ! are used for generating `CSYNC' and `SSYNC' machine insns without using inline assembly; by using these built-in functions the compiler can automatically add workarounds for hardware errata involving these instructions. These functions are named as follows: --- 35986,35992 ---- ---------------------------------- Currently, there are two Blackfin-specific built-in functions. These ! are used for generating 'CSYNC' and 'SSYNC' machine insns without using inline assembly; by using these built-in functions the compiler can automatically add workarounds for hardware errata involving these instructions. These functions are named as follows: *************** File: gcc.info, Node: FR-V Built-in Fun *** 36283,36296 **** ------------------------------ GCC provides many FR-V-specific built-in functions. In general, these ! functions are intended to be compatible with those described by `FR-V ! Family, Softune C/C++ Compiler Manual (V6), Fujitsu Semiconductor'. ! The two exceptions are `__MDUNPACKH' and `__MBTOHE', the GCC forms of ! which pass 128-bit values by pointer rather than by value. ! Most of the functions are named after specific FR-V instructions. ! Such functions are said to be "directly mapped" and are summarized here ! in tabular form. * Menu: --- 36001,36014 ---- ------------------------------ GCC provides many FR-V-specific built-in functions. In general, these ! functions are intended to be compatible with those described by 'FR-V ! Family, Softune C/C++ Compiler Manual (V6), Fujitsu Semiconductor'. The ! two exceptions are '__MDUNPACKH' and '__MBTOHE', the GCC forms of which ! pass 128-bit values by pointer rather than by value. ! Most of the functions are named after specific FR-V instructions. Such ! functions are said to be "directly mapped" and are summarized here in ! tabular form. * Menu: *************** In order to make this classification cle *** 36312,36341 **** and return values are given the following pseudo types: Pseudo type Real C type Constant? Description ! `uh' `unsigned short' No an unsigned halfword ! `uw1' `unsigned int' No an unsigned word ! `sw1' `int' No a signed word ! `uw2' `unsigned long long' No an unsigned doubleword ! `sw2' `long long' No a signed doubleword ! `const' `int' Yes an integer constant ! `acc' `int' Yes an ACC register number ! `iacc' `int' Yes an IACC register number These pseudo types are not defined by GCC, they are simply a notational convenience used in this manual. ! Arguments of type `uh', `uw1', `sw1', `uw2' and `sw2' are evaluated at run time. They correspond to register operands in the underlying FR-V instructions. ! `const' arguments represent immediate operands in the underlying FR-V instructions. They must be compile-time constants. ! `acc' arguments are evaluated at compile time and specify the number ! of an accumulator register. For example, an `acc' argument of 2 ! selects the ACC2 register. ! `iacc' arguments are similar to `acc' arguments but specify the number of an IACC register. See *note Other Built-in Functions:: for more details. --- 36030,36059 ---- and return values are given the following pseudo types: Pseudo type Real C type Constant? Description ! 'uh' 'unsigned short' No an unsigned halfword ! 'uw1' 'unsigned int' No an unsigned word ! 'sw1' 'int' No a signed word ! 'uw2' 'unsigned long long' No an unsigned doubleword ! 'sw2' 'long long' No a signed doubleword ! 'const' 'int' Yes an integer constant ! 'acc' 'int' Yes an ACC register number ! 'iacc' 'int' Yes an IACC register number These pseudo types are not defined by GCC, they are simply a notational convenience used in this manual. ! Arguments of type 'uh', 'uw1', 'sw1', 'uw2' and 'sw2' are evaluated at run time. They correspond to register operands in the underlying FR-V instructions. ! 'const' arguments represent immediate operands in the underlying FR-V instructions. They must be compile-time constants. ! 'acc' arguments are evaluated at compile time and specify the number of ! an accumulator register. For example, an 'acc' argument of 2 selects ! the ACC2 register. ! 'iacc' arguments are similar to 'acc' arguments but specify the number of an IACC register. See *note Other Built-in Functions:: for more details. *************** File: gcc.info, Node: Directly-mapped I *** 36348,36363 **** The functions listed below map directly to FR-V I-type instructions. Function prototype Example usage Assembly output ! `sw1 __ADDSS (sw1, sw1)' `C = __ADDSS (A, B)' `ADDSS A,B,C' ! `sw1 __SCAN (sw1, sw1)' `C = __SCAN (A, B)' `SCAN A,B,C' ! `sw1 __SCUTSS (sw1)' `B = __SCUTSS (A)' `SCUTSS A,B' ! `sw1 __SLASS (sw1, sw1)' `C = __SLASS (A, B)' `SLASS A,B,C' ! `void __SMASS (sw1, sw1)' `__SMASS (A, B)' `SMASS A,B' ! `void __SMSSS (sw1, sw1)' `__SMSSS (A, B)' `SMSSS A,B' ! `void __SMU (sw1, sw1)' `__SMU (A, B)' `SMU A,B' ! `sw2 __SMUL (sw1, sw1)' `C = __SMUL (A, B)' `SMUL A,B,C' ! `sw1 __SUBSS (sw1, sw1)' `C = __SUBSS (A, B)' `SUBSS A,B,C' ! `uw2 __UMUL (uw1, uw1)' `C = __UMUL (A, B)' `UMUL A,B,C'  File: gcc.info, Node: Directly-mapped Media Functions, Next: Raw read/write Functions, Prev: Directly-mapped Integer Functions, Up: FR-V Built-in Functions --- 36066,36081 ---- The functions listed below map directly to FR-V I-type instructions. Function prototype Example usage Assembly output ! 'sw1 __ADDSS (sw1, sw1)' 'C = __ADDSS (A, B)' 'ADDSS A,B,C' ! 'sw1 __SCAN (sw1, sw1)' 'C = __SCAN (A, B)' 'SCAN A,B,C' ! 'sw1 __SCUTSS (sw1)' 'B = __SCUTSS (A)' 'SCUTSS A,B' ! 'sw1 __SLASS (sw1, sw1)' 'C = __SLASS (A, B)' 'SLASS A,B,C' ! 'void __SMASS (sw1, sw1)' '__SMASS (A, B)' 'SMASS A,B' ! 'void __SMSSS (sw1, sw1)' '__SMSSS (A, B)' 'SMSSS A,B' ! 'void __SMU (sw1, sw1)' '__SMU (A, B)' 'SMU A,B' ! 'sw2 __SMUL (sw1, sw1)' 'C = __SMUL (A, B)' 'SMUL A,B,C' ! 'sw1 __SUBSS (sw1, sw1)' 'C = __SUBSS (A, B)' 'SUBSS A,B,C' ! 'uw2 __UMUL (uw1, uw1)' 'C = __UMUL (A, B)' 'UMUL A,B,C'  File: gcc.info, Node: Directly-mapped Media Functions, Next: Raw read/write Functions, Prev: Directly-mapped Integer Functions, Up: FR-V Built-in Functions *************** File: gcc.info, Node: Directly-mapped M *** 36368,36466 **** The functions listed below map directly to FR-V M-type instructions. Function prototype Example usage Assembly output ! `uw1 __MABSHS (sw1)' `B = __MABSHS (A)' `MABSHS A,B' ! `void __MADDACCS (acc, acc)' `__MADDACCS (B, A)' `MADDACCS A,B' ! `sw1 __MADDHSS (sw1, sw1)' `C = __MADDHSS (A, B)' `MADDHSS A,B,C' ! `uw1 __MADDHUS (uw1, uw1)' `C = __MADDHUS (A, B)' `MADDHUS A,B,C' ! `uw1 __MAND (uw1, uw1)' `C = __MAND (A, B)' `MAND A,B,C' ! `void __MASACCS (acc, acc)' `__MASACCS (B, A)' `MASACCS A,B' ! `uw1 __MAVEH (uw1, uw1)' `C = __MAVEH (A, B)' `MAVEH A,B,C' ! `uw2 __MBTOH (uw1)' `B = __MBTOH (A)' `MBTOH A,B' ! `void __MBTOHE (uw1 *, uw1)' `__MBTOHE (&B, A)' `MBTOHE A,B' ! `void __MCLRACC (acc)' `__MCLRACC (A)' `MCLRACC A' ! `void __MCLRACCA (void)' `__MCLRACCA ()' `MCLRACCA' ! `uw1 __Mcop1 (uw1, uw1)' `C = __Mcop1 (A, B)' `Mcop1 A,B,C' ! `uw1 __Mcop2 (uw1, uw1)' `C = __Mcop2 (A, B)' `Mcop2 A,B,C' ! `uw1 __MCPLHI (uw2, const)' `C = __MCPLHI (A, B)' `MCPLHI A,#B,C' ! `uw1 __MCPLI (uw2, const)' `C = __MCPLI (A, B)' `MCPLI A,#B,C' ! `void __MCPXIS (acc, sw1, sw1)' `__MCPXIS (C, A, B)' `MCPXIS A,B,C' ! `void __MCPXIU (acc, uw1, uw1)' `__MCPXIU (C, A, B)' `MCPXIU A,B,C' ! `void __MCPXRS (acc, sw1, sw1)' `__MCPXRS (C, A, B)' `MCPXRS A,B,C' ! `void __MCPXRU (acc, uw1, uw1)' `__MCPXRU (C, A, B)' `MCPXRU A,B,C' ! `uw1 __MCUT (acc, uw1)' `C = __MCUT (A, B)' `MCUT A,B,C' ! `uw1 __MCUTSS (acc, sw1)' `C = __MCUTSS (A, B)' `MCUTSS A,B,C' ! `void __MDADDACCS (acc, acc)' `__MDADDACCS (B, A)' `MDADDACCS A,B' ! `void __MDASACCS (acc, acc)' `__MDASACCS (B, A)' `MDASACCS A,B' ! `uw2 __MDCUTSSI (acc, const)' `C = __MDCUTSSI (A, B)' `MDCUTSSI A,#B,C' ! `uw2 __MDPACKH (uw2, uw2)' `C = __MDPACKH (A, B)' `MDPACKH A,B,C' ! `uw2 __MDROTLI (uw2, const)' `C = __MDROTLI (A, B)' `MDROTLI A,#B,C' ! `void __MDSUBACCS (acc, acc)' `__MDSUBACCS (B, A)' `MDSUBACCS A,B' ! `void __MDUNPACKH (uw1 *, uw2)' `__MDUNPACKH (&B, A)' `MDUNPACKH A,B' ! `uw2 __MEXPDHD (uw1, const)' `C = __MEXPDHD (A, B)' `MEXPDHD A,#B,C' ! `uw1 __MEXPDHW (uw1, const)' `C = __MEXPDHW (A, B)' `MEXPDHW A,#B,C' ! `uw1 __MHDSETH (uw1, const)' `C = __MHDSETH (A, B)' `MHDSETH A,#B,C' ! `sw1 __MHDSETS (const)' `B = __MHDSETS (A)' `MHDSETS #A,B' ! `uw1 __MHSETHIH (uw1, const)' `B = __MHSETHIH (B, A)' `MHSETHIH #A,B' ! `sw1 __MHSETHIS (sw1, const)' `B = __MHSETHIS (B, A)' `MHSETHIS #A,B' ! `uw1 __MHSETLOH (uw1, const)' `B = __MHSETLOH (B, A)' `MHSETLOH #A,B' ! `sw1 __MHSETLOS (sw1, const)' `B = __MHSETLOS (B, A)' `MHSETLOS #A,B' ! `uw1 __MHTOB (uw2)' `B = __MHTOB (A)' `MHTOB A,B' ! `void __MMACHS (acc, sw1, sw1)' `__MMACHS (C, A, B)' `MMACHS A,B,C' ! `void __MMACHU (acc, uw1, uw1)' `__MMACHU (C, A, B)' `MMACHU A,B,C' ! `void __MMRDHS (acc, sw1, sw1)' `__MMRDHS (C, A, B)' `MMRDHS A,B,C' ! `void __MMRDHU (acc, uw1, uw1)' `__MMRDHU (C, A, B)' `MMRDHU A,B,C' ! `void __MMULHS (acc, sw1, sw1)' `__MMULHS (C, A, B)' `MMULHS A,B,C' ! `void __MMULHU (acc, uw1, uw1)' `__MMULHU (C, A, B)' `MMULHU A,B,C' ! `void __MMULXHS (acc, sw1, sw1)' `__MMULXHS (C, A, B)' `MMULXHS A,B,C' ! `void __MMULXHU (acc, uw1, uw1)' `__MMULXHU (C, A, B)' `MMULXHU A,B,C' ! `uw1 __MNOT (uw1)' `B = __MNOT (A)' `MNOT A,B' ! `uw1 __MOR (uw1, uw1)' `C = __MOR (A, B)' `MOR A,B,C' ! `uw1 __MPACKH (uh, uh)' `C = __MPACKH (A, B)' `MPACKH A,B,C' ! `sw2 __MQADDHSS (sw2, sw2)' `C = __MQADDHSS (A, B)' `MQADDHSS A,B,C' ! `uw2 __MQADDHUS (uw2, uw2)' `C = __MQADDHUS (A, B)' `MQADDHUS A,B,C' ! `void __MQCPXIS (acc, sw2, sw2)' `__MQCPXIS (C, A, B)' `MQCPXIS A,B,C' ! `void __MQCPXIU (acc, uw2, uw2)' `__MQCPXIU (C, A, B)' `MQCPXIU A,B,C' ! `void __MQCPXRS (acc, sw2, sw2)' `__MQCPXRS (C, A, B)' `MQCPXRS A,B,C' ! `void __MQCPXRU (acc, uw2, uw2)' `__MQCPXRU (C, A, B)' `MQCPXRU A,B,C' ! `sw2 __MQLCLRHS (sw2, sw2)' `C = __MQLCLRHS (A, B)' `MQLCLRHS A,B,C' ! `sw2 __MQLMTHS (sw2, sw2)' `C = __MQLMTHS (A, B)' `MQLMTHS A,B,C' ! `void __MQMACHS (acc, sw2, sw2)' `__MQMACHS (C, A, B)' `MQMACHS A,B,C' ! `void __MQMACHU (acc, uw2, uw2)' `__MQMACHU (C, A, B)' `MQMACHU A,B,C' ! `void __MQMACXHS (acc, sw2, `__MQMACXHS (C, A, B)' `MQMACXHS A,B,C' ! sw2)' ! `void __MQMULHS (acc, sw2, sw2)' `__MQMULHS (C, A, B)' `MQMULHS A,B,C' ! `void __MQMULHU (acc, uw2, uw2)' `__MQMULHU (C, A, B)' `MQMULHU A,B,C' ! `void __MQMULXHS (acc, sw2, `__MQMULXHS (C, A, B)' `MQMULXHS A,B,C' ! sw2)' ! `void __MQMULXHU (acc, uw2, `__MQMULXHU (C, A, B)' `MQMULXHU A,B,C' ! uw2)' ! `sw2 __MQSATHS (sw2, sw2)' `C = __MQSATHS (A, B)' `MQSATHS A,B,C' ! `uw2 __MQSLLHI (uw2, int)' `C = __MQSLLHI (A, B)' `MQSLLHI A,B,C' ! `sw2 __MQSRAHI (sw2, int)' `C = __MQSRAHI (A, B)' `MQSRAHI A,B,C' ! `sw2 __MQSUBHSS (sw2, sw2)' `C = __MQSUBHSS (A, B)' `MQSUBHSS A,B,C' ! `uw2 __MQSUBHUS (uw2, uw2)' `C = __MQSUBHUS (A, B)' `MQSUBHUS A,B,C' ! `void __MQXMACHS (acc, sw2, `__MQXMACHS (C, A, B)' `MQXMACHS A,B,C' ! sw2)' ! `void __MQXMACXHS (acc, sw2, `__MQXMACXHS (C, A, B)' `MQXMACXHS A,B,C' ! sw2)' ! `uw1 __MRDACC (acc)' `B = __MRDACC (A)' `MRDACC A,B' ! `uw1 __MRDACCG (acc)' `B = __MRDACCG (A)' `MRDACCG A,B' ! `uw1 __MROTLI (uw1, const)' `C = __MROTLI (A, B)' `MROTLI A,#B,C' ! `uw1 __MROTRI (uw1, const)' `C = __MROTRI (A, B)' `MROTRI A,#B,C' ! `sw1 __MSATHS (sw1, sw1)' `C = __MSATHS (A, B)' `MSATHS A,B,C' ! `uw1 __MSATHU (uw1, uw1)' `C = __MSATHU (A, B)' `MSATHU A,B,C' ! `uw1 __MSLLHI (uw1, const)' `C = __MSLLHI (A, B)' `MSLLHI A,#B,C' ! `sw1 __MSRAHI (sw1, const)' `C = __MSRAHI (A, B)' `MSRAHI A,#B,C' ! `uw1 __MSRLHI (uw1, const)' `C = __MSRLHI (A, B)' `MSRLHI A,#B,C' ! `void __MSUBACCS (acc, acc)' `__MSUBACCS (B, A)' `MSUBACCS A,B' ! `sw1 __MSUBHSS (sw1, sw1)' `C = __MSUBHSS (A, B)' `MSUBHSS A,B,C' ! `uw1 __MSUBHUS (uw1, uw1)' `C = __MSUBHUS (A, B)' `MSUBHUS A,B,C' ! `void __MTRAP (void)' `__MTRAP ()' `MTRAP' ! `uw2 __MUNPACKH (uw1)' `B = __MUNPACKH (A)' `MUNPACKH A,B' ! `uw1 __MWCUT (uw2, uw1)' `C = __MWCUT (A, B)' `MWCUT A,B,C' ! `void __MWTACC (acc, uw1)' `__MWTACC (B, A)' `MWTACC A,B' ! `void __MWTACCG (acc, uw1)' `__MWTACCG (B, A)' `MWTACCG A,B' ! `uw1 __MXOR (uw1, uw1)' `C = __MXOR (A, B)' `MXOR A,B,C'  File: gcc.info, Node: Raw read/write Functions, Next: Other Built-in Functions, Prev: Directly-mapped Media Functions, Up: FR-V Built-in Functions --- 36086,36228 ---- The functions listed below map directly to FR-V M-type instructions. Function prototype Example usage Assembly output ! 'uw1 __MABSHS (sw1)' 'B = __MABSHS (A)' 'MABSHS A,B' ! 'void __MADDACCS (acc, acc)' '__MADDACCS (B, A)' 'MADDACCS A,B' ! 'sw1 __MADDHSS (sw1, sw1)' 'C = __MADDHSS (A, 'MADDHSS A,B,C' ! B)' ! 'uw1 __MADDHUS (uw1, uw1)' 'C = __MADDHUS (A, 'MADDHUS A,B,C' ! B)' ! 'uw1 __MAND (uw1, uw1)' 'C = __MAND (A, B)' 'MAND A,B,C' ! 'void __MASACCS (acc, acc)' '__MASACCS (B, A)' 'MASACCS A,B' ! 'uw1 __MAVEH (uw1, uw1)' 'C = __MAVEH (A, B)' 'MAVEH A,B,C' ! 'uw2 __MBTOH (uw1)' 'B = __MBTOH (A)' 'MBTOH A,B' ! 'void __MBTOHE (uw1 *, uw1)' '__MBTOHE (&B, A)' 'MBTOHE A,B' ! 'void __MCLRACC (acc)' '__MCLRACC (A)' 'MCLRACC A' ! 'void __MCLRACCA (void)' '__MCLRACCA ()' 'MCLRACCA' ! 'uw1 __Mcop1 (uw1, uw1)' 'C = __Mcop1 (A, B)' 'Mcop1 A,B,C' ! 'uw1 __Mcop2 (uw1, uw1)' 'C = __Mcop2 (A, B)' 'Mcop2 A,B,C' ! 'uw1 __MCPLHI (uw2, const)' 'C = __MCPLHI (A, B)' 'MCPLHI A,#B,C' ! 'uw1 __MCPLI (uw2, const)' 'C = __MCPLI (A, B)' 'MCPLI A,#B,C' ! 'void __MCPXIS (acc, sw1, '__MCPXIS (C, A, B)' 'MCPXIS A,B,C' ! sw1)' ! 'void __MCPXIU (acc, uw1, '__MCPXIU (C, A, B)' 'MCPXIU A,B,C' ! uw1)' ! 'void __MCPXRS (acc, sw1, '__MCPXRS (C, A, B)' 'MCPXRS A,B,C' ! sw1)' ! 'void __MCPXRU (acc, uw1, '__MCPXRU (C, A, B)' 'MCPXRU A,B,C' ! uw1)' ! 'uw1 __MCUT (acc, uw1)' 'C = __MCUT (A, B)' 'MCUT A,B,C' ! 'uw1 __MCUTSS (acc, sw1)' 'C = __MCUTSS (A, B)' 'MCUTSS A,B,C' ! 'void __MDADDACCS (acc, acc)' '__MDADDACCS (B, A)' 'MDADDACCS A,B' ! 'void __MDASACCS (acc, acc)' '__MDASACCS (B, A)' 'MDASACCS A,B' ! 'uw2 __MDCUTSSI (acc, const)' 'C = __MDCUTSSI (A, 'MDCUTSSI ! B)' A,#B,C' ! 'uw2 __MDPACKH (uw2, uw2)' 'C = __MDPACKH (A, 'MDPACKH A,B,C' ! B)' ! 'uw2 __MDROTLI (uw2, const)' 'C = __MDROTLI (A, 'MDROTLI ! B)' A,#B,C' ! 'void __MDSUBACCS (acc, acc)' '__MDSUBACCS (B, A)' 'MDSUBACCS A,B' ! 'void __MDUNPACKH (uw1 *, '__MDUNPACKH (&B, A)' 'MDUNPACKH A,B' ! uw2)' ! 'uw2 __MEXPDHD (uw1, const)' 'C = __MEXPDHD (A, 'MEXPDHD ! B)' A,#B,C' ! 'uw1 __MEXPDHW (uw1, const)' 'C = __MEXPDHW (A, 'MEXPDHW ! B)' A,#B,C' ! 'uw1 __MHDSETH (uw1, const)' 'C = __MHDSETH (A, 'MHDSETH ! B)' A,#B,C' ! 'sw1 __MHDSETS (const)' 'B = __MHDSETS (A)' 'MHDSETS #A,B' ! 'uw1 __MHSETHIH (uw1, const)' 'B = __MHSETHIH (B, 'MHSETHIH #A,B' ! A)' ! 'sw1 __MHSETHIS (sw1, const)' 'B = __MHSETHIS (B, 'MHSETHIS #A,B' ! A)' ! 'uw1 __MHSETLOH (uw1, const)' 'B = __MHSETLOH (B, 'MHSETLOH #A,B' ! A)' ! 'sw1 __MHSETLOS (sw1, const)' 'B = __MHSETLOS (B, 'MHSETLOS #A,B' ! A)' ! 'uw1 __MHTOB (uw2)' 'B = __MHTOB (A)' 'MHTOB A,B' ! 'void __MMACHS (acc, sw1, '__MMACHS (C, A, B)' 'MMACHS A,B,C' ! sw1)' ! 'void __MMACHU (acc, uw1, '__MMACHU (C, A, B)' 'MMACHU A,B,C' ! uw1)' ! 'void __MMRDHS (acc, sw1, '__MMRDHS (C, A, B)' 'MMRDHS A,B,C' ! sw1)' ! 'void __MMRDHU (acc, uw1, '__MMRDHU (C, A, B)' 'MMRDHU A,B,C' ! uw1)' ! 'void __MMULHS (acc, sw1, '__MMULHS (C, A, B)' 'MMULHS A,B,C' ! sw1)' ! 'void __MMULHU (acc, uw1, '__MMULHU (C, A, B)' 'MMULHU A,B,C' ! uw1)' ! 'void __MMULXHS (acc, sw1, '__MMULXHS (C, A, B)' 'MMULXHS A,B,C' ! sw1)' ! 'void __MMULXHU (acc, uw1, '__MMULXHU (C, A, B)' 'MMULXHU A,B,C' ! uw1)' ! 'uw1 __MNOT (uw1)' 'B = __MNOT (A)' 'MNOT A,B' ! 'uw1 __MOR (uw1, uw1)' 'C = __MOR (A, B)' 'MOR A,B,C' ! 'uw1 __MPACKH (uh, uh)' 'C = __MPACKH (A, B)' 'MPACKH A,B,C' ! 'sw2 __MQADDHSS (sw2, sw2)' 'C = __MQADDHSS (A, 'MQADDHSS ! B)' A,B,C' ! 'uw2 __MQADDHUS (uw2, uw2)' 'C = __MQADDHUS (A, 'MQADDHUS ! B)' A,B,C' ! 'void __MQCPXIS (acc, sw2, '__MQCPXIS (C, A, B)' 'MQCPXIS A,B,C' ! sw2)' ! 'void __MQCPXIU (acc, uw2, '__MQCPXIU (C, A, B)' 'MQCPXIU A,B,C' ! uw2)' ! 'void __MQCPXRS (acc, sw2, '__MQCPXRS (C, A, B)' 'MQCPXRS A,B,C' ! sw2)' ! 'void __MQCPXRU (acc, uw2, '__MQCPXRU (C, A, B)' 'MQCPXRU A,B,C' ! uw2)' ! 'sw2 __MQLCLRHS (sw2, sw2)' 'C = __MQLCLRHS (A, 'MQLCLRHS ! B)' A,B,C' ! 'sw2 __MQLMTHS (sw2, sw2)' 'C = __MQLMTHS (A, 'MQLMTHS A,B,C' ! B)' ! 'void __MQMACHS (acc, sw2, '__MQMACHS (C, A, B)' 'MQMACHS A,B,C' ! sw2)' ! 'void __MQMACHU (acc, uw2, '__MQMACHU (C, A, B)' 'MQMACHU A,B,C' ! uw2)' ! 'void __MQMACXHS (acc, sw2, '__MQMACXHS (C, A, 'MQMACXHS ! sw2)' B)' A,B,C' ! 'void __MQMULHS (acc, sw2, '__MQMULHS (C, A, B)' 'MQMULHS A,B,C' ! sw2)' ! 'void __MQMULHU (acc, uw2, '__MQMULHU (C, A, B)' 'MQMULHU A,B,C' ! uw2)' ! 'void __MQMULXHS (acc, sw2, '__MQMULXHS (C, A, 'MQMULXHS ! sw2)' B)' A,B,C' ! 'void __MQMULXHU (acc, uw2, '__MQMULXHU (C, A, 'MQMULXHU ! uw2)' B)' A,B,C' ! 'sw2 __MQSATHS (sw2, sw2)' 'C = __MQSATHS (A, 'MQSATHS A,B,C' ! B)' ! 'uw2 __MQSLLHI (uw2, int)' 'C = __MQSLLHI (A, 'MQSLLHI A,B,C' ! B)' ! 'sw2 __MQSRAHI (sw2, int)' 'C = __MQSRAHI (A, 'MQSRAHI A,B,C' ! B)' ! 'sw2 __MQSUBHSS (sw2, sw2)' 'C = __MQSUBHSS (A, 'MQSUBHSS ! B)' A,B,C' ! 'uw2 __MQSUBHUS (uw2, uw2)' 'C = __MQSUBHUS (A, 'MQSUBHUS ! B)' A,B,C' ! 'void __MQXMACHS (acc, sw2, '__MQXMACHS (C, A, 'MQXMACHS ! sw2)' B)' A,B,C' ! 'void __MQXMACXHS (acc, sw2, '__MQXMACXHS (C, A, 'MQXMACXHS ! sw2)' B)' A,B,C' ! 'uw1 __MRDACC (acc)' 'B = __MRDACC (A)' 'MRDACC A,B' ! 'uw1 __MRDACCG (acc)' 'B = __MRDACCG (A)' 'MRDACCG A,B' ! 'uw1 __MROTLI (uw1, const)' 'C = __MROTLI (A, B)' 'MROTLI A,#B,C' ! 'uw1 __MROTRI (uw1, const)' 'C = __MROTRI (A, B)' 'MROTRI A,#B,C' ! 'sw1 __MSATHS (sw1, sw1)' 'C = __MSATHS (A, B)' 'MSATHS A,B,C' ! 'uw1 __MSATHU (uw1, uw1)' 'C = __MSATHU (A, B)' 'MSATHU A,B,C' ! 'uw1 __MSLLHI (uw1, const)' 'C = __MSLLHI (A, B)' 'MSLLHI A,#B,C' ! 'sw1 __MSRAHI (sw1, const)' 'C = __MSRAHI (A, B)' 'MSRAHI A,#B,C' ! 'uw1 __MSRLHI (uw1, const)' 'C = __MSRLHI (A, B)' 'MSRLHI A,#B,C' ! 'void __MSUBACCS (acc, acc)' '__MSUBACCS (B, A)' 'MSUBACCS A,B' ! 'sw1 __MSUBHSS (sw1, sw1)' 'C = __MSUBHSS (A, 'MSUBHSS A,B,C' ! B)' ! 'uw1 __MSUBHUS (uw1, uw1)' 'C = __MSUBHUS (A, 'MSUBHUS A,B,C' ! B)' ! 'void __MTRAP (void)' '__MTRAP ()' 'MTRAP' ! 'uw2 __MUNPACKH (uw1)' 'B = __MUNPACKH (A)' 'MUNPACKH A,B' ! 'uw1 __MWCUT (uw2, uw1)' 'C = __MWCUT (A, B)' 'MWCUT A,B,C' ! 'void __MWTACC (acc, uw1)' '__MWTACC (B, A)' 'MWTACC A,B' ! 'void __MWTACCG (acc, uw1)' '__MWTACCG (B, A)' 'MWTACCG A,B' ! 'uw1 __MXOR (uw1, uw1)' 'C = __MXOR (A, B)' 'MXOR A,B,C'  File: gcc.info, Node: Raw read/write Functions, Next: Other Built-in Functions, Prev: Directly-mapped Media Functions, Up: FR-V Built-in Functions *************** File: gcc.info, Node: Raw read/write Fu *** 36469,36493 **** ................................. This sections describes built-in functions related to read and write ! instructions to access memory. These functions generate `membar' instructions to flush the I/O load and stores where appropriate, as described in Fujitsu's manual described above. ! `unsigned char __builtin_read8 (void *DATA)' ! ! `unsigned short __builtin_read16 (void *DATA)' ! ! `unsigned long __builtin_read32 (void *DATA)' ! ! `unsigned long long __builtin_read64 (void *DATA)' ! ! `void __builtin_write8 (void *DATA, unsigned char DATUM)' ! ! `void __builtin_write16 (void *DATA, unsigned short DATUM)' ! ! `void __builtin_write32 (void *DATA, unsigned long DATUM)' ! `void __builtin_write64 (void *DATA, unsigned long long DATUM)'  File: gcc.info, Node: Other Built-in Functions, Prev: Raw read/write Functions, Up: FR-V Built-in Functions --- 36231,36249 ---- ................................. This sections describes built-in functions related to read and write ! instructions to access memory. These functions generate 'membar' instructions to flush the I/O load and stores where appropriate, as described in Fujitsu's manual described above. ! 'unsigned char __builtin_read8 (void *DATA)' ! 'unsigned short __builtin_read16 (void *DATA)' ! 'unsigned long __builtin_read32 (void *DATA)' ! 'unsigned long long __builtin_read64 (void *DATA)' ! 'void __builtin_write8 (void *DATA, unsigned char DATUM)' ! 'void __builtin_write16 (void *DATA, unsigned short DATUM)' ! 'void __builtin_write32 (void *DATA, unsigned long DATUM)' ! 'void __builtin_write64 (void *DATA, unsigned long long DATUM)'  File: gcc.info, Node: Other Built-in Functions, Prev: Raw read/write Functions, Up: FR-V Built-in Functions *************** File: gcc.info, Node: Other Built-in Fu *** 36498,36525 **** This section describes built-in functions that are not named after a specific FR-V instruction. ! `sw2 __IACCreadll (iacc REG)' Return the full 64-bit value of IACC0. The REG argument is reserved for future expansion and must be 0. ! `sw1 __IACCreadl (iacc REG)' Return the value of IACC0H if REG is 0 and IACC0L if REG is 1. Other values of REG are rejected as invalid. ! `void __IACCsetll (iacc REG, sw2 X)' Set the full 64-bit value of IACC0 to X. The REG argument is reserved for future expansion and must be 0. ! `void __IACCsetl (iacc REG, sw1 X)' Set IACC0H to X if REG is 0 and IACC0L to X if REG is 1. Other values of REG are rejected as invalid. ! `void __data_prefetch0 (const void *X)' ! Use the `dcpl' instruction to load the contents of address X into the data cache. ! `void __data_prefetch (const void *X)' ! Use the `nldub' instruction to load the contents of address X into the data cache. The instruction is issued in slot I1.  --- 36254,36281 ---- This section describes built-in functions that are not named after a specific FR-V instruction. ! 'sw2 __IACCreadll (iacc REG)' Return the full 64-bit value of IACC0. The REG argument is reserved for future expansion and must be 0. ! 'sw1 __IACCreadl (iacc REG)' Return the value of IACC0H if REG is 0 and IACC0L if REG is 1. Other values of REG are rejected as invalid. ! 'void __IACCsetll (iacc REG, sw2 X)' Set the full 64-bit value of IACC0 to X. The REG argument is reserved for future expansion and must be 0. ! 'void __IACCsetl (iacc REG, sw1 X)' Set IACC0H to X if REG is 0 and IACC0L to X if REG is 1. Other values of REG are rejected as invalid. ! 'void __data_prefetch0 (const void *X)' ! Use the 'dcpl' instruction to load the contents of address X into the data cache. ! 'void __data_prefetch (const void *X)' ! Use the 'nldub' instruction to load the contents of address X into the data cache. The instruction is issued in slot I1.  *************** File: gcc.info, Node: X86 Built-in Func *** 36528,36563 **** 6.56.7 X86 Built-in Functions ----------------------------- ! These built-in functions are available for the i386 and x86-64 family ! of computers, depending on the command-line switches used. ! If you specify command-line switches such as `-msse', the compiler could use the extended instruction sets even if the built-ins are not used explicitly in the program. For this reason, applications that perform run-time CPU detection must compile separate files for each ! supported architecture, using the appropriate flags. In particular, ! the file containing the CPU detection code should be compiled without ! these options. The following machine modes are available for use with MMX built-in ! functions (*note Vector Extensions::): `V2SI' for a vector of two ! 32-bit integers, `V4HI' for a vector of four 16-bit integers, and ! `V8QI' for a vector of eight 8-bit integers. Some of the built-in ! functions operate on MMX registers as a whole 64-bit entity, these use ! `V1DI' as their mode. ! If 3DNow! extensions are enabled, `V2SF' is used as a mode for a vector of two 32-bit floating-point values. ! If SSE extensions are enabled, `V4SF' is used for a vector of four 32-bit floating-point values. Some instructions use a vector of four ! 32-bit integers, these use `V4SI'. Finally, some instructions operate on an entire vector register, interpreting it as a 128-bit integer, ! these use mode `TI'. In 64-bit mode, the x86-64 family of processors uses additional ! built-in functions for efficient use of `TF' (`__float128') 128-bit ! floating point and `TC' 128-bit complex floating-point values. The following floating-point built-in functions are available in 64-bit mode. All of them implement the function that is part of the name. --- 36284,36319 ---- 6.56.7 X86 Built-in Functions ----------------------------- ! These built-in functions are available for the i386 and x86-64 family of ! computers, depending on the command-line switches used. ! If you specify command-line switches such as '-msse', the compiler could use the extended instruction sets even if the built-ins are not used explicitly in the program. For this reason, applications that perform run-time CPU detection must compile separate files for each ! supported architecture, using the appropriate flags. In particular, the ! file containing the CPU detection code should be compiled without these ! options. The following machine modes are available for use with MMX built-in ! functions (*note Vector Extensions::): 'V2SI' for a vector of two 32-bit ! integers, 'V4HI' for a vector of four 16-bit integers, and 'V8QI' for a ! vector of eight 8-bit integers. Some of the built-in functions operate ! on MMX registers as a whole 64-bit entity, these use 'V1DI' as their ! mode. ! If 3DNow! extensions are enabled, 'V2SF' is used as a mode for a vector of two 32-bit floating-point values. ! If SSE extensions are enabled, 'V4SF' is used for a vector of four 32-bit floating-point values. Some instructions use a vector of four ! 32-bit integers, these use 'V4SI'. Finally, some instructions operate on an entire vector register, interpreting it as a 128-bit integer, ! these use mode 'TI'. In 64-bit mode, the x86-64 family of processors uses additional ! built-in functions for efficient use of 'TF' ('__float128') 128-bit ! floating point and 'TC' 128-bit complex floating-point values. The following floating-point built-in functions are available in 64-bit mode. All of them implement the function that is part of the name. *************** mode. All of them implement the functio *** 36567,36585 **** The following built-in function is always available. ! `void __builtin_ia32_pause (void)' ! Generates the `pause' machine instruction with a compiler memory barrier. The following floating-point built-in functions are made available in the 64-bit mode. ! `__float128 __builtin_infq (void)' ! Similar to `__builtin_inf', except the return type is `__float128'. ! `__float128 __builtin_huge_valq (void)' ! Similar to `__builtin_huge_val', except the return type is ! `__float128'. The following built-in functions are always available and can be used to check the target platform type. --- 36323,36341 ---- The following built-in function is always available. ! 'void __builtin_ia32_pause (void)' ! Generates the 'pause' machine instruction with a compiler memory barrier. The following floating-point built-in functions are made available in the 64-bit mode. ! '__float128 __builtin_infq (void)' ! Similar to '__builtin_inf', except the return type is '__float128'. ! '__float128 __builtin_huge_valq (void)' ! Similar to '__builtin_huge_val', except the return type is ! '__float128'. The following built-in functions are always available and can be used to check the target platform type. *************** to check the target platform type. *** 36588,36601 **** This function runs the CPU detection code to check the type of CPU and the features supported. This built-in function needs to be invoked along with the built-in functions to check CPU type and ! features, `__builtin_cpu_is' and `__builtin_cpu_supports', only when used in a function that is executed before any constructors are called. The CPU detection code is automatically executed in a very high priority constructor. ! For example, this function has to be used in `ifunc' resolvers that ! check for CPU type using the built-in functions `__builtin_cpu_is' ! and `__builtin_cpu_supports', or in constructors on targets that don't support constructor priority. static void (*resolve_memcpy (void)) (void) --- 36344,36357 ---- This function runs the CPU detection code to check the type of CPU and the features supported. This built-in function needs to be invoked along with the built-in functions to check CPU type and ! features, '__builtin_cpu_is' and '__builtin_cpu_supports', only when used in a function that is executed before any constructors are called. The CPU detection code is automatically executed in a very high priority constructor. ! For example, this function has to be used in 'ifunc' resolvers that ! check for CPU type using the built-in functions '__builtin_cpu_is' ! and '__builtin_cpu_supports', or in constructors on targets that don't support constructor priority. static void (*resolve_memcpy (void)) (void) *************** to check the target platform type. *** 36612,36675 **** void *memcpy (void *, const void *, size_t) __attribute__ ((ifunc ("resolve_memcpy"))); - -- Built-in Function: int __builtin_cpu_is (const char *CPUNAME) This function returns a positive integer if the run-time CPU is of ! type CPUNAME and returns `0' otherwise. The following CPU names can be detected: ! `intel' Intel CPU. ! `atom' Intel Atom CPU. ! `core2' Intel Core 2 CPU. ! `corei7' Intel Core i7 CPU. ! `nehalem' Intel Core i7 Nehalem CPU. ! `westmere' Intel Core i7 Westmere CPU. ! `sandybridge' Intel Core i7 Sandy Bridge CPU. ! `amd' AMD CPU. ! `amdfam10h' AMD Family 10h CPU. ! `barcelona' AMD Family 10h Barcelona CPU. ! `shanghai' AMD Family 10h Shanghai CPU. ! `istanbul' AMD Family 10h Istanbul CPU. ! `btver1' AMD Family 14h CPU. ! `amdfam15h' AMD Family 15h CPU. ! `bdver1' AMD Family 15h Bulldozer version 1. ! `bdver2' AMD Family 15h Bulldozer version 2. ! `bdver3' AMD Family 15h Bulldozer version 3. ! `btver2' AMD Family 16h CPU. Here is an example: --- 36368,36430 ---- void *memcpy (void *, const void *, size_t) __attribute__ ((ifunc ("resolve_memcpy"))); -- Built-in Function: int __builtin_cpu_is (const char *CPUNAME) This function returns a positive integer if the run-time CPU is of ! type CPUNAME and returns '0' otherwise. The following CPU names can be detected: ! 'intel' Intel CPU. ! 'atom' Intel Atom CPU. ! 'core2' Intel Core 2 CPU. ! 'corei7' Intel Core i7 CPU. ! 'nehalem' Intel Core i7 Nehalem CPU. ! 'westmere' Intel Core i7 Westmere CPU. ! 'sandybridge' Intel Core i7 Sandy Bridge CPU. ! 'amd' AMD CPU. ! 'amdfam10h' AMD Family 10h CPU. ! 'barcelona' AMD Family 10h Barcelona CPU. ! 'shanghai' AMD Family 10h Shanghai CPU. ! 'istanbul' AMD Family 10h Istanbul CPU. ! 'btver1' AMD Family 14h CPU. ! 'amdfam15h' AMD Family 15h CPU. ! 'bdver1' AMD Family 15h Bulldozer version 1. ! 'bdver2' AMD Family 15h Bulldozer version 2. ! 'bdver3' AMD Family 15h Bulldozer version 3. ! 'btver2' AMD Family 16h CPU. Here is an example: *************** to check the target platform type. *** 36684,36723 **** -- Built-in Function: int __builtin_cpu_supports (const char *FEATURE) This function returns a positive integer if the run-time CPU ! supports FEATURE and returns `0' otherwise. The following features can be detected: ! `cmov' CMOV instruction. ! ! `mmx' MMX instructions. ! ! `popcnt' POPCNT instruction. ! ! `sse' SSE instructions. ! ! `sse2' SSE2 instructions. ! ! `sse3' SSE3 instructions. ! ! `ssse3' SSSE3 instructions. ! ! `sse4.1' SSE4.1 instructions. ! ! `sse4.2' SSE4.2 instructions. ! ! `avx' AVX instructions. ! ! `avx2' AVX2 instructions. Here is an example: --- 36439,36468 ---- -- Built-in Function: int __builtin_cpu_supports (const char *FEATURE) This function returns a positive integer if the run-time CPU ! supports FEATURE and returns '0' otherwise. The following features can be detected: ! 'cmov' CMOV instruction. ! 'mmx' MMX instructions. ! 'popcnt' POPCNT instruction. ! 'sse' SSE instructions. ! 'sse2' SSE2 instructions. ! 'sse3' SSE3 instructions. ! 'ssse3' SSSE3 instructions. ! 'sse4.1' SSE4.1 instructions. ! 'sse4.2' SSE4.2 instructions. ! 'avx' AVX instructions. ! 'avx2' AVX2 instructions. Here is an example: *************** to check the target platform type. *** 36730,36737 **** count = generic_countbits (n); //generic implementation. } ! The following built-in functions are made available by `-mmmx'. All ! of them generate the machine instruction that is part of the name. v8qi __builtin_ia32_paddb (v8qi, v8qi) v4hi __builtin_ia32_paddw (v4hi, v4hi) --- 36475,36482 ---- count = generic_countbits (n); //generic implementation. } ! The following built-in functions are made available by '-mmmx'. All of ! them generate the machine instruction that is part of the name. v8qi __builtin_ia32_paddb (v8qi, v8qi) v4hi __builtin_ia32_paddw (v4hi, v4hi) *************** of them generate the machine instruction *** 36787,36794 **** v2si __builtin_ia32_psradi (v2si, int) The following built-in functions are made available either with ! `-msse', or with a combination of `-m3dnow' and `-march=athlon'. All ! of them generate the machine instruction that is part of the name. v4hi __builtin_ia32_pmulhuw (v4hi, v4hi) v8qi __builtin_ia32_pavgb (v8qi, v8qi) --- 36532,36539 ---- v2si __builtin_ia32_psradi (v2si, int) The following built-in functions are made available either with ! '-msse', or with a combination of '-m3dnow' and '-march=athlon'. All of ! them generate the machine instruction that is part of the name. v4hi __builtin_ia32_pmulhuw (v4hi, v4hi) v8qi __builtin_ia32_pavgb (v8qi, v8qi) *************** of them generate the machine instruction *** 36805,36811 **** void __builtin_ia32_movntq (di *, di) void __builtin_ia32_sfence (void) ! The following built-in functions are available when `-msse' is used. All of them generate the machine instruction that is part of the name. int __builtin_ia32_comieq (v4sf, v4sf) --- 36550,36556 ---- void __builtin_ia32_movntq (di *, di) void __builtin_ia32_sfence (void) ! The following built-in functions are available when '-msse' is used. All of them generate the machine instruction that is part of the name. int __builtin_ia32_comieq (v4sf, v4sf) *************** All of them generate the machine instruc *** 36877,36915 **** void __builtin_ia32_movntps (float *, v4sf) int __builtin_ia32_movmskps (v4sf) ! The following built-in functions are available when `-msse' is used. ! ! `v4sf __builtin_ia32_loadaps (float *)' ! Generates the `movaps' machine instruction as a load from memory. ! ! `void __builtin_ia32_storeaps (float *, v4sf)' ! Generates the `movaps' machine instruction as a store to memory. ! ! `v4sf __builtin_ia32_loadups (float *)' ! Generates the `movups' machine instruction as a load from memory. ! ! `void __builtin_ia32_storeups (float *, v4sf)' ! Generates the `movups' machine instruction as a store to memory. ! ! `v4sf __builtin_ia32_loadsss (float *)' ! Generates the `movss' machine instruction as a load from memory. ! ! `void __builtin_ia32_storess (float *, v4sf)' ! Generates the `movss' machine instruction as a store to memory. ! ! `v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)' ! Generates the `movhps' machine instruction as a load from memory. ! ! `v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)' ! Generates the `movlps' machine instruction as a load from memory ! ! `void __builtin_ia32_storehps (v2sf *, v4sf)' ! Generates the `movhps' machine instruction as a store to memory. ! `void __builtin_ia32_storelps (v2sf *, v4sf)' ! Generates the `movlps' machine instruction as a store to memory. ! The following built-in functions are available when `-msse2' is used. All of them generate the machine instruction that is part of the name. int __builtin_ia32_comisdeq (v2df, v2df) --- 36622,36651 ---- void __builtin_ia32_movntps (float *, v4sf) int __builtin_ia32_movmskps (v4sf) ! The following built-in functions are available when '-msse' is used. ! 'v4sf __builtin_ia32_loadaps (float *)' ! Generates the 'movaps' machine instruction as a load from memory. ! 'void __builtin_ia32_storeaps (float *, v4sf)' ! Generates the 'movaps' machine instruction as a store to memory. ! 'v4sf __builtin_ia32_loadups (float *)' ! Generates the 'movups' machine instruction as a load from memory. ! 'void __builtin_ia32_storeups (float *, v4sf)' ! Generates the 'movups' machine instruction as a store to memory. ! 'v4sf __builtin_ia32_loadsss (float *)' ! Generates the 'movss' machine instruction as a load from memory. ! 'void __builtin_ia32_storess (float *, v4sf)' ! Generates the 'movss' machine instruction as a store to memory. ! 'v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)' ! Generates the 'movhps' machine instruction as a load from memory. ! 'v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)' ! Generates the 'movlps' machine instruction as a load from memory ! 'void __builtin_ia32_storehps (v2sf *, v4sf)' ! Generates the 'movhps' machine instruction as a store to memory. ! 'void __builtin_ia32_storelps (v2sf *, v4sf)' ! Generates the 'movlps' machine instruction as a store to memory. ! The following built-in functions are available when '-msse2' is used. All of them generate the machine instruction that is part of the name. int __builtin_ia32_comisdeq (v2df, v2df) *************** All of them generate the machine instruc *** 37068,37074 **** v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi) v2di __builtin_ia32_movq128 (v2di) ! The following built-in functions are available when `-msse3' is used. All of them generate the machine instruction that is part of the name. v2df __builtin_ia32_addsubpd (v2df, v2df) --- 36804,36810 ---- v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi) v2di __builtin_ia32_movq128 (v2di) ! The following built-in functions are available when '-msse3' is used. All of them generate the machine instruction that is part of the name. v2df __builtin_ia32_addsubpd (v2df, v2df) *************** All of them generate the machine instruc *** 37084,37095 **** v4sf __builtin_ia32_movsldup (v4sf) void __builtin_ia32_mwait (unsigned int, unsigned int) ! The following built-in functions are available when `-msse3' is used. ! `v2df __builtin_ia32_loadddup (double const *)' ! Generates the `movddup' machine instruction as a load from memory. ! The following built-in functions are available when `-mssse3' is used. All of them generate the machine instruction that is part of the name with MMX registers. --- 36820,36831 ---- v4sf __builtin_ia32_movsldup (v4sf) void __builtin_ia32_mwait (unsigned int, unsigned int) ! The following built-in functions are available when '-msse3' is used. ! 'v2df __builtin_ia32_loadddup (double const *)' ! Generates the 'movddup' machine instruction as a load from memory. ! The following built-in functions are available when '-mssse3' is used. All of them generate the machine instruction that is part of the name with MMX registers. *************** with MMX registers. *** 37110,37116 **** v2si __builtin_ia32_pabsd (v2si) v4hi __builtin_ia32_pabsw (v4hi) ! The following built-in functions are available when `-mssse3' is used. All of them generate the machine instruction that is part of the name with SSE registers. --- 36846,36852 ---- v2si __builtin_ia32_pabsd (v2si) v4hi __builtin_ia32_pabsw (v4hi) ! The following built-in functions are available when '-mssse3' is used. All of them generate the machine instruction that is part of the name with SSE registers. *************** with SSE registers. *** 37131,37139 **** v4si __builtin_ia32_pabsd128 (v4si) v8hi __builtin_ia32_pabsw128 (v8hi) ! The following built-in functions are available when `-msse4.1' is ! used. All of them generate the machine instruction that is part of the ! name. v2df __builtin_ia32_blendpd (v2df, v2df, const int) v4sf __builtin_ia32_blendps (v4sf, v4sf, const int) --- 36867,36874 ---- v4si __builtin_ia32_pabsd128 (v4si) v8hi __builtin_ia32_pabsw128 (v8hi) ! The following built-in functions are available when '-msse4.1' is used. ! All of them generate the machine instruction that is part of the name. v2df __builtin_ia32_blendpd (v2df, v2df, const int) v4sf __builtin_ia32_blendps (v4sf, v4sf, const int) *************** name. *** 37179,37216 **** v2df __builtin_ia32_roundsd (v2df, v2df, const int) v4sf __builtin_ia32_roundss (v4sf, v4sf, const int) ! The following built-in functions are available when `-msse4.1' is used. ! ! `v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)' ! Generates the `insertps' machine instruction. ! ! `int __builtin_ia32_vec_ext_v16qi (v16qi, const int)' ! Generates the `pextrb' machine instruction. ! ! `v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)' ! Generates the `pinsrb' machine instruction. ! ! `v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)' ! Generates the `pinsrd' machine instruction. ! `v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)' ! Generates the `pinsrq' machine instruction in 64bit mode. The following built-in functions are changed to generate new SSE4.1 ! instructions when `-msse4.1' is used. ! ! `float __builtin_ia32_vec_ext_v4sf (v4sf, const int)' ! Generates the `extractps' machine instruction. ! ! `int __builtin_ia32_vec_ext_v4si (v4si, const int)' ! Generates the `pextrd' machine instruction. ! `long long __builtin_ia32_vec_ext_v2di (v2di, const int)' ! Generates the `pextrq' machine instruction in 64bit mode. ! The following built-in functions are available when `-msse4.2' is ! used. All of them generate the machine instruction that is part of the ! name. v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int) int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int) --- 36914,36944 ---- v2df __builtin_ia32_roundsd (v2df, v2df, const int) v4sf __builtin_ia32_roundss (v4sf, v4sf, const int) ! The following built-in functions are available when '-msse4.1' is used. ! 'v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)' ! Generates the 'insertps' machine instruction. ! 'int __builtin_ia32_vec_ext_v16qi (v16qi, const int)' ! Generates the 'pextrb' machine instruction. ! 'v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)' ! Generates the 'pinsrb' machine instruction. ! 'v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)' ! Generates the 'pinsrd' machine instruction. ! 'v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)' ! Generates the 'pinsrq' machine instruction in 64bit mode. The following built-in functions are changed to generate new SSE4.1 ! instructions when '-msse4.1' is used. ! 'float __builtin_ia32_vec_ext_v4sf (v4sf, const int)' ! Generates the 'extractps' machine instruction. ! 'int __builtin_ia32_vec_ext_v4si (v4si, const int)' ! Generates the 'pextrd' machine instruction. ! 'long long __builtin_ia32_vec_ext_v2di (v2di, const int)' ! Generates the 'pextrq' machine instruction in 64bit mode. ! The following built-in functions are available when '-msse4.2' is used. ! All of them generate the machine instruction that is part of the name. v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int) int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int) *************** name. *** 37228,37261 **** int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int) v2di __builtin_ia32_pcmpgtq (v2di, v2di) ! The following built-in functions are available when `-msse4.2' is used. ! ! `unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)' ! Generates the `crc32b' machine instruction. ! ! `unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)' ! Generates the `crc32w' machine instruction. ! ! `unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)' ! Generates the `crc32l' machine instruction. ! `unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)' ! Generates the `crc32q' machine instruction. The following built-in functions are changed to generate new SSE4.2 ! instructions when `-msse4.2' is used. ! ! `int __builtin_popcount (unsigned int)' ! Generates the `popcntl' machine instruction. ! ! `int __builtin_popcountl (unsigned long)' ! Generates the `popcntl' or `popcntq' machine instruction, ! depending on the size of `unsigned long'. ! `int __builtin_popcountll (unsigned long long)' ! Generates the `popcntq' machine instruction. ! The following built-in functions are available when `-mavx' is used. All of them generate the machine instruction that is part of the name. v4df __builtin_ia32_addpd256 (v4df,v4df) --- 36956,36984 ---- int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int) v2di __builtin_ia32_pcmpgtq (v2di, v2di) ! The following built-in functions are available when '-msse4.2' is used. ! 'unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)' ! Generates the 'crc32b' machine instruction. ! 'unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)' ! Generates the 'crc32w' machine instruction. ! 'unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)' ! Generates the 'crc32l' machine instruction. ! 'unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)' ! Generates the 'crc32q' machine instruction. The following built-in functions are changed to generate new SSE4.2 ! instructions when '-msse4.2' is used. ! 'int __builtin_popcount (unsigned int)' ! Generates the 'popcntl' machine instruction. ! 'int __builtin_popcountl (unsigned long)' ! Generates the 'popcntl' or 'popcntq' machine instruction, depending ! on the size of 'unsigned long'. ! 'int __builtin_popcountll (unsigned long long)' ! Generates the 'popcntq' machine instruction. ! The following built-in functions are available when '-mavx' is used. All of them generate the machine instruction that is part of the name. v4df __builtin_ia32_addpd256 (v4df,v4df) *************** All of them generate the machine instruc *** 37387,37393 **** v4df __builtin_ia32_xorpd256 (v4df,v4df) v8sf __builtin_ia32_xorps256 (v8sf,v8sf) ! The following built-in functions are available when `-mavx2' is used. All of them generate the machine instruction that is part of the name. v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,v32qi,int) --- 37110,37116 ---- v4df __builtin_ia32_xorpd256 (v4df,v4df) v8sf __builtin_ia32_xorps256 (v8sf,v8sf) ! The following built-in functions are available when '-mavx2' is used. All of them generate the machine instruction that is part of the name. v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,v32qi,int) *************** All of them generate the machine instruc *** 37562,37568 **** v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int) v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int) ! The following built-in functions are available when `-maes' is used. All of them generate the machine instruction that is part of the name. v2di __builtin_ia32_aesenc128 (v2di, v2di) --- 37285,37291 ---- v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int) v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int) ! The following built-in functions are available when '-maes' is used. All of them generate the machine instruction that is part of the name. v2di __builtin_ia32_aesenc128 (v2di, v2di) *************** All of them generate the machine instruc *** 37572,37585 **** v2di __builtin_ia32_aeskeygenassist128 (v2di, const int) v2di __builtin_ia32_aesimc128 (v2di) ! The following built-in function is available when `-mpclmul' is used. ! `v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)' ! Generates the `pclmulqdq' machine instruction. ! The following built-in function is available when `-mfsgsbase' is ! used. All of them generate the machine instruction that is part of the ! name. unsigned int __builtin_ia32_rdfsbase32 (void) unsigned long long __builtin_ia32_rdfsbase64 (void) --- 37295,37307 ---- v2di __builtin_ia32_aeskeygenassist128 (v2di, const int) v2di __builtin_ia32_aesimc128 (v2di) ! The following built-in function is available when '-mpclmul' is used. ! 'v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)' ! Generates the 'pclmulqdq' machine instruction. ! The following built-in function is available when '-mfsgsbase' is used. ! All of them generate the machine instruction that is part of the name. unsigned int __builtin_ia32_rdfsbase32 (void) unsigned long long __builtin_ia32_rdfsbase64 (void) *************** name. *** 37590,37603 **** void _writegsbase_u32 (unsigned int) void _writegsbase_u64 (unsigned long long) ! The following built-in function is available when `-mrdrnd' is used. All of them generate the machine instruction that is part of the name. unsigned int __builtin_ia32_rdrand16_step (unsigned short *) unsigned int __builtin_ia32_rdrand32_step (unsigned int *) unsigned int __builtin_ia32_rdrand64_step (unsigned long long *) ! The following built-in functions are available when `-msse4a' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_movntsd (double *, v2df) --- 37312,37325 ---- void _writegsbase_u32 (unsigned int) void _writegsbase_u64 (unsigned long long) ! The following built-in function is available when '-mrdrnd' is used. All of them generate the machine instruction that is part of the name. unsigned int __builtin_ia32_rdrand16_step (unsigned short *) unsigned int __builtin_ia32_rdrand32_step (unsigned int *) unsigned int __builtin_ia32_rdrand64_step (unsigned long long *) ! The following built-in functions are available when '-msse4a' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_movntsd (double *, v2df) *************** All of them generate the machine instruc *** 37607,37613 **** v2di __builtin_ia32_insertq (v2di, v2di) v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int) ! The following built-in functions are available when `-mxop' is used. v2df __builtin_ia32_vfrczpd (v2df) v4sf __builtin_ia32_vfrczps (v4sf) v2df __builtin_ia32_vfrczsd (v2df, v2df) --- 37329,37335 ---- v2di __builtin_ia32_insertq (v2di, v2di) v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int) ! The following built-in functions are available when '-mxop' is used. v2df __builtin_ia32_vfrczpd (v2df) v4sf __builtin_ia32_vfrczps (v4sf) v2df __builtin_ia32_vfrczsd (v2df, v2df) *************** All of them generate the machine instruc *** 37733,37739 **** v2di __builtin_ia32_vpshlq (v2di, v2di) v8hi __builtin_ia32_vpshlw (v8hi, v8hi) ! The following built-in functions are available when `-mfma4' is used. All of them generate the machine instruction that is part of the name with MMX registers. --- 37455,37461 ---- v2di __builtin_ia32_vpshlq (v2di, v2di) v8hi __builtin_ia32_vpshlw (v8hi, v8hi) ! The following built-in functions are available when '-mfma4' is used. All of them generate the machine instruction that is part of the name with MMX registers. *************** with MMX registers. *** 37770,37776 **** v4df __builtin_ia32_fmsubaddpd256 (v4df, v4df, v4df) v8sf __builtin_ia32_fmsubaddps256 (v8sf, v8sf, v8sf) ! The following built-in functions are available when `-mlwp' is used. void __builtin_ia32_llwpcb16 (void *); void __builtin_ia32_llwpcb32 (void *); --- 37492,37498 ---- v4df __builtin_ia32_fmsubaddpd256 (v4df, v4df, v4df) v8sf __builtin_ia32_fmsubaddps256 (v8sf, v8sf, v8sf) ! The following built-in functions are available when '-mlwp' is used. void __builtin_ia32_llwpcb16 (void *); void __builtin_ia32_llwpcb32 (void *); *************** with MMX registers. *** 37785,37796 **** unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int) unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int) ! The following built-in functions are available when `-mbmi' is used. All of them generate the machine instruction that is part of the name. unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int); unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long); ! The following built-in functions are available when `-mbmi2' is used. All of them generate the machine instruction that is part of the name. unsigned int _bzhi_u32 (unsigned int, unsigned int) unsigned int _pdep_u32 (unsigned int, unsigned int) --- 37507,37518 ---- unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int) unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int) ! The following built-in functions are available when '-mbmi' is used. All of them generate the machine instruction that is part of the name. unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int); unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long); ! The following built-in functions are available when '-mbmi2' is used. All of them generate the machine instruction that is part of the name. unsigned int _bzhi_u32 (unsigned int, unsigned int) unsigned int _pdep_u32 (unsigned int, unsigned int) *************** All of them generate the machine instruc *** 37799,37817 **** unsigned long long _pdep_u64 (unsigned long long, unsigned long long) unsigned long long _pext_u64 (unsigned long long, unsigned long long) ! The following built-in functions are available when `-mlzcnt' is used. All of them generate the machine instruction that is part of the name. unsigned short __builtin_ia32_lzcnt_16(unsigned short); unsigned int __builtin_ia32_lzcnt_u32(unsigned int); unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long); ! The following built-in functions are available when `-mtbm' is used. Both of them generate the immediate form of the bextr machine instruction. unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int); unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long); ! The following built-in functions are available when `-m3dnow' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_femms (void) --- 37521,37539 ---- unsigned long long _pdep_u64 (unsigned long long, unsigned long long) unsigned long long _pext_u64 (unsigned long long, unsigned long long) ! The following built-in functions are available when '-mlzcnt' is used. All of them generate the machine instruction that is part of the name. unsigned short __builtin_ia32_lzcnt_16(unsigned short); unsigned int __builtin_ia32_lzcnt_u32(unsigned int); unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long); ! The following built-in functions are available when '-mtbm' is used. Both of them generate the immediate form of the bextr machine instruction. unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int); unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long); ! The following built-in functions are available when '-m3dnow' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_femms (void) *************** All of them generate the machine instruc *** 37835,37842 **** v2sf __builtin_ia32_pi2fd (v2si) v4hi __builtin_ia32_pmulhrw (v4hi, v4hi) ! The following built-in functions are available when both `-m3dnow' and ! `-march=athlon' are used. All of them generate the machine instruction that is part of the name. v2si __builtin_ia32_pf2iw (v2sf) --- 37557,37564 ---- v2sf __builtin_ia32_pi2fd (v2si) v4hi __builtin_ia32_pmulhrw (v4hi, v4hi) ! The following built-in functions are available when both '-m3dnow' and ! '-march=athlon' are used. All of them generate the machine instruction that is part of the name. v2si __builtin_ia32_pf2iw (v2sf) *************** that is part of the name. *** 37846,37854 **** v2sf __builtin_ia32_pswapdsf (v2sf) v2si __builtin_ia32_pswapdsi (v2si) ! The following built-in functions are available when `-mrtm' is used ! They are used for restricted transactional memory. These are the ! internal low level functions. Normally the functions in *note X86 transactional memory intrinsics:: should be used instead. int __builtin_ia32_xbegin () --- 37568,37576 ---- v2sf __builtin_ia32_pswapdsf (v2sf) v2si __builtin_ia32_pswapdsi (v2si) ! The following built-in functions are available when '-mrtm' is used ! They are used for restricted transactional memory. These are the ! internal low level functions. Normally the functions in *note X86 transactional memory intrinsics:: should be used instead. int __builtin_ia32_xbegin () *************** File: gcc.info, Node: X86 transactional *** 37862,37888 **** 6.56.8 X86 transaction memory intrinsics ---------------------------------------- ! Hardware transactional memory intrinsics for i386. These allow to use memory transactions with RTM (Restricted Transactional Memory). For using HLE (Hardware Lock Elision) see *note x86 specific memory model extensions for transactional memory:: instead. This support is enabled ! with the `-mrtm' option. ! A memory transaction commits all changes to memory in an atomic way, ! as visible to other threads. If the transaction fails it is rolled back and all side effects discarded. Generally there is no guarantee that a memory transaction ever suceeds and suitable fallback code always needs to be supplied. -- RTM Function: unsigned _xbegin () ! Start a RTM (Restricted Transactional Memory) transaction. ! Returns _XBEGIN_STARTED when the transaction started successfully ! (note this is not 0, so the constant has to be explicitely ! tested). When the transaction aborts all side effects are undone ! and an abort code is returned. There is no guarantee any ! transaction ever succeeds, so there always needs to be a valid ! tested fallback path. #include --- 37584,37609 ---- 6.56.8 X86 transaction memory intrinsics ---------------------------------------- ! Hardware transactional memory intrinsics for i386. These allow to use memory transactions with RTM (Restricted Transactional Memory). For using HLE (Hardware Lock Elision) see *note x86 specific memory model extensions for transactional memory:: instead. This support is enabled ! with the '-mrtm' option. ! A memory transaction commits all changes to memory in an atomic way, as ! visible to other threads. If the transaction fails it is rolled back and all side effects discarded. Generally there is no guarantee that a memory transaction ever suceeds and suitable fallback code always needs to be supplied. -- RTM Function: unsigned _xbegin () ! Start a RTM (Restricted Transactional Memory) transaction. Returns ! _XBEGIN_STARTED when the transaction started successfully (note ! this is not 0, so the constant has to be explicitely tested). When ! the transaction aborts all side effects are undone and an abort ! code is returned. There is no guarantee any transaction ever ! succeeds, so there always needs to be a valid tested fallback path. #include *************** and suitable fallback code always needs *** 37893,37922 **** ... non transactional fallback path... } ! Valid abort status bits (when the value is not `_XBEGIN_STARTED') are: ! ! `_XABORT_EXPLICIT' ! Transaction explicitely aborted with `_xabort'. The parameter ! passed to `_xabort' is available with `_XABORT_CODE(status)' ! `_XABORT_RETRY' Transaction retry is possible. ! ! `_XABORT_CONFLICT' Transaction abort due to a memory conflict with another thread ! ! `_XABORT_CAPACITY' Transaction abort due to the transaction using too much memory ! ! `_XABORT_DEBUG' Transaction abort due to a debug trap ! ! `_XABORT_NESTED' Transaction abort in a inner nested transaction -- RTM Function: void _xend () ! Commit the current transaction. When no transaction is active this ! will fault. All memory side effects of the transactions will become visible to other threads in an atomic matter. -- RTM Function: int _xtest () --- 37614,37638 ---- ... non transactional fallback path... } ! Valid abort status bits (when the value is not '_XBEGIN_STARTED') are: ! '_XABORT_EXPLICIT' ! Transaction explicitely aborted with '_xabort'. The parameter ! passed to '_xabort' is available with '_XABORT_CODE(status)' ! '_XABORT_RETRY' Transaction retry is possible. ! '_XABORT_CONFLICT' Transaction abort due to a memory conflict with another thread ! '_XABORT_CAPACITY' Transaction abort due to the transaction using too much memory ! '_XABORT_DEBUG' Transaction abort due to a debug trap ! '_XABORT_NESTED' Transaction abort in a inner nested transaction -- RTM Function: void _xend () ! Commit the current transaction. When no transaction is active this ! will fault. All memory side effects of the transactions will become visible to other threads in an atomic matter. -- RTM Function: int _xtest () *************** and suitable fallback code always needs *** 37924,37932 **** otherwise 0. -- RTM Function: void _xabort (status) ! Abort the current transaction. When no transaction is active this is a no-op. status must be a 8bit constant, that is included in ! the status code returned by `_xbegin'  File: gcc.info, Node: MIPS DSP Built-in Functions, Next: MIPS Paired-Single Support, Prev: X86 transactional memory intrinsics, Up: Target Builtins --- 37640,37648 ---- otherwise 0. -- RTM Function: void _xabort (status) ! Abort the current transaction. When no transaction is active this is a no-op. status must be a 8bit constant, that is included in ! the status code returned by '_xbegin'  File: gcc.info, Node: MIPS DSP Built-in Functions, Next: MIPS Paired-Single Support, Prev: X86 transactional memory intrinsics, Up: Target Builtins *************** media applications. It provides instruc *** 37940,37973 **** 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data. GCC supports MIPS DSP operations using both the generic vector ! extensions (*note Vector Extensions::) and a collection of ! MIPS-specific built-in functions. Both kinds of support are enabled by ! the `-mdsp' command-line option. Revision 2 of the ASE was introduced in the second half of 2006. This revision adds extra instructions to the original ASE, but is otherwise backwards-compatible with it. You can select revision 2 using the ! command-line option `-mdspr2'; this option implies `-mdsp'. The SCOUNT and POS bits of the DSP control register are global. The ! WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and ! POS bits. During optimization, the compiler does not delete these instructions and it does not delete calls to functions containing these instructions. ! At present, GCC only provides support for operations on 32-bit ! vectors. The vector type associated with 8-bit integer data is usually ! called `v4i8', the vector type associated with Q7 is usually called ! `v4q7', the vector type associated with 16-bit integer data is usually ! called `v2i16', and the vector type associated with Q15 is usually ! called `v2q15'. They can be defined in C as follows: typedef signed char v4i8 __attribute__ ((vector_size(4))); typedef signed char v4q7 __attribute__ ((vector_size(4))); typedef short v2i16 __attribute__ ((vector_size(4))); typedef short v2q15 __attribute__ ((vector_size(4))); ! `v4i8', `v4q7', `v2i16' and `v2q15' values are initialized in the same way as aggregates. For example: v4i8 a = {1, 2, 3, 4}; --- 37656,37689 ---- 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data. GCC supports MIPS DSP operations using both the generic vector ! extensions (*note Vector Extensions::) and a collection of MIPS-specific ! built-in functions. Both kinds of support are enabled by the '-mdsp' ! command-line option. Revision 2 of the ASE was introduced in the second half of 2006. This revision adds extra instructions to the original ASE, but is otherwise backwards-compatible with it. You can select revision 2 using the ! command-line option '-mdspr2'; this option implies '-mdsp'. The SCOUNT and POS bits of the DSP control register are global. The ! WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and POS ! bits. During optimization, the compiler does not delete these instructions and it does not delete calls to functions containing these instructions. ! At present, GCC only provides support for operations on 32-bit vectors. ! The vector type associated with 8-bit integer data is usually called ! 'v4i8', the vector type associated with Q7 is usually called 'v4q7', the ! vector type associated with 16-bit integer data is usually called ! 'v2i16', and the vector type associated with Q15 is usually called ! 'v2q15'. They can be defined in C as follows: typedef signed char v4i8 __attribute__ ((vector_size(4))); typedef signed char v4q7 __attribute__ ((vector_size(4))); typedef short v2i16 __attribute__ ((vector_size(4))); typedef short v2q15 __attribute__ ((vector_size(4))); ! 'v4i8', 'v4q7', 'v2i16' and 'v2q15' values are initialized in the same way as aggregates. For example: v4i8 a = {1, 2, 3, 4}; *************** way as aggregates. For example: *** 37982,38011 **** packed. On little-endian targets, the first value is the least significant and the last value is the most significant. The opposite order applies to big-endian targets. For example, the code above sets ! the lowest byte of `a' to `1' on little-endian targets and `4' on big-endian targets. _Note:_ Q7, Q15 and Q31 values must be initialized with their integer ! representation. As shown in this example, the integer representation ! of a Q7 value can be obtained by multiplying the fractional value by ! `0x1.0p7'. The equivalent for Q15 values is to multiply by `0x1.0p15'. ! The equivalent for Q31 values is to multiply by `0x1.0p31'. ! The table below lists the `v4i8' and `v2q15' operations for which ! hardware support exists. `a' and `b' are `v4i8' values, and `c' and ! `d' are `v2q15' values. C code MIPS instruction ! `a + b' `addu.qb' ! `c + d' `addq.ph' ! `a - b' `subu.qb' ! `c - d' `subq.ph' ! The table below lists the `v2i16' operation for which hardware support ! exists for the DSP ASE REV 2. `e' and `f' are `v2i16' values. C code MIPS instruction ! `e * f' `mul.ph' It is easier to describe the DSP built-in functions if we first define the following types: --- 37698,37727 ---- packed. On little-endian targets, the first value is the least significant and the last value is the most significant. The opposite order applies to big-endian targets. For example, the code above sets ! the lowest byte of 'a' to '1' on little-endian targets and '4' on big-endian targets. _Note:_ Q7, Q15 and Q31 values must be initialized with their integer ! representation. As shown in this example, the integer representation of ! a Q7 value can be obtained by multiplying the fractional value by ! '0x1.0p7'. The equivalent for Q15 values is to multiply by '0x1.0p15'. ! The equivalent for Q31 values is to multiply by '0x1.0p31'. ! The table below lists the 'v4i8' and 'v2q15' operations for which ! hardware support exists. 'a' and 'b' are 'v4i8' values, and 'c' and 'd' ! are 'v2q15' values. C code MIPS instruction ! 'a + b' 'addu.qb' ! 'c + d' 'addq.ph' ! 'a - b' 'subu.qb' ! 'c - d' 'subq.ph' ! The table below lists the 'v2i16' operation for which hardware support ! exists for the DSP ASE REV 2. 'e' and 'f' are 'v2i16' values. C code MIPS instruction ! 'e * f' 'mul.ph' It is easier to describe the DSP built-in functions if we first define the following types: *************** the following types: *** 38015,38025 **** typedef unsigned int ui32; typedef long long a64; ! `q31' and `i32' are actually the same as `int', but we use `q31' to ! indicate a Q31 fractional value and `i32' to indicate a 32-bit integer ! value. Similarly, `a64' is the same as `long long', but we use `a64' ! to indicate values that are placed in one of the four DSP accumulators ! (`$ac0', `$ac1', `$ac2' or `$ac3'). Also, some built-in functions prefer or require immediate numbers as parameters, because the corresponding DSP instructions accept both --- 37731,37741 ---- typedef unsigned int ui32; typedef long long a64; ! 'q31' and 'i32' are actually the same as 'int', but we use 'q31' to ! indicate a Q31 fractional value and 'i32' to indicate a 32-bit integer ! value. Similarly, 'a64' is the same as 'long long', but we use 'a64' to ! indicate values that are placed in one of the four DSP accumulators ! ('$ac0', '$ac1', '$ac2' or '$ac3'). Also, some built-in functions prefer or require immediate numbers as parameters, because the corresponding DSP instructions accept both *************** only. The immediate parameters are list *** 38036,38043 **** imm_n512_511: -512 to 511. The following built-in functions map directly to a particular MIPS DSP ! instruction. Please refer to the architecture specification for ! details on what each instruction does. v2q15 __builtin_mips_addq_ph (v2q15, v2q15) v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15) --- 37752,37759 ---- imm_n512_511: -512 to 511. The following built-in functions map directly to a particular MIPS DSP ! instruction. Please refer to the architecture specification for details ! on what each instruction does. v2q15 __builtin_mips_addq_ph (v2q15, v2q15) v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15) *************** File: gcc.info, Node: MIPS Paired-Singl *** 38208,38229 **** ---------------------------------- The MIPS64 architecture includes a number of instructions that operate ! on pairs of single-precision floating-point values. Each pair is ! packed into a 64-bit floating-point register, with one element being ! designated the "upper half" and the other being designated the "lower ! half". GCC supports paired-single operations using both the generic vector ! extensions (*note Vector Extensions::) and a collection of ! MIPS-specific built-in functions. Both kinds of support are enabled by ! the `-mpaired-single' command-line option. The vector type associated with paired-single values is usually called ! `v2sf'. It can be defined in C as follows: typedef float v2sf __attribute__ ((vector_size (8))); ! `v2sf' values are initialized in the same way as aggregates. For example: v2sf a = {1.5, 9.1}; --- 37924,37944 ---- ---------------------------------- The MIPS64 architecture includes a number of instructions that operate ! on pairs of single-precision floating-point values. Each pair is packed ! into a 64-bit floating-point register, with one element being designated ! the "upper half" and the other being designated the "lower half". GCC supports paired-single operations using both the generic vector ! extensions (*note Vector Extensions::) and a collection of MIPS-specific ! built-in functions. Both kinds of support are enabled by the ! '-mpaired-single' command-line option. The vector type associated with paired-single values is usually called ! 'v2sf'. It can be defined in C as follows: typedef float v2sf __attribute__ ((vector_size (8))); ! 'v2sf' values are initialized in the same way as aggregates. For example: v2sf a = {1.5, 9.1}; *************** example: *** 38234,38242 **** _Note:_ The CPU's endianness determines which value is stored in the upper half of a register and which value is stored in the lower half. On little-endian targets, the first value is the lower one and the ! second value is the upper one. The opposite order applies to ! big-endian targets. For example, the code above sets the lower half of ! `a' to `1.5' on little-endian targets and `9.1' on big-endian targets.  File: gcc.info, Node: MIPS Loongson Built-in Functions, Next: Other MIPS Built-in Functions, Prev: MIPS Paired-Single Support, Up: Target Builtins --- 37949,37957 ---- _Note:_ The CPU's endianness determines which value is stored in the upper half of a register and which value is stored in the lower half. On little-endian targets, the first value is the lower one and the ! second value is the upper one. The opposite order applies to big-endian ! targets. For example, the code above sets the lower half of 'a' to ! '1.5' on little-endian targets and '9.1' on big-endian targets.  File: gcc.info, Node: MIPS Loongson Built-in Functions, Next: Other MIPS Built-in Functions, Prev: MIPS Paired-Single Support, Up: Target Builtins *************** File: gcc.info, Node: MIPS Loongson Bui *** 38246,38265 **** GCC provides intrinsics to access the SIMD instructions provided by the ST Microelectronics Loongson-2E and -2F processors. These intrinsics, ! available after inclusion of the `loongson.h' header file, operate on the following 64-bit vector types: ! * `uint8x8_t', a vector of eight unsigned 8-bit integers; ! ! * `uint16x4_t', a vector of four unsigned 16-bit integers; ! ! * `uint32x2_t', a vector of two unsigned 32-bit integers; ! ! * `int8x8_t', a vector of eight signed 8-bit integers; ! ! * `int16x4_t', a vector of four signed 16-bit integers; ! ! * `int32x2_t', a vector of two signed 32-bit integers. The intrinsics provided are listed below; each is named after the machine instruction to which it corresponds, with suffixes added as --- 37961,37975 ---- GCC provides intrinsics to access the SIMD instructions provided by the ST Microelectronics Loongson-2E and -2F processors. These intrinsics, ! available after inclusion of the 'loongson.h' header file, operate on the following 64-bit vector types: ! * 'uint8x8_t', a vector of eight unsigned 8-bit integers; ! * 'uint16x4_t', a vector of four unsigned 16-bit integers; ! * 'uint32x2_t', a vector of two unsigned 32-bit integers; ! * 'int8x8_t', a vector of eight signed 8-bit integers; ! * 'int16x4_t', a vector of four signed 16-bit integers; ! * 'int32x2_t', a vector of two signed 32-bit integers. The intrinsics provided are listed below; each is named after the machine instruction to which it corresponds, with suffixes added as *************** File: gcc.info, Node: Paired-Single Ari *** 38380,38402 **** 6.56.11.1 Paired-Single Arithmetic .................................. ! The table below lists the `v2sf' operations for which hardware support ! exists. `a', `b' and `c' are `v2sf' values and `x' is an integral value. C code MIPS instruction ! `a + b' `add.ps' ! `a - b' `sub.ps' ! `-a' `neg.ps' ! `a * b' `mul.ps' ! `a * b + c' `madd.ps' ! `a * b - c' `msub.ps' ! `-(a * b + c)' `nmadd.ps' ! `-(a * b - c)' `nmsub.ps' ! `x ? a : b' `movn.ps'/`movz.ps' Note that the multiply-accumulate instructions can be disabled using ! the command-line option `-mno-fused-madd'.  File: gcc.info, Node: Paired-Single Built-in Functions, Next: MIPS-3D Built-in Functions, Prev: Paired-Single Arithmetic, Up: MIPS Loongson Built-in Functions --- 38090,38112 ---- 6.56.11.1 Paired-Single Arithmetic .................................. ! The table below lists the 'v2sf' operations for which hardware support ! exists. 'a', 'b' and 'c' are 'v2sf' values and 'x' is an integral value. C code MIPS instruction ! 'a + b' 'add.ps' ! 'a - b' 'sub.ps' ! '-a' 'neg.ps' ! 'a * b' 'mul.ps' ! 'a * b + c' 'madd.ps' ! 'a * b - c' 'msub.ps' ! '-(a * b + c)' 'nmadd.ps' ! '-(a * b - c)' 'nmsub.ps' ! 'x ? a : b' 'movn.ps'/'movz.ps' Note that the multiply-accumulate instructions can be disabled using ! the command-line option '-mno-fused-madd'.  File: gcc.info, Node: Paired-Single Built-in Functions, Next: MIPS-3D Built-in Functions, Prev: Paired-Single Arithmetic, Up: MIPS Loongson Built-in Functions *************** File: gcc.info, Node: Paired-Single Bui *** 38405,38470 **** .......................................... The following paired-single functions map directly to a particular MIPS ! instruction. Please refer to the architecture specification for ! details on what each instruction does. ! `v2sf __builtin_mips_pll_ps (v2sf, v2sf)' ! Pair lower lower (`pll.ps'). ! `v2sf __builtin_mips_pul_ps (v2sf, v2sf)' ! Pair upper lower (`pul.ps'). ! `v2sf __builtin_mips_plu_ps (v2sf, v2sf)' ! Pair lower upper (`plu.ps'). ! `v2sf __builtin_mips_puu_ps (v2sf, v2sf)' ! Pair upper upper (`puu.ps'). ! `v2sf __builtin_mips_cvt_ps_s (float, float)' ! Convert pair to paired single (`cvt.ps.s'). ! `float __builtin_mips_cvt_s_pl (v2sf)' ! Convert pair lower to single (`cvt.s.pl'). ! `float __builtin_mips_cvt_s_pu (v2sf)' ! Convert pair upper to single (`cvt.s.pu'). ! `v2sf __builtin_mips_abs_ps (v2sf)' ! Absolute value (`abs.ps'). ! `v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)' ! Align variable (`alnv.ps'). _Note:_ The value of the third parameter must be 0 or 4 modulo 8, ! otherwise the result is unpredictable. Please read the ! instruction description for details. The following multi-instruction functions are also available. In each ! case, COND can be any of the 16 floating-point conditions: `f', `un', ! `eq', `ueq', `olt', `ult', `ole', `ule', `sf', `ngle', `seq', `ngl', ! `lt', `nge', `le' or `ngt'. ! `v2sf __builtin_mips_movt_c_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! `v2sf __builtin_mips_movf_c_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! Conditional move based on floating-point comparison (`c.COND.ps', ! `movt.ps'/`movf.ps'). ! The `movt' functions return the value X computed by: c.COND.ps CC,A,B mov.ps X,C movt.ps X,D,CC ! The `movf' functions are similar but use `movf.ps' instead of ! `movt.ps'. ! `int __builtin_mips_upper_c_COND_ps (v2sf A, v2sf B)' ! `int __builtin_mips_lower_c_COND_ps (v2sf A, v2sf B)' ! Comparison of two paired-single values (`c.COND.ps', ! `bc1t'/`bc1f'). ! These functions compare A and B using `c.COND.ps' and return ! either the upper or lower half of the result. For example: v2sf a, b; if (__builtin_mips_upper_c_eq_ps (a, b)) --- 38115,38180 ---- .......................................... The following paired-single functions map directly to a particular MIPS ! instruction. Please refer to the architecture specification for details ! on what each instruction does. ! 'v2sf __builtin_mips_pll_ps (v2sf, v2sf)' ! Pair lower lower ('pll.ps'). ! 'v2sf __builtin_mips_pul_ps (v2sf, v2sf)' ! Pair upper lower ('pul.ps'). ! 'v2sf __builtin_mips_plu_ps (v2sf, v2sf)' ! Pair lower upper ('plu.ps'). ! 'v2sf __builtin_mips_puu_ps (v2sf, v2sf)' ! Pair upper upper ('puu.ps'). ! 'v2sf __builtin_mips_cvt_ps_s (float, float)' ! Convert pair to paired single ('cvt.ps.s'). ! 'float __builtin_mips_cvt_s_pl (v2sf)' ! Convert pair lower to single ('cvt.s.pl'). ! 'float __builtin_mips_cvt_s_pu (v2sf)' ! Convert pair upper to single ('cvt.s.pu'). ! 'v2sf __builtin_mips_abs_ps (v2sf)' ! Absolute value ('abs.ps'). ! 'v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)' ! Align variable ('alnv.ps'). _Note:_ The value of the third parameter must be 0 or 4 modulo 8, ! otherwise the result is unpredictable. Please read the instruction ! description for details. The following multi-instruction functions are also available. In each ! case, COND can be any of the 16 floating-point conditions: 'f', 'un', ! 'eq', 'ueq', 'olt', 'ult', 'ole', 'ule', 'sf', 'ngle', 'seq', 'ngl', ! 'lt', 'nge', 'le' or 'ngt'. ! 'v2sf __builtin_mips_movt_c_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! 'v2sf __builtin_mips_movf_c_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! Conditional move based on floating-point comparison ('c.COND.ps', ! 'movt.ps'/'movf.ps'). ! The 'movt' functions return the value X computed by: c.COND.ps CC,A,B mov.ps X,C movt.ps X,D,CC ! The 'movf' functions are similar but use 'movf.ps' instead of ! 'movt.ps'. ! 'int __builtin_mips_upper_c_COND_ps (v2sf A, v2sf B)' ! 'int __builtin_mips_lower_c_COND_ps (v2sf A, v2sf B)' ! Comparison of two paired-single values ('c.COND.ps', ! 'bc1t'/'bc1f'). ! These functions compare A and B using 'c.COND.ps' and return either ! the upper or lower half of the result. For example: v2sf a, b; if (__builtin_mips_upper_c_eq_ps (a, b)) *************** File: gcc.info, Node: MIPS-3D Built-in *** 38486,38543 **** The MIPS-3D Application-Specific Extension (ASE) includes additional paired-single instructions that are designed to improve the performance of 3D graphics operations. Support for these instructions is controlled ! by the `-mips3d' command-line option. The functions listed below map directly to a particular MIPS-3D instruction. Please refer to the architecture specification for more details on what each instruction does. ! `v2sf __builtin_mips_addr_ps (v2sf, v2sf)' ! Reduction add (`addr.ps'). ! `v2sf __builtin_mips_mulr_ps (v2sf, v2sf)' ! Reduction multiply (`mulr.ps'). ! `v2sf __builtin_mips_cvt_pw_ps (v2sf)' ! Convert paired single to paired word (`cvt.pw.ps'). ! `v2sf __builtin_mips_cvt_ps_pw (v2sf)' ! Convert paired word to paired single (`cvt.ps.pw'). ! `float __builtin_mips_recip1_s (float)' ! `double __builtin_mips_recip1_d (double)' ! `v2sf __builtin_mips_recip1_ps (v2sf)' ! Reduced-precision reciprocal (sequence step 1) (`recip1.FMT'). ! `float __builtin_mips_recip2_s (float, float)' ! `double __builtin_mips_recip2_d (double, double)' ! `v2sf __builtin_mips_recip2_ps (v2sf, v2sf)' ! Reduced-precision reciprocal (sequence step 2) (`recip2.FMT'). ! `float __builtin_mips_rsqrt1_s (float)' ! `double __builtin_mips_rsqrt1_d (double)' ! `v2sf __builtin_mips_rsqrt1_ps (v2sf)' Reduced-precision reciprocal square root (sequence step 1) ! (`rsqrt1.FMT'). ! `float __builtin_mips_rsqrt2_s (float, float)' ! `double __builtin_mips_rsqrt2_d (double, double)' ! `v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)' Reduced-precision reciprocal square root (sequence step 2) ! (`rsqrt2.FMT'). The following multi-instruction functions are also available. In each ! case, COND can be any of the 16 floating-point conditions: `f', `un', ! `eq', `ueq', `olt', `ult', `ole', `ule', `sf', `ngle', `seq', `ngl', ! `lt', `nge', `le' or `ngt'. ! `int __builtin_mips_cabs_COND_s (float A, float B)' ! `int __builtin_mips_cabs_COND_d (double A, double B)' ! Absolute comparison of two scalar values (`cabs.COND.FMT', ! `bc1t'/`bc1f'). ! These functions compare A and B using `cabs.COND.s' or ! `cabs.COND.d' and return the result as a boolean value. For example: float a, b; --- 38196,38253 ---- The MIPS-3D Application-Specific Extension (ASE) includes additional paired-single instructions that are designed to improve the performance of 3D graphics operations. Support for these instructions is controlled ! by the '-mips3d' command-line option. The functions listed below map directly to a particular MIPS-3D instruction. Please refer to the architecture specification for more details on what each instruction does. ! 'v2sf __builtin_mips_addr_ps (v2sf, v2sf)' ! Reduction add ('addr.ps'). ! 'v2sf __builtin_mips_mulr_ps (v2sf, v2sf)' ! Reduction multiply ('mulr.ps'). ! 'v2sf __builtin_mips_cvt_pw_ps (v2sf)' ! Convert paired single to paired word ('cvt.pw.ps'). ! 'v2sf __builtin_mips_cvt_ps_pw (v2sf)' ! Convert paired word to paired single ('cvt.ps.pw'). ! 'float __builtin_mips_recip1_s (float)' ! 'double __builtin_mips_recip1_d (double)' ! 'v2sf __builtin_mips_recip1_ps (v2sf)' ! Reduced-precision reciprocal (sequence step 1) ('recip1.FMT'). ! 'float __builtin_mips_recip2_s (float, float)' ! 'double __builtin_mips_recip2_d (double, double)' ! 'v2sf __builtin_mips_recip2_ps (v2sf, v2sf)' ! Reduced-precision reciprocal (sequence step 2) ('recip2.FMT'). ! 'float __builtin_mips_rsqrt1_s (float)' ! 'double __builtin_mips_rsqrt1_d (double)' ! 'v2sf __builtin_mips_rsqrt1_ps (v2sf)' Reduced-precision reciprocal square root (sequence step 1) ! ('rsqrt1.FMT'). ! 'float __builtin_mips_rsqrt2_s (float, float)' ! 'double __builtin_mips_rsqrt2_d (double, double)' ! 'v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)' Reduced-precision reciprocal square root (sequence step 2) ! ('rsqrt2.FMT'). The following multi-instruction functions are also available. In each ! case, COND can be any of the 16 floating-point conditions: 'f', 'un', ! 'eq', 'ueq', 'olt', 'ult', 'ole', 'ule', 'sf', 'ngle', 'seq', 'ngl', ! 'lt', 'nge', 'le' or 'ngt'. ! 'int __builtin_mips_cabs_COND_s (float A, float B)' ! 'int __builtin_mips_cabs_COND_d (double A, double B)' ! Absolute comparison of two scalar values ('cabs.COND.FMT', ! 'bc1t'/'bc1f'). ! These functions compare A and B using 'cabs.COND.s' or ! 'cabs.COND.d' and return the result as a boolean value. For example: float a, b; *************** case, COND can be any of the 16 floating *** 38546,38557 **** else false (); ! `int __builtin_mips_upper_cabs_COND_ps (v2sf A, v2sf B)' ! `int __builtin_mips_lower_cabs_COND_ps (v2sf A, v2sf B)' ! Absolute comparison of two paired-single values (`cabs.COND.ps', ! `bc1t'/`bc1f'). ! These functions compare A and B using `cabs.COND.ps' and return either the upper or lower half of the result. For example: v2sf a, b; --- 38256,38267 ---- else false (); ! 'int __builtin_mips_upper_cabs_COND_ps (v2sf A, v2sf B)' ! 'int __builtin_mips_lower_cabs_COND_ps (v2sf A, v2sf B)' ! Absolute comparison of two paired-single values ('cabs.COND.ps', ! 'bc1t'/'bc1f'). ! These functions compare A and B using 'cabs.COND.ps' and return either the upper or lower half of the result. For example: v2sf a, b; *************** case, COND can be any of the 16 floating *** 38565,38595 **** else lower_halves_are_unequal (); ! `v2sf __builtin_mips_movt_cabs_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! `v2sf __builtin_mips_movf_cabs_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! Conditional move based on absolute comparison (`cabs.COND.ps', ! `movt.ps'/`movf.ps'). ! The `movt' functions return the value X computed by: cabs.COND.ps CC,A,B mov.ps X,C movt.ps X,D,CC ! The `movf' functions are similar but use `movf.ps' instead of ! `movt.ps'. ! `int __builtin_mips_any_c_COND_ps (v2sf A, v2sf B)' ! `int __builtin_mips_all_c_COND_ps (v2sf A, v2sf B)' ! `int __builtin_mips_any_cabs_COND_ps (v2sf A, v2sf B)' ! `int __builtin_mips_all_cabs_COND_ps (v2sf A, v2sf B)' ! Comparison of two paired-single values (`c.COND.ps'/`cabs.COND.ps', ! `bc1any2t'/`bc1any2f'). ! These functions compare A and B using `c.COND.ps' or ! `cabs.COND.ps'. The `any' forms return true if either result is ! true and the `all' forms return true if both results are true. ! For example: v2sf a, b; if (__builtin_mips_any_c_eq_ps (a, b)) --- 38275,38305 ---- else lower_halves_are_unequal (); ! 'v2sf __builtin_mips_movt_cabs_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! 'v2sf __builtin_mips_movf_cabs_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! Conditional move based on absolute comparison ('cabs.COND.ps', ! 'movt.ps'/'movf.ps'). ! The 'movt' functions return the value X computed by: cabs.COND.ps CC,A,B mov.ps X,C movt.ps X,D,CC ! The 'movf' functions are similar but use 'movf.ps' instead of ! 'movt.ps'. ! 'int __builtin_mips_any_c_COND_ps (v2sf A, v2sf B)' ! 'int __builtin_mips_all_c_COND_ps (v2sf A, v2sf B)' ! 'int __builtin_mips_any_cabs_COND_ps (v2sf A, v2sf B)' ! 'int __builtin_mips_all_cabs_COND_ps (v2sf A, v2sf B)' ! Comparison of two paired-single values ('c.COND.ps'/'cabs.COND.ps', ! 'bc1any2t'/'bc1any2f'). ! These functions compare A and B using 'c.COND.ps' or ! 'cabs.COND.ps'. The 'any' forms return true if either result is ! true and the 'all' forms return true if both results are true. For ! example: v2sf a, b; if (__builtin_mips_any_c_eq_ps (a, b)) *************** case, COND can be any of the 16 floating *** 38602,38618 **** else one_is_false (); ! `int __builtin_mips_any_c_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' ! `int __builtin_mips_all_c_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' ! `int __builtin_mips_any_cabs_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' ! `int __builtin_mips_all_cabs_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' Comparison of four paired-single values ! (`c.COND.ps'/`cabs.COND.ps', `bc1any4t'/`bc1any4f'). ! These functions use `c.COND.ps' or `cabs.COND.ps' to compare A ! with B and to compare C with D. The `any' forms return true if ! any of the four results are true and the `all' forms return true ! if all four results are true. For example: v2sf a, b, c, d; if (__builtin_mips_any_c_eq_4s (a, b, c, d)) --- 38312,38328 ---- else one_is_false (); ! 'int __builtin_mips_any_c_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' ! 'int __builtin_mips_all_c_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' ! 'int __builtin_mips_any_cabs_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' ! 'int __builtin_mips_all_cabs_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' Comparison of four paired-single values ! ('c.COND.ps'/'cabs.COND.ps', 'bc1any4t'/'bc1any4f'). ! These functions use 'c.COND.ps' or 'cabs.COND.ps' to compare A with ! B and to compare C with D. The 'any' forms return true if any of ! the four results are true and the 'all' forms return true if all ! four results are true. For example: v2sf a, b, c, d; if (__builtin_mips_any_c_eq_4s (a, b, c, d)) *************** File: gcc.info, Node: Other MIPS Built- *** 38633,38641 **** GCC provides other MIPS-specific built-in functions: ! `void __builtin_mips_cache (int OP, const volatile void *ADDR)' ! Insert a `cache' instruction with operands OP and ADDR. GCC ! defines the preprocessor macro `___GCC_HAVE_BUILTIN_MIPS_CACHE' when this function is available.  --- 38343,38351 ---- GCC provides other MIPS-specific built-in functions: ! 'void __builtin_mips_cache (int OP, const volatile void *ADDR)' ! Insert a 'cache' instruction with operands OP and ADDR. GCC ! defines the preprocessor macro '___GCC_HAVE_BUILTIN_MIPS_CACHE' when this function is available.  *************** File: gcc.info, Node: picoChip Built-in *** 38647,38680 **** GCC provides an interface to selected machine instructions from the picoChip instruction set. ! `int __builtin_sbc (int VALUE)' Sign bit count. Return the number of consecutive bits in VALUE ! that have the same value as the sign bit. The result is the ! number of leading sign bits minus one, giving the number of ! redundant sign bits in VALUE. ! `int __builtin_byteswap (int VALUE)' ! Byte swap. Return the result of swapping the upper and lower ! bytes of VALUE. ! `int __builtin_brev (int VALUE)' Bit reversal. Return the result of reversing the bits in VALUE. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1, and so on. ! `int __builtin_adds (int X, int Y)' Saturating addition. Return the result of adding X and Y, storing the value 32767 if the result overflows. ! `int __builtin_subs (int X, int Y)' ! Saturating subtraction. Return the result of subtracting Y from ! X, storing the value -32768 if the result overflows. ! `void __builtin_halt (void)' Halt. The processor stops execution. This built-in is useful for implementing assertions. -  File: gcc.info, Node: PowerPC Built-in Functions, Next: PowerPC AltiVec/VSX Built-in Functions, Prev: picoChip Built-in Functions, Up: Target Builtins --- 38357,38389 ---- GCC provides an interface to selected machine instructions from the picoChip instruction set. ! 'int __builtin_sbc (int VALUE)' Sign bit count. Return the number of consecutive bits in VALUE ! that have the same value as the sign bit. The result is the number ! of leading sign bits minus one, giving the number of redundant sign ! bits in VALUE. ! 'int __builtin_byteswap (int VALUE)' ! Byte swap. Return the result of swapping the upper and lower bytes ! of VALUE. ! 'int __builtin_brev (int VALUE)' Bit reversal. Return the result of reversing the bits in VALUE. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1, and so on. ! 'int __builtin_adds (int X, int Y)' Saturating addition. Return the result of adding X and Y, storing the value 32767 if the result overflows. ! 'int __builtin_subs (int X, int Y)' ! Saturating subtraction. Return the result of subtracting Y from X, ! storing the value -32768 if the result overflows. ! 'void __builtin_halt (void)' Halt. The processor stops execution. This built-in is useful for implementing assertions.  File: gcc.info, Node: PowerPC Built-in Functions, Next: PowerPC AltiVec/VSX Built-in Functions, Prev: picoChip Built-in Functions, Up: Target Builtins *************** processors: *** 38691,38709 **** uint64_t __builtin_ppc_get_timebase (); unsigned long __builtin_ppc_mftb (); ! The `vec_rsqrt', `__builtin_rsqrt', and `__builtin_rsqrtf' functions generate multiple instructions to implement the reciprocal sqrt functionality using reciprocal sqrt estimate instructions. ! The `__builtin_recipdiv', and `__builtin_recipdivf' functions generate multiple instructions to implement division using the reciprocal estimate instructions. ! The `__builtin_ppc_get_timebase' and `__builtin_ppc_mftb' functions generate instructions to read the Time Base Register. The ! `__builtin_ppc_get_timebase' function may generate multiple ! instructions and always returns the 64 bits of the Time Base Register. ! The `__builtin_ppc_mftb' function always generates one instruction and returns the Time Base Register value as an unsigned long, throwing away the most significant word on 32-bit environments. --- 38400,38418 ---- uint64_t __builtin_ppc_get_timebase (); unsigned long __builtin_ppc_mftb (); ! The 'vec_rsqrt', '__builtin_rsqrt', and '__builtin_rsqrtf' functions generate multiple instructions to implement the reciprocal sqrt functionality using reciprocal sqrt estimate instructions. ! The '__builtin_recipdiv', and '__builtin_recipdivf' functions generate multiple instructions to implement division using the reciprocal estimate instructions. ! The '__builtin_ppc_get_timebase' and '__builtin_ppc_mftb' functions generate instructions to read the Time Base Register. The ! '__builtin_ppc_get_timebase' function may generate multiple instructions ! and always returns the 64 bits of the Time Base Register. The ! '__builtin_ppc_mftb' function always generates one instruction and returns the Time Base Register value as an unsigned long, throwing away the most significant word on 32-bit environments. *************** File: gcc.info, Node: PowerPC AltiVec/V *** 38716,38722 **** GCC provides an interface for the PowerPC family of processors to access the AltiVec operations described in Motorola's AltiVec Programming Interface Manual. The interface is made available by including ! `' and using `-maltivec' and `-mabi=altivec'. The interface supports the following vector types. vector unsigned char --- 38425,38431 ---- GCC provides an interface for the PowerPC family of processors to access the AltiVec operations described in Motorola's AltiVec Programming Interface Manual. The interface is made available by including ! '' and using '-maltivec' and '-mabi=altivec'. The interface supports the following vector types. vector unsigned char *************** supports the following vector types. *** 38733,38747 **** vector bool int vector float ! If `-mvsx' is used the following additional vector types are implemented. vector unsigned long vector signed long vector double ! The long types are only implemented for 64-bit code generation, and ! the long type is only used in the floating point/integer conversion instructions. GCC's implementation of the high-level language interface available --- 38442,38456 ---- vector bool int vector float ! If '-mvsx' is used the following additional vector types are implemented. vector unsigned long vector signed long vector double ! The long types are only implemented for 64-bit code generation, and the ! long type is only used in the floating point/integer conversion instructions. GCC's implementation of the high-level language interface available *************** ways. *** 38754,38771 **** * A vector initializer requires no cast if the vector constant is of the same type as the variable it is initializing. ! * If `signed' or `unsigned' is omitted, the signedness of the vector type is the default signedness of the base type. The default varies depending on the operating system, so a portable program should always specify the signedness. ! * Compiling with `-maltivec' adds keywords `__vector', `vector', ! `__pixel', `pixel', `__bool' and `bool'. When compiling ISO C, ! the context-sensitive substitution of the keywords `vector', ! `pixel' and `bool' is disabled. To use them, you must include ! `' instead. ! * GCC allows using a `typedef' name as the type specifier for a vector type. * For C, overloaded functions are implemented with macros so the --- 38463,38480 ---- * A vector initializer requires no cast if the vector constant is of the same type as the variable it is initializing. ! * If 'signed' or 'unsigned' is omitted, the signedness of the vector type is the default signedness of the base type. The default varies depending on the operating system, so a portable program should always specify the signedness. ! * Compiling with '-maltivec' adds keywords '__vector', 'vector', ! '__pixel', 'pixel', '__bool' and 'bool'. When compiling ISO C, the ! context-sensitive substitution of the keywords 'vector', 'pixel' ! and 'bool' is disabled. To use them, you must include ! '' instead. ! * GCC allows using a 'typedef' name as the type specifier for a vector type. * For C, overloaded functions are implemented with macros so the *************** ways. *** 38773,38784 **** vec_add ((vector signed int){1, 2, 3, 4}, foo); ! Since `vec_add' is a macro, the vector constant in the example is treated as four separate arguments. Wrap the entire argument in parentheses for this to work. ! _Note:_ Only the `' interface is supported. Internally, ! GCC uses built-in functions to achieve the functionality in the aforementioned header file, but they are not supported and are subject to change without notice. --- 38482,38493 ---- vec_add ((vector signed int){1, 2, 3, 4}, foo); ! Since 'vec_add' is a macro, the vector constant in the example is treated as four separate arguments. Wrap the entire argument in parentheses for this to work. ! _Note:_ Only the '' interface is supported. Internally, GCC ! uses built-in functions to achieve the functionality in the aforementioned header file, but they are not supported and are subject to change without notice. *************** a direct mapping between generic and spe *** 38788,38794 **** generic names are shown here, although the specific operations can also be used. ! Arguments that are documented as `const int' require literal integral values within the range required for that operation. vector signed char vec_abs (vector signed char); --- 38497,38503 ---- generic names are shown here, although the specific operations can also be used. ! Arguments that are documented as 'const int' require literal integral values within the range required for that operation. vector signed char vec_abs (vector signed char); *************** additional functions are available: *** 40743,40756 **** void vec_vsx_st (vector bool char, int, unsigned char *); void vec_vsx_st (vector bool char, int, signed char *); ! Note that the `vec_ld' and `vec_st' built-in functions always generate ! the AltiVec `LVX' and `STVX' instructions even if the VSX instruction ! set is available. The `vec_vsx_ld' and `vec_vsx_st' built-in functions ! always generate the VSX `LXVD2X', `LXVW4X', `STXVD2X', and `STXVW4X' instructions.  ! File: gcc.info, Node: RX Built-in Functions, Next: SH Built-in Functions, Prev: PowerPC AltiVec/VSX Built-in Functions, Up: Target Builtins 6.56.16 RX Built-in Functions ----------------------------- --- 40452,40465 ---- void vec_vsx_st (vector bool char, int, unsigned char *); void vec_vsx_st (vector bool char, int, signed char *); ! Note that the 'vec_ld' and 'vec_st' built-in functions always generate ! the AltiVec 'LVX' and 'STVX' instructions even if the VSX instruction ! set is available. The 'vec_vsx_ld' and 'vec_vsx_st' built-in functions ! always generate the VSX 'LXVD2X', 'LXVW4X', 'STXVD2X', and 'STXVW4X' instructions.  ! File: gcc.info, Node: RX Built-in Functions, Next: S/390 System z Built-in Functions, Prev: PowerPC AltiVec/VSX Built-in Functions, Up: Target Builtins 6.56.16 RX Built-in Functions ----------------------------- *************** the C programming language via the use o *** 40760,40875 **** following functions are supported: -- Built-in Function: void __builtin_rx_brk (void) ! Generates the `brk' machine instruction. -- Built-in Function: void __builtin_rx_clrpsw (int) ! Generates the `clrpsw' machine instruction to clear the specified bit in the processor status word. -- Built-in Function: void __builtin_rx_int (int) ! Generates the `int' machine instruction to generate an interrupt with the specified value. -- Built-in Function: void __builtin_rx_machi (int, int) ! Generates the `machi' machine instruction to add the result of multiplying the top 16 bits of the two arguments into the accumulator. -- Built-in Function: void __builtin_rx_maclo (int, int) ! Generates the `maclo' machine instruction to add the result of multiplying the bottom 16 bits of the two arguments into the accumulator. -- Built-in Function: void __builtin_rx_mulhi (int, int) ! Generates the `mulhi' machine instruction to place the result of multiplying the top 16 bits of the two arguments into the accumulator. -- Built-in Function: void __builtin_rx_mullo (int, int) ! Generates the `mullo' machine instruction to place the result of multiplying the bottom 16 bits of the two arguments into the accumulator. -- Built-in Function: int __builtin_rx_mvfachi (void) ! Generates the `mvfachi' machine instruction to read the top 32 ! bits of the accumulator. -- Built-in Function: int __builtin_rx_mvfacmi (void) ! Generates the `mvfacmi' machine instruction to read the middle 32 bits of the accumulator. -- Built-in Function: int __builtin_rx_mvfc (int) ! Generates the `mvfc' machine instruction which reads the control register specified in its argument and returns its value. -- Built-in Function: void __builtin_rx_mvtachi (int) ! Generates the `mvtachi' machine instruction to set the top 32 bits of the accumulator. -- Built-in Function: void __builtin_rx_mvtaclo (int) ! Generates the `mvtaclo' machine instruction to set the bottom 32 bits of the accumulator. -- Built-in Function: void __builtin_rx_mvtc (int reg, int val) ! Generates the `mvtc' machine instruction which sets control ! register number `reg' to `val'. -- Built-in Function: void __builtin_rx_mvtipl (int) ! Generates the `mvtipl' machine instruction set the interrupt priority level. -- Built-in Function: void __builtin_rx_racw (int) ! Generates the `racw' machine instruction to round the accumulator according to the specified mode. -- Built-in Function: int __builtin_rx_revw (int) ! Generates the `revw' machine instruction which swaps the bytes in the argument so that bits 0-7 now occupy bits 8-15 and vice versa, and also bits 16-23 occupy bits 24-31 and vice versa. -- Built-in Function: void __builtin_rx_rmpa (void) ! Generates the `rmpa' machine instruction which initiates a ! repeated multiply and accumulate sequence. -- Built-in Function: void __builtin_rx_round (float) ! Generates the `round' machine instruction which returns the floating-point argument rounded according to the current rounding mode set in the floating-point status word register. -- Built-in Function: int __builtin_rx_sat (int) ! Generates the `sat' machine instruction which returns the ! saturated value of the argument. -- Built-in Function: void __builtin_rx_setpsw (int) ! Generates the `setpsw' machine instruction to set the specified ! bit in the processor status word. -- Built-in Function: void __builtin_rx_wait (void) ! Generates the `wait' machine instruction.  ! File: gcc.info, Node: SH Built-in Functions, Next: SPARC VIS Built-in Functions, Prev: RX Built-in Functions, Up: Target Builtins ! 6.56.17 SH Built-in Functions ----------------------------- The following built-in functions are supported on the SH1, SH2, SH3 and SH4 families of processors: -- Built-in Function: void __builtin_set_thread_pointer (void *PTR) ! Sets the `GBR' register to the specified value PTR. This is usually used by system code that manages threads and execution contexts. The compiler normally does not generate code that ! modifies the contents of `GBR' and thus the value is preserved ! across function calls. Changing the `GBR' value in user code must ! be done with caution, since the compiler might use `GBR' in order to access thread local variables. - -- Built-in Function: void * __builtin_thread_pointer (void) ! Returns the value that is currently set in the `GBR' register. Memory loads and stores that use the thread pointer as a base ! address are turned into `GBR' based displacement loads and stores, if possible. For example: struct my_tcb { --- 40469,40688 ---- following functions are supported: -- Built-in Function: void __builtin_rx_brk (void) ! Generates the 'brk' machine instruction. -- Built-in Function: void __builtin_rx_clrpsw (int) ! Generates the 'clrpsw' machine instruction to clear the specified bit in the processor status word. -- Built-in Function: void __builtin_rx_int (int) ! Generates the 'int' machine instruction to generate an interrupt with the specified value. -- Built-in Function: void __builtin_rx_machi (int, int) ! Generates the 'machi' machine instruction to add the result of multiplying the top 16 bits of the two arguments into the accumulator. -- Built-in Function: void __builtin_rx_maclo (int, int) ! Generates the 'maclo' machine instruction to add the result of multiplying the bottom 16 bits of the two arguments into the accumulator. -- Built-in Function: void __builtin_rx_mulhi (int, int) ! Generates the 'mulhi' machine instruction to place the result of multiplying the top 16 bits of the two arguments into the accumulator. -- Built-in Function: void __builtin_rx_mullo (int, int) ! Generates the 'mullo' machine instruction to place the result of multiplying the bottom 16 bits of the two arguments into the accumulator. -- Built-in Function: int __builtin_rx_mvfachi (void) ! Generates the 'mvfachi' machine instruction to read the top 32 bits ! of the accumulator. -- Built-in Function: int __builtin_rx_mvfacmi (void) ! Generates the 'mvfacmi' machine instruction to read the middle 32 bits of the accumulator. -- Built-in Function: int __builtin_rx_mvfc (int) ! Generates the 'mvfc' machine instruction which reads the control register specified in its argument and returns its value. -- Built-in Function: void __builtin_rx_mvtachi (int) ! Generates the 'mvtachi' machine instruction to set the top 32 bits of the accumulator. -- Built-in Function: void __builtin_rx_mvtaclo (int) ! Generates the 'mvtaclo' machine instruction to set the bottom 32 bits of the accumulator. -- Built-in Function: void __builtin_rx_mvtc (int reg, int val) ! Generates the 'mvtc' machine instruction which sets control ! register number 'reg' to 'val'. -- Built-in Function: void __builtin_rx_mvtipl (int) ! Generates the 'mvtipl' machine instruction set the interrupt priority level. -- Built-in Function: void __builtin_rx_racw (int) ! Generates the 'racw' machine instruction to round the accumulator according to the specified mode. -- Built-in Function: int __builtin_rx_revw (int) ! Generates the 'revw' machine instruction which swaps the bytes in the argument so that bits 0-7 now occupy bits 8-15 and vice versa, and also bits 16-23 occupy bits 24-31 and vice versa. -- Built-in Function: void __builtin_rx_rmpa (void) ! Generates the 'rmpa' machine instruction which initiates a repeated ! multiply and accumulate sequence. -- Built-in Function: void __builtin_rx_round (float) ! Generates the 'round' machine instruction which returns the floating-point argument rounded according to the current rounding mode set in the floating-point status word register. -- Built-in Function: int __builtin_rx_sat (int) ! Generates the 'sat' machine instruction which returns the saturated ! value of the argument. -- Built-in Function: void __builtin_rx_setpsw (int) ! Generates the 'setpsw' machine instruction to set the specified bit ! in the processor status word. -- Built-in Function: void __builtin_rx_wait (void) ! Generates the 'wait' machine instruction.  ! File: gcc.info, Node: S/390 System z Built-in Functions, Next: SH Built-in Functions, Prev: RX Built-in Functions, Up: Target Builtins ! 6.56.17 S/390 System z Built-in Functions ! ----------------------------------------- ! ! -- Built-in Function: int __builtin_tbegin (void*) ! Generates the 'tbegin' machine instruction starting a ! non-constraint hardware transaction. If the parameter is non-NULL ! the memory area is used to store the transaction diagnostic buffer ! and will be passed as first operand to 'tbegin'. This buffer can ! be defined using the 'struct __htm_tdb' C struct defined in ! 'htmintrin.h' and must reside on a double-word boundary. The ! second tbegin operand is set to '0xff0c'. This enables ! save/restore of all GPRs and disables aborts for FPR and AR ! manipulations inside the transaction body. The condition code set ! by the tbegin instruction is returned as integer value. The tbegin ! instruction by definition overwrites the content of all FPRs. The ! compiler will generate code which saves and restores the FPRs. For ! soft-float code it is recommended to used the '*_nofloat' variant. ! In order to prevent a TDB from being written it is required to pass ! an constant zero value as parameter. Passing the zero value ! through a variable is not sufficient. Although modifications of ! access registers inside the transaction will not trigger an ! transaction abort it is not supported to actually modify them. ! Access registers do not get saved when entering a transaction. ! They will have undefined state when reaching the abort code. ! ! Macros for the possible return codes of tbegin are defined in the ! 'htmintrin.h' header file: ! ! '_HTM_TBEGIN_STARTED' ! 'tbegin' has been executed as part of normal processing. The ! transaction body is supposed to be executed. ! '_HTM_TBEGIN_INDETERMINATE' ! The transaction was aborted due to an indeterminate condition which ! might be persistent. ! '_HTM_TBEGIN_TRANSIENT' ! The transaction aborted due to a transient failure. The ! transaction should be re-executed in that case. ! '_HTM_TBEGIN_PERSISTENT' ! The transaction aborted due to a persistent failure. Re-execution ! under same circumstances will not be productive. ! ! -- Macro: _HTM_FIRST_USER_ABORT_CODE ! The '_HTM_FIRST_USER_ABORT_CODE' defined in 'htmintrin.h' specifies ! the first abort code which can be used for '__builtin_tabort'. ! Values below this threshold are reserved for machine use. ! ! -- Data type: struct __htm_tdb ! The 'struct __htm_tdb' defined in 'htmintrin.h' describes the ! structure of the transaction diagnostic block as specified in the ! Principles of Operation manual chapter 5-91. ! ! -- Built-in Function: int __builtin_tbegin_nofloat (void*) ! Same as '__builtin_tbegin' but without FPR saves and restores. ! Using this variant in code making use of FPRs will leave the FPRs ! in undefined state when entering the transaction abort handler ! code. ! ! -- Built-in Function: int __builtin_tbegin_retry (void*, int) ! In addition to '__builtin_tbegin' a loop for transient failures is ! generated. If tbegin returns a condition code of 2 the transaction ! will be retried as often as specified in the second argument. The ! perform processor assist instruction is used to tell the CPU about ! the number of fails so far. ! ! -- Built-in Function: int __builtin_tbegin_retry_nofloat (void*, int) ! Same as '__builtin_tbegin_retry' but without FPR saves and ! restores. Using this variant in code making use of FPRs will leave ! the FPRs in undefined state when entering the transaction abort ! handler code. ! ! -- Built-in Function: void __builtin_tbeginc (void) ! Generates the 'tbeginc' machine instruction starting a constraint ! hardware transaction. The second operand is set to '0xff08'. ! ! -- Built-in Function: int __builtin_tend (void) ! Generates the 'tend' machine instruction finishing a transaction ! and making the changes visible to other threads. The condition ! code generated by tend is returned as integer value. ! ! -- Built-in Function: void __builtin_tabort (int) ! Generates the 'tabort' machine instruction with the specified abort ! code. Abort codes from 0 through 255 are reserved and will result ! in an error message. ! ! -- Built-in Function: void __builtin_tx_assist (int) ! Generates the 'ppa rX,rY,1' machine instruction. Where the integer ! parameter is loaded into rX and a value of zero is loaded into rY. ! The integer parameter specifies the number of times the transaction ! repeatedly aborted. ! ! -- Built-in Function: int __builtin_tx_nesting_depth (void) ! Generates the 'etnd' machine instruction. The current nesting ! depth is returned as integer value. For a nesting depth of 0 the ! code is not executed as part of an transaction. ! ! -- Built-in Function: void __builtin_non_tx_store (uint64_t *, ! uint64_t) ! ! Generates the 'ntstg' machine instruction. The second argument is ! written to the first arguments location. The store operation will ! not be rolled-back in case of an transaction abort. ! !  ! File: gcc.info, Node: SH Built-in Functions, Next: SPARC VIS Built-in Functions, Prev: S/390 System z Built-in Functions, Up: Target Builtins ! ! 6.56.18 SH Built-in Functions ----------------------------- The following built-in functions are supported on the SH1, SH2, SH3 and SH4 families of processors: -- Built-in Function: void __builtin_set_thread_pointer (void *PTR) ! Sets the 'GBR' register to the specified value PTR. This is usually used by system code that manages threads and execution contexts. The compiler normally does not generate code that ! modifies the contents of 'GBR' and thus the value is preserved ! across function calls. Changing the 'GBR' value in user code must ! be done with caution, since the compiler might use 'GBR' in order to access thread local variables. -- Built-in Function: void * __builtin_thread_pointer (void) ! Returns the value that is currently set in the 'GBR' register. Memory loads and stores that use the thread pointer as a base ! address are turned into 'GBR' based displacement loads and stores, if possible. For example: struct my_tcb { *************** SH4 families of processors: *** 40878,40898 **** int get_tcb_value (void) { ! // Generate `mov.l @(8,gbr),r0' instruction return ((my_tcb*)__builtin_thread_pointer ())->c; }  File: gcc.info, Node: SPARC VIS Built-in Functions, Next: SPU Built-in Functions, Prev: SH Built-in Functions, Up: Target Builtins ! 6.56.18 SPARC VIS Built-in Functions ------------------------------------ GCC supports SIMD operations on the SPARC using both the generic vector extensions (*note Vector Extensions::) as well as built-in functions for ! the SPARC Visual Instruction Set (VIS). When you use the `-mvis' ! switch, the VIS extension is exposed as the following built-in ! functions: typedef int v1si __attribute__ ((vector_size (4))); typedef int v2si __attribute__ ((vector_size (8))); --- 40691,40710 ---- int get_tcb_value (void) { ! // Generate 'mov.l @(8,gbr),r0' instruction return ((my_tcb*)__builtin_thread_pointer ())->c; }  File: gcc.info, Node: SPARC VIS Built-in Functions, Next: SPU Built-in Functions, Prev: SH Built-in Functions, Up: Target Builtins ! 6.56.19 SPARC VIS Built-in Functions ------------------------------------ GCC supports SIMD operations on the SPARC using both the generic vector extensions (*note Vector Extensions::) as well as built-in functions for ! the SPARC Visual Instruction Set (VIS). When you use the '-mvis' switch, ! the VIS extension is exposed as the following built-in functions: typedef int v1si __attribute__ ((vector_size (4))); typedef int v2si __attribute__ ((vector_size (8))); *************** functions: *** 40957,40963 **** long __builtin_vis_array16 (long, long); long __builtin_vis_array32 (long, long); ! When you use the `-mvis2' switch, the VIS version 2.0 built-in functions also become available: long __builtin_vis_bmask (long, long); --- 40769,40775 ---- long __builtin_vis_array16 (long, long); long __builtin_vis_array32 (long, long); ! When you use the '-mvis2' switch, the VIS version 2.0 built-in functions also become available: long __builtin_vis_bmask (long, long); *************** functions also become available: *** 40973,40979 **** long __builtin_vis_edge32n (void *, void *); long __builtin_vis_edge32ln (void *, void *); ! When you use the `-mvis3' switch, the VIS version 3.0 built-in functions also become available: void __builtin_vis_cmask8 (long); --- 40785,40791 ---- long __builtin_vis_edge32n (void *, void *); long __builtin_vis_edge32ln (void *, void *); ! When you use the '-mvis3' switch, the VIS version 3.0 built-in functions also become available: void __builtin_vis_cmask8 (long); *************** functions also become available: *** 41026,41038 ****  File: gcc.info, Node: SPU Built-in Functions, Next: TI C6X Built-in Functions, Prev: SPARC VIS Built-in Functions, Up: Target Builtins ! 6.56.19 SPU Built-in Functions ------------------------------ GCC provides extensions for the SPU processor as described in the Sony/Toshiba/IBM SPU Language Extensions Specification, which can be ! found at `http://cell.scei.co.jp/' or ! `http://www.ibm.com/developerworks/power/cell/'. GCC's implementation differs in several ways. * The optional extension of specifying vector constants in --- 40838,40850 ----  File: gcc.info, Node: SPU Built-in Functions, Next: TI C6X Built-in Functions, Prev: SPARC VIS Built-in Functions, Up: Target Builtins ! 6.56.20 SPU Built-in Functions ------------------------------ GCC provides extensions for the SPU processor as described in the Sony/Toshiba/IBM SPU Language Extensions Specification, which can be ! found at or ! . GCC's implementation differs in several ways. * The optional extension of specifying vector constants in *************** differs in several ways. *** 41041,41055 **** * A vector initializer requires no cast if the vector constant is of the same type as the variable it is initializing. ! * If `signed' or `unsigned' is omitted, the signedness of the vector type is the default signedness of the base type. The default varies depending on the operating system, so a portable program should always specify the signedness. ! * By default, the keyword `__vector' is added. The macro `vector' is ! defined in `' and can be undefined. ! * GCC allows using a `typedef' name as the type specifier for a vector type. * For C, overloaded functions are implemented with macros so the --- 40853,40867 ---- * A vector initializer requires no cast if the vector constant is of the same type as the variable it is initializing. ! * If 'signed' or 'unsigned' is omitted, the signedness of the vector type is the default signedness of the base type. The default varies depending on the operating system, so a portable program should always specify the signedness. ! * By default, the keyword '__vector' is added. The macro 'vector' is ! defined in '' and can be undefined. ! * GCC allows using a 'typedef' name as the type specifier for a vector type. * For C, overloaded functions are implemented with macros so the *************** differs in several ways. *** 41057,41083 **** spu_add ((vector signed int){1, 2, 3, 4}, foo); ! Since `spu_add' is a macro, the vector constant in the example is treated as four separate arguments. Wrap the entire argument in parentheses for this to work. ! * The extended version of `__builtin_expect' is not supported. ! _Note:_ Only the interface described in the aforementioned ! specification is supported. Internally, GCC uses built-in functions to implement the required functionality, but these are not supported and are subject to change without notice.  File: gcc.info, Node: TI C6X Built-in Functions, Next: TILE-Gx Built-in Functions, Prev: SPU Built-in Functions, Up: Target Builtins ! 6.56.20 TI C6X Built-in Functions --------------------------------- GCC provides intrinsics to access certain instructions of the TI C6X processors. These intrinsics, listed below, are available after ! inclusion of the `c6x_intrinsics.h' header file. They map directly to C6X instructions. --- 40869,40894 ---- spu_add ((vector signed int){1, 2, 3, 4}, foo); ! Since 'spu_add' is a macro, the vector constant in the example is treated as four separate arguments. Wrap the entire argument in parentheses for this to work. ! * The extended version of '__builtin_expect' is not supported. _Note:_ Only the interface described in the aforementioned ! specification is supported. Internally, GCC uses built-in functions to implement the required functionality, but these are not supported and are subject to change without notice.  File: gcc.info, Node: TI C6X Built-in Functions, Next: TILE-Gx Built-in Functions, Prev: SPU Built-in Functions, Up: Target Builtins ! 6.56.21 TI C6X Built-in Functions --------------------------------- GCC provides intrinsics to access certain instructions of the TI C6X processors. These intrinsics, listed below, are available after ! inclusion of the 'c6x_intrinsics.h' header file. They map directly to C6X instructions. *************** C6X instructions. *** 41111,41117 ****  File: gcc.info, Node: TILE-Gx Built-in Functions, Next: TILEPro Built-in Functions, Prev: TI C6X Built-in Functions, Up: Target Builtins ! 6.56.21 TILE-Gx Built-in Functions ---------------------------------- GCC provides intrinsics to access every instruction of the TILE-Gx --- 40922,40928 ----  File: gcc.info, Node: TILE-Gx Built-in Functions, Next: TILEPro Built-in Functions, Prev: TI C6X Built-in Functions, Up: Target Builtins ! 6.56.22 TILE-Gx Built-in Functions ---------------------------------- GCC provides intrinsics to access every instruction of the TILE-Gx *************** The intrinsics are: *** 41136,41149 **** void __tile_idn_send (unsigned long long) void __tile_udn_send (unsigned long long) ! The intrinsic `void __tile_network_barrier (void)' is used to ! guarantee that no network operations before it are reordered with those ! after it.  File: gcc.info, Node: TILEPro Built-in Functions, Prev: TILE-Gx Built-in Functions, Up: Target Builtins ! 6.56.22 TILEPro Built-in Functions ---------------------------------- GCC provides intrinsics to access every instruction of the TILEPro --- 40947,40959 ---- void __tile_idn_send (unsigned long long) void __tile_udn_send (unsigned long long) ! The intrinsic 'void __tile_network_barrier (void)' is used to guarantee ! that no network operations before it are reordered with those after it.  File: gcc.info, Node: TILEPro Built-in Functions, Prev: TILE-Gx Built-in Functions, Up: Target Builtins ! 6.56.23 TILEPro Built-in Functions ---------------------------------- GCC provides intrinsics to access every instruction of the TILEPro *************** The intrinsics are: *** 41170,41178 **** void __tile_sn_send (unsigned) void __tile_udn_send (unsigned) ! The intrinsic `void __tile_network_barrier (void)' is used to ! guarantee that no network operations before it are reordered with those ! after it.  File: gcc.info, Node: Target Format Checks, Next: Pragmas, Prev: Target Builtins, Up: C Extensions --- 40980,40987 ---- void __tile_sn_send (unsigned) void __tile_udn_send (unsigned) ! The intrinsic 'void __tile_network_barrier (void)' is used to guarantee ! that no network operations before it are reordered with those after it.  File: gcc.info, Node: Target Format Checks, Next: Pragmas, Prev: Target Builtins, Up: C Extensions *************** File: gcc.info, Node: Solaris Format Ch *** 41195,41204 **** 6.57.1 Solaris Format Checks ---------------------------- ! Solaris targets support the `cmn_err' (or `__cmn_err__') format check. ! `cmn_err' accepts a subset of the standard `printf' conversions, and ! the two-argument `%b' conversion for displaying bit-fields. See the ! Solaris man page for `cmn_err' for more information.  File: gcc.info, Node: Darwin Format Checks, Prev: Solaris Format Checks, Up: Target Format Checks --- 41004,41013 ---- 6.57.1 Solaris Format Checks ---------------------------- ! Solaris targets support the 'cmn_err' (or '__cmn_err__') format check. ! 'cmn_err' accepts a subset of the standard 'printf' conversions, and the ! two-argument '%b' conversion for displaying bit-fields. See the Solaris ! man page for 'cmn_err' for more information.  File: gcc.info, Node: Darwin Format Checks, Prev: Solaris Format Checks, Up: Target Format Checks *************** File: gcc.info, Node: Darwin Format Che *** 41206,41222 **** 6.57.2 Darwin Format Checks --------------------------- ! Darwin targets support the `CFString' (or `__CFString__') in the format attribute context. Declarations made with such attribution are parsed for correct syntax and format argument types. However, parsing of the format string itself is currently undefined and is not carried out by this version of the compiler. ! Additionally, `CFStringRefs' (defined by the `CoreFoundation' headers) may also be used as format arguments. Note that the relevant headers are only likely to be available on Darwin (OSX) installations. On such installations, the XCode and system documentation provide descriptions ! of `CFString', `CFStringRefs' and associated functions.  File: gcc.info, Node: Pragmas, Next: Unnamed Fields, Prev: Target Format Checks, Up: C Extensions --- 41015,41031 ---- 6.57.2 Darwin Format Checks --------------------------- ! Darwin targets support the 'CFString' (or '__CFString__') in the format attribute context. Declarations made with such attribution are parsed for correct syntax and format argument types. However, parsing of the format string itself is currently undefined and is not carried out by this version of the compiler. ! Additionally, 'CFStringRefs' (defined by the 'CoreFoundation' headers) may also be used as format arguments. Note that the relevant headers are only likely to be available on Darwin (OSX) installations. On such installations, the XCode and system documentation provide descriptions ! of 'CFString', 'CFStringRefs' and associated functions.  File: gcc.info, Node: Pragmas, Next: Unnamed Fields, Prev: Target Format Checks, Up: C Extensions *************** File: gcc.info, Node: Pragmas, Next: U *** 41225,41232 **** ============================ GCC supports several types of pragmas, primarily in order to compile ! code originally written for other compilers. Note that in general we ! do not recommend the use of pragmas; *Note Function Attributes::, for further explanation. * Menu: --- 41034,41041 ---- ============================ GCC supports several types of pragmas, primarily in order to compile ! code originally written for other compilers. Note that in general we do ! not recommend the use of pragmas; *Note Function Attributes::, for further explanation. * Menu: *************** File: gcc.info, Node: ARM Pragmas, Nex *** 41252,41268 **** ------------------ The ARM target defines pragmas for controlling the default addition of ! `long_call' and `short_call' attributes to functions. *Note Function Attributes::, for information about the effects of these attributes. ! `long_calls' ! Set all subsequent functions to have the `long_call' attribute. ! `no_long_calls' ! Set all subsequent functions to have the `short_call' attribute. ! `long_calls_off' ! Do not affect the `long_call' or `short_call' attributes of subsequent functions.  --- 41061,41077 ---- ------------------ The ARM target defines pragmas for controlling the default addition of ! 'long_call' and 'short_call' attributes to functions. *Note Function Attributes::, for information about the effects of these attributes. ! 'long_calls' ! Set all subsequent functions to have the 'long_call' attribute. ! 'no_long_calls' ! Set all subsequent functions to have the 'short_call' attribute. ! 'long_calls_off' ! Do not affect the 'long_call' or 'short_call' attributes of subsequent functions.  *************** File: gcc.info, Node: M32C Pragmas, Ne *** 41271,41317 **** 6.58.2 M32C Pragmas ------------------- ! `GCC memregs NUMBER' ! Overrides the command-line option `-memregs=' for the current ! file. Use with care! This pragma must be before any function in ! the file, and mixing different memregs values in different objects ! may make them incompatible. This pragma is useful when a performance-critical function uses a memreg for temporary values, as it may allow you to reduce the number of memregs used. ! `ADDRESS NAME ADDRESS' For any declared symbols matching NAME, this does three things to that symbol: it forces the symbol to be located at the given address (a number), it forces the symbol to be volatile, and it changes the symbol's scope to be static. This pragma exists for compatibility with other compilers, but note that the common ! `1234H' numeric syntax is not supported (use `0x1234' instead). Example: #pragma ADDRESS port3 0x103 char port3; -  File: gcc.info, Node: MeP Pragmas, Next: RS/6000 and PowerPC Pragmas, Prev: M32C Pragmas, Up: Pragmas 6.58.3 MeP Pragmas ------------------ ! `custom io_volatile (on|off)' ! Overrides the command-line option `-mio-volatile' for the current file. Note that for compatibility with future GCC releases, this ! option should only be used once before any `io' variables in each file. ! `GCC coprocessor available REGISTERS' Specifies which coprocessor registers are available to the register allocator. REGISTERS may be a single register, register range separated by ellipses, or comma-separated list of those. Example: #pragma GCC coprocessor available $c0...$c10, $c28 ! `GCC coprocessor call_saved REGISTERS' Specifies which coprocessor registers are to be saved and restored by any function using them. REGISTERS may be a single register, register range separated by ellipses, or comma-separated list of --- 41080,41125 ---- 6.58.2 M32C Pragmas ------------------- ! 'GCC memregs NUMBER' ! Overrides the command-line option '-memregs=' for the current file. ! Use with care! This pragma must be before any function in the ! file, and mixing different memregs values in different objects may ! make them incompatible. This pragma is useful when a performance-critical function uses a memreg for temporary values, as it may allow you to reduce the number of memregs used. ! 'ADDRESS NAME ADDRESS' For any declared symbols matching NAME, this does three things to that symbol: it forces the symbol to be located at the given address (a number), it forces the symbol to be volatile, and it changes the symbol's scope to be static. This pragma exists for compatibility with other compilers, but note that the common ! '1234H' numeric syntax is not supported (use '0x1234' instead). Example: #pragma ADDRESS port3 0x103 char port3;  File: gcc.info, Node: MeP Pragmas, Next: RS/6000 and PowerPC Pragmas, Prev: M32C Pragmas, Up: Pragmas 6.58.3 MeP Pragmas ------------------ ! 'custom io_volatile (on|off)' ! Overrides the command-line option '-mio-volatile' for the current file. Note that for compatibility with future GCC releases, this ! option should only be used once before any 'io' variables in each file. ! 'GCC coprocessor available REGISTERS' Specifies which coprocessor registers are available to the register allocator. REGISTERS may be a single register, register range separated by ellipses, or comma-separated list of those. Example: #pragma GCC coprocessor available $c0...$c10, $c28 ! 'GCC coprocessor call_saved REGISTERS' Specifies which coprocessor registers are to be saved and restored by any function using them. REGISTERS may be a single register, register range separated by ellipses, or comma-separated list of *************** File: gcc.info, Node: MeP Pragmas, Nex *** 41319,41327 **** #pragma GCC coprocessor call_saved $c4...$c6, $c31 ! `GCC coprocessor subclass '(A|B|C|D)' = REGISTERS' Creates and defines a register class. These register classes can ! be used by inline `asm' constructs. REGISTERS may be a single register, register range separated by ellipses, or comma-separated list of those. Example: --- 41127,41135 ---- #pragma GCC coprocessor call_saved $c4...$c6, $c31 ! 'GCC coprocessor subclass '(A|B|C|D)' = REGISTERS' Creates and defines a register class. These register classes can ! be used by inline 'asm' constructs. REGISTERS may be a single register, register range separated by ellipses, or comma-separated list of those. Example: *************** File: gcc.info, Node: MeP Pragmas, Nex *** 41329,41335 **** asm ("cpfoo %0" : "=B" (x)); ! `GCC disinterrupt NAME , NAME ...' For the named functions, the compiler adds code to disable interrupts for the duration of those functions. If any functions so named are not encountered in the source, a warning is emitted --- 41137,41143 ---- asm ("cpfoo %0" : "=B" (x)); ! 'GCC disinterrupt NAME , NAME ...' For the named functions, the compiler adds code to disable interrupts for the duration of those functions. If any functions so named are not encountered in the source, a warning is emitted *************** File: gcc.info, Node: MeP Pragmas, Nex *** 41339,41345 **** #pragma disinterrupt bar, grill int foo () { ... } ! `GCC call NAME , NAME ...' For the named functions, the compiler always uses a register-indirect call model when calling the named functions. Examples: --- 41147,41153 ---- #pragma disinterrupt bar, grill int foo () { ... } ! 'GCC call NAME , NAME ...' For the named functions, the compiler always uses a register-indirect call model when calling the named functions. Examples: *************** File: gcc.info, Node: MeP Pragmas, Nex *** 41347,41353 **** extern int foo (); #pragma call foo -  File: gcc.info, Node: RS/6000 and PowerPC Pragmas, Next: Darwin Pragmas, Prev: MeP Pragmas, Up: Pragmas --- 41155,41160 ---- *************** File: gcc.info, Node: RS/6000 and Power *** 41355,41372 **** ---------------------------------- The RS/6000 and PowerPC targets define one pragma for controlling ! whether or not the `longcall' attribute is added to function ! declarations by default. This pragma overrides the `-mlongcall' ! option, but not the `longcall' and `shortcall' attributes. *Note ! RS/6000 and PowerPC Options::, for more information about when long ! calls are and are not necessary. ! `longcall (1)' ! Apply the `longcall' attribute to all subsequent function declarations. ! `longcall (0)' ! Do not apply the `longcall' attribute to subsequent function declarations.  --- 41162,41179 ---- ---------------------------------- The RS/6000 and PowerPC targets define one pragma for controlling ! whether or not the 'longcall' attribute is added to function ! declarations by default. This pragma overrides the '-mlongcall' option, ! but not the 'longcall' and 'shortcall' attributes. *Note RS/6000 and ! PowerPC Options::, for more information about when long calls are and ! are not necessary. ! 'longcall (1)' ! Apply the 'longcall' attribute to all subsequent function declarations. ! 'longcall (0)' ! Do not apply the 'longcall' attribute to subsequent function declarations.  *************** The following pragmas are available for *** 41379,41401 **** Darwin operating system. These are useful for compatibility with other Mac OS compilers. ! `mark TOKENS...' This pragma is accepted, but has no effect. ! `options align=ALIGNMENT' ! This pragma sets the alignment of fields in structures. The ! values of ALIGNMENT may be `mac68k', to emulate m68k alignment, or ! `power', to emulate PowerPC alignment. Uses of this pragma nest ! properly; to restore the previous setting, use `reset' for the ALIGNMENT. ! `segment TOKENS...' This pragma is accepted, but has no effect. ! `unused (VAR [, VAR]...)' This pragma declares variables to be possibly unused. GCC does not produce warnings for the listed variables. The effect is similar ! to that of the `unused' attribute, except that this pragma may appear anywhere within the variables' scopes.  --- 41186,41208 ---- Darwin operating system. These are useful for compatibility with other Mac OS compilers. ! 'mark TOKENS...' This pragma is accepted, but has no effect. ! 'options align=ALIGNMENT' ! This pragma sets the alignment of fields in structures. The values ! of ALIGNMENT may be 'mac68k', to emulate m68k alignment, or ! 'power', to emulate PowerPC alignment. Uses of this pragma nest ! properly; to restore the previous setting, use 'reset' for the ALIGNMENT. ! 'segment TOKENS...' This pragma is accepted, but has no effect. ! 'unused (VAR [, VAR]...)' This pragma declares variables to be possibly unused. GCC does not produce warnings for the listed variables. The effect is similar ! to that of the 'unused' attribute, except that this pragma may appear anywhere within the variables' scopes.  *************** File: gcc.info, Node: Solaris Pragmas, *** 41404,41431 **** 6.58.6 Solaris Pragmas ---------------------- ! The Solaris target supports `#pragma redefine_extname' (*note ! Symbol-Renaming Pragmas::). It also supports additional `#pragma' directives for compatibility with the system compiler. ! `align ALIGNMENT (VARIABLE [, VARIABLE]...)' ! Increase the minimum alignment of each VARIABLE to ALIGNMENT. ! This is the same as GCC's `aligned' attribute *note Variable Attributes::). Macro expansion occurs on the arguments to this pragma when compiling C and Objective-C. It does not currently ! occur when compiling C++, but this is a bug which may be fixed in ! a future release. ! `fini (FUNCTION [, FUNCTION]...)' ! This pragma causes each listed FUNCTION to be called after main, ! or during shared module unloading, by adding a call to the `.fini' section. ! `init (FUNCTION [, FUNCTION]...)' ! This pragma causes each listed FUNCTION to be called during ! initialization (before `main') or during shared module loading, by ! adding a call to the `.init' section.  File: gcc.info, Node: Symbol-Renaming Pragmas, Next: Structure-Packing Pragmas, Prev: Solaris Pragmas, Up: Pragmas --- 41211,41240 ---- 6.58.6 Solaris Pragmas ---------------------- ! The Solaris target supports '#pragma redefine_extname' (*note ! Symbol-Renaming Pragmas::). It also supports additional '#pragma' directives for compatibility with the system compiler. ! 'align ALIGNMENT (VARIABLE [, VARIABLE]...)' ! ! Increase the minimum alignment of each VARIABLE to ALIGNMENT. This ! is the same as GCC's 'aligned' attribute *note Variable Attributes::). Macro expansion occurs on the arguments to this pragma when compiling C and Objective-C. It does not currently ! occur when compiling C++, but this is a bug which may be fixed in a ! future release. ! 'fini (FUNCTION [, FUNCTION]...)' ! ! This pragma causes each listed FUNCTION to be called after main, or ! during shared module unloading, by adding a call to the '.fini' section. ! 'init (FUNCTION [, FUNCTION]...)' + This pragma causes each listed FUNCTION to be called during + initialization (before 'main') or during shared module loading, by + adding a call to the '.init' section.  File: gcc.info, Node: Symbol-Renaming Pragmas, Next: Structure-Packing Pragmas, Prev: Solaris Pragmas, Up: Pragmas *************** File: gcc.info, Node: Symbol-Renaming P *** 41434,41446 **** ------------------------------ For compatibility with the Solaris system headers, GCC supports two ! `#pragma' directives that change the name used in assembly for a given ! declaration. To get this effect on all platforms supported by GCC, use the asm labels extension (*note Asm Labels::). ! `redefine_extname OLDNAME NEWNAME' This pragma gives the C function OLDNAME the assembly symbol ! NEWNAME. The preprocessor macro `__PRAGMA_REDEFINE_EXTNAME' is defined if this pragma is available (currently on all platforms). This pragma and the asm labels extension interact in a complicated --- 41243,41256 ---- ------------------------------ For compatibility with the Solaris system headers, GCC supports two ! '#pragma' directives that change the name used in assembly for a given ! declaration. To get this effect on all platforms supported by GCC, use the asm labels extension (*note Asm Labels::). ! 'redefine_extname OLDNAME NEWNAME' ! This pragma gives the C function OLDNAME the assembly symbol ! NEWNAME. The preprocessor macro '__PRAGMA_REDEFINE_EXTNAME' is defined if this pragma is available (currently on all platforms). This pragma and the asm labels extension interact in a complicated *************** manner. Here are some corner cases you *** 41455,41465 **** 3. If any of the three ways of changing the assembly name of a declaration is applied to a declaration whose assembly name has already been determined (either by a previous use of one of these ! features, or because the compiler needed the assembly name in ! order to generate code), and the new name is different, a warning ! issues and the name does not change. ! 4. The OLDNAME used by `#pragma redefine_extname' is always the C-language name.  --- 41265,41275 ---- 3. If any of the three ways of changing the assembly name of a declaration is applied to a declaration whose assembly name has already been determined (either by a previous use of one of these ! features, or because the compiler needed the assembly name in order ! to generate code), and the new name is different, a warning issues ! and the name does not change. ! 4. The OLDNAME used by '#pragma redefine_extname' is always the C-language name.  *************** File: gcc.info, Node: Structure-Packing *** 41469,41504 **** -------------------------------- For compatibility with Microsoft Windows compilers, GCC supports a set ! of `#pragma' directives that change the maximum alignment of members of structures (other than zero-width bit-fields), unions, and classes ! subsequently defined. The N value below always is required to be a small power of two and specifies the new alignment in bytes. ! 1. `#pragma pack(N)' simply sets the new alignment. ! ! 2. `#pragma pack()' sets the alignment to the one that was in effect when compilation started (see also command-line option ! `-fpack-struct[=N]' *note Code Gen Options::). ! ! 3. `#pragma pack(push[,N])' pushes the current alignment setting on ! an internal stack and then optionally sets the new alignment. ! ! 4. `#pragma pack(pop)' restores the alignment setting to the one ! saved at the top of the internal stack (and removes that stack ! entry). Note that `#pragma pack([N])' does not influence this ! internal stack; thus it is possible to have `#pragma pack(push)' ! followed by multiple `#pragma pack(N)' instances and finalized by ! a single `#pragma pack(pop)'. ! Some targets, e.g. i386 and PowerPC, support the `ms_struct' `#pragma' ! which lays out a structure as the documented `__attribute__ ((ms_struct))'. ! 1. `#pragma ms_struct on' turns on the layout for structures declared. ! ! 2. `#pragma ms_struct off' turns off the layout for structures declared. ! ! 3. `#pragma ms_struct reset' goes back to the default layout.  File: gcc.info, Node: Weak Pragmas, Next: Diagnostic Pragmas, Prev: Structure-Packing Pragmas, Up: Pragmas --- 41279,41309 ---- -------------------------------- For compatibility with Microsoft Windows compilers, GCC supports a set ! of '#pragma' directives that change the maximum alignment of members of structures (other than zero-width bit-fields), unions, and classes ! subsequently defined. The N value below always is required to be a small power of two and specifies the new alignment in bytes. ! 1. '#pragma pack(N)' simply sets the new alignment. ! 2. '#pragma pack()' sets the alignment to the one that was in effect when compilation started (see also command-line option ! '-fpack-struct[=N]' *note Code Gen Options::). ! 3. '#pragma pack(push[,N])' pushes the current alignment setting on an ! internal stack and then optionally sets the new alignment. ! 4. '#pragma pack(pop)' restores the alignment setting to the one saved ! at the top of the internal stack (and removes that stack entry). ! Note that '#pragma pack([N])' does not influence this internal ! stack; thus it is possible to have '#pragma pack(push)' followed by ! multiple '#pragma pack(N)' instances and finalized by a single ! '#pragma pack(pop)'. ! Some targets, e.g. i386 and PowerPC, support the 'ms_struct' '#pragma' ! which lays out a structure as the documented '__attribute__ ((ms_struct))'. ! 1. '#pragma ms_struct on' turns on the layout for structures declared. ! 2. '#pragma ms_struct off' turns off the layout for structures declared. ! 3. '#pragma ms_struct reset' goes back to the default layout.  File: gcc.info, Node: Weak Pragmas, Next: Diagnostic Pragmas, Prev: Structure-Packing Pragmas, Up: Pragmas *************** File: gcc.info, Node: Weak Pragmas, Ne *** 41506,41521 **** 6.58.9 Weak Pragmas ------------------- ! For compatibility with SVR4, GCC supports a set of `#pragma' directives for declaring symbols to be weak, and defining weak aliases. ! `#pragma weak SYMBOL' This pragma declares SYMBOL to be weak, as if the declaration had the attribute of the same name. The pragma may appear before or after the declaration of SYMBOL. It is not an error for SYMBOL to never be defined at all. ! `#pragma weak SYMBOL1 = SYMBOL2' This pragma declares SYMBOL1 to be a weak alias of SYMBOL2. It is an error if SYMBOL2 is not defined in the current translation unit. --- 41311,41326 ---- 6.58.9 Weak Pragmas ------------------- ! For compatibility with SVR4, GCC supports a set of '#pragma' directives for declaring symbols to be weak, and defining weak aliases. ! '#pragma weak SYMBOL' This pragma declares SYMBOL to be weak, as if the declaration had the attribute of the same name. The pragma may appear before or after the declaration of SYMBOL. It is not an error for SYMBOL to never be defined at all. ! '#pragma weak SYMBOL1 = SYMBOL2' This pragma declares SYMBOL1 to be a weak alias of SYMBOL2. It is an error if SYMBOL2 is not defined in the current translation unit. *************** File: gcc.info, Node: Diagnostic Pragma *** 41527,41547 **** GCC allows the user to selectively enable or disable certain types of diagnostics, and change the kind of the diagnostic. For example, a ! project's policy might require that all sources compile with `-Werror' but certain files might have exceptions allowing specific types of warnings. Or, a project might selectively enable diagnostics and treat them as errors depending on which preprocessor macros are defined. ! `#pragma GCC diagnostic KIND OPTION' Modifies the disposition of a diagnostic. Note that not all diagnostics are modifiable; at the moment only warnings (normally ! controlled by `-W...') can be controlled, and not all of them. ! Use `-fdiagnostics-show-option' to determine which diagnostics are controllable and which option controls them. ! KIND is `error' to treat this diagnostic as an error, `warning' to ! treat it like a warning (even if `-Werror' is in effect), or ! `ignored' if the diagnostic is to be ignored. OPTION is a double quoted string that matches the command-line option. #pragma GCC diagnostic warning "-Wformat" --- 41332,41353 ---- GCC allows the user to selectively enable or disable certain types of diagnostics, and change the kind of the diagnostic. For example, a ! project's policy might require that all sources compile with '-Werror' but certain files might have exceptions allowing specific types of warnings. Or, a project might selectively enable diagnostics and treat them as errors depending on which preprocessor macros are defined. ! '#pragma GCC diagnostic KIND OPTION' ! Modifies the disposition of a diagnostic. Note that not all diagnostics are modifiable; at the moment only warnings (normally ! controlled by '-W...') can be controlled, and not all of them. Use ! '-fdiagnostics-show-option' to determine which diagnostics are controllable and which option controls them. ! KIND is 'error' to treat this diagnostic as an error, 'warning' to ! treat it like a warning (even if '-Werror' is in effect), or ! 'ignored' if the diagnostic is to be ignored. OPTION is a double quoted string that matches the command-line option. #pragma GCC diagnostic warning "-Wformat" *************** them as errors depending on which prepro *** 41554,41564 **** pragmas occurring after a line do not affect diagnostics caused by that line. ! `#pragma GCC diagnostic push' ! `#pragma GCC diagnostic pop' Causes GCC to remember the state of the diagnostics as of each ! `push', and restore to that point at each `pop'. If a `pop' has ! no matching `push', the command-line options are restored. #pragma GCC diagnostic error "-Wuninitialized" foo(a); /* error is given for this one */ --- 41360,41371 ---- pragmas occurring after a line do not affect diagnostics caused by that line. ! '#pragma GCC diagnostic push' ! '#pragma GCC diagnostic pop' ! Causes GCC to remember the state of the diagnostics as of each ! 'push', and restore to that point at each 'pop'. If a 'pop' has no ! matching 'push', the command-line options are restored. #pragma GCC diagnostic error "-Wuninitialized" foo(a); /* error is given for this one */ *************** them as errors depending on which prepro *** 41570,41582 **** #pragma GCC diagnostic pop foo(d); /* depends on command-line options */ - GCC also offers a simple mechanism for printing messages during compilation. ! `#pragma message STRING' ! Prints STRING as a compiler message on compilation. The message ! is informational only, and is neither a compilation warning nor an error. #pragma message "Compiling " __FILE__ "..." --- 41377,41389 ---- #pragma GCC diagnostic pop foo(d); /* depends on command-line options */ GCC also offers a simple mechanism for printing messages during compilation. ! '#pragma message STRING' ! ! Prints STRING as a compiler message on compilation. The message is ! informational only, and is neither a compilation warning nor an error. #pragma message "Compiling " __FILE__ "..." *************** compilation. *** 41589,41617 **** TODO(Remember to fix this) ! prints `/tmp/file.c:4: note: #pragma message: TODO - Remember to fix this'. -  File: gcc.info, Node: Visibility Pragmas, Next: Push/Pop Macro Pragmas, Prev: Diagnostic Pragmas, Up: Pragmas 6.58.11 Visibility Pragmas -------------------------- ! `#pragma GCC visibility push(VISIBILITY)' ! `#pragma GCC visibility pop' This pragma allows the user to set the visibility for multiple declarations without having to give each a visibility attribute *Note Function Attributes::, for more information about visibility and the attribute syntax. ! In C++, `#pragma GCC visibility' affects only namespace-scope declarations. Class members and template specializations are not affected; if you want to override the visibility for a particular member or instantiation, you must use an attribute. -  File: gcc.info, Node: Push/Pop Macro Pragmas, Next: Function Specific Option Pragmas, Prev: Visibility Pragmas, Up: Pragmas --- 41396,41423 ---- TODO(Remember to fix this) ! prints '/tmp/file.c:4: note: #pragma message: TODO - Remember to fix this'.  File: gcc.info, Node: Visibility Pragmas, Next: Push/Pop Macro Pragmas, Prev: Diagnostic Pragmas, Up: Pragmas 6.58.11 Visibility Pragmas -------------------------- ! '#pragma GCC visibility push(VISIBILITY)' ! '#pragma GCC visibility pop' ! This pragma allows the user to set the visibility for multiple declarations without having to give each a visibility attribute *Note Function Attributes::, for more information about visibility and the attribute syntax. ! In C++, '#pragma GCC visibility' affects only namespace-scope declarations. Class members and template specializations are not affected; if you want to override the visibility for a particular member or instantiation, you must use an attribute.  File: gcc.info, Node: Push/Pop Macro Pragmas, Next: Function Specific Option Pragmas, Prev: Visibility Pragmas, Up: Pragmas *************** File: gcc.info, Node: Push/Pop Macro Pr *** 41619,41634 **** ------------------------------ For compatibility with Microsoft Windows compilers, GCC supports ! `#pragma push_macro("MACRO_NAME")' and `#pragma pop_macro("MACRO_NAME")'. ! `#pragma push_macro("MACRO_NAME")' ! This pragma saves the value of the macro named as MACRO_NAME to ! the top of the stack for this macro. ! `#pragma pop_macro("MACRO_NAME")' This pragma sets the value of the macro named as MACRO_NAME to the ! value on top of the stack for this macro. If the stack for MACRO_NAME is empty, the value of the macro remains unchanged. For example: --- 41425,41440 ---- ------------------------------ For compatibility with Microsoft Windows compilers, GCC supports ! '#pragma push_macro("MACRO_NAME")' and '#pragma pop_macro("MACRO_NAME")'. ! '#pragma push_macro("MACRO_NAME")' ! This pragma saves the value of the macro named as MACRO_NAME to the ! top of the stack for this macro. ! '#pragma pop_macro("MACRO_NAME")' This pragma sets the value of the macro named as MACRO_NAME to the ! value on top of the stack for this macro. If the stack for MACRO_NAME is empty, the value of the macro remains unchanged. For example: *************** pop_macro("MACRO_NAME")'. *** 41640,41647 **** #pragma pop_macro("X") int x [X]; ! In this example, the definition of X as 1 is saved by `#pragma ! push_macro' and restored by `#pragma pop_macro'.  File: gcc.info, Node: Function Specific Option Pragmas, Prev: Push/Pop Macro Pragmas, Up: Pragmas --- 41446,41453 ---- #pragma pop_macro("X") int x [X]; ! In this example, the definition of X as 1 is saved by '#pragma ! push_macro' and restored by '#pragma pop_macro'.  File: gcc.info, Node: Function Specific Option Pragmas, Prev: Push/Pop Macro Pragmas, Up: Pragmas *************** File: gcc.info, Node: Function Specific *** 41649,41697 **** 6.58.13 Function Specific Option Pragmas ---------------------------------------- ! `#pragma GCC target ("STRING"...)' This pragma allows you to set target specific options for functions defined later in the source file. One or more strings can be ! specified. Each function that is defined after this point is as ! if `attribute((target("STRING")))' was specified for that ! function. The parenthesis around the options is optional. *Note ! Function Attributes::, for more information about the `target' ! attribute and the attribute syntax. ! The `#pragma GCC target' attribute is not implemented in GCC versions earlier than 4.4 for the i386/x86_64 and 4.6 for the PowerPC back ends. At present, it is not implemented for other back ends. ! `#pragma GCC optimize ("STRING"...)' This pragma allows you to set global optimization options for functions defined later in the source file. One or more strings can be specified. Each function that is defined after this point ! is as if `attribute((optimize("STRING")))' was specified for that function. The parenthesis around the options is optional. *Note ! Function Attributes::, for more information about the `optimize' attribute and the attribute syntax. ! The `#pragma GCC optimize' pragma is not implemented in GCC versions earlier than 4.4. ! `#pragma GCC push_options' ! `#pragma GCC pop_options' These pragmas maintain a stack of the current target and optimization options. It is intended for include files where you ! temporarily want to switch to using a different `#pragma GCC ! target' or `#pragma GCC optimize' and then to pop back to the previous options. ! The `#pragma GCC push_options' and `#pragma GCC pop_options' pragmas are not implemented in GCC versions earlier than 4.4. ! `#pragma GCC reset_options' ! This pragma clears the current `#pragma GCC target' and `#pragma GCC optimize' to use the default switches as specified on the command line. ! The `#pragma GCC reset_options' pragma is not implemented in GCC versions earlier than 4.4.  --- 41455,41507 ---- 6.58.13 Function Specific Option Pragmas ---------------------------------------- ! '#pragma GCC target ("STRING"...)' ! This pragma allows you to set target specific options for functions defined later in the source file. One or more strings can be ! specified. Each function that is defined after this point is as if ! 'attribute((target("STRING")))' was specified for that function. ! The parenthesis around the options is optional. *Note Function ! Attributes::, for more information about the 'target' attribute and ! the attribute syntax. ! The '#pragma GCC target' attribute is not implemented in GCC versions earlier than 4.4 for the i386/x86_64 and 4.6 for the PowerPC back ends. At present, it is not implemented for other back ends. ! '#pragma GCC optimize ("STRING"...)' ! This pragma allows you to set global optimization options for functions defined later in the source file. One or more strings can be specified. Each function that is defined after this point ! is as if 'attribute((optimize("STRING")))' was specified for that function. The parenthesis around the options is optional. *Note ! Function Attributes::, for more information about the 'optimize' attribute and the attribute syntax. ! The '#pragma GCC optimize' pragma is not implemented in GCC versions earlier than 4.4. ! '#pragma GCC push_options' ! '#pragma GCC pop_options' ! These pragmas maintain a stack of the current target and optimization options. It is intended for include files where you ! temporarily want to switch to using a different '#pragma GCC ! target' or '#pragma GCC optimize' and then to pop back to the previous options. ! The '#pragma GCC push_options' and '#pragma GCC pop_options' pragmas are not implemented in GCC versions earlier than 4.4. ! '#pragma GCC reset_options' ! ! This pragma clears the current '#pragma GCC target' and '#pragma GCC optimize' to use the default switches as specified on the command line. ! The '#pragma GCC reset_options' pragma is not implemented in GCC versions earlier than 4.4.  *************** structures and unions without names. Fo *** 41714,41721 **** } foo; In this example, you are able to access members of the unnamed union ! with code like `foo.b'. Note that only unnamed structs and unions are ! allowed, you may not have, for example, an unnamed `int'. You must never create such structures that cause ambiguous field definitions. For example, in this structure: --- 41524,41531 ---- } foo; In this example, you are able to access members of the unnamed union ! with code like 'foo.b'. Note that only unnamed structs and unions are ! allowed, you may not have, for example, an unnamed 'int'. You must never create such structures that cause ambiguous field definitions. For example, in this structure: *************** definitions. For example, in this struc *** 41727,41744 **** }; } foo; ! it is ambiguous which `a' is being referred to with `foo.a'. The compiler gives errors for such constructs. ! Unless `-fms-extensions' is used, the unnamed field must be a ! structure or union definition without a tag (for example, `struct { int ! a; };'). If `-fms-extensions' is used, the field may also be a ! definition with a tag such as `struct foo { int a; };', a reference to ! a previously defined structure or union such as `struct foo;', or a ! reference to a `typedef' name for a previously defined structure or ! union type. ! The option `-fplan9-extensions' enables `-fms-extensions' as well as two other extensions. First, a pointer to a structure is automatically converted to a pointer to an anonymous field for assignments and function calls. For example: --- 41537,41553 ---- }; } foo; ! it is ambiguous which 'a' is being referred to with 'foo.a'. The compiler gives errors for such constructs. ! Unless '-fms-extensions' is used, the unnamed field must be a structure ! or union definition without a tag (for example, 'struct { int a; };'). ! If '-fms-extensions' is used, the field may also be a definition with a ! tag such as 'struct foo { int a; };', a reference to a previously ! defined structure or union such as 'struct foo;', or a reference to a ! 'typedef' name for a previously defined structure or union type. ! The option '-fplan9-extensions' enables '-fms-extensions' as well as two other extensions. First, a pointer to a structure is automatically converted to a pointer to an anonymous field for assignments and function calls. For example: *************** function calls. For example: *** 41748,41759 **** extern void f1 (struct s1 *); void f2 (struct s2 *p) { f1 (p); } ! In the call to `f1' inside `f2', the pointer `p' is converted into a pointer to the anonymous field. ! Second, when the type of an anonymous field is a `typedef' for a ! `struct' or `union', code may refer to the field using the name of the ! `typedef'. typedef struct { int a; } s1; struct s2 { s1; }; --- 41557,41568 ---- extern void f1 (struct s1 *); void f2 (struct s2 *p) { f1 (p); } ! In the call to 'f1' inside 'f2', the pointer 'p' is converted into a pointer to the anonymous field. ! Second, when the type of an anonymous field is a 'typedef' for a ! 'struct' or 'union', code may refer to the field using the name of the ! 'typedef'. typedef struct { int a; } s1; struct s2 { s1; }; *************** allocated such that there is one instanc *** 41772,41793 **** thread. The runtime model GCC uses to implement this originates in the IA-64 processor-specific ABI, but has since been migrated to other processors as well. It requires significant support from the linker ! (`ld'), dynamic linker (`ld.so'), and system libraries (`libc.so' and ! `libpthread.so'), so it is not available everywhere. At the user level, the extension is visible with a new storage class ! keyword: `__thread'. For example: __thread int i; extern __thread struct state s; static __thread char *p; ! The `__thread' specifier may be used alone, with the `extern' or ! `static' specifiers, but with no other storage class specifier. When ! used with `extern' or `static', `__thread' must appear immediately ! after the other storage class specifier. ! The `__thread' specifier may be applied to any global, file-scoped static, function-scoped static, or static data member of a class. It may not be applied to block-scoped automatic or non-static data member. --- 41581,41602 ---- thread. The runtime model GCC uses to implement this originates in the IA-64 processor-specific ABI, but has since been migrated to other processors as well. It requires significant support from the linker ! ('ld'), dynamic linker ('ld.so'), and system libraries ('libc.so' and ! 'libpthread.so'), so it is not available everywhere. At the user level, the extension is visible with a new storage class ! keyword: '__thread'. For example: __thread int i; extern __thread struct state s; static __thread char *p; ! The '__thread' specifier may be used alone, with the 'extern' or ! 'static' specifiers, but with no other storage class specifier. When ! used with 'extern' or 'static', '__thread' must appear immediately after ! the other storage class specifier. ! The '__thread' specifier may be applied to any global, file-scoped static, function-scoped static, or static data member of a class. It may not be applied to block-scoped automatic or non-static data member. *************** File: gcc.info, Node: C99 Thread-Local *** 41823,41829 **** The following are a set of changes to ISO/IEC 9899:1999 (aka C99) that document the exact semantics of the language extension. ! * `5.1.2 Execution environments' Add new text after paragraph 1 --- 41632,41638 ---- The following are a set of changes to ISO/IEC 9899:1999 (aka C99) that document the exact semantics of the language extension. ! * '5.1.2 Execution environments' Add new text after paragraph 1 *************** document the exact semantics of the lang *** 41836,41873 **** terminated. However, objects with thread storage duration shall be initialized before thread startup. ! * `6.2.4 Storage durations of objects' Add new text before paragraph 3 An object whose identifier is declared with the storage-class ! specifier `__thread' has "thread storage duration". Its ! lifetime is the entire execution of the thread, and its ! stored value is initialized only once, prior to thread ! startup. ! * `6.4.1 Keywords' ! Add `__thread'. ! * `6.7.1 Storage-class specifiers' ! Add `__thread' to the list of storage class specifiers in ! paragraph 1. Change paragraph 2 to ! With the exception of `__thread', at most one storage-class ! specifier may be given [...]. The `__thread' specifier may ! be used alone, or immediately following `extern' or `static'. Add new text after paragraph 6 ! The declaration of an identifier for a variable that has ! block scope that specifies `__thread' shall also specify ! either `extern' or `static'. ! The `__thread' specifier shall be used only with variables.  File: gcc.info, Node: C++98 Thread-Local Edits, Prev: C99 Thread-Local Edits, Up: Thread-Local --- 41645,41681 ---- terminated. However, objects with thread storage duration shall be initialized before thread startup. ! * '6.2.4 Storage durations of objects' Add new text before paragraph 3 An object whose identifier is declared with the storage-class ! specifier '__thread' has "thread storage duration". Its ! lifetime is the entire execution of the thread, and its stored ! value is initialized only once, prior to thread startup. ! * '6.4.1 Keywords' ! Add '__thread'. ! * '6.7.1 Storage-class specifiers' ! Add '__thread' to the list of storage class specifiers in paragraph ! 1. Change paragraph 2 to ! With the exception of '__thread', at most one storage-class ! specifier may be given [...]. The '__thread' specifier may be ! used alone, or immediately following 'extern' or 'static'. Add new text after paragraph 6 ! The declaration of an identifier for a variable that has block ! scope that specifies '__thread' shall also specify either ! 'extern' or 'static'. ! The '__thread' specifier shall be used only with variables.  File: gcc.info, Node: C++98 Thread-Local Edits, Prev: C99 Thread-Local Edits, Up: Thread-Local *************** that document the exact semantics of the *** 41894,41913 **** * [lex.key] ! Add `__thread'. * [basic.start.main] Add after paragraph 5 ! The thread that begins execution at the `main' function is called the "main thread". It is implementation defined how functions beginning threads other than the main thread are ! designated or typed. A function so designated, as well as ! the `main' function, is called a "thread startup function". ! It is implementation defined what happens if a thread startup function returns. It is implementation defined what happens ! to other threads when any thread calls `exit'. * [basic.start.init] --- 41702,41721 ---- * [lex.key] ! Add '__thread'. * [basic.start.main] Add after paragraph 5 ! The thread that begins execution at the 'main' function is called the "main thread". It is implementation defined how functions beginning threads other than the main thread are ! designated or typed. A function so designated, as well as the ! 'main' function, is called a "thread startup function". It is ! implementation defined what happens if a thread startup function returns. It is implementation defined what happens ! to other threads when any thread calls 'exit'. * [basic.start.init] *************** that document the exact semantics of the *** 41915,41922 **** The storage for an object of thread storage duration shall be statically initialized before the first statement of the ! thread startup function. An object of thread storage ! duration shall not require dynamic initialization. * [basic.start.term] --- 41723,41730 ---- The storage for an object of thread storage duration shall be statically initialized before the first statement of the ! thread startup function. An object of thread storage duration ! shall not require dynamic initialization. * [basic.start.term] *************** that document the exact semantics of the *** 41933,41952 **** Change paragraph 2 ! Thread, static, and automatic storage durations are ! associated with objects introduced by declarations [...]. ! Add `__thread' to the list of specifiers in paragraph 3. * [basic.stc.thread] New section before [basic.stc.static] ! The keyword `__thread' applied to a non-local object gives the object thread storage duration. ! A local variable or class data member declared both `static' ! and `__thread' gives the variable or member thread storage duration. * [basic.stc.static] --- 41741,41760 ---- Change paragraph 2 ! Thread, static, and automatic storage durations are associated ! with objects introduced by declarations [...]. ! Add '__thread' to the list of specifiers in paragraph 3. * [basic.stc.thread] New section before [basic.stc.static] ! The keyword '__thread' applied to a non-local object gives the object thread storage duration. ! A local variable or class data member declared both 'static' ! and '__thread' gives the variable or member thread storage duration. * [basic.stc.static] *************** that document the exact semantics of the *** 41958,41992 **** * [dcl.stc] ! Add `__thread' to the list in paragraph 1. Change paragraph 1 ! With the exception of `__thread', at most one STORAGE-CLASS-SPECIFIER shall appear in a given ! DECL-SPECIFIER-SEQ. The `__thread' specifier may be used ! alone, or immediately following the `extern' or `static' specifiers. [...] Add after paragraph 5 ! The `__thread' specifier can be applied only to the names of objects and to anonymous unions. * [class.mem] Add after paragraph 6 ! Non-`static' members shall not be `__thread'.  File: gcc.info, Node: Binary constants, Prev: Thread-Local, Up: C Extensions ! 6.61 Binary constants using the `0b' prefix =========================================== Integer constants can be written as binary constants, consisting of a ! sequence of `0' and `1' digits, prefixed by `0b' or `0B'. This is particularly useful in environments that operate a lot on the bit level (like microcontrollers). --- 41766,41800 ---- * [dcl.stc] ! Add '__thread' to the list in paragraph 1. Change paragraph 1 ! With the exception of '__thread', at most one STORAGE-CLASS-SPECIFIER shall appear in a given ! DECL-SPECIFIER-SEQ. The '__thread' specifier may be used ! alone, or immediately following the 'extern' or 'static' specifiers. [...] Add after paragraph 5 ! The '__thread' specifier can be applied only to the names of objects and to anonymous unions. * [class.mem] Add after paragraph 6 ! Non-'static' members shall not be '__thread'.  File: gcc.info, Node: Binary constants, Prev: Thread-Local, Up: C Extensions ! 6.61 Binary constants using the '0b' prefix =========================================== Integer constants can be written as binary constants, consisting of a ! sequence of '0' and '1' digits, prefixed by '0b' or '0B'. This is particularly useful in environments that operate a lot on the bit level (like microcontrollers). *************** particularly useful in environments that *** 41998,42004 **** i = 0b101010; The type of these constants follows the same rules as for octal or ! hexadecimal integer constants, so suffixes like `L' or `UL' can be applied.  --- 41806,41812 ---- i = 0b101010; The type of these constants follows the same rules as for octal or ! hexadecimal integer constants, so suffixes like 'L' or 'UL' can be applied.  *************** The GNU compiler provides these extensio *** 42011,42018 **** can also use most of the C language extensions in your C++ programs). If you want to write code that checks whether these features are available, you can test for the GNU compiler the same way as for C ! programs: check for a predefined macro `__GNUC__'. You can also use ! `__GNUG__' to test specifically for GNU C++ (*note Predefined Macros: (cpp)Common Predefined Macros.). * Menu: --- 41819,41826 ---- can also use most of the C language extensions in your C++ programs). If you want to write code that checks whether these features are available, you can test for the GNU compiler the same way as for C ! programs: check for a predefined macro '__GNUC__'. You can also use ! '__GNUG__' to test specifically for GNU C++ (*note Predefined Macros: (cpp)Common Predefined Macros.). * Menu: *************** programs: check for a predefined macro ` *** 42025,42031 **** * Template Instantiation:: Methods for ensuring that exactly one copy of each needed template instantiation is emitted. * Bound member functions:: You can extract a function pointer to the ! method denoted by a `->*' or `.*' expression. * C++ Attributes:: Variable, function, and type attributes for C++ only. * Function Multiversioning:: Declaring multiple function versions. * Namespace Association:: Strong using-directives for namespace association. --- 41833,41839 ---- * Template Instantiation:: Methods for ensuring that exactly one copy of each needed template instantiation is emitted. * Bound member functions:: You can extract a function pointer to the ! method denoted by a '->*' or '.*' expression. * C++ Attributes:: Variable, function, and type attributes for C++ only. * Function Multiversioning:: Declaring multiple function versions. * Namespace Association:: Strong using-directives for namespace association. *************** lvalueness of expressions between C and *** 42048,42055 **** G++ behaves the same as GCC for volatile access, *Note Volatiles: C Extensions, for a description of GCC's behavior. ! The C and C++ language specifications differ when an object is ! accessed in a void context: volatile int *src = SOMEVALUE; *src; --- 41856,41863 ---- G++ behaves the same as GCC for volatile access, *Note Volatiles: C Extensions, for a description of GCC's behavior. ! The C and C++ language specifications differ when an object is accessed ! in a void context: volatile int *src = SOMEVALUE; *src; *************** File: gcc.info, Node: Restricted Pointe *** 42091,42099 **** ================================ As with the C front end, G++ understands the C99 feature of restricted ! pointers, specified with the `__restrict__', or `__restrict' type ! qualifier. Because you cannot compile C++ by specifying the `-std=c99' ! language flag, `restrict' is not a keyword in C++. In addition to allowing restricted pointers, you can specify restricted references, which indicate that the reference is not aliased in the --- 41899,41907 ---- ================================ As with the C front end, G++ understands the C99 feature of restricted ! pointers, specified with the '__restrict__', or '__restrict' type ! qualifier. Because you cannot compile C++ by specifying the '-std=c99' ! language flag, 'restrict' is not a keyword in C++. In addition to allowing restricted pointers, you can specify restricted references, which indicate that the reference is not aliased in the *************** local context. *** 42104,42130 **** /* ... */ } ! In the body of `fn', RPTR points to an unaliased integer and RREF ! refers to a (different) unaliased integer. You may also specify whether a member function's THIS pointer is ! unaliased by using `__restrict__' as a member function qualifier. void T::fn () __restrict__ { /* ... */ } ! Within the body of `T::fn', THIS has the effective definition `T *__restrict__ const this'. Notice that the interpretation of a ! `__restrict__' member function qualifier is different to that of ! `const' or `volatile' qualifier, in that it is applied to the pointer ! rather than the object. This is consistent with other compilers that ! implement restricted pointers. ! As with all outermost parameter qualifiers, `__restrict__' is ignored in function definition matching. This means you only need to specify ! `__restrict__' in a function definition, rather than in a function prototype as well.  --- 41912,41938 ---- /* ... */ } ! In the body of 'fn', RPTR points to an unaliased integer and RREF refers ! to a (different) unaliased integer. You may also specify whether a member function's THIS pointer is ! unaliased by using '__restrict__' as a member function qualifier. void T::fn () __restrict__ { /* ... */ } ! Within the body of 'T::fn', THIS has the effective definition 'T *__restrict__ const this'. Notice that the interpretation of a ! '__restrict__' member function qualifier is different to that of 'const' ! or 'volatile' qualifier, in that it is applied to the pointer rather ! than the object. This is consistent with other compilers that implement ! restricted pointers. ! As with all outermost parameter qualifiers, '__restrict__' is ignored in function definition matching. This means you only need to specify ! '__restrict__' in a function definition, rather than in a function prototype as well.  *************** clever. *** 42142,42157 **** Inline Functions Inline functions are typically defined in a header file which can be included in many different compilations. Hopefully they can ! usually be inlined, but sometimes an out-of-line copy is ! necessary, if the address of the function is taken or if inlining ! fails. In general, we emit an out-of-line copy in all translation ! units where one is needed. As an exception, we only emit inline ! virtual functions with the vtable, since it always requires a copy. Local static variables and string constants used in an inline ! function are also considered to have vague linkage, since they ! must be shared between all inlined and out-of-line instances of ! the function. VTables C++ virtual functions are implemented in most compilers using a --- 41950,41965 ---- Inline Functions Inline functions are typically defined in a header file which can be included in many different compilations. Hopefully they can ! usually be inlined, but sometimes an out-of-line copy is necessary, ! if the address of the function is taken or if inlining fails. In ! general, we emit an out-of-line copy in all translation units where ! one is needed. As an exception, we only emit inline virtual ! functions with the vtable, since it always requires a copy. Local static variables and string constants used in an inline ! function are also considered to have vague linkage, since they must ! be shared between all inlined and out-of-line instances of the ! function. VTables C++ virtual functions are implemented in most compilers using a *************** VTables *** 42168,42189 **** Make sure that any inline virtuals are declared inline in the class body, even if they are not defined there. ! `type_info' objects C++ requires information about types to be written out in order to ! implement `dynamic_cast', `typeid' and exception handling. For polymorphic classes (classes with virtual functions), the ! `type_info' object is written out along with the vtable so that ! `dynamic_cast' can determine the dynamic type of a class object at ! run time. For all other types, we write out the `type_info' ! object when it is used: when applying `typeid' to an expression, ! throwing an object, or referring to a type in a catch clause or ! exception specification. Template Instantiations Most everything in this section also applies to template ! instantiations, but there are other options as well. *Note ! Where's the Template?: Template Instantiation. ! When used with GNU ld version 2.8 or later on an ELF system such as GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of --- 41976,41996 ---- Make sure that any inline virtuals are declared inline in the class body, even if they are not defined there. ! 'type_info' objects C++ requires information about types to be written out in order to ! implement 'dynamic_cast', 'typeid' and exception handling. For polymorphic classes (classes with virtual functions), the ! 'type_info' object is written out along with the vtable so that ! 'dynamic_cast' can determine the dynamic type of a class object at ! run time. For all other types, we write out the 'type_info' object ! when it is used: when applying 'typeid' to an expression, throwing ! an object, or referring to a type in a catch clause or exception ! specification. Template Instantiations Most everything in this section also applies to template ! instantiations, but there are other options as well. *Note Where's ! the Template?: Template Instantiation. When used with GNU ld version 2.8 or later on an ELF system such as GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of *************** File: gcc.info, Node: C++ Interface, N *** 42209,42295 **** 7.4 #pragma interface and implementation ======================================== ! `#pragma interface' and `#pragma implementation' provide the user with ! a way of explicitly directing the compiler to emit entities with vague linkage (and debugging information) in a particular translation unit. ! _Note:_ As of GCC 2.7.2, these `#pragma's are not useful in most ! cases, because of COMDAT support and the "key method" heuristic ! mentioned in *note Vague Linkage::. Using them can actually cause your ! program to grow due to unnecessary out-of-line copies of inline ! functions. Currently (3.4) the only benefit of these `#pragma's is ! reduced duplication of debugging information, and that should be ! addressed soon on DWARF 2 targets with the use of COMDAT groups. ! `#pragma interface' ! `#pragma interface "SUBDIR/OBJECTS.h"' ! Use this directive in _header files_ that define object classes, ! to save space in most of the object files that use those classes. Normally, local copies of certain information (backup copies of inline member functions, debugging information, and the internal tables that implement virtual functions) must be kept in each object file that includes class definitions. You can use this pragma to avoid such duplication. When a header file containing ! `#pragma interface' is included in a compilation, this auxiliary information is not generated (unless the main input source file ! itself uses `#pragma implementation'). Instead, the object files contain references to be resolved at link time. The second form of this directive is useful for the case where you have multiple headers with the same name in different directories. ! If you use this form, you must specify the same string to `#pragma implementation'. ! `#pragma implementation' ! `#pragma implementation "OBJECTS.h"' Use this pragma in a _main input file_, when you want full output from included header files to be generated (and made globally ! visible). The included header file, in turn, should use `#pragma interface'. Backup copies of inline member functions, debugging information, and the internal tables used to implement virtual functions are all generated in implementation files. ! If you use `#pragma implementation' with no argument, it applies to ! an include file with the same basename(1) as your source file. ! For example, in `allclass.cc', giving just `#pragma implementation' ! by itself is equivalent to `#pragma implementation "allclass.h"'. ! In versions of GNU C++ prior to 2.6.0 `allclass.h' was treated as an implementation file whenever you would include it from ! `allclass.cc' even if you never specified `#pragma ! implementation'. This was deemed to be more trouble than it was ! worth, however, and disabled. Use the string argument if you want a single implementation file to include code from multiple header files. (You must also use ! `#include' to include the header file; `#pragma implementation' only specifies how to use the file--it doesn't actually include it.) There is no way to split up the contents of a single header file into multiple implementation files. ! `#pragma implementation' and `#pragma interface' also have an effect ! on function inlining. ! If you define a class in a header file marked with `#pragma ! interface', the effect on an inline function defined in that class is ! similar to an explicit `extern' declaration--the compiler emits no code ! at all to define an independent version of the function. Its ! definition is used only for inlining with its callers. Conversely, when you include the same header file in a main source file ! that declares it as `#pragma implementation', the compiler emits code ! for the function itself; this defines a version of the function that ! can be found via pointers (or by callers compiled without inlining). ! If all calls to the function can be inlined, you can avoid emitting the ! function by compiling with `-fno-implement-inlines'. If any calls are not inlined, you will get linker errors. ! ---------- Footnotes ---------- ! (1) A file's "basename" is the name stripped of all leading path ! information and of trailing suffixes, such as `.h' or `.C' or `.cc'.  File: gcc.info, Node: Template Instantiation, Next: Bound member functions, Prev: C++ Interface, Up: C++ Extensions --- 42016,42102 ---- 7.4 #pragma interface and implementation ======================================== ! '#pragma interface' and '#pragma implementation' provide the user with a ! way of explicitly directing the compiler to emit entities with vague linkage (and debugging information) in a particular translation unit. ! _Note:_ As of GCC 2.7.2, these '#pragma's are not useful in most cases, ! because of COMDAT support and the "key method" heuristic mentioned in ! *note Vague Linkage::. Using them can actually cause your program to ! grow due to unnecessary out-of-line copies of inline functions. ! Currently (3.4) the only benefit of these '#pragma's is reduced ! duplication of debugging information, and that should be addressed soon ! on DWARF 2 targets with the use of COMDAT groups. ! '#pragma interface' ! '#pragma interface "SUBDIR/OBJECTS.h"' ! Use this directive in _header files_ that define object classes, to ! save space in most of the object files that use those classes. Normally, local copies of certain information (backup copies of inline member functions, debugging information, and the internal tables that implement virtual functions) must be kept in each object file that includes class definitions. You can use this pragma to avoid such duplication. When a header file containing ! '#pragma interface' is included in a compilation, this auxiliary information is not generated (unless the main input source file ! itself uses '#pragma implementation'). Instead, the object files contain references to be resolved at link time. The second form of this directive is useful for the case where you have multiple headers with the same name in different directories. ! If you use this form, you must specify the same string to '#pragma implementation'. ! '#pragma implementation' ! '#pragma implementation "OBJECTS.h"' Use this pragma in a _main input file_, when you want full output from included header files to be generated (and made globally ! visible). The included header file, in turn, should use '#pragma interface'. Backup copies of inline member functions, debugging information, and the internal tables used to implement virtual functions are all generated in implementation files. ! If you use '#pragma implementation' with no argument, it applies to ! an include file with the same basename(1) as your source file. For ! example, in 'allclass.cc', giving just '#pragma implementation' by ! itself is equivalent to '#pragma implementation "allclass.h"'. ! In versions of GNU C++ prior to 2.6.0 'allclass.h' was treated as an implementation file whenever you would include it from ! 'allclass.cc' even if you never specified '#pragma implementation'. ! This was deemed to be more trouble than it was worth, however, and ! disabled. Use the string argument if you want a single implementation file to include code from multiple header files. (You must also use ! '#include' to include the header file; '#pragma implementation' only specifies how to use the file--it doesn't actually include it.) There is no way to split up the contents of a single header file into multiple implementation files. ! '#pragma implementation' and '#pragma interface' also have an effect on ! function inlining. ! If you define a class in a header file marked with '#pragma interface', ! the effect on an inline function defined in that class is similar to an ! explicit 'extern' declaration--the compiler emits no code at all to ! define an independent version of the function. Its definition is used ! only for inlining with its callers. Conversely, when you include the same header file in a main source file ! that declares it as '#pragma implementation', the compiler emits code ! for the function itself; this defines a version of the function that can ! be found via pointers (or by callers compiled without inlining). If all ! calls to the function can be inlined, you can avoid emitting the ! function by compiling with '-fno-implement-inlines'. If any calls are not inlined, you will get linker errors. ! ---------- Footnotes ---------- ! (1) A file's "basename" is the name stripped of all leading path ! information and of trailing suffixes, such as '.h' or '.C' or '.cc'.  File: gcc.info, Node: Template Instantiation, Next: Bound member functions, Prev: C++ Interface, Up: C++ Extensions *************** problem, which are referred to as the Bo *** 42306,42313 **** model. Borland model ! Borland C++ solved the template instantiation problem by adding ! the code equivalent of common blocks to their linker; the compiler emits template instances in each translation unit that uses them, and the linker collapses them together. The advantage of this model is that the linker only has to consider the object files --- 42113,42120 ---- model. Borland model ! Borland C++ solved the template instantiation problem by adding the ! code equivalent of common blocks to their linker; the compiler emits template instances in each translation unit that uses them, and the linker collapses them together. The advantage of this model is that the linker only has to consider the object files *************** Borland model *** 42320,42341 **** Cfront model The AT&T C++ translator, Cfront, solved the template instantiation problem by creating the notion of a template repository, an ! automatically maintained place where template instances are ! stored. A more modern version of the repository works as follows: ! As individual object files are built, the compiler places any ! template definitions and instantiations encountered in the ! repository. At link time, the link wrapper adds in the objects in ! the repository and compiles any needed instances that were not ! previously emitted. The advantages of this model are more optimal ! compilation speed and the ability to use the system linker; to ! implement the Borland model a compiler vendor also needs to ! replace the linker. The disadvantages are vastly increased ! complexity, and thus potential for error; for some code this can be ! just as transparent, but in practice it can been very difficult to ! build multiple programs in one directory and one program in ! multiple directories. Code written for this model tends to ! separate definitions of non-inline member templates into a ! separate file, which should be compiled separately. When used with GNU ld version 2.8 or later on an ELF system such as GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the --- 42127,42148 ---- Cfront model The AT&T C++ translator, Cfront, solved the template instantiation problem by creating the notion of a template repository, an ! automatically maintained place where template instances are stored. ! A more modern version of the repository works as follows: As ! individual object files are built, the compiler places any template ! definitions and instantiations encountered in the repository. At ! link time, the link wrapper adds in the objects in the repository ! and compiles any needed instances that were not previously emitted. ! The advantages of this model are more optimal compilation speed and ! the ability to use the system linker; to implement the Borland ! model a compiler vendor also needs to replace the linker. The ! disadvantages are vastly increased complexity, and thus potential ! for error; for some code this can be just as transparent, but in ! practice it can been very difficult to build multiple programs in ! one directory and one program in multiple directories. Code ! written for this model tends to separate definitions of non-inline ! member templates into a separate file, which should be compiled ! separately. When used with GNU ld version 2.8 or later on an ELF system such as GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the *************** model. *** 42345,42375 **** You have the following options for dealing with template instantiations: ! 1. Compile your template-using code with `-frepo'. The compiler ! generates files with the extension `.rpo' listing all of the template instantiations used in the corresponding object files that ! could be instantiated there; the link wrapper, `collect2', then ! updates the `.rpo' files to tell the compiler where to place those instantiations and rebuild any affected object files. The link-time overhead is negligible after the first pass, as the compiler continues to place the instantiations in the same files. This is your best option for application code written for the Borland model, as it just works. Code written for the Cfront model ! needs to be modified so that the template definitions are ! available at one or more points of instantiation; usually this is ! as simple as adding `#include ' to the end of each ! template header. For library code, if you want the library to provide all of the template instantiations it needs, just try to link all of its object files together; the link will fail, but cause the instantiations to be generated as a side effect. Be warned, ! however, that this may cause conflicts if multiple libraries try ! to provide the same instantiations. For greater control, use ! explicit instantiation as described in the next option. ! 2. Compile your code with `-fno-implicit-templates' to disable the implicit generation of template instances, and explicitly instantiate all the ones you use. This approach requires more knowledge of exactly which instances you need than do the others, --- 42152,42182 ---- You have the following options for dealing with template instantiations: ! 1. Compile your template-using code with '-frepo'. The compiler ! generates files with the extension '.rpo' listing all of the template instantiations used in the corresponding object files that ! could be instantiated there; the link wrapper, 'collect2', then ! updates the '.rpo' files to tell the compiler where to place those instantiations and rebuild any affected object files. The link-time overhead is negligible after the first pass, as the compiler continues to place the instantiations in the same files. This is your best option for application code written for the Borland model, as it just works. Code written for the Cfront model ! needs to be modified so that the template definitions are available ! at one or more points of instantiation; usually this is as simple ! as adding '#include ' to the end of each template ! header. For library code, if you want the library to provide all of the template instantiations it needs, just try to link all of its object files together; the link will fail, but cause the instantiations to be generated as a side effect. Be warned, ! however, that this may cause conflicts if multiple libraries try to ! provide the same instantiations. For greater control, use explicit ! instantiation as described in the next option. ! 2. Compile your code with '-fno-implicit-templates' to disable the implicit generation of template instances, and explicitly instantiate all the ones you use. This approach requires more knowledge of exactly which instances you need than do the others, *************** instantiations: *** 42377,42384 **** scatter the explicit instantiations throughout your program, perhaps putting them in the translation units where the instances are used or the translation units that define the templates ! themselves; you can put all of the explicit instantiations you ! need into one big file; or you can create small files like #include "Foo.h" #include "Foo.cc" --- 42184,42191 ---- scatter the explicit instantiations throughout your program, perhaps putting them in the translation units where the instances are used or the translation units that define the templates ! themselves; you can put all of the explicit instantiations you need ! into one big file; or you can create small files like #include "Foo.h" #include "Foo.cc" *************** instantiations: *** 42391,42412 **** instantiation library from those. If you are using Cfront-model code, you can probably get away with ! not using `-fno-implicit-templates' when compiling files that don't ! `#include' the member template definitions. If you use one big file to do the instantiations, you may want to ! compile it without `-fno-implicit-templates' so you get all of the instances required by your explicit instantiations (but not by any other files) without having to specify them as well. The ISO C++ 2011 standard allows forward declaration of explicit ! instantiations (with `extern'). G++ supports explicit instantiation ! declarations in C++98 mode and has extended the template ! instantiation syntax to support instantiation of the compiler ! support data for a template class (i.e. the vtable) without ! instantiating any of its members (with `inline'), and instantiation of only the static data members of a template class, ! without the support data or member functions (with (`static'): extern template int max (int, int); inline template class Foo; --- 42198,42219 ---- instantiation library from those. If you are using Cfront-model code, you can probably get away with ! not using '-fno-implicit-templates' when compiling files that don't ! '#include' the member template definitions. If you use one big file to do the instantiations, you may want to ! compile it without '-fno-implicit-templates' so you get all of the instances required by your explicit instantiations (but not by any other files) without having to specify them as well. The ISO C++ 2011 standard allows forward declaration of explicit ! instantiations (with 'extern'). G++ supports explicit ! instantiation declarations in C++98 mode and has extended the ! template instantiation syntax to support instantiation of the ! compiler support data for a template class (i.e. the vtable) ! without instantiating any of its members (with 'inline'), and instantiation of only the static data members of a template class, ! without the support data or member functions (with ('static'): extern template int max (int, int); inline template class Foo; *************** File: gcc.info, Node: Bound member func *** 42426,42432 **** In C++, pointer to member functions (PMFs) are implemented using a wide pointer of sorts to handle all the possible call mechanisms; the PMF ! needs to store information about how to adjust the `this' pointer, and if the function pointed to is virtual, where to find the vtable, and where in the vtable to look for the member function. If you are using PMFs in an inner loop, you should really reconsider that decision. If --- 42233,42239 ---- In C++, pointer to member functions (PMFs) are implemented using a wide pointer of sorts to handle all the possible call mechanisms; the PMF ! needs to store information about how to adjust the 'this' pointer, and if the function pointed to is virtual, where to find the vtable, and where in the vtable to look for the member function. If you are using PMFs in an inner loop, you should really reconsider that decision. If *************** function calls. *** 42447,42459 **** fptr p = (fptr)(a.*fp); ! For PMF constants (i.e. expressions of the form `&Klasse::Member'), no object is needed to obtain the address of the function. They can be converted to function pointers directly: fptr p1 = (fptr)(&A::foo); ! You must specify `-Wno-pmf-conversions' to use this extension.  File: gcc.info, Node: C++ Attributes, Next: Function Multiversioning, Prev: Bound member functions, Up: C++ Extensions --- 42254,42266 ---- fptr p = (fptr)(a.*fp); ! For PMF constants (i.e. expressions of the form '&Klasse::Member'), no object is needed to obtain the address of the function. They can be converted to function pointers directly: fptr p1 = (fptr)(&A::foo); ! You must specify '-Wno-pmf-conversions' to use this extension.  File: gcc.info, Node: C++ Attributes, Next: Function Multiversioning, Prev: Bound member functions, Up: C++ Extensions *************** File: gcc.info, Node: C++ Attributes, *** 42463,42475 **** Some attributes only make sense for C++ programs. ! `abi_tag ("TAG", ...)' ! The `abi_tag' attribute can be applied to a function or class ! declaration. It modifies the mangled name of the function or ! class to incorporate the tag name, in order to distinguish the ! function or class from an earlier version with a different ABI; ! perhaps the class has changed size, or the function has a ! different return type that is not encoded in the mangled name. The argument can be a list of strings of arbitrary length. The strings are sorted on output, so the order of the list is --- 42270,42282 ---- Some attributes only make sense for C++ programs. ! 'abi_tag ("TAG", ...)' ! The 'abi_tag' attribute can be applied to a function or class ! declaration. It modifies the mangled name of the function or class ! to incorporate the tag name, in order to distinguish the function ! or class from an earlier version with a different ABI; perhaps the ! class has changed size, or the function has a different return type ! that is not encoded in the mangled name. The argument can be a list of strings of arbitrary length. The strings are sorted on output, so the order of the list is *************** Some attributes only make sense for C++ *** 42478,42502 **** A redeclaration of a function or class must not add new ABI tags, since doing so would change the mangled name. ! The `-Wabi-tag' flag enables a warning about a class which does ! not have all the ABI tags used by its subobjects and virtual ! functions; for users with code that needs to coexist with an ! earlier ABI, using this option can help to find all affected types ! that need to be tagged. - `init_priority (PRIORITY)' In Standard C++, objects defined at namespace scope are guaranteed to be initialized in an order in strict accordance with that of their definitions _in a given translation unit_. No guarantee is made for initializations across translation units. However, GNU C++ allows users to control the order of initialization of objects ! defined at namespace scope with the `init_priority' attribute by specifying a relative PRIORITY, a constant integral expression currently bounded between 101 and 65535 inclusive. Lower numbers indicate a higher priority. ! In the following example, `A' would normally be created before ! `B', but the `init_priority' attribute reverses that order: Some_Class A __attribute__ ((init_priority (2000))); Some_Class B __attribute__ ((init_priority (543))); --- 42285,42310 ---- A redeclaration of a function or class must not add new ABI tags, since doing so would change the mangled name. ! The '-Wabi-tag' flag enables a warning about a class which does not ! have all the ABI tags used by its subobjects and virtual functions; ! for users with code that needs to coexist with an earlier ABI, ! using this option can help to find all affected types that need to ! be tagged. ! ! 'init_priority (PRIORITY)' In Standard C++, objects defined at namespace scope are guaranteed to be initialized in an order in strict accordance with that of their definitions _in a given translation unit_. No guarantee is made for initializations across translation units. However, GNU C++ allows users to control the order of initialization of objects ! defined at namespace scope with the 'init_priority' attribute by specifying a relative PRIORITY, a constant integral expression currently bounded between 101 and 65535 inclusive. Lower numbers indicate a higher priority. ! In the following example, 'A' would normally be created before 'B', ! but the 'init_priority' attribute reverses that order: Some_Class A __attribute__ ((init_priority (2000))); Some_Class B __attribute__ ((init_priority (543))); *************** Some attributes only make sense for C++ *** 42504,42516 **** Note that the particular values of PRIORITY do not matter; only their relative ordering. ! `java_interface' ! This type attribute informs C++ that the class is a Java ! interface. It may only be applied to classes declared within an ! `extern "Java"' block. Calls to methods declared in this ! interface are dispatched using GCJ's interface table mechanism, ! instead of regular virtual table dispatch. See also *note Namespace Association::. --- 42312,42324 ---- Note that the particular values of PRIORITY do not matter; only their relative ordering. ! 'java_interface' + This type attribute informs C++ that the class is a Java interface. + It may only be applied to classes declared within an 'extern + "Java"' block. Calls to methods declared in this interface are + dispatched using GCJ's interface table mechanism, instead of + regular virtual table dispatch. See also *note Namespace Association::. *************** the execution platform. Here is an exam *** 42561,42575 **** return 0; } ! In the above example, four versions of function foo are created. The first version of foo with the target attribute "default" is the default version. This version gets executed when no other target specific ! version qualifies for execution on a particular platform. A new version of foo is created by using the same function signature but with a different target string. Function foo is called or a pointer to it is taken just like a regular function. GCC takes care of doing the ! dispatching to call the right version at runtime. Refer to the GCC ! wiki on Function Multiversioning (http://gcc.gnu.org/wiki/FunctionMultiVersioning) for more details.  --- 42369,42383 ---- return 0; } ! In the above example, four versions of function foo are created. The first version of foo with the target attribute "default" is the default version. This version gets executed when no other target specific ! version qualifies for execution on a particular platform. A new version of foo is created by using the same function signature but with a different target string. Function foo is called or a pointer to it is taken just like a regular function. GCC takes care of doing the ! dispatching to call the right version at runtime. Refer to the GCC wiki ! on Function Multiversioning (http://gcc.gnu.org/wiki/FunctionMultiVersioning) for more details.  *************** File: gcc.info, Node: Namespace Associa *** 42582,42588 **** inline namespaces. Users should use inline namespaces instead as this extension will be removed in future versions of G++. ! A using-directive with `__attribute ((strong))' is stronger than a normal using-directive in two ways: * Templates from the used namespace can be specialized and explicitly --- 42390,42396 ---- inline namespaces. Users should use inline namespaces instead as this extension will be removed in future versions of G++. ! A using-directive with '__attribute ((strong))' is stronger than a normal using-directive in two ways: * Templates from the used namespace can be specialized and explicitly *************** The C++ front end implements syntactic e *** 42624,42757 **** compile-time determination of various characteristics of a type (or of a pair of types). ! `__has_nothrow_assign (type)' ! If `type' is const qualified or is a reference type then the trait ! is false. Otherwise if `__has_trivial_assign (type)' is true then ! the trait is true, else if `type' is a cv class or union type with copy assignment operators that are known not to throw an exception ! then the trait is true, else it is false. Requires: `type' shall ! be a complete type, (possibly cv-qualified) `void', or an array of unknown bound. ! `__has_nothrow_copy (type)' ! If `__has_trivial_copy (type)' is true then the trait is true, ! else if `type' is a cv class or union type with copy constructors ! that are known not to throw an exception then the trait is true, ! else it is false. Requires: `type' shall be a complete type, ! (possibly cv-qualified) `void', or an array of unknown bound. ! `__has_nothrow_constructor (type)' ! If `__has_trivial_constructor (type)' is true then the trait is ! true, else if `type' is a cv class or union type (or array ! thereof) with a default constructor that is known not to throw an ! exception then the trait is true, else it is false. Requires: ! `type' shall be a complete type, (possibly cv-qualified) `void', ! or an array of unknown bound. ! `__has_trivial_assign (type)' ! If `type' is const qualified or is a reference type then the trait ! is false. Otherwise if `__is_pod (type)' is true then the trait is ! true, else if `type' is a cv class or union type with a trivial copy assignment ([class.copy]) then the trait is true, else it is ! false. Requires: `type' shall be a complete type, (possibly ! cv-qualified) `void', or an array of unknown bound. ! `__has_trivial_copy (type)' ! If `__is_pod (type)' is true or `type' is a reference type then ! the trait is true, else if `type' is a cv class or union type with ! a trivial copy constructor ([class.copy]) then the trait is true, ! else it is false. Requires: `type' shall be a complete type, ! (possibly cv-qualified) `void', or an array of unknown bound. ! `__has_trivial_constructor (type)' ! If `__is_pod (type)' is true then the trait is true, else if ! `type' is a cv class or union type (or array thereof) with a ! trivial default constructor ([class.ctor]) then the trait is true, ! else it is false. Requires: `type' shall be a complete type, ! (possibly cv-qualified) `void', or an array of unknown bound. ! `__has_trivial_destructor (type)' ! If `__is_pod (type)' is true or `type' is a reference type then ! the trait is true, else if `type' is a cv class or union type (or ! array thereof) with a trivial destructor ([class.dtor]) then the ! trait is true, else it is false. Requires: `type' shall be a ! complete type, (possibly cv-qualified) `void', or an array of ! unknown bound. ! `__has_virtual_destructor (type)' ! If `type' is a class type with a virtual destructor ([class.dtor]) ! then the trait is true, else it is false. Requires: `type' shall ! be a complete type, (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_abstract (type)' ! If `type' is an abstract class ([class.abstract]) then the trait ! is true, else it is false. Requires: `type' shall be a complete ! type, (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_base_of (base_type, derived_type)' ! If `base_type' is a base class of `derived_type' ([class.derived]) then the trait is true, otherwise it is false. Top-level cv ! qualifications of `base_type' and `derived_type' are ignored. For ! the purposes of this trait, a class type is considered is own ! base. Requires: if `__is_class (base_type)' and `__is_class ! (derived_type)' are true and `base_type' and `derived_type' are ! not the same type (disregarding cv-qualifiers), `derived_type' ! shall be a complete type. Diagnostic is produced if this ! requirement is not met. ! `__is_class (type)' ! If `type' is a cv class type, and not a union type ([basic.compound]) the trait is true, else it is false. ! `__is_empty (type)' ! If `__is_class (type)' is false then the trait is false. ! Otherwise `type' is considered empty if and only if: `type' has no ! non-static data members, or all non-static data members, if any, ! are bit-fields of length 0, and `type' has no virtual members, and ! `type' has no virtual base classes, and `type' has no base classes ! `base_type' for which `__is_empty (base_type)' is false. ! Requires: `type' shall be a complete type, (possibly cv-qualified) ! `void', or an array of unknown bound. ! `__is_enum (type)' ! If `type' is a cv enumeration type ([basic.compound]) the trait is true, else it is false. ! `__is_literal_type (type)' ! If `type' is a literal type ([basic.types]) the trait is true, ! else it is false. Requires: `type' shall be a complete type, ! (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_pod (type)' ! If `type' is a cv POD type ([basic.types]) then the trait is true, ! else it is false. Requires: `type' shall be a complete type, ! (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_polymorphic (type)' ! If `type' is a polymorphic class ([class.virtual]) then the trait ! is true, else it is false. Requires: `type' shall be a complete ! type, (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_standard_layout (type)' ! If `type' is a standard-layout type ([basic.types]) the trait is ! true, else it is false. Requires: `type' shall be a complete ! type, (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_trivial (type)' ! If `type' is a trivial type ([basic.types]) the trait is true, ! else it is false. Requires: `type' shall be a complete type, ! (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_union (type)' ! If `type' is a cv union type ([basic.compound]) the trait is true, else it is false. ! `__underlying_type (type)' ! The underlying type of `type'. Requires: `type' shall be an enumeration type ([dcl.enum]). -  File: gcc.info, Node: Java Exceptions, Next: Deprecated Features, Prev: Type Traits, Up: C++ Extensions --- 42432,42563 ---- compile-time determination of various characteristics of a type (or of a pair of types). ! '__has_nothrow_assign (type)' ! If 'type' is const qualified or is a reference type then the trait ! is false. Otherwise if '__has_trivial_assign (type)' is true then ! the trait is true, else if 'type' is a cv class or union type with copy assignment operators that are known not to throw an exception ! then the trait is true, else it is false. Requires: 'type' shall ! be a complete type, (possibly cv-qualified) 'void', or an array of unknown bound. ! '__has_nothrow_copy (type)' ! If '__has_trivial_copy (type)' is true then the trait is true, else ! if 'type' is a cv class or union type with copy constructors that ! are known not to throw an exception then the trait is true, else it ! is false. Requires: 'type' shall be a complete type, (possibly ! cv-qualified) 'void', or an array of unknown bound. ! '__has_nothrow_constructor (type)' ! If '__has_trivial_constructor (type)' is true then the trait is ! true, else if 'type' is a cv class or union type (or array thereof) ! with a default constructor that is known not to throw an exception ! then the trait is true, else it is false. Requires: 'type' shall ! be a complete type, (possibly cv-qualified) 'void', or an array of ! unknown bound. ! '__has_trivial_assign (type)' ! If 'type' is const qualified or is a reference type then the trait ! is false. Otherwise if '__is_pod (type)' is true then the trait is ! true, else if 'type' is a cv class or union type with a trivial copy assignment ([class.copy]) then the trait is true, else it is ! false. Requires: 'type' shall be a complete type, (possibly ! cv-qualified) 'void', or an array of unknown bound. ! '__has_trivial_copy (type)' ! If '__is_pod (type)' is true or 'type' is a reference type then the ! trait is true, else if 'type' is a cv class or union type with a ! trivial copy constructor ([class.copy]) then the trait is true, ! else it is false. Requires: 'type' shall be a complete type, ! (possibly cv-qualified) 'void', or an array of unknown bound. ! '__has_trivial_constructor (type)' ! If '__is_pod (type)' is true then the trait is true, else if 'type' ! is a cv class or union type (or array thereof) with a trivial ! default constructor ([class.ctor]) then the trait is true, else it ! is false. Requires: 'type' shall be a complete type, (possibly ! cv-qualified) 'void', or an array of unknown bound. ! '__has_trivial_destructor (type)' ! If '__is_pod (type)' is true or 'type' is a reference type then the ! trait is true, else if 'type' is a cv class or union type (or array ! thereof) with a trivial destructor ([class.dtor]) then the trait is ! true, else it is false. Requires: 'type' shall be a complete type, ! (possibly cv-qualified) 'void', or an array of unknown bound. ! '__has_virtual_destructor (type)' ! If 'type' is a class type with a virtual destructor ([class.dtor]) ! then the trait is true, else it is false. Requires: 'type' shall ! be a complete type, (possibly cv-qualified) 'void', or an array of unknown bound. ! '__is_abstract (type)' ! If 'type' is an abstract class ([class.abstract]) then the trait is ! true, else it is false. Requires: 'type' shall be a complete type, ! (possibly cv-qualified) 'void', or an array of unknown bound. ! '__is_base_of (base_type, derived_type)' ! If 'base_type' is a base class of 'derived_type' ([class.derived]) then the trait is true, otherwise it is false. Top-level cv ! qualifications of 'base_type' and 'derived_type' are ignored. For ! the purposes of this trait, a class type is considered is own base. ! Requires: if '__is_class (base_type)' and '__is_class ! (derived_type)' are true and 'base_type' and 'derived_type' are not ! the same type (disregarding cv-qualifiers), 'derived_type' shall be ! a complete type. Diagnostic is produced if this requirement is not ! met. ! '__is_class (type)' ! If 'type' is a cv class type, and not a union type ([basic.compound]) the trait is true, else it is false. ! '__is_empty (type)' ! If '__is_class (type)' is false then the trait is false. Otherwise ! 'type' is considered empty if and only if: 'type' has no non-static ! data members, or all non-static data members, if any, are ! bit-fields of length 0, and 'type' has no virtual members, and ! 'type' has no virtual base classes, and 'type' has no base classes ! 'base_type' for which '__is_empty (base_type)' is false. Requires: ! 'type' shall be a complete type, (possibly cv-qualified) 'void', or ! an array of unknown bound. ! '__is_enum (type)' ! If 'type' is a cv enumeration type ([basic.compound]) the trait is true, else it is false. ! '__is_literal_type (type)' ! If 'type' is a literal type ([basic.types]) the trait is true, else ! it is false. Requires: 'type' shall be a complete type, (possibly ! cv-qualified) 'void', or an array of unknown bound. ! '__is_pod (type)' ! If 'type' is a cv POD type ([basic.types]) then the trait is true, ! else it is false. Requires: 'type' shall be a complete type, ! (possibly cv-qualified) 'void', or an array of unknown bound. ! '__is_polymorphic (type)' ! If 'type' is a polymorphic class ([class.virtual]) then the trait ! is true, else it is false. Requires: 'type' shall be a complete ! type, (possibly cv-qualified) 'void', or an array of unknown bound. ! '__is_standard_layout (type)' ! If 'type' is a standard-layout type ([basic.types]) the trait is ! true, else it is false. Requires: 'type' shall be a complete type, ! (possibly cv-qualified) 'void', or an array of unknown bound. ! '__is_trivial (type)' ! If 'type' is a trivial type ([basic.types]) the trait is true, else ! it is false. Requires: 'type' shall be a complete type, (possibly ! cv-qualified) 'void', or an array of unknown bound. ! '__is_union (type)' ! If 'type' is a cv union type ([basic.compound]) the trait is true, else it is false. ! '__underlying_type (type)' ! The underlying type of 'type'. Requires: 'type' shall be an enumeration type ([dcl.enum]).  File: gcc.info, Node: Java Exceptions, Next: Deprecated Features, Prev: Type Traits, Up: C++ Extensions *************** problematic code is: *** 42774,42784 **** } The usual effect of an incorrect guess is a link failure, complaining of ! a missing routine called `__gxx_personality_v0'. You can inform the compiler that Java exceptions are to be used in a translation unit, irrespective of what it might think, by writing ! `#pragma GCC java_exceptions' at the head of the file. This `#pragma' must appear before any functions that throw or catch exceptions, or run destructors when exceptions are thrown through them. --- 42580,42590 ---- } The usual effect of an incorrect guess is a link failure, complaining of ! a missing routine called '__gxx_personality_v0'. You can inform the compiler that Java exceptions are to be used in a translation unit, irrespective of what it might think, by writing ! '#pragma GCC java_exceptions' at the head of the file. This '#pragma' must appear before any functions that throw or catch exceptions, or run destructors when exceptions are thrown through them. *************** cases, the feature might be gone already *** 42803,42833 **** While the list below is not exhaustive, it documents some of the options that are now deprecated: ! `-fexternal-templates' ! `-falt-external-templates' These are two of the many ways for G++ to implement template instantiation. *Note Template Instantiation::. The C++ standard clearly defines how template definitions have to be organized across implementation units. G++ has an implicit instantiation mechanism that should work just fine for standard-conforming code. ! `-fstrict-prototype' ! `-fno-strict-prototype' ! Previously it was possible to use an empty prototype parameter ! list to indicate an unspecified number of parameters (like C), ! rather than no parameters, as C++ demands. This feature has been ! removed, except where it is required for backwards compatibility. ! *Note Backwards Compatibility::. ! G++ allows a virtual function returning `void *' to be overridden by ! one returning a different pointer type. This extension to the ! covariant return type rules is now deprecated and will be removed from a ! future version. ! The G++ minimum and maximum operators (`?') and their ! compound forms (`?=') have been deprecated and are now removed from G++. Code using these operators should be modified to use ! `std::min' and `std::max' instead. The named return value extension has been deprecated, and is now removed from G++. --- 42609,42639 ---- While the list below is not exhaustive, it documents some of the options that are now deprecated: ! '-fexternal-templates' ! '-falt-external-templates' These are two of the many ways for G++ to implement template instantiation. *Note Template Instantiation::. The C++ standard clearly defines how template definitions have to be organized across implementation units. G++ has an implicit instantiation mechanism that should work just fine for standard-conforming code. ! '-fstrict-prototype' ! '-fno-strict-prototype' ! Previously it was possible to use an empty prototype parameter list ! to indicate an unspecified number of parameters (like C), rather ! than no parameters, as C++ demands. This feature has been removed, ! except where it is required for backwards compatibility. *Note ! Backwards Compatibility::. ! G++ allows a virtual function returning 'void *' to be overridden by ! one returning a different pointer type. This extension to the covariant ! return type rules is now deprecated and will be removed from a future ! version. ! The G++ minimum and maximum operators ('?') and their ! compound forms ('?=') have been deprecated and are now removed from G++. Code using these operators should be modified to use ! 'std::min' and 'std::max' instead. The named return value extension has been deprecated, and is now removed from G++. *************** and other places where they are not perm *** 42846,42856 **** deprecated and will be removed from a future version of G++. G++ allows floating-point literals to appear in integral constant ! expressions, e.g. ` enum E { e = int(2.2 * 3.7) } ' This extension is deprecated and will be removed from a future version. G++ allows static data members of const floating-point type to be ! declared with an initializer in a class definition. The standard only allows initializers for static members of const integral types and const enumeration types so this extension has been deprecated and will be removed from a future version. --- 42652,42662 ---- deprecated and will be removed from a future version of G++. G++ allows floating-point literals to appear in integral constant ! expressions, e.g. ' enum E { e = int(2.2 * 3.7) } ' This extension is deprecated and will be removed from a future version. G++ allows static data members of const floating-point type to be ! declared with an initializer in a class definition. The standard only allows initializers for static members of const integral types and const enumeration types so this extension has been deprecated and will be removed from a future version. *************** used to be acceptable in previous drafts *** 42867,42887 **** ARM [Annotated C++ Reference Manual], are no longer accepted. In order to allow compilation of C++ written to such drafts, G++ contains some backwards compatibilities. _All such backwards compatibility features ! are liable to disappear in future versions of G++._ They should be ! considered deprecated. *Note Deprecated Features::. ! `For scope' If a variable is declared at for scope, it used to remain in scope ! until the end of the scope that contained the for statement ! (rather than just within the for scope). G++ retains this, but ! issues a warning, if such a variable is accessed outside the for ! scope. ! `Implicit C language' ! Old C system header files did not contain an `extern "C" {...}' scope to set the language. On such systems, all header files are implicitly scoped inside a C language scope. Also, an empty ! prototype `()' is treated as an unspecified number of arguments, rather than no arguments, as C++ demands.  --- 42673,42692 ---- ARM [Annotated C++ Reference Manual], are no longer accepted. In order to allow compilation of C++ written to such drafts, G++ contains some backwards compatibilities. _All such backwards compatibility features ! are liable to disappear in future versions of G++._ They should be ! considered deprecated. *Note Deprecated Features::. ! 'For scope' If a variable is declared at for scope, it used to remain in scope ! until the end of the scope that contained the for statement (rather ! than just within the for scope). G++ retains this, but issues a ! warning, if such a variable is accessed outside the for scope. ! 'Implicit C language' ! Old C system header files did not contain an 'extern "C" {...}' scope to set the language. On such systems, all header files are implicitly scoped inside a C language scope. Also, an empty ! prototype '()' is treated as an unspecified number of arguments, rather than no arguments, as C++ demands.  *************** File: gcc.info, Node: Objective-C, Nex *** 42890,42898 **** 8 GNU Objective-C features ************************** ! This document is meant to describe some of the GNU Objective-C ! features. It is not intended to teach you Objective-C. There are ! several resources on the Internet that present the language. * Menu: --- 42695,42703 ---- 8 GNU Objective-C features ************************** ! This document is meant to describe some of the GNU Objective-C features. ! It is not intended to teach you Objective-C. There are several resources ! on the Internet that present the language. * Menu: *************** File: gcc.info, Node: GNU Objective-C r *** 42916,42923 **** This section is specific for the GNU Objective-C runtime. If you are using a different runtime, you can skip it. ! The GNU Objective-C runtime provides an API that allows you to ! interact with the Objective-C runtime system, querying the live runtime structures and even manipulating them. This allows you for example to inspect and navigate classes, methods and protocols; to define new classes or new methods, and even to modify existing classes or --- 42721,42728 ---- This section is specific for the GNU Objective-C runtime. If you are using a different runtime, you can skip it. ! The GNU Objective-C runtime provides an API that allows you to interact ! with the Objective-C runtime system, querying the live runtime structures and even manipulating them. This allows you for example to inspect and navigate classes, methods and protocols; to define new classes or new methods, and even to modify existing classes or *************** provided by the "Objective-C 2.0" Apple/ *** 42944,42986 **** API is documented in the public header files of the GNU Objective-C runtime: ! * `objc/objc.h': this is the basic Objective-C header file, defining ! the basic Objective-C types such as `id', `Class' and `BOOL'. You have to include this header to do almost anything with Objective-C. ! * `objc/runtime.h': this header declares most of the public runtime API functions allowing you to inspect and manipulate the Objective-C runtime data structures. These functions are fairly standardized across Objective-C runtimes and are almost identical to the Apple/NeXT Objective-C runtime ones. It does not declare functions in some specialized areas (constructing and forwarding message invocations, threading) which are in the other headers ! below. You have to include `objc/objc.h' and `objc/runtime.h' to ! use any of the functions, such as `class_getName()', declared in ! `objc/runtime.h'. ! * `objc/message.h': this header declares public functions used to construct, deconstruct and forward message invocations. Because messaging is done in quite a different way on different runtimes, functions in this header are specific to the GNU Objective-C runtime implementation. ! * `objc/objc-exception.h': this header declares some public ! functions related to Objective-C exceptions. For example ! functions in this header allow you to throw an Objective-C ! exception from plain C/C++ code. ! * `objc/objc-sync.h': this header declares some public functions ! related to the Objective-C `@synchronized()' syntax, allowing you ! to emulate an Objective-C `@synchronized()' block in plain C/C++ code. ! * `objc/thr.h': this header declares a public runtime API threading layer that is only provided by the GNU Objective-C runtime. It ! declares functions such as `objc_mutex_lock()', which provide a platform-independent set of threading functions. - The header files contain detailed documentation for each function in the GNU Objective-C runtime API. --- 42749,42790 ---- API is documented in the public header files of the GNU Objective-C runtime: ! * 'objc/objc.h': this is the basic Objective-C header file, defining ! the basic Objective-C types such as 'id', 'Class' and 'BOOL'. You have to include this header to do almost anything with Objective-C. ! * 'objc/runtime.h': this header declares most of the public runtime API functions allowing you to inspect and manipulate the Objective-C runtime data structures. These functions are fairly standardized across Objective-C runtimes and are almost identical to the Apple/NeXT Objective-C runtime ones. It does not declare functions in some specialized areas (constructing and forwarding message invocations, threading) which are in the other headers ! below. You have to include 'objc/objc.h' and 'objc/runtime.h' to ! use any of the functions, such as 'class_getName()', declared in ! 'objc/runtime.h'. ! * 'objc/message.h': this header declares public functions used to construct, deconstruct and forward message invocations. Because messaging is done in quite a different way on different runtimes, functions in this header are specific to the GNU Objective-C runtime implementation. ! * 'objc/objc-exception.h': this header declares some public functions ! related to Objective-C exceptions. For example functions in this ! header allow you to throw an Objective-C exception from plain C/C++ ! code. ! * 'objc/objc-sync.h': this header declares some public functions ! related to the Objective-C '@synchronized()' syntax, allowing you ! to emulate an Objective-C '@synchronized()' block in plain C/C++ code. ! * 'objc/thr.h': this header declares a public runtime API threading layer that is only provided by the GNU Objective-C runtime. It ! declares functions such as 'objc_mutex_lock()', which provide a platform-independent set of threading functions. The header files contain detailed documentation for each function in the GNU Objective-C runtime API. *************** File: gcc.info, Node: Traditional GNU O *** 42991,43002 **** --------------------------------------------- The GNU Objective-C runtime used to provide a different API, which we ! call the "traditional" GNU Objective-C runtime API. Functions ! belonging to this API are easy to recognize because they use a ! different naming convention, such as `class_get_super_class()' ! (traditional API) instead of `class_getSuperclass()' (modern API). ! Software using this API includes the file `objc/objc-api.h' where it is ! declared. Starting with GCC 4.7.0, the traditional GNU runtime API is no longer available. --- 42795,42805 ---- --------------------------------------------- The GNU Objective-C runtime used to provide a different API, which we ! call the "traditional" GNU Objective-C runtime API. Functions belonging ! to this API are easy to recognize because they use a different naming ! convention, such as 'class_get_super_class()' (traditional API) instead ! of 'class_getSuperclass()' (modern API). Software using this API ! includes the file 'objc/objc-api.h' where it is declared. Starting with GCC 4.7.0, the traditional GNU runtime API is no longer available. *************** available. *** 43004,43029 ****  File: gcc.info, Node: Executing code before main, Next: Type encoding, Prev: GNU Objective-C runtime API, Up: Objective-C ! 8.2 `+load': Executing code before main ======================================= This section is specific for the GNU Objective-C runtime. If you are using a different runtime, you can skip it. The GNU Objective-C runtime provides a way that allows you to execute ! code before the execution of the program enters the `main' function. The code is executed on a per-class and a per-category basis, through a ! special class method `+load'. This facility is very useful if you want to initialize global variables which can be accessed by the program directly, without sending a message to the class first. The usual way to initialize global variables, in ! the `+initialize' method, might not be useful because `+initialize' is only called when the first message is sent to a class object, which in some cases could be too late. ! Suppose for example you have a `FileStream' class that declares ! `Stdin', `Stdout' and `Stderr' as global variables, like below: FileStream *Stdin = nil; --- 42807,42832 ----  File: gcc.info, Node: Executing code before main, Next: Type encoding, Prev: GNU Objective-C runtime API, Up: Objective-C ! 8.2 '+load': Executing code before main ======================================= This section is specific for the GNU Objective-C runtime. If you are using a different runtime, you can skip it. The GNU Objective-C runtime provides a way that allows you to execute ! code before the execution of the program enters the 'main' function. The code is executed on a per-class and a per-category basis, through a ! special class method '+load'. This facility is very useful if you want to initialize global variables which can be accessed by the program directly, without sending a message to the class first. The usual way to initialize global variables, in ! the '+initialize' method, might not be useful because '+initialize' is only called when the first message is sent to a class object, which in some cases could be too late. ! Suppose for example you have a 'FileStream' class that declares ! 'Stdin', 'Stdout' and 'Stderr' as global variables, like below: FileStream *Stdin = nil; *************** some cases could be too late. *** 43042,43057 **** /* Other methods here */ @end ! In this example, the initialization of `Stdin', `Stdout' and `Stderr' ! in `+initialize' occurs too late. The programmer can send a message to ! one of these objects before the variables are actually initialized, ! thus sending messages to the `nil' object. The `+initialize' method ! which actually initializes the global variables is not invoked until ! the first message is sent to the class object. The solution would ! require these variables to be initialized just before entering `main'. ! The correct solution of the above problem is to use the `+load' method ! instead of `+initialize': @implementation FileStream --- 42845,42860 ---- /* Other methods here */ @end ! In this example, the initialization of 'Stdin', 'Stdout' and 'Stderr' ! in '+initialize' occurs too late. The programmer can send a message to ! one of these objects before the variables are actually initialized, thus ! sending messages to the 'nil' object. The '+initialize' method which ! actually initializes the global variables is not invoked until the first ! message is sent to the class object. The solution would require these ! variables to be initialized just before entering 'main'. ! The correct solution of the above problem is to use the '+load' method ! instead of '+initialize': @implementation FileStream *************** instead of `+initialize': *** 43066,43079 **** /* Other methods here */ @end ! The `+load' is a method that is not overridden by categories. If a ! class and a category of it both implement `+load', both methods are invoked. This allows some additional initializations to be performed in a category. ! This mechanism is not intended to be a replacement for `+initialize'. ! You should be aware of its limitations when you decide to use it ! instead of `+initialize'. * Menu: --- 42869,42882 ---- /* Other methods here */ @end ! The '+load' is a method that is not overridden by categories. If a ! class and a category of it both implement '+load', both methods are invoked. This allows some additional initializations to be performed in a category. ! This mechanism is not intended to be a replacement for '+initialize'. ! You should be aware of its limitations when you decide to use it instead ! of '+initialize'. * Menu: *************** instead of `+initialize'. *** 43082,43096 ****  File: gcc.info, Node: What you can and what you cannot do in +load, Up: Executing code before main ! 8.2.1 What you can and what you cannot do in `+load' ---------------------------------------------------- ! `+load' is to be used only as a last resort. Because it is executed very early, most of the Objective-C runtime machinery will not be ready ! when `+load' is executed; hence `+load' works best for executing C code that is independent on the Objective-C runtime. ! The `+load' implementation in the GNU runtime guarantees you the following things: * you can write whatever C code you like; --- 42885,42899 ----  File: gcc.info, Node: What you can and what you cannot do in +load, Up: Executing code before main ! 8.2.1 What you can and what you cannot do in '+load' ---------------------------------------------------- ! '+load' is to be used only as a last resort. Because it is executed very early, most of the Objective-C runtime machinery will not be ready ! when '+load' is executed; hence '+load' works best for executing C code that is independent on the Objective-C runtime. ! The '+load' implementation in the GNU runtime guarantees you the following things: * you can write whatever C code you like; *************** following things: *** 43098,43109 **** * you can allocate and send messages to objects whose class is implemented in the same file; ! * the `+load' implementation of all super classes of a class are ! executed before the `+load' of that class is executed; ! ! * the `+load' implementation of a class is executed before the ! `+load' implementation of any category. In particular, the following things, even if they can work in a particular case, are not guaranteed: --- 42901,42911 ---- * you can allocate and send messages to objects whose class is implemented in the same file; ! * the '+load' implementation of all super classes of a class are ! executed before the '+load' of that class is executed; + * the '+load' implementation of a class is executed before the + '+load' implementation of any category. In particular, the following things, even if they can work in a particular case, are not guaranteed: *************** particular case, are not guaranteed: *** 43113,43138 **** * allocation of or sending messages to objects whose classes have a category implemented in the same file; ! * sending messages to Objective-C constant strings (`@"this is a constant string"'); ! You should make no assumptions about receiving `+load' in sibling ! classes when you write `+load' of a class. The order in which sibling ! classes receive `+load' is not guaranteed. ! ! The order in which `+load' and `+initialize' are called could be problematic if this matters. If you don't allocate objects inside ! `+load', it is guaranteed that `+load' is called before `+initialize'. ! If you create an object inside `+load' the `+initialize' method of ! object's class is invoked even if `+load' was not invoked. Note if you ! explicitly call `+load' on a class, `+initialize' will be called first. To avoid possible problems try to implement only one of these methods. ! The `+load' method is also invoked when a bundle is dynamically loaded into your running program. This happens automatically without any intervening operation from you. When you write bundles and you need to ! write `+load' you can safely create and send messages to objects whose classes already exist in the running program. The same restrictions as above apply to classes defined in bundle. --- 42915,42939 ---- * allocation of or sending messages to objects whose classes have a category implemented in the same file; ! * sending messages to Objective-C constant strings ('@"this is a constant string"'); + You should make no assumptions about receiving '+load' in sibling + classes when you write '+load' of a class. The order in which sibling + classes receive '+load' is not guaranteed. ! The order in which '+load' and '+initialize' are called could be problematic if this matters. If you don't allocate objects inside ! '+load', it is guaranteed that '+load' is called before '+initialize'. ! If you create an object inside '+load' the '+initialize' method of ! object's class is invoked even if '+load' was not invoked. Note if you ! explicitly call '+load' on a class, '+initialize' will be called first. To avoid possible problems try to implement only one of these methods. ! The '+load' method is also invoked when a bundle is dynamically loaded into your running program. This happens automatically without any intervening operation from you. When you write bundles and you need to ! write '+load' you can safely create and send messages to objects whose classes already exist in the running program. The same restrictions as above apply to classes defined in bundle. *************** File: gcc.info, Node: Type encoding, N *** 43142,43150 **** 8.3 Type encoding ================= ! This is an advanced section. Type encodings are used extensively by ! the compiler and by the runtime, but you generally do not need to know ! about them to use Objective-C. The Objective-C compiler generates type encodings for all the types. These type encodings are used at runtime to find out information about --- 42943,42951 ---- 8.3 Type encoding ================= ! This is an advanced section. Type encodings are used extensively by the ! compiler and by the runtime, but you generally do not need to know about ! them to use Objective-C. The Objective-C compiler generates type encodings for all the types. These type encodings are used at runtime to find out information about *************** selectors and methods and about objects *** 43152,43185 **** The types are encoded in the following way: ! `_Bool' `B' ! `char' `c' ! `unsigned char' `C' ! `short' `s' ! `unsigned short' `S' ! `int' `i' ! `unsigned int' `I' ! `long' `l' ! `unsigned long' `L' ! `long long' `q' ! `unsigned long `Q' ! long' ! `float' `f' ! `double' `d' ! `long double' `D' ! `void' `v' ! `id' `@' ! `Class' `#' ! `SEL' `:' ! `char*' `*' ! `enum' an `enum' is encoded exactly as the integer type that ! the compiler uses for it, which depends on the enumeration values. Often the compiler users ! `unsigned int', which is then encoded as `I'. ! unknown type `?' ! Complex types `j' followed by the inner type. For example ! `_Complex double' is encoded as "jd". ! bit-fields `b' followed by the starting position of the bit-field, the type of the bit-field and the size of the bit-field (the bit-fields encoding was changed from the NeXT's compiler encoding, see below) --- 42953,42986 ---- The types are encoded in the following way: ! '_Bool' 'B' ! 'char' 'c' ! 'unsigned char' 'C' ! 'short' 's' ! 'unsigned short' 'S' ! 'int' 'i' ! 'unsigned int' 'I' ! 'long' 'l' ! 'unsigned long' 'L' ! 'long long' 'q' ! 'unsigned long 'Q' ! long' ! 'float' 'f' ! 'double' 'd' ! 'long double' 'D' ! 'void' 'v' ! 'id' '@' ! 'Class' '#' ! 'SEL' ':' ! 'char*' '*' ! 'enum' an 'enum' is encoded exactly as the integer type ! that the compiler uses for it, which depends on the enumeration values. Often the compiler users ! 'unsigned int', which is then encoded as 'I'. ! unknown type '?' ! Complex types 'j' followed by the inner type. For example ! '_Complex double' is encoded as "jd". ! bit-fields 'b' followed by the starting position of the bit-field, the type of the bit-field and the size of the bit-field (the bit-fields encoding was changed from the NeXT's compiler encoding, see below) *************** bit closest to the beginning of the stru *** 43200,43276 **** The non-atomic types are encoded as follows: ! pointers `^' followed by the pointed type. ! arrays `[' followed by the number of elements in the array ! followed by the type of the elements followed by `]' ! structures `{' followed by the name of the structure (or `?' if the ! structure is unnamed), the `=' sign, the type of the ! members and by `}' ! unions `(' followed by the name of the structure (or `?' if the ! union is unnamed), the `=' sign, the type of the members ! followed by `)' ! vectors `![' followed by the vector_size (the number of bytes composing the vector) followed by a comma, followed by the alignment (in bytes) of the vector, followed by the ! type of the elements followed by `]' Here are some types and their encodings, as they are generated by the compiler on an i386 machine: Objective-C type Compiler encoding ! int a[10]; `[10i]' ! struct { `{?=i[3f]b128i3b131i2c}' ! int i; ! float f[3]; ! int a:3; ! int b:2; ! char c; ! } ! int a __attribute__ ((vector_size (16)));`![16,16i]' (alignment would depend on the machine) ! In addition to the types the compiler also encodes the type ! specifiers. The table below describes the encoding of the current ! Objective-C type specifiers: Specifier Encoding ! `const' `r' ! `in' `n' ! `inout' `N' ! `out' `o' ! `bycopy' `O' ! `byref' `R' ! `oneway' `V' The type specifiers are encoded just before the type. Unlike types however, the type specifiers are only encoded when they appear in method argument types. ! Note how `const' interacts with pointers: Objective-C type Compiler encoding ! const int `ri' ! const int* `^ri' ! int *const `r^i' ! `const int*' is a pointer to a `const int', and so is encoded as ! `^ri'. `int* const', instead, is a `const' pointer to an `int', and so ! is encoded as `r^i'. ! Finally, there is a complication when encoding `const char *' versus ! `char * const'. Because `char *' is encoded as `*' and not as `^c', ! there is no way to express the fact that `r' applies to the pointer or to the pointee. ! Hence, it is assumed as a convention that `r*' means `const char *' (since it is what is most often meant), and there is no way to encode ! `char *const'. `char *const' would simply be encoded as `*', and the ! `const' is lost. * Menu: --- 43001,43077 ---- The non-atomic types are encoded as follows: ! pointers '^' followed by the pointed type. ! arrays '[' followed by the number of elements in the array ! followed by the type of the elements followed by ']' ! structures '{' followed by the name of the structure (or '?' if the ! structure is unnamed), the '=' sign, the type of the ! members and by '}' ! unions '(' followed by the name of the structure (or '?' if the ! union is unnamed), the '=' sign, the type of the members ! followed by ')' ! vectors '![' followed by the vector_size (the number of bytes composing the vector) followed by a comma, followed by the alignment (in bytes) of the vector, followed by the ! type of the elements followed by ']' Here are some types and their encodings, as they are generated by the compiler on an i386 machine: Objective-C type Compiler encoding ! int a[10]; '[10i]' ! struct { '{?=i[3f]b128i3b131i2c}' ! int i; ! float f[3]; ! int a:3; ! int b:2; ! char c; ! } ! int a __attribute__ ((vector_size (16)));'![16,16i]' (alignment would depend on the machine) ! In addition to the types the compiler also encodes the type specifiers. ! The table below describes the encoding of the current Objective-C type ! specifiers: Specifier Encoding ! 'const' 'r' ! 'in' 'n' ! 'inout' 'N' ! 'out' 'o' ! 'bycopy' 'O' ! 'byref' 'R' ! 'oneway' 'V' The type specifiers are encoded just before the type. Unlike types however, the type specifiers are only encoded when they appear in method argument types. ! Note how 'const' interacts with pointers: Objective-C type Compiler encoding ! const int 'ri' ! const int* '^ri' ! int *const 'r^i' ! 'const int*' is a pointer to a 'const int', and so is encoded as '^ri'. ! 'int* const', instead, is a 'const' pointer to an 'int', and so is ! encoded as 'r^i'. ! Finally, there is a complication when encoding 'const char *' versus ! 'char * const'. Because 'char *' is encoded as '*' and not as '^c', ! there is no way to express the fact that 'r' applies to the pointer or to the pointee. ! Hence, it is assumed as a convention that 'r*' means 'const char *' (since it is what is most often meant), and there is no way to encode ! 'char *const'. 'char *const' would simply be encoded as '*', and the ! 'const' is lost. * Menu: *************** File: gcc.info, Node: Legacy type encod *** 43286,43294 **** Unfortunately, historically GCC used to have a number of bugs in its encoding code. The NeXT runtime expects GCC to emit type encodings in ! this historical format (compatible with GCC-3.3), so when using the ! NeXT runtime, GCC will introduce on purpose a number of incorrect ! encodings: * the read-only qualifier of the pointee gets emitted before the '^'. The read-only qualifier of the pointer itself gets ignored, unless --- 43087,43094 ---- Unfortunately, historically GCC used to have a number of bugs in its encoding code. The NeXT runtime expects GCC to emit type encodings in ! this historical format (compatible with GCC-3.3), so when using the NeXT ! runtime, GCC will introduce on purpose a number of incorrect encodings: * the read-only qualifier of the pointee gets emitted before the '^'. The read-only qualifier of the pointer itself gets ignored, unless *************** encodings: *** 43296,43310 **** type. * 32-bit longs are encoded as 'l' or 'L', but not always. For ! typedefs, the compiler uses 'i' or 'I' instead if encoding a ! struct field or a pointer. ! * `enum's are always encoded as 'i' (int) even if they are actually unsigned or long. - In addition to that, the NeXT runtime uses a different encoding for ! bitfields. It encodes them as `b' followed by the size, without a bit offset or the underlying field type.  --- 43096,43109 ---- type. * 32-bit longs are encoded as 'l' or 'L', but not always. For ! typedefs, the compiler uses 'i' or 'I' instead if encoding a struct ! field or a pointer. ! * 'enum's are always encoded as 'i' (int) even if they are actually unsigned or long. In addition to that, the NeXT runtime uses a different encoding for ! bitfields. It encodes them as 'b' followed by the size, without a bit offset or the underlying field type.  *************** File: gcc.info, Node: @encode, Next: M *** 43313,43325 **** 8.3.2 @encode ------------- ! GNU Objective-C supports the `@encode' syntax that allows you to create ! a type encoding from a C/Objective-C type. For example, `@encode(int)' ! is compiled by the compiler into `"i"'. ! `@encode' does not support type qualifiers other than `const'. For ! example, `@encode(const char*)' is valid and is compiled into `"r*"', ! while `@encode(bycopy char *)' is invalid and will cause a compilation error.  --- 43112,43124 ---- 8.3.2 @encode ------------- ! GNU Objective-C supports the '@encode' syntax that allows you to create ! a type encoding from a C/Objective-C type. For example, '@encode(int)' ! is compiled by the compiler into '"i"'. ! '@encode' does not support type qualifiers other than 'const'. For ! example, '@encode(const char*)' is valid and is compiled into '"r*"', ! while '@encode(bycopy char *)' is invalid and will cause a compilation error.  *************** File: gcc.info, Node: Method signatures *** 43329,43335 **** ----------------------- This section documents the encoding of method types, which is rarely ! needed to use Objective-C. You should skip it at a first reading; the runtime provides functions that will work on methods and can walk through the list of parameters and interpret them for you. These functions are part of the public "API" and are the preferred way to --- 43128,43134 ---- ----------------------- This section documents the encoding of method types, which is rarely ! needed to use Objective-C. You should skip it at a first reading; the runtime provides functions that will work on methods and can walk through the list of parameters and interpret them for you. These functions are part of the public "API" and are the preferred way to *************** arguments. *** 43346,43372 **** The "signature" is a null-terminated string, composed of the following: * The return type, including type qualifiers. For example, a method ! returning `int' would have `i' here. * The total size (in bytes) required to pass all the parameters. ! This includes the two hidden parameters (the object `self' and the ! method selector `_cmd'). * Each argument, with the type encoding, followed by the offset (in bytes) of the argument in the list of parameters. ! ! For example, a method with no arguments and returning `int' would have ! the signature `i8@0:4' if the size of a pointer is 4. The signature is ! interpreted as follows: the `i' is the return type (an `int'), the `8' is the total size of the parameters in bytes (two pointers each of size ! 4), the `@0' is the first parameter (an object at byte offset `0') and ! `:4' is the second parameter (a `SEL' at byte offset `4'). You can easily find more examples by running the "strings" program on ! an Objective-C object file compiled by GCC. You'll see a lot of ! strings that look very much like `i8@0:4'. They are signatures of ! Objective-C methods.  File: gcc.info, Node: Garbage Collection, Next: Constant string objects, Prev: Type encoding, Up: Objective-C --- 43145,43170 ---- The "signature" is a null-terminated string, composed of the following: * The return type, including type qualifiers. For example, a method ! returning 'int' would have 'i' here. * The total size (in bytes) required to pass all the parameters. ! This includes the two hidden parameters (the object 'self' and the ! method selector '_cmd'). * Each argument, with the type encoding, followed by the offset (in bytes) of the argument in the list of parameters. ! For example, a method with no arguments and returning 'int' would have ! the signature 'i8@0:4' if the size of a pointer is 4. The signature is ! interpreted as follows: the 'i' is the return type (an 'int'), the '8' is the total size of the parameters in bytes (two pointers each of size ! 4), the '@0' is the first parameter (an object at byte offset '0') and ! ':4' is the second parameter (a 'SEL' at byte offset '4'). You can easily find more examples by running the "strings" program on ! an Objective-C object file compiled by GCC. You'll see a lot of strings ! that look very much like 'i8@0:4'. They are signatures of Objective-C ! methods.  File: gcc.info, Node: Garbage Collection, Next: Constant string objects, Prev: Type encoding, Up: Objective-C *************** using a powerful conservative garbage co *** 43382,43391 **** Boehm-Demers-Weiser conservative garbage collector. To enable the support for it you have to configure the compiler using ! an additional argument, `--enable-objc-gc'. This will build the boehm-gc library, and build an additional runtime library which has several enhancements to support the garbage collector. The new library ! has a new name, `libobjc_gc.a' to not conflict with the non-garbage-collected library. When the garbage collector is used, the objects are allocated using the --- 43180,43189 ---- Boehm-Demers-Weiser conservative garbage collector. To enable the support for it you have to configure the compiler using ! an additional argument, '--enable-objc-gc'. This will build the boehm-gc library, and build an additional runtime library which has several enhancements to support the garbage collector. The new library ! has a new name, 'libobjc_gc.a' to not conflict with the non-garbage-collected library. When the garbage collector is used, the objects are allocated using the *************** on where pointers are located inside obj *** 43395,43408 **** computed once per class, immediately after the class has been initialized. ! There is a new runtime function `class_ivar_set_gcinvisible()' which can be used to declare a so-called "weak pointer" reference. Such a pointer is basically hidden for the garbage collector; this can be useful in certain situations, especially when you want to keep track of the allocated objects, yet allow them to be collected. This kind of pointers can only be members of objects, you cannot declare a global pointer as a weak reference. Every type which is a pointer type can be ! declared a weak pointer, including `id', `Class' and `SEL'. Here is an example of how to use this feature. Suppose you want to implement a class whose instances hold a weak pointer reference; the --- 43193,43206 ---- computed once per class, immediately after the class has been initialized. ! There is a new runtime function 'class_ivar_set_gcinvisible()' which can be used to declare a so-called "weak pointer" reference. Such a pointer is basically hidden for the garbage collector; this can be useful in certain situations, especially when you want to keep track of the allocated objects, yet allow them to be collected. This kind of pointers can only be members of objects, you cannot declare a global pointer as a weak reference. Every type which is a pointer type can be ! declared a weak pointer, including 'id', 'Class' and 'SEL'. Here is an example of how to use this feature. Suppose you want to implement a class whose instances hold a weak pointer reference; the *************** following class does this: *** 43441,43447 **** @end Weak pointers are supported through a new type character specifier ! represented by the `!' character. The `class_ivar_set_gcinvisible()' function adds or removes this specifier to the string type description of the instance variable named as argument. --- 43239,43245 ---- @end Weak pointers are supported through a new type character specifier ! represented by the '!' character. The 'class_ivar_set_gcinvisible()' function adds or removes this specifier to the string type description of the instance variable named as argument. *************** File: gcc.info, Node: Constant string o *** 43453,43472 **** GNU Objective-C provides constant string objects that are generated directly by the compiler. You declare a constant string object by ! prefixing a C constant string with the character `@': id myString = @"this is a constant string object"; The constant string objects are by default instances of the ! `NXConstantString' class which is provided by the GNU Objective-C runtime. To get the definition of this class you must include the ! `objc/NXConstStr.h' header file. User defined libraries may want to implement their own constant string class. To be able to support them, the GNU Objective-C compiler provides a new command line options ! `-fconstant-string-class=CLASS-NAME'. The provided class should adhere ! to a strict structure, the same as `NXConstantString''s structure: @interface MyConstantStringClass --- 43251,43270 ---- GNU Objective-C provides constant string objects that are generated directly by the compiler. You declare a constant string object by ! prefixing a C constant string with the character '@': id myString = @"this is a constant string object"; The constant string objects are by default instances of the ! 'NXConstantString' class which is provided by the GNU Objective-C runtime. To get the definition of this class you must include the ! 'objc/NXConstStr.h' header file. User defined libraries may want to implement their own constant string class. To be able to support them, the GNU Objective-C compiler provides a new command line options ! '-fconstant-string-class=CLASS-NAME'. The provided class should adhere ! to a strict structure, the same as 'NXConstantString''s structure: @interface MyConstantStringClass *************** to a strict structure, the same as `NXCo *** 43477,43506 **** } @end ! `NXConstantString' inherits from `Object'; user class libraries may choose to inherit the customized constant string class from a different ! class than `Object'. There is no requirement in the methods the ! constant string class has to implement, but the final ivar layout of ! the class must be the compatible with the given structure. When the compiler creates the statically allocated constant string ! object, the `c_string' field will be filled by the compiler with the ! string; the `length' field will be filled by the compiler with the ! string length; the `isa' pointer will be filled with `NULL' by the compiler, and it will later be fixed up automatically at runtime by the GNU Objective-C runtime library to point to the class which was set by ! the `-fconstant-string-class' option when the object file is loaded (if ! you wonder how it works behind the scenes, the name of the class to ! use, and the list of static objects to fixup, are stored by the ! compiler in the object file in a place where the GNU runtime library ! will find them at runtime). ! As a result, when a file is compiled with the ! `-fconstant-string-class' option, all the constant string objects will ! be instances of the class specified as argument to this option. It is ! possible to have multiple compilation units referring to different ! constant string classes, neither the compiler nor the linker impose any ! restrictions in doing this.  File: gcc.info, Node: compatibility_alias, Next: Exceptions, Prev: Constant string objects, Up: Objective-C --- 43275,43304 ---- } @end ! 'NXConstantString' inherits from 'Object'; user class libraries may choose to inherit the customized constant string class from a different ! class than 'Object'. There is no requirement in the methods the ! constant string class has to implement, but the final ivar layout of the ! class must be the compatible with the given structure. When the compiler creates the statically allocated constant string ! object, the 'c_string' field will be filled by the compiler with the ! string; the 'length' field will be filled by the compiler with the ! string length; the 'isa' pointer will be filled with 'NULL' by the compiler, and it will later be fixed up automatically at runtime by the GNU Objective-C runtime library to point to the class which was set by ! the '-fconstant-string-class' option when the object file is loaded (if ! you wonder how it works behind the scenes, the name of the class to use, ! and the list of static objects to fixup, are stored by the compiler in ! the object file in a place where the GNU runtime library will find them ! at runtime). ! As a result, when a file is compiled with the '-fconstant-string-class' ! option, all the constant string objects will be instances of the class ! specified as argument to this option. It is possible to have multiple ! compilation units referring to different constant string classes, ! neither the compiler nor the linker impose any restrictions in doing ! this.  File: gcc.info, Node: compatibility_alias, Next: Exceptions, Prev: Constant string objects, Up: Objective-C *************** File: gcc.info, Node: compatibility_ali *** 43508,43528 **** 8.6 compatibility_alias ======================= ! The keyword `@compatibility_alias' allows you to define a class name as equivalent to another class name. For example: @compatibility_alias WOApplication GSWApplication; ! tells the compiler that each time it encounters `WOApplication' as a ! class name, it should replace it with `GSWApplication' (that is, ! `WOApplication' is just an alias for `GSWApplication'). There are some constraints on how this can be used-- ! * `WOApplication' (the alias) must not be an existing class; ! ! * `GSWApplication' (the real class) must be an existing class.  File: gcc.info, Node: Exceptions, Next: Synchronization, Prev: compatibility_alias, Up: Objective-C --- 43306,43325 ---- 8.6 compatibility_alias ======================= ! The keyword '@compatibility_alias' allows you to define a class name as equivalent to another class name. For example: @compatibility_alias WOApplication GSWApplication; ! tells the compiler that each time it encounters 'WOApplication' as a ! class name, it should replace it with 'GSWApplication' (that is, ! 'WOApplication' is just an alias for 'GSWApplication'). There are some constraints on how this can be used-- ! * 'WOApplication' (the alias) must not be an existing class; + * 'GSWApplication' (the real class) must be an existing class.  File: gcc.info, Node: Exceptions, Next: Synchronization, Prev: compatibility_alias, Up: Objective-C *************** in the following example: *** 43557,43602 **** ... } ! The `@throw' statement may appear anywhere in an Objective-C or ! Objective-C++ program; when used inside of a `@catch' block, the ! `@throw' may appear without an argument (as shown above), in which case ! the object caught by the `@catch' will be rethrown. Note that only (pointers to) Objective-C objects may be thrown and caught using this scheme. When an object is thrown, it will be caught ! by the nearest `@catch' clause capable of handling objects of that ! type, analogously to how `catch' blocks work in C++ and Java. A ! `@catch(id ...)' clause (as shown above) may also be provided to catch ! any and all Objective-C exceptions not caught by previous `@catch' ! clauses (if any). ! The `@finally' clause, if present, will be executed upon exit from the ! immediately preceding `@try ... @catch' section. This will happen regardless of whether any exceptions are thrown, caught or rethrown ! inside the `@try ... @catch' section, analogously to the behavior of ! the `finally' clause in Java. There are several caveats to using the new exception mechanism: ! * The `-fobjc-exceptions' command line option must be used when compiling Objective-C files that use exceptions. * With the GNU runtime, exceptions are always implemented as "native" ! exceptions and it is recommended that the `-fexceptions' and ! `-shared-libgcc' options are used when linking. * With the NeXT runtime, although currently designed to be binary ! compatible with `NS_HANDLER'-style idioms provided by the ! `NSException' class, the new exceptions can only be used on Mac OS X 10.3 (Panther) and later systems, due to additional functionality needed in the NeXT Objective-C runtime. * As mentioned above, the new exceptions do not support handling ! types other than Objective-C objects. Furthermore, when used from Objective-C++, the Objective-C exception model does not interoperate with C++ exceptions at this time. This means you ! cannot `@throw' an exception from Objective-C and `catch' it in ! C++, or vice versa (i.e., `throw ... @catch').  File: gcc.info, Node: Synchronization, Next: Fast enumeration, Prev: Exceptions, Up: Objective-C --- 43354,43398 ---- ... } ! The '@throw' statement may appear anywhere in an Objective-C or ! Objective-C++ program; when used inside of a '@catch' block, the ! '@throw' may appear without an argument (as shown above), in which case ! the object caught by the '@catch' will be rethrown. Note that only (pointers to) Objective-C objects may be thrown and caught using this scheme. When an object is thrown, it will be caught ! by the nearest '@catch' clause capable of handling objects of that type, ! analogously to how 'catch' blocks work in C++ and Java. A '@catch(id ! ...)' clause (as shown above) may also be provided to catch any and all ! Objective-C exceptions not caught by previous '@catch' clauses (if any). ! The '@finally' clause, if present, will be executed upon exit from the ! immediately preceding '@try ... @catch' section. This will happen regardless of whether any exceptions are thrown, caught or rethrown ! inside the '@try ... @catch' section, analogously to the behavior of the ! 'finally' clause in Java. There are several caveats to using the new exception mechanism: ! * The '-fobjc-exceptions' command line option must be used when compiling Objective-C files that use exceptions. * With the GNU runtime, exceptions are always implemented as "native" ! exceptions and it is recommended that the '-fexceptions' and ! '-shared-libgcc' options are used when linking. * With the NeXT runtime, although currently designed to be binary ! compatible with 'NS_HANDLER'-style idioms provided by the ! 'NSException' class, the new exceptions can only be used on Mac OS X 10.3 (Panther) and later systems, due to additional functionality needed in the NeXT Objective-C runtime. * As mentioned above, the new exceptions do not support handling ! types other than Objective-C objects. Furthermore, when used from Objective-C++, the Objective-C exception model does not interoperate with C++ exceptions at this time. This means you ! cannot '@throw' an exception from Objective-C and 'catch' it in ! C++, or vice versa (i.e., 'throw ... @catch').  File: gcc.info, Node: Synchronization, Next: Fast enumeration, Prev: Exceptions, Up: Objective-C *************** GNU Objective-C provides support for syn *** 43610,43632 **** ... } ! Upon entering the `@synchronized' block, a thread of execution shall ! first check whether a lock has been placed on the corresponding `guard' object by another thread. If it has, the current thread shall wait ! until the other thread relinquishes its lock. Once `guard' becomes ! available, the current thread will place its own lock on it, execute ! the code contained in the `@synchronized' block, and finally relinquish ! the lock (thereby making `guard' available to other threads). ! Unlike Java, Objective-C does not allow for entire methods to be ! marked `@synchronized'. Note that throwing exceptions out of ! `@synchronized' blocks is allowed, and will cause the guarding object ! to be unlocked properly. Because of the interactions between synchronization and exception ! handling, you can only use `@synchronized' when compiling with exceptions enabled, that is with the command line option ! `-fobjc-exceptions'.  File: gcc.info, Node: Fast enumeration, Next: Messaging with the GNU Objective-C runtime, Prev: Synchronization, Up: Objective-C --- 43406,43428 ---- ... } ! Upon entering the '@synchronized' block, a thread of execution shall ! first check whether a lock has been placed on the corresponding 'guard' object by another thread. If it has, the current thread shall wait ! until the other thread relinquishes its lock. Once 'guard' becomes ! available, the current thread will place its own lock on it, execute the ! code contained in the '@synchronized' block, and finally relinquish the ! lock (thereby making 'guard' available to other threads). ! Unlike Java, Objective-C does not allow for entire methods to be marked ! '@synchronized'. Note that throwing exceptions out of '@synchronized' ! blocks is allowed, and will cause the guarding object to be unlocked ! properly. Because of the interactions between synchronization and exception ! handling, you can only use '@synchronized' when compiling with exceptions enabled, that is with the command line option ! '-fobjc-exceptions'.  File: gcc.info, Node: Fast enumeration, Next: Messaging with the GNU Objective-C runtime, Prev: Synchronization, Up: Objective-C *************** GNU Objective-C provides support for the *** 43657,43675 **** /* Do something with 'object' */ } ! `array' needs to be an Objective-C object (usually a collection ! object, for example an array, a dictionary or a set) which implements ! the "Fast Enumeration Protocol" (see below). If you are using a ! Foundation library such as GNUstep Base or Apple Cocoa Foundation, all ! collection objects in the library implement this protocol and can be ! used in this way. ! The code above would iterate over all objects in `array'. For each of ! them, it assigns it to `object', then executes the `Do something with 'object'' statements. Here is a fully worked-out example using a Foundation library (which ! provides the implementation of `NSArray', `NSString' and `NSLog'): NSArray *array = [NSArray arrayWithObjects: @"1", @"2", @"3", nil]; NSString *object; --- 43453,43471 ---- /* Do something with 'object' */ } ! 'array' needs to be an Objective-C object (usually a collection object, ! for example an array, a dictionary or a set) which implements the "Fast ! Enumeration Protocol" (see below). If you are using a Foundation ! library such as GNUstep Base or Apple Cocoa Foundation, all collection ! objects in the library implement this protocol and can be used in this ! way. ! The code above would iterate over all objects in 'array'. For each of ! them, it assigns it to 'object', then executes the 'Do something with 'object'' statements. Here is a fully worked-out example using a Foundation library (which ! provides the implementation of 'NSArray', 'NSString' and 'NSLog'): NSArray *array = [NSArray arrayWithObjects: @"1", @"2", @"3", nil]; NSString *object; *************** A c99-like declaration syntax is also al *** 43706,43713 **** but can save some typing. ! Note that the option `-std=c99' is not required to allow this syntax ! in Objective-C.  File: gcc.info, Node: Fast enumeration details, Next: Fast enumeration protocol, Prev: c99-like fast enumeration syntax, Up: Fast enumeration --- 43502,43509 ---- but can save some typing. ! Note that the option '-std=c99' is not required to allow this syntax in ! Objective-C.  File: gcc.info, Node: Fast enumeration details, Next: Fast enumeration protocol, Prev: c99-like fast enumeration syntax, Up: Fast enumeration *************** the code *** 43725,43733 **** here is what happens when you run it: ! * `COLLECTION EXPRESSION' is evaluated exactly once and the result ! is used as the collection object to iterate over. This means it ! is safe to write code such as `for (object in [NSDictionary keyEnumerator]) ...'. * the iteration is implemented by the compiler by repeatedly getting --- 43521,43529 ---- here is what happens when you run it: ! * 'COLLECTION EXPRESSION' is evaluated exactly once and the result is ! used as the collection object to iterate over. This means it is ! safe to write code such as 'for (object in [NSDictionary keyEnumerator]) ...'. * the iteration is implemented by the compiler by repeatedly getting *************** the code *** 43737,43769 **** objects are retrieved one by one (hence the name "fast enumeration"). ! * if there are no objects in the collection, then `OBJECT ! EXPRESSION' is set to `nil' and the loop immediately terminates. * if there are objects in the collection, then for each object in the ! collection (in the order they are returned) `OBJECT EXPRESSION' is ! set to the object, then `STATEMENTS' are executed. ! * `STATEMENTS' can contain `break' and `continue' commands, which will abort the iteration or skip to the next loop iteration as expected. * when the iteration ends because there are no more objects to ! iterate over, `OBJECT EXPRESSION' is set to `nil'. This allows ! you to determine whether the iteration finished because a `break' ! command was used (in which case `OBJECT EXPRESSION' will remain ! set to the last object that was iterated over) or because it ! iterated over all the objects (in which case `OBJECT EXPRESSION' ! will be set to `nil'). ! * `STATEMENTS' must not make any changes to the collection object; ! if they do, it is a hard error and the fast enumeration terminates ! by invoking `objc_enumerationMutation', a runtime function that normally aborts the program but which can be customized by ! Foundation libraries via `objc_set_mutation_handler' to do something different, such as raising an exception. -  File: gcc.info, Node: Fast enumeration protocol, Prev: Fast enumeration details, Up: Fast enumeration --- 43533,43564 ---- objects are retrieved one by one (hence the name "fast enumeration"). ! * if there are no objects in the collection, then 'OBJECT EXPRESSION' ! is set to 'nil' and the loop immediately terminates. * if there are objects in the collection, then for each object in the ! collection (in the order they are returned) 'OBJECT EXPRESSION' is ! set to the object, then 'STATEMENTS' are executed. ! * 'STATEMENTS' can contain 'break' and 'continue' commands, which will abort the iteration or skip to the next loop iteration as expected. * when the iteration ends because there are no more objects to ! iterate over, 'OBJECT EXPRESSION' is set to 'nil'. This allows you ! to determine whether the iteration finished because a 'break' ! command was used (in which case 'OBJECT EXPRESSION' will remain set ! to the last object that was iterated over) or because it iterated ! over all the objects (in which case 'OBJECT EXPRESSION' will be set ! to 'nil'). ! * 'STATEMENTS' must not make any changes to the collection object; if ! they do, it is a hard error and the fast enumeration terminates by ! invoking 'objc_enumerationMutation', a runtime function that normally aborts the program but which can be customized by ! Foundation libraries via 'objc_set_mutation_handler' to do something different, such as raising an exception.  File: gcc.info, Node: Fast enumeration protocol, Prev: Fast enumeration details, Up: Fast enumeration *************** enumeration, you need to have it impleme *** 43777,43783 **** objects: (id *)objects count: (unsigned long)len; ! where `NSFastEnumerationState' must be defined in your code as follows: typedef struct { --- 43572,43578 ---- objects: (id *)objects count: (unsigned long)len; ! where 'NSFastEnumerationState' must be defined in your code as follows: typedef struct { *************** enumeration, you need to have it impleme *** 43787,43797 **** unsigned long extra[5]; } NSFastEnumerationState; ! If no `NSFastEnumerationState' is defined in your code, the compiler ! will automatically replace `NSFastEnumerationState *' with `struct __objcFastEnumerationState *', where that type is silently defined by the compiler in an identical way. This can be confusing and we ! recommend that you define `NSFastEnumerationState' (as shown above) instead. The method is called repeatedly during a fast enumeration to retrieve --- 43582,43592 ---- unsigned long extra[5]; } NSFastEnumerationState; ! If no 'NSFastEnumerationState' is defined in your code, the compiler ! will automatically replace 'NSFastEnumerationState *' with 'struct __objcFastEnumerationState *', where that type is silently defined by the compiler in an identical way. This can be confusing and we ! recommend that you define 'NSFastEnumerationState' (as shown above) instead. The method is called repeatedly during a fast enumeration to retrieve *************** batches of objects. Each invocation of *** 43799,43836 **** next batch of objects. The return value of the method is the number of objects in the current ! batch; this should not exceed `len', which is the maximum size of a batch as requested by the caller. The batch itself is returned in the ! `itemsPtr' field of the `NSFastEnumerationState' struct. ! To help with returning the objects, the `objects' array is a C array ! preallocated by the caller (on the stack) of size `len'. In many cases ! you can put the objects you want to return in that `objects' array, ! then do `itemsPtr = objects'. But you don't have to; if your ! collection already has the objects to return in some form of C array, ! it could return them from there instead. ! The `state' and `extra' fields of the `NSFastEnumerationState' structure allows your collection object to keep track of the state of ! the enumeration. In a simple array implementation, `state' may keep ! track of the index of the last object that was returned, and `extra' ! may be unused. ! The `mutationsPtr' field of the `NSFastEnumerationState' is used to ! keep track of mutations. It should point to a number; before working ! on each object, the fast enumeration loop will check that this number ! has not changed. If it has, a mutation has happened and the fast ! enumeration will abort. So, `mutationsPtr' could be set to point to some sort of version number of your collection, which is increased by ! one every time there is a change (for example when an object is added ! or removed). Or, if you are content with less strict mutation checks, ! it could point to the number of objects in your collection or some ! other value that can be checked to perform an approximate check that ! the collection has not been mutated. ! Finally, note how we declared the `len' argument and the return value ! to be of type `unsigned long'. They could also be declared to be of ! type `unsigned int' and everything would still work.  File: gcc.info, Node: Messaging with the GNU Objective-C runtime, Prev: Fast enumeration, Up: Objective-C --- 43594,43631 ---- next batch of objects. The return value of the method is the number of objects in the current ! batch; this should not exceed 'len', which is the maximum size of a batch as requested by the caller. The batch itself is returned in the ! 'itemsPtr' field of the 'NSFastEnumerationState' struct. ! To help with returning the objects, the 'objects' array is a C array ! preallocated by the caller (on the stack) of size 'len'. In many cases ! you can put the objects you want to return in that 'objects' array, then ! do 'itemsPtr = objects'. But you don't have to; if your collection ! already has the objects to return in some form of C array, it could ! return them from there instead. ! The 'state' and 'extra' fields of the 'NSFastEnumerationState' structure allows your collection object to keep track of the state of ! the enumeration. In a simple array implementation, 'state' may keep ! track of the index of the last object that was returned, and 'extra' may ! be unused. ! The 'mutationsPtr' field of the 'NSFastEnumerationState' is used to ! keep track of mutations. It should point to a number; before working on ! each object, the fast enumeration loop will check that this number has ! not changed. If it has, a mutation has happened and the fast ! enumeration will abort. So, 'mutationsPtr' could be set to point to some sort of version number of your collection, which is increased by ! one every time there is a change (for example when an object is added or ! removed). Or, if you are content with less strict mutation checks, it ! could point to the number of objects in your collection or some other ! value that can be checked to perform an approximate check that the ! collection has not been mutated. ! Finally, note how we declared the 'len' argument and the return value ! to be of type 'unsigned long'. They could also be declared to be of ! type 'unsigned int' and everything would still work.  File: gcc.info, Node: Messaging with the GNU Objective-C runtime, Prev: Fast enumeration, Up: Objective-C *************** designed to be portable, and so is based *** 43846,43863 **** Sending a message in the GNU Objective-C runtime is composed of two separate steps. First, there is a call to the lookup function, ! `objc_msg_lookup ()' (or, in the case of messages to super, ! `objc_msg_lookup_super ()'). This runtime function takes as argument ! the receiver and the selector of the method to be called; it returns ! the `IMP', that is a pointer to the function implementing the method. ! The second step of method invocation consists of casting this pointer function to the appropriate function pointer type, and calling the function pointed to it with the right arguments. For example, when the compiler encounters a method invocation such as ! `[object init]', it compiles it into a call to `objc_msg_lookup ! (object, @selector(init))' followed by a cast of the returned value to ! the appropriate function pointer type, and then it calls it. * Menu: --- 43641,43658 ---- Sending a message in the GNU Objective-C runtime is composed of two separate steps. First, there is a call to the lookup function, ! 'objc_msg_lookup ()' (or, in the case of messages to super, ! 'objc_msg_lookup_super ()'). This runtime function takes as argument ! the receiver and the selector of the method to be called; it returns the ! 'IMP', that is a pointer to the function implementing the method. The ! second step of method invocation consists of casting this pointer function to the appropriate function pointer type, and calling the function pointed to it with the right arguments. For example, when the compiler encounters a method invocation such as ! '[object init]', it compiles it into a call to 'objc_msg_lookup (object, ! @selector(init))' followed by a cast of the returned value to the ! appropriate function pointer type, and then it calls it. * Menu: *************** File: gcc.info, Node: Dynamically regis *** 43870,43878 **** 8.10.1 Dynamically registering methods -------------------------------------- ! If `objc_msg_lookup()' does not find a suitable method implementation, ! because the receiver does not implement the required method, it tries ! to see if the class can dynamically register the method. To do so, the runtime checks if the class of the receiver implements the method --- 43665,43673 ---- 8.10.1 Dynamically registering methods -------------------------------------- ! If 'objc_msg_lookup()' does not find a suitable method implementation, ! because the receiver does not implement the required method, it tries to ! see if the class can dynamically register the method. To do so, the runtime checks if the class of the receiver implements the method *************** the method *** 43883,43906 **** + (BOOL) resolveClassMethod: (SEL)selector; ! in the case of a class method. If the class implements it, the ! runtime invokes it, passing as argument the selector of the original ! method, and if it returns `YES', the runtime tries the lookup again, ! which could now succeed if a matching method was added dynamically by ! `+resolveInstanceMethod:' or `+resolveClassMethod:'. This allows classes to dynamically register methods (by adding them to ! the class using `class_addMethod') when they are first called. To do ! so, a class should implement `+resolveInstanceMethod:' (or, depending ! on the case, `+resolveClassMethod:') and have it recognize the ! selectors of methods that can be registered dynamically at runtime, ! register them, and return `YES'. It should return `NO' for methods ! that it does not dynamically registered at runtime. ! If `+resolveInstanceMethod:' (or `+resolveClassMethod:') is not ! implemented or returns `NO', the runtime then tries the forwarding hook. ! Support for `+resolveInstanceMethod:' and `resolveClassMethod:' was added to the GNU Objective-C runtime in GCC version 4.6.  --- 43678,43701 ---- + (BOOL) resolveClassMethod: (SEL)selector; ! in the case of a class method. If the class implements it, the runtime ! invokes it, passing as argument the selector of the original method, and ! if it returns 'YES', the runtime tries the lookup again, which could now ! succeed if a matching method was added dynamically by ! '+resolveInstanceMethod:' or '+resolveClassMethod:'. This allows classes to dynamically register methods (by adding them to ! the class using 'class_addMethod') when they are first called. To do ! so, a class should implement '+resolveInstanceMethod:' (or, depending on ! the case, '+resolveClassMethod:') and have it recognize the selectors of ! methods that can be registered dynamically at runtime, register them, ! and return 'YES'. It should return 'NO' for methods that it does not ! dynamically registered at runtime. ! If '+resolveInstanceMethod:' (or '+resolveClassMethod:') is not ! implemented or returns 'NO', the runtime then tries the forwarding hook. ! Support for '+resolveInstanceMethod:' and 'resolveClassMethod:' was added to the GNU Objective-C runtime in GCC version 4.6.  *************** File: gcc.info, Node: Forwarding hook, *** 43910,43962 **** ---------------------- The GNU Objective-C runtime provides a hook, called ! `__objc_msg_forward2', which is called by `objc_msg_lookup()' when it can't find a method implementation in the runtime tables and after ! calling `+resolveInstanceMethod:' and `+resolveClassMethod:' has been attempted and did not succeed in dynamically registering the method. To configure the hook, you set the global variable ! `__objc_msg_forward2' to a function with the same argument and return ! types of `objc_msg_lookup()'. When `objc_msg_lookup()' can not find a method implementation, it invokes the hook function you provided to get a method implementation to return. So, in practice ! `__objc_msg_forward2' allows you to extend `objc_msg_lookup()' by ! adding some custom code that is called to do a further lookup when no ! standard method implementation can be found using the normal lookup. This hook is generally reserved for "Foundation" libraries such as GNUstep Base, which use it to implement their high-level method ! forwarding API, typically based around the `forwardInvocation:' method. So, unless you are implementing your own "Foundation" library, you should not set this hook. ! In a typical forwarding implementation, the `__objc_msg_forward2' hook function determines the argument and return type of the method that is being looked up, and then creates a function that takes these arguments and has that return type, and returns it to the caller. Creating this function is non-trivial and is typically performed using a dedicated ! library such as `libffi'. The forwarding method implementation thus created is returned by ! `objc_msg_lookup()' and is executed as if it was a normal method ! implementation. When the forwarding method implementation is called, ! it is usually expected to pack all arguments into some sort of object ! (typically, an `NSInvocation' in a "Foundation" library), and hand it ! over to the programmer (`forwardInvocation:') who is then allowed to manipulate the method invocation using a high-level API provided by the "Foundation" library. For example, the programmer may want to examine the method invocation arguments and name and potentially change them before forwarding the method invocation to one or more local objects ! (`performInvocation:') or even to remote objects (by using Distributed Objects or some other mechanism). When all this completes, the return value is passed back and must be returned correctly to the original caller. ! Note that the GNU Objective-C runtime currently provides no support ! for method forwarding or method invocations other than the ! `__objc_msg_forward2' hook. ! If the forwarding hook does not exist or returns `NULL', the runtime currently attempts forwarding using an older, deprecated API, and if that fails, it aborts the program. In future versions of the GNU Objective-C runtime, the runtime will immediately abort. --- 43705,43757 ---- ---------------------- The GNU Objective-C runtime provides a hook, called ! '__objc_msg_forward2', which is called by 'objc_msg_lookup()' when it can't find a method implementation in the runtime tables and after ! calling '+resolveInstanceMethod:' and '+resolveClassMethod:' has been attempted and did not succeed in dynamically registering the method. To configure the hook, you set the global variable ! '__objc_msg_forward2' to a function with the same argument and return ! types of 'objc_msg_lookup()'. When 'objc_msg_lookup()' can not find a method implementation, it invokes the hook function you provided to get a method implementation to return. So, in practice ! '__objc_msg_forward2' allows you to extend 'objc_msg_lookup()' by adding ! some custom code that is called to do a further lookup when no standard ! method implementation can be found using the normal lookup. This hook is generally reserved for "Foundation" libraries such as GNUstep Base, which use it to implement their high-level method ! forwarding API, typically based around the 'forwardInvocation:' method. So, unless you are implementing your own "Foundation" library, you should not set this hook. ! In a typical forwarding implementation, the '__objc_msg_forward2' hook function determines the argument and return type of the method that is being looked up, and then creates a function that takes these arguments and has that return type, and returns it to the caller. Creating this function is non-trivial and is typically performed using a dedicated ! library such as 'libffi'. The forwarding method implementation thus created is returned by ! 'objc_msg_lookup()' and is executed as if it was a normal method ! implementation. When the forwarding method implementation is called, it ! is usually expected to pack all arguments into some sort of object ! (typically, an 'NSInvocation' in a "Foundation" library), and hand it ! over to the programmer ('forwardInvocation:') who is then allowed to manipulate the method invocation using a high-level API provided by the "Foundation" library. For example, the programmer may want to examine the method invocation arguments and name and potentially change them before forwarding the method invocation to one or more local objects ! ('performInvocation:') or even to remote objects (by using Distributed Objects or some other mechanism). When all this completes, the return value is passed back and must be returned correctly to the original caller. ! Note that the GNU Objective-C runtime currently provides no support for ! method forwarding or method invocations other than the ! '__objc_msg_forward2' hook. ! If the forwarding hook does not exist or returns 'NULL', the runtime currently attempts forwarding using an older, deprecated API, and if that fails, it aborts the program. In future versions of the GNU Objective-C runtime, the runtime will immediately abort. *************** Binary compatibility encompasses several *** 43971,43986 **** "application binary interface (ABI)" The set of runtime conventions followed by all of the tools that ! deal with binary representations of a program, including ! compilers, assemblers, linkers, and language runtime support. ! Some ABIs are formal with a written specification, possibly ! designed by multiple interested parties. Others are simply the ! way things are actually done by a particular set of tools. "ABI conformance" ! A compiler conforms to an ABI if it generates code that follows ! all of the specifications enumerated by that ABI. A library ! conforms to an ABI if it is implemented according to that ABI. An application conforms to an ABI if it is built using tools that conform to that ABI and does not contain source code that specifically changes behavior specified by the ABI. --- 43766,43781 ---- "application binary interface (ABI)" The set of runtime conventions followed by all of the tools that ! deal with binary representations of a program, including compilers, ! assemblers, linkers, and language runtime support. Some ABIs are ! formal with a written specification, possibly designed by multiple ! interested parties. Others are simply the way things are actually ! done by a particular set of tools. "ABI conformance" ! A compiler conforms to an ABI if it generates code that follows all ! of the specifications enumerated by that ABI. A library conforms ! to an ABI if it is implemented according to that ABI. An application conforms to an ABI if it is built using tools that conform to that ABI and does not contain source code that specifically changes behavior specified by the ABI. *************** Binary compatibility encompasses several *** 43993,44002 **** Different sets of tools are interoperable if they generate files that can be used in the same program. The set of tools includes compilers, assemblers, linkers, libraries, header files, startup ! files, and debuggers. Binaries produced by different sets of ! tools are not interoperable unless they implement the same ABI. ! This applies to different versions of the same tools as well as ! tools from different vendors. "intercallability" Whether a function in a binary built by one set of tools can call a --- 43788,43797 ---- Different sets of tools are interoperable if they generate files that can be used in the same program. The set of tools includes compilers, assemblers, linkers, libraries, header files, startup ! files, and debuggers. Binaries produced by different sets of tools ! are not interoperable unless they implement the same ABI. This ! applies to different versions of the same tools as well as tools ! from different vendors. "intercallability" Whether a function in a binary built by one set of tools can call a *************** Binary compatibility encompasses several *** 44004,44015 **** of interoperability. "implementation-defined features" ! Language standards include lists of implementation-defined ! features whose behavior can vary from one implementation to ! another. Some of these features are normally covered by a ! platform's ABI and others are not. The features that are not ! covered by an ABI generally affect how a program behaves, but not ! intercallability. "compatibility" Conformance to the same ABI and the same behavior of --- 43799,43809 ---- of interoperability. "implementation-defined features" ! Language standards include lists of implementation-defined features ! whose behavior can vary from one implementation to another. Some ! of these features are normally covered by a platform's ABI and ! others are not. The features that are not covered by an ABI ! generally affect how a program behaves, but not intercallability. "compatibility" Conformance to the same ABI and the same behavior of *************** Binary compatibility encompasses several *** 44020,44046 **** affects code generation and runtime support for: * size and alignment of data types - * layout of structured types - * calling conventions - * register usage conventions - * interfaces for runtime arithmetic support - * object file formats In addition, the application binary interface implemented by a C++ compiler affects code generation and runtime support for: * name mangling - * exception handling - * invoking constructors and destructors - * layout, alignment, and padding of classes - * layout and alignment of virtual tables Some GCC compilation options cause the compiler to generate code that --- 43814,43831 ---- *************** GCC releases, but it is possible that we *** 44064,44070 **** make this difficult. Such problems could include different interpretations of the C++ ABI by different vendors, bugs in the ABI, or bugs in the implementation of the ABI in different compilers. GCC's ! `-Wabi' switch warns when G++ generates code that is probably not compatible with the C++ ABI. The C++ library used with a C++ compiler includes the Standard C++ --- 43849,43855 ---- make this difficult. Such problems could include different interpretations of the C++ ABI by different vendors, bugs in the ABI, or bugs in the implementation of the ABI in different compilers. GCC's ! '-Wabi' switch warns when G++ generates code that is probably not compatible with the C++ ABI. The C++ library used with a C++ compiler includes the Standard C++ *************** compiler and runtime support. *** 44078,44091 **** When G++ and another C++ compiler conform to the same C++ ABI, but the implementations of the Standard C++ Library that they normally use do ! not follow the same ABI for the Standard C++ Library, object files ! built with those compilers can be used in the same program only if they ! use the same C++ library. This requires specifying the location of the ! C++ library header files when invoking the compiler whose usual library ! is not being used. The location of GCC's C++ header files depends on ! how the GCC build was configured, but can be seen by using the G++ `-v' ! option. With default configuration options for G++ 3.3 the compile ! line for a different C++ compiler needs to include -IGCC_INSTALL_DIRECTORY/include/c++/3.3 --- 43863,43876 ---- When G++ and another C++ compiler conform to the same C++ ABI, but the implementations of the Standard C++ Library that they normally use do ! not follow the same ABI for the Standard C++ Library, object files built ! with those compilers can be used in the same program only if they use ! the same C++ library. This requires specifying the location of the C++ ! library header files when invoking the compiler whose usual library is ! not being used. The location of GCC's C++ header files depends on how ! the GCC build was configured, but can be seen by using the G++ '-v' ! option. With default configuration options for G++ 3.3 the compile line ! for a different C++ compiler needs to include -IGCC_INSTALL_DIRECTORY/include/c++/3.3 *************** files for that other library. *** 44095,44119 **** The most straightforward way to link a program to use a particular C++ library is to use a C++ driver that specifies that C++ library by ! default. The `g++' driver, for example, tells the linker where to find ! GCC's C++ library (`libstdc++') plus the other libraries and startup files it needs, in the proper order. If a program must use a different C++ library and it's not possible to do the final link using a C++ driver that uses that library by default, ! it is necessary to tell `g++' the location and name of that library. ! It might also be necessary to specify different startup files and other runtime support libraries, and to suppress the use of GCC's support ! libraries with one or more of the options `-nostdlib', `-nostartfiles', ! and `-nodefaultlibs'.  File: gcc.info, Node: Gcov, Next: Trouble, Prev: Compatibility, Up: Top ! 10 `gcov'--a Test Coverage Program ********************************** ! `gcov' is a tool you can use in conjunction with GCC to test code coverage in your programs. * Menu: --- 43880,43904 ---- The most straightforward way to link a program to use a particular C++ library is to use a C++ driver that specifies that C++ library by ! default. The 'g++' driver, for example, tells the linker where to find ! GCC's C++ library ('libstdc++') plus the other libraries and startup files it needs, in the proper order. If a program must use a different C++ library and it's not possible to do the final link using a C++ driver that uses that library by default, ! it is necessary to tell 'g++' the location and name of that library. It ! might also be necessary to specify different startup files and other runtime support libraries, and to suppress the use of GCC's support ! libraries with one or more of the options '-nostdlib', '-nostartfiles', ! and '-nodefaultlibs'.  File: gcc.info, Node: Gcov, Next: Trouble, Prev: Compatibility, Up: Top ! 10 'gcov'--a Test Coverage Program ********************************** ! 'gcov' is a tool you can use in conjunction with GCC to test code coverage in your programs. * Menu: *************** coverage in your programs. *** 44127,44145 ****  File: gcc.info, Node: Gcov Intro, Next: Invoking Gcov, Up: Gcov ! 10.1 Introduction to `gcov' =========================== ! `gcov' is a test coverage program. Use it in concert with GCC to ! analyze your programs to help create more efficient, faster running ! code and to discover untested parts of your program. You can use ! `gcov' as a profiling tool to help discover where your optimization ! efforts will best affect your code. You can also use `gcov' along with ! the other profiling tool, `gprof', to assess which parts of your code ! use the greatest amount of computing time. Profiling tools help you analyze your code's performance. Using a ! profiler such as `gcov' or `gprof', you can find out some basic performance statistics, such as: * how often each line of code executes --- 43912,43930 ----  File: gcc.info, Node: Gcov Intro, Next: Invoking Gcov, Up: Gcov ! 10.1 Introduction to 'gcov' =========================== ! 'gcov' is a test coverage program. Use it in concert with GCC to ! analyze your programs to help create more efficient, faster running code ! and to discover untested parts of your program. You can use 'gcov' as a ! profiling tool to help discover where your optimization efforts will ! best affect your code. You can also use 'gcov' along with the other ! profiling tool, 'gprof', to assess which parts of your code use the ! greatest amount of computing time. Profiling tools help you analyze your code's performance. Using a ! profiler such as 'gcov' or 'gprof', you can find out some basic performance statistics, such as: * how often each line of code executes *************** performance statistics, such as: *** 44150,44156 **** Once you know these things about how your code works when compiled, you can look at each module to see which modules should be optimized. ! `gcov' helps you determine where to work on optimization. Software developers also use coverage testing in concert with testsuites, to make sure software is actually good enough for a release. --- 43935,43941 ---- Once you know these things about how your code works when compiled, you can look at each module to see which modules should be optimized. ! 'gcov' helps you determine where to work on optimization. Software developers also use coverage testing in concert with testsuites, to make sure software is actually good enough for a release. *************** to be added to the testsuites to create *** 44161,44274 **** final product. You should compile your code without optimization if you plan to use ! `gcov' because the optimization, by combining some lines of code into one function, may not give you as much information as you need to look ! for `hot spots' where the code is using a great deal of computer time. ! Likewise, because `gcov' accumulates statistics by line (at the lowest ! resolution), it works best with a programming style that places only ! one statement on each line. If you use complicated macros that expand ! to loops or to other control structures, the statistics are less helpful--they only report on the line where the macro call appears. If your complex macros behave like functions, you can replace them with inline functions to solve this problem. ! `gcov' creates a logfile called `SOURCEFILE.gcov' which indicates how ! many times each line of a source file `SOURCEFILE.c' has executed. You ! can use these logfiles along with `gprof' to aid in fine-tuning the ! performance of your programs. `gprof' gives timing information you can ! use along with the information you get from `gcov'. ! `gcov' works only on code compiled with GCC. It is not compatible ! with any other profiling or test coverage mechanism.  File: gcc.info, Node: Invoking Gcov, Next: Gcov and Optimization, Prev: Gcov Intro, Up: Gcov ! 10.2 Invoking `gcov' ==================== gcov [OPTIONS] FILES ! `gcov' accepts the following options: ! `-h' ! `--help' ! Display help about using `gcov' (on the standard output), and exit without doing any further processing. ! `-v' ! `--version' ! Display the `gcov' version number (on the standard output), and exit without doing any further processing. ! `-a' ! `--all-blocks' Write individual execution counts for every basic block. Normally gcov outputs execution counts only for the main blocks of a line. With this option you can determine if blocks within a single line are not being executed. ! `-b' ! `--branch-probabilities' Write branch frequencies to the output file, and write branch ! summary info to the standard output. This option allows you to ! see how often each branch in your program was taken. ! Unconditional branches will not be shown, unless the `-u' option ! is given. ! `-c' ! `--branch-counts' Write branch frequencies as the number of branches taken, rather than the percentage of branches taken. ! `-n' ! `--no-output' ! Do not create the `gcov' output file. ! `-l' ! `--long-file-names' Create long file names for included source files. For example, if ! the header file `x.h' contains code, and was included in the file ! `a.c', then running `gcov' on the file `a.c' will produce an ! output file called `a.c##x.h.gcov' instead of `x.h.gcov'. This ! can be useful if `x.h' is included in multiple source files and ! you want to see the individual contributions. If you use the `-p' ! option, both the including and included file names will be ! complete path names. ! `-p' ! `--preserve-paths' Preserve complete path information in the names of generated ! `.gcov' files. Without this option, just the filename component is ! used. With this option, all directories are used, with `/' ! characters translated to `#' characters, `.' directory components ! removed and unremoveable `..' components renamed to `^'. This is useful if sourcefiles are in several different directories. ! `-r' ! `--relative-only' Only output information about source files with a relative pathname (after source prefix elision). Absolute paths are usually system header files and coverage of any inline functions therein is normally uninteresting. ! `-f' ! `--function-summaries' Output summaries for each function in addition to the file level summary. ! `-o DIRECTORY|FILE' ! `--object-directory DIRECTORY' ! `--object-file FILE' Specify either the directory containing the gcov data files, or the ! object path name. The `.gcno', and `.gcda' data files are ! searched for using this option. If a directory is specified, the ! data files are in that directory and named after the input file ! name, without its extension. If a file is specified here, the ! data files are named after that file, without its extension. ! `-s DIRECTORY' ! `--source-prefix DIRECTORY' A prefix for source file names to remove when generating the output coverage files. This option is useful when building in a separate directory, and the pathname to the source directory is not wanted --- 43946,44058 ---- final product. You should compile your code without optimization if you plan to use ! 'gcov' because the optimization, by combining some lines of code into one function, may not give you as much information as you need to look ! for 'hot spots' where the code is using a great deal of computer time. ! Likewise, because 'gcov' accumulates statistics by line (at the lowest ! resolution), it works best with a programming style that places only one ! statement on each line. If you use complicated macros that expand to ! loops or to other control structures, the statistics are less helpful--they only report on the line where the macro call appears. If your complex macros behave like functions, you can replace them with inline functions to solve this problem. ! 'gcov' creates a logfile called 'SOURCEFILE.gcov' which indicates how ! many times each line of a source file 'SOURCEFILE.c' has executed. You ! can use these logfiles along with 'gprof' to aid in fine-tuning the ! performance of your programs. 'gprof' gives timing information you can ! use along with the information you get from 'gcov'. ! 'gcov' works only on code compiled with GCC. It is not compatible with ! any other profiling or test coverage mechanism.  File: gcc.info, Node: Invoking Gcov, Next: Gcov and Optimization, Prev: Gcov Intro, Up: Gcov ! 10.2 Invoking 'gcov' ==================== gcov [OPTIONS] FILES ! 'gcov' accepts the following options: ! '-h' ! '--help' ! Display help about using 'gcov' (on the standard output), and exit without doing any further processing. ! '-v' ! '--version' ! Display the 'gcov' version number (on the standard output), and exit without doing any further processing. ! '-a' ! '--all-blocks' Write individual execution counts for every basic block. Normally gcov outputs execution counts only for the main blocks of a line. With this option you can determine if blocks within a single line are not being executed. ! '-b' ! '--branch-probabilities' Write branch frequencies to the output file, and write branch ! summary info to the standard output. This option allows you to see ! how often each branch in your program was taken. Unconditional ! branches will not be shown, unless the '-u' option is given. ! '-c' ! '--branch-counts' Write branch frequencies as the number of branches taken, rather than the percentage of branches taken. ! '-n' ! '--no-output' ! Do not create the 'gcov' output file. ! '-l' ! '--long-file-names' Create long file names for included source files. For example, if ! the header file 'x.h' contains code, and was included in the file ! 'a.c', then running 'gcov' on the file 'a.c' will produce an output ! file called 'a.c##x.h.gcov' instead of 'x.h.gcov'. This can be ! useful if 'x.h' is included in multiple source files and you want ! to see the individual contributions. If you use the '-p' option, ! both the including and included file names will be complete path ! names. ! '-p' ! '--preserve-paths' Preserve complete path information in the names of generated ! '.gcov' files. Without this option, just the filename component is ! used. With this option, all directories are used, with '/' ! characters translated to '#' characters, '.' directory components ! removed and unremoveable '..' components renamed to '^'. This is useful if sourcefiles are in several different directories. ! '-r' ! '--relative-only' Only output information about source files with a relative pathname (after source prefix elision). Absolute paths are usually system header files and coverage of any inline functions therein is normally uninteresting. ! '-f' ! '--function-summaries' Output summaries for each function in addition to the file level summary. ! '-o DIRECTORY|FILE' ! '--object-directory DIRECTORY' ! '--object-file FILE' Specify either the directory containing the gcov data files, or the ! object path name. The '.gcno', and '.gcda' data files are searched ! for using this option. If a directory is specified, the data files ! are in that directory and named after the input file name, without ! its extension. If a file is specified here, the data files are ! named after that file, without its extension. ! '-s DIRECTORY' ! '--source-prefix DIRECTORY' A prefix for source file names to remove when generating the output coverage files. This option is useful when building in a separate directory, and the pathname to the source directory is not wanted *************** File: gcc.info, Node: Invoking Gcov, N *** 44276,44355 **** detection is applied before determining whether the source file is absolute. ! `-u' ! `--unconditional-branches' ! When branch probabilities are given, include those of ! unconditional branches. Unconditional branches are normally not ! interesting. ! `-d' ! `--display-progress' Display the progress on the standard output. ! ! `gcov' should be run with the current directory the same as that when you invoked the compiler. Otherwise it will not be able to locate the ! source files. `gcov' produces files called `MANGLEDNAME.gcov' in the ! current directory. These contain the coverage information of the ! source file they correspond to. One `.gcov' file is produced for each ! source (or header) file containing code, which was compiled to produce ! the data files. The MANGLEDNAME part of the output file name is ! usually simply the source file name, but can be something more ! complicated if the `-l' or `-p' options are given. Refer to those ! options for details. ! If you invoke `gcov' with multiple input files, the contributions from ! each input file are summed. Typically you would invoke it with the ! same list of files as the final link of your executable. ! The `.gcov' files contain the `:' separated fields along with program source code. The format is EXECUTION_COUNT:LINE_NUMBER:SOURCE LINE TEXT Additional block information may succeed each line, when requested by ! command line option. The EXECUTION_COUNT is `-' for lines containing ! no code. Unexecuted lines are marked `#####' or `====', depending on whether they are reachable by non-exceptional paths or only exceptional paths such as C++ exception handlers, respectively. ! Some lines of information at the start have LINE_NUMBER of zero. ! These preamble lines are of the form -:0:TAG:VALUE The ordering and number of these preamble lines will be augmented as ! `gcov' development progresses -- do not rely on them remaining unchanged. Use TAG to locate a particular preamble line. The additional block information is of the form TAG INFORMATION ! The INFORMATION is human readable, but designed to be simple enough ! for machine parsing too. When printing percentages, 0% and 100% are only printed when the values are _exactly_ 0% and 100% respectively. Other values which would conventionally be rounded to 0% or 100% are instead printed as the nearest non-boundary value. ! When using `gcov', you must first compile your program with two ! special GCC options: `-fprofile-arcs -ftest-coverage'. This tells the ! compiler to generate additional information needed by gcov (basically a ! flow graph of the program) and also includes additional code in the ! object files for generating the extra profiling information needed by ! gcov. These additional files are placed in the directory where the ! object file is located. Running the program will cause profile output to be generated. For ! each source file compiled with `-fprofile-arcs', an accompanying ! `.gcda' file will be placed in the object file directory. ! Running `gcov' with your program's source file names as arguments will now produce a listing of the code along with frequency of execution for ! each line. For example, if your program is called `tmp.c', this is ! what you see when you use the basic `gcov' facility: $ gcc -fprofile-arcs -ftest-coverage tmp.c $ a.out --- 44060,44136 ---- detection is applied before determining whether the source file is absolute. ! '-u' ! '--unconditional-branches' ! When branch probabilities are given, include those of unconditional ! branches. Unconditional branches are normally not interesting. ! '-d' ! '--display-progress' Display the progress on the standard output. ! 'gcov' should be run with the current directory the same as that when you invoked the compiler. Otherwise it will not be able to locate the ! source files. 'gcov' produces files called 'MANGLEDNAME.gcov' in the ! current directory. These contain the coverage information of the source ! file they correspond to. One '.gcov' file is produced for each source ! (or header) file containing code, which was compiled to produce the data ! files. The MANGLEDNAME part of the output file name is usually simply ! the source file name, but can be something more complicated if the '-l' ! or '-p' options are given. Refer to those options for details. ! If you invoke 'gcov' with multiple input files, the contributions from ! each input file are summed. Typically you would invoke it with the same ! list of files as the final link of your executable. ! The '.gcov' files contain the ':' separated fields along with program source code. The format is EXECUTION_COUNT:LINE_NUMBER:SOURCE LINE TEXT Additional block information may succeed each line, when requested by ! command line option. The EXECUTION_COUNT is '-' for lines containing no ! code. Unexecuted lines are marked '#####' or '====', depending on whether they are reachable by non-exceptional paths or only exceptional paths such as C++ exception handlers, respectively. ! Some lines of information at the start have LINE_NUMBER of zero. These ! preamble lines are of the form -:0:TAG:VALUE The ordering and number of these preamble lines will be augmented as ! 'gcov' development progresses -- do not rely on them remaining unchanged. Use TAG to locate a particular preamble line. The additional block information is of the form TAG INFORMATION ! The INFORMATION is human readable, but designed to be simple enough for ! machine parsing too. When printing percentages, 0% and 100% are only printed when the values are _exactly_ 0% and 100% respectively. Other values which would conventionally be rounded to 0% or 100% are instead printed as the nearest non-boundary value. ! When using 'gcov', you must first compile your program with two special ! GCC options: '-fprofile-arcs -ftest-coverage'. This tells the compiler ! to generate additional information needed by gcov (basically a flow ! graph of the program) and also includes additional code in the object ! files for generating the extra profiling information needed by gcov. ! These additional files are placed in the directory where the object file ! is located. Running the program will cause profile output to be generated. For ! each source file compiled with '-fprofile-arcs', an accompanying '.gcda' ! file will be placed in the object file directory. ! Running 'gcov' with your program's source file names as arguments will now produce a listing of the code along with frequency of execution for ! each line. For example, if your program is called 'tmp.c', this is what ! you see when you use the basic 'gcov' facility: $ gcc -fprofile-arcs -ftest-coverage tmp.c $ a.out *************** what you see when you use the basic `gco *** 44357,44363 **** 90.00% of 10 source lines executed in file tmp.c Creating tmp.c.gcov. ! The file `tmp.c.gcov' contains output from `gcov'. Here is a sample: -: 0:Source:tmp.c -: 0:Graph:tmp.gcno --- 44138,44144 ---- 90.00% of 10 source lines executed in file tmp.c Creating tmp.c.gcov. ! The file 'tmp.c.gcov' contains output from 'gcov'. Here is a sample: -: 0:Source:tmp.c -: 0:Graph:tmp.gcno *************** what you see when you use the basic `gco *** 44382,44389 **** 1: 16: return 0; -: 17:} ! When you use the `-a' option, you will get individual block counts, ! and the output looks like this: -: 0:Source:tmp.c -: 0:Graph:tmp.gcno --- 44163,44170 ---- 1: 16: return 0; -: 17:} ! When you use the '-a' option, you will get individual block counts, and ! the output looks like this: -: 0:Source:tmp.c -: 0:Graph:tmp.gcno *************** contain code, unless previous blocks end *** 44422,44434 **** execution count of a line is shown and subsequent lines show the execution counts for individual blocks that end on that line. After each block, the branch and call counts of the block will be shown, if ! the `-b' option is given. Because of the way GCC instruments calls, a call count can be shown after a line with no individual blocks. As you can see, line 13 contains a basic block that was not executed. ! When you use the `-b' option, your output looks like this: $ gcov -b tmp.c 90.00% of 10 source lines executed in file tmp.c --- 44203,44215 ---- execution count of a line is shown and subsequent lines show the execution counts for individual blocks that end on that line. After each block, the branch and call counts of the block will be shown, if ! the '-b' option is given. Because of the way GCC instruments calls, a call count can be shown after a line with no individual blocks. As you can see, line 13 contains a basic block that was not executed. ! When you use the '-b' option, your output looks like this: $ gcov -b tmp.c 90.00% of 10 source lines executed in file tmp.c *************** contains a basic block that was not exec *** 44437,44443 **** 50.00% of 2 calls executed in file tmp.c Creating tmp.c.gcov. ! Here is a sample of a resulting `tmp.c.gcov' file: -: 0:Source:tmp.c -: 0:Graph:tmp.gcno --- 44218,44224 ---- 50.00% of 2 calls executed in file tmp.c Creating tmp.c.gcov. ! Here is a sample of a resulting 'tmp.c.gcov' file: -: 0:Source:tmp.c -: 0:Graph:tmp.gcno *************** function's blocks were executed. *** 44475,44486 **** For each basic block, a line is printed after the last line of the basic block describing the branch or call that ends the basic block. ! There can be multiple branches and calls listed for a single source ! line if there are multiple basic blocks that end on that line. In this ! case, the branches and calls are each given a number. There is no ! simple way to map these branches and calls back to source constructs. ! In general, though, the lowest numbered branch or call will correspond ! to the leftmost construct on the source line. For a branch, if it was executed at least once, then a percentage indicating the number of times the branch was taken divided by the --- 44256,44267 ---- For each basic block, a line is printed after the last line of the basic block describing the branch or call that ends the basic block. ! There can be multiple branches and calls listed for a single source line ! if there are multiple basic blocks that end on that line. In this case, ! the branches and calls are each given a number. There is no simple way ! to map these branches and calls back to source constructs. In general, ! though, the lowest numbered branch or call will correspond to the ! leftmost construct on the source line. For a branch, if it was executed at least once, then a percentage indicating the number of times the branch was taken divided by the *************** message "never executed" is printed. *** 44490,44500 **** For a call, if it was executed at least once, then a percentage indicating the number of times the call returned divided by the number of times the call was executed will be printed. This will usually be ! 100%, but may be less for functions that call `exit' or `longjmp', and thus may not return every time they are called. The execution counts are cumulative. If the example program were ! executed again without removing the `.gcda' file, the count for the number of times each line in the source was executed would be added to the results of the previous run(s). This is potentially useful in several ways. For example, it could be used to accumulate data over a --- 44271,44281 ---- For a call, if it was executed at least once, then a percentage indicating the number of times the call returned divided by the number of times the call was executed will be printed. This will usually be ! 100%, but may be less for functions that call 'exit' or 'longjmp', and thus may not return every time they are called. The execution counts are cumulative. If the example program were ! executed again without removing the '.gcda' file, the count for the number of times each line in the source was executed would be added to the results of the previous run(s). This is potentially useful in several ways. For example, it could be used to accumulate data over a *************** number of program runs as part of a test *** 44502,44510 **** provide more accurate long-term information over a large number of program runs. ! The data in the `.gcda' files is saved immediately before the program ! exits. For each source file compiled with `-fprofile-arcs', the ! profiling code first attempts to read in an existing `.gcda' file; if the file doesn't match the executable (differing number of basic block counts) it will ignore the contents of the file. It then adds in the new execution counts and finally writes the data to the file. --- 44283,44291 ---- provide more accurate long-term information over a large number of program runs. ! The data in the '.gcda' files is saved immediately before the program ! exits. For each source file compiled with '-fprofile-arcs', the ! profiling code first attempts to read in an existing '.gcda' file; if the file doesn't match the executable (differing number of basic block counts) it will ignore the contents of the file. It then adds in the new execution counts and finally writes the data to the file. *************** new execution counts and finally writes *** 44512,44526 ****  File: gcc.info, Node: Gcov and Optimization, Next: Gcov Data Files, Prev: Invoking Gcov, Up: Gcov ! 10.3 Using `gcov' with GCC Optimization ======================================= ! If you plan to use `gcov' to help optimize your code, you must first ! compile your program with two special GCC options: `-fprofile-arcs -ftest-coverage'. Aside from that, you can use any other GCC options; but if you want to prove that every single line in your program was ! executed, you should not compile with optimization at the same time. ! On some machines the optimizer can eliminate some simple code lines by combining them with other lines. For example, code like this: if (a != b) --- 44293,44307 ----  File: gcc.info, Node: Gcov and Optimization, Next: Gcov Data Files, Prev: Invoking Gcov, Up: Gcov ! 10.3 Using 'gcov' with GCC Optimization ======================================= ! If you plan to use 'gcov' to help optimize your code, you must first ! compile your program with two special GCC options: '-fprofile-arcs -ftest-coverage'. Aside from that, you can use any other GCC options; but if you want to prove that every single line in your program was ! executed, you should not compile with optimization at the same time. On ! some machines the optimizer can eliminate some simple code lines by combining them with other lines. For example, code like this: if (a != b) *************** combining them with other lines. For ex *** 44529,44537 **** c = 0; can be compiled into one instruction on some machines. In this case, ! there is no way for `gcov' to calculate separate execution counts for each line because there isn't separate code for each line. Hence the ! `gcov' output looks like this if you compiled the program with optimization: 100: 12:if (a != b) --- 44310,44318 ---- c = 0; can be compiled into one instruction on some machines. In this case, ! there is no way for 'gcov' to calculate separate execution counts for each line because there isn't separate code for each line. Hence the ! 'gcov' output looks like this if you compiled the program with optimization: 100: 12:if (a != b) *************** shown depends on where the function is i *** 44551,44565 **** at all. If the function is not inlined, the compiler must emit an out of line ! copy of the function, in any object file that needs it. If `fileA.o' ! and `fileB.o' both contain out of line bodies of a particular ! inlineable function, they will also both contain coverage counts for ! that function. When `fileA.o' and `fileB.o' are linked together, the ! linker will, on many systems, select one of those out of line bodies ! for all calls to that function, and remove or ignore the other. ! Unfortunately, it will not remove the coverage counters for the unused ! function body. Hence when instrumented, all but one use of that ! function will show zero counts. If the function is inlined in several places, the block structure in each location might not be the same. For instance, a condition might --- 44332,44346 ---- at all. If the function is not inlined, the compiler must emit an out of line ! copy of the function, in any object file that needs it. If 'fileA.o' ! and 'fileB.o' both contain out of line bodies of a particular inlineable ! function, they will also both contain coverage counts for that function. ! When 'fileA.o' and 'fileB.o' are linked together, the linker will, on ! many systems, select one of those out of line bodies for all calls to ! that function, and remove or ignore the other. Unfortunately, it will ! not remove the coverage counters for the unused function body. Hence ! when instrumented, all but one use of that function will show zero ! counts. If the function is inlined in several places, the block structure in each location might not be the same. For instance, a condition might *************** now be calculable at compile time in som *** 44567,44606 **** coverage of all the uses of the inline function will be shown for the same source lines, the line counts themselves might seem inconsistent. ! Long-running applications can use the `_gcov_reset' and `_gcov_dump' facilities to restrict profile collection to the program region of ! interest. Calling `_gcov_reset(void)' will clear all profile counters ! to zero, and calling `_gcov_dump(void)' will cause the profile ! information collected at that point to be dumped to `.gcda' output files.  File: gcc.info, Node: Gcov Data Files, Next: Cross-profiling, Prev: Gcov and Optimization, Up: Gcov ! 10.4 Brief description of `gcov' data files =========================================== ! `gcov' uses two files for profiling. The names of these files are derived from the original _object_ file by substituting the file suffix ! with either `.gcno', or `.gcda'. The files contain coverage and ! profile data stored in a platform-independent format. The `.gcno' ! files are placed in the same directory as the object file. By default, ! the `.gcda' files are also stored in the same directory as the object ! file, but the GCC `-fprofile-dir' option may be used to store the ! `.gcda' files in a separate directory. ! The `.gcno' notes file is generated when the source file is compiled ! with the GCC `-ftest-coverage' option. It contains information to reconstruct the basic block graphs and assign source line numbers to blocks. ! The `.gcda' count data file is generated when a program containing ! object files built with the GCC `-fprofile-arcs' option is executed. A ! separate `.gcda' file is created for each object file compiled with ! this option. It contains arc transition counts, value profile counts, ! and some summary information. ! The full details of the file format is specified in `gcov-io.h', and functions provided in that header file should be used to access the coverage files. --- 44348,44387 ---- coverage of all the uses of the inline function will be shown for the same source lines, the line counts themselves might seem inconsistent. ! Long-running applications can use the '_gcov_reset' and '_gcov_dump' facilities to restrict profile collection to the program region of ! interest. Calling '_gcov_reset(void)' will clear all profile counters ! to zero, and calling '_gcov_dump(void)' will cause the profile ! information collected at that point to be dumped to '.gcda' output files.  File: gcc.info, Node: Gcov Data Files, Next: Cross-profiling, Prev: Gcov and Optimization, Up: Gcov ! 10.4 Brief description of 'gcov' data files =========================================== ! 'gcov' uses two files for profiling. The names of these files are derived from the original _object_ file by substituting the file suffix ! with either '.gcno', or '.gcda'. The files contain coverage and profile ! data stored in a platform-independent format. The '.gcno' files are ! placed in the same directory as the object file. By default, the ! '.gcda' files are also stored in the same directory as the object file, ! but the GCC '-fprofile-dir' option may be used to store the '.gcda' ! files in a separate directory. ! The '.gcno' notes file is generated when the source file is compiled ! with the GCC '-ftest-coverage' option. It contains information to reconstruct the basic block graphs and assign source line numbers to blocks. ! The '.gcda' count data file is generated when a program containing ! object files built with the GCC '-fprofile-arcs' option is executed. A ! separate '.gcda' file is created for each object file compiled with this ! option. It contains arc transition counts, value profile counts, and ! some summary information. ! The full details of the file format is specified in 'gcov-io.h', and functions provided in that header file should be used to access the coverage files. *************** File: gcc.info, Node: Cross-profiling, *** 44611,44648 **** ==================================================== Running the program will cause profile output to be generated. For each ! source file compiled with `-fprofile-arcs', an accompanying `.gcda' ! file will be placed in the object file directory. That implicitly ! requires running the program on the same system as it was built or ! having the same absolute directory structure on the target system. The ! program will try to create the needed directory structure, if it is not ! already present. ! To support cross-profiling, a program compiled with `-fprofile-arcs' can relocate the data files based on two environment variables: ! * GCOV_PREFIX contains the prefix to add to the absolute paths in ! the object file. Prefix can be absolute, or relative. The default ! is no prefix. ! * GCOV_PREFIX_STRIP indicates the how many initial directory names ! to strip off the hardwired absolute paths. Default value is 0. _Note:_ If GCOV_PREFIX_STRIP is set without GCOV_PREFIX is ! undefined, then a relative path is made out of the hardwired absolute paths. ! For example, if the object file `/user/build/foo.o' was built with ! `-fprofile-arcs', the final executable will try to create the data file ! `/user/build/foo.gcda' when running on the target system. This will fail if the corresponding directory does not exist and it is unable to create it. This can be overcome by, for example, setting the ! environment as `GCOV_PREFIX=/target/run' and `GCOV_PREFIX_STRIP=1'. ! Such a setting will name the data file `/target/run/build/foo.gcda'. You must move the data files to the expected directory tree in order to ! use them for profile directed optimizations (`--use-profile'), or to ! use the `gcov' tool.  File: gcc.info, Node: Trouble, Next: Bugs, Prev: Gcov, Up: Top --- 44392,44429 ---- ==================================================== Running the program will cause profile output to be generated. For each ! source file compiled with '-fprofile-arcs', an accompanying '.gcda' file ! will be placed in the object file directory. That implicitly requires ! running the program on the same system as it was built or having the ! same absolute directory structure on the target system. The program ! will try to create the needed directory structure, if it is not already ! present. ! To support cross-profiling, a program compiled with '-fprofile-arcs' can relocate the data files based on two environment variables: ! * GCOV_PREFIX contains the prefix to add to the absolute paths in the ! object file. Prefix can be absolute, or relative. The default is ! no prefix. ! * GCOV_PREFIX_STRIP indicates the how many initial directory names to ! strip off the hardwired absolute paths. Default value is 0. _Note:_ If GCOV_PREFIX_STRIP is set without GCOV_PREFIX is ! undefined, then a relative path is made out of the hardwired absolute paths. ! For example, if the object file '/user/build/foo.o' was built with ! '-fprofile-arcs', the final executable will try to create the data file ! '/user/build/foo.gcda' when running on the target system. This will fail if the corresponding directory does not exist and it is unable to create it. This can be overcome by, for example, setting the ! environment as 'GCOV_PREFIX=/target/run' and 'GCOV_PREFIX_STRIP=1'. ! Such a setting will name the data file '/target/run/build/foo.gcda'. You must move the data files to the expected directory tree in order to ! use them for profile directed optimizations ('--use-profile'), or to use ! the 'gcov' tool.  File: gcc.info, Node: Trouble, Next: Bugs, Prev: Gcov, Up: Top *************** File: gcc.info, Node: Trouble, Next: B *** 44650,44658 **** 11 Known Causes of Trouble with GCC *********************************** ! This section describes known problems that affect users of GCC. Most ! of these are not GCC bugs per se--if they were, we would fix them. But ! the result for a user may be like the result of a bug. Some of these problems are due to bugs in other software, some are missing features that are too much work to add, and some are places --- 44431,44439 ---- 11 Known Causes of Trouble with GCC *********************************** ! This section describes known problems that affect users of GCC. Most of ! these are not GCC bugs per se--if they were, we would fix them. But the ! result for a user may be like the result of a bug. Some of these problems are due to bugs in other software, some are missing features that are too much work to add, and some are places *************** File: gcc.info, Node: Actual Bugs, Nex *** 44680,44688 **** 11.1 Actual Bugs We Haven't Fixed Yet ===================================== ! * The `fixincludes' script interacts badly with automounters; if the directory of system header files is automounted, it tends to be ! unmounted while `fixincludes' is running. This would seem to be a bug in the automounter. We don't know any good way to work around it. --- 44461,44469 ---- 11.1 Actual Bugs We Haven't Fixed Yet ===================================== ! * The 'fixincludes' script interacts badly with automounters; if the directory of system header files is automounted, it tends to be ! unmounted while 'fixincludes' is running. This would seem to be a bug in the automounter. We don't know any good way to work around it. *************** File: gcc.info, Node: Interoperation, *** 44693,44704 **** =================== This section lists various difficulties encountered in using GCC ! together with other compilers or with the assemblers, linkers, ! libraries and debuggers on certain systems. * On many platforms, GCC supports a different ABI for C++ than do ! other compilers, so the object files compiled by GCC cannot be ! used with object files generated by another C++ compiler. An area where the difference is most apparent is name mangling. The use of different name mangling is intentional, to protect you --- 44474,44485 ---- =================== This section lists various difficulties encountered in using GCC ! together with other compilers or with the assemblers, linkers, libraries ! and debuggers on certain systems. * On many platforms, GCC supports a different ABI for C++ than do ! other compilers, so the object files compiled by GCC cannot be used ! with object files generated by another C++ compiler. An area where the difference is most apparent is name mangling. The use of different name mangling is intentional, to protect you *************** libraries and debuggers on certain syste *** 44715,44728 **** profiling causes static variable destructors (currently used only in C++) not to be run. ! * On a SPARC, GCC aligns all values of type `double' on an 8-byte ! boundary, and it expects every `double' to be so aligned. The Sun ! compiler usually gives `double' values 8-byte alignment, with one ! exception: function arguments of type `double' may not be aligned. As a result, if a function compiled with Sun CC takes the address ! of an argument of type `double' and passes this pointer of type ! `double *' to a function compiled with GCC, dereferencing the pointer may cause a fatal signal. One way to solve this problem is to compile your entire program --- 44496,44509 ---- profiling causes static variable destructors (currently used only in C++) not to be run. ! * On a SPARC, GCC aligns all values of type 'double' on an 8-byte ! boundary, and it expects every 'double' to be so aligned. The Sun ! compiler usually gives 'double' values 8-byte alignment, with one ! exception: function arguments of type 'double' may not be aligned. As a result, if a function compiled with Sun CC takes the address ! of an argument of type 'double' and passes this pointer of type ! 'double *' to a function compiled with GCC, dereferencing the pointer may cause a fatal signal. One way to solve this problem is to compile your entire program *************** libraries and debuggers on certain syste *** 44730,44737 **** compiled with Sun CC to copy the argument into a local variable; local variables are always properly aligned. A third solution is to modify the function that uses the pointer to dereference it via ! the following function `access_double' instead of directly with ! `*': inline double access_double (double *unaligned_ptr) --- 44511,44518 ---- compiled with Sun CC to copy the argument into a local variable; local variables are always properly aligned. A third solution is to modify the function that uses the pointer to dereference it via ! the following function 'access_double' instead of directly with ! '*': inline double access_double (double *unaligned_ptr) *************** libraries and debuggers on certain syste *** 44749,44775 **** Storing into the pointer can be done likewise with the same union. ! * On Solaris, the `malloc' function in the `libmalloc.a' library may allocate memory that is only 4 byte aligned. Since GCC on the SPARC assumes that doubles are 8 byte aligned, this may result in a fatal signal if doubles are stored in memory allocated by the ! `libmalloc.a' library. ! The solution is to not use the `libmalloc.a' library. Use instead ! `malloc' and related functions from `libc.a'; they do not have ! this problem. * On the HP PA machine, ADB sometimes fails to work on functions compiled with GCC. Specifically, it fails to work on functions ! that use `alloca' or variable-size arrays. This is because GCC doesn't generate HP-UX unwind descriptors for such functions. It may even be impossible to generate them. ! * Debugging (`-g') is not supported on the HP PA machine, unless you use the preliminary GNU tools. ! * Taking the address of a label may generate errors from the HP-UX ! PA assembler. GAS for the PA does not have this problem. * Using floating point parameters for indirect calls to static functions will not work when using the HP assembler. There simply --- 44530,44556 ---- Storing into the pointer can be done likewise with the same union. ! * On Solaris, the 'malloc' function in the 'libmalloc.a' library may allocate memory that is only 4 byte aligned. Since GCC on the SPARC assumes that doubles are 8 byte aligned, this may result in a fatal signal if doubles are stored in memory allocated by the ! 'libmalloc.a' library. ! The solution is to not use the 'libmalloc.a' library. Use instead ! 'malloc' and related functions from 'libc.a'; they do not have this ! problem. * On the HP PA machine, ADB sometimes fails to work on functions compiled with GCC. Specifically, it fails to work on functions ! that use 'alloca' or variable-size arrays. This is because GCC doesn't generate HP-UX unwind descriptors for such functions. It may even be impossible to generate them. ! * Debugging ('-g') is not supported on the HP PA machine, unless you use the preliminary GNU tools. ! * Taking the address of a label may generate errors from the HP-UX PA ! assembler. GAS for the PA does not have this problem. * Using floating point parameters for indirect calls to static functions will not work when using the HP assembler. There simply *************** libraries and debuggers on certain syste *** 44780,44791 **** * In extremely rare cases involving some very large functions you may receive errors from the HP linker complaining about an out of bounds unconditional branch offset. This used to occur more often ! in previous versions of GCC, but is now exceptionally rare. If ! you should run into it, you can work around by making your ! function smaller. ! * GCC compiled code sometimes emits warnings from the HP-UX ! assembler of the form: (warning) Use of GR3 when frame >= 8192 may cause conflict. --- 44561,44572 ---- * In extremely rare cases involving some very large functions you may receive errors from the HP linker complaining about an out of bounds unconditional branch offset. This used to occur more often ! in previous versions of GCC, but is now exceptionally rare. If you ! should run into it, you can work around by making your function ! smaller. ! * GCC compiled code sometimes emits warnings from the HP-UX assembler ! of the form: (warning) Use of GR3 when frame >= 8192 may cause conflict. *************** libraries and debuggers on certain syste *** 44794,44837 **** * In extremely rare cases involving some very large functions you may receive errors from the AIX Assembler complaining about a ! displacement that is too large. If you should run into it, you ! can work around by making your function smaller. ! * The `libstdc++.a' library in GCC relies on the SVR4 dynamic linker semantics which merges global symbols between libraries and applications, especially necessary for C++ streams functionality. This is not the default behavior of AIX shared libraries and ! dynamic linking. `libstdc++.a' is built on AIX with "runtime-linking" enabled so that symbol merging can occur. To ! utilize this feature, the application linked with `libstdc++.a' ! must include the `-Wl,-brtl' flag on the link line. G++ cannot ! impose this because this option may interfere with the semantics ! of the user program and users may not always use `g++' to link his ! or her application. Applications are not required to use the ! `-Wl,-brtl' flag on the link line--the rest of the `libstdc++.a' ! library which is not dependent on the symbol merging semantics ! will continue to function correctly. * An application can interpose its own definition of functions for ! functions invoked by `libstdc++.a' with "runtime-linking" enabled on AIX. To accomplish this the application must be linked with "runtime-linking" option and the functions explicitly must be ! exported by the application (`-Wl,-brtl,-bE:exportfile'). * AIX on the RS/6000 provides support (NLS) for environments outside of the United States. Compilers and assemblers use NLS to support locale-specific representations of various objects including ! floating-point numbers (`.' vs `,' for separating decimal fractions). There have been problems reported where the library linked with GCC does not produce the same floating-point formats that the assembler accepts. If you have this problem, set the ! `LANG' environment variable to `C' or `En_US'. ! * Even if you specify `-fdollars-in-identifiers', you cannot ! successfully use `$' in identifiers on the RS/6000 due to a restriction in the IBM assembler. GAS supports these identifiers. -  File: gcc.info, Node: Incompatibilities, Next: Fixed Headers, Prev: Interoperation, Up: Trouble --- 44575,44617 ---- * In extremely rare cases involving some very large functions you may receive errors from the AIX Assembler complaining about a ! displacement that is too large. If you should run into it, you can ! work around by making your function smaller. ! * The 'libstdc++.a' library in GCC relies on the SVR4 dynamic linker semantics which merges global symbols between libraries and applications, especially necessary for C++ streams functionality. This is not the default behavior of AIX shared libraries and ! dynamic linking. 'libstdc++.a' is built on AIX with "runtime-linking" enabled so that symbol merging can occur. To ! utilize this feature, the application linked with 'libstdc++.a' ! must include the '-Wl,-brtl' flag on the link line. G++ cannot ! impose this because this option may interfere with the semantics of ! the user program and users may not always use 'g++' to link his or ! her application. Applications are not required to use the ! '-Wl,-brtl' flag on the link line--the rest of the 'libstdc++.a' ! library which is not dependent on the symbol merging semantics will ! continue to function correctly. * An application can interpose its own definition of functions for ! functions invoked by 'libstdc++.a' with "runtime-linking" enabled on AIX. To accomplish this the application must be linked with "runtime-linking" option and the functions explicitly must be ! exported by the application ('-Wl,-brtl,-bE:exportfile'). * AIX on the RS/6000 provides support (NLS) for environments outside of the United States. Compilers and assemblers use NLS to support locale-specific representations of various objects including ! floating-point numbers ('.' vs ',' for separating decimal fractions). There have been problems reported where the library linked with GCC does not produce the same floating-point formats that the assembler accepts. If you have this problem, set the ! 'LANG' environment variable to 'C' or 'En_US'. ! * Even if you specify '-fdollars-in-identifiers', you cannot ! successfully use '$' in identifiers on the RS/6000 due to a restriction in the IBM assembler. GAS supports these identifiers.  File: gcc.info, Node: Incompatibilities, Next: Fixed Headers, Prev: Interoperation, Up: Trouble *************** There are several noteworthy incompatibi *** 44845,44867 **** identical-looking string constants are used, GCC stores only one copy of the string. ! One consequence is that you cannot call `mktemp' with a string ! constant argument. The function `mktemp' always alters the string its argument points to. ! Another consequence is that `sscanf' does not work on some very ! old systems when passed a string constant as its format control ! string or input. This is because `sscanf' incorrectly tries to ! write into the string constant. Likewise `fscanf' and `scanf'. The solution to these problems is to change the program to use ! `char'-array variables with initialization strings for these purposes instead of string constants. ! * `-2147483648' is positive. ! This is because 2147483648 cannot fit in the type `int', so ! (following the ISO C rules) its data type is `unsigned long int'. Negating this value yields 2147483648 again. * GCC does not substitute macro arguments when they appear inside of --- 44625,44647 ---- identical-looking string constants are used, GCC stores only one copy of the string. ! One consequence is that you cannot call 'mktemp' with a string ! constant argument. The function 'mktemp' always alters the string its argument points to. ! Another consequence is that 'sscanf' does not work on some very old ! systems when passed a string constant as its format control string ! or input. This is because 'sscanf' incorrectly tries to write into ! the string constant. Likewise 'fscanf' and 'scanf'. The solution to these problems is to change the program to use ! 'char'-array variables with initialization strings for these purposes instead of string constants. ! * '-2147483648' is positive. ! This is because 2147483648 cannot fit in the type 'int', so ! (following the ISO C rules) its data type is 'unsigned long int'. Negating this value yields 2147483648 again. * GCC does not substitute macro arguments when they appear inside of *************** There are several noteworthy incompatibi *** 44869,44878 **** #define foo(a) "a" ! will produce output `"a"' regardless of what the argument A is. ! * When you use `setjmp' and `longjmp', the only automatic variables ! guaranteed to remain valid are those declared `volatile'. This is a consequence of automatic register allocation. Consider this function: --- 44649,44658 ---- #define foo(a) "a" ! will produce output '"a"' regardless of what the argument A is. ! * When you use 'setjmp' and 'longjmp', the only automatic variables ! guaranteed to remain valid are those declared 'volatile'. This is a consequence of automatic register allocation. Consider this function: *************** There are several noteworthy incompatibi *** 44887,44902 **** return a; a = fun2 (); ! /* `longjmp (j)' may occur in `fun3'. */ return a + fun3 (); } ! Here `a' may or may not be restored to its first value when the ! `longjmp' occurs. If `a' is allocated in a register, then its first value is restored; otherwise, it keeps the last value stored in it. ! If you use the `-W' option with the `-O' option, you will get a warning when GCC thinks such a problem might be possible. * Programs that use preprocessing directives in the middle of macro --- 44667,44682 ---- return a; a = fun2 (); ! /* 'longjmp (j)' may occur in 'fun3'. */ return a + fun3 (); } ! Here 'a' may or may not be restored to its first value when the ! 'longjmp' occurs. If 'a' is allocated in a register, then its first value is restored; otherwise, it keeps the last value stored in it. ! If you use the '-W' option with the '-O' option, you will get a warning when GCC thinks such a problem might be possible. * Programs that use preprocessing directives in the middle of macro *************** There are several noteworthy incompatibi *** 44917,44933 **** words, they have the same scope as any other declaration in the same place. ! In some other C compilers, an `extern' declaration affects all the rest of the file even if it happens within a block. ! * In traditional C, you can combine `long', etc., with a typedef name, as shown here: typedef int foo; typedef long foo bar; ! In ISO C, this is not allowed: `long' and other type modifiers ! require an explicit `int'. * PCC allows typedef names to be used as function parameters. --- 44697,44713 ---- words, they have the same scope as any other declaration in the same place. ! In some other C compilers, an 'extern' declaration affects all the rest of the file even if it happens within a block. ! * In traditional C, you can combine 'long', etc., with a typedef name, as shown here: typedef int foo; typedef long foo bar; ! In ISO C, this is not allowed: 'long' and other type modifiers ! require an explicit 'int'. * PCC allows typedef names to be used as function parameters. *************** There are several noteworthy incompatibi *** 44937,44951 **** typedef int foo; typedef foo foo; ! * GCC treats all characters of identifiers as significant. ! According to K&R-1 (2.2), "No more than the first eight characters ! are significant, although more may be used.". Also according to ! K&R-1 (2.2), "An identifier is a sequence of letters and digits; ! the first character must be a letter. The underscore _ counts as ! a letter.", but GCC also allows dollar signs in identifiers. * PCC allows whitespace in the middle of compound assignment ! operators such as `+='. GCC, following the ISO standard, does not allow this. * GCC complains about unterminated character constants inside of --- 44717,44731 ---- typedef int foo; typedef foo foo; ! * GCC treats all characters of identifiers as significant. According ! to K&R-1 (2.2), "No more than the first eight characters are ! significant, although more may be used.". Also according to K&R-1 ! (2.2), "An identifier is a sequence of letters and digits; the ! first character must be a letter. The underscore _ counts as a ! letter.", but GCC also allows dollar signs in identifiers. * PCC allows whitespace in the middle of compound assignment ! operators such as '+='. GCC, following the ISO standard, does not allow this. * GCC complains about unterminated character constants inside of *************** There are several noteworthy incompatibi *** 44959,44982 **** #endif The best solution to such a problem is to put the text into an ! actual C comment delimited by `/*...*/'. ! * Many user programs contain the declaration `long time ();'. In the past, the system header files on many systems did not actually ! declare `time', so it did not matter what type your program ! declared it to return. But in systems with ISO C headers, `time' ! is declared to return `time_t', and if that is not the same as ! `long', then `long time ();' is erroneous. The solution is to change your program to use appropriate system ! headers (`' on systems with ISO C headers) and not to ! declare `time' if the system header files declare it, or failing ! that to use `time_t' as the return type of `time'. ! * When compiling functions that return `float', PCC converts it to a ! double. GCC actually returns a `float'. If you are concerned ! with PCC compatibility, you should declare your functions to return ! `double'; you might as well say what you mean. * When compiling functions that return structures or unions, GCC output code normally uses a method different from that used on most --- 44739,44762 ---- #endif The best solution to such a problem is to put the text into an ! actual C comment delimited by '/*...*/'. ! * Many user programs contain the declaration 'long time ();'. In the past, the system header files on many systems did not actually ! declare 'time', so it did not matter what type your program ! declared it to return. But in systems with ISO C headers, 'time' ! is declared to return 'time_t', and if that is not the same as ! 'long', then 'long time ();' is erroneous. The solution is to change your program to use appropriate system ! headers ('' on systems with ISO C headers) and not to ! declare 'time' if the system header files declare it, or failing ! that to use 'time_t' as the return type of 'time'. ! * When compiling functions that return 'float', PCC converts it to a ! double. GCC actually returns a 'float'. If you are concerned with ! PCC compatibility, you should declare your functions to return ! 'double'; you might as well say what you mean. * When compiling functions that return structures or unions, GCC output code normally uses a method different from that used on most *************** There are several noteworthy incompatibi *** 44985,44994 **** The method used by GCC is as follows: a structure or union which is 1, 2, 4 or 8 bytes long is returned like a scalar. A structure or ! union with any other size is stored into an address supplied by ! the caller (usually in a special, fixed register, but on some ! machines it is passed on the stack). The target hook ! `TARGET_STRUCT_VALUE_RTX' tells GCC where to pass this address. By contrast, PCC on most target machines returns structures and unions of any size by copying the data into an area of static --- 44765,44774 ---- The method used by GCC is as follows: a structure or union which is 1, 2, 4 or 8 bytes long is returned like a scalar. A structure or ! union with any other size is stored into an address supplied by the ! caller (usually in a special, fixed register, but on some machines ! it is passed on the stack). The target hook ! 'TARGET_STRUCT_VALUE_RTX' tells GCC where to pass this address. By contrast, PCC on most target machines returns structures and unions of any size by copying the data into an area of static *************** There are several noteworthy incompatibi *** 45003,45027 **** memory, but still returns small structures and unions in registers. You can tell GCC to use a compatible convention for all structure ! and union returning with the option `-fpcc-struct-return'. ! * GCC complains about program fragments such as `0x74ae-0x4000' ! which appear to be two hexadecimal constants separated by the minus operator. Actually, this string is a single "preprocessing token". ! Each such token must correspond to one token in C. Since this ! does not, GCC prints an error message. Although it may appear ! obvious that what is meant is an operator and two values, the ISO ! C standard specifically requires that this be treated as erroneous. A "preprocessing token" is a "preprocessing number" if it begins with a digit and is followed by letters, underscores, digits, ! periods and `e+', `e-', `E+', `E-', `p+', `p-', `P+', or `P-' ! character sequences. (In strict C90 mode, the sequences `p+', ! `p-', `P+' and `P-' cannot appear in preprocessing numbers.) ! To make the above program fragment valid, place whitespace in ! front of the minus sign. This whitespace will end the ! preprocessing number.  File: gcc.info, Node: Fixed Headers, Next: Standard Libraries, Prev: Incompatibilities, Up: Trouble --- 44783,44807 ---- memory, but still returns small structures and unions in registers. You can tell GCC to use a compatible convention for all structure ! and union returning with the option '-fpcc-struct-return'. ! * GCC complains about program fragments such as '0x74ae-0x4000' which ! appear to be two hexadecimal constants separated by the minus operator. Actually, this string is a single "preprocessing token". ! Each such token must correspond to one token in C. Since this does ! not, GCC prints an error message. Although it may appear obvious ! that what is meant is an operator and two values, the ISO C ! standard specifically requires that this be treated as erroneous. A "preprocessing token" is a "preprocessing number" if it begins with a digit and is followed by letters, underscores, digits, ! periods and 'e+', 'e-', 'E+', 'E-', 'p+', 'p-', 'P+', or 'P-' ! character sequences. (In strict C90 mode, the sequences 'p+', ! 'p-', 'P+' and 'P-' cannot appear in preprocessing numbers.) ! To make the above program fragment valid, place whitespace in front ! of the minus sign. This whitespace will end the preprocessing ! number.  File: gcc.info, Node: Fixed Headers, Next: Standard Libraries, Prev: Incompatibilities, Up: Trouble *************** incompatible with ISO C, and some depend *** 45036,45049 **** compilers. Installing GCC automatically creates and installs the fixed header ! files, by running a program called `fixincludes'. Normally, you don't need to pay attention to this. But there are cases where it doesn't do the right thing automatically. * If you update the system's header files, such as by installing a new system version, the fixed header files of GCC are not ! automatically updated. They can be updated using the `mkheaders' ! script installed in `LIBEXECDIR/gcc/TARGET/VERSION/install-tools/'. * On some systems, header file directories contain machine-specific symbolic links in certain places. This makes it possible to share --- 44816,44829 ---- compilers. Installing GCC automatically creates and installs the fixed header ! files, by running a program called 'fixincludes'. Normally, you don't need to pay attention to this. But there are cases where it doesn't do the right thing automatically. * If you update the system's header files, such as by installing a new system version, the fixed header files of GCC are not ! automatically updated. They can be updated using the 'mkheaders' ! script installed in 'LIBEXECDIR/gcc/TARGET/VERSION/install-tools/'. * On some systems, header file directories contain machine-specific symbolic links in certain places. This makes it possible to share *************** the right thing automatically. *** 45052,45064 **** The programs that fix the header files do not understand this special way of using symbolic links; therefore, the directory of ! fixed header files is good only for the machine model used to ! build it. It is possible to make separate sets of fixed header files for the ! different machine models, and arrange a structure of symbolic ! links so as to use the proper set, but you'll have to do this by ! hand.  File: gcc.info, Node: Standard Libraries, Next: Disappointments, Prev: Fixed Headers, Up: Trouble --- 44832,44843 ---- The programs that fix the header files do not understand this special way of using symbolic links; therefore, the directory of ! fixed header files is good only for the machine model used to build ! it. It is possible to make separate sets of fixed header files for the ! different machine models, and arrange a structure of symbolic links ! so as to use the proper set, but you'll have to do this by hand.  File: gcc.info, Node: Standard Libraries, Next: Disappointments, Prev: Fixed Headers, Up: Trouble *************** what this means. Beyond the library fac *** 45072,45092 **** implementation, the rest of the C library is supplied by the vendor of the operating system. If that C library doesn't conform to the C standards, then your programs might get warnings (especially when using ! `-Wall') that you don't expect. ! For example, the `sprintf' function on SunOS 4.1.3 returns `char *' ! while the C standard says that `sprintf' returns an `int'. The ! `fixincludes' program could make the prototype for this function match the Standard, but that would be wrong, since the function will still ! return `char *'. If you need a Standard compliant library, then you need to find one, as ! GCC does not provide one. The GNU C library (called `glibc') provides ISO C, POSIX, BSD, SystemV and X/Open compatibility for GNU/Linux and HURD-based GNU systems; no recent version of it supports other systems, though some very old versions did. Version 2.2 of the GNU C library ! includes nearly complete C99 support. You could also ask your ! operating system vendor if newer libraries are available.  File: gcc.info, Node: Disappointments, Next: C++ Misunderstandings, Prev: Standard Libraries, Up: Trouble --- 44851,44871 ---- implementation, the rest of the C library is supplied by the vendor of the operating system. If that C library doesn't conform to the C standards, then your programs might get warnings (especially when using ! '-Wall') that you don't expect. ! For example, the 'sprintf' function on SunOS 4.1.3 returns 'char *' ! while the C standard says that 'sprintf' returns an 'int'. The ! 'fixincludes' program could make the prototype for this function match the Standard, but that would be wrong, since the function will still ! return 'char *'. If you need a Standard compliant library, then you need to find one, as ! GCC does not provide one. The GNU C library (called 'glibc') provides ISO C, POSIX, BSD, SystemV and X/Open compatibility for GNU/Linux and HURD-based GNU systems; no recent version of it supports other systems, though some very old versions did. Version 2.2 of the GNU C library ! includes nearly complete C99 support. You could also ask your operating ! system vendor if newer libraries are available.  File: gcc.info, Node: Disappointments, Next: C++ Misunderstandings, Prev: Standard Libraries, Up: Trouble *************** way around them. *** 45119,45145 **** int foo (struct mumble *x) { ... } ! This code really is erroneous, because the scope of `struct ! mumble' in the prototype is limited to the argument list ! containing it. It does not refer to the `struct mumble' defined ! with file scope immediately below--they are two unrelated types ! with similar names in different scopes. ! But in the definition of `foo', the file-scope type is used ! because that is available to be inherited. Thus, the definition ! and the prototype do not match, and you get an error. This behavior may seem silly, but it's what the ISO standard specifies. It is easy enough for you to make your code work by ! moving the definition of `struct mumble' above the prototype. ! It's not worth being incompatible with ISO C just to avoid an ! error for the example shown above. * Accesses to bit-fields even in volatile objects works by accessing larger objects, such as a byte or a word. You cannot rely on what ! size of object is accessed in order to read or write the ! bit-field; it may even vary for a given bit-field according to the ! precise usage. If you care about controlling the amount of memory that is accessed, use volatile but do not use bit-fields. --- 44898,44924 ---- int foo (struct mumble *x) { ... } ! This code really is erroneous, because the scope of 'struct mumble' ! in the prototype is limited to the argument list containing it. It ! does not refer to the 'struct mumble' defined with file scope ! immediately below--they are two unrelated types with similar names ! in different scopes. ! But in the definition of 'foo', the file-scope type is used because ! that is available to be inherited. Thus, the definition and the ! prototype do not match, and you get an error. This behavior may seem silly, but it's what the ISO standard specifies. It is easy enough for you to make your code work by ! moving the definition of 'struct mumble' above the prototype. It's ! not worth being incompatible with ISO C just to avoid an error for ! the example shown above. * Accesses to bit-fields even in volatile objects works by accessing larger objects, such as a byte or a word. You cannot rely on what ! size of object is accessed in order to read or write the bit-field; ! it may even vary for a given bit-field according to the precise ! usage. If you care about controlling the amount of memory that is accessed, use volatile but do not use bit-fields. *************** way around them. *** 45152,45171 **** about. If new system header files are installed, nothing automatically ! arranges to update the corrected header files. They can be ! updated using the `mkheaders' script installed in ! `LIBEXECDIR/gcc/TARGET/VERSION/install-tools/'. * On 68000 and x86 systems, for instance, you can get paradoxical results if you test the precise values of floating point numbers. For example, you can find that a floating point value which is not a NaN is not equal to itself. This results from the fact that the ! floating point registers hold a few more bits of precision than ! fit in a `double' in memory. Compiled code moves values between ! memory and floating point registers at its convenience, and moving ! them into memory truncates them. ! You can partially avoid this problem by using the `-ffloat-store' option (*note Optimize Options::). * On AIX and other platforms without weak symbol support, templates --- 44931,44950 ---- about. If new system header files are installed, nothing automatically ! arranges to update the corrected header files. They can be updated ! using the 'mkheaders' script installed in ! 'LIBEXECDIR/gcc/TARGET/VERSION/install-tools/'. * On 68000 and x86 systems, for instance, you can get paradoxical results if you test the precise values of floating point numbers. For example, you can find that a floating point value which is not a NaN is not equal to itself. This results from the fact that the ! floating point registers hold a few more bits of precision than fit ! in a 'double' in memory. Compiled code moves values between memory ! and floating point registers at its convenience, and moving them ! into memory truncates them. ! You can partially avoid this problem by using the '-ffloat-store' option (*note Optimize Options::). * On AIX and other platforms without weak symbol support, templates *************** static member; you must also _define_ it *** 45217,45235 **** static int bar; }; ! This declaration only establishes that the class `Foo' has an `int' ! named `Foo::bar', and a member function named `Foo::method'. But you ! still need to define _both_ `method' and `bar' elsewhere. According to the ISO standard, you must supply an initializer in one (and only one) source file, such as: int Foo::bar = 0; Other C++ compilers may not correctly implement the standard behavior. ! As a result, when you switch to `g++' from one of these compilers, you ! may discover that a program that appeared to work correctly in fact ! does not conform to the standard: `g++' reports as undefined symbols ! any static data members that lack definitions.  File: gcc.info, Node: Name lookup, Next: Temporaries, Prev: Static Definitions, Up: C++ Misunderstandings --- 44996,45014 ---- static int bar; }; ! This declaration only establishes that the class 'Foo' has an 'int' ! named 'Foo::bar', and a member function named 'Foo::method'. But you ! still need to define _both_ 'method' and 'bar' elsewhere. According to the ISO standard, you must supply an initializer in one (and only one) source file, such as: int Foo::bar = 0; Other C++ compilers may not correctly implement the standard behavior. ! As a result, when you switch to 'g++' from one of these compilers, you ! may discover that a program that appeared to work correctly in fact does ! not conform to the standard: 'g++' reports as undefined symbols any ! static data members that lack definitions.  File: gcc.info, Node: Name lookup, Next: Temporaries, Prev: Static Definitions, Up: C++ Misunderstandings *************** looked up at the point of instantiation. *** 45257,45276 **** static const int N; }; ! Here, the names `foo' and `N' appear in a context that does not depend ! on the type of `T'. The compiler will thus require that they are ! defined in the context of use in the template, not only before the ! point of instantiation, and will here use `::foo(double)' and `A::N', respectively. In particular, it will convert the integer value to a ! `double' when passing it to `::foo(double)'. ! Conversely, `bar' and the call to `foo' in the fourth marked line are ! used in contexts that do depend on the type of `T', so they are only looked up at the point of instantiation, and you can provide declarations for them after declaring the template, but before ! instantiating it. In particular, if you instantiate `A::f', the ! last line will call an overloaded `::foo(int)' if one was provided, ! even if after the declaration of `struct A'. This distinction between lookup of dependent and non-dependent names is called two-stage (or dependent) name lookup. G++ implements it since --- 45036,45055 ---- static const int N; }; ! Here, the names 'foo' and 'N' appear in a context that does not depend ! on the type of 'T'. The compiler will thus require that they are ! defined in the context of use in the template, not only before the point ! of instantiation, and will here use '::foo(double)' and 'A::N', respectively. In particular, it will convert the integer value to a ! 'double' when passing it to '::foo(double)'. ! Conversely, 'bar' and the call to 'foo' in the fourth marked line are ! used in contexts that do depend on the type of 'T', so they are only looked up at the point of instantiation, and you can provide declarations for them after declaring the template, but before ! instantiating it. In particular, if you instantiate 'A::f', the ! last line will call an overloaded '::foo(int)' if one was provided, even ! if after the declaration of 'struct A'. This distinction between lookup of dependent and non-dependent names is called two-stage (or dependent) name lookup. G++ implements it since *************** different from non-template codes. The *** 45287,45307 **** int get_i() { return i; } }; ! In `get_i()', `i' is not used in a dependent context, so the compiler ! will look for a name declared at the enclosing namespace scope (which ! is the global scope here). It will not look into the base class, since ! that is dependent and you may declare specializations of `Base' even ! after declaring `Derived', so the compiler can't really know what `i' ! would refer to. If there is no global variable `i', then you will get an error message. In order to make it clear that you want the member of the base class, you need to defer lookup until instantiation time, at which the base ! class is known. For this, you need to access `i' in a dependent ! context, by either using `this->i' (remember that `this' is of type ! `Derived*', so is obviously dependent), or using `Base::i'. ! Alternatively, `Base::i' might be brought into scope by a ! `using'-declaration. Another, similar example involves calling member functions of a base class: --- 45066,45086 ---- int get_i() { return i; } }; ! In 'get_i()', 'i' is not used in a dependent context, so the compiler ! will look for a name declared at the enclosing namespace scope (which is ! the global scope here). It will not look into the base class, since ! that is dependent and you may declare specializations of 'Base' even ! after declaring 'Derived', so the compiler can't really know what 'i' ! would refer to. If there is no global variable 'i', then you will get an error message. In order to make it clear that you want the member of the base class, you need to defer lookup until instantiation time, at which the base ! class is known. For this, you need to access 'i' in a dependent ! context, by either using 'this->i' (remember that 'this' is of type ! 'Derived*', so is obviously dependent), or using 'Base::i'. ! Alternatively, 'Base::i' might be brought into scope by a ! 'using'-declaration. Another, similar example involves calling member functions of a base class: *************** class: *** 45314,45321 **** int g() { return f(); }; }; ! Again, the call to `f()' is not dependent on template arguments (there ! are no arguments that depend on the type `T', and it is also not otherwise specified that the call should be in a dependent context). Thus a global declaration of such a function must be available, since the one in the base class is not visible until instantiation time. The --- 45093,45100 ---- int g() { return f(); }; }; ! Again, the call to 'f()' is not dependent on template arguments (there ! are no arguments that depend on the type 'T', and it is also not otherwise specified that the call should be in a dependent context). Thus a global declaration of such a function must be available, since the one in the base class is not visible until instantiation time. The *************** compiler will consequently produce the f *** 45327,45348 **** x.cc:6: error: (if you use `-fpermissive', G++ will accept your code, but allowing the use of an undeclared name is deprecated) ! To make the code valid either use `this->f()', or `Base::f()'. ! Using the `-fpermissive' flag will also let the compiler accept the code, by marking all function calls for which no declaration is visible at the time of definition of the template for later lookup at ! instantiation time, as if it were a dependent call. We do not ! recommend using `-fpermissive' to work around invalid code, and it will ! also only catch cases where functions in base classes are called, not ! where variables in base classes are used (as in the example above). Note that some compilers (including G++ versions prior to 3.4) get these examples wrong and accept above code without an error. Those compilers do not implement two-stage name lookup correctly. ! ---------- Footnotes ---------- ! (1) The C++ standard just uses the term "dependent" for names that depend on the type or value of template parameters. This shorter term will also be used in the rest of this section. --- 45106,45127 ---- x.cc:6: error: (if you use `-fpermissive', G++ will accept your code, but allowing the use of an undeclared name is deprecated) ! To make the code valid either use 'this->f()', or 'Base::f()'. ! Using the '-fpermissive' flag will also let the compiler accept the code, by marking all function calls for which no declaration is visible at the time of definition of the template for later lookup at ! instantiation time, as if it were a dependent call. We do not recommend ! using '-fpermissive' to work around invalid code, and it will also only ! catch cases where functions in base classes are called, not where ! variables in base classes are used (as in the example above). Note that some compilers (including G++ versions prior to 3.4) get these examples wrong and accept above code without an error. Those compilers do not implement two-stage name lookup correctly. ! ---------- Footnotes ---------- ! (1) The C++ standard just uses the term "dependent" for names that depend on the type or value of template parameters. This shorter term will also be used in the rest of this section. *************** It is dangerous to use pointers or refer *** 45356,45370 **** temporary object. The compiler may very well delete the object before you expect it to, leaving a pointer to garbage. The most common place where this problem crops up is in classes like string classes, ! especially ones that define a conversion function to type `char *' or ! `const char *'--which is one reason why the standard `string' class ! requires you to call the `c_str' member function. However, any class ! that returns a pointer to some internal structure is potentially ! subject to this problem. ! For example, a program may use a function `strfunc' that returns ! `string' objects, and another function `charfunc' that operates on ! pointers to `char': string strfunc (); void charfunc (const char *); --- 45135,45149 ---- temporary object. The compiler may very well delete the object before you expect it to, leaving a pointer to garbage. The most common place where this problem crops up is in classes like string classes, ! especially ones that define a conversion function to type 'char *' or ! 'const char *'--which is one reason why the standard 'string' class ! requires you to call the 'c_str' member function. However, any class ! that returns a pointer to some internal structure is potentially subject ! to this problem. ! For example, a program may use a function 'strfunc' that returns ! 'string' objects, and another function 'charfunc' that operates on ! pointers to 'char': string strfunc (); void charfunc (const char *); *************** pointers to `char': *** 45380,45389 **** } In this situation, it may seem reasonable to save a pointer to the C ! string returned by the `c_str' member function and use that rather than ! call `c_str' repeatedly. However, the temporary string created by the ! call to `strfunc' is destroyed after `p' is initialized, at which point ! `p' is left pointing to freed memory. Code like this may run successfully under some other compilers, particularly obsolete cfront-based compilers that delete temporaries --- 45159,45168 ---- } In this situation, it may seem reasonable to save a pointer to the C ! string returned by the 'c_str' member function and use that rather than ! call 'c_str' repeatedly. However, the temporary string created by the ! call to 'strfunc' is destroyed after 'p' is initialized, at which point ! 'p' is left pointing to freed memory. Code like this may run successfully under some other compilers, particularly obsolete cfront-based compilers that delete temporaries *************** such objects behave unspecified when bei *** 45437,45453 **** d1 = d2; } ! The C++ standard specifies that `Base::Base' is only called once when constructing or copy-constructing a Derived object. It is unspecified ! whether `Base::operator=' is called more than once when the implicit ! copy-assignment for Derived objects is invoked (as it is inside `func' in the example). G++ implements the "intuitive" algorithm for copy-assignment: assign all direct bases, then assign all members. In that algorithm, the virtual base subobject can be encountered more than once. In the ! example, copying proceeds in the following order: `val', `name' (via ! `strdup'), `bval', and `name' again. If application code relies on copy-assignment, a user-defined copy-assignment operator removes any uncertainties. With such an --- 45216,45232 ---- d1 = d2; } ! The C++ standard specifies that 'Base::Base' is only called once when constructing or copy-constructing a Derived object. It is unspecified ! whether 'Base::operator=' is called more than once when the implicit ! copy-assignment for Derived objects is invoked (as it is inside 'func' in the example). G++ implements the "intuitive" algorithm for copy-assignment: assign all direct bases, then assign all members. In that algorithm, the virtual base subobject can be encountered more than once. In the ! example, copying proceeds in the following order: 'val', 'name' (via ! 'strdup'), 'bval', and 'name' again. If application code relies on copy-assignment, a user-defined copy-assignment operator removes any uncertainties. With such an *************** do not make because we think GCC is bett *** 45486,45502 **** * Warning when a non-void function value is ignored. C contains many standard functions that return a value that most ! programs choose to ignore. One obvious example is `printf'. Warning about this practice only leads the defensive programmer to ! clutter programs with dozens of casts to `void'. Such casts are required so frequently that they become visual noise. Writing those casts becomes so automatic that they no longer convey useful information about the intentions of the programmer. For functions where the return value should never be ignored, use the ! `warn_unused_result' function attribute (*note Function Attributes::). ! * Making `-fshort-enums' the default. This would cause storage layout to be incompatible with most other C compilers. And it doesn't seem very important, given that you --- 45265,45281 ---- * Warning when a non-void function value is ignored. C contains many standard functions that return a value that most ! programs choose to ignore. One obvious example is 'printf'. Warning about this practice only leads the defensive programmer to ! clutter programs with dozens of casts to 'void'. Such casts are required so frequently that they become visual noise. Writing those casts becomes so automatic that they no longer convey useful information about the intentions of the programmer. For functions where the return value should never be ignored, use the ! 'warn_unused_result' function attribute (*note Function Attributes::). ! * Making '-fshort-enums' the default. This would cause storage layout to be incompatible with most other C compilers. And it doesn't seem very important, given that you *************** do not make because we think GCC is bett *** 45508,45523 **** "the ABI standard" says to do so. The ISO C standard leaves it up to the implementation whether a ! bit-field declared plain `int' is signed or not. This in effect creates two alternative dialects of C. The GNU C compiler supports both dialects; you can specify the ! signed dialect with `-fsigned-bitfields' and the unsigned dialect ! with `-funsigned-bitfields'. However, this leaves open the question of which dialect to use by default. Currently, the preferred dialect makes plain bit-fields signed, ! because this is simplest. Since `int' is the same as `signed int' in every other context, it is cleanest for them to be the same in bit-fields as well. --- 45287,45302 ---- "the ABI standard" says to do so. The ISO C standard leaves it up to the implementation whether a ! bit-field declared plain 'int' is signed or not. This in effect creates two alternative dialects of C. The GNU C compiler supports both dialects; you can specify the ! signed dialect with '-fsigned-bitfields' and the unsigned dialect ! with '-funsigned-bitfields'. However, this leaves open the question of which dialect to use by default. Currently, the preferred dialect makes plain bit-fields signed, ! because this is simplest. Since 'int' is the same as 'signed int' in every other context, it is cleanest for them to be the same in bit-fields as well. *************** do not make because we think GCC is bett *** 45538,45552 **** Many users appreciate the GNU C compiler because it provides an environment that is uniform across machines. These users would be ! inconvenienced if the compiler treated plain bit-fields ! differently on certain machines. Occasionally users write programs intended only for a particular machine type. On these occasions, the users would benefit if the GNU C compiler were to support by default the same dialect as the other compilers on that machine. But such applications are rare. ! And users writing a program to run on more than one type of ! machine cannot possibly benefit from this kind of compatibility. This is why GCC does and will treat plain bit-fields in the same fashion on all types of machines (by default). --- 45317,45331 ---- Many users appreciate the GNU C compiler because it provides an environment that is uniform across machines. These users would be ! inconvenienced if the compiler treated plain bit-fields differently ! on certain machines. Occasionally users write programs intended only for a particular machine type. On these occasions, the users would benefit if the GNU C compiler were to support by default the same dialect as the other compilers on that machine. But such applications are rare. ! And users writing a program to run on more than one type of machine ! cannot possibly benefit from this kind of compatibility. This is why GCC does and will treat plain bit-fields in the same fashion on all types of machines (by default). *************** do not make because we think GCC is bett *** 45561,45620 **** In this way, they write programs which have the same meaning in both C dialects.) ! * Undefining `__STDC__' when `-ansi' is not used. ! Currently, GCC defines `__STDC__' unconditionally. This provides good results in practice. ! Programmers normally use conditionals on `__STDC__' to ask whether it is safe to use certain features of ISO C, such as function ! prototypes or ISO token concatenation. Since plain `gcc' supports all the features of ISO C, the correct answer to these questions is "yes". ! Some users try to use `__STDC__' to check for the availability of ! certain library facilities. This is actually incorrect usage in ! an ISO C program, because the ISO C standard says that a conforming ! freestanding implementation should define `__STDC__' even though it ! does not have the library facilities. `gcc -ansi -pedantic' is a conforming freestanding implementation, and it is therefore ! required to define `__STDC__', even though it does not come with ! an ISO C library. ! Sometimes people say that defining `__STDC__' in a compiler that does not completely conform to the ISO C standard somehow violates the standard. This is illogical. The standard is a standard for ! compilers that claim to support ISO C, such as `gcc -ansi'--not ! for other compilers such as plain `gcc'. Whatever the ISO C ! standard says is relevant to the design of plain `gcc' without ! `-ansi' only for pragmatic reasons, not as a requirement. ! GCC normally defines `__STDC__' to be 1, and in addition defines ! `__STRICT_ANSI__' if you specify the `-ansi' option, or a `-std' option for strict conformance to some version of ISO C. On some hosts, system include files use a different convention, where ! `__STDC__' is normally 0, but is 1 if the user specifies strict conformance to the C Standard. GCC follows the host convention when processing system include files, but when processing user files it follows the usual GNU C convention. ! * Undefining `__STDC__' in C++. ! Programs written to compile with C++-to-C translators get the ! value of `__STDC__' that goes with the C compiler that is ! subsequently used. These programs must test `__STDC__' to ! determine what kind of C preprocessor that compiler uses: whether ! they should concatenate tokens in the ISO C fashion or in the ! traditional fashion. ! These programs work properly with GNU C++ if `__STDC__' is defined. They would not work otherwise. ! In addition, many header files are written to provide prototypes ! in ISO C but not in traditional C. Many of these header files can ! work without change in C++ provided `__STDC__' is defined. If ! `__STDC__' is not defined, they will all fail, and will all need ! to be changed to test explicitly for C++ as well. * Deleting "empty" loops. --- 45340,45399 ---- In this way, they write programs which have the same meaning in both C dialects.) ! * Undefining '__STDC__' when '-ansi' is not used. ! Currently, GCC defines '__STDC__' unconditionally. This provides good results in practice. ! Programmers normally use conditionals on '__STDC__' to ask whether it is safe to use certain features of ISO C, such as function ! prototypes or ISO token concatenation. Since plain 'gcc' supports all the features of ISO C, the correct answer to these questions is "yes". ! Some users try to use '__STDC__' to check for the availability of ! certain library facilities. This is actually incorrect usage in an ! ISO C program, because the ISO C standard says that a conforming ! freestanding implementation should define '__STDC__' even though it ! does not have the library facilities. 'gcc -ansi -pedantic' is a conforming freestanding implementation, and it is therefore ! required to define '__STDC__', even though it does not come with an ! ISO C library. ! Sometimes people say that defining '__STDC__' in a compiler that does not completely conform to the ISO C standard somehow violates the standard. This is illogical. The standard is a standard for ! compilers that claim to support ISO C, such as 'gcc -ansi'--not for ! other compilers such as plain 'gcc'. Whatever the ISO C standard ! says is relevant to the design of plain 'gcc' without '-ansi' only ! for pragmatic reasons, not as a requirement. ! GCC normally defines '__STDC__' to be 1, and in addition defines ! '__STRICT_ANSI__' if you specify the '-ansi' option, or a '-std' option for strict conformance to some version of ISO C. On some hosts, system include files use a different convention, where ! '__STDC__' is normally 0, but is 1 if the user specifies strict conformance to the C Standard. GCC follows the host convention when processing system include files, but when processing user files it follows the usual GNU C convention. ! * Undefining '__STDC__' in C++. ! Programs written to compile with C++-to-C translators get the value ! of '__STDC__' that goes with the C compiler that is subsequently ! used. These programs must test '__STDC__' to determine what kind ! of C preprocessor that compiler uses: whether they should ! concatenate tokens in the ISO C fashion or in the traditional ! fashion. ! These programs work properly with GNU C++ if '__STDC__' is defined. They would not work otherwise. ! In addition, many header files are written to provide prototypes in ! ISO C but not in traditional C. Many of these header files can ! work without change in C++ provided '__STDC__' is defined. If ! '__STDC__' is not defined, they will all fail, and will all need to ! be changed to test explicitly for C++ as well. * Deleting "empty" loops. *************** do not make because we think GCC is bett *** 45624,45630 **** programs run any faster. However, the rationale here is that optimization of a nonempty loop ! cannot produce an empty one. This held for carefully written C compiled with less powerful optimizers but is not always the case for carefully written C++ or with more powerful optimizers. Thus GCC will remove operations from loops whenever it can determine --- 45403,45409 ---- programs run any faster. However, the rationale here is that optimization of a nonempty loop ! cannot produce an empty one. This held for carefully written C compiled with less powerful optimizers but is not always the case for carefully written C++ or with more powerful optimizers. Thus GCC will remove operations from loops whenever it can determine *************** do not make because we think GCC is bett *** 45634,45640 **** Be aware of this when performing timing tests, for instance the following loop can be completely removed, provided ! `some_expression' can provably not change any global state. { int sum = 0; --- 45413,45419 ---- Be aware of this when performing timing tests, for instance the following loop can be completely removed, provided ! 'some_expression' can provably not change any global state. { int sum = 0; *************** do not make because we think GCC is bett *** 45644,45650 **** sum += some_expression; } ! Even though `sum' is accumulated in the loop, no use is made of that summation, so the accumulation can be removed. * Making side effects happen in the same order as in some other --- 45423,45429 ---- sum += some_expression; } ! Even though 'sum' is accumulated in the loop, no use is made of that summation, so the accumulation can be removed. * Making side effects happen in the same order as in some other *************** do not make because we think GCC is bett *** 45661,45669 **** There is no guarantee (in either the C or the C++ standard language definitions) that the increments will be evaluated in any ! particular order. Either increment might happen first. `func' ! might get the arguments `2, 3', or it might get `3, 2', or even ! `2, 2'. * Making certain warnings into errors by default. --- 45440,45448 ---- There is no guarantee (in either the C or the C++ standard language definitions) that the increments will be evaluated in any ! particular order. Either increment might happen first. 'func' ! might get the arguments '2, 3', or it might get '3, 2', or even '2, ! 2'. * Making certain warnings into errors by default. *************** do not make because we think GCC is bett *** 45671,45682 **** produce an error message for a certain program. ISO C requires a "diagnostic" message for certain kinds of invalid ! programs, but a warning is defined by GCC to count as a ! diagnostic. If GCC produces a warning but not an error, that is ! correct ISO C support. If testsuites call this "failure", they ! should be run with the GCC option `-pedantic-errors', which will ! turn these warnings into errors. !  File: gcc.info, Node: Warnings and Errors, Prev: Non-bugs, Up: Trouble --- 45450,45460 ---- produce an error message for a certain program. ISO C requires a "diagnostic" message for certain kinds of invalid ! programs, but a warning is defined by GCC to count as a diagnostic. ! If GCC produces a warning but not an error, that is correct ISO C ! support. If testsuites call this "failure", they should be run ! with the GCC option '-pedantic-errors', which will turn these ! warnings into errors.  File: gcc.info, Node: Warnings and Errors, Prev: Non-bugs, Up: Trouble *************** warnings. Each kind has a different pur *** 45694,45716 **** "Warnings" report other unusual conditions in your code that _may_ indicate a problem, although compilation can (and does) proceed. Warning messages also report the source file name and line number, ! but include the text `warning:' to distinguish them from error messages. Warnings may indicate danger points where you should check to make sure that your program really does what you intend; or the use of obsolete features; or the use of nonstandard features of GNU C or C++. Many ! warnings are issued only if you ask for them, with one of the `-W' ! options (for instance, `-Wall' requests a variety of useful warnings). GCC always tries to compile your program if possible; it never gratuitously rejects a program whose meaning is clear merely because (for instance) it fails to conform to a standard. In some cases, however, the C and C++ standards specify that certain extensions are forbidden, and a diagnostic _must_ be issued by a conforming compiler. ! The `-pedantic' option tells GCC to issue warnings in such cases; ! `-pedantic-errors' says to make them errors instead. This does not ! mean that _all_ non-ISO constructs get warnings or errors. *Note Options to Request or Suppress Warnings: Warning Options, for more detail on these and related command-line options. --- 45472,45494 ---- "Warnings" report other unusual conditions in your code that _may_ indicate a problem, although compilation can (and does) proceed. Warning messages also report the source file name and line number, ! but include the text 'warning:' to distinguish them from error messages. Warnings may indicate danger points where you should check to make sure that your program really does what you intend; or the use of obsolete features; or the use of nonstandard features of GNU C or C++. Many ! warnings are issued only if you ask for them, with one of the '-W' ! options (for instance, '-Wall' requests a variety of useful warnings). GCC always tries to compile your program if possible; it never gratuitously rejects a program whose meaning is clear merely because (for instance) it fails to conform to a standard. In some cases, however, the C and C++ standards specify that certain extensions are forbidden, and a diagnostic _must_ be issued by a conforming compiler. ! The '-pedantic' option tells GCC to issue warnings in such cases; ! '-pedantic-errors' says to make them errors instead. This does not mean ! that _all_ non-ISO constructs get warnings or errors. *Note Options to Request or Suppress Warnings: Warning Options, for more detail on these and related command-line options. *************** guidelines: *** 45747,45753 **** is a compiler bug. Reliable compilers never crash. * If the compiler produces invalid assembly code, for any input ! whatever (except an `asm' statement), that is a compiler bug, unless the compiler reports errors (not just warnings) which would ordinarily prevent the assembler from being run. --- 45525,45531 ---- is a compiler bug. Reliable compilers never crash. * If the compiler produces invalid assembly code, for any input ! whatever (except an 'asm' statement), that is a compiler bug, unless the compiler reports errors (not just warnings) which would ordinarily prevent the assembler from being run. *************** guidelines: *** 45758,45770 **** program whose behavior is undefined, which happened by chance to give the desired results with another C or C++ compiler. ! For example, in many nonoptimizing compilers, you can write `x;' ! at the end of a function instead of `return x;', with the same ! results. But the value of the function is undefined if `return' ! is omitted; it is not a bug when GCC produces different results. Problems often result from expressions with two increment ! operators, as in `f (*p++, *p++)'. Your previous compiler might have interpreted that expression the way you intended; GCC might interpret it another way. Neither compiler is wrong. The bug is in your code. --- 45536,45548 ---- program whose behavior is undefined, which happened by chance to give the desired results with another C or C++ compiler. ! For example, in many nonoptimizing compilers, you can write 'x;' at ! the end of a function instead of 'return x;', with the same ! results. But the value of the function is undefined if 'return' is ! omitted; it is not a bug when GCC produces different results. Problems often result from expressions with two increment ! operators, as in 'f (*p++, *p++)'. Your previous compiler might have interpreted that expression the way you intended; GCC might interpret it another way. Neither compiler is wrong. The bug is in your code. *************** File: gcc.info, Node: Bug Reporting, P *** 45792,45798 **** ================================= Bugs should be reported to the bug database at ! `http://gcc.gnu.org/bugs.html'.  File: gcc.info, Node: Service, Next: Contributing, Prev: Bugs, Up: Top --- 45570,45576 ---- ================================= Bugs should be reported to the bug database at ! .  File: gcc.info, Node: Service, Next: Contributing, Prev: Bugs, Up: Top *************** to find it: *** 45812,45820 **** * Look in the service directory for someone who might help you for a fee. The service directory is found at ! `http://www.fsf.org/resources/service'. ! For further information, see `http://gcc.gnu.org/faq.html#support'.  File: gcc.info, Node: Contributing, Next: Funding, Prev: Service, Up: Top --- 45590,45598 ---- * Look in the service directory for someone who might help you for a fee. The service directory is found at ! . ! For further information, see .  File: gcc.info, Node: Contributing, Next: Funding, Prev: Service, Up: Top *************** File: gcc.info, Node: Contributing, Ne *** 45824,45841 **** If you would like to help pretest GCC releases to assure they work well, current development sources are available by SVN (see ! `http://gcc.gnu.org/svn.html'). Source and binary snapshots are also ! available for FTP; see `http://gcc.gnu.org/snapshots.html'. If you would like to work on improvements to GCC, please read the advice at these URLs: ! `http://gcc.gnu.org/contribute.html' ! `http://gcc.gnu.org/contributewhy.html' for information on how to make useful contributions and avoid duplication of effort. Suggested projects are listed at ! `http://gcc.gnu.org/projects/'.  File: gcc.info, Node: Funding, Next: GNU Project, Prev: Contributing, Up: Top --- 45602,45619 ---- If you would like to help pretest GCC releases to assure they work well, current development sources are available by SVN (see ! ). Source and binary snapshots are also ! available for FTP; see . If you would like to work on improvements to GCC, please read the advice at these URLs: ! ! for information on how to make useful contributions and avoid duplication of effort. Suggested projects are listed at ! .  File: gcc.info, Node: Funding, Next: GNU Project, Prev: Contributing, Up: Top *************** to free software developers--the Free So *** 45854,45861 **** The way to convince distributors to do this is to demand it and expect it from them. So when you compare distributors, judge them partly by ! how much they give to free software development. Show distributors ! they must compete to be the one who gives the most. To make this approach work, you must insist on numbers that you can compare, such as, "We will donate ten dollars to the Frobnitz project --- 45632,45639 ---- The way to convince distributors to do this is to demand it and expect it from them. So when you compare distributors, judge them partly by ! how much they give to free software development. Show distributors they ! must compete to be the one who gives the most. To make this approach work, you must insist on numbers that you can compare, such as, "We will donate ten dollars to the Frobnitz project *************** for comparison. *** 45865,45872 **** Even a precise fraction "of the profits from this disk" is not very meaningful, since creative accounting and unrelated business decisions ! can greatly alter what fraction of the sales price counts as profit. ! If the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all. Some redistributors do development work themselves. This is useful --- 45643,45650 ---- Even a precise fraction "of the profits from this disk" is not very meaningful, since creative accounting and unrelated business decisions ! can greatly alter what fraction of the sales price counts as profit. If ! the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all. Some redistributors do development work themselves. This is useful *************** difference than others. For example, ma *** 45876,45883 **** a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ! ports such as adding a new CPU to the GNU Compiler Collection ! contribute more; major new features or packages contribute the most. By establishing the idea that supporting further development is "the proper thing to do" when distributing free software for a fee, we can --- 45654,45661 ---- a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ! ports such as adding a new CPU to the GNU Compiler Collection contribute ! more; major new features or packages contribute the most. By establishing the idea that supporting further development is "the proper thing to do" when distributing free software for a fee, we can *************** now widely used; though these systems ar *** 45901,45908 **** they are more accurately called GNU/Linux systems. For more information, see: ! `http://www.gnu.org/' ! `http://www.gnu.org/gnu/linux-and-gnu.html'  File: gcc.info, Node: Copying, Next: GNU Free Documentation License, Prev: GNU Project, Up: Top --- 45679,45686 ---- they are more accurately called GNU/Linux systems. For more information, see: ! !  File: gcc.info, Node: Copying, Next: GNU Free Documentation License, Prev: GNU Project, Up: Top *************** GNU General Public License *** 45912,45918 **** Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 45690,45696 ---- Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU General Public License for most of o *** 45932,45958 **** any other work released this way by its authors. You can apply it to your programs, too. ! When we speak of free software, we are referring to freedom, not ! price. Our General Public Licenses are designed to make sure that you ! have the freedom to distribute copies of free software (and charge for ! them if you wish), that you receive source code or can get it if you ! want it, that you can change the software or use pieces of it in new ! free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you ! have certain responsibilities if you distribute copies of the software, ! or if you modify it: responsibilities to respect the freedom of others. ! For example, if you distribute copies of such a program, whether ! gratis or for a fee, you must pass on to the recipients the same ! freedoms that you received. You must make sure that they, too, receive ! or can get the source code. And you must show them these terms so they ! know their rights. ! Developers that use the GNU GPL protect your rights with two steps: ! (1) assert copyright on the software, and (2) offer you this License ! giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and --- 45710,45736 ---- any other work released this way by its authors. You can apply it to your programs, too. ! When we speak of free software, we are referring to freedom, not price. ! Our General Public Licenses are designed to make sure that you have the ! freedom to distribute copies of free software (and charge for them if ! you wish), that you receive source code or can get it if you want it, ! that you can change the software or use pieces of it in new free ! programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you have ! certain responsibilities if you distribute copies of the software, or if ! you modify it: responsibilities to respect the freedom of others. ! For example, if you distribute copies of such a program, whether gratis ! or for a fee, you must pass on to the recipients the same freedoms that ! you received. You must make sure that they, too, receive or can get the ! source code. And you must show them these terms so they know their ! rights. ! Developers that use the GNU GPL protect your rights with two steps: (1) ! assert copyright on the software, and (2) offer you this License giving ! you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and *************** changed, so that their problems will not *** 45961,45976 **** authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the ! manufacturer can do so. This is fundamentally incompatible with the ! aim of protecting users' freedom to change the software. The ! systematic pattern of such abuse occurs in the area of products for ! individuals to use, which is precisely where it is most unacceptable. ! Therefore, we have designed this version of the GPL to prohibit the ! practice for those products. If such problems arise substantially in ! other domains, we stand ready to extend this provision to those domains ! in future versions of the GPL, as needed to protect the freedom of ! users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of --- 45739,45753 ---- authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the manufacturer ! can do so. This is fundamentally incompatible with the aim of ! protecting users' freedom to change the software. The systematic ! pattern of such abuse occurs in the area of products for individuals to ! use, which is precisely where it is most unacceptable. Therefore, we ! have designed this version of the GPL to prohibit the practice for those ! products. If such problems arise substantially in other domains, we ! stand ready to extend this provision to those domains in future versions ! of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of *************** TERMS AND CONDITIONS *** 46007,46014 **** To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it ! on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. --- 45784,45791 ---- To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it on ! a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. *************** TERMS AND CONDITIONS *** 46022,46029 **** to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may ! convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. --- 45799,45806 ---- to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may convey ! the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. *************** TERMS AND CONDITIONS *** 46031,46038 **** 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any ! non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in --- 45808,45815 ---- 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any non-source ! form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in *************** TERMS AND CONDITIONS *** 46043,46052 **** The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work ! with that Major Component, or to implement a Standard Interface ! for which an implementation is available to the public in source ! code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code --- 45820,45829 ---- The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work with ! that Major Component, or to implement a Standard Interface for ! which an implementation is available to the public in source code ! form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code *************** TERMS AND CONDITIONS *** 46054,46068 **** The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including ! scripts to control those activities. However, it does not include ! the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files ! associated with source files for the work, and the source code for ! shared libraries and dynamically linked subprograms that the work ! is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. --- 45831,45845 ---- The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including scripts ! to control those activities. However, it does not include the ! work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files associated ! with source files for the work, and the source code for shared ! libraries and dynamically linked subprograms that the work is ! specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. *************** TERMS AND CONDITIONS *** 46079,46100 **** copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, ! given its content, constitutes a covered work. This License ! acknowledges your rights of fair use or other equivalent, as ! provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for ! you, or provide you with facilities for running those works, ! provided that you comply with the terms of this License in ! conveying all material for which you do not control copyright. ! Those thus making or running the covered works for you must do so ! exclusively on your behalf, under your direction and control, on ! terms that prohibit them from making any copies of your ! copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section --- 45856,45877 ---- copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, given ! its content, constitutes a covered work. This License acknowledges ! your rights of fair use or other equivalent, as provided by ! copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for you, ! or provide you with facilities for running those works, provided ! that you comply with the terms of this License in conveying all ! material for which you do not control copyright. Those thus making ! or running the covered works for you must do so exclusively on your ! behalf, under your direction and control, on terms that prohibit ! them from making any copies of your copyrighted material outside ! their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section *************** TERMS AND CONDITIONS *** 46111,46118 **** When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention ! to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. --- 45888,45895 ---- When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention to ! limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. *************** TERMS AND CONDITIONS *** 46182,46189 **** b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for ! as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a --- 45959,45966 ---- b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for as ! long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a *************** TERMS AND CONDITIONS *** 46193,46224 **** to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of ! the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access ! to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated ! by you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to ! the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long ! as needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. - A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. --- 45970,46000 ---- to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of the ! written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access to ! the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated by ! you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to the ! object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long as ! needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. *************** TERMS AND CONDITIONS *** 46226,46233 **** A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product ! is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the --- 46002,46009 ---- A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product is ! a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the *************** TERMS AND CONDITIONS *** 46258,46268 **** The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or ! installed by the recipient, or for the User Product in which it ! has been modified or installed. Access to a network may be denied ! when the modification itself materially and adversely affects the ! operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information --- 46034,46044 ---- The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or installed ! by the recipient, or for the User Product in which it has been ! modified or installed. Access to a network may be denied when the ! modification itself materially and adversely affects the operation ! of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information *************** TERMS AND CONDITIONS *** 46292,46299 **** Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License ! with terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or --- 46068,46075 ---- Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License with ! terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or *************** TERMS AND CONDITIONS *** 46303,46311 **** Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be ! marked in reasonable ways as different from the original ! version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or --- 46079,46086 ---- Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be marked ! in reasonable ways as different from the original version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or *************** TERMS AND CONDITIONS *** 46324,46334 **** you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or ! conveying under this License, you may add to a covered work ! material governed by the terms of that license document, provided ! that the further restriction does not survive such relicensing or ! conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the --- 46099,46108 ---- you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or conveying ! under this License, you may add to a covered work material governed ! by the terms of that license document, provided that the further ! restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the *************** TERMS AND CONDITIONS *** 46344,46356 **** You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under ! the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 46118,46130 ---- You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under the ! third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** TERMS AND CONDITIONS *** 46362,46371 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, you do not qualify to receive new ! licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. --- 46136,46145 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, you do not qualify to receive new licenses ! for the same material under section 10. 9. Acceptance Not Required for Having Copies. *************** TERMS AND CONDITIONS *** 46379,46385 **** by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and --- 46153,46159 ---- by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and *************** TERMS AND CONDITIONS *** 46393,46413 **** covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to ! possession of the Corresponding Source of the work from the ! predecessor in interest, if the predecessor has it or can get it ! with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for ! exercise of rights granted under this License, and you may not ! initiate litigation (including a cross-claim or counterclaim in a ! lawsuit) alleging that any patent claim is infringed by making, ! using, selling, offering for sale, or importing the Program or any ! portion of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. --- 46167,46187 ---- covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to possession ! of the Corresponding Source of the work from the predecessor in ! interest, if the predecessor has it or can get it with reasonable ! efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for exercise ! of rights granted under this License, and you may not initiate ! litigation (including a cross-claim or counterclaim in a lawsuit) ! alleging that any patent claim is infringed by making, using, ! selling, offering for sale, or importing the Program or any portion ! of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. *************** TERMS AND CONDITIONS *** 46427,46441 **** Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its ! contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To ! "grant" such a patent license to a party means to make such an ! agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available --- 46201,46215 ---- Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its contributor ! version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To "grant" ! such a patent license to a party means to make such an agreement or ! commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available *************** TERMS AND CONDITIONS *** 46465,46500 **** conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under ! which you make payment to the third party based on the extent of ! your activity of conveying the work, and under which the third ! party grants, to any of the parties who would receive the covered ! work from you, a discriminatory patent license (a) in connection ! with copies of the covered work conveyed by you (or copies made ! from those copies), or (b) primarily for and in connection with ! specific products or compilations that contain the covered work, ! unless you entered into that arrangement, or that patent license ! was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, ! agreement or otherwise) that contradict the conditions of this ! License, they do not excuse you from the conditions of this ! License. If you cannot convey a covered work so as to satisfy ! simultaneously your obligations under this License and any other ! pertinent obligations, then as a consequence you may not convey it ! at all. For example, if you agree to terms that obligate you to ! collect a royalty for further conveying from those to whom you ! convey the Program, the only way you could satisfy both those ! terms and this License would be to refrain entirely from conveying ! the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed --- 46239,46273 ---- conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under which ! you make payment to the third party based on the extent of your ! activity of conveying the work, and under which the third party ! grants, to any of the parties who would receive the covered work ! from you, a discriminatory patent license (a) in connection with ! copies of the covered work conveyed by you (or copies made from ! those copies), or (b) primarily for and in connection with specific ! products or compilations that contain the covered work, unless you ! entered into that arrangement, or that patent license was granted, ! prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, agreement ! or otherwise) that contradict the conditions of this License, they ! do not excuse you from the conditions of this License. If you ! cannot convey a covered work so as to satisfy simultaneously your ! obligations under this License and any other pertinent obligations, ! then as a consequence you may not convey it at all. For example, ! if you agree to terms that obligate you to collect a royalty for ! further conveying from those to whom you convey the Program, the ! only way you could satisfy both those terms and this License would ! be to refrain entirely from conveying the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed *************** TERMS AND CONDITIONS *** 46505,46526 **** General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. ! Such new versions will be similar in spirit to the present ! version, but may differ in detail to address new problems or ! concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the ! Free Software Foundation. If the Program does not specify a ! version number of the GNU General Public License, you may choose ! any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that --- 46278,46298 ---- General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. Such ! new versions will be similar in spirit to the present version, but ! may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the Free ! Software Foundation. If the Program does not specify a version ! number of the GNU General Public License, you may choose any ! version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that *************** TERMS AND CONDITIONS *** 46532,46555 **** author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU ! FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD --- 46304,46327 ---- author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR ! DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD *************** TERMS AND CONDITIONS *** 46557,46563 **** PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, --- 46329,46335 ---- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, *************** TERMS AND CONDITIONS *** 46566,46572 **** connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. - END OF TERMS AND CONDITIONS =========================== --- 46338,46343 ---- *************** possible use to the public, the best way *** 46578,46586 **** free software which everyone can redistribute and change under these terms. ! To do so, attach the following notices to the program. It is safest ! to attach them to the start of each source file to most effectively ! state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES. --- 46349,46357 ---- free software which everyone can redistribute and change under these terms. ! To do so, attach the following notices to the program. It is safest to ! attach them to the start of each source file to most effectively state ! the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES. *************** state the exclusion of warranty; and eac *** 46597,46616 **** General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see `http://www.gnu.org/licenses/'. Also add information on how to contact you by electronic and paper mail. ! If the program does terminal interaction, make it output a short ! notice like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type `show c' for details. ! The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". --- 46368,46387 ---- General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. ! If the program does terminal interaction, make it output a short notice ! like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type 'show c' for details. ! The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". *************** use an "about box". *** 46618,46631 **** You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see `http://www.gnu.org/licenses/'. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read `http://www.gnu.org/philosophy/why-not-lgpl.html'.  File: gcc.info, Node: GNU Free Documentation License, Next: Contributors, Prev: Copying, Up: Top --- 46389,46402 ---- You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read .  File: gcc.info, Node: GNU Free Documentation License, Next: Contributors, Prev: Copying, Up: Top *************** GNU Free Documentation License *** 46636,46642 **** Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 46407,46413 ---- Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU Free Documentation License *** 46661,46681 **** free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. ! We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it ! can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You ! accept the license if you copy, modify or distribute the work in a ! way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with --- 46432,46452 ---- free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. We ! recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it can ! be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You accept ! the license if you copy, modify or distribute the work in a way ! requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with *************** GNU Free Documentation License *** 46693,46704 **** regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in ! the notice that says that the Document is released under this ! License. If a section does not fit the above definition of ! Secondary then it is not allowed to be designated as Invariant. ! The Document may contain zero Invariant Sections. If the Document ! does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice --- 46464,46475 ---- regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in the ! notice that says that the Document is released under this License. ! If a section does not fit the above definition of Secondary then it ! is not allowed to be designated as Invariant. The Document may ! contain zero Invariant Sections. If the Document does not identify ! any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice *************** GNU Free Documentation License *** 46709,46735 **** A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images ! composed of pixels) generic paint programs or (for drawings) some ! widely available drawing editor, and that is suitable for input to ! text formatters or for automatic translation to a variety of ! formats suitable for input to text formatters. A copy made in an ! otherwise Transparent file format whose markup, or absence of ! markup, has been arranged to thwart or discourage subsequent ! modification by readers is not Transparent. An image format is ! not Transparent if used for any substantial amount of text. A ! copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and ! standard-conforming simple HTML, PostScript or PDF designed for ! human modification. Examples of transparent image formats include ! PNG, XCF and JPG. Opaque formats include proprietary formats that ! can be read and edited only by proprietary word processors, SGML or ! XML for which the DTD and/or processing tools are not generally ! available, and the machine-generated HTML, PostScript or PDF ! produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the --- 46480,46506 ---- A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images composed ! of pixels) generic paint programs or (for drawings) some widely ! available drawing editor, and that is suitable for input to text ! formatters or for automatic translation to a variety of formats ! suitable for input to text formatters. A copy made in an otherwise ! Transparent file format whose markup, or absence of markup, has ! been arranged to thwart or discourage subsequent modification by ! readers is not Transparent. An image format is not Transparent if ! used for any substantial amount of text. A copy that is not ! "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and standard-conforming ! simple HTML, PostScript or PDF designed for human modification. ! Examples of transparent image formats include PNG, XCF and JPG. ! Opaque formats include proprietary formats that can be read and ! edited only by proprietary word processors, SGML or XML for which ! the DTD and/or processing tools are not generally available, and ! the machine-generated HTML, PostScript or PDF produced by some word ! processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the *************** GNU Free Documentation License *** 46767,46774 **** may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow ! the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. --- 46538,46545 ---- may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow the ! conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. *************** GNU Free Documentation License *** 46782,46793 **** these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the ! title equally prominent and visible. You may add other material ! on the covers in addition. Copying with changes limited to the ! covers, as long as they preserve the title of the Document and ! satisfy these conditions, can be treated as verbatim copying in ! other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit --- 46553,46563 ---- these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the title ! equally prominent and visible. You may add other material on the ! covers in addition. Copying with changes limited to the covers, as ! long as they preserve the title of the Document and satisfy these ! conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit *************** GNU Free Documentation License *** 46795,46834 **** adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a ! machine-readable Transparent copy along with each Opaque copy, or ! state in or with each Opaque copy a computer-network location from ! which the general network-using public has access to download ! using public-standard network protocols a complete Transparent ! copy of the Document, free of added material. If you use the ! latter option, you must take reasonably prudent steps, when you ! begin distribution of Opaque copies in quantity, to ensure that ! this Transparent copy will remain thus accessible at the stated ! location until at least one year after the last time you ! distribute an Opaque copy (directly or through your agents or ! retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of ! copies, to give them a chance to provide you with an updated ! version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with ! the Modified Version filling the role of the Document, thus ! licensing distribution and modification of the Modified Version to ! whoever possesses a copy of it. In addition, you must do these ! things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of ! previous versions (which should, if there were any, be listed ! in the History section of the Document). You may use the ! same title as a previous version if the original publisher of ! that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in --- 46565,46603 ---- adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a machine-readable ! Transparent copy along with each Opaque copy, or state in or with ! each Opaque copy a computer-network location from which the general ! network-using public has access to download using public-standard ! network protocols a complete Transparent copy of the Document, free ! of added material. If you use the latter option, you must take ! reasonably prudent steps, when you begin distribution of Opaque ! copies in quantity, to ensure that this Transparent copy will ! remain thus accessible at the stated location until at least one ! year after the last time you distribute an Opaque copy (directly or ! through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of copies, ! to give them a chance to provide you with an updated version of the ! Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with the ! Modified Version filling the role of the Document, thus licensing ! distribution and modification of the Modified Version to whoever ! possesses a copy of it. In addition, you must do these things in ! the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of previous ! versions (which should, if there were any, be listed in the ! History section of the Document). You may use the same title ! as a previous version if the original publisher of that ! version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in *************** GNU Free Documentation License *** 46858,46888 **** I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on ! the Title Page. If there is no section Entitled "History" in ! the Document, create one stating the title, year, authors, ! and publisher of the Document as given on its Title Page, ! then add an item describing the Modified Version as stated in ! the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in ! the "History" section. You may omit a network location for a ! work that was published at least four years before the ! Document itself, or if the original publisher of the version ! it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the ! section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, ! unaltered in their text and in their titles. Section numbers ! or the equivalent are not considered part of the section ! titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. --- 46627,46656 ---- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on the ! Title Page. If there is no section Entitled "History" in the ! Document, create one stating the title, year, authors, and ! publisher of the Document as given on its Title Page, then add ! an item describing the Modified Version as stated in the ! previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in the ! "History" section. You may omit a network location for a work ! that was published at least four years before the Document ! itself, or if the original publisher of the version it refers ! to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the section ! all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, unaltered ! in their text and in their titles. Section numbers or the ! equivalent are not considered part of the section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. *************** GNU Free Documentation License *** 46895,46905 **** If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option ! designate some or all of these sections as invariant. To do this, ! add their titles to the list of Invariant Sections in the Modified ! Version's license notice. These titles must be distinct from any ! other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various --- 46663,46673 ---- If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option designate ! some or all of these sections as invariant. To do this, add their ! titles to the list of Invariant Sections in the Modified Version's ! license notice. These titles must be distinct from any other ! section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various *************** GNU Free Documentation License *** 46908,46922 **** definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end ! of the list of Cover Texts in the Modified Version. Only one ! passage of Front-Cover Text and one of Back-Cover Text may be ! added by (or through arrangements made by) any one entity. If the ! Document already includes a cover text for the same cover, ! previously added by you or by arrangement made by the same entity ! you are acting on behalf of, you may not add another; but you may ! replace the old one, on explicit permission from the previous ! publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to --- 46676,46690 ---- definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end of ! the list of Cover Texts in the Modified Version. Only one passage ! of Front-Cover Text and one of Back-Cover Text may be added by (or ! through arrangements made by) any one entity. If the Document ! already includes a cover text for the same cover, previously added ! by you or by arrangement made by the same entity you are acting on ! behalf of, you may not add another; but you may replace the old ! one, on explicit permission from the previous publisher that added ! the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to *************** GNU Free Documentation License *** 46926,46933 **** You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination ! all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. --- 46694,46701 ---- You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination all ! of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. *************** GNU Free Documentation License *** 46954,46973 **** documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the ! documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow ! this License in all other respects regarding verbatim copying of ! that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of ! a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this --- 46722,46741 ---- documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the documents ! in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow this ! License in all other respects regarding verbatim copying of that ! document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of a ! storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this *************** GNU Free Documentation License *** 47012,47019 **** However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 46780,46787 ---- However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** GNU Free Documentation License *** 47025,47057 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, receipt of a copy of some or all of ! the same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! `http://www.gnu.org/copyleft/'. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If ! the Document does not specify a version number of this License, ! you may choose any version ever published (not as a draft) by the ! Free Software Foundation. If the Document specifies that a proxy ! can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also --- 46793,46825 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, receipt of a copy of some or all of the ! same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! . Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If the ! Document does not specify a version number of this License, you may ! choose any version ever published (not as a draft) by the Free ! Software Foundation. If the Document specifies that a proxy can ! decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also *************** GNU Free Documentation License *** 47081,47087 **** site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. - ADDENDUM: How to use this License for your documents ==================================================== --- 46849,46854 ---- *************** notices just after the title page: *** 47098,47104 **** Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, ! replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts --- 46865,46871 ---- Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, ! replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts *************** combination of the three, merge those tw *** 47109,47117 **** situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of ! free software license, such as the GNU General Public License, to ! permit their use in free software.  File: gcc.info, Node: Contributors, Next: Option Index, Prev: GNU Free Documentation License, Up: Top --- 46876,46884 ---- situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of free ! software license, such as the GNU General Public License, to permit ! their use in free software.  File: gcc.info, Node: Contributors, Next: Option Index, Prev: GNU Free Documentation License, Up: Top *************** File: gcc.info, Node: Contributors, Ne *** 47119,47127 **** Contributors to GCC ******************* ! The GCC project would like to thank its many contributors. Without ! them the project would not have been nearly as successful as it has ! been. Any omissions in this list are accidental. Feel free to contact or if you have been left out or some of your contributions are not listed. Please keep this list in alphabetical order. --- 46886,46894 ---- Contributors to GCC ******************* ! The GCC project would like to thank its many contributors. Without them ! the project would not have been nearly as successful as it has been. ! Any omissions in this list are accidental. Feel free to contact or if you have been left out or some of your contributions are not listed. Please keep this list in alphabetical order. *************** alphabetical order. *** 47250,47256 **** * The GNU Classpath project for all of their merged runtime code. ! * Nick Clifton for arm, mcore, fr30, v850, m32r, rx work, `--help', and other random hacking. * Michael Cook for libstdc++ cleanup patches to reduce warnings. --- 47017,47023 ---- * The GNU Classpath project for all of their merged runtime code. ! * Nick Clifton for arm, mcore, fr30, v850, m32r, rx work, '--help', and other random hacking. * Michael Cook for libstdc++ cleanup patches to reduce warnings. *************** alphabetical order. *** 47271,47278 **** * Paul Dale for his work to add uClinux platform support to the m68k backend. ! * Dario Dariol contributed the four varieties of sample programs ! that print a copy of their source. * Russell Davidson for fstream and stringstream fixes in libstdc++. --- 47038,47045 ---- * Paul Dale for his work to add uClinux platform support to the m68k backend. ! * Dario Dariol contributed the four varieties of sample programs that ! print a copy of their source. * Russell Davidson for fstream and stringstream fixes in libstdc++. *************** alphabetical order. *** 47287,47302 **** * Gabriel Dos Reis for contributions to G++, contributions and maintenance of GCC diagnostics infrastructure, libstdc++-v3, ! including `valarray<>', `complex<>', maintaining the numerics ! library (including that pesky `' :-) and keeping ! up-to-date anything to do with numbers. * Ulrich Drepper for his work on glibc, testing of GCC using glibc, ! ISO C99 support, CFG dumping support, etc., plus support of the ! C++ runtime libraries including for all kinds of C interface ! issues, contributing and maintaining `complex<>', sanity checking ! and disbursement, configuration architecture, libio maintenance, ! and early math work. * Zdenek Dvorak for a new loop unroller and various fixes. --- 47054,47069 ---- * Gabriel Dos Reis for contributions to G++, contributions and maintenance of GCC diagnostics infrastructure, libstdc++-v3, ! including 'valarray<>', 'complex<>', maintaining the numerics ! library (including that pesky '' :-) and keeping up-to-date ! anything to do with numbers. * Ulrich Drepper for his work on glibc, testing of GCC using glibc, ! ISO C99 support, CFG dumping support, etc., plus support of the C++ ! runtime libraries including for all kinds of C interface issues, ! contributing and maintaining 'complex<>', sanity checking and ! disbursement, configuration architecture, libio maintenance, and ! early math work. * Zdenek Dvorak for a new loop unroller and various fixes. *************** alphabetical order. *** 47347,47357 **** * Peter Gerwinski for various bug fixes and the Pascal front end. * Kaveh R. Ghazi for his direction via the steering committee, ! amazing work to make `-W -Wall -W* -Werror' useful, and testing ! GCC on a plethora of platforms. Kaveh extends his gratitude to ! the CAIP Center at Rutgers University for providing him with ! computing resources to work on Free Software from the late 1980s ! to 2010. * John Gilmore for a donation to the FSF earmarked improving GNU Java. --- 47114,47123 ---- * Peter Gerwinski for various bug fixes and the Pascal front end. * Kaveh R. Ghazi for his direction via the steering committee, ! amazing work to make '-W -Wall -W* -Werror' useful, and testing GCC ! on a plethora of platforms. Kaveh extends his gratitude to the ! CAIP Center at Rutgers University for providing him with computing ! resources to work on Free Software from the late 1980s to 2010. * John Gilmore for a donation to the FSF earmarked improving GNU Java. *************** alphabetical order. *** 47363,47380 **** support, improved leaf function register allocation, and his direction via the steering committee. ! * Anthony Green for his `-Os' contributions, the moxie port, and ! Java front end work. ! * Stu Grossman for gdb hacking, allowing GCJ developers to debug ! Java code. * Michael K. Gschwind contributed the port to the PDP-11. * Richard Guenther for his ongoing middle-end contributions and bug fixes and for release management. ! * Ron Guilmette implemented the `protoize' and `unprotoize' tools, the support for Dwarf symbolic debugging information, and much of the support for System V Release 4. He has also worked heavily on the Intel 386 and 860 support. --- 47129,47146 ---- support, improved leaf function register allocation, and his direction via the steering committee. ! * Anthony Green for his '-Os' contributions, the moxie port, and Java ! front end work. ! * Stu Grossman for gdb hacking, allowing GCJ developers to debug Java ! code. * Michael K. Gschwind contributed the port to the PDP-11. * Richard Guenther for his ongoing middle-end contributions and bug fixes and for release management. ! * Ron Guilmette implemented the 'protoize' and 'unprotoize' tools, the support for Dwarf symbolic debugging information, and much of the support for System V Release 4. He has also worked heavily on the Intel 386 and 860 support. *************** alphabetical order. *** 47393,47400 **** series 300. * Michael Hayes for various thankless work he's done trying to get ! the c30/c40 ports functional. Lots of loop and unroll ! improvements and fixes. * Dara Hazeghi for wading through myriads of target-specific bug reports. --- 47159,47166 ---- series 300. * Michael Hayes for various thankless work he's done trying to get ! the c30/c40 ports functional. Lots of loop and unroll improvements ! and fixes. * Dara Hazeghi for wading through myriads of target-specific bug reports. *************** alphabetical order. *** 47428,47435 **** * Falk Hueffner for working on C and optimization bug reports. ! * Bernardo Innocenti for his m68k work, including merging of ! ColdFire improvements and uClinux support. * Christian Iseli for various bug fixes. --- 47194,47201 ---- * Falk Hueffner for working on C and optimization bug reports. ! * Bernardo Innocenti for his m68k work, including merging of ColdFire ! improvements and uClinux support. * Christian Iseli for various bug fixes. *************** alphabetical order. *** 47477,47489 **** * Richard Kenner of the New York University Ultracomputer Research Laboratory wrote the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the ! support for instruction attributes. He also made changes to ! better support RISC processors including changes to common ! subexpression elimination, strength reduction, function calling ! sequence handling, and condition code support, in addition to ! generalizing the code for frame pointer elimination and delay slot ! scheduling. Richard Kenner was also the head maintainer of GCC ! for several years. * Mumit Khan for various contributions to the Cygwin and Mingw32 ports and maintaining binary releases for Microsoft Windows hosts, --- 47243,47255 ---- * Richard Kenner of the New York University Ultracomputer Research Laboratory wrote the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the ! support for instruction attributes. He also made changes to better ! support RISC processors including changes to common subexpression ! elimination, strength reduction, function calling sequence ! handling, and condition code support, in addition to generalizing ! the code for frame pointer elimination and delay slot scheduling. ! Richard Kenner was also the head maintainer of GCC for several ! years. * Mumit Khan for various contributions to the Cygwin and Mingw32 ports and maintaining binary releases for Microsoft Windows hosts, *************** alphabetical order. *** 47506,47516 **** * Asher Langton and Mike Kumbera for contributing Cray pointer support to GNU Fortran, and for other GNU Fortran improvements. ! * Jeff Law for his direction via the steering committee, ! coordinating the entire egcs project and GCC 2.95, rolling out ! snapshots and releases, handling merges from GCC2, reviewing tons ! of patches that might have fallen through the cracks else, and ! random but extensive hacking. * Walter Lee for work on the TILE-Gx and TILEPro ports. --- 47272,47282 ---- * Asher Langton and Mike Kumbera for contributing Cray pointer support to GNU Fortran, and for other GNU Fortran improvements. ! * Jeff Law for his direction via the steering committee, coordinating ! the entire egcs project and GCC 2.95, rolling out snapshots and ! releases, handling merges from GCC2, reviewing tons of patches that ! might have fallen through the cracks else, and random but extensive ! hacking. * Walter Lee for work on the TILE-Gx and TILEPro ports. *************** alphabetical order. *** 47539,47545 **** * Weiwen Liu for testing and various bug fixes. ! * Manuel Lo'pez-Iba'n~ez for improving `-Wconversion' and many other diagnostics fixes and improvements. * Dave Love for his ongoing work with the Fortran front end and --- 47305,47311 ---- * Weiwen Liu for testing and various bug fixes. ! * Manuel Lo'pez-Iba'n~ez for improving '-Wconversion' and many other diagnostics fixes and improvements. * Dave Love for his ongoing work with the Fortran front end and *************** alphabetical order. *** 47556,47569 **** * Greg McGary for random fixes and (someday) bounded pointers. * Andrew MacLeod for his ongoing work in building a real EH system, ! various code generation improvements, work on the global ! optimizer, etc. * Vladimir Makarov for hacking some ugly i960 problems, PowerPC ! hacking improvements to compile-time performance, overall ! knowledge and direction in the area of instruction scheduling, and ! design and implementation of the automaton based instruction ! scheduler. * Bob Manson for his behind the scenes work on dejagnu. --- 47322,47334 ---- * Greg McGary for random fixes and (someday) bounded pointers. * Andrew MacLeod for his ongoing work in building a real EH system, ! various code generation improvements, work on the global optimizer, ! etc. * Vladimir Makarov for hacking some ugly i960 problems, PowerPC ! hacking improvements to compile-time performance, overall knowledge ! and direction in the area of instruction scheduling, and design and ! implementation of the automaton based instruction scheduler. * Bob Manson for his behind the scenes work on dejagnu. *************** alphabetical order. *** 47596,47602 **** * Mark Mitchell for his direction via the steering committee, mountains of C++ work, load/store hoisting out of loops, alias ! analysis improvements, ISO C `restrict' support, and serving as release manager from 2000 to 2011. * Alan Modra for various GNU/Linux bits and testing. --- 47361,47367 ---- * Mark Mitchell for his direction via the steering committee, mountains of C++ work, load/store hoisting out of loops, alias ! analysis improvements, ISO C 'restrict' support, and serving as release manager from 2000 to 2011. * Alan Modra for various GNU/Linux bits and testing. *************** alphabetical order. *** 47606,47614 **** * Jason Molenda for major help in the care and feeding of all the services on the gcc.gnu.org (formerly egcs.cygnus.com) ! machine--mail, web services, ftp services, etc etc. Doing all ! this work on scrap paper and the backs of envelopes would have ! been... difficult. * Catherine Moore for fixing various ugly problems we have sent her way, including the haifa bug which was killing the Alpha & PowerPC --- 47371,47379 ---- * Jason Molenda for major help in the care and feeding of all the services on the gcc.gnu.org (formerly egcs.cygnus.com) ! machine--mail, web services, ftp services, etc etc. Doing all this ! work on scrap paper and the backs of envelopes would have been... ! difficult. * Catherine Moore for fixing various ugly problems we have sent her way, including the haifa bug which was killing the Alpha & PowerPC *************** alphabetical order. *** 47620,47627 **** initial IA-64 port. * Stephen Moshier contributed the floating point emulator that ! assists in cross-compilation and permits support for floating ! point numbers wider than 64 bits and for ISO C99 support. * Bill Moyer for his behind the scenes work on various issues. --- 47385,47392 ---- initial IA-64 port. * Stephen Moshier contributed the floating point emulator that ! assists in cross-compilation and permits support for floating point ! numbers wider than 64 bits and for ISO C99 support. * Bill Moyer for his behind the scenes work on various issues. *************** alphabetical order. *** 47644,47652 **** * NeXT, Inc. donated the front end that supports the Objective-C language. ! * Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to ! the search engine setup, various documentation fixes and other ! small fixes. * Geoff Noer for his work on getting cygwin native builds working. --- 47409,47417 ---- * NeXT, Inc. donated the front end that supports the Objective-C language. ! * Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the ! search engine setup, various documentation fixes and other small ! fixes. * Geoff Noer for his work on getting cygwin native builds working. *************** alphabetical order. *** 47654,47661 **** tracking web pages, GIMPLE tuples, and assorted fixes. * David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, ! FreeBSD/ARM, FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and ! related infrastructure improvements. * Alexandre Oliva for various build infrastructure improvements, scripts and amazing testing work, including keeping libtool issues --- 47419,47426 ---- tracking web pages, GIMPLE tuples, and assorted fixes. * David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, ! FreeBSD/ARM, FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related ! infrastructure improvements. * Alexandre Oliva for various build infrastructure improvements, scripts and amazing testing work, including keeping libtool issues *************** alphabetical order. *** 47667,47674 **** * Rainer Orth for random MIPS work, including improvements to GCC's o32 ABI support, improvements to dejagnu's MIPS support, Java ! configuration clean-ups and porting work, and maintaining the ! IRIX, Solaris 2, and Tru64 UNIX ports. * Hartmut Penner for work on the s390 port. --- 47432,47439 ---- * Rainer Orth for random MIPS work, including improvements to GCC's o32 ABI support, improvements to dejagnu's MIPS support, Java ! configuration clean-ups and porting work, and maintaining the IRIX, ! Solaris 2, and Tru64 UNIX ports. * Hartmut Penner for work on the s390 port. *************** alphabetical order. *** 47718,47724 **** * David Ronis inspired and encouraged Craig to rewrite the G77 documentation in texinfo format by contributing a first pass at a ! translation of the old `g77-0.5.16/f/DOC' file. * Ken Rose for fixes to GCC's delay slot filling code. --- 47483,47489 ---- * David Ronis inspired and encouraged Craig to rewrite the G77 documentation in texinfo format by contributing a first pass at a ! translation of the old 'g77-0.5.16/f/DOC' file. * Ken Rose for fixes to GCC's delay slot filling code. *************** alphabetical order. *** 47748,47755 **** * Tobias Schlu"ter for work on GNU Fortran. * Bernd Schmidt for various code generation improvements and major ! work in the reload pass, serving as release manager for GCC ! 2.95.3, and work on the Blackfin and C6X ports. * Peter Schmid for constant testing of libstdc++--especially application testing, going above and beyond what was requested for --- 47513,47520 ---- * Tobias Schlu"ter for work on GNU Fortran. * Bernd Schmidt for various code generation improvements and major ! work in the reload pass, serving as release manager for GCC 2.95.3, ! and work on the Blackfin and C6X ports. * Peter Schmid for constant testing of libstdc++--especially application testing, going above and beyond what was requested for *************** alphabetical order. *** 47777,47784 **** from the LWG (thereby keeping GCC in line with updates from the ISO). ! * Franz Sirl for his ongoing work with making the PPC port stable ! for GNU/Linux. * Andrey Slepuhin for assorted AIX hacking. --- 47542,47549 ---- from the LWG (thereby keeping GCC in line with updates from the ISO). ! * Franz Sirl for his ongoing work with making the PPC port stable for ! GNU/Linux. * Andrey Slepuhin for assorted AIX hacking. *************** alphabetical order. *** 47792,47799 **** * Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite entries. Also for providing the patch to G77 ! to add rudimentary support for `INTEGER*1', `INTEGER*2', and ! `LOGICAL*1'. * Zdenek Sojka for running automated regression testing of GCC and reporting numerous bugs. --- 47557,47564 ---- * Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite entries. Also for providing the patch to G77 ! to add rudimentary support for 'INTEGER*1', 'INTEGER*2', and ! 'LOGICAL*1'. * Zdenek Sojka for running automated regression testing of GCC and reporting numerous bugs. *************** alphabetical order. *** 47817,47824 **** * John Stracke for his Java HTTP protocol fixes. ! * Mike Stump for his Elxsi port, G++ contributions over the years ! and more recently his vxworks contributions * Jeff Sturm for Java porting help, bug fixes, and encouragement. --- 47582,47589 ---- * John Stracke for his Java HTTP protocol fixes. ! * Mike Stump for his Elxsi port, G++ contributions over the years and ! more recently his vxworks contributions * Jeff Sturm for Java porting help, bug fixes, and encouragement. *************** alphabetical order. *** 47872,47879 **** * Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML guidance. ! * Dean Wakerley for converting the install documentation from HTML ! to texinfo in time for GCC 3.0. * Krister Walfridsson for random bug fixes. --- 47637,47644 ---- * Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML guidance. ! * Dean Wakerley for converting the install documentation from HTML to ! texinfo in time for GCC 3.0. * Krister Walfridsson for random bug fixes. *************** alphabetical order. *** 47903,47910 **** * Bob Wilson from Tensilica, Inc. for the Xtensa port. * Jim Wilson for his direction via the steering committee, tackling ! hard problems in various places that nobody else wanted to work ! on, strength reduction and other loop optimizations. * Paul Woegerer and Tal Agmon for the CRX port. --- 47668,47675 ---- * Bob Wilson from Tensilica, Inc. for the Xtensa port. * Jim Wilson for his direction via the steering committee, tackling ! hard problems in various places that nobody else wanted to work on, ! strength reduction and other loop optimizations. * Paul Woegerer and Tal Agmon for the CRX port. *************** alphabetical order. *** 47925,47931 **** * Gilles Zunino for help porting Java to Irix. - The following people are recognized for their contributions to GNAT, the Ada front end of GCC: * Bernard Banner --- 47690,47695 ---- *************** the Ada front end of GCC: *** 48022,48123 **** * Samuel Tardieu - The following people are recognized for their contributions of new features, bug reports, testing and integration of classpath/libgcj for GCC version 4.1: ! * Lillian Angel for `JTree' implementation and lots Free Swing additions and bug fixes. ! * Wolfgang Baer for `GapContent' bug fixes. ! * Anthony Balkissoon for `JList', Free Swing 1.5 updates and mouse ! event fixes, lots of Free Swing work including `JTable' editing. * Stuart Ballard for RMI constant fixes. ! * Goffredo Baroncelli for `HTTPURLConnection' fixes. ! * Gary Benson for `MessageFormat' fixes. ! * Daniel Bonniot for `Serialization' fixes. ! * Chris Burdess for lots of gnu.xml and http protocol fixes, `StAX' ! and `DOM xml:id' support. ! * Ka-Hing Cheung for `TreePath' and `TreeSelection' fixes. * Archie Cobbs for build fixes, VM interface updates, ! `URLClassLoader' updates. * Kelley Cook for build fixes. ! * Martin Cordova for Suggestions for better `SocketTimeoutException'. ! * David Daney for `BitSet' bug fixes, `HttpURLConnection' rewrite ! and improvements. * Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo ! 2D support. Lots of imageio framework additions, lots of AWT and Free Swing bug fixes. ! * Jeroen Frijters for `ClassLoader' and nio cleanups, serialization ! fixes, better `Proxy' support, bug fixes and IKVM integration. ! * Santiago Gala for `AccessControlContext' fixes. ! * Nicolas Geoffray for `VMClassLoader' and `AccessController' improvements. ! * David Gilbert for `basic' and `metal' icon and plaf support and lots of documenting, Lots of Free Swing and metal theme additions. ! `MetalIconFactory' implementation. ! * Anthony Green for `MIDI' framework, `ALSA' and `DSSI' providers. ! * Andrew Haley for `Serialization' and `URLClassLoader' fixes, gcj build speedups. ! * Kim Ho for `JFileChooser' implementation. ! * Andrew John Hughes for `Locale' and net fixes, URI RFC2986 ! updates, `Serialization' fixes, `Properties' XML support and ! generic branch work, VMIntegration guide update. ! * Bastiaan Huisman for `TimeZone' bug fixing. * Andreas Jaeger for mprec updates. ! * Paul Jenner for better `-Werror' support. ! * Ito Kazumitsu for `NetworkInterface' implementation and updates. ! * Roman Kennke for `BoxLayout', `GrayFilter' and `SplitPane', plus ! bug fixes all over. Lots of Free Swing work including styled text. ! * Simon Kitching for `String' cleanups and optimization suggestions. ! * Michael Koch for configuration fixes, `Locale' updates, bug and build fixes. * Guilhem Lavaux for configuration, thread and channel fixes and ! Kaffe integration. JCL native `Pointer' updates. Logger bug fixes. * David Lichteblau for JCL support library global/local reference cleanups. * Aaron Luchko for JDWP updates and documentation fixes. ! * Ziga Mahkovec for `Graphics2D' upgraded to Cairo 0.5 and new regex features. ! * Sven de Marothy for BMP imageio support, CSS and `TextLayout' ! fixes. `GtkImage' rewrite, 2D, awt, free swing and date/time fixes and implementing the Qt4 peers. ! * Casey Marshall for crypto algorithm fixes, `FileChannel' lock, ! `SystemLogger' and `FileHandler' rotate implementations, NIO ! `FileChannel.map' support, security and policy updates. * Bryce McKinlay for RMI work. --- 47786,47887 ---- * Samuel Tardieu The following people are recognized for their contributions of new features, bug reports, testing and integration of classpath/libgcj for GCC version 4.1: ! * Lillian Angel for 'JTree' implementation and lots Free Swing additions and bug fixes. ! * Wolfgang Baer for 'GapContent' bug fixes. ! * Anthony Balkissoon for 'JList', Free Swing 1.5 updates and mouse ! event fixes, lots of Free Swing work including 'JTable' editing. * Stuart Ballard for RMI constant fixes. ! * Goffredo Baroncelli for 'HTTPURLConnection' fixes. ! * Gary Benson for 'MessageFormat' fixes. ! * Daniel Bonniot for 'Serialization' fixes. ! * Chris Burdess for lots of gnu.xml and http protocol fixes, 'StAX' ! and 'DOM xml:id' support. ! * Ka-Hing Cheung for 'TreePath' and 'TreeSelection' fixes. * Archie Cobbs for build fixes, VM interface updates, ! 'URLClassLoader' updates. * Kelley Cook for build fixes. ! * Martin Cordova for Suggestions for better 'SocketTimeoutException'. ! * David Daney for 'BitSet' bug fixes, 'HttpURLConnection' rewrite and ! improvements. * Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo ! 2D support. Lots of imageio framework additions, lots of AWT and Free Swing bug fixes. ! * Jeroen Frijters for 'ClassLoader' and nio cleanups, serialization ! fixes, better 'Proxy' support, bug fixes and IKVM integration. ! * Santiago Gala for 'AccessControlContext' fixes. ! * Nicolas Geoffray for 'VMClassLoader' and 'AccessController' improvements. ! * David Gilbert for 'basic' and 'metal' icon and plaf support and lots of documenting, Lots of Free Swing and metal theme additions. ! 'MetalIconFactory' implementation. ! * Anthony Green for 'MIDI' framework, 'ALSA' and 'DSSI' providers. ! * Andrew Haley for 'Serialization' and 'URLClassLoader' fixes, gcj build speedups. ! * Kim Ho for 'JFileChooser' implementation. ! * Andrew John Hughes for 'Locale' and net fixes, URI RFC2986 updates, ! 'Serialization' fixes, 'Properties' XML support and generic branch ! work, VMIntegration guide update. ! * Bastiaan Huisman for 'TimeZone' bug fixing. * Andreas Jaeger for mprec updates. ! * Paul Jenner for better '-Werror' support. ! * Ito Kazumitsu for 'NetworkInterface' implementation and updates. ! * Roman Kennke for 'BoxLayout', 'GrayFilter' and 'SplitPane', plus ! bug fixes all over. Lots of Free Swing work including styled text. ! * Simon Kitching for 'String' cleanups and optimization suggestions. ! * Michael Koch for configuration fixes, 'Locale' updates, bug and build fixes. * Guilhem Lavaux for configuration, thread and channel fixes and ! Kaffe integration. JCL native 'Pointer' updates. Logger bug ! fixes. * David Lichteblau for JCL support library global/local reference cleanups. * Aaron Luchko for JDWP updates and documentation fixes. ! * Ziga Mahkovec for 'Graphics2D' upgraded to Cairo 0.5 and new regex features. ! * Sven de Marothy for BMP imageio support, CSS and 'TextLayout' ! fixes. 'GtkImage' rewrite, 2D, awt, free swing and date/time fixes and implementing the Qt4 peers. ! * Casey Marshall for crypto algorithm fixes, 'FileChannel' lock, ! 'SystemLogger' and 'FileHandler' rotate implementations, NIO ! 'FileChannel.map' support, security and policy updates. * Bryce McKinlay for RMI work. *************** GCC version 4.1: *** 48128,48173 **** * Rainer Orth for build fixes. ! * Andrew Overholt for `File' locking fixes. ! * Ingo Proetel for `Image', `Logger' and `URLClassLoader' updates. ! * Olga Rodimina for `MenuSelectionManager' implementation. ! * Jan Roehrich for `BasicTreeUI' and `JTree' fixes. * Julian Scheid for documentation updates and gjdoc support. * Christian Schlichtherle for zip fixes and cleanups. * Robert Schuster for documentation updates and beans fixes, ! `TreeNode' enumerations and `ActionCommand' and various fixes, XML and URL, AWT and Free Swing bug fixes. * Keith Seitz for lots of JDWP work. * Christian Thalinger for 64-bit cleanups, Configuration and VM ! interface fixes and `CACAO' integration, `fdlibm' updates. ! * Gael Thomas for `VMClassLoader' boot packages support suggestions. ! * Andreas Tobler for Darwin and Solaris testing and fixing, `Qt4' ! support for Darwin/OS X, `Graphics2D' support, `gtk+' updates. ! * Dalibor Topic for better `DEBUG' support, build cleanups and Kaffe ! integration. `Qt4' build infrastructure, `SHA1PRNG' and ! `GdkPixbugDecoder' updates. * Tom Tromey for Eclipse integration, generics work, lots of bug fixes and gcj integration including coordinating The Big Merge. * Mark Wielaard for bug fixes, packaging and release management, ! `Clipboard' implementation, system call interrupts and network ! timeouts and `GdkPixpufDecoder' fixes. ! ! In addition to the above, all of which also contributed time and ! energy in testing GCC, we would like to thank the following for their contributions to testing: * Michael Abd-El-Malek --- 47892,47936 ---- * Rainer Orth for build fixes. ! * Andrew Overholt for 'File' locking fixes. ! * Ingo Proetel for 'Image', 'Logger' and 'URLClassLoader' updates. ! * Olga Rodimina for 'MenuSelectionManager' implementation. ! * Jan Roehrich for 'BasicTreeUI' and 'JTree' fixes. * Julian Scheid for documentation updates and gjdoc support. * Christian Schlichtherle for zip fixes and cleanups. * Robert Schuster for documentation updates and beans fixes, ! 'TreeNode' enumerations and 'ActionCommand' and various fixes, XML and URL, AWT and Free Swing bug fixes. * Keith Seitz for lots of JDWP work. * Christian Thalinger for 64-bit cleanups, Configuration and VM ! interface fixes and 'CACAO' integration, 'fdlibm' updates. ! * Gael Thomas for 'VMClassLoader' boot packages support suggestions. ! * Andreas Tobler for Darwin and Solaris testing and fixing, 'Qt4' ! support for Darwin/OS X, 'Graphics2D' support, 'gtk+' updates. ! * Dalibor Topic for better 'DEBUG' support, build cleanups and Kaffe ! integration. 'Qt4' build infrastructure, 'SHA1PRNG' and ! 'GdkPixbugDecoder' updates. * Tom Tromey for Eclipse integration, generics work, lots of bug fixes and gcj integration including coordinating The Big Merge. * Mark Wielaard for bug fixes, packaging and release management, ! 'Clipboard' implementation, system call interrupts and network ! timeouts and 'GdkPixpufDecoder' fixes. ! In addition to the above, all of which also contributed time and energy ! in testing GCC, we would like to thank the following for their contributions to testing: * Michael Abd-El-Malek *************** File: gcc.info, Node: Option Index, Ne *** 48336,48344 **** Option Index ************ ! GCC's command line options are indexed here without any initial `-' or ! `--'. Where an option has both positive and negative forms (such as ! `-fOPTION' and `-fno-OPTION'), relevant entries in the manual are indexed under the most appropriate form; it may sometimes be useful to look up both forms. --- 48099,48107 ---- Option Index ************ ! GCC's command line options are indexed here without any initial '-' or ! '--'. Where an option has both positive and negative forms (such as ! '-fOPTION' and '-fno-OPTION'), relevant entries in the manual are indexed under the most appropriate form; it may sometimes be useful to look up both forms. *************** look up both forms. *** 48346,48474 **** * Menu: * ###: Overall Options. (line 209) ! * -fno-keep-inline-dllexport: Optimize Options. (line 319) * -mcpu: RX Options. (line 30) * -mpointer-size=SIZE: VMS Options. (line 20) * 8bit-idiv: i386 and x86-64 Options. ! (line 818) * A: Preprocessor Options. ! (line 597) ! * all_load: Darwin Options. (line 110) * allowable_client: Darwin Options. (line 196) ! * ansi <1>: Non-bugs. (line 107) ! * ansi <2>: Other Builtins. (line 22) ! * ansi <3>: Preprocessor Options. ! (line 338) ! * ansi <4>: C Dialect Options. (line 11) * ansi: Standards. (line 16) * arch_errors_fatal: Darwin Options. (line 114) ! * aux-info: C Dialect Options. (line 168) * avx256-split-unaligned-load: i386 and x86-64 Options. ! (line 826) * avx256-split-unaligned-store: i386 and x86-64 Options. ! (line 826) ! * B: Directory Options. (line 46) * Bdynamic: VxWorks Options. (line 22) * bind_at_load: Darwin Options. (line 118) * Bstatic: VxWorks Options. (line 22) * bundle: Darwin Options. (line 123) * bundle_loader: Darwin Options. (line 127) - * c: Link Options. (line 20) - * C: Preprocessor Options. - (line 655) * c: Overall Options. (line 164) * client_name: Darwin Options. (line 196) * compatibility_version: Darwin Options. (line 196) ! * coverage: Debugging Options. (line 412) * current_version: Darwin Options. (line 196) * D: Preprocessor Options. (line 46) ! * d: Debugging Options. (line 544) ! * dA: Debugging Options. (line 754) ! * da: Debugging Options. (line 751) * dD <1>: Preprocessor Options. ! (line 629) ! * dD: Debugging Options. (line 758) * dead_strip: Darwin Options. (line 196) * dependency-file: Darwin Options. (line 196) ! * dH: Debugging Options. (line 762) * dI: Preprocessor Options. ! (line 638) * dM: Preprocessor Options. ! (line 613) * dN: Preprocessor Options. ! (line 635) ! * dP: Debugging Options. (line 770) ! * dp: Debugging Options. (line 765) * dU: Preprocessor Options. ! (line 642) ! * dumpmachine: Debugging Options. (line 1380) ! * dumpspecs: Debugging Options. (line 1388) ! * dumpversion: Debugging Options. (line 1384) ! * dx: Debugging Options. (line 774) * dylib_file: Darwin Options. (line 196) * dylinker_install_name: Darwin Options. (line 196) * dynamic: Darwin Options. (line 196) * dynamiclib: Darwin Options. (line 131) - * E <1>: Link Options. (line 20) * E: Overall Options. (line 185) * EB: MIPS Options. (line 7) * EL: MIPS Options. (line 10) * exported_symbols_list: Darwin Options. (line 196) * F: Darwin Options. (line 31) * fabi-version: C++ Dialect Options. ! (line 20) ! * faggressive-loop-optimizations: Optimize Options. (line 509) ! * falign-functions: Optimize Options. (line 1462) ! * falign-jumps: Optimize Options. (line 1511) ! * falign-labels: Optimize Options. (line 1480) ! * falign-loops: Optimize Options. (line 1498) ! * fassociative-math: Optimize Options. (line 1955) ! * fasynchronous-unwind-tables: Code Gen Options. (line 146) ! * fauto-inc-dec: Optimize Options. (line 533) * fbounds-check: Code Gen Options. (line 15) ! * fbranch-probabilities: Optimize Options. (line 2082) ! * fbranch-target-load-optimize: Optimize Options. (line 2190) ! * fbranch-target-load-optimize2: Optimize Options. (line 2196) ! * fbtr-bb-exclusive: Optimize Options. (line 2200) ! * fcall-saved: Code Gen Options. (line 345) ! * fcall-used: Code Gen Options. (line 331) ! * fcaller-saves: Optimize Options. (line 829) ! * fcheck-data-deps: Optimize Options. (line 1094) * fcheck-new: C++ Dialect Options. ! (line 55) ! * fcombine-stack-adjustments: Optimize Options. (line 841) * fcommon: Variable Attributes. ! (line 105) * fcompare-debug: Debugging Options. (line 200) * fcompare-debug-second: Debugging Options. (line 226) ! * fcompare-elim: Optimize Options. (line 1794) ! * fcond-mismatch: C Dialect Options. (line 315) ! * fconserve-stack: Optimize Options. (line 847) * fconstant-string-class: Objective-C and Objective-C++ Dialect Options. (line 30) * fconstexpr-depth: C++ Dialect Options. ! (line 65) ! * fcprop-registers: Optimize Options. (line 1812) ! * fcrossjumping: Optimize Options. (line 526) ! * fcse-follow-jumps: Optimize Options. (line 445) ! * fcse-skip-blocks: Optimize Options. (line 454) ! * fcx-fortran-rules: Optimize Options. (line 2068) ! * fcx-limited-range: Optimize Options. (line 2056) ! * fdata-sections: Optimize Options. (line 2171) ! * fdbg-cnt: Debugging Options. (line 465) ! * fdbg-cnt-list: Debugging Options. (line 462) ! * fdce: Optimize Options. (line 539) * fdebug-cpp: Preprocessor Options. ! (line 526) * fdebug-prefix-map: Debugging Options. (line 320) * fdebug-types-section: Debugging Options. (line 74) * fdeduce-init-list: C++ Dialect Options. ! (line 71) ! * fdelayed-branch: Optimize Options. (line 676) ! * fdelete-dead-exceptions: Code Gen Options. (line 131) ! * fdelete-null-pointer-checks: Optimize Options. (line 562) ! * fdevirtualize: Optimize Options. (line 580) * fdiagnostics-show-caret: Language Independent Options. (line 40) * fdiagnostics-show-location: Language Independent Options. --- 48109,48237 ---- * Menu: * ###: Overall Options. (line 209) ! * -fno-keep-inline-dllexport: Optimize Options. (line 316) * -mcpu: RX Options. (line 30) * -mpointer-size=SIZE: VMS Options. (line 20) * 8bit-idiv: i386 and x86-64 Options. ! (line 816) * A: Preprocessor Options. ! (line 596) * allowable_client: Darwin Options. (line 196) ! * all_load: Darwin Options. (line 110) * ansi: Standards. (line 16) + * ansi <1>: C Dialect Options. (line 11) + * ansi <2>: Preprocessor Options. + (line 340) + * ansi <3>: Other Builtins. (line 21) + * ansi <4>: Non-bugs. (line 107) * arch_errors_fatal: Darwin Options. (line 114) ! * aux-info: C Dialect Options. (line 167) * avx256-split-unaligned-load: i386 and x86-64 Options. ! (line 824) * avx256-split-unaligned-store: i386 and x86-64 Options. ! (line 824) ! * B: Directory Options. (line 44) * Bdynamic: VxWorks Options. (line 22) * bind_at_load: Darwin Options. (line 118) * Bstatic: VxWorks Options. (line 22) * bundle: Darwin Options. (line 123) * bundle_loader: Darwin Options. (line 127) * c: Overall Options. (line 164) + * C: Preprocessor Options. + (line 653) + * c <1>: Link Options. (line 20) * client_name: Darwin Options. (line 196) * compatibility_version: Darwin Options. (line 196) ! * coverage: Debugging Options. (line 409) * current_version: Darwin Options. (line 196) + * d: Debugging Options. (line 540) * D: Preprocessor Options. (line 46) ! * da: Debugging Options. (line 746) ! * dA: Debugging Options. (line 749) ! * dD: Debugging Options. (line 753) * dD <1>: Preprocessor Options. ! (line 627) * dead_strip: Darwin Options. (line 196) * dependency-file: Darwin Options. (line 196) ! * dH: Debugging Options. (line 757) * dI: Preprocessor Options. ! (line 636) * dM: Preprocessor Options. ! (line 612) * dN: Preprocessor Options. ! (line 633) ! * dp: Debugging Options. (line 760) ! * dP: Debugging Options. (line 765) * dU: Preprocessor Options. ! (line 640) ! * dumpmachine: Debugging Options. (line 1350) ! * dumpspecs: Debugging Options. (line 1358) ! * dumpversion: Debugging Options. (line 1354) ! * dx: Debugging Options. (line 769) * dylib_file: Darwin Options. (line 196) * dylinker_install_name: Darwin Options. (line 196) * dynamic: Darwin Options. (line 196) * dynamiclib: Darwin Options. (line 131) * E: Overall Options. (line 185) + * E <1>: Link Options. (line 20) * EB: MIPS Options. (line 7) * EL: MIPS Options. (line 10) * exported_symbols_list: Darwin Options. (line 196) * F: Darwin Options. (line 31) * fabi-version: C++ Dialect Options. ! (line 19) ! * faggressive-loop-optimizations: Optimize Options. (line 506) ! * falign-functions: Optimize Options. (line 1458) ! * falign-jumps: Optimize Options. (line 1507) ! * falign-labels: Optimize Options. (line 1476) ! * falign-loops: Optimize Options. (line 1494) ! * fassociative-math: Optimize Options. (line 1951) ! * fasynchronous-unwind-tables: Code Gen Options. (line 145) ! * fauto-inc-dec: Optimize Options. (line 530) * fbounds-check: Code Gen Options. (line 15) ! * fbranch-probabilities: Optimize Options. (line 2079) ! * fbranch-target-load-optimize: Optimize Options. (line 2187) ! * fbranch-target-load-optimize2: Optimize Options. (line 2193) ! * fbtr-bb-exclusive: Optimize Options. (line 2197) ! * fcall-saved: Code Gen Options. (line 342) ! * fcall-used: Code Gen Options. (line 328) ! * fcaller-saves: Optimize Options. (line 825) ! * fcheck-data-deps: Optimize Options. (line 1090) * fcheck-new: C++ Dialect Options. ! (line 54) ! * fcombine-stack-adjustments: Optimize Options. (line 837) * fcommon: Variable Attributes. ! (line 104) * fcompare-debug: Debugging Options. (line 200) * fcompare-debug-second: Debugging Options. (line 226) ! * fcompare-elim: Optimize Options. (line 1787) ! * fcond-mismatch: C Dialect Options. (line 317) ! * fconserve-stack: Optimize Options. (line 843) * fconstant-string-class: Objective-C and Objective-C++ Dialect Options. (line 30) * fconstexpr-depth: C++ Dialect Options. ! (line 64) ! * fcprop-registers: Optimize Options. (line 1805) ! * fcrossjumping: Optimize Options. (line 523) ! * fcse-follow-jumps: Optimize Options. (line 442) ! * fcse-skip-blocks: Optimize Options. (line 451) ! * fcx-fortran-rules: Optimize Options. (line 2066) ! * fcx-limited-range: Optimize Options. (line 2054) ! * fdata-sections: Optimize Options. (line 2168) ! * fdbg-cnt: Debugging Options. (line 461) ! * fdbg-cnt-list: Debugging Options. (line 458) ! * fdce: Optimize Options. (line 536) * fdebug-cpp: Preprocessor Options. ! (line 527) * fdebug-prefix-map: Debugging Options. (line 320) * fdebug-types-section: Debugging Options. (line 74) * fdeduce-init-list: C++ Dialect Options. ! (line 70) ! * fdelayed-branch: Optimize Options. (line 672) ! * fdelete-dead-exceptions: Code Gen Options. (line 130) ! * fdelete-null-pointer-checks: Optimize Options. (line 559) ! * fdevirtualize: Optimize Options. (line 577) * fdiagnostics-show-caret: Language Independent Options. (line 40) * fdiagnostics-show-location: Language Independent Options. *************** look up both forms. *** 48476,48720 **** * fdiagnostics-show-option: Language Independent Options. (line 34) * fdirectives-only: Preprocessor Options. ! (line 473) ! * fdisable-: Debugging Options. (line 475) ! * fdollars-in-identifiers <1>: Interoperation. (line 141) * fdollars-in-identifiers: Preprocessor Options. ! (line 495) ! * fdse: Optimize Options. (line 543) ! * fdump-class-hierarchy: Debugging Options. (line 805) * fdump-final-insns: Debugging Options. (line 194) ! * fdump-ipa: Debugging Options. (line 813) ! * fdump-noaddr: Debugging Options. (line 778) ! * fdump-passes: Debugging Options. (line 831) ! * fdump-rtl-alignments: Debugging Options. (line 565) ! * fdump-rtl-all: Debugging Options. (line 751) ! * fdump-rtl-asmcons: Debugging Options. (line 568) ! * fdump-rtl-auto_inc_dec: Debugging Options. (line 572) ! * fdump-rtl-barriers: Debugging Options. (line 576) ! * fdump-rtl-bbpart: Debugging Options. (line 579) ! * fdump-rtl-bbro: Debugging Options. (line 582) ! * fdump-rtl-btl2: Debugging Options. (line 586) ! * fdump-rtl-bypass: Debugging Options. (line 590) ! * fdump-rtl-ce1: Debugging Options. (line 601) ! * fdump-rtl-ce2: Debugging Options. (line 601) ! * fdump-rtl-ce3: Debugging Options. (line 601) ! * fdump-rtl-combine: Debugging Options. (line 593) ! * fdump-rtl-compgotos: Debugging Options. (line 596) ! * fdump-rtl-cprop_hardreg: Debugging Options. (line 605) ! * fdump-rtl-csa: Debugging Options. (line 608) ! * fdump-rtl-cse1: Debugging Options. (line 612) ! * fdump-rtl-cse2: Debugging Options. (line 612) ! * fdump-rtl-dbr: Debugging Options. (line 619) ! * fdump-rtl-dce: Debugging Options. (line 616) ! * fdump-rtl-dce1: Debugging Options. (line 623) ! * fdump-rtl-dce2: Debugging Options. (line 623) ! * fdump-rtl-dfinish: Debugging Options. (line 747) ! * fdump-rtl-dfinit: Debugging Options. (line 747) ! * fdump-rtl-eh: Debugging Options. (line 627) ! * fdump-rtl-eh_ranges: Debugging Options. (line 630) ! * fdump-rtl-expand: Debugging Options. (line 633) ! * fdump-rtl-fwprop1: Debugging Options. (line 637) ! * fdump-rtl-fwprop2: Debugging Options. (line 637) ! * fdump-rtl-gcse1: Debugging Options. (line 642) ! * fdump-rtl-gcse2: Debugging Options. (line 642) ! * fdump-rtl-init-regs: Debugging Options. (line 646) ! * fdump-rtl-initvals: Debugging Options. (line 649) ! * fdump-rtl-into_cfglayout: Debugging Options. (line 652) ! * fdump-rtl-ira: Debugging Options. (line 655) ! * fdump-rtl-jump: Debugging Options. (line 658) ! * fdump-rtl-loop2: Debugging Options. (line 661) ! * fdump-rtl-mach: Debugging Options. (line 665) ! * fdump-rtl-mode_sw: Debugging Options. (line 669) ! * fdump-rtl-outof_cfglayout: Debugging Options. (line 675) ! * fdump-rtl-peephole2: Debugging Options. (line 678) ! * fdump-rtl-postreload: Debugging Options. (line 681) ! * fdump-rtl-pro_and_epilogue: Debugging Options. (line 684) ! * fdump-rtl-regclass: Debugging Options. (line 747) ! * fdump-rtl-regmove: Debugging Options. (line 687) ! * fdump-rtl-rnreg: Debugging Options. (line 672) ! * fdump-rtl-sched1: Debugging Options. (line 691) ! * fdump-rtl-sched2: Debugging Options. (line 691) ! * fdump-rtl-see: Debugging Options. (line 695) ! * fdump-rtl-seqabstr: Debugging Options. (line 698) ! * fdump-rtl-shorten: Debugging Options. (line 701) ! * fdump-rtl-sibling: Debugging Options. (line 704) ! * fdump-rtl-sms: Debugging Options. (line 717) ! * fdump-rtl-split1: Debugging Options. (line 711) ! * fdump-rtl-split2: Debugging Options. (line 711) ! * fdump-rtl-split3: Debugging Options. (line 711) ! * fdump-rtl-split4: Debugging Options. (line 711) ! * fdump-rtl-split5: Debugging Options. (line 711) ! * fdump-rtl-stack: Debugging Options. (line 721) ! * fdump-rtl-subreg1: Debugging Options. (line 727) ! * fdump-rtl-subreg2: Debugging Options. (line 727) ! * fdump-rtl-subregs_of_mode_finish: Debugging Options. (line 747) ! * fdump-rtl-subregs_of_mode_init: Debugging Options. (line 747) ! * fdump-rtl-unshare: Debugging Options. (line 731) ! * fdump-rtl-vartrack: Debugging Options. (line 734) ! * fdump-rtl-vregs: Debugging Options. (line 737) ! * fdump-rtl-web: Debugging Options. (line 740) ! * fdump-statistics: Debugging Options. (line 835) ! * fdump-translation-unit: Debugging Options. (line 796) ! * fdump-tree: Debugging Options. (line 847) ! * fdump-tree-alias: Debugging Options. (line 986) ! * fdump-tree-all: Debugging Options. (line 1076) ! * fdump-tree-ccp: Debugging Options. (line 990) ! * fdump-tree-cfg: Debugging Options. (line 974) ! * fdump-tree-ch: Debugging Options. (line 978) ! * fdump-tree-copyprop: Debugging Options. (line 1006) ! * fdump-tree-copyrename: Debugging Options. (line 1052) ! * fdump-tree-dce: Debugging Options. (line 1014) ! * fdump-tree-dom: Debugging Options. (line 1032) ! * fdump-tree-dse: Debugging Options. (line 1037) ! * fdump-tree-forwprop: Debugging Options. (line 1047) ! * fdump-tree-fre: Debugging Options. (line 1002) ! * fdump-tree-gimple: Debugging Options. (line 969) ! * fdump-tree-mudflap: Debugging Options. (line 1018) ! * fdump-tree-nrv: Debugging Options. (line 1057) ! * fdump-tree-optimized: Debugging Options. (line 966) ! * fdump-tree-original: Debugging Options. (line 963) ! * fdump-tree-phiopt: Debugging Options. (line 1042) ! * fdump-tree-pre: Debugging Options. (line 998) ! * fdump-tree-sink: Debugging Options. (line 1028) ! * fdump-tree-slp: Debugging Options. (line 1067) ! * fdump-tree-sra: Debugging Options. (line 1023) ! * fdump-tree-ssa: Debugging Options. (line 982) ! * fdump-tree-store_copyprop: Debugging Options. (line 1010) ! * fdump-tree-storeccp: Debugging Options. (line 994) ! * fdump-tree-vect: Debugging Options. (line 1062) ! * fdump-tree-vrp: Debugging Options. (line 1072) ! * fdump-unnumbered: Debugging Options. (line 784) ! * fdump-unnumbered-links: Debugging Options. (line 790) * fdwarf2-cfi-asm: Debugging Options. (line 324) ! * fearly-inlining: Optimize Options. (line 276) * feliminate-dwarf2-dups: Debugging Options. (line 239) * feliminate-unused-debug-symbols: Debugging Options. (line 62) ! * feliminate-unused-debug-types: Debugging Options. (line 1392) ! * fenable-: Debugging Options. (line 475) * fexceptions: Code Gen Options. (line 108) ! * fexcess-precision: Optimize Options. (line 1883) * fexec-charset: Preprocessor Options. (line 554) ! * fexpensive-optimizations: Optimize Options. (line 587) * fext-numeric-literals: C++ Dialect Options. ! (line 547) * fextended-identifiers: Preprocessor Options. ! (line 498) * fextern-tls-init: C++ Dialect Options. ! (line 122) ! * ffast-math: Optimize Options. (line 1906) ! * ffat-lto-objects: Optimize Options. (line 1774) ! * ffinite-math-only: Optimize Options. (line 1980) * ffix-and-continue: Darwin Options. (line 104) ! * ffixed: Code Gen Options. (line 319) * ffloat-store <1>: Disappointments. (line 77) - * ffloat-store: Optimize Options. (line 1869) * ffor-scope: C++ Dialect Options. ! (line 143) * fforward-propagate: Optimize Options. (line 185) * ffp-contract: Optimize Options. (line 194) - * ffreestanding <1>: Function Attributes. - (line 459) - * ffreestanding <2>: Warning Options. (line 255) - * ffreestanding <3>: C Dialect Options. (line 246) * ffreestanding: Standards. (line 93) * ffriend-injection: C++ Dialect Options. ! (line 92) ! * ffunction-sections: Optimize Options. (line 2171) ! * fgcse: Optimize Options. (line 468) ! * fgcse-after-reload: Optimize Options. (line 504) ! * fgcse-las: Optimize Options. (line 497) ! * fgcse-lm: Optimize Options. (line 479) ! * fgcse-sm: Optimize Options. (line 488) * fgnu-runtime: Objective-C and Objective-C++ Dialect Options. (line 39) ! * fgnu-tm: C Dialect Options. (line 264) ! * fgnu89-inline: C Dialect Options. (line 147) ! * fgraphite-identity: Optimize Options. (line 1074) ! * fhosted: C Dialect Options. (line 239) ! * fif-conversion: Optimize Options. (line 547) ! * fif-conversion2: Optimize Options. (line 556) * filelist: Darwin Options. (line 196) * findirect-data: Darwin Options. (line 104) ! * findirect-inlining: Optimize Options. (line 249) ! * finhibit-size-directive: Code Gen Options. (line 239) ! * finline-functions: Optimize Options. (line 257) ! * finline-functions-called-once: Optimize Options. (line 268) ! * finline-limit: Optimize Options. (line 293) ! * finline-small-functions: Optimize Options. (line 240) * finput-charset: Preprocessor Options. (line 567) * finstrument-functions <1>: Function Attributes. ! (line 946) ! * finstrument-functions: Code Gen Options. (line 375) ! * finstrument-functions-exclude-file-list: Code Gen Options. (line 411) * finstrument-functions-exclude-function-list: Code Gen Options. ! (line 431) ! * fipa-cp: Optimize Options. (line 913) ! * fipa-cp-clone: Optimize Options. (line 921) ! * fipa-profile: Optimize Options. (line 905) ! * fipa-pta: Optimize Options. (line 899) ! * fipa-pure-const: Optimize Options. (line 891) ! * fipa-reference: Optimize Options. (line 895) ! * fipa-sra: Optimize Options. (line 286) ! * fira-hoist-pressure: Optimize Options. (line 643) ! * fira-loop-pressure: Optimize Options. (line 650) ! * fira-verbose: Optimize Options. (line 670) ! * fivopts: Optimize Options. (line 1170) * fkeep-inline-functions <1>: Inline. (line 51) ! * fkeep-inline-functions: Optimize Options. (line 325) ! * fkeep-static-consts: Optimize Options. (line 332) * flat_namespace: Darwin Options. (line 196) ! * flax-vector-conversions: C Dialect Options. (line 320) ! * fleading-underscore: Code Gen Options. (line 514) ! * floop-block: Optimize Options. (line 1045) ! * floop-interchange: Optimize Options. (line 1000) ! * floop-nest-optimize: Optimize Options. (line 1082) ! * floop-parallelize-all: Optimize Options. (line 1088) ! * floop-strip-mine: Optimize Options. (line 1024) ! * flto: Optimize Options. (line 1565) ! * flto-partition: Optimize Options. (line 1729) * fmax-errors: Warning Options. (line 18) * fmem-report: Debugging Options. (line 348) * fmem-report-wpa: Debugging Options. (line 352) ! * fmerge-all-constants: Optimize Options. (line 351) ! * fmerge-constants: Optimize Options. (line 341) * fmerge-debug-strings: Debugging Options. (line 313) * fmessage-length: Language Independent Options. (line 14) ! * fmodulo-sched: Optimize Options. (line 362) ! * fmodulo-sched-allow-regmoves: Optimize Options. (line 367) ! * fmove-loop-invariants: Optimize Options. (line 2161) ! * fms-extensions <1>: Unnamed Fields. (line 36) ! * fms-extensions <2>: C++ Dialect Options. ! (line 177) ! * fms-extensions: C Dialect Options. (line 279) ! * fmudflap: Optimize Options. (line 407) ! * fmudflapir: Optimize Options. (line 407) ! * fmudflapth: Optimize Options. (line 407) * fnext-runtime: Objective-C and Objective-C++ Dialect Options. (line 43) * fno-access-control: C++ Dialect Options. ! (line 51) ! * fno-asm: C Dialect Options. (line 191) ! * fno-branch-count-reg: Optimize Options. (line 374) ! * fno-builtin <1>: Other Builtins. (line 14) * fno-builtin <2>: Function Attributes. ! (line 459) ! * fno-builtin <3>: Warning Options. (line 255) ! * fno-builtin: C Dialect Options. (line 205) * fno-canonical-system-headers: Preprocessor Options. ! (line 503) * fno-common <1>: Variable Attributes. ! (line 105) ! * fno-common: Code Gen Options. (line 216) * fno-compare-debug: Debugging Options. (line 200) * fno-debug-types-section: Debugging Options. (line 74) - * fno-default-inline <1>: Inline. (line 71) - * fno-default-inline <2>: Optimize Options. (line 170) * fno-default-inline: C++ Dialect Options. ! (line 356) * fno-defer-pop: Optimize Options. (line 177) * fno-diagnostics-show-caret: Language Independent Options. (line 40) --- 48239,48484 ---- * fdiagnostics-show-option: Language Independent Options. (line 34) * fdirectives-only: Preprocessor Options. ! (line 475) ! * fdisable-: Debugging Options. (line 471) * fdollars-in-identifiers: Preprocessor Options. ! (line 496) ! * fdollars-in-identifiers <1>: Interoperation. (line 141) ! * fdse: Optimize Options. (line 540) ! * fdump-class-hierarchy: Debugging Options. (line 800) * fdump-final-insns: Debugging Options. (line 194) ! * fdump-ipa: Debugging Options. (line 808) ! * fdump-noaddr: Debugging Options. (line 773) ! * fdump-passes: Debugging Options. (line 825) ! * fdump-rtl-alignments: Debugging Options. (line 561) ! * fdump-rtl-all: Debugging Options. (line 746) ! * fdump-rtl-asmcons: Debugging Options. (line 564) ! * fdump-rtl-auto_inc_dec: Debugging Options. (line 568) ! * fdump-rtl-barriers: Debugging Options. (line 572) ! * fdump-rtl-bbpart: Debugging Options. (line 575) ! * fdump-rtl-bbro: Debugging Options. (line 578) ! * fdump-rtl-btl2: Debugging Options. (line 582) ! * fdump-rtl-btl2 <1>: Debugging Options. (line 582) ! * fdump-rtl-bypass: Debugging Options. (line 586) ! * fdump-rtl-ce1: Debugging Options. (line 597) ! * fdump-rtl-ce2: Debugging Options. (line 597) ! * fdump-rtl-ce3: Debugging Options. (line 597) ! * fdump-rtl-combine: Debugging Options. (line 589) ! * fdump-rtl-compgotos: Debugging Options. (line 592) ! * fdump-rtl-cprop_hardreg: Debugging Options. (line 601) ! * fdump-rtl-csa: Debugging Options. (line 604) ! * fdump-rtl-cse1: Debugging Options. (line 608) ! * fdump-rtl-cse2: Debugging Options. (line 608) ! * fdump-rtl-dbr: Debugging Options. (line 615) ! * fdump-rtl-dce: Debugging Options. (line 612) ! * fdump-rtl-dce1: Debugging Options. (line 619) ! * fdump-rtl-dce2: Debugging Options. (line 619) ! * fdump-rtl-dfinish: Debugging Options. (line 742) ! * fdump-rtl-dfinit: Debugging Options. (line 742) ! * fdump-rtl-eh: Debugging Options. (line 623) ! * fdump-rtl-eh_ranges: Debugging Options. (line 626) ! * fdump-rtl-expand: Debugging Options. (line 629) ! * fdump-rtl-fwprop1: Debugging Options. (line 633) ! * fdump-rtl-fwprop2: Debugging Options. (line 633) ! * fdump-rtl-gcse1: Debugging Options. (line 638) ! * fdump-rtl-gcse2: Debugging Options. (line 638) ! * fdump-rtl-init-regs: Debugging Options. (line 642) ! * fdump-rtl-initvals: Debugging Options. (line 645) ! * fdump-rtl-into_cfglayout: Debugging Options. (line 648) ! * fdump-rtl-ira: Debugging Options. (line 651) ! * fdump-rtl-jump: Debugging Options. (line 654) ! * fdump-rtl-loop2: Debugging Options. (line 657) ! * fdump-rtl-mach: Debugging Options. (line 661) ! * fdump-rtl-mode_sw: Debugging Options. (line 665) ! * fdump-rtl-outof_cfglayout: Debugging Options. (line 671) ! * fdump-rtl-peephole2: Debugging Options. (line 674) ! * fdump-rtl-postreload: Debugging Options. (line 677) ! * fdump-rtl-pro_and_epilogue: Debugging Options. (line 680) ! * fdump-rtl-regclass: Debugging Options. (line 742) ! * fdump-rtl-regmove: Debugging Options. (line 683) ! * fdump-rtl-rnreg: Debugging Options. (line 668) ! * fdump-rtl-sched1: Debugging Options. (line 687) ! * fdump-rtl-sched2: Debugging Options. (line 687) ! * fdump-rtl-see: Debugging Options. (line 691) ! * fdump-rtl-seqabstr: Debugging Options. (line 694) ! * fdump-rtl-shorten: Debugging Options. (line 697) ! * fdump-rtl-sibling: Debugging Options. (line 700) ! * fdump-rtl-sms: Debugging Options. (line 712) ! * fdump-rtl-split1: Debugging Options. (line 707) ! * fdump-rtl-split2: Debugging Options. (line 707) ! * fdump-rtl-split3: Debugging Options. (line 707) ! * fdump-rtl-split4: Debugging Options. (line 707) ! * fdump-rtl-split5: Debugging Options. (line 707) ! * fdump-rtl-stack: Debugging Options. (line 716) ! * fdump-rtl-subreg1: Debugging Options. (line 722) ! * fdump-rtl-subreg2: Debugging Options. (line 722) ! * fdump-rtl-subregs_of_mode_finish: Debugging Options. (line 742) ! * fdump-rtl-subregs_of_mode_init: Debugging Options. (line 742) ! * fdump-rtl-unshare: Debugging Options. (line 726) ! * fdump-rtl-vartrack: Debugging Options. (line 729) ! * fdump-rtl-vregs: Debugging Options. (line 732) ! * fdump-rtl-web: Debugging Options. (line 735) ! * fdump-statistics: Debugging Options. (line 829) ! * fdump-translation-unit: Debugging Options. (line 791) ! * fdump-tree: Debugging Options. (line 841) ! * fdump-tree-alias: Debugging Options. (line 963) ! * fdump-tree-all: Debugging Options. (line 1052) ! * fdump-tree-ccp: Debugging Options. (line 967) ! * fdump-tree-cfg: Debugging Options. (line 951) ! * fdump-tree-ch: Debugging Options. (line 955) ! * fdump-tree-copyprop: Debugging Options. (line 983) ! * fdump-tree-copyrename: Debugging Options. (line 1028) ! * fdump-tree-dce: Debugging Options. (line 991) ! * fdump-tree-dom: Debugging Options. (line 1009) ! * fdump-tree-dse: Debugging Options. (line 1014) ! * fdump-tree-forwprop: Debugging Options. (line 1023) ! * fdump-tree-fre: Debugging Options. (line 979) ! * fdump-tree-gimple: Debugging Options. (line 946) ! * fdump-tree-mudflap: Debugging Options. (line 995) ! * fdump-tree-nrv: Debugging Options. (line 1033) ! * fdump-tree-optimized: Debugging Options. (line 943) ! * fdump-tree-original: Debugging Options. (line 940) ! * fdump-tree-phiopt: Debugging Options. (line 1018) ! * fdump-tree-pre: Debugging Options. (line 975) ! * fdump-tree-sink: Debugging Options. (line 1005) ! * fdump-tree-slp: Debugging Options. (line 1043) ! * fdump-tree-sra: Debugging Options. (line 1000) ! * fdump-tree-ssa: Debugging Options. (line 959) ! * fdump-tree-storeccp: Debugging Options. (line 971) ! * fdump-tree-store_copyprop: Debugging Options. (line 987) ! * fdump-tree-vect: Debugging Options. (line 1038) ! * fdump-tree-vrp: Debugging Options. (line 1048) ! * fdump-unnumbered: Debugging Options. (line 779) ! * fdump-unnumbered-links: Debugging Options. (line 785) * fdwarf2-cfi-asm: Debugging Options. (line 324) ! * fearly-inlining: Optimize Options. (line 275) * feliminate-dwarf2-dups: Debugging Options. (line 239) * feliminate-unused-debug-symbols: Debugging Options. (line 62) ! * feliminate-unused-debug-types: Debugging Options. (line 1362) ! * fenable-: Debugging Options. (line 471) * fexceptions: Code Gen Options. (line 108) ! * fexcess-precision: Optimize Options. (line 1878) * fexec-charset: Preprocessor Options. (line 554) ! * fexpensive-optimizations: Optimize Options. (line 584) * fext-numeric-literals: C++ Dialect Options. ! (line 541) * fextended-identifiers: Preprocessor Options. ! (line 499) * fextern-tls-init: C++ Dialect Options. ! (line 120) ! * ffast-math: Optimize Options. (line 1901) ! * ffat-lto-objects: Optimize Options. (line 1768) ! * ffinite-math-only: Optimize Options. (line 1978) * ffix-and-continue: Darwin Options. (line 104) ! * ffixed: Code Gen Options. (line 316) ! * ffloat-store: Optimize Options. (line 1864) * ffloat-store <1>: Disappointments. (line 77) * ffor-scope: C++ Dialect Options. ! (line 141) * fforward-propagate: Optimize Options. (line 185) * ffp-contract: Optimize Options. (line 194) * ffreestanding: Standards. (line 93) + * ffreestanding <1>: C Dialect Options. (line 246) + * ffreestanding <2>: Warning Options. (line 251) + * ffreestanding <3>: Function Attributes. + (line 454) * ffriend-injection: C++ Dialect Options. ! (line 91) ! * ffunction-sections: Optimize Options. (line 2168) ! * fgcse: Optimize Options. (line 465) ! * fgcse-after-reload: Optimize Options. (line 501) ! * fgcse-las: Optimize Options. (line 494) ! * fgcse-lm: Optimize Options. (line 476) ! * fgcse-sm: Optimize Options. (line 485) * fgnu-runtime: Objective-C and Objective-C++ Dialect Options. (line 39) ! * fgnu-tm: C Dialect Options. (line 266) ! * fgnu89-inline: C Dialect Options. (line 146) ! * fgraphite-identity: Optimize Options. (line 1070) ! * fhosted: C Dialect Options. (line 238) ! * fif-conversion: Optimize Options. (line 544) ! * fif-conversion2: Optimize Options. (line 553) * filelist: Darwin Options. (line 196) * findirect-data: Darwin Options. (line 104) ! * findirect-inlining: Optimize Options. (line 248) ! * finhibit-size-directive: Code Gen Options. (line 237) ! * finline-functions: Optimize Options. (line 256) ! * finline-functions-called-once: Optimize Options. (line 267) ! * finline-limit: Optimize Options. (line 291) ! * finline-small-functions: Optimize Options. (line 239) * finput-charset: Preprocessor Options. (line 567) + * finstrument-functions: Code Gen Options. (line 372) * finstrument-functions <1>: Function Attributes. ! (line 944) ! * finstrument-functions-exclude-file-list: Code Gen Options. (line 407) * finstrument-functions-exclude-function-list: Code Gen Options. ! (line 428) ! * fipa-cp: Optimize Options. (line 909) ! * fipa-cp-clone: Optimize Options. (line 917) ! * fipa-profile: Optimize Options. (line 901) ! * fipa-pta: Optimize Options. (line 895) ! * fipa-pure-const: Optimize Options. (line 887) ! * fipa-reference: Optimize Options. (line 891) ! * fipa-sra: Optimize Options. (line 284) ! * fira-hoist-pressure: Optimize Options. (line 639) ! * fira-loop-pressure: Optimize Options. (line 646) ! * fira-verbose: Optimize Options. (line 666) ! * fivopts: Optimize Options. (line 1166) ! * fkeep-inline-functions: Optimize Options. (line 322) * fkeep-inline-functions <1>: Inline. (line 51) ! * fkeep-static-consts: Optimize Options. (line 329) * flat_namespace: Darwin Options. (line 196) ! * flax-vector-conversions: C Dialect Options. (line 322) ! * fleading-underscore: Code Gen Options. (line 510) ! * floop-block: Optimize Options. (line 1041) ! * floop-interchange: Optimize Options. (line 996) ! * floop-nest-optimize: Optimize Options. (line 1078) ! * floop-parallelize-all: Optimize Options. (line 1084) ! * floop-strip-mine: Optimize Options. (line 1020) ! * flto: Optimize Options. (line 1561) ! * flto-partition: Optimize Options. (line 1723) * fmax-errors: Warning Options. (line 18) * fmem-report: Debugging Options. (line 348) * fmem-report-wpa: Debugging Options. (line 352) ! * fmerge-all-constants: Optimize Options. (line 348) ! * fmerge-constants: Optimize Options. (line 338) * fmerge-debug-strings: Debugging Options. (line 313) * fmessage-length: Language Independent Options. (line 14) ! * fmodulo-sched: Optimize Options. (line 359) ! * fmodulo-sched-allow-regmoves: Optimize Options. (line 364) ! * fmove-loop-invariants: Optimize Options. (line 2158) ! * fms-extensions: C Dialect Options. (line 281) ! * fms-extensions <1>: C++ Dialect Options. ! (line 175) ! * fms-extensions <2>: Unnamed Fields. (line 36) ! * fmudflap: Optimize Options. (line 404) ! * fmudflapir: Optimize Options. (line 404) ! * fmudflapth: Optimize Options. (line 404) * fnext-runtime: Objective-C and Objective-C++ Dialect Options. (line 43) * fno-access-control: C++ Dialect Options. ! (line 50) ! * fno-asm: C Dialect Options. (line 190) ! * fno-branch-count-reg: Optimize Options. (line 371) ! * fno-builtin: C Dialect Options. (line 204) ! * fno-builtin <1>: Warning Options. (line 251) * fno-builtin <2>: Function Attributes. ! (line 454) ! * fno-builtin <3>: Other Builtins. (line 14) * fno-canonical-system-headers: Preprocessor Options. ! (line 504) ! * fno-common: Code Gen Options. (line 215) * fno-common <1>: Variable Attributes. ! (line 104) * fno-compare-debug: Debugging Options. (line 200) * fno-debug-types-section: Debugging Options. (line 74) * fno-default-inline: C++ Dialect Options. ! (line 354) ! * fno-default-inline <1>: Optimize Options. (line 169) ! * fno-default-inline <2>: Inline. (line 71) * fno-defer-pop: Optimize Options. (line 177) * fno-diagnostics-show-caret: Language Independent Options. (line 40) *************** look up both forms. *** 48722,48799 **** (line 34) * fno-dwarf2-cfi-asm: Debugging Options. (line 324) * fno-elide-constructors: C++ Dialect Options. ! (line 105) ! * fno-eliminate-unused-debug-types: Debugging Options. (line 1392) * fno-enforce-eh-specs: C++ Dialect Options. ! (line 111) * fno-ext-numeric-literals: C++ Dialect Options. ! (line 547) * fno-extern-tls-init: C++ Dialect Options. ! (line 122) * fno-for-scope: C++ Dialect Options. ! (line 143) ! * fno-function-cse: Optimize Options. (line 384) * fno-gnu-keywords: C++ Dialect Options. ! (line 155) ! * fno-guess-branch-probability: Optimize Options. (line 1334) ! * fno-ident: Code Gen Options. (line 236) ! * fno-implement-inlines <1>: C++ Interface. (line 75) * fno-implement-inlines: C++ Dialect Options. ! (line 172) * fno-implicit-inline-templates: C++ Dialect Options. ! (line 166) * fno-implicit-templates <1>: Template Instantiation. (line 78) ! * fno-implicit-templates: C++ Dialect Options. ! (line 160) ! * fno-inline: Optimize Options. (line 232) ! * fno-ira-share-save-slots: Optimize Options. (line 658) ! * fno-ira-share-spill-slots: Optimize Options. (line 664) ! * fno-jump-tables: Code Gen Options. (line 311) ! * fno-math-errno: Optimize Options. (line 1920) * fno-merge-debug-strings: Debugging Options. (line 313) * fno-nil-receivers: Objective-C and Objective-C++ Dialect Options. (line 49) * fno-nonansi-builtins: C++ Dialect Options. ! (line 182) * fno-operator-names: C++ Dialect Options. ! (line 198) * fno-optional-diags: C++ Dialect Options. ! (line 202) ! * fno-peephole: Optimize Options. (line 1325) ! * fno-peephole2: Optimize Options. (line 1325) * fno-pretty-templates: C++ Dialect Options. ! (line 212) * fno-rtti: C++ Dialect Options. ! (line 229) ! * fno-sched-interblock: Optimize Options. (line 702) ! * fno-sched-spec: Optimize Options. (line 707) * fno-set-stack-executable: i386 and x86-64 Windows Options. (line 46) * fno-show-column: Preprocessor Options. ! (line 592) ! * fno-signed-bitfields: C Dialect Options. (line 353) ! * fno-signed-zeros: Optimize Options. (line 1992) ! * fno-stack-limit: Code Gen Options. (line 482) * fno-threadsafe-statics: C++ Dialect Options. ! (line 266) ! * fno-toplevel-reorder: Optimize Options. (line 1531) ! * fno-trapping-math: Optimize Options. (line 2002) ! * fno-unsigned-bitfields: C Dialect Options. (line 353) * fno-use-cxa-get-exception-ptr: C++ Dialect Options. ! (line 279) ! * fno-var-tracking-assignments: Debugging Options. (line 1300) ! * fno-var-tracking-assignments-toggle: Debugging Options. (line 1309) * fno-weak: C++ Dialect Options. ! (line 341) * fno-working-directory: Preprocessor Options. (line 577) * fno-writable-relocated-rdata: i386 and x86-64 Windows Options. (line 53) ! * fno-zero-initialized-in-bss: Optimize Options. (line 395) * fnon-call-exceptions: Code Gen Options. (line 122) * fnothrow-opt: C++ Dialect Options. ! (line 187) * fobjc-abi-version: Objective-C and Objective-C++ Dialect Options. (line 56) * fobjc-call-cxx-cdtors: Objective-C and Objective-C++ Dialect Options. --- 48486,48563 ---- (line 34) * fno-dwarf2-cfi-asm: Debugging Options. (line 324) * fno-elide-constructors: C++ Dialect Options. ! (line 104) ! * fno-eliminate-unused-debug-types: Debugging Options. (line 1362) * fno-enforce-eh-specs: C++ Dialect Options. ! (line 110) * fno-ext-numeric-literals: C++ Dialect Options. ! (line 541) * fno-extern-tls-init: C++ Dialect Options. ! (line 120) * fno-for-scope: C++ Dialect Options. ! (line 141) ! * fno-function-cse: Optimize Options. (line 381) * fno-gnu-keywords: C++ Dialect Options. ! (line 153) ! * fno-guess-branch-probability: Optimize Options. (line 1330) ! * fno-ident: Code Gen Options. (line 234) * fno-implement-inlines: C++ Dialect Options. ! (line 170) ! * fno-implement-inlines <1>: C++ Interface. (line 75) * fno-implicit-inline-templates: C++ Dialect Options. ! (line 164) ! * fno-implicit-templates: C++ Dialect Options. ! (line 158) * fno-implicit-templates <1>: Template Instantiation. (line 78) ! * fno-inline: Optimize Options. (line 231) ! * fno-ira-share-save-slots: Optimize Options. (line 654) ! * fno-ira-share-spill-slots: Optimize Options. (line 660) ! * fno-jump-tables: Code Gen Options. (line 308) ! * fno-math-errno: Optimize Options. (line 1915) * fno-merge-debug-strings: Debugging Options. (line 313) * fno-nil-receivers: Objective-C and Objective-C++ Dialect Options. (line 49) * fno-nonansi-builtins: C++ Dialect Options. ! (line 180) * fno-operator-names: C++ Dialect Options. ! (line 196) * fno-optional-diags: C++ Dialect Options. ! (line 200) ! * fno-peephole: Optimize Options. (line 1321) ! * fno-peephole2: Optimize Options. (line 1321) * fno-pretty-templates: C++ Dialect Options. ! (line 210) * fno-rtti: C++ Dialect Options. ! (line 227) ! * fno-sched-interblock: Optimize Options. (line 698) ! * fno-sched-spec: Optimize Options. (line 703) * fno-set-stack-executable: i386 and x86-64 Windows Options. (line 46) * fno-show-column: Preprocessor Options. ! (line 591) ! * fno-signed-bitfields: C Dialect Options. (line 355) ! * fno-signed-zeros: Optimize Options. (line 1990) ! * fno-stack-limit: Code Gen Options. (line 478) * fno-threadsafe-statics: C++ Dialect Options. ! (line 264) ! * fno-toplevel-reorder: Optimize Options. (line 1527) ! * fno-trapping-math: Optimize Options. (line 2000) ! * fno-unsigned-bitfields: C Dialect Options. (line 355) * fno-use-cxa-get-exception-ptr: C++ Dialect Options. ! (line 277) ! * fno-var-tracking-assignments: Debugging Options. (line 1270) ! * fno-var-tracking-assignments-toggle: Debugging Options. (line 1279) * fno-weak: C++ Dialect Options. ! (line 339) * fno-working-directory: Preprocessor Options. (line 577) * fno-writable-relocated-rdata: i386 and x86-64 Windows Options. (line 53) ! * fno-zero-initialized-in-bss: Optimize Options. (line 392) * fnon-call-exceptions: Code Gen Options. (line 122) * fnothrow-opt: C++ Dialect Options. ! (line 185) * fobjc-abi-version: Objective-C and Objective-C++ Dialect Options. (line 56) * fobjc-call-cxx-cdtors: Objective-C and Objective-C++ Dialect Options. *************** look up both forms. *** 48809,49000 **** * fobjc-std: Objective-C and Objective-C++ Dialect Options. (line 120) * fomit-frame-pointer: Optimize Options. (line 205) ! * fopenmp: C Dialect Options. (line 256) ! * fopt-info: Debugging Options. (line 1082) ! * foptimize-register-move: Optimize Options. (line 602) ! * foptimize-sibling-calls: Optimize Options. (line 227) * force_cpusubtype_ALL: Darwin Options. (line 135) * force_flat_namespace: Darwin Options. (line 196) ! * fpack-struct: Code Gen Options. (line 362) ! * fpartial-inlining: Optimize Options. (line 1300) * fpcc-struct-return <1>: Incompatibilities. (line 170) - * fpcc-struct-return: Code Gen Options. (line 152) * fpch-deps: Preprocessor Options. ! (line 294) * fpch-preprocess: Preprocessor Options. ! (line 302) ! * fpeel-loops: Optimize Options. (line 2153) * fpermissive: C++ Dialect Options. ! (line 207) ! * fPIC: Code Gen Options. (line 288) ! * fpic: Code Gen Options. (line 267) ! * fPIE: Code Gen Options. (line 301) ! * fpie: Code Gen Options. (line 301) ! * fplan9-extensions: Unnamed Fields. (line 44) ! * fpost-ipa-mem-report: Debugging Options. (line 358) * fpre-ipa-mem-report: Debugging Options. (line 356) ! * fpredictive-commoning: Optimize Options. (line 1307) ! * fprefetch-loop-arrays: Optimize Options. (line 1314) * fpreprocessed: Preprocessor Options. ! (line 507) ! * fprofile-arcs <1>: Other Builtins. (line 257) ! * fprofile-arcs: Debugging Options. (line 397) ! * fprofile-correction: Optimize Options. (line 1819) ! * fprofile-dir: Optimize Options. (line 1826) ! * fprofile-generate: Optimize Options. (line 1836) ! * fprofile-report: Debugging Options. (line 362) ! * fprofile-use: Optimize Options. (line 1849) ! * fprofile-values: Optimize Options. (line 2101) * fpu: RX Options. (line 17) ! * frandom-seed: Debugging Options. (line 1194) ! * freciprocal-math: Optimize Options. (line 1971) ! * frecord-gcc-switches: Code Gen Options. (line 255) ! * free: Optimize Options. (line 593) ! * freg-struct-return: Code Gen Options. (line 170) ! * fregmove: Optimize Options. (line 602) ! * frename-registers: Optimize Options. (line 2120) ! * freorder-blocks: Optimize Options. (line 1351) ! * freorder-blocks-and-partition: Optimize Options. (line 1357) ! * freorder-functions: Optimize Options. (line 1368) * freplace-objc-classes: Objective-C and Objective-C++ Dialect Options. (line 131) * frepo <1>: Template Instantiation. (line 54) ! * frepo: C++ Dialect Options. ! (line 224) ! * frerun-cse-after-loop: Optimize Options. (line 462) ! * freschedule-modulo-scheduled-loops: Optimize Options. (line 801) ! * frounding-math: Optimize Options. (line 2017) ! * fsched-critical-path-heuristic: Optimize Options. (line 767) ! * fsched-dep-count-heuristic: Optimize Options. (line 794) ! * fsched-group-heuristic: Optimize Options. (line 761) ! * fsched-last-insn-heuristic: Optimize Options. (line 787) ! * fsched-pressure: Optimize Options. (line 712) ! * fsched-rank-heuristic: Optimize Options. (line 780) ! * fsched-spec-insn-heuristic: Optimize Options. (line 773) ! * fsched-spec-load: Optimize Options. (line 721) ! * fsched-spec-load-dangerous: Optimize Options. (line 726) ! * fsched-stalled-insns: Optimize Options. (line 732) ! * fsched-stalled-insns-dep: Optimize Options. (line 742) ! * fsched-verbose: Debugging Options. (line 1204) ! * fsched2-use-superblocks: Optimize Options. (line 751) ! * fschedule-insns: Optimize Options. (line 683) ! * fschedule-insns2: Optimize Options. (line 693) ! * fsection-anchors: Optimize Options. (line 2216) ! * fsel-sched-pipelining: Optimize Options. (line 814) ! * fsel-sched-pipelining-outer-loops: Optimize Options. (line 819) ! * fselective-scheduling: Optimize Options. (line 806) ! * fselective-scheduling2: Optimize Options. (line 810) ! * fshort-double: Code Gen Options. (line 198) ! * fshort-enums <1>: Non-bugs. (line 42) ! * fshort-enums <2>: Type Attributes. (line 113) ! * fshort-enums <3>: Structures unions enumerations and bit-fields implementation. (line 43) ! * fshort-enums: Code Gen Options. (line 188) ! * fshort-wchar: Code Gen Options. (line 206) ! * fshrink-wrap: Optimize Options. (line 824) ! * fsignaling-nans: Optimize Options. (line 2037) * fsigned-bitfields <1>: Non-bugs. (line 57) ! * fsigned-bitfields: C Dialect Options. (line 353) * fsigned-char <1>: Characters implementation. (line 31) ! * fsigned-char: C Dialect Options. (line 343) ! * fsingle-precision-constant: Optimize Options. (line 2052) ! * fsplit-ivs-in-unroller: Optimize Options. (line 1281) * fsplit-stack <1>: Function Attributes. ! (line 951) ! * fsplit-stack: Code Gen Options. (line 496) ! * fsplit-wide-types: Optimize Options. (line 437) ! * fstack-check: Code Gen Options. (line 443) ! * fstack-limit-register: Code Gen Options. (line 482) ! * fstack-limit-symbol: Code Gen Options. (line 482) ! * fstack-protector: Optimize Options. (line 2204) ! * fstack-protector-all: Optimize Options. (line 2213) ! * fstack-usage: Debugging Options. (line 366) * fstack_reuse: Code Gen Options. (line 21) * fstats: C++ Dialect Options. ! (line 239) ! * fstrict-aliasing: Optimize Options. (line 1381) * fstrict-enums: C++ Dialect Options. ! (line 244) ! * fstrict-overflow: Optimize Options. (line 1427) ! * fstrict-volatile-bitfields: Code Gen Options. (line 599) ! * fsync-libcalls: Code Gen Options. (line 628) * fsyntax-only: Warning Options. (line 14) * ftabstop: Preprocessor Options. ! (line 520) * ftemplate-backtrace-limit: C++ Dialect Options. ! (line 253) * ftemplate-depth: C++ Dialect Options. ! (line 257) ! * ftest-coverage: Debugging Options. (line 453) ! * fthread-jumps: Optimize Options. (line 428) * ftime-report: Debugging Options. (line 344) ! * ftls-model: Code Gen Options. (line 525) ! * ftracer: Optimize Options. (line 1264) * ftrack-macro-expansion: Preprocessor Options. (line 536) * ftrapv: Code Gen Options. (line 96) ! * ftree-bit-ccp: Optimize Options. (line 935) ! * ftree-builtin-call-dce: Optimize Options. (line 963) ! * ftree-ccp: Optimize Options. (line 941) ! * ftree-ch: Optimize Options. (line 983) ! * ftree-copy-prop: Optimize Options. (line 886) ! * ftree-copyrename: Optimize Options. (line 1194) ! * ftree-dce: Optimize Options. (line 959) ! * ftree-dominator-opts: Optimize Options. (line 969) ! * ftree-dse: Optimize Options. (line 976) ! * ftree-forwprop: Optimize Options. (line 865) ! * ftree-fre: Optimize Options. (line 869) ! * ftree-loop-im: Optimize Options. (line 1155) ! * ftree-loop-ivcanon: Optimize Options. (line 1164) ! * ftree-loop-linear: Optimize Options. (line 994) ! * ftree-loop-optimize: Optimize Options. (line 990) ! * ftree-parallelize-loops: Optimize Options. (line 1175) ! * ftree-partial-pre: Optimize Options. (line 861) ! * ftree-phiprop: Optimize Options. (line 876) ! * ftree-pre: Optimize Options. (line 857) ! * ftree-pta: Optimize Options. (line 1184) ! * ftree-reassoc: Optimize Options. (line 853) ! * ftree-sink: Optimize Options. (line 931) ! * ftree-slp-vectorize: Optimize Options. (line 1238) ! * ftree-slsr: Optimize Options. (line 1228) ! * ftree-sra: Optimize Options. (line 1188) ! * ftree-ter: Optimize Options. (line 1220) ! * ftree-vect-loop-version: Optimize Options. (line 1242) ! * ftree-vectorize: Optimize Options. (line 1234) ! * ftree-vectorizer-verbose: Debugging Options. (line 1177) ! * ftree-vrp: Optimize Options. (line 1255) ! * funit-at-a-time: Optimize Options. (line 1524) ! * funroll-all-loops: Optimize Options. (line 1275) ! * funroll-loops: Optimize Options. (line 1269) ! * funsafe-loop-optimizations: Optimize Options. (line 518) ! * funsafe-math-optimizations: Optimize Options. (line 1938) ! * funsigned-bitfields <1>: Non-bugs. (line 57) ! * funsigned-bitfields <2>: Structures unions enumerations and bit-fields implementation. (line 17) ! * funsigned-bitfields: C Dialect Options. (line 353) * funsigned-char <1>: Characters implementation. (line 31) ! * funsigned-char: C Dialect Options. (line 325) ! * funswitch-loops: Optimize Options. (line 2165) ! * funwind-tables: Code Gen Options. (line 139) * fuse-cxa-atexit: C++ Dialect Options. ! (line 272) ! * fvar-tracking: Debugging Options. (line 1290) ! * fvar-tracking-assignments: Debugging Options. (line 1300) ! * fvar-tracking-assignments-toggle: Debugging Options. (line 1309) ! * fvariable-expansion-in-unroller: Optimize Options. (line 1295) ! * fvect-cost-model: Optimize Options. (line 1251) ! * fverbose-asm: Code Gen Options. (line 246) ! * fvisibility: Code Gen Options. (line 533) * fvisibility-inlines-hidden: C++ Dialect Options. ! (line 284) * fvisibility-ms-compat: C++ Dialect Options. ! (line 312) ! * fvpt: Optimize Options. (line 2110) ! * fweb: Optimize Options. (line 1543) ! * fwhole-program: Optimize Options. (line 1554) * fwide-exec-charset: Preprocessor Options. (line 559) * fworking-directory: Preprocessor Options. --- 48573,48767 ---- * fobjc-std: Objective-C and Objective-C++ Dialect Options. (line 120) * fomit-frame-pointer: Optimize Options. (line 205) ! * fopenmp: C Dialect Options. (line 257) ! * fopt-info: Debugging Options. (line 1058) ! * foptimize-register-move: Optimize Options. (line 599) ! * foptimize-sibling-calls: Optimize Options. (line 226) * force_cpusubtype_ALL: Darwin Options. (line 135) * force_flat_namespace: Darwin Options. (line 196) ! * fpack-struct: Code Gen Options. (line 359) ! * fpartial-inlining: Optimize Options. (line 1296) ! * fpcc-struct-return: Code Gen Options. (line 151) * fpcc-struct-return <1>: Incompatibilities. (line 170) * fpch-deps: Preprocessor Options. ! (line 296) * fpch-preprocess: Preprocessor Options. ! (line 304) ! * fpeel-loops: Optimize Options. (line 2150) * fpermissive: C++ Dialect Options. ! (line 205) ! * fpic: Code Gen Options. (line 265) ! * fPIC: Code Gen Options. (line 286) ! * fpie: Code Gen Options. (line 299) ! * fPIE: Code Gen Options. (line 299) ! * fplan9-extensions: Unnamed Fields. (line 43) ! * fpost-ipa-mem-report: Debugging Options. (line 357) * fpre-ipa-mem-report: Debugging Options. (line 356) ! * fpredictive-commoning: Optimize Options. (line 1303) ! * fprefetch-loop-arrays: Optimize Options. (line 1310) * fpreprocessed: Preprocessor Options. ! (line 508) ! * fprofile-arcs: Debugging Options. (line 394) ! * fprofile-arcs <1>: Other Builtins. (line 253) ! * fprofile-correction: Optimize Options. (line 1812) ! * fprofile-dir: Optimize Options. (line 1819) ! * fprofile-generate: Optimize Options. (line 1830) ! * fprofile-report: Debugging Options. (line 361) ! * fprofile-use: Optimize Options. (line 1844) ! * fprofile-values: Optimize Options. (line 2098) * fpu: RX Options. (line 17) ! * frandom-seed: Debugging Options. (line 1164) ! * freciprocal-math: Optimize Options. (line 1968) ! * frecord-gcc-switches: Code Gen Options. (line 253) ! * free: Optimize Options. (line 590) ! * freg-struct-return: Code Gen Options. (line 169) ! * fregmove: Optimize Options. (line 599) ! * frename-registers: Optimize Options. (line 2117) ! * freorder-blocks: Optimize Options. (line 1347) ! * freorder-blocks-and-partition: Optimize Options. (line 1353) ! * freorder-functions: Optimize Options. (line 1364) * freplace-objc-classes: Objective-C and Objective-C++ Dialect Options. (line 131) + * frepo: C++ Dialect Options. + (line 222) * frepo <1>: Template Instantiation. (line 54) ! * frerun-cse-after-loop: Optimize Options. (line 459) ! * freschedule-modulo-scheduled-loops: Optimize Options. (line 797) ! * frounding-math: Optimize Options. (line 2015) ! * fsched-critical-path-heuristic: Optimize Options. (line 763) ! * fsched-dep-count-heuristic: Optimize Options. (line 790) ! * fsched-group-heuristic: Optimize Options. (line 757) ! * fsched-last-insn-heuristic: Optimize Options. (line 783) ! * fsched-pressure: Optimize Options. (line 708) ! * fsched-rank-heuristic: Optimize Options. (line 776) ! * fsched-spec-insn-heuristic: Optimize Options. (line 769) ! * fsched-spec-load: Optimize Options. (line 717) ! * fsched-spec-load-dangerous: Optimize Options. (line 722) ! * fsched-stalled-insns: Optimize Options. (line 728) ! * fsched-stalled-insns-dep: Optimize Options. (line 738) ! * fsched-verbose: Debugging Options. (line 1174) ! * fsched2-use-superblocks: Optimize Options. (line 747) ! * fschedule-insns: Optimize Options. (line 679) ! * fschedule-insns2: Optimize Options. (line 689) ! * fsection-anchors: Optimize Options. (line 2213) ! * fsel-sched-pipelining: Optimize Options. (line 810) ! * fsel-sched-pipelining-outer-loops: Optimize Options. (line 815) ! * fselective-scheduling: Optimize Options. (line 802) ! * fselective-scheduling2: Optimize Options. (line 806) ! * fshort-double: Code Gen Options. (line 197) ! * fshort-enums: Code Gen Options. (line 187) ! * fshort-enums <1>: Structures unions enumerations and bit-fields implementation. (line 43) ! * fshort-enums <2>: Type Attributes. (line 113) ! * fshort-enums <3>: Non-bugs. (line 42) ! * fshort-wchar: Code Gen Options. (line 205) ! * fshrink-wrap: Optimize Options. (line 820) ! * fsignaling-nans: Optimize Options. (line 2035) ! * fsigned-bitfields: C Dialect Options. (line 355) * fsigned-bitfields <1>: Non-bugs. (line 57) ! * fsigned-char: C Dialect Options. (line 345) * fsigned-char <1>: Characters implementation. (line 31) ! * fsingle-precision-constant: Optimize Options. (line 2050) ! * fsplit-ivs-in-unroller: Optimize Options. (line 1277) ! * fsplit-stack: Code Gen Options. (line 492) * fsplit-stack <1>: Function Attributes. ! (line 949) ! * fsplit-wide-types: Optimize Options. (line 434) ! * fstack-check: Code Gen Options. (line 440) ! * fstack-limit-register: Code Gen Options. (line 478) ! * fstack-limit-symbol: Code Gen Options. (line 478) ! * fstack-protector: Optimize Options. (line 2201) ! * fstack-protector-all: Optimize Options. (line 2210) ! * fstack-usage: Debugging Options. (line 365) * fstack_reuse: Code Gen Options. (line 21) * fstats: C++ Dialect Options. ! (line 237) ! * fstrict-aliasing: Optimize Options. (line 1377) * fstrict-enums: C++ Dialect Options. ! (line 242) ! * fstrict-overflow: Optimize Options. (line 1423) ! * fstrict-volatile-bitfields: Code Gen Options. (line 595) ! * fsync-libcalls: Code Gen Options. (line 623) * fsyntax-only: Warning Options. (line 14) * ftabstop: Preprocessor Options. ! (line 521) * ftemplate-backtrace-limit: C++ Dialect Options. ! (line 251) * ftemplate-depth: C++ Dialect Options. ! (line 255) ! * ftest-coverage: Debugging Options. (line 449) ! * fthread-jumps: Optimize Options. (line 425) * ftime-report: Debugging Options. (line 344) ! * ftls-model: Code Gen Options. (line 521) ! * ftracer: Optimize Options. (line 1260) ! * ftracer <1>: Optimize Options. (line 2127) * ftrack-macro-expansion: Preprocessor Options. (line 536) * ftrapv: Code Gen Options. (line 96) ! * ftree-bit-ccp: Optimize Options. (line 931) ! * ftree-builtin-call-dce: Optimize Options. (line 959) ! * ftree-ccp: Optimize Options. (line 937) ! * ftree-ch: Optimize Options. (line 979) ! * ftree-copy-prop: Optimize Options. (line 882) ! * ftree-copyrename: Optimize Options. (line 1190) ! * ftree-dce: Optimize Options. (line 955) ! * ftree-dominator-opts: Optimize Options. (line 965) ! * ftree-dse: Optimize Options. (line 972) ! * ftree-forwprop: Optimize Options. (line 861) ! * ftree-fre: Optimize Options. (line 865) ! * ftree-loop-im: Optimize Options. (line 1151) ! * ftree-loop-ivcanon: Optimize Options. (line 1160) ! * ftree-loop-linear: Optimize Options. (line 990) ! * ftree-loop-optimize: Optimize Options. (line 986) ! * ftree-parallelize-loops: Optimize Options. (line 1171) ! * ftree-partial-pre: Optimize Options. (line 857) ! * ftree-phiprop: Optimize Options. (line 872) ! * ftree-pre: Optimize Options. (line 853) ! * ftree-pta: Optimize Options. (line 1180) ! * ftree-reassoc: Optimize Options. (line 849) ! * ftree-sink: Optimize Options. (line 927) ! * ftree-slp-vectorize: Optimize Options. (line 1234) ! * ftree-slsr: Optimize Options. (line 1224) ! * ftree-sra: Optimize Options. (line 1184) ! * ftree-ter: Optimize Options. (line 1216) ! * ftree-vect-loop-version: Optimize Options. (line 1238) ! * ftree-vectorize: Optimize Options. (line 1230) ! * ftree-vectorizer-verbose: Debugging Options. (line 1147) ! * ftree-vrp: Optimize Options. (line 1251) ! * funit-at-a-time: Optimize Options. (line 1520) ! * funroll-all-loops: Optimize Options. (line 1271) ! * funroll-all-loops <1>: Optimize Options. (line 2144) ! * funroll-loops: Optimize Options. (line 1265) ! * funroll-loops <1>: Optimize Options. (line 2134) ! * funsafe-loop-optimizations: Optimize Options. (line 515) ! * funsafe-math-optimizations: Optimize Options. (line 1933) ! * funsigned-bitfields: C Dialect Options. (line 355) ! * funsigned-bitfields <1>: Structures unions enumerations and bit-fields implementation. (line 17) ! * funsigned-bitfields <2>: Non-bugs. (line 57) ! * funsigned-char: C Dialect Options. (line 327) * funsigned-char <1>: Characters implementation. (line 31) ! * funswitch-loops: Optimize Options. (line 2162) ! * funwind-tables: Code Gen Options. (line 138) * fuse-cxa-atexit: C++ Dialect Options. ! (line 270) ! * fvar-tracking: Debugging Options. (line 1260) ! * fvar-tracking-assignments: Debugging Options. (line 1270) ! * fvar-tracking-assignments-toggle: Debugging Options. (line 1279) ! * fvariable-expansion-in-unroller: Optimize Options. (line 1291) ! * fvect-cost-model: Optimize Options. (line 1247) ! * fverbose-asm: Code Gen Options. (line 244) ! * fvisibility: Code Gen Options. (line 529) * fvisibility-inlines-hidden: C++ Dialect Options. ! (line 282) * fvisibility-ms-compat: C++ Dialect Options. ! (line 310) ! * fvpt: Optimize Options. (line 2107) ! * fweb: Optimize Options. (line 1539) ! * fwhole-program: Optimize Options. (line 1550) * fwide-exec-charset: Preprocessor Options. (line 559) * fworking-directory: Preprocessor Options. *************** look up both forms. *** 49002,49013 **** * fwrapv: Code Gen Options. (line 100) * fzero-link: Objective-C and Objective-C++ Dialect Options. (line 141) - * G <1>: System V Options. (line 10) - * G <2>: RS/6000 and PowerPC Options. - (line 662) - * G <3>: MIPS Options. (line 330) - * G: M32R/D Options. (line 57) * g: Debugging Options. (line 10) * gcoff: Debugging Options. (line 89) * gdwarf-VERSION: Debugging Options. (line 107) * gen-decls: Objective-C and Objective-C++ Dialect Options. --- 48769,48780 ---- * fwrapv: Code Gen Options. (line 100) * fzero-link: Objective-C and Objective-C++ Dialect Options. (line 141) * g: Debugging Options. (line 10) + * G: M32R/D Options. (line 57) + * G <1>: MIPS Options. (line 329) + * G <2>: RS/6000 and PowerPC Options. + (line 658) + * G <3>: System V Options. (line 10) * gcoff: Debugging Options. (line 89) * gdwarf-VERSION: Debugging Options. (line 107) * gen-decls: Objective-C and Objective-C++ Dialect Options. *************** look up both forms. *** 49028,49085 **** * gxcoff: Debugging Options. (line 94) * gxcoff+: Debugging Options. (line 99) * H: Preprocessor Options. ! (line 710) * headerpad_max_install_names: Darwin Options. (line 196) - * help <1>: Preprocessor Options. - (line 702) * help: Overall Options. (line 221) ! * hoist-adjacent-loads: Optimize Options. (line 880) ! * I <1>: Directory Options. (line 10) * I: Preprocessor Options. (line 77) ! * I- <1>: Directory Options. (line 119) * I-: Preprocessor Options. ! (line 387) * idirafter: Preprocessor Options. ! (line 429) * iframework: Darwin Options. (line 57) * imacros: Preprocessor Options. ! (line 420) * image_base: Darwin Options. (line 196) * imultilib: Preprocessor Options. ! (line 454) * include: Preprocessor Options. ! (line 409) * init: Darwin Options. (line 196) * install_name: Darwin Options. (line 196) * iprefix: Preprocessor Options. ! (line 436) ! * iquote <1>: Directory Options. (line 36) * iquote: Preprocessor Options. ! (line 466) * isysroot: Preprocessor Options. ! (line 448) * isystem: Preprocessor Options. ! (line 458) * iwithprefix: Preprocessor Options. ! (line 442) * iwithprefixbefore: Preprocessor Options. ! (line 442) * keep_private_externs: Darwin Options. (line 196) - * L: Directory Options. (line 42) * l: Link Options. (line 26) * lobjc: Link Options. (line 53) - * m: RS/6000 and PowerPC Options. - (line 515) * M: Preprocessor Options. (line 185) * m1: SH Options. (line 9) * m10: PDP-11 Options. (line 29) * m128bit-long-double: i386 and x86-64 Options. ! (line 336) * m16-bit: CRIS Options. (line 64) * m1reg-: Adapteva Epiphany Options. ! (line 132) * m2: SH Options. (line 12) * m210: MCore Options. (line 43) * m2a: SH Options. (line 30) --- 48795,48852 ---- * gxcoff: Debugging Options. (line 94) * gxcoff+: Debugging Options. (line 99) * H: Preprocessor Options. ! (line 707) * headerpad_max_install_names: Darwin Options. (line 196) * help: Overall Options. (line 221) ! * help <1>: Preprocessor Options. ! (line 699) ! * hoist-adjacent-loads: Optimize Options. (line 876) * I: Preprocessor Options. (line 77) ! * I <1>: Directory Options. (line 10) * I-: Preprocessor Options. ! (line 389) ! * I- <1>: Directory Options. (line 116) * idirafter: Preprocessor Options. ! (line 431) * iframework: Darwin Options. (line 57) * imacros: Preprocessor Options. ! (line 422) * image_base: Darwin Options. (line 196) * imultilib: Preprocessor Options. ! (line 456) * include: Preprocessor Options. ! (line 411) * init: Darwin Options. (line 196) * install_name: Darwin Options. (line 196) * iprefix: Preprocessor Options. ! (line 438) * iquote: Preprocessor Options. ! (line 468) ! * iquote <1>: Directory Options. (line 34) * isysroot: Preprocessor Options. ! (line 450) * isystem: Preprocessor Options. ! (line 460) * iwithprefix: Preprocessor Options. ! (line 444) * iwithprefixbefore: Preprocessor Options. ! (line 444) * keep_private_externs: Darwin Options. (line 196) * l: Link Options. (line 26) + * L: Directory Options. (line 40) * lobjc: Link Options. (line 53) * M: Preprocessor Options. (line 185) + * m: RS/6000 and PowerPC Options. + (line 512) * m1: SH Options. (line 9) * m10: PDP-11 Options. (line 29) * m128bit-long-double: i386 and x86-64 Options. ! (line 335) * m16-bit: CRIS Options. (line 64) * m1reg-: Adapteva Epiphany Options. ! (line 131) * m2: SH Options. (line 12) * m210: MCore Options. (line 43) * m2a: SH Options. (line 30) *************** look up both forms. *** 49088,49101 **** * m2a-single-only: SH Options. (line 22) * m3: SH Options. (line 34) * m31: S/390 and zSeries Options. ! (line 87) ! * m32 <1>: TILEPro Options. (line 13) ! * m32 <2>: TILE-Gx Options. (line 23) ! * m32 <3>: SPARC Options. (line 245) ! * m32 <4>: RS/6000 and PowerPC Options. ! (line 207) * m32: i386 and x86-64 Options. ! (line 835) * m32-bit: CRIS Options. (line 64) * m32bit-doubles: RX Options. (line 10) * m32r: M32R/D Options. (line 15) --- 48855,48868 ---- * m2a-single-only: SH Options. (line 22) * m3: SH Options. (line 34) * m31: S/390 and zSeries Options. ! (line 86) * m32: i386 and x86-64 Options. ! (line 832) ! * m32 <1>: RS/6000 and PowerPC Options. ! (line 205) ! * m32 <2>: SPARC Options. (line 244) ! * m32 <3>: TILE-Gx Options. (line 23) ! * m32 <4>: TILEPro Options. (line 13) * m32-bit: CRIS Options. (line 64) * m32bit-doubles: RX Options. (line 10) * m32r: M32R/D Options. (line 15) *************** look up both forms. *** 49103,49109 **** * m32rx: M32R/D Options. (line 12) * m340: MCore Options. (line 43) * m3dnow: i386 and x86-64 Options. ! (line 565) * m3e: SH Options. (line 37) * m4: SH Options. (line 51) * m4-nofpu: SH Options. (line 40) --- 48870,48876 ---- * m32rx: M32R/D Options. (line 12) * m340: MCore Options. (line 43) * m3dnow: i386 and x86-64 Options. ! (line 564) * m3e: SH Options. (line 37) * m4: SH Options. (line 51) * m4-nofpu: SH Options. (line 40) *************** look up both forms. *** 49117,49343 **** * m4a-single-only: SH Options. (line 58) * m4al: SH Options. (line 69) * m4byte-functions: MCore Options. (line 27) ! * m5200: M680x0 Options. (line 147) ! * m5206e: M680x0 Options. (line 156) ! * m528x: M680x0 Options. (line 160) ! * m5307: M680x0 Options. (line 164) ! * m5407: M680x0 Options. (line 168) ! * m64 <1>: TILE-Gx Options. (line 23) ! * m64 <2>: SPARC Options. (line 245) ! * m64 <3>: S/390 and zSeries Options. ! (line 87) ! * m64 <4>: RS/6000 and PowerPC Options. ! (line 207) * m64: i386 and x86-64 Options. ! (line 835) * m64bit-doubles: RX Options. (line 10) ! * m68000: M680x0 Options. (line 95) ! * m68010: M680x0 Options. (line 103) ! * m68020: M680x0 Options. (line 109) ! * m68020-40: M680x0 Options. (line 178) ! * m68020-60: M680x0 Options. (line 187) ! * m68030: M680x0 Options. (line 114) ! * m68040: M680x0 Options. (line 119) ! * m68060: M680x0 Options. (line 128) ! * m68881: M680x0 Options. (line 197) * m8-bit: CRIS Options. (line 64) * m8byte-align: V850 Options. (line 170) * m96bit-long-double: i386 and x86-64 Options. ! (line 336) ! * mabi <1>: RS/6000 and PowerPC Options. ! (line 542) ! * mabi <2>: i386 and x86-64 Options. ! (line 715) * mabi: ARM Options. (line 10) ! * mabi=32: MIPS Options. (line 131) ! * mabi=64: MIPS Options. (line 131) ! * mabi=eabi: MIPS Options. (line 131) * mabi=gnu: MMIX Options. (line 20) * mabi=ibmlongdouble: RS/6000 and PowerPC Options. ! (line 555) * mabi=ieeelongdouble: RS/6000 and PowerPC Options. ! (line 559) * mabi=mmixware: MMIX Options. (line 20) ! * mabi=n32: MIPS Options. (line 131) * mabi=no-spe: RS/6000 and PowerPC Options. ! (line 552) ! * mabi=o64: MIPS Options. (line 131) * mabi=spe: RS/6000 and PowerPC Options. ! (line 547) ! * mabicalls: MIPS Options. (line 155) * mabort-on-noreturn: ARM Options. (line 183) * mabsdiff: MeP Options. (line 7) * mabshi: PDP-11 Options. (line 55) * mac0: PDP-11 Options. (line 16) ! * macc-4: FRV Options. (line 113) ! * macc-8: FRV Options. (line 116) ! * maccumulate-args: AVR Options. (line 139) ! * maccumulate-outgoing-args <1>: SH Options. (line 330) * maccumulate-outgoing-args: i386 and x86-64 Options. ! (line 738) * maddress-mode=long: i386 and x86-64 Options. ! (line 878) * maddress-mode=short: i386 and x86-64 Options. ! (line 883) ! * maddress-space-conversion: SPU Options. (line 63) * mads: RS/6000 and PowerPC Options. ! (line 585) * maix-struct-return: RS/6000 and PowerPC Options. ! (line 535) * maix32: RS/6000 and PowerPC Options. ! (line 245) * maix64: RS/6000 and PowerPC Options. ! (line 245) * malign-300: H8/300 Options. (line 41) * malign-double: i386 and x86-64 Options. (line 320) ! * malign-int: M680x0 Options. (line 267) ! * malign-labels: FRV Options. (line 104) * malign-loops: M32R/D Options. (line 73) * malign-natural: RS/6000 and PowerPC Options. ! (line 284) * malign-power: RS/6000 and PowerPC Options. ! (line 284) * mall-opts: MeP Options. (line 11) ! * malloc-cc: FRV Options. (line 25) * maltivec: RS/6000 and PowerPC Options. ! (line 132) * mam33: MN10300 Options. (line 17) * mam33-2: MN10300 Options. (line 24) * mam34: MN10300 Options. (line 27) * mandroid: GNU/Linux Options. (line 21) * mapcs: ARM Options. (line 22) * mapcs-frame: ARM Options. (line 14) - * mapp-regs <1>: V850 Options. (line 181) * mapp-regs: SPARC Options. (line 10) ! * march <1>: S/390 and zSeries Options. ! (line 116) ! * march <2>: MIPS Options. (line 14) ! * march <3>: M680x0 Options. (line 12) ! * march <4>: i386 and x86-64 Options. ! (line 10) ! * march <5>: HPPA Options. (line 9) ! * march <6>: CRIS Options. (line 10) ! * march <7>: C6X Options. (line 7) ! * march <8>: ARM Options. (line 128) * march: AArch64 Options. (line 55) * marm: ARM Options. (line 244) * mas100-syntax: RX Options. (line 76) * masm=DIALECT: i386 and x86-64 Options. ! (line 275) * matomic-model=MODEL: SH Options. (line 144) ! * matomic-updates: SPU Options. (line 78) * mauto-pic: IA-64 Options. (line 50) * maverage: MeP Options. (line 16) * mavoid-indexed-addresses: RS/6000 and PowerPC Options. ! (line 354) * max-vect-align: Adapteva Epiphany Options. ! (line 120) * mb: SH Options. (line 74) * mbackchain: S/390 and zSeries Options. (line 35) * mbarrel-shift-enabled: LM32 Options. (line 9) ! * mbase-addresses: MMIX Options. (line 54) * mbased=: MeP Options. (line 20) * mbcopy: PDP-11 Options. (line 36) * mbcopy-builtin: PDP-11 Options. (line 32) * mbig: RS/6000 and PowerPC Options. ! (line 434) ! * mbig-endian <1>: RS/6000 and PowerPC Options. ! (line 434) ! * mbig-endian <2>: MicroBlaze Options. (line 57) ! * mbig-endian <3>: MCore Options. (line 39) ! * mbig-endian <4>: IA-64 Options. (line 9) ! * mbig-endian <5>: C6X Options. (line 13) ! * mbig-endian <6>: ARM Options. (line 62) * mbig-endian: AArch64 Options. (line 9) * mbig-endian-data: RX Options. (line 42) - * mbig-switch <1>: V850 Options. (line 176) * mbig-switch: HPPA Options. (line 23) * mbigtable: SH Options. (line 89) * mbionic: GNU/Linux Options. (line 17) * mbit-align: RS/6000 and PowerPC Options. ! (line 386) * mbit-ops: CR16 Options. (line 25) ! * mbitfield: M680x0 Options. (line 235) ! * mbitops <1>: SH Options. (line 93) * mbitops: MeP Options. (line 26) * mblock-move-inline-limit: RS/6000 and PowerPC Options. ! (line 656) * mbranch-cheap: PDP-11 Options. (line 65) - * mbranch-cost <1>: MIPS Options. (line 635) - * mbranch-cost <2>: AVR Options. (line 154) * mbranch-cost: Adapteva Epiphany Options. (line 18) ! * mbranch-cost=NUM: SH Options. (line 396) * mbranch-cost=NUMBER: M32R/D Options. (line 82) * mbranch-expensive: PDP-11 Options. (line 61) ! * mbranch-hints: SPU Options. (line 27) ! * mbranch-likely: MIPS Options. (line 642) ! * mbranch-predict: MMIX Options. (line 49) * mbss-plt: RS/6000 and PowerPC Options. ! (line 155) * mbuild-constants: DEC Alpha Options. (line 141) * mbwx: DEC Alpha Options. (line 163) ! * mc68000: M680x0 Options. (line 95) ! * mc68020: M680x0 Options. (line 109) * mc=: MeP Options. (line 31) ! * mcache-size: SPU Options. (line 70) * mcall-eabi: RS/6000 and PowerPC Options. ! (line 509) * mcall-freebsd: RS/6000 and PowerPC Options. ! (line 523) * mcall-linux: RS/6000 and PowerPC Options. ! (line 519) * mcall-netbsd: RS/6000 and PowerPC Options. ! (line 527) ! * mcall-prologues: AVR Options. (line 159) * mcall-sysv: RS/6000 and PowerPC Options. ! (line 501) * mcall-sysv-eabi: RS/6000 and PowerPC Options. ! (line 509) * mcall-sysv-noeabi: RS/6000 and PowerPC Options. ! (line 512) ! * mcallee-super-interworking: ARM Options. (line 262) ! * mcaller-super-interworking: ARM Options. (line 269) * mcallgraph-data: MCore Options. (line 31) ! * mcbcond: SPARC Options. (line 216) ! * mcbranchdi: SH Options. (line 411) ! * mcc-init: CRIS Options. (line 41) ! * mcfv4e: M680x0 Options. (line 172) ! * mcheck-zero-division: MIPS Options. (line 441) * mcix: DEC Alpha Options. (line 163) * mcld: i386 and x86-64 Options. ! (line 588) * mclip: MeP Options. (line 35) ! * mcmodel: SPARC Options. (line 250) * mcmodel=kernel: i386 and x86-64 Options. ! (line 862) ! * mcmodel=large <1>: TILE-Gx Options. (line 14) ! * mcmodel=large <2>: RS/6000 and PowerPC Options. ! (line 126) ! * mcmodel=large <3>: i386 and x86-64 Options. ! (line 874) * mcmodel=large: AArch64 Options. (line 33) ! * mcmodel=medium <1>: RS/6000 and PowerPC Options. ! (line 122) * mcmodel=medium: i386 and x86-64 Options. ! (line 867) ! * mcmodel=small <1>: TILE-Gx Options. (line 9) ! * mcmodel=small <2>: RS/6000 and PowerPC Options. ! (line 118) ! * mcmodel=small <3>: i386 and x86-64 Options. ! (line 856) * mcmodel=small: AArch64 Options. (line 27) * mcmodel=tiny: AArch64 Options. (line 20) * mcmove: Adapteva Epiphany Options. (line 23) * mcmpb: RS/6000 and PowerPC Options. (line 27) ! * mcmpeqdi: SH Options. (line 414) ! * mcode-readable: MIPS Options. (line 401) ! * mcond-exec: FRV Options. (line 152) ! * mcond-move: FRV Options. (line 128) * mconfig=: MeP Options. (line 39) * mconsole: i386 and x86-64 Windows Options. (line 9) --- 48884,49113 ---- * m4a-single-only: SH Options. (line 58) * m4al: SH Options. (line 69) * m4byte-functions: MCore Options. (line 27) ! * m5200: M680x0 Options. (line 144) ! * m5206e: M680x0 Options. (line 153) ! * m528x: M680x0 Options. (line 157) ! * m5307: M680x0 Options. (line 161) ! * m5407: M680x0 Options. (line 165) * m64: i386 and x86-64 Options. ! (line 832) ! * m64 <1>: RS/6000 and PowerPC Options. ! (line 205) ! * m64 <2>: S/390 and zSeries Options. ! (line 86) ! * m64 <3>: SPARC Options. (line 244) ! * m64 <4>: TILE-Gx Options. (line 23) * m64bit-doubles: RX Options. (line 10) ! * m68000: M680x0 Options. (line 93) ! * m68010: M680x0 Options. (line 101) ! * m68020: M680x0 Options. (line 107) ! * m68020-40: M680x0 Options. (line 175) ! * m68020-60: M680x0 Options. (line 184) ! * m68030: M680x0 Options. (line 112) ! * m68040: M680x0 Options. (line 117) ! * m68060: M680x0 Options. (line 126) ! * m68881: M680x0 Options. (line 194) * m8-bit: CRIS Options. (line 64) * m8byte-align: V850 Options. (line 170) * m96bit-long-double: i386 and x86-64 Options. ! (line 335) * mabi: ARM Options. (line 10) ! * mabi <1>: i386 and x86-64 Options. ! (line 714) ! * mabi <2>: RS/6000 and PowerPC Options. ! (line 539) ! * mabi=32: MIPS Options. (line 130) ! * mabi=64: MIPS Options. (line 130) ! * mabi=eabi: MIPS Options. (line 130) * mabi=gnu: MMIX Options. (line 20) * mabi=ibmlongdouble: RS/6000 and PowerPC Options. ! (line 552) * mabi=ieeelongdouble: RS/6000 and PowerPC Options. ! (line 556) * mabi=mmixware: MMIX Options. (line 20) ! * mabi=n32: MIPS Options. (line 130) * mabi=no-spe: RS/6000 and PowerPC Options. ! (line 549) ! * mabi=o64: MIPS Options. (line 130) * mabi=spe: RS/6000 and PowerPC Options. ! (line 544) ! * mabicalls: MIPS Options. (line 154) * mabort-on-noreturn: ARM Options. (line 183) * mabsdiff: MeP Options. (line 7) * mabshi: PDP-11 Options. (line 55) * mac0: PDP-11 Options. (line 16) ! * macc-4: FRV Options. (line 139) ! * macc-8: FRV Options. (line 143) ! * maccumulate-args: AVR Options. (line 137) * maccumulate-outgoing-args: i386 and x86-64 Options. ! (line 737) ! * maccumulate-outgoing-args <1>: SH Options. (line 325) * maddress-mode=long: i386 and x86-64 Options. ! (line 875) * maddress-mode=short: i386 and x86-64 Options. ! (line 880) ! * maddress-space-conversion: SPU Options. (line 68) * mads: RS/6000 and PowerPC Options. ! (line 582) * maix-struct-return: RS/6000 and PowerPC Options. ! (line 532) * maix32: RS/6000 and PowerPC Options. ! (line 243) * maix64: RS/6000 and PowerPC Options. ! (line 243) * malign-300: H8/300 Options. (line 41) * malign-double: i386 and x86-64 Options. (line 320) ! * malign-int: M680x0 Options. (line 263) ! * malign-labels: FRV Options. (line 128) * malign-loops: M32R/D Options. (line 73) * malign-natural: RS/6000 and PowerPC Options. ! (line 281) * malign-power: RS/6000 and PowerPC Options. ! (line 281) * mall-opts: MeP Options. (line 11) ! * malloc-cc: FRV Options. (line 31) * maltivec: RS/6000 and PowerPC Options. ! (line 130) * mam33: MN10300 Options. (line 17) * mam33-2: MN10300 Options. (line 24) * mam34: MN10300 Options. (line 27) * mandroid: GNU/Linux Options. (line 21) * mapcs: ARM Options. (line 22) * mapcs-frame: ARM Options. (line 14) * mapp-regs: SPARC Options. (line 10) ! * mapp-regs <1>: V850 Options. (line 181) * march: AArch64 Options. (line 55) + * march <1>: ARM Options. (line 128) + * march <2>: C6X Options. (line 7) + * march <3>: CRIS Options. (line 10) + * march <4>: HPPA Options. (line 9) + * march <5>: HPPA Options. (line 161) + * march <6>: i386 and x86-64 Options. + (line 10) + * march <7>: M680x0 Options. (line 12) + * march <8>: MIPS Options. (line 14) + * march <9>: S/390 and zSeries Options. + (line 114) * marm: ARM Options. (line 244) * mas100-syntax: RX Options. (line 76) * masm=DIALECT: i386 and x86-64 Options. ! (line 276) * matomic-model=MODEL: SH Options. (line 144) ! * matomic-updates: SPU Options. (line 83) * mauto-pic: IA-64 Options. (line 50) * maverage: MeP Options. (line 16) * mavoid-indexed-addresses: RS/6000 and PowerPC Options. ! (line 351) * max-vect-align: Adapteva Epiphany Options. ! (line 119) * mb: SH Options. (line 74) * mbackchain: S/390 and zSeries Options. (line 35) * mbarrel-shift-enabled: LM32 Options. (line 9) ! * mbase-addresses: MMIX Options. (line 53) * mbased=: MeP Options. (line 20) * mbcopy: PDP-11 Options. (line 36) * mbcopy-builtin: PDP-11 Options. (line 32) * mbig: RS/6000 and PowerPC Options. ! (line 431) * mbig-endian: AArch64 Options. (line 9) + * mbig-endian <1>: ARM Options. (line 62) + * mbig-endian <2>: C6X Options. (line 13) + * mbig-endian <3>: IA-64 Options. (line 9) + * mbig-endian <4>: MCore Options. (line 39) + * mbig-endian <5>: MicroBlaze Options. (line 57) + * mbig-endian <6>: RS/6000 and PowerPC Options. + (line 431) * mbig-endian-data: RX Options. (line 42) * mbig-switch: HPPA Options. (line 23) + * mbig-switch <1>: V850 Options. (line 176) * mbigtable: SH Options. (line 89) * mbionic: GNU/Linux Options. (line 17) * mbit-align: RS/6000 and PowerPC Options. ! (line 383) * mbit-ops: CR16 Options. (line 25) ! * mbitfield: M680x0 Options. (line 231) * mbitops: MeP Options. (line 26) + * mbitops <1>: SH Options. (line 93) * mblock-move-inline-limit: RS/6000 and PowerPC Options. ! (line 652) * mbranch-cheap: PDP-11 Options. (line 65) * mbranch-cost: Adapteva Epiphany Options. (line 18) ! * mbranch-cost <1>: AVR Options. (line 152) ! * mbranch-cost <2>: MIPS Options. (line 625) ! * mbranch-cost=NUM: SH Options. (line 389) * mbranch-cost=NUMBER: M32R/D Options. (line 82) * mbranch-expensive: PDP-11 Options. (line 61) ! * mbranch-hints: SPU Options. (line 29) ! * mbranch-likely: MIPS Options. (line 632) ! * mbranch-predict: MMIX Options. (line 48) * mbss-plt: RS/6000 and PowerPC Options. ! (line 153) * mbuild-constants: DEC Alpha Options. (line 141) * mbwx: DEC Alpha Options. (line 163) ! * mc68000: M680x0 Options. (line 93) ! * mc68020: M680x0 Options. (line 107) * mc=: MeP Options. (line 31) ! * mcache-size: SPU Options. (line 75) * mcall-eabi: RS/6000 and PowerPC Options. ! (line 506) * mcall-freebsd: RS/6000 and PowerPC Options. ! (line 520) * mcall-linux: RS/6000 and PowerPC Options. ! (line 516) * mcall-netbsd: RS/6000 and PowerPC Options. ! (line 524) ! * mcall-netbsd <1>: RS/6000 and PowerPC Options. ! (line 528) ! * mcall-prologues: AVR Options. (line 157) * mcall-sysv: RS/6000 and PowerPC Options. ! (line 498) * mcall-sysv-eabi: RS/6000 and PowerPC Options. ! (line 506) * mcall-sysv-noeabi: RS/6000 and PowerPC Options. ! (line 509) ! * mcallee-super-interworking: ARM Options. (line 263) ! * mcaller-super-interworking: ARM Options. (line 270) * mcallgraph-data: MCore Options. (line 31) ! * mcbcond: SPARC Options. (line 215) ! * mcbranchdi: SH Options. (line 404) ! * mcc-init: CRIS Options. (line 42) ! * mcfv4e: M680x0 Options. (line 169) ! * mcheck-zero-division: MIPS Options. (line 439) * mcix: DEC Alpha Options. (line 163) * mcld: i386 and x86-64 Options. ! (line 587) * mclip: MeP Options. (line 35) ! * mcmodel: SPARC Options. (line 249) * mcmodel=kernel: i386 and x86-64 Options. ! (line 859) * mcmodel=large: AArch64 Options. (line 33) ! * mcmodel=large <1>: i386 and x86-64 Options. ! (line 871) ! * mcmodel=large <2>: RS/6000 and PowerPC Options. ! (line 124) ! * mcmodel=large <3>: TILE-Gx Options. (line 14) * mcmodel=medium: i386 and x86-64 Options. ! (line 864) ! * mcmodel=medium <1>: RS/6000 and PowerPC Options. ! (line 120) * mcmodel=small: AArch64 Options. (line 27) + * mcmodel=small <1>: i386 and x86-64 Options. + (line 853) + * mcmodel=small <2>: RS/6000 and PowerPC Options. + (line 116) + * mcmodel=small <3>: TILE-Gx Options. (line 9) * mcmodel=tiny: AArch64 Options. (line 20) * mcmove: Adapteva Epiphany Options. (line 23) * mcmpb: RS/6000 and PowerPC Options. (line 27) ! * mcmpeqdi: SH Options. (line 407) ! * mcode-readable: MIPS Options. (line 399) ! * mcond-exec: FRV Options. (line 187) ! * mcond-move: FRV Options. (line 159) * mconfig=: MeP Options. (line 39) * mconsole: i386 and x86-64 Windows Options. (line 9) *************** look up both forms. *** 49347,49914 **** * mcop: MeP Options. (line 48) * mcop32: MeP Options. (line 53) * mcop64: MeP Options. (line 56) ! * mcorea: Blackfin Options. (line 157) ! * mcoreb: Blackfin Options. (line 164) ! * mcpu <1>: TILEPro Options. (line 9) ! * mcpu <2>: TILE-Gx Options. (line 18) ! * mcpu <3>: SPARC Options. (line 94) ! * mcpu <4>: RS/6000 and PowerPC Options. ! (line 69) ! * mcpu <5>: picoChip Options. (line 9) ! * mcpu <6>: M680x0 Options. (line 28) ! * mcpu <7>: i386 and x86-64 Options. ! (line 223) ! * mcpu <8>: FRV Options. (line 212) ! * mcpu <9>: DEC Alpha Options. (line 215) ! * mcpu <10>: CRIS Options. (line 10) ! * mcpu <11>: ARM Options. (line 75) * mcpu: AArch64 Options. (line 69) ! * mcpu32: M680x0 Options. (line 138) ! * mcpu= <1>: MicroBlaze Options. (line 20) ! * mcpu= <2>: M32C Options. (line 7) * mcpu=: Blackfin Options. (line 7) * mcr16c: CR16 Options. (line 14) * mcr16cplus: CR16 Options. (line 14) * mcrc32: i386 and x86-64 Options. ! (line 635) ! * mcsync-anomaly: Blackfin Options. (line 60) * mcx16: i386 and x86-64 Options. ! (line 612) * MD: Preprocessor Options. ! (line 274) * mdalign: SH Options. (line 80) * mdata-align: CRIS Options. (line 55) * mdata-model: CR16 Options. (line 28) * mdc: MeP Options. (line 62) - * mdebug <1>: S/390 and zSeries Options. - (line 112) * mdebug: M32R/D Options. (line 69) * mdebug-main=PREFIX: VMS Options. (line 13) * mdec-asm: PDP-11 Options. (line 72) * mdisable-callt: V850 Options. (line 92) * mdisable-fpregs: HPPA Options. (line 33) * mdisable-indexing: HPPA Options. (line 39) ! * mdiv <1>: MeP Options. (line 65) ! * mdiv <2>: MCore Options. (line 15) ! * mdiv: M680x0 Options. (line 209) ! * mdiv=STRATEGY: SH Options. (line 238) ! * mdivide-breaks: MIPS Options. (line 447) * mdivide-enabled: LM32 Options. (line 12) ! * mdivide-traps: MIPS Options. (line 447) ! * mdivsi3_libfunc=NAME: SH Options. (line 336) * mdll: i386 and x86-64 Windows Options. (line 16) * mdlmzb: RS/6000 and PowerPC Options. ! (line 379) ! * mdmx: MIPS Options. (line 290) ! * mdouble: FRV Options. (line 38) * mdouble-float <1>: RS/6000 and PowerPC Options. ! (line 302) ! * mdouble-float: MIPS Options. (line 248) ! * mdsp: MIPS Options. (line 267) ! * mdspr2: MIPS Options. (line 273) ! * mdual-nops: SPU Options. (line 90) * mdwarf2-asm: IA-64 Options. (line 94) ! * mdword: FRV Options. (line 32) * mdynamic-no-pic: RS/6000 and PowerPC Options. ! (line 439) ! * mea32: SPU Options. (line 55) ! * mea64: SPU Options. (line 55) * meabi: RS/6000 and PowerPC Options. ! (line 604) * mearly-stop-bits: IA-64 Options. (line 100) - * meb <1>: Score Options. (line 9) - * meb <2>: Moxie Options. (line 7) * meb: MeP Options. (line 68) ! * mel <1>: Score Options. (line 12) ! * mel <2>: Moxie Options. (line 11) * mel: MeP Options. (line 71) ! * melf <1>: MMIX Options. (line 44) * melf: CRIS Options. (line 87) * memb: RS/6000 and PowerPC Options. ! (line 599) ! * membedded-data: MIPS Options. (line 388) * memregs=: M32C Options. (line 21) * mep: V850 Options. (line 16) * mepsilon: MMIX Options. (line 15) * merror-reloc: SPU Options. (line 10) * mesa: S/390 and zSeries Options. ! (line 95) ! * metrax100: CRIS Options. (line 26) ! * metrax4: CRIS Options. (line 26) ! * mexplicit-relocs <1>: MIPS Options. (line 432) * mexplicit-relocs: DEC Alpha Options. (line 176) * mexr: H8/300 Options. (line 28) ! * mextern-sdata: MIPS Options. (line 350) * MF: Preprocessor Options. (line 220) ! * mfast-fp: Blackfin Options. (line 133) * mfast-indirect-calls: HPPA Options. (line 51) ! * mfaster-structs: SPARC Options. (line 84) ! * mfdpic: FRV Options. (line 56) * mfentry: i386 and x86-64 Options. ! (line 811) * mfix: DEC Alpha Options. (line 163) ! * mfix-24k: MIPS Options. (line 500) * mfix-and-continue: Darwin Options. (line 104) ! * mfix-at697f: SPARC Options. (line 236) ! * mfix-cortex-m3-ldrd: ARM Options. (line 302) ! * mfix-r10000: MIPS Options. (line 527) ! * mfix-r4000: MIPS Options. (line 506) ! * mfix-r4400: MIPS Options. (line 520) ! * mfix-sb1: MIPS Options. (line 559) ! * mfix-vr4120: MIPS Options. (line 538) ! * mfix-vr4130: MIPS Options. (line 552) ! * mfixed-cc: FRV Options. (line 28) ! * mfixed-range <1>: SPU Options. (line 47) ! * mfixed-range <2>: SH Options. (line 343) ! * mfixed-range <3>: IA-64 Options. (line 105) * mfixed-range: HPPA Options. (line 58) * mflat: SPARC Options. (line 20) ! * mflip-mips16: MIPS Options. (line 111) * mfloat-abi: ARM Options. (line 42) * mfloat-gprs: RS/6000 and PowerPC Options. ! (line 190) * mfloat-ieee: DEC Alpha Options. (line 171) * mfloat-vax: DEC Alpha Options. (line 171) * mfloat32: PDP-11 Options. (line 52) * mfloat64: PDP-11 Options. (line 48) ! * mflush-func: MIPS Options. (line 626) * mflush-func=NAME: M32R/D Options. (line 93) * mflush-trap=NUMBER: M32R/D Options. (line 86) ! * mfmaf: SPARC Options. (line 230) * mfmovd: SH Options. (line 96) * mforce-no-pic: Xtensa Options. (line 41) ! * mfp-exceptions: MIPS Options. (line 653) * mfp-mode: Adapteva Epiphany Options. ! (line 72) * mfp-reg: DEC Alpha Options. (line 25) * mfp-rounding-mode: DEC Alpha Options. (line 85) * mfp-trap-mode: DEC Alpha Options. (line 63) * mfp16-format: ARM Options. (line 163) ! * mfp32: MIPS Options. (line 221) ! * mfp64: MIPS Options. (line 224) * mfpmath <1>: i386 and x86-64 Options. ! (line 226) ! * mfpmath: Optimize Options. (line 1898) ! * mfpr-32: FRV Options. (line 13) ! * mfpr-64: FRV Options. (line 16) * mfprnd: RS/6000 and PowerPC Options. (line 27) - * mfpu <1>: SPARC Options. (line 33) - * mfpu <2>: RS/6000 and PowerPC Options. - (line 310) - * mfpu <3>: PDP-11 Options. (line 9) * mfpu: ARM Options. (line 143) * mfriz: RS/6000 and PowerPC Options. ! (line 785) ! * mfsca: SH Options. (line 428) ! * mfsrra: SH Options. (line 437) * mfull-toc: RS/6000 and PowerPC Options. ! (line 218) ! * mfused-madd <1>: Xtensa Options. (line 19) ! * mfused-madd <2>: SH Options. (line 419) ! * mfused-madd <3>: S/390 and zSeries Options. ! (line 137) ! * mfused-madd <4>: RS/6000 and PowerPC Options. ! (line 363) ! * mfused-madd <5>: MIPS Options. (line 482) * mfused-madd: IA-64 Options. (line 88) ! * mg: VAX Options. (line 17) * MG: Preprocessor Options. (line 229) * mgas: HPPA Options. (line 74) * mgcc-abi: V850 Options. (line 148) * mgen-cell-microcode: RS/6000 and PowerPC Options. ! (line 143) * mgeneral-regs-only: AArch64 Options. (line 13) ! * mgettrcost=NUMBER: SH Options. (line 360) * mghs: V850 Options. (line 127) * mglibc: GNU/Linux Options. (line 9) * mgnu: VAX Options. (line 13) * mgnu-as: IA-64 Options. (line 18) - * mgnu-ld <1>: IA-64 Options. (line 23) * mgnu-ld: HPPA Options. (line 110) * mgotplt: CRIS Options. (line 81) ! * mgp32: MIPS Options. (line 215) ! * mgp64: MIPS Options. (line 218) ! * mgpopt: MIPS Options. (line 373) * mgpr-32: FRV Options. (line 7) ! * mgpr-64: FRV Options. (line 10) ! * mgprel-ro: FRV Options. (line 79) * mh: H8/300 Options. (line 14) * mhalf-reg-file: Adapteva Epiphany Options. (line 9) - * mhard-dfp <1>: S/390 and zSeries Options. - (line 20) * mhard-dfp: RS/6000 and PowerPC Options. (line 27) ! * mhard-float <1>: V850 Options. (line 113) ! * mhard-float <2>: SPARC Options. (line 33) ! * mhard-float <3>: S/390 and zSeries Options. ! (line 11) * mhard-float <4>: RS/6000 and PowerPC Options. ! (line 296) ! * mhard-float <5>: MIPS Options. (line 227) ! * mhard-float <6>: MicroBlaze Options. (line 10) ! * mhard-float <7>: M680x0 Options. (line 197) ! * mhard-float: FRV Options. (line 19) ! * mhard-quad-float: SPARC Options. (line 54) * mhardlit: MCore Options. (line 10) ! * mhint-max-distance: SPU Options. (line 102) ! * mhint-max-nops: SPU Options. (line 96) * mhitachi: SH Options. (line 100) * mhp-ld: HPPA Options. (line 122) ! * micplb: Blackfin Options. (line 178) ! * mid-shared-library: Blackfin Options. (line 81) ! * mieee <1>: SH Options. (line 116) * mieee: DEC Alpha Options. (line 39) * mieee-conformant: DEC Alpha Options. (line 134) * mieee-fp: i386 and x86-64 Options. ! (line 281) * mieee-with-inexact: DEC Alpha Options. (line 52) * milp32: IA-64 Options. (line 121) * mimpure-text: Solaris 2 Options. (line 9) * mincoming-stack-boundary: i386 and x86-64 Options. ! (line 486) ! * mindexed-addressing: SH Options. (line 350) * minline-all-stringops: i386 and x86-64 Options. ! (line 759) * minline-float-divide-max-throughput: IA-64 Options. (line 58) * minline-float-divide-min-latency: IA-64 Options. (line 54) * minline-ic_invalidate: SH Options. (line 125) * minline-int-divide-max-throughput: IA-64 Options. (line 69) * minline-int-divide-min-latency: IA-64 Options. (line 65) ! * minline-plt <1>: FRV Options. (line 64) ! * minline-plt: Blackfin Options. (line 138) * minline-sqrt-max-throughput: IA-64 Options. (line 80) * minline-sqrt-min-latency: IA-64 Options. (line 76) * minline-stringops-dynamically: i386 and x86-64 Options. ! (line 766) * minsert-sched-nops: RS/6000 and PowerPC Options. ! (line 479) * mint-register: RX Options. (line 100) * mint16: PDP-11 Options. (line 40) - * mint32 <1>: PDP-11 Options. (line 44) - * mint32 <2>: H8/300 Options. (line 38) * mint32: CR16 Options. (line 22) ! * mint8: AVR Options. (line 163) ! * minterlink-mips16: MIPS Options. (line 118) ! * minvalid-symbols: SH Options. (line 386) * mio-volatile: MeP Options. (line 74) ! * mips1: MIPS Options. (line 78) ! * mips16: MIPS Options. (line 103) ! * mips2: MIPS Options. (line 81) ! * mips3: MIPS Options. (line 84) ! * mips32: MIPS Options. (line 90) ! * mips32r2: MIPS Options. (line 93) ! * mips3d: MIPS Options. (line 296) ! * mips4: MIPS Options. (line 87) ! * mips64: MIPS Options. (line 96) ! * mips64r2: MIPS Options. (line 99) * misel: RS/6000 and PowerPC Options. ! (line 161) * misize: SH Options. (line 137) * missue-rate=NUMBER: M32R/D Options. (line 79) * mivc2: MeP Options. (line 59) * mjump-in-delay: HPPA Options. (line 28) * mkernel: Darwin Options. (line 82) ! * mknuthdiv: MMIX Options. (line 33) ! * ml <1>: SH Options. (line 77) * ml: MeP Options. (line 78) * mlarge-data: DEC Alpha Options. (line 187) * mlarge-data-threshold: i386 and x86-64 Options. ! (line 372) ! * mlarge-mem: SPU Options. (line 35) * mlarge-text: DEC Alpha Options. (line 205) * mleadz: MeP Options. (line 81) ! * mleaf-id-shared-library: Blackfin Options. (line 92) * mlibfuncs: MMIX Options. (line 10) ! * mlibrary-pic: FRV Options. (line 110) ! * mlinked-fp: FRV Options. (line 94) * mlinker-opt: HPPA Options. (line 84) * mlinux: CRIS Options. (line 91) * mlittle: RS/6000 and PowerPC Options. ! (line 428) ! * mlittle-endian <1>: RS/6000 and PowerPC Options. ! (line 428) ! * mlittle-endian <2>: MicroBlaze Options. (line 60) ! * mlittle-endian <3>: MCore Options. (line 39) ! * mlittle-endian <4>: IA-64 Options. (line 13) ! * mlittle-endian <5>: C6X Options. (line 16) ! * mlittle-endian <6>: ARM Options. (line 58) * mlittle-endian: AArch64 Options. (line 16) * mlittle-endian-data: RX Options. (line 42) * mliw: MN10300 Options. (line 54) ! * mllsc: MIPS Options. (line 253) ! * mlocal-sdata: MIPS Options. (line 338) ! * mlong-calls <1>: V850 Options. (line 10) ! * mlong-calls <2>: MIPS Options. (line 468) ! * mlong-calls <3>: FRV Options. (line 99) ! * mlong-calls <4>: Blackfin Options. (line 121) ! * mlong-calls <5>: ARM Options. (line 188) * mlong-calls: Adapteva Epiphany Options. (line 55) * mlong-double-128: S/390 and zSeries Options. (line 29) * mlong-double-64 <1>: S/390 and zSeries Options. (line 29) - * mlong-double-64: i386 and x86-64 Options. - (line 361) * mlong-double-80: i386 and x86-64 Options. ! (line 361) * mlong-jumps: V850 Options. (line 108) * mlong-load-store: HPPA Options. (line 65) ! * mlong32: MIPS Options. (line 313) ! * mlong64: MIPS Options. (line 308) * mlongcall: RS/6000 and PowerPC Options. ! (line 676) * mlongcalls: Xtensa Options. (line 72) * mloop: V850 Options. (line 121) ! * mlow-64k: Blackfin Options. (line 70) * mlp64: IA-64 Options. (line 121) - * mm: MeP Options. (line 84) * MM: Preprocessor Options. (line 210) ! * mmac <1>: Score Options. (line 21) * mmac: CR16 Options. (line 9) ! * mmad: MIPS Options. (line 477) * mmalloc64: VMS Options. (line 17) * mmax: DEC Alpha Options. (line 163) * mmax-constant-size: RX Options. (line 82) ! * mmax-stack-frame: CRIS Options. (line 22) ! * mmcount-ra-address: MIPS Options. (line 702) ! * mmcu <1>: MIPS Options. (line 305) * mmcu: AVR Options. (line 9) * MMD: Preprocessor Options. ! (line 290) ! * mmedia: FRV Options. (line 44) ! * mmemcpy <1>: MIPS Options. (line 462) * mmemcpy: MicroBlaze Options. (line 13) * mmemory-latency: DEC Alpha Options. (line 268) ! * mmemory-model: SPARC Options. (line 278) * mmfcrf: RS/6000 and PowerPC Options. (line 27) * mmfpgpr: RS/6000 and PowerPC Options. (line 27) * mminimal-toc: RS/6000 and PowerPC Options. ! (line 218) * mminmax: MeP Options. (line 87) * mmmx: i386 and x86-64 Options. ! (line 565) * mmodel=large: M32R/D Options. (line 33) * mmodel=medium: M32R/D Options. (line 27) * mmodel=small: M32R/D Options. (line 18) * mmovbe: i386 and x86-64 Options. ! (line 631) ! * mmt: MIPS Options. (line 301) * mmul: RL78 Options. (line 13) ! * mmul-bug-workaround: CRIS Options. (line 31) ! * mmuladd: FRV Options. (line 50) * mmulhw: RS/6000 and PowerPC Options. ! (line 372) * mmult: MeP Options. (line 90) * mmult-bug: MN10300 Options. (line 9) ! * mmulti-cond-exec: FRV Options. (line 176) ! * mmulticore: Blackfin Options. (line 142) * mmultiple: RS/6000 and PowerPC Options. ! (line 322) * mmvcle: S/390 and zSeries Options. ! (line 105) * mmvme: RS/6000 and PowerPC Options. ! (line 580) * mn: H8/300 Options. (line 20) ! * mnested-cond-exec: FRV Options. (line 189) * mnhwloop: Score Options. (line 15) * mno-3dnow: i386 and x86-64 Options. ! (line 565) * mno-4byte-functions: MCore Options. (line 27) * mno-8byte-align: V850 Options. (line 170) ! * mno-abicalls: MIPS Options. (line 155) * mno-abshi: PDP-11 Options. (line 58) * mno-ac0: PDP-11 Options. (line 20) ! * mno-address-space-conversion: SPU Options. (line 63) * mno-align-double: i386 and x86-64 Options. (line 320) ! * mno-align-int: M680x0 Options. (line 267) * mno-align-loops: M32R/D Options. (line 76) * mno-align-stringops: i386 and x86-64 Options. ! (line 754) * mno-altivec: RS/6000 and PowerPC Options. ! (line 132) * mno-am33: MN10300 Options. (line 20) - * mno-app-regs <1>: V850 Options. (line 185) * mno-app-regs: SPARC Options. (line 10) * mno-as100-syntax: RX Options. (line 76) ! * mno-atomic-updates: SPU Options. (line 78) * mno-avoid-indexed-addresses: RS/6000 and PowerPC Options. ! (line 354) * mno-backchain: S/390 and zSeries Options. (line 35) ! * mno-base-addresses: MMIX Options. (line 54) * mno-bit-align: RS/6000 and PowerPC Options. ! (line 386) ! * mno-bitfield: M680x0 Options. (line 231) ! * mno-branch-likely: MIPS Options. (line 642) ! * mno-branch-predict: MMIX Options. (line 49) * mno-bwx: DEC Alpha Options. (line 163) * mno-callgraph-data: MCore Options. (line 31) ! * mno-cbcond: SPARC Options. (line 216) ! * mno-check-zero-division: MIPS Options. (line 441) * mno-cix: DEC Alpha Options. (line 163) * mno-clearbss: MicroBlaze Options. (line 16) * mno-cmpb: RS/6000 and PowerPC Options. (line 27) ! * mno-cond-exec: FRV Options. (line 158) ! * mno-cond-move: FRV Options. (line 134) * mno-const-align: CRIS Options. (line 55) * mno-const16: Xtensa Options. (line 10) - * mno-crt0 <1>: Moxie Options. (line 14) * mno-crt0: MN10300 Options. (line 43) ! * mno-csync-anomaly: Blackfin Options. (line 66) * mno-data-align: CRIS Options. (line 55) * mno-debug: S/390 and zSeries Options. ! (line 112) * mno-disable-callt: V850 Options. (line 92) * mno-div <1>: MCore Options. (line 15) - * mno-div: M680x0 Options. (line 209) * mno-dlmzb: RS/6000 and PowerPC Options. ! (line 379) ! * mno-double: FRV Options. (line 41) ! * mno-dsp: MIPS Options. (line 267) ! * mno-dspr2: MIPS Options. (line 273) * mno-dwarf2-asm: IA-64 Options. (line 94) ! * mno-dword: FRV Options. (line 35) * mno-eabi: RS/6000 and PowerPC Options. ! (line 604) * mno-early-stop-bits: IA-64 Options. (line 100) ! * mno-eflags: FRV Options. (line 125) ! * mno-embedded-data: MIPS Options. (line 388) * mno-ep: V850 Options. (line 16) * mno-epsilon: MMIX Options. (line 15) - * mno-explicit-relocs <1>: MIPS Options. (line 432) * mno-explicit-relocs: DEC Alpha Options. (line 176) * mno-exr: H8/300 Options. (line 33) ! * mno-extern-sdata: MIPS Options. (line 350) * mno-fancy-math-387: i386 and x86-64 Options. ! (line 309) ! * mno-faster-structs: SPARC Options. (line 84) * mno-fix: DEC Alpha Options. (line 163) ! * mno-fix-24k: MIPS Options. (line 500) ! * mno-fix-r10000: MIPS Options. (line 527) ! * mno-fix-r4000: MIPS Options. (line 506) ! * mno-fix-r4400: MIPS Options. (line 520) * mno-flat: SPARC Options. (line 20) ! * mno-float: MIPS Options. (line 234) * mno-float32: PDP-11 Options. (line 48) * mno-float64: PDP-11 Options. (line 52) * mno-flush-func: M32R/D Options. (line 98) * mno-flush-trap: M32R/D Options. (line 90) ! * mno-fmaf: SPARC Options. (line 230) * mno-fp-in-toc: RS/6000 and PowerPC Options. ! (line 218) * mno-fp-regs: DEC Alpha Options. (line 25) * mno-fp-ret-in-387: i386 and x86-64 Options. ! (line 299) * mno-fprnd: RS/6000 and PowerPC Options. (line 27) ! * mno-fpu: SPARC Options. (line 38) ! * mno-fsca: SH Options. (line 428) ! * mno-fsrra: SH Options. (line 437) ! * mno-fused-madd <1>: Xtensa Options. (line 19) ! * mno-fused-madd <2>: SH Options. (line 419) ! * mno-fused-madd <3>: S/390 and zSeries Options. ! (line 137) ! * mno-fused-madd <4>: RS/6000 and PowerPC Options. ! (line 363) ! * mno-fused-madd <5>: MIPS Options. (line 482) * mno-fused-madd: IA-64 Options. (line 88) * mno-gnu-as: IA-64 Options. (line 18) * mno-gnu-ld: IA-64 Options. (line 23) * mno-gotplt: CRIS Options. (line 81) ! * mno-gpopt: MIPS Options. (line 373) ! * mno-hard-dfp <1>: S/390 and zSeries Options. ! (line 20) * mno-hard-dfp: RS/6000 and PowerPC Options. (line 27) * mno-hardlit: MCore Options. (line 10) ! * mno-id-shared-library: Blackfin Options. (line 88) * mno-ieee-fp: i386 and x86-64 Options. ! (line 281) * mno-inline-float-divide: IA-64 Options. (line 62) * mno-inline-int-divide: IA-64 Options. (line 73) * mno-inline-sqrt: IA-64 Options. (line 84) * mno-int16: PDP-11 Options. (line 44) * mno-int32: PDP-11 Options. (line 40) ! * mno-interlink-mips16: MIPS Options. (line 118) ! * mno-interrupts: AVR Options. (line 169) * mno-isel: RS/6000 and PowerPC Options. ! (line 161) ! * mno-knuthdiv: MMIX Options. (line 33) ! * mno-leaf-id-shared-library: Blackfin Options. (line 98) * mno-libfuncs: MMIX Options. (line 10) ! * mno-llsc: MIPS Options. (line 253) ! * mno-local-sdata: MIPS Options. (line 338) ! * mno-long-calls <1>: V850 Options. (line 10) ! * mno-long-calls <2>: MIPS Options. (line 468) ! * mno-long-calls <3>: HPPA Options. (line 135) ! * mno-long-calls <4>: Blackfin Options. (line 121) * mno-long-calls: ARM Options. (line 188) * mno-long-jumps: V850 Options. (line 108) * mno-longcall: RS/6000 and PowerPC Options. ! (line 676) * mno-longcalls: Xtensa Options. (line 72) ! * mno-low-64k: Blackfin Options. (line 74) ! * mno-lsim <1>: MCore Options. (line 46) * mno-lsim: FR30 Options. (line 14) ! * mno-mad: MIPS Options. (line 477) * mno-max: DEC Alpha Options. (line 163) ! * mno-mcount-ra-address: MIPS Options. (line 702) ! * mno-mcu: MIPS Options. (line 305) ! * mno-mdmx: MIPS Options. (line 290) ! * mno-media: FRV Options. (line 47) ! * mno-memcpy: MIPS Options. (line 462) * mno-mfcrf: RS/6000 and PowerPC Options. (line 27) * mno-mfpgpr: RS/6000 and PowerPC Options. (line 27) ! * mno-mips16: MIPS Options. (line 103) ! * mno-mips3d: MIPS Options. (line 296) * mno-mmx: i386 and x86-64 Options. ! (line 565) ! * mno-mt: MIPS Options. (line 301) ! * mno-mul-bug-workaround: CRIS Options. (line 31) ! * mno-muladd: FRV Options. (line 53) * mno-mulhw: RS/6000 and PowerPC Options. ! (line 372) * mno-mult-bug: MN10300 Options. (line 13) ! * mno-multi-cond-exec: FRV Options. (line 183) * mno-multiple: RS/6000 and PowerPC Options. ! (line 322) * mno-mvcle: S/390 and zSeries Options. ! (line 105) ! * mno-nested-cond-exec: FRV Options. (line 195) * mno-omit-leaf-frame-pointer: AArch64 Options. (line 43) ! * mno-optimize-membar: FRV Options. (line 205) * mno-opts: MeP Options. (line 93) ! * mno-pack: FRV Options. (line 122) * mno-packed-stack: S/390 and zSeries Options. (line 54) * mno-paired: RS/6000 and PowerPC Options. ! (line 175) ! * mno-paired-single: MIPS Options. (line 284) * mno-pic: IA-64 Options. (line 26) * mno-pid: RX Options. (line 117) ! * mno-plt: MIPS Options. (line 182) ! * mno-popc: SPARC Options. (line 223) * mno-popcntb: RS/6000 and PowerPC Options. (line 27) * mno-popcntd: RS/6000 and PowerPC Options. (line 27) * mno-postinc: Adapteva Epiphany Options. ! (line 110) * mno-postmodify: Adapteva Epiphany Options. ! (line 110) * mno-powerpc-gfxopt: RS/6000 and PowerPC Options. (line 27) * mno-powerpc-gpopt: RS/6000 and PowerPC Options. --- 49117,49686 ---- * mcop: MeP Options. (line 48) * mcop32: MeP Options. (line 53) * mcop64: MeP Options. (line 56) ! * mcorea: Blackfin Options. (line 156) ! * mcoreb: Blackfin Options. (line 163) * mcpu: AArch64 Options. (line 69) ! * mcpu <1>: ARM Options. (line 75) ! * mcpu <2>: CRIS Options. (line 10) ! * mcpu <3>: DEC Alpha Options. (line 215) ! * mcpu <4>: FRV Options. (line 258) ! * mcpu <5>: i386 and x86-64 Options. ! (line 224) ! * mcpu <6>: M680x0 Options. (line 28) ! * mcpu <7>: picoChip Options. (line 9) ! * mcpu <8>: RS/6000 and PowerPC Options. ! (line 68) ! * mcpu <9>: SPARC Options. (line 93) ! * mcpu <10>: TILE-Gx Options. (line 18) ! * mcpu <11>: TILEPro Options. (line 9) ! * mcpu32: M680x0 Options. (line 135) * mcpu=: Blackfin Options. (line 7) + * mcpu= <1>: M32C Options. (line 7) + * mcpu= <2>: MicroBlaze Options. (line 20) * mcr16c: CR16 Options. (line 14) * mcr16cplus: CR16 Options. (line 14) * mcrc32: i386 and x86-64 Options. ! (line 634) ! * mcsync-anomaly: Blackfin Options. (line 59) * mcx16: i386 and x86-64 Options. ! (line 611) * MD: Preprocessor Options. ! (line 276) * mdalign: SH Options. (line 80) * mdata-align: CRIS Options. (line 55) * mdata-model: CR16 Options. (line 28) * mdc: MeP Options. (line 62) * mdebug: M32R/D Options. (line 69) + * mdebug <1>: S/390 and zSeries Options. + (line 110) * mdebug-main=PREFIX: VMS Options. (line 13) * mdec-asm: PDP-11 Options. (line 72) * mdisable-callt: V850 Options. (line 92) * mdisable-fpregs: HPPA Options. (line 33) * mdisable-indexing: HPPA Options. (line 39) ! * mdiv: M680x0 Options. (line 206) ! * mdiv <1>: MCore Options. (line 15) ! * mdiv <2>: MeP Options. (line 65) ! * mdiv=STRATEGY: SH Options. (line 236) ! * mdivide-breaks: MIPS Options. (line 445) * mdivide-enabled: LM32 Options. (line 12) ! * mdivide-traps: MIPS Options. (line 445) ! * mdivsi3_libfunc=NAME: SH Options. (line 331) * mdll: i386 and x86-64 Windows Options. (line 16) * mdlmzb: RS/6000 and PowerPC Options. ! (line 376) ! * mdmx: MIPS Options. (line 289) ! * mdouble: FRV Options. (line 48) ! * mdouble-float: MIPS Options. (line 247) * mdouble-float <1>: RS/6000 and PowerPC Options. ! (line 299) ! * mdsp: MIPS Options. (line 266) ! * mdspr2: MIPS Options. (line 272) ! * mdual-nops: SPU Options. (line 95) * mdwarf2-asm: IA-64 Options. (line 94) ! * mdword: FRV Options. (line 40) * mdynamic-no-pic: RS/6000 and PowerPC Options. ! (line 436) ! * mea32: SPU Options. (line 60) ! * mea64: SPU Options. (line 60) * meabi: RS/6000 and PowerPC Options. ! (line 601) * mearly-stop-bits: IA-64 Options. (line 100) * meb: MeP Options. (line 68) ! * meb <1>: Moxie Options. (line 7) ! * meb <2>: Score Options. (line 9) * mel: MeP Options. (line 71) ! * mel <1>: Moxie Options. (line 11) ! * mel <2>: Score Options. (line 12) * melf: CRIS Options. (line 87) + * melf <1>: MMIX Options. (line 43) * memb: RS/6000 and PowerPC Options. ! (line 596) ! * membedded-data: MIPS Options. (line 386) * memregs=: M32C Options. (line 21) * mep: V850 Options. (line 16) * mepsilon: MMIX Options. (line 15) * merror-reloc: SPU Options. (line 10) * mesa: S/390 and zSeries Options. ! (line 94) ! * metrax100: CRIS Options. (line 27) ! * metrax4: CRIS Options. (line 27) * mexplicit-relocs: DEC Alpha Options. (line 176) + * mexplicit-relocs <1>: MIPS Options. (line 430) * mexr: H8/300 Options. (line 28) ! * mextern-sdata: MIPS Options. (line 349) * MF: Preprocessor Options. (line 220) ! * mfast-fp: Blackfin Options. (line 132) * mfast-indirect-calls: HPPA Options. (line 51) ! * mfaster-structs: SPARC Options. (line 83) ! * mfdpic: FRV Options. (line 72) * mfentry: i386 and x86-64 Options. ! (line 809) * mfix: DEC Alpha Options. (line 163) ! * mfix-24k: MIPS Options. (line 496) * mfix-and-continue: Darwin Options. (line 104) ! * mfix-at697f: SPARC Options. (line 235) ! * mfix-cortex-m3-ldrd: ARM Options. (line 303) ! * mfix-r10000: MIPS Options. (line 518) ! * mfix-r4000: MIPS Options. (line 502) ! * mfix-r4400: MIPS Options. (line 512) ! * mfix-sb1: MIPS Options. (line 549) ! * mfix-vr4120: MIPS Options. (line 529) ! * mfix-vr4130: MIPS Options. (line 542) ! * mfixed-cc: FRV Options. (line 35) * mfixed-range: HPPA Options. (line 58) + * mfixed-range <1>: IA-64 Options. (line 105) + * mfixed-range <2>: SH Options. (line 338) + * mfixed-range <3>: SPU Options. (line 52) * mflat: SPARC Options. (line 20) ! * mflip-mips16: MIPS Options. (line 110) * mfloat-abi: ARM Options. (line 42) * mfloat-gprs: RS/6000 and PowerPC Options. ! (line 188) * mfloat-ieee: DEC Alpha Options. (line 171) * mfloat-vax: DEC Alpha Options. (line 171) * mfloat32: PDP-11 Options. (line 52) * mfloat64: PDP-11 Options. (line 48) ! * mflush-func: MIPS Options. (line 616) * mflush-func=NAME: M32R/D Options. (line 93) * mflush-trap=NUMBER: M32R/D Options. (line 86) ! * mfmaf: SPARC Options. (line 229) * mfmovd: SH Options. (line 96) * mforce-no-pic: Xtensa Options. (line 41) ! * mfp-exceptions: MIPS Options. (line 643) * mfp-mode: Adapteva Epiphany Options. ! (line 71) * mfp-reg: DEC Alpha Options. (line 25) * mfp-rounding-mode: DEC Alpha Options. (line 85) * mfp-trap-mode: DEC Alpha Options. (line 63) * mfp16-format: ARM Options. (line 163) ! * mfp32: MIPS Options. (line 220) ! * mfp64: MIPS Options. (line 223) ! * mfpmath: Optimize Options. (line 1893) * mfpmath <1>: i386 and x86-64 Options. ! (line 227) ! * mfpr-32: FRV Options. (line 15) ! * mfpr-64: FRV Options. (line 19) * mfprnd: RS/6000 and PowerPC Options. (line 27) * mfpu: ARM Options. (line 143) + * mfpu <1>: PDP-11 Options. (line 9) + * mfpu <2>: RS/6000 and PowerPC Options. + (line 307) + * mfpu <3>: SPARC Options. (line 32) * mfriz: RS/6000 and PowerPC Options. ! (line 779) ! * mfsca: SH Options. (line 421) ! * mfsrra: SH Options. (line 430) * mfull-toc: RS/6000 and PowerPC Options. ! (line 216) * mfused-madd: IA-64 Options. (line 88) ! * mfused-madd <1>: MIPS Options. (line 479) ! * mfused-madd <2>: RS/6000 and PowerPC Options. ! (line 360) ! * mfused-madd <3>: S/390 and zSeries Options. ! (line 135) ! * mfused-madd <4>: SH Options. (line 412) ! * mfused-madd <5>: Xtensa Options. (line 19) * MG: Preprocessor Options. (line 229) + * mg: VAX Options. (line 17) * mgas: HPPA Options. (line 74) * mgcc-abi: V850 Options. (line 148) * mgen-cell-microcode: RS/6000 and PowerPC Options. ! (line 141) * mgeneral-regs-only: AArch64 Options. (line 13) ! * mgettrcost=NUMBER: SH Options. (line 355) * mghs: V850 Options. (line 127) * mglibc: GNU/Linux Options. (line 9) * mgnu: VAX Options. (line 13) * mgnu-as: IA-64 Options. (line 18) * mgnu-ld: HPPA Options. (line 110) + * mgnu-ld <1>: IA-64 Options. (line 23) * mgotplt: CRIS Options. (line 81) ! * mgp32: MIPS Options. (line 214) ! * mgp64: MIPS Options. (line 217) ! * mgpopt: MIPS Options. (line 371) * mgpr-32: FRV Options. (line 7) ! * mgpr-64: FRV Options. (line 11) ! * mgprel-ro: FRV Options. (line 99) * mh: H8/300 Options. (line 14) * mhalf-reg-file: Adapteva Epiphany Options. (line 9) * mhard-dfp: RS/6000 and PowerPC Options. (line 27) ! * mhard-dfp <1>: S/390 and zSeries Options. ! (line 20) ! * mhard-float: FRV Options. (line 23) ! * mhard-float <1>: M680x0 Options. (line 194) ! * mhard-float <2>: MicroBlaze Options. (line 10) ! * mhard-float <3>: MIPS Options. (line 226) * mhard-float <4>: RS/6000 and PowerPC Options. ! (line 293) ! * mhard-float <5>: S/390 and zSeries Options. ! (line 11) ! * mhard-float <6>: SPARC Options. (line 32) ! * mhard-float <7>: V850 Options. (line 113) ! * mhard-quad-float: SPARC Options. (line 53) * mhardlit: MCore Options. (line 10) ! * mhint-max-distance: SPU Options. (line 107) ! * mhint-max-nops: SPU Options. (line 101) * mhitachi: SH Options. (line 100) + * mhitachi <1>: SH Options. (line 103) + * mhitachi <2>: SH Options. (line 106) * mhp-ld: HPPA Options. (line 122) ! * micplb: Blackfin Options. (line 177) ! * mid-shared-library: Blackfin Options. (line 80) * mieee: DEC Alpha Options. (line 39) + * mieee <1>: SH Options. (line 116) * mieee-conformant: DEC Alpha Options. (line 134) * mieee-fp: i386 and x86-64 Options. ! (line 282) * mieee-with-inexact: DEC Alpha Options. (line 52) * milp32: IA-64 Options. (line 121) * mimpure-text: Solaris 2 Options. (line 9) * mincoming-stack-boundary: i386 and x86-64 Options. ! (line 485) ! * mindexed-addressing: SH Options. (line 345) * minline-all-stringops: i386 and x86-64 Options. ! (line 757) * minline-float-divide-max-throughput: IA-64 Options. (line 58) * minline-float-divide-min-latency: IA-64 Options. (line 54) * minline-ic_invalidate: SH Options. (line 125) * minline-int-divide-max-throughput: IA-64 Options. (line 69) * minline-int-divide-min-latency: IA-64 Options. (line 65) ! * minline-plt: Blackfin Options. (line 137) ! * minline-plt <1>: FRV Options. (line 81) * minline-sqrt-max-throughput: IA-64 Options. (line 80) * minline-sqrt-min-latency: IA-64 Options. (line 76) * minline-stringops-dynamically: i386 and x86-64 Options. ! (line 764) * minsert-sched-nops: RS/6000 and PowerPC Options. ! (line 476) * mint-register: RX Options. (line 100) * mint16: PDP-11 Options. (line 40) * mint32: CR16 Options. (line 22) ! * mint32 <1>: H8/300 Options. (line 38) ! * mint32 <2>: PDP-11 Options. (line 44) ! * mint8: AVR Options. (line 161) ! * minterlink-mips16: MIPS Options. (line 117) ! * minvalid-symbols: SH Options. (line 379) * mio-volatile: MeP Options. (line 74) ! * mips1: MIPS Options. (line 77) ! * mips16: MIPS Options. (line 102) ! * mips2: MIPS Options. (line 80) ! * mips3: MIPS Options. (line 83) ! * mips32: MIPS Options. (line 89) ! * mips32r2: MIPS Options. (line 92) ! * mips3d: MIPS Options. (line 295) ! * mips4: MIPS Options. (line 86) ! * mips64: MIPS Options. (line 95) ! * mips64r2: MIPS Options. (line 98) * misel: RS/6000 and PowerPC Options. ! (line 159) * misize: SH Options. (line 137) * missue-rate=NUMBER: M32R/D Options. (line 79) * mivc2: MeP Options. (line 59) * mjump-in-delay: HPPA Options. (line 28) * mkernel: Darwin Options. (line 82) ! * mknuthdiv: MMIX Options. (line 32) * ml: MeP Options. (line 78) + * ml <1>: SH Options. (line 77) * mlarge-data: DEC Alpha Options. (line 187) * mlarge-data-threshold: i386 and x86-64 Options. ! (line 371) ! * mlarge-mem: SPU Options. (line 38) * mlarge-text: DEC Alpha Options. (line 205) * mleadz: MeP Options. (line 81) ! * mleaf-id-shared-library: Blackfin Options. (line 91) * mlibfuncs: MMIX Options. (line 10) ! * mlibrary-pic: FRV Options. (line 135) ! * mlinked-fp: FRV Options. (line 116) * mlinker-opt: HPPA Options. (line 84) * mlinux: CRIS Options. (line 91) * mlittle: RS/6000 and PowerPC Options. ! (line 425) * mlittle-endian: AArch64 Options. (line 16) + * mlittle-endian <1>: ARM Options. (line 58) + * mlittle-endian <2>: C6X Options. (line 16) + * mlittle-endian <3>: IA-64 Options. (line 13) + * mlittle-endian <4>: MCore Options. (line 39) + * mlittle-endian <5>: MicroBlaze Options. (line 60) + * mlittle-endian <6>: RS/6000 and PowerPC Options. + (line 425) * mlittle-endian-data: RX Options. (line 42) * mliw: MN10300 Options. (line 54) ! * mllsc: MIPS Options. (line 252) ! * mlocal-sdata: MIPS Options. (line 337) * mlong-calls: Adapteva Epiphany Options. (line 55) + * mlong-calls <1>: ARM Options. (line 188) + * mlong-calls <2>: Blackfin Options. (line 120) + * mlong-calls <3>: FRV Options. (line 122) + * mlong-calls <4>: MIPS Options. (line 465) + * mlong-calls <5>: V850 Options. (line 10) * mlong-double-128: S/390 and zSeries Options. (line 29) + * mlong-double-64: i386 and x86-64 Options. + (line 360) * mlong-double-64 <1>: S/390 and zSeries Options. (line 29) * mlong-double-80: i386 and x86-64 Options. ! (line 360) * mlong-jumps: V850 Options. (line 108) * mlong-load-store: HPPA Options. (line 65) ! * mlong32: MIPS Options. (line 312) ! * mlong64: MIPS Options. (line 307) * mlongcall: RS/6000 and PowerPC Options. ! (line 672) * mlongcalls: Xtensa Options. (line 72) * mloop: V850 Options. (line 121) ! * mlow-64k: Blackfin Options. (line 69) * mlp64: IA-64 Options. (line 121) * MM: Preprocessor Options. (line 210) ! * mm: MeP Options. (line 84) * mmac: CR16 Options. (line 9) ! * mmac <1>: Score Options. (line 21) ! * mmad: MIPS Options. (line 474) * mmalloc64: VMS Options. (line 17) * mmax: DEC Alpha Options. (line 163) * mmax-constant-size: RX Options. (line 82) ! * mmax-stack-frame: CRIS Options. (line 23) ! * mmcount-ra-address: MIPS Options. (line 692) * mmcu: AVR Options. (line 9) + * mmcu <1>: MIPS Options. (line 304) * MMD: Preprocessor Options. ! (line 292) ! * mmedia: FRV Options. (line 56) * mmemcpy: MicroBlaze Options. (line 13) + * mmemcpy <1>: MIPS Options. (line 459) * mmemory-latency: DEC Alpha Options. (line 268) ! * mmemory-model: SPARC Options. (line 277) * mmfcrf: RS/6000 and PowerPC Options. (line 27) * mmfpgpr: RS/6000 and PowerPC Options. (line 27) * mminimal-toc: RS/6000 and PowerPC Options. ! (line 216) * mminmax: MeP Options. (line 87) * mmmx: i386 and x86-64 Options. ! (line 564) * mmodel=large: M32R/D Options. (line 33) * mmodel=medium: M32R/D Options. (line 27) * mmodel=small: M32R/D Options. (line 18) * mmovbe: i386 and x86-64 Options. ! (line 630) ! * mmt: MIPS Options. (line 300) * mmul: RL78 Options. (line 13) ! * mmul-bug-workaround: CRIS Options. (line 32) ! * mmuladd: FRV Options. (line 64) * mmulhw: RS/6000 and PowerPC Options. ! (line 369) * mmult: MeP Options. (line 90) * mmult-bug: MN10300 Options. (line 9) ! * mmulti-cond-exec: FRV Options. (line 215) ! * mmulticore: Blackfin Options. (line 141) * mmultiple: RS/6000 and PowerPC Options. ! (line 319) * mmvcle: S/390 and zSeries Options. ! (line 104) * mmvme: RS/6000 and PowerPC Options. ! (line 577) * mn: H8/300 Options. (line 20) ! * mnested-cond-exec: FRV Options. (line 230) * mnhwloop: Score Options. (line 15) * mno-3dnow: i386 and x86-64 Options. ! (line 564) * mno-4byte-functions: MCore Options. (line 27) * mno-8byte-align: V850 Options. (line 170) ! * mno-abicalls: MIPS Options. (line 154) * mno-abshi: PDP-11 Options. (line 58) * mno-ac0: PDP-11 Options. (line 20) ! * mno-address-space-conversion: SPU Options. (line 68) * mno-align-double: i386 and x86-64 Options. (line 320) ! * mno-align-int: M680x0 Options. (line 263) * mno-align-loops: M32R/D Options. (line 76) * mno-align-stringops: i386 and x86-64 Options. ! (line 752) * mno-altivec: RS/6000 and PowerPC Options. ! (line 130) * mno-am33: MN10300 Options. (line 20) * mno-app-regs: SPARC Options. (line 10) + * mno-app-regs <1>: V850 Options. (line 185) * mno-as100-syntax: RX Options. (line 76) ! * mno-atomic-updates: SPU Options. (line 83) * mno-avoid-indexed-addresses: RS/6000 and PowerPC Options. ! (line 351) * mno-backchain: S/390 and zSeries Options. (line 35) ! * mno-base-addresses: MMIX Options. (line 53) * mno-bit-align: RS/6000 and PowerPC Options. ! (line 383) ! * mno-bitfield: M680x0 Options. (line 227) ! * mno-branch-likely: MIPS Options. (line 632) ! * mno-branch-predict: MMIX Options. (line 48) * mno-bwx: DEC Alpha Options. (line 163) * mno-callgraph-data: MCore Options. (line 31) ! * mno-cbcond: SPARC Options. (line 215) ! * mno-check-zero-division: MIPS Options. (line 439) * mno-cix: DEC Alpha Options. (line 163) * mno-clearbss: MicroBlaze Options. (line 16) * mno-cmpb: RS/6000 and PowerPC Options. (line 27) ! * mno-cond-exec: FRV Options. (line 194) ! * mno-cond-move: FRV Options. (line 166) * mno-const-align: CRIS Options. (line 55) * mno-const16: Xtensa Options. (line 10) * mno-crt0: MN10300 Options. (line 43) ! * mno-crt0 <1>: Moxie Options. (line 14) ! * mno-csync-anomaly: Blackfin Options. (line 65) * mno-data-align: CRIS Options. (line 55) * mno-debug: S/390 and zSeries Options. ! (line 110) * mno-disable-callt: V850 Options. (line 92) + * mno-div: M680x0 Options. (line 206) * mno-div <1>: MCore Options. (line 15) * mno-dlmzb: RS/6000 and PowerPC Options. ! (line 376) ! * mno-double: FRV Options. (line 52) ! * mno-dsp: MIPS Options. (line 266) ! * mno-dspr2: MIPS Options. (line 272) * mno-dwarf2-asm: IA-64 Options. (line 94) ! * mno-dword: FRV Options. (line 44) * mno-eabi: RS/6000 and PowerPC Options. ! (line 601) * mno-early-stop-bits: IA-64 Options. (line 100) ! * mno-eflags: FRV Options. (line 155) ! * mno-embedded-data: MIPS Options. (line 386) * mno-ep: V850 Options. (line 16) * mno-epsilon: MMIX Options. (line 15) * mno-explicit-relocs: DEC Alpha Options. (line 176) + * mno-explicit-relocs <1>: MIPS Options. (line 430) * mno-exr: H8/300 Options. (line 33) ! * mno-extern-sdata: MIPS Options. (line 349) * mno-fancy-math-387: i386 and x86-64 Options. ! (line 310) ! * mno-faster-structs: SPARC Options. (line 83) * mno-fix: DEC Alpha Options. (line 163) ! * mno-fix-24k: MIPS Options. (line 496) ! * mno-fix-r10000: MIPS Options. (line 518) ! * mno-fix-r4000: MIPS Options. (line 502) ! * mno-fix-r4400: MIPS Options. (line 512) * mno-flat: SPARC Options. (line 20) ! * mno-float: MIPS Options. (line 233) * mno-float32: PDP-11 Options. (line 48) * mno-float64: PDP-11 Options. (line 52) * mno-flush-func: M32R/D Options. (line 98) * mno-flush-trap: M32R/D Options. (line 90) ! * mno-fmaf: SPARC Options. (line 229) * mno-fp-in-toc: RS/6000 and PowerPC Options. ! (line 216) * mno-fp-regs: DEC Alpha Options. (line 25) * mno-fp-ret-in-387: i386 and x86-64 Options. ! (line 300) * mno-fprnd: RS/6000 and PowerPC Options. (line 27) ! * mno-fpu: SPARC Options. (line 37) ! * mno-fsca: SH Options. (line 421) ! * mno-fsrra: SH Options. (line 430) * mno-fused-madd: IA-64 Options. (line 88) + * mno-fused-madd <1>: MIPS Options. (line 479) + * mno-fused-madd <2>: RS/6000 and PowerPC Options. + (line 360) + * mno-fused-madd <3>: S/390 and zSeries Options. + (line 135) + * mno-fused-madd <4>: SH Options. (line 412) + * mno-fused-madd <5>: Xtensa Options. (line 19) * mno-gnu-as: IA-64 Options. (line 18) * mno-gnu-ld: IA-64 Options. (line 23) * mno-gotplt: CRIS Options. (line 81) ! * mno-gpopt: MIPS Options. (line 371) * mno-hard-dfp: RS/6000 and PowerPC Options. (line 27) + * mno-hard-dfp <1>: S/390 and zSeries Options. + (line 20) * mno-hardlit: MCore Options. (line 10) ! * mno-id-shared-library: Blackfin Options. (line 87) * mno-ieee-fp: i386 and x86-64 Options. ! (line 282) * mno-inline-float-divide: IA-64 Options. (line 62) * mno-inline-int-divide: IA-64 Options. (line 73) * mno-inline-sqrt: IA-64 Options. (line 84) * mno-int16: PDP-11 Options. (line 44) * mno-int32: PDP-11 Options. (line 40) ! * mno-interlink-mips16: MIPS Options. (line 117) ! * mno-interrupts: AVR Options. (line 167) * mno-isel: RS/6000 and PowerPC Options. ! (line 159) ! * mno-knuthdiv: MMIX Options. (line 32) ! * mno-leaf-id-shared-library: Blackfin Options. (line 97) * mno-libfuncs: MMIX Options. (line 10) ! * mno-llsc: MIPS Options. (line 252) ! * mno-local-sdata: MIPS Options. (line 337) * mno-long-calls: ARM Options. (line 188) + * mno-long-calls <1>: Blackfin Options. (line 120) + * mno-long-calls <2>: HPPA Options. (line 135) + * mno-long-calls <3>: MIPS Options. (line 465) + * mno-long-calls <4>: V850 Options. (line 10) * mno-long-jumps: V850 Options. (line 108) * mno-longcall: RS/6000 and PowerPC Options. ! (line 672) * mno-longcalls: Xtensa Options. (line 72) ! * mno-low-64k: Blackfin Options. (line 73) * mno-lsim: FR30 Options. (line 14) ! * mno-lsim <1>: MCore Options. (line 46) ! * mno-mad: MIPS Options. (line 474) * mno-max: DEC Alpha Options. (line 163) ! * mno-mcount-ra-address: MIPS Options. (line 692) ! * mno-mcu: MIPS Options. (line 304) ! * mno-mdmx: MIPS Options. (line 289) ! * mno-media: FRV Options. (line 60) ! * mno-memcpy: MIPS Options. (line 459) * mno-mfcrf: RS/6000 and PowerPC Options. (line 27) * mno-mfpgpr: RS/6000 and PowerPC Options. (line 27) ! * mno-mips16: MIPS Options. (line 102) ! * mno-mips3d: MIPS Options. (line 295) * mno-mmx: i386 and x86-64 Options. ! (line 564) ! * mno-mt: MIPS Options. (line 300) ! * mno-mul-bug-workaround: CRIS Options. (line 32) ! * mno-muladd: FRV Options. (line 68) * mno-mulhw: RS/6000 and PowerPC Options. ! (line 369) * mno-mult-bug: MN10300 Options. (line 13) ! * mno-multi-cond-exec: FRV Options. (line 223) * mno-multiple: RS/6000 and PowerPC Options. ! (line 319) * mno-mvcle: S/390 and zSeries Options. ! (line 104) ! * mno-nested-cond-exec: FRV Options. (line 237) * mno-omit-leaf-frame-pointer: AArch64 Options. (line 43) ! * mno-optimize-membar: FRV Options. (line 249) * mno-opts: MeP Options. (line 93) ! * mno-pack: FRV Options. (line 151) * mno-packed-stack: S/390 and zSeries Options. (line 54) * mno-paired: RS/6000 and PowerPC Options. ! (line 173) ! * mno-paired-single: MIPS Options. (line 283) * mno-pic: IA-64 Options. (line 26) * mno-pid: RX Options. (line 117) ! * mno-plt: MIPS Options. (line 181) ! * mno-popc: SPARC Options. (line 222) * mno-popcntb: RS/6000 and PowerPC Options. (line 27) * mno-popcntd: RS/6000 and PowerPC Options. (line 27) * mno-postinc: Adapteva Epiphany Options. ! (line 109) * mno-postmodify: Adapteva Epiphany Options. ! (line 109) * mno-powerpc-gfxopt: RS/6000 and PowerPC Options. (line 27) * mno-powerpc-gpopt: RS/6000 and PowerPC Options. *************** look up both forms. *** 49918,49941 **** * mno-prolog-function: V850 Options. (line 23) * mno-prologue-epilogue: CRIS Options. (line 71) * mno-prototype: RS/6000 and PowerPC Options. ! (line 564) * mno-push-args: i386 and x86-64 Options. ! (line 731) * mno-red-zone: i386 and x86-64 Options. ! (line 848) * mno-register-names: IA-64 Options. (line 37) * mno-regnames: RS/6000 and PowerPC Options. ! (line 670) * mno-relax: V850 Options. (line 103) * mno-relax-immediate: MCore Options. (line 19) * mno-relocatable: RS/6000 and PowerPC Options. ! (line 402) * mno-relocatable-lib: RS/6000 and PowerPC Options. ! (line 413) * mno-round-nearest: Adapteva Epiphany Options. (line 51) ! * mno-rtd: M680x0 Options. (line 262) ! * mno-scc: FRV Options. (line 146) * mno-sched-ar-data-spec: IA-64 Options. (line 134) * mno-sched-ar-in-data-spec: IA-64 Options. (line 155) * mno-sched-br-data-spec: IA-64 Options. (line 128) --- 49690,49713 ---- * mno-prolog-function: V850 Options. (line 23) * mno-prologue-epilogue: CRIS Options. (line 71) * mno-prototype: RS/6000 and PowerPC Options. ! (line 561) * mno-push-args: i386 and x86-64 Options. ! (line 730) * mno-red-zone: i386 and x86-64 Options. ! (line 845) * mno-register-names: IA-64 Options. (line 37) * mno-regnames: RS/6000 and PowerPC Options. ! (line 666) * mno-relax: V850 Options. (line 103) * mno-relax-immediate: MCore Options. (line 19) * mno-relocatable: RS/6000 and PowerPC Options. ! (line 399) * mno-relocatable-lib: RS/6000 and PowerPC Options. ! (line 410) * mno-round-nearest: Adapteva Epiphany Options. (line 51) ! * mno-rtd: M680x0 Options. (line 258) ! * mno-scc: FRV Options. (line 180) * mno-sched-ar-data-spec: IA-64 Options. (line 134) * mno-sched-ar-in-data-spec: IA-64 Options. (line 155) * mno-sched-br-data-spec: IA-64 Options. (line 128) *************** look up both forms. *** 49946,50019 **** * mno-sched-prefer-non-control-spec-insns: IA-64 Options. (line 175) * mno-sched-prefer-non-data-spec-insns: IA-64 Options. (line 168) * mno-sched-prolog: ARM Options. (line 33) - * mno-sdata <1>: RS/6000 and PowerPC Options. - (line 651) * mno-sdata: IA-64 Options. (line 42) ! * mno-sep-data: Blackfin Options. (line 116) * mno-serialize-volatile: Xtensa Options. (line 35) ! * mno-short: M680x0 Options. (line 226) * mno-side-effects: CRIS Options. (line 46) * mno-sim: RX Options. (line 71) ! * mno-single-exit: MMIX Options. (line 66) * mno-slow-bytes: MCore Options. (line 35) * mno-small-exec: S/390 and zSeries Options. ! (line 80) ! * mno-smartmips: MIPS Options. (line 280) * mno-soft-cmpsf: Adapteva Epiphany Options. (line 29) * mno-soft-float: DEC Alpha Options. (line 10) * mno-space-regs: HPPA Options. (line 44) * mno-spe: RS/6000 and PowerPC Options. ! (line 170) ! * mno-specld-anomaly: Blackfin Options. (line 56) ! * mno-split-addresses: MIPS Options. (line 426) * mno-sse: i386 and x86-64 Options. ! (line 565) * mno-stack-align: CRIS Options. (line 55) ! * mno-stack-bias: SPARC Options. (line 302) * mno-strict-align <1>: RS/6000 and PowerPC Options. ! (line 397) ! * mno-strict-align: M680x0 Options. (line 287) * mno-string: RS/6000 and PowerPC Options. ! (line 333) * mno-sum-in-toc: RS/6000 and PowerPC Options. ! (line 218) ! * mno-sym32: MIPS Options. (line 323) * mno-target-align: Xtensa Options. (line 59) * mno-text-section-literals: Xtensa Options. (line 47) * mno-tls-markers: RS/6000 and PowerPC Options. ! (line 709) * mno-toc: RS/6000 and PowerPC Options. ! (line 422) ! * mno-toplevel-symbols: MMIX Options. (line 40) * mno-tpf-trace: S/390 and zSeries Options. ! (line 131) ! * mno-unaligned-access: ARM Options. (line 309) ! * mno-unaligned-doubles: SPARC Options. (line 72) ! * mno-uninit-const-in-rodata: MIPS Options. (line 396) * mno-update: RS/6000 and PowerPC Options. ! (line 344) ! * mno-v8plus: SPARC Options. (line 187) * mno-vect-double: Adapteva Epiphany Options. ! (line 116) ! * mno-vis: SPARC Options. (line 194) ! * mno-vis2: SPARC Options. (line 200) ! * mno-vis3: SPARC Options. (line 208) ! * mno-vliw-branch: FRV Options. (line 170) * mno-volatile-asm-stop: IA-64 Options. (line 32) * mno-vrsave: RS/6000 and PowerPC Options. ! (line 140) * mno-vsx: RS/6000 and PowerPC Options. ! (line 184) * mno-warn-multiple-fast-interrupts: RX Options. (line 143) * mno-wide-bitfields: MCore Options. (line 23) ! * mno-xgot <1>: MIPS Options. (line 192) ! * mno-xgot: M680x0 Options. (line 319) * mno-xl-compat: RS/6000 and PowerPC Options. ! (line 253) ! * mno-zdcbranch: SH Options. (line 403) ! * mno-zero-extend: MMIX Options. (line 27) ! * mnobitfield: M680x0 Options. (line 231) * mnoieee: SH Options. (line 116) * mnoliw: MN10300 Options. (line 59) * mnomacsave: SH Options. (line 111) --- 49718,49791 ---- * mno-sched-prefer-non-control-spec-insns: IA-64 Options. (line 175) * mno-sched-prefer-non-data-spec-insns: IA-64 Options. (line 168) * mno-sched-prolog: ARM Options. (line 33) * mno-sdata: IA-64 Options. (line 42) ! * mno-sdata <1>: RS/6000 and PowerPC Options. ! (line 647) ! * mno-sep-data: Blackfin Options. (line 115) * mno-serialize-volatile: Xtensa Options. (line 35) ! * mno-short: M680x0 Options. (line 222) * mno-side-effects: CRIS Options. (line 46) * mno-sim: RX Options. (line 71) ! * mno-single-exit: MMIX Options. (line 65) * mno-slow-bytes: MCore Options. (line 35) * mno-small-exec: S/390 and zSeries Options. ! (line 79) ! * mno-smartmips: MIPS Options. (line 279) * mno-soft-cmpsf: Adapteva Epiphany Options. (line 29) * mno-soft-float: DEC Alpha Options. (line 10) * mno-space-regs: HPPA Options. (line 44) * mno-spe: RS/6000 and PowerPC Options. ! (line 168) ! * mno-specld-anomaly: Blackfin Options. (line 55) ! * mno-split-addresses: MIPS Options. (line 424) * mno-sse: i386 and x86-64 Options. ! (line 564) * mno-stack-align: CRIS Options. (line 55) ! * mno-stack-bias: SPARC Options. (line 301) ! * mno-strict-align: M680x0 Options. (line 283) * mno-strict-align <1>: RS/6000 and PowerPC Options. ! (line 394) * mno-string: RS/6000 and PowerPC Options. ! (line 330) * mno-sum-in-toc: RS/6000 and PowerPC Options. ! (line 216) ! * mno-sym32: MIPS Options. (line 322) * mno-target-align: Xtensa Options. (line 59) * mno-text-section-literals: Xtensa Options. (line 47) * mno-tls-markers: RS/6000 and PowerPC Options. ! (line 704) * mno-toc: RS/6000 and PowerPC Options. ! (line 419) ! * mno-toplevel-symbols: MMIX Options. (line 39) * mno-tpf-trace: S/390 and zSeries Options. ! (line 129) ! * mno-unaligned-access: ARM Options. (line 310) ! * mno-unaligned-doubles: SPARC Options. (line 71) ! * mno-uninit-const-in-rodata: MIPS Options. (line 394) * mno-update: RS/6000 and PowerPC Options. ! (line 341) ! * mno-v8plus: SPARC Options. (line 186) * mno-vect-double: Adapteva Epiphany Options. ! (line 115) ! * mno-vis: SPARC Options. (line 193) ! * mno-vis2: SPARC Options. (line 199) ! * mno-vis3: SPARC Options. (line 207) ! * mno-vliw-branch: FRV Options. (line 208) * mno-volatile-asm-stop: IA-64 Options. (line 32) * mno-vrsave: RS/6000 and PowerPC Options. ! (line 138) * mno-vsx: RS/6000 and PowerPC Options. ! (line 182) * mno-warn-multiple-fast-interrupts: RX Options. (line 143) * mno-wide-bitfields: MCore Options. (line 23) ! * mno-xgot: M680x0 Options. (line 315) ! * mno-xgot <1>: MIPS Options. (line 191) * mno-xl-compat: RS/6000 and PowerPC Options. ! (line 251) ! * mno-zdcbranch: SH Options. (line 396) ! * mno-zero-extend: MMIX Options. (line 26) ! * mnobitfield: M680x0 Options. (line 227) * mnoieee: SH Options. (line 116) * mnoliw: MN10300 Options. (line 59) * mnomacsave: SH Options. (line 111) *************** look up both forms. *** 50023,50066 **** (line 26) * mnosetlb: MN10300 Options. (line 69) * mnosplit-lohi: Adapteva Epiphany Options. ! (line 110) ! * momit-leaf-frame-pointer <1>: i386 and x86-64 Options. ! (line 788) ! * momit-leaf-frame-pointer <2>: Blackfin Options. (line 44) * momit-leaf-frame-pointer: AArch64 Options. (line 43) * mone-byte-bool: Darwin Options. (line 90) ! * moptimize-membar: FRV Options. (line 201) * MP: Preprocessor Options. (line 239) * mpa-risc-1-0: HPPA Options. (line 19) * mpa-risc-1-1: HPPA Options. (line 19) * mpa-risc-2-0: HPPA Options. (line 19) ! * mpack: FRV Options. (line 119) * mpacked-stack: S/390 and zSeries Options. (line 54) * mpadstruct: SH Options. (line 140) * mpaired: RS/6000 and PowerPC Options. ! (line 175) ! * mpaired-single: MIPS Options. (line 284) * mpc32: i386 and x86-64 Options. ! (line 435) * mpc64: i386 and x86-64 Options. ! (line 435) * mpc80: i386 and x86-64 Options. ! (line 435) ! * mpcrel: M680x0 Options. (line 279) ! * mpdebug: CRIS Options. (line 35) * mpe: RS/6000 and PowerPC Options. ! (line 273) * mpe-aligned-commons: i386 and x86-64 Windows Options. (line 59) * mpic-register: ARM Options. (line 218) * mpid: RX Options. (line 117) ! * mplt: MIPS Options. (line 182) * mpointers-to-nested-functions: RS/6000 and PowerPC Options. ! (line 793) * mpoke-function-name: ARM Options. (line 222) ! * mpopc: SPARC Options. (line 223) * mpopcntb: RS/6000 and PowerPC Options. (line 27) * mpopcntd: RS/6000 and PowerPC Options. --- 49795,49838 ---- (line 26) * mnosetlb: MN10300 Options. (line 69) * mnosplit-lohi: Adapteva Epiphany Options. ! (line 109) * momit-leaf-frame-pointer: AArch64 Options. (line 43) + * momit-leaf-frame-pointer <1>: Blackfin Options. (line 43) + * momit-leaf-frame-pointer <2>: i386 and x86-64 Options. + (line 786) * mone-byte-bool: Darwin Options. (line 90) ! * moptimize-membar: FRV Options. (line 244) * MP: Preprocessor Options. (line 239) * mpa-risc-1-0: HPPA Options. (line 19) * mpa-risc-1-1: HPPA Options. (line 19) * mpa-risc-2-0: HPPA Options. (line 19) ! * mpack: FRV Options. (line 147) * mpacked-stack: S/390 and zSeries Options. (line 54) * mpadstruct: SH Options. (line 140) * mpaired: RS/6000 and PowerPC Options. ! (line 173) ! * mpaired-single: MIPS Options. (line 283) * mpc32: i386 and x86-64 Options. ! (line 434) * mpc64: i386 and x86-64 Options. ! (line 434) * mpc80: i386 and x86-64 Options. ! (line 434) ! * mpcrel: M680x0 Options. (line 275) ! * mpdebug: CRIS Options. (line 36) * mpe: RS/6000 and PowerPC Options. ! (line 270) * mpe-aligned-commons: i386 and x86-64 Windows Options. (line 59) * mpic-register: ARM Options. (line 218) * mpid: RX Options. (line 117) ! * mplt: MIPS Options. (line 181) * mpointers-to-nested-functions: RS/6000 and PowerPC Options. ! (line 787) * mpoke-function-name: ARM Options. (line 222) ! * mpopc: SPARC Options. (line 222) * mpopcntb: RS/6000 and PowerPC Options. (line 27) * mpopcntd: RS/6000 and PowerPC Options. *************** look up both forms. *** 50073,50152 **** * mpowerpc64: RS/6000 and PowerPC Options. (line 27) * mprefer-avx128: i386 and x86-64 Options. ! (line 608) * mprefer-short-insn-regs: Adapteva Epiphany Options. (line 13) ! * mprefergot: SH Options. (line 225) * mpreferred-stack-boundary: i386 and x86-64 Options. ! (line 465) ! * mpretend-cmove: SH Options. (line 446) * mprioritize-restricted-insns: RS/6000 and PowerPC Options. ! (line 451) * mprolog-function: V850 Options. (line 23) * mprologue-epilogue: CRIS Options. (line 71) * mprototype: RS/6000 and PowerPC Options. ! (line 564) ! * mpt-fixed: SH Options. (line 364) * mpush-args: i386 and x86-64 Options. ! (line 731) * MQ: Preprocessor Options. ! (line 265) ! * mr10k-cache-barrier: MIPS Options. (line 564) ! * mrecip <1>: RS/6000 and PowerPC Options. ! (line 721) * mrecip: i386 and x86-64 Options. ! (line 641) * mrecip-precision: RS/6000 and PowerPC Options. ! (line 757) ! * mrecip=opt <1>: RS/6000 and PowerPC Options. ! (line 734) * mrecip=opt: i386 and x86-64 Options. ! (line 663) * mregister-names: IA-64 Options. (line 37) * mregnames: RS/6000 and PowerPC Options. ! (line 670) * mregparm: i386 and x86-64 Options. ! (line 402) ! * mrelax <1>: V850 Options. (line 103) ! * mrelax <2>: SH Options. (line 85) * mrelax <3>: RX Options. (line 95) ! * mrelax <4>: MN10300 Options. (line 46) ! * mrelax <5>: H8/300 Options. (line 9) ! * mrelax: AVR Options. (line 173) * mrelax-immediate: MCore Options. (line 19) ! * mrelax-pic-calls: MIPS Options. (line 689) * mrelocatable: RS/6000 and PowerPC Options. ! (line 402) * mrelocatable-lib: RS/6000 and PowerPC Options. ! (line 413) * mrepeat: MeP Options. (line 96) * mreturn-pointer-on-d0: MN10300 Options. (line 36) * mrh850-abi: V850 Options. (line 127) - * mrtd <1>: Function Attributes. - (line 177) - * mrtd <2>: M680x0 Options. (line 240) * mrtd: i386 and x86-64 Options. ! (line 378) * mrtp: VxWorks Options. (line 11) - * ms <1>: MeP Options. (line 100) * ms: H8/300 Options. (line 17) * ms2600: H8/300 Options. (line 24) ! * msafe-dma: SPU Options. (line 17) ! * msafe-hints: SPU Options. (line 107) * msahf: i386 and x86-64 Options. ! (line 621) * msatur: MeP Options. (line 105) * msave-acc-in-interrupts: RX Options. (line 109) * msave-toc-indirect: RS/6000 and PowerPC Options. ! (line 805) ! * mscc: FRV Options. (line 140) * msched-ar-data-spec: IA-64 Options. (line 134) * msched-ar-in-data-spec: IA-64 Options. (line 155) * msched-br-data-spec: IA-64 Options. (line 128) * msched-br-in-data-spec: IA-64 Options. (line 148) * msched-control-spec: IA-64 Options. (line 140) * msched-costly-dep: RS/6000 and PowerPC Options. ! (line 458) * msched-count-spec-in-critical-path: IA-64 Options. (line 182) * msched-fp-mem-deps-zero-cost: IA-64 Options. (line 198) * msched-in-control-spec: IA-64 Options. (line 162) --- 49845,49924 ---- * mpowerpc64: RS/6000 and PowerPC Options. (line 27) * mprefer-avx128: i386 and x86-64 Options. ! (line 607) * mprefer-short-insn-regs: Adapteva Epiphany Options. (line 13) ! * mprefergot: SH Options. (line 223) * mpreferred-stack-boundary: i386 and x86-64 Options. ! (line 464) ! * mpretend-cmove: SH Options. (line 439) * mprioritize-restricted-insns: RS/6000 and PowerPC Options. ! (line 448) * mprolog-function: V850 Options. (line 23) * mprologue-epilogue: CRIS Options. (line 71) * mprototype: RS/6000 and PowerPC Options. ! (line 561) ! * mpt-fixed: SH Options. (line 359) * mpush-args: i386 and x86-64 Options. ! (line 730) * MQ: Preprocessor Options. ! (line 266) ! * mr10k-cache-barrier: MIPS Options. (line 554) * mrecip: i386 and x86-64 Options. ! (line 640) ! * mrecip <1>: RS/6000 and PowerPC Options. ! (line 716) * mrecip-precision: RS/6000 and PowerPC Options. ! (line 751) * mrecip=opt: i386 and x86-64 Options. ! (line 662) ! * mrecip=opt <1>: RS/6000 and PowerPC Options. ! (line 729) * mregister-names: IA-64 Options. (line 37) * mregnames: RS/6000 and PowerPC Options. ! (line 666) * mregparm: i386 and x86-64 Options. ! (line 401) ! * mrelax: AVR Options. (line 171) ! * mrelax <1>: H8/300 Options. (line 9) ! * mrelax <2>: MN10300 Options. (line 46) * mrelax <3>: RX Options. (line 95) ! * mrelax <4>: SH Options. (line 85) ! * mrelax <5>: V850 Options. (line 103) * mrelax-immediate: MCore Options. (line 19) ! * mrelax-pic-calls: MIPS Options. (line 679) * mrelocatable: RS/6000 and PowerPC Options. ! (line 399) * mrelocatable-lib: RS/6000 and PowerPC Options. ! (line 410) * mrepeat: MeP Options. (line 96) * mreturn-pointer-on-d0: MN10300 Options. (line 36) * mrh850-abi: V850 Options. (line 127) * mrtd: i386 and x86-64 Options. ! (line 377) ! * mrtd <1>: M680x0 Options. (line 236) ! * mrtd <2>: Function Attributes. ! (line 175) * mrtp: VxWorks Options. (line 11) * ms: H8/300 Options. (line 17) + * ms <1>: MeP Options. (line 100) * ms2600: H8/300 Options. (line 24) ! * msafe-dma: SPU Options. (line 18) ! * msafe-hints: SPU Options. (line 112) * msahf: i386 and x86-64 Options. ! (line 620) * msatur: MeP Options. (line 105) * msave-acc-in-interrupts: RX Options. (line 109) * msave-toc-indirect: RS/6000 and PowerPC Options. ! (line 799) ! * mscc: FRV Options. (line 173) * msched-ar-data-spec: IA-64 Options. (line 134) * msched-ar-in-data-spec: IA-64 Options. (line 155) * msched-br-data-spec: IA-64 Options. (line 128) * msched-br-in-data-spec: IA-64 Options. (line 148) * msched-control-spec: IA-64 Options. (line 140) * msched-costly-dep: RS/6000 and PowerPC Options. ! (line 455) * msched-count-spec-in-critical-path: IA-64 Options. (line 182) * msched-fp-mem-deps-zero-cost: IA-64 Options. (line 198) * msched-in-control-spec: IA-64 Options. (line 162) *************** look up both forms. *** 50155,50360 **** * msched-prefer-non-control-spec-insns: IA-64 Options. (line 175) * msched-prefer-non-data-spec-insns: IA-64 Options. (line 168) * msched-spec-ldc: IA-64 Options. (line 187) * msched-stop-bits-after-every-cycle: IA-64 Options. (line 194) * mschedule: HPPA Options. (line 77) * mscore5: Score Options. (line 25) * mscore5u: Score Options. (line 28) * mscore7: Score Options. (line 31) ! * mscore7d: Score Options. (line 34) * msda: V850 Options. (line 40) - * msdata <1>: RS/6000 and PowerPC Options. - (line 638) * msdata: IA-64 Options. (line 42) * msdata=all: C6X Options. (line 30) * msdata=data: RS/6000 and PowerPC Options. ! (line 643) ! * msdata=default <1>: RS/6000 and PowerPC Options. ! (line 638) * msdata=default: C6X Options. (line 22) * msdata=eabi: RS/6000 and PowerPC Options. ! (line 618) ! * msdata=none <1>: RS/6000 and PowerPC Options. ! (line 651) ! * msdata=none <2>: M32R/D Options. (line 40) * msdata=none: C6X Options. (line 35) * msdata=sdata: M32R/D Options. (line 49) * msdata=sysv: RS/6000 and PowerPC Options. ! (line 629) * msdata=use: M32R/D Options. (line 53) * msdram <1>: MeP Options. (line 110) - * msdram: Blackfin Options. (line 172) * msecure-plt: RS/6000 and PowerPC Options. ! (line 150) * msel-sched-dont-check-control-spec: IA-64 Options. (line 203) ! * msep-data: Blackfin Options. (line 110) * mserialize-volatile: Xtensa Options. (line 35) * msetlb: MN10300 Options. (line 64) ! * mshared-library-id: Blackfin Options. (line 103) ! * mshort: M680x0 Options. (line 220) * msign-extend-enabled: LM32 Options. (line 18) ! * msim <1>: Xstormy16 Options. (line 9) ! * msim <2>: RX Options. (line 71) ! * msim <3>: RS/6000 and PowerPC Options. ! (line 574) ! * msim <4>: RL78 Options. (line 7) ! * msim <5>: MeP Options. (line 114) ! * msim <6>: M32C Options. (line 13) ! * msim <7>: CR16 Options. (line 18) ! * msim <8>: C6X Options. (line 19) ! * msim: Blackfin Options. (line 37) * msimnovec: MeP Options. (line 117) * msimple-fpu: RS/6000 and PowerPC Options. ! (line 306) ! * msingle-exit: MMIX Options. (line 66) * msingle-float <1>: RS/6000 and PowerPC Options. ! (line 302) ! * msingle-float: MIPS Options. (line 244) ! * msingle-pic-base <1>: RS/6000 and PowerPC Options. ! (line 445) * msingle-pic-base: ARM Options. (line 212) * msio: HPPA Options. (line 104) * mslow-bytes: MCore Options. (line 35) * msmall-data: DEC Alpha Options. (line 187) * msmall-data-limit: RX Options. (line 47) * msmall-divides: MicroBlaze Options. (line 39) * msmall-exec: S/390 and zSeries Options. ! (line 80) ! * msmall-mem: SPU Options. (line 35) * msmall-model: FR30 Options. (line 9) * msmall-text: DEC Alpha Options. (line 205) * msmall16: Adapteva Epiphany Options. ! (line 67) ! * msmartmips: MIPS Options. (line 280) ! * msoft-float <1>: V850 Options. (line 113) ! * msoft-float <2>: SPARC Options. (line 38) ! * msoft-float <3>: S/390 and zSeries Options. ! (line 11) ! * msoft-float <4>: RS/6000 and PowerPC Options. ! (line 296) ! * msoft-float <5>: PDP-11 Options. (line 13) ! * msoft-float <6>: MIPS Options. (line 230) ! * msoft-float <7>: MicroBlaze Options. (line 7) ! * msoft-float <8>: M680x0 Options. (line 203) ! * msoft-float <9>: i386 and x86-64 Options. ! (line 286) ! * msoft-float <10>: HPPA Options. (line 90) ! * msoft-float <11>: FRV Options. (line 22) * msoft-float: DEC Alpha Options. (line 10) ! * msoft-quad-float: SPARC Options. (line 58) ! * msp8: AVR Options. (line 187) * mspace <1>: V850 Options. (line 30) - * mspace: SH Options. (line 222) * mspe: RS/6000 and PowerPC Options. ! (line 170) ! * mspecld-anomaly: Blackfin Options. (line 51) ! * msplit-addresses: MIPS Options. (line 426) * msplit-vecmove-early: Adapteva Epiphany Options. ! (line 127) * msse: i386 and x86-64 Options. ! (line 565) * msse2avx: i386 and x86-64 Options. ! (line 806) * msseregparm: i386 and x86-64 Options. ! (line 413) * mstack-align: CRIS Options. (line 55) ! * mstack-bias: SPARC Options. (line 302) ! * mstack-check-l1: Blackfin Options. (line 77) * mstack-guard: S/390 and zSeries Options. ! (line 156) * mstack-increment: MCore Options. (line 50) * mstack-offset: Adapteva Epiphany Options. (line 37) * mstack-size: S/390 and zSeries Options. ! (line 156) * mstackrealign: i386 and x86-64 Options. ! (line 456) ! * mstdmain: SPU Options. (line 40) ! * mstrict-align <1>: RS/6000 and PowerPC Options. ! (line 397) ! * mstrict-align <2>: M680x0 Options. (line 287) * mstrict-align: AArch64 Options. (line 38) ! * mstrict-X: AVR Options. (line 200) * mstring: RS/6000 and PowerPC Options. ! (line 333) * mstringop-strategy=ALG: i386 and x86-64 Options. ! (line 770) * mstructure-size-boundary: ARM Options. (line 169) * msvr4-struct-return: RS/6000 and PowerPC Options. ! (line 538) ! * msym32: MIPS Options. (line 323) ! * msynci: MIPS Options. (line 674) * MT: Preprocessor Options. (line 251) * mtarget-align: Xtensa Options. (line 59) ! * mtas: SH Options. (line 213) * mtda: V850 Options. (line 34) * mtext-section-literals: Xtensa Options. (line 47) * mtf: MeP Options. (line 121) * mthread: i386 and x86-64 Windows Options. (line 26) * mthreads: i386 and x86-64 Options. ! (line 746) * mthumb: ARM Options. (line 244) * mthumb-interwork: ARM Options. (line 25) ! * mtiny-stack: AVR Options. (line 214) * mtiny=: MeP Options. (line 125) ! * mtls: FRV Options. (line 75) ! * mTLS: FRV Options. (line 72) * mtls-dialect <1>: i386 and x86-64 Options. ! (line 724) ! * mtls-dialect: ARM Options. (line 285) * mtls-dialect=desc: AArch64 Options. (line 47) * mtls-dialect=traditional: AArch64 Options. (line 51) * mtls-direct-seg-refs: i386 and x86-64 Options. ! (line 796) * mtls-markers: RS/6000 and PowerPC Options. ! (line 709) * mtls-size: IA-64 Options. (line 112) * mtoc: RS/6000 and PowerPC Options. ! (line 422) ! * mtomcat-stats: FRV Options. (line 209) ! * mtoplevel-symbols: MMIX Options. (line 40) ! * mtp: ARM Options. (line 277) ! * mtpcs-frame: ARM Options. (line 250) ! * mtpcs-leaf-frame: ARM Options. (line 256) * mtpf-trace: S/390 and zSeries Options. ! (line 131) * mtrap-precision: DEC Alpha Options. (line 109) - * mtune <1>: SPARC Options. (line 173) - * mtune <2>: S/390 and zSeries Options. - (line 124) - * mtune <3>: RS/6000 and PowerPC Options. - (line 110) - * mtune <4>: MN10300 Options. (line 30) - * mtune <5>: MIPS Options. (line 63) - * mtune <6>: M680x0 Options. (line 70) - * mtune <7>: IA-64 Options. (line 116) - * mtune <8>: i386 and x86-64 Options. - (line 189) - * mtune <9>: DEC Alpha Options. (line 259) - * mtune <10>: CRIS Options. (line 16) - * mtune <11>: ARM Options. (line 105) * mtune: AArch64 Options. (line 82) * muclibc: GNU/Linux Options. (line 13) * muls: Score Options. (line 18) ! * multcost=NUMBER: SH Options. (line 235) ! * multi_module: Darwin Options. (line 196) ! * multilib-library-pic: FRV Options. (line 89) * multiply-enabled: LM32 Options. (line 15) * multiply_defined: Darwin Options. (line 196) * multiply_defined_unused: Darwin Options. (line 196) ! * munaligned-access: ARM Options. (line 309) ! * munaligned-doubles: SPARC Options. (line 72) * municode: i386 and x86-64 Windows Options. (line 30) ! * muninit-const-in-rodata: MIPS Options. (line 396) * munix: VAX Options. (line 9) * munix-asm: PDP-11 Options. (line 68) ! * munsafe-dma: SPU Options. (line 17) * mupdate: RS/6000 and PowerPC Options. ! (line 344) * muser-enabled: LM32 Options. (line 21) ! * musermode: SH Options. (line 230) * mv850: V850 Options. (line 49) * mv850e: V850 Options. (line 79) * mv850e1: V850 Options. (line 70) --- 49927,50133 ---- * msched-prefer-non-control-spec-insns: IA-64 Options. (line 175) * msched-prefer-non-data-spec-insns: IA-64 Options. (line 168) * msched-spec-ldc: IA-64 Options. (line 187) + * msched-spec-ldc <1>: IA-64 Options. (line 190) * msched-stop-bits-after-every-cycle: IA-64 Options. (line 194) * mschedule: HPPA Options. (line 77) * mscore5: Score Options. (line 25) * mscore5u: Score Options. (line 28) * mscore7: Score Options. (line 31) ! * mscore7d: Score Options. (line 35) * msda: V850 Options. (line 40) * msdata: IA-64 Options. (line 42) + * msdata <1>: RS/6000 and PowerPC Options. + (line 634) * msdata=all: C6X Options. (line 30) * msdata=data: RS/6000 and PowerPC Options. ! (line 639) * msdata=default: C6X Options. (line 22) + * msdata=default <1>: RS/6000 and PowerPC Options. + (line 634) * msdata=eabi: RS/6000 and PowerPC Options. ! (line 615) * msdata=none: C6X Options. (line 35) + * msdata=none <1>: M32R/D Options. (line 40) + * msdata=none <2>: RS/6000 and PowerPC Options. + (line 647) * msdata=sdata: M32R/D Options. (line 49) * msdata=sysv: RS/6000 and PowerPC Options. ! (line 625) * msdata=use: M32R/D Options. (line 53) + * msdram: Blackfin Options. (line 171) * msdram <1>: MeP Options. (line 110) * msecure-plt: RS/6000 and PowerPC Options. ! (line 148) * msel-sched-dont-check-control-spec: IA-64 Options. (line 203) ! * msep-data: Blackfin Options. (line 109) * mserialize-volatile: Xtensa Options. (line 35) * msetlb: MN10300 Options. (line 64) ! * mshared-library-id: Blackfin Options. (line 102) ! * mshort: M680x0 Options. (line 216) * msign-extend-enabled: LM32 Options. (line 18) ! * msim: Blackfin Options. (line 36) ! * msim <1>: C6X Options. (line 19) ! * msim <2>: CR16 Options. (line 18) ! * msim <3>: M32C Options. (line 13) ! * msim <4>: MeP Options. (line 114) ! * msim <5>: RL78 Options. (line 7) ! * msim <6>: RS/6000 and PowerPC Options. ! (line 571) ! * msim <7>: RX Options. (line 71) ! * msim <8>: Xstormy16 Options. (line 9) * msimnovec: MeP Options. (line 117) * msimple-fpu: RS/6000 and PowerPC Options. ! (line 303) ! * msingle-exit: MMIX Options. (line 65) ! * msingle-float: MIPS Options. (line 243) * msingle-float <1>: RS/6000 and PowerPC Options. ! (line 299) * msingle-pic-base: ARM Options. (line 212) + * msingle-pic-base <1>: RS/6000 and PowerPC Options. + (line 442) * msio: HPPA Options. (line 104) * mslow-bytes: MCore Options. (line 35) * msmall-data: DEC Alpha Options. (line 187) * msmall-data-limit: RX Options. (line 47) * msmall-divides: MicroBlaze Options. (line 39) * msmall-exec: S/390 and zSeries Options. ! (line 79) ! * msmall-mem: SPU Options. (line 38) * msmall-model: FR30 Options. (line 9) * msmall-text: DEC Alpha Options. (line 205) * msmall16: Adapteva Epiphany Options. ! (line 66) ! * msmartmips: MIPS Options. (line 279) * msoft-float: DEC Alpha Options. (line 10) ! * msoft-float <1>: FRV Options. (line 27) ! * msoft-float <2>: HPPA Options. (line 90) ! * msoft-float <3>: i386 and x86-64 Options. ! (line 287) ! * msoft-float <4>: M680x0 Options. (line 200) ! * msoft-float <5>: MicroBlaze Options. (line 7) ! * msoft-float <6>: MIPS Options. (line 229) ! * msoft-float <7>: PDP-11 Options. (line 13) ! * msoft-float <8>: RS/6000 and PowerPC Options. ! (line 293) ! * msoft-float <9>: S/390 and zSeries Options. ! (line 11) ! * msoft-float <10>: SPARC Options. (line 37) ! * msoft-float <11>: V850 Options. (line 113) ! * msoft-quad-float: SPARC Options. (line 57) ! * msp8: AVR Options. (line 185) ! * mspace: SH Options. (line 220) * mspace <1>: V850 Options. (line 30) * mspe: RS/6000 and PowerPC Options. ! (line 168) ! * mspecld-anomaly: Blackfin Options. (line 50) ! * msplit-addresses: MIPS Options. (line 424) * msplit-vecmove-early: Adapteva Epiphany Options. ! (line 126) * msse: i386 and x86-64 Options. ! (line 564) * msse2avx: i386 and x86-64 Options. ! (line 804) * msseregparm: i386 and x86-64 Options. ! (line 412) * mstack-align: CRIS Options. (line 55) ! * mstack-bias: SPARC Options. (line 301) ! * mstack-check-l1: Blackfin Options. (line 76) * mstack-guard: S/390 and zSeries Options. ! (line 154) * mstack-increment: MCore Options. (line 50) * mstack-offset: Adapteva Epiphany Options. (line 37) * mstack-size: S/390 and zSeries Options. ! (line 154) * mstackrealign: i386 and x86-64 Options. ! (line 455) ! * mstdmain: SPU Options. (line 44) * mstrict-align: AArch64 Options. (line 38) ! * mstrict-align <1>: M680x0 Options. (line 283) ! * mstrict-align <2>: RS/6000 and PowerPC Options. ! (line 394) ! * mstrict-X: AVR Options. (line 198) * mstring: RS/6000 and PowerPC Options. ! (line 330) * mstringop-strategy=ALG: i386 and x86-64 Options. ! (line 768) * mstructure-size-boundary: ARM Options. (line 169) * msvr4-struct-return: RS/6000 and PowerPC Options. ! (line 535) ! * msym32: MIPS Options. (line 322) ! * msynci: MIPS Options. (line 664) * MT: Preprocessor Options. (line 251) * mtarget-align: Xtensa Options. (line 59) ! * mtas: SH Options. (line 211) * mtda: V850 Options. (line 34) * mtext-section-literals: Xtensa Options. (line 47) * mtf: MeP Options. (line 121) * mthread: i386 and x86-64 Windows Options. (line 26) * mthreads: i386 and x86-64 Options. ! (line 745) * mthumb: ARM Options. (line 244) * mthumb-interwork: ARM Options. (line 25) ! * mtiny-stack: AVR Options. (line 212) * mtiny=: MeP Options. (line 125) ! * mTLS: FRV Options. (line 90) ! * mtls: FRV Options. (line 94) ! * mtls-dialect: ARM Options. (line 286) * mtls-dialect <1>: i386 and x86-64 Options. ! (line 723) * mtls-dialect=desc: AArch64 Options. (line 47) * mtls-dialect=traditional: AArch64 Options. (line 51) * mtls-direct-seg-refs: i386 and x86-64 Options. ! (line 794) * mtls-markers: RS/6000 and PowerPC Options. ! (line 704) * mtls-size: IA-64 Options. (line 112) * mtoc: RS/6000 and PowerPC Options. ! (line 419) ! * mtomcat-stats: FRV Options. (line 254) ! * mtoplevel-symbols: MMIX Options. (line 39) ! * mtp: ARM Options. (line 278) ! * mtpcs-frame: ARM Options. (line 251) ! * mtpcs-leaf-frame: ARM Options. (line 257) * mtpf-trace: S/390 and zSeries Options. ! (line 129) * mtrap-precision: DEC Alpha Options. (line 109) * mtune: AArch64 Options. (line 82) + * mtune <1>: ARM Options. (line 105) + * mtune <2>: CRIS Options. (line 17) + * mtune <3>: DEC Alpha Options. (line 259) + * mtune <4>: i386 and x86-64 Options. + (line 191) + * mtune <5>: IA-64 Options. (line 116) + * mtune <6>: M680x0 Options. (line 68) + * mtune <7>: MIPS Options. (line 63) + * mtune <8>: MN10300 Options. (line 30) + * mtune <9>: RS/6000 and PowerPC Options. + (line 108) + * mtune <10>: S/390 and zSeries Options. + (line 122) + * mtune <11>: SPARC Options. (line 172) * muclibc: GNU/Linux Options. (line 13) * muls: Score Options. (line 18) ! * multcost=NUMBER: SH Options. (line 233) ! * multilib-library-pic: FRV Options. (line 110) * multiply-enabled: LM32 Options. (line 15) * multiply_defined: Darwin Options. (line 196) * multiply_defined_unused: Darwin Options. (line 196) ! * multi_module: Darwin Options. (line 196) ! * munaligned-access: ARM Options. (line 310) ! * munaligned-doubles: SPARC Options. (line 71) * municode: i386 and x86-64 Windows Options. (line 30) ! * muninit-const-in-rodata: MIPS Options. (line 394) * munix: VAX Options. (line 9) * munix-asm: PDP-11 Options. (line 68) ! * munsafe-dma: SPU Options. (line 18) * mupdate: RS/6000 and PowerPC Options. ! (line 341) * muser-enabled: LM32 Options. (line 21) ! * musermode: SH Options. (line 228) * mv850: V850 Options. (line 49) * mv850e: V850 Options. (line 79) * mv850e1: V850 Options. (line 70) *************** look up both forms. *** 50363,50396 **** * mv850e2v4: V850 Options. (line 57) * mv850e3v5: V850 Options. (line 52) * mv850es: V850 Options. (line 75) ! * mv8plus: SPARC Options. (line 187) ! * mveclibabi <1>: RS/6000 and PowerPC Options. ! (line 766) * mveclibabi: i386 and x86-64 Options. ! (line 692) * mvect8-ret-in-mem: i386 and x86-64 Options. ! (line 423) ! * mvis: SPARC Options. (line 194) ! * mvis2: SPARC Options. (line 200) ! * mvis3: SPARC Options. (line 208) ! * mvliw-branch: FRV Options. (line 164) * mvms-return-codes: VMS Options. (line 9) * mvolatile-asm-stop: IA-64 Options. (line 32) ! * mvr4130-align: MIPS Options. (line 663) * mvrsave: RS/6000 and PowerPC Options. ! (line 140) * mvsx: RS/6000 and PowerPC Options. ! (line 184) * mvxworks: RS/6000 and PowerPC Options. ! (line 595) * mvzeroupper: i386 and x86-64 Options. ! (line 602) * mwarn-cell-microcode: RS/6000 and PowerPC Options. ! (line 146) * mwarn-dynamicstack: S/390 and zSeries Options. ! (line 150) * mwarn-framesize: S/390 and zSeries Options. ! (line 142) * mwarn-multiple-fast-interrupts: RX Options. (line 143) * mwarn-reloc: SPU Options. (line 10) * mwide-bitfields: MCore Options. (line 23) --- 50136,50169 ---- * mv850e2v4: V850 Options. (line 57) * mv850e3v5: V850 Options. (line 52) * mv850es: V850 Options. (line 75) ! * mv8plus: SPARC Options. (line 186) * mveclibabi: i386 and x86-64 Options. ! (line 691) ! * mveclibabi <1>: RS/6000 and PowerPC Options. ! (line 760) * mvect8-ret-in-mem: i386 and x86-64 Options. ! (line 422) ! * mvis: SPARC Options. (line 193) ! * mvis2: SPARC Options. (line 199) ! * mvis3: SPARC Options. (line 207) ! * mvliw-branch: FRV Options. (line 201) * mvms-return-codes: VMS Options. (line 9) * mvolatile-asm-stop: IA-64 Options. (line 32) ! * mvr4130-align: MIPS Options. (line 653) * mvrsave: RS/6000 and PowerPC Options. ! (line 138) * mvsx: RS/6000 and PowerPC Options. ! (line 182) * mvxworks: RS/6000 and PowerPC Options. ! (line 592) * mvzeroupper: i386 and x86-64 Options. ! (line 601) * mwarn-cell-microcode: RS/6000 and PowerPC Options. ! (line 144) * mwarn-dynamicstack: S/390 and zSeries Options. ! (line 148) * mwarn-framesize: S/390 and zSeries Options. ! (line 140) * mwarn-multiple-fast-interrupts: RX Options. (line 143) * mwarn-reloc: SPU Options. (line 10) * mwide-bitfields: MCore Options. (line 23) *************** look up both forms. *** 50398,50414 **** (line 35) * mwindows: i386 and x86-64 Windows Options. (line 41) ! * mword-relocations: ARM Options. (line 296) * mwords-little-endian: ARM Options. (line 66) * mx32: i386 and x86-64 Options. ! (line 835) ! * mxgot <1>: MIPS Options. (line 192) ! * mxgot: M680x0 Options. (line 319) * mxilinx-fpu: RS/6000 and PowerPC Options. ! (line 317) * mxl-barrel-shift: MicroBlaze Options. (line 33) * mxl-compat: RS/6000 and PowerPC Options. ! (line 253) * mxl-float-convert: MicroBlaze Options. (line 51) * mxl-float-sqrt: MicroBlaze Options. (line 54) * mxl-gp-opt: MicroBlaze Options. (line 45) --- 50171,50187 ---- (line 35) * mwindows: i386 and x86-64 Windows Options. (line 41) ! * mword-relocations: ARM Options. (line 297) * mwords-little-endian: ARM Options. (line 66) * mx32: i386 and x86-64 Options. ! (line 832) ! * mxgot: M680x0 Options. (line 315) ! * mxgot <1>: MIPS Options. (line 191) * mxilinx-fpu: RS/6000 and PowerPC Options. ! (line 314) * mxl-barrel-shift: MicroBlaze Options. (line 33) * mxl-compat: RS/6000 and PowerPC Options. ! (line 251) * mxl-float-convert: MicroBlaze Options. (line 51) * mxl-float-sqrt: MicroBlaze Options. (line 54) * mxl-gp-opt: MicroBlaze Options. (line 45) *************** look up both forms. *** 50419,50437 **** * mxl-soft-mul: MicroBlaze Options. (line 27) * mxl-stack-check: MicroBlaze Options. (line 42) * myellowknife: RS/6000 and PowerPC Options. ! (line 590) * mzarch: S/390 and zSeries Options. ! (line 95) * mzda: V850 Options. (line 45) ! * mzdcbranch: SH Options. (line 403) ! * mzero-extend: MMIX Options. (line 27) * no-canonical-prefixes: Overall Options. (line 334) * no-integrated-cpp: Preprocessor Options. (line 34) ! * no-sysroot-suffix: Directory Options. (line 112) ! * no_dead_strip_inits_and_terms: Darwin Options. (line 196) * noall_load: Darwin Options. (line 196) ! * nocpp: MIPS Options. (line 494) * nodefaultlibs: Link Options. (line 62) * nofixprebinding: Darwin Options. (line 196) * nofpu: RX Options. (line 17) --- 50192,50209 ---- * mxl-soft-mul: MicroBlaze Options. (line 27) * mxl-stack-check: MicroBlaze Options. (line 42) * myellowknife: RS/6000 and PowerPC Options. ! (line 587) * mzarch: S/390 and zSeries Options. ! (line 94) * mzda: V850 Options. (line 45) ! * mzdcbranch: SH Options. (line 396) ! * mzero-extend: MMIX Options. (line 26) * no-canonical-prefixes: Overall Options. (line 334) * no-integrated-cpp: Preprocessor Options. (line 34) ! * no-sysroot-suffix: Directory Options. (line 109) * noall_load: Darwin Options. (line 196) ! * nocpp: MIPS Options. (line 491) * nodefaultlibs: Link Options. (line 62) * nofixprebinding: Darwin Options. (line 196) * nofpu: RX Options. (line 17) *************** look up both forms. *** 50442,50976 **** * noseglinkedit: Darwin Options. (line 196) * nostartfiles: Link Options. (line 57) * nostdinc: Preprocessor Options. ! (line 399) ! * nostdinc++ <1>: Preprocessor Options. ! (line 404) * nostdinc++: C++ Dialect Options. ! (line 348) * nostdlib: Link Options. (line 74) ! * o: Preprocessor Options. ! (line 87) ! * O: Optimize Options. (line 39) * o: Overall Options. (line 192) * O0: Optimize Options. (line 128) * O1: Optimize Options. (line 39) * O2: Optimize Options. (line 83) * O3: Optimize Options. (line 121) * Ofast: Optimize Options. (line 142) ! * Og: Optimize Options. (line 149) * Os: Optimize Options. (line 132) - * P: Preprocessor Options. - (line 649) * p: Debugging Options. (line 328) * pagezero_size: Darwin Options. (line 196) ! * param: Optimize Options. (line 2240) * pass-exit-codes: Overall Options. (line 150) - * pedantic <1>: Warnings and Errors. - (line 25) - * pedantic <2>: Alternate Keywords. (line 30) - * pedantic <3>: C Extensions. (line 6) - * pedantic <4>: Preprocessor Options. - (line 175) - * pedantic <5>: Warning Options. (line 73) * pedantic: Standards. (line 16) ! * pedantic-errors <1>: Warnings and Errors. (line 25) - * pedantic-errors <2>: Non-bugs. (line 216) - * pedantic-errors <3>: Preprocessor Options. - (line 180) - * pedantic-errors <4>: Warning Options. (line 115) * pedantic-errors: Standards. (line 16) * pg: Debugging Options. (line 334) * pie: Link Options. (line 99) * pipe: Overall Options. (line 215) * prebind: Darwin Options. (line 196) * prebind_all_twolevel_modules: Darwin Options. (line 196) ! * print-file-name: Debugging Options. (line 1313) ! * print-libgcc-file-name: Debugging Options. (line 1347) ! * print-multi-directory: Debugging Options. (line 1319) ! * print-multi-lib: Debugging Options. (line 1324) ! * print-multi-os-directory: Debugging Options. (line 1331) ! * print-multiarch: Debugging Options. (line 1340) * print-objc-runtime-info: Objective-C and Objective-C++ Dialect Options. (line 203) ! * print-prog-name: Debugging Options. (line 1344) ! * print-search-dirs: Debugging Options. (line 1355) ! * print-sysroot: Debugging Options. (line 1368) ! * print-sysroot-headers-suffix: Debugging Options. (line 1375) * private_bundle: Darwin Options. (line 196) - * pthread <1>: Solaris 2 Options. (line 31) * pthread: RS/6000 and PowerPC Options. ! (line 716) ! * pthreads: Solaris 2 Options. (line 25) * Q: Debugging Options. (line 340) * Qn: System V Options. (line 18) * Qy: System V Options. (line 14) * rdynamic: Link Options. (line 105) * read_only_relocs: Darwin Options. (line 196) * remap: Preprocessor Options. ! (line 697) ! * s: Link Options. (line 112) ! * S <1>: Link Options. (line 20) * S: Overall Options. (line 175) ! * save-temps: Debugging Options. (line 1222) ! * save-temps=obj: Debugging Options. (line 1248) * sectalign: Darwin Options. (line 196) * sectcreate: Darwin Options. (line 196) * sectobjectsymbols: Darwin Options. (line 196) * sectorder: Darwin Options. (line 196) * seg1addr: Darwin Options. (line 196) - * seg_addr_table: Darwin Options. (line 196) - * seg_addr_table_filename: Darwin Options. (line 196) * segaddr: Darwin Options. (line 196) * seglinkedit: Darwin Options. (line 196) * segprot: Darwin Options. (line 196) * segs_read_only_addr: Darwin Options. (line 196) * segs_read_write_addr: Darwin Options. (line 196) ! * shared: Link Options. (line 121) ! * shared-libgcc: Link Options. (line 129) * short-calls: Adapteva Epiphany Options. (line 61) * sim: CRIS Options. (line 95) * sim2: CRIS Options. (line 101) * single_module: Darwin Options. (line 196) ! * specs: Directory Options. (line 89) ! * static <1>: HPPA Options. (line 191) ! * static <2>: Darwin Options. (line 196) * static: Link Options. (line 116) ! * static-libgcc: Link Options. (line 129) ! * std <1>: Non-bugs. (line 107) ! * std <2>: Other Builtins. (line 22) ! * std <3>: C Dialect Options. (line 47) * std: Standards. (line 16) * std=: Preprocessor Options. ! (line 338) * sub_library: Darwin Options. (line 196) * sub_umbrella: Darwin Options. (line 196) ! * symbolic: Link Options. (line 193) ! * sysroot: Directory Options. (line 97) ! * T: Link Options. (line 199) ! * target-help <1>: Preprocessor Options. ! (line 702) * target-help: Overall Options. (line 230) * threads: HPPA Options. (line 204) ! * time: Debugging Options. (line 1263) * tno-android-cc: GNU/Linux Options. (line 31) * tno-android-ld: GNU/Linux Options. (line 35) * traditional <1>: Incompatibilities. (line 6) ! * traditional: C Dialect Options. (line 309) * traditional-cpp <1>: Preprocessor Options. ! (line 680) ! * traditional-cpp: C Dialect Options. (line 309) * trigraphs <1>: Preprocessor Options. ! (line 684) ! * trigraphs: C Dialect Options. (line 304) * twolevel_namespace: Darwin Options. (line 196) - * u: Link Options. (line 231) * U: Preprocessor Options. (line 69) * umbrella: Darwin Options. (line 196) * undef: Preprocessor Options. (line 73) * undefined: Darwin Options. (line 196) * unexported_symbols_list: Darwin Options. (line 196) - * v <1>: Preprocessor Options. - (line 706) * v: Overall Options. (line 203) ! * version <1>: Preprocessor Options. ! (line 719) * version: Overall Options. (line 338) ! * W: Incompatibilities. (line 64) ! * w: Preprocessor Options. ! (line 171) ! * W: Warning Options. (line 168) * w: Warning Options. (line 25) * Wa: Assembler Options. (line 9) * Wabi: C++ Dialect Options. ! (line 362) ! * Waddr-space-convert: AVR Options. (line 217) ! * Waddress: Warning Options. (line 1177) ! * Waggregate-return: Warning Options. (line 1195) ! * Waggressive-loop-optimizations: Warning Options. (line 1200) ! * Wall <1>: Standard Libraries. (line 6) ! * Wall <2>: Preprocessor Options. (line 93) ! * Wall: Warning Options. (line 119) ! * Warray-bounds: Warning Options. (line 833) * Wassign-intercept: Objective-C and Objective-C++ Dialect Options. (line 157) ! * Wattributes: Warning Options. (line 1205) ! * Wbad-function-cast: Warning Options. (line 1051) ! * Wbuiltin-macro-redefined: Warning Options. (line 1211) ! * Wcast-align: Warning Options. (line 1082) ! * Wcast-qual: Warning Options. (line 1066) ! * Wchar-subscripts: Warning Options. (line 207) ! * Wclobbered: Warning Options. (line 1102) * Wcomment <1>: Preprocessor Options. (line 101) - * Wcomment: Warning Options. (line 212) * Wcomments: Preprocessor Options. (line 101) ! * Wconversion: Warning Options. (line 1106) ! * Wconversion-null: Warning Options. (line 1124) * Wctor-dtor-privacy: C++ Dialect Options. ! (line 472) ! * Wdeclaration-after-statement: Warning Options. (line 966) * Wdelete-non-virtual-dtor: C++ Dialect Options. ! (line 479) ! * Wdeprecated: Warning Options. (line 1326) ! * Wdeprecated-declarations: Warning Options. (line 1330) ! * Wdisabled-optimization: Warning Options. (line 1486) ! * Wdiv-by-zero: Warning Options. (line 838) ! * Wdouble-promotion: Warning Options. (line 236) * weak_reference_mismatches: Darwin Options. (line 196) * Weffc++: C++ Dialect Options. ! (line 558) ! * Wempty-body: Warning Options. (line 1135) * Wendif-labels <1>: Preprocessor Options. (line 148) ! * Wendif-labels: Warning Options. (line 976) ! * Wenum-compare: Warning Options. (line 1139) * Werror <1>: Preprocessor Options. (line 161) - * Werror: Warning Options. (line 28) * Werror=: Warning Options. (line 31) ! * Wextra: Warning Options. (line 168) * Wfatal-errors: Warning Options. (line 48) ! * Wfloat-equal: Warning Options. (line 865) ! * Wformat <1>: Function Attributes. ! (line 419) ! * Wformat: Warning Options. (line 255) ! * Wformat-contains-nul: Warning Options. (line 292) ! * Wformat-extra-args: Warning Options. (line 296) * Wformat-nonliteral <1>: Function Attributes. ! (line 485) ! * Wformat-nonliteral: Warning Options. (line 320) ! * Wformat-security: Warning Options. (line 325) ! * Wformat-y2k: Warning Options. (line 337) ! * Wformat-zero-length: Warning Options. (line 310) ! * Wformat=: Warning Options. (line 255) ! * Wframe-larger-than: Warning Options. (line 990) ! * Wfree-nonheap-object: Warning Options. (line 999) * whatsloaded: Darwin Options. (line 196) * whyload: Darwin Options. (line 196) ! * Wignored-qualifiers: Warning Options. (line 377) ! * Wimplicit: Warning Options. (line 373) ! * Wimplicit-function-declaration: Warning Options. (line 367) ! * Wimplicit-int: Warning Options. (line 363) ! * Winherited-variadic-ctor: Warning Options. (line 1396) ! * Winit-self: Warning Options. (line 348) * Winline <1>: Inline. (line 63) ! * Winline: Warning Options. (line 1401) ! * Wint-to-pointer-cast: Warning Options. (line 1428) ! * Winvalid-offsetof: Warning Options. (line 1414) ! * Winvalid-pch: Warning Options. (line 1437) ! * Wjump-misses-init: Warning Options. (line 1145) ! * Wl: Link Options. (line 223) ! * Wlarger-than-LEN: Warning Options. (line 987) ! * Wlarger-than=LEN: Warning Options. (line 987) * Wliteral-suffix: C++ Dialect Options. ! (line 486) ! * Wlogical-op: Warning Options. (line 1190) ! * Wlong-long: Warning Options. (line 1441) ! * Wmain: Warning Options. (line 388) ! * Wmaybe-uninitialized: Warning Options. (line 648) ! * Wmissing-braces: Warning Options. (line 395) ! * Wmissing-declarations: Warning Options. (line 1250) ! * Wmissing-field-initializers: Warning Options. (line 1260) ! * Wmissing-format-attribute: Warning Options. (line 812) ! * Wmissing-include-dirs: Warning Options. (line 406) ! * Wmissing-parameter-type: Warning Options. (line 1232) ! * Wmissing-prototypes: Warning Options. (line 1240) ! * Wmultichar: Warning Options. (line 1278) * Wnarrowing: C++ Dialect Options. ! (line 507) ! * Wnested-externs: Warning Options. (line 1393) * Wno-abi: C++ Dialect Options. ! (line 362) ! * Wno-address: Warning Options. (line 1177) ! * Wno-aggregate-return: Warning Options. (line 1195) ! * Wno-aggressive-loop-optimizations: Warning Options. (line 1200) ! * Wno-all: Warning Options. (line 119) ! * Wno-array-bounds: Warning Options. (line 833) * Wno-assign-intercept: Objective-C and Objective-C++ Dialect Options. (line 157) ! * Wno-attributes: Warning Options. (line 1205) ! * Wno-bad-function-cast: Warning Options. (line 1051) ! * Wno-builtin-macro-redefined: Warning Options. (line 1211) ! * Wno-cast-align: Warning Options. (line 1082) ! * Wno-cast-qual: Warning Options. (line 1066) ! * Wno-char-subscripts: Warning Options. (line 207) ! * Wno-clobbered: Warning Options. (line 1102) ! * Wno-comment: Warning Options. (line 212) ! * Wno-conversion: Warning Options. (line 1106) ! * Wno-conversion-null: Warning Options. (line 1124) ! * Wno-coverage-mismatch: Warning Options. (line 217) * Wno-ctor-dtor-privacy: C++ Dialect Options. ! (line 472) ! * Wno-declaration-after-statement: Warning Options. (line 966) * Wno-delete-non-virtual-dtor: C++ Dialect Options. ! (line 479) ! * Wno-deprecated: Warning Options. (line 1326) ! * Wno-deprecated-declarations: Warning Options. (line 1330) ! * Wno-disabled-optimization: Warning Options. (line 1486) ! * Wno-div-by-zero: Warning Options. (line 838) ! * Wno-double-promotion: Warning Options. (line 236) * Wno-effc++: C++ Dialect Options. ! (line 558) ! * Wno-empty-body: Warning Options. (line 1135) ! * Wno-endif-labels: Warning Options. (line 976) ! * Wno-enum-compare: Warning Options. (line 1139) * Wno-error: Warning Options. (line 28) * Wno-error=: Warning Options. (line 31) ! * Wno-extra: Warning Options. (line 168) * Wno-fatal-errors: Warning Options. (line 48) ! * Wno-float-equal: Warning Options. (line 865) ! * Wno-format: Warning Options. (line 255) ! * Wno-format-contains-nul: Warning Options. (line 292) ! * Wno-format-extra-args: Warning Options. (line 296) ! * Wno-format-nonliteral: Warning Options. (line 320) ! * Wno-format-security: Warning Options. (line 325) ! * Wno-format-y2k: Warning Options. (line 337) ! * Wno-format-zero-length: Warning Options. (line 310) ! * Wno-free-nonheap-object: Warning Options. (line 999) ! * Wno-ignored-qualifiers: Warning Options. (line 377) ! * Wno-implicit: Warning Options. (line 373) ! * Wno-implicit-function-declaration: Warning Options. (line 367) ! * Wno-implicit-int: Warning Options. (line 363) ! * Wno-inherited-variadic-ctor: Warning Options. (line 1396) ! * Wno-init-self: Warning Options. (line 348) ! * Wno-inline: Warning Options. (line 1401) ! * Wno-int-to-pointer-cast: Warning Options. (line 1428) ! * Wno-invalid-offsetof: Warning Options. (line 1414) ! * Wno-invalid-pch: Warning Options. (line 1437) ! * Wno-jump-misses-init: Warning Options. (line 1145) * Wno-literal-suffix: C++ Dialect Options. ! (line 486) ! * Wno-logical-op: Warning Options. (line 1190) ! * Wno-long-long: Warning Options. (line 1441) ! * Wno-main: Warning Options. (line 388) ! * Wno-maybe-uninitialized: Warning Options. (line 648) ! * Wno-missing-braces: Warning Options. (line 395) ! * Wno-missing-declarations: Warning Options. (line 1250) ! * Wno-missing-field-initializers: Warning Options. (line 1260) ! * Wno-missing-format-attribute: Warning Options. (line 812) ! * Wno-missing-include-dirs: Warning Options. (line 406) ! * Wno-missing-parameter-type: Warning Options. (line 1232) ! * Wno-missing-prototypes: Warning Options. (line 1240) ! * Wno-mudflap: Warning Options. (line 1506) ! * Wno-multichar: Warning Options. (line 1278) * Wno-narrowing: C++ Dialect Options. ! (line 507) ! * Wno-nested-externs: Warning Options. (line 1393) * Wno-noexcept: C++ Dialect Options. ! (line 520) * Wno-non-template-friend: C++ Dialect Options. ! (line 596) * Wno-non-virtual-dtor: C++ Dialect Options. ! (line 526) ! * Wno-nonnull: Warning Options. (line 341) * Wno-old-style-cast: C++ Dialect Options. ! (line 612) ! * Wno-old-style-declaration: Warning Options. (line 1222) ! * Wno-old-style-definition: Warning Options. (line 1228) ! * Wno-overflow: Warning Options. (line 1336) ! * Wno-overlength-strings: Warning Options. (line 1510) * Wno-overloaded-virtual: C++ Dialect Options. ! (line 618) ! * Wno-override-init: Warning Options. (line 1339) ! * Wno-packed: Warning Options. (line 1347) ! * Wno-packed-bitfield-compat: Warning Options. (line 1364) ! * Wno-padded: Warning Options. (line 1381) ! * Wno-parentheses: Warning Options. (line 409) ! * Wno-pedantic-ms-format: Warning Options. (line 1031) * Wno-pmf-conversions <1>: Bound member functions. (line 35) ! * Wno-pmf-conversions: C++ Dialect Options. ! (line 637) ! * Wno-pointer-arith: Warning Options. (line 1037) ! * Wno-pointer-sign: Warning Options. (line 1495) ! * Wno-pointer-to-int-cast: Warning Options. (line 1433) ! * Wno-pragmas: Warning Options. (line 698) * Wno-protocol: Objective-C and Objective-C++ Dialect Options. (line 161) ! * Wno-redundant-decls: Warning Options. (line 1388) * Wno-reorder: C++ Dialect Options. ! (line 533) ! * Wno-return-local-addr: Warning Options. (line 504) ! * Wno-return-type: Warning Options. (line 508) * Wno-selector: Objective-C and Objective-C++ Dialect Options. (line 171) ! * Wno-sequence-point: Warning Options. (line 458) ! * Wno-shadow: Warning Options. (line 980) ! * Wno-sign-compare: Warning Options. (line 1156) ! * Wno-sign-conversion: Warning Options. (line 1163) * Wno-sign-promo: C++ Dialect Options. ! (line 641) ! * Wno-sizeof-pointer-memaccess: Warning Options. (line 1169) ! * Wno-stack-protector: Warning Options. (line 1501) ! * Wno-strict-aliasing: Warning Options. (line 703) * Wno-strict-null-sentinel: C++ Dialect Options. ! (line 588) ! * Wno-strict-overflow: Warning Options. (line 743) ! * Wno-strict-prototypes: Warning Options. (line 1216) * Wno-strict-selector-match: Objective-C and Objective-C++ Dialect Options. (line 183) ! * Wno-suggest-attribute=: Warning Options. (line 793) ! * Wno-suggest-attribute=const: Warning Options. (line 799) ! * Wno-suggest-attribute=format: Warning Options. (line 812) ! * Wno-suggest-attribute=noreturn: Warning Options. (line 799) ! * Wno-suggest-attribute=pure: Warning Options. (line 799) ! * Wno-switch: Warning Options. (line 523) ! * Wno-switch-default: Warning Options. (line 531) ! * Wno-switch-enum: Warning Options. (line 534) ! * Wno-sync-nand: Warning Options. (line 543) ! * Wno-system-headers: Warning Options. (line 843) ! * Wno-traditional: Warning Options. (line 880) ! * Wno-traditional-conversion: Warning Options. (line 958) ! * Wno-trampolines: Warning Options. (line 854) ! * Wno-trigraphs: Warning Options. (line 548) ! * Wno-type-limits: Warning Options. (line 1044) * Wno-undeclared-selector: Objective-C and Objective-C++ Dialect Options. (line 191) ! * Wno-undef: Warning Options. (line 973) ! * Wno-uninitialized: Warning Options. (line 625) ! * Wno-unknown-pragmas: Warning Options. (line 691) ! * Wno-unsafe-loop-optimizations: Warning Options. (line 1025) ! * Wno-unused: Warning Options. (line 618) ! * Wno-unused-but-set-parameter: Warning Options. (line 553) ! * Wno-unused-but-set-variable: Warning Options. (line 562) ! * Wno-unused-function: Warning Options. (line 572) ! * Wno-unused-label: Warning Options. (line 577) ! * Wno-unused-parameter: Warning Options. (line 588) ! * Wno-unused-result: Warning Options. (line 595) ! * Wno-unused-value: Warning Options. (line 608) ! * Wno-unused-variable: Warning Options. (line 600) ! * Wno-useless-cast: Warning Options. (line 1132) ! * Wno-varargs: Warning Options. (line 1452) ! * Wno-variadic-macros: Warning Options. (line 1446) ! * Wno-vector-operation-performance: Warning Options. (line 1457) ! * Wno-virtual-move-assign: Warning Options. (line 1467) ! * Wno-vla: Warning Options. (line 1476) ! * Wno-volatile-register-var: Warning Options. (line 1480) ! * Wno-write-strings: Warning Options. (line 1088) ! * Wno-zero-as-null-pointer-constant: Warning Options. (line 1128) * Wnoexcept: C++ Dialect Options. ! (line 520) * Wnon-template-friend: C++ Dialect Options. ! (line 596) * Wnon-virtual-dtor: C++ Dialect Options. ! (line 526) ! * Wnonnull: Warning Options. (line 341) ! * Wnormalized=: Warning Options. (line 1284) * Wold-style-cast: C++ Dialect Options. ! (line 612) ! * Wold-style-declaration: Warning Options. (line 1222) ! * Wold-style-definition: Warning Options. (line 1228) ! * Woverflow: Warning Options. (line 1336) ! * Woverlength-strings: Warning Options. (line 1510) * Woverloaded-virtual: C++ Dialect Options. ! (line 618) ! * Woverride-init: Warning Options. (line 1339) * Wp: Preprocessor Options. (line 14) ! * Wpacked: Warning Options. (line 1347) ! * Wpacked-bitfield-compat: Warning Options. (line 1364) ! * Wpadded: Warning Options. (line 1381) ! * Wparentheses: Warning Options. (line 409) ! * Wpedantic: Warning Options. (line 73) ! * Wpedantic-ms-format: Warning Options. (line 1031) * Wpmf-conversions: C++ Dialect Options. ! (line 637) * Wpointer-arith <1>: Pointer Arith. (line 13) ! * Wpointer-arith: Warning Options. (line 1037) ! * Wpointer-sign: Warning Options. (line 1495) ! * Wpointer-to-int-cast: Warning Options. (line 1433) ! * Wpragmas: Warning Options. (line 698) * Wprotocol: Objective-C and Objective-C++ Dialect Options. (line 161) * wrapper: Overall Options. (line 341) ! * Wredundant-decls: Warning Options. (line 1388) * Wreorder: C++ Dialect Options. ! (line 533) ! * Wreturn-local-addr: Warning Options. (line 504) ! * Wreturn-type: Warning Options. (line 508) * Wselector: Objective-C and Objective-C++ Dialect Options. (line 171) ! * Wsequence-point: Warning Options. (line 458) ! * Wshadow: Warning Options. (line 980) ! * Wsign-compare: Warning Options. (line 1156) ! * Wsign-conversion: Warning Options. (line 1163) * Wsign-promo: C++ Dialect Options. ! (line 641) ! * Wsizeof-pointer-memaccess: Warning Options. (line 1169) ! * Wstack-protector: Warning Options. (line 1501) ! * Wstack-usage: Warning Options. (line 1003) ! * Wstrict-aliasing: Warning Options. (line 703) ! * Wstrict-aliasing=n: Warning Options. (line 711) * Wstrict-null-sentinel: C++ Dialect Options. ! (line 588) ! * Wstrict-overflow: Warning Options. (line 743) ! * Wstrict-prototypes: Warning Options. (line 1216) * Wstrict-selector-match: Objective-C and Objective-C++ Dialect Options. (line 183) ! * Wsuggest-attribute=: Warning Options. (line 793) ! * Wsuggest-attribute=const: Warning Options. (line 799) ! * Wsuggest-attribute=format: Warning Options. (line 812) ! * Wsuggest-attribute=noreturn: Warning Options. (line 799) ! * Wsuggest-attribute=pure: Warning Options. (line 799) ! * Wswitch: Warning Options. (line 523) ! * Wswitch-default: Warning Options. (line 531) ! * Wswitch-enum: Warning Options. (line 534) ! * Wsync-nand: Warning Options. (line 543) * Wsystem-headers <1>: Preprocessor Options. (line 165) ! * Wsystem-headers: Warning Options. (line 843) * Wtraditional <1>: Preprocessor Options. (line 118) ! * Wtraditional: Warning Options. (line 880) ! * Wtraditional-conversion: Warning Options. (line 958) ! * Wtrampolines: Warning Options. (line 854) * Wtrigraphs <1>: Preprocessor Options. (line 106) ! * Wtrigraphs: Warning Options. (line 548) ! * Wtype-limits: Warning Options. (line 1044) * Wundeclared-selector: Objective-C and Objective-C++ Dialect Options. (line 191) * Wundef <1>: Preprocessor Options. (line 124) ! * Wundef: Warning Options. (line 973) ! * Wuninitialized: Warning Options. (line 625) ! * Wunknown-pragmas: Warning Options. (line 691) ! * Wunsafe-loop-optimizations: Warning Options. (line 1025) ! * Wunsuffixed-float-constants: Warning Options. (line 1525) ! * Wunused: Warning Options. (line 618) ! * Wunused-but-set-parameter: Warning Options. (line 553) ! * Wunused-but-set-variable: Warning Options. (line 562) ! * Wunused-function: Warning Options. (line 572) ! * Wunused-label: Warning Options. (line 577) ! * Wunused-local-typedefs: Warning Options. (line 584) * Wunused-macros: Preprocessor Options. (line 129) ! * Wunused-parameter: Warning Options. (line 588) ! * Wunused-result: Warning Options. (line 595) ! * Wunused-value: Warning Options. (line 608) ! * Wunused-variable: Warning Options. (line 600) ! * Wuseless-cast: Warning Options. (line 1132) ! * Wvarargs: Warning Options. (line 1452) ! * Wvariadic-macros: Warning Options. (line 1446) ! * Wvector-operation-performance: Warning Options. (line 1457) ! * Wvirtual-move-assign: Warning Options. (line 1467) ! * Wvla: Warning Options. (line 1476) ! * Wvolatile-register-var: Warning Options. (line 1480) ! * Wwrite-strings: Warning Options. (line 1088) ! * Wzero-as-null-pointer-constant: Warning Options. (line 1128) ! * x <1>: Preprocessor Options. ! (line 322) * x: Overall Options. (line 126) * Xassembler: Assembler Options. (line 13) * Xbind-lazy: VxWorks Options. (line 26) * Xbind-now: VxWorks Options. (line 30) ! * Xlinker: Link Options. (line 205) * Xpreprocessor: Preprocessor Options. (line 25) * Ym: System V Options. (line 26) --- 50214,50760 ---- * noseglinkedit: Darwin Options. (line 196) * nostartfiles: Link Options. (line 57) * nostdinc: Preprocessor Options. ! (line 401) * nostdinc++: C++ Dialect Options. ! (line 346) ! * nostdinc++ <1>: Preprocessor Options. ! (line 406) * nostdlib: Link Options. (line 74) ! * no_dead_strip_inits_and_terms: Darwin Options. (line 196) * o: Overall Options. (line 192) + * O: Optimize Options. (line 39) + * o <1>: Preprocessor Options. + (line 87) * O0: Optimize Options. (line 128) * O1: Optimize Options. (line 39) * O2: Optimize Options. (line 83) * O3: Optimize Options. (line 121) * Ofast: Optimize Options. (line 142) ! * Og: Optimize Options. (line 148) * Os: Optimize Options. (line 132) * p: Debugging Options. (line 328) + * P: Preprocessor Options. + (line 647) * pagezero_size: Darwin Options. (line 196) ! * param: Optimize Options. (line 2237) * pass-exit-codes: Overall Options. (line 150) * pedantic: Standards. (line 16) ! * pedantic <1>: Warning Options. (line 71) ! * pedantic <2>: Preprocessor Options. ! (line 175) ! * pedantic <3>: C Extensions. (line 6) ! * pedantic <4>: Alternate Keywords. (line 30) ! * pedantic <5>: Warnings and Errors. (line 25) * pedantic-errors: Standards. (line 16) + * pedantic-errors <1>: Warning Options. (line 112) + * pedantic-errors <2>: Preprocessor Options. + (line 180) + * pedantic-errors <3>: Non-bugs. (line 216) + * pedantic-errors <4>: Warnings and Errors. + (line 25) * pg: Debugging Options. (line 334) * pie: Link Options. (line 99) * pipe: Overall Options. (line 215) * prebind: Darwin Options. (line 196) * prebind_all_twolevel_modules: Darwin Options. (line 196) ! * print-file-name: Debugging Options. (line 1283) ! * print-libgcc-file-name: Debugging Options. (line 1317) ! * print-multi-directory: Debugging Options. (line 1289) ! * print-multi-lib: Debugging Options. (line 1294) ! * print-multi-os-directory: Debugging Options. (line 1301) ! * print-multiarch: Debugging Options. (line 1310) * print-objc-runtime-info: Objective-C and Objective-C++ Dialect Options. (line 203) ! * print-prog-name: Debugging Options. (line 1314) ! * print-search-dirs: Debugging Options. (line 1325) ! * print-sysroot: Debugging Options. (line 1338) ! * print-sysroot-headers-suffix: Debugging Options. (line 1345) * private_bundle: Darwin Options. (line 196) * pthread: RS/6000 and PowerPC Options. ! (line 711) ! * pthread <1>: Solaris 2 Options. (line 30) ! * pthreads: Solaris 2 Options. (line 24) * Q: Debugging Options. (line 340) * Qn: System V Options. (line 18) * Qy: System V Options. (line 14) * rdynamic: Link Options. (line 105) * read_only_relocs: Darwin Options. (line 196) * remap: Preprocessor Options. ! (line 694) * S: Overall Options. (line 175) ! * S <1>: Link Options. (line 20) ! * s: Link Options. (line 112) ! * save-temps: Debugging Options. (line 1192) ! * save-temps=obj: Debugging Options. (line 1218) * sectalign: Darwin Options. (line 196) * sectcreate: Darwin Options. (line 196) * sectobjectsymbols: Darwin Options. (line 196) + * sectobjectsymbols <1>: Darwin Options. (line 196) * sectorder: Darwin Options. (line 196) * seg1addr: Darwin Options. (line 196) * segaddr: Darwin Options. (line 196) * seglinkedit: Darwin Options. (line 196) * segprot: Darwin Options. (line 196) * segs_read_only_addr: Darwin Options. (line 196) + * segs_read_only_addr <1>: Darwin Options. (line 196) * segs_read_write_addr: Darwin Options. (line 196) ! * segs_read_write_addr <1>: Darwin Options. (line 196) ! * seg_addr_table: Darwin Options. (line 196) ! * seg_addr_table_filename: Darwin Options. (line 196) ! * shared: Link Options. (line 120) ! * shared-libgcc: Link Options. (line 128) * short-calls: Adapteva Epiphany Options. (line 61) * sim: CRIS Options. (line 95) * sim2: CRIS Options. (line 101) * single_module: Darwin Options. (line 196) ! * specs: Directory Options. (line 86) * static: Link Options. (line 116) ! * static <1>: Darwin Options. (line 196) ! * static <2>: HPPA Options. (line 191) ! * static-libgcc: Link Options. (line 128) * std: Standards. (line 16) + * std <1>: C Dialect Options. (line 46) + * std <2>: Other Builtins. (line 21) + * std <3>: Non-bugs. (line 107) * std=: Preprocessor Options. ! (line 340) * sub_library: Darwin Options. (line 196) * sub_umbrella: Darwin Options. (line 196) ! * symbolic: Link Options. (line 190) ! * sysroot: Directory Options. (line 94) ! * T: Link Options. (line 196) * target-help: Overall Options. (line 230) + * target-help <1>: Preprocessor Options. + (line 699) * threads: HPPA Options. (line 204) ! * time: Debugging Options. (line 1233) * tno-android-cc: GNU/Linux Options. (line 31) * tno-android-ld: GNU/Linux Options. (line 35) + * traditional: C Dialect Options. (line 311) * traditional <1>: Incompatibilities. (line 6) ! * traditional-cpp: C Dialect Options. (line 311) * traditional-cpp <1>: Preprocessor Options. ! (line 677) ! * trigraphs: C Dialect Options. (line 306) * trigraphs <1>: Preprocessor Options. ! (line 681) * twolevel_namespace: Darwin Options. (line 196) * U: Preprocessor Options. (line 69) + * u: Link Options. (line 228) * umbrella: Darwin Options. (line 196) * undef: Preprocessor Options. (line 73) * undefined: Darwin Options. (line 196) * unexported_symbols_list: Darwin Options. (line 196) * v: Overall Options. (line 203) ! * v <1>: Preprocessor Options. ! (line 703) * version: Overall Options. (line 338) ! * version <1>: Preprocessor Options. ! (line 715) * w: Warning Options. (line 25) + * W: Warning Options. (line 165) + * W <1>: Warning Options. (line 1246) + * W <2>: Warning Options. (line 1325) + * w <1>: Preprocessor Options. + (line 171) + * W <3>: Incompatibilities. (line 64) * Wa: Assembler Options. (line 9) * Wabi: C++ Dialect Options. ! (line 360) ! * Waddr-space-convert: AVR Options. (line 215) ! * Waddress: Warning Options. (line 1163) ! * Waggregate-return: Warning Options. (line 1181) ! * Waggressive-loop-optimizations: Warning Options. (line 1186) ! * Wall: Warning Options. (line 116) ! * Wall <1>: Preprocessor Options. (line 93) ! * Wall <2>: Standard Libraries. (line 6) ! * Warray-bounds: Warning Options. (line 823) * Wassign-intercept: Objective-C and Objective-C++ Dialect Options. (line 157) ! * Wattributes: Warning Options. (line 1191) ! * Wbad-function-cast: Warning Options. (line 1038) ! * Wbuiltin-macro-redefined: Warning Options. (line 1197) ! * Wcast-align: Warning Options. (line 1069) ! * Wcast-qual: Warning Options. (line 1053) ! * Wchar-subscripts: Warning Options. (line 203) ! * Wclobbered: Warning Options. (line 1088) ! * Wcomment: Warning Options. (line 208) * Wcomment <1>: Preprocessor Options. (line 101) * Wcomments: Preprocessor Options. (line 101) ! * Wconversion: Warning Options. (line 1092) ! * Wconversion-null: Warning Options. (line 1110) * Wctor-dtor-privacy: C++ Dialect Options. ! (line 467) ! * Wdeclaration-after-statement: Warning Options. (line 955) * Wdelete-non-virtual-dtor: C++ Dialect Options. ! (line 474) ! * Wdeprecated: Warning Options. (line 1312) ! * Wdeprecated-declarations: Warning Options. (line 1316) ! * Wdisabled-optimization: Warning Options. (line 1471) ! * Wdiv-by-zero: Warning Options. (line 828) ! * Wdouble-promotion: Warning Options. (line 232) * weak_reference_mismatches: Darwin Options. (line 196) * Weffc++: C++ Dialect Options. ! (line 552) ! * Wempty-body: Warning Options. (line 1121) ! * Wendif-labels: Warning Options. (line 965) * Wendif-labels <1>: Preprocessor Options. (line 148) ! * Wenum-compare: Warning Options. (line 1125) ! * Werror: Warning Options. (line 28) * Werror <1>: Preprocessor Options. (line 161) * Werror=: Warning Options. (line 31) ! * Wextra: Warning Options. (line 165) ! * Wextra <1>: Warning Options. (line 1246) ! * Wextra <2>: Warning Options. (line 1325) * Wfatal-errors: Warning Options. (line 48) ! * Wfloat-equal: Warning Options. (line 855) ! * Wformat: Warning Options. (line 251) ! * Wformat <1>: Warning Options. (line 802) ! * Wformat <2>: Function Attributes. ! (line 414) ! * Wformat-contains-nul: Warning Options. (line 285) ! * Wformat-extra-args: Warning Options. (line 289) ! * Wformat-nonliteral: Warning Options. (line 313) * Wformat-nonliteral <1>: Function Attributes. ! (line 479) ! * Wformat-security: Warning Options. (line 318) ! * Wformat-y2k: Warning Options. (line 330) ! * Wformat-zero-length: Warning Options. (line 303) ! * Wformat=: Warning Options. (line 251) ! * Wframe-larger-than: Warning Options. (line 979) ! * Wfree-nonheap-object: Warning Options. (line 988) * whatsloaded: Darwin Options. (line 196) * whyload: Darwin Options. (line 196) ! * Wignored-qualifiers: Warning Options. (line 370) ! * Wimplicit: Warning Options. (line 366) ! * Wimplicit-function-declaration: Warning Options. (line 360) ! * Wimplicit-int: Warning Options. (line 356) ! * Winherited-variadic-ctor: Warning Options. (line 1381) ! * Winit-self: Warning Options. (line 341) ! * Winline: Warning Options. (line 1386) * Winline <1>: Inline. (line 63) ! * Wint-to-pointer-cast: Warning Options. (line 1413) ! * Winvalid-offsetof: Warning Options. (line 1399) ! * Winvalid-pch: Warning Options. (line 1422) ! * Wjump-misses-init: Warning Options. (line 1131) ! * Wl: Link Options. (line 220) ! * Wlarger-than-LEN: Warning Options. (line 976) ! * Wlarger-than=LEN: Warning Options. (line 976) * Wliteral-suffix: C++ Dialect Options. ! (line 481) ! * Wlogical-op: Warning Options. (line 1176) ! * Wlong-long: Warning Options. (line 1426) ! * Wmain: Warning Options. (line 381) ! * Wmaybe-uninitialized: Warning Options. (line 639) ! * Wmissing-braces: Warning Options. (line 388) ! * Wmissing-declarations: Warning Options. (line 1236) ! * Wmissing-field-initializers: Warning Options. (line 1246) ! * Wmissing-format-attribute: Warning Options. (line 802) ! * Wmissing-include-dirs: Warning Options. (line 399) ! * Wmissing-parameter-type: Warning Options. (line 1218) ! * Wmissing-prototypes: Warning Options. (line 1226) ! * Wmultichar: Warning Options. (line 1264) * Wnarrowing: C++ Dialect Options. ! (line 502) ! * Wnested-externs: Warning Options. (line 1378) * Wno-abi: C++ Dialect Options. ! (line 360) ! * Wno-address: Warning Options. (line 1163) ! * Wno-aggregate-return: Warning Options. (line 1181) ! * Wno-aggressive-loop-optimizations: Warning Options. (line 1186) ! * Wno-all: Warning Options. (line 116) ! * Wno-array-bounds: Warning Options. (line 823) * Wno-assign-intercept: Objective-C and Objective-C++ Dialect Options. (line 157) ! * Wno-attributes: Warning Options. (line 1191) ! * Wno-bad-function-cast: Warning Options. (line 1038) ! * Wno-builtin-macro-redefined: Warning Options. (line 1197) ! * Wno-cast-align: Warning Options. (line 1069) ! * Wno-cast-qual: Warning Options. (line 1053) ! * Wno-char-subscripts: Warning Options. (line 203) ! * Wno-clobbered: Warning Options. (line 1088) ! * Wno-comment: Warning Options. (line 208) ! * Wno-conversion: Warning Options. (line 1092) ! * Wno-conversion-null: Warning Options. (line 1110) ! * Wno-coverage-mismatch: Warning Options. (line 213) * Wno-ctor-dtor-privacy: C++ Dialect Options. ! (line 467) ! * Wno-declaration-after-statement: Warning Options. (line 955) * Wno-delete-non-virtual-dtor: C++ Dialect Options. ! (line 474) ! * Wno-deprecated: Warning Options. (line 1312) ! * Wno-deprecated-declarations: Warning Options. (line 1316) ! * Wno-disabled-optimization: Warning Options. (line 1471) ! * Wno-div-by-zero: Warning Options. (line 828) ! * Wno-double-promotion: Warning Options. (line 232) * Wno-effc++: C++ Dialect Options. ! (line 552) ! * Wno-empty-body: Warning Options. (line 1121) ! * Wno-endif-labels: Warning Options. (line 965) ! * Wno-enum-compare: Warning Options. (line 1125) * Wno-error: Warning Options. (line 28) * Wno-error=: Warning Options. (line 31) ! * Wno-extra: Warning Options. (line 165) ! * Wno-extra <1>: Warning Options. (line 1246) ! * Wno-extra <2>: Warning Options. (line 1325) * Wno-fatal-errors: Warning Options. (line 48) ! * Wno-float-equal: Warning Options. (line 855) ! * Wno-format: Warning Options. (line 251) ! * Wno-format <1>: Warning Options. (line 802) ! * Wno-format-contains-nul: Warning Options. (line 285) ! * Wno-format-extra-args: Warning Options. (line 289) ! * Wno-format-nonliteral: Warning Options. (line 313) ! * Wno-format-security: Warning Options. (line 318) ! * Wno-format-y2k: Warning Options. (line 330) ! * Wno-format-zero-length: Warning Options. (line 303) ! * Wno-free-nonheap-object: Warning Options. (line 988) ! * Wno-ignored-qualifiers: Warning Options. (line 370) ! * Wno-implicit: Warning Options. (line 366) ! * Wno-implicit-function-declaration: Warning Options. (line 360) ! * Wno-implicit-int: Warning Options. (line 356) ! * Wno-inherited-variadic-ctor: Warning Options. (line 1381) ! * Wno-init-self: Warning Options. (line 341) ! * Wno-inline: Warning Options. (line 1386) ! * Wno-int-to-pointer-cast: Warning Options. (line 1413) ! * Wno-invalid-offsetof: Warning Options. (line 1399) ! * Wno-invalid-pch: Warning Options. (line 1422) ! * Wno-jump-misses-init: Warning Options. (line 1131) * Wno-literal-suffix: C++ Dialect Options. ! (line 481) ! * Wno-logical-op: Warning Options. (line 1176) ! * Wno-long-long: Warning Options. (line 1426) ! * Wno-main: Warning Options. (line 381) ! * Wno-maybe-uninitialized: Warning Options. (line 639) ! * Wno-missing-braces: Warning Options. (line 388) ! * Wno-missing-declarations: Warning Options. (line 1236) ! * Wno-missing-field-initializers: Warning Options. (line 1246) ! * Wno-missing-format-attribute: Warning Options. (line 802) ! * Wno-missing-include-dirs: Warning Options. (line 399) ! * Wno-missing-parameter-type: Warning Options. (line 1218) ! * Wno-missing-prototypes: Warning Options. (line 1226) ! * Wno-mudflap: Warning Options. (line 1491) ! * Wno-multichar: Warning Options. (line 1264) * Wno-narrowing: C++ Dialect Options. ! (line 502) ! * Wno-nested-externs: Warning Options. (line 1378) * Wno-noexcept: C++ Dialect Options. ! (line 515) * Wno-non-template-friend: C++ Dialect Options. ! (line 587) * Wno-non-virtual-dtor: C++ Dialect Options. ! (line 521) ! * Wno-nonnull: Warning Options. (line 334) * Wno-old-style-cast: C++ Dialect Options. ! (line 603) ! * Wno-old-style-declaration: Warning Options. (line 1208) ! * Wno-old-style-definition: Warning Options. (line 1214) ! * Wno-overflow: Warning Options. (line 1322) ! * Wno-overlength-strings: Warning Options. (line 1495) * Wno-overloaded-virtual: C++ Dialect Options. ! (line 609) ! * Wno-override-init: Warning Options. (line 1325) ! * Wno-packed: Warning Options. (line 1333) ! * Wno-packed-bitfield-compat: Warning Options. (line 1350) ! * Wno-padded: Warning Options. (line 1367) ! * Wno-parentheses: Warning Options. (line 402) ! * Wno-pedantic-ms-format: Warning Options. (line 1018) ! * Wno-pmf-conversions: C++ Dialect Options. ! (line 628) * Wno-pmf-conversions <1>: Bound member functions. (line 35) ! * Wno-pointer-arith: Warning Options. (line 1024) ! * Wno-pointer-sign: Warning Options. (line 1480) ! * Wno-pointer-to-int-cast: Warning Options. (line 1418) ! * Wno-pragmas: Warning Options. (line 689) * Wno-protocol: Objective-C and Objective-C++ Dialect Options. (line 161) ! * Wno-redundant-decls: Warning Options. (line 1374) * Wno-reorder: C++ Dialect Options. ! (line 527) ! * Wno-return-local-addr: Warning Options. (line 497) ! * Wno-return-type: Warning Options. (line 501) * Wno-selector: Objective-C and Objective-C++ Dialect Options. (line 171) ! * Wno-sequence-point: Warning Options. (line 451) ! * Wno-shadow: Warning Options. (line 969) ! * Wno-sign-compare: Warning Options. (line 1142) ! * Wno-sign-conversion: Warning Options. (line 1149) * Wno-sign-promo: C++ Dialect Options. ! (line 632) ! * Wno-sizeof-pointer-memaccess: Warning Options. (line 1155) ! * Wno-stack-protector: Warning Options. (line 1486) ! * Wno-strict-aliasing: Warning Options. (line 694) * Wno-strict-null-sentinel: C++ Dialect Options. ! (line 580) ! * Wno-strict-overflow: Warning Options. (line 733) ! * Wno-strict-prototypes: Warning Options. (line 1202) * Wno-strict-selector-match: Objective-C and Objective-C++ Dialect Options. (line 183) ! * Wno-suggest-attribute=: Warning Options. (line 782) ! * Wno-suggest-attribute=const: Warning Options. (line 788) ! * Wno-suggest-attribute=format: Warning Options. (line 802) ! * Wno-suggest-attribute=noreturn: Warning Options. (line 788) ! * Wno-suggest-attribute=pure: Warning Options. (line 788) ! * Wno-switch: Warning Options. (line 515) ! * Wno-switch-default: Warning Options. (line 523) ! * Wno-switch-enum: Warning Options. (line 526) ! * Wno-sync-nand: Warning Options. (line 535) ! * Wno-system-headers: Warning Options. (line 833) ! * Wno-traditional: Warning Options. (line 870) ! * Wno-traditional-conversion: Warning Options. (line 947) ! * Wno-trampolines: Warning Options. (line 844) ! * Wno-trigraphs: Warning Options. (line 540) ! * Wno-type-limits: Warning Options. (line 1031) * Wno-undeclared-selector: Objective-C and Objective-C++ Dialect Options. (line 191) ! * Wno-undef: Warning Options. (line 962) ! * Wno-uninitialized: Warning Options. (line 617) ! * Wno-unknown-pragmas: Warning Options. (line 682) ! * Wno-unsafe-loop-optimizations: Warning Options. (line 1012) ! * Wno-unused: Warning Options. (line 610) ! * Wno-unused-but-set-parameter: Warning Options. (line 545) ! * Wno-unused-but-set-variable: Warning Options. (line 554) ! * Wno-unused-function: Warning Options. (line 564) ! * Wno-unused-label: Warning Options. (line 569) ! * Wno-unused-parameter: Warning Options. (line 580) ! * Wno-unused-result: Warning Options. (line 587) ! * Wno-unused-value: Warning Options. (line 600) ! * Wno-unused-variable: Warning Options. (line 592) ! * Wno-useless-cast: Warning Options. (line 1118) ! * Wno-varargs: Warning Options. (line 1437) ! * Wno-variadic-macros: Warning Options. (line 1431) ! * Wno-vector-operation-performance: Warning Options. (line 1442) ! * Wno-virtual-move-assign: Warning Options. (line 1452) ! * Wno-vla: Warning Options. (line 1461) ! * Wno-volatile-register-var: Warning Options. (line 1465) ! * Wno-write-strings: Warning Options. (line 1075) ! * Wno-zero-as-null-pointer-constant: Warning Options. (line 1114) * Wnoexcept: C++ Dialect Options. ! (line 515) * Wnon-template-friend: C++ Dialect Options. ! (line 587) * Wnon-virtual-dtor: C++ Dialect Options. ! (line 521) ! * Wnonnull: Warning Options. (line 334) ! * Wnormalized=: Warning Options. (line 1270) * Wold-style-cast: C++ Dialect Options. ! (line 603) ! * Wold-style-declaration: Warning Options. (line 1208) ! * Wold-style-definition: Warning Options. (line 1214) ! * Woverflow: Warning Options. (line 1322) ! * Woverlength-strings: Warning Options. (line 1495) * Woverloaded-virtual: C++ Dialect Options. ! (line 609) ! * Woverride-init: Warning Options. (line 1325) * Wp: Preprocessor Options. (line 14) ! * Wpacked: Warning Options. (line 1333) ! * Wpacked-bitfield-compat: Warning Options. (line 1350) ! * Wpadded: Warning Options. (line 1367) ! * Wparentheses: Warning Options. (line 402) ! * Wpedantic: Warning Options. (line 71) ! * Wpedantic-ms-format: Warning Options. (line 1018) * Wpmf-conversions: C++ Dialect Options. ! (line 628) ! * Wpointer-arith: Warning Options. (line 1024) * Wpointer-arith <1>: Pointer Arith. (line 13) ! * Wpointer-sign: Warning Options. (line 1480) ! * Wpointer-to-int-cast: Warning Options. (line 1418) ! * Wpragmas: Warning Options. (line 689) * Wprotocol: Objective-C and Objective-C++ Dialect Options. (line 161) * wrapper: Overall Options. (line 341) ! * Wredundant-decls: Warning Options. (line 1374) * Wreorder: C++ Dialect Options. ! (line 527) ! * Wreturn-local-addr: Warning Options. (line 497) ! * Wreturn-type: Warning Options. (line 501) * Wselector: Objective-C and Objective-C++ Dialect Options. (line 171) ! * Wsequence-point: Warning Options. (line 451) ! * Wshadow: Warning Options. (line 969) ! * Wsign-compare: Warning Options. (line 1142) ! * Wsign-conversion: Warning Options. (line 1149) * Wsign-promo: C++ Dialect Options. ! (line 632) ! * Wsizeof-pointer-memaccess: Warning Options. (line 1155) ! * Wstack-protector: Warning Options. (line 1486) ! * Wstack-usage: Warning Options. (line 992) ! * Wstrict-aliasing: Warning Options. (line 694) ! * Wstrict-aliasing=n: Warning Options. (line 701) * Wstrict-null-sentinel: C++ Dialect Options. ! (line 580) ! * Wstrict-overflow: Warning Options. (line 733) ! * Wstrict-prototypes: Warning Options. (line 1202) * Wstrict-selector-match: Objective-C and Objective-C++ Dialect Options. (line 183) ! * Wsuggest-attribute=: Warning Options. (line 782) ! * Wsuggest-attribute=const: Warning Options. (line 788) ! * Wsuggest-attribute=format: Warning Options. (line 802) ! * Wsuggest-attribute=noreturn: Warning Options. (line 788) ! * Wsuggest-attribute=pure: Warning Options. (line 788) ! * Wswitch: Warning Options. (line 515) ! * Wswitch-default: Warning Options. (line 523) ! * Wswitch-enum: Warning Options. (line 526) ! * Wsync-nand: Warning Options. (line 535) ! * Wsystem-headers: Warning Options. (line 833) * Wsystem-headers <1>: Preprocessor Options. (line 165) ! * Wtraditional: Warning Options. (line 870) * Wtraditional <1>: Preprocessor Options. (line 118) ! * Wtraditional-conversion: Warning Options. (line 947) ! * Wtrampolines: Warning Options. (line 844) ! * Wtrigraphs: Warning Options. (line 540) * Wtrigraphs <1>: Preprocessor Options. (line 106) ! * Wtype-limits: Warning Options. (line 1031) * Wundeclared-selector: Objective-C and Objective-C++ Dialect Options. (line 191) + * Wundef: Warning Options. (line 962) * Wundef <1>: Preprocessor Options. (line 124) ! * Wuninitialized: Warning Options. (line 617) ! * Wunknown-pragmas: Warning Options. (line 682) ! * Wunsafe-loop-optimizations: Warning Options. (line 1012) ! * Wunsuffixed-float-constants: Warning Options. (line 1510) ! * Wunused: Warning Options. (line 610) ! * Wunused-but-set-parameter: Warning Options. (line 545) ! * Wunused-but-set-variable: Warning Options. (line 554) ! * Wunused-function: Warning Options. (line 564) ! * Wunused-label: Warning Options. (line 569) ! * Wunused-local-typedefs: Warning Options. (line 576) * Wunused-macros: Preprocessor Options. (line 129) ! * Wunused-parameter: Warning Options. (line 580) ! * Wunused-result: Warning Options. (line 587) ! * Wunused-value: Warning Options. (line 600) ! * Wunused-variable: Warning Options. (line 592) ! * Wuseless-cast: Warning Options. (line 1118) ! * Wvarargs: Warning Options. (line 1437) ! * Wvariadic-macros: Warning Options. (line 1431) ! * Wvector-operation-performance: Warning Options. (line 1442) ! * Wvirtual-move-assign: Warning Options. (line 1452) ! * Wvla: Warning Options. (line 1461) ! * Wvolatile-register-var: Warning Options. (line 1465) ! * Wwrite-strings: Warning Options. (line 1075) ! * Wzero-as-null-pointer-constant: Warning Options. (line 1114) * x: Overall Options. (line 126) + * x <1>: Preprocessor Options. + (line 324) * Xassembler: Assembler Options. (line 13) * Xbind-lazy: VxWorks Options. (line 26) * Xbind-now: VxWorks Options. (line 30) ! * Xlinker: Link Options. (line 202) * Xpreprocessor: Preprocessor Options. (line 25) * Ym: System V Options. (line 26) *************** Keyword Index *** 50985,51252 **** [index] * Menu: ! * ! in constraint: Multi-Alternative. (line 33) ! * # in constraint: Modifiers. (line 57) ! * #pragma: Pragmas. (line 6) * #pragma implementation: C++ Interface. (line 39) ! * #pragma implementation, implied: C++ Interface. (line 46) * #pragma interface: C++ Interface. (line 20) ! * #pragma, reason for not using: Function Attributes. ! (line 1870) * $: Dollar Signs. (line 6) ! * % in constraint: Modifiers. (line 45) ! * %include: Spec Files. (line 27) ! * %include_noerr: Spec Files. (line 31) ! * %rename: Spec Files. (line 35) ! * & in constraint: Modifiers. (line 25) ! * ': Incompatibilities. (line 116) ! * * in constraint: Modifiers. (line 62) ! * *__builtin_assume_aligned: Other Builtins. (line 339) ! * + in constraint: Modifiers. (line 12) ! * -lgcc, use with -nodefaultlibs: Link Options. (line 85) ! * -lgcc, use with -nostdlib: Link Options. (line 85) ! * -march feature modifiers: AArch64 Options. (line 92) ! * -mcpu feature modifiers: AArch64 Options. (line 92) ! * -nodefaultlibs and unresolved references: Link Options. (line 85) ! * -nostdlib and unresolved references: Link Options. (line 85) * .sdata/.sdata2 references (PowerPC): RS/6000 and PowerPC Options. ! (line 662) ! * //: C++ Comments. (line 6) ! * 0 in constraint: Simple Constraints. (line 127) ! * < in constraint: Simple Constraints. (line 48) ! * = in constraint: Modifiers. (line 8) ! * > in constraint: Simple Constraints. (line 61) ! * ? in constraint: Multi-Alternative. (line 27) ! * ?: extensions: Conditionals. (line 6) ! * ?: side effect: Conditionals. (line 20) ! * _ in variables in macros: Typeof. (line 46) ! * __atomic_add_fetch: __atomic Builtins. (line 169) ! * __atomic_always_lock_free: __atomic Builtins. (line 242) ! * __atomic_and_fetch: __atomic Builtins. (line 173) ! * __atomic_clear: __atomic Builtins. (line 219) ! * __atomic_compare_exchange: __atomic Builtins. (line 161) ! * __atomic_compare_exchange_n: __atomic Builtins. (line 138) ! * __atomic_exchange: __atomic Builtins. (line 130) ! * __atomic_exchange_n: __atomic Builtins. (line 119) ! * __atomic_fetch_add: __atomic Builtins. (line 189) ! * __atomic_fetch_and: __atomic Builtins. (line 193) ! * __atomic_fetch_nand: __atomic Builtins. (line 199) ! * __atomic_fetch_or: __atomic Builtins. (line 197) ! * __atomic_fetch_sub: __atomic Builtins. (line 191) ! * __atomic_fetch_xor: __atomic Builtins. (line 195) ! * __atomic_is_lock_free: __atomic Builtins. (line 256) ! * __atomic_load: __atomic Builtins. (line 98) ! * __atomic_load_n: __atomic Builtins. (line 89) ! * __atomic_nand_fetch: __atomic Builtins. (line 179) ! * __atomic_or_fetch: __atomic Builtins. (line 177) ! * __atomic_signal_fence: __atomic Builtins. (line 234) ! * __atomic_store: __atomic Builtins. (line 113) ! * __atomic_store_n: __atomic Builtins. (line 104) ! * __atomic_sub_fetch: __atomic Builtins. (line 171) ! * __atomic_test_and_set: __atomic Builtins. (line 210) ! * __atomic_thread_fence: __atomic Builtins. (line 227) ! * __atomic_xor_fetch: __atomic Builtins. (line 175) ! * __builtin___clear_cache: Other Builtins. (line 372) ! * __builtin___fprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___memcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___memmove_chk: Object Size Checking. ! (line 6) ! * __builtin___mempcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___memset_chk: Object Size Checking. ! (line 6) ! * __builtin___printf_chk: Object Size Checking. ! (line 6) ! * __builtin___snprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___sprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___stpcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___strcat_chk: Object Size Checking. ! (line 6) ! * __builtin___strcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___strncat_chk: Object Size Checking. ! (line 6) ! * __builtin___strncpy_chk: Object Size Checking. ! (line 6) ! * __builtin___vfprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___vprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___vsnprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___vsprintf_chk: Object Size Checking. ! (line 6) ! * __builtin_apply: Constructing Calls. (line 31) ! * __builtin_apply_args: Constructing Calls. (line 20) ! * __builtin_bswap16: Other Builtins. (line 603) ! * __builtin_bswap32: Other Builtins. (line 607) ! * __builtin_bswap64: Other Builtins. (line 611) ! * __builtin_choose_expr: Other Builtins. (line 157) ! * __builtin_clrsb: Other Builtins. (line 532) ! * __builtin_clrsbl: Other Builtins. (line 555) ! * __builtin_clrsbll: Other Builtins. (line 578) ! * __builtin_clz: Other Builtins. (line 524) ! * __builtin_clzl: Other Builtins. (line 547) ! * __builtin_clzll: Other Builtins. (line 570) ! * __builtin_complex: Other Builtins. (line 197) ! * __builtin_constant_p: Other Builtins. (line 207) * __builtin_cpu_init: X86 Built-in Functions. ! (line 63) * __builtin_cpu_is: X86 Built-in Functions. ! (line 92) * __builtin_cpu_supports: X86 Built-in Functions. ! (line 161) ! * __builtin_ctz: Other Builtins. (line 528) ! * __builtin_ctzl: Other Builtins. (line 551) ! * __builtin_ctzll: Other Builtins. (line 574) ! * __builtin_expect: Other Builtins. (line 257) ! * __builtin_extract_return_addr: Return Address. (line 36) ! * __builtin_ffs: Other Builtins. (line 520) ! * __builtin_ffsl: Other Builtins. (line 543) ! * __builtin_ffsll: Other Builtins. (line 566) ! * __builtin_FILE: Other Builtins. (line 366) * __builtin_fpclassify: Other Builtins. (line 6) ! * __builtin_frame_address: Return Address. (line 49) ! * __builtin_frob_return_address: Return Address. (line 45) ! * __builtin_FUNCTION: Other Builtins. (line 361) ! * __builtin_huge_val: Other Builtins. (line 423) ! * __builtin_huge_valf: Other Builtins. (line 428) ! * __builtin_huge_vall: Other Builtins. (line 431) * __builtin_huge_valq: X86 Built-in Functions. (line 57) ! * __builtin_inf: Other Builtins. (line 446) ! * __builtin_infd128: Other Builtins. (line 456) ! * __builtin_infd32: Other Builtins. (line 450) ! * __builtin_infd64: Other Builtins. (line 453) ! * __builtin_inff: Other Builtins. (line 460) ! * __builtin_infl: Other Builtins. (line 465) * __builtin_infq: X86 Built-in Functions. ! (line 53) * __builtin_isfinite: Other Builtins. (line 6) * __builtin_isgreater: Other Builtins. (line 6) * __builtin_isgreaterequal: Other Builtins. (line 6) * __builtin_isinf_sign: Other Builtins. (line 6) * __builtin_isless: Other Builtins. (line 6) * __builtin_islessequal: Other Builtins. (line 6) * __builtin_islessgreater: Other Builtins. (line 6) * __builtin_isnormal: Other Builtins. (line 6) * __builtin_isunordered: Other Builtins. (line 6) ! * __builtin_LINE: Other Builtins. (line 356) ! * __builtin_nan: Other Builtins. (line 476) ! * __builtin_nand128: Other Builtins. (line 498) ! * __builtin_nand32: Other Builtins. (line 492) ! * __builtin_nand64: Other Builtins. (line 495) ! * __builtin_nanf: Other Builtins. (line 502) ! * __builtin_nanl: Other Builtins. (line 505) ! * __builtin_nans: Other Builtins. (line 509) ! * __builtin_nansf: Other Builtins. (line 513) ! * __builtin_nansl: Other Builtins. (line 516) * __builtin_object_size: Object Size Checking. (line 6) * __builtin_offsetof: Offsetof. (line 6) ! * __builtin_parity: Other Builtins. (line 540) ! * __builtin_parityl: Other Builtins. (line 562) ! * __builtin_parityll: Other Builtins. (line 586) ! * __builtin_popcount: Other Builtins. (line 537) ! * __builtin_popcountl: Other Builtins. (line 558) ! * __builtin_popcountll: Other Builtins. (line 582) * __builtin_powi: Other Builtins. (line 6) * __builtin_powif: Other Builtins. (line 6) * __builtin_powil: Other Builtins. (line 6) ! * __builtin_prefetch: Other Builtins. (line 384) ! * __builtin_return: Constructing Calls. (line 48) ! * __builtin_return_address: Return Address. (line 11) * __builtin_rx_brk: RX Built-in Functions. ! (line 11) * __builtin_rx_clrpsw: RX Built-in Functions. ! (line 14) * __builtin_rx_int: RX Built-in Functions. ! (line 18) * __builtin_rx_machi: RX Built-in Functions. ! (line 22) * __builtin_rx_maclo: RX Built-in Functions. ! (line 27) * __builtin_rx_mulhi: RX Built-in Functions. ! (line 32) * __builtin_rx_mullo: RX Built-in Functions. ! (line 37) * __builtin_rx_mvfachi: RX Built-in Functions. ! (line 42) * __builtin_rx_mvfacmi: RX Built-in Functions. ! (line 46) * __builtin_rx_mvfc: RX Built-in Functions. ! (line 50) * __builtin_rx_mvtachi: RX Built-in Functions. ! (line 54) * __builtin_rx_mvtaclo: RX Built-in Functions. ! (line 58) * __builtin_rx_mvtc: RX Built-in Functions. ! (line 62) * __builtin_rx_mvtipl: RX Built-in Functions. ! (line 66) * __builtin_rx_racw: RX Built-in Functions. ! (line 70) * __builtin_rx_revw: RX Built-in Functions. ! (line 74) * __builtin_rx_rmpa: RX Built-in Functions. ! (line 79) * __builtin_rx_round: RX Built-in Functions. ! (line 83) * __builtin_rx_sat: RX Built-in Functions. ! (line 88) * __builtin_rx_setpsw: RX Built-in Functions. ! (line 92) * __builtin_rx_wait: RX Built-in Functions. ! (line 96) * __builtin_set_thread_pointer: SH Built-in Functions. ! (line 10) * __builtin_thread_pointer: SH Built-in Functions. ! (line 20) ! * __builtin_trap: Other Builtins. (line 281) ! * __builtin_types_compatible_p: Other Builtins. (line 111) ! * __builtin_unreachable: Other Builtins. (line 288) ! * __builtin_va_arg_pack: Constructing Calls. (line 53) ! * __builtin_va_arg_pack_len: Constructing Calls. (line 76) ! * __complex__ keyword: Complex. (line 6) ! * __declspec(dllexport): Function Attributes. ! (line 258) ! * __declspec(dllimport): Function Attributes. ! (line 293) ! * __ea SPU Named Address Spaces: Named Address Spaces. (line 155) * __extension__: Alternate Keywords. (line 30) ! * __far M32C Named Address Spaces: Named Address Spaces. ! (line 139) ! * __far RL78 Named Address Spaces: Named Address Spaces. (line 147) ! * __flash AVR Named Address Spaces: Named Address Spaces. (line 31) ! * __flash1 AVR Named Address Spaces: Named Address Spaces. (line 40) ! * __flash2 AVR Named Address Spaces: Named Address Spaces. (line 40) ! * __flash3 AVR Named Address Spaces: Named Address Spaces. (line 40) ! * __flash4 AVR Named Address Spaces: Named Address Spaces. (line 40) ! * __flash5 AVR Named Address Spaces: Named Address Spaces. (line 40) ! * __float128 data type: Floating Types. (line 6) ! * __float80 data type: Floating Types. (line 6) ! * __fp16 data type: Half-Precision. (line 6) ! * __func__ identifier: Function Names. (line 6) ! * __FUNCTION__ identifier: Function Names. (line 6) ! * __imag__ keyword: Complex. (line 27) ! * __int128 data types: __int128. (line 6) ! * __memx AVR Named Address Spaces: Named Address Spaces. (line 46) ! * __PRETTY_FUNCTION__ identifier: Function Names. (line 6) ! * __real__ keyword: Complex. (line 27) * __STDC_HOSTED__: Standards. (line 13) * __sync_add_and_fetch: __sync Builtins. (line 60) * __sync_and_and_fetch: __sync Builtins. (line 60) --- 50769,51082 ---- [index] * Menu: ! * '!' in constraint: Multi-Alternative. (line 33) ! * '#' in constraint: Modifiers. (line 57) ! * '#pragma': Pragmas. (line 6) * #pragma implementation: C++ Interface. (line 39) ! * '#pragma implementation', implied: C++ Interface. (line 46) * #pragma interface: C++ Interface. (line 20) ! * '#pragma', reason for not using: Function Attributes. ! (line 1866) * $: Dollar Signs. (line 6) ! * '%' in constraint: Modifiers. (line 45) ! * '%include': Spec Files. (line 26) ! * '%include_noerr': Spec Files. (line 30) ! * '%rename': Spec Files. (line 34) ! * '&' in constraint: Modifiers. (line 25) ! * ''': Incompatibilities. (line 116) ! * '*' in constraint: Modifiers. (line 62) ! * *__builtin_assume_aligned: Other Builtins. (line 332) ! * '+' in constraint: Modifiers. (line 12) ! * '-lgcc', use with '-nodefaultlibs': Link Options. (line 85) ! * '-lgcc', use with '-nostdlib': Link Options. (line 85) ! * '-march' feature modifiers: AArch64 Options. (line 91) ! * '-mcpu' feature modifiers: AArch64 Options. (line 91) ! * '-nodefaultlibs' and unresolved references: Link Options. (line 85) ! * '-nostdlib' and unresolved references: Link Options. (line 85) * .sdata/.sdata2 references (PowerPC): RS/6000 and PowerPC Options. ! (line 658) ! * '//': C++ Comments. (line 6) ! * '0' in constraint: Simple Constraints. (line 125) ! * '<' in constraint: Simple Constraints. (line 47) ! * '=' in constraint: Modifiers. (line 8) ! * '>' in constraint: Simple Constraints. (line 59) ! * '?' in constraint: Multi-Alternative. (line 27) ! * '?:' extensions: Conditionals. (line 6) ! * '?:' side effect: Conditionals. (line 20) ! * '_' in variables in macros: Typeof. (line 46) ! * '_Accum' data type: Fixed-Point. (line 6) ! * '_Complex' keyword: Complex. (line 6) ! * '_Decimal128' data type: Decimal Float. (line 6) ! * '_Decimal32' data type: Decimal Float. (line 6) ! * '_Decimal64' data type: Decimal Float. (line 6) ! * _Exit: Other Builtins. (line 6) ! * _exit: Other Builtins. (line 6) ! * '_Fract' data type: Fixed-Point. (line 6) ! * _HTM_FIRST_USER_ABORT_CODE: S/390 System z Built-in Functions. ! (line 44) ! * '_Sat' data type: Fixed-Point. (line 6) ! * _xabort: X86 transactional memory intrinsics. ! (line 61) ! * _xbegin: X86 transactional memory intrinsics. ! (line 19) ! * _xend: X86 transactional memory intrinsics. ! (line 52) ! * _xtest: X86 transactional memory intrinsics. ! (line 57) ! * __atomic_add_fetch: __atomic Builtins. (line 153) ! * __atomic_always_lock_free: __atomic Builtins. (line 230) ! * __atomic_and_fetch: __atomic Builtins. (line 157) ! * __atomic_clear: __atomic Builtins. (line 204) ! * __atomic_compare_exchange: __atomic Builtins. (line 145) ! * __atomic_compare_exchange_n: __atomic Builtins. (line 124) ! * __atomic_exchange: __atomic Builtins. (line 118) ! * __atomic_exchange_n: __atomic Builtins. (line 108) ! * __atomic_fetch_add: __atomic Builtins. (line 172) ! * __atomic_fetch_and: __atomic Builtins. (line 176) ! * __atomic_fetch_nand: __atomic Builtins. (line 182) ! * __atomic_fetch_or: __atomic Builtins. (line 180) ! * __atomic_fetch_sub: __atomic Builtins. (line 174) ! * __atomic_fetch_xor: __atomic Builtins. (line 178) ! * __atomic_is_lock_free: __atomic Builtins. (line 244) ! * __atomic_load: __atomic Builtins. (line 90) ! * __atomic_load_n: __atomic Builtins. (line 83) ! * __atomic_nand_fetch: __atomic Builtins. (line 163) ! * __atomic_or_fetch: __atomic Builtins. (line 161) ! * __atomic_signal_fence: __atomic Builtins. (line 223) ! * __atomic_store: __atomic Builtins. (line 103) ! * __atomic_store_n: __atomic Builtins. (line 95) ! * __atomic_sub_fetch: __atomic Builtins. (line 155) ! * __atomic_test_and_set: __atomic Builtins. (line 192) ! * __atomic_thread_fence: __atomic Builtins. (line 216) ! * __atomic_xor_fetch: __atomic Builtins. (line 159) ! * __builtin_apply: Constructing Calls. (line 29) ! * __builtin_apply_args: Constructing Calls. (line 19) ! * __builtin_bswap16: Other Builtins. (line 597) ! * __builtin_bswap32: Other Builtins. (line 601) ! * __builtin_bswap64: Other Builtins. (line 605) ! * __builtin_choose_expr: Other Builtins. (line 154) ! * __builtin_clrsb: Other Builtins. (line 526) ! * __builtin_clrsbl: Other Builtins. (line 549) ! * __builtin_clrsbll: Other Builtins. (line 572) ! * __builtin_clz: Other Builtins. (line 518) ! * __builtin_clzl: Other Builtins. (line 541) ! * __builtin_clzll: Other Builtins. (line 564) ! * __builtin_complex: Other Builtins. (line 194) ! * __builtin_constant_p: Other Builtins. (line 203) * __builtin_cpu_init: X86 Built-in Functions. ! (line 62) * __builtin_cpu_is: X86 Built-in Functions. ! (line 90) * __builtin_cpu_supports: X86 Built-in Functions. ! (line 159) ! * __builtin_ctz: Other Builtins. (line 522) ! * __builtin_ctzl: Other Builtins. (line 545) ! * __builtin_ctzll: Other Builtins. (line 568) ! * __builtin_expect: Other Builtins. (line 252) ! * __builtin_extract_return_addr: Return Address. (line 35) ! * __builtin_ffs: Other Builtins. (line 514) ! * __builtin_ffsl: Other Builtins. (line 537) ! * __builtin_ffsll: Other Builtins. (line 560) ! * __builtin_FILE: Other Builtins. (line 360) * __builtin_fpclassify: Other Builtins. (line 6) ! * __builtin_fpclassify <1>: Other Builtins. (line 429) ! * __builtin_frame_address: Return Address. (line 47) ! * __builtin_frob_return_address: Return Address. (line 44) ! * __builtin_FUNCTION: Other Builtins. (line 355) ! * __builtin_huge_val: Other Builtins. (line 417) ! * __builtin_huge_valf: Other Builtins. (line 422) ! * __builtin_huge_vall: Other Builtins. (line 425) * __builtin_huge_valq: X86 Built-in Functions. (line 57) ! * __builtin_inf: Other Builtins. (line 440) ! * __builtin_infd128: Other Builtins. (line 450) ! * __builtin_infd32: Other Builtins. (line 444) ! * __builtin_infd64: Other Builtins. (line 447) ! * __builtin_inff: Other Builtins. (line 454) ! * __builtin_infl: Other Builtins. (line 459) * __builtin_infq: X86 Built-in Functions. ! (line 54) * __builtin_isfinite: Other Builtins. (line 6) * __builtin_isgreater: Other Builtins. (line 6) * __builtin_isgreaterequal: Other Builtins. (line 6) * __builtin_isinf_sign: Other Builtins. (line 6) + * __builtin_isinf_sign <1>: Other Builtins. (line 463) * __builtin_isless: Other Builtins. (line 6) * __builtin_islessequal: Other Builtins. (line 6) * __builtin_islessgreater: Other Builtins. (line 6) * __builtin_isnormal: Other Builtins. (line 6) * __builtin_isunordered: Other Builtins. (line 6) ! * __builtin_LINE: Other Builtins. (line 350) ! * __builtin_nan: Other Builtins. (line 470) ! * __builtin_nand128: Other Builtins. (line 492) ! * __builtin_nand32: Other Builtins. (line 486) ! * __builtin_nand64: Other Builtins. (line 489) ! * __builtin_nanf: Other Builtins. (line 496) ! * __builtin_nanl: Other Builtins. (line 499) ! * __builtin_nans: Other Builtins. (line 503) ! * __builtin_nansf: Other Builtins. (line 507) ! * __builtin_nansl: Other Builtins. (line 510) ! * __builtin_non_tx_store: S/390 System z Built-in Functions. ! (line 98) * __builtin_object_size: Object Size Checking. (line 6) + * __builtin_object_size <1>: Object Size Checking. + (line 9) * __builtin_offsetof: Offsetof. (line 6) ! * __builtin_parity: Other Builtins. (line 534) ! * __builtin_parityl: Other Builtins. (line 556) ! * __builtin_parityll: Other Builtins. (line 580) ! * __builtin_popcount: Other Builtins. (line 531) ! * __builtin_popcountl: Other Builtins. (line 552) ! * __builtin_popcountll: Other Builtins. (line 576) * __builtin_powi: Other Builtins. (line 6) + * __builtin_powi <1>: Other Builtins. (line 584) * __builtin_powif: Other Builtins. (line 6) + * __builtin_powif <1>: Other Builtins. (line 589) * __builtin_powil: Other Builtins. (line 6) ! * __builtin_powil <1>: Other Builtins. (line 593) ! * __builtin_prefetch: Other Builtins. (line 378) ! * __builtin_return: Constructing Calls. (line 47) ! * __builtin_return_address: Return Address. (line 9) * __builtin_rx_brk: RX Built-in Functions. ! (line 10) * __builtin_rx_clrpsw: RX Built-in Functions. ! (line 13) * __builtin_rx_int: RX Built-in Functions. ! (line 17) * __builtin_rx_machi: RX Built-in Functions. ! (line 21) * __builtin_rx_maclo: RX Built-in Functions. ! (line 26) * __builtin_rx_mulhi: RX Built-in Functions. ! (line 31) * __builtin_rx_mullo: RX Built-in Functions. ! (line 36) * __builtin_rx_mvfachi: RX Built-in Functions. ! (line 41) * __builtin_rx_mvfacmi: RX Built-in Functions. ! (line 45) * __builtin_rx_mvfc: RX Built-in Functions. ! (line 49) * __builtin_rx_mvtachi: RX Built-in Functions. ! (line 53) * __builtin_rx_mvtaclo: RX Built-in Functions. ! (line 57) * __builtin_rx_mvtc: RX Built-in Functions. ! (line 61) * __builtin_rx_mvtipl: RX Built-in Functions. ! (line 65) * __builtin_rx_racw: RX Built-in Functions. ! (line 69) * __builtin_rx_revw: RX Built-in Functions. ! (line 73) * __builtin_rx_rmpa: RX Built-in Functions. ! (line 78) * __builtin_rx_round: RX Built-in Functions. ! (line 82) * __builtin_rx_sat: RX Built-in Functions. ! (line 87) * __builtin_rx_setpsw: RX Built-in Functions. ! (line 91) * __builtin_rx_wait: RX Built-in Functions. ! (line 95) * __builtin_set_thread_pointer: SH Built-in Functions. ! (line 9) ! * __builtin_tabort: S/390 System z Built-in Functions. ! (line 82) ! * __builtin_tbegin: S/390 System z Built-in Functions. ! (line 6) ! * __builtin_tbeginc: S/390 System z Built-in Functions. ! (line 73) ! * __builtin_tbegin_nofloat: S/390 System z Built-in Functions. ! (line 54) ! * __builtin_tbegin_retry: S/390 System z Built-in Functions. ! (line 60) ! * __builtin_tbegin_retry_nofloat: S/390 System z Built-in Functions. ! (line 67) ! * __builtin_tend: S/390 System z Built-in Functions. ! (line 77) * __builtin_thread_pointer: SH Built-in Functions. ! (line 18) ! * __builtin_trap: Other Builtins. (line 276) ! * __builtin_tx_assist: S/390 System z Built-in Functions. ! (line 87) ! * __builtin_tx_nesting_depth: S/390 System z Built-in Functions. ! (line 93) ! * __builtin_types_compatible_p: Other Builtins. (line 109) ! * __builtin_unreachable: Other Builtins. (line 283) ! * __builtin_va_arg_pack: Constructing Calls. (line 52) ! * __builtin_va_arg_pack_len: Constructing Calls. (line 75) ! * __builtin___clear_cache: Other Builtins. (line 365) ! * __builtin___fprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___memcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___memmove_chk: Object Size Checking. ! (line 6) ! * __builtin___mempcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___memset_chk: Object Size Checking. ! (line 6) ! * __builtin___printf_chk: Object Size Checking. ! (line 6) ! * __builtin___snprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___sprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___stpcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___strcat_chk: Object Size Checking. ! (line 6) ! * __builtin___strcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___strncat_chk: Object Size Checking. ! (line 6) ! * __builtin___strncpy_chk: Object Size Checking. ! (line 6) ! * __builtin___vfprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___vprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___vsnprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___vsprintf_chk: Object Size Checking. ! (line 6) ! * '__complex__' keyword: Complex. (line 6) ! * '__declspec(dllexport)': Function Attributes. ! (line 256) ! * '__declspec(dllimport)': Function Attributes. ! (line 289) ! * '__ea' SPU Named Address Spaces: Named Address Spaces. (line 155) * __extension__: Alternate Keywords. (line 30) ! * '__far' M32C Named Address Spaces: Named Address Spaces. ! (line 138) ! * '__far' RL78 Named Address Spaces: Named Address Spaces. (line 147) ! * '__flash' AVR Named Address Spaces: Named Address Spaces. (line 31) ! * '__flash1' AVR Named Address Spaces: Named Address Spaces. (line 40) ! * '__flash2' AVR Named Address Spaces: Named Address Spaces. (line 40) ! * '__flash3' AVR Named Address Spaces: Named Address Spaces. (line 40) ! * '__flash4' AVR Named Address Spaces: Named Address Spaces. (line 40) ! * '__flash5' AVR Named Address Spaces: Named Address Spaces. (line 40) ! * '__float128' data type: Floating Types. (line 6) ! * '__float80' data type: Floating Types. (line 6) ! * '__fp16' data type: Half-Precision. (line 6) ! * '__FUNCTION__' identifier: Function Names. (line 6) ! * '__func__' identifier: Function Names. (line 6) ! * '__imag__' keyword: Complex. (line 27) ! * '__int128' data types: __int128. (line 6) ! * '__memx' AVR Named Address Spaces: Named Address Spaces. (line 46) ! * '__PRETTY_FUNCTION__' identifier: Function Names. (line 6) ! * '__real__' keyword: Complex. (line 27) * __STDC_HOSTED__: Standards. (line 13) * __sync_add_and_fetch: __sync Builtins. (line 60) * __sync_and_and_fetch: __sync Builtins. (line 60) *************** Keyword Index *** 51265,51295 **** * __sync_synchronize: __sync Builtins. (line 80) * __sync_val_compare_and_swap: __sync Builtins. (line 71) * __sync_xor_and_fetch: __sync Builtins. (line 60) ! * __thread: Thread-Local. (line 6) ! * _Accum data type: Fixed-Point. (line 6) ! * _Complex keyword: Complex. (line 6) ! * _Decimal128 data type: Decimal Float. (line 6) ! * _Decimal32 data type: Decimal Float. (line 6) ! * _Decimal64 data type: Decimal Float. (line 6) ! * _exit: Other Builtins. (line 6) ! * _Exit: Other Builtins. (line 6) ! * _Fract data type: Fixed-Point. (line 6) ! * _Sat data type: Fixed-Point. (line 6) ! * _xabort: X86 transactional memory intrinsics. ! (line 68) ! * _xbegin: X86 transactional memory intrinsics. ! (line 20) ! * _xend: X86 transactional memory intrinsics. ! (line 59) ! * _xtest: X86 transactional memory intrinsics. ! (line 64) * AArch64 Options: AArch64 Options. (line 6) * ABI: Compatibility. (line 6) ! * abi_tag attribute: C++ Attributes. (line 9) * abort: Other Builtins. (line 6) * abs: Other Builtins. (line 6) - * accessing volatiles <1>: C++ Volatiles. (line 6) * accessing volatiles: Volatiles. (line 6) * acos: Other Builtins. (line 6) * acosf: Other Builtins. (line 6) * acosh: Other Builtins. (line 6) --- 51095,51108 ---- * __sync_synchronize: __sync Builtins. (line 80) * __sync_val_compare_and_swap: __sync Builtins. (line 71) * __sync_xor_and_fetch: __sync Builtins. (line 60) ! * '__thread': Thread-Local. (line 6) * AArch64 Options: AArch64 Options. (line 6) * ABI: Compatibility. (line 6) ! * 'abi_tag' attribute: C++ Attributes. (line 9) * abort: Other Builtins. (line 6) * abs: Other Builtins. (line 6) * accessing volatiles: Volatiles. (line 6) + * accessing volatiles <1>: C++ Volatiles. (line 6) * acos: Other Builtins. (line 6) * acosf: Other Builtins. (line 6) * acosh: Other Builtins. (line 6) *************** Keyword Index *** 51297,51322 **** * acoshl: Other Builtins. (line 6) * acosl: Other Builtins. (line 6) * Ada: G++ and GCC. (line 6) * additional floating types: Floating Types. (line 6) ! * address constraints: Simple Constraints. (line 154) * address of a label: Labels as Values. (line 6) ! * address_operand: Simple Constraints. (line 158) ! * alias attribute: Function Attributes. (line 37) ! * aligned attribute <1>: Type Attributes. (line 31) ! * aligned attribute <2>: Variable Attributes. ! (line 23) ! * aligned attribute: Function Attributes. (line 50) * alignment: Alignment. (line 6) - * alloc_size attribute: Function Attributes. - (line 70) * alloca: Other Builtins. (line 6) ! * alloca vs variable-length arrays: Variable Length. (line 26) * Allow nesting in an interrupt handler on the Blackfin processor.: Function Attributes. ! (line 935) * alternate keywords: Alternate Keywords. (line 6) ! * always_inline function attribute: Function Attributes. (line 91) * AMD x86-64 Options: i386 and x86-64 Options. (line 6) --- 51110,51136 ---- * acoshl: Other Builtins. (line 6) * acosl: Other Builtins. (line 6) * Ada: G++ and GCC. (line 6) + * Ada <1>: G++ and GCC. (line 30) * additional floating types: Floating Types. (line 6) ! * address constraints: Simple Constraints. (line 152) * address of a label: Labels as Values. (line 6) ! * address_operand: Simple Constraints. (line 156) ! * 'alias' attribute: Function Attributes. (line 37) ! * 'aligned' attribute: Function Attributes. (line 50) + * 'aligned' attribute <1>: Variable Attributes. + (line 23) + * 'aligned' attribute <2>: Type Attributes. (line 31) * alignment: Alignment. (line 6) * alloca: Other Builtins. (line 6) ! * 'alloca' vs variable-length arrays: Variable Length. (line 26) ! * 'alloc_size' attribute: Function Attributes. ! (line 70) * Allow nesting in an interrupt handler on the Blackfin processor.: Function Attributes. ! (line 933) * alternate keywords: Alternate Keywords. (line 6) ! * 'always_inline' function attribute: Function Attributes. (line 91) * AMD x86-64 Options: i386 and x86-64 Options. (line 6) *************** Keyword Index *** 51328,51349 **** * ANSI X3.159-1989: Standards. (line 13) * apostrophes: Incompatibilities. (line 116) * application binary interface: Compatibility. (line 6) * ARM [Annotated C++ Reference Manual]: Backwards Compatibility. (line 6) - * ARM options: ARM Options. (line 6) * arrays of length zero: Zero Length. (line 6) * arrays of variable length: Variable Length. (line 6) * arrays, non-lvalue: Subscripting. (line 6) ! * artificial function attribute: Function Attributes. ! (line 134) * asin: Other Builtins. (line 6) * asinf: Other Builtins. (line 6) * asinh: Other Builtins. (line 6) * asinhf: Other Builtins. (line 6) * asinhl: Other Builtins. (line 6) * asinl: Other Builtins. (line 6) ! * asm constraints: Constraints. (line 6) ! * asm expressions: Extended Asm. (line 6) * assembler instructions: Extended Asm. (line 6) * assembler names for identifiers: Asm Labels. (line 6) * assembly code, invalid: Bug Criteria. (line 12) --- 51142,51163 ---- * ANSI X3.159-1989: Standards. (line 13) * apostrophes: Incompatibilities. (line 116) * application binary interface: Compatibility. (line 6) + * ARM options: ARM Options. (line 6) * ARM [Annotated C++ Reference Manual]: Backwards Compatibility. (line 6) * arrays of length zero: Zero Length. (line 6) * arrays of variable length: Variable Length. (line 6) * arrays, non-lvalue: Subscripting. (line 6) ! * 'artificial' function attribute: Function Attributes. ! (line 132) * asin: Other Builtins. (line 6) * asinf: Other Builtins. (line 6) * asinh: Other Builtins. (line 6) * asinhf: Other Builtins. (line 6) * asinhl: Other Builtins. (line 6) * asinl: Other Builtins. (line 6) ! * 'asm' constraints: Constraints. (line 6) ! * 'asm' expressions: Extended Asm. (line 6) * assembler instructions: Extended Asm. (line 6) * assembler names for identifiers: Asm Labels. (line 6) * assembly code, invalid: Bug Criteria. (line 12) *************** Keyword Index *** 51361,51390 **** (line 6) * attribute syntax: Attribute Syntax. (line 6) * autoincrement/decrement addressing: Simple Constraints. (line 30) ! * automatic inline for C++ member fns: Inline. (line 71) * AVR Options: AVR Options. (line 6) * Backwards Compatibility: Backwards Compatibility. (line 6) * base class members: Name lookup. (line 6) * bcmp: Other Builtins. (line 6) ! * below100 attribute: Variable Attributes. ! (line 584) * binary compatibility: Compatibility. (line 6) ! * Binary constants using the 0b prefix: Binary constants. (line 6) * Blackfin Options: Blackfin Options. (line 6) * bound pointer to member function: Bound member functions. (line 6) ! * bounds checking: Optimize Options. (line 407) * bug criteria: Bug Criteria. (line 6) * bugs: Bugs. (line 6) * bugs, known: Trouble. (line 6) * built-in functions <1>: Other Builtins. (line 6) - * built-in functions: C Dialect Options. (line 205) * bzero: Other Builtins. (line 6) * C compilation options: Invoking GCC. (line 17) * C intermediate output, nonexistent: G++ and GCC. (line 35) * C language extensions: C Extensions. (line 6) ! * C language, traditional: C Dialect Options. (line 307) * C standard: Standards. (line 13) * C standards: Standards. (line 13) * c++: Invoking G++. (line 14) --- 51175,51204 ---- (line 6) * attribute syntax: Attribute Syntax. (line 6) * autoincrement/decrement addressing: Simple Constraints. (line 30) ! * automatic 'inline' for C++ member fns: Inline. (line 71) * AVR Options: AVR Options. (line 6) * Backwards Compatibility: Backwards Compatibility. (line 6) * base class members: Name lookup. (line 6) * bcmp: Other Builtins. (line 6) ! * 'below100' attribute: Variable Attributes. ! (line 578) * binary compatibility: Compatibility. (line 6) ! * Binary constants using the '0b' prefix: Binary constants. (line 6) * Blackfin Options: Blackfin Options. (line 6) * bound pointer to member function: Bound member functions. (line 6) ! * bounds checking: Optimize Options. (line 404) * bug criteria: Bug Criteria. (line 6) * bugs: Bugs. (line 6) * bugs, known: Trouble. (line 6) + * built-in functions: C Dialect Options. (line 204) * built-in functions <1>: Other Builtins. (line 6) * bzero: Other Builtins. (line 6) * C compilation options: Invoking GCC. (line 17) * C intermediate output, nonexistent: G++ and GCC. (line 35) * C language extensions: C Extensions. (line 6) ! * C language, traditional: C Dialect Options. (line 309) * C standard: Standards. (line 13) * C standards: Standards. (line 13) * c++: Invoking G++. (line 14) *************** Keyword Index *** 51393,51399 **** * C++ compilation options: Invoking GCC. (line 23) * C++ interface and implementation headers: C++ Interface. (line 6) * C++ language extensions: C++ Extensions. (line 6) ! * C++ member fns, automatically inline: Inline. (line 71) * C++ misunderstandings: C++ Misunderstandings. (line 6) * C++ options, command-line: C++ Dialect Options. --- 51207,51213 ---- * C++ compilation options: Invoking GCC. (line 23) * C++ interface and implementation headers: C++ Interface. (line 6) * C++ language extensions: C++ Extensions. (line 6) ! * C++ member fns, automatically 'inline': Inline. (line 71) * C++ misunderstandings: C++ Misunderstandings. (line 6) * C++ options, command-line: C++ Dialect Options. *************** Keyword Index *** 51411,51418 **** * C95: Standards. (line 13) * C99: Standards. (line 13) * C9X: Standards. (line 13) - * C_INCLUDE_PATH: Environment Variables. - (line 130) * cabs: Other Builtins. (line 6) * cabsf: Other Builtins. (line 6) * cabsl: Other Builtins. (line 6) --- 51225,51230 ---- *************** Keyword Index *** 51422,51431 **** * cacoshf: Other Builtins. (line 6) * cacoshl: Other Builtins. (line 6) * cacosl: Other Builtins. (line 6) ! * callee_pop_aggregate_return attribute: Function Attributes. ! (line 893) * calling functions through the function vector on H8/300, M16C, M32C and SH2A processors: Function Attributes. ! (line 532) * calloc: Other Builtins. (line 6) * carg: Other Builtins. (line 6) * cargf: Other Builtins. (line 6) --- 51234,51243 ---- * cacoshf: Other Builtins. (line 6) * cacoshl: Other Builtins. (line 6) * cacosl: Other Builtins. (line 6) ! * 'callee_pop_aggregate_return' attribute: Function Attributes. ! (line 890) * calling functions through the function vector on H8/300, M16C, M32C and SH2A processors: Function Attributes. ! (line 525) * calloc: Other Builtins. (line 6) * carg: Other Builtins. (line 6) * cargf: Other Builtins. (line 6) *************** Keyword Index *** 51464,51476 **** (line 554) * character set, input: Preprocessor Options. (line 567) ! * character set, input normalization: Warning Options. (line 1284) * character set, wide execution: Preprocessor Options. (line 559) * cimag: Other Builtins. (line 6) * cimagf: Other Builtins. (line 6) * cimagl: Other Builtins. (line 6) ! * cleanup attribute: Variable Attributes. (line 89) * clog: Other Builtins. (line 6) * clogf: Other Builtins. (line 6) --- 51276,51288 ---- (line 554) * character set, input: Preprocessor Options. (line 567) ! * character set, input normalization: Warning Options. (line 1270) * character set, wide execution: Preprocessor Options. (line 559) * cimag: Other Builtins. (line 6) * cimagf: Other Builtins. (line 6) * cimagl: Other Builtins. (line 6) ! * 'cleanup' attribute: Variable Attributes. (line 89) * clog: Other Builtins. (line 6) * clogf: Other Builtins. (line 6) *************** Keyword Index *** 51478,51493 **** * COBOL: G++ and GCC. (line 23) * code generation conventions: Code Gen Options. (line 6) * code, mixed with declarations: Mixed Declarations. (line 6) ! * cold function attribute: Function Attributes. ! (line 1158) ! * cold label attribute: Function Attributes. ! (line 1176) * command options: Invoking GCC. (line 6) * comments, C++ style: C++ Comments. (line 6) ! * common attribute: Variable Attributes. ! (line 105) * comparison of signed and unsigned values, warning: Warning Options. ! (line 1156) * compiler bugs, reporting: Bug Reporting. (line 6) * compiler compared to C++ preprocessor: G++ and GCC. (line 35) * compiler options, C++: C++ Dialect Options. --- 51290,51305 ---- * COBOL: G++ and GCC. (line 23) * code generation conventions: Code Gen Options. (line 6) * code, mixed with declarations: Mixed Declarations. (line 6) ! * 'cold' function attribute: Function Attributes. ! (line 1156) ! * 'cold' label attribute: Function Attributes. ! (line 1174) * command options: Invoking GCC. (line 6) * comments, C++ style: C++ Comments. (line 6) ! * 'common' attribute: Variable Attributes. ! (line 104) * comparison of signed and unsigned values, warning: Warning Options. ! (line 1142) * compiler bugs, reporting: Bug Reporting. (line 6) * compiler compared to C++ preprocessor: G++ and GCC. (line 35) * compiler options, C++: C++ Dialect Options. *************** Keyword Index *** 51506,51525 **** * conj: Other Builtins. (line 6) * conjf: Other Builtins. (line 6) * conjl: Other Builtins. (line 6) ! * const applied to function: Function Attributes. (line 6) ! * const function attribute: Function Attributes. ! (line 183) ! * constants in constraints: Simple Constraints. (line 70) * constraint modifier characters: Modifiers. (line 6) ! * constraint, matching: Simple Constraints. (line 139) ! * constraints, asm: Constraints. (line 6) * constraints, machine specific: Machine Constraints. (line 6) * constructing calls: Constructing Calls. (line 6) * constructor expressions: Compound Literals. (line 6) ! * constructor function attribute: Function Attributes. ! (line 211) * contributors: Contributors. (line 6) * copysign: Other Builtins. (line 6) * copysignf: Other Builtins. (line 6) --- 51318,51337 ---- * conj: Other Builtins. (line 6) * conjf: Other Builtins. (line 6) * conjl: Other Builtins. (line 6) ! * 'const' applied to function: Function Attributes. (line 6) ! * 'const' function attribute: Function Attributes. ! (line 181) ! * constants in constraints: Simple Constraints. (line 68) * constraint modifier characters: Modifiers. (line 6) ! * constraint, matching: Simple Constraints. (line 137) ! * constraints, 'asm': Constraints. (line 6) * constraints, machine specific: Machine Constraints. (line 6) * constructing calls: Constructing Calls. (line 6) * constructor expressions: Compound Literals. (line 6) ! * 'constructor' function attribute: Function Attributes. ! (line 209) * contributors: Contributors. (line 6) * copysign: Other Builtins. (line 6) * copysignf: Other Builtins. (line 6) *************** Keyword Index *** 51532,51540 **** * coshl: Other Builtins. (line 6) * cosl: Other Builtins. (line 6) * CPATH: Environment Variables. ! (line 129) * CPLUS_INCLUDE_PATH: Environment Variables. ! (line 131) * cpow: Other Builtins. (line 6) * cpowf: Other Builtins. (line 6) * cpowl: Other Builtins. (line 6) --- 51344,51352 ---- * coshl: Other Builtins. (line 6) * cosl: Other Builtins. (line 6) * CPATH: Environment Variables. ! (line 127) * CPLUS_INCLUDE_PATH: Environment Variables. ! (line 129) * cpow: Other Builtins. (line 6) * cpowf: Other Builtins. (line 6) * cpowl: Other Builtins. (line 6) *************** Keyword Index *** 51562,51571 **** * ctanhf: Other Builtins. (line 6) * ctanhl: Other Builtins. (line 6) * ctanl: Other Builtins. (line 6) * Darwin options: Darwin Options. (line 6) * dcgettext: Other Builtins. (line 6) ! * DD integer suffix: Decimal Float. (line 6) ! * dd integer suffix: Decimal Float. (line 6) * deallocating variable length arrays: Variable Length. (line 22) * debugging information options: Debugging Options. (line 6) * decimal floating types: Decimal Float. (line 6) --- 51374,51385 ---- * ctanhf: Other Builtins. (line 6) * ctanhl: Other Builtins. (line 6) * ctanl: Other Builtins. (line 6) + * C_INCLUDE_PATH: Environment Variables. + (line 128) * Darwin options: Darwin Options. (line 6) * dcgettext: Other Builtins. (line 6) ! * 'dd' integer suffix: Decimal Float. (line 6) ! * 'DD' integer suffix: Decimal Float. (line 6) * deallocating variable length arrays: Variable Length. (line 22) * debugging information options: Debugging Options. (line 6) * decimal floating types: Decimal Float. (line 6) *************** Keyword Index *** 51577,51620 **** * declaring static data in C++: Static Definitions. (line 6) * defining static data in C++: Static Definitions. (line 6) * dependencies for make as output: Environment Variables. ! (line 157) ! * dependencies, make: Preprocessor Options. (line 185) * DEPENDENCIES_OUTPUT: Environment Variables. ! (line 156) * dependent name lookup: Name lookup. (line 6) ! * deprecated attribute: Variable Attributes. ! (line 114) ! * deprecated attribute.: Function Attributes. ! (line 233) * designated initializers: Designated Inits. (line 6) ! * designator lists: Designated Inits. (line 94) * designators: Designated Inits. (line 61) ! * destructor function attribute: Function Attributes. ! (line 211) ! * DF integer suffix: Decimal Float. (line 6) ! * df integer suffix: Decimal Float. (line 6) * dgettext: Other Builtins. (line 6) * diagnostic messages: Language Independent Options. (line 6) * dialect options: C Dialect Options. (line 6) ! * digits in constraint: Simple Constraints. (line 127) * directory options: Directory Options. (line 6) ! * disinterrupt attribute: Function Attributes. ! (line 253) ! * DL integer suffix: Decimal Float. (line 6) ! * dl integer suffix: Decimal Float. (line 6) * dollar signs in identifier names: Dollar Signs. (line 6) * double-word arithmetic: Long Long. (line 6) * downward funargs: Nested Functions. (line 6) * drem: Other Builtins. (line 6) * dremf: Other Builtins. (line 6) * dreml: Other Builtins. (line 6) ! * E in constraint: Simple Constraints. (line 89) * earlyclobber operand: Modifiers. (line 25) * eight-bit data on the H8/300, H8/300H, and H8S: Function Attributes. ! (line 346) ! * EIND: AVR Options. (line 224) * empty structures: Empty Structures. (line 6) * environment variables: Environment Variables. (line 6) --- 51391,51436 ---- * declaring static data in C++: Static Definitions. (line 6) * defining static data in C++: Static Definitions. (line 6) * dependencies for make as output: Environment Variables. ! (line 155) ! * dependencies for make as output <1>: Environment Variables. ! (line 171) ! * dependencies, 'make': Preprocessor Options. (line 185) * DEPENDENCIES_OUTPUT: Environment Variables. ! (line 154) * dependent name lookup: Name lookup. (line 6) ! * 'deprecated' attribute: Variable Attributes. ! (line 113) ! * 'deprecated' attribute.: Function Attributes. ! (line 231) * designated initializers: Designated Inits. (line 6) ! * designator lists: Designated Inits. (line 93) * designators: Designated Inits. (line 61) ! * 'destructor' function attribute: Function Attributes. ! (line 209) ! * 'df' integer suffix: Decimal Float. (line 6) ! * 'DF' integer suffix: Decimal Float. (line 6) * dgettext: Other Builtins. (line 6) * diagnostic messages: Language Independent Options. (line 6) * dialect options: C Dialect Options. (line 6) ! * digits in constraint: Simple Constraints. (line 125) * directory options: Directory Options. (line 6) ! * 'disinterrupt' attribute: Function Attributes. ! (line 251) ! * 'dl' integer suffix: Decimal Float. (line 6) ! * 'DL' integer suffix: Decimal Float. (line 6) * dollar signs in identifier names: Dollar Signs. (line 6) * double-word arithmetic: Long Long. (line 6) * downward funargs: Nested Functions. (line 6) * drem: Other Builtins. (line 6) * dremf: Other Builtins. (line 6) * dreml: Other Builtins. (line 6) ! * 'E' in constraint: Simple Constraints. (line 87) * earlyclobber operand: Modifiers. (line 25) * eight-bit data on the H8/300, H8/300H, and H8S: Function Attributes. ! (line 341) ! * 'EIND': AVR Options. (line 222) * empty structures: Empty Structures. (line 6) * environment variables: Environment Variables. (line 6) *************** Keyword Index *** 51624,51636 **** * erfcl: Other Builtins. (line 6) * erff: Other Builtins. (line 6) * erfl: Other Builtins. (line 6) ! * error function attribute: Function Attributes. ! (line 153) * error messages: Warnings and Errors. (line 6) * escaped newlines: Escaped Newlines. (line 6) * exception handler functions on the Blackfin processor: Function Attributes. ! (line 356) * exclamation point: Multi-Alternative. (line 33) * exit: Other Builtins. (line 6) * exp: Other Builtins. (line 6) --- 51440,51452 ---- * erfcl: Other Builtins. (line 6) * erff: Other Builtins. (line 6) * erfl: Other Builtins. (line 6) ! * 'error' function attribute: Function Attributes. ! (line 151) * error messages: Warnings and Errors. (line 6) * escaped newlines: Escaped Newlines. (line 6) * exception handler functions on the Blackfin processor: Function Attributes. ! (line 351) * exclamation point: Multi-Alternative. (line 33) * exit: Other Builtins. (line 6) * exp: Other Builtins. (line 6) *************** Keyword Index *** 51648,51662 **** * expm1l: Other Builtins. (line 6) * expressions containing statements: Statement Exprs. (line 6) * expressions, constructor: Compound Literals. (line 6) ! * extended asm: Extended Asm. (line 6) ! * extensible constraints: Simple Constraints. (line 163) ! * extensions, ?:: Conditionals. (line 6) * extensions, C language: C Extensions. (line 6) * extensions, C++ language: C++ Extensions. (line 6) * external declaration scope: Incompatibilities. (line 80) ! * externally_visible attribute.: Function Attributes. ! (line 362) ! * F in constraint: Simple Constraints. (line 94) * fabs: Other Builtins. (line 6) * fabsf: Other Builtins. (line 6) * fabsl: Other Builtins. (line 6) --- 51464,51478 ---- * expm1l: Other Builtins. (line 6) * expressions containing statements: Statement Exprs. (line 6) * expressions, constructor: Compound Literals. (line 6) ! * extended 'asm': Extended Asm. (line 6) ! * extensible constraints: Simple Constraints. (line 161) ! * extensions, '?:': Conditionals. (line 6) * extensions, C language: C Extensions. (line 6) * extensions, C++ language: C++ Extensions. (line 6) * external declaration scope: Incompatibilities. (line 80) ! * 'externally_visible' attribute.: Function Attributes. ! (line 357) ! * 'F' in constraint: Simple Constraints. (line 92) * fabs: Other Builtins. (line 6) * fabsf: Other Builtins. (line 6) * fabsl: Other Builtins. (line 6) *************** Keyword Index *** 51670,51681 **** * file name suffix: Overall Options. (line 14) * file names: Link Options. (line 10) * fixed-point types: Fixed-Point. (line 6) ! * flatten function attribute: Function Attributes. ! (line 146) * flexible array members: Zero Length. (line 6) ! * float as function value type: Incompatibilities. (line 141) * floating point precision: Disappointments. (line 68) ! * floating-point precision: Optimize Options. (line 1873) * floor: Other Builtins. (line 6) * floorf: Other Builtins. (line 6) * floorl: Other Builtins. (line 6) --- 51486,51497 ---- * file name suffix: Overall Options. (line 14) * file names: Link Options. (line 10) * fixed-point types: Fixed-Point. (line 6) ! * 'flatten' function attribute: Function Attributes. ! (line 144) * flexible array members: Zero Length. (line 6) ! * 'float' as function value type: Incompatibilities. (line 141) * floating point precision: Disappointments. (line 68) ! * floating-point precision: Optimize Options. (line 1868) * floor: Other Builtins. (line 6) * floorf: Other Builtins. (line 6) * floorl: Other Builtins. (line 6) *************** Keyword Index *** 51691,51705 **** * fmod: Other Builtins. (line 6) * fmodf: Other Builtins. (line 6) * fmodl: Other Builtins. (line 6) ! * force_align_arg_pointer attribute: Function Attributes. ! (line 1218) ! * format function attribute: Function Attributes. ! (line 419) ! * format_arg function attribute: Function Attributes. ! (line 485) * Fortran: G++ and GCC. (line 6) ! * forwarder_section attribute: Function Attributes. ! (line 685) * forwarding calls: Constructing Calls. (line 6) * fprintf: Other Builtins. (line 6) * fprintf_unlocked: Other Builtins. (line 6) --- 51507,51521 ---- * fmod: Other Builtins. (line 6) * fmodf: Other Builtins. (line 6) * fmodl: Other Builtins. (line 6) ! * 'force_align_arg_pointer' attribute: Function Attributes. ! (line 1216) ! * 'format' function attribute: Function Attributes. ! (line 414) ! * 'format_arg' function attribute: Function Attributes. ! (line 479) * Fortran: G++ and GCC. (line 6) ! * 'forwarder_section' attribute: Function Attributes. ! (line 680) * forwarding calls: Constructing Calls. (line 6) * fprintf: Other Builtins. (line 6) * fprintf_unlocked: Other Builtins. (line 6) *************** Keyword Index *** 51713,51721 **** * frexpl: Other Builtins. (line 6) * FRV Options: FRV Options. (line 6) * fscanf: Other Builtins. (line 6) ! * fscanf, and constant strings: Incompatibilities. (line 17) * function addressability on the M32R/D: Function Attributes. ! (line 853) * function attributes: Function Attributes. (line 6) * function pointers, arithmetic: Pointer Arith. (line 6) --- 51529,51537 ---- * frexpl: Other Builtins. (line 6) * FRV Options: FRV Options. (line 6) * fscanf: Other Builtins. (line 6) ! * 'fscanf', and constant strings: Incompatibilities. (line 17) * function addressability on the M32R/D: Function Attributes. ! (line 848) * function attributes: Function Attributes. (line 6) * function pointers, arithmetic: Pointer Arith. (line 6) *************** Keyword Index *** 51724,51749 **** * function versions: Function Multiversioning. (line 6) * function without a prologue/epilogue code: Function Attributes. ! (line 912) * function, size of pointer to: Pointer Arith. (line 6) * functions called via pointer on the RS/6000 and PowerPC: Function Attributes. ! (line 808) * functions in arbitrary sections: Function Attributes. (line 6) * functions that are dynamically resolved: Function Attributes. (line 6) * functions that are passed arguments in registers on the 386: Function Attributes. (line 6) * functions that behave like malloc: Function Attributes. (line 6) * functions that do not handle memory bank switching on 68HC11/68HC12: Function Attributes. ! (line 925) * functions that do not pop the argument stack on the 386: Function Attributes. (line 6) * functions that do pop the argument stack on the 386: Function Attributes. ! (line 177) * functions that handle memory bank switching: Function Attributes. ! (line 375) * functions that have different compilation options on the 386: Function Attributes. (line 6) * functions that have different optimization options: Function Attributes. --- 51540,51567 ---- * function versions: Function Multiversioning. (line 6) * function without a prologue/epilogue code: Function Attributes. ! (line 911) * function, size of pointer to: Pointer Arith. (line 6) * functions called via pointer on the RS/6000 and PowerPC: Function Attributes. ! (line 802) * functions in arbitrary sections: Function Attributes. (line 6) * functions that are dynamically resolved: Function Attributes. (line 6) * functions that are passed arguments in registers on the 386: Function Attributes. (line 6) + * functions that are passed arguments in registers on the 386 <1>: Function Attributes. + (line 1192) * functions that behave like malloc: Function Attributes. (line 6) * functions that do not handle memory bank switching on 68HC11/68HC12: Function Attributes. ! (line 923) * functions that do not pop the argument stack on the 386: Function Attributes. (line 6) * functions that do pop the argument stack on the 386: Function Attributes. ! (line 175) * functions that handle memory bank switching: Function Attributes. ! (line 370) * functions that have different compilation options on the 386: Function Attributes. (line 6) * functions that have different optimization options: Function Attributes. *************** Keyword Index *** 51754,51820 **** (line 6) * functions that pop the argument stack on the 386: Function Attributes. (line 6) * functions that return more than once: Function Attributes. (line 6) * functions with non-null pointer arguments: Function Attributes. (line 6) ! * functions with printf, scanf, strftime or strfmon style arguments: Function Attributes. (line 6) ! * g in constraint: Simple Constraints. (line 120) ! * G in constraint: Simple Constraints. (line 98) * g++: Invoking G++. (line 14) * G++: G++ and GCC. (line 30) * gamma: Other Builtins. (line 6) - * gamma_r: Other Builtins. (line 6) * gammaf: Other Builtins. (line 6) * gammaf_r: Other Builtins. (line 6) * gammal: Other Builtins. (line 6) * gammal_r: Other Builtins. (line 6) * GCC: G++ and GCC. (line 6) * GCC command options: Invoking GCC. (line 6) * GCC_COMPARE_DEBUG: Environment Variables. (line 52) * GCC_EXEC_PREFIX: Environment Variables. (line 57) ! * gcc_struct: Type Attributes. (line 324) ! * gcc_struct attribute: Variable Attributes. ! (line 445) ! * gcov: Debugging Options. (line 411) * gettext: Other Builtins. (line 6) ! * global offset table: Code Gen Options. (line 267) ! * global register after longjmp: Global Reg Vars. (line 65) * global register variables: Global Reg Vars. (line 6) * GNAT: G++ and GCC. (line 30) * GNU C Compiler: G++ and GCC. (line 6) * GNU Compiler Collection: G++ and GCC. (line 6) ! * gnu_inline function attribute: Function Attributes. (line 96) * Go: G++ and GCC. (line 6) * goto with computed label: Labels as Values. (line 6) ! * gprof: Debugging Options. (line 333) * grouping options: Invoking GCC. (line 26) ! * H in constraint: Simple Constraints. (line 98) * half-precision floating point: Half-Precision. (line 6) * hardware models and configurations, specifying: Submodel Options. (line 6) * hex floats: Hex Floats. (line 6) ! * HK fixed-suffix: Fixed-Point. (line 6) ! * hk fixed-suffix: Fixed-Point. (line 6) ! * hosted environment <1>: C Dialect Options. (line 239) * hosted environment: Standards. (line 13) * hosted implementation: Standards. (line 13) ! * hot function attribute: Function Attributes. ! (line 1136) ! * hot label attribute: Function Attributes. ! (line 1148) * HPPA Options: HPPA Options. (line 6) ! * HR fixed-suffix: Fixed-Point. (line 6) ! * hr fixed-suffix: Fixed-Point. (line 6) * hypot: Other Builtins. (line 6) * hypotf: Other Builtins. (line 6) * hypotl: Other Builtins. (line 6) ! * I in constraint: Simple Constraints. (line 81) ! * i in constraint: Simple Constraints. (line 70) * i386 and x86-64 Windows Options: i386 and x86-64 Windows Options. (line 6) * i386 Options: i386 and x86-64 Options. --- 51572,51645 ---- (line 6) * functions that pop the argument stack on the 386: Function Attributes. (line 6) + * functions that pop the argument stack on the 386 <1>: Function Attributes. + (line 396) + * functions that pop the argument stack on the 386 <2>: Function Attributes. + (line 404) + * functions that pop the argument stack on the 386 <3>: Function Attributes. + (line 1339) * functions that return more than once: Function Attributes. (line 6) * functions with non-null pointer arguments: Function Attributes. (line 6) ! * functions with 'printf', 'scanf', 'strftime' or 'strfmon' style arguments: Function Attributes. (line 6) ! * 'G' in constraint: Simple Constraints. (line 96) ! * 'g' in constraint: Simple Constraints. (line 118) * g++: Invoking G++. (line 14) * G++: G++ and GCC. (line 30) * gamma: Other Builtins. (line 6) * gammaf: Other Builtins. (line 6) * gammaf_r: Other Builtins. (line 6) * gammal: Other Builtins. (line 6) * gammal_r: Other Builtins. (line 6) + * gamma_r: Other Builtins. (line 6) * GCC: G++ and GCC. (line 6) * GCC command options: Invoking GCC. (line 6) * GCC_COMPARE_DEBUG: Environment Variables. (line 52) * GCC_EXEC_PREFIX: Environment Variables. (line 57) ! * 'gcc_struct': Type Attributes. (line 323) ! * 'gcc_struct' attribute: Variable Attributes. ! (line 438) ! * 'gcov': Debugging Options. (line 408) * gettext: Other Builtins. (line 6) ! * global offset table: Code Gen Options. (line 265) ! * global register after 'longjmp': Global Reg Vars. (line 65) * global register variables: Global Reg Vars. (line 6) * GNAT: G++ and GCC. (line 30) * GNU C Compiler: G++ and GCC. (line 6) * GNU Compiler Collection: G++ and GCC. (line 6) ! * 'gnu_inline' function attribute: Function Attributes. (line 96) * Go: G++ and GCC. (line 6) * goto with computed label: Labels as Values. (line 6) ! * 'gprof': Debugging Options. (line 333) * grouping options: Invoking GCC. (line 26) ! * 'H' in constraint: Simple Constraints. (line 96) * half-precision floating point: Half-Precision. (line 6) * hardware models and configurations, specifying: Submodel Options. (line 6) * hex floats: Hex Floats. (line 6) ! * 'hk' fixed-suffix: Fixed-Point. (line 6) ! * 'HK' fixed-suffix: Fixed-Point. (line 6) * hosted environment: Standards. (line 13) + * hosted environment <1>: C Dialect Options. (line 238) + * hosted environment <2>: C Dialect Options. (line 246) * hosted implementation: Standards. (line 13) ! * 'hot' function attribute: Function Attributes. ! (line 1134) ! * 'hot' label attribute: Function Attributes. ! (line 1146) * HPPA Options: HPPA Options. (line 6) ! * 'hr' fixed-suffix: Fixed-Point. (line 6) ! * 'HR' fixed-suffix: Fixed-Point. (line 6) * hypot: Other Builtins. (line 6) * hypotf: Other Builtins. (line 6) * hypotl: Other Builtins. (line 6) ! * 'i' in constraint: Simple Constraints. (line 68) ! * 'I' in constraint: Simple Constraints. (line 79) * i386 and x86-64 Windows Options: i386 and x86-64 Windows Options. (line 6) * i386 Options: i386 and x86-64 Options. *************** Keyword Index *** 51824,51831 **** (line 6) * identifier names, dollar signs in: Dollar Signs. (line 6) * identifiers, names in assembler code: Asm Labels. (line 6) ! * ifunc attribute: Function Attributes. ! (line 593) * ilogb: Other Builtins. (line 6) * ilogbf: Other Builtins. (line 6) * ilogbl: Other Builtins. (line 6) --- 51649,51656 ---- (line 6) * identifier names, dollar signs in: Dollar Signs. (line 6) * identifiers, names in assembler code: Asm Labels. (line 6) ! * 'ifunc' attribute: Function Attributes. ! (line 586) * ilogb: Other Builtins. (line 6) * ilogbf: Other Builtins. (line 6) * ilogbl: Other Builtins. (line 6) *************** Keyword Index *** 51834,51852 **** (line 6) * implementation-defined behavior, C++ language: C++ Implementation. (line 6) ! * implied #pragma implementation: C++ Interface. (line 46) * incompatibilities of GCC: Incompatibilities. (line 6) * increment operators: Bug Criteria. (line 17) * index: Other Builtins. (line 6) * indirect calls on ARM: Function Attributes. ! (line 798) * indirect calls on MIPS: Function Attributes. ! (line 820) ! * init_priority attribute: C++ Attributes. (line 30) * initializations in expressions: Compound Literals. (line 6) * initializers with labeled elements: Designated Inits. (line 6) * initializers, non-constant: Initializers. (line 6) ! * inline automatic for C++ member fns: Inline. (line 71) * inline functions: Inline. (line 6) * inline functions, omission of: Inline. (line 51) * inlining and C++ pragmas: C++ Interface. (line 66) --- 51659,51677 ---- (line 6) * implementation-defined behavior, C++ language: C++ Implementation. (line 6) ! * implied '#pragma implementation': C++ Interface. (line 46) * incompatibilities of GCC: Incompatibilities. (line 6) * increment operators: Bug Criteria. (line 17) * index: Other Builtins. (line 6) * indirect calls on ARM: Function Attributes. ! (line 792) * indirect calls on MIPS: Function Attributes. ! (line 814) * initializations in expressions: Compound Literals. (line 6) * initializers with labeled elements: Designated Inits. (line 6) * initializers, non-constant: Initializers. (line 6) ! * 'init_priority' attribute: C++ Attributes. (line 30) ! * 'inline' automatic for C++ member fns: Inline. (line 71) * inline functions: Inline. (line 6) * inline functions, omission of: Inline. (line 51) * inlining and C++ pragmas: C++ Interface. (line 66) *************** Keyword Index *** 51857,51875 **** * interface and implementation headers, C++: C++ Interface. (line 6) * intermediate C version, nonexistent: G++ and GCC. (line 35) * interrupt handler functions: Function Attributes. ! (line 141) * interrupt handler functions on the AVR processors: Function Attributes. ! (line 1313) * interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors: Function Attributes. ! (line 735) * interrupt service routines on ARM: Function Attributes. ! (line 750) * interrupt thread functions on fido: Function Attributes. ! (line 742) * introduction: Top. (line 6) * invalid assembly code: Bug Criteria. (line 12) * invalid input: Bug Criteria. (line 42) ! * invoking g++: Invoking G++. (line 22) * isalnum: Other Builtins. (line 6) * isalpha: Other Builtins. (line 6) * isascii: Other Builtins. (line 6) --- 51682,51704 ---- * interface and implementation headers, C++: C++ Interface. (line 6) * intermediate C version, nonexistent: G++ and GCC. (line 35) * interrupt handler functions: Function Attributes. ! (line 139) ! * interrupt handler functions <1>: Function Attributes. ! (line 390) ! * interrupt handler functions <2>: Function Attributes. ! (line 626) * interrupt handler functions on the AVR processors: Function Attributes. ! (line 1311) * interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors: Function Attributes. ! (line 730) * interrupt service routines on ARM: Function Attributes. ! (line 744) * interrupt thread functions on fido: Function Attributes. ! (line 736) * introduction: Top. (line 6) * invalid assembly code: Bug Criteria. (line 12) * invalid input: Bug Criteria. (line 42) ! * invoking 'g++': Invoking G++. (line 22) * isalnum: Other Builtins. (line 6) * isalpha: Other Builtins. (line 6) * isascii: Other Builtins. (line 6) *************** Keyword Index *** 51914,51946 **** * j1f: Other Builtins. (line 6) * j1l: Other Builtins. (line 6) * Java: G++ and GCC. (line 6) ! * java_interface attribute: C++ Attributes. (line 50) * jn: Other Builtins. (line 6) * jnf: Other Builtins. (line 6) * jnl: Other Builtins. (line 6) ! * K fixed-suffix: Fixed-Point. (line 6) ! * k fixed-suffix: Fixed-Point. (line 6) ! * keep_interrupts_masked attribute: Function Attributes. ! (line 707) * keywords, alternate: Alternate Keywords. (line 6) * known causes of trouble: Trouble. (line 6) ! * l1_data variable attribute: Variable Attributes. ! (line 356) ! * l1_data_A variable attribute: Variable Attributes. ! (line 356) ! * l1_data_B variable attribute: Variable Attributes. ! (line 356) ! * l1_text function attribute: Function Attributes. (line 759) ! * l2 function attribute: Function Attributes. ! (line 765) ! * l2 variable attribute: Variable Attributes. ! (line 364) * labeled elements in initializers: Designated Inits. (line 6) * labels as values: Labels as Values. (line 6) * labs: Other Builtins. (line 6) * LANG: Environment Variables. (line 21) * language dialect options: C Dialect Options. (line 6) * LC_ALL: Environment Variables. (line 21) --- 51743,51777 ---- * j1f: Other Builtins. (line 6) * j1l: Other Builtins. (line 6) * Java: G++ and GCC. (line 6) ! * 'java_interface' attribute: C++ Attributes. (line 51) * jn: Other Builtins. (line 6) * jnf: Other Builtins. (line 6) * jnl: Other Builtins. (line 6) ! * 'k' fixed-suffix: Fixed-Point. (line 6) ! * 'K' fixed-suffix: Fixed-Point. (line 6) ! * 'keep_interrupts_masked' attribute: Function Attributes. ! (line 702) * keywords, alternate: Alternate Keywords. (line 6) * known causes of trouble: Trouble. (line 6) ! * 'l1_data' variable attribute: Variable Attributes. ! (line 352) ! * 'l1_data_A' variable attribute: Variable Attributes. ! (line 352) ! * 'l1_data_B' variable attribute: Variable Attributes. ! (line 352) ! * 'l1_text' function attribute: Function Attributes. ! (line 753) ! * 'l2' function attribute: Function Attributes. (line 759) ! * 'l2' variable attribute: Variable Attributes. ! (line 360) * labeled elements in initializers: Designated Inits. (line 6) * labels as values: Labels as Values. (line 6) * labs: Other Builtins. (line 6) * LANG: Environment Variables. (line 21) + * LANG <1>: Environment Variables. + (line 106) * language dialect options: C Dialect Options. (line 6) * LC_ALL: Environment Variables. (line 21) *************** Keyword Index *** 51951,51978 **** * ldexp: Other Builtins. (line 6) * ldexpf: Other Builtins. (line 6) * ldexpl: Other Builtins. (line 6) ! * leaf function attribute: Function Attributes. ! (line 771) * length-zero arrays: Zero Length. (line 6) * lgamma: Other Builtins. (line 6) - * lgamma_r: Other Builtins. (line 6) * lgammaf: Other Builtins. (line 6) * lgammaf_r: Other Builtins. (line 6) * lgammal: Other Builtins. (line 6) * lgammal_r: Other Builtins. (line 6) * Libraries: Link Options. (line 24) * LIBRARY_PATH: Environment Variables. (line 97) * link options: Link Options. (line 6) ! * linker script: Link Options. (line 199) ! * LK fixed-suffix: Fixed-Point. (line 6) ! * lk fixed-suffix: Fixed-Point. (line 6) ! * LL integer suffix: Long Long. (line 6) * llabs: Other Builtins. (line 6) ! * LLK fixed-suffix: Fixed-Point. (line 6) ! * llk fixed-suffix: Fixed-Point. (line 6) ! * LLR fixed-suffix: Fixed-Point. (line 6) ! * llr fixed-suffix: Fixed-Point. (line 6) * llrint: Other Builtins. (line 6) * llrintf: Other Builtins. (line 6) * llrintl: Other Builtins. (line 6) --- 51782,51809 ---- * ldexp: Other Builtins. (line 6) * ldexpf: Other Builtins. (line 6) * ldexpl: Other Builtins. (line 6) ! * 'leaf' function attribute: Function Attributes. ! (line 765) * length-zero arrays: Zero Length. (line 6) * lgamma: Other Builtins. (line 6) * lgammaf: Other Builtins. (line 6) * lgammaf_r: Other Builtins. (line 6) * lgammal: Other Builtins. (line 6) * lgammal_r: Other Builtins. (line 6) + * lgamma_r: Other Builtins. (line 6) * Libraries: Link Options. (line 24) * LIBRARY_PATH: Environment Variables. (line 97) * link options: Link Options. (line 6) ! * linker script: Link Options. (line 196) ! * 'lk' fixed-suffix: Fixed-Point. (line 6) ! * 'LK' fixed-suffix: Fixed-Point. (line 6) ! * 'LL' integer suffix: Long Long. (line 6) * llabs: Other Builtins. (line 6) ! * 'llk' fixed-suffix: Fixed-Point. (line 6) ! * 'LLK' fixed-suffix: Fixed-Point. (line 6) ! * 'llr' fixed-suffix: Fixed-Point. (line 6) ! * 'LLR' fixed-suffix: Fixed-Point. (line 6) * llrint: Other Builtins. (line 6) * llrintf: Other Builtins. (line 6) * llrintl: Other Builtins. (line 6) *************** Keyword Index *** 51980,51986 **** * llroundf: Other Builtins. (line 6) * llroundl: Other Builtins. (line 6) * LM32 options: LM32 Options. (line 6) ! * load address instruction: Simple Constraints. (line 154) * local labels: Local Labels. (line 6) * local variables in macros: Typeof. (line 46) * local variables, specifying registers: Local Reg Vars. (line 6) --- 51811,51817 ---- * llroundf: Other Builtins. (line 6) * llroundl: Other Builtins. (line 6) * LM32 options: LM32 Options. (line 6) ! * load address instruction: Simple Constraints. (line 152) * local labels: Local Labels. (line 6) * local variables in macros: Typeof. (line 46) * local variables, specifying registers: Local Reg Vars. (line 6) *************** Keyword Index *** 52003,52021 **** * logbl: Other Builtins. (line 6) * logf: Other Builtins. (line 6) * logl: Other Builtins. (line 6) ! * long long data types: Long Long. (line 6) * longjmp: Global Reg Vars. (line 65) ! * longjmp incompatibilities: Incompatibilities. (line 39) ! * longjmp warnings: Warning Options. (line 674) ! * LR fixed-suffix: Fixed-Point. (line 6) ! * lr fixed-suffix: Fixed-Point. (line 6) * lrint: Other Builtins. (line 6) * lrintf: Other Builtins. (line 6) * lrintl: Other Builtins. (line 6) * lround: Other Builtins. (line 6) * lroundf: Other Builtins. (line 6) * lroundl: Other Builtins. (line 6) ! * m in constraint: Simple Constraints. (line 17) * M32C options: M32C Options. (line 6) * M32R/D options: M32R/D Options. (line 6) * M680x0 options: M680x0 Options. (line 6) --- 51834,51852 ---- * logbl: Other Builtins. (line 6) * logf: Other Builtins. (line 6) * logl: Other Builtins. (line 6) ! * 'long long' data types: Long Long. (line 6) * longjmp: Global Reg Vars. (line 65) ! * 'longjmp' incompatibilities: Incompatibilities. (line 39) ! * 'longjmp' warnings: Warning Options. (line 665) ! * 'lr' fixed-suffix: Fixed-Point. (line 6) ! * 'LR' fixed-suffix: Fixed-Point. (line 6) * lrint: Other Builtins. (line 6) * lrintf: Other Builtins. (line 6) * lrintl: Other Builtins. (line 6) * lround: Other Builtins. (line 6) * lroundf: Other Builtins. (line 6) * lroundl: Other Builtins. (line 6) ! * 'm' in constraint: Simple Constraints. (line 17) * M32C options: M32C Options. (line 6) * M32R/D options: M32R/D Options. (line 6) * M680x0 options: M680x0 Options. (line 6) *************** Keyword Index *** 52023,52042 **** * machine specific constraints: Machine Constraints. (line 6) * macro with variable arguments: Variadic Macros. (line 6) ! * macros containing asm: Extended Asm. (line 238) * macros, inline alternative: Inline. (line 6) * macros, local labels: Local Labels. (line 6) * macros, local variables in: Typeof. (line 46) * macros, statements in expressions: Statement Exprs. (line 6) * macros, types of arguments: Typeof. (line 6) ! * make: Preprocessor Options. (line 185) * malloc: Other Builtins. (line 6) ! * malloc attribute: Function Attributes. ! (line 830) ! * matching constraint: Simple Constraints. (line 139) * MCore options: MCore Options. (line 6) ! * member fns, automatically inline: Inline. (line 71) * memchr: Other Builtins. (line 6) * memcmp: Other Builtins. (line 6) * memcpy: Other Builtins. (line 6) --- 51854,51873 ---- * machine specific constraints: Machine Constraints. (line 6) * macro with variable arguments: Variadic Macros. (line 6) ! * macros containing 'asm': Extended Asm. (line 237) * macros, inline alternative: Inline. (line 6) * macros, local labels: Local Labels. (line 6) * macros, local variables in: Typeof. (line 46) * macros, statements in expressions: Statement Exprs. (line 6) * macros, types of arguments: Typeof. (line 6) ! * 'make': Preprocessor Options. (line 185) * malloc: Other Builtins. (line 6) ! * 'malloc' attribute: Function Attributes. ! (line 824) ! * matching constraint: Simple Constraints. (line 137) * MCore options: MCore Options. (line 6) ! * member fns, automatically 'inline': Inline. (line 71) * memchr: Other Builtins. (line 6) * memcmp: Other Builtins. (line 6) * memcpy: Other Builtins. (line 6) *************** Keyword Index *** 52053,52084 **** * MicroBlaze Options: MicroBlaze Options. (line 6) * middle-operands, omitted: Conditionals. (line 6) * MIPS options: MIPS Options. (line 6) ! * mips16 attribute: Function Attributes. ! (line 839) * misunderstandings in C++: C++ Misunderstandings. (line 6) * mixed declarations and code: Mixed Declarations. (line 6) ! * mktemp, and constant strings: Incompatibilities. (line 13) * MMIX Options: MMIX Options. (line 6) * MN10300 options: MN10300 Options. (line 6) ! * mode attribute: Variable Attributes. ! (line 134) * modf: Other Builtins. (line 6) * modff: Other Builtins. (line 6) * modfl: Other Builtins. (line 6) * modifiers in constraints: Modifiers. (line 6) * Moxie Options: Moxie Options. (line 6) ! * ms_abi attribute: Function Attributes. ! (line 881) ! * ms_hook_prologue attribute: Function Attributes. ! (line 906) ! * ms_struct: Type Attributes. (line 324) ! * ms_struct attribute: Variable Attributes. ! (line 445) ! * mudflap: Optimize Options. (line 407) * multiple alternative constraints: Multi-Alternative. (line 6) * multiprecision arithmetic: Long Long. (line 6) ! * n in constraint: Simple Constraints. (line 75) * Named Address Spaces: Named Address Spaces. (line 6) * names used in assembler code: Asm Labels. (line 6) --- 51884,51915 ---- * MicroBlaze Options: MicroBlaze Options. (line 6) * middle-operands, omitted: Conditionals. (line 6) * MIPS options: MIPS Options. (line 6) ! * 'mips16' attribute: Function Attributes. ! (line 833) * misunderstandings in C++: C++ Misunderstandings. (line 6) * mixed declarations and code: Mixed Declarations. (line 6) ! * 'mktemp', and constant strings: Incompatibilities. (line 13) * MMIX Options: MMIX Options. (line 6) * MN10300 options: MN10300 Options. (line 6) ! * 'mode' attribute: Variable Attributes. ! (line 133) * modf: Other Builtins. (line 6) * modff: Other Builtins. (line 6) * modfl: Other Builtins. (line 6) * modifiers in constraints: Modifiers. (line 6) * Moxie Options: Moxie Options. (line 6) ! * 'ms_abi' attribute: Function Attributes. ! (line 877) ! * 'ms_hook_prologue' attribute: Function Attributes. ! (line 904) ! * 'ms_struct': Type Attributes. (line 323) ! * 'ms_struct' attribute: Variable Attributes. ! (line 438) ! * mudflap: Optimize Options. (line 404) * multiple alternative constraints: Multi-Alternative. (line 6) * multiprecision arithmetic: Long Long. (line 6) ! * 'n' in constraint: Simple Constraints. (line 73) * Named Address Spaces: Named Address Spaces. (line 6) * names used in assembler code: Asm Labels. (line 6) *************** Keyword Index *** 52094,52145 **** * nexttoward: Other Builtins. (line 6) * nexttowardf: Other Builtins. (line 6) * nexttowardl: Other Builtins. (line 6) ! * NFC: Warning Options. (line 1284) ! * NFKC: Warning Options. (line 1284) * NMI handler functions on the Blackfin processor: Function Attributes. ! (line 940) ! * no_instrument_function function attribute: Function Attributes. ! (line 946) ! * no_sanitize_address function attribute: Function Attributes. ! (line 1186) ! * no_split_stack function attribute: Function Attributes. ! (line 951) ! * noclone function attribute: Function Attributes. ! (line 968) ! * nocommon attribute: Variable Attributes. ! (line 105) ! * noinline function attribute: Function Attributes. ! (line 957) ! * nomips16 attribute: Function Attributes. ! (line 839) * non-constant initializers: Initializers. (line 6) * non-static inline function: Inline. (line 85) ! * nonnull function attribute: Function Attributes. ! (line 974) ! * noreturn function attribute: Function Attributes. ! (line 998) ! * nosave_low_regs attribute: Function Attributes. ! (line 1048) ! * nothrow function attribute: Function Attributes. ! (line 1040) ! * o in constraint: Simple Constraints. (line 23) * OBJC_INCLUDE_PATH: Environment Variables. ! (line 132) ! * Objective-C <1>: Standards. (line 163) * Objective-C: G++ and GCC. (line 6) * Objective-C and Objective-C++ options, command-line: Objective-C and Objective-C++ Dialect Options. (line 6) - * Objective-C++ <1>: Standards. (line 163) * Objective-C++: G++ and GCC. (line 6) * offsettable address: Simple Constraints. (line 23) * old-style function definitions: Function Prototypes. (line 6) * omitted middle-operands: Conditionals. (line 6) * open coding: Inline. (line 6) ! * OpenMP parallel: C Dialect Options. (line 256) ! * operand constraints, asm: Constraints. (line 6) ! * optimize function attribute: Function Attributes. ! (line 1054) * optimize options: Optimize Options. (line 6) * options to control diagnostics formatting: Language Independent Options. (line 6) --- 51925,51976 ---- * nexttoward: Other Builtins. (line 6) * nexttowardf: Other Builtins. (line 6) * nexttowardl: Other Builtins. (line 6) ! * NFC: Warning Options. (line 1270) ! * NFKC: Warning Options. (line 1270) * NMI handler functions on the Blackfin processor: Function Attributes. ! (line 938) ! * 'noclone' function attribute: Function Attributes. ! (line 966) ! * 'nocommon' attribute: Variable Attributes. ! (line 104) ! * 'noinline' function attribute: Function Attributes. ! (line 955) ! * 'nomips16' attribute: Function Attributes. ! (line 833) * non-constant initializers: Initializers. (line 6) * non-static inline function: Inline. (line 85) ! * 'nonnull' function attribute: Function Attributes. ! (line 972) ! * 'noreturn' function attribute: Function Attributes. ! (line 996) ! * 'nosave_low_regs' attribute: Function Attributes. ! (line 1046) ! * 'nothrow' function attribute: Function Attributes. ! (line 1038) ! * 'no_instrument_function' function attribute: Function Attributes. ! (line 944) ! * 'no_sanitize_address' function attribute: Function Attributes. ! (line 1184) ! * 'no_split_stack' function attribute: Function Attributes. ! (line 949) ! * 'o' in constraint: Simple Constraints. (line 23) * OBJC_INCLUDE_PATH: Environment Variables. ! (line 130) * Objective-C: G++ and GCC. (line 6) + * Objective-C <1>: Standards. (line 163) * Objective-C and Objective-C++ options, command-line: Objective-C and Objective-C++ Dialect Options. (line 6) * Objective-C++: G++ and GCC. (line 6) + * Objective-C++ <1>: Standards. (line 163) * offsettable address: Simple Constraints. (line 23) * old-style function definitions: Function Prototypes. (line 6) * omitted middle-operands: Conditionals. (line 6) * open coding: Inline. (line 6) ! * OpenMP parallel: C Dialect Options. (line 257) ! * operand constraints, 'asm': Constraints. (line 6) ! * 'optimize' function attribute: Function Attributes. ! (line 1052) * optimize options: Optimize Options. (line 6) * options to control diagnostics formatting: Language Independent Options. (line 6) *************** Keyword Index *** 52161,52188 **** (line 6) * order of evaluation, side effects: Non-bugs. (line 196) * order of options: Invoking GCC. (line 30) ! * OS_main AVR function attribute: Function Attributes. ! (line 1071) ! * OS_task AVR function attribute: Function Attributes. ! (line 1071) ! * other register constraints: Simple Constraints. (line 163) * output file option: Overall Options. (line 191) * overloaded virtual function, warning: C++ Dialect Options. ! (line 618) ! * p in constraint: Simple Constraints. (line 154) ! * packed attribute: Variable Attributes. ! (line 145) * parameter forward declaration: Variable Length. (line 59) * Pascal: G++ and GCC. (line 23) ! * pcs function attribute: Function Attributes. ! (line 1096) * PDP-11 Options: PDP-11 Options. (line 6) ! * PIC: Code Gen Options. (line 267) * picoChip options: picoChip Options. (line 6) * pmf: Bound member functions. (line 6) * pointer arguments: Function Attributes. ! (line 188) * pointer to member function: Bound member functions. (line 6) * portions of temporary objects, pointers to: Temporaries. (line 6) --- 51992,52019 ---- (line 6) * order of evaluation, side effects: Non-bugs. (line 196) * order of options: Invoking GCC. (line 30) ! * 'OS_main' AVR function attribute: Function Attributes. ! (line 1069) ! * 'OS_task' AVR function attribute: Function Attributes. ! (line 1069) ! * other register constraints: Simple Constraints. (line 161) * output file option: Overall Options. (line 191) * overloaded virtual function, warning: C++ Dialect Options. ! (line 609) ! * 'p' in constraint: Simple Constraints. (line 152) ! * 'packed' attribute: Variable Attributes. ! (line 144) * parameter forward declaration: Variable Length. (line 59) * Pascal: G++ and GCC. (line 23) ! * 'pcs' function attribute: Function Attributes. ! (line 1093) * PDP-11 Options: PDP-11 Options. (line 6) ! * PIC: Code Gen Options. (line 265) * picoChip options: picoChip Options. (line 6) * pmf: Bound member functions. (line 6) * pointer arguments: Function Attributes. ! (line 186) * pointer to member function: Bound member functions. (line 6) * portions of temporary objects, pointers to: Temporaries. (line 6) *************** Keyword Index *** 52194,52206 **** * powf: Other Builtins. (line 6) * powl: Other Builtins. (line 6) * pragma GCC optimize: Function Specific Option Pragmas. ! (line 21) * pragma GCC pop_options: Function Specific Option Pragmas. ! (line 34) * pragma GCC push_options: Function Specific Option Pragmas. ! (line 34) * pragma GCC reset_options: Function Specific Option Pragmas. ! (line 44) * pragma GCC target: Function Specific Option Pragmas. (line 7) * pragma, address: M32C Pragmas. (line 15) --- 52025,52037 ---- * powf: Other Builtins. (line 6) * powl: Other Builtins. (line 6) * pragma GCC optimize: Function Specific Option Pragmas. ! (line 22) * pragma GCC pop_options: Function Specific Option Pragmas. ! (line 36) * pragma GCC push_options: Function Specific Option Pragmas. ! (line 36) * pragma GCC reset_options: Function Specific Option Pragmas. ! (line 47) * pragma GCC target: Function Specific Option Pragmas. (line 7) * pragma, address: M32C Pragmas. (line 15) *************** Keyword Index *** 52211,52223 **** * pragma, coprocessor subclass: MeP Pragmas. (line 28) * pragma, custom io_volatile: MeP Pragmas. (line 7) * pragma, diagnostic: Diagnostic Pragmas. (line 14) * pragma, disinterrupt: MeP Pragmas. (line 38) ! * pragma, fini: Solaris Pragmas. (line 19) ! * pragma, init: Solaris Pragmas. (line 24) ! * pragma, long_calls: ARM Pragmas. (line 11) ! * pragma, long_calls_off: ARM Pragmas. (line 17) * pragma, longcall: RS/6000 and PowerPC Pragmas. (line 14) * pragma, mark: Darwin Pragmas. (line 11) * pragma, memregs: M32C Pragmas. (line 7) * pragma, no_long_calls: ARM Pragmas. (line 14) --- 52042,52055 ---- * pragma, coprocessor subclass: MeP Pragmas. (line 28) * pragma, custom io_volatile: MeP Pragmas. (line 7) * pragma, diagnostic: Diagnostic Pragmas. (line 14) + * pragma, diagnostic <1>: Diagnostic Pragmas. (line 57) * pragma, disinterrupt: MeP Pragmas. (line 38) ! * pragma, fini: Solaris Pragmas. (line 20) ! * pragma, init: Solaris Pragmas. (line 26) * pragma, longcall: RS/6000 and PowerPC Pragmas. (line 14) + * pragma, long_calls: ARM Pragmas. (line 11) + * pragma, long_calls_off: ARM Pragmas. (line 17) * pragma, mark: Darwin Pragmas. (line 11) * pragma, memregs: M32C Pragmas. (line 7) * pragma, no_long_calls: ARM Pragmas. (line 14) *************** Keyword Index *** 52227,52233 **** * pragma, push_macro: Push/Pop Macro Pragmas. (line 11) * pragma, reason for not using: Function Attributes. ! (line 1870) * pragma, redefine_extname: Symbol-Renaming Pragmas. (line 12) * pragma, segment: Darwin Pragmas. (line 21) --- 52059,52065 ---- * pragma, push_macro: Push/Pop Macro Pragmas. (line 11) * pragma, reason for not using: Function Attributes. ! (line 1866) * pragma, redefine_extname: Symbol-Renaming Pragmas. (line 12) * pragma, segment: Darwin Pragmas. (line 21) *************** Keyword Index *** 52237,52243 **** * pragmas: Pragmas. (line 6) * pragmas in C++, effect on inlining: C++ Interface. (line 66) * pragmas, interface and implementation: C++ Interface. (line 6) ! * pragmas, warning of unknown: Warning Options. (line 691) * precompiled headers: Precompiled Headers. (line 6) * preprocessing numbers: Incompatibilities. (line 173) --- 52069,52075 ---- * pragmas: Pragmas. (line 6) * pragmas in C++, effect on inlining: C++ Interface. (line 66) * pragmas, interface and implementation: C++ Interface. (line 6) ! * pragmas, warning of unknown: Warning Options. (line 682) * precompiled headers: Precompiled Headers. (line 6) * preprocessing numbers: Incompatibilities. (line 173) *************** Keyword Index *** 52246,52297 **** (line 6) * printf: Other Builtins. (line 6) * printf_unlocked: Other Builtins. (line 6) ! * prof: Debugging Options. (line 327) ! * progmem AVR variable attribute: Variable Attributes. ! (line 318) * promotion of formal parameters: Function Prototypes. (line 6) ! * pure function attribute: Function Attributes. ! (line 1114) ! * push address instruction: Simple Constraints. (line 154) * putchar: Other Builtins. (line 6) * puts: Other Builtins. (line 6) ! * Q floating point suffix: Floating Types. (line 6) ! * q floating point suffix: Floating Types. (line 6) ! * qsort, and global register variables: Global Reg Vars. (line 41) * question mark: Multi-Alternative. (line 27) ! * R fixed-suffix: Fixed-Point. (line 6) ! * r fixed-suffix: Fixed-Point. (line 6) ! * r in constraint: Simple Constraints. (line 66) ! * RAMPD: AVR Options. (line 340) ! * RAMPX: AVR Options. (line 340) ! * RAMPY: AVR Options. (line 340) ! * RAMPZ: AVR Options. (line 340) * ranges in case statements: Case Ranges. (line 6) * read-only strings: Incompatibilities. (line 9) ! * register variable after longjmp: Global Reg Vars. (line 65) * registers: Extended Asm. (line 6) * registers for local variables: Local Reg Vars. (line 6) ! * registers in constraints: Simple Constraints. (line 66) * registers, global allocation: Explicit Reg Vars. (line 6) * registers, global variables in: Global Reg Vars. (line 6) ! * regparm attribute: Function Attributes. ! (line 1194) ! * relocation truncated to fit (ColdFire): M680x0 Options. (line 329) ! * relocation truncated to fit (MIPS): MIPS Options. (line 200) * remainder: Other Builtins. (line 6) * remainderf: Other Builtins. (line 6) * remainderl: Other Builtins. (line 6) * remquo: Other Builtins. (line 6) * remquof: Other Builtins. (line 6) * remquol: Other Builtins. (line 6) ! * renesas attribute: Function Attributes. ! (line 1226) * reordering, warning: C++ Dialect Options. ! (line 533) * reporting bugs: Bugs. (line 6) ! * resbank attribute: Function Attributes. ! (line 1230) * rest argument (in macro): Variadic Macros. (line 6) * restricted pointers: Restricted Pointers. (line 6) --- 52078,52129 ---- (line 6) * printf: Other Builtins. (line 6) * printf_unlocked: Other Builtins. (line 6) ! * 'prof': Debugging Options. (line 327) ! * 'progmem' AVR variable attribute: Variable Attributes. ! (line 314) * promotion of formal parameters: Function Prototypes. (line 6) ! * 'pure' function attribute: Function Attributes. ! (line 1112) ! * push address instruction: Simple Constraints. (line 152) * putchar: Other Builtins. (line 6) * puts: Other Builtins. (line 6) ! * 'q' floating point suffix: Floating Types. (line 6) ! * 'Q' floating point suffix: Floating Types. (line 6) ! * 'qsort', and global register variables: Global Reg Vars. (line 41) * question mark: Multi-Alternative. (line 27) ! * 'r' fixed-suffix: Fixed-Point. (line 6) ! * 'R' fixed-suffix: Fixed-Point. (line 6) ! * 'r' in constraint: Simple Constraints. (line 64) ! * 'RAMPD': AVR Options. (line 333) ! * 'RAMPX': AVR Options. (line 333) ! * 'RAMPY': AVR Options. (line 333) ! * 'RAMPZ': AVR Options. (line 333) * ranges in case statements: Case Ranges. (line 6) * read-only strings: Incompatibilities. (line 9) ! * register variable after 'longjmp': Global Reg Vars. (line 65) * registers: Extended Asm. (line 6) * registers for local variables: Local Reg Vars. (line 6) ! * registers in constraints: Simple Constraints. (line 64) * registers, global allocation: Explicit Reg Vars. (line 6) * registers, global variables in: Global Reg Vars. (line 6) ! * 'regparm' attribute: Function Attributes. ! (line 1192) ! * relocation truncated to fit (ColdFire): M680x0 Options. (line 325) ! * relocation truncated to fit (MIPS): MIPS Options. (line 199) * remainder: Other Builtins. (line 6) * remainderf: Other Builtins. (line 6) * remainderl: Other Builtins. (line 6) * remquo: Other Builtins. (line 6) * remquof: Other Builtins. (line 6) * remquol: Other Builtins. (line 6) ! * 'renesas' attribute: Function Attributes. ! (line 1224) * reordering, warning: C++ Dialect Options. ! (line 527) * reporting bugs: Bugs. (line 6) ! * 'resbank' attribute: Function Attributes. ! (line 1228) * rest argument (in macro): Variadic Macros. (line 6) * restricted pointers: Restricted Pointers. (line 6) *************** Keyword Index *** 52299,52306 **** (line 6) * restricted this pointer: Restricted Pointers. (line 6) ! * returns_twice attribute: Function Attributes. ! (line 1244) * rindex: Other Builtins. (line 6) * rint: Other Builtins. (line 6) * rintf: Other Builtins. (line 6) --- 52131,52138 ---- (line 6) * restricted this pointer: Restricted Pointers. (line 6) ! * 'returns_twice' attribute: Function Attributes. ! (line 1242) * rindex: Other Builtins. (line 6) * rint: Other Builtins. (line 6) * rintf: Other Builtins. (line 6) *************** Keyword Index *** 52314,52352 **** * RTTI: Vague Linkage. (line 42) * run-time options: Code Gen Options. (line 6) * RX Options: RX Options. (line 6) ! * s in constraint: Simple Constraints. (line 102) * S/390 and zSeries Options: S/390 and zSeries Options. (line 6) * save all registers on the Blackfin, H8/300, H8/300H, and H8S: Function Attributes. ! (line 1253) * save volatile registers on the MicroBlaze: Function Attributes. ! (line 1258) * scalb: Other Builtins. (line 6) * scalbf: Other Builtins. (line 6) * scalbl: Other Builtins. (line 6) * scalbln: Other Builtins. (line 6) * scalblnf: Other Builtins. (line 6) * scalbn: Other Builtins. (line 6) * scalbnf: Other Builtins. (line 6) ! * scanf, and constant strings: Incompatibilities. (line 17) * scanfnl: Other Builtins. (line 6) * scope of a variable length array: Variable Length. (line 22) * scope of declaration: Disappointments. (line 21) * scope of external declarations: Incompatibilities. (line 80) * Score Options: Score Options. (line 6) * search path: Directory Options. (line 6) ! * section function attribute: Function Attributes. ! (line 1266) ! * section variable attribute: Variable Attributes. ! (line 166) ! * sentinel function attribute: Function Attributes. ! (line 1282) * setjmp: Global Reg Vars. (line 65) ! * setjmp incompatibilities: Incompatibilities. (line 39) * shared strings: Incompatibilities. (line 9) ! * shared variable attribute: Variable Attributes. ! (line 211) ! * side effect in ?:: Conditionals. (line 20) * side effects, macro argument: Statement Exprs. (line 35) * side effects, order of evaluation: Non-bugs. (line 196) * signbit: Other Builtins. (line 6) --- 52146,52185 ---- * RTTI: Vague Linkage. (line 42) * run-time options: Code Gen Options. (line 6) * RX Options: RX Options. (line 6) ! * 's' in constraint: Simple Constraints. (line 100) * S/390 and zSeries Options: S/390 and zSeries Options. (line 6) * save all registers on the Blackfin, H8/300, H8/300H, and H8S: Function Attributes. ! (line 1251) * save volatile registers on the MicroBlaze: Function Attributes. ! (line 1256) * scalb: Other Builtins. (line 6) * scalbf: Other Builtins. (line 6) * scalbl: Other Builtins. (line 6) * scalbln: Other Builtins. (line 6) * scalblnf: Other Builtins. (line 6) + * scalblnf <1>: Other Builtins. (line 6) * scalbn: Other Builtins. (line 6) * scalbnf: Other Builtins. (line 6) ! * 'scanf', and constant strings: Incompatibilities. (line 17) * scanfnl: Other Builtins. (line 6) * scope of a variable length array: Variable Length. (line 22) * scope of declaration: Disappointments. (line 21) * scope of external declarations: Incompatibilities. (line 80) * Score Options: Score Options. (line 6) * search path: Directory Options. (line 6) ! * 'section' function attribute: Function Attributes. ! (line 1264) ! * 'section' variable attribute: Variable Attributes. ! (line 165) ! * 'sentinel' function attribute: Function Attributes. ! (line 1280) * setjmp: Global Reg Vars. (line 65) ! * 'setjmp' incompatibilities: Incompatibilities. (line 39) * shared strings: Incompatibilities. (line 9) ! * 'shared' variable attribute: Variable Attributes. ! (line 210) ! * side effect in '?:': Conditionals. (line 20) * side effects, macro argument: Statement Exprs. (line 35) * side effects, order of evaluation: Non-bugs. (line 196) * signbit: Other Builtins. (line 6) *************** Keyword Index *** 52356,52362 **** * signbitf: Other Builtins. (line 6) * signbitl: Other Builtins. (line 6) * signed and unsigned values, comparison warning: Warning Options. ! (line 1156) * significand: Other Builtins. (line 6) * significandf: Other Builtins. (line 6) * significandl: Other Builtins. (line 6) --- 52189,52195 ---- * signbitf: Other Builtins. (line 6) * signbitl: Other Builtins. (line 6) * signed and unsigned values, comparison warning: Warning Options. ! (line 1142) * significand: Other Builtins. (line 6) * significandf: Other Builtins. (line 6) * significandl: Other Builtins. (line 6) *************** Keyword Index *** 52373,52383 **** * sizeof: Typeof. (line 6) * smaller data references: M32R/D Options. (line 57) * smaller data references (PowerPC): RS/6000 and PowerPC Options. ! (line 662) * snprintf: Other Builtins. (line 6) * Solaris 2 options: Solaris 2 Options. (line 6) - * sp_switch attribute: Function Attributes. - (line 1331) * SPARC options: SPARC Options. (line 6) * Spec Files: Spec Files. (line 6) * specified registers: Explicit Reg Vars. (line 6) --- 52206,52214 ---- * sizeof: Typeof. (line 6) * smaller data references: M32R/D Options. (line 57) * smaller data references (PowerPC): RS/6000 and PowerPC Options. ! (line 658) * snprintf: Other Builtins. (line 6) * Solaris 2 options: Solaris 2 Options. (line 6) * SPARC options: SPARC Options. (line 6) * Spec Files: Spec Files. (line 6) * specified registers: Explicit Reg Vars. (line 6) *************** Keyword Index *** 52390,52402 **** (line 6) * sprintf: Other Builtins. (line 6) * SPU options: SPU Options. (line 6) * sqrt: Other Builtins. (line 6) * sqrtf: Other Builtins. (line 6) * sqrtl: Other Builtins. (line 6) * sscanf: Other Builtins. (line 6) ! * sscanf, and constant strings: Incompatibilities. (line 17) ! * sseregparm attribute: Function Attributes. ! (line 1211) * statements inside expressions: Statement Exprs. (line 6) * static data in C++, declaring and defining: Static Definitions. (line 6) --- 52221,52235 ---- (line 6) * sprintf: Other Builtins. (line 6) * SPU options: SPU Options. (line 6) + * 'sp_switch' attribute: Function Attributes. + (line 1329) * sqrt: Other Builtins. (line 6) * sqrtf: Other Builtins. (line 6) * sqrtl: Other Builtins. (line 6) * sscanf: Other Builtins. (line 6) ! * 'sscanf', and constant strings: Incompatibilities. (line 17) ! * 'sseregparm' attribute: Function Attributes. ! (line 1209) * statements inside expressions: Statement Exprs. (line 6) * static data in C++, declaring and defining: Static Definitions. (line 6) *************** Keyword Index *** 52422,52428 **** * strrchr: Other Builtins. (line 6) * strspn: Other Builtins. (line 6) * strstr: Other Builtins. (line 6) ! * struct: Unnamed Fields. (line 6) * structures: Incompatibilities. (line 146) * structures, constructor expression: Compound Literals. (line 6) * submodel options: Submodel Options. (line 6) --- 52255,52263 ---- * strrchr: Other Builtins. (line 6) * strspn: Other Builtins. (line 6) * strstr: Other Builtins. (line 6) ! * 'struct': Unnamed Fields. (line 6) ! * struct __htm_tdb: S/390 System z Built-in Functions. ! (line 49) * structures: Incompatibilities. (line 146) * structures, constructor expression: Compound Literals. (line 6) * submodel options: Submodel Options. (line 6) *************** Keyword Index *** 52430,52557 **** * subscripting and function values: Subscripting. (line 6) * suffixes for C++ source: Invoking G++. (line 6) * SUNPRO_DEPENDENCIES: Environment Variables. ! (line 172) * suppressing warnings: Warning Options. (line 6) * surprises in C++: C++ Misunderstandings. (line 6) * syntax checking: Warning Options. (line 13) ! * syscall_linkage attribute: Function Attributes. ! (line 1346) ! * system headers, warnings from: Warning Options. (line 843) ! * sysv_abi attribute: Function Attributes. ! (line 881) * tan: Other Builtins. (line 6) * tanf: Other Builtins. (line 6) * tanh: Other Builtins. (line 6) * tanhf: Other Builtins. (line 6) * tanhl: Other Builtins. (line 6) * tanl: Other Builtins. (line 6) ! * target function attribute: Function Attributes. ! (line 1353) * target machine, specifying: Target Options. (line 6) * target options: Target Options. (line 6) ! * target("abm") attribute: Function Attributes. ! (line 1379) ! * target("aes") attribute: Function Attributes. ! (line 1384) ! * target("align-stringops") attribute: Function Attributes. ! (line 1478) ! * target("altivec") attribute: Function Attributes. ! (line 1504) ! * target("arch=ARCH") attribute: Function Attributes. ! (line 1487) ! * target("avoid-indexed-addresses") attribute: Function Attributes. ! (line 1625) ! * target("cld") attribute: Function Attributes. ! (line 1449) ! * target("cmpb") attribute: Function Attributes. ! (line 1510) ! * target("cpu=CPU") attribute: Function Attributes. ! (line 1640) ! * target("default") attribute: Function Attributes. ! (line 1387) ! * target("dlmzb") attribute: Function Attributes. ! (line 1516) ! * target("fancy-math-387") attribute: Function Attributes. ! (line 1453) ! * target("fma4") attribute: Function Attributes. ! (line 1433) ! * target("fpmath=FPMATH") attribute: Function Attributes. ! (line 1495) ! * target("fprnd") attribute: Function Attributes. ! (line 1523) ! * target("friz") attribute: Function Attributes. ! (line 1616) ! * target("fused-madd") attribute: Function Attributes. ! (line 1458) ! * target("hard-dfp") attribute: Function Attributes. ! (line 1529) ! * target("ieee-fp") attribute: Function Attributes. ! (line 1463) ! * target("inline-all-stringops") attribute: Function Attributes. ! (line 1468) ! * target("inline-stringops-dynamically") attribute: Function Attributes. ! (line 1472) ! * target("isel") attribute: Function Attributes. ! (line 1535) ! * target("longcall") attribute: Function Attributes. ! (line 1635) ! * target("lwp") attribute: Function Attributes. ! (line 1441) ! * target("mfcrf") attribute: Function Attributes. ! (line 1539) ! * target("mfpgpr") attribute: Function Attributes. ! (line 1546) ! * target("mmx") attribute: Function Attributes. ! (line 1392) ! * target("mulhw") attribute: Function Attributes. ! (line 1553) ! * target("multiple") attribute: Function Attributes. ! (line 1560) ! * target("paired") attribute: Function Attributes. ! (line 1630) ! * target("pclmul") attribute: Function Attributes. ! (line 1396) ! * target("popcnt") attribute: Function Attributes. ! (line 1400) ! * target("popcntb") attribute: Function Attributes. ! (line 1571) ! * target("popcntd") attribute: Function Attributes. ! (line 1578) ! * target("powerpc-gfxopt") attribute: Function Attributes. ! (line 1584) ! * target("powerpc-gpopt") attribute: Function Attributes. ! (line 1590) ! * target("recip") attribute: Function Attributes. ! (line 1482) ! * target("recip-precision") attribute: Function Attributes. ! (line 1596) ! * target("sse") attribute: Function Attributes. ! (line 1404) ! * target("sse2") attribute: Function Attributes. ! (line 1408) ! * target("sse3") attribute: Function Attributes. ! (line 1412) ! * target("sse4") attribute: Function Attributes. ! (line 1416) ! * target("sse4.1") attribute: Function Attributes. ! (line 1421) ! * target("sse4.2") attribute: Function Attributes. ! (line 1425) ! * target("sse4a") attribute: Function Attributes. ! (line 1429) ! * target("ssse3") attribute: Function Attributes. ! (line 1445) ! * target("string") attribute: Function Attributes. ! (line 1602) ! * target("tune=TUNE") attribute: Function Attributes. ! (line 1491) ! * target("update") attribute: Function Attributes. ! (line 1565) ! * target("vsx") attribute: Function Attributes. ! (line 1608) ! * target("xop") attribute: Function Attributes. ! (line 1437) * TC1: Standards. (line 13) * TC2: Standards. (line 13) * TC3: Standards. (line 13) --- 52265,52394 ---- * subscripting and function values: Subscripting. (line 6) * suffixes for C++ source: Invoking G++. (line 6) * SUNPRO_DEPENDENCIES: Environment Variables. ! (line 170) * suppressing warnings: Warning Options. (line 6) * surprises in C++: C++ Misunderstandings. (line 6) * syntax checking: Warning Options. (line 13) ! * 'syscall_linkage' attribute: Function Attributes. ! (line 1344) ! * system headers, warnings from: Warning Options. (line 833) ! * 'sysv_abi' attribute: Function Attributes. ! (line 877) * tan: Other Builtins. (line 6) * tanf: Other Builtins. (line 6) * tanh: Other Builtins. (line 6) * tanhf: Other Builtins. (line 6) * tanhl: Other Builtins. (line 6) * tanl: Other Builtins. (line 6) ! * 'target' function attribute: Function Attributes. ! (line 1351) * target machine, specifying: Target Options. (line 6) * target options: Target Options. (line 6) ! * 'target("abm")' attribute: Function Attributes. ! (line 1377) ! * 'target("aes")' attribute: Function Attributes. ! (line 1382) ! * 'target("align-stringops")' attribute: Function Attributes. ! (line 1476) ! * 'target("altivec")' attribute: Function Attributes. ! (line 1502) ! * 'target("arch=ARCH")' attribute: Function Attributes. ! (line 1485) ! * 'target("avoid-indexed-addresses")' attribute: Function Attributes. ! (line 1623) ! * 'target("cld")' attribute: Function Attributes. ! (line 1447) ! * 'target("cmpb")' attribute: Function Attributes. ! (line 1508) ! * 'target("cpu=CPU")' attribute: Function Attributes. ! (line 1638) ! * 'target("default")' attribute: Function Attributes. ! (line 1385) ! * 'target("dlmzb")' attribute: Function Attributes. ! (line 1514) ! * 'target("fancy-math-387")' attribute: Function Attributes. ! (line 1451) ! * 'target("fma4")' attribute: Function Attributes. ! (line 1431) ! * 'target("fpmath=FPMATH")' attribute: Function Attributes. ! (line 1493) ! * 'target("fprnd")' attribute: Function Attributes. ! (line 1521) ! * 'target("friz")' attribute: Function Attributes. ! (line 1614) ! * 'target("fused-madd")' attribute: Function Attributes. ! (line 1456) ! * 'target("hard-dfp")' attribute: Function Attributes. ! (line 1527) ! * 'target("ieee-fp")' attribute: Function Attributes. ! (line 1461) ! * 'target("inline-all-stringops")' attribute: Function Attributes. ! (line 1466) ! * 'target("inline-stringops-dynamically")' attribute: Function Attributes. ! (line 1470) ! * 'target("isel")' attribute: Function Attributes. ! (line 1533) ! * 'target("longcall")' attribute: Function Attributes. ! (line 1633) ! * 'target("lwp")' attribute: Function Attributes. ! (line 1439) ! * 'target("mfcrf")' attribute: Function Attributes. ! (line 1537) ! * 'target("mfpgpr")' attribute: Function Attributes. ! (line 1544) ! * 'target("mmx")' attribute: Function Attributes. ! (line 1390) ! * 'target("mulhw")' attribute: Function Attributes. ! (line 1551) ! * 'target("multiple")' attribute: Function Attributes. ! (line 1558) ! * 'target("paired")' attribute: Function Attributes. ! (line 1628) ! * 'target("pclmul")' attribute: Function Attributes. ! (line 1394) ! * 'target("popcnt")' attribute: Function Attributes. ! (line 1398) ! * 'target("popcntb")' attribute: Function Attributes. ! (line 1569) ! * 'target("popcntd")' attribute: Function Attributes. ! (line 1576) ! * 'target("powerpc-gfxopt")' attribute: Function Attributes. ! (line 1582) ! * 'target("powerpc-gpopt")' attribute: Function Attributes. ! (line 1588) ! * 'target("recip")' attribute: Function Attributes. ! (line 1480) ! * 'target("recip-precision")' attribute: Function Attributes. ! (line 1594) ! * 'target("sse")' attribute: Function Attributes. ! (line 1402) ! * 'target("sse2")' attribute: Function Attributes. ! (line 1406) ! * 'target("sse3")' attribute: Function Attributes. ! (line 1410) ! * 'target("sse4")' attribute: Function Attributes. ! (line 1414) ! * 'target("sse4.1")' attribute: Function Attributes. ! (line 1419) ! * 'target("sse4.2")' attribute: Function Attributes. ! (line 1423) ! * 'target("sse4a")' attribute: Function Attributes. ! (line 1427) ! * 'target("ssse3")' attribute: Function Attributes. ! (line 1443) ! * 'target("string")' attribute: Function Attributes. ! (line 1600) ! * 'target("tune=TUNE")' attribute: Function Attributes. ! (line 1489) ! * 'target("tune=TUNE")' attribute <1>: Function Attributes. ! (line 1645) ! * 'target("update")' attribute: Function Attributes. ! (line 1563) ! * 'target("vsx")' attribute: Function Attributes. ! (line 1606) ! * 'target("xop")' attribute: Function Attributes. ! (line 1435) * TC1: Standards. (line 13) * TC2: Standards. (line 13) * TC3: Standards. (line 13) *************** Keyword Index *** 52570,52579 **** * TILE-Gx options: TILE-Gx Options. (line 6) * TILEPro options: TILEPro Options. (line 6) * tiny data section on the H8/300H and H8S: Function Attributes. ! (line 1669) * TLS: Thread-Local. (line 6) ! * tls_model attribute: Variable Attributes. ! (line 235) * TMPDIR: Environment Variables. (line 45) * toascii: Other Builtins. (line 6) --- 52407,52416 ---- * TILE-Gx options: TILE-Gx Options. (line 6) * TILEPro options: TILEPro Options. (line 6) * tiny data section on the H8/300H and H8S: Function Attributes. ! (line 1667) * TLS: Thread-Local. (line 6) ! * 'tls_model' attribute: Variable Attributes. ! (line 233) * TMPDIR: Environment Variables. (line 45) * toascii: Other Builtins. (line 6) *************** Keyword Index *** 52581,52644 **** * toupper: Other Builtins. (line 6) * towlower: Other Builtins. (line 6) * towupper: Other Builtins. (line 6) ! * traditional C language: C Dialect Options. (line 307) ! * trap_exit attribute: Function Attributes. ! (line 1676) ! * trapa_handler attribute: Function Attributes. ! (line 1681) * trunc: Other Builtins. (line 6) * truncf: Other Builtins. (line 6) * truncl: Other Builtins. (line 6) * two-stage name lookup: Name lookup. (line 6) * type alignment: Alignment. (line 6) * type attributes: Type Attributes. (line 6) - * type_info: Vague Linkage. (line 42) * typedef names as function parameters: Incompatibilities. (line 97) * typeof: Typeof. (line 6) ! * UHK fixed-suffix: Fixed-Point. (line 6) ! * uhk fixed-suffix: Fixed-Point. (line 6) ! * UHR fixed-suffix: Fixed-Point. (line 6) ! * uhr fixed-suffix: Fixed-Point. (line 6) ! * UK fixed-suffix: Fixed-Point. (line 6) ! * uk fixed-suffix: Fixed-Point. (line 6) ! * ULK fixed-suffix: Fixed-Point. (line 6) ! * ulk fixed-suffix: Fixed-Point. (line 6) ! * ULL integer suffix: Long Long. (line 6) ! * ULLK fixed-suffix: Fixed-Point. (line 6) ! * ullk fixed-suffix: Fixed-Point. (line 6) ! * ULLR fixed-suffix: Fixed-Point. (line 6) ! * ullr fixed-suffix: Fixed-Point. (line 6) ! * ULR fixed-suffix: Fixed-Point. (line 6) ! * ulr fixed-suffix: Fixed-Point. (line 6) * undefined behavior: Bug Criteria. (line 17) * undefined function value: Bug Criteria. (line 17) * underscores in variables in macros: Typeof. (line 46) ! * union: Unnamed Fields. (line 6) * union, casting to a: Cast to Union. (line 6) * unions: Incompatibilities. (line 146) ! * unknown pragmas, warning: Warning Options. (line 691) ! * unresolved references and -nodefaultlibs: Link Options. (line 85) ! * unresolved references and -nostdlib: Link Options. (line 85) ! * unused attribute.: Function Attributes. ! (line 1685) ! * UR fixed-suffix: Fixed-Point. (line 6) ! * ur fixed-suffix: Fixed-Point. (line 6) ! * use_debug_exception_return attribute: Function Attributes. ! (line 712) ! * use_shadow_register_set attribute: Function Attributes. ! (line 703) ! * used attribute.: Function Attributes. ! (line 1690) * User stack pointer in interrupts on the Blackfin: Function Attributes. ! (line 754) ! * V in constraint: Simple Constraints. (line 43) * V850 Options: V850 Options. (line 6) * vague linkage: Vague Linkage. (line 6) ! * value after longjmp: Global Reg Vars. (line 65) * variable addressability on the IA-64: Function Attributes. ! (line 853) * variable addressability on the M32R/D: Variable Attributes. ! (line 374) * variable alignment: Alignment. (line 6) * variable attributes: Variable Attributes. (line 6) --- 52418,52481 ---- * toupper: Other Builtins. (line 6) * towlower: Other Builtins. (line 6) * towupper: Other Builtins. (line 6) ! * traditional C language: C Dialect Options. (line 309) ! * 'trapa_handler' attribute: Function Attributes. ! (line 1679) ! * 'trap_exit' attribute: Function Attributes. ! (line 1674) * trunc: Other Builtins. (line 6) * truncf: Other Builtins. (line 6) * truncl: Other Builtins. (line 6) * two-stage name lookup: Name lookup. (line 6) * type alignment: Alignment. (line 6) * type attributes: Type Attributes. (line 6) * typedef names as function parameters: Incompatibilities. (line 97) * typeof: Typeof. (line 6) ! * 'type_info': Vague Linkage. (line 42) ! * 'uhk' fixed-suffix: Fixed-Point. (line 6) ! * 'UHK' fixed-suffix: Fixed-Point. (line 6) ! * 'uhr' fixed-suffix: Fixed-Point. (line 6) ! * 'UHR' fixed-suffix: Fixed-Point. (line 6) ! * 'uk' fixed-suffix: Fixed-Point. (line 6) ! * 'UK' fixed-suffix: Fixed-Point. (line 6) ! * 'ulk' fixed-suffix: Fixed-Point. (line 6) ! * 'ULK' fixed-suffix: Fixed-Point. (line 6) ! * 'ULL' integer suffix: Long Long. (line 6) ! * 'ullk' fixed-suffix: Fixed-Point. (line 6) ! * 'ULLK' fixed-suffix: Fixed-Point. (line 6) ! * 'ullr' fixed-suffix: Fixed-Point. (line 6) ! * 'ULLR' fixed-suffix: Fixed-Point. (line 6) ! * 'ulr' fixed-suffix: Fixed-Point. (line 6) ! * 'ULR' fixed-suffix: Fixed-Point. (line 6) * undefined behavior: Bug Criteria. (line 17) * undefined function value: Bug Criteria. (line 17) * underscores in variables in macros: Typeof. (line 46) ! * 'union': Unnamed Fields. (line 6) * union, casting to a: Cast to Union. (line 6) * unions: Incompatibilities. (line 146) ! * unknown pragmas, warning: Warning Options. (line 682) ! * unresolved references and '-nodefaultlibs': Link Options. (line 85) ! * unresolved references and '-nostdlib': Link Options. (line 85) ! * 'unused' attribute.: Function Attributes. ! (line 1683) ! * 'ur' fixed-suffix: Fixed-Point. (line 6) ! * 'UR' fixed-suffix: Fixed-Point. (line 6) ! * 'used' attribute.: Function Attributes. ! (line 1688) * User stack pointer in interrupts on the Blackfin: Function Attributes. ! (line 748) ! * 'use_debug_exception_return' attribute: Function Attributes. ! (line 707) ! * 'use_shadow_register_set' attribute: Function Attributes. ! (line 698) ! * 'V' in constraint: Simple Constraints. (line 43) * V850 Options: V850 Options. (line 6) * vague linkage: Vague Linkage. (line 6) ! * value after 'longjmp': Global Reg Vars. (line 65) * variable addressability on the IA-64: Function Attributes. ! (line 848) * variable addressability on the M32R/D: Variable Attributes. ! (line 370) * variable alignment: Alignment. (line 6) * variable attributes: Variable Attributes. (line 6) *************** Keyword Index *** 52649,52673 **** * variables, local, in macros: Typeof. (line 46) * variadic macros: Variadic Macros. (line 6) * VAX options: VAX Options. (line 6) ! * version_id attribute: Function Attributes. ! (line 1700) * vfprintf: Other Builtins. (line 6) * vfscanf: Other Builtins. (line 6) ! * visibility attribute: Function Attributes. ! (line 1710) * VLAs: Variable Length. (line 6) ! * vliw attribute: Function Attributes. ! (line 1803) * void pointers, arithmetic: Pointer Arith. (line 6) * void, size of pointer to: Pointer Arith. (line 6) - * volatile access <1>: C++ Volatiles. (line 6) * volatile access: Volatiles. (line 6) ! * volatile applied to function: Function Attributes. (line 6) - * volatile read <1>: C++ Volatiles. (line 6) * volatile read: Volatiles. (line 6) ! * volatile write <1>: C++ Volatiles. (line 6) * volatile write: Volatiles. (line 6) * vprintf: Other Builtins. (line 6) * vscanf: Other Builtins. (line 6) * vsnprintf: Other Builtins. (line 6) --- 52486,52510 ---- * variables, local, in macros: Typeof. (line 46) * variadic macros: Variadic Macros. (line 6) * VAX options: VAX Options. (line 6) ! * 'version_id' attribute: Function Attributes. ! (line 1698) * vfprintf: Other Builtins. (line 6) * vfscanf: Other Builtins. (line 6) ! * 'visibility' attribute: Function Attributes. ! (line 1708) * VLAs: Variable Length. (line 6) ! * 'vliw' attribute: Function Attributes. ! (line 1800) * void pointers, arithmetic: Pointer Arith. (line 6) * void, size of pointer to: Pointer Arith. (line 6) * volatile access: Volatiles. (line 6) ! * volatile access <1>: C++ Volatiles. (line 6) ! * 'volatile' applied to function: Function Attributes. (line 6) * volatile read: Volatiles. (line 6) ! * volatile read <1>: C++ Volatiles. (line 6) * volatile write: Volatiles. (line 6) + * volatile write <1>: C++ Volatiles. (line 6) * vprintf: Other Builtins. (line 6) * vscanf: Other Builtins. (line 6) * vsnprintf: Other Builtins. (line 6) *************** Keyword Index *** 52675,52707 **** * vsscanf: Other Builtins. (line 6) * vtable: Vague Linkage. (line 27) * VxWorks Options: VxWorks Options. (line 6) ! * W floating point suffix: Floating Types. (line 6) ! * w floating point suffix: Floating Types. (line 6) ! * warn_unused_result attribute: Function Attributes. ! (line 1809) * warning for comparison of signed and unsigned values: Warning Options. ! (line 1156) * warning for overloaded virtual function: C++ Dialect Options. ! (line 618) * warning for reordering of member initializers: C++ Dialect Options. ! (line 533) ! * warning for unknown pragmas: Warning Options. (line 691) ! * warning function attribute: Function Attributes. ! (line 166) * warning messages: Warning Options. (line 6) ! * warnings from system headers: Warning Options. (line 843) * warnings vs errors: Warnings and Errors. (line 6) ! * weak attribute: Function Attributes. ! (line 1826) ! * weakref attribute: Function Attributes. ! (line 1835) * whitespace: Incompatibilities. (line 112) ! * X in constraint: Simple Constraints. (line 124) * X3.159-1989: Standards. (line 13) - * x86-64 options: x86-64 Options. (line 6) * x86-64 Options: i386 and x86-64 Options. (line 6) * Xstormy16 Options: Xstormy16 Options. (line 6) * Xtensa Options: Xtensa Options. (line 6) * y0: Other Builtins. (line 6) --- 52512,52544 ---- * vsscanf: Other Builtins. (line 6) * vtable: Vague Linkage. (line 27) * VxWorks Options: VxWorks Options. (line 6) ! * 'w' floating point suffix: Floating Types. (line 6) ! * 'W' floating point suffix: Floating Types. (line 6) * warning for comparison of signed and unsigned values: Warning Options. ! (line 1142) * warning for overloaded virtual function: C++ Dialect Options. ! (line 609) * warning for reordering of member initializers: C++ Dialect Options. ! (line 527) ! * warning for unknown pragmas: Warning Options. (line 682) ! * 'warning' function attribute: Function Attributes. ! (line 164) * warning messages: Warning Options. (line 6) ! * warnings from system headers: Warning Options. (line 833) * warnings vs errors: Warnings and Errors. (line 6) ! * 'warn_unused_result' attribute: Function Attributes. ! (line 1806) ! * 'weak' attribute: Function Attributes. ! (line 1823) ! * 'weakref' attribute: Function Attributes. ! (line 1832) * whitespace: Incompatibilities. (line 112) ! * 'X' in constraint: Simple Constraints. (line 122) * X3.159-1989: Standards. (line 13) * x86-64 Options: i386 and x86-64 Options. (line 6) + * x86-64 options: x86-64 Options. (line 6) * Xstormy16 Options: Xstormy16 Options. (line 6) * Xtensa Options: Xtensa Options. (line 6) * y0: Other Builtins. (line 6) *************** Keyword Index *** 52720,53024 ****  Tag Table: ! Node: Top1920 ! Node: G++ and GCC3686 ! Node: Standards5755 ! Node: Invoking GCC17933 ! Node: Option Summary21678 ! Node: Overall Options61417 ! Node: Invoking G++75516 ! Node: C Dialect Options77039 ! Node: C++ Dialect Options92878 ! Node: Objective-C and Objective-C++ Dialect Options120980 ! Node: Language Independent Options131488 ! Node: Warning Options133687 ! Node: Debugging Options202888 ! Node: Optimize Options260279 ! Ref: Type-punning318948 ! Node: Preprocessor Options397157 ! Ref: Wtrigraphs401939 ! Ref: dashMF406687 ! Ref: fdollars-in-identifiers417551 ! Node: Assembler Options427818 ! Node: Link Options428510 ! Ref: Link Options-Footnote-1439754 ! Node: Directory Options440088 ! Node: Spec Files446647 ! Node: Target Options468045 ! Node: Submodel Options468444 ! Node: AArch64 Options470137 ! Node: Adapteva Epiphany Options474011 ! Node: ARM Options479962 ! Node: AVR Options495607 ! Node: Blackfin Options515951 ! Node: C6X Options523966 ! Node: CRIS Options525509 ! Node: CR16 Options529253 ! Node: Darwin Options530160 ! Node: DEC Alpha Options537593 ! Node: FR30 Options549181 ! Node: FRV Options549746 ! Node: GNU/Linux Options556465 ! Node: H8/300 Options557726 ! Node: HPPA Options559176 ! Node: i386 and x86-64 Options568660 ! Node: i386 and x86-64 Windows Options605501 ! Node: IA-64 Options608357 ! Node: LM32 Options616421 ! Node: M32C Options616945 ! Node: M32R/D Options618219 ! Node: M680x0 Options621765 ! Node: MCore Options635811 ! Node: MeP Options637314 ! Node: MicroBlaze Options641273 ! Node: MIPS Options644069 ! Node: MMIX Options672969 ! Node: MN10300 Options675451 ! Node: Moxie Options677994 ! Node: PDP-11 Options678365 ! Node: picoChip Options680057 ! Node: PowerPC Options682198 ! Node: RL78 Options682419 ! Node: RS/6000 and PowerPC Options683081 ! Node: RX Options717931 ! Node: S/390 and zSeries Options725265 ! Node: Score Options733187 ! Node: SH Options734029 ! Node: Solaris 2 Options752884 ! Node: SPARC Options754115 ! Node: SPU Options766821 ! Node: System V Options771758 ! Node: TILE-Gx Options772584 ! Node: TILEPro Options773508 ! Node: V850 Options774012 ! Node: VAX Options780725 ! Node: VMS Options781260 ! Node: VxWorks Options782071 ! Node: x86-64 Options783226 ! Node: Xstormy16 Options783444 ! Node: Xtensa Options783733 ! Node: zSeries Options788044 ! Node: Code Gen Options788240 ! Node: Environment Variables818074 ! Node: Precompiled Headers826075 ! Node: C Implementation832083 ! Node: Translation implementation833752 ! Node: Environment implementation834326 ! Node: Identifiers implementation834876 ! Node: Characters implementation835930 ! Node: Integers implementation838736 ! Node: Floating point implementation840561 ! Node: Arrays and pointers implementation843490 ! Ref: Arrays and pointers implementation-Footnote-1844925 ! Node: Hints implementation845049 ! Node: Structures unions enumerations and bit-fields implementation846515 ! Node: Qualifiers implementation848501 ! Node: Declarators implementation850273 ! Node: Statements implementation850615 ! Node: Preprocessing directives implementation850942 ! Node: Library functions implementation853047 ! Node: Architecture implementation853687 ! Node: Locale-specific behavior implementation854390 ! Node: C++ Implementation854695 ! Node: Conditionally-supported behavior855977 ! Node: Exception handling856487 ! Node: C Extensions856896 ! Node: Statement Exprs861890 ! Node: Local Labels866349 ! Node: Labels as Values869322 ! Ref: Labels as Values-Footnote-1871721 ! Node: Nested Functions871904 ! Node: Constructing Calls875862 ! Node: Typeof880580 ! Node: Conditionals883888 ! Node: __int128884778 ! Node: Long Long885302 ! Node: Complex886778 ! Node: Floating Types889367 ! Node: Half-Precision890495 ! Node: Decimal Float892677 ! Node: Hex Floats894532 ! Node: Fixed-Point895568 ! Node: Named Address Spaces898850 ! Ref: AVR Named Address Spaces899531 ! Node: Zero Length904737 ! Node: Empty Structures908024 ! Node: Variable Length908430 ! Node: Variadic Macros911106 ! Node: Escaped Newlines913484 ! Node: Subscripting914323 ! Node: Pointer Arith915049 ! Node: Initializers915617 ! Node: Compound Literals916113 ! Node: Designated Inits919474 ! Node: Case Ranges923106 ! Node: Cast to Union923787 ! Node: Mixed Declarations924878 ! Node: Function Attributes925388 ! Node: Attribute Syntax1011269 ! Node: Function Prototypes1021660 ! Node: C++ Comments1023441 ! Node: Dollar Signs1023960 ! Node: Character Escapes1024425 ! Node: Variable Attributes1024719 ! Ref: AVR Variable Attributes1038386 ! Ref: MeP Variable Attributes1041047 ! Ref: i386 Variable Attributes1042993 ! Node: Type Attributes1048657 ! Ref: MeP Type Attributes1062545 ! Ref: i386 Type Attributes1062819 ! Ref: PowerPC Type Attributes1063510 ! Ref: SPU Type Attributes1064372 ! Node: Alignment1064663 ! Node: Inline1066033 ! Node: Volatiles1071008 ! Node: Extended Asm1073890 ! Ref: Example of asm with clobbered asm reg1079794 ! Ref: Extended asm with goto1089501 ! Node: Constraints1097352 ! Node: Simple Constraints1098436 ! Node: Multi-Alternative1105757 ! Node: Modifiers1107474 ! Node: Machine Constraints1110488 ! Node: Asm Labels1159452 ! Node: Explicit Reg Vars1161128 ! Node: Global Reg Vars1162731 ! Node: Local Reg Vars1167227 ! Node: Alternate Keywords1169644 ! Node: Incomplete Enums1171130 ! Node: Function Names1171886 ! Node: Return Address1174047 ! Node: Vector Extensions1177554 ! Node: Offsetof1183729 ! Node: __sync Builtins1184542 ! Node: __atomic Builtins1190012 ! Node: x86 specific memory model extensions for transactional memory1201298 ! Node: Object Size Checking1202535 ! Node: Other Builtins1208024 ! Node: Target Builtins1237168 ! Node: Alpha Built-in Functions1238308 ! Node: ARM iWMMXt Built-in Functions1241317 ! Node: ARM NEON Intrinsics1248297 ! Node: AVR Built-in Functions1456716 ! Node: Blackfin Built-in Functions1459786 ! Node: FR-V Built-in Functions1460403 ! Node: Argument Types1461262 ! Node: Directly-mapped Integer Functions1463014 ! Node: Directly-mapped Media Functions1464096 ! Node: Raw read/write Functions1471128 ! Node: Other Built-in Functions1472040 ! Node: X86 Built-in Functions1473224 ! Node: X86 transactional memory intrinsics1532192 ! Node: MIPS DSP Built-in Functions1534866 ! Node: MIPS Paired-Single Support1547374 ! Node: MIPS Loongson Built-in Functions1548873 ! Node: Paired-Single Arithmetic1555393 ! Node: Paired-Single Built-in Functions1556341 ! Node: MIPS-3D Built-in Functions1559008 ! Node: Other MIPS Built-in Functions1564385 ! Node: picoChip Built-in Functions1564909 ! Node: PowerPC Built-in Functions1566258 ! Node: PowerPC AltiVec/VSX Built-in Functions1567672 ! Node: RX Built-in Functions1677659 ! Node: SH Built-in Functions1681662 ! Node: SPARC VIS Built-in Functions1683043 ! Node: SPU Built-in Functions1688647 ! Node: TI C6X Built-in Functions1690463 ! Node: TILE-Gx Built-in Functions1691487 ! Node: TILEPro Built-in Functions1692604 ! Node: Target Format Checks1693671 ! Node: Solaris Format Checks1694103 ! Node: Darwin Format Checks1694529 ! Node: Pragmas1695347 ! Node: ARM Pragmas1696057 ! Node: M32C Pragmas1696660 ! Node: MeP Pragmas1697734 ! Node: RS/6000 and PowerPC Pragmas1699803 ! Node: Darwin Pragmas1700544 ! Node: Solaris Pragmas1701611 ! Node: Symbol-Renaming Pragmas1702772 ! Node: Structure-Packing Pragmas1704326 ! Node: Weak Pragmas1705976 ! Node: Diagnostic Pragmas1706710 ! Node: Visibility Pragmas1709817 ! Node: Push/Pop Macro Pragmas1710569 ! Node: Function Specific Option Pragmas1711541 ! Node: Unnamed Fields1713798 ! Node: Thread-Local1716026 ! Node: C99 Thread-Local Edits1718131 ! Node: C++98 Thread-Local Edits1720143 ! Node: Binary constants1723587 ! Node: C++ Extensions1724258 ! Node: C++ Volatiles1725969 ! Node: Restricted Pointers1728317 ! Node: Vague Linkage1729908 ! Node: C++ Interface1733532 ! Ref: C++ Interface-Footnote-11737818 ! Node: Template Instantiation1737954 ! Node: Bound member functions1744541 ! Node: C++ Attributes1746073 ! Node: Function Multiversioning1748729 ! Node: Namespace Association1750544 ! Node: Type Traits1751924 ! Node: Java Exceptions1758412 ! Node: Deprecated Features1759802 ! Node: Backwards Compatibility1762767 ! Node: Objective-C1764119 ! Node: GNU Objective-C runtime API1764728 ! Node: Modern GNU Objective-C runtime API1765735 ! Node: Traditional GNU Objective-C runtime API1768172 ! Node: Executing code before main1768900 ! Node: What you can and what you cannot do in +load1771638 ! Node: Type encoding1774028 ! Node: Legacy type encoding1779104 ! Node: @encode1780195 ! Node: Method signatures1780736 ! Node: Garbage Collection1782731 ! Node: Constant string objects1785420 ! Node: compatibility_alias1787928 ! Node: Exceptions1788650 ! Node: Synchronization1791361 ! Node: Fast enumeration1792545 ! Node: Using fast enumeration1792857 ! Node: c99-like fast enumeration syntax1794068 ! Node: Fast enumeration details1794771 ! Node: Fast enumeration protocol1797112 ! Node: Messaging with the GNU Objective-C runtime1800264 ! Node: Dynamically registering methods1801635 ! Node: Forwarding hook1803326 ! Node: Compatibility1806366 ! Node: Gcov1812933 ! Node: Gcov Intro1813466 ! Node: Invoking Gcov1816184 ! Node: Gcov and Optimization1829095 ! Node: Gcov Data Files1832095 ! Node: Cross-profiling1833490 ! Node: Trouble1835341 ! Node: Actual Bugs1836753 ! Node: Interoperation1837200 ! Node: Incompatibilities1844092 ! Node: Fixed Headers1852243 ! Node: Standard Libraries1853906 ! Node: Disappointments1855278 ! Node: C++ Misunderstandings1859636 ! Node: Static Definitions1860447 ! Node: Name lookup1861500 ! Ref: Name lookup-Footnote-11866278 ! Node: Temporaries1866465 ! Node: Copy Assignment1868441 ! Node: Non-bugs1870248 ! Node: Warnings and Errors1880755 ! Node: Bugs1882517 ! Node: Bug Criteria1883081 ! Node: Bug Reporting1885291 ! Node: Service1885512 ! Node: Contributing1886331 ! Node: Funding1887071 ! Node: GNU Project1889560 ! Node: Copying1890206 ! Node: GNU Free Documentation License1927734 ! Node: Contributors1952871 ! Node: Option Index1990273 ! Node: Keyword Index2180269  End Tag Table --- 52557,52862 ----  Tag Table: ! Node: Top1881 ! Node: G++ and GCC3646 ! Node: Standards5703 ! Node: Invoking GCC17883 ! Node: Option Summary21628 ! Node: Overall Options61366 ! Node: Invoking G++75415 ! Node: C Dialect Options76938 ! Node: C++ Dialect Options92773 ! Node: Objective-C and Objective-C++ Dialect Options120841 ! Node: Language Independent Options131348 ! Node: Warning Options133545 ! Node: Debugging Options202689 ! Node: Optimize Options260187 ! Ref: Type-punning318845 ! Node: Preprocessor Options397178 ! Ref: Wtrigraphs401961 ! Ref: dashMF406711 ! Ref: fdollars-in-identifiers417592 ! Node: Assembler Options427817 ! Node: Link Options428508 ! Ref: Link Options-Footnote-1439740 ! Node: Directory Options440076 ! Node: Spec Files446621 ! Node: Target Options467965 ! Node: Submodel Options468364 ! Node: AArch64 Options470057 ! Node: Adapteva Epiphany Options473929 ! Node: ARM Options479877 ! Node: AVR Options495523 ! Node: Blackfin Options515657 ! Node: C6X Options523675 ! Node: CRIS Options525218 ! Node: CR16 Options528957 ! Node: Darwin Options529868 ! Node: DEC Alpha Options537300 ! Node: FR30 Options548916 ! Node: FRV Options549480 ! Node: GNU/Linux Options556244 ! Node: H8/300 Options557504 ! Node: HPPA Options558956 ! Node: i386 and x86-64 Options568441 ! Node: i386 and x86-64 Windows Options605547 ! Node: IA-64 Options608400 ! Node: LM32 Options616466 ! Node: M32C Options616989 ! Node: M32R/D Options618262 ! Node: M680x0 Options621807 ! Node: MCore Options635842 ! Node: MeP Options637344 ! Node: MicroBlaze Options641303 ! Node: MIPS Options644105 ! Node: MMIX Options672957 ! Node: MN10300 Options675434 ! Node: Moxie Options677975 ! Node: PDP-11 Options678345 ! Node: picoChip Options680037 ! Node: PowerPC Options682175 ! Node: RL78 Options682396 ! Node: RS/6000 and PowerPC Options683057 ! Node: RX Options717886 ! Node: S/390 and zSeries Options725218 ! Node: Score Options733127 ! Node: SH Options733976 ! Node: Solaris 2 Options752814 ! Node: SPARC Options754044 ! Node: SPU Options766758 ! Node: System V Options771697 ! Node: TILE-Gx Options772523 ! Node: TILEPro Options773447 ! Node: V850 Options773951 ! Node: VAX Options780659 ! Node: VMS Options781194 ! Node: VxWorks Options782007 ! Node: x86-64 Options783162 ! Node: Xstormy16 Options783380 ! Node: Xtensa Options783669 ! Node: zSeries Options787980 ! Node: Code Gen Options788176 ! Node: Environment Variables817970 ! Node: Precompiled Headers825973 ! Node: C Implementation831976 ! Node: Translation implementation833646 ! Node: Environment implementation834219 ! Node: Identifiers implementation834768 ! Node: Characters implementation835821 ! Node: Integers implementation838627 ! Node: Floating point implementation840451 ! Node: Arrays and pointers implementation843378 ! Ref: Arrays and pointers implementation-Footnote-1844814 ! Node: Hints implementation844940 ! Node: Structures unions enumerations and bit-fields implementation846404 ! Node: Qualifiers implementation848389 ! Node: Declarators implementation850161 ! Node: Statements implementation850502 ! Node: Preprocessing directives implementation850828 ! Node: Library functions implementation852932 ! Node: Architecture implementation853571 ! Node: Locale-specific behavior implementation854273 ! Node: C++ Implementation854578 ! Node: Conditionally-supported behavior855861 ! Node: Exception handling856370 ! Node: C Extensions856778 ! Node: Statement Exprs861768 ! Node: Local Labels866228 ! Node: Labels as Values869201 ! Ref: Labels as Values-Footnote-1871602 ! Node: Nested Functions871787 ! Node: Constructing Calls875745 ! Node: Typeof880462 ! Node: Conditionals883771 ! Node: __int128884660 ! Node: Long Long885185 ! Node: Complex886661 ! Node: Floating Types889249 ! Node: Half-Precision890377 ! Node: Decimal Float892562 ! Node: Hex Floats894418 ! Node: Fixed-Point895455 ! Node: Named Address Spaces898715 ! Ref: AVR Named Address Spaces899396 ! Node: Zero Length904604 ! Node: Empty Structures907891 ! Node: Variable Length908297 ! Node: Variadic Macros910973 ! Node: Escaped Newlines913351 ! Node: Subscripting914190 ! Node: Pointer Arith914915 ! Node: Initializers915483 ! Node: Compound Literals915979 ! Node: Designated Inits919340 ! Node: Case Ranges922972 ! Node: Cast to Union923653 ! Node: Mixed Declarations924743 ! Node: Function Attributes925253 ! Node: Attribute Syntax1011202 ! Node: Function Prototypes1021592 ! Node: C++ Comments1023372 ! Node: Dollar Signs1023891 ! Node: Character Escapes1024356 ! Node: Variable Attributes1024650 ! Ref: AVR Variable Attributes1038301 ! Ref: MeP Variable Attributes1040963 ! Ref: i386 Variable Attributes1042899 ! Node: Type Attributes1048560 ! Ref: MeP Type Attributes1062448 ! Ref: i386 Type Attributes1062722 ! Ref: PowerPC Type Attributes1063414 ! Ref: SPU Type Attributes1064276 ! Node: Alignment1064567 ! Node: Inline1065937 ! Node: Volatiles1070913 ! Node: Extended Asm1073794 ! Ref: Example of asm with clobbered asm reg1079698 ! Ref: Extended asm with goto1089406 ! Node: Constraints1097256 ! Node: Simple Constraints1098340 ! Node: Multi-Alternative1105650 ! Node: Modifiers1107367 ! Node: Machine Constraints1110380 ! Node: Asm Labels1159879 ! Node: Explicit Reg Vars1161555 ! Node: Global Reg Vars1163153 ! Node: Local Reg Vars1167649 ! Node: Alternate Keywords1170065 ! Node: Incomplete Enums1171551 ! Node: Function Names1172307 ! Node: Return Address1174468 ! Node: Vector Extensions1177975 ! Node: Offsetof1184158 ! Node: __sync Builtins1184963 ! Node: __atomic Builtins1190432 ! Node: x86 specific memory model extensions for transactional memory1202066 ! Node: Object Size Checking1203328 ! Node: Other Builtins1208817 ! Node: Target Builtins1237944 ! Node: Alpha Built-in Functions1239122 ! Node: ARM iWMMXt Built-in Functions1242131 ! Node: ARM NEON Intrinsics1249111 ! Node: AVR Built-in Functions1457540 ! Node: Blackfin Built-in Functions1460618 ! Node: FR-V Built-in Functions1461235 ! Node: Argument Types1462096 ! Node: Directly-mapped Integer Functions1463848 ! Node: Directly-mapped Media Functions1464930 ! Node: Raw read/write Functions1473134 ! Node: Other Built-in Functions1474040 ! Node: X86 Built-in Functions1475224 ! Node: X86 transactional memory intrinsics1534187 ! Node: MIPS DSP Built-in Functions1536860 ! Node: MIPS Paired-Single Support1549367 ! Node: MIPS Loongson Built-in Functions1550866 ! Node: Paired-Single Arithmetic1557381 ! Node: Paired-Single Built-in Functions1558329 ! Node: MIPS-3D Built-in Functions1560996 ! Node: Other MIPS Built-in Functions1566374 ! Node: picoChip Built-in Functions1566898 ! Node: PowerPC Built-in Functions1568246 ! Node: PowerPC AltiVec/VSX Built-in Functions1569661 ! Node: RX Built-in Functions1679648 ! Node: S/390 System z Built-in Functions1683663 ! Node: SH Built-in Functions1688892 ! Node: SPARC VIS Built-in Functions1690284 ! Node: SPU Built-in Functions1695887 ! Node: TI C6X Built-in Functions1697704 ! Node: TILE-Gx Built-in Functions1698728 ! Node: TILEPro Built-in Functions1699845 ! Node: Target Format Checks1700912 ! Node: Solaris Format Checks1701344 ! Node: Darwin Format Checks1701770 ! Node: Pragmas1702588 ! Node: ARM Pragmas1703298 ! Node: M32C Pragmas1703901 ! Node: MeP Pragmas1704973 ! Node: RS/6000 and PowerPC Pragmas1707041 ! Node: Darwin Pragmas1707782 ! Node: Solaris Pragmas1708849 ! Node: Symbol-Renaming Pragmas1710013 ! Node: Structure-Packing Pragmas1711569 ! Node: Weak Pragmas1713214 ! Node: Diagnostic Pragmas1713948 ! Node: Visibility Pragmas1717057 ! Node: Push/Pop Macro Pragmas1717809 ! Node: Function Specific Option Pragmas1718782 ! Node: Unnamed Fields1721042 ! Node: Thread-Local1723269 ! Node: C99 Thread-Local Edits1725374 ! Node: C++98 Thread-Local Edits1727372 ! Node: Binary constants1730817 ! Node: C++ Extensions1731488 ! Node: C++ Volatiles1733199 ! Node: Restricted Pointers1735547 ! Node: Vague Linkage1737138 ! Node: C++ Interface1740761 ! Ref: C++ Interface-Footnote-11745049 ! Node: Template Instantiation1745187 ! Node: Bound member functions1751773 ! Node: C++ Attributes1753305 ! Node: Function Multiversioning1755961 ! Node: Namespace Association1757778 ! Node: Type Traits1759158 ! Node: Java Exceptions1765641 ! Node: Deprecated Features1767031 ! Node: Backwards Compatibility1769998 ! Node: Objective-C1771345 ! Node: GNU Objective-C runtime API1771952 ! Node: Modern GNU Objective-C runtime API1772959 ! Node: Traditional GNU Objective-C runtime API1775395 ! Node: Executing code before main1776122 ! Node: What you can and what you cannot do in +load1778860 ! Node: Type encoding1781248 ! Node: Legacy type encoding1786275 ! Node: @encode1787365 ! Node: Method signatures1787906 ! Node: Garbage Collection1789898 ! Node: Constant string objects1792587 ! Node: compatibility_alias1795095 ! Node: Exceptions1795816 ! Node: Synchronization1798526 ! Node: Fast enumeration1799710 ! Node: Using fast enumeration1800022 ! Node: c99-like fast enumeration syntax1801233 ! Node: Fast enumeration details1801936 ! Node: Fast enumeration protocol1804276 ! Node: Messaging with the GNU Objective-C runtime1807428 ! Node: Dynamically registering methods1808800 ! Node: Forwarding hook1810491 ! Node: Compatibility1813531 ! Node: Gcov1820087 ! Node: Gcov Intro1820620 ! Node: Invoking Gcov1823338 ! Node: Gcov and Optimization1836240 ! Node: Gcov Data Files1839242 ! Node: Cross-profiling1840637 ! Node: Trouble1842491 ! Node: Actual Bugs1843903 ! Node: Interoperation1844350 ! Node: Incompatibilities1851241 ! Node: Fixed Headers1859393 ! Node: Standard Libraries1861051 ! Node: Disappointments1862423 ! Node: C++ Misunderstandings1866782 ! Node: Static Definitions1867593 ! Node: Name lookup1868646 ! Ref: Name lookup-Footnote-11873426 ! Node: Temporaries1873615 ! Node: Copy Assignment1875591 ! Node: Non-bugs1877398 ! Node: Warnings and Errors1887904 ! Node: Bugs1889666 ! Node: Bug Criteria1890230 ! Node: Bug Reporting1892440 ! Node: Service1892661 ! Node: Contributing1893480 ! Node: Funding1894220 ! Node: GNU Project1896710 ! Node: Copying1897356 ! Node: GNU Free Documentation License1934864 ! Node: Contributors1959981 ! Node: Option Index1997379 ! Node: Keyword Index2188905  End Tag Table diff -Nrcpad gcc-4.8.1/gcc/doc/gccinstall.info gcc-4.8.2/gcc/doc/gccinstall.info *** gcc-4.8.1/gcc/doc/gccinstall.info Fri May 31 09:58:14 2013 --- gcc-4.8.2/gcc/doc/gccinstall.info Wed Oct 16 08:16:24 2013 *************** *** 1,5 **** ! This is doc/gccinstall.info, produced by makeinfo version 4.13 from ! /d/gcc-4.8.1/gcc-4.8.1/gcc/doc/install.texi. Copyright (C) 1988-2013 Free Software Foundation, Inc. --- 1,5 ---- ! This is gccinstall.info, produced by makeinfo version 5.1 from ! install.texi. Copyright (C) 1988-2013 Free Software Foundation, Inc. *************** is included in the section entitled "GNU *** 17,24 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. Copyright (C) 1988-2013 Free Software Foundation, Inc. --- 17,28 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development. ! INFO-DIR-SECTION Software development ! START-INFO-DIR-ENTRY ! * gccinstall: (gccinstall). Installing the GNU Compiler Collection. ! END-INFO-DIR-ENTRY Copyright (C) 1988-2013 Free Software Foundation, Inc. *************** is included in the section entitled "GNU *** 36,48 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. ! ! INFO-DIR-SECTION Software development ! START-INFO-DIR-ENTRY ! * gccinstall: (gccinstall). Installing the GNU Compiler Collection. ! END-INFO-DIR-ENTRY  File: gccinstall.info, Node: Top, Up: (dir) --- 40,47 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development.  File: gccinstall.info, Node: Top, Up: (dir) *************** File: gccinstall.info, Node: Installing *** 67,79 **** 1 Installing GCC **************** ! The latest version of this document is always available at http://gcc.gnu.org/install/. It refers to the current development sources, instructions for specific released versions are included with the sources. ! This document describes the generic installation procedure for GCC ! as well as detailing some target specific installation instructions. GCC includes several components that previously were separate distributions with their own installation instructions. This document --- 66,78 ---- 1 Installing GCC **************** ! The latest version of this document is always available at http://gcc.gnu.org/install/. It refers to the current development sources, instructions for specific released versions are included with the sources. ! This document describes the generic installation procedure for GCC as ! well as detailing some target specific installation instructions. GCC includes several components that previously were separate distributions with their own installation instructions. This document *************** supersedes all package-specific installa *** 83,91 **** host/target specific installation notes: Specific. We recommend you browse the entire generic installation instructions before you proceed. ! Lists of successful builds for released versions of GCC are ! available at `http://gcc.gnu.org/buildstat.html'. These lists are ! updated as new information becomes available. The installation procedure itself is broken into five steps. --- 82,90 ---- host/target specific installation notes: Specific. We recommend you browse the entire generic installation instructions before you proceed. ! Lists of successful builds for released versions of GCC are available ! at . These lists are updated as new ! information becomes available. The installation procedure itself is broken into five steps. *************** updated as new information becomes avail *** 98,109 **** * Testing:: (optional) * Final install:: ! Please note that GCC does not support `make uninstall' and probably won't do so in the near future as this would open a can of worms. ! Instead, we suggest that you install GCC into a directory of its own ! and simply remove that directory when you do not need that specific ! version of GCC any longer, and, if shared libraries are installed there ! as well, no more binaries exist that use them.  File: gccinstall.info, Node: Prerequisites, Next: Downloading the source, Up: Installing GCC --- 97,108 ---- * Testing:: (optional) * Final install:: ! Please note that GCC does not support 'make uninstall' and probably won't do so in the near future as this would open a can of worms. ! Instead, we suggest that you install GCC into a directory of its own and ! simply remove that directory when you do not need that specific version ! of GCC any longer, and, if shared libraries are installed there as well, ! no more binaries exist that use them.  File: gccinstall.info, Node: Prerequisites, Next: Downloading the source, Up: Installing GCC *************** File: gccinstall.info, Node: Prerequisi *** 111,118 **** 2 Prerequisites *************** ! GCC requires that various tools and packages be available for use in ! the build procedure. Modifying GCC sources requires additional tools described below. Tools/packages necessary for building GCC --- 110,117 ---- 2 Prerequisites *************** ! GCC requires that various tools and packages be available for use in the ! build procedure. Modifying GCC sources requires additional tools described below. Tools/packages necessary for building GCC *************** ISO C++98 compiler *** 125,356 **** C compiler. To build all languages in a cross-compiler or other configuration ! where 3-stage bootstrap is not performed, you need to start with ! an existing GCC binary (version 3.4 or later) because source code ! for language frontends other than C might use GCC extensions. Note that to bootstrap GCC with versions of GCC earlier than 3.4, ! you may need to use `--disable-stage1-checking', though bootstrapping the compiler with such earlier compilers is strongly discouraged. GNAT In order to build the Ada compiler (GNAT) you must already have GNAT installed because portions of the Ada frontend are written in Ada (with GNAT extensions.) Refer to the Ada installation instructions for more specific information. A "working" POSIX compatible shell, or GNU bash ! Necessary when running `configure' because some `/bin/sh' shells have bugs and may crash when configuring the target libraries. In ! other cases, `/bin/sh' or `ksh' have disastrous corner-case ! performance problems. This can cause target `configure' runs to literally take days to complete in some cases. ! So on some platforms `/bin/ksh' is sufficient, on others it isn't. ! See the host/target specific instructions for your platform, or ! use `bash' to be sure. Then set `CONFIG_SHELL' in your ! environment to your "good" shell prior to running ! `configure'/`make'. ! `zsh' is not a fully compliant POSIX shell and will not work when configuring GCC. A POSIX or SVR4 awk Necessary for creating some of the generated source files for GCC. If in doubt, use a recent GNU awk version, as some of the older ones are broken. GNU awk version 3.1.5 is known to work. GNU binutils Necessary in some circumstances, optional in others. See the host/target specific instructions for your platform for the exact requirements. gzip version 1.2.4 (or later) or bzip2 version 1.0.2 (or later) ! Necessary to uncompress GCC `tar' files when source code is obtained via FTP mirror sites. GNU make version 3.80 (or later) You must have GNU make installed to build GCC. GNU tar version 1.14 (or later) Necessary (only on some platforms) to untar the source code. Many ! systems' `tar' programs will also work, only try GNU `tar' if you have problems. Perl version 5.6.1 (or later) - Necessary when targeting Darwin, building `libstdc++', and not - using `--disable-symvers'. Necessary when targeting Solaris 2 - with Sun `ld' and not using `--disable-symvers'. The bundled - `perl' in Solaris 8 and up works. ! Necessary when regenerating `Makefile' dependencies in libiberty. ! Necessary when regenerating `libiberty/functions.texi'. Necessary when generating manpages from Texinfo manuals. Used by various scripts to generate some files included in SVN (mainly Unicode-related and rarely changing) from source tables. ! `jar', or InfoZIP (`zip' and `unzip') ! Necessary to build libgcj, the GCJ runtime. Several support libraries are necessary to build GCC, some are required, others optional. While any sufficiently new version of required tools usually work, library requirements are generally stricter. Newer versions may work in some cases, but it's safer to use ! the exact versions documented. We appreciate bug reports about ! problems with newer versions, though. If your OS vendor provides ! packages for the support libraries then using those packages may be the ! simplest way to install the libraries. GNU Multiple Precision Library (GMP) version 4.3.2 (or later) Necessary to build GCC. If a GMP source distribution is found in a ! subdirectory of your GCC sources named `gmp', it will be built ! together with GCC. Alternatively, if GMP is already installed but it is not in your library search path, you will have to configure ! with the `--with-gmp' configure option. See also `--with-gmp-lib' ! and `--with-gmp-include'. MPFR Library version 2.4.2 (or later) Necessary to build GCC. It can be downloaded from ! `http://www.mpfr.org/'. If an MPFR source distribution is found ! in a subdirectory of your GCC sources named `mpfr', it will be ! built together with GCC. Alternatively, if MPFR is already ! installed but it is not in your default library search path, the ! `--with-mpfr' configure option should be used. See also ! `--with-mpfr-lib' and `--with-mpfr-include'. MPC Library version 0.8.1 (or later) Necessary to build GCC. It can be downloaded from ! `http://www.multiprecision.org/'. If an MPC source distribution ! is found in a subdirectory of your GCC sources named `mpc', it ! will be built together with GCC. Alternatively, if MPC is already ! installed but it is not in your default library search path, the ! `--with-mpc' configure option should be used. See also ! `--with-mpc-lib' and `--with-mpc-include'. ISL Library version 0.11.1 Necessary to build GCC with the Graphite loop optimizations. It ! can be downloaded from `ftp://gcc.gnu.org/pub/gcc/infrastructure/' ! as `isl-0.11.1.tar.bz2'. ! The `--with-isl' configure option should be used if ISL is not installed in your default library search path. CLooG 0.18.0 Necessary to build GCC with the Graphite loop optimizations. It ! can be downloaded from `ftp://gcc.gnu.org/pub/gcc/infrastructure/' ! as `cloog-0.18.0.tar.gz'. The `--with-cloog' configure option should be used if CLooG is not installed in your default library search path. CLooG needs to be built against ISL 0.11.1. Use ! `--with-isl=system' to direct CLooG to pick up an already ! installed ISL, otherwise it will use ISL 0.11.1 as bundled with ! CLooG. CLooG needs to be configured to use GMP internally, use ! `--with-bits=gmp' to direct it to do that. ! Tools/packages necessary for modifying GCC ========================================== autoconf version 2.64 GNU m4 version 1.4.6 (or later) ! Necessary when modifying `configure.ac', `aclocal.m4', etc. to ! regenerate `configure' and `config.in' files. automake version 1.11.1 ! Necessary when modifying a `Makefile.am' file to regenerate its ! associated `Makefile.in'. Much of GCC does not use automake, so directly edit the ! `Makefile.in' file. Specifically this applies to the `gcc', ! `intl', `libcpp', `libiberty', `libobjc' directories as well as ! any of their subdirectories. For directories that use automake, GCC requires the latest release ! in the 1.11 series, which is currently 1.11.1. When regenerating ! a directory to a newer version, please update all the directories using an older 1.11 to the latest released version. gettext version 0.14.5 (or later) ! Needed to regenerate `gcc.pot'. gperf version 2.7.2 (or later) ! Necessary when modifying `gperf' input files, e.g. ! `gcc/cp/cfns.gperf' to regenerate its associated header file, e.g. ! `gcc/cp/cfns.h'. DejaGnu 1.4.4 Expect Tcl Necessary to run the GCC testsuite; see the section on testing for details. autogen version 5.5.4 (or later) and guile version 1.4.1 (or later) - Necessary to regenerate `fixinc/fixincl.x' from - `fixinc/inclhack.def' and `fixinc/*.tpl'. ! Necessary to run `make check' for `fixinc'. ! Necessary to regenerate the top level `Makefile.in' file from ! `Makefile.tpl' and `Makefile.def'. Flex version 2.5.4 (or later) ! Necessary when modifying `*.l' files. Necessary to build GCC during development because the generated output files are not included in the SVN repository. They are included in releases. Texinfo version 4.7 (or later) ! Necessary for running `makeinfo' when modifying `*.texi' files to test your changes. ! Necessary for running `make dvi' or `make pdf' to create printable documentation in DVI or PDF format. Texinfo version 4.8 or later ! is required for `make pdf'. Necessary to build GCC documentation during development because the generated output files are not included in the SVN repository. They are included in releases. TeX (any working version) ! Necessary for running `texi2dvi' and `texi2pdf', which are used ! when running `make dvi' or `make pdf' to create DVI or PDF files, respectively. SVN (any version) SSH (any version) Necessary to access the SVN repository. Public releases and weekly snapshots of the development sources are also available via FTP. GNU diffutils version 2.7 (or later) Useful when submitting patches for the GCC source code. patch version 2.5.4 (or later) ! Necessary when applying patches, created with `diff', to one's own sources. ecj1 gjavah ! If you wish to modify `.java' files in libjava, you will need to ! configure with `--enable-java-maintainer-mode', and you will need ! to have executables named `ecj1' and `gjavah' in your path. The ! `ecj1' executable should run the Eclipse Java compiler via the GCC-specific entry point. You can download a suitable jar from ! `ftp://sourceware.org/pub/java/', or by running the script ! `contrib/download_ecj'. antlr.jar version 2.7.1 (or later) antlr binary - If you wish to build the `gjdoc' binary in libjava, you will need - to have an `antlr.jar' library available. The library is searched - for in system locations but can be specified with - `--with-antlr-jar=' instead. When configuring with - `--enable-java-maintainer-mode', you will need to have one of the - executables named `cantlr', `runantlr' or `antlr' in your path.  File: gccinstall.info, Node: Downloading the source, Next: Configuration, Prev: Prerequisites, Up: Installing GCC --- 124,379 ---- C compiler. To build all languages in a cross-compiler or other configuration ! where 3-stage bootstrap is not performed, you need to start with an ! existing GCC binary (version 3.4 or later) because source code for ! language frontends other than C might use GCC extensions. Note that to bootstrap GCC with versions of GCC earlier than 3.4, ! you may need to use '--disable-stage1-checking', though bootstrapping the compiler with such earlier compilers is strongly discouraged. GNAT + In order to build the Ada compiler (GNAT) you must already have GNAT installed because portions of the Ada frontend are written in Ada (with GNAT extensions.) Refer to the Ada installation instructions for more specific information. A "working" POSIX compatible shell, or GNU bash ! ! Necessary when running 'configure' because some '/bin/sh' shells have bugs and may crash when configuring the target libraries. In ! other cases, '/bin/sh' or 'ksh' have disastrous corner-case ! performance problems. This can cause target 'configure' runs to literally take days to complete in some cases. ! So on some platforms '/bin/ksh' is sufficient, on others it isn't. ! See the host/target specific instructions for your platform, or use ! 'bash' to be sure. Then set 'CONFIG_SHELL' in your environment to ! your "good" shell prior to running 'configure'/'make'. ! 'zsh' is not a fully compliant POSIX shell and will not work when configuring GCC. A POSIX or SVR4 awk + Necessary for creating some of the generated source files for GCC. If in doubt, use a recent GNU awk version, as some of the older ones are broken. GNU awk version 3.1.5 is known to work. GNU binutils + Necessary in some circumstances, optional in others. See the host/target specific instructions for your platform for the exact requirements. gzip version 1.2.4 (or later) or bzip2 version 1.0.2 (or later) ! ! Necessary to uncompress GCC 'tar' files when source code is obtained via FTP mirror sites. GNU make version 3.80 (or later) + You must have GNU make installed to build GCC. GNU tar version 1.14 (or later) + Necessary (only on some platforms) to untar the source code. Many ! systems' 'tar' programs will also work, only try GNU 'tar' if you have problems. Perl version 5.6.1 (or later) ! Necessary when targeting Darwin, building 'libstdc++', and not ! using '--disable-symvers'. Necessary when targeting Solaris 2 with ! Sun 'ld' and not using '--disable-symvers'. The bundled 'perl' in ! Solaris 8 and up works. ! ! Necessary when regenerating 'Makefile' dependencies in libiberty. ! Necessary when regenerating 'libiberty/functions.texi'. Necessary when generating manpages from Texinfo manuals. Used by various scripts to generate some files included in SVN (mainly Unicode-related and rarely changing) from source tables. ! 'jar', or InfoZIP ('zip' and 'unzip') + Necessary to build libgcj, the GCJ runtime. Several support libraries are necessary to build GCC, some are required, others optional. While any sufficiently new version of required tools usually work, library requirements are generally stricter. Newer versions may work in some cases, but it's safer to use ! the exact versions documented. We appreciate bug reports about problems ! with newer versions, though. If your OS vendor provides packages for ! the support libraries then using those packages may be the simplest way ! to install the libraries. GNU Multiple Precision Library (GMP) version 4.3.2 (or later) + Necessary to build GCC. If a GMP source distribution is found in a ! subdirectory of your GCC sources named 'gmp', it will be built ! together with GCC. Alternatively, if GMP is already installed but it is not in your library search path, you will have to configure ! with the '--with-gmp' configure option. See also '--with-gmp-lib' ! and '--with-gmp-include'. MPFR Library version 2.4.2 (or later) + Necessary to build GCC. It can be downloaded from ! . If an MPFR source distribution is found in ! a subdirectory of your GCC sources named 'mpfr', it will be built ! together with GCC. Alternatively, if MPFR is already installed but ! it is not in your default library search path, the '--with-mpfr' ! configure option should be used. See also '--with-mpfr-lib' and ! '--with-mpfr-include'. MPC Library version 0.8.1 (or later) + Necessary to build GCC. It can be downloaded from ! . If an MPC source distribution is ! found in a subdirectory of your GCC sources named 'mpc', it will be ! built together with GCC. Alternatively, if MPC is already installed ! but it is not in your default library search path, the '--with-mpc' ! configure option should be used. See also '--with-mpc-lib' and ! '--with-mpc-include'. ISL Library version 0.11.1 + Necessary to build GCC with the Graphite loop optimizations. It ! can be downloaded from ! as 'isl-0.11.1.tar.bz2'. ! The '--with-isl' configure option should be used if ISL is not installed in your default library search path. CLooG 0.18.0 + Necessary to build GCC with the Graphite loop optimizations. It ! can be downloaded from ! as 'cloog-0.18.0.tar.gz'. The '--with-cloog' configure option should be used if CLooG is not installed in your default library search path. CLooG needs to be built against ISL 0.11.1. Use ! '--with-isl=system' to direct CLooG to pick up an already installed ! ISL, otherwise it will use ISL 0.11.1 as bundled with CLooG. CLooG ! needs to be configured to use GMP internally, use '--with-bits=gmp' ! to direct it to do that. Tools/packages necessary for modifying GCC ========================================== autoconf version 2.64 GNU m4 version 1.4.6 (or later) ! ! Necessary when modifying 'configure.ac', 'aclocal.m4', etc. to ! regenerate 'configure' and 'config.in' files. automake version 1.11.1 ! ! Necessary when modifying a 'Makefile.am' file to regenerate its ! associated 'Makefile.in'. Much of GCC does not use automake, so directly edit the ! 'Makefile.in' file. Specifically this applies to the 'gcc', ! 'intl', 'libcpp', 'libiberty', 'libobjc' directories as well as any ! of their subdirectories. For directories that use automake, GCC requires the latest release ! in the 1.11 series, which is currently 1.11.1. When regenerating a ! directory to a newer version, please update all the directories using an older 1.11 to the latest released version. gettext version 0.14.5 (or later) ! ! Needed to regenerate 'gcc.pot'. gperf version 2.7.2 (or later) ! ! Necessary when modifying 'gperf' input files, e.g. ! 'gcc/cp/cfns.gperf' to regenerate its associated header file, e.g. ! 'gcc/cp/cfns.h'. DejaGnu 1.4.4 Expect Tcl + Necessary to run the GCC testsuite; see the section on testing for details. autogen version 5.5.4 (or later) and guile version 1.4.1 (or later) ! Necessary to regenerate 'fixinc/fixincl.x' from ! 'fixinc/inclhack.def' and 'fixinc/*.tpl'. ! Necessary to run 'make check' for 'fixinc'. ! ! Necessary to regenerate the top level 'Makefile.in' file from ! 'Makefile.tpl' and 'Makefile.def'. Flex version 2.5.4 (or later) ! ! Necessary when modifying '*.l' files. Necessary to build GCC during development because the generated output files are not included in the SVN repository. They are included in releases. Texinfo version 4.7 (or later) ! ! Necessary for running 'makeinfo' when modifying '*.texi' files to test your changes. ! Necessary for running 'make dvi' or 'make pdf' to create printable documentation in DVI or PDF format. Texinfo version 4.8 or later ! is required for 'make pdf'. Necessary to build GCC documentation during development because the generated output files are not included in the SVN repository. They are included in releases. TeX (any working version) ! ! Necessary for running 'texi2dvi' and 'texi2pdf', which are used ! when running 'make dvi' or 'make pdf' to create DVI or PDF files, respectively. SVN (any version) SSH (any version) + Necessary to access the SVN repository. Public releases and weekly snapshots of the development sources are also available via FTP. GNU diffutils version 2.7 (or later) + Useful when submitting patches for the GCC source code. patch version 2.5.4 (or later) ! ! Necessary when applying patches, created with 'diff', to one's own sources. ecj1 gjavah ! ! If you wish to modify '.java' files in libjava, you will need to ! configure with '--enable-java-maintainer-mode', and you will need ! to have executables named 'ecj1' and 'gjavah' in your path. The ! 'ecj1' executable should run the Eclipse Java compiler via the GCC-specific entry point. You can download a suitable jar from ! , or by running the script ! 'contrib/download_ecj'. antlr.jar version 2.7.1 (or later) antlr binary + If you wish to build the 'gjdoc' binary in libjava, you will need + to have an 'antlr.jar' library available. The library is searched + for in system locations but can be specified with + '--with-antlr-jar=' instead. When configuring with + '--enable-java-maintainer-mode', you will need to have one of the + executables named 'cantlr', 'runantlr' or 'antlr' in your path.  File: gccinstall.info, Node: Downloading the source, Next: Configuration, Prev: Prerequisites, Up: Installing GCC *************** File: gccinstall.info, Node: Downloadin *** 358,390 **** 3 Downloading GCC ***************** ! GCC is distributed via SVN and FTP tarballs compressed with `gzip' or ! `bzip2'. Please refer to the releases web page for information on how to obtain GCC. The source distribution includes the C, C++, Objective-C, Fortran, Java, and Ada (in the case of GCC 3.1 and later) compilers, as well as ! runtime libraries for C++, Objective-C, Fortran, and Java. For ! previous versions these were downloadable as separate components such ! as the core GCC distribution, which included the C language front end ! and shared components, and language-specific distributions including the ! language front end and the language runtime (where appropriate). If you also intend to build binutils (either to upgrade an existing ! installation or for use in place of the corresponding tools of your ! OS), unpack the binutils distribution either in the same directory or a separate one. In the latter case, add symbolic links to any components ! of the binutils you intend to build alongside the compiler (`bfd', ! `binutils', `gas', `gprof', `ld', `opcodes', ...) to the directory containing the GCC sources. Likewise the GMP, MPFR and MPC libraries can be automatically built ! together with GCC. Unpack the GMP, MPFR and/or MPC source ! distributions in the directory containing the GCC sources and rename ! their directories to `gmp', `mpfr' and `mpc', respectively (or use ! symbolic links with the same name).  File: gccinstall.info, Node: Configuration, Next: Building, Prev: Downloading the source, Up: Installing GCC --- 381,413 ---- 3 Downloading GCC ***************** ! GCC is distributed via SVN and FTP tarballs compressed with 'gzip' or ! 'bzip2'. Please refer to the releases web page for information on how to obtain GCC. The source distribution includes the C, C++, Objective-C, Fortran, Java, and Ada (in the case of GCC 3.1 and later) compilers, as well as ! runtime libraries for C++, Objective-C, Fortran, and Java. For previous ! versions these were downloadable as separate components such as the core ! GCC distribution, which included the C language front end and shared ! components, and language-specific distributions including the language ! front end and the language runtime (where appropriate). If you also intend to build binutils (either to upgrade an existing ! installation or for use in place of the corresponding tools of your OS), ! unpack the binutils distribution either in the same directory or a separate one. In the latter case, add symbolic links to any components ! of the binutils you intend to build alongside the compiler ('bfd', ! 'binutils', 'gas', 'gprof', 'ld', 'opcodes', ...) to the directory containing the GCC sources. Likewise the GMP, MPFR and MPC libraries can be automatically built ! together with GCC. Unpack the GMP, MPFR and/or MPC source distributions ! in the directory containing the GCC sources and rename their directories ! to 'gmp', 'mpfr' and 'mpc', respectively (or use symbolic links with the ! same name).  File: gccinstall.info, Node: Configuration, Next: Building, Prev: Downloading the source, Up: Installing GCC *************** File: gccinstall.info, Node: Configurat *** 392,413 **** 4 Installing GCC: Configuration ******************************* ! Like most GNU software, GCC must be configured before it can be ! built. This document describes the recommended configuration procedure ! for both native and cross targets. We use SRCDIR to refer to the toplevel source directory for GCC; we use OBJDIR to refer to the toplevel build/object directory. If you obtained the sources via SVN, SRCDIR must refer to the top ! `gcc' directory, the one where the `MAINTAINERS' file can be found, and ! not its `gcc' subdirectory, otherwise the build will fail. If either SRCDIR or OBJDIR is located on an automounted NFS file ! system, the shell's built-in `pwd' command will return temporary ! pathnames. Using these can lead to various sorts of build problems. ! To avoid this issue, set the `PWDCMD' environment variable to an ! automounter-aware `pwd' command, e.g., `pawd' or `amq -w', during the configuration and build phases. First, we *highly* recommend that GCC be built into a separate --- 415,436 ---- 4 Installing GCC: Configuration ******************************* ! Like most GNU software, GCC must be configured before it can be built. ! This document describes the recommended configuration procedure for both ! native and cross targets. We use SRCDIR to refer to the toplevel source directory for GCC; we use OBJDIR to refer to the toplevel build/object directory. If you obtained the sources via SVN, SRCDIR must refer to the top ! 'gcc' directory, the one where the 'MAINTAINERS' file can be found, and ! not its 'gcc' subdirectory, otherwise the build will fail. If either SRCDIR or OBJDIR is located on an automounted NFS file ! system, the shell's built-in 'pwd' command will return temporary ! pathnames. Using these can lead to various sorts of build problems. To ! avoid this issue, set the 'PWDCMD' environment variable to an ! automounter-aware 'pwd' command, e.g., 'pawd' or 'amq -w', during the configuration and build phases. First, we *highly* recommend that GCC be built into a separate *************** OBJDIR should still work, but doesn't ge *** 417,432 **** where OBJDIR is a subdirectory of SRCDIR is unsupported. If you have previously built GCC in the same directory for a ! different target machine, do `make distclean' to delete all files that ! might be invalid. One of the files this deletes is `Makefile'; if ! `make distclean' complains that `Makefile' does not exist or issues a ! message like "don't know how to make distclean" it probably means that ! the directory is already suitably clean. However, with the recommended method of building in a separate OBJDIR, you should simply use a different OBJDIR for each target. ! Second, when configuring a native system, either `cc' or `gcc' must ! be in your path or you must set `CC' in your environment before running configure. Otherwise the configuration scripts may fail. To configure GCC: --- 440,455 ---- where OBJDIR is a subdirectory of SRCDIR is unsupported. If you have previously built GCC in the same directory for a ! different target machine, do 'make distclean' to delete all files that ! might be invalid. One of the files this deletes is 'Makefile'; if 'make ! distclean' complains that 'Makefile' does not exist or issues a message ! like "don't know how to make distclean" it probably means that the ! directory is already suitably clean. However, with the recommended method of building in a separate OBJDIR, you should simply use a different OBJDIR for each target. ! Second, when configuring a native system, either 'cc' or 'gcc' must ! be in your path or you must set 'CC' in your environment before running configure. Otherwise the configuration scripts may fail. To configure GCC: *************** Distributor options *** 439,456 **** =================== If you will be distributing binary versions of GCC, with modifications ! to the source code, you should use the options described in this ! section to make clear that your version contains modifications. ! `--with-pkgversion=VERSION' Specify a string that identifies your package. You may wish to include a build number or build date. This version string will be ! included in the output of `gcc --version'. This suffix does not ! replace the default version string, only the `GCC' part. ! The default value is `GCC'. ! `--with-bugurl=URL' Specify the URL that users should visit if they wish to report a bug. You are of course welcome to forward bugs reported to you to the FSF, if you determine that they are not bugs in your --- 462,479 ---- =================== If you will be distributing binary versions of GCC, with modifications ! to the source code, you should use the options described in this section ! to make clear that your version contains modifications. ! '--with-pkgversion=VERSION' Specify a string that identifies your package. You may wish to include a build number or build date. This version string will be ! included in the output of 'gcc --version'. This suffix does not ! replace the default version string, only the 'GCC' part. ! The default value is 'GCC'. ! '--with-bugurl=URL' Specify the URL that users should visit if they wish to report a bug. You are of course welcome to forward bugs reported to you to the FSF, if you determine that they are not bugs in your *************** section to make clear that your version *** 458,464 **** The default value refers to the FSF's GCC bug tracker. - Target specification ==================== --- 481,486 ---- *************** Target specification *** 467,603 **** do not provide a configure target when configuring a native compiler. ! * TARGET must be specified as `--target=TARGET' when configuring a cross compiler; examples of valid targets would be m68k-elf, sh-elf, etc. ! * Specifying just TARGET instead of `--target=TARGET' implies that the host defaults to TARGET. Options specification ===================== Use OPTIONS to override several configure time options for GCC. A list ! of supported OPTIONS follows; `configure --help' may list other ! options, but those not listed below may not work and should not ! normally be used. ! Note that each `--enable' option has a corresponding `--disable' ! option and that each `--with' option has a corresponding `--without' option. ! `--prefix=DIRNAME' Specify the toplevel installation directory. This is the recommended way to install the tools into a directory other than the default. The toplevel installation directory defaults to ! `/usr/local'. We *highly* recommend against DIRNAME being the same or a subdirectory of OBJDIR or vice versa. If specifying a directory beneath a user's home directory tree, some shells will not expand ! DIRNAME correctly if it contains the `~' metacharacter; use ! `$HOME' instead. ! The following standard `autoconf' options are supported. Normally you should not need to use these options. ! `--exec-prefix=DIRNAME' Specify the toplevel installation directory for ! architecture-dependent files. The default is `PREFIX'. ! `--bindir=DIRNAME' Specify the installation directory for the executables called ! by users (such as `gcc' and `g++'). The default is ! `EXEC-PREFIX/bin'. ! `--libdir=DIRNAME' Specify the installation directory for object code libraries and internal data files of GCC. The default is ! `EXEC-PREFIX/lib'. ! `--libexecdir=DIRNAME' ! Specify the installation directory for internal executables ! of GCC. The default is `EXEC-PREFIX/libexec'. ! `--with-slibdir=DIRNAME' Specify the installation directory for the shared libgcc ! library. The default is `LIBDIR'. ! `--datarootdir=DIRNAME' Specify the root of the directory tree for read-only architecture-independent data files referenced by GCC. The ! default is `PREFIX/share'. ! `--infodir=DIRNAME' Specify the installation directory for documentation in info ! format. The default is `DATAROOTDIR/info'. ! `--datadir=DIRNAME' Specify the installation directory for some architecture-independent data files referenced by GCC. The ! default is `DATAROOTDIR'. ! `--docdir=DIRNAME' Specify the installation directory for documentation files ! (other than Info) for GCC. The default is `DATAROOTDIR/doc'. ! `--htmldir=DIRNAME' Specify the installation directory for HTML documentation ! files. The default is `DOCDIR'. ! `--pdfdir=DIRNAME' Specify the installation directory for PDF documentation ! files. The default is `DOCDIR'. ! `--mandir=DIRNAME' Specify the installation directory for manual pages. The ! default is `DATAROOTDIR/man'. (Note that the manual pages ! are only extracts from the full GCC manuals, which are ! provided in Texinfo format. The manpages are derived by an ! automatic conversion process from parts of the full manual.) ! `--with-gxx-include-dir=DIRNAME' Specify the installation directory for G++ header files. The default depends on other configuration options, and differs between cross and native configurations. ! `--with-specs=SPECS' ! Specify additional command line driver SPECS. This can be useful if you need to turn on a non-standard feature by default without modifying the compiler's source code, for instance ! `--with-specs=%{!fcommon:%{!fno-common:-fno-common}}'. *Note Specifying subprocesses and the switches to pass to them: (gcc)Spec Files, ! ! `--program-prefix=PREFIX' GCC supports some transformations of the names of its programs when installing them. This option prepends PREFIX to the names of programs to install in BINDIR (see above). For example, specifying ! `--program-prefix=foo-' would result in `gcc' being installed as ! `/usr/local/bin/foo-gcc'. ! `--program-suffix=SUFFIX' Appends SUFFIX to the names of programs to install in BINDIR (see ! above). For example, specifying `--program-suffix=-3.1' would ! result in `gcc' being installed as `/usr/local/bin/gcc-3.1'. ! `--program-transform-name=PATTERN' ! Applies the `sed' script PATTERN to be applied to the names of programs to install in BINDIR (see above). PATTERN has to consist ! of one or more basic `sed' editing commands, separated by ! semicolons. For example, if you want the `gcc' program name to be ! transformed to the installed program `/usr/local/bin/myowngcc' and ! the `g++' program name to be transformed to ! `/usr/local/bin/gspecial++' without changing other program names, you could use the pattern ! `--program-transform-name='s/^gcc$/myowngcc/; s/^g++$/gspecial++/'' to achieve this effect. All three options can be combined and used together, resulting in more complex conversion patterns. As a basic rule, PREFIX (and ! SUFFIX) are prepended (appended) before further transformations ! can happen with a special transformation script PATTERN. As currently implemented, this option only takes effect for native builds; cross compiler binaries' names are not transformed even --- 489,623 ---- do not provide a configure target when configuring a native compiler. ! * TARGET must be specified as '--target=TARGET' when configuring a cross compiler; examples of valid targets would be m68k-elf, sh-elf, etc. ! * Specifying just TARGET instead of '--target=TARGET' implies that the host defaults to TARGET. Options specification ===================== Use OPTIONS to override several configure time options for GCC. A list ! of supported OPTIONS follows; 'configure --help' may list other options, ! but those not listed below may not work and should not normally be used. ! Note that each '--enable' option has a corresponding '--disable' ! option and that each '--with' option has a corresponding '--without' option. ! '--prefix=DIRNAME' Specify the toplevel installation directory. This is the recommended way to install the tools into a directory other than the default. The toplevel installation directory defaults to ! '/usr/local'. We *highly* recommend against DIRNAME being the same or a subdirectory of OBJDIR or vice versa. If specifying a directory beneath a user's home directory tree, some shells will not expand ! DIRNAME correctly if it contains the '~' metacharacter; use '$HOME' ! instead. ! The following standard 'autoconf' options are supported. Normally you should not need to use these options. ! '--exec-prefix=DIRNAME' Specify the toplevel installation directory for ! architecture-dependent files. The default is 'PREFIX'. ! '--bindir=DIRNAME' Specify the installation directory for the executables called ! by users (such as 'gcc' and 'g++'). The default is ! 'EXEC-PREFIX/bin'. ! '--libdir=DIRNAME' Specify the installation directory for object code libraries and internal data files of GCC. The default is ! 'EXEC-PREFIX/lib'. ! '--libexecdir=DIRNAME' ! Specify the installation directory for internal executables of ! GCC. The default is 'EXEC-PREFIX/libexec'. ! '--with-slibdir=DIRNAME' Specify the installation directory for the shared libgcc ! library. The default is 'LIBDIR'. ! '--datarootdir=DIRNAME' Specify the root of the directory tree for read-only architecture-independent data files referenced by GCC. The ! default is 'PREFIX/share'. ! '--infodir=DIRNAME' Specify the installation directory for documentation in info ! format. The default is 'DATAROOTDIR/info'. ! '--datadir=DIRNAME' Specify the installation directory for some architecture-independent data files referenced by GCC. The ! default is 'DATAROOTDIR'. ! '--docdir=DIRNAME' Specify the installation directory for documentation files ! (other than Info) for GCC. The default is 'DATAROOTDIR/doc'. ! '--htmldir=DIRNAME' Specify the installation directory for HTML documentation ! files. The default is 'DOCDIR'. ! '--pdfdir=DIRNAME' Specify the installation directory for PDF documentation ! files. The default is 'DOCDIR'. ! '--mandir=DIRNAME' Specify the installation directory for manual pages. The ! default is 'DATAROOTDIR/man'. (Note that the manual pages are ! only extracts from the full GCC manuals, which are provided in ! Texinfo format. The manpages are derived by an automatic ! conversion process from parts of the full manual.) ! '--with-gxx-include-dir=DIRNAME' Specify the installation directory for G++ header files. The default depends on other configuration options, and differs between cross and native configurations. ! '--with-specs=SPECS' ! Specify additional command line driver SPECS. This can be useful if you need to turn on a non-standard feature by default without modifying the compiler's source code, for instance ! '--with-specs=%{!fcommon:%{!fno-common:-fno-common}}'. *Note Specifying subprocesses and the switches to pass to them: (gcc)Spec Files, ! '--program-prefix=PREFIX' GCC supports some transformations of the names of its programs when installing them. This option prepends PREFIX to the names of programs to install in BINDIR (see above). For example, specifying ! '--program-prefix=foo-' would result in 'gcc' being installed as ! '/usr/local/bin/foo-gcc'. ! '--program-suffix=SUFFIX' Appends SUFFIX to the names of programs to install in BINDIR (see ! above). For example, specifying '--program-suffix=-3.1' would ! result in 'gcc' being installed as '/usr/local/bin/gcc-3.1'. ! '--program-transform-name=PATTERN' ! Applies the 'sed' script PATTERN to be applied to the names of programs to install in BINDIR (see above). PATTERN has to consist ! of one or more basic 'sed' editing commands, separated by ! semicolons. For example, if you want the 'gcc' program name to be ! transformed to the installed program '/usr/local/bin/myowngcc' and ! the 'g++' program name to be transformed to ! '/usr/local/bin/gspecial++' without changing other program names, you could use the pattern ! '--program-transform-name='s/^gcc$/myowngcc/; s/^g++$/gspecial++/'' to achieve this effect. All three options can be combined and used together, resulting in more complex conversion patterns. As a basic rule, PREFIX (and ! SUFFIX) are prepended (appended) before further transformations can ! happen with a special transformation script PATTERN. As currently implemented, this option only takes effect for native builds; cross compiler binaries' names are not transformed even *************** option. *** 606,700 **** For native builds, some of the installed programs are also installed with the target alias in front of their name, as in ! `i686-pc-linux-gnu-gcc'. All of the above transformations happen before the target alias is prepended to the name--so, specifying ! `--program-prefix=foo-' and `program-suffix=-3.1', the resulting binary would be installed as ! `/usr/local/bin/i686-pc-linux-gnu-foo-gcc-3.1'. As a last shortcoming, none of the installed Ada programs are transformed yet, which will be fixed in some time. ! `--with-local-prefix=DIRNAME' Specify the installation directory for local include files. The ! default is `/usr/local'. Specify this option if you want the ! compiler to search directory `DIRNAME/include' for locally ! installed header files _instead_ of `/usr/local/include'. ! You should specify `--with-local-prefix' *only* if your site has a ! different convention (not `/usr/local') for where to put site-specific files. ! The default value for `--with-local-prefix' is `/usr/local' ! regardless of the value of `--prefix'. Specifying `--prefix' has no effect on which directory GCC searches for local header files. This may seem counterintuitive, but actually it is logical. ! The purpose of `--prefix' is to specify where to _install GCC_. ! The local header files in `/usr/local/include'--if you put any in ! that directory--are not part of GCC. They are part of other programs--perhaps many others. (GCC installs its own header files ! in another directory which is based on the `--prefix' value.) Both the local-prefix include directory and the GCC-prefix include ! directory are part of GCC's "system include" directories. ! Although these two directories are not fixed, they need to be ! searched in the proper order for the correct processing of the ! include_next directive. The local-prefix include directory is ! searched before the GCC-prefix include directory. Another ! characteristic of system include directories is that pedantic ! warnings are turned off for headers in these directories. ! Some autoconf macros add `-I DIRECTORY' options to the compiler command line, to ensure that directories containing installed packages' headers are searched. When DIRECTORY is one of GCC's system include directories, GCC will ignore the option so that system directories continue to be processed in the correct order. ! This may result in a search order different from what was ! specified but the directory will still be searched. GCC automatically searches for ordinary libraries using ! `GCC_EXEC_PREFIX'. Thus, when the same installation prefix is ! used for both GCC and packages, GCC will automatically search for ! both headers and libraries. This provides a configuration that is ! easy to use. GCC behaves in a manner similar to that when it is ! installed as a system compiler in `/usr'. Sites that need to install multiple versions of GCC may not want to use the above simple configuration. It is possible to use the ! `--program-prefix', `--program-suffix' and ! `--program-transform-name' options to install multiple versions into a single directory, but it may be simpler to use different ! prefixes and the `--with-local-prefix' option to specify the ! location of the site-specific files for each version. It will ! then be necessary for users to specify explicitly the location of ! local site libraries (e.g., with `LIBRARY_PATH'). ! The same value can be used for both `--with-local-prefix' and ! `--prefix' provided it is not `/usr'. This can be used to avoid ! the default search of `/usr/local/include'. ! *Do not* specify `/usr' as the `--with-local-prefix'! The ! directory you use for `--with-local-prefix' *must not* contain any of the system's standard header files. If it did contain them, certain programs would be miscompiled (including GNU Emacs, on certain targets), because this would override and nullify the ! header file corrections made by the `fixincludes' script. Indications are that people who use this option use it based on ! mistaken ideas of what it is for. People use it as if it ! specified where to install part of GCC. Perhaps they make this ! assumption because installing GCC creates the directory. ! `--with-native-system-header-dir=DIRNAME' Specifies that DIRNAME is the directory that contains native system ! header files, rather than `/usr/include'. This option is most useful if you are creating a compiler that should be isolated from the system as much as possible. It is most commonly used with the ! `--with-sysroot' option and will cause GCC to search DIRNAME ! inside the system root specified by that option. ! `--enable-shared[=PACKAGE[,...]]' Build shared versions of libraries, if shared libraries are supported on the target platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default on all platforms that --- 626,720 ---- For native builds, some of the installed programs are also installed with the target alias in front of their name, as in ! 'i686-pc-linux-gnu-gcc'. All of the above transformations happen before the target alias is prepended to the name--so, specifying ! '--program-prefix=foo-' and 'program-suffix=-3.1', the resulting binary would be installed as ! '/usr/local/bin/i686-pc-linux-gnu-foo-gcc-3.1'. As a last shortcoming, none of the installed Ada programs are transformed yet, which will be fixed in some time. ! '--with-local-prefix=DIRNAME' Specify the installation directory for local include files. The ! default is '/usr/local'. Specify this option if you want the ! compiler to search directory 'DIRNAME/include' for locally ! installed header files _instead_ of '/usr/local/include'. ! You should specify '--with-local-prefix' *only* if your site has a ! different convention (not '/usr/local') for where to put site-specific files. ! The default value for '--with-local-prefix' is '/usr/local' ! regardless of the value of '--prefix'. Specifying '--prefix' has no effect on which directory GCC searches for local header files. This may seem counterintuitive, but actually it is logical. ! The purpose of '--prefix' is to specify where to _install GCC_. The ! local header files in '/usr/local/include'--if you put any in that ! directory--are not part of GCC. They are part of other programs--perhaps many others. (GCC installs its own header files ! in another directory which is based on the '--prefix' value.) Both the local-prefix include directory and the GCC-prefix include ! directory are part of GCC's "system include" directories. Although ! these two directories are not fixed, they need to be searched in ! the proper order for the correct processing of the include_next ! directive. The local-prefix include directory is searched before ! the GCC-prefix include directory. Another characteristic of system ! include directories is that pedantic warnings are turned off for ! headers in these directories. ! Some autoconf macros add '-I DIRECTORY' options to the compiler command line, to ensure that directories containing installed packages' headers are searched. When DIRECTORY is one of GCC's system include directories, GCC will ignore the option so that system directories continue to be processed in the correct order. ! This may result in a search order different from what was specified ! but the directory will still be searched. GCC automatically searches for ordinary libraries using ! 'GCC_EXEC_PREFIX'. Thus, when the same installation prefix is used ! for both GCC and packages, GCC will automatically search for both ! headers and libraries. This provides a configuration that is easy ! to use. GCC behaves in a manner similar to that when it is ! installed as a system compiler in '/usr'. Sites that need to install multiple versions of GCC may not want to use the above simple configuration. It is possible to use the ! '--program-prefix', '--program-suffix' and ! '--program-transform-name' options to install multiple versions into a single directory, but it may be simpler to use different ! prefixes and the '--with-local-prefix' option to specify the ! location of the site-specific files for each version. It will then ! be necessary for users to specify explicitly the location of local ! site libraries (e.g., with 'LIBRARY_PATH'). ! The same value can be used for both '--with-local-prefix' and ! '--prefix' provided it is not '/usr'. This can be used to avoid ! the default search of '/usr/local/include'. ! *Do not* specify '/usr' as the '--with-local-prefix'! The ! directory you use for '--with-local-prefix' *must not* contain any of the system's standard header files. If it did contain them, certain programs would be miscompiled (including GNU Emacs, on certain targets), because this would override and nullify the ! header file corrections made by the 'fixincludes' script. Indications are that people who use this option use it based on ! mistaken ideas of what it is for. People use it as if it specified ! where to install part of GCC. Perhaps they make this assumption ! because installing GCC creates the directory. ! '--with-native-system-header-dir=DIRNAME' Specifies that DIRNAME is the directory that contains native system ! header files, rather than '/usr/include'. This option is most useful if you are creating a compiler that should be isolated from the system as much as possible. It is most commonly used with the ! '--with-sysroot' option and will cause GCC to search DIRNAME inside ! the system root specified by that option. ! '--enable-shared[=PACKAGE[,...]]' Build shared versions of libraries, if shared libraries are supported on the target platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default on all platforms that *************** option. *** 702,866 **** If a list of packages is given as an argument, build shared libraries only for the listed packages. For other packages, only ! static libraries will be built. Package names currently ! recognized in the GCC tree are `libgcc' (also known as `gcc'), ! `libstdc++' (not `libstdc++-v3'), `libffi', `zlib', `boehm-gc', ! `ada', `libada', `libjava', `libgo', and `libobjc'. Note ! `libiberty' does not support shared libraries at all. ! Use `--disable-shared' to build only static libraries. Note that ! `--disable-shared' does not accept a list of package names as ! argument, only `--enable-shared' does. ! `--with-gnu-as' ! Specify that the compiler should assume that the assembler it ! finds is the GNU assembler. However, this does not modify the ! rules to find an assembler and will result in confusion if the ! assembler found is not actually the GNU assembler. (Confusion may ! also result if the compiler finds the GNU assembler but has not ! been configured with `--with-gnu-as'.) If you have more than one ! assembler installed on your system, you may want to use this ! option in connection with `--with-as=PATHNAME' or ! `--with-build-time-tools=PATHNAME'. The following systems are the only ones where it makes a difference whether you use the GNU assembler. On any other system, ! `--with-gnu-as' has no effect. ! ! * `hppa1.0-ANY-ANY' ! ! * `hppa1.1-ANY-ANY' ! ! * `sparc-sun-solaris2.ANY' ! * `sparc64-ANY-solaris2.ANY' ! `--with-as=PATHNAME' Specify that the compiler should use the assembler pointed to by PATHNAME, rather than the one found by the standard rules to find an assembler, which are: * Unless GCC is being built with a cross compiler, check the ! `LIBEXEC/gcc/TARGET/VERSION' directory. LIBEXEC defaults to ! `EXEC-PREFIX/libexec'; EXEC-PREFIX defaults to PREFIX, which ! defaults to `/usr/local' unless overridden by the ! `--prefix=PATHNAME' switch described above. TARGET is the ! target system triple, such as `sparc-sun-solaris2.7', and VERSION denotes the GCC version, such as 3.0. * If the target system is the same that you are building on, check operating system specific directories (e.g. ! `/usr/ccs/bin' on Sun Solaris 2). ! * Check in the `PATH' for a tool whose name is prefixed by the target system triple. ! * Check in the `PATH' for a tool whose name is not prefixed by ! the target system triple, if the host and target system ! triple are the same (in other words, we use a host tool if it ! can be used for the target as well). ! You may want to use `--with-as' if no assembler is installed in ! the directories listed above, or if you have multiple assemblers installed and want to choose one that is not found by the above rules. ! `--with-gnu-ld' ! Same as `--with-gnu-as' but for the linker. ! `--with-ld=PATHNAME' ! Same as `--with-as' but for the linker. ! `--with-stabs' Specify that stabs debugging information should be used instead of ! whatever format the host normally uses. Normally GCC uses the ! same debug format as the host system. On MIPS based systems and on Alphas, you must specify whether you want GCC to create the normal ECOFF debugging format, or to use BSD-style stabs passed through the ECOFF symbol table. The normal ! ECOFF debug format cannot fully handle languages other than C. ! BSD stabs format can handle other languages, but it only works ! with the GNU debugger GDB. Normally, GCC uses the ECOFF debugging format by default; if you ! prefer BSD stabs, specify `--with-stabs' when you configure GCC. No matter which default you choose when you configure GCC, the user ! can use the `-gcoff' and `-gstabs+' options to specify explicitly the debug format for a particular compilation. ! `--with-stabs' is meaningful on the ISC system on the 386, also, if ! `--with-gas' is used. It selects use of stabs debugging information embedded in COFF output. This kind of debugging information supports C++ well; ordinary COFF debugging information does not. ! `--with-stabs' is also meaningful on 386 systems running SVR4. It selects use of stabs debugging information embedded in ELF output. The C++ compiler currently (2.6.0) does not support the DWARF debugging information normally used on 386 SVR4 platforms; stabs provide a workable alternative. This requires gas and gdb, as the normal SVR4 tools can not generate or interpret stabs. ! `--with-tls=DIALECT' Specify the default TLS dialect, for systems were there is a ! choice. For ARM targets, possible values for DIALECT are `gnu' or ! `gnu2', which select between the original GNU dialect and the GNU TLS descriptor-based dialect. ! `--enable-multiarch' Specify whether to enable or disable multiarch support. The default is to check for glibc start files in a multiarch location, and enable it if the files are found. The auto detection is enabled for native builds, and for cross builds configured with ! `--with-sysroot', and without `--with-native-system-header-dir'. More documentation about multiarch can be found at ! `http://wiki.debian.org/Multiarch'. ! `--disable-multilib' Specify that multiple target libraries to support different target variants, calling conventions, etc. should not be built. The default is to build a predefined set of them. ! Some targets provide finer-grained control over which multilibs ! are built (e.g., `--disable-softfloat'): ! `arm-*-*' fpu, 26bit, underscore, interwork, biendian, nofmult. ! `m68*-*-*' softfloat, m68881, m68000, m68020. ! `mips*-*-*' single-float, biendian, softfloat. ! `powerpc*-*-*, rs6000*-*-*' aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, biendian, sysv, aix. ! ! `--with-multilib-list=LIST' ! `--without-multilib-list' Specify what multilibs to build. Currently only implemented for sh*-*-* and x86-64-*-linux*. ! `sh*-*-*' ! LIST is a comma separated list of CPU names. These must be ! of the form `sh*' or `m*' (in which case they match the ! compiler option for that processor). The list should not ! contain any endian options - these are handled by ! `--with-endian'. If LIST is empty, then there will be no multilibs for extra processors. The multilib for the secondary endian remains enabled. ! As a special case, if an entry in the list starts with a `!' (exclamation point), then it is added to the list of excluded multilibs. Entries of this sort should be compatible with ! `MULTILIB_EXCLUDES' (once the leading `!' has been stripped). ! If `--with-multilib-list' is not given, then a default set of ! multilibs is selected based on the value of `--target'. This is usually the complete set of libraries, but some targets imply a more specialized subset. --- 722,881 ---- If a list of packages is given as an argument, build shared libraries only for the listed packages. For other packages, only ! static libraries will be built. Package names currently recognized ! in the GCC tree are 'libgcc' (also known as 'gcc'), 'libstdc++' ! (not 'libstdc++-v3'), 'libffi', 'zlib', 'boehm-gc', 'ada', ! 'libada', 'libjava', 'libgo', and 'libobjc'. Note 'libiberty' does ! not support shared libraries at all. ! Use '--disable-shared' to build only static libraries. Note that ! '--disable-shared' does not accept a list of package names as ! argument, only '--enable-shared' does. ! '--with-gnu-as' ! Specify that the compiler should assume that the assembler it finds ! is the GNU assembler. However, this does not modify the rules to ! find an assembler and will result in confusion if the assembler ! found is not actually the GNU assembler. (Confusion may also ! result if the compiler finds the GNU assembler but has not been ! configured with '--with-gnu-as'.) If you have more than one ! assembler installed on your system, you may want to use this option ! in connection with '--with-as=PATHNAME' or ! '--with-build-time-tools=PATHNAME'. The following systems are the only ones where it makes a difference whether you use the GNU assembler. On any other system, ! '--with-gnu-as' has no effect. ! * 'hppa1.0-ANY-ANY' ! * 'hppa1.1-ANY-ANY' ! * 'sparc-sun-solaris2.ANY' ! * 'sparc64-ANY-solaris2.ANY' ! '--with-as=PATHNAME' Specify that the compiler should use the assembler pointed to by PATHNAME, rather than the one found by the standard rules to find an assembler, which are: * Unless GCC is being built with a cross compiler, check the ! 'LIBEXEC/gcc/TARGET/VERSION' directory. LIBEXEC defaults to ! 'EXEC-PREFIX/libexec'; EXEC-PREFIX defaults to PREFIX, which ! defaults to '/usr/local' unless overridden by the ! '--prefix=PATHNAME' switch described above. TARGET is the ! target system triple, such as 'sparc-sun-solaris2.7', and VERSION denotes the GCC version, such as 3.0. * If the target system is the same that you are building on, check operating system specific directories (e.g. ! '/usr/ccs/bin' on Sun Solaris 2). ! * Check in the 'PATH' for a tool whose name is prefixed by the target system triple. ! * Check in the 'PATH' for a tool whose name is not prefixed by ! the target system triple, if the host and target system triple ! are the same (in other words, we use a host tool if it can be ! used for the target as well). ! You may want to use '--with-as' if no assembler is installed in the ! directories listed above, or if you have multiple assemblers installed and want to choose one that is not found by the above rules. ! '--with-gnu-ld' ! Same as '--with-gnu-as' but for the linker. ! '--with-ld=PATHNAME' ! Same as '--with-as' but for the linker. ! '--with-stabs' Specify that stabs debugging information should be used instead of ! whatever format the host normally uses. Normally GCC uses the same ! debug format as the host system. On MIPS based systems and on Alphas, you must specify whether you want GCC to create the normal ECOFF debugging format, or to use BSD-style stabs passed through the ECOFF symbol table. The normal ! ECOFF debug format cannot fully handle languages other than C. BSD ! stabs format can handle other languages, but it only works with the ! GNU debugger GDB. Normally, GCC uses the ECOFF debugging format by default; if you ! prefer BSD stabs, specify '--with-stabs' when you configure GCC. No matter which default you choose when you configure GCC, the user ! can use the '-gcoff' and '-gstabs+' options to specify explicitly the debug format for a particular compilation. ! '--with-stabs' is meaningful on the ISC system on the 386, also, if ! '--with-gas' is used. It selects use of stabs debugging information embedded in COFF output. This kind of debugging information supports C++ well; ordinary COFF debugging information does not. ! '--with-stabs' is also meaningful on 386 systems running SVR4. It selects use of stabs debugging information embedded in ELF output. The C++ compiler currently (2.6.0) does not support the DWARF debugging information normally used on 386 SVR4 platforms; stabs provide a workable alternative. This requires gas and gdb, as the normal SVR4 tools can not generate or interpret stabs. ! '--with-tls=DIALECT' Specify the default TLS dialect, for systems were there is a ! choice. For ARM targets, possible values for DIALECT are 'gnu' or ! 'gnu2', which select between the original GNU dialect and the GNU TLS descriptor-based dialect. ! '--enable-multiarch' Specify whether to enable or disable multiarch support. The default is to check for glibc start files in a multiarch location, and enable it if the files are found. The auto detection is enabled for native builds, and for cross builds configured with ! '--with-sysroot', and without '--with-native-system-header-dir'. More documentation about multiarch can be found at ! . ! '--disable-multilib' Specify that multiple target libraries to support different target variants, calling conventions, etc. should not be built. The default is to build a predefined set of them. ! Some targets provide finer-grained control over which multilibs are ! built (e.g., '--disable-softfloat'): ! 'arm-*-*' fpu, 26bit, underscore, interwork, biendian, nofmult. ! 'm68*-*-*' softfloat, m68881, m68000, m68020. ! 'mips*-*-*' single-float, biendian, softfloat. ! 'powerpc*-*-*, rs6000*-*-*' aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, biendian, sysv, aix. ! '--with-multilib-list=LIST' ! '--without-multilib-list' Specify what multilibs to build. Currently only implemented for sh*-*-* and x86-64-*-linux*. ! 'sh*-*-*' ! LIST is a comma separated list of CPU names. These must be of ! the form 'sh*' or 'm*' (in which case they match the compiler ! option for that processor). The list should not contain any ! endian options - these are handled by '--with-endian'. If LIST is empty, then there will be no multilibs for extra processors. The multilib for the secondary endian remains enabled. ! As a special case, if an entry in the list starts with a '!' (exclamation point), then it is added to the list of excluded multilibs. Entries of this sort should be compatible with ! 'MULTILIB_EXCLUDES' (once the leading '!' has been stripped). ! If '--with-multilib-list' is not given, then a default set of ! multilibs is selected based on the value of '--target'. This is usually the complete set of libraries, but some targets imply a more specialized subset. *************** option. *** 873,908 **** --with-cpu=sh4a --with-endian=little,big \ --with-multilib-list=sh4al,!mb/m4al ! `x86-64-*-linux*' ! LIST is a comma separated list of `m32', `m64' and `mx32' to enable 32-bit, 64-bit and x32 run-time libraries, respectively. If LIST is empty, then there will be no multilibs and only the default run-time library will be enabled. ! If `--with-multilib-list' is not given, then only 32-bit and 64-bit run-time libraries will be enabled. ! `--with-endian=ENDIANS' Specify what endians to use. Currently only implemented for sh*-*-*. ENDIANS may be one of the following: ! `big' Use big endian exclusively. ! ! `little' Use little endian exclusively. ! ! `big,little' Use big endian by default. Provide a multilib for little endian. ! ! `little,big' Use little endian by default. Provide a multilib for big endian. ! `--enable-threads' Specify that the target supports threads. This affects the Objective-C compiler and runtime library, and exception handling for other languages like C++ and Java. On some systems, this is --- 888,920 ---- --with-cpu=sh4a --with-endian=little,big \ --with-multilib-list=sh4al,!mb/m4al ! 'x86-64-*-linux*' ! LIST is a comma separated list of 'm32', 'm64' and 'mx32' to enable 32-bit, 64-bit and x32 run-time libraries, respectively. If LIST is empty, then there will be no multilibs and only the default run-time library will be enabled. ! If '--with-multilib-list' is not given, then only 32-bit and 64-bit run-time libraries will be enabled. ! '--with-endian=ENDIANS' Specify what endians to use. Currently only implemented for sh*-*-*. ENDIANS may be one of the following: ! 'big' Use big endian exclusively. ! 'little' Use little endian exclusively. ! 'big,little' Use big endian by default. Provide a multilib for little endian. ! 'little,big' Use little endian by default. Provide a multilib for big endian. ! '--enable-threads' Specify that the target supports threads. This affects the Objective-C compiler and runtime library, and exception handling for other languages like C++ and Java. On some systems, this is *************** option. *** 912,1105 **** model available will be configured for use. Beware that on some systems, GCC has not been taught what threading models are generally available for the system. In this case, ! `--enable-threads' is an alias for `--enable-threads=single'. ! `--disable-threads' Specify that threading support should be disabled for the system. ! This is an alias for `--enable-threads=single'. ! `--enable-threads=LIB' Specify that LIB is the thread support library. This affects the Objective-C compiler and runtime library, and exception handling for other languages like C++ and Java. The possibilities for LIB are: ! `aix' AIX thread support. ! ! `dce' DCE thread support. ! ! `lynx' LynxOS thread support. ! ! `mipssde' MIPS SDE thread support. ! ! `no' ! This is an alias for `single'. ! ! `posix' Generic POSIX/Unix98 thread support. ! ! `rtems' RTEMS thread support. ! ! `single' Disable thread support, should work for all platforms. ! ! `tpf' TPF thread support. ! ! `vxworks' VxWorks thread support. ! ! `win32' Microsoft Win32 API thread support. ! `--enable-tls' Specify that the target supports TLS (Thread Local Storage). Usually configure can correctly determine if TLS is supported. In cases where it guesses incorrectly, TLS can be explicitly enabled ! or disabled with `--enable-tls' or `--disable-tls'. This can ! happen if the assembler supports TLS but the C library does not, ! or if the assumptions made by the configure test are incorrect. ! `--disable-tls' ! Specify that the target does not support TLS. This is an alias ! for `--enable-tls=no'. ! `--with-cpu=CPU' ! `--with-cpu-32=CPU' ! `--with-cpu-64=CPU' Specify which cpu variant the compiler should generate code for by ! default. CPU will be used as the default value of the `-mcpu=' switch. This option is only supported on some targets, including ! ARM, i386, M68k, PowerPC, and SPARC. The `--with-cpu-32' and ! `--with-cpu-64' options specify separate default CPUs for 32-bit ! and 64-bit modes; these options are only supported for i386, ! x86-64 and PowerPC. ! `--with-schedule=CPU' ! `--with-arch=CPU' ! `--with-arch-32=CPU' ! `--with-arch-64=CPU' ! `--with-tune=CPU' ! `--with-tune-32=CPU' ! `--with-tune-64=CPU' ! `--with-abi=ABI' ! `--with-fpu=TYPE' ! `--with-float=TYPE' These configure options provide default values for the ! `-mschedule=', `-march=', `-mtune=', `-mabi=', and `-mfpu=' ! options and for `-mhard-float' or `-msoft-float'. As with ! `--with-cpu', which switches will be accepted and acceptable values ! of the arguments depend on the target. ! `--with-mode=MODE' ! Specify if the compiler should default to `-marm' or `-mthumb'. This option is only supported on ARM targets. ! `--with-stack-offset=NUM' ! This option sets the default for the -mstack-offset=NUM option, ! and will thus generally also control the setting of this option for libraries. This option is only supported on Epiphany targets. ! `--with-fpmath=ISA' ! This options sets `-mfpmath=sse' by default and specifies the default ISA for floating-point arithmetics. You can select either ! `sse' which enables `-msse2' or `avx' which enables `-mavx' by default. This option is only supported on i386 and x86-64 targets. ! `--with-divide=TYPE' Specify how the compiler should generate code for checking for division by zero. This option is only supported on the MIPS target. The possibilities for TYPE are: ! `traps' Division by zero checks use conditional traps (this is the default on systems that support conditional traps). ! ! `breaks' Division by zero checks use the break instruction. ! `--with-llsc' ! On MIPS targets, make `-mllsc' the default when no `-mno-llsc' option is passed. This is the default for Linux-based targets, as the kernel will emulate them if the ISA does not provide them. ! `--without-llsc' ! On MIPS targets, make `-mno-llsc' the default when no `-mllsc' option is passed. ! `--with-synci' ! On MIPS targets, make `-msynci' the default when no `-mno-synci' option is passed. ! `--without-synci' ! On MIPS targets, make `-mno-synci' the default when no `-msynci' option is passed. This is the default. ! `--with-mips-plt' On MIPS targets, make use of copy relocations and PLTs. These ! features are extensions to the traditional SVR4-based MIPS ABIs ! and require support from GNU binutils and the runtime C library. ! `--enable-__cxa_atexit' Define if you want to use __cxa_atexit, rather than atexit, to register C++ destructors for local statics and global objects. This is essential for fully standards-compliant handling of destructors, but requires __cxa_atexit in libc. This option is currently only available on systems with GNU libc. When enabled, ! this will cause `-fuse-cxa-atexit' to be passed by default. ! `--enable-gnu-indirect-function' ! Define if you want to enable the `ifunc' attribute. This option is currently only available on systems with GNU libc on certain targets. ! `--enable-target-optspace' Specify that target libraries should be optimized for code space instead of code speed. This is the default for the m32r platform. ! `--with-cpp-install-dir=DIRNAME' ! Specify that the user visible `cpp' program should be installed in ! `PREFIX/DIRNAME/cpp', in addition to BINDIR. ! `--enable-comdat' Enable COMDAT group support. This is primarily used to override the automatically detected value. ! `--enable-initfini-array' ! Force the use of sections `.init_array' and `.fini_array' (instead ! of `.init' and `.fini') for constructors and destructors. Option ! `--disable-initfini-array' has the opposite effect. If neither ! option is specified, the configure script will try to guess ! whether the `.init_array' and `.fini_array' sections are supported ! and, if they are, use them. ! `--enable-maintainer-mode' The build rules that regenerate the Autoconf and Automake output ! files as well as the GCC master message catalog `gcc.pot' are normally disabled. This is because it can only be rebuilt if the complete source tree is present. If you have changed the sources and want to rebuild the catalog, configuring with ! `--enable-maintainer-mode' will enable this. Note that you need a ! recent version of the `gettext' tools to do so. ! `--disable-bootstrap' For a native build, the default configuration is to perform a ! 3-stage bootstrap of the compiler when `make' is invoked, testing ! that GCC can compile itself correctly. If you want to disable ! this process, you can configure with `--disable-bootstrap'. ! `--enable-bootstrap' In special cases, you may want to perform a 3-stage build even if the target and host triplets are different. This is possible when the host can run code compiled for the target (e.g. host is i686-linux, target is i486-linux). Starting from GCC 4.2, to do ! this you have to configure explicitly with `--enable-bootstrap'. ! `--enable-generated-files-in-srcdir' Neither the .c and .h files that are generated from Bison and flex nor the info manuals and man pages that are built from the .texi files are present in the SVN development tree. When building GCC --- 924,1106 ---- model available will be configured for use. Beware that on some systems, GCC has not been taught what threading models are generally available for the system. In this case, ! '--enable-threads' is an alias for '--enable-threads=single'. ! '--disable-threads' Specify that threading support should be disabled for the system. ! This is an alias for '--enable-threads=single'. ! '--enable-threads=LIB' Specify that LIB is the thread support library. This affects the Objective-C compiler and runtime library, and exception handling for other languages like C++ and Java. The possibilities for LIB are: ! 'aix' AIX thread support. ! 'dce' DCE thread support. ! 'lynx' LynxOS thread support. ! 'mipssde' MIPS SDE thread support. ! 'no' ! This is an alias for 'single'. ! 'posix' Generic POSIX/Unix98 thread support. ! 'rtems' RTEMS thread support. ! 'single' Disable thread support, should work for all platforms. ! 'tpf' TPF thread support. ! 'vxworks' VxWorks thread support. ! 'win32' Microsoft Win32 API thread support. ! '--enable-tls' Specify that the target supports TLS (Thread Local Storage). Usually configure can correctly determine if TLS is supported. In cases where it guesses incorrectly, TLS can be explicitly enabled ! or disabled with '--enable-tls' or '--disable-tls'. This can ! happen if the assembler supports TLS but the C library does not, or ! if the assumptions made by the configure test are incorrect. ! '--disable-tls' ! Specify that the target does not support TLS. This is an alias for ! '--enable-tls=no'. ! '--with-cpu=CPU' ! '--with-cpu-32=CPU' ! '--with-cpu-64=CPU' Specify which cpu variant the compiler should generate code for by ! default. CPU will be used as the default value of the '-mcpu=' switch. This option is only supported on some targets, including ! ARM, i386, M68k, PowerPC, and SPARC. The '--with-cpu-32' and ! '--with-cpu-64' options specify separate default CPUs for 32-bit ! and 64-bit modes; these options are only supported for i386, x86-64 ! and PowerPC. ! '--with-schedule=CPU' ! '--with-arch=CPU' ! '--with-arch-32=CPU' ! '--with-arch-64=CPU' ! '--with-tune=CPU' ! '--with-tune-32=CPU' ! '--with-tune-64=CPU' ! '--with-abi=ABI' ! '--with-fpu=TYPE' ! '--with-float=TYPE' These configure options provide default values for the ! '-mschedule=', '-march=', '-mtune=', '-mabi=', and '-mfpu=' options ! and for '-mhard-float' or '-msoft-float'. As with '--with-cpu', ! which switches will be accepted and acceptable values of the ! arguments depend on the target. ! '--with-mode=MODE' ! Specify if the compiler should default to '-marm' or '-mthumb'. This option is only supported on ARM targets. ! '--with-stack-offset=NUM' ! This option sets the default for the -mstack-offset=NUM option, and ! will thus generally also control the setting of this option for libraries. This option is only supported on Epiphany targets. ! '--with-fpmath=ISA' ! This options sets '-mfpmath=sse' by default and specifies the default ISA for floating-point arithmetics. You can select either ! 'sse' which enables '-msse2' or 'avx' which enables '-mavx' by default. This option is only supported on i386 and x86-64 targets. ! '--with-divide=TYPE' Specify how the compiler should generate code for checking for division by zero. This option is only supported on the MIPS target. The possibilities for TYPE are: ! 'traps' Division by zero checks use conditional traps (this is the default on systems that support conditional traps). ! 'breaks' Division by zero checks use the break instruction. ! '--with-llsc' ! On MIPS targets, make '-mllsc' the default when no '-mno-llsc' option is passed. This is the default for Linux-based targets, as the kernel will emulate them if the ISA does not provide them. ! '--without-llsc' ! On MIPS targets, make '-mno-llsc' the default when no '-mllsc' option is passed. ! '--with-synci' ! On MIPS targets, make '-msynci' the default when no '-mno-synci' option is passed. ! '--without-synci' ! On MIPS targets, make '-mno-synci' the default when no '-msynci' option is passed. This is the default. ! '--with-mips-plt' On MIPS targets, make use of copy relocations and PLTs. These ! features are extensions to the traditional SVR4-based MIPS ABIs and ! require support from GNU binutils and the runtime C library. ! '--enable-__cxa_atexit' Define if you want to use __cxa_atexit, rather than atexit, to register C++ destructors for local statics and global objects. This is essential for fully standards-compliant handling of destructors, but requires __cxa_atexit in libc. This option is currently only available on systems with GNU libc. When enabled, ! this will cause '-fuse-cxa-atexit' to be passed by default. ! '--enable-gnu-indirect-function' ! Define if you want to enable the 'ifunc' attribute. This option is currently only available on systems with GNU libc on certain targets. ! '--enable-target-optspace' Specify that target libraries should be optimized for code space instead of code speed. This is the default for the m32r platform. ! '--with-cpp-install-dir=DIRNAME' ! Specify that the user visible 'cpp' program should be installed in ! 'PREFIX/DIRNAME/cpp', in addition to BINDIR. ! '--enable-comdat' Enable COMDAT group support. This is primarily used to override the automatically detected value. ! '--enable-initfini-array' ! Force the use of sections '.init_array' and '.fini_array' (instead ! of '.init' and '.fini') for constructors and destructors. Option ! '--disable-initfini-array' has the opposite effect. If neither ! option is specified, the configure script will try to guess whether ! the '.init_array' and '.fini_array' sections are supported and, if ! they are, use them. ! '--enable-maintainer-mode' The build rules that regenerate the Autoconf and Automake output ! files as well as the GCC master message catalog 'gcc.pot' are normally disabled. This is because it can only be rebuilt if the complete source tree is present. If you have changed the sources and want to rebuild the catalog, configuring with ! '--enable-maintainer-mode' will enable this. Note that you need a ! recent version of the 'gettext' tools to do so. ! '--disable-bootstrap' For a native build, the default configuration is to perform a ! 3-stage bootstrap of the compiler when 'make' is invoked, testing ! that GCC can compile itself correctly. If you want to disable this ! process, you can configure with '--disable-bootstrap'. ! '--enable-bootstrap' In special cases, you may want to perform a 3-stage build even if the target and host triplets are different. This is possible when the host can run code compiled for the target (e.g. host is i686-linux, target is i486-linux). Starting from GCC 4.2, to do ! this you have to configure explicitly with '--enable-bootstrap'. ! '--enable-generated-files-in-srcdir' Neither the .c and .h files that are generated from Bison and flex nor the info manuals and man pages that are built from the .texi files are present in the SVN development tree. When building GCC *************** option. *** 1107,1187 **** generated files are placed in your build directory, which allows for the source to be in a readonly directory. ! If you configure with `--enable-generated-files-in-srcdir' then those generated files will go into the source directory. This is mainly intended for generating release or prerelease tarballs of the GCC sources, since it is not a requirement that the users of source releases to have flex, Bison, or makeinfo. ! `--enable-version-specific-runtime-libs' Specify that runtime libraries should be installed in the compiler ! specific subdirectory (`LIBDIR/gcc') rather than the usual places. ! In addition, `libstdc++''s include files will be installed into ! `LIBDIR' unless you overruled it by using ! `--with-gxx-include-dir=DIRNAME'. Using this option is particularly useful if you intend to use several versions of GCC in ! parallel. This is currently supported by `libgfortran', ! `libjava', `libmudflap', `libstdc++', and `libobjc'. ! `--enable-languages=LANG1,LANG2,...' Specify that only a particular subset of compilers and their runtime libraries should be built. For a list of valid values for ! LANGN you can issue the following command in the `gcc' directory ! of your GCC source tree: grep language= */config-lang.in ! Currently, you can use any of the following: `all', `ada', `c', ! `c++', `fortran', `go', `java', `objc', `obj-c++'. Building the Ada compiler has special requirements, see below. If you do not ! pass this flag, or specify the option `all', then all default ! languages available in the `gcc' sub-tree will be configured. ! Ada, Go and Objective-C++ are not default languages; the rest are. ! `--enable-stage1-languages=LANG1,LANG2,...' Specify that a particular subset of compilers and their runtime ! libraries should be built with the system C compiler during stage ! 1 of the bootstrap process, rather than only in later stages with ! the bootstrapped C compiler. The list of valid values is the same ! as for `--enable-languages', and the option `all' will select all ! of the languages enabled by `--enable-languages'. This option is primarily useful for GCC development; for instance, when a development version of the compiler cannot bootstrap due to ! compiler bugs, or when one is debugging front ends other than the ! C front end. When this option is used, one can then build the ! target libraries for the specified languages with the stage-1 ! compiler by using `make stage1-bubble all-target', or run the ! testsuite on the stage-1 compiler for the specified languages ! using `make stage1-start check-gcc'. ! `--disable-libada' Specify that the run-time libraries and tools used by GNAT should not be built. This can be useful for debugging, or for compatibility with previous Ada build procedures, when it was ! required to explicitly do a `make -C gcc gnatlib_and_tools'. ! `--disable-libssp' Specify that the run-time libraries for stack smashing protection should not be built. ! `--disable-libquadmath' Specify that the GCC quad-precision math library should not be built. On some systems, the library is required to be linkable when building the Fortran front end, unless ! `--disable-libquadmath-support' is used. ! `--disable-libquadmath-support' ! Specify that the Fortran front end and `libgfortran' do not add ! support for `libquadmath' on systems supporting it. ! `--disable-libgomp' Specify that the run-time libraries used by GOMP should not be built. ! `--with-dwarf2' Specify that the compiler should use DWARF 2 debugging information as the default. ! `--enable-targets=all' ! `--enable-targets=TARGET_LIST' Some GCC targets, e.g. powerpc64-linux, build bi-arch compilers. These are compilers that are able to generate either 64-bit or 32-bit code. Typically, the corresponding 32-bit target, e.g. --- 1108,1188 ---- generated files are placed in your build directory, which allows for the source to be in a readonly directory. ! If you configure with '--enable-generated-files-in-srcdir' then those generated files will go into the source directory. This is mainly intended for generating release or prerelease tarballs of the GCC sources, since it is not a requirement that the users of source releases to have flex, Bison, or makeinfo. ! '--enable-version-specific-runtime-libs' Specify that runtime libraries should be installed in the compiler ! specific subdirectory ('LIBDIR/gcc') rather than the usual places. ! In addition, 'libstdc++''s include files will be installed into ! 'LIBDIR' unless you overruled it by using ! '--with-gxx-include-dir=DIRNAME'. Using this option is particularly useful if you intend to use several versions of GCC in ! parallel. This is currently supported by 'libgfortran', 'libjava', ! 'libmudflap', 'libstdc++', and 'libobjc'. ! '--enable-languages=LANG1,LANG2,...' Specify that only a particular subset of compilers and their runtime libraries should be built. For a list of valid values for ! LANGN you can issue the following command in the 'gcc' directory of ! your GCC source tree: grep language= */config-lang.in ! Currently, you can use any of the following: 'all', 'ada', 'c', ! 'c++', 'fortran', 'go', 'java', 'objc', 'obj-c++'. Building the Ada compiler has special requirements, see below. If you do not ! pass this flag, or specify the option 'all', then all default ! languages available in the 'gcc' sub-tree will be configured. Ada, ! Go and Objective-C++ are not default languages; the rest are. ! '--enable-stage1-languages=LANG1,LANG2,...' Specify that a particular subset of compilers and their runtime ! libraries should be built with the system C compiler during stage 1 ! of the bootstrap process, rather than only in later stages with the ! bootstrapped C compiler. The list of valid values is the same as ! for '--enable-languages', and the option 'all' will select all of ! the languages enabled by '--enable-languages'. This option is primarily useful for GCC development; for instance, when a development version of the compiler cannot bootstrap due to ! compiler bugs, or when one is debugging front ends other than the C ! front end. When this option is used, one can then build the target ! libraries for the specified languages with the stage-1 compiler by ! using 'make stage1-bubble all-target', or run the testsuite on the ! stage-1 compiler for the specified languages using 'make ! stage1-start check-gcc'. ! '--disable-libada' Specify that the run-time libraries and tools used by GNAT should not be built. This can be useful for debugging, or for compatibility with previous Ada build procedures, when it was ! required to explicitly do a 'make -C gcc gnatlib_and_tools'. ! '--disable-libssp' Specify that the run-time libraries for stack smashing protection should not be built. ! '--disable-libquadmath' Specify that the GCC quad-precision math library should not be built. On some systems, the library is required to be linkable when building the Fortran front end, unless ! '--disable-libquadmath-support' is used. ! '--disable-libquadmath-support' ! Specify that the Fortran front end and 'libgfortran' do not add ! support for 'libquadmath' on systems supporting it. ! '--disable-libgomp' Specify that the run-time libraries used by GOMP should not be built. ! '--with-dwarf2' Specify that the compiler should use DWARF 2 debugging information as the default. ! '--enable-targets=all' ! '--enable-targets=TARGET_LIST' Some GCC targets, e.g. powerpc64-linux, build bi-arch compilers. These are compilers that are able to generate either 64-bit or 32-bit code. Typically, the corresponding 32-bit target, e.g. *************** option. *** 1194,1855 **** affects sparc-linux, powerpc-linux, x86-linux, mips-linux and s390-linux. ! `--enable-secureplt' ! This option enables `-msecure-plt' by default for powerpc-linux. *Note RS/6000 and PowerPC Options: (gcc)RS/6000 and PowerPC Options, ! `--enable-cld' ! This option enables `-mcld' by default for 32-bit x86 targets. *Note i386 and x86-64 Options: (gcc)i386 and x86-64 Options, ! `--enable-win32-registry' ! `--enable-win32-registry=KEY' ! `--disable-win32-registry' ! The `--enable-win32-registry' option enables Microsoft Windows-hosted GCC to look up installations paths in the registry using the following key: ! `HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\KEY' KEY defaults to GCC version number, and can be overridden by the ! `--enable-win32-registry=KEY' option. Vendors and distributors ! who use custom installers are encouraged to provide a different ! key, perhaps one comprised of vendor name and GCC version number, ! to avoid conflict with existing installations. This feature is enabled by default, and can be disabled by ! `--disable-win32-registry' option. This option has no effect on the other hosts. ! `--nfp' Specify that the machine does not have a floating point unit. This ! option only applies to `m68k-sun-sunosN'. On any other system, ! `--nfp' has no effect. ! `--enable-werror' ! `--disable-werror' ! `--enable-werror=yes' ! `--enable-werror=no' When you specify this option, it controls whether certain files in ! the compiler are built with `-Werror' in bootstrap stage2 and ! later. If you don't specify it, `-Werror' is turned on for the main development trunk. However it defaults to off for release branches and final releases. The specific files which get ! `-Werror' are controlled by the Makefiles. ! `--enable-checking' ! `--enable-checking=LIST' When you specify this option, the compiler is built to perform ! internal consistency checks of the requested complexity. This ! does not change the generated code, but adds error checking within ! the compiler. This will slow down the compiler and may only work ! properly if you are building the compiler with GCC. This is `yes' ! by default when building from SVN or snapshots, but `release' for ! releases. The default for building the stage1 compiler is `yes'. More control over the checks may be had by specifying LIST. The ! categories of checks available are `yes' (most common checks ! `assert,misc,tree,gc,rtlflag,runtime'), `no' (no checks at all), ! `all' (all but `valgrind'), `release' (cheapest checks ! `assert,runtime') or `none' (same as `no'). Individual checks can ! be enabled with these flags `assert', `df', `fold', `gc', `gcac' ! `misc', `rtl', `rtlflag', `runtime', `tree', and `valgrind'. ! The `valgrind' check requires the external `valgrind' simulator, ! available from `http://valgrind.org/'. The `df', `rtl', `gcac' ! and `valgrind' checks are very expensive. To disable all ! checking, `--disable-checking' or `--enable-checking=none' must be ! explicitly requested. Disabling assertions will make the compiler ! and runtime slightly faster but increase the risk of undetected ! internal errors causing wrong code to be generated. ! `--disable-stage1-checking' ! `--enable-stage1-checking' ! `--enable-stage1-checking=LIST' ! If no `--enable-checking' option is specified the stage1 compiler ! will be built with `yes' checking enabled, otherwise the stage1 ! checking flags are the same as specified by `--enable-checking'. To build the stage1 compiler with different checking options use ! `--enable-stage1-checking'. The list of checking options is the ! same as for `--enable-checking'. If your system is too slow or ! too small to bootstrap a released compiler with checking for ! stage1 enabled, you can use `--disable-stage1-checking' to disable checking for the stage1 compiler. ! `--enable-coverage' ! `--enable-coverage=LEVEL' With this option, the compiler is built to collect self coverage information, every time it is run. This is for internal development purposes, and only works when the compiler is being built with gcc. The LEVEL argument controls whether the compiler ! is built optimized or not, values are `opt' and `noopt'. For ! coverage analysis you want to disable optimization, for ! performance analysis you want to enable optimization. When ! coverage is enabled, the default level is without optimization. ! `--enable-gather-detailed-mem-stats' When this option is specified more detailed information on memory allocation is gathered. This information is printed when using ! `-fmem-report'. ! `--enable-nls' ! `--disable-nls' ! The `--enable-nls' option enables Native Language Support (NLS), which lets GCC output diagnostics in languages other than American English. Native Language Support is enabled by default if not ! doing a canadian cross build. The `--disable-nls' option disables NLS. ! `--with-included-gettext' ! If NLS is enabled, the `--with-included-gettext' option causes the ! build procedure to prefer its copy of GNU `gettext'. ! `--with-catgets' ! If NLS is enabled, and if the host lacks `gettext' but has the ! inferior `catgets' interface, the GCC build procedure normally ! ignores `catgets' and instead uses GCC's copy of the GNU `gettext' ! library. The `--with-catgets' option causes the build procedure ! to use the host's `catgets' in this situation. ! `--with-libiconv-prefix=DIR' ! Search for libiconv header files in `DIR/include' and libiconv ! library files in `DIR/lib'. ! `--enable-obsolete' Enable configuration for an obsoleted system. If you attempt to configure GCC for a system (build, host, or target) which has been obsoleted, and you do not specify this flag, configure will halt with an error message. ! All support for systems which have been obsoleted in one release ! of GCC is removed entirely in the next major release, unless ! someone steps forward to maintain the port. ! `--enable-decimal-float' ! `--enable-decimal-float=yes' ! `--enable-decimal-float=no' ! `--enable-decimal-float=bid' ! `--enable-decimal-float=dpd' ! `--disable-decimal-float' Enable (or disable) support for the C decimal floating point extension that is in the IEEE 754-2008 standard. This is enabled by default only on PowerPC, i386, and x86_64 GNU/Linux systems. Other systems may also support it, but require the user to specifically enable it. You can optionally control which decimal ! floating point format is used (either `bid' or `dpd'). The `bid' (binary integer decimal) format is default on i386 and x86_64 ! systems, and the `dpd' (densely packed decimal) format is default on PowerPC systems. ! `--enable-fixed-point' ! `--disable-fixed-point' Enable (or disable) support for C fixed-point arithmetic. This option is enabled by default for some targets (such as MIPS) which have hardware-support for fixed-point operations. On other targets, you may enable this option manually. ! `--with-long-double-128' ! Specify if `long double' type should be 128-bit by default on selected GNU/Linux architectures. If using ! `--without-long-double-128', `long double' will be by default ! 64-bit, the same as `double' type. When neither of these ! configure options are used, the default will be 128-bit `long ! double' when built against GNU C Library 2.4 and later, 64-bit ! `long double' otherwise. ! `--with-gmp=PATHNAME' ! `--with-gmp-include=PATHNAME' ! `--with-gmp-lib=PATHNAME' ! `--with-mpfr=PATHNAME' ! `--with-mpfr-include=PATHNAME' ! `--with-mpfr-lib=PATHNAME' ! `--with-mpc=PATHNAME' ! `--with-mpc-include=PATHNAME' ! `--with-mpc-lib=PATHNAME' If you want to build GCC but do not have the GMP library, the MPFR library and/or the MPC library installed in a standard location and do not have their sources present in the GCC source tree then you can explicitly specify the directory where they are installed ! (`--with-gmp=GMPINSTALLDIR', `--with-mpfr=MPFRINSTALLDIR', ! `--with-mpc=MPCINSTALLDIR'). The `--with-gmp=GMPINSTALLDIR' ! option is shorthand for `--with-gmp-lib=GMPINSTALLDIR/lib' and ! `--with-gmp-include=GMPINSTALLDIR/include'. Likewise the ! `--with-mpfr=MPFRINSTALLDIR' option is shorthand for ! `--with-mpfr-lib=MPFRINSTALLDIR/lib' and ! `--with-mpfr-include=MPFRINSTALLDIR/include', also the ! `--with-mpc=MPCINSTALLDIR' option is shorthand for ! `--with-mpc-lib=MPCINSTALLDIR/lib' and ! `--with-mpc-include=MPCINSTALLDIR/include'. If these shorthand assumptions are not correct, you can use the explicit include and lib options directly. You might also need to ensure the shared libraries can be found by the dynamic linker when building and using GCC, for example by setting the runtime shared library path ! variable (`LD_LIBRARY_PATH' on GNU/Linux and Solaris systems). These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. ! `--with-isl=PATHNAME' ! `--with-isl-include=PATHNAME' ! `--with-isl-lib=PATHNAME' ! `--with-cloog=PATHNAME' ! `--with-cloog-include=PATHNAME' ! `--with-cloog-lib=PATHNAME' If you do not have ISL and the CLooG libraries installed in a standard location and you want to build GCC, you can explicitly specify the directory where they are installed ! (`--with-isl=ISLINSTALLDIR', `--with-cloog=CLOOGINSTALLDIR'). The ! `--with-isl=ISLINSTALLDIR' option is shorthand for ! `--with-isl-lib=ISLINSTALLDIR/lib' and ! `--with-isl-include=ISLINSTALLDIR/include'. Likewise the ! `--with-cloog=CLOOGINSTALLDIR' option is shorthand for ! `--with-cloog-lib=CLOOGINSTALLDIR/lib' and ! `--with-cloog-include=CLOOGINSTALLDIR/include'. If these ! shorthand assumptions are not correct, you can use the explicit ! include and lib options directly. These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. ! `--with-host-libstdcxx=LINKER-ARGS' If you are linking with a static copy of PPL, you can use this option to specify how the linker should find the standard C++ ! library used internally by PPL. Typical values of LINKER-ARGS ! might be `-lstdc++' or `-Wl,-Bstatic,-lstdc++,-Bdynamic -lm'. If ! you are linking with a shared copy of PPL, you probably do not ! need this option; shared library dependencies will cause the ! linker to search for the standard C++ library automatically. ! `--with-stage1-ldflags=FLAGS' This option may be used to set linker flags to be used when linking ! stage 1 of GCC. These are also used when linking GCC if ! configured with `--disable-bootstrap'. By default no special ! flags are used. ! `--with-stage1-libs=LIBS' This option may be used to set libraries to be used when linking ! stage 1 of GCC. These are also used when linking GCC if ! configured with `--disable-bootstrap'. The default is the ! argument to `--with-host-libstdcxx', if specified. ! `--with-boot-ldflags=FLAGS' This option may be used to set linker flags to be used when linking ! stage 2 and later when bootstrapping GCC. If neither -with-boot-libs nor -with-host-libstdcxx is set to a value, then ! the default is `-static-libstdc++ -static-libgcc'. ! `--with-boot-libs=LIBS' This option may be used to set libraries to be used when linking ! stage 2 and later when bootstrapping GCC. The default is the ! argument to `--with-host-libstdcxx', if specified. ! `--with-debug-prefix-map=MAP' ! Convert source directory names using `-fdebug-prefix-map' when ! building runtime libraries. `MAP' is a space-separated list of ! maps of the form `OLD=NEW'. ! `--enable-linker-build-id' ! Tells GCC to pass `--build-id' option to the linker for all final ! links (links performed without the `-r' or `--relocatable' ! option), if the linker supports it. If you specify ! `--enable-linker-build-id', but your linker does not support ! `--build-id' option, a warning is issued and the ! `--enable-linker-build-id' option is ignored. The default is off. ! `--with-linker-hash-style=CHOICE' ! Tells GCC to pass `--hash-style=CHOICE' option to the linker for ! all final links. CHOICE can be one of `sysv', `gnu', and `both' ! where `sysv' is the default. ! `--enable-gnu-unique-object' ! `--disable-gnu-unique-object' Tells GCC to use the gnu_unique_object relocation for C++ template static data members and inline function local statics. Enabled by default for a native toolchain with an assembler that accepts it and GLIBC 2.11 or above, otherwise disabled. ! `--enable-lto' ! `--disable-lto' ! Enable support for link-time optimization (LTO). This is enabled ! by default, and may be disabled using `--disable-lto'. ! `--with-plugin-ld=PATHNAME' Enable an alternate linker to be used at link-time optimization ! (LTO) link time when `-fuse-linker-plugin' is enabled. This ! linker should have plugin support such as gold starting with ! version 2.20 or GNU ld starting with version 2.21. See ! `-fuse-linker-plugin' for details. ! `--enable-canonical-system-headers' ! `--disable-canonical-system-headers' ! Enable system header path canonicalization for `libcpp'. This can produce shorter header file paths in diagnostics and dependency ! output files, but these changed header paths may conflict with ! some compilation environments. Enabled by default, and may be ! disabled using `--disable-canonical-system-headers'. Cross-Compiler-Specific Options ------------------------------- The following options only apply to building cross compilers. ! `--with-sysroot' ! `--with-sysroot=DIR' Tells GCC to consider DIR as the root of a tree that contains (a subset of) the root filesystem of the target operating system. Target system headers, libraries and run-time object files will be searched for in there. More specifically, this acts as if ! `--sysroot=DIR' was added to the default options of the built compiler. The specified directory is not copied into the install ! tree, unlike the options `--with-headers' and `--with-libs' that ! this option obsoletes. The default value, in case ! `--with-sysroot' is not given an argument, is ! `${gcc_tooldir}/sys-root'. If the specified directory is a ! subdirectory of `${exec_prefix}', then it will be found relative to ! the GCC binaries if the installation tree is moved. This option affects the system root for the compiler used to build target libraries (which runs on the build system) and the compiler ! newly installed with `make install'; it does not affect the compiler which is used to build GCC itself. ! If you specify the `--with-native-system-header-dir=DIRNAME' ! option then the compiler will search that directory within DIRNAME ! for native system headers rather than the default `/usr/include'. ! `--with-build-sysroot' ! `--with-build-sysroot=DIR' ! Tells GCC to consider DIR as the system root (see ! `--with-sysroot') while building target libraries, instead of the ! directory specified with `--with-sysroot'. This option is only ! useful when you are already using `--with-sysroot'. You can use ! `--with-build-sysroot' when you are configuring with `--prefix' ! set to a directory that is different from the one in which you are ! installing GCC and your target libraries. This option affects the system root for the compiler used to build target libraries (which runs on the build system); it does not affect the compiler which is used to build GCC itself. ! If you specify the `--with-native-system-header-dir=DIRNAME' ! option then the compiler will search that directory within DIRNAME ! for native system headers rather than the default `/usr/include'. ! `--with-headers' ! `--with-headers=DIR' ! Deprecated in favor of `--with-sysroot'. Specifies that target headers are available when building a cross compiler. The DIR argument specifies a directory which has the target include files. ! These include files will be copied into the `gcc' install directory. _This option with the DIR argument is required_ when ! building a cross compiler, if `PREFIX/TARGET/sys-include' doesn't ! pre-exist. If `PREFIX/TARGET/sys-include' does pre-exist, the DIR ! argument may be omitted. `fixincludes' will be run on these files to make them compatible with GCC. ! `--without-headers' Tells GCC not use any target headers from a libc when building a cross compiler. When crossing to GNU/Linux, you need the headers so GCC can build the exception handling for libgcc. ! `--with-libs' ! `--with-libs="DIR1 DIR2 ... DIRN"' ! Deprecated in favor of `--with-sysroot'. Specifies a list of directories which contain the target runtime libraries. These ! libraries will be copied into the `gcc' install directory. If the directory list is omitted, this option has no effect. ! `--with-newlib' ! Specifies that `newlib' is being used as the target C library. ! This causes `__eprintf' to be omitted from `libgcc.a' on the ! assumption that it will be provided by `newlib'. ! `--with-avrlibc' ! Specifies that `AVR-Libc' is being used as the target C library. ! This causes float support functions like `__addsf3' to be omitted ! from `libgcc.a' on the assumption that it will be provided by ! `libm.a'. For more technical details, cf. PR54461. This option is only supported for the AVR target. It is not supported for RTEMS configurations, which currently use newlib. The option is supported since version 4.7.2 and is the default in 4.8.0 and newer. ! `--with-build-time-tools=DIR' ! Specifies where to find the set of target tools (assembler, ! linker, etc.) that will be used while building GCC itself. This ! option can be useful if the directory layouts are different ! between the system you are building GCC on, and the system where ! you will deploy it. ! For example, on an `ia64-hp-hpux' system, you may have the GNU ! assembler and linker in `/usr/bin', and the native tools in a different path, and build a toolchain that expects to find the ! native tools in `/usr/bin'. ! When you use this option, you should ensure that DIR includes ! `ar', `as', `ld', `nm', `ranlib' and `strip' if necessary, and ! possibly `objdump'. Otherwise, GCC may use an inconsistent set of ! tools. Java-Specific Options --------------------- The following option applies to the build of the Java front end. ! `--disable-libgcj' Specify that the run-time libraries used by GCJ should not be built. This is useful in case you intend to use GCJ with some other run-time, or you're going to install it separately, or it just happens not to build on your particular machine. In general, ! if the Java front end is enabled, the GCJ libraries will be ! enabled too, unless they're known to not work on the target ! platform. If GCJ is enabled but `libgcj' isn't built, you may ! need to port it; in this case, before modifying the top-level ! `configure.in' so that `libgcj' is enabled by default on this ! platform, you may use `--enable-libgcj' to override the default. ! ! The following options apply to building `libgcj'. General Options ............... ! `--enable-java-maintainer-mode' ! By default the `libjava' build will not attempt to compile the ! `.java' source files to `.class'. Instead, it will use the ! `.class' files from the source tree. If you use this option you ! must have executables named `ecj1' and `gjavah' in your path for ! use by the build. You must use this option if you intend to ! modify any `.java' files in `libjava'. ! `--with-java-home=DIRNAME' ! This `libjava' option overrides the default value of the ! `java.home' system property. It is also used to set ! `sun.boot.class.path' to `DIRNAME/lib/rt.jar'. By default ! `java.home' is set to `PREFIX' and `sun.boot.class.path' to ! `DATADIR/java/libgcj-VERSION.jar'. ! `--with-ecj-jar=FILENAME' This option can be used to specify the location of an external jar file containing the Eclipse Java compiler. A specially modified ! version of this compiler is used by `gcj' to parse `.java' source ! files. If this option is given, the `libjava' build will create ! and install an `ecj1' executable which uses this jar file at runtime. ! If this option is not given, but an `ecj.jar' file is found in the ! topmost source tree at configure time, then the `libgcj' build ! will create and install `ecj1', and will also install the ! discovered `ecj.jar' into a suitable place in the install tree. ! If `ecj1' is not installed, then the user will have to supply one ! on his path in order for `gcj' to properly parse `.java' source files. A suitable jar is available from ! `ftp://sourceware.org/pub/java/'. ! `--disable-getenv-properties' ! Don't set system properties from `GCJ_PROPERTIES'. ! `--enable-hash-synchronization' ! Use a global hash table for monitor locks. Ordinarily, `libgcj''s ! `configure' script automatically makes the correct choice for this option for your platform. Only use this if you know you need the library to be configured differently. ! `--enable-interpreter' Enable the Java interpreter. The interpreter is automatically enabled by default on all platforms that support it. This option ! is really only useful if you want to disable the interpreter ! (using `--disable-interpreter'). ! `--disable-java-net' Disable java.net. This disables the native part of java.net only, using non-functional stubs for native method implementations. ! `--disable-jvmpi' Disable JVMPI support. ! `--disable-libgcj-bc' Disable BC ABI compilation of certain parts of libgcj. By default, ! some portions of libgcj are compiled with `-findirect-dispatch' ! and `-fno-indirect-classes', allowing them to be overridden at run-time. ! If `--disable-libgcj-bc' is specified, libgcj is built without these options. This allows the compile-time linker to resolve dependencies when statically linking to libgcj. However it makes it impossible to override the affected portions of libgcj at run-time. ! `--enable-reduced-reflection' ! Build most of libgcj with `-freduced-reflection'. This reduces ! the size of libgcj at the expense of not being able to do accurate reflection on the classes it contains. This option is safe if you know that code using libgcj will never use reflection on the standard runtime classes in libgcj (including using serialization, RMI or CORBA). ! `--with-ecos' Enable runtime eCos target support. ! `--without-libffi' ! Don't use `libffi'. This will disable the interpreter and JNI ! support as well, as these require `libffi' to work. ! `--enable-libgcj-debug' Enable runtime debugging code. ! `--enable-libgcj-multifile' ! If specified, causes all `.java' source files to be compiled into ! `.class' files in one invocation of `gcj'. This can speed up ! build time, but is more resource-intensive. If this option is ! unspecified or disabled, `gcj' is invoked once for each `.java' ! file to compile into a `.class' file. ! `--with-libiconv-prefix=DIR' ! Search for libiconv in `DIR/include' and `DIR/lib'. ! `--enable-sjlj-exceptions' ! Force use of the `setjmp'/`longjmp'-based scheme for exceptions. ! `configure' ordinarily picks the correct value based on the platform. Only use this option if you are sure you need a different setting. ! `--with-system-zlib' ! Use installed `zlib' rather than that included with GCC. ! `--with-win32-nlsapi=ansi, unicows or unicode' ! Indicates how MinGW `libgcj' translates between UNICODE characters and the Win32 API. ! `--enable-java-home' If enabled, this creates a JPackage compatible SDK environment during install. Note that if -enable-java-home is used, -with-arch-directory=ARCH must also be specified. ! `--with-arch-directory=ARCH' ! Specifies the name to use for the `jre/lib/ARCH' directory in the ! SDK environment created when -enable-java-home is passed. Typical names for this directory include i386, amd64, ia64, etc. ! `--with-os-directory=DIR' ! Specifies the OS directory for the SDK include directory. This is set to auto detect, and is typically 'linux'. ! `--with-origin-name=NAME' ! Specifies the JPackage origin name. This defaults to the 'gcj' in java-1.5.0-gcj. ! `--with-arch-suffix=SUFFIX' ! Specifies the suffix for the sdk directory. Defaults to the empty string. Examples include '.x86_64' in 'java-1.5.0-gcj-1.5.0.0.x86_64'. ! `--with-jvm-root-dir=DIR' Specifies where to install the SDK. Default is $(prefix)/lib/jvm. ! `--with-jvm-jar-dir=DIR' ! Specifies where to install jars. Default is $(prefix)/lib/jvm-exports. ! `--with-python-dir=DIR' ! Specifies where to install the Python modules used for ! aot-compile. DIR should not include the prefix used in ! installation. For example, if the Python modules are to be ! installed in /usr/lib/python2.5/site-packages, then ! -with-python-dir=/lib/python2.5/site-packages should be passed. If this is not specified, then the Python modules are installed in $(prefix)/share/python. ! `--enable-aot-compile-rpm' Adds aot-compile-rpm to the list of installed scripts. ! `--enable-browser-plugin' Build the gcjwebplugin web browser plugin. ! `--enable-static-libjava' ! Build static libraries in libjava. The default is to only build shared libraries. ! `ansi' ! Use the single-byte `char' and the Win32 A functions natively, translating to and from UNICODE when using these functions. If unspecified, this is the default. ! `unicows' ! Use the `WCHAR' and Win32 W functions natively. Adds ! `-lunicows' to `libgcj.spec' to link with `libunicows'. ! `unicows.dll' needs to be deployed on Microsoft Windows 9X ! machines running built executables. `libunicows.a', an ! open-source import library around Microsoft's `unicows.dll', ! is obtained from `http://libunicows.sourceforge.net/', which ! also gives details on getting `unicows.dll' from Microsoft. ! `unicode' ! Use the `WCHAR' and Win32 W functions natively. Does _not_ ! add `-lunicows' to `libgcj.spec'. The built executables will only run on Microsoft Windows NT and above. AWT-Specific Options .................... ! `--with-x' Use the X Window System. ! `--enable-java-awt=PEER(S)' Specifies the AWT peer library or libraries to build alongside ! `libgcj'. If this option is unspecified or disabled, AWT will be ! non-functional. Current valid values are `gtk' and `xlib'. Multiple libraries should be separated by a comma (i.e. ! `--enable-java-awt=gtk,xlib'). ! `--enable-gtk-cairo' Build the cairo Graphics2D implementation on GTK. ! `--enable-java-gc=TYPE' ! Choose garbage collector. Defaults to `boehm' if unspecified. ! `--disable-gtktest' Do not try to compile and run a test GTK+ program. ! `--disable-glibtest' Do not try to compile and run a test GLIB program. ! `--with-libart-prefix=PFX' Prefix where libart is installed (optional). ! `--with-libart-exec-prefix=PFX' Exec prefix where libart is installed (optional). ! `--disable-libarttest' Do not try to compile and run a test libart program. ! ! Overriding `configure' test results ................................... Sometimes, it might be necessary to override the result of some ! `configure' test, for example in order to ease porting to a new system ! or work around a bug in a test. The toplevel `configure' script provides three variables for this: ! `build_configargs' ! The contents of this variable is passed to all build `configure' scripts. ! `host_configargs' ! The contents of this variable is passed to all host `configure' scripts. ! `target_configargs' ! The contents of this variable is passed to all target `configure' scripts. ! ! In order to avoid shell and `make' quoting issues for complex ! overrides, you can pass a setting for `CONFIG_SITE' and set variables ! in the site file.  File: gccinstall.info, Node: Building, Next: Testing, Prev: Configuration, Up: Installing GCC --- 1195,1851 ---- affects sparc-linux, powerpc-linux, x86-linux, mips-linux and s390-linux. ! '--enable-secureplt' ! This option enables '-msecure-plt' by default for powerpc-linux. *Note RS/6000 and PowerPC Options: (gcc)RS/6000 and PowerPC Options, ! '--enable-cld' ! This option enables '-mcld' by default for 32-bit x86 targets. *Note i386 and x86-64 Options: (gcc)i386 and x86-64 Options, ! '--enable-win32-registry' ! '--enable-win32-registry=KEY' ! '--disable-win32-registry' ! The '--enable-win32-registry' option enables Microsoft Windows-hosted GCC to look up installations paths in the registry using the following key: ! HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\KEY KEY defaults to GCC version number, and can be overridden by the ! '--enable-win32-registry=KEY' option. Vendors and distributors who ! use custom installers are encouraged to provide a different key, ! perhaps one comprised of vendor name and GCC version number, to ! avoid conflict with existing installations. This feature is enabled by default, and can be disabled by ! '--disable-win32-registry' option. This option has no effect on the other hosts. ! '--nfp' Specify that the machine does not have a floating point unit. This ! option only applies to 'm68k-sun-sunosN'. On any other system, ! '--nfp' has no effect. ! '--enable-werror' ! '--disable-werror' ! '--enable-werror=yes' ! '--enable-werror=no' When you specify this option, it controls whether certain files in ! the compiler are built with '-Werror' in bootstrap stage2 and ! later. If you don't specify it, '-Werror' is turned on for the main development trunk. However it defaults to off for release branches and final releases. The specific files which get ! '-Werror' are controlled by the Makefiles. ! '--enable-checking' ! '--enable-checking=LIST' When you specify this option, the compiler is built to perform ! internal consistency checks of the requested complexity. This does ! not change the generated code, but adds error checking within the ! compiler. This will slow down the compiler and may only work ! properly if you are building the compiler with GCC. This is 'yes' ! by default when building from SVN or snapshots, but 'release' for ! releases. The default for building the stage1 compiler is 'yes'. More control over the checks may be had by specifying LIST. The ! categories of checks available are 'yes' (most common checks ! 'assert,misc,tree,gc,rtlflag,runtime'), 'no' (no checks at all), ! 'all' (all but 'valgrind'), 'release' (cheapest checks ! 'assert,runtime') or 'none' (same as 'no'). Individual checks can ! be enabled with these flags 'assert', 'df', 'fold', 'gc', 'gcac' ! 'misc', 'rtl', 'rtlflag', 'runtime', 'tree', and 'valgrind'. ! The 'valgrind' check requires the external 'valgrind' simulator, ! available from . The 'df', 'rtl', 'gcac' and ! 'valgrind' checks are very expensive. To disable all checking, ! '--disable-checking' or '--enable-checking=none' must be explicitly ! requested. Disabling assertions will make the compiler and runtime ! slightly faster but increase the risk of undetected internal errors ! causing wrong code to be generated. ! '--disable-stage1-checking' ! '--enable-stage1-checking' ! '--enable-stage1-checking=LIST' ! If no '--enable-checking' option is specified the stage1 compiler ! will be built with 'yes' checking enabled, otherwise the stage1 ! checking flags are the same as specified by '--enable-checking'. To build the stage1 compiler with different checking options use ! '--enable-stage1-checking'. The list of checking options is the ! same as for '--enable-checking'. If your system is too slow or too ! small to bootstrap a released compiler with checking for stage1 ! enabled, you can use '--disable-stage1-checking' to disable checking for the stage1 compiler. ! '--enable-coverage' ! '--enable-coverage=LEVEL' With this option, the compiler is built to collect self coverage information, every time it is run. This is for internal development purposes, and only works when the compiler is being built with gcc. The LEVEL argument controls whether the compiler ! is built optimized or not, values are 'opt' and 'noopt'. For ! coverage analysis you want to disable optimization, for performance ! analysis you want to enable optimization. When coverage is ! enabled, the default level is without optimization. ! '--enable-gather-detailed-mem-stats' When this option is specified more detailed information on memory allocation is gathered. This information is printed when using ! '-fmem-report'. ! '--enable-nls' ! '--disable-nls' ! The '--enable-nls' option enables Native Language Support (NLS), which lets GCC output diagnostics in languages other than American English. Native Language Support is enabled by default if not ! doing a canadian cross build. The '--disable-nls' option disables NLS. ! '--with-included-gettext' ! If NLS is enabled, the '--with-included-gettext' option causes the ! build procedure to prefer its copy of GNU 'gettext'. ! '--with-catgets' ! If NLS is enabled, and if the host lacks 'gettext' but has the ! inferior 'catgets' interface, the GCC build procedure normally ! ignores 'catgets' and instead uses GCC's copy of the GNU 'gettext' ! library. The '--with-catgets' option causes the build procedure to ! use the host's 'catgets' in this situation. ! '--with-libiconv-prefix=DIR' ! Search for libiconv header files in 'DIR/include' and libiconv ! library files in 'DIR/lib'. ! '--enable-obsolete' Enable configuration for an obsoleted system. If you attempt to configure GCC for a system (build, host, or target) which has been obsoleted, and you do not specify this flag, configure will halt with an error message. ! All support for systems which have been obsoleted in one release of ! GCC is removed entirely in the next major release, unless someone ! steps forward to maintain the port. ! '--enable-decimal-float' ! '--enable-decimal-float=yes' ! '--enable-decimal-float=no' ! '--enable-decimal-float=bid' ! '--enable-decimal-float=dpd' ! '--disable-decimal-float' Enable (or disable) support for the C decimal floating point extension that is in the IEEE 754-2008 standard. This is enabled by default only on PowerPC, i386, and x86_64 GNU/Linux systems. Other systems may also support it, but require the user to specifically enable it. You can optionally control which decimal ! floating point format is used (either 'bid' or 'dpd'). The 'bid' (binary integer decimal) format is default on i386 and x86_64 ! systems, and the 'dpd' (densely packed decimal) format is default on PowerPC systems. ! '--enable-fixed-point' ! '--disable-fixed-point' Enable (or disable) support for C fixed-point arithmetic. This option is enabled by default for some targets (such as MIPS) which have hardware-support for fixed-point operations. On other targets, you may enable this option manually. ! '--with-long-double-128' ! Specify if 'long double' type should be 128-bit by default on selected GNU/Linux architectures. If using ! '--without-long-double-128', 'long double' will be by default ! 64-bit, the same as 'double' type. When neither of these configure ! options are used, the default will be 128-bit 'long double' when ! built against GNU C Library 2.4 and later, 64-bit 'long double' ! otherwise. ! '--with-gmp=PATHNAME' ! '--with-gmp-include=PATHNAME' ! '--with-gmp-lib=PATHNAME' ! '--with-mpfr=PATHNAME' ! '--with-mpfr-include=PATHNAME' ! '--with-mpfr-lib=PATHNAME' ! '--with-mpc=PATHNAME' ! '--with-mpc-include=PATHNAME' ! '--with-mpc-lib=PATHNAME' If you want to build GCC but do not have the GMP library, the MPFR library and/or the MPC library installed in a standard location and do not have their sources present in the GCC source tree then you can explicitly specify the directory where they are installed ! ('--with-gmp=GMPINSTALLDIR', '--with-mpfr=MPFRINSTALLDIR', ! '--with-mpc=MPCINSTALLDIR'). The '--with-gmp=GMPINSTALLDIR' option ! is shorthand for '--with-gmp-lib=GMPINSTALLDIR/lib' and ! '--with-gmp-include=GMPINSTALLDIR/include'. Likewise the ! '--with-mpfr=MPFRINSTALLDIR' option is shorthand for ! '--with-mpfr-lib=MPFRINSTALLDIR/lib' and ! '--with-mpfr-include=MPFRINSTALLDIR/include', also the ! '--with-mpc=MPCINSTALLDIR' option is shorthand for ! '--with-mpc-lib=MPCINSTALLDIR/lib' and ! '--with-mpc-include=MPCINSTALLDIR/include'. If these shorthand assumptions are not correct, you can use the explicit include and lib options directly. You might also need to ensure the shared libraries can be found by the dynamic linker when building and using GCC, for example by setting the runtime shared library path ! variable ('LD_LIBRARY_PATH' on GNU/Linux and Solaris systems). These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. ! '--with-isl=PATHNAME' ! '--with-isl-include=PATHNAME' ! '--with-isl-lib=PATHNAME' ! '--with-cloog=PATHNAME' ! '--with-cloog-include=PATHNAME' ! '--with-cloog-lib=PATHNAME' If you do not have ISL and the CLooG libraries installed in a standard location and you want to build GCC, you can explicitly specify the directory where they are installed ! ('--with-isl=ISLINSTALLDIR', '--with-cloog=CLOOGINSTALLDIR'). The ! '--with-isl=ISLINSTALLDIR' option is shorthand for ! '--with-isl-lib=ISLINSTALLDIR/lib' and ! '--with-isl-include=ISLINSTALLDIR/include'. Likewise the ! '--with-cloog=CLOOGINSTALLDIR' option is shorthand for ! '--with-cloog-lib=CLOOGINSTALLDIR/lib' and ! '--with-cloog-include=CLOOGINSTALLDIR/include'. If these shorthand ! assumptions are not correct, you can use the explicit include and ! lib options directly. These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. ! '--with-host-libstdcxx=LINKER-ARGS' If you are linking with a static copy of PPL, you can use this option to specify how the linker should find the standard C++ ! library used internally by PPL. Typical values of LINKER-ARGS might ! be '-lstdc++' or '-Wl,-Bstatic,-lstdc++,-Bdynamic -lm'. If you are ! linking with a shared copy of PPL, you probably do not need this ! option; shared library dependencies will cause the linker to search ! for the standard C++ library automatically. ! '--with-stage1-ldflags=FLAGS' This option may be used to set linker flags to be used when linking ! stage 1 of GCC. These are also used when linking GCC if configured ! with '--disable-bootstrap'. By default no special flags are used. ! '--with-stage1-libs=LIBS' This option may be used to set libraries to be used when linking ! stage 1 of GCC. These are also used when linking GCC if configured ! with '--disable-bootstrap'. The default is the argument to ! '--with-host-libstdcxx', if specified. ! '--with-boot-ldflags=FLAGS' This option may be used to set linker flags to be used when linking ! stage 2 and later when bootstrapping GCC. If neither -with-boot-libs nor -with-host-libstdcxx is set to a value, then ! the default is '-static-libstdc++ -static-libgcc'. ! '--with-boot-libs=LIBS' This option may be used to set libraries to be used when linking ! stage 2 and later when bootstrapping GCC. The default is the ! argument to '--with-host-libstdcxx', if specified. ! '--with-debug-prefix-map=MAP' ! Convert source directory names using '-fdebug-prefix-map' when ! building runtime libraries. 'MAP' is a space-separated list of ! maps of the form 'OLD=NEW'. ! '--enable-linker-build-id' ! Tells GCC to pass '--build-id' option to the linker for all final ! links (links performed without the '-r' or '--relocatable' option), ! if the linker supports it. If you specify ! '--enable-linker-build-id', but your linker does not support ! '--build-id' option, a warning is issued and the ! '--enable-linker-build-id' option is ignored. The default is off. ! '--with-linker-hash-style=CHOICE' ! Tells GCC to pass '--hash-style=CHOICE' option to the linker for ! all final links. CHOICE can be one of 'sysv', 'gnu', and 'both' ! where 'sysv' is the default. ! '--enable-gnu-unique-object' ! '--disable-gnu-unique-object' Tells GCC to use the gnu_unique_object relocation for C++ template static data members and inline function local statics. Enabled by default for a native toolchain with an assembler that accepts it and GLIBC 2.11 or above, otherwise disabled. ! '--enable-lto' ! '--disable-lto' ! Enable support for link-time optimization (LTO). This is enabled by ! default, and may be disabled using '--disable-lto'. ! '--with-plugin-ld=PATHNAME' Enable an alternate linker to be used at link-time optimization ! (LTO) link time when '-fuse-linker-plugin' is enabled. This linker ! should have plugin support such as gold starting with version 2.20 ! or GNU ld starting with version 2.21. See '-fuse-linker-plugin' ! for details. ! '--enable-canonical-system-headers' ! '--disable-canonical-system-headers' ! Enable system header path canonicalization for 'libcpp'. This can produce shorter header file paths in diagnostics and dependency ! output files, but these changed header paths may conflict with some ! compilation environments. Enabled by default, and may be disabled ! using '--disable-canonical-system-headers'. Cross-Compiler-Specific Options ------------------------------- The following options only apply to building cross compilers. ! '--with-sysroot' ! '--with-sysroot=DIR' Tells GCC to consider DIR as the root of a tree that contains (a subset of) the root filesystem of the target operating system. Target system headers, libraries and run-time object files will be searched for in there. More specifically, this acts as if ! '--sysroot=DIR' was added to the default options of the built compiler. The specified directory is not copied into the install ! tree, unlike the options '--with-headers' and '--with-libs' that ! this option obsoletes. The default value, in case '--with-sysroot' ! is not given an argument, is '${gcc_tooldir}/sys-root'. If the ! specified directory is a subdirectory of '${exec_prefix}', then it ! will be found relative to the GCC binaries if the installation tree ! is moved. This option affects the system root for the compiler used to build target libraries (which runs on the build system) and the compiler ! newly installed with 'make install'; it does not affect the compiler which is used to build GCC itself. ! If you specify the '--with-native-system-header-dir=DIRNAME' option ! then the compiler will search that directory within DIRNAME for ! native system headers rather than the default '/usr/include'. ! '--with-build-sysroot' ! '--with-build-sysroot=DIR' ! Tells GCC to consider DIR as the system root (see '--with-sysroot') ! while building target libraries, instead of the directory specified ! with '--with-sysroot'. This option is only useful when you are ! already using '--with-sysroot'. You can use '--with-build-sysroot' ! when you are configuring with '--prefix' set to a directory that is ! different from the one in which you are installing GCC and your ! target libraries. This option affects the system root for the compiler used to build target libraries (which runs on the build system); it does not affect the compiler which is used to build GCC itself. ! If you specify the '--with-native-system-header-dir=DIRNAME' option ! then the compiler will search that directory within DIRNAME for ! native system headers rather than the default '/usr/include'. ! '--with-headers' ! '--with-headers=DIR' ! Deprecated in favor of '--with-sysroot'. Specifies that target headers are available when building a cross compiler. The DIR argument specifies a directory which has the target include files. ! These include files will be copied into the 'gcc' install directory. _This option with the DIR argument is required_ when ! building a cross compiler, if 'PREFIX/TARGET/sys-include' doesn't ! pre-exist. If 'PREFIX/TARGET/sys-include' does pre-exist, the DIR ! argument may be omitted. 'fixincludes' will be run on these files to make them compatible with GCC. ! '--without-headers' Tells GCC not use any target headers from a libc when building a cross compiler. When crossing to GNU/Linux, you need the headers so GCC can build the exception handling for libgcc. ! '--with-libs' ! '--with-libs="DIR1 DIR2 ... DIRN"' ! Deprecated in favor of '--with-sysroot'. Specifies a list of directories which contain the target runtime libraries. These ! libraries will be copied into the 'gcc' install directory. If the directory list is omitted, this option has no effect. ! '--with-newlib' ! Specifies that 'newlib' is being used as the target C library. ! This causes '__eprintf' to be omitted from 'libgcc.a' on the ! assumption that it will be provided by 'newlib'. ! '--with-avrlibc' ! Specifies that 'AVR-Libc' is being used as the target C library. ! This causes float support functions like '__addsf3' to be omitted ! from 'libgcc.a' on the assumption that it will be provided by ! 'libm.a'. For more technical details, cf. PR54461. This option is only supported for the AVR target. It is not supported for RTEMS configurations, which currently use newlib. The option is supported since version 4.7.2 and is the default in 4.8.0 and newer. ! '--with-build-time-tools=DIR' ! Specifies where to find the set of target tools (assembler, linker, ! etc.) that will be used while building GCC itself. This option ! can be useful if the directory layouts are different between the ! system you are building GCC on, and the system where you will ! deploy it. ! For example, on an 'ia64-hp-hpux' system, you may have the GNU ! assembler and linker in '/usr/bin', and the native tools in a different path, and build a toolchain that expects to find the ! native tools in '/usr/bin'. ! When you use this option, you should ensure that DIR includes 'ar', ! 'as', 'ld', 'nm', 'ranlib' and 'strip' if necessary, and possibly ! 'objdump'. Otherwise, GCC may use an inconsistent set of tools. Java-Specific Options --------------------- The following option applies to the build of the Java front end. ! '--disable-libgcj' Specify that the run-time libraries used by GCJ should not be built. This is useful in case you intend to use GCJ with some other run-time, or you're going to install it separately, or it just happens not to build on your particular machine. In general, ! if the Java front end is enabled, the GCJ libraries will be enabled ! too, unless they're known to not work on the target platform. If ! GCJ is enabled but 'libgcj' isn't built, you may need to port it; ! in this case, before modifying the top-level 'configure.in' so that ! 'libgcj' is enabled by default on this platform, you may use ! '--enable-libgcj' to override the default. ! The following options apply to building 'libgcj'. General Options ............... ! '--enable-java-maintainer-mode' ! By default the 'libjava' build will not attempt to compile the ! '.java' source files to '.class'. Instead, it will use the ! '.class' files from the source tree. If you use this option you ! must have executables named 'ecj1' and 'gjavah' in your path for ! use by the build. You must use this option if you intend to modify ! any '.java' files in 'libjava'. ! '--with-java-home=DIRNAME' ! This 'libjava' option overrides the default value of the ! 'java.home' system property. It is also used to set ! 'sun.boot.class.path' to 'DIRNAME/lib/rt.jar'. By default ! 'java.home' is set to 'PREFIX' and 'sun.boot.class.path' to ! 'DATADIR/java/libgcj-VERSION.jar'. ! '--with-ecj-jar=FILENAME' This option can be used to specify the location of an external jar file containing the Eclipse Java compiler. A specially modified ! version of this compiler is used by 'gcj' to parse '.java' source ! files. If this option is given, the 'libjava' build will create ! and install an 'ecj1' executable which uses this jar file at runtime. ! If this option is not given, but an 'ecj.jar' file is found in the ! topmost source tree at configure time, then the 'libgcj' build will ! create and install 'ecj1', and will also install the discovered ! 'ecj.jar' into a suitable place in the install tree. ! If 'ecj1' is not installed, then the user will have to supply one ! on his path in order for 'gcj' to properly parse '.java' source files. A suitable jar is available from ! . ! '--disable-getenv-properties' ! Don't set system properties from 'GCJ_PROPERTIES'. ! '--enable-hash-synchronization' ! Use a global hash table for monitor locks. Ordinarily, 'libgcj''s ! 'configure' script automatically makes the correct choice for this option for your platform. Only use this if you know you need the library to be configured differently. ! '--enable-interpreter' Enable the Java interpreter. The interpreter is automatically enabled by default on all platforms that support it. This option ! is really only useful if you want to disable the interpreter (using ! '--disable-interpreter'). ! '--disable-java-net' Disable java.net. This disables the native part of java.net only, using non-functional stubs for native method implementations. ! '--disable-jvmpi' Disable JVMPI support. ! '--disable-libgcj-bc' Disable BC ABI compilation of certain parts of libgcj. By default, ! some portions of libgcj are compiled with '-findirect-dispatch' and ! '-fno-indirect-classes', allowing them to be overridden at run-time. ! If '--disable-libgcj-bc' is specified, libgcj is built without these options. This allows the compile-time linker to resolve dependencies when statically linking to libgcj. However it makes it impossible to override the affected portions of libgcj at run-time. ! '--enable-reduced-reflection' ! Build most of libgcj with '-freduced-reflection'. This reduces the ! size of libgcj at the expense of not being able to do accurate reflection on the classes it contains. This option is safe if you know that code using libgcj will never use reflection on the standard runtime classes in libgcj (including using serialization, RMI or CORBA). ! '--with-ecos' Enable runtime eCos target support. ! '--without-libffi' ! Don't use 'libffi'. This will disable the interpreter and JNI ! support as well, as these require 'libffi' to work. ! '--enable-libgcj-debug' Enable runtime debugging code. ! '--enable-libgcj-multifile' ! If specified, causes all '.java' source files to be compiled into ! '.class' files in one invocation of 'gcj'. This can speed up build ! time, but is more resource-intensive. If this option is ! unspecified or disabled, 'gcj' is invoked once for each '.java' ! file to compile into a '.class' file. ! '--with-libiconv-prefix=DIR' ! Search for libiconv in 'DIR/include' and 'DIR/lib'. ! '--enable-sjlj-exceptions' ! Force use of the 'setjmp'/'longjmp'-based scheme for exceptions. ! 'configure' ordinarily picks the correct value based on the platform. Only use this option if you are sure you need a different setting. ! '--with-system-zlib' ! Use installed 'zlib' rather than that included with GCC. ! '--with-win32-nlsapi=ansi, unicows or unicode' ! Indicates how MinGW 'libgcj' translates between UNICODE characters and the Win32 API. ! '--enable-java-home' If enabled, this creates a JPackage compatible SDK environment during install. Note that if -enable-java-home is used, -with-arch-directory=ARCH must also be specified. ! '--with-arch-directory=ARCH' ! Specifies the name to use for the 'jre/lib/ARCH' directory in the ! SDK environment created when -enable-java-home is passed. Typical names for this directory include i386, amd64, ia64, etc. ! '--with-os-directory=DIR' ! Specifies the OS directory for the SDK include directory. This is set to auto detect, and is typically 'linux'. ! '--with-origin-name=NAME' ! Specifies the JPackage origin name. This defaults to the 'gcj' in java-1.5.0-gcj. ! '--with-arch-suffix=SUFFIX' ! Specifies the suffix for the sdk directory. Defaults to the empty string. Examples include '.x86_64' in 'java-1.5.0-gcj-1.5.0.0.x86_64'. ! '--with-jvm-root-dir=DIR' Specifies where to install the SDK. Default is $(prefix)/lib/jvm. ! '--with-jvm-jar-dir=DIR' ! Specifies where to install jars. Default is $(prefix)/lib/jvm-exports. ! '--with-python-dir=DIR' ! Specifies where to install the Python modules used for aot-compile. ! DIR should not include the prefix used in installation. For ! example, if the Python modules are to be installed in ! /usr/lib/python2.5/site-packages, then ! -with-python-dir=/lib/python2.5/site-packages should be passed. If this is not specified, then the Python modules are installed in $(prefix)/share/python. ! '--enable-aot-compile-rpm' Adds aot-compile-rpm to the list of installed scripts. ! '--enable-browser-plugin' Build the gcjwebplugin web browser plugin. ! '--enable-static-libjava' ! Build static libraries in libjava. The default is to only build shared libraries. ! 'ansi' ! Use the single-byte 'char' and the Win32 A functions natively, translating to and from UNICODE when using these functions. If unspecified, this is the default. ! 'unicows' ! Use the 'WCHAR' and Win32 W functions natively. Adds ! '-lunicows' to 'libgcj.spec' to link with 'libunicows'. ! 'unicows.dll' needs to be deployed on Microsoft Windows 9X ! machines running built executables. 'libunicows.a', an ! open-source import library around Microsoft's 'unicows.dll', ! is obtained from , which ! also gives details on getting 'unicows.dll' from Microsoft. ! 'unicode' ! Use the 'WCHAR' and Win32 W functions natively. Does _not_ ! add '-lunicows' to 'libgcj.spec'. The built executables will only run on Microsoft Windows NT and above. AWT-Specific Options .................... ! '--with-x' Use the X Window System. ! '--enable-java-awt=PEER(S)' Specifies the AWT peer library or libraries to build alongside ! 'libgcj'. If this option is unspecified or disabled, AWT will be ! non-functional. Current valid values are 'gtk' and 'xlib'. Multiple libraries should be separated by a comma (i.e. ! '--enable-java-awt=gtk,xlib'). ! '--enable-gtk-cairo' Build the cairo Graphics2D implementation on GTK. ! '--enable-java-gc=TYPE' ! Choose garbage collector. Defaults to 'boehm' if unspecified. ! '--disable-gtktest' Do not try to compile and run a test GTK+ program. ! '--disable-glibtest' Do not try to compile and run a test GLIB program. ! '--with-libart-prefix=PFX' Prefix where libart is installed (optional). ! '--with-libart-exec-prefix=PFX' Exec prefix where libart is installed (optional). ! '--disable-libarttest' Do not try to compile and run a test libart program. ! Overriding 'configure' test results ................................... Sometimes, it might be necessary to override the result of some ! 'configure' test, for example in order to ease porting to a new system ! or work around a bug in a test. The toplevel 'configure' script provides three variables for this: ! 'build_configargs' ! The contents of this variable is passed to all build 'configure' scripts. ! 'host_configargs' ! The contents of this variable is passed to all host 'configure' scripts. ! 'target_configargs' ! The contents of this variable is passed to all target 'configure' scripts. ! In order to avoid shell and 'make' quoting issues for complex ! overrides, you can pass a setting for 'CONFIG_SITE' and set variables in ! the site file.  File: gccinstall.info, Node: Building, Next: Testing, Prev: Configuration, Up: Installing GCC *************** File: gccinstall.info, Node: Building, *** 1857,1867 **** 5 Building ********** ! Now that GCC is configured, you are ready to build the compiler and runtime libraries. Some commands executed when making the compiler may fail (return a ! nonzero status) and be ignored by `make'. These failures, which are often due to files that were not found, are expected, and can safely be ignored. --- 1853,1863 ---- 5 Building ********** ! Now that GCC is configured, you are ready to build the compiler and runtime libraries. Some commands executed when making the compiler may fail (return a ! nonzero status) and be ignored by 'make'. These failures, which are often due to files that were not found, are expected, and can safely be ignored. *************** ignored. *** 1869,1878 **** Unless you are a GCC developer, you can generally ignore these warnings unless they cause compilation to fail. Developers should attempt to fix any warnings encountered, however they can temporarily continue past ! warnings-as-errors by specifying the configure flag `--disable-werror'. On certain old systems, defining certain environment variables such ! as `CC' can interfere with the functioning of `make'. If you encounter seemingly strange errors when trying to build the compiler in a directory other than the source directory, it could be --- 1865,1874 ---- Unless you are a GCC developer, you can generally ignore these warnings unless they cause compilation to fail. Developers should attempt to fix any warnings encountered, however they can temporarily continue past ! warnings-as-errors by specifying the configure flag '--disable-werror'. On certain old systems, defining certain environment variables such ! as 'CC' can interfere with the functioning of 'make'. If you encounter seemingly strange errors when trying to build the compiler in a directory other than the source directory, it could be *************** because you have previously configured t *** 1880,1899 **** directory. Make sure you have done all the necessary preparations. If you build GCC on a BSD system using a directory stored in an old ! System V file system, problems may occur in running `fixincludes' if the System V file system doesn't support symbolic links. These problems ! result in a failure to fix the declaration of `size_t' in ! `sys/types.h'. If you find that `size_t' is a signed type and that ! type mismatches occur, this could be the cause. The solution is not to use such a directory for building GCC. Similarly, when building from SVN or snapshots, or if you modify ! `*.l' files, you need the Flex lexical analyzer generator installed. ! If you do not modify `*.l' files, releases contain the Flex-generated ! files and you do not need Flex installed to build them. There is still ! one Flex-based lexical analyzer (part of the build machinery, not of ! GCC itself) that is used even if you only build the C front end. When building from SVN or snapshots, or if you modify Texinfo documentation, you need version 4.7 or later of Texinfo installed if you --- 1876,1895 ---- directory. Make sure you have done all the necessary preparations. If you build GCC on a BSD system using a directory stored in an old ! System V file system, problems may occur in running 'fixincludes' if the System V file system doesn't support symbolic links. These problems ! result in a failure to fix the declaration of 'size_t' in 'sys/types.h'. ! If you find that 'size_t' is a signed type and that type mismatches ! occur, this could be the cause. The solution is not to use such a directory for building GCC. Similarly, when building from SVN or snapshots, or if you modify ! '*.l' files, you need the Flex lexical analyzer generator installed. If ! you do not modify '*.l' files, releases contain the Flex-generated files ! and you do not need Flex installed to build them. There is still one ! Flex-based lexical analyzer (part of the build machinery, not of GCC ! itself) that is used even if you only build the C front end. When building from SVN or snapshots, or if you modify Texinfo documentation, you need version 4.7 or later of Texinfo installed if you *************** documentation pre-built for the unmodifi *** 1904,1913 **** ============================== For a native build, the default configuration is to perform a 3-stage ! bootstrap of the compiler when `make' is invoked. This will build the entire GCC system and ensure that it compiles itself correctly. It can ! be disabled with the `--disable-bootstrap' parameter to `configure', ! but bootstrapping is suggested because the compiler will be tested more completely and could also have better performance. The bootstrapping process will complete the following steps: --- 1900,1909 ---- ============================== For a native build, the default configuration is to perform a 3-stage ! bootstrap of the compiler when 'make' is invoked. This will build the entire GCC system and ensure that it compiles itself correctly. It can ! be disabled with the '--disable-bootstrap' parameter to 'configure', but ! bootstrapping is suggested because the compiler will be tested more completely and could also have better performance. The bootstrapping process will complete the following steps: *************** completely and could also have better pe *** 1922,1940 **** * Perform a comparison test of the stage2 and stage3 compilers. ! * Build runtime libraries using the stage3 compiler from the ! previous step. ! ! If you are short on disk space you might consider `make bootstrap-lean' instead. The sequence of compilation is the same described above, but object files from the stage1 and stage2 of the 3-stage bootstrap of the compiler are deleted as soon as they are no longer needed. If you wish to use non-default GCC flags when compiling the stage2 ! and stage3 compilers, set `BOOT_CFLAGS' on the command line when doing ! `make'. For example, if you want to save additional space during the bootstrap and in the final installation as well, you can build the compiler binaries without debugging information as in the following example. This will save roughly 40% of disk space both for the --- 1918,1935 ---- * Perform a comparison test of the stage2 and stage3 compilers. ! * Build runtime libraries using the stage3 compiler from the previous ! step. ! If you are short on disk space you might consider 'make bootstrap-lean' instead. The sequence of compilation is the same described above, but object files from the stage1 and stage2 of the 3-stage bootstrap of the compiler are deleted as soon as they are no longer needed. If you wish to use non-default GCC flags when compiling the stage2 ! and stage3 compilers, set 'BOOT_CFLAGS' on the command line when doing ! 'make'. For example, if you want to save additional space during the bootstrap and in the final installation as well, you can build the compiler binaries without debugging information as in the following example. This will save roughly 40% of disk space both for the *************** debugging information.) *** 1943,2063 **** make BOOT_CFLAGS='-O' bootstrap ! You can place non-default optimization flags into `BOOT_CFLAGS'; they ! are less well tested here than the default of `-g -O2', but should ! still work. In a few cases, you may find that you need to specify ! special flags such as `-msoft-float' here to complete the bootstrap; or, ! if the native compiler miscompiles the stage1 compiler, you may need to ! work around this, by choosing `BOOT_CFLAGS' to avoid the parts of the ! stage1 compiler that were miscompiled, or by using `make bootstrap4' to increase the number of stages of bootstrap. ! `BOOT_CFLAGS' does not apply to bootstrapped target libraries. ! Since these are always compiled with the compiler currently being ! bootstrapped, you can use `CFLAGS_FOR_TARGET' to modify their compilation flags, as for non-bootstrapped target libraries. Again, if the native compiler miscompiles the stage1 compiler, you may need to work around this by avoiding non-working parts of the stage1 compiler. ! Use `STAGE1_TFLAGS' to this end. ! If you used the flag `--enable-languages=...' to restrict the ! compilers to be built, only those you've actually enabled will be ! built. This will of course only build those runtime libraries, for ! which the particular compiler has been built. Please note, that ! re-defining `LANGUAGES' when calling `make' *does not* work anymore! If the comparison of stage2 and stage3 fails, this normally indicates that the stage2 compiler has compiled GCC incorrectly, and is therefore a potentially serious bug which you should investigate and report. (On a few systems, meaningful comparison of object files is impossible; they ! always appear "different". If you encounter this problem, you will ! need to disable comparison in the `Makefile'.) If you do not want to bootstrap your compiler, you can configure with ! `--disable-bootstrap'. In particular cases, you may want to bootstrap your compiler even if the target system is not the same as the one you are building on: for example, you could build a ! `powerpc-unknown-linux-gnu' toolchain on a ! `powerpc64-unknown-linux-gnu' host. In this case, pass ! `--enable-bootstrap' to the configure script. ! `BUILD_CONFIG' can be used to bring in additional customization to the build. It can be set to a whitespace-separated list of names. For ! each such `NAME', top-level `config/`NAME'.mk' will be included by the ! top-level `Makefile', bringing in any settings it contains. The ! default `BUILD_CONFIG' can be set using the configure option ! `--with-build-config=`NAME'...'. Some examples of supported build configurations are: ! `bootstrap-O1' ! Removes any `-O'-started option from `BOOT_CFLAGS', and adds `-O1' ! to it. `BUILD_CONFIG=bootstrap-O1' is equivalent to ! `BOOT_CFLAGS='-g -O1''. ! `bootstrap-O3' ! Analogous to `bootstrap-O1'. ! `bootstrap-lto' Enables Link-Time Optimization for host tools during bootstrapping. ! `BUILD_CONFIG=bootstrap-lto' is equivalent to adding `-flto' to ! `BOOT_CFLAGS'. ! `bootstrap-debug' Verifies that the compiler generates the same executable code, ! whether or not it is asked to emit debug information. To this ! end, this option builds stage2 host programs without debug ! information, and uses `contrib/compare-debug' to compare them with ! the stripped stage3 object files. If `BOOT_CFLAGS' is overridden ! so as to not enable debug information, stage2 will have it, and ! stage3 won't. This option is enabled by default when GCC ! bootstrapping is enabled, if `strip' can turn object files ! compiled with and without debug info into identical object files. ! In addition to better test coverage, this option makes default ! bootstraps faster and leaner. ! `bootstrap-debug-big' Rather than comparing stripped object files, as in ! `bootstrap-debug', this option saves internal compiler dumps ! during stage2 and stage3 and compares them as well, which helps ! catch additional potential problems, but at a great cost in terms ! of disk space. It can be specified in addition to ! `bootstrap-debug'. ! `bootstrap-debug-lean' ! This option saves disk space compared with `bootstrap-debug-big', but at the expense of some recompilation. Instead of saving the dumps of stage2 and stage3 until the final compare, it uses ! `-fcompare-debug' to generate, compare and remove the dumps during stage3, repeating the compilation that already took place in stage2, whose dumps were not saved. ! `bootstrap-debug-lib' This option tests executable code invariance over debug information ! generation on target libraries, just like `bootstrap-debug-lean' tests it on host programs. It builds stage3 libraries with ! `-fcompare-debug', and it can be used along with any of the ! `bootstrap-debug' options above. ! There aren't `-lean' or `-big' counterparts to this option because most libraries are only build in stage3, so bootstrap compares would not get significant coverage. Moreover, the few libraries built in stage2 are used in stage3 host programs, so we wouldn't want to compile stage2 libraries with different options for comparison purposes. ! `bootstrap-debug-ckovw' Arranges for error messages to be issued if the compiler built on ! any stage is run without the option `-fcompare-debug'. This is ! useful to verify the full `-fcompare-debug' testing coverage. It ! must be used along with `bootstrap-debug-lean' and ! `bootstrap-debug-lib'. ! `bootstrap-time' Arranges for the run time of each program started by the GCC ! driver, built in any stage, to be logged to `time.log', in the top level of the build tree. - 5.2 Building a cross compiler ============================= --- 1938,2054 ---- make BOOT_CFLAGS='-O' bootstrap ! You can place non-default optimization flags into 'BOOT_CFLAGS'; they ! are less well tested here than the default of '-g -O2', but should still ! work. In a few cases, you may find that you need to specify special ! flags such as '-msoft-float' here to complete the bootstrap; or, if the ! native compiler miscompiles the stage1 compiler, you may need to work ! around this, by choosing 'BOOT_CFLAGS' to avoid the parts of the stage1 ! compiler that were miscompiled, or by using 'make bootstrap4' to increase the number of stages of bootstrap. ! 'BOOT_CFLAGS' does not apply to bootstrapped target libraries. Since ! these are always compiled with the compiler currently being ! bootstrapped, you can use 'CFLAGS_FOR_TARGET' to modify their compilation flags, as for non-bootstrapped target libraries. Again, if the native compiler miscompiles the stage1 compiler, you may need to work around this by avoiding non-working parts of the stage1 compiler. ! Use 'STAGE1_TFLAGS' to this end. ! If you used the flag '--enable-languages=...' to restrict the ! compilers to be built, only those you've actually enabled will be built. ! This will of course only build those runtime libraries, for which the ! particular compiler has been built. Please note, that re-defining ! 'LANGUAGES' when calling 'make' *does not* work anymore! If the comparison of stage2 and stage3 fails, this normally indicates that the stage2 compiler has compiled GCC incorrectly, and is therefore a potentially serious bug which you should investigate and report. (On a few systems, meaningful comparison of object files is impossible; they ! always appear "different". If you encounter this problem, you will need ! to disable comparison in the 'Makefile'.) If you do not want to bootstrap your compiler, you can configure with ! '--disable-bootstrap'. In particular cases, you may want to bootstrap your compiler even if the target system is not the same as the one you are building on: for example, you could build a ! 'powerpc-unknown-linux-gnu' toolchain on a 'powerpc64-unknown-linux-gnu' ! host. In this case, pass '--enable-bootstrap' to the configure script. ! 'BUILD_CONFIG' can be used to bring in additional customization to the build. It can be set to a whitespace-separated list of names. For ! each such 'NAME', top-level 'config/NAME.mk' will be included by the ! top-level 'Makefile', bringing in any settings it contains. The default ! 'BUILD_CONFIG' can be set using the configure option ! '--with-build-config=NAME...'. Some examples of supported build configurations are: ! 'bootstrap-O1' ! Removes any '-O'-started option from 'BOOT_CFLAGS', and adds '-O1' ! to it. 'BUILD_CONFIG=bootstrap-O1' is equivalent to ! 'BOOT_CFLAGS='-g -O1''. ! 'bootstrap-O3' ! Analogous to 'bootstrap-O1'. ! 'bootstrap-lto' Enables Link-Time Optimization for host tools during bootstrapping. ! 'BUILD_CONFIG=bootstrap-lto' is equivalent to adding '-flto' to ! 'BOOT_CFLAGS'. ! 'bootstrap-debug' Verifies that the compiler generates the same executable code, ! whether or not it is asked to emit debug information. To this end, ! this option builds stage2 host programs without debug information, ! and uses 'contrib/compare-debug' to compare them with the stripped ! stage3 object files. If 'BOOT_CFLAGS' is overridden so as to not ! enable debug information, stage2 will have it, and stage3 won't. ! This option is enabled by default when GCC bootstrapping is ! enabled, if 'strip' can turn object files compiled with and without ! debug info into identical object files. In addition to better test ! coverage, this option makes default bootstraps faster and leaner. ! 'bootstrap-debug-big' Rather than comparing stripped object files, as in ! 'bootstrap-debug', this option saves internal compiler dumps during ! stage2 and stage3 and compares them as well, which helps catch ! additional potential problems, but at a great cost in terms of disk ! space. It can be specified in addition to 'bootstrap-debug'. ! 'bootstrap-debug-lean' ! This option saves disk space compared with 'bootstrap-debug-big', but at the expense of some recompilation. Instead of saving the dumps of stage2 and stage3 until the final compare, it uses ! '-fcompare-debug' to generate, compare and remove the dumps during stage3, repeating the compilation that already took place in stage2, whose dumps were not saved. ! 'bootstrap-debug-lib' This option tests executable code invariance over debug information ! generation on target libraries, just like 'bootstrap-debug-lean' tests it on host programs. It builds stage3 libraries with ! '-fcompare-debug', and it can be used along with any of the ! 'bootstrap-debug' options above. ! There aren't '-lean' or '-big' counterparts to this option because most libraries are only build in stage3, so bootstrap compares would not get significant coverage. Moreover, the few libraries built in stage2 are used in stage3 host programs, so we wouldn't want to compile stage2 libraries with different options for comparison purposes. ! 'bootstrap-debug-ckovw' Arranges for error messages to be issued if the compiler built on ! any stage is run without the option '-fcompare-debug'. This is ! useful to verify the full '-fcompare-debug' testing coverage. It ! must be used along with 'bootstrap-debug-lean' and ! 'bootstrap-debug-lib'. ! 'bootstrap-time' Arranges for the run time of each program started by the GCC ! driver, built in any stage, to be logged to 'time.log', in the top level of the build tree. 5.2 Building a cross compiler ============================= *************** When building a cross compiler, it is no *** 2065,2084 **** 3-stage bootstrap of the compiler. This makes for an interesting problem as parts of GCC can only be built with GCC. ! To build a cross compiler, we recommend first building and ! installing a native compiler. You can then use the native GCC compiler ! to build the cross compiler. The installed native compiler needs to be ! GCC version 2.95 or later. If the cross compiler is to be built with support for the Java programming language and the ability to compile .java source files is desired, the installed native compiler used to build the cross compiler ! needs to be the same GCC version as the cross compiler. In addition ! the cross compiler needs to be configured with `--with-ecj-jar=...'. Assuming you have already installed a native copy of GCC and ! configured your cross compiler, issue the command `make', which ! performs the following steps: * Build host tools necessary to build the compiler. --- 2056,2075 ---- 3-stage bootstrap of the compiler. This makes for an interesting problem as parts of GCC can only be built with GCC. ! To build a cross compiler, we recommend first building and installing ! a native compiler. You can then use the native GCC compiler to build ! the cross compiler. The installed native compiler needs to be GCC ! version 2.95 or later. If the cross compiler is to be built with support for the Java programming language and the ability to compile .java source files is desired, the installed native compiler used to build the cross compiler ! needs to be the same GCC version as the cross compiler. In addition the ! cross compiler needs to be configured with '--with-ecj-jar=...'. Assuming you have already installed a native copy of GCC and ! configured your cross compiler, issue the command 'make', which performs ! the following steps: * Build host tools necessary to build the compiler. *************** performs the following steps: *** 2095,2114 **** If you are not building GNU binutils in the same source tree as GCC, you will need a cross-assembler and cross-linker installed before ! configuring GCC. Put them in the directory `PREFIX/TARGET/bin'. Here is a table of the tools you should put in this directory: ! `as' This should be the cross-assembler. ! `ld' This should be the cross-linker. ! `ar' This should be the cross-archiver: a program which can manipulate archive files (linker libraries) in the target machine's format. ! `ranlib' This should be a program to construct a symbol table in an archive file. --- 2086,2105 ---- If you are not building GNU binutils in the same source tree as GCC, you will need a cross-assembler and cross-linker installed before ! configuring GCC. Put them in the directory 'PREFIX/TARGET/bin'. Here is a table of the tools you should put in this directory: ! 'as' This should be the cross-assembler. ! 'ld' This should be the cross-linker. ! 'ar' This should be the cross-archiver: a program which can manipulate archive files (linker libraries) in the target machine's format. ! 'ranlib' This should be a program to construct a symbol table in an archive file. *************** and copy or link them to the proper plac *** 2117,2188 **** find them when run later. The easiest way to provide these files is to build the Binutils ! package. Configure it with the same `--host' and `--target' options that you use for configuring GCC, then build and install them. They install their executables automatically into the proper directory. Alas, they do not support all the targets that GCC supports. If you are not building a C library in the same source tree as GCC, you should also provide the target libraries and headers before ! configuring GCC, specifying the directories with `--with-sysroot' or ! `--with-headers' and `--with-libs'. Many targets also require "start ! files" such as `crt0.o' and `crtn.o' which are linked into each ! executable. There may be several alternatives for `crt0.o', for use with profiling or other compilation options. Check your target's ! definition of `STARTFILE_SPEC' to find out what start files it uses. 5.3 Building in parallel ======================== GNU Make 3.80 and above, which is necessary to build GCC, support ! building in parallel. To activate this, you can use `make -j 2' ! instead of `make'. You can also specify a bigger number, and in most ! cases using a value greater than the number of processors in your ! machine will result in fewer and shorter I/O latency hits, thus ! improving overall throughput; this is especially true for slow drives ! and network filesystems. 5.4 Building the Ada compiler ============================= In order to build GNAT, the Ada compiler, you need a working GNAT compiler (GCC version 4.0 or later). This includes GNAT tools such as ! `gnatmake' and `gnatlink', since the Ada front end is written in Ada and uses some GNAT-specific extensions. In order to build a cross compiler, it is suggested to install the new compiler as native first, and then use it to build the cross compiler. ! `configure' does not test whether the GNAT installation works and ! has a sufficiently recent version; if too old a GNAT version is ! installed, the build will fail unless `--enable-languages' is used to ! disable building the Ada front end. ! `ADA_INCLUDE_PATH' and `ADA_OBJECT_PATH' environment variables must not be set when building the Ada compiler, the Ada tools, or the Ada ! runtime libraries. You can check that your build environment is clean ! by verifying that `gnatls -v' lists only one explicit path in each section. 5.5 Building with profile feedback ================================== It is possible to use profile feedback to optimize the compiler itself. ! This should result in a faster compiler binary. Experiments done on ! x86 using gcc 3.3 showed approximately 7 percent speedup on compiling C ! programs. To bootstrap the compiler with profile feedback, use `make profiledbootstrap'. ! When `make profiledbootstrap' is run, it will first build a `stage1' ! compiler. This compiler is used to build a `stageprofile' compiler instrumented to collect execution counts of instruction and branch probabilities. Then runtime libraries are compiled with profile ! collected. Finally a `stagefeedback' compiler is built using the information collected. Unlike standard bootstrap, several additional restrictions apply. ! The compiler used to build `stage1' needs to support a 64-bit integral type. It is recommended to only use GCC for this. Also parallel make is currently not supported since collisions in profile collecting may occur. --- 2108,2179 ---- find them when run later. The easiest way to provide these files is to build the Binutils ! package. Configure it with the same '--host' and '--target' options that you use for configuring GCC, then build and install them. They install their executables automatically into the proper directory. Alas, they do not support all the targets that GCC supports. If you are not building a C library in the same source tree as GCC, you should also provide the target libraries and headers before ! configuring GCC, specifying the directories with '--with-sysroot' or ! '--with-headers' and '--with-libs'. Many targets also require "start ! files" such as 'crt0.o' and 'crtn.o' which are linked into each ! executable. There may be several alternatives for 'crt0.o', for use with profiling or other compilation options. Check your target's ! definition of 'STARTFILE_SPEC' to find out what start files it uses. 5.3 Building in parallel ======================== GNU Make 3.80 and above, which is necessary to build GCC, support ! building in parallel. To activate this, you can use 'make -j 2' instead ! of 'make'. You can also specify a bigger number, and in most cases ! using a value greater than the number of processors in your machine will ! result in fewer and shorter I/O latency hits, thus improving overall ! throughput; this is especially true for slow drives and network ! filesystems. 5.4 Building the Ada compiler ============================= In order to build GNAT, the Ada compiler, you need a working GNAT compiler (GCC version 4.0 or later). This includes GNAT tools such as ! 'gnatmake' and 'gnatlink', since the Ada front end is written in Ada and uses some GNAT-specific extensions. In order to build a cross compiler, it is suggested to install the new compiler as native first, and then use it to build the cross compiler. ! 'configure' does not test whether the GNAT installation works and has ! a sufficiently recent version; if too old a GNAT version is installed, ! the build will fail unless '--enable-languages' is used to disable ! building the Ada front end. ! 'ADA_INCLUDE_PATH' and 'ADA_OBJECT_PATH' environment variables must not be set when building the Ada compiler, the Ada tools, or the Ada ! runtime libraries. You can check that your build environment is clean ! by verifying that 'gnatls -v' lists only one explicit path in each section. 5.5 Building with profile feedback ================================== It is possible to use profile feedback to optimize the compiler itself. ! This should result in a faster compiler binary. Experiments done on x86 ! using gcc 3.3 showed approximately 7 percent speedup on compiling C ! programs. To bootstrap the compiler with profile feedback, use 'make profiledbootstrap'. ! When 'make profiledbootstrap' is run, it will first build a 'stage1' ! compiler. This compiler is used to build a 'stageprofile' compiler instrumented to collect execution counts of instruction and branch probabilities. Then runtime libraries are compiled with profile ! collected. Finally a 'stagefeedback' compiler is built using the information collected. Unlike standard bootstrap, several additional restrictions apply. ! The compiler used to build 'stage1' needs to support a 64-bit integral type. It is recommended to only use GCC for this. Also parallel make is currently not supported since collisions in profile collecting may occur. *************** File: gccinstall.info, Node: Testing, *** 2193,2206 **** 6 Installing GCC: Testing ************************* ! Before you install GCC, we encourage you to run the testsuites and to compare your results with results from a similar configuration that have been submitted to the gcc-testresults mailing list. Some of these archived results are linked from the build status lists at ! `http://gcc.gnu.org/buildstat.html', although not everyone who reports ! a successful build runs the testsuites and submits the results. This ! step is optional and may require you to download additional software, ! but it can give you confidence in your new GCC installation or point out problems before you install and start using your new GCC. First, you must have downloaded the testsuites. These are part of --- 2184,2197 ---- 6 Installing GCC: Testing ************************* ! Before you install GCC, we encourage you to run the testsuites and to compare your results with results from a similar configuration that have been submitted to the gcc-testresults mailing list. Some of these archived results are linked from the build status lists at ! , although not everyone who reports a ! successful build runs the testsuites and submits the results. This step ! is optional and may require you to download additional software, but it ! can give you confidence in your new GCC installation or point out problems before you install and start using your new GCC. First, you must have downloaded the testsuites. These are part of *************** any front ends, you must download the te *** 2210,2219 **** Second, you must have the testing tools installed. This includes DejaGnu, Tcl, and Expect; the DejaGnu site has links to these. ! If the directories where `runtest' and `expect' were installed are ! not in the `PATH', you may need to set the following environment ! variables appropriately, as in the following example (which assumes ! that DejaGnu has been installed under `/usr/local'): TCL_LIBRARY = /usr/local/share/tcl8.0 DEJAGNULIBS = /usr/local/share/dejagnu --- 2201,2210 ---- Second, you must have the testing tools installed. This includes DejaGnu, Tcl, and Expect; the DejaGnu site has links to these. ! If the directories where 'runtest' and 'expect' were installed are ! not in the 'PATH', you may need to set the following environment ! variables appropriately, as in the following example (which assumes that ! DejaGnu has been installed under '/usr/local'): TCL_LIBRARY = /usr/local/share/tcl8.0 DEJAGNULIBS = /usr/local/share/dejagnu *************** portability in the DejaGnu code.) *** 2225,2280 **** Finally, you can run the testsuite (which may take a long time): cd OBJDIR; make -k check ! This will test various components of GCC, such as compiler front ! ends and runtime libraries. While running the testsuite, DejaGnu might ! emit some harmless messages resembling `WARNING: Couldn't find the ! global config file.' or `WARNING: Couldn't find tool init file' that ! can be ignored. If you are testing a cross-compiler, you may want to run the testsuite on a simulator as described at ! `http://gcc.gnu.org/simtest-howto.html'. 6.1 How can you run the testsuite on selected tests? ==================================================== ! In order to run sets of tests selectively, there are targets `make ! check-gcc' and language specific `make check-c', `make check-c++', ! `make check-fortran', `make check-java', `make check-ada', `make ! check-objc', `make check-obj-c++', `make check-lto' in the `gcc' ! subdirectory of the object directory. You can also just run `make ! check' in a subdirectory of the object directory. ! A more selective way to just run all `gcc' execute tests in the testsuite is to use make check-gcc RUNTESTFLAGS="execute.exp OTHER-OPTIONS" ! Likewise, in order to run only the `g++' "old-deja" tests in the ! testsuite with filenames matching `9805*', you would use make check-g++ RUNTESTFLAGS="old-deja.exp=9805* OTHER-OPTIONS" ! The `*.exp' files are located in the testsuite directories of the GCC ! source, the most important ones being `compile.exp', `execute.exp', ! `dg.exp' and `old-deja.exp'. To get a list of the possible `*.exp' ! files, pipe the output of `make check' into a file and look at the ! `Running ... .exp' lines. 6.2 Passing options and running multiple testsuites =================================================== You can pass multiple options to the testsuite using the ! `--target_board' option of DejaGNU, either passed as part of ! `RUNTESTFLAGS', or directly to `runtest' if you prefer to work outside the makefiles. For example, make check-g++ RUNTESTFLAGS="--target_board=unix/-O3/-fmerge-constants" ! will run the standard `g++' testsuites ("unix" is the target name ! for a standard native testsuite situation), passing `-O3 ! -fmerge-constants' to the compiler on every test, i.e., slashes ! separate options. You can run the testsuites multiple times using combinations of options with a syntax similar to the brace expansion of popular shells: --- 2216,2270 ---- Finally, you can run the testsuite (which may take a long time): cd OBJDIR; make -k check ! This will test various components of GCC, such as compiler front ends ! and runtime libraries. While running the testsuite, DejaGnu might emit ! some harmless messages resembling 'WARNING: Couldn't find the global ! config file.' or 'WARNING: Couldn't find tool init file' that can be ! ignored. If you are testing a cross-compiler, you may want to run the testsuite on a simulator as described at ! . 6.1 How can you run the testsuite on selected tests? ==================================================== ! In order to run sets of tests selectively, there are targets 'make ! check-gcc' and language specific 'make check-c', 'make check-c++', 'make ! check-fortran', 'make check-java', 'make check-ada', 'make check-objc', ! 'make check-obj-c++', 'make check-lto' in the 'gcc' subdirectory of the ! object directory. You can also just run 'make check' in a subdirectory ! of the object directory. ! A more selective way to just run all 'gcc' execute tests in the testsuite is to use make check-gcc RUNTESTFLAGS="execute.exp OTHER-OPTIONS" ! Likewise, in order to run only the 'g++' "old-deja" tests in the ! testsuite with filenames matching '9805*', you would use make check-g++ RUNTESTFLAGS="old-deja.exp=9805* OTHER-OPTIONS" ! The '*.exp' files are located in the testsuite directories of the GCC ! source, the most important ones being 'compile.exp', 'execute.exp', ! 'dg.exp' and 'old-deja.exp'. To get a list of the possible '*.exp' ! files, pipe the output of 'make check' into a file and look at the ! 'Running ... .exp' lines. 6.2 Passing options and running multiple testsuites =================================================== You can pass multiple options to the testsuite using the ! '--target_board' option of DejaGNU, either passed as part of ! 'RUNTESTFLAGS', or directly to 'runtest' if you prefer to work outside the makefiles. For example, make check-g++ RUNTESTFLAGS="--target_board=unix/-O3/-fmerge-constants" ! will run the standard 'g++' testsuites ("unix" is the target name for ! a standard native testsuite situation), passing '-O3 -fmerge-constants' ! to the compiler on every test, i.e., slashes separate options. You can run the testsuites multiple times using combinations of options with a syntax similar to the brace expansion of popular shells: *************** options with a syntax similar to the bra *** 2283,2289 **** (Note the empty option caused by the trailing comma in the final group.) The following will run each testsuite eight times using the ! `arm-sim' target, as if you had specified all possible combinations yourself: --target_board='arm-sim/-mhard-float/-O1 \ --- 2273,2279 ---- (Note the empty option caused by the trailing comma in the final group.) The following will run each testsuite eight times using the ! 'arm-sim' target, as if you had specified all possible combinations yourself: --target_board='arm-sim/-mhard-float/-O1 \ *************** This list: *** 2300,2312 **** ..."--target_board=unix/-Wextra\{-O3,-fno-strength\}\{-fomit-frame,\}" ! will generate four combinations, all involving `-Wextra'. The disadvantage to this method is that the testsuites are run in serial, which is a waste on multiprocessor systems. For users with GNU Make and a shell which performs brace expansion, you can run the testsuites in parallel by having the shell perform the combinations and ! `make' do the parallel runs. Instead of using `--target_board', use a special makefile target: make -jN check-TESTSUITE//TEST-TARGET/OPTION1/OPTION2/... --- 2290,2302 ---- ..."--target_board=unix/-Wextra\{-O3,-fno-strength\}\{-fomit-frame,\}" ! will generate four combinations, all involving '-Wextra'. The disadvantage to this method is that the testsuites are run in serial, which is a waste on multiprocessor systems. For users with GNU Make and a shell which performs brace expansion, you can run the testsuites in parallel by having the shell perform the combinations and ! 'make' do the parallel runs. Instead of using '--target_board', use a special makefile target: make -jN check-TESTSUITE//TEST-TARGET/OPTION1/OPTION2/... *************** special makefile target: *** 2317,2358 **** will run three concurrent "make-gcc" testsuites, eventually testing all ten combinations as described above. Note that this is currently ! only supported in the `gcc' subdirectory. (To see how this works, try ! typing `echo' before the example given here.) 6.3 Additional testing for Java Class Libraries =============================================== ! The Java runtime tests can be executed via `make check' in the ! `TARGET/libjava/testsuite' directory in the build tree. The Mauve Project provides a suite of tests for the Java Class Libraries. This suite can be run as part of libgcj testing by placing the Mauve tree within the libjava testsuite at ! `libjava/testsuite/libjava.mauve/mauve', or by specifying the location ! of that tree when invoking `make', as in `make MAUVEDIR=~/mauve check'. 6.4 How to interpret test results ================================= ! The result of running the testsuite are various `*.sum' and `*.log' ! files in the testsuite subdirectories. The `*.log' files contain a detailed log of the compiler invocations and the corresponding results, ! the `*.sum' files summarize the results. These summaries contain ! status codes for all tests: * PASS: the test passed as expected - * XPASS: the test unexpectedly passed - * FAIL: the test unexpectedly failed - * XFAIL: the test failed as expected - * UNSUPPORTED: the test is not supported on this platform - * ERROR: the testsuite detected an error - * WARNING: the testsuite detected a possible problem It is normal for some tests to report unexpected failures. At the --- 2307,2342 ---- will run three concurrent "make-gcc" testsuites, eventually testing all ten combinations as described above. Note that this is currently ! only supported in the 'gcc' subdirectory. (To see how this works, try ! typing 'echo' before the example given here.) 6.3 Additional testing for Java Class Libraries =============================================== ! The Java runtime tests can be executed via 'make check' in the ! 'TARGET/libjava/testsuite' directory in the build tree. The Mauve Project provides a suite of tests for the Java Class Libraries. This suite can be run as part of libgcj testing by placing the Mauve tree within the libjava testsuite at ! 'libjava/testsuite/libjava.mauve/mauve', or by specifying the location ! of that tree when invoking 'make', as in 'make MAUVEDIR=~/mauve check'. 6.4 How to interpret test results ================================= ! The result of running the testsuite are various '*.sum' and '*.log' ! files in the testsuite subdirectories. The '*.log' files contain a detailed log of the compiler invocations and the corresponding results, ! the '*.sum' files summarize the results. These summaries contain status ! codes for all tests: * PASS: the test passed as expected * XPASS: the test unexpectedly passed * FAIL: the test unexpectedly failed * XFAIL: the test failed as expected * UNSUPPORTED: the test is not supported on this platform * ERROR: the testsuite detected an error * WARNING: the testsuite detected a possible problem It is normal for some tests to report unexpected failures. At the *************** fixed in future releases. *** 2364,2378 **** =========================== If you want to report the results to the GCC project, use the ! `contrib/test_summary' shell script. Start it in the OBJDIR with SRCDIR/contrib/test_summary -p your_commentary.txt \ -m gcc-testresults@gcc.gnu.org |sh ! This script uses the `Mail' program to send the results, so make ! sure it is in your `PATH'. The file `your_commentary.txt' is prepended ! to the testsuite summary and should contain any special remarks you ! have on your results or your build environment. Please do not edit the testsuite result block or the subject line, as these messages may be automatically processed. --- 2348,2362 ---- =========================== If you want to report the results to the GCC project, use the ! 'contrib/test_summary' shell script. Start it in the OBJDIR with SRCDIR/contrib/test_summary -p your_commentary.txt \ -m gcc-testresults@gcc.gnu.org |sh ! This script uses the 'Mail' program to send the results, so make sure ! it is in your 'PATH'. The file 'your_commentary.txt' is prepended to ! the testsuite summary and should contain any special remarks you have on ! your results or your build environment. Please do not edit the testsuite result block or the subject line, as these messages may be automatically processed. *************** File: gccinstall.info, Node: Final inst *** 2382,2389 **** 7 Installing GCC: Final installation ************************************ ! Now that GCC has been built (and optionally tested), you can install ! it with cd OBJDIR && make install We strongly recommend to install into a target directory where there --- 2366,2373 ---- 7 Installing GCC: Final installation ************************************ ! Now that GCC has been built (and optionally tested), you can install it ! with cd OBJDIR && make install We strongly recommend to install into a target directory where there *************** that depend on this debugging informatio *** 2393,2430 **** instance). That step completes the installation of GCC; user level binaries can ! be found in `PREFIX/bin' where PREFIX is the value you specified with ! the `--prefix' to configure (or `/usr/local' by default). (If you ! specified `--bindir', that directory will be used instead; otherwise, ! if you specified `--exec-prefix', `EXEC-PREFIX/bin' will be used.) ! Headers for the C++ and Java libraries are installed in ! `PREFIX/include'; libraries in `LIBDIR' (normally `PREFIX/lib'); ! internal parts of the compiler in `LIBDIR/gcc' and `LIBEXECDIR/gcc'; ! documentation in info format in `INFODIR' (normally `PREFIX/info'). When installing cross-compilers, GCC's executables are not only ! installed into `BINDIR', that is, `EXEC-PREFIX/bin', but additionally ! into `EXEC-PREFIX/TARGET-ALIAS/bin', if that directory exists. Typically, such "tooldirs" hold target-specific binutils, including assembler and linker. ! Installation into a temporary staging area or into a `chroot' jail can be achieved with the command make DESTDIR=PATH-TO-ROOTDIR install where PATH-TO-ROOTDIR is the absolute path of a directory relative to which all installation paths will be interpreted. Note that the ! directory specified by `DESTDIR' need not exist yet; it will be created if necessary. ! There is a subtle point with tooldirs and `DESTDIR': If you relocate ! a cross-compiler installation with e.g. `DESTDIR=ROOTDIR', then the ! directory `ROOTDIR/EXEC-PREFIX/TARGET-ALIAS/bin' will be filled with duplicated GCC executables only if it already exists, it will not be ! created otherwise. This is regarded as a feature, not as a bug, ! because it gives slightly more control to the packagers using the ! `DESTDIR' feature. You can install stripped programs and libraries with --- 2377,2414 ---- instance). That step completes the installation of GCC; user level binaries can ! be found in 'PREFIX/bin' where PREFIX is the value you specified with ! the '--prefix' to configure (or '/usr/local' by default). (If you ! specified '--bindir', that directory will be used instead; otherwise, if ! you specified '--exec-prefix', 'EXEC-PREFIX/bin' will be used.) Headers ! for the C++ and Java libraries are installed in 'PREFIX/include'; ! libraries in 'LIBDIR' (normally 'PREFIX/lib'); internal parts of the ! compiler in 'LIBDIR/gcc' and 'LIBEXECDIR/gcc'; documentation in info ! format in 'INFODIR' (normally 'PREFIX/info'). When installing cross-compilers, GCC's executables are not only ! installed into 'BINDIR', that is, 'EXEC-PREFIX/bin', but additionally ! into 'EXEC-PREFIX/TARGET-ALIAS/bin', if that directory exists. Typically, such "tooldirs" hold target-specific binutils, including assembler and linker. ! Installation into a temporary staging area or into a 'chroot' jail can be achieved with the command make DESTDIR=PATH-TO-ROOTDIR install where PATH-TO-ROOTDIR is the absolute path of a directory relative to which all installation paths will be interpreted. Note that the ! directory specified by 'DESTDIR' need not exist yet; it will be created if necessary. ! There is a subtle point with tooldirs and 'DESTDIR': If you relocate ! a cross-compiler installation with e.g. 'DESTDIR=ROOTDIR', then the ! directory 'ROOTDIR/EXEC-PREFIX/TARGET-ALIAS/bin' will be filled with duplicated GCC executables only if it already exists, it will not be ! created otherwise. This is regarded as a feature, not as a bug, because ! it gives slightly more control to the packagers using the 'DESTDIR' ! feature. You can install stripped programs and libraries with *************** because it gives slightly more control t *** 2432,2497 **** If you are bootstrapping a released version of GCC then please quickly review the build status page for your release, available from ! `http://gcc.gnu.org/buildstat.html'. If your system is not listed for the version of GCC that you built, send a note to indicating that you successfully built and installed GCC. Include the following information: ! * Output from running `SRCDIR/config.guess'. Do not send that file itself, just the one-line output from running it. ! * The output of `gcc -v' for your newly installed `gcc'. This tells us which version of GCC you built and the options you passed to configure. ! * Whether you enabled all languages or a subset of them. If you ! used a full distribution then this information is part of the ! configure options in the output of `gcc -v', but if you downloaded ! the "core" compiler plus additional front ends then it isn't ! apparent which ones you built unless you tell us about it. * If the build was for GNU/Linux, also include: ! * The distribution name and version (e.g., Red Hat 7.1 or ! Debian 2.2.3); this information should be available from ! `/etc/issue'. ! * The version of the Linux kernel, available from `uname ! --version' or `uname -a'. * The version of glibc you used; for RPM-based systems like Red ! Hat, Mandrake, and SuSE type `rpm -q glibc' to get the glibc ! version, and on systems like Debian and Progeny use `dpkg -l libc6'. ! For other systems, you can include similar information if you ! think it is relevant. * Any other information that you think would be useful to people ! building GCC on the same configuration. The new entry in the ! build status list will include a link to the archived copy of your message. ! We'd also like to know if the *note host/target specific ! installation notes: Specific. didn't include your host/target ! information or if that information is incomplete or out of date. Send ! a note to detailing how the information should be ! changed. If you find a bug, please report it following the bug reporting guidelines. ! If you want to print the GCC manuals, do `cd OBJDIR; make dvi'. You ! will need to have `texi2dvi' (version at least 4.7) and TeX installed. ! This creates a number of `.dvi' files in subdirectories of `OBJDIR'; ! these may be converted for printing with programs such as `dvips'. ! Alternately, by using `make pdf' in place of `make dvi', you can create ! documentation in the form of `.pdf' files; this requires `texi2pdf', which is included with Texinfo version 4.8 and later. You can also buy printed manuals from the Free Software Foundation, though such manuals may not be for the most recent version of GCC. ! If you would like to generate online HTML documentation, do `cd OBJDIR; make html' and HTML will be generated for the gcc manuals in ! `OBJDIR/gcc/HTML'.  File: gccinstall.info, Node: Binaries, Next: Specific, Prev: Installing GCC, Up: Top --- 2416,2480 ---- If you are bootstrapping a released version of GCC then please quickly review the build status page for your release, available from ! . If your system is not listed for the version of GCC that you built, send a note to indicating that you successfully built and installed GCC. Include the following information: ! * Output from running 'SRCDIR/config.guess'. Do not send that file itself, just the one-line output from running it. ! * The output of 'gcc -v' for your newly installed 'gcc'. This tells us which version of GCC you built and the options you passed to configure. ! * Whether you enabled all languages or a subset of them. If you used ! a full distribution then this information is part of the configure ! options in the output of 'gcc -v', but if you downloaded the "core" ! compiler plus additional front ends then it isn't apparent which ! ones you built unless you tell us about it. * If the build was for GNU/Linux, also include: ! * The distribution name and version (e.g., Red Hat 7.1 or Debian ! 2.2.3); this information should be available from ! '/etc/issue'. ! * The version of the Linux kernel, available from 'uname ! --version' or 'uname -a'. * The version of glibc you used; for RPM-based systems like Red ! Hat, Mandrake, and SuSE type 'rpm -q glibc' to get the glibc ! version, and on systems like Debian and Progeny use 'dpkg -l libc6'. ! For other systems, you can include similar information if you think ! it is relevant. * Any other information that you think would be useful to people ! building GCC on the same configuration. The new entry in the build ! status list will include a link to the archived copy of your message. ! We'd also like to know if the *note host/target specific installation ! notes: Specific. didn't include your host/target information or if that ! information is incomplete or out of date. Send a note to ! detailing how the information should be changed. If you find a bug, please report it following the bug reporting guidelines. ! If you want to print the GCC manuals, do 'cd OBJDIR; make dvi'. You ! will need to have 'texi2dvi' (version at least 4.7) and TeX installed. ! This creates a number of '.dvi' files in subdirectories of 'OBJDIR'; ! these may be converted for printing with programs such as 'dvips'. ! Alternately, by using 'make pdf' in place of 'make dvi', you can create ! documentation in the form of '.pdf' files; this requires 'texi2pdf', which is included with Texinfo version 4.8 and later. You can also buy printed manuals from the Free Software Foundation, though such manuals may not be for the most recent version of GCC. ! If you would like to generate online HTML documentation, do 'cd OBJDIR; make html' and HTML will be generated for the gcc manuals in ! 'OBJDIR/gcc/HTML'.  File: gccinstall.info, Node: Binaries, Next: Specific, Prev: Installing GCC, Up: Top *************** File: gccinstall.info, Node: Binaries, *** 2499,2508 **** 8 Installing GCC: Binaries ************************** ! We are often asked about pre-compiled versions of GCC. While we ! cannot provide these for all platforms, below you'll find links to ! binaries for various platforms where creating them by yourself is not ! easy due to various reasons. Please note that we did not create these binaries, nor do we support them. If you have any problems installing them, please contact their --- 2482,2491 ---- 8 Installing GCC: Binaries ************************** ! We are often asked about pre-compiled versions of GCC. While we cannot ! provide these for all platforms, below you'll find links to binaries for ! various platforms where creating them by yourself is not easy due to ! various reasons. Please note that we did not create these binaries, nor do we support them. If you have any problems installing them, please contact their *************** makers. *** 2539,2545 **** * Microsoft Windows: * The Cygwin project; - * The MinGW project. * The Written Word offers binaries for AIX 4.3.3, 5.1 and 5.2, --- 2522,2527 ---- *************** File: gccinstall.info, Node: Specific, *** 2557,2564 **** 9 Host/target specific installation notes for GCC ************************************************* ! Please read this document carefully _before_ installing the GNU ! Compiler Collection on your machine. Note that this list of install notes is _not_ a list of supported hosts or targets. Not all supported hosts and targets are listed here, --- 2539,2546 ---- 9 Host/target specific installation notes for GCC ************************************************* ! Please read this document carefully _before_ installing the GNU Compiler ! Collection on your machine. Note that this list of install notes is _not_ a list of supported hosts or targets. Not all supported hosts and targets are listed here, *************** systems. *** 2587,2606 **** Support for Tru64 UNIX V5.1 has been removed in GCC 4.8. As of GCC 4.6, support for Tru64 UNIX V4.0 and V5.0 has been removed. As of GCC ! 3.2, versions before `alpha*-dec-osf4' are no longer supported. (These are the versions which identify themselves as DEC OSF/1.) amd64-*-solaris2.1[0-9]* ======================== ! This is a synonym for `x86_64-*-solaris2.1[0-9]*'. arm-*-eabi ========== ARM-family processors. Subtargets that use the ELF object format require GNU binutils 2.13 or newer. Such subtargets include: ! `arm-*-netbsdelf', `arm-*-*linux-*' and `arm-*-rtemseabi'. avr === --- 2569,2588 ---- Support for Tru64 UNIX V5.1 has been removed in GCC 4.8. As of GCC 4.6, support for Tru64 UNIX V4.0 and V5.0 has been removed. As of GCC ! 3.2, versions before 'alpha*-dec-osf4' are no longer supported. (These are the versions which identify themselves as DEC OSF/1.) amd64-*-solaris2.1[0-9]* ======================== ! This is a synonym for 'x86_64-*-solaris2.1[0-9]*'. arm-*-eabi ========== ARM-family processors. Subtargets that use the ELF object format require GNU binutils 2.13 or newer. Such subtargets include: ! 'arm-*-netbsdelf', 'arm-*-*linux-*' and 'arm-*-rtemseabi'. avr === *************** ATMEL AVR-family micro controllers. The *** 2609,2621 **** applications. There are no standard Unix configurations. *Note AVR Options: (gcc)AVR Options, for the list of supported MCU types. ! Use `configure --target=avr --enable-languages="c"' to configure GCC. Further installation notes and other useful information about AVR tools can also be obtained from: * http://www.nongnu.org/avr/ - * http://www.amelek.gda.pl/avr/ We _strongly_ recommend using binutils 2.13 or newer. --- 2591,2602 ---- applications. There are no standard Unix configurations. *Note AVR Options: (gcc)AVR Options, for the list of supported MCU types. ! Use 'configure --target=avr --enable-languages="c"' to configure GCC. Further installation notes and other useful information about AVR tools can also be obtained from: * http://www.nongnu.org/avr/ * http://www.amelek.gda.pl/avr/ We _strongly_ recommend using binutils 2.13 or newer. *************** tools can also be obtained from: *** 2628,2651 **** Blackfin ======== ! The Blackfin processor, an Analog Devices DSP. *Note Blackfin Options: (gcc)Blackfin Options, More information, and a version of binutils with support for this ! processor, is available at `http://blackfin.uclinux.org' CR16 ==== ! The CR16 CompactRISC architecture is a 16-bit architecture. This architecture is used in embedded applications. *Note CR16 Options: (gcc)CR16 Options, ! Use `configure --target=cr16-elf --enable-languages=c,c++' to configure GCC for building a CR16 elf cross-compiler. ! Use `configure --target=cr16-uclinux --enable-languages=c,c++' to configure GCC for building a CR16 uclinux cross-compiler. CRIS --- 2609,2632 ---- Blackfin ======== ! The Blackfin processor, an Analog Devices DSP. *Note Blackfin Options: (gcc)Blackfin Options, More information, and a version of binutils with support for this ! processor, is available at CR16 ==== ! The CR16 CompactRISC architecture is a 16-bit architecture. This architecture is used in embedded applications. *Note CR16 Options: (gcc)CR16 Options, ! Use 'configure --target=cr16-elf --enable-languages=c,c++' to configure GCC for building a CR16 elf cross-compiler. ! Use 'configure --target=cr16-uclinux --enable-languages=c,c++' to configure GCC for building a CR16 uclinux cross-compiler. CRIS *************** system-on-a-chip series. These are used *** 2658,2678 **** options. There are a few different CRIS targets: ! `cris-axis-elf' Mainly for monolithic embedded systems. Includes a multilib for ! the `v10' core used in `ETRAX 100 LX'. ! ! `cris-axis-linux-gnu' A GNU/Linux port for the CRIS architecture, currently targeting ! `ETRAX 100 LX' by default. ! For `cris-axis-elf' you need binutils 2.11 or newer. For ! `cris-axis-linux-gnu' you need binutils 2.12 or newer. Pre-packaged tools can be obtained from ! `ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/'. More information about this platform is available at ! `http://developer.axis.com/'. DOS === --- 2639,2658 ---- options. There are a few different CRIS targets: ! 'cris-axis-elf' Mainly for monolithic embedded systems. Includes a multilib for ! the 'v10' core used in 'ETRAX 100 LX'. ! 'cris-axis-linux-gnu' A GNU/Linux port for the CRIS architecture, currently targeting ! 'ETRAX 100 LX' by default. ! For 'cris-axis-elf' you need binutils 2.11 or newer. For ! 'cris-axis-linux-gnu' you need binutils 2.12 or newer. Pre-packaged tools can be obtained from ! . More information about this platform is available at ! . DOS === *************** Support for FreeBSD 1 was discontinued i *** 2699,2729 **** In order to better utilize FreeBSD base system functionality and match the configuration of the system compiler, GCC 4.5 and above as well as GCC 4.4 past 2010-06-20 leverage SSP support in libc (which is ! present on FreeBSD 7 or later) and the use of `__cxa_atexit' by default ! (on FreeBSD 6 or later). The use of `dl_iterate_phdr' inside ! `libgcc_s.so.1' and boehm-gc (on FreeBSD 7 or later) is enabled by GCC 4.5 and above. We support FreeBSD using the ELF file format with DWARF 2 debugging ! for all CPU architectures. You may use `-gstabs' instead of `-g', if you really want the old debugging format. There are no known issues ! with mixing object files and libraries with different debugging ! formats. Otherwise, this release of GCC should now match more of the configuration used in the stock FreeBSD configuration of GCC. In ! particular, `--enable-threads' is now configured by default. However, as a general user, do not attempt to replace the system compiler with ! this release. Known to bootstrap and check with good results on ! FreeBSD 7.2-STABLE. In the past, known to bootstrap and check with ! good results on FreeBSD 3.0, 3.4, 4.0, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9 and ! 5-CURRENT. ! The version of binutils installed in `/usr/bin' probably works with this release of GCC. Bootstrapping against the latest GNU binutils ! and/or the version found in `/usr/ports/devel/binutils' has been known to enable additional features and improve overall testsuite results. However, it is currently known that boehm-gc (which itself is required ! for java) may not configure properly on FreeBSD prior to the FreeBSD ! 7.0 release with GNU binutils after 2.16.1. h8300-hms ========= --- 2679,2708 ---- In order to better utilize FreeBSD base system functionality and match the configuration of the system compiler, GCC 4.5 and above as well as GCC 4.4 past 2010-06-20 leverage SSP support in libc (which is ! present on FreeBSD 7 or later) and the use of '__cxa_atexit' by default ! (on FreeBSD 6 or later). The use of 'dl_iterate_phdr' inside ! 'libgcc_s.so.1' and boehm-gc (on FreeBSD 7 or later) is enabled by GCC 4.5 and above. We support FreeBSD using the ELF file format with DWARF 2 debugging ! for all CPU architectures. You may use '-gstabs' instead of '-g', if you really want the old debugging format. There are no known issues ! with mixing object files and libraries with different debugging formats. ! Otherwise, this release of GCC should now match more of the configuration used in the stock FreeBSD configuration of GCC. In ! particular, '--enable-threads' is now configured by default. However, as a general user, do not attempt to replace the system compiler with ! this release. Known to bootstrap and check with good results on FreeBSD ! 7.2-STABLE. In the past, known to bootstrap and check with good results ! on FreeBSD 3.0, 3.4, 4.0, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9 and 5-CURRENT. ! The version of binutils installed in '/usr/bin' probably works with this release of GCC. Bootstrapping against the latest GNU binutils ! and/or the version found in '/usr/ports/devel/binutils' has been known to enable additional features and improve overall testsuite results. However, it is currently known that boehm-gc (which itself is required ! for java) may not configure properly on FreeBSD prior to the FreeBSD 7.0 ! release with GNU binutils after 2.16.1. h8300-hms ========= *************** Support for HP-UX version 9 and older wa *** 2745,2762 **** We require using gas/binutils on all hppa platforms. Version 2.19 or later is recommended. ! It may be helpful to configure GCC with the `--with-gnu-as' and ! `--with-as=...' options to ensure that GCC can find GAS. ! The HP assembler should not be used with GCC. It is rarely tested ! and may not work. It shouldn't be used with any languages other than C ! due to its many limitations. ! Specifically, `-g' does not work (HP-UX uses a peculiar debugging format which GCC does not know about). It also inserts timestamps into ! each object file it creates, causing the 3-stage comparison test to ! fail during a bootstrap. You should be able to continue by saying ! `make all-host all-target' after getting the failure from `make'. Various GCC features are not supported. For example, it does not support weak symbols or alias definitions. As a result, explicit --- 2724,2741 ---- We require using gas/binutils on all hppa platforms. Version 2.19 or later is recommended. ! It may be helpful to configure GCC with the '--with-gnu-as' and ! '--with-as=...' options to ensure that GCC can find GAS. ! The HP assembler should not be used with GCC. It is rarely tested and ! may not work. It shouldn't be used with any languages other than C due ! to its many limitations. ! Specifically, '-g' does not work (HP-UX uses a peculiar debugging format which GCC does not know about). It also inserts timestamps into ! each object file it creates, causing the 3-stage comparison test to fail ! during a bootstrap. You should be able to continue by saying 'make ! all-host all-target' after getting the failure from 'make'. Various GCC features are not supported. For example, it does not support weak symbols or alias definitions. As a result, explicit *************** difficult if not impossible to build man *** 2767,2773 **** PROCESSOR_7100LC and PROCESSOR_8000. They are selected from the pa-risc architecture specified for the target machine when configuring. PROCESSOR_8000 is the default. PROCESSOR_7100LC is selected when the ! target is a `hppa1*' machine. The PROCESSOR_8000 model is not well suited to older processors. Thus, it is important to completely specify the machine architecture --- 2746,2752 ---- PROCESSOR_7100LC and PROCESSOR_8000. They are selected from the pa-risc architecture specified for the target machine when configuring. PROCESSOR_8000 is the default. PROCESSOR_7100LC is selected when the ! target is a 'hppa1*' machine. The PROCESSOR_8000 model is not well suited to older processors. Thus, it is important to completely specify the machine architecture *************** when configuring if you want a model oth *** 2775,2797 **** macro TARGET_SCHED_DEFAULT can be defined in BOOT_CFLAGS if a different default scheduling model is desired. ! As of GCC 4.0, GCC uses the UNIX 95 namespace for HP-UX 10.10 ! through 11.00, and the UNIX 98 namespace for HP-UX 11.11 and later. ! This namespace change might cause problems when bootstrapping with an ! earlier version of GCC or the HP compiler as essentially the same ! namespace is required for an entire build. This problem can be avoided ! in a number of ways. With HP cc, `UNIX_STD' can be set to `95' or ! `98'. Another way is to add an appropriate set of predefines to `CC'. ! The description for the `munix=' option contains a list of the ! predefines used with each standard. ! More specific information to `hppa*-hp-hpux*' targets follows. hppa*-hp-hpux10 =============== For hpux10.20, we _highly_ recommend you pick up the latest sed patch ! `PHCO_19798' from HP. The C++ ABI has changed incompatibly in GCC 4.0. COMDAT subspaces are used for one-only code and data. This resolves many of the previous --- 2754,2776 ---- macro TARGET_SCHED_DEFAULT can be defined in BOOT_CFLAGS if a different default scheduling model is desired. ! As of GCC 4.0, GCC uses the UNIX 95 namespace for HP-UX 10.10 through ! 11.00, and the UNIX 98 namespace for HP-UX 11.11 and later. This ! namespace change might cause problems when bootstrapping with an earlier ! version of GCC or the HP compiler as essentially the same namespace is ! required for an entire build. This problem can be avoided in a number ! of ways. With HP cc, 'UNIX_STD' can be set to '95' or '98'. Another ! way is to add an appropriate set of predefines to 'CC'. The description ! for the 'munix=' option contains a list of the predefines used with each ! standard. ! More specific information to 'hppa*-hp-hpux*' targets follows. hppa*-hp-hpux10 =============== For hpux10.20, we _highly_ recommend you pick up the latest sed patch ! 'PHCO_19798' from HP. The C++ ABI has changed incompatibly in GCC 4.0. COMDAT subspaces are used for one-only code and data. This resolves many of the previous *************** hppa*-hp-hpux11 *** 2805,2817 **** GCC 3.0 and up support HP-UX 11. GCC 2.95.x is not supported and cannot be used to compile GCC 3.0 and up. ! The libffi and libjava libraries haven't been ported to 64-bit HP-UX ! and don't build. Refer to binaries for information about obtaining precompiled GCC binaries for HP-UX. Precompiled binaries must be obtained to build the ! Ada language as it can't be bootstrapped using C. Ada is only ! available for the 32-bit PA-RISC runtime. Starting with GCC 3.4 an ISO C compiler is required to bootstrap. The bundled compiler supports only traditional C; you will need either --- 2784,2796 ---- GCC 3.0 and up support HP-UX 11. GCC 2.95.x is not supported and cannot be used to compile GCC 3.0 and up. ! The libffi and libjava libraries haven't been ported to 64-bit ! HP-UX and don't build. Refer to binaries for information about obtaining precompiled GCC binaries for HP-UX. Precompiled binaries must be obtained to build the ! Ada language as it can't be bootstrapped using C. Ada is only available ! for the 32-bit PA-RISC runtime. Starting with GCC 3.4 an ISO C compiler is required to bootstrap. The bundled compiler supports only traditional C; you will need either *************** compiler, but the process requires sever *** 2822,2828 **** used to build later versions. The fastjar program contains ISO C code and can't be built with the HP bundled compiler. This problem can be avoided by not building the Java language. For example, use the ! `--enable-languages="c,c++,f77,objc"' option in your configure command. There are several possible approaches to building the distribution. Binutils can be built first using the HP tools. Then, the GCC --- 2801,2807 ---- used to build later versions. The fastjar program contains ISO C code and can't be built with the HP bundled compiler. This problem can be avoided by not building the Java language. For example, use the ! '--enable-languages="c,c++,f77,objc"' option in your configure command. There are several possible approaches to building the distribution. Binutils can be built first using the HP tools. Then, the GCC *************** start from a binary distribution. *** 2833,2911 **** On 64-bit capable systems, there are two distinct targets. Different installation prefixes must be used if both are to be installed on the ! same system. The `hppa[1-2]*-hp-hpux11*' target generates code for the 32-bit PA-RISC runtime architecture and uses the HP linker. The ! `hppa64-hp-hpux11*' target generates 64-bit code for the PA-RISC 2.0 architecture. The script config.guess now selects the target type based on the ! compiler detected during configuration. You must define `PATH' or `CC' so that configure finds an appropriate compiler for the initial ! bootstrap. When `CC' is used, the definition should contain the ! options that are needed whenever `CC' is used. Specifically, options that determine the runtime architecture must be ! in `CC' to correctly select the target for the build. It is also ! convenient to place many other compiler options in `CC'. For example, ! `CC="cc -Ac +DA2.0W -Wp,-H16376 -D_CLASSIC_TYPES -D_HPUX_SOURCE"' can ! be used to bootstrap the GCC 3.3 branch with the HP compiler in 64-bit ! K&R/bundled mode. The `+DA2.0W' option will result in the automatic ! selection of the `hppa64-hp-hpux11*' target. The macro definition ! table of cpp needs to be increased for a successful build with the HP compiler. _CLASSIC_TYPES and _HPUX_SOURCE need to be defined when ! building with the bundled compiler, or when using the `-Ac' option. ! These defines aren't necessary with `-Ae'. ! It is best to explicitly configure the `hppa64-hp-hpux11*' target ! with the `--with-ld=...' option. This overrides the standard search ! for ld. The two linkers supported on this target require different commands. The default linker is determined during configuration. As a result, it's not possible to switch linkers in the middle of a GCC build. This has been reported to sometimes occur in unified builds of binutils and GCC. A recent linker patch must be installed for the correct operation of ! GCC 3.3 and later. `PHSS_26559' and `PHSS_24304' are the oldest linker patches that are known to work. They are for HP-UX 11.00 and 11.11, ! respectively. `PHSS_24303', the companion to `PHSS_24304', might be usable but it hasn't been tested. These patches have been superseded. ! Consult the HP patch database to obtain the currently recommended ! linker patch for your system. The patches are necessary for the support of weak symbols on the 32-bit port, and for the running of initializers and finalizers. Weak symbols are implemented using SOM secondary definition symbols. Prior to HP-UX 11, there are bugs in the linker support for secondary symbols. The patches correct a problem of linker core dumps creating shared ! libraries containing secondary symbols, as well as various other ! linking issues involving secondary symbols. GCC 3.3 uses the ELF DT_INIT_ARRAY and DT_FINI_ARRAY capabilities to run initializers and finalizers on the 64-bit port. The 32-bit port ! uses the linker `+init' and `+fini' options for the same purpose. The ! patches correct various problems with the +init/+fini options, ! including program core dumps. Binutils 2.14 corrects a problem on the ! 64-bit port resulting from HP's non-standard use of the .init and .fini ! sections for array initializers and finalizers. Although the HP and GNU linkers are both supported for the ! `hppa64-hp-hpux11*' target, it is strongly recommended that the HP linker be used for link editing on this target. At this time, the GNU linker does not support the creation of long branch stubs. As a result, it can't successfully link binaries containing branch offsets larger than 8 megabytes. In addition, there are problems linking shared libraries, linking executables with ! `-static', and with dwarf2 unwind and exception support. It also doesn't provide stubs for internal calls to global functions in shared libraries, so these calls can't be overloaded. The HP dynamic loader does not support GNU symbol versioning, so symbol versioning is not supported. It may be necessary to disable ! symbol versioning with `--disable-symvers' when using GNU ld. POSIX threads are the default. The optional DCE thread library is ! not supported, so `--enable-threads=dce' does not work. *-*-linux-gnu ============= --- 2812,2890 ---- On 64-bit capable systems, there are two distinct targets. Different installation prefixes must be used if both are to be installed on the ! same system. The 'hppa[1-2]*-hp-hpux11*' target generates code for the 32-bit PA-RISC runtime architecture and uses the HP linker. The ! 'hppa64-hp-hpux11*' target generates 64-bit code for the PA-RISC 2.0 architecture. The script config.guess now selects the target type based on the ! compiler detected during configuration. You must define 'PATH' or 'CC' so that configure finds an appropriate compiler for the initial ! bootstrap. When 'CC' is used, the definition should contain the options ! that are needed whenever 'CC' is used. Specifically, options that determine the runtime architecture must be ! in 'CC' to correctly select the target for the build. It is also ! convenient to place many other compiler options in 'CC'. For example, ! 'CC="cc -Ac +DA2.0W -Wp,-H16376 -D_CLASSIC_TYPES -D_HPUX_SOURCE"' can be ! used to bootstrap the GCC 3.3 branch with the HP compiler in 64-bit ! K&R/bundled mode. The '+DA2.0W' option will result in the automatic ! selection of the 'hppa64-hp-hpux11*' target. The macro definition table ! of cpp needs to be increased for a successful build with the HP compiler. _CLASSIC_TYPES and _HPUX_SOURCE need to be defined when ! building with the bundled compiler, or when using the '-Ac' option. ! These defines aren't necessary with '-Ae'. ! It is best to explicitly configure the 'hppa64-hp-hpux11*' target ! with the '--with-ld=...' option. This overrides the standard search for ! ld. The two linkers supported on this target require different commands. The default linker is determined during configuration. As a result, it's not possible to switch linkers in the middle of a GCC build. This has been reported to sometimes occur in unified builds of binutils and GCC. A recent linker patch must be installed for the correct operation of ! GCC 3.3 and later. 'PHSS_26559' and 'PHSS_24304' are the oldest linker patches that are known to work. They are for HP-UX 11.00 and 11.11, ! respectively. 'PHSS_24303', the companion to 'PHSS_24304', might be usable but it hasn't been tested. These patches have been superseded. ! Consult the HP patch database to obtain the currently recommended linker ! patch for your system. The patches are necessary for the support of weak symbols on the 32-bit port, and for the running of initializers and finalizers. Weak symbols are implemented using SOM secondary definition symbols. Prior to HP-UX 11, there are bugs in the linker support for secondary symbols. The patches correct a problem of linker core dumps creating shared ! libraries containing secondary symbols, as well as various other linking ! issues involving secondary symbols. GCC 3.3 uses the ELF DT_INIT_ARRAY and DT_FINI_ARRAY capabilities to run initializers and finalizers on the 64-bit port. The 32-bit port ! uses the linker '+init' and '+fini' options for the same purpose. The ! patches correct various problems with the +init/+fini options, including ! program core dumps. Binutils 2.14 corrects a problem on the 64-bit port ! resulting from HP's non-standard use of the .init and .fini sections for ! array initializers and finalizers. Although the HP and GNU linkers are both supported for the ! 'hppa64-hp-hpux11*' target, it is strongly recommended that the HP linker be used for link editing on this target. At this time, the GNU linker does not support the creation of long branch stubs. As a result, it can't successfully link binaries containing branch offsets larger than 8 megabytes. In addition, there are problems linking shared libraries, linking executables with ! '-static', and with dwarf2 unwind and exception support. It also doesn't provide stubs for internal calls to global functions in shared libraries, so these calls can't be overloaded. The HP dynamic loader does not support GNU symbol versioning, so symbol versioning is not supported. It may be necessary to disable ! symbol versioning with '--disable-symvers' when using GNU ld. POSIX threads are the default. The optional DCE thread library is ! not supported, so '--enable-threads=dce' does not work. *-*-linux-gnu ============= *************** work. *** 2935,3001 **** Solaris 2/x86 doesn't support the execution of SSE/SSE2 instructions before Solaris 9 4/04, even if the CPU supports them. Programs will ! receive `SIGILL' if they try. The fix is available both in Solaris 9 Update 6 and kernel patch 112234-12 or newer. To avoid this problem, ! `-march' defaults to `pentiumpro' on Solaris 9. If you have the patch ! installed, you can configure GCC with an appropriate `--with-arch' ! option, but need GNU `as' for SSE2 support. i?86-*-solaris2.10 ================== Use this for Solaris 10 or later on x86 and x86-64 systems. Starting ! with GCC 4.7, there is also a 64-bit `amd64-*-solaris2.1[0-9]*' or ! `x86_64-*-solaris2.1[0-9]*' configuration that corresponds to ! `sparcv9-sun-solaris2*'. It is recommended that you configure GCC to use the GNU assembler, in ! `/usr/sfw/bin/gas'. The versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils 2.19, work fine, although the current version, from GNU binutils 2.22, is known to work, ! too. Recent versions of the Sun assembler in `/usr/ccs/bin/as' work almost as well, though. For linking, the Sun linker, is preferred. If you want to use the ! GNU linker instead, which is available in `/usr/sfw/bin/gld', note that due to a packaging bug the version in Solaris 10, from GNU binutils 2.15, cannot be used, while the version in Solaris 11, from GNU binutils 2.19, works, as does the latest version, from GNU binutils 2.22. ! To use GNU `as', configure with the options `--with-gnu-as --with-as=/usr/sfw/bin/gas'. It may be necessary to configure with ! `--without-gnu-ld --with-ld=/usr/ccs/bin/ld' to guarantee use of Sun ! `ld'. ia64-*-linux ============ ! IA-64 processor (also known as IPF, or Itanium Processor Family) ! running GNU/Linux. If you are using the installed system libunwind library with ! `--with-system-libunwind', then you must use libunwind 0.98 or later. None of the following versions of GCC has an ABI that is compatible ! with any of the other versions in this list, with the exception that ! Red Hat 2.96 and Trillian 000171 are compatible with each other: 3.1, ! 3.0.2, 3.0.1, 3.0, Red Hat 2.96, and Trillian 000717. This primarily ! affects C++ programs and programs that create shared libraries. GCC ! 3.1 or later is recommended for compiling linux, the kernel. As of ! version 3.1 GCC is believed to be fully ABI compliant, and hence no ! more major ABI changes are expected. ia64-*-hpux* ============ Building GCC on this target requires the GNU Assembler. The bundled HP assembler will not work. To prevent GCC from using the wrong assembler, ! the option `--with-gnu-as' may be necessary. The GCC libunwind library has not been ported to HPUX. This means ! that for GCC versions 3.2.3 and earlier, `--enable-libunwind-exceptions' is required to build GCC. For GCC 3.3 and later, this is the default. ! For gcc 3.4.3 and later, `--enable-libunwind-exceptions' is removed and the system libunwind library will always be used. *-ibm-aix* --- 2914,2980 ---- Solaris 2/x86 doesn't support the execution of SSE/SSE2 instructions before Solaris 9 4/04, even if the CPU supports them. Programs will ! receive 'SIGILL' if they try. The fix is available both in Solaris 9 Update 6 and kernel patch 112234-12 or newer. To avoid this problem, ! '-march' defaults to 'pentiumpro' on Solaris 9. If you have the patch ! installed, you can configure GCC with an appropriate '--with-arch' ! option, but need GNU 'as' for SSE2 support. i?86-*-solaris2.10 ================== Use this for Solaris 10 or later on x86 and x86-64 systems. Starting ! with GCC 4.7, there is also a 64-bit 'amd64-*-solaris2.1[0-9]*' or ! 'x86_64-*-solaris2.1[0-9]*' configuration that corresponds to ! 'sparcv9-sun-solaris2*'. It is recommended that you configure GCC to use the GNU assembler, in ! '/usr/sfw/bin/gas'. The versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils 2.19, work fine, although the current version, from GNU binutils 2.22, is known to work, ! too. Recent versions of the Sun assembler in '/usr/ccs/bin/as' work almost as well, though. For linking, the Sun linker, is preferred. If you want to use the ! GNU linker instead, which is available in '/usr/sfw/bin/gld', note that due to a packaging bug the version in Solaris 10, from GNU binutils 2.15, cannot be used, while the version in Solaris 11, from GNU binutils 2.19, works, as does the latest version, from GNU binutils 2.22. ! To use GNU 'as', configure with the options '--with-gnu-as --with-as=/usr/sfw/bin/gas'. It may be necessary to configure with ! '--without-gnu-ld --with-ld=/usr/ccs/bin/ld' to guarantee use of Sun ! 'ld'. ia64-*-linux ============ ! IA-64 processor (also known as IPF, or Itanium Processor Family) running ! GNU/Linux. If you are using the installed system libunwind library with ! '--with-system-libunwind', then you must use libunwind 0.98 or later. None of the following versions of GCC has an ABI that is compatible ! with any of the other versions in this list, with the exception that Red ! Hat 2.96 and Trillian 000171 are compatible with each other: 3.1, 3.0.2, ! 3.0.1, 3.0, Red Hat 2.96, and Trillian 000717. This primarily affects ! C++ programs and programs that create shared libraries. GCC 3.1 or ! later is recommended for compiling linux, the kernel. As of version 3.1 ! GCC is believed to be fully ABI compliant, and hence no more major ABI ! changes are expected. ia64-*-hpux* ============ Building GCC on this target requires the GNU Assembler. The bundled HP assembler will not work. To prevent GCC from using the wrong assembler, ! the option '--with-gnu-as' may be necessary. The GCC libunwind library has not been ported to HPUX. This means ! that for GCC versions 3.2.3 and earlier, '--enable-libunwind-exceptions' is required to build GCC. For GCC 3.3 and later, this is the default. ! For gcc 3.4.3 and later, '--enable-libunwind-exceptions' is removed and the system libunwind library will always be used. *-ibm-aix* *************** Support for AIX version 4.2 and older wa *** 3006,3012 **** "out of memory" bootstrap failures may indicate a problem with process resource limits (ulimit). Hard limits are configured in the ! `/etc/security/limits' system configuration file. GCC can bootstrap with recent versions of IBM XLC, but bootstrapping with an earlier release of GCC is recommended. Bootstrapping with XLC --- 2985,2991 ---- "out of memory" bootstrap failures may indicate a problem with process resource limits (ulimit). Hard limits are configured in the ! '/etc/security/limits' system configuration file. GCC can bootstrap with recent versions of IBM XLC, but bootstrapping with an earlier release of GCC is recommended. Bootstrapping with XLC *************** LDR_CNTRL environment variable, e.g., *** 3017,3027 **** % export LDR_CNTRL One can start with a pre-compiled version of GCC to build from ! sources. One may delete GCC's "fixed" header files when starting with ! a version of GCC built for an earlier release of AIX. To speed up the configuration phases of bootstrapping and installing ! GCC, one may use GNU Bash instead of AIX `/bin/sh', e.g., % CONFIG_SHELL=/opt/freeware/bin/bash % export CONFIG_SHELL --- 2996,3006 ---- % export LDR_CNTRL One can start with a pre-compiled version of GCC to build from ! sources. One may delete GCC's "fixed" header files when starting with a ! version of GCC built for an earlier release of AIX. To speed up the configuration phases of bootstrapping and installing ! GCC, one may use GNU Bash instead of AIX '/bin/sh', e.g., % CONFIG_SHELL=/opt/freeware/bin/bash % export CONFIG_SHELL *************** SRCDIR/configure. *** 3032,3051 **** Because GCC on AIX is built as a 32-bit executable by default, (although it can generate 64-bit programs) the GMP and MPFR libraries ! required by gfortran must be 32-bit libraries. Building GMP and MPFR ! as static archive libraries works better than shared libraries. ! Errors involving `alloca' when building GCC generally are due to an ! incorrect definition of `CC' in the Makefile or mixing files compiled with the native C compiler and GCC. During the stage1 phase of the ! build, the native AIX compiler *must* be invoked as `cc' (not `xlc'). ! Once `configure' has been informed of `xlc', one needs to use `make ! distclean' to remove the configure cache files and ensure that `CC' environment variable does not provide a definition that will confuse ! `configure'. If this error occurs during stage2 or later, then the problem most likely is the version of Make (see above). ! The native `as' and `ld' are recommended for bootstrapping on AIX. The GNU Assembler, GNU Linker, and GNU Binutils version 2.20 is the minimum level that supports bootstrap on AIX 5. The GNU Assembler has not been updated to support AIX 6 or AIX 7. The native AIX tools do --- 3011,3030 ---- Because GCC on AIX is built as a 32-bit executable by default, (although it can generate 64-bit programs) the GMP and MPFR libraries ! required by gfortran must be 32-bit libraries. Building GMP and MPFR as ! static archive libraries works better than shared libraries. ! Errors involving 'alloca' when building GCC generally are due to an ! incorrect definition of 'CC' in the Makefile or mixing files compiled with the native C compiler and GCC. During the stage1 phase of the ! build, the native AIX compiler *must* be invoked as 'cc' (not 'xlc'). ! Once 'configure' has been informed of 'xlc', one needs to use 'make ! distclean' to remove the configure cache files and ensure that 'CC' environment variable does not provide a definition that will confuse ! 'configure'. If this error occurs during stage2 or later, then the problem most likely is the version of Make (see above). ! The native 'as' and 'ld' are recommended for bootstrapping on AIX. The GNU Assembler, GNU Linker, and GNU Binutils version 2.20 is the minimum level that supports bootstrap on AIX 5. The GNU Assembler has not been updated to support AIX 6 or AIX 7. The native AIX tools do *************** assembler change that sometimes produces *** 3056,3090 **** AIX linker errors. The bug breaks GCC bootstrap on AIX and can cause compilation failures with existing GCC installations. An AIX iFix for AIX 5.3 is available (APAR IZ98385 for AIX 5.3 TL10, APAR IZ98477 for ! AIX 5.3 TL11 and IZ98134 for AIX 5.3 TL12). AIX 5.3 TL11 SP8, AIX 5.3 ! TL12 SP5, AIX 6.1 TL04 SP11, AIX 6.1 TL05 SP7, AIX 6.1 TL06 SP6, AIX ! 6.1 TL07 and AIX 7.1 TL01 should include the fix. ! Building `libstdc++.a' requires a fix for an AIX Assembler bug APAR ! IY26685 (AIX 4.3) or APAR IY25528 (AIX 5.1). It also requires a fix ! for another AIX Assembler bug and a co-dependent AIX Archiver fix ! referenced as APAR IY53606 (AIX 5.2) or as APAR IY54774 (AIX 5.1) ! `libstdc++' in GCC 3.4 increments the major version number of the ! shared object and GCC installation places the `libstdc++.a' shared library in a common location which will overwrite the and GCC 3.3 ! version of the shared library. Applications either need to be ! re-linked against the new shared library or the GCC 3.1 and GCC 3.3 ! versions of the `libstdc++' shared object needs to be available to the ! AIX runtime loader. The GCC 3.1 `libstdc++.so.4', if present, and GCC ! 3.3 `libstdc++.so.5' shared objects can be installed for runtime ! dynamic loading using the following steps to set the `F_LOADONLY' flag ! in the shared object for _each_ multilib `libstdc++.a' installed: ! Extract the shared objects from the currently installed ! `libstdc++.a' archive: % ar -x libstdc++.a libstdc++.so.4 libstdc++.so.5 ! Enable the `F_LOADONLY' flag so that the shared object will be available for runtime dynamic loading, but not linking: % strip -e libstdc++.so.4 libstdc++.so.5 ! Archive the runtime-only shared object in the GCC 3.4 `libstdc++.a' archive: % ar -q libstdc++.a libstdc++.so.4 libstdc++.so.5 --- 3035,3069 ---- AIX linker errors. The bug breaks GCC bootstrap on AIX and can cause compilation failures with existing GCC installations. An AIX iFix for AIX 5.3 is available (APAR IZ98385 for AIX 5.3 TL10, APAR IZ98477 for ! AIX 5.3 TL11 and IZ98134 for AIX 5.3 TL12). AIX 5.3 TL11 SP8, AIX 5.3 ! TL12 SP5, AIX 6.1 TL04 SP11, AIX 6.1 TL05 SP7, AIX 6.1 TL06 SP6, AIX 6.1 ! TL07 and AIX 7.1 TL01 should include the fix. ! Building 'libstdc++.a' requires a fix for an AIX Assembler bug APAR ! IY26685 (AIX 4.3) or APAR IY25528 (AIX 5.1). It also requires a fix for ! another AIX Assembler bug and a co-dependent AIX Archiver fix referenced ! as APAR IY53606 (AIX 5.2) or as APAR IY54774 (AIX 5.1) ! 'libstdc++' in GCC 3.4 increments the major version number of the ! shared object and GCC installation places the 'libstdc++.a' shared library in a common location which will overwrite the and GCC 3.3 ! version of the shared library. Applications either need to be re-linked ! against the new shared library or the GCC 3.1 and GCC 3.3 versions of ! the 'libstdc++' shared object needs to be available to the AIX runtime ! loader. The GCC 3.1 'libstdc++.so.4', if present, and GCC 3.3 ! 'libstdc++.so.5' shared objects can be installed for runtime dynamic ! loading using the following steps to set the 'F_LOADONLY' flag in the ! shared object for _each_ multilib 'libstdc++.a' installed: ! Extract the shared objects from the currently installed 'libstdc++.a' ! archive: % ar -x libstdc++.a libstdc++.so.4 libstdc++.so.5 ! Enable the 'F_LOADONLY' flag so that the shared object will be available for runtime dynamic loading, but not linking: % strip -e libstdc++.so.4 libstdc++.so.5 ! Archive the runtime-only shared object in the GCC 3.4 'libstdc++.a' archive: % ar -q libstdc++.a libstdc++.so.4 libstdc++.so.5 *************** executable. *** 3100,3112 **** to parse archive libraries did not handle the new format correctly. These routines are used by GCC and result in error messages during linking such as "not a COFF file". The version of the routines shipped ! with AIX 4.3.1 should work for a 32-bit environment. The `-g' option ! of the archive command may be used to create archives of 32-bit objects ! using the original "small format". A correct version of the routines ! is shipped with AIX 4.3.2 and above. Some versions of the AIX binder (linker) can fail with a relocation ! overflow severe error when the `-bbigtoc' option is used to link GCC-produced object files into an executable that overflows the TOC. A fix for APAR IX75823 (OVERFLOW DURING LINK WHEN USING GCC AND -BBIGTOC) is available from IBM Customer Support and from its --- 3079,3091 ---- to parse archive libraries did not handle the new format correctly. These routines are used by GCC and result in error messages during linking such as "not a COFF file". The version of the routines shipped ! with AIX 4.3.1 should work for a 32-bit environment. The '-g' option of ! the archive command may be used to create archives of 32-bit objects ! using the original "small format". A correct version of the routines is ! shipped with AIX 4.3.2 and above. Some versions of the AIX binder (linker) can fail with a relocation ! overflow severe error when the '-bbigtoc' option is used to link GCC-produced object files into an executable that overflows the TOC. A fix for APAR IX75823 (OVERFLOW DURING LINK WHEN USING GCC AND -BBIGTOC) is available from IBM Customer Support and from its *************** and from its techsupport.services.ibm.co *** 3125,3139 **** fix is incorporated in AIX 4.3.1 and above. AIX provides National Language Support (NLS). Compilers and ! assemblers use NLS to support locale-specific representations of ! various data formats including floating-point numbers (e.g., `.' vs ! `,' for separating decimal fractions). There have been problems ! reported where GCC does not produce the same floating-point formats ! that the assembler expects. If one encounters this problem, set the ! `LANG' environment variable to `C' or `En_US'. ! A default can be specified with the `-mcpu=CPU_TYPE' switch and ! using the configure option `--with-cpu-CPU_TYPE'. iq2000-*-elf ============ --- 3104,3118 ---- fix is incorporated in AIX 4.3.1 and above. AIX provides National Language Support (NLS). Compilers and ! assemblers use NLS to support locale-specific representations of various ! data formats including floating-point numbers (e.g., '.' vs ',' for ! separating decimal fractions). There have been problems reported where ! GCC does not produce the same floating-point formats that the assembler ! expects. If one encounters this problem, set the 'LANG' environment ! variable to 'C' or 'En_US'. ! A default can be specified with the '-mcpu=CPU_TYPE' switch and using ! the configure option '--with-cpu-CPU_TYPE'. iq2000-*-elf ============ *************** systems. *** 3168,3190 **** m68k-*-* ======== ! By default, `m68k-*-elf*', `m68k-*-rtems', `m68k-*-uclinux' and ! `m68k-*-linux' build libraries for both M680x0 and ColdFire processors. ! If you only need the M680x0 libraries, you can omit the ColdFire ones ! by passing `--with-arch=m68k' to `configure'. Alternatively, you can ! omit the M680x0 libraries by passing `--with-arch=cf' to `configure'. ! These targets default to 5206 or 5475 code as appropriate for the ! target system when configured with `--with-arch=cf' and 68020 code ! otherwise. ! The `m68k-*-netbsd' and `m68k-*-openbsd' targets also support the ! `--with-arch' option. They will generate ColdFire CFV4e code when ! configured with `--with-arch=cf' and 68020 code otherwise. You can override the default processors listed above by configuring ! with `--with-cpu=TARGET'. This TARGET can either be a `-mcpu' argument ! or one of the following values: `m68000', `m68010', `m68020', `m68030', ! `m68040', `m68060', `m68020-40' and `m68020-60'. GCC requires at least binutils version 2.17 on these targets. --- 3147,3168 ---- m68k-*-* ======== ! By default, 'm68k-*-elf*', 'm68k-*-rtems', 'm68k-*-uclinux' and ! 'm68k-*-linux' build libraries for both M680x0 and ColdFire processors. ! If you only need the M680x0 libraries, you can omit the ColdFire ones by ! passing '--with-arch=m68k' to 'configure'. Alternatively, you can omit ! the M680x0 libraries by passing '--with-arch=cf' to 'configure'. These ! targets default to 5206 or 5475 code as appropriate for the target ! system when configured with '--with-arch=cf' and 68020 code otherwise. ! The 'm68k-*-netbsd' and 'm68k-*-openbsd' targets also support the ! '--with-arch' option. They will generate ColdFire CFV4e code when ! configured with '--with-arch=cf' and 68020 code otherwise. You can override the default processors listed above by configuring ! with '--with-cpu=TARGET'. This TARGET can either be a '-mcpu' argument ! or one of the following values: 'm68000', 'm68010', 'm68020', 'm68030', ! 'm68040', 'm68060', 'm68020-40' and 'm68020-60'. GCC requires at least binutils version 2.17 on these targets. *************** m68k-*-uclinux *** 3192,3198 **** ============== GCC 4.3 changed the uClinux configuration so that it uses the ! `m68k-linux-gnu' ABI rather than the `m68k-elf' ABI. It also added improved support for C++ and flat shared libraries, both of which were ABI changes. --- 3170,3176 ---- ============== GCC 4.3 changed the uClinux configuration so that it uses the ! 'm68k-linux-gnu' ABI rather than the 'm68k-elf' ABI. It also added improved support for C++ and flat shared libraries, both of which were ABI changes. *************** optional, and there should not be a warn *** 3222,3257 **** The libstdc++ atomic locking routines for MIPS targets requires MIPS II and later. A patch went in just after the GCC 3.3 release to make ! `mips*-*-*' use the generic implementation instead. You can also ! configure for `mipsel-elf' as a workaround. The `mips*-*-linux*' ! target continues to use the MIPS II routines. More work on this is ! expected in future releases. ! The built-in `__sync_*' functions are available on MIPS II and later ! systems and others that support the `ll', `sc' and `sync' instructions. ! This can be overridden by passing `--with-llsc' or `--without-llsc' ! when configuring GCC. Since the Linux kernel emulates these ! instructions if they are missing, the default for `mips*-*-linux*' ! targets is `--with-llsc'. The `--with-llsc' and `--without-llsc' ! configure options may be overridden at compile time by passing the ! `-mllsc' or `-mno-llsc' options to the compiler. MIPS systems check for division by zero (unless ! `-mno-check-zero-division' is passed to the compiler) by generating ! either a conditional trap or a break instruction. Using trap results ! in smaller code, but is only supported on MIPS II and later. Also, ! some versions of the Linux kernel have a bug that prevents trap from ! generating the proper signal (`SIGFPE'). To enable the use of break, ! use the `--with-divide=breaks' `configure' option when configuring GCC. The default is to use traps on systems that support them. The assembler from GNU binutils 2.17 and earlier has a bug in the way ! it sorts relocations for REL targets (o32, o64, EABI). This can cause bad code to be generated for simple C++ programs. Also the linker from GNU binutils versions prior to 2.17 has a bug which causes the runtime ! linker stubs in very large programs, like `libgcj.so', to be ! incorrectly generated. GNU Binutils 2.18 and later (and snapshots made ! after Nov. 9, 2006) should be free from both of these problems. mips-sgi-irix5 ============== --- 3200,3235 ---- The libstdc++ atomic locking routines for MIPS targets requires MIPS II and later. A patch went in just after the GCC 3.3 release to make ! 'mips*-*-*' use the generic implementation instead. You can also ! configure for 'mipsel-elf' as a workaround. The 'mips*-*-linux*' target ! continues to use the MIPS II routines. More work on this is expected in ! future releases. ! The built-in '__sync_*' functions are available on MIPS II and later ! systems and others that support the 'll', 'sc' and 'sync' instructions. ! This can be overridden by passing '--with-llsc' or '--without-llsc' when ! configuring GCC. Since the Linux kernel emulates these instructions if ! they are missing, the default for 'mips*-*-linux*' targets is ! '--with-llsc'. The '--with-llsc' and '--without-llsc' configure options ! may be overridden at compile time by passing the '-mllsc' or '-mno-llsc' ! options to the compiler. MIPS systems check for division by zero (unless ! '-mno-check-zero-division' is passed to the compiler) by generating ! either a conditional trap or a break instruction. Using trap results in ! smaller code, but is only supported on MIPS II and later. Also, some ! versions of the Linux kernel have a bug that prevents trap from ! generating the proper signal ('SIGFPE'). To enable the use of break, ! use the '--with-divide=breaks' 'configure' option when configuring GCC. The default is to use traps on systems that support them. The assembler from GNU binutils 2.17 and earlier has a bug in the way ! it sorts relocations for REL targets (o32, o64, EABI). This can cause bad code to be generated for simple C++ programs. Also the linker from GNU binutils versions prior to 2.17 has a bug which causes the runtime ! linker stubs in very large programs, like 'libgcj.so', to be incorrectly ! generated. GNU Binutils 2.18 and later (and snapshots made after Nov. ! 9, 2006) should be free from both of these problems. mips-sgi-irix5 ============== *************** The moxie processor. *** 3273,3280 **** powerpc-*-* =========== ! You can specify a default version for the `-mcpu=CPU_TYPE' switch by ! using the configure option `--with-cpu-CPU_TYPE'. You will need binutils 2.15 or newer for a working GCC. --- 3251,3258 ---- powerpc-*-* =========== ! You can specify a default version for the '-mcpu=CPU_TYPE' switch by ! using the configure option '--with-cpu-CPU_TYPE'. You will need binutils 2.15 or newer for a working GCC. *************** PowerPC running Darwin (Mac OS X kernel) *** 3285,3295 **** Pre-installed versions of Mac OS X may not include any developer tools, meaning that you will not be able to build GCC from source. Tool ! binaries are available at `http://opensource.apple.com/'. This version of GCC requires at least cctools-590.36. The cctools-590.36 package referenced from ! `http://gcc.gnu.org/ml/gcc/2006-03/msg00507.html' will not work on systems older than 10.3.9 (aka darwin7.9.0). powerpc-*-elf --- 3263,3273 ---- Pre-installed versions of Mac OS X may not include any developer tools, meaning that you will not be able to build GCC from source. Tool ! binaries are available at . This version of GCC requires at least cctools-590.36. The cctools-590.36 package referenced from ! will not work on systems older than 10.3.9 (aka darwin7.9.0). powerpc-*-elf *************** Embedded PowerPC system in little endian *** 3337,3350 **** rl78-*-elf ========== ! The Renesas RL78 processor. This configuration is intended for ! embedded systems. rx-*-elf ======== The Renesas RX processor. See ! `http://eu.renesas.com/fmwk.jsp?cnt=rx600_series_landing.jsp&fp=/products/mpumcu/rx_family/rx600_series' for more information about this processor. s390-*-linux* --- 3315,3328 ---- rl78-*-elf ========== ! The Renesas RL78 processor. This configuration is intended for embedded ! systems. rx-*-elf ======== The Renesas RX processor. See ! for more information about this processor. s390-*-linux* *************** been removed in GCC 4.6. *** 3371,3383 **** Sun does not ship a C compiler with Solaris 2 before Solaris 10, though you can download the Sun Studio compilers for free. In Solaris ! 10 and 11, GCC 3.4.3 is available as `/usr/sfw/bin/gcc'. Solaris 11 ! also provides GCC 4.5.2 as `/usr/gcc/4.5/bin/gcc'. Alternatively, you ! can install a pre-built GCC to bootstrap and install GCC. See the binaries page for details. ! The Solaris 2 `/bin/sh' will often fail to configure `libstdc++-v3', ! `boehm-gc' or `libjava'. We therefore recommend using the following initial sequence of commands % CONFIG_SHELL=/bin/ksh --- 3349,3361 ---- Sun does not ship a C compiler with Solaris 2 before Solaris 10, though you can download the Sun Studio compilers for free. In Solaris ! 10 and 11, GCC 3.4.3 is available as '/usr/sfw/bin/gcc'. Solaris 11 ! also provides GCC 4.5.2 as '/usr/gcc/4.5/bin/gcc'. Alternatively, you ! can install a pre-built GCC to bootstrap and install GCC. See the binaries page for details. ! The Solaris 2 '/bin/sh' will often fail to configure 'libstdc++-v3', ! 'boehm-gc' or 'libjava'. We therefore recommend using the following initial sequence of commands % CONFIG_SHELL=/bin/ksh *************** initial sequence of commands *** 3385,3467 **** and proceed as described in the configure instructions. In addition we strongly recommend specifying an absolute path to invoke ! `SRCDIR/configure'. Solaris 2 comes with a number of optional OS packages. Some of these ! are needed to use GCC fully, namely `SUNWarc', `SUNWbtool', `SUNWesu', ! `SUNWhea', `SUNWlibm', `SUNWsprot', and `SUNWtoo'. If you did not install all optional packages when installing Solaris 2, you will need to verify that the packages that GCC needs are installed. ! To check whether an optional package is installed, use the `pkginfo' ! command. To add an optional package, use the `pkgadd' command. For further details, see the Solaris 2 documentation. ! Trying to use the linker and other tools in `/usr/ucb' to install ! GCC has been observed to cause trouble. For example, the linker may ! hang indefinitely. The fix is to remove `/usr/ucb' from your `PATH'. The build process works more smoothly with the legacy Sun tools so, ! if you have `/usr/xpg4/bin' in your `PATH', we recommend that you place ! `/usr/bin' before `/usr/xpg4/bin' for the duration of the build. We recommend the use of the Sun assembler or the GNU assembler, in ! conjunction with the Sun linker. The GNU `as' versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils ! 2.19, are known to work. They can be found in `/usr/sfw/bin/gas'. ! Current versions of GNU binutils (2.22) are known to work as well. ! Note that your mileage may vary if you use a combination of the GNU ! tools and the Sun tools: while the combination GNU `as' + Sun `ld' ! should reasonably work, the reverse combination Sun `as' + GNU `ld' may ! fail to build or cause memory corruption at runtime in some cases for ! C++ programs. GNU `ld' usually works as well, although the version ! included in Solaris 10 cannot be used due to several bugs. Again, the ! current version (2.22) is known to work, but generally lacks platform ! specific features, so better stay with Sun `ld'. To use the LTO linker ! plugin (`-fuse-linker-plugin') with GNU `ld', GNU binutils _must_ be ! configured with `--enable-largefile'. ! To enable symbol versioning in `libstdc++' with Sun `ld', you need ! to have any version of GNU `c++filt', which is part of GNU binutils. ! `libstdc++' symbol versioning will be disabled if no appropriate ! version is found. Sun `c++filt' from the Sun Studio compilers does ! _not_ work. Sun bug 4296832 turns up when compiling X11 headers with GCC 2.95 or ! newer: `g++' will complain that types are missing. These headers ! assume that omitting the type means `int'; this assumption worked for ! C90 but is wrong for C++, and is now wrong for C99 also. Sun bug 4927647 sometimes causes random spurious testsuite failures related to missing diagnostic output. This bug doesn't affect GCC ! itself, rather it is a kernel bug triggered by the `expect' program ! which is used only by the GCC testsuite driver. When the bug causes ! the `expect' program to miss anticipated output, extra testsuite ! failures appear. There are patches for Solaris 9 (117171-11 or newer for SPARC, 117172-11 or newer for Intel) that address this problem. Thread-local storage (TLS) is supported in Solaris 9, but requires ! some patches. The `libthread' patches provide the `__tls_get_addr' ! (SPARC, 64-bit x86) resp. `___tls_get_addr' (32-bit x86) functions. On Solaris 9, the necessary support on SPARC is present since FCS, while 114432-05 or newer is required on Intel. Additionally, on ! Solaris 9/x86, patch 113986-02 or newer is required for the Sun `ld' ! and runtime linker (`ld.so.1') support, while Solaris 9/SPARC works ! since FCS. The linker patches must be installed even if GNU `ld' is ! used. Sun `as' in Solaris 9 doesn't support the necessary relocations, ! so GNU `as' must be used. The `configure' script checks for those ! prerequisites and automatically enables TLS support if they are met. ! Although those minimal patch versions should work, it is recommended to ! use the latest patch versions which include additional bug fixes. sparc*-*-* ========== This section contains general configuration information for all ! SPARC-based platforms. In addition to reading this section, please ! read all other sections that match your target. Newer versions of the GNU Multiple Precision Library (GMP), the MPFR library and the MPC library are known to be miscompiled by earlier --- 3363,3444 ---- and proceed as described in the configure instructions. In addition we strongly recommend specifying an absolute path to invoke ! 'SRCDIR/configure'. Solaris 2 comes with a number of optional OS packages. Some of these ! are needed to use GCC fully, namely 'SUNWarc', 'SUNWbtool', 'SUNWesu', ! 'SUNWhea', 'SUNWlibm', 'SUNWsprot', and 'SUNWtoo'. If you did not install all optional packages when installing Solaris 2, you will need to verify that the packages that GCC needs are installed. ! To check whether an optional package is installed, use the 'pkginfo' ! command. To add an optional package, use the 'pkgadd' command. For further details, see the Solaris 2 documentation. ! Trying to use the linker and other tools in '/usr/ucb' to install GCC ! has been observed to cause trouble. For example, the linker may hang ! indefinitely. The fix is to remove '/usr/ucb' from your 'PATH'. The build process works more smoothly with the legacy Sun tools so, ! if you have '/usr/xpg4/bin' in your 'PATH', we recommend that you place ! '/usr/bin' before '/usr/xpg4/bin' for the duration of the build. We recommend the use of the Sun assembler or the GNU assembler, in ! conjunction with the Sun linker. The GNU 'as' versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils ! 2.19, are known to work. They can be found in '/usr/sfw/bin/gas'. ! Current versions of GNU binutils (2.22) are known to work as well. Note ! that your mileage may vary if you use a combination of the GNU tools and ! the Sun tools: while the combination GNU 'as' + Sun 'ld' should ! reasonably work, the reverse combination Sun 'as' + GNU 'ld' may fail to ! build or cause memory corruption at runtime in some cases for C++ ! programs. GNU 'ld' usually works as well, although the version included ! in Solaris 10 cannot be used due to several bugs. Again, the current ! version (2.22) is known to work, but generally lacks platform specific ! features, so better stay with Sun 'ld'. To use the LTO linker plugin ! ('-fuse-linker-plugin') with GNU 'ld', GNU binutils _must_ be configured ! with '--enable-largefile'. ! To enable symbol versioning in 'libstdc++' with Sun 'ld', you need to ! have any version of GNU 'c++filt', which is part of GNU binutils. ! 'libstdc++' symbol versioning will be disabled if no appropriate version ! is found. Sun 'c++filt' from the Sun Studio compilers does _not_ work. Sun bug 4296832 turns up when compiling X11 headers with GCC 2.95 or ! newer: 'g++' will complain that types are missing. These headers assume ! that omitting the type means 'int'; this assumption worked for C90 but ! is wrong for C++, and is now wrong for C99 also. Sun bug 4927647 sometimes causes random spurious testsuite failures related to missing diagnostic output. This bug doesn't affect GCC ! itself, rather it is a kernel bug triggered by the 'expect' program ! which is used only by the GCC testsuite driver. When the bug causes the ! 'expect' program to miss anticipated output, extra testsuite failures ! appear. There are patches for Solaris 9 (117171-11 or newer for SPARC, 117172-11 or newer for Intel) that address this problem. Thread-local storage (TLS) is supported in Solaris 9, but requires ! some patches. The 'libthread' patches provide the '__tls_get_addr' ! (SPARC, 64-bit x86) resp. '___tls_get_addr' (32-bit x86) functions. On Solaris 9, the necessary support on SPARC is present since FCS, while 114432-05 or newer is required on Intel. Additionally, on ! Solaris 9/x86, patch 113986-02 or newer is required for the Sun 'ld' and ! runtime linker ('ld.so.1') support, while Solaris 9/SPARC works since ! FCS. The linker patches must be installed even if GNU 'ld' is used. Sun ! 'as' in Solaris 9 doesn't support the necessary relocations, so GNU 'as' ! must be used. The 'configure' script checks for those prerequisites and ! automatically enables TLS support if they are met. Although those ! minimal patch versions should work, it is recommended to use the latest ! patch versions which include additional bug fixes. sparc*-*-* ========== This section contains general configuration information for all ! SPARC-based platforms. In addition to reading this section, please read ! all other sections that match your target. Newer versions of the GNU Multiple Precision Library (GMP), the MPFR library and the MPC library are known to be miscompiled by earlier *************** this difference is quite significant for *** 3478,3492 **** information. Starting with Solaris 7, the operating system is capable of executing ! 64-bit SPARC V9 binaries. GCC 3.1 and later properly supports this; ! the `-m64' option enables 64-bit code generation. However, if all you ! want is code tuned for the UltraSPARC CPU, you should try the ! `-mtune=ultrasparc' option instead, which produces code that, unlike full 64-bit code, can still run on non-UltraSPARC machines. When configuring on a Solaris 7 or later system that is running a kernel that supports only 32-bit binaries, one must configure with ! `--disable-multilib', since we will not be able to build the 64-bit target libraries. GCC 3.3 and GCC 3.4 trigger code generation bugs in earlier versions --- 3455,3469 ---- information. Starting with Solaris 7, the operating system is capable of executing ! 64-bit SPARC V9 binaries. GCC 3.1 and later properly supports this; the ! '-m64' option enables 64-bit code generation. However, if all you want ! is code tuned for the UltraSPARC CPU, you should try the ! '-mtune=ultrasparc' option instead, which produces code that, unlike full 64-bit code, can still run on non-UltraSPARC machines. When configuring on a Solaris 7 or later system that is running a kernel that supports only 32-bit binaries, one must configure with ! '--disable-multilib', since we will not be able to build the 64-bit target libraries. GCC 3.3 and GCC 3.4 trigger code generation bugs in earlier versions *************** stage, i.e. to bootstrap that compiler w *** 3497,3528 **** use it to bootstrap the final compiler. GCC 3.4 triggers a code generation bug in versions 5.4 (Sun ONE ! Studio 7) and 5.5 (Sun ONE Studio 8) of the Sun compiler, which causes ! a bootstrap failure in form of a miscompilation of the stage1 compiler ! by the Sun compiler. This is Sun bug 4974440. This is fixed with ! patch 112760-07. GCC 3.4 changed the default debugging format from Stabs to DWARF-2 for 32-bit code on Solaris 7 and later. If you use the Sun assembler, this change apparently runs afoul of Sun bug 4910101 (which is referenced as an x86-only problem by Sun, probably because they do not use DWARF-2). A symptom of the problem is that you cannot compile C++ ! programs like `groff' 1.19.1 without getting messages similar to the following: ld: warning: relocation error: R_SPARC_UA32: ... external symbolic relocation against non-allocatable section .debug_info cannot be processed at runtime: relocation ignored. ! To work around this problem, compile with `-gstabs+' instead of plain ! `-g'. When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library on a Solaris 7 or later system, the canonical ! target triplet must be specified as the `build' parameter on the configure line. This target triplet can be obtained by invoking ! `./config.guess' in the toplevel source directory of GCC (and not that ! of GMP or MPFR or MPC). For example on a Solaris 9 system: % ./configure --build=sparc-sun-solaris2.9 --prefix=xxx --- 3474,3505 ---- use it to bootstrap the final compiler. GCC 3.4 triggers a code generation bug in versions 5.4 (Sun ONE ! Studio 7) and 5.5 (Sun ONE Studio 8) of the Sun compiler, which causes a ! bootstrap failure in form of a miscompilation of the stage1 compiler by ! the Sun compiler. This is Sun bug 4974440. This is fixed with patch ! 112760-07. GCC 3.4 changed the default debugging format from Stabs to DWARF-2 for 32-bit code on Solaris 7 and later. If you use the Sun assembler, this change apparently runs afoul of Sun bug 4910101 (which is referenced as an x86-only problem by Sun, probably because they do not use DWARF-2). A symptom of the problem is that you cannot compile C++ ! programs like 'groff' 1.19.1 without getting messages similar to the following: ld: warning: relocation error: R_SPARC_UA32: ... external symbolic relocation against non-allocatable section .debug_info cannot be processed at runtime: relocation ignored. ! To work around this problem, compile with '-gstabs+' instead of plain ! '-g'. When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library on a Solaris 7 or later system, the canonical ! target triplet must be specified as the 'build' parameter on the configure line. This target triplet can be obtained by invoking ! './config.guess' in the toplevel source directory of GCC (and not that ! of GMP or MPFR or MPC). For example on a Solaris 9 system: % ./configure --build=sparc-sun-solaris2.9 --prefix=xxx *************** sparc-sun-solaris2.10 *** 3530,3536 **** ===================== There is a bug in older versions of the Sun assembler which breaks ! thread-local storage (TLS). A typical error message is ld: fatal: relocation error: R_SPARC_TLS_LE_HIX22: file /var/tmp//ccamPA1v.o: symbol : bad symbol type SECT: symbol type must be TLS --- 3507,3513 ---- ===================== There is a bug in older versions of the Sun assembler which breaks ! thread-local storage (TLS). A typical error message is ld: fatal: relocation error: R_SPARC_TLS_LE_HIX22: file /var/tmp//ccamPA1v.o: symbol : bad symbol type SECT: symbol type must be TLS *************** sparc-*-linux* *** 3542,3555 **** GCC versions 3.0 and higher require binutils 2.11.2 and glibc 2.2.4 or newer on this platform. All earlier binutils and glibc releases ! mishandled unaligned relocations on `sparc-*-*' targets. sparc64-*-solaris2* =================== When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library, the canonical target triplet must be ! specified as the `build' parameter on the configure line. For example on a Solaris 9 system: % ./configure --build=sparc64-sun-solaris2.9 --prefix=xxx --- 3519,3532 ---- GCC versions 3.0 and higher require binutils 2.11.2 and glibc 2.2.4 or newer on this platform. All earlier binutils and glibc releases ! mishandled unaligned relocations on 'sparc-*-*' targets. sparc64-*-solaris2* =================== When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library, the canonical target triplet must be ! specified as the 'build' parameter on the configure line. For example on a Solaris 9 system: % ./configure --build=sparc64-sun-solaris2.9 --prefix=xxx *************** in order to bootstrap this target with t *** 3559,3576 **** % CC="cc -xarch=v9 -xildoff" SRCDIR/configure [OPTIONS] [TARGET] ! `-xarch=v9' specifies the SPARC-V9 architecture to the Sun toolchain ! and `-xildoff' turns off the incremental linker. sparcv9-*-solaris2* =================== ! This is a synonym for `sparc64-*-solaris2*'. c6x-*-* ======= ! The C6X family of processors. This port requires binutils-2.22 or newer. tilegx-*-linux* =============== --- 3536,3554 ---- % CC="cc -xarch=v9 -xildoff" SRCDIR/configure [OPTIONS] [TARGET] ! '-xarch=v9' specifies the SPARC-V9 architecture to the Sun toolchain and ! '-xildoff' turns off the incremental linker. sparcv9-*-solaris2* =================== ! This is a synonym for 'sparc64-*-solaris2*'. c6x-*-* ======= ! The C6X family of processors. This port requires binutils-2.22 or ! newer. tilegx-*-linux* =============== *************** binutils-2.22 or newer. *** 3587,3617 **** *-*-vxworks* ============ ! Support for VxWorks is in flux. At present GCC supports _only_ the ! very recent VxWorks 5.5 (aka Tornado 2.2) release, and only on PowerPC. ! We welcome patches for other architectures supported by VxWorks 5.5. Support for VxWorks AE would also be welcome; we believe this is merely a matter of writing an appropriate "configlette" (see below). We are not interested in supporting older, a.out or COFF-based, versions of VxWorks in GCC 3. VxWorks comes with an older version of GCC installed in ! `$WIND_BASE/host'; we recommend you do not overwrite it. Choose an installation PREFIX entirely outside $WIND_BASE. Before running ! `configure', create the directories `PREFIX' and `PREFIX/bin'. Link or ! copy the appropriate assembler, linker, etc. into `PREFIX/bin', and set ! your PATH to include that directory while running both `configure' and ! `make'. ! You must give `configure' the `--with-headers=$WIND_BASE/target/h' ! switch so that it can find the VxWorks system headers. Since VxWorks ! is a cross compilation target only, you must also specify ! `--target=TARGET'. `configure' will attempt to create the directory ! `PREFIX/TARGET/sys-include' and copy files into it; make sure the user ! running `configure' has sufficient privilege to do so. GCC's exception handling runtime requires a special "configlette" ! module, `contrib/gthr_supp_vxw_5x.c'. Follow the instructions in that file to add the module to your kernel build. (Future versions of VxWorks will incorporate this module.) --- 3565,3595 ---- *-*-vxworks* ============ ! Support for VxWorks is in flux. At present GCC supports _only_ the very ! recent VxWorks 5.5 (aka Tornado 2.2) release, and only on PowerPC. We ! welcome patches for other architectures supported by VxWorks 5.5. Support for VxWorks AE would also be welcome; we believe this is merely a matter of writing an appropriate "configlette" (see below). We are not interested in supporting older, a.out or COFF-based, versions of VxWorks in GCC 3. VxWorks comes with an older version of GCC installed in ! '$WIND_BASE/host'; we recommend you do not overwrite it. Choose an installation PREFIX entirely outside $WIND_BASE. Before running ! 'configure', create the directories 'PREFIX' and 'PREFIX/bin'. Link or ! copy the appropriate assembler, linker, etc. into 'PREFIX/bin', and set ! your PATH to include that directory while running both 'configure' and ! 'make'. ! You must give 'configure' the '--with-headers=$WIND_BASE/target/h' ! switch so that it can find the VxWorks system headers. Since VxWorks is ! a cross compilation target only, you must also specify ! '--target=TARGET'. 'configure' will attempt to create the directory ! 'PREFIX/TARGET/sys-include' and copy files into it; make sure the user ! running 'configure' has sufficient privilege to do so. GCC's exception handling runtime requires a special "configlette" ! module, 'contrib/gthr_supp_vxw_5x.c'. Follow the instructions in that file to add the module to your kernel build. (Future versions of VxWorks will incorporate this module.) *************** x86_64-*-*, amd64-*-* *** 3621,3664 **** GCC supports the x86-64 architecture implemented by the AMD64 processor (amd64-*-* is an alias for x86_64-*-*) on GNU/Linux, FreeBSD and NetBSD. On GNU/Linux the default is a bi-arch compiler which is able to generate ! both 64-bit x86-64 and 32-bit x86 code (via the `-m32' switch). x86_64-*-solaris2.1[0-9]* ========================= GCC also supports the x86-64 architecture implemented by the AMD64 ! processor (`amd64-*-*' is an alias for `x86_64-*-*') on Solaris 10 or ! later. Unlike other systems, without special options a bi-arch ! compiler is built which generates 32-bit code by default, but can ! generate 64-bit x86-64 code with the `-m64' switch. Since GCC 4.7, ! there is also configuration that defaults to 64-bit code, but can ! generate 32-bit code with `-m32'. To configure and build this way, you ! have to provide all support libraries like `libgmp' as 64-bit code, ! configure with `--target=x86_64-pc-solaris2.1x' and `CC=gcc -m64'. xtensa*-*-elf ============= ! This target is intended for embedded Xtensa systems using the `newlib' ! C library. It uses ELF but does not support shared objects. Designed-defined instructions specified via the Tensilica Instruction Extension (TIE) language are only supported through inline assembly. The Xtensa configuration information must be specified prior to ! building GCC. The `include/xtensa-config.h' header file contains the ! configuration information. If you created your own Xtensa ! configuration with the Xtensa Processor Generator, the downloaded files ! include a customized copy of this header file, which you can use to ! replace the default header file. xtensa*-*-linux* ================ This target is for Xtensa systems running GNU/Linux. It supports ELF shared objects and the GNU C library (glibc). It also generates ! position-independent code (PIC) regardless of whether the `-fpic' or ! `-fPIC' options are used. In other respects, this target is the same ! as the `xtensa*-*-elf' target. Microsoft Windows ================= --- 3599,3642 ---- GCC supports the x86-64 architecture implemented by the AMD64 processor (amd64-*-* is an alias for x86_64-*-*) on GNU/Linux, FreeBSD and NetBSD. On GNU/Linux the default is a bi-arch compiler which is able to generate ! both 64-bit x86-64 and 32-bit x86 code (via the '-m32' switch). x86_64-*-solaris2.1[0-9]* ========================= GCC also supports the x86-64 architecture implemented by the AMD64 ! processor ('amd64-*-*' is an alias for 'x86_64-*-*') on Solaris 10 or ! later. Unlike other systems, without special options a bi-arch compiler ! is built which generates 32-bit code by default, but can generate 64-bit ! x86-64 code with the '-m64' switch. Since GCC 4.7, there is also ! configuration that defaults to 64-bit code, but can generate 32-bit code ! with '-m32'. To configure and build this way, you have to provide all ! support libraries like 'libgmp' as 64-bit code, configure with ! '--target=x86_64-pc-solaris2.1x' and 'CC=gcc -m64'. xtensa*-*-elf ============= ! This target is intended for embedded Xtensa systems using the 'newlib' C ! library. It uses ELF but does not support shared objects. Designed-defined instructions specified via the Tensilica Instruction Extension (TIE) language are only supported through inline assembly. The Xtensa configuration information must be specified prior to ! building GCC. The 'include/xtensa-config.h' header file contains the ! configuration information. If you created your own Xtensa configuration ! with the Xtensa Processor Generator, the downloaded files include a ! customized copy of this header file, which you can use to replace the ! default header file. xtensa*-*-linux* ================ This target is for Xtensa systems running GNU/Linux. It supports ELF shared objects and the GNU C library (glibc). It also generates ! position-independent code (PIC) regardless of whether the '-fpic' or ! '-fPIC' options are used. In other respects, this target is the same as ! the 'xtensa*-*-elf' target. Microsoft Windows ================= *************** Windows XP, and Windows Vista, are suppo *** 3680,3703 **** platforms. These targets differ in which Windows subsystem they target and which C libraries are used. ! * Cygwin *-*-cygwin: Cygwin provides a user-space Linux API ! emulation layer in the Win32 subsystem. ! * Interix *-*-interix: The Interix subsystem provides native support for POSIX. - * MinGW *-*-mingw32: MinGW is a native GCC port for the Win32 subsystem that provides a subset of POSIX. ! ! * MKS i386-pc-mks: NuTCracker from MKS. See ! `http://www.mkssoftware.com/' for more information. Intel 64-bit versions --------------------- GCC contains support for x86-64 using the mingw-w64 runtime library, ! available from `http://mingw-w64.sourceforge.net/'. This library ! should be used with the target triple x86_64-pc-mingw32. Presently Windows for Itanium is not supported. --- 3658,3678 ---- platforms. These targets differ in which Windows subsystem they target and which C libraries are used. ! * Cygwin *-*-cygwin: Cygwin provides a user-space Linux API emulation ! layer in the Win32 subsystem. * Interix *-*-interix: The Interix subsystem provides native support for POSIX. * MinGW *-*-mingw32: MinGW is a native GCC port for the Win32 subsystem that provides a subset of POSIX. ! * MKS i386-pc-mks: NuTCracker from MKS. See ! for more information. Intel 64-bit versions --------------------- GCC contains support for x86-64 using the mingw-w64 runtime library, ! available from . This library should ! be used with the target triple x86_64-pc-mingw32. Presently Windows for Itanium is not supported. *************** support the Interix subsystem. See abov *** 3719,3725 **** used. PW32 (i386-pc-pw32) support was never completed, and the project ! seems to be inactive. See `http://pw32.sourceforge.net/' for more information. UWIN support has been removed due to a lack of maintenance. --- 3694,3700 ---- used. PW32 (i386-pc-pw32) support was never completed, and the project ! seems to be inactive. See for more information. UWIN support has been removed due to a lack of maintenance. *************** version 2.20 or above if building your o *** 3742,3748 **** =========== The Interix target is used by OpenNT, Interix, Services For UNIX (SFU), ! and Subsystem for UNIX-based Applications (SUA). Applications compiled with this target run in the Interix subsystem, which is separate from the Win32 subsystem. This target was last known to work in GCC 3.3. --- 3717,3723 ---- =========== The Interix target is used by OpenNT, Interix, Services For UNIX (SFU), ! and Subsystem for UNIX-based Applications (SUA). Applications compiled with this target run in the Interix subsystem, which is separate from the Win32 subsystem. This target was last known to work in GCC 3.3. *************** the Win32 subsystem. This target was la *** 3751,3757 **** GCC will build with and support only MinGW runtime 3.12 and later. Earlier versions of headers are incompatible with the new default ! semantics of `extern inline' in `-std=c99' and `-std=gnu99' modes. Older systems ============= --- 3726,3732 ---- GCC will build with and support only MinGW runtime 3.12 and later. Earlier versions of headers are incompatible with the new default ! semantics of 'extern inline' in '-std=c99' and '-std=gnu99' modes. Older systems ============= *************** and may suffer from bitrot. *** 3763,3769 **** Starting with GCC 3.1, each release has a list of "obsoleted" systems. Support for these systems is still present in that release, ! but `configure' will fail unless the `--enable-obsolete' option is given. Unless a maintainer steps forward, support for these systems will be removed from the next release of GCC. --- 3738,3744 ---- Starting with GCC 3.1, each release has a list of "obsoleted" systems. Support for these systems is still present in that release, ! but 'configure' will fail unless the '--enable-obsolete' option is given. Unless a maintainer steps forward, support for these systems will be removed from the next release of GCC. *************** bring GCC up on such a system, if still *** 3774,3806 **** require first installing an old version of GCC which did work on that system, and using it to compile a more recent GCC, to avoid bugs in the vendor compiler. Old releases of GCC 1 and GCC 2 are available in the ! `old-releases' directory on the GCC mirror sites. Header bugs may ! generally be avoided using `fixincludes', but bugs or deficiencies in libraries and the operating system may still cause problems. Support for older systems as targets for cross-compilation is less problematic than support for them as hosts for GCC; if an enthusiast wishes to make such a target work again (including resurrecting any of ! the targets that never worked with GCC 2, starting from the last ! version before they were removed), patches following the usual ! requirements would be likely to be accepted, since they should not ! affect the support for more modern targets. For some systems, old versions of GNU binutils may also be useful, ! and are available from `pub/binutils/old-releases' on sourceware.org mirror sites. Some of the information on specific systems above relates to such older systems, but much of the information about GCC on such systems ! (which may no longer be applicable to current GCC) is to be found in ! the GCC texinfo manual. all ELF targets (SVR4, Solaris 2, etc.) ======================================= C++ support is significantly better on ELF targets if you use the GNU ! linker; duplicate copies of inlines, vtables and template ! instantiations will be discarded automatically.  File: gccinstall.info, Node: Old, Next: GNU Free Documentation License, Prev: Specific, Up: Top --- 3749,3781 ---- require first installing an old version of GCC which did work on that system, and using it to compile a more recent GCC, to avoid bugs in the vendor compiler. Old releases of GCC 1 and GCC 2 are available in the ! 'old-releases' directory on the GCC mirror sites. Header bugs may ! generally be avoided using 'fixincludes', but bugs or deficiencies in libraries and the operating system may still cause problems. Support for older systems as targets for cross-compilation is less problematic than support for them as hosts for GCC; if an enthusiast wishes to make such a target work again (including resurrecting any of ! the targets that never worked with GCC 2, starting from the last version ! before they were removed), patches following the usual requirements ! would be likely to be accepted, since they should not affect the support ! for more modern targets. For some systems, old versions of GNU binutils may also be useful, ! and are available from 'pub/binutils/old-releases' on sourceware.org mirror sites. Some of the information on specific systems above relates to such older systems, but much of the information about GCC on such systems ! (which may no longer be applicable to current GCC) is to be found in the ! GCC texinfo manual. all ELF targets (SVR4, Solaris 2, etc.) ======================================= C++ support is significantly better on ELF targets if you use the GNU ! linker; duplicate copies of inlines, vtables and template instantiations ! will be discarded automatically.  File: gccinstall.info, Node: Old, Next: GNU Free Documentation License, Prev: Specific, Up: Top *************** File: gccinstall.info, Node: Old, Next *** 3808,3814 **** 10 Old installation documentation ********************************* ! Note most of this information is out of date and superseded by the previous chapters of this manual. It is provided for historical reference only, because of a lack of volunteers to merge it into the main manual. --- 3783,3789 ---- 10 Old installation documentation ********************************* ! Note most of this information is out of date and superseded by the previous chapters of this manual. It is provided for historical reference only, because of a lack of volunteers to merge it into the main manual. *************** main manual. *** 3822,3835 **** 1. If you have chosen a configuration for GCC which requires other GNU tools (such as GAS or the GNU linker) instead of the standard system tools, install the required tools in the build directory ! under the names `as', `ld' or whatever is appropriate. Alternatively, you can do subsequent compilation using a value of ! the `PATH' environment variable such that the necessary GNU tools come before the standard system tools. 2. Specify the host, build and target machine configurations. You do ! this when you run the `configure' script. The "build" machine is the system which you are using, the "host" machine is the system where you want to run the resulting compiler --- 3797,3810 ---- 1. If you have chosen a configuration for GCC which requires other GNU tools (such as GAS or the GNU linker) instead of the standard system tools, install the required tools in the build directory ! under the names 'as', 'ld' or whatever is appropriate. Alternatively, you can do subsequent compilation using a value of ! the 'PATH' environment variable such that the necessary GNU tools come before the standard system tools. 2. Specify the host, build and target machine configurations. You do ! this when you run the 'configure' script. The "build" machine is the system which you are using, the "host" machine is the system where you want to run the resulting compiler *************** main manual. *** 3838,3851 **** If you are building a compiler to produce code for the machine it runs on (a native compiler), you normally do not need to specify ! any operands to `configure'; it will try to guess the type of machine you are on and use that as the build, host and target machines. So you don't need to specify a configuration when ! building a native compiler unless `configure' cannot figure out what your configuration is or guesses wrong. In those cases, specify the build machine's "configuration name" ! with the `--host' option; the host and target will default to be the same as the host machine. Here is an example: --- 3813,3826 ---- If you are building a compiler to produce code for the machine it runs on (a native compiler), you normally do not need to specify ! any operands to 'configure'; it will try to guess the type of machine you are on and use that as the build, host and target machines. So you don't need to specify a configuration when ! building a native compiler unless 'configure' cannot figure out what your configuration is or guesses wrong. In those cases, specify the build machine's "configuration name" ! with the '--host' option; the host and target will default to be the same as the host machine. Here is an example: *************** main manual. *** 3856,3907 **** abbreviated. A canonical configuration name has three parts, separated by ! dashes. It looks like this: `CPU-COMPANY-SYSTEM'. (The three ! parts may themselves contain dashes; `configure' can figure out which dashes serve which purpose.) For example, ! `m68k-sun-sunos4.1' specifies a Sun 3. You can also replace parts of the configuration by nicknames or ! aliases. For example, `sun3' stands for `m68k-sun', so ! `sun3-sunos4.1' is another way to specify a Sun 3. ! You can specify a version number after any of the system types, ! and some of the CPU types. In most cases, the version is ! irrelevant, and will be ignored. So you might as well specify the ! version if you know it. See *note Configurations::, for a list of supported configuration names and notes on many of the configurations. You should check the notes in that section before proceeding any further with the installation of GCC. -  File: gccinstall.info, Node: Configurations, Up: Old 10.1 Configurations Supported by GCC ==================================== ! Here are the possible CPU types: 1750a, a29k, alpha, arm, avr, cN, clipper, dsp16xx, elxsi, fr30, h8300, hppa1.0, hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, ip2k, m32r, m68000, m68k, m88k, mcore, mips, mipsel, mips64, ! mips64el, mn10200, mn10300, ns32k, pdp11, powerpc, powerpcle, ! romp, rs6000, sh, sparc, sparclite, sparc64, v850, vax, we32k. Here are the recognized company names. As you can see, customary abbreviations are used rather than the longer official names. acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, ! convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, ! hp, ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron, ! plexus, sequent, sgi, sony, sun, tti, unicom, wrs. The company name is meaningful only to disambiguate when the rest of ! the information supplied is insufficient. You can omit it, writing ! just `CPU-SYSTEM', if it is not needed. For example, `vax-ultrix4.2' ! is equivalent to `vax-dec-ultrix4.2'. Here is a list of system types: --- 3831,3881 ---- abbreviated. A canonical configuration name has three parts, separated by ! dashes. It looks like this: 'CPU-COMPANY-SYSTEM'. (The three ! parts may themselves contain dashes; 'configure' can figure out which dashes serve which purpose.) For example, ! 'm68k-sun-sunos4.1' specifies a Sun 3. You can also replace parts of the configuration by nicknames or ! aliases. For example, 'sun3' stands for 'm68k-sun', so ! 'sun3-sunos4.1' is another way to specify a Sun 3. ! You can specify a version number after any of the system types, and ! some of the CPU types. In most cases, the version is irrelevant, ! and will be ignored. So you might as well specify the version if ! you know it. See *note Configurations::, for a list of supported configuration names and notes on many of the configurations. You should check the notes in that section before proceeding any further with the installation of GCC.  File: gccinstall.info, Node: Configurations, Up: Old 10.1 Configurations Supported by GCC ==================================== ! Here are the possible CPU types: 1750a, a29k, alpha, arm, avr, cN, clipper, dsp16xx, elxsi, fr30, h8300, hppa1.0, hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, ip2k, m32r, m68000, m68k, m88k, mcore, mips, mipsel, mips64, ! mips64el, mn10200, mn10300, ns32k, pdp11, powerpc, powerpcle, romp, ! rs6000, sh, sparc, sparclite, sparc64, v850, vax, we32k. Here are the recognized company names. As you can see, customary abbreviations are used rather than the longer official names. acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, ! convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ! ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus, ! sequent, sgi, sony, sun, tti, unicom, wrs. The company name is meaningful only to disambiguate when the rest of ! the information supplied is insufficient. You can omit it, writing just ! 'CPU-SYSTEM', if it is not needed. For example, 'vax-ultrix4.2' is ! equivalent to 'vax-dec-ultrix4.2'. Here is a list of system types: *************** is equivalent to `vax-dec-ultrix4.2'. *** 3913,3941 **** sysv, udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix. ! You can omit the system type; then `configure' guesses the operating system from the CPU and company. You can add a version number to the system type; this may or may not ! make a difference. For example, you can write `bsd4.3' or `bsd4.4' to distinguish versions of BSD. In practice, the version number is most ! needed for `sysv3' and `sysv4', which are often treated differently. ! `linux-gnu' is the canonical name for the GNU/Linux target; however ! GCC will also accept `linux'. The version of the kernel in use is not ! relevant on these systems. A suffix such as `libc1' or `aout' distinguishes major versions of the C library; all of the suffixed versions are obsolete. ! If you specify an impossible combination such as `i860-dg-vms', then ! you may get an error message from `configure', or it may ignore part of ! the information and do the best it can with the rest. `configure' always prints the canonical name for the alternative that it used. GCC does not support all possible alternatives. Often a particular model of machine has a name. Many machine names are recognized as aliases for CPU/company combinations. Thus, the ! machine name `sun3', mentioned above, is an alias for `m68k-sun'. Sometimes we accept a company name as a machine name, when the name is popularly used for a particular machine. Here is a table of the known machine names: --- 3887,3915 ---- sysv, udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix. ! You can omit the system type; then 'configure' guesses the operating system from the CPU and company. You can add a version number to the system type; this may or may not ! make a difference. For example, you can write 'bsd4.3' or 'bsd4.4' to distinguish versions of BSD. In practice, the version number is most ! needed for 'sysv3' and 'sysv4', which are often treated differently. ! 'linux-gnu' is the canonical name for the GNU/Linux target; however ! GCC will also accept 'linux'. The version of the kernel in use is not ! relevant on these systems. A suffix such as 'libc1' or 'aout' distinguishes major versions of the C library; all of the suffixed versions are obsolete. ! If you specify an impossible combination such as 'i860-dg-vms', then ! you may get an error message from 'configure', or it may ignore part of ! the information and do the best it can with the rest. 'configure' always prints the canonical name for the alternative that it used. GCC does not support all possible alternatives. Often a particular model of machine has a name. Many machine names are recognized as aliases for CPU/company combinations. Thus, the ! machine name 'sun3', mentioned above, is an alias for 'm68k-sun'. Sometimes we accept a company name as a machine name, when the name is popularly used for a particular machine. Here is a table of the known machine names: *************** machine names: *** 3945,3952 **** encore, fx2800, gmicro, hp7NN, hp8NN, hp9k2NN, hp9k3NN, hp9k7NN, hp9k8NN, iris4d, iris, isi68, m3230, magnum, merlin, miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax, powerpc, ! powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, ! sun4, symmetry, tower-32, tower. Remember that a machine name specifies both the cpu type and the company name. --- 3919,3926 ---- encore, fx2800, gmicro, hp7NN, hp8NN, hp9k2NN, hp9k3NN, hp9k7NN, hp9k8NN, iris4d, iris, isi68, m3230, magnum, merlin, miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax, powerpc, ! powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, sun4, ! symmetry, tower-32, tower. Remember that a machine name specifies both the cpu type and the company name. *************** GNU Free Documentation License *** 3960,3966 **** Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 3934,3940 ---- Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU Free Documentation License *** 3985,4005 **** free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. ! We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it ! can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You ! accept the license if you copy, modify or distribute the work in a ! way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with --- 3959,3979 ---- free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. We ! recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it can ! be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You accept ! the license if you copy, modify or distribute the work in a way ! requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with *************** GNU Free Documentation License *** 4017,4028 **** regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in ! the notice that says that the Document is released under this ! License. If a section does not fit the above definition of ! Secondary then it is not allowed to be designated as Invariant. ! The Document may contain zero Invariant Sections. If the Document ! does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice --- 3991,4002 ---- regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in the ! notice that says that the Document is released under this License. ! If a section does not fit the above definition of Secondary then it ! is not allowed to be designated as Invariant. The Document may ! contain zero Invariant Sections. If the Document does not identify ! any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice *************** GNU Free Documentation License *** 4033,4059 **** A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images ! composed of pixels) generic paint programs or (for drawings) some ! widely available drawing editor, and that is suitable for input to ! text formatters or for automatic translation to a variety of ! formats suitable for input to text formatters. A copy made in an ! otherwise Transparent file format whose markup, or absence of ! markup, has been arranged to thwart or discourage subsequent ! modification by readers is not Transparent. An image format is ! not Transparent if used for any substantial amount of text. A ! copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and ! standard-conforming simple HTML, PostScript or PDF designed for ! human modification. Examples of transparent image formats include ! PNG, XCF and JPG. Opaque formats include proprietary formats that ! can be read and edited only by proprietary word processors, SGML or ! XML for which the DTD and/or processing tools are not generally ! available, and the machine-generated HTML, PostScript or PDF ! produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the --- 4007,4033 ---- A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images composed ! of pixels) generic paint programs or (for drawings) some widely ! available drawing editor, and that is suitable for input to text ! formatters or for automatic translation to a variety of formats ! suitable for input to text formatters. A copy made in an otherwise ! Transparent file format whose markup, or absence of markup, has ! been arranged to thwart or discourage subsequent modification by ! readers is not Transparent. An image format is not Transparent if ! used for any substantial amount of text. A copy that is not ! "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and standard-conforming ! simple HTML, PostScript or PDF designed for human modification. ! Examples of transparent image formats include PNG, XCF and JPG. ! Opaque formats include proprietary formats that can be read and ! edited only by proprietary word processors, SGML or XML for which ! the DTD and/or processing tools are not generally available, and ! the machine-generated HTML, PostScript or PDF produced by some word ! processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the *************** GNU Free Documentation License *** 4091,4098 **** may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow ! the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. --- 4065,4072 ---- may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow the ! conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. *************** GNU Free Documentation License *** 4106,4117 **** these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the ! title equally prominent and visible. You may add other material ! on the covers in addition. Copying with changes limited to the ! covers, as long as they preserve the title of the Document and ! satisfy these conditions, can be treated as verbatim copying in ! other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit --- 4080,4090 ---- these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the title ! equally prominent and visible. You may add other material on the ! covers in addition. Copying with changes limited to the covers, as ! long as they preserve the title of the Document and satisfy these ! conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit *************** GNU Free Documentation License *** 4119,4158 **** adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a ! machine-readable Transparent copy along with each Opaque copy, or ! state in or with each Opaque copy a computer-network location from ! which the general network-using public has access to download ! using public-standard network protocols a complete Transparent ! copy of the Document, free of added material. If you use the ! latter option, you must take reasonably prudent steps, when you ! begin distribution of Opaque copies in quantity, to ensure that ! this Transparent copy will remain thus accessible at the stated ! location until at least one year after the last time you ! distribute an Opaque copy (directly or through your agents or ! retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of ! copies, to give them a chance to provide you with an updated ! version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with ! the Modified Version filling the role of the Document, thus ! licensing distribution and modification of the Modified Version to ! whoever possesses a copy of it. In addition, you must do these ! things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of ! previous versions (which should, if there were any, be listed ! in the History section of the Document). You may use the ! same title as a previous version if the original publisher of ! that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in --- 4092,4130 ---- adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a machine-readable ! Transparent copy along with each Opaque copy, or state in or with ! each Opaque copy a computer-network location from which the general ! network-using public has access to download using public-standard ! network protocols a complete Transparent copy of the Document, free ! of added material. If you use the latter option, you must take ! reasonably prudent steps, when you begin distribution of Opaque ! copies in quantity, to ensure that this Transparent copy will ! remain thus accessible at the stated location until at least one ! year after the last time you distribute an Opaque copy (directly or ! through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of copies, ! to give them a chance to provide you with an updated version of the ! Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with the ! Modified Version filling the role of the Document, thus licensing ! distribution and modification of the Modified Version to whoever ! possesses a copy of it. In addition, you must do these things in ! the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of previous ! versions (which should, if there were any, be listed in the ! History section of the Document). You may use the same title ! as a previous version if the original publisher of that ! version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in *************** GNU Free Documentation License *** 4182,4212 **** I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on ! the Title Page. If there is no section Entitled "History" in ! the Document, create one stating the title, year, authors, ! and publisher of the Document as given on its Title Page, ! then add an item describing the Modified Version as stated in ! the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in ! the "History" section. You may omit a network location for a ! work that was published at least four years before the ! Document itself, or if the original publisher of the version ! it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the ! section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, ! unaltered in their text and in their titles. Section numbers ! or the equivalent are not considered part of the section ! titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. --- 4154,4183 ---- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on the ! Title Page. If there is no section Entitled "History" in the ! Document, create one stating the title, year, authors, and ! publisher of the Document as given on its Title Page, then add ! an item describing the Modified Version as stated in the ! previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in the ! "History" section. You may omit a network location for a work ! that was published at least four years before the Document ! itself, or if the original publisher of the version it refers ! to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the section ! all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, unaltered ! in their text and in their titles. Section numbers or the ! equivalent are not considered part of the section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. *************** GNU Free Documentation License *** 4219,4229 **** If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option ! designate some or all of these sections as invariant. To do this, ! add their titles to the list of Invariant Sections in the Modified ! Version's license notice. These titles must be distinct from any ! other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various --- 4190,4200 ---- If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option designate ! some or all of these sections as invariant. To do this, add their ! titles to the list of Invariant Sections in the Modified Version's ! license notice. These titles must be distinct from any other ! section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various *************** GNU Free Documentation License *** 4232,4246 **** definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end ! of the list of Cover Texts in the Modified Version. Only one ! passage of Front-Cover Text and one of Back-Cover Text may be ! added by (or through arrangements made by) any one entity. If the ! Document already includes a cover text for the same cover, ! previously added by you or by arrangement made by the same entity ! you are acting on behalf of, you may not add another; but you may ! replace the old one, on explicit permission from the previous ! publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to --- 4203,4217 ---- definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end of ! the list of Cover Texts in the Modified Version. Only one passage ! of Front-Cover Text and one of Back-Cover Text may be added by (or ! through arrangements made by) any one entity. If the Document ! already includes a cover text for the same cover, previously added ! by you or by arrangement made by the same entity you are acting on ! behalf of, you may not add another; but you may replace the old ! one, on explicit permission from the previous publisher that added ! the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to *************** GNU Free Documentation License *** 4250,4257 **** You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination ! all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. --- 4221,4228 ---- You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination all ! of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. *************** GNU Free Documentation License *** 4278,4297 **** documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the ! documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow ! this License in all other respects regarding verbatim copying of ! that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of ! a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this --- 4249,4268 ---- documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the documents ! in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow this ! License in all other respects regarding verbatim copying of that ! document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of a ! storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this *************** GNU Free Documentation License *** 4336,4343 **** However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 4307,4314 ---- However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** GNU Free Documentation License *** 4349,4381 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, receipt of a copy of some or all of ! the same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! `http://www.gnu.org/copyleft/'. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If ! the Document does not specify a version number of this License, ! you may choose any version ever published (not as a draft) by the ! Free Software Foundation. If the Document specifies that a proxy ! can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also --- 4320,4352 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, receipt of a copy of some or all of the ! same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! . Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If the ! Document does not specify a version number of this License, you may ! choose any version ever published (not as a draft) by the Free ! Software Foundation. If the Document specifies that a proxy can ! decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also *************** GNU Free Documentation License *** 4405,4411 **** site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. - ADDENDUM: How to use this License for your documents ==================================================== --- 4376,4381 ---- *************** notices just after the title page: *** 4422,4428 **** Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts --- 4392,4398 ---- Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts *************** combination of the three, merge those tw *** 4433,4441 **** situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of ! free software license, such as the GNU General Public License, to ! permit their use in free software.  File: gccinstall.info, Node: Concept Index, Prev: GNU Free Documentation License, Up: Top --- 4403,4411 ---- situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of free ! software license, such as the GNU General Public License, to permit ! their use in free software.  File: gccinstall.info, Node: Concept Index, Prev: GNU Free Documentation License, Up: Top *************** Concept Index *** 4447,4453 **** * Menu: * Binaries: Binaries. (line 6) ! * build_configargs: Configuration. (line 1449) * Configuration: Configuration. (line 6) * configurations supported by GCC: Configurations. (line 6) * Downloading GCC: Downloading the source. --- 4417,4423 ---- * Menu: * Binaries: Binaries. (line 6) ! * 'build_configargs': Configuration. (line 1423) * Configuration: Configuration. (line 6) * configurations supported by GCC: Configurations. (line 6) * Downloading GCC: Downloading the source. *************** Concept Index *** 4457,4463 **** * FDL, GNU Free Documentation License: GNU Free Documentation License. (line 6) * Host specific installation: Specific. (line 6) ! * host_configargs: Configuration. (line 1453) * Installing GCC: Binaries: Binaries. (line 6) * Installing GCC: Building: Building. (line 6) * Installing GCC: Configuration: Configuration. (line 6) --- 4427,4433 ---- * FDL, GNU Free Documentation License: GNU Free Documentation License. (line 6) * Host specific installation: Specific. (line 6) ! * 'host_configargs': Configuration. (line 1427) * Installing GCC: Binaries: Binaries. (line 6) * Installing GCC: Building: Building. (line 6) * Installing GCC: Configuration: Configuration. (line 6) *************** Concept Index *** 4467,4566 **** * Specific installation notes: Specific. (line 6) * Target specific installation: Specific. (line 6) * Target specific installation notes: Specific. (line 6) ! * target_configargs: Configuration. (line 1457) * Testing: Testing. (line 6) * Testsuite: Testing. (line 6)  Tag Table: ! Node: Top1733 ! Node: Installing GCC2291 ! Node: Prerequisites3928 ! Node: Downloading the source14255 ! Node: Configuration15809 ! Ref: with-gnu-as30815 ! Ref: with-as31713 ! Ref: with-gnu-ld33126 ! Node: Building80044 ! Node: Testing95529 ! Node: Final install103401 ! Node: Binaries108715 ! Node: Specific110227 ! Ref: alpha-x-x110737 ! Ref: alpha-dec-osf51111226 ! Ref: amd64-x-solaris210111751 ! Ref: arm-x-eabi111854 ! Ref: avr112065 ! Ref: bfin112705 ! Ref: cr16112947 ! Ref: cris113362 ! Ref: dos114178 ! Ref: epiphany-x-elf114501 ! Ref: x-x-freebsd114606 ! Ref: h8300-hms116443 ! Ref: hppa-hp-hpux116795 ! Ref: hppa-hp-hpux10119166 ! Ref: hppa-hp-hpux11119579 ! Ref: x-x-linux-gnu125238 ! Ref: ix86-x-linux125431 ! Ref: ix86-x-solaris29125744 ! Ref: ix86-x-solaris210126523 ! Ref: ia64-x-linux127714 ! Ref: ia64-x-hpux128484 ! Ref: x-ibm-aix129039 ! Ref: iq2000-x-elf135902 ! Ref: lm32-x-elf136042 ! Ref: lm32-x-uclinux136146 ! Ref: m32c-x-elf136274 ! Ref: m32r-x-elf136376 ! Ref: m68k-x-x136478 ! Ref: m68k-x-uclinux137516 ! Ref: mep-x-elf137762 ! Ref: microblaze-x-elf137872 ! Ref: mips-x-x137991 ! Ref: mips-sgi-irix5140387 ! Ref: mips-sgi-irix6140467 ! Ref: moxie-x-elf140654 ! Ref: powerpc-x-x140701 ! Ref: powerpc-x-darwin140906 ! Ref: powerpc-x-elf141400 ! Ref: powerpc-x-linux-gnu141485 ! Ref: powerpc-x-netbsd141580 ! Ref: powerpc-x-eabisim141668 ! Ref: powerpc-x-eabi141794 ! Ref: powerpcle-x-elf141870 ! Ref: powerpcle-x-eabisim141962 ! Ref: powerpcle-x-eabi142095 ! Ref: rl78-x-elf142178 ! Ref: rx-x-elf142284 ! Ref: s390-x-linux142483 ! Ref: s390x-x-linux142555 ! Ref: s390x-ibm-tpf142642 ! Ref: x-x-solaris2142773 ! Ref: sparc-x-x147536 ! Ref: sparc-sun-solaris2148038 ! Ref: sparc-sun-solaris210150792 ! Ref: sparc-x-linux151168 ! Ref: sparc64-x-solaris2151393 ! Ref: sparcv9-x-solaris2152046 ! Ref: c6x-x-x152133 ! Ref: tilegx-*-linux152224 ! Ref: tilepro-*-linux152343 ! Ref: x-x-vxworks152464 ! Ref: x86-64-x-x153986 ! Ref: x86-64-x-solaris210154314 ! Ref: xtensa-x-elf154976 ! Ref: xtensa-x-linux155647 ! Ref: windows155988 ! Ref: x-x-cygwin157925 ! Ref: x-x-interix158478 ! Ref: x-x-mingw32158787 ! Ref: older159013 ! Ref: elf161130 ! Node: Old161388 ! Node: Configurations164525 ! Node: GNU Free Documentation License168066 ! Node: Concept Index193213  End Tag Table --- 4437,4465 ---- * Specific installation notes: Specific. (line 6) * Target specific installation: Specific. (line 6) * Target specific installation notes: Specific. (line 6) ! * 'target_configargs': Configuration. (line 1431) * Testing: Testing. (line 6) * Testsuite: Testing. (line 6)  Tag Table: ! Node: Top1696 ! Node: Installing GCC2254 ! Node: Prerequisites3888 ! Node: Downloading the source14228 ! Node: Configuration15778 ! Ref: with-gnu-as30793 ! Ref: with-as31688 ! Ref: with-gnu-ld33101 ! Node: Building80011 ! Node: Testing95478 ! Node: Final install103340 ! Node: Binaries108651 ! Node: Specific110159 ! Node: Old161308 ! Node: Configurations164441 ! Node: GNU Free Documentation License167979 ! Node: Concept Index193106  End Tag Table diff -Nrcpad gcc-4.8.1/gcc/doc/gccint.info gcc-4.8.2/gcc/doc/gccint.info *** gcc-4.8.1/gcc/doc/gccint.info Fri May 31 09:58:14 2013 --- gcc-4.8.2/gcc/doc/gccint.info Wed Oct 16 08:16:23 2013 *************** *** 1,5 **** ! This is doc/gccint.info, produced by makeinfo version 4.13 from ! /d/gcc-4.8.1/gcc-4.8.1/gcc/doc/gccint.texi. Copyright (C) 1988-2013 Free Software Foundation, Inc. --- 1,4 ---- ! This is gccint.info, produced by makeinfo version 5.1 from gccint.texi. Copyright (C) 1988-2013 Free Software Foundation, Inc. *************** Free Documentation License". *** 17,30 **** (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. ! INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * gccint: (gccint). Internals of the GNU Compiler Collection. END-INFO-DIR-ENTRY This file documents the internals of the GNU compilers. Copyright (C) 1988-2013 Free Software Foundation, Inc. --- 16,29 ---- (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU software. ! Copies published by the Free Software Foundation raise funds for GNU ! development. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * gccint: (gccint). Internals of the GNU Compiler Collection. END-INFO-DIR-ENTRY + This file documents the internals of the GNU compilers. Copyright (C) 1988-2013 Free Software Foundation, Inc. *************** Free Documentation License". *** 43,52 **** (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. !  File: gccint.info, Node: Top, Next: Contributing, Up: (DIR) --- 42,50 ---- (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU software. ! Copies published by the Free Software Foundation raise funds for GNU ! development.  File: gccint.info, Node: Top, Next: Contributing, Up: (DIR) *************** Introduction *** 56,64 **** This manual documents the internals of the GNU compilers, including how to port them to new targets and some information about how to write ! front ends for new languages. It corresponds to the compilers ! (GCC) version 4.8.1. The use of the GNU compilers is documented in a ! separate manual. *Note Introduction: (gcc)Top. This manual is mainly a reference manual rather than a tutorial. It discusses how to contribute to GCC (*note Contributing::), the --- 54,62 ---- This manual documents the internals of the GNU compilers, including how to port them to new targets and some information about how to write ! front ends for new languages. It corresponds to the compilers (GCC) ! version 4.8.2. The use of the GNU compilers is documented in a separate ! manual. *Note Introduction: (gcc)Top. This manual is mainly a reference manual rather than a tutorial. It discusses how to contribute to GCC (*note Contributing::), the *************** GCC front ends, and how support for a ta *** 71,77 **** GCC. Additional tutorial information is linked to from ! `http://gcc.gnu.org/readings.html'. * Menu: --- 69,75 ---- GCC. Additional tutorial information is linked to from ! . * Menu: *************** GCC. *** 92,100 **** * Loop Analysis and Representation:: Analysis and representation of loops * Machine Desc:: How to write machine description instruction patterns. * Target Macros:: How to write the machine description C macros and functions. ! * Host Config:: Writing the `xm-MACHINE.h' file. ! * Fragments:: Writing the `t-TARGET' and `x-HOST' files. ! * Collect2:: How `collect2' works; how it finds `ld'. * Header Dirs:: Understanding the standard header file directories. * Type Information:: GCC's memory management; generating type information. * Plugins:: Extending the compiler with plugins. --- 90,98 ---- * Loop Analysis and Representation:: Analysis and representation of loops * Machine Desc:: How to write machine description instruction patterns. * Target Macros:: How to write the machine description C macros and functions. ! * Host Config:: Writing the 'xm-MACHINE.h' file. ! * Fragments:: Writing the 't-TARGET' and 'x-HOST' files. ! * Collect2:: How 'collect2' works; how it finds 'ld'. * Header Dirs:: Understanding the standard header file directories. * Type Information:: GCC's memory management; generating type information. * Plugins:: Extending the compiler with plugins. *************** GCC. *** 112,136 **** * Concept Index:: Index of concepts and symbol names.  ! File: gccint.info, Node: Contributing, Next: Portability, Prev: Top, Up: Top 1 Contributing to GCC Development ********************************* If you would like to help pretest GCC releases to assure they work well, current development sources are available by SVN (see ! `http://gcc.gnu.org/svn.html'). Source and binary snapshots are also ! available for FTP; see `http://gcc.gnu.org/snapshots.html'. If you would like to work on improvements to GCC, please read the advice at these URLs: ! `http://gcc.gnu.org/contribute.html' ! `http://gcc.gnu.org/contributewhy.html' for information on how to make useful contributions and avoid duplication of effort. Suggested projects are listed at ! `http://gcc.gnu.org/projects/'.  File: gccint.info, Node: Portability, Next: Interface, Prev: Contributing, Up: Top --- 110,134 ---- * Concept Index:: Index of concepts and symbol names.  ! File: gccint.info, Node: Contributing, Next: Portability, Up: Top 1 Contributing to GCC Development ********************************* If you would like to help pretest GCC releases to assure they work well, current development sources are available by SVN (see ! ). Source and binary snapshots are also ! available for FTP; see . If you would like to work on improvements to GCC, please read the advice at these URLs: ! ! for information on how to make useful contributions and avoid duplication of effort. Suggested projects are listed at ! .  File: gccint.info, Node: Portability, Next: Interface, Prev: Contributing, Up: Top *************** File: gccint.info, Node: Portability, *** 138,157 **** 2 GCC and Portability ********************* ! GCC itself aims to be portable to any machine where `int' is at least a 32-bit type. It aims to target machines with a flat (non-segmented) byte addressed data address space (the code address space can be ! separate). Target ABIs may have 8, 16, 32 or 64-bit `int' type. `char' can be wider than 8 bits. GCC gets most of the information about the target machine from a machine description which gives an algebraic formula for each of the machine's instructions. This is a very clean way to describe the target. But when the compiler needs information that is difficult to ! express in this fashion, ad-hoc parameters have been defined for ! machine descriptions. The purpose of portability is to reduce the ! total work needed on the compiler; it was not of interest for its own ! sake. GCC does not contain machine dependent code, but it does contain code that depends on machine parameters such as endianness (whether the most --- 136,154 ---- 2 GCC and Portability ********************* ! GCC itself aims to be portable to any machine where 'int' is at least a 32-bit type. It aims to target machines with a flat (non-segmented) byte addressed data address space (the code address space can be ! separate). Target ABIs may have 8, 16, 32 or 64-bit 'int' type. 'char' can be wider than 8 bits. GCC gets most of the information about the target machine from a machine description which gives an algebraic formula for each of the machine's instructions. This is a very clean way to describe the target. But when the compiler needs information that is difficult to ! express in this fashion, ad-hoc parameters have been defined for machine ! descriptions. The purpose of portability is to reduce the total work ! needed on the compiler; it was not of interest for its own sake. GCC does not contain machine dependent code, but it does contain code that depends on machine parameters such as endianness (whether the most *************** word) and the availability of autoincrem *** 160,171 **** RTL-generation pass, it is often necessary to have multiple strategies for generating code for a particular kind of syntax tree, strategies that are usable for different combinations of parameters. Often, not ! all possible cases have been addressed, but only the common ones or ! only the ones that have been encountered. As a result, a new target ! may require additional strategies. You will know if this happens ! because the compiler will call `abort'. Fortunately, the new ! strategies can be added in a machine-independent fashion, and will ! affect only the target machines that need them.  File: gccint.info, Node: Interface, Next: Libgcc, Prev: Portability, Up: Top --- 157,168 ---- RTL-generation pass, it is often necessary to have multiple strategies for generating code for a particular kind of syntax tree, strategies that are usable for different combinations of parameters. Often, not ! all possible cases have been addressed, but only the common ones or only ! the ones that have been encountered. As a result, a new target may ! require additional strategies. You will know if this happens because ! the compiler will call 'abort'. Fortunately, the new strategies can be ! added in a machine-independent fashion, and will affect only the target ! machines that need them.  File: gccint.info, Node: Interface, Next: Libgcc, Prev: Portability, Up: Top *************** returning such types cannot be called fr *** 183,194 **** vice versa. This does not cause trouble often because few Unix library routines return structures or unions. ! GCC code returns structures and unions that are 1, 2, 4 or 8 bytes ! long in the same registers used for `int' or `double' return values. ! (GCC typically allocates variables of such types in registers also.) Structures and unions of other sizes are returned by storing them into an address passed by the caller (usually in a register). The target ! hook `TARGET_STRUCT_VALUE_RTX' tells GCC where to pass this address. By contrast, PCC on most target machines returns structures and unions of any size by copying the data into an area of static storage, and then --- 180,191 ---- vice versa. This does not cause trouble often because few Unix library routines return structures or unions. ! GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long ! in the same registers used for 'int' or 'double' return values. (GCC ! typically allocates variables of such types in registers also.) Structures and unions of other sizes are returned by storing them into an address passed by the caller (usually in a register). The target ! hook 'TARGET_STRUCT_VALUE_RTX' tells GCC where to pass this address. By contrast, PCC on most target machines returns structures and unions of any size by copying the data into an area of static storage, and then *************** are passed "by invisible reference". Th *** 219,230 **** stored in memory, and the address of the memory location is passed to the subroutine. ! If you use `longjmp', beware of automatic variables. ISO C says that ! automatic variables that are not declared `volatile' have undefined ! values after a `longjmp'. And this is all GCC promises to do, because ! it is very difficult to restore register variables correctly, and one ! of GCC's features is that it can put variables in registers without ! your asking it to.  File: gccint.info, Node: Libgcc, Next: Languages, Prev: Interface, Up: Top --- 216,227 ---- stored in memory, and the address of the memory location is passed to the subroutine. ! If you use 'longjmp', beware of automatic variables. ISO C says that ! automatic variables that are not declared 'volatile' have undefined ! values after a 'longjmp'. And this is all GCC promises to do, because ! it is very difficult to restore register variables correctly, and one of ! GCC's features is that it can put variables in registers without your ! asking it to.  File: gccint.info, Node: Libgcc, Next: Languages, Prev: Interface, Up: Top *************** File: gccint.info, Node: Libgcc, Next: *** 232,265 **** 4 The GCC low-level runtime library *********************************** ! GCC provides a low-level runtime library, `libgcc.a' or `libgcc_s.so.1' on some platforms. GCC generates calls to routines in this library automatically, whenever it needs to perform some operation that is too complicated to emit inline code for. ! Most of the routines in `libgcc' handle arithmetic operations that the target processor cannot perform directly. This includes integer multiply and divide on some machines, and all floating-point and ! fixed-point operations on other machines. `libgcc' also includes routines for exception handling, and a handful of miscellaneous operations. Some of these routines can be defined in mostly machine-independent C. ! Others must be hand-written in assembly language for each processor ! that needs them. ! GCC will also generate calls to C library routines, such as `memcpy' ! and `memset', in some cases. The set of routines that GCC may possibly ! use is documented in *note Other Builtins: (gcc)Other Builtins. These routines take arguments and return values of a specific machine mode, not a specific C type. *Note Machine Modes::, for an explanation of this concept. For illustrative purposes, in this chapter the ! floating point type `float' is assumed to correspond to `SFmode'; ! `double' to `DFmode'; and `long double' to both `TFmode' and `XFmode'. ! Similarly, the integer types `int' and `unsigned int' correspond to ! `SImode'; `long' and `unsigned long' to `DImode'; and `long long' and ! `unsigned long long' to `TImode'. * Menu: --- 229,262 ---- 4 The GCC low-level runtime library *********************************** ! GCC provides a low-level runtime library, 'libgcc.a' or 'libgcc_s.so.1' on some platforms. GCC generates calls to routines in this library automatically, whenever it needs to perform some operation that is too complicated to emit inline code for. ! Most of the routines in 'libgcc' handle arithmetic operations that the target processor cannot perform directly. This includes integer multiply and divide on some machines, and all floating-point and ! fixed-point operations on other machines. 'libgcc' also includes routines for exception handling, and a handful of miscellaneous operations. Some of these routines can be defined in mostly machine-independent C. ! Others must be hand-written in assembly language for each processor that ! needs them. ! GCC will also generate calls to C library routines, such as 'memcpy' ! and 'memset', in some cases. The set of routines that GCC may possibly ! use is documented in *note (gcc)Other Builtins::. These routines take arguments and return values of a specific machine mode, not a specific C type. *Note Machine Modes::, for an explanation of this concept. For illustrative purposes, in this chapter the ! floating point type 'float' is assumed to correspond to 'SFmode'; ! 'double' to 'DFmode'; and 'long double' to both 'TFmode' and 'XFmode'. ! Similarly, the integer types 'int' and 'unsigned int' correspond to ! 'SImode'; 'long' and 'unsigned long' to 'DImode'; and 'long long' and ! 'unsigned long long' to 'TImode'. * Menu: *************** hardware support for arithmetic operatio *** 322,329 **** -- Runtime Function: unsigned int __udivsi3 (unsigned int A, unsigned int B) ! -- Runtime Function: unsigned long __udivdi3 (unsigned long A, ! unsigned long B) -- Runtime Function: unsigned long long __udivti3 (unsigned long long A, unsigned long long B) These functions return the quotient of the unsigned division of A --- 319,326 ---- -- Runtime Function: unsigned int __udivsi3 (unsigned int A, unsigned int B) ! -- Runtime Function: unsigned long __udivdi3 (unsigned long A, unsigned ! long B) -- Runtime Function: unsigned long long __udivti3 (unsigned long long A, unsigned long long B) These functions return the quotient of the unsigned division of A *************** hardware support for arithmetic operatio *** 339,346 **** -- Runtime Function: unsigned int __umodsi3 (unsigned int A, unsigned int B) ! -- Runtime Function: unsigned long __umoddi3 (unsigned long A, ! unsigned long B) -- Runtime Function: unsigned long long __umodti3 (unsigned long long A, unsigned long long B) These functions return the remainder of the unsigned division of A --- 336,343 ---- -- Runtime Function: unsigned int __umodsi3 (unsigned int A, unsigned int B) ! -- Runtime Function: unsigned long __umoddi3 (unsigned long A, unsigned ! long B) -- Runtime Function: unsigned long long __umodti3 (unsigned long long A, unsigned long long B) These functions return the remainder of the unsigned division of A *************** result using either signed or unsigned c *** 363,379 **** and if A and B are equal they return 1. -- Runtime Function: int __ucmpdi2 (unsigned long A, unsigned long B) ! -- Runtime Function: int __ucmpti2 (unsigned long long A, unsigned ! long long B) ! These functions perform an unsigned comparison of A and B. If A ! is less than B, they return 0; if A is greater than B, they return ! 2; and if A and B are equal they return 1. 4.1.3 Trapping arithmetic functions ----------------------------------- The following functions implement trapping arithmetic. These functions ! call the libc function `abort' upon signed arithmetic overflow. -- Runtime Function: int __absvsi2 (int A) -- Runtime Function: long __absvdi2 (long A) --- 360,376 ---- and if A and B are equal they return 1. -- Runtime Function: int __ucmpdi2 (unsigned long A, unsigned long B) ! -- Runtime Function: int __ucmpti2 (unsigned long long A, unsigned long ! long B) ! These functions perform an unsigned comparison of A and B. If A is ! less than B, they return 0; if A is greater than B, they return 2; ! and if A and B are equal they return 1. 4.1.3 Trapping arithmetic functions ----------------------------------- The following functions implement trapping arithmetic. These functions ! call the libc function 'abort' upon signed arithmetic overflow. -- Runtime Function: int __absvsi2 (int A) -- Runtime Function: long __absvdi2 (long A) *************** call the libc function `abort' upon sign *** 381,400 **** -- Runtime Function: int __addvsi3 (int A, int B) -- Runtime Function: long __addvdi3 (long A, long B) ! These functions return the sum of A and B; that is `A + B'. -- Runtime Function: int __mulvsi3 (int A, int B) -- Runtime Function: long __mulvdi3 (long A, long B) ! The functions return the product of A and B; that is `A * B'. -- Runtime Function: int __negvsi2 (int A) -- Runtime Function: long __negvdi2 (long A) ! These functions return the negation of A; that is `-A'. -- Runtime Function: int __subvsi3 (int A, int B) -- Runtime Function: long __subvdi3 (long A, long B) ! These functions return the difference between B and A; that is `A ! - B'. 4.1.4 Bit operations -------------------- --- 378,397 ---- -- Runtime Function: int __addvsi3 (int A, int B) -- Runtime Function: long __addvdi3 (long A, long B) ! These functions return the sum of A and B; that is 'A + B'. -- Runtime Function: int __mulvsi3 (int A, int B) -- Runtime Function: long __mulvdi3 (long A, long B) ! The functions return the product of A and B; that is 'A * B'. -- Runtime Function: int __negvsi2 (int A) -- Runtime Function: long __negvdi2 (long A) ! These functions return the negation of A; that is '-A'. -- Runtime Function: int __subvsi3 (int A, int B) -- Runtime Function: long __subvdi3 (long A, long B) ! These functions return the difference between B and A; that is 'A - ! B'. 4.1.4 Bit operations -------------------- *************** File: gccint.info, Node: Soft float lib *** 442,456 **** The software floating point library is used on machines which do not have hardware support for floating point. It is also used whenever ! `-msoft-float' is used to disable generation of floating point instructions. (Not all targets support this switch.) For compatibility with other compilers, the floating point emulation ! routines can be renamed with the `DECLARE_LIBRARY_RENAMES' macro (*note Library Calls::). In this section, the default names are used. ! Presently the library does not support `XFmode', which is used for ! `long double' on some architectures. 4.2.1 Arithmetic functions -------------------------- --- 439,453 ---- The software floating point library is used on machines which do not have hardware support for floating point. It is also used whenever ! '-msoft-float' is used to disable generation of floating point instructions. (Not all targets support this switch.) For compatibility with other compilers, the floating point emulation ! routines can be renamed with the 'DECLARE_LIBRARY_RENAMES' macro (*note Library Calls::). In this section, the default names are used. ! Presently the library does not support 'XFmode', which is used for ! 'long double' on some architectures. 4.2.1 Arithmetic functions -------------------------- *************** Library Calls::). In this section, the *** 551,558 **** -- Runtime Function: unsigned long long __fixunsdfti (double A) -- Runtime Function: unsigned long long __fixunstfti (long double A) -- Runtime Function: unsigned long long __fixunsxfti (long double A) ! These functions convert A to an unsigned long long, rounding ! toward zero. Negative values all become zero. -- Runtime Function: float __floatsisf (int I) -- Runtime Function: double __floatsidf (int I) --- 548,555 ---- -- Runtime Function: unsigned long long __fixunsdfti (double A) -- Runtime Function: unsigned long long __fixunstfti (long double A) -- Runtime Function: unsigned long long __fixunsxfti (long double A) ! These functions convert A to an unsigned long long, rounding toward ! zero. Negative values all become zero. -- Runtime Function: float __floatsisf (int I) -- Runtime Function: double __floatsidf (int I) *************** There are two sets of basic comparison f *** 600,609 **** -- Runtime Function: int __cmpdf2 (double A, double B) -- Runtime Function: int __cmptf2 (long double A, long double B) These functions calculate a <=> b. That is, if A is less than B, ! they return -1; if A is greater than B, they return 1; and if A ! and B are equal they return 0. If either argument is NaN they ! return 1, but you should not rely on this; if NaN is a ! possibility, use one of the higher-level comparison functions. -- Runtime Function: int __unordsf2 (float A, float B) -- Runtime Function: int __unorddf2 (double A, double B) --- 597,606 ---- -- Runtime Function: int __cmpdf2 (double A, double B) -- Runtime Function: int __cmptf2 (long double A, long double B) These functions calculate a <=> b. That is, if A is less than B, ! they return -1; if A is greater than B, they return 1; and if A and ! B are equal they return 0. If either argument is NaN they return ! 1, but you should not rely on this; if NaN is a possibility, use ! one of the higher-level comparison functions. -- Runtime Function: int __unordsf2 (float A, float B) -- Runtime Function: int __unorddf2 (double A, double B) *************** hood, all of these routines are implemen *** 621,636 **** return E; return __cmpXf2 (a, b); ! where E is a constant chosen to give the proper behavior for NaN. ! Thus, the meaning of the return value is different for each set. Do ! not rely on this implementation; only the semantics documented below ! are guaranteed. -- Runtime Function: int __eqsf2 (float A, float B) -- Runtime Function: int __eqdf2 (double A, double B) -- Runtime Function: int __eqtf2 (long double A, long double B) ! These functions return zero if neither argument is NaN, and A and ! B are equal. -- Runtime Function: int __nesf2 (float A, float B) -- Runtime Function: int __nedf2 (double A, double B) --- 618,633 ---- return E; return __cmpXf2 (a, b); ! where E is a constant chosen to give the proper behavior for NaN. Thus, ! the meaning of the return value is different for each set. Do not rely ! on this implementation; only the semantics documented below are ! guaranteed. -- Runtime Function: int __eqsf2 (float A, float B) -- Runtime Function: int __eqdf2 (double A, double B) -- Runtime Function: int __eqtf2 (long double A, long double B) ! These functions return zero if neither argument is NaN, and A and B ! are equal. -- Runtime Function: int __nesf2 (float A, float B) -- Runtime Function: int __nedf2 (double A, double B) *************** are guaranteed. *** 671,678 **** -- Runtime Function: long double __powixf2 (long double A, int B) These functions convert raise A to the power B. ! -- Runtime Function: complex float __mulsc3 (float A, float B, float ! C, float D) -- Runtime Function: complex double __muldc3 (double A, double B, double C, double D) -- Runtime Function: complex long double __multc3 (long double A, long --- 668,675 ---- -- Runtime Function: long double __powixf2 (long double A, int B) These functions convert raise A to the power B. ! -- Runtime Function: complex float __mulsc3 (float A, float B, float C, ! float D) -- Runtime Function: complex double __muldc3 (double A, double B, double C, double D) -- Runtime Function: complex long double __multc3 (long double A, long *************** are guaranteed. *** 682,689 **** These functions return the product of A + iB and C + iD, following the rules of C99 Annex G. ! -- Runtime Function: complex float __divsc3 (float A, float B, float ! C, float D) -- Runtime Function: complex double __divdc3 (double A, double B, double C, double D) -- Runtime Function: complex long double __divtc3 (long double A, long --- 679,686 ---- These functions return the product of A + iB and C + iD, following the rules of C99 Annex G. ! -- Runtime Function: complex float __divsc3 (float A, float B, float C, ! float D) -- Runtime Function: complex double __divdc3 (double A, double B, double C, double D) -- Runtime Function: complex long double __divtc3 (long double A, long *************** selected at configure time. *** 882,889 **** -- Runtime Function: unsigned long __bid_fixunsdddi (_Decimal64 A) -- Runtime Function: unsigned long __dpd_fixunstddi (_Decimal128 A) -- Runtime Function: unsigned long __bid_fixunstddi (_Decimal128 A) ! These functions convert A to an unsigned long. Negative values ! all become zero. -- Runtime Function: _Decimal32 __dpd_floatsisd (int I) -- Runtime Function: _Decimal32 __bid_floatsisd (int I) --- 879,886 ---- -- Runtime Function: unsigned long __bid_fixunsdddi (_Decimal64 A) -- Runtime Function: unsigned long __dpd_fixunstddi (_Decimal128 A) -- Runtime Function: unsigned long __bid_fixunstddi (_Decimal128 A) ! These functions convert A to an unsigned long. Negative values all ! become zero. -- Runtime Function: _Decimal32 __dpd_floatsisd (int I) -- Runtime Function: _Decimal32 __bid_floatsisd (int I) *************** selected at configure time. *** 909,916 **** -- Runtime Function: _Decimal64 __bid_floatunssidd (unsigned int I) -- Runtime Function: _Decimal128 __dpd_floatunssitd (unsigned int I) -- Runtime Function: _Decimal128 __bid_floatunssitd (unsigned int I) ! These functions convert I, an unsigned integer, to decimal ! floating point. -- Runtime Function: _Decimal32 __dpd_floatunsdisd (unsigned long I) -- Runtime Function: _Decimal32 __bid_floatunsdisd (unsigned long I) --- 906,913 ---- -- Runtime Function: _Decimal64 __bid_floatunssidd (unsigned int I) -- Runtime Function: _Decimal128 __dpd_floatunssitd (unsigned int I) -- Runtime Function: _Decimal128 __bid_floatunssitd (unsigned int I) ! These functions convert I, an unsigned integer, to decimal floating ! point. -- Runtime Function: _Decimal32 __dpd_floatunsdisd (unsigned long I) -- Runtime Function: _Decimal32 __bid_floatunsdisd (unsigned long I) *************** hood, all of these routines are implemen *** 943,952 **** return E; return __bid_cmpXd2 (a, b); ! where E is a constant chosen to give the proper behavior for NaN. ! Thus, the meaning of the return value is different for each set. Do ! not rely on this implementation; only the semantics documented below ! are guaranteed. -- Runtime Function: int __dpd_eqsd2 (_Decimal32 A, _Decimal32 B) -- Runtime Function: int __bid_eqsd2 (_Decimal32 A, _Decimal32 B) --- 940,949 ---- return E; return __bid_cmpXd2 (a, b); ! where E is a constant chosen to give the proper behavior for NaN. Thus, ! the meaning of the return value is different for each set. Do not rely ! on this implementation; only the semantics documented below are ! guaranteed. -- Runtime Function: int __dpd_eqsd2 (_Decimal32 A, _Decimal32 B) -- Runtime Function: int __bid_eqsd2 (_Decimal32 A, _Decimal32 B) *************** are guaranteed. *** 954,961 **** -- Runtime Function: int __bid_eqdd2 (_Decimal64 A, _Decimal64 B) -- Runtime Function: int __dpd_eqtd2 (_Decimal128 A, _Decimal128 B) -- Runtime Function: int __bid_eqtd2 (_Decimal128 A, _Decimal128 B) ! These functions return zero if neither argument is NaN, and A and ! B are equal. -- Runtime Function: int __dpd_nesd2 (_Decimal32 A, _Decimal32 B) -- Runtime Function: int __bid_nesd2 (_Decimal32 A, _Decimal32 B) --- 951,958 ---- -- Runtime Function: int __bid_eqdd2 (_Decimal64 A, _Decimal64 B) -- Runtime Function: int __dpd_eqtd2 (_Decimal128 A, _Decimal128 B) -- Runtime Function: int __bid_eqtd2 (_Decimal128 A, _Decimal128 B) ! These functions return zero if neither argument is NaN, and A and B ! are equal. -- Runtime Function: int __dpd_nesd2 (_Decimal32 A, _Decimal32 B) -- Runtime Function: int __bid_nesd2 (_Decimal32 A, _Decimal32 B) *************** File: gccint.info, Node: Fixed-point fr *** 1011,1030 **** The software fixed-point library implements fixed-point fractional arithmetic, and is only activated on selected targets. ! For ease of comprehension `fract' is an alias for the `_Fract' type, ! `accum' an alias for `_Accum', and `sat' an alias for `_Sat'. For illustrative purposes, in this section the fixed-point fractional ! type `short fract' is assumed to correspond to machine mode `QQmode'; ! `unsigned short fract' to `UQQmode'; `fract' to `HQmode'; ! `unsigned fract' to `UHQmode'; `long fract' to `SQmode'; ! `unsigned long fract' to `USQmode'; `long long fract' to `DQmode'; and ! `unsigned long long fract' to `UDQmode'. Similarly the fixed-point ! accumulator type `short accum' corresponds to `HAmode'; ! `unsigned short accum' to `UHAmode'; `accum' to `SAmode'; ! `unsigned accum' to `USAmode'; `long accum' to `DAmode'; ! `unsigned long accum' to `UDAmode'; `long long accum' to `TAmode'; and ! `unsigned long long accum' to `UTAmode'. 4.4.1 Arithmetic functions -------------------------- --- 1008,1027 ---- The software fixed-point library implements fixed-point fractional arithmetic, and is only activated on selected targets. ! For ease of comprehension 'fract' is an alias for the '_Fract' type, ! 'accum' an alias for '_Accum', and 'sat' an alias for '_Sat'. For illustrative purposes, in this section the fixed-point fractional ! type 'short fract' is assumed to correspond to machine mode 'QQmode'; ! 'unsigned short fract' to 'UQQmode'; 'fract' to 'HQmode'; ! 'unsigned fract' to 'UHQmode'; 'long fract' to 'SQmode'; ! 'unsigned long fract' to 'USQmode'; 'long long fract' to 'DQmode'; and ! 'unsigned long long fract' to 'UDQmode'. Similarly the fixed-point ! accumulator type 'short accum' corresponds to 'HAmode'; ! 'unsigned short accum' to 'UHAmode'; 'accum' to 'SAmode'; ! 'unsigned accum' to 'USAmode'; 'long accum' to 'DAmode'; ! 'unsigned long accum' to 'UDAmode'; 'long long accum' to 'TAmode'; and ! 'unsigned long long accum' to 'UTAmode'. 4.4.1 Arithmetic functions -------------------------- *************** accumulator type `short accum' correspon *** 1039,1046 **** fract A, unsigned short fract B) -- Runtime Function: unsigned fract __adduhq3 (unsigned fract A, unsigned fract B) ! -- Runtime Function: unsigned long fract __addusq3 (unsigned long ! fract A, unsigned long fract B) -- Runtime Function: unsigned long long fract __addudq3 (unsigned long long fract A, unsigned long long fract B) -- Runtime Function: short accum __addha3 (short accum A, short accum --- 1036,1043 ---- fract A, unsigned short fract B) -- Runtime Function: unsigned fract __adduhq3 (unsigned fract A, unsigned fract B) ! -- Runtime Function: unsigned long fract __addusq3 (unsigned long fract ! A, unsigned long fract B) -- Runtime Function: unsigned long long fract __addudq3 (unsigned long long fract A, unsigned long long fract B) -- Runtime Function: short accum __addha3 (short accum A, short accum *************** accumulator type `short accum' correspon *** 1053,1072 **** accum A, unsigned short accum B) -- Runtime Function: unsigned accum __addusa3 (unsigned accum A, unsigned accum B) ! -- Runtime Function: unsigned long accum __adduda3 (unsigned long ! accum A, unsigned long accum B) -- Runtime Function: unsigned long long accum __adduta3 (unsigned long long accum A, unsigned long long accum B) These functions return the sum of A and B. ! -- Runtime Function: short fract __ssaddqq3 (short fract A, short ! fract B) -- Runtime Function: fract __ssaddhq3 (fract A, fract B) -- Runtime Function: long fract __ssaddsq3 (long fract A, long fract B) -- Runtime Function: long long fract __ssadddq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __ssaddha3 (short accum A, short ! accum B) -- Runtime Function: accum __ssaddsa3 (accum A, accum B) -- Runtime Function: long accum __ssaddda3 (long accum A, long accum B) -- Runtime Function: long long accum __ssaddta3 (long long accum A, --- 1050,1069 ---- accum A, unsigned short accum B) -- Runtime Function: unsigned accum __addusa3 (unsigned accum A, unsigned accum B) ! -- Runtime Function: unsigned long accum __adduda3 (unsigned long accum ! A, unsigned long accum B) -- Runtime Function: unsigned long long accum __adduta3 (unsigned long long accum A, unsigned long long accum B) These functions return the sum of A and B. ! -- Runtime Function: short fract __ssaddqq3 (short fract A, short fract ! B) -- Runtime Function: fract __ssaddhq3 (fract A, fract B) -- Runtime Function: long fract __ssaddsq3 (long fract A, long fract B) -- Runtime Function: long long fract __ssadddq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __ssaddha3 (short accum A, short accum ! B) -- Runtime Function: accum __ssaddsa3 (accum A, accum B) -- Runtime Function: long accum __ssaddda3 (long accum A, long accum B) -- Runtime Function: long long accum __ssaddta3 (long long accum A, *************** accumulator type `short accum' correspon *** 1101,1108 **** fract A, unsigned short fract B) -- Runtime Function: unsigned fract __subuhq3 (unsigned fract A, unsigned fract B) ! -- Runtime Function: unsigned long fract __subusq3 (unsigned long ! fract A, unsigned long fract B) -- Runtime Function: unsigned long long fract __subudq3 (unsigned long long fract A, unsigned long long fract B) -- Runtime Function: short accum __subha3 (short accum A, short accum --- 1098,1105 ---- fract A, unsigned short fract B) -- Runtime Function: unsigned fract __subuhq3 (unsigned fract A, unsigned fract B) ! -- Runtime Function: unsigned long fract __subusq3 (unsigned long fract ! A, unsigned long fract B) -- Runtime Function: unsigned long long fract __subudq3 (unsigned long long fract A, unsigned long long fract B) -- Runtime Function: short accum __subha3 (short accum A, short accum *************** accumulator type `short accum' correspon *** 1115,1140 **** accum A, unsigned short accum B) -- Runtime Function: unsigned accum __subusa3 (unsigned accum A, unsigned accum B) ! -- Runtime Function: unsigned long accum __subuda3 (unsigned long ! accum A, unsigned long accum B) -- Runtime Function: unsigned long long accum __subuta3 (unsigned long long accum A, unsigned long long accum B) ! These functions return the difference of A and B; that is, `A - B'. ! -- Runtime Function: short fract __sssubqq3 (short fract A, short ! fract B) -- Runtime Function: fract __sssubhq3 (fract A, fract B) -- Runtime Function: long fract __sssubsq3 (long fract A, long fract B) -- Runtime Function: long long fract __sssubdq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __sssubha3 (short accum A, short ! accum B) -- Runtime Function: accum __sssubsa3 (accum A, accum B) -- Runtime Function: long accum __sssubda3 (long accum A, long accum B) -- Runtime Function: long long accum __sssubta3 (long long accum A, long long accum B) These functions return the difference of A and B with signed ! saturation; that is, `A - B'. -- Runtime Function: unsigned short fract __ussubuqq3 (unsigned short fract A, unsigned short fract B) --- 1112,1137 ---- accum A, unsigned short accum B) -- Runtime Function: unsigned accum __subusa3 (unsigned accum A, unsigned accum B) ! -- Runtime Function: unsigned long accum __subuda3 (unsigned long accum ! A, unsigned long accum B) -- Runtime Function: unsigned long long accum __subuta3 (unsigned long long accum A, unsigned long long accum B) ! These functions return the difference of A and B; that is, 'A - B'. ! -- Runtime Function: short fract __sssubqq3 (short fract A, short fract ! B) -- Runtime Function: fract __sssubhq3 (fract A, fract B) -- Runtime Function: long fract __sssubsq3 (long fract A, long fract B) -- Runtime Function: long long fract __sssubdq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __sssubha3 (short accum A, short accum ! B) -- Runtime Function: accum __sssubsa3 (accum A, accum B) -- Runtime Function: long accum __sssubda3 (long accum A, long accum B) -- Runtime Function: long long accum __sssubta3 (long long accum A, long long accum B) These functions return the difference of A and B with signed ! saturation; that is, 'A - B'. -- Runtime Function: unsigned short fract __ussubuqq3 (unsigned short fract A, unsigned short fract B) *************** accumulator type `short accum' correspon *** 1153,1159 **** -- Runtime Function: unsigned long long accum __ussubuta3 (unsigned long long accum A, unsigned long long accum B) These functions return the difference of A and B with unsigned ! saturation; that is, `A - B'. -- Runtime Function: short fract __mulqq3 (short fract A, short fract B) --- 1150,1156 ---- -- Runtime Function: unsigned long long accum __ussubuta3 (unsigned long long accum A, unsigned long long accum B) These functions return the difference of A and B with unsigned ! saturation; that is, 'A - B'. -- Runtime Function: short fract __mulqq3 (short fract A, short fract B) *************** accumulator type `short accum' correspon *** 1165,1172 **** fract A, unsigned short fract B) -- Runtime Function: unsigned fract __muluhq3 (unsigned fract A, unsigned fract B) ! -- Runtime Function: unsigned long fract __mulusq3 (unsigned long ! fract A, unsigned long fract B) -- Runtime Function: unsigned long long fract __muludq3 (unsigned long long fract A, unsigned long long fract B) -- Runtime Function: short accum __mulha3 (short accum A, short accum --- 1162,1169 ---- fract A, unsigned short fract B) -- Runtime Function: unsigned fract __muluhq3 (unsigned fract A, unsigned fract B) ! -- Runtime Function: unsigned long fract __mulusq3 (unsigned long fract ! A, unsigned long fract B) -- Runtime Function: unsigned long long fract __muludq3 (unsigned long long fract A, unsigned long long fract B) -- Runtime Function: short accum __mulha3 (short accum A, short accum *************** accumulator type `short accum' correspon *** 1179,1198 **** accum A, unsigned short accum B) -- Runtime Function: unsigned accum __mulusa3 (unsigned accum A, unsigned accum B) ! -- Runtime Function: unsigned long accum __muluda3 (unsigned long ! accum A, unsigned long accum B) -- Runtime Function: unsigned long long accum __muluta3 (unsigned long long accum A, unsigned long long accum B) These functions return the product of A and B. ! -- Runtime Function: short fract __ssmulqq3 (short fract A, short ! fract B) -- Runtime Function: fract __ssmulhq3 (fract A, fract B) -- Runtime Function: long fract __ssmulsq3 (long fract A, long fract B) -- Runtime Function: long long fract __ssmuldq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __ssmulha3 (short accum A, short ! accum B) -- Runtime Function: accum __ssmulsa3 (accum A, accum B) -- Runtime Function: long accum __ssmulda3 (long accum A, long accum B) -- Runtime Function: long long accum __ssmulta3 (long long accum A, --- 1176,1195 ---- accum A, unsigned short accum B) -- Runtime Function: unsigned accum __mulusa3 (unsigned accum A, unsigned accum B) ! -- Runtime Function: unsigned long accum __muluda3 (unsigned long accum ! A, unsigned long accum B) -- Runtime Function: unsigned long long accum __muluta3 (unsigned long long accum A, unsigned long long accum B) These functions return the product of A and B. ! -- Runtime Function: short fract __ssmulqq3 (short fract A, short fract ! B) -- Runtime Function: fract __ssmulhq3 (fract A, fract B) -- Runtime Function: long fract __ssmulsq3 (long fract A, long fract B) -- Runtime Function: long long fract __ssmuldq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __ssmulha3 (short accum A, short accum ! B) -- Runtime Function: accum __ssmulsa3 (accum A, accum B) -- Runtime Function: long accum __ssmulda3 (long accum A, long accum B) -- Runtime Function: long long accum __ssmulta3 (long long accum A, *************** accumulator type `short accum' correspon *** 1231,1238 **** -- Runtime Function: long accum __divda3 (long accum A, long accum B) -- Runtime Function: long long accum __divta3 (long long accum A, long long accum B) ! These functions return the quotient of the signed division of A ! and B. -- Runtime Function: unsigned short fract __udivuqq3 (unsigned short fract A, unsigned short fract B) --- 1228,1235 ---- -- Runtime Function: long accum __divda3 (long accum A, long accum B) -- Runtime Function: long long accum __divta3 (long long accum A, long long accum B) ! These functions return the quotient of the signed division of A and ! B. -- Runtime Function: unsigned short fract __udivuqq3 (unsigned short fract A, unsigned short fract B) *************** accumulator type `short accum' correspon *** 1240,1272 **** unsigned fract B) -- Runtime Function: unsigned long fract __udivusq3 (unsigned long fract A, unsigned long fract B) ! -- Runtime Function: unsigned long long fract __udivudq3 (unsigned ! long long fract A, unsigned long long fract B) -- Runtime Function: unsigned short accum __udivuha3 (unsigned short accum A, unsigned short accum B) -- Runtime Function: unsigned accum __udivusa3 (unsigned accum A, unsigned accum B) -- Runtime Function: unsigned long accum __udivuda3 (unsigned long accum A, unsigned long accum B) ! -- Runtime Function: unsigned long long accum __udivuta3 (unsigned ! long long accum A, unsigned long long accum B) These functions return the quotient of the unsigned division of A and B. ! -- Runtime Function: short fract __ssdivqq3 (short fract A, short ! fract B) -- Runtime Function: fract __ssdivhq3 (fract A, fract B) -- Runtime Function: long fract __ssdivsq3 (long fract A, long fract B) -- Runtime Function: long long fract __ssdivdq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __ssdivha3 (short accum A, short ! accum B) -- Runtime Function: accum __ssdivsa3 (accum A, accum B) -- Runtime Function: long accum __ssdivda3 (long accum A, long accum B) -- Runtime Function: long long accum __ssdivta3 (long long accum A, long long accum B) ! These functions return the quotient of the signed division of A ! and B with signed saturation. -- Runtime Function: unsigned short fract __usdivuqq3 (unsigned short fract A, unsigned short fract B) --- 1237,1269 ---- unsigned fract B) -- Runtime Function: unsigned long fract __udivusq3 (unsigned long fract A, unsigned long fract B) ! -- Runtime Function: unsigned long long fract __udivudq3 (unsigned long ! long fract A, unsigned long long fract B) -- Runtime Function: unsigned short accum __udivuha3 (unsigned short accum A, unsigned short accum B) -- Runtime Function: unsigned accum __udivusa3 (unsigned accum A, unsigned accum B) -- Runtime Function: unsigned long accum __udivuda3 (unsigned long accum A, unsigned long accum B) ! -- Runtime Function: unsigned long long accum __udivuta3 (unsigned long ! long accum A, unsigned long long accum B) These functions return the quotient of the unsigned division of A and B. ! -- Runtime Function: short fract __ssdivqq3 (short fract A, short fract ! B) -- Runtime Function: fract __ssdivhq3 (fract A, fract B) -- Runtime Function: long fract __ssdivsq3 (long fract A, long fract B) -- Runtime Function: long long fract __ssdivdq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __ssdivha3 (short accum A, short accum ! B) -- Runtime Function: accum __ssdivsa3 (accum A, accum B) -- Runtime Function: long accum __ssdivda3 (long accum A, long accum B) -- Runtime Function: long long accum __ssdivta3 (long long accum A, long long accum B) ! These functions return the quotient of the signed division of A and ! B with signed saturation. -- Runtime Function: unsigned short fract __usdivuqq3 (unsigned short fract A, unsigned short fract B) *************** accumulator type `short accum' correspon *** 1294,1301 **** -- Runtime Function: unsigned short fract __neguqq2 (unsigned short fract A) -- Runtime Function: unsigned fract __neguhq2 (unsigned fract A) ! -- Runtime Function: unsigned long fract __negusq2 (unsigned long ! fract A) -- Runtime Function: unsigned long long fract __negudq2 (unsigned long long fract A) -- Runtime Function: short accum __negha2 (short accum A) --- 1291,1298 ---- -- Runtime Function: unsigned short fract __neguqq2 (unsigned short fract A) -- Runtime Function: unsigned fract __neguhq2 (unsigned fract A) ! -- Runtime Function: unsigned long fract __negusq2 (unsigned long fract ! A) -- Runtime Function: unsigned long long fract __negudq2 (unsigned long long fract A) -- Runtime Function: short accum __negha2 (short accum A) *************** accumulator type `short accum' correspon *** 1305,1312 **** -- Runtime Function: unsigned short accum __neguha2 (unsigned short accum A) -- Runtime Function: unsigned accum __negusa2 (unsigned accum A) ! -- Runtime Function: unsigned long accum __neguda2 (unsigned long ! accum A) -- Runtime Function: unsigned long long accum __neguta2 (unsigned long long accum A) These functions return the negation of A. --- 1302,1309 ---- -- Runtime Function: unsigned short accum __neguha2 (unsigned short accum A) -- Runtime Function: unsigned accum __negusa2 (unsigned accum A) ! -- Runtime Function: unsigned long accum __neguda2 (unsigned long accum ! A) -- Runtime Function: unsigned long long accum __neguta2 (unsigned long long accum A) These functions return the negation of A. *************** accumulator type `short accum' correspon *** 1348,1355 **** B) -- Runtime Function: unsigned long fract __ashlusq3 (unsigned long fract A, int B) ! -- Runtime Function: unsigned long long fract __ashludq3 (unsigned ! long long fract A, int B) -- Runtime Function: short accum __ashlha3 (short accum A, int B) -- Runtime Function: accum __ashlsa3 (accum A, int B) -- Runtime Function: long accum __ashlda3 (long accum A, int B) --- 1345,1352 ---- B) -- Runtime Function: unsigned long fract __ashlusq3 (unsigned long fract A, int B) ! -- Runtime Function: unsigned long long fract __ashludq3 (unsigned long ! long fract A, int B) -- Runtime Function: short accum __ashlha3 (short accum A, int B) -- Runtime Function: accum __ashlsa3 (accum A, int B) -- Runtime Function: long accum __ashlda3 (long accum A, int B) *************** accumulator type `short accum' correspon *** 1361,1368 **** B) -- Runtime Function: unsigned long accum __ashluda3 (unsigned long accum A, int B) ! -- Runtime Function: unsigned long long accum __ashluta3 (unsigned ! long long accum A, int B) These functions return the result of shifting A left by B bits. -- Runtime Function: short fract __ashrqq3 (short fract A, int B) --- 1358,1365 ---- B) -- Runtime Function: unsigned long accum __ashluda3 (unsigned long accum A, int B) ! -- Runtime Function: unsigned long long accum __ashluta3 (unsigned long ! long accum A, int B) These functions return the result of shifting A left by B bits. -- Runtime Function: short fract __ashrqq3 (short fract A, int B) *************** accumulator type `short accum' correspon *** 1384,1399 **** B) -- Runtime Function: unsigned long fract __lshrusq3 (unsigned long fract A, int B) ! -- Runtime Function: unsigned long long fract __lshrudq3 (unsigned ! long long fract A, int B) -- Runtime Function: unsigned short accum __lshruha3 (unsigned short accum A, int B) -- Runtime Function: unsigned accum __lshrusa3 (unsigned accum A, int B) -- Runtime Function: unsigned long accum __lshruda3 (unsigned long accum A, int B) ! -- Runtime Function: unsigned long long accum __lshruta3 (unsigned ! long long accum A, int B) These functions return the result of logically shifting A right by B bits. --- 1381,1396 ---- B) -- Runtime Function: unsigned long fract __lshrusq3 (unsigned long fract A, int B) ! -- Runtime Function: unsigned long long fract __lshrudq3 (unsigned long ! long fract A, int B) -- Runtime Function: unsigned short accum __lshruha3 (unsigned short accum A, int B) -- Runtime Function: unsigned accum __lshrusa3 (unsigned accum A, int B) -- Runtime Function: unsigned long accum __lshruda3 (unsigned long accum A, int B) ! -- Runtime Function: unsigned long long accum __lshruta3 (unsigned long ! long accum A, int B) These functions return the result of logically shifting A right by B bits. *************** accumulator type `short accum' correspon *** 1406,1432 **** -- Runtime Function: long accum __ssashlda3 (long accum A, int B) -- Runtime Function: long long accum __ssashlta3 (long long accum A, int B) ! These functions return the result of shifting A left by B bits ! with signed saturation. -- Runtime Function: unsigned short fract __usashluqq3 (unsigned short fract A, int B) ! -- Runtime Function: unsigned fract __usashluhq3 (unsigned fract A, ! int B) -- Runtime Function: unsigned long fract __usashlusq3 (unsigned long fract A, int B) -- Runtime Function: unsigned long long fract __usashludq3 (unsigned long long fract A, int B) -- Runtime Function: unsigned short accum __usashluha3 (unsigned short accum A, int B) ! -- Runtime Function: unsigned accum __usashlusa3 (unsigned accum A, ! int B) -- Runtime Function: unsigned long accum __usashluda3 (unsigned long accum A, int B) -- Runtime Function: unsigned long long accum __usashluta3 (unsigned long long accum A, int B) ! These functions return the result of shifting A left by B bits ! with unsigned saturation. 4.4.2 Comparison functions -------------------------- --- 1403,1429 ---- -- Runtime Function: long accum __ssashlda3 (long accum A, int B) -- Runtime Function: long long accum __ssashlta3 (long long accum A, int B) ! These functions return the result of shifting A left by B bits with ! signed saturation. -- Runtime Function: unsigned short fract __usashluqq3 (unsigned short fract A, int B) ! -- Runtime Function: unsigned fract __usashluhq3 (unsigned fract A, int ! B) -- Runtime Function: unsigned long fract __usashlusq3 (unsigned long fract A, int B) -- Runtime Function: unsigned long long fract __usashludq3 (unsigned long long fract A, int B) -- Runtime Function: unsigned short accum __usashluha3 (unsigned short accum A, int B) ! -- Runtime Function: unsigned accum __usashlusa3 (unsigned accum A, int ! B) -- Runtime Function: unsigned long accum __usashluda3 (unsigned long accum A, int B) -- Runtime Function: unsigned long long accum __usashluta3 (unsigned long long accum A, int B) ! These functions return the result of shifting A left by B bits with ! unsigned saturation. 4.4.2 Comparison functions -------------------------- *************** returned result using either signed or u *** 1480,1492 **** -- Runtime Function: unsigned short fract __fractqquqq (short fract A) -- Runtime Function: unsigned fract __fractqquhq (short fract A) -- Runtime Function: unsigned long fract __fractqqusq (short fract A) ! -- Runtime Function: unsigned long long fract __fractqqudq (short ! fract A) -- Runtime Function: unsigned short accum __fractqquha (short fract A) -- Runtime Function: unsigned accum __fractqqusa (short fract A) -- Runtime Function: unsigned long accum __fractqquda (short fract A) ! -- Runtime Function: unsigned long long accum __fractqquta (short ! fract A) -- Runtime Function: signed char __fractqqqi (short fract A) -- Runtime Function: short __fractqqhi (short fract A) -- Runtime Function: int __fractqqsi (short fract A) --- 1477,1489 ---- -- Runtime Function: unsigned short fract __fractqquqq (short fract A) -- Runtime Function: unsigned fract __fractqquhq (short fract A) -- Runtime Function: unsigned long fract __fractqqusq (short fract A) ! -- Runtime Function: unsigned long long fract __fractqqudq (short fract ! A) -- Runtime Function: unsigned short accum __fractqquha (short fract A) -- Runtime Function: unsigned accum __fractqqusa (short fract A) -- Runtime Function: unsigned long accum __fractqquda (short fract A) ! -- Runtime Function: unsigned long long accum __fractqquta (short fract ! A) -- Runtime Function: signed char __fractqqqi (short fract A) -- Runtime Function: short __fractqqhi (short fract A) -- Runtime Function: int __fractqqsi (short fract A) *************** returned result using either signed or u *** 1547,1561 **** -- Runtime Function: accum __fractdqsa (long long fract A) -- Runtime Function: long accum __fractdqda (long long fract A) -- Runtime Function: long long accum __fractdqta (long long fract A) ! -- Runtime Function: unsigned short fract __fractdquqq (long long ! fract A) -- Runtime Function: unsigned fract __fractdquhq (long long fract A) -- Runtime Function: unsigned long fract __fractdqusq (long long fract A) -- Runtime Function: unsigned long long fract __fractdqudq (long long fract A) ! -- Runtime Function: unsigned short accum __fractdquha (long long ! fract A) -- Runtime Function: unsigned accum __fractdqusa (long long fract A) -- Runtime Function: unsigned long accum __fractdquda (long long fract A) --- 1544,1558 ---- -- Runtime Function: accum __fractdqsa (long long fract A) -- Runtime Function: long accum __fractdqda (long long fract A) -- Runtime Function: long long accum __fractdqta (long long fract A) ! -- Runtime Function: unsigned short fract __fractdquqq (long long fract ! A) -- Runtime Function: unsigned fract __fractdquhq (long long fract A) -- Runtime Function: unsigned long fract __fractdqusq (long long fract A) -- Runtime Function: unsigned long long fract __fractdqudq (long long fract A) ! -- Runtime Function: unsigned short accum __fractdquha (long long fract ! A) -- Runtime Function: unsigned accum __fractdqusa (long long fract A) -- Runtime Function: unsigned long accum __fractdquda (long long fract A) *************** returned result using either signed or u *** 1578,1590 **** -- Runtime Function: unsigned short fract __fracthauqq (short accum A) -- Runtime Function: unsigned fract __fracthauhq (short accum A) -- Runtime Function: unsigned long fract __fracthausq (short accum A) ! -- Runtime Function: unsigned long long fract __fracthaudq (short ! accum A) -- Runtime Function: unsigned short accum __fracthauha (short accum A) -- Runtime Function: unsigned accum __fracthausa (short accum A) -- Runtime Function: unsigned long accum __fracthauda (short accum A) ! -- Runtime Function: unsigned long long accum __fracthauta (short ! accum A) -- Runtime Function: signed char __fracthaqi (short accum A) -- Runtime Function: short __fracthahi (short accum A) -- Runtime Function: int __fracthasi (short accum A) --- 1575,1587 ---- -- Runtime Function: unsigned short fract __fracthauqq (short accum A) -- Runtime Function: unsigned fract __fracthauhq (short accum A) -- Runtime Function: unsigned long fract __fracthausq (short accum A) ! -- Runtime Function: unsigned long long fract __fracthaudq (short accum ! A) -- Runtime Function: unsigned short accum __fracthauha (short accum A) -- Runtime Function: unsigned accum __fracthausa (short accum A) -- Runtime Function: unsigned long accum __fracthauda (short accum A) ! -- Runtime Function: unsigned long long accum __fracthauta (short accum ! A) -- Runtime Function: signed char __fracthaqi (short accum A) -- Runtime Function: short __fracthahi (short accum A) -- Runtime Function: int __fracthasi (short accum A) *************** returned result using either signed or u *** 1645,1659 **** -- Runtime Function: short accum __fracttaha2 (long long accum A) -- Runtime Function: accum __fracttasa2 (long long accum A) -- Runtime Function: long accum __fracttada2 (long long accum A) ! -- Runtime Function: unsigned short fract __fracttauqq (long long ! accum A) -- Runtime Function: unsigned fract __fracttauhq (long long accum A) -- Runtime Function: unsigned long fract __fracttausq (long long accum A) -- Runtime Function: unsigned long long fract __fracttaudq (long long accum A) ! -- Runtime Function: unsigned short accum __fracttauha (long long ! accum A) -- Runtime Function: unsigned accum __fracttausa (long long accum A) -- Runtime Function: unsigned long accum __fracttauda (long long accum A) --- 1642,1656 ---- -- Runtime Function: short accum __fracttaha2 (long long accum A) -- Runtime Function: accum __fracttasa2 (long long accum A) -- Runtime Function: long accum __fracttada2 (long long accum A) ! -- Runtime Function: unsigned short fract __fracttauqq (long long accum ! A) -- Runtime Function: unsigned fract __fracttauhq (long long accum A) -- Runtime Function: unsigned long fract __fracttausq (long long accum A) -- Runtime Function: unsigned long long fract __fracttaudq (long long accum A) ! -- Runtime Function: unsigned short accum __fracttauha (long long accum ! A) -- Runtime Function: unsigned accum __fracttausa (long long accum A) -- Runtime Function: unsigned long accum __fracttauda (long long accum A) *************** returned result using either signed or u *** 1669,1691 **** -- Runtime Function: short fract __fractuqqqq (unsigned short fract A) -- Runtime Function: fract __fractuqqhq (unsigned short fract A) -- Runtime Function: long fract __fractuqqsq (unsigned short fract A) ! -- Runtime Function: long long fract __fractuqqdq (unsigned short ! fract A) -- Runtime Function: short accum __fractuqqha (unsigned short fract A) -- Runtime Function: accum __fractuqqsa (unsigned short fract A) -- Runtime Function: long accum __fractuqqda (unsigned short fract A) ! -- Runtime Function: long long accum __fractuqqta (unsigned short ! fract A) -- Runtime Function: unsigned fract __fractuqquhq2 (unsigned short fract A) ! -- Runtime Function: unsigned long fract __fractuqqusq2 (unsigned ! short fract A) -- Runtime Function: unsigned long long fract __fractuqqudq2 (unsigned short fract A) ! -- Runtime Function: unsigned short accum __fractuqquha (unsigned ! short fract A) ! -- Runtime Function: unsigned accum __fractuqqusa (unsigned short fract A) -- Runtime Function: unsigned long accum __fractuqquda (unsigned short fract A) -- Runtime Function: unsigned long long accum __fractuqquta (unsigned --- 1666,1688 ---- -- Runtime Function: short fract __fractuqqqq (unsigned short fract A) -- Runtime Function: fract __fractuqqhq (unsigned short fract A) -- Runtime Function: long fract __fractuqqsq (unsigned short fract A) ! -- Runtime Function: long long fract __fractuqqdq (unsigned short fract ! A) -- Runtime Function: short accum __fractuqqha (unsigned short fract A) -- Runtime Function: accum __fractuqqsa (unsigned short fract A) -- Runtime Function: long accum __fractuqqda (unsigned short fract A) ! -- Runtime Function: long long accum __fractuqqta (unsigned short fract ! A) -- Runtime Function: unsigned fract __fractuqquhq2 (unsigned short fract A) ! -- Runtime Function: unsigned long fract __fractuqqusq2 (unsigned short ! fract A) -- Runtime Function: unsigned long long fract __fractuqqudq2 (unsigned short fract A) ! -- Runtime Function: unsigned short accum __fractuqquha (unsigned short fract A) + -- Runtime Function: unsigned accum __fractuqqusa (unsigned short fract + A) -- Runtime Function: unsigned long accum __fractuqquda (unsigned short fract A) -- Runtime Function: unsigned long long accum __fractuqquta (unsigned *************** returned result using either signed or u *** 1707,1718 **** -- Runtime Function: long long accum __fractuhqta (unsigned fract A) -- Runtime Function: unsigned short fract __fractuhquqq2 (unsigned fract A) ! -- Runtime Function: unsigned long fract __fractuhqusq2 (unsigned ! fract A) -- Runtime Function: unsigned long long fract __fractuhqudq2 (unsigned fract A) ! -- Runtime Function: unsigned short accum __fractuhquha (unsigned ! fract A) -- Runtime Function: unsigned accum __fractuhqusa (unsigned fract A) -- Runtime Function: unsigned long accum __fractuhquda (unsigned fract A) --- 1704,1715 ---- -- Runtime Function: long long accum __fractuhqta (unsigned fract A) -- Runtime Function: unsigned short fract __fractuhquqq2 (unsigned fract A) ! -- Runtime Function: unsigned long fract __fractuhqusq2 (unsigned fract ! A) -- Runtime Function: unsigned long long fract __fractuhqudq2 (unsigned fract A) ! -- Runtime Function: unsigned short accum __fractuhquha (unsigned fract ! A) -- Runtime Function: unsigned accum __fractuhqusa (unsigned fract A) -- Runtime Function: unsigned long accum __fractuhquda (unsigned fract A) *************** returned result using either signed or u *** 1735,1744 **** -- Runtime Function: long accum __fractusqda (unsigned long fract A) -- Runtime Function: long long accum __fractusqta (unsigned long fract A) ! -- Runtime Function: unsigned short fract __fractusquqq2 (unsigned ! long fract A) ! -- Runtime Function: unsigned fract __fractusquhq2 (unsigned long fract A) -- Runtime Function: unsigned long long fract __fractusqudq2 (unsigned long fract A) -- Runtime Function: unsigned short accum __fractusquha (unsigned long --- 1732,1741 ---- -- Runtime Function: long accum __fractusqda (unsigned long fract A) -- Runtime Function: long long accum __fractusqta (unsigned long fract A) ! -- Runtime Function: unsigned short fract __fractusquqq2 (unsigned long fract A) + -- Runtime Function: unsigned fract __fractusquhq2 (unsigned long fract + A) -- Runtime Function: unsigned long long fract __fractusqudq2 (unsigned long fract A) -- Runtime Function: unsigned short accum __fractusquha (unsigned long *************** returned result using either signed or u *** 1756,1777 **** -- Runtime Function: long long __fractusqti (unsigned long fract A) -- Runtime Function: float __fractusqsf (unsigned long fract A) -- Runtime Function: double __fractusqdf (unsigned long fract A) ! -- Runtime Function: short fract __fractudqqq (unsigned long long ! fract A) -- Runtime Function: fract __fractudqhq (unsigned long long fract A) -- Runtime Function: long fract __fractudqsq (unsigned long long fract A) -- Runtime Function: long long fract __fractudqdq (unsigned long long fract A) ! -- Runtime Function: short accum __fractudqha (unsigned long long ! fract A) -- Runtime Function: accum __fractudqsa (unsigned long long fract A) -- Runtime Function: long accum __fractudqda (unsigned long long fract A) -- Runtime Function: long long accum __fractudqta (unsigned long long fract A) ! -- Runtime Function: unsigned short fract __fractudquqq2 (unsigned ! long long fract A) -- Runtime Function: unsigned fract __fractudquhq2 (unsigned long long fract A) -- Runtime Function: unsigned long fract __fractudqusq2 (unsigned long --- 1753,1774 ---- -- Runtime Function: long long __fractusqti (unsigned long fract A) -- Runtime Function: float __fractusqsf (unsigned long fract A) -- Runtime Function: double __fractusqdf (unsigned long fract A) ! -- Runtime Function: short fract __fractudqqq (unsigned long long fract ! A) -- Runtime Function: fract __fractudqhq (unsigned long long fract A) -- Runtime Function: long fract __fractudqsq (unsigned long long fract A) -- Runtime Function: long long fract __fractudqdq (unsigned long long fract A) ! -- Runtime Function: short accum __fractudqha (unsigned long long fract ! A) -- Runtime Function: accum __fractudqsa (unsigned long long fract A) -- Runtime Function: long accum __fractudqda (unsigned long long fract A) -- Runtime Function: long long accum __fractudqta (unsigned long long fract A) ! -- Runtime Function: unsigned short fract __fractudquqq2 (unsigned long ! long fract A) -- Runtime Function: unsigned fract __fractudquhq2 (unsigned long long fract A) -- Runtime Function: unsigned long fract __fractudqusq2 (unsigned long *************** returned result using either signed or u *** 1784,1791 **** long fract A) -- Runtime Function: unsigned long long accum __fractudquta (unsigned long long fract A) ! -- Runtime Function: signed char __fractudqqi (unsigned long long ! fract A) -- Runtime Function: short __fractudqhi (unsigned long long fract A) -- Runtime Function: int __fractudqsi (unsigned long long fract A) -- Runtime Function: long __fractudqdi (unsigned long long fract A) --- 1781,1788 ---- long fract A) -- Runtime Function: unsigned long long accum __fractudquta (unsigned long long fract A) ! -- Runtime Function: signed char __fractudqqi (unsigned long long fract ! A) -- Runtime Function: short __fractudqhi (unsigned long long fract A) -- Runtime Function: int __fractudqsi (unsigned long long fract A) -- Runtime Function: long __fractudqdi (unsigned long long fract A) *************** returned result using either signed or u *** 1796,1820 **** -- Runtime Function: short fract __fractuhaqq (unsigned short accum A) -- Runtime Function: fract __fractuhahq (unsigned short accum A) -- Runtime Function: long fract __fractuhasq (unsigned short accum A) ! -- Runtime Function: long long fract __fractuhadq (unsigned short ! accum A) -- Runtime Function: short accum __fractuhaha (unsigned short accum A) -- Runtime Function: accum __fractuhasa (unsigned short accum A) -- Runtime Function: long accum __fractuhada (unsigned short accum A) ! -- Runtime Function: long long accum __fractuhata (unsigned short ! accum A) ! -- Runtime Function: unsigned short fract __fractuhauqq (unsigned ! short accum A) ! -- Runtime Function: unsigned fract __fractuhauhq (unsigned short accum A) -- Runtime Function: unsigned long fract __fractuhausq (unsigned short accum A) -- Runtime Function: unsigned long long fract __fractuhaudq (unsigned short accum A) -- Runtime Function: unsigned accum __fractuhausa2 (unsigned short accum A) ! -- Runtime Function: unsigned long accum __fractuhauda2 (unsigned ! short accum A) -- Runtime Function: unsigned long long accum __fractuhauta2 (unsigned short accum A) -- Runtime Function: signed char __fractuhaqi (unsigned short accum A) --- 1793,1817 ---- -- Runtime Function: short fract __fractuhaqq (unsigned short accum A) -- Runtime Function: fract __fractuhahq (unsigned short accum A) -- Runtime Function: long fract __fractuhasq (unsigned short accum A) ! -- Runtime Function: long long fract __fractuhadq (unsigned short accum ! A) -- Runtime Function: short accum __fractuhaha (unsigned short accum A) -- Runtime Function: accum __fractuhasa (unsigned short accum A) -- Runtime Function: long accum __fractuhada (unsigned short accum A) ! -- Runtime Function: long long accum __fractuhata (unsigned short accum ! A) ! -- Runtime Function: unsigned short fract __fractuhauqq (unsigned short accum A) + -- Runtime Function: unsigned fract __fractuhauhq (unsigned short accum + A) -- Runtime Function: unsigned long fract __fractuhausq (unsigned short accum A) -- Runtime Function: unsigned long long fract __fractuhaudq (unsigned short accum A) -- Runtime Function: unsigned accum __fractuhausa2 (unsigned short accum A) ! -- Runtime Function: unsigned long accum __fractuhauda2 (unsigned short ! accum A) -- Runtime Function: unsigned long long accum __fractuhauta2 (unsigned short accum A) -- Runtime Function: signed char __fractuhaqi (unsigned short accum A) *************** returned result using either signed or u *** 1832,1839 **** -- Runtime Function: accum __fractusasa (unsigned accum A) -- Runtime Function: long accum __fractusada (unsigned accum A) -- Runtime Function: long long accum __fractusata (unsigned accum A) ! -- Runtime Function: unsigned short fract __fractusauqq (unsigned ! accum A) -- Runtime Function: unsigned fract __fractusauhq (unsigned accum A) -- Runtime Function: unsigned long fract __fractusausq (unsigned accum A) --- 1829,1836 ---- -- Runtime Function: accum __fractusasa (unsigned accum A) -- Runtime Function: long accum __fractusada (unsigned accum A) -- Runtime Function: long long accum __fractusata (unsigned accum A) ! -- Runtime Function: unsigned short fract __fractusauqq (unsigned accum ! A) -- Runtime Function: unsigned fract __fractusauhq (unsigned accum A) -- Runtime Function: unsigned long fract __fractusausq (unsigned accum A) *************** returned result using either signed or u *** 1841,1848 **** accum A) -- Runtime Function: unsigned short accum __fractusauha2 (unsigned accum A) ! -- Runtime Function: unsigned long accum __fractusauda2 (unsigned ! accum A) -- Runtime Function: unsigned long long accum __fractusauta2 (unsigned accum A) -- Runtime Function: signed char __fractusaqi (unsigned accum A) --- 1838,1845 ---- accum A) -- Runtime Function: unsigned short accum __fractusauha2 (unsigned accum A) ! -- Runtime Function: unsigned long accum __fractusauda2 (unsigned accum ! A) -- Runtime Function: unsigned long long accum __fractusauta2 (unsigned accum A) -- Runtime Function: signed char __fractusaqi (unsigned accum A) *************** returned result using either signed or u *** 1870,1879 **** accum A) -- Runtime Function: unsigned long long fract __fractudaudq (unsigned long accum A) ! -- Runtime Function: unsigned short accum __fractudauha2 (unsigned ! long accum A) ! -- Runtime Function: unsigned accum __fractudausa2 (unsigned long accum A) -- Runtime Function: unsigned long long accum __fractudauta2 (unsigned long accum A) -- Runtime Function: signed char __fractudaqi (unsigned long accum A) --- 1867,1876 ---- accum A) -- Runtime Function: unsigned long long fract __fractudaudq (unsigned long accum A) ! -- Runtime Function: unsigned short accum __fractudauha2 (unsigned long accum A) + -- Runtime Function: unsigned accum __fractudausa2 (unsigned long accum + A) -- Runtime Function: unsigned long long accum __fractudauta2 (unsigned long accum A) -- Runtime Function: signed char __fractudaqi (unsigned long accum A) *************** returned result using either signed or u *** 1883,1897 **** -- Runtime Function: long long __fractudati (unsigned long accum A) -- Runtime Function: float __fractudasf (unsigned long accum A) -- Runtime Function: double __fractudadf (unsigned long accum A) ! -- Runtime Function: short fract __fractutaqq (unsigned long long ! accum A) -- Runtime Function: fract __fractutahq (unsigned long long accum A) -- Runtime Function: long fract __fractutasq (unsigned long long accum A) -- Runtime Function: long long fract __fractutadq (unsigned long long accum A) ! -- Runtime Function: short accum __fractutaha (unsigned long long ! accum A) -- Runtime Function: accum __fractutasa (unsigned long long accum A) -- Runtime Function: long accum __fractutada (unsigned long long accum A) --- 1880,1894 ---- -- Runtime Function: long long __fractudati (unsigned long accum A) -- Runtime Function: float __fractudasf (unsigned long accum A) -- Runtime Function: double __fractudadf (unsigned long accum A) ! -- Runtime Function: short fract __fractutaqq (unsigned long long accum ! A) -- Runtime Function: fract __fractutahq (unsigned long long accum A) -- Runtime Function: long fract __fractutasq (unsigned long long accum A) -- Runtime Function: long long fract __fractutadq (unsigned long long accum A) ! -- Runtime Function: short accum __fractutaha (unsigned long long accum ! A) -- Runtime Function: accum __fractutasa (unsigned long long accum A) -- Runtime Function: long accum __fractutada (unsigned long long accum A) *************** returned result using either signed or u *** 1905,1918 **** long accum A) -- Runtime Function: unsigned long long fract __fractutaudq (unsigned long long accum A) ! -- Runtime Function: unsigned short accum __fractutauha2 (unsigned ! long long accum A) -- Runtime Function: unsigned accum __fractutausa2 (unsigned long long accum A) -- Runtime Function: unsigned long accum __fractutauda2 (unsigned long long accum A) ! -- Runtime Function: signed char __fractutaqi (unsigned long long ! accum A) -- Runtime Function: short __fractutahi (unsigned long long accum A) -- Runtime Function: int __fractutasi (unsigned long long accum A) -- Runtime Function: long __fractutadi (unsigned long long accum A) --- 1902,1915 ---- long accum A) -- Runtime Function: unsigned long long fract __fractutaudq (unsigned long long accum A) ! -- Runtime Function: unsigned short accum __fractutauha2 (unsigned long ! long accum A) -- Runtime Function: unsigned accum __fractutausa2 (unsigned long long accum A) -- Runtime Function: unsigned long accum __fractutauda2 (unsigned long long accum A) ! -- Runtime Function: signed char __fractutaqi (unsigned long long accum ! A) -- Runtime Function: short __fractutahi (unsigned long long accum A) -- Runtime Function: int __fractutasi (unsigned long long accum A) -- Runtime Function: long __fractutadi (unsigned long long accum A) *************** returned result using either signed or u *** 1931,1943 **** -- Runtime Function: unsigned short fract __fractqiuqq (signed char A) -- Runtime Function: unsigned fract __fractqiuhq (signed char A) -- Runtime Function: unsigned long fract __fractqiusq (signed char A) ! -- Runtime Function: unsigned long long fract __fractqiudq (signed ! char A) -- Runtime Function: unsigned short accum __fractqiuha (signed char A) -- Runtime Function: unsigned accum __fractqiusa (signed char A) -- Runtime Function: unsigned long accum __fractqiuda (signed char A) ! -- Runtime Function: unsigned long long accum __fractqiuta (signed ! char A) -- Runtime Function: short fract __fracthiqq (short A) -- Runtime Function: fract __fracthihq (short A) -- Runtime Function: long fract __fracthisq (short A) --- 1928,1940 ---- -- Runtime Function: unsigned short fract __fractqiuqq (signed char A) -- Runtime Function: unsigned fract __fractqiuhq (signed char A) -- Runtime Function: unsigned long fract __fractqiusq (signed char A) ! -- Runtime Function: unsigned long long fract __fractqiudq (signed char ! A) -- Runtime Function: unsigned short accum __fractqiuha (signed char A) -- Runtime Function: unsigned accum __fractqiusa (signed char A) -- Runtime Function: unsigned long accum __fractqiuda (signed char A) ! -- Runtime Function: unsigned long long accum __fractqiuta (signed char ! A) -- Runtime Function: short fract __fracthiqq (short A) -- Runtime Function: fract __fracthihq (short A) -- Runtime Function: long fract __fracthisq (short A) *************** returned result using either signed or u *** 2541,2548 **** -- Runtime Function: unsigned short __fractunsdqhi (long long fract A) -- Runtime Function: unsigned int __fractunsdqsi (long long fract A) -- Runtime Function: unsigned long __fractunsdqdi (long long fract A) ! -- Runtime Function: unsigned long long __fractunsdqti (long long ! fract A) -- Runtime Function: unsigned char __fractunshaqi (short accum A) -- Runtime Function: unsigned short __fractunshahi (short accum A) -- Runtime Function: unsigned int __fractunshasi (short accum A) --- 2538,2545 ---- -- Runtime Function: unsigned short __fractunsdqhi (long long fract A) -- Runtime Function: unsigned int __fractunsdqsi (long long fract A) -- Runtime Function: unsigned long __fractunsdqdi (long long fract A) ! -- Runtime Function: unsigned long long __fractunsdqti (long long fract ! A) -- Runtime Function: unsigned char __fractunshaqi (short accum A) -- Runtime Function: unsigned short __fractunshahi (short accum A) -- Runtime Function: unsigned int __fractunshasi (short accum A) *************** returned result using either signed or u *** 2562,2599 **** -- Runtime Function: unsigned short __fractunstahi (long long accum A) -- Runtime Function: unsigned int __fractunstasi (long long accum A) -- Runtime Function: unsigned long __fractunstadi (long long accum A) ! -- Runtime Function: unsigned long long __fractunstati (long long ! accum A) -- Runtime Function: unsigned char __fractunsuqqqi (unsigned short fract A) -- Runtime Function: unsigned short __fractunsuqqhi (unsigned short fract A) ! -- Runtime Function: unsigned int __fractunsuqqsi (unsigned short ! fract A) -- Runtime Function: unsigned long __fractunsuqqdi (unsigned short fract A) ! -- Runtime Function: unsigned long long __fractunsuqqti (unsigned ! short fract A) -- Runtime Function: unsigned char __fractunsuhqqi (unsigned fract A) -- Runtime Function: unsigned short __fractunsuhqhi (unsigned fract A) -- Runtime Function: unsigned int __fractunsuhqsi (unsigned fract A) -- Runtime Function: unsigned long __fractunsuhqdi (unsigned fract A) ! -- Runtime Function: unsigned long long __fractunsuhqti (unsigned ! fract A) ! -- Runtime Function: unsigned char __fractunsusqqi (unsigned long ! fract A) -- Runtime Function: unsigned short __fractunsusqhi (unsigned long fract A) -- Runtime Function: unsigned int __fractunsusqsi (unsigned long fract A) ! -- Runtime Function: unsigned long __fractunsusqdi (unsigned long ! fract A) -- Runtime Function: unsigned long long __fractunsusqti (unsigned long fract A) -- Runtime Function: unsigned char __fractunsudqqi (unsigned long long fract A) ! -- Runtime Function: unsigned short __fractunsudqhi (unsigned long ! long fract A) -- Runtime Function: unsigned int __fractunsudqsi (unsigned long long fract A) -- Runtime Function: unsigned long __fractunsudqdi (unsigned long long --- 2559,2596 ---- -- Runtime Function: unsigned short __fractunstahi (long long accum A) -- Runtime Function: unsigned int __fractunstasi (long long accum A) -- Runtime Function: unsigned long __fractunstadi (long long accum A) ! -- Runtime Function: unsigned long long __fractunstati (long long accum ! A) -- Runtime Function: unsigned char __fractunsuqqqi (unsigned short fract A) -- Runtime Function: unsigned short __fractunsuqqhi (unsigned short fract A) ! -- Runtime Function: unsigned int __fractunsuqqsi (unsigned short fract ! A) -- Runtime Function: unsigned long __fractunsuqqdi (unsigned short fract A) ! -- Runtime Function: unsigned long long __fractunsuqqti (unsigned short ! fract A) -- Runtime Function: unsigned char __fractunsuhqqi (unsigned fract A) -- Runtime Function: unsigned short __fractunsuhqhi (unsigned fract A) -- Runtime Function: unsigned int __fractunsuhqsi (unsigned fract A) -- Runtime Function: unsigned long __fractunsuhqdi (unsigned fract A) ! -- Runtime Function: unsigned long long __fractunsuhqti (unsigned fract ! A) ! -- Runtime Function: unsigned char __fractunsusqqi (unsigned long fract ! A) -- Runtime Function: unsigned short __fractunsusqhi (unsigned long fract A) -- Runtime Function: unsigned int __fractunsusqsi (unsigned long fract A) ! -- Runtime Function: unsigned long __fractunsusqdi (unsigned long fract ! A) -- Runtime Function: unsigned long long __fractunsusqti (unsigned long fract A) -- Runtime Function: unsigned char __fractunsudqqi (unsigned long long fract A) ! -- Runtime Function: unsigned short __fractunsudqhi (unsigned long long ! fract A) -- Runtime Function: unsigned int __fractunsudqsi (unsigned long long fract A) -- Runtime Function: unsigned long __fractunsudqdi (unsigned long long *************** returned result using either signed or u *** 2604,2635 **** accum A) -- Runtime Function: unsigned short __fractunsuhahi (unsigned short accum A) ! -- Runtime Function: unsigned int __fractunsuhasi (unsigned short ! accum A) -- Runtime Function: unsigned long __fractunsuhadi (unsigned short accum A) ! -- Runtime Function: unsigned long long __fractunsuhati (unsigned ! short accum A) -- Runtime Function: unsigned char __fractunsusaqi (unsigned accum A) -- Runtime Function: unsigned short __fractunsusahi (unsigned accum A) -- Runtime Function: unsigned int __fractunsusasi (unsigned accum A) -- Runtime Function: unsigned long __fractunsusadi (unsigned accum A) ! -- Runtime Function: unsigned long long __fractunsusati (unsigned ! accum A) ! -- Runtime Function: unsigned char __fractunsudaqi (unsigned long ! accum A) -- Runtime Function: unsigned short __fractunsudahi (unsigned long accum A) -- Runtime Function: unsigned int __fractunsudasi (unsigned long accum A) ! -- Runtime Function: unsigned long __fractunsudadi (unsigned long ! accum A) -- Runtime Function: unsigned long long __fractunsudati (unsigned long accum A) -- Runtime Function: unsigned char __fractunsutaqi (unsigned long long accum A) ! -- Runtime Function: unsigned short __fractunsutahi (unsigned long ! long accum A) -- Runtime Function: unsigned int __fractunsutasi (unsigned long long accum A) -- Runtime Function: unsigned long __fractunsutadi (unsigned long long --- 2601,2632 ---- accum A) -- Runtime Function: unsigned short __fractunsuhahi (unsigned short accum A) ! -- Runtime Function: unsigned int __fractunsuhasi (unsigned short accum ! A) -- Runtime Function: unsigned long __fractunsuhadi (unsigned short accum A) ! -- Runtime Function: unsigned long long __fractunsuhati (unsigned short ! accum A) -- Runtime Function: unsigned char __fractunsusaqi (unsigned accum A) -- Runtime Function: unsigned short __fractunsusahi (unsigned accum A) -- Runtime Function: unsigned int __fractunsusasi (unsigned accum A) -- Runtime Function: unsigned long __fractunsusadi (unsigned accum A) ! -- Runtime Function: unsigned long long __fractunsusati (unsigned accum ! A) ! -- Runtime Function: unsigned char __fractunsudaqi (unsigned long accum ! A) -- Runtime Function: unsigned short __fractunsudahi (unsigned long accum A) -- Runtime Function: unsigned int __fractunsudasi (unsigned long accum A) ! -- Runtime Function: unsigned long __fractunsudadi (unsigned long accum ! A) -- Runtime Function: unsigned long long __fractunsudati (unsigned long accum A) -- Runtime Function: unsigned char __fractunsutaqi (unsigned long long accum A) ! -- Runtime Function: unsigned short __fractunsutahi (unsigned long long ! accum A) -- Runtime Function: unsigned int __fractunsutasi (unsigned long long accum A) -- Runtime Function: unsigned long __fractunsutadi (unsigned long long *************** returned result using either signed or u *** 2647,2663 **** -- Runtime Function: unsigned short fract __fractunsqiuqq (unsigned char A) -- Runtime Function: unsigned fract __fractunsqiuhq (unsigned char A) ! -- Runtime Function: unsigned long fract __fractunsqiusq (unsigned char A) - -- Runtime Function: unsigned long long fract __fractunsqiudq - (unsigned char A) -- Runtime Function: unsigned short accum __fractunsqiuha (unsigned char A) -- Runtime Function: unsigned accum __fractunsqiusa (unsigned char A) ! -- Runtime Function: unsigned long accum __fractunsqiuda (unsigned char A) - -- Runtime Function: unsigned long long accum __fractunsqiuta - (unsigned char A) -- Runtime Function: short fract __fractunshiqq (unsigned short A) -- Runtime Function: fract __fractunshihq (unsigned short A) -- Runtime Function: long fract __fractunshisq (unsigned short A) --- 2644,2660 ---- -- Runtime Function: unsigned short fract __fractunsqiuqq (unsigned char A) -- Runtime Function: unsigned fract __fractunsqiuhq (unsigned char A) ! -- Runtime Function: unsigned long fract __fractunsqiusq (unsigned char ! A) ! -- Runtime Function: unsigned long long fract __fractunsqiudq (unsigned char A) -- Runtime Function: unsigned short accum __fractunsqiuha (unsigned char A) -- Runtime Function: unsigned accum __fractunsqiusa (unsigned char A) ! -- Runtime Function: unsigned long accum __fractunsqiuda (unsigned char ! A) ! -- Runtime Function: unsigned long long accum __fractunsqiuta (unsigned char A) -- Runtime Function: short fract __fractunshiqq (unsigned short A) -- Runtime Function: fract __fractunshihq (unsigned short A) -- Runtime Function: long fract __fractunshisq (unsigned short A) *************** returned result using either signed or u *** 2671,2685 **** -- Runtime Function: unsigned fract __fractunshiuhq (unsigned short A) -- Runtime Function: unsigned long fract __fractunshiusq (unsigned short A) ! -- Runtime Function: unsigned long long fract __fractunshiudq ! (unsigned short A) -- Runtime Function: unsigned short accum __fractunshiuha (unsigned short A) -- Runtime Function: unsigned accum __fractunshiusa (unsigned short A) -- Runtime Function: unsigned long accum __fractunshiuda (unsigned short A) ! -- Runtime Function: unsigned long long accum __fractunshiuta ! (unsigned short A) -- Runtime Function: short fract __fractunssiqq (unsigned int A) -- Runtime Function: fract __fractunssihq (unsigned int A) -- Runtime Function: long fract __fractunssisq (unsigned int A) --- 2668,2682 ---- -- Runtime Function: unsigned fract __fractunshiuhq (unsigned short A) -- Runtime Function: unsigned long fract __fractunshiusq (unsigned short A) ! -- Runtime Function: unsigned long long fract __fractunshiudq (unsigned ! short A) -- Runtime Function: unsigned short accum __fractunshiuha (unsigned short A) -- Runtime Function: unsigned accum __fractunshiusa (unsigned short A) -- Runtime Function: unsigned long accum __fractunshiuda (unsigned short A) ! -- Runtime Function: unsigned long long accum __fractunshiuta (unsigned ! short A) -- Runtime Function: short fract __fractunssiqq (unsigned int A) -- Runtime Function: fract __fractunssihq (unsigned int A) -- Runtime Function: long fract __fractunssisq (unsigned int A) *************** returned result using either signed or u *** 2688,2707 **** -- Runtime Function: accum __fractunssisa (unsigned int A) -- Runtime Function: long accum __fractunssida (unsigned int A) -- Runtime Function: long long accum __fractunssita (unsigned int A) ! -- Runtime Function: unsigned short fract __fractunssiuqq (unsigned ! int A) -- Runtime Function: unsigned fract __fractunssiuhq (unsigned int A) -- Runtime Function: unsigned long fract __fractunssiusq (unsigned int A) ! -- Runtime Function: unsigned long long fract __fractunssiudq ! (unsigned int A) ! -- Runtime Function: unsigned short accum __fractunssiuha (unsigned int A) -- Runtime Function: unsigned accum __fractunssiusa (unsigned int A) -- Runtime Function: unsigned long accum __fractunssiuda (unsigned int A) ! -- Runtime Function: unsigned long long accum __fractunssiuta ! (unsigned int A) -- Runtime Function: short fract __fractunsdiqq (unsigned long A) -- Runtime Function: fract __fractunsdihq (unsigned long A) -- Runtime Function: long fract __fractunsdisq (unsigned long A) --- 2685,2704 ---- -- Runtime Function: accum __fractunssisa (unsigned int A) -- Runtime Function: long accum __fractunssida (unsigned int A) -- Runtime Function: long long accum __fractunssita (unsigned int A) ! -- Runtime Function: unsigned short fract __fractunssiuqq (unsigned int ! A) -- Runtime Function: unsigned fract __fractunssiuhq (unsigned int A) -- Runtime Function: unsigned long fract __fractunssiusq (unsigned int A) ! -- Runtime Function: unsigned long long fract __fractunssiudq (unsigned int A) + -- Runtime Function: unsigned short accum __fractunssiuha (unsigned int + A) -- Runtime Function: unsigned accum __fractunssiusa (unsigned int A) -- Runtime Function: unsigned long accum __fractunssiuda (unsigned int A) ! -- Runtime Function: unsigned long long accum __fractunssiuta (unsigned ! int A) -- Runtime Function: short fract __fractunsdiqq (unsigned long A) -- Runtime Function: fract __fractunsdihq (unsigned long A) -- Runtime Function: long fract __fractunsdisq (unsigned long A) *************** returned result using either signed or u *** 2713,2755 **** -- Runtime Function: unsigned short fract __fractunsdiuqq (unsigned long A) -- Runtime Function: unsigned fract __fractunsdiuhq (unsigned long A) ! -- Runtime Function: unsigned long fract __fractunsdiusq (unsigned long A) - -- Runtime Function: unsigned long long fract __fractunsdiudq - (unsigned long A) -- Runtime Function: unsigned short accum __fractunsdiuha (unsigned long A) -- Runtime Function: unsigned accum __fractunsdiusa (unsigned long A) ! -- Runtime Function: unsigned long accum __fractunsdiuda (unsigned long A) - -- Runtime Function: unsigned long long accum __fractunsdiuta - (unsigned long A) -- Runtime Function: short fract __fractunstiqq (unsigned long long A) -- Runtime Function: fract __fractunstihq (unsigned long long A) -- Runtime Function: long fract __fractunstisq (unsigned long long A) ! -- Runtime Function: long long fract __fractunstidq (unsigned long ! long A) -- Runtime Function: short accum __fractunstiha (unsigned long long A) -- Runtime Function: accum __fractunstisa (unsigned long long A) -- Runtime Function: long accum __fractunstida (unsigned long long A) ! -- Runtime Function: long long accum __fractunstita (unsigned long ! long A) -- Runtime Function: unsigned short fract __fractunstiuqq (unsigned long long A) ! -- Runtime Function: unsigned fract __fractunstiuhq (unsigned long long A) ! -- Runtime Function: unsigned long fract __fractunstiusq (unsigned long long A) - -- Runtime Function: unsigned long long fract __fractunstiudq - (unsigned long long A) -- Runtime Function: unsigned short accum __fractunstiuha (unsigned long long A) ! -- Runtime Function: unsigned accum __fractunstiusa (unsigned long long A) ! -- Runtime Function: unsigned long accum __fractunstiuda (unsigned long long A) - -- Runtime Function: unsigned long long accum __fractunstiuta - (unsigned long long A) These functions convert from fractionals to unsigned non-fractionals; and from unsigned non-fractionals to fractionals, without saturation. --- 2710,2752 ---- -- Runtime Function: unsigned short fract __fractunsdiuqq (unsigned long A) -- Runtime Function: unsigned fract __fractunsdiuhq (unsigned long A) ! -- Runtime Function: unsigned long fract __fractunsdiusq (unsigned long ! A) ! -- Runtime Function: unsigned long long fract __fractunsdiudq (unsigned long A) -- Runtime Function: unsigned short accum __fractunsdiuha (unsigned long A) -- Runtime Function: unsigned accum __fractunsdiusa (unsigned long A) ! -- Runtime Function: unsigned long accum __fractunsdiuda (unsigned long ! A) ! -- Runtime Function: unsigned long long accum __fractunsdiuta (unsigned long A) -- Runtime Function: short fract __fractunstiqq (unsigned long long A) -- Runtime Function: fract __fractunstihq (unsigned long long A) -- Runtime Function: long fract __fractunstisq (unsigned long long A) ! -- Runtime Function: long long fract __fractunstidq (unsigned long long ! A) -- Runtime Function: short accum __fractunstiha (unsigned long long A) -- Runtime Function: accum __fractunstisa (unsigned long long A) -- Runtime Function: long accum __fractunstida (unsigned long long A) ! -- Runtime Function: long long accum __fractunstita (unsigned long long ! A) -- Runtime Function: unsigned short fract __fractunstiuqq (unsigned long long A) ! -- Runtime Function: unsigned fract __fractunstiuhq (unsigned long long ! A) ! -- Runtime Function: unsigned long fract __fractunstiusq (unsigned long long A) ! -- Runtime Function: unsigned long long fract __fractunstiudq (unsigned long long A) -- Runtime Function: unsigned short accum __fractunstiuha (unsigned long long A) ! -- Runtime Function: unsigned accum __fractunstiusa (unsigned long long ! A) ! -- Runtime Function: unsigned long accum __fractunstiuda (unsigned long long A) ! -- Runtime Function: unsigned long long accum __fractunstiuta (unsigned long long A) These functions convert from fractionals to unsigned non-fractionals; and from unsigned non-fractionals to fractionals, without saturation. *************** File: gccint.info, Node: Miscellaneous *** 2942,2948 **** -- Runtime Function: void * __splitstack_find (void *SEGMENT_ARG, void *SP, size_t LEN, void **NEXT_SEGMENT, void **NEXT_SP, void **INITIAL_SP) ! When using `-fsplit-stack', this call may be used to iterate over the stack segments. It may be called like this: void *next_segment = NULL; void *next_sp = NULL; --- 2939,2945 ---- -- Runtime Function: void * __splitstack_find (void *SEGMENT_ARG, void *SP, size_t LEN, void **NEXT_SEGMENT, void **NEXT_SP, void **INITIAL_SP) ! When using '-fsplit-stack', this call may be used to iterate over the stack segments. It may be called like this: void *next_segment = NULL; void *next_sp = NULL; *************** File: gccint.info, Node: Miscellaneous *** 2963,2977 **** with the SEGMENT_ARG and SP arguments NULL, to pass NEXT_SEGMENT, NEXT_SP, and INITIAL_SP to a different thread, and then to suspend one way or another. A different thread may run the subsequent ! `__splitstack_find' iterations. Of course, this will only work if the first thread is suspended while the second thread is calling ! `__splitstack_find'. If not, the second thread could be looking ! at the stack while it is changing, and anything could happen. -- Variable: __morestack_segments -- Variable: __morestack_current_segment -- Variable: __morestack_initial_sp ! Internal variables used by the `-fsplit-stack' implementation.  File: gccint.info, Node: Languages, Next: Source Tree, Prev: Libgcc, Up: Top --- 2960,2974 ---- with the SEGMENT_ARG and SP arguments NULL, to pass NEXT_SEGMENT, NEXT_SP, and INITIAL_SP to a different thread, and then to suspend one way or another. A different thread may run the subsequent ! '__splitstack_find' iterations. Of course, this will only work if the first thread is suspended while the second thread is calling ! '__splitstack_find'. If not, the second thread could be looking at ! the stack while it is changing, and anything could happen. -- Variable: __morestack_segments -- Variable: __morestack_current_segment -- Variable: __morestack_initial_sp ! Internal variables used by the '-fsplit-stack' implementation.  File: gccint.info, Node: Languages, Next: Source Tree, Prev: Libgcc, Up: Top *************** File: gccint.info, Node: Languages, Ne *** 2980,2986 **** **************************** The interface to front ends for languages in GCC, and in particular the ! `tree' structure (*note GENERIC::), was initially designed for C, and many aspects of it are still somewhat biased towards C and C-like languages. It is, however, reasonably well suited to other procedural languages, and front ends for many such languages have been written for --- 2977,2983 ---- **************************** The interface to front ends for languages in GCC, and in particular the ! 'tree' structure (*note GENERIC::), was initially designed for C, and many aspects of it are still somewhat biased towards C and C-like languages. It is, however, reasonably well suited to other procedural languages, and front ends for many such languages have been written for *************** GCC, has several advantages: *** 2992,3008 **** * GCC front ends benefit from the support for many different target machines already present in GCC. - * GCC front ends benefit from all the optimizations in GCC. Some of these, such as alias analysis, may work better when GCC is compiling directly from source code then when it is compiling from generated C code. - * Better debugging information is generated when compiling directly from source code than when going via intermediate generated C code. ! Because of the advantages of writing a compiler as a GCC front end, ! GCC front ends have also been created for languages very different from those for which GCC was designed, such as the declarative logic/functional language Mercury. For these reasons, it may also be useful to implement compilers created for specialized purposes (for --- 2989,3003 ---- * GCC front ends benefit from the support for many different target machines already present in GCC. * GCC front ends benefit from all the optimizations in GCC. Some of these, such as alias analysis, may work better when GCC is compiling directly from source code then when it is compiling from generated C code. * Better debugging information is generated when compiling directly from source code than when going via intermediate generated C code. ! Because of the advantages of writing a compiler as a GCC front end, GCC ! front ends have also been created for languages very different from those for which GCC was designed, such as the declarative logic/functional language Mercury. For these reasons, it may also be useful to implement compilers created for specialized purposes (for *************** File: gccint.info, Node: Source Tree, *** 3014,3029 **** 6 Source Tree Structure and Build System **************************************** ! This chapter describes the structure of the GCC source tree, and how ! GCC is built. The user documentation for building and installing GCC ! is in a separate manual (`http://gcc.gnu.org/install/'), with which it ! is presumed that you are familiar. * Menu: * Configure Terms:: Configuration terminology and history. * Top Level:: The top level source directory. ! * gcc Directory:: The `gcc' subdirectory.  File: gccint.info, Node: Configure Terms, Next: Top Level, Up: Source Tree --- 3009,3024 ---- 6 Source Tree Structure and Build System **************************************** ! This chapter describes the structure of the GCC source tree, and how GCC ! is built. The user documentation for building and installing GCC is in ! a separate manual (), with which it is ! presumed that you are familiar. * Menu: * Configure Terms:: Configuration terminology and history. * Top Level:: The top level source directory. ! * gcc Directory:: The 'gcc' subdirectory.  File: gccint.info, Node: Configure Terms, Next: Top Level, Up: Source Tree *************** know. *** 3040,3086 **** There are three system names that the build knows about: the machine you are building on ("build"), the machine that you are building for ("host"), and the machine that GCC will produce code for ("target"). ! When you configure GCC, you specify these with `--build=', `--host=', ! and `--target='. Specifying the host without specifying the build should be avoided, as ! `configure' may (and once did) assume that the host you specify is also the build, which may not be true. ! If build, host, and target are all the same, this is called a ! "native". If build and host are the same but target is different, this ! is called a "cross". If build, host, and target are all different this ! is called a "canadian" (for obscure reasons dealing with Canada's ! political party and the background of the person working on the build ! at that time). If host and target are the same, but build is ! different, you are using a cross-compiler to build a native for a ! different system. Some people call this a "host-x-host", "crossed ! native", or "cross-built native". If build and target are the same, ! but host is different, you are using a cross compiler to build a cross ! compiler that produces code for the machine you're building on. This ! is rare, so there is no common way of describing it. There is a ! proposal to call this a "crossback". If build and host are the same, the GCC you are building will also be ! used to build the target libraries (like `libstdc++'). If build and host are different, you must have already built and installed a cross compiler that will be used to build the target libraries (if you ! configured with `--target=foo-bar', this compiler will be called ! `foo-bar-gcc'). In the case of target libraries, the machine you're building for is the ! machine you specified with `--target'. So, build is the machine you're building on (no change there), host is the machine you're building for (the target libraries are built for the target, so host is the target you specified), and target doesn't apply (because you're not building a compiler, you're building libraries). The configure/make process will ! adjust these variables as needed. It also sets `$with_cross_host' to ! the original `--host' value in case you need it. ! The `libiberty' support library is built up to three times: once for the host, once for the target (even if they are the same), and once for ! the build if build and host are different. This allows it to be used ! by all programs which are generated in the course of the build process.  File: gccint.info, Node: Top Level, Next: gcc Directory, Prev: Configure Terms, Up: Source Tree --- 3035,3080 ---- There are three system names that the build knows about: the machine you are building on ("build"), the machine that you are building for ("host"), and the machine that GCC will produce code for ("target"). ! When you configure GCC, you specify these with '--build=', '--host=', ! and '--target='. Specifying the host without specifying the build should be avoided, as ! 'configure' may (and once did) assume that the host you specify is also the build, which may not be true. ! If build, host, and target are all the same, this is called a "native". ! If build and host are the same but target is different, this is called a ! "cross". If build, host, and target are all different this is called a ! "canadian" (for obscure reasons dealing with Canada's political party ! and the background of the person working on the build at that time). If ! host and target are the same, but build is different, you are using a ! cross-compiler to build a native for a different system. Some people ! call this a "host-x-host", "crossed native", or "cross-built native". ! If build and target are the same, but host is different, you are using a ! cross compiler to build a cross compiler that produces code for the ! machine you're building on. This is rare, so there is no common way of ! describing it. There is a proposal to call this a "crossback". If build and host are the same, the GCC you are building will also be ! used to build the target libraries (like 'libstdc++'). If build and host are different, you must have already built and installed a cross compiler that will be used to build the target libraries (if you ! configured with '--target=foo-bar', this compiler will be called ! 'foo-bar-gcc'). In the case of target libraries, the machine you're building for is the ! machine you specified with '--target'. So, build is the machine you're building on (no change there), host is the machine you're building for (the target libraries are built for the target, so host is the target you specified), and target doesn't apply (because you're not building a compiler, you're building libraries). The configure/make process will ! adjust these variables as needed. It also sets '$with_cross_host' to ! the original '--host' value in case you need it. ! The 'libiberty' support library is built up to three times: once for the host, once for the target (even if they are the same), and once for ! the build if build and host are different. This allows it to be used by ! all programs which are generated in the course of the build process.  File: gccint.info, Node: Top Level, Next: gcc Directory, Prev: Configure Terms, Up: Source Tree *************** files and directories that are shared wi *** 3093,3226 **** such as that of GNU Binutils. It also contains several subdirectories that contain parts of GCC and its runtime libraries: ! `boehm-gc' The Boehm conservative garbage collector, used as part of the Java runtime library. ! `config' Autoconf macros and Makefile fragments used throughout the tree. ! `contrib' Contributed scripts that may be found useful in conjunction with ! GCC. One of these, `contrib/texi2pod.pl', is used to generate man pages from Texinfo manuals as part of the GCC build process. ! `fixincludes' The support for fixing system headers to work with GCC. See ! `fixincludes/README' for more information. The headers fixed by ! this mechanism are installed in `LIBSUBDIR/include-fixed'. Along ! with those headers, `README-fixinc' is also installed, as ! `LIBSUBDIR/include-fixed/README'. ! `gcc' The main sources of GCC itself (except for runtime libraries), including optimizers, support for different target architectures, ! language front ends, and testsuites. *Note The `gcc' ! Subdirectory: gcc Directory, for details. ! `gnattools' Support tools for GNAT. ! `include' ! Headers for the `libiberty' library. ! `intl' ! GNU `libintl', from GNU `gettext', for systems which do not ! include it in `libc'. ! `libada' The Ada runtime library. ! `libatomic' ! The runtime support library for atomic operations (e.g. for ! `__sync' and `__atomic'). ! `libcpp' The C preprocessor library. ! `libdecnumber' The Decimal Float support library. ! `libffi' ! The `libffi' library, used as part of the Java runtime library. ! `libgcc' The GCC runtime library. ! `libgfortran' The Fortran runtime library. ! `libgo' The Go runtime library. The bulk of this library is mirrored from the master Go repository (http://code.google.com/p/go/). ! `libgomp' The GNU OpenMP runtime library. ! `libiberty' ! The `libiberty' library, used for portability and for some generally useful data structures and algorithms. *Note Introduction: (libiberty)Top, for more information about this library. ! `libitm' The runtime support library for transactional memory. ! `libjava' The Java runtime library. ! `libmudflap' ! The `libmudflap' library, used for instrumenting pointer and array dereferencing operations. ! `libobjc' The Objective-C and Objective-C++ runtime library. ! `libquadmath' The runtime support library for quad-precision math operations. ! `libssp' The Stack protector runtime library. ! `libstdc++-v3' The C++ runtime library. ! `lto-plugin' ! Plugin used by `gold' if link-time optimizations are enabled. ! `maintainer-scripts' ! Scripts used by the `gccadmin' account on `gcc.gnu.org'. ! `zlib' ! The `zlib' compression library, used by the Java front end, as ! part of the Java runtime library, and for compressing and ! uncompressing GCC's intermediate language in LTO object files. The build system in the top level directory, including how recursion into subdirectories works and how building runtime libraries for multilibs is handled, is documented in a separate manual, included with ! GNU Binutils. *Note GNU configure and build system: (configure)Top, ! for details.  File: gccint.info, Node: gcc Directory, Prev: Top Level, Up: Source Tree ! 6.3 The `gcc' Subdirectory ========================== ! The `gcc' directory contains many files that are part of the C sources ! of GCC, other files used as part of the configuration and build ! process, and subdirectories including documentation and a testsuite. ! The files that are sources of GCC are documented in a separate chapter. ! *Note Passes and Files of the Compiler: Passes. * Menu: ! * Subdirectories:: Subdirectories of `gcc'. * Configuration:: The configuration process, and the files it uses. ! * Build:: The build system in the `gcc' directory. ! * Makefile:: Targets in `gcc/Makefile'. ! * Library Files:: Library source files and headers under `gcc/'. * Headers:: Headers installed by GCC. * Documentation:: Building documentation in GCC. * Front End:: Anatomy of a language front end. --- 3087,3220 ---- such as that of GNU Binutils. It also contains several subdirectories that contain parts of GCC and its runtime libraries: ! 'boehm-gc' The Boehm conservative garbage collector, used as part of the Java runtime library. ! 'config' Autoconf macros and Makefile fragments used throughout the tree. ! 'contrib' Contributed scripts that may be found useful in conjunction with ! GCC. One of these, 'contrib/texi2pod.pl', is used to generate man pages from Texinfo manuals as part of the GCC build process. ! 'fixincludes' The support for fixing system headers to work with GCC. See ! 'fixincludes/README' for more information. The headers fixed by ! this mechanism are installed in 'LIBSUBDIR/include-fixed'. Along ! with those headers, 'README-fixinc' is also installed, as ! 'LIBSUBDIR/include-fixed/README'. ! 'gcc' The main sources of GCC itself (except for runtime libraries), including optimizers, support for different target architectures, ! language front ends, and testsuites. *Note The 'gcc' Subdirectory: ! gcc Directory, for details. ! 'gnattools' Support tools for GNAT. ! 'include' ! Headers for the 'libiberty' library. ! 'intl' ! GNU 'libintl', from GNU 'gettext', for systems which do not include ! it in 'libc'. ! 'libada' The Ada runtime library. ! 'libatomic' ! The runtime support library for atomic operations (e.g. for ! '__sync' and '__atomic'). ! 'libcpp' The C preprocessor library. ! 'libdecnumber' The Decimal Float support library. ! 'libffi' ! The 'libffi' library, used as part of the Java runtime library. ! 'libgcc' The GCC runtime library. ! 'libgfortran' The Fortran runtime library. ! 'libgo' The Go runtime library. The bulk of this library is mirrored from the master Go repository (http://code.google.com/p/go/). ! 'libgomp' The GNU OpenMP runtime library. ! 'libiberty' ! The 'libiberty' library, used for portability and for some generally useful data structures and algorithms. *Note Introduction: (libiberty)Top, for more information about this library. ! 'libitm' The runtime support library for transactional memory. ! 'libjava' The Java runtime library. ! 'libmudflap' ! The 'libmudflap' library, used for instrumenting pointer and array dereferencing operations. ! 'libobjc' The Objective-C and Objective-C++ runtime library. ! 'libquadmath' The runtime support library for quad-precision math operations. ! 'libssp' The Stack protector runtime library. ! 'libstdc++-v3' The C++ runtime library. ! 'lto-plugin' ! Plugin used by 'gold' if link-time optimizations are enabled. ! 'maintainer-scripts' ! Scripts used by the 'gccadmin' account on 'gcc.gnu.org'. ! 'zlib' ! The 'zlib' compression library, used by the Java front end, as part ! of the Java runtime library, and for compressing and uncompressing ! GCC's intermediate language in LTO object files. The build system in the top level directory, including how recursion into subdirectories works and how building runtime libraries for multilibs is handled, is documented in a separate manual, included with ! GNU Binutils. *Note GNU configure and build system: (configure)Top, for ! details.  File: gccint.info, Node: gcc Directory, Prev: Top Level, Up: Source Tree ! 6.3 The 'gcc' Subdirectory ========================== ! The 'gcc' directory contains many files that are part of the C sources ! of GCC, other files used as part of the configuration and build process, ! and subdirectories including documentation and a testsuite. The files ! that are sources of GCC are documented in a separate chapter. *Note ! Passes and Files of the Compiler: Passes. * Menu: ! * Subdirectories:: Subdirectories of 'gcc'. * Configuration:: The configuration process, and the files it uses. ! * Build:: The build system in the 'gcc' directory. ! * Makefile:: Targets in 'gcc/Makefile'. ! * Library Files:: Library source files and headers under 'gcc/'. * Headers:: Headers installed by GCC. * Documentation:: Building documentation in GCC. * Front End:: Anatomy of a language front end. *************** The files that are sources of GCC are do *** 3229,3350 ****  File: gccint.info, Node: Subdirectories, Next: Configuration, Up: gcc Directory ! 6.3.1 Subdirectories of `gcc' ----------------------------- ! The `gcc' directory contains the following subdirectories: ! `LANGUAGE' Subdirectories for various languages. Directories containing a ! file `config-lang.in' are language subdirectories. The contents of ! the subdirectories `c' (for C), `cp' (for C++), `objc' (for ! Objective-C), `objcp' (for Objective-C++), and `lto' (for LTO) are documented in this manual (*note Passes and Files of the Compiler: Passes.); those for other languages are not. *Note Anatomy of a Language Front End: Front End, for details of the files in these directories. ! `common' ! Source files shared between the compiler drivers (such as `gcc') ! and the compilers proper (such as `cc1'). If an architecture defines target hooks shared between those places, it also has a ! subdirectory in `common/config'. *Note Target Structure::. ! `config' Configuration files for supported architectures and operating ! systems. *Note Anatomy of a Target Back End: Back End, for ! details of the files in this directory. ! `doc' Texinfo documentation for GCC, together with automatically generated man pages and support for converting the installation manual to HTML. *Note Documentation::. ! `ginclude' System headers installed by GCC, mainly those required by the C standard of freestanding implementations. *Note Headers Installed by GCC: Headers, for details of when these and other headers are installed. ! `po' Message catalogs with translations of messages produced by GCC into ! various languages, `LANGUAGE.po'. This directory also contains ! `gcc.pot', the template for these message catalogues, `exgettext', ! a wrapper around `gettext' to extract the messages from the GCC ! sources and create `gcc.pot', which is run by `make gcc.pot', and ! `EXCLUDES', a list of files from which messages should not be extracted. ! `testsuite' ! The GCC testsuites (except for those for runtime libraries). ! *Note Testsuites::.  File: gccint.info, Node: Configuration, Next: Build, Prev: Subdirectories, Up: gcc Directory ! 6.3.2 Configuration in the `gcc' Directory ------------------------------------------ ! The `gcc' directory is configured with an Autoconf-generated script ! `configure'. The `configure' script is generated from `configure.ac' ! and `aclocal.m4'. From the files `configure.ac' and `acconfig.h', ! Autoheader generates the file `config.in'. The file `cstamp-h.in' is used as a timestamp. * Menu: ! * Config Fragments:: Scripts used by `configure'. ! * System Config:: The `config.build', `config.host', and ! `config.gcc' files. ! * Configuration Files:: Files created by running `configure'.  File: gccint.info, Node: Config Fragments, Next: System Config, Up: Configuration ! 6.3.2.1 Scripts Used by `configure' ................................... ! `configure' uses some other scripts to help in its work: ! * The standard GNU `config.sub' and `config.guess' files, kept in ! the top level directory, are used. ! * The file `config.gcc' is used to handle configuration specific to ! the particular target machine. The file `config.build' is used to ! handle configuration specific to the particular build machine. ! The file `config.host' is used to handle configuration specific to ! the particular host machine. (In general, these should only be ! used for features that cannot reasonably be tested in Autoconf ! feature tests.) *Note The `config.build'; `config.host'; and ! `config.gcc' Files: System Config, for details of the contents of ! these files. ! * Each language subdirectory has a file `LANGUAGE/config-lang.in' ! that is used for front-end-specific configuration. *Note The ! Front End `config-lang.in' File: Front End Config, for details of ! this file. ! * A helper script `configure.frag' is used as part of creating the ! output of `configure'.  File: gccint.info, Node: System Config, Next: Configuration Files, Prev: Config Fragments, Up: Configuration ! 6.3.2.2 The `config.build'; `config.host'; and `config.gcc' Files ................................................................. ! The `config.build' file contains specific rules for particular systems which GCC is built on. This should be used as rarely as possible, as the behavior of the build system can always be detected by autoconf. ! The `config.host' file contains specific rules for particular systems which GCC will run on. This is rarely needed. ! The `config.gcc' file contains specific rules for particular systems which GCC will generate code for. This is usually needed. ! Each file has a list of the shell variables it sets, with ! descriptions, at the top of the file. FIXME: document the contents of these files, and what variables should be set to control build, host and target configuration. --- 3223,3343 ----  File: gccint.info, Node: Subdirectories, Next: Configuration, Up: gcc Directory ! 6.3.1 Subdirectories of 'gcc' ----------------------------- ! The 'gcc' directory contains the following subdirectories: ! 'LANGUAGE' Subdirectories for various languages. Directories containing a ! file 'config-lang.in' are language subdirectories. The contents of ! the subdirectories 'c' (for C), 'cp' (for C++), 'objc' (for ! Objective-C), 'objcp' (for Objective-C++), and 'lto' (for LTO) are documented in this manual (*note Passes and Files of the Compiler: Passes.); those for other languages are not. *Note Anatomy of a Language Front End: Front End, for details of the files in these directories. ! 'common' ! Source files shared between the compiler drivers (such as 'gcc') ! and the compilers proper (such as 'cc1'). If an architecture defines target hooks shared between those places, it also has a ! subdirectory in 'common/config'. *Note Target Structure::. ! 'config' Configuration files for supported architectures and operating ! systems. *Note Anatomy of a Target Back End: Back End, for details ! of the files in this directory. ! 'doc' Texinfo documentation for GCC, together with automatically generated man pages and support for converting the installation manual to HTML. *Note Documentation::. ! 'ginclude' System headers installed by GCC, mainly those required by the C standard of freestanding implementations. *Note Headers Installed by GCC: Headers, for details of when these and other headers are installed. ! 'po' Message catalogs with translations of messages produced by GCC into ! various languages, 'LANGUAGE.po'. This directory also contains ! 'gcc.pot', the template for these message catalogues, 'exgettext', ! a wrapper around 'gettext' to extract the messages from the GCC ! sources and create 'gcc.pot', which is run by 'make gcc.pot', and ! 'EXCLUDES', a list of files from which messages should not be extracted. ! 'testsuite' ! The GCC testsuites (except for those for runtime libraries). *Note ! Testsuites::.  File: gccint.info, Node: Configuration, Next: Build, Prev: Subdirectories, Up: gcc Directory ! 6.3.2 Configuration in the 'gcc' Directory ------------------------------------------ ! The 'gcc' directory is configured with an Autoconf-generated script ! 'configure'. The 'configure' script is generated from 'configure.ac' ! and 'aclocal.m4'. From the files 'configure.ac' and 'acconfig.h', ! Autoheader generates the file 'config.in'. The file 'cstamp-h.in' is used as a timestamp. * Menu: ! * Config Fragments:: Scripts used by 'configure'. ! * System Config:: The 'config.build', 'config.host', and ! 'config.gcc' files. ! * Configuration Files:: Files created by running 'configure'.  File: gccint.info, Node: Config Fragments, Next: System Config, Up: Configuration ! 6.3.2.1 Scripts Used by 'configure' ................................... ! 'configure' uses some other scripts to help in its work: ! * The standard GNU 'config.sub' and 'config.guess' files, kept in the ! top level directory, are used. ! * The file 'config.gcc' is used to handle configuration specific to ! the particular target machine. The file 'config.build' is used to ! handle configuration specific to the particular build machine. The ! file 'config.host' is used to handle configuration specific to the ! particular host machine. (In general, these should only be used ! for features that cannot reasonably be tested in Autoconf feature ! tests.) *Note The 'config.build'; 'config.host'; and 'config.gcc' ! Files: System Config, for details of the contents of these files. ! * Each language subdirectory has a file 'LANGUAGE/config-lang.in' ! that is used for front-end-specific configuration. *Note The Front ! End 'config-lang.in' File: Front End Config, for details of this ! file. ! * A helper script 'configure.frag' is used as part of creating the ! output of 'configure'.  File: gccint.info, Node: System Config, Next: Configuration Files, Prev: Config Fragments, Up: Configuration ! 6.3.2.2 The 'config.build'; 'config.host'; and 'config.gcc' Files ................................................................. ! The 'config.build' file contains specific rules for particular systems which GCC is built on. This should be used as rarely as possible, as the behavior of the build system can always be detected by autoconf. ! The 'config.host' file contains specific rules for particular systems which GCC will run on. This is rarely needed. ! The 'config.gcc' file contains specific rules for particular systems which GCC will generate code for. This is usually needed. ! Each file has a list of the shell variables it sets, with descriptions, ! at the top of the file. FIXME: document the contents of these files, and what variables should be set to control build, host and target configuration. *************** be set to control build, host and target *** 3352,3420 ****  File: gccint.info, Node: Configuration Files, Prev: System Config, Up: Configuration ! 6.3.2.3 Files Created by `configure' .................................... ! Here we spell out what files will be set up by `configure' in the `gcc' directory. Some other files are created as temporary files in the configuration process, and are not used in the subsequent build; these are not documented. ! * `Makefile' is constructed from `Makefile.in', together with the host and target fragments (*note Makefile Fragments: Fragments.) ! `t-TARGET' and `x-HOST' from `config', if any, and language ! Makefile fragments `LANGUAGE/Make-lang.in'. ! ! * `auto-host.h' contains information about the host machine ! determined by `configure'. If the host machine is different from ! the build machine, then `auto-build.h' is also created, containing such information about the build machine. ! ! * `config.status' is a script that may be run to recreate the ! current configuration. ! ! * `configargs.h' is a header containing details of the arguments ! passed to `configure' to configure GCC, and of the thread model used. ! ! * `cstamp-h' is used as a timestamp. ! ! * If a language `config-lang.in' file (*note The Front End ! `config-lang.in' File: Front End Config.) sets `outputs', then the ! files listed in `outputs' there are also generated. The following configuration headers are created from the Makefile, ! using `mkconfig.sh', rather than directly by `configure'. `config.h', ! `bconfig.h' and `tconfig.h' all contain the `xm-MACHINE.h' header, if any, appropriate to the host, build and target machines respectively, the configuration headers for the target, and some definitions; for the host and build machines, these include the autoconfigured headers ! generated by `configure'. The other configuration headers are ! determined by `config.gcc'. They also contain the typedefs for `rtx', ! `rtvec' and `tree'. ! ! * `config.h', for use in programs that run on the host machine. ! ! * `bconfig.h', for use in programs that run on the build machine. ! * `tconfig.h', for use in programs and libraries for the target machine. ! ! * `tm_p.h', which includes the header `MACHINE-protos.h' that ! contains prototypes for functions in the target `MACHINE.c' file. ! The header `MACHINE-protos.h' can include prototypes of functions ! that use rtl and tree data structures inside appropriate `#ifdef ! RTX_CODE' and `#ifdef TREE_CODE' conditional code segements. The ! `MACHINE-protos.h' is included after the `rtl.h' and/or `tree.h' ! would have been included. The `tm_p.h' also includes the header ! `tm-preds.h' which is generated by `genpreds' program during the build to define the declarations and inline functions for the predicate functions.  File: gccint.info, Node: Build, Next: Makefile, Prev: Configuration, Up: gcc Directory ! 6.3.3 Build System in the `gcc' Directory ----------------------------------------- FIXME: describe the build system, including what is built in what --- 3345,3405 ----  File: gccint.info, Node: Configuration Files, Prev: System Config, Up: Configuration ! 6.3.2.3 Files Created by 'configure' .................................... ! Here we spell out what files will be set up by 'configure' in the 'gcc' directory. Some other files are created as temporary files in the configuration process, and are not used in the subsequent build; these are not documented. ! * 'Makefile' is constructed from 'Makefile.in', together with the host and target fragments (*note Makefile Fragments: Fragments.) ! 't-TARGET' and 'x-HOST' from 'config', if any, and language ! Makefile fragments 'LANGUAGE/Make-lang.in'. ! * 'auto-host.h' contains information about the host machine ! determined by 'configure'. If the host machine is different from ! the build machine, then 'auto-build.h' is also created, containing such information about the build machine. ! * 'config.status' is a script that may be run to recreate the current ! configuration. ! * 'configargs.h' is a header containing details of the arguments ! passed to 'configure' to configure GCC, and of the thread model used. ! * 'cstamp-h' is used as a timestamp. ! * If a language 'config-lang.in' file (*note The Front End ! 'config-lang.in' File: Front End Config.) sets 'outputs', then the ! files listed in 'outputs' there are also generated. The following configuration headers are created from the Makefile, ! using 'mkconfig.sh', rather than directly by 'configure'. 'config.h', ! 'bconfig.h' and 'tconfig.h' all contain the 'xm-MACHINE.h' header, if any, appropriate to the host, build and target machines respectively, the configuration headers for the target, and some definitions; for the host and build machines, these include the autoconfigured headers ! generated by 'configure'. The other configuration headers are ! determined by 'config.gcc'. They also contain the typedefs for 'rtx', ! 'rtvec' and 'tree'. ! * 'config.h', for use in programs that run on the host machine. ! * 'bconfig.h', for use in programs that run on the build machine. ! * 'tconfig.h', for use in programs and libraries for the target machine. ! * 'tm_p.h', which includes the header 'MACHINE-protos.h' that ! contains prototypes for functions in the target 'MACHINE.c' file. ! The header 'MACHINE-protos.h' can include prototypes of functions ! that use rtl and tree data structures inside appropriate '#ifdef ! RTX_CODE' and '#ifdef TREE_CODE' conditional code segements. The ! 'MACHINE-protos.h' is included after the 'rtl.h' and/or 'tree.h' ! would have been included. The 'tm_p.h' also includes the header ! 'tm-preds.h' which is generated by 'genpreds' program during the build to define the declarations and inline functions for the predicate functions.  File: gccint.info, Node: Build, Next: Makefile, Prev: Configuration, Up: gcc Directory ! 6.3.3 Build System in the 'gcc' Directory ----------------------------------------- FIXME: describe the build system, including what is built in what *************** File: gccint.info, Node: Makefile, Nex *** 3428,3495 **** 6.3.4 Makefile Targets ---------------------- ! These targets are available from the `gcc' directory: ! `all' This is the default target. Depending on what your build/host/target configuration is, it coordinates all the things that need to be built. ! `doc' Produce info-formatted documentation and man pages. Essentially it ! calls `make man' and `make info'. ! `dvi' Produce DVI-formatted documentation. ! `pdf' Produce PDF-formatted documentation. ! `html' Produce HTML-formatted documentation. ! `man' Generate man pages. ! `info' Generate info-formatted pages. ! `mostlyclean' Delete the files made while building the compiler. ! `clean' ! That, and all the other files built by `make all'. ! `distclean' ! That, and all the files created by `configure'. ! `maintainer-clean' Distclean plus any file that can be generated from other files. Note that additional tools may be required beyond what is normally needed to build GCC. ! `srcextra' Generates files in the source directory that are not version-controlled but should go into a release tarball. ! `srcinfo' ! `srcman' Copies the info-formatted and manpage documentation into the source directory usually for the purpose of generating a release tarball. ! `install' Installs GCC. ! `uninstall' Deletes installed files, though this is not supported. ! `check' ! Run the testsuite. This creates a `testsuite' subdirectory that ! has various `.sum' and `.log' files containing the results of the ! testing. You can run subsets with, for example, `make check-gcc'. ! You can specify specific tests by setting `RUNTESTFLAGS' to be the ! name of the `.exp' file, optionally followed by (for some tests) ! an equals and a file wildcard, like: make check-gcc RUNTESTFLAGS="execute.exp=19980413-*" --- 3413,3480 ---- 6.3.4 Makefile Targets ---------------------- ! These targets are available from the 'gcc' directory: ! 'all' This is the default target. Depending on what your build/host/target configuration is, it coordinates all the things that need to be built. ! 'doc' Produce info-formatted documentation and man pages. Essentially it ! calls 'make man' and 'make info'. ! 'dvi' Produce DVI-formatted documentation. ! 'pdf' Produce PDF-formatted documentation. ! 'html' Produce HTML-formatted documentation. ! 'man' Generate man pages. ! 'info' Generate info-formatted pages. ! 'mostlyclean' Delete the files made while building the compiler. ! 'clean' ! That, and all the other files built by 'make all'. ! 'distclean' ! That, and all the files created by 'configure'. ! 'maintainer-clean' Distclean plus any file that can be generated from other files. Note that additional tools may be required beyond what is normally needed to build GCC. ! 'srcextra' Generates files in the source directory that are not version-controlled but should go into a release tarball. ! 'srcinfo' ! 'srcman' Copies the info-formatted and manpage documentation into the source directory usually for the purpose of generating a release tarball. ! 'install' Installs GCC. ! 'uninstall' Deletes installed files, though this is not supported. ! 'check' ! Run the testsuite. This creates a 'testsuite' subdirectory that ! has various '.sum' and '.log' files containing the results of the ! testing. You can run subsets with, for example, 'make check-gcc'. ! You can specify specific tests by setting 'RUNTESTFLAGS' to be the ! name of the '.exp' file, optionally followed by (for some tests) an ! equals and a file wildcard, like: make check-gcc RUNTESTFLAGS="execute.exp=19980413-*" *************** steps of the build, including bootstrapp *** 3502,3593 **** new compiler to build target libraries. When GCC is configured for a native configuration, the default action ! for `make' is to do a full three-stage bootstrap. This means that GCC is built three times--once with the native compiler, once with the ! native-built compiler it just built, and once with the compiler it ! built the second time. In theory, the last two should produce the same ! results, which `make compare' can check. Each stage is configured separately and compiled into a separate directory, to minimize problems due to ABI incompatibilities between the native compiler and GCC. ! If you do a change, rebuilding will also start from the first stage ! and "bubble" up the change through the three stages. Each stage is ! taken from its build directory (if it had been built previously), ! rebuilt, and copied to its subdirectory. This will allow you to, for ! example, continue a bootstrap after fixing a bug which causes the ! stage2 build to crash. It does not provide as good coverage of the ! compiler as bootstrapping from scratch, but it ensures that the new ! code is syntactically correct (e.g., that you did not use GCC extensions ! by mistake), and avoids spurious bootstrap comparison failures(1). Other targets available from the top level include: ! `bootstrap-lean' ! Like `bootstrap', except that the various stages are removed once they're no longer needed. This saves disk space. ! `bootstrap2' ! `bootstrap2-lean' Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap, this does not perform a comparison to test that the compiler is running properly. Note that the disk space required by a "lean" bootstrap is approximately independent of the number of stages. ! `stageN-bubble (N = 1...4, profile, feedback)' Rebuild all the stages up to N, with the appropriate flags, "bubbling" the changes as described above. ! `all-stageN (N = 1...4, profile, feedback)' Assuming that stage N has already been built, rebuild it with the appropriate flags. This is rarely needed. ! `cleanstrap' ! Remove everything (`make clean') and rebuilds (`make bootstrap'). ! `compare' Compares the results of stages 2 and 3. This ensures that the compiler is running properly, since it should produce the same object files regardless of how it itself was compiled. ! `profiledbootstrap' Builds a compiler with profiling feedback information. In this ! case, the second and third stages are named `profile' and ! `feedback', respectively. For more information, see *note ! Building with profile feedback: (gccinstall)Building. ! `restrap' ! Restart a bootstrap, so that everything that was not built with ! the system compiler is rebuilt. ! `stageN-start (N = 1...4, profile, feedback)' For each package that is bootstrapped, rename directories so that, ! for example, `gcc' points to the stageN GCC, compiled with the stageN-1 GCC(2). ! You will invoke this target if you need to test or debug the ! stageN GCC. If you only need to execute GCC (but you need not run ! `make' either to rebuild it or to run test suites), you should be ! able to work directly in the `stageN-gcc' directory. This makes ! it easier to debug multiple stages in parallel. ! `stage' For each package that is bootstrapped, relocate its build directory ! to indicate its stage. For example, if the `gcc' directory points ! to the stage2 GCC, after invoking this target it will be renamed ! to `stage2-gcc'. ! If you wish to use non-default GCC flags when compiling the stage2 and ! stage3 compilers, set `BOOT_CFLAGS' on the command line when doing ! `make'. ! Usually, the first stage only builds the languages that the compiler ! is written in: typically, C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for example, of the Fortran front-end), you may want to have front-ends for other languages ! in the first stage as well. To do so, set `STAGE1_LANGUAGES' on the ! command line when doing `make'. For example, in the aforementioned scenario of debugging a Fortran front-end miscompilation caused by the stage1 compiler, you may need a --- 3487,3577 ---- new compiler to build target libraries. When GCC is configured for a native configuration, the default action ! for 'make' is to do a full three-stage bootstrap. This means that GCC is built three times--once with the native compiler, once with the ! native-built compiler it just built, and once with the compiler it built ! the second time. In theory, the last two should produce the same ! results, which 'make compare' can check. Each stage is configured separately and compiled into a separate directory, to minimize problems due to ABI incompatibilities between the native compiler and GCC. ! If you do a change, rebuilding will also start from the first stage and ! "bubble" up the change through the three stages. Each stage is taken ! from its build directory (if it had been built previously), rebuilt, and ! copied to its subdirectory. This will allow you to, for example, ! continue a bootstrap after fixing a bug which causes the stage2 build to ! crash. It does not provide as good coverage of the compiler as ! bootstrapping from scratch, but it ensures that the new code is ! syntactically correct (e.g., that you did not use GCC extensions by ! mistake), and avoids spurious bootstrap comparison failures(1). Other targets available from the top level include: ! 'bootstrap-lean' ! Like 'bootstrap', except that the various stages are removed once they're no longer needed. This saves disk space. ! 'bootstrap2' ! 'bootstrap2-lean' Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap, this does not perform a comparison to test that the compiler is running properly. Note that the disk space required by a "lean" bootstrap is approximately independent of the number of stages. ! 'stageN-bubble (N = 1...4, profile, feedback)' Rebuild all the stages up to N, with the appropriate flags, "bubbling" the changes as described above. ! 'all-stageN (N = 1...4, profile, feedback)' Assuming that stage N has already been built, rebuild it with the appropriate flags. This is rarely needed. ! 'cleanstrap' ! Remove everything ('make clean') and rebuilds ('make bootstrap'). ! 'compare' Compares the results of stages 2 and 3. This ensures that the compiler is running properly, since it should produce the same object files regardless of how it itself was compiled. ! 'profiledbootstrap' Builds a compiler with profiling feedback information. In this ! case, the second and third stages are named 'profile' and ! 'feedback', respectively. For more information, see *note Building ! with profile feedback: (gccinstall)Building. ! 'restrap' ! Restart a bootstrap, so that everything that was not built with the ! system compiler is rebuilt. ! 'stageN-start (N = 1...4, profile, feedback)' For each package that is bootstrapped, rename directories so that, ! for example, 'gcc' points to the stageN GCC, compiled with the stageN-1 GCC(2). ! You will invoke this target if you need to test or debug the stageN ! GCC. If you only need to execute GCC (but you need not run 'make' ! either to rebuild it or to run test suites), you should be able to ! work directly in the 'stageN-gcc' directory. This makes it easier ! to debug multiple stages in parallel. ! 'stage' For each package that is bootstrapped, relocate its build directory ! to indicate its stage. For example, if the 'gcc' directory points ! to the stage2 GCC, after invoking this target it will be renamed to ! 'stage2-gcc'. If you wish to use non-default GCC flags when compiling the stage2 and ! stage3 compilers, set 'BOOT_CFLAGS' on the command line when doing ! 'make'. ! Usually, the first stage only builds the languages that the compiler is ! written in: typically, C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for example, of the Fortran front-end), you may want to have front-ends for other languages ! in the first stage as well. To do so, set 'STAGE1_LANGUAGES' on the ! command line when doing 'make'. For example, in the aforementioned scenario of debugging a Fortran front-end miscompilation caused by the stage1 compiler, you may need a *************** command like *** 3596,3623 **** make stage2-bubble STAGE1_LANGUAGES=c,fortran Alternatively, you can use per-language targets to build and test ! languages that are not enabled by default in stage1. For example, ! `make f951' will build a Fortran compiler even in the stage1 build ! directory. ! ---------- Footnotes ---------- ! (1) Except if the compiler was buggy and miscompiled some of the files ! that were not modified. In this case, it's best to use `make restrap'. ! (2) Customarily, the system compiler is also termed the `stage0' GCC.  File: gccint.info, Node: Library Files, Next: Headers, Prev: Makefile, Up: gcc Directory ! 6.3.5 Library Source Files and Headers under the `gcc' Directory ---------------------------------------------------------------- FIXME: list here, with explanation, all the C source files and headers ! under the `gcc' directory that aren't built into the GCC executable but rather are part of runtime libraries and object files, such as ! `crtstuff.c' and `unwind-dw2.c'. *Note Headers Installed by GCC: ! Headers, for more information about the `ginclude' directory.  File: gccint.info, Node: Headers, Next: Documentation, Prev: Library Files, Up: gcc Directory --- 3580,3607 ---- make stage2-bubble STAGE1_LANGUAGES=c,fortran Alternatively, you can use per-language targets to build and test ! languages that are not enabled by default in stage1. For example, 'make ! f951' will build a Fortran compiler even in the stage1 build directory. ! ---------- Footnotes ---------- ! (1) Except if the compiler was buggy and miscompiled some of the ! files that were not modified. In this case, it's best to use 'make ! restrap'. ! (2) Customarily, the system compiler is also termed the 'stage0' GCC.  File: gccint.info, Node: Library Files, Next: Headers, Prev: Makefile, Up: gcc Directory ! 6.3.5 Library Source Files and Headers under the 'gcc' Directory ---------------------------------------------------------------- FIXME: list here, with explanation, all the C source files and headers ! under the 'gcc' directory that aren't built into the GCC executable but rather are part of runtime libraries and object files, such as ! 'crtstuff.c' and 'unwind-dw2.c'. *Note Headers Installed by GCC: ! Headers, for more information about the 'ginclude' directory.  File: gccint.info, Node: Headers, Next: Documentation, Prev: Library Files, Up: gcc Directory *************** In general, GCC expects the system C lib *** 3629,3666 **** headers to be used with it. However, GCC will fix those headers if necessary to make them work with GCC, and will install some headers required of freestanding implementations. These headers are installed ! in `LIBSUBDIR/include'. Headers for non-C runtime libraries are also installed by GCC; these are not documented here. (FIXME: document them somewhere.) ! Several of the headers GCC installs are in the `ginclude' directory. ! These headers, `iso646.h', `stdarg.h', `stdbool.h', and `stddef.h', are ! installed in `LIBSUBDIR/include', unless the target Makefile fragment ! (*note Target Fragment::) overrides this by setting `USER_H'. In addition to these headers and those generated by fixing system headers to work with GCC, some other headers may also be installed in ! `LIBSUBDIR/include'. `config.gcc' may set `extra_headers'; this ! specifies additional headers under `config' to be installed on some systems. ! GCC installs its own version of `', from `ginclude/float.h'. This is done to cope with command-line options that change the representation of floating point numbers. ! GCC also installs its own version of `'; this is generated ! from `glimits.h', together with `limitx.h' and `limity.h' if the system ! also has its own version of `'. (GCC provides its own header because it is required of ISO C freestanding implementations, but needs to include the system header from its own header as well because other standards such as POSIX specify additional values to be defined in ! `'.) The system's `' header is used via ! `LIBSUBDIR/include/syslimits.h', which is copied from `gsyslimits.h' if it does not need fixing to work with GCC; if it needs fixing, ! `syslimits.h' is the fixed copy. ! GCC can also install `'. It will do this when `config.gcc' ! sets `use_gcc_tgmath' to `yes'.  File: gccint.info, Node: Documentation, Next: Front End, Prev: Headers, Up: gcc Directory --- 3613,3650 ---- headers to be used with it. However, GCC will fix those headers if necessary to make them work with GCC, and will install some headers required of freestanding implementations. These headers are installed ! in 'LIBSUBDIR/include'. Headers for non-C runtime libraries are also installed by GCC; these are not documented here. (FIXME: document them somewhere.) ! Several of the headers GCC installs are in the 'ginclude' directory. ! These headers, 'iso646.h', 'stdarg.h', 'stdbool.h', and 'stddef.h', are ! installed in 'LIBSUBDIR/include', unless the target Makefile fragment ! (*note Target Fragment::) overrides this by setting 'USER_H'. In addition to these headers and those generated by fixing system headers to work with GCC, some other headers may also be installed in ! 'LIBSUBDIR/include'. 'config.gcc' may set 'extra_headers'; this ! specifies additional headers under 'config' to be installed on some systems. ! GCC installs its own version of '', from 'ginclude/float.h'. This is done to cope with command-line options that change the representation of floating point numbers. ! GCC also installs its own version of ''; this is generated ! from 'glimits.h', together with 'limitx.h' and 'limity.h' if the system ! also has its own version of ''. (GCC provides its own header because it is required of ISO C freestanding implementations, but needs to include the system header from its own header as well because other standards such as POSIX specify additional values to be defined in ! ''.) The system's '' header is used via ! 'LIBSUBDIR/include/syslimits.h', which is copied from 'gsyslimits.h' if it does not need fixing to work with GCC; if it needs fixing, ! 'syslimits.h' is the fixed copy. ! GCC can also install ''. It will do this when 'config.gcc' ! sets 'use_gcc_tgmath' to 'yes'.  File: gccint.info, Node: Documentation, Next: Front End, Prev: Headers, Up: gcc Directory *************** File: gccint.info, Node: Documentation, *** 3670,3680 **** The main GCC documentation is in the form of manuals in Texinfo format. These are installed in Info format; DVI versions may be generated by ! `make dvi', PDF versions by `make pdf', and HTML versions by `make html'. In addition, some man pages are generated from the Texinfo manuals, there are some other text files with miscellaneous documentation, and runtime libraries have their own documentation ! outside the `gcc' directory. FIXME: document the documentation for runtime libraries somewhere. * Menu: --- 3654,3664 ---- The main GCC documentation is in the form of manuals in Texinfo format. These are installed in Info format; DVI versions may be generated by ! 'make dvi', PDF versions by 'make pdf', and HTML versions by 'make html'. In addition, some man pages are generated from the Texinfo manuals, there are some other text files with miscellaneous documentation, and runtime libraries have their own documentation ! outside the 'gcc' directory. FIXME: document the documentation for runtime libraries somewhere. * Menu: *************** File: gccint.info, Node: Texinfo Manual *** 3690,3742 **** ....................... The manuals for GCC as a whole, and the C and C++ front ends, are in ! files `doc/*.texi'. Other front ends have their own manuals in files ! `LANGUAGE/*.texi'. Common files `doc/include/*.texi' are provided ! which may be included in multiple manuals; the following files are in ! `doc/include': ! `fdl.texi' The GNU Free Documentation License. ! ! `funding.texi' The section "Funding Free Software". ! ! `gcc-common.texi' Common definitions for manuals. ! ! `gpl_v3.texi' The GNU General Public License. ! `texinfo.tex' ! A copy of `texinfo.tex' known to work with the GCC manuals. ! ! DVI-formatted manuals are generated by `make dvi', which uses ! `texi2dvi' (via the Makefile macro `$(TEXI2DVI)'). PDF-formatted ! manuals are generated by `make pdf', which uses `texi2pdf' (via the ! Makefile macro `$(TEXI2PDF)'). HTML formatted manuals are generated by ! `make html'. Info manuals are generated by `make info' (which is run ! as part of a bootstrap); this generates the manuals in the source ! directory, using `makeinfo' via the Makefile macro `$(MAKEINFO)', and they are included in release distributions. Manuals are also provided on the GCC web site, in both HTML and PostScript forms. This is done via the script ! `maintainer-scripts/update_web_docs_svn'. Each manual to be provided ! online must be listed in the definition of `MANUALS' in that file; a ! file `NAME.texi' must only appear once in the source tree, and the output manual must have the same name as the source file. (However, other Texinfo files, included in manuals but not themselves the root files of manuals, may have names that appear more than once in the ! source tree.) The manual file `NAME.texi' should only include other ! files in its own directory or in `doc/include'. HTML manuals will be ! generated by `makeinfo --html', PostScript manuals by `texi2dvi' and ! `dvips', and PDF manuals by `texi2pdf'. All Texinfo files that are parts of manuals must be version-controlled, even if they are generated files, for the generation of online manuals to work. ! The installation manual, `doc/install.texi', is also provided on the GCC web site. The HTML version is generated by the script ! `doc/install.texi2html'.  File: gccint.info, Node: Man Page Generation, Next: Miscellaneous Docs, Prev: Texinfo Manuals, Up: Documentation --- 3674,3722 ---- ....................... The manuals for GCC as a whole, and the C and C++ front ends, are in ! files 'doc/*.texi'. Other front ends have their own manuals in files ! 'LANGUAGE/*.texi'. Common files 'doc/include/*.texi' are provided which ! may be included in multiple manuals; the following files are in ! 'doc/include': ! 'fdl.texi' The GNU Free Documentation License. ! 'funding.texi' The section "Funding Free Software". ! 'gcc-common.texi' Common definitions for manuals. ! 'gpl_v3.texi' The GNU General Public License. + 'texinfo.tex' + A copy of 'texinfo.tex' known to work with the GCC manuals. ! DVI-formatted manuals are generated by 'make dvi', which uses ! 'texi2dvi' (via the Makefile macro '$(TEXI2DVI)'). PDF-formatted ! manuals are generated by 'make pdf', which uses 'texi2pdf' (via the ! Makefile macro '$(TEXI2PDF)'). HTML formatted manuals are generated by ! 'make html'. Info manuals are generated by 'make info' (which is run as ! part of a bootstrap); this generates the manuals in the source ! directory, using 'makeinfo' via the Makefile macro '$(MAKEINFO)', and they are included in release distributions. Manuals are also provided on the GCC web site, in both HTML and PostScript forms. This is done via the script ! 'maintainer-scripts/update_web_docs_svn'. Each manual to be provided ! online must be listed in the definition of 'MANUALS' in that file; a ! file 'NAME.texi' must only appear once in the source tree, and the output manual must have the same name as the source file. (However, other Texinfo files, included in manuals but not themselves the root files of manuals, may have names that appear more than once in the ! source tree.) The manual file 'NAME.texi' should only include other ! files in its own directory or in 'doc/include'. HTML manuals will be ! generated by 'makeinfo --html', PostScript manuals by 'texi2dvi' and ! 'dvips', and PDF manuals by 'texi2pdf'. All Texinfo files that are parts of manuals must be version-controlled, even if they are generated files, for the generation of online manuals to work. ! The installation manual, 'doc/install.texi', is also provided on the GCC web site. The HTML version is generated by the script ! 'doc/install.texi2html'.  File: gccint.info, Node: Man Page Generation, Next: Miscellaneous Docs, Prev: Texinfo Manuals, Up: Documentation *************** File: gccint.info, Node: Man Page Gener *** 3745,3784 **** ........................... Because of user demand, in addition to full Texinfo manuals, man pages ! are provided which contain extracts from those manuals. These man ! pages are generated from the Texinfo manuals using ! `contrib/texi2pod.pl' and `pod2man'. (The man page for `g++', ! `cp/g++.1', just contains a `.so' reference to `gcc.1', but all the ! other man pages are generated from Texinfo manuals.) Because many systems may not have the necessary tools installed to ! generate the man pages, they are only generated if the `configure' ! script detects that recent enough tools are installed, and the ! Makefiles allow generating man pages to fail without aborting the ! build. Man pages are also included in release distributions. They are ! generated in the source directory. ! Magic comments in Texinfo files starting `@c man' control what parts ! of a Texinfo file go into a man page. Only a subset of Texinfo is ! supported by `texi2pod.pl', and it may be necessary to add support for more Texinfo features to this script when generating new man pages. To ! improve the man page output, some special Texinfo macros are provided ! in `doc/include/gcc-common.texi' which `texi2pod.pl' understands: ! ! `@gcctabopt' ! Use in the form `@table @gcctabopt' for tables of options, where ! for printed output the effect of `@code' is better than that of ! `@option' but for man page output a different effect is wanted. ! `@gccoptlist' Use for summary lists of options in manuals. ! ! `@gol' ! Use at the end of each line inside `@gccoptlist'. This is necessary to avoid problems with differences in how the ! `@gccoptlist' macro is handled by different Texinfo formatters. ! FIXME: describe the `texi2pod.pl' input language and magic comments in more detail.  --- 3725,3762 ---- ........................... Because of user demand, in addition to full Texinfo manuals, man pages ! are provided which contain extracts from those manuals. These man pages ! are generated from the Texinfo manuals using 'contrib/texi2pod.pl' and ! 'pod2man'. (The man page for 'g++', 'cp/g++.1', just contains a '.so' ! reference to 'gcc.1', but all the other man pages are generated from ! Texinfo manuals.) Because many systems may not have the necessary tools installed to ! generate the man pages, they are only generated if the 'configure' ! script detects that recent enough tools are installed, and the Makefiles ! allow generating man pages to fail without aborting the build. Man ! pages are also included in release distributions. They are generated in ! the source directory. ! Magic comments in Texinfo files starting '@c man' control what parts of ! a Texinfo file go into a man page. Only a subset of Texinfo is ! supported by 'texi2pod.pl', and it may be necessary to add support for more Texinfo features to this script when generating new man pages. To ! improve the man page output, some special Texinfo macros are provided in ! 'doc/include/gcc-common.texi' which 'texi2pod.pl' understands: ! '@gcctabopt' ! Use in the form '@table @gcctabopt' for tables of options, where ! for printed output the effect of '@code' is better than that of ! '@option' but for man page output a different effect is wanted. ! '@gccoptlist' Use for summary lists of options in manuals. ! '@gol' ! Use at the end of each line inside '@gccoptlist'. This is necessary to avoid problems with differences in how the ! '@gccoptlist' macro is handled by different Texinfo formatters. ! FIXME: describe the 'texi2pod.pl' input language and magic comments in more detail.  *************** File: gccint.info, Node: Miscellaneous *** 3788,3831 **** ................................... In addition to the formal documentation that is installed by GCC, there ! are several other text files in the `gcc' subdirectory with miscellaneous documentation: ! `ABOUT-GCC-NLS' ! Notes on GCC's Native Language Support. FIXME: this should be ! part of this manual rather than a separate file. ! ! `ABOUT-NLS' Notes on the Free Translation Project. ! ! `COPYING' ! `COPYING3' The GNU General Public License, Versions 2 and 3. ! ! `COPYING.LIB' ! `COPYING3.LIB' The GNU Lesser General Public License, Versions 2.1 and 3. ! ! `*ChangeLog*' ! `*/ChangeLog*' Change log files for various parts of GCC. ! ! `LANGUAGES' Details of a few changes to the GCC front-end interface. FIXME: the information in this file should be part of general documentation of the front-end interface in this manual. ! ! `ONEWS' Information about new features in old versions of GCC. (For recent versions, the information is on the GCC web site.) ! ! `README.Portability' Information about portability issues when writing code in GCC. FIXME: why isn't this part of this manual or of the GCC Coding Conventions? ! FIXME: document such files in subdirectories, at least `config', `c', ! `cp', `objc', `testsuite'.  File: gccint.info, Node: Front End, Next: Back End, Prev: Documentation, Up: gcc Directory --- 3766,3802 ---- ................................... In addition to the formal documentation that is installed by GCC, there ! are several other text files in the 'gcc' subdirectory with miscellaneous documentation: ! 'ABOUT-GCC-NLS' ! Notes on GCC's Native Language Support. FIXME: this should be part ! of this manual rather than a separate file. ! 'ABOUT-NLS' Notes on the Free Translation Project. ! 'COPYING' ! 'COPYING3' The GNU General Public License, Versions 2 and 3. ! 'COPYING.LIB' ! 'COPYING3.LIB' The GNU Lesser General Public License, Versions 2.1 and 3. ! '*ChangeLog*' ! '*/ChangeLog*' Change log files for various parts of GCC. ! 'LANGUAGES' Details of a few changes to the GCC front-end interface. FIXME: the information in this file should be part of general documentation of the front-end interface in this manual. ! 'ONEWS' Information about new features in old versions of GCC. (For recent versions, the information is on the GCC web site.) ! 'README.Portability' Information about portability issues when writing code in GCC. FIXME: why isn't this part of this manual or of the GCC Coding Conventions? ! FIXME: document such files in subdirectories, at least 'config', 'c', ! 'cp', 'objc', 'testsuite'.  File: gccint.info, Node: Front End, Next: Back End, Prev: Documentation, Up: gcc Directory *************** File: gccint.info, Node: Front End, Ne *** 3835,3883 **** A front end for a language in GCC has the following parts: ! * A directory `LANGUAGE' under `gcc' containing source files for ! that front end. *Note The Front End `LANGUAGE' Directory: Front ! End Directory, for details. ! * A mention of the language in the list of supported languages in ! `gcc/doc/install.texi'. ! * A mention of the name under which the language's runtime library is ! recognized by `--enable-shared=PACKAGE' in the documentation of ! that option in `gcc/doc/install.texi'. ! * A mention of any special prerequisites for building the front end ! in the documentation of prerequisites in `gcc/doc/install.texi'. ! * Details of contributors to that front end in ! `gcc/doc/contrib.texi'. If the details are in that front end's ! own manual then there should be a link to that manual's list in ! `contrib.texi'. ! * Information about support for that language in ! `gcc/doc/frontends.texi'. ! * Information about standards for that language, and the front end's ! support for them, in `gcc/doc/standards.texi'. This may be a link to such information in the front end's own manual. ! ! * Details of source file suffixes for that language and `-x LANG' ! options supported, in `gcc/doc/invoke.texi'. ! ! * Entries in `default_compilers' in `gcc.c' for source file suffixes for that language. ! ! * Preferably testsuites, which may be under `gcc/testsuite' or runtime library directories. FIXME: document somewhere how to write testsuite harnesses. ! ! * Probably a runtime library for the language, outside the `gcc' directory. FIXME: document this further. - * Details of the directories of any runtime libraries in ! `gcc/doc/sourcebuild.texi'. ! ! * Check targets in `Makefile.def' for the top-level `Makefile' to check just the compiler or the compiler and runtime library for the language. --- 3806,3842 ---- A front end for a language in GCC has the following parts: ! * A directory 'LANGUAGE' under 'gcc' containing source files for that ! front end. *Note The Front End 'LANGUAGE' Directory: Front End ! Directory, for details. * A mention of the language in the list of supported languages in ! 'gcc/doc/install.texi'. * A mention of the name under which the language's runtime library is ! recognized by '--enable-shared=PACKAGE' in the documentation of ! that option in 'gcc/doc/install.texi'. * A mention of any special prerequisites for building the front end ! in the documentation of prerequisites in 'gcc/doc/install.texi'. * Details of contributors to that front end in ! 'gcc/doc/contrib.texi'. If the details are in that front end's own ! manual then there should be a link to that manual's list in ! 'contrib.texi'. * Information about support for that language in ! 'gcc/doc/frontends.texi'. * Information about standards for that language, and the front end's ! support for them, in 'gcc/doc/standards.texi'. This may be a link to such information in the front end's own manual. ! * Details of source file suffixes for that language and '-x LANG' ! options supported, in 'gcc/doc/invoke.texi'. ! * Entries in 'default_compilers' in 'gcc.c' for source file suffixes for that language. ! * Preferably testsuites, which may be under 'gcc/testsuite' or runtime library directories. FIXME: document somewhere how to write testsuite harnesses. ! * Probably a runtime library for the language, outside the 'gcc' directory. FIXME: document this further. * Details of the directories of any runtime libraries in ! 'gcc/doc/sourcebuild.texi'. ! * Check targets in 'Makefile.def' for the top-level 'Makefile' to check just the compiler or the compiler and runtime library for the language. *************** A front end for a language in GCC has th *** 3885,4129 **** following are also necessary: * At least one Bugzilla component for bugs in that front end and ! runtime libraries. This category needs to be added to the ! Bugzilla database. ! * Normally, one or more maintainers of that front end listed in ! `MAINTAINERS'. ! ! * Mentions on the GCC web site in `index.html' and `frontends.html', ! with any relevant links on `readings.html'. (Front ends that are ! not an official part of GCC may also be listed on ! `frontends.html', with relevant links.) ! ! * A news item on `index.html', and possibly an announcement on the mailing list. - * The front end's manuals should be mentioned in ! `maintainer-scripts/update_web_docs_svn' (*note Texinfo Manuals::) and the online manuals should be linked to from ! `onlinedocs/index.html'. ! * Any old releases or CVS repositories of the front end, before its inclusion in GCC, should be made available on the GCC FTP site ! `ftp://gcc.gnu.org/pub/gcc/old-releases/'. ! ! * The release and snapshot script `maintainer-scripts/gcc_release' should be updated to generate appropriate tarballs for this front end. - * If this front end includes its own version files that include the ! current date, `maintainer-scripts/update_version' should be ! updated accordingly. * Menu: ! * Front End Directory:: The front end `LANGUAGE' directory. ! * Front End Config:: The front end `config-lang.in' file. ! * Front End Makefile:: The front end `Make-lang.in' file.  File: gccint.info, Node: Front End Directory, Next: Front End Config, Up: Front End ! 6.3.8.1 The Front End `LANGUAGE' Directory .......................................... ! A front end `LANGUAGE' directory contains the source files of that ! front end (but not of any runtime libraries, which should be outside ! the `gcc' directory). This includes documentation, and possibly some ! subsidiary programs built alongside the front end. Certain files are ! special and other parts of the compiler depend on their names: ! `config-lang.in' This file is required in all language subdirectories. *Note The ! Front End `config-lang.in' File: Front End Config, for details of its contents ! ! `Make-lang.in' This file is required in all language subdirectories. *Note The ! Front End `Make-lang.in' File: Front End Makefile, for details of its contents. ! ! `lang.opt' This file registers the set of switches that the front end accepts ! on the command line, and their `--help' text. *Note Options::. ! ! `lang-specs.h' ! This file provides entries for `default_compilers' in `gcc.c' ! which override the default of giving an error that a compiler for ! that language is not installed. ! ! `LANGUAGE-tree.def' This file, which need not exist, defines any language-specific tree codes.  File: gccint.info, Node: Front End Config, Next: Front End Makefile, Prev: Front End Directory, Up: Front End ! 6.3.8.2 The Front End `config-lang.in' File ........................................... ! Each language subdirectory contains a `config-lang.in' file. This file is a shell script that may define some variables describing the language: ! `language' This definition must be present, and gives the name of the language ! for some purposes such as arguments to `--enable-languages'. ! ! `lang_requires' If defined, this variable lists (space-separated) language front ends other than C that this front end requires to be enabled (with ! the names given being their `language' settings). For example, the Java front end depends on the C++ front end, so sets ! `lang_requires=c++'. ! ! `subdir_requires' If defined, this variable lists (space-separated) front end directories other than C that this front end requires to be present. For example, the Objective-C++ front end uses source files from the C++ and Objective-C front ends, so sets ! `subdir_requires="cp objc"'. ! ! `target_libs' If defined, this variable lists (space-separated) targets in the ! top level `Makefile' to build the runtime libraries for this ! language, such as `target-libobjc'. ! ! `lang_dirs' If defined, this variable lists (space-separated) top level ! directories (parallel to `gcc'), apart from the runtime libraries, that should not be configured if this front end is not built. ! ! `build_by_default' ! If defined to `no', this language front end is not built unless ! enabled in a `--enable-languages' argument. Otherwise, front ends are built by default, subject to any special logic in ! `configure.ac' (as is present to disable the Ada front end if the Ada compiler is not already installed). ! ! `boot_language' ! If defined to `yes', this front end is built in stage1 of the bootstrap. This is only relevant to front ends written in their own languages. ! ! `compilers' If defined, a space-separated list of compiler executables that will be run by the driver. The names here will each end with ! `\$(exeext)'. ! ! `outputs' If defined, a space-separated list of files that should be ! generated by `configure' substituting values in them. This ! mechanism can be used to create a file `LANGUAGE/Makefile' from ! `LANGUAGE/Makefile.in', but this is deprecated, building ! everything from the single `gcc/Makefile' is preferred. ! ! `gtfiles' If defined, a space-separated list of files that should be scanned ! by `gengtype.c' to generate the garbage collection tables and routines for this language. This excludes the files that are common to all front ends. *Note Type Information::. -  File: gccint.info, Node: Front End Makefile, Prev: Front End Config, Up: Front End ! 6.3.8.3 The Front End `Make-lang.in' File ......................................... ! Each language subdirectory contains a `Make-lang.in' file. It contains ! targets `LANG.HOOK' (where `LANG' is the setting of `language' in ! `config-lang.in') for the following values of `HOOK', and any other Makefile rules required to build those targets (which may if necessary ! use other Makefiles specified in `outputs' in `config-lang.in', ! although this is deprecated). It also adds any testsuite targets that ! can use the standard rule in `gcc/Makefile.in' to the variable ! `lang_checks'. ! `all.cross' ! `start.encap' ! `rest.encap' FIXME: exactly what goes in each of these targets? ! ! `tags' ! Build an `etags' `TAGS' file in the language subdirectory in the source tree. ! ! `info' Build info documentation for the front end, in the build directory. ! This target is only called by `make bootstrap' if a suitable ! version of `makeinfo' is available, so does not need to check for this, and should fail if an error occurs. ! ! `dvi' Build DVI documentation for the front end, in the build directory. ! This should be done using `$(TEXI2DVI)', with appropriate `-I' arguments pointing to directories of included files. ! ! `pdf' Build PDF documentation for the front end, in the build directory. ! This should be done using `$(TEXI2PDF)', with appropriate `-I' arguments pointing to directories of included files. ! ! `html' Build HTML documentation for the front end, in the build directory. ! ! `man' Build generated man pages for the front end from Texinfo manuals (*note Man Page Generation::), in the build directory. This target is only called if the necessary tools are available, but should ignore errors so as not to stop the build if errors occur; man pages are optional and the tools involved may be installed in a broken way. ! ! `install-common' Install everything that is part of the front end, apart from the ! compiler executables listed in `compilers' in `config-lang.in'. ! ! `install-info' Install info documentation for the front end, if it is present in ! the source directory. This target should have dependencies on ! info files that should be installed. ! ! `install-man' Install man pages for the front end. This target should ignore errors. ! ! `install-plugin' Install headers needed for plugins. ! ! `srcextra' Copies its dependencies into the source directory. This generally ! should be used for generated files such as Bison output files ! which are not version-controlled, but should be included in any ! release tarballs. This target will be executed during a bootstrap ! if `--enable-generated-files-in-srcdir' was specified as a ! `configure' option. ! ! `srcinfo' ! `srcman' Copies its dependencies into the source directory. These targets will be executed during a bootstrap if ! `--enable-generated-files-in-srcdir' was specified as a ! `configure' option. ! ! `uninstall' Uninstall files installed by installing the compiler. This is currently documented not to be supported, so the hook need not do anything. ! ! `mostlyclean' ! `clean' ! `distclean' ! `maintainer-clean' ! The language parts of the standard GNU `*clean' targets. *Note Standard Targets for Users: (standards)Standard Targets, for ! details of the standard targets. For GCC, `maintainer-clean' should delete all generated files in the source directory that are not version-controlled, but should not delete anything that is. ! `Make-lang.in' must also define a variable `LANG_OBJS' to a list of host object files that are used by that language.  --- 3844,4052 ---- following are also necessary: * At least one Bugzilla component for bugs in that front end and ! runtime libraries. This category needs to be added to the Bugzilla ! database. * Normally, one or more maintainers of that front end listed in ! 'MAINTAINERS'. ! * Mentions on the GCC web site in 'index.html' and 'frontends.html', ! with any relevant links on 'readings.html'. (Front ends that are ! not an official part of GCC may also be listed on 'frontends.html', ! with relevant links.) ! * A news item on 'index.html', and possibly an announcement on the mailing list. * The front end's manuals should be mentioned in ! 'maintainer-scripts/update_web_docs_svn' (*note Texinfo Manuals::) and the online manuals should be linked to from ! 'onlinedocs/index.html'. * Any old releases or CVS repositories of the front end, before its inclusion in GCC, should be made available on the GCC FTP site ! . ! * The release and snapshot script 'maintainer-scripts/gcc_release' should be updated to generate appropriate tarballs for this front end. * If this front end includes its own version files that include the ! current date, 'maintainer-scripts/update_version' should be updated ! accordingly. * Menu: ! * Front End Directory:: The front end 'LANGUAGE' directory. ! * Front End Config:: The front end 'config-lang.in' file. ! * Front End Makefile:: The front end 'Make-lang.in' file.  File: gccint.info, Node: Front End Directory, Next: Front End Config, Up: Front End ! 6.3.8.1 The Front End 'LANGUAGE' Directory .......................................... ! A front end 'LANGUAGE' directory contains the source files of that front ! end (but not of any runtime libraries, which should be outside the 'gcc' ! directory). This includes documentation, and possibly some subsidiary ! programs built alongside the front end. Certain files are special and ! other parts of the compiler depend on their names: ! 'config-lang.in' This file is required in all language subdirectories. *Note The ! Front End 'config-lang.in' File: Front End Config, for details of its contents ! 'Make-lang.in' This file is required in all language subdirectories. *Note The ! Front End 'Make-lang.in' File: Front End Makefile, for details of its contents. ! 'lang.opt' This file registers the set of switches that the front end accepts ! on the command line, and their '--help' text. *Note Options::. ! 'lang-specs.h' ! This file provides entries for 'default_compilers' in 'gcc.c' which ! override the default of giving an error that a compiler for that ! language is not installed. ! 'LANGUAGE-tree.def' This file, which need not exist, defines any language-specific tree codes.  File: gccint.info, Node: Front End Config, Next: Front End Makefile, Prev: Front End Directory, Up: Front End ! 6.3.8.2 The Front End 'config-lang.in' File ........................................... ! Each language subdirectory contains a 'config-lang.in' file. This file is a shell script that may define some variables describing the language: ! 'language' This definition must be present, and gives the name of the language ! for some purposes such as arguments to '--enable-languages'. ! 'lang_requires' If defined, this variable lists (space-separated) language front ends other than C that this front end requires to be enabled (with ! the names given being their 'language' settings). For example, the Java front end depends on the C++ front end, so sets ! 'lang_requires=c++'. ! 'subdir_requires' If defined, this variable lists (space-separated) front end directories other than C that this front end requires to be present. For example, the Objective-C++ front end uses source files from the C++ and Objective-C front ends, so sets ! 'subdir_requires="cp objc"'. ! 'target_libs' If defined, this variable lists (space-separated) targets in the ! top level 'Makefile' to build the runtime libraries for this ! language, such as 'target-libobjc'. ! 'lang_dirs' If defined, this variable lists (space-separated) top level ! directories (parallel to 'gcc'), apart from the runtime libraries, that should not be configured if this front end is not built. ! 'build_by_default' ! If defined to 'no', this language front end is not built unless ! enabled in a '--enable-languages' argument. Otherwise, front ends are built by default, subject to any special logic in ! 'configure.ac' (as is present to disable the Ada front end if the Ada compiler is not already installed). ! 'boot_language' ! If defined to 'yes', this front end is built in stage1 of the bootstrap. This is only relevant to front ends written in their own languages. ! 'compilers' If defined, a space-separated list of compiler executables that will be run by the driver. The names here will each end with ! '\$(exeext)'. ! 'outputs' If defined, a space-separated list of files that should be ! generated by 'configure' substituting values in them. This ! mechanism can be used to create a file 'LANGUAGE/Makefile' from ! 'LANGUAGE/Makefile.in', but this is deprecated, building everything ! from the single 'gcc/Makefile' is preferred. ! 'gtfiles' If defined, a space-separated list of files that should be scanned ! by 'gengtype.c' to generate the garbage collection tables and routines for this language. This excludes the files that are common to all front ends. *Note Type Information::.  File: gccint.info, Node: Front End Makefile, Prev: Front End Config, Up: Front End ! 6.3.8.3 The Front End 'Make-lang.in' File ......................................... ! Each language subdirectory contains a 'Make-lang.in' file. It contains ! targets 'LANG.HOOK' (where 'LANG' is the setting of 'language' in ! 'config-lang.in') for the following values of 'HOOK', and any other Makefile rules required to build those targets (which may if necessary ! use other Makefiles specified in 'outputs' in 'config-lang.in', although ! this is deprecated). It also adds any testsuite targets that can use ! the standard rule in 'gcc/Makefile.in' to the variable 'lang_checks'. ! 'all.cross' ! 'start.encap' ! 'rest.encap' FIXME: exactly what goes in each of these targets? ! 'tags' ! Build an 'etags' 'TAGS' file in the language subdirectory in the source tree. ! 'info' Build info documentation for the front end, in the build directory. ! This target is only called by 'make bootstrap' if a suitable ! version of 'makeinfo' is available, so does not need to check for this, and should fail if an error occurs. ! 'dvi' Build DVI documentation for the front end, in the build directory. ! This should be done using '$(TEXI2DVI)', with appropriate '-I' arguments pointing to directories of included files. ! 'pdf' Build PDF documentation for the front end, in the build directory. ! This should be done using '$(TEXI2PDF)', with appropriate '-I' arguments pointing to directories of included files. ! 'html' Build HTML documentation for the front end, in the build directory. ! 'man' Build generated man pages for the front end from Texinfo manuals (*note Man Page Generation::), in the build directory. This target is only called if the necessary tools are available, but should ignore errors so as not to stop the build if errors occur; man pages are optional and the tools involved may be installed in a broken way. ! 'install-common' Install everything that is part of the front end, apart from the ! compiler executables listed in 'compilers' in 'config-lang.in'. ! 'install-info' Install info documentation for the front end, if it is present in ! the source directory. This target should have dependencies on info ! files that should be installed. ! 'install-man' Install man pages for the front end. This target should ignore errors. ! 'install-plugin' Install headers needed for plugins. ! 'srcextra' Copies its dependencies into the source directory. This generally ! should be used for generated files such as Bison output files which ! are not version-controlled, but should be included in any release ! tarballs. This target will be executed during a bootstrap if ! '--enable-generated-files-in-srcdir' was specified as a 'configure' ! option. ! 'srcinfo' ! 'srcman' Copies its dependencies into the source directory. These targets will be executed during a bootstrap if ! '--enable-generated-files-in-srcdir' was specified as a 'configure' ! option. ! 'uninstall' Uninstall files installed by installing the compiler. This is currently documented not to be supported, so the hook need not do anything. ! 'mostlyclean' ! 'clean' ! 'distclean' ! 'maintainer-clean' ! The language parts of the standard GNU '*clean' targets. *Note Standard Targets for Users: (standards)Standard Targets, for ! details of the standard targets. For GCC, 'maintainer-clean' should delete all generated files in the source directory that are not version-controlled, but should not delete anything that is. ! 'Make-lang.in' must also define a variable 'LANG_OBJS' to a list of host object files that are used by that language.  *************** File: gccint.info, Node: Back End, Pre *** 4134,4217 **** A back end for a target architecture in GCC has the following parts: ! * A directory `MACHINE' under `gcc/config', containing a machine ! description `MACHINE.md' file (*note Machine Descriptions: Machine ! Desc.), header files `MACHINE.h' and `MACHINE-protos.h' and a ! source file `MACHINE.c' (*note Target Description Macros and Functions: Target Macros.), possibly a target Makefile fragment ! `t-MACHINE' (*note The Target Makefile Fragment: Target ! Fragment.), and maybe some other files. The names of these files ! may be changed from the defaults given by explicit specifications ! in `config.gcc'. ! ! * If necessary, a file `MACHINE-modes.def' in the `MACHINE' directory, containing additional machine modes to represent condition codes. *Note Condition Code::, for further details. ! ! * An optional `MACHINE.opt' file in the `MACHINE' directory, containing a list of target-specific options. You can also add ! other option files using the `extra_options' variable in ! `config.gcc'. *Note Options::. ! ! * Entries in `config.gcc' (*note The `config.gcc' File: System Config.) for the systems with this target architecture. ! ! * Documentation in `gcc/doc/invoke.texi' for any command-line ! options supported by this target (*note Run-time Target ! Specification: Run-time Target.). This means both entries in the ! summary table of options and details of the individual options. ! ! * Documentation in `gcc/doc/extend.texi' for any target-specific attributes supported (*note Defining target-specific uses of ! `__attribute__': Target Attributes.), including where the same attribute is already supported on some targets, which are enumerated in the manual. ! ! * Documentation in `gcc/doc/extend.texi' for any target-specific pragmas supported. ! ! * Documentation in `gcc/doc/extend.texi' of any target-specific built-in functions supported. ! ! * Documentation in `gcc/doc/extend.texi' of any target-specific format checking styles supported. ! ! * Documentation in `gcc/doc/md.texi' of any target-specific constraint letters (*note Constraints for Particular Machines: Machine Constraints.). ! ! * A note in `gcc/doc/contrib.texi' under the person or people who contributed the target support. ! ! * Entries in `gcc/doc/install.texi' for all target triplets ! supported with this target architecture, giving details of any ! special notes about installation for this target, or saying that ! there are no special notes if there are none. ! ! * Possibly other support outside the `gcc' directory for runtime ! libraries. FIXME: reference docs for this. The `libstdc++' porting manual needs to be installed as info for this to work, or to be a chapter of this manual. If the back end is added to the official GCC source repository, the following are also necessary: ! * An entry for the target architecture in `readings.html' on the GCC web site, with any relevant links. - * Details of the properties of the back end and target architecture ! in `backends.html' on the GCC web site. ! * A news item about the contribution of support for that target ! architecture, in `index.html' on the GCC web site. ! * Normally, one or more maintainers of that target listed in ! `MAINTAINERS'. Some existing architectures may be unmaintained, but it would be unusual to add support for a target that does not have a maintainer when support is added. ! ! * Target triplets covering all `config.gcc' stanzas for the target, ! in the list in `contrib/config-list.mk'.  File: gccint.info, Node: Testsuites, Next: Options, Prev: Source Tree, Up: Top --- 4057,4124 ---- A back end for a target architecture in GCC has the following parts: ! * A directory 'MACHINE' under 'gcc/config', containing a machine ! description 'MACHINE.md' file (*note Machine Descriptions: Machine ! Desc.), header files 'MACHINE.h' and 'MACHINE-protos.h' and a ! source file 'MACHINE.c' (*note Target Description Macros and Functions: Target Macros.), possibly a target Makefile fragment ! 't-MACHINE' (*note The Target Makefile Fragment: Target Fragment.), ! and maybe some other files. The names of these files may be ! changed from the defaults given by explicit specifications in ! 'config.gcc'. ! * If necessary, a file 'MACHINE-modes.def' in the 'MACHINE' directory, containing additional machine modes to represent condition codes. *Note Condition Code::, for further details. ! * An optional 'MACHINE.opt' file in the 'MACHINE' directory, containing a list of target-specific options. You can also add ! other option files using the 'extra_options' variable in ! 'config.gcc'. *Note Options::. ! * Entries in 'config.gcc' (*note The 'config.gcc' File: System Config.) for the systems with this target architecture. ! * Documentation in 'gcc/doc/invoke.texi' for any command-line options ! supported by this target (*note Run-time Target Specification: ! Run-time Target.). This means both entries in the summary table of ! options and details of the individual options. ! * Documentation in 'gcc/doc/extend.texi' for any target-specific attributes supported (*note Defining target-specific uses of ! '__attribute__': Target Attributes.), including where the same attribute is already supported on some targets, which are enumerated in the manual. ! * Documentation in 'gcc/doc/extend.texi' for any target-specific pragmas supported. ! * Documentation in 'gcc/doc/extend.texi' of any target-specific built-in functions supported. ! * Documentation in 'gcc/doc/extend.texi' of any target-specific format checking styles supported. ! * Documentation in 'gcc/doc/md.texi' of any target-specific constraint letters (*note Constraints for Particular Machines: Machine Constraints.). ! * A note in 'gcc/doc/contrib.texi' under the person or people who contributed the target support. ! * Entries in 'gcc/doc/install.texi' for all target triplets supported ! with this target architecture, giving details of any special notes ! about installation for this target, or saying that there are no ! special notes if there are none. ! * Possibly other support outside the 'gcc' directory for runtime ! libraries. FIXME: reference docs for this. The 'libstdc++' porting manual needs to be installed as info for this to work, or to be a chapter of this manual. If the back end is added to the official GCC source repository, the following are also necessary: ! * An entry for the target architecture in 'readings.html' on the GCC web site, with any relevant links. * Details of the properties of the back end and target architecture ! in 'backends.html' on the GCC web site. * A news item about the contribution of support for that target ! architecture, in 'index.html' on the GCC web site. * Normally, one or more maintainers of that target listed in ! 'MAINTAINERS'. Some existing architectures may be unmaintained, but it would be unusual to add support for a target that does not have a maintainer when support is added. ! * Target triplets covering all 'config.gcc' stanzas for the target, ! in the list in 'contrib/config-list.mk'.  File: gccint.info, Node: Testsuites, Next: Options, Prev: Source Tree, Up: Top *************** File: gccint.info, Node: Testsuites, N *** 4219,4228 **** 7 Testsuites ************ ! GCC contains several testsuites to help maintain compiler quality. ! Most of the runtime libraries and language front ends in GCC have ! testsuites. Currently only the C language testsuites are documented ! here; FIXME: document the others. * Menu: --- 4126,4135 ---- 7 Testsuites ************ ! GCC contains several testsuites to help maintain compiler quality. Most ! of the runtime libraries and language front ends in GCC have testsuites. ! Currently only the C language testsuites are documented here; FIXME: ! document the others. * Menu: *************** File: gccint.info, Node: Test Idioms, *** 4243,4284 **** 7.1 Idioms Used in Testsuite Code ================================= ! In general, C testcases have a trailing `-N.c', starting with `-1.c', ! in case other testcases with similar names are added later. If the ! test is a test of some well-defined feature, it should have a name ! referring to that feature such as `FEATURE-1.c'. If it does not test a ! well-defined feature but just happens to exercise a bug somewhere in ! the compiler, and a bug report has been filed for this bug in the GCC ! bug database, `prBUG-NUMBER-1.c' is the appropriate form of name. ! Otherwise (for miscellaneous bugs not filed in the GCC bug database), ! and previously more generally, test cases are named after the date on ! which they were added. This allows people to tell at a glance whether ! a test failure is because of a recently found bug that has not yet been ! fixed, or whether it may be a regression, but does not give any other ! information about the bug or where discussion of it may be found. Some ! other language testsuites follow similar conventions. ! In the `gcc.dg' testsuite, it is often necessary to test that an error is indeed a hard error and not just a warning--for example, where it is a constraint violation in the C standard, which must become an error ! with `-pedantic-errors'. The following idiom, where the first line ! shown is line LINE of the file and the line that generates the error, ! is used for this: /* { dg-bogus "warning" "warning in place of error" } */ /* { dg-error "REGEXP" "MESSAGE" { target *-*-* } LINE } */ It may be necessary to check that an expression is an integer constant ! expression and has a certain value. To check that `E' has value `V', ! an idiom similar to the following is used: char x[((E) == (V) ? 1 : -1)]; ! In `gcc.dg' tests, `__typeof__' is sometimes used to make assertions about the types of expressions. See, for example, ! `gcc.dg/c99-condexpr-1.c'. The more subtle uses depend on the exact rules for the types of conditional expressions in the C standard; see, ! for example, `gcc.dg/c99-intconst-1.c'. It is useful to be able to test that optimizations are being made properly. This cannot be done in all cases, but it can be done where --- 4150,4191 ---- 7.1 Idioms Used in Testsuite Code ================================= ! In general, C testcases have a trailing '-N.c', starting with '-1.c', in ! case other testcases with similar names are added later. If the test is ! a test of some well-defined feature, it should have a name referring to ! that feature such as 'FEATURE-1.c'. If it does not test a well-defined ! feature but just happens to exercise a bug somewhere in the compiler, ! and a bug report has been filed for this bug in the GCC bug database, ! 'prBUG-NUMBER-1.c' is the appropriate form of name. Otherwise (for ! miscellaneous bugs not filed in the GCC bug database), and previously ! more generally, test cases are named after the date on which they were ! added. This allows people to tell at a glance whether a test failure is ! because of a recently found bug that has not yet been fixed, or whether ! it may be a regression, but does not give any other information about ! the bug or where discussion of it may be found. Some other language ! testsuites follow similar conventions. ! In the 'gcc.dg' testsuite, it is often necessary to test that an error is indeed a hard error and not just a warning--for example, where it is a constraint violation in the C standard, which must become an error ! with '-pedantic-errors'. The following idiom, where the first line ! shown is line LINE of the file and the line that generates the error, is ! used for this: /* { dg-bogus "warning" "warning in place of error" } */ /* { dg-error "REGEXP" "MESSAGE" { target *-*-* } LINE } */ It may be necessary to check that an expression is an integer constant ! expression and has a certain value. To check that 'E' has value 'V', an ! idiom similar to the following is used: char x[((E) == (V) ? 1 : -1)]; ! In 'gcc.dg' tests, '__typeof__' is sometimes used to make assertions about the types of expressions. See, for example, ! 'gcc.dg/c99-condexpr-1.c'. The more subtle uses depend on the exact rules for the types of conditional expressions in the C standard; see, ! for example, 'gcc.dg/c99-intconst-1.c'. It is useful to be able to test that optimizations are being made properly. This cannot be done in all cases, but it can be done where *************** the optimization will lead to code being *** 4286,4293 **** where flow analysis or alias analysis should show that certain code cannot be called) or to functions not being called because they have been expanded as built-in functions. Such tests go in ! `gcc.c-torture/execute'. Where code should be optimized away, a call ! to a nonexistent function such as `link_failure ()' may be inserted; a definition #ifndef __OPTIMIZE__ --- 4193,4200 ---- where flow analysis or alias analysis should show that certain code cannot be called) or to functions not being called because they have been expanded as built-in functions. Such tests go in ! 'gcc.c-torture/execute'. Where code should be optimized away, a call to ! a nonexistent function such as 'link_failure ()' may be inserted; a definition #ifndef __OPTIMIZE__ *************** definition *** 4299,4309 **** #endif will also be needed so that linking still succeeds when the test is run ! without optimization. When all calls to a built-in function should ! have been optimized and no calls to the non-built-in version of the ! function should remain, that function may be defined as `static' to ! call `abort ()' (although redeclaring a function as static may not work ! on all targets). All testcases must be portable. Target-specific testcases must have appropriate code to avoid causing failures on unsupported systems; --- 4206,4216 ---- #endif will also be needed so that linking still succeeds when the test is run ! without optimization. When all calls to a built-in function should have ! been optimized and no calls to the non-built-in version of the function ! should remain, that function may be defined as 'static' to call 'abort ! ()' (although redeclaring a function as static may not work on all ! targets). All testcases must be portable. Target-specific testcases must have appropriate code to avoid causing failures on unsupported systems; *************** File: gccint.info, Node: Test Directive *** 4322,4330 **** * Directives:: Syntax and descriptions of test directives. * Selectors:: Selecting targets to which a test applies. * Effective-Target Keywords:: Keywords describing target attributes. ! * Add Options:: Features for `dg-add-options' ! * Require Support:: Variants of `dg-require-SUPPORT' ! * Final Actions:: Commands for use in `dg-final'  File: gccint.info, Node: Directives, Next: Selectors, Up: Test Directives --- 4229,4237 ---- * Directives:: Syntax and descriptions of test directives. * Selectors:: Selecting targets to which a test applies. * Effective-Target Keywords:: Keywords describing target attributes. ! * Add Options:: Features for 'dg-add-options' ! * Require Support:: Variants of 'dg-require-SUPPORT' ! * Final Actions:: Commands for use in 'dg-final'  File: gccint.info, Node: Directives, Next: Selectors, Up: Test Directives *************** File: gccint.info, Node: Directives, N *** 4333,4339 **** ------------------------------------------------ Test directives appear within comments in a test source file and begin ! with `dg-'. Some of these are defined within DejaGnu and others are local to the GCC testsuite. The order in which test directives appear in a test can be important: --- 4240,4246 ---- ------------------------------------------------ Test directives appear within comments in a test source file and begin ! with 'dg-'. Some of these are defined within DejaGnu and others are local to the GCC testsuite. The order in which test directives appear in a test can be important: *************** directives local to GCC sometimes overri *** 4341,4401 **** DejaGnu directives, which know nothing about the GCC directives, so the DejaGnu directives must precede GCC directives. ! Several test directives include selectors (*note Selectors::) which ! are usually preceded by the keyword `target' or `xfail'. 7.2.1.1 Specify how to build the test ..................................... ! `{ dg-do DO-WHAT-KEYWORD [{ target/xfail SELECTOR }] }' DO-WHAT-KEYWORD specifies how the test is compiled and whether it is executed. It is one of: ! `preprocess' ! Compile with `-E' to run only the preprocessor. ! ! `compile' ! Compile with `-S' to produce an assembly code file. ! ! `assemble' ! Compile with `-c' to produce a relocatable object file. ! ! `link' Compile, assemble, and link to produce an executable file. ! ! `run' Produce and run an executable file, which is expected to return an exit code of 0. ! The default is `compile'. That can be overridden for a set of ! tests by redefining `dg-do-what-default' within the `.exp' file ! for those tests. ! If the directive includes the optional `{ target SELECTOR }' then the test is skipped unless the target system matches the SELECTOR. ! If DO-WHAT-KEYWORD is `run' and the directive includes the ! optional `{ xfail SELECTOR }' and the selector is met then the ! test is expected to fail. The `xfail' clause is ignored for other ! values of DO-WHAT-KEYWORD; those tests can use directive ! `dg-xfail-if'. 7.2.1.2 Specify additional compiler options ........................................... ! `{ dg-options OPTIONS [{ target SELECTOR }] }' This DejaGnu directive provides a list of compiler options, to be used if the target system matches SELECTOR, that replace the default options used for this set of tests. ! `{ dg-add-options FEATURE ... }' Add any compiler options that are needed to access certain features. This directive does nothing on targets that enable the features by default, or that don't provide them at all. It must ! come after all `dg-options' directives. For supported values of FEATURE see *note Add Options::. ! `{ dg-additional-options OPTIONS [{ target SELECTOR }] }' This directive provides a list of compiler options, to be used if the target system matches SELECTOR, that are added to the default options used for this set of tests. --- 4248,4303 ---- DejaGnu directives, which know nothing about the GCC directives, so the DejaGnu directives must precede GCC directives. ! Several test directives include selectors (*note Selectors::) which are ! usually preceded by the keyword 'target' or 'xfail'. 7.2.1.1 Specify how to build the test ..................................... ! '{ dg-do DO-WHAT-KEYWORD [{ target/xfail SELECTOR }] }' DO-WHAT-KEYWORD specifies how the test is compiled and whether it is executed. It is one of: ! 'preprocess' ! Compile with '-E' to run only the preprocessor. ! 'compile' ! Compile with '-S' to produce an assembly code file. ! 'assemble' ! Compile with '-c' to produce a relocatable object file. ! 'link' Compile, assemble, and link to produce an executable file. ! 'run' Produce and run an executable file, which is expected to return an exit code of 0. ! The default is 'compile'. That can be overridden for a set of ! tests by redefining 'dg-do-what-default' within the '.exp' file for ! those tests. ! If the directive includes the optional '{ target SELECTOR }' then the test is skipped unless the target system matches the SELECTOR. ! If DO-WHAT-KEYWORD is 'run' and the directive includes the optional ! '{ xfail SELECTOR }' and the selector is met then the test is ! expected to fail. The 'xfail' clause is ignored for other values ! of DO-WHAT-KEYWORD; those tests can use directive 'dg-xfail-if'. 7.2.1.2 Specify additional compiler options ........................................... ! '{ dg-options OPTIONS [{ target SELECTOR }] }' This DejaGnu directive provides a list of compiler options, to be used if the target system matches SELECTOR, that replace the default options used for this set of tests. ! '{ dg-add-options FEATURE ... }' Add any compiler options that are needed to access certain features. This directive does nothing on targets that enable the features by default, or that don't provide them at all. It must ! come after all 'dg-options' directives. For supported values of FEATURE see *note Add Options::. ! '{ dg-additional-options OPTIONS [{ target SELECTOR }] }' This directive provides a list of compiler options, to be used if the target system matches SELECTOR, that are added to the default options used for this set of tests. *************** are usually preceded by the keyword `tar *** 4406,4412 **** The normal timeout limit, in seconds, is found by searching the following in order: ! * the value defined by an earlier `dg-timeout' directive in the test * variable TOOL_TIMEOUT defined by the set of tests --- 4308,4314 ---- The normal timeout limit, in seconds, is found by searching the following in order: ! * the value defined by an earlier 'dg-timeout' directive in the test * variable TOOL_TIMEOUT defined by the set of tests *************** following in order: *** 4414,4431 **** * 300 ! `{ dg-timeout N [{target SELECTOR }] }' ! Set the time limit for the compilation and for the execution of ! the test to the specified number of seconds. ! `{ dg-timeout-factor X [{ target SELECTOR }] }' ! Multiply the normal time limit for compilation and execution of ! the test by the specified floating-point factor. 7.2.1.4 Skip a test for some targets .................................... ! `{ dg-skip-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }' Arguments INCLUDE-OPTS and EXCLUDE-OPTS are lists in which each element is a string of zero or more GCC options. Skip the test if all of the following conditions are met: --- 4316,4333 ---- * 300 ! '{ dg-timeout N [{target SELECTOR }] }' ! Set the time limit for the compilation and for the execution of the ! test to the specified number of seconds. ! '{ dg-timeout-factor X [{ target SELECTOR }] }' ! Multiply the normal time limit for compilation and execution of the ! test by the specified floating-point factor. 7.2.1.4 Skip a test for some targets .................................... ! '{ dg-skip-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }' Arguments INCLUDE-OPTS and EXCLUDE-OPTS are lists in which each element is a string of zero or more GCC options. Skip the test if all of the following conditions are met: *************** following in order: *** 4433,4482 **** * for at least one of the option strings in INCLUDE-OPTS, every option from that string is in the set of options with which ! the test would be compiled; use `"*"' for an INCLUDE-OPTS list that matches any options; that is the default if INCLUDE-OPTS is not specified * for each of the option strings in EXCLUDE-OPTS, at least one option from that string is not in the set of options with ! which the test would be compiled; use `""' for an empty EXCLUDE-OPTS list; that is the default if EXCLUDE-OPTS is not specified ! For example, to skip a test if option `-Os' is present: /* { dg-skip-if "" { *-*-* } { "-Os" } { "" } } */ ! To skip a test if both options `-O2' and `-g' are present: /* { dg-skip-if "" { *-*-* } { "-O2 -g" } { "" } } */ ! To skip a test if either `-O2' or `-O3' is present: /* { dg-skip-if "" { *-*-* } { "-O2" "-O3" } { "" } } */ ! To skip a test unless option `-Os' is present: /* { dg-skip-if "" { *-*-* } { "*" } { "-Os" } } */ ! To skip a test if either `-O2' or `-O3' is used with `-g' but not ! if `-fpic' is also present: /* { dg-skip-if "" { *-*-* } { "-O2 -g" "-O3 -g" } { "-fpic" } } */ ! `{ dg-require-effective-target KEYWORD [{ SELECTOR }] }' Skip the test if the test target, including current multilib flags, is not covered by the effective-target keyword. If the directive ! includes the optional `{ SELECTOR }' then the effective-target ! test is only performed if the target system matches the SELECTOR. ! This directive must appear after any `dg-do' directive in the test ! and before any `dg-additional-sources' directive. *Note Effective-Target Keywords::. ! `{ dg-require-SUPPORT args }' Skip the test if the target does not provide the required support. ! These directives must appear after any `dg-do' directive in the ! test and before any `dg-additional-sources' directive. They require at least one argument, which can be an empty string if the specific procedure does not examine the argument. *Note Require Support::, for a complete list of these directives. --- 4335,4384 ---- * for at least one of the option strings in INCLUDE-OPTS, every option from that string is in the set of options with which ! the test would be compiled; use '"*"' for an INCLUDE-OPTS list that matches any options; that is the default if INCLUDE-OPTS is not specified * for each of the option strings in EXCLUDE-OPTS, at least one option from that string is not in the set of options with ! which the test would be compiled; use '""' for an empty EXCLUDE-OPTS list; that is the default if EXCLUDE-OPTS is not specified ! For example, to skip a test if option '-Os' is present: /* { dg-skip-if "" { *-*-* } { "-Os" } { "" } } */ ! To skip a test if both options '-O2' and '-g' are present: /* { dg-skip-if "" { *-*-* } { "-O2 -g" } { "" } } */ ! To skip a test if either '-O2' or '-O3' is present: /* { dg-skip-if "" { *-*-* } { "-O2" "-O3" } { "" } } */ ! To skip a test unless option '-Os' is present: /* { dg-skip-if "" { *-*-* } { "*" } { "-Os" } } */ ! To skip a test if either '-O2' or '-O3' is used with '-g' but not ! if '-fpic' is also present: /* { dg-skip-if "" { *-*-* } { "-O2 -g" "-O3 -g" } { "-fpic" } } */ ! '{ dg-require-effective-target KEYWORD [{ SELECTOR }] }' Skip the test if the test target, including current multilib flags, is not covered by the effective-target keyword. If the directive ! includes the optional '{ SELECTOR }' then the effective-target test ! is only performed if the target system matches the SELECTOR. This ! directive must appear after any 'dg-do' directive in the test and ! before any 'dg-additional-sources' directive. *Note Effective-Target Keywords::. ! '{ dg-require-SUPPORT args }' Skip the test if the target does not provide the required support. ! These directives must appear after any 'dg-do' directive in the ! test and before any 'dg-additional-sources' directive. They require at least one argument, which can be an empty string if the specific procedure does not examine the argument. *Note Require Support::, for a complete list of these directives. *************** following in order: *** 4484,4574 **** 7.2.1.5 Expect a test to fail for some targets .............................................. ! `{ dg-xfail-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }' Expect the test to fail if the conditions (which are the same as ! for `dg-skip-if') are met. This does not affect the execute step. ! `{ dg-xfail-run-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }' Expect the execute step of a test to fail if the conditions (which ! are the same as for `dg-skip-if') are met. 7.2.1.6 Expect the test executable to fail .......................................... ! `{ dg-shouldfail COMMENT [{ SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]]] }' Expect the test executable to return a nonzero exit status if the ! conditions (which are the same as for `dg-skip-if') are met. 7.2.1.7 Verify compiler messages ................................ ! `{ dg-error REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' ! This DejaGnu directive appears on a source line that is expected ! to get an error message, or else specifies the source line ! associated with the message. If there is no message for that line ! or if the text of that message is not matched by REGEXP then the ! check fails and COMMENT is included in the `FAIL' message. The ! check does not look for the string `error' unless it is part of ! REGEXP. ! `{ dg-warning REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' ! This DejaGnu directive appears on a source line that is expected ! to get a warning message, or else specifies the source line ! associated with the message. If there is no message for that line ! or if the text of that message is not matched by REGEXP then the ! check fails and COMMENT is included in the `FAIL' message. The ! check does not look for the string `warning' unless it is part of ! REGEXP. ! `{ dg-message REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' The line is expected to get a message other than an error or warning. If there is no message for that line or if the text of that message is not matched by REGEXP then the check fails and ! COMMENT is included in the `FAIL' message. ! `{ dg-bogus REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' ! This DejaGnu directive appears on a source line that should not ! get a message matching REGEXP, or else specifies the source line ! associated with the bogus message. It is usually used with `xfail' to indicate that the message is a known problem for a particular set of targets. ! `{ dg-excess-errors COMMENT [{ target/xfail SELECTOR }] }' This DejaGnu directive indicates that the test is expected to fail ! due to compiler messages that are not handled by `dg-error', ! `dg-warning' or `dg-bogus'. For this directive `xfail' has the ! same effect as `target'. ! `{ dg-prune-output REGEXP }' Prune messages matching REGEXP from the test output. 7.2.1.8 Verify output of the test executable ............................................ ! `{ dg-output REGEXP [{ target/xfail SELECTOR }] }' This DejaGnu directive compares REGEXP to the combined output that ! the test executable writes to `stdout' and `stderr'. 7.2.1.9 Specify additional files for a test ........................................... ! `{ dg-additional-files "FILELIST" }' Specify additional files, other than source files, that must be copied to the system where the compiler runs. ! `{ dg-additional-sources "FILELIST" }' Specify additional source files to appear in the compile line following the main test file. 7.2.1.10 Add checks at the end of a test ........................................ ! `{ dg-final { LOCAL-DIRECTIVE } }' This DejaGnu directive is placed within a comment anywhere in the source file and is processed after the test has been compiled and ! run. Multiple `dg-final' commands are processed in the order in ! which they appear in the source file. *Note Final Actions::, for ! a list of directives that can be used within `dg-final'.  File: gccint.info, Node: Selectors, Next: Effective-Target Keywords, Prev: Directives, Up: Test Directives --- 4386,4474 ---- 7.2.1.5 Expect a test to fail for some targets .............................................. ! '{ dg-xfail-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }' Expect the test to fail if the conditions (which are the same as ! for 'dg-skip-if') are met. This does not affect the execute step. ! '{ dg-xfail-run-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }' Expect the execute step of a test to fail if the conditions (which ! are the same as for 'dg-skip-if') are met. 7.2.1.6 Expect the test executable to fail .......................................... ! '{ dg-shouldfail COMMENT [{ SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]]] }' Expect the test executable to return a nonzero exit status if the ! conditions (which are the same as for 'dg-skip-if') are met. 7.2.1.7 Verify compiler messages ................................ ! '{ dg-error REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' ! This DejaGnu directive appears on a source line that is expected to ! get an error message, or else specifies the source line associated ! with the message. If there is no message for that line or if the ! text of that message is not matched by REGEXP then the check fails ! and COMMENT is included in the 'FAIL' message. The check does not ! look for the string 'error' unless it is part of REGEXP. ! '{ dg-warning REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' ! This DejaGnu directive appears on a source line that is expected to ! get a warning message, or else specifies the source line associated ! with the message. If there is no message for that line or if the ! text of that message is not matched by REGEXP then the check fails ! and COMMENT is included in the 'FAIL' message. The check does not ! look for the string 'warning' unless it is part of REGEXP. ! '{ dg-message REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' The line is expected to get a message other than an error or warning. If there is no message for that line or if the text of that message is not matched by REGEXP then the check fails and ! COMMENT is included in the 'FAIL' message. ! '{ dg-bogus REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' ! This DejaGnu directive appears on a source line that should not get ! a message matching REGEXP, or else specifies the source line ! associated with the bogus message. It is usually used with 'xfail' to indicate that the message is a known problem for a particular set of targets. ! '{ dg-excess-errors COMMENT [{ target/xfail SELECTOR }] }' This DejaGnu directive indicates that the test is expected to fail ! due to compiler messages that are not handled by 'dg-error', ! 'dg-warning' or 'dg-bogus'. For this directive 'xfail' has the ! same effect as 'target'. ! '{ dg-prune-output REGEXP }' Prune messages matching REGEXP from the test output. 7.2.1.8 Verify output of the test executable ............................................ ! '{ dg-output REGEXP [{ target/xfail SELECTOR }] }' This DejaGnu directive compares REGEXP to the combined output that ! the test executable writes to 'stdout' and 'stderr'. 7.2.1.9 Specify additional files for a test ........................................... ! '{ dg-additional-files "FILELIST" }' Specify additional files, other than source files, that must be copied to the system where the compiler runs. ! '{ dg-additional-sources "FILELIST" }' Specify additional source files to appear in the compile line following the main test file. 7.2.1.10 Add checks at the end of a test ........................................ ! '{ dg-final { LOCAL-DIRECTIVE } }' This DejaGnu directive is placed within a comment anywhere in the source file and is processed after the test has been compiled and ! run. Multiple 'dg-final' commands are processed in the order in ! which they appear in the source file. *Note Final Actions::, for a ! list of directives that can be used within 'dg-final'.  File: gccint.info, Node: Selectors, Next: Effective-Target Keywords, Prev: Directives, Up: Test Directives *************** File: gccint.info, Node: Selectors, Ne *** 4576,4602 **** 7.2.2 Selecting targets to which a test applies ----------------------------------------------- ! Several test directives include SELECTORs to limit the targets for ! which a test is run or to declare that a test is expected to fail on particular targets. A selector is: * one or more target triplets, possibly including wildcard ! characters; use `*-*-*' to match any target ! * a single effective-target keyword (*note Effective-Target Keywords::) - * a logical expression Depending on the context, the selector specifies whether a test is skipped and reported as unsupported or is expected to fail. A context ! that allows either `target' or `xfail' also allows `{ target SELECTOR1 xfail SELECTOR2 }' to skip the test for targets that don't match SELECTOR1 and the test to fail for targets that match SELECTOR2. A selector expression appears within curly braces and uses a single ! logical operator: one of `!', `&&', or `||'. An operand is another selector expression, an effective-target keyword, a single target triplet, or a list of target triplets within quotes or curly braces. For example: --- 4476,4500 ---- 7.2.2 Selecting targets to which a test applies ----------------------------------------------- ! Several test directives include SELECTORs to limit the targets for which ! a test is run or to declare that a test is expected to fail on particular targets. A selector is: * one or more target triplets, possibly including wildcard ! characters; use '*-*-*' to match any target * a single effective-target keyword (*note Effective-Target Keywords::) * a logical expression Depending on the context, the selector specifies whether a test is skipped and reported as unsupported or is expected to fail. A context ! that allows either 'target' or 'xfail' also allows '{ target SELECTOR1 xfail SELECTOR2 }' to skip the test for targets that don't match SELECTOR1 and the test to fail for targets that match SELECTOR2. A selector expression appears within curly braces and uses a single ! logical operator: one of '!', '&&', or '||'. An operand is another selector expression, an effective-target keyword, a single target triplet, or a list of target triplets within quotes or curly braces. For example: *************** particular functionality. They are used *** 4616,5497 **** for particular targets, or to specify that particular sets of targets are expected to fail some tests. ! Effective-target keywords are defined in `lib/target-supports.exp' in the GCC testsuite, with the exception of those that are documented as being local to a particular test directory. ! The `effective target' takes into account all of the compiler options with which the test will be compiled, including the multilib options. ! By convention, keywords ending in `_nocache' can also include options ! specified for the particular test in an earlier `dg-options' or ! `dg-add-options' directive. 7.2.3.1 Data type sizes ....................... ! `ilp32' ! Target has 32-bit `int', `long', and pointers. ! `lp64' ! Target has 32-bit `int', 64-bit `long' and pointers. ! `llp64' ! Target has 32-bit `int' and `long', 64-bit `long long' and pointers. ! `double64' ! Target has 64-bit `double'. ! `double64plus' ! Target has `double' that is 64 bits or longer. ! `int32plus' ! Target has `int' that is at 32 bits or longer. ! `int16' ! Target has `int' that is 16 bits or shorter. ! `long_neq_int' ! Target has `int' and `long' with different sizes. ! `large_double' ! Target supports `double' that is longer than `float'. ! `large_long_double' ! Target supports `long double' that is longer than `double'. ! `ptr32plus' Target has pointers that are 32 bits or longer. ! `size32plus' Target supports array and structure sizes that are 32 bits or longer. ! `4byte_wchar_t' ! Target has `wchar_t' that is at least 4 bytes. 7.2.3.2 Fortran-specific attributes ................................... ! `fortran_integer_16' ! Target supports Fortran `integer' that is 16 bytes or longer. ! `fortran_large_int' ! Target supports Fortran `integer' kinds larger than `integer(8)'. ! `fortran_large_real' ! Target supports Fortran `real' kinds larger than `real(8)'. 7.2.3.3 Vector-specific attributes .................................. ! `vect_condition' Target supports vector conditional operations. ! `vect_double' ! Target supports hardware vectors of `double'. ! `vect_float' ! Target supports hardware vectors of `float'. ! `vect_int' ! Target supports hardware vectors of `int'. ! `vect_long' ! Target supports hardware vectors of `long'. ! `vect_long_long' ! Target supports hardware vectors of `long long'. ! `vect_aligned_arrays' Target aligns arrays to vector alignment boundary. ! `vect_hw_misalign' Target supports a vector misalign access. ! `vect_no_align' Target does not support a vector alignment mechanism. ! `vect_no_int_max' ! Target does not support a vector max instruction on `int'. ! `vect_no_int_add' ! Target does not support a vector add instruction on `int'. ! `vect_no_bitwise' Target does not support vector bitwise instructions. ! `vect_char_mult' ! Target supports `vector char' multiplication. ! `vect_short_mult' ! Target supports `vector short' multiplication. ! `vect_int_mult' ! Target supports `vector int' multiplication. ! `vect_extract_even_odd' Target supports vector even/odd element extraction. ! `vect_extract_even_odd_wide' Target supports vector even/odd element extraction of vectors with ! elements `SImode' or larger. ! `vect_interleave' Target supports vector interleaving. ! `vect_strided' Target supports vector interleaving and extract even/odd. ! `vect_strided_wide' Target supports vector interleaving and extract even/odd for wide element types. ! `vect_perm' Target supports vector permutation. ! `vect_shift' Target supports a hardware vector shift operation. ! `vect_widen_sum_hi_to_si' ! Target supports a vector widening summation of `short' operands ! into `int' results, or can promote (unpack) from `short' to `int'. ! `vect_widen_sum_qi_to_hi' ! Target supports a vector widening summation of `char' operands ! into `short' results, or can promote (unpack) from `char' to ! `short'. ! `vect_widen_sum_qi_to_si' ! Target supports a vector widening summation of `char' operands ! into `int' results. ! `vect_widen_mult_qi_to_hi' ! Target supports a vector widening multiplication of `char' operands ! into `short' results, or can promote (unpack) from `char' to ! `short' and perform non-widening multiplication of `short'. ! `vect_widen_mult_hi_to_si' ! Target supports a vector widening multiplication of `short' ! operands into `int' results, or can promote (unpack) from `short' ! to `int' and perform non-widening multiplication of `int'. ! `vect_sdot_qi' ! Target supports a vector dot-product of `signed char'. ! `vect_udot_qi' ! Target supports a vector dot-product of `unsigned char'. ! `vect_sdot_hi' ! Target supports a vector dot-product of `signed short'. ! `vect_udot_hi' ! Target supports a vector dot-product of `unsigned short'. ! `vect_pack_trunc' ! Target supports a vector demotion (packing) of `short' to `char' ! and from `int' to `short' using modulo arithmetic. ! `vect_unpack' ! Target supports a vector promotion (unpacking) of `char' to `short' ! and from `char' to `int'. ! `vect_intfloat_cvt' ! Target supports conversion from `signed int' to `float'. ! `vect_uintfloat_cvt' ! Target supports conversion from `unsigned int' to `float'. ! `vect_floatint_cvt' ! Target supports conversion from `float' to `signed int'. ! `vect_floatuint_cvt' ! Target supports conversion from `float' to `unsigned int'. 7.2.3.4 Thread Local Storage attributes ....................................... ! `tls' Target supports thread-local storage. ! `tls_native' Target supports native (rather than emulated) thread-local storage. ! `tls_runtime' Test system supports executing TLS executables. 7.2.3.5 Decimal floating point attributes ......................................... ! `dfp' Targets supports compiling decimal floating point extension to C. ! `dfp_nocache' Including the options used to compile this particular test, the target supports compiling decimal floating point extension to C. ! `dfprt' Test system can execute decimal floating point tests. ! `dfprt_nocache' Including the options used to compile this particular test, the test system can execute decimal floating point tests. ! `hard_dfp' Target generates decimal floating point instructions with current options. 7.2.3.6 ARM-specific attributes ............................... ! `arm32' ARM target generates 32-bit code. ! `arm_eabi' ARM target adheres to the ABI for the ARM Architecture. ! `arm_hf_eabi' ARM target adheres to the VFP and Advanced SIMD Register Arguments variant of the ABI for the ARM Architecture (as selected with ! `-mfloat-abi=hard'). ! `arm_hard_vfp_ok' ! ARM target supports `-mfpu=vfp -mfloat-abi=hard'. Some multilibs may be incompatible with these options. ! `arm_iwmmxt_ok' ! ARM target supports `-mcpu=iwmmxt'. Some multilibs may be incompatible with this option. ! `arm_neon' ARM target supports generating NEON instructions. ! `arm_neon_hw' Test system supports executing NEON instructions. ! `arm_neonv2_hw' Test system supports executing NEON v2 instructions. ! `arm_neon_ok' ! ARM Target supports `-mfpu=neon -mfloat-abi=softfp' or compatible options. Some multilibs may be incompatible with these options. ! `arm_neonv2_ok' ! ARM Target supports `-mfpu=neon-vfpv4 -mfloat-abi=softfp' or compatible options. Some multilibs may be incompatible with these options. ! `arm_neon_fp16_ok' ! ARM Target supports `-mfpu=neon-fp16 -mfloat-abi=softfp' or compatible options. Some multilibs may be incompatible with these options. ! `arm_thumb1_ok' ! ARM target generates Thumb-1 code for `-mthumb'. ! `arm_thumb2_ok' ! ARM target generates Thumb-2 code for `-mthumb'. ! `arm_vfp_ok' ! ARM target supports `-mfpu=vfp -mfloat-abi=softfp'. Some ! multilibs may be incompatible with these options. ! `arm_v8_vfp_ok' ! ARM target supports `-mfpu=fp-armv8 -mfloat-abi=softfp'. Some multilibs may be incompatible with these options. ! `arm_v8_neon_ok' ! ARM target supports `-mfpu=neon-fp-armv8 -mfloat-abi=softfp'. ! Some multilibs may be incompatible with these options. ! ! `arm_prefer_ldrd_strd' ! ARM target prefers `LDRD' and `STRD' instructions over `LDM' and ! `STM' instructions. 7.2.3.7 MIPS-specific attributes ................................ ! `mips64' MIPS target supports 64-bit instructions. ! `nomips16' MIPS target does not produce MIPS16 code. ! `mips16_attribute' MIPS target can generate MIPS16 code. ! `mips_loongson' MIPS target is a Loongson-2E or -2F target using an ABI that supports the Loongson vector modes. ! `mips_newabi_large_long_double' ! MIPS target supports `long double' larger than `double' when using the new ABI. ! `mpaired_single' ! MIPS target supports `-mpaired-single'. 7.2.3.8 PowerPC-specific attributes ................................... ! `powerpc64' Test system supports executing 64-bit instructions. ! `powerpc_altivec' PowerPC target supports AltiVec. ! `powerpc_altivec_ok' ! PowerPC target supports `-maltivec'. ! `powerpc_fprs' PowerPC target supports floating-point registers. ! `powerpc_hard_double' PowerPC target supports hardware double-precision floating-point. ! `powerpc_ppu_ok' ! PowerPC target supports `-mcpu=cell'. ! `powerpc_spe' PowerPC target supports PowerPC SPE. ! `powerpc_spe_nocache' Including the options used to compile this particular test, the PowerPC target supports PowerPC SPE. ! `powerpc_spu' PowerPC target supports PowerPC SPU. ! `spu_auto_overlay' SPU target has toolchain that supports automatic overlay generation. ! `powerpc_vsx_ok' ! PowerPC target supports `-mvsx'. ! `powerpc_405_nocache' Including the options used to compile this particular test, the PowerPC target supports PowerPC 405. ! `vmx_hw' PowerPC target supports executing AltiVec instructions. 7.2.3.9 Other hardware attributes ................................. ! `avx' ! Target supports compiling `avx' instructions. ! `avx_runtime' ! Target supports the execution of `avx' instructions. ! `cell_hw' Test system can execute AltiVec and Cell PPU instructions. ! `coldfire_fpu' Target uses a ColdFire FPU. ! `hard_float' Target supports FPU instructions. ! `sse' ! Target supports compiling `sse' instructions. ! `sse_runtime' ! Target supports the execution of `sse' instructions. ! `sse2' ! Target supports compiling `sse2' instructions. ! `sse2_runtime' ! Target supports the execution of `sse2' instructions. ! `sync_char_short' ! Target supports atomic operations on `char' and `short'. ! `sync_int_long' ! Target supports atomic operations on `int' and `long'. ! `ultrasparc_hw' Test environment appears to run executables on a simulator that ! accepts only `EM_SPARC' executables and chokes on `EM_SPARC32PLUS' ! or `EM_SPARCV9' executables. ! `vect_cmdline_needed' Target requires a command line argument to enable a SIMD instruction set. 7.2.3.10 Environment attributes ............................... ! `c' The language for the compiler under test is C. ! `c++' The language for the compiler under test is C++. ! `c99_runtime' Target provides a full C99 runtime. ! `correct_iso_cpp_string_wchar_protos' ! Target `string.h' and `wchar.h' headers provide C++ required ! overloads for `strchr' etc. functions. ! `dummy_wcsftime' ! Target uses a dummy `wcsftime' function that always returns zero. ! `fd_truncate' Target can truncate a file from a file descriptor, as used by ! `libgfortran/io/unix.c:fd_truncate'; i.e. `ftruncate' or `chsize'. ! `freestanding' ! Target is `freestanding' as defined in section 4 of the C99 standard. Effectively, it is a target which supports no extra headers or libraries other than what is considered essential. ! `init_priority' Target supports constructors with initialization priority arguments. ! `inttypes_types' ! Target has the basic signed and unsigned types in `inttypes.h'. This is for tests that GCC's notions of these types agree with ! those in the header, as some systems have only `inttypes.h'. ! `lax_strtofp' Target might have errors of a few ULP in string to floating-point conversion functions and overflow is not always detected correctly by those functions. ! `mmap' ! Target supports `mmap'. ! `newlib' Target supports Newlib. ! `pow10' ! Target provides `pow10' function. ! `pthread' ! Target can compile using `pthread.h' with no errors or warnings. ! `pthread_h' ! Target has `pthread.h'. ! `run_expensive_tests' Expensive testcases (usually those that consume excessive amounts of CPU time) should be run on this target. This can be enabled by ! setting the `GCC_TEST_RUN_EXPENSIVE' environment variable to a non-empty string. ! `simulator' ! Test system runs executables on a simulator (i.e. slowly) rather ! than hardware (i.e. fast). ! `stdint_types' ! Target has the basic signed and unsigned C types in `stdint.h'. ! This will be obsolete when GCC ensures a working `stdint.h' for ! all targets. ! `trampolines' Target supports trampolines. ! `uclibc' Target supports uClibc. ! `unwrapped' Target does not use a status wrapper. ! `vxworks_kernel' Target is a VxWorks kernel. ! `vxworks_rtp' Target is a VxWorks RTP. ! `wchar' Target supports wide characters. 7.2.3.11 Other attributes ......................... ! `automatic_stack_alignment' Target supports automatic stack alignment. ! `cxa_atexit' ! Target uses `__cxa_atexit'. ! `default_packed' Target has packed layout of structure members by default. ! `fgraphite' Target supports Graphite optimizations. ! `fixed_point' Target supports fixed-point extension to C. ! `fopenmp' ! Target supports OpenMP via `-fopenmp'. ! `fpic' ! Target supports `-fpic' and `-fPIC'. ! `freorder' ! Target supports `-freorder-blocks-and-partition'. ! `fstack_protector' ! Target supports `-fstack-protector'. ! `gas' ! Target uses GNU `as'. ! `gc_sections' ! Target supports `--gc-sections'. ! `gld' ! Target uses GNU `ld'. ! `keeps_null_pointer_checks' Target keeps null pointer checks, either due to the use of ! `-fno-delete-null-pointer-checks' or hardwired into the target. ! `lto' Compiler has been configured to support link-time optimization (LTO). ! `naked_functions' ! Target supports the `naked' function attribute. ! `named_sections' Target supports named sections. ! `natural_alignment_32' Target uses natural alignment (aligned to type size) for types of 32 bits or less. ! `target_natural_alignment_64' Target uses natural alignment (aligned to type size) for types of 64 bits or less. ! `nonpic' Target does not generate PIC by default. ! `pcc_bitfield_type_matters' ! Target defines `PCC_BITFIELD_TYPE_MATTERS'. ! `pe_aligned_commons' ! Target supports `-mpe-aligned-commons'. ! `pie' ! Target supports `-pie', `-fpie' and `-fPIE'. ! `section_anchors' Target supports section anchors. ! `short_enums' Target defaults to short enums. ! `static' ! Target supports `-static'. ! `static_libgfortran' ! Target supports statically linking `libgfortran'. ! `string_merging' Target supports merging string constants at link time. ! `ucn' Target supports compiling and assembling UCN. ! `ucn_nocache' Including the options used to compile this particular test, the target supports compiling and assembling UCN. ! `unaligned_stack' ! Target does not guarantee that its `STACK_BOUNDARY' is greater than or equal to the required vector alignment. ! `vector_alignment_reachable' Vector alignment is reachable for types of 32 bits or less. ! `vector_alignment_reachable_for_64bit' Vector alignment is reachable for types of 64 bits or less. ! `wchar_t_char16_t_compatible' ! Target supports `wchar_t' that is compatible with `char16_t'. ! `wchar_t_char32_t_compatible' ! Target supports `wchar_t' that is compatible with `char32_t'. ! 7.2.3.12 Local to tests in `gcc.target/i386' ............................................ ! `3dnow' ! Target supports compiling `3dnow' instructions. ! `aes' ! Target supports compiling `aes' instructions. ! `fma4' ! Target supports compiling `fma4' instructions. ! `ms_hook_prologue' ! Target supports attribute `ms_hook_prologue'. ! `pclmul' ! Target supports compiling `pclmul' instructions. ! `sse3' ! Target supports compiling `sse3' instructions. ! `sse4' ! Target supports compiling `sse4' instructions. ! `sse4a' ! Target supports compiling `sse4a' instructions. ! `ssse3' ! Target supports compiling `ssse3' instructions. ! `vaes' ! Target supports compiling `vaes' instructions. ! `vpclmul' ! Target supports compiling `vpclmul' instructions. ! `xop' ! Target supports compiling `xop' instructions. ! 7.2.3.13 Local to tests in `gcc.target/spu/ea' .............................................. ! `ealib' ! Target `__ea' library functions are available. ! 7.2.3.14 Local to tests in `gcc.test-framework' ............................................... ! `no' Always returns 0. ! `yes' Always returns 1.  File: gccint.info, Node: Add Options, Next: Require Support, Prev: Effective-Target Keywords, Up: Test Directives ! 7.2.4 Features for `dg-add-options' ----------------------------------- ! The supported values of FEATURE for directive `dg-add-options' are: ! `arm_neon' NEON support. Only ARM targets support this feature, and only then in certain modes; see the *note arm_neon_ok effective target keyword: arm_neon_ok. ! `arm_neon_fp16' NEON and half-precision floating point support. Only ARM targets ! support this feature, and only then in certain modes; see the ! *note arm_neon_fp16_ok effective target keyword: arm_neon_ok. ! `bind_pic_locally' Add the target-specific flags needed to enable functions to bind locally when using pic/PIC passes in the testsuite. ! `c99_runtime' Add the target-specific flags needed to access the C99 runtime. ! `ieee' ! Add the target-specific flags needed to enable full IEEE ! compliance mode. ! `mips16_attribute' ! `mips16' function attributes. Only MIPS targets support this feature, and only then in certain modes. ! `tls' Add the target-specific flags needed to use thread-local storage.  File: gccint.info, Node: Require Support, Next: Final Actions, Prev: Add Options, Up: Test Directives ! 7.2.5 Variants of `dg-require-SUPPORT' -------------------------------------- ! A few of the `dg-require' directives take arguments. ! `dg-require-iconv CODESET' ! Skip the test if the target does not support iconv. CODESET is ! the codeset to convert to. ! `dg-require-profiling PROFOPT' Skip the test if the target does not support profiling with option PROFOPT. ! `dg-require-visibility VIS' ! Skip the test if the target does not support the `visibility' ! attribute. If VIS is `""', support for `visibility("hidden")' is ! checked, for `visibility("VIS")' otherwise. ! The original `dg-require' directives were defined before there was support for effective-target keywords. The directives that do not take arguments could be replaced with effective-target keywords. ! `dg-require-alias ""' ! Skip the test if the target does not support the `alias' attribute. ! `dg-require-ascii-locale ""' Skip the test if the host does not support an ASCII locale. ! `dg-require-compat-dfp ""' ! Skip this test unless both compilers in a `compat' testsuite support decimal floating point. ! `dg-require-cxa-atexit ""' ! Skip the test if the target does not support `__cxa_atexit'. This ! is equivalent to `dg-require-effective-target cxa_atexit'. ! `dg-require-dll ""' Skip the test if the target does not support DLL attributes. ! `dg-require-fork ""' ! Skip the test if the target does not support `fork'. ! `dg-require-gc-sections ""' Skip the test if the target's linker does not support the ! `--gc-sections' flags. This is equivalent to ! `dg-require-effective-target gc-sections'. ! `dg-require-host-local ""' Skip the test if the host is remote, rather than the same as the build system. Some tests are incompatible with DejaGnu's handling ! of remote hosts, which involves copying the source file to the ! host and compiling it with a relative path and "`-o a.out'". ! `dg-require-mkfifo ""' ! Skip the test if the target does not support `mkfifo'. ! `dg-require-named-sections ""' Skip the test is the target does not support named sections. This ! is equivalent to `dg-require-effective-target named_sections'. ! `dg-require-weak ""' Skip the test if the target does not support weak symbols. ! `dg-require-weak-override ""' Skip the test if the target does not support overriding weak symbols.  File: gccint.info, Node: Final Actions, Prev: Require Support, Up: Test Directives ! 7.2.6 Commands for use in `dg-final' ------------------------------------ The GCC testsuite defines the following directives to be used within ! `dg-final'. 7.2.6.1 Scan a particular file .............................. ! `scan-file FILENAME REGEXP [{ target/xfail SELECTOR }]' Passes if REGEXP matches text in FILENAME. ! ! `scan-file-not FILENAME REGEXP [{ target/xfail SELECTOR }]' Passes if REGEXP does not match text in FILENAME. ! ! `scan-module MODULE REGEXP [{ target/xfail SELECTOR }]' Passes if REGEXP matches in Fortran module MODULE. 7.2.6.2 Scan the assembly output ................................ ! `scan-assembler REGEX [{ target/xfail SELECTOR }]' Passes if REGEX matches text in the test's assembler output. ! `scan-assembler-not REGEX [{ target/xfail SELECTOR }]' Passes if REGEX does not match text in the test's assembler output. ! `scan-assembler-times REGEX NUM [{ target/xfail SELECTOR }]' Passes if REGEX is matched exactly NUM times in the test's assembler output. ! `scan-assembler-dem REGEX [{ target/xfail SELECTOR }]' Passes if REGEX matches text in the test's demangled assembler output. ! `scan-assembler-dem-not REGEX [{ target/xfail SELECTOR }]' Passes if REGEX does not match text in the test's demangled assembler output. ! `scan-hidden SYMBOL [{ target/xfail SELECTOR }]' Passes if SYMBOL is defined as a hidden symbol in the test's assembly output. ! `scan-not-hidden SYMBOL [{ target/xfail SELECTOR }]' Passes if SYMBOL is not defined as a hidden symbol in the test's assembly output. 7.2.6.3 Scan optimization dump files .................................... ! These commands are available for KIND of `tree', `rtl', and `ipa'. ! `scan-KIND-dump REGEX SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX matches text in the dump file with suffix SUFFIX. ! `scan-KIND-dump-not REGEX SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX does not match text in the dump file with suffix SUFFIX. ! `scan-KIND-dump-times REGEX NUM SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX is found exactly NUM times in the dump file with suffix SUFFIX. ! `scan-KIND-dump-dem REGEX SUFFIX [{ target/xfail SELECTOR }]' ! Passes if REGEX matches demangled text in the dump file with ! suffix SUFFIX. ! `scan-KIND-dump-dem-not REGEX SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX does not match demangled text in the dump file with suffix SUFFIX. 7.2.6.4 Verify that an output files exists or not ................................................. ! `output-exists [{ target/xfail SELECTOR }]' Passes if compiler output file exists. ! `output-exists-not [{ target/xfail SELECTOR }]' Passes if compiler output file does not exist. 7.2.6.5 Check for LTO tests ........................... ! `scan-symbol REGEXP [{ target/xfail SELECTOR }]' Passes if the pattern is present in the final executable. ! 7.2.6.6 Checks for `gcov' tests ............................... ! `run-gcov SOURCEFILE' ! Check line counts in `gcov' tests. ! `run-gcov [branches] [calls] { OPTS SOURCEFILE }' Check branch and/or call counts, in addition to line counts, in ! `gcov' tests. 7.2.6.7 Clean up generated test files ..................................... ! `cleanup-coverage-files' Removes coverage data files generated for this test. ! `cleanup-ipa-dump SUFFIX' Removes IPA dump files generated for this test. ! `cleanup-modules "LIST-OF-EXTRA-MODULES"' Removes Fortran module files generated for this test, excluding the module names listed in keep-modules. Cleaning up module files is usually done automatically by the testsuite by looking at the --- 4514,5391 ---- for particular targets, or to specify that particular sets of targets are expected to fail some tests. ! Effective-target keywords are defined in 'lib/target-supports.exp' in the GCC testsuite, with the exception of those that are documented as being local to a particular test directory. ! The 'effective target' takes into account all of the compiler options with which the test will be compiled, including the multilib options. ! By convention, keywords ending in '_nocache' can also include options ! specified for the particular test in an earlier 'dg-options' or ! 'dg-add-options' directive. 7.2.3.1 Data type sizes ....................... ! 'ilp32' ! Target has 32-bit 'int', 'long', and pointers. ! 'lp64' ! Target has 32-bit 'int', 64-bit 'long' and pointers. ! 'llp64' ! Target has 32-bit 'int' and 'long', 64-bit 'long long' and pointers. ! 'double64' ! Target has 64-bit 'double'. ! 'double64plus' ! Target has 'double' that is 64 bits or longer. ! 'int32plus' ! Target has 'int' that is at 32 bits or longer. ! 'int16' ! Target has 'int' that is 16 bits or shorter. ! 'long_neq_int' ! Target has 'int' and 'long' with different sizes. ! 'large_double' ! Target supports 'double' that is longer than 'float'. ! 'large_long_double' ! Target supports 'long double' that is longer than 'double'. ! 'ptr32plus' Target has pointers that are 32 bits or longer. ! 'size32plus' Target supports array and structure sizes that are 32 bits or longer. ! '4byte_wchar_t' ! Target has 'wchar_t' that is at least 4 bytes. 7.2.3.2 Fortran-specific attributes ................................... ! 'fortran_integer_16' ! Target supports Fortran 'integer' that is 16 bytes or longer. ! 'fortran_large_int' ! Target supports Fortran 'integer' kinds larger than 'integer(8)'. ! 'fortran_large_real' ! Target supports Fortran 'real' kinds larger than 'real(8)'. 7.2.3.3 Vector-specific attributes .................................. ! 'vect_condition' Target supports vector conditional operations. ! 'vect_double' ! Target supports hardware vectors of 'double'. ! 'vect_float' ! Target supports hardware vectors of 'float'. ! 'vect_int' ! Target supports hardware vectors of 'int'. ! 'vect_long' ! Target supports hardware vectors of 'long'. ! 'vect_long_long' ! Target supports hardware vectors of 'long long'. ! 'vect_aligned_arrays' Target aligns arrays to vector alignment boundary. ! 'vect_hw_misalign' Target supports a vector misalign access. ! 'vect_no_align' Target does not support a vector alignment mechanism. ! 'vect_no_int_max' ! Target does not support a vector max instruction on 'int'. ! 'vect_no_int_add' ! Target does not support a vector add instruction on 'int'. ! 'vect_no_bitwise' Target does not support vector bitwise instructions. ! 'vect_char_mult' ! Target supports 'vector char' multiplication. ! 'vect_short_mult' ! Target supports 'vector short' multiplication. ! 'vect_int_mult' ! Target supports 'vector int' multiplication. ! 'vect_extract_even_odd' Target supports vector even/odd element extraction. ! 'vect_extract_even_odd_wide' Target supports vector even/odd element extraction of vectors with ! elements 'SImode' or larger. ! 'vect_interleave' Target supports vector interleaving. ! 'vect_strided' Target supports vector interleaving and extract even/odd. ! 'vect_strided_wide' Target supports vector interleaving and extract even/odd for wide element types. ! 'vect_perm' Target supports vector permutation. ! 'vect_shift' Target supports a hardware vector shift operation. ! 'vect_widen_sum_hi_to_si' ! Target supports a vector widening summation of 'short' operands ! into 'int' results, or can promote (unpack) from 'short' to 'int'. ! 'vect_widen_sum_qi_to_hi' ! Target supports a vector widening summation of 'char' operands into ! 'short' results, or can promote (unpack) from 'char' to 'short'. ! 'vect_widen_sum_qi_to_si' ! Target supports a vector widening summation of 'char' operands into ! 'int' results. ! 'vect_widen_mult_qi_to_hi' ! Target supports a vector widening multiplication of 'char' operands ! into 'short' results, or can promote (unpack) from 'char' to ! 'short' and perform non-widening multiplication of 'short'. ! 'vect_widen_mult_hi_to_si' ! Target supports a vector widening multiplication of 'short' ! operands into 'int' results, or can promote (unpack) from 'short' ! to 'int' and perform non-widening multiplication of 'int'. ! 'vect_sdot_qi' ! Target supports a vector dot-product of 'signed char'. ! 'vect_udot_qi' ! Target supports a vector dot-product of 'unsigned char'. ! 'vect_sdot_hi' ! Target supports a vector dot-product of 'signed short'. ! 'vect_udot_hi' ! Target supports a vector dot-product of 'unsigned short'. ! 'vect_pack_trunc' ! Target supports a vector demotion (packing) of 'short' to 'char' ! and from 'int' to 'short' using modulo arithmetic. ! 'vect_unpack' ! Target supports a vector promotion (unpacking) of 'char' to 'short' ! and from 'char' to 'int'. ! 'vect_intfloat_cvt' ! Target supports conversion from 'signed int' to 'float'. ! 'vect_uintfloat_cvt' ! Target supports conversion from 'unsigned int' to 'float'. ! 'vect_floatint_cvt' ! Target supports conversion from 'float' to 'signed int'. ! 'vect_floatuint_cvt' ! Target supports conversion from 'float' to 'unsigned int'. 7.2.3.4 Thread Local Storage attributes ....................................... ! 'tls' Target supports thread-local storage. ! 'tls_native' Target supports native (rather than emulated) thread-local storage. ! 'tls_runtime' Test system supports executing TLS executables. 7.2.3.5 Decimal floating point attributes ......................................... ! 'dfp' Targets supports compiling decimal floating point extension to C. ! 'dfp_nocache' Including the options used to compile this particular test, the target supports compiling decimal floating point extension to C. ! 'dfprt' Test system can execute decimal floating point tests. ! 'dfprt_nocache' Including the options used to compile this particular test, the test system can execute decimal floating point tests. ! 'hard_dfp' Target generates decimal floating point instructions with current options. 7.2.3.6 ARM-specific attributes ............................... ! 'arm32' ARM target generates 32-bit code. ! 'arm_eabi' ARM target adheres to the ABI for the ARM Architecture. ! 'arm_hf_eabi' ARM target adheres to the VFP and Advanced SIMD Register Arguments variant of the ABI for the ARM Architecture (as selected with ! '-mfloat-abi=hard'). ! 'arm_hard_vfp_ok' ! ARM target supports '-mfpu=vfp -mfloat-abi=hard'. Some multilibs may be incompatible with these options. ! 'arm_iwmmxt_ok' ! ARM target supports '-mcpu=iwmmxt'. Some multilibs may be incompatible with this option. ! 'arm_neon' ARM target supports generating NEON instructions. ! 'arm_neon_hw' Test system supports executing NEON instructions. ! 'arm_neonv2_hw' Test system supports executing NEON v2 instructions. ! 'arm_neon_ok' ! ARM Target supports '-mfpu=neon -mfloat-abi=softfp' or compatible options. Some multilibs may be incompatible with these options. ! 'arm_neonv2_ok' ! ARM Target supports '-mfpu=neon-vfpv4 -mfloat-abi=softfp' or compatible options. Some multilibs may be incompatible with these options. ! 'arm_neon_fp16_ok' ! ARM Target supports '-mfpu=neon-fp16 -mfloat-abi=softfp' or compatible options. Some multilibs may be incompatible with these options. ! 'arm_thumb1_ok' ! ARM target generates Thumb-1 code for '-mthumb'. ! 'arm_thumb2_ok' ! ARM target generates Thumb-2 code for '-mthumb'. ! 'arm_vfp_ok' ! ARM target supports '-mfpu=vfp -mfloat-abi=softfp'. Some multilibs ! may be incompatible with these options. ! 'arm_v8_vfp_ok' ! ARM target supports '-mfpu=fp-armv8 -mfloat-abi=softfp'. Some multilibs may be incompatible with these options. ! 'arm_v8_neon_ok' ! ARM target supports '-mfpu=neon-fp-armv8 -mfloat-abi=softfp'. Some ! multilibs may be incompatible with these options. + 'arm_prefer_ldrd_strd' + ARM target prefers 'LDRD' and 'STRD' instructions over 'LDM' and + 'STM' instructions. 7.2.3.7 MIPS-specific attributes ................................ ! 'mips64' MIPS target supports 64-bit instructions. ! 'nomips16' MIPS target does not produce MIPS16 code. ! 'mips16_attribute' MIPS target can generate MIPS16 code. ! 'mips_loongson' MIPS target is a Loongson-2E or -2F target using an ABI that supports the Loongson vector modes. ! 'mips_newabi_large_long_double' ! MIPS target supports 'long double' larger than 'double' when using the new ABI. ! 'mpaired_single' ! MIPS target supports '-mpaired-single'. 7.2.3.8 PowerPC-specific attributes ................................... ! 'powerpc64' Test system supports executing 64-bit instructions. ! 'powerpc_altivec' PowerPC target supports AltiVec. ! 'powerpc_altivec_ok' ! PowerPC target supports '-maltivec'. ! 'powerpc_fprs' PowerPC target supports floating-point registers. ! 'powerpc_hard_double' PowerPC target supports hardware double-precision floating-point. ! 'powerpc_ppu_ok' ! PowerPC target supports '-mcpu=cell'. ! 'powerpc_spe' PowerPC target supports PowerPC SPE. ! 'powerpc_spe_nocache' Including the options used to compile this particular test, the PowerPC target supports PowerPC SPE. ! 'powerpc_spu' PowerPC target supports PowerPC SPU. ! 'spu_auto_overlay' SPU target has toolchain that supports automatic overlay generation. ! 'powerpc_vsx_ok' ! PowerPC target supports '-mvsx'. ! 'powerpc_405_nocache' Including the options used to compile this particular test, the PowerPC target supports PowerPC 405. ! 'vmx_hw' PowerPC target supports executing AltiVec instructions. 7.2.3.9 Other hardware attributes ................................. ! 'avx' ! Target supports compiling 'avx' instructions. ! 'avx_runtime' ! Target supports the execution of 'avx' instructions. ! 'cell_hw' Test system can execute AltiVec and Cell PPU instructions. ! 'coldfire_fpu' Target uses a ColdFire FPU. ! 'hard_float' Target supports FPU instructions. ! 'sse' ! Target supports compiling 'sse' instructions. ! 'sse_runtime' ! Target supports the execution of 'sse' instructions. ! 'sse2' ! Target supports compiling 'sse2' instructions. ! 'sse2_runtime' ! Target supports the execution of 'sse2' instructions. ! 'sync_char_short' ! Target supports atomic operations on 'char' and 'short'. ! 'sync_int_long' ! Target supports atomic operations on 'int' and 'long'. ! 'ultrasparc_hw' Test environment appears to run executables on a simulator that ! accepts only 'EM_SPARC' executables and chokes on 'EM_SPARC32PLUS' ! or 'EM_SPARCV9' executables. ! 'vect_cmdline_needed' Target requires a command line argument to enable a SIMD instruction set. 7.2.3.10 Environment attributes ............................... ! 'c' The language for the compiler under test is C. ! 'c++' The language for the compiler under test is C++. ! 'c99_runtime' Target provides a full C99 runtime. ! 'correct_iso_cpp_string_wchar_protos' ! Target 'string.h' and 'wchar.h' headers provide C++ required ! overloads for 'strchr' etc. functions. ! 'dummy_wcsftime' ! Target uses a dummy 'wcsftime' function that always returns zero. ! 'fd_truncate' Target can truncate a file from a file descriptor, as used by ! 'libgfortran/io/unix.c:fd_truncate'; i.e. 'ftruncate' or 'chsize'. ! 'freestanding' ! Target is 'freestanding' as defined in section 4 of the C99 standard. Effectively, it is a target which supports no extra headers or libraries other than what is considered essential. ! 'init_priority' Target supports constructors with initialization priority arguments. ! 'inttypes_types' ! Target has the basic signed and unsigned types in 'inttypes.h'. This is for tests that GCC's notions of these types agree with ! those in the header, as some systems have only 'inttypes.h'. ! 'lax_strtofp' Target might have errors of a few ULP in string to floating-point conversion functions and overflow is not always detected correctly by those functions. ! 'mmap' ! Target supports 'mmap'. ! 'newlib' Target supports Newlib. ! 'pow10' ! Target provides 'pow10' function. ! 'pthread' ! Target can compile using 'pthread.h' with no errors or warnings. ! 'pthread_h' ! Target has 'pthread.h'. ! 'run_expensive_tests' Expensive testcases (usually those that consume excessive amounts of CPU time) should be run on this target. This can be enabled by ! setting the 'GCC_TEST_RUN_EXPENSIVE' environment variable to a non-empty string. ! 'simulator' ! Test system runs executables on a simulator (i.e. slowly) rather ! than hardware (i.e. fast). ! 'stdint_types' ! Target has the basic signed and unsigned C types in 'stdint.h'. ! This will be obsolete when GCC ensures a working 'stdint.h' for all ! targets. ! 'trampolines' Target supports trampolines. ! 'uclibc' Target supports uClibc. ! 'unwrapped' Target does not use a status wrapper. ! 'vxworks_kernel' Target is a VxWorks kernel. ! 'vxworks_rtp' Target is a VxWorks RTP. ! 'wchar' Target supports wide characters. 7.2.3.11 Other attributes ......................... ! 'automatic_stack_alignment' Target supports automatic stack alignment. ! 'cxa_atexit' ! Target uses '__cxa_atexit'. ! 'default_packed' Target has packed layout of structure members by default. ! 'fgraphite' Target supports Graphite optimizations. ! 'fixed_point' Target supports fixed-point extension to C. ! 'fopenmp' ! Target supports OpenMP via '-fopenmp'. ! 'fpic' ! Target supports '-fpic' and '-fPIC'. ! 'freorder' ! Target supports '-freorder-blocks-and-partition'. ! 'fstack_protector' ! Target supports '-fstack-protector'. ! 'gas' ! Target uses GNU 'as'. ! 'gc_sections' ! Target supports '--gc-sections'. ! 'gld' ! Target uses GNU 'ld'. ! 'keeps_null_pointer_checks' Target keeps null pointer checks, either due to the use of ! '-fno-delete-null-pointer-checks' or hardwired into the target. ! 'lto' Compiler has been configured to support link-time optimization (LTO). ! 'naked_functions' ! Target supports the 'naked' function attribute. ! 'named_sections' Target supports named sections. ! 'natural_alignment_32' Target uses natural alignment (aligned to type size) for types of 32 bits or less. ! 'target_natural_alignment_64' Target uses natural alignment (aligned to type size) for types of 64 bits or less. ! 'nonpic' Target does not generate PIC by default. ! 'pcc_bitfield_type_matters' ! Target defines 'PCC_BITFIELD_TYPE_MATTERS'. ! 'pe_aligned_commons' ! Target supports '-mpe-aligned-commons'. ! 'pie' ! Target supports '-pie', '-fpie' and '-fPIE'. ! 'section_anchors' Target supports section anchors. ! 'short_enums' Target defaults to short enums. ! 'static' ! Target supports '-static'. ! 'static_libgfortran' ! Target supports statically linking 'libgfortran'. ! 'string_merging' Target supports merging string constants at link time. ! 'ucn' Target supports compiling and assembling UCN. ! 'ucn_nocache' Including the options used to compile this particular test, the target supports compiling and assembling UCN. ! 'unaligned_stack' ! Target does not guarantee that its 'STACK_BOUNDARY' is greater than or equal to the required vector alignment. ! 'vector_alignment_reachable' Vector alignment is reachable for types of 32 bits or less. ! 'vector_alignment_reachable_for_64bit' Vector alignment is reachable for types of 64 bits or less. ! 'wchar_t_char16_t_compatible' ! Target supports 'wchar_t' that is compatible with 'char16_t'. ! 'wchar_t_char32_t_compatible' ! Target supports 'wchar_t' that is compatible with 'char32_t'. ! 7.2.3.12 Local to tests in 'gcc.target/i386' ............................................ ! '3dnow' ! Target supports compiling '3dnow' instructions. ! 'aes' ! Target supports compiling 'aes' instructions. ! 'fma4' ! Target supports compiling 'fma4' instructions. ! 'ms_hook_prologue' ! Target supports attribute 'ms_hook_prologue'. ! 'pclmul' ! Target supports compiling 'pclmul' instructions. ! 'sse3' ! Target supports compiling 'sse3' instructions. ! 'sse4' ! Target supports compiling 'sse4' instructions. ! 'sse4a' ! Target supports compiling 'sse4a' instructions. ! 'ssse3' ! Target supports compiling 'ssse3' instructions. ! 'vaes' ! Target supports compiling 'vaes' instructions. ! 'vpclmul' ! Target supports compiling 'vpclmul' instructions. ! 'xop' ! Target supports compiling 'xop' instructions. ! 7.2.3.13 Local to tests in 'gcc.target/spu/ea' .............................................. ! 'ealib' ! Target '__ea' library functions are available. ! 7.2.3.14 Local to tests in 'gcc.test-framework' ............................................... ! 'no' Always returns 0. ! 'yes' Always returns 1.  File: gccint.info, Node: Add Options, Next: Require Support, Prev: Effective-Target Keywords, Up: Test Directives ! 7.2.4 Features for 'dg-add-options' ----------------------------------- ! The supported values of FEATURE for directive 'dg-add-options' are: ! 'arm_neon' NEON support. Only ARM targets support this feature, and only then in certain modes; see the *note arm_neon_ok effective target keyword: arm_neon_ok. ! 'arm_neon_fp16' NEON and half-precision floating point support. Only ARM targets ! support this feature, and only then in certain modes; see the *note ! arm_neon_fp16_ok effective target keyword: arm_neon_ok. ! 'bind_pic_locally' Add the target-specific flags needed to enable functions to bind locally when using pic/PIC passes in the testsuite. ! 'c99_runtime' Add the target-specific flags needed to access the C99 runtime. ! 'ieee' ! Add the target-specific flags needed to enable full IEEE compliance ! mode. ! 'mips16_attribute' ! 'mips16' function attributes. Only MIPS targets support this feature, and only then in certain modes. ! 'tls' Add the target-specific flags needed to use thread-local storage.  File: gccint.info, Node: Require Support, Next: Final Actions, Prev: Add Options, Up: Test Directives ! 7.2.5 Variants of 'dg-require-SUPPORT' -------------------------------------- ! A few of the 'dg-require' directives take arguments. ! 'dg-require-iconv CODESET' ! Skip the test if the target does not support iconv. CODESET is the ! codeset to convert to. ! 'dg-require-profiling PROFOPT' Skip the test if the target does not support profiling with option PROFOPT. ! 'dg-require-visibility VIS' ! Skip the test if the target does not support the 'visibility' ! attribute. If VIS is '""', support for 'visibility("hidden")' is ! checked, for 'visibility("VIS")' otherwise. ! The original 'dg-require' directives were defined before there was support for effective-target keywords. The directives that do not take arguments could be replaced with effective-target keywords. ! 'dg-require-alias ""' ! Skip the test if the target does not support the 'alias' attribute. ! 'dg-require-ascii-locale ""' Skip the test if the host does not support an ASCII locale. ! 'dg-require-compat-dfp ""' ! Skip this test unless both compilers in a 'compat' testsuite support decimal floating point. ! 'dg-require-cxa-atexit ""' ! Skip the test if the target does not support '__cxa_atexit'. This ! is equivalent to 'dg-require-effective-target cxa_atexit'. ! 'dg-require-dll ""' Skip the test if the target does not support DLL attributes. ! 'dg-require-fork ""' ! Skip the test if the target does not support 'fork'. ! 'dg-require-gc-sections ""' Skip the test if the target's linker does not support the ! '--gc-sections' flags. This is equivalent to ! 'dg-require-effective-target gc-sections'. ! 'dg-require-host-local ""' Skip the test if the host is remote, rather than the same as the build system. Some tests are incompatible with DejaGnu's handling ! of remote hosts, which involves copying the source file to the host ! and compiling it with a relative path and "'-o a.out'". ! 'dg-require-mkfifo ""' ! Skip the test if the target does not support 'mkfifo'. ! 'dg-require-named-sections ""' Skip the test is the target does not support named sections. This ! is equivalent to 'dg-require-effective-target named_sections'. ! 'dg-require-weak ""' Skip the test if the target does not support weak symbols. ! 'dg-require-weak-override ""' Skip the test if the target does not support overriding weak symbols.  File: gccint.info, Node: Final Actions, Prev: Require Support, Up: Test Directives ! 7.2.6 Commands for use in 'dg-final' ------------------------------------ The GCC testsuite defines the following directives to be used within ! 'dg-final'. 7.2.6.1 Scan a particular file .............................. ! 'scan-file FILENAME REGEXP [{ target/xfail SELECTOR }]' Passes if REGEXP matches text in FILENAME. ! 'scan-file-not FILENAME REGEXP [{ target/xfail SELECTOR }]' Passes if REGEXP does not match text in FILENAME. ! 'scan-module MODULE REGEXP [{ target/xfail SELECTOR }]' Passes if REGEXP matches in Fortran module MODULE. 7.2.6.2 Scan the assembly output ................................ ! 'scan-assembler REGEX [{ target/xfail SELECTOR }]' Passes if REGEX matches text in the test's assembler output. ! 'scan-assembler-not REGEX [{ target/xfail SELECTOR }]' Passes if REGEX does not match text in the test's assembler output. ! 'scan-assembler-times REGEX NUM [{ target/xfail SELECTOR }]' Passes if REGEX is matched exactly NUM times in the test's assembler output. ! 'scan-assembler-dem REGEX [{ target/xfail SELECTOR }]' Passes if REGEX matches text in the test's demangled assembler output. ! 'scan-assembler-dem-not REGEX [{ target/xfail SELECTOR }]' Passes if REGEX does not match text in the test's demangled assembler output. ! 'scan-hidden SYMBOL [{ target/xfail SELECTOR }]' Passes if SYMBOL is defined as a hidden symbol in the test's assembly output. ! 'scan-not-hidden SYMBOL [{ target/xfail SELECTOR }]' Passes if SYMBOL is not defined as a hidden symbol in the test's assembly output. 7.2.6.3 Scan optimization dump files .................................... ! These commands are available for KIND of 'tree', 'rtl', and 'ipa'. ! 'scan-KIND-dump REGEX SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX matches text in the dump file with suffix SUFFIX. ! 'scan-KIND-dump-not REGEX SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX does not match text in the dump file with suffix SUFFIX. ! 'scan-KIND-dump-times REGEX NUM SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX is found exactly NUM times in the dump file with suffix SUFFIX. ! 'scan-KIND-dump-dem REGEX SUFFIX [{ target/xfail SELECTOR }]' ! Passes if REGEX matches demangled text in the dump file with suffix ! SUFFIX. ! 'scan-KIND-dump-dem-not REGEX SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX does not match demangled text in the dump file with suffix SUFFIX. 7.2.6.4 Verify that an output files exists or not ................................................. ! 'output-exists [{ target/xfail SELECTOR }]' Passes if compiler output file exists. ! 'output-exists-not [{ target/xfail SELECTOR }]' Passes if compiler output file does not exist. 7.2.6.5 Check for LTO tests ........................... ! 'scan-symbol REGEXP [{ target/xfail SELECTOR }]' Passes if the pattern is present in the final executable. ! 7.2.6.6 Checks for 'gcov' tests ............................... ! 'run-gcov SOURCEFILE' ! Check line counts in 'gcov' tests. ! 'run-gcov [branches] [calls] { OPTS SOURCEFILE }' Check branch and/or call counts, in addition to line counts, in ! 'gcov' tests. 7.2.6.7 Clean up generated test files ..................................... ! 'cleanup-coverage-files' Removes coverage data files generated for this test. ! 'cleanup-ipa-dump SUFFIX' Removes IPA dump files generated for this test. ! 'cleanup-modules "LIST-OF-EXTRA-MODULES"' Removes Fortran module files generated for this test, excluding the module names listed in keep-modules. Cleaning up module files is usually done automatically by the testsuite by looking at the *************** These commands are available for KIND of *** 5508,5514 **** ! { dg-final { cleanup-modules "mod1 mod2" } } ! redundant ! { dg-final { keep-modules "mod3 mod4" } } ! `keep-modules "LIST-OF-MODULES-NOT-TO-DELETE"' Whitespace separated list of module names that should not be deleted by cleanup-modules. If the list of modules is empty, all modules defined in this file are kept. --- 5402,5408 ---- ! { dg-final { cleanup-modules "mod1 mod2" } } ! redundant ! { dg-final { keep-modules "mod3 mod4" } } ! 'keep-modules "LIST-OF-MODULES-NOT-TO-DELETE"' Whitespace separated list of module names that should not be deleted by cleanup-modules. If the list of modules is empty, all modules defined in this file are kept. *************** These commands are available for KIND of *** 5521,5540 **** ! { dg-final { keep-modules "keep1 keep2" } } ! just keep these two ! { dg-final { keep-modules "" } } ! keep all ! `cleanup-profile-file' Removes profiling files generated for this test. ! `cleanup-repo-files' ! Removes files generated for this test for `-frepo'. ! `cleanup-rtl-dump SUFFIX' Removes RTL dump files generated for this test. ! `cleanup-saved-temps' Removes files for the current test which were kept for ! `-save-temps'. ! `cleanup-tree-dump SUFFIX' Removes tree dump files matching SUFFIX which were generated for this test. --- 5415,5434 ---- ! { dg-final { keep-modules "keep1 keep2" } } ! just keep these two ! { dg-final { keep-modules "" } } ! keep all ! 'cleanup-profile-file' Removes profiling files generated for this test. ! 'cleanup-repo-files' ! Removes files generated for this test for '-frepo'. ! 'cleanup-rtl-dump SUFFIX' Removes RTL dump files generated for this test. ! 'cleanup-saved-temps' Removes files for the current test which were kept for ! '-save-temps'. ! 'cleanup-tree-dump SUFFIX' Removes tree dump files matching SUFFIX which were generated for this test. *************** File: gccint.info, Node: Ada Tests, Ne *** 5545,5576 **** =========================== The Ada testsuite includes executable tests from the ACATS testsuite, ! publicly available at `http://www.ada-auth.org/acats.html'. ! These tests are integrated in the GCC testsuite in the `ada/acats' ! directory, and enabled automatically when running `make check', assuming the Ada language has been enabled when configuring GCC. ! You can also run the Ada testsuite independently, using `make check-ada', or run a subset of the tests by specifying which chapter to run, e.g.: $ make check-ada CHAPTERS="c3 c9" ! The tests are organized by directory, each directory corresponding to ! a chapter of the Ada Reference Manual. So for example, `c9' corresponds to chapter 9, which deals with tasking features of the language. ! There is also an extra chapter called `gcc' containing a template for creating new executable tests, although this is deprecated in favor of ! the `gnat.dg' testsuite. ! The tests are run using two `sh' scripts: `run_acats' and ! `run_all.sh'. To run the tests using a simulator or a cross target, ! see the small customization section at the top of `run_all.sh'. These tests are run using the build tree: they can be run without doing ! a `make install'.  File: gccint.info, Node: C Tests, Next: libgcj Tests, Prev: Ada Tests, Up: Testsuites --- 5439,5470 ---- =========================== The Ada testsuite includes executable tests from the ACATS testsuite, ! publicly available at . ! These tests are integrated in the GCC testsuite in the 'ada/acats' ! directory, and enabled automatically when running 'make check', assuming the Ada language has been enabled when configuring GCC. ! You can also run the Ada testsuite independently, using 'make check-ada', or run a subset of the tests by specifying which chapter to run, e.g.: $ make check-ada CHAPTERS="c3 c9" ! The tests are organized by directory, each directory corresponding to a ! chapter of the Ada Reference Manual. So for example, 'c9' corresponds to chapter 9, which deals with tasking features of the language. ! There is also an extra chapter called 'gcc' containing a template for creating new executable tests, although this is deprecated in favor of ! the 'gnat.dg' testsuite. ! The tests are run using two 'sh' scripts: 'run_acats' and 'run_all.sh'. ! To run the tests using a simulator or a cross target, see the small ! customization section at the top of 'run_all.sh'. These tests are run using the build tree: they can be run without doing ! a 'make install'.  File: gccint.info, Node: C Tests, Next: libgcj Tests, Prev: Ada Tests, Up: Testsuites *************** File: gccint.info, Node: C Tests, Next *** 5578,5693 **** 7.4 C Language Testsuites ========================= ! GCC contains the following C language testsuites, in the ! `gcc/testsuite' directory: ! `gcc.dg' ! This contains tests of particular features of the C compiler, ! using the more modern `dg' harness. Correctness tests for various compiler features should go here if possible. Magic comments determine whether the file is preprocessed, ! compiled, linked or run. In these tests, error and warning ! message texts are compared against expected texts or regular ! expressions given in comments. These tests are run with the ! options `-ansi -pedantic' unless other options are given in the ! test. Except as noted below they are not run with multiple ! optimization options. ! ! `gcc.dg/compat' This subdirectory contains tests for binary compatibility using ! `lib/compat.exp', which in turn uses the language-independent support (*note Support for testing binary compatibility: compat Testing.). ! ! `gcc.dg/cpp' This subdirectory contains tests of the preprocessor. ! ! `gcc.dg/debug' This subdirectory contains tests for debug formats. Tests in this subdirectory are run for each debug format that the compiler supports. ! ! `gcc.dg/format' ! This subdirectory contains tests of the `-Wformat' format ! checking. Tests in this directory are run with and without ! `-DWIDE'. ! ! `gcc.dg/noncompile' This subdirectory contains tests of code that should not compile and does not need any special compilation options. They are run with multiple optimization options, since sometimes invalid code crashes the compiler with optimization. ! ! `gcc.dg/special' FIXME: describe this. ! `gcc.c-torture' This contains particular code fragments which have historically broken easily. These tests are run with multiple optimization options, so tests for features which only break at some ! optimization levels belong here. This also contains tests to ! check that certain optimizations occur. It might be worthwhile to ! separate the correctness tests cleanly from the code quality ! tests, but it hasn't been done yet. ! `gcc.c-torture/compat' FIXME: describe this. This directory should probably not be used for new tests. ! ! `gcc.c-torture/compile' This testsuite contains test cases that should compile, but do not need to link or run. These test cases are compiled with several different combinations of optimization options. All warnings are disabled for these test cases, so this directory is not suitable if you wish to test for the presence or absence of compiler warnings. While special options can be set, and tests disabled on specific ! platforms, by the use of `.x' files, mostly these test cases ! should not contain platform dependencies. FIXME: discuss how ! defines such as `NO_LABEL_VALUES' and `STACK_SIZE' are used. ! ! `gcc.c-torture/execute' This testsuite contains test cases that should compile, link and ! run; otherwise the same comments as for `gcc.c-torture/compile' apply. ! ! `gcc.c-torture/execute/ieee' This contains tests which are specific to IEEE floating point. ! ! `gcc.c-torture/unsorted' FIXME: describe this. This directory should probably not be used for new tests. ! ! `gcc.misc-tests' This directory contains C tests that require special handling. Some of these tests have individual expect files, and others share special-purpose expect files: ! ``bprob*.c'' ! Test `-fbranch-probabilities' using ! `gcc.misc-tests/bprob.exp', which in turn uses the generic, language-independent framework (*note Support for testing profile-directed optimizations: profopt Testing.). ! ``gcov*.c'' ! Test `gcov' output using `gcov.exp', which in turn uses the language-independent support (*note Support for testing gcov: gcov Testing.). ! ``i386-pf-*.c'' Test i386-specific support for data prefetch using ! `i386-prefetch.exp'. ! ! `gcc.test-framework' ! ``dg-*.c'' Test the testsuite itself using ! `gcc.test-framework/test-framework.exp'. ! ! FIXME: merge in `testsuite/README.gcc' and discuss the format of test cases and magic comments more.  --- 5472,5572 ---- 7.4 C Language Testsuites ========================= ! GCC contains the following C language testsuites, in the 'gcc/testsuite' ! directory: ! 'gcc.dg' ! This contains tests of particular features of the C compiler, using ! the more modern 'dg' harness. Correctness tests for various compiler features should go here if possible. Magic comments determine whether the file is preprocessed, ! compiled, linked or run. In these tests, error and warning message ! texts are compared against expected texts or regular expressions ! given in comments. These tests are run with the options '-ansi ! -pedantic' unless other options are given in the test. Except as ! noted below they are not run with multiple optimization options. ! 'gcc.dg/compat' This subdirectory contains tests for binary compatibility using ! 'lib/compat.exp', which in turn uses the language-independent support (*note Support for testing binary compatibility: compat Testing.). ! 'gcc.dg/cpp' This subdirectory contains tests of the preprocessor. ! 'gcc.dg/debug' This subdirectory contains tests for debug formats. Tests in this subdirectory are run for each debug format that the compiler supports. ! 'gcc.dg/format' ! This subdirectory contains tests of the '-Wformat' format checking. ! Tests in this directory are run with and without '-DWIDE'. ! 'gcc.dg/noncompile' This subdirectory contains tests of code that should not compile and does not need any special compilation options. They are run with multiple optimization options, since sometimes invalid code crashes the compiler with optimization. ! 'gcc.dg/special' FIXME: describe this. ! 'gcc.c-torture' This contains particular code fragments which have historically broken easily. These tests are run with multiple optimization options, so tests for features which only break at some ! optimization levels belong here. This also contains tests to check ! that certain optimizations occur. It might be worthwhile to ! separate the correctness tests cleanly from the code quality tests, ! but it hasn't been done yet. ! 'gcc.c-torture/compat' FIXME: describe this. This directory should probably not be used for new tests. ! 'gcc.c-torture/compile' This testsuite contains test cases that should compile, but do not need to link or run. These test cases are compiled with several different combinations of optimization options. All warnings are disabled for these test cases, so this directory is not suitable if you wish to test for the presence or absence of compiler warnings. While special options can be set, and tests disabled on specific ! platforms, by the use of '.x' files, mostly these test cases should ! not contain platform dependencies. FIXME: discuss how defines such ! as 'NO_LABEL_VALUES' and 'STACK_SIZE' are used. ! 'gcc.c-torture/execute' This testsuite contains test cases that should compile, link and ! run; otherwise the same comments as for 'gcc.c-torture/compile' apply. ! 'gcc.c-torture/execute/ieee' This contains tests which are specific to IEEE floating point. ! 'gcc.c-torture/unsorted' FIXME: describe this. This directory should probably not be used for new tests. ! 'gcc.misc-tests' This directory contains C tests that require special handling. Some of these tests have individual expect files, and others share special-purpose expect files: ! 'bprob*.c' ! Test '-fbranch-probabilities' using ! 'gcc.misc-tests/bprob.exp', which in turn uses the generic, language-independent framework (*note Support for testing profile-directed optimizations: profopt Testing.). ! 'gcov*.c' ! Test 'gcov' output using 'gcov.exp', which in turn uses the language-independent support (*note Support for testing gcov: gcov Testing.). ! 'i386-pf-*.c' Test i386-specific support for data prefetch using ! 'i386-prefetch.exp'. ! 'gcc.test-framework' ! 'dg-*.c' Test the testsuite itself using ! 'gcc.test-framework/test-framework.exp'. ! FIXME: merge in 'testsuite/README.gcc' and discuss the format of test cases and magic comments more.  *************** File: gccint.info, Node: libgcj Tests, *** 5696,5715 **** 7.5 The Java library testsuites. ================================ ! Runtime tests are executed via `make check' in the ! `TARGET/libjava/testsuite' directory in the build tree. Additional runtime tests can be checked into this testsuite. Regression testing of the core packages in libgcj is also covered by the Mauve testsuite. The Mauve Project develops tests for the Java Class Libraries. These tests are run as part of libgcj testing by placing the Mauve tree within the libjava testsuite sources at ! `libjava/testsuite/libjava.mauve/mauve', or by specifying the location ! of that tree when invoking `make', as in `make MAUVEDIR=~/mauve check'. ! To detect regressions, a mechanism in `mauve.exp' compares the ! failures for a test run against the list of expected failures in ! `libjava/testsuite/libjava.mauve/xfails' from the source hierarchy. Update this file when adding new failing tests to Mauve, or when fixing bugs in libgcj that had caused Mauve test failures. --- 5575,5594 ---- 7.5 The Java library testsuites. ================================ ! Runtime tests are executed via 'make check' in the ! 'TARGET/libjava/testsuite' directory in the build tree. Additional runtime tests can be checked into this testsuite. Regression testing of the core packages in libgcj is also covered by the Mauve testsuite. The Mauve Project develops tests for the Java Class Libraries. These tests are run as part of libgcj testing by placing the Mauve tree within the libjava testsuite sources at ! 'libjava/testsuite/libjava.mauve/mauve', or by specifying the location ! of that tree when invoking 'make', as in 'make MAUVEDIR=~/mauve check'. ! To detect regressions, a mechanism in 'mauve.exp' compares the failures ! for a test run against the list of expected failures in ! 'libjava/testsuite/libjava.mauve/xfails' from the source hierarchy. Update this file when adding new failing tests to Mauve, or when fixing bugs in libgcj that had caused Mauve test failures. *************** Tests for link-time optimizations usuall *** 5725,5804 **** that are compiled separately, perhaps with different sets of options. There are several special-purpose test directives used for these tests. ! `{ dg-lto-do DO-WHAT-KEYWORD }' DO-WHAT-KEYWORD specifies how the test is compiled and whether it is executed. It is one of: ! `assemble' ! Compile with `-c' to produce a relocatable object file. ! ! `link' Compile, assemble, and link to produce an executable file. ! ! `run' Produce and run an executable file, which is expected to return an exit code of 0. ! The default is `assemble'. That can be overridden for a set of ! tests by redefining `dg-do-what-default' within the `.exp' file ! for those tests. ! Unlike `dg-do', `dg-lto-do' does not support an optional `target' ! or `xfail' list. Use `dg-skip-if', `dg-xfail-if', or ! `dg-xfail-run-if'. ! `{ dg-lto-options { { OPTIONS } [{ OPTIONS }] } [{ target SELECTOR }]}' This directive provides a list of one or more sets of compiler options to override LTO_OPTIONS. Each test will be compiled and run with each of these sets of options. ! `{ dg-extra-ld-options OPTIONS [{ target SELECTOR }]}' This directive adds OPTIONS to the linker options used. ! `{ dg-suppress-ld-options OPTIONS [{ target SELECTOR }]}' This directive removes OPTIONS from the set of linker options used.  File: gccint.info, Node: gcov Testing, Next: profopt Testing, Prev: LTO Testing, Up: Testsuites ! 7.7 Support for testing `gcov' ============================== ! Language-independent support for testing `gcov', and for checking that branch profiling produces expected values, is provided by the expect ! file `lib/gcov.exp'. `gcov' tests also rely on procedures in ! `lib/gcc-dg.exp' to compile and run the test program. A typical `gcov' test contains the following DejaGnu commands within comments: { dg-options "-fprofile-arcs -ftest-coverage" } { dg-do run { target native } } { dg-final { run-gcov sourcefile } } ! Checks of `gcov' output can include line counts, branch percentages, and call return percentages. All of these checks are requested via ! commands that appear in comments in the test's source file. Commands ! to check line counts are processed by default. Commands to check ! branch percentages and call return percentages are processed if the ! `run-gcov' command has arguments `branches' or `calls', respectively. ! For example, the following specifies checking both, as well as passing ! `-b' to `gcov': { dg-final { run-gcov branches calls { -b sourcefile } } } A line count command appears within a comment on the source line that ! is expected to get the specified count and has the form `count(CNT)'. ! A test should only check line counts for lines that will get the same count for any architecture. ! Commands to check branch percentages (`branch') and call return ! percentages (`returns') are very similar to each other. A beginning command appears on or before the first of a range of lines that will report the percentage, and the ending command follows that range of lines. The beginning command can include a list of percentages, all of which are expected to be found within the range. A range is terminated ! by the next command of the same kind. A command `branch(end)' or ! `returns(end)' marks the end of a range without starting a new one. ! For example: if (i > 10 && j > i && j < 20) /* branch(27 50 75) */ /* branch(end) */ --- 5604,5681 ---- that are compiled separately, perhaps with different sets of options. There are several special-purpose test directives used for these tests. ! '{ dg-lto-do DO-WHAT-KEYWORD }' DO-WHAT-KEYWORD specifies how the test is compiled and whether it is executed. It is one of: ! 'assemble' ! Compile with '-c' to produce a relocatable object file. ! 'link' Compile, assemble, and link to produce an executable file. ! 'run' Produce and run an executable file, which is expected to return an exit code of 0. ! The default is 'assemble'. That can be overridden for a set of ! tests by redefining 'dg-do-what-default' within the '.exp' file for ! those tests. ! Unlike 'dg-do', 'dg-lto-do' does not support an optional 'target' ! or 'xfail' list. Use 'dg-skip-if', 'dg-xfail-if', or ! 'dg-xfail-run-if'. ! '{ dg-lto-options { { OPTIONS } [{ OPTIONS }] } [{ target SELECTOR }]}' This directive provides a list of one or more sets of compiler options to override LTO_OPTIONS. Each test will be compiled and run with each of these sets of options. ! '{ dg-extra-ld-options OPTIONS [{ target SELECTOR }]}' This directive adds OPTIONS to the linker options used. ! '{ dg-suppress-ld-options OPTIONS [{ target SELECTOR }]}' This directive removes OPTIONS from the set of linker options used.  File: gccint.info, Node: gcov Testing, Next: profopt Testing, Prev: LTO Testing, Up: Testsuites ! 7.7 Support for testing 'gcov' ============================== ! Language-independent support for testing 'gcov', and for checking that branch profiling produces expected values, is provided by the expect ! file 'lib/gcov.exp'. 'gcov' tests also rely on procedures in ! 'lib/gcc-dg.exp' to compile and run the test program. A typical 'gcov' test contains the following DejaGnu commands within comments: { dg-options "-fprofile-arcs -ftest-coverage" } { dg-do run { target native } } { dg-final { run-gcov sourcefile } } ! Checks of 'gcov' output can include line counts, branch percentages, and call return percentages. All of these checks are requested via ! commands that appear in comments in the test's source file. Commands to ! check line counts are processed by default. Commands to check branch ! percentages and call return percentages are processed if the 'run-gcov' ! command has arguments 'branches' or 'calls', respectively. For example, ! the following specifies checking both, as well as passing '-b' to ! 'gcov': { dg-final { run-gcov branches calls { -b sourcefile } } } A line count command appears within a comment on the source line that ! is expected to get the specified count and has the form 'count(CNT)'. A ! test should only check line counts for lines that will get the same count for any architecture. ! Commands to check branch percentages ('branch') and call return ! percentages ('returns') are very similar to each other. A beginning command appears on or before the first of a range of lines that will report the percentage, and the ending command follows that range of lines. The beginning command can include a list of percentages, all of which are expected to be found within the range. A range is terminated ! by the next command of the same kind. A command 'branch(end)' or ! 'returns(end)' marks the end of a range without starting a new one. For ! example: if (i > 10 && j > i && j < 20) /* branch(27 50 75) */ /* branch(end) */ *************** calls reported to return. For a branch *** 5809,5818 **** the expected percentage or 100 minus that value, since the direction of a branch can differ depending on the target or the optimization level. ! Not all branches and calls need to be checked. A test should not ! check for branches that might be optimized away or replaced with ! predicated instructions. Don't check for calls inserted by the ! compiler or ones that might be inlined or optimized away. A single test can check for combinations of line counts, branch percentages, and call return percentages. The command to check a line --- 5686,5695 ---- the expected percentage or 100 minus that value, since the direction of a branch can differ depending on the target or the optimization level. ! Not all branches and calls need to be checked. A test should not check ! for branches that might be optimized away or replaced with predicated ! instructions. Don't check for calls inserted by the compiler or ones ! that might be inlined or optimized away. A single test can check for combinations of line counts, branch percentages, and call return percentages. The command to check a line *************** File: gccint.info, Node: profopt Testin *** 5826,5869 **** 7.8 Support for testing profile-directed optimizations ====================================================== ! The file `profopt.exp' provides language-independent support for checking correct execution of a test built with profile-directed optimization. This testing requires that a test program be built and ! executed twice. The first time it is compiled to generate profile ! data, and the second time it is compiled to use the data that was ! generated during the first execution. The second execution is to ! verify that the test produces the expected results. To check that the optimization actually generated better code, a test can be built and run a third time with normal optimizations to verify that the performance is better with the profile-directed optimizations. ! `profopt.exp' has the beginnings of this kind of support. ! `profopt.exp' provides generic support for profile-directed optimizations. Each set of tests that uses it provides information about a specific optimization: ! `tool' ! tool being tested, e.g., `gcc' ! `profile_option' options used to generate profile data ! `feedback_option' options used to optimize using that profile data ! `prof_ext' suffix of profile data files ! `PROFOPT_OPTIONS' list of options with which to run each test, similar to the lists for torture tests ! `{ dg-final-generate { LOCAL-DIRECTIVE } }' ! This directive is similar to `dg-final', but the LOCAL-DIRECTIVE ! is run after the generation of profile data. ! `{ dg-final-use { LOCAL-DIRECTIVE } }' The LOCAL-DIRECTIVE is run after the profile data have been used.  --- 5703,5746 ---- 7.8 Support for testing profile-directed optimizations ====================================================== ! The file 'profopt.exp' provides language-independent support for checking correct execution of a test built with profile-directed optimization. This testing requires that a test program be built and ! executed twice. The first time it is compiled to generate profile data, ! and the second time it is compiled to use the data that was generated ! during the first execution. The second execution is to verify that the ! test produces the expected results. To check that the optimization actually generated better code, a test can be built and run a third time with normal optimizations to verify that the performance is better with the profile-directed optimizations. ! 'profopt.exp' has the beginnings of this kind of support. ! 'profopt.exp' provides generic support for profile-directed optimizations. Each set of tests that uses it provides information about a specific optimization: ! 'tool' ! tool being tested, e.g., 'gcc' ! 'profile_option' options used to generate profile data ! 'feedback_option' options used to optimize using that profile data ! 'prof_ext' suffix of profile data files ! 'PROFOPT_OPTIONS' list of options with which to run each test, similar to the lists for torture tests ! '{ dg-final-generate { LOCAL-DIRECTIVE } }' ! This directive is similar to 'dg-final', but the LOCAL-DIRECTIVE is ! run after the generation of profile data. ! '{ dg-final-use { LOCAL-DIRECTIVE } }' The LOCAL-DIRECTIVE is run after the profile data have been used.  *************** File: gccint.info, Node: compat Testing *** 5872,5896 **** 7.9 Support for testing binary compatibility ============================================ ! The file `compat.exp' provides language-independent support for binary compatibility testing. It supports testing interoperability of two compilers that follow the same ABI, or of multiple sets of compiler options that should not affect binary compatibility. It is intended to be used for testsuites that complement ABI testsuites. A test supported by this framework has three parts, each in a separate ! source file: a main program and two pieces that interact with each ! other to split up the functionality being tested. ! `TESTNAME_main.SUFFIX' Contains the main program, which calls a function in file ! `TESTNAME_x.SUFFIX'. ! `TESTNAME_x.SUFFIX' ! Contains at least one call to a function in `TESTNAME_y.SUFFIX'. ! `TESTNAME_y.SUFFIX' ! Shares data with, or gets arguments from, `TESTNAME_x.SUFFIX'. Within each test, the main program and one functional piece are compiled by the GCC under test. The other piece can be compiled by an --- 5749,5773 ---- 7.9 Support for testing binary compatibility ============================================ ! The file 'compat.exp' provides language-independent support for binary compatibility testing. It supports testing interoperability of two compilers that follow the same ABI, or of multiple sets of compiler options that should not affect binary compatibility. It is intended to be used for testsuites that complement ABI testsuites. A test supported by this framework has three parts, each in a separate ! source file: a main program and two pieces that interact with each other ! to split up the functionality being tested. ! 'TESTNAME_main.SUFFIX' Contains the main program, which calls a function in file ! 'TESTNAME_x.SUFFIX'. ! 'TESTNAME_x.SUFFIX' ! Contains at least one call to a function in 'TESTNAME_y.SUFFIX'. ! 'TESTNAME_y.SUFFIX' ! Shares data with, or gets arguments from, 'TESTNAME_x.SUFFIX'. Within each test, the main program and one functional piece are compiled by the GCC under test. The other piece can be compiled by an *************** pair specifies options used with the GCC *** 5901,5933 **** element of the pair specifies options used with the alternate compiler. Each test is compiled with each pair of options. ! `compat.exp' defines default pairs of compiler options. These can be ! overridden by defining the environment variable `COMPAT_OPTIONS' as: COMPAT_OPTIONS="[list [list {TST1} {ALT1}] ...[list {TSTN} {ALTN}]]" where TSTI and ALTI are lists of options, with TSTI used by the compiler under test and ALTI used by the alternate compiler. For ! example, with `[list [list {-g -O0} {-O3}] [list {-fpic} {-fPIC -O2}]]', ! the test is first built with `-g -O0' by the compiler under test and ! with `-O3' by the alternate compiler. The test is built a second time ! using `-fpic' by the compiler under test and `-fPIC -O2' by the alternate compiler. An alternate compiler is specified by defining an environment variable to be the full pathname of an installed compiler; for C define ! `ALT_CC_UNDER_TEST', and for C++ define `ALT_CXX_UNDER_TEST'. These ! will be written to the `site.exp' file used by DejaGnu. The default is to build each test with the compiler under test using the first of each ! pair of compiler options from `COMPAT_OPTIONS'. When ! `ALT_CC_UNDER_TEST' or `ALT_CXX_UNDER_TEST' is `same', each test is ! built using the compiler under test but with combinations of the ! options from `COMPAT_OPTIONS'. To run only the C++ compatibility suite using the compiler under test and another version of GCC using specific compiler options, do the ! following from `OBJDIR/gcc': rm site.exp make -k \ --- 5778,5810 ---- element of the pair specifies options used with the alternate compiler. Each test is compiled with each pair of options. ! 'compat.exp' defines default pairs of compiler options. These can be ! overridden by defining the environment variable 'COMPAT_OPTIONS' as: COMPAT_OPTIONS="[list [list {TST1} {ALT1}] ...[list {TSTN} {ALTN}]]" where TSTI and ALTI are lists of options, with TSTI used by the compiler under test and ALTI used by the alternate compiler. For ! example, with '[list [list {-g -O0} {-O3}] [list {-fpic} {-fPIC -O2}]]', ! the test is first built with '-g -O0' by the compiler under test and ! with '-O3' by the alternate compiler. The test is built a second time ! using '-fpic' by the compiler under test and '-fPIC -O2' by the alternate compiler. An alternate compiler is specified by defining an environment variable to be the full pathname of an installed compiler; for C define ! 'ALT_CC_UNDER_TEST', and for C++ define 'ALT_CXX_UNDER_TEST'. These ! will be written to the 'site.exp' file used by DejaGnu. The default is to build each test with the compiler under test using the first of each ! pair of compiler options from 'COMPAT_OPTIONS'. When ! 'ALT_CC_UNDER_TEST' or 'ALT_CXX_UNDER_TEST' is 'same', each test is ! built using the compiler under test but with combinations of the options ! from 'COMPAT_OPTIONS'. To run only the C++ compatibility suite using the compiler under test and another version of GCC using specific compiler options, do the ! following from 'OBJDIR/gcc': rm site.exp make -k \ *************** compiler under test but is present in th *** 5946,5962 **** The binary compatibility tests support a small number of test framework commands that appear within comments in a test file. ! `dg-require-*' ! These commands can be used in `TESTNAME_main.SUFFIX' to skip the test if specific support is not available on the target. ! `dg-options' The specified options are used for compiling this particular source ! file, appended to the options from `COMPAT_OPTIONS'. When this ! command appears in `TESTNAME_main.SUFFIX' the options are also ! used to link the test program. ! `dg-xfail-if' This command can be used in a secondary source file to specify that compilation is expected to fail for particular options on particular targets. --- 5823,5839 ---- The binary compatibility tests support a small number of test framework commands that appear within comments in a test file. ! 'dg-require-*' ! These commands can be used in 'TESTNAME_main.SUFFIX' to skip the test if specific support is not available on the target. ! 'dg-options' The specified options are used for compiling this particular source ! file, appended to the options from 'COMPAT_OPTIONS'. When this ! command appears in 'TESTNAME_main.SUFFIX' the options are also used ! to link the test program. ! 'dg-xfail-if' This command can be used in a secondary source file to specify that compilation is expected to fail for particular options on particular targets. *************** File: gccint.info, Node: Torture Tests, *** 5969,6006 **** Throughout the compiler testsuite there are several directories whose tests are run multiple times, each with a different set of options. ! These are known as torture tests. `lib/torture-options.exp' defines procedures to set up these lists: ! `torture-init' Initialize use of torture lists. ! ! `set-torture-options' Set lists of torture options to use for tests with and without loops. Optionally combine a set of torture options with a set of other options, as is done with Objective-C runtime options. ! ! `torture-finish' Finalize use of torture lists. ! The `.exp' file for a set of tests that use torture options must include calls to these three procedures if: ! * It calls `gcc-dg-runtest' and overrides DG_TORTURE_OPTIONS. ! * It calls ${TOOL}`-torture' or ${TOOL}`-torture-execute', where ! TOOL is `c', `fortran', or `objc'. ! * It calls `dg-pch'. ! It is not necessary for a `.exp' file that calls `gcc-dg-runtest' to call the torture procedures if the tests should use the list in ! DG_TORTURE_OPTIONS defined in `gcc-dg.exp'. Most uses of torture options can override the default lists by defining TORTURE_OPTIONS or add to the default list by defining ! ADDITIONAL_TORTURE_OPTIONS. Define these in a `.dejagnurc' file or add ! them to the `site.exp' file; for example set ADDITIONAL_TORTURE_OPTIONS [list \ { -O2 -ftree-loop-linear } \ --- 5846,5881 ---- Throughout the compiler testsuite there are several directories whose tests are run multiple times, each with a different set of options. ! These are known as torture tests. 'lib/torture-options.exp' defines procedures to set up these lists: ! 'torture-init' Initialize use of torture lists. ! 'set-torture-options' Set lists of torture options to use for tests with and without loops. Optionally combine a set of torture options with a set of other options, as is done with Objective-C runtime options. ! 'torture-finish' Finalize use of torture lists. ! The '.exp' file for a set of tests that use torture options must include calls to these three procedures if: ! * It calls 'gcc-dg-runtest' and overrides DG_TORTURE_OPTIONS. ! * It calls ${TOOL}'-torture' or ${TOOL}'-torture-execute', where TOOL ! is 'c', 'fortran', or 'objc'. ! * It calls 'dg-pch'. ! It is not necessary for a '.exp' file that calls 'gcc-dg-runtest' to call the torture procedures if the tests should use the list in ! DG_TORTURE_OPTIONS defined in 'gcc-dg.exp'. Most uses of torture options can override the default lists by defining TORTURE_OPTIONS or add to the default list by defining ! ADDITIONAL_TORTURE_OPTIONS. Define these in a '.dejagnurc' file or add ! them to the 'site.exp' file; for example set ADDITIONAL_TORTURE_OPTIONS [list \ { -O2 -ftree-loop-linear } \ *************** File: gccint.info, Node: Options, Next *** 6012,6020 **** 8 Option specification files **************************** ! Most GCC command-line options are described by special option ! definition files, the names of which conventionally end in `.opt'. ! This chapter describes the format of these files. * Menu: --- 5887,5895 ---- 8 Option specification files **************************** ! Most GCC command-line options are described by special option definition ! files, the names of which conventionally end in '.opt'. This chapter ! describes the format of these files. * Menu: *************** semicolon. *** 6036,6164 **** The files can contain the following types of record: * A language definition record. These records have two fields: the ! string `Language' and the name of the language. Once a language has been declared in this way, it can be used as an option property. *Note Option properties::. ! * A target specific save record to save additional information. These ! records have two fields: the string `TargetSave', and a ! declaration type to go in the `cl_target_option' structure. * A variable record to define a variable used to store option ! information. These records have two fields: the string ! `Variable', and a declaration of the type and name of the ! variable, optionally with an initializer (but without any trailing ! `;'). These records may be used for variables used for many ! options where declaring the initializer in a single option ! definition record, or duplicating it in many records, would be ! inappropriate, or for variables set in option handlers rather than ! referenced by `Var' properties. * A variable record to define a variable used to store option information. These records have two fields: the string ! `TargetVariable', and a declaration of the type and name of the variable, optionally with an initializer (but without any trailing ! `;'). `TargetVariable' is a combination of `Variable' and ! `TargetSave' records in that the variable is defined in the ! `gcc_options' structure, but these variables are also stored in ! the `cl_target_option' structure. The variables are saved in the target save code and restored in the target restore code. * A variable record to record any additional files that the ! `options.h' file should include. This is useful to provide enumeration or structure definitions needed for target variables. ! These records have two fields: the string `HeaderInclude' and the name of the include file. * A variable record to record any additional files that the ! `options.c' or `options-save.c' file should include. This is useful to provide inline functions needed for target variables ! and/or `#ifdef' sequences to properly set up the initialization. ! These records have two fields: the string `SourceInclude' and the name of the include file. * An enumeration record to define a set of strings that may be used as arguments to an option or options. These records have three ! fields: the string `Enum', a space-separated list of properties ! and help text used to describe the set of strings in `--help' ! output. Properties use the same format as option properties; the ! following are valid: ! `Name(NAME)' This property is required; NAME must be a name (suitable for use in C identifiers) used to identify the set of strings in ! `Enum' option properties. ! `Type(TYPE)' This property is required; TYPE is the C type for variables ! set by options using this enumeration together with `Var'. ! `UnknownError(MESSAGE)' The message MESSAGE will be used as an error message if the ! argument is invalid; for enumerations without `UnknownError', a generic error message is used. MESSAGE should contain a ! single `%qs' format, which will be used to format the invalid argument. * An enumeration value record to define one of the strings in a set ! given in an `Enum' record. These records have two fields: the ! string `EnumValue' and a space-separated list of properties. Properties use the same format as option properties; the following are valid: ! `Enum(NAME)' ! This property is required; NAME says which `Enum' record this ! `EnumValue' record corresponds to. ! `String(STRING)' This property is required; STRING is the string option argument being described by this record. ! `Value(VALUE)' This property is required; it says what value (representable ! as `int') should be used for the given string. ! `Canonical' This property is optional. If present, it says the present string is the canonical one among all those with the given value. Other strings yielding that value will be mapped to this one so specs do not need to handle them. ! `DriverOnly' This property is optional. If present, the present string will only be accepted by the driver. This is used for cases ! such as `-march=native' that are processed by the driver so ! that `gcc -v' shows how the options chosen depended on the system on which the compiler was run. * An option definition record. These records have the following fields: 1. the name of the option, with the leading "-" removed - 2. a space-separated list of option properties (*note Option properties::) ! ! 3. the help text to use for `--help' (omitted if the second field ! contains the `Undocumented' property). By default, all options beginning with "f", "W" or "m" are implicitly assumed to take a "no-" form. This form should not be listed separately. If an option beginning with one of these letters does not have a "no-" form, you can use the ! `RejectNegative' property to reject it. The help text is automatically line-wrapped before being displayed. Normally the name of the option is printed on the left-hand side of the output and the help text is printed on the right. However, if ! the help text contains a tab character, the text to the left of ! the tab is used instead of the option's name and the text to the ! right of the tab forms the help text. This allows you to ! elaborate on what type of argument the option takes. * A target mask record. These records have one field of the form ! `Mask(X)'. The options-processing script will automatically ! allocate a bit in `target_flags' (*note Run-time Target::) for ! each mask name X and set the macro `MASK_X' to the appropriate ! bitmask. It will also declare a `TARGET_X' macro that has the ! value 1 when bit `MASK_X' is set and 0 otherwise. They are primarily intended to declare target masks that are not associated with user options, either because these masks represent --- 5911,6036 ---- The files can contain the following types of record: * A language definition record. These records have two fields: the ! string 'Language' and the name of the language. Once a language has been declared in this way, it can be used as an option property. *Note Option properties::. ! * A target specific save record to save additional information. ! These records have two fields: the string 'TargetSave', and a ! declaration type to go in the 'cl_target_option' structure. * A variable record to define a variable used to store option ! information. These records have two fields: the string 'Variable', ! and a declaration of the type and name of the variable, optionally ! with an initializer (but without any trailing ';'). These records ! may be used for variables used for many options where declaring the ! initializer in a single option definition record, or duplicating it ! in many records, would be inappropriate, or for variables set in ! option handlers rather than referenced by 'Var' properties. * A variable record to define a variable used to store option information. These records have two fields: the string ! 'TargetVariable', and a declaration of the type and name of the variable, optionally with an initializer (but without any trailing ! ';'). 'TargetVariable' is a combination of 'Variable' and ! 'TargetSave' records in that the variable is defined in the ! 'gcc_options' structure, but these variables are also stored in the ! 'cl_target_option' structure. The variables are saved in the target save code and restored in the target restore code. * A variable record to record any additional files that the ! 'options.h' file should include. This is useful to provide enumeration or structure definitions needed for target variables. ! These records have two fields: the string 'HeaderInclude' and the name of the include file. * A variable record to record any additional files that the ! 'options.c' or 'options-save.c' file should include. This is useful to provide inline functions needed for target variables ! and/or '#ifdef' sequences to properly set up the initialization. ! These records have two fields: the string 'SourceInclude' and the name of the include file. * An enumeration record to define a set of strings that may be used as arguments to an option or options. These records have three ! fields: the string 'Enum', a space-separated list of properties and ! help text used to describe the set of strings in '--help' output. ! Properties use the same format as option properties; the following ! are valid: ! 'Name(NAME)' This property is required; NAME must be a name (suitable for use in C identifiers) used to identify the set of strings in ! 'Enum' option properties. ! 'Type(TYPE)' This property is required; TYPE is the C type for variables ! set by options using this enumeration together with 'Var'. ! 'UnknownError(MESSAGE)' The message MESSAGE will be used as an error message if the ! argument is invalid; for enumerations without 'UnknownError', a generic error message is used. MESSAGE should contain a ! single '%qs' format, which will be used to format the invalid argument. * An enumeration value record to define one of the strings in a set ! given in an 'Enum' record. These records have two fields: the ! string 'EnumValue' and a space-separated list of properties. Properties use the same format as option properties; the following are valid: ! 'Enum(NAME)' ! This property is required; NAME says which 'Enum' record this ! 'EnumValue' record corresponds to. ! 'String(STRING)' This property is required; STRING is the string option argument being described by this record. ! 'Value(VALUE)' This property is required; it says what value (representable ! as 'int') should be used for the given string. ! 'Canonical' This property is optional. If present, it says the present string is the canonical one among all those with the given value. Other strings yielding that value will be mapped to this one so specs do not need to handle them. ! 'DriverOnly' This property is optional. If present, the present string will only be accepted by the driver. This is used for cases ! such as '-march=native' that are processed by the driver so ! that 'gcc -v' shows how the options chosen depended on the system on which the compiler was run. * An option definition record. These records have the following fields: 1. the name of the option, with the leading "-" removed 2. a space-separated list of option properties (*note Option properties::) ! 3. the help text to use for '--help' (omitted if the second field ! contains the 'Undocumented' property). By default, all options beginning with "f", "W" or "m" are implicitly assumed to take a "no-" form. This form should not be listed separately. If an option beginning with one of these letters does not have a "no-" form, you can use the ! 'RejectNegative' property to reject it. The help text is automatically line-wrapped before being displayed. Normally the name of the option is printed on the left-hand side of the output and the help text is printed on the right. However, if ! the help text contains a tab character, the text to the left of the ! tab is used instead of the option's name and the text to the right ! of the tab forms the help text. This allows you to elaborate on ! what type of argument the option takes. * A target mask record. These records have one field of the form ! 'Mask(X)'. The options-processing script will automatically ! allocate a bit in 'target_flags' (*note Run-time Target::) for each ! mask name X and set the macro 'MASK_X' to the appropriate bitmask. ! It will also declare a 'TARGET_X' macro that has the value 1 when ! bit 'MASK_X' is set and 0 otherwise. They are primarily intended to declare target masks that are not associated with user options, either because these masks represent *************** File: gccint.info, Node: Option propert *** 6173,6465 **** The second field of an option record can specify any of the following properties. When an option takes an argument, it is enclosed in ! parentheses following the option property name. The parser that ! handles option files is quite simplistic, and will be tricked by any ! nested parentheses within the argument text itself; in this case, the ! entire option argument can be wrapped in curly braces within the ! parentheses to demarcate it, e.g.: Condition({defined (USE_CYGWIN_LIBSTDCXX_WRAPPERS)}) ! `Common' The option is available for all languages and targets. ! `Target' The option is available for all languages but is target-specific. ! `Driver' The option is handled by the compiler driver using code not shared ! with the compilers proper (`cc1' etc.). ! `LANGUAGE' The option is available when compiling for the given language. It is possible to specify several different languages for the same option. Each LANGUAGE must have been declared by an earlier ! `Language' record. *Note Option file format::. ! `RejectDriver' ! The option is only handled by the compilers proper (`cc1' etc.) ! and should not be accepted by the driver. ! `RejectNegative' The option does not have a "no-" form. All options beginning with "f", "W" or "m" are assumed to have a "no-" form unless this property is used. ! `Negative(OTHERNAME)' The option will turn off another option OTHERNAME, which is the option name with the leading "-" removed. This chain action will ! propagate through the `Negative' property of the option to be turned off. As a consequence, if you have a group of mutually-exclusive ! options, their `Negative' properties should form a circular chain. ! For example, if options `-A', `-B' and `-C' are mutually ! exclusive, their respective `Negative' properties should be ! `Negative(B)', `Negative(C)' and `Negative(A)'. ! `Joined' ! `Separate' ! The option takes a mandatory argument. `Joined' indicates that ! the option and argument can be included in the same `argv' entry ! (as with `-mflush-func=NAME', for example). `Separate' indicates ! that the option and argument can be separate `argv' entries (as ! with `-o'). An option is allowed to have both of these properties. ! `JoinedOrMissing' The option takes an optional argument. If the argument is given, ! it will be part of the same `argv' entry as the option itself. ! This property cannot be used alongside `Joined' or `Separate'. ! `MissingArgError(MESSAGE)' ! For an option marked `Joined' or `Separate', the message MESSAGE will be used as an error message if the mandatory argument is ! missing; for options without `MissingArgError', a generic error ! message is used. MESSAGE should contain a single `%qs' format, which will be used to format the name of the option passed. ! `Args(N)' ! For an option marked `Separate', indicate that it takes N arguments. The default is 1. ! `UInteger' The option's argument is a non-negative integer. The option parser will check and convert the argument before passing it to the ! relevant option handler. `UInteger' should also be used on ! options like `-falign-loops' where both `-falign-loops' and ! `-falign-loops'=N are supported to make sure the saved options are given a full integer. ! `ToLower' The option's argument should be converted to lowercase as part of putting it in canonical form, and before comparing with the strings ! indicated by any `Enum' property. ! `NoDriverArg' ! For an option marked `Separate', the option only takes an argument in the compiler proper, not in the driver. This is for compatibility with existing options that are used both directly and ! via `-Wp,'; new options should not have this property. ! `Var(VAR)' ! The state of this option should be stored in variable VAR ! (actually a macro for `global_options.x_VAR'). The way that the ! state is stored depends on the type of option: ! * If the option uses the `Mask' or `InverseMask' properties, ! VAR is the integer variable that contains the mask. * If the option is a normal on/off switch, VAR is an integer variable that is nonzero when the option is enabled. The options parser will set the variable to 1 when the positive form of the option is used and 0 when the "no-" form is used. ! * If the option takes an argument and has the `UInteger' property, VAR is an integer variable that stores the value of the argument. ! * If the option takes an argument and has the `Enum' property, ! VAR is a variable (type given in the `Type' property of the ! `Enum' record whose `Name' property has the same argument as ! the `Enum' property of this option) that stores the value of the argument. ! * If the option has the `Defer' property, VAR is a pointer to a ! `VEC(cl_deferred_option,heap)' that stores the option for ! later processing. (VAR is declared with type `void *' and ! needs to be cast to `VEC(cl_deferred_option,heap)' before use.) * Otherwise, if the option takes an argument, VAR is a pointer to the argument string. The pointer will be null if the argument is optional and wasn't given. ! The option-processing script will usually zero-initialize VAR. ! You can modify this behavior using `Init'. ! `Var(VAR, SET)' The option controls an integer variable VAR and is active when VAR equals SET. The option parser will set VAR to SET when the ! positive form of the option is used and `!SET' when the "no-" form is used. VAR is declared in the same way as for the single-argument form described above. ! `Init(VALUE)' ! The variable specified by the `Var' property should be statically initialized to VALUE. If more than one option using the same ! variable specifies `Init', all must specify the same initializer. ! `Mask(NAME)' ! The option is associated with a bit in the `target_flags' variable (*note Run-time Target::) and is active when that bit is set. You ! may also specify `Var' to select a variable other than ! `target_flags'. The options-processing script will automatically allocate a unique ! bit for the option. If the option is attached to `target_flags', ! the script will set the macro `MASK_NAME' to the appropriate ! bitmask. It will also declare a `TARGET_NAME' macro that has the value 1 when the option is active and 0 otherwise. If you use ! `Var' to attach the option to a different variable, the bitmask ! macro with be called `OPTION_MASK_NAME'. ! `InverseMask(OTHERNAME)' ! `InverseMask(OTHERNAME, THISNAME)' The option is the inverse of another option that has the ! `Mask(OTHERNAME)' property. If THISNAME is given, the ! options-processing script will declare a `TARGET_THISNAME' macro that is 1 when the option is active and 0 otherwise. ! `Enum(NAME)' The option's argument is a string from the set of strings ! associated with the corresponding `Enum' record. The string is checked and converted to the integer specified in the corresponding ! `EnumValue' record before being passed to option handlers. ! `Defer' ! The option should be stored in a vector, specified with `Var', for later processing. ! `Alias(OPT)' ! `Alias(OPT, ARG)' ! `Alias(OPT, POSARG, NEGARG)' ! The option is an alias for `-OPT' (or the negative form of that ! option, depending on `NegativeAlias'). In the first form, any ! argument passed to the alias is considered to be passed to `-OPT', ! and `-OPT' is considered to be negated if the alias is used in negated form. In the second form, the alias may not be negated or have an argument, and POSARG is considered to be passed as an ! argument to `-OPT'. In the third form, the alias may not have an argument, if the alias is used in the positive form then POSARG is ! considered to be passed to `-OPT', and if the alias is used in the ! negative form then NEGARG is considered to be passed to `-OPT'. ! Aliases should not specify `Var' or `Mask' or `UInteger'. Aliases should normally specify the same languages as the target of the alias; the flags on the target will be used to determine any ! diagnostic for use of an option for the wrong language, while ! those on the alias will be used to identify what command-line text ! is the option and what text is any argument to that option. ! When an `Alias' definition is used for an option, driver specs do ! not need to handle it and no `OPT_' enumeration value is defined for it; only the canonical form of the option will be seen in those places. ! `NegativeAlias' ! For an option marked with `Alias(OPT)', the option is considered ! to be an alias for the positive form of `-OPT' if negated and for ! the negative form of `-OPT' if not negated. `NegativeAlias' may ! not be used with the forms of `Alias' taking more than one ! argument. ! `Ignore' This option is ignored apart from printing any warning specified ! using `Warn'. The option will not be seen by specs and no `OPT_' enumeration value is defined for it. ! `SeparateAlias' ! For an option marked with `Joined', `Separate' and `Alias', the option only acts as an alias when passed a separate argument; with ! a joined argument it acts as a normal option, with an `OPT_' ! enumeration value. This is for compatibility with the Java `-d' option and should not be used for new options. ! `Warn(MESSAGE)' If this option is used, output the warning MESSAGE. MESSAGE is a ! format string, either taking a single operand with a `%qs' format which is the option name, or not taking any operands, which is ! passed to the `warning' function. If an alias is marked `Warn', ! the target of the alias must not also be marked `Warn'. ! `Report' ! The state of the option should be printed by `-fverbose-asm'. ! `Warning' ! This is a warning option and should be shown as such in `--help' output. This flag does not currently affect anything other than ! `--help'. ! `Optimization' This is an optimization option. It should be shown as such in ! `--help' output, and any associated variable named using `Var' ! should be saved and restored when the optimization level is ! changed with `optimize' attributes. ! `Undocumented' The option is deliberately missing documentation and should not be ! included in the `--help' output. ! `Condition(COND)' The option should only be accepted if preprocessor condition COND is true. Note that any C declarations associated with the option ! will be present even if COND is false; COND simply controls ! whether the option is accepted and whether it is printed in the ! `--help' output. ! `Save' ! Build the `cl_target_option' structure to hold a copy of the ! option, add the functions `cl_target_option_save' and ! `cl_target_option_restore' to save and restore the options. ! `SetByCombined' The option may also be set by a combined option such as ! `-ffast-math'. This causes the `gcc_options' struct to have a ! field `frontend_set_NAME', where `NAME' is the name of the field ! holding the value of this option (without the leading `x_'). This gives the front end a way to indicate that the value has been set explicitly and should not be changed by the combined option. For ! example, some front ends use this to prevent `-ffast-math' and ! `-fno-fast-math' from changing the value of `-fmath-errno' for ! languages that do not use `errno'. ! `EnabledBy(OPT)' ! `EnabledBy(OPT && OPT2)' ! If not explicitly set, the option is set to the value of `-OPT'. The second form specifies that the option is only set if both OPT and OPT2 are set. ! `LangEnabledBy(LANGUAGE, OPT)' ! `LangEnabledBy(LANGUAGE, OPT, POSARG, NEGARG)' When compiling for the given language, the option is set to the ! value of `-OPT', if not explicitly set. In the second form, if OPT ! is used in the positive form then POSARG is considered to be ! passed to the option, and if OPT is used in the negative form then ! NEGARG is considered to be passed to the option. It is possible ! to specify several different languages. Each LANGUAGE must have ! been declared by an earlier `Language' record. *Note Option file format::. ! `NoDWARFRecord' The option is omitted from the producer string written by ! `-grecord-gcc-switches'.  ! File: gccint.info, Node: Passes, Next: GENERIC, Prev: Options, Up: Top 9 Passes and Files of the Compiler ********************************** --- 6045,6336 ---- The second field of an option record can specify any of the following properties. When an option takes an argument, it is enclosed in ! parentheses following the option property name. The parser that handles ! option files is quite simplistic, and will be tricked by any nested ! parentheses within the argument text itself; in this case, the entire ! option argument can be wrapped in curly braces within the parentheses to ! demarcate it, e.g.: Condition({defined (USE_CYGWIN_LIBSTDCXX_WRAPPERS)}) ! 'Common' The option is available for all languages and targets. ! 'Target' The option is available for all languages but is target-specific. ! 'Driver' The option is handled by the compiler driver using code not shared ! with the compilers proper ('cc1' etc.). ! 'LANGUAGE' The option is available when compiling for the given language. It is possible to specify several different languages for the same option. Each LANGUAGE must have been declared by an earlier ! 'Language' record. *Note Option file format::. ! 'RejectDriver' ! The option is only handled by the compilers proper ('cc1' etc.) and ! should not be accepted by the driver. ! 'RejectNegative' The option does not have a "no-" form. All options beginning with "f", "W" or "m" are assumed to have a "no-" form unless this property is used. ! 'Negative(OTHERNAME)' The option will turn off another option OTHERNAME, which is the option name with the leading "-" removed. This chain action will ! propagate through the 'Negative' property of the option to be turned off. As a consequence, if you have a group of mutually-exclusive ! options, their 'Negative' properties should form a circular chain. ! For example, if options '-A', '-B' and '-C' are mutually exclusive, ! their respective 'Negative' properties should be 'Negative(B)', ! 'Negative(C)' and 'Negative(A)'. ! 'Joined' ! 'Separate' ! The option takes a mandatory argument. 'Joined' indicates that the ! option and argument can be included in the same 'argv' entry (as ! with '-mflush-func=NAME', for example). 'Separate' indicates that ! the option and argument can be separate 'argv' entries (as with ! '-o'). An option is allowed to have both of these properties. ! 'JoinedOrMissing' The option takes an optional argument. If the argument is given, ! it will be part of the same 'argv' entry as the option itself. ! This property cannot be used alongside 'Joined' or 'Separate'. ! 'MissingArgError(MESSAGE)' ! For an option marked 'Joined' or 'Separate', the message MESSAGE will be used as an error message if the mandatory argument is ! missing; for options without 'MissingArgError', a generic error ! message is used. MESSAGE should contain a single '%qs' format, which will be used to format the name of the option passed. ! 'Args(N)' ! For an option marked 'Separate', indicate that it takes N arguments. The default is 1. ! 'UInteger' The option's argument is a non-negative integer. The option parser will check and convert the argument before passing it to the ! relevant option handler. 'UInteger' should also be used on options ! like '-falign-loops' where both '-falign-loops' and ! '-falign-loops'=N are supported to make sure the saved options are given a full integer. ! 'ToLower' The option's argument should be converted to lowercase as part of putting it in canonical form, and before comparing with the strings ! indicated by any 'Enum' property. ! 'NoDriverArg' ! For an option marked 'Separate', the option only takes an argument in the compiler proper, not in the driver. This is for compatibility with existing options that are used both directly and ! via '-Wp,'; new options should not have this property. ! 'Var(VAR)' ! The state of this option should be stored in variable VAR (actually ! a macro for 'global_options.x_VAR'). The way that the state is ! stored depends on the type of option: ! * If the option uses the 'Mask' or 'InverseMask' properties, VAR ! is the integer variable that contains the mask. * If the option is a normal on/off switch, VAR is an integer variable that is nonzero when the option is enabled. The options parser will set the variable to 1 when the positive form of the option is used and 0 when the "no-" form is used. ! * If the option takes an argument and has the 'UInteger' property, VAR is an integer variable that stores the value of the argument. ! * If the option takes an argument and has the 'Enum' property, ! VAR is a variable (type given in the 'Type' property of the ! 'Enum' record whose 'Name' property has the same argument as ! the 'Enum' property of this option) that stores the value of the argument. ! * If the option has the 'Defer' property, VAR is a pointer to a ! 'VEC(cl_deferred_option,heap)' that stores the option for ! later processing. (VAR is declared with type 'void *' and ! needs to be cast to 'VEC(cl_deferred_option,heap)' before use.) * Otherwise, if the option takes an argument, VAR is a pointer to the argument string. The pointer will be null if the argument is optional and wasn't given. ! The option-processing script will usually zero-initialize VAR. You ! can modify this behavior using 'Init'. ! 'Var(VAR, SET)' The option controls an integer variable VAR and is active when VAR equals SET. The option parser will set VAR to SET when the ! positive form of the option is used and '!SET' when the "no-" form is used. VAR is declared in the same way as for the single-argument form described above. ! 'Init(VALUE)' ! The variable specified by the 'Var' property should be statically initialized to VALUE. If more than one option using the same ! variable specifies 'Init', all must specify the same initializer. ! 'Mask(NAME)' ! The option is associated with a bit in the 'target_flags' variable (*note Run-time Target::) and is active when that bit is set. You ! may also specify 'Var' to select a variable other than ! 'target_flags'. The options-processing script will automatically allocate a unique ! bit for the option. If the option is attached to 'target_flags', ! the script will set the macro 'MASK_NAME' to the appropriate ! bitmask. It will also declare a 'TARGET_NAME' macro that has the value 1 when the option is active and 0 otherwise. If you use ! 'Var' to attach the option to a different variable, the bitmask ! macro with be called 'OPTION_MASK_NAME'. ! 'InverseMask(OTHERNAME)' ! 'InverseMask(OTHERNAME, THISNAME)' The option is the inverse of another option that has the ! 'Mask(OTHERNAME)' property. If THISNAME is given, the ! options-processing script will declare a 'TARGET_THISNAME' macro that is 1 when the option is active and 0 otherwise. ! 'Enum(NAME)' The option's argument is a string from the set of strings ! associated with the corresponding 'Enum' record. The string is checked and converted to the integer specified in the corresponding ! 'EnumValue' record before being passed to option handlers. ! 'Defer' ! The option should be stored in a vector, specified with 'Var', for later processing. ! 'Alias(OPT)' ! 'Alias(OPT, ARG)' ! 'Alias(OPT, POSARG, NEGARG)' ! The option is an alias for '-OPT' (or the negative form of that ! option, depending on 'NegativeAlias'). In the first form, any ! argument passed to the alias is considered to be passed to '-OPT', ! and '-OPT' is considered to be negated if the alias is used in negated form. In the second form, the alias may not be negated or have an argument, and POSARG is considered to be passed as an ! argument to '-OPT'. In the third form, the alias may not have an argument, if the alias is used in the positive form then POSARG is ! considered to be passed to '-OPT', and if the alias is used in the ! negative form then NEGARG is considered to be passed to '-OPT'. ! Aliases should not specify 'Var' or 'Mask' or 'UInteger'. Aliases should normally specify the same languages as the target of the alias; the flags on the target will be used to determine any ! diagnostic for use of an option for the wrong language, while those ! on the alias will be used to identify what command-line text is the ! option and what text is any argument to that option. ! When an 'Alias' definition is used for an option, driver specs do ! not need to handle it and no 'OPT_' enumeration value is defined for it; only the canonical form of the option will be seen in those places. ! 'NegativeAlias' ! For an option marked with 'Alias(OPT)', the option is considered to ! be an alias for the positive form of '-OPT' if negated and for the ! negative form of '-OPT' if not negated. 'NegativeAlias' may not be ! used with the forms of 'Alias' taking more than one argument. ! 'Ignore' This option is ignored apart from printing any warning specified ! using 'Warn'. The option will not be seen by specs and no 'OPT_' enumeration value is defined for it. ! 'SeparateAlias' ! For an option marked with 'Joined', 'Separate' and 'Alias', the option only acts as an alias when passed a separate argument; with ! a joined argument it acts as a normal option, with an 'OPT_' ! enumeration value. This is for compatibility with the Java '-d' option and should not be used for new options. ! 'Warn(MESSAGE)' If this option is used, output the warning MESSAGE. MESSAGE is a ! format string, either taking a single operand with a '%qs' format which is the option name, or not taking any operands, which is ! passed to the 'warning' function. If an alias is marked 'Warn', ! the target of the alias must not also be marked 'Warn'. ! 'Report' ! The state of the option should be printed by '-fverbose-asm'. ! 'Warning' ! This is a warning option and should be shown as such in '--help' output. This flag does not currently affect anything other than ! '--help'. ! 'Optimization' This is an optimization option. It should be shown as such in ! '--help' output, and any associated variable named using 'Var' ! should be saved and restored when the optimization level is changed ! with 'optimize' attributes. ! 'Undocumented' The option is deliberately missing documentation and should not be ! included in the '--help' output. ! 'Condition(COND)' The option should only be accepted if preprocessor condition COND is true. Note that any C declarations associated with the option ! will be present even if COND is false; COND simply controls whether ! the option is accepted and whether it is printed in the '--help' ! output. ! 'Save' ! Build the 'cl_target_option' structure to hold a copy of the ! option, add the functions 'cl_target_option_save' and ! 'cl_target_option_restore' to save and restore the options. ! 'SetByCombined' The option may also be set by a combined option such as ! '-ffast-math'. This causes the 'gcc_options' struct to have a ! field 'frontend_set_NAME', where 'NAME' is the name of the field ! holding the value of this option (without the leading 'x_'). This gives the front end a way to indicate that the value has been set explicitly and should not be changed by the combined option. For ! example, some front ends use this to prevent '-ffast-math' and ! '-fno-fast-math' from changing the value of '-fmath-errno' for ! languages that do not use 'errno'. ! 'EnabledBy(OPT)' ! 'EnabledBy(OPT && OPT2)' ! If not explicitly set, the option is set to the value of '-OPT'. The second form specifies that the option is only set if both OPT and OPT2 are set. ! 'LangEnabledBy(LANGUAGE, OPT)' ! 'LangEnabledBy(LANGUAGE, OPT, POSARG, NEGARG)' When compiling for the given language, the option is set to the ! value of '-OPT', if not explicitly set. In the second form, if OPT ! is used in the positive form then POSARG is considered to be passed ! to the option, and if OPT is used in the negative form then NEGARG ! is considered to be passed to the option. It is possible to ! specify several different languages. Each LANGUAGE must have been ! declared by an earlier 'Language' record. *Note Option file format::. ! 'NoDWARFRecord' The option is omitted from the producer string written by ! '-grecord-gcc-switches'.  ! File: gccint.info, Node: Passes, Next: RTL, Prev: Options, Up: Top 9 Passes and Files of the Compiler ********************************** *************** File: gccint.info, Node: Parsing pass, *** 6484,6522 **** ================ The language front end is invoked only once, via ! `lang_hooks.parse_file', to parse the entire input. The language front ! end may use any intermediate language representation deemed ! appropriate. The C front end uses GENERIC trees (*note GENERIC::), plus ! a double handful of language specific tree codes defined in ! `c-common.def'. The Fortran front end uses a completely different ! private representation. At some point the front end must translate the representation used in the front end to a representation understood by the language-independent ! portions of the compiler. Current practice takes one of two forms. ! The C front end manually invokes the gimplifier (*note GIMPLE::) on ! each function, and uses the gimplifier callbacks to convert the language-specific tree nodes directly to GIMPLE before passing the function off to be compiled. The Fortran front end converts from a ! private representation to GENERIC, which is later lowered to GIMPLE ! when the function is compiled. Which route to choose probably depends ! on how well GENERIC (plus extensions) can be made to match up with the ! source language and necessary parsing data structures. BUG: Gimplification must occur before nested function lowering, and nested function lowering must be done by the front end before passing the data off to cgraph. ! TODO: Cgraph should control nested function lowering. It would only ! be invoked when it is certain that the outer-most function is used. TODO: Cgraph needs a gimplify_function callback. It should be invoked when (1) it is certain that the function is used, (2) warning flags specified by the user require some amount of compilation in order to ! honor, (3) the language indicates that semantic analysis is not ! complete until gimplification occurs. Hum... this sounds overly ! complicated. Perhaps we should just have the front end gimplify ! always; in most cases it's only one function call. The front end needs to pass all function definitions and top level declarations off to the middle-end so that they can be compiled and --- 6355,6392 ---- ================ The language front end is invoked only once, via ! 'lang_hooks.parse_file', to parse the entire input. The language front ! end may use any intermediate language representation deemed appropriate. ! The C front end uses GENERIC trees (*note GENERIC::), plus a double ! handful of language specific tree codes defined in 'c-common.def'. The ! Fortran front end uses a completely different private representation. At some point the front end must translate the representation used in the front end to a representation understood by the language-independent ! portions of the compiler. Current practice takes one of two forms. The ! C front end manually invokes the gimplifier (*note GIMPLE::) on each ! function, and uses the gimplifier callbacks to convert the language-specific tree nodes directly to GIMPLE before passing the function off to be compiled. The Fortran front end converts from a ! private representation to GENERIC, which is later lowered to GIMPLE when ! the function is compiled. Which route to choose probably depends on how ! well GENERIC (plus extensions) can be made to match up with the source ! language and necessary parsing data structures. BUG: Gimplification must occur before nested function lowering, and nested function lowering must be done by the front end before passing the data off to cgraph. ! TODO: Cgraph should control nested function lowering. It would only be ! invoked when it is certain that the outer-most function is used. TODO: Cgraph needs a gimplify_function callback. It should be invoked when (1) it is certain that the function is used, (2) warning flags specified by the user require some amount of compilation in order to ! honor, (3) the language indicates that semantic analysis is not complete ! until gimplification occurs. Hum... this sounds overly complicated. ! Perhaps we should just have the front end gimplify always; in most cases ! it's only one function call. The front end needs to pass all function definitions and top level declarations off to the middle-end so that they can be compiled and *************** all be passed as well. *** 6531,6547 **** In any case, the front end needs each complete top-level function or data declaration, and each data definition should be passed to ! `rest_of_decl_compilation'. Each complete type definition should be ! passed to `rest_of_type_compilation'. Each function definition should ! be passed to `cgraph_finalize_function'. TODO: I know rest_of_compilation currently has all sorts of RTL generation semantics. I plan to move all code generation bits (both ! Tree and RTL) to compile_function. Should we hide cgraph from the ! front ends and move back to rest_of_compilation as the official ! interface? Possibly we should rename all three interfaces such that ! the names match in some meaningful way and that is more descriptive ! than "rest_of". The middle-end will, at its option, emit the function and data definitions immediately or queue them for later processing. --- 6401,6416 ---- In any case, the front end needs each complete top-level function or data declaration, and each data definition should be passed to ! 'rest_of_decl_compilation'. Each complete type definition should be ! passed to 'rest_of_type_compilation'. Each function definition should ! be passed to 'cgraph_finalize_function'. TODO: I know rest_of_compilation currently has all sorts of RTL generation semantics. I plan to move all code generation bits (both ! Tree and RTL) to compile_function. Should we hide cgraph from the front ! ends and move back to rest_of_compilation as the official interface? ! Possibly we should rename all three interfaces such that the names match ! in some meaningful way and that is more descriptive than "rest_of". The middle-end will, at its option, emit the function and data definitions immediately or queue them for later processing. *************** intermediate language used by the front *** 6564,6586 **** Usually it is easier to generate GENERIC trees plus extensions and let the language-independent gimplifier do most of the work. ! The main entry point to this pass is `gimplify_function_tree' located ! in `gimplify.c'. From here we process the entire function gimplifying each statement in turn. The main workhorse for this pass is ! `gimplify_expr'. Approximately everything passes through here at least ! once, and it is from here that we invoke the `lang_hooks.gimplify_expr' callback. The callback should examine the expression in question and return ! `GS_UNHANDLED' if the expression is not a language specific construct that requires attention. Otherwise it should alter the expression in some way to such that forward progress is made toward producing valid GIMPLE. If the callback is certain that the transformation is complete ! and the expression is valid GIMPLE, it should return `GS_ALL_DONE'. ! Otherwise it should return `GS_OK', which will cause the expression to be processed again. If the callback encounters an error during the transformation (because the front end is relying on the gimplification ! process to finish semantic checks), it should return `GS_ERROR'.  File: gccint.info, Node: Pass manager, Next: Tree SSA passes, Prev: Gimplification pass, Up: Passes --- 6433,6455 ---- Usually it is easier to generate GENERIC trees plus extensions and let the language-independent gimplifier do most of the work. ! The main entry point to this pass is 'gimplify_function_tree' located ! in 'gimplify.c'. From here we process the entire function gimplifying each statement in turn. The main workhorse for this pass is ! 'gimplify_expr'. Approximately everything passes through here at least ! once, and it is from here that we invoke the 'lang_hooks.gimplify_expr' callback. The callback should examine the expression in question and return ! 'GS_UNHANDLED' if the expression is not a language specific construct that requires attention. Otherwise it should alter the expression in some way to such that forward progress is made toward producing valid GIMPLE. If the callback is certain that the transformation is complete ! and the expression is valid GIMPLE, it should return 'GS_ALL_DONE'. ! Otherwise it should return 'GS_OK', which will cause the expression to be processed again. If the callback encounters an error during the transformation (because the front end is relying on the gimplification ! process to finish semantic checks), it should return 'GS_ERROR'.  File: gccint.info, Node: Pass manager, Next: Tree SSA passes, Prev: Gimplification pass, Up: Passes *************** File: gccint.info, Node: Pass manager, *** 6588,6607 **** 9.3 Pass manager ================ ! The pass manager is located in `passes.c', `tree-optimize.c' and ! `tree-pass.h'. Its job is to run all of the individual passes in the correct order, and take care of standard bookkeeping that applies to every pass. The theory of operation is that each pass defines a structure that ! represents everything we need to know about that pass--when it should ! be run, how it should be run, what intermediate language form or ! on-the-side data structures it needs. We register the pass to be run ! in some particular order, and the pass manager arranges for everything ! to happen in the correct order. The actuality doesn't completely live up to the theory at present. ! Command-line switches and `timevar_id_t' enumerations must still be defined elsewhere. The pass manager validates constraints but does not attempt to (re-)generate data structures or lower intermediate language form based on the requirements of the next pass. Nevertheless, what is --- 6457,6476 ---- 9.3 Pass manager ================ ! The pass manager is located in 'passes.c', 'tree-optimize.c' and ! 'tree-pass.h'. Its job is to run all of the individual passes in the correct order, and take care of standard bookkeeping that applies to every pass. The theory of operation is that each pass defines a structure that ! represents everything we need to know about that pass--when it should be ! run, how it should be run, what intermediate language form or ! on-the-side data structures it needs. We register the pass to be run in ! some particular order, and the pass manager arranges for everything to ! happen in the correct order. The actuality doesn't completely live up to the theory at present. ! Command-line switches and 'timevar_id_t' enumerations must still be defined elsewhere. The pass manager validates constraints but does not attempt to (re-)generate data structures or lower intermediate language form based on the requirements of the next pass. Nevertheless, what is *************** present is useful, and a far sight bette *** 6611,6619 **** file (for GCC debugging purposes). Passes with a name starting with a star do not dump anything. Sometimes passes are supposed to share a dump file / option name. To still give these unique names, you can use ! a prefix that is delimited by a space from the part that is used for ! the dump file / option name. E.g. When the pass name is "ud dce", the ! name used for dump file/options is "dce". TODO: describe the global variables set up by the pass manager, and a brief description of how a new pass should use it. I need to look at --- 6480,6488 ---- file (for GCC debugging purposes). Passes with a name starting with a star do not dump anything. Sometimes passes are supposed to share a dump file / option name. To still give these unique names, you can use ! a prefix that is delimited by a space from the part that is used for the ! dump file / option name. E.g. When the pass name is "ud dce", the name ! used for dump file/options is "dce". TODO: describe the global variables set up by the pass manager, and a brief description of how a new pass should use it. I need to look at *************** run after gimplification and what source *** 6632,6800 **** This pass is an extremely simple sweep across the gimple code in which we identify obviously dead code and remove it. Here we do ! things like simplify `if' statements with constant conditions, remove exception handling constructs surrounding code that obviously cannot throw, remove lexical bindings that contain no variables, and other assorted simplistic cleanups. The idea is to get rid of the obvious stuff quickly rather than wait until later when it's more work to get rid of it. This pass is located in ! `tree-cfg.c' and described by `pass_remove_useless_stmts'. * Mudflap declaration registration If mudflap (*note -fmudflap -fmudflapth -fmudflapir: (gcc)Optimize Options.) is enabled, we generate code to register some variable declarations with the mudflap runtime. Specifically, the runtime ! tracks the lifetimes of those variable declarations that have ! their addresses taken, or whose bounds are unknown at compile time ! (`extern'). This pass generates new exception handling constructs ! (`try'/`finally'), and so must run before those are lowered. In addition, the pass enqueues declarations of static variables whose lifetimes extend to the entire program. The pass is located in ! `tree-mudflap.c' and is described by `pass_mudflap_1'. * OpenMP lowering ! If OpenMP generation (`-fopenmp') is enabled, this pass lowers OpenMP constructs into GIMPLE. Lowering of OpenMP constructs involves creating replacement expressions for local variables that have been mapped using data sharing clauses, exposing the control flow of most synchronization directives and adding region markers to facilitate the creation of ! the control flow graph. The pass is located in `omp-low.c' and is ! described by `pass_lower_omp'. * OpenMP expansion ! If OpenMP generation (`-fopenmp') is enabled, this pass expands parallel regions into their own functions to be invoked by the ! thread library. The pass is located in `omp-low.c' and is ! described by `pass_expand_omp'. * Lower control flow ! This pass flattens `if' statements (`COND_EXPR') and moves lexical ! bindings (`BIND_EXPR') out of line. After this pass, all `if' ! statements will have exactly two `goto' statements in its `then' ! and `else' arms. Lexical binding information for each statement ! will be found in `TREE_BLOCK' rather than being inferred from its ! position under a `BIND_EXPR'. This pass is found in ! `gimple-low.c' and is described by `pass_lower_cf'. * Lower exception handling control flow This pass decomposes high-level exception handling constructs ! (`TRY_FINALLY_EXPR' and `TRY_CATCH_EXPR') into a form that explicitly represents the control flow involved. After this pass, ! `lookup_stmt_eh_region' will return a non-negative number for any statement that may have EH control flow semantics; examine ! `tree_can_throw_internal' or `tree_can_throw_external' for exact semantics. Exact control flow may be extracted from ! `foreach_reachable_handler'. The EH region nesting tree is defined ! in `except.h' and built in `except.c'. The lowering pass itself ! is in `tree-eh.c' and is described by `pass_lower_eh'. * Build the control flow graph This pass decomposes a function into basic blocks and creates all ! of the edges that connect them. It is located in `tree-cfg.c' and ! is described by `pass_build_cfg'. * Find all referenced variables This pass walks the entire function and collects an array of all ! variables referenced in the function, `referenced_vars'. The ! index at which a variable is found in the array is used as a UID ! for the variable within this function. This data is needed by the ! SSA rewriting routines. The pass is located in `tree-dfa.c' and ! is described by `pass_referenced_vars'. * Enter static single assignment form This pass rewrites the function such that it is in SSA form. After ! this pass, all `is_gimple_reg' variables will be referenced by ! `SSA_NAME', and all occurrences of other variables will be ! annotated with `VDEFS' and `VUSES'; PHI nodes will have been inserted as necessary for each basic block. This pass is located ! in `tree-ssa.c' and is described by `pass_build_ssa'. * Warn for uninitialized variables ! This pass scans the function for uses of `SSA_NAME's that are fed by default definition. For non-parameter variables, such uses are uninitialized. The pass is run twice, before and after optimization (if turned on). In the first pass we only warn for uses that are positively uninitialized; in the second pass we warn for uses that are possibly uninitialized. The pass is located in ! `tree-ssa.c' and is defined by `pass_early_warn_uninitialized' and ! `pass_late_warn_uninitialized'. * Dead code elimination This pass scans the function for statements without side effects whose result is unused. It does not do memory life analysis, so ! any value that is stored in memory is considered used. The pass ! is run multiple times throughout the optimization process. It is ! located in `tree-ssa-dce.c' and is described by `pass_dce'. * Dominator optimizations This pass performs trivial dominator-based copy and constant propagation, expression simplification, and jump threading. It is run multiple times throughout the optimization process. It is ! located in `tree-ssa-dom.c' and is described by `pass_dominator'. * Forward propagation of single-use variables This pass attempts to remove redundant computation by substituting variables that are used once into the expression that uses them and seeing if the result can be simplified. It is located in ! `tree-ssa-forwprop.c' and is described by `pass_forwprop'. * Copy Renaming This pass attempts to change the name of compiler temporaries involved in copy operations such that SSA->normal can coalesce the ! copy away. When compiler temporaries are copies of user ! variables, it also renames the compiler temporary to the user ! variable resulting in better use of user symbols. It is located ! in `tree-ssa-copyrename.c' and is described by `pass_copyrename'. * PHI node optimizations This pass recognizes forms of PHI inputs that can be represented as conditional expressions and rewrites them into straight line code. ! It is located in `tree-ssa-phiopt.c' and is described by ! `pass_phiopt'. * May-alias optimization This pass performs a flow sensitive SSA-based points-to analysis. The resulting may-alias, must-alias, and escape analysis ! information is used to promote variables from in-memory ! addressable objects to non-aliased variables that can be renamed ! into SSA form. We also update the `VDEF'/`VUSE' memory tags for ! non-renameable aggregates so that we get fewer false kills. The ! pass is located in `tree-ssa-alias.c' and is described by ! `pass_may_alias'. Interprocedural points-to information is located in ! `tree-ssa-structalias.c' and described by `pass_ipa_pta'. * Profiling This pass rewrites the function in order to collect runtime block and value profiling data. Such data may be fed back into the compiler on a subsequent run so as to allow optimization based on ! expected execution frequencies. The pass is located in ! `predict.c' and is described by `pass_profile'. * Lower complex arithmetic This pass rewrites complex arithmetic operations into their component scalar arithmetic operations. The pass is located in ! `tree-complex.c' and is described by `pass_lower_complex'. * Scalar replacement of aggregates --- 6501,6668 ---- This pass is an extremely simple sweep across the gimple code in which we identify obviously dead code and remove it. Here we do ! things like simplify 'if' statements with constant conditions, remove exception handling constructs surrounding code that obviously cannot throw, remove lexical bindings that contain no variables, and other assorted simplistic cleanups. The idea is to get rid of the obvious stuff quickly rather than wait until later when it's more work to get rid of it. This pass is located in ! 'tree-cfg.c' and described by 'pass_remove_useless_stmts'. * Mudflap declaration registration If mudflap (*note -fmudflap -fmudflapth -fmudflapir: (gcc)Optimize Options.) is enabled, we generate code to register some variable declarations with the mudflap runtime. Specifically, the runtime ! tracks the lifetimes of those variable declarations that have their ! addresses taken, or whose bounds are unknown at compile time ! ('extern'). This pass generates new exception handling constructs ! ('try'/'finally'), and so must run before those are lowered. In addition, the pass enqueues declarations of static variables whose lifetimes extend to the entire program. The pass is located in ! 'tree-mudflap.c' and is described by 'pass_mudflap_1'. * OpenMP lowering ! If OpenMP generation ('-fopenmp') is enabled, this pass lowers OpenMP constructs into GIMPLE. Lowering of OpenMP constructs involves creating replacement expressions for local variables that have been mapped using data sharing clauses, exposing the control flow of most synchronization directives and adding region markers to facilitate the creation of ! the control flow graph. The pass is located in 'omp-low.c' and is ! described by 'pass_lower_omp'. * OpenMP expansion ! If OpenMP generation ('-fopenmp') is enabled, this pass expands parallel regions into their own functions to be invoked by the ! thread library. The pass is located in 'omp-low.c' and is ! described by 'pass_expand_omp'. * Lower control flow ! This pass flattens 'if' statements ('COND_EXPR') and moves lexical ! bindings ('BIND_EXPR') out of line. After this pass, all 'if' ! statements will have exactly two 'goto' statements in its 'then' ! and 'else' arms. Lexical binding information for each statement ! will be found in 'TREE_BLOCK' rather than being inferred from its ! position under a 'BIND_EXPR'. This pass is found in 'gimple-low.c' ! and is described by 'pass_lower_cf'. * Lower exception handling control flow This pass decomposes high-level exception handling constructs ! ('TRY_FINALLY_EXPR' and 'TRY_CATCH_EXPR') into a form that explicitly represents the control flow involved. After this pass, ! 'lookup_stmt_eh_region' will return a non-negative number for any statement that may have EH control flow semantics; examine ! 'tree_can_throw_internal' or 'tree_can_throw_external' for exact semantics. Exact control flow may be extracted from ! 'foreach_reachable_handler'. The EH region nesting tree is defined ! in 'except.h' and built in 'except.c'. The lowering pass itself is ! in 'tree-eh.c' and is described by 'pass_lower_eh'. * Build the control flow graph This pass decomposes a function into basic blocks and creates all ! of the edges that connect them. It is located in 'tree-cfg.c' and ! is described by 'pass_build_cfg'. * Find all referenced variables This pass walks the entire function and collects an array of all ! variables referenced in the function, 'referenced_vars'. The index ! at which a variable is found in the array is used as a UID for the ! variable within this function. This data is needed by the SSA ! rewriting routines. The pass is located in 'tree-dfa.c' and is ! described by 'pass_referenced_vars'. * Enter static single assignment form This pass rewrites the function such that it is in SSA form. After ! this pass, all 'is_gimple_reg' variables will be referenced by ! 'SSA_NAME', and all occurrences of other variables will be ! annotated with 'VDEFS' and 'VUSES'; PHI nodes will have been inserted as necessary for each basic block. This pass is located ! in 'tree-ssa.c' and is described by 'pass_build_ssa'. * Warn for uninitialized variables ! This pass scans the function for uses of 'SSA_NAME's that are fed by default definition. For non-parameter variables, such uses are uninitialized. The pass is run twice, before and after optimization (if turned on). In the first pass we only warn for uses that are positively uninitialized; in the second pass we warn for uses that are possibly uninitialized. The pass is located in ! 'tree-ssa.c' and is defined by 'pass_early_warn_uninitialized' and ! 'pass_late_warn_uninitialized'. * Dead code elimination This pass scans the function for statements without side effects whose result is unused. It does not do memory life analysis, so ! any value that is stored in memory is considered used. The pass is ! run multiple times throughout the optimization process. It is ! located in 'tree-ssa-dce.c' and is described by 'pass_dce'. * Dominator optimizations This pass performs trivial dominator-based copy and constant propagation, expression simplification, and jump threading. It is run multiple times throughout the optimization process. It is ! located in 'tree-ssa-dom.c' and is described by 'pass_dominator'. * Forward propagation of single-use variables This pass attempts to remove redundant computation by substituting variables that are used once into the expression that uses them and seeing if the result can be simplified. It is located in ! 'tree-ssa-forwprop.c' and is described by 'pass_forwprop'. * Copy Renaming This pass attempts to change the name of compiler temporaries involved in copy operations such that SSA->normal can coalesce the ! copy away. When compiler temporaries are copies of user variables, ! it also renames the compiler temporary to the user variable ! resulting in better use of user symbols. It is located in ! 'tree-ssa-copyrename.c' and is described by 'pass_copyrename'. * PHI node optimizations This pass recognizes forms of PHI inputs that can be represented as conditional expressions and rewrites them into straight line code. ! It is located in 'tree-ssa-phiopt.c' and is described by ! 'pass_phiopt'. * May-alias optimization This pass performs a flow sensitive SSA-based points-to analysis. The resulting may-alias, must-alias, and escape analysis ! information is used to promote variables from in-memory addressable ! objects to non-aliased variables that can be renamed into SSA form. ! We also update the 'VDEF'/'VUSE' memory tags for non-renameable ! aggregates so that we get fewer false kills. The pass is located ! in 'tree-ssa-alias.c' and is described by 'pass_may_alias'. Interprocedural points-to information is located in ! 'tree-ssa-structalias.c' and described by 'pass_ipa_pta'. * Profiling This pass rewrites the function in order to collect runtime block and value profiling data. Such data may be fed back into the compiler on a subsequent run so as to allow optimization based on ! expected execution frequencies. The pass is located in 'predict.c' ! and is described by 'pass_profile'. * Lower complex arithmetic This pass rewrites complex arithmetic operations into their component scalar arithmetic operations. The pass is located in ! 'tree-complex.c' and is described by 'pass_lower_complex'. * Scalar replacement of aggregates *************** run after gimplification and what source *** 6802,6915 **** into a set of scalar variables. The resulting scalar variables are rewritten into SSA form, which allows subsequent optimization passes to do a significantly better job with them. The pass is ! located in `tree-sra.c' and is described by `pass_sra'. * Dead store elimination This pass eliminates stores to memory that are subsequently overwritten by another store, without any intervening loads. The ! pass is located in `tree-ssa-dse.c' and is described by `pass_dse'. * Tail recursion elimination This pass transforms tail recursion into a loop. It is located in ! `tree-tailcall.c' and is described by `pass_tail_recursion'. * Forward store motion ! This pass sinks stores and assignments down the flowgraph closer ! to their use point. The pass is located in `tree-ssa-sink.c' and ! is described by `pass_sink_code'. * Partial redundancy elimination This pass eliminates partially redundant computations, as well as ! performing load motion. The pass is located in `tree-ssa-pre.c' ! and is described by `pass_pre'. Just before partial redundancy elimination, if ! `-funsafe-math-optimizations' is on, GCC tries to convert ! divisions to multiplications by the reciprocal. The pass is ! located in `tree-ssa-math-opts.c' and is described by ! `pass_cse_reciprocal'. * Full redundancy elimination This is a simpler form of PRE that only eliminates redundancies ! that occur on all paths. It is located in `tree-ssa-pre.c' and ! described by `pass_fre'. * Loop optimization ! The main driver of the pass is placed in `tree-ssa-loop.c' and ! described by `pass_loop'. The optimizations performed by this pass are: Loop invariant motion. This pass moves only invariants that would be hard to handle on RTL level (function calls, operations that ! expand to nontrivial sequences of insns). With `-funswitch-loops' it also moves operands of conditions that are invariant out of the loop, so that we can use just trivial invariantness analysis in loop unswitching. The pass also includes store motion. The pass ! is implemented in `tree-ssa-loop-im.c'. Canonical induction variable creation. This pass creates a simple counter for number of iterations of the loop and replaces the exit ! condition of the loop using it, in case when a complicated ! analysis is necessary to determine the number of iterations. ! Later optimizations then may determine the number easily. The ! pass is implemented in `tree-ssa-loop-ivcanon.c'. Induction variable optimizations. This pass performs standard induction variable optimizations, including strength reduction, ! induction variable merging and induction variable elimination. ! The pass is implemented in `tree-ssa-loop-ivopts.c'. Loop unswitching. This pass moves the conditional jumps that are invariant out of the loops. To achieve this, a duplicate of the loop is created for each possible outcome of conditional jump(s). ! The pass is implemented in `tree-ssa-loop-unswitch.c'. This pass should eventually replace the RTL level loop unswitching in ! `loop-unswitch.c', but currently the RTL level pass is not completely redundant yet due to deficiencies in tree level alias analysis. The optimizations also use various utility functions contained in ! `tree-ssa-loop-manip.c', `cfgloop.c', `cfgloopanal.c' and ! `cfgloopmanip.c'. Vectorization. This pass transforms loops to operate on vector types instead of scalar types. Data parallelism across loop iterations is exploited to group data elements from consecutive iterations into a vector and operate on them in parallel. Depending on available target support the loop is conceptually ! unrolled by a factor `VF' (vectorization factor), which is the ! number of elements operated upon in parallel in each iteration, ! and the `VF' copies of each scalar operation are fused to form a ! vector operation. Additional loop transformations such as peeling ! and versioning may take place to align the number of iterations, ! and to align the memory accesses in the loop. The pass is ! implemented in `tree-vectorizer.c' (the main driver), ! `tree-vect-loop.c' and `tree-vect-loop-manip.c' (loop specific ! parts and general loop utilities), `tree-vect-slp' (loop-aware SLP ! functionality), `tree-vect-stmts.c' and `tree-vect-data-refs.c'. ! Analysis of data references is in `tree-data-ref.c'. SLP Vectorization. This pass performs vectorization of ! straight-line code. The pass is implemented in `tree-vectorizer.c' ! (the main driver), `tree-vect-slp.c', `tree-vect-stmts.c' and ! `tree-vect-data-refs.c'. Autoparallelization. This pass splits the loop iteration space to run into several threads. The pass is implemented in ! `tree-parloops.c'. Graphite is a loop transformation framework based on the polyhedral model. Graphite stands for Gimple Represented as Polyhedra. The internals of this infrastructure are documented in ! `http://gcc.gnu.org/wiki/Graphite'. The passes working on this ! representation are implemented in the various `graphite-*' files. * Tree level if-conversion for vectorizer --- 6670,6782 ---- into a set of scalar variables. The resulting scalar variables are rewritten into SSA form, which allows subsequent optimization passes to do a significantly better job with them. The pass is ! located in 'tree-sra.c' and is described by 'pass_sra'. * Dead store elimination This pass eliminates stores to memory that are subsequently overwritten by another store, without any intervening loads. The ! pass is located in 'tree-ssa-dse.c' and is described by 'pass_dse'. * Tail recursion elimination This pass transforms tail recursion into a loop. It is located in ! 'tree-tailcall.c' and is described by 'pass_tail_recursion'. * Forward store motion ! This pass sinks stores and assignments down the flowgraph closer to ! their use point. The pass is located in 'tree-ssa-sink.c' and is ! described by 'pass_sink_code'. * Partial redundancy elimination This pass eliminates partially redundant computations, as well as ! performing load motion. The pass is located in 'tree-ssa-pre.c' ! and is described by 'pass_pre'. Just before partial redundancy elimination, if ! '-funsafe-math-optimizations' is on, GCC tries to convert divisions ! to multiplications by the reciprocal. The pass is located in ! 'tree-ssa-math-opts.c' and is described by 'pass_cse_reciprocal'. * Full redundancy elimination This is a simpler form of PRE that only eliminates redundancies ! that occur on all paths. It is located in 'tree-ssa-pre.c' and ! described by 'pass_fre'. * Loop optimization ! The main driver of the pass is placed in 'tree-ssa-loop.c' and ! described by 'pass_loop'. The optimizations performed by this pass are: Loop invariant motion. This pass moves only invariants that would be hard to handle on RTL level (function calls, operations that ! expand to nontrivial sequences of insns). With '-funswitch-loops' it also moves operands of conditions that are invariant out of the loop, so that we can use just trivial invariantness analysis in loop unswitching. The pass also includes store motion. The pass ! is implemented in 'tree-ssa-loop-im.c'. Canonical induction variable creation. This pass creates a simple counter for number of iterations of the loop and replaces the exit ! condition of the loop using it, in case when a complicated analysis ! is necessary to determine the number of iterations. Later ! optimizations then may determine the number easily. The pass is ! implemented in 'tree-ssa-loop-ivcanon.c'. Induction variable optimizations. This pass performs standard induction variable optimizations, including strength reduction, ! induction variable merging and induction variable elimination. The ! pass is implemented in 'tree-ssa-loop-ivopts.c'. Loop unswitching. This pass moves the conditional jumps that are invariant out of the loops. To achieve this, a duplicate of the loop is created for each possible outcome of conditional jump(s). ! The pass is implemented in 'tree-ssa-loop-unswitch.c'. This pass should eventually replace the RTL level loop unswitching in ! 'loop-unswitch.c', but currently the RTL level pass is not completely redundant yet due to deficiencies in tree level alias analysis. The optimizations also use various utility functions contained in ! 'tree-ssa-loop-manip.c', 'cfgloop.c', 'cfgloopanal.c' and ! 'cfgloopmanip.c'. Vectorization. This pass transforms loops to operate on vector types instead of scalar types. Data parallelism across loop iterations is exploited to group data elements from consecutive iterations into a vector and operate on them in parallel. Depending on available target support the loop is conceptually ! unrolled by a factor 'VF' (vectorization factor), which is the ! number of elements operated upon in parallel in each iteration, and ! the 'VF' copies of each scalar operation are fused to form a vector ! operation. Additional loop transformations such as peeling and ! versioning may take place to align the number of iterations, and to ! align the memory accesses in the loop. The pass is implemented in ! 'tree-vectorizer.c' (the main driver), 'tree-vect-loop.c' and ! 'tree-vect-loop-manip.c' (loop specific parts and general loop ! utilities), 'tree-vect-slp' (loop-aware SLP functionality), ! 'tree-vect-stmts.c' and 'tree-vect-data-refs.c'. Analysis of data ! references is in 'tree-data-ref.c'. SLP Vectorization. This pass performs vectorization of ! straight-line code. The pass is implemented in 'tree-vectorizer.c' ! (the main driver), 'tree-vect-slp.c', 'tree-vect-stmts.c' and ! 'tree-vect-data-refs.c'. Autoparallelization. This pass splits the loop iteration space to run into several threads. The pass is implemented in ! 'tree-parloops.c'. Graphite is a loop transformation framework based on the polyhedral model. Graphite stands for Gimple Represented as Polyhedra. The internals of this infrastructure are documented in ! . The passes working on this ! representation are implemented in the various 'graphite-*' files. * Tree level if-conversion for vectorizer *************** run after gimplification and what source *** 6918,6946 **** basic blocks in one big block. The idea is to present loop in such form so that vectorizer can have one to one mapping between statements and available vector operations. This pass is located ! in `tree-if-conv.c' and is described by `pass_if_conversion'. * Conditional constant propagation This pass relaxes a lattice of values in order to identify those that must be constant even in the presence of conditional branches. ! The pass is located in `tree-ssa-ccp.c' and is described by ! `pass_ccp'. A related pass that works on memory loads and stores, and not just ! register values, is located in `tree-ssa-ccp.c' and described by ! `pass_store_ccp'. * Conditional copy propagation This is similar to constant propagation but the lattice of values is the "copy-of" relation. It eliminates redundant copies from the ! code. The pass is located in `tree-ssa-copy.c' and described by ! `pass_copy_prop'. A related pass that works on memory copies, and not just register ! copies, is located in `tree-ssa-copy.c' and described by ! `pass_store_copy_prop'. * Value range propagation --- 6785,6813 ---- basic blocks in one big block. The idea is to present loop in such form so that vectorizer can have one to one mapping between statements and available vector operations. This pass is located ! in 'tree-if-conv.c' and is described by 'pass_if_conversion'. * Conditional constant propagation This pass relaxes a lattice of values in order to identify those that must be constant even in the presence of conditional branches. ! The pass is located in 'tree-ssa-ccp.c' and is described by ! 'pass_ccp'. A related pass that works on memory loads and stores, and not just ! register values, is located in 'tree-ssa-ccp.c' and described by ! 'pass_store_ccp'. * Conditional copy propagation This is similar to constant propagation but the lattice of values is the "copy-of" relation. It eliminates redundant copies from the ! code. The pass is located in 'tree-ssa-copy.c' and described by ! 'pass_copy_prop'. A related pass that works on memory copies, and not just register ! copies, is located in 'tree-ssa-copy.c' and described by ! 'pass_store_copy_prop'. * Value range propagation *************** run after gimplification and what source *** 6951,6978 **** Range Propagation, J. R. C. Patterson, PLDI '95). In contrast to Patterson's algorithm, this implementation does not propagate branch probabilities nor it uses more than a single range per SSA ! name. This means that the current implementation cannot be used for branch prediction (though adapting it would not be difficult). ! The pass is located in `tree-vrp.c' and is described by `pass_vrp'. * Folding built-in functions This pass simplifies built-in functions, as applicable, with ! constant arguments or with inferable string lengths. It is ! located in `tree-ssa-ccp.c' and is described by ! `pass_fold_builtins'. * Split critical edges This pass identifies critical edges and inserts empty basic blocks such that the edge is no longer critical. The pass is located in ! `tree-cfg.c' and is described by `pass_split_crit_edges'. * Control dependence dead code elimination This pass is a stronger form of dead code elimination that can ! eliminate unnecessary control flow statements. It is located in ! `tree-ssa-dce.c' and is described by `pass_cd_dce'. * Tail call elimination --- 6818,6844 ---- Range Propagation, J. R. C. Patterson, PLDI '95). In contrast to Patterson's algorithm, this implementation does not propagate branch probabilities nor it uses more than a single range per SSA ! name. This means that the current implementation cannot be used for branch prediction (though adapting it would not be difficult). ! The pass is located in 'tree-vrp.c' and is described by 'pass_vrp'. * Folding built-in functions This pass simplifies built-in functions, as applicable, with ! constant arguments or with inferable string lengths. It is located ! in 'tree-ssa-ccp.c' and is described by 'pass_fold_builtins'. * Split critical edges This pass identifies critical edges and inserts empty basic blocks such that the edge is no longer critical. The pass is located in ! 'tree-cfg.c' and is described by 'pass_split_crit_edges'. * Control dependence dead code elimination This pass is a stronger form of dead code elimination that can ! eliminate unnecessary control flow statements. It is located in ! 'tree-ssa-dce.c' and is described by 'pass_cd_dce'. * Tail call elimination *************** run after gimplification and what source *** 6980,6989 **** jumps. No code transformation is actually applied here, but the data and control flow problem is solved. The code transformation requires target support, and so is delayed until RTL. In the ! meantime `CALL_EXPR_TAILCALL' is set indicating the possibility. ! The pass is located in `tree-tailcall.c' and is described by ! `pass_tail_calls'. The RTL transformation is handled by ! `fixup_tail_calls' in `calls.c'. * Warn for function return without value --- 6846,6855 ---- jumps. No code transformation is actually applied here, but the data and control flow problem is solved. The code transformation requires target support, and so is delayed until RTL. In the ! meantime 'CALL_EXPR_TAILCALL' is set indicating the possibility. ! The pass is located in 'tree-tailcall.c' and is described by ! 'pass_tail_calls'. The RTL transformation is handled by ! 'fixup_tail_calls' in 'calls.c'. * Warn for function return without value *************** run after gimplification and what source *** 6991,7056 **** not specify a value and issues a warning. Such a statement may have been injected by falling off the end of the function. This pass is run last so that we have as much time as possible to prove ! that the statement is not reachable. It is located in ! `tree-cfg.c' and is described by `pass_warn_function_return'. * Mudflap statement annotation If mudflap is enabled, we rewrite some memory accesses with code to validate that the memory access is correct. In particular, ! expressions involving pointer dereferences (`INDIRECT_REF', ! `ARRAY_REF', etc.) are replaced by code that checks the selected address range against the mudflap runtime's database of valid ! regions. This check includes an inline lookup into a ! direct-mapped cache, based on shift/mask operations of the pointer ! value, with a fallback function call into the runtime. The pass ! is located in `tree-mudflap.c' and is described by ! `pass_mudflap_2'. * Leave static single assignment form This pass rewrites the function such that it is in normal form. At the same time, we eliminate as many single-use temporaries as possible, so the intermediate language is no longer GIMPLE, but ! GENERIC. The pass is located in `tree-outof-ssa.c' and is ! described by `pass_del_ssa'. * Merge PHI nodes that feed into one another This is part of the CFG cleanup passes. It attempts to join PHI ! nodes from a forwarder CFG block into another block with PHI ! nodes. The pass is located in `tree-cfgcleanup.c' and is ! described by `pass_merge_phi'. * Return value optimization If a function always returns the same local variable, and that local variable is an aggregate type, then the variable is replaced with the return value for the function (i.e., the function's ! DECL_RESULT). This is equivalent to the C++ named return value optimization applied to GIMPLE. The pass is located in ! `tree-nrv.c' and is described by `pass_nrv'. * Return slot optimization ! If a function returns a memory object and is called as `var = foo()', this pass tries to change the call so that the address of ! `var' is sent to the caller to avoid an extra memory copy. This ! pass is located in `tree-nrv.c' and is described by ! `pass_return_slot'. ! * Optimize calls to `__builtin_object_size' This is a propagation pass similar to CCP that tries to remove ! calls to `__builtin_object_size' when the size of the object can be computed at compile-time. This pass is located in ! `tree-object-size.c' and is described by `pass_object_sizes'. * Loop invariant motion This pass removes expensive loop-invariant computations out of ! loops. The pass is located in `tree-ssa-loop.c' and described by ! `pass_lim'. * Loop nest optimizations --- 6857,6921 ---- not specify a value and issues a warning. Such a statement may have been injected by falling off the end of the function. This pass is run last so that we have as much time as possible to prove ! that the statement is not reachable. It is located in 'tree-cfg.c' ! and is described by 'pass_warn_function_return'. * Mudflap statement annotation If mudflap is enabled, we rewrite some memory accesses with code to validate that the memory access is correct. In particular, ! expressions involving pointer dereferences ('INDIRECT_REF', ! 'ARRAY_REF', etc.) are replaced by code that checks the selected address range against the mudflap runtime's database of valid ! regions. This check includes an inline lookup into a direct-mapped ! cache, based on shift/mask operations of the pointer value, with a ! fallback function call into the runtime. The pass is located in ! 'tree-mudflap.c' and is described by 'pass_mudflap_2'. * Leave static single assignment form This pass rewrites the function such that it is in normal form. At the same time, we eliminate as many single-use temporaries as possible, so the intermediate language is no longer GIMPLE, but ! GENERIC. The pass is located in 'tree-outof-ssa.c' and is ! described by 'pass_del_ssa'. * Merge PHI nodes that feed into one another This is part of the CFG cleanup passes. It attempts to join PHI ! nodes from a forwarder CFG block into another block with PHI nodes. ! The pass is located in 'tree-cfgcleanup.c' and is described by ! 'pass_merge_phi'. * Return value optimization If a function always returns the same local variable, and that local variable is an aggregate type, then the variable is replaced with the return value for the function (i.e., the function's ! DECL_RESULT). This is equivalent to the C++ named return value optimization applied to GIMPLE. The pass is located in ! 'tree-nrv.c' and is described by 'pass_nrv'. * Return slot optimization ! If a function returns a memory object and is called as 'var = foo()', this pass tries to change the call so that the address of ! 'var' is sent to the caller to avoid an extra memory copy. This ! pass is located in 'tree-nrv.c' and is described by ! 'pass_return_slot'. ! * Optimize calls to '__builtin_object_size' This is a propagation pass similar to CCP that tries to remove ! calls to '__builtin_object_size' when the size of the object can be computed at compile-time. This pass is located in ! 'tree-object-size.c' and is described by 'pass_object_sizes'. * Loop invariant motion This pass removes expensive loop-invariant computations out of ! loops. The pass is located in 'tree-ssa-loop.c' and described by ! 'pass_lim'. * Loop nest optimizations *************** run after gimplification and what source *** 7059,7114 **** they are all geared to the optimization of data locality in array traversals and the removal of dependencies that hamper optimizations such as loop parallelization and vectorization. The ! pass is located in `tree-loop-linear.c' and described by ! `pass_linear_transform'. * Removal of empty loops This pass removes loops with no code in them. The pass is located ! in `tree-ssa-loop-ivcanon.c' and described by `pass_empty_loop'. * Unrolling of small loops This pass completely unrolls loops with few iterations. The pass ! is located in `tree-ssa-loop-ivcanon.c' and described by ! `pass_complete_unroll'. * Predictive commoning This pass makes the code reuse the computations from the previous ! iterations of the loops, especially loads and stores to memory. ! It does so by storing the values of these computations to a bank ! of temporary variables that are rotated at the end of loop. To ! avoid the need for this rotation, the loop is then unrolled and ! the copies of the loop body are rewritten to use the appropriate version of the temporary variable. This pass is located in ! `tree-predcom.c' and described by `pass_predcom'. * Array prefetching This pass issues prefetch instructions for array references inside ! loops. The pass is located in `tree-ssa-loop-prefetch.c' and ! described by `pass_loop_prefetch'. * Reassociation This pass rewrites arithmetic expressions to enable optimizations that operate on them, like redundancy elimination and ! vectorization. The pass is located in `tree-ssa-reassoc.c' and ! described by `pass_reassoc'. ! * Optimization of `stdarg' functions This pass tries to avoid the saving of register arguments into the ! stack on entry to `stdarg' functions. If the function doesn't use ! any `va_start' macros, no registers need to be saved. If ! `va_start' macros are used, the `va_list' variables don't escape the function, it is only necessary to save registers that will be ! used in `va_arg' macros. For instance, if `va_arg' is only used ! with integral types in the function, floating point registers ! don't need to be saved. This pass is located in `tree-stdarg.c' ! and described by `pass_stdarg'. !  File: gccint.info, Node: RTL passes, Prev: Tree SSA passes, Up: Passes --- 6924,6978 ---- they are all geared to the optimization of data locality in array traversals and the removal of dependencies that hamper optimizations such as loop parallelization and vectorization. The ! pass is located in 'tree-loop-linear.c' and described by ! 'pass_linear_transform'. * Removal of empty loops This pass removes loops with no code in them. The pass is located ! in 'tree-ssa-loop-ivcanon.c' and described by 'pass_empty_loop'. * Unrolling of small loops This pass completely unrolls loops with few iterations. The pass ! is located in 'tree-ssa-loop-ivcanon.c' and described by ! 'pass_complete_unroll'. * Predictive commoning This pass makes the code reuse the computations from the previous ! iterations of the loops, especially loads and stores to memory. It ! does so by storing the values of these computations to a bank of ! temporary variables that are rotated at the end of loop. To avoid ! the need for this rotation, the loop is then unrolled and the ! copies of the loop body are rewritten to use the appropriate version of the temporary variable. This pass is located in ! 'tree-predcom.c' and described by 'pass_predcom'. * Array prefetching This pass issues prefetch instructions for array references inside ! loops. The pass is located in 'tree-ssa-loop-prefetch.c' and ! described by 'pass_loop_prefetch'. * Reassociation This pass rewrites arithmetic expressions to enable optimizations that operate on them, like redundancy elimination and ! vectorization. The pass is located in 'tree-ssa-reassoc.c' and ! described by 'pass_reassoc'. ! * Optimization of 'stdarg' functions This pass tries to avoid the saving of register arguments into the ! stack on entry to 'stdarg' functions. If the function doesn't use ! any 'va_start' macros, no registers need to be saved. If ! 'va_start' macros are used, the 'va_list' variables don't escape the function, it is only necessary to save registers that will be ! used in 'va_arg' macros. For instance, if 'va_arg' is only used ! with integral types in the function, floating point registers don't ! need to be saved. This pass is located in 'tree-stdarg.c' and ! described by 'pass_stdarg'.  File: gccint.info, Node: RTL passes, Prev: Tree SSA passes, Up: Passes *************** passes that are run after the Tree optim *** 7121,7154 **** * RTL generation ! The source files for RTL generation include `stmt.c', `calls.c', ! `expr.c', `explow.c', `expmed.c', `function.c', `optabs.c' and ! `emit-rtl.c'. Also, the file `insn-emit.c', generated from the ! machine description by the program `genemit', is used in this ! pass. The header file `expr.h' is used for communication within ! this pass. ! The header files `insn-flags.h' and `insn-codes.h', generated from ! the machine description by the programs `genflags' and `gencodes', ! tell this pass which standard names are available for use and ! which patterns correspond to them. * Generation of exception landing pads This pass generates the glue that handles communication between the exception handling library routines and the exception handlers ! within the function. Entry points in the function that are ! invoked by the exception handling library are called "landing ! pads". The code for this pass is located in `except.c'. * Control flow graph cleanup ! This pass removes unreachable code, simplifies jumps to next, ! jumps to jump, jumps across jumps, etc. The pass is run multiple ! times. For historical reasons, it is occasionally referred to as ! the "jump optimization pass". The bulk of the code for this pass ! is in `cfgcleanup.c', and there are support routines in `cfgrtl.c' ! and `jump.c'. * Forward propagation of single-def values --- 6985,7018 ---- * RTL generation ! The source files for RTL generation include 'stmt.c', 'calls.c', ! 'expr.c', 'explow.c', 'expmed.c', 'function.c', 'optabs.c' and ! 'emit-rtl.c'. Also, the file 'insn-emit.c', generated from the ! machine description by the program 'genemit', is used in this pass. ! The header file 'expr.h' is used for communication within this ! pass. ! The header files 'insn-flags.h' and 'insn-codes.h', generated from ! the machine description by the programs 'genflags' and 'gencodes', ! tell this pass which standard names are available for use and which ! patterns correspond to them. * Generation of exception landing pads This pass generates the glue that handles communication between the exception handling library routines and the exception handlers ! within the function. Entry points in the function that are invoked ! by the exception handling library are called "landing pads". The ! code for this pass is located in 'except.c'. * Control flow graph cleanup ! This pass removes unreachable code, simplifies jumps to next, jumps ! to jump, jumps across jumps, etc. The pass is run multiple times. ! For historical reasons, it is occasionally referred to as the "jump ! optimization pass". The bulk of the code for this pass is in ! 'cfgcleanup.c', and there are support routines in 'cfgrtl.c' and ! 'jump.c'. * Forward propagation of single-def values *************** passes that are run after the Tree optim *** 7157,7206 **** result can be simplified. It performs copy propagation and addressing mode selection. The pass is run twice, with values being propagated into loops only on the second run. The code is ! located in `fwprop.c'. * Common subexpression elimination This pass removes redundant computation within basic blocks, and optimizes addressing modes based on cost. The pass is run twice. ! The code for this pass is located in `cse.c'. * Global common subexpression elimination ! This pass performs two different types of GCSE depending on ! whether you are optimizing for size or not (LCM based GCSE tends ! to increase code size for a gain in speed, while Morel-Renvoise ! based GCSE does not). When optimizing for size, GCSE is done ! using Morel-Renvoise Partial Redundancy Elimination, with the ! exception that it does not try to move invariants out of ! loops--that is left to the loop optimization pass. If MR PRE ! GCSE is done, code hoisting (aka unification) is also done, as ! well as load motion. If you are optimizing for speed, LCM (lazy ! code motion) based GCSE is done. LCM is based on the work of ! Knoop, Ruthing, and Steffen. LCM based GCSE also does loop ! invariant code motion. We also perform load and store motion when ! optimizing for speed. Regardless of which type of GCSE is used, ! the GCSE pass also performs global constant and copy propagation. ! The source file for this pass is `gcse.c', and the LCM routines ! are in `lcm.c'. * Loop optimization This pass performs several loop related optimizations. The source ! files `cfgloopanal.c' and `cfgloopmanip.c' contain generic loop ! analysis and manipulation code. Initialization and finalization ! of loop structures is handled by `loop-init.c'. A loop invariant ! motion pass is implemented in `loop-invariant.c'. Basic block ! level optimizations--unrolling, peeling and unswitching loops-- ! are implemented in `loop-unswitch.c' and `loop-unroll.c'. ! Replacing of the exit condition of loops by special ! machine-dependent instructions is handled by `loop-doloop.c'. * Jump bypassing This pass is an aggressive form of GCSE that transforms the control flow graph of a function by propagating constants into conditional ! branch instructions. The source file for this pass is `gcse.c'. * If conversion --- 7021,7069 ---- result can be simplified. It performs copy propagation and addressing mode selection. The pass is run twice, with values being propagated into loops only on the second run. The code is ! located in 'fwprop.c'. * Common subexpression elimination This pass removes redundant computation within basic blocks, and optimizes addressing modes based on cost. The pass is run twice. ! The code for this pass is located in 'cse.c'. * Global common subexpression elimination ! This pass performs two different types of GCSE depending on whether ! you are optimizing for size or not (LCM based GCSE tends to ! increase code size for a gain in speed, while Morel-Renvoise based ! GCSE does not). When optimizing for size, GCSE is done using ! Morel-Renvoise Partial Redundancy Elimination, with the exception ! that it does not try to move invariants out of loops--that is left ! to the loop optimization pass. If MR PRE GCSE is done, code ! hoisting (aka unification) is also done, as well as load motion. ! If you are optimizing for speed, LCM (lazy code motion) based GCSE ! is done. LCM is based on the work of Knoop, Ruthing, and Steffen. ! LCM based GCSE also does loop invariant code motion. We also ! perform load and store motion when optimizing for speed. ! Regardless of which type of GCSE is used, the GCSE pass also ! performs global constant and copy propagation. The source file for ! this pass is 'gcse.c', and the LCM routines are in 'lcm.c'. * Loop optimization This pass performs several loop related optimizations. The source ! files 'cfgloopanal.c' and 'cfgloopmanip.c' contain generic loop ! analysis and manipulation code. Initialization and finalization of ! loop structures is handled by 'loop-init.c'. A loop invariant ! motion pass is implemented in 'loop-invariant.c'. Basic block ! level optimizations--unrolling, peeling and unswitching loops-- are ! implemented in 'loop-unswitch.c' and 'loop-unroll.c'. Replacing of ! the exit condition of loops by special machine-dependent ! instructions is handled by 'loop-doloop.c'. * Jump bypassing This pass is an aggressive form of GCSE that transforms the control flow graph of a function by propagating constants into conditional ! branch instructions. The source file for this pass is 'gcse.c'. * If conversion *************** passes that are run after the Tree optim *** 7209,7230 **** instructions, and conditional move instructions. In the very last invocation after reload/LRA, it will generate predicated instructions when supported by the target. The code is located in ! `ifcvt.c'. * Web construction This pass splits independent uses of each pseudo-register. This can improve effect of the other transformation, such as CSE or ! register allocation. The code for this pass is located in `web.c'. * Instruction combination This pass attempts to combine groups of two or three instructions that are related by data flow into single instructions. It combines the RTL expressions for the instructions by substitution, ! simplifies the result using algebra, and then attempts to match ! the result against the machine description. The code is located ! in `combine.c'. * Register movement --- 7072,7093 ---- instructions, and conditional move instructions. In the very last invocation after reload/LRA, it will generate predicated instructions when supported by the target. The code is located in ! 'ifcvt.c'. * Web construction This pass splits independent uses of each pseudo-register. This can improve effect of the other transformation, such as CSE or ! register allocation. The code for this pass is located in 'web.c'. * Instruction combination This pass attempts to combine groups of two or three instructions that are related by data flow into single instructions. It combines the RTL expressions for the instructions by substitution, ! simplifies the result using algebra, and then attempts to match the ! result against the machine description. The code is located in ! 'combine.c'. * Register movement *************** passes that are run after the Tree optim *** 7232,7265 **** instruction to need a reload, and this reload would be a register-to-register move. It then attempts to change the registers used by the instruction to avoid the move instruction. ! The code is located in `regmove.c'. * Mode switching optimization This pass looks for instructions that require the processor to be in a specific "mode" and minimizes the number of mode changes ! required to satisfy all users. What these modes are, and what ! they apply to are completely target-specific. The code for this ! pass is located in `mode-switching.c'. * Modulo scheduling This pass looks at innermost loops and reorders their instructions by overlapping different iterations. Modulo scheduling is performed immediately before instruction scheduling. The code for ! this pass is located in `modulo-sched.c'. * Instruction scheduling ! This pass looks for instructions whose output will not be ! available by the time that it is used in subsequent instructions. ! Memory loads and floating point instructions often have this ! behavior on RISC machines. It re-orders instructions within a ! basic block to try to separate the definition and use of items ! that otherwise would cause pipeline stalls. This pass is ! performed twice, before and after register allocation. The code ! for this pass is located in `haifa-sched.c', `sched-deps.c', ! `sched-ebb.c', `sched-rgn.c' and `sched-vis.c'. * Register allocation --- 7095,7128 ---- instruction to need a reload, and this reload would be a register-to-register move. It then attempts to change the registers used by the instruction to avoid the move instruction. ! The code is located in 'regmove.c'. * Mode switching optimization This pass looks for instructions that require the processor to be in a specific "mode" and minimizes the number of mode changes ! required to satisfy all users. What these modes are, and what they ! apply to are completely target-specific. The code for this pass is ! located in 'mode-switching.c'. * Modulo scheduling This pass looks at innermost loops and reorders their instructions by overlapping different iterations. Modulo scheduling is performed immediately before instruction scheduling. The code for ! this pass is located in 'modulo-sched.c'. * Instruction scheduling ! This pass looks for instructions whose output will not be available ! by the time that it is used in subsequent instructions. Memory ! loads and floating point instructions often have this behavior on ! RISC machines. It re-orders instructions within a basic block to ! try to separate the definition and use of items that otherwise ! would cause pipeline stalls. This pass is performed twice, before ! and after register allocation. The code for this pass is located ! in 'haifa-sched.c', 'sched-deps.c', 'sched-ebb.c', 'sched-rgn.c' ! and 'sched-vis.c'. * Register allocation *************** passes that are run after the Tree optim *** 7270,7276 **** * Register move optimizations. This pass makes some simple RTL code transformations which improve the subsequent register ! allocation. The source file is `regmove.c'. * The integrated register allocator (IRA). It is called integrated because coalescing, register live range splitting, --- 7133,7139 ---- * Register move optimizations. This pass makes some simple RTL code transformations which improve the subsequent register ! allocation. The source file is 'regmove.c'. * The integrated register allocator (IRA). It is called integrated because coalescing, register live range splitting, *************** passes that are run after the Tree optim *** 7287,7297 **** regions using register pressure but the user can force it to use one region or regions corresponding to all loops. ! Source files of the allocator are `ira.c', `ira-build.c', ! `ira-costs.c', `ira-conflicts.c', `ira-color.c', ! `ira-emit.c', `ira-lives', plus header files `ira.h' and ! `ira-int.h' used for the communication between the allocator ! and the rest of the compiler and between the IRA files. * Reloading. This pass renumbers pseudo registers with the hardware registers numbers they were allocated. Pseudo --- 7150,7160 ---- regions using register pressure but the user can force it to use one region or regions corresponding to all loops. ! Source files of the allocator are 'ira.c', 'ira-build.c', ! 'ira-costs.c', 'ira-conflicts.c', 'ira-color.c', 'ira-emit.c', ! 'ira-lives', plus header files 'ira.h' and 'ira-int.h' used ! for the communication between the allocator and the rest of ! the compiler and between the IRA files. * Reloading. This pass renumbers pseudo registers with the hardware registers numbers they were allocated. Pseudo *************** passes that are run after the Tree optim *** 7299,7327 **** stack slots. Then it finds instructions that are invalid because a value has failed to end up in a register, or has ended up in a register of the wrong kind. It fixes up these ! instructions by reloading the problematical values ! temporarily into registers. Additional instructions are ! generated to do the copying. The reload pass also optionally eliminates the frame pointer and inserts instructions to save and restore call-clobbered registers around calls. ! Source files are `reload.c' and `reload1.c', plus the header ! `reload.h' used for communication between them. * This pass is a modern replacement of the reload pass. Source ! files are `lra.c', `lra-assign.c', `lra-coalesce.c', ! `lra-constraints.c', `lra-eliminations.c', `lra-equivs.c', ! `lra-lives.c', `lra-saves.c', `lra-spills.c', the header ! `lra-int.h' used for communication between them, and the ! header `lra.h' used for communication between LRA and the ! rest of compiler. Unlike the reload pass, intermediate LRA decisions are ! reflected in RTL as much as possible. This reduces the ! number of target-dependent macros and hooks, leaving ! instruction constraints as the primary source of control. LRA is run on targets for which TARGET_LRA_P returns true. --- 7162,7190 ---- stack slots. Then it finds instructions that are invalid because a value has failed to end up in a register, or has ended up in a register of the wrong kind. It fixes up these ! instructions by reloading the problematical values temporarily ! into registers. Additional instructions are generated to do ! the copying. The reload pass also optionally eliminates the frame pointer and inserts instructions to save and restore call-clobbered registers around calls. ! Source files are 'reload.c' and 'reload1.c', plus the header ! 'reload.h' used for communication between them. * This pass is a modern replacement of the reload pass. Source ! files are 'lra.c', 'lra-assign.c', 'lra-coalesce.c', ! 'lra-constraints.c', 'lra-eliminations.c', 'lra-equivs.c', ! 'lra-lives.c', 'lra-saves.c', 'lra-spills.c', the header ! 'lra-int.h' used for communication between them, and the ! header 'lra.h' used for communication between LRA and the rest ! of compiler. Unlike the reload pass, intermediate LRA decisions are ! reflected in RTL as much as possible. This reduces the number ! of target-dependent macros and hooks, leaving instruction ! constraints as the primary source of control. LRA is run on targets for which TARGET_LRA_P returns true. *************** passes that are run after the Tree optim *** 7331,7338 **** information is not available, various types of static analysis are performed to make the predictions normally coming from the profile feedback (IE execution frequency, branch probability, etc). It is ! implemented in the file `bb-reorder.c', and the various prediction ! routines are in `predict.c'. * Variable tracking --- 7194,7201 ---- information is not available, various types of static analysis are performed to make the predictions normally coming from the profile feedback (IE execution frequency, branch probability, etc). It is ! implemented in the file 'bb-reorder.c', and the various prediction ! routines are in 'predict.c'. * Variable tracking *************** passes that are run after the Tree optim *** 7340,7394 **** in code and generates notes describing the variable locations to RTL code. The location lists are then generated according to these notes to debug information if the debugging information format ! supports location lists. The code is located in `var-tracking.c'. * Delayed branch scheduling This optional pass attempts to find instructions that can go into the delay slots of other instructions, usually jumps and calls. ! The code for this pass is located in `reorg.c'. * Branch shortening On many RISC machines, branch instructions have a limited range. Thus, longer sequences of instructions must be used for long ! branches. In this pass, the compiler figures out what how far ! each instruction will be from each other instruction, and ! therefore whether the usual instructions, or the longer sequences, ! must be used for each branch. The code for this pass is located ! in `final.c'. * Register-to-stack conversion Conversion from usage of some hard registers to usage of a register stack may be done at this point. Currently, this is supported only for the floating-point registers of the Intel 80387 coprocessor. ! The code for this pass is located in `reg-stack.c'. * Final This pass outputs the assembler code for the function. The source ! files are `final.c' plus `insn-output.c'; the latter is generated ! automatically from the machine description by the tool `genoutput'. ! The header file `conditions.h' is used for communication between these files. If mudflap is enabled, the queue of deferred ! declarations and any addressed constants (e.g., string literals) ! is processed by `mudflap_finish_file' into a synthetic constructor function containing calls into the mudflap runtime. * Debugging information output This is run after final because it must output the stack slot offsets for pseudo registers that did not get hard registers. ! Source files are `dbxout.c' for DBX symbol table format, ! `sdbout.c' for SDB symbol table format, `dwarfout.c' for DWARF ! symbol table format, files `dwarf2out.c' and `dwarf2asm.c' for ! DWARF2 symbol table format, and `vmsdbgout.c' for VMS debug symbol ! table format. !  ! File: gccint.info, Node: RTL, Next: Control Flow, Prev: Tree SSA, Up: Top 10 RTL Representation ********************* --- 7203,7255 ---- in code and generates notes describing the variable locations to RTL code. The location lists are then generated according to these notes to debug information if the debugging information format ! supports location lists. The code is located in 'var-tracking.c'. * Delayed branch scheduling This optional pass attempts to find instructions that can go into the delay slots of other instructions, usually jumps and calls. ! The code for this pass is located in 'reorg.c'. * Branch shortening On many RISC machines, branch instructions have a limited range. Thus, longer sequences of instructions must be used for long ! branches. In this pass, the compiler figures out what how far each ! instruction will be from each other instruction, and therefore ! whether the usual instructions, or the longer sequences, must be ! used for each branch. The code for this pass is located in ! 'final.c'. * Register-to-stack conversion Conversion from usage of some hard registers to usage of a register stack may be done at this point. Currently, this is supported only for the floating-point registers of the Intel 80387 coprocessor. ! The code for this pass is located in 'reg-stack.c'. * Final This pass outputs the assembler code for the function. The source ! files are 'final.c' plus 'insn-output.c'; the latter is generated ! automatically from the machine description by the tool 'genoutput'. ! The header file 'conditions.h' is used for communication between these files. If mudflap is enabled, the queue of deferred ! declarations and any addressed constants (e.g., string literals) is ! processed by 'mudflap_finish_file' into a synthetic constructor function containing calls into the mudflap runtime. * Debugging information output This is run after final because it must output the stack slot offsets for pseudo registers that did not get hard registers. ! Source files are 'dbxout.c' for DBX symbol table format, 'sdbout.c' ! for SDB symbol table format, 'dwarfout.c' for DWARF symbol table ! format, files 'dwarf2out.c' and 'dwarf2asm.c' for DWARF2 symbol ! table format, and 'vmsdbgout.c' for VMS debug symbol table format.  ! File: gccint.info, Node: RTL, Next: GENERIC, Prev: Passes, Up: Top 10 RTL Representation ********************* *************** instructions to be output are described, *** 7399,7406 **** algebraic form that describes what the instruction does. RTL is inspired by Lisp lists. It has both an internal form, made up ! of structures that point at other structures, and a textual form that ! is used in the machine description and in printed debugging dumps. The textual form uses nested parentheses to indicate the pointers in the internal form. --- 7260,7267 ---- algebraic form that describes what the instruction does. RTL is inspired by Lisp lists. It has both an internal form, made up ! of structures that point at other structures, and a textual form that is ! used in the machine description and in printed debugging dumps. The textual form uses nested parentheses to indicate the pointers in the internal form. *************** internal form. *** 7422,7428 **** * RTL Declarations:: Declaring volatility, constancy, etc. * Side Effects:: Expressions for storing in registers, etc. * Incdec:: Embedded side-effects for autoincrement addressing. ! * Assembler:: Representing `asm' with operands. * Debug Information:: Expressions representing debugging information. * Insns:: Expression types for entire insns. * Calls:: RTL representation of function call insns. --- 7283,7289 ---- * RTL Declarations:: Declaring volatility, constancy, etc. * Side Effects:: Expressions for storing in registers, etc. * Incdec:: Embedded side-effects for autoincrement addressing. ! * Assembler:: Representing 'asm' with operands. * Debug Information:: Expressions representing debugging information. * Insns:: Expression types for entire insns. * Calls:: RTL representation of function call insns. *************** File: gccint.info, Node: RTL Objects, *** 7438,7457 **** RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors. Expressions are the most important ones. An RTL expression ("RTX", for short) is a C structure, but it is usually ! referred to with a pointer; a type that is given the typedef name `rtx'. ! An integer is simply an `int'; their written form uses decimal digits. ! A wide integer is an integral object whose type is `HOST_WIDE_INT'; their written form uses decimal digits. A string is a sequence of characters. In core it is represented as a ! `char *' in usual C fashion, and it is written in C syntax as well. ! However, strings in RTL may never be null. If you write an empty ! string in a machine description, it is represented in core as a null ! pointer rather than as a pointer to a null character. In certain ! contexts, these null pointers instead of strings are valid. Within RTL ! code, strings are most commonly found inside `symbol_ref' expressions, ! but they appear in other contexts in the RTL expressions that make up machine descriptions. In a machine description, strings are normally written with double --- 7299,7318 ---- RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors. Expressions are the most important ones. An RTL expression ("RTX", for short) is a C structure, but it is usually ! referred to with a pointer; a type that is given the typedef name 'rtx'. ! An integer is simply an 'int'; their written form uses decimal digits. ! A wide integer is an integral object whose type is 'HOST_WIDE_INT'; their written form uses decimal digits. A string is a sequence of characters. In core it is represented as a ! 'char *' in usual C fashion, and it is written in C syntax as well. ! However, strings in RTL may never be null. If you write an empty string ! in a machine description, it is represented in core as a null pointer ! rather than as a pointer to a null character. In certain contexts, ! these null pointers instead of strings are valid. Within RTL code, ! strings are most commonly found inside 'symbol_ref' expressions, but ! they appear in other contexts in the RTL expressions that make up machine descriptions. In a machine description, strings are normally written with double *************** need not escape each quote character wit *** 7471,7509 **** A vector contains an arbitrary number of pointers to expressions. The number of elements in the vector is explicitly present in the vector. ! The written form of a vector consists of square brackets (`[...]') surrounding the elements, in sequence and with whitespace separating them. Vectors of length zero are not created; null pointers are used instead. Expressions are classified by "expression codes" (also called RTX ! codes). The expression code is a name defined in `rtl.def', which is also (in uppercase) a C enumeration constant. The possible expression codes and their meanings are machine-independent. The code of an RTX ! can be extracted with the macro `GET_CODE (X)' and altered with ! `PUT_CODE (X, NEWCODE)'. The expression code determines how many operands the expression contains, and what kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what kind of object it is. ! Instead, you must know from its context--from the expression code of ! the containing expression. For example, in an expression of code ! `subreg', the first operand is to be regarded as an expression and the ! second operand as an integer. In an expression of code `plus', there ! are two operands, both of which are to be regarded as expressions. In ! a `symbol_ref' expression, there is one operand, which is to be ! regarded as a string. Expressions are written as parentheses containing the name of the expression type, its flags and machine mode if any, and then the operands of the expression (separated by spaces). ! Expression code names in the `md' file are written in lowercase, but when they appear in C code they are written in uppercase. In this ! manual, they are shown as follows: `const_int'. In a few contexts a null pointer is valid where an expression is ! normally wanted. The written form of this is `(nil)'.  File: gccint.info, Node: RTL Classes, Next: Accessors, Prev: RTL Objects, Up: RTL --- 7332,7370 ---- A vector contains an arbitrary number of pointers to expressions. The number of elements in the vector is explicitly present in the vector. ! The written form of a vector consists of square brackets ('[...]') surrounding the elements, in sequence and with whitespace separating them. Vectors of length zero are not created; null pointers are used instead. Expressions are classified by "expression codes" (also called RTX ! codes). The expression code is a name defined in 'rtl.def', which is also (in uppercase) a C enumeration constant. The possible expression codes and their meanings are machine-independent. The code of an RTX ! can be extracted with the macro 'GET_CODE (X)' and altered with ! 'PUT_CODE (X, NEWCODE)'. The expression code determines how many operands the expression contains, and what kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what kind of object it is. ! Instead, you must know from its context--from the expression code of the ! containing expression. For example, in an expression of code 'subreg', ! the first operand is to be regarded as an expression and the second ! operand as an integer. In an expression of code 'plus', there are two ! operands, both of which are to be regarded as expressions. In a ! 'symbol_ref' expression, there is one operand, which is to be regarded ! as a string. Expressions are written as parentheses containing the name of the expression type, its flags and machine mode if any, and then the operands of the expression (separated by spaces). ! Expression code names in the 'md' file are written in lowercase, but when they appear in C code they are written in uppercase. In this ! manual, they are shown as follows: 'const_int'. In a few contexts a null pointer is valid where an expression is ! normally wanted. The written form of this is '(nil)'.  File: gccint.info, Node: RTL Classes, Next: Accessors, Prev: RTL Objects, Up: RTL *************** File: gccint.info, Node: RTL Classes, *** 7512,7667 **** ============================ The various expression codes are divided into several "classes", which ! are represented by single characters. You can determine the class of ! an RTX code with the macro `GET_RTX_CLASS (CODE)'. Currently, ! `rtl.def' defines these classes: ! `RTX_OBJ' An RTX code that represents an actual object, such as a register ! (`REG') or a memory location (`MEM', `SYMBOL_REF'). `LO_SUM') is ! also included; instead, `SUBREG' and `STRICT_LOW_PART' are not in ! this class, but in class `x'. ! `RTX_CONST_OBJ' ! An RTX code that represents a constant object. `HIGH' is also included in this class. ! `RTX_COMPARE' ! An RTX code for a non-symmetric comparison, such as `GEU' or `LT'. ! `RTX_COMM_COMPARE' ! An RTX code for a symmetric (commutative) comparison, such as `EQ' ! or `ORDERED'. ! `RTX_UNARY' ! An RTX code for a unary arithmetic operation, such as `NEG', ! `NOT', or `ABS'. This category also includes value extension ! (sign or zero) and conversions between integer and floating point. ! `RTX_COMM_ARITH' ! An RTX code for a commutative binary operation, such as `PLUS' or ! `AND'. `NE' and `EQ' are comparisons, so they have class `<'. ! `RTX_BIN_ARITH' An RTX code for a non-commutative binary operation, such as ! `MINUS', `DIV', or `ASHIFTRT'. ! `RTX_BITFIELD_OPS' An RTX code for a bit-field operation. Currently only ! `ZERO_EXTRACT' and `SIGN_EXTRACT'. These have three inputs and ! are lvalues (so they can be used for insertion as well). *Note Bit-Fields::. ! `RTX_TERNARY' An RTX code for other three input operations. Currently only ! `IF_THEN_ELSE', `VEC_MERGE', `SIGN_EXTRACT', `ZERO_EXTRACT', and ! `FMA'. ! `RTX_INSN' ! An RTX code for an entire instruction: `INSN', `JUMP_INSN', and ! `CALL_INSN'. *Note Insns::. ! `RTX_MATCH' An RTX code for something that matches in insns, such as ! `MATCH_DUP'. These only occur in machine descriptions. ! `RTX_AUTOINC' An RTX code for an auto-increment addressing mode, such as ! `POST_INC'. ! `RTX_EXTRA' All other RTX codes. This category includes the remaining codes ! used only in machine descriptions (`DEFINE_*', etc.). It also ! includes all the codes describing side effects (`SET', `USE', ! `CLOBBER', etc.) and the non-insns that may appear on an insn ! chain, such as `NOTE', `BARRIER', and `CODE_LABEL'. `SUBREG' is also part of this class. ! For each expression code, `rtl.def' specifies the number of contained objects and their kinds using a sequence of characters called the ! "format" of the expression code. For example, the format of `subreg' ! is `ei'. These are the most commonly used format characters: ! `e' An expression (actually a pointer to an expression). ! `i' An integer. ! `w' A wide integer. ! `s' A string. ! `E' A vector of expressions. A few other format characters are used occasionally: ! `u' ! `u' is equivalent to `e' except that it is printed differently in debugging dumps. It is used for pointers to insns. ! `n' ! `n' is equivalent to `i' except that it is printed differently in debugging dumps. It is used for the line number or code number of ! a `note' insn. ! `S' ! `S' indicates a string which is optional. In the RTL objects in ! core, `S' is equivalent to `s', but when the object is read, from ! an `md' file, the string value of this operand may be omitted. An omitted string is taken to be the null string. ! `V' ! `V' indicates a vector which is optional. In the RTL objects in ! core, `V' is equivalent to `E', but when the object is read from ! an `md' file, the vector value of this operand may be omitted. An omitted vector is effectively the same as a vector of no elements. ! `B' ! `B' indicates a pointer to basic block structure. ! `0' ! `0' means a slot whose contents do not fit any normal category. ! `0' slots are not printed at all in dumps, and are often used in special ways by small parts of the compiler. There are macros to get the number of operands and the format of an expression code: ! `GET_RTX_LENGTH (CODE)' Number of operands of an RTX of code CODE. ! `GET_RTX_FORMAT (CODE)' The format of an RTX of code CODE, as a C string. Some classes of RTX codes always have the same format. For example, it ! is safe to assume that all comparison operations have format `ee'. ! `1' ! All codes of this class have format `e'. ! `<' ! `c' ! `2' ! All codes of these classes have format `ee'. ! `b' ! `3' ! All codes of these classes have format `eee'. ! `i' ! All codes of this class have formats that begin with `iuueiee'. *Note Insns::. Note that not all RTL objects linked onto an insn ! chain are of class `i'. ! `o' ! `m' ! `x' You can make no assumptions about the format of these codes.  --- 7373,7528 ---- ============================ The various expression codes are divided into several "classes", which ! are represented by single characters. You can determine the class of an ! RTX code with the macro 'GET_RTX_CLASS (CODE)'. Currently, 'rtl.def' ! defines these classes: ! 'RTX_OBJ' An RTX code that represents an actual object, such as a register ! ('REG') or a memory location ('MEM', 'SYMBOL_REF'). 'LO_SUM') is ! also included; instead, 'SUBREG' and 'STRICT_LOW_PART' are not in ! this class, but in class 'x'. ! 'RTX_CONST_OBJ' ! An RTX code that represents a constant object. 'HIGH' is also included in this class. ! 'RTX_COMPARE' ! An RTX code for a non-symmetric comparison, such as 'GEU' or 'LT'. ! 'RTX_COMM_COMPARE' ! An RTX code for a symmetric (commutative) comparison, such as 'EQ' ! or 'ORDERED'. ! 'RTX_UNARY' ! An RTX code for a unary arithmetic operation, such as 'NEG', 'NOT', ! or 'ABS'. This category also includes value extension (sign or ! zero) and conversions between integer and floating point. ! 'RTX_COMM_ARITH' ! An RTX code for a commutative binary operation, such as 'PLUS' or ! 'AND'. 'NE' and 'EQ' are comparisons, so they have class '<'. ! 'RTX_BIN_ARITH' An RTX code for a non-commutative binary operation, such as ! 'MINUS', 'DIV', or 'ASHIFTRT'. ! 'RTX_BITFIELD_OPS' An RTX code for a bit-field operation. Currently only ! 'ZERO_EXTRACT' and 'SIGN_EXTRACT'. These have three inputs and are ! lvalues (so they can be used for insertion as well). *Note Bit-Fields::. ! 'RTX_TERNARY' An RTX code for other three input operations. Currently only ! 'IF_THEN_ELSE', 'VEC_MERGE', 'SIGN_EXTRACT', 'ZERO_EXTRACT', and ! 'FMA'. ! 'RTX_INSN' ! An RTX code for an entire instruction: 'INSN', 'JUMP_INSN', and ! 'CALL_INSN'. *Note Insns::. ! 'RTX_MATCH' An RTX code for something that matches in insns, such as ! 'MATCH_DUP'. These only occur in machine descriptions. ! 'RTX_AUTOINC' An RTX code for an auto-increment addressing mode, such as ! 'POST_INC'. ! 'RTX_EXTRA' All other RTX codes. This category includes the remaining codes ! used only in machine descriptions ('DEFINE_*', etc.). It also ! includes all the codes describing side effects ('SET', 'USE', ! 'CLOBBER', etc.) and the non-insns that may appear on an insn ! chain, such as 'NOTE', 'BARRIER', and 'CODE_LABEL'. 'SUBREG' is also part of this class. ! For each expression code, 'rtl.def' specifies the number of contained objects and their kinds using a sequence of characters called the ! "format" of the expression code. For example, the format of 'subreg' is ! 'ei'. These are the most commonly used format characters: ! 'e' An expression (actually a pointer to an expression). ! 'i' An integer. ! 'w' A wide integer. ! 's' A string. ! 'E' A vector of expressions. A few other format characters are used occasionally: ! 'u' ! 'u' is equivalent to 'e' except that it is printed differently in debugging dumps. It is used for pointers to insns. ! 'n' ! 'n' is equivalent to 'i' except that it is printed differently in debugging dumps. It is used for the line number or code number of ! a 'note' insn. ! 'S' ! 'S' indicates a string which is optional. In the RTL objects in ! core, 'S' is equivalent to 's', but when the object is read, from ! an 'md' file, the string value of this operand may be omitted. An omitted string is taken to be the null string. ! 'V' ! 'V' indicates a vector which is optional. In the RTL objects in ! core, 'V' is equivalent to 'E', but when the object is read from an ! 'md' file, the vector value of this operand may be omitted. An omitted vector is effectively the same as a vector of no elements. ! 'B' ! 'B' indicates a pointer to basic block structure. ! '0' ! '0' means a slot whose contents do not fit any normal category. ! '0' slots are not printed at all in dumps, and are often used in special ways by small parts of the compiler. There are macros to get the number of operands and the format of an expression code: ! 'GET_RTX_LENGTH (CODE)' Number of operands of an RTX of code CODE. ! 'GET_RTX_FORMAT (CODE)' The format of an RTX of code CODE, as a C string. Some classes of RTX codes always have the same format. For example, it ! is safe to assume that all comparison operations have format 'ee'. ! '1' ! All codes of this class have format 'e'. ! '<' ! 'c' ! '2' ! All codes of these classes have format 'ee'. ! 'b' ! '3' ! All codes of these classes have format 'eee'. ! 'i' ! All codes of this class have formats that begin with 'iuueiee'. *Note Insns::. Note that not all RTL objects linked onto an insn ! chain are of class 'i'. ! 'o' ! 'm' ! 'x' You can make no assumptions about the format of these codes.  *************** File: gccint.info, Node: Accessors, Ne *** 7670,7677 **** 10.3 Access to Operands ======================= ! Operands of expressions are accessed using the macros `XEXP', `XINT', ! `XWINT' and `XSTR'. Each of these macros takes two arguments: an expression-pointer (RTX) and an operand number (counting from zero). Thus, --- 7531,7538 ---- 10.3 Access to Operands ======================= ! Operands of expressions are accessed using the macros 'XEXP', 'XINT', ! 'XWINT' and 'XSTR'. Each of these macros takes two arguments: an expression-pointer (RTX) and an operand number (counting from zero). Thus, *************** accesses operand 2 of expression X, as a *** 7681,7687 **** XINT (X, 2) ! accesses the same operand as an integer. `XSTR', used in the same fashion, would access it as a string. Any operand can be accessed as an integer, as an expression or as a --- 7542,7548 ---- XINT (X, 2) ! accesses the same operand as an integer. 'XSTR', used in the same fashion, would access it as a string. Any operand can be accessed as an integer, as an expression or as a *************** value actually stored in the operand. Y *** 7690,7723 **** expression code of the containing expression. That is also how you would know how many operands there are. ! For example, if X is a `subreg' expression, you know that it has two ! operands which can be correctly accessed as `XEXP (X, 0)' and `XINT (X, ! 1)'. If you did `XINT (X, 0)', you would get the address of the expression operand but cast as an integer; that might occasionally be ! useful, but it would be cleaner to write `(int) XEXP (X, 0)'. `XEXP ! (X, 1)' would also compile without error, and would return the second, integer operand cast as an expression pointer, which would probably ! result in a crash when accessed. Nothing stops you from writing `XEXP (X, 28)' either, but this will access memory past the end of the expression with unpredictable results. Access to operands which are vectors is more complicated. You can use ! the macro `XVEC' to get the vector-pointer itself, or the macros ! `XVECEXP' and `XVECLEN' to access the elements and length of a vector. ! `XVEC (EXP, IDX)' Access the vector-pointer which is operand number IDX in EXP. ! `XVECLEN (EXP, IDX)' Access the length (number of elements) in the vector which is in ! operand number IDX in EXP. This value is an `int'. ! `XVECEXP (EXP, IDX, ELTNUM)' Access element number ELTNUM in the vector which is in operand number IDX in EXP. This value is an RTX. It is up to you to make sure that ELTNUM is not negative and is ! less than `XVECLEN (EXP, IDX)'. All the macros defined in this section expand into lvalues and therefore can be used to assign the operands, lengths and vector --- 7551,7584 ---- expression code of the containing expression. That is also how you would know how many operands there are. ! For example, if X is a 'subreg' expression, you know that it has two ! operands which can be correctly accessed as 'XEXP (X, 0)' and 'XINT (X, ! 1)'. If you did 'XINT (X, 0)', you would get the address of the expression operand but cast as an integer; that might occasionally be ! useful, but it would be cleaner to write '(int) XEXP (X, 0)'. 'XEXP (X, ! 1)' would also compile without error, and would return the second, integer operand cast as an expression pointer, which would probably ! result in a crash when accessed. Nothing stops you from writing 'XEXP (X, 28)' either, but this will access memory past the end of the expression with unpredictable results. Access to operands which are vectors is more complicated. You can use ! the macro 'XVEC' to get the vector-pointer itself, or the macros ! 'XVECEXP' and 'XVECLEN' to access the elements and length of a vector. ! 'XVEC (EXP, IDX)' Access the vector-pointer which is operand number IDX in EXP. ! 'XVECLEN (EXP, IDX)' Access the length (number of elements) in the vector which is in ! operand number IDX in EXP. This value is an 'int'. ! 'XVECEXP (EXP, IDX, ELTNUM)' Access element number ELTNUM in the vector which is in operand number IDX in EXP. This value is an RTX. It is up to you to make sure that ELTNUM is not negative and is ! less than 'XVECLEN (EXP, IDX)'. All the macros defined in this section expand into lvalues and therefore can be used to assign the operands, lengths and vector *************** File: gccint.info, Node: Special Access *** 7731,7871 **** Some RTL nodes have special annotations associated with them. ! `MEM' ! ! `MEM_ALIAS_SET (X)' If 0, X is not in any alias set, and may alias anything. ! Otherwise, X can only alias `MEM's in a conflicting alias ! set. This value is set in a language-dependent manner in the ! front-end, and should not be altered in the back-end. In ! some front-ends, these numbers may correspond in some way to ! types, or other language-level entities, but they need not, ! and the back-end makes no such assumptions. These set ! numbers are tested with `alias_sets_conflict_p'. ! `MEM_EXPR (X)' If this register is known to hold the value of some user-level declaration, this is that tree node. It may also be a ! `COMPONENT_REF', in which case this is some field reference, ! and `TREE_OPERAND (X, 0)' contains the declaration, or ! another `COMPONENT_REF', or null if there is no compile-time ! object associated with the reference. ! `MEM_OFFSET_KNOWN_P (X)' ! True if the offset of the memory reference from `MEM_EXPR' is ! known. `MEM_OFFSET (X)' provides the offset if so. ! `MEM_OFFSET (X)' ! The offset from the start of `MEM_EXPR'. The value is only ! valid if `MEM_OFFSET_KNOWN_P (X)' is true. ! `MEM_SIZE_KNOWN_P (X)' ! True if the size of the memory reference is known. `MEM_SIZE (X)' provides its size if so. ! `MEM_SIZE (X)' The size in bytes of the memory reference. This is mostly ! relevant for `BLKmode' references as otherwise the size is implied by the mode. The value is only valid if ! `MEM_SIZE_KNOWN_P (X)' is true. ! `MEM_ALIGN (X)' The known alignment in bits of the memory reference. ! `MEM_ADDR_SPACE (X)' ! The address space of the memory reference. This will ! commonly be zero for the generic address space. ! ! `REG' ! `ORIGINAL_REGNO (X)' ! This field holds the number the register "originally" had; ! for a pseudo register turned into a hard reg this will hold ! the old pseudo register number. ! `REG_EXPR (X)' If this register is known to hold the value of some user-level declaration, this is that tree node. ! `REG_OFFSET (X)' If this register is known to hold the value of some user-level declaration, this is the offset into that logical storage. ! `SYMBOL_REF' ! ! `SYMBOL_REF_DECL (X)' ! If the `symbol_ref' X was created for a `VAR_DECL' or a ! `FUNCTION_DECL', that tree is recorded here. If this value is null, then X was created by back end code generation routines, and there is no associated front end symbol table entry. ! `SYMBOL_REF_DECL' may also point to a tree of class `'c'', that is, some sort of constant. In this case, the ! `symbol_ref' is an entry in the per-file constant pool; ! again, there is no associated front end symbol table entry. ! `SYMBOL_REF_CONSTANT (X)' ! If `CONSTANT_POOL_ADDRESS_P (X)' is true, this is the constant pool entry for X. It is null otherwise. ! `SYMBOL_REF_DATA (X)' ! A field of opaque type used to store `SYMBOL_REF_DECL' or ! `SYMBOL_REF_CONSTANT'. ! `SYMBOL_REF_FLAGS (X)' ! In a `symbol_ref', this is used to communicate various predicates about the symbol. Some of these are common enough to be computed by common code, some are specific to the target. The common bits are: ! `SYMBOL_FLAG_FUNCTION' Set if the symbol refers to a function. ! `SYMBOL_FLAG_LOCAL' Set if the symbol is local to this "module". See ! `TARGET_BINDS_LOCAL_P'. ! `SYMBOL_FLAG_EXTERNAL' Set if this symbol is not defined in this translation unit. Note that this is not the inverse of ! `SYMBOL_FLAG_LOCAL'. ! `SYMBOL_FLAG_SMALL' Set if the symbol is located in the small data section. ! See `TARGET_IN_SMALL_DATA_P'. ! `SYMBOL_REF_TLS_MODEL (X)' This is a multi-bit field accessor that returns the ! `tls_model' to be used for a thread-local storage ! symbol. It returns zero for non-thread-local symbols. ! `SYMBOL_FLAG_HAS_BLOCK_INFO' ! Set if the symbol has `SYMBOL_REF_BLOCK' and ! `SYMBOL_REF_BLOCK_OFFSET' fields. ! `SYMBOL_FLAG_ANCHOR' Set if the symbol is used as a section anchor. "Section ! anchors" are symbols that have a known position within ! an `object_block' and that can be used to access nearby members of that block. They are used to implement ! `-fsection-anchors'. ! If this flag is set, then `SYMBOL_FLAG_HAS_BLOCK_INFO' will be too. ! Bits beginning with `SYMBOL_FLAG_MACH_DEP' are available for the target's use. ! `SYMBOL_REF_BLOCK (X)' ! If `SYMBOL_REF_HAS_BLOCK_INFO_P (X)', this is the `object_block' ! structure to which the symbol belongs, or `NULL' if it has not ! been assigned a block. ! `SYMBOL_REF_BLOCK_OFFSET (X)' ! If `SYMBOL_REF_HAS_BLOCK_INFO_P (X)', this is the offset of X from ! the first object in `SYMBOL_REF_BLOCK (X)'. The value is negative ! if X has not yet been assigned to a block, or it has not been ! given an offset within that block.  File: gccint.info, Node: Flags, Next: Machine Modes, Prev: Special Accessors, Up: RTL --- 7592,7729 ---- Some RTL nodes have special annotations associated with them. ! 'MEM' ! 'MEM_ALIAS_SET (X)' If 0, X is not in any alias set, and may alias anything. ! Otherwise, X can only alias 'MEM's in a conflicting alias set. ! This value is set in a language-dependent manner in the ! front-end, and should not be altered in the back-end. In some ! front-ends, these numbers may correspond in some way to types, ! or other language-level entities, but they need not, and the ! back-end makes no such assumptions. These set numbers are ! tested with 'alias_sets_conflict_p'. ! 'MEM_EXPR (X)' If this register is known to hold the value of some user-level declaration, this is that tree node. It may also be a ! 'COMPONENT_REF', in which case this is some field reference, ! and 'TREE_OPERAND (X, 0)' contains the declaration, or another ! 'COMPONENT_REF', or null if there is no compile-time object ! associated with the reference. ! 'MEM_OFFSET_KNOWN_P (X)' ! True if the offset of the memory reference from 'MEM_EXPR' is ! known. 'MEM_OFFSET (X)' provides the offset if so. ! 'MEM_OFFSET (X)' ! The offset from the start of 'MEM_EXPR'. The value is only ! valid if 'MEM_OFFSET_KNOWN_P (X)' is true. ! 'MEM_SIZE_KNOWN_P (X)' ! True if the size of the memory reference is known. 'MEM_SIZE (X)' provides its size if so. ! 'MEM_SIZE (X)' The size in bytes of the memory reference. This is mostly ! relevant for 'BLKmode' references as otherwise the size is implied by the mode. The value is only valid if ! 'MEM_SIZE_KNOWN_P (X)' is true. ! 'MEM_ALIGN (X)' The known alignment in bits of the memory reference. ! 'MEM_ADDR_SPACE (X)' ! The address space of the memory reference. This will commonly ! be zero for the generic address space. ! 'REG' ! 'ORIGINAL_REGNO (X)' ! This field holds the number the register "originally" had; for ! a pseudo register turned into a hard reg this will hold the ! old pseudo register number. ! 'REG_EXPR (X)' If this register is known to hold the value of some user-level declaration, this is that tree node. ! 'REG_OFFSET (X)' If this register is known to hold the value of some user-level declaration, this is the offset into that logical storage. ! 'SYMBOL_REF' ! 'SYMBOL_REF_DECL (X)' ! If the 'symbol_ref' X was created for a 'VAR_DECL' or a ! 'FUNCTION_DECL', that tree is recorded here. If this value is null, then X was created by back end code generation routines, and there is no associated front end symbol table entry. ! 'SYMBOL_REF_DECL' may also point to a tree of class ''c'', that is, some sort of constant. In this case, the ! 'symbol_ref' is an entry in the per-file constant pool; again, ! there is no associated front end symbol table entry. ! 'SYMBOL_REF_CONSTANT (X)' ! If 'CONSTANT_POOL_ADDRESS_P (X)' is true, this is the constant pool entry for X. It is null otherwise. ! 'SYMBOL_REF_DATA (X)' ! A field of opaque type used to store 'SYMBOL_REF_DECL' or ! 'SYMBOL_REF_CONSTANT'. ! 'SYMBOL_REF_FLAGS (X)' ! In a 'symbol_ref', this is used to communicate various predicates about the symbol. Some of these are common enough to be computed by common code, some are specific to the target. The common bits are: ! 'SYMBOL_FLAG_FUNCTION' Set if the symbol refers to a function. ! 'SYMBOL_FLAG_LOCAL' Set if the symbol is local to this "module". See ! 'TARGET_BINDS_LOCAL_P'. ! 'SYMBOL_FLAG_EXTERNAL' Set if this symbol is not defined in this translation unit. Note that this is not the inverse of ! 'SYMBOL_FLAG_LOCAL'. ! 'SYMBOL_FLAG_SMALL' Set if the symbol is located in the small data section. ! See 'TARGET_IN_SMALL_DATA_P'. ! 'SYMBOL_REF_TLS_MODEL (X)' This is a multi-bit field accessor that returns the ! 'tls_model' to be used for a thread-local storage symbol. ! It returns zero for non-thread-local symbols. ! 'SYMBOL_FLAG_HAS_BLOCK_INFO' ! Set if the symbol has 'SYMBOL_REF_BLOCK' and ! 'SYMBOL_REF_BLOCK_OFFSET' fields. ! 'SYMBOL_FLAG_ANCHOR' Set if the symbol is used as a section anchor. "Section ! anchors" are symbols that have a known position within an ! 'object_block' and that can be used to access nearby members of that block. They are used to implement ! '-fsection-anchors'. ! If this flag is set, then 'SYMBOL_FLAG_HAS_BLOCK_INFO' will be too. ! Bits beginning with 'SYMBOL_FLAG_MACH_DEP' are available for the target's use. ! 'SYMBOL_REF_BLOCK (X)' ! If 'SYMBOL_REF_HAS_BLOCK_INFO_P (X)', this is the 'object_block' ! structure to which the symbol belongs, or 'NULL' if it has not been ! assigned a block. ! 'SYMBOL_REF_BLOCK_OFFSET (X)' ! If 'SYMBOL_REF_HAS_BLOCK_INFO_P (X)', this is the offset of X from ! the first object in 'SYMBOL_REF_BLOCK (X)'. The value is negative ! if X has not yet been assigned to a block, or it has not been given ! an offset within that block.  File: gccint.info, Node: Flags, Next: Machine Modes, Prev: Special Accessors, Up: RTL *************** File: gccint.info, Node: Flags, Next: *** 7873,7986 **** 10.5 Flags in an RTL Expression =============================== ! RTL expressions contain several flags (one-bit bit-fields) that are ! used in certain types of expression. Most often they are accessed with ! the following macros, which expand into lvalues. ! `CONSTANT_POOL_ADDRESS_P (X)' ! Nonzero in a `symbol_ref' if it refers to part of the current function's constant pool. For most targets these addresses are in ! a `.rodata' section entirely separate from the function, but for some targets the addresses are close to the beginning of the function. In either case GCC assumes these addresses can be addressed directly, perhaps with the help of base registers. ! Stored in the `unchanging' field and printed as `/u'. ! `RTL_CONST_CALL_P (X)' ! In a `call_insn' indicates that the insn represents a call to a ! const function. Stored in the `unchanging' field and printed as ! `/u'. ! `RTL_PURE_CALL_P (X)' ! In a `call_insn' indicates that the insn represents a call to a ! pure function. Stored in the `return_val' field and printed as ! `/i'. ! `RTL_CONST_OR_PURE_CALL_P (X)' ! In a `call_insn', true if `RTL_CONST_CALL_P' or `RTL_PURE_CALL_P' is true. ! `RTL_LOOPING_CONST_OR_PURE_CALL_P (X)' ! In a `call_insn' indicates that the insn represents a possibly infinite looping call to a const or pure function. Stored in the ! `call' field and printed as `/c'. Only true if one of ! `RTL_CONST_CALL_P' or `RTL_PURE_CALL_P' is true. ! `INSN_ANNULLED_BRANCH_P (X)' ! In a `jump_insn', `call_insn', or `insn' indicates that the branch ! is an annulling one. See the discussion under `sequence' below. ! Stored in the `unchanging' field and printed as `/u'. ! `INSN_DELETED_P (X)' ! In an `insn', `call_insn', `jump_insn', `code_label', `barrier', ! or `note', nonzero if the insn has been deleted. Stored in the ! `volatil' field and printed as `/v'. ! `INSN_FROM_TARGET_P (X)' ! In an `insn' or `jump_insn' or `call_insn' in a delay slot of a branch, indicates that the insn is from the target of the branch. ! If the branch insn has `INSN_ANNULLED_BRANCH_P' set, this insn ! will only be executed if the branch is taken. For annulled ! branches with `INSN_FROM_TARGET_P' clear, the insn will be ! executed only if the branch is not taken. When ! `INSN_ANNULLED_BRANCH_P' is not set, this insn will always be ! executed. Stored in the `in_struct' field and printed as `/s'. ! `LABEL_PRESERVE_P (X)' ! In a `code_label' or `note', indicates that the label is ! referenced by code or data not visible to the RTL of a given ! function. Labels referenced by a non-local goto will have this ! bit set. Stored in the `in_struct' field and printed as `/s'. ! `LABEL_REF_NONLOCAL_P (X)' ! In `label_ref' and `reg_label' expressions, nonzero if this is a ! reference to a non-local label. Stored in the `volatil' field and ! printed as `/v'. ! `MEM_KEEP_ALIAS_SET_P (X)' ! In `mem' expressions, 1 if we should keep the alias set for this mem unchanged when we access a component. Set to 1, for example, when we are already in a non-addressable component of an aggregate. ! Stored in the `jump' field and printed as `/j'. ! `MEM_VOLATILE_P (X)' ! In `mem', `asm_operands', and `asm_input' expressions, nonzero for ! volatile memory references. Stored in the `volatil' field and ! printed as `/v'. ! `MEM_NOTRAP_P (X)' ! In `mem', nonzero for memory references that will not trap. ! Stored in the `call' field and printed as `/c'. ! `MEM_POINTER (X)' ! Nonzero in a `mem' if the memory reference holds a pointer. ! Stored in the `frame_related' field and printed as `/f'. ! `REG_FUNCTION_VALUE_P (X)' ! Nonzero in a `reg' if it is the place in which this function's value is going to be returned. (This happens only in a hard ! register.) Stored in the `return_val' field and printed as `/i'. ! `REG_POINTER (X)' ! Nonzero in a `reg' if the register holds a pointer. Stored in the ! `frame_related' field and printed as `/f'. ! `REG_USERVAR_P (X)' ! In a `reg', nonzero if it corresponds to a variable present in the user's source code. Zero for temporaries generated internally by ! the compiler. Stored in the `volatil' field and printed as `/v'. The same hard register may be used also for collecting the values ! of functions called by this one, but `REG_FUNCTION_VALUE_P' is zero in this kind of use. ! `RTX_FRAME_RELATED_P (X)' ! Nonzero in an `insn', `call_insn', `jump_insn', `barrier', or ! `set' which is part of a function prologue and sets the stack ! pointer, sets the frame pointer, or saves a register. This flag ! should also be set on an instruction that sets up a temporary ! register to use in place of the frame pointer. Stored in the ! `frame_related' field and printed as `/f'. In particular, on RISC targets where there are limits on the sizes of immediate constants, it is sometimes impossible to reach the --- 7731,7844 ---- 10.5 Flags in an RTL Expression =============================== ! RTL expressions contain several flags (one-bit bit-fields) that are used ! in certain types of expression. Most often they are accessed with the ! following macros, which expand into lvalues. ! 'CONSTANT_POOL_ADDRESS_P (X)' ! Nonzero in a 'symbol_ref' if it refers to part of the current function's constant pool. For most targets these addresses are in ! a '.rodata' section entirely separate from the function, but for some targets the addresses are close to the beginning of the function. In either case GCC assumes these addresses can be addressed directly, perhaps with the help of base registers. ! Stored in the 'unchanging' field and printed as '/u'. ! 'RTL_CONST_CALL_P (X)' ! In a 'call_insn' indicates that the insn represents a call to a ! const function. Stored in the 'unchanging' field and printed as ! '/u'. ! 'RTL_PURE_CALL_P (X)' ! In a 'call_insn' indicates that the insn represents a call to a ! pure function. Stored in the 'return_val' field and printed as ! '/i'. ! 'RTL_CONST_OR_PURE_CALL_P (X)' ! In a 'call_insn', true if 'RTL_CONST_CALL_P' or 'RTL_PURE_CALL_P' is true. ! 'RTL_LOOPING_CONST_OR_PURE_CALL_P (X)' ! In a 'call_insn' indicates that the insn represents a possibly infinite looping call to a const or pure function. Stored in the ! 'call' field and printed as '/c'. Only true if one of ! 'RTL_CONST_CALL_P' or 'RTL_PURE_CALL_P' is true. ! 'INSN_ANNULLED_BRANCH_P (X)' ! In a 'jump_insn', 'call_insn', or 'insn' indicates that the branch ! is an annulling one. See the discussion under 'sequence' below. ! Stored in the 'unchanging' field and printed as '/u'. ! 'INSN_DELETED_P (X)' ! In an 'insn', 'call_insn', 'jump_insn', 'code_label', 'barrier', or ! 'note', nonzero if the insn has been deleted. Stored in the ! 'volatil' field and printed as '/v'. ! 'INSN_FROM_TARGET_P (X)' ! In an 'insn' or 'jump_insn' or 'call_insn' in a delay slot of a branch, indicates that the insn is from the target of the branch. ! If the branch insn has 'INSN_ANNULLED_BRANCH_P' set, this insn will ! only be executed if the branch is taken. For annulled branches ! with 'INSN_FROM_TARGET_P' clear, the insn will be executed only if ! the branch is not taken. When 'INSN_ANNULLED_BRANCH_P' is not set, ! this insn will always be executed. Stored in the 'in_struct' field ! and printed as '/s'. ! 'LABEL_PRESERVE_P (X)' ! In a 'code_label' or 'note', indicates that the label is referenced ! by code or data not visible to the RTL of a given function. Labels ! referenced by a non-local goto will have this bit set. Stored in ! the 'in_struct' field and printed as '/s'. ! 'LABEL_REF_NONLOCAL_P (X)' ! In 'label_ref' and 'reg_label' expressions, nonzero if this is a ! reference to a non-local label. Stored in the 'volatil' field and ! printed as '/v'. ! 'MEM_KEEP_ALIAS_SET_P (X)' ! In 'mem' expressions, 1 if we should keep the alias set for this mem unchanged when we access a component. Set to 1, for example, when we are already in a non-addressable component of an aggregate. ! Stored in the 'jump' field and printed as '/j'. ! 'MEM_VOLATILE_P (X)' ! In 'mem', 'asm_operands', and 'asm_input' expressions, nonzero for ! volatile memory references. Stored in the 'volatil' field and ! printed as '/v'. ! 'MEM_NOTRAP_P (X)' ! In 'mem', nonzero for memory references that will not trap. Stored ! in the 'call' field and printed as '/c'. ! 'MEM_POINTER (X)' ! Nonzero in a 'mem' if the memory reference holds a pointer. Stored ! in the 'frame_related' field and printed as '/f'. ! 'REG_FUNCTION_VALUE_P (X)' ! Nonzero in a 'reg' if it is the place in which this function's value is going to be returned. (This happens only in a hard ! register.) Stored in the 'return_val' field and printed as '/i'. ! 'REG_POINTER (X)' ! Nonzero in a 'reg' if the register holds a pointer. Stored in the ! 'frame_related' field and printed as '/f'. ! 'REG_USERVAR_P (X)' ! In a 'reg', nonzero if it corresponds to a variable present in the user's source code. Zero for temporaries generated internally by ! the compiler. Stored in the 'volatil' field and printed as '/v'. The same hard register may be used also for collecting the values ! of functions called by this one, but 'REG_FUNCTION_VALUE_P' is zero in this kind of use. ! 'RTX_FRAME_RELATED_P (X)' ! Nonzero in an 'insn', 'call_insn', 'jump_insn', 'barrier', or 'set' ! which is part of a function prologue and sets the stack pointer, ! sets the frame pointer, or saves a register. This flag should also ! be set on an instruction that sets up a temporary register to use ! in place of the frame pointer. Stored in the 'frame_related' field ! and printed as '/f'. In particular, on RISC targets where there are limits on the sizes of immediate constants, it is sometimes impossible to reach the *************** the following macros, which expand into *** 7989,8008 **** save area, and the Canonical Frame Address, i.e., DWARF2's logical frame pointer, register must (temporarily) be changed to be this temporary register. So, the instruction that sets this temporary ! register must be marked as `RTX_FRAME_RELATED_P'. If the marked instruction is overly complex (defined in terms of ! what `dwarf2out_frame_debug_expr' can handle), you will also have ! to create a `REG_FRAME_RELATED_EXPR' note and attach it to the instruction. This note should contain a simple expression of the computation performed by this instruction, i.e., one that ! `dwarf2out_frame_debug_expr' can handle. This flag is required for exception handling support on targets with RTL prologues. ! `MEM_READONLY_P (X)' ! Nonzero in a `mem', if the memory is statically allocated and read-only. Read-only in this context means never modified during the lifetime --- 7847,7866 ---- save area, and the Canonical Frame Address, i.e., DWARF2's logical frame pointer, register must (temporarily) be changed to be this temporary register. So, the instruction that sets this temporary ! register must be marked as 'RTX_FRAME_RELATED_P'. If the marked instruction is overly complex (defined in terms of ! what 'dwarf2out_frame_debug_expr' can handle), you will also have ! to create a 'REG_FRAME_RELATED_EXPR' note and attach it to the instruction. This note should contain a simple expression of the computation performed by this instruction, i.e., one that ! 'dwarf2out_frame_debug_expr' can handle. This flag is required for exception handling support on targets with RTL prologues. ! 'MEM_READONLY_P (X)' ! Nonzero in a 'mem', if the memory is statically allocated and read-only. Read-only in this context means never modified during the lifetime *************** the following macros, which expand into *** 8013,8220 **** from the runtime loader to the application, this memory will never be subsequently modified. ! Stored in the `unchanging' field and printed as `/u'. ! `SCHED_GROUP_P (X)' ! During instruction scheduling, in an `insn', `call_insn' or ! `jump_insn', indicates that the previous insn must be scheduled together with this insn. This is used to ensure that certain groups of instructions will not be split up by the instruction ! scheduling pass, for example, `use' insns before a `call_insn' may ! not be separated from the `call_insn'. Stored in the `in_struct' ! field and printed as `/s'. ! `SET_IS_RETURN_P (X)' ! For a `set', nonzero if it is for a return. Stored in the `jump' ! field and printed as `/j'. ! `SIBLING_CALL_P (X)' ! For a `call_insn', nonzero if the insn is a sibling call. Stored ! in the `jump' field and printed as `/j'. ! `STRING_POOL_ADDRESS_P (X)' ! For a `symbol_ref' expression, nonzero if it addresses this ! function's string constant pool. Stored in the `frame_related' ! field and printed as `/f'. ! `SUBREG_PROMOTED_UNSIGNED_P (X)' ! Returns a value greater then zero for a `subreg' that has ! `SUBREG_PROMOTED_VAR_P' nonzero if the object being referenced is ! kept zero-extended, zero if it is kept sign-extended, and less ! then zero if it is extended some other way via the `ptr_extend' ! instruction. Stored in the `unchanging' field and `volatil' ! field, printed as `/u' and `/v'. This macro may only be used to ! get the value it may not be used to change the value. Use ! `SUBREG_PROMOTED_UNSIGNED_SET' to change the value. ! `SUBREG_PROMOTED_UNSIGNED_SET (X)' ! Set the `unchanging' and `volatil' fields in a `subreg' to reflect ! zero, sign, or other extension. If `volatil' is zero, then ! `unchanging' as nonzero means zero extension and as zero means ! sign extension. If `volatil' is nonzero then some other type of ! extension was done via the `ptr_extend' instruction. ! `SUBREG_PROMOTED_VAR_P (X)' ! Nonzero in a `subreg' if it was made when accessing an object that ! was promoted to a wider mode in accord with the `PROMOTED_MODE' machine description macro (*note Storage Layout::). In this case, ! the mode of the `subreg' is the declared mode of the object and ! the mode of `SUBREG_REG' is the mode of the register that holds ! the object. Promoted variables are always either sign- or ! zero-extended to the wider mode on every assignment. Stored in ! the `in_struct' field and printed as `/s'. ! `SYMBOL_REF_USED (X)' ! In a `symbol_ref', indicates that X has been used. This is ! normally only used to ensure that X is only declared external ! once. Stored in the `used' field. ! `SYMBOL_REF_WEAK (X)' ! In a `symbol_ref', indicates that X has been declared weak. ! Stored in the `return_val' field and printed as `/i'. ! `SYMBOL_REF_FLAG (X)' ! In a `symbol_ref', this is used as a flag for machine-specific ! purposes. Stored in the `volatil' field and printed as `/v'. ! Most uses of `SYMBOL_REF_FLAG' are historic and may be subsumed by ! `SYMBOL_REF_FLAGS'. Certainly use of `SYMBOL_REF_FLAGS' is mandatory if the target requires more than one bit of storage. ! `PREFETCH_SCHEDULE_BARRIER_P (X)' ! In a `prefetch', indicates that the prefetch is a scheduling barrier. No other INSNs will be moved over it. Stored in the ! `volatil' field and printed as `/v'. These are the fields to which the above macros refer: ! `call' ! In a `mem', 1 means that the memory reference will not trap. ! In a `call', 1 means that this pure or const call may possibly infinite loop. ! In an RTL dump, this flag is represented as `/c'. ! `frame_related' ! In an `insn' or `set' expression, 1 means that it is part of a function prologue and sets the stack pointer, sets the frame pointer, saves a register, or sets up a temporary register to use in place of the frame pointer. ! In `reg' expressions, 1 means that the register holds a pointer. ! In `mem' expressions, 1 means that the memory reference holds a pointer. ! In `symbol_ref' expressions, 1 means that the reference addresses this function's string constant pool. ! In an RTL dump, this flag is represented as `/f'. ! `in_struct' ! In `reg' expressions, it is 1 if the register has its entire life contained within the test expression of some loop. ! In `subreg' expressions, 1 means that the `subreg' is accessing an object that has had its mode promoted from a wider mode. ! In `label_ref' expressions, 1 means that the referenced label is outside the innermost loop containing the insn in which the ! `label_ref' was found. ! In `code_label' expressions, it is 1 if the label may never be ! deleted. This is used for labels which are the target of ! non-local gotos. Such a label that would have been deleted is ! replaced with a `note' of type `NOTE_INSN_DELETED_LABEL'. ! In an `insn' during dead-code elimination, 1 means that the insn is dead code. ! In an `insn' or `jump_insn' during reorg for an insn in the delay slot of a branch, 1 means that this insn is from the target of the branch. ! In an `insn' during instruction scheduling, 1 means that this insn must be scheduled as part of a group together with the previous insn. ! In an RTL dump, this flag is represented as `/s'. ! `return_val' ! In `reg' expressions, 1 means the register contains the value to ! be returned by the current function. On machines that pass ! parameters in registers, the same register number may be used for ! parameters as well, but this flag is not set on such uses. ! In `symbol_ref' expressions, 1 means the referenced symbol is weak. ! In `call' expressions, 1 means the call is pure. ! In an RTL dump, this flag is represented as `/i'. ! `jump' ! In a `mem' expression, 1 means we should keep the alias set for this mem unchanged when we access a component. ! In a `set', 1 means it is for a return. ! In a `call_insn', 1 means it is a sibling call. ! In an RTL dump, this flag is represented as `/j'. ! `unchanging' ! In `reg' and `mem' expressions, 1 means that the value of the expression never changes. ! In `subreg' expressions, it is 1 if the `subreg' references an unsigned object whose mode has been promoted to a wider mode. ! In an `insn' or `jump_insn' in the delay slot of a branch instruction, 1 means an annulling branch should be used. ! In a `symbol_ref' expression, 1 means that this symbol addresses something in the per-function constant pool. ! In a `call_insn' 1 means that this instruction is a call to a const function. ! In an RTL dump, this flag is represented as `/u'. ! `used' This flag is used directly (without an access macro) at the end of RTL generation for a function, to count the number of times an expression appears in insns. Expressions that appear more than ! once are copied, according to the rules for shared structure ! (*note Sharing::). ! For a `reg', it is used directly (without an access macro) by the leaf register renumbering code to ensure that each register is only renumbered once. ! In a `symbol_ref', it indicates that an external declaration for the symbol has already been written. ! `volatil' ! In a `mem', `asm_operands', or `asm_input' expression, it is 1 if the memory reference is volatile. Volatile memory references may not be deleted, reordered or combined. ! In a `symbol_ref' expression, it is used for machine-specific purposes. ! In a `reg' expression, it is 1 if the value is a user-level variable. 0 indicates an internal compiler temporary. ! In an `insn', 1 means the insn has been deleted. ! In `label_ref' and `reg_label' expressions, 1 means a reference to a non-local label. ! In `prefetch' expressions, 1 means that the containing insn is a scheduling barrier. ! In an RTL dump, this flag is represented as `/v'.  File: gccint.info, Node: Machine Modes, Next: Constants, Prev: Flags, Up: RTL --- 7871,8078 ---- from the runtime loader to the application, this memory will never be subsequently modified. ! Stored in the 'unchanging' field and printed as '/u'. ! 'SCHED_GROUP_P (X)' ! During instruction scheduling, in an 'insn', 'call_insn' or ! 'jump_insn', indicates that the previous insn must be scheduled together with this insn. This is used to ensure that certain groups of instructions will not be split up by the instruction ! scheduling pass, for example, 'use' insns before a 'call_insn' may ! not be separated from the 'call_insn'. Stored in the 'in_struct' ! field and printed as '/s'. ! 'SET_IS_RETURN_P (X)' ! For a 'set', nonzero if it is for a return. Stored in the 'jump' ! field and printed as '/j'. ! 'SIBLING_CALL_P (X)' ! For a 'call_insn', nonzero if the insn is a sibling call. Stored ! in the 'jump' field and printed as '/j'. ! 'STRING_POOL_ADDRESS_P (X)' ! For a 'symbol_ref' expression, nonzero if it addresses this ! function's string constant pool. Stored in the 'frame_related' ! field and printed as '/f'. ! 'SUBREG_PROMOTED_UNSIGNED_P (X)' ! Returns a value greater then zero for a 'subreg' that has ! 'SUBREG_PROMOTED_VAR_P' nonzero if the object being referenced is ! kept zero-extended, zero if it is kept sign-extended, and less then ! zero if it is extended some other way via the 'ptr_extend' ! instruction. Stored in the 'unchanging' field and 'volatil' field, ! printed as '/u' and '/v'. This macro may only be used to get the ! value it may not be used to change the value. Use ! 'SUBREG_PROMOTED_UNSIGNED_SET' to change the value. ! 'SUBREG_PROMOTED_UNSIGNED_SET (X)' ! Set the 'unchanging' and 'volatil' fields in a 'subreg' to reflect ! zero, sign, or other extension. If 'volatil' is zero, then ! 'unchanging' as nonzero means zero extension and as zero means sign ! extension. If 'volatil' is nonzero then some other type of ! extension was done via the 'ptr_extend' instruction. ! 'SUBREG_PROMOTED_VAR_P (X)' ! Nonzero in a 'subreg' if it was made when accessing an object that ! was promoted to a wider mode in accord with the 'PROMOTED_MODE' machine description macro (*note Storage Layout::). In this case, ! the mode of the 'subreg' is the declared mode of the object and the ! mode of 'SUBREG_REG' is the mode of the register that holds the ! object. Promoted variables are always either sign- or ! zero-extended to the wider mode on every assignment. Stored in the ! 'in_struct' field and printed as '/s'. ! 'SYMBOL_REF_USED (X)' ! In a 'symbol_ref', indicates that X has been used. This is ! normally only used to ensure that X is only declared external once. ! Stored in the 'used' field. ! 'SYMBOL_REF_WEAK (X)' ! In a 'symbol_ref', indicates that X has been declared weak. Stored ! in the 'return_val' field and printed as '/i'. ! 'SYMBOL_REF_FLAG (X)' ! In a 'symbol_ref', this is used as a flag for machine-specific ! purposes. Stored in the 'volatil' field and printed as '/v'. ! Most uses of 'SYMBOL_REF_FLAG' are historic and may be subsumed by ! 'SYMBOL_REF_FLAGS'. Certainly use of 'SYMBOL_REF_FLAGS' is mandatory if the target requires more than one bit of storage. ! 'PREFETCH_SCHEDULE_BARRIER_P (X)' ! In a 'prefetch', indicates that the prefetch is a scheduling barrier. No other INSNs will be moved over it. Stored in the ! 'volatil' field and printed as '/v'. These are the fields to which the above macros refer: ! 'call' ! In a 'mem', 1 means that the memory reference will not trap. ! In a 'call', 1 means that this pure or const call may possibly infinite loop. ! In an RTL dump, this flag is represented as '/c'. ! 'frame_related' ! In an 'insn' or 'set' expression, 1 means that it is part of a function prologue and sets the stack pointer, sets the frame pointer, saves a register, or sets up a temporary register to use in place of the frame pointer. ! In 'reg' expressions, 1 means that the register holds a pointer. ! In 'mem' expressions, 1 means that the memory reference holds a pointer. ! In 'symbol_ref' expressions, 1 means that the reference addresses this function's string constant pool. ! In an RTL dump, this flag is represented as '/f'. ! 'in_struct' ! In 'reg' expressions, it is 1 if the register has its entire life contained within the test expression of some loop. ! In 'subreg' expressions, 1 means that the 'subreg' is accessing an object that has had its mode promoted from a wider mode. ! In 'label_ref' expressions, 1 means that the referenced label is outside the innermost loop containing the insn in which the ! 'label_ref' was found. ! In 'code_label' expressions, it is 1 if the label may never be ! deleted. This is used for labels which are the target of non-local ! gotos. Such a label that would have been deleted is replaced with ! a 'note' of type 'NOTE_INSN_DELETED_LABEL'. ! In an 'insn' during dead-code elimination, 1 means that the insn is dead code. ! In an 'insn' or 'jump_insn' during reorg for an insn in the delay slot of a branch, 1 means that this insn is from the target of the branch. ! In an 'insn' during instruction scheduling, 1 means that this insn must be scheduled as part of a group together with the previous insn. ! In an RTL dump, this flag is represented as '/s'. ! 'return_val' ! In 'reg' expressions, 1 means the register contains the value to be ! returned by the current function. On machines that pass parameters ! in registers, the same register number may be used for parameters ! as well, but this flag is not set on such uses. ! In 'symbol_ref' expressions, 1 means the referenced symbol is weak. ! In 'call' expressions, 1 means the call is pure. ! In an RTL dump, this flag is represented as '/i'. ! 'jump' ! In a 'mem' expression, 1 means we should keep the alias set for this mem unchanged when we access a component. ! In a 'set', 1 means it is for a return. ! In a 'call_insn', 1 means it is a sibling call. ! In an RTL dump, this flag is represented as '/j'. ! 'unchanging' ! In 'reg' and 'mem' expressions, 1 means that the value of the expression never changes. ! In 'subreg' expressions, it is 1 if the 'subreg' references an unsigned object whose mode has been promoted to a wider mode. ! In an 'insn' or 'jump_insn' in the delay slot of a branch instruction, 1 means an annulling branch should be used. ! In a 'symbol_ref' expression, 1 means that this symbol addresses something in the per-function constant pool. ! In a 'call_insn' 1 means that this instruction is a call to a const function. ! In an RTL dump, this flag is represented as '/u'. ! 'used' This flag is used directly (without an access macro) at the end of RTL generation for a function, to count the number of times an expression appears in insns. Expressions that appear more than ! once are copied, according to the rules for shared structure (*note ! Sharing::). ! For a 'reg', it is used directly (without an access macro) by the leaf register renumbering code to ensure that each register is only renumbered once. ! In a 'symbol_ref', it indicates that an external declaration for the symbol has already been written. ! 'volatil' ! In a 'mem', 'asm_operands', or 'asm_input' expression, it is 1 if the memory reference is volatile. Volatile memory references may not be deleted, reordered or combined. ! In a 'symbol_ref' expression, it is used for machine-specific purposes. ! In a 'reg' expression, it is 1 if the value is a user-level variable. 0 indicates an internal compiler temporary. ! In an 'insn', 1 means the insn has been deleted. ! In 'label_ref' and 'reg_label' expressions, 1 means a reference to a non-local label. ! In 'prefetch' expressions, 1 means that the containing insn is a scheduling barrier. ! In an RTL dump, this flag is represented as '/v'.  File: gccint.info, Node: Machine Modes, Next: Constants, Prev: Flags, Up: RTL *************** File: gccint.info, Node: Machine Modes, *** 8224,8561 **** A machine mode describes a size of data object and the representation used for it. In the C code, machine modes are represented by an ! enumeration type, `enum machine_mode', defined in `machmode.def'. Each RTL expression has room for a machine mode and so do certain kinds of tree expressions (declarations and types, to be precise). In debugging dumps and machine descriptions, the machine mode of an RTL expression is written after the expression code with a colon to separate ! them. The letters `mode' which appear at the end of each machine mode ! name are omitted. For example, `(reg:SI 38)' is a `reg' expression ! with machine mode `SImode'. If the mode is `VOIDmode', it is not ! written at all. Here is a table of machine modes. The term "byte" below refers to an ! object of `BITS_PER_UNIT' bits (*note Storage Layout::). ! `BImode' "Bit" mode represents a single bit, for predicate registers. ! `QImode' "Quarter-Integer" mode represents a single byte treated as an integer. ! `HImode' "Half-Integer" mode represents a two-byte integer. ! `PSImode' "Partial Single Integer" mode represents an integer which occupies four bytes but which doesn't really use all four. On some machines, this is the right mode to use for pointers. ! `SImode' "Single Integer" mode represents a four-byte integer. ! `PDImode' "Partial Double Integer" mode represents an integer which occupies eight bytes but which doesn't really use all eight. On some machines, this is the right mode to use for certain pointers. ! `DImode' "Double Integer" mode represents an eight-byte integer. ! `TImode' ! "Tetra Integer" (?) mode represents a sixteen-byte integer. ! `OImode' ! "Octa Integer" (?) mode represents a thirty-two-byte integer. ! `QFmode' "Quarter-Floating" mode represents a quarter-precision (single byte) floating point number. ! `HFmode' "Half-Floating" mode represents a half-precision (two byte) floating point number. ! `TQFmode' ! "Three-Quarter-Floating" (?) mode represents a three-quarter-precision (three byte) floating point number. ! `SFmode' "Single Floating" mode represents a four byte floating point number. In the common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a single-precision IEEE floating point number; it can also be used for double-precision (on processors with 16-bit bytes) and single-precision VAX and IBM types. ! `DFmode' "Double Floating" mode represents an eight byte floating point number. In the common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a double-precision IEEE floating point number. ! `XFmode' "Extended Floating" mode represents an IEEE extended floating point number. This mode only has 80 meaningful bits (ten bytes). Some processors require such numbers to be padded to twelve bytes, others to sixteen; this mode is used for either. ! `SDmode' "Single Decimal Floating" mode represents a four byte decimal floating point number (as distinct from conventional binary floating point). ! `DDmode' "Double Decimal Floating" mode represents an eight byte decimal floating point number. ! `TDmode' "Tetra Decimal Floating" mode represents a sixteen byte decimal floating point number all 128 of whose bits are meaningful. ! `TFmode' "Tetra Floating" mode represents a sixteen byte floating point number all 128 of whose bits are meaningful. One common use is the IEEE quad-precision format. ! `QQmode' "Quarter-Fractional" mode represents a single byte treated as a signed fractional number. The default format is "s.7". ! `HQmode' "Half-Fractional" mode represents a two-byte signed fractional number. The default format is "s.15". ! `SQmode' "Single Fractional" mode represents a four-byte signed fractional number. The default format is "s.31". ! `DQmode' ! "Double Fractional" mode represents an eight-byte signed ! fractional number. The default format is "s.63". ! `TQmode' ! "Tetra Fractional" mode represents a sixteen-byte signed ! fractional number. The default format is "s.127". ! `UQQmode' ! "Unsigned Quarter-Fractional" mode represents a single byte ! treated as an unsigned fractional number. The default format is ! ".8". ! `UHQmode' "Unsigned Half-Fractional" mode represents a two-byte unsigned fractional number. The default format is ".16". ! `USQmode' "Unsigned Single Fractional" mode represents a four-byte unsigned fractional number. The default format is ".32". ! `UDQmode' "Unsigned Double Fractional" mode represents an eight-byte unsigned fractional number. The default format is ".64". ! `UTQmode' "Unsigned Tetra Fractional" mode represents a sixteen-byte unsigned fractional number. The default format is ".128". ! `HAmode' "Half-Accumulator" mode represents a two-byte signed accumulator. The default format is "s8.7". ! `SAmode' "Single Accumulator" mode represents a four-byte signed accumulator. The default format is "s16.15". ! `DAmode' "Double Accumulator" mode represents an eight-byte signed accumulator. The default format is "s32.31". ! `TAmode' "Tetra Accumulator" mode represents a sixteen-byte signed accumulator. The default format is "s64.63". ! `UHAmode' "Unsigned Half-Accumulator" mode represents a two-byte unsigned accumulator. The default format is "8.8". ! `USAmode' "Unsigned Single Accumulator" mode represents a four-byte unsigned accumulator. The default format is "16.16". ! `UDAmode' "Unsigned Double Accumulator" mode represents an eight-byte unsigned accumulator. The default format is "32.32". ! `UTAmode' "Unsigned Tetra Accumulator" mode represents a sixteen-byte unsigned accumulator. The default format is "64.64". ! `CCmode' "Condition Code" mode represents the value of a condition code, which is a machine-specific set of bits used to represent the ! result of a comparison operation. Other machine-specific modes ! may also be used for the condition code. These modes are not used ! on machines that use `cc0' (*note Condition Code::). ! `BLKmode' "Block" mode represents values that are aggregates to which none of the other modes apply. In RTL, only memory references can have this mode, and only if they appear in string-move or vector instructions. On machines which have no such instructions, ! `BLKmode' will not appear in RTL. ! `VOIDmode' Void mode means the absence of a mode or an unspecified mode. For ! example, RTL expressions of code `const_int' have mode `VOIDmode' because they can be taken to have whatever mode the context ! requires. In debugging dumps of RTL, `VOIDmode' is expressed by the absence of any mode. ! `QCmode, HCmode, SCmode, DCmode, XCmode, TCmode' These modes stand for a complex number represented as a pair of ! floating point values. The floating point values are in `QFmode', ! `HFmode', `SFmode', `DFmode', `XFmode', and `TFmode', respectively. ! `CQImode, CHImode, CSImode, CDImode, CTImode, COImode' These modes stand for a complex number represented as a pair of ! integer values. The integer values are in `QImode', `HImode', ! `SImode', `DImode', `TImode', and `OImode', respectively. ! The machine description defines `Pmode' as a C macro which expands ! into the machine mode used for addresses. Normally this is the mode ! whose size is `BITS_PER_WORD', `SImode' on 32-bit machines. ! The only modes which a machine description must support are `QImode', ! and the modes corresponding to `BITS_PER_WORD', `FLOAT_TYPE_SIZE' and ! `DOUBLE_TYPE_SIZE'. The compiler will attempt to use `DImode' for 8-byte structures and unions, but this can be prevented by overriding ! the definition of `MAX_FIXED_MODE_SIZE'. Alternatively, you can have ! the compiler use `TImode' for 16-byte structures and unions. Likewise, ! you can arrange for the C type `short int' to avoid using `HImode'. Very few explicit references to machine modes remain in the compiler and these few references will soon be removed. Instead, the machine modes are divided into mode classes. These are represented by the ! enumeration type `enum mode_class' defined in `machmode.h'. The possible mode classes are: ! `MODE_INT' ! Integer modes. By default these are `BImode', `QImode', `HImode', ! `SImode', `DImode', `TImode', and `OImode'. ! `MODE_PARTIAL_INT' ! The "partial integer" modes, `PQImode', `PHImode', `PSImode' and ! `PDImode'. ! `MODE_FLOAT' ! Floating point modes. By default these are `QFmode', `HFmode', ! `TQFmode', `SFmode', `DFmode', `XFmode' and `TFmode'. ! `MODE_DECIMAL_FLOAT' ! Decimal floating point modes. By default these are `SDmode', ! `DDmode' and `TDmode'. ! `MODE_FRACT' ! Signed fractional modes. By default these are `QQmode', `HQmode', ! `SQmode', `DQmode' and `TQmode'. ! `MODE_UFRACT' ! Unsigned fractional modes. By default these are `UQQmode', ! `UHQmode', `USQmode', `UDQmode' and `UTQmode'. ! `MODE_ACCUM' ! Signed accumulator modes. By default these are `HAmode', ! `SAmode', `DAmode' and `TAmode'. ! `MODE_UACCUM' ! Unsigned accumulator modes. By default these are `UHAmode', ! `USAmode', `UDAmode' and `UTAmode'. ! `MODE_COMPLEX_INT' Complex integer modes. (These are not currently implemented). ! `MODE_COMPLEX_FLOAT' ! Complex floating point modes. By default these are `QCmode', ! `HCmode', `SCmode', `DCmode', `XCmode', and `TCmode'. ! `MODE_FUNCTION' Algol or Pascal function variables including a static chain. (These are not currently implemented). ! `MODE_CC' ! Modes representing condition code values. These are `CCmode' plus ! any `CC_MODE' modes listed in the `MACHINE-modes.def'. *Note Jump Patterns::, also see *note Condition Code::. ! `MODE_RANDOM' This is a catchall mode class for modes which don't fit into the ! above classes. Currently `VOIDmode' and `BLKmode' are in ! `MODE_RANDOM'. Here are some C macros that relate to machine modes: ! `GET_MODE (X)' Returns the machine mode of the RTX X. ! `PUT_MODE (X, NEWMODE)' Alters the machine mode of the RTX X to be NEWMODE. ! `NUM_MACHINE_MODES' Stands for the number of machine modes available on the target machine. This is one greater than the largest numeric value of any machine mode. ! `GET_MODE_NAME (M)' Returns the name of mode M as a string. ! `GET_MODE_CLASS (M)' Returns the mode class of mode M. ! `GET_MODE_WIDER_MODE (M)' Returns the next wider natural mode. For example, the expression ! `GET_MODE_WIDER_MODE (QImode)' returns `HImode'. ! `GET_MODE_SIZE (M)' Returns the size in bytes of a datum of mode M. ! `GET_MODE_BITSIZE (M)' Returns the size in bits of a datum of mode M. ! `GET_MODE_IBIT (M)' Returns the number of integral bits of a datum of fixed-point mode M. ! `GET_MODE_FBIT (M)' Returns the number of fractional bits of a datum of fixed-point mode M. ! `GET_MODE_MASK (M)' Returns a bitmask containing 1 for all bits in a word that fit ! within mode M. This macro can only be used for modes whose ! bitsize is less than or equal to `HOST_BITS_PER_INT'. ! `GET_MODE_ALIGNMENT (M)' Return the required alignment, in bits, for an object of mode M. ! `GET_MODE_UNIT_SIZE (M)' Returns the size in bytes of the subunits of a datum of mode M. ! This is the same as `GET_MODE_SIZE' except in the case of complex modes. For them, the unit size is the size of the real or imaginary part. ! `GET_MODE_NUNITS (M)' Returns the number of units contained in a mode, i.e., ! `GET_MODE_SIZE' divided by `GET_MODE_UNIT_SIZE'. ! `GET_CLASS_NARROWEST_MODE (C)' Returns the narrowest mode in mode class C. ! The global variables `byte_mode' and `word_mode' contain modes whose ! classes are `MODE_INT' and whose bitsizes are either `BITS_PER_UNIT' or ! `BITS_PER_WORD', respectively. On 32-bit machines, these are `QImode' ! and `SImode', respectively.  File: gccint.info, Node: Constants, Next: Regs and Memory, Prev: Machine Modes, Up: RTL --- 8082,8418 ---- A machine mode describes a size of data object and the representation used for it. In the C code, machine modes are represented by an ! enumeration type, 'enum machine_mode', defined in 'machmode.def'. Each RTL expression has room for a machine mode and so do certain kinds of tree expressions (declarations and types, to be precise). In debugging dumps and machine descriptions, the machine mode of an RTL expression is written after the expression code with a colon to separate ! them. The letters 'mode' which appear at the end of each machine mode ! name are omitted. For example, '(reg:SI 38)' is a 'reg' expression with ! machine mode 'SImode'. If the mode is 'VOIDmode', it is not written at ! all. Here is a table of machine modes. The term "byte" below refers to an ! object of 'BITS_PER_UNIT' bits (*note Storage Layout::). ! 'BImode' "Bit" mode represents a single bit, for predicate registers. ! 'QImode' "Quarter-Integer" mode represents a single byte treated as an integer. ! 'HImode' "Half-Integer" mode represents a two-byte integer. ! 'PSImode' "Partial Single Integer" mode represents an integer which occupies four bytes but which doesn't really use all four. On some machines, this is the right mode to use for pointers. ! 'SImode' "Single Integer" mode represents a four-byte integer. ! 'PDImode' "Partial Double Integer" mode represents an integer which occupies eight bytes but which doesn't really use all eight. On some machines, this is the right mode to use for certain pointers. ! 'DImode' "Double Integer" mode represents an eight-byte integer. ! 'TImode' ! "Tetra Integer" (?) mode represents a sixteen-byte integer. ! 'OImode' ! "Octa Integer" (?) mode represents a thirty-two-byte integer. ! 'QFmode' "Quarter-Floating" mode represents a quarter-precision (single byte) floating point number. ! 'HFmode' "Half-Floating" mode represents a half-precision (two byte) floating point number. ! 'TQFmode' ! "Three-Quarter-Floating" (?) mode represents a three-quarter-precision (three byte) floating point number. ! 'SFmode' "Single Floating" mode represents a four byte floating point number. In the common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a single-precision IEEE floating point number; it can also be used for double-precision (on processors with 16-bit bytes) and single-precision VAX and IBM types. ! 'DFmode' "Double Floating" mode represents an eight byte floating point number. In the common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a double-precision IEEE floating point number. ! 'XFmode' "Extended Floating" mode represents an IEEE extended floating point number. This mode only has 80 meaningful bits (ten bytes). Some processors require such numbers to be padded to twelve bytes, others to sixteen; this mode is used for either. ! 'SDmode' "Single Decimal Floating" mode represents a four byte decimal floating point number (as distinct from conventional binary floating point). ! 'DDmode' "Double Decimal Floating" mode represents an eight byte decimal floating point number. ! 'TDmode' "Tetra Decimal Floating" mode represents a sixteen byte decimal floating point number all 128 of whose bits are meaningful. ! 'TFmode' "Tetra Floating" mode represents a sixteen byte floating point number all 128 of whose bits are meaningful. One common use is the IEEE quad-precision format. ! 'QQmode' "Quarter-Fractional" mode represents a single byte treated as a signed fractional number. The default format is "s.7". ! 'HQmode' "Half-Fractional" mode represents a two-byte signed fractional number. The default format is "s.15". ! 'SQmode' "Single Fractional" mode represents a four-byte signed fractional number. The default format is "s.31". ! 'DQmode' ! "Double Fractional" mode represents an eight-byte signed fractional ! number. The default format is "s.63". ! 'TQmode' ! "Tetra Fractional" mode represents a sixteen-byte signed fractional ! number. The default format is "s.127". ! 'UQQmode' ! "Unsigned Quarter-Fractional" mode represents a single byte treated ! as an unsigned fractional number. The default format is ".8". ! 'UHQmode' "Unsigned Half-Fractional" mode represents a two-byte unsigned fractional number. The default format is ".16". ! 'USQmode' "Unsigned Single Fractional" mode represents a four-byte unsigned fractional number. The default format is ".32". ! 'UDQmode' "Unsigned Double Fractional" mode represents an eight-byte unsigned fractional number. The default format is ".64". ! 'UTQmode' "Unsigned Tetra Fractional" mode represents a sixteen-byte unsigned fractional number. The default format is ".128". ! 'HAmode' "Half-Accumulator" mode represents a two-byte signed accumulator. The default format is "s8.7". ! 'SAmode' "Single Accumulator" mode represents a four-byte signed accumulator. The default format is "s16.15". ! 'DAmode' "Double Accumulator" mode represents an eight-byte signed accumulator. The default format is "s32.31". ! 'TAmode' "Tetra Accumulator" mode represents a sixteen-byte signed accumulator. The default format is "s64.63". ! 'UHAmode' "Unsigned Half-Accumulator" mode represents a two-byte unsigned accumulator. The default format is "8.8". ! 'USAmode' "Unsigned Single Accumulator" mode represents a four-byte unsigned accumulator. The default format is "16.16". ! 'UDAmode' "Unsigned Double Accumulator" mode represents an eight-byte unsigned accumulator. The default format is "32.32". ! 'UTAmode' "Unsigned Tetra Accumulator" mode represents a sixteen-byte unsigned accumulator. The default format is "64.64". ! 'CCmode' "Condition Code" mode represents the value of a condition code, which is a machine-specific set of bits used to represent the ! result of a comparison operation. Other machine-specific modes may ! also be used for the condition code. These modes are not used on ! machines that use 'cc0' (*note Condition Code::). ! 'BLKmode' "Block" mode represents values that are aggregates to which none of the other modes apply. In RTL, only memory references can have this mode, and only if they appear in string-move or vector instructions. On machines which have no such instructions, ! 'BLKmode' will not appear in RTL. ! 'VOIDmode' Void mode means the absence of a mode or an unspecified mode. For ! example, RTL expressions of code 'const_int' have mode 'VOIDmode' because they can be taken to have whatever mode the context ! requires. In debugging dumps of RTL, 'VOIDmode' is expressed by the absence of any mode. ! 'QCmode, HCmode, SCmode, DCmode, XCmode, TCmode' These modes stand for a complex number represented as a pair of ! floating point values. The floating point values are in 'QFmode', ! 'HFmode', 'SFmode', 'DFmode', 'XFmode', and 'TFmode', respectively. ! 'CQImode, CHImode, CSImode, CDImode, CTImode, COImode' These modes stand for a complex number represented as a pair of ! integer values. The integer values are in 'QImode', 'HImode', ! 'SImode', 'DImode', 'TImode', and 'OImode', respectively. ! The machine description defines 'Pmode' as a C macro which expands into ! the machine mode used for addresses. Normally this is the mode whose ! size is 'BITS_PER_WORD', 'SImode' on 32-bit machines. ! The only modes which a machine description must support are 'QImode', ! and the modes corresponding to 'BITS_PER_WORD', 'FLOAT_TYPE_SIZE' and ! 'DOUBLE_TYPE_SIZE'. The compiler will attempt to use 'DImode' for 8-byte structures and unions, but this can be prevented by overriding ! the definition of 'MAX_FIXED_MODE_SIZE'. Alternatively, you can have ! the compiler use 'TImode' for 16-byte structures and unions. Likewise, ! you can arrange for the C type 'short int' to avoid using 'HImode'. Very few explicit references to machine modes remain in the compiler and these few references will soon be removed. Instead, the machine modes are divided into mode classes. These are represented by the ! enumeration type 'enum mode_class' defined in 'machmode.h'. The possible mode classes are: ! 'MODE_INT' ! Integer modes. By default these are 'BImode', 'QImode', 'HImode', ! 'SImode', 'DImode', 'TImode', and 'OImode'. ! 'MODE_PARTIAL_INT' ! The "partial integer" modes, 'PQImode', 'PHImode', 'PSImode' and ! 'PDImode'. ! 'MODE_FLOAT' ! Floating point modes. By default these are 'QFmode', 'HFmode', ! 'TQFmode', 'SFmode', 'DFmode', 'XFmode' and 'TFmode'. ! 'MODE_DECIMAL_FLOAT' ! Decimal floating point modes. By default these are 'SDmode', ! 'DDmode' and 'TDmode'. ! 'MODE_FRACT' ! Signed fractional modes. By default these are 'QQmode', 'HQmode', ! 'SQmode', 'DQmode' and 'TQmode'. ! 'MODE_UFRACT' ! Unsigned fractional modes. By default these are 'UQQmode', ! 'UHQmode', 'USQmode', 'UDQmode' and 'UTQmode'. ! 'MODE_ACCUM' ! Signed accumulator modes. By default these are 'HAmode', 'SAmode', ! 'DAmode' and 'TAmode'. ! 'MODE_UACCUM' ! Unsigned accumulator modes. By default these are 'UHAmode', ! 'USAmode', 'UDAmode' and 'UTAmode'. ! 'MODE_COMPLEX_INT' Complex integer modes. (These are not currently implemented). ! 'MODE_COMPLEX_FLOAT' ! Complex floating point modes. By default these are 'QCmode', ! 'HCmode', 'SCmode', 'DCmode', 'XCmode', and 'TCmode'. ! 'MODE_FUNCTION' Algol or Pascal function variables including a static chain. (These are not currently implemented). ! 'MODE_CC' ! Modes representing condition code values. These are 'CCmode' plus ! any 'CC_MODE' modes listed in the 'MACHINE-modes.def'. *Note Jump Patterns::, also see *note Condition Code::. ! 'MODE_RANDOM' This is a catchall mode class for modes which don't fit into the ! above classes. Currently 'VOIDmode' and 'BLKmode' are in ! 'MODE_RANDOM'. Here are some C macros that relate to machine modes: ! 'GET_MODE (X)' Returns the machine mode of the RTX X. ! 'PUT_MODE (X, NEWMODE)' Alters the machine mode of the RTX X to be NEWMODE. ! 'NUM_MACHINE_MODES' Stands for the number of machine modes available on the target machine. This is one greater than the largest numeric value of any machine mode. ! 'GET_MODE_NAME (M)' Returns the name of mode M as a string. ! 'GET_MODE_CLASS (M)' Returns the mode class of mode M. ! 'GET_MODE_WIDER_MODE (M)' Returns the next wider natural mode. For example, the expression ! 'GET_MODE_WIDER_MODE (QImode)' returns 'HImode'. ! 'GET_MODE_SIZE (M)' Returns the size in bytes of a datum of mode M. ! 'GET_MODE_BITSIZE (M)' Returns the size in bits of a datum of mode M. ! 'GET_MODE_IBIT (M)' Returns the number of integral bits of a datum of fixed-point mode M. ! 'GET_MODE_FBIT (M)' Returns the number of fractional bits of a datum of fixed-point mode M. ! 'GET_MODE_MASK (M)' Returns a bitmask containing 1 for all bits in a word that fit ! within mode M. This macro can only be used for modes whose bitsize ! is less than or equal to 'HOST_BITS_PER_INT'. ! 'GET_MODE_ALIGNMENT (M)' Return the required alignment, in bits, for an object of mode M. ! 'GET_MODE_UNIT_SIZE (M)' Returns the size in bytes of the subunits of a datum of mode M. ! This is the same as 'GET_MODE_SIZE' except in the case of complex modes. For them, the unit size is the size of the real or imaginary part. ! 'GET_MODE_NUNITS (M)' Returns the number of units contained in a mode, i.e., ! 'GET_MODE_SIZE' divided by 'GET_MODE_UNIT_SIZE'. ! 'GET_CLASS_NARROWEST_MODE (C)' Returns the narrowest mode in mode class C. ! The global variables 'byte_mode' and 'word_mode' contain modes whose ! classes are 'MODE_INT' and whose bitsizes are either 'BITS_PER_UNIT' or ! 'BITS_PER_WORD', respectively. On 32-bit machines, these are 'QImode' ! and 'SImode', respectively.  File: gccint.info, Node: Constants, Next: Regs and Memory, Prev: Machine Modes, Up: RTL *************** File: gccint.info, Node: Constants, Ne *** 8565,8699 **** The simplest RTL expressions are those that represent constant values. ! `(const_int I)' This type of expression represents the integer value I. I is ! customarily accessed with the macro `INTVAL' as in `INTVAL (EXP)', ! which is equivalent to `XWINT (EXP, 0)'. Constants generated for modes with fewer bits than in ! `HOST_WIDE_INT' must be sign extended to full width (e.g., with ! `gen_int_mode'). For constants for modes with more bits than in ! `HOST_WIDE_INT' the implied high order bits of that constant are copies of the top bit. Note however that values are neither inherently signed nor inherently unsigned; where necessary, signedness is determined by the rtl operation instead. There is only one expression object for the integer value zero; it ! is the value of the variable `const0_rtx'. Likewise, the only ! expression for integer value one is found in `const1_rtx', the only ! expression for integer value two is found in `const2_rtx', and the only expression for integer value negative one is found in ! `constm1_rtx'. Any attempt to create an expression of code ! `const_int' and value zero, one, two or negative one will return ! `const0_rtx', `const1_rtx', `const2_rtx' or `constm1_rtx' as appropriate. Similarly, there is only one object for the integer whose value is ! `STORE_FLAG_VALUE'. It is found in `const_true_rtx'. If ! `STORE_FLAG_VALUE' is one, `const_true_rtx' and `const1_rtx' will ! point to the same object. If `STORE_FLAG_VALUE' is -1, ! `const_true_rtx' and `constm1_rtx' will point to the same object. ! `(const_double:M I0 I1 ...)' ! Represents either a floating-point constant of mode M or an ! integer constant too large to fit into `HOST_BITS_PER_WIDE_INT' ! bits but small enough to fit within twice that number of bits (GCC ! does not provide a mechanism to represent even larger constants). ! In the latter case, M will be `VOIDmode'. For integral values ! constants for modes with more bits than twice the number in ! `HOST_WIDE_INT' the implied high order bits of that constant are ! copies of the top bit of `CONST_DOUBLE_HIGH'. Note however that ! integral values are neither inherently signed nor inherently ! unsigned; where necessary, signedness is determined by the rtl ! operation instead. ! If M is `VOIDmode', the bits of the value are stored in I0 and I1. ! I0 is customarily accessed with the macro `CONST_DOUBLE_LOW' and ! I1 with `CONST_DOUBLE_HIGH'. If the constant is floating point (regardless of its precision), then the number of integers used to store the value depends on the ! size of `REAL_VALUE_TYPE' (*note Floating Point::). The integers represent a floating point number, but not precisely in the target ! machine's or host machine's floating point format. To convert ! them to the precise bit pattern used by the target machine, use ! the macro `REAL_VALUE_TO_TARGET_DOUBLE' and friends (*note Data Output::). ! `(const_fixed:M ...)' ! Represents a fixed-point constant of mode M. The operand is a ! data structure of type `struct fixed_value' and is accessed with ! the macro `CONST_FIXED_VALUE'. The high part of data is accessed ! with `CONST_FIXED_VALUE_HIGH'; the low part is accessed with ! `CONST_FIXED_VALUE_LOW'. ! `(const_vector:M [X0 X1 ...])' Represents a vector constant. The square brackets stand for the vector containing the constant elements. X0, X1 and so on are the ! `const_int', `const_double' or `const_fixed' elements. ! The number of units in a `const_vector' is obtained with the macro ! `CONST_VECTOR_NUNITS' as in `CONST_VECTOR_NUNITS (V)'. Individual elements in a vector constant are accessed with the ! macro `CONST_VECTOR_ELT' as in `CONST_VECTOR_ELT (V, N)' where V ! is the vector constant and N is the element desired. ! `(const_string STR)' Represents a constant string with value STR. Currently this is used only for insn attributes (*note Insn Attributes::) since constant strings in C are placed in memory. ! `(symbol_ref:MODE SYMBOL)' Represents the value of an assembler label for data. SYMBOL is a string that describes the name of the assembler label. If it ! starts with a `*', the label is the rest of SYMBOL not including ! the `*'. Otherwise, the label is SYMBOL, usually prefixed with ! `_'. ! The `symbol_ref' contains a mode, which is usually `Pmode'. Usually that is the only mode for which a symbol is directly valid. ! `(label_ref:MODE LABEL)' Represents the value of an assembler label for code. It contains ! one operand, an expression, which must be a `code_label' or a ! `note' of type `NOTE_INSN_DELETED_LABEL' that appears in the instruction sequence to identify the place where the label should go. The reason for using a distinct expression type for code label references is so that jump optimization can distinguish them. ! The `label_ref' contains a mode, which is usually `Pmode'. ! Usually that is the only mode for which a label is directly valid. ! `(const:M EXP)' Represents a constant that is the result of an assembly-time arithmetic computation. The operand, EXP, is an expression that ! contains only constants (`const_int', `symbol_ref' and `label_ref' ! expressions) combined with `plus' and `minus'. However, not all combinations are valid, since the assembler cannot do arbitrary arithmetic on relocatable symbols. ! M should be `Pmode'. ! `(high:M EXP)' ! Represents the high-order bits of EXP, usually a `symbol_ref'. ! The number of bits is machine-dependent and is normally the number ! of bits specified in an instruction that initializes the high ! order bits of a register. It is used with `lo_sum' to represent ! the typical two-instruction sequence used in RISC machines to ! reference a global memory location. ! M should be `Pmode'. ! The macro `CONST0_RTX (MODE)' refers to an expression with value 0 in ! mode MODE. If mode MODE is of mode class `MODE_INT', it returns ! `const0_rtx'. If mode MODE is of mode class `MODE_FLOAT', it returns a ! `CONST_DOUBLE' expression in mode MODE. Otherwise, it returns a ! `CONST_VECTOR' expression in mode MODE. Similarly, the macro ! `CONST1_RTX (MODE)' refers to an expression with value 1 in mode MODE ! and similarly for `CONST2_RTX'. The `CONST1_RTX' and `CONST2_RTX' macros are undefined for vector modes.  --- 8422,8555 ---- The simplest RTL expressions are those that represent constant values. ! '(const_int I)' This type of expression represents the integer value I. I is ! customarily accessed with the macro 'INTVAL' as in 'INTVAL (EXP)', ! which is equivalent to 'XWINT (EXP, 0)'. Constants generated for modes with fewer bits than in ! 'HOST_WIDE_INT' must be sign extended to full width (e.g., with ! 'gen_int_mode'). For constants for modes with more bits than in ! 'HOST_WIDE_INT' the implied high order bits of that constant are copies of the top bit. Note however that values are neither inherently signed nor inherently unsigned; where necessary, signedness is determined by the rtl operation instead. There is only one expression object for the integer value zero; it ! is the value of the variable 'const0_rtx'. Likewise, the only ! expression for integer value one is found in 'const1_rtx', the only ! expression for integer value two is found in 'const2_rtx', and the only expression for integer value negative one is found in ! 'constm1_rtx'. Any attempt to create an expression of code ! 'const_int' and value zero, one, two or negative one will return ! 'const0_rtx', 'const1_rtx', 'const2_rtx' or 'constm1_rtx' as appropriate. Similarly, there is only one object for the integer whose value is ! 'STORE_FLAG_VALUE'. It is found in 'const_true_rtx'. If ! 'STORE_FLAG_VALUE' is one, 'const_true_rtx' and 'const1_rtx' will ! point to the same object. If 'STORE_FLAG_VALUE' is -1, ! 'const_true_rtx' and 'constm1_rtx' will point to the same object. ! '(const_double:M I0 I1 ...)' ! Represents either a floating-point constant of mode M or an integer ! constant too large to fit into 'HOST_BITS_PER_WIDE_INT' bits but ! small enough to fit within twice that number of bits (GCC does not ! provide a mechanism to represent even larger constants). In the ! latter case, M will be 'VOIDmode'. For integral values constants ! for modes with more bits than twice the number in 'HOST_WIDE_INT' ! the implied high order bits of that constant are copies of the top ! bit of 'CONST_DOUBLE_HIGH'. Note however that integral values are ! neither inherently signed nor inherently unsigned; where necessary, ! signedness is determined by the rtl operation instead. ! If M is 'VOIDmode', the bits of the value are stored in I0 and I1. ! I0 is customarily accessed with the macro 'CONST_DOUBLE_LOW' and I1 ! with 'CONST_DOUBLE_HIGH'. If the constant is floating point (regardless of its precision), then the number of integers used to store the value depends on the ! size of 'REAL_VALUE_TYPE' (*note Floating Point::). The integers represent a floating point number, but not precisely in the target ! machine's or host machine's floating point format. To convert them ! to the precise bit pattern used by the target machine, use the ! macro 'REAL_VALUE_TO_TARGET_DOUBLE' and friends (*note Data Output::). ! '(const_fixed:M ...)' ! Represents a fixed-point constant of mode M. The operand is a data ! structure of type 'struct fixed_value' and is accessed with the ! macro 'CONST_FIXED_VALUE'. The high part of data is accessed with ! 'CONST_FIXED_VALUE_HIGH'; the low part is accessed with ! 'CONST_FIXED_VALUE_LOW'. ! '(const_vector:M [X0 X1 ...])' Represents a vector constant. The square brackets stand for the vector containing the constant elements. X0, X1 and so on are the ! 'const_int', 'const_double' or 'const_fixed' elements. ! The number of units in a 'const_vector' is obtained with the macro ! 'CONST_VECTOR_NUNITS' as in 'CONST_VECTOR_NUNITS (V)'. Individual elements in a vector constant are accessed with the ! macro 'CONST_VECTOR_ELT' as in 'CONST_VECTOR_ELT (V, N)' where V is ! the vector constant and N is the element desired. ! '(const_string STR)' Represents a constant string with value STR. Currently this is used only for insn attributes (*note Insn Attributes::) since constant strings in C are placed in memory. ! '(symbol_ref:MODE SYMBOL)' Represents the value of an assembler label for data. SYMBOL is a string that describes the name of the assembler label. If it ! starts with a '*', the label is the rest of SYMBOL not including ! the '*'. Otherwise, the label is SYMBOL, usually prefixed with ! '_'. ! The 'symbol_ref' contains a mode, which is usually 'Pmode'. Usually that is the only mode for which a symbol is directly valid. ! '(label_ref:MODE LABEL)' Represents the value of an assembler label for code. It contains ! one operand, an expression, which must be a 'code_label' or a ! 'note' of type 'NOTE_INSN_DELETED_LABEL' that appears in the instruction sequence to identify the place where the label should go. The reason for using a distinct expression type for code label references is so that jump optimization can distinguish them. ! The 'label_ref' contains a mode, which is usually 'Pmode'. Usually ! that is the only mode for which a label is directly valid. ! '(const:M EXP)' Represents a constant that is the result of an assembly-time arithmetic computation. The operand, EXP, is an expression that ! contains only constants ('const_int', 'symbol_ref' and 'label_ref' ! expressions) combined with 'plus' and 'minus'. However, not all combinations are valid, since the assembler cannot do arbitrary arithmetic on relocatable symbols. ! M should be 'Pmode'. ! '(high:M EXP)' ! Represents the high-order bits of EXP, usually a 'symbol_ref'. The ! number of bits is machine-dependent and is normally the number of ! bits specified in an instruction that initializes the high order ! bits of a register. It is used with 'lo_sum' to represent the ! typical two-instruction sequence used in RISC machines to reference ! a global memory location. ! M should be 'Pmode'. ! The macro 'CONST0_RTX (MODE)' refers to an expression with value 0 in ! mode MODE. If mode MODE is of mode class 'MODE_INT', it returns ! 'const0_rtx'. If mode MODE is of mode class 'MODE_FLOAT', it returns a ! 'CONST_DOUBLE' expression in mode MODE. Otherwise, it returns a ! 'CONST_VECTOR' expression in mode MODE. Similarly, the macro ! 'CONST1_RTX (MODE)' refers to an expression with value 1 in mode MODE ! and similarly for 'CONST2_RTX'. The 'CONST1_RTX' and 'CONST2_RTX' macros are undefined for vector modes.  *************** File: gccint.info, Node: Regs and Memor *** 8705,8713 **** Here are the RTL expression types for describing access to machine registers and to main memory. ! `(reg:M N)' For small values of the integer N (those that are less than ! `FIRST_PSEUDO_REGISTER'), this stands for a reference to machine register number N: a "hard register". For larger values of N, it stands for a temporary value or "pseudo register". The compiler's strategy is to generate code assuming an unlimited number of such --- 8561,8569 ---- Here are the RTL expression types for describing access to machine registers and to main memory. ! '(reg:M N)' For small values of the integer N (those that are less than ! 'FIRST_PSEUDO_REGISTER'), this stands for a reference to machine register number N: a "hard register". For larger values of N, it stands for a temporary value or "pseudo register". The compiler's strategy is to generate code assuming an unlimited number of such *************** registers and to main memory. *** 8724,8730 **** Even for a register that the machine can access in only one mode, the mode must always be specified. ! The symbol `FIRST_PSEUDO_REGISTER' is defined by the machine description, since the number of hard registers on the machine is an invariant characteristic of the machine. Note, however, that not all of the machine registers must be general registers. All --- 8580,8586 ---- Even for a register that the machine can access in only one mode, the mode must always be specified. ! The symbol 'FIRST_PSEUDO_REGISTER' is defined by the machine description, since the number of hard registers on the machine is an invariant characteristic of the machine. Note, however, that not all of the machine registers must be general registers. All *************** registers and to main memory. *** 8735,8878 **** A hard register may be accessed in various modes throughout one function, but each pseudo register is given a natural mode and is accessed only in that mode. When it is necessary to describe an ! access to a pseudo register using a nonnatural mode, a `subreg' expression is used. ! A `reg' expression with a machine mode that specifies more than ! one word of data may actually stand for several consecutive ! registers. If in addition the register number specifies a ! hardware register, then it actually represents several consecutive ! hardware registers starting with the specified one. Each pseudo register number used in a function's RTL code is ! represented by a unique `reg' expression. Some pseudo register numbers, those within the range of ! `FIRST_VIRTUAL_REGISTER' to `LAST_VIRTUAL_REGISTER' only appear during the RTL generation phase and are eliminated before the optimization phases. These represent locations in the stack frame ! that cannot be determined until RTL generation for the function ! has been completed. The following virtual register numbers are defined: ! `VIRTUAL_INCOMING_ARGS_REGNUM' ! This points to the first word of the incoming arguments ! passed on the stack. Normally these arguments are placed ! there by the caller, but the callee may have pushed some ! arguments that were previously passed in registers. When RTL generation is complete, this virtual register is replaced by the sum of the register given by ! `ARG_POINTER_REGNUM' and the value of `FIRST_PARM_OFFSET'. ! `VIRTUAL_STACK_VARS_REGNUM' ! If `FRAME_GROWS_DOWNWARD' is defined to a nonzero value, this points to immediately above the first variable on the stack. Otherwise, it points to the first variable on the stack. ! `VIRTUAL_STACK_VARS_REGNUM' is replaced with the sum of the ! register given by `FRAME_POINTER_REGNUM' and the value ! `STARTING_FRAME_OFFSET'. ! `VIRTUAL_STACK_DYNAMIC_REGNUM' ! This points to the location of dynamically allocated memory ! on the stack immediately after the stack pointer has been adjusted by the amount of memory desired. This virtual register is replaced by the sum of the register ! given by `STACK_POINTER_REGNUM' and the value ! `STACK_DYNAMIC_OFFSET'. ! `VIRTUAL_OUTGOING_ARGS_REGNUM' This points to the location in the stack at which outgoing arguments should be written when the stack is pre-pushed (arguments pushed using push insns should always use ! `STACK_POINTER_REGNUM'). This virtual register is replaced by the sum of the register ! given by `STACK_POINTER_REGNUM' and the value ! `STACK_POINTER_OFFSET'. ! `(subreg:M1 REG:M2 BYTENUM)' ! `subreg' expressions are used to refer to a register in a machine mode other than its natural one, or to refer to one register of a ! multi-part `reg' that actually refers to several registers. Each pseudo register has a natural mode. If it is necessary to ! operate on it in a different mode, the register must be enclosed ! in a `subreg'. There are currently three supported types for the first operand of ! a `subreg': ! * pseudo registers This is the most common case. Most ! `subreg's have pseudo `reg's as their first operand. ! * mem `subreg's of `mem' were common in earlier versions of GCC and are still supported. During the reload pass these are ! replaced by plain `mem's. On machines that do not do ! instruction scheduling, use of `subreg's of `mem' are still ! used, but this is no longer recommended. Such `subreg's are ! considered to be `register_operand's rather than ! `memory_operand's before and during reload. Because of this, the scheduling passes cannot properly schedule instructions ! with `subreg's of `mem', so for machines that do scheduling, ! `subreg's of `mem' should never be used. To support this, ! the combine and recog passes have explicit code to inhibit ! the creation of `subreg's of `mem' when `INSN_SCHEDULING' is defined. ! The use of `subreg's of `mem' after the reload pass is an area that is not well understood and should be avoided. There is ! still some code in the compiler to support this, but this ! code has possibly rotted. This use of `subreg's is ! discouraged and will most likely not be supported in the ! future. * hard registers It is seldom necessary to wrap hard registers ! in `subreg's; such registers would normally reduce to a ! single `reg' rtx. This use of `subreg's is discouraged and ! may not be supported in the future. ! ! `subreg's of `subreg's are not supported. Using ! `simplify_gen_subreg' is the recommended way to avoid this problem. ! `subreg's come in two distinct flavors, each having its own usage and rules: ! Paradoxical subregs ! When M1 is strictly wider than M2, the `subreg' expression is called "paradoxical". The canonical test for this class of ! `subreg' is: GET_MODE_SIZE (M1) > GET_MODE_SIZE (M2) ! Paradoxical `subreg's can be used as both lvalues and rvalues. When used as an lvalue, the low-order bits of the source value ! are stored in REG and the high-order bits are discarded. ! When used as an rvalue, the low-order bits of the `subreg' are taken from REG while the high-order bits may or may not be defined. The high-order bits of rvalues are in the following circumstances: ! * `subreg's of `mem' When M2 is smaller than a word, the ! macro `LOAD_EXTEND_OP', can control how the high-order bits are defined. ! * `subreg' of `reg's The upper bits are defined when ! `SUBREG_PROMOTED_VAR_P' is true. ! `SUBREG_PROMOTED_UNSIGNED_P' describes what the upper bits hold. Such subregs usually represent local variables, register variables and parameter pseudo variables that have been promoted to a wider mode. ! ! BYTENUM is always zero for a paradoxical `subreg', even on big-endian targets. ! For example, the paradoxical `subreg': (set (subreg:SI (reg:HI X) 0) Y) --- 8591,8732 ---- A hard register may be accessed in various modes throughout one function, but each pseudo register is given a natural mode and is accessed only in that mode. When it is necessary to describe an ! access to a pseudo register using a nonnatural mode, a 'subreg' expression is used. ! A 'reg' expression with a machine mode that specifies more than one ! word of data may actually stand for several consecutive registers. ! If in addition the register number specifies a hardware register, ! then it actually represents several consecutive hardware registers ! starting with the specified one. Each pseudo register number used in a function's RTL code is ! represented by a unique 'reg' expression. Some pseudo register numbers, those within the range of ! 'FIRST_VIRTUAL_REGISTER' to 'LAST_VIRTUAL_REGISTER' only appear during the RTL generation phase and are eliminated before the optimization phases. These represent locations in the stack frame ! that cannot be determined until RTL generation for the function has ! been completed. The following virtual register numbers are defined: ! 'VIRTUAL_INCOMING_ARGS_REGNUM' ! This points to the first word of the incoming arguments passed ! on the stack. Normally these arguments are placed there by ! the caller, but the callee may have pushed some arguments that ! were previously passed in registers. When RTL generation is complete, this virtual register is replaced by the sum of the register given by ! 'ARG_POINTER_REGNUM' and the value of 'FIRST_PARM_OFFSET'. ! 'VIRTUAL_STACK_VARS_REGNUM' ! If 'FRAME_GROWS_DOWNWARD' is defined to a nonzero value, this points to immediately above the first variable on the stack. Otherwise, it points to the first variable on the stack. ! 'VIRTUAL_STACK_VARS_REGNUM' is replaced with the sum of the ! register given by 'FRAME_POINTER_REGNUM' and the value ! 'STARTING_FRAME_OFFSET'. ! 'VIRTUAL_STACK_DYNAMIC_REGNUM' ! This points to the location of dynamically allocated memory on ! the stack immediately after the stack pointer has been adjusted by the amount of memory desired. This virtual register is replaced by the sum of the register ! given by 'STACK_POINTER_REGNUM' and the value ! 'STACK_DYNAMIC_OFFSET'. ! 'VIRTUAL_OUTGOING_ARGS_REGNUM' This points to the location in the stack at which outgoing arguments should be written when the stack is pre-pushed (arguments pushed using push insns should always use ! 'STACK_POINTER_REGNUM'). This virtual register is replaced by the sum of the register ! given by 'STACK_POINTER_REGNUM' and the value ! 'STACK_POINTER_OFFSET'. ! '(subreg:M1 REG:M2 BYTENUM)' ! ! 'subreg' expressions are used to refer to a register in a machine mode other than its natural one, or to refer to one register of a ! multi-part 'reg' that actually refers to several registers. Each pseudo register has a natural mode. If it is necessary to ! operate on it in a different mode, the register must be enclosed in ! a 'subreg'. There are currently three supported types for the first operand of ! a 'subreg': ! * pseudo registers This is the most common case. Most 'subreg's ! have pseudo 'reg's as their first operand. ! * mem 'subreg's of 'mem' were common in earlier versions of GCC and are still supported. During the reload pass these are ! replaced by plain 'mem's. On machines that do not do ! instruction scheduling, use of 'subreg's of 'mem' are still ! used, but this is no longer recommended. Such 'subreg's are ! considered to be 'register_operand's rather than ! 'memory_operand's before and during reload. Because of this, the scheduling passes cannot properly schedule instructions ! with 'subreg's of 'mem', so for machines that do scheduling, ! 'subreg's of 'mem' should never be used. To support this, the ! combine and recog passes have explicit code to inhibit the ! creation of 'subreg's of 'mem' when 'INSN_SCHEDULING' is defined. ! The use of 'subreg's of 'mem' after the reload pass is an area that is not well understood and should be avoided. There is ! still some code in the compiler to support this, but this code ! has possibly rotted. This use of 'subreg's is discouraged and ! will most likely not be supported in the future. * hard registers It is seldom necessary to wrap hard registers ! in 'subreg's; such registers would normally reduce to a single ! 'reg' rtx. This use of 'subreg's is discouraged and may not ! be supported in the future. ! 'subreg's of 'subreg's are not supported. Using ! 'simplify_gen_subreg' is the recommended way to avoid this problem. ! 'subreg's come in two distinct flavors, each having its own usage and rules: ! Paradoxical subregs ! When M1 is strictly wider than M2, the 'subreg' expression is called "paradoxical". The canonical test for this class of ! 'subreg' is: GET_MODE_SIZE (M1) > GET_MODE_SIZE (M2) ! Paradoxical 'subreg's can be used as both lvalues and rvalues. When used as an lvalue, the low-order bits of the source value ! are stored in REG and the high-order bits are discarded. When ! used as an rvalue, the low-order bits of the 'subreg' are taken from REG while the high-order bits may or may not be defined. The high-order bits of rvalues are in the following circumstances: ! * 'subreg's of 'mem' When M2 is smaller than a word, the ! macro 'LOAD_EXTEND_OP', can control how the high-order bits are defined. ! * 'subreg' of 'reg's The upper bits are defined when ! 'SUBREG_PROMOTED_VAR_P' is true. ! 'SUBREG_PROMOTED_UNSIGNED_P' describes what the upper bits hold. Such subregs usually represent local variables, register variables and parameter pseudo variables that have been promoted to a wider mode. ! BYTENUM is always zero for a paradoxical 'subreg', even on big-endian targets. ! For example, the paradoxical 'subreg': (set (subreg:SI (reg:HI X) 0) Y) *************** registers and to main memory. *** 8882,9009 **** (set Z (subreg:SI (reg:HI X) 0)) would set the lower two bytes of Z to Y and set the upper two ! bytes to an unknown value assuming `SUBREG_PROMOTED_VAR_P' is false. ! Normal subregs ! When M1 is at least as narrow as M2 the `subreg' expression ! is called "normal". ! Normal `subreg's restrict consideration to certain bits of REG. There are two cases. If M1 is smaller than a word, the ! `subreg' refers to the least-significant part (or "lowpart") of one word of REG. If M1 is word-sized or greater, the ! `subreg' refers to one or more complete words. ! When used as an lvalue, `subreg' is a word-based accessor. ! Storing to a `subreg' modifies all the words of REG that ! overlap the `subreg', but it leaves the other words of REG alone. ! When storing to a normal `subreg' that is smaller than a word, the other bits of the referenced word are usually left in an undefined state. This laxity makes it easier to generate efficient code for such instructions. To represent an instruction that preserves all the bits outside of those in ! the `subreg', use `strict_low_part' or `zero_extract' around ! the `subreg'. BYTENUM must identify the offset of the first byte of the ! `subreg' from the start of REG, assuming that REG is laid out in memory order. The memory order of bytes is defined by two ! target macros, `WORDS_BIG_ENDIAN' and `BYTES_BIG_ENDIAN': ! * `WORDS_BIG_ENDIAN', if set to 1, says that byte number zero is part of the most significant word; otherwise, it is part of the least significant word. ! * `BYTES_BIG_ENDIAN', if set to 1, says that byte number zero is the most significant byte within a word; otherwise, it is the least significant byte within a word. ! On a few targets, `FLOAT_WORDS_BIG_ENDIAN' disagrees with ! `WORDS_BIG_ENDIAN'. However, most parts of the compiler treat floating point values as if they had the same endianness as ! integer values. This works because they handle them solely ! as a collection of integer values, with no particular ! numerical value. Only real.c and the runtime libraries care ! about `FLOAT_WORDS_BIG_ENDIAN'. Thus, (subreg:HI (reg:SI X) 2) ! on a `BYTES_BIG_ENDIAN', `UNITS_PER_WORD == 4' target is the same as (subreg:HI (reg:SI X) 0) ! on a little-endian, `UNITS_PER_WORD == 4' target. Both ! `subreg's access the lower two bytes of register X. ! ! A `MODE_PARTIAL_INT' mode behaves as if it were as wide as the ! corresponding `MODE_INT' mode, except that it has an unknown ! number of undefined bits. For example: (subreg:PSI (reg:SI 0) 0) ! accesses the whole of `(reg:SI 0)', but the exact relationship ! between the `PSImode' value and the `SImode' value is not defined. ! If we assume `UNITS_PER_WORD <= 4', then the following two ! `subreg's: (subreg:PSI (reg:DI 0) 0) (subreg:PSI (reg:DI 0) 4) ! represent independent 4-byte accesses to the two halves of ! `(reg:DI 0)'. Both `subreg's have an unknown number of undefined ! bits. ! If `UNITS_PER_WORD <= 2' then these two `subreg's: (subreg:HI (reg:PSI 0) 0) (subreg:HI (reg:PSI 0) 2) represent independent 2-byte accesses that together span the whole ! of `(reg:PSI 0)'. Storing to the first `subreg' does not affect ! the value of the second, and vice versa. `(reg:PSI 0)' has an unknown number of undefined bits, so the assignment: (set (subreg:HI (reg:PSI 0) 0) (reg:HI 4)) ! does not guarantee that `(subreg:HI (reg:PSI 0) 0)' has the value ! `(reg:HI 4)'. The rules above apply to both pseudo REGs and hard REGs. If the ! semantics are not correct for particular combinations of M1, M2 ! and hard REG, the target-specific code must ensure that those combinations are never used. For example: CANNOT_CHANGE_MODE_CLASS (M2, M1, CLASS) must be true for every class CLASS that includes REG. ! The first operand of a `subreg' expression is customarily accessed ! with the `SUBREG_REG' macro and the second operand is customarily ! accessed with the `SUBREG_BYTE' macro. It has been several years since a platform in which ! `BYTES_BIG_ENDIAN' not equal to `WORDS_BIG_ENDIAN' has been ! tested. Anyone wishing to support such a platform in the future ! may be confronted with code rot. ! `(scratch:M)' This represents a scratch register that will be required for the execution of a single instruction and not used subsequently. It is ! converted into a `reg' by either the local register allocator or the reload pass. ! `scratch' is usually present inside a `clobber' operation (*note Side Effects::). ! `(cc0)' This refers to the machine's condition code register. It has no operands and may not have a machine mode. There are two ways to use it: --- 8736,8861 ---- (set Z (subreg:SI (reg:HI X) 0)) would set the lower two bytes of Z to Y and set the upper two ! bytes to an unknown value assuming 'SUBREG_PROMOTED_VAR_P' is false. ! Normal subregs ! When M1 is at least as narrow as M2 the 'subreg' expression is ! called "normal". ! Normal 'subreg's restrict consideration to certain bits of REG. There are two cases. If M1 is smaller than a word, the ! 'subreg' refers to the least-significant part (or "lowpart") of one word of REG. If M1 is word-sized or greater, the ! 'subreg' refers to one or more complete words. ! When used as an lvalue, 'subreg' is a word-based accessor. ! Storing to a 'subreg' modifies all the words of REG that ! overlap the 'subreg', but it leaves the other words of REG alone. ! When storing to a normal 'subreg' that is smaller than a word, the other bits of the referenced word are usually left in an undefined state. This laxity makes it easier to generate efficient code for such instructions. To represent an instruction that preserves all the bits outside of those in ! the 'subreg', use 'strict_low_part' or 'zero_extract' around ! the 'subreg'. BYTENUM must identify the offset of the first byte of the ! 'subreg' from the start of REG, assuming that REG is laid out in memory order. The memory order of bytes is defined by two ! target macros, 'WORDS_BIG_ENDIAN' and 'BYTES_BIG_ENDIAN': ! * 'WORDS_BIG_ENDIAN', if set to 1, says that byte number zero is part of the most significant word; otherwise, it is part of the least significant word. ! * 'BYTES_BIG_ENDIAN', if set to 1, says that byte number zero is the most significant byte within a word; otherwise, it is the least significant byte within a word. ! On a few targets, 'FLOAT_WORDS_BIG_ENDIAN' disagrees with ! 'WORDS_BIG_ENDIAN'. However, most parts of the compiler treat floating point values as if they had the same endianness as ! integer values. This works because they handle them solely as ! a collection of integer values, with no particular numerical ! value. Only real.c and the runtime libraries care about ! 'FLOAT_WORDS_BIG_ENDIAN'. Thus, (subreg:HI (reg:SI X) 2) ! on a 'BYTES_BIG_ENDIAN', 'UNITS_PER_WORD == 4' target is the same as (subreg:HI (reg:SI X) 0) ! on a little-endian, 'UNITS_PER_WORD == 4' target. Both ! 'subreg's access the lower two bytes of register X. ! A 'MODE_PARTIAL_INT' mode behaves as if it were as wide as the ! corresponding 'MODE_INT' mode, except that it has an unknown number ! of undefined bits. For example: (subreg:PSI (reg:SI 0) 0) ! accesses the whole of '(reg:SI 0)', but the exact relationship ! between the 'PSImode' value and the 'SImode' value is not defined. ! If we assume 'UNITS_PER_WORD <= 4', then the following two ! 'subreg's: (subreg:PSI (reg:DI 0) 0) (subreg:PSI (reg:DI 0) 4) ! represent independent 4-byte accesses to the two halves of '(reg:DI ! 0)'. Both 'subreg's have an unknown number of undefined bits. ! If 'UNITS_PER_WORD <= 2' then these two 'subreg's: (subreg:HI (reg:PSI 0) 0) (subreg:HI (reg:PSI 0) 2) represent independent 2-byte accesses that together span the whole ! of '(reg:PSI 0)'. Storing to the first 'subreg' does not affect ! the value of the second, and vice versa. '(reg:PSI 0)' has an unknown number of undefined bits, so the assignment: (set (subreg:HI (reg:PSI 0) 0) (reg:HI 4)) ! does not guarantee that '(subreg:HI (reg:PSI 0) 0)' has the value ! '(reg:HI 4)'. The rules above apply to both pseudo REGs and hard REGs. If the ! semantics are not correct for particular combinations of M1, M2 and ! hard REG, the target-specific code must ensure that those combinations are never used. For example: CANNOT_CHANGE_MODE_CLASS (M2, M1, CLASS) must be true for every class CLASS that includes REG. ! The first operand of a 'subreg' expression is customarily accessed ! with the 'SUBREG_REG' macro and the second operand is customarily ! accessed with the 'SUBREG_BYTE' macro. It has been several years since a platform in which ! 'BYTES_BIG_ENDIAN' not equal to 'WORDS_BIG_ENDIAN' has been tested. ! Anyone wishing to support such a platform in the future may be ! confronted with code rot. ! '(scratch:M)' This represents a scratch register that will be required for the execution of a single instruction and not used subsequently. It is ! converted into a 'reg' by either the local register allocator or the reload pass. ! 'scratch' is usually present inside a 'clobber' operation (*note Side Effects::). ! '(cc0)' This refers to the machine's condition code register. It has no operands and may not have a machine mode. There are two ways to use it: *************** registers and to main memory. *** 9012,9050 **** best on most machines, where each comparison sets the entire series of flags. ! With this technique, `(cc0)' may be validly used in only two contexts: as the destination of an assignment (in test and compare instructions) and in comparison operators comparing ! against zero (`const_int' with value zero; that is to say, ! `const0_rtx'). * To stand for a single flag that is the result of a single ! condition. This is useful on machines that have only a ! single flag bit, and in which comparison instructions must ! specify the condition to test. ! With this technique, `(cc0)' may be validly used in only two contexts: as the destination of an assignment (in test and compare instructions) where the source is a comparison ! operator, and as the first operand of `if_then_else' (in a conditional branch). ! There is only one expression object of code `cc0'; it is the value ! of the variable `cc0_rtx'. Any attempt to create an expression of ! code `cc0' will return `cc0_rtx'. Instructions can set the condition code implicitly. On many machines, nearly all instructions set the condition code based on the value that they compute or store. It is not necessary to record these actions explicitly in the RTL because the machine description includes a prescription for recognizing the ! instructions that do so (by means of the macro ! `NOTICE_UPDATE_CC'). *Note Condition Code::. Only instructions ! whose sole purpose is to set the condition code, and instructions ! that use the condition code, need mention `(cc0)'. On some machines, the condition code register is given a register ! number and a `reg' is used instead of `(cc0)'. This is usually the preferable approach if only a small subset of instructions modify the condition code. Other machines store condition codes in general registers; in such cases a pseudo register should be used. --- 8864,8902 ---- best on most machines, where each comparison sets the entire series of flags. ! With this technique, '(cc0)' may be validly used in only two contexts: as the destination of an assignment (in test and compare instructions) and in comparison operators comparing ! against zero ('const_int' with value zero; that is to say, ! 'const0_rtx'). * To stand for a single flag that is the result of a single ! condition. This is useful on machines that have only a single ! flag bit, and in which comparison instructions must specify ! the condition to test. ! With this technique, '(cc0)' may be validly used in only two contexts: as the destination of an assignment (in test and compare instructions) where the source is a comparison ! operator, and as the first operand of 'if_then_else' (in a conditional branch). ! There is only one expression object of code 'cc0'; it is the value ! of the variable 'cc0_rtx'. Any attempt to create an expression of ! code 'cc0' will return 'cc0_rtx'. Instructions can set the condition code implicitly. On many machines, nearly all instructions set the condition code based on the value that they compute or store. It is not necessary to record these actions explicitly in the RTL because the machine description includes a prescription for recognizing the ! instructions that do so (by means of the macro 'NOTICE_UPDATE_CC'). ! *Note Condition Code::. Only instructions whose sole purpose is to ! set the condition code, and instructions that use the condition ! code, need mention '(cc0)'. On some machines, the condition code register is given a register ! number and a 'reg' is used instead of '(cc0)'. This is usually the preferable approach if only a small subset of instructions modify the condition code. Other machines store condition codes in general registers; in such cases a pseudo register should be used. *************** registers and to main memory. *** 9054,9095 **** the condition code. This is best handled by normally generating the instruction that does not set the condition code, and making a pattern that both performs the arithmetic and sets the condition ! code register (which would not be `(cc0)' in this case). For ! examples, search for `addcc' and `andcc' in `sparc.md'. ! `(pc)' This represents the machine's program counter. It has no operands ! and may not have a machine mode. `(pc)' may be validly used only in certain specific contexts in jump instructions. ! There is only one expression object of code `pc'; it is the value ! of the variable `pc_rtx'. Any attempt to create an expression of ! code `pc' will return `pc_rtx'. All instructions that do not jump alter the program counter ! implicitly by incrementing it, but there is no need to mention ! this in the RTL. ! `(mem:M ADDR ALIAS)' This RTX represents a reference to main memory at an address represented by the expression ADDR. M specifies how large a unit of memory is accessed. ALIAS specifies an alias set for the reference. In general two items are in different alias sets if they cannot reference the same memory address. ! The construct `(mem:BLK (scratch))' is considered to alias all other memories. Thus it may be used as a memory barrier in epilogue stack deallocation patterns. ! `(concatM RTX RTX)' This RTX represents the concatenation of two other RTXs. This is ! used for complex values. It should only appear in the RTL ! attached to declarations and during RTL generation. It should not ! appear in the ordinary insn chain. ! `(concatnM [RTX ...])' This RTX represents the concatenation of all the RTX to make a ! single value. Like `concat', this should only appear in declarations, and not in the insn chain.  --- 8906,8947 ---- the condition code. This is best handled by normally generating the instruction that does not set the condition code, and making a pattern that both performs the arithmetic and sets the condition ! code register (which would not be '(cc0)' in this case). For ! examples, search for 'addcc' and 'andcc' in 'sparc.md'. ! '(pc)' This represents the machine's program counter. It has no operands ! and may not have a machine mode. '(pc)' may be validly used only in certain specific contexts in jump instructions. ! There is only one expression object of code 'pc'; it is the value ! of the variable 'pc_rtx'. Any attempt to create an expression of ! code 'pc' will return 'pc_rtx'. All instructions that do not jump alter the program counter ! implicitly by incrementing it, but there is no need to mention this ! in the RTL. ! '(mem:M ADDR ALIAS)' This RTX represents a reference to main memory at an address represented by the expression ADDR. M specifies how large a unit of memory is accessed. ALIAS specifies an alias set for the reference. In general two items are in different alias sets if they cannot reference the same memory address. ! The construct '(mem:BLK (scratch))' is considered to alias all other memories. Thus it may be used as a memory barrier in epilogue stack deallocation patterns. ! '(concatM RTX RTX)' This RTX represents the concatenation of two other RTXs. This is ! used for complex values. It should only appear in the RTL attached ! to declarations and during RTL generation. It should not appear in ! the ordinary insn chain. ! '(concatnM [RTX ...])' This RTX represents the concatenation of all the RTX to make a ! single value. Like 'concat', this should only appear in declarations, and not in the insn chain.  *************** File: gccint.info, Node: Arithmetic, N *** 9099,9196 **** =================================== Unless otherwise specified, all the operands of arithmetic expressions ! must be valid for mode M. An operand is valid for mode M if it has ! mode M, or if it is a `const_int' or `const_double' and M is a mode of ! class `MODE_INT'. For commutative binary operations, constants should be placed in the second operand. ! `(plus:M X Y)' ! `(ss_plus:M X Y)' ! `(us_plus:M X Y)' These three expressions all represent the sum of the values represented by X and Y carried out in machine mode M. They differ ! in their behavior on overflow of integer modes. `plus' wraps ! round modulo the width of M; `ss_plus' saturates at the maximum ! signed value representable in M; `us_plus' saturates at the ! maximum unsigned value. - `(lo_sum:M X Y)' This expression represents the sum of X and the low-order bits of ! Y. It is used with `high' (*note Constants::) to represent the ! typical two-instruction sequence used in RISC machines to ! reference a global memory location. The number of low order bits is machine-dependent but is normally ! the number of bits in a `Pmode' item minus the number of bits set ! by `high'. ! M should be `Pmode'. - `(minus:M X Y)' - `(ss_minus:M X Y)' - `(us_minus:M X Y)' These three expressions represent the result of subtracting Y from X, carried out in mode M. Behavior on overflow is the same as for ! the three variants of `plus' (see above). ! `(compare:M X Y)' Represents the result of subtracting Y from X for purposes of comparison. The result is computed without overflow, as if with infinite precision. Of course, machines can't really subtract with infinite precision. ! However, they can pretend to do so when only the sign of the ! result will be used, which is the case when the result is stored ! in the condition code. And that is the _only_ way this kind of ! expression may validly be used: as a value to be stored in the ! condition codes, either `(cc0)' or a register. *Note ! Comparisons::. The mode M is not related to the modes of X and Y, but instead is ! the mode of the condition code value. If `(cc0)' is used, it is ! `VOIDmode'. Otherwise it is some mode in class `MODE_CC', often ! `CCmode'. *Note Condition Code::. If M is `VOIDmode' or ! `CCmode', the operation returns sufficient information (in an ! unspecified format) so that any comparison operator can be applied ! to the result of the `COMPARE' operation. For other modes in ! class `MODE_CC', the operation only returns a subset of this ! information. ! Normally, X and Y must have the same mode. Otherwise, `compare' ! is valid only if the mode of X is in class `MODE_INT' and Y is a ! `const_int' or `const_double' with mode `VOIDmode'. The mode of X determines what mode the comparison is to be done in; thus it must ! not be `VOIDmode'. If one of the operands is a constant, it should be placed in the second operand and the comparison code adjusted as appropriate. ! A `compare' specifying two `VOIDmode' constants is not valid since there is no way to know in what mode the comparison is to be performed; the comparison must either be folded during the compilation or the first operand must be loaded into a register while its mode is still known. ! `(neg:M X)' ! `(ss_neg:M X)' ! `(us_neg:M X)' These two expressions represent the negation (subtraction from zero) of the value represented by X, carried out in mode M. They differ in the behavior on overflow of integer modes. In the case ! of `neg', the negation of the operand may be a number not representable in mode M, in which case it is truncated to M. ! `ss_neg' and `us_neg' ensure that an out-of-bounds result ! saturates to the maximum or minimum signed or unsigned value. ! `(mult:M X Y)' ! `(ss_mult:M X Y)' ! `(us_mult:M X Y)' Represents the signed product of the values represented by X and Y ! carried out in machine mode M. `ss_mult' and `us_mult' ensure ! that an out-of-bounds result saturates to the maximum or minimum ! signed or unsigned value. Some machines support a multiplication that generates a product wider than the operands. Write the pattern for this as --- 8951,9049 ---- =================================== Unless otherwise specified, all the operands of arithmetic expressions ! must be valid for mode M. An operand is valid for mode M if it has mode ! M, or if it is a 'const_int' or 'const_double' and M is a mode of class ! 'MODE_INT'. For commutative binary operations, constants should be placed in the second operand. ! '(plus:M X Y)' ! '(ss_plus:M X Y)' ! '(us_plus:M X Y)' ! These three expressions all represent the sum of the values represented by X and Y carried out in machine mode M. They differ ! in their behavior on overflow of integer modes. 'plus' wraps round ! modulo the width of M; 'ss_plus' saturates at the maximum signed ! value representable in M; 'us_plus' saturates at the maximum ! unsigned value. ! ! '(lo_sum:M X Y)' This expression represents the sum of X and the low-order bits of ! Y. It is used with 'high' (*note Constants::) to represent the ! typical two-instruction sequence used in RISC machines to reference ! a global memory location. The number of low order bits is machine-dependent but is normally ! the number of bits in a 'Pmode' item minus the number of bits set ! by 'high'. ! M should be 'Pmode'. ! ! '(minus:M X Y)' ! '(ss_minus:M X Y)' ! '(us_minus:M X Y)' These three expressions represent the result of subtracting Y from X, carried out in mode M. Behavior on overflow is the same as for ! the three variants of 'plus' (see above). ! '(compare:M X Y)' Represents the result of subtracting Y from X for purposes of comparison. The result is computed without overflow, as if with infinite precision. Of course, machines can't really subtract with infinite precision. ! However, they can pretend to do so when only the sign of the result ! will be used, which is the case when the result is stored in the ! condition code. And that is the _only_ way this kind of expression ! may validly be used: as a value to be stored in the condition ! codes, either '(cc0)' or a register. *Note Comparisons::. The mode M is not related to the modes of X and Y, but instead is ! the mode of the condition code value. If '(cc0)' is used, it is ! 'VOIDmode'. Otherwise it is some mode in class 'MODE_CC', often ! 'CCmode'. *Note Condition Code::. If M is 'VOIDmode' or 'CCmode', ! the operation returns sufficient information (in an unspecified ! format) so that any comparison operator can be applied to the ! result of the 'COMPARE' operation. For other modes in class ! 'MODE_CC', the operation only returns a subset of this information. ! Normally, X and Y must have the same mode. Otherwise, 'compare' is ! valid only if the mode of X is in class 'MODE_INT' and Y is a ! 'const_int' or 'const_double' with mode 'VOIDmode'. The mode of X determines what mode the comparison is to be done in; thus it must ! not be 'VOIDmode'. If one of the operands is a constant, it should be placed in the second operand and the comparison code adjusted as appropriate. ! A 'compare' specifying two 'VOIDmode' constants is not valid since there is no way to know in what mode the comparison is to be performed; the comparison must either be folded during the compilation or the first operand must be loaded into a register while its mode is still known. ! '(neg:M X)' ! '(ss_neg:M X)' ! '(us_neg:M X)' These two expressions represent the negation (subtraction from zero) of the value represented by X, carried out in mode M. They differ in the behavior on overflow of integer modes. In the case ! of 'neg', the negation of the operand may be a number not representable in mode M, in which case it is truncated to M. ! 'ss_neg' and 'us_neg' ensure that an out-of-bounds result saturates ! to the maximum or minimum signed or unsigned value. ! '(mult:M X Y)' ! '(ss_mult:M X Y)' ! '(us_mult:M X Y)' Represents the signed product of the values represented by X and Y ! carried out in machine mode M. 'ss_mult' and 'us_mult' ensure that ! an out-of-bounds result saturates to the maximum or minimum signed ! or unsigned value. Some machines support a multiplication that generates a product wider than the operands. Write the pattern for this as *************** second operand. *** 9201,9348 **** same. For unsigned widening multiplication, use the same idiom, but with ! `zero_extend' instead of `sign_extend'. ! `(fma:M X Y Z)' ! Represents the `fma', `fmaf', and `fmal' builtin functions that do ! a combined multiply of X and Y and then adding toZ without doing ! an intermediate rounding step. ! `(div:M X Y)' ! `(ss_div:M X Y)' Represents the quotient in signed division of X by Y, carried out in machine mode M. If M is a floating point mode, it represents ! the exact quotient; otherwise, the integerized quotient. `ss_div' ensures that an out-of-bounds result saturates to the maximum or minimum signed value. Some machines have division instructions in which the operands and quotient widths are not all the same; you should represent such ! instructions using `truncate' and `sign_extend' as in, (truncate:M1 (div:M2 X (sign_extend:M2 Y))) ! `(udiv:M X Y)' ! `(us_div:M X Y)' ! Like `div' but represents unsigned division. `us_div' ensures ! that an out-of-bounds result saturates to the maximum or minimum unsigned value. ! `(mod:M X Y)' ! `(umod:M X Y)' ! Like `div' and `udiv' but represent the remainder instead of the quotient. ! `(smin:M X Y)' ! `(smax:M X Y)' ! Represents the smaller (for `smin') or larger (for `smax') of X ! and Y, interpreted as signed values in mode M. When used with ! floating point, if both operands are zeros, or if either operand ! is `NaN', then it is unspecified which of the two operands is ! returned as the result. ! `(umin:M X Y)' ! `(umax:M X Y)' ! Like `smin' and `smax', but the values are interpreted as unsigned integers. ! `(not:M X)' Represents the bitwise complement of the value represented by X, carried out in mode M, which must be a fixed-point machine mode. ! `(and:M X Y)' Represents the bitwise logical-and of the values represented by X and Y, carried out in machine mode M, which must be a fixed-point machine mode. ! `(ior:M X Y)' Represents the bitwise inclusive-or of the values represented by X and Y, carried out in machine mode M, which must be a fixed-point mode. ! `(xor:M X Y)' Represents the bitwise exclusive-or of the values represented by X and Y, carried out in machine mode M, which must be a fixed-point mode. ! `(ashift:M X C)' ! `(ss_ashift:M X C)' ! `(us_ashift:M X C)' These three expressions represent the result of arithmetically shifting X left by C places. They differ in their behavior on ! overflow of integer modes. An `ashift' operation is a plain shift with no special behavior in case of a change in the sign bit; ! `ss_ashift' and `us_ashift' saturates to the minimum or maximum ! representable value if any of the bits shifted out differs from ! the final sign bit. ! X have mode M, a fixed-point machine mode. C be a fixed-point ! mode or be a constant with mode `VOIDmode'; which mode is ! determined by the mode called for in the machine description entry ! for the left-shift instruction. For example, on the VAX, the mode ! of C is `QImode' regardless of M. ! `(lshiftrt:M X C)' ! `(ashiftrt:M X C)' ! Like `ashift' but for right shift. Unlike the case for left shift, these two operations are distinct. ! `(rotate:M X C)' ! `(rotatert:M X C)' Similar but represent left and right rotate. If C is a constant, ! use `rotate'. ! ! `(abs:M X)' ! `(ss_abs:M X)' ! Represents the absolute value of X, computed in mode M. `ss_abs' ensures that an out-of-bounds result saturates to the maximum signed value. ! `(sqrt:M X)' Represents the square root of X, computed in mode M. Most often M will be a floating point mode. ! `(ffs:M X)' Represents one plus the index of the least significant 1-bit in X, represented as an integer of mode M. (The value is zero if X is ! zero.) The mode of X must be M or `VOIDmode'. ! `(clrsb:M X)' Represents the number of redundant leading sign bits in X, represented as an integer of mode M, starting at the most significant bit position. This is one less than the number of ! leading sign bits (either 0 or 1), with no special cases. The ! mode of X must be M or `VOIDmode'. ! `(clz:M X)' Represents the number of leading 0-bits in X, represented as an integer of mode M, starting at the most significant bit position. If X is zero, the value is determined by ! `CLZ_DEFINED_VALUE_AT_ZERO' (*note Misc::). Note that this is one of the few expressions that is not invariant under widening. The ! mode of X must be M or `VOIDmode'. ! `(ctz:M X)' Represents the number of trailing 0-bits in X, represented as an integer of mode M, starting at the least significant bit position. If X is zero, the value is determined by ! `CTZ_DEFINED_VALUE_AT_ZERO' (*note Misc::). Except for this case, ! `ctz(x)' is equivalent to `ffs(X) - 1'. The mode of X must be M ! or `VOIDmode'. ! `(popcount:M X)' Represents the number of 1-bits in X, represented as an integer of ! mode M. The mode of X must be M or `VOIDmode'. ! `(parity:M X)' Represents the number of 1-bits modulo 2 in X, represented as an ! integer of mode M. The mode of X must be M or `VOIDmode'. ! `(bswap:M X)' Represents the value X with the order of bytes reversed, carried out in mode M, which must be a fixed-point machine mode. The mode ! of X must be M or `VOIDmode'.  File: gccint.info, Node: Comparisons, Next: Bit-Fields, Prev: Arithmetic, Up: RTL --- 9054,9200 ---- same. For unsigned widening multiplication, use the same idiom, but with ! 'zero_extend' instead of 'sign_extend'. ! '(fma:M X Y Z)' ! Represents the 'fma', 'fmaf', and 'fmal' builtin functions that do ! a combined multiply of X and Y and then adding toZ without doing an ! intermediate rounding step. ! '(div:M X Y)' ! '(ss_div:M X Y)' Represents the quotient in signed division of X by Y, carried out in machine mode M. If M is a floating point mode, it represents ! the exact quotient; otherwise, the integerized quotient. 'ss_div' ensures that an out-of-bounds result saturates to the maximum or minimum signed value. Some machines have division instructions in which the operands and quotient widths are not all the same; you should represent such ! instructions using 'truncate' and 'sign_extend' as in, (truncate:M1 (div:M2 X (sign_extend:M2 Y))) ! '(udiv:M X Y)' ! '(us_div:M X Y)' ! Like 'div' but represents unsigned division. 'us_div' ensures that ! an out-of-bounds result saturates to the maximum or minimum unsigned value. ! '(mod:M X Y)' ! '(umod:M X Y)' ! Like 'div' and 'udiv' but represent the remainder instead of the quotient. ! '(smin:M X Y)' ! '(smax:M X Y)' ! Represents the smaller (for 'smin') or larger (for 'smax') of X and ! Y, interpreted as signed values in mode M. When used with floating ! point, if both operands are zeros, or if either operand is 'NaN', ! then it is unspecified which of the two operands is returned as the ! result. ! '(umin:M X Y)' ! '(umax:M X Y)' ! Like 'smin' and 'smax', but the values are interpreted as unsigned integers. ! '(not:M X)' Represents the bitwise complement of the value represented by X, carried out in mode M, which must be a fixed-point machine mode. ! '(and:M X Y)' Represents the bitwise logical-and of the values represented by X and Y, carried out in machine mode M, which must be a fixed-point machine mode. ! '(ior:M X Y)' Represents the bitwise inclusive-or of the values represented by X and Y, carried out in machine mode M, which must be a fixed-point mode. ! '(xor:M X Y)' Represents the bitwise exclusive-or of the values represented by X and Y, carried out in machine mode M, which must be a fixed-point mode. ! '(ashift:M X C)' ! '(ss_ashift:M X C)' ! '(us_ashift:M X C)' These three expressions represent the result of arithmetically shifting X left by C places. They differ in their behavior on ! overflow of integer modes. An 'ashift' operation is a plain shift with no special behavior in case of a change in the sign bit; ! 'ss_ashift' and 'us_ashift' saturates to the minimum or maximum ! representable value if any of the bits shifted out differs from the ! final sign bit. ! X have mode M, a fixed-point machine mode. C be a fixed-point mode ! or be a constant with mode 'VOIDmode'; which mode is determined by ! the mode called for in the machine description entry for the ! left-shift instruction. For example, on the VAX, the mode of C is ! 'QImode' regardless of M. ! '(lshiftrt:M X C)' ! '(ashiftrt:M X C)' ! Like 'ashift' but for right shift. Unlike the case for left shift, these two operations are distinct. ! '(rotate:M X C)' ! '(rotatert:M X C)' Similar but represent left and right rotate. If C is a constant, ! use 'rotate'. ! '(abs:M X)' ! '(ss_abs:M X)' ! Represents the absolute value of X, computed in mode M. 'ss_abs' ensures that an out-of-bounds result saturates to the maximum signed value. ! '(sqrt:M X)' Represents the square root of X, computed in mode M. Most often M will be a floating point mode. ! '(ffs:M X)' Represents one plus the index of the least significant 1-bit in X, represented as an integer of mode M. (The value is zero if X is ! zero.) The mode of X must be M or 'VOIDmode'. ! '(clrsb:M X)' Represents the number of redundant leading sign bits in X, represented as an integer of mode M, starting at the most significant bit position. This is one less than the number of ! leading sign bits (either 0 or 1), with no special cases. The mode ! of X must be M or 'VOIDmode'. ! '(clz:M X)' Represents the number of leading 0-bits in X, represented as an integer of mode M, starting at the most significant bit position. If X is zero, the value is determined by ! 'CLZ_DEFINED_VALUE_AT_ZERO' (*note Misc::). Note that this is one of the few expressions that is not invariant under widening. The ! mode of X must be M or 'VOIDmode'. ! '(ctz:M X)' Represents the number of trailing 0-bits in X, represented as an integer of mode M, starting at the least significant bit position. If X is zero, the value is determined by ! 'CTZ_DEFINED_VALUE_AT_ZERO' (*note Misc::). Except for this case, ! 'ctz(x)' is equivalent to 'ffs(X) - 1'. The mode of X must be M or ! 'VOIDmode'. ! '(popcount:M X)' Represents the number of 1-bits in X, represented as an integer of ! mode M. The mode of X must be M or 'VOIDmode'. ! '(parity:M X)' Represents the number of 1-bits modulo 2 in X, represented as an ! integer of mode M. The mode of X must be M or 'VOIDmode'. ! '(bswap:M X)' Represents the value X with the order of bytes reversed, carried out in mode M, which must be a fixed-point machine mode. The mode ! of X must be M or 'VOIDmode'.  File: gccint.info, Node: Comparisons, Next: Bit-Fields, Prev: Arithmetic, Up: RTL *************** File: gccint.info, Node: Comparisons, *** 9352,9376 **** Comparison operators test a relation on two operands and are considered to represent a machine-dependent nonzero value described by, but not ! necessarily equal to, `STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or zero if it does not, for comparison operators whose results ! have a `MODE_INT' mode, `FLOAT_STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or zero if it does not, for comparison operators that return floating-point values, and a vector of either ! `VECTOR_STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or of zeros if it does not, for comparison operators that return vector results. The mode of the comparison operation is independent of the mode of the data being compared. If the comparison operation is being ! tested (e.g., the first operand of an `if_then_else'), the mode must be ! `VOIDmode'. There are two ways that comparison operations may be used. The ! comparison operators may be used to compare the condition codes `(cc0)' ! against zero, as in `(eq (cc0) (const_int 0))'. Such a construct actually refers to the result of the preceding instruction in which the condition codes were set. The instruction setting the condition code must be adjacent to the instruction using the condition code; only ! `note' insns may separate them. Alternatively, a comparison operation may directly compare two data objects. The mode of the comparison is determined by the operands; they --- 9204,9228 ---- Comparison operators test a relation on two operands and are considered to represent a machine-dependent nonzero value described by, but not ! necessarily equal to, 'STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or zero if it does not, for comparison operators whose results ! have a 'MODE_INT' mode, 'FLOAT_STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or zero if it does not, for comparison operators that return floating-point values, and a vector of either ! 'VECTOR_STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or of zeros if it does not, for comparison operators that return vector results. The mode of the comparison operation is independent of the mode of the data being compared. If the comparison operation is being ! tested (e.g., the first operand of an 'if_then_else'), the mode must be ! 'VOIDmode'. There are two ways that comparison operations may be used. The ! comparison operators may be used to compare the condition codes '(cc0)' ! against zero, as in '(eq (cc0) (const_int 0))'. Such a construct actually refers to the result of the preceding instruction in which the condition codes were set. The instruction setting the condition code must be adjacent to the instruction using the condition code; only ! 'note' insns may separate them. Alternatively, a comparison operation may directly compare two data objects. The mode of the comparison is determined by the operands; they *************** operands constant would be invalid as th *** 9379,9444 **** deduced from it, but such a comparison should never exist in RTL due to constant folding. ! In the example above, if `(cc0)' were last set to `(compare X Y)', the ! comparison operation is identical to `(eq X Y)'. Usually only one style of comparisons is supported on a particular machine, but the combine ! pass will try to merge the operations to produce the `eq' shown in case it exists in the context of the particular insn involved. Inequality comparisons come in two flavors, signed and unsigned. Thus, ! there are distinct expression codes `gt' and `gtu' for signed and unsigned greater-than. These can produce different results for the same pair of integer values: for example, 1 is signed greater-than -1 but not unsigned greater-than, because -1 when regarded as unsigned is actually ! `0xffffffff' which is greater than 1. The signed comparisons are also used for floating point values. ! Floating point comparisons are distinguished by the machine modes of ! the operands. ! `(eq:M X Y)' ! `STORE_FLAG_VALUE' if the values represented by X and Y are equal, otherwise 0. ! `(ne:M X Y)' ! `STORE_FLAG_VALUE' if the values represented by X and Y are not equal, otherwise 0. ! `(gt:M X Y)' ! `STORE_FLAG_VALUE' if the X is greater than Y. If they are fixed-point, the comparison is done in a signed sense. ! `(gtu:M X Y)' ! Like `gt' but does unsigned comparison, on fixed-point numbers only. ! `(lt:M X Y)' ! `(ltu:M X Y)' ! Like `gt' and `gtu' but test for "less than". ! `(ge:M X Y)' ! `(geu:M X Y)' ! Like `gt' and `gtu' but test for "greater than or equal". ! `(le:M X Y)' ! `(leu:M X Y)' ! Like `gt' and `gtu' but test for "less than or equal". ! `(if_then_else COND THEN ELSE)' This is not a comparison operation but is listed here because it is always used in conjunction with a comparison operation. To be precise, COND is a comparison expression. This expression represents a choice, according to COND, between the value represented by THEN and the one represented by ELSE. ! On most machines, `if_then_else' expressions are valid only to express conditional jumps. ! `(cond [TEST1 VALUE1 TEST2 VALUE2 ...] DEFAULT)' ! Similar to `if_then_else', but more general. Each of TEST1, ! TEST2, ... is performed in turn. The result of this expression is ! the VALUE corresponding to the first nonzero test, or DEFAULT if ! none of the tests are nonzero expressions. This is currently not valid for instruction patterns and is supported only for insn attributes. *Note Insn Attributes::. --- 9231,9296 ---- deduced from it, but such a comparison should never exist in RTL due to constant folding. ! In the example above, if '(cc0)' were last set to '(compare X Y)', the ! comparison operation is identical to '(eq X Y)'. Usually only one style of comparisons is supported on a particular machine, but the combine ! pass will try to merge the operations to produce the 'eq' shown in case it exists in the context of the particular insn involved. Inequality comparisons come in two flavors, signed and unsigned. Thus, ! there are distinct expression codes 'gt' and 'gtu' for signed and unsigned greater-than. These can produce different results for the same pair of integer values: for example, 1 is signed greater-than -1 but not unsigned greater-than, because -1 when regarded as unsigned is actually ! '0xffffffff' which is greater than 1. The signed comparisons are also used for floating point values. ! Floating point comparisons are distinguished by the machine modes of the ! operands. ! '(eq:M X Y)' ! 'STORE_FLAG_VALUE' if the values represented by X and Y are equal, otherwise 0. ! '(ne:M X Y)' ! 'STORE_FLAG_VALUE' if the values represented by X and Y are not equal, otherwise 0. ! '(gt:M X Y)' ! 'STORE_FLAG_VALUE' if the X is greater than Y. If they are fixed-point, the comparison is done in a signed sense. ! '(gtu:M X Y)' ! Like 'gt' but does unsigned comparison, on fixed-point numbers only. ! '(lt:M X Y)' ! '(ltu:M X Y)' ! Like 'gt' and 'gtu' but test for "less than". ! '(ge:M X Y)' ! '(geu:M X Y)' ! Like 'gt' and 'gtu' but test for "greater than or equal". ! '(le:M X Y)' ! '(leu:M X Y)' ! Like 'gt' and 'gtu' but test for "less than or equal". ! '(if_then_else COND THEN ELSE)' This is not a comparison operation but is listed here because it is always used in conjunction with a comparison operation. To be precise, COND is a comparison expression. This expression represents a choice, according to COND, between the value represented by THEN and the one represented by ELSE. ! On most machines, 'if_then_else' expressions are valid only to express conditional jumps. ! '(cond [TEST1 VALUE1 TEST2 VALUE2 ...] DEFAULT)' ! Similar to 'if_then_else', but more general. Each of TEST1, TEST2, ! ... is performed in turn. The result of this expression is the ! VALUE corresponding to the first nonzero test, or DEFAULT if none ! of the tests are nonzero expressions. This is currently not valid for instruction patterns and is supported only for insn attributes. *Note Insn Attributes::. *************** File: gccint.info, Node: Bit-Fields, N *** 9451,9484 **** Special expression codes exist to represent bit-field instructions. ! `(sign_extract:M LOC SIZE POS)' This represents a reference to a sign-extended bit-field contained or starting in LOC (a memory or register reference). The bit-field is SIZE bits wide and starts at bit POS. The compilation option ! `BITS_BIG_ENDIAN' says which end of the memory unit POS counts from. If LOC is in memory, its mode must be a single-byte integer mode. If LOC is in a register, the mode to use is specified by the ! operand of the `insv' or `extv' pattern (*note Standard Names::) and is usually a full-word integer mode, which is the default if none is specified. The mode of POS is machine-specific and is also specified in the ! `insv' or `extv' pattern. ! The mode M is the same as the mode that would be used for LOC if ! it were a register. ! A `sign_extract' can not appear as an lvalue, or part thereof, in RTL. ! `(zero_extract:M LOC SIZE POS)' ! Like `sign_extract' but refers to an unsigned or zero-extended bit-field. The same sequence of bits are extracted, but they are filled to an entire word with zeros instead of by sign-extension. ! Unlike `sign_extract', this type of expressions can be lvalues in RTL; they may appear on the left side of an assignment, indicating insertion of a value into the specified bit-field. --- 9303,9336 ---- Special expression codes exist to represent bit-field instructions. ! '(sign_extract:M LOC SIZE POS)' This represents a reference to a sign-extended bit-field contained or starting in LOC (a memory or register reference). The bit-field is SIZE bits wide and starts at bit POS. The compilation option ! 'BITS_BIG_ENDIAN' says which end of the memory unit POS counts from. If LOC is in memory, its mode must be a single-byte integer mode. If LOC is in a register, the mode to use is specified by the ! operand of the 'insv' or 'extv' pattern (*note Standard Names::) and is usually a full-word integer mode, which is the default if none is specified. The mode of POS is machine-specific and is also specified in the ! 'insv' or 'extv' pattern. ! The mode M is the same as the mode that would be used for LOC if it ! were a register. ! A 'sign_extract' can not appear as an lvalue, or part thereof, in RTL. ! '(zero_extract:M LOC SIZE POS)' ! Like 'sign_extract' but refers to an unsigned or zero-extended bit-field. The same sequence of bits are extracted, but they are filled to an entire word with zeros instead of by sign-extension. ! Unlike 'sign_extract', this type of expressions can be lvalues in RTL; they may appear on the left side of an assignment, indicating insertion of a value into the specified bit-field. *************** interpreted as operating on each part of *** 9493,9527 **** Additionally, there are a few new expressions to describe specific vector operations. ! `(vec_merge:M VEC1 VEC2 ITEMS)' This describes a merge operation between two vectors. The result is a vector of mode M; its elements are selected from either VEC1 or VEC2. Which elements are selected is described by ITEMS, which ! is a bit mask represented by a `const_int'; a zero bit indicates the corresponding element in the result vector is taken from VEC2 while a set bit indicates it is taken from VEC1. ! `(vec_select:M VEC1 SELECTION)' This describes an operation that selects parts of a vector. VEC1 ! is the source vector, and SELECTION is a `parallel' that contains a ! `const_int' for each of the subparts of the result vector, giving the number of the source subpart that should be stored into it. The result mode M is either the submode for a single element of ! VEC1 (if only one subpart is selected), or another vector mode ! with that element submode (if multiple subparts are selected). ! `(vec_concat:M X1 X2)' ! Describes a vector concat operation. The result is a ! concatenation of the vectors or scalars X1 and X2; its length is ! the sum of the lengths of the two inputs. ! `(vec_duplicate:M X)' This operation converts a scalar into a vector or a small vector into a larger one by duplicating the input values. The output ! vector mode must have the same submodes as the input vector mode ! or the scalar modes, and the number of output parts must be an ! integer multiple of the number of input parts. !  File: gccint.info, Node: Conversions, Next: RTL Declarations, Prev: Vector Operations, Up: RTL --- 9345,9378 ---- Additionally, there are a few new expressions to describe specific vector operations. ! '(vec_merge:M VEC1 VEC2 ITEMS)' This describes a merge operation between two vectors. The result is a vector of mode M; its elements are selected from either VEC1 or VEC2. Which elements are selected is described by ITEMS, which ! is a bit mask represented by a 'const_int'; a zero bit indicates the corresponding element in the result vector is taken from VEC2 while a set bit indicates it is taken from VEC1. ! '(vec_select:M VEC1 SELECTION)' This describes an operation that selects parts of a vector. VEC1 ! is the source vector, and SELECTION is a 'parallel' that contains a ! 'const_int' for each of the subparts of the result vector, giving the number of the source subpart that should be stored into it. The result mode M is either the submode for a single element of ! VEC1 (if only one subpart is selected), or another vector mode with ! that element submode (if multiple subparts are selected). ! '(vec_concat:M X1 X2)' ! Describes a vector concat operation. The result is a concatenation ! of the vectors or scalars X1 and X2; its length is the sum of the ! lengths of the two inputs. ! '(vec_duplicate:M X)' This operation converts a scalar into a vector or a small vector into a larger one by duplicating the input values. The output ! vector mode must have the same submodes as the input vector mode or ! the scalar modes, and the number of output parts must be an integer ! multiple of the number of input parts.  File: gccint.info, Node: Conversions, Next: RTL Declarations, Prev: Vector Operations, Up: RTL *************** File: gccint.info, Node: Conversions, *** 9530,9539 **** ================= All conversions between machine modes must be represented by explicit ! conversion operations. For example, an expression which is the sum of ! a byte and a full word cannot be written as `(plus:SI (reg:QI 34) ! (reg:SI 80))' because the `plus' operation requires two operands of the ! same machine mode. Therefore, the byte-sized operand is enclosed in a conversion operation, as in (plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80)) --- 9381,9390 ---- ================= All conversions between machine modes must be represented by explicit ! conversion operations. For example, an expression which is the sum of a ! byte and a full word cannot be written as '(plus:SI (reg:QI 34) (reg:SI ! 80))' because the 'plus' operation requires two operands of the same ! machine mode. Therefore, the byte-sized operand is enclosed in a conversion operation, as in (plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80)) *************** conversion operation, as in *** 9542,9611 **** be more than one way of converting from a given starting mode to the desired final mode. The conversion operation code says how to do it. ! For all conversion operations, X must not be `VOIDmode' because the mode in which to do the conversion would not be known. The conversion must either be done at compile-time or X must be placed into a register. ! `(sign_extend:M X)' ! Represents the result of sign-extending the value X to machine ! mode M. M must be a fixed-point mode and X a fixed-point value of ! a mode narrower than M. ! `(zero_extend:M X)' ! Represents the result of zero-extending the value X to machine ! mode M. M must be a fixed-point mode and X a fixed-point value of ! a mode narrower than M. ! `(float_extend:M X)' Represents the result of extending the value X to machine mode M. M must be a floating point mode and X a floating point value of a mode narrower than M. ! `(truncate:M X)' Represents the result of truncating the value X to machine mode M. M must be a fixed-point mode and X a fixed-point value of a mode wider than M. ! `(ss_truncate:M X)' Represents the result of truncating the value X to machine mode M, using signed saturation in the case of overflow. Both M and the mode of X must be fixed-point modes. ! `(us_truncate:M X)' Represents the result of truncating the value X to machine mode M, using unsigned saturation in the case of overflow. Both M and the mode of X must be fixed-point modes. ! `(float_truncate:M X)' Represents the result of truncating the value X to machine mode M. M must be a floating point mode and X a floating point value of a mode wider than M. ! `(float:M X)' Represents the result of converting fixed point value X, regarded as signed, to floating point mode M. ! `(unsigned_float:M X)' Represents the result of converting fixed point value X, regarded as unsigned, to floating point mode M. ! `(fix:M X)' When M is a floating-point mode, represents the result of ! converting floating point value X (valid for mode M) to an ! integer, still represented in floating point mode M, by rounding ! towards zero. When M is a fixed-point mode, represents the result of converting ! floating point value X to mode M, regarded as signed. How ! rounding is done is not specified, so this operation may be used ! validly in compiling C code only for integer-valued operands. ! `(unsigned_fix:M X)' ! Represents the result of converting floating point value X to ! fixed point mode M, regarded as unsigned. How rounding is done is ! not specified. ! `(fract_convert:M X)' Represents the result of converting fixed-point value X to fixed-point mode M, signed integer value X to fixed-point mode M, floating-point value X to fixed-point mode M, fixed-point value X --- 9393,9462 ---- be more than one way of converting from a given starting mode to the desired final mode. The conversion operation code says how to do it. ! For all conversion operations, X must not be 'VOIDmode' because the mode in which to do the conversion would not be known. The conversion must either be done at compile-time or X must be placed into a register. ! '(sign_extend:M X)' ! Represents the result of sign-extending the value X to machine mode ! M. M must be a fixed-point mode and X a fixed-point value of a ! mode narrower than M. ! '(zero_extend:M X)' ! Represents the result of zero-extending the value X to machine mode ! M. M must be a fixed-point mode and X a fixed-point value of a ! mode narrower than M. ! '(float_extend:M X)' Represents the result of extending the value X to machine mode M. M must be a floating point mode and X a floating point value of a mode narrower than M. ! '(truncate:M X)' Represents the result of truncating the value X to machine mode M. M must be a fixed-point mode and X a fixed-point value of a mode wider than M. ! '(ss_truncate:M X)' Represents the result of truncating the value X to machine mode M, using signed saturation in the case of overflow. Both M and the mode of X must be fixed-point modes. ! '(us_truncate:M X)' Represents the result of truncating the value X to machine mode M, using unsigned saturation in the case of overflow. Both M and the mode of X must be fixed-point modes. ! '(float_truncate:M X)' Represents the result of truncating the value X to machine mode M. M must be a floating point mode and X a floating point value of a mode wider than M. ! '(float:M X)' Represents the result of converting fixed point value X, regarded as signed, to floating point mode M. ! '(unsigned_float:M X)' Represents the result of converting fixed point value X, regarded as unsigned, to floating point mode M. ! '(fix:M X)' When M is a floating-point mode, represents the result of ! converting floating point value X (valid for mode M) to an integer, ! still represented in floating point mode M, by rounding towards ! zero. When M is a fixed-point mode, represents the result of converting ! floating point value X to mode M, regarded as signed. How rounding ! is done is not specified, so this operation may be used validly in ! compiling C code only for integer-valued operands. ! '(unsigned_fix:M X)' ! Represents the result of converting floating point value X to fixed ! point mode M, regarded as unsigned. How rounding is done is not ! specified. ! '(fract_convert:M X)' Represents the result of converting fixed-point value X to fixed-point mode M, signed integer value X to fixed-point mode M, floating-point value X to fixed-point mode M, fixed-point value X *************** must either be done at compile-time or X *** 9613,9632 **** floating-point mode M. When overflows or underflows happen, the results are undefined. ! `(sat_fract:M X)' Represents the result of converting fixed-point value X to fixed-point mode M, signed integer value X to fixed-point mode M, ! or floating-point value X to fixed-point mode M. When overflows ! or underflows happen, the results are saturated to the maximum or ! the minimum. ! `(unsigned_fract_convert:M X)' Represents the result of converting fixed-point value X to integer mode M regarded as unsigned, or unsigned integer value X to fixed-point mode M. When overflows or underflows happen, the results are undefined. ! `(unsigned_sat_fract:M X)' Represents the result of converting unsigned integer value X to fixed-point mode M. When overflows or underflows happen, the results are saturated to the maximum or the minimum. --- 9464,9483 ---- floating-point mode M. When overflows or underflows happen, the results are undefined. ! '(sat_fract:M X)' Represents the result of converting fixed-point value X to fixed-point mode M, signed integer value X to fixed-point mode M, ! or floating-point value X to fixed-point mode M. When overflows or ! underflows happen, the results are saturated to the maximum or the ! minimum. ! '(unsigned_fract_convert:M X)' Represents the result of converting fixed-point value X to integer mode M regarded as unsigned, or unsigned integer value X to fixed-point mode M. When overflows or underflows happen, the results are undefined. ! '(unsigned_sat_fract:M X)' Represents the result of converting unsigned integer value X to fixed-point mode M. When overflows or underflows happen, the results are saturated to the maximum or the minimum. *************** File: gccint.info, Node: RTL Declaratio *** 9640,9652 **** Declaration expression codes do not represent arithmetic operations but rather state assertions about their operands. ! `(strict_low_part (subreg:M (reg:N R) 0))' This expression code is used in only one context: as the ! destination operand of a `set' expression. In addition, the ! operand of this expression must be a non-paradoxical `subreg' expression. ! The presence of `strict_low_part' says that the part of the register which is meaningful in mode N, but is not part of mode M, is not to be altered. Normally, an assignment to such a subreg is allowed to have undefined effects on the rest of the register when --- 9491,9503 ---- Declaration expression codes do not represent arithmetic operations but rather state assertions about their operands. ! '(strict_low_part (subreg:M (reg:N R) 0))' This expression code is used in only one context: as the ! destination operand of a 'set' expression. In addition, the ! operand of this expression must be a non-paradoxical 'subreg' expression. ! The presence of 'strict_low_part' says that the part of the register which is meaningful in mode N, but is not part of mode M, is not to be altered. Normally, an assignment to such a subreg is allowed to have undefined effects on the rest of the register when *************** codes are used to represent side effects *** 9667,9791 **** the codes described above, which represent values, appear only as the operands of these. ! `(set LVAL X)' Represents the action of storing the value of X into the place represented by LVAL. LVAL must be an expression representing a ! place that can be stored in: `reg' (or `subreg', `strict_low_part' ! or `zero_extract'), `mem', `pc', `parallel', or `cc0'. ! If LVAL is a `reg', `subreg' or `mem', it has a machine mode; then X must be valid for that mode. ! If LVAL is a `reg' whose machine mode is less than the full width of the register, then it means that the part of the register specified by the machine mode is given the specified value and the rest of the register receives an undefined value. Likewise, if ! LVAL is a `subreg' whose machine mode is narrower than the mode of the register, the rest of the register can be changed in an undefined way. ! If LVAL is a `strict_low_part' of a subreg, then the part of the ! register specified by the machine mode of the `subreg' is given ! the value X and the rest of the register is not changed. ! If LVAL is a `zero_extract', then the referenced part of the bit-field (a memory or register reference) specified by the ! `zero_extract' is given the value X and the rest of the bit-field ! is not changed. Note that `sign_extract' can not appear in LVAL. ! If LVAL is `(cc0)', it has no machine mode, and X may be either a ! `compare' expression or a value that may have any mode. The ! latter case represents a "test" instruction. The expression `(set ! (cc0) (reg:M N))' is equivalent to `(set (cc0) (compare (reg:M N) (const_int 0)))'. Use the former expression to save space during the compilation. ! If LVAL is a `parallel', it is used to represent the case of a function returning a structure in multiple registers. Each element ! of the `parallel' is an `expr_list' whose first operand is a `reg' ! and whose second operand is a `const_int' representing the offset (in bytes) into the structure at which the data in that register corresponds. The first element may be null to indicate that the structure is also passed partly in memory. ! If LVAL is `(pc)', we have a jump instruction, and the ! possibilities for X are very limited. It may be a `label_ref' ! expression (unconditional jump). It may be an `if_then_else' (conditional jump), in which case either the second or the third ! operand must be `(pc)' (for the case which does not jump) and the ! other of the two must be a `label_ref' (for the case which does ! jump). X may also be a `mem' or `(plus:SI (pc) Y)', where Y may ! be a `reg' or a `mem'; these unusual patterns are used to ! represent jumps through branch tables. ! If LVAL is neither `(cc0)' nor `(pc)', the mode of LVAL must not ! be `VOIDmode' and the mode of X must be valid for the mode of LVAL. ! LVAL is customarily accessed with the `SET_DEST' macro and X with ! the `SET_SRC' macro. ! `(return)' As the sole expression in a pattern, represents a return from the current function, on machines where this can be done with one instruction, such as VAXen. On machines where a multi-instruction "epilogue" must be executed in order to return from the function, returning is done by jumping to a label which precedes the ! epilogue, and the `return' expression code is never used. ! Inside an `if_then_else' expression, represents the value to be ! placed in `pc' to return to the caller. ! Note that an insn pattern of `(return)' is logically equivalent to ! `(set (pc) (return))', but the latter form is never used. ! `(simple_return)' ! Like `(return)', but truly represents only a function return, while ! `(return)' may represent an insn that also performs other functions ! of the function epilogue. Like `(return)', this may also occur in conditional jumps. ! `(call FUNCTION NARGS)' ! Represents a function call. FUNCTION is a `mem' expression whose address is the address of the function to be called. NARGS is an expression which can be used for two purposes: on some machines it represents the number of bytes of stack argument; on others, it represents the number of argument registers. Each machine has a standard machine mode which FUNCTION must have. ! The machine description defines macro `FUNCTION_MODE' to expand into the requisite mode name. The purpose of this mode is to specify what kind of addressing is allowed, on machines where the allowed kinds of addressing depend on the machine mode being addressed. ! `(clobber X)' Represents the storing or possible storing of an unpredictable, ! undescribed value into X, which must be a `reg', `scratch', ! `parallel' or `mem' expression. One place this is used is in string instructions that store standard values into particular hard registers. It may not be ! worth the trouble to describe the values that are stored, but it ! is essential to inform the compiler that the registers will be altered, lest it attempt to keep data in them across the string instruction. ! If X is `(mem:BLK (const_int 0))' or `(mem:BLK (scratch))', it means that all memory locations must be presumed clobbered. If X ! is a `parallel', it has the same meaning as a `parallel' in a ! `set' expression. ! Note that the machine description classifies certain hard ! registers as "call-clobbered". All function call instructions are ! assumed by default to clobber these registers, so there is no need ! to use `clobber' expressions to indicate this fact. Also, each ! function call is assumed to have the potential to alter any memory ! location, unless the function is declared `const'. ! If the last group of expressions in a `parallel' are each a ! `clobber' expression whose arguments are `reg' or `match_scratch' (*note RTL Template::) expressions, the combiner phase can add the ! appropriate `clobber' expressions to an insn it has constructed when doing so will cause a pattern to be matched. This feature can be used, for example, on a machine that whose --- 9518,9642 ---- the codes described above, which represent values, appear only as the operands of these. ! '(set LVAL X)' Represents the action of storing the value of X into the place represented by LVAL. LVAL must be an expression representing a ! place that can be stored in: 'reg' (or 'subreg', 'strict_low_part' ! or 'zero_extract'), 'mem', 'pc', 'parallel', or 'cc0'. ! If LVAL is a 'reg', 'subreg' or 'mem', it has a machine mode; then X must be valid for that mode. ! If LVAL is a 'reg' whose machine mode is less than the full width of the register, then it means that the part of the register specified by the machine mode is given the specified value and the rest of the register receives an undefined value. Likewise, if ! LVAL is a 'subreg' whose machine mode is narrower than the mode of the register, the rest of the register can be changed in an undefined way. ! If LVAL is a 'strict_low_part' of a subreg, then the part of the ! register specified by the machine mode of the 'subreg' is given the ! value X and the rest of the register is not changed. ! If LVAL is a 'zero_extract', then the referenced part of the bit-field (a memory or register reference) specified by the ! 'zero_extract' is given the value X and the rest of the bit-field ! is not changed. Note that 'sign_extract' can not appear in LVAL. ! If LVAL is '(cc0)', it has no machine mode, and X may be either a ! 'compare' expression or a value that may have any mode. The latter ! case represents a "test" instruction. The expression '(set (cc0) ! (reg:M N))' is equivalent to '(set (cc0) (compare (reg:M N) (const_int 0)))'. Use the former expression to save space during the compilation. ! If LVAL is a 'parallel', it is used to represent the case of a function returning a structure in multiple registers. Each element ! of the 'parallel' is an 'expr_list' whose first operand is a 'reg' ! and whose second operand is a 'const_int' representing the offset (in bytes) into the structure at which the data in that register corresponds. The first element may be null to indicate that the structure is also passed partly in memory. ! If LVAL is '(pc)', we have a jump instruction, and the ! possibilities for X are very limited. It may be a 'label_ref' ! expression (unconditional jump). It may be an 'if_then_else' (conditional jump), in which case either the second or the third ! operand must be '(pc)' (for the case which does not jump) and the ! other of the two must be a 'label_ref' (for the case which does ! jump). X may also be a 'mem' or '(plus:SI (pc) Y)', where Y may be ! a 'reg' or a 'mem'; these unusual patterns are used to represent ! jumps through branch tables. ! If LVAL is neither '(cc0)' nor '(pc)', the mode of LVAL must not be ! 'VOIDmode' and the mode of X must be valid for the mode of LVAL. ! LVAL is customarily accessed with the 'SET_DEST' macro and X with ! the 'SET_SRC' macro. ! '(return)' As the sole expression in a pattern, represents a return from the current function, on machines where this can be done with one instruction, such as VAXen. On machines where a multi-instruction "epilogue" must be executed in order to return from the function, returning is done by jumping to a label which precedes the ! epilogue, and the 'return' expression code is never used. ! Inside an 'if_then_else' expression, represents the value to be ! placed in 'pc' to return to the caller. ! Note that an insn pattern of '(return)' is logically equivalent to ! '(set (pc) (return))', but the latter form is never used. ! '(simple_return)' ! Like '(return)', but truly represents only a function return, while ! '(return)' may represent an insn that also performs other functions ! of the function epilogue. Like '(return)', this may also occur in conditional jumps. ! '(call FUNCTION NARGS)' ! Represents a function call. FUNCTION is a 'mem' expression whose address is the address of the function to be called. NARGS is an expression which can be used for two purposes: on some machines it represents the number of bytes of stack argument; on others, it represents the number of argument registers. Each machine has a standard machine mode which FUNCTION must have. ! The machine description defines macro 'FUNCTION_MODE' to expand into the requisite mode name. The purpose of this mode is to specify what kind of addressing is allowed, on machines where the allowed kinds of addressing depend on the machine mode being addressed. ! '(clobber X)' Represents the storing or possible storing of an unpredictable, ! undescribed value into X, which must be a 'reg', 'scratch', ! 'parallel' or 'mem' expression. One place this is used is in string instructions that store standard values into particular hard registers. It may not be ! worth the trouble to describe the values that are stored, but it is ! essential to inform the compiler that the registers will be altered, lest it attempt to keep data in them across the string instruction. ! If X is '(mem:BLK (const_int 0))' or '(mem:BLK (scratch))', it means that all memory locations must be presumed clobbered. If X ! is a 'parallel', it has the same meaning as a 'parallel' in a 'set' ! expression. ! Note that the machine description classifies certain hard registers ! as "call-clobbered". All function call instructions are assumed by ! default to clobber these registers, so there is no need to use ! 'clobber' expressions to indicate this fact. Also, each function ! call is assumed to have the potential to alter any memory location, ! unless the function is declared 'const'. ! If the last group of expressions in a 'parallel' are each a ! 'clobber' expression whose arguments are 'reg' or 'match_scratch' (*note RTL Template::) expressions, the combiner phase can add the ! appropriate 'clobber' expressions to an insn it has constructed when doing so will cause a pattern to be matched. This feature can be used, for example, on a machine that whose *************** operands of these. *** 9794,9836 **** register. Similarly, a combined instruction might require a temporary register while the constituent instructions might not. ! When a `clobber' expression for a register appears inside a ! `parallel' with other side effects, the register allocator guarantees that the register is unoccupied both before and after that insn if it is a hard register clobber. For pseudo-register clobber, the register allocator and the reload pass do not assign the same hard register to the clobber and the input operands if ! there is an insn alternative containing the `&' constraint (*note Modifiers::) for the clobber and the hard register is in register classes of the clobber in the alternative. You can clobber either ! a specific hard register, a pseudo register, or a `scratch' expression; in the latter two cases, GCC will allocate a hard register that is available there for use as a temporary. For instructions that require a temporary register, you should use ! `scratch' instead of a pseudo-register because this will allow the ! combiner phase to add the `clobber' when required. You do this by ! coding (`clobber' (`match_scratch' ...)). If you do clobber a ! pseudo register, use one which appears nowhere else--generate a ! new one each time. Otherwise, you may confuse CSE. There is one other known use for clobbering a pseudo register in a ! `parallel': when one of the input operands of the insn is also clobbered by the insn. In this case, using the same pseudo register in the clobber and elsewhere in the insn produces the expected results. ! `(use X)' Represents the use of the value of X. It indicates that the value ! in X at this point in the program is needed, even though it may ! not be apparent why this is so. Therefore, the compiler will not attempt to delete previous instructions whose only effect is to ! store a value in X. X must be a `reg' expression. ! In some situations, it may be tempting to add a `use' of a ! register in a `parallel' to describe a situation where the value ! of a special register will modify the behavior of the instruction. ! A hypothetical example might be a pattern for an addition that can either wrap around or use saturating addition depending on the value of a special control register: --- 9645,9687 ---- register. Similarly, a combined instruction might require a temporary register while the constituent instructions might not. ! When a 'clobber' expression for a register appears inside a ! 'parallel' with other side effects, the register allocator guarantees that the register is unoccupied both before and after that insn if it is a hard register clobber. For pseudo-register clobber, the register allocator and the reload pass do not assign the same hard register to the clobber and the input operands if ! there is an insn alternative containing the '&' constraint (*note Modifiers::) for the clobber and the hard register is in register classes of the clobber in the alternative. You can clobber either ! a specific hard register, a pseudo register, or a 'scratch' expression; in the latter two cases, GCC will allocate a hard register that is available there for use as a temporary. For instructions that require a temporary register, you should use ! 'scratch' instead of a pseudo-register because this will allow the ! combiner phase to add the 'clobber' when required. You do this by ! coding ('clobber' ('match_scratch' ...)). If you do clobber a ! pseudo register, use one which appears nowhere else--generate a new ! one each time. Otherwise, you may confuse CSE. There is one other known use for clobbering a pseudo register in a ! 'parallel': when one of the input operands of the insn is also clobbered by the insn. In this case, using the same pseudo register in the clobber and elsewhere in the insn produces the expected results. ! '(use X)' Represents the use of the value of X. It indicates that the value ! in X at this point in the program is needed, even though it may not ! be apparent why this is so. Therefore, the compiler will not attempt to delete previous instructions whose only effect is to ! store a value in X. X must be a 'reg' expression. ! In some situations, it may be tempting to add a 'use' of a register ! in a 'parallel' to describe a situation where the value of a ! special register will modify the behavior of the instruction. A ! hypothetical example might be a pattern for an addition that can either wrap around or use saturating addition depending on the value of a special control register: *************** operands of these. *** 9840,9873 **** This will not work, several of the optimizers only look at expressions locally; it is very likely that if you have multiple ! insns with identical inputs to the `unspec', they will be ! optimized away even if register 1 changes in between. ! This means that `use' can _only_ be used to describe that the ! register is live. You should think twice before adding `use' ! statements, more often you will want to use `unspec' instead. The ! `use' RTX is most commonly useful to describe that a fixed ! register is implicitly used in an insn. It is also safe to use in ! patterns where the compiler knows for other reasons that the result ! of the whole pattern is variable, such as `movmemM' or `call' ! patterns. ! During the reload phase, an insn that has a `use' as pattern can ! carry a reg_equal note. These `use' insns will be deleted before the reload phase exits. ! During the delayed branch scheduling phase, X may be an insn. ! This indicates that X previously was located at this place in the ! code and its data dependencies need to be taken into account. ! These `use' insns will be deleted before the delayed branch ! scheduling phase exits. ! `(parallel [X0 X1 ...])' Represents several side effects performed in parallel. The square ! brackets stand for a vector; the operand of `parallel' is a vector of expressions. X0, X1 and so on are individual side effect ! expressions--expressions of code `set', `call', `return', ! `simple_return', `clobber' or `use'. "In parallel" means that first all the values used in the individual side-effects are computed, and second all the actual --- 9691,9723 ---- This will not work, several of the optimizers only look at expressions locally; it is very likely that if you have multiple ! insns with identical inputs to the 'unspec', they will be optimized ! away even if register 1 changes in between. ! This means that 'use' can _only_ be used to describe that the ! register is live. You should think twice before adding 'use' ! statements, more often you will want to use 'unspec' instead. The ! 'use' RTX is most commonly useful to describe that a fixed register ! is implicitly used in an insn. It is also safe to use in patterns ! where the compiler knows for other reasons that the result of the ! whole pattern is variable, such as 'movmemM' or 'call' patterns. ! During the reload phase, an insn that has a 'use' as pattern can ! carry a reg_equal note. These 'use' insns will be deleted before the reload phase exits. ! During the delayed branch scheduling phase, X may be an insn. This ! indicates that X previously was located at this place in the code ! and its data dependencies need to be taken into account. These ! 'use' insns will be deleted before the delayed branch scheduling ! phase exits. ! '(parallel [X0 X1 ...])' Represents several side effects performed in parallel. The square ! brackets stand for a vector; the operand of 'parallel' is a vector of expressions. X0, X1 and so on are individual side effect ! expressions--expressions of code 'set', 'call', 'return', ! 'simple_return', 'clobber' or 'use'. "In parallel" means that first all the values used in the individual side-effects are computed, and second all the actual *************** operands of these. *** 9878,9890 **** says unambiguously that the values of hard register 1 and the memory location addressed by it are interchanged. In both places ! where `(reg:SI 1)' appears as a memory address it refers to the value in register 1 _before_ the execution of the insn. ! It follows that it is _incorrect_ to use `parallel' and expect the ! result of one `set' to be available for the next one. For ! example, people sometimes attempt to represent a jump-if-zero ! instruction this way: (parallel [(set (cc0) (reg:SI 34)) (set (pc) (if_then_else --- 9728,9740 ---- says unambiguously that the values of hard register 1 and the memory location addressed by it are interchanged. In both places ! where '(reg:SI 1)' appears as a memory address it refers to the value in register 1 _before_ the execution of the insn. ! It follows that it is _incorrect_ to use 'parallel' and expect the ! result of one 'set' to be available for the next one. For example, ! people sometimes attempt to represent a jump-if-zero instruction ! this way: (parallel [(set (cc0) (reg:SI 34)) (set (pc) (if_then_else *************** operands of these. *** 9897,9939 **** on the new value that is set by this instruction. Peephole optimization, which takes place together with final ! assembly code output, can produce insns whose patterns consist of ! a `parallel' whose elements are the operands needed to output the ! resulting assembler code--often `reg', `mem' or constant expressions. This would not be well-formed RTL at any other stage in compilation, but it is ok then because no further optimization remains to be done. However, the definition of the macro ! `NOTICE_UPDATE_CC', if any, must deal with such insns if you ! define any peephole optimizations. ! `(cond_exec [COND EXPR])' Represents a conditionally executed expression. The EXPR is ! executed only if the COND is nonzero. The COND expression must ! not have side-effects, but the EXPR may very well have ! side-effects. ! `(sequence [INSNS ...])' Represents a sequence of insns. Each of the INSNS that appears in the vector is suitable for appearing in the chain of insns, so it ! must be an `insn', `jump_insn', `call_insn', `code_label', ! `barrier' or `note'. ! A `sequence' RTX is never placed in an actual insn during RTL generation. It represents the sequence of insns that result from a ! `define_expand' _before_ those insns are passed to `emit_insn' to insert them in the chain of insns. When actually inserted, the ! individual sub-insns are separated out and the `sequence' is forgotten. ! After delay-slot scheduling is completed, an insn and all the ! insns that reside in its delay slots are grouped together into a ! `sequence'. The insn requiring the delay slot is the first insn ! in the vector; subsequent insns are to be placed in the delay slot. ! `INSN_ANNULLED_BRANCH_P' is set on an insn in a delay slot to indicate that a branch insn should be used that will conditionally annul the effect of the insns in the delay slots. In such a case, ! `INSN_FROM_TARGET_P' indicates that the insn is from the target of the branch and should be executed only if the branch is taken; otherwise the insn should be executed only if the branch is not taken. *Note Delay Slots::. --- 9747,9788 ---- on the new value that is set by this instruction. Peephole optimization, which takes place together with final ! assembly code output, can produce insns whose patterns consist of a ! 'parallel' whose elements are the operands needed to output the ! resulting assembler code--often 'reg', 'mem' or constant expressions. This would not be well-formed RTL at any other stage in compilation, but it is ok then because no further optimization remains to be done. However, the definition of the macro ! 'NOTICE_UPDATE_CC', if any, must deal with such insns if you define ! any peephole optimizations. ! '(cond_exec [COND EXPR])' Represents a conditionally executed expression. The EXPR is ! executed only if the COND is nonzero. The COND expression must not ! have side-effects, but the EXPR may very well have side-effects. ! '(sequence [INSNS ...])' Represents a sequence of insns. Each of the INSNS that appears in the vector is suitable for appearing in the chain of insns, so it ! must be an 'insn', 'jump_insn', 'call_insn', 'code_label', ! 'barrier' or 'note'. ! A 'sequence' RTX is never placed in an actual insn during RTL generation. It represents the sequence of insns that result from a ! 'define_expand' _before_ those insns are passed to 'emit_insn' to insert them in the chain of insns. When actually inserted, the ! individual sub-insns are separated out and the 'sequence' is forgotten. ! After delay-slot scheduling is completed, an insn and all the insns ! that reside in its delay slots are grouped together into a ! 'sequence'. The insn requiring the delay slot is the first insn in ! the vector; subsequent insns are to be placed in the delay slot. ! 'INSN_ANNULLED_BRANCH_P' is set on an insn in a delay slot to indicate that a branch insn should be used that will conditionally annul the effect of the insns in the delay slots. In such a case, ! 'INSN_FROM_TARGET_P' indicates that the insn is from the target of the branch and should be executed only if the branch is taken; otherwise the insn should be executed only if the branch is not taken. *Note Delay Slots::. *************** operands of these. *** 9942,9968 **** an insn, though strictly speaking they do not always describe side effects as such: ! `(asm_input S)' Represents literal assembler code as described by the string S. ! `(unspec [OPERANDS ...] INDEX)' ! `(unspec_volatile [OPERANDS ...] INDEX)' ! Represents a machine-specific operation on OPERANDS. INDEX ! selects between multiple machine-specific operations. ! `unspec_volatile' is used for volatile operations and operations ! that may trap; `unspec' is used for other operations. ! These codes may appear inside a `pattern' of an insn, inside a ! `parallel', or inside an expression. ! `(addr_vec:M [LR0 LR1 ...])' Represents a table of jump addresses. The vector elements LR0, ! etc., are `label_ref' expressions. The mode M specifies how much ! space is given to each address; normally M would be `Pmode'. ! `(addr_diff_vec:M BASE [LR0 LR1 ...] MIN MAX FLAGS)' Represents a table of jump addresses expressed as offsets from ! BASE. The vector elements LR0, etc., are `label_ref' expressions and so is BASE. The mode M specifies how much space is given to each address-difference. MIN and MAX are set up by branch shortening and hold a label with a minimum and a maximum address, --- 9791,9817 ---- an insn, though strictly speaking they do not always describe side effects as such: ! '(asm_input S)' Represents literal assembler code as described by the string S. ! '(unspec [OPERANDS ...] INDEX)' ! '(unspec_volatile [OPERANDS ...] INDEX)' ! Represents a machine-specific operation on OPERANDS. INDEX selects ! between multiple machine-specific operations. 'unspec_volatile' is ! used for volatile operations and operations that may trap; 'unspec' ! is used for other operations. ! These codes may appear inside a 'pattern' of an insn, inside a ! 'parallel', or inside an expression. ! '(addr_vec:M [LR0 LR1 ...])' Represents a table of jump addresses. The vector elements LR0, ! etc., are 'label_ref' expressions. The mode M specifies how much ! space is given to each address; normally M would be 'Pmode'. ! '(addr_diff_vec:M BASE [LR0 LR1 ...] MIN MAX FLAGS)' Represents a table of jump addresses expressed as offsets from ! BASE. The vector elements LR0, etc., are 'label_ref' expressions and so is BASE. The mode M specifies how much space is given to each address-difference. MIN and MAX are set up by branch shortening and hold a label with a minimum and a maximum address, *************** effects as such: *** 9970,9982 **** and MAX to the containing insn and of MIN and MAX to BASE. See rtl.def for details. ! `(prefetch:M ADDR RW LOCALITY)' Represents prefetch of memory at address ADDR. Operand RW is 1 if the prefetch is for data to be written, 0 otherwise; targets that do not support write prefetches should treat this as a normal prefetch. Operand LOCALITY specifies the amount of temporal ! locality; 0 if there is none or 1, 2, or 3 for increasing levels ! of temporal locality; targets that do not support locality hints should ignore this. This insn is used to minimize cache-miss latency by moving data --- 9819,9831 ---- and MAX to the containing insn and of MIN and MAX to BASE. See rtl.def for details. ! '(prefetch:M ADDR RW LOCALITY)' Represents prefetch of memory at address ADDR. Operand RW is 1 if the prefetch is for data to be written, 0 otherwise; targets that do not support write prefetches should treat this as a normal prefetch. Operand LOCALITY specifies the amount of temporal ! locality; 0 if there is none or 1, 2, or 3 for increasing levels of ! temporal locality; targets that do not support locality hints should ignore this. This insn is used to minimize cache-miss latency by moving data *************** File: gccint.info, Node: Incdec, Next: *** 9991,10029 **** Six special side-effect expression codes appear as memory addresses. ! `(pre_dec:M X)' Represents the side effect of decrementing X by a standard amount and represents also the value that X has after being decremented. ! X must be a `reg' or `mem', but most machines allow only a `reg'. ! M must be the machine mode for pointers on the machine in use. ! The amount X is decremented by is the length in bytes of the ! machine mode of the containing memory reference of which this ! expression serves as the address. Here is an example of its use: (mem:DF (pre_dec:SI (reg:SI 39))) This says to decrement pseudo register 39 by the length of a ! `DFmode' value and use the result to address a `DFmode' value. ! `(pre_inc:M X)' Similar, but specifies incrementing X instead of decrementing it. ! `(post_dec:M X)' ! Represents the same side effect as `pre_dec' but a different ! value. The value represented here is the value X has before being decremented. ! `(post_inc:M X)' Similar, but specifies incrementing X instead of decrementing it. ! `(post_modify:M X Y)' Represents the side effect of setting X to Y and represents X ! before X is modified. X must be a `reg' or `mem', but most ! machines allow only a `reg'. M must be the machine mode for pointers on the machine in use. ! The expression Y must be one of three forms: `(plus:M X Z)', ! `(minus:M X Z)', or `(plus:M X I)', where Z is an index register and I is a constant. Here is an example of its use: --- 9840,9879 ---- Six special side-effect expression codes appear as memory addresses. ! '(pre_dec:M X)' Represents the side effect of decrementing X by a standard amount and represents also the value that X has after being decremented. ! X must be a 'reg' or 'mem', but most machines allow only a 'reg'. ! M must be the machine mode for pointers on the machine in use. The ! amount X is decremented by is the length in bytes of the machine ! mode of the containing memory reference of which this expression ! serves as the address. Here is an example of its use: (mem:DF (pre_dec:SI (reg:SI 39))) This says to decrement pseudo register 39 by the length of a ! 'DFmode' value and use the result to address a 'DFmode' value. ! '(pre_inc:M X)' Similar, but specifies incrementing X instead of decrementing it. ! '(post_dec:M X)' ! Represents the same side effect as 'pre_dec' but a different value. ! The value represented here is the value X has before being decremented. ! '(post_inc:M X)' Similar, but specifies incrementing X instead of decrementing it. ! '(post_modify:M X Y)' ! Represents the side effect of setting X to Y and represents X ! before X is modified. X must be a 'reg' or 'mem', but most ! machines allow only a 'reg'. M must be the machine mode for pointers on the machine in use. ! The expression Y must be one of three forms: '(plus:M X Z)', ! '(minus:M X Z)', or '(plus:M X I)', where Z is an index register and I is a constant. Here is an example of its use: *************** Six special side-effect expression codes *** 10034,10049 **** This says to modify pseudo register 42 by adding the contents of pseudo register 48 to it, after the use of what ever 42 points to. ! `(pre_modify:M X EXPR)' Similar except side effects happen before the use. These embedded side effect expressions must be used with care. ! Instruction patterns may not use them. Until the `flow' pass of the compiler, they may occur only to represent pushes onto the stack. The ! `flow' pass finds cases where registers are incremented or decremented ! in one instruction and used as an address shortly before or after; ! these cases are then transformed to use pre- or post-increment or ! -decrement. If a register used as the operand of these expressions is used in another address in an insn, the original value of the register is used. --- 9884,9898 ---- This says to modify pseudo register 42 by adding the contents of pseudo register 48 to it, after the use of what ever 42 points to. ! '(pre_modify:M X EXPR)' Similar except side effects happen before the use. These embedded side effect expressions must be used with care. ! Instruction patterns may not use them. Until the 'flow' pass of the compiler, they may occur only to represent pushes onto the stack. The ! 'flow' pass finds cases where registers are incremented or decremented ! in one instruction and used as an address shortly before or after; these ! cases are then transformed to use pre- or post-increment or -decrement. If a register used as the operand of these expressions is used in another address in an insn, the original value of the register is used. *************** insns behave differently on different ma *** 10053,10064 **** as ambiguous and disallowed. An instruction that can be represented with an embedded side effect ! could also be represented using `parallel' containing an additional ! `set' to describe how the address register is altered. This is not ! done because machines that allow these operations at all typically ! allow them wherever a memory address is called for. Describing them as ! additional parallel stores would require doubling the number of entries ! in the machine description.  File: gccint.info, Node: Assembler, Next: Debug Information, Prev: Incdec, Up: RTL --- 9902,9913 ---- as ambiguous and disallowed. An instruction that can be represented with an embedded side effect ! could also be represented using 'parallel' containing an additional ! 'set' to describe how the address register is altered. This is not done ! because machines that allow these operations at all typically allow them ! wherever a memory address is called for. Describing them as additional ! parallel stores would require doubling the number of entries in the ! machine description.  File: gccint.info, Node: Assembler, Next: Debug Information, Prev: Incdec, Up: RTL *************** File: gccint.info, Node: Assembler, Ne *** 10066,10080 **** 10.17 Assembler Instructions as Expressions =========================================== ! The RTX code `asm_operands' represents a value produced by a ! user-specified assembler instruction. It is used to represent an `asm' ! statement with arguments. An `asm' statement with a single output operand, like this: asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z)); ! is represented using a single `asm_operands' RTX which represents the ! value that is stored in `outputvar': (set RTX-FOR-OUTPUTVAR (asm_operands "foo %1,%2,%0" "a" 0 --- 9915,9929 ---- 10.17 Assembler Instructions as Expressions =========================================== ! The RTX code 'asm_operands' represents a value produced by a ! user-specified assembler instruction. It is used to represent an 'asm' ! statement with arguments. An 'asm' statement with a single output operand, like this: asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z)); ! is represented using a single 'asm_operands' RTX which represents the ! value that is stored in 'outputvar': (set RTX-FOR-OUTPUTVAR (asm_operands "foo %1,%2,%0" "a" 0 *************** value that is stored in `outputvar': *** 10082,10096 **** [(asm_input:M1 "g") (asm_input:M2 "di")])) ! Here the operands of the `asm_operands' RTX are the assembler template string, the output-operand's constraint, the index-number of the output operand among the output operands specified, a vector of input operand ! RTX's, and a vector of input-operand modes and constraints. The mode ! M1 is the mode of the sum `x+y'; M2 is that of `*z'. ! When an `asm' statement has multiple output values, its insn has ! several such `set' RTX's inside of a `parallel'. Each `set' contains ! an `asm_operands'; all of these share the same assembler template and vectors, but each contains the constraint for the respective output operand. They are also distinguished by the output-operand index number, which is 0, 1, ... for successive output operands. --- 9931,9945 ---- [(asm_input:M1 "g") (asm_input:M2 "di")])) ! Here the operands of the 'asm_operands' RTX are the assembler template string, the output-operand's constraint, the index-number of the output operand among the output operands specified, a vector of input operand ! RTX's, and a vector of input-operand modes and constraints. The mode M1 ! is the mode of the sum 'x+y'; M2 is that of '*z'. ! When an 'asm' statement has multiple output values, its insn has ! several such 'set' RTX's inside of a 'parallel'. Each 'set' contains an ! 'asm_operands'; all of these share the same assembler template and vectors, but each contains the constraint for the respective output operand. They are also distinguished by the output-operand index number, which is 0, 1, ... for successive output operands. *************** File: gccint.info, Node: Debug Informat *** 10101,10128 **** 10.18 Variable Location Debug Information in RTL ================================================ ! Variable tracking relies on `MEM_EXPR' and `REG_EXPR' annotations to determine what user variables memory and register references refer to. Variable tracking at assignments uses these notes only when they refer to variables that live at fixed locations (e.g., addressable variables, ! global non-automatic variables). For variables whose location may ! vary, it relies on the following types of notes. ! `(var_location:MODE VAR EXP STAT)' ! Binds variable `var', a tree, to value EXP, an RTL expression. It ! appears only in `NOTE_INSN_VAR_LOCATION' and `DEBUG_INSN's, with ! slightly different meanings. MODE, if present, represents the ! mode of EXP, which is useful if it is a modeless expression. STAT ! is only meaningful in notes, indicating whether the variable is ! known to be initialized or uninitialized. ! `(debug_expr:MODE DECL)' ! Stands for the value bound to the `DEBUG_EXPR_DECL' DECL, that ! points back to it, within value expressions in `VAR_LOCATION' nodes. -  File: gccint.info, Node: Insns, Next: Calls, Prev: Debug Information, Up: RTL --- 9950,9976 ---- 10.18 Variable Location Debug Information in RTL ================================================ ! Variable tracking relies on 'MEM_EXPR' and 'REG_EXPR' annotations to determine what user variables memory and register references refer to. Variable tracking at assignments uses these notes only when they refer to variables that live at fixed locations (e.g., addressable variables, ! global non-automatic variables). For variables whose location may vary, ! it relies on the following types of notes. ! '(var_location:MODE VAR EXP STAT)' ! Binds variable 'var', a tree, to value EXP, an RTL expression. It ! appears only in 'NOTE_INSN_VAR_LOCATION' and 'DEBUG_INSN's, with ! slightly different meanings. MODE, if present, represents the mode ! of EXP, which is useful if it is a modeless expression. STAT is ! only meaningful in notes, indicating whether the variable is known ! to be initialized or uninitialized. ! '(debug_expr:MODE DECL)' ! Stands for the value bound to the 'DEBUG_EXPR_DECL' DECL, that ! points back to it, within value expressions in 'VAR_LOCATION' nodes.  File: gccint.info, Node: Insns, Next: Calls, Prev: Debug Information, Up: RTL *************** File: gccint.info, Node: Insns, Next: *** 10132,10138 **** The RTL representation of the code for a function is a doubly-linked chain of objects called "insns". Insns are expressions with special codes that are used for no other purpose. Some insns are actual ! instructions; others represent dispatch tables for `switch' statements; others represent labels to jump to or various sorts of declarative information. --- 9980,9986 ---- The RTL representation of the code for a function is a doubly-linked chain of objects called "insns". Insns are expressions with special codes that are used for no other purpose. Some insns are actual ! instructions; others represent dispatch tables for 'switch' statements; others represent labels to jump to or various sorts of declarative information. *************** id-number that distinguishes it from all *** 10141,10165 **** function (after delayed branch scheduling, copies of an insn with the same id-number may be present in multiple places in a function, but these copies will always be identical and will only appear inside a ! `sequence'), and chain pointers to the preceding and following insns. These three fields occupy the same position in every insn, independent ! of the expression code of the insn. They could be accessed with `XEXP' ! and `XINT', but instead three special macros are always used: ! `INSN_UID (I)' Accesses the unique id of insn I. ! `PREV_INSN (I)' Accesses the chain pointer to the insn preceding I. If I is the first insn, this is a null pointer. ! `NEXT_INSN (I)' Accesses the chain pointer to the insn following I. If I is the last insn, this is a null pointer. ! The first insn in the chain is obtained by calling `get_insns'; the ! last insn is the result of calling `get_last_insn'. Within the chain ! delimited by these insns, the `NEXT_INSN' and `PREV_INSN' pointers must always correspond: if INSN is not the first insn, NEXT_INSN (PREV_INSN (INSN)) == INSN --- 9989,10013 ---- function (after delayed branch scheduling, copies of an insn with the same id-number may be present in multiple places in a function, but these copies will always be identical and will only appear inside a ! 'sequence'), and chain pointers to the preceding and following insns. These three fields occupy the same position in every insn, independent ! of the expression code of the insn. They could be accessed with 'XEXP' ! and 'XINT', but instead three special macros are always used: ! 'INSN_UID (I)' Accesses the unique id of insn I. ! 'PREV_INSN (I)' Accesses the chain pointer to the insn preceding I. If I is the first insn, this is a null pointer. ! 'NEXT_INSN (I)' Accesses the chain pointer to the insn following I. If I is the last insn, this is a null pointer. ! The first insn in the chain is obtained by calling 'get_insns'; the ! last insn is the result of calling 'get_last_insn'. Within the chain ! delimited by these insns, the 'NEXT_INSN' and 'PREV_INSN' pointers must always correspond: if INSN is not the first insn, NEXT_INSN (PREV_INSN (INSN)) == INSN *************** is always true and if INSN is not the la *** 10171,10471 **** is always true. After delay slot scheduling, some of the insns in the chain might be ! `sequence' expressions, which contain a vector of insns. The value of ! `NEXT_INSN' in all but the last of these insns is the next insn in the ! vector; the value of `NEXT_INSN' of the last insn in the vector is the ! same as the value of `NEXT_INSN' for the `sequence' in which it is ! contained. Similar rules apply for `PREV_INSN'. This means that the above invariants are not necessarily true for insns ! inside `sequence' expressions. Specifically, if INSN is the first insn ! in a `sequence', `NEXT_INSN (PREV_INSN (INSN))' is the insn containing ! the `sequence' expression, as is the value of `PREV_INSN (NEXT_INSN ! (INSN))' if INSN is the last insn in the `sequence' expression. You ! can use these expressions to find the containing `sequence' expression. Every insn has one of the following expression codes: ! `insn' ! The expression code `insn' is used for instructions that do not ! jump and do not do function calls. `sequence' expressions are ! always contained in insns with code `insn' even if one of those insns should jump or do function calls. ! Insns with code `insn' have four additional fields beyond the three mandatory ones listed above. These four are described in a table below. ! `jump_insn' ! The expression code `jump_insn' is used for instructions that may ! jump (or, more generally, may contain `label_ref' expressions to ! which `pc' can be set in that instruction). If there is an instruction to return from the current function, it is recorded as ! a `jump_insn'. ! `jump_insn' insns have the same extra fields as `insn' insns, accessed in the same way and in addition contain a field ! `JUMP_LABEL' which is defined once jump optimization has completed. For simple conditional and unconditional jumps, this field contains ! the `code_label' to which this insn will (possibly conditionally) ! branch. In a more complex jump, `JUMP_LABEL' records one of the labels that the insn refers to; other jump target labels are ! recorded as `REG_LABEL_TARGET' notes. The exception is `addr_vec' ! and `addr_diff_vec', where `JUMP_LABEL' is `NULL_RTX' and the only way to find the labels is to scan the entire body of the insn. Return insns count as jumps, but since they do not refer to any ! labels, their `JUMP_LABEL' is `NULL_RTX'. ! `call_insn' ! The expression code `call_insn' is used for instructions that may do function calls. It is important to distinguish these instructions because they imply that certain registers and memory locations may be altered unpredictably. ! `call_insn' insns have the same extra fields as `insn' insns, accessed in the same way and in addition contain a field ! `CALL_INSN_FUNCTION_USAGE', which contains a list (chain of ! `expr_list' expressions) containing `use', `clobber' and sometimes ! `set' expressions that denote hard registers and `mem's used or clobbered by the called function. ! A `mem' generally points to a stack slot in which arguments passed to the libcall by reference (*note TARGET_PASS_BY_REFERENCE: Register Arguments.) are stored. If the argument is caller-copied (*note TARGET_CALLEE_COPIES: Register Arguments.), the stack slot ! will be mentioned in `clobber' and `use' entries; if it's ! callee-copied, only a `use' will appear, and the `mem' may point ! to addresses that are not stack slots. ! Registers occurring inside a `clobber' in this list augment ! registers specified in `CALL_USED_REGISTERS' (*note Register Basics::). ! If the list contains a `set' involving two registers, it indicates ! that the function returns one of its arguments. Such a `set' may look like a no-op if the same register holds the argument and the return value. ! `code_label' ! A `code_label' insn represents a label that a jump insn can jump to. It contains two special fields of data in addition to the ! three standard ones. `CODE_LABEL_NUMBER' is used to hold the "label number", a number that identifies this label uniquely among all the labels in the compilation (not just in the current function). Ultimately, the label is represented in the assembler ! output as an assembler label, usually of the form `LN' where N is the label number. ! When a `code_label' appears in an RTL expression, it normally ! appears within a `label_ref' which represents the address of the label, as a number. ! Besides as a `code_label', a label can also be represented as a ! `note' of type `NOTE_INSN_DELETED_LABEL'. ! The field `LABEL_NUSES' is only defined once the jump optimization phase is completed. It contains the number of times this label is referenced in the current function. ! The field `LABEL_KIND' differentiates four different types of ! labels: `LABEL_NORMAL', `LABEL_STATIC_ENTRY', ! `LABEL_GLOBAL_ENTRY', and `LABEL_WEAK_ENTRY'. The only labels ! that do not have type `LABEL_NORMAL' are "alternate entry points" ! to the current function. These may be static (visible only in the ! containing translation unit), global (exposed to all translation ! units), or weak (global, but can be overridden by another symbol ! with the same name). Much of the compiler treats all four kinds of label identically. Some of it needs to know whether or not a label is an alternate ! entry point; for this purpose, the macro `LABEL_ALT_ENTRY_P' is ! provided. It is equivalent to testing whether `LABEL_KIND (label) == LABEL_NORMAL'. The only place that cares about the distinction between static, global, and weak alternate entry points, besides the front-end code that creates them, is the function ! `output_alternate_entry_point', in `final.c'. ! To set the kind of a label, use the `SET_LABEL_KIND' macro. ! `barrier' Barriers are placed in the instruction stream when control cannot flow past them. They are placed after unconditional jump ! instructions to indicate that the jumps are unconditional and ! after calls to `volatile' functions, which do not return (e.g., ! `exit'). They contain no information beyond the three standard ! fields. ! `note' ! `note' insns are used to represent additional debugging and declarative information. They contain two nonstandard fields, an ! integer which is accessed with the macro `NOTE_LINE_NUMBER' and a ! string accessed with `NOTE_SOURCE_FILE'. ! If `NOTE_LINE_NUMBER' is positive, the note represents the ! position of a source line and `NOTE_SOURCE_FILE' is the source ! file name that the line came from. These notes control generation ! of line number data in the assembler output. ! Otherwise, `NOTE_LINE_NUMBER' is not really a line number but a ! code with one of the following values (and `NOTE_SOURCE_FILE' must contain a null pointer): ! `NOTE_INSN_DELETED' Such a note is completely ignorable. Some passes of the compiler delete insns by altering them into notes of this kind. ! `NOTE_INSN_DELETED_LABEL' ! This marks what used to be a `code_label', but was not used ! for other purposes than taking its address and was ! transformed to mark that no code jumps to it. ! `NOTE_INSN_BLOCK_BEG' ! `NOTE_INSN_BLOCK_END' These types of notes indicate the position of the beginning ! and end of a level of scoping of variable names. They ! control the output of debugging information. ! `NOTE_INSN_EH_REGION_BEG' ! `NOTE_INSN_EH_REGION_END' These types of notes indicate the position of the beginning and end of a level of scoping for exception handling. ! `NOTE_BLOCK_NUMBER' identifies which `CODE_LABEL' or `note' ! of type `NOTE_INSN_DELETED_LABEL' is associated with the ! given region. ! `NOTE_INSN_LOOP_BEG' ! `NOTE_INSN_LOOP_END' These types of notes indicate the position of the beginning ! and end of a `while' or `for' loop. They enable the loop optimizer to find loops quickly. ! `NOTE_INSN_LOOP_CONT' ! Appears at the place in a loop that `continue' statements ! jump to. ! `NOTE_INSN_LOOP_VTOP' This note indicates the place in a loop where the exit test begins for those loops in which the exit test has been duplicated. This position becomes another virtual start of the loop when considering loop invariants. ! `NOTE_INSN_FUNCTION_BEG' Appears at the start of the function body, after the function prologue. ! `NOTE_INSN_VAR_LOCATION' This note is used to generate variable location debugging information. It indicates that the user variable in its ! `VAR_LOCATION' operand is at the location given in the RTL expression, or holds a value that can be computed by evaluating the RTL expression from that static point in the program up to the next such note for the same user variable. - These codes are printed symbolically when they appear in debugging dumps. ! `debug_insn' ! The expression code `debug_insn' is used for pseudo-instructions that hold debugging information for variable tracking at ! assignments (see `-fvar-tracking-assignments' option). They are ! the RTL representation of `GIMPLE_DEBUG' statements (*note ! `GIMPLE_DEBUG'::), with a `VAR_LOCATION' operand that binds a user ! variable tree to an RTL representation of the `value' in the ! corresponding statement. A `DEBUG_EXPR' in it stands for the ! value bound to the corresponding `DEBUG_EXPR_DECL'. Throughout optimization passes, binding information is kept in pseudo-instruction form, so that, unlike notes, it gets the same treatment and adjustments that regular instructions would. It is the variable tracking pass that turns these pseudo-instructions ! into var location notes, analyzing control flow, value ! equivalences and changes to registers and memory referenced in ! value expressions, propagating the values of debug temporaries and determining expressions that can be used to compute the value of each user variable at as many points (ranges, actually) in the program as possible. ! Unlike `NOTE_INSN_VAR_LOCATION', the value expression in an ! `INSN_VAR_LOCATION' denotes a value at that specific point in the program, rather than an expression that can be evaluated at any ! later point before an overriding `VAR_LOCATION' is encountered. ! E.g., if a user variable is bound to a `REG' and then a subsequent ! insn modifies the `REG', the note location would keep mapping the user variable to the register across the insn, whereas the insn location would keep the variable bound to the value, so that the variable tracking pass would emit another location note for the variable at the point in which the register is modified. ! ! The machine mode of an insn is normally `VOIDmode', but some phases ! use the mode for various purposes. The common subexpression elimination pass sets the mode of an insn to ! `QImode' when it is the first insn in a block that has already been processed. The second Haifa scheduling pass, for targets that can multiple issue, ! sets the mode of an insn to `TImode' when it is believed that the ! instruction begins an issue group. That is, when the instruction ! cannot issue simultaneously with the previous. This may be relied on ! by later passes, in particular machine-dependent reorg. ! Here is a table of the extra fields of `insn', `jump_insn' and ! `call_insn' insns: ! `PATTERN (I)' An expression for the side effect performed by this insn. This ! must be one of the following codes: `set', `call', `use', ! `clobber', `return', `simple_return', `asm_input', `asm_output', ! `addr_vec', `addr_diff_vec', `trap_if', `unspec', ! `unspec_volatile', `parallel', `cond_exec', or `sequence'. If it ! is a `parallel', each element of the `parallel' must be one these ! codes, except that `parallel' expressions cannot be nested and ! `addr_vec' and `addr_diff_vec' are not permitted inside a ! `parallel' expression. ! `INSN_CODE (I)' An integer that says which pattern in the machine description matches this insn, or -1 if the matching has not yet been attempted. Such matching is never attempted and this field remains -1 on an ! insn whose pattern consists of a single `use', `clobber', ! `asm_input', `addr_vec' or `addr_diff_vec' expression. ! Matching is also never attempted on insns that result from an `asm' ! statement. These contain at least one `asm_operands' expression. ! The function `asm_noperands' returns a non-negative value for such insns. ! In the debugging output, this field is printed as a number ! followed by a symbolic representation that locates the pattern in ! the `md' file as some small positive or negative offset from a ! named pattern. ! `LOG_LINKS (I)' ! A list (chain of `insn_list' expressions) giving information about dependencies between instructions within a basic block. Neither a jump nor a label may come between the related insns. These are only used by the schedulers and by combine. This is a deprecated data structure. Def-use and use-def chains are now preferred. ! `REG_NOTES (I)' ! A list (chain of `expr_list' and `insn_list' expressions) giving miscellaneous information about the insn. It is often information pertaining to the registers used in this insn. ! The `LOG_LINKS' field of an insn is a chain of `insn_list' ! expressions. Each of these has two operands: the first is an insn, and ! the second is another `insn_list' expression (the next one in the ! chain). The last `insn_list' in the chain has a null pointer as second ! operand. The significant thing about the chain is which insns appear ! in it (as first operands of `insn_list' expressions). Their order is ! not significant. This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow only adds links for those data dependencies --- 10019,10315 ---- is always true. After delay slot scheduling, some of the insns in the chain might be ! 'sequence' expressions, which contain a vector of insns. The value of ! 'NEXT_INSN' in all but the last of these insns is the next insn in the ! vector; the value of 'NEXT_INSN' of the last insn in the vector is the ! same as the value of 'NEXT_INSN' for the 'sequence' in which it is ! contained. Similar rules apply for 'PREV_INSN'. This means that the above invariants are not necessarily true for insns ! inside 'sequence' expressions. Specifically, if INSN is the first insn ! in a 'sequence', 'NEXT_INSN (PREV_INSN (INSN))' is the insn containing ! the 'sequence' expression, as is the value of 'PREV_INSN (NEXT_INSN ! (INSN))' if INSN is the last insn in the 'sequence' expression. You can ! use these expressions to find the containing 'sequence' expression. Every insn has one of the following expression codes: ! 'insn' ! The expression code 'insn' is used for instructions that do not ! jump and do not do function calls. 'sequence' expressions are ! always contained in insns with code 'insn' even if one of those insns should jump or do function calls. ! Insns with code 'insn' have four additional fields beyond the three mandatory ones listed above. These four are described in a table below. ! 'jump_insn' ! The expression code 'jump_insn' is used for instructions that may ! jump (or, more generally, may contain 'label_ref' expressions to ! which 'pc' can be set in that instruction). If there is an instruction to return from the current function, it is recorded as ! a 'jump_insn'. ! 'jump_insn' insns have the same extra fields as 'insn' insns, accessed in the same way and in addition contain a field ! 'JUMP_LABEL' which is defined once jump optimization has completed. For simple conditional and unconditional jumps, this field contains ! the 'code_label' to which this insn will (possibly conditionally) ! branch. In a more complex jump, 'JUMP_LABEL' records one of the labels that the insn refers to; other jump target labels are ! recorded as 'REG_LABEL_TARGET' notes. The exception is 'addr_vec' ! and 'addr_diff_vec', where 'JUMP_LABEL' is 'NULL_RTX' and the only way to find the labels is to scan the entire body of the insn. Return insns count as jumps, but since they do not refer to any ! labels, their 'JUMP_LABEL' is 'NULL_RTX'. ! 'call_insn' ! The expression code 'call_insn' is used for instructions that may do function calls. It is important to distinguish these instructions because they imply that certain registers and memory locations may be altered unpredictably. ! 'call_insn' insns have the same extra fields as 'insn' insns, accessed in the same way and in addition contain a field ! 'CALL_INSN_FUNCTION_USAGE', which contains a list (chain of ! 'expr_list' expressions) containing 'use', 'clobber' and sometimes ! 'set' expressions that denote hard registers and 'mem's used or clobbered by the called function. ! A 'mem' generally points to a stack slot in which arguments passed to the libcall by reference (*note TARGET_PASS_BY_REFERENCE: Register Arguments.) are stored. If the argument is caller-copied (*note TARGET_CALLEE_COPIES: Register Arguments.), the stack slot ! will be mentioned in 'clobber' and 'use' entries; if it's ! callee-copied, only a 'use' will appear, and the 'mem' may point to ! addresses that are not stack slots. ! Registers occurring inside a 'clobber' in this list augment ! registers specified in 'CALL_USED_REGISTERS' (*note Register Basics::). ! If the list contains a 'set' involving two registers, it indicates ! that the function returns one of its arguments. Such a 'set' may look like a no-op if the same register holds the argument and the return value. ! 'code_label' ! A 'code_label' insn represents a label that a jump insn can jump to. It contains two special fields of data in addition to the ! three standard ones. 'CODE_LABEL_NUMBER' is used to hold the "label number", a number that identifies this label uniquely among all the labels in the compilation (not just in the current function). Ultimately, the label is represented in the assembler ! output as an assembler label, usually of the form 'LN' where N is the label number. ! When a 'code_label' appears in an RTL expression, it normally ! appears within a 'label_ref' which represents the address of the label, as a number. ! Besides as a 'code_label', a label can also be represented as a ! 'note' of type 'NOTE_INSN_DELETED_LABEL'. ! The field 'LABEL_NUSES' is only defined once the jump optimization phase is completed. It contains the number of times this label is referenced in the current function. ! The field 'LABEL_KIND' differentiates four different types of ! labels: 'LABEL_NORMAL', 'LABEL_STATIC_ENTRY', 'LABEL_GLOBAL_ENTRY', ! and 'LABEL_WEAK_ENTRY'. The only labels that do not have type ! 'LABEL_NORMAL' are "alternate entry points" to the current ! function. These may be static (visible only in the containing ! translation unit), global (exposed to all translation units), or ! weak (global, but can be overridden by another symbol with the same ! name). Much of the compiler treats all four kinds of label identically. Some of it needs to know whether or not a label is an alternate ! entry point; for this purpose, the macro 'LABEL_ALT_ENTRY_P' is ! provided. It is equivalent to testing whether 'LABEL_KIND (label) == LABEL_NORMAL'. The only place that cares about the distinction between static, global, and weak alternate entry points, besides the front-end code that creates them, is the function ! 'output_alternate_entry_point', in 'final.c'. ! To set the kind of a label, use the 'SET_LABEL_KIND' macro. ! 'barrier' Barriers are placed in the instruction stream when control cannot flow past them. They are placed after unconditional jump ! instructions to indicate that the jumps are unconditional and after ! calls to 'volatile' functions, which do not return (e.g., 'exit'). ! They contain no information beyond the three standard fields. ! 'note' ! 'note' insns are used to represent additional debugging and declarative information. They contain two nonstandard fields, an ! integer which is accessed with the macro 'NOTE_LINE_NUMBER' and a ! string accessed with 'NOTE_SOURCE_FILE'. ! If 'NOTE_LINE_NUMBER' is positive, the note represents the position ! of a source line and 'NOTE_SOURCE_FILE' is the source file name ! that the line came from. These notes control generation of line ! number data in the assembler output. ! Otherwise, 'NOTE_LINE_NUMBER' is not really a line number but a ! code with one of the following values (and 'NOTE_SOURCE_FILE' must contain a null pointer): ! 'NOTE_INSN_DELETED' Such a note is completely ignorable. Some passes of the compiler delete insns by altering them into notes of this kind. ! 'NOTE_INSN_DELETED_LABEL' ! This marks what used to be a 'code_label', but was not used ! for other purposes than taking its address and was transformed ! to mark that no code jumps to it. ! 'NOTE_INSN_BLOCK_BEG' ! 'NOTE_INSN_BLOCK_END' These types of notes indicate the position of the beginning ! and end of a level of scoping of variable names. They control ! the output of debugging information. ! 'NOTE_INSN_EH_REGION_BEG' ! 'NOTE_INSN_EH_REGION_END' These types of notes indicate the position of the beginning and end of a level of scoping for exception handling. ! 'NOTE_BLOCK_NUMBER' identifies which 'CODE_LABEL' or 'note' of ! type 'NOTE_INSN_DELETED_LABEL' is associated with the given ! region. ! 'NOTE_INSN_LOOP_BEG' ! 'NOTE_INSN_LOOP_END' These types of notes indicate the position of the beginning ! and end of a 'while' or 'for' loop. They enable the loop optimizer to find loops quickly. ! 'NOTE_INSN_LOOP_CONT' ! Appears at the place in a loop that 'continue' statements jump ! to. ! 'NOTE_INSN_LOOP_VTOP' This note indicates the place in a loop where the exit test begins for those loops in which the exit test has been duplicated. This position becomes another virtual start of the loop when considering loop invariants. ! 'NOTE_INSN_FUNCTION_BEG' Appears at the start of the function body, after the function prologue. ! 'NOTE_INSN_VAR_LOCATION' This note is used to generate variable location debugging information. It indicates that the user variable in its ! 'VAR_LOCATION' operand is at the location given in the RTL expression, or holds a value that can be computed by evaluating the RTL expression from that static point in the program up to the next such note for the same user variable. These codes are printed symbolically when they appear in debugging dumps. ! 'debug_insn' ! The expression code 'debug_insn' is used for pseudo-instructions that hold debugging information for variable tracking at ! assignments (see '-fvar-tracking-assignments' option). They are ! the RTL representation of 'GIMPLE_DEBUG' statements (*note ! 'GIMPLE_DEBUG'::), with a 'VAR_LOCATION' operand that binds a user ! variable tree to an RTL representation of the 'value' in the ! corresponding statement. A 'DEBUG_EXPR' in it stands for the value ! bound to the corresponding 'DEBUG_EXPR_DECL'. Throughout optimization passes, binding information is kept in pseudo-instruction form, so that, unlike notes, it gets the same treatment and adjustments that regular instructions would. It is the variable tracking pass that turns these pseudo-instructions ! into var location notes, analyzing control flow, value equivalences ! and changes to registers and memory referenced in value ! expressions, propagating the values of debug temporaries and determining expressions that can be used to compute the value of each user variable at as many points (ranges, actually) in the program as possible. ! Unlike 'NOTE_INSN_VAR_LOCATION', the value expression in an ! 'INSN_VAR_LOCATION' denotes a value at that specific point in the program, rather than an expression that can be evaluated at any ! later point before an overriding 'VAR_LOCATION' is encountered. ! E.g., if a user variable is bound to a 'REG' and then a subsequent ! insn modifies the 'REG', the note location would keep mapping the user variable to the register across the insn, whereas the insn location would keep the variable bound to the value, so that the variable tracking pass would emit another location note for the variable at the point in which the register is modified. ! The machine mode of an insn is normally 'VOIDmode', but some phases use ! the mode for various purposes. The common subexpression elimination pass sets the mode of an insn to ! 'QImode' when it is the first insn in a block that has already been processed. The second Haifa scheduling pass, for targets that can multiple issue, ! sets the mode of an insn to 'TImode' when it is believed that the ! instruction begins an issue group. That is, when the instruction cannot ! issue simultaneously with the previous. This may be relied on by later ! passes, in particular machine-dependent reorg. ! Here is a table of the extra fields of 'insn', 'jump_insn' and ! 'call_insn' insns: ! 'PATTERN (I)' An expression for the side effect performed by this insn. This ! must be one of the following codes: 'set', 'call', 'use', ! 'clobber', 'return', 'simple_return', 'asm_input', 'asm_output', ! 'addr_vec', 'addr_diff_vec', 'trap_if', 'unspec', ! 'unspec_volatile', 'parallel', 'cond_exec', or 'sequence'. If it ! is a 'parallel', each element of the 'parallel' must be one these ! codes, except that 'parallel' expressions cannot be nested and ! 'addr_vec' and 'addr_diff_vec' are not permitted inside a ! 'parallel' expression. ! 'INSN_CODE (I)' An integer that says which pattern in the machine description matches this insn, or -1 if the matching has not yet been attempted. Such matching is never attempted and this field remains -1 on an ! insn whose pattern consists of a single 'use', 'clobber', ! 'asm_input', 'addr_vec' or 'addr_diff_vec' expression. ! Matching is also never attempted on insns that result from an 'asm' ! statement. These contain at least one 'asm_operands' expression. ! The function 'asm_noperands' returns a non-negative value for such insns. ! In the debugging output, this field is printed as a number followed ! by a symbolic representation that locates the pattern in the 'md' ! file as some small positive or negative offset from a named ! pattern. ! 'LOG_LINKS (I)' ! A list (chain of 'insn_list' expressions) giving information about dependencies between instructions within a basic block. Neither a jump nor a label may come between the related insns. These are only used by the schedulers and by combine. This is a deprecated data structure. Def-use and use-def chains are now preferred. ! 'REG_NOTES (I)' ! A list (chain of 'expr_list' and 'insn_list' expressions) giving miscellaneous information about the insn. It is often information pertaining to the registers used in this insn. ! The 'LOG_LINKS' field of an insn is a chain of 'insn_list' expressions. ! Each of these has two operands: the first is an insn, and the second is ! another 'insn_list' expression (the next one in the chain). The last ! 'insn_list' in the chain has a null pointer as second operand. The ! significant thing about the chain is which insns appear in it (as first ! operands of 'insn_list' expressions). Their order is not significant. This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow only adds links for those data dependencies *************** which can be used for instruction combin *** 10473,10497 **** analysis pass adds a link to insns which store into registers values that are used for the first time in this insn. ! The `REG_NOTES' field of an insn is a chain similar to the `LOG_LINKS' ! field but it includes `expr_list' expressions in addition to ! `insn_list' expressions. There are several kinds of register notes, ! which are distinguished by the machine mode, which in a register note ! is really understood as being an `enum reg_note'. The first operand OP ! of the note is data whose meaning depends on the kind of note. ! The macro `REG_NOTE_KIND (X)' returns the kind of register note. Its ! counterpart, the macro `PUT_REG_NOTE_KIND (X, NEWKIND)' sets the register note type of X to be NEWKIND. Register notes are of three classes: They may say something about an input to an insn, they may say something about an output of an insn, or they may create a linkage between two insns. There are also a set of ! values that are only used in `LOG_LINKS'. These register notes annotate inputs to an insn: ! `REG_DEAD' The value in OP dies in this insn; that is to say, altering the value immediately after this insn would not affect the future behavior of the program. --- 10317,10341 ---- analysis pass adds a link to insns which store into registers values that are used for the first time in this insn. ! The 'REG_NOTES' field of an insn is a chain similar to the 'LOG_LINKS' ! field but it includes 'expr_list' expressions in addition to 'insn_list' ! expressions. There are several kinds of register notes, which are ! distinguished by the machine mode, which in a register note is really ! understood as being an 'enum reg_note'. The first operand OP of the ! note is data whose meaning depends on the kind of note. ! The macro 'REG_NOTE_KIND (X)' returns the kind of register note. Its ! counterpart, the macro 'PUT_REG_NOTE_KIND (X, NEWKIND)' sets the register note type of X to be NEWKIND. Register notes are of three classes: They may say something about an input to an insn, they may say something about an output of an insn, or they may create a linkage between two insns. There are also a set of ! values that are only used in 'LOG_LINKS'. These register notes annotate inputs to an insn: ! 'REG_DEAD' The value in OP dies in this insn; that is to say, altering the value immediately after this insn would not affect the future behavior of the program. *************** values that are only used in `LOG_LINKS' *** 10500,10571 **** this insn since OP is not necessarily modified by this insn. Rather, no subsequent instruction uses the contents of OP. ! `REG_UNUSED' The register OP being set by this insn will not be used in a ! subsequent insn. This differs from a `REG_DEAD' note, which indicates that the value in an input will not be used subsequently. These two notes are independent; both may be present for the same register. ! `REG_INC' ! The register OP is incremented (or decremented; at this level ! there is no distinction) by an embedded side effect inside this ! insn. This means it appears in a `post_inc', `pre_inc', ! `post_dec' or `pre_dec' expression. ! `REG_NONNEG' ! The register OP is known to have a nonnegative value when this ! insn is reached. This is used so that decrement and branch until ! zero instructions, such as the m68k dbra, can be matched. ! The `REG_NONNEG' note is added to insns only if the machine ! description has a `decrement_and_branch_until_zero' pattern. ! `REG_LABEL_OPERAND' ! This insn uses OP, a `code_label' or a `note' of type ! `NOTE_INSN_DELETED_LABEL', but is not a `jump_insn', or it is a ! `jump_insn' that refers to the operand as an ordinary operand. ! The label may still eventually be a jump target, but if so in an indirect jump in a subsequent insn. The presence of this note allows jump optimization to be aware that OP is, in fact, being used, and flow optimization to build an accurate flow graph. ! `REG_LABEL_TARGET' ! This insn is a `jump_insn' but not an `addr_vec' or ! `addr_diff_vec'. It uses OP, a `code_label' as a direct or indirect jump target. Its purpose is similar to that of ! `REG_LABEL_OPERAND'. This note is only present if the insn has multiple targets; the last label in the insn (in the highest ! numbered insn-field) goes into the `JUMP_LABEL' field and does not ! have a `REG_LABEL_TARGET' note. *Note JUMP_LABEL: Insns. ! `REG_CROSSING_JUMP' This insn is a branching instruction (either an unconditional jump or an indirect jump) which crosses between hot and cold sections, which could potentially be very far apart in the executable. The presence of this note indicates to other optimizations that this branching instruction should not be "collapsed" into a simpler ! branching construct. It is used when the optimization to ! partition basic blocks into hot and cold sections is turned on. ! `REG_SETJMP' ! Appears attached to each `CALL_INSN' to `setjmp' or a related function. The following notes describe attributes of outputs of an insn: ! `REG_EQUIV' ! `REG_EQUAL' This note is only valid on an insn that sets only one register and indicates that that register will be equal to OP at run time; the scope of this equivalence differs between the two types of notes. The value which the insn explicitly copies into the register may look different from OP, but they will be equal at run time. If the ! output of the single `set' is a `strict_low_part' expression, the ! note refers to the register that is contained in `SUBREG_REG' of ! the `subreg' expression. ! For `REG_EQUIV', the register is equivalent to OP throughout the entire function, and could validly be replaced in all its occurrences by OP. ("Validly" here refers to the data flow of the program; simple replacement may make some insns invalid.) For --- 10344,10415 ---- this insn since OP is not necessarily modified by this insn. Rather, no subsequent instruction uses the contents of OP. ! 'REG_UNUSED' The register OP being set by this insn will not be used in a ! subsequent insn. This differs from a 'REG_DEAD' note, which indicates that the value in an input will not be used subsequently. These two notes are independent; both may be present for the same register. ! 'REG_INC' ! The register OP is incremented (or decremented; at this level there ! is no distinction) by an embedded side effect inside this insn. ! This means it appears in a 'post_inc', 'pre_inc', 'post_dec' or ! 'pre_dec' expression. ! 'REG_NONNEG' ! The register OP is known to have a nonnegative value when this insn ! is reached. This is used so that decrement and branch until zero ! instructions, such as the m68k dbra, can be matched. ! The 'REG_NONNEG' note is added to insns only if the machine ! description has a 'decrement_and_branch_until_zero' pattern. ! 'REG_LABEL_OPERAND' ! This insn uses OP, a 'code_label' or a 'note' of type ! 'NOTE_INSN_DELETED_LABEL', but is not a 'jump_insn', or it is a ! 'jump_insn' that refers to the operand as an ordinary operand. The ! label may still eventually be a jump target, but if so in an indirect jump in a subsequent insn. The presence of this note allows jump optimization to be aware that OP is, in fact, being used, and flow optimization to build an accurate flow graph. ! 'REG_LABEL_TARGET' ! This insn is a 'jump_insn' but not an 'addr_vec' or ! 'addr_diff_vec'. It uses OP, a 'code_label' as a direct or indirect jump target. Its purpose is similar to that of ! 'REG_LABEL_OPERAND'. This note is only present if the insn has multiple targets; the last label in the insn (in the highest ! numbered insn-field) goes into the 'JUMP_LABEL' field and does not ! have a 'REG_LABEL_TARGET' note. *Note JUMP_LABEL: Insns. ! 'REG_CROSSING_JUMP' This insn is a branching instruction (either an unconditional jump or an indirect jump) which crosses between hot and cold sections, which could potentially be very far apart in the executable. The presence of this note indicates to other optimizations that this branching instruction should not be "collapsed" into a simpler ! branching construct. It is used when the optimization to partition ! basic blocks into hot and cold sections is turned on. ! 'REG_SETJMP' ! Appears attached to each 'CALL_INSN' to 'setjmp' or a related function. The following notes describe attributes of outputs of an insn: ! 'REG_EQUIV' ! 'REG_EQUAL' This note is only valid on an insn that sets only one register and indicates that that register will be equal to OP at run time; the scope of this equivalence differs between the two types of notes. The value which the insn explicitly copies into the register may look different from OP, but they will be equal at run time. If the ! output of the single 'set' is a 'strict_low_part' expression, the ! note refers to the register that is contained in 'SUBREG_REG' of ! the 'subreg' expression. ! For 'REG_EQUIV', the register is equivalent to OP throughout the entire function, and could validly be replaced in all its occurrences by OP. ("Validly" here refers to the data flow of the program; simple replacement may make some insns invalid.) For *************** values that are only used in `LOG_LINKS' *** 10575,10597 **** When a parameter is copied into a pseudo-register at entry to a function, a note of this kind records that the register is equivalent to the stack slot where the parameter was passed. ! Although in this case the register may be set by other insns, it ! is still valid to replace the register by the stack slot ! throughout the function. ! A `REG_EQUIV' note is also used on an instruction which copies a register parameter into a pseudo-register at entry to a function, if there is a stack slot where that parameter could be stored. Although other insns may set the pseudo-register, it is valid for the compiler to replace the pseudo-register by stack slot throughout the function, provided the compiler ensures that the ! stack slot is properly initialized by making the replacement in ! the initial copy instruction as well. This is used on machines ! for which the calling convention allocates stack space for ! register parameters. See `REG_PARM_STACK_SPACE' in *note Stack ! Arguments::. ! In the case of `REG_EQUAL', the register that is set by this insn will be equal to OP at run time at the end of this insn but not necessarily elsewhere in the function. In this case, OP is typically an arithmetic expression. For example, when a sequence --- 10419,10440 ---- When a parameter is copied into a pseudo-register at entry to a function, a note of this kind records that the register is equivalent to the stack slot where the parameter was passed. ! Although in this case the register may be set by other insns, it is ! still valid to replace the register by the stack slot throughout ! the function. ! A 'REG_EQUIV' note is also used on an instruction which copies a register parameter into a pseudo-register at entry to a function, if there is a stack slot where that parameter could be stored. Although other insns may set the pseudo-register, it is valid for the compiler to replace the pseudo-register by stack slot throughout the function, provided the compiler ensures that the ! stack slot is properly initialized by making the replacement in the ! initial copy instruction as well. This is used on machines for ! which the calling convention allocates stack space for register ! parameters. See 'REG_PARM_STACK_SPACE' in *note Stack Arguments::. ! In the case of 'REG_EQUAL', the register that is set by this insn will be equal to OP at run time at the end of this insn but not necessarily elsewhere in the function. In this case, OP is typically an arithmetic expression. For example, when a sequence *************** values that are only used in `LOG_LINKS' *** 10600,10685 **** or copies the final value. These two notes are used in different ways by the compiler passes. ! `REG_EQUAL' is used by passes prior to register allocation (such as common subexpression elimination and loop optimization) to tell ! them how to think of that value. `REG_EQUIV' notes are used by register allocation to indicate that there is an available ! substitute expression (either a constant or a `mem' expression for ! the location of a parameter on the stack) that may be used in ! place of a register if insufficient registers are available. Except for stack homes for parameters, which are indicated by a ! `REG_EQUIV' note and are not useful to the early optimization passes and pseudo registers that are equivalent to a memory location throughout their entire life, which is not detected until later in the compilation, all equivalences are initially indicated ! by an attached `REG_EQUAL' note. In the early stages of register ! allocation, a `REG_EQUAL' note is changed into a `REG_EQUIV' note if OP is a constant and the insn represents the only set of its destination register. Thus, compiler passes prior to register allocation need only check ! for `REG_EQUAL' notes and passes subsequent to register allocation ! need only check for `REG_EQUIV' notes. These notes describe linkages between insns. They occur in pairs: one insn has one of a pair of notes that points to a second insn, which has the inverse note pointing back to the first insn. ! `REG_CC_SETTER' ! `REG_CC_USER' ! On machines that use `cc0', the insns which set and use `cc0' set ! and use `cc0' are adjacent. However, when branch delay slot filling is done, this may no longer be true. In this case a ! `REG_CC_USER' note will be placed on the insn setting `cc0' to ! point to the insn using `cc0' and a `REG_CC_SETTER' note will be ! placed on the insn using `cc0' to point to the insn setting `cc0'. ! These values are only used in the `LOG_LINKS' field, and indicate the type of dependency that each link represents. Links which indicate a data dependence (a read after write dependence) do not use any code, ! they simply have mode `VOIDmode', and are printed without any descriptive text. ! `REG_DEP_TRUE' This indicates a true dependence (a read after write dependence). ! `REG_DEP_OUTPUT' This indicates an output dependence (a write after write dependence). ! `REG_DEP_ANTI' This indicates an anti dependence (a write after read dependence). - These notes describe information gathered from gcov profile data. They ! are stored in the `REG_NOTES' field of an insn as an `expr_list'. ! `REG_BR_PROB' This is used to specify the ratio of branches to non-branches of a branch insn according to the profile data. The value is stored as a value between 0 and REG_BR_PROB_BASE; larger values indicate a higher probability that the branch will be taken. ! `REG_BR_PRED' These notes are found in JUMP insns after delayed branch scheduling has taken place. They indicate both the direction and the likelihood of the JUMP. The format is a bitmask of ATTR_FLAG_* values. ! `REG_FRAME_RELATED_EXPR' This is used on an RTX_FRAME_RELATED_P insn wherein the attached expression is used in place of the actual insn pattern. This is done in cases where the pattern is either complex or misleading. ! For convenience, the machine mode in an `insn_list' or `expr_list' is printed using these symbolic codes in debugging dumps. ! The only difference between the expression codes `insn_list' and ! `expr_list' is that the first operand of an `insn_list' is assumed to ! be an insn and is printed in debugging dumps as the insn's unique id; ! the first operand of an `expr_list' is printed in the ordinary way as ! an expression.  File: gccint.info, Node: Calls, Next: Sharing, Prev: Insns, Up: RTL --- 10443,10527 ---- or copies the final value. These two notes are used in different ways by the compiler passes. ! 'REG_EQUAL' is used by passes prior to register allocation (such as common subexpression elimination and loop optimization) to tell ! them how to think of that value. 'REG_EQUIV' notes are used by register allocation to indicate that there is an available ! substitute expression (either a constant or a 'mem' expression for ! the location of a parameter on the stack) that may be used in place ! of a register if insufficient registers are available. Except for stack homes for parameters, which are indicated by a ! 'REG_EQUIV' note and are not useful to the early optimization passes and pseudo registers that are equivalent to a memory location throughout their entire life, which is not detected until later in the compilation, all equivalences are initially indicated ! by an attached 'REG_EQUAL' note. In the early stages of register ! allocation, a 'REG_EQUAL' note is changed into a 'REG_EQUIV' note if OP is a constant and the insn represents the only set of its destination register. Thus, compiler passes prior to register allocation need only check ! for 'REG_EQUAL' notes and passes subsequent to register allocation ! need only check for 'REG_EQUIV' notes. These notes describe linkages between insns. They occur in pairs: one insn has one of a pair of notes that points to a second insn, which has the inverse note pointing back to the first insn. ! 'REG_CC_SETTER' ! 'REG_CC_USER' ! On machines that use 'cc0', the insns which set and use 'cc0' set ! and use 'cc0' are adjacent. However, when branch delay slot filling is done, this may no longer be true. In this case a ! 'REG_CC_USER' note will be placed on the insn setting 'cc0' to ! point to the insn using 'cc0' and a 'REG_CC_SETTER' note will be ! placed on the insn using 'cc0' to point to the insn setting 'cc0'. ! These values are only used in the 'LOG_LINKS' field, and indicate the type of dependency that each link represents. Links which indicate a data dependence (a read after write dependence) do not use any code, ! they simply have mode 'VOIDmode', and are printed without any descriptive text. ! 'REG_DEP_TRUE' This indicates a true dependence (a read after write dependence). ! 'REG_DEP_OUTPUT' This indicates an output dependence (a write after write dependence). ! 'REG_DEP_ANTI' This indicates an anti dependence (a write after read dependence). These notes describe information gathered from gcov profile data. They ! are stored in the 'REG_NOTES' field of an insn as an 'expr_list'. ! 'REG_BR_PROB' This is used to specify the ratio of branches to non-branches of a branch insn according to the profile data. The value is stored as a value between 0 and REG_BR_PROB_BASE; larger values indicate a higher probability that the branch will be taken. ! 'REG_BR_PRED' These notes are found in JUMP insns after delayed branch scheduling has taken place. They indicate both the direction and the likelihood of the JUMP. The format is a bitmask of ATTR_FLAG_* values. ! 'REG_FRAME_RELATED_EXPR' This is used on an RTX_FRAME_RELATED_P insn wherein the attached expression is used in place of the actual insn pattern. This is done in cases where the pattern is either complex or misleading. ! For convenience, the machine mode in an 'insn_list' or 'expr_list' is printed using these symbolic codes in debugging dumps. ! The only difference between the expression codes 'insn_list' and ! 'expr_list' is that the first operand of an 'insn_list' is assumed to be ! an insn and is printed in debugging dumps as the insn's unique id; the ! first operand of an 'expr_list' is printed in the ordinary way as an ! expression.  File: gccint.info, Node: Calls, Next: Sharing, Prev: Insns, Up: RTL *************** File: gccint.info, Node: Calls, Next: *** 10687,10710 **** 10.20 RTL Representation of Function-Call Insns =============================================== ! Insns that call subroutines have the RTL expression code `call_insn'. These insns must satisfy special rules, and their bodies must use a ! special RTL expression code, `call'. ! A `call' expression has two operands, as follows: (call (mem:FM ADDR) NBYTES) Here NBYTES is an operand that represents the number of bytes of argument data being passed to the subroutine, FM is a machine mode ! (which must equal as the definition of the `FUNCTION_MODE' macro in the machine description) and ADDR represents the address of the subroutine. ! For a subroutine that returns no value, the `call' expression as shown above is the entire body of the insn, except that the insn might also ! contain `use' or `clobber' expressions. ! For a subroutine that returns a value whose mode is not `BLKmode', the value is returned in a hard register. If this register's number is R, then the body of the call insn looks like this: --- 10529,10552 ---- 10.20 RTL Representation of Function-Call Insns =============================================== ! Insns that call subroutines have the RTL expression code 'call_insn'. These insns must satisfy special rules, and their bodies must use a ! special RTL expression code, 'call'. ! A 'call' expression has two operands, as follows: (call (mem:FM ADDR) NBYTES) Here NBYTES is an operand that represents the number of bytes of argument data being passed to the subroutine, FM is a machine mode ! (which must equal as the definition of the 'FUNCTION_MODE' macro in the machine description) and ADDR represents the address of the subroutine. ! For a subroutine that returns no value, the 'call' expression as shown above is the entire body of the insn, except that the insn might also ! contain 'use' or 'clobber' expressions. ! For a subroutine that returns a value whose mode is not 'BLKmode', the value is returned in a hard register. If this register's number is R, then the body of the call insn looks like this: *************** then the body of the call insn looks lik *** 10714,10743 **** This RTL expression makes it clear (to the optimizer passes) that the appropriate register receives a useful value in this insn. ! When a subroutine returns a `BLKmode' value, it is handled by passing to the subroutine the address of a place to store the value. So the call insn itself does not "return" any value, and it has the same RTL form as a call that returns nothing. On some machines, the call instruction itself clobbers some register, ! for example to contain the return address. `call_insn' insns on these ! machines should have a body which is a `parallel' that contains both ! the `call' expression and `clobber' expressions that indicate which registers are destroyed. Similarly, if the call instruction requires some register other than the stack pointer that is not explicitly ! mentioned in its RTL, a `use' subexpression should mention that register. Functions that are called are assumed to modify all registers listed in ! the configuration macro `CALL_USED_REGISTERS' (*note Register Basics::) ! and, with the exception of `const' functions and library calls, to modify all of memory. ! Insns containing just `use' expressions directly precede the ! `call_insn' insn to indicate which registers contain inputs to the function. Similarly, if registers other than those in ! `CALL_USED_REGISTERS' are clobbered by the called function, insns ! containing a single `clobber' follow immediately after the call to indicate which registers.  --- 10556,10585 ---- This RTL expression makes it clear (to the optimizer passes) that the appropriate register receives a useful value in this insn. ! When a subroutine returns a 'BLKmode' value, it is handled by passing to the subroutine the address of a place to store the value. So the call insn itself does not "return" any value, and it has the same RTL form as a call that returns nothing. On some machines, the call instruction itself clobbers some register, ! for example to contain the return address. 'call_insn' insns on these ! machines should have a body which is a 'parallel' that contains both the ! 'call' expression and 'clobber' expressions that indicate which registers are destroyed. Similarly, if the call instruction requires some register other than the stack pointer that is not explicitly ! mentioned in its RTL, a 'use' subexpression should mention that register. Functions that are called are assumed to modify all registers listed in ! the configuration macro 'CALL_USED_REGISTERS' (*note Register Basics::) ! and, with the exception of 'const' functions and library calls, to modify all of memory. ! Insns containing just 'use' expressions directly precede the ! 'call_insn' insn to indicate which registers contain inputs to the function. Similarly, if registers other than those in ! 'CALL_USED_REGISTERS' are clobbered by the called function, insns ! containing a single 'clobber' follow immediately after the call to indicate which registers.  *************** File: gccint.info, Node: Sharing, Next *** 10747,10795 **** =================================== The compiler assumes that certain kinds of RTL expressions are unique; ! there do not exist two distinct objects representing the same value. ! In other cases, it makes an opposite assumption: that no RTL expression object of a certain kind appears in more than one place in the containing structure. These assumptions refer to a single function; except for the RTL ! objects that describe global variables and external functions, and a ! few standard objects such as small integer constants, no RTL objects ! are common to two functions. ! * Each pseudo-register has only a single `reg' object to represent it, and therefore only a single machine mode. ! * For any symbolic label, there is only one `symbol_ref' object referring to it. ! * All `const_int' expressions with equal values are shared. ! * There is only one `pc' expression. ! * There is only one `cc0' expression. ! * There is only one `const_double' expression with value 0 for each floating point mode. Likewise for values 1 and 2. ! * There is only one `const_vector' expression with value 0 for each vector mode, be it an integer or a double constant vector. ! * No `label_ref' or `scratch' appears in more than one place in the RTL structure; in other words, it is safe to do a tree-walk of all ! the insns in the function and assume that each time a `label_ref' ! or `scratch' is seen it is distinct from all others that are seen. ! * Only one `mem' object is normally created for each static variable or stack slot, so these objects are frequently shared in all the places they appear. However, separate but equal objects for these variables are occasionally made. ! * When a single `asm' statement has multiple output operands, a ! distinct `asm_operands' expression is made for each output operand. However, these all share the vector which contains the sequence of input operands. This sharing is used later on to test whether two ! `asm_operands' expressions come from the same statement, so all optimizations must carefully preserve the sharing if they copy the vector at all. --- 10589,10637 ---- =================================== The compiler assumes that certain kinds of RTL expressions are unique; ! there do not exist two distinct objects representing the same value. In ! other cases, it makes an opposite assumption: that no RTL expression object of a certain kind appears in more than one place in the containing structure. These assumptions refer to a single function; except for the RTL ! objects that describe global variables and external functions, and a few ! standard objects such as small integer constants, no RTL objects are ! common to two functions. ! * Each pseudo-register has only a single 'reg' object to represent it, and therefore only a single machine mode. ! * For any symbolic label, there is only one 'symbol_ref' object referring to it. ! * All 'const_int' expressions with equal values are shared. ! * There is only one 'pc' expression. ! * There is only one 'cc0' expression. ! * There is only one 'const_double' expression with value 0 for each floating point mode. Likewise for values 1 and 2. ! * There is only one 'const_vector' expression with value 0 for each vector mode, be it an integer or a double constant vector. ! * No 'label_ref' or 'scratch' appears in more than one place in the RTL structure; in other words, it is safe to do a tree-walk of all ! the insns in the function and assume that each time a 'label_ref' ! or 'scratch' is seen it is distinct from all others that are seen. ! * Only one 'mem' object is normally created for each static variable or stack slot, so these objects are frequently shared in all the places they appear. However, separate but equal objects for these variables are occasionally made. ! * When a single 'asm' statement has multiple output operands, a ! distinct 'asm_operands' expression is made for each output operand. However, these all share the vector which contains the sequence of input operands. This sharing is used later on to test whether two ! 'asm_operands' expressions come from the same statement, so all optimizations must carefully preserve the sharing if they copy the vector at all. *************** are common to two functions. *** 10800,10813 **** * During initial RTL generation, shared structure is freely introduced. After all the RTL for a function has been generated, ! all shared structure is copied by `unshare_all_rtl' in ! `emit-rtl.c', after which the above rules are guaranteed to be followed. * During the combiner pass, shared structure within an insn can exist temporarily. However, the shared structure is copied before the combiner is finished with the insn. This is done by calling ! `copy_rtx_if_shared', which is a subroutine of `unshare_all_rtl'.  File: gccint.info, Node: Reading RTL, Prev: Sharing, Up: RTL --- 10642,10655 ---- * During initial RTL generation, shared structure is freely introduced. After all the RTL for a function has been generated, ! all shared structure is copied by 'unshare_all_rtl' in ! 'emit-rtl.c', after which the above rules are guaranteed to be followed. * During the combiner pass, shared structure within an insn can exist temporarily. However, the shared structure is copied before the combiner is finished with the insn. This is done by calling ! 'copy_rtx_if_shared', which is a subroutine of 'unshare_all_rtl'.  File: gccint.info, Node: Reading RTL, Prev: Sharing, Up: RTL *************** File: gccint.info, Node: Reading RTL, *** 10815,10825 **** 10.22 Reading RTL ================= ! To read an RTL object from a file, call `read_rtx'. It takes one argument, a stdio stream, and returns a single RTL object. This routine ! is defined in `read-rtl.c'. It is not available in the compiler ! itself, only the various programs that generate the compiler back end ! from the machine description. People frequently have the idea of using RTL stored as text in a file as an interface between a language front end and the bulk of GCC. This --- 10657,10667 ---- 10.22 Reading RTL ================= ! To read an RTL object from a file, call 'read_rtx'. It takes one argument, a stdio stream, and returns a single RTL object. This routine ! is defined in 'read-rtl.c'. It is not available in the compiler itself, ! only the various programs that generate the compiler back end from the ! machine description. People frequently have the idea of using RTL stored as text in a file as an interface between a language front end and the bulk of GCC. This *************** idea is not feasible. *** 10829,10841 **** program is very dependent on the particular target machine. And the RTL does not contain all the information about the program. ! The proper way to interface GCC to a new language front end is with ! the "tree" data structure, described in the files `tree.h' and ! `tree.def'. The documentation for this structure (*note GENERIC::) is ! incomplete.  ! File: gccint.info, Node: GENERIC, Next: GIMPLE, Prev: Passes, Up: Top 11 GENERIC ********** --- 10671,10682 ---- program is very dependent on the particular target machine. And the RTL does not contain all the information about the program. ! The proper way to interface GCC to a new language front end is with the ! "tree" data structure, described in the files 'tree.h' and 'tree.def'. ! The documentation for this structure (*note GENERIC::) is incomplete.  ! File: gccint.info, Node: GENERIC, Next: GIMPLE, Prev: RTL, Up: Top 11 GENERIC ********** *************** The purpose of GENERIC is simply to prov *** 10844,10869 **** of representing an entire function in trees. To this end, it was necessary to add a few new tree codes to the back end, but most everything was already there. If you can express it with the codes in ! `gcc/tree.def', it's GENERIC. Early on, there was a great deal of debate about how to think about statements in a tree IL. In GENERIC, a statement is defined as any expression whose value, if any, is ignored. A statement will always ! have `TREE_SIDE_EFFECTS' set (or it will be discarded), but a ! non-statement expression may also have side effects. A `CALL_EXPR', ! for instance. It would be possible for some local optimizations to work on the GENERIC form of a function; indeed, the adapted tree inliner works fine ! on GENERIC, but the current compiler performs inlining after lowering ! to GIMPLE (a restricted form described in the next section). Indeed, currently the frontends perform this lowering before handing off to ! `tree_rest_of_compilation', but this seems inelegant. * Menu: * Deficiencies:: Topics net yet covered in this document. ! * Tree overview:: All about `tree's. * Types:: Fundamental and aggregate types. * Declarations:: Type declarations and variables. * Attributes:: Declaration and type attributes. --- 10685,10710 ---- of representing an entire function in trees. To this end, it was necessary to add a few new tree codes to the back end, but most everything was already there. If you can express it with the codes in ! 'gcc/tree.def', it's GENERIC. Early on, there was a great deal of debate about how to think about statements in a tree IL. In GENERIC, a statement is defined as any expression whose value, if any, is ignored. A statement will always ! have 'TREE_SIDE_EFFECTS' set (or it will be discarded), but a ! non-statement expression may also have side effects. A 'CALL_EXPR', for ! instance. It would be possible for some local optimizations to work on the GENERIC form of a function; indeed, the adapted tree inliner works fine ! on GENERIC, but the current compiler performs inlining after lowering to ! GIMPLE (a restricted form described in the next section). Indeed, currently the frontends perform this lowering before handing off to ! 'tree_rest_of_compilation', but this seems inelegant. * Menu: * Deficiencies:: Topics net yet covered in this document. ! * Tree overview:: All about 'tree's. * Types:: Fundamental and aggregate types. * Declarations:: Type declarations and variables. * Attributes:: Declaration and type attributes. *************** File: gccint.info, Node: Tree overview, *** 10890,10927 **** ============= The central data structure used by the internal representation is the ! `tree'. These nodes, while all of the C type `tree', are of many ! varieties. A `tree' is a pointer type, but the object to which it points may be of a variety of types. From this point forward, we will ! refer to trees in ordinary type, rather than in `this font', except ! when talking about the actual C type `tree'. You can tell what kind of node a particular tree is by using the ! `TREE_CODE' macro. Many, many macros take trees as input and return trees as output. However, most macros require a certain kind of tree ! node as input. In other words, there is a type-system for trees, but ! it is not reflected in the C type-system. ! For safety, it is useful to configure GCC with `--enable-checking'. Although this results in a significant performance penalty (since all tree types are checked at run-time), and is therefore inappropriate in a release version, it is extremely helpful during the development process. Many macros behave as predicates. Many, although not all, of these ! predicates end in `_P'. Do not rely on the result type of these macros being of any particular type. You may, however, rely on the fact that ! the type can be compared to `0', so that statements like if (TEST_P (t) && !TEST_P (y)) x = 1; ! and int i = (TEST_P (t) != 0); ! are legal. Macros that return `int' values now may be changed to ! return `tree' values, or other pointers in the future. Even those that ! continue to return `int' may return multiple nonzero codes where previously they returned only zero and one. Therefore, you should not write code like if (TEST_P (t) == 1) ! as this code is not guaranteed to work correctly in the future. You should not take the address of values returned by the macros or functions described here. In particular, no guarantee is given that the --- 10731,10768 ---- ============= The central data structure used by the internal representation is the ! 'tree'. These nodes, while all of the C type 'tree', are of many ! varieties. A 'tree' is a pointer type, but the object to which it points may be of a variety of types. From this point forward, we will ! refer to trees in ordinary type, rather than in 'this font', except when ! talking about the actual C type 'tree'. You can tell what kind of node a particular tree is by using the ! 'TREE_CODE' macro. Many, many macros take trees as input and return trees as output. However, most macros require a certain kind of tree ! node as input. In other words, there is a type-system for trees, but it ! is not reflected in the C type-system. ! For safety, it is useful to configure GCC with '--enable-checking'. Although this results in a significant performance penalty (since all tree types are checked at run-time), and is therefore inappropriate in a release version, it is extremely helpful during the development process. Many macros behave as predicates. Many, although not all, of these ! predicates end in '_P'. Do not rely on the result type of these macros being of any particular type. You may, however, rely on the fact that ! the type can be compared to '0', so that statements like if (TEST_P (t) && !TEST_P (y)) x = 1; ! and int i = (TEST_P (t) != 0); ! are legal. Macros that return 'int' values now may be changed to return ! 'tree' values, or other pointers in the future. Even those that ! continue to return 'int' may return multiple nonzero codes where previously they returned only zero and one. Therefore, you should not write code like if (TEST_P (t) == 1) ! as this code is not guaranteed to work correctly in the future. You should not take the address of values returned by the macros or functions described here. In particular, no guarantee is given that the *************** made up entirely of uppercase letters ma *** 10934,10958 **** than once. You may assume that a macro or function whose name is made up entirely of lowercase letters will evaluate its arguments only once. ! The `error_mark_node' is a special tree. Its tree code is ! `ERROR_MARK', but since there is only ever one node with that code, the ! usual practice is to compare the tree against `error_mark_node'. (This test is just a test for pointer equality.) If an error has occurred ! during front-end processing the flag `errorcount' will be set. If the ! front end has encountered code it cannot handle, it will issue a ! message to the user and set `sorrycount'. When these flags are set, ! any macro or function which normally returns a tree of a particular ! kind may instead return the `error_mark_node'. Thus, if you intend to ! do any processing of erroneous code, you must be prepared to deal with ! the `error_mark_node'. Occasionally, a particular tree slot (like an operand to an expression, ! or a particular field in a declaration) will be referred to as ! "reserved for the back end". These slots are used to store RTL when ! the tree is converted to RTL for use by the GCC back end. However, if ! that process is not taking place (e.g., if the front end is being hooked ! up to an intelligent editor), then those slots may be used by the back ! end presently in use. If you encounter situations that do not match this documentation, such as tree nodes of types not mentioned here, or macros documented to --- 10775,10799 ---- than once. You may assume that a macro or function whose name is made up entirely of lowercase letters will evaluate its arguments only once. ! The 'error_mark_node' is a special tree. Its tree code is ! 'ERROR_MARK', but since there is only ever one node with that code, the ! usual practice is to compare the tree against 'error_mark_node'. (This test is just a test for pointer equality.) If an error has occurred ! during front-end processing the flag 'errorcount' will be set. If the ! front end has encountered code it cannot handle, it will issue a message ! to the user and set 'sorrycount'. When these flags are set, any macro ! or function which normally returns a tree of a particular kind may ! instead return the 'error_mark_node'. Thus, if you intend to do any ! processing of erroneous code, you must be prepared to deal with the ! 'error_mark_node'. Occasionally, a particular tree slot (like an operand to an expression, ! or a particular field in a declaration) will be referred to as "reserved ! for the back end". These slots are used to store RTL when the tree is ! converted to RTL for use by the GCC back end. However, if that process ! is not taking place (e.g., if the front end is being hooked up to an ! intelligent editor), then those slots may be used by the back end ! presently in use. If you encounter situations that do not match this documentation, such as tree nodes of types not mentioned here, or macros documented to *************** File: gccint.info, Node: Macros and Fun *** 10972,11041 **** 11.2.1 Trees ------------ ! All GENERIC trees have two fields in common. First, `TREE_CHAIN' is a pointer that can be used as a singly-linked list to other trees. The ! other is `TREE_TYPE'. Many trees store the type of an expression or declaration in this field. These are some other functions for handling trees: ! `tree_size' Return the number of bytes a tree takes. ! `build0' ! `build1' ! `build2' ! `build3' ! `build4' ! `build5' ! `build6' These functions build a tree and supply values to put in each ! parameter. The basic signature is `code, type, [operands]'. ! `code' is the `TREE_CODE', and `type' is a tree representing the ! `TREE_TYPE'. These are followed by the operands, each of which is also a tree. -  File: gccint.info, Node: Identifiers, Next: Containers, Prev: Macros and Functions, Up: Tree overview 11.2.2 Identifiers ------------------ ! An `IDENTIFIER_NODE' represents a slightly more general concept that ! the standard C or C++ concept of identifier. In particular, an ! `IDENTIFIER_NODE' may contain a `$', or other extraordinary characters. ! There are never two distinct `IDENTIFIER_NODE's representing the same identifier. Therefore, you may use pointer equality to compare ! `IDENTIFIER_NODE's, rather than using a routine like `strcmp'. Use ! `get_identifier' to obtain the unique `IDENTIFIER_NODE' for a supplied string. You can use the following macros to access identifiers: ! `IDENTIFIER_POINTER' ! The string represented by the identifier, represented as a ! `char*'. This string is always `NUL'-terminated, and contains no ! embedded `NUL' characters. ! `IDENTIFIER_LENGTH' ! The length of the string returned by `IDENTIFIER_POINTER', not ! including the trailing `NUL'. This value of `IDENTIFIER_LENGTH ! (x)' is always the same as `strlen (IDENTIFIER_POINTER (x))'. ! `IDENTIFIER_OPNAME_P' This predicate holds if the identifier represents the name of an overloaded operator. In this case, you should not depend on the ! contents of either the `IDENTIFIER_POINTER' or the ! `IDENTIFIER_LENGTH'. ! `IDENTIFIER_TYPENAME_P' This predicate holds if the identifier represents the name of a ! user-defined conversion operator. In this case, the `TREE_TYPE' of ! the `IDENTIFIER_NODE' holds the type to which the conversion operator converts. -  File: gccint.info, Node: Containers, Prev: Identifiers, Up: Tree overview --- 10813,10881 ---- 11.2.1 Trees ------------ ! All GENERIC trees have two fields in common. First, 'TREE_CHAIN' is a pointer that can be used as a singly-linked list to other trees. The ! other is 'TREE_TYPE'. Many trees store the type of an expression or declaration in this field. These are some other functions for handling trees: ! 'tree_size' Return the number of bytes a tree takes. ! 'build0' ! 'build1' ! 'build2' ! 'build3' ! 'build4' ! 'build5' ! 'build6' ! These functions build a tree and supply values to put in each ! parameter. The basic signature is 'code, type, [operands]'. ! 'code' is the 'TREE_CODE', and 'type' is a tree representing the ! 'TREE_TYPE'. These are followed by the operands, each of which is also a tree.  File: gccint.info, Node: Identifiers, Next: Containers, Prev: Macros and Functions, Up: Tree overview 11.2.2 Identifiers ------------------ ! An 'IDENTIFIER_NODE' represents a slightly more general concept that the ! standard C or C++ concept of identifier. In particular, an ! 'IDENTIFIER_NODE' may contain a '$', or other extraordinary characters. ! There are never two distinct 'IDENTIFIER_NODE's representing the same identifier. Therefore, you may use pointer equality to compare ! 'IDENTIFIER_NODE's, rather than using a routine like 'strcmp'. Use ! 'get_identifier' to obtain the unique 'IDENTIFIER_NODE' for a supplied string. You can use the following macros to access identifiers: ! 'IDENTIFIER_POINTER' ! The string represented by the identifier, represented as a 'char*'. ! This string is always 'NUL'-terminated, and contains no embedded ! 'NUL' characters. ! 'IDENTIFIER_LENGTH' ! The length of the string returned by 'IDENTIFIER_POINTER', not ! including the trailing 'NUL'. This value of 'IDENTIFIER_LENGTH ! (x)' is always the same as 'strlen (IDENTIFIER_POINTER (x))'. ! 'IDENTIFIER_OPNAME_P' This predicate holds if the identifier represents the name of an overloaded operator. In this case, you should not depend on the ! contents of either the 'IDENTIFIER_POINTER' or the ! 'IDENTIFIER_LENGTH'. ! 'IDENTIFIER_TYPENAME_P' This predicate holds if the identifier represents the name of a ! user-defined conversion operator. In this case, the 'TREE_TYPE' of ! the 'IDENTIFIER_NODE' holds the type to which the conversion operator converts.  File: gccint.info, Node: Containers, Prev: Identifiers, Up: Tree overview *************** File: gccint.info, Node: Containers, P *** 11043,11064 **** ----------------- Two common container data structures can be represented directly with ! tree nodes. A `TREE_LIST' is a singly linked list containing two trees ! per node. These are the `TREE_PURPOSE' and `TREE_VALUE' of each node. ! (Often, the `TREE_PURPOSE' contains some kind of tag, or additional ! information, while the `TREE_VALUE' contains the majority of the ! payload. In other cases, the `TREE_PURPOSE' is simply `NULL_TREE', ! while in still others both the `TREE_PURPOSE' and `TREE_VALUE' are of ! equal stature.) Given one `TREE_LIST' node, the next node is found by ! following the `TREE_CHAIN'. If the `TREE_CHAIN' is `NULL_TREE', then you have reached the end of the list. ! A `TREE_VEC' is a simple vector. The `TREE_VEC_LENGTH' is an integer (not a tree) giving the number of nodes in the vector. The nodes ! themselves are accessed using the `TREE_VEC_ELT' macro, which takes two ! arguments. The first is the `TREE_VEC' in question; the second is an ! integer indicating which element in the vector is desired. The ! elements are indexed from zero.  File: gccint.info, Node: Types, Next: Declarations, Prev: Tree overview, Up: GENERIC --- 10883,10904 ---- ----------------- Two common container data structures can be represented directly with ! tree nodes. A 'TREE_LIST' is a singly linked list containing two trees ! per node. These are the 'TREE_PURPOSE' and 'TREE_VALUE' of each node. ! (Often, the 'TREE_PURPOSE' contains some kind of tag, or additional ! information, while the 'TREE_VALUE' contains the majority of the ! payload. In other cases, the 'TREE_PURPOSE' is simply 'NULL_TREE', ! while in still others both the 'TREE_PURPOSE' and 'TREE_VALUE' are of ! equal stature.) Given one 'TREE_LIST' node, the next node is found by ! following the 'TREE_CHAIN'. If the 'TREE_CHAIN' is 'NULL_TREE', then you have reached the end of the list. ! A 'TREE_VEC' is a simple vector. The 'TREE_VEC_LENGTH' is an integer (not a tree) giving the number of nodes in the vector. The nodes ! themselves are accessed using the 'TREE_VEC_ELT' macro, which takes two ! arguments. The first is the 'TREE_VEC' in question; the second is an ! integer indicating which element in the vector is desired. The elements ! are indexed from zero.  File: gccint.info, Node: Types, Next: Declarations, Prev: Tree overview, Up: GENERIC *************** that there is exactly one tree node corr *** 11071,11322 **** are often multiple nodes corresponding to the same type. For the most part, different kinds of types have different tree codes. ! (For example, pointer types use a `POINTER_TYPE' code while arrays use ! an `ARRAY_TYPE' code.) However, pointers to member functions use the ! `RECORD_TYPE' code. Therefore, when writing a `switch' statement that depends on the code associated with a particular type, you should take ! care to handle pointers to member functions under the `RECORD_TYPE' ! case label. The following functions and macros deal with cv-qualification of types: ! `TYPE_MAIN_VARIANT' This macro returns the unqualified version of a type. It may be applied to an unqualified type, but it is not always the identity function in that case. A few other macros and functions are usable with all types: ! `TYPE_SIZE' The number of bits required to represent the type, represented as ! an `INTEGER_CST'. For an incomplete type, `TYPE_SIZE' will be ! `NULL_TREE'. ! `TYPE_ALIGN' ! The alignment of the type, in bits, represented as an `int'. ! `TYPE_NAME' ! This macro returns a declaration (in the form of a `TYPE_DECL') for ! the type. (Note this macro does _not_ return an ! `IDENTIFIER_NODE', as you might expect, given its name!) You can ! look at the `DECL_NAME' of the `TYPE_DECL' to obtain the actual ! name of the type. The `TYPE_NAME' will be `NULL_TREE' for a type ! that is not a built-in type, the result of a typedef, or a named ! class type. ! `TYPE_CANONICAL' This macro returns the "canonical" type for the given type node. Canonical types are used to improve performance in the C++ and Objective-C++ front ends by allowing efficient comparison between ! two type nodes in `same_type_p': if the `TYPE_CANONICAL' values of the types are equal, the types are equivalent; otherwise, the types ! are not equivalent. The notion of equivalence for canonical types is the same as the notion of type equivalence in the language ! itself. For instance, ! When `TYPE_CANONICAL' is `NULL_TREE', there is no canonical type ! for the given type node. In this case, comparison between this type and any other type requires the compiler to perform a deep, "structural" comparison to see if the two type nodes have the same form and properties. The canonical type for a node is always the most fundamental type ! in the equivalence class of types. For instance, `int' is its own ! canonical type. A typedef `I' of `int' will have `int' as its ! canonical type. Similarly, `I*' and a typedef `IP' (defined to ! `I*') will has `int*' as their canonical type. When building a new ! type node, be sure to set `TYPE_CANONICAL' to the appropriate ! canonical type. If the new type is a compound type (built from other types), and any of those other types require structural ! equality, use `SET_TYPE_STRUCTURAL_EQUALITY' to ensure that the ! new type also requires structural equality. Finally, if for some ! reason you cannot guarantee that `TYPE_CANONICAL' will point to ! the canonical type, use `SET_TYPE_STRUCTURAL_EQUALITY' to make ! sure that the new type-and any type constructed based on ! it-requires structural equality. If you suspect that the canonical ! type system is miscomparing types, pass `--param ! verify-canonical-types=1' to the compiler or configure with ! `--enable-checking' to force the compiler to verify its ! canonical-type comparisons against the structural comparisons; the ! compiler will then print any warnings if the canonical types ! miscompare. ! `TYPE_STRUCTURAL_EQUALITY_P' This predicate holds when the node requires structural equality ! checks, e.g., when `TYPE_CANONICAL' is `NULL_TREE'. ! `SET_TYPE_STRUCTURAL_EQUALITY' This macro states that the type node it is given requires ! structural equality checks, e.g., it sets `TYPE_CANONICAL' to ! `NULL_TREE'. ! `same_type_p' This predicate takes two types as input, and holds if they are the ! same type. For example, if one type is a `typedef' for the other, ! or both are `typedef's for the same type. This predicate also holds if the two trees given as input are simply copies of one another; i.e., there is no difference between them at the source level, but, for whatever reason, a duplicate has been made in the ! representation. You should never use `==' (pointer equality) to ! compare types; always use `same_type_p' instead. Detailed below are the various kinds of types, and the macros that can be used to access them. Although other kinds of types are used elsewhere in G++, the types described here are the only ones that you will encounter while examining the intermediate representation. ! `VOID_TYPE' ! Used to represent the `void' type. ! `INTEGER_TYPE' ! Used to represent the various integral types, including `char', ! `short', `int', `long', and `long long'. This code is not used ! for enumeration types, nor for the `bool' type. The ! `TYPE_PRECISION' is the number of bits used in the representation, ! represented as an `unsigned int'. (Note that in the general case ! this is not the same value as `TYPE_SIZE'; suppose that there were ! a 24-bit integer type, but that alignment requirements for the ABI ! required 32-bit alignment. Then, `TYPE_SIZE' would be an ! `INTEGER_CST' for 32, while `TYPE_PRECISION' would be 24.) The ! integer type is unsigned if `TYPE_UNSIGNED' holds; otherwise, it ! is signed. ! The `TYPE_MIN_VALUE' is an `INTEGER_CST' for the smallest integer that may be represented by this type. Similarly, the ! `TYPE_MAX_VALUE' is an `INTEGER_CST' for the largest integer that may be represented by this type. ! `REAL_TYPE' ! Used to represent the `float', `double', and `long double' types. ! The number of bits in the floating-point representation is given ! by `TYPE_PRECISION', as in the `INTEGER_TYPE' case. ! `FIXED_POINT_TYPE' ! Used to represent the `short _Fract', `_Fract', `long _Fract', ! `long long _Fract', `short _Accum', `_Accum', `long _Accum', and ! `long long _Accum' types. The number of bits in the fixed-point ! representation is given by `TYPE_PRECISION', as in the ! `INTEGER_TYPE' case. There may be padding bits, fractional bits and integral bits. The number of fractional bits is given by ! `TYPE_FBIT', and the number of integral bits is given by ! `TYPE_IBIT'. The fixed-point type is unsigned if `TYPE_UNSIGNED' ! holds; otherwise, it is signed. The fixed-point type is ! saturating if `TYPE_SATURATING' holds; otherwise, it is not ! saturating. ! `COMPLEX_TYPE' ! Used to represent GCC built-in `__complex__' data types. The ! `TREE_TYPE' is the type of the real and imaginary parts. ! `ENUMERAL_TYPE' ! Used to represent an enumeration type. The `TYPE_PRECISION' gives ! (as an `int'), the number of bits used to represent the type. If ! there are no negative enumeration constants, `TYPE_UNSIGNED' will hold. The minimum and maximum enumeration constants may be ! obtained with `TYPE_MIN_VALUE' and `TYPE_MAX_VALUE', respectively; ! each of these macros returns an `INTEGER_CST'. The actual enumeration constants themselves may be obtained by ! looking at the `TYPE_VALUES'. This macro will return a ! `TREE_LIST', containing the constants. The `TREE_PURPOSE' of each ! node will be an `IDENTIFIER_NODE' giving the name of the constant; ! the `TREE_VALUE' will be an `INTEGER_CST' giving the value ! assigned to that constant. These constants will appear in the ! order in which they were declared. The `TREE_TYPE' of each of ! these constants will be the type of enumeration type itself. ! `BOOLEAN_TYPE' ! Used to represent the `bool' type. ! `POINTER_TYPE' Used to represent pointer types, and pointer to data member types. ! The `TREE_TYPE' gives the type to which this type points. ! `REFERENCE_TYPE' ! Used to represent reference types. The `TREE_TYPE' gives the type to which this type refers. ! `FUNCTION_TYPE' Used to represent the type of non-member functions and of static ! member functions. The `TREE_TYPE' gives the return type of the ! function. The `TYPE_ARG_TYPES' are a `TREE_LIST' of the argument ! types. The `TREE_VALUE' of each node in this list is the type of ! the corresponding argument; the `TREE_PURPOSE' is an expression ! for the default argument value, if any. If the last node in the ! list is `void_list_node' (a `TREE_LIST' node whose `TREE_VALUE' is ! the `void_type_node'), then functions of this type do not take ! variable arguments. Otherwise, they do take a variable number of ! arguments. ! Note that in C (but not in C++) a function declared like `void f()' is an unprototyped function taking a variable number of arguments; ! the `TYPE_ARG_TYPES' of such a function will be `NULL'. ! `METHOD_TYPE' Used to represent the type of a non-static member function. Like a ! `FUNCTION_TYPE', the return type is given by the `TREE_TYPE'. The ! type of `*this', i.e., the class of which functions of this type ! are a member, is given by the `TYPE_METHOD_BASETYPE'. The ! `TYPE_ARG_TYPES' is the parameter list, as for a `FUNCTION_TYPE', ! and includes the `this' argument. ! `ARRAY_TYPE' ! Used to represent array types. The `TREE_TYPE' gives the type of the elements in the array. If the array-bound is present in the ! type, the `TYPE_DOMAIN' is an `INTEGER_TYPE' whose ! `TYPE_MIN_VALUE' and `TYPE_MAX_VALUE' will be the lower and upper ! bounds of the array, respectively. The `TYPE_MIN_VALUE' will ! always be an `INTEGER_CST' for zero, while the `TYPE_MAX_VALUE' ! will be one less than the number of elements in the array, i.e., ! the highest value which may be used to index an element in the ! array. ! `RECORD_TYPE' ! Used to represent `struct' and `class' types, as well as pointers to member functions and similar constructs in other languages. ! `TYPE_FIELDS' contains the items contained in this type, each of ! which can be a `FIELD_DECL', `VAR_DECL', `CONST_DECL', or ! `TYPE_DECL'. You may not make any assumptions about the ordering of the fields in the type or whether one or more of them overlap. ! `UNION_TYPE' ! Used to represent `union' types. Similar to `RECORD_TYPE' except ! that all `FIELD_DECL' nodes in `TYPE_FIELD' start at bit position zero. ! `QUAL_UNION_TYPE' Used to represent part of a variant record in Ada. Similar to ! `UNION_TYPE' except that each `FIELD_DECL' has a `DECL_QUALIFIER' field, which contains a boolean expression that indicates whether the field is present in the object. The type will only have one ! field, so each field's `DECL_QUALIFIER' is only evaluated if none ! of the expressions in the previous fields in `TYPE_FIELDS' are nonzero. Normally these expressions will reference a field in the ! outer object using a `PLACEHOLDER_EXPR'. ! `LANG_TYPE' This node is used to represent a language-specific type. The front end must handle it. ! `OFFSET_TYPE' This node is used to represent a pointer-to-data member. For a ! data member `X::m' the `TYPE_OFFSET_BASETYPE' is `X' and the ! `TREE_TYPE' is the type of `m'. ! There are variables whose values represent some of the basic types. These include: ! `void_type_node' ! A node for `void'. ! `integer_type_node' ! A node for `int'. ! `unsigned_type_node.' ! A node for `unsigned int'. ! `char_type_node.' ! A node for `char'. ! It may sometimes be useful to compare one of these variables with a ! type in hand, using `same_type_p'.  File: gccint.info, Node: Declarations, Next: Attributes, Prev: Types, Up: GENERIC --- 10911,11155 ---- are often multiple nodes corresponding to the same type. For the most part, different kinds of types have different tree codes. ! (For example, pointer types use a 'POINTER_TYPE' code while arrays use ! an 'ARRAY_TYPE' code.) However, pointers to member functions use the ! 'RECORD_TYPE' code. Therefore, when writing a 'switch' statement that depends on the code associated with a particular type, you should take ! care to handle pointers to member functions under the 'RECORD_TYPE' case ! label. The following functions and macros deal with cv-qualification of types: ! 'TYPE_MAIN_VARIANT' This macro returns the unqualified version of a type. It may be applied to an unqualified type, but it is not always the identity function in that case. A few other macros and functions are usable with all types: ! 'TYPE_SIZE' The number of bits required to represent the type, represented as ! an 'INTEGER_CST'. For an incomplete type, 'TYPE_SIZE' will be ! 'NULL_TREE'. ! 'TYPE_ALIGN' ! The alignment of the type, in bits, represented as an 'int'. ! 'TYPE_NAME' ! This macro returns a declaration (in the form of a 'TYPE_DECL') for ! the type. (Note this macro does _not_ return an 'IDENTIFIER_NODE', ! as you might expect, given its name!) You can look at the ! 'DECL_NAME' of the 'TYPE_DECL' to obtain the actual name of the ! type. The 'TYPE_NAME' will be 'NULL_TREE' for a type that is not a ! built-in type, the result of a typedef, or a named class type. ! 'TYPE_CANONICAL' This macro returns the "canonical" type for the given type node. Canonical types are used to improve performance in the C++ and Objective-C++ front ends by allowing efficient comparison between ! two type nodes in 'same_type_p': if the 'TYPE_CANONICAL' values of the types are equal, the types are equivalent; otherwise, the types ! are not equivalent. The notion of equivalence for canonical types is the same as the notion of type equivalence in the language ! itself. For instance, ! When 'TYPE_CANONICAL' is 'NULL_TREE', there is no canonical type ! for the given type node. In this case, comparison between this type and any other type requires the compiler to perform a deep, "structural" comparison to see if the two type nodes have the same form and properties. The canonical type for a node is always the most fundamental type ! in the equivalence class of types. For instance, 'int' is its own ! canonical type. A typedef 'I' of 'int' will have 'int' as its ! canonical type. Similarly, 'I*' and a typedef 'IP' (defined to ! 'I*') will has 'int*' as their canonical type. When building a new ! type node, be sure to set 'TYPE_CANONICAL' to the appropriate ! canonical type. If the new type is a compound type (built from other types), and any of those other types require structural ! equality, use 'SET_TYPE_STRUCTURAL_EQUALITY' to ensure that the new ! type also requires structural equality. Finally, if for some ! reason you cannot guarantee that 'TYPE_CANONICAL' will point to the ! canonical type, use 'SET_TYPE_STRUCTURAL_EQUALITY' to make sure ! that the new type-and any type constructed based on it-requires ! structural equality. If you suspect that the canonical type system ! is miscomparing types, pass '--param verify-canonical-types=1' to ! the compiler or configure with '--enable-checking' to force the ! compiler to verify its canonical-type comparisons against the ! structural comparisons; the compiler will then print any warnings ! if the canonical types miscompare. ! 'TYPE_STRUCTURAL_EQUALITY_P' This predicate holds when the node requires structural equality ! checks, e.g., when 'TYPE_CANONICAL' is 'NULL_TREE'. ! 'SET_TYPE_STRUCTURAL_EQUALITY' This macro states that the type node it is given requires ! structural equality checks, e.g., it sets 'TYPE_CANONICAL' to ! 'NULL_TREE'. ! 'same_type_p' This predicate takes two types as input, and holds if they are the ! same type. For example, if one type is a 'typedef' for the other, ! or both are 'typedef's for the same type. This predicate also holds if the two trees given as input are simply copies of one another; i.e., there is no difference between them at the source level, but, for whatever reason, a duplicate has been made in the ! representation. You should never use '==' (pointer equality) to ! compare types; always use 'same_type_p' instead. Detailed below are the various kinds of types, and the macros that can be used to access them. Although other kinds of types are used elsewhere in G++, the types described here are the only ones that you will encounter while examining the intermediate representation. ! 'VOID_TYPE' ! Used to represent the 'void' type. ! 'INTEGER_TYPE' ! Used to represent the various integral types, including 'char', ! 'short', 'int', 'long', and 'long long'. This code is not used for ! enumeration types, nor for the 'bool' type. The 'TYPE_PRECISION' ! is the number of bits used in the representation, represented as an ! 'unsigned int'. (Note that in the general case this is not the ! same value as 'TYPE_SIZE'; suppose that there were a 24-bit integer ! type, but that alignment requirements for the ABI required 32-bit ! alignment. Then, 'TYPE_SIZE' would be an 'INTEGER_CST' for 32, ! while 'TYPE_PRECISION' would be 24.) The integer type is unsigned ! if 'TYPE_UNSIGNED' holds; otherwise, it is signed. ! The 'TYPE_MIN_VALUE' is an 'INTEGER_CST' for the smallest integer that may be represented by this type. Similarly, the ! 'TYPE_MAX_VALUE' is an 'INTEGER_CST' for the largest integer that may be represented by this type. ! 'REAL_TYPE' ! Used to represent the 'float', 'double', and 'long double' types. ! The number of bits in the floating-point representation is given by ! 'TYPE_PRECISION', as in the 'INTEGER_TYPE' case. ! 'FIXED_POINT_TYPE' ! Used to represent the 'short _Fract', '_Fract', 'long _Fract', ! 'long long _Fract', 'short _Accum', '_Accum', 'long _Accum', and ! 'long long _Accum' types. The number of bits in the fixed-point ! representation is given by 'TYPE_PRECISION', as in the ! 'INTEGER_TYPE' case. There may be padding bits, fractional bits and integral bits. The number of fractional bits is given by ! 'TYPE_FBIT', and the number of integral bits is given by ! 'TYPE_IBIT'. The fixed-point type is unsigned if 'TYPE_UNSIGNED' ! holds; otherwise, it is signed. The fixed-point type is saturating ! if 'TYPE_SATURATING' holds; otherwise, it is not saturating. ! 'COMPLEX_TYPE' ! Used to represent GCC built-in '__complex__' data types. The ! 'TREE_TYPE' is the type of the real and imaginary parts. ! 'ENUMERAL_TYPE' ! Used to represent an enumeration type. The 'TYPE_PRECISION' gives ! (as an 'int'), the number of bits used to represent the type. If ! there are no negative enumeration constants, 'TYPE_UNSIGNED' will hold. The minimum and maximum enumeration constants may be ! obtained with 'TYPE_MIN_VALUE' and 'TYPE_MAX_VALUE', respectively; ! each of these macros returns an 'INTEGER_CST'. The actual enumeration constants themselves may be obtained by ! looking at the 'TYPE_VALUES'. This macro will return a ! 'TREE_LIST', containing the constants. The 'TREE_PURPOSE' of each ! node will be an 'IDENTIFIER_NODE' giving the name of the constant; ! the 'TREE_VALUE' will be an 'INTEGER_CST' giving the value assigned ! to that constant. These constants will appear in the order in ! which they were declared. The 'TREE_TYPE' of each of these ! constants will be the type of enumeration type itself. ! 'BOOLEAN_TYPE' ! Used to represent the 'bool' type. ! 'POINTER_TYPE' Used to represent pointer types, and pointer to data member types. ! The 'TREE_TYPE' gives the type to which this type points. ! 'REFERENCE_TYPE' ! Used to represent reference types. The 'TREE_TYPE' gives the type to which this type refers. ! 'FUNCTION_TYPE' Used to represent the type of non-member functions and of static ! member functions. The 'TREE_TYPE' gives the return type of the ! function. The 'TYPE_ARG_TYPES' are a 'TREE_LIST' of the argument ! types. The 'TREE_VALUE' of each node in this list is the type of ! the corresponding argument; the 'TREE_PURPOSE' is an expression for ! the default argument value, if any. If the last node in the list ! is 'void_list_node' (a 'TREE_LIST' node whose 'TREE_VALUE' is the ! 'void_type_node'), then functions of this type do not take variable ! arguments. Otherwise, they do take a variable number of arguments. ! Note that in C (but not in C++) a function declared like 'void f()' is an unprototyped function taking a variable number of arguments; ! the 'TYPE_ARG_TYPES' of such a function will be 'NULL'. ! 'METHOD_TYPE' Used to represent the type of a non-static member function. Like a ! 'FUNCTION_TYPE', the return type is given by the 'TREE_TYPE'. The ! type of '*this', i.e., the class of which functions of this type ! are a member, is given by the 'TYPE_METHOD_BASETYPE'. The ! 'TYPE_ARG_TYPES' is the parameter list, as for a 'FUNCTION_TYPE', ! and includes the 'this' argument. ! 'ARRAY_TYPE' ! Used to represent array types. The 'TREE_TYPE' gives the type of the elements in the array. If the array-bound is present in the ! type, the 'TYPE_DOMAIN' is an 'INTEGER_TYPE' whose 'TYPE_MIN_VALUE' ! and 'TYPE_MAX_VALUE' will be the lower and upper bounds of the ! array, respectively. The 'TYPE_MIN_VALUE' will always be an ! 'INTEGER_CST' for zero, while the 'TYPE_MAX_VALUE' will be one less ! than the number of elements in the array, i.e., the highest value ! which may be used to index an element in the array. ! 'RECORD_TYPE' ! Used to represent 'struct' and 'class' types, as well as pointers to member functions and similar constructs in other languages. ! 'TYPE_FIELDS' contains the items contained in this type, each of ! which can be a 'FIELD_DECL', 'VAR_DECL', 'CONST_DECL', or ! 'TYPE_DECL'. You may not make any assumptions about the ordering of the fields in the type or whether one or more of them overlap. ! 'UNION_TYPE' ! Used to represent 'union' types. Similar to 'RECORD_TYPE' except ! that all 'FIELD_DECL' nodes in 'TYPE_FIELD' start at bit position zero. ! 'QUAL_UNION_TYPE' Used to represent part of a variant record in Ada. Similar to ! 'UNION_TYPE' except that each 'FIELD_DECL' has a 'DECL_QUALIFIER' field, which contains a boolean expression that indicates whether the field is present in the object. The type will only have one ! field, so each field's 'DECL_QUALIFIER' is only evaluated if none ! of the expressions in the previous fields in 'TYPE_FIELDS' are nonzero. Normally these expressions will reference a field in the ! outer object using a 'PLACEHOLDER_EXPR'. ! 'LANG_TYPE' This node is used to represent a language-specific type. The front end must handle it. ! 'OFFSET_TYPE' This node is used to represent a pointer-to-data member. For a ! data member 'X::m' the 'TYPE_OFFSET_BASETYPE' is 'X' and the ! 'TREE_TYPE' is the type of 'm'. There are variables whose values represent some of the basic types. These include: ! 'void_type_node' ! A node for 'void'. ! 'integer_type_node' ! A node for 'int'. ! 'unsigned_type_node.' ! A node for 'unsigned int'. ! 'char_type_node.' ! A node for 'char'. ! It may sometimes be useful to compare one of these variables with a type ! in hand, using 'same_type_p'.  File: gccint.info, Node: Declarations, Next: Attributes, Prev: Types, Up: GENERIC *************** File: gccint.info, Node: Declarations, *** 11326,11332 **** This section covers the various kinds of declarations that appear in the internal representation, except for declarations of functions ! (represented by `FUNCTION_DECL' nodes), which are described in *note Functions::. * Menu: --- 11159,11165 ---- This section covers the various kinds of declarations that appear in the internal representation, except for declarations of functions ! (represented by 'FUNCTION_DECL' nodes), which are described in *note Functions::. * Menu: *************** File: gccint.info, Node: Working with d *** 11342,11466 **** -------------------------------- Some macros can be used with any kind of declaration. These include: ! `DECL_NAME' ! This macro returns an `IDENTIFIER_NODE' giving the name of the entity. ! `TREE_TYPE' This macro returns the type of the entity declared. ! `EXPR_FILENAME' This macro returns the name of the file in which the entity was ! declared, as a `char*'. For an entity declared implicitly by the ! compiler (like `__builtin_memcpy'), this will be the string ! `""'. ! `EXPR_LINENO' This macro returns the line number at which the entity was ! declared, as an `int'. ! `DECL_ARTIFICIAL' ! This predicate holds if the declaration was implicitly generated ! by the compiler. For example, this predicate will hold of an ! implicitly declared member function, or of the `TYPE_DECL' implicitly generated for a class type. Recall that in C++ code like: struct S {}; is roughly equivalent to C code like: struct S {}; typedef struct S S; ! The implicitly generated `typedef' declaration is represented by a ! `TYPE_DECL' for which `DECL_ARTIFICIAL' holds. ! The various kinds of declarations include: ! `LABEL_DECL' These nodes are used to represent labels in function bodies. For more information, see *note Functions::. These nodes only appear in block scopes. ! `CONST_DECL' ! These nodes are used to represent enumeration constants. The ! value of the constant is given by `DECL_INITIAL' which will be an ! `INTEGER_CST' with the same type as the `TREE_TYPE' of the ! `CONST_DECL', i.e., an `ENUMERAL_TYPE'. ! `RESULT_DECL' These nodes represent the value returned by a function. When a ! value is assigned to a `RESULT_DECL', that indicates that the ! value should be returned, via bitwise copy, by the function. You ! can use `DECL_SIZE' and `DECL_ALIGN' on a `RESULT_DECL', just as ! with a `VAR_DECL'. ! `TYPE_DECL' ! These nodes represent `typedef' declarations. The `TREE_TYPE' is ! the type declared to have the name given by `DECL_NAME'. In some cases, there is no associated name. ! `VAR_DECL' These nodes represent variables with namespace or block scope, as ! well as static data members. The `DECL_SIZE' and `DECL_ALIGN' are ! analogous to `TYPE_SIZE' and `TYPE_ALIGN'. For a declaration, you ! should always use the `DECL_SIZE' and `DECL_ALIGN' rather than the ! `TYPE_SIZE' and `TYPE_ALIGN' given by the `TREE_TYPE', since ! special attributes may have been applied to the variable to give ! it a particular size and alignment. You may use the predicates ! `DECL_THIS_STATIC' or `DECL_THIS_EXTERN' to test whether the ! storage class specifiers `static' or `extern' were used to declare a variable. If this variable is initialized (but does not require a ! constructor), the `DECL_INITIAL' will be an expression for the initializer. The initializer should be evaluated, and a bitwise ! copy into the variable performed. If the `DECL_INITIAL' is the ! `error_mark_node', there is an initializer, but it is given by an explicit statement later in the code; no bitwise copy is required. GCC provides an extension that allows either automatic variables, or global variables, to be placed in particular registers. This ! extension is being used for a particular `VAR_DECL' if ! `DECL_REGISTER' holds for the `VAR_DECL', and if ! `DECL_ASSEMBLER_NAME' is not equal to `DECL_NAME'. In that case, ! `DECL_ASSEMBLER_NAME' is the name of the register into which the variable will be placed. ! `PARM_DECL' Used to represent a parameter to a function. Treat these nodes ! similarly to `VAR_DECL' nodes. These nodes only appear in the ! `DECL_ARGUMENTS' for a `FUNCTION_DECL'. ! The `DECL_ARG_TYPE' for a `PARM_DECL' is the type that will actually be used when a value is passed to this function. It may ! be a wider type than the `TREE_TYPE' of the parameter; for ! example, the ordinary type might be `short' while the ! `DECL_ARG_TYPE' is `int'. ! `DEBUG_EXPR_DECL' Used to represent an anonymous debug-information temporary created to hold an expression as it is optimized away, so that its value can be referenced in debug bind statements. ! `FIELD_DECL' ! These nodes represent non-static data members. The `DECL_SIZE' and ! `DECL_ALIGN' behave as for `VAR_DECL' nodes. The position of the field within the parent record is specified by a combination of ! three attributes. `DECL_FIELD_OFFSET' is the position, counting ! in bytes, of the `DECL_OFFSET_ALIGN'-bit sized word containing the ! bit of the field closest to the beginning of the structure. ! `DECL_FIELD_BIT_OFFSET' is the bit offset of the first bit of the field within this word; this may be nonzero even for fields that ! are not bit-fields, since `DECL_OFFSET_ALIGN' may be greater than the natural alignment of the field's type. ! If `DECL_C_BIT_FIELD' holds, this field is a bit-field. In a ! bit-field, `DECL_BIT_FIELD_TYPE' also contains the type that was ! originally specified for it, while DECL_TYPE may be a modified ! type with lesser precision, according to the size of the bit field. ! `NAMESPACE_DECL' Namespaces provide a name hierarchy for other declarations. They ! appear in the `DECL_CONTEXT' of other `_DECL' nodes. !  File: gccint.info, Node: Internal structure, Prev: Working with declarations, Up: Declarations --- 11175,11297 ---- -------------------------------- Some macros can be used with any kind of declaration. These include: ! 'DECL_NAME' ! This macro returns an 'IDENTIFIER_NODE' giving the name of the entity. ! 'TREE_TYPE' This macro returns the type of the entity declared. ! 'EXPR_FILENAME' This macro returns the name of the file in which the entity was ! declared, as a 'char*'. For an entity declared implicitly by the ! compiler (like '__builtin_memcpy'), this will be the string ! '""'. ! 'EXPR_LINENO' This macro returns the line number at which the entity was ! declared, as an 'int'. ! 'DECL_ARTIFICIAL' ! This predicate holds if the declaration was implicitly generated by ! the compiler. For example, this predicate will hold of an ! implicitly declared member function, or of the 'TYPE_DECL' implicitly generated for a class type. Recall that in C++ code like: struct S {}; is roughly equivalent to C code like: struct S {}; typedef struct S S; ! The implicitly generated 'typedef' declaration is represented by a ! 'TYPE_DECL' for which 'DECL_ARTIFICIAL' holds. The various kinds of declarations include: ! 'LABEL_DECL' These nodes are used to represent labels in function bodies. For more information, see *note Functions::. These nodes only appear in block scopes. ! 'CONST_DECL' ! These nodes are used to represent enumeration constants. The value ! of the constant is given by 'DECL_INITIAL' which will be an ! 'INTEGER_CST' with the same type as the 'TREE_TYPE' of the ! 'CONST_DECL', i.e., an 'ENUMERAL_TYPE'. ! 'RESULT_DECL' These nodes represent the value returned by a function. When a ! value is assigned to a 'RESULT_DECL', that indicates that the value ! should be returned, via bitwise copy, by the function. You can use ! 'DECL_SIZE' and 'DECL_ALIGN' on a 'RESULT_DECL', just as with a ! 'VAR_DECL'. ! 'TYPE_DECL' ! These nodes represent 'typedef' declarations. The 'TREE_TYPE' is ! the type declared to have the name given by 'DECL_NAME'. In some cases, there is no associated name. ! 'VAR_DECL' These nodes represent variables with namespace or block scope, as ! well as static data members. The 'DECL_SIZE' and 'DECL_ALIGN' are ! analogous to 'TYPE_SIZE' and 'TYPE_ALIGN'. For a declaration, you ! should always use the 'DECL_SIZE' and 'DECL_ALIGN' rather than the ! 'TYPE_SIZE' and 'TYPE_ALIGN' given by the 'TREE_TYPE', since ! special attributes may have been applied to the variable to give it ! a particular size and alignment. You may use the predicates ! 'DECL_THIS_STATIC' or 'DECL_THIS_EXTERN' to test whether the ! storage class specifiers 'static' or 'extern' were used to declare a variable. If this variable is initialized (but does not require a ! constructor), the 'DECL_INITIAL' will be an expression for the initializer. The initializer should be evaluated, and a bitwise ! copy into the variable performed. If the 'DECL_INITIAL' is the ! 'error_mark_node', there is an initializer, but it is given by an explicit statement later in the code; no bitwise copy is required. GCC provides an extension that allows either automatic variables, or global variables, to be placed in particular registers. This ! extension is being used for a particular 'VAR_DECL' if ! 'DECL_REGISTER' holds for the 'VAR_DECL', and if ! 'DECL_ASSEMBLER_NAME' is not equal to 'DECL_NAME'. In that case, ! 'DECL_ASSEMBLER_NAME' is the name of the register into which the variable will be placed. ! 'PARM_DECL' Used to represent a parameter to a function. Treat these nodes ! similarly to 'VAR_DECL' nodes. These nodes only appear in the ! 'DECL_ARGUMENTS' for a 'FUNCTION_DECL'. ! The 'DECL_ARG_TYPE' for a 'PARM_DECL' is the type that will actually be used when a value is passed to this function. It may ! be a wider type than the 'TREE_TYPE' of the parameter; for example, ! the ordinary type might be 'short' while the 'DECL_ARG_TYPE' is ! 'int'. ! 'DEBUG_EXPR_DECL' Used to represent an anonymous debug-information temporary created to hold an expression as it is optimized away, so that its value can be referenced in debug bind statements. ! 'FIELD_DECL' ! These nodes represent non-static data members. The 'DECL_SIZE' and ! 'DECL_ALIGN' behave as for 'VAR_DECL' nodes. The position of the field within the parent record is specified by a combination of ! three attributes. 'DECL_FIELD_OFFSET' is the position, counting in ! bytes, of the 'DECL_OFFSET_ALIGN'-bit sized word containing the bit ! of the field closest to the beginning of the structure. ! 'DECL_FIELD_BIT_OFFSET' is the bit offset of the first bit of the field within this word; this may be nonzero even for fields that ! are not bit-fields, since 'DECL_OFFSET_ALIGN' may be greater than the natural alignment of the field's type. ! If 'DECL_C_BIT_FIELD' holds, this field is a bit-field. In a ! bit-field, 'DECL_BIT_FIELD_TYPE' also contains the type that was ! originally specified for it, while DECL_TYPE may be a modified type ! with lesser precision, according to the size of the bit field. ! 'NAMESPACE_DECL' Namespaces provide a name hierarchy for other declarations. They ! appear in the 'DECL_CONTEXT' of other '_DECL' nodes.  File: gccint.info, Node: Internal structure, Prev: Working with declarations, Up: Declarations *************** File: gccint.info, Node: Internal struc *** 11468,11474 **** 11.4.2 Internal structure ------------------------- ! `DECL' nodes are represented internally as a hierarchy of structures. * Menu: --- 11299,11305 ---- 11.4.2 Internal structure ------------------------- ! 'DECL' nodes are represented internally as a hierarchy of structures. * Menu: *************** File: gccint.info, Node: Current struct *** 11483,11540 **** 11.4.2.1 Current structure hierarchy .................................... ! `struct tree_decl_minimal' This is the minimal structure to inherit from in order for common ! `DECL' macros to work. The fields it contains are a unique ID, source location, context, and name. ! `struct tree_decl_common' ! This structure inherits from `struct tree_decl_minimal'. It ! contains fields that most `DECL' nodes need, such as a field to store alignment, machine mode, size, and attributes. ! `struct tree_field_decl' ! This structure inherits from `struct tree_decl_common'. It is ! used to represent `FIELD_DECL'. ! `struct tree_label_decl' ! This structure inherits from `struct tree_decl_common'. It is ! used to represent `LABEL_DECL'. ! `struct tree_translation_unit_decl' ! This structure inherits from `struct tree_decl_common'. It is ! used to represent `TRANSLATION_UNIT_DECL'. ! `struct tree_decl_with_rtl' ! This structure inherits from `struct tree_decl_common'. It contains a field to store the low-level RTL associated with a ! `DECL' node. ! `struct tree_result_decl' ! This structure inherits from `struct tree_decl_with_rtl'. It is ! used to represent `RESULT_DECL'. ! `struct tree_const_decl' ! This structure inherits from `struct tree_decl_with_rtl'. It is ! used to represent `CONST_DECL'. ! `struct tree_parm_decl' ! This structure inherits from `struct tree_decl_with_rtl'. It is ! used to represent `PARM_DECL'. ! `struct tree_decl_with_vis' ! This structure inherits from `struct tree_decl_with_rtl'. It contains fields necessary to store visibility information, as well as a section name and assembler name. ! `struct tree_var_decl' ! This structure inherits from `struct tree_decl_with_vis'. It is ! used to represent `VAR_DECL'. ! ! `struct tree_function_decl' ! This structure inherits from `struct tree_decl_with_vis'. It is ! used to represent `FUNCTION_DECL'.  File: gccint.info, Node: Adding new DECL node types, Prev: Current structure hierarchy, Up: Internal structure --- 11314,11370 ---- 11.4.2.1 Current structure hierarchy .................................... ! 'struct tree_decl_minimal' This is the minimal structure to inherit from in order for common ! 'DECL' macros to work. The fields it contains are a unique ID, source location, context, and name. ! 'struct tree_decl_common' ! This structure inherits from 'struct tree_decl_minimal'. It ! contains fields that most 'DECL' nodes need, such as a field to store alignment, machine mode, size, and attributes. ! 'struct tree_field_decl' ! This structure inherits from 'struct tree_decl_common'. It is used ! to represent 'FIELD_DECL'. ! 'struct tree_label_decl' ! This structure inherits from 'struct tree_decl_common'. It is used ! to represent 'LABEL_DECL'. ! 'struct tree_translation_unit_decl' ! This structure inherits from 'struct tree_decl_common'. It is used ! to represent 'TRANSLATION_UNIT_DECL'. ! 'struct tree_decl_with_rtl' ! This structure inherits from 'struct tree_decl_common'. It contains a field to store the low-level RTL associated with a ! 'DECL' node. ! 'struct tree_result_decl' ! This structure inherits from 'struct tree_decl_with_rtl'. It is ! used to represent 'RESULT_DECL'. ! 'struct tree_const_decl' ! This structure inherits from 'struct tree_decl_with_rtl'. It is ! used to represent 'CONST_DECL'. ! 'struct tree_parm_decl' ! This structure inherits from 'struct tree_decl_with_rtl'. It is ! used to represent 'PARM_DECL'. ! 'struct tree_decl_with_vis' ! This structure inherits from 'struct tree_decl_with_rtl'. It contains fields necessary to store visibility information, as well as a section name and assembler name. ! 'struct tree_var_decl' ! This structure inherits from 'struct tree_decl_with_vis'. It is ! used to represent 'VAR_DECL'. + 'struct tree_function_decl' + This structure inherits from 'struct tree_decl_with_vis'. It is + used to represent 'FUNCTION_DECL'.  File: gccint.info, Node: Adding new DECL node types, Prev: Current structure hierarchy, Up: Internal structure *************** File: gccint.info, Node: Adding new DEC *** 11542,11617 **** 11.4.2.2 Adding new DECL node types ................................... ! Adding a new `DECL' tree consists of the following steps ! Add a new tree code for the `DECL' node ! For language specific `DECL' nodes, there is a `.def' file in each ! frontend directory where the tree code should be added. For ! `DECL' nodes that are part of the middle-end, the code should be ! added to `tree.def'. ! Create a new structure type for the `DECL' node ! These structures should inherit from one of the existing ! structures in the language hierarchy by using that structure as ! the first member. struct tree_foo_decl { struct tree_decl_with_vis common; } ! Would create a structure name `tree_foo_decl' that inherits from ! `struct tree_decl_with_vis'. ! For language specific `DECL' nodes, this new structure type should ! go in the appropriate `.h' file. For `DECL' nodes that are part ! of the middle-end, the structure type should go in `tree.h'. Add a member to the tree structure enumerator for the node ! For garbage collection and dynamic checking purposes, each `DECL' node structure type is required to have a unique enumerator value ! specified with it. For language specific `DECL' nodes, this new ! enumerator value should go in the appropriate `.def' file. For ! `DECL' nodes that are part of the middle-end, the enumerator ! values are specified in `treestruct.def'. ! Update `union tree_node' In order to make your new structure type usable, it must be added ! to `union tree_node'. For language specific `DECL' nodes, a new ! entry should be added to the appropriate `.h' file of the form struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl; ! For `DECL' nodes that are part of the middle-end, the additional ! member goes directly into `union tree_node' in `tree.h'. Update dynamic checking info In order to be able to check whether accessing a named portion of ! `union tree_node' is legal, and whether a certain `DECL' node ! contains one of the enumerated `DECL' node structures in the hierarchy, a simple lookup table is used. This lookup table needs to be kept up to date with the tree structure hierarchy, or else checking and containment macros will fail inappropriately. ! For language specific `DECL' nodes, their is an `init_ts' function ! in an appropriate `.c' file, which initializes the lookup table. ! Code setting up the table for new `DECL' nodes should be added ! there. For each `DECL' tree code and enumerator value ! representing a member of the inheritance hierarchy, the table ! should contain 1 if that tree code inherits (directly or ! indirectly) from that member. Thus, a `FOO_DECL' node derived ! from `struct decl_with_rtl', and enumerator value `TS_FOO_DECL', ! would be set up as follows tree_contains_struct[FOO_DECL][TS_FOO_DECL] = 1; tree_contains_struct[FOO_DECL][TS_DECL_WRTL] = 1; tree_contains_struct[FOO_DECL][TS_DECL_COMMON] = 1; tree_contains_struct[FOO_DECL][TS_DECL_MINIMAL] = 1; ! For `DECL' nodes that are part of the middle-end, the setup code ! goes into `tree.c'. Add macros to access any new fields and flags Each added field or flag should have a macro that is used to access it, that performs appropriate checking to ensure only the right ! type of `DECL' nodes access the field. These macros generally take the following form #define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname --- 11372,11448 ---- 11.4.2.2 Adding new DECL node types ................................... ! Adding a new 'DECL' tree consists of the following steps ! Add a new tree code for the 'DECL' node ! For language specific 'DECL' nodes, there is a '.def' file in each ! frontend directory where the tree code should be added. For 'DECL' ! nodes that are part of the middle-end, the code should be added to ! 'tree.def'. ! Create a new structure type for the 'DECL' node ! These structures should inherit from one of the existing structures ! in the language hierarchy by using that structure as the first ! member. struct tree_foo_decl { struct tree_decl_with_vis common; } ! Would create a structure name 'tree_foo_decl' that inherits from ! 'struct tree_decl_with_vis'. ! For language specific 'DECL' nodes, this new structure type should ! go in the appropriate '.h' file. For 'DECL' nodes that are part of ! the middle-end, the structure type should go in 'tree.h'. Add a member to the tree structure enumerator for the node ! For garbage collection and dynamic checking purposes, each 'DECL' node structure type is required to have a unique enumerator value ! specified with it. For language specific 'DECL' nodes, this new ! enumerator value should go in the appropriate '.def' file. For ! 'DECL' nodes that are part of the middle-end, the enumerator values ! are specified in 'treestruct.def'. ! Update 'union tree_node' In order to make your new structure type usable, it must be added ! to 'union tree_node'. For language specific 'DECL' nodes, a new ! entry should be added to the appropriate '.h' file of the form struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl; ! For 'DECL' nodes that are part of the middle-end, the additional ! member goes directly into 'union tree_node' in 'tree.h'. Update dynamic checking info In order to be able to check whether accessing a named portion of ! 'union tree_node' is legal, and whether a certain 'DECL' node ! contains one of the enumerated 'DECL' node structures in the hierarchy, a simple lookup table is used. This lookup table needs to be kept up to date with the tree structure hierarchy, or else checking and containment macros will fail inappropriately. ! For language specific 'DECL' nodes, their is an 'init_ts' function ! in an appropriate '.c' file, which initializes the lookup table. ! Code setting up the table for new 'DECL' nodes should be added ! there. For each 'DECL' tree code and enumerator value representing ! a member of the inheritance hierarchy, the table should contain 1 ! if that tree code inherits (directly or indirectly) from that ! member. Thus, a 'FOO_DECL' node derived from 'struct ! decl_with_rtl', and enumerator value 'TS_FOO_DECL', would be set up ! as follows tree_contains_struct[FOO_DECL][TS_FOO_DECL] = 1; tree_contains_struct[FOO_DECL][TS_DECL_WRTL] = 1; tree_contains_struct[FOO_DECL][TS_DECL_COMMON] = 1; tree_contains_struct[FOO_DECL][TS_DECL_MINIMAL] = 1; ! For 'DECL' nodes that are part of the middle-end, the setup code ! goes into 'tree.c'. Add macros to access any new fields and flags + Each added field or flag should have a macro that is used to access it, that performs appropriate checking to ensure only the right ! type of 'DECL' nodes access the field. These macros generally take the following form #define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname *************** Add macros to access any new fields and *** 11621,11642 **** #define BASE_STRUCT_FIELDNAME(NODE) \ (BASE_STRUCT_CHECK(NODE)->base_struct.fieldname -  File: gccint.info, Node: Attributes, Next: Expression trees, Prev: Declarations, Up: GENERIC 11.5 Attributes in trees ======================== ! Attributes, as specified using the `__attribute__' keyword, are ! represented internally as a `TREE_LIST'. The `TREE_PURPOSE' is the ! name of the attribute, as an `IDENTIFIER_NODE'. The `TREE_VALUE' is a ! `TREE_LIST' of the arguments of the attribute, if any, or `NULL_TREE' ! if there are no arguments; the arguments are stored as the `TREE_VALUE' ! of successive entries in the list, and may be identifiers or ! expressions. The `TREE_CHAIN' of the attribute is the next attribute ! in a list of attributes applying to the same declaration or type, or ! `NULL_TREE' if there are no further attributes in the list. Attributes may be attached to declarations and to types; these attributes may be accessed with the following macros. All attributes --- 11452,11472 ---- #define BASE_STRUCT_FIELDNAME(NODE) \ (BASE_STRUCT_CHECK(NODE)->base_struct.fieldname  File: gccint.info, Node: Attributes, Next: Expression trees, Prev: Declarations, Up: GENERIC 11.5 Attributes in trees ======================== ! Attributes, as specified using the '__attribute__' keyword, are ! represented internally as a 'TREE_LIST'. The 'TREE_PURPOSE' is the name ! of the attribute, as an 'IDENTIFIER_NODE'. The 'TREE_VALUE' is a ! 'TREE_LIST' of the arguments of the attribute, if any, or 'NULL_TREE' if ! there are no arguments; the arguments are stored as the 'TREE_VALUE' of ! successive entries in the list, and may be identifiers or expressions. ! The 'TREE_CHAIN' of the attribute is the next attribute in a list of ! attributes applying to the same declaration or type, or 'NULL_TREE' if ! there are no further attributes in the list. Attributes may be attached to declarations and to types; these attributes may be accessed with the following macros. All attributes *************** mind. In particular, the expression "tr *** 11661,11678 **** acyclic graph. (For example there may be many references to the integer constant zero throughout the source program; many of these will be represented by the same expression node.) You should not rely on ! certain kinds of node being shared, nor should you rely on certain ! kinds of nodes being unshared. The following macros can be used with all expression nodes: ! `TREE_TYPE' Returns the type of the expression. This value may not be precisely the same type that would be given the expression in the original program. In what follows, some nodes that one might expect to always have type ! `bool' are documented to have either integral or boolean type. At some point in the future, the C front end may also make use of this same intermediate representation, and at this point these nodes will certainly have integral type. The previous sentence is not meant to --- 11491,11508 ---- acyclic graph. (For example there may be many references to the integer constant zero throughout the source program; many of these will be represented by the same expression node.) You should not rely on ! certain kinds of node being shared, nor should you rely on certain kinds ! of nodes being unshared. The following macros can be used with all expression nodes: ! 'TREE_TYPE' Returns the type of the expression. This value may not be precisely the same type that would be given the expression in the original program. In what follows, some nodes that one might expect to always have type ! 'bool' are documented to have either integral or boolean type. At some point in the future, the C front end may also make use of this same intermediate representation, and at this point these nodes will certainly have integral type. The previous sentence is not meant to *************** integral type. *** 11681,11690 **** Below, we list the various kinds of expression nodes. Except where noted otherwise, the operands to an expression are accessed using the ! `TREE_OPERAND' macro. For example, to access the first operand to a ! binary plus expression `expr', use: TREE_OPERAND (expr, 0) As this example indicates, the operands are zero-indexed. * Menu: --- 11511,11521 ---- Below, we list the various kinds of expression nodes. Except where noted otherwise, the operands to an expression are accessed using the ! 'TREE_OPERAND' macro. For example, to access the first operand to a ! binary plus expression 'expr', use: TREE_OPERAND (expr, 0) + As this example indicates, the operands are zero-indexed. * Menu: *************** The table below begins with constants, m *** 11704,11794 **** then proceeds to binary expressions, and concludes with various other kinds of expressions: ! `INTEGER_CST' These nodes represent integer constants. Note that the type of ! these constants is obtained with `TREE_TYPE'; they are not always ! of type `int'. In particular, `char' constants are represented ! with `INTEGER_CST' nodes. The value of the integer constant `e' is given by ((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT) + TREE_INST_CST_LOW (e)) HOST_BITS_PER_WIDE_INT is at least thirty-two on all platforms. ! Both `TREE_INT_CST_HIGH' and `TREE_INT_CST_LOW' return a ! `HOST_WIDE_INT'. The value of an `INTEGER_CST' is interpreted as ! a signed or unsigned quantity depending on the type of the ! constant. In general, the expression given above will overflow, ! so it should not be used to calculate the value of the constant. ! The variable `integer_zero_node' is an integer constant with value ! zero. Similarly, `integer_one_node' is an integer constant with ! value one. The `size_zero_node' and `size_one_node' variables are ! analogous, but have type `size_t' rather than `int'. ! The function `tree_int_cst_lt' is a predicate which holds if its ! first argument is less than its second. Both constants are ! assumed to have the same signedness (i.e., either both should be ! signed or both should be unsigned.) The full width of the ! constant is used when doing the comparison; the usual rules about ! promotions and conversions are ignored. Similarly, ! `tree_int_cst_equal' holds if the two constants are equal. The ! `tree_int_cst_sgn' function returns the sign of a constant. The ! value is `1', `0', or `-1' according on whether the constant is ! greater than, equal to, or less than zero. Again, the signedness ! of the constant's type is taken into account; an unsigned constant ! is never less than zero, no matter what its bit-pattern. - `REAL_CST' FIXME: Talk about how to obtain representations of this constant, do comparisons, and so forth. ! `FIXED_CST' These nodes represent fixed-point constants. The type of these ! constants is obtained with `TREE_TYPE'. `TREE_FIXED_CST_PTR' ! points to a `struct fixed_value'; `TREE_FIXED_CST' returns the ! structure itself. `struct fixed_value' contains `data' with the ! size of two `HOST_BITS_PER_WIDE_INT' and `mode' as the associated ! fixed-point machine mode for `data'. ! `COMPLEX_CST' ! These nodes are used to represent complex number constants, that ! is a `__complex__' whose parts are constant nodes. The ! `TREE_REALPART' and `TREE_IMAGPART' return the real and the imaginary parts respectively. ! `VECTOR_CST' These nodes are used to represent vector constants, whose parts are ! constant nodes. Each individual constant node is either an ! integer or a double constant node. The first operand is a ! `TREE_LIST' of the constant nodes and is accessed through ! `TREE_VECTOR_CST_ELTS'. ! `STRING_CST' ! These nodes represent string-constants. The `TREE_STRING_LENGTH' ! returns the length of the string, as an `int'. The ! `TREE_STRING_POINTER' is a `char*' containing the string itself. ! The string may not be `NUL'-terminated, and it may contain ! embedded `NUL' characters. Therefore, the `TREE_STRING_LENGTH' ! includes the trailing `NUL' if it is present. ! For wide string constants, the `TREE_STRING_LENGTH' is the number ! of bytes in the string, and the `TREE_STRING_POINTER' points to an array of the bytes of the string, as represented on the target system (that is, as integers in the target endianness). Wide and ! non-wide string constants are distinguished only by the `TREE_TYPE' ! of the `STRING_CST'. FIXME: The formats of string constants are not well-defined when the target system bytes are not the same width as host system bytes. -  File: gccint.info, Node: Storage References, Next: Unary and Binary Expressions, Prev: Constant expressions, Up: Expression trees 11.6.2 References to storage ---------------------------- ! `ARRAY_REF' These nodes represent array accesses. The first operand is the array; the second is the index. To calculate the address of the memory accessed, you must scale the index by the size of the type --- 11535,11625 ---- then proceeds to binary expressions, and concludes with various other kinds of expressions: ! 'INTEGER_CST' These nodes represent integer constants. Note that the type of ! these constants is obtained with 'TREE_TYPE'; they are not always ! of type 'int'. In particular, 'char' constants are represented ! with 'INTEGER_CST' nodes. The value of the integer constant 'e' is given by ((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT) + TREE_INST_CST_LOW (e)) HOST_BITS_PER_WIDE_INT is at least thirty-two on all platforms. ! Both 'TREE_INT_CST_HIGH' and 'TREE_INT_CST_LOW' return a ! 'HOST_WIDE_INT'. The value of an 'INTEGER_CST' is interpreted as a ! signed or unsigned quantity depending on the type of the constant. ! In general, the expression given above will overflow, so it should ! not be used to calculate the value of the constant. ! The variable 'integer_zero_node' is an integer constant with value ! zero. Similarly, 'integer_one_node' is an integer constant with ! value one. The 'size_zero_node' and 'size_one_node' variables are ! analogous, but have type 'size_t' rather than 'int'. ! The function 'tree_int_cst_lt' is a predicate which holds if its ! first argument is less than its second. Both constants are assumed ! to have the same signedness (i.e., either both should be signed or ! both should be unsigned.) The full width of the constant is used ! when doing the comparison; the usual rules about promotions and ! conversions are ignored. Similarly, 'tree_int_cst_equal' holds if ! the two constants are equal. The 'tree_int_cst_sgn' function ! returns the sign of a constant. The value is '1', '0', or '-1' ! according on whether the constant is greater than, equal to, or ! less than zero. Again, the signedness of the constant's type is ! taken into account; an unsigned constant is never less than zero, ! no matter what its bit-pattern. ! ! 'REAL_CST' FIXME: Talk about how to obtain representations of this constant, do comparisons, and so forth. ! 'FIXED_CST' ! These nodes represent fixed-point constants. The type of these ! constants is obtained with 'TREE_TYPE'. 'TREE_FIXED_CST_PTR' ! points to a 'struct fixed_value'; 'TREE_FIXED_CST' returns the ! structure itself. 'struct fixed_value' contains 'data' with the ! size of two 'HOST_BITS_PER_WIDE_INT' and 'mode' as the associated ! fixed-point machine mode for 'data'. ! 'COMPLEX_CST' ! These nodes are used to represent complex number constants, that is ! a '__complex__' whose parts are constant nodes. The ! 'TREE_REALPART' and 'TREE_IMAGPART' return the real and the imaginary parts respectively. ! 'VECTOR_CST' These nodes are used to represent vector constants, whose parts are ! constant nodes. Each individual constant node is either an integer ! or a double constant node. The first operand is a 'TREE_LIST' of ! the constant nodes and is accessed through 'TREE_VECTOR_CST_ELTS'. ! 'STRING_CST' ! These nodes represent string-constants. The 'TREE_STRING_LENGTH' ! returns the length of the string, as an 'int'. The ! 'TREE_STRING_POINTER' is a 'char*' containing the string itself. ! The string may not be 'NUL'-terminated, and it may contain embedded ! 'NUL' characters. Therefore, the 'TREE_STRING_LENGTH' includes the ! trailing 'NUL' if it is present. ! For wide string constants, the 'TREE_STRING_LENGTH' is the number ! of bytes in the string, and the 'TREE_STRING_POINTER' points to an array of the bytes of the string, as represented on the target system (that is, as integers in the target endianness). Wide and ! non-wide string constants are distinguished only by the 'TREE_TYPE' ! of the 'STRING_CST'. FIXME: The formats of string constants are not well-defined when the target system bytes are not the same width as host system bytes.  File: gccint.info, Node: Storage References, Next: Unary and Binary Expressions, Prev: Constant expressions, Up: Expression trees 11.6.2 References to storage ---------------------------- ! 'ARRAY_REF' These nodes represent array accesses. The first operand is the array; the second is the index. To calculate the address of the memory accessed, you must scale the index by the size of the type *************** File: gccint.info, Node: Storage Refere *** 11796,11860 **** type of a component of the array. The third and fourth operands are used after gimplification to represent the lower bound and component size but should not be used directly; call ! `array_ref_low_bound' and `array_ref_element_size' instead. ! `ARRAY_RANGE_REF' These nodes represent access to a range (or "slice") of an array. ! The operands are the same as that for `ARRAY_REF' and have the same meanings. The type of these expressions must be an array whose ! component type is the same as that of the first operand. The ! range of that array type determines the amount of data these ! expressions access. ! `TARGET_MEM_REF' These nodes represent memory accesses whose address directly map to an addressing mode of the target architecture. The first argument ! is `TMR_SYMBOL' and must be a `VAR_DECL' of an object with a fixed ! address. The second argument is `TMR_BASE' and the third one is ! `TMR_INDEX'. The fourth argument is `TMR_STEP' and must be an ! `INTEGER_CST'. The fifth argument is `TMR_OFFSET' and must be an ! `INTEGER_CST'. Any of the arguments may be NULL if the ! appropriate component does not appear in the address. Address of ! the `TARGET_MEM_REF' is determined in the following way. &TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET The sixth argument is the reference to the original memory access, ! which is preserved for the purposes of the RTL alias analysis. ! The seventh argument is a tag representing the results of tree ! level alias analysis. ! `ADDR_EXPR' These nodes are used to represent the address of an object. (These expressions will always have pointer or reference type.) The operand may be another expression, or it may be a declaration. As an extension, GCC allows users to take the address of a label. ! In this case, the operand of the `ADDR_EXPR' will be a ! `LABEL_DECL'. The type of such an expression is `void*'. If the object addressed is not an lvalue, a temporary is created, and the address of the temporary is used. ! `INDIRECT_REF' These nodes are used to represent the object pointed to by a pointer. The operand is the pointer being dereferenced; it will always have pointer or reference type. ! `MEM_REF' These nodes are used to represent the object pointed to by a pointer offset by a constant. The first operand is the pointer being dereferenced; it will always have pointer or reference type. The second operand is a pointer constant. Its type is specifying the type to be used for type-based alias analysis. ! `COMPONENT_REF' These nodes represent non-static data member accesses. The first operand is the object (rather than a pointer to it); the second ! operand is the `FIELD_DECL' for the data member. The third ! operand represents the byte offset of the field, but should not be ! used directly; call `component_ref_field_offset' instead. !  File: gccint.info, Node: Unary and Binary Expressions, Next: Vectors, Prev: Storage References, Up: Expression trees --- 11627,11690 ---- type of a component of the array. The third and fourth operands are used after gimplification to represent the lower bound and component size but should not be used directly; call ! 'array_ref_low_bound' and 'array_ref_element_size' instead. ! 'ARRAY_RANGE_REF' These nodes represent access to a range (or "slice") of an array. ! The operands are the same as that for 'ARRAY_REF' and have the same meanings. The type of these expressions must be an array whose ! component type is the same as that of the first operand. The range ! of that array type determines the amount of data these expressions ! access. ! 'TARGET_MEM_REF' These nodes represent memory accesses whose address directly map to an addressing mode of the target architecture. The first argument ! is 'TMR_SYMBOL' and must be a 'VAR_DECL' of an object with a fixed ! address. The second argument is 'TMR_BASE' and the third one is ! 'TMR_INDEX'. The fourth argument is 'TMR_STEP' and must be an ! 'INTEGER_CST'. The fifth argument is 'TMR_OFFSET' and must be an ! 'INTEGER_CST'. Any of the arguments may be NULL if the appropriate ! component does not appear in the address. Address of the ! 'TARGET_MEM_REF' is determined in the following way. &TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET The sixth argument is the reference to the original memory access, ! which is preserved for the purposes of the RTL alias analysis. The ! seventh argument is a tag representing the results of tree level ! alias analysis. ! 'ADDR_EXPR' These nodes are used to represent the address of an object. (These expressions will always have pointer or reference type.) The operand may be another expression, or it may be a declaration. As an extension, GCC allows users to take the address of a label. ! In this case, the operand of the 'ADDR_EXPR' will be a ! 'LABEL_DECL'. The type of such an expression is 'void*'. If the object addressed is not an lvalue, a temporary is created, and the address of the temporary is used. ! 'INDIRECT_REF' These nodes are used to represent the object pointed to by a pointer. The operand is the pointer being dereferenced; it will always have pointer or reference type. ! 'MEM_REF' These nodes are used to represent the object pointed to by a pointer offset by a constant. The first operand is the pointer being dereferenced; it will always have pointer or reference type. The second operand is a pointer constant. Its type is specifying the type to be used for type-based alias analysis. ! 'COMPONENT_REF' These nodes represent non-static data member accesses. The first operand is the object (rather than a pointer to it); the second ! operand is the 'FIELD_DECL' for the data member. The third operand ! represents the byte offset of the field, but should not be used ! directly; call 'component_ref_field_offset' instead.  File: gccint.info, Node: Unary and Binary Expressions, Next: Vectors, Prev: Storage References, Up: Expression trees *************** File: gccint.info, Node: Unary and Bina *** 11862,12021 **** 11.6.3 Unary and Binary Expressions ----------------------------------- ! `NEGATE_EXPR' These nodes represent unary negation of the single operand, for both integer and floating-point types. The type of negation can be determined by looking at the type of the expression. The behavior of this operation on signed arithmetic overflow is ! controlled by the `flag_wrapv' and `flag_trapv' variables. ! `ABS_EXPR' These nodes represent the absolute value of the single operand, for both integer and floating-point types. This is typically used to ! implement the `abs', `labs' and `llabs' builtins for integer ! types, and the `fabs', `fabsf' and `fabsl' builtins for floating ! point types. The type of abs operation can be determined by ! looking at the type of the expression. This node is not used for complex types. To represent the modulus ! or complex abs of a complex value, use the `BUILT_IN_CABS', ! `BUILT_IN_CABSF' or `BUILT_IN_CABSL' builtins, as used to ! implement the C99 `cabs', `cabsf' and `cabsl' built-in functions. ! `BIT_NOT_EXPR' These nodes represent bitwise complement, and will always have integral type. The only operand is the value to be complemented. ! `TRUTH_NOT_EXPR' These nodes represent logical negation, and will always have integral (or boolean) type. The operand is the value being ! negated. The type of the operand and that of the result are ! always of `BOOLEAN_TYPE' or `INTEGER_TYPE'. ! `PREDECREMENT_EXPR' ! `PREINCREMENT_EXPR' ! `POSTDECREMENT_EXPR' ! `POSTINCREMENT_EXPR' These nodes represent increment and decrement expressions. The value of the single operand is computed, and the operand ! incremented or decremented. In the case of `PREDECREMENT_EXPR' and ! `PREINCREMENT_EXPR', the value of the expression is the value resulting after the increment or decrement; in the case of ! `POSTDECREMENT_EXPR' and `POSTINCREMENT_EXPR' is the value before the increment or decrement occurs. The type of the operand, like that of the result, will be either integral, boolean, or floating-point. ! `FIX_TRUNC_EXPR' These nodes represent conversion of a floating-point value to an integer. The single operand will have a floating-point type, while the complete expression will have an integral (or boolean) type. The operand is rounded towards zero. ! `FLOAT_EXPR' These nodes represent conversion of an integral (or boolean) value to a floating-point value. The single operand will have integral type, while the complete expression will have a floating-point type. FIXME: How is the operand supposed to be rounded? Is this ! dependent on `-mieee'? ! `COMPLEX_EXPR' These nodes are used to represent complex numbers constructed from two expressions of the same (integer or real) type. The first operand is the real part and the second operand is the imaginary part. ! `CONJ_EXPR' These nodes represent the conjugate of their operand. ! `REALPART_EXPR' ! `IMAGPART_EXPR' These nodes represent respectively the real and the imaginary parts of complex numbers (their sole argument). ! `NON_LVALUE_EXPR' These nodes indicate that their one and only operand is not an lvalue. A back end can treat these identically to the single operand. ! `NOP_EXPR' These nodes are used to represent conversions that do not require ! any code-generation. For example, conversion of a `char*' to an ! `int*' does not require any code be generated; such a conversion is ! represented by a `NOP_EXPR'. The single operand is the expression to be converted. The conversion from a pointer to a reference is ! also represented with a `NOP_EXPR'. ! `CONVERT_EXPR' ! These nodes are similar to `NOP_EXPR's, but are used in those situations where code may need to be generated. For example, if an ! `int*' is converted to an `int' code may need to be generated on some platforms. These nodes are never used for C++-specific ! conversions, like conversions between pointers to different ! classes in an inheritance hierarchy. Any adjustments that need to ! be made in such cases are always indicated explicitly. Similarly, ! a user-defined conversion is never represented by a ! `CONVERT_EXPR'; instead, the function calls are made explicit. ! `FIXED_CONVERT_EXPR' These nodes are used to represent conversions that involve fixed-point values. For example, from a fixed-point value to another fixed-point value, from an integer to a fixed-point value, ! from a fixed-point value to an integer, from a floating-point ! value to a fixed-point value, or from a fixed-point value to a floating-point value. ! `LSHIFT_EXPR' ! `RSHIFT_EXPR' These nodes represent left and right shifts, respectively. The first operand is the value to shift; it will always be of integral type. The second operand is an expression for the number of bits by which to shift. Right shift should be treated as arithmetic, ! i.e., the high-order bits should be zero-filled when the ! expression has unsigned type and filled with the sign bit when the ! expression has signed type. Note that the result is undefined if ! the second operand is larger than or equal to the first operand's ! type size. Unlike most nodes, these can have a vector as first ! operand and a scalar as second operand. ! `BIT_IOR_EXPR' ! `BIT_XOR_EXPR' ! `BIT_AND_EXPR' These nodes represent bitwise inclusive or, bitwise exclusive or, and bitwise and, respectively. Both operands will always have integral type. ! `TRUTH_ANDIF_EXPR' ! `TRUTH_ORIF_EXPR' These nodes represent logical "and" and logical "or", respectively. These operators are not strict; i.e., the second operand is evaluated only if the value of the expression is not determined by ! evaluation of the first operand. The type of the operands and ! that of the result are always of `BOOLEAN_TYPE' or `INTEGER_TYPE'. ! `TRUTH_AND_EXPR' ! `TRUTH_OR_EXPR' ! `TRUTH_XOR_EXPR' These nodes represent logical and, logical or, and logical exclusive or. They are strict; both arguments are always evaluated. There are no corresponding operators in C or C++, but the front end will sometimes generate these expressions anyhow, if it can tell that strictness does not matter. The type of the ! operands and that of the result are always of `BOOLEAN_TYPE' or ! `INTEGER_TYPE'. ! `POINTER_PLUS_EXPR' This node represents pointer arithmetic. The first operand is always a pointer/reference type. The second operand is always an unsigned integer type compatible with sizetype. This is the only binary arithmetic operand that can operate on pointer types. ! `PLUS_EXPR' ! `MINUS_EXPR' ! `MULT_EXPR' These nodes represent various binary arithmetic operations. Respectively, these operations are addition, subtraction (of the second operand from the first) and multiplication. Their operands --- 11692,11851 ---- 11.6.3 Unary and Binary Expressions ----------------------------------- ! 'NEGATE_EXPR' These nodes represent unary negation of the single operand, for both integer and floating-point types. The type of negation can be determined by looking at the type of the expression. The behavior of this operation on signed arithmetic overflow is ! controlled by the 'flag_wrapv' and 'flag_trapv' variables. ! 'ABS_EXPR' These nodes represent the absolute value of the single operand, for both integer and floating-point types. This is typically used to ! implement the 'abs', 'labs' and 'llabs' builtins for integer types, ! and the 'fabs', 'fabsf' and 'fabsl' builtins for floating point ! types. The type of abs operation can be determined by looking at ! the type of the expression. This node is not used for complex types. To represent the modulus ! or complex abs of a complex value, use the 'BUILT_IN_CABS', ! 'BUILT_IN_CABSF' or 'BUILT_IN_CABSL' builtins, as used to implement ! the C99 'cabs', 'cabsf' and 'cabsl' built-in functions. ! 'BIT_NOT_EXPR' These nodes represent bitwise complement, and will always have integral type. The only operand is the value to be complemented. ! 'TRUTH_NOT_EXPR' These nodes represent logical negation, and will always have integral (or boolean) type. The operand is the value being ! negated. The type of the operand and that of the result are always ! of 'BOOLEAN_TYPE' or 'INTEGER_TYPE'. ! 'PREDECREMENT_EXPR' ! 'PREINCREMENT_EXPR' ! 'POSTDECREMENT_EXPR' ! 'POSTINCREMENT_EXPR' These nodes represent increment and decrement expressions. The value of the single operand is computed, and the operand ! incremented or decremented. In the case of 'PREDECREMENT_EXPR' and ! 'PREINCREMENT_EXPR', the value of the expression is the value resulting after the increment or decrement; in the case of ! 'POSTDECREMENT_EXPR' and 'POSTINCREMENT_EXPR' is the value before the increment or decrement occurs. The type of the operand, like that of the result, will be either integral, boolean, or floating-point. ! 'FIX_TRUNC_EXPR' These nodes represent conversion of a floating-point value to an integer. The single operand will have a floating-point type, while the complete expression will have an integral (or boolean) type. The operand is rounded towards zero. ! 'FLOAT_EXPR' These nodes represent conversion of an integral (or boolean) value to a floating-point value. The single operand will have integral type, while the complete expression will have a floating-point type. FIXME: How is the operand supposed to be rounded? Is this ! dependent on '-mieee'? ! 'COMPLEX_EXPR' These nodes are used to represent complex numbers constructed from two expressions of the same (integer or real) type. The first operand is the real part and the second operand is the imaginary part. ! 'CONJ_EXPR' These nodes represent the conjugate of their operand. ! 'REALPART_EXPR' ! 'IMAGPART_EXPR' These nodes represent respectively the real and the imaginary parts of complex numbers (their sole argument). ! 'NON_LVALUE_EXPR' These nodes indicate that their one and only operand is not an lvalue. A back end can treat these identically to the single operand. ! 'NOP_EXPR' These nodes are used to represent conversions that do not require ! any code-generation. For example, conversion of a 'char*' to an ! 'int*' does not require any code be generated; such a conversion is ! represented by a 'NOP_EXPR'. The single operand is the expression to be converted. The conversion from a pointer to a reference is ! also represented with a 'NOP_EXPR'. ! 'CONVERT_EXPR' ! These nodes are similar to 'NOP_EXPR's, but are used in those situations where code may need to be generated. For example, if an ! 'int*' is converted to an 'int' code may need to be generated on some platforms. These nodes are never used for C++-specific ! conversions, like conversions between pointers to different classes ! in an inheritance hierarchy. Any adjustments that need to be made ! in such cases are always indicated explicitly. Similarly, a ! user-defined conversion is never represented by a 'CONVERT_EXPR'; ! instead, the function calls are made explicit. ! 'FIXED_CONVERT_EXPR' These nodes are used to represent conversions that involve fixed-point values. For example, from a fixed-point value to another fixed-point value, from an integer to a fixed-point value, ! from a fixed-point value to an integer, from a floating-point value ! to a fixed-point value, or from a fixed-point value to a floating-point value. ! 'LSHIFT_EXPR' ! 'RSHIFT_EXPR' These nodes represent left and right shifts, respectively. The first operand is the value to shift; it will always be of integral type. The second operand is an expression for the number of bits by which to shift. Right shift should be treated as arithmetic, ! i.e., the high-order bits should be zero-filled when the expression ! has unsigned type and filled with the sign bit when the expression ! has signed type. Note that the result is undefined if the second ! operand is larger than or equal to the first operand's type size. ! Unlike most nodes, these can have a vector as first operand and a ! scalar as second operand. ! 'BIT_IOR_EXPR' ! 'BIT_XOR_EXPR' ! 'BIT_AND_EXPR' These nodes represent bitwise inclusive or, bitwise exclusive or, and bitwise and, respectively. Both operands will always have integral type. ! 'TRUTH_ANDIF_EXPR' ! 'TRUTH_ORIF_EXPR' These nodes represent logical "and" and logical "or", respectively. These operators are not strict; i.e., the second operand is evaluated only if the value of the expression is not determined by ! evaluation of the first operand. The type of the operands and that ! of the result are always of 'BOOLEAN_TYPE' or 'INTEGER_TYPE'. ! 'TRUTH_AND_EXPR' ! 'TRUTH_OR_EXPR' ! 'TRUTH_XOR_EXPR' These nodes represent logical and, logical or, and logical exclusive or. They are strict; both arguments are always evaluated. There are no corresponding operators in C or C++, but the front end will sometimes generate these expressions anyhow, if it can tell that strictness does not matter. The type of the ! operands and that of the result are always of 'BOOLEAN_TYPE' or ! 'INTEGER_TYPE'. ! 'POINTER_PLUS_EXPR' This node represents pointer arithmetic. The first operand is always a pointer/reference type. The second operand is always an unsigned integer type compatible with sizetype. This is the only binary arithmetic operand that can operate on pointer types. ! 'PLUS_EXPR' ! 'MINUS_EXPR' ! 'MULT_EXPR' These nodes represent various binary arithmetic operations. Respectively, these operations are addition, subtraction (of the second operand from the first) and multiplication. Their operands *************** File: gccint.info, Node: Unary and Bina *** 12024,12097 **** integral type. The behavior of these operations on signed arithmetic overflow is ! controlled by the `flag_wrapv' and `flag_trapv' variables. ! `MULT_HIGHPART_EXPR' This node represents the "high-part" of a widening multiplication. For an integral type with B bits of precision, the result is the most significant B bits of the full 2B product. ! `RDIV_EXPR' This node represents a floating point division operation. ! `TRUNC_DIV_EXPR' ! `FLOOR_DIV_EXPR' ! `CEIL_DIV_EXPR' ! `ROUND_DIV_EXPR' These nodes represent integer division operations that return an ! integer result. `TRUNC_DIV_EXPR' rounds towards zero, ! `FLOOR_DIV_EXPR' rounds towards negative infinity, `CEIL_DIV_EXPR' ! rounds towards positive infinity and `ROUND_DIV_EXPR' rounds to ! the closest integer. Integer division in C and C++ is truncating, ! i.e. `TRUNC_DIV_EXPR'. The behavior of these operations on signed arithmetic overflow, when dividing the minimum signed integer by minus one, is ! controlled by the `flag_wrapv' and `flag_trapv' variables. ! `TRUNC_MOD_EXPR' ! `FLOOR_MOD_EXPR' ! `CEIL_MOD_EXPR' ! `ROUND_MOD_EXPR' These nodes represent the integer remainder or modulus operation. ! The integer modulus of two operands `a' and `b' is defined as `a - (a/b)*b' where the division calculated using the corresponding ! division operator. Hence for `TRUNC_MOD_EXPR' this definition assumes division using truncation towards zero, i.e. ! `TRUNC_DIV_EXPR'. Integer remainder in C and C++ uses truncating ! division, i.e. `TRUNC_MOD_EXPR'. ! `EXACT_DIV_EXPR' ! The `EXACT_DIV_EXPR' code is used to represent integer divisions where the numerator is known to be an exact multiple of the denominator. This allows the backend to choose between the faster ! of `TRUNC_DIV_EXPR', `CEIL_DIV_EXPR' and `FLOOR_DIV_EXPR' for the current target. ! `LT_EXPR' ! `LE_EXPR' ! `GT_EXPR' ! `GE_EXPR' ! `EQ_EXPR' ! `NE_EXPR' These nodes represent the less than, less than or equal to, greater than, greater than or equal to, equal, and not equal comparison operators. The first and second operands will either be both of integral type, both of floating type or both of vector type. The result type of these expressions will always be of integral, boolean or signed integral vector type. These operations return ! the result type's zero value for false, the result type's one ! value for true, and a vector whose elements are zero (false) or ! minus one (true) for vectors. For floating point comparisons, if we honor IEEE NaNs and either ! operand is NaN, then `NE_EXPR' always returns true and the remaining operators always return false. On some targets, comparisons against an IEEE NaN, other than equality and inequality, may generate a floating point exception. ! `ORDERED_EXPR' ! `UNORDERED_EXPR' These nodes represent non-trapping ordered and unordered comparison operators. These operations take two floating point operands and determine whether they are ordered or unordered relative to each --- 11854,11927 ---- integral type. The behavior of these operations on signed arithmetic overflow is ! controlled by the 'flag_wrapv' and 'flag_trapv' variables. ! 'MULT_HIGHPART_EXPR' This node represents the "high-part" of a widening multiplication. For an integral type with B bits of precision, the result is the most significant B bits of the full 2B product. ! 'RDIV_EXPR' This node represents a floating point division operation. ! 'TRUNC_DIV_EXPR' ! 'FLOOR_DIV_EXPR' ! 'CEIL_DIV_EXPR' ! 'ROUND_DIV_EXPR' These nodes represent integer division operations that return an ! integer result. 'TRUNC_DIV_EXPR' rounds towards zero, ! 'FLOOR_DIV_EXPR' rounds towards negative infinity, 'CEIL_DIV_EXPR' ! rounds towards positive infinity and 'ROUND_DIV_EXPR' rounds to the ! closest integer. Integer division in C and C++ is truncating, i.e. ! 'TRUNC_DIV_EXPR'. The behavior of these operations on signed arithmetic overflow, when dividing the minimum signed integer by minus one, is ! controlled by the 'flag_wrapv' and 'flag_trapv' variables. ! 'TRUNC_MOD_EXPR' ! 'FLOOR_MOD_EXPR' ! 'CEIL_MOD_EXPR' ! 'ROUND_MOD_EXPR' These nodes represent the integer remainder or modulus operation. ! The integer modulus of two operands 'a' and 'b' is defined as 'a - (a/b)*b' where the division calculated using the corresponding ! division operator. Hence for 'TRUNC_MOD_EXPR' this definition assumes division using truncation towards zero, i.e. ! 'TRUNC_DIV_EXPR'. Integer remainder in C and C++ uses truncating ! division, i.e. 'TRUNC_MOD_EXPR'. ! 'EXACT_DIV_EXPR' ! The 'EXACT_DIV_EXPR' code is used to represent integer divisions where the numerator is known to be an exact multiple of the denominator. This allows the backend to choose between the faster ! of 'TRUNC_DIV_EXPR', 'CEIL_DIV_EXPR' and 'FLOOR_DIV_EXPR' for the current target. ! 'LT_EXPR' ! 'LE_EXPR' ! 'GT_EXPR' ! 'GE_EXPR' ! 'EQ_EXPR' ! 'NE_EXPR' These nodes represent the less than, less than or equal to, greater than, greater than or equal to, equal, and not equal comparison operators. The first and second operands will either be both of integral type, both of floating type or both of vector type. The result type of these expressions will always be of integral, boolean or signed integral vector type. These operations return ! the result type's zero value for false, the result type's one value ! for true, and a vector whose elements are zero (false) or minus one ! (true) for vectors. For floating point comparisons, if we honor IEEE NaNs and either ! operand is NaN, then 'NE_EXPR' always returns true and the remaining operators always return false. On some targets, comparisons against an IEEE NaN, other than equality and inequality, may generate a floating point exception. ! 'ORDERED_EXPR' ! 'UNORDERED_EXPR' These nodes represent non-trapping ordered and unordered comparison operators. These operations take two floating point operands and determine whether they are ordered or unordered relative to each *************** File: gccint.info, Node: Unary and Bina *** 12102,12151 **** type's zero value for false, and the result type's one value for true. ! `UNLT_EXPR' ! `UNLE_EXPR' ! `UNGT_EXPR' ! `UNGE_EXPR' ! `UNEQ_EXPR' ! `LTGT_EXPR' These nodes represent the unordered comparison operators. These operations take two floating point operands and determine whether the operands are unordered or are less than, less than or equal to, greater than, greater than or equal to, or equal respectively. For ! example, `UNLT_EXPR' returns true if either operand is an IEEE NaN or the first operand is less than the second. With the possible ! exception of `LTGT_EXPR', all of these operations are guaranteed not to generate a floating point exception. The result type of these expressions will always be of integral or boolean type. ! These operations return the result type's zero value for false, ! and the result type's one value for true. ! `MODIFY_EXPR' These nodes represent assignment. The left-hand side is the first operand; the right-hand side is the second operand. The left-hand ! side will be a `VAR_DECL', `INDIRECT_REF', `COMPONENT_REF', or other lvalue. ! These nodes are used to represent not only assignment with `=' but ! also compound assignments (like `+='), by reduction to `=' ! assignment. In other words, the representation for `i += 3' looks ! just like that for `i = i + 3'. ! `INIT_EXPR' ! These nodes are just like `MODIFY_EXPR', but are used only when a variable is initialized, rather than assigned to subsequently. ! This means that we can assume that the target of the ! initialization is not used in computing its own value; any ! reference to the lhs in computing the rhs is undefined. ! `COMPOUND_EXPR' These nodes represent comma-expressions. The first operand is an expression whose value is computed and thrown away prior to the evaluation of the second operand. The value of the entire expression is the value of the second operand. ! `COND_EXPR' ! These nodes represent `?:' expressions. The first operand is of boolean or integral type. If it evaluates to a nonzero value, the second operand should be evaluated, and returned as the value of the expression. Otherwise, the third operand is evaluated, and --- 11932,11981 ---- type's zero value for false, and the result type's one value for true. ! 'UNLT_EXPR' ! 'UNLE_EXPR' ! 'UNGT_EXPR' ! 'UNGE_EXPR' ! 'UNEQ_EXPR' ! 'LTGT_EXPR' These nodes represent the unordered comparison operators. These operations take two floating point operands and determine whether the operands are unordered or are less than, less than or equal to, greater than, greater than or equal to, or equal respectively. For ! example, 'UNLT_EXPR' returns true if either operand is an IEEE NaN or the first operand is less than the second. With the possible ! exception of 'LTGT_EXPR', all of these operations are guaranteed not to generate a floating point exception. The result type of these expressions will always be of integral or boolean type. ! These operations return the result type's zero value for false, and ! the result type's one value for true. ! 'MODIFY_EXPR' These nodes represent assignment. The left-hand side is the first operand; the right-hand side is the second operand. The left-hand ! side will be a 'VAR_DECL', 'INDIRECT_REF', 'COMPONENT_REF', or other lvalue. ! These nodes are used to represent not only assignment with '=' but ! also compound assignments (like '+='), by reduction to '=' ! assignment. In other words, the representation for 'i += 3' looks ! just like that for 'i = i + 3'. ! 'INIT_EXPR' ! These nodes are just like 'MODIFY_EXPR', but are used only when a variable is initialized, rather than assigned to subsequently. ! This means that we can assume that the target of the initialization ! is not used in computing its own value; any reference to the lhs in ! computing the rhs is undefined. ! 'COMPOUND_EXPR' These nodes represent comma-expressions. The first operand is an expression whose value is computed and thrown away prior to the evaluation of the second operand. The value of the entire expression is the value of the second operand. ! 'COND_EXPR' ! These nodes represent '?:' expressions. The first operand is of boolean or integral type. If it evaluates to a nonzero value, the second operand should be evaluated, and returned as the value of the expression. Otherwise, the third operand is evaluated, and *************** File: gccint.info, Node: Unary and Bina *** 12155,12187 **** expression, unless it unconditionally throws an exception or calls a noreturn function, in which case it should have void type. The same constraints apply to the third operand. This allows array ! bounds checks to be represented conveniently as `(i >= 0 && i < ! 10) ? i : abort()'. As a GNU extension, the C language front-ends allow the second ! operand of the `?:' operator may be omitted in the source. For ! example, `x ? : 3' is equivalent to `x ? x : 3', assuming that `x' ! is an expression without side-effects. In the tree ! representation, however, the second operand is always present, ! possibly protected by `SAVE_EXPR' if the first argument does cause ! side-effects. ! `CALL_EXPR' These nodes are used to represent calls to functions, including ! non-static member functions. `CALL_EXPR's are implemented as expression nodes with a variable number of operands. Rather than ! using `TREE_OPERAND' to extract them, it is preferable to use the ! specialized accessor macros and functions that operate ! specifically on `CALL_EXPR' nodes. ! `CALL_EXPR_FN' returns a pointer to the function to call; it is ! always an expression whose type is a `POINTER_TYPE'. The number of arguments to the call is returned by ! `call_expr_nargs', while the arguments themselves can be accessed ! with the `CALL_EXPR_ARG' macro. The arguments are zero-indexed ! and numbered left-to-right. You can iterate over the arguments ! using `FOR_EACH_CALL_EXPR_ARG', as in: tree call, arg; call_expr_arg_iterator iter; --- 11985,12016 ---- expression, unless it unconditionally throws an exception or calls a noreturn function, in which case it should have void type. The same constraints apply to the third operand. This allows array ! bounds checks to be represented conveniently as '(i >= 0 && i < 10) ! ? i : abort()'. As a GNU extension, the C language front-ends allow the second ! operand of the '?:' operator may be omitted in the source. For ! example, 'x ? : 3' is equivalent to 'x ? x : 3', assuming that 'x' ! is an expression without side-effects. In the tree representation, ! however, the second operand is always present, possibly protected ! by 'SAVE_EXPR' if the first argument does cause side-effects. ! 'CALL_EXPR' These nodes are used to represent calls to functions, including ! non-static member functions. 'CALL_EXPR's are implemented as expression nodes with a variable number of operands. Rather than ! using 'TREE_OPERAND' to extract them, it is preferable to use the ! specialized accessor macros and functions that operate specifically ! on 'CALL_EXPR' nodes. ! 'CALL_EXPR_FN' returns a pointer to the function to call; it is ! always an expression whose type is a 'POINTER_TYPE'. The number of arguments to the call is returned by ! 'call_expr_nargs', while the arguments themselves can be accessed ! with the 'CALL_EXPR_ARG' macro. The arguments are zero-indexed and ! numbered left-to-right. You can iterate over the arguments using ! 'FOR_EACH_CALL_EXPR_ARG', as in: tree call, arg; call_expr_arg_iterator iter; *************** File: gccint.info, Node: Unary and Bina *** 12190,12285 **** ...; For non-static member functions, there will be an operand ! corresponding to the `this' pointer. There will always be expressions corresponding to all of the arguments, even if the function is declared with default arguments and some arguments are not explicitly provided at the call sites. ! `CALL_EXPR's also have a `CALL_EXPR_STATIC_CHAIN' operand that is used to implement nested functions. This operand is otherwise null. ! `CLEANUP_POINT_EXPR' These nodes represent full-expressions. The single operand is an expression to evaluate. Any destructor calls engendered by the creation of temporaries during the evaluation of that expression should be performed immediately after the expression is evaluated. ! `CONSTRUCTOR' These nodes represent the brace-enclosed initializers for a structure or array. The first operand is reserved for use by the ! back end. The second operand is a `TREE_LIST'. If the ! `TREE_TYPE' of the `CONSTRUCTOR' is a `RECORD_TYPE' or ! `UNION_TYPE', then the `TREE_PURPOSE' of each node in the ! `TREE_LIST' will be a `FIELD_DECL' and the `TREE_VALUE' of each ! node will be the expression used to initialize that field. ! If the `TREE_TYPE' of the `CONSTRUCTOR' is an `ARRAY_TYPE', then ! the `TREE_PURPOSE' of each element in the `TREE_LIST' will be an ! `INTEGER_CST' or a `RANGE_EXPR' of two `INTEGER_CST's. A single ! `INTEGER_CST' indicates which element of the array (indexed from ! zero) is being assigned to. A `RANGE_EXPR' indicates an inclusive ! range of elements to initialize. In both cases the `TREE_VALUE' ! is the corresponding initializer. It is re-evaluated for each ! element of a `RANGE_EXPR'. If the `TREE_PURPOSE' is `NULL_TREE', ! then the initializer is for the next available array element. In the front end, you should not depend on the fields appearing in any particular order. However, in the middle end, fields must ! appear in declaration order. You should not assume that all ! fields will be represented. Unrepresented fields will be set to ! zero. ! `COMPOUND_LITERAL_EXPR' These nodes represent ISO C99 compound literals. The ! `COMPOUND_LITERAL_EXPR_DECL_EXPR' is a `DECL_EXPR' containing an ! anonymous `VAR_DECL' for the unnamed object represented by the ! compound literal; the `DECL_INITIAL' of that `VAR_DECL' is a ! `CONSTRUCTOR' representing the brace-enclosed list of initializers ! in the compound literal. That anonymous `VAR_DECL' can also be ! accessed directly by the `COMPOUND_LITERAL_EXPR_DECL' macro. ! `SAVE_EXPR' ! A `SAVE_EXPR' represents an expression (possibly involving side-effects) that is used more than once. The side-effects should occur only the first time the expression is evaluated. Subsequent uses should just reuse the computed value. The first operand to ! the `SAVE_EXPR' is the expression to evaluate. The side-effects ! should be executed where the `SAVE_EXPR' is first encountered in a depth-first preorder traversal of the expression tree. ! `TARGET_EXPR' ! A `TARGET_EXPR' represents a temporary object. The first operand ! is a `VAR_DECL' for the temporary variable. The second operand is the initializer for the temporary. The initializer is evaluated and, if non-void, copied (bitwise) into the temporary. If the initializer is void, that means that it will perform the initialization itself. ! Often, a `TARGET_EXPR' occurs on the right-hand side of an assignment, or as the second operand to a comma-expression which is ! itself the right-hand side of an assignment, etc. In this case, ! we say that the `TARGET_EXPR' is "normal"; otherwise, we say it is ! "orphaned". For a normal `TARGET_EXPR' the temporary variable should be treated as an alias for the left-hand side of the assignment, rather than as a new temporary variable. ! The third operand to the `TARGET_EXPR', if present, is a cleanup-expression (i.e., destructor call) for the temporary. If this expression is orphaned, then this expression must be executed when the statement containing this expression is complete. These cleanups must always be executed in the order opposite to that in which they were encountered. Note that if a temporary is created on one branch of a conditional operator (i.e., in the second or ! third operand to a `COND_EXPR'), the cleanup must be run only if that branch is actually executed. ! `VA_ARG_EXPR' This node is used to implement support for the C/C++ variable ! argument-list mechanism. It represents expressions like `va_arg ! (ap, type)'. Its `TREE_TYPE' yields the tree representation for ! `type' and its sole argument yields the representation for `ap'. !  File: gccint.info, Node: Vectors, Prev: Unary and Binary Expressions, Up: Expression trees --- 12019,12113 ---- ...; For non-static member functions, there will be an operand ! corresponding to the 'this' pointer. There will always be expressions corresponding to all of the arguments, even if the function is declared with default arguments and some arguments are not explicitly provided at the call sites. ! 'CALL_EXPR's also have a 'CALL_EXPR_STATIC_CHAIN' operand that is used to implement nested functions. This operand is otherwise null. ! 'CLEANUP_POINT_EXPR' These nodes represent full-expressions. The single operand is an expression to evaluate. Any destructor calls engendered by the creation of temporaries during the evaluation of that expression should be performed immediately after the expression is evaluated. ! 'CONSTRUCTOR' These nodes represent the brace-enclosed initializers for a structure or array. The first operand is reserved for use by the ! back end. The second operand is a 'TREE_LIST'. If the 'TREE_TYPE' ! of the 'CONSTRUCTOR' is a 'RECORD_TYPE' or 'UNION_TYPE', then the ! 'TREE_PURPOSE' of each node in the 'TREE_LIST' will be a ! 'FIELD_DECL' and the 'TREE_VALUE' of each node will be the ! expression used to initialize that field. ! If the 'TREE_TYPE' of the 'CONSTRUCTOR' is an 'ARRAY_TYPE', then ! the 'TREE_PURPOSE' of each element in the 'TREE_LIST' will be an ! 'INTEGER_CST' or a 'RANGE_EXPR' of two 'INTEGER_CST's. A single ! 'INTEGER_CST' indicates which element of the array (indexed from ! zero) is being assigned to. A 'RANGE_EXPR' indicates an inclusive ! range of elements to initialize. In both cases the 'TREE_VALUE' is ! the corresponding initializer. It is re-evaluated for each element ! of a 'RANGE_EXPR'. If the 'TREE_PURPOSE' is 'NULL_TREE', then the ! initializer is for the next available array element. In the front end, you should not depend on the fields appearing in any particular order. However, in the middle end, fields must ! appear in declaration order. You should not assume that all fields ! will be represented. Unrepresented fields will be set to zero. ! 'COMPOUND_LITERAL_EXPR' These nodes represent ISO C99 compound literals. The ! 'COMPOUND_LITERAL_EXPR_DECL_EXPR' is a 'DECL_EXPR' containing an ! anonymous 'VAR_DECL' for the unnamed object represented by the ! compound literal; the 'DECL_INITIAL' of that 'VAR_DECL' is a ! 'CONSTRUCTOR' representing the brace-enclosed list of initializers ! in the compound literal. That anonymous 'VAR_DECL' can also be ! accessed directly by the 'COMPOUND_LITERAL_EXPR_DECL' macro. ! 'SAVE_EXPR' ! ! A 'SAVE_EXPR' represents an expression (possibly involving side-effects) that is used more than once. The side-effects should occur only the first time the expression is evaluated. Subsequent uses should just reuse the computed value. The first operand to ! the 'SAVE_EXPR' is the expression to evaluate. The side-effects ! should be executed where the 'SAVE_EXPR' is first encountered in a depth-first preorder traversal of the expression tree. ! 'TARGET_EXPR' ! A 'TARGET_EXPR' represents a temporary object. The first operand ! is a 'VAR_DECL' for the temporary variable. The second operand is the initializer for the temporary. The initializer is evaluated and, if non-void, copied (bitwise) into the temporary. If the initializer is void, that means that it will perform the initialization itself. ! Often, a 'TARGET_EXPR' occurs on the right-hand side of an assignment, or as the second operand to a comma-expression which is ! itself the right-hand side of an assignment, etc. In this case, we ! say that the 'TARGET_EXPR' is "normal"; otherwise, we say it is ! "orphaned". For a normal 'TARGET_EXPR' the temporary variable should be treated as an alias for the left-hand side of the assignment, rather than as a new temporary variable. ! The third operand to the 'TARGET_EXPR', if present, is a cleanup-expression (i.e., destructor call) for the temporary. If this expression is orphaned, then this expression must be executed when the statement containing this expression is complete. These cleanups must always be executed in the order opposite to that in which they were encountered. Note that if a temporary is created on one branch of a conditional operator (i.e., in the second or ! third operand to a 'COND_EXPR'), the cleanup must be run only if that branch is actually executed. ! 'VA_ARG_EXPR' This node is used to implement support for the C/C++ variable ! argument-list mechanism. It represents expressions like 'va_arg ! (ap, type)'. Its 'TREE_TYPE' yields the tree representation for ! 'type' and its sole argument yields the representation for 'ap'.  File: gccint.info, Node: Vectors, Prev: Unary and Binary Expressions, Up: Expression trees *************** File: gccint.info, Node: Vectors, Prev *** 12287,12294 **** 11.6.4 Vectors -------------- ! `VEC_LSHIFT_EXPR' ! `VEC_RSHIFT_EXPR' These nodes represent whole vector left and right shifts, respectively. The first operand is the vector to shift; it will always be of vector type. The second operand is an expression for --- 12115,12122 ---- 11.6.4 Vectors -------------- ! 'VEC_LSHIFT_EXPR' ! 'VEC_RSHIFT_EXPR' These nodes represent whole vector left and right shifts, respectively. The first operand is the vector to shift; it will always be of vector type. The second operand is an expression for *************** File: gccint.info, Node: Vectors, Prev *** 12296,12348 **** undefined if the second operand is larger than or equal to the first operand's type size. ! `VEC_WIDEN_MULT_HI_EXPR' ! `VEC_WIDEN_MULT_LO_EXPR' These nodes represent widening vector multiplication of the high and low parts of the two input vectors, respectively. Their ! operands are vectors that contain the same number of elements ! (`N') of the same integral type. The result is a vector that ! contains half as many elements, of an integral type whose size is ! twice as wide. In the case of `VEC_WIDEN_MULT_HI_EXPR' the high ! `N/2' elements of the two vector are multiplied to produce the ! vector of `N/2' products. In the case of `VEC_WIDEN_MULT_LO_EXPR' ! the low `N/2' elements of the two vector are multiplied to produce ! the vector of `N/2' products. ! `VEC_UNPACK_HI_EXPR' ! `VEC_UNPACK_LO_EXPR' These nodes represent unpacking of the high and low parts of the input vector, respectively. The single operand is a vector that ! contains `N' elements of the same integral or floating point type. The result is a vector that contains half as many elements, of an integral or floating point type whose size is twice as wide. In ! the case of `VEC_UNPACK_HI_EXPR' the high `N/2' elements of the vector are extracted and widened (promoted). In the case of ! `VEC_UNPACK_LO_EXPR' the low `N/2' elements of the vector are extracted and widened (promoted). ! `VEC_UNPACK_FLOAT_HI_EXPR' ! `VEC_UNPACK_FLOAT_LO_EXPR' These nodes represent unpacking of the high and low parts of the input vector, where the values are converted from fixed point to ! floating point. The single operand is a vector that contains `N' elements of the same integral type. The result is a vector that contains half as many elements of a floating point type whose size ! is twice as wide. In the case of `VEC_UNPACK_HI_EXPR' the high ! `N/2' elements of the vector are extracted, converted and widened. ! In the case of `VEC_UNPACK_LO_EXPR' the low `N/2' elements of the vector are extracted, converted and widened. ! `VEC_PACK_TRUNC_EXPR' ! This node represents packing of truncated elements of the two ! input vectors into the output vector. Input operands are vectors ! that contain the same number of elements of the same integral or ! floating point type. The result is a vector that contains twice ! as many elements of an integral or floating point type whose size ! is half as wide. The elements of the two vectors are demoted and merged (concatenated) to form the output vector. ! `VEC_PACK_SAT_EXPR' This node represents packing of elements of the two input vectors into the output vector using saturation. Input operands are vectors that contain the same number of elements of the same --- 12124,12176 ---- undefined if the second operand is larger than or equal to the first operand's type size. ! 'VEC_WIDEN_MULT_HI_EXPR' ! 'VEC_WIDEN_MULT_LO_EXPR' These nodes represent widening vector multiplication of the high and low parts of the two input vectors, respectively. Their ! operands are vectors that contain the same number of elements ('N') ! of the same integral type. The result is a vector that contains ! half as many elements, of an integral type whose size is twice as ! wide. In the case of 'VEC_WIDEN_MULT_HI_EXPR' the high 'N/2' ! elements of the two vector are multiplied to produce the vector of ! 'N/2' products. In the case of 'VEC_WIDEN_MULT_LO_EXPR' the low ! 'N/2' elements of the two vector are multiplied to produce the ! vector of 'N/2' products. ! 'VEC_UNPACK_HI_EXPR' ! 'VEC_UNPACK_LO_EXPR' These nodes represent unpacking of the high and low parts of the input vector, respectively. The single operand is a vector that ! contains 'N' elements of the same integral or floating point type. The result is a vector that contains half as many elements, of an integral or floating point type whose size is twice as wide. In ! the case of 'VEC_UNPACK_HI_EXPR' the high 'N/2' elements of the vector are extracted and widened (promoted). In the case of ! 'VEC_UNPACK_LO_EXPR' the low 'N/2' elements of the vector are extracted and widened (promoted). ! 'VEC_UNPACK_FLOAT_HI_EXPR' ! 'VEC_UNPACK_FLOAT_LO_EXPR' These nodes represent unpacking of the high and low parts of the input vector, where the values are converted from fixed point to ! floating point. The single operand is a vector that contains 'N' elements of the same integral type. The result is a vector that contains half as many elements of a floating point type whose size ! is twice as wide. In the case of 'VEC_UNPACK_HI_EXPR' the high ! 'N/2' elements of the vector are extracted, converted and widened. ! In the case of 'VEC_UNPACK_LO_EXPR' the low 'N/2' elements of the vector are extracted, converted and widened. ! 'VEC_PACK_TRUNC_EXPR' ! This node represents packing of truncated elements of the two input ! vectors into the output vector. Input operands are vectors that ! contain the same number of elements of the same integral or ! floating point type. The result is a vector that contains twice as ! many elements of an integral or floating point type whose size is ! half as wide. The elements of the two vectors are demoted and merged (concatenated) to form the output vector. ! 'VEC_PACK_SAT_EXPR' This node represents packing of elements of the two input vectors into the output vector using saturation. Input operands are vectors that contain the same number of elements of the same *************** File: gccint.info, Node: Vectors, Prev *** 12351,12357 **** elements of the two vectors are demoted and merged (concatenated) to form the output vector. ! `VEC_PACK_FIX_TRUNC_EXPR' This node represents packing of elements of the two input vectors into the output vector, where the values are converted from floating point to fixed point. Input operands are vectors that --- 12179,12185 ---- elements of the two vectors are demoted and merged (concatenated) to form the output vector. ! 'VEC_PACK_FIX_TRUNC_EXPR' This node represents packing of elements of the two input vectors into the output vector, where the values are converted from floating point to fixed point. Input operands are vectors that *************** File: gccint.info, Node: Vectors, Prev *** 12360,12376 **** integral type whose size is half as wide. The elements of the two vectors are merged (concatenated) to form the output vector. ! `VEC_COND_EXPR' ! These nodes represent `?:' expressions. The three operands must be vectors of the same size and number of elements. The second and third operands must have the same type as the entire expression. ! The first operand is of signed integral vector type. If an ! element of the first operand evaluates to a zero value, the ! corresponding element of the result is taken from the third ! operand. If it evaluates to a minus one value, it is taken from ! the second operand. It should never evaluate to any other value ! currently, but optimizations should not rely on that property. In ! contrast with a `COND_EXPR', all operands are always evaluated.  File: gccint.info, Node: Statements, Next: Functions, Prev: Expression trees, Up: GENERIC --- 12188,12204 ---- integral type whose size is half as wide. The elements of the two vectors are merged (concatenated) to form the output vector. ! 'VEC_COND_EXPR' ! These nodes represent '?:' expressions. The three operands must be vectors of the same size and number of elements. The second and third operands must have the same type as the entire expression. ! The first operand is of signed integral vector type. If an element ! of the first operand evaluates to a zero value, the corresponding ! element of the result is taken from the third operand. If it ! evaluates to a minus one value, it is taken from the second ! operand. It should never evaluate to any other value currently, ! but optimizations should not rely on that property. In contrast ! with a 'COND_EXPR', all operands are always evaluated.  File: gccint.info, Node: Statements, Next: Functions, Prev: Expression trees, Up: GENERIC *************** File: gccint.info, Node: Statements, N *** 12379,12386 **** =============== Most statements in GIMPLE are assignment statements, represented by ! `GIMPLE_ASSIGN'. No other C expressions can appear at statement level; ! a reference to a volatile object is converted into a `GIMPLE_ASSIGN'. There are also several varieties of complex statements. --- 12207,12214 ---- =============== Most statements in GIMPLE are assignment statements, represented by ! 'GIMPLE_ASSIGN'. No other C expressions can appear at statement level; ! a reference to a volatile object is converted into a 'GIMPLE_ASSIGN'. There are also several varieties of complex statements. *************** File: gccint.info, Node: Basic Statemen *** 12400,12495 **** 11.7.1 Basic Statements ----------------------- ! `ASM_EXPR' Used to represent an inline assembly statement. For an inline assembly statement like: asm ("mov x, y"); ! The `ASM_STRING' macro will return a `STRING_CST' node for `"mov ! x, y"'. If the original statement made use of the ! extended-assembly syntax, then `ASM_OUTPUTS', `ASM_INPUTS', and ! `ASM_CLOBBERS' will be the outputs, inputs, and clobbers for the ! statement, represented as `STRING_CST' nodes. The ! extended-assembly syntax looks like: asm ("fsinx %1,%0" : "=f" (result) : "f" (angle)); ! The first string is the `ASM_STRING', containing the instruction template. The next two strings are the output and inputs, respectively; this statement has no clobbers. As this example ! indicates, "plain" assembly statements are merely a special case ! of extended assembly statements; they have no cv-qualifiers, ! outputs, inputs, or clobbers. All of the strings will be ! `NUL'-terminated, and will contain no embedded `NUL'-characters. ! If the assembly statement is declared `volatile', or if the statement was not an extended assembly statement, and is therefore ! implicitly volatile, then the predicate `ASM_VOLATILE_P' will hold ! of the `ASM_EXPR'. ! `DECL_EXPR' ! Used to represent a local declaration. The `DECL_EXPR_DECL' macro ! can be used to obtain the entity declared. This declaration may ! be a `LABEL_DECL', indicating that the label declared is a local ! label. (As an extension, GCC allows the declaration of labels ! with scope.) In C, this declaration may be a `FUNCTION_DECL', indicating the use of the GCC nested function extension. For more information, *note Functions::. ! `LABEL_EXPR' ! Used to represent a label. The `LABEL_DECL' declared by this ! statement can be obtained with the `LABEL_EXPR_LABEL' macro. The ! `IDENTIFIER_NODE' giving the name of the label can be obtained from ! the `LABEL_DECL' with `DECL_NAME'. ! `GOTO_EXPR' ! Used to represent a `goto' statement. The `GOTO_DESTINATION' will ! usually be a `LABEL_DECL'. However, if the "computed goto" ! extension has been used, the `GOTO_DESTINATION' will be an arbitrary expression indicating the destination. This expression will always have pointer type. ! `RETURN_EXPR' ! Used to represent a `return' statement. Operand 0 represents the ! value to return. It should either be the `RESULT_DECL' for the ! containing function, or a `MODIFY_EXPR' or `INIT_EXPR' setting the ! function's `RESULT_DECL'. It will be `NULL_TREE' if the statement was just return; ! `LOOP_EXPR' ! These nodes represent "infinite" loops. The `LOOP_EXPR_BODY' represents the body of the loop. It should be executed forever, ! unless an `EXIT_EXPR' is encountered. ! `EXIT_EXPR' These nodes represent conditional exits from the nearest enclosing ! `LOOP_EXPR'. The single operand is the condition; if it is ! nonzero, then the loop should be exited. An `EXIT_EXPR' will only ! appear within a `LOOP_EXPR'. ! `SWITCH_STMT' ! Used to represent a `switch' statement. The `SWITCH_STMT_COND' is the expression on which the switch is occurring. See the ! documentation for an `IF_STMT' for more information on the ! representation used for the condition. The `SWITCH_STMT_BODY' is ! the body of the switch statement. The `SWITCH_STMT_TYPE' is the original type of switch expression as given in the source, before any compiler conversions. ! `CASE_LABEL_EXPR' ! Use to represent a `case' label, range of `case' labels, or a ! `default' label. If `CASE_LOW' is `NULL_TREE', then this is a ! `default' label. Otherwise, if `CASE_HIGH' is `NULL_TREE', then ! this is an ordinary `case' label. In this case, `CASE_LOW' is an ! expression giving the value of the label. Both `CASE_LOW' and ! `CASE_HIGH' are `INTEGER_CST' nodes. These values will have the same type as the condition expression in the switch statement. ! Otherwise, if both `CASE_LOW' and `CASE_HIGH' are defined, the statement is a range of case labels. Such statements originate with the extension that allows users to write things of the form: case 2 ... 5: ! The first value will be `CASE_LOW', while the second will be ! `CASE_HIGH'. !  File: gccint.info, Node: Blocks, Next: Statement Sequences, Prev: Basic Statements, Up: Statements --- 12228,12328 ---- 11.7.1 Basic Statements ----------------------- ! 'ASM_EXPR' ! Used to represent an inline assembly statement. For an inline assembly statement like: asm ("mov x, y"); ! The 'ASM_STRING' macro will return a 'STRING_CST' node for '"mov x, ! y"'. If the original statement made use of the extended-assembly ! syntax, then 'ASM_OUTPUTS', 'ASM_INPUTS', and 'ASM_CLOBBERS' will ! be the outputs, inputs, and clobbers for the statement, represented ! as 'STRING_CST' nodes. The extended-assembly syntax looks like: asm ("fsinx %1,%0" : "=f" (result) : "f" (angle)); ! The first string is the 'ASM_STRING', containing the instruction template. The next two strings are the output and inputs, respectively; this statement has no clobbers. As this example ! indicates, "plain" assembly statements are merely a special case of ! extended assembly statements; they have no cv-qualifiers, outputs, ! inputs, or clobbers. All of the strings will be 'NUL'-terminated, ! and will contain no embedded 'NUL'-characters. ! If the assembly statement is declared 'volatile', or if the statement was not an extended assembly statement, and is therefore ! implicitly volatile, then the predicate 'ASM_VOLATILE_P' will hold ! of the 'ASM_EXPR'. ! 'DECL_EXPR' ! ! Used to represent a local declaration. The 'DECL_EXPR_DECL' macro ! can be used to obtain the entity declared. This declaration may be ! a 'LABEL_DECL', indicating that the label declared is a local ! label. (As an extension, GCC allows the declaration of labels with ! scope.) In C, this declaration may be a 'FUNCTION_DECL', indicating the use of the GCC nested function extension. For more information, *note Functions::. ! 'LABEL_EXPR' ! Used to represent a label. The 'LABEL_DECL' declared by this ! statement can be obtained with the 'LABEL_EXPR_LABEL' macro. The ! 'IDENTIFIER_NODE' giving the name of the label can be obtained from ! the 'LABEL_DECL' with 'DECL_NAME'. ! ! 'GOTO_EXPR' ! ! Used to represent a 'goto' statement. The 'GOTO_DESTINATION' will ! usually be a 'LABEL_DECL'. However, if the "computed goto" ! extension has been used, the 'GOTO_DESTINATION' will be an arbitrary expression indicating the destination. This expression will always have pointer type. ! 'RETURN_EXPR' ! ! Used to represent a 'return' statement. Operand 0 represents the ! value to return. It should either be the 'RESULT_DECL' for the ! containing function, or a 'MODIFY_EXPR' or 'INIT_EXPR' setting the ! function's 'RESULT_DECL'. It will be 'NULL_TREE' if the statement was just return; ! 'LOOP_EXPR' ! These nodes represent "infinite" loops. The 'LOOP_EXPR_BODY' represents the body of the loop. It should be executed forever, ! unless an 'EXIT_EXPR' is encountered. ! 'EXIT_EXPR' These nodes represent conditional exits from the nearest enclosing ! 'LOOP_EXPR'. The single operand is the condition; if it is ! nonzero, then the loop should be exited. An 'EXIT_EXPR' will only ! appear within a 'LOOP_EXPR'. ! 'SWITCH_STMT' ! ! Used to represent a 'switch' statement. The 'SWITCH_STMT_COND' is the expression on which the switch is occurring. See the ! documentation for an 'IF_STMT' for more information on the ! representation used for the condition. The 'SWITCH_STMT_BODY' is ! the body of the switch statement. The 'SWITCH_STMT_TYPE' is the original type of switch expression as given in the source, before any compiler conversions. ! 'CASE_LABEL_EXPR' ! ! Use to represent a 'case' label, range of 'case' labels, or a ! 'default' label. If 'CASE_LOW' is 'NULL_TREE', then this is a ! 'default' label. Otherwise, if 'CASE_HIGH' is 'NULL_TREE', then ! this is an ordinary 'case' label. In this case, 'CASE_LOW' is an ! expression giving the value of the label. Both 'CASE_LOW' and ! 'CASE_HIGH' are 'INTEGER_CST' nodes. These values will have the same type as the condition expression in the switch statement. ! Otherwise, if both 'CASE_LOW' and 'CASE_HIGH' are defined, the statement is a range of case labels. Such statements originate with the extension that allows users to write things of the form: case 2 ... 5: ! The first value will be 'CASE_LOW', while the second will be ! 'CASE_HIGH'.  File: gccint.info, Node: Blocks, Next: Statement Sequences, Prev: Basic Statements, Up: Statements *************** File: gccint.info, Node: Blocks, Next: *** 12498,12524 **** ------------- Block scopes and the variables they declare in GENERIC are expressed ! using the `BIND_EXPR' code, which in previous versions of GCC was primarily used for the C statement-expression extension. ! Variables in a block are collected into `BIND_EXPR_VARS' in ! declaration order through their `TREE_CHAIN' field. Any runtime ! initialization is moved out of `DECL_INITIAL' and into a statement in ! the controlled block. When gimplifying from C or C++, this ! initialization replaces the `DECL_STMT'. These variables will never ! require cleanups. The scope of these variables is just the body Variable-length arrays (VLAs) complicate this process, as their size often refers to variables initialized earlier in the block. To handle this, we currently split the block at that point, and move the VLA into ! a new, inner `BIND_EXPR'. This strategy may change in the future. ! A C++ program will usually contain more `BIND_EXPR's than there are syntactic blocks in the source code, since several C++ constructs have implicit scopes associated with them. On the other hand, although the C++ front end uses pseudo-scopes to handle cleanups for objects with destructors, these don't translate into the GIMPLE form; multiple ! declarations at the same level use the same `BIND_EXPR'.  File: gccint.info, Node: Statement Sequences, Next: Empty Statements, Prev: Blocks, Up: Statements --- 12331,12357 ---- ------------- Block scopes and the variables they declare in GENERIC are expressed ! using the 'BIND_EXPR' code, which in previous versions of GCC was primarily used for the C statement-expression extension. ! Variables in a block are collected into 'BIND_EXPR_VARS' in declaration ! order through their 'TREE_CHAIN' field. Any runtime initialization is ! moved out of 'DECL_INITIAL' and into a statement in the controlled ! block. When gimplifying from C or C++, this initialization replaces the ! 'DECL_STMT'. These variables will never require cleanups. The scope of ! these variables is just the body Variable-length arrays (VLAs) complicate this process, as their size often refers to variables initialized earlier in the block. To handle this, we currently split the block at that point, and move the VLA into ! a new, inner 'BIND_EXPR'. This strategy may change in the future. ! A C++ program will usually contain more 'BIND_EXPR's than there are syntactic blocks in the source code, since several C++ constructs have implicit scopes associated with them. On the other hand, although the C++ front end uses pseudo-scopes to handle cleanups for objects with destructors, these don't translate into the GIMPLE form; multiple ! declarations at the same level use the same 'BIND_EXPR'.  File: gccint.info, Node: Statement Sequences, Next: Empty Statements, Prev: Blocks, Up: Statements *************** File: gccint.info, Node: Statement Sequ *** 12527,12534 **** -------------------------- Multiple statements at the same nesting level are collected into a ! `STATEMENT_LIST'. Statement lists are modified and traversed using the ! interface in `tree-iterator.h'.  File: gccint.info, Node: Empty Statements, Next: Jumps, Prev: Statement Sequences, Up: Statements --- 12360,12367 ---- -------------------------- Multiple statements at the same nesting level are collected into a ! 'STATEMENT_LIST'. Statement lists are modified and traversed using the ! interface in 'tree-iterator.h'.  File: gccint.info, Node: Empty Statements, Next: Jumps, Prev: Statement Sequences, Up: Statements *************** File: gccint.info, Node: Empty Statemen *** 12536,12549 **** 11.7.4 Empty Statements ----------------------- ! Whenever possible, statements with no effect are discarded. But if ! they are nested within another construct which cannot be discarded for ! some reason, they are instead replaced with an empty statement, ! generated by `build_empty_stmt'. Initially, all empty statements were ! shared, after the pattern of the Java front end, but this caused a lot ! of trouble in practice. ! An empty statement is represented as `(void)0'.  File: gccint.info, Node: Jumps, Next: Cleanups, Prev: Empty Statements, Up: Statements --- 12369,12382 ---- 11.7.4 Empty Statements ----------------------- ! Whenever possible, statements with no effect are discarded. But if they ! are nested within another construct which cannot be discarded for some ! reason, they are instead replaced with an empty statement, generated by ! 'build_empty_stmt'. Initially, all empty statements were shared, after ! the pattern of the Java front end, but this caused a lot of trouble in ! practice. ! An empty statement is represented as '(void)0'.  File: gccint.info, Node: Jumps, Next: Cleanups, Prev: Empty Statements, Up: Statements *************** File: gccint.info, Node: Jumps, Next: *** 12551,12567 **** 11.7.5 Jumps ------------ ! Other jumps are expressed by either `GOTO_EXPR' or `RETURN_EXPR'. ! The operand of a `GOTO_EXPR' must be either a label or a variable containing the address to jump to. ! The operand of a `RETURN_EXPR' is either `NULL_TREE', `RESULT_DECL', ! or a `MODIFY_EXPR' which sets the return value. It would be nice to ! move the `MODIFY_EXPR' into a separate statement, but the special ! return semantics in `expand_return' make that difficult. It may still ! happen in the future, perhaps by moving most of that logic into ! `expand_assignment'.  File: gccint.info, Node: Cleanups, Next: OpenMP, Prev: Jumps, Up: Statements --- 12384,12400 ---- 11.7.5 Jumps ------------ ! Other jumps are expressed by either 'GOTO_EXPR' or 'RETURN_EXPR'. ! The operand of a 'GOTO_EXPR' must be either a label or a variable containing the address to jump to. ! The operand of a 'RETURN_EXPR' is either 'NULL_TREE', 'RESULT_DECL', or ! a 'MODIFY_EXPR' which sets the return value. It would be nice to move ! the 'MODIFY_EXPR' into a separate statement, but the special return ! semantics in 'expand_return' make that difficult. It may still happen ! in the future, perhaps by moving most of that logic into ! 'expand_assignment'.  File: gccint.info, Node: Cleanups, Next: OpenMP, Prev: Jumps, Up: Statements *************** File: gccint.info, Node: Cleanups, Nex *** 12570,12576 **** --------------- Destructors for local C++ objects and similar dynamic cleanups are ! represented in GIMPLE by a `TRY_FINALLY_EXPR'. `TRY_FINALLY_EXPR' has two operands, both of which are a sequence of statements to execute. The first sequence is executed. When it completes the second sequence is executed. --- 12403,12409 ---- --------------- Destructors for local C++ objects and similar dynamic cleanups are ! represented in GIMPLE by a 'TRY_FINALLY_EXPR'. 'TRY_FINALLY_EXPR' has two operands, both of which are a sequence of statements to execute. The first sequence is executed. When it completes the second sequence is executed. *************** is executed. *** 12579,12610 **** 1. Execute the last statement in the sequence and fall off the end. ! 2. Execute a goto statement (`GOTO_EXPR') to an ordinary label ! outside the sequence. ! 3. Execute a return statement (`RETURN_EXPR'). 4. Throw an exception. This is currently not explicitly represented in GIMPLE. - The second sequence is not executed if the first sequence completes by ! calling `setjmp' or `exit' or any other function that does not return. ! The second sequence is also not executed if the first sequence ! completes via a non-local goto or a computed goto (in general the ! compiler does not know whether such a goto statement exits the first ! sequence or not, so we assume that it doesn't). After the second sequence is executed, if it completes normally by falling off the end, execution continues wherever the first sequence would have continued, by falling off the end, or doing a goto, etc. ! `TRY_FINALLY_EXPR' complicates the flow graph, since the cleanup needs to appear on every edge out of the controlled block; this reduces the freedom to move code across these edges. Therefore, the EH lowering pass which runs before most of the optimization passes eliminates these expressions by explicitly adding the cleanup to each edge. Rethrowing ! the exception is represented using `RESX_EXPR'.  File: gccint.info, Node: OpenMP, Prev: Cleanups, Up: Statements --- 12412,12442 ---- 1. Execute the last statement in the sequence and fall off the end. ! 2. Execute a goto statement ('GOTO_EXPR') to an ordinary label outside ! the sequence. ! 3. Execute a return statement ('RETURN_EXPR'). 4. Throw an exception. This is currently not explicitly represented in GIMPLE. The second sequence is not executed if the first sequence completes by ! calling 'setjmp' or 'exit' or any other function that does not return. ! The second sequence is also not executed if the first sequence completes ! via a non-local goto or a computed goto (in general the compiler does ! not know whether such a goto statement exits the first sequence or not, ! so we assume that it doesn't). After the second sequence is executed, if it completes normally by falling off the end, execution continues wherever the first sequence would have continued, by falling off the end, or doing a goto, etc. ! 'TRY_FINALLY_EXPR' complicates the flow graph, since the cleanup needs to appear on every edge out of the controlled block; this reduces the freedom to move code across these edges. Therefore, the EH lowering pass which runs before most of the optimization passes eliminates these expressions by explicitly adding the cleanup to each edge. Rethrowing ! the exception is represented using 'RESX_EXPR'.  File: gccint.info, Node: OpenMP, Prev: Cleanups, Up: Statements *************** File: gccint.info, Node: OpenMP, Prev: *** 12612,12734 **** 11.7.7 OpenMP ------------- ! All the statements starting with `OMP_' represent directives and ! clauses used by the OpenMP API `http://www.openmp.org/'. ! `OMP_PARALLEL' ! Represents `#pragma omp parallel [clause1 ... clauseN]'. It has four operands: ! Operand `OMP_PARALLEL_BODY' is valid while in GENERIC and High GIMPLE forms. It contains the body of code to be executed by all ! the threads. During GIMPLE lowering, this operand becomes `NULL' ! and the body is emitted linearly after `OMP_PARALLEL'. ! Operand `OMP_PARALLEL_CLAUSES' is the list of clauses associated with the directive. ! Operand `OMP_PARALLEL_FN' is created by `pass_lower_omp', it ! contains the `FUNCTION_DECL' for the function that will contain ! the body of the parallel region. ! Operand `OMP_PARALLEL_DATA_ARG' is also created by ! `pass_lower_omp'. If there are shared variables to be communicated ! to the children threads, this operand will contain the `VAR_DECL' that contains all the shared values and variables. ! `OMP_FOR' ! Represents `#pragma omp for [clause1 ... clauseN]'. It has 5 operands: ! Operand `OMP_FOR_BODY' contains the loop body. ! Operand `OMP_FOR_CLAUSES' is the list of clauses associated with the directive. ! Operand `OMP_FOR_INIT' is the loop initialization code of the form ! `VAR = N1'. ! Operand `OMP_FOR_COND' is the loop conditional expression of the ! form `VAR {<,>,<=,>=} N2'. ! Operand `OMP_FOR_INCR' is the loop index increment of the form ! `VAR {+=,-=} INCR'. ! Operand `OMP_FOR_PRE_BODY' contains side-effect code from operands ! `OMP_FOR_INIT', `OMP_FOR_COND' and `OMP_FOR_INC'. These ! side-effects are part of the `OMP_FOR' block but must be evaluated before the start of loop body. ! The loop index variable `VAR' must be a signed integer variable, ! which is implicitly private to each thread. Bounds `N1' and `N2' ! and the increment expression `INCR' are required to be loop invariant integer expressions that are evaluated without any ! synchronization. The evaluation order, frequency of evaluation and side-effects are unspecified by the standard. ! `OMP_SECTIONS' ! Represents `#pragma omp sections [clause1 ... clauseN]'. ! Operand `OMP_SECTIONS_BODY' contains the sections body, which in ! turn contains a set of `OMP_SECTION' nodes for each of the ! concurrent sections delimited by `#pragma omp section'. ! Operand `OMP_SECTIONS_CLAUSES' is the list of clauses associated with the directive. ! `OMP_SECTION' ! Section delimiter for `OMP_SECTIONS'. ! `OMP_SINGLE' ! Represents `#pragma omp single'. ! Operand `OMP_SINGLE_BODY' contains the body of code to be executed by a single thread. ! Operand `OMP_SINGLE_CLAUSES' is the list of clauses associated ! with the directive. ! `OMP_MASTER' ! Represents `#pragma omp master'. ! Operand `OMP_MASTER_BODY' contains the body of code to be executed by the master thread. ! `OMP_ORDERED' ! Represents `#pragma omp ordered'. ! Operand `OMP_ORDERED_BODY' contains the body of code to be ! executed in the sequential order dictated by the loop index ! variable. ! `OMP_CRITICAL' ! Represents `#pragma omp critical [name]'. ! Operand `OMP_CRITICAL_BODY' is the critical section. ! Operand `OMP_CRITICAL_NAME' is an optional identifier to label the critical section. ! `OMP_RETURN' This does not represent any OpenMP directive, it is an artificial ! marker to indicate the end of the body of an OpenMP. It is used by ! the flow graph (`tree-cfg.c') and OpenMP region building code ! (`omp-low.c'). ! `OMP_CONTINUE' ! Similarly, this instruction does not represent an OpenMP ! directive, it is used by `OMP_FOR' and `OMP_SECTIONS' to mark the ! place where the code needs to loop to the next iteration (in the ! case of `OMP_FOR') or the next section (in the case of ! `OMP_SECTIONS'). ! In some cases, `OMP_CONTINUE' is placed right before `OMP_RETURN'. But if there are cleanups that need to occur right after the ! looping body, it will be emitted between `OMP_CONTINUE' and ! `OMP_RETURN'. ! `OMP_ATOMIC' ! Represents `#pragma omp atomic'. Operand 0 is the address at which the atomic operation is to be performed. --- 12444,12575 ---- 11.7.7 OpenMP ------------- ! All the statements starting with 'OMP_' represent directives and clauses ! used by the OpenMP API . ! 'OMP_PARALLEL' ! ! Represents '#pragma omp parallel [clause1 ... clauseN]'. It has four operands: ! Operand 'OMP_PARALLEL_BODY' is valid while in GENERIC and High GIMPLE forms. It contains the body of code to be executed by all ! the threads. During GIMPLE lowering, this operand becomes 'NULL' ! and the body is emitted linearly after 'OMP_PARALLEL'. ! Operand 'OMP_PARALLEL_CLAUSES' is the list of clauses associated with the directive. ! Operand 'OMP_PARALLEL_FN' is created by 'pass_lower_omp', it ! contains the 'FUNCTION_DECL' for the function that will contain the ! body of the parallel region. ! Operand 'OMP_PARALLEL_DATA_ARG' is also created by ! 'pass_lower_omp'. If there are shared variables to be communicated ! to the children threads, this operand will contain the 'VAR_DECL' that contains all the shared values and variables. ! 'OMP_FOR' ! ! Represents '#pragma omp for [clause1 ... clauseN]'. It has 5 operands: ! Operand 'OMP_FOR_BODY' contains the loop body. ! Operand 'OMP_FOR_CLAUSES' is the list of clauses associated with the directive. ! Operand 'OMP_FOR_INIT' is the loop initialization code of the form ! 'VAR = N1'. ! Operand 'OMP_FOR_COND' is the loop conditional expression of the ! form 'VAR {<,>,<=,>=} N2'. ! Operand 'OMP_FOR_INCR' is the loop index increment of the form 'VAR ! {+=,-=} INCR'. ! Operand 'OMP_FOR_PRE_BODY' contains side-effect code from operands ! 'OMP_FOR_INIT', 'OMP_FOR_COND' and 'OMP_FOR_INC'. These ! side-effects are part of the 'OMP_FOR' block but must be evaluated before the start of loop body. ! The loop index variable 'VAR' must be a signed integer variable, ! which is implicitly private to each thread. Bounds 'N1' and 'N2' ! and the increment expression 'INCR' are required to be loop invariant integer expressions that are evaluated without any ! synchronization. The evaluation order, frequency of evaluation and side-effects are unspecified by the standard. ! 'OMP_SECTIONS' ! Represents '#pragma omp sections [clause1 ... clauseN]'. ! Operand 'OMP_SECTIONS_BODY' contains the sections body, which in ! turn contains a set of 'OMP_SECTION' nodes for each of the ! concurrent sections delimited by '#pragma omp section'. ! ! Operand 'OMP_SECTIONS_CLAUSES' is the list of clauses associated with the directive. ! 'OMP_SECTION' ! Section delimiter for 'OMP_SECTIONS'. ! 'OMP_SINGLE' ! ! Represents '#pragma omp single'. ! ! Operand 'OMP_SINGLE_BODY' contains the body of code to be executed by a single thread. ! Operand 'OMP_SINGLE_CLAUSES' is the list of clauses associated with ! the directive. ! 'OMP_MASTER' ! Represents '#pragma omp master'. ! ! Operand 'OMP_MASTER_BODY' contains the body of code to be executed by the master thread. ! 'OMP_ORDERED' ! Represents '#pragma omp ordered'. ! Operand 'OMP_ORDERED_BODY' contains the body of code to be executed ! in the sequential order dictated by the loop index variable. ! 'OMP_CRITICAL' ! Represents '#pragma omp critical [name]'. ! ! Operand 'OMP_CRITICAL_BODY' is the critical section. ! ! Operand 'OMP_CRITICAL_NAME' is an optional identifier to label the critical section. ! 'OMP_RETURN' ! This does not represent any OpenMP directive, it is an artificial ! marker to indicate the end of the body of an OpenMP. It is used by ! the flow graph ('tree-cfg.c') and OpenMP region building code ! ('omp-low.c'). ! 'OMP_CONTINUE' ! Similarly, this instruction does not represent an OpenMP directive, ! it is used by 'OMP_FOR' and 'OMP_SECTIONS' to mark the place where ! the code needs to loop to the next iteration (in the case of ! 'OMP_FOR') or the next section (in the case of 'OMP_SECTIONS'). ! ! In some cases, 'OMP_CONTINUE' is placed right before 'OMP_RETURN'. But if there are cleanups that need to occur right after the ! looping body, it will be emitted between 'OMP_CONTINUE' and ! 'OMP_RETURN'. ! 'OMP_ATOMIC' ! ! Represents '#pragma omp atomic'. Operand 0 is the address at which the atomic operation is to be performed. *************** clauses used by the OpenMP API `http://w *** 12739,12764 **** compare-and-swap loop is attempted. If that also fails, a regular critical section around the expression is used. ! `OMP_CLAUSE' ! Represents clauses associated with one of the `OMP_' directives. ! Clauses are represented by separate sub-codes defined in `tree.h'. ! Clauses codes can be one of: `OMP_CLAUSE_PRIVATE', ! `OMP_CLAUSE_SHARED', `OMP_CLAUSE_FIRSTPRIVATE', ! `OMP_CLAUSE_LASTPRIVATE', `OMP_CLAUSE_COPYIN', ! `OMP_CLAUSE_COPYPRIVATE', `OMP_CLAUSE_IF', ! `OMP_CLAUSE_NUM_THREADS', `OMP_CLAUSE_SCHEDULE', ! `OMP_CLAUSE_NOWAIT', `OMP_CLAUSE_ORDERED', `OMP_CLAUSE_DEFAULT', ! `OMP_CLAUSE_REDUCTION', `OMP_CLAUSE_COLLAPSE', `OMP_CLAUSE_UNTIED', ! `OMP_CLAUSE_FINAL', and `OMP_CLAUSE_MERGEABLE'. Each code ! represents the corresponding OpenMP clause. ! Clauses associated with the same directive are chained together ! via `OMP_CLAUSE_CHAIN'. Those clauses that accept a list of ! variables are restricted to exactly one, accessed with ! `OMP_CLAUSE_VAR'. Therefore, multiple variables under the same ! clause `C' need to be represented as multiple `C' clauses chained ! together. This facilitates adding new clauses during compilation.  File: gccint.info, Node: Functions, Next: Language-dependent trees, Prev: Statements, Up: GENERIC --- 12580,12605 ---- compare-and-swap loop is attempted. If that also fails, a regular critical section around the expression is used. ! 'OMP_CLAUSE' ! Represents clauses associated with one of the 'OMP_' directives. ! Clauses are represented by separate sub-codes defined in 'tree.h'. ! Clauses codes can be one of: 'OMP_CLAUSE_PRIVATE', ! 'OMP_CLAUSE_SHARED', 'OMP_CLAUSE_FIRSTPRIVATE', ! 'OMP_CLAUSE_LASTPRIVATE', 'OMP_CLAUSE_COPYIN', ! 'OMP_CLAUSE_COPYPRIVATE', 'OMP_CLAUSE_IF', ! 'OMP_CLAUSE_NUM_THREADS', 'OMP_CLAUSE_SCHEDULE', ! 'OMP_CLAUSE_NOWAIT', 'OMP_CLAUSE_ORDERED', 'OMP_CLAUSE_DEFAULT', ! 'OMP_CLAUSE_REDUCTION', 'OMP_CLAUSE_COLLAPSE', 'OMP_CLAUSE_UNTIED', ! 'OMP_CLAUSE_FINAL', and 'OMP_CLAUSE_MERGEABLE'. Each code ! represents the corresponding OpenMP clause. + Clauses associated with the same directive are chained together via + 'OMP_CLAUSE_CHAIN'. Those clauses that accept a list of variables + are restricted to exactly one, accessed with 'OMP_CLAUSE_VAR'. + Therefore, multiple variables under the same clause 'C' need to be + represented as multiple 'C' clauses chained together. This + facilitates adding new clauses during compilation.  File: gccint.info, Node: Functions, Next: Language-dependent trees, Prev: Statements, Up: GENERIC *************** File: gccint.info, Node: Functions, Ne *** 12766,12772 **** 11.8 Functions ============== ! A function is represented by a `FUNCTION_DECL' node. It stores the basic pieces of the function such as body, parameters, and return type as well as information on the surrounding context, visibility, and linkage. --- 12607,12613 ---- 11.8 Functions ============== ! A function is represented by a 'FUNCTION_DECL' node. It stores the basic pieces of the function such as body, parameters, and return type as well as information on the surrounding context, visibility, and linkage. *************** File: gccint.info, Node: Function Basic *** 12784,12843 **** A function has four core parts: the name, the parameters, the result, and the body. The following macros and functions access these parts of ! a `FUNCTION_DECL' as well as other basic features: ! `DECL_NAME' This macro returns the unqualified name of the function, as an ! `IDENTIFIER_NODE'. For an instantiation of a function template, ! the `DECL_NAME' is the unqualified name of the template, not ! something like `f'. The value of `DECL_NAME' is undefined when used on a constructor, destructor, overloaded operator, or type-conversion operator, or any function that is implicitly generated by the compiler. See below for macros that can be used to distinguish these cases. ! `DECL_ASSEMBLER_NAME' This macro returns the mangled name of the function, also an ! `IDENTIFIER_NODE'. This name does not contain leading underscores on systems that prefix all identifiers with underscores. The mangled name is computed in the same way on all platforms; if special processing is required to deal with the object file format ! used on a particular platform, it is the responsibility of the ! back end to perform those modifications. (Of course, the back end ! should not modify `DECL_ASSEMBLER_NAME' itself.) ! Using `DECL_ASSEMBLER_NAME' will cause additional memory to be allocated (for the mangled name of the entity) so it should be used only when emitting assembly code. It should not be used within the optimizers to determine whether or not two declarations are the ! same, even though some of the existing optimizers do use it in ! that way. These uses will be removed over time. ! `DECL_ARGUMENTS' ! This macro returns the `PARM_DECL' for the first argument to the ! function. Subsequent `PARM_DECL' nodes can be obtained by ! following the `TREE_CHAIN' links. ! `DECL_RESULT' ! This macro returns the `RESULT_DECL' for the function. ! `DECL_SAVED_TREE' This macro returns the complete body of the function. ! `TREE_TYPE' ! This macro returns the `FUNCTION_TYPE' or `METHOD_TYPE' for the function. ! `DECL_INITIAL' A function that has a definition in the current translation unit ! will have a non-`NULL' `DECL_INITIAL'. However, back ends should ! not make use of the particular value given by `DECL_INITIAL'. ! It should contain a tree of `BLOCK' nodes that mirrors the scopes that variables are bound in the function. Each block contains a list of decls declared in a basic block, a pointer to a chain of blocks at the next lower scope level, then a pointer to the next ! block at the same level and a backpointer to the parent `BLOCK' or ! `FUNCTION_DECL'. So given a function as follows: void foo() { --- 12625,12684 ---- A function has four core parts: the name, the parameters, the result, and the body. The following macros and functions access these parts of ! a 'FUNCTION_DECL' as well as other basic features: ! 'DECL_NAME' This macro returns the unqualified name of the function, as an ! 'IDENTIFIER_NODE'. For an instantiation of a function template, ! the 'DECL_NAME' is the unqualified name of the template, not ! something like 'f'. The value of 'DECL_NAME' is undefined when used on a constructor, destructor, overloaded operator, or type-conversion operator, or any function that is implicitly generated by the compiler. See below for macros that can be used to distinguish these cases. ! 'DECL_ASSEMBLER_NAME' This macro returns the mangled name of the function, also an ! 'IDENTIFIER_NODE'. This name does not contain leading underscores on systems that prefix all identifiers with underscores. The mangled name is computed in the same way on all platforms; if special processing is required to deal with the object file format ! used on a particular platform, it is the responsibility of the back ! end to perform those modifications. (Of course, the back end ! should not modify 'DECL_ASSEMBLER_NAME' itself.) ! Using 'DECL_ASSEMBLER_NAME' will cause additional memory to be allocated (for the mangled name of the entity) so it should be used only when emitting assembly code. It should not be used within the optimizers to determine whether or not two declarations are the ! same, even though some of the existing optimizers do use it in that ! way. These uses will be removed over time. ! 'DECL_ARGUMENTS' ! This macro returns the 'PARM_DECL' for the first argument to the ! function. Subsequent 'PARM_DECL' nodes can be obtained by ! following the 'TREE_CHAIN' links. ! 'DECL_RESULT' ! This macro returns the 'RESULT_DECL' for the function. ! 'DECL_SAVED_TREE' This macro returns the complete body of the function. ! 'TREE_TYPE' ! This macro returns the 'FUNCTION_TYPE' or 'METHOD_TYPE' for the function. ! 'DECL_INITIAL' A function that has a definition in the current translation unit ! will have a non-'NULL' 'DECL_INITIAL'. However, back ends should ! not make use of the particular value given by 'DECL_INITIAL'. ! It should contain a tree of 'BLOCK' nodes that mirrors the scopes that variables are bound in the function. Each block contains a list of decls declared in a basic block, a pointer to a chain of blocks at the next lower scope level, then a pointer to the next ! block at the same level and a backpointer to the parent 'BLOCK' or ! 'FUNCTION_DECL'. So given a function as follows: void foo() { *************** a `FUNCTION_DECL' as well as other basic *** 12867,12921 **** BLOCK_SUPERCONTEXT(block_c) = foo; DECL_INITIAL(foo) = block_a; -  File: gccint.info, Node: Function Properties, Prev: Function Basics, Up: Functions 11.8.2 Function Properties -------------------------- ! To determine the scope of a function, you can use the `DECL_CONTEXT' ! macro. This macro will return the class (either a `RECORD_TYPE' or a ! `UNION_TYPE') or namespace (a `NAMESPACE_DECL') of which the function ! is a member. For a virtual function, this macro returns the class in ! which the function was actually defined, not the base class in which ! the virtual declaration occurred. ! In C, the `DECL_CONTEXT' for a function maybe another function. This representation indicates that the GNU nested function extension is in use. For details on the semantics of nested functions, see the GCC Manual. The nested function can refer to local variables in its containing function. Such references are not explicitly marked in the ! tree structure; back ends must look at the `DECL_CONTEXT' for the ! referenced `VAR_DECL'. If the `DECL_CONTEXT' for the referenced ! `VAR_DECL' is not the same as the function currently being processed, ! and neither `DECL_EXTERNAL' nor `TREE_STATIC' hold, then the reference is to a local variable in a containing function, and the back end must take appropriate action. ! `DECL_EXTERNAL' This predicate holds if the function is undefined. ! `TREE_PUBLIC' This predicate holds if the function has external linkage. ! `TREE_STATIC' This predicate holds if the function has been defined. ! `TREE_THIS_VOLATILE' This predicate holds if the function does not return normally. ! `TREE_READONLY' This predicate holds if the function can only read its arguments. ! `DECL_PURE_P' This predicate holds if the function can only read its arguments, but may also read global memory. ! `DECL_VIRTUAL_P' This predicate holds if the function is virtual. ! `DECL_ARTIFICIAL' This macro holds if the function was implicitly generated by the compiler, rather than explicitly declared. In addition to implicitly generated class member functions, this macro holds for --- 12708,12761 ---- BLOCK_SUPERCONTEXT(block_c) = foo; DECL_INITIAL(foo) = block_a;  File: gccint.info, Node: Function Properties, Prev: Function Basics, Up: Functions 11.8.2 Function Properties -------------------------- ! To determine the scope of a function, you can use the 'DECL_CONTEXT' ! macro. This macro will return the class (either a 'RECORD_TYPE' or a ! 'UNION_TYPE') or namespace (a 'NAMESPACE_DECL') of which the function is ! a member. For a virtual function, this macro returns the class in which ! the function was actually defined, not the base class in which the ! virtual declaration occurred. ! In C, the 'DECL_CONTEXT' for a function maybe another function. This representation indicates that the GNU nested function extension is in use. For details on the semantics of nested functions, see the GCC Manual. The nested function can refer to local variables in its containing function. Such references are not explicitly marked in the ! tree structure; back ends must look at the 'DECL_CONTEXT' for the ! referenced 'VAR_DECL'. If the 'DECL_CONTEXT' for the referenced ! 'VAR_DECL' is not the same as the function currently being processed, ! and neither 'DECL_EXTERNAL' nor 'TREE_STATIC' hold, then the reference is to a local variable in a containing function, and the back end must take appropriate action. ! 'DECL_EXTERNAL' This predicate holds if the function is undefined. ! 'TREE_PUBLIC' This predicate holds if the function has external linkage. ! 'TREE_STATIC' This predicate holds if the function has been defined. ! 'TREE_THIS_VOLATILE' This predicate holds if the function does not return normally. ! 'TREE_READONLY' This predicate holds if the function can only read its arguments. ! 'DECL_PURE_P' This predicate holds if the function can only read its arguments, but may also read global memory. ! 'DECL_VIRTUAL_P' This predicate holds if the function is virtual. ! 'DECL_ARTIFICIAL' This macro holds if the function was implicitly generated by the compiler, rather than explicitly declared. In addition to implicitly generated class member functions, this macro holds for *************** take appropriate action. *** 12923,12940 **** and destruction, to compute run-time type information, and so forth. ! `DECL_FUNCTION_SPECIFIC_TARGET' This macro returns a tree node that holds the target options that ! are to be used to compile this particular function or `NULL_TREE' ! if the function is to be compiled with the target options ! specified on the command line. ! `DECL_FUNCTION_SPECIFIC_OPTIMIZATION' This macro returns a tree node that holds the optimization options that are to be used to compile this particular function or ! `NULL_TREE' if the function is to be compiled with the ! optimization options specified on the command line. !  File: gccint.info, Node: Language-dependent trees, Next: C and C++ Trees, Prev: Functions, Up: GENERIC --- 12763,12779 ---- and destruction, to compute run-time type information, and so forth. ! 'DECL_FUNCTION_SPECIFIC_TARGET' This macro returns a tree node that holds the target options that ! are to be used to compile this particular function or 'NULL_TREE' ! if the function is to be compiled with the target options specified ! on the command line. ! 'DECL_FUNCTION_SPECIFIC_OPTIMIZATION' This macro returns a tree node that holds the optimization options that are to be used to compile this particular function or ! 'NULL_TREE' if the function is to be compiled with the optimization ! options specified on the command line.  File: gccint.info, Node: Language-dependent trees, Next: C and C++ Trees, Prev: Functions, Up: GENERIC *************** File: gccint.info, Node: Language-depen *** 12943,12959 **** ============================= Front ends may wish to keep some state associated with various GENERIC ! trees while parsing. To support this, trees provide a set of flags ! that may be used by the front end. They are accessed using ! `TREE_LANG_FLAG_n' where `n' is currently 0 through 6. ! If necessary, a front end can use some language-dependent tree codes ! in its GENERIC representation, so long as it provides a hook for ! converting them to GIMPLE and doesn't expect them to work with any ! (hypothetical) optimizers that run before the conversion to GIMPLE. The ! intermediate representation used while parsing C and C++ looks very ! little like GENERIC, but the C and C++ gimplifier hooks are perfectly ! happy to take it as input and spit out GIMPLE.  File: gccint.info, Node: C and C++ Trees, Next: Java Trees, Prev: Language-dependent trees, Up: GENERIC --- 12782,12798 ---- ============================= Front ends may wish to keep some state associated with various GENERIC ! trees while parsing. To support this, trees provide a set of flags that ! may be used by the front end. They are accessed using ! 'TREE_LANG_FLAG_n' where 'n' is currently 0 through 6. ! If necessary, a front end can use some language-dependent tree codes in ! its GENERIC representation, so long as it provides a hook for converting ! them to GIMPLE and doesn't expect them to work with any (hypothetical) ! optimizers that run before the conversion to GIMPLE. The intermediate ! representation used while parsing C and C++ looks very little like ! GENERIC, but the C and C++ gimplifier hooks are perfectly happy to take ! it as input and spit out GIMPLE.  File: gccint.info, Node: C and C++ Trees, Next: Java Trees, Prev: Language-dependent trees, Up: GENERIC *************** submit your patches for inclusion in GCC *** 13009,13015 **** * Classes:: Classes. * Functions for C++:: Overloading and accessors for C++. * Statements for C++:: Statements specific to C and C++. ! * C++ Expressions:: From `typeid' to `throw'.  File: gccint.info, Node: Types for C++, Next: Namespaces, Up: C and C++ Trees --- 12848,12854 ---- * Classes:: Classes. * Functions for C++:: Overloading and accessors for C++. * Statements for C++:: Statements specific to C and C++. ! * C++ Expressions:: From 'typeid' to 'throw'.  File: gccint.info, Node: Types for C++, Next: Namespaces, Up: C and C++ Trees *************** representation. The macros described he *** 13023,13140 **** qualification of the underlying element type when applied to an array type. (If the element type is itself an array, then the recursion continues until a non-array type is found, and the qualification of this ! type is examined.) So, for example, `CP_TYPE_CONST_P' will hold of the ! type `const int ()[7]', denoting an array of seven `int's. The following functions and macros deal with cv-qualification of types: ! `cp_type_quals' This function returns the set of type qualifiers applied to this ! type. This value is `TYPE_UNQUALIFIED' if no qualifiers have been ! applied. The `TYPE_QUAL_CONST' bit is set if the type is ! `const'-qualified. The `TYPE_QUAL_VOLATILE' bit is set if the ! type is `volatile'-qualified. The `TYPE_QUAL_RESTRICT' bit is set ! if the type is `restrict'-qualified. ! ! `CP_TYPE_CONST_P' ! This macro holds if the type is `const'-qualified. ! `CP_TYPE_VOLATILE_P' ! This macro holds if the type is `volatile'-qualified. ! `CP_TYPE_RESTRICT_P' ! This macro holds if the type is `restrict'-qualified. ! `CP_TYPE_CONST_NON_VOLATILE_P' ! This predicate holds for a type that is `const'-qualified, but ! _not_ `volatile'-qualified; other cv-qualifiers are ignored as ! well: only the `const'-ness is tested. A few other macros and functions are usable with all types: ! `TYPE_SIZE' The number of bits required to represent the type, represented as ! an `INTEGER_CST'. For an incomplete type, `TYPE_SIZE' will be ! `NULL_TREE'. ! `TYPE_ALIGN' ! The alignment of the type, in bits, represented as an `int'. ! `TYPE_NAME' ! This macro returns a declaration (in the form of a `TYPE_DECL') for ! the type. (Note this macro does _not_ return an ! `IDENTIFIER_NODE', as you might expect, given its name!) You can ! look at the `DECL_NAME' of the `TYPE_DECL' to obtain the actual ! name of the type. The `TYPE_NAME' will be `NULL_TREE' for a type ! that is not a built-in type, the result of a typedef, or a named ! class type. ! `CP_INTEGRAL_TYPE' This predicate holds if the type is an integral type. Notice that in C++, enumerations are _not_ integral types. ! `ARITHMETIC_TYPE_P' This predicate holds if the type is an integral type (in the C++ sense) or a floating point type. ! `CLASS_TYPE_P' This predicate holds for a class-type. ! `TYPE_BUILT_IN' This predicate holds for a built-in type. ! `TYPE_PTRDATAMEM_P' This predicate holds if the type is a pointer to data member. ! `TYPE_PTR_P' ! This predicate holds if the type is a pointer type, and the ! pointee is not a data member. ! `TYPE_PTRFN_P' This predicate holds for a pointer to function type. ! `TYPE_PTROB_P' This predicate holds for a pointer to object type. Note however ! that it does not hold for the generic pointer to object type `void ! *'. You may use `TYPE_PTROBV_P' to test for a pointer to object ! type as well as `void *'. ! The table below describes types specific to C and C++ as well as language-dependent info about GENERIC types. ! `POINTER_TYPE' Used to represent pointer types, and pointer to data member types. ! If `TREE_TYPE' is a pointer to data member type, then ! `TYPE_PTRDATAMEM_P' will hold. For a pointer to data member type ! of the form `T X::*', `TYPE_PTRMEM_CLASS_TYPE' will be the type ! `X', while `TYPE_PTRMEM_POINTED_TO_TYPE' will be the type `T'. ! `RECORD_TYPE' ! Used to represent `struct' and `class' types in C and C++. If ! `TYPE_PTRMEMFUNC_P' holds, then this type is a pointer-to-member ! type. In that case, the `TYPE_PTRMEMFUNC_FN_TYPE' is a ! `POINTER_TYPE' pointing to a `METHOD_TYPE'. The `METHOD_TYPE' is the type of a function pointed to by the pointer-to-member ! function. If `TYPE_PTRMEMFUNC_P' does not hold, this type is a class type. For more information, *note Classes::. ! `UNKNOWN_TYPE' This node is used to represent a type the knowledge of which is insufficient for a sound processing. ! `TYPENAME_TYPE' ! Used to represent a construct of the form `typename T::A'. The ! `TYPE_CONTEXT' is `T'; the `TYPE_NAME' is an `IDENTIFIER_NODE' for ! `A'. If the type is specified via a template-id, then ! `TYPENAME_TYPE_FULLNAME' yields a `TEMPLATE_ID_EXPR'. The ! `TREE_TYPE' is non-`NULL' if the node is implicitly generated in support for the implicit typename extension; in which case the ! `TREE_TYPE' is a type node for the base-class. ! ! `TYPEOF_TYPE' ! Used to represent the `__typeof__' extension. The `TYPE_FIELDS' ! is the expression the type of which is being represented.  File: gccint.info, Node: Namespaces, Next: Classes, Prev: Types for C++, Up: C and C++ Trees --- 12862,12975 ---- qualification of the underlying element type when applied to an array type. (If the element type is itself an array, then the recursion continues until a non-array type is found, and the qualification of this ! type is examined.) So, for example, 'CP_TYPE_CONST_P' will hold of the ! type 'const int ()[7]', denoting an array of seven 'int's. The following functions and macros deal with cv-qualification of types: ! 'cp_type_quals' This function returns the set of type qualifiers applied to this ! type. This value is 'TYPE_UNQUALIFIED' if no qualifiers have been ! applied. The 'TYPE_QUAL_CONST' bit is set if the type is ! 'const'-qualified. The 'TYPE_QUAL_VOLATILE' bit is set if the type ! is 'volatile'-qualified. The 'TYPE_QUAL_RESTRICT' bit is set if ! the type is 'restrict'-qualified. ! 'CP_TYPE_CONST_P' ! This macro holds if the type is 'const'-qualified. ! 'CP_TYPE_VOLATILE_P' ! This macro holds if the type is 'volatile'-qualified. ! 'CP_TYPE_RESTRICT_P' ! This macro holds if the type is 'restrict'-qualified. + 'CP_TYPE_CONST_NON_VOLATILE_P' + This predicate holds for a type that is 'const'-qualified, but + _not_ 'volatile'-qualified; other cv-qualifiers are ignored as + well: only the 'const'-ness is tested. A few other macros and functions are usable with all types: ! 'TYPE_SIZE' The number of bits required to represent the type, represented as ! an 'INTEGER_CST'. For an incomplete type, 'TYPE_SIZE' will be ! 'NULL_TREE'. ! 'TYPE_ALIGN' ! The alignment of the type, in bits, represented as an 'int'. ! 'TYPE_NAME' ! This macro returns a declaration (in the form of a 'TYPE_DECL') for ! the type. (Note this macro does _not_ return an 'IDENTIFIER_NODE', ! as you might expect, given its name!) You can look at the ! 'DECL_NAME' of the 'TYPE_DECL' to obtain the actual name of the ! type. The 'TYPE_NAME' will be 'NULL_TREE' for a type that is not a ! built-in type, the result of a typedef, or a named class type. ! 'CP_INTEGRAL_TYPE' This predicate holds if the type is an integral type. Notice that in C++, enumerations are _not_ integral types. ! 'ARITHMETIC_TYPE_P' This predicate holds if the type is an integral type (in the C++ sense) or a floating point type. ! 'CLASS_TYPE_P' This predicate holds for a class-type. ! 'TYPE_BUILT_IN' This predicate holds for a built-in type. ! 'TYPE_PTRDATAMEM_P' This predicate holds if the type is a pointer to data member. ! 'TYPE_PTR_P' ! This predicate holds if the type is a pointer type, and the pointee ! is not a data member. ! 'TYPE_PTRFN_P' This predicate holds for a pointer to function type. ! 'TYPE_PTROB_P' This predicate holds for a pointer to object type. Note however ! that it does not hold for the generic pointer to object type 'void ! *'. You may use 'TYPE_PTROBV_P' to test for a pointer to object ! type as well as 'void *'. The table below describes types specific to C and C++ as well as language-dependent info about GENERIC types. ! 'POINTER_TYPE' Used to represent pointer types, and pointer to data member types. ! If 'TREE_TYPE' is a pointer to data member type, then ! 'TYPE_PTRDATAMEM_P' will hold. For a pointer to data member type ! of the form 'T X::*', 'TYPE_PTRMEM_CLASS_TYPE' will be the type ! 'X', while 'TYPE_PTRMEM_POINTED_TO_TYPE' will be the type 'T'. ! 'RECORD_TYPE' ! Used to represent 'struct' and 'class' types in C and C++. If ! 'TYPE_PTRMEMFUNC_P' holds, then this type is a pointer-to-member ! type. In that case, the 'TYPE_PTRMEMFUNC_FN_TYPE' is a ! 'POINTER_TYPE' pointing to a 'METHOD_TYPE'. The 'METHOD_TYPE' is the type of a function pointed to by the pointer-to-member ! function. If 'TYPE_PTRMEMFUNC_P' does not hold, this type is a class type. For more information, *note Classes::. ! 'UNKNOWN_TYPE' This node is used to represent a type the knowledge of which is insufficient for a sound processing. ! 'TYPENAME_TYPE' ! Used to represent a construct of the form 'typename T::A'. The ! 'TYPE_CONTEXT' is 'T'; the 'TYPE_NAME' is an 'IDENTIFIER_NODE' for ! 'A'. If the type is specified via a template-id, then ! 'TYPENAME_TYPE_FULLNAME' yields a 'TEMPLATE_ID_EXPR'. The ! 'TREE_TYPE' is non-'NULL' if the node is implicitly generated in support for the implicit typename extension; in which case the ! 'TREE_TYPE' is a type node for the base-class. + 'TYPEOF_TYPE' + Used to represent the '__typeof__' extension. The 'TYPE_FIELDS' is + the expression the type of which is being represented.  File: gccint.info, Node: Namespaces, Next: Classes, Prev: Types for C++, Up: C and C++ Trees *************** File: gccint.info, Node: Namespaces, N *** 13143,13149 **** ------------------ The root of the entire intermediate representation is the variable ! `global_namespace'. This is the namespace specified with `::' in C++ source code. All other namespaces, types, variables, functions, and so forth can be found starting with this namespace. --- 12978,12984 ---- ------------------ The root of the entire intermediate representation is the variable ! 'global_namespace'. This is the namespace specified with '::' in C++ source code. All other namespaces, types, variables, functions, and so forth can be found starting with this namespace. *************** the representation, the global namespace *** 13152,13212 **** namespace. Thus, in what follows, we describe namespaces generally, rather than the global namespace in particular. ! A namespace is represented by a `NAMESPACE_DECL' node. ! The following macros and functions can be used on a `NAMESPACE_DECL': ! `DECL_NAME' ! This macro is used to obtain the `IDENTIFIER_NODE' corresponding to the unqualified name of the name of the namespace (*note ! Identifiers::). The name of the global namespace is `::', even ! though in C++ the global namespace is unnamed. However, you ! should use comparison with `global_namespace', rather than ! `DECL_NAME' to determine whether or not a namespace is the global ! one. An unnamed namespace will have a `DECL_NAME' equal to ! `anonymous_namespace_name'. Within a single translation unit, all unnamed namespaces will have the same name. ! `DECL_CONTEXT' ! This macro returns the enclosing namespace. The `DECL_CONTEXT' for ! the `global_namespace' is `NULL_TREE'. ! `DECL_NAMESPACE_ALIAS' If this declaration is for a namespace alias, then ! `DECL_NAMESPACE_ALIAS' is the namespace for which this one is an alias. ! Do not attempt to use `cp_namespace_decls' for a namespace which is ! an alias. Instead, follow `DECL_NAMESPACE_ALIAS' links until you reach an ordinary, non-alias, namespace, and call ! `cp_namespace_decls' there. ! `DECL_NAMESPACE_STD_P' ! This predicate holds if the namespace is the special `::std' namespace. ! `cp_namespace_decls' This function will return the declarations contained in the ! namespace, including types, overloaded functions, other ! namespaces, and so forth. If there are no declarations, this ! function will return `NULL_TREE'. The declarations are connected ! through their `TREE_CHAIN' fields. Although most entries on this list will be declarations, ! `TREE_LIST' nodes may also appear. In this case, the `TREE_VALUE' ! will be an `OVERLOAD'. The value of the `TREE_PURPOSE' is ! unspecified; back ends should ignore this value. As with the ! other kinds of declarations returned by `cp_namespace_decls', the ! `TREE_CHAIN' will point to the next declaration in this list. ! For more information on the kinds of declarations that can occur ! on this list, *Note Declarations::. Some declarations will not ! appear on this list. In particular, no `FIELD_DECL', ! `LABEL_DECL', or `PARM_DECL' nodes will appear here. This function cannot be used with namespaces that have ! `DECL_NAMESPACE_ALIAS' set. !  File: gccint.info, Node: Classes, Next: Functions for C++, Prev: Namespaces, Up: C and C++ Trees --- 12987,13046 ---- namespace. Thus, in what follows, we describe namespaces generally, rather than the global namespace in particular. ! A namespace is represented by a 'NAMESPACE_DECL' node. ! The following macros and functions can be used on a 'NAMESPACE_DECL': ! 'DECL_NAME' ! This macro is used to obtain the 'IDENTIFIER_NODE' corresponding to the unqualified name of the name of the namespace (*note ! Identifiers::). The name of the global namespace is '::', even ! though in C++ the global namespace is unnamed. However, you should ! use comparison with 'global_namespace', rather than 'DECL_NAME' to ! determine whether or not a namespace is the global one. An unnamed ! namespace will have a 'DECL_NAME' equal to ! 'anonymous_namespace_name'. Within a single translation unit, all unnamed namespaces will have the same name. ! 'DECL_CONTEXT' ! This macro returns the enclosing namespace. The 'DECL_CONTEXT' for ! the 'global_namespace' is 'NULL_TREE'. ! 'DECL_NAMESPACE_ALIAS' If this declaration is for a namespace alias, then ! 'DECL_NAMESPACE_ALIAS' is the namespace for which this one is an alias. ! Do not attempt to use 'cp_namespace_decls' for a namespace which is ! an alias. Instead, follow 'DECL_NAMESPACE_ALIAS' links until you reach an ordinary, non-alias, namespace, and call ! 'cp_namespace_decls' there. ! 'DECL_NAMESPACE_STD_P' ! This predicate holds if the namespace is the special '::std' namespace. ! 'cp_namespace_decls' This function will return the declarations contained in the ! namespace, including types, overloaded functions, other namespaces, ! and so forth. If there are no declarations, this function will ! return 'NULL_TREE'. The declarations are connected through their ! 'TREE_CHAIN' fields. Although most entries on this list will be declarations, ! 'TREE_LIST' nodes may also appear. In this case, the 'TREE_VALUE' ! will be an 'OVERLOAD'. The value of the 'TREE_PURPOSE' is ! unspecified; back ends should ignore this value. As with the other ! kinds of declarations returned by 'cp_namespace_decls', the ! 'TREE_CHAIN' will point to the next declaration in this list. ! For more information on the kinds of declarations that can occur on ! this list, *Note Declarations::. Some declarations will not appear ! on this list. In particular, no 'FIELD_DECL', 'LABEL_DECL', or ! 'PARM_DECL' nodes will appear here. This function cannot be used with namespaces that have ! 'DECL_NAMESPACE_ALIAS' set.  File: gccint.info, Node: Classes, Next: Functions for C++, Prev: Namespaces, Up: C and C++ Trees *************** File: gccint.info, Node: Classes, Next *** 13217,13453 **** Besides namespaces, the other high-level scoping construct in C++ is the class. (Throughout this manual the term "class" is used to mean the types referred to in the ANSI/ISO C++ Standard as classes; these include ! types defined with the `class', `struct', and `union' keywords.) ! A class type is represented by either a `RECORD_TYPE' or a ! `UNION_TYPE'. A class declared with the `union' tag is represented by ! a `UNION_TYPE', while classes declared with either the `struct' or the ! `class' tag are represented by `RECORD_TYPE's. You can use the ! `CLASSTYPE_DECLARED_CLASS' macro to discern whether or not a particular ! type is a `class' as opposed to a `struct'. This macro will be true ! only for classes declared with the `class' tag. ! Almost all non-function members are available on the `TYPE_FIELDS' list. Given one member, the next can be found by following the ! `TREE_CHAIN'. You should not depend in any way on the order in which ! fields appear on this list. All nodes on this list will be `DECL' ! nodes. A `FIELD_DECL' is used to represent a non-static data member, a ! `VAR_DECL' is used to represent a static data member, and a `TYPE_DECL' ! is used to represent a type. Note that the `CONST_DECL' for an enumeration constant will appear on this list, if the enumeration type ! was declared in the class. (Of course, the `TYPE_DECL' for the enumeration type will appear here as well.) There are no entries for ! base classes on this list. In particular, there is no `FIELD_DECL' for the "base-class portion" of an object. ! The `TYPE_VFIELD' is a compiler-generated field used to point to ! virtual function tables. It may or may not appear on the `TYPE_FIELDS' ! list. However, back ends should handle the `TYPE_VFIELD' just like all ! the entries on the `TYPE_FIELDS' list. ! The function members are available on the `TYPE_METHODS' list. Again, ! subsequent members are found by following the `TREE_CHAIN' field. If a function is overloaded, each of the overloaded functions appears; no ! `OVERLOAD' nodes appear on the `TYPE_METHODS' list. Implicitly ! declared functions (including default constructors, copy constructors, ! assignment operators, and destructors) will appear on this list as well. Every class has an associated "binfo", which can be obtained with ! `TYPE_BINFO'. Binfos are used to represent base-classes. The binfo ! given by `TYPE_BINFO' is the degenerate case, whereby every class is considered to be its own base-class. The base binfos for a particular binfo are held in a vector, whose length is obtained with ! `BINFO_N_BASE_BINFOS'. The base binfos themselves are obtained with ! `BINFO_BASE_BINFO' and `BINFO_BASE_ITERATE'. To add a new binfo, use ! `BINFO_BASE_APPEND'. The vector of base binfos can be obtained with ! `BINFO_BASE_BINFOS', but normally you do not need to use that. The ! class type associated with a binfo is given by `BINFO_TYPE'. It is not ! always the case that `BINFO_TYPE (TYPE_BINFO (x))', because of typedefs ! and qualified types. Neither is it the case that `TYPE_BINFO ! (BINFO_TYPE (y))' is the same binfo as `y'. The reason is that if `y' ! is a binfo representing a base-class `B' of a derived class `D', then ! `BINFO_TYPE (y)' will be `B', and `TYPE_BINFO (BINFO_TYPE (y))' will be ! `B' as its own base-class, rather than as a base-class of `D'. ! The access to a base type can be found with `BINFO_BASE_ACCESS'. This ! will produce `access_public_node', `access_private_node' or ! `access_protected_node'. If bases are always public, ! `BINFO_BASE_ACCESSES' may be `NULL'. ! `BINFO_VIRTUAL_P' is used to specify whether the binfo is inherited ! virtually or not. The other flags, `BINFO_MARKED_P' and `BINFO_FLAG_1' ! to `BINFO_FLAG_6' can be used for language specific use. The following macros can be used on a tree node representing a class-type. ! `LOCAL_CLASS_P' This predicate holds if the class is local class _i.e._ declared inside a function body. ! `TYPE_POLYMORPHIC_P' This predicate holds if the class has at least one virtual function (declared or inherited). ! `TYPE_HAS_DEFAULT_CONSTRUCTOR' This predicate holds whenever its argument represents a class-type with default constructor. ! `CLASSTYPE_HAS_MUTABLE' ! `TYPE_HAS_MUTABLE_P' These predicates hold for a class-type having a mutable data member. ! `CLASSTYPE_NON_POD_P' This predicate holds only for class-types that are not PODs. ! `TYPE_HAS_NEW_OPERATOR' ! This predicate holds for a class-type that defines `operator new'. ! `TYPE_HAS_ARRAY_NEW_OPERATOR' ! This predicate holds for a class-type for which `operator new[]' ! is defined. ! `TYPE_OVERLOADS_CALL_EXPR' This predicate holds for class-type for which the function call ! `operator()' is overloaded. ! `TYPE_OVERLOADS_ARRAY_REF' ! This predicate holds for a class-type that overloads `operator[]' ! `TYPE_OVERLOADS_ARROW' ! This predicate holds for a class-type for which `operator->' is overloaded. -  File: gccint.info, Node: Functions for C++, Next: Statements for C++, Prev: Classes, Up: C and C++ Trees 11.10.4 Functions for C++ ------------------------- ! A function is represented by a `FUNCTION_DECL' node. A set of ! overloaded functions is sometimes represented by an `OVERLOAD' node. ! An `OVERLOAD' node is not a declaration, so none of the `DECL_' macros ! should be used on an `OVERLOAD'. An `OVERLOAD' node is similar to a ! `TREE_LIST'. Use `OVL_CURRENT' to get the function associated with an ! `OVERLOAD' node; use `OVL_NEXT' to get the next `OVERLOAD' node in the ! list of overloaded functions. The macros `OVL_CURRENT' and `OVL_NEXT' ! are actually polymorphic; you can use them to work with `FUNCTION_DECL' ! nodes as well as with overloads. In the case of a `FUNCTION_DECL', ! `OVL_CURRENT' will always return the function itself, and `OVL_NEXT' ! will always be `NULL_TREE'. ! To determine the scope of a function, you can use the `DECL_CONTEXT' ! macro. This macro will return the class (either a `RECORD_TYPE' or a ! `UNION_TYPE') or namespace (a `NAMESPACE_DECL') of which the function ! is a member. For a virtual function, this macro returns the class in ! which the function was actually defined, not the base class in which ! the virtual declaration occurred. If a friend function is defined in a class scope, the ! `DECL_FRIEND_CONTEXT' macro can be used to determine the class in which it was defined. For example, in class C { friend void f() {} }; ! the `DECL_CONTEXT' for `f' will be the `global_namespace', but the ! `DECL_FRIEND_CONTEXT' will be the `RECORD_TYPE' for `C'. ! The following macros and functions can be used on a `FUNCTION_DECL': ! `DECL_MAIN_P' This predicate holds for a function that is the program entry point ! `::code'. ! `DECL_LOCAL_FUNCTION_P' This predicate holds if the function was declared at block scope, even though it has a global scope. ! `DECL_ANTICIPATED' This predicate holds if the function is a built-in function but its prototype is not yet explicitly declared. ! `DECL_EXTERN_C_FUNCTION_P' ! This predicate holds if the function is declared as an ``extern "C"'' function. ! `DECL_LINKONCE_P' ! This macro holds if multiple copies of this function may be ! emitted in various translation units. It is the responsibility of ! the linker to merge the various copies. Template instantiations ! are the most common example of functions for which ! `DECL_LINKONCE_P' holds; G++ instantiates needed templates in all ! translation units which require them, and then relies on the ! linker to remove duplicate instantiations. FIXME: This macro is not yet implemented. ! `DECL_FUNCTION_MEMBER_P' This macro holds if the function is a member of a class, rather than a member of a namespace. ! `DECL_STATIC_FUNCTION_P' This predicate holds if the function a static member function. ! `DECL_NONSTATIC_MEMBER_FUNCTION_P' This macro holds for a non-static member function. ! `DECL_CONST_MEMFUNC_P' ! This predicate holds for a `const'-member function. ! `DECL_VOLATILE_MEMFUNC_P' ! This predicate holds for a `volatile'-member function. ! `DECL_CONSTRUCTOR_P' This macro holds if the function is a constructor. ! `DECL_NONCONVERTING_P' This predicate holds if the constructor is a non-converting constructor. ! `DECL_COMPLETE_CONSTRUCTOR_P' This predicate holds for a function which is a constructor for an object of a complete type. ! `DECL_BASE_CONSTRUCTOR_P' This predicate holds for a function which is a constructor for a base class sub-object. ! `DECL_COPY_CONSTRUCTOR_P' This predicate holds for a function which is a copy-constructor. ! `DECL_DESTRUCTOR_P' This macro holds if the function is a destructor. ! `DECL_COMPLETE_DESTRUCTOR_P' This predicate holds if the function is the destructor for an object a complete type. ! `DECL_OVERLOADED_OPERATOR_P' This macro holds if the function is an overloaded operator. ! `DECL_CONV_FN_P' This macro holds if the function is a type-conversion operator. ! `DECL_GLOBAL_CTOR_P' This predicate holds if the function is a file-scope initialization function. ! `DECL_GLOBAL_DTOR_P' This predicate holds if the function is a file-scope finalization function. ! `DECL_THUNK_P' This predicate holds if the function is a thunk. ! These functions represent stub code that adjusts the `this' pointer and then jumps to another function. When the jumped-to function returns, control is transferred directly to the caller, without ! returning to the thunk. The first parameter to the thunk is ! always the `this' pointer; the thunk should add `THUNK_DELTA' to ! this value. (The `THUNK_DELTA' is an `int', not an `INTEGER_CST'.) ! Then, if `THUNK_VCALL_OFFSET' (an `INTEGER_CST') is nonzero the ! adjusted `this' pointer must be adjusted again. The complete calculation is given by the following pseudo-code: this += THUNK_DELTA --- 13051,13286 ---- Besides namespaces, the other high-level scoping construct in C++ is the class. (Throughout this manual the term "class" is used to mean the types referred to in the ANSI/ISO C++ Standard as classes; these include ! types defined with the 'class', 'struct', and 'union' keywords.) ! A class type is represented by either a 'RECORD_TYPE' or a ! 'UNION_TYPE'. A class declared with the 'union' tag is represented by a ! 'UNION_TYPE', while classes declared with either the 'struct' or the ! 'class' tag are represented by 'RECORD_TYPE's. You can use the ! 'CLASSTYPE_DECLARED_CLASS' macro to discern whether or not a particular ! type is a 'class' as opposed to a 'struct'. This macro will be true ! only for classes declared with the 'class' tag. ! Almost all non-function members are available on the 'TYPE_FIELDS' list. Given one member, the next can be found by following the ! 'TREE_CHAIN'. You should not depend in any way on the order in which ! fields appear on this list. All nodes on this list will be 'DECL' ! nodes. A 'FIELD_DECL' is used to represent a non-static data member, a ! 'VAR_DECL' is used to represent a static data member, and a 'TYPE_DECL' ! is used to represent a type. Note that the 'CONST_DECL' for an enumeration constant will appear on this list, if the enumeration type ! was declared in the class. (Of course, the 'TYPE_DECL' for the enumeration type will appear here as well.) There are no entries for ! base classes on this list. In particular, there is no 'FIELD_DECL' for the "base-class portion" of an object. ! The 'TYPE_VFIELD' is a compiler-generated field used to point to ! virtual function tables. It may or may not appear on the 'TYPE_FIELDS' ! list. However, back ends should handle the 'TYPE_VFIELD' just like all ! the entries on the 'TYPE_FIELDS' list. ! The function members are available on the 'TYPE_METHODS' list. Again, ! subsequent members are found by following the 'TREE_CHAIN' field. If a function is overloaded, each of the overloaded functions appears; no ! 'OVERLOAD' nodes appear on the 'TYPE_METHODS' list. Implicitly declared ! functions (including default constructors, copy constructors, assignment ! operators, and destructors) will appear on this list as well. Every class has an associated "binfo", which can be obtained with ! 'TYPE_BINFO'. Binfos are used to represent base-classes. The binfo ! given by 'TYPE_BINFO' is the degenerate case, whereby every class is considered to be its own base-class. The base binfos for a particular binfo are held in a vector, whose length is obtained with ! 'BINFO_N_BASE_BINFOS'. The base binfos themselves are obtained with ! 'BINFO_BASE_BINFO' and 'BINFO_BASE_ITERATE'. To add a new binfo, use ! 'BINFO_BASE_APPEND'. The vector of base binfos can be obtained with ! 'BINFO_BASE_BINFOS', but normally you do not need to use that. The ! class type associated with a binfo is given by 'BINFO_TYPE'. It is not ! always the case that 'BINFO_TYPE (TYPE_BINFO (x))', because of typedefs ! and qualified types. Neither is it the case that 'TYPE_BINFO ! (BINFO_TYPE (y))' is the same binfo as 'y'. The reason is that if 'y' ! is a binfo representing a base-class 'B' of a derived class 'D', then ! 'BINFO_TYPE (y)' will be 'B', and 'TYPE_BINFO (BINFO_TYPE (y))' will be ! 'B' as its own base-class, rather than as a base-class of 'D'. ! The access to a base type can be found with 'BINFO_BASE_ACCESS'. This ! will produce 'access_public_node', 'access_private_node' or ! 'access_protected_node'. If bases are always public, ! 'BINFO_BASE_ACCESSES' may be 'NULL'. ! 'BINFO_VIRTUAL_P' is used to specify whether the binfo is inherited ! virtually or not. The other flags, 'BINFO_MARKED_P' and 'BINFO_FLAG_1' ! to 'BINFO_FLAG_6' can be used for language specific use. The following macros can be used on a tree node representing a class-type. ! 'LOCAL_CLASS_P' This predicate holds if the class is local class _i.e._ declared inside a function body. ! 'TYPE_POLYMORPHIC_P' This predicate holds if the class has at least one virtual function (declared or inherited). ! 'TYPE_HAS_DEFAULT_CONSTRUCTOR' This predicate holds whenever its argument represents a class-type with default constructor. ! 'CLASSTYPE_HAS_MUTABLE' ! 'TYPE_HAS_MUTABLE_P' These predicates hold for a class-type having a mutable data member. ! 'CLASSTYPE_NON_POD_P' This predicate holds only for class-types that are not PODs. ! 'TYPE_HAS_NEW_OPERATOR' ! This predicate holds for a class-type that defines 'operator new'. ! 'TYPE_HAS_ARRAY_NEW_OPERATOR' ! This predicate holds for a class-type for which 'operator new[]' is ! defined. ! 'TYPE_OVERLOADS_CALL_EXPR' This predicate holds for class-type for which the function call ! 'operator()' is overloaded. ! 'TYPE_OVERLOADS_ARRAY_REF' ! This predicate holds for a class-type that overloads 'operator[]' ! 'TYPE_OVERLOADS_ARROW' ! This predicate holds for a class-type for which 'operator->' is overloaded.  File: gccint.info, Node: Functions for C++, Next: Statements for C++, Prev: Classes, Up: C and C++ Trees 11.10.4 Functions for C++ ------------------------- ! A function is represented by a 'FUNCTION_DECL' node. A set of ! overloaded functions is sometimes represented by an 'OVERLOAD' node. ! An 'OVERLOAD' node is not a declaration, so none of the 'DECL_' macros ! should be used on an 'OVERLOAD'. An 'OVERLOAD' node is similar to a ! 'TREE_LIST'. Use 'OVL_CURRENT' to get the function associated with an ! 'OVERLOAD' node; use 'OVL_NEXT' to get the next 'OVERLOAD' node in the ! list of overloaded functions. The macros 'OVL_CURRENT' and 'OVL_NEXT' ! are actually polymorphic; you can use them to work with 'FUNCTION_DECL' ! nodes as well as with overloads. In the case of a 'FUNCTION_DECL', ! 'OVL_CURRENT' will always return the function itself, and 'OVL_NEXT' ! will always be 'NULL_TREE'. ! To determine the scope of a function, you can use the 'DECL_CONTEXT' ! macro. This macro will return the class (either a 'RECORD_TYPE' or a ! 'UNION_TYPE') or namespace (a 'NAMESPACE_DECL') of which the function is ! a member. For a virtual function, this macro returns the class in which ! the function was actually defined, not the base class in which the ! virtual declaration occurred. If a friend function is defined in a class scope, the ! 'DECL_FRIEND_CONTEXT' macro can be used to determine the class in which it was defined. For example, in class C { friend void f() {} }; ! the 'DECL_CONTEXT' for 'f' will be the 'global_namespace', but the ! 'DECL_FRIEND_CONTEXT' will be the 'RECORD_TYPE' for 'C'. ! The following macros and functions can be used on a 'FUNCTION_DECL': ! 'DECL_MAIN_P' This predicate holds for a function that is the program entry point ! '::code'. ! 'DECL_LOCAL_FUNCTION_P' This predicate holds if the function was declared at block scope, even though it has a global scope. ! 'DECL_ANTICIPATED' This predicate holds if the function is a built-in function but its prototype is not yet explicitly declared. ! 'DECL_EXTERN_C_FUNCTION_P' ! This predicate holds if the function is declared as an ''extern "C"'' function. ! 'DECL_LINKONCE_P' ! This macro holds if multiple copies of this function may be emitted ! in various translation units. It is the responsibility of the ! linker to merge the various copies. Template instantiations are ! the most common example of functions for which 'DECL_LINKONCE_P' ! holds; G++ instantiates needed templates in all translation units ! which require them, and then relies on the linker to remove ! duplicate instantiations. FIXME: This macro is not yet implemented. ! 'DECL_FUNCTION_MEMBER_P' This macro holds if the function is a member of a class, rather than a member of a namespace. ! 'DECL_STATIC_FUNCTION_P' This predicate holds if the function a static member function. ! 'DECL_NONSTATIC_MEMBER_FUNCTION_P' This macro holds for a non-static member function. ! 'DECL_CONST_MEMFUNC_P' ! This predicate holds for a 'const'-member function. ! 'DECL_VOLATILE_MEMFUNC_P' ! This predicate holds for a 'volatile'-member function. ! 'DECL_CONSTRUCTOR_P' This macro holds if the function is a constructor. ! 'DECL_NONCONVERTING_P' This predicate holds if the constructor is a non-converting constructor. ! 'DECL_COMPLETE_CONSTRUCTOR_P' This predicate holds for a function which is a constructor for an object of a complete type. ! 'DECL_BASE_CONSTRUCTOR_P' This predicate holds for a function which is a constructor for a base class sub-object. ! 'DECL_COPY_CONSTRUCTOR_P' This predicate holds for a function which is a copy-constructor. ! 'DECL_DESTRUCTOR_P' This macro holds if the function is a destructor. ! 'DECL_COMPLETE_DESTRUCTOR_P' This predicate holds if the function is the destructor for an object a complete type. ! 'DECL_OVERLOADED_OPERATOR_P' This macro holds if the function is an overloaded operator. ! 'DECL_CONV_FN_P' This macro holds if the function is a type-conversion operator. ! 'DECL_GLOBAL_CTOR_P' This predicate holds if the function is a file-scope initialization function. ! 'DECL_GLOBAL_DTOR_P' This predicate holds if the function is a file-scope finalization function. ! 'DECL_THUNK_P' This predicate holds if the function is a thunk. ! These functions represent stub code that adjusts the 'this' pointer and then jumps to another function. When the jumped-to function returns, control is transferred directly to the caller, without ! returning to the thunk. The first parameter to the thunk is always ! the 'this' pointer; the thunk should add 'THUNK_DELTA' to this ! value. (The 'THUNK_DELTA' is an 'int', not an 'INTEGER_CST'.) ! Then, if 'THUNK_VCALL_OFFSET' (an 'INTEGER_CST') is nonzero the ! adjusted 'this' pointer must be adjusted again. The complete calculation is given by the following pseudo-code: this += THUNK_DELTA *************** it was defined. For example, in *** 13455,13488 **** this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET] Finally, the thunk should jump to the location given by ! `DECL_INITIAL'; this will always be an expression for the address of a function. ! `DECL_NON_THUNK_FUNCTION_P' This predicate holds if the function is _not_ a thunk function. ! `GLOBAL_INIT_PRIORITY' ! If either `DECL_GLOBAL_CTOR_P' or `DECL_GLOBAL_DTOR_P' holds, then this gives the initialization priority for the function. The linker will arrange that all functions for which ! `DECL_GLOBAL_CTOR_P' holds are run in increasing order of priority ! before `main' is called. When the program exits, all functions for ! which `DECL_GLOBAL_DTOR_P' holds are run in the reverse order. ! `TYPE_RAISES_EXCEPTIONS' This macro returns the list of exceptions that a (member-)function ! can raise. The returned list, if non `NULL', is comprised of nodes ! whose `TREE_VALUE' represents a type. ! `TYPE_NOTHROW_P' This predicate holds when the exception-specification of its ! arguments is of the form ``()''. ! `DECL_ARRAY_DELETE_OPERATOR_P' ! This predicate holds if the function an overloaded `operator delete[]'. -  File: gccint.info, Node: Statements for C++, Next: C++ Expressions, Prev: Functions for C++, Up: C and C++ Trees --- 13288,13320 ---- this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET] Finally, the thunk should jump to the location given by ! 'DECL_INITIAL'; this will always be an expression for the address of a function. ! 'DECL_NON_THUNK_FUNCTION_P' This predicate holds if the function is _not_ a thunk function. ! 'GLOBAL_INIT_PRIORITY' ! If either 'DECL_GLOBAL_CTOR_P' or 'DECL_GLOBAL_DTOR_P' holds, then this gives the initialization priority for the function. The linker will arrange that all functions for which ! 'DECL_GLOBAL_CTOR_P' holds are run in increasing order of priority ! before 'main' is called. When the program exits, all functions for ! which 'DECL_GLOBAL_DTOR_P' holds are run in the reverse order. ! 'TYPE_RAISES_EXCEPTIONS' This macro returns the list of exceptions that a (member-)function ! can raise. The returned list, if non 'NULL', is comprised of nodes ! whose 'TREE_VALUE' represents a type. ! 'TYPE_NOTHROW_P' This predicate holds when the exception-specification of its ! arguments is of the form ''()''. ! 'DECL_ARRAY_DELETE_OPERATOR_P' ! This predicate holds if the function an overloaded 'operator delete[]'.  File: gccint.info, Node: Statements for C++, Next: C++ Expressions, Prev: Functions for C++, Up: C and C++ Trees *************** File: gccint.info, Node: Statements for *** 13490,13499 **** -------------------------- A function that has a definition in the current translation unit will ! have a non-`NULL' `DECL_INITIAL'. However, back ends should not make ! use of the particular value given by `DECL_INITIAL'. ! The `DECL_SAVED_TREE' macro will give the complete body of the function. 11.10.5.1 Statements --- 13322,13331 ---- -------------------------- A function that has a definition in the current translation unit will ! have a non-'NULL' 'DECL_INITIAL'. However, back ends should not make ! use of the particular value given by 'DECL_INITIAL'. ! The 'DECL_SAVED_TREE' macro will give the complete body of the function. 11.10.5.1 Statements *************** here, together with a list of the variou *** 13505,13519 **** obtain information about them. There are a few macros that can be used with all statements: ! `STMT_IS_FULL_EXPR_P' In C++, statements normally constitute "full expressions"; temporaries created during a statement are destroyed when the statement is complete. However, G++ sometimes represents expressions by statements; these statements will not have ! `STMT_IS_FULL_EXPR_P' set. Temporaries created during such statements should be destroyed when the innermost enclosing ! statement with `STMT_IS_FULL_EXPR_P' set is exited. ! Here is the list of the various statement nodes, and the macros used to access them. This documentation describes the use of these nodes in --- 13337,13350 ---- obtain information about them. There are a few macros that can be used with all statements: ! 'STMT_IS_FULL_EXPR_P' In C++, statements normally constitute "full expressions"; temporaries created during a statement are destroyed when the statement is complete. However, G++ sometimes represents expressions by statements; these statements will not have ! 'STMT_IS_FULL_EXPR_P' set. Temporaries created during such statements should be destroyed when the innermost enclosing ! statement with 'STMT_IS_FULL_EXPR_P' set is exited. Here is the list of the various statement nodes, and the macros used to access them. This documentation describes the use of these nodes in *************** non-template functions (including instan *** 13521,13532 **** In template functions, the same nodes are used, but sometimes in slightly different ways. ! Many of the statements have substatements. For example, a `while' ! loop will have a body, which is itself a statement. If the substatement ! is `NULL_TREE', it is considered equivalent to a statement consisting ! of a single `;', i.e., an expression statement in which the expression ! has been omitted. A substatement may in fact be a list of statements, ! connected via their `TREE_CHAIN's. So, you should always process the statement tree by looping over substatements, like this: void process_stmt (stmt) tree stmt; --- 13352,13363 ---- In template functions, the same nodes are used, but sometimes in slightly different ways. ! Many of the statements have substatements. For example, a 'while' loop ! will have a body, which is itself a statement. If the substatement is ! 'NULL_TREE', it is considered equivalent to a statement consisting of a ! single ';', i.e., an expression statement in which the expression has ! been omitted. A substatement may in fact be a list of statements, ! connected via their 'TREE_CHAIN's. So, you should always process the statement tree by looping over substatements, like this: void process_stmt (stmt) tree stmt; *************** statement tree by looping over substatem *** 13546,13623 **** stmt = TREE_CHAIN (stmt); } } ! In other words, while the `then' clause of an `if' statement in C++ ! can be only one statement (although that one statement may be a ! compound statement), the intermediate representation will sometimes use ! several statements chained together. ! `BREAK_STMT' ! Used to represent a `break' statement. There are no additional fields. ! `CLEANUP_STMT' Used to represent an action that should take place upon exit from the enclosing scope. Typically, these actions are calls to destructors for local objects, but back ends cannot rely on this fact. If these nodes are in fact representing such destructors, ! `CLEANUP_DECL' will be the `VAR_DECL' destroyed. Otherwise, ! `CLEANUP_DECL' will be `NULL_TREE'. In any case, the ! `CLEANUP_EXPR' is the expression to execute. The cleanups ! executed on exit from a scope should be run in the reverse order ! of the order in which the associated `CLEANUP_STMT's were ! encountered. ! `CONTINUE_STMT' ! Used to represent a `continue' statement. There are no additional fields. ! `CTOR_STMT' ! Used to mark the beginning (if `CTOR_BEGIN_P' holds) or end (if ! `CTOR_END_P' holds of the main body of a constructor. See also ! `SUBOBJECT' for more information on how to use these nodes. ! `DO_STMT' ! Used to represent a `do' loop. The body of the loop is given by ! `DO_BODY' while the termination condition for the loop is given by ! `DO_COND'. The condition for a `do'-statement is always an expression. ! `EMPTY_CLASS_EXPR' Used to represent a temporary object of a class with no data whose address is never taken. (All such objects are interchangeable.) ! The `TREE_TYPE' represents the type of the object. ! `EXPR_STMT' ! Used to represent an expression statement. Use `EXPR_STMT_EXPR' to obtain the expression. ! `FOR_STMT' ! Used to represent a `for' statement. The `FOR_INIT_STMT' is the ! initialization statement for the loop. The `FOR_COND' is the ! termination condition. The `FOR_EXPR' is the expression executed ! right before the `FOR_COND' on each loop iteration; often, this expression increments a counter. The body of the loop is given by ! `FOR_BODY'. Note that `FOR_INIT_STMT' and `FOR_BODY' return ! statements, while `FOR_COND' and `FOR_EXPR' return expressions. ! `HANDLER' ! Used to represent a C++ `catch' block. The `HANDLER_TYPE' is the type of exception that will be caught by this handler; it is equal ! (by pointer equality) to `NULL' if this handler is for all types. ! `HANDLER_PARMS' is the `DECL_STMT' for the catch parameter, and ! `HANDLER_BODY' is the code for the block itself. ! `IF_STMT' ! Used to represent an `if' statement. The `IF_COND' is the expression. ! If the condition is a `TREE_LIST', then the `TREE_PURPOSE' is a ! statement (usually a `DECL_STMT'). Each time the condition is evaluated, the statement should be executed. Then, the ! `TREE_VALUE' should be used as the conditional expression itself. This representation is used to handle C++ code like this: ! C++ distinguishes between this and `COND_EXPR' for handling templates. if (int i = 7) ... --- 13377,13463 ---- stmt = TREE_CHAIN (stmt); } } ! In other words, while the 'then' clause of an 'if' statement in C++ can ! be only one statement (although that one statement may be a compound ! statement), the intermediate representation will sometimes use several ! statements chained together. ! 'BREAK_STMT' ! ! Used to represent a 'break' statement. There are no additional fields. ! 'CLEANUP_STMT' ! Used to represent an action that should take place upon exit from the enclosing scope. Typically, these actions are calls to destructors for local objects, but back ends cannot rely on this fact. If these nodes are in fact representing such destructors, ! 'CLEANUP_DECL' will be the 'VAR_DECL' destroyed. Otherwise, ! 'CLEANUP_DECL' will be 'NULL_TREE'. In any case, the ! 'CLEANUP_EXPR' is the expression to execute. The cleanups executed ! on exit from a scope should be run in the reverse order of the ! order in which the associated 'CLEANUP_STMT's were encountered. ! 'CONTINUE_STMT' ! ! Used to represent a 'continue' statement. There are no additional fields. ! 'CTOR_STMT' ! Used to mark the beginning (if 'CTOR_BEGIN_P' holds) or end (if ! 'CTOR_END_P' holds of the main body of a constructor. See also ! 'SUBOBJECT' for more information on how to use these nodes. ! ! 'DO_STMT' ! ! Used to represent a 'do' loop. The body of the loop is given by ! 'DO_BODY' while the termination condition for the loop is given by ! 'DO_COND'. The condition for a 'do'-statement is always an expression. ! 'EMPTY_CLASS_EXPR' ! Used to represent a temporary object of a class with no data whose address is never taken. (All such objects are interchangeable.) ! The 'TREE_TYPE' represents the type of the object. ! 'EXPR_STMT' ! ! Used to represent an expression statement. Use 'EXPR_STMT_EXPR' to obtain the expression. ! 'FOR_STMT' ! ! Used to represent a 'for' statement. The 'FOR_INIT_STMT' is the ! initialization statement for the loop. The 'FOR_COND' is the ! termination condition. The 'FOR_EXPR' is the expression executed ! right before the 'FOR_COND' on each loop iteration; often, this expression increments a counter. The body of the loop is given by ! 'FOR_BODY'. Note that 'FOR_INIT_STMT' and 'FOR_BODY' return ! statements, while 'FOR_COND' and 'FOR_EXPR' return expressions. ! 'HANDLER' ! ! Used to represent a C++ 'catch' block. The 'HANDLER_TYPE' is the type of exception that will be caught by this handler; it is equal ! (by pointer equality) to 'NULL' if this handler is for all types. ! 'HANDLER_PARMS' is the 'DECL_STMT' for the catch parameter, and ! 'HANDLER_BODY' is the code for the block itself. ! 'IF_STMT' ! ! Used to represent an 'if' statement. The 'IF_COND' is the expression. ! If the condition is a 'TREE_LIST', then the 'TREE_PURPOSE' is a ! statement (usually a 'DECL_STMT'). Each time the condition is evaluated, the statement should be executed. Then, the ! 'TREE_VALUE' should be used as the conditional expression itself. This representation is used to handle C++ code like this: ! C++ distinguishes between this and 'COND_EXPR' for handling templates. if (int i = 7) ... *************** several statements chained together. *** 13625,13680 **** where there is a new local variable (or variables) declared within the condition. ! The `THEN_CLAUSE' represents the statement given by the `then' ! condition, while the `ELSE_CLAUSE' represents the statement given ! by the `else' condition. - `SUBOBJECT' In a constructor, these nodes are used to mark the point at which a ! subobject of `this' is fully constructed. If, after this point, an ! exception is thrown before a `CTOR_STMT' with `CTOR_END_P' set is ! encountered, the `SUBOBJECT_CLEANUP' must be executed. The cleanups must be executed in the reverse order in which they appear. ! `SWITCH_STMT' ! Used to represent a `switch' statement. The `SWITCH_STMT_COND' is the expression on which the switch is occurring. See the ! documentation for an `IF_STMT' for more information on the ! representation used for the condition. The `SWITCH_STMT_BODY' is ! the body of the switch statement. The `SWITCH_STMT_TYPE' is the original type of switch expression as given in the source, before any compiler conversions. ! `TRY_BLOCK' ! Used to represent a `try' block. The body of the try block is ! given by `TRY_STMTS'. Each of the catch blocks is a `HANDLER' ! node. The first handler is given by `TRY_HANDLERS'. Subsequent ! handlers are obtained by following the `TREE_CHAIN' link from one handler to the next. The body of the handler is given by ! `HANDLER_BODY'. ! If `CLEANUP_P' holds of the `TRY_BLOCK', then the `TRY_HANDLERS' ! will not be a `HANDLER' node. Instead, it will be an expression ! that should be executed if an exception is thrown in the try ! block. It must rethrow the exception after executing that code. ! And, if an exception is thrown while the expression is executing, ! `terminate' must be called. ! `USING_STMT' ! Used to represent a `using' directive. The namespace is given by ! `USING_STMT_NAMESPACE', which will be a NAMESPACE_DECL. This node is needed inside template functions, to implement using directives during instantiation. ! `WHILE_STMT' ! Used to represent a `while' loop. The `WHILE_COND' is the termination condition for the loop. See the documentation for an ! `IF_STMT' for more information on the representation used for the condition. ! The `WHILE_BODY' is the body of the loop. !  File: gccint.info, Node: C++ Expressions, Prev: Statements for C++, Up: C and C++ Trees --- 13465,13522 ---- where there is a new local variable (or variables) declared within the condition. ! The 'THEN_CLAUSE' represents the statement given by the 'then' ! condition, while the 'ELSE_CLAUSE' represents the statement given ! by the 'else' condition. ! ! 'SUBOBJECT' In a constructor, these nodes are used to mark the point at which a ! subobject of 'this' is fully constructed. If, after this point, an ! exception is thrown before a 'CTOR_STMT' with 'CTOR_END_P' set is ! encountered, the 'SUBOBJECT_CLEANUP' must be executed. The cleanups must be executed in the reverse order in which they appear. ! 'SWITCH_STMT' ! ! Used to represent a 'switch' statement. The 'SWITCH_STMT_COND' is the expression on which the switch is occurring. See the ! documentation for an 'IF_STMT' for more information on the ! representation used for the condition. The 'SWITCH_STMT_BODY' is ! the body of the switch statement. The 'SWITCH_STMT_TYPE' is the original type of switch expression as given in the source, before any compiler conversions. ! 'TRY_BLOCK' ! Used to represent a 'try' block. The body of the try block is ! given by 'TRY_STMTS'. Each of the catch blocks is a 'HANDLER' ! node. The first handler is given by 'TRY_HANDLERS'. Subsequent ! handlers are obtained by following the 'TREE_CHAIN' link from one handler to the next. The body of the handler is given by ! 'HANDLER_BODY'. ! If 'CLEANUP_P' holds of the 'TRY_BLOCK', then the 'TRY_HANDLERS' ! will not be a 'HANDLER' node. Instead, it will be an expression ! that should be executed if an exception is thrown in the try block. ! It must rethrow the exception after executing that code. And, if ! an exception is thrown while the expression is executing, ! 'terminate' must be called. ! 'USING_STMT' ! Used to represent a 'using' directive. The namespace is given by ! 'USING_STMT_NAMESPACE', which will be a NAMESPACE_DECL. This node is needed inside template functions, to implement using directives during instantiation. ! 'WHILE_STMT' ! ! Used to represent a 'while' loop. The 'WHILE_COND' is the termination condition for the loop. See the documentation for an ! 'IF_STMT' for more information on the representation used for the condition. ! The 'WHILE_BODY' is the body of the loop.  File: gccint.info, Node: C++ Expressions, Prev: Statements for C++, Up: C and C++ Trees *************** File: gccint.info, Node: C++ Expression *** 13684,13725 **** This section describes expressions specific to the C and C++ front ends. ! `TYPEID_EXPR' ! Used to represent a `typeid' expression. ! `NEW_EXPR' ! `VEC_NEW_EXPR' ! Used to represent a call to `new' and `new[]' respectively. ! `DELETE_EXPR' ! `VEC_DELETE_EXPR' ! Used to represent a call to `delete' and `delete[]' respectively. - `MEMBER_REF' Represents a reference to a member of a class. ! `THROW_EXPR' ! Represents an instance of `throw' in the program. Operand 0, ! which is the expression to throw, may be `NULL_TREE'. ! `AGGR_INIT_EXPR' ! An `AGGR_INIT_EXPR' represents the initialization as the return value of a function call, or as the result of a constructor. An ! `AGGR_INIT_EXPR' will only appear as a full-expression, or as the ! second operand of a `TARGET_EXPR'. `AGGR_INIT_EXPR's have a ! representation similar to that of `CALL_EXPR's. You can use the ! `AGGR_INIT_EXPR_FN' and `AGGR_INIT_EXPR_ARG' macros to access the function to call and the arguments to pass. ! If `AGGR_INIT_VIA_CTOR_P' holds of the `AGGR_INIT_EXPR', then the initialization is via a constructor call. The address of the ! `AGGR_INIT_EXPR_SLOT' operand, which is always a `VAR_DECL', is taken, and this value replaces the first argument in the argument list. In either case, the expression is void. -  File: gccint.info, Node: Java Trees, Prev: C and C++ Trees, Up: GENERIC --- 13526,13571 ---- This section describes expressions specific to the C and C++ front ends. ! 'TYPEID_EXPR' ! Used to represent a 'typeid' expression. ! 'NEW_EXPR' ! 'VEC_NEW_EXPR' ! ! Used to represent a call to 'new' and 'new[]' respectively. ! ! 'DELETE_EXPR' ! 'VEC_DELETE_EXPR' ! ! Used to represent a call to 'delete' and 'delete[]' respectively. ! ! 'MEMBER_REF' Represents a reference to a member of a class. ! 'THROW_EXPR' ! Represents an instance of 'throw' in the program. Operand 0, which ! is the expression to throw, may be 'NULL_TREE'. ! ! 'AGGR_INIT_EXPR' ! An 'AGGR_INIT_EXPR' represents the initialization as the return value of a function call, or as the result of a constructor. An ! 'AGGR_INIT_EXPR' will only appear as a full-expression, or as the ! second operand of a 'TARGET_EXPR'. 'AGGR_INIT_EXPR's have a ! representation similar to that of 'CALL_EXPR's. You can use the ! 'AGGR_INIT_EXPR_FN' and 'AGGR_INIT_EXPR_ARG' macros to access the function to call and the arguments to pass. ! If 'AGGR_INIT_VIA_CTOR_P' holds of the 'AGGR_INIT_EXPR', then the initialization is via a constructor call. The address of the ! 'AGGR_INIT_EXPR_SLOT' operand, which is always a 'VAR_DECL', is taken, and this value replaces the first argument in the argument list. In either case, the expression is void.  File: gccint.info, Node: Java Trees, Prev: C and C++ Trees, Up: GENERIC *************** File: gccint.info, Node: GIMPLE, Next: *** 13733,13794 **** ********* GIMPLE is a three-address representation derived from GENERIC by ! breaking down GENERIC expressions into tuples of no more than 3 ! operands (with some exceptions like function calls). GIMPLE was ! heavily influenced by the SIMPLE IL used by the McCAT compiler project ! at McGill University, though we have made some different choices. For ! one thing, SIMPLE doesn't support `goto'. Temporaries are introduced to hold intermediate values needed to ! compute complex expressions. Additionally, all the control structures used in GENERIC are lowered into conditional jumps, lexical scopes are removed and exception regions are converted into an on the side exception region tree. The compiler pass which converts GENERIC into GIMPLE is referred to as ! the `gimplifier'. The gimplifier works recursively, generating GIMPLE tuples out of the original GENERIC expressions. One of the early implementation strategies used for the GIMPLE representation was to use the same internal data structures used by ! front ends to represent parse trees. This simplified implementation because we could leverage existing functionality and interfaces. However, GIMPLE is a much more restrictive representation than abstract syntax trees (AST), therefore it does not require the full structural complexity provided by the main tree data structure. The GENERIC representation of a function is stored in the ! `DECL_SAVED_TREE' field of the associated `FUNCTION_DECL' tree node. ! It is converted to GIMPLE by a call to `gimplify_function_tree'. If a front end wants to include language-specific tree codes in the tree representation which it provides to the back end, it must provide a ! definition of `LANG_HOOKS_GIMPLIFY_EXPR' which knows how to convert the ! front end trees to GIMPLE. Usually such a hook will involve much of ! the same code for expanding front end trees to RTL. This function can return fully lowered GIMPLE, or it can return GENERIC trees and let the main gimplifier lower them the rest of the way; this is often simpler. GIMPLE that is not fully lowered is known as "High GIMPLE" and consists ! of the IL before the pass `pass_lower_cf'. High GIMPLE contains some ! container statements like lexical scopes (represented by `GIMPLE_BIND') ! and nested expressions (e.g., `GIMPLE_TRY'), while "Low GIMPLE" exposes ! all of the implicit jumps for control and exception expressions ! directly in the IL and EH region trees. The C and C++ front ends currently convert directly from front end trees to GIMPLE, and hand that off to the back end rather than first converting to GENERIC. Their gimplifier hooks know about all the ! `_STMT' nodes and how to convert them to GENERIC forms. There was some work done on a genericization pass which would run first, but the ! existence of `STMT_EXPR' meant that in order to convert all of the C statements into GENERIC equivalents would involve walking the entire tree anyway, so it was simpler to lower all the way. This might change in the future if someone writes an optimization pass which would work better with higher-level trees, but currently the optimizers all expect GIMPLE. ! You can request to dump a C-like representation of the GIMPLE form ! with the flag `-fdump-tree-gimple'. * Menu: --- 13579,13640 ---- ********* GIMPLE is a three-address representation derived from GENERIC by ! breaking down GENERIC expressions into tuples of no more than 3 operands ! (with some exceptions like function calls). GIMPLE was heavily ! influenced by the SIMPLE IL used by the McCAT compiler project at McGill ! University, though we have made some different choices. For one thing, ! SIMPLE doesn't support 'goto'. Temporaries are introduced to hold intermediate values needed to ! compute complex expressions. Additionally, all the control structures used in GENERIC are lowered into conditional jumps, lexical scopes are removed and exception regions are converted into an on the side exception region tree. The compiler pass which converts GENERIC into GIMPLE is referred to as ! the 'gimplifier'. The gimplifier works recursively, generating GIMPLE tuples out of the original GENERIC expressions. One of the early implementation strategies used for the GIMPLE representation was to use the same internal data structures used by ! front ends to represent parse trees. This simplified implementation because we could leverage existing functionality and interfaces. However, GIMPLE is a much more restrictive representation than abstract syntax trees (AST), therefore it does not require the full structural complexity provided by the main tree data structure. The GENERIC representation of a function is stored in the ! 'DECL_SAVED_TREE' field of the associated 'FUNCTION_DECL' tree node. It ! is converted to GIMPLE by a call to 'gimplify_function_tree'. If a front end wants to include language-specific tree codes in the tree representation which it provides to the back end, it must provide a ! definition of 'LANG_HOOKS_GIMPLIFY_EXPR' which knows how to convert the ! front end trees to GIMPLE. Usually such a hook will involve much of the ! same code for expanding front end trees to RTL. This function can return fully lowered GIMPLE, or it can return GENERIC trees and let the main gimplifier lower them the rest of the way; this is often simpler. GIMPLE that is not fully lowered is known as "High GIMPLE" and consists ! of the IL before the pass 'pass_lower_cf'. High GIMPLE contains some ! container statements like lexical scopes (represented by 'GIMPLE_BIND') ! and nested expressions (e.g., 'GIMPLE_TRY'), while "Low GIMPLE" exposes ! all of the implicit jumps for control and exception expressions directly ! in the IL and EH region trees. The C and C++ front ends currently convert directly from front end trees to GIMPLE, and hand that off to the back end rather than first converting to GENERIC. Their gimplifier hooks know about all the ! '_STMT' nodes and how to convert them to GENERIC forms. There was some work done on a genericization pass which would run first, but the ! existence of 'STMT_EXPR' meant that in order to convert all of the C statements into GENERIC equivalents would involve walking the entire tree anyway, so it was simpler to lower all the way. This might change in the future if someone writes an optimization pass which would work better with higher-level trees, but currently the optimizers all expect GIMPLE. ! You can request to dump a C-like representation of the GIMPLE form with ! the flag '-fdump-tree-gimple'. * Menu: *************** File: gccint.info, Node: Tuple represen *** 13810,13981 **** 12.1 Tuple representation ========================= ! GIMPLE instructions are tuples of variable size divided in two groups: ! a header describing the instruction and its locations, and a variable ! length body with all the operands. Tuples are organized into a hierarchy with 3 main classes of tuples. ! 12.1.1 `gimple_statement_base' (gsbase) --------------------------------------- This is the root of the hierarchy, it holds basic information needed by ! most GIMPLE statements. There are some fields that may not be relevant to every GIMPLE statement, but those were moved into the base structure to take advantage of holes left by other fields (thus making the structure more compact). The structure takes 4 words (32 bytes) on 64 bit hosts: Field Size (bits) ! `code' 8 ! `subcode' 16 ! `no_warning' 1 ! `visited' 1 ! `nontemporal_move' 1 ! `plf' 2 ! `modified' 1 ! `has_volatile_ops' 1 ! `references_memory_p' 1 ! `uid' 32 ! `location' 32 ! `num_ops' 32 ! `bb' 64 ! `block' 63 Total size 32 bytes ! * `code' Main identifier for a GIMPLE instruction. ! * `subcode' Used to distinguish different variants of the same basic ! instruction or provide flags applicable to a given code. The ! `subcode' flags field has different uses depending on the code of the instruction, but mostly it distinguishes instructions of the ! same family. The most prominent use of this field is in assignments, where subcode indicates the operation done on the RHS ! of the assignment. For example, a = b + c is encoded as ! `GIMPLE_ASSIGN '. ! * `no_warning' Bitflag to indicate whether a warning has already ! been issued on this statement. ! * `visited' General purpose "visited" marker. Set and cleared by each pass when needed. ! * `nontemporal_move' Bitflag used in assignments that represent non-temporal moves. Although this bitflag is only used in assignments, it was moved into the base to take advantage of the bit holes left by the previous fields. ! * `plf' Pass Local Flags. This 2-bit mask can be used as general ! purpose markers by any pass. Passes are responsible for clearing and setting these two flags accordingly. ! * `modified' Bitflag to indicate whether the statement has been modified. Used mainly by the operand scanner to determine when to re-scan a statement for operands. ! * `has_volatile_ops' Bitflag to indicate whether this statement contains operands that have been marked volatile. ! * `references_memory_p' Bitflag to indicate whether this statement contains memory references (i.e., its operands are either global variables, or pointer dereferences or anything that must reside in memory). ! * `uid' This is an unsigned integer used by passes that want to ! assign IDs to every statement. These IDs must be assigned and used by each pass. ! * `location' This is a `location_t' identifier to specify source code ! location for this statement. It is inherited from the front end. ! * `num_ops' Number of operands that this statement has. This specifies the size of the operand vector embedded in the tuple. Only used in some tuples, but it is declared in the base tuple to take advantage of the 32-bit hole left by the previous fields. ! * `bb' Basic block holding the instruction. ! * `block' Lexical block holding this statement. Also used for debug information generation. ! 12.1.2 `gimple_statement_with_ops' ---------------------------------- ! This tuple is actually split in two: `gimple_statement_with_ops_base' ! and `gimple_statement_with_ops'. This is needed to accommodate the way ! the operand vector is allocated. The operand vector is defined to be an ! array of 1 element. So, to allocate a dynamic number of operands, the ! memory allocator (`gimple_alloc') simply allocates enough memory to ! hold the structure itself plus `N - 1' operands which run "off the end" ! of the structure. For example, to allocate space for a tuple with 3 ! operands, `gimple_alloc' reserves `sizeof (struct gimple_statement_with_ops) + 2 * sizeof (tree)' bytes. On the other hand, several fields in this tuple need to be shared with ! the `gimple_statement_with_memory_ops' tuple. So, these common fields ! are placed in `gimple_statement_with_ops_base' which is then inherited from the other two tuples. ! `gsbase' 256 ! `def_ops' 64 ! `use_ops' 64 ! `op' `num_ops' * 64 ! Total size 48 + 8 * `num_ops' bytes ! * `gsbase' Inherited from `struct gimple_statement_base'. ! * `def_ops' Array of pointers into the operand array indicating all the slots that contain a variable written-to by the statement. ! This array is also used for immediate use chaining. Note that it would be possible to not rely on this array, but the changes required to implement this are pretty invasive. ! * `use_ops' Similar to `def_ops' but for variables read by the statement. ! * `op' Array of trees with `num_ops' slots. ! 12.1.3 `gimple_statement_with_memory_ops' ----------------------------------------- ! This tuple is essentially identical to `gimple_statement_with_ops', except that it contains 4 additional fields to hold vectors related ! memory stores and loads. Similar to the previous case, the structure ! is split in two to accommodate for the operand vector ! (`gimple_statement_with_memory_ops_base' and ! `gimple_statement_with_memory_ops'). Field Size (bits) ! `gsbase' 256 ! `def_ops' 64 ! `use_ops' 64 ! `vdef_ops' 64 ! `vuse_ops' 64 ! `stores' 64 ! `loads' 64 ! `op' `num_ops' * 64 ! Total size 80 + 8 * `num_ops' bytes ! * `vdef_ops' Similar to `def_ops' but for `VDEF' operators. There is ! one entry per memory symbol written by this statement. This is used to maintain the memory SSA use-def and def-def chains. ! * `vuse_ops' Similar to `use_ops' but for `VUSE' operators. There is ! one entry per memory symbol loaded by this statement. This is used to maintain the memory SSA use-def chains. ! * `stores' Bitset with all the UIDs for the symbols written-to by the ! statement. This is different than `vdef_ops' in that all the ! affected symbols are mentioned in this set. If memory ! partitioning is enabled, the `vdef_ops' vector will refer to memory ! partitions. Furthermore, no SSA information is stored in this set. ! * `loads' Similar to `stores', but for memory loads. (Note that there ! is some amount of redundancy here, it should be possible to reduce ! memory utilization further by removing these sets). All the other tuples are defined in terms of these three basic ones. ! Each tuple will add some fields. The main gimple type is defined to be ! the union of all these structures (`GTY' markers elided for clarity): union gimple_statement_d { --- 13656,13828 ---- 12.1 Tuple representation ========================= ! GIMPLE instructions are tuples of variable size divided in two groups: a ! header describing the instruction and its locations, and a variable ! length body with all the operands. Tuples are organized into a hierarchy with 3 main classes of tuples. ! 12.1.1 'gimple_statement_base' (gsbase) --------------------------------------- This is the root of the hierarchy, it holds basic information needed by ! most GIMPLE statements. There are some fields that may not be relevant to every GIMPLE statement, but those were moved into the base structure to take advantage of holes left by other fields (thus making the structure more compact). The structure takes 4 words (32 bytes) on 64 bit hosts: Field Size (bits) ! 'code' 8 ! 'subcode' 16 ! 'no_warning' 1 ! 'visited' 1 ! 'nontemporal_move' 1 ! 'plf' 2 ! 'modified' 1 ! 'has_volatile_ops' 1 ! 'references_memory_p' 1 ! 'uid' 32 ! 'location' 32 ! 'num_ops' 32 ! 'bb' 64 ! 'block' 63 Total size 32 bytes ! * 'code' Main identifier for a GIMPLE instruction. ! * 'subcode' Used to distinguish different variants of the same basic ! instruction or provide flags applicable to a given code. The ! 'subcode' flags field has different uses depending on the code of the instruction, but mostly it distinguishes instructions of the ! same family. The most prominent use of this field is in assignments, where subcode indicates the operation done on the RHS ! of the assignment. For example, a = b + c is encoded as ! 'GIMPLE_ASSIGN '. ! * 'no_warning' Bitflag to indicate whether a warning has already been ! issued on this statement. ! * 'visited' General purpose "visited" marker. Set and cleared by each pass when needed. ! * 'nontemporal_move' Bitflag used in assignments that represent non-temporal moves. Although this bitflag is only used in assignments, it was moved into the base to take advantage of the bit holes left by the previous fields. ! * 'plf' Pass Local Flags. This 2-bit mask can be used as general ! purpose markers by any pass. Passes are responsible for clearing and setting these two flags accordingly. ! * 'modified' Bitflag to indicate whether the statement has been modified. Used mainly by the operand scanner to determine when to re-scan a statement for operands. ! * 'has_volatile_ops' Bitflag to indicate whether this statement contains operands that have been marked volatile. ! * 'references_memory_p' Bitflag to indicate whether this statement contains memory references (i.e., its operands are either global variables, or pointer dereferences or anything that must reside in memory). ! * 'uid' This is an unsigned integer used by passes that want to ! assign IDs to every statement. These IDs must be assigned and used by each pass. ! * 'location' This is a 'location_t' identifier to specify source code ! location for this statement. It is inherited from the front end. ! * 'num_ops' Number of operands that this statement has. This specifies the size of the operand vector embedded in the tuple. Only used in some tuples, but it is declared in the base tuple to take advantage of the 32-bit hole left by the previous fields. ! * 'bb' Basic block holding the instruction. ! * 'block' Lexical block holding this statement. Also used for debug information generation. ! 12.1.2 'gimple_statement_with_ops' ---------------------------------- ! This tuple is actually split in two: 'gimple_statement_with_ops_base' ! and 'gimple_statement_with_ops'. This is needed to accommodate the way ! the operand vector is allocated. The operand vector is defined to be an ! array of 1 element. So, to allocate a dynamic number of operands, the ! memory allocator ('gimple_alloc') simply allocates enough memory to hold ! the structure itself plus 'N - 1' operands which run "off the end" of ! the structure. For example, to allocate space for a tuple with 3 ! operands, 'gimple_alloc' reserves 'sizeof (struct gimple_statement_with_ops) + 2 * sizeof (tree)' bytes. On the other hand, several fields in this tuple need to be shared with ! the 'gimple_statement_with_memory_ops' tuple. So, these common fields ! are placed in 'gimple_statement_with_ops_base' which is then inherited from the other two tuples. ! 'gsbase' 256 ! 'def_ops' 64 ! 'use_ops' 64 ! 'op' 'num_ops' * 64 ! Total 48 + 8 * 'num_ops' bytes ! size ! * 'gsbase' Inherited from 'struct gimple_statement_base'. ! * 'def_ops' Array of pointers into the operand array indicating all the slots that contain a variable written-to by the statement. ! This array is also used for immediate use chaining. Note that it would be possible to not rely on this array, but the changes required to implement this are pretty invasive. ! * 'use_ops' Similar to 'def_ops' but for variables read by the statement. ! * 'op' Array of trees with 'num_ops' slots. ! 12.1.3 'gimple_statement_with_memory_ops' ----------------------------------------- ! This tuple is essentially identical to 'gimple_statement_with_ops', except that it contains 4 additional fields to hold vectors related ! memory stores and loads. Similar to the previous case, the structure is ! split in two to accommodate for the operand vector ! ('gimple_statement_with_memory_ops_base' and ! 'gimple_statement_with_memory_ops'). Field Size (bits) ! 'gsbase' 256 ! 'def_ops' 64 ! 'use_ops' 64 ! 'vdef_ops' 64 ! 'vuse_ops' 64 ! 'stores' 64 ! 'loads' 64 ! 'op' 'num_ops' * 64 ! Total size 80 + 8 * 'num_ops' bytes ! * 'vdef_ops' Similar to 'def_ops' but for 'VDEF' operators. There is ! one entry per memory symbol written by this statement. This is used to maintain the memory SSA use-def and def-def chains. ! * 'vuse_ops' Similar to 'use_ops' but for 'VUSE' operators. There is ! one entry per memory symbol loaded by this statement. This is used to maintain the memory SSA use-def chains. ! * 'stores' Bitset with all the UIDs for the symbols written-to by the ! statement. This is different than 'vdef_ops' in that all the ! affected symbols are mentioned in this set. If memory partitioning ! is enabled, the 'vdef_ops' vector will refer to memory partitions. ! Furthermore, no SSA information is stored in this set. ! * 'loads' Similar to 'stores', but for memory loads. (Note that ! there is some amount of redundancy here, it should be possible to ! reduce memory utilization further by removing these sets). All the other tuples are defined in terms of these three basic ones. ! Each tuple will add some fields. The main gimple type is defined to be ! the union of all these structures ('GTY' markers elided for clarity): union gimple_statement_d { *************** File: gccint.info, Node: GIMPLE instruc *** 14011,14045 **** The following table briefly describes the GIMPLE instruction set. Instruction High GIMPLE Low GIMPLE ! `GIMPLE_ASM' x x ! `GIMPLE_ASSIGN' x x ! `GIMPLE_BIND' x ! `GIMPLE_CALL' x x ! `GIMPLE_CATCH' x ! `GIMPLE_COND' x x ! `GIMPLE_DEBUG' x x ! `GIMPLE_EH_FILTER' x ! `GIMPLE_GOTO' x x ! `GIMPLE_LABEL' x x ! `GIMPLE_NOP' x x ! `GIMPLE_OMP_ATOMIC_LOAD' x x ! `GIMPLE_OMP_ATOMIC_STORE' x x ! `GIMPLE_OMP_CONTINUE' x x ! `GIMPLE_OMP_CRITICAL' x x ! `GIMPLE_OMP_FOR' x x ! `GIMPLE_OMP_MASTER' x x ! `GIMPLE_OMP_ORDERED' x x ! `GIMPLE_OMP_PARALLEL' x x ! `GIMPLE_OMP_RETURN' x x ! `GIMPLE_OMP_SECTION' x x ! `GIMPLE_OMP_SECTIONS' x x ! `GIMPLE_OMP_SECTIONS_SWITCH' x x ! `GIMPLE_OMP_SINGLE' x x ! `GIMPLE_PHI' x ! `GIMPLE_RESX' x ! `GIMPLE_RETURN' x x ! `GIMPLE_SWITCH' x x ! `GIMPLE_TRY' x  File: gccint.info, Node: GIMPLE Exception Handling, Next: Temporaries, Prev: GIMPLE instruction set, Up: GIMPLE --- 13858,13892 ---- The following table briefly describes the GIMPLE instruction set. Instruction High GIMPLE Low GIMPLE ! 'GIMPLE_ASM' x x ! 'GIMPLE_ASSIGN' x x ! 'GIMPLE_BIND' x ! 'GIMPLE_CALL' x x ! 'GIMPLE_CATCH' x ! 'GIMPLE_COND' x x ! 'GIMPLE_DEBUG' x x ! 'GIMPLE_EH_FILTER' x ! 'GIMPLE_GOTO' x x ! 'GIMPLE_LABEL' x x ! 'GIMPLE_NOP' x x ! 'GIMPLE_OMP_ATOMIC_LOAD' x x ! 'GIMPLE_OMP_ATOMIC_STORE' x x ! 'GIMPLE_OMP_CONTINUE' x x ! 'GIMPLE_OMP_CRITICAL' x x ! 'GIMPLE_OMP_FOR' x x ! 'GIMPLE_OMP_MASTER' x x ! 'GIMPLE_OMP_ORDERED' x x ! 'GIMPLE_OMP_PARALLEL' x x ! 'GIMPLE_OMP_RETURN' x x ! 'GIMPLE_OMP_SECTION' x x ! 'GIMPLE_OMP_SECTIONS' x x ! 'GIMPLE_OMP_SECTIONS_SWITCH' x x ! 'GIMPLE_OMP_SINGLE' x x ! 'GIMPLE_PHI' x ! 'GIMPLE_RESX' x ! 'GIMPLE_RETURN' x x ! 'GIMPLE_SWITCH' x x ! 'GIMPLE_TRY' x  File: gccint.info, Node: GIMPLE Exception Handling, Next: Temporaries, Prev: GIMPLE instruction set, Up: GIMPLE *************** File: gccint.info, Node: GIMPLE Excepti *** 14048,14086 **** ======================= Other exception handling constructs are represented using ! `GIMPLE_TRY_CATCH'. `GIMPLE_TRY_CATCH' has two operands. The first operand is a sequence of statements to execute. If executing these statements does not throw an exception, then the second operand is ignored. Otherwise, if an exception is thrown, then the second operand ! of the `GIMPLE_TRY_CATCH' is checked. The second operand may have the following forms: 1. A sequence of statements to execute. When an exception occurs, these statements are executed, and then the exception is rethrown. ! 2. A sequence of `GIMPLE_CATCH' statements. Each `GIMPLE_CATCH' has ! a list of applicable exception types and handler code. If the ! thrown exception matches one of the caught types, the associated ! handler code is executed. If the handler code falls off the ! bottom, execution continues after the original `GIMPLE_TRY_CATCH'. ! 3. A `GIMPLE_EH_FILTER' statement. This has a list of permitted ! exception types, and code to handle a match failure. If the ! thrown exception does not match one of the allowed types, the ! associated match failure code is executed. If the thrown exception ! does match, it continues unwinding the stack looking for the next handler. - Currently throwing an exception is not directly represented in GIMPLE, since it is implemented by calling a function. At some point in the future we will want to add some way to express that the call will throw an exception of a known type. Just before running the optimizers, the compiler lowers the high-level ! EH constructs above into a set of `goto's, magic labels, and EH ! regions. Continuing to unwind at the end of a cleanup is represented ! with a `GIMPLE_RESX'.  File: gccint.info, Node: Temporaries, Next: Operands, Prev: GIMPLE Exception Handling, Up: GIMPLE --- 13895,13932 ---- ======================= Other exception handling constructs are represented using ! 'GIMPLE_TRY_CATCH'. 'GIMPLE_TRY_CATCH' has two operands. The first operand is a sequence of statements to execute. If executing these statements does not throw an exception, then the second operand is ignored. Otherwise, if an exception is thrown, then the second operand ! of the 'GIMPLE_TRY_CATCH' is checked. The second operand may have the following forms: 1. A sequence of statements to execute. When an exception occurs, these statements are executed, and then the exception is rethrown. ! 2. A sequence of 'GIMPLE_CATCH' statements. Each 'GIMPLE_CATCH' has a ! list of applicable exception types and handler code. If the thrown ! exception matches one of the caught types, the associated handler ! code is executed. If the handler code falls off the bottom, ! execution continues after the original 'GIMPLE_TRY_CATCH'. ! 3. A 'GIMPLE_EH_FILTER' statement. This has a list of permitted ! exception types, and code to handle a match failure. If the thrown ! exception does not match one of the allowed types, the associated ! match failure code is executed. If the thrown exception does ! match, it continues unwinding the stack looking for the next handler. Currently throwing an exception is not directly represented in GIMPLE, since it is implemented by calling a function. At some point in the future we will want to add some way to express that the call will throw an exception of a known type. Just before running the optimizers, the compiler lowers the high-level ! EH constructs above into a set of 'goto's, magic labels, and EH regions. ! Continuing to unwind at the end of a cleanup is represented with a ! 'GIMPLE_RESX'.  File: gccint.info, Node: Temporaries, Next: Operands, Prev: GIMPLE Exception Handling, Up: GIMPLE *************** File: gccint.info, Node: Temporaries, *** 14089,14107 **** ================ When gimplification encounters a subexpression that is too complex, it ! creates a new temporary variable to hold the value of the ! subexpression, and adds a new statement to initialize it before the ! current statement. These special temporaries are known as `expression ! temporaries', and are allocated using `get_formal_tmp_var'. The ! compiler tries to always evaluate identical expressions into the same ! temporary, to simplify elimination of redundant calculations. ! We can only use expression temporaries when we know that it will not ! be reevaluated before its value is used, and that it will not be ! otherwise modified(1). Other temporaries can be allocated using ! `get_initialized_tmp_var' or `create_tmp_var'. ! Currently, an expression like `a = b + 5' is not reduced any further. We tried converting it to something like T1 = b + 5; a = T1; --- 13935,13953 ---- ================ When gimplification encounters a subexpression that is too complex, it ! creates a new temporary variable to hold the value of the subexpression, ! and adds a new statement to initialize it before the current statement. ! These special temporaries are known as 'expression temporaries', and are ! allocated using 'get_formal_tmp_var'. The compiler tries to always ! evaluate identical expressions into the same temporary, to simplify ! elimination of redundant calculations. ! We can only use expression temporaries when we know that it will not be ! reevaluated before its value is used, and that it will not be otherwise ! modified(1). Other temporaries can be allocated using ! 'get_initialized_tmp_var' or 'create_tmp_var'. ! Currently, an expression like 'a = b + 5' is not reduced any further. We tried converting it to something like T1 = b + 5; a = T1; *************** value is explicitly loaded into a tempor *** 14111,14119 **** the value of an expression to a memory variable goes through a temporary. ! ---------- Footnotes ---------- ! (1) These restrictions are derived from those in Morgan 4.8.  File: gccint.info, Node: Operands, Next: Manipulating GIMPLE statements, Prev: Temporaries, Up: GIMPLE --- 13957,13965 ---- the value of an expression to a memory variable goes through a temporary. ! ---------- Footnotes ---------- ! (1) These restrictions are derived from those in Morgan 4.8.  File: gccint.info, Node: Operands, Next: Manipulating GIMPLE statements, Prev: Temporaries, Up: GIMPLE *************** File: gccint.info, Node: Operands, Nex *** 14123,14140 **** In general, expressions in GIMPLE consist of an operation and the appropriate number of simple operands; these operands must either be a ! GIMPLE rvalue (`is_gimple_val'), i.e. a constant or a register ! variable. More complex operands are factored out into temporaries, so ! that a = b + c + d becomes T1 = b + c; a = T1 + d; ! The same rule holds for arguments to a `GIMPLE_CALL'. The target of an assignment is usually a variable, but can also be a ! `MEM_REF' or a compound lvalue as described below. * Menu: --- 13969,13985 ---- In general, expressions in GIMPLE consist of an operation and the appropriate number of simple operands; these operands must either be a ! GIMPLE rvalue ('is_gimple_val'), i.e. a constant or a register variable. ! More complex operands are factored out into temporaries, so that a = b + c + d becomes T1 = b + c; a = T1 + d; ! The same rule holds for arguments to a 'GIMPLE_CALL'. The target of an assignment is usually a variable, but can also be a ! 'MEM_REF' or a compound lvalue as described below. * Menu: *************** File: gccint.info, Node: Compound Lvalu *** 14159,14165 **** ----------------------- Currently compound lvalues involving array and structure field ! references are not broken down; an expression like `a.b[2] = 42' is not reduced any further (though complex array subscripts are). This restriction is a workaround for limitations in later optimizers; if we were to convert this to --- 14004,14010 ---- ----------------------- Currently compound lvalues involving array and structure field ! references are not broken down; an expression like 'a.b[2] = 42' is not reduced any further (though complex array subscripts are). This restriction is a workaround for limitations in later optimizers; if we were to convert this to *************** were to convert this to *** 14167,14175 **** T1 = &a.b; T1[2] = 42; ! alias analysis would not remember that the reference to `T1[2]' came ! by way of `a.b', so it would think that the assignment could alias ! another member of `a'; this broke `struct-alias-1.c'. Future optimizer improvements may make this limitation unnecessary.  --- 14012,14020 ---- T1 = &a.b; T1[2] = 42; ! alias analysis would not remember that the reference to 'T1[2]' came by ! way of 'a.b', so it would think that the assignment could alias another ! member of 'a'; this broke 'struct-alias-1.c'. Future optimizer improvements may make this limitation unnecessary.  *************** File: gccint.info, Node: Conditional Ex *** 14178,14185 **** 12.5.3 Conditional Expressions ------------------------------ ! A C `?:' expression is converted into an `if' statement with each ! branch assigning to the same temporary. So, a = b ? c : d; becomes --- 14023,14030 ---- 12.5.3 Conditional Expressions ------------------------------ ! A C '?:' expression is converted into an 'if' statement with each branch ! assigning to the same temporary. So, a = b ? c : d; becomes *************** branch assigning to the same temporary. *** 14189,14200 **** T1 = d; a = T1; ! The GIMPLE level if-conversion pass re-introduces `?:' expression, if ! appropriate. It is used to vectorize loops with conditions using vector conditional operations. ! Note that in GIMPLE, `if' statements are represented using ! `GIMPLE_COND', as described below.  File: gccint.info, Node: Logical Operators, Prev: Conditional Expressions, Up: Operands --- 14034,14045 ---- T1 = d; a = T1; ! The GIMPLE level if-conversion pass re-introduces '?:' expression, if ! appropriate. It is used to vectorize loops with conditions using vector conditional operations. ! Note that in GIMPLE, 'if' statements are represented using ! 'GIMPLE_COND', as described below.  File: gccint.info, Node: Logical Operators, Prev: Conditional Expressions, Up: Operands *************** File: gccint.info, Node: Logical Operat *** 14202,14254 **** 12.5.4 Logical Operators ------------------------ ! Except when they appear in the condition operand of a `GIMPLE_COND', ! logical `and' and `or' operators are simplified as follows: `a = b && ! c' becomes T1 = (bool)b; if (T1 == true) T1 = (bool)c; a = T1; ! Note that `T1' in this example cannot be an expression temporary, because it has two different assignments. 12.5.5 Manipulating operands ---------------------------- ! All gimple operands are of type `tree'. But only certain types of ! trees are allowed to be used as operand tuples. Basic validation is ! controlled by the function `get_gimple_rhs_class', which given a tree ! code, returns an `enum' with the following values of type `enum gimple_rhs_class' ! * `GIMPLE_INVALID_RHS' The tree cannot be used as a GIMPLE operand. ! * `GIMPLE_TERNARY_RHS' The tree is a valid GIMPLE ternary operation. ! * `GIMPLE_BINARY_RHS' The tree is a valid GIMPLE binary operation. ! * `GIMPLE_UNARY_RHS' The tree is a valid GIMPLE unary operation. ! * `GIMPLE_SINGLE_RHS' The tree is a single object, that cannot be ! split into simpler operands (for instance, `SSA_NAME', `VAR_DECL', ! `COMPONENT_REF', etc). ! This operand class also acts as an escape hatch for tree nodes ! that may be flattened out into the operand vector, but would need ! more than two slots on the RHS. For instance, a `COND_EXPR' ! expression of the form `(a op b) ? x : y' could be flattened out ! on the operand vector using 4 slots, but it would also require ! additional processing to distinguish `c = a op b' from `c = a op b ! ? x : y'. Something similar occurs with `ASSERT_EXPR'. In time, ! these special case tree expressions should be flattened into the ! operand vector. ! For tree nodes in the categories `GIMPLE_TERNARY_RHS', ! `GIMPLE_BINARY_RHS' and `GIMPLE_UNARY_RHS', they cannot be stored ! inside tuples directly. They first need to be flattened and separated ! into individual components. For instance, given the GENERIC expression a = b + c --- 14047,14099 ---- 12.5.4 Logical Operators ------------------------ ! Except when they appear in the condition operand of a 'GIMPLE_COND', ! logical 'and' and 'or' operators are simplified as follows: 'a = b && c' ! becomes T1 = (bool)b; if (T1 == true) T1 = (bool)c; a = T1; ! Note that 'T1' in this example cannot be an expression temporary, because it has two different assignments. 12.5.5 Manipulating operands ---------------------------- ! All gimple operands are of type 'tree'. But only certain types of trees ! are allowed to be used as operand tuples. Basic validation is ! controlled by the function 'get_gimple_rhs_class', which given a tree ! code, returns an 'enum' with the following values of type 'enum gimple_rhs_class' ! * 'GIMPLE_INVALID_RHS' The tree cannot be used as a GIMPLE operand. ! * 'GIMPLE_TERNARY_RHS' The tree is a valid GIMPLE ternary operation. ! * 'GIMPLE_BINARY_RHS' The tree is a valid GIMPLE binary operation. ! * 'GIMPLE_UNARY_RHS' The tree is a valid GIMPLE unary operation. ! * 'GIMPLE_SINGLE_RHS' The tree is a single object, that cannot be ! split into simpler operands (for instance, 'SSA_NAME', 'VAR_DECL', ! 'COMPONENT_REF', etc). ! This operand class also acts as an escape hatch for tree nodes that ! may be flattened out into the operand vector, but would need more ! than two slots on the RHS. For instance, a 'COND_EXPR' expression ! of the form '(a op b) ? x : y' could be flattened out on the ! operand vector using 4 slots, but it would also require additional ! processing to distinguish 'c = a op b' from 'c = a op b ? x : y'. ! Something similar occurs with 'ASSERT_EXPR'. In time, these ! special case tree expressions should be flattened into the operand ! vector. ! For tree nodes in the categories 'GIMPLE_TERNARY_RHS', ! 'GIMPLE_BINARY_RHS' and 'GIMPLE_UNARY_RHS', they cannot be stored inside ! tuples directly. They first need to be flattened and separated into ! individual components. For instance, given the GENERIC expression a = b + c *************** into individual components. For instanc *** 14256,14298 **** MODIFY_EXPR , PLUS_EXPR , VAR_DECL >> ! In this case, the GIMPLE form for this statement is logically ! identical to its GENERIC form but in GIMPLE, the `PLUS_EXPR' on the RHS ! of the assignment is not represented as a tree, instead the two ! operands are taken out of the `PLUS_EXPR' sub-tree and flattened into ! the GIMPLE tuple as follows: GIMPLE_ASSIGN , VAR_DECL , VAR_DECL > 12.5.6 Operand vector allocation -------------------------------- ! The operand vector is stored at the bottom of the three tuple ! structures that accept operands. This means, that depending on the code ! of a given statement, its operand vector will be at different offsets ! from the base of the structure. To access tuple operands use the ! following accessors -- GIMPLE function: unsigned gimple_num_ops (gimple g) Returns the number of operands in statement G. -- GIMPLE function: tree gimple_op (gimple g, unsigned i) ! Returns operand `I' from statement `G'. -- GIMPLE function: tree * gimple_ops (gimple g) ! Returns a pointer into the operand vector for statement `G'. This ! is computed using an internal table called `gimple_ops_offset_'[]. ! This table is indexed by the gimple code of `G'. ! When the compiler is built, this table is filled-in using the ! sizes of the structures used by each statement code defined in gimple.def. Since the operand vector is at the bottom of the ! structure, for a gimple code `C' the offset is computed as sizeof ! (struct-of `C') - sizeof (tree). This mechanism adds one memory indirection to every access when ! using `gimple_op'(), if this becomes a bottleneck, a pass can ! choose to memoize the result from `gimple_ops'() and use that to access the operands. 12.5.7 Operand validation --- 14101,14142 ---- MODIFY_EXPR , PLUS_EXPR , VAR_DECL >> ! In this case, the GIMPLE form for this statement is logically identical ! to its GENERIC form but in GIMPLE, the 'PLUS_EXPR' on the RHS of the ! assignment is not represented as a tree, instead the two operands are ! taken out of the 'PLUS_EXPR' sub-tree and flattened into the GIMPLE ! tuple as follows: GIMPLE_ASSIGN , VAR_DECL , VAR_DECL > 12.5.6 Operand vector allocation -------------------------------- ! The operand vector is stored at the bottom of the three tuple structures ! that accept operands. This means, that depending on the code of a given ! statement, its operand vector will be at different offsets from the base ! of the structure. To access tuple operands use the following accessors -- GIMPLE function: unsigned gimple_num_ops (gimple g) Returns the number of operands in statement G. -- GIMPLE function: tree gimple_op (gimple g, unsigned i) ! Returns operand 'I' from statement 'G'. -- GIMPLE function: tree * gimple_ops (gimple g) ! Returns a pointer into the operand vector for statement 'G'. This ! is computed using an internal table called 'gimple_ops_offset_'[]. ! This table is indexed by the gimple code of 'G'. ! When the compiler is built, this table is filled-in using the sizes ! of the structures used by each statement code defined in gimple.def. Since the operand vector is at the bottom of the ! structure, for a gimple code 'C' the offset is computed as sizeof ! (struct-of 'C') - sizeof (tree). This mechanism adds one memory indirection to every access when ! using 'gimple_op'(), if this becomes a bottleneck, a pass can ! choose to memoize the result from 'gimple_ops'() and use that to access the operands. 12.5.7 Operand validation *************** following accessors *** 14300,14366 **** When adding a new operand to a gimple statement, the operand will be validated according to what each tuple accepts in its operand vector. ! These predicates are called by the `gimple_NAME_set_...()'. Each tuple will use one of the following predicates (Note, this list is not exhaustive): -- GIMPLE function: bool is_gimple_val (tree t) Returns true if t is a "GIMPLE value", which are all the non-addressable stack variables (variables for which ! `is_gimple_reg' returns true) and constants (expressions for which ! `is_gimple_min_invariant' returns true). -- GIMPLE function: bool is_gimple_addressable (tree t) ! Returns true if t is a symbol or memory reference whose address ! can be taken. -- GIMPLE function: bool is_gimple_asm_val (tree t) ! Similar to `is_gimple_val' but it also accepts hard registers. -- GIMPLE function: bool is_gimple_call_addr (tree t) Return true if t is a valid expression to use as the function ! called by a `GIMPLE_CALL'. -- GIMPLE function: bool is_gimple_mem_ref_addr (tree t) ! Return true if t is a valid expression to use as first operand of ! a `MEM_REF' expression. -- GIMPLE function: bool is_gimple_constant (tree t) Return true if t is a valid gimple constant. -- GIMPLE function: bool is_gimple_min_invariant (tree t) Return true if t is a valid minimal invariant. This is different ! from constants, in that the specific value of t may not be known ! at compile time, but it is known that it doesn't change (e.g., the address of a function local variable). -- GIMPLE function: bool is_gimple_ip_invariant (tree t) Return true if t is an interprocedural invariant. This means that ! t is a valid invariant in all functions (e.g. it can be an address of a global variable but not of a local one). -- GIMPLE function: bool is_gimple_ip_invariant_address (tree t) ! Return true if t is an `ADDR_EXPR' that does not change once the program is running (and which is valid in all functions). 12.5.8 Statement validation --------------------------- -- GIMPLE function: bool is_gimple_assign (gimple g) ! Return true if the code of g is `GIMPLE_ASSIGN'. -- GIMPLE function: bool is_gimple_call (gimple g) ! Return true if the code of g is `GIMPLE_CALL'. -- GIMPLE function: bool is_gimple_debug (gimple g) ! Return true if the code of g is `GIMPLE_DEBUG'. -- GIMPLE function: bool gimple_assign_cast_p (gimple g) ! Return true if g is a `GIMPLE_ASSIGN' that performs a type cast operation. -- GIMPLE function: bool gimple_debug_bind_p (gimple g) ! Return true if g is a `GIMPLE_DEBUG' that binds the value of an expression to a variable.  --- 14144,14210 ---- When adding a new operand to a gimple statement, the operand will be validated according to what each tuple accepts in its operand vector. ! These predicates are called by the 'gimple_NAME_set_...()'. Each tuple will use one of the following predicates (Note, this list is not exhaustive): -- GIMPLE function: bool is_gimple_val (tree t) Returns true if t is a "GIMPLE value", which are all the non-addressable stack variables (variables for which ! 'is_gimple_reg' returns true) and constants (expressions for which ! 'is_gimple_min_invariant' returns true). -- GIMPLE function: bool is_gimple_addressable (tree t) ! Returns true if t is a symbol or memory reference whose address can ! be taken. -- GIMPLE function: bool is_gimple_asm_val (tree t) ! Similar to 'is_gimple_val' but it also accepts hard registers. -- GIMPLE function: bool is_gimple_call_addr (tree t) Return true if t is a valid expression to use as the function ! called by a 'GIMPLE_CALL'. -- GIMPLE function: bool is_gimple_mem_ref_addr (tree t) ! Return true if t is a valid expression to use as first operand of a ! 'MEM_REF' expression. -- GIMPLE function: bool is_gimple_constant (tree t) Return true if t is a valid gimple constant. -- GIMPLE function: bool is_gimple_min_invariant (tree t) Return true if t is a valid minimal invariant. This is different ! from constants, in that the specific value of t may not be known at ! compile time, but it is known that it doesn't change (e.g., the address of a function local variable). -- GIMPLE function: bool is_gimple_ip_invariant (tree t) Return true if t is an interprocedural invariant. This means that ! t is a valid invariant in all functions (e.g. it can be an address of a global variable but not of a local one). -- GIMPLE function: bool is_gimple_ip_invariant_address (tree t) ! Return true if t is an 'ADDR_EXPR' that does not change once the program is running (and which is valid in all functions). 12.5.8 Statement validation --------------------------- -- GIMPLE function: bool is_gimple_assign (gimple g) ! Return true if the code of g is 'GIMPLE_ASSIGN'. -- GIMPLE function: bool is_gimple_call (gimple g) ! Return true if the code of g is 'GIMPLE_CALL'. -- GIMPLE function: bool is_gimple_debug (gimple g) ! Return true if the code of g is 'GIMPLE_DEBUG'. -- GIMPLE function: bool gimple_assign_cast_p (gimple g) ! Return true if g is a 'GIMPLE_ASSIGN' that performs a type cast operation. -- GIMPLE function: bool gimple_debug_bind_p (gimple g) ! Return true if g is a 'GIMPLE_DEBUG' that binds the value of an expression to a variable.  *************** File: gccint.info, Node: Manipulating G *** 14369,14376 **** 12.6 Manipulating GIMPLE statements =================================== ! This section documents all the functions available to handle each of ! the GIMPLE instructions. 12.6.1 Common accessors ----------------------- --- 14213,14220 ---- 12.6 Manipulating GIMPLE statements =================================== ! This section documents all the functions available to handle each of the ! GIMPLE instructions. 12.6.1 Common accessors ----------------------- *************** the GIMPLE instructions. *** 14378,14516 **** The following are common accessors for gimple statements. -- GIMPLE function: enum gimple_code gimple_code (gimple g) ! Return the code for statement `G'. -- GIMPLE function: basic_block gimple_bb (gimple g) ! Return the basic block to which statement `G' belongs to. -- GIMPLE function: tree gimple_block (gimple g) ! Return the lexical scope block holding statement `G'. -- GIMPLE function: tree gimple_expr_type (gimple stmt) ! Return the type of the main expression computed by `STMT'. Return ! `void_type_node' if `STMT' computes nothing. This will only return ! something meaningful for `GIMPLE_ASSIGN', `GIMPLE_COND' and ! `GIMPLE_CALL'. For all other tuple codes, it will return ! `void_type_node'. -- GIMPLE function: enum tree_code gimple_expr_code (gimple stmt) ! Return the tree code for the expression computed by `STMT'. This ! is only meaningful for `GIMPLE_CALL', `GIMPLE_ASSIGN' and ! `GIMPLE_COND'. If `STMT' is `GIMPLE_CALL', it will return ! `CALL_EXPR'. For `GIMPLE_COND', it returns the code of the ! comparison predicate. For `GIMPLE_ASSIGN' it returns the code of ! the operation performed by the `RHS' of the assignment. -- GIMPLE function: void gimple_set_block (gimple g, tree block) ! Set the lexical scope block of `G' to `BLOCK'. -- GIMPLE function: location_t gimple_locus (gimple g) ! Return locus information for statement `G'. -- GIMPLE function: void gimple_set_locus (gimple g, location_t locus) ! Set locus information for statement `G'. -- GIMPLE function: bool gimple_locus_empty_p (gimple g) ! Return true if `G' does not have locus information. -- GIMPLE function: bool gimple_no_warning_p (gimple stmt) ! Return true if no warnings should be emitted for statement `STMT'. -- GIMPLE function: void gimple_set_visited (gimple stmt, bool visited_p) ! Set the visited status on statement `STMT' to `VISITED_P'. -- GIMPLE function: bool gimple_visited_p (gimple stmt) ! Return the visited status on statement `STMT'. -- GIMPLE function: void gimple_set_plf (gimple stmt, enum plf_mask plf, bool val_p) ! Set pass local flag `PLF' on statement `STMT' to `VAL_P'. ! -- GIMPLE function: unsigned int gimple_plf (gimple stmt, enum ! plf_mask plf) ! Return the value of pass local flag `PLF' on statement `STMT'. -- GIMPLE function: bool gimple_has_ops (gimple g) ! Return true if statement `G' has register or memory operands. -- GIMPLE function: bool gimple_has_mem_ops (gimple g) ! Return true if statement `G' has memory operands. -- GIMPLE function: unsigned gimple_num_ops (gimple g) ! Return the number of operands for statement `G'. -- GIMPLE function: tree * gimple_ops (gimple g) ! Return the array of operands for statement `G'. -- GIMPLE function: tree gimple_op (gimple g, unsigned i) ! Return operand `I' for statement `G'. -- GIMPLE function: tree * gimple_op_ptr (gimple g, unsigned i) ! Return a pointer to operand `I' for statement `G'. -- GIMPLE function: void gimple_set_op (gimple g, unsigned i, tree op) ! Set operand `I' of statement `G' to `OP'. -- GIMPLE function: bitmap gimple_addresses_taken (gimple stmt) Return the set of symbols that have had their address taken by ! `STMT'. -- GIMPLE function: struct def_optype_d * gimple_def_ops (gimple g) ! Return the set of `DEF' operands for statement `G'. -- GIMPLE function: void gimple_set_def_ops (gimple g, struct def_optype_d *def) ! Set `DEF' to be the set of `DEF' operands for statement `G'. -- GIMPLE function: struct use_optype_d * gimple_use_ops (gimple g) ! Return the set of `USE' operands for statement `G'. -- GIMPLE function: void gimple_set_use_ops (gimple g, struct use_optype_d *use) ! Set `USE' to be the set of `USE' operands for statement `G'. -- GIMPLE function: struct voptype_d * gimple_vuse_ops (gimple g) ! Return the set of `VUSE' operands for statement `G'. -- GIMPLE function: void gimple_set_vuse_ops (gimple g, struct voptype_d *ops) ! Set `OPS' to be the set of `VUSE' operands for statement `G'. -- GIMPLE function: struct voptype_d * gimple_vdef_ops (gimple g) ! Return the set of `VDEF' operands for statement `G'. -- GIMPLE function: void gimple_set_vdef_ops (gimple g, struct voptype_d *ops) ! Set `OPS' to be the set of `VDEF' operands for statement `G'. -- GIMPLE function: bitmap gimple_loaded_syms (gimple g) ! Return the set of symbols loaded by statement `G'. Each element of ! the set is the `DECL_UID' of the corresponding symbol. -- GIMPLE function: bitmap gimple_stored_syms (gimple g) ! Return the set of symbols stored by statement `G'. Each element of ! the set is the `DECL_UID' of the corresponding symbol. -- GIMPLE function: bool gimple_modified_p (gimple g) ! Return true if statement `G' has operands and the modified field has been set. -- GIMPLE function: bool gimple_has_volatile_ops (gimple stmt) ! Return true if statement `STMT' contains volatile operands. ! -- GIMPLE function: void gimple_set_has_volatile_ops (gimple stmt, ! bool volatilep) ! Return true if statement `STMT' contains volatile operands. -- GIMPLE function: void update_stmt (gimple s) ! Mark statement `S' as modified, and update it. -- GIMPLE function: void update_stmt_if_modified (gimple s) ! Update statement `S' if it has been marked modified. -- GIMPLE function: gimple gimple_copy (gimple stmt) ! Return a deep copy of statement `STMT'.  File: gccint.info, Node: Tuple specific accessors, Next: GIMPLE sequences, Prev: Manipulating GIMPLE statements, Up: GIMPLE --- 14222,14360 ---- The following are common accessors for gimple statements. -- GIMPLE function: enum gimple_code gimple_code (gimple g) ! Return the code for statement 'G'. -- GIMPLE function: basic_block gimple_bb (gimple g) ! Return the basic block to which statement 'G' belongs to. -- GIMPLE function: tree gimple_block (gimple g) ! Return the lexical scope block holding statement 'G'. -- GIMPLE function: tree gimple_expr_type (gimple stmt) ! Return the type of the main expression computed by 'STMT'. Return ! 'void_type_node' if 'STMT' computes nothing. This will only return ! something meaningful for 'GIMPLE_ASSIGN', 'GIMPLE_COND' and ! 'GIMPLE_CALL'. For all other tuple codes, it will return ! 'void_type_node'. -- GIMPLE function: enum tree_code gimple_expr_code (gimple stmt) ! Return the tree code for the expression computed by 'STMT'. This ! is only meaningful for 'GIMPLE_CALL', 'GIMPLE_ASSIGN' and ! 'GIMPLE_COND'. If 'STMT' is 'GIMPLE_CALL', it will return ! 'CALL_EXPR'. For 'GIMPLE_COND', it returns the code of the ! comparison predicate. For 'GIMPLE_ASSIGN' it returns the code of ! the operation performed by the 'RHS' of the assignment. -- GIMPLE function: void gimple_set_block (gimple g, tree block) ! Set the lexical scope block of 'G' to 'BLOCK'. -- GIMPLE function: location_t gimple_locus (gimple g) ! Return locus information for statement 'G'. -- GIMPLE function: void gimple_set_locus (gimple g, location_t locus) ! Set locus information for statement 'G'. -- GIMPLE function: bool gimple_locus_empty_p (gimple g) ! Return true if 'G' does not have locus information. -- GIMPLE function: bool gimple_no_warning_p (gimple stmt) ! Return true if no warnings should be emitted for statement 'STMT'. -- GIMPLE function: void gimple_set_visited (gimple stmt, bool visited_p) ! Set the visited status on statement 'STMT' to 'VISITED_P'. -- GIMPLE function: bool gimple_visited_p (gimple stmt) ! Return the visited status on statement 'STMT'. -- GIMPLE function: void gimple_set_plf (gimple stmt, enum plf_mask plf, bool val_p) ! Set pass local flag 'PLF' on statement 'STMT' to 'VAL_P'. ! -- GIMPLE function: unsigned int gimple_plf (gimple stmt, enum plf_mask ! plf) ! Return the value of pass local flag 'PLF' on statement 'STMT'. -- GIMPLE function: bool gimple_has_ops (gimple g) ! Return true if statement 'G' has register or memory operands. -- GIMPLE function: bool gimple_has_mem_ops (gimple g) ! Return true if statement 'G' has memory operands. -- GIMPLE function: unsigned gimple_num_ops (gimple g) ! Return the number of operands for statement 'G'. -- GIMPLE function: tree * gimple_ops (gimple g) ! Return the array of operands for statement 'G'. -- GIMPLE function: tree gimple_op (gimple g, unsigned i) ! Return operand 'I' for statement 'G'. -- GIMPLE function: tree * gimple_op_ptr (gimple g, unsigned i) ! Return a pointer to operand 'I' for statement 'G'. -- GIMPLE function: void gimple_set_op (gimple g, unsigned i, tree op) ! Set operand 'I' of statement 'G' to 'OP'. -- GIMPLE function: bitmap gimple_addresses_taken (gimple stmt) Return the set of symbols that have had their address taken by ! 'STMT'. -- GIMPLE function: struct def_optype_d * gimple_def_ops (gimple g) ! Return the set of 'DEF' operands for statement 'G'. -- GIMPLE function: void gimple_set_def_ops (gimple g, struct def_optype_d *def) ! Set 'DEF' to be the set of 'DEF' operands for statement 'G'. -- GIMPLE function: struct use_optype_d * gimple_use_ops (gimple g) ! Return the set of 'USE' operands for statement 'G'. -- GIMPLE function: void gimple_set_use_ops (gimple g, struct use_optype_d *use) ! Set 'USE' to be the set of 'USE' operands for statement 'G'. -- GIMPLE function: struct voptype_d * gimple_vuse_ops (gimple g) ! Return the set of 'VUSE' operands for statement 'G'. -- GIMPLE function: void gimple_set_vuse_ops (gimple g, struct voptype_d *ops) ! Set 'OPS' to be the set of 'VUSE' operands for statement 'G'. -- GIMPLE function: struct voptype_d * gimple_vdef_ops (gimple g) ! Return the set of 'VDEF' operands for statement 'G'. -- GIMPLE function: void gimple_set_vdef_ops (gimple g, struct voptype_d *ops) ! Set 'OPS' to be the set of 'VDEF' operands for statement 'G'. -- GIMPLE function: bitmap gimple_loaded_syms (gimple g) ! Return the set of symbols loaded by statement 'G'. Each element of ! the set is the 'DECL_UID' of the corresponding symbol. -- GIMPLE function: bitmap gimple_stored_syms (gimple g) ! Return the set of symbols stored by statement 'G'. Each element of ! the set is the 'DECL_UID' of the corresponding symbol. -- GIMPLE function: bool gimple_modified_p (gimple g) ! Return true if statement 'G' has operands and the modified field has been set. -- GIMPLE function: bool gimple_has_volatile_ops (gimple stmt) ! Return true if statement 'STMT' contains volatile operands. ! -- GIMPLE function: void gimple_set_has_volatile_ops (gimple stmt, bool ! volatilep) ! Return true if statement 'STMT' contains volatile operands. -- GIMPLE function: void update_stmt (gimple s) ! Mark statement 'S' as modified, and update it. -- GIMPLE function: void update_stmt_if_modified (gimple s) ! Update statement 'S' if it has been marked modified. -- GIMPLE function: gimple gimple_copy (gimple stmt) ! Return a deep copy of statement 'STMT'.  File: gccint.info, Node: Tuple specific accessors, Next: GIMPLE sequences, Prev: Manipulating GIMPLE statements, Up: GIMPLE *************** File: gccint.info, Node: Tuple specific *** 14520,14568 **** * Menu: ! * `GIMPLE_ASM':: ! * `GIMPLE_ASSIGN':: ! * `GIMPLE_BIND':: ! * `GIMPLE_CALL':: ! * `GIMPLE_CATCH':: ! * `GIMPLE_COND':: ! * `GIMPLE_DEBUG':: ! * `GIMPLE_EH_FILTER':: ! * `GIMPLE_LABEL':: ! * `GIMPLE_NOP':: ! * `GIMPLE_OMP_ATOMIC_LOAD':: ! * `GIMPLE_OMP_ATOMIC_STORE':: ! * `GIMPLE_OMP_CONTINUE':: ! * `GIMPLE_OMP_CRITICAL':: ! * `GIMPLE_OMP_FOR':: ! * `GIMPLE_OMP_MASTER':: ! * `GIMPLE_OMP_ORDERED':: ! * `GIMPLE_OMP_PARALLEL':: ! * `GIMPLE_OMP_RETURN':: ! * `GIMPLE_OMP_SECTION':: ! * `GIMPLE_OMP_SECTIONS':: ! * `GIMPLE_OMP_SINGLE':: ! * `GIMPLE_PHI':: ! * `GIMPLE_RESX':: ! * `GIMPLE_RETURN':: ! * `GIMPLE_SWITCH':: ! * `GIMPLE_TRY':: ! * `GIMPLE_WITH_CLEANUP_EXPR'::  ! File: gccint.info, Node: `GIMPLE_ASM', Next: `GIMPLE_ASSIGN', Up: Tuple specific accessors ! 12.7.1 `GIMPLE_ASM' ------------------- -- GIMPLE function: gimple gimple_build_asm (const char *string, ninputs, noutputs, nclobbers, ...) ! Build a `GIMPLE_ASM' statement. This statement is used for ! building in-line assembly constructs. `STRING' is the assembly ! code. `NINPUT' is the number of register inputs. `NOUTPUT' is the ! number of register outputs. `NCLOBBERS' is the number of clobbered ! registers. The rest of the arguments trees for each input, ! output, and clobbered registers. -- GIMPLE function: gimple gimple_build_asm_vec (const char *, VEC(tree,gc) *, VEC(tree,gc) *, VEC(tree,gc) *) --- 14364,14412 ---- * Menu: ! * 'GIMPLE_ASM':: ! * 'GIMPLE_ASSIGN':: ! * 'GIMPLE_BIND':: ! * 'GIMPLE_CALL':: ! * 'GIMPLE_CATCH':: ! * 'GIMPLE_COND':: ! * 'GIMPLE_DEBUG':: ! * 'GIMPLE_EH_FILTER':: ! * 'GIMPLE_LABEL':: ! * 'GIMPLE_NOP':: ! * 'GIMPLE_OMP_ATOMIC_LOAD':: ! * 'GIMPLE_OMP_ATOMIC_STORE':: ! * 'GIMPLE_OMP_CONTINUE':: ! * 'GIMPLE_OMP_CRITICAL':: ! * 'GIMPLE_OMP_FOR':: ! * 'GIMPLE_OMP_MASTER':: ! * 'GIMPLE_OMP_ORDERED':: ! * 'GIMPLE_OMP_PARALLEL':: ! * 'GIMPLE_OMP_RETURN':: ! * 'GIMPLE_OMP_SECTION':: ! * 'GIMPLE_OMP_SECTIONS':: ! * 'GIMPLE_OMP_SINGLE':: ! * 'GIMPLE_PHI':: ! * 'GIMPLE_RESX':: ! * 'GIMPLE_RETURN':: ! * 'GIMPLE_SWITCH':: ! * 'GIMPLE_TRY':: ! * 'GIMPLE_WITH_CLEANUP_EXPR'::  ! File: gccint.info, Node: 'GIMPLE_ASM', Next: 'GIMPLE_ASSIGN', Up: Tuple specific accessors ! 12.7.1 'GIMPLE_ASM' ------------------- -- GIMPLE function: gimple gimple_build_asm (const char *string, ninputs, noutputs, nclobbers, ...) ! Build a 'GIMPLE_ASM' statement. This statement is used for ! building in-line assembly constructs. 'STRING' is the assembly ! code. 'NINPUT' is the number of register inputs. 'NOUTPUT' is the ! number of register outputs. 'NCLOBBERS' is the number of clobbered ! registers. The rest of the arguments trees for each input, output, ! and clobbered registers. -- GIMPLE function: gimple gimple_build_asm_vec (const char *, VEC(tree,gc) *, VEC(tree,gc) *, VEC(tree,gc) *) *************** File: gccint.info, Node: `GIMPLE_ASM', *** 14570,15146 **** VECs. -- GIMPLE function: unsigned gimple_asm_ninputs (gimple g) ! Return the number of input operands for `GIMPLE_ASM' `G'. -- GIMPLE function: unsigned gimple_asm_noutputs (gimple g) ! Return the number of output operands for `GIMPLE_ASM' `G'. -- GIMPLE function: unsigned gimple_asm_nclobbers (gimple g) ! Return the number of clobber operands for `GIMPLE_ASM' `G'. -- GIMPLE function: tree gimple_asm_input_op (gimple g, unsigned index) ! Return input operand `INDEX' of `GIMPLE_ASM' `G'. -- GIMPLE function: void gimple_asm_set_input_op (gimple g, unsigned index, tree in_op) ! Set `IN_OP' to be input operand `INDEX' in `GIMPLE_ASM' `G'. -- GIMPLE function: tree gimple_asm_output_op (gimple g, unsigned index) ! Return output operand `INDEX' of `GIMPLE_ASM' `G'. -- GIMPLE function: void gimple_asm_set_output_op (gimple g, unsigned index, tree out_op) ! Set `OUT_OP' to be output operand `INDEX' in `GIMPLE_ASM' `G'. -- GIMPLE function: tree gimple_asm_clobber_op (gimple g, unsigned index) ! Return clobber operand `INDEX' of `GIMPLE_ASM' `G'. -- GIMPLE function: void gimple_asm_set_clobber_op (gimple g, unsigned index, tree clobber_op) ! Set `CLOBBER_OP' to be clobber operand `INDEX' in `GIMPLE_ASM' `G'. -- GIMPLE function: const char * gimple_asm_string (gimple g) Return the string representing the assembly instruction in ! `GIMPLE_ASM' `G'. -- GIMPLE function: bool gimple_asm_volatile_p (gimple g) ! Return true if `G' is an asm statement marked volatile. -- GIMPLE function: void gimple_asm_set_volatile (gimple g) ! Mark asm statement `G' as volatile. -- GIMPLE function: void gimple_asm_clear_volatile (gimple g) ! Remove volatile marker from asm statement `G'.  ! File: gccint.info, Node: `GIMPLE_ASSIGN', Next: `GIMPLE_BIND', Prev: `GIMPLE_ASM', Up: Tuple specific accessors ! 12.7.2 `GIMPLE_ASSIGN' ---------------------- -- GIMPLE function: gimple gimple_build_assign (tree lhs, tree rhs) ! Build a `GIMPLE_ASSIGN' statement. The left-hand side is an lvalue ! passed in lhs. The right-hand side can be either a unary or ! binary tree expression. The expression tree rhs will be flattened ! and its operands assigned to the corresponding operand slots in ! the new statement. This function is useful when you already have ! a tree expression that you want to convert into a tuple. However, ! try to avoid building expression trees for the sole purpose of ! calling this function. If you already have the operands in ! separate trees, it is better to use `gimple_build_assign_with_ops'. -- GIMPLE function: gimple gimplify_assign (tree dst, tree src, gimple_seq *seq_p) ! Build a new `GIMPLE_ASSIGN' tuple and append it to the end of ! `*SEQ_P'. ! `DST'/`SRC' are the destination and source respectively. You can pass ! ungimplified trees in `DST' or `SRC', in which case they will be converted to a gimple operand if necessary. ! This function returns the newly created `GIMPLE_ASSIGN' tuple. ! -- GIMPLE function: gimple gimple_build_assign_with_ops (enum ! tree_code subcode, tree lhs, tree op1, tree op2) ! This function is similar to `gimple_build_assign', but is used to ! build a `GIMPLE_ASSIGN' statement when the operands of the right-hand side of the assignment are already split into different operands. The left-hand side is an lvalue passed in lhs. Subcode is the ! `tree_code' for the right-hand side of the assignment. Op1 and op2 ! are the operands. If op2 is null, subcode must be a `tree_code' for a unary expression. -- GIMPLE function: enum tree_code gimple_assign_rhs_code (gimple g) ! Return the code of the expression computed on the `RHS' of ! assignment statement `G'. -- GIMPLE function: enum gimple_rhs_class gimple_assign_rhs_class (gimple g) ! Return the gimple rhs class of the code for the expression ! computed on the rhs of assignment statement `G'. This will never ! return `GIMPLE_INVALID_RHS'. -- GIMPLE function: tree gimple_assign_lhs (gimple g) ! Return the `LHS' of assignment statement `G'. -- GIMPLE function: tree * gimple_assign_lhs_ptr (gimple g) ! Return a pointer to the `LHS' of assignment statement `G'. -- GIMPLE function: tree gimple_assign_rhs1 (gimple g) ! Return the first operand on the `RHS' of assignment statement `G'. -- GIMPLE function: tree * gimple_assign_rhs1_ptr (gimple g) ! Return the address of the first operand on the `RHS' of assignment ! statement `G'. -- GIMPLE function: tree gimple_assign_rhs2 (gimple g) ! Return the second operand on the `RHS' of assignment statement `G'. -- GIMPLE function: tree * gimple_assign_rhs2_ptr (gimple g) ! Return the address of the second operand on the `RHS' of assignment ! statement `G'. -- GIMPLE function: tree gimple_assign_rhs3 (gimple g) ! Return the third operand on the `RHS' of assignment statement `G'. -- GIMPLE function: tree * gimple_assign_rhs3_ptr (gimple g) ! Return the address of the third operand on the `RHS' of assignment ! statement `G'. -- GIMPLE function: void gimple_assign_set_lhs (gimple g, tree lhs) ! Set `LHS' to be the `LHS' operand of assignment statement `G'. -- GIMPLE function: void gimple_assign_set_rhs1 (gimple g, tree rhs) ! Set `RHS' to be the first operand on the `RHS' of assignment ! statement `G'. -- GIMPLE function: void gimple_assign_set_rhs2 (gimple g, tree rhs) ! Set `RHS' to be the second operand on the `RHS' of assignment ! statement `G'. -- GIMPLE function: void gimple_assign_set_rhs3 (gimple g, tree rhs) ! Set `RHS' to be the third operand on the `RHS' of assignment ! statement `G'. -- GIMPLE function: bool gimple_assign_cast_p (gimple s) ! Return true if `S' is a type-cast assignment.  ! File: gccint.info, Node: `GIMPLE_BIND', Next: `GIMPLE_CALL', Prev: `GIMPLE_ASSIGN', Up: Tuple specific accessors ! 12.7.3 `GIMPLE_BIND' -------------------- -- GIMPLE function: gimple gimple_build_bind (tree vars, gimple_seq body) ! Build a `GIMPLE_BIND' statement with a list of variables in `VARS' ! and a body of statements in sequence `BODY'. -- GIMPLE function: tree gimple_bind_vars (gimple g) ! Return the variables declared in the `GIMPLE_BIND' statement `G'. -- GIMPLE function: void gimple_bind_set_vars (gimple g, tree vars) ! Set `VARS' to be the set of variables declared in the `GIMPLE_BIND' ! statement `G'. -- GIMPLE function: void gimple_bind_append_vars (gimple g, tree vars) ! Append `VARS' to the set of variables declared in the `GIMPLE_BIND' ! statement `G'. -- GIMPLE function: gimple_seq gimple_bind_body (gimple g) ! Return the GIMPLE sequence contained in the `GIMPLE_BIND' statement ! `G'. -- GIMPLE function: void gimple_bind_set_body (gimple g, gimple_seq seq) ! Set `SEQ' to be sequence contained in the `GIMPLE_BIND' statement ! `G'. -- GIMPLE function: void gimple_bind_add_stmt (gimple gs, gimple stmt) ! Append a statement to the end of a `GIMPLE_BIND''s body. -- GIMPLE function: void gimple_bind_add_seq (gimple gs, gimple_seq seq) ! Append a sequence of statements to the end of a `GIMPLE_BIND''s body. -- GIMPLE function: tree gimple_bind_block (gimple g) ! Return the `TREE_BLOCK' node associated with `GIMPLE_BIND' ! statement `G'. This is analogous to the `BIND_EXPR_BLOCK' field in trees. -- GIMPLE function: void gimple_bind_set_block (gimple g, tree block) ! Set `BLOCK' to be the `TREE_BLOCK' node associated with ! `GIMPLE_BIND' statement `G'.  ! File: gccint.info, Node: `GIMPLE_CALL', Next: `GIMPLE_CATCH', Prev: `GIMPLE_BIND', Up: Tuple specific accessors ! 12.7.4 `GIMPLE_CALL' -------------------- -- GIMPLE function: gimple gimple_build_call (tree fn, unsigned nargs, ...) ! Build a `GIMPLE_CALL' statement to function `FN'. The argument ! `FN' must be either a `FUNCTION_DECL' or a gimple call address as ! determined by `is_gimple_call_addr'. `NARGS' are the number of ! arguments. The rest of the arguments follow the argument `NARGS', and must be trees that are valid as rvalues in gimple (i.e., each ! operand is validated with `is_gimple_operand'). -- GIMPLE function: gimple gimple_build_call_from_tree (tree call_expr) ! Build a `GIMPLE_CALL' from a `CALL_EXPR' node. The arguments and the function are taken from the expression directly. This routine ! assumes that `call_expr' is already in GIMPLE form. That is, its operands are GIMPLE values and the function call needs no further ! simplification. All the call flags in `call_expr' are copied over ! to the new `GIMPLE_CALL'. ! -- GIMPLE function: gimple gimple_build_call_vec (tree fn, `VEC'(tree, heap) *args) ! Identical to `gimple_build_call' but the arguments are stored in a ! `VEC'(). -- GIMPLE function: tree gimple_call_lhs (gimple g) ! Return the `LHS' of call statement `G'. -- GIMPLE function: tree * gimple_call_lhs_ptr (gimple g) ! Return a pointer to the `LHS' of call statement `G'. -- GIMPLE function: void gimple_call_set_lhs (gimple g, tree lhs) ! Set `LHS' to be the `LHS' operand of call statement `G'. -- GIMPLE function: tree gimple_call_fn (gimple g) Return the tree node representing the function called by call ! statement `G'. -- GIMPLE function: void gimple_call_set_fn (gimple g, tree fn) ! Set `FN' to be the function called by call statement `G'. This has to be a gimple value specifying the address of the called function. -- GIMPLE function: tree gimple_call_fndecl (gimple g) ! If a given `GIMPLE_CALL''s callee is a `FUNCTION_DECL', return it. ! Otherwise return `NULL'. This function is analogous to ! `get_callee_fndecl' in `GENERIC'. -- GIMPLE function: tree gimple_call_set_fndecl (gimple g, tree fndecl) ! Set the called function to `FNDECL'. -- GIMPLE function: tree gimple_call_return_type (gimple g) ! Return the type returned by call statement `G'. -- GIMPLE function: tree gimple_call_chain (gimple g) ! Return the static chain for call statement `G'. -- GIMPLE function: void gimple_call_set_chain (gimple g, tree chain) ! Set `CHAIN' to be the static chain for call statement `G'. -- GIMPLE function: unsigned gimple_call_num_args (gimple g) ! Return the number of arguments used by call statement `G'. -- GIMPLE function: tree gimple_call_arg (gimple g, unsigned index) ! Return the argument at position `INDEX' for call statement `G'. The first argument is 0. -- GIMPLE function: tree * gimple_call_arg_ptr (gimple g, unsigned index) ! Return a pointer to the argument at position `INDEX' for call ! statement `G'. ! -- GIMPLE function: void gimple_call_set_arg (gimple g, unsigned ! index, tree arg) ! Set `ARG' to be the argument at position `INDEX' for call statement ! `G'. -- GIMPLE function: void gimple_call_set_tail (gimple s) ! Mark call statement `S' as being a tail call (i.e., a call just ! before the exit of a function). These calls are candidate for tail call optimization. -- GIMPLE function: bool gimple_call_tail_p (gimple s) ! Return true if `GIMPLE_CALL' `S' is marked as a tail call. -- GIMPLE function: void gimple_call_mark_uninlinable (gimple s) ! Mark `GIMPLE_CALL' `S' as being uninlinable. -- GIMPLE function: bool gimple_call_cannot_inline_p (gimple s) ! Return true if `GIMPLE_CALL' `S' cannot be inlined. -- GIMPLE function: bool gimple_call_noreturn_p (gimple s) ! Return true if `S' is a noreturn call. -- GIMPLE function: gimple gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip) ! Build a `GIMPLE_CALL' identical to `STMT' but skipping the ! arguments in the positions marked by the set `ARGS_TO_SKIP'.  ! File: gccint.info, Node: `GIMPLE_CATCH', Next: `GIMPLE_COND', Prev: `GIMPLE_CALL', Up: Tuple specific accessors ! 12.7.5 `GIMPLE_CATCH' --------------------- -- GIMPLE function: gimple gimple_build_catch (tree types, gimple_seq handler) ! Build a `GIMPLE_CATCH' statement. `TYPES' are the tree types this ! catch handles. `HANDLER' is a sequence of statements with the code for the handler. -- GIMPLE function: tree gimple_catch_types (gimple g) ! Return the types handled by `GIMPLE_CATCH' statement `G'. -- GIMPLE function: tree * gimple_catch_types_ptr (gimple g) ! Return a pointer to the types handled by `GIMPLE_CATCH' statement ! `G'. -- GIMPLE function: gimple_seq gimple_catch_handler (gimple g) Return the GIMPLE sequence representing the body of the handler of ! `GIMPLE_CATCH' statement `G'. -- GIMPLE function: void gimple_catch_set_types (gimple g, tree t) ! Set `T' to be the set of types handled by `GIMPLE_CATCH' `G'. ! -- GIMPLE function: void gimple_catch_set_handler (gimple g, ! gimple_seq handler) ! Set `HANDLER' to be the body of `GIMPLE_CATCH' `G'.  ! File: gccint.info, Node: `GIMPLE_COND', Next: `GIMPLE_DEBUG', Prev: `GIMPLE_CATCH', Up: Tuple specific accessors ! 12.7.6 `GIMPLE_COND' -------------------- ! -- GIMPLE function: gimple gimple_build_cond (enum tree_code ! pred_code, tree lhs, tree rhs, tree t_label, tree f_label) ! Build a `GIMPLE_COND' statement. `A' `GIMPLE_COND' statement ! compares `LHS' and `RHS' and if the condition in `PRED_CODE' is ! true, jump to the label in `t_label', otherwise jump to the label ! in `f_label'. `PRED_CODE' are relational operator tree codes like ! `EQ_EXPR', `LT_EXPR', `LE_EXPR', `NE_EXPR', etc. ! -- GIMPLE function: gimple gimple_build_cond_from_tree (tree cond, ! tree t_label, tree f_label) ! Build a `GIMPLE_COND' statement from the conditional expression ! tree `COND'. `T_LABEL' and `F_LABEL' are as in ! `gimple_build_cond'. -- GIMPLE function: enum tree_code gimple_cond_code (gimple g) Return the code of the predicate computed by conditional statement ! `G'. ! -- GIMPLE function: void gimple_cond_set_code (gimple g, enum ! tree_code code) ! Set `CODE' to be the predicate code for the conditional statement ! `G'. -- GIMPLE function: tree gimple_cond_lhs (gimple g) ! Return the `LHS' of the predicate computed by conditional statement ! `G'. -- GIMPLE function: void gimple_cond_set_lhs (gimple g, tree lhs) ! Set `LHS' to be the `LHS' operand of the predicate computed by ! conditional statement `G'. -- GIMPLE function: tree gimple_cond_rhs (gimple g) ! Return the `RHS' operand of the predicate computed by conditional ! `G'. -- GIMPLE function: void gimple_cond_set_rhs (gimple g, tree rhs) ! Set `RHS' to be the `RHS' operand of the predicate computed by ! conditional statement `G'. -- GIMPLE function: tree gimple_cond_true_label (gimple g) ! Return the label used by conditional statement `G' when its predicate evaluates to true. -- GIMPLE function: void gimple_cond_set_true_label (gimple g, tree label) ! Set `LABEL' to be the label used by conditional statement `G' when its predicate evaluates to true. -- GIMPLE function: void gimple_cond_set_false_label (gimple g, tree label) ! Set `LABEL' to be the label used by conditional statement `G' when its predicate evaluates to false. -- GIMPLE function: tree gimple_cond_false_label (gimple g) ! Return the label used by conditional statement `G' when its predicate evaluates to false. -- GIMPLE function: void gimple_cond_make_false (gimple g) ! Set the conditional `COND_STMT' to be of the form 'if (1 == 0)'. -- GIMPLE function: void gimple_cond_make_true (gimple g) ! Set the conditional `COND_STMT' to be of the form 'if (1 == 1)'.  ! File: gccint.info, Node: `GIMPLE_DEBUG', Next: `GIMPLE_EH_FILTER', Prev: `GIMPLE_COND', Up: Tuple specific accessors ! 12.7.7 `GIMPLE_DEBUG' --------------------- -- GIMPLE function: gimple gimple_build_debug_bind (tree var, tree value, gimple stmt) ! Build a `GIMPLE_DEBUG' statement with `GIMPLE_DEBUG_BIND' of ! `subcode'. The effect of this statement is to tell debug information generation machinery that the value of user variable ! `var' is given by `value' at that point, and to remain with that ! value until `var' runs out of scope, a dynamically-subsequent ! debug bind statement overrides the binding, or conflicting values ! reach a control flow merge point. Even if components of the ! `value' expression change afterwards, the variable is supposed to ! retain the same value, though not necessarily the same location. ! It is expected that `var' be most often a tree for automatic user ! variables (`VAR_DECL' or `PARM_DECL') that satisfy the ! requirements for gimple registers, but it may also be a tree for a ! scalarized component of a user variable (`ARRAY_REF', ! `COMPONENT_REF'), or a debug temporary (`DEBUG_EXPR_DECL'). ! As for `value', it can be an arbitrary tree expression, but it is recommended that it be in a suitable form for a gimple assignment ! `RHS'. It is not expected that user variables that could appear ! as `var' ever appear in `value', because in the latter we'd have ! their `SSA_NAME's instead, but even if they were not in SSA form, ! user variables appearing in `value' are to be regarded as part of ! the executable code space, whereas those in `var' are to be ! regarded as part of the source code space. There is no way to ! refer to the value bound to a user variable within a `value' ! expression. ! If `value' is `GIMPLE_DEBUG_BIND_NOVALUE', debug information ! generation machinery is informed that the variable `var' is unbound, i.e., that its value is indeterminate, which sometimes means it is really unavailable, and other times that the compiler could not keep track of it. ! Block and location information for the newly-created stmt are ! taken from `stmt', if given. -- GIMPLE function: tree gimple_debug_bind_get_var (gimple stmt) ! Return the user variable VAR that is bound at `stmt'. -- GIMPLE function: tree gimple_debug_bind_get_value (gimple stmt) Return the value expression that is bound to a user variable at ! `stmt'. -- GIMPLE function: tree * gimple_debug_bind_get_value_ptr (gimple stmt) Return a pointer to the value expression that is bound to a user ! variable at `stmt'. -- GIMPLE function: void gimple_debug_bind_set_var (gimple stmt, tree var) ! Modify the user variable bound at `stmt' to VAR. ! -- GIMPLE function: void gimple_debug_bind_set_value (gimple stmt, ! tree var) ! Modify the value bound to the user variable bound at `stmt' to VALUE. -- GIMPLE function: void gimple_debug_bind_reset_value (gimple stmt) ! Modify the value bound to the user variable bound at `stmt' so ! that the variable becomes unbound. -- GIMPLE function: bool gimple_debug_bind_has_value_p (gimple stmt) ! Return `TRUE' if `stmt' binds a user variable to a value, and ! `FALSE' if it unbinds the variable.  ! File: gccint.info, Node: `GIMPLE_EH_FILTER', Next: `GIMPLE_LABEL', Prev: `GIMPLE_DEBUG', Up: Tuple specific accessors ! 12.7.8 `GIMPLE_EH_FILTER' ------------------------- -- GIMPLE function: gimple gimple_build_eh_filter (tree types, gimple_seq failure) ! Build a `GIMPLE_EH_FILTER' statement. `TYPES' are the filter's ! types. `FAILURE' is a sequence with the filter's failure action. -- GIMPLE function: tree gimple_eh_filter_types (gimple g) ! Return the types handled by `GIMPLE_EH_FILTER' statement `G'. -- GIMPLE function: tree * gimple_eh_filter_types_ptr (gimple g) ! Return a pointer to the types handled by `GIMPLE_EH_FILTER' ! statement `G'. -- GIMPLE function: gimple_seq gimple_eh_filter_failure (gimple g) ! Return the sequence of statement to execute when `GIMPLE_EH_FILTER' statement fails. -- GIMPLE function: void gimple_eh_filter_set_types (gimple g, tree types) ! Set `TYPES' to be the set of types handled by `GIMPLE_EH_FILTER' ! `G'. -- GIMPLE function: void gimple_eh_filter_set_failure (gimple g, gimple_seq failure) ! Set `FAILURE' to be the sequence of statements to execute on ! failure for `GIMPLE_EH_FILTER' `G'. -- GIMPLE function: bool gimple_eh_filter_must_not_throw (gimple g) ! Return the `EH_FILTER_MUST_NOT_THROW' flag. ! -- GIMPLE function: void gimple_eh_filter_set_must_not_throw (gimple ! g, bool mntp) ! Set the `EH_FILTER_MUST_NOT_THROW' flag.  ! File: gccint.info, Node: `GIMPLE_LABEL', Next: `GIMPLE_NOP', Prev: `GIMPLE_EH_FILTER', Up: Tuple specific accessors ! 12.7.9 `GIMPLE_LABEL' --------------------- -- GIMPLE function: gimple gimple_build_label (tree label) ! Build a `GIMPLE_LABEL' statement with corresponding to the tree ! label, `LABEL'. -- GIMPLE function: tree gimple_label_label (gimple g) ! Return the `LABEL_DECL' node used by `GIMPLE_LABEL' statement `G'. -- GIMPLE function: void gimple_label_set_label (gimple g, tree label) ! Set `LABEL' to be the `LABEL_DECL' node used by `GIMPLE_LABEL' ! statement `G'. -- GIMPLE function: gimple gimple_build_goto (tree dest) ! Build a `GIMPLE_GOTO' statement to label `DEST'. -- GIMPLE function: tree gimple_goto_dest (gimple g) ! Return the destination of the unconditional jump `G'. -- GIMPLE function: void gimple_goto_set_dest (gimple g, tree dest) ! Set `DEST' to be the destination of the unconditional jump `G'.  ! File: gccint.info, Node: `GIMPLE_NOP', Next: `GIMPLE_OMP_ATOMIC_LOAD', Prev: `GIMPLE_LABEL', Up: Tuple specific accessors ! 12.7.10 `GIMPLE_NOP' -------------------- -- GIMPLE function: gimple gimple_build_nop (void) ! Build a `GIMPLE_NOP' statement. -- GIMPLE function: bool gimple_nop_p (gimple g) ! Returns `TRUE' if statement `G' is a `GIMPLE_NOP'.  ! File: gccint.info, Node: `GIMPLE_OMP_ATOMIC_LOAD', Next: `GIMPLE_OMP_ATOMIC_STORE', Prev: `GIMPLE_NOP', Up: Tuple specific accessors ! 12.7.11 `GIMPLE_OMP_ATOMIC_LOAD' -------------------------------- ! -- GIMPLE function: gimple gimple_build_omp_atomic_load (tree lhs, ! tree rhs) ! Build a `GIMPLE_OMP_ATOMIC_LOAD' statement. `LHS' is the left-hand ! side of the assignment. `RHS' is the right-hand side of the assignment. ! -- GIMPLE function: void gimple_omp_atomic_load_set_lhs (gimple g, ! tree lhs) ! Set the `LHS' of an atomic load. -- GIMPLE function: tree gimple_omp_atomic_load_lhs (gimple g) ! Get the `LHS' of an atomic load. ! -- GIMPLE function: void gimple_omp_atomic_load_set_rhs (gimple g, ! tree rhs) ! Set the `RHS' of an atomic set. -- GIMPLE function: tree gimple_omp_atomic_load_rhs (gimple g) ! Get the `RHS' of an atomic set.  ! File: gccint.info, Node: `GIMPLE_OMP_ATOMIC_STORE', Next: `GIMPLE_OMP_CONTINUE', Prev: `GIMPLE_OMP_ATOMIC_LOAD', Up: Tuple specific accessors ! 12.7.12 `GIMPLE_OMP_ATOMIC_STORE' --------------------------------- -- GIMPLE function: gimple gimple_build_omp_atomic_store (tree val) ! Build a `GIMPLE_OMP_ATOMIC_STORE' statement. `VAL' is the value to be stored. -- GIMPLE function: void gimple_omp_atomic_store_set_val (gimple g, --- 14414,14989 ---- VECs. -- GIMPLE function: unsigned gimple_asm_ninputs (gimple g) ! Return the number of input operands for 'GIMPLE_ASM' 'G'. -- GIMPLE function: unsigned gimple_asm_noutputs (gimple g) ! Return the number of output operands for 'GIMPLE_ASM' 'G'. -- GIMPLE function: unsigned gimple_asm_nclobbers (gimple g) ! Return the number of clobber operands for 'GIMPLE_ASM' 'G'. -- GIMPLE function: tree gimple_asm_input_op (gimple g, unsigned index) ! Return input operand 'INDEX' of 'GIMPLE_ASM' 'G'. -- GIMPLE function: void gimple_asm_set_input_op (gimple g, unsigned index, tree in_op) ! Set 'IN_OP' to be input operand 'INDEX' in 'GIMPLE_ASM' 'G'. -- GIMPLE function: tree gimple_asm_output_op (gimple g, unsigned index) ! Return output operand 'INDEX' of 'GIMPLE_ASM' 'G'. -- GIMPLE function: void gimple_asm_set_output_op (gimple g, unsigned index, tree out_op) ! Set 'OUT_OP' to be output operand 'INDEX' in 'GIMPLE_ASM' 'G'. -- GIMPLE function: tree gimple_asm_clobber_op (gimple g, unsigned index) ! Return clobber operand 'INDEX' of 'GIMPLE_ASM' 'G'. -- GIMPLE function: void gimple_asm_set_clobber_op (gimple g, unsigned index, tree clobber_op) ! Set 'CLOBBER_OP' to be clobber operand 'INDEX' in 'GIMPLE_ASM' 'G'. -- GIMPLE function: const char * gimple_asm_string (gimple g) Return the string representing the assembly instruction in ! 'GIMPLE_ASM' 'G'. -- GIMPLE function: bool gimple_asm_volatile_p (gimple g) ! Return true if 'G' is an asm statement marked volatile. -- GIMPLE function: void gimple_asm_set_volatile (gimple g) ! Mark asm statement 'G' as volatile. -- GIMPLE function: void gimple_asm_clear_volatile (gimple g) ! Remove volatile marker from asm statement 'G'.  ! File: gccint.info, Node: 'GIMPLE_ASSIGN', Next: 'GIMPLE_BIND', Prev: 'GIMPLE_ASM', Up: Tuple specific accessors ! 12.7.2 'GIMPLE_ASSIGN' ---------------------- -- GIMPLE function: gimple gimple_build_assign (tree lhs, tree rhs) ! Build a 'GIMPLE_ASSIGN' statement. The left-hand side is an lvalue ! passed in lhs. The right-hand side can be either a unary or binary ! tree expression. The expression tree rhs will be flattened and its ! operands assigned to the corresponding operand slots in the new ! statement. This function is useful when you already have a tree ! expression that you want to convert into a tuple. However, try to ! avoid building expression trees for the sole purpose of calling ! this function. If you already have the operands in separate trees, ! it is better to use 'gimple_build_assign_with_ops'. -- GIMPLE function: gimple gimplify_assign (tree dst, tree src, gimple_seq *seq_p) ! Build a new 'GIMPLE_ASSIGN' tuple and append it to the end of ! '*SEQ_P'. ! 'DST'/'SRC' are the destination and source respectively. You can pass ! ungimplified trees in 'DST' or 'SRC', in which case they will be converted to a gimple operand if necessary. ! This function returns the newly created 'GIMPLE_ASSIGN' tuple. ! -- GIMPLE function: gimple gimple_build_assign_with_ops (enum tree_code ! subcode, tree lhs, tree op1, tree op2) ! This function is similar to 'gimple_build_assign', but is used to ! build a 'GIMPLE_ASSIGN' statement when the operands of the right-hand side of the assignment are already split into different operands. The left-hand side is an lvalue passed in lhs. Subcode is the ! 'tree_code' for the right-hand side of the assignment. Op1 and op2 ! are the operands. If op2 is null, subcode must be a 'tree_code' for a unary expression. -- GIMPLE function: enum tree_code gimple_assign_rhs_code (gimple g) ! Return the code of the expression computed on the 'RHS' of ! assignment statement 'G'. -- GIMPLE function: enum gimple_rhs_class gimple_assign_rhs_class (gimple g) ! Return the gimple rhs class of the code for the expression computed ! on the rhs of assignment statement 'G'. This will never return ! 'GIMPLE_INVALID_RHS'. -- GIMPLE function: tree gimple_assign_lhs (gimple g) ! Return the 'LHS' of assignment statement 'G'. -- GIMPLE function: tree * gimple_assign_lhs_ptr (gimple g) ! Return a pointer to the 'LHS' of assignment statement 'G'. -- GIMPLE function: tree gimple_assign_rhs1 (gimple g) ! Return the first operand on the 'RHS' of assignment statement 'G'. -- GIMPLE function: tree * gimple_assign_rhs1_ptr (gimple g) ! Return the address of the first operand on the 'RHS' of assignment ! statement 'G'. -- GIMPLE function: tree gimple_assign_rhs2 (gimple g) ! Return the second operand on the 'RHS' of assignment statement 'G'. -- GIMPLE function: tree * gimple_assign_rhs2_ptr (gimple g) ! Return the address of the second operand on the 'RHS' of assignment ! statement 'G'. -- GIMPLE function: tree gimple_assign_rhs3 (gimple g) ! Return the third operand on the 'RHS' of assignment statement 'G'. -- GIMPLE function: tree * gimple_assign_rhs3_ptr (gimple g) ! Return the address of the third operand on the 'RHS' of assignment ! statement 'G'. -- GIMPLE function: void gimple_assign_set_lhs (gimple g, tree lhs) ! Set 'LHS' to be the 'LHS' operand of assignment statement 'G'. -- GIMPLE function: void gimple_assign_set_rhs1 (gimple g, tree rhs) ! Set 'RHS' to be the first operand on the 'RHS' of assignment ! statement 'G'. -- GIMPLE function: void gimple_assign_set_rhs2 (gimple g, tree rhs) ! Set 'RHS' to be the second operand on the 'RHS' of assignment ! statement 'G'. -- GIMPLE function: void gimple_assign_set_rhs3 (gimple g, tree rhs) ! Set 'RHS' to be the third operand on the 'RHS' of assignment ! statement 'G'. -- GIMPLE function: bool gimple_assign_cast_p (gimple s) ! Return true if 'S' is a type-cast assignment.  ! File: gccint.info, Node: 'GIMPLE_BIND', Next: 'GIMPLE_CALL', Prev: 'GIMPLE_ASSIGN', Up: Tuple specific accessors ! 12.7.3 'GIMPLE_BIND' -------------------- -- GIMPLE function: gimple gimple_build_bind (tree vars, gimple_seq body) ! Build a 'GIMPLE_BIND' statement with a list of variables in 'VARS' ! and a body of statements in sequence 'BODY'. -- GIMPLE function: tree gimple_bind_vars (gimple g) ! Return the variables declared in the 'GIMPLE_BIND' statement 'G'. -- GIMPLE function: void gimple_bind_set_vars (gimple g, tree vars) ! Set 'VARS' to be the set of variables declared in the 'GIMPLE_BIND' ! statement 'G'. -- GIMPLE function: void gimple_bind_append_vars (gimple g, tree vars) ! Append 'VARS' to the set of variables declared in the 'GIMPLE_BIND' ! statement 'G'. -- GIMPLE function: gimple_seq gimple_bind_body (gimple g) ! Return the GIMPLE sequence contained in the 'GIMPLE_BIND' statement ! 'G'. -- GIMPLE function: void gimple_bind_set_body (gimple g, gimple_seq seq) ! Set 'SEQ' to be sequence contained in the 'GIMPLE_BIND' statement ! 'G'. -- GIMPLE function: void gimple_bind_add_stmt (gimple gs, gimple stmt) ! Append a statement to the end of a 'GIMPLE_BIND''s body. -- GIMPLE function: void gimple_bind_add_seq (gimple gs, gimple_seq seq) ! Append a sequence of statements to the end of a 'GIMPLE_BIND''s body. -- GIMPLE function: tree gimple_bind_block (gimple g) ! Return the 'TREE_BLOCK' node associated with 'GIMPLE_BIND' ! statement 'G'. This is analogous to the 'BIND_EXPR_BLOCK' field in trees. -- GIMPLE function: void gimple_bind_set_block (gimple g, tree block) ! Set 'BLOCK' to be the 'TREE_BLOCK' node associated with ! 'GIMPLE_BIND' statement 'G'.  ! File: gccint.info, Node: 'GIMPLE_CALL', Next: 'GIMPLE_CATCH', Prev: 'GIMPLE_BIND', Up: Tuple specific accessors ! 12.7.4 'GIMPLE_CALL' -------------------- -- GIMPLE function: gimple gimple_build_call (tree fn, unsigned nargs, ...) ! Build a 'GIMPLE_CALL' statement to function 'FN'. The argument ! 'FN' must be either a 'FUNCTION_DECL' or a gimple call address as ! determined by 'is_gimple_call_addr'. 'NARGS' are the number of ! arguments. The rest of the arguments follow the argument 'NARGS', and must be trees that are valid as rvalues in gimple (i.e., each ! operand is validated with 'is_gimple_operand'). -- GIMPLE function: gimple gimple_build_call_from_tree (tree call_expr) ! Build a 'GIMPLE_CALL' from a 'CALL_EXPR' node. The arguments and the function are taken from the expression directly. This routine ! assumes that 'call_expr' is already in GIMPLE form. That is, its operands are GIMPLE values and the function call needs no further ! simplification. All the call flags in 'call_expr' are copied over ! to the new 'GIMPLE_CALL'. ! -- GIMPLE function: gimple gimple_build_call_vec (tree fn, 'VEC'(tree, heap) *args) ! Identical to 'gimple_build_call' but the arguments are stored in a ! 'VEC'(). -- GIMPLE function: tree gimple_call_lhs (gimple g) ! Return the 'LHS' of call statement 'G'. -- GIMPLE function: tree * gimple_call_lhs_ptr (gimple g) ! Return a pointer to the 'LHS' of call statement 'G'. -- GIMPLE function: void gimple_call_set_lhs (gimple g, tree lhs) ! Set 'LHS' to be the 'LHS' operand of call statement 'G'. -- GIMPLE function: tree gimple_call_fn (gimple g) Return the tree node representing the function called by call ! statement 'G'. -- GIMPLE function: void gimple_call_set_fn (gimple g, tree fn) ! Set 'FN' to be the function called by call statement 'G'. This has to be a gimple value specifying the address of the called function. -- GIMPLE function: tree gimple_call_fndecl (gimple g) ! If a given 'GIMPLE_CALL''s callee is a 'FUNCTION_DECL', return it. ! Otherwise return 'NULL'. This function is analogous to ! 'get_callee_fndecl' in 'GENERIC'. -- GIMPLE function: tree gimple_call_set_fndecl (gimple g, tree fndecl) ! Set the called function to 'FNDECL'. -- GIMPLE function: tree gimple_call_return_type (gimple g) ! Return the type returned by call statement 'G'. -- GIMPLE function: tree gimple_call_chain (gimple g) ! Return the static chain for call statement 'G'. -- GIMPLE function: void gimple_call_set_chain (gimple g, tree chain) ! Set 'CHAIN' to be the static chain for call statement 'G'. -- GIMPLE function: unsigned gimple_call_num_args (gimple g) ! Return the number of arguments used by call statement 'G'. -- GIMPLE function: tree gimple_call_arg (gimple g, unsigned index) ! Return the argument at position 'INDEX' for call statement 'G'. The first argument is 0. -- GIMPLE function: tree * gimple_call_arg_ptr (gimple g, unsigned index) ! Return a pointer to the argument at position 'INDEX' for call ! statement 'G'. ! -- GIMPLE function: void gimple_call_set_arg (gimple g, unsigned index, ! tree arg) ! Set 'ARG' to be the argument at position 'INDEX' for call statement ! 'G'. -- GIMPLE function: void gimple_call_set_tail (gimple s) ! Mark call statement 'S' as being a tail call (i.e., a call just ! before the exit of a function). These calls are candidate for tail call optimization. -- GIMPLE function: bool gimple_call_tail_p (gimple s) ! Return true if 'GIMPLE_CALL' 'S' is marked as a tail call. -- GIMPLE function: void gimple_call_mark_uninlinable (gimple s) ! Mark 'GIMPLE_CALL' 'S' as being uninlinable. -- GIMPLE function: bool gimple_call_cannot_inline_p (gimple s) ! Return true if 'GIMPLE_CALL' 'S' cannot be inlined. -- GIMPLE function: bool gimple_call_noreturn_p (gimple s) ! Return true if 'S' is a noreturn call. -- GIMPLE function: gimple gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip) ! Build a 'GIMPLE_CALL' identical to 'STMT' but skipping the ! arguments in the positions marked by the set 'ARGS_TO_SKIP'.  ! File: gccint.info, Node: 'GIMPLE_CATCH', Next: 'GIMPLE_COND', Prev: 'GIMPLE_CALL', Up: Tuple specific accessors ! 12.7.5 'GIMPLE_CATCH' --------------------- -- GIMPLE function: gimple gimple_build_catch (tree types, gimple_seq handler) ! Build a 'GIMPLE_CATCH' statement. 'TYPES' are the tree types this ! catch handles. 'HANDLER' is a sequence of statements with the code for the handler. -- GIMPLE function: tree gimple_catch_types (gimple g) ! Return the types handled by 'GIMPLE_CATCH' statement 'G'. -- GIMPLE function: tree * gimple_catch_types_ptr (gimple g) ! Return a pointer to the types handled by 'GIMPLE_CATCH' statement ! 'G'. -- GIMPLE function: gimple_seq gimple_catch_handler (gimple g) Return the GIMPLE sequence representing the body of the handler of ! 'GIMPLE_CATCH' statement 'G'. -- GIMPLE function: void gimple_catch_set_types (gimple g, tree t) ! Set 'T' to be the set of types handled by 'GIMPLE_CATCH' 'G'. ! -- GIMPLE function: void gimple_catch_set_handler (gimple g, gimple_seq ! handler) ! Set 'HANDLER' to be the body of 'GIMPLE_CATCH' 'G'.  ! File: gccint.info, Node: 'GIMPLE_COND', Next: 'GIMPLE_DEBUG', Prev: 'GIMPLE_CATCH', Up: Tuple specific accessors ! 12.7.6 'GIMPLE_COND' -------------------- ! -- GIMPLE function: gimple gimple_build_cond (enum tree_code pred_code, ! tree lhs, tree rhs, tree t_label, tree f_label) ! Build a 'GIMPLE_COND' statement. 'A' 'GIMPLE_COND' statement ! compares 'LHS' and 'RHS' and if the condition in 'PRED_CODE' is ! true, jump to the label in 't_label', otherwise jump to the label ! in 'f_label'. 'PRED_CODE' are relational operator tree codes like ! 'EQ_EXPR', 'LT_EXPR', 'LE_EXPR', 'NE_EXPR', etc. ! -- GIMPLE function: gimple gimple_build_cond_from_tree (tree cond, tree ! t_label, tree f_label) ! Build a 'GIMPLE_COND' statement from the conditional expression ! tree 'COND'. 'T_LABEL' and 'F_LABEL' are as in ! 'gimple_build_cond'. -- GIMPLE function: enum tree_code gimple_cond_code (gimple g) Return the code of the predicate computed by conditional statement ! 'G'. ! -- GIMPLE function: void gimple_cond_set_code (gimple g, enum tree_code ! code) ! Set 'CODE' to be the predicate code for the conditional statement ! 'G'. -- GIMPLE function: tree gimple_cond_lhs (gimple g) ! Return the 'LHS' of the predicate computed by conditional statement ! 'G'. -- GIMPLE function: void gimple_cond_set_lhs (gimple g, tree lhs) ! Set 'LHS' to be the 'LHS' operand of the predicate computed by ! conditional statement 'G'. -- GIMPLE function: tree gimple_cond_rhs (gimple g) ! Return the 'RHS' operand of the predicate computed by conditional ! 'G'. -- GIMPLE function: void gimple_cond_set_rhs (gimple g, tree rhs) ! Set 'RHS' to be the 'RHS' operand of the predicate computed by ! conditional statement 'G'. -- GIMPLE function: tree gimple_cond_true_label (gimple g) ! Return the label used by conditional statement 'G' when its predicate evaluates to true. -- GIMPLE function: void gimple_cond_set_true_label (gimple g, tree label) ! Set 'LABEL' to be the label used by conditional statement 'G' when its predicate evaluates to true. -- GIMPLE function: void gimple_cond_set_false_label (gimple g, tree label) ! Set 'LABEL' to be the label used by conditional statement 'G' when its predicate evaluates to false. -- GIMPLE function: tree gimple_cond_false_label (gimple g) ! Return the label used by conditional statement 'G' when its predicate evaluates to false. -- GIMPLE function: void gimple_cond_make_false (gimple g) ! Set the conditional 'COND_STMT' to be of the form 'if (1 == 0)'. -- GIMPLE function: void gimple_cond_make_true (gimple g) ! Set the conditional 'COND_STMT' to be of the form 'if (1 == 1)'.  ! File: gccint.info, Node: 'GIMPLE_DEBUG', Next: 'GIMPLE_EH_FILTER', Prev: 'GIMPLE_COND', Up: Tuple specific accessors ! 12.7.7 'GIMPLE_DEBUG' --------------------- -- GIMPLE function: gimple gimple_build_debug_bind (tree var, tree value, gimple stmt) ! Build a 'GIMPLE_DEBUG' statement with 'GIMPLE_DEBUG_BIND' of ! 'subcode'. The effect of this statement is to tell debug information generation machinery that the value of user variable ! 'var' is given by 'value' at that point, and to remain with that ! value until 'var' runs out of scope, a dynamically-subsequent debug ! bind statement overrides the binding, or conflicting values reach a ! control flow merge point. Even if components of the 'value' ! expression change afterwards, the variable is supposed to retain ! the same value, though not necessarily the same location. ! It is expected that 'var' be most often a tree for automatic user ! variables ('VAR_DECL' or 'PARM_DECL') that satisfy the requirements ! for gimple registers, but it may also be a tree for a scalarized ! component of a user variable ('ARRAY_REF', 'COMPONENT_REF'), or a ! debug temporary ('DEBUG_EXPR_DECL'). ! As for 'value', it can be an arbitrary tree expression, but it is recommended that it be in a suitable form for a gimple assignment ! 'RHS'. It is not expected that user variables that could appear as ! 'var' ever appear in 'value', because in the latter we'd have their ! 'SSA_NAME's instead, but even if they were not in SSA form, user ! variables appearing in 'value' are to be regarded as part of the ! executable code space, whereas those in 'var' are to be regarded as ! part of the source code space. There is no way to refer to the ! value bound to a user variable within a 'value' expression. ! If 'value' is 'GIMPLE_DEBUG_BIND_NOVALUE', debug information ! generation machinery is informed that the variable 'var' is unbound, i.e., that its value is indeterminate, which sometimes means it is really unavailable, and other times that the compiler could not keep track of it. ! Block and location information for the newly-created stmt are taken ! from 'stmt', if given. -- GIMPLE function: tree gimple_debug_bind_get_var (gimple stmt) ! Return the user variable VAR that is bound at 'stmt'. -- GIMPLE function: tree gimple_debug_bind_get_value (gimple stmt) Return the value expression that is bound to a user variable at ! 'stmt'. -- GIMPLE function: tree * gimple_debug_bind_get_value_ptr (gimple stmt) Return a pointer to the value expression that is bound to a user ! variable at 'stmt'. -- GIMPLE function: void gimple_debug_bind_set_var (gimple stmt, tree var) ! Modify the user variable bound at 'stmt' to VAR. ! -- GIMPLE function: void gimple_debug_bind_set_value (gimple stmt, tree ! var) ! Modify the value bound to the user variable bound at 'stmt' to VALUE. -- GIMPLE function: void gimple_debug_bind_reset_value (gimple stmt) ! Modify the value bound to the user variable bound at 'stmt' so that ! the variable becomes unbound. -- GIMPLE function: bool gimple_debug_bind_has_value_p (gimple stmt) ! Return 'TRUE' if 'stmt' binds a user variable to a value, and ! 'FALSE' if it unbinds the variable.  ! File: gccint.info, Node: 'GIMPLE_EH_FILTER', Next: 'GIMPLE_LABEL', Prev: 'GIMPLE_DEBUG', Up: Tuple specific accessors ! 12.7.8 'GIMPLE_EH_FILTER' ------------------------- -- GIMPLE function: gimple gimple_build_eh_filter (tree types, gimple_seq failure) ! Build a 'GIMPLE_EH_FILTER' statement. 'TYPES' are the filter's ! types. 'FAILURE' is a sequence with the filter's failure action. -- GIMPLE function: tree gimple_eh_filter_types (gimple g) ! Return the types handled by 'GIMPLE_EH_FILTER' statement 'G'. -- GIMPLE function: tree * gimple_eh_filter_types_ptr (gimple g) ! Return a pointer to the types handled by 'GIMPLE_EH_FILTER' ! statement 'G'. -- GIMPLE function: gimple_seq gimple_eh_filter_failure (gimple g) ! Return the sequence of statement to execute when 'GIMPLE_EH_FILTER' statement fails. -- GIMPLE function: void gimple_eh_filter_set_types (gimple g, tree types) ! Set 'TYPES' to be the set of types handled by 'GIMPLE_EH_FILTER' ! 'G'. -- GIMPLE function: void gimple_eh_filter_set_failure (gimple g, gimple_seq failure) ! Set 'FAILURE' to be the sequence of statements to execute on ! failure for 'GIMPLE_EH_FILTER' 'G'. -- GIMPLE function: bool gimple_eh_filter_must_not_throw (gimple g) ! Return the 'EH_FILTER_MUST_NOT_THROW' flag. ! -- GIMPLE function: void gimple_eh_filter_set_must_not_throw (gimple g, ! bool mntp) ! Set the 'EH_FILTER_MUST_NOT_THROW' flag.  ! File: gccint.info, Node: 'GIMPLE_LABEL', Next: 'GIMPLE_NOP', Prev: 'GIMPLE_EH_FILTER', Up: Tuple specific accessors ! 12.7.9 'GIMPLE_LABEL' --------------------- -- GIMPLE function: gimple gimple_build_label (tree label) ! Build a 'GIMPLE_LABEL' statement with corresponding to the tree ! label, 'LABEL'. -- GIMPLE function: tree gimple_label_label (gimple g) ! Return the 'LABEL_DECL' node used by 'GIMPLE_LABEL' statement 'G'. -- GIMPLE function: void gimple_label_set_label (gimple g, tree label) ! Set 'LABEL' to be the 'LABEL_DECL' node used by 'GIMPLE_LABEL' ! statement 'G'. -- GIMPLE function: gimple gimple_build_goto (tree dest) ! Build a 'GIMPLE_GOTO' statement to label 'DEST'. -- GIMPLE function: tree gimple_goto_dest (gimple g) ! Return the destination of the unconditional jump 'G'. -- GIMPLE function: void gimple_goto_set_dest (gimple g, tree dest) ! Set 'DEST' to be the destination of the unconditional jump 'G'.  ! File: gccint.info, Node: 'GIMPLE_NOP', Next: 'GIMPLE_OMP_ATOMIC_LOAD', Prev: 'GIMPLE_LABEL', Up: Tuple specific accessors ! 12.7.10 'GIMPLE_NOP' -------------------- -- GIMPLE function: gimple gimple_build_nop (void) ! Build a 'GIMPLE_NOP' statement. -- GIMPLE function: bool gimple_nop_p (gimple g) ! Returns 'TRUE' if statement 'G' is a 'GIMPLE_NOP'.  ! File: gccint.info, Node: 'GIMPLE_OMP_ATOMIC_LOAD', Next: 'GIMPLE_OMP_ATOMIC_STORE', Prev: 'GIMPLE_NOP', Up: Tuple specific accessors ! 12.7.11 'GIMPLE_OMP_ATOMIC_LOAD' -------------------------------- ! -- GIMPLE function: gimple gimple_build_omp_atomic_load (tree lhs, tree ! rhs) ! Build a 'GIMPLE_OMP_ATOMIC_LOAD' statement. 'LHS' is the left-hand ! side of the assignment. 'RHS' is the right-hand side of the assignment. ! -- GIMPLE function: void gimple_omp_atomic_load_set_lhs (gimple g, tree ! lhs) ! Set the 'LHS' of an atomic load. -- GIMPLE function: tree gimple_omp_atomic_load_lhs (gimple g) ! Get the 'LHS' of an atomic load. ! -- GIMPLE function: void gimple_omp_atomic_load_set_rhs (gimple g, tree ! rhs) ! Set the 'RHS' of an atomic set. -- GIMPLE function: tree gimple_omp_atomic_load_rhs (gimple g) ! Get the 'RHS' of an atomic set.  ! File: gccint.info, Node: 'GIMPLE_OMP_ATOMIC_STORE', Next: 'GIMPLE_OMP_CONTINUE', Prev: 'GIMPLE_OMP_ATOMIC_LOAD', Up: Tuple specific accessors ! 12.7.12 'GIMPLE_OMP_ATOMIC_STORE' --------------------------------- -- GIMPLE function: gimple gimple_build_omp_atomic_store (tree val) ! Build a 'GIMPLE_OMP_ATOMIC_STORE' statement. 'VAL' is the value to be stored. -- GIMPLE function: void gimple_omp_atomic_store_set_val (gimple g, *************** File: gccint.info, Node: `GIMPLE_OMP_AT *** 15151,15589 **** Return the value being stored in an atomic store.  ! File: gccint.info, Node: `GIMPLE_OMP_CONTINUE', Next: `GIMPLE_OMP_CRITICAL', Prev: `GIMPLE_OMP_ATOMIC_STORE', Up: Tuple specific accessors ! 12.7.13 `GIMPLE_OMP_CONTINUE' ----------------------------- ! -- GIMPLE function: gimple gimple_build_omp_continue (tree ! control_def, tree control_use) ! Build a `GIMPLE_OMP_CONTINUE' statement. `CONTROL_DEF' is the ! definition of the control variable. `CONTROL_USE' is the use of the control variable. -- GIMPLE function: tree gimple_omp_continue_control_def (gimple s) Return the definition of the control variable on a ! `GIMPLE_OMP_CONTINUE' in `S'. -- GIMPLE function: tree gimple_omp_continue_control_def_ptr (gimple s) Same as above, but return the pointer. -- GIMPLE function: tree gimple_omp_continue_set_control_def (gimple s) ! Set the control variable definition for a `GIMPLE_OMP_CONTINUE' ! statement in `S'. -- GIMPLE function: tree gimple_omp_continue_control_use (gimple s) ! Return the use of the control variable on a `GIMPLE_OMP_CONTINUE' ! in `S'. -- GIMPLE function: tree gimple_omp_continue_control_use_ptr (gimple s) Same as above, but return the pointer. -- GIMPLE function: tree gimple_omp_continue_set_control_use (gimple s) ! Set the control variable use for a `GIMPLE_OMP_CONTINUE' statement ! in `S'.  ! File: gccint.info, Node: `GIMPLE_OMP_CRITICAL', Next: `GIMPLE_OMP_FOR', Prev: `GIMPLE_OMP_CONTINUE', Up: Tuple specific accessors ! 12.7.14 `GIMPLE_OMP_CRITICAL' ----------------------------- -- GIMPLE function: gimple gimple_build_omp_critical (gimple_seq body, tree name) ! Build a `GIMPLE_OMP_CRITICAL' statement. `BODY' is the sequence of ! statements for which only one thread can execute. `NAME' is an optional identifier for this critical block. -- GIMPLE function: tree gimple_omp_critical_name (gimple g) ! Return the name associated with `OMP_CRITICAL' statement `G'. -- GIMPLE function: tree * gimple_omp_critical_name_ptr (gimple g) ! Return a pointer to the name associated with `OMP' critical ! statement `G'. -- GIMPLE function: void gimple_omp_critical_set_name (gimple g, tree name) ! Set `NAME' to be the name associated with `OMP' critical statement ! `G'.  ! File: gccint.info, Node: `GIMPLE_OMP_FOR', Next: `GIMPLE_OMP_MASTER', Prev: `GIMPLE_OMP_CRITICAL', Up: Tuple specific accessors ! 12.7.15 `GIMPLE_OMP_FOR' ------------------------ -- GIMPLE function: gimple gimple_build_omp_for (gimple_seq body, tree clauses, tree index, tree initial, tree final, tree incr, gimple_seq pre_body, enum tree_code omp_for_cond) ! Build a `GIMPLE_OMP_FOR' statement. `BODY' is sequence of ! statements inside the for loop. `CLAUSES', are any of the `OMP' ! loop construct's clauses: private, firstprivate, lastprivate, ! reductions, ordered, schedule, and nowait. `PRE_BODY' is the ! sequence of statements that are loop invariant. `INDEX' is the ! index variable. `INITIAL' is the initial value of `INDEX'. ! `FINAL' is final value of `INDEX'. OMP_FOR_COND is the predicate ! used to compare `INDEX' and `FINAL'. `INCR' is the increment expression. -- GIMPLE function: tree gimple_omp_for_clauses (gimple g) ! Return the clauses associated with `OMP_FOR' `G'. -- GIMPLE function: tree * gimple_omp_for_clauses_ptr (gimple g) ! Return a pointer to the `OMP_FOR' `G'. -- GIMPLE function: void gimple_omp_for_set_clauses (gimple g, tree clauses) ! Set `CLAUSES' to be the list of clauses associated with `OMP_FOR' ! `G'. -- GIMPLE function: tree gimple_omp_for_index (gimple g) ! Return the index variable for `OMP_FOR' `G'. -- GIMPLE function: tree * gimple_omp_for_index_ptr (gimple g) ! Return a pointer to the index variable for `OMP_FOR' `G'. -- GIMPLE function: void gimple_omp_for_set_index (gimple g, tree index) ! Set `INDEX' to be the index variable for `OMP_FOR' `G'. -- GIMPLE function: tree gimple_omp_for_initial (gimple g) ! Return the initial value for `OMP_FOR' `G'. -- GIMPLE function: tree * gimple_omp_for_initial_ptr (gimple g) ! Return a pointer to the initial value for `OMP_FOR' `G'. -- GIMPLE function: void gimple_omp_for_set_initial (gimple g, tree initial) ! Set `INITIAL' to be the initial value for `OMP_FOR' `G'. -- GIMPLE function: tree gimple_omp_for_final (gimple g) ! Return the final value for `OMP_FOR' `G'. -- GIMPLE function: tree * gimple_omp_for_final_ptr (gimple g) ! turn a pointer to the final value for `OMP_FOR' `G'. -- GIMPLE function: void gimple_omp_for_set_final (gimple g, tree final) ! Set `FINAL' to be the final value for `OMP_FOR' `G'. -- GIMPLE function: tree gimple_omp_for_incr (gimple g) ! Return the increment value for `OMP_FOR' `G'. -- GIMPLE function: tree * gimple_omp_for_incr_ptr (gimple g) ! Return a pointer to the increment value for `OMP_FOR' `G'. -- GIMPLE function: void gimple_omp_for_set_incr (gimple g, tree incr) ! Set `INCR' to be the increment value for `OMP_FOR' `G'. -- GIMPLE function: gimple_seq gimple_omp_for_pre_body (gimple g) ! Return the sequence of statements to execute before the `OMP_FOR' ! statement `G' starts. -- GIMPLE function: void gimple_omp_for_set_pre_body (gimple g, gimple_seq pre_body) ! Set `PRE_BODY' to be the sequence of statements to execute before ! the `OMP_FOR' statement `G' starts. -- GIMPLE function: void gimple_omp_for_set_cond (gimple g, enum tree_code cond) ! Set `COND' to be the condition code for `OMP_FOR' `G'. -- GIMPLE function: enum tree_code gimple_omp_for_cond (gimple g) ! Return the condition code associated with `OMP_FOR' `G'.  ! File: gccint.info, Node: `GIMPLE_OMP_MASTER', Next: `GIMPLE_OMP_ORDERED', Prev: `GIMPLE_OMP_FOR', Up: Tuple specific accessors ! 12.7.16 `GIMPLE_OMP_MASTER' --------------------------- -- GIMPLE function: gimple gimple_build_omp_master (gimple_seq body) ! Build a `GIMPLE_OMP_MASTER' statement. `BODY' is the sequence of statements to be executed by just the master.  ! File: gccint.info, Node: `GIMPLE_OMP_ORDERED', Next: `GIMPLE_OMP_PARALLEL', Prev: `GIMPLE_OMP_MASTER', Up: Tuple specific accessors ! 12.7.17 `GIMPLE_OMP_ORDERED' ---------------------------- -- GIMPLE function: gimple gimple_build_omp_ordered (gimple_seq body) ! Build a `GIMPLE_OMP_ORDERED' statement. ! `BODY' is the sequence of statements inside a loop that will executed in sequence.  ! File: gccint.info, Node: `GIMPLE_OMP_PARALLEL', Next: `GIMPLE_OMP_RETURN', Prev: `GIMPLE_OMP_ORDERED', Up: Tuple specific accessors ! 12.7.18 `GIMPLE_OMP_PARALLEL' ----------------------------- -- GIMPLE function: gimple gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn, tree data_arg) ! Build a `GIMPLE_OMP_PARALLEL' statement. ! `BODY' is sequence of statements which are executed in parallel. ! `CLAUSES', are the `OMP' parallel construct's clauses. `CHILD_FN' is ! the function created for the parallel threads to execute. `DATA_ARG' are the shared data argument(s). -- GIMPLE function: bool gimple_omp_parallel_combined_p (gimple g) ! Return true if `OMP' parallel statement `G' has the ! `GF_OMP_PARALLEL_COMBINED' flag set. -- GIMPLE function: void gimple_omp_parallel_set_combined_p (gimple g) ! Set the `GF_OMP_PARALLEL_COMBINED' field in `OMP' parallel ! statement `G'. -- GIMPLE function: gimple_seq gimple_omp_body (gimple g) ! Return the body for the `OMP' statement `G'. -- GIMPLE function: void gimple_omp_set_body (gimple g, gimple_seq body) ! Set `BODY' to be the body for the `OMP' statement `G'. -- GIMPLE function: tree gimple_omp_parallel_clauses (gimple g) ! Return the clauses associated with `OMP_PARALLEL' `G'. -- GIMPLE function: tree * gimple_omp_parallel_clauses_ptr (gimple g) ! Return a pointer to the clauses associated with `OMP_PARALLEL' `G'. -- GIMPLE function: void gimple_omp_parallel_set_clauses (gimple g, tree clauses) ! Set `CLAUSES' to be the list of clauses associated with ! `OMP_PARALLEL' `G'. -- GIMPLE function: tree gimple_omp_parallel_child_fn (gimple g) ! Return the child function used to hold the body of `OMP_PARALLEL' ! `G'. -- GIMPLE function: tree * gimple_omp_parallel_child_fn_ptr (gimple g) Return a pointer to the child function used to hold the body of ! `OMP_PARALLEL' `G'. -- GIMPLE function: void gimple_omp_parallel_set_child_fn (gimple g, tree child_fn) ! Set `CHILD_FN' to be the child function for `OMP_PARALLEL' `G'. -- GIMPLE function: tree gimple_omp_parallel_data_arg (gimple g) Return the artificial argument used to send variables and values ! from the parent to the children threads in `OMP_PARALLEL' `G'. -- GIMPLE function: tree * gimple_omp_parallel_data_arg_ptr (gimple g) ! Return a pointer to the data argument for `OMP_PARALLEL' `G'. -- GIMPLE function: void gimple_omp_parallel_set_data_arg (gimple g, tree data_arg) ! Set `DATA_ARG' to be the data argument for `OMP_PARALLEL' `G'. -- GIMPLE function: bool is_gimple_omp (gimple stmt) ! Returns true when the gimple statement `STMT' is any of the OpenMP types.  ! File: gccint.info, Node: `GIMPLE_OMP_RETURN', Next: `GIMPLE_OMP_SECTION', Prev: `GIMPLE_OMP_PARALLEL', Up: Tuple specific accessors ! 12.7.19 `GIMPLE_OMP_RETURN' --------------------------- -- GIMPLE function: gimple gimple_build_omp_return (bool wait_p) ! Build a `GIMPLE_OMP_RETURN' statement. `WAIT_P' is true if this is a non-waiting return. -- GIMPLE function: void gimple_omp_return_set_nowait (gimple s) ! Set the nowait flag on `GIMPLE_OMP_RETURN' statement `S'. -- GIMPLE function: bool gimple_omp_return_nowait_p (gimple g) ! Return true if `OMP' return statement `G' has the ! `GF_OMP_RETURN_NOWAIT' flag set.  ! File: gccint.info, Node: `GIMPLE_OMP_SECTION', Next: `GIMPLE_OMP_SECTIONS', Prev: `GIMPLE_OMP_RETURN', Up: Tuple specific accessors ! 12.7.20 `GIMPLE_OMP_SECTION' ---------------------------- -- GIMPLE function: gimple gimple_build_omp_section (gimple_seq body) ! Build a `GIMPLE_OMP_SECTION' statement for a sections statement. ! `BODY' is the sequence of statements in the section. -- GIMPLE function: bool gimple_omp_section_last_p (gimple g) ! Return true if `OMP' section statement `G' has the ! `GF_OMP_SECTION_LAST' flag set. -- GIMPLE function: void gimple_omp_section_set_last (gimple g) ! Set the `GF_OMP_SECTION_LAST' flag on `G'.  ! File: gccint.info, Node: `GIMPLE_OMP_SECTIONS', Next: `GIMPLE_OMP_SINGLE', Prev: `GIMPLE_OMP_SECTION', Up: Tuple specific accessors ! 12.7.21 `GIMPLE_OMP_SECTIONS' ----------------------------- -- GIMPLE function: gimple gimple_build_omp_sections (gimple_seq body, tree clauses) ! Build a `GIMPLE_OMP_SECTIONS' statement. `BODY' is a sequence of ! section statements. `CLAUSES' are any of the `OMP' sections ! construct's clauses: private, firstprivate, lastprivate, ! reduction, and nowait. -- GIMPLE function: gimple gimple_build_omp_sections_switch (void) ! Build a `GIMPLE_OMP_SECTIONS_SWITCH' statement. -- GIMPLE function: tree gimple_omp_sections_control (gimple g) Return the control variable associated with the ! `GIMPLE_OMP_SECTIONS' in `G'. -- GIMPLE function: tree * gimple_omp_sections_control_ptr (gimple g) Return a pointer to the clauses associated with the ! `GIMPLE_OMP_SECTIONS' in `G'. -- GIMPLE function: void gimple_omp_sections_set_control (gimple g, tree control) ! Set `CONTROL' to be the set of clauses associated with the ! `GIMPLE_OMP_SECTIONS' in `G'. -- GIMPLE function: tree gimple_omp_sections_clauses (gimple g) ! Return the clauses associated with `OMP_SECTIONS' `G'. -- GIMPLE function: tree * gimple_omp_sections_clauses_ptr (gimple g) ! Return a pointer to the clauses associated with `OMP_SECTIONS' `G'. -- GIMPLE function: void gimple_omp_sections_set_clauses (gimple g, tree clauses) ! Set `CLAUSES' to be the set of clauses associated with ! `OMP_SECTIONS' `G'.  ! File: gccint.info, Node: `GIMPLE_OMP_SINGLE', Next: `GIMPLE_PHI', Prev: `GIMPLE_OMP_SECTIONS', Up: Tuple specific accessors ! 12.7.22 `GIMPLE_OMP_SINGLE' --------------------------- -- GIMPLE function: gimple gimple_build_omp_single (gimple_seq body, tree clauses) ! Build a `GIMPLE_OMP_SINGLE' statement. `BODY' is the sequence of ! statements that will be executed once. `CLAUSES' are any of the ! `OMP' single construct's clauses: private, firstprivate, copyprivate, nowait. -- GIMPLE function: tree gimple_omp_single_clauses (gimple g) ! Return the clauses associated with `OMP_SINGLE' `G'. -- GIMPLE function: tree * gimple_omp_single_clauses_ptr (gimple g) ! Return a pointer to the clauses associated with `OMP_SINGLE' `G'. -- GIMPLE function: void gimple_omp_single_set_clauses (gimple g, tree clauses) ! Set `CLAUSES' to be the clauses associated with `OMP_SINGLE' `G'.  ! File: gccint.info, Node: `GIMPLE_PHI', Next: `GIMPLE_RESX', Prev: `GIMPLE_OMP_SINGLE', Up: Tuple specific accessors ! 12.7.23 `GIMPLE_PHI' -------------------- -- GIMPLE function: unsigned gimple_phi_capacity (gimple g) ! Return the maximum number of arguments supported by `GIMPLE_PHI' ! `G'. -- GIMPLE function: unsigned gimple_phi_num_args (gimple g) ! Return the number of arguments in `GIMPLE_PHI' `G'. This must always be exactly the number of incoming edges for the basic block ! holding `G'. -- GIMPLE function: tree gimple_phi_result (gimple g) ! Return the `SSA' name created by `GIMPLE_PHI' `G'. -- GIMPLE function: tree * gimple_phi_result_ptr (gimple g) ! Return a pointer to the `SSA' name created by `GIMPLE_PHI' `G'. -- GIMPLE function: void gimple_phi_set_result (gimple g, tree result) ! Set `RESULT' to be the `SSA' name created by `GIMPLE_PHI' `G'. -- GIMPLE function: struct phi_arg_d * gimple_phi_arg (gimple g, index) ! Return the `PHI' argument corresponding to incoming edge `INDEX' ! for `GIMPLE_PHI' `G'. -- GIMPLE function: void gimple_phi_set_arg (gimple g, index, struct phi_arg_d * phiarg) ! Set `PHIARG' to be the argument corresponding to incoming edge ! `INDEX' for `GIMPLE_PHI' `G'.  ! File: gccint.info, Node: `GIMPLE_RESX', Next: `GIMPLE_RETURN', Prev: `GIMPLE_PHI', Up: Tuple specific accessors ! 12.7.24 `GIMPLE_RESX' --------------------- -- GIMPLE function: gimple gimple_build_resx (int region) ! Build a `GIMPLE_RESX' statement which is a statement. This statement is a placeholder for _Unwind_Resume before we know if a ! function call or a branch is needed. `REGION' is the exception region from which control is flowing. -- GIMPLE function: int gimple_resx_region (gimple g) ! Return the region number for `GIMPLE_RESX' `G'. -- GIMPLE function: void gimple_resx_set_region (gimple g, int region) ! Set `REGION' to be the region number for `GIMPLE_RESX' `G'.  ! File: gccint.info, Node: `GIMPLE_RETURN', Next: `GIMPLE_SWITCH', Prev: `GIMPLE_RESX', Up: Tuple specific accessors ! 12.7.25 `GIMPLE_RETURN' ----------------------- -- GIMPLE function: gimple gimple_build_return (tree retval) ! Build a `GIMPLE_RETURN' statement whose return value is retval. -- GIMPLE function: tree gimple_return_retval (gimple g) ! Return the return value for `GIMPLE_RETURN' `G'. -- GIMPLE function: void gimple_return_set_retval (gimple g, tree retval) ! Set `RETVAL' to be the return value for `GIMPLE_RETURN' `G'.  ! File: gccint.info, Node: `GIMPLE_SWITCH', Next: `GIMPLE_TRY', Prev: `GIMPLE_RETURN', Up: Tuple specific accessors ! 12.7.26 `GIMPLE_SWITCH' ----------------------- -- GIMPLE function: gimple gimple_build_switch (tree index, tree ! default_label, `VEC'(tree,heap) *args) ! Build a `GIMPLE_SWITCH' statement. `INDEX' is the index variable ! to switch on, and `DEFAULT_LABEL' represents the default label. ! `ARGS' is a vector of `CASE_LABEL_EXPR' trees that contain the non-default case labels. Each label is a tree of code ! `CASE_LABEL_EXPR'. -- GIMPLE function: unsigned gimple_switch_num_labels (gimple g) Return the number of labels associated with the switch statement ! `G'. -- GIMPLE function: void gimple_switch_set_num_labels (gimple g, unsigned nlabels) ! Set `NLABELS' to be the number of labels for the switch statement ! `G'. -- GIMPLE function: tree gimple_switch_index (gimple g) ! Return the index variable used by the switch statement `G'. -- GIMPLE function: void gimple_switch_set_index (gimple g, tree index) ! Set `INDEX' to be the index variable for switch statement `G'. -- GIMPLE function: tree gimple_switch_label (gimple g, unsigned index) ! Return the label numbered `INDEX'. The default label is 0, followed ! by any labels in a switch statement. -- GIMPLE function: void gimple_switch_set_label (gimple g, unsigned index, tree label) ! Set the label number `INDEX' to `LABEL'. 0 is always the default label. -- GIMPLE function: tree gimple_switch_default_label (gimple g) --- 14994,15432 ---- Return the value being stored in an atomic store.  ! File: gccint.info, Node: 'GIMPLE_OMP_CONTINUE', Next: 'GIMPLE_OMP_CRITICAL', Prev: 'GIMPLE_OMP_ATOMIC_STORE', Up: Tuple specific accessors ! 12.7.13 'GIMPLE_OMP_CONTINUE' ----------------------------- ! -- GIMPLE function: gimple gimple_build_omp_continue (tree control_def, ! tree control_use) ! Build a 'GIMPLE_OMP_CONTINUE' statement. 'CONTROL_DEF' is the ! definition of the control variable. 'CONTROL_USE' is the use of the control variable. -- GIMPLE function: tree gimple_omp_continue_control_def (gimple s) Return the definition of the control variable on a ! 'GIMPLE_OMP_CONTINUE' in 'S'. -- GIMPLE function: tree gimple_omp_continue_control_def_ptr (gimple s) Same as above, but return the pointer. -- GIMPLE function: tree gimple_omp_continue_set_control_def (gimple s) ! Set the control variable definition for a 'GIMPLE_OMP_CONTINUE' ! statement in 'S'. -- GIMPLE function: tree gimple_omp_continue_control_use (gimple s) ! Return the use of the control variable on a 'GIMPLE_OMP_CONTINUE' ! in 'S'. -- GIMPLE function: tree gimple_omp_continue_control_use_ptr (gimple s) Same as above, but return the pointer. -- GIMPLE function: tree gimple_omp_continue_set_control_use (gimple s) ! Set the control variable use for a 'GIMPLE_OMP_CONTINUE' statement ! in 'S'.  ! File: gccint.info, Node: 'GIMPLE_OMP_CRITICAL', Next: 'GIMPLE_OMP_FOR', Prev: 'GIMPLE_OMP_CONTINUE', Up: Tuple specific accessors ! 12.7.14 'GIMPLE_OMP_CRITICAL' ----------------------------- -- GIMPLE function: gimple gimple_build_omp_critical (gimple_seq body, tree name) ! Build a 'GIMPLE_OMP_CRITICAL' statement. 'BODY' is the sequence of ! statements for which only one thread can execute. 'NAME' is an optional identifier for this critical block. -- GIMPLE function: tree gimple_omp_critical_name (gimple g) ! Return the name associated with 'OMP_CRITICAL' statement 'G'. -- GIMPLE function: tree * gimple_omp_critical_name_ptr (gimple g) ! Return a pointer to the name associated with 'OMP' critical ! statement 'G'. -- GIMPLE function: void gimple_omp_critical_set_name (gimple g, tree name) ! Set 'NAME' to be the name associated with 'OMP' critical statement ! 'G'.  ! File: gccint.info, Node: 'GIMPLE_OMP_FOR', Next: 'GIMPLE_OMP_MASTER', Prev: 'GIMPLE_OMP_CRITICAL', Up: Tuple specific accessors ! 12.7.15 'GIMPLE_OMP_FOR' ------------------------ -- GIMPLE function: gimple gimple_build_omp_for (gimple_seq body, tree clauses, tree index, tree initial, tree final, tree incr, gimple_seq pre_body, enum tree_code omp_for_cond) ! Build a 'GIMPLE_OMP_FOR' statement. 'BODY' is sequence of ! statements inside the for loop. 'CLAUSES', are any of the 'OMP' ! loop construct's clauses: private, firstprivate, lastprivate, ! reductions, ordered, schedule, and nowait. 'PRE_BODY' is the ! sequence of statements that are loop invariant. 'INDEX' is the ! index variable. 'INITIAL' is the initial value of 'INDEX'. ! 'FINAL' is final value of 'INDEX'. OMP_FOR_COND is the predicate ! used to compare 'INDEX' and 'FINAL'. 'INCR' is the increment expression. -- GIMPLE function: tree gimple_omp_for_clauses (gimple g) ! Return the clauses associated with 'OMP_FOR' 'G'. -- GIMPLE function: tree * gimple_omp_for_clauses_ptr (gimple g) ! Return a pointer to the 'OMP_FOR' 'G'. -- GIMPLE function: void gimple_omp_for_set_clauses (gimple g, tree clauses) ! Set 'CLAUSES' to be the list of clauses associated with 'OMP_FOR' ! 'G'. -- GIMPLE function: tree gimple_omp_for_index (gimple g) ! Return the index variable for 'OMP_FOR' 'G'. -- GIMPLE function: tree * gimple_omp_for_index_ptr (gimple g) ! Return a pointer to the index variable for 'OMP_FOR' 'G'. -- GIMPLE function: void gimple_omp_for_set_index (gimple g, tree index) ! Set 'INDEX' to be the index variable for 'OMP_FOR' 'G'. -- GIMPLE function: tree gimple_omp_for_initial (gimple g) ! Return the initial value for 'OMP_FOR' 'G'. -- GIMPLE function: tree * gimple_omp_for_initial_ptr (gimple g) ! Return a pointer to the initial value for 'OMP_FOR' 'G'. -- GIMPLE function: void gimple_omp_for_set_initial (gimple g, tree initial) ! Set 'INITIAL' to be the initial value for 'OMP_FOR' 'G'. -- GIMPLE function: tree gimple_omp_for_final (gimple g) ! Return the final value for 'OMP_FOR' 'G'. -- GIMPLE function: tree * gimple_omp_for_final_ptr (gimple g) ! turn a pointer to the final value for 'OMP_FOR' 'G'. -- GIMPLE function: void gimple_omp_for_set_final (gimple g, tree final) ! Set 'FINAL' to be the final value for 'OMP_FOR' 'G'. -- GIMPLE function: tree gimple_omp_for_incr (gimple g) ! Return the increment value for 'OMP_FOR' 'G'. -- GIMPLE function: tree * gimple_omp_for_incr_ptr (gimple g) ! Return a pointer to the increment value for 'OMP_FOR' 'G'. -- GIMPLE function: void gimple_omp_for_set_incr (gimple g, tree incr) ! Set 'INCR' to be the increment value for 'OMP_FOR' 'G'. -- GIMPLE function: gimple_seq gimple_omp_for_pre_body (gimple g) ! Return the sequence of statements to execute before the 'OMP_FOR' ! statement 'G' starts. -- GIMPLE function: void gimple_omp_for_set_pre_body (gimple g, gimple_seq pre_body) ! Set 'PRE_BODY' to be the sequence of statements to execute before ! the 'OMP_FOR' statement 'G' starts. -- GIMPLE function: void gimple_omp_for_set_cond (gimple g, enum tree_code cond) ! Set 'COND' to be the condition code for 'OMP_FOR' 'G'. -- GIMPLE function: enum tree_code gimple_omp_for_cond (gimple g) ! Return the condition code associated with 'OMP_FOR' 'G'.  ! File: gccint.info, Node: 'GIMPLE_OMP_MASTER', Next: 'GIMPLE_OMP_ORDERED', Prev: 'GIMPLE_OMP_FOR', Up: Tuple specific accessors ! 12.7.16 'GIMPLE_OMP_MASTER' --------------------------- -- GIMPLE function: gimple gimple_build_omp_master (gimple_seq body) ! Build a 'GIMPLE_OMP_MASTER' statement. 'BODY' is the sequence of statements to be executed by just the master.  ! File: gccint.info, Node: 'GIMPLE_OMP_ORDERED', Next: 'GIMPLE_OMP_PARALLEL', Prev: 'GIMPLE_OMP_MASTER', Up: Tuple specific accessors ! 12.7.17 'GIMPLE_OMP_ORDERED' ---------------------------- -- GIMPLE function: gimple gimple_build_omp_ordered (gimple_seq body) ! Build a 'GIMPLE_OMP_ORDERED' statement. ! 'BODY' is the sequence of statements inside a loop that will executed in sequence.  ! File: gccint.info, Node: 'GIMPLE_OMP_PARALLEL', Next: 'GIMPLE_OMP_RETURN', Prev: 'GIMPLE_OMP_ORDERED', Up: Tuple specific accessors ! 12.7.18 'GIMPLE_OMP_PARALLEL' ----------------------------- -- GIMPLE function: gimple gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn, tree data_arg) ! Build a 'GIMPLE_OMP_PARALLEL' statement. ! 'BODY' is sequence of statements which are executed in parallel. ! 'CLAUSES', are the 'OMP' parallel construct's clauses. 'CHILD_FN' is ! the function created for the parallel threads to execute. 'DATA_ARG' are the shared data argument(s). -- GIMPLE function: bool gimple_omp_parallel_combined_p (gimple g) ! Return true if 'OMP' parallel statement 'G' has the ! 'GF_OMP_PARALLEL_COMBINED' flag set. -- GIMPLE function: void gimple_omp_parallel_set_combined_p (gimple g) ! Set the 'GF_OMP_PARALLEL_COMBINED' field in 'OMP' parallel ! statement 'G'. -- GIMPLE function: gimple_seq gimple_omp_body (gimple g) ! Return the body for the 'OMP' statement 'G'. -- GIMPLE function: void gimple_omp_set_body (gimple g, gimple_seq body) ! Set 'BODY' to be the body for the 'OMP' statement 'G'. -- GIMPLE function: tree gimple_omp_parallel_clauses (gimple g) ! Return the clauses associated with 'OMP_PARALLEL' 'G'. -- GIMPLE function: tree * gimple_omp_parallel_clauses_ptr (gimple g) ! Return a pointer to the clauses associated with 'OMP_PARALLEL' 'G'. -- GIMPLE function: void gimple_omp_parallel_set_clauses (gimple g, tree clauses) ! Set 'CLAUSES' to be the list of clauses associated with ! 'OMP_PARALLEL' 'G'. -- GIMPLE function: tree gimple_omp_parallel_child_fn (gimple g) ! Return the child function used to hold the body of 'OMP_PARALLEL' ! 'G'. -- GIMPLE function: tree * gimple_omp_parallel_child_fn_ptr (gimple g) Return a pointer to the child function used to hold the body of ! 'OMP_PARALLEL' 'G'. -- GIMPLE function: void gimple_omp_parallel_set_child_fn (gimple g, tree child_fn) ! Set 'CHILD_FN' to be the child function for 'OMP_PARALLEL' 'G'. -- GIMPLE function: tree gimple_omp_parallel_data_arg (gimple g) Return the artificial argument used to send variables and values ! from the parent to the children threads in 'OMP_PARALLEL' 'G'. -- GIMPLE function: tree * gimple_omp_parallel_data_arg_ptr (gimple g) ! Return a pointer to the data argument for 'OMP_PARALLEL' 'G'. -- GIMPLE function: void gimple_omp_parallel_set_data_arg (gimple g, tree data_arg) ! Set 'DATA_ARG' to be the data argument for 'OMP_PARALLEL' 'G'. -- GIMPLE function: bool is_gimple_omp (gimple stmt) ! Returns true when the gimple statement 'STMT' is any of the OpenMP types.  ! File: gccint.info, Node: 'GIMPLE_OMP_RETURN', Next: 'GIMPLE_OMP_SECTION', Prev: 'GIMPLE_OMP_PARALLEL', Up: Tuple specific accessors ! 12.7.19 'GIMPLE_OMP_RETURN' --------------------------- -- GIMPLE function: gimple gimple_build_omp_return (bool wait_p) ! Build a 'GIMPLE_OMP_RETURN' statement. 'WAIT_P' is true if this is a non-waiting return. -- GIMPLE function: void gimple_omp_return_set_nowait (gimple s) ! Set the nowait flag on 'GIMPLE_OMP_RETURN' statement 'S'. -- GIMPLE function: bool gimple_omp_return_nowait_p (gimple g) ! Return true if 'OMP' return statement 'G' has the ! 'GF_OMP_RETURN_NOWAIT' flag set.  ! File: gccint.info, Node: 'GIMPLE_OMP_SECTION', Next: 'GIMPLE_OMP_SECTIONS', Prev: 'GIMPLE_OMP_RETURN', Up: Tuple specific accessors ! 12.7.20 'GIMPLE_OMP_SECTION' ---------------------------- -- GIMPLE function: gimple gimple_build_omp_section (gimple_seq body) ! Build a 'GIMPLE_OMP_SECTION' statement for a sections statement. ! 'BODY' is the sequence of statements in the section. -- GIMPLE function: bool gimple_omp_section_last_p (gimple g) ! Return true if 'OMP' section statement 'G' has the ! 'GF_OMP_SECTION_LAST' flag set. -- GIMPLE function: void gimple_omp_section_set_last (gimple g) ! Set the 'GF_OMP_SECTION_LAST' flag on 'G'.  ! File: gccint.info, Node: 'GIMPLE_OMP_SECTIONS', Next: 'GIMPLE_OMP_SINGLE', Prev: 'GIMPLE_OMP_SECTION', Up: Tuple specific accessors ! 12.7.21 'GIMPLE_OMP_SECTIONS' ----------------------------- -- GIMPLE function: gimple gimple_build_omp_sections (gimple_seq body, tree clauses) ! Build a 'GIMPLE_OMP_SECTIONS' statement. 'BODY' is a sequence of ! section statements. 'CLAUSES' are any of the 'OMP' sections ! construct's clauses: private, firstprivate, lastprivate, reduction, ! and nowait. -- GIMPLE function: gimple gimple_build_omp_sections_switch (void) ! Build a 'GIMPLE_OMP_SECTIONS_SWITCH' statement. -- GIMPLE function: tree gimple_omp_sections_control (gimple g) Return the control variable associated with the ! 'GIMPLE_OMP_SECTIONS' in 'G'. -- GIMPLE function: tree * gimple_omp_sections_control_ptr (gimple g) Return a pointer to the clauses associated with the ! 'GIMPLE_OMP_SECTIONS' in 'G'. -- GIMPLE function: void gimple_omp_sections_set_control (gimple g, tree control) ! Set 'CONTROL' to be the set of clauses associated with the ! 'GIMPLE_OMP_SECTIONS' in 'G'. -- GIMPLE function: tree gimple_omp_sections_clauses (gimple g) ! Return the clauses associated with 'OMP_SECTIONS' 'G'. -- GIMPLE function: tree * gimple_omp_sections_clauses_ptr (gimple g) ! Return a pointer to the clauses associated with 'OMP_SECTIONS' 'G'. -- GIMPLE function: void gimple_omp_sections_set_clauses (gimple g, tree clauses) ! Set 'CLAUSES' to be the set of clauses associated with ! 'OMP_SECTIONS' 'G'.  ! File: gccint.info, Node: 'GIMPLE_OMP_SINGLE', Next: 'GIMPLE_PHI', Prev: 'GIMPLE_OMP_SECTIONS', Up: Tuple specific accessors ! 12.7.22 'GIMPLE_OMP_SINGLE' --------------------------- -- GIMPLE function: gimple gimple_build_omp_single (gimple_seq body, tree clauses) ! Build a 'GIMPLE_OMP_SINGLE' statement. 'BODY' is the sequence of ! statements that will be executed once. 'CLAUSES' are any of the ! 'OMP' single construct's clauses: private, firstprivate, copyprivate, nowait. -- GIMPLE function: tree gimple_omp_single_clauses (gimple g) ! Return the clauses associated with 'OMP_SINGLE' 'G'. -- GIMPLE function: tree * gimple_omp_single_clauses_ptr (gimple g) ! Return a pointer to the clauses associated with 'OMP_SINGLE' 'G'. -- GIMPLE function: void gimple_omp_single_set_clauses (gimple g, tree clauses) ! Set 'CLAUSES' to be the clauses associated with 'OMP_SINGLE' 'G'.  ! File: gccint.info, Node: 'GIMPLE_PHI', Next: 'GIMPLE_RESX', Prev: 'GIMPLE_OMP_SINGLE', Up: Tuple specific accessors ! 12.7.23 'GIMPLE_PHI' -------------------- -- GIMPLE function: unsigned gimple_phi_capacity (gimple g) ! Return the maximum number of arguments supported by 'GIMPLE_PHI' ! 'G'. -- GIMPLE function: unsigned gimple_phi_num_args (gimple g) ! Return the number of arguments in 'GIMPLE_PHI' 'G'. This must always be exactly the number of incoming edges for the basic block ! holding 'G'. -- GIMPLE function: tree gimple_phi_result (gimple g) ! Return the 'SSA' name created by 'GIMPLE_PHI' 'G'. -- GIMPLE function: tree * gimple_phi_result_ptr (gimple g) ! Return a pointer to the 'SSA' name created by 'GIMPLE_PHI' 'G'. -- GIMPLE function: void gimple_phi_set_result (gimple g, tree result) ! Set 'RESULT' to be the 'SSA' name created by 'GIMPLE_PHI' 'G'. -- GIMPLE function: struct phi_arg_d * gimple_phi_arg (gimple g, index) ! Return the 'PHI' argument corresponding to incoming edge 'INDEX' ! for 'GIMPLE_PHI' 'G'. -- GIMPLE function: void gimple_phi_set_arg (gimple g, index, struct phi_arg_d * phiarg) ! Set 'PHIARG' to be the argument corresponding to incoming edge ! 'INDEX' for 'GIMPLE_PHI' 'G'.  ! File: gccint.info, Node: 'GIMPLE_RESX', Next: 'GIMPLE_RETURN', Prev: 'GIMPLE_PHI', Up: Tuple specific accessors ! 12.7.24 'GIMPLE_RESX' --------------------- -- GIMPLE function: gimple gimple_build_resx (int region) ! Build a 'GIMPLE_RESX' statement which is a statement. This statement is a placeholder for _Unwind_Resume before we know if a ! function call or a branch is needed. 'REGION' is the exception region from which control is flowing. -- GIMPLE function: int gimple_resx_region (gimple g) ! Return the region number for 'GIMPLE_RESX' 'G'. -- GIMPLE function: void gimple_resx_set_region (gimple g, int region) ! Set 'REGION' to be the region number for 'GIMPLE_RESX' 'G'.  ! File: gccint.info, Node: 'GIMPLE_RETURN', Next: 'GIMPLE_SWITCH', Prev: 'GIMPLE_RESX', Up: Tuple specific accessors ! 12.7.25 'GIMPLE_RETURN' ----------------------- -- GIMPLE function: gimple gimple_build_return (tree retval) ! Build a 'GIMPLE_RETURN' statement whose return value is retval. -- GIMPLE function: tree gimple_return_retval (gimple g) ! Return the return value for 'GIMPLE_RETURN' 'G'. -- GIMPLE function: void gimple_return_set_retval (gimple g, tree retval) ! Set 'RETVAL' to be the return value for 'GIMPLE_RETURN' 'G'.  ! File: gccint.info, Node: 'GIMPLE_SWITCH', Next: 'GIMPLE_TRY', Prev: 'GIMPLE_RETURN', Up: Tuple specific accessors ! 12.7.26 'GIMPLE_SWITCH' ----------------------- -- GIMPLE function: gimple gimple_build_switch (tree index, tree ! default_label, 'VEC'(tree,heap) *args) ! Build a 'GIMPLE_SWITCH' statement. 'INDEX' is the index variable ! to switch on, and 'DEFAULT_LABEL' represents the default label. ! 'ARGS' is a vector of 'CASE_LABEL_EXPR' trees that contain the non-default case labels. Each label is a tree of code ! 'CASE_LABEL_EXPR'. -- GIMPLE function: unsigned gimple_switch_num_labels (gimple g) Return the number of labels associated with the switch statement ! 'G'. -- GIMPLE function: void gimple_switch_set_num_labels (gimple g, unsigned nlabels) ! Set 'NLABELS' to be the number of labels for the switch statement ! 'G'. -- GIMPLE function: tree gimple_switch_index (gimple g) ! Return the index variable used by the switch statement 'G'. -- GIMPLE function: void gimple_switch_set_index (gimple g, tree index) ! Set 'INDEX' to be the index variable for switch statement 'G'. -- GIMPLE function: tree gimple_switch_label (gimple g, unsigned index) ! Return the label numbered 'INDEX'. The default label is 0, ! followed by any labels in a switch statement. -- GIMPLE function: void gimple_switch_set_label (gimple g, unsigned index, tree label) ! Set the label number 'INDEX' to 'LABEL'. 0 is always the default label. -- GIMPLE function: tree gimple_switch_default_label (gimple g) *************** File: gccint.info, Node: `GIMPLE_SWITCH *** 15594,15665 **** Set the default label for a switch statement.  ! File: gccint.info, Node: `GIMPLE_TRY', Next: `GIMPLE_WITH_CLEANUP_EXPR', Prev: `GIMPLE_SWITCH', Up: Tuple specific accessors ! 12.7.27 `GIMPLE_TRY' -------------------- -- GIMPLE function: gimple gimple_build_try (gimple_seq eval, gimple_seq cleanup, unsigned int kind) ! Build a `GIMPLE_TRY' statement. `EVAL' is a sequence with the ! expression to evaluate. `CLEANUP' is a sequence of statements to ! run at clean-up time. `KIND' is the enumeration value ! `GIMPLE_TRY_CATCH' if this statement denotes a try/catch construct ! or `GIMPLE_TRY_FINALLY' if this statement denotes a try/finally construct. -- GIMPLE function: enum gimple_try_flags gimple_try_kind (gimple g) ! Return the kind of try block represented by `GIMPLE_TRY' `G'. This ! is either `GIMPLE_TRY_CATCH' or `GIMPLE_TRY_FINALLY'. -- GIMPLE function: bool gimple_try_catch_is_cleanup (gimple g) ! Return the `GIMPLE_TRY_CATCH_IS_CLEANUP' flag. -- GIMPLE function: gimple_seq gimple_try_eval (gimple g) ! Return the sequence of statements used as the body for `GIMPLE_TRY' ! `G'. -- GIMPLE function: gimple_seq gimple_try_cleanup (gimple g) Return the sequence of statements used as the cleanup body for ! `GIMPLE_TRY' `G'. -- GIMPLE function: void gimple_try_set_catch_is_cleanup (gimple g, bool catch_is_cleanup) ! Set the `GIMPLE_TRY_CATCH_IS_CLEANUP' flag. -- GIMPLE function: void gimple_try_set_eval (gimple g, gimple_seq eval) ! Set `EVAL' to be the sequence of statements to use as the body for ! `GIMPLE_TRY' `G'. -- GIMPLE function: void gimple_try_set_cleanup (gimple g, gimple_seq cleanup) ! Set `CLEANUP' to be the sequence of statements to use as the ! cleanup body for `GIMPLE_TRY' `G'.  ! File: gccint.info, Node: `GIMPLE_WITH_CLEANUP_EXPR', Prev: `GIMPLE_TRY', Up: Tuple specific accessors ! 12.7.28 `GIMPLE_WITH_CLEANUP_EXPR' ---------------------------------- -- GIMPLE function: gimple gimple_build_wce (gimple_seq cleanup) ! Build a `GIMPLE_WITH_CLEANUP_EXPR' statement. `CLEANUP' is the clean-up expression. -- GIMPLE function: gimple_seq gimple_wce_cleanup (gimple g) ! Return the cleanup sequence for cleanup statement `G'. -- GIMPLE function: void gimple_wce_set_cleanup (gimple g, gimple_seq cleanup) ! Set `CLEANUP' to be the cleanup sequence for `G'. -- GIMPLE function: bool gimple_wce_cleanup_eh_only (gimple g) ! Return the `CLEANUP_EH_ONLY' flag for a `WCE' tuple. ! -- GIMPLE function: void gimple_wce_set_cleanup_eh_only (gimple g, ! bool eh_only_p) ! Set the `CLEANUP_EH_ONLY' flag for a `WCE' tuple.  File: gccint.info, Node: GIMPLE sequences, Next: Sequence iterators, Prev: Tuple specific accessors, Up: GIMPLE --- 15437,15508 ---- Set the default label for a switch statement.  ! File: gccint.info, Node: 'GIMPLE_TRY', Next: 'GIMPLE_WITH_CLEANUP_EXPR', Prev: 'GIMPLE_SWITCH', Up: Tuple specific accessors ! 12.7.27 'GIMPLE_TRY' -------------------- -- GIMPLE function: gimple gimple_build_try (gimple_seq eval, gimple_seq cleanup, unsigned int kind) ! Build a 'GIMPLE_TRY' statement. 'EVAL' is a sequence with the ! expression to evaluate. 'CLEANUP' is a sequence of statements to ! run at clean-up time. 'KIND' is the enumeration value ! 'GIMPLE_TRY_CATCH' if this statement denotes a try/catch construct ! or 'GIMPLE_TRY_FINALLY' if this statement denotes a try/finally construct. -- GIMPLE function: enum gimple_try_flags gimple_try_kind (gimple g) ! Return the kind of try block represented by 'GIMPLE_TRY' 'G'. This ! is either 'GIMPLE_TRY_CATCH' or 'GIMPLE_TRY_FINALLY'. -- GIMPLE function: bool gimple_try_catch_is_cleanup (gimple g) ! Return the 'GIMPLE_TRY_CATCH_IS_CLEANUP' flag. -- GIMPLE function: gimple_seq gimple_try_eval (gimple g) ! Return the sequence of statements used as the body for 'GIMPLE_TRY' ! 'G'. -- GIMPLE function: gimple_seq gimple_try_cleanup (gimple g) Return the sequence of statements used as the cleanup body for ! 'GIMPLE_TRY' 'G'. -- GIMPLE function: void gimple_try_set_catch_is_cleanup (gimple g, bool catch_is_cleanup) ! Set the 'GIMPLE_TRY_CATCH_IS_CLEANUP' flag. -- GIMPLE function: void gimple_try_set_eval (gimple g, gimple_seq eval) ! Set 'EVAL' to be the sequence of statements to use as the body for ! 'GIMPLE_TRY' 'G'. -- GIMPLE function: void gimple_try_set_cleanup (gimple g, gimple_seq cleanup) ! Set 'CLEANUP' to be the sequence of statements to use as the ! cleanup body for 'GIMPLE_TRY' 'G'.  ! File: gccint.info, Node: 'GIMPLE_WITH_CLEANUP_EXPR', Prev: 'GIMPLE_TRY', Up: Tuple specific accessors ! 12.7.28 'GIMPLE_WITH_CLEANUP_EXPR' ---------------------------------- -- GIMPLE function: gimple gimple_build_wce (gimple_seq cleanup) ! Build a 'GIMPLE_WITH_CLEANUP_EXPR' statement. 'CLEANUP' is the clean-up expression. -- GIMPLE function: gimple_seq gimple_wce_cleanup (gimple g) ! Return the cleanup sequence for cleanup statement 'G'. -- GIMPLE function: void gimple_wce_set_cleanup (gimple g, gimple_seq cleanup) ! Set 'CLEANUP' to be the cleanup sequence for 'G'. -- GIMPLE function: bool gimple_wce_cleanup_eh_only (gimple g) ! Return the 'CLEANUP_EH_ONLY' flag for a 'WCE' tuple. ! -- GIMPLE function: void gimple_wce_set_cleanup_eh_only (gimple g, bool ! eh_only_p) ! Set the 'CLEANUP_EH_ONLY' flag for a 'WCE' tuple.  File: gccint.info, Node: GIMPLE sequences, Next: Sequence iterators, Prev: Tuple specific accessors, Up: GIMPLE *************** File: gccint.info, Node: GIMPLE sequenc *** 15667,15684 **** 12.8 GIMPLE sequences ===================== ! GIMPLE sequences are the tuple equivalent of `STATEMENT_LIST''s used in ! `GENERIC'. They are used to chain statements together, and when used ! in conjunction with sequence iterators, provide a framework for ! iterating through statements. ! GIMPLE sequences are of type struct `gimple_sequence', but are more commonly passed by reference to functions dealing with sequences. The ! type for a sequence pointer is `gimple_seq' which is the same as struct ! `gimple_sequence' *. When declaring a local sequence, you can define a ! local variable of type struct `gimple_sequence'. When declaring a sequence allocated on the garbage collected heap, use the function ! `gimple_seq_alloc' documented below. There are convenience functions for iterating through sequences in the section entitled Sequence Iterators. --- 15510,15527 ---- 12.8 GIMPLE sequences ===================== ! GIMPLE sequences are the tuple equivalent of 'STATEMENT_LIST''s used in ! 'GENERIC'. They are used to chain statements together, and when used in ! conjunction with sequence iterators, provide a framework for iterating ! through statements. ! GIMPLE sequences are of type struct 'gimple_sequence', but are more commonly passed by reference to functions dealing with sequences. The ! type for a sequence pointer is 'gimple_seq' which is the same as struct ! 'gimple_sequence' *. When declaring a local sequence, you can define a ! local variable of type struct 'gimple_sequence'. When declaring a sequence allocated on the garbage collected heap, use the function ! 'gimple_seq_alloc' documented below. There are convenience functions for iterating through sequences in the section entitled Sequence Iterators. *************** section entitled Sequence Iterators. *** 15687,15726 **** -- GIMPLE function: void gimple_seq_add_stmt (gimple_seq *seq, gimple g) ! Link a gimple statement to the end of the sequence *`SEQ' if `G' is ! not `NULL'. If *`SEQ' is `NULL', allocate a sequence before linking. -- GIMPLE function: void gimple_seq_add_seq (gimple_seq *dest, gimple_seq src) ! Append sequence `SRC' to the end of sequence *`DEST' if `SRC' is ! not `NULL'. If *`DEST' is `NULL', allocate a new sequence before appending. -- GIMPLE function: gimple_seq gimple_seq_deep_copy (gimple_seq src) ! Perform a deep copy of sequence `SRC' and return the result. -- GIMPLE function: gimple_seq gimple_seq_reverse (gimple_seq seq) ! Reverse the order of the statements in the sequence `SEQ'. Return ! `SEQ'. -- GIMPLE function: gimple gimple_seq_first (gimple_seq s) ! Return the first statement in sequence `S'. -- GIMPLE function: gimple gimple_seq_last (gimple_seq s) ! Return the last statement in sequence `S'. -- GIMPLE function: void gimple_seq_set_last (gimple_seq s, gimple last) ! Set the last statement in sequence `S' to the statement in `LAST'. -- GIMPLE function: void gimple_seq_set_first (gimple_seq s, gimple first) ! Set the first statement in sequence `S' to the statement in ! `FIRST'. -- GIMPLE function: void gimple_seq_init (gimple_seq s) ! Initialize sequence `S' to an empty sequence. -- GIMPLE function: gimple_seq gimple_seq_alloc (void) Allocate a new sequence in the garbage collected store and return --- 15530,15569 ---- -- GIMPLE function: void gimple_seq_add_stmt (gimple_seq *seq, gimple g) ! Link a gimple statement to the end of the sequence *'SEQ' if 'G' is ! not 'NULL'. If *'SEQ' is 'NULL', allocate a sequence before linking. -- GIMPLE function: void gimple_seq_add_seq (gimple_seq *dest, gimple_seq src) ! Append sequence 'SRC' to the end of sequence *'DEST' if 'SRC' is ! not 'NULL'. If *'DEST' is 'NULL', allocate a new sequence before appending. -- GIMPLE function: gimple_seq gimple_seq_deep_copy (gimple_seq src) ! Perform a deep copy of sequence 'SRC' and return the result. -- GIMPLE function: gimple_seq gimple_seq_reverse (gimple_seq seq) ! Reverse the order of the statements in the sequence 'SEQ'. Return ! 'SEQ'. -- GIMPLE function: gimple gimple_seq_first (gimple_seq s) ! Return the first statement in sequence 'S'. -- GIMPLE function: gimple gimple_seq_last (gimple_seq s) ! Return the last statement in sequence 'S'. -- GIMPLE function: void gimple_seq_set_last (gimple_seq s, gimple last) ! Set the last statement in sequence 'S' to the statement in 'LAST'. -- GIMPLE function: void gimple_seq_set_first (gimple_seq s, gimple first) ! Set the first statement in sequence 'S' to the statement in ! 'FIRST'. -- GIMPLE function: void gimple_seq_init (gimple_seq s) ! Initialize sequence 'S' to an empty sequence. -- GIMPLE function: gimple_seq gimple_seq_alloc (void) Allocate a new sequence in the garbage collected store and return *************** section entitled Sequence Iterators. *** 15728,15746 **** -- GIMPLE function: void gimple_seq_copy (gimple_seq dest, gimple_seq src) ! Copy the sequence `SRC' into the sequence `DEST'. -- GIMPLE function: bool gimple_seq_empty_p (gimple_seq s) ! Return true if the sequence `S' is empty. -- GIMPLE function: gimple_seq bb_seq (basic_block bb) ! Returns the sequence of statements in `BB'. -- GIMPLE function: void set_bb_seq (basic_block bb, gimple_seq seq) ! Sets the sequence of statements in `BB' to `SEQ'. -- GIMPLE function: bool gimple_seq_singleton_p (gimple_seq seq) ! Determine whether `SEQ' contains exactly one statement.  File: gccint.info, Node: Sequence iterators, Next: Adding a new GIMPLE statement code, Prev: GIMPLE sequences, Up: GIMPLE --- 15571,15589 ---- -- GIMPLE function: void gimple_seq_copy (gimple_seq dest, gimple_seq src) ! Copy the sequence 'SRC' into the sequence 'DEST'. -- GIMPLE function: bool gimple_seq_empty_p (gimple_seq s) ! Return true if the sequence 'S' is empty. -- GIMPLE function: gimple_seq bb_seq (basic_block bb) ! Returns the sequence of statements in 'BB'. -- GIMPLE function: void set_bb_seq (basic_block bb, gimple_seq seq) ! Sets the sequence of statements in 'BB' to 'SEQ'. -- GIMPLE function: bool gimple_seq_singleton_p (gimple_seq seq) ! Determine whether 'SEQ' contains exactly one statement.  File: gccint.info, Node: Sequence iterators, Next: Adding a new GIMPLE statement code, Prev: GIMPLE sequences, Up: GIMPLE *************** File: gccint.info, Node: Sequence itera *** 15749,15763 **** ======================= Sequence iterators are convenience constructs for iterating through ! statements in a sequence. Given a sequence `SEQ', here is a typical ! use of gimple sequence iterators: gimple_stmt_iterator gsi; for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple g = gsi_stmt (gsi); ! /* Do something with gimple statement `G'. */ } Backward iterations are possible: --- 15592,15606 ---- ======================= Sequence iterators are convenience constructs for iterating through ! statements in a sequence. Given a sequence 'SEQ', here is a typical use ! of gimple sequence iterators: gimple_stmt_iterator gsi; for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple g = gsi_stmt (gsi); ! /* Do something with gimple statement G. */ } Backward iterations are possible: *************** use of gimple sequence iterators: *** 15765,15811 **** for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi)) Forward and backward iterations on basic blocks are possible with ! `gsi_start_bb' and `gsi_last_bb'. In the documentation below we sometimes refer to enum ! `gsi_iterator_update'. The valid options for this enumeration are: ! * `GSI_NEW_STMT' Only valid when a single statement is added. Move the iterator to it. ! * `GSI_SAME_STMT' Leave the iterator at the same statement. ! * `GSI_CONTINUE_LINKING' Move iterator to whatever position is suitable for linking other statements in the same direction. Below is a list of the functions used to manipulate and use statement iterators. -- GIMPLE function: gimple_stmt_iterator gsi_start (gimple_seq seq) ! Return a new iterator pointing to the sequence `SEQ''s first ! statement. If `SEQ' is empty, the iterator's basic block is ! `NULL'. Use `gsi_start_bb' instead when the iterator needs to always have the correct basic block set. -- GIMPLE function: gimple_stmt_iterator gsi_start_bb (basic_block bb) Return a new iterator pointing to the first statement in basic ! block `BB'. -- GIMPLE function: gimple_stmt_iterator gsi_last (gimple_seq seq) Return a new iterator initially pointing to the last statement of ! sequence `SEQ'. If `SEQ' is empty, the iterator's basic block is ! `NULL'. Use `gsi_last_bb' instead when the iterator needs to always have the correct basic block set. -- GIMPLE function: gimple_stmt_iterator gsi_last_bb (basic_block bb) ! Return a new iterator pointing to the last statement in basic ! block `BB'. -- GIMPLE function: bool gsi_end_p (gimple_stmt_iterator i) ! Return `TRUE' if at the end of `I'. -- GIMPLE function: bool gsi_one_before_end_p (gimple_stmt_iterator i) ! Return `TRUE' if we're one statement before the end of `I'. -- GIMPLE function: void gsi_next (gimple_stmt_iterator *i) Advance the iterator to the next gimple statement. --- 15608,15654 ---- for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi)) Forward and backward iterations on basic blocks are possible with ! 'gsi_start_bb' and 'gsi_last_bb'. In the documentation below we sometimes refer to enum ! 'gsi_iterator_update'. The valid options for this enumeration are: ! * 'GSI_NEW_STMT' Only valid when a single statement is added. Move the iterator to it. ! * 'GSI_SAME_STMT' Leave the iterator at the same statement. ! * 'GSI_CONTINUE_LINKING' Move iterator to whatever position is suitable for linking other statements in the same direction. Below is a list of the functions used to manipulate and use statement iterators. -- GIMPLE function: gimple_stmt_iterator gsi_start (gimple_seq seq) ! Return a new iterator pointing to the sequence 'SEQ''s first ! statement. If 'SEQ' is empty, the iterator's basic block is ! 'NULL'. Use 'gsi_start_bb' instead when the iterator needs to always have the correct basic block set. -- GIMPLE function: gimple_stmt_iterator gsi_start_bb (basic_block bb) Return a new iterator pointing to the first statement in basic ! block 'BB'. -- GIMPLE function: gimple_stmt_iterator gsi_last (gimple_seq seq) Return a new iterator initially pointing to the last statement of ! sequence 'SEQ'. If 'SEQ' is empty, the iterator's basic block is ! 'NULL'. Use 'gsi_last_bb' instead when the iterator needs to always have the correct basic block set. -- GIMPLE function: gimple_stmt_iterator gsi_last_bb (basic_block bb) ! Return a new iterator pointing to the last statement in basic block ! 'BB'. -- GIMPLE function: bool gsi_end_p (gimple_stmt_iterator i) ! Return 'TRUE' if at the end of 'I'. -- GIMPLE function: bool gsi_one_before_end_p (gimple_stmt_iterator i) ! Return 'TRUE' if we're one statement before the end of 'I'. -- GIMPLE function: void gsi_next (gimple_stmt_iterator *i) Advance the iterator to the next gimple statement. *************** iterators. *** 15819,15825 **** -- GIMPLE function: gimple_stmt_iterator gsi_after_labels (basic_block bb) Return a block statement iterator that points to the first ! non-label statement in block `BB'. -- GIMPLE function: gimple * gsi_stmt_ptr (gimple_stmt_iterator *i) Return a pointer to the current stmt. --- 15662,15668 ---- -- GIMPLE function: gimple_stmt_iterator gsi_after_labels (basic_block bb) Return a block statement iterator that points to the first ! non-label statement in block 'BB'. -- GIMPLE function: gimple * gsi_stmt_ptr (gimple_stmt_iterator *i) Return a pointer to the current stmt. *************** iterators. *** 15832,15939 **** -- GIMPLE function: void gsi_remove (gimple_stmt_iterator *i, bool remove_eh_info) ! Remove the current stmt from the sequence. The iterator is ! updated to point to the next statement. When `REMOVE_EH_INFO' is ! true we remove the statement pointed to by iterator `I' from the ! `EH' tables. Otherwise we do not modify the `EH' tables. ! Generally, `REMOVE_EH_INFO' should be true when the statement is ! going to be removed from the `IL' and not reinserted elsewhere. -- GIMPLE function: void gsi_link_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode) ! Links the sequence of statements `SEQ' before the statement pointed ! by iterator `I'. `MODE' indicates what to do with the iterator ! after insertion (see `enum gsi_iterator_update' above). -- GIMPLE function: void gsi_link_before (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode) ! Links statement `G' before the statement pointed-to by iterator ! `I'. Updates iterator `I' according to `MODE'. -- GIMPLE function: void gsi_link_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode) ! Links sequence `SEQ' after the statement pointed-to by iterator ! `I'. `MODE' is as in `gsi_insert_after'. -- GIMPLE function: void gsi_link_after (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode) ! Links statement `G' after the statement pointed-to by iterator `I'. ! `MODE' is as in `gsi_insert_after'. -- GIMPLE function: gimple_seq gsi_split_seq_after (gimple_stmt_iterator i) ! Move all statements in the sequence after `I' to a new sequence. Return this new sequence. -- GIMPLE function: gimple_seq gsi_split_seq_before (gimple_stmt_iterator *i) ! Move all statements in the sequence before `I' to a new sequence. Return this new sequence. -- GIMPLE function: void gsi_replace (gimple_stmt_iterator *i, gimple stmt, bool update_eh_info) ! Replace the statement pointed-to by `I' to `STMT'. If ! `UPDATE_EH_INFO' is true, the exception handling information of ! the original statement is moved to the new statement. -- GIMPLE function: void gsi_insert_before (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode) ! Insert statement `STMT' before the statement pointed-to by iterator ! `I', update `STMT''s basic block and scan it for new operands. ! `MODE' specifies how to update iterator `I' after insertion (see ! enum `gsi_iterator_update'). -- GIMPLE function: void gsi_insert_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode) ! Like `gsi_insert_before', but for all the statements in `SEQ'. -- GIMPLE function: void gsi_insert_after (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode) ! Insert statement `STMT' after the statement pointed-to by iterator ! `I', update `STMT''s basic block and scan it for new operands. ! `MODE' specifies how to update iterator `I' after insertion (see ! enum `gsi_iterator_update'). ! -- GIMPLE function: void gsi_insert_seq_after (gimple_stmt_iterator ! *i, gimple_seq seq, enum gsi_iterator_update mode) ! Like `gsi_insert_after', but for all the statements in `SEQ'. -- GIMPLE function: gimple_stmt_iterator gsi_for_stmt (gimple stmt) ! Finds iterator for `STMT'. -- GIMPLE function: void gsi_move_after (gimple_stmt_iterator *from, gimple_stmt_iterator *to) ! Move the statement at `FROM' so it comes right after the statement ! at `TO'. -- GIMPLE function: void gsi_move_before (gimple_stmt_iterator *from, gimple_stmt_iterator *to) ! Move the statement at `FROM' so it comes right before the statement ! at `TO'. -- GIMPLE function: void gsi_move_to_bb_end (gimple_stmt_iterator *from, basic_block bb) ! Move the statement at `FROM' to the end of basic block `BB'. -- GIMPLE function: void gsi_insert_on_edge (edge e, gimple stmt) ! Add `STMT' to the pending list of edge `E'. No actual insertion is ! made until a call to `gsi_commit_edge_inserts'() is made. -- GIMPLE function: void gsi_insert_seq_on_edge (edge e, gimple_seq seq) ! Add the sequence of statements in `SEQ' to the pending list of edge ! `E'. No actual insertion is made until a call to ! `gsi_commit_edge_inserts'() is made. -- GIMPLE function: basic_block gsi_insert_on_edge_immediate (edge e, gimple stmt) ! Similar to `gsi_insert_on_edge'+`gsi_commit_edge_inserts'. If a new block has to be created, it is returned. -- GIMPLE function: void gsi_commit_one_edge_insert (edge e, basic_block *new_bb) ! Commit insertions pending at edge `E'. If a new block is created, ! set `NEW_BB' to this block, otherwise set it to `NULL'. -- GIMPLE function: void gsi_commit_edge_inserts (void) This routine will commit all pending edge insertions, creating any --- 15675,15782 ---- -- GIMPLE function: void gsi_remove (gimple_stmt_iterator *i, bool remove_eh_info) ! Remove the current stmt from the sequence. The iterator is updated ! to point to the next statement. When 'REMOVE_EH_INFO' is true we ! remove the statement pointed to by iterator 'I' from the 'EH' ! tables. Otherwise we do not modify the 'EH' tables. Generally, ! 'REMOVE_EH_INFO' should be true when the statement is going to be ! removed from the 'IL' and not reinserted elsewhere. -- GIMPLE function: void gsi_link_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode) ! Links the sequence of statements 'SEQ' before the statement pointed ! by iterator 'I'. 'MODE' indicates what to do with the iterator ! after insertion (see 'enum gsi_iterator_update' above). -- GIMPLE function: void gsi_link_before (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode) ! Links statement 'G' before the statement pointed-to by iterator ! 'I'. Updates iterator 'I' according to 'MODE'. -- GIMPLE function: void gsi_link_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode) ! Links sequence 'SEQ' after the statement pointed-to by iterator ! 'I'. 'MODE' is as in 'gsi_insert_after'. -- GIMPLE function: void gsi_link_after (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode) ! Links statement 'G' after the statement pointed-to by iterator 'I'. ! 'MODE' is as in 'gsi_insert_after'. -- GIMPLE function: gimple_seq gsi_split_seq_after (gimple_stmt_iterator i) ! Move all statements in the sequence after 'I' to a new sequence. Return this new sequence. -- GIMPLE function: gimple_seq gsi_split_seq_before (gimple_stmt_iterator *i) ! Move all statements in the sequence before 'I' to a new sequence. Return this new sequence. -- GIMPLE function: void gsi_replace (gimple_stmt_iterator *i, gimple stmt, bool update_eh_info) ! Replace the statement pointed-to by 'I' to 'STMT'. If ! 'UPDATE_EH_INFO' is true, the exception handling information of the ! original statement is moved to the new statement. -- GIMPLE function: void gsi_insert_before (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode) ! Insert statement 'STMT' before the statement pointed-to by iterator ! 'I', update 'STMT''s basic block and scan it for new operands. ! 'MODE' specifies how to update iterator 'I' after insertion (see ! enum 'gsi_iterator_update'). -- GIMPLE function: void gsi_insert_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode) ! Like 'gsi_insert_before', but for all the statements in 'SEQ'. -- GIMPLE function: void gsi_insert_after (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode) ! Insert statement 'STMT' after the statement pointed-to by iterator ! 'I', update 'STMT''s basic block and scan it for new operands. ! 'MODE' specifies how to update iterator 'I' after insertion (see ! enum 'gsi_iterator_update'). ! -- GIMPLE function: void gsi_insert_seq_after (gimple_stmt_iterator *i, ! gimple_seq seq, enum gsi_iterator_update mode) ! Like 'gsi_insert_after', but for all the statements in 'SEQ'. -- GIMPLE function: gimple_stmt_iterator gsi_for_stmt (gimple stmt) ! Finds iterator for 'STMT'. -- GIMPLE function: void gsi_move_after (gimple_stmt_iterator *from, gimple_stmt_iterator *to) ! Move the statement at 'FROM' so it comes right after the statement ! at 'TO'. -- GIMPLE function: void gsi_move_before (gimple_stmt_iterator *from, gimple_stmt_iterator *to) ! Move the statement at 'FROM' so it comes right before the statement ! at 'TO'. -- GIMPLE function: void gsi_move_to_bb_end (gimple_stmt_iterator *from, basic_block bb) ! Move the statement at 'FROM' to the end of basic block 'BB'. -- GIMPLE function: void gsi_insert_on_edge (edge e, gimple stmt) ! Add 'STMT' to the pending list of edge 'E'. No actual insertion is ! made until a call to 'gsi_commit_edge_inserts'() is made. -- GIMPLE function: void gsi_insert_seq_on_edge (edge e, gimple_seq seq) ! Add the sequence of statements in 'SEQ' to the pending list of edge ! 'E'. No actual insertion is made until a call to ! 'gsi_commit_edge_inserts'() is made. -- GIMPLE function: basic_block gsi_insert_on_edge_immediate (edge e, gimple stmt) ! Similar to 'gsi_insert_on_edge'+'gsi_commit_edge_inserts'. If a new block has to be created, it is returned. -- GIMPLE function: void gsi_commit_one_edge_insert (edge e, basic_block *new_bb) ! Commit insertions pending at edge 'E'. If a new block is created, ! set 'NEW_BB' to this block, otherwise set it to 'NULL'. -- GIMPLE function: void gsi_commit_edge_inserts (void) This routine will commit all pending edge insertions, creating any *************** File: gccint.info, Node: Adding a new G *** 15946,15971 **** ======================================== The first step in adding a new GIMPLE statement code, is modifying the ! file `gimple.def', which contains all the GIMPLE codes. Then you must ! add a corresponding structure, and an entry in `union ! gimple_statement_d', both of which are located in `gimple.h'. This in ! turn, will require you to add a corresponding `GTY' tag in ! `gsstruct.def', and code to handle this tag in `gss_for_code' which is ! located in `gimple.c'. In order for the garbage collector to know the size of the structure ! you created in `gimple.h', you need to add a case to handle your new ! GIMPLE statement in `gimple_size' which is located in `gimple.c'. You will probably want to create a function to build the new gimple ! statement in `gimple.c'. The function should be called ! `gimple_build_NEW-TUPLE-NAME', and should return the new tuple of type gimple. ! If your new statement requires accessors for any members or operands ! it may have, put simple inline accessors in `gimple.h' and any ! non-trivial accessors in `gimple.c' with a corresponding prototype in ! `gimple.h'.  File: gccint.info, Node: Statement and operand traversals, Prev: Adding a new GIMPLE statement code, Up: GIMPLE --- 15789,15813 ---- ======================================== The first step in adding a new GIMPLE statement code, is modifying the ! file 'gimple.def', which contains all the GIMPLE codes. Then you must ! add a corresponding structure, and an entry in 'union ! gimple_statement_d', both of which are located in 'gimple.h'. This in ! turn, will require you to add a corresponding 'GTY' tag in ! 'gsstruct.def', and code to handle this tag in 'gss_for_code' which is ! located in 'gimple.c'. In order for the garbage collector to know the size of the structure ! you created in 'gimple.h', you need to add a case to handle your new ! GIMPLE statement in 'gimple_size' which is located in 'gimple.c'. You will probably want to create a function to build the new gimple ! statement in 'gimple.c'. The function should be called ! 'gimple_build_NEW-TUPLE-NAME', and should return the new tuple of type gimple. ! If your new statement requires accessors for any members or operands it ! may have, put simple inline accessors in 'gimple.h' and any non-trivial ! accessors in 'gimple.c' with a corresponding prototype in 'gimple.h'.  File: gccint.info, Node: Statement and operand traversals, Prev: Adding a new GIMPLE statement code, Up: GIMPLE *************** File: gccint.info, Node: Statement and *** 15974,16030 **** ====================================== There are two functions available for walking statements and sequences: ! `walk_gimple_stmt' and `walk_gimple_seq', accordingly, and a third ! function for walking the operands in a statement: `walk_gimple_op'. -- GIMPLE function: tree walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi) ! This function is used to walk the current statement in `GSI', ! optionally using traversal state stored in `WI'. If `WI' is ! `NULL', no state is kept during the traversal. ! The callback `CALLBACK_STMT' is called. If `CALLBACK_STMT' returns true, it means that the callback function has handled all the operands of the statement and it is not necessary to walk its operands. ! If `CALLBACK_STMT' is `NULL' or it returns false, `CALLBACK_OP' is ! called on each operand of the statement via `walk_gimple_op'. If ! `walk_gimple_op' returns non-`NULL' for any operand, the remaining operands are not scanned. The return value is that returned by the last call to ! `walk_gimple_op', or `NULL_TREE' if no `CALLBACK_OP' is specified. -- GIMPLE function: tree walk_gimple_op (gimple stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi) ! Use this function to walk the operands of statement `STMT'. Every ! operand is walked via `walk_tree' with optional state information ! in `WI'. ! `CALLBACK_OP' is called on each operand of `STMT' via `walk_tree'. ! Additional parameters to `walk_tree' must be stored in `WI'. For ! each operand `OP', `walk_tree' is called as: ! walk_tree (&`OP', `CALLBACK_OP', `WI', `PSET') ! If `CALLBACK_OP' returns non-`NULL' for an operand, the remaining ! operands are not scanned. The return value is that returned by ! the last call to `walk_tree', or `NULL_TREE' if no `CALLBACK_OP' is specified. -- GIMPLE function: tree walk_gimple_seq (gimple_seq seq, walk_stmt_fn ! callback_stmt, walk_tree_fn callback_op, struct ! walk_stmt_info *wi) ! This function walks all the statements in the sequence `SEQ' ! calling `walk_gimple_stmt' on each one. `WI' is as in ! `walk_gimple_stmt'. If `walk_gimple_stmt' returns non-`NULL', the walk is stopped and the value returned. Otherwise, all the ! statements are walked and `NULL_TREE' returned.  ! File: gccint.info, Node: Tree SSA, Next: RTL, Prev: GIMPLE, Up: Top 13 Analysis and Optimization of GIMPLE tuples ********************************************* --- 15816,15872 ---- ====================================== There are two functions available for walking statements and sequences: ! 'walk_gimple_stmt' and 'walk_gimple_seq', accordingly, and a third ! function for walking the operands in a statement: 'walk_gimple_op'. -- GIMPLE function: tree walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi) ! This function is used to walk the current statement in 'GSI', ! optionally using traversal state stored in 'WI'. If 'WI' is ! 'NULL', no state is kept during the traversal. ! The callback 'CALLBACK_STMT' is called. If 'CALLBACK_STMT' returns true, it means that the callback function has handled all the operands of the statement and it is not necessary to walk its operands. ! If 'CALLBACK_STMT' is 'NULL' or it returns false, 'CALLBACK_OP' is ! called on each operand of the statement via 'walk_gimple_op'. If ! 'walk_gimple_op' returns non-'NULL' for any operand, the remaining operands are not scanned. The return value is that returned by the last call to ! 'walk_gimple_op', or 'NULL_TREE' if no 'CALLBACK_OP' is specified. -- GIMPLE function: tree walk_gimple_op (gimple stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi) ! Use this function to walk the operands of statement 'STMT'. Every ! operand is walked via 'walk_tree' with optional state information ! in 'WI'. ! 'CALLBACK_OP' is called on each operand of 'STMT' via 'walk_tree'. ! Additional parameters to 'walk_tree' must be stored in 'WI'. For ! each operand 'OP', 'walk_tree' is called as: ! walk_tree (&OP, CALLBACK_OP, WI, PSET) ! If 'CALLBACK_OP' returns non-'NULL' for an operand, the remaining ! operands are not scanned. The return value is that returned by the ! last call to 'walk_tree', or 'NULL_TREE' if no 'CALLBACK_OP' is specified. -- GIMPLE function: tree walk_gimple_seq (gimple_seq seq, walk_stmt_fn ! callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info ! *wi) ! This function walks all the statements in the sequence 'SEQ' ! calling 'walk_gimple_stmt' on each one. 'WI' is as in ! 'walk_gimple_stmt'. If 'walk_gimple_stmt' returns non-'NULL', the walk is stopped and the value returned. Otherwise, all the ! statements are walked and 'NULL_TREE' returned.  ! File: gccint.info, Node: Tree SSA, Next: Loop Analysis and Representation, Prev: GIMPLE, Up: Top 13 Analysis and Optimization of GIMPLE tuples ********************************************* *************** File: gccint.info, Node: Tree SSA, Nex *** 16032,16056 **** GCC uses three main intermediate languages to represent the program during compilation: GENERIC, GIMPLE and RTL. GENERIC is a language-independent representation generated by each front end. It is ! used to serve as an interface between the parser and optimizer. ! GENERIC is a common representation that is able to represent programs ! written in all the languages supported by GCC. GIMPLE and RTL are used to optimize the program. GIMPLE is used for target and language independent optimizations (e.g., inlining, constant propagation, tail call elimination, redundancy elimination, etc). Much like GENERIC, GIMPLE is a language independent, tree based representation. However, it differs from GENERIC in that the GIMPLE ! grammar is more restrictive: expressions contain no more than 3 ! operands (except function calls), it has no control flow structures and ! expressions with side-effects are only allowed on the right hand side ! of assignments. See the chapter describing GENERIC and GIMPLE for more details. This chapter describes the data structures and functions used in the ! GIMPLE optimizers (also known as "tree optimizers" or "middle end"). ! In particular, it focuses on all the macros, data structures, functions ! and programming constructs needed to implement optimization passes for GIMPLE. * Menu: --- 15874,15898 ---- GCC uses three main intermediate languages to represent the program during compilation: GENERIC, GIMPLE and RTL. GENERIC is a language-independent representation generated by each front end. It is ! used to serve as an interface between the parser and optimizer. GENERIC ! is a common representation that is able to represent programs written in ! all the languages supported by GCC. GIMPLE and RTL are used to optimize the program. GIMPLE is used for target and language independent optimizations (e.g., inlining, constant propagation, tail call elimination, redundancy elimination, etc). Much like GENERIC, GIMPLE is a language independent, tree based representation. However, it differs from GENERIC in that the GIMPLE ! grammar is more restrictive: expressions contain no more than 3 operands ! (except function calls), it has no control flow structures and ! expressions with side-effects are only allowed on the right hand side of ! assignments. See the chapter describing GENERIC and GIMPLE for more details. This chapter describes the data structures and functions used in the ! GIMPLE optimizers (also known as "tree optimizers" or "middle end"). In ! particular, it focuses on all the macros, data structures, functions and ! programming constructs needed to implement optimization passes for GIMPLE. * Menu: *************** File: gccint.info, Node: Annotations, *** 16070,16080 **** The optimizers need to associate attributes with variables during the optimization process. For instance, we need to know whether a variable has aliases. All these attributes are stored in data structures called ! annotations which are then linked to the field `ann' in `struct tree_common'. ! Presently, we define annotations for variables (`var_ann_t'). ! Annotations are defined and documented in `tree-flow.h'.  File: gccint.info, Node: SSA Operands, Next: SSA, Prev: Annotations, Up: Tree SSA --- 15912,15922 ---- The optimizers need to associate attributes with variables during the optimization process. For instance, we need to know whether a variable has aliases. All these attributes are stored in data structures called ! annotations which are then linked to the field 'ann' in 'struct tree_common'. ! Presently, we define annotations for variables ('var_ann_t'). ! Annotations are defined and documented in 'tree-flow.h'.  File: gccint.info, Node: SSA Operands, Next: SSA, Prev: Annotations, Up: Tree SSA *************** their operands are going to be located a *** 16088,16130 **** statement's tree. To facilitate access to the statement's operands, they are organized into lists associated inside each statement's annotation. Each element in an operand list is a pointer to a ! `VAR_DECL', `PARM_DECL' or `SSA_NAME' tree node. This provides a very convenient way of examining and replacing operands. Data flow analysis and optimization is done on all tree nodes ! representing variables. Any node for which `SSA_VAR_P' returns nonzero is considered when scanning statement operands. However, not all ! `SSA_VAR_P' variables are processed in the same way. For the purposes of optimization, we need to distinguish between references to local ! scalar variables and references to globals, statics, structures, ! arrays, aliased variables, etc. The reason is simple, the compiler can ! gather complete data flow information for a local scalar. On the other ! hand, a global variable may be modified by a function call, it may not ! be possible to keep track of all the elements of an array or the fields ! of a structure, etc. The operand scanner gathers two kinds of operands: "real" and ! "virtual". An operand for which `is_gimple_reg' returns true is ! considered real, otherwise it is a virtual operand. We also ! distinguish between uses and definitions. An operand is used if its ! value is loaded by the statement (e.g., the operand at the RHS of an ! assignment). If the statement assigns a new value to the operand, the ! operand is considered a definition (e.g., the operand at the LHS of an ! assignment). Virtual and real operands also have very different data flow ! properties. Real operands are unambiguous references to the full ! object that they represent. For instance, given { int a, b; a = b } ! Since `a' and `b' are non-aliased locals, the statement `a = b' will ! have one real definition and one real use because variable `a' is ! completely modified with the contents of variable `b'. Real definition ! are also known as "killing definitions". Similarly, the use of `b' reads all its bits. In contrast, virtual operands are used with variables that can have a --- 15930,15971 ---- statement's tree. To facilitate access to the statement's operands, they are organized into lists associated inside each statement's annotation. Each element in an operand list is a pointer to a ! 'VAR_DECL', 'PARM_DECL' or 'SSA_NAME' tree node. This provides a very convenient way of examining and replacing operands. Data flow analysis and optimization is done on all tree nodes ! representing variables. Any node for which 'SSA_VAR_P' returns nonzero is considered when scanning statement operands. However, not all ! 'SSA_VAR_P' variables are processed in the same way. For the purposes of optimization, we need to distinguish between references to local ! scalar variables and references to globals, statics, structures, arrays, ! aliased variables, etc. The reason is simple, the compiler can gather ! complete data flow information for a local scalar. On the other hand, a ! global variable may be modified by a function call, it may not be ! possible to keep track of all the elements of an array or the fields of ! a structure, etc. The operand scanner gathers two kinds of operands: "real" and ! "virtual". An operand for which 'is_gimple_reg' returns true is ! considered real, otherwise it is a virtual operand. We also distinguish ! between uses and definitions. An operand is used if its value is loaded ! by the statement (e.g., the operand at the RHS of an assignment). If ! the statement assigns a new value to the operand, the operand is ! considered a definition (e.g., the operand at the LHS of an assignment). Virtual and real operands also have very different data flow ! properties. Real operands are unambiguous references to the full object ! that they represent. For instance, given { int a, b; a = b } ! Since 'a' and 'b' are non-aliased locals, the statement 'a = b' will ! have one real definition and one real use because variable 'a' is ! completely modified with the contents of variable 'b'. Real definition ! are also known as "killing definitions". Similarly, the use of 'b' reads all its bits. In contrast, virtual operands are used with variables that can have a *************** definitions. For globals, structures, a *** 16134,16143 **** a statement whether a variable of these types has a killing definition. If the variable does, then the statement is marked as having a "must definition" of that variable. However, if a statement is only defining ! a part of the variable (i.e. a field in a structure), or if we know ! that a statement might define the variable but we cannot say for sure, ! then we mark that statement as having a "may definition". For ! instance, given { int a, b, *p; --- 15975,15984 ---- a statement whether a variable of these types has a killing definition. If the variable does, then the statement is marked as having a "must definition" of that variable. However, if a statement is only defining ! a part of the variable (i.e. a field in a structure), or if we know that ! a statement might define the variable but we cannot say for sure, then ! we mark that statement as having a "may definition". For instance, ! given { int a, b, *p; *************** instance, given *** 16150,16163 **** return *p; } ! The assignment `*p = 5' may be a definition of `a' or `b'. If we ! cannot determine statically where `p' is pointing to at the time of the ! store operation, we create virtual definitions to mark that statement ! as a potential definition site for `a' and `b'. Memory loads are ! similarly marked with virtual use operands. Virtual operands are shown ! in tree dumps right before the statement that contains them. To ! request a tree dump with virtual operands, use the `-vops' option to ! `-fdump-tree': { int a, b, *p; --- 15991,16003 ---- return *p; } ! The assignment '*p = 5' may be a definition of 'a' or 'b'. If we ! cannot determine statically where 'p' is pointing to at the time of the ! store operation, we create virtual definitions to mark that statement as ! a potential definition site for 'a' and 'b'. Memory loads are similarly ! marked with virtual use operands. Virtual operands are shown in tree ! dumps right before the statement that contains them. To request a tree ! dump with virtual operands, use the '-vops' option to '-fdump-tree': { int a, b, *p; *************** request a tree dump with virtual operand *** 16175,16229 **** return *p; } ! Notice that `VDEF' operands have two copies of the referenced ! variable. This indicates that this is not a killing definition of that ! variable. In this case we refer to it as a "may definition" or ! "aliased store". The presence of the second copy of the variable in ! the `VDEF' operand will become important when the function is converted ! into SSA form. This will be used to link all the non-killing ! definitions to prevent optimizations from making incorrect assumptions ! about them. ! Operands are updated as soon as the statement is finished via a call ! to `update_stmt'. If statement elements are changed via `SET_USE' or ! `SET_DEF', then no further action is required (i.e., those macros take care of updating the statement). If changes are made by manipulating ! the statement's tree directly, then a call must be made to ! `update_stmt' when complete. Calling one of the `bsi_insert' routines ! or `bsi_replace' performs an implicit call to `update_stmt'. 13.2.1 Operand Iterators And Access Routines -------------------------------------------- ! Operands are collected by `tree-ssa-operands.c'. They are stored ! inside each statement's annotation and can be accessed through either ! the operand iterators or an access routine. The following access routines are available for examining operands: ! 1. `SINGLE_SSA_{USE,DEF,TREE}_OPERAND': These accessors will return NULL unless there is exactly one operand matching the specified ! flags. If there is exactly one operand, the operand is returned ! as either a `tree', `def_operand_p', or `use_operand_p'. tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags); use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES); def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS); ! 2. `ZERO_SSA_OPERANDS': This macro returns true if there are no operands matching the specified flags. if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)) return; ! 3. `NUM_SSA_OPERANDS': This macro Returns the number of operands matching 'flags'. This actually executes a loop to perform the count, so only use this if it is really needed. int count = NUM_SSA_OPERANDS (stmt, flags) If you wish to iterate over some or all operands, use the ! `FOR_EACH_SSA_{USE,DEF,TREE}_OPERAND' iterator. For example, to print all the operands for a statement: void --- 16015,16068 ---- return *p; } ! Notice that 'VDEF' operands have two copies of the referenced variable. ! This indicates that this is not a killing definition of that variable. ! In this case we refer to it as a "may definition" or "aliased store". ! The presence of the second copy of the variable in the 'VDEF' operand ! will become important when the function is converted into SSA form. ! This will be used to link all the non-killing definitions to prevent ! optimizations from making incorrect assumptions about them. ! Operands are updated as soon as the statement is finished via a call to ! 'update_stmt'. If statement elements are changed via 'SET_USE' or ! 'SET_DEF', then no further action is required (i.e., those macros take care of updating the statement). If changes are made by manipulating ! the statement's tree directly, then a call must be made to 'update_stmt' ! when complete. Calling one of the 'bsi_insert' routines or ! 'bsi_replace' performs an implicit call to 'update_stmt'. 13.2.1 Operand Iterators And Access Routines -------------------------------------------- ! Operands are collected by 'tree-ssa-operands.c'. They are stored inside ! each statement's annotation and can be accessed through either the ! operand iterators or an access routine. The following access routines are available for examining operands: ! 1. 'SINGLE_SSA_{USE,DEF,TREE}_OPERAND': These accessors will return NULL unless there is exactly one operand matching the specified ! flags. If there is exactly one operand, the operand is returned as ! either a 'tree', 'def_operand_p', or 'use_operand_p'. tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags); use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES); def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS); ! 2. 'ZERO_SSA_OPERANDS': This macro returns true if there are no operands matching the specified flags. if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)) return; ! 3. 'NUM_SSA_OPERANDS': This macro Returns the number of operands matching 'flags'. This actually executes a loop to perform the count, so only use this if it is really needed. int count = NUM_SSA_OPERANDS (stmt, flags) If you wish to iterate over some or all operands, use the ! 'FOR_EACH_SSA_{USE,DEF,TREE}_OPERAND' iterator. For example, to print all the operands for a statement: void *************** all the operands for a statement: *** 16238,16245 **** How to choose the appropriate iterator: ! 1. Determine whether you are need to see the operand pointers, or ! just the trees, and choose the appropriate macro: Need Macro: ---- ------- --- 16077,16084 ---- How to choose the appropriate iterator: ! 1. Determine whether you are need to see the operand pointers, or just ! the trees, and choose the appropriate macro: Need Macro: ---- ------- *************** all the operands for a statement: *** 16253,16259 **** 3. Determine which operands you wish to use, and specify the flags of those you are interested in. They are documented in ! `tree-ssa-operands.h': #define SSA_OP_USE 0x01 /* Real USE operands. */ #define SSA_OP_DEF 0x02 /* Real DEF operands. */ --- 16092,16098 ---- 3. Determine which operands you wish to use, and specify the flags of those you are interested in. They are documented in ! 'tree-ssa-operands.h': #define SSA_OP_USE 0x01 /* Real USE operands. */ #define SSA_OP_DEF 0x02 /* Real DEF operands. */ *************** all the operands for a statement: *** 16268,16275 **** #define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF) #define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS) ! So if you want to look at the use pointers for all the `USE' and ! `VUSE' operands, you would do something like: use_operand_p use_p; ssa_op_iter iter; --- 16107,16114 ---- #define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF) #define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS) ! So if you want to look at the use pointers for all the 'USE' and 'VUSE' ! operands, you would do something like: use_operand_p use_p; ssa_op_iter iter; *************** all the operands for a statement: *** 16279,16288 **** process_use_ptr (use_p); } ! The `TREE' macro is basically the same as the `USE' and `DEF' macros, ! only with the use or def dereferenced via `USE_FROM_PTR (use_p)' and ! `DEF_FROM_PTR (def_p)'. Since we aren't using operand pointers, use ! and defs flags can be mixed. tree var; ssa_op_iter iter; --- 16118,16127 ---- process_use_ptr (use_p); } ! The 'TREE' macro is basically the same as the 'USE' and 'DEF' macros, ! only with the use or def dereferenced via 'USE_FROM_PTR (use_p)' and ! 'DEF_FROM_PTR (def_p)'. Since we aren't using operand pointers, use and ! defs flags can be mixed. tree var; ssa_op_iter iter; *************** and defs flags can be mixed. *** 16292,16303 **** print_generic_expr (stderr, var, TDF_SLIM); } ! `VDEF's are broken into two flags, one for the `DEF' portion ! (`SSA_OP_VDEF') and one for the USE portion (`SSA_OP_VMAYUSE'). If all ! you want to look at are the `VDEF's together, there is a fourth ! iterator macro for this, which returns both a def_operand_p and a ! use_operand_p for each `VDEF' in the statement. Note that you don't ! need any flags for this one. use_operand_p use_p; def_operand_p def_p; --- 16131,16142 ---- print_generic_expr (stderr, var, TDF_SLIM); } ! 'VDEF's are broken into two flags, one for the 'DEF' portion ! ('SSA_OP_VDEF') and one for the USE portion ('SSA_OP_VMAYUSE'). If all ! you want to look at are the 'VDEF's together, there is a fourth iterator ! macro for this, which returns both a def_operand_p and a use_operand_p ! for each 'VDEF' in the statement. Note that you don't need any flags ! for this one. use_operand_p use_p; def_operand_p def_p; *************** need any flags for this one. *** 16309,16321 **** } There are many examples in the code as well, as well as the ! documentation in `tree-ssa-operands.h'. There are also a couple of variants on the stmt iterators regarding PHI nodes. ! `FOR_EACH_PHI_ARG' Works exactly like `FOR_EACH_SSA_USE_OPERAND', ! except it works over `PHI' arguments instead of statement operands. /* Look at every virtual PHI use. */ FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES) --- 16148,16160 ---- } There are many examples in the code as well, as well as the ! documentation in 'tree-ssa-operands.h'. There are also a couple of variants on the stmt iterators regarding PHI nodes. ! 'FOR_EACH_PHI_ARG' Works exactly like 'FOR_EACH_SSA_USE_OPERAND', ! except it works over 'PHI' arguments instead of statement operands. /* Look at every virtual PHI use. */ FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES) *************** except it works over `PHI' arguments ins *** 16331,16341 **** FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES) my_code; ! `FOR_EACH_PHI_OR_STMT_{USE,DEF}' works exactly like ! `FOR_EACH_SSA_{USE,DEF}_OPERAND', except it will function on either a ! statement or a `PHI' node. These should be used when it is appropriate ! but they are not quite as efficient as the individual `FOR_EACH_PHI' ! and `FOR_EACH_SSA' routines. FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags) { --- 16170,16180 ---- FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES) my_code; ! 'FOR_EACH_PHI_OR_STMT_{USE,DEF}' works exactly like ! 'FOR_EACH_SSA_{USE,DEF}_OPERAND', except it will function on either a ! statement or a 'PHI' node. These should be used when it is appropriate ! but they are not quite as efficient as the individual 'FOR_EACH_PHI' and ! 'FOR_EACH_SSA' routines. FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags) { *************** and `FOR_EACH_SSA' routines. *** 16351,16358 **** --------------------- Immediate use information is now always available. Using the immediate ! use iterators, you may examine every use of any `SSA_NAME'. For ! instance, to change each use of `ssa_var' to `ssa_var2' and call fold_stmt on each stmt after that is done: use_operand_p imm_use_p; --- 16190,16197 ---- --------------------- Immediate use information is now always available. Using the immediate ! use iterators, you may examine every use of any 'SSA_NAME'. For ! instance, to change each use of 'ssa_var' to 'ssa_var2' and call fold_stmt on each stmt after that is done: use_operand_p imm_use_p; *************** fold_stmt on each stmt after that is don *** 16367,16387 **** fold_stmt (stmt); } ! There are 2 iterators which can be used. `FOR_EACH_IMM_USE_FAST' is used when the immediate uses are not changed, i.e., you are looking at the uses, but not setting them. If they do get changed, then care must be taken that things are not ! changed under the iterators, so use the `FOR_EACH_IMM_USE_STMT' and ! `FOR_EACH_IMM_USE_ON_STMT' iterators. They attempt to preserve the sanity of the use list by moving all the uses for a statement into a controlled position, and then iterating over those uses. Then the optimization can manipulate the stmt when all the uses have been processed. This is a little slower than the FAST version since it adds a placeholder element and must sort through the list a bit for each ! statement. This placeholder element must be also be removed if the ! loop is terminated early. The macro `BREAK_FROM_IMM_USE_SAFE' is ! provided to do this : FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var) { --- 16206,16226 ---- fold_stmt (stmt); } ! There are 2 iterators which can be used. 'FOR_EACH_IMM_USE_FAST' is used when the immediate uses are not changed, i.e., you are looking at the uses, but not setting them. If they do get changed, then care must be taken that things are not ! changed under the iterators, so use the 'FOR_EACH_IMM_USE_STMT' and ! 'FOR_EACH_IMM_USE_ON_STMT' iterators. They attempt to preserve the sanity of the use list by moving all the uses for a statement into a controlled position, and then iterating over those uses. Then the optimization can manipulate the stmt when all the uses have been processed. This is a little slower than the FAST version since it adds a placeholder element and must sort through the list a bit for each ! statement. This placeholder element must be also be removed if the loop ! is terminated early. The macro 'BREAK_FROM_IMM_USE_SAFE' is provided to ! do this : FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var) { *************** provided to do this : *** 16393,16428 **** fold_stmt (stmt); } ! There are checks in `verify_ssa' which verify that the immediate use list is up to date, as well as checking that an optimization didn't break from the loop without using this macro. It is safe to simply ! 'break'; from a `FOR_EACH_IMM_USE_FAST' traverse. Some useful functions and macros: ! 1. `has_zero_uses (ssa_var)' : Returns true if there are no uses of ! `ssa_var'. ! ! 2. `has_single_use (ssa_var)' : Returns true if there is only a ! single use of `ssa_var'. ! ! 3. `single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt)' : ! Returns true if there is only a single use of `ssa_var', and also returns the use pointer and statement it occurs in, in the second and third parameters. ! ! 4. `num_imm_uses (ssa_var)' : Returns the number of immediate uses of ! `ssa_var'. It is better not to use this if possible since it simply ! utilizes a loop to count the uses. ! ! 5. `PHI_ARG_INDEX_FROM_USE (use_p)' : Given a use within a `PHI' ! node, return the index number for the use. An assert is triggered ! if the use isn't located in a `PHI' node. ! ! 6. `USE_STMT (use_p)' : Return the statement a use occurs in. Note that uses are not put into an immediate use list until their ! statement is actually inserted into the instruction stream via a ! `bsi_*' routine. It is also still possible to utilize lazy updating of statements, but this should be used only when absolutely required. Both alias analysis --- 16232,16262 ---- fold_stmt (stmt); } ! There are checks in 'verify_ssa' which verify that the immediate use list is up to date, as well as checking that an optimization didn't break from the loop without using this macro. It is safe to simply ! 'break'; from a 'FOR_EACH_IMM_USE_FAST' traverse. Some useful functions and macros: ! 1. 'has_zero_uses (ssa_var)' : Returns true if there are no uses of ! 'ssa_var'. ! 2. 'has_single_use (ssa_var)' : Returns true if there is only a single ! use of 'ssa_var'. ! 3. 'single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt)' : ! Returns true if there is only a single use of 'ssa_var', and also returns the use pointer and statement it occurs in, in the second and third parameters. ! 4. 'num_imm_uses (ssa_var)' : Returns the number of immediate uses of ! 'ssa_var'. It is better not to use this if possible since it ! simply utilizes a loop to count the uses. ! 5. 'PHI_ARG_INDEX_FROM_USE (use_p)' : Given a use within a 'PHI' node, ! return the index number for the use. An assert is triggered if the ! use isn't located in a 'PHI' node. ! 6. 'USE_STMT (use_p)' : Return the statement a use occurs in. Note that uses are not put into an immediate use list until their ! statement is actually inserted into the instruction stream via a 'bsi_*' ! routine. It is also still possible to utilize lazy updating of statements, but this should be used only when absolutely required. Both alias analysis *************** and the dominator optimizations currentl *** 16430,16440 **** When lazy updating is being used, the immediate use information is out of date and cannot be used reliably. Lazy updating is achieved by ! simply marking statements modified via calls to `mark_stmt_modified' ! instead of `update_stmt'. When lazy updating is no longer required, ! all the modified statements must have `update_stmt' called in order to ! bring them up to date. This must be done before the optimization is ! finished, or `verify_ssa' will trigger an abort. This is done with a simple loop over the instruction stream: block_stmt_iterator bsi; --- 16264,16274 ---- When lazy updating is being used, the immediate use information is out of date and cannot be used reliably. Lazy updating is achieved by ! simply marking statements modified via calls to 'mark_stmt_modified' ! instead of 'update_stmt'. When lazy updating is no longer required, all ! the modified statements must have 'update_stmt' called in order to bring ! them up to date. This must be done before the optimization is finished, ! or 'verify_ssa' will trigger an abort. This is done with a simple loop over the instruction stream: block_stmt_iterator bsi; *************** File: gccint.info, Node: SSA, Next: Al *** 16453,16462 **** Most of the tree optimizers rely on the data flow information provided by the Static Single Assignment (SSA) form. We implement the SSA form ! as described in `R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. ! Zadeck. Efficiently Computing Static Single Assignment Form and the ! Control Dependence Graph. ACM Transactions on Programming Languages ! and Systems, 13(4):451-490, October 1991'. The SSA form is based on the premise that program variables are assigned in exactly one location in the program. Multiple assignments --- 16287,16296 ---- Most of the tree optimizers rely on the data flow information provided by the Static Single Assignment (SSA) form. We implement the SSA form ! as described in 'R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. ! Zadeck. Efficiently Computing Static Single Assignment Form and the ! Control Dependence Graph. ACM Transactions on Programming Languages and ! Systems, 13(4):451-490, October 1991'. The SSA form is based on the premise that program variables are assigned in exactly one location in the program. Multiple assignments *************** representation so that every time a vari *** 16467,16480 **** new version of the variable is created. Different versions of the same variable are distinguished by subscripting the variable name with its version number. Variables used in the right-hand side of expressions ! are renamed so that their version number matches that of the most ! recent assignment. ! We represent variable versions using `SSA_NAME' nodes. The renaming ! process in `tree-ssa.c' wraps every real and virtual operand with an ! `SSA_NAME' node which contains the version number and the statement ! that created the `SSA_NAME'. Only definitions and virtual definitions ! may create new `SSA_NAME' nodes. Sometimes, flow of control makes it impossible to determine the most recent version of a variable. In these cases, the compiler inserts an --- 16301,16314 ---- new version of the variable is created. Different versions of the same variable are distinguished by subscripting the variable name with its version number. Variables used in the right-hand side of expressions ! are renamed so that their version number matches that of the most recent ! assignment. ! We represent variable versions using 'SSA_NAME' nodes. The renaming ! process in 'tree-ssa.c' wraps every real and virtual operand with an ! 'SSA_NAME' node which contains the version number and the statement that ! created the 'SSA_NAME'. Only definitions and virtual definitions may ! create new 'SSA_NAME' nodes. Sometimes, flow of control makes it impossible to determine the most recent version of a variable. In these cases, the compiler inserts an *************** variable to create a new name for it. F *** 16493,16522 **** return a_4; Since it is not possible to determine which of the three branches will ! be taken at runtime, we don't know which of `a_1', `a_2' or `a_3' to ! use at the return statement. So, the SSA renamer creates a new version ! `a_4' which is assigned the result of "merging" `a_1', `a_2' and `a_3'. Hence, PHI nodes mean "one of these operands. I don't know which". The following macros can be used to examine PHI nodes -- Macro: PHI_RESULT (PHI) ! Returns the `SSA_NAME' created by PHI node PHI (i.e., PHI's LHS). -- Macro: PHI_NUM_ARGS (PHI) ! Returns the number of arguments in PHI. This number is exactly ! the number of incoming edges to the basic block holding PHI. -- Macro: PHI_ARG_ELT (PHI, I) ! Returns a tuple representing the Ith argument of PHI. Each ! element of this tuple contains an `SSA_NAME' VAR and the incoming ! edge through which VAR flows. -- Macro: PHI_ARG_EDGE (PHI, I) Returns the incoming edge for the Ith argument of PHI. -- Macro: PHI_ARG_DEF (PHI, I) ! Returns the `SSA_NAME' for the Ith argument of PHI. 13.3.1 Preserving the SSA form ------------------------------ --- 16327,16356 ---- return a_4; Since it is not possible to determine which of the three branches will ! be taken at runtime, we don't know which of 'a_1', 'a_2' or 'a_3' to use ! at the return statement. So, the SSA renamer creates a new version ! 'a_4' which is assigned the result of "merging" 'a_1', 'a_2' and 'a_3'. Hence, PHI nodes mean "one of these operands. I don't know which". The following macros can be used to examine PHI nodes -- Macro: PHI_RESULT (PHI) ! Returns the 'SSA_NAME' created by PHI node PHI (i.e., PHI's LHS). -- Macro: PHI_NUM_ARGS (PHI) ! Returns the number of arguments in PHI. This number is exactly the ! number of incoming edges to the basic block holding PHI. -- Macro: PHI_ARG_ELT (PHI, I) ! Returns a tuple representing the Ith argument of PHI. Each element ! of this tuple contains an 'SSA_NAME' VAR and the incoming edge ! through which VAR flows. -- Macro: PHI_ARG_EDGE (PHI, I) Returns the incoming edge for the Ith argument of PHI. -- Macro: PHI_ARG_DEF (PHI, I) ! Returns the 'SSA_NAME' for the Ith argument of PHI. 13.3.1 Preserving the SSA form ------------------------------ *************** SSA form. *** 16533,16540 **** variables, keeping the SSA form up to date depends on whether you are updating register or virtual names. In both cases, the general idea behind incremental SSA updates is similar: when new SSA names are ! created, they typically are meant to replace other existing names in ! the program. For instance, given the following code: --- 16367,16374 ---- variables, keeping the SSA form up to date depends on whether you are updating register or virtual names. In both cases, the general idea behind incremental SSA updates is similar: when new SSA names are ! created, they typically are meant to replace other existing names in the ! program. For instance, given the following code: *************** the program. *** 16550,16556 **** 10 goto L0; 11 endif ! Suppose that we insert new names `x_10' and `x_11' (lines `4' and `8'). 1 L0: 2 x_1 = PHI (0, x_5) --- 16384,16390 ---- 10 goto L0; 11 endif ! Suppose that we insert new names 'x_10' and 'x_11' (lines '4' and '8'). 1 L0: 2 x_1 = PHI (0, x_5) *************** the program. *** 16566,16630 **** 12 goto L0; 13 endif ! We want to replace all the uses of `x_1' with the new definitions of ! `x_10' and `x_11'. Note that the only uses that should be replaced are ! those at lines `5', `9' and `11'. Also, the use of `x_7' at line `9' ! should _not_ be replaced (this is why we cannot just mark symbol `x' for renaming). ! Additionally, we may need to insert a PHI node at line `11' because ! that is a merge point for `x_10' and `x_11'. So the use of `x_1' at ! line `11' will be replaced with the new PHI node. The insertion of PHI nodes is optional. They are not strictly necessary to preserve the SSA form, and depending on what the caller inserted, they may not even be useful for the optimizers. Updating the SSA form is a two step process. First, the pass has to identify which names need to be updated and/or which symbols need to be ! renamed into SSA form for the first time. When new names are ! introduced to replace existing names in the program, the mapping ! between the old and the new names are registered by calling ! `register_new_name_mapping' (note that if your pass creates new code by ! duplicating basic blocks, the call to `tree_duplicate_bb' will set up ! the necessary mappings automatically). After the replacement mappings have been registered and new symbols ! marked for renaming, a call to `update_ssa' makes the registered ! changes. This can be done with an explicit call or by creating `TODO' ! flags in the `tree_opt_pass' structure for your pass. There are ! several `TODO' flags that control the behavior of `update_ssa': ! * `TODO_update_ssa'. Update the SSA form inserting PHI nodes for newly exposed symbols and virtual names marked for updating. When ! updating real names, only insert PHI nodes for a real name `O_j' ! in blocks reached by all the new and old definitions for `O_j'. ! If the iterated dominance frontier for `O_j' is not pruned, we may ! end up inserting PHI nodes in blocks that have one or more edges ! with no incoming definition for `O_j'. This would lead to ! uninitialized warnings for `O_j''s symbol. ! * `TODO_update_ssa_no_phi'. Update the SSA form without inserting any new PHI nodes at all. This is used by passes that have either inserted all the PHI nodes themselves or passes that need only to patch use-def and def-def chains for virtuals (e.g., DCE). ! * `TODO_update_ssa_full_phi'. Insert PHI nodes everywhere they are needed. No pruning of the IDF is done. This is used by passes ! that need the PHI nodes for `O_j' even if it means that some ! arguments will come from the default definition of `O_j''s symbol ! (e.g., `pass_linear_transform'). WARNING: If you need to use this flag, chances are that your pass may be doing something wrong. Inserting PHI nodes for an old name where not all edges carry a new replacement may lead to silent codegen errors or spurious uninitialized warnings. ! * `TODO_update_ssa_only_virtuals'. Passes that update the SSA form on their own may want to delegate the updating of virtual names to ! the generic updater. Since FUD chains are easier to maintain, ! this simplifies the work they need to do. NOTE: If this flag is ! used, any OLD->NEW mappings for real names are explicitly ! destroyed and only the symbols marked for renaming are processed. 13.3.2 Preserving the virtual SSA form -------------------------------------- --- 16400,16464 ---- 12 goto L0; 13 endif ! We want to replace all the uses of 'x_1' with the new definitions of ! 'x_10' and 'x_11'. Note that the only uses that should be replaced are ! those at lines '5', '9' and '11'. Also, the use of 'x_7' at line '9' ! should _not_ be replaced (this is why we cannot just mark symbol 'x' for renaming). ! Additionally, we may need to insert a PHI node at line '11' because ! that is a merge point for 'x_10' and 'x_11'. So the use of 'x_1' at ! line '11' will be replaced with the new PHI node. The insertion of PHI nodes is optional. They are not strictly necessary to preserve the SSA form, and depending on what the caller inserted, they may not even be useful for the optimizers. Updating the SSA form is a two step process. First, the pass has to identify which names need to be updated and/or which symbols need to be ! renamed into SSA form for the first time. When new names are introduced ! to replace existing names in the program, the mapping between the old ! and the new names are registered by calling 'register_new_name_mapping' ! (note that if your pass creates new code by duplicating basic blocks, ! the call to 'tree_duplicate_bb' will set up the necessary mappings ! automatically). After the replacement mappings have been registered and new symbols ! marked for renaming, a call to 'update_ssa' makes the registered ! changes. This can be done with an explicit call or by creating 'TODO' ! flags in the 'tree_opt_pass' structure for your pass. There are several ! 'TODO' flags that control the behavior of 'update_ssa': ! * 'TODO_update_ssa'. Update the SSA form inserting PHI nodes for newly exposed symbols and virtual names marked for updating. When ! updating real names, only insert PHI nodes for a real name 'O_j' in ! blocks reached by all the new and old definitions for 'O_j'. If ! the iterated dominance frontier for 'O_j' is not pruned, we may end ! up inserting PHI nodes in blocks that have one or more edges with ! no incoming definition for 'O_j'. This would lead to uninitialized ! warnings for 'O_j''s symbol. ! * 'TODO_update_ssa_no_phi'. Update the SSA form without inserting any new PHI nodes at all. This is used by passes that have either inserted all the PHI nodes themselves or passes that need only to patch use-def and def-def chains for virtuals (e.g., DCE). ! * 'TODO_update_ssa_full_phi'. Insert PHI nodes everywhere they are needed. No pruning of the IDF is done. This is used by passes ! that need the PHI nodes for 'O_j' even if it means that some ! arguments will come from the default definition of 'O_j''s symbol ! (e.g., 'pass_linear_transform'). WARNING: If you need to use this flag, chances are that your pass may be doing something wrong. Inserting PHI nodes for an old name where not all edges carry a new replacement may lead to silent codegen errors or spurious uninitialized warnings. ! * 'TODO_update_ssa_only_virtuals'. Passes that update the SSA form on their own may want to delegate the updating of virtual names to ! the generic updater. Since FUD chains are easier to maintain, this ! simplifies the work they need to do. NOTE: If this flag is used, ! any OLD->NEW mappings for real names are explicitly destroyed and ! only the symbols marked for renaming are processed. 13.3.2 Preserving the virtual SSA form -------------------------------------- *************** several `TODO' flags that control the be *** 16632,16639 **** The virtual SSA form is harder to preserve than the non-virtual SSA form mainly because the set of virtual operands for a statement may change at what some would consider unexpected times. In general, statement ! modifications should be bracketed between calls to `push_stmt_changes' ! and `pop_stmt_changes'. For example, munge_stmt (tree stmt) { --- 16466,16473 ---- The virtual SSA form is harder to preserve than the non-virtual SSA form mainly because the set of virtual operands for a statement may change at what some would consider unexpected times. In general, statement ! modifications should be bracketed between calls to 'push_stmt_changes' ! and 'pop_stmt_changes'. For example, munge_stmt (tree stmt) { *************** and `pop_stmt_changes'. For example, *** 16642,16707 **** pop_stmt_changes (&stmt); } ! The call to `push_stmt_changes' saves the current state of the ! statement operands and the call to `pop_stmt_changes' compares the ! saved state with the current one and does the appropriate symbol ! marking for the SSA renamer. It is possible to modify several statements at a time, provided that ! `push_stmt_changes' and `pop_stmt_changes' are called in LIFO order, as when processing a stack of statements. Additionally, if the pass discovers that it did not need to make ! changes to the statement after calling `push_stmt_changes', it can simply discard the topmost change buffer by calling ! `discard_stmt_changes'. This will avoid the expensive operand re-scan operation and the buffer comparison that determines if symbols need to be marked for renaming. ! 13.3.3 Examining `SSA_NAME' nodes --------------------------------- ! The following macros can be used to examine `SSA_NAME' nodes -- Macro: SSA_NAME_DEF_STMT (VAR) ! Returns the statement S that creates the `SSA_NAME' VAR. If S is ! an empty statement (i.e., `IS_EMPTY_STMT (S)' returns `true'), it means that the first reference to this variable is a USE or a VUSE. -- Macro: SSA_NAME_VERSION (VAR) ! Returns the version number of the `SSA_NAME' object VAR. 13.3.4 Walking use-def chains ----------------------------- -- Tree SSA function: void walk_use_def_chains (VAR, FN, DATA) ! Walks use-def chains starting at the `SSA_NAME' node VAR. Calls function FN at each reaching definition found. Function FN takes three arguments: VAR, its defining statement (DEF_STMT) and a generic pointer to whatever state information that FN may want to ! maintain (DATA). Function FN is able to stop the walk by ! returning `true', otherwise in order to continue the walk, FN ! should return `false'. ! Note, that if DEF_STMT is a `PHI' node, the semantics are slightly different. For each argument ARG of the PHI node, this function will: 1. Walk the use-def chains for ARG. ! ! 2. Call `FN (ARG, PHI, DATA)'. Note how the first argument to FN is no longer the original ! variable VAR, but the PHI argument currently being examined. If ! FN wants to get at VAR, it should call `PHI_RESULT' (PHI). 13.3.5 Walking the dominator tree --------------------------------- -- Tree SSA function: void walk_dominator_tree (WALK_DATA, BB) This function walks the dominator tree for the current CFG calling a set of callback functions defined in STRUCT DOM_WALK_DATA in ! `domwalk.h'. The call back functions you need to define give you hooks to execute custom code at various points during traversal: 1. Once to initialize any local data needed while processing BB --- 16476,16542 ---- pop_stmt_changes (&stmt); } ! The call to 'push_stmt_changes' saves the current state of the ! statement operands and the call to 'pop_stmt_changes' compares the saved ! state with the current one and does the appropriate symbol marking for ! the SSA renamer. It is possible to modify several statements at a time, provided that ! 'push_stmt_changes' and 'pop_stmt_changes' are called in LIFO order, as when processing a stack of statements. Additionally, if the pass discovers that it did not need to make ! changes to the statement after calling 'push_stmt_changes', it can simply discard the topmost change buffer by calling ! 'discard_stmt_changes'. This will avoid the expensive operand re-scan operation and the buffer comparison that determines if symbols need to be marked for renaming. ! 13.3.3 Examining 'SSA_NAME' nodes --------------------------------- ! The following macros can be used to examine 'SSA_NAME' nodes -- Macro: SSA_NAME_DEF_STMT (VAR) ! Returns the statement S that creates the 'SSA_NAME' VAR. If S is ! an empty statement (i.e., 'IS_EMPTY_STMT (S)' returns 'true'), it means that the first reference to this variable is a USE or a VUSE. -- Macro: SSA_NAME_VERSION (VAR) ! Returns the version number of the 'SSA_NAME' object VAR. 13.3.4 Walking use-def chains ----------------------------- -- Tree SSA function: void walk_use_def_chains (VAR, FN, DATA) ! ! Walks use-def chains starting at the 'SSA_NAME' node VAR. Calls function FN at each reaching definition found. Function FN takes three arguments: VAR, its defining statement (DEF_STMT) and a generic pointer to whatever state information that FN may want to ! maintain (DATA). Function FN is able to stop the walk by returning ! 'true', otherwise in order to continue the walk, FN should return ! 'false'. ! Note, that if DEF_STMT is a 'PHI' node, the semantics are slightly different. For each argument ARG of the PHI node, this function will: 1. Walk the use-def chains for ARG. ! 2. Call 'FN (ARG, PHI, DATA)'. Note how the first argument to FN is no longer the original ! variable VAR, but the PHI argument currently being examined. If FN ! wants to get at VAR, it should call 'PHI_RESULT' (PHI). 13.3.5 Walking the dominator tree --------------------------------- -- Tree SSA function: void walk_dominator_tree (WALK_DATA, BB) + This function walks the dominator tree for the current CFG calling a set of callback functions defined in STRUCT DOM_WALK_DATA in ! 'domwalk.h'. The call back functions you need to define give you hooks to execute custom code at various points during traversal: 1. Once to initialize any local data needed while processing BB *************** disambiguate explicit and implicit memor *** 16740,16748 **** 1. Memory SSA form. ! All statements that may use memory have exactly one accompanied ! use of a virtual SSA name that represents the state of memory at ! the given point in the IL. All statements that may define memory have exactly one accompanied definition of a virtual SSA name using the previous state of memory --- 16575,16583 ---- 1. Memory SSA form. ! All statements that may use memory have exactly one accompanied use ! of a virtual SSA name that represents the state of memory at the ! given point in the IL. All statements that may define memory have exactly one accompanied definition of a virtual SSA name using the previous state of memory *************** disambiguate explicit and implicit memor *** 16758,16766 **** return i; } ! The virtual SSA names in this case are `.MEM_2(D)' and `.MEM_3'. ! The store to the global variable `i' defines `.MEM_3' invalidating ! `.MEM_2(D)'. The load from `i' uses that new state `.MEM_3'. The virtual SSA web serves as constraints to SSA optimizers preventing illegitimate code-motion and optimization. It also --- 16593,16601 ---- return i; } ! The virtual SSA names in this case are '.MEM_2(D)' and '.MEM_3'. ! The store to the global variable 'i' defines '.MEM_3' invalidating ! '.MEM_2(D)'. The load from 'i' uses that new state '.MEM_3'. The virtual SSA web serves as constraints to SSA optimizers preventing illegitimate code-motion and optimization. It also *************** disambiguate explicit and implicit memor *** 16776,16804 **** what it may possibly point to. This points-to solution for a given SSA name pointer is stored in ! the `pt_solution' sub-structure of the `SSA_NAME_PTR_INFO' record. The following accessor functions are available: ! * `pt_solution_includes' ! ! * `pt_solutions_intersect' Points-to analysis also computes the solution for two special set ! of pointers, `ESCAPED' and `CALLUSED'. Those represent all memory that has escaped the scope of analysis or that is used by pure or nested const calls. 3. Type-based alias analysis Type-based alias analysis is frontend dependent though generic ! support is provided by the middle-end in `alias.c'. TBAA code is used by both tree optimizers and RTL optimizers. Every language that wishes to perform language-specific alias ! analysis should define a function that computes, given a `tree' ! node, an alias set for the node. Nodes in different alias sets ! are not allowed to alias. For an example, see the C front-end ! function `c_get_alias_set'. 4. Tree alias-oracle --- 16611,16638 ---- what it may possibly point to. This points-to solution for a given SSA name pointer is stored in ! the 'pt_solution' sub-structure of the 'SSA_NAME_PTR_INFO' record. The following accessor functions are available: ! * 'pt_solution_includes' ! * 'pt_solutions_intersect' Points-to analysis also computes the solution for two special set ! of pointers, 'ESCAPED' and 'CALLUSED'. Those represent all memory that has escaped the scope of analysis or that is used by pure or nested const calls. 3. Type-based alias analysis Type-based alias analysis is frontend dependent though generic ! support is provided by the middle-end in 'alias.c'. TBAA code is used by both tree optimizers and RTL optimizers. Every language that wishes to perform language-specific alias ! analysis should define a function that computes, given a 'tree' ! node, an alias set for the node. Nodes in different alias sets are ! not allowed to alias. For an example, see the C front-end function ! 'c_get_alias_set'. 4. Tree alias-oracle *************** disambiguate explicit and implicit memor *** 16806,16828 **** references and memory references against statements. The following queries are available: ! * `refs_may_alias_p' ! ! * `ref_maybe_used_by_stmt_p' ! ! * `stmt_may_clobber_ref_p' In addition to those two kind of statement walkers are available walking statements related to a reference ref. ! `walk_non_aliased_vuses' walks over dominating memory defining statements and calls back if the statement does not clobber ref ! providing the non-aliased VUSE. The walk stops at the first ! clobbering statement or if asked to. `walk_aliased_vdefs' walks over dominating memory defining statements and calls back on each ! statement clobbering ref providing its aliasing VDEF. The walk stops if asked to. -  File: gccint.info, Node: Memory model, Prev: Alias analysis, Up: Tree SSA --- 16640,16659 ---- references and memory references against statements. The following queries are available: ! * 'refs_may_alias_p' ! * 'ref_maybe_used_by_stmt_p' ! * 'stmt_may_clobber_ref_p' In addition to those two kind of statement walkers are available walking statements related to a reference ref. ! 'walk_non_aliased_vuses' walks over dominating memory defining statements and calls back if the statement does not clobber ref ! providing the non-aliased VUSE. The walk stops at the first ! clobbering statement or if asked to. 'walk_aliased_vdefs' walks over dominating memory defining statements and calls back on each ! statement clobbering ref providing its aliasing VDEF. The walk stops if asked to.  File: gccint.info, Node: Memory model, Prev: Alias analysis, Up: Tree SSA *************** effective type to objects with a declare *** 16843,16849 **** an lvalue having a type that is not a character type, then the type of the lvalue becomes the effective type of the object for that access and for subsequent accesses that do not modify the stored value. ! If a value is copied into an object using `memcpy' or `memmove', or is copied as an array of character type, then the effective type of the modified object for that access and for subsequent accesses that do not modify the value is undetermined. For all other accesses to an --- 16674,16680 ---- an lvalue having a type that is not a character type, then the type of the lvalue becomes the effective type of the object for that access and for subsequent accesses that do not modify the stored value. ! If a value is copied into an object using memcpy or memmove, or is copied as an array of character type, then the effective type of the modified object for that access and for subsequent accesses that do not modify the value is undetermined. For all other accesses to an *************** effective type to objects with a declare *** 16851,16857 **** lvalue used for the access.  ! File: gccint.info, Node: Loop Analysis and Representation, Next: Machine Desc, Prev: Control Flow, Up: Top 14 Analysis and Representation of Loops *************************************** --- 16682,16688 ---- lvalue used for the access.  ! File: gccint.info, Node: Loop Analysis and Representation, Next: Control Flow, Prev: Tree SSA, Up: Top 14 Analysis and Representation of Loops *************************************** *************** File: gccint.info, Node: Loop represent *** 16883,16893 **** This chapter describes the representation of loops in GCC, and functions that can be used to build, modify and analyze this representation. Most ! of the interfaces and data structures are declared in `cfgloop.h'. At ! the moment, loop structures are analyzed and this information is ! updated only by the optimization passes that deal with loops, but some ! efforts are being made to make it available throughout most of the ! optimization passes. In general, a natural loop has one entry block (header) and possibly several back edges (latches) leading to the header from the inside of --- 16714,16724 ---- This chapter describes the representation of loops in GCC, and functions that can be used to build, modify and analyze this representation. Most ! of the interfaces and data structures are declared in 'cfgloop.h'. At ! the moment, loop structures are analyzed and this information is updated ! only by the optimization passes that deal with loops, but some efforts ! are being made to make it available throughout most of the optimization ! passes. In general, a natural loop has one entry block (header) and possibly several back edges (latches) leading to the header from the inside of *************** correspond to sub-loops or to control fl *** 16902,16908 **** that the analysis sometimes changes the CFG, and if you run it in the middle of an optimization pass, you must be able to deal with the new blocks. You may avoid CFG changes by passing ! `LOOPS_MAY_HAVE_MULTIPLE_LATCHES' flag to the loop discovery, note however that most other loop manipulation functions will not work correctly for loops with multiple latch edges (the functions that only query membership of blocks to loops and subloop relationships, or --- 16733,16739 ---- that the analysis sometimes changes the CFG, and if you run it in the middle of an optimization pass, you must be able to deal with the new blocks. You may avoid CFG changes by passing ! 'LOOPS_MAY_HAVE_MULTIPLE_LATCHES' flag to the loop discovery, note however that most other loop manipulation functions will not work correctly for loops with multiple latch edges (the functions that only query membership of blocks to loops and subloop relationships, or *************** enumerate and test loop exits, can be ex *** 16912,16970 **** and reachable from its latch against the direction of edges in CFG. The loops are organized in a containment hierarchy (tree) such that all the loops immediately contained inside loop L are the children of L in the ! tree. This tree is represented by the `struct loops' structure. The root of this tree is a fake loop that contains all blocks in the ! function. Each of the loops is represented in a `struct loop' ! structure. Each loop is assigned an index (`num' field of the `struct loop' structure), and the pointer to the loop is stored in the ! corresponding field of the `larray' vector in the loops structure. The ! indices do not have to be continuous, there may be empty (`NULL') ! entries in the `larray' created by deleting loops. Also, there is no guarantee on the relative order of a loop and its subloops in the numbering. The index of a loop never changes. ! The entries of the `larray' field should not be accessed directly. ! The function `get_loop' returns the loop description for a loop with ! the given index. `number_of_loops' function returns number of loops in ! the function. To traverse all loops, use `FOR_EACH_LOOP' macro. The ! `flags' argument of the macro is used to determine the direction of traversal and the set of loops visited. Each loop is guaranteed to be visited exactly once, regardless of the changes to the loop tree, and the loops may be removed during the traversal. The newly created loops are never traversed, if they need to be visited, this must be done ! separately after their creation. The `FOR_EACH_LOOP' macro allocates ! temporary variables. If the `FOR_EACH_LOOP' loop were ended using ! break or goto, they would not be released; `FOR_EACH_LOOP_BREAK' macro ! must be used instead. Each basic block contains the reference to the innermost loop it ! belongs to (`loop_father'). For this reason, it is only possible to ! have one `struct loops' structure initialized at the same time for each ! CFG. The global variable `current_loops' contains the `struct loops' structure. Many of the loop manipulation functions assume that dominance information is up-to-date. ! The loops are analyzed through `loop_optimizer_init' function. The argument of this function is a set of flags represented in an integer bitmask. These flags specify what other properties of the loop structures should be calculated/enforced and preserved later: ! * `LOOPS_MAY_HAVE_MULTIPLE_LATCHES': If this flag is set, no changes ! to CFG will be performed in the loop analysis, in particular, ! loops with multiple latch edges will not be disambiguated. If a ! loop has multiple latches, its latch block is set to NULL. Most of ! the loop manipulation functions will not work for loops in this ! shape. No other flags that require CFG changes can be passed to loop_optimizer_init. ! ! * `LOOPS_HAVE_PREHEADERS': Forwarder blocks are created in such a ! way that each loop has only one entry edge, and additionally, the source block of this entry edge has only one successor. This creates a natural place where the code can be moved out of the loop, and ensures that the entry edge of the loop leads from its immediate super-loop. ! ! * `LOOPS_HAVE_SIMPLE_LATCHES': Forwarder blocks are created to force the latch block of each loop to have only one successor. This ensures that the latch of the loop does not belong to any of its sub-loops, and makes manipulation with the loops significantly --- 16743,16799 ---- and reachable from its latch against the direction of edges in CFG. The loops are organized in a containment hierarchy (tree) such that all the loops immediately contained inside loop L are the children of L in the ! tree. This tree is represented by the 'struct loops' structure. The root of this tree is a fake loop that contains all blocks in the ! function. Each of the loops is represented in a 'struct loop' ! structure. Each loop is assigned an index ('num' field of the 'struct loop' structure), and the pointer to the loop is stored in the ! corresponding field of the 'larray' vector in the loops structure. The ! indices do not have to be continuous, there may be empty ('NULL') ! entries in the 'larray' created by deleting loops. Also, there is no guarantee on the relative order of a loop and its subloops in the numbering. The index of a loop never changes. ! The entries of the 'larray' field should not be accessed directly. The ! function 'get_loop' returns the loop description for a loop with the ! given index. 'number_of_loops' function returns number of loops in the ! function. To traverse all loops, use 'FOR_EACH_LOOP' macro. The ! 'flags' argument of the macro is used to determine the direction of traversal and the set of loops visited. Each loop is guaranteed to be visited exactly once, regardless of the changes to the loop tree, and the loops may be removed during the traversal. The newly created loops are never traversed, if they need to be visited, this must be done ! separately after their creation. The 'FOR_EACH_LOOP' macro allocates ! temporary variables. If the 'FOR_EACH_LOOP' loop were ended using break ! or goto, they would not be released; 'FOR_EACH_LOOP_BREAK' macro must be ! used instead. Each basic block contains the reference to the innermost loop it ! belongs to ('loop_father'). For this reason, it is only possible to ! have one 'struct loops' structure initialized at the same time for each ! CFG. The global variable 'current_loops' contains the 'struct loops' structure. Many of the loop manipulation functions assume that dominance information is up-to-date. ! The loops are analyzed through 'loop_optimizer_init' function. The argument of this function is a set of flags represented in an integer bitmask. These flags specify what other properties of the loop structures should be calculated/enforced and preserved later: ! * 'LOOPS_MAY_HAVE_MULTIPLE_LATCHES': If this flag is set, no changes ! to CFG will be performed in the loop analysis, in particular, loops ! with multiple latch edges will not be disambiguated. If a loop has ! multiple latches, its latch block is set to NULL. Most of the loop ! manipulation functions will not work for loops in this shape. No ! other flags that require CFG changes can be passed to loop_optimizer_init. ! * 'LOOPS_HAVE_PREHEADERS': Forwarder blocks are created in such a way ! that each loop has only one entry edge, and additionally, the source block of this entry edge has only one successor. This creates a natural place where the code can be moved out of the loop, and ensures that the entry edge of the loop leads from its immediate super-loop. ! * 'LOOPS_HAVE_SIMPLE_LATCHES': Forwarder blocks are created to force the latch block of each loop to have only one successor. This ensures that the latch of the loop does not belong to any of its sub-loops, and makes manipulation with the loops significantly *************** structures should be calculated/enforced *** 16972,17003 **** loops are in this shape. Note that with this flag, the "normal" loop without any control flow inside and with one exit consists of two basic blocks. ! ! * `LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS': Basic blocks and edges in the strongly connected components that are not natural loops (have ! more than one entry block) are marked with `BB_IRREDUCIBLE_LOOP' ! and `EDGE_IRREDUCIBLE_LOOP' flags. The flag is not set for blocks and edges that belong to natural loops that are in such an irreducible region (but it is set for the entry and exit edges of such a loop, if they lead to/from this region). ! ! * `LOOPS_HAVE_RECORDED_EXITS': The lists of exits are recorded and updated for each loop. This makes some functions (e.g., ! `get_loop_exit_edges') more efficient. Some functions (e.g., ! `single_exit') can be used only if the lists of exits are recorded. These properties may also be computed/enforced later, using functions ! `create_preheaders', `force_single_succ_latches', ! `mark_irreducible_loops' and `record_loop_exits'. The memory occupied by the loops structures should be freed with ! `loop_optimizer_finalize' function. The CFG manipulation functions in general do not update loop structures. Specialized versions that additionally do so are provided ! for the most common tasks. On GIMPLE, `cleanup_tree_cfg_loop' function can be used to cleanup CFG while updating the loops structures if ! `current_loops' is set.  File: gccint.info, Node: Loop querying, Next: Loop manipulation, Prev: Loop representation, Up: Loop Analysis and Representation --- 16801,16830 ---- loops are in this shape. Note that with this flag, the "normal" loop without any control flow inside and with one exit consists of two basic blocks. ! * 'LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS': Basic blocks and edges in the strongly connected components that are not natural loops (have ! more than one entry block) are marked with 'BB_IRREDUCIBLE_LOOP' ! and 'EDGE_IRREDUCIBLE_LOOP' flags. The flag is not set for blocks and edges that belong to natural loops that are in such an irreducible region (but it is set for the entry and exit edges of such a loop, if they lead to/from this region). ! * 'LOOPS_HAVE_RECORDED_EXITS': The lists of exits are recorded and updated for each loop. This makes some functions (e.g., ! 'get_loop_exit_edges') more efficient. Some functions (e.g., ! 'single_exit') can be used only if the lists of exits are recorded. These properties may also be computed/enforced later, using functions ! 'create_preheaders', 'force_single_succ_latches', ! 'mark_irreducible_loops' and 'record_loop_exits'. The memory occupied by the loops structures should be freed with ! 'loop_optimizer_finalize' function. The CFG manipulation functions in general do not update loop structures. Specialized versions that additionally do so are provided ! for the most common tasks. On GIMPLE, 'cleanup_tree_cfg_loop' function can be used to cleanup CFG while updating the loops structures if ! 'current_loops' is set.  File: gccint.info, Node: Loop querying, Next: Loop manipulation, Prev: Loop representation, Up: Loop Analysis and Representation *************** File: gccint.info, Node: Loop querying, *** 17006,17025 **** ================== The functions to query the information about loops are declared in ! `cfgloop.h'. Some of the information can be taken directly from the ! structures. `loop_father' field of each basic block contains the innermost loop to that the block belongs. The most useful fields of loop structure (that are kept up-to-date at all times) are: ! * `header', `latch': Header and latch basic blocks of the loop. ! ! * `num_nodes': Number of basic blocks in the loop (including the basic blocks of the sub-loops). ! ! * `depth': The depth of the loop in the loops tree, i.e., the number of super-loops of the loop. ! ! * `outer', `inner', `next': The super-loop, the first sub-loop, and the sibling of the loop in the loops tree. There are other fields in the loop structures, many of them used only --- 16833,16849 ---- ================== The functions to query the information about loops are declared in ! 'cfgloop.h'. Some of the information can be taken directly from the ! structures. 'loop_father' field of each basic block contains the innermost loop to that the block belongs. The most useful fields of loop structure (that are kept up-to-date at all times) are: ! * 'header', 'latch': Header and latch basic blocks of the loop. ! * 'num_nodes': Number of basic blocks in the loop (including the basic blocks of the sub-loops). ! * 'depth': The depth of the loop in the loops tree, i.e., the number of super-loops of the loop. ! * 'outer', 'inner', 'next': The super-loop, the first sub-loop, and the sibling of the loop in the loops tree. There are other fields in the loop structures, many of them used only *************** they should not be accessed directly. *** 17028,17073 **** The most important functions to query loop structures are: ! * `flow_loops_dump': Dumps the information about loops to a file. ! ! * `verify_loop_structure': Checks consistency of the loop structures. ! ! * `loop_latch_edge': Returns the latch edge of a loop. ! ! * `loop_preheader_edge': If loops have preheaders, returns the preheader edge of a loop. ! ! * `flow_loop_nested_p': Tests whether loop is a sub-loop of another loop. ! ! * `flow_bb_inside_loop_p': Tests whether a basic block belongs to a loop (including its sub-loops). ! ! * `find_common_loop': Finds the common super-loop of two loops. ! ! * `superloop_at_depth': Returns the super-loop of a loop with the given depth. ! ! * `tree_num_loop_insns', `num_loop_insns': Estimates the number of insns in the loop, on GIMPLE and on RTL. ! ! * `loop_exit_edge_p': Tests whether edge is an exit from a loop. ! ! * `mark_loop_exit_edges': Marks all exit edges of all loops with ! `EDGE_LOOP_EXIT' flag. ! ! * `get_loop_body', `get_loop_body_in_dom_order', ! `get_loop_body_in_bfs_order': Enumerates the basic blocks in the loop in depth-first search order in reversed CFG, ordered by dominance relation, and breath-first search order, respectively. ! ! * `single_exit': Returns the single exit edge of the loop, or `NULL' ! if the loop has more than one exit. You can only use this ! function if LOOPS_HAVE_MARKED_SINGLE_EXITS property is used. ! ! * `get_loop_exit_edges': Enumerates the exit edges of a loop. ! ! * `just_once_each_iteration_p': Returns true if the basic block is executed exactly once during each iteration of a loop (that is, it does not belong to a sub-loop, and it dominates the latch of the loop). --- 16852,16883 ---- The most important functions to query loop structures are: ! * 'flow_loops_dump': Dumps the information about loops to a file. ! * 'verify_loop_structure': Checks consistency of the loop structures. ! * 'loop_latch_edge': Returns the latch edge of a loop. ! * 'loop_preheader_edge': If loops have preheaders, returns the preheader edge of a loop. ! * 'flow_loop_nested_p': Tests whether loop is a sub-loop of another loop. ! * 'flow_bb_inside_loop_p': Tests whether a basic block belongs to a loop (including its sub-loops). ! * 'find_common_loop': Finds the common super-loop of two loops. ! * 'superloop_at_depth': Returns the super-loop of a loop with the given depth. ! * 'tree_num_loop_insns', 'num_loop_insns': Estimates the number of insns in the loop, on GIMPLE and on RTL. ! * 'loop_exit_edge_p': Tests whether edge is an exit from a loop. ! * 'mark_loop_exit_edges': Marks all exit edges of all loops with ! 'EDGE_LOOP_EXIT' flag. ! * 'get_loop_body', 'get_loop_body_in_dom_order', ! 'get_loop_body_in_bfs_order': Enumerates the basic blocks in the loop in depth-first search order in reversed CFG, ordered by dominance relation, and breath-first search order, respectively. ! * 'single_exit': Returns the single exit edge of the loop, or 'NULL' ! if the loop has more than one exit. You can only use this function ! if LOOPS_HAVE_MARKED_SINGLE_EXITS property is used. ! * 'get_loop_exit_edges': Enumerates the exit edges of a loop. ! * 'just_once_each_iteration_p': Returns true if the basic block is executed exactly once during each iteration of a loop (that is, it does not belong to a sub-loop, and it dominates the latch of the loop). *************** File: gccint.info, Node: Loop manipulat *** 17080,17100 **** The loops tree can be manipulated using the following functions: ! * `flow_loop_tree_node_add': Adds a node to the tree. ! ! * `flow_loop_tree_node_remove': Removes a node from the tree. ! ! * `add_bb_to_loop': Adds a basic block to a loop. ! ! * `remove_bb_from_loops': Removes a basic block from loops. Most low-level CFG functions update loops automatically. The following functions handle some more complicated cases of CFG manipulations: ! * `remove_path': Removes an edge and all blocks it dominates. ! ! * `split_loop_exit_edge': Splits exit edge of the loop, ensuring ! that PHI node arguments remain in the loop (this ensures that loop-closed SSA form is preserved). Only useful on GIMPLE. Finally, there are some higher-level loop transformations implemented. --- 16890,16906 ---- The loops tree can be manipulated using the following functions: ! * 'flow_loop_tree_node_add': Adds a node to the tree. ! * 'flow_loop_tree_node_remove': Removes a node from the tree. ! * 'add_bb_to_loop': Adds a basic block to a loop. ! * 'remove_bb_from_loops': Removes a basic block from loops. Most low-level CFG functions update loops automatically. The following functions handle some more complicated cases of CFG manipulations: ! * 'remove_path': Removes an edge and all blocks it dominates. ! * 'split_loop_exit_edge': Splits exit edge of the loop, ensuring that ! PHI node arguments remain in the loop (this ensures that loop-closed SSA form is preserved). Only useful on GIMPLE. Finally, there are some higher-level loop transformations implemented. *************** While some of them are written so that t *** 17102,17127 **** loops, they are mostly untested in that case, and at the moment, they are only reliable for the innermost loops: ! * `create_iv': Creates a new induction variable. Only works on ! GIMPLE. `standard_iv_increment_position' can be used to find a suitable place for the iv increment. ! ! * `duplicate_loop_to_header_edge', ! `tree_duplicate_loop_to_header_edge': These functions (on RTL and on GIMPLE) duplicate the body of the loop prescribed number of times on one of the edges entering loop header, thus performing ! either loop unrolling or loop peeling. `can_duplicate_loop_p' ! (`can_unroll_loop_p' on GIMPLE) must be true for the duplicated loop. ! ! * `loop_version', `tree_ssa_loop_version': These function create a copy of a loop, and a branch before them that selects one of them depending on the prescribed condition. This is useful for optimizations that need to verify some assumptions in runtime (one of the copies of the loop is usually left unchanged, while the other one is transformed in some way). ! ! * `tree_unroll_loop': Unrolls the loop, including peeling the extra iterations to make the number of iterations divisible by unroll factor, updating the exit condition, and removing the exits that now cannot be taken. Works only on GIMPLE. --- 16908,16930 ---- loops, they are mostly untested in that case, and at the moment, they are only reliable for the innermost loops: ! * 'create_iv': Creates a new induction variable. Only works on ! GIMPLE. 'standard_iv_increment_position' can be used to find a suitable place for the iv increment. ! * 'duplicate_loop_to_header_edge', ! 'tree_duplicate_loop_to_header_edge': These functions (on RTL and on GIMPLE) duplicate the body of the loop prescribed number of times on one of the edges entering loop header, thus performing ! either loop unrolling or loop peeling. 'can_duplicate_loop_p' ! ('can_unroll_loop_p' on GIMPLE) must be true for the duplicated loop. ! * 'loop_version', 'tree_ssa_loop_version': These function create a copy of a loop, and a branch before them that selects one of them depending on the prescribed condition. This is useful for optimizations that need to verify some assumptions in runtime (one of the copies of the loop is usually left unchanged, while the other one is transformed in some way). ! * 'tree_unroll_loop': Unrolls the loop, including peeling the extra iterations to make the number of iterations divisible by unroll factor, updating the exit condition, and removing the exits that now cannot be taken. Works only on GIMPLE. *************** File: gccint.info, Node: LCSSA, Next: *** 17133,17139 **** ========================= Throughout the loop optimizations on tree level, one extra condition is ! enforced on the SSA form: No SSA name is used outside of the loop in that it is defined. The SSA form satisfying this condition is called "loop-closed SSA form" - LCSSA. To enforce LCSSA, PHI nodes must be created at the exits of the loops for the SSA names that are used --- 16936,16942 ---- ========================= Throughout the loop optimizations on tree level, one extra condition is ! enforced on the SSA form: No SSA name is used outside of the loop in that it is defined. The SSA form satisfying this condition is called "loop-closed SSA form" - LCSSA. To enforce LCSSA, PHI nodes must be created at the exits of the loops for the SSA names that are used *************** held in LCSSA, in order to save memory. *** 17146,17172 **** are interested in the values that are defined in the loop and used outside of it, i.e., exactly those for that we create new PHI nodes. - * In induction variable analysis, it is not necessary to specify the loop in that the analysis should be performed - the scalar evolution analysis always returns the results with respect to the loop in that the SSA name is defined. - * It makes updating of SSA form during loop transformations simpler. ! Without LCSSA, operations like loop unrolling may force creation ! of PHI nodes arbitrarily far from the loop, while in LCSSA, the ! SSA form can be updated locally. However, since we only keep real operands in LCSSA, we cannot use this advantage (we could have local updating of real operands, but it is not much more efficient ! than to use generic SSA form updating for it as well; the amount ! of changes to SSA is the same). However, it also means LCSSA must be updated. This is usually straightforward, unless you create a new value in loop and use it outside, or unless you manipulate loop exit edges (functions are provided to make these manipulations simple). ! `rewrite_into_loop_closed_ssa' is used to rewrite SSA form to LCSSA, ! and `verify_loop_closed_ssa' to check that the invariant of LCSSA is preserved.  --- 16949,16973 ---- are interested in the values that are defined in the loop and used outside of it, i.e., exactly those for that we create new PHI nodes. * In induction variable analysis, it is not necessary to specify the loop in that the analysis should be performed - the scalar evolution analysis always returns the results with respect to the loop in that the SSA name is defined. * It makes updating of SSA form during loop transformations simpler. ! Without LCSSA, operations like loop unrolling may force creation of ! PHI nodes arbitrarily far from the loop, while in LCSSA, the SSA ! form can be updated locally. However, since we only keep real operands in LCSSA, we cannot use this advantage (we could have local updating of real operands, but it is not much more efficient ! than to use generic SSA form updating for it as well; the amount of ! changes to SSA is the same). However, it also means LCSSA must be updated. This is usually straightforward, unless you create a new value in loop and use it outside, or unless you manipulate loop exit edges (functions are provided to make these manipulations simple). ! 'rewrite_into_loop_closed_ssa' is used to rewrite SSA form to LCSSA, and ! 'verify_loop_closed_ssa' to check that the invariant of LCSSA is preserved.  *************** variable analysis on GIMPLE. They enabl *** 17180,17216 **** complicated behavior in a simple and consistent way (we only use it to express values of polynomial induction variables, but it is possible to extend it). The interfaces to SCEV analysis are declared in ! `tree-scalar-evolution.h'. To use scalar evolutions analysis, ! `scev_initialize' must be used. To stop using SCEV, `scev_finalize' should be used. SCEV analysis caches results in order to save time and memory. This cache however is made invalid by most of the loop ! transformations, including removal of code. If such a transformation ! is performed, `scev_reset' must be called to clean the caches. Given an SSA name, its behavior in loops can be analyzed using the ! `analyze_scalar_evolution' function. The returned SCEV however does ! not have to be fully analyzed and it may contain references to other ! SSA names defined in the loop. To resolve these (potentially ! recursive) references, `instantiate_parameters' or `resolve_mixers' ! functions must be used. `instantiate_parameters' is useful when you ! use the results of SCEV only for some analysis, and when you work with ! whole nest of loops at once. It will try replacing all SSA names by ! their SCEV in all loops, including the super-loops of the current loop, ! thus providing a complete information about the behavior of the ! variable in the loop nest. `resolve_mixers' is useful if you work with ! only one loop at a time, and if you possibly need to create code based ! on the value of the induction variable. It will only resolve the SSA ! names defined in the current loop, leaving the SSA names defined ! outside unchanged, even if their evolution in the outer loops is known. The SCEV is a normal tree expression, except for the fact that it may ! contain several special tree nodes. One of them is `SCEV_NOT_KNOWN', used for SSA names whose value cannot be expressed. The other one is ! `POLYNOMIAL_CHREC'. Polynomial chrec has three arguments - base, step and loop (both base and step may contain further polynomial chrecs). Type of the expression and of base and step must be the same. A ! variable has evolution `POLYNOMIAL_CHREC(base, step, loop)' if it is ! (in the specified loop) equivalent to `x_1' in the following example while (...) { --- 16981,17017 ---- complicated behavior in a simple and consistent way (we only use it to express values of polynomial induction variables, but it is possible to extend it). The interfaces to SCEV analysis are declared in ! 'tree-scalar-evolution.h'. To use scalar evolutions analysis, ! 'scev_initialize' must be used. To stop using SCEV, 'scev_finalize' should be used. SCEV analysis caches results in order to save time and memory. This cache however is made invalid by most of the loop ! transformations, including removal of code. If such a transformation is ! performed, 'scev_reset' must be called to clean the caches. Given an SSA name, its behavior in loops can be analyzed using the ! 'analyze_scalar_evolution' function. The returned SCEV however does not ! have to be fully analyzed and it may contain references to other SSA ! names defined in the loop. To resolve these (potentially recursive) ! references, 'instantiate_parameters' or 'resolve_mixers' functions must ! be used. 'instantiate_parameters' is useful when you use the results of ! SCEV only for some analysis, and when you work with whole nest of loops ! at once. It will try replacing all SSA names by their SCEV in all ! loops, including the super-loops of the current loop, thus providing a ! complete information about the behavior of the variable in the loop ! nest. 'resolve_mixers' is useful if you work with only one loop at a ! time, and if you possibly need to create code based on the value of the ! induction variable. It will only resolve the SSA names defined in the ! current loop, leaving the SSA names defined outside unchanged, even if ! their evolution in the outer loops is known. The SCEV is a normal tree expression, except for the fact that it may ! contain several special tree nodes. One of them is 'SCEV_NOT_KNOWN', used for SSA names whose value cannot be expressed. The other one is ! 'POLYNOMIAL_CHREC'. Polynomial chrec has three arguments - base, step and loop (both base and step may contain further polynomial chrecs). Type of the expression and of base and step must be the same. A ! variable has evolution 'POLYNOMIAL_CHREC(base, step, loop)' if it is (in ! the specified loop) equivalent to 'x_1' in the following example while (...) { *************** variable has evolution `POLYNOMIAL_CHREC *** 17219,17225 **** } Note that this includes the language restrictions on the operations. ! For example, if we compile C code and `x' has signed type, then the overflow in addition would cause undefined behavior, and we may assume that this does not happen. Hence, the value with this SCEV cannot overflow (which restricts the number of iterations of such a loop). --- 17020,17026 ---- } Note that this includes the language restrictions on the operations. ! For example, if we compile C code and 'x' has signed type, then the overflow in addition would cause undefined behavior, and we may assume that this does not happen. Hence, the value with this SCEV cannot overflow (which restricts the number of iterations of such a loop). *************** overflow (which restricts the number of *** 17227,17233 **** In many cases, one wants to restrict the attention just to affine induction variables. In this case, the extra expressive power of SCEV is not useful, and may complicate the optimizations. In this case, ! `simple_iv' function may be used to analyze a value - the result is a loop-invariant base and step.  --- 17028,17034 ---- In many cases, one wants to restrict the attention just to affine induction variables. In this case, the extra expressive power of SCEV is not useful, and may complicate the optimizations. In this case, ! 'simple_iv' function may be used to analyze a value - the result is a loop-invariant base and step.  *************** File: gccint.info, Node: loop-iv, Next *** 17238,17277 **** The induction variable on RTL is simple and only allows analysis of affine induction variables, and only in one loop at once. The interface ! is declared in `cfgloop.h'. Before analyzing induction variables in a ! loop L, `iv_analysis_loop_init' function must be called on L. After ! the analysis (possibly calling `iv_analysis_loop_init' for several ! loops) is finished, `iv_analysis_done' should be called. The following ! functions can be used to access the results of the analysis: ! * `iv_analyze': Analyzes a single register used in the given insn. If no use of the register in this insn is found, the following insns are scanned, so that this function can be called on the insn returned by get_condition. ! * `iv_analyze_result': Analyzes result of the assignment in the ! given insn. ! ! * `iv_analyze_expr': Analyzes a more complicated expression. All ! its operands are analyzed by `iv_analyze', and hence they must be ! used in the specified insn or one of the following insns. ! ! The description of the induction variable is provided in `struct rtx_iv'. In order to handle subregs, the representation is a bit ! complicated; if the value of the `extend' field is not `UNKNOWN', the value of the induction variable in the i-th iteration is delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)), ! with the following exception: if `first_special' is true, then the ! value in the first iteration (when `i' is zero) is `delta + mult * ! base'. However, if `extend' is equal to `UNKNOWN', then ! `first_special' must be false, `delta' 0, `mult' 1 and the value in the ! i-th iteration is subreg_{mode} (base + i * step) ! The function `get_iv_value' can be used to perform these calculations.  File: gccint.info, Node: Number of iterations, Next: Dependency analysis, Prev: loop-iv, Up: Loop Analysis and Representation --- 17039,17076 ---- The induction variable on RTL is simple and only allows analysis of affine induction variables, and only in one loop at once. The interface ! is declared in 'cfgloop.h'. Before analyzing induction variables in a ! loop L, 'iv_analysis_loop_init' function must be called on L. After the ! analysis (possibly calling 'iv_analysis_loop_init' for several loops) is ! finished, 'iv_analysis_done' should be called. The following functions ! can be used to access the results of the analysis: ! * 'iv_analyze': Analyzes a single register used in the given insn. If no use of the register in this insn is found, the following insns are scanned, so that this function can be called on the insn returned by get_condition. + * 'iv_analyze_result': Analyzes result of the assignment in the given + insn. + * 'iv_analyze_expr': Analyzes a more complicated expression. All its + operands are analyzed by 'iv_analyze', and hence they must be used + in the specified insn or one of the following insns. ! The description of the induction variable is provided in 'struct rtx_iv'. In order to handle subregs, the representation is a bit ! complicated; if the value of the 'extend' field is not 'UNKNOWN', the value of the induction variable in the i-th iteration is delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)), ! with the following exception: if 'first_special' is true, then the ! value in the first iteration (when 'i' is zero) is 'delta + mult * ! base'. However, if 'extend' is equal to 'UNKNOWN', then 'first_special' ! must be false, 'delta' 0, 'mult' 1 and the value in the i-th iteration ! is subreg_{mode} (base + i * step) ! The function 'get_iv_value' can be used to perform these calculations.  File: gccint.info, Node: Number of iterations, Next: Dependency analysis, Prev: loop-iv, Up: Loop Analysis and Representation *************** program; if it fails, the conditions are *** 17290,17331 **** result. The following information and conditions are provided by the analysis: ! * `assumptions': If this condition is false, the rest of the information is invalid. ! ! * `noloop_assumptions' on RTL, `may_be_zero' on GIMPLE: If this condition is true, the loop exits in the first iteration. ! ! * `infinite': If this condition is true, the loop is infinite. This condition is only available on RTL. On GIMPLE, conditions for ! finiteness of the loop are included in `assumptions'. ! ! * `niter_expr' on RTL, `niter' on GIMPLE: The expression that gives number of iterations. The number of iterations is defined as the number of executions of the loop latch. Both on GIMPLE and on RTL, it necessary for the induction variable analysis framework to be initialized (SCEV on GIMPLE, loop-iv on RTL). ! On GIMPLE, the results are stored to `struct tree_niter_desc' ! structure. Number of iterations before the loop is exited through a ! given exit can be determined using `number_of_iterations_exit' ! function. On RTL, the results are returned in `struct niter_desc' ! structure. The corresponding function is named `check_simple_exit'. ! There are also functions that pass through all the exits of a loop and ! try to find one with easy to determine number of iterations - ! `find_loop_niter' on GIMPLE and `find_simple_exit' on RTL. Finally, ! there are functions that provide the same information, but additionally ! cache it, so that repeated calls to number of iterations are not so ! costly - `number_of_latch_executions' on GIMPLE and ! `get_simple_loop_desc' on RTL. Note that some of these functions may behave slightly differently than others - some of them return only the expression for the number of iterations, and fail if there are some assumptions. The function ! `number_of_latch_executions' works only for single-exit loops. The ! function `number_of_cond_exit_executions' can be used to determine number of executions of the exit condition of a single-exit loop (i.e., ! the `number_of_latch_executions' increased by one).  File: gccint.info, Node: Dependency analysis, Next: Lambda, Prev: Number of iterations, Up: Loop Analysis and Representation --- 17089,17127 ---- result. The following information and conditions are provided by the analysis: ! * 'assumptions': If this condition is false, the rest of the information is invalid. ! * 'noloop_assumptions' on RTL, 'may_be_zero' on GIMPLE: If this condition is true, the loop exits in the first iteration. ! * 'infinite': If this condition is true, the loop is infinite. This condition is only available on RTL. On GIMPLE, conditions for ! finiteness of the loop are included in 'assumptions'. ! * 'niter_expr' on RTL, 'niter' on GIMPLE: The expression that gives number of iterations. The number of iterations is defined as the number of executions of the loop latch. Both on GIMPLE and on RTL, it necessary for the induction variable analysis framework to be initialized (SCEV on GIMPLE, loop-iv on RTL). ! On GIMPLE, the results are stored to 'struct tree_niter_desc' structure. ! Number of iterations before the loop is exited through a given exit can ! be determined using 'number_of_iterations_exit' function. On RTL, the ! results are returned in 'struct niter_desc' structure. The ! corresponding function is named 'check_simple_exit'. There are also ! functions that pass through all the exits of a loop and try to find one ! with easy to determine number of iterations - 'find_loop_niter' on ! GIMPLE and 'find_simple_exit' on RTL. Finally, there are functions that ! provide the same information, but additionally cache it, so that ! repeated calls to number of iterations are not so costly - ! 'number_of_latch_executions' on GIMPLE and 'get_simple_loop_desc' on ! RTL. Note that some of these functions may behave slightly differently than others - some of them return only the expression for the number of iterations, and fail if there are some assumptions. The function ! 'number_of_latch_executions' works only for single-exit loops. The ! function 'number_of_cond_exit_executions' can be used to determine number of executions of the exit condition of a single-exit loop (i.e., ! the 'number_of_latch_executions' increased by one).  File: gccint.info, Node: Dependency analysis, Next: Lambda, Prev: Number of iterations, Up: Loop Analysis and Representation *************** File: gccint.info, Node: Dependency ana *** 17334,17354 **** ============================= The code for the data dependence analysis can be found in ! `tree-data-ref.c' and its interface and data structures are described ! in `tree-data-ref.h'. The function that computes the data dependences ! for all the array and pointer references for a given loop is ! `compute_data_dependences_for_loop'. This function is currently used ! by the linear loop transform and the vectorization passes. Before ! calling this function, one has to allocate two vectors: a first vector ! will contain the set of data references that are contained in the ! analyzed loop body, and the second vector will contain the dependence ! relations between the data references. Thus if the vector of data ! references is of size `n', the vector containing the dependence ! relations will contain `n*n' elements. However if the analyzed loop ! contains side effects, such as calls that potentially can interfere ! with the data references in the current analyzed loop, the analysis ! stops while scanning the loop body for data references, and inserts a ! single `chrec_dont_know' in the dependence relation array. The data references are discovered in a particular order during the scanning of the loop body: the loop body is analyzed in execution order, --- 17130,17150 ---- ============================= The code for the data dependence analysis can be found in ! 'tree-data-ref.c' and its interface and data structures are described in ! 'tree-data-ref.h'. The function that computes the data dependences for ! all the array and pointer references for a given loop is ! 'compute_data_dependences_for_loop'. This function is currently used by ! the linear loop transform and the vectorization passes. Before calling ! this function, one has to allocate two vectors: a first vector will ! contain the set of data references that are contained in the analyzed ! loop body, and the second vector will contain the dependence relations ! between the data references. Thus if the vector of data references is ! of size 'n', the vector containing the dependence relations will contain ! 'n*n' elements. However if the analyzed loop contains side effects, ! such as calls that potentially can interfere with the data references in ! the current analyzed loop, the analysis stops while scanning the loop ! body for data references, and inserts a single 'chrec_dont_know' in the ! dependence relation array. The data references are discovered in a particular order during the scanning of the loop body: the loop body is analyzed in execution order, *************** and mapping this order to the elements o *** 17360,17395 **** queries to the loop body representation. Three types of data references are currently handled: ARRAY_REF, ! INDIRECT_REF and COMPONENT_REF. The data structure for the data ! reference is `data_reference', where `data_reference_p' is a name of a ! pointer to the data reference structure. The structure contains the following elements: ! * `base_object_info': Provides information about the base object of ! the data reference and its access functions. These access functions ! represent the evolution of the data reference in the loop relative ! to its base, in keeping with the classical meaning of the data ! reference access function for the support of arrays. For example, ! for a reference `a.b[i][j]', the base object is `a.b' and the ! access functions, one for each array subscript, are: `{i_init, + ! i_step}_1, {j_init, +, j_step}_2'. ! * `first_location_in_loop': Provides information about the first location accessed by the data reference in the loop and about the access function used to represent evolution relative to this ! location. This data is used to support pointers, and is not used ! for arrays (for which we have base objects). Pointer accesses are represented as a one-dimensional access that starts from the first ! location accessed in the loop. For example: for1 i for2 j *((int *)p + i + j) = a[i][j]; ! The access function of the pointer access is `{0, + 4B}_for2' ! relative to `p + i'. The access functions of the array are ! `{i_init, + i_step}_for1' and `{j_init, +, j_step}_for2' relative ! to `a'. Usually, the object the pointer refers to is either unknown, or we can't prove that the access is confined to the boundaries of a --- 17156,17191 ---- queries to the loop body representation. Three types of data references are currently handled: ARRAY_REF, ! INDIRECT_REF and COMPONENT_REF. The data structure for the data ! reference is 'data_reference', where 'data_reference_p' is a name of a ! pointer to the data reference structure. The structure contains the following elements: ! * 'base_object_info': Provides information about the base object of ! the data reference and its access functions. These access ! functions represent the evolution of the data reference in the loop ! relative to its base, in keeping with the classical meaning of the ! data reference access function for the support of arrays. For ! example, for a reference 'a.b[i][j]', the base object is 'a.b' and ! the access functions, one for each array subscript, are: '{i_init, ! + i_step}_1, {j_init, +, j_step}_2'. ! * 'first_location_in_loop': Provides information about the first location accessed by the data reference in the loop and about the access function used to represent evolution relative to this ! location. This data is used to support pointers, and is not used ! for arrays (for which we have base objects). Pointer accesses are represented as a one-dimensional access that starts from the first ! location accessed in the loop. For example: for1 i for2 j *((int *)p + i + j) = a[i][j]; ! The access function of the pointer access is '{0, + 4B}_for2' ! relative to 'p + i'. The access functions of the array are ! '{i_init, + i_step}_for1' and '{j_init, +, j_step}_for2' relative ! to 'a'. Usually, the object the pointer refers to is either unknown, or we can't prove that the access is confined to the boundaries of a *************** following elements: *** 17400,17456 **** references. The current strategy for data dependence tests is as follows: If ! both `a' and `b' are represented as arrays, compare ! `a.base_object' and `b.base_object'; if they are equal, apply ! dependence tests (use access functions based on base_objects). ! Else if both `a' and `b' are represented as pointers, compare ! `a.first_location' and `b.first_location'; if they are equal, ! apply dependence tests (use access functions based on first ! location). However, if `a' and `b' are represented differently, ! only try to prove that the bases are definitely different. * Aliasing information. - * Alignment information. The structure describing the relation between two data references is ! `data_dependence_relation' and the shorter name for a pointer to such a ! structure is `ddr_p'. This structure contains: * a pointer to each data reference, ! ! * a tree node `are_dependent' that is set to `chrec_known' if the analysis has proved that there is no dependence between these two ! data references, `chrec_dont_know' if the analysis was not able to determine any useful result and potentially there could exist a ! dependence between these data references, and `are_dependent' is ! set to `NULL_TREE' if there exist a dependence relation between the data references, and the description of this dependence relation is ! given in the `subscripts', `dir_vects', and `dist_vects' arrays, ! * a boolean that determines whether the dependence relation can be represented by a classical distance vector, ! ! * an array `subscripts' that contains a description of each ! subscript of the data references. Given two array accesses a ! subscript is the tuple composed of the access functions for a given ! dimension. For example, given `A[f1][f2][f3]' and ! `B[g1][g2][g3]', there are three subscripts: `(f1, g1), (f2, g2), ! (f3, g3)'. ! ! * two arrays `dir_vects' and `dist_vects' that contain classical ! representations of the data dependences under the form of ! direction and distance dependence vectors, ! ! * an array of loops `loop_nest' that contains the loops to which the distance and direction vectors refer to. Several functions for pretty printing the information extracted by the ! data dependence analysis are available: `dump_ddrs' prints with a maximum verbosity the details of a data dependence relations array, ! `dump_dist_dir_vectors' prints only the classical distance and ! direction vectors for a data dependence relations array, and ! `dump_data_references' prints the details of the data references contained in a data reference array.  --- 17196,17245 ---- references. The current strategy for data dependence tests is as follows: If ! both 'a' and 'b' are represented as arrays, compare 'a.base_object' ! and 'b.base_object'; if they are equal, apply dependence tests (use ! access functions based on base_objects). Else if both 'a' and 'b' ! are represented as pointers, compare 'a.first_location' and ! 'b.first_location'; if they are equal, apply dependence tests (use ! access functions based on first location). However, if 'a' and 'b' ! are represented differently, only try to prove that the bases are ! definitely different. * Aliasing information. * Alignment information. The structure describing the relation between two data references is ! 'data_dependence_relation' and the shorter name for a pointer to such a ! structure is 'ddr_p'. This structure contains: * a pointer to each data reference, ! * a tree node 'are_dependent' that is set to 'chrec_known' if the analysis has proved that there is no dependence between these two ! data references, 'chrec_dont_know' if the analysis was not able to determine any useful result and potentially there could exist a ! dependence between these data references, and 'are_dependent' is ! set to 'NULL_TREE' if there exist a dependence relation between the data references, and the description of this dependence relation is ! given in the 'subscripts', 'dir_vects', and 'dist_vects' arrays, * a boolean that determines whether the dependence relation can be represented by a classical distance vector, ! * an array 'subscripts' that contains a description of each subscript ! of the data references. Given two array accesses a subscript is ! the tuple composed of the access functions for a given dimension. ! For example, given 'A[f1][f2][f3]' and 'B[g1][g2][g3]', there are ! three subscripts: '(f1, g1), (f2, g2), (f3, g3)'. ! * two arrays 'dir_vects' and 'dist_vects' that contain classical ! representations of the data dependences under the form of direction ! and distance dependence vectors, ! * an array of loops 'loop_nest' that contains the loops to which the distance and direction vectors refer to. Several functions for pretty printing the information extracted by the ! data dependence analysis are available: 'dump_ddrs' prints with a maximum verbosity the details of a data dependence relations array, ! 'dump_dist_dir_vectors' prints only the classical distance and direction ! vectors for a data dependence relations array, and ! 'dump_data_references' prints the details of the data references contained in a data reference array.  *************** File: gccint.info, Node: Lambda, Next: *** 17461,17489 **** Lambda is a framework that allows transformations of loops using non-singular matrix based transformations of the iteration space and ! loop bounds. This allows compositions of skewing, scaling, interchange, and reversal transformations. These transformations are often used to improve cache behavior or remove inner loop dependencies to allow parallelization and vectorization to take place. To perform these transformations, Lambda requires that the loopnest be converted into an internal form that can be matrix transformed easily. ! To do this conversion, the function `gcc_loopnest_to_lambda_loopnest' ! is provided. If the loop cannot be transformed using lambda, this ! function will return NULL. ! Once a `lambda_loopnest' is obtained from the conversion function, it ! can be transformed by using `lambda_loopnest_transform', which takes a transformation matrix to apply. Note that it is up to the caller to verify that the transformation matrix is legal to apply to the loop (dependence respecting, etc). Lambda simply applies whatever matrix it is told to provide. It can be extended to make legal matrices out of any non-singular matrix, but this is not currently implemented. Legality of a matrix for a given loopnest can be verified using ! `lambda_transform_legal_p'. Given a transformed loopnest, conversion back into gcc IR is done by ! `lambda_loopnest_to_gcc_loopnest'. This function will modify the loops so that they match the transformed loopnest.  --- 17250,17278 ---- Lambda is a framework that allows transformations of loops using non-singular matrix based transformations of the iteration space and ! loop bounds. This allows compositions of skewing, scaling, interchange, and reversal transformations. These transformations are often used to improve cache behavior or remove inner loop dependencies to allow parallelization and vectorization to take place. To perform these transformations, Lambda requires that the loopnest be converted into an internal form that can be matrix transformed easily. ! To do this conversion, the function 'gcc_loopnest_to_lambda_loopnest' is ! provided. If the loop cannot be transformed using lambda, this function ! will return NULL. ! Once a 'lambda_loopnest' is obtained from the conversion function, it ! can be transformed by using 'lambda_loopnest_transform', which takes a transformation matrix to apply. Note that it is up to the caller to verify that the transformation matrix is legal to apply to the loop (dependence respecting, etc). Lambda simply applies whatever matrix it is told to provide. It can be extended to make legal matrices out of any non-singular matrix, but this is not currently implemented. Legality of a matrix for a given loopnest can be verified using ! 'lambda_transform_legal_p'. Given a transformed loopnest, conversion back into gcc IR is done by ! 'lambda_loopnest_to_gcc_loopnest'. This function will modify the loops so that they match the transformed loopnest.  *************** ensuring the consistency of the results *** 17498,17544 **** dependence check pass has been implemented based on two different solvers. The second method that has been integrated to GCC is based on the Omega dependence solver, written in the 1990's by William Pugh and ! David Wonnacott. Data dependence tests can be formulated using a ! subset of the Presburger arithmetics that can be translated to linear constraint systems. These linear constraint systems can then be solved using the Omega solver. The Omega solver is using Fourier-Motzkin's algorithm for variable ! elimination: a linear constraint system containing `n' variables is ! reduced to a linear constraint system with `n-1' variables. The Omega ! solver can also be used for solving other problems that can be ! expressed under the form of a system of linear equalities and ! inequalities. The Omega solver is known to have an exponential worst ! case, also known under the name of "omega nightmare" in the literature, ! but in practice, the omega test is known to be efficient for the common ! data dependence tests. The interface used by the Omega solver for describing the linear ! programming problems is described in `omega.h', and the solver is ! `omega_solve_problem'.  ! File: gccint.info, Node: Control Flow, Next: Loop Analysis and Representation, Prev: RTL, Up: Top 15 Control Flow Graph ********************* A control flow graph (CFG) is a data structure built on top of the ! intermediate code representation (the RTL or `GIMPLE' instruction stream) abstracting the control flow behavior of a function that is being compiled. The CFG is a directed graph where the vertices represent basic blocks and edges represent possible transfer of control flow from one basic block to another. The data structures used to ! represent the control flow graph are defined in `basic-block.h'. ! In GCC, the representation of control flow is maintained throughout ! the compilation process, from constructing the CFG early in ! `pass_build_cfg' to `pass_free_cfg' (see `passes.c'). The CFG takes ! various different modes and may undergo extensive manipulations, but ! the graph is always valid between its construction and its release. ! This way, transfer of information such as data flow, a measured ! profile, or the loop tree, can be propagated through the passes ! pipeline, and even from `GIMPLE' to `RTL'. Often the CFG may be better viewed as integral part of instruction chain, than structure built on the top of it. Updating the compiler's --- 17287,17333 ---- dependence check pass has been implemented based on two different solvers. The second method that has been integrated to GCC is based on the Omega dependence solver, written in the 1990's by William Pugh and ! David Wonnacott. Data dependence tests can be formulated using a subset ! of the Presburger arithmetics that can be translated to linear constraint systems. These linear constraint systems can then be solved using the Omega solver. The Omega solver is using Fourier-Motzkin's algorithm for variable ! elimination: a linear constraint system containing 'n' variables is ! reduced to a linear constraint system with 'n-1' variables. The Omega ! solver can also be used for solving other problems that can be expressed ! under the form of a system of linear equalities and inequalities. The ! Omega solver is known to have an exponential worst case, also known ! under the name of "omega nightmare" in the literature, but in practice, ! the omega test is known to be efficient for the common data dependence ! tests. The interface used by the Omega solver for describing the linear ! programming problems is described in 'omega.h', and the solver is ! 'omega_solve_problem'.  ! File: gccint.info, Node: Control Flow, Next: Machine Desc, Prev: Loop Analysis and Representation, Up: Top 15 Control Flow Graph ********************* A control flow graph (CFG) is a data structure built on top of the ! intermediate code representation (the RTL or 'GIMPLE' instruction stream) abstracting the control flow behavior of a function that is being compiled. The CFG is a directed graph where the vertices represent basic blocks and edges represent possible transfer of control flow from one basic block to another. The data structures used to ! represent the control flow graph are defined in 'basic-block.h'. ! In GCC, the representation of control flow is maintained throughout the ! compilation process, from constructing the CFG early in 'pass_build_cfg' ! to 'pass_free_cfg' (see 'passes.c'). The CFG takes various different ! modes and may undergo extensive manipulations, but the graph is always ! valid between its construction and its release. This way, transfer of ! information such as data flow, a measured profile, or the loop tree, can ! be propagated through the passes pipeline, and even from 'GIMPLE' to ! 'RTL'. Often the CFG may be better viewed as integral part of instruction chain, than structure built on the top of it. Updating the compiler's *************** File: gccint.info, Node: Basic Blocks, *** 17560,17609 **** ================= A basic block is a straight-line sequence of code with only one entry ! point and only one exit. In GCC, basic blocks are represented using ! the `basic_block' data type. Special basic blocks represent possible entry and exit points of a ! function. These blocks are called `ENTRY_BLOCK_PTR' and ! `EXIT_BLOCK_PTR'. These blocks do not contain any code. ! The `BASIC_BLOCK' array contains all basic blocks in an unspecified ! order. Each `basic_block' structure has a field that holds a unique ! integer identifier `index' that is the index of the block in the ! `BASIC_BLOCK' array. The total number of basic blocks in the function ! is `n_basic_blocks'. Both the basic block indices and the total number of basic blocks may vary during the compilation process, as passes ! reorder, create, duplicate, and destroy basic blocks. The index for ! any block should never be greater than `last_basic_block'. The indices ! 0 and 1 are special codes reserved for `ENTRY_BLOCK' and `EXIT_BLOCK', ! the indices of `ENTRY_BLOCK_PTR' and `EXIT_BLOCK_PTR'. ! Two pointer members of the `basic_block' structure are the pointers ! `next_bb' and `prev_bb'. These are used to keep doubly linked chain of basic blocks in the same order as the underlying instruction stream. The chain of basic blocks is updated transparently by the provided API ! for manipulating the CFG. The macro `FOR_EACH_BB' can be used to visit ! all the basic blocks in lexicographical order, except `ENTRY_BLOCK' and ! `EXIT_BLOCK'. The macro `FOR_ALL_BB' also visits all basic blocks in ! lexicographical order, including `ENTRY_BLOCK' and `EXIT_BLOCK'. ! The functions `post_order_compute' and `inverted_post_order_compute' ! can be used to compute topological orders of the CFG. The orders are ! stored as vectors of basic block indices. The `BASIC_BLOCK' array can be used to iterate each basic block by index. Dominator traversals are ! also possible using `walk_dominator_tree'. Given two basic blocks A ! and B, block A dominates block B if A is _always_ executed before B. ! Each `basic_block' also contains pointers to the first instruction ! (the "head") and the last instruction (the "tail") or "end" of the instruction stream contained in a basic block. In fact, since the ! `basic_block' data type is used to represent blocks in both major ! intermediate representations of GCC (`GIMPLE' and RTL), there are pointers to the head and end of a basic block for both representations, ! stored in intermediate representation specific data in the `il' field ! of `struct basic_block_def'. ! For RTL, these pointers are `BB_HEAD' and `BB_END'. In the RTL representation of a function, the instruction stream contains not only the "real" instructions, but also "notes" or "insn --- 17349,17398 ---- ================= A basic block is a straight-line sequence of code with only one entry ! point and only one exit. In GCC, basic blocks are represented using the ! 'basic_block' data type. Special basic blocks represent possible entry and exit points of a ! function. These blocks are called 'ENTRY_BLOCK_PTR' and ! 'EXIT_BLOCK_PTR'. These blocks do not contain any code. ! The 'BASIC_BLOCK' array contains all basic blocks in an unspecified ! order. Each 'basic_block' structure has a field that holds a unique ! integer identifier 'index' that is the index of the block in the ! 'BASIC_BLOCK' array. The total number of basic blocks in the function ! is 'n_basic_blocks'. Both the basic block indices and the total number of basic blocks may vary during the compilation process, as passes ! reorder, create, duplicate, and destroy basic blocks. The index for any ! block should never be greater than 'last_basic_block'. The indices 0 ! and 1 are special codes reserved for 'ENTRY_BLOCK' and 'EXIT_BLOCK', the ! indices of 'ENTRY_BLOCK_PTR' and 'EXIT_BLOCK_PTR'. ! Two pointer members of the 'basic_block' structure are the pointers ! 'next_bb' and 'prev_bb'. These are used to keep doubly linked chain of basic blocks in the same order as the underlying instruction stream. The chain of basic blocks is updated transparently by the provided API ! for manipulating the CFG. The macro 'FOR_EACH_BB' can be used to visit ! all the basic blocks in lexicographical order, except 'ENTRY_BLOCK' and ! 'EXIT_BLOCK'. The macro 'FOR_ALL_BB' also visits all basic blocks in ! lexicographical order, including 'ENTRY_BLOCK' and 'EXIT_BLOCK'. ! The functions 'post_order_compute' and 'inverted_post_order_compute' ! can be used to compute topological orders of the CFG. The orders are ! stored as vectors of basic block indices. The 'BASIC_BLOCK' array can be used to iterate each basic block by index. Dominator traversals are ! also possible using 'walk_dominator_tree'. Given two basic blocks A and ! B, block A dominates block B if A is _always_ executed before B. ! Each 'basic_block' also contains pointers to the first instruction (the ! "head") and the last instruction (the "tail") or "end" of the instruction stream contained in a basic block. In fact, since the ! 'basic_block' data type is used to represent blocks in both major ! intermediate representations of GCC ('GIMPLE' and RTL), there are pointers to the head and end of a basic block for both representations, ! stored in intermediate representation specific data in the 'il' field of ! 'struct basic_block_def'. ! For RTL, these pointers are 'BB_HEAD' and 'BB_END'. In the RTL representation of a function, the instruction stream contains not only the "real" instructions, but also "notes" or "insn *************** notes" (to distinguish them from "reg no *** 17611,17645 **** or duplicates the basic blocks needs to take care of updating of these notes. Many of these notes expect that the instruction stream consists of linear regions, so updating can sometimes be tedious. All types of ! insn notes are defined in `insn-notes.def'. In the RTL function representation, the instructions contained in a ! basic block always follow a `NOTE_INSN_BASIC_BLOCK', but zero or more ! `CODE_LABEL' nodes can precede the block note. A basic block ends with a control flow instruction or with the last instruction before the next ! `CODE_LABEL' or `NOTE_INSN_BASIC_BLOCK'. By definition, a `CODE_LABEL' cannot appear in the middle of the instruction stream of a basic block. In addition to notes, the jump table vectors are also represented as "pseudo-instructions" inside the insn stream. These vectors never appear in the basic block and should always be placed just after the ! table jump instructions referencing them. After removing the ! table-jump it is often difficult to eliminate the code computing the ! address and referencing the vector, so cleaning up these vectors is ! postponed until after liveness analysis. Thus the jump table vectors ! may appear in the insn stream unreferenced and without any purpose. ! Before any edge is made "fall-thru", the existence of such construct in ! the way needs to be checked by calling `can_fallthru' function. ! For the `GIMPLE' representation, the PHI nodes and statements ! contained in a basic block are in a `gimple_seq' pointed to by the ! basic block intermediate language specific pointers. Abstract ! containers and iterators are used to access the PHI nodes and ! statements in a basic blocks. These iterators are called "GIMPLE ! statement iterators" (GSIs). Grep for `^gsi' in the various `gimple-*' ! and `tree-*' files. The following snippet will pretty-print all PHI ! nodes the statements of the current function in the GIMPLE ! representation. basic_block bb; --- 17400,17433 ---- or duplicates the basic blocks needs to take care of updating of these notes. Many of these notes expect that the instruction stream consists of linear regions, so updating can sometimes be tedious. All types of ! insn notes are defined in 'insn-notes.def'. In the RTL function representation, the instructions contained in a ! basic block always follow a 'NOTE_INSN_BASIC_BLOCK', but zero or more ! 'CODE_LABEL' nodes can precede the block note. A basic block ends with a control flow instruction or with the last instruction before the next ! 'CODE_LABEL' or 'NOTE_INSN_BASIC_BLOCK'. By definition, a 'CODE_LABEL' cannot appear in the middle of the instruction stream of a basic block. In addition to notes, the jump table vectors are also represented as "pseudo-instructions" inside the insn stream. These vectors never appear in the basic block and should always be placed just after the ! table jump instructions referencing them. After removing the table-jump ! it is often difficult to eliminate the code computing the address and ! referencing the vector, so cleaning up these vectors is postponed until ! after liveness analysis. Thus the jump table vectors may appear in the ! insn stream unreferenced and without any purpose. Before any edge is ! made "fall-thru", the existence of such construct in the way needs to be ! checked by calling 'can_fallthru' function. ! For the 'GIMPLE' representation, the PHI nodes and statements contained ! in a basic block are in a 'gimple_seq' pointed to by the basic block ! intermediate language specific pointers. Abstract containers and ! iterators are used to access the PHI nodes and statements in a basic ! blocks. These iterators are called "GIMPLE statement iterators" (GSIs). ! Grep for '^gsi' in the various 'gimple-*' and 'tree-*' files. The ! following snippet will pretty-print all PHI nodes the statements of the ! current function in the GIMPLE representation. basic_block bb; *************** File: gccint.info, Node: Edges, Next: *** 17668,17720 **** Edges represent possible control flow transfers from the end of some basic block A to the head of another basic block B. We say that A is a predecessor of B, and B is a successor of A. Edges are represented in ! GCC with the `edge' data type. Each `edge' acts as a link between two ! basic blocks: The `src' member of an edge points to the predecessor ! basic block of the `dest' basic block. The members `preds' and `succs' ! of the `basic_block' data type point to type-safe vectors of edges to the predecessors and successors of the block. When walking the edges in an edge vector, "edge iterators" should be ! used. Edge iterators are constructed using the `edge_iterator' data structure and several methods are available to operate on them: ! `ei_start' ! This function initializes an `edge_iterator' that points to the first edge in a vector of edges. ! `ei_last' ! This function initializes an `edge_iterator' that points to the last edge in a vector of edges. ! `ei_end_p' ! This predicate is `true' if an `edge_iterator' represents the last edge in an edge vector. ! `ei_one_before_end_p' ! This predicate is `true' if an `edge_iterator' represents the second last edge in an edge vector. ! `ei_next' ! This function takes a pointer to an `edge_iterator' and makes it point to the next edge in the sequence. ! `ei_prev' ! This function takes a pointer to an `edge_iterator' and makes it point to the previous edge in the sequence. ! `ei_edge' ! This function returns the `edge' currently pointed to by an ! `edge_iterator'. ! `ei_safe_safe' ! This function returns the `edge' currently pointed to by an ! `edge_iterator', but returns `NULL' if the iterator is pointing at the end of the sequence. This function has been provided for ! existing code makes the assumption that a `NULL' edge indicates ! the end of the sequence. ! ! The convenience macro `FOR_EACH_EDGE' can be used to visit all of the edges in a sequence of predecessor or successor edges. It must not be used when an element might be removed during the traversal, otherwise elements will be missed. Here is an example of how to use the macro: --- 17456,17507 ---- Edges represent possible control flow transfers from the end of some basic block A to the head of another basic block B. We say that A is a predecessor of B, and B is a successor of A. Edges are represented in ! GCC with the 'edge' data type. Each 'edge' acts as a link between two ! basic blocks: The 'src' member of an edge points to the predecessor ! basic block of the 'dest' basic block. The members 'preds' and 'succs' ! of the 'basic_block' data type point to type-safe vectors of edges to the predecessors and successors of the block. When walking the edges in an edge vector, "edge iterators" should be ! used. Edge iterators are constructed using the 'edge_iterator' data structure and several methods are available to operate on them: ! 'ei_start' ! This function initializes an 'edge_iterator' that points to the first edge in a vector of edges. ! 'ei_last' ! This function initializes an 'edge_iterator' that points to the last edge in a vector of edges. ! 'ei_end_p' ! This predicate is 'true' if an 'edge_iterator' represents the last edge in an edge vector. ! 'ei_one_before_end_p' ! This predicate is 'true' if an 'edge_iterator' represents the second last edge in an edge vector. ! 'ei_next' ! This function takes a pointer to an 'edge_iterator' and makes it point to the next edge in the sequence. ! 'ei_prev' ! This function takes a pointer to an 'edge_iterator' and makes it point to the previous edge in the sequence. ! 'ei_edge' ! This function returns the 'edge' currently pointed to by an ! 'edge_iterator'. ! 'ei_safe_safe' ! This function returns the 'edge' currently pointed to by an ! 'edge_iterator', but returns 'NULL' if the iterator is pointing at the end of the sequence. This function has been provided for ! existing code makes the assumption that a 'NULL' edge indicates the ! end of the sequence. ! The convenience macro 'FOR_EACH_EDGE' can be used to visit all of the edges in a sequence of predecessor or successor edges. It must not be used when an element might be removed during the traversal, otherwise elements will be missed. Here is an example of how to use the macro: *************** elements will be missed. Here is an exa *** 17730,17741 **** There are various reasons why control flow may transfer from one block to another. One possibility is that some instruction, for example a ! `CODE_LABEL', in a linearized instruction stream just always starts a new basic block. In this case a "fall-thru" edge links the basic block ! to the first following basic block. But there are several other ! reasons why edges may be created. The `flags' field of the `edge' data ! type is used to store information about the type of edge we are dealing ! with. Each edge is of one of the following types: _jump_ No type flags are set for edges corresponding to jump instructions. --- 17517,17528 ---- There are various reasons why control flow may transfer from one block to another. One possibility is that some instruction, for example a ! 'CODE_LABEL', in a linearized instruction stream just always starts a new basic block. In this case a "fall-thru" edge links the basic block ! to the first following basic block. But there are several other reasons ! why edges may be created. The 'flags' field of the 'edge' data type is ! used to store information about the type of edge we are dealing with. ! Each edge is of one of the following types: _jump_ No type flags are set for edges corresponding to jump instructions. *************** _jump_ *** 17747,17758 **** _fall-thru_ Fall-thru edges are present in case where the basic block may continue execution to the following one without branching. These ! edges have the `EDGE_FALLTHRU' flag set. Unlike other types of edges, these edges must come into the basic block immediately following in the instruction stream. The function ! `force_nonfallthru' is available to insert an unconditional jump ! in the case that redirection is needed. Note that this may ! require creation of a new basic block. _exception handling_ Exception handling edges represent possible control transfers from --- 17534,17545 ---- _fall-thru_ Fall-thru edges are present in case where the basic block may continue execution to the following one without branching. These ! edges have the 'EDGE_FALLTHRU' flag set. Unlike other types of edges, these edges must come into the basic block immediately following in the instruction stream. The function ! 'force_nonfallthru' is available to insert an unconditional jump in ! the case that redirection is needed. Note that this may require ! creation of a new basic block. _exception handling_ Exception handling edges represent possible control transfers from *************** _exception handling_ *** 17761,17794 **** Java and Ada, exceptions like division by zero or segmentation fault are defined and thus each instruction possibly throwing this kind of exception needs to be handled as control flow instruction. ! Exception edges have the `EDGE_ABNORMAL' and `EDGE_EH' flags set. When updating the instruction stream it is easy to change possibly trapping instruction to non-trapping, by simply removing the exception edge. The opposite conversion is difficult, but should not happen anyway. The edges can be eliminated via ! `purge_dead_edges' call. In the RTL representation, the destination of an exception edge is ! specified by `REG_EH_REGION' note attached to the insn. In case ! of a trapping call the `EDGE_ABNORMAL_CALL' flag is set too. In ! the `GIMPLE' representation, this extra flag is not set. ! In the RTL representation, the predicate `may_trap_p' may be used to check whether instruction still may trap or not. For the tree ! representation, the `tree_could_trap_p' predicate is available, ! but this predicate only checks for possible memory traps, as in dereferencing an invalid pointer location. _sibling calls_ Sibling calls or tail calls terminate the function in a non-standard way and thus an edge to the exit must be present. ! `EDGE_SIBCALL' and `EDGE_ABNORMAL' are set in such case. These edges only exist in the RTL representation. _computed jumps_ Computed jumps contain edges to all labels in the function ! referenced from the code. All those edges have `EDGE_ABNORMAL' flag set. The edges used to represent computed jumps often cause compile time performance problems, since functions consisting of many taken labels and many computed jumps may have _very_ dense --- 17548,17581 ---- Java and Ada, exceptions like division by zero or segmentation fault are defined and thus each instruction possibly throwing this kind of exception needs to be handled as control flow instruction. ! Exception edges have the 'EDGE_ABNORMAL' and 'EDGE_EH' flags set. When updating the instruction stream it is easy to change possibly trapping instruction to non-trapping, by simply removing the exception edge. The opposite conversion is difficult, but should not happen anyway. The edges can be eliminated via ! 'purge_dead_edges' call. In the RTL representation, the destination of an exception edge is ! specified by 'REG_EH_REGION' note attached to the insn. In case of ! a trapping call the 'EDGE_ABNORMAL_CALL' flag is set too. In the ! 'GIMPLE' representation, this extra flag is not set. ! In the RTL representation, the predicate 'may_trap_p' may be used to check whether instruction still may trap or not. For the tree ! representation, the 'tree_could_trap_p' predicate is available, but ! this predicate only checks for possible memory traps, as in dereferencing an invalid pointer location. _sibling calls_ Sibling calls or tail calls terminate the function in a non-standard way and thus an edge to the exit must be present. ! 'EDGE_SIBCALL' and 'EDGE_ABNORMAL' are set in such case. These edges only exist in the RTL representation. _computed jumps_ Computed jumps contain edges to all labels in the function ! referenced from the code. All those edges have 'EDGE_ABNORMAL' flag set. The edges used to represent computed jumps often cause compile time performance problems, since functions consisting of many taken labels and many computed jumps may have _very_ dense *************** _computed jumps_ *** 17825,17852 **** has a runtime cost in there resulting code: An extra jump. Therefore, the computed jumps are un-factored in the later passes of the compiler (in the pass called ! `pass_duplicate_computed_gotos'). Be aware of that when you work on passes in that area. There have been numerous examples already where the compile time for code with unfactored computed jumps caused some serious headaches. _nonlocal goto handlers_ ! GCC allows nested functions to return into caller using a `goto' ! to a label passed to as an argument to the callee. The labels ! passed to nested functions contain special code to cleanup after ! function call. Such sections of code are referred to as "nonlocal ! goto receivers". If a function contains such nonlocal goto ! receivers, an edge from the call to the label is created with the ! `EDGE_ABNORMAL' and `EDGE_ABNORMAL_CALL' flags set. _function entry points_ By definition, execution of function starts at basic block 0, so ! there is always an edge from the `ENTRY_BLOCK_PTR' to basic block ! 0. There is no `GIMPLE' representation for alternate entry points at this moment. In RTL, alternate entry points are specified by ! `CODE_LABEL' with `LABEL_ALTERNATE_NAME' defined. This feature is ! currently used for multiple entry point prologues and is limited ! to post-reload passes only. This can be used by back-ends to emit alternate prologues for functions called from different contexts. In future full support for multiple entry functions defined by Fortran 90 needs to be implemented. --- 17612,17639 ---- has a runtime cost in there resulting code: An extra jump. Therefore, the computed jumps are un-factored in the later passes of the compiler (in the pass called ! 'pass_duplicate_computed_gotos'). Be aware of that when you work on passes in that area. There have been numerous examples already where the compile time for code with unfactored computed jumps caused some serious headaches. _nonlocal goto handlers_ ! GCC allows nested functions to return into caller using a 'goto' to ! a label passed to as an argument to the callee. The labels passed ! to nested functions contain special code to cleanup after function ! call. Such sections of code are referred to as "nonlocal goto ! receivers". If a function contains such nonlocal goto receivers, ! an edge from the call to the label is created with the ! 'EDGE_ABNORMAL' and 'EDGE_ABNORMAL_CALL' flags set. _function entry points_ By definition, execution of function starts at basic block 0, so ! there is always an edge from the 'ENTRY_BLOCK_PTR' to basic block ! 0. There is no 'GIMPLE' representation for alternate entry points at this moment. In RTL, alternate entry points are specified by ! 'CODE_LABEL' with 'LABEL_ALTERNATE_NAME' defined. This feature is ! currently used for multiple entry point prologues and is limited to ! post-reload passes only. This can be used by back-ends to emit alternate prologues for functions called from different contexts. In future full support for multiple entry functions defined by Fortran 90 needs to be implemented. *************** _function entry points_ *** 17854,17864 **** _function exits_ In the pre-reload representation a function terminates after the last instruction in the insn chain and no explicit return ! instructions are used. This corresponds to the fall-thru edge ! into exit block. After reload, optimal RTL epilogues are used ! that use explicit (conditional) return instructions that are ! represented by edges with no flags set. !  File: gccint.info, Node: Profile information, Next: Maintaining the CFG, Prev: Edges, Up: Control Flow --- 17641,17650 ---- _function exits_ In the pre-reload representation a function terminates after the last instruction in the insn chain and no explicit return ! instructions are used. This corresponds to the fall-thru edge into ! exit block. After reload, optimal RTL epilogues are used that use ! explicit (conditional) return instructions that are represented by ! edges with no flags set.  File: gccint.info, Node: Profile information, Next: Maintaining the CFG, Prev: Edges, Up: Control Flow *************** instrumentation, executing it on a train *** 17879,17910 **** executions of basic blocks and edges back to the compiler while re-compiling the program to produce the final executable. This method provides very accurate information about where a program spends most of ! its time on the train run. Whether it matches the average run of ! course depends on the choice of train data set, but several studies ! have shown that the behavior of a program usually changes just ! marginally over different data sets. When profile feedback is not available, the compiler may be asked to attempt to predict the behavior of each branch in the program using a ! set of heuristics (see `predict.def' for details) and compute estimated frequencies of each basic block by propagating the probabilities over the graph. ! Each `basic_block' contains two integer fields to represent profile ! information: `frequency' and `count'. The `frequency' is an estimation how often is basic block executed within a function. It is represented ! as an integer scaled in the range from 0 to `BB_FREQ_BASE'. The most frequently executed basic block in function is initially set to ! `BB_FREQ_BASE' and the rest of frequencies are scaled accordingly. During optimization, the frequency of the most frequent basic block can both decrease (for instance by loop unrolling) or grow (for instance by cross-jumping optimization), so scaling sometimes has to be performed multiple times. ! The `count' contains hard-counted numbers of execution measured during training runs and is nonzero only when profile feedback is available. This value is represented as the host's widest integer (typically a 64 ! bit integer) of the special type `gcov_type'. Most optimization passes can use only the frequency information of a basic block, but a few passes may want to know hard execution counts. --- 17665,17696 ---- executions of basic blocks and edges back to the compiler while re-compiling the program to produce the final executable. This method provides very accurate information about where a program spends most of ! its time on the train run. Whether it matches the average run of course ! depends on the choice of train data set, but several studies have shown ! that the behavior of a program usually changes just marginally over ! different data sets. When profile feedback is not available, the compiler may be asked to attempt to predict the behavior of each branch in the program using a ! set of heuristics (see 'predict.def' for details) and compute estimated frequencies of each basic block by propagating the probabilities over the graph. ! Each 'basic_block' contains two integer fields to represent profile ! information: 'frequency' and 'count'. The 'frequency' is an estimation how often is basic block executed within a function. It is represented ! as an integer scaled in the range from 0 to 'BB_FREQ_BASE'. The most frequently executed basic block in function is initially set to ! 'BB_FREQ_BASE' and the rest of frequencies are scaled accordingly. During optimization, the frequency of the most frequent basic block can both decrease (for instance by loop unrolling) or grow (for instance by cross-jumping optimization), so scaling sometimes has to be performed multiple times. ! The 'count' contains hard-counted numbers of execution measured during training runs and is nonzero only when profile feedback is available. This value is represented as the host's widest integer (typically a 64 ! bit integer) of the special type 'gcov_type'. Most optimization passes can use only the frequency information of a basic block, but a few passes may want to know hard execution counts. *************** during updating of the profile informati *** 17913,17928 **** accumulate into quite large errors. Each edge also contains a branch probability field: an integer in the ! range from 0 to `REG_BR_PROB_BASE'. It represents probability of ! passing control from the end of the `src' basic block to the `dest' basic block, i.e. the probability that control will flow along this ! edge. The `EDGE_FREQUENCY' macro is available to compute how ! frequently a given edge is taken. There is a `count' field for each ! edge as well, representing same information as for a basic block. The basic block frequencies are not represented in the instruction stream, but in the RTL representation the edge frequencies are ! represented for conditional jumps (via the `REG_BR_PROB' macro) since they are used when instructions are output to the assembly file and the flow graph is no longer maintained. --- 17699,17714 ---- accumulate into quite large errors. Each edge also contains a branch probability field: an integer in the ! range from 0 to 'REG_BR_PROB_BASE'. It represents probability of ! passing control from the end of the 'src' basic block to the 'dest' basic block, i.e. the probability that control will flow along this ! edge. The 'EDGE_FREQUENCY' macro is available to compute how frequently ! a given edge is taken. There is a 'count' field for each edge as well, ! representing same information as for a basic block. The basic block frequencies are not represented in the instruction stream, but in the RTL representation the edge frequencies are ! represented for conditional jumps (via the 'REG_BR_PROB' macro) since they are used when instructions are output to the assembly file and the flow graph is no longer maintained. *************** basic blocks. *** 17934,17952 **** Updating profile information is a delicate task that can unfortunately not be easily integrated with the CFG manipulation API. Many of the functions and hooks to modify the CFG, such as ! `redirect_edge_and_branch', do not have enough information to easily update the profile, so updating it is in the majority of cases left up to the caller. It is difficult to uncover bugs in the profile updating ! code, because they manifest themselves only by producing worse code, ! and checking profile consistency is not possible because of numeric ! error accumulation. Hence special attention needs to be given to this ! issue in each pass that modifies the CFG. ! It is important to point out that `REG_BR_PROB_BASE' and ! `BB_FREQ_BASE' are both set low enough to be possible to compute second ! power of any frequency or probability in the flow graph, it is not ! possible to even square the `count' field, as modern CPUs are fast ! enough to execute $2^32$ operations quickly.  File: gccint.info, Node: Maintaining the CFG, Next: Liveness information, Prev: Profile information, Up: Control Flow --- 17720,17738 ---- Updating profile information is a delicate task that can unfortunately not be easily integrated with the CFG manipulation API. Many of the functions and hooks to modify the CFG, such as ! 'redirect_edge_and_branch', do not have enough information to easily update the profile, so updating it is in the majority of cases left up to the caller. It is difficult to uncover bugs in the profile updating ! code, because they manifest themselves only by producing worse code, and ! checking profile consistency is not possible because of numeric error ! accumulation. Hence special attention needs to be given to this issue ! in each pass that modifies the CFG. ! It is important to point out that 'REG_BR_PROB_BASE' and 'BB_FREQ_BASE' ! are both set low enough to be possible to compute second power of any ! frequency or probability in the flow graph, it is not possible to even ! square the 'count' field, as modern CPUs are fast enough to execute ! $2^32$ operations quickly.  File: gccint.info, Node: Maintaining the CFG, Next: Liveness information, Prev: Profile information, Up: Control Flow *************** File: gccint.info, Node: Maintaining th *** 17954,18073 **** 15.4 Maintaining the CFG ======================== ! An important task of each compiler pass is to keep both the control ! flow graph and all profile information up-to-date. Reconstruction of ! the control flow graph after each pass is not an option, since it may be very expensive and lost profile information cannot be reconstructed at all. GCC has two major intermediate representations, and both use the ! `basic_block' and `edge' data types to represent control flow. Both representations share as much of the CFG maintenance code as possible. For each representation, a set of "hooks" is defined so that each representation can provide its own implementation of CFG manipulation ! routines when necessary. These hooks are defined in `cfghooks.h'. ! There are hooks for almost all common CFG manipulations, including ! block splitting and merging, edge redirection and creating and deleting ! basic blocks. These hooks should provide everything you need to ! maintain and manipulate the CFG in both the RTL and `GIMPLE' ! representation. At the moment, the basic block boundaries are maintained transparently when modifying instructions, so there rarely is a need to move them manually (such as in case someone wants to output instruction outside basic block explicitly). ! In the RTL representation, each instruction has a `BLOCK_FOR_INSN' value that represents pointer to the basic block that contains the ! instruction. In the `GIMPLE' representation, the function `gimple_bb' returns a pointer to the basic block containing the queried statement. ! When changes need to be applied to a function in its `GIMPLE' representation, "GIMPLE statement iterators" should be used. These iterators provide an integrated abstraction of the flow graph and the ! instruction stream. Block statement iterators are constructed using ! the `gimple_stmt_iterator' data structure and several modifier are available, including the following: ! `gsi_start' ! This function initializes a `gimple_stmt_iterator' that points to the first non-empty statement in a basic block. ! `gsi_last' ! This function initializes a `gimple_stmt_iterator' that points to the last statement in a basic block. ! `gsi_end_p' ! This predicate is `true' if a `gimple_stmt_iterator' represents ! the end of a basic block. ! `gsi_next' ! This function takes a `gimple_stmt_iterator' and makes it point to its successor. ! `gsi_prev' ! This function takes a `gimple_stmt_iterator' and makes it point to its predecessor. ! `gsi_insert_after' ! This function inserts a statement after the `gimple_stmt_iterator' passed in. The final parameter determines whether the statement iterator is updated to point to the newly inserted statement, or left pointing to the original statement. ! `gsi_insert_before' ! This function inserts a statement before the `gimple_stmt_iterator' passed in. The final parameter determines whether the statement iterator is updated to point to the newly inserted statement, or ! left pointing to the original statement. ! `gsi_remove' ! This function removes the `gimple_stmt_iterator' passed in and rechains the remaining statements in a basic block, if any. ! In the RTL representation, the macros `BB_HEAD' and `BB_END' may be ! used to get the head and end `rtx' of a basic block. No abstract iterators are defined for traversing the insn chain, but you can just ! use `NEXT_INSN' and `PREV_INSN' instead. *Note Insns::. Usually a code manipulating pass simplifies the instruction stream and the flow of control, possibly eliminating some edges. This may for ! example happen when a conditional jump is replaced with an ! unconditional jump, but also when simplifying possibly trapping ! instruction to non-trapping while compiling Java. Updating of edges is ! not transparent and each optimization pass is required to do so ! manually. However only few cases occur in practice. The pass may call ! `purge_dead_edges' on a given basic block to remove superfluous edges, ! if any. ! Another common scenario is redirection of branch instructions, but ! this is best modeled as redirection of edges in the control flow graph ! and thus use of `redirect_edge_and_branch' is preferred over more low ! level functions, such as `redirect_jump' that operate on RTL chain ! only. The CFG hooks defined in `cfghooks.h' should provide the ! complete API required for manipulating and maintaining the CFG. It is also possible that a pass has to insert control flow instruction into the middle of a basic block, thus creating an entry point in the middle of the basic block, which is impossible by definition: The block ! must be split to make sure it only has one entry point, i.e. the head ! of the basic block. The CFG hook `split_block' may be used when an ! instruction in the middle of a basic block has to become the target of ! a jump or branch instruction. For a global optimizer, a common operation is to split edges in the flow graph and insert instructions on them. In the RTL representation, ! this can be easily done using the `insert_insn_on_edge' function that emits an instruction "on the edge", caching it for a later ! `commit_edge_insertions' call that will take care of moving the ! inserted instructions off the edge into the instruction stream ! contained in a basic block. This includes the creation of new basic ! blocks where needed. In the `GIMPLE' representation, the equivalent ! functions are `gsi_insert_on_edge' which inserts a block statement ! iterator on an edge, and `gsi_commit_edge_inserts' which flushes the ! instruction to actual instruction stream. ! While debugging the optimization pass, the `verify_flow_info' function may be useful to find bugs in the control flow graph updating code.  --- 17740,17857 ---- 15.4 Maintaining the CFG ======================== ! An important task of each compiler pass is to keep both the control flow ! graph and all profile information up-to-date. Reconstruction of the ! control flow graph after each pass is not an option, since it may be very expensive and lost profile information cannot be reconstructed at all. GCC has two major intermediate representations, and both use the ! 'basic_block' and 'edge' data types to represent control flow. Both representations share as much of the CFG maintenance code as possible. For each representation, a set of "hooks" is defined so that each representation can provide its own implementation of CFG manipulation ! routines when necessary. These hooks are defined in 'cfghooks.h'. ! There are hooks for almost all common CFG manipulations, including block ! splitting and merging, edge redirection and creating and deleting basic ! blocks. These hooks should provide everything you need to maintain and ! manipulate the CFG in both the RTL and 'GIMPLE' representation. At the moment, the basic block boundaries are maintained transparently when modifying instructions, so there rarely is a need to move them manually (such as in case someone wants to output instruction outside basic block explicitly). ! In the RTL representation, each instruction has a 'BLOCK_FOR_INSN' value that represents pointer to the basic block that contains the ! instruction. In the 'GIMPLE' representation, the function 'gimple_bb' returns a pointer to the basic block containing the queried statement. ! When changes need to be applied to a function in its 'GIMPLE' representation, "GIMPLE statement iterators" should be used. These iterators provide an integrated abstraction of the flow graph and the ! instruction stream. Block statement iterators are constructed using the ! 'gimple_stmt_iterator' data structure and several modifier are available, including the following: ! 'gsi_start' ! This function initializes a 'gimple_stmt_iterator' that points to the first non-empty statement in a basic block. ! 'gsi_last' ! This function initializes a 'gimple_stmt_iterator' that points to the last statement in a basic block. ! 'gsi_end_p' ! This predicate is 'true' if a 'gimple_stmt_iterator' represents the ! end of a basic block. ! 'gsi_next' ! This function takes a 'gimple_stmt_iterator' and makes it point to its successor. ! 'gsi_prev' ! This function takes a 'gimple_stmt_iterator' and makes it point to its predecessor. ! 'gsi_insert_after' ! This function inserts a statement after the 'gimple_stmt_iterator' passed in. The final parameter determines whether the statement iterator is updated to point to the newly inserted statement, or left pointing to the original statement. ! 'gsi_insert_before' ! This function inserts a statement before the 'gimple_stmt_iterator' passed in. The final parameter determines whether the statement iterator is updated to point to the newly inserted statement, or ! left pointing to the original statement. ! 'gsi_remove' ! This function removes the 'gimple_stmt_iterator' passed in and rechains the remaining statements in a basic block, if any. ! In the RTL representation, the macros 'BB_HEAD' and 'BB_END' may be ! used to get the head and end 'rtx' of a basic block. No abstract iterators are defined for traversing the insn chain, but you can just ! use 'NEXT_INSN' and 'PREV_INSN' instead. *Note Insns::. Usually a code manipulating pass simplifies the instruction stream and the flow of control, possibly eliminating some edges. This may for ! example happen when a conditional jump is replaced with an unconditional ! jump, but also when simplifying possibly trapping instruction to ! non-trapping while compiling Java. Updating of edges is not transparent ! and each optimization pass is required to do so manually. However only ! few cases occur in practice. The pass may call 'purge_dead_edges' on a ! given basic block to remove superfluous edges, if any. ! Another common scenario is redirection of branch instructions, but this ! is best modeled as redirection of edges in the control flow graph and ! thus use of 'redirect_edge_and_branch' is preferred over more low level ! functions, such as 'redirect_jump' that operate on RTL chain only. The ! CFG hooks defined in 'cfghooks.h' should provide the complete API ! required for manipulating and maintaining the CFG. It is also possible that a pass has to insert control flow instruction into the middle of a basic block, thus creating an entry point in the middle of the basic block, which is impossible by definition: The block ! must be split to make sure it only has one entry point, i.e. the head of ! the basic block. The CFG hook 'split_block' may be used when an ! instruction in the middle of a basic block has to become the target of a ! jump or branch instruction. For a global optimizer, a common operation is to split edges in the flow graph and insert instructions on them. In the RTL representation, ! this can be easily done using the 'insert_insn_on_edge' function that emits an instruction "on the edge", caching it for a later ! 'commit_edge_insertions' call that will take care of moving the inserted ! instructions off the edge into the instruction stream contained in a ! basic block. This includes the creation of new basic blocks where ! needed. In the 'GIMPLE' representation, the equivalent functions are ! 'gsi_insert_on_edge' which inserts a block statement iterator on an ! edge, and 'gsi_commit_edge_inserts' which flushes the instruction to ! actual instruction stream. ! While debugging the optimization pass, the 'verify_flow_info' function may be useful to find bugs in the control flow graph updating code.  *************** File: gccint.info, Node: Liveness infor *** 18077,18125 **** ========================= Liveness information is useful to determine whether some register is ! "live" at given point of program, i.e. that it contains a value that ! may be used at a later point in the program. This information is used, ! for instance, during register allocation, as the pseudo registers only ! need to be assigned to a unique hard register or to a stack slot if ! they are live. The hard registers and stack slots may be freely reused ! for other values when a register is dead. Liveness information is available in the back end starting with ! `pass_df_initialize' and ending with `pass_df_finish'. Three flavors ! of live analysis are available: With `LR', it is possible to determine ! at any point `P' in the function if the register may be used on some ! path from `P' to the end of the function. With `UR', it is possible to ! determine if there is a path from the beginning of the function to `P' ! that defines the variable. `LIVE' is the intersection of the `LR' and ! `UR' and a variable is live at `P' if there is both an assignment that reaches it from the beginning of the function and a use that can be ! reached on some path from `P' to the end of the function. ! In general `LIVE' is the most useful of the three. The macros ! `DF_[LR,UR,LIVE]_[IN,OUT]' can be used to access this information. The macros take a basic block number and return a bitmap that is indexed by the register number. This information is only guaranteed to be up to ! date after calls are made to `df_analyze'. See the file `df-core.c' ! for details on using the dataflow. The liveness information is stored partly in the RTL instruction stream and partly in the flow graph. Local information is stored in the ! instruction stream: Each instruction may contain `REG_DEAD' notes representing that the value of a given register is no longer needed, or ! `REG_UNUSED' notes representing that the value computed by the instruction is never used. The second is useful for instructions computing multiple values at once.  ! File: gccint.info, Node: Machine Desc, Next: Target Macros, Prev: Loop Analysis and Representation, Up: Top 16 Machine Descriptions *********************** A machine description has two parts: a file of instruction patterns ! (`.md' file) and a C header file of macro definitions. ! The `.md' file for a target machine contains a pattern for each instruction that the target machine supports (or at least each instruction that is worth telling the compiler about). It may also contain comments. A semicolon causes the rest of the line to be a --- 17861,17909 ---- ========================= Liveness information is useful to determine whether some register is ! "live" at given point of program, i.e. that it contains a value that may ! be used at a later point in the program. This information is used, for ! instance, during register allocation, as the pseudo registers only need ! to be assigned to a unique hard register or to a stack slot if they are ! live. The hard registers and stack slots may be freely reused for other ! values when a register is dead. Liveness information is available in the back end starting with ! 'pass_df_initialize' and ending with 'pass_df_finish'. Three flavors of ! live analysis are available: With 'LR', it is possible to determine at ! any point 'P' in the function if the register may be used on some path ! from 'P' to the end of the function. With 'UR', it is possible to ! determine if there is a path from the beginning of the function to 'P' ! that defines the variable. 'LIVE' is the intersection of the 'LR' and ! 'UR' and a variable is live at 'P' if there is both an assignment that reaches it from the beginning of the function and a use that can be ! reached on some path from 'P' to the end of the function. ! In general 'LIVE' is the most useful of the three. The macros ! 'DF_[LR,UR,LIVE]_[IN,OUT]' can be used to access this information. The macros take a basic block number and return a bitmap that is indexed by the register number. This information is only guaranteed to be up to ! date after calls are made to 'df_analyze'. See the file 'df-core.c' for ! details on using the dataflow. The liveness information is stored partly in the RTL instruction stream and partly in the flow graph. Local information is stored in the ! instruction stream: Each instruction may contain 'REG_DEAD' notes representing that the value of a given register is no longer needed, or ! 'REG_UNUSED' notes representing that the value computed by the instruction is never used. The second is useful for instructions computing multiple values at once.  ! File: gccint.info, Node: Machine Desc, Next: Target Macros, Prev: Control Flow, Up: Top 16 Machine Descriptions *********************** A machine description has two parts: a file of instruction patterns ! ('.md' file) and a C header file of macro definitions. ! The '.md' file for a target machine contains a pattern for each instruction that the target machine supports (or at least each instruction that is worth telling the compiler about). It may also contain comments. A semicolon causes the rest of the line to be a *************** comment, unless the semicolon is inside *** 18131,18137 **** * Overview:: How the machine description is used. * Patterns:: How to write instruction patterns. ! * Example:: An explained example of a `define_insn' pattern. * RTL Template:: The RTL template defines what insns match a pattern. * Output Template:: The output template says how to make assembler code from such an insn. --- 17915,17921 ---- * Overview:: How the machine description is used. * Patterns:: How to write instruction patterns. ! * Example:: An explained example of a 'define_insn' pattern. * RTL Template:: The RTL template defines what insns match a pattern. * Output Template:: The output template says how to make assembler code from such an insn. *************** comment, unless the semicolon is inside *** 18152,18160 **** * Including Patterns:: Including Patterns in Machine Descriptions. * Peephole Definitions::Defining machine-specific peephole optimizations. * Insn Attributes:: Specifying the value of attributes for generated insns. ! * Conditional Execution::Generating `define_insn' patterns for predication. ! * Define Subst:: Generating `define_insn' and `define_expand' patterns from other patterns. * Constant Definitions::Defining symbolic constants that can be used in the md file. --- 17936,17944 ---- * Including Patterns:: Including Patterns in Machine Descriptions. * Peephole Definitions::Defining machine-specific peephole optimizations. * Insn Attributes:: Specifying the value of attributes for generated insns. ! * Conditional Execution::Generating 'define_insn' patterns for predication. ! * Define Subst:: Generating 'define_insn' and 'define_expand' patterns from other patterns. * Constant Definitions::Defining symbolic constants that can be used in the md file. *************** There are three main conversions that ha *** 18176,18207 **** 3. The insn list is matched against the RTL templates to produce assembler code. - For the generate pass, only the names of the insns matter, from either ! a named `define_insn' or a `define_expand'. The compiler will choose the pattern with the right name and apply the operands according to the ! documentation later in this chapter, without regard for the RTL ! template or operand constraints. Note that the names the compiler looks ! for are hard-coded in the compiler--it will ignore unnamed patterns and ! patterns with names it doesn't know about, but if you don't provide a ! named pattern it needs, it will abort. ! If a `define_insn' is used, the template given is inserted into the ! insn list. If a `define_expand' is used, one of three things happens, based on the condition logic. The condition logic may manually create ! new insns for the insn list, say via `emit_insn()', and invoke `DONE'. ! For certain named patterns, it may invoke `FAIL' to tell the compiler ! to use an alternate way of performing that task. If it invokes neither ! `DONE' nor `FAIL', the template given in the pattern is inserted, as if ! the `define_expand' were a `define_insn'. Once the insn list is generated, various optimization passes convert, replace, and rearrange the insns in the insn list. This is where the ! `define_split' and `define_peephole' patterns get used, for example. Finally, the insn list's RTL is matched up with the RTL templates in ! the `define_insn' patterns, and those patterns are used to emit the ! final assembly code. For this purpose, each named `define_insn' acts like it's unnamed, since the names are ignored.  --- 17960,17990 ---- 3. The insn list is matched against the RTL templates to produce assembler code. For the generate pass, only the names of the insns matter, from either ! a named 'define_insn' or a 'define_expand'. The compiler will choose the pattern with the right name and apply the operands according to the ! documentation later in this chapter, without regard for the RTL template ! or operand constraints. Note that the names the compiler looks for are ! hard-coded in the compiler--it will ignore unnamed patterns and patterns ! with names it doesn't know about, but if you don't provide a named ! pattern it needs, it will abort. ! If a 'define_insn' is used, the template given is inserted into the ! insn list. If a 'define_expand' is used, one of three things happens, based on the condition logic. The condition logic may manually create ! new insns for the insn list, say via 'emit_insn()', and invoke 'DONE'. ! For certain named patterns, it may invoke 'FAIL' to tell the compiler to ! use an alternate way of performing that task. If it invokes neither ! 'DONE' nor 'FAIL', the template given in the pattern is inserted, as if ! the 'define_expand' were a 'define_insn'. Once the insn list is generated, various optimization passes convert, replace, and rearrange the insns in the insn list. This is where the ! 'define_split' and 'define_peephole' patterns get used, for example. Finally, the insn list's RTL is matched up with the RTL templates in ! the 'define_insn' patterns, and those patterns are used to emit the ! final assembly code. For this purpose, each named 'define_insn' acts like it's unnamed, since the names are ignored.  *************** File: gccint.info, Node: Patterns, Nex *** 18212,18250 **** Each instruction pattern contains an incomplete RTL expression, with pieces to be filled in later, operand constraints that restrict how the ! pieces can be filled in, and an output pattern or C code to generate ! the assembler output, all wrapped up in a `define_insn' expression. ! A `define_insn' is an RTL expression containing four or five operands: 1. An optional name. The presence of a name indicate that this instruction pattern can perform a certain standard job for the ! RTL-generation pass of the compiler. This pass knows certain ! names and will use the instruction patterns with those names, if ! the names are defined in the machine description. ! The absence of a name is indicated by writing an empty string ! where the name should go. Nameless instruction patterns are never ! used for generating RTL code, but they may permit several simpler ! insns to be combined later on. Names that are not thus known and used in RTL-generation have no effect; they are equivalent to no name at all. For the purpose of debugging the compiler, you may also specify a ! name beginning with the `*' character. Such a name is used only for identifying the instruction in RTL dumps; it is entirely equivalent to having a nameless pattern for all other purposes. 2. The "RTL template" (*note RTL Template::) is a vector of incomplete RTL expressions which show what the instruction should look like. ! It is incomplete because it may contain `match_operand', ! `match_operator', and `match_dup' expressions that stand for operands of the instruction. If the vector has only one element, that element is the template for the instruction pattern. If the vector has multiple elements, ! then the instruction pattern is a `parallel' expression containing the elements described. 3. A condition. This is a string which contains a C expression that --- 17995,18033 ---- Each instruction pattern contains an incomplete RTL expression, with pieces to be filled in later, operand constraints that restrict how the ! pieces can be filled in, and an output pattern or C code to generate the ! assembler output, all wrapped up in a 'define_insn' expression. ! A 'define_insn' is an RTL expression containing four or five operands: 1. An optional name. The presence of a name indicate that this instruction pattern can perform a certain standard job for the ! RTL-generation pass of the compiler. This pass knows certain names ! and will use the instruction patterns with those names, if the ! names are defined in the machine description. ! The absence of a name is indicated by writing an empty string where ! the name should go. Nameless instruction patterns are never used ! for generating RTL code, but they may permit several simpler insns ! to be combined later on. Names that are not thus known and used in RTL-generation have no effect; they are equivalent to no name at all. For the purpose of debugging the compiler, you may also specify a ! name beginning with the '*' character. Such a name is used only for identifying the instruction in RTL dumps; it is entirely equivalent to having a nameless pattern for all other purposes. 2. The "RTL template" (*note RTL Template::) is a vector of incomplete RTL expressions which show what the instruction should look like. ! It is incomplete because it may contain 'match_operand', ! 'match_operator', and 'match_dup' expressions that stand for operands of the instruction. If the vector has only one element, that element is the template for the instruction pattern. If the vector has multiple elements, ! then the instruction pattern is a 'parallel' expression containing the elements described. 3. A condition. This is a string which contains a C expression that *************** the assembler output, all wrapped up in *** 18260,18272 **** For nameless patterns, the condition is applied only when matching an individual insn, and only after the insn has matched the pattern's recognition template. The insn's operands may be found ! in the vector `operands'. For an insn where the condition has ! once matched, it can't be used to control register allocation, for example by excluding certain hard registers or hard register combinations. 4. The "output template": a string that says how to output matching ! insns as assembler code. `%' in this string specifies where to substitute the value of an operand. *Note Output Template::. When simple substitution isn't general enough, you can specify a --- 18043,18055 ---- For nameless patterns, the condition is applied only when matching an individual insn, and only after the insn has matched the pattern's recognition template. The insn's operands may be found ! in the vector 'operands'. For an insn where the condition has once ! matched, it can't be used to control register allocation, for example by excluding certain hard registers or hard register combinations. 4. The "output template": a string that says how to output matching ! insns as assembler code. '%' in this string specifies where to substitute the value of an operand. *Note Output Template::. When simple substitution isn't general enough, you can specify a *************** the assembler output, all wrapped up in *** 18278,18284 ****  File: gccint.info, Node: Example, Next: RTL Template, Prev: Patterns, Up: Machine Desc ! 16.3 Example of `define_insn' ============================= Here is an actual example of an instruction pattern, for the --- 18061,18067 ----  File: gccint.info, Node: Example, Next: RTL Template, Prev: Patterns, Up: Machine Desc ! 16.3 Example of 'define_insn' ============================= Here is an actual example of an instruction pattern, for the *************** This can also be written using braced st *** 18307,18324 **** return "cmpl #0,%0"; }) ! This is an instruction that sets the condition codes based on the ! value of a general operand. It has no condition, so any insn whose RTL ! description has the form shown may be handled according to this ! pattern. The name `tstsi' means "test a `SImode' value" and tells the ! RTL generation pass that, when it is necessary to test such a value, an ! insn to do so can be constructed using this pattern. The output control string is a piece of C code which chooses which output template to return based on the kind of operand and the specific type of CPU for which code is being generated. ! `"rm"' is an operand constraint. Its meaning is explained below.  File: gccint.info, Node: RTL Template, Next: Output Template, Prev: Example, Up: Machine Desc --- 18090,18107 ---- return "cmpl #0,%0"; }) ! This is an instruction that sets the condition codes based on the value ! of a general operand. It has no condition, so any insn whose RTL ! description has the form shown may be handled according to this pattern. ! The name 'tstsi' means "test a 'SImode' value" and tells the RTL ! generation pass that, when it is necessary to test such a value, an insn ! to do so can be constructed using this pattern. The output control string is a piece of C code which chooses which output template to return based on the kind of operand and the specific type of CPU for which code is being generated. ! '"rm"' is an operand constraint. Its meaning is explained below.  File: gccint.info, Node: RTL Template, Next: Output Template, Prev: Example, Up: Machine Desc *************** the operands in the insn being matched. *** 18336,18433 **** controlled by special expression types that direct matching and substitution of the operands. ! `(match_operand:M N PREDICATE CONSTRAINT)' This expression is a placeholder for operand number N of the insn. When constructing an insn, operand number N will be substituted at this point. When matching an insn, whatever appears at this ! position in the insn will be taken as operand number N; but it ! must satisfy PREDICATE or this instruction pattern will not match ! at all. Operand numbers must be chosen consecutively counting from zero in ! each instruction pattern. There may be only one `match_operand' expression in the pattern for each operand number. Usually ! operands are numbered in the order of appearance in `match_operand' ! expressions. In the case of a `define_expand', any operand numbers ! used only in `match_dup' expressions have higher values than all other operand numbers. PREDICATE is a string that is the name of a function that accepts two arguments, an expression and a machine mode. *Note Predicates::. During matching, the function will be called with the putative operand as the expression and M as the mode argument ! (if M is not specified, `VOIDmode' will be used, which normally causes PREDICATE to accept any mode). If it returns zero, this instruction pattern fails to match. PREDICATE may be an empty string; then it means no test is to be done on the operand, so anything which occurs in this position is valid. ! Most of the time, PREDICATE will reject modes other than M--but ! not always. For example, the predicate `address_operand' uses M ! as the mode of memory ref that the address should be valid for. ! Many predicates accept `const_int' nodes even though their mode is ! `VOIDmode'. CONSTRAINT controls reloading and the choice of the best register class to use for a value, as explained later (*note Constraints::). If the constraint would be an empty string, it can be omitted. People are often unclear on the difference between the constraint ! and the predicate. The predicate helps decide whether a given ! insn matches the pattern. The constraint plays no role in this decision; instead, it controls various decisions in the case of an insn which does match. ! `(match_scratch:M N CONSTRAINT)' This expression is also a placeholder for operand number N and ! indicates that operand must be a `scratch' or `reg' expression. When matching patterns, this is equivalent to (match_operand:M N "scratch_operand" PRED) ! but, when generating RTL, it produces a (`scratch':M) expression. ! If the last few expressions in a `parallel' are `clobber' expressions whose operands are either a hard register or ! `match_scratch', the combiner can add or delete them when necessary. *Note Side Effects::. ! `(match_dup N)' This expression is also a placeholder for operand number N. It is used when the operand needs to appear more than once in the insn. ! In construction, `match_dup' acts just like `match_operand': the operand is substituted into the insn being constructed. But in ! matching, `match_dup' behaves differently. It assumes that operand ! number N has already been determined by a `match_operand' ! appearing earlier in the recognition template, and it matches only ! an identical-looking expression. ! Note that `match_dup' should not be used to tell the compiler that a particular register is being used for two operands (example: ! `add' that adds one register to another; the second register is both an input operand and the output operand). Use a matching ! constraint (*note Simple Constraints::) for those. `match_dup' is for the cases where one operand is used in two places in the template, such as an instruction that computes both a quotient and a remainder, where the opcode takes two input operands but the RTL ! template has to refer to each of those twice; once for the ! quotient pattern and once for the remainder pattern. ! `(match_operator:M N PREDICATE [OPERANDS...])' This pattern is a kind of placeholder for a variable RTL expression code. When constructing an insn, it stands for an RTL expression whose ! expression code is taken from that of operand N, and whose ! operands are constructed from the patterns OPERANDS. When matching an expression, it matches an expression if the function PREDICATE returns nonzero on that expression _and_ the patterns OPERANDS match the operands of the expression. ! Suppose that the function `commutative_operator' is defined as follows, to match any expression whose operator is one of the commutative arithmetic operators of RTL and whose mode is MODE: --- 18119,18216 ---- controlled by special expression types that direct matching and substitution of the operands. ! '(match_operand:M N PREDICATE CONSTRAINT)' This expression is a placeholder for operand number N of the insn. When constructing an insn, operand number N will be substituted at this point. When matching an insn, whatever appears at this ! position in the insn will be taken as operand number N; but it must ! satisfy PREDICATE or this instruction pattern will not match at ! all. Operand numbers must be chosen consecutively counting from zero in ! each instruction pattern. There may be only one 'match_operand' expression in the pattern for each operand number. Usually ! operands are numbered in the order of appearance in 'match_operand' ! expressions. In the case of a 'define_expand', any operand numbers ! used only in 'match_dup' expressions have higher values than all other operand numbers. PREDICATE is a string that is the name of a function that accepts two arguments, an expression and a machine mode. *Note Predicates::. During matching, the function will be called with the putative operand as the expression and M as the mode argument ! (if M is not specified, 'VOIDmode' will be used, which normally causes PREDICATE to accept any mode). If it returns zero, this instruction pattern fails to match. PREDICATE may be an empty string; then it means no test is to be done on the operand, so anything which occurs in this position is valid. ! Most of the time, PREDICATE will reject modes other than M--but not ! always. For example, the predicate 'address_operand' uses M as the ! mode of memory ref that the address should be valid for. Many ! predicates accept 'const_int' nodes even though their mode is ! 'VOIDmode'. CONSTRAINT controls reloading and the choice of the best register class to use for a value, as explained later (*note Constraints::). If the constraint would be an empty string, it can be omitted. People are often unclear on the difference between the constraint ! and the predicate. The predicate helps decide whether a given insn ! matches the pattern. The constraint plays no role in this decision; instead, it controls various decisions in the case of an insn which does match. ! '(match_scratch:M N CONSTRAINT)' This expression is also a placeholder for operand number N and ! indicates that operand must be a 'scratch' or 'reg' expression. When matching patterns, this is equivalent to (match_operand:M N "scratch_operand" PRED) ! but, when generating RTL, it produces a ('scratch':M) expression. ! If the last few expressions in a 'parallel' are 'clobber' expressions whose operands are either a hard register or ! 'match_scratch', the combiner can add or delete them when necessary. *Note Side Effects::. ! '(match_dup N)' This expression is also a placeholder for operand number N. It is used when the operand needs to appear more than once in the insn. ! In construction, 'match_dup' acts just like 'match_operand': the operand is substituted into the insn being constructed. But in ! matching, 'match_dup' behaves differently. It assumes that operand ! number N has already been determined by a 'match_operand' appearing ! earlier in the recognition template, and it matches only an ! identical-looking expression. ! Note that 'match_dup' should not be used to tell the compiler that a particular register is being used for two operands (example: ! 'add' that adds one register to another; the second register is both an input operand and the output operand). Use a matching ! constraint (*note Simple Constraints::) for those. 'match_dup' is for the cases where one operand is used in two places in the template, such as an instruction that computes both a quotient and a remainder, where the opcode takes two input operands but the RTL ! template has to refer to each of those twice; once for the quotient ! pattern and once for the remainder pattern. ! '(match_operator:M N PREDICATE [OPERANDS...])' This pattern is a kind of placeholder for a variable RTL expression code. When constructing an insn, it stands for an RTL expression whose ! expression code is taken from that of operand N, and whose operands ! are constructed from the patterns OPERANDS. When matching an expression, it matches an expression if the function PREDICATE returns nonzero on that expression _and_ the patterns OPERANDS match the operands of the expression. ! Suppose that the function 'commutative_operator' is defined as follows, to match any expression whose operator is one of the commutative arithmetic operators of RTL and whose mode is MODE: *************** substitution of the operands. *** 18450,18515 **** [(match_operand:SI 1 "general_operand" "g") (match_operand:SI 2 "general_operand" "g")]) ! Here the vector `[OPERANDS...]' contains two patterns because the expressions to be matched all contain two operands. When this pattern does match, the two operands of the commutative operator are recorded as operands 1 and 2 of the insn. (This is ! done by the two instances of `match_operand'.) Operand 3 of the ! insn will be the entire commutative expression: use `GET_CODE (operands[3])' to see which commutative operator was used. ! The machine mode M of `match_operator' works like that of ! `match_operand': it is passed as the second argument to the predicate function, and that function is solely responsible for deciding whether the expression to be matched "has" that mode. When constructing an insn, argument 3 of the gen-function will ! specify the operation (i.e. the expression code) for the ! expression to be made. It should be an RTL expression, whose ! expression code is copied into a new expression whose operands are ! arguments 1 and 2 of the gen-function. The subexpressions of ! argument 3 are not used; only its expression code matters. ! When `match_operator' is used in a pattern for matching an insn, ! it usually best if the operand number of the `match_operator' is higher than that of the actual operands of the insn. This improves register allocation because the register allocator often looks at operands 1 and 2 of insns to see if it can do register tying. ! There is no way to specify constraints in `match_operator'. The ! operand of the insn which corresponds to the `match_operator' ! never has any constraints because it is never reloaded as a whole. ! However, if parts of its OPERANDS are matched by `match_operand' patterns, those parts may have constraints of their own. ! `(match_op_dup:M N[OPERANDS...])' ! Like `match_dup', except that it applies to operators instead of operands. When constructing an insn, operand number N will be ! substituted at this point. But in matching, `match_op_dup' behaves differently. It assumes that operand number N has already been ! determined by a `match_operator' appearing earlier in the recognition template, and it matches only an identical-looking expression. ! `(match_parallel N PREDICATE [SUBPAT...])' This pattern is a placeholder for an insn that consists of a ! `parallel' expression with a variable number of elements. This expression should only appear at the top level of an insn pattern. When constructing an insn, operand number N will be substituted at this point. When matching an insn, it matches if the body of the ! insn is a `parallel' expression with at least as many elements as ! the vector of SUBPAT expressions in the `match_parallel', if each ! SUBPAT matches the corresponding element of the `parallel', _and_ ! the function PREDICATE returns nonzero on the `parallel' that is ! the body of the insn. It is the responsibility of the predicate ! to validate elements of the `parallel' beyond those listed in the ! `match_parallel'. ! A typical use of `match_parallel' is to match load and store multiple expressions, which can contain a variable number of ! elements in a `parallel'. For example, (define_insn "" [(match_parallel 0 "load_multiple_operation" --- 18233,18298 ---- [(match_operand:SI 1 "general_operand" "g") (match_operand:SI 2 "general_operand" "g")]) ! Here the vector '[OPERANDS...]' contains two patterns because the expressions to be matched all contain two operands. When this pattern does match, the two operands of the commutative operator are recorded as operands 1 and 2 of the insn. (This is ! done by the two instances of 'match_operand'.) Operand 3 of the ! insn will be the entire commutative expression: use 'GET_CODE (operands[3])' to see which commutative operator was used. ! The machine mode M of 'match_operator' works like that of ! 'match_operand': it is passed as the second argument to the predicate function, and that function is solely responsible for deciding whether the expression to be matched "has" that mode. When constructing an insn, argument 3 of the gen-function will ! specify the operation (i.e. the expression code) for the expression ! to be made. It should be an RTL expression, whose expression code ! is copied into a new expression whose operands are arguments 1 and ! 2 of the gen-function. The subexpressions of argument 3 are not ! used; only its expression code matters. ! When 'match_operator' is used in a pattern for matching an insn, it ! usually best if the operand number of the 'match_operator' is higher than that of the actual operands of the insn. This improves register allocation because the register allocator often looks at operands 1 and 2 of insns to see if it can do register tying. ! There is no way to specify constraints in 'match_operator'. The ! operand of the insn which corresponds to the 'match_operator' never ! has any constraints because it is never reloaded as a whole. ! However, if parts of its OPERANDS are matched by 'match_operand' patterns, those parts may have constraints of their own. ! '(match_op_dup:M N[OPERANDS...])' ! Like 'match_dup', except that it applies to operators instead of operands. When constructing an insn, operand number N will be ! substituted at this point. But in matching, 'match_op_dup' behaves differently. It assumes that operand number N has already been ! determined by a 'match_operator' appearing earlier in the recognition template, and it matches only an identical-looking expression. ! '(match_parallel N PREDICATE [SUBPAT...])' This pattern is a placeholder for an insn that consists of a ! 'parallel' expression with a variable number of elements. This expression should only appear at the top level of an insn pattern. When constructing an insn, operand number N will be substituted at this point. When matching an insn, it matches if the body of the ! insn is a 'parallel' expression with at least as many elements as ! the vector of SUBPAT expressions in the 'match_parallel', if each ! SUBPAT matches the corresponding element of the 'parallel', _and_ ! the function PREDICATE returns nonzero on the 'parallel' that is ! the body of the insn. It is the responsibility of the predicate to ! validate elements of the 'parallel' beyond those listed in the ! 'match_parallel'. ! A typical use of 'match_parallel' is to match load and store multiple expressions, which can contain a variable number of ! elements in a 'parallel'. For example, (define_insn "" [(match_parallel 0 "load_multiple_operation" *************** substitution of the operands. *** 18520,18528 **** "" "loadm 0,0,%1,%2") ! This example comes from `a29k.md'. The function ! `load_multiple_operation' is defined in `a29k.c' and checks that ! subsequent elements in the `parallel' are the same as the `set' in the pattern, except that they are referencing subsequent registers and memory locations. --- 18303,18311 ---- "" "loadm 0,0,%1,%2") ! This example comes from 'a29k.md'. The function ! 'load_multiple_operation' is defined in 'a29k.c' and checks that ! subsequent elements in the 'parallel' are the same as the 'set' in the pattern, except that they are referencing subsequent registers and memory locations. *************** substitution of the operands. *** 18539,18548 **** (mem:SI (plus:SI (reg:SI 100) (const_int 8))))]) ! `(match_par_dup N [SUBPAT...])' ! Like `match_op_dup', but for `match_parallel' instead of ! `match_operator'. !  File: gccint.info, Node: Output Template, Next: Output Statement, Prev: RTL Template, Up: Machine Desc --- 18322,18330 ---- (mem:SI (plus:SI (reg:SI 100) (const_int 8))))]) ! '(match_par_dup N [SUBPAT...])' ! Like 'match_op_dup', but for 'match_parallel' instead of ! 'match_operator'.  File: gccint.info, Node: Output Template, Next: Output Statement, Prev: RTL Template, Up: Machine Desc *************** File: gccint.info, Node: Output Templat *** 18552,18626 **** The "output template" is a string which specifies how to output the assembler code for an instruction pattern. Most of the template is a ! fixed string which is output literally. The character `%' is used to specify where to substitute an operand; it can also be used to identify places where different variants of the assembler require different syntax. ! In the simplest case, a `%' followed by a digit N says to output operand N at that point in the string. ! `%' followed by a letter and a digit says to output an operand in an alternate fashion. Four letters have standard, built-in meanings ! described below. The machine description macro `PRINT_OPERAND' can define additional letters with nonstandard meanings. ! `%cDIGIT' can be used to substitute an operand that is a constant ! value without the syntax that normally indicates an immediate operand. ! `%nDIGIT' is like `%cDIGIT' except that the value of the constant is negated before printing. ! `%aDIGIT' can be used to substitute an operand as if it were a memory reference, with the actual operand treated as the address. This may be useful when outputting a "load address" instruction, because often the assembler syntax for such an instruction requires you to write the operand as if it were a memory reference. ! `%lDIGIT' is used to substitute a `label_ref' into a jump instruction. ! `%=' outputs a number which is unique to each instruction in the ! entire compilation. This is useful for making local labels to be ! referred to more than once in a single template that generates multiple ! assembler instructions. ! `%' followed by a punctuation character specifies a substitution that ! does not use an operand. Only one case is standard: `%%' outputs a `%' into the assembler code. Other nonstandard cases can be defined in the ! `PRINT_OPERAND' macro. You must also define which punctuation ! characters are valid with the `PRINT_OPERAND_PUNCT_VALID_P' macro. The template may generate multiple assembler instructions. Write the ! text for the instructions, with `\;' between them. When the RTL contains two operands which are required by constraint to match each other, the output template must refer only to the ! lower-numbered operand. Matching operands are not always identical, ! and the rest of the compiler arranges to put the proper RTL expression ! for printing into the lower-numbered operand. ! One use of nonstandard letters or punctuation following `%' is to distinguish between different assembler languages for the same machine; for example, Motorola syntax versus MIT syntax for the 68000. Motorola ! syntax requires periods in most opcode names, while MIT syntax does ! not. For example, the opcode `movel' in MIT syntax is `move.l' in ! Motorola syntax. The same file of patterns is used for both kinds of ! output syntax, but the character sequence `%.' is used in each place ! where Motorola syntax wants a period. The `PRINT_OPERAND' macro for ! Motorola syntax defines the sequence to output a period; the macro for ! MIT syntax defines it to do nothing. ! As a special case, a template consisting of the single character `#' instructs the compiler to first split the insn, and then output the resulting instructions separately. This helps eliminate redundancy in ! the output templates. If you have a `define_insn' that needs to emit ! multiple assembler instructions, and there is a matching `define_split' ! already defined, then you can simply use `#' as the output template instead of writing an output template that emits the multiple assembler instructions. ! If the macro `ASSEMBLER_DIALECT' is defined, you can use construct of ! the form `{option0|option1|option2}' in the templates. These describe multiple variants of assembler language syntax. *Note Instruction Output::. --- 18334,18408 ---- The "output template" is a string which specifies how to output the assembler code for an instruction pattern. Most of the template is a ! fixed string which is output literally. The character '%' is used to specify where to substitute an operand; it can also be used to identify places where different variants of the assembler require different syntax. ! In the simplest case, a '%' followed by a digit N says to output operand N at that point in the string. ! '%' followed by a letter and a digit says to output an operand in an alternate fashion. Four letters have standard, built-in meanings ! described below. The machine description macro 'PRINT_OPERAND' can define additional letters with nonstandard meanings. ! '%cDIGIT' can be used to substitute an operand that is a constant value ! without the syntax that normally indicates an immediate operand. ! '%nDIGIT' is like '%cDIGIT' except that the value of the constant is negated before printing. ! '%aDIGIT' can be used to substitute an operand as if it were a memory reference, with the actual operand treated as the address. This may be useful when outputting a "load address" instruction, because often the assembler syntax for such an instruction requires you to write the operand as if it were a memory reference. ! '%lDIGIT' is used to substitute a 'label_ref' into a jump instruction. ! '%=' outputs a number which is unique to each instruction in the entire ! compilation. This is useful for making local labels to be referred to ! more than once in a single template that generates multiple assembler ! instructions. ! '%' followed by a punctuation character specifies a substitution that ! does not use an operand. Only one case is standard: '%%' outputs a '%' into the assembler code. Other nonstandard cases can be defined in the ! 'PRINT_OPERAND' macro. You must also define which punctuation ! characters are valid with the 'PRINT_OPERAND_PUNCT_VALID_P' macro. The template may generate multiple assembler instructions. Write the ! text for the instructions, with '\;' between them. When the RTL contains two operands which are required by constraint to match each other, the output template must refer only to the ! lower-numbered operand. Matching operands are not always identical, and ! the rest of the compiler arranges to put the proper RTL expression for ! printing into the lower-numbered operand. ! One use of nonstandard letters or punctuation following '%' is to distinguish between different assembler languages for the same machine; for example, Motorola syntax versus MIT syntax for the 68000. Motorola ! syntax requires periods in most opcode names, while MIT syntax does not. ! For example, the opcode 'movel' in MIT syntax is 'move.l' in Motorola ! syntax. The same file of patterns is used for both kinds of output ! syntax, but the character sequence '%.' is used in each place where ! Motorola syntax wants a period. The 'PRINT_OPERAND' macro for Motorola ! syntax defines the sequence to output a period; the macro for MIT syntax ! defines it to do nothing. ! As a special case, a template consisting of the single character '#' instructs the compiler to first split the insn, and then output the resulting instructions separately. This helps eliminate redundancy in ! the output templates. If you have a 'define_insn' that needs to emit ! multiple assembler instructions, and there is a matching 'define_split' ! already defined, then you can simply use '#' as the output template instead of writing an output template that emits the multiple assembler instructions. ! If the macro 'ASSEMBLER_DIALECT' is defined, you can use construct of ! the form '{option0|option1|option2}' in the templates. These describe multiple variants of assembler language syntax. *Note Instruction Output::. *************** single instruction pattern. For example *** 18636,18648 **** kinds of operands; or some unfortunate combinations of operands may require extra machine instructions. ! If the output control string starts with a `@', then it is actually a series of templates, each on a separate line. (Blank lines and leading ! spaces and tabs are ignored.) The templates correspond to the ! pattern's constraint alternatives (*note Multi-Alternative::). For ! example, if a target machine has a two-address add instruction `addr' ! to add into a register and another `addm' to add a register to memory, ! you might write this pattern: (define_insn "addsi3" [(set (match_operand:SI 0 "general_operand" "=r,m") --- 18418,18430 ---- kinds of operands; or some unfortunate combinations of operands may require extra machine instructions. ! If the output control string starts with a '@', then it is actually a series of templates, each on a separate line. (Blank lines and leading ! spaces and tabs are ignored.) The templates correspond to the pattern's ! constraint alternatives (*note Multi-Alternative::). For example, if a ! target machine has a two-address add instruction 'addr' to add into a ! register and another 'addm' to add a register to memory, you might write ! this pattern: (define_insn "addsi3" [(set (match_operand:SI 0 "general_operand" "=r,m") *************** you might write this pattern: *** 18653,18698 **** addr %2,%0 addm %2,%0") ! If the output control string starts with a `*', then it is not an output template but rather a piece of C program that should compute a ! template. It should execute a `return' statement to return the template-string you want. Most such templates use C string literals, which require doublequote characters to delimit them. To include these ! doublequote characters in the string, prefix each one with `\'. If the output control string is written as a brace block instead of a double-quoted string, it is automatically assumed to be C code. In that case, it is not necessary to put in a leading asterisk, or to escape the doublequotes surrounding C string literals. ! The operands may be found in the array `operands', whose C data type ! is `rtx []'. It is very common to select different ways of generating assembler code based on whether an immediate operand is within a certain range. Be ! careful when doing this, because the result of `INTVAL' is an integer ! on the host machine. If the host machine has more bits in an `int' ! than the target machine has in the mode in which the constant will be ! used, then some of the bits you get from `INTVAL' will be superfluous. ! For proper results, you must carefully disregard the values of those ! bits. It is possible to output an assembler instruction and then go on to ! output or compute more of them, using the subroutine `output_asm_insn'. ! This receives two arguments: a template-string and a vector of ! operands. The vector may be `operands', or it may be another array of ! `rtx' that you declare locally and initialize yourself. When an insn pattern has multiple alternatives in its constraints, ! often the appearance of the assembler code is determined mostly by ! which alternative was matched. When this is so, the C code can test ! the variable `which_alternative', which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.). ! For example, suppose there are two opcodes for storing zero, `clrreg' ! for registers and `clrmem' for memory locations. Here is how a pattern ! could use `which_alternative' to choose between them: (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r,m") --- 18435,18479 ---- addr %2,%0 addm %2,%0") ! If the output control string starts with a '*', then it is not an output template but rather a piece of C program that should compute a ! template. It should execute a 'return' statement to return the template-string you want. Most such templates use C string literals, which require doublequote characters to delimit them. To include these ! doublequote characters in the string, prefix each one with '\'. If the output control string is written as a brace block instead of a double-quoted string, it is automatically assumed to be C code. In that case, it is not necessary to put in a leading asterisk, or to escape the doublequotes surrounding C string literals. ! The operands may be found in the array 'operands', whose C data type is ! 'rtx []'. It is very common to select different ways of generating assembler code based on whether an immediate operand is within a certain range. Be ! careful when doing this, because the result of 'INTVAL' is an integer on ! the host machine. If the host machine has more bits in an 'int' than ! the target machine has in the mode in which the constant will be used, ! then some of the bits you get from 'INTVAL' will be superfluous. For ! proper results, you must carefully disregard the values of those bits. It is possible to output an assembler instruction and then go on to ! output or compute more of them, using the subroutine 'output_asm_insn'. ! This receives two arguments: a template-string and a vector of operands. ! The vector may be 'operands', or it may be another array of 'rtx' that ! you declare locally and initialize yourself. When an insn pattern has multiple alternatives in its constraints, ! often the appearance of the assembler code is determined mostly by which ! alternative was matched. When this is so, the C code can test the ! variable 'which_alternative', which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.). ! For example, suppose there are two opcodes for storing zero, 'clrreg' ! for registers and 'clrmem' for memory locations. Here is how a pattern ! could use 'which_alternative' to choose between them: (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r,m") *************** could use `which_alternative' to choose *** 18705,18711 **** The example above, where the assembler code to generate was _solely_ determined by the alternative, could also have been specified as ! follows, having the output control string start with a `@': (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r,m") --- 18486,18492 ---- The example above, where the assembler code to generate was _solely_ determined by the alternative, could also have been specified as ! follows, having the output control string start with a '@': (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r,m") *************** follows, having the output control strin *** 18716,18722 **** clrmem %0") If you just need a little bit of C code in one (or a few) alternatives, ! you can use `*' inside of a `@' multi-alternative template: (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r,<,m") --- 18497,18503 ---- clrmem %0") If you just need a little bit of C code in one (or a few) alternatives, ! you can use '*' inside of a '@' multi-alternative template: (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r,<,m") *************** File: gccint.info, Node: Predicates, N *** 18733,18750 **** 16.7 Predicates =============== ! A predicate determines whether a `match_operand' or `match_operator' expression matches, and therefore whether the surrounding instruction ! pattern will be used for that combination of operands. GCC has a ! number of machine-independent predicates, and you can define ! machine-specific predicates as needed. By convention, predicates used ! with `match_operand' have names that end in `_operand', and those used ! with `match_operator' have names that end in `_operator'. ! All predicates are Boolean functions (in the mathematical sense) of ! two arguments: the RTL expression that is being considered at that ! position in the instruction pattern, and the machine mode that the ! `match_operand' or `match_operator' specifies. In this section, the first argument is called OP and the second argument MODE. Predicates can be called from C as ordinary two-argument functions; this can be useful in output templates or other machine-specific code. --- 18514,18531 ---- 16.7 Predicates =============== ! A predicate determines whether a 'match_operand' or 'match_operator' expression matches, and therefore whether the surrounding instruction ! pattern will be used for that combination of operands. GCC has a number ! of machine-independent predicates, and you can define machine-specific ! predicates as needed. By convention, predicates used with ! 'match_operand' have names that end in '_operand', and those used with ! 'match_operator' have names that end in '_operator'. ! All predicates are Boolean functions (in the mathematical sense) of two ! arguments: the RTL expression that is being considered at that position ! in the instruction pattern, and the machine mode that the ! 'match_operand' or 'match_operator' specifies. In this section, the first argument is called OP and the second argument MODE. Predicates can be called from C as ordinary two-argument functions; this can be useful in output templates or other machine-specific code. *************** useful in output templates or other mach *** 18753,18782 **** to the hardware, as long as the constraints give reload the ability to fix them up (*note Constraints::). However, GCC will usually generate better code if the predicates specify the requirements of the machine ! instructions as closely as possible. Reload cannot fix up operands ! that must be constants ("immediate operands"); you must use a predicate ! that allows only constants, or else enforce the requirement in the ! extra condition. Most predicates handle their MODE argument in a uniform manner. If ! MODE is `VOIDmode' (unspecified), then OP can have any mode. If MODE ! is anything else, then OP must have the same mode, unless OP is a ! `CONST_INT' or integer `CONST_DOUBLE'. These RTL expressions always ! have `VOIDmode', so it would be counterproductive to check that their ! mode matches. Instead, predicates that accept `CONST_INT' and/or ! integer `CONST_DOUBLE' check that the value stored in the constant will fit in the requested mode. ! Predicates with this behavior are called "normal". `genrecog' can optimize the instruction recognizer based on knowledge of how normal predicates treat modes. It can also diagnose certain kinds of common errors in the use of normal predicates; for instance, it is almost always an error to use a normal predicate without specifying a mode. Predicates that do something different with their MODE argument are ! called "special". The generic predicates `address_operand' and ! `pmode_register_operand' are special predicates. `genrecog' does not ! do any optimizations or diagnosis when special predicates are used. * Menu: --- 18534,18563 ---- to the hardware, as long as the constraints give reload the ability to fix them up (*note Constraints::). However, GCC will usually generate better code if the predicates specify the requirements of the machine ! instructions as closely as possible. Reload cannot fix up operands that ! must be constants ("immediate operands"); you must use a predicate that ! allows only constants, or else enforce the requirement in the extra ! condition. Most predicates handle their MODE argument in a uniform manner. If ! MODE is 'VOIDmode' (unspecified), then OP can have any mode. If MODE is ! anything else, then OP must have the same mode, unless OP is a ! 'CONST_INT' or integer 'CONST_DOUBLE'. These RTL expressions always ! have 'VOIDmode', so it would be counterproductive to check that their ! mode matches. Instead, predicates that accept 'CONST_INT' and/or ! integer 'CONST_DOUBLE' check that the value stored in the constant will fit in the requested mode. ! Predicates with this behavior are called "normal". 'genrecog' can optimize the instruction recognizer based on knowledge of how normal predicates treat modes. It can also diagnose certain kinds of common errors in the use of normal predicates; for instance, it is almost always an error to use a normal predicate without specifying a mode. Predicates that do something different with their MODE argument are ! called "special". The generic predicates 'address_operand' and ! 'pmode_register_operand' are special predicates. 'genrecog' does not do ! any optimizations or diagnosis when special predicates are used. * Menu: *************** File: gccint.info, Node: Machine-Indepe *** 18791,18797 **** ------------------------------------- These are the generic predicates available to all back ends. They are ! defined in `recog.c'. The first category of predicates allow only constant, or "immediate", operands. -- Function: immediate_operand --- 18572,18578 ---- ------------------------------------- These are the generic predicates available to all back ends. They are ! defined in 'recog.c'. The first category of predicates allow only constant, or "immediate", operands. -- Function: immediate_operand *************** constant, or "immediate", operands. *** 18800,18826 **** must be constant. -- Function: const_int_operand ! This predicate allows any `CONST_INT' expression that fits in ! MODE. It is an appropriate choice for an immediate operand that ! does not allow a symbol or label. -- Function: const_double_operand ! This predicate accepts any `CONST_DOUBLE' expression that has ! exactly MODE. If MODE is `VOIDmode', it will also accept ! `CONST_INT'. It is intended for immediate floating point constants. The second category of predicates allow only some kind of machine register. -- Function: register_operand ! This predicate allows any `REG' or `SUBREG' expression that is valid for MODE. It is often suitable for arithmetic instruction operands on a RISC machine. -- Function: pmode_register_operand ! This is a slight variant on `register_operand' which works around ! a limitation in the machine-description reader. (match_operand N "pmode_register_operand" CONSTRAINT) --- 18581,18607 ---- must be constant. -- Function: const_int_operand ! This predicate allows any 'CONST_INT' expression that fits in MODE. ! It is an appropriate choice for an immediate operand that does not ! allow a symbol or label. -- Function: const_double_operand ! This predicate accepts any 'CONST_DOUBLE' expression that has ! exactly MODE. If MODE is 'VOIDmode', it will also accept ! 'CONST_INT'. It is intended for immediate floating point constants. The second category of predicates allow only some kind of machine register. -- Function: register_operand ! This predicate allows any 'REG' or 'SUBREG' expression that is valid for MODE. It is often suitable for arithmetic instruction operands on a RISC machine. -- Function: pmode_register_operand ! This is a slight variant on 'register_operand' which works around a ! limitation in the machine-description reader. (match_operand N "pmode_register_operand" CONSTRAINT) *************** register. *** 18828,18842 **** (match_operand:P N "register_operand" CONSTRAINT) ! would mean, if the machine-description reader accepted `:P' mode ! suffixes. Unfortunately, it cannot, because `Pmode' is an alias for some other mode, and might vary with machine-specific options. *Note Misc::. -- Function: scratch_operand ! This predicate allows hard registers and `SCRATCH' expressions, ! but not pseudo-registers. It is used internally by ! `match_scratch'; it should not be used directly. The third category of predicates allow only some kind of memory reference. --- 18609,18623 ---- (match_operand:P N "register_operand" CONSTRAINT) ! would mean, if the machine-description reader accepted ':P' mode ! suffixes. Unfortunately, it cannot, because 'Pmode' is an alias for some other mode, and might vary with machine-specific options. *Note Misc::. -- Function: scratch_operand ! This predicate allows hard registers and 'SCRATCH' expressions, but ! not pseudo-registers. It is used internally by 'match_scratch'; it ! should not be used directly. The third category of predicates allow only some kind of memory reference. *************** reference. *** 18844,18881 **** -- Function: memory_operand This predicate allows any valid reference to a quantity of mode MODE in memory, as determined by the weak form of ! `GO_IF_LEGITIMATE_ADDRESS' (*note Addressing Modes::). -- Function: address_operand This predicate is a little unusual; it allows any operand that is a valid expression for the _address_ of a quantity of mode MODE, ! again determined by the weak form of `GO_IF_LEGITIMATE_ADDRESS'. ! To first order, if `(mem:MODE (EXP))' is acceptable to ! `memory_operand', then EXP is acceptable to `address_operand'. Note that EXP does not necessarily have the mode MODE. -- Function: indirect_operand ! This is a stricter form of `memory_operand' which allows only ! memory references with a `general_operand' as the address expression. New uses of this predicate are discouraged, because ! `general_operand' is very permissive, so it's hard to tell what an ! `indirect_operand' does or does not allow. If a target has different requirements for memory operands for different instructions, it is better to define target-specific predicates which enforce the hardware's requirements explicitly. -- Function: push_operand This predicate allows a memory reference suitable for pushing a ! value onto the stack. This will be a `MEM' which refers to ! `stack_pointer_rtx', with a side-effect in its address expression ! (*note Incdec::); which one is determined by the `STACK_PUSH_CODE' macro (*note Frame Layout::). -- Function: pop_operand This predicate allows a memory reference suitable for popping a ! value off the stack. Again, this will be a `MEM' referring to ! `stack_pointer_rtx', with a side-effect in its address expression. ! However, this time `STACK_POP_CODE' is expected. The fourth category of predicates allow some combination of the above operands. --- 18625,18662 ---- -- Function: memory_operand This predicate allows any valid reference to a quantity of mode MODE in memory, as determined by the weak form of ! 'GO_IF_LEGITIMATE_ADDRESS' (*note Addressing Modes::). -- Function: address_operand This predicate is a little unusual; it allows any operand that is a valid expression for the _address_ of a quantity of mode MODE, ! again determined by the weak form of 'GO_IF_LEGITIMATE_ADDRESS'. ! To first order, if '(mem:MODE (EXP))' is acceptable to ! 'memory_operand', then EXP is acceptable to 'address_operand'. Note that EXP does not necessarily have the mode MODE. -- Function: indirect_operand ! This is a stricter form of 'memory_operand' which allows only ! memory references with a 'general_operand' as the address expression. New uses of this predicate are discouraged, because ! 'general_operand' is very permissive, so it's hard to tell what an ! 'indirect_operand' does or does not allow. If a target has different requirements for memory operands for different instructions, it is better to define target-specific predicates which enforce the hardware's requirements explicitly. -- Function: push_operand This predicate allows a memory reference suitable for pushing a ! value onto the stack. This will be a 'MEM' which refers to ! 'stack_pointer_rtx', with a side-effect in its address expression ! (*note Incdec::); which one is determined by the 'STACK_PUSH_CODE' macro (*note Frame Layout::). -- Function: pop_operand This predicate allows a memory reference suitable for popping a ! value off the stack. Again, this will be a 'MEM' referring to ! 'stack_pointer_rtx', with a side-effect in its address expression. ! However, this time 'STACK_POP_CODE' is expected. The fourth category of predicates allow some combination of the above operands. *************** Finally, there are two generic operator *** 18896,18909 **** -- Function: comparison_operator This predicate matches any expression which performs an arithmetic ! comparison in MODE; that is, `COMPARISON_P' is true for the expression code. -- Function: ordered_comparison_operator This predicate matches any expression which performs an arithmetic comparison in MODE and whose expression code is valid for integer ! modes; that is, the expression code will be one of `eq', `ne', ! `lt', `ltu', `le', `leu', `gt', `gtu', `ge', `geu'.  File: gccint.info, Node: Defining Predicates, Prev: Machine-Independent Predicates, Up: Predicates --- 18677,18690 ---- -- Function: comparison_operator This predicate matches any expression which performs an arithmetic ! comparison in MODE; that is, 'COMPARISON_P' is true for the expression code. -- Function: ordered_comparison_operator This predicate matches any expression which performs an arithmetic comparison in MODE and whose expression code is valid for integer ! modes; that is, the expression code will be one of 'eq', 'ne', ! 'lt', 'ltu', 'le', 'leu', 'gt', 'gtu', 'ge', 'geu'.  File: gccint.info, Node: Defining Predicates, Prev: Machine-Independent Predicates, Up: Predicates *************** File: gccint.info, Node: Defining Predi *** 18913,18945 **** Many machines have requirements for their operands that cannot be expressed precisely using the generic predicates. You can define ! additional predicates using `define_predicate' and ! `define_special_predicate' expressions. These expressions have three operands: * The name of the predicate, as it will be referred to in ! `match_operand' or `match_operator' expressions. * An RTL expression which evaluates to true if the predicate allows the operand OP, false if it does not. This expression can only use the following RTL codes: ! `MATCH_OPERAND' ! When written inside a predicate expression, a `MATCH_OPERAND' expression evaluates to true if the predicate it names would ! allow OP. The operand number and constraint are ignored. ! Due to limitations in `genrecog', you can only refer to ! generic predicates and predicates that have already been ! defined. ! `MATCH_CODE' This expression evaluates to true if OP or a specified subexpression of OP has one of a given list of RTX codes. The first operand of this expression is a string constant containing a comma-separated list of RTX code names (in lower ! case). These are the codes for which the `MATCH_CODE' will ! be true. The second operand is a string constant which indicates what subexpression of OP to examine. If it is absent or the empty --- 18694,18725 ---- Many machines have requirements for their operands that cannot be expressed precisely using the generic predicates. You can define ! additional predicates using 'define_predicate' and ! 'define_special_predicate' expressions. These expressions have three operands: * The name of the predicate, as it will be referred to in ! 'match_operand' or 'match_operator' expressions. * An RTL expression which evaluates to true if the predicate allows the operand OP, false if it does not. This expression can only use the following RTL codes: ! 'MATCH_OPERAND' ! When written inside a predicate expression, a 'MATCH_OPERAND' expression evaluates to true if the predicate it names would ! allow OP. The operand number and constraint are ignored. Due ! to limitations in 'genrecog', you can only refer to generic ! predicates and predicates that have already been defined. ! 'MATCH_CODE' This expression evaluates to true if OP or a specified subexpression of OP has one of a given list of RTX codes. The first operand of this expression is a string constant containing a comma-separated list of RTX code names (in lower ! case). These are the codes for which the 'MATCH_CODE' will be ! true. The second operand is a string constant which indicates what subexpression of OP to examine. If it is absent or the empty *************** operands: *** 18948,19000 **** character indicates a subexpression to extract from the current expression; for the first character this is OP, for the second and subsequent characters it is the result of the ! previous character. A digit N extracts `XEXP (E, N)'; a ! letter L extracts `XVECEXP (E, 0, N)' where N is the ! alphabetic ordinal of L (0 for `a', 1 for 'b', and so on). ! The `MATCH_CODE' then examines the RTX code of the subexpression extracted by the complete string. It is not ! possible to extract components of an `rtvec' that is not at position 0 within its RTX object. ! `MATCH_TEST' This expression has one operand, a string constant containing a C expression. The predicate's arguments, OP and MODE, are available with those names in the C expression. The ! `MATCH_TEST' evaluates to true if the C expression evaluates ! to a nonzero value. `MATCH_TEST' expressions must not have side effects. ! `AND' ! `IOR' ! `NOT' ! `IF_THEN_ELSE' ! The basic `MATCH_' expressions can be combined using these logical operators, which have the semantics of the C operators ! `&&', `||', `!', and `? :' respectively. As in Common Lisp, ! you may give an `AND' or `IOR' expression an arbitrary number of arguments; this has exactly the same effect as writing a ! chain of two-argument `AND' or `IOR' expressions. ! * An optional block of C code, which should execute `return true' if ! the predicate is found to match and `return false' if it does not. ! It must not have any side effects. The predicate arguments, OP ! and MODE, are available with those names. If a code block is present in a predicate definition, then the RTL expression must evaluate to true _and_ the code block must execute ! `return true' for the predicate to allow the operand. The RTL ! expression is evaluated first; do not re-check anything in the ! code block that was checked in the RTL expression. ! The program `genrecog' scans `define_predicate' and ! `define_special_predicate' expressions to determine which RTX codes are possibly allowed. You should always make this explicit in the RTL ! predicate expression, using `MATCH_OPERAND' and `MATCH_CODE'. Here is an example of a simple predicate definition, from the IA64 machine description: ! ;; True if OP is a `SYMBOL_REF' which refers to the sdata section. (define_predicate "small_addr_symbolic_operand" (and (match_code "symbol_ref") (match_test "SYMBOL_REF_SMALL_ADDR_P (op)"))) --- 18728,18780 ---- character indicates a subexpression to extract from the current expression; for the first character this is OP, for the second and subsequent characters it is the result of the ! previous character. A digit N extracts 'XEXP (E, N)'; a ! letter L extracts 'XVECEXP (E, 0, N)' where N is the ! alphabetic ordinal of L (0 for 'a', 1 for 'b', and so on). ! The 'MATCH_CODE' then examines the RTX code of the subexpression extracted by the complete string. It is not ! possible to extract components of an 'rtvec' that is not at position 0 within its RTX object. ! 'MATCH_TEST' This expression has one operand, a string constant containing a C expression. The predicate's arguments, OP and MODE, are available with those names in the C expression. The ! 'MATCH_TEST' evaluates to true if the C expression evaluates ! to a nonzero value. 'MATCH_TEST' expressions must not have side effects. ! 'AND' ! 'IOR' ! 'NOT' ! 'IF_THEN_ELSE' ! The basic 'MATCH_' expressions can be combined using these logical operators, which have the semantics of the C operators ! '&&', '||', '!', and '? :' respectively. As in Common Lisp, ! you may give an 'AND' or 'IOR' expression an arbitrary number of arguments; this has exactly the same effect as writing a ! chain of two-argument 'AND' or 'IOR' expressions. ! * An optional block of C code, which should execute 'return true' if ! the predicate is found to match and 'return false' if it does not. ! It must not have any side effects. The predicate arguments, OP and ! MODE, are available with those names. If a code block is present in a predicate definition, then the RTL expression must evaluate to true _and_ the code block must execute ! 'return true' for the predicate to allow the operand. The RTL ! expression is evaluated first; do not re-check anything in the code ! block that was checked in the RTL expression. ! The program 'genrecog' scans 'define_predicate' and ! 'define_special_predicate' expressions to determine which RTX codes are possibly allowed. You should always make this explicit in the RTL ! predicate expression, using 'MATCH_OPERAND' and 'MATCH_CODE'. Here is an example of a simple predicate definition, from the IA64 machine description: ! ;; True if OP is a 'SYMBOL_REF' which refers to the sdata section. (define_predicate "small_addr_symbolic_operand" (and (match_code "symbol_ref") (match_test "SYMBOL_REF_SMALL_ADDR_P (op)"))) *************** And here is another, showing the use of *** 19013,19037 **** return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno)); }) ! Predicates written with `define_predicate' automatically include a ! test that MODE is `VOIDmode', or OP has the same mode as MODE, or OP is ! a `CONST_INT' or `CONST_DOUBLE'. They do _not_ check specifically for ! integer `CONST_DOUBLE', nor do they test that the value of either kind ! of constant fits in the requested mode. This is because ! target-specific predicates that take constants usually have to do more ! stringent value checks anyway. If you need the exact same treatment of ! `CONST_INT' or `CONST_DOUBLE' that the generic predicates provide, use ! a `MATCH_OPERAND' subexpression to call `const_int_operand', ! `const_double_operand', or `immediate_operand'. ! Predicates written with `define_special_predicate' do not get any automatic mode checks, and are treated as having special mode handling ! by `genrecog'. ! The program `genpreds' is responsible for generating code to test predicates. It also writes a header file containing function declarations for all machine-specific predicates. It is not necessary ! to declare these predicates in `CPU-protos.h'.  File: gccint.info, Node: Constraints, Next: Standard Names, Prev: Predicates, Up: Machine Desc --- 18793,18817 ---- return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno)); }) ! Predicates written with 'define_predicate' automatically include a test ! that MODE is 'VOIDmode', or OP has the same mode as MODE, or OP is a ! 'CONST_INT' or 'CONST_DOUBLE'. They do _not_ check specifically for ! integer 'CONST_DOUBLE', nor do they test that the value of either kind ! of constant fits in the requested mode. This is because target-specific ! predicates that take constants usually have to do more stringent value ! checks anyway. If you need the exact same treatment of 'CONST_INT' or ! 'CONST_DOUBLE' that the generic predicates provide, use a ! 'MATCH_OPERAND' subexpression to call 'const_int_operand', ! 'const_double_operand', or 'immediate_operand'. ! Predicates written with 'define_special_predicate' do not get any automatic mode checks, and are treated as having special mode handling ! by 'genrecog'. ! The program 'genpreds' is responsible for generating code to test predicates. It also writes a header file containing function declarations for all machine-specific predicates. It is not necessary ! to declare these predicates in 'CPU-protos.h'.  File: gccint.info, Node: Constraints, Next: Standard Names, Prev: Predicates, Up: Machine Desc *************** File: gccint.info, Node: Constraints, *** 19039,19045 **** 16.8 Operand Constraints ======================== ! Each `match_operand' in an instruction pattern can specify constraints for the operands allowed. The constraints allow you to fine-tune matching within the set of operands allowed by the predicate. --- 18819,18825 ---- 16.8 Operand Constraints ======================== ! Each 'match_operand' in an instruction pattern can specify constraints for the operands allowed. The constraints allow you to fine-tune matching within the set of operands allowed by the predicate. *************** kinds of register; whether the operand c *** 19048,19054 **** which kinds of address; whether the operand may be an immediate constant, and which possible values it may have. Constraints can also require two operands to match. Side-effects aren't allowed in operands ! of inline `asm', unless `<' or `>' constraints are used, because there is no guarantee that the side-effects will happen exactly once in an instruction that can update the addressing register. --- 18828,18834 ---- which kinds of address; whether the operand may be an immediate constant, and which possible values it may have. Constraints can also require two operands to match. Side-effects aren't allowed in operands ! of inline 'asm', unless '<' or '>' constraints are used, because there is no guarantee that the side-effects will happen exactly once in an instruction that can update the addressing register. *************** instruction that can update the addressi *** 19059,19065 **** * Class Preferences:: Constraints guide which hard register to put things in. * Modifiers:: More precise control over effects of constraints. * Machine Constraints:: Existing constraints for some particular machines. ! * Disable Insn Alternatives:: Disable insn alternatives using the `enabled' attribute. * Define Constraints:: How to define machine-specific constraints. * C Constraint Interface:: How to test constraints from C code. --- 18839,18845 ---- * Class Preferences:: Constraints guide which hard register to put things in. * Modifiers:: More precise control over effects of constraints. * Machine Constraints:: Existing constraints for some particular machines. ! * Disable Insn Alternatives:: Disable insn alternatives using the 'enabled' attribute. * Define Constraints:: How to define machine-specific constraints. * C Constraint Interface:: How to test constraints from C code. *************** whitespace *** 19080,19092 **** description even if they have different number of constraints and modifiers. ! `m' A memory operand is allowed, with any kind of address that the machine supports in general. Note that the letter used for the ! general memory constraint can be re-defined by a back end using ! the `TARGET_MEM_CONSTRAINT' macro. ! `o' A memory operand is allowed, but only if the address is "offsettable". This means that adding a small integer (actually, the width in bytes of the operand, as determined by its machine --- 18860,18872 ---- description even if they have different number of constraints and modifiers. ! 'm' A memory operand is allowed, with any kind of address that the machine supports in general. Note that the letter used for the ! general memory constraint can be re-defined by a back end using the ! 'TARGET_MEM_CONSTRAINT' macro. ! 'o' A memory operand is allowed, but only if the address is "offsettable". This means that adding a small integer (actually, the width in bytes of the operand, as determined by its machine *************** whitespace *** 19102,19209 **** on the other addressing modes that the machine supports. Note that in an output operand which can be matched by another ! operand, the constraint letter `o' is valid only when accompanied ! by both `<' (if the target machine has predecrement addressing) ! and `>' (if the target machine has preincrement addressing). ! `V' ! A memory operand that is not offsettable. In other words, ! anything that would fit the `m' constraint but not the `o' ! constraint. ! `<' ! A memory operand with autodecrement addressing (either ! predecrement or postdecrement) is allowed. In inline `asm' this ! constraint is only allowed if the operand is used exactly once in ! an instruction that can handle the side-effects. Not using an ! operand with `<' in constraint string in the inline `asm' pattern ! at all or using it in multiple instructions isn't valid, because ! the side-effects wouldn't be performed or would be performed more ! than once. Furthermore, on some targets the operand with `<' in ! constraint string must be accompanied by special instruction ! suffixes like `%U0' instruction suffix on PowerPC or `%P0' on ! IA-64. ! `>' ! A memory operand with autoincrement addressing (either ! preincrement or postincrement) is allowed. In inline `asm' the ! same restrictions as for `<' apply. ! `r' A register operand is allowed provided that it is in a general register. ! `i' An immediate integer operand (one with constant value) is allowed. This includes symbolic constants whose values will be known only at assembly time or later. ! `n' An immediate integer operand with a known numeric value is allowed. Many systems cannot support assembly-time constants for operands less than a word wide. Constraints for these operands should use ! `n' rather than `i'. ! `I', `J', `K', ... `P' ! Other letters in the range `I' through `P' may be defined in a machine-dependent fashion to permit immediate integer operands with explicit integer values in specified ranges. For example, on the ! 68000, `I' is defined to stand for the range of values 1 to 8. This is the range permitted as a shift count in the shift instructions. ! `E' ! An immediate floating operand (expression code `const_double') is allowed, but only if the target floating point format is the same as that of the host machine (on which the compiler is running). ! `F' ! An immediate floating operand (expression code `const_double' or ! `const_vector') is allowed. ! `G', `H' ! `G' and `H' may be defined in a machine-dependent fashion to ! permit immediate floating operands in particular ranges of values. ! `s' ! An immediate integer operand whose value is not an explicit ! integer is allowed. This might appear strange; if an insn allows a constant operand ! with a value not known at compile time, it certainly must allow ! any known value. So why use `s' instead of `i'? Sometimes it ! allows better code to be generated. For example, on the 68000 in a fullword instruction it is possible to use an immediate operand; but if the immediate value is between -128 and 127, better code results from loading the value into a ! register and using the register. This is because the load into ! the register can be done with a `moveq' instruction. We arrange ! for this to happen by defining the letter `K' to mean "any integer ! outside the range -128 to 127", and then specifying `Ks' in the operand constraints. ! `g' Any register, memory or immediate integer operand is allowed, except for registers that are not general registers. ! `X' Any operand whatsoever is allowed, even if it does not satisfy ! `general_operand'. This is normally used in the constraint of a ! `match_scratch' when certain alternatives will not actually ! require a scratch register. ! `0', `1', `2', ... `9' An operand that matches the specified operand number is allowed. If a digit is used together with letters within the same alternative, the digit should come last. This number is allowed to be more than a single digit. If multiple digits are encountered consecutively, they are interpreted as a ! single decimal integer. There is scant chance for ambiguity, ! since to-date it has never been desirable that `10' be interpreted ! as matching either operand 1 _or_ operand 0. Should this be ! desired, one can use multiple alternatives instead. This is called a "matching constraint" and what it really means is that the assembler has only a single operand that fills two roles --- 18882,18987 ---- on the other addressing modes that the machine supports. Note that in an output operand which can be matched by another ! operand, the constraint letter 'o' is valid only when accompanied ! by both '<' (if the target machine has predecrement addressing) and ! '>' (if the target machine has preincrement addressing). ! 'V' ! A memory operand that is not offsettable. In other words, anything ! that would fit the 'm' constraint but not the 'o' constraint. ! '<' ! A memory operand with autodecrement addressing (either predecrement ! or postdecrement) is allowed. In inline 'asm' this constraint is ! only allowed if the operand is used exactly once in an instruction ! that can handle the side-effects. Not using an operand with '<' in ! constraint string in the inline 'asm' pattern at all or using it in ! multiple instructions isn't valid, because the side-effects ! wouldn't be performed or would be performed more than once. ! Furthermore, on some targets the operand with '<' in constraint ! string must be accompanied by special instruction suffixes like ! '%U0' instruction suffix on PowerPC or '%P0' on IA-64. ! '>' ! A memory operand with autoincrement addressing (either preincrement ! or postincrement) is allowed. In inline 'asm' the same ! restrictions as for '<' apply. ! 'r' A register operand is allowed provided that it is in a general register. ! 'i' An immediate integer operand (one with constant value) is allowed. This includes symbolic constants whose values will be known only at assembly time or later. ! 'n' An immediate integer operand with a known numeric value is allowed. Many systems cannot support assembly-time constants for operands less than a word wide. Constraints for these operands should use ! 'n' rather than 'i'. ! 'I', 'J', 'K', ... 'P' ! Other letters in the range 'I' through 'P' may be defined in a machine-dependent fashion to permit immediate integer operands with explicit integer values in specified ranges. For example, on the ! 68000, 'I' is defined to stand for the range of values 1 to 8. This is the range permitted as a shift count in the shift instructions. ! 'E' ! An immediate floating operand (expression code 'const_double') is allowed, but only if the target floating point format is the same as that of the host machine (on which the compiler is running). ! 'F' ! An immediate floating operand (expression code 'const_double' or ! 'const_vector') is allowed. ! 'G', 'H' ! 'G' and 'H' may be defined in a machine-dependent fashion to permit ! immediate floating operands in particular ranges of values. ! 's' ! An immediate integer operand whose value is not an explicit integer ! is allowed. This might appear strange; if an insn allows a constant operand ! with a value not known at compile time, it certainly must allow any ! known value. So why use 's' instead of 'i'? Sometimes it allows ! better code to be generated. For example, on the 68000 in a fullword instruction it is possible to use an immediate operand; but if the immediate value is between -128 and 127, better code results from loading the value into a ! register and using the register. This is because the load into the ! register can be done with a 'moveq' instruction. We arrange for ! this to happen by defining the letter 'K' to mean "any integer ! outside the range -128 to 127", and then specifying 'Ks' in the operand constraints. ! 'g' Any register, memory or immediate integer operand is allowed, except for registers that are not general registers. ! 'X' Any operand whatsoever is allowed, even if it does not satisfy ! 'general_operand'. This is normally used in the constraint of a ! 'match_scratch' when certain alternatives will not actually require ! a scratch register. ! '0', '1', '2', ... '9' An operand that matches the specified operand number is allowed. If a digit is used together with letters within the same alternative, the digit should come last. This number is allowed to be more than a single digit. If multiple digits are encountered consecutively, they are interpreted as a ! single decimal integer. There is scant chance for ambiguity, since ! to-date it has never been desirable that '10' be interpreted as ! matching either operand 1 _or_ operand 0. Should this be desired, ! one can use multiple alternatives instead. This is called a "matching constraint" and what it really means is that the assembler has only a single operand that fills two roles *************** whitespace *** 19222,19245 **** For operands to match in a particular case usually means that they are identical-looking RTL expressions. But in a few special cases ! specific kinds of dissimilarity are allowed. For example, `*x' as ! an input operand will match `*x++' as an output operand. For ! proper results in such cases, the output template should always ! use the output-operand's number when printing the operand. ! `p' An operand that is a valid memory address is allowed. This is for "load address" and "push address" instructions. ! `p' in the constraint must be accompanied by `address_operand' as ! the predicate in the `match_operand'. This predicate interprets ! the mode specified in the `match_operand' as the mode of the memory reference for which the address would be valid. OTHER-LETTERS Other letters can be defined in machine-dependent fashion to stand for particular classes of registers or other arbitrary operand ! types. `d', `a' and `f' are defined on the 68000/68020 to stand for data, address and floating point registers. In order to have valid assembler code, each operand must satisfy its --- 19000,19023 ---- For operands to match in a particular case usually means that they are identical-looking RTL expressions. But in a few special cases ! specific kinds of dissimilarity are allowed. For example, '*x' as ! an input operand will match '*x++' as an output operand. For ! proper results in such cases, the output template should always use ! the output-operand's number when printing the operand. ! 'p' An operand that is a valid memory address is allowed. This is for "load address" and "push address" instructions. ! 'p' in the constraint must be accompanied by 'address_operand' as ! the predicate in the 'match_operand'. This predicate interprets ! the mode specified in the 'match_operand' as the mode of the memory reference for which the address would be valid. OTHER-LETTERS Other letters can be defined in machine-dependent fashion to stand for particular classes of registers or other arbitrary operand ! types. 'd', 'a' and 'f' are defined on the 68000/68020 to stand for data, address and floating point registers. In order to have valid assembler code, each operand must satisfy its *************** the first pattern would not apply at all *** 19278,19286 **** contain two identical subexpressions in the right place. The pattern would say, "That does not look like an add instruction; try other patterns". The second pattern would say, "Yes, that's an add ! instruction, but there is something wrong with it". It would direct ! the reload pass of the compiler to generate additional insns to make ! the constraint true. The results might look like this: (insn N2 PREV N (set (reg:SI 3) (reg:SI 6)) --- 19056,19064 ---- contain two identical subexpressions in the right place. The pattern would say, "That does not look like an add instruction; try other patterns". The second pattern would say, "Yes, that's an add ! instruction, but there is something wrong with it". It would direct the ! reload pass of the compiler to generate additional insns to make the ! constraint true. The results might look like this: (insn N2 PREV N (set (reg:SI 3) (reg:SI 6)) *************** reloading any possible operand so that i *** 19307,19353 **** registers is safe provided its predicate rejects registers. An operand whose predicate accepts only constant values is safe ! provided its constraints include the letter `i'. If any possible ! constant value is accepted, then nothing less than `i' will do; if the predicate is more selective, then the constraints may also be more selective. * Any operand expression can be reloaded by copying it into a register. So if an operand's constraints allow some kind of ! register, it is certain to be safe. It need not permit all ! classes of registers; the compiler knows how to copy a register ! into another register of the proper class in order to make an instruction valid. * A nonoffsettable memory reference can be reloaded by copying the ! address into a register. So if the constraint uses the letter ! `o', all memory references are taken care of. * A constant operand can be reloaded by allocating space in memory to hold it as preinitialized data. Then the memory reference can be used in place of the constant. So if the constraint uses the ! letters `o' or `m', constant operands are not a problem. * If the constraint permits a constant and a pseudo register used in ! an insn was not allocated to a hard register and is equivalent to ! a constant, the register will be replaced with the constant. If ! the predicate does not permit a constant and the insn is ! re-recognized for some reason, the compiler will crash. Thus the ! predicate must always recognize any objects allowed by the ! constraint. If the operand's predicate can recognize registers, but the constraint ! does not permit them, it can make the compiler crash. When this ! operand happens to be a register, the reload pass will be stymied, ! because it does not know how to copy a register temporarily into memory. If the predicate accepts a unary operator, the constraint applies to the operand. For example, the MIPS processor at ISA level 3 supports an ! instruction which adds two registers in `SImode' to produce a `DImode' result, but only if the registers are correctly sign extended. This ! predicate for the input operands accepts a `sign_extend' of an `SImode' ! register. Write the constraint to indicate the type of register that ! is required for the operand of the `sign_extend'.  File: gccint.info, Node: Multi-Alternative, Next: Class Preferences, Prev: Simple Constraints, Up: Constraints --- 19085,19130 ---- registers is safe provided its predicate rejects registers. An operand whose predicate accepts only constant values is safe ! provided its constraints include the letter 'i'. If any possible ! constant value is accepted, then nothing less than 'i' will do; if the predicate is more selective, then the constraints may also be more selective. * Any operand expression can be reloaded by copying it into a register. So if an operand's constraints allow some kind of ! register, it is certain to be safe. It need not permit all classes ! of registers; the compiler knows how to copy a register into ! another register of the proper class in order to make an instruction valid. * A nonoffsettable memory reference can be reloaded by copying the ! address into a register. So if the constraint uses the letter 'o', ! all memory references are taken care of. * A constant operand can be reloaded by allocating space in memory to hold it as preinitialized data. Then the memory reference can be used in place of the constant. So if the constraint uses the ! letters 'o' or 'm', constant operands are not a problem. * If the constraint permits a constant and a pseudo register used in ! an insn was not allocated to a hard register and is equivalent to a ! constant, the register will be replaced with the constant. If the ! predicate does not permit a constant and the insn is re-recognized ! for some reason, the compiler will crash. Thus the predicate must ! always recognize any objects allowed by the constraint. If the operand's predicate can recognize registers, but the constraint ! does not permit them, it can make the compiler crash. When this operand ! happens to be a register, the reload pass will be stymied, because it ! does not know how to copy a register temporarily into memory. If the predicate accepts a unary operator, the constraint applies to the operand. For example, the MIPS processor at ISA level 3 supports an ! instruction which adds two registers in 'SImode' to produce a 'DImode' result, but only if the registers are correctly sign extended. This ! predicate for the input operands accepts a 'sign_extend' of an 'SImode' ! register. Write the constraint to indicate the type of register that is ! required for the operand of the 'sign_extend'.  File: gccint.info, Node: Multi-Alternative, Next: Class Preferences, Prev: Simple Constraints, Up: Constraints *************** alternative. Here is how it is done for *** 19375,19413 **** (match_operand:SI 2 "general_operand" "dKs,dmKs")))] ...) ! The first alternative has `m' (memory) for operand 0, `0' for operand ! 1 (meaning it must match operand 0), and `dKs' for operand 2. The ! second alternative has `d' (data register) for operand 0, `0' for ! operand 1, and `dmKs' for operand 2. The `=' and `%' in the ! constraints apply to all the alternatives; their meaning is explained ! in the next section (*note Class Preferences::). If all the operands fit any one alternative, the instruction is valid. Otherwise, for each alternative, the compiler counts how many ! instructions must be added to copy the operands so that that ! alternative applies. The alternative requiring the least copying is ! chosen. If two alternatives need the same amount of copying, the one ! that comes first is chosen. These choices can be altered with the `?' ! and `!' characters: ! `?' ! Disparage slightly the alternative that the `?' appears in, as a choice when no alternative applies exactly. The compiler regards ! this alternative as one unit more costly for each `?' that appears in it. ! `!' ! Disparage severely the alternative that the `!' appears in. This alternative can still be used if it fits without reloading, but if reloading is needed, some other alternative will be used. When an insn pattern has multiple alternatives in its constraints, often the appearance of the assembler code is determined mostly by which alternative was matched. When this is so, the C code for writing the ! assembler code can use the variable `which_alternative', which is the ! ordinal number of the alternative that was actually satisfied (0 for ! the first, 1 for the second alternative, etc.). *Note Output ! Statement::.  File: gccint.info, Node: Class Preferences, Next: Modifiers, Prev: Multi-Alternative, Up: Constraints --- 19152,19189 ---- (match_operand:SI 2 "general_operand" "dKs,dmKs")))] ...) ! The first alternative has 'm' (memory) for operand 0, '0' for operand 1 ! (meaning it must match operand 0), and 'dKs' for operand 2. The second ! alternative has 'd' (data register) for operand 0, '0' for operand 1, ! and 'dmKs' for operand 2. The '=' and '%' in the constraints apply to ! all the alternatives; their meaning is explained in the next section ! (*note Class Preferences::). If all the operands fit any one alternative, the instruction is valid. Otherwise, for each alternative, the compiler counts how many ! instructions must be added to copy the operands so that that alternative ! applies. The alternative requiring the least copying is chosen. If two ! alternatives need the same amount of copying, the one that comes first ! is chosen. These choices can be altered with the '?' and '!' ! characters: ! '?' ! Disparage slightly the alternative that the '?' appears in, as a choice when no alternative applies exactly. The compiler regards ! this alternative as one unit more costly for each '?' that appears in it. ! '!' ! Disparage severely the alternative that the '!' appears in. This alternative can still be used if it fits without reloading, but if reloading is needed, some other alternative will be used. When an insn pattern has multiple alternatives in its constraints, often the appearance of the assembler code is determined mostly by which alternative was matched. When this is so, the C code for writing the ! assembler code can use the variable 'which_alternative', which is the ! ordinal number of the alternative that was actually satisfied (0 for the ! first, 1 for the second alternative, etc.). *Note Output Statement::.  File: gccint.info, Node: Class Preferences, Next: Modifiers, Prev: Multi-Alternative, Up: Constraints *************** The operand constraints have another fun *** 19419,19427 **** to decide which kind of hardware register a pseudo register is best allocated to. The compiler examines the constraints that apply to the insns that use the pseudo register, looking for the machine-dependent ! letters such as `d' and `a' that specify classes of registers. The pseudo register is put in whichever class gets the most "votes". The ! constraint letters `g' and `r' also vote: they vote in favor of a general register. The machine description says which registers are considered general. --- 19195,19203 ---- to decide which kind of hardware register a pseudo register is best allocated to. The compiler examines the constraints that apply to the insns that use the pseudo register, looking for the machine-dependent ! letters such as 'd' and 'a' that specify classes of registers. The pseudo register is put in whichever class gets the most "votes". The ! constraint letters 'g' and 'r' also vote: they vote in favor of a general register. The machine description says which registers are considered general. *************** File: gccint.info, Node: Modifiers, Ne *** 19436,19485 **** Here are constraint modifier characters. ! `=' Means that this operand is write-only for this instruction: the previous value is discarded and replaced by output data. ! `+' Means that this operand is both read and written by the instruction. When the compiler fixes up the operands to satisfy the constraints, it needs to know which operands are inputs to the instruction and ! which are outputs from it. `=' identifies an output; `+' identifies an operand that is both input and output; all other operands are assumed to be input only. ! If you specify `=' or `+' in a constraint, you put it in the first character of the constraint string. ! `&' Means (in a particular alternative) that this operand is an "earlyclobber" operand, which is modified before the instruction is ! finished using the input operands. Therefore, this operand may ! not lie in a register that is used as an input operand or as part ! of any memory address. ! `&' applies only to the alternative in which it is written. In constraints with multiple alternatives, sometimes one alternative ! requires `&' while others do not. See, for example, the `movdf' insn of the 68000. An input operand can be tied to an earlyclobber operand if its only use as an input occurs before the early result is written. Adding alternatives of this form often allows GCC to produce better code when only some of the inputs can be affected by the earlyclobber. ! See, for example, the `mulsi3' insn of the ARM. ! `&' does not obviate the need to write `='. ! `%' Declares the instruction to be commutative for this operand and the following operand. This means that the compiler may interchange the two operands if that is the cheapest way to make all operands fit the constraints. This is often used in patterns for addition ! instructions that really have only two operands: the result must ! go in one of the arguments. Here for example, is how the 68000 halfword-add instruction is defined: (define_insn "addhi3" --- 19212,19261 ---- Here are constraint modifier characters. ! '=' Means that this operand is write-only for this instruction: the previous value is discarded and replaced by output data. ! '+' Means that this operand is both read and written by the instruction. When the compiler fixes up the operands to satisfy the constraints, it needs to know which operands are inputs to the instruction and ! which are outputs from it. '=' identifies an output; '+' identifies an operand that is both input and output; all other operands are assumed to be input only. ! If you specify '=' or '+' in a constraint, you put it in the first character of the constraint string. ! '&' Means (in a particular alternative) that this operand is an "earlyclobber" operand, which is modified before the instruction is ! finished using the input operands. Therefore, this operand may not ! lie in a register that is used as an input operand or as part of ! any memory address. ! '&' applies only to the alternative in which it is written. In constraints with multiple alternatives, sometimes one alternative ! requires '&' while others do not. See, for example, the 'movdf' insn of the 68000. An input operand can be tied to an earlyclobber operand if its only use as an input occurs before the early result is written. Adding alternatives of this form often allows GCC to produce better code when only some of the inputs can be affected by the earlyclobber. ! See, for example, the 'mulsi3' insn of the ARM. ! '&' does not obviate the need to write '='. ! '%' Declares the instruction to be commutative for this operand and the following operand. This means that the compiler may interchange the two operands if that is the cheapest way to make all operands fit the constraints. This is often used in patterns for addition ! instructions that really have only two operands: the result must go ! in one of the arguments. Here for example, is how the 68000 halfword-add instruction is defined: (define_insn "addhi3" *************** Here are constraint modifier characters. *** 19489,19520 **** ...) GCC can only handle one commutative pair in an asm; if you use more, the compiler may fail. Note that you need not use the ! modifier if the two alternatives are strictly identical; this ! would only waste time in the reload pass. The modifier is not operational after register allocation, so the result of ! `define_peephole2' and `define_split's performed after reload ! cannot rely on `%' to make the intended insn match. ! `#' Says that all following characters, up to the next comma, are to be ignored as a constraint. They are significant only for choosing register preferences. ! `*' Says that the following character should be ignored when choosing ! register preferences. `*' has no effect on the meaning of the constraint as a constraint, and no effect on reloading. For LRA ! `*' additionally disparages slightly the alternative if the following character matches the operand. Here is an example: the 68000 has an instruction to sign-extend a halfword in a data register, and can also sign-extend a value by ! copying it into an address register. While either kind of ! register is acceptable, the constraints on an address-register ! destination are less strict, so it is best if register allocation ! makes an address register its goal. Therefore, `*' is used so ! that the `d' constraint letter (for data register) is ignored when ! computing register preferences. (define_insn "extendhisi2" [(set (match_operand:SI 0 "general_operand" "=*d,a") --- 19265,19296 ---- ...) GCC can only handle one commutative pair in an asm; if you use more, the compiler may fail. Note that you need not use the ! modifier if the two alternatives are strictly identical; this would ! only waste time in the reload pass. The modifier is not operational after register allocation, so the result of ! 'define_peephole2' and 'define_split's performed after reload ! cannot rely on '%' to make the intended insn match. ! '#' Says that all following characters, up to the next comma, are to be ignored as a constraint. They are significant only for choosing register preferences. ! '*' Says that the following character should be ignored when choosing ! register preferences. '*' has no effect on the meaning of the constraint as a constraint, and no effect on reloading. For LRA ! '*' additionally disparages slightly the alternative if the following character matches the operand. Here is an example: the 68000 has an instruction to sign-extend a halfword in a data register, and can also sign-extend a value by ! copying it into an address register. While either kind of register ! is acceptable, the constraints on an address-register destination ! are less strict, so it is best if register allocation makes an ! address register its goal. Therefore, '*' is used so that the 'd' ! constraint letter (for data register) is ignored when computing ! register preferences. (define_insn "extendhisi2" [(set (match_operand:SI 0 "general_operand" "=*d,a") *************** File: gccint.info, Node: Machine Constr *** 19529,20026 **** ------------------------------------------ Whenever possible, you should use the general-purpose constraint letters ! in `asm' arguments, since they will convey meaning more readily to ! people reading your code. Failing that, use the constraint letters ! that usually have very similar meanings across architectures. The most ! commonly used constraints are `m' and `r' (for memory and general-purpose registers respectively; *note Simple Constraints::), and ! `I', usually the letter indicating the most common immediate-constant format. Each architecture defines additional constraints. These constraints are used by the compiler itself for instruction generation, as well as ! for `asm' statements; therefore, some of the constraints are not ! particularly useful for `asm'. Here is a summary of some of the machine-dependent constraints available on some particular machines; it ! includes both constraints that are useful for `asm' and constraints ! that aren't. The compiler source file mentioned in the table heading ! for each architecture is the definitive reference for the meanings of ! that architecture's constraints. ! ! _AArch64 family--`config/aarch64/constraints.md'_ ! `k' ! The stack pointer register (`SP') ! `w' Floating point or SIMD vector register ! `I' Integer constant that is valid as an immediate operand in an ! `ADD' instruction ! `J' Integer constant that is valid as an immediate operand in a ! `SUB' instruction (once negated) ! `K' Integer constant that can be used with a 32-bit logical instruction ! `L' Integer constant that can be used with a 64-bit logical instruction ! `M' Integer constant that is valid as an immediate operand in a ! 32-bit `MOV' pseudo instruction. The `MOV' may be assembled to one of several different machine instructions depending on the value ! `N' Integer constant that is valid as an immediate operand in a ! 64-bit `MOV' pseudo instruction ! `S' An absolute symbolic address or a label reference ! `Y' Floating point constant zero ! `Z' Integer constant zero ! `Usa' An absolute symbolic address ! `Ush' ! The high part (bits 12 and upwards) of the pc-relative ! address of a symbol within 4GB of the instruction ! `Q' A memory address which uses a single base register with no offset ! `Ump' ! A memory address suitable for a load/store pair instruction ! in SI, DI, SF and DF modes ! ! ! _ARM family--`config/arm/constraints.md'_ ! `w' VFP floating-point register ! `G' The floating-point constant 0.0 ! `I' Integer that is valid as an immediate operand in a data ! processing instruction. That is, an integer in the range 0 ! to 255 rotated by a multiple of 2 ! `J' Integer in the range -4095 to 4095 ! `K' ! Integer that satisfies constraint `I' when inverted (ones complement) ! `L' ! Integer that satisfies constraint `I' when negated (twos complement) ! `M' Integer in the range 0 to 32 ! `Q' A memory reference where the exact address is in a single ! register (``m'' is preferable for `asm' statements) ! `R' An item in the constant pool ! `S' A symbol in the text segment of the current file ! `Uv' A memory reference suitable for VFP load/store insns (reg+constant offset) ! `Uy' A memory reference suitable for iWMMXt load/store instructions. ! `Uq' A memory reference suitable for the ARMv4 ldrsb instruction. ! _AVR family--`config/avr/constraints.md'_ ! ! `l' Registers from r0 to r15 ! `a' Registers from r16 to r23 ! `d' Registers from r16 to r31 ! `w' Registers from r24 to r31. These registers can be used in ! `adiw' command ! `e' Pointer register (r26-r31) ! `b' Base pointer register (r28-r31) ! `q' Stack pointer register (SPH:SPL) ! `t' Temporary register r0 ! `x' Register pair X (r27:r26) ! `y' Register pair Y (r29:r28) ! `z' Register pair Z (r31:r30) ! `I' Constant greater than -1, less than 64 ! `J' Constant greater than -64, less than 1 ! `K' Constant integer 2 ! `L' Constant integer 0 ! `M' Constant that fits in 8 bits ! `N' Constant integer -1 ! `O' Constant integer 8, 16, or 24 ! `P' Constant integer 1 ! `G' A floating point constant 0.0 ! `Q' A memory address based on Y or Z pointer with displacement. ! _Epiphany--`config/epiphany/constraints.md'_ ! ! `U16' An unsigned 16-bit constant. ! `K' An unsigned 5-bit constant. ! `L' A signed 11-bit constant. ! `Cm1' ! A signed 11-bit constant added to -1. Can only match when ! the `-m1reg-REG' option is active. ! `Cl1' Left-shift of -1, i.e., a bit mask with a block of leading ones, the rest being a block of trailing zeroes. Can only ! match when the `-m1reg-REG' option is active. ! `Cr1' Right-shift of -1, i.e., a bit mask with a trailing block of ones, the rest being zeroes. Or to put it another way, one less than a power of two. Can only match when the ! `-m1reg-REG' option is active. ! `Cal' ! Constant for arithmetic/logical operations. This is like ! `i', except that for position independent code, no symbols / expressions needing relocations are allowed. ! `Csy' Symbolic constant for call/jump instruction. ! `Rcs' The register class usable in short insns. This is a register class constraint, and can thus drive register allocation. ! This constraint won't match unless `-mprefer-short-insn-regs' is in effect. ! `Rsc' The the register class of registers that can be used to hold a sibcall call address. I.e., a caller-saved register. ! `Rct' Core control register class. ! `Rgs' The register group usable in short insns. This constraint does not use a register class, so that it only passively matches suitable registers, and doesn't drive register allocation. ! `Car' Constant suitable for the addsi3_r pattern. This is a valid offset For byte, halfword, or word addressing. ! `Rra' ! Matches the return address if it can be replaced with the ! link register. ! `Rcc' Matches the integer condition code register. ! `Sra' Matches the return address if it is in a stack slot. ! `Cfm' Matches control register values to switch fp mode, which are ! encapsulated in `UNSPEC_FP_MODE'. ! _CR16 Architecture--`config/cr16/cr16.h'_ ! `b' Registers from r0 to r14 (registers without stack pointer) ! `t' Register from r0 to r11 (all 16-bit registers) ! `p' Register from r12 to r15 (all 32-bit registers) ! `I' Signed constant that fits in 4 bits ! `J' Signed constant that fits in 5 bits ! `K' Signed constant that fits in 6 bits ! `L' Unsigned constant that fits in 4 bits ! `M' Signed constant that fits in 32 bits ! `N' Check for 64 bits wide constants for add/sub instructions ! `G' Floating point constant that is legal for store immediate ! _Hewlett-Packard PA-RISC--`config/pa/pa.h'_ ! ! `a' General register 1 ! `f' Floating point register ! `q' Shift amount register ! `x' Floating point register (deprecated) ! `y' Upper floating point register (32-bit), floating point register (64-bit) ! `Z' Any register ! `I' Signed 11-bit integer constant ! `J' Signed 14-bit integer constant ! `K' ! Integer constant that can be deposited with a `zdepi' instruction ! `L' Signed 5-bit integer constant ! `M' Integer constant 0 ! `N' ! Integer constant that can be loaded with a `ldil' instruction ! `O' Integer constant whose value plus one is a power of 2 ! `P' ! Integer constant that can be used for `and' operations in ! `depi' and `extru' instructions ! `S' Integer constant 31 ! `U' Integer constant 63 ! `G' Floating-point constant 0.0 ! `A' ! A `lo_sum' data-linkage-table memory operand ! `Q' A memory operand that can be used as the destination operand of an integer store instruction ! `R' A scaled or unscaled indexed memory operand ! `T' A memory operand for floating-point loads and stores ! `W' A register indirect memory operand ! _picoChip family--`picochip.h'_ ! ! `k' Stack register. ! `f' Pointer register. A register which can be used to access ! memory without supplying an offset. Any other register can ! be used to access memory, but will need a constant offset. ! In the case of the offset being zero, it is more efficient to ! use a pointer register, since this reduces code size. ! `t' A twin register. A register which may be paired with an adjacent register to create a 32-bit register. ! `a' Any absolute memory address (e.g., symbolic constant, symbolic constant + offset). ! `I' 4-bit signed integer. ! `J' 4-bit unsigned integer. ! `K' 8-bit signed integer. ! `M' Any constant whose absolute value is no greater than 4-bits. ! `N' 10-bit signed integer ! `O' 16-bit signed integer. ! ! _PowerPC and IBM RS6000--`config/rs6000/rs6000.h'_ ! ! `b' Address base register ! `d' Floating point register (containing 64-bit value) ! `f' Floating point register (containing 32-bit value) ! `v' Altivec vector register ! `wd' VSX vector register to hold vector double data ! `wf' VSX vector register to hold vector float data ! `ws' VSX vector register to hold scalar float data ! `wa' Any VSX register ! `h' ! `MQ', `CTR', or `LINK' register ! `q' ! `MQ' register ! `c' ! `CTR' register ! `l' ! `LINK' register ! `x' ! `CR' register (condition register) number 0 ! `y' ! `CR' register (condition register) ! `z' ! `XER[CA]' carry bit (part of the XER register) ! `I' Signed 16-bit constant ! `J' ! Unsigned 16-bit constant shifted left 16 bits (use `L' ! instead for `SImode' constants) ! `K' Unsigned 16-bit constant ! `L' Signed 16-bit constant shifted left 16 bits ! `M' Constant larger than 31 ! `N' Exact power of 2 ! `O' Zero ! `P' Constant whose negation is a signed 16-bit constant ! `G' Floating point constant that can be loaded into a register with one instruction per word ! `H' Integer/Floating point constant that can be loaded into a register using three instructions ! `m' ! Memory operand. Normally, `m' does not allow addresses that ! update the base register. If `<' or `>' constraint is also used, they are allowed and therefore on PowerPC targets in ! that case it is only safe to use `m<>' in an `asm' statement ! if that `asm' statement accesses the operand exactly once. ! The `asm' statement must also use `%U' as a placeholder for the "update" flag in the corresponding load or store instruction. For example: --- 19305,19793 ---- ------------------------------------------ Whenever possible, you should use the general-purpose constraint letters ! in 'asm' arguments, since they will convey meaning more readily to ! people reading your code. Failing that, use the constraint letters that ! usually have very similar meanings across architectures. The most ! commonly used constraints are 'm' and 'r' (for memory and general-purpose registers respectively; *note Simple Constraints::), and ! 'I', usually the letter indicating the most common immediate-constant format. Each architecture defines additional constraints. These constraints are used by the compiler itself for instruction generation, as well as ! for 'asm' statements; therefore, some of the constraints are not ! particularly useful for 'asm'. Here is a summary of some of the machine-dependent constraints available on some particular machines; it ! includes both constraints that are useful for 'asm' and constraints that ! aren't. The compiler source file mentioned in the table heading for ! each architecture is the definitive reference for the meanings of that ! architecture's constraints. ! _AArch64 family--'config/aarch64/constraints.md'_ ! 'k' ! The stack pointer register ('SP') ! 'w' Floating point or SIMD vector register ! 'I' Integer constant that is valid as an immediate operand in an ! 'ADD' instruction ! 'J' Integer constant that is valid as an immediate operand in a ! 'SUB' instruction (once negated) ! 'K' Integer constant that can be used with a 32-bit logical instruction ! 'L' Integer constant that can be used with a 64-bit logical instruction ! 'M' Integer constant that is valid as an immediate operand in a ! 32-bit 'MOV' pseudo instruction. The 'MOV' may be assembled to one of several different machine instructions depending on the value ! 'N' Integer constant that is valid as an immediate operand in a ! 64-bit 'MOV' pseudo instruction ! 'S' An absolute symbolic address or a label reference ! 'Y' Floating point constant zero ! 'Z' Integer constant zero ! 'Usa' An absolute symbolic address ! 'Ush' ! The high part (bits 12 and upwards) of the pc-relative address ! of a symbol within 4GB of the instruction ! 'Q' A memory address which uses a single base register with no offset ! 'Ump' ! A memory address suitable for a load/store pair instruction in ! SI, DI, SF and DF modes ! _ARM family--'config/arm/constraints.md'_ ! 'w' VFP floating-point register ! 'G' The floating-point constant 0.0 ! 'I' Integer that is valid as an immediate operand in a data ! processing instruction. That is, an integer in the range 0 to ! 255 rotated by a multiple of 2 ! 'J' Integer in the range -4095 to 4095 ! 'K' ! Integer that satisfies constraint 'I' when inverted (ones complement) ! 'L' ! Integer that satisfies constraint 'I' when negated (twos complement) ! 'M' Integer in the range 0 to 32 ! 'Q' A memory reference where the exact address is in a single ! register (''m'' is preferable for 'asm' statements) ! 'R' An item in the constant pool ! 'S' A symbol in the text segment of the current file ! 'Uv' A memory reference suitable for VFP load/store insns (reg+constant offset) ! 'Uy' A memory reference suitable for iWMMXt load/store instructions. ! 'Uq' A memory reference suitable for the ARMv4 ldrsb instruction. ! _AVR family--'config/avr/constraints.md'_ ! 'l' Registers from r0 to r15 ! 'a' Registers from r16 to r23 ! 'd' Registers from r16 to r31 ! 'w' Registers from r24 to r31. These registers can be used in ! 'adiw' command ! 'e' Pointer register (r26-r31) ! 'b' Base pointer register (r28-r31) ! 'q' Stack pointer register (SPH:SPL) ! 't' Temporary register r0 ! 'x' Register pair X (r27:r26) ! 'y' Register pair Y (r29:r28) ! 'z' Register pair Z (r31:r30) ! 'I' Constant greater than -1, less than 64 ! 'J' Constant greater than -64, less than 1 ! 'K' Constant integer 2 ! 'L' Constant integer 0 ! 'M' Constant that fits in 8 bits ! 'N' Constant integer -1 ! 'O' Constant integer 8, 16, or 24 ! 'P' Constant integer 1 ! 'G' A floating point constant 0.0 ! 'Q' A memory address based on Y or Z pointer with displacement. ! _Epiphany--'config/epiphany/constraints.md'_ ! 'U16' An unsigned 16-bit constant. ! 'K' An unsigned 5-bit constant. ! 'L' A signed 11-bit constant. ! 'Cm1' ! A signed 11-bit constant added to -1. Can only match when the ! '-m1reg-REG' option is active. ! 'Cl1' Left-shift of -1, i.e., a bit mask with a block of leading ones, the rest being a block of trailing zeroes. Can only ! match when the '-m1reg-REG' option is active. ! 'Cr1' Right-shift of -1, i.e., a bit mask with a trailing block of ones, the rest being zeroes. Or to put it another way, one less than a power of two. Can only match when the ! '-m1reg-REG' option is active. ! 'Cal' ! Constant for arithmetic/logical operations. This is like 'i', ! except that for position independent code, no symbols / expressions needing relocations are allowed. ! 'Csy' Symbolic constant for call/jump instruction. ! 'Rcs' The register class usable in short insns. This is a register class constraint, and can thus drive register allocation. ! This constraint won't match unless '-mprefer-short-insn-regs' is in effect. ! 'Rsc' The the register class of registers that can be used to hold a sibcall call address. I.e., a caller-saved register. ! 'Rct' Core control register class. ! 'Rgs' The register group usable in short insns. This constraint does not use a register class, so that it only passively matches suitable registers, and doesn't drive register allocation. ! 'Car' Constant suitable for the addsi3_r pattern. This is a valid offset For byte, halfword, or word addressing. ! 'Rra' ! Matches the return address if it can be replaced with the link ! register. ! 'Rcc' Matches the integer condition code register. ! 'Sra' Matches the return address if it is in a stack slot. ! 'Cfm' Matches control register values to switch fp mode, which are ! encapsulated in 'UNSPEC_FP_MODE'. ! _CR16 Architecture--'config/cr16/cr16.h'_ ! 'b' Registers from r0 to r14 (registers without stack pointer) ! 't' Register from r0 to r11 (all 16-bit registers) ! 'p' Register from r12 to r15 (all 32-bit registers) ! 'I' Signed constant that fits in 4 bits ! 'J' Signed constant that fits in 5 bits ! 'K' Signed constant that fits in 6 bits ! 'L' Unsigned constant that fits in 4 bits ! 'M' Signed constant that fits in 32 bits ! 'N' Check for 64 bits wide constants for add/sub instructions ! 'G' Floating point constant that is legal for store immediate ! _Hewlett-Packard PA-RISC--'config/pa/pa.h'_ ! 'a' General register 1 ! 'f' Floating point register ! 'q' Shift amount register ! 'x' Floating point register (deprecated) ! 'y' Upper floating point register (32-bit), floating point register (64-bit) ! 'Z' Any register ! 'I' Signed 11-bit integer constant ! 'J' Signed 14-bit integer constant ! 'K' ! Integer constant that can be deposited with a 'zdepi' instruction ! 'L' Signed 5-bit integer constant ! 'M' Integer constant 0 ! 'N' ! Integer constant that can be loaded with a 'ldil' instruction ! 'O' Integer constant whose value plus one is a power of 2 ! 'P' ! Integer constant that can be used for 'and' operations in ! 'depi' and 'extru' instructions ! 'S' Integer constant 31 ! 'U' Integer constant 63 ! 'G' Floating-point constant 0.0 ! 'A' ! A 'lo_sum' data-linkage-table memory operand ! 'Q' A memory operand that can be used as the destination operand of an integer store instruction ! 'R' A scaled or unscaled indexed memory operand ! 'T' A memory operand for floating-point loads and stores ! 'W' A register indirect memory operand ! _picoChip family--'picochip.h'_ ! 'k' Stack register. ! 'f' Pointer register. A register which can be used to access ! memory without supplying an offset. Any other register can be ! used to access memory, but will need a constant offset. In ! the case of the offset being zero, it is more efficient to use ! a pointer register, since this reduces code size. ! 't' A twin register. A register which may be paired with an adjacent register to create a 32-bit register. ! 'a' Any absolute memory address (e.g., symbolic constant, symbolic constant + offset). ! 'I' 4-bit signed integer. ! 'J' 4-bit unsigned integer. ! 'K' 8-bit signed integer. ! 'M' Any constant whose absolute value is no greater than 4-bits. ! 'N' 10-bit signed integer ! 'O' 16-bit signed integer. ! _PowerPC and IBM RS6000--'config/rs6000/rs6000.h'_ ! 'b' Address base register ! 'd' Floating point register (containing 64-bit value) ! 'f' Floating point register (containing 32-bit value) ! 'v' Altivec vector register ! 'wd' VSX vector register to hold vector double data ! 'wf' VSX vector register to hold vector float data ! 'ws' VSX vector register to hold scalar float data ! 'wa' Any VSX register ! 'h' ! 'MQ', 'CTR', or 'LINK' register ! 'q' ! 'MQ' register ! 'c' ! 'CTR' register ! 'l' ! 'LINK' register ! 'x' ! 'CR' register (condition register) number 0 ! 'y' ! 'CR' register (condition register) ! 'z' ! 'XER[CA]' carry bit (part of the XER register) ! 'I' Signed 16-bit constant ! 'J' ! Unsigned 16-bit constant shifted left 16 bits (use 'L' instead ! for 'SImode' constants) ! 'K' Unsigned 16-bit constant ! 'L' Signed 16-bit constant shifted left 16 bits ! 'M' Constant larger than 31 ! 'N' Exact power of 2 ! 'O' Zero ! 'P' Constant whose negation is a signed 16-bit constant ! 'G' Floating point constant that can be loaded into a register with one instruction per word ! 'H' Integer/Floating point constant that can be loaded into a register using three instructions ! 'm' ! Memory operand. Normally, 'm' does not allow addresses that ! update the base register. If '<' or '>' constraint is also used, they are allowed and therefore on PowerPC targets in ! that case it is only safe to use 'm<>' in an 'asm' statement ! if that 'asm' statement accesses the operand exactly once. ! The 'asm' statement must also use '%U' as a placeholder for the "update" flag in the corresponding load or store instruction. For example: *************** _PowerPC and IBM RS6000--`config/rs6000/ *** 20032,20122 **** is not. ! `es' ! A "stable" memory operand; that is, one which does not ! include any automodification of the base register. This used ! to be useful when `m' allowed automodification of the base ! register, but as those are now only allowed when `<' or `>' ! is used, `es' is basically the same as `m' without `<' and ! `>'. ! `Q' Memory operand that is an offset from a register (it is ! usually better to use `m' or `es' in `asm' statements) ! `Z' Memory operand that is an indexed or indirect from a register ! (it is usually better to use `m' or `es' in `asm' statements) ! `R' AIX TOC entry ! `a' ! Address operand that is an indexed or indirect from a ! register (`p' is preferable for `asm' statements) ! `S' Constant suitable as a 64-bit mask operand ! `T' Constant suitable as a 32-bit mask operand ! `U' System V Release 4 small data area reference ! `t' AND masks that can be performed by two rldic{l, r} instructions ! `W' Vector constant that does not require memory ! `j' Vector constant that is all zeros. ! ! _Intel 386--`config/i386/constraints.md'_ ! ! `R' Legacy register--the eight integer registers available on all ! i386 processors (`a', `b', `c', `d', `si', `di', `bp', `sp'). ! `q' ! Any register accessible as `Rl'. In 32-bit mode, `a', `b', ! `c', and `d'; in 64-bit mode, any integer register. ! `Q' ! Any register accessible as `Rh': `a', `b', `c', and `d'. ! `l' Any register that can be used as the index in a base+index memory access: that is, any general register except the stack pointer. ! `a' ! The `a' register. ! `b' ! The `b' register. ! `c' ! The `c' register. ! `d' ! The `d' register. ! `S' ! The `si' register. ! `D' ! The `di' register. ! `A' ! The `a' and `d' registers. This class is used for ! instructions that return double word results in the `ax:dx' ! register pair. Single word values will be allocated either ! in `ax' or `dx'. For example on i386 the following ! implements `rdtsc': unsigned long long rdtsc (void) { --- 19799,19886 ---- is not. ! 'es' ! A "stable" memory operand; that is, one which does not include ! any automodification of the base register. This used to be ! useful when 'm' allowed automodification of the base register, ! but as those are now only allowed when '<' or '>' is used, ! 'es' is basically the same as 'm' without '<' and '>'. ! 'Q' Memory operand that is an offset from a register (it is ! usually better to use 'm' or 'es' in 'asm' statements) ! 'Z' Memory operand that is an indexed or indirect from a register ! (it is usually better to use 'm' or 'es' in 'asm' statements) ! 'R' AIX TOC entry ! 'a' ! Address operand that is an indexed or indirect from a register ! ('p' is preferable for 'asm' statements) ! 'S' Constant suitable as a 64-bit mask operand ! 'T' Constant suitable as a 32-bit mask operand ! 'U' System V Release 4 small data area reference ! 't' AND masks that can be performed by two rldic{l, r} instructions ! 'W' Vector constant that does not require memory ! 'j' Vector constant that is all zeros. ! _Intel 386--'config/i386/constraints.md'_ ! 'R' Legacy register--the eight integer registers available on all ! i386 processors ('a', 'b', 'c', 'd', 'si', 'di', 'bp', 'sp'). ! 'q' ! Any register accessible as 'Rl'. In 32-bit mode, 'a', 'b', ! 'c', and 'd'; in 64-bit mode, any integer register. ! 'Q' ! Any register accessible as 'Rh': 'a', 'b', 'c', and 'd'. ! 'l' Any register that can be used as the index in a base+index memory access: that is, any general register except the stack pointer. ! 'a' ! The 'a' register. ! 'b' ! The 'b' register. ! 'c' ! The 'c' register. ! 'd' ! The 'd' register. ! 'S' ! The 'si' register. ! 'D' ! The 'di' register. ! 'A' ! The 'a' and 'd' registers. This class is used for ! instructions that return double word results in the 'ax:dx' ! register pair. Single word values will be allocated either in ! 'ax' or 'dx'. For example on i386 the following implements ! 'rdtsc': unsigned long long rdtsc (void) { *************** _Intel 386--`config/i386/constraints.md' *** 20126,20132 **** } This is not correct on x86_64 as it would allocate tick in ! either `ax' or `dx'. You have to use the following variant instead: unsigned long long rdtsc (void) --- 19890,19896 ---- } This is not correct on x86_64 as it would allocate tick in ! either 'ax' or 'dx'. You have to use the following variant instead: unsigned long long rdtsc (void) *************** _Intel 386--`config/i386/constraints.md' *** 20136,21791 **** return ((unsigned long long)tickh << 32)|tickl; } ! `f' Any 80387 floating-point (stack) register. ! `t' ! Top of 80387 floating-point stack (`%st(0)'). ! `u' ! Second from top of 80387 floating-point stack (`%st(1)'). ! `y' Any MMX register. ! `x' Any SSE register. ! `Yz' ! First SSE register (`%xmm0'). ! `Y2' Any SSE register, when SSE2 is enabled. ! `Yi' Any SSE register, when SSE2 and inter-unit moves are enabled. ! `Ym' Any MMX register, when inter-unit moves are enabled. ! `I' Integer constant in the range 0 ... 31, for 32-bit shifts. ! `J' Integer constant in the range 0 ... 63, for 64-bit shifts. ! `K' Signed 8-bit integer constant. ! `L' ! `0xFF' or `0xFFFF', for andsi as a zero-extending move. ! `M' ! 0, 1, 2, or 3 (shifts for the `lea' instruction). ! `N' ! Unsigned 8-bit integer constant (for `in' and `out' instructions). ! `O' Integer constant in the range 0 ... 127, for 128-bit shifts. ! `G' Standard 80387 floating point constant. ! `C' Standard SSE floating point constant. ! `e' 32-bit signed integer constant, or a symbolic reference known to fit that range (for immediate operands in sign-extending x86-64 instructions). ! `Z' 32-bit unsigned integer constant, or a symbolic reference known to fit that range (for immediate operands in zero-extending x86-64 instructions). ! _Intel IA-64--`config/ia64/ia64.h'_ ! ! `a' ! General register `r0' to `r3' for `addl' instruction ! ! `b' Branch register ! `c' ! Predicate register (`c' as in "conditional") ! `d' Application register residing in M-unit ! `e' Application register residing in I-unit ! `f' Floating-point register ! `m' ! Memory operand. If used together with `<' or `>', the ! operand can have postincrement and postdecrement which ! require printing with `%Pn' on IA-64. ! `G' Floating-point constant 0.0 or 1.0 ! `I' 14-bit signed integer constant ! `J' 22-bit signed integer constant ! `K' 8-bit signed integer constant for logical instructions ! `L' 8-bit adjusted signed integer constant for compare pseudo-ops ! `M' 6-bit unsigned integer constant for shift counts ! `N' 9-bit signed integer constant for load and store postincrements ! `O' The constant zero ! `P' ! 0 or -1 for `dep' instruction ! `Q' Non-volatile memory for floating-point loads and stores ! `R' ! Integer constant in the range 1 to 4 for `shladd' instruction ! `S' Memory operand except postincrement and postdecrement. This ! is now roughly the same as `m' when not used together with `<' ! or `>'. ! ! _FRV--`config/frv/frv.h'_ ! `a' ! Register in the class `ACC_REGS' (`acc0' to `acc7'). ! `b' ! Register in the class `EVEN_ACC_REGS' (`acc0' to `acc7'). ! `c' ! Register in the class `CC_REGS' (`fcc0' to `fcc3' and `icc0' ! to `icc3'). ! `d' ! Register in the class `GPR_REGS' (`gr0' to `gr63'). ! `e' ! Register in the class `EVEN_REGS' (`gr0' to `gr63'). Odd ! registers are excluded not in the class but through the use ! of a machine mode larger than 4 bytes. ! `f' ! Register in the class `FPR_REGS' (`fr0' to `fr63'). ! `h' ! Register in the class `FEVEN_REGS' (`fr0' to `fr63'). Odd ! registers are excluded not in the class but through the use ! of a machine mode larger than 4 bytes. ! `l' ! Register in the class `LR_REG' (the `lr' register). ! `q' ! Register in the class `QUAD_REGS' (`gr2' to `gr63'). ! Register numbers not divisible by 4 are excluded not in the ! class but through the use of a machine mode larger than 8 ! bytes. ! `t' ! Register in the class `ICC_REGS' (`icc0' to `icc3'). ! `u' ! Register in the class `FCC_REGS' (`fcc0' to `fcc3'). ! `v' ! Register in the class `ICR_REGS' (`cc4' to `cc7'). ! `w' ! Register in the class `FCR_REGS' (`cc0' to `cc3'). ! `x' ! Register in the class `QUAD_FPR_REGS' (`fr0' to `fr63'). Register numbers not divisible by 4 are excluded not in the class but through the use of a machine mode larger than 8 bytes. ! `z' ! Register in the class `SPR_REGS' (`lcr' and `lr'). ! `A' ! Register in the class `QUAD_ACC_REGS' (`acc0' to `acc7'). ! `B' ! Register in the class `ACCG_REGS' (`accg0' to `accg7'). ! `C' ! Register in the class `CR_REGS' (`cc0' to `cc7'). ! `G' Floating point constant zero ! `I' 6-bit signed integer constant ! `J' 10-bit signed integer constant ! `L' 16-bit signed integer constant ! `M' 16-bit unsigned integer constant ! `N' 12-bit signed integer constant that is negative--i.e. in the range of -2048 to -1 ! `O' Constant zero ! `P' ! 12-bit signed integer constant that is greater than ! zero--i.e. in the range of 1 to 2047. ! ! ! _Blackfin family--`config/bfin/constraints.md'_ ! `a' P register ! `d' D register ! `z' A call clobbered P register. ! `qN' A single register. If N is in the range 0 to 7, the ! corresponding D register. If it is `A', then the register P0. ! `D' Even-numbered D register ! `W' Odd-numbered D register ! `e' Accumulator register. ! `A' Even-numbered accumulator register. ! `B' Odd-numbered accumulator register. ! `b' I register ! `v' B register ! `f' M register ! `c' ! Registers used for circular buffering, i.e. I, B, or L registers. ! `C' The CC register. ! `t' LT0 or LT1. ! `k' LC0 or LC1. ! `u' LB0 or LB1. ! `x' Any D, P, B, M, I or L register. ! `y' Additional registers typically used only in prologues and epilogues: RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP. ! `w' Any register except accumulators or CC. ! `Ksh' Signed 16 bit integer (in the range -32768 to 32767) ! `Kuh' Unsigned 16 bit integer (in the range 0 to 65535) ! `Ks7' Signed 7 bit integer (in the range -64 to 63) ! `Ku7' Unsigned 7 bit integer (in the range 0 to 127) ! `Ku5' Unsigned 5 bit integer (in the range 0 to 31) ! `Ks4' Signed 4 bit integer (in the range -8 to 7) ! `Ks3' Signed 3 bit integer (in the range -3 to 4) ! `Ku3' Unsigned 3 bit integer (in the range 0 to 7) ! `PN' Constant N, where N is a single-digit constant in the range 0 to 4. ! `PA' An integer equal to one of the MACFLAG_XXX constants that is suitable for use with either accumulator. ! `PB' An integer equal to one of the MACFLAG_XXX constants that is suitable for use only with accumulator A1. ! `M1' Constant 255. ! `M2' Constant 65535. ! `J' An integer constant with exactly a single bit set. ! `L' An integer constant with all bits set except exactly one. ! `H' ! `Q' Any SYMBOL_REF. ! _M32C--`config/m32c/m32c.c'_ ! ! `Rsp' ! `Rfb' ! `Rsb' ! `$sp', `$fb', `$sb'. ! `Rcr' Any control register, when they're 16 bits wide (nothing if control registers are 24 bits wide) ! `Rcl' Any control register, when they're 24 bits wide. ! `R0w' ! `R1w' ! `R2w' ! `R3w' $r0, $r1, $r2, $r3. ! `R02' $r0 or $r2, or $r2r0 for 32 bit values. ! `R13' $r1 or $r3, or $r3r1 for 32 bit values. ! `Rdi' A register that can hold a 64 bit value. ! `Rhl' $r0 or $r1 (registers with addressable high/low bytes) ! `R23' $r2 or $r3 ! `Raa' Address registers ! `Raw' Address registers when they're 16 bits wide. ! `Ral' Address registers when they're 24 bits wide. ! `Rqi' Registers that can hold QI values. ! `Rad' Registers that can be used with displacements ($a0, $a1, $sb). ! `Rsi' Registers that can hold 32 bit values. ! `Rhi' Registers that can hold 16 bit values. ! `Rhc' Registers chat can hold 16 bit values, including all control registers. ! `Rra' $r0 through R1, plus $a0 and $a1. ! `Rfl' The flags register. ! `Rmm' The memory-based pseudo-registers $mem0 through $mem15. ! `Rpi' Registers that can hold pointers (16 bit registers for r8c, m16c; 24 bit registers for m32cm, m32c). ! `Rpa' Matches multiple registers in a PARALLEL to form a larger register. Used to match function return values. ! `Is3' -8 ... 7 ! `IS1' -128 ... 127 ! `IS2' -32768 ... 32767 ! `IU2' 0 ... 65535 ! `In4' -8 ... -1 or 1 ... 8 ! `In5' -16 ... -1 or 1 ... 16 ! `In6' -32 ... -1 or 1 ... 32 ! `IM2' -65536 ... -1 ! `Ilb' An 8 bit value with exactly one bit set. ! `Ilw' A 16 bit value with exactly one bit set. ! `Sd' The common src/dest memory addressing modes. ! `Sa' Memory addressed using $a0 or $a1. ! `Si' Memory addressed with immediate addresses. ! `Ss' Memory addressed using the stack pointer ($sp). ! `Sf' Memory addressed using the frame base register ($fb). ! `Ss' Memory addressed using the small base register ($sb). ! `S1' $r1h ! _MeP--`config/mep/constraints.md'_ ! `a' The $sp register. ! `b' The $tp register. ! `c' Any control register. ! `d' Either the $hi or the $lo register. ! `em' Coprocessor registers that can be directly loaded ($c0-$c15). ! `ex' Coprocessor registers that can be moved to each other. ! `er' Coprocessor registers that can be moved to core registers. ! `h' The $hi register. ! `j' The $rpc register. ! `l' The $lo register. ! `t' Registers which can be used in $tp-relative addressing. ! `v' The $gp register. ! `x' The coprocessor registers. ! `y' The coprocessor control registers. ! `z' The $0 register. ! `A' User-defined register set A. ! `B' User-defined register set B. ! `C' User-defined register set C. ! `D' User-defined register set D. ! `I' Offsets for $gp-rel addressing. ! `J' Constants that can be used directly with boolean insns. ! `K' Constants that can be moved directly to registers. ! `L' Small constants that can be added to registers. ! `M' Long shift counts. ! `N' Small constants that can be compared to registers. ! `O' Constants that can be loaded into the top half of registers. ! `S' Signed 8-bit immediates. ! `T' Symbols encoded for $tp-rel or $gp-rel addressing. ! `U' Non-constant addresses for loading/saving coprocessor registers. ! `W' The top half of a symbol's value. ! `Y' A register indirect address without offset. ! `Z' Symbolic references to the control bus. ! _MicroBlaze--`config/microblaze/constraints.md'_ ! ! `d' ! A general register (`r0' to `r31'). ! ! `z' ! A status register (`rmsr', `$fcc1' to `$fcc7'). ! ! ! _MIPS--`config/mips/constraints.md'_ ! `d' ! An address register. This is equivalent to `r' unless generating MIPS16 code. ! `f' A floating-point register (if available). ! `h' ! Formerly the `hi' register. This constraint is no longer supported. ! `l' ! The `lo' register. Use this register to store values that are no bigger than a word. ! `x' ! The concatenated `hi' and `lo' registers. Use this register to store doubleword values. ! `c' A register suitable for use in an indirect jump. This will ! always be `$25' for `-mabicalls'. ! `v' ! Register `$3'. Do not use this constraint in new code; it is retained only for compatibility with glibc. ! `y' ! Equivalent to `r'; retained for backwards compatibility. ! `z' A floating-point condition code register. ! `I' A signed 16-bit constant (for arithmetic instructions). ! `J' Integer zero. ! `K' An unsigned 16-bit constant (for logic instructions). ! `L' A signed 32-bit constant in which the lower 16 bits are zero. ! Such constants can be loaded using `lui'. ! `M' ! A constant that cannot be loaded using `lui', `addiu' or ! `ori'. ! `N' A constant in the range -65535 to -1 (inclusive). ! `O' A signed 15-bit constant. ! `P' A constant in the range 1 to 65535 (inclusive). ! `G' Floating-point zero. ! `R' An address that can be used in a non-macro load or store. ! _Motorola 680x0--`config/m68k/constraints.md'_ ! ! `a' Address register ! `d' Data register ! `f' 68881 floating-point register, if available ! `I' Integer in the range 1 to 8 ! `J' 16-bit signed number ! `K' Signed number whose magnitude is greater than 0x80 ! `L' Integer in the range -8 to -1 ! `M' Signed number whose magnitude is greater than 0x100 ! `N' Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate ! `O' 16 (for rotate using swap) ! `P' Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate ! `R' Numbers that mov3q can handle ! `G' Floating point constant that is not a 68881 constant ! `S' Operands that satisfy 'm' when -mpcrel is in effect ! `T' Operands that satisfy 's' when -mpcrel is not in effect ! `Q' Address register indirect addressing mode ! `U' Register offset addressing ! `W' const_call_operand ! `Cs' symbol_ref or const ! `Ci' const_int ! `C0' const_int 0 ! `Cj' Range of signed numbers that don't fit in 16 bits ! `Cmvq' Integers valid for mvq ! `Capsw' Integers valid for a moveq followed by a swap ! `Cmvz' Integers valid for mvz ! `Cmvs' Integers valid for mvs ! `Ap' push_operand ! `Ac' Non-register operands allowed in clr ! ! _Moxie--`config/moxie/constraints.md'_ ! ! `A' An absolute address ! `B' An offset address ! `W' A register indirect memory operand ! `I' A constant in the range of 0 to 255. ! `N' A constant in the range of 0 to -255. ! _PDP-11--`config/pdp11/constraints.md'_ ! ! `a' ! Floating point registers AC0 through AC3. These can be ! loaded from/to memory with a single instruction. ! ! `d' Odd numbered general registers (R1, R3, R5). These are used for 16-bit multiply operations. ! `f' Any of the floating point registers (AC0 through AC5). ! `G' Floating point constant 0. ! `I' An integer constant that fits in 16 bits. ! `J' An integer constant whose low order 16 bits are zero. ! `K' An integer constant that does not meet the constraints for ! codes `I' or `J'. ! `L' The integer constant 1. ! `M' The integer constant -1. ! `N' The integer constant 0. ! `O' Integer constants -4 through -1 and 1 through 4; shifts by ! these amounts are handled as multiple single-bit shifts ! rather than a single variable-length shift. ! `Q' A memory reference which requires an additional word (address or offset) after the opcode. ! `R' A memory reference that is encoded within the opcode. ! _RL78--`config/rl78/constraints.md'_ ! ! `Int3' An integer constant in the range 1 ... 7. ! ! `Int8' An integer constant in the range 0 ... 255. ! ! `J' An integer constant in the range -255 ... 0 ! ! `K' The integer constant 1. ! ! `L' The integer constant -1. ! ! `M' The integer constant 0. ! ! `N' The integer constant 2. ! ! `O' The integer constant -2. ! ! `P' An integer constant in the range 1 ... 15. ! ! `Qbi' The built-in compare types-eq, ne, gtu, ltu, geu, and leu. ! ! `Qsc' The synthetic compare types-gt, lt, ge, and le. ! ! `Wab' A memory reference with an absolute address. ! ! `Wbc' ! A memory reference using `BC' as a base register, with an optional offset. ! ! `Wca' ! A memory reference using `AX', `BC', `DE', or `HL' for the address, for calls. ! ! `Wcv' A memory reference using any 16-bit register pair for the address, for calls. ! ! `Wd2' ! A memory reference using `DE' as a base register, with an optional offset. ! ! `Wde' ! A memory reference using `DE' as a base register, without any offset. ! ! `Wfr' Any memory reference to an address in the far address space. ! ! `Wh1' ! A memory reference using `HL' as a base register, with an optional one-byte offset. ! ! `Whb' ! A memory reference using `HL' as a base register, with `B' or ! `C' as the index register. ! ! `Whl' ! A memory reference using `HL' as a base register, without any offset. ! ! `Ws1' ! A memory reference using `SP' as a base register, with an optional one-byte offset. ! ! `Y' Any memory reference to an address in the near address space. ! ! `A' ! The `AX' register. ! ! `B' ! The `BC' register. ! ! `D' ! The `DE' register. ! ! `R' ! `A' through `L' registers. ! ! `S' ! The `SP' register. ! ! `T' ! The `HL' register. ! ! `Z08W' ! The 16-bit `R8' register. ! ! `Z10W' ! The 16-bit `R10' register. ! ! `Zint' ! The registers reserved for interrupts (`R24' to `R31'). ! ! `a' ! The `A' register. ! ! `b' ! The `B' register. ! ! `c' ! The `C' register. ! ! `d' ! The `D' register. ! ! `e' ! The `E' register. ! ! `h' ! The `H' register. ! ! `l' ! The `L' register. ! ! `v' The virtual registers. ! `w' ! The `PSW' register. ! ! `x' ! The `X' register. ! ! ! _RX--`config/rx/constraints.md'_ ! ! `Q' ! An address which does not involve register indirect ! addressing or pre/post increment/decrement addressing. ! `Symbol' A symbol reference. ! `Int08' A constant in the range -256 to 255, inclusive. ! `Sint08' A constant in the range -128 to 127, inclusive. ! `Sint16' A constant in the range -32768 to 32767, inclusive. ! `Sint24' A constant in the range -8388608 to 8388607, inclusive. ! `Uint04' A constant in the range 0 to 15, inclusive. ! _SPARC--`config/sparc/sparc.h'_ ! ! `f' ! Floating-point register on the SPARC-V8 architecture and ! lower floating-point register on the SPARC-V9 architecture. ! ! `e' ! Floating-point register. It is equivalent to `f' on the SPARC-V8 architecture and contains both lower and upper floating-point registers on the SPARC-V9 architecture. ! `c' Floating-point condition code register. ! `d' Lower floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! `b' Floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! `h' 64-bit global or out register for the SPARC-V8+ architecture. ! `C' The constant all-ones, for floating-point. ! `A' Signed 5-bit constant ! `D' A vector constant ! `I' Signed 13-bit constant ! `J' Zero ! `K' 32-bit constant with the low 12 bits clear (a constant that ! can be loaded with the `sethi' instruction) ! `L' ! A constant in the range supported by `movcc' instructions (11-bit signed immediate) ! `M' ! A constant in the range supported by `movrcc' instructions (10-bit signed immediate) ! `N' ! Same as `K', except that it verifies that bits that are not ! in the lower 32-bit range are all zero. Must be used instead ! of `K' for modes wider than `SImode' ! `O' The constant 4096 ! `G' Floating-point zero ! `H' Signed 13-bit constant, sign-extended to 32 or 64 bits ! `P' The constant -1 ! `Q' Floating-point constant whose integral representation can be moved into an integer register using a single sethi instruction ! `R' Floating-point constant whose integral representation can be moved into an integer register using a single mov instruction ! `S' Floating-point constant whose integral representation can be ! moved into an integer register using a high/lo_sum ! instruction sequence ! `T' Memory address aligned to an 8-byte boundary ! `U' Even register ! `W' ! Memory address for `e' constraint registers ! `w' Memory address with only a base register ! `Y' Vector zero ! ! _SPU--`config/spu/spu.h'_ ! ! `a' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 64 bit value. ! `c' An immediate for and/xor/or instructions. const_int is treated as a 64 bit value. ! `d' ! An immediate for the `iohl' instruction. const_int is ! treated as a 64 bit value. ! `f' ! An immediate which can be loaded with `fsmbi'. ! `A' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 32 bit value. ! `B' An immediate for most arithmetic instructions. const_int is treated as a 32 bit value. ! `C' An immediate for and/xor/or instructions. const_int is treated as a 32 bit value. ! `D' ! An immediate for the `iohl' instruction. const_int is ! treated as a 32 bit value. ! `I' A constant in the range [-64, 63] for shift/rotate instructions. ! `J' An unsigned 7-bit constant for conversion/nop/channel instructions. ! `K' A signed 10-bit constant for most arithmetic instructions. ! `M' ! A signed 16 bit immediate for `stop'. ! `N' ! An unsigned 16-bit constant for `iohl' and `fsmbi'. ! `O' An unsigned 7-bit constant whose 3 least significant bits are 0. ! `P' An unsigned 3-bit constant for 16-byte rotates and shifts ! `R' Call operand, reg, for indirect calls ! `S' Call operand, symbol, for relative calls. ! `T' Call operand, const_int, for absolute calls. ! `U' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is sign extended to 128 bit. ! `W' An immediate for shift and rotate instructions. const_int is treated as a 32 bit value. ! `Y' An immediate for and/xor/or instructions. const_int is sign extended as a 128 bit. ! `Z' ! An immediate for the `iohl' instruction. const_int is sign extended to 128 bit. ! ! _S/390 and zSeries--`config/s390/s390.h'_ ! ! `a' Address register (general purpose register except r0) ! `c' Condition code register ! `d' Data register (arbitrary general purpose register) ! `f' Floating-point register ! `I' Unsigned 8-bit constant (0-255) ! `J' Unsigned 12-bit constant (0-4095) ! `K' Signed 16-bit constant (-32768-32767) ! `L' Value appropriate as displacement. ! `(0..4095)' for short displacement ! ! `(-524288..524287)' for long displacement ! `M' Constant integer with a value of 0x7fffffff. ! `N' Multiple letter constraint followed by 4 parameter letters. ! `0..9:' number of the part counting from most to least significant ! ! `H,Q:' mode of the part ! ! `D,S,H:' mode of the containing operand ! ! `0,F:' value of the other parts (F--all bits set) ! The constraint matches if the specified part of a constant ! has a value different from its other parts. ! `Q' Memory reference without index register and with short displacement. ! `R' Memory reference with index register and short displacement. ! `S' Memory reference without index register but with long displacement. ! `T' Memory reference with index register and long displacement. ! `U' Pointer with short displacement. ! `W' Pointer with long displacement. ! `Y' Shift count operand. ! ! _Score family--`config/score/score.h'_ ! ! `d' Registers from r0 to r32. ! `e' Registers from r0 to r16. ! `t' r8--r11 or r22--r27 registers. ! `h' hi register. ! `l' lo register. ! `x' hi + lo register. ! `q' cnt register. ! `y' lcb register. ! `z' scb register. ! `a' cnt + lcb + scb register. ! `c' cr0--cr15 register. ! `b' cp1 registers. ! `f' cp2 registers. ! `i' cp3 registers. ! `j' cp1 + cp2 + cp3 registers. ! `I' High 16-bit constant (32-bit constant with 16 LSBs zero). ! `J' Unsigned 5 bit integer (in the range 0 to 31). ! `K' Unsigned 16 bit integer (in the range 0 to 65535). ! `L' Signed 16 bit integer (in the range -32768 to 32767). ! `M' Unsigned 14 bit integer (in the range 0 to 16383). ! `N' Signed 14 bit integer (in the range -8192 to 8191). ! `Z' Any SYMBOL_REF. ! _Xstormy16--`config/stormy16/stormy16.h'_ ! ! `a' Register r0. ! `b' Register r1. ! `c' Register r2. ! `d' Register r8. ! `e' Registers r0 through r7. ! `t' Registers r0 and r1. ! `y' The carry register. ! `z' Registers r8 and r9. ! `I' A constant between 0 and 3 inclusive. ! `J' A constant that has exactly one bit set. ! `K' A constant that has exactly one bit clear. ! `L' A constant between 0 and 255 inclusive. ! `M' A constant between -255 and 0 inclusive. ! `N' A constant between -3 and 0 inclusive. ! `O' A constant between 1 and 4 inclusive. ! `P' A constant between -4 and -1 inclusive. ! `Q' A memory reference that is a stack push. ! `R' A memory reference that is a stack pop. ! `S' A memory reference that refers to a constant address of known value. ! `T' The register indicated by Rx (not implemented yet). ! `U' A constant that is not between 2 and 15 inclusive. ! `Z' The constant 0. ! ! _TI C6X family--`config/c6x/constraints.md'_ ! ! `a' Register file A (A0-A31). ! `b' Register file B (B0-B31). ! `A' Predicate registers in register file A (A0-A2 on C64X and higher, A1 and A2 otherwise). ! `B' Predicate registers in register file B (B0-B2). ! `C' A call-used register in register file B (B0-B9, B16-B31). ! `Da' Register file A, excluding predicate registers (A3-A31, plus A0 if not C64X or higher). ! `Db' Register file B, excluding predicate registers (B3-B31). ! `Iu4' Integer constant in the range 0 ... 15. ! `Iu5' Integer constant in the range 0 ... 31. ! `In5' Integer constant in the range -31 ... 0. ! `Is5' Integer constant in the range -16 ... 15. ! `I5x' Integer constant that can be the operand of an ADDA or a SUBA insn. ! `IuB' Integer constant in the range 0 ... 65535. ! `IsB' Integer constant in the range -32768 ... 32767. ! `IsC' ! Integer constant in the range -2^20 ... 2^20 - 1. ! `Jc' Integer constant that is a valid mask for the clr instruction. ! `Js' Integer constant that is a valid mask for the set instruction. ! `Q' Memory location with A base register. ! `R' Memory location with B base register. ! `S0' On C64x+ targets, a GP-relative small data reference. ! `S1' ! Any kind of `SYMBOL_REF', for use in a call address. ! `Si' Any kind of immediate operand, unless it matches the S0 constraint. ! `T' Memory location with B base register, but not using a long offset. ! `W' A memory operand with an address that can't be used in an unaligned access. ! `Z' Register B14 (aka DP). ! ! _TILE-Gx--`config/tilegx/constraints.md'_ ! ! `R00' ! `R01' ! `R02' ! `R03' ! `R04' ! `R05' ! `R06' ! `R07' ! `R08' ! `R09' ! `R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! `I' Signed 8-bit integer constant. ! `J' Signed 16-bit integer constant. ! `K' Unsigned 16-bit integer constant. ! `L' ! Integer constant that fits in one signed byte when ! incremented by one (-129 ... 126). ! `m' ! Memory operand. If used together with `<' or `>', the ! operand can have postincrement which requires printing with ! `%In' and `%in' on TILE-Gx. For example: asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val)); ! `M' A bit mask suitable for the BFINS instruction. ! `N' Integer constant that is a byte tiled out eight times. ! `O' The integer zero constant. ! `P' Integer constant that is a sign-extended byte tiled out as four shorts. ! `Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! `S' Integer constant that has all 1 bits consecutive and starting at bit 0. ! `T' A 16-bit fragment of a got, tls, or pc-relative reference. ! `U' ! Memory operand except postincrement. This is roughly the ! same as `m' when not used together with `<' or `>'. ! `W' An 8-element vector constant with identical elements. ! `Y' A 4-element vector constant with identical elements. ! `Z0' The integer constant 0xffffffff. ! `Z1' The integer constant 0xffffffff00000000. ! ! _TILEPro--`config/tilepro/constraints.md'_ ! ! `R00' ! `R01' ! `R02' ! `R03' ! `R04' ! `R05' ! `R06' ! `R07' ! `R08' ! `R09' ! `R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! `I' Signed 8-bit integer constant. ! `J' Signed 16-bit integer constant. ! `K' Nonzero integer constant with low 16 bits zero. ! `L' ! Integer constant that fits in one signed byte when ! incremented by one (-129 ... 126). ! `m' ! Memory operand. If used together with `<' or `>', the ! operand can have postincrement which requires printing with ! `%In' and `%in' on TILEPro. For example: asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val)); ! `M' A bit mask suitable for the MM instruction. ! `N' Integer constant that is a byte tiled out four times. ! `O' The integer zero constant. ! `P' ! Integer constant that is a sign-extended byte tiled out as ! two shorts. ! `Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! `T' A symbolic operand, or a 16-bit fragment of a got, tls, or pc-relative reference. ! `U' ! Memory operand except postincrement. This is roughly the ! same as `m' when not used together with `<' or `>'. ! `W' A 4-element vector constant with identical elements. ! `Y' A 2-element vector constant with identical elements. ! ! _Xtensa--`config/xtensa/constraints.md'_ ! ! `a' General-purpose 32-bit register ! `b' One-bit boolean register ! `A' MAC16 40-bit accumulator register ! `I' Signed 12-bit integer constant, for use in MOVI instructions ! `J' Signed 8-bit integer constant, for use in ADDI instructions ! `K' Integer constant valid for BccI instructions ! `L' Unsigned constant valid for BccUI instructions - -  File: gccint.info, Node: Disable Insn Alternatives, Next: Define Constraints, Prev: Machine Constraints, Up: Constraints ! 16.8.6 Disable insn alternatives using the `enabled' attribute -------------------------------------------------------------- ! The `enabled' insn attribute may be used to disable certain insn alternatives for machine-specific reasons. This is useful when adding new instructions to an existing pattern which are only available for ! certain cpu architecture levels as specified with the `-march=' option. If an insn alternative is disabled, then it will never be used. The compiler treats the constraints for the disabled alternative as unsatisfiable. ! In order to make use of the `enabled' attribute a back end has to add in the machine description files: ! 1. A definition of the `enabled' insn attribute. The attribute is ! defined as usual using the `define_attr' command. This definition should be based on other insn attributes and/or target flags. The ! `enabled' attribute is a numeric attribute and should evaluate to ! `(const_int 1)' for an enabled alternative and to `(const_int 0)' otherwise. - 2. A definition of another insn attribute used to describe for what reason an insn alternative might be available or not. E.g. ! `cpu_facility' as in the example below. ! 3. An assignment for the second attribute to each insn definition combining instructions which are not all available under the same circumstances. (Note: It obviously only makes sense for definitions with more than one alternative. Otherwise the insn pattern should be disabled or enabled using the insn condition.) ! E.g. the following two patterns could easily be merged using the ! `enabled' attribute: (define_insn "*movdi_old" --- 19900,21470 ---- return ((unsigned long long)tickh << 32)|tickl; } ! 'f' Any 80387 floating-point (stack) register. ! 't' ! Top of 80387 floating-point stack ('%st(0)'). ! 'u' ! Second from top of 80387 floating-point stack ('%st(1)'). ! 'y' Any MMX register. ! 'x' Any SSE register. ! 'Yz' ! First SSE register ('%xmm0'). ! 'Y2' Any SSE register, when SSE2 is enabled. ! 'Yi' Any SSE register, when SSE2 and inter-unit moves are enabled. ! 'Ym' Any MMX register, when inter-unit moves are enabled. ! 'I' Integer constant in the range 0 ... 31, for 32-bit shifts. ! 'J' Integer constant in the range 0 ... 63, for 64-bit shifts. ! 'K' Signed 8-bit integer constant. ! 'L' ! '0xFF' or '0xFFFF', for andsi as a zero-extending move. ! 'M' ! 0, 1, 2, or 3 (shifts for the 'lea' instruction). ! 'N' ! Unsigned 8-bit integer constant (for 'in' and 'out' instructions). ! 'O' Integer constant in the range 0 ... 127, for 128-bit shifts. ! 'G' Standard 80387 floating point constant. ! 'C' Standard SSE floating point constant. ! 'e' 32-bit signed integer constant, or a symbolic reference known to fit that range (for immediate operands in sign-extending x86-64 instructions). ! 'Z' 32-bit unsigned integer constant, or a symbolic reference known to fit that range (for immediate operands in zero-extending x86-64 instructions). + _Intel IA-64--'config/ia64/ia64.h'_ + 'a' + General register 'r0' to 'r3' for 'addl' instruction ! 'b' Branch register ! 'c' ! Predicate register ('c' as in "conditional") ! 'd' Application register residing in M-unit ! 'e' Application register residing in I-unit ! 'f' Floating-point register ! 'm' ! Memory operand. If used together with '<' or '>', the operand ! can have postincrement and postdecrement which require ! printing with '%Pn' on IA-64. ! 'G' Floating-point constant 0.0 or 1.0 ! 'I' 14-bit signed integer constant ! 'J' 22-bit signed integer constant ! 'K' 8-bit signed integer constant for logical instructions ! 'L' 8-bit adjusted signed integer constant for compare pseudo-ops ! 'M' 6-bit unsigned integer constant for shift counts ! 'N' 9-bit signed integer constant for load and store postincrements ! 'O' The constant zero ! 'P' ! 0 or -1 for 'dep' instruction ! 'Q' Non-volatile memory for floating-point loads and stores ! 'R' ! Integer constant in the range 1 to 4 for 'shladd' instruction ! 'S' Memory operand except postincrement and postdecrement. This ! is now roughly the same as 'm' when not used together with '<' ! or '>'. ! _FRV--'config/frv/frv.h'_ ! 'a' ! Register in the class 'ACC_REGS' ('acc0' to 'acc7'). ! 'b' ! Register in the class 'EVEN_ACC_REGS' ('acc0' to 'acc7'). ! 'c' ! Register in the class 'CC_REGS' ('fcc0' to 'fcc3' and 'icc0' ! to 'icc3'). ! 'd' ! Register in the class 'GPR_REGS' ('gr0' to 'gr63'). ! 'e' ! Register in the class 'EVEN_REGS' ('gr0' to 'gr63'). Odd ! registers are excluded not in the class but through the use of ! a machine mode larger than 4 bytes. ! 'f' ! Register in the class 'FPR_REGS' ('fr0' to 'fr63'). ! 'h' ! Register in the class 'FEVEN_REGS' ('fr0' to 'fr63'). Odd ! registers are excluded not in the class but through the use of ! a machine mode larger than 4 bytes. ! 'l' ! Register in the class 'LR_REG' (the 'lr' register). ! 'q' ! Register in the class 'QUAD_REGS' ('gr2' to 'gr63'). Register ! numbers not divisible by 4 are excluded not in the class but ! through the use of a machine mode larger than 8 bytes. ! 't' ! Register in the class 'ICC_REGS' ('icc0' to 'icc3'). ! 'u' ! Register in the class 'FCC_REGS' ('fcc0' to 'fcc3'). ! 'v' ! Register in the class 'ICR_REGS' ('cc4' to 'cc7'). ! 'w' ! Register in the class 'FCR_REGS' ('cc0' to 'cc3'). ! 'x' ! Register in the class 'QUAD_FPR_REGS' ('fr0' to 'fr63'). Register numbers not divisible by 4 are excluded not in the class but through the use of a machine mode larger than 8 bytes. ! 'z' ! Register in the class 'SPR_REGS' ('lcr' and 'lr'). ! 'A' ! Register in the class 'QUAD_ACC_REGS' ('acc0' to 'acc7'). ! 'B' ! Register in the class 'ACCG_REGS' ('accg0' to 'accg7'). ! 'C' ! Register in the class 'CR_REGS' ('cc0' to 'cc7'). ! 'G' Floating point constant zero ! 'I' 6-bit signed integer constant ! 'J' 10-bit signed integer constant ! 'L' 16-bit signed integer constant ! 'M' 16-bit unsigned integer constant ! 'N' 12-bit signed integer constant that is negative--i.e. in the range of -2048 to -1 ! 'O' Constant zero ! 'P' ! 12-bit signed integer constant that is greater than zero--i.e. ! in the range of 1 to 2047. ! _Blackfin family--'config/bfin/constraints.md'_ ! 'a' P register ! 'd' D register ! 'z' A call clobbered P register. ! 'qN' A single register. If N is in the range 0 to 7, the ! corresponding D register. If it is 'A', then the register P0. ! 'D' Even-numbered D register ! 'W' Odd-numbered D register ! 'e' Accumulator register. ! 'A' Even-numbered accumulator register. ! 'B' Odd-numbered accumulator register. ! 'b' I register ! 'v' B register ! 'f' M register ! 'c' ! Registers used for circular buffering, i.e. I, B, or L registers. ! 'C' The CC register. ! 't' LT0 or LT1. ! 'k' LC0 or LC1. ! 'u' LB0 or LB1. ! 'x' Any D, P, B, M, I or L register. ! 'y' Additional registers typically used only in prologues and epilogues: RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP. ! 'w' Any register except accumulators or CC. ! 'Ksh' Signed 16 bit integer (in the range -32768 to 32767) ! 'Kuh' Unsigned 16 bit integer (in the range 0 to 65535) ! 'Ks7' Signed 7 bit integer (in the range -64 to 63) ! 'Ku7' Unsigned 7 bit integer (in the range 0 to 127) ! 'Ku5' Unsigned 5 bit integer (in the range 0 to 31) ! 'Ks4' Signed 4 bit integer (in the range -8 to 7) ! 'Ks3' Signed 3 bit integer (in the range -3 to 4) ! 'Ku3' Unsigned 3 bit integer (in the range 0 to 7) ! 'PN' Constant N, where N is a single-digit constant in the range 0 to 4. ! 'PA' An integer equal to one of the MACFLAG_XXX constants that is suitable for use with either accumulator. ! 'PB' An integer equal to one of the MACFLAG_XXX constants that is suitable for use only with accumulator A1. ! 'M1' Constant 255. ! 'M2' Constant 65535. ! 'J' An integer constant with exactly a single bit set. ! 'L' An integer constant with all bits set except exactly one. ! 'H' ! 'Q' Any SYMBOL_REF. ! _M32C--'config/m32c/m32c.c'_ ! 'Rsp' ! 'Rfb' ! 'Rsb' ! '$sp', '$fb', '$sb'. ! 'Rcr' Any control register, when they're 16 bits wide (nothing if control registers are 24 bits wide) ! 'Rcl' Any control register, when they're 24 bits wide. ! 'R0w' ! 'R1w' ! 'R2w' ! 'R3w' $r0, $r1, $r2, $r3. ! 'R02' $r0 or $r2, or $r2r0 for 32 bit values. ! 'R13' $r1 or $r3, or $r3r1 for 32 bit values. ! 'Rdi' A register that can hold a 64 bit value. ! 'Rhl' $r0 or $r1 (registers with addressable high/low bytes) ! 'R23' $r2 or $r3 ! 'Raa' Address registers ! 'Raw' Address registers when they're 16 bits wide. ! 'Ral' Address registers when they're 24 bits wide. ! 'Rqi' Registers that can hold QI values. ! 'Rad' Registers that can be used with displacements ($a0, $a1, $sb). ! 'Rsi' Registers that can hold 32 bit values. ! 'Rhi' Registers that can hold 16 bit values. ! 'Rhc' Registers chat can hold 16 bit values, including all control registers. ! 'Rra' $r0 through R1, plus $a0 and $a1. ! 'Rfl' The flags register. ! 'Rmm' The memory-based pseudo-registers $mem0 through $mem15. ! 'Rpi' Registers that can hold pointers (16 bit registers for r8c, m16c; 24 bit registers for m32cm, m32c). ! 'Rpa' Matches multiple registers in a PARALLEL to form a larger register. Used to match function return values. ! 'Is3' -8 ... 7 ! 'IS1' -128 ... 127 ! 'IS2' -32768 ... 32767 ! 'IU2' 0 ... 65535 ! 'In4' -8 ... -1 or 1 ... 8 ! 'In5' -16 ... -1 or 1 ... 16 ! 'In6' -32 ... -1 or 1 ... 32 ! 'IM2' -65536 ... -1 ! 'Ilb' An 8 bit value with exactly one bit set. ! 'Ilw' A 16 bit value with exactly one bit set. ! 'Sd' The common src/dest memory addressing modes. ! 'Sa' Memory addressed using $a0 or $a1. ! 'Si' Memory addressed with immediate addresses. ! 'Ss' Memory addressed using the stack pointer ($sp). ! 'Sf' Memory addressed using the frame base register ($fb). ! 'Ss' Memory addressed using the small base register ($sb). ! 'S1' $r1h ! _MeP--'config/mep/constraints.md'_ ! 'a' The $sp register. ! 'b' The $tp register. ! 'c' Any control register. ! 'd' Either the $hi or the $lo register. ! 'em' Coprocessor registers that can be directly loaded ($c0-$c15). ! 'ex' Coprocessor registers that can be moved to each other. ! 'er' Coprocessor registers that can be moved to core registers. ! 'h' The $hi register. ! 'j' The $rpc register. ! 'l' The $lo register. ! 't' Registers which can be used in $tp-relative addressing. ! 'v' The $gp register. ! 'x' The coprocessor registers. ! 'y' The coprocessor control registers. ! 'z' The $0 register. ! 'A' User-defined register set A. ! 'B' User-defined register set B. ! 'C' User-defined register set C. ! 'D' User-defined register set D. ! 'I' Offsets for $gp-rel addressing. ! 'J' Constants that can be used directly with boolean insns. ! 'K' Constants that can be moved directly to registers. ! 'L' Small constants that can be added to registers. ! 'M' Long shift counts. ! 'N' Small constants that can be compared to registers. ! 'O' Constants that can be loaded into the top half of registers. ! 'S' Signed 8-bit immediates. ! 'T' Symbols encoded for $tp-rel or $gp-rel addressing. ! 'U' Non-constant addresses for loading/saving coprocessor registers. ! 'W' The top half of a symbol's value. ! 'Y' A register indirect address without offset. ! 'Z' Symbolic references to the control bus. + _MicroBlaze--'config/microblaze/constraints.md'_ + 'd' + A general register ('r0' to 'r31'). ! 'z' ! A status register ('rmsr', '$fcc1' to '$fcc7'). ! _MIPS--'config/mips/constraints.md'_ ! 'd' ! An address register. This is equivalent to 'r' unless generating MIPS16 code. ! 'f' A floating-point register (if available). ! 'h' ! Formerly the 'hi' register. This constraint is no longer supported. ! 'l' ! The 'lo' register. Use this register to store values that are no bigger than a word. ! 'x' ! The concatenated 'hi' and 'lo' registers. Use this register to store doubleword values. ! 'c' A register suitable for use in an indirect jump. This will ! always be '$25' for '-mabicalls'. ! 'v' ! Register '$3'. Do not use this constraint in new code; it is retained only for compatibility with glibc. ! 'y' ! Equivalent to 'r'; retained for backwards compatibility. ! 'z' A floating-point condition code register. ! 'I' A signed 16-bit constant (for arithmetic instructions). ! 'J' Integer zero. ! 'K' An unsigned 16-bit constant (for logic instructions). ! 'L' A signed 32-bit constant in which the lower 16 bits are zero. ! Such constants can be loaded using 'lui'. ! 'M' ! A constant that cannot be loaded using 'lui', 'addiu' or ! 'ori'. ! 'N' A constant in the range -65535 to -1 (inclusive). ! 'O' A signed 15-bit constant. ! 'P' A constant in the range 1 to 65535 (inclusive). ! 'G' Floating-point zero. ! 'R' An address that can be used in a non-macro load or store. ! _Motorola 680x0--'config/m68k/constraints.md'_ ! 'a' Address register ! 'd' Data register ! 'f' 68881 floating-point register, if available ! 'I' Integer in the range 1 to 8 ! 'J' 16-bit signed number ! 'K' Signed number whose magnitude is greater than 0x80 ! 'L' Integer in the range -8 to -1 ! 'M' Signed number whose magnitude is greater than 0x100 ! 'N' Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate ! 'O' 16 (for rotate using swap) ! 'P' Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate ! 'R' Numbers that mov3q can handle ! 'G' Floating point constant that is not a 68881 constant ! 'S' Operands that satisfy 'm' when -mpcrel is in effect ! 'T' Operands that satisfy 's' when -mpcrel is not in effect ! 'Q' Address register indirect addressing mode ! 'U' Register offset addressing ! 'W' const_call_operand ! 'Cs' symbol_ref or const ! 'Ci' const_int ! 'C0' const_int 0 ! 'Cj' Range of signed numbers that don't fit in 16 bits ! 'Cmvq' Integers valid for mvq ! 'Capsw' Integers valid for a moveq followed by a swap ! 'Cmvz' Integers valid for mvz ! 'Cmvs' Integers valid for mvs ! 'Ap' push_operand ! 'Ac' Non-register operands allowed in clr ! _Moxie--'config/moxie/constraints.md'_ ! 'A' An absolute address ! 'B' An offset address ! 'W' A register indirect memory operand ! 'I' A constant in the range of 0 to 255. ! 'N' A constant in the range of 0 to -255. + _PDP-11--'config/pdp11/constraints.md'_ + 'a' + Floating point registers AC0 through AC3. These can be loaded + from/to memory with a single instruction. ! 'd' Odd numbered general registers (R1, R3, R5). These are used for 16-bit multiply operations. ! 'f' Any of the floating point registers (AC0 through AC5). ! 'G' Floating point constant 0. ! 'I' An integer constant that fits in 16 bits. ! 'J' An integer constant whose low order 16 bits are zero. ! 'K' An integer constant that does not meet the constraints for ! codes 'I' or 'J'. ! 'L' The integer constant 1. ! 'M' The integer constant -1. ! 'N' The integer constant 0. ! 'O' Integer constants -4 through -1 and 1 through 4; shifts by ! these amounts are handled as multiple single-bit shifts rather ! than a single variable-length shift. ! 'Q' A memory reference which requires an additional word (address or offset) after the opcode. ! 'R' A memory reference that is encoded within the opcode. + _RL78--'config/rl78/constraints.md'_ ! 'Int3' An integer constant in the range 1 ... 7. ! 'Int8' An integer constant in the range 0 ... 255. ! 'J' An integer constant in the range -255 ... 0 ! 'K' The integer constant 1. ! 'L' The integer constant -1. ! 'M' The integer constant 0. ! 'N' The integer constant 2. ! 'O' The integer constant -2. ! 'P' An integer constant in the range 1 ... 15. ! 'Qbi' The built-in compare types-eq, ne, gtu, ltu, geu, and leu. ! 'Qsc' The synthetic compare types-gt, lt, ge, and le. ! 'Wab' A memory reference with an absolute address. ! 'Wbc' ! A memory reference using 'BC' as a base register, with an optional offset. ! 'Wca' ! A memory reference using 'AX', 'BC', 'DE', or 'HL' for the address, for calls. ! 'Wcv' A memory reference using any 16-bit register pair for the address, for calls. ! 'Wd2' ! A memory reference using 'DE' as a base register, with an optional offset. ! 'Wde' ! A memory reference using 'DE' as a base register, without any offset. ! 'Wfr' Any memory reference to an address in the far address space. ! 'Wh1' ! A memory reference using 'HL' as a base register, with an optional one-byte offset. ! 'Whb' ! A memory reference using 'HL' as a base register, with 'B' or ! 'C' as the index register. ! 'Whl' ! A memory reference using 'HL' as a base register, without any offset. ! 'Ws1' ! A memory reference using 'SP' as a base register, with an optional one-byte offset. ! 'Y' Any memory reference to an address in the near address space. ! 'A' ! The 'AX' register. ! 'B' ! The 'BC' register. ! 'D' ! The 'DE' register. ! 'R' ! 'A' through 'L' registers. ! 'S' ! The 'SP' register. ! 'T' ! The 'HL' register. ! 'Z08W' ! The 16-bit 'R8' register. ! 'Z10W' ! The 16-bit 'R10' register. ! 'Zint' ! The registers reserved for interrupts ('R24' to 'R31'). ! 'a' ! The 'A' register. ! 'b' ! The 'B' register. ! 'c' ! The 'C' register. ! 'd' ! The 'D' register. ! 'e' ! The 'E' register. ! 'h' ! The 'H' register. ! 'l' ! The 'L' register. ! 'v' The virtual registers. + 'w' + The 'PSW' register. + 'x' + The 'X' register. ! _RX--'config/rx/constraints.md'_ ! 'Q' ! An address which does not involve register indirect addressing ! or pre/post increment/decrement addressing. ! 'Symbol' A symbol reference. ! 'Int08' A constant in the range -256 to 255, inclusive. ! 'Sint08' A constant in the range -128 to 127, inclusive. ! 'Sint16' A constant in the range -32768 to 32767, inclusive. ! 'Sint24' A constant in the range -8388608 to 8388607, inclusive. ! 'Uint04' A constant in the range 0 to 15, inclusive. + _SPARC--'config/sparc/sparc.h'_ + 'f' + Floating-point register on the SPARC-V8 architecture and lower + floating-point register on the SPARC-V9 architecture. ! 'e' ! Floating-point register. It is equivalent to 'f' on the SPARC-V8 architecture and contains both lower and upper floating-point registers on the SPARC-V9 architecture. ! 'c' Floating-point condition code register. ! 'd' Lower floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! 'b' Floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! 'h' 64-bit global or out register for the SPARC-V8+ architecture. ! 'C' The constant all-ones, for floating-point. ! 'A' Signed 5-bit constant ! 'D' A vector constant ! 'I' Signed 13-bit constant ! 'J' Zero ! 'K' 32-bit constant with the low 12 bits clear (a constant that ! can be loaded with the 'sethi' instruction) ! 'L' ! A constant in the range supported by 'movcc' instructions (11-bit signed immediate) ! 'M' ! A constant in the range supported by 'movrcc' instructions (10-bit signed immediate) ! 'N' ! Same as 'K', except that it verifies that bits that are not in ! the lower 32-bit range are all zero. Must be used instead of ! 'K' for modes wider than 'SImode' ! 'O' The constant 4096 ! 'G' Floating-point zero ! 'H' Signed 13-bit constant, sign-extended to 32 or 64 bits ! 'P' The constant -1 ! 'Q' Floating-point constant whose integral representation can be moved into an integer register using a single sethi instruction ! 'R' Floating-point constant whose integral representation can be moved into an integer register using a single mov instruction ! 'S' Floating-point constant whose integral representation can be ! moved into an integer register using a high/lo_sum instruction ! sequence ! 'T' Memory address aligned to an 8-byte boundary ! 'U' Even register ! 'W' ! Memory address for 'e' constraint registers ! 'w' Memory address with only a base register ! 'Y' Vector zero ! _SPU--'config/spu/spu.h'_ ! 'a' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 64 bit value. ! 'c' An immediate for and/xor/or instructions. const_int is treated as a 64 bit value. ! 'd' ! An immediate for the 'iohl' instruction. const_int is treated ! as a 64 bit value. ! 'f' ! An immediate which can be loaded with 'fsmbi'. ! 'A' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 32 bit value. ! 'B' An immediate for most arithmetic instructions. const_int is treated as a 32 bit value. ! 'C' An immediate for and/xor/or instructions. const_int is treated as a 32 bit value. ! 'D' ! An immediate for the 'iohl' instruction. const_int is treated ! as a 32 bit value. ! 'I' A constant in the range [-64, 63] for shift/rotate instructions. ! 'J' An unsigned 7-bit constant for conversion/nop/channel instructions. ! 'K' A signed 10-bit constant for most arithmetic instructions. ! 'M' ! A signed 16 bit immediate for 'stop'. ! 'N' ! An unsigned 16-bit constant for 'iohl' and 'fsmbi'. ! 'O' An unsigned 7-bit constant whose 3 least significant bits are 0. ! 'P' An unsigned 3-bit constant for 16-byte rotates and shifts ! 'R' Call operand, reg, for indirect calls ! 'S' Call operand, symbol, for relative calls. ! 'T' Call operand, const_int, for absolute calls. ! 'U' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is sign extended to 128 bit. ! 'W' An immediate for shift and rotate instructions. const_int is treated as a 32 bit value. ! 'Y' An immediate for and/xor/or instructions. const_int is sign extended as a 128 bit. ! 'Z' ! An immediate for the 'iohl' instruction. const_int is sign extended to 128 bit. ! _S/390 and zSeries--'config/s390/s390.h'_ ! 'a' Address register (general purpose register except r0) ! 'c' Condition code register ! 'd' Data register (arbitrary general purpose register) ! 'f' Floating-point register ! 'I' Unsigned 8-bit constant (0-255) ! 'J' Unsigned 12-bit constant (0-4095) ! 'K' Signed 16-bit constant (-32768-32767) ! 'L' Value appropriate as displacement. ! '(0..4095)' for short displacement ! '(-524288..524287)' for long displacement ! 'M' Constant integer with a value of 0x7fffffff. ! 'N' Multiple letter constraint followed by 4 parameter letters. ! '0..9:' number of the part counting from most to least significant ! 'H,Q:' mode of the part ! 'D,S,H:' mode of the containing operand ! '0,F:' value of the other parts (F--all bits set) ! The constraint matches if the specified part of a constant has ! a value different from its other parts. ! 'Q' Memory reference without index register and with short displacement. ! 'R' Memory reference with index register and short displacement. ! 'S' Memory reference without index register but with long displacement. ! 'T' Memory reference with index register and long displacement. ! 'U' Pointer with short displacement. ! 'W' Pointer with long displacement. ! 'Y' Shift count operand. ! _Score family--'config/score/score.h'_ ! 'd' Registers from r0 to r32. ! 'e' Registers from r0 to r16. ! 't' r8--r11 or r22--r27 registers. ! 'h' hi register. ! 'l' lo register. ! 'x' hi + lo register. ! 'q' cnt register. ! 'y' lcb register. ! 'z' scb register. ! 'a' cnt + lcb + scb register. ! 'c' cr0--cr15 register. ! 'b' cp1 registers. ! 'f' cp2 registers. ! 'i' cp3 registers. ! 'j' cp1 + cp2 + cp3 registers. ! 'I' High 16-bit constant (32-bit constant with 16 LSBs zero). ! 'J' Unsigned 5 bit integer (in the range 0 to 31). ! 'K' Unsigned 16 bit integer (in the range 0 to 65535). ! 'L' Signed 16 bit integer (in the range -32768 to 32767). ! 'M' Unsigned 14 bit integer (in the range 0 to 16383). ! 'N' Signed 14 bit integer (in the range -8192 to 8191). ! 'Z' Any SYMBOL_REF. ! _Xstormy16--'config/stormy16/stormy16.h'_ ! 'a' Register r0. ! 'b' Register r1. ! 'c' Register r2. ! 'd' Register r8. ! 'e' Registers r0 through r7. ! 't' Registers r0 and r1. ! 'y' The carry register. ! 'z' Registers r8 and r9. ! 'I' A constant between 0 and 3 inclusive. ! 'J' A constant that has exactly one bit set. ! 'K' A constant that has exactly one bit clear. ! 'L' A constant between 0 and 255 inclusive. ! 'M' A constant between -255 and 0 inclusive. ! 'N' A constant between -3 and 0 inclusive. ! 'O' A constant between 1 and 4 inclusive. ! 'P' A constant between -4 and -1 inclusive. ! 'Q' A memory reference that is a stack push. ! 'R' A memory reference that is a stack pop. ! 'S' A memory reference that refers to a constant address of known value. ! 'T' The register indicated by Rx (not implemented yet). ! 'U' A constant that is not between 2 and 15 inclusive. ! 'Z' The constant 0. ! _TI C6X family--'config/c6x/constraints.md'_ ! 'a' Register file A (A0-A31). ! 'b' Register file B (B0-B31). ! 'A' Predicate registers in register file A (A0-A2 on C64X and higher, A1 and A2 otherwise). ! 'B' Predicate registers in register file B (B0-B2). ! 'C' A call-used register in register file B (B0-B9, B16-B31). ! 'Da' Register file A, excluding predicate registers (A3-A31, plus A0 if not C64X or higher). ! 'Db' Register file B, excluding predicate registers (B3-B31). ! 'Iu4' Integer constant in the range 0 ... 15. ! 'Iu5' Integer constant in the range 0 ... 31. ! 'In5' Integer constant in the range -31 ... 0. ! 'Is5' Integer constant in the range -16 ... 15. ! 'I5x' Integer constant that can be the operand of an ADDA or a SUBA insn. ! 'IuB' Integer constant in the range 0 ... 65535. ! 'IsB' Integer constant in the range -32768 ... 32767. ! 'IsC' ! Integer constant in the range -2^{20} ... 2^{20} - 1. ! 'Jc' Integer constant that is a valid mask for the clr instruction. ! 'Js' Integer constant that is a valid mask for the set instruction. ! 'Q' Memory location with A base register. ! 'R' Memory location with B base register. ! 'S0' On C64x+ targets, a GP-relative small data reference. ! 'S1' ! Any kind of 'SYMBOL_REF', for use in a call address. ! 'Si' Any kind of immediate operand, unless it matches the S0 constraint. ! 'T' Memory location with B base register, but not using a long offset. ! 'W' A memory operand with an address that can't be used in an unaligned access. ! 'Z' Register B14 (aka DP). ! _TILE-Gx--'config/tilegx/constraints.md'_ ! 'R00' ! 'R01' ! 'R02' ! 'R03' ! 'R04' ! 'R05' ! 'R06' ! 'R07' ! 'R08' ! 'R09' ! 'R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! 'I' Signed 8-bit integer constant. ! 'J' Signed 16-bit integer constant. ! 'K' Unsigned 16-bit integer constant. ! 'L' ! Integer constant that fits in one signed byte when incremented ! by one (-129 ... 126). ! 'm' ! Memory operand. If used together with '<' or '>', the operand ! can have postincrement which requires printing with '%In' and ! '%in' on TILE-Gx. For example: asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val)); ! 'M' A bit mask suitable for the BFINS instruction. ! 'N' Integer constant that is a byte tiled out eight times. ! 'O' The integer zero constant. ! 'P' Integer constant that is a sign-extended byte tiled out as four shorts. ! 'Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! 'S' Integer constant that has all 1 bits consecutive and starting at bit 0. ! 'T' A 16-bit fragment of a got, tls, or pc-relative reference. ! 'U' ! Memory operand except postincrement. This is roughly the same ! as 'm' when not used together with '<' or '>'. ! 'W' An 8-element vector constant with identical elements. ! 'Y' A 4-element vector constant with identical elements. ! 'Z0' The integer constant 0xffffffff. ! 'Z1' The integer constant 0xffffffff00000000. ! _TILEPro--'config/tilepro/constraints.md'_ ! 'R00' ! 'R01' ! 'R02' ! 'R03' ! 'R04' ! 'R05' ! 'R06' ! 'R07' ! 'R08' ! 'R09' ! 'R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! 'I' Signed 8-bit integer constant. ! 'J' Signed 16-bit integer constant. ! 'K' Nonzero integer constant with low 16 bits zero. ! 'L' ! Integer constant that fits in one signed byte when incremented ! by one (-129 ... 126). ! 'm' ! Memory operand. If used together with '<' or '>', the operand ! can have postincrement which requires printing with '%In' and ! '%in' on TILEPro. For example: asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val)); ! 'M' A bit mask suitable for the MM instruction. ! 'N' Integer constant that is a byte tiled out four times. ! 'O' The integer zero constant. ! 'P' ! Integer constant that is a sign-extended byte tiled out as two ! shorts. ! 'Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! 'T' A symbolic operand, or a 16-bit fragment of a got, tls, or pc-relative reference. ! 'U' ! Memory operand except postincrement. This is roughly the same ! as 'm' when not used together with '<' or '>'. ! 'W' A 4-element vector constant with identical elements. ! 'Y' A 2-element vector constant with identical elements. ! _Xtensa--'config/xtensa/constraints.md'_ ! 'a' General-purpose 32-bit register ! 'b' One-bit boolean register ! 'A' MAC16 40-bit accumulator register ! 'I' Signed 12-bit integer constant, for use in MOVI instructions ! 'J' Signed 8-bit integer constant, for use in ADDI instructions ! 'K' Integer constant valid for BccI instructions ! 'L' Unsigned constant valid for BccUI instructions  File: gccint.info, Node: Disable Insn Alternatives, Next: Define Constraints, Prev: Machine Constraints, Up: Constraints ! 16.8.6 Disable insn alternatives using the 'enabled' attribute -------------------------------------------------------------- ! The 'enabled' insn attribute may be used to disable certain insn alternatives for machine-specific reasons. This is useful when adding new instructions to an existing pattern which are only available for ! certain cpu architecture levels as specified with the '-march=' option. If an insn alternative is disabled, then it will never be used. The compiler treats the constraints for the disabled alternative as unsatisfiable. ! In order to make use of the 'enabled' attribute a back end has to add in the machine description files: ! 1. A definition of the 'enabled' insn attribute. The attribute is ! defined as usual using the 'define_attr' command. This definition should be based on other insn attributes and/or target flags. The ! 'enabled' attribute is a numeric attribute and should evaluate to ! '(const_int 1)' for an enabled alternative and to '(const_int 0)' otherwise. 2. A definition of another insn attribute used to describe for what reason an insn alternative might be available or not. E.g. ! 'cpu_facility' as in the example below. 3. An assignment for the second attribute to each insn definition combining instructions which are not all available under the same circumstances. (Note: It obviously only makes sense for definitions with more than one alternative. Otherwise the insn pattern should be disabled or enabled using the insn condition.) ! E.g. the following two patterns could easily be merged using the ! 'enabled' attribute: (define_insn "*movdi_old" *************** in the machine description files: *** 21816,21822 **** lgdr %0,%1" [(set_attr "cpu_facility" "*,new,new")]) ! with the `enabled' attribute defined like this: (define_attr "cpu_facility" "standard,new" (const_string "standard")) --- 21495,21501 ---- lgdr %0,%1" [(set_attr "cpu_facility" "*,new,new")]) ! with the 'enabled' attribute defined like this: (define_attr "cpu_facility" "standard,new" (const_string "standard")) *************** File: gccint.info, Node: Define Constra *** 21835,21855 **** -------------------------------------------- Machine-specific constraints fall into two categories: register and ! non-register constraints. Within the latter category, constraints ! which allow subsets of all possible memory or address operands should ! be specially marked, to give `reload' more information. Machine-specific constraints can be given names of arbitrary length, but they must be entirely composed of letters, digits, underscores ! (`_'), and angle brackets (`< >'). Like C identifiers, they must begin with a letter or underscore. In order to avoid ambiguity in operand constraint strings, no ! constraint can have a name that begins with any other constraint's ! name. For example, if `x' is defined as a constraint name, `xy' may ! not be, and vice versa. As a consequence of this rule, no constraint ! may begin with one of the generic constraint letters: `E F V X g i m n ! o p r s'. Register constraints correspond directly to register classes. *Note Register Classes::. There is thus not much flexibility in their --- 21514,21533 ---- -------------------------------------------- Machine-specific constraints fall into two categories: register and ! non-register constraints. Within the latter category, constraints which ! allow subsets of all possible memory or address operands should be ! specially marked, to give 'reload' more information. Machine-specific constraints can be given names of arbitrary length, but they must be entirely composed of letters, digits, underscores ! ('_'), and angle brackets ('< >'). Like C identifiers, they must begin with a letter or underscore. In order to avoid ambiguity in operand constraint strings, no ! constraint can have a name that begins with any other constraint's name. ! For example, if 'x' is defined as a constraint name, 'xy' may not be, ! and vice versa. As a consequence of this rule, no constraint may begin ! with one of the generic constraint letters: 'E F V X g i m n o p r s'. Register constraints correspond directly to register classes. *Note Register Classes::. There is thus not much flexibility in their *************** definitions. *** 21857,21872 **** -- MD Expression: define_register_constraint name regclass docstring All three arguments are string constants. NAME is the name of the ! constraint, as it will appear in `match_operand' expressions. If NAME is a multi-letter constraint its length shall be the same for all constraints starting with the same letter. REGCLASS can be ! either the name of the corresponding register class (*note ! Register Classes::), or a C expression which evaluates to the ! appropriate register class. If it is an expression, it must have ! no side effects, and it cannot look at the operand. The usual use ! of expressions is to map some register constraints to `NO_REGS' ! when the register class is not available on a given ! subarchitecture. DOCSTRING is a sentence documenting the meaning of the constraint. Docstrings are explained further below. --- 21535,21549 ---- -- MD Expression: define_register_constraint name regclass docstring All three arguments are string constants. NAME is the name of the ! constraint, as it will appear in 'match_operand' expressions. If NAME is a multi-letter constraint its length shall be the same for all constraints starting with the same letter. REGCLASS can be ! either the name of the corresponding register class (*note Register ! Classes::), or a C expression which evaluates to the appropriate ! register class. If it is an expression, it must have no side ! effects, and it cannot look at the operand. The usual use of ! expressions is to map some register constraints to 'NO_REGS' when ! the register class is not available on a given subarchitecture. DOCSTRING is a sentence documenting the meaning of the constraint. Docstrings are explained further below. *************** constraint matches. *** 21877,21981 **** -- MD Expression: define_constraint name docstring exp The NAME and DOCSTRING arguments are the same as for ! `define_register_constraint', but note that the docstring comes immediately after the name for these expressions. EXP is an RTL expression, obeying the same rules as the RTL expressions in predicate definitions. *Note Defining Predicates::, for details. If it evaluates true, the constraint matches; if it evaluates ! false, it doesn't. Constraint expressions should indicate which RTL codes they might match, just like predicate expressions. ! `match_test' C expressions have access to the following variables: ! OP The RTL object defining the operand. ! ! MODE The machine mode of OP. ! ! IVAL ! `INTVAL (OP)', if OP is a `const_int'. ! ! HVAL ! `CONST_DOUBLE_HIGH (OP)', if OP is an integer `const_double'. ! ! LVAL ! `CONST_DOUBLE_LOW (OP)', if OP is an integer `const_double'. ! ! RVAL ! `CONST_DOUBLE_REAL_VALUE (OP)', if OP is a floating-point ! `const_double'. The *VAL variables should only be used once another piece of the expression has verified that OP is the appropriate kind of RTL object. Most non-register constraints should be defined with ! `define_constraint'. The remaining two definition expressions are only ! appropriate for constraints that should be handled specially by ! `reload' if they fail to match. -- MD Expression: define_memory_constraint name docstring exp Use this expression for constraints that match a subset of all ! memory operands: that is, `reload' can make them match by ! converting the operand to the form `(mem (reg X))', where X is a base register (from the register class specified by ! `BASE_REG_CLASS', *note Register Classes::). For example, on the S/390, some instructions do not accept ! arbitrary memory references, but only those that do not make use ! of an index register. The constraint letter `Q' is defined to ! represent a memory address of this type. If `Q' is defined with ! `define_memory_constraint', a `Q' constraint can handle any memory ! operand, because `reload' knows it can simply copy the memory ! address into a base register if required. This is analogous to ! the way an `o' constraint can handle any memory operand. The syntax and semantics are otherwise identical to ! `define_constraint'. -- MD Expression: define_address_constraint name docstring exp Use this expression for constraints that match a subset of all ! address operands: that is, `reload' can make the constraint match ! by converting the operand to the form `(reg X)', again with X a base register. ! Constraints defined with `define_address_constraint' can only be ! used with the `address_operand' predicate, or machine-specific predicates that work the same way. They are treated analogously to ! the generic `p' constraint. The syntax and semantics are otherwise identical to ! `define_constraint'. ! For historical reasons, names beginning with the letters `G H' are ! reserved for constraints that match only `const_double's, and names ! beginning with the letters `I J K L M N O P' are reserved for ! constraints that match only `const_int's. This may change in the future. For the time being, constraints with these names must be ! written in a stylized form, so that `genpreds' can tell you did it correctly: (define_constraint "[GHIJKLMNOP]..." "DOC..." ! (and (match_code "const_int") ; `const_double' for G/H ! CONDITION...)) ; usually a `match_test' It is fine to use names beginning with other letters for constraints ! that match `const_double's or `const_int's. Each docstring in a constraint definition should be one or more complete sentences, marked up in Texinfo format. _They are currently ! unused._ In the future they will be copied into the GCC manual, in *note Machine Constraints::, replacing the hand-maintained tables currently found in that section. Also, in the future the compiler may ! use this to give more helpful diagnostics when poor choice of `asm' constraints causes a reload failure. ! If you put the pseudo-Texinfo directive `@internal' at the beginning ! of a docstring, then (in the future) it will appear only in the ! internals manual's version of the machine-specific constraint tables. ! Use this for constraints that should not appear in `asm' statements.  File: gccint.info, Node: C Constraint Interface, Prev: Define Constraints, Up: Constraints --- 21554,21653 ---- -- MD Expression: define_constraint name docstring exp The NAME and DOCSTRING arguments are the same as for ! 'define_register_constraint', but note that the docstring comes immediately after the name for these expressions. EXP is an RTL expression, obeying the same rules as the RTL expressions in predicate definitions. *Note Defining Predicates::, for details. If it evaluates true, the constraint matches; if it evaluates ! false, it doesn't. Constraint expressions should indicate which RTL codes they might match, just like predicate expressions. ! 'match_test' C expressions have access to the following variables: ! OP The RTL object defining the operand. ! MODE The machine mode of OP. ! IVAL ! 'INTVAL (OP)', if OP is a 'const_int'. ! HVAL ! 'CONST_DOUBLE_HIGH (OP)', if OP is an integer 'const_double'. ! LVAL ! 'CONST_DOUBLE_LOW (OP)', if OP is an integer 'const_double'. ! RVAL ! 'CONST_DOUBLE_REAL_VALUE (OP)', if OP is a floating-point ! 'const_double'. The *VAL variables should only be used once another piece of the expression has verified that OP is the appropriate kind of RTL object. Most non-register constraints should be defined with ! 'define_constraint'. The remaining two definition expressions are only ! appropriate for constraints that should be handled specially by 'reload' ! if they fail to match. -- MD Expression: define_memory_constraint name docstring exp Use this expression for constraints that match a subset of all ! memory operands: that is, 'reload' can make them match by ! converting the operand to the form '(mem (reg X))', where X is a base register (from the register class specified by ! 'BASE_REG_CLASS', *note Register Classes::). For example, on the S/390, some instructions do not accept ! arbitrary memory references, but only those that do not make use of ! an index register. The constraint letter 'Q' is defined to ! represent a memory address of this type. If 'Q' is defined with ! 'define_memory_constraint', a 'Q' constraint can handle any memory ! operand, because 'reload' knows it can simply copy the memory ! address into a base register if required. This is analogous to the ! way an 'o' constraint can handle any memory operand. The syntax and semantics are otherwise identical to ! 'define_constraint'. -- MD Expression: define_address_constraint name docstring exp Use this expression for constraints that match a subset of all ! address operands: that is, 'reload' can make the constraint match ! by converting the operand to the form '(reg X)', again with X a base register. ! Constraints defined with 'define_address_constraint' can only be ! used with the 'address_operand' predicate, or machine-specific predicates that work the same way. They are treated analogously to ! the generic 'p' constraint. The syntax and semantics are otherwise identical to ! 'define_constraint'. ! For historical reasons, names beginning with the letters 'G H' are ! reserved for constraints that match only 'const_double's, and names ! beginning with the letters 'I J K L M N O P' are reserved for ! constraints that match only 'const_int's. This may change in the future. For the time being, constraints with these names must be ! written in a stylized form, so that 'genpreds' can tell you did it correctly: (define_constraint "[GHIJKLMNOP]..." "DOC..." ! (and (match_code "const_int") ; 'const_double' for G/H ! CONDITION...)) ; usually a 'match_test' It is fine to use names beginning with other letters for constraints ! that match 'const_double's or 'const_int's. Each docstring in a constraint definition should be one or more complete sentences, marked up in Texinfo format. _They are currently ! unused._ In the future they will be copied into the GCC manual, in *note Machine Constraints::, replacing the hand-maintained tables currently found in that section. Also, in the future the compiler may ! use this to give more helpful diagnostics when poor choice of 'asm' constraints causes a reload failure. ! If you put the pseudo-Texinfo directive '@internal' at the beginning of ! a docstring, then (in the future) it will appear only in the internals ! manual's version of the machine-specific constraint tables. Use this ! for constraints that should not appear in 'asm' statements.  File: gccint.info, Node: C Constraint Interface, Prev: Define Constraints, Up: Constraints *************** File: gccint.info, Node: C Constraint I *** 21984,22053 **** --------------------------------- It is occasionally useful to test a constraint from C code rather than ! implicitly via the constraint string in a `match_operand'. The ! generated file `tm_p.h' declares a few interfaces for working with machine-specific constraints. None of these interfaces work with the generic constraints described in *note Simple Constraints::. This may change in the future. ! *Warning:* `tm_p.h' may declare other functions that operate on constraints, besides the ones documented here. Do not use those functions from machine-dependent code. They exist to implement the old ! constraint interface that machine-independent components of the ! compiler still expect. They will change or disappear in the future. Some valid constraint names are not valid C identifiers, so there is a mangling scheme for referring to them from C. Constraint names that do not contain angle brackets or underscores are left unchanged. ! Underscores are doubled, each `<' is replaced with `_l', and each `>' ! with `_g'. Here are some examples: ! *Original* *Mangled* ! `x' `x' ! `P42x' `P42x' ! `P4_x' `P4__x' ! `P4>x' `P4_gx' ! `P4>>' `P4_g_g' ! `P4_g>' `P4__g_g' Throughout this section, the variable C is either a constraint in the ! abstract sense, or a constant from `enum constraint_num'; the variable ! M is a mangled constraint name (usually as part of a larger identifier). -- Enum: constraint_num For each machine-specific constraint, there is a corresponding ! enumeration constant: `CONSTRAINT_' plus the mangled name of the ! constraint. Functions that take an `enum constraint_num' as an argument expect one of these constants. Machine-independent constraints do not have associated constants. This may change in the future. ! -- Function: inline bool satisfies_constraint_M (rtx EXP) For each machine-specific, non-register constraint M, there is one ! of these functions; it returns `true' if EXP satisfies the ! constraint. These functions are only visible if `rtl.h' was ! included before `tm_p.h'. -- Function: bool constraint_satisfied_p (rtx EXP, enum constraint_num C) ! Like the `satisfies_constraint_M' functions, but the constraint to test is given as an argument, C. If C specifies a register ! constraint, this function will always return `false'. -- Function: enum reg_class regclass_for_constraint (enum constraint_num C) Returns the register class associated with C. If C is not a register constraint, or those registers are not available for the ! currently selected subtarget, returns `NO_REGS'. ! Here is an example use of `satisfies_constraint_M'. In peephole ! optimizations (*note Peephole Definitions::), operand constraint ! strings are ignored, so if there are relevant constraints, they must be ! tested in the C condition. In the example, the optimization is applied ! if operand 2 does _not_ satisfy the `K' constraint. (This is a ! simplified version of a peephole definition from the i386 machine ! description.) (define_peephole2 [(match_scratch:SI 3 "r") --- 21656,21724 ---- --------------------------------- It is occasionally useful to test a constraint from C code rather than ! implicitly via the constraint string in a 'match_operand'. The ! generated file 'tm_p.h' declares a few interfaces for working with machine-specific constraints. None of these interfaces work with the generic constraints described in *note Simple Constraints::. This may change in the future. ! *Warning:* 'tm_p.h' may declare other functions that operate on constraints, besides the ones documented here. Do not use those functions from machine-dependent code. They exist to implement the old ! constraint interface that machine-independent components of the compiler ! still expect. They will change or disappear in the future. Some valid constraint names are not valid C identifiers, so there is a mangling scheme for referring to them from C. Constraint names that do not contain angle brackets or underscores are left unchanged. ! Underscores are doubled, each '<' is replaced with '_l', and each '>' ! with '_g'. Here are some examples: ! *Original* *Mangled* ! x x ! P42x P42x ! P4_x P4__x ! P4>x P4_gx ! P4>> P4_g_g ! P4_g> P4__g_g Throughout this section, the variable C is either a constraint in the ! abstract sense, or a constant from 'enum constraint_num'; the variable M ! is a mangled constraint name (usually as part of a larger identifier). -- Enum: constraint_num For each machine-specific constraint, there is a corresponding ! enumeration constant: 'CONSTRAINT_' plus the mangled name of the ! constraint. Functions that take an 'enum constraint_num' as an argument expect one of these constants. Machine-independent constraints do not have associated constants. This may change in the future. ! -- Function: inline bool satisfies_constraint_ M (rtx EXP) For each machine-specific, non-register constraint M, there is one ! of these functions; it returns 'true' if EXP satisfies the ! constraint. These functions are only visible if 'rtl.h' was ! included before 'tm_p.h'. -- Function: bool constraint_satisfied_p (rtx EXP, enum constraint_num C) ! Like the 'satisfies_constraint_M' functions, but the constraint to test is given as an argument, C. If C specifies a register ! constraint, this function will always return 'false'. -- Function: enum reg_class regclass_for_constraint (enum constraint_num C) Returns the register class associated with C. If C is not a register constraint, or those registers are not available for the ! currently selected subtarget, returns 'NO_REGS'. ! Here is an example use of 'satisfies_constraint_M'. In peephole ! optimizations (*note Peephole Definitions::), operand constraint strings ! are ignored, so if there are relevant constraints, they must be tested ! in the C condition. In the example, the optimization is applied if ! operand 2 does _not_ satisfy the 'K' constraint. (This is a simplified ! version of a peephole definition from the i386 machine description.) (define_peephole2 [(match_scratch:SI 3 "r") *************** generation pass of the compiler. Giving *** 22073,22108 **** instruction pattern tells the RTL generation pass that it can use the pattern to accomplish a certain task. ! `movM' Here M stands for a two-letter machine mode name, in lowercase. This instruction pattern moves data with that machine mode from ! operand 1 to operand 0. For example, `movsi' moves full-word data. ! If operand 0 is a `subreg' with mode M of a register whose own ! mode is wider than M, the effect of this instruction is to store ! the specified value in the part of the register that corresponds ! to mode M. Bits outside of M, but which are within the same ! target word as the `subreg' are undefined. Bits which are outside ! the target word are left unchanged. This class of patterns is special in several ways. First of all, each of these names up to and including full word size _must_ be defined, because there is no other way to copy a datum from one place to another. If there are patterns accepting operands in ! larger modes, `movM' must be defined for integer modes of those sizes. Second, these patterns are not used solely in the RTL generation pass. Even the reload pass can generate move insns to copy values ! from stack slots into temporary registers. When it does so, one ! of the operands is a hard register and the other is an operand ! that can need to be reloaded into a register. Therefore, when given such a pair of operands, the pattern must generate RTL which needs no reloading and needs no temporary registers--no registers other than the operands. For example, if ! you support the pattern with a `define_expand', then in such a ! case the `define_expand' mustn't call `force_reg' or any other such function which might generate new pseudo registers. This requirement exists even for subword modes on a RISC machine --- 21744,21779 ---- instruction pattern tells the RTL generation pass that it can use the pattern to accomplish a certain task. ! 'movM' Here M stands for a two-letter machine mode name, in lowercase. This instruction pattern moves data with that machine mode from ! operand 1 to operand 0. For example, 'movsi' moves full-word data. ! If operand 0 is a 'subreg' with mode M of a register whose own mode ! is wider than M, the effect of this instruction is to store the ! specified value in the part of the register that corresponds to ! mode M. Bits outside of M, but which are within the same target ! word as the 'subreg' are undefined. Bits which are outside the ! target word are left unchanged. This class of patterns is special in several ways. First of all, each of these names up to and including full word size _must_ be defined, because there is no other way to copy a datum from one place to another. If there are patterns accepting operands in ! larger modes, 'movM' must be defined for integer modes of those sizes. Second, these patterns are not used solely in the RTL generation pass. Even the reload pass can generate move insns to copy values ! from stack slots into temporary registers. When it does so, one of ! the operands is a hard register and the other is an operand that ! can need to be reloaded into a register. Therefore, when given such a pair of operands, the pattern must generate RTL which needs no reloading and needs no temporary registers--no registers other than the operands. For example, if ! you support the pattern with a 'define_expand', then in such a case ! the 'define_expand' mustn't call 'force_reg' or any other such function which might generate new pseudo registers. This requirement exists even for subword modes on a RISC machine *************** pattern to accomplish a certain task. *** 22115,22125 **** be done with the address except to use it as it stands. If it is copied, it will not be replaced with a valid address. No attempt should be made to make such an address into a valid address and no ! routine (such as `change_address') that will do so may be called. ! Note that `general_operand' will fail when applied to such an address. ! The global variable `reload_in_progress' (which must be explicitly declared if required) can be used to determine whether such special handling is required. --- 21786,21796 ---- be done with the address except to use it as it stands. If it is copied, it will not be replaced with a valid address. No attempt should be made to make such an address into a valid address and no ! routine (such as 'change_address') that will do so may be called. ! Note that 'general_operand' will fail when applied to such an address. ! The global variable 'reload_in_progress' (which must be explicitly declared if required) can be used to determine whether such special handling is required. *************** pattern to accomplish a certain task. *** 22130,22205 **** reloads. If a scratch register is required to move an object to or from ! memory, it can be allocated using `gen_reg_rtx' prior to life analysis. If there are cases which need scratch registers during or after reload, you must provide an appropriate secondary_reload target hook. ! The macro `can_create_pseudo_p' can be used to determine if it is unsafe to create new pseudo registers. If this variable is ! nonzero, then it is unsafe to call `gen_reg_rtx' to allocate a new pseudo. ! The constraints on a `movM' must permit moving any hard register ! to any other hard register provided that `HARD_REGNO_MODE_OK' ! permits mode M in both registers and `TARGET_REGISTER_MOVE_COST' ! applied to their classes returns a value of 2. ! It is obligatory to support floating point `movM' instructions ! into and out of any registers that can hold fixed point values, ! because unions and structures (which have modes `SImode' or ! `DImode') can be in those registers and they may have floating ! point members. ! There may also be a need to support fixed point `movM' ! instructions in and out of floating point registers. ! Unfortunately, I have forgotten why this was so, and I don't know ! whether it is still true. If `HARD_REGNO_MODE_OK' rejects fixed ! point values in floating point registers, then the constraints of ! the fixed point `movM' instructions must be designed to avoid ever ! trying to reload into a floating point register. ! `reload_inM' ! `reload_outM' These named patterns have been obsoleted by the target hook ! `secondary_reload'. ! Like `movM', but used when a scratch register is required to move between operand 0 and operand 1. Operand 2 describes the scratch ! register. See the discussion of the `SECONDARY_RELOAD_CLASS' ! macro in *note Register Classes::. ! There are special restrictions on the form of the `match_operand's used in these patterns. First, only the predicate for the reload ! operand is examined, i.e., `reload_in' examines operand 1, but not the predicates for operand 0 or 2. Second, there may be only one alternative in the constraints. Third, only a single register class letter may be used for the constraint; subsequent constraint letters are ignored. As a special exception, an empty constraint ! string matches the `ALL_REGS' register class. This may relieve ! ports of the burden of defining an `ALL_REGS' constraint letter just for these patterns. ! `movstrictM' ! Like `movM' except that if operand 0 is a `subreg' with mode M of ! a register whose natural mode is wider, the `movstrictM' ! instruction is guaranteed not to alter any of the register except ! the part which belongs to mode M. ! `movmisalignM' This variant of a move pattern is designed to load or store a value from a memory address that is not naturally aligned for its mode. For a store, the memory will be in operand 0; for a load, the memory will be in operand 1. The other operand is guaranteed not ! to be a memory, so that it's easy to tell whether this is a load ! or store. This pattern is used by the autovectorizer, and when expanding a ! `MISALIGNED_INDIRECT_REF' expression. ! `load_multiple' Load several consecutive memory locations into consecutive registers. Operand 0 is the first of the consecutive registers, operand 1 is the first memory location, and operand 2 is a --- 21801,21875 ---- reloads. If a scratch register is required to move an object to or from ! memory, it can be allocated using 'gen_reg_rtx' prior to life analysis. If there are cases which need scratch registers during or after reload, you must provide an appropriate secondary_reload target hook. ! The macro 'can_create_pseudo_p' can be used to determine if it is unsafe to create new pseudo registers. If this variable is ! nonzero, then it is unsafe to call 'gen_reg_rtx' to allocate a new pseudo. ! The constraints on a 'movM' must permit moving any hard register to ! any other hard register provided that 'HARD_REGNO_MODE_OK' permits ! mode M in both registers and 'TARGET_REGISTER_MOVE_COST' applied to ! their classes returns a value of 2. ! It is obligatory to support floating point 'movM' instructions into ! and out of any registers that can hold fixed point values, because ! unions and structures (which have modes 'SImode' or 'DImode') can ! be in those registers and they may have floating point members. ! There may also be a need to support fixed point 'movM' instructions ! in and out of floating point registers. Unfortunately, I have ! forgotten why this was so, and I don't know whether it is still ! true. If 'HARD_REGNO_MODE_OK' rejects fixed point values in ! floating point registers, then the constraints of the fixed point ! 'movM' instructions must be designed to avoid ever trying to reload ! into a floating point register. ! 'reload_inM' ! 'reload_outM' These named patterns have been obsoleted by the target hook ! 'secondary_reload'. ! Like 'movM', but used when a scratch register is required to move between operand 0 and operand 1. Operand 2 describes the scratch ! register. See the discussion of the 'SECONDARY_RELOAD_CLASS' macro ! in *note Register Classes::. ! There are special restrictions on the form of the 'match_operand's used in these patterns. First, only the predicate for the reload ! operand is examined, i.e., 'reload_in' examines operand 1, but not the predicates for operand 0 or 2. Second, there may be only one alternative in the constraints. Third, only a single register class letter may be used for the constraint; subsequent constraint letters are ignored. As a special exception, an empty constraint ! string matches the 'ALL_REGS' register class. This may relieve ! ports of the burden of defining an 'ALL_REGS' constraint letter just for these patterns. ! 'movstrictM' ! Like 'movM' except that if operand 0 is a 'subreg' with mode M of a ! register whose natural mode is wider, the 'movstrictM' instruction ! is guaranteed not to alter any of the register except the part ! which belongs to mode M. ! 'movmisalignM' This variant of a move pattern is designed to load or store a value from a memory address that is not naturally aligned for its mode. For a store, the memory will be in operand 0; for a load, the memory will be in operand 1. The other operand is guaranteed not ! to be a memory, so that it's easy to tell whether this is a load or ! store. This pattern is used by the autovectorizer, and when expanding a ! 'MISALIGNED_INDIRECT_REF' expression. ! 'load_multiple' Load several consecutive memory locations into consecutive registers. Operand 0 is the first of the consecutive registers, operand 1 is the first memory location, and operand 2 is a *************** pattern to accomplish a certain task. *** 22213,22234 **** On some machines, there are restrictions as to which consecutive registers can be stored into memory, such as particular starting or ending register numbers or only a range of valid counts. For those ! machines, use a `define_expand' (*note Expander Definitions::) and make the pattern fail if the restrictions are not met. ! Write the generated insn as a `parallel' with elements being a ! `set' of one register from the appropriate memory location (you may ! also need `use' or `clobber' elements). Use a `match_parallel' ! (*note RTL Template::) to recognize the insn. See `rs6000.md' for examples of the use of this insn pattern. ! `store_multiple' ! Similar to `load_multiple', but store several consecutive registers into consecutive memory locations. Operand 0 is the first of the consecutive memory locations, operand 1 is the first register, and operand 2 is a constant: the number of consecutive registers. ! `vec_load_lanesMN' Perform an interleaved load of several vectors from memory operand 1 into register operand 0. Both operands have mode M. The register operand is viewed as holding consecutive vectors of mode --- 21883,21904 ---- On some machines, there are restrictions as to which consecutive registers can be stored into memory, such as particular starting or ending register numbers or only a range of valid counts. For those ! machines, use a 'define_expand' (*note Expander Definitions::) and make the pattern fail if the restrictions are not met. ! Write the generated insn as a 'parallel' with elements being a ! 'set' of one register from the appropriate memory location (you may ! also need 'use' or 'clobber' elements). Use a 'match_parallel' ! (*note RTL Template::) to recognize the insn. See 'rs6000.md' for examples of the use of this insn pattern. ! 'store_multiple' ! Similar to 'load_multiple', but store several consecutive registers into consecutive memory locations. Operand 0 is the first of the consecutive memory locations, operand 1 is the first register, and operand 2 is a constant: the number of consecutive registers. ! 'vec_load_lanesMN' Perform an interleaved load of several vectors from memory operand 1 into register operand 0. Both operands have mode M. The register operand is viewed as holding consecutive vectors of mode *************** pattern to accomplish a certain task. *** 22240,22248 **** for (i = 0; i < c; i++) operand0[i][j] = operand1[j * c + i]; ! For example, `vec_load_lanestiv4hi' loads 8 16-bit values from ! memory into a register of mode `TI'. The register contains two ! consecutive vectors of mode `V4HI'. This pattern can only be used if: TARGET_ARRAY_MODE_SUPPORTED_P (N, C) --- 21910,21918 ---- for (i = 0; i < c; i++) operand0[i][j] = operand1[j * c + i]; ! For example, 'vec_load_lanestiv4hi' loads 8 16-bit values from ! memory into a register of mode 'TI'. The register contains two ! consecutive vectors of mode 'V4HI'. This pattern can only be used if: TARGET_ARRAY_MODE_SUPPORTED_P (N, C) *************** pattern to accomplish a certain task. *** 22250,22257 **** instruction for some mode N, it also supports unaligned loads for vectors of mode N. ! `vec_store_lanesMN' ! Equivalent to `vec_load_lanesMN', with the memory and register operands reversed. That is, the instruction is equivalent to: int c = GET_MODE_SIZE (M) / GET_MODE_SIZE (N); --- 21920,21927 ---- instruction for some mode N, it also supports unaligned loads for vectors of mode N. ! 'vec_store_lanesMN' ! Equivalent to 'vec_load_lanesMN', with the memory and register operands reversed. That is, the instruction is equivalent to: int c = GET_MODE_SIZE (M) / GET_MODE_SIZE (N); *************** pattern to accomplish a certain task. *** 22261,22887 **** for a memory operand 0 and register operand 1. ! `vec_setM' Set given field in the vector value. Operand 0 is the vector to modify, operand 1 is new value of field and operand 2 specify the field index. ! `vec_extractM' Extract given field from the vector value. Operand 1 is the vector, operand 2 specify field index and operand 0 place to store value into. ! `vec_initM' Initialize the vector to given values. Operand 0 is the vector to initialize and operand 1 is parallel containing values for individual fields. ! `vcondMN' Output a conditional vector move. Operand 0 is the destination to ! receive a combination of operand 1 and operand 2, which are of ! mode M, dependent on the outcome of the predicate in operand 3 ! which is a vector comparison with operands of mode N in operands 4 ! and 5. The modes M and N should have the same size. Operand 0 ! will be set to the value OP1 & MSK | OP2 & ~MSK where MSK is ! computed by element-wise evaluation of the vector comparison with ! a truth value of all-ones and a false value of all-zeros. ! `vec_permM' Output a (variable) vector permutation. Operand 0 is the ! destination to receive elements from operand 1 and operand 2, ! which are of mode M. Operand 3 is the "selector". It is an ! integral mode vector of the same width and number of elements as ! mode M. The input elements are numbered from 0 in operand 1 through 2*N-1 ! in operand 2. The elements of the selector must be computed ! modulo 2*N. Note that if `rtx_equal_p(operand1, operand2)', this ! can be implemented with just operand 1 and selector elements ! modulo N. In order to make things easy for a number of targets, if there is ! no `vec_perm' pattern for mode M, but there is for mode Q where Q ! is a vector of `QImode' of the same width as M, the middle-end ! will lower the mode M `VEC_PERM_EXPR' to mode Q. ! `vec_perm_constM' ! Like `vec_perm' except that the permutation is a compile-time ! constant. That is, operand 3, the "selector", is a `CONST_VECTOR'. Some targets cannot perform a permutation with a variable selector, but can efficiently perform a constant permutation. Further, the ! target hook `vec_perm_ok' is queried to determine if the specific ! constant permutation is available efficiently; the named pattern ! is never expanded without `vec_perm_ok' returning true. ! There is no need for a target to supply both `vec_permM' and ! `vec_perm_constM' if the former can trivially implement the operation with, say, the vector constant loaded into a register. ! `pushM1' Output a push instruction. Operand 0 is value to push. Used only ! when `PUSH_ROUNDING' is defined. For historical reason, this ! pattern may be missing and in such case an `mov' expander is used ! instead, with a `MEM' expression forming the push operation. The ! `mov' expander method is deprecated. ! `addM3' Add operand 2 and operand 1, storing the result in operand 0. All operands must have mode M. This can be used even on two-address machines, by means of constraints requiring operands 1 and 0 to be the same location. ! `ssaddM3', `usaddM3' ! `subM3', `sssubM3', `ussubM3' ! `mulM3', `ssmulM3', `usmulM3' ! `divM3', `ssdivM3' ! `udivM3', `usdivM3' ! `modM3', `umodM3' ! `uminM3', `umaxM3' ! `andM3', `iorM3', `xorM3' Similar, for other arithmetic operations. ! `fmaM4' Multiply operand 2 and operand 1, then add operand 3, storing the result in operand 0 without doing an intermediate rounding step. All operands must have mode M. This pattern is used to implement ! the `fma', `fmaf', and `fmal' builtin functions from the ISO C99 standard. ! `fmsM4' ! Like `fmaM4', except operand 3 subtracted from the product instead of added to the product. This is represented in the rtl as (fma:M OP1 OP2 (neg:M OP3)) ! `fnmaM4' ! Like `fmaM4' except that the intermediate product is negated ! before being added to operand 3. This is represented in the rtl as (fma:M (neg:M OP1) OP2 OP3) ! `fnmsM4' ! Like `fmsM4' except that the intermediate product is negated ! before subtracting operand 3. This is represented in the rtl as (fma:M (neg:M OP1) OP2 (neg:M OP3)) ! `sminM3', `smaxM3' Signed minimum and maximum operations. When used with floating ! point, if both operands are zeros, or if either operand is `NaN', ! then it is unspecified which of the two operands is returned as ! the result. ! `reduc_smin_M', `reduc_smax_M' ! Find the signed minimum/maximum of the elements of a vector. The vector is operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and input vector should have the same modes. ! `reduc_umin_M', `reduc_umax_M' ! Find the unsigned minimum/maximum of the elements of a vector. The vector is operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and input vector should have the same modes. ! `reduc_splus_M' ! Compute the sum of the signed elements of a vector. The vector is ! operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and ! input vector should have the same modes. ! `reduc_uplus_M' ! Compute the sum of the unsigned elements of a vector. The vector is operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and input vector should have the same modes. ! `sdot_prodM' ! ! `udot_prodM' Compute the sum of the products of two signed/unsigned elements. ! Operand 1 and operand 2 are of the same mode. Their product, which ! is of a wider mode, is computed and added to operand 3. Operand 3 ! is of a mode equal or wider than the mode of the product. The ! result is placed in operand 0, which is of the same mode as ! operand 3. ! ! `ssum_widenM3' ! `usum_widenM3' ! Operands 0 and 2 are of the same mode, which is wider than the ! mode of operand 1. Add operand 1 to operand 2 and place the ! widened result in operand 0. (This is used express accumulation of elements into an accumulator of a wider mode.) ! `vec_shl_M', `vec_shr_M' ! Whole vector left/right shift in bits. Operand 1 is a vector to ! be shifted. Operand 2 is an integer shift amount in bits. ! Operand 0 is where the resulting shifted vector is stored. The ! output and input vectors should have the same modes. ! `vec_pack_trunc_M' ! Narrow (demote) and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N integral or floating point elements of size S. Operand 0 is the resulting vector in which 2*N elements of size N/2 are concatenated after narrowing them down using truncation. ! `vec_pack_ssat_M', `vec_pack_usat_M' Narrow (demote) and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N integral elements of ! size S. Operand 0 is the resulting vector in which the elements ! of the two input vectors are concatenated after narrowing them ! down using signed/unsigned saturating arithmetic. ! `vec_pack_sfix_trunc_M', `vec_pack_ufix_trunc_M' Narrow, convert to signed/unsigned integral type and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N floating point elements of size S. Operand 0 is the resulting vector in which 2*N elements of size N/2 are concatenated. ! `vec_unpacks_hi_M', `vec_unpacks_lo_M' Extract and widen (promote) the high/low part of a vector of signed integral or floating point elements. The input vector (operand 1) ! has N elements of size S. Widen (promote) the high/low elements ! of the vector using signed or floating point extension and place ! the resulting N/2 values of size 2*S in the output vector (operand ! 0). ! `vec_unpacku_hi_M', `vec_unpacku_lo_M' Extract and widen (promote) the high/low part of a vector of unsigned integral elements. The input vector (operand 1) has N ! elements of size S. Widen (promote) the high/low elements of the vector using zero extension and place the resulting N/2 values of size 2*S in the output vector (operand 0). ! `vec_unpacks_float_hi_M', `vec_unpacks_float_lo_M' ! `vec_unpacku_float_hi_M', `vec_unpacku_float_lo_M' ! Extract, convert to floating point type and widen the high/low ! part of a vector of signed/unsigned integral elements. The input ! vector (operand 1) has N elements of size S. Convert the high/low elements of the vector using floating point conversion and place the resulting N/2 values of size 2*S in the output vector (operand 0). ! `vec_widen_umult_hi_M', `vec_widen_umult_lo_M' ! `vec_widen_smult_hi_M', `vec_widen_smult_lo_M' ! `vec_widen_umult_even_M', `vec_widen_umult_odd_M' ! `vec_widen_smult_even_M', `vec_widen_smult_odd_M' Signed/Unsigned widening multiplication. The two inputs (operands 1 and 2) are vectors with N signed/unsigned elements of size S. Multiply the high/low or even/odd elements of the two vectors, and put the N/2 products of size 2*S in the output vector (operand 0). ! `vec_widen_ushiftl_hi_M', `vec_widen_ushiftl_lo_M' ! `vec_widen_sshiftl_hi_M', `vec_widen_sshiftl_lo_M' Signed/Unsigned widening shift left. The first input (operand 1) is a vector with N signed/unsigned elements of size S. Operand 2 is a constant. Shift the high/low elements of operand 1, and put the N/2 results of size 2*S in the output vector (operand 0). ! `mulhisi3' ! Multiply operands 1 and 2, which have mode `HImode', and store a ! `SImode' product in operand 0. ! `mulqihi3', `mulsidi3' Similar widening-multiplication instructions of other widths. ! `umulqihi3', `umulhisi3', `umulsidi3' Similar widening-multiplication instructions that do unsigned multiplication. ! `usmulqihi3', `usmulhisi3', `usmulsidi3' Similar widening-multiplication instructions that interpret the ! first operand as unsigned and the second operand as signed, then ! do a signed multiplication. ! `smulM3_highpart' Perform a signed multiplication of operands 1 and 2, which have mode M, and store the most significant half of the product in operand 0. The least significant half of the product is discarded. ! `umulM3_highpart' Similar, but the multiplication is unsigned. ! `maddMN4' Multiply operands 1 and 2, sign-extend them to mode N, add operand ! 3, and store the result in operand 0. Operands 1 and 2 have mode ! M and operands 0 and 3 have mode N. Both modes must be integer or fixed-point modes and N must be twice the size of M. ! In other words, `maddMN4' is like `mulMN3' except that it also ! adds operand 3. ! These instructions are not allowed to `FAIL'. ! `umaddMN4' ! Like `maddMN4', but zero-extend the multiplication operands ! instead of sign-extending them. ! `ssmaddMN4' ! Like `maddMN4', but all involved operations must be signed-saturating. ! `usmaddMN4' ! Like `umaddMN4', but all involved operations must be unsigned-saturating. ! `msubMN4' Multiply operands 1 and 2, sign-extend them to mode N, subtract the ! result from operand 3, and store the result in operand 0. ! Operands 1 and 2 have mode M and operands 0 and 3 have mode N. ! Both modes must be integer or fixed-point modes and N must be twice ! the size of M. ! In other words, `msubMN4' is like `mulMN3' except that it also subtracts the result from operand 3. ! These instructions are not allowed to `FAIL'. ! `umsubMN4' ! Like `msubMN4', but zero-extend the multiplication operands ! instead of sign-extending them. ! `ssmsubMN4' ! Like `msubMN4', but all involved operations must be signed-saturating. ! `usmsubMN4' ! Like `umsubMN4', but all involved operations must be unsigned-saturating. ! `divmodM4' Signed division that produces both a quotient and a remainder. Operand 1 is divided by operand 2 to produce a quotient stored in operand 0 and a remainder stored in operand 3. For machines with an instruction that produces both a quotient and ! a remainder, provide a pattern for `divmodM4' but do not provide ! patterns for `divM3' and `modM3'. This allows optimization in the relatively common case when both the quotient and remainder are computed. If an instruction that just produces a quotient or just a remainder exists and is more efficient than the instruction that produces ! both, write the output routine of `divmodM4' to call ! `find_reg_note' and look for a `REG_UNUSED' note on the quotient ! or remainder and generate the appropriate instruction. ! `udivmodM4' Similar, but does unsigned division. ! `ashlM3', `ssashlM3', `usashlM3' Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and store the result in operand 0. Here M is the mode of operand 0 and operand 1; operand 2's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. The meaning of out-of-range shift counts can optionally be specified by ! `TARGET_SHIFT_TRUNCATION_MASK'. *Note TARGET_SHIFT_TRUNCATION_MASK::. Operand 2 is always a scalar type. ! `ashrM3', `lshrM3', `rotlM3', `rotrM3' ! Other shift and rotate instructions, analogous to the `ashlM3' instructions. Operand 2 is always a scalar type. ! `vashlM3', `vashrM3', `vlshrM3', `vrotlM3', `vrotrM3' Vector shift and rotate instructions that take vectors as operand 2 instead of a scalar type. ! `bswapM2' Reverse the order of bytes of operand 1 and store the result in operand 0. ! `negM2', `ssnegM2', `usnegM2' Negate operand 1 and store the result in operand 0. ! `absM2' Store the absolute value of operand 1 into operand 0. ! `sqrtM2' Store the square root of operand 1 into operand 0. ! The `sqrt' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `sqrtf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `fmodM3' ! Store the remainder of dividing operand 1 by operand 2 into ! operand 0, rounded towards zero to an integer. ! The `fmod' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `fmodf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `remainderM3' ! Store the remainder of dividing operand 1 by operand 2 into ! operand 0, rounded to the nearest integer. ! The `remainder' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `remainderf' built-in function uses the mode which corresponds to the C data ! type `float'. ! `cosM2' Store the cosine of operand 1 into operand 0. ! The `cos' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `cosf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `sinM2' Store the sine of operand 1 into operand 0. ! The `sin' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `sinf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `sincosM3' Store the cosine of operand 2 into operand 0 and the sine of operand 2 into operand 1. ! The `sin' and `cos' built-in functions of C always use the mode ! which corresponds to the C data type `double' and the `sinf' and ! `cosf' built-in function use the mode which corresponds to the C ! data type `float'. Targets that can calculate the sine and cosine simultaneously can implement this pattern as opposed to ! implementing individual `sinM2' and `cosM2' patterns. The `sin' ! and `cos' built-in functions will then be expanded to the ! `sincosM3' pattern, with one of the output values left unused. ! `expM2' Store the exponential of operand 1 into operand 0. ! The `exp' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `expf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `logM2' Store the natural logarithm of operand 1 into operand 0. ! The `log' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `logf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `powM3' Store the value of operand 1 raised to the exponent operand 2 into operand 0. ! The `pow' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `powf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `atan2M3' Store the arc tangent (inverse tangent) of operand 1 divided by operand 2 into operand 0, using the signs of both arguments to determine the quadrant of the result. ! The `atan2' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `atan2f' built-in function uses the mode which corresponds to the C data type ! `float'. ! `floorM2' Store the largest integral value not greater than argument. ! The `floor' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `floorf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `btruncM2' Store the argument rounded to integer towards zero. ! The `trunc' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `truncf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `roundM2' Store the argument rounded to integer away from zero. ! The `round' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `roundf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `ceilM2' Store the argument rounded to integer away from zero. ! The `ceil' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `ceilf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `nearbyintM2' Store the argument rounded according to the default rounding mode ! The `nearbyint' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `nearbyintf' built-in function uses the mode which corresponds to the C data ! type `float'. ! `rintM2' Store the argument rounded according to the default rounding mode and raise the inexact exception when the result differs in value from the argument ! The `rint' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `rintf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `lrintMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number according to the current rounding mode and store in operand 0 (which has mode N). ! `lroundMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number rounding to nearest and away from zero and store in operand 0 (which has mode N). ! `lfloorMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number rounding down and store in operand 0 (which has mode N). ! `lceilMN2' Convert operand 1 (valid for floating point mode M) to fixed point ! mode N as a signed number rounding up and store in operand 0 ! (which has mode N). ! `copysignM3' Store a value with the magnitude of operand 1 and the sign of operand 2 into operand 0. ! The `copysign' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `copysignf' built-in function uses the mode which corresponds to the C data ! type `float'. ! `ffsM2' Store into operand 0 one plus the index of the least significant 1-bit of operand 1. If operand 1 is zero, store zero. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! The `ffs' built-in function of C always uses the mode which ! corresponds to the C data type `int'. ! `clzM2' ! Store into operand 0 the number of leading 0-bits in X, starting ! at the most significant bit position. If X is 0, the ! `CLZ_DEFINED_VALUE_AT_ZERO' (*note Misc::) macro defines if the result is undefined or has a useful value. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! `ctzM2' Store into operand 0 the number of trailing 0-bits in X, starting at the least significant bit position. If X is 0, the ! `CTZ_DEFINED_VALUE_AT_ZERO' (*note Misc::) macro defines if the result is undefined or has a useful value. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! `popcountM2' Store into operand 0 the number of 1-bits in X. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! `parityM2' Store into operand 0 the parity of X, i.e. the number of 1-bits in X modulo 2. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! `one_cmplM2' Store the bitwise-complement of operand 1 into operand 0. ! `movmemM' Block move instruction. The destination and source blocks of ! memory are the first two operands, and both are `mem:BLK's with an ! address in mode `Pmode'. The number of bytes to move is the third operand, in mode M. ! Usually, you specify `word_mode' for M. However, if you can generate better code knowing the range of valid lengths is smaller than those representable in a full word, you should provide a pattern with a mode corresponding to the range of values you can ! handle efficiently (e.g., `QImode' for values in the range 0-127; ! note we avoid numbers that appear negative) and also a pattern ! with `word_mode'. The fourth operand is the known shared alignment of the source and ! destination, in the form of a `const_int' rtx. Thus, if the compiler knows that both source and destination are word-aligned, it may provide the value 4 for this operand. Optional operands 5 and 6 specify expected alignment and size of block respectively. The expected alignment differs from alignment in operand 4 in a way that the blocks are not required to be ! aligned according to it in all cases. This expected alignment is also in bytes, just like operand 4. Expected size, when unknown, ! is set to `(const_int -1)'. ! Descriptions of multiple `movmemM' patterns can only be beneficial if the patterns for smaller modes have fewer restrictions on their first, second and fourth operands. Note that the mode M in ! `movmemM' does not impose any restriction on the mode of individually moved data units in the block. These patterns need not give special consideration to the possibility that the source and destination strings might overlap. ! `movstr' ! String copy instruction, with `stpcpy' semantics. Operand 0 is an ! output operand in mode `Pmode'. The addresses of the destination ! and source strings are operands 1 and 2, and both are `mem:BLK's ! with addresses in mode `Pmode'. The execution of the expansion of this pattern should store in operand 0 the address in which the ! `NUL' terminator was stored in the destination string. ! `setmemM' Block set instruction. The destination string is the first ! operand, given as a `mem:BLK' whose address is in mode `Pmode'. The number of bytes to set is the second operand, in mode M. The ! value to initialize the memory with is the third operand. Targets that only support the clearing of memory should reject any value ! that is not the constant 0. See `movmemM' for a discussion of the choice of mode. The fourth operand is the known alignment of the destination, in ! the form of a `const_int' rtx. Thus, if the compiler knows that the destination is word-aligned, it may provide the value 4 for this operand. Optional operands 5 and 6 specify expected alignment and size of block respectively. The expected alignment differs from alignment in operand 4 in a way that the blocks are not required to be ! aligned according to it in all cases. This expected alignment is also in bytes, just like operand 4. Expected size, when unknown, ! is set to `(const_int -1)'. ! The use for multiple `setmemM' is as for `movmemM'. ! `cmpstrnM' String compare instruction, with five operands. Operand 0 is the output; it has mode M. The remaining four operands are like the ! operands of `movmemM'. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each string. The instruction is not allowed to prefetch more than one byte at a time since either string may end --- 21931,22552 ---- for a memory operand 0 and register operand 1. ! 'vec_setM' Set given field in the vector value. Operand 0 is the vector to modify, operand 1 is new value of field and operand 2 specify the field index. ! 'vec_extractM' Extract given field from the vector value. Operand 1 is the vector, operand 2 specify field index and operand 0 place to store value into. ! 'vec_initM' Initialize the vector to given values. Operand 0 is the vector to initialize and operand 1 is parallel containing values for individual fields. ! 'vcondMN' Output a conditional vector move. Operand 0 is the destination to ! receive a combination of operand 1 and operand 2, which are of mode ! M, dependent on the outcome of the predicate in operand 3 which is ! a vector comparison with operands of mode N in operands 4 and 5. ! The modes M and N should have the same size. Operand 0 will be set ! to the value OP1 & MSK | OP2 & ~MSK where MSK is computed by ! element-wise evaluation of the vector comparison with a truth value ! of all-ones and a false value of all-zeros. ! 'vec_permM' Output a (variable) vector permutation. Operand 0 is the ! destination to receive elements from operand 1 and operand 2, which ! are of mode M. Operand 3 is the "selector". It is an integral ! mode vector of the same width and number of elements as mode M. The input elements are numbered from 0 in operand 1 through 2*N-1 ! in operand 2. The elements of the selector must be computed modulo ! 2*N. Note that if 'rtx_equal_p(operand1, operand2)', this can be ! implemented with just operand 1 and selector elements modulo N. In order to make things easy for a number of targets, if there is ! no 'vec_perm' pattern for mode M, but there is for mode Q where Q ! is a vector of 'QImode' of the same width as M, the middle-end will ! lower the mode M 'VEC_PERM_EXPR' to mode Q. ! 'vec_perm_constM' ! Like 'vec_perm' except that the permutation is a compile-time ! constant. That is, operand 3, the "selector", is a 'CONST_VECTOR'. Some targets cannot perform a permutation with a variable selector, but can efficiently perform a constant permutation. Further, the ! target hook 'vec_perm_ok' is queried to determine if the specific ! constant permutation is available efficiently; the named pattern is ! never expanded without 'vec_perm_ok' returning true. ! There is no need for a target to supply both 'vec_permM' and ! 'vec_perm_constM' if the former can trivially implement the operation with, say, the vector constant loaded into a register. ! 'pushM1' Output a push instruction. Operand 0 is value to push. Used only ! when 'PUSH_ROUNDING' is defined. For historical reason, this ! pattern may be missing and in such case an 'mov' expander is used ! instead, with a 'MEM' expression forming the push operation. The ! 'mov' expander method is deprecated. ! 'addM3' Add operand 2 and operand 1, storing the result in operand 0. All operands must have mode M. This can be used even on two-address machines, by means of constraints requiring operands 1 and 0 to be the same location. ! 'ssaddM3', 'usaddM3' ! 'subM3', 'sssubM3', 'ussubM3' ! 'mulM3', 'ssmulM3', 'usmulM3' ! 'divM3', 'ssdivM3' ! 'udivM3', 'usdivM3' ! 'modM3', 'umodM3' ! 'uminM3', 'umaxM3' ! 'andM3', 'iorM3', 'xorM3' Similar, for other arithmetic operations. ! 'fmaM4' Multiply operand 2 and operand 1, then add operand 3, storing the result in operand 0 without doing an intermediate rounding step. All operands must have mode M. This pattern is used to implement ! the 'fma', 'fmaf', and 'fmal' builtin functions from the ISO C99 standard. ! 'fmsM4' ! Like 'fmaM4', except operand 3 subtracted from the product instead of added to the product. This is represented in the rtl as (fma:M OP1 OP2 (neg:M OP3)) ! 'fnmaM4' ! Like 'fmaM4' except that the intermediate product is negated before ! being added to operand 3. This is represented in the rtl as (fma:M (neg:M OP1) OP2 OP3) ! 'fnmsM4' ! Like 'fmsM4' except that the intermediate product is negated before ! subtracting operand 3. This is represented in the rtl as (fma:M (neg:M OP1) OP2 (neg:M OP3)) ! 'sminM3', 'smaxM3' Signed minimum and maximum operations. When used with floating ! point, if both operands are zeros, or if either operand is 'NaN', ! then it is unspecified which of the two operands is returned as the ! result. ! 'reduc_smin_M', 'reduc_smax_M' ! Find the signed minimum/maximum of the elements of a vector. The vector is operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and input vector should have the same modes. ! 'reduc_umin_M', 'reduc_umax_M' ! Find the unsigned minimum/maximum of the elements of a vector. The vector is operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and input vector should have the same modes. ! 'reduc_splus_M' ! Compute the sum of the signed elements of a vector. The vector is ! operand 1, and the scalar result is stored in the least significant ! bits of operand 0 (also a vector). The output and input vector ! should have the same modes. ! 'reduc_uplus_M' ! Compute the sum of the unsigned elements of a vector. The vector is operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and input vector should have the same modes. ! 'sdot_prodM' ! 'udot_prodM' Compute the sum of the products of two signed/unsigned elements. ! Operand 1 and operand 2 are of the same mode. Their product, which ! is of a wider mode, is computed and added to operand 3. Operand 3 ! is of a mode equal or wider than the mode of the product. The ! result is placed in operand 0, which is of the same mode as operand ! 3. ! 'ssum_widenM3' ! 'usum_widenM3' ! Operands 0 and 2 are of the same mode, which is wider than the mode ! of operand 1. Add operand 1 to operand 2 and place the widened ! result in operand 0. (This is used express accumulation of elements into an accumulator of a wider mode.) ! 'vec_shl_M', 'vec_shr_M' ! Whole vector left/right shift in bits. Operand 1 is a vector to be ! shifted. Operand 2 is an integer shift amount in bits. Operand 0 ! is where the resulting shifted vector is stored. The output and ! input vectors should have the same modes. ! 'vec_pack_trunc_M' ! Narrow (demote) and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N integral or floating point elements of size S. Operand 0 is the resulting vector in which 2*N elements of size N/2 are concatenated after narrowing them down using truncation. ! 'vec_pack_ssat_M', 'vec_pack_usat_M' Narrow (demote) and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N integral elements of ! size S. Operand 0 is the resulting vector in which the elements of ! the two input vectors are concatenated after narrowing them down ! using signed/unsigned saturating arithmetic. ! 'vec_pack_sfix_trunc_M', 'vec_pack_ufix_trunc_M' Narrow, convert to signed/unsigned integral type and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N floating point elements of size S. Operand 0 is the resulting vector in which 2*N elements of size N/2 are concatenated. ! 'vec_unpacks_hi_M', 'vec_unpacks_lo_M' Extract and widen (promote) the high/low part of a vector of signed integral or floating point elements. The input vector (operand 1) ! has N elements of size S. Widen (promote) the high/low elements of ! the vector using signed or floating point extension and place the ! resulting N/2 values of size 2*S in the output vector (operand 0). ! 'vec_unpacku_hi_M', 'vec_unpacku_lo_M' Extract and widen (promote) the high/low part of a vector of unsigned integral elements. The input vector (operand 1) has N ! elements of size S. Widen (promote) the high/low elements of the vector using zero extension and place the resulting N/2 values of size 2*S in the output vector (operand 0). ! 'vec_unpacks_float_hi_M', 'vec_unpacks_float_lo_M' ! 'vec_unpacku_float_hi_M', 'vec_unpacku_float_lo_M' ! Extract, convert to floating point type and widen the high/low part ! of a vector of signed/unsigned integral elements. The input vector ! (operand 1) has N elements of size S. Convert the high/low elements of the vector using floating point conversion and place the resulting N/2 values of size 2*S in the output vector (operand 0). ! 'vec_widen_umult_hi_M', 'vec_widen_umult_lo_M' ! 'vec_widen_smult_hi_M', 'vec_widen_smult_lo_M' ! 'vec_widen_umult_even_M', 'vec_widen_umult_odd_M' ! 'vec_widen_smult_even_M', 'vec_widen_smult_odd_M' Signed/Unsigned widening multiplication. The two inputs (operands 1 and 2) are vectors with N signed/unsigned elements of size S. Multiply the high/low or even/odd elements of the two vectors, and put the N/2 products of size 2*S in the output vector (operand 0). ! 'vec_widen_ushiftl_hi_M', 'vec_widen_ushiftl_lo_M' ! 'vec_widen_sshiftl_hi_M', 'vec_widen_sshiftl_lo_M' Signed/Unsigned widening shift left. The first input (operand 1) is a vector with N signed/unsigned elements of size S. Operand 2 is a constant. Shift the high/low elements of operand 1, and put the N/2 results of size 2*S in the output vector (operand 0). ! 'mulhisi3' ! Multiply operands 1 and 2, which have mode 'HImode', and store a ! 'SImode' product in operand 0. ! 'mulqihi3', 'mulsidi3' Similar widening-multiplication instructions of other widths. ! 'umulqihi3', 'umulhisi3', 'umulsidi3' Similar widening-multiplication instructions that do unsigned multiplication. ! 'usmulqihi3', 'usmulhisi3', 'usmulsidi3' Similar widening-multiplication instructions that interpret the ! first operand as unsigned and the second operand as signed, then do ! a signed multiplication. ! 'smulM3_highpart' Perform a signed multiplication of operands 1 and 2, which have mode M, and store the most significant half of the product in operand 0. The least significant half of the product is discarded. ! 'umulM3_highpart' Similar, but the multiplication is unsigned. ! 'maddMN4' Multiply operands 1 and 2, sign-extend them to mode N, add operand ! 3, and store the result in operand 0. Operands 1 and 2 have mode M ! and operands 0 and 3 have mode N. Both modes must be integer or fixed-point modes and N must be twice the size of M. ! In other words, 'maddMN4' is like 'mulMN3' except that it also adds ! operand 3. ! These instructions are not allowed to 'FAIL'. ! 'umaddMN4' ! Like 'maddMN4', but zero-extend the multiplication operands instead ! of sign-extending them. ! 'ssmaddMN4' ! Like 'maddMN4', but all involved operations must be signed-saturating. ! 'usmaddMN4' ! Like 'umaddMN4', but all involved operations must be unsigned-saturating. ! 'msubMN4' Multiply operands 1 and 2, sign-extend them to mode N, subtract the ! result from operand 3, and store the result in operand 0. Operands ! 1 and 2 have mode M and operands 0 and 3 have mode N. Both modes ! must be integer or fixed-point modes and N must be twice the size ! of M. ! In other words, 'msubMN4' is like 'mulMN3' except that it also subtracts the result from operand 3. ! These instructions are not allowed to 'FAIL'. ! 'umsubMN4' ! Like 'msubMN4', but zero-extend the multiplication operands instead ! of sign-extending them. ! 'ssmsubMN4' ! Like 'msubMN4', but all involved operations must be signed-saturating. ! 'usmsubMN4' ! Like 'umsubMN4', but all involved operations must be unsigned-saturating. ! 'divmodM4' Signed division that produces both a quotient and a remainder. Operand 1 is divided by operand 2 to produce a quotient stored in operand 0 and a remainder stored in operand 3. For machines with an instruction that produces both a quotient and ! a remainder, provide a pattern for 'divmodM4' but do not provide ! patterns for 'divM3' and 'modM3'. This allows optimization in the relatively common case when both the quotient and remainder are computed. If an instruction that just produces a quotient or just a remainder exists and is more efficient than the instruction that produces ! both, write the output routine of 'divmodM4' to call ! 'find_reg_note' and look for a 'REG_UNUSED' note on the quotient or ! remainder and generate the appropriate instruction. ! 'udivmodM4' Similar, but does unsigned division. ! 'ashlM3', 'ssashlM3', 'usashlM3' Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and store the result in operand 0. Here M is the mode of operand 0 and operand 1; operand 2's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. The meaning of out-of-range shift counts can optionally be specified by ! 'TARGET_SHIFT_TRUNCATION_MASK'. *Note TARGET_SHIFT_TRUNCATION_MASK::. Operand 2 is always a scalar type. ! 'ashrM3', 'lshrM3', 'rotlM3', 'rotrM3' ! Other shift and rotate instructions, analogous to the 'ashlM3' instructions. Operand 2 is always a scalar type. ! 'vashlM3', 'vashrM3', 'vlshrM3', 'vrotlM3', 'vrotrM3' Vector shift and rotate instructions that take vectors as operand 2 instead of a scalar type. ! 'bswapM2' Reverse the order of bytes of operand 1 and store the result in operand 0. ! 'negM2', 'ssnegM2', 'usnegM2' Negate operand 1 and store the result in operand 0. ! 'absM2' Store the absolute value of operand 1 into operand 0. ! 'sqrtM2' Store the square root of operand 1 into operand 0. ! The 'sqrt' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'sqrtf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'fmodM3' ! Store the remainder of dividing operand 1 by operand 2 into operand ! 0, rounded towards zero to an integer. ! The 'fmod' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'fmodf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'remainderM3' ! Store the remainder of dividing operand 1 by operand 2 into operand ! 0, rounded to the nearest integer. ! The 'remainder' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'remainderf' built-in function uses the mode which corresponds to the C data ! type 'float'. ! 'cosM2' Store the cosine of operand 1 into operand 0. ! The 'cos' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'cosf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'sinM2' Store the sine of operand 1 into operand 0. ! The 'sin' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'sinf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'sincosM3' Store the cosine of operand 2 into operand 0 and the sine of operand 2 into operand 1. ! The 'sin' and 'cos' built-in functions of C always use the mode ! which corresponds to the C data type 'double' and the 'sinf' and ! 'cosf' built-in function use the mode which corresponds to the C ! data type 'float'. Targets that can calculate the sine and cosine simultaneously can implement this pattern as opposed to ! implementing individual 'sinM2' and 'cosM2' patterns. The 'sin' ! and 'cos' built-in functions will then be expanded to the ! 'sincosM3' pattern, with one of the output values left unused. ! 'expM2' Store the exponential of operand 1 into operand 0. ! The 'exp' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'expf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'logM2' Store the natural logarithm of operand 1 into operand 0. ! The 'log' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'logf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'powM3' Store the value of operand 1 raised to the exponent operand 2 into operand 0. ! The 'pow' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'powf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'atan2M3' Store the arc tangent (inverse tangent) of operand 1 divided by operand 2 into operand 0, using the signs of both arguments to determine the quadrant of the result. ! The 'atan2' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'atan2f' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'floorM2' Store the largest integral value not greater than argument. ! The 'floor' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'floorf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'btruncM2' Store the argument rounded to integer towards zero. ! The 'trunc' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'truncf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'roundM2' Store the argument rounded to integer away from zero. ! The 'round' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'roundf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'ceilM2' Store the argument rounded to integer away from zero. ! The 'ceil' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'ceilf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'nearbyintM2' Store the argument rounded according to the default rounding mode ! The 'nearbyint' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'nearbyintf' built-in function uses the mode which corresponds to the C data ! type 'float'. ! 'rintM2' Store the argument rounded according to the default rounding mode and raise the inexact exception when the result differs in value from the argument ! The 'rint' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'rintf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'lrintMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number according to the current rounding mode and store in operand 0 (which has mode N). ! 'lroundMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number rounding to nearest and away from zero and store in operand 0 (which has mode N). ! 'lfloorMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number rounding down and store in operand 0 (which has mode N). ! 'lceilMN2' Convert operand 1 (valid for floating point mode M) to fixed point ! mode N as a signed number rounding up and store in operand 0 (which ! has mode N). ! 'copysignM3' Store a value with the magnitude of operand 1 and the sign of operand 2 into operand 0. ! The 'copysign' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'copysignf' built-in function uses the mode which corresponds to the C data ! type 'float'. ! 'ffsM2' Store into operand 0 one plus the index of the least significant 1-bit of operand 1. If operand 1 is zero, store zero. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! The 'ffs' built-in function of C always uses the mode which ! corresponds to the C data type 'int'. ! 'clzM2' ! Store into operand 0 the number of leading 0-bits in X, starting at ! the most significant bit position. If X is 0, the ! 'CLZ_DEFINED_VALUE_AT_ZERO' (*note Misc::) macro defines if the result is undefined or has a useful value. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! 'ctzM2' Store into operand 0 the number of trailing 0-bits in X, starting at the least significant bit position. If X is 0, the ! 'CTZ_DEFINED_VALUE_AT_ZERO' (*note Misc::) macro defines if the result is undefined or has a useful value. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! 'popcountM2' Store into operand 0 the number of 1-bits in X. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! 'parityM2' Store into operand 0 the parity of X, i.e. the number of 1-bits in X modulo 2. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! 'one_cmplM2' Store the bitwise-complement of operand 1 into operand 0. ! 'movmemM' Block move instruction. The destination and source blocks of ! memory are the first two operands, and both are 'mem:BLK's with an ! address in mode 'Pmode'. The number of bytes to move is the third operand, in mode M. ! Usually, you specify 'word_mode' for M. However, if you can generate better code knowing the range of valid lengths is smaller than those representable in a full word, you should provide a pattern with a mode corresponding to the range of values you can ! handle efficiently (e.g., 'QImode' for values in the range 0-127; ! note we avoid numbers that appear negative) and also a pattern with ! 'word_mode'. The fourth operand is the known shared alignment of the source and ! destination, in the form of a 'const_int' rtx. Thus, if the compiler knows that both source and destination are word-aligned, it may provide the value 4 for this operand. Optional operands 5 and 6 specify expected alignment and size of block respectively. The expected alignment differs from alignment in operand 4 in a way that the blocks are not required to be ! aligned according to it in all cases. This expected alignment is also in bytes, just like operand 4. Expected size, when unknown, ! is set to '(const_int -1)'. ! Descriptions of multiple 'movmemM' patterns can only be beneficial if the patterns for smaller modes have fewer restrictions on their first, second and fourth operands. Note that the mode M in ! 'movmemM' does not impose any restriction on the mode of individually moved data units in the block. These patterns need not give special consideration to the possibility that the source and destination strings might overlap. ! 'movstr' ! String copy instruction, with 'stpcpy' semantics. Operand 0 is an ! output operand in mode 'Pmode'. The addresses of the destination ! and source strings are operands 1 and 2, and both are 'mem:BLK's ! with addresses in mode 'Pmode'. The execution of the expansion of this pattern should store in operand 0 the address in which the ! 'NUL' terminator was stored in the destination string. ! 'setmemM' Block set instruction. The destination string is the first ! operand, given as a 'mem:BLK' whose address is in mode 'Pmode'. The number of bytes to set is the second operand, in mode M. The ! value to initialize the memory with is the third operand. Targets that only support the clearing of memory should reject any value ! that is not the constant 0. See 'movmemM' for a discussion of the choice of mode. The fourth operand is the known alignment of the destination, in ! the form of a 'const_int' rtx. Thus, if the compiler knows that the destination is word-aligned, it may provide the value 4 for this operand. Optional operands 5 and 6 specify expected alignment and size of block respectively. The expected alignment differs from alignment in operand 4 in a way that the blocks are not required to be ! aligned according to it in all cases. This expected alignment is also in bytes, just like operand 4. Expected size, when unknown, ! is set to '(const_int -1)'. ! The use for multiple 'setmemM' is as for 'movmemM'. ! 'cmpstrnM' String compare instruction, with five operands. Operand 0 is the output; it has mode M. The remaining four operands are like the ! operands of 'movmemM'. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each string. The instruction is not allowed to prefetch more than one byte at a time since either string may end *************** pattern to accomplish a certain task. *** 22891,23073 **** effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison. ! `cmpstrM' String compare instruction, without known maximum length. Operand 0 is the output; it has mode M. The second and third operand are ! the blocks of memory to be compared; both are `mem:BLK' with an ! address in mode `Pmode'. The fourth operand is the known shared alignment of the source and ! destination, in the form of a `const_int' rtx. Thus, if the compiler knows that both source and destination are word-aligned, it may provide the value 4 for this operand. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each string. The ! instruction is not allowed to prefetch more than one byte at a ! time since either string may end in the first byte and reading ! past that may access an invalid page or segment and cause a fault. ! The comparison will terminate when the fetched bytes are different ! or if they are equal to zero. The effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison. ! `cmpmemM' Block compare instruction, with five operands like the operands of ! `cmpstrM'. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each ! block. Unlike `cmpstrM' the instruction can prefetch any bytes in ! the two memory blocks. Also unlike `cmpstrM' the comparison will not stop if both bytes are zero. The effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison. ! `strlenM' Compute the length of a string, with three operands. Operand 0 is ! the result (of mode M), operand 1 is a `mem' referring to the ! first character of the string, operand 2 is the character to ! search for (normally zero), and operand 3 is a constant describing ! the known alignment of the beginning of the string. ! `floatMN2' Convert signed integer operand 1 (valid for fixed point mode M) to floating point mode N and store in operand 0 (which has mode N). ! `floatunsMN2' Convert unsigned integer operand 1 (valid for fixed point mode M) to floating point mode N and store in operand 0 (which has mode N). ! `fixMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number and store in operand 0 (which has mode N). This instruction's result is defined only when the value of operand 1 is an integer. If the machine description defines this pattern, it also needs to ! define the `ftrunc' pattern. ! `fixunsMN2' Convert operand 1 (valid for floating point mode M) to fixed point ! mode N as an unsigned number and store in operand 0 (which has ! mode N). This instruction's result is defined only when the value ! of operand 1 is an integer. ! `ftruncM2' Convert operand 1 (valid for floating point mode M) to an integer value, still represented in floating point mode M, and store it in operand 0 (valid for floating point mode M). ! `fix_truncMN2' ! Like `fixMN2' but works for any floating point value of mode M by converting the value to an integer. ! `fixuns_truncMN2' ! Like `fixunsMN2' but works for any floating point value of mode M by converting the value to an integer. ! `truncMN2' Truncate operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point or both floating point. ! `extendMN2' Sign-extend operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point or both floating point. ! `zero_extendMN2' Zero-extend operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point. ! `fractMN2' ! Convert operand 1 of mode M to mode N and store in operand 0 ! (which has mode N). Mode M and mode N could be fixed-point to fixed-point, signed integer to fixed-point, fixed-point to signed integer, floating-point to fixed-point, or fixed-point to floating-point. When overflows or underflows happen, the results are undefined. ! `satfractMN2' ! Convert operand 1 of mode M to mode N and store in operand 0 ! (which has mode N). Mode M and mode N could be fixed-point to fixed-point, signed integer to fixed-point, or floating-point to fixed-point. When overflows or underflows happen, the instruction saturates the results to the maximum or the minimum. ! `fractunsMN2' ! Convert operand 1 of mode M to mode N and store in operand 0 ! (which has mode N). Mode M and mode N could be unsigned integer ! to fixed-point, or fixed-point to unsigned integer. When ! overflows or underflows happen, the results are undefined. ! `satfractunsMN2' Convert unsigned integer operand 1 of mode M to fixed-point mode N and store in operand 0 (which has mode N). When overflows or underflows happen, the instruction saturates the results to the maximum or the minimum. ! `extvM' Extract a bit-field from register operand 1, sign-extend it, and store it in operand 0. Operand 2 specifies the width of the field in bits and operand 3 the starting bit, which counts from the most ! significant bit if `BITS_BIG_ENDIAN' is true and from the least significant bit otherwise. Operands 0 and 1 both have mode M. Operands 2 and 3 have a target-specific mode. ! `extvmisalignM' Extract a bit-field from memory operand 1, sign extend it, and store it in operand 0. Operand 2 specifies the width in bits and operand 3 the starting bit. The starting bit is always somewhere ! in the first byte of operand 1; it counts from the most ! significant bit if `BITS_BIG_ENDIAN' is true and from the least ! significant bit otherwise. ! Operand 0 has mode M while operand 1 has `BLK' mode. Operands 2 and 3 have a target-specific mode. The instruction must not read beyond the last byte of the bit-field. ! `extzvM' ! Like `extvM' except that the bit-field value is zero-extended. ! `extzvmisalignM' ! Like `extvmisalignM' except that the bit-field value is zero-extended. ! `insvM' Insert operand 3 into a bit-field of register operand 0. Operand 1 ! specifies the width of the field in bits and operand 2 the ! starting bit, which counts from the most significant bit if ! `BITS_BIG_ENDIAN' is true and from the least significant bit otherwise. Operands 0 and 3 both have mode M. Operands 1 and 2 have a target-specific mode. ! `insvmisalignM' Insert operand 3 into a bit-field of memory operand 0. Operand 1 ! specifies the width of the field in bits and operand 2 the ! starting bit. The starting bit is always somewhere in the first ! byte of operand 0; it counts from the most significant bit if ! `BITS_BIG_ENDIAN' is true and from the least significant bit otherwise. ! Operand 3 has mode M while operand 0 has `BLK' mode. Operands 1 and 2 have a target-specific mode. The instruction must not read or write beyond the last byte of the bit-field. ! `extv' Extract a bit-field from operand 1 (a register or memory operand), where operand 2 specifies the width in bits and operand 3 the starting bit, and store it in operand 0. Operand 0 must have mode ! `word_mode'. Operand 1 may have mode `byte_mode' or `word_mode'; ! often `word_mode' is allowed only for registers. Operands 2 and 3 ! must be valid for `word_mode'. The RTL generation pass generates this instruction only with constants for operands 2 and 3 and the constant is never zero for --- 22556,22738 ---- effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison. ! 'cmpstrM' String compare instruction, without known maximum length. Operand 0 is the output; it has mode M. The second and third operand are ! the blocks of memory to be compared; both are 'mem:BLK' with an ! address in mode 'Pmode'. The fourth operand is the known shared alignment of the source and ! destination, in the form of a 'const_int' rtx. Thus, if the compiler knows that both source and destination are word-aligned, it may provide the value 4 for this operand. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each string. The ! instruction is not allowed to prefetch more than one byte at a time ! since either string may end in the first byte and reading past that ! may access an invalid page or segment and cause a fault. The ! comparison will terminate when the fetched bytes are different or ! if they are equal to zero. The effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison. ! 'cmpmemM' Block compare instruction, with five operands like the operands of ! 'cmpstrM'. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each ! block. Unlike 'cmpstrM' the instruction can prefetch any bytes in ! the two memory blocks. Also unlike 'cmpstrM' the comparison will not stop if both bytes are zero. The effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison. ! 'strlenM' Compute the length of a string, with three operands. Operand 0 is ! the result (of mode M), operand 1 is a 'mem' referring to the first ! character of the string, operand 2 is the character to search for ! (normally zero), and operand 3 is a constant describing the known ! alignment of the beginning of the string. ! 'floatMN2' Convert signed integer operand 1 (valid for fixed point mode M) to floating point mode N and store in operand 0 (which has mode N). ! 'floatunsMN2' Convert unsigned integer operand 1 (valid for fixed point mode M) to floating point mode N and store in operand 0 (which has mode N). ! 'fixMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number and store in operand 0 (which has mode N). This instruction's result is defined only when the value of operand 1 is an integer. If the machine description defines this pattern, it also needs to ! define the 'ftrunc' pattern. ! 'fixunsMN2' Convert operand 1 (valid for floating point mode M) to fixed point ! mode N as an unsigned number and store in operand 0 (which has mode ! N). This instruction's result is defined only when the value of ! operand 1 is an integer. ! 'ftruncM2' Convert operand 1 (valid for floating point mode M) to an integer value, still represented in floating point mode M, and store it in operand 0 (valid for floating point mode M). ! 'fix_truncMN2' ! Like 'fixMN2' but works for any floating point value of mode M by converting the value to an integer. ! 'fixuns_truncMN2' ! Like 'fixunsMN2' but works for any floating point value of mode M by converting the value to an integer. ! 'truncMN2' Truncate operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point or both floating point. ! 'extendMN2' Sign-extend operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point or both floating point. ! 'zero_extendMN2' Zero-extend operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point. ! 'fractMN2' ! Convert operand 1 of mode M to mode N and store in operand 0 (which ! has mode N). Mode M and mode N could be fixed-point to fixed-point, signed integer to fixed-point, fixed-point to signed integer, floating-point to fixed-point, or fixed-point to floating-point. When overflows or underflows happen, the results are undefined. ! 'satfractMN2' ! Convert operand 1 of mode M to mode N and store in operand 0 (which ! has mode N). Mode M and mode N could be fixed-point to fixed-point, signed integer to fixed-point, or floating-point to fixed-point. When overflows or underflows happen, the instruction saturates the results to the maximum or the minimum. ! 'fractunsMN2' ! Convert operand 1 of mode M to mode N and store in operand 0 (which ! has mode N). Mode M and mode N could be unsigned integer to ! fixed-point, or fixed-point to unsigned integer. When overflows or ! underflows happen, the results are undefined. ! 'satfractunsMN2' Convert unsigned integer operand 1 of mode M to fixed-point mode N and store in operand 0 (which has mode N). When overflows or underflows happen, the instruction saturates the results to the maximum or the minimum. ! 'extvM' Extract a bit-field from register operand 1, sign-extend it, and store it in operand 0. Operand 2 specifies the width of the field in bits and operand 3 the starting bit, which counts from the most ! significant bit if 'BITS_BIG_ENDIAN' is true and from the least significant bit otherwise. Operands 0 and 1 both have mode M. Operands 2 and 3 have a target-specific mode. ! 'extvmisalignM' Extract a bit-field from memory operand 1, sign extend it, and store it in operand 0. Operand 2 specifies the width in bits and operand 3 the starting bit. The starting bit is always somewhere ! in the first byte of operand 1; it counts from the most significant ! bit if 'BITS_BIG_ENDIAN' is true and from the least significant bit ! otherwise. ! Operand 0 has mode M while operand 1 has 'BLK' mode. Operands 2 and 3 have a target-specific mode. The instruction must not read beyond the last byte of the bit-field. ! 'extzvM' ! Like 'extvM' except that the bit-field value is zero-extended. ! 'extzvmisalignM' ! Like 'extvmisalignM' except that the bit-field value is zero-extended. ! 'insvM' Insert operand 3 into a bit-field of register operand 0. Operand 1 ! specifies the width of the field in bits and operand 2 the starting ! bit, which counts from the most significant bit if ! 'BITS_BIG_ENDIAN' is true and from the least significant bit otherwise. Operands 0 and 3 both have mode M. Operands 1 and 2 have a target-specific mode. ! 'insvmisalignM' Insert operand 3 into a bit-field of memory operand 0. Operand 1 ! specifies the width of the field in bits and operand 2 the starting ! bit. The starting bit is always somewhere in the first byte of ! operand 0; it counts from the most significant bit if ! 'BITS_BIG_ENDIAN' is true and from the least significant bit otherwise. ! Operand 3 has mode M while operand 0 has 'BLK' mode. Operands 1 and 2 have a target-specific mode. The instruction must not read or write beyond the last byte of the bit-field. ! 'extv' Extract a bit-field from operand 1 (a register or memory operand), where operand 2 specifies the width in bits and operand 3 the starting bit, and store it in operand 0. Operand 0 must have mode ! 'word_mode'. Operand 1 may have mode 'byte_mode' or 'word_mode'; ! often 'word_mode' is allowed only for registers. Operands 2 and 3 ! must be valid for 'word_mode'. The RTL generation pass generates this instruction only with constants for operands 2 and 3 and the constant is never zero for *************** pattern to accomplish a certain task. *** 23076,23178 **** The bit-field value is sign-extended to a full word integer before it is stored in operand 0. ! This pattern is deprecated; please use `extvM' and `extvmisalignM' instead. ! `extzv' ! Like `extv' except that the bit-field value is zero-extended. ! This pattern is deprecated; please use `extzvM' and ! `extzvmisalignM' instead. ! `insv' ! Store operand 3 (which must be valid for `word_mode') into a ! bit-field in operand 0, where operand 1 specifies the width in ! bits and operand 2 the starting bit. Operand 0 may have mode ! `byte_mode' or `word_mode'; often `word_mode' is allowed only for ! registers. Operands 1 and 2 must be valid for `word_mode'. The RTL generation pass generates this instruction only with constants for operands 1 and 2 and the constant is never zero for operand 1. ! This pattern is deprecated; please use `insvM' and `insvmisalignM' instead. ! `movMODEcc' Conditionally move operand 2 or operand 3 into operand 0 according ! to the comparison in operand 1. If the comparison is true, ! operand 2 is moved into operand 0, otherwise operand 3 is moved. ! The mode of the operands being compared need not be the same as ! the operands being moved. Some machines, sparc64 for example, ! have instructions that conditionally move an integer value based ! on the floating point condition codes and vice versa. If the machine does not have conditional move instructions, do not define these patterns. ! `addMODEcc' ! Similar to `movMODEcc' but for conditional addition. Conditionally ! move operand 2 or (operands 2 + operand 3) into operand 0 ! according to the comparison in operand 1. If the comparison is ! false, operand 2 is moved into operand 0, otherwise (operand 2 + ! operand 3) is moved. ! `cstoreMODE4' Store zero or nonzero in operand 0 according to whether a ! comparison is true. Operand 1 is a comparison operator. Operand ! 2 and operand 3 are the first and second operand of the ! comparison, respectively. You specify the mode that operand 0 ! must have when you write the `match_operand' expression. The ! compiler automatically sees which mode you have used and supplies ! an operand of that mode. The value stored for a true condition must have 1 as its low bit, or else must be negative. Otherwise the instruction is not suitable and you should omit it from the machine description. You describe to the compiler exactly which value is stored by defining ! the macro `STORE_FLAG_VALUE' (*note Misc::). If a description cannot be found that can be used for all the possible comparison ! operators, you should pick one and use a `define_expand' to map ! all results onto the one you chose. ! These operations may `FAIL', but should do so only in relatively ! uncommon cases; if they would `FAIL' for common cases involving integer comparisons, it is best to restrict the predicates to not allow these operands. Likewise if a given comparison operator will ! always fail, independent of the operands (for floating-point ! modes, the `ordered_comparison_operator' predicate is often useful ! in this case). If this pattern is omitted, the compiler will generate a conditional branch--for example, it may copy a constant one to the ! target and branching around an assignment of zero to the ! target--or a libcall. If the predicate for operand 1 only rejects ! some operators, it will also try reordering the operands and/or ! inverting the result value (e.g. by an exclusive OR). These possibilities could be cheaper or equivalent to the instructions ! used for the `cstoreMODE4' pattern followed by those required to ! convert a positive result from `STORE_FLAG_VALUE' to 1; in this case, you can and should make operand 1's predicate reject some ! operators in the `cstoreMODE4' pattern, or remove the pattern altogether from the machine description. ! `cbranchMODE4' Conditional branch instruction combined with a compare instruction. Operand 0 is a comparison operator. Operand 1 and operand 2 are the first and second operands of the comparison, respectively. ! Operand 3 is a `label_ref' that refers to the label to jump to. ! `jump' A jump inside a function; an unconditional branch. Operand 0 is ! the `label_ref' of the label to jump to. This pattern name is mandatory on all machines. ! `call' Subroutine call instruction returning no value. Operand 0 is the function to call; operand 1 is the number of bytes of arguments ! pushed as a `const_int'; operand 2 is the number of registers used as operands. On most machines, operand 2 is not actually stored into the RTL --- 22741,22843 ---- The bit-field value is sign-extended to a full word integer before it is stored in operand 0. ! This pattern is deprecated; please use 'extvM' and 'extvmisalignM' instead. ! 'extzv' ! Like 'extv' except that the bit-field value is zero-extended. ! This pattern is deprecated; please use 'extzvM' and ! 'extzvmisalignM' instead. ! 'insv' ! Store operand 3 (which must be valid for 'word_mode') into a ! bit-field in operand 0, where operand 1 specifies the width in bits ! and operand 2 the starting bit. Operand 0 may have mode ! 'byte_mode' or 'word_mode'; often 'word_mode' is allowed only for ! registers. Operands 1 and 2 must be valid for 'word_mode'. The RTL generation pass generates this instruction only with constants for operands 1 and 2 and the constant is never zero for operand 1. ! This pattern is deprecated; please use 'insvM' and 'insvmisalignM' instead. ! 'movMODEcc' Conditionally move operand 2 or operand 3 into operand 0 according ! to the comparison in operand 1. If the comparison is true, operand ! 2 is moved into operand 0, otherwise operand 3 is moved. ! The mode of the operands being compared need not be the same as the ! operands being moved. Some machines, sparc64 for example, have ! instructions that conditionally move an integer value based on the ! floating point condition codes and vice versa. If the machine does not have conditional move instructions, do not define these patterns. ! 'addMODEcc' ! Similar to 'movMODEcc' but for conditional addition. Conditionally ! move operand 2 or (operands 2 + operand 3) into operand 0 according ! to the comparison in operand 1. If the comparison is false, ! operand 2 is moved into operand 0, otherwise (operand 2 + operand ! 3) is moved. ! 'cstoreMODE4' Store zero or nonzero in operand 0 according to whether a ! comparison is true. Operand 1 is a comparison operator. Operand 2 ! and operand 3 are the first and second operand of the comparison, ! respectively. You specify the mode that operand 0 must have when ! you write the 'match_operand' expression. The compiler ! automatically sees which mode you have used and supplies an operand ! of that mode. The value stored for a true condition must have 1 as its low bit, or else must be negative. Otherwise the instruction is not suitable and you should omit it from the machine description. You describe to the compiler exactly which value is stored by defining ! the macro 'STORE_FLAG_VALUE' (*note Misc::). If a description cannot be found that can be used for all the possible comparison ! operators, you should pick one and use a 'define_expand' to map all ! results onto the one you chose. ! These operations may 'FAIL', but should do so only in relatively ! uncommon cases; if they would 'FAIL' for common cases involving integer comparisons, it is best to restrict the predicates to not allow these operands. Likewise if a given comparison operator will ! always fail, independent of the operands (for floating-point modes, ! the 'ordered_comparison_operator' predicate is often useful in this ! case). If this pattern is omitted, the compiler will generate a conditional branch--for example, it may copy a constant one to the ! target and branching around an assignment of zero to the target--or ! a libcall. If the predicate for operand 1 only rejects some ! operators, it will also try reordering the operands and/or ! inverting the result value (e.g. by an exclusive OR). These possibilities could be cheaper or equivalent to the instructions ! used for the 'cstoreMODE4' pattern followed by those required to ! convert a positive result from 'STORE_FLAG_VALUE' to 1; in this case, you can and should make operand 1's predicate reject some ! operators in the 'cstoreMODE4' pattern, or remove the pattern altogether from the machine description. ! 'cbranchMODE4' Conditional branch instruction combined with a compare instruction. Operand 0 is a comparison operator. Operand 1 and operand 2 are the first and second operands of the comparison, respectively. ! Operand 3 is a 'label_ref' that refers to the label to jump to. ! 'jump' A jump inside a function; an unconditional branch. Operand 0 is ! the 'label_ref' of the label to jump to. This pattern name is mandatory on all machines. ! 'call' Subroutine call instruction returning no value. Operand 0 is the function to call; operand 1 is the number of bytes of arguments ! pushed as a 'const_int'; operand 2 is the number of registers used as operands. On most machines, operand 2 is not actually stored into the RTL *************** pattern to accomplish a certain task. *** 23180,23258 **** need to put this information into the assembler code; they can put it in the RTL instead of operand 1. ! Operand 0 should be a `mem' RTX whose address is the address of the ! function. Note, however, that this address can be a `symbol_ref' expression even if it would not be a legitimate memory address on the target machine. If it is also not a valid argument for a call instruction, the pattern for this operation should be a ! `define_expand' (*note Expander Definitions::) that places the address into a register and uses that register in the call instruction. ! `call_value' Subroutine call instruction returning a value. Operand 0 is the hard register in which the value is returned. There are three more ! operands, the same as the three operands of the `call' instruction (but with numbers increased by one). ! Subroutines that return `BLKmode' objects use the `call' insn. ! `call_pop', `call_value_pop' ! Similar to `call' and `call_value', except used if defined and if ! `RETURN_POPS_ARGS' is nonzero. They should emit a `parallel' that ! contains both the function call and a `set' to indicate the adjustment made to the frame pointer. ! For machines where `RETURN_POPS_ARGS' can be nonzero, the use of these patterns increases the number of functions for which the frame pointer can be eliminated, if desired. ! `untyped_call' ! Subroutine call instruction returning a value of any type. ! Operand 0 is the function to call; operand 1 is a memory location ! where the result of calling the function is to be stored; operand ! 2 is a `parallel' expression where each element is a `set' ! expression that indicates the saving of a function return value ! into the result block. This instruction pattern should be defined to support ! `__builtin_apply' on machines where special instructions are needed to call a subroutine with arbitrary arguments or to save the value returned. This instruction pattern is required on machines that have multiple registers that can hold a return value (i.e. ! `FUNCTION_VALUE_REGNO_P' is true for more than one register). ! `return' Subroutine return instruction. This instruction pattern name should be defined only if a single instruction can do all the work of returning from a function. ! Like the `movM' patterns, this pattern is also used after the RTL generation phase. In this case it is to support machines where ! multiple instructions are usually needed to return from a ! function, but some class of functions only requires one ! instruction to implement a return. Normally, the applicable ! functions are those which do not need to save any registers or ! allocate stack space. It is valid for this pattern to expand to an instruction using ! `simple_return' if no epilogue is required. ! `simple_return' Subroutine return instruction. This instruction pattern name should be defined only if a single instruction can do all the work of returning from a function on a path where no epilogue is ! required. This pattern is very similar to the `return' ! instruction pattern, but it is emitted only by the shrink-wrapping ! optimization on paths where the function prologue has not been ! executed, and a function return should occur without any of the ! effects of the epilogue. Additional uses may be introduced on ! paths where both the prologue and the epilogue have executed. For such machines, the condition specified in this pattern should ! only be true when `reload_completed' is nonzero and the function's epilogue would only be a single instruction. For machines with ! register windows, the routine `leaf_function_p' may be used to determine if a register window push is required. Machines that have conditional return instructions should define --- 22845,22922 ---- need to put this information into the assembler code; they can put it in the RTL instead of operand 1. ! Operand 0 should be a 'mem' RTX whose address is the address of the ! function. Note, however, that this address can be a 'symbol_ref' expression even if it would not be a legitimate memory address on the target machine. If it is also not a valid argument for a call instruction, the pattern for this operation should be a ! 'define_expand' (*note Expander Definitions::) that places the address into a register and uses that register in the call instruction. ! 'call_value' Subroutine call instruction returning a value. Operand 0 is the hard register in which the value is returned. There are three more ! operands, the same as the three operands of the 'call' instruction (but with numbers increased by one). ! Subroutines that return 'BLKmode' objects use the 'call' insn. ! 'call_pop', 'call_value_pop' ! Similar to 'call' and 'call_value', except used if defined and if ! 'RETURN_POPS_ARGS' is nonzero. They should emit a 'parallel' that ! contains both the function call and a 'set' to indicate the adjustment made to the frame pointer. ! For machines where 'RETURN_POPS_ARGS' can be nonzero, the use of these patterns increases the number of functions for which the frame pointer can be eliminated, if desired. ! 'untyped_call' ! Subroutine call instruction returning a value of any type. Operand ! 0 is the function to call; operand 1 is a memory location where the ! result of calling the function is to be stored; operand 2 is a ! 'parallel' expression where each element is a 'set' expression that ! indicates the saving of a function return value into the result ! block. This instruction pattern should be defined to support ! '__builtin_apply' on machines where special instructions are needed to call a subroutine with arbitrary arguments or to save the value returned. This instruction pattern is required on machines that have multiple registers that can hold a return value (i.e. ! 'FUNCTION_VALUE_REGNO_P' is true for more than one register). ! 'return' Subroutine return instruction. This instruction pattern name should be defined only if a single instruction can do all the work of returning from a function. ! Like the 'movM' patterns, this pattern is also used after the RTL generation phase. In this case it is to support machines where ! multiple instructions are usually needed to return from a function, ! but some class of functions only requires one instruction to ! implement a return. Normally, the applicable functions are those ! which do not need to save any registers or allocate stack space. It is valid for this pattern to expand to an instruction using ! 'simple_return' if no epilogue is required. ! 'simple_return' Subroutine return instruction. This instruction pattern name should be defined only if a single instruction can do all the work of returning from a function on a path where no epilogue is ! required. This pattern is very similar to the 'return' instruction ! pattern, but it is emitted only by the shrink-wrapping optimization ! on paths where the function prologue has not been executed, and a ! function return should occur without any of the effects of the ! epilogue. Additional uses may be introduced on paths where both ! the prologue and the epilogue have executed. For such machines, the condition specified in this pattern should ! only be true when 'reload_completed' is nonzero and the function's epilogue would only be a single instruction. For machines with ! register windows, the routine 'leaf_function_p' may be used to determine if a register window push is required. Machines that have conditional return instructions should define *************** pattern to accomplish a certain task. *** 23269,23301 **** "...") where CONDITION would normally be the same condition specified on ! the named `return' pattern. ! `untyped_return' Untyped subroutine return instruction. This instruction pattern ! should be defined to support `__builtin_return' on machines where special instructions are needed to return a value of any type. Operand 0 is a memory location where the result of calling a ! function with `__builtin_apply' is stored; operand 1 is a ! `parallel' expression where each element is a `set' expression ! that indicates the restoring of a function return value from the ! result block. ! `nop' No-op instruction. This instruction pattern name should always be ! defined to output a no-op in assembler code. `(const_int 0)' will do as an RTL pattern. ! `indirect_jump' An instruction to jump to an address which is operand zero. This pattern name is mandatory on all machines. ! `casesi' Instruction to jump through a dispatch table, including bounds checking. This instruction takes five operands: ! 1. The index to dispatch on, which has mode `SImode'. 2. The lower bound for indices in the table, an integer constant. --- 22933,22965 ---- "...") where CONDITION would normally be the same condition specified on ! the named 'return' pattern. ! 'untyped_return' Untyped subroutine return instruction. This instruction pattern ! should be defined to support '__builtin_return' on machines where special instructions are needed to return a value of any type. Operand 0 is a memory location where the result of calling a ! function with '__builtin_apply' is stored; operand 1 is a ! 'parallel' expression where each element is a 'set' expression that ! indicates the restoring of a function return value from the result ! block. ! 'nop' No-op instruction. This instruction pattern name should always be ! defined to output a no-op in assembler code. '(const_int 0)' will do as an RTL pattern. ! 'indirect_jump' An instruction to jump to an address which is operand zero. This pattern name is mandatory on all machines. ! 'casesi' Instruction to jump through a dispatch table, including bounds checking. This instruction takes five operands: ! 1. The index to dispatch on, which has mode 'SImode'. 2. The lower bound for indices in the table, an integer constant. *************** pattern to accomplish a certain task. *** 23307,23380 **** 5. A label to jump to if the index has a value outside the bounds. ! The table is an `addr_vec' or `addr_diff_vec' inside of a ! `jump_insn'. The number of elements in the table is one plus the difference between the upper bound and the lower bound. ! `tablejump' Instruction to jump to a variable address. This is a low-level capability which can be used to implement a dispatch table when ! there is no `casesi' pattern. This pattern requires two operands: the address or offset, and a label which should immediately precede the jump table. If the ! macro `CASE_VECTOR_PC_RELATIVE' evaluates to a nonzero value then ! the first operand is an offset which counts from the address of ! the table; otherwise, it is an absolute address to jump to. In ! either case, the first operand has mode `Pmode'. ! The `tablejump' insn is always the last insn before the jump table ! it uses. Its assembler code normally has no need to use the ! second operand, but you should incorporate it in the RTL pattern so ! that the jump optimizer will not delete the table as unreachable ! code. ! `decrement_and_branch_until_zero' ! Conditional branch instruction that decrements a register and ! jumps if the register is nonzero. Operand 0 is the register to ! decrement and test; operand 1 is the label to jump to if the ! register is nonzero. *Note Looping Patterns::. This optional instruction pattern is only used by the combiner, typically for loops reversed by the loop optimizer when strength reduction is enabled. ! `doloop_end' ! Conditional branch instruction that decrements a register and ! jumps if the register is nonzero. This instruction takes five ! operands: Operand 0 is the register to decrement and test; operand ! 1 is the number of loop iterations as a `const_int' or ! `const0_rtx' if this cannot be determined until run-time; operand ! 2 is the actual or estimated maximum number of iterations as a ! `const_int'; operand 3 is the number of enclosed loops as a ! `const_int' (an innermost loop has a value of 1); operand 4 is the ! label to jump to if the register is nonzero; operand 5 is ! const1_rtx if the loop in entered at its top, const0_rtx otherwise. ! *Note Looping Patterns::. This optional instruction pattern should be defined for machines with low-overhead looping instructions as the loop optimizer will ! try to modify suitable loops to utilize it. If nested ! low-overhead looping is not supported, use a `define_expand' ! (*note Expander Definitions::) and make the pattern fail if ! operand 3 is not `const1_rtx'. Similarly, if the actual or ! estimated maximum number of iterations is too large for this ! instruction, make it fail. ! `doloop_begin' ! Companion instruction to `doloop_end' required for machines that need to perform some initialization, such as loading special registers used by a low-overhead looping instruction. If initialization insns do not always need to be emitted, use a ! `define_expand' (*note Expander Definitions::) and make it fail. ! `canonicalize_funcptr_for_compare' Canonicalize the function pointer in operand 1 and store the result into operand 0. ! Operand 0 is always a `reg' and has mode `Pmode'; operand 1 may be ! a `reg', `mem', `symbol_ref', `const_int', etc and also has mode ! `Pmode'. Canonicalization of a function pointer usually involves computing the address of the function which would be called if the function --- 22971,23041 ---- 5. A label to jump to if the index has a value outside the bounds. ! The table is an 'addr_vec' or 'addr_diff_vec' inside of a ! 'jump_insn'. The number of elements in the table is one plus the difference between the upper bound and the lower bound. ! 'tablejump' Instruction to jump to a variable address. This is a low-level capability which can be used to implement a dispatch table when ! there is no 'casesi' pattern. This pattern requires two operands: the address or offset, and a label which should immediately precede the jump table. If the ! macro 'CASE_VECTOR_PC_RELATIVE' evaluates to a nonzero value then ! the first operand is an offset which counts from the address of the ! table; otherwise, it is an absolute address to jump to. In either ! case, the first operand has mode 'Pmode'. ! The 'tablejump' insn is always the last insn before the jump table ! it uses. Its assembler code normally has no need to use the second ! operand, but you should incorporate it in the RTL pattern so that ! the jump optimizer will not delete the table as unreachable code. ! 'decrement_and_branch_until_zero' ! Conditional branch instruction that decrements a register and jumps ! if the register is nonzero. Operand 0 is the register to decrement ! and test; operand 1 is the label to jump to if the register is ! nonzero. *Note Looping Patterns::. This optional instruction pattern is only used by the combiner, typically for loops reversed by the loop optimizer when strength reduction is enabled. ! 'doloop_end' ! Conditional branch instruction that decrements a register and jumps ! if the register is nonzero. This instruction takes five operands: ! Operand 0 is the register to decrement and test; operand 1 is the ! number of loop iterations as a 'const_int' or 'const0_rtx' if this ! cannot be determined until run-time; operand 2 is the actual or ! estimated maximum number of iterations as a 'const_int'; operand 3 ! is the number of enclosed loops as a 'const_int' (an innermost loop ! has a value of 1); operand 4 is the label to jump to if the ! register is nonzero; operand 5 is const1_rtx if the loop in entered ! at its top, const0_rtx otherwise. *Note Looping Patterns::. This optional instruction pattern should be defined for machines with low-overhead looping instructions as the loop optimizer will ! try to modify suitable loops to utilize it. If nested low-overhead ! looping is not supported, use a 'define_expand' (*note Expander ! Definitions::) and make the pattern fail if operand 3 is not ! 'const1_rtx'. Similarly, if the actual or estimated maximum number ! of iterations is too large for this instruction, make it fail. ! 'doloop_begin' ! Companion instruction to 'doloop_end' required for machines that need to perform some initialization, such as loading special registers used by a low-overhead looping instruction. If initialization insns do not always need to be emitted, use a ! 'define_expand' (*note Expander Definitions::) and make it fail. ! 'canonicalize_funcptr_for_compare' Canonicalize the function pointer in operand 1 and store the result into operand 0. ! Operand 0 is always a 'reg' and has mode 'Pmode'; operand 1 may be ! a 'reg', 'mem', 'symbol_ref', 'const_int', etc and also has mode ! 'Pmode'. Canonicalization of a function pointer usually involves computing the address of the function which would be called if the function *************** pattern to accomplish a certain task. *** 23384,23421 **** can have different values but still call the same function when used in an indirect call. ! `save_stack_block' ! `save_stack_function' ! `save_stack_nonlocal' ! `restore_stack_block' ! `restore_stack_function' ! `restore_stack_nonlocal' Most machines save and restore the stack pointer by copying it to ! or from an object of mode `Pmode'. Do not define these patterns on such machines. Some machines require special handling for stack pointer saves and restores. On those machines, define the patterns corresponding to ! the non-standard cases by using a `define_expand' (*note Expander Definitions::) that produces the required insns. The three types of saves and restores are: ! 1. `save_stack_block' saves the stack pointer at the start of a block that allocates a variable-sized object, and ! `restore_stack_block' restores the stack pointer when the block is exited. ! 2. `save_stack_function' and `restore_stack_function' do a ! similar job for the outermost block of a function and are ! used when the function allocates variable-sized objects or ! calls `alloca'. Only the epilogue uses the restored stack ! pointer, allowing a simpler save or restore sequence on some ! machines. ! 3. `save_stack_nonlocal' is used in functions that contain labels branched to by nested functions. It saves the stack pointer in such a way that the inner function can use ! `restore_stack_nonlocal' to restore the stack pointer. The compiler generates code to restore the frame and argument pointer registers, but some machines require saving and restoring additional data such as register window information --- 23045,23081 ---- can have different values but still call the same function when used in an indirect call. ! 'save_stack_block' ! 'save_stack_function' ! 'save_stack_nonlocal' ! 'restore_stack_block' ! 'restore_stack_function' ! 'restore_stack_nonlocal' Most machines save and restore the stack pointer by copying it to ! or from an object of mode 'Pmode'. Do not define these patterns on such machines. Some machines require special handling for stack pointer saves and restores. On those machines, define the patterns corresponding to ! the non-standard cases by using a 'define_expand' (*note Expander Definitions::) that produces the required insns. The three types of saves and restores are: ! 1. 'save_stack_block' saves the stack pointer at the start of a block that allocates a variable-sized object, and ! 'restore_stack_block' restores the stack pointer when the block is exited. ! 2. 'save_stack_function' and 'restore_stack_function' do a ! similar job for the outermost block of a function and are used ! when the function allocates variable-sized objects or calls ! 'alloca'. Only the epilogue uses the restored stack pointer, ! allowing a simpler save or restore sequence on some machines. ! 3. 'save_stack_nonlocal' is used in functions that contain labels branched to by nested functions. It saves the stack pointer in such a way that the inner function can use ! 'restore_stack_nonlocal' to restore the stack pointer. The compiler generates code to restore the frame and argument pointer registers, but some machines require saving and restoring additional data such as register window information *************** pattern to accomplish a certain task. *** 23423,23451 **** and restore any such required data. When saving the stack pointer, operand 0 is the save area and ! operand 1 is the stack pointer. The mode used to allocate the ! save area defaults to `Pmode' but you can override that choice by ! defining the `STACK_SAVEAREA_MODE' macro (*note Storage Layout::). ! You must specify an integral mode, or `VOIDmode' if no save area ! is needed for a particular type of save (either because no save is needed or because a machine-specific save area can be used). Operand 0 is the stack pointer and operand 1 is the save area for ! restore operations. If `save_stack_block' is defined, operand 0 ! must not be `VOIDmode' since these saves can be arbitrarily nested. ! A save area is a `mem' that is at a constant offset from ! `virtual_stack_vars_rtx' when the stack pointer is saved for use by ! nonlocal gotos and a `reg' in the other two cases. ! `allocate_stack' ! Subtract (or add if `STACK_GROWS_DOWNWARD' is undefined) operand 1 from the stack pointer to create space for dynamically allocated data. Store the resultant pointer to this space into operand 0. If you are allocating space from the main stack, do this by emitting a ! move insn to copy `virtual_stack_dynamic_rtx' to operand 0. If ! you are allocating the space elsewhere, generate code to copy the location of the space to operand 0. In the latter case, you must ensure this space gets freed when the corresponding space on the main stack is free. --- 23083,23111 ---- and restore any such required data. When saving the stack pointer, operand 0 is the save area and ! operand 1 is the stack pointer. The mode used to allocate the save ! area defaults to 'Pmode' but you can override that choice by ! defining the 'STACK_SAVEAREA_MODE' macro (*note Storage Layout::). ! You must specify an integral mode, or 'VOIDmode' if no save area is ! needed for a particular type of save (either because no save is needed or because a machine-specific save area can be used). Operand 0 is the stack pointer and operand 1 is the save area for ! restore operations. If 'save_stack_block' is defined, operand 0 ! must not be 'VOIDmode' since these saves can be arbitrarily nested. ! A save area is a 'mem' that is at a constant offset from ! 'virtual_stack_vars_rtx' when the stack pointer is saved for use by ! nonlocal gotos and a 'reg' in the other two cases. ! 'allocate_stack' ! Subtract (or add if 'STACK_GROWS_DOWNWARD' is undefined) operand 1 from the stack pointer to create space for dynamically allocated data. Store the resultant pointer to this space into operand 0. If you are allocating space from the main stack, do this by emitting a ! move insn to copy 'virtual_stack_dynamic_rtx' to operand 0. If you ! are allocating the space elsewhere, generate code to copy the location of the space to operand 0. In the latter case, you must ensure this space gets freed when the corresponding space on the main stack is free. *************** pattern to accomplish a certain task. *** 23455,23461 **** probes or maintaining the back chain. Define this pattern to emit those operations in addition to updating the stack pointer. ! `check_stack' If stack checking (*note Stack Checking::) cannot be done on your system by probing the stack, define this pattern to perform the needed check and signal an error if the stack has overflowed. The --- 23115,23121 ---- probes or maintaining the back chain. Define this pattern to emit those operations in addition to updating the stack pointer. ! 'check_stack' If stack checking (*note Stack Checking::) cannot be done on your system by probing the stack, define this pattern to perform the needed check and signal an error if the stack has overflowed. The *************** pattern to accomplish a certain task. *** 23464,23477 **** platforms where this pattern is needed, you would obtain the stack limit from a global or thread-specific variable or register. ! `probe_stack_address' If stack checking (*note Stack Checking::) can be done on your ! system by probing the stack but without the need to actually ! access it, define this pattern and signal an error if the stack ! has overflowed. The single operand is the memory address in the ! stack that needs to be probed. ! `probe_stack' If stack checking (*note Stack Checking::) can be done on your system by probing the stack but doing it with a "store zero" instruction is not valid or optimal, define this pattern to do the --- 23124,23137 ---- platforms where this pattern is needed, you would obtain the stack limit from a global or thread-specific variable or register. ! 'probe_stack_address' If stack checking (*note Stack Checking::) can be done on your ! system by probing the stack but without the need to actually access ! it, define this pattern and signal an error if the stack has ! overflowed. The single operand is the memory address in the stack ! that needs to be probed. ! 'probe_stack' If stack checking (*note Stack Checking::) can be done on your system by probing the stack but doing it with a "store zero" instruction is not valid or optimal, define this pattern to do the *************** pattern to accomplish a certain task. *** 23479,23485 **** overflowed. The single operand is the memory reference in the stack that needs to be probed. ! `nonlocal_goto' Emit code to generate a non-local goto, e.g., a jump from one function to a label in an outer function. This pattern has four arguments, each representing a value to be used in the jump. The --- 23139,23145 ---- overflowed. The single operand is the memory reference in the stack that needs to be probed. ! 'nonlocal_goto' Emit code to generate a non-local goto, e.g., a jump from one function to a label in an outer function. This pattern has four arguments, each representing a value to be used in the jump. The *************** pattern to accomplish a certain task. *** 23492,23533 **** On most machines you need not define this pattern, since GCC will already generate the correct code, which is to load the frame pointer and static chain, restore the stack (using the ! `restore_stack_nonlocal' pattern, if defined), and jump indirectly to the dispatcher. You need only define this pattern if this code will not work on your machine. ! `nonlocal_goto_receiver' This pattern, if defined, contains code needed at the target of a nonlocal goto after the code already generated by GCC. You will ! not normally need to define this pattern. A typical reason why ! you might need this pattern is if some value, such as a pointer to ! a global table, must be restored when the frame pointer is ! restored. Note that a nonlocal goto only occurs within a ! unit-of-translation, so a global table pointer that is shared by ! all functions of a given module need not be restored. There are ! no arguments. ! `exception_receiver' This pattern, if defined, contains code needed at the site of an ! exception handler that isn't needed at the site of a nonlocal ! goto. You will not normally need to define this pattern. A ! typical reason why you might need this pattern is if some value, ! such as a pointer to a global table, must be restored after ! control flow is branched to the handler of an exception. There ! are no arguments. ! `builtin_setjmp_setup' This pattern, if defined, contains additional code needed to ! initialize the `jmp_buf'. You will not normally need to define this pattern. A typical reason why you might need this pattern is if some value, such as a pointer to a global table, must be restored. Though it is preferred that the pointer value be recalculated if possible (given the address of a label for ! instance). The single argument is a pointer to the `jmp_buf'. Note that the buffer is five words long and that the first three are normally used by the generic mechanism. ! `builtin_setjmp_receiver' This pattern, if defined, contains code needed at the site of a built-in setjmp that isn't needed at the site of a nonlocal goto. You will not normally need to define this pattern. A typical --- 23152,23191 ---- On most machines you need not define this pattern, since GCC will already generate the correct code, which is to load the frame pointer and static chain, restore the stack (using the ! 'restore_stack_nonlocal' pattern, if defined), and jump indirectly to the dispatcher. You need only define this pattern if this code will not work on your machine. ! 'nonlocal_goto_receiver' This pattern, if defined, contains code needed at the target of a nonlocal goto after the code already generated by GCC. You will ! not normally need to define this pattern. A typical reason why you ! might need this pattern is if some value, such as a pointer to a ! global table, must be restored when the frame pointer is restored. ! Note that a nonlocal goto only occurs within a unit-of-translation, ! so a global table pointer that is shared by all functions of a ! given module need not be restored. There are no arguments. ! 'exception_receiver' This pattern, if defined, contains code needed at the site of an ! exception handler that isn't needed at the site of a nonlocal goto. ! You will not normally need to define this pattern. A typical ! reason why you might need this pattern is if some value, such as a ! pointer to a global table, must be restored after control flow is ! branched to the handler of an exception. There are no arguments. ! 'builtin_setjmp_setup' This pattern, if defined, contains additional code needed to ! initialize the 'jmp_buf'. You will not normally need to define this pattern. A typical reason why you might need this pattern is if some value, such as a pointer to a global table, must be restored. Though it is preferred that the pointer value be recalculated if possible (given the address of a label for ! instance). The single argument is a pointer to the 'jmp_buf'. Note that the buffer is five words long and that the first three are normally used by the generic mechanism. ! 'builtin_setjmp_receiver' This pattern, if defined, contains code needed at the site of a built-in setjmp that isn't needed at the site of a nonlocal goto. You will not normally need to define this pattern. A typical *************** pattern to accomplish a certain task. *** 23537,23620 **** control; this pattern may be emitted at a small offset from that label. ! `builtin_longjmp' This pattern, if defined, performs the entire action of the longjmp. You will not normally need to define this pattern unless ! you also define `builtin_setjmp_setup'. The single argument is a ! pointer to the `jmp_buf'. ! `eh_return' ! This pattern, if defined, affects the way `__builtin_eh_return', and thence the call frame exception handling library routines, are built. It is intended to handle non-trivial actions needed along the abnormal return path. The address of the exception handler to which the function should ! return is passed as operand to this pattern. It will normally ! need to copied by the pattern to some special register or memory location. If the pattern needs to determine the location of the target call frame in order to do so, it may use ! `EH_RETURN_STACKADJ_RTX', if defined; it will have already been assigned. If this pattern is not defined, the default action will be to ! simply copy the return address to `EH_RETURN_HANDLER_RTX'. Either that macro or this pattern needs to be defined if call frame exception handling is to be used. ! `prologue' This pattern, if defined, emits RTL for entry to a function. The function entry is responsible for setting up the stack frame, initializing the frame pointer register, saving callee saved registers, etc. Using a prologue pattern is generally preferred over defining ! `TARGET_ASM_FUNCTION_PROLOGUE' to emit assembly code for the prologue. ! The `prologue' pattern is particularly useful for targets which perform instruction scheduling. ! `window_save' ! This pattern, if defined, emits RTL for a register window save. ! It should be defined if the target machine has register windows ! but the window events are decoupled from calls to subroutines. ! The canonical example is the SPARC architecture. ! `epilogue' ! This pattern emits RTL for exit from a function. The function ! exit is responsible for deallocating the stack frame, restoring ! callee saved registers and emitting the return instruction. Using an epilogue pattern is generally preferred over defining ! `TARGET_ASM_FUNCTION_EPILOGUE' to emit assembly code for the epilogue. ! The `epilogue' pattern is particularly useful for targets which perform instruction scheduling or which have delay slots for their return instruction. ! `sibcall_epilogue' This pattern, if defined, emits RTL for exit from a function without the final branch back to the calling function. This pattern will be emitted before any sibling call (aka tail call) sites. ! The `sibcall_epilogue' pattern must not clobber any arguments used for parameter passing or any stack slots for arguments passed to the current function. ! `trap' This pattern, if defined, signals an error, typically by causing some kind of signal to be raised. Among other places, it is used ! by the Java front end to signal `invalid array index' exceptions. ! `ctrapMM4' Conditional trap instruction. Operand 0 is a piece of RTL which performs a comparison, and operands 1 and 2 are the arms of the comparison. Operand 3 is the trap code, an integer. ! A typical `ctrap' pattern looks like (define_insn "ctrapsi4" [(trap_if (match_operator 0 "trap_operator" --- 23195,23278 ---- control; this pattern may be emitted at a small offset from that label. ! 'builtin_longjmp' This pattern, if defined, performs the entire action of the longjmp. You will not normally need to define this pattern unless ! you also define 'builtin_setjmp_setup'. The single argument is a ! pointer to the 'jmp_buf'. ! 'eh_return' ! This pattern, if defined, affects the way '__builtin_eh_return', and thence the call frame exception handling library routines, are built. It is intended to handle non-trivial actions needed along the abnormal return path. The address of the exception handler to which the function should ! return is passed as operand to this pattern. It will normally need ! to copied by the pattern to some special register or memory location. If the pattern needs to determine the location of the target call frame in order to do so, it may use ! 'EH_RETURN_STACKADJ_RTX', if defined; it will have already been assigned. If this pattern is not defined, the default action will be to ! simply copy the return address to 'EH_RETURN_HANDLER_RTX'. Either that macro or this pattern needs to be defined if call frame exception handling is to be used. ! 'prologue' This pattern, if defined, emits RTL for entry to a function. The function entry is responsible for setting up the stack frame, initializing the frame pointer register, saving callee saved registers, etc. Using a prologue pattern is generally preferred over defining ! 'TARGET_ASM_FUNCTION_PROLOGUE' to emit assembly code for the prologue. ! The 'prologue' pattern is particularly useful for targets which perform instruction scheduling. ! 'window_save' ! This pattern, if defined, emits RTL for a register window save. It ! should be defined if the target machine has register windows but ! the window events are decoupled from calls to subroutines. The ! canonical example is the SPARC architecture. ! 'epilogue' ! This pattern emits RTL for exit from a function. The function exit ! is responsible for deallocating the stack frame, restoring callee ! saved registers and emitting the return instruction. Using an epilogue pattern is generally preferred over defining ! 'TARGET_ASM_FUNCTION_EPILOGUE' to emit assembly code for the epilogue. ! The 'epilogue' pattern is particularly useful for targets which perform instruction scheduling or which have delay slots for their return instruction. ! 'sibcall_epilogue' This pattern, if defined, emits RTL for exit from a function without the final branch back to the calling function. This pattern will be emitted before any sibling call (aka tail call) sites. ! The 'sibcall_epilogue' pattern must not clobber any arguments used for parameter passing or any stack slots for arguments passed to the current function. ! 'trap' This pattern, if defined, signals an error, typically by causing some kind of signal to be raised. Among other places, it is used ! by the Java front end to signal 'invalid array index' exceptions. ! 'ctrapMM4' Conditional trap instruction. Operand 0 is a piece of RTL which performs a comparison, and operands 1 and 2 are the arms of the comparison. Operand 3 is the trap code, an integer. ! A typical 'ctrap' pattern looks like (define_insn "ctrapsi4" [(trap_if (match_operator 0 "trap_operator" *************** pattern to accomplish a certain task. *** 23624,23659 **** "" "...") ! `prefetch' This pattern, if defined, emits code for a non-faulting data prefetch instruction. Operand 0 is the address of the memory to prefetch. Operand 1 is a constant 1 if the prefetch is preparing for a write to the memory address, or a constant 0 otherwise. Operand 2 is the expected degree of temporal locality of the data and is a value between 0 and 3, inclusive; 0 means that the data ! has no temporal locality, so it need not be left in the cache ! after the access; 3 means that the data has a high degree of ! temporal locality and should be left in all levels of cache ! possible; 1 and 2 mean, respectively, a low or moderate degree of ! temporal locality. Targets that do not support write prefetches or locality hints can ignore the values of operands 1 and 2. ! `blockage' This pattern defines a pseudo insn that prevents the instruction scheduler and other passes from moving instructions and using register equivalences across the boundary defined by the blockage insn. This needs to be an UNSPEC_VOLATILE pattern or a volatile ASM. ! `memory_barrier' If the target memory model is not fully synchronous, then this pattern should be defined to an instruction that orders both loads and stores before the instruction with respect to loads and stores after the instruction. This pattern has no operands. ! `sync_compare_and_swapMODE' This pattern, if defined, emits code for an atomic compare-and-swap operation. Operand 1 is the memory on which the atomic operation is performed. Operand 2 is the "old" value to be compared against --- 23282,23321 ---- "" "...") ! 'prefetch' ! This pattern, if defined, emits code for a non-faulting data prefetch instruction. Operand 0 is the address of the memory to prefetch. Operand 1 is a constant 1 if the prefetch is preparing for a write to the memory address, or a constant 0 otherwise. Operand 2 is the expected degree of temporal locality of the data and is a value between 0 and 3, inclusive; 0 means that the data ! has no temporal locality, so it need not be left in the cache after ! the access; 3 means that the data has a high degree of temporal ! locality and should be left in all levels of cache possible; 1 and ! 2 mean, respectively, a low or moderate degree of temporal ! locality. Targets that do not support write prefetches or locality hints can ignore the values of operands 1 and 2. ! 'blockage' ! This pattern defines a pseudo insn that prevents the instruction scheduler and other passes from moving instructions and using register equivalences across the boundary defined by the blockage insn. This needs to be an UNSPEC_VOLATILE pattern or a volatile ASM. ! 'memory_barrier' ! If the target memory model is not fully synchronous, then this pattern should be defined to an instruction that orders both loads and stores before the instruction with respect to loads and stores after the instruction. This pattern has no operands. ! 'sync_compare_and_swapMODE' ! This pattern, if defined, emits code for an atomic compare-and-swap operation. Operand 1 is the memory on which the atomic operation is performed. Operand 2 is the "old" value to be compared against *************** pattern to accomplish a certain task. *** 23674,23701 **** For targets where the success or failure of the compare-and-swap operation is available via the status flags, it is possible to avoid a separate compare operation and issue the subsequent branch ! or store-flag operation immediately after the compare-and-swap. ! To this end, GCC will look for a `MODE_CC' set in the output of ! `sync_compare_and_swapMODE'; if the machine description includes ! such a set, the target should also define special `cbranchcc4' ! and/or `cstorecc4' instructions. GCC will then be able to take ! the destination of the `MODE_CC' set and pass it to the ! `cbranchcc4' or `cstorecc4' pattern as the first operand of the ! comparison (the second will be `(const_int 0)'). For targets where the operating system may provide support for this ! operation via library calls, the `sync_compare_and_swap_optab' may be initialized to a function with the same interface as the ! `__sync_val_compare_and_swap_N' built-in. If the entire set of __SYNC builtins are supported via library calls, the target can ! initialize all of the optabs at once with `init_sync_libfuncs'. ! For the purposes of C++11 `std::atomic::is_lock_free', it is assumed that these library calls do _not_ use any kind of interruptable locking. ! `sync_addMODE', `sync_subMODE' ! `sync_iorMODE', `sync_andMODE' ! `sync_xorMODE', `sync_nandMODE' These patterns emit code for an atomic operation on memory. Operand 0 is the memory on which the atomic operation is performed. Operand 1 is the second operand to the binary operator. --- 23336,23364 ---- For targets where the success or failure of the compare-and-swap operation is available via the status flags, it is possible to avoid a separate compare operation and issue the subsequent branch ! or store-flag operation immediately after the compare-and-swap. To ! this end, GCC will look for a 'MODE_CC' set in the output of ! 'sync_compare_and_swapMODE'; if the machine description includes ! such a set, the target should also define special 'cbranchcc4' ! and/or 'cstorecc4' instructions. GCC will then be able to take the ! destination of the 'MODE_CC' set and pass it to the 'cbranchcc4' or ! 'cstorecc4' pattern as the first operand of the comparison (the ! second will be '(const_int 0)'). For targets where the operating system may provide support for this ! operation via library calls, the 'sync_compare_and_swap_optab' may be initialized to a function with the same interface as the ! '__sync_val_compare_and_swap_N' built-in. If the entire set of __SYNC builtins are supported via library calls, the target can ! initialize all of the optabs at once with 'init_sync_libfuncs'. ! For the purposes of C++11 'std::atomic::is_lock_free', it is assumed that these library calls do _not_ use any kind of interruptable locking. ! 'sync_addMODE', 'sync_subMODE' ! 'sync_iorMODE', 'sync_andMODE' ! 'sync_xorMODE', 'sync_nandMODE' ! These patterns emit code for an atomic operation on memory. Operand 0 is the memory on which the atomic operation is performed. Operand 1 is the second operand to the binary operator. *************** pattern to accomplish a certain task. *** 23708,23716 **** If these patterns are not defined, the operation will be constructed from a compare-and-swap operation, if defined. ! `sync_old_addMODE', `sync_old_subMODE' ! `sync_old_iorMODE', `sync_old_andMODE' ! `sync_old_xorMODE', `sync_old_nandMODE' These patterns emit code for an atomic operation on memory, and return the value that the memory contained before the operation. Operand 0 is the result value, operand 1 is the memory on which the --- 23371,23380 ---- If these patterns are not defined, the operation will be constructed from a compare-and-swap operation, if defined. ! 'sync_old_addMODE', 'sync_old_subMODE' ! 'sync_old_iorMODE', 'sync_old_andMODE' ! 'sync_old_xorMODE', 'sync_old_nandMODE' ! These patterns emit code for an atomic operation on memory, and return the value that the memory contained before the operation. Operand 0 is the result value, operand 1 is the memory on which the *************** pattern to accomplish a certain task. *** 23725,23742 **** If these patterns are not defined, the operation will be constructed from a compare-and-swap operation, if defined. ! `sync_new_addMODE', `sync_new_subMODE' ! `sync_new_iorMODE', `sync_new_andMODE' ! `sync_new_xorMODE', `sync_new_nandMODE' ! These patterns are like their `sync_old_OP' counterparts, except ! that they return the value that exists in the memory location ! after the operation, rather than before the operation. - `sync_lock_test_and_setMODE' This pattern takes two forms, based on the capabilities of the target. In either case, operand 0 is the result of the operand, ! operand 1 is the memory on which the atomic operation is ! performed, and operand 2 is the value to set in the lock. In the ideal case, this operation is an atomic exchange operation, in which the previous value in memory operand is copied into the --- 23389,23408 ---- If these patterns are not defined, the operation will be constructed from a compare-and-swap operation, if defined. ! 'sync_new_addMODE', 'sync_new_subMODE' ! 'sync_new_iorMODE', 'sync_new_andMODE' ! 'sync_new_xorMODE', 'sync_new_nandMODE' ! ! These patterns are like their 'sync_old_OP' counterparts, except ! that they return the value that exists in the memory location after ! the operation, rather than before the operation. ! ! 'sync_lock_test_and_setMODE' This pattern takes two forms, based on the capabilities of the target. In either case, operand 0 is the result of the operand, ! operand 1 is the memory on which the atomic operation is performed, ! and operand 2 is the value to set in the lock. In the ideal case, this operation is an atomic exchange operation, in which the previous value in memory operand is copied into the *************** pattern to accomplish a certain task. *** 23744,23754 **** operand. For less capable targets, any value operand that is not the ! constant 1 should be rejected with `FAIL'. In this case the ! target may use an atomic test-and-set bit operation. The result ! operand should contain 1 if the bit was previously set and 0 if ! the bit was previously clear. The true contents of the memory ! operand are implementation defined. This pattern must issue any memory barrier instructions such that the pattern as a whole acts as an acquire barrier, that is all --- 23410,23420 ---- operand. For less capable targets, any value operand that is not the ! constant 1 should be rejected with 'FAIL'. In this case the target ! may use an atomic test-and-set bit operation. The result operand ! should contain 1 if the bit was previously set and 0 if the bit was ! previously clear. The true contents of the memory operand are ! implementation defined. This pattern must issue any memory barrier instructions such that the pattern as a whole acts as an acquire barrier, that is all *************** pattern to accomplish a certain task. *** 23758,23798 **** If this pattern is not defined, the operation will be constructed from a compare-and-swap operation, if defined. ! `sync_lock_releaseMODE' This pattern, if defined, releases a lock set by ! `sync_lock_test_and_setMODE'. Operand 0 is the memory that contains the lock; operand 1 is the value to store in the lock. If the target doesn't implement full semantics for ! `sync_lock_test_and_setMODE', any value operand which is not the ! constant 0 should be rejected with `FAIL', and the true contents ! of the memory operand are implementation defined. This pattern must issue any memory barrier instructions such that the pattern as a whole acts as a release barrier, that is the lock is released only after all previous memory operations have completed. ! If this pattern is not defined, then a `memory_barrier' pattern will be emitted, followed by a store of the value to the memory operand. ! `atomic_compare_and_swapMODE' This pattern, if defined, emits code for an atomic compare-and-swap operation with memory model semantics. Operand 2 is the memory on which the atomic operation is performed. Operand 0 is an output operand which is set to true or false based on whether the operation succeeded. Operand 1 is an output operand which is set to the contents of the memory before the operation was attempted. ! Operand 3 is the value that is expected to be in memory. Operand ! 4 is the value to put in memory if the expected value is found ! there. Operand 5 is set to 1 if this compare and swap is to be ! treated as a weak operation. Operand 6 is the memory model to be ! used if the operation is a success. Operand 7 is the memory model ! to be used if the operation fails. ! If memory referred to in operand 2 contains the value in operand ! 3, then operand 4 is stored in memory pointed to by operand 2 and fencing based on the memory model in operand 6 is issued. If memory referred to in operand 2 does not contain the value in --- 23424,23465 ---- If this pattern is not defined, the operation will be constructed from a compare-and-swap operation, if defined. ! 'sync_lock_releaseMODE' ! This pattern, if defined, releases a lock set by ! 'sync_lock_test_and_setMODE'. Operand 0 is the memory that contains the lock; operand 1 is the value to store in the lock. If the target doesn't implement full semantics for ! 'sync_lock_test_and_setMODE', any value operand which is not the ! constant 0 should be rejected with 'FAIL', and the true contents of ! the memory operand are implementation defined. This pattern must issue any memory barrier instructions such that the pattern as a whole acts as a release barrier, that is the lock is released only after all previous memory operations have completed. ! If this pattern is not defined, then a 'memory_barrier' pattern will be emitted, followed by a store of the value to the memory operand. ! 'atomic_compare_and_swapMODE' This pattern, if defined, emits code for an atomic compare-and-swap operation with memory model semantics. Operand 2 is the memory on which the atomic operation is performed. Operand 0 is an output operand which is set to true or false based on whether the operation succeeded. Operand 1 is an output operand which is set to the contents of the memory before the operation was attempted. ! Operand 3 is the value that is expected to be in memory. Operand 4 ! is the value to put in memory if the expected value is found there. ! Operand 5 is set to 1 if this compare and swap is to be treated as ! a weak operation. Operand 6 is the memory model to be used if the ! operation is a success. Operand 7 is the memory model to be used ! if the operation fails. ! If memory referred to in operand 2 contains the value in operand 3, ! then operand 4 is stored in memory pointed to by operand 2 and fencing based on the memory model in operand 6 is issued. If memory referred to in operand 2 does not contain the value in *************** pattern to accomplish a certain task. *** 23804,23912 **** operand 5 can be ignored. Note a strong implementation must be provided. ! If this pattern is not provided, the `__atomic_compare_exchange' ! built-in functions will utilize the legacy `sync_compare_and_swap' ! pattern with an `__ATOMIC_SEQ_CST' memory model. ! `atomic_loadMODE' This pattern implements an atomic load operation with memory model semantics. Operand 1 is the memory address being loaded from. ! Operand 0 is the result of the load. Operand 2 is the memory ! model to be used for the load operation. ! If not present, the `__atomic_load' built-in function will either resort to a normal load with memory barriers, or a compare-and-swap operation if a normal load would not be atomic. ! `atomic_storeMODE' This pattern implements an atomic store operation with memory model semantics. Operand 0 is the memory address being stored to. Operand 1 is the value to be written. Operand 2 is the memory model to be used for the operation. ! If not present, the `__atomic_store' built-in function will ! attempt to perform a normal store and surround it with any ! required memory fences. If the store would not be atomic, then an ! `__atomic_exchange' is attempted with the result being ignored. ! `atomic_exchangeMODE' This pattern implements an atomic exchange operation with memory ! model semantics. Operand 1 is the memory location the operation ! is performed on. Operand 0 is an output operand which is set to ! the original value contained in the memory pointed to by operand ! 1. Operand 2 is the value to be stored. Operand 3 is the memory ! model to be used. If this pattern is not present, the built-in function ! `__atomic_exchange' will attempt to preform the operation with a compare and swap loop. ! `atomic_addMODE', `atomic_subMODE' ! `atomic_orMODE', `atomic_andMODE' ! `atomic_xorMODE', `atomic_nandMODE' These patterns emit code for an atomic operation on memory with ! memory model semantics. Operand 0 is the memory on which the atomic operation is performed. Operand 1 is the second operand to the binary operator. Operand 2 is the memory model to be used by the operation. If these patterns are not defined, attempts will be made to use ! legacy `sync' patterns, or equivalent patterns which return a result. If none of these are available a compare-and-swap loop will be used. ! `atomic_fetch_addMODE', `atomic_fetch_subMODE' ! `atomic_fetch_orMODE', `atomic_fetch_andMODE' ! `atomic_fetch_xorMODE', `atomic_fetch_nandMODE' These patterns emit code for an atomic operation on memory with ! memory model semantics, and return the original value. Operand 0 is an output operand which contains the value of the memory location before the operation was performed. Operand 1 is the memory on which the atomic operation is performed. Operand 2 is ! the second operand to the binary operator. Operand 3 is the ! memory model to be used by the operation. If these patterns are not defined, attempts will be made to use ! legacy `sync' patterns. If none of these are available a compare-and-swap loop will be used. ! `atomic_add_fetchMODE', `atomic_sub_fetchMODE' ! `atomic_or_fetchMODE', `atomic_and_fetchMODE' ! `atomic_xor_fetchMODE', `atomic_nand_fetchMODE' These patterns emit code for an atomic operation on memory with ! memory model semantics and return the result after the operation ! is performed. Operand 0 is an output operand which contains the ! value after the operation. Operand 1 is the memory on which the ! atomic operation is performed. Operand 2 is the second operand to ! the binary operator. Operand 3 is the memory model to be used by ! the operation. If these patterns are not defined, attempts will be made to use ! legacy `sync' patterns, or equivalent patterns which return the result before the operation followed by the arithmetic operation required to produce the result. If none of these are available a compare-and-swap loop will be used. ! `atomic_test_and_set' ! This pattern emits code for `__builtin_atomic_test_and_set'. Operand 0 is an output operand which is set to true if the previous previous contents of the byte was "set", and false otherwise. ! Operand 1 is the `QImode' memory to be modified. Operand 2 is the memory model to be used. The specific value that defines "set" is implementation defined, and is normally based on what is performed by the native atomic test and set instruction. ! `mem_thread_fenceMODE' This pattern emits code required to implement a thread fence with memory model semantics. Operand 0 is the memory model to be used. If this pattern is not specified, all memory models except ! `__ATOMIC_RELAXED' will result in issuing a `sync_synchronize' barrier pattern. ! `mem_signal_fenceMODE' This pattern emits code required to implement a signal fence with memory model semantics. Operand 0 is the memory model to be used. --- 23471,23583 ---- operand 5 can be ignored. Note a strong implementation must be provided. ! If this pattern is not provided, the '__atomic_compare_exchange' ! built-in functions will utilize the legacy 'sync_compare_and_swap' ! pattern with an '__ATOMIC_SEQ_CST' memory model. ! 'atomic_loadMODE' This pattern implements an atomic load operation with memory model semantics. Operand 1 is the memory address being loaded from. ! Operand 0 is the result of the load. Operand 2 is the memory model ! to be used for the load operation. ! If not present, the '__atomic_load' built-in function will either resort to a normal load with memory barriers, or a compare-and-swap operation if a normal load would not be atomic. ! 'atomic_storeMODE' This pattern implements an atomic store operation with memory model semantics. Operand 0 is the memory address being stored to. Operand 1 is the value to be written. Operand 2 is the memory model to be used for the operation. ! If not present, the '__atomic_store' built-in function will attempt ! to perform a normal store and surround it with any required memory ! fences. If the store would not be atomic, then an ! '__atomic_exchange' is attempted with the result being ignored. ! 'atomic_exchangeMODE' This pattern implements an atomic exchange operation with memory ! model semantics. Operand 1 is the memory location the operation is ! performed on. Operand 0 is an output operand which is set to the ! original value contained in the memory pointed to by operand 1. ! Operand 2 is the value to be stored. Operand 3 is the memory model ! to be used. If this pattern is not present, the built-in function ! '__atomic_exchange' will attempt to preform the operation with a compare and swap loop. ! 'atomic_addMODE', 'atomic_subMODE' ! 'atomic_orMODE', 'atomic_andMODE' ! 'atomic_xorMODE', 'atomic_nandMODE' ! These patterns emit code for an atomic operation on memory with ! memory model semantics. Operand 0 is the memory on which the atomic operation is performed. Operand 1 is the second operand to the binary operator. Operand 2 is the memory model to be used by the operation. If these patterns are not defined, attempts will be made to use ! legacy 'sync' patterns, or equivalent patterns which return a result. If none of these are available a compare-and-swap loop will be used. ! 'atomic_fetch_addMODE', 'atomic_fetch_subMODE' ! 'atomic_fetch_orMODE', 'atomic_fetch_andMODE' ! 'atomic_fetch_xorMODE', 'atomic_fetch_nandMODE' ! These patterns emit code for an atomic operation on memory with ! memory model semantics, and return the original value. Operand 0 is an output operand which contains the value of the memory location before the operation was performed. Operand 1 is the memory on which the atomic operation is performed. Operand 2 is ! the second operand to the binary operator. Operand 3 is the memory ! model to be used by the operation. If these patterns are not defined, attempts will be made to use ! legacy 'sync' patterns. If none of these are available a compare-and-swap loop will be used. ! 'atomic_add_fetchMODE', 'atomic_sub_fetchMODE' ! 'atomic_or_fetchMODE', 'atomic_and_fetchMODE' ! 'atomic_xor_fetchMODE', 'atomic_nand_fetchMODE' ! These patterns emit code for an atomic operation on memory with ! memory model semantics and return the result after the operation is ! performed. Operand 0 is an output operand which contains the value ! after the operation. Operand 1 is the memory on which the atomic ! operation is performed. Operand 2 is the second operand to the ! binary operator. Operand 3 is the memory model to be used by the ! operation. If these patterns are not defined, attempts will be made to use ! legacy 'sync' patterns, or equivalent patterns which return the result before the operation followed by the arithmetic operation required to produce the result. If none of these are available a compare-and-swap loop will be used. ! 'atomic_test_and_set' ! ! This pattern emits code for '__builtin_atomic_test_and_set'. Operand 0 is an output operand which is set to true if the previous previous contents of the byte was "set", and false otherwise. ! Operand 1 is the 'QImode' memory to be modified. Operand 2 is the memory model to be used. The specific value that defines "set" is implementation defined, and is normally based on what is performed by the native atomic test and set instruction. ! 'mem_thread_fenceMODE' This pattern emits code required to implement a thread fence with memory model semantics. Operand 0 is the memory model to be used. If this pattern is not specified, all memory models except ! '__ATOMIC_RELAXED' will result in issuing a 'sync_synchronize' barrier pattern. ! 'mem_signal_fenceMODE' This pattern emits code required to implement a signal fence with memory model semantics. Operand 0 is the memory model to be used. *************** pattern to accomplish a certain task. *** 23915,23935 **** barrier instructions. If this pattern is not specified, all memory models except ! `__ATOMIC_RELAXED' will result in issuing a `sync_synchronize' barrier pattern. ! `get_thread_pointerMODE' ! `set_thread_pointerMODE' These patterns emit code that reads/sets the TLS thread pointer. Currently, these are only needed if the target needs to support the ! `__builtin_thread_pointer' and `__builtin_set_thread_pointer' builtins. The get/set patterns have a single output/input operand ! respectively, with MODE intended to be `Pmode'. ! `stack_protect_set' ! This pattern, if defined, moves a `ptr_mode' value from the memory in operand 1 to the memory in operand 0 without leaving the value in a register afterward. This is to avoid leaking the value some place that an attacker might use to rewrite the stack guard slot --- 23586,23607 ---- barrier instructions. If this pattern is not specified, all memory models except ! '__ATOMIC_RELAXED' will result in issuing a 'sync_synchronize' barrier pattern. ! 'get_thread_pointerMODE' ! 'set_thread_pointerMODE' These patterns emit code that reads/sets the TLS thread pointer. Currently, these are only needed if the target needs to support the ! '__builtin_thread_pointer' and '__builtin_set_thread_pointer' builtins. The get/set patterns have a single output/input operand ! respectively, with MODE intended to be 'Pmode'. ! 'stack_protect_set' ! ! This pattern, if defined, moves a 'ptr_mode' value from the memory in operand 1 to the memory in operand 0 without leaving the value in a register afterward. This is to avoid leaking the value some place that an attacker might use to rewrite the stack guard slot *************** pattern to accomplish a certain task. *** 23938,23945 **** If this pattern is not defined, then a plain move pattern is generated. ! `stack_protect_test' ! This pattern, if defined, compares a `ptr_mode' value from the memory in operand 1 with the memory in operand 0 without leaving the value in a register afterward and branches to operand 2 if the values were equal. --- 23610,23618 ---- If this pattern is not defined, then a plain move pattern is generated. ! 'stack_protect_test' ! ! This pattern, if defined, compares a 'ptr_mode' value from the memory in operand 1 with the memory in operand 0 without leaving the value in a register afterward and branches to operand 2 if the values were equal. *************** pattern to accomplish a certain task. *** 23947,23960 **** If this pattern is not defined, then a plain compare pattern and conditional branch pattern is used. ! `clear_cache' This pattern, if defined, flushes the instruction cache for a region of memory. The region is bounded to by the Pmode pointers in operand 0 inclusive and operand 1 exclusive. If this pattern is not defined, a call to the library function ! `__clear_cache' is used. !  File: gccint.info, Node: Pattern Ordering, Next: Dependent Patterns, Prev: Standard Names, Up: Machine Desc --- 23620,23633 ---- If this pattern is not defined, then a plain compare pattern and conditional branch pattern is used. ! 'clear_cache' ! This pattern, if defined, flushes the instruction cache for a region of memory. The region is bounded to by the Pmode pointers in operand 0 inclusive and operand 1 exclusive. If this pattern is not defined, a call to the library function ! '__clear_cache' is used.  File: gccint.info, Node: Pattern Ordering, Next: Dependent Patterns, Prev: Standard Names, Up: Machine Desc *************** Therefore, more specific patterns (patte *** 23968,23984 **** things) and faster instructions (those that will produce better code when they do match) should usually go first in the description. ! In some cases the effect of ordering the patterns can be used to hide ! a pattern when it is not valid. For example, the 68000 has an ! instruction for converting a fullword to floating point and another for ! converting a byte to floating point. An instruction converting an ! integer to floating point could match either one. We put the pattern ! to convert the fullword first to make sure that one will be used rather ! than the other. (Otherwise a large integer might be generated as a ! single-byte immediate quantity, which would not work.) Instead of ! using this pattern ordering it would be possible to make the pattern ! for convert-a-byte smart enough to deal properly with any constant ! value.  File: gccint.info, Node: Dependent Patterns, Next: Jump Patterns, Prev: Pattern Ordering, Up: Machine Desc --- 23641,23656 ---- things) and faster instructions (those that will produce better code when they do match) should usually go first in the description. ! In some cases the effect of ordering the patterns can be used to hide a ! pattern when it is not valid. For example, the 68000 has an instruction ! for converting a fullword to floating point and another for converting a ! byte to floating point. An instruction converting an integer to ! floating point could match either one. We put the pattern to convert ! the fullword first to make sure that one will be used rather than the ! other. (Otherwise a large integer might be generated as a single-byte ! immediate quantity, which would not work.) Instead of using this ! pattern ordering it would be possible to make the pattern for ! convert-a-byte smart enough to deal properly with any constant value.  File: gccint.info, Node: Dependent Patterns, Next: Jump Patterns, Prev: Pattern Ordering, Up: Machine Desc *************** Constant integers do not specify a machi *** 24001,24012 **** extend a constant value could match either pattern. The pattern it actually will match is the one that appears first in the file. For correct results, this must be the one for the widest possible mode ! (`HImode', here). If the pattern matches the `QImode' instruction, the results will be incorrect if the constant value does not actually fit that mode. ! Such instructions to extend constants are rarely generated because ! they are optimized away, but they do occasionally happen in nonoptimized compilations. If a constraint in a pattern allows a constant, the reload pass may --- 23673,23684 ---- extend a constant value could match either pattern. The pattern it actually will match is the one that appears first in the file. For correct results, this must be the one for the widest possible mode ! ('HImode', here). If the pattern matches the 'QImode' instruction, the results will be incorrect if the constant value does not actually fit that mode. ! Such instructions to extend constants are rarely generated because they ! are optimized away, but they do occasionally happen in nonoptimized compilations. If a constraint in a pattern allows a constant, the reload pass may *************** File: gccint.info, Node: Jump Patterns, *** 24025,24053 **** GCC does not assume anything about how the machine realizes jumps. The machine description should define a single pattern, usually a ! `define_expand', which expands to all the required insns. Usually, this would be a comparison insn to set the condition code and a separate branch insn testing the condition code and branching or not ! according to its value. For many machines, however, separating ! compares and branches is limiting, which is why the more flexible ! approach with one `define_expand' is used in GCC. The machine ! description becomes clearer for architectures that have ! compare-and-branch instructions but no condition code. It also works ! better when different sets of comparison operators are supported by ! different kinds of conditional branches (e.g. integer vs. ! floating-point), or by conditional branches with respect to conditional ! stores. Two separate insns are always used if the machine description represents a condition code register using the legacy RTL expression ! `(cc0)', and on most machines that use a separate condition code ! register (*note Condition Code::). For machines that use `(cc0)', in fact, the set and use of the condition code must be separate and ! adjacent(1), thus allowing flags in `cc_status' to be used (*note Condition Code::) and so that the comparison and branch insns could be ! located from each other by using the functions `prev_cc0_setter' and ! `next_cc0_user'. Even in this case having a single entry point for conditional branches is advantageous, because it handles equally well the case where a single --- 23697,23724 ---- GCC does not assume anything about how the machine realizes jumps. The machine description should define a single pattern, usually a ! 'define_expand', which expands to all the required insns. Usually, this would be a comparison insn to set the condition code and a separate branch insn testing the condition code and branching or not ! according to its value. For many machines, however, separating compares ! and branches is limiting, which is why the more flexible approach with ! one 'define_expand' is used in GCC. The machine description becomes ! clearer for architectures that have compare-and-branch instructions but ! no condition code. It also works better when different sets of ! comparison operators are supported by different kinds of conditional ! branches (e.g. integer vs. floating-point), or by conditional branches ! with respect to conditional stores. Two separate insns are always used if the machine description represents a condition code register using the legacy RTL expression ! '(cc0)', and on most machines that use a separate condition code ! register (*note Condition Code::). For machines that use '(cc0)', in fact, the set and use of the condition code must be separate and ! adjacent(1), thus allowing flags in 'cc_status' to be used (*note Condition Code::) and so that the comparison and branch insns could be ! located from each other by using the functions 'prev_cc0_setter' and ! 'next_cc0_user'. Even in this case having a single entry point for conditional branches is advantageous, because it handles equally well the case where a single *************** distinct signed and unsigned flavors) as *** 24057,24065 **** case where there are distinct signed and unsigned compare instructions and only one set of conditional branch instructions as in the PowerPC. ! ---------- Footnotes ---------- ! (1) `note' insns can separate them, though.  File: gccint.info, Node: Looping Patterns, Next: Insn Canonicalizations, Prev: Jump Patterns, Up: Machine Desc --- 23728,23736 ---- case where there are distinct signed and unsigned compare instructions and only one set of conditional branch instructions as in the PowerPC. ! ---------- Footnotes ---------- ! (1) 'note' insns can separate them, though.  File: gccint.info, Node: Looping Patterns, Next: Insn Canonicalizations, Prev: Jump Patterns, Up: Machine Desc *************** File: gccint.info, Node: Looping Patter *** 24068,24074 **** =========================================== Some machines have special jump instructions that can be utilized to ! make loops more efficient. A common example is the 68000 `dbra' instruction which performs a decrement of a register and a branch if the result was greater than zero. Other machines, in particular digital signal processors (DSPs), have special block repeat instructions to --- 23739,23745 ---- =========================================== Some machines have special jump instructions that can be utilized to ! make loops more efficient. A common example is the 68000 'dbra' instruction which performs a decrement of a register and a branch if the result was greater than zero. Other machines, in particular digital signal processors (DSPs), have special block repeat instructions to *************** provide low-overhead loop support. For *** 24076,24095 **** DSPs have a block repeat instruction that loads special registers to mark the top and end of a loop and to count the number of loop iterations. This avoids the need for fetching and executing a ! `dbra'-like instruction and avoids pipeline stalls associated with the jump. GCC has three special named patterns to support low overhead looping. ! They are `decrement_and_branch_until_zero', `doloop_begin', and ! `doloop_end'. The first pattern, `decrement_and_branch_until_zero', is not emitted during RTL generation but may be emitted during the ! instruction combination phase. This requires the assistance of the ! loop optimizer, using information collected during strength reduction, ! to reverse a loop to count down to zero. Some targets also require the ! loop optimizer to add a `REG_NONNEG' note to indicate that the ! iteration count is always positive. This is needed if the target ! performs a signed loop termination test. For example, the 68000 uses a ! pattern similar to the following for its `dbra' instruction: (define_insn "decrement_and_branch_until_zero" [(set (pc) --- 23747,23766 ---- DSPs have a block repeat instruction that loads special registers to mark the top and end of a loop and to count the number of loop iterations. This avoids the need for fetching and executing a ! 'dbra'-like instruction and avoids pipeline stalls associated with the jump. GCC has three special named patterns to support low overhead looping. ! They are 'decrement_and_branch_until_zero', 'doloop_begin', and ! 'doloop_end'. The first pattern, 'decrement_and_branch_until_zero', is not emitted during RTL generation but may be emitted during the ! instruction combination phase. This requires the assistance of the loop ! optimizer, using information collected during strength reduction, to ! reverse a loop to count down to zero. Some targets also require the ! loop optimizer to add a 'REG_NONNEG' note to indicate that the iteration ! count is always positive. This is needed if the target performs a ! signed loop termination test. For example, the 68000 uses a pattern ! similar to the following for its 'dbra' instruction: (define_insn "decrement_and_branch_until_zero" [(set (pc) *************** pattern similar to the following for its *** 24106,24112 **** "...") Note that since the insn is both a jump insn and has an output, it must ! deal with its own reloads, hence the `m' constraints. Also note that since this insn is generated by the instruction combination phase combining two sequential insns together into an implicit parallel insn, the iteration counter needs to be biased by the same amount as the --- 23777,23783 ---- "...") Note that since the insn is both a jump insn and has an output, it must ! deal with its own reloads, hence the 'm' constraints. Also note that since this insn is generated by the instruction combination phase combining two sequential insns together into an implicit parallel insn, the iteration counter needs to be biased by the same amount as the *************** pattern will not be matched by the combi *** 24126,24161 **** "find_reg_note (insn, REG_NONNEG, 0)" "...") ! The other two special looping patterns, `doloop_begin' and ! `doloop_end', are emitted by the loop optimizer for certain ! well-behaved loops with a finite number of loop iterations using ! information collected during strength reduction. ! The `doloop_end' pattern describes the actual looping instruction (or ! the implicit looping operation) and the `doloop_begin' pattern is an optional companion pattern that can be used for initialization needed for some low-overhead looping instructions. Note that some machines require the actual looping instruction to be emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting the true RTL for a looping instruction at the top of the loop can cause ! problems with flow analysis. So instead, a dummy `doloop' insn is emitted at the end of the loop. The machine dependent reorg pass checks ! for the presence of this `doloop' insn and then searches back to the ! top of the loop, where it inserts the true looping insn (provided there ! are no instructions in the loop which would cause problems). Any ! additional labels can be emitted at this point. In addition, if the ! desired special iteration counter register was not allocated, this ! machine dependent reorg pass could emit a traditional compare and jump instruction pair. ! The essential difference between the `decrement_and_branch_until_zero' ! and the `doloop_end' patterns is that the loop optimizer allocates an ! additional pseudo register for the latter as an iteration counter. ! This pseudo register cannot be used within the loop (i.e., general ! induction variables cannot be derived from it), however, in many cases ! the loop induction variable may become redundant and removed by the ! flow pass.  File: gccint.info, Node: Insn Canonicalizations, Next: Expander Definitions, Prev: Looping Patterns, Up: Machine Desc --- 23797,23831 ---- "find_reg_note (insn, REG_NONNEG, 0)" "...") ! The other two special looping patterns, 'doloop_begin' and ! 'doloop_end', are emitted by the loop optimizer for certain well-behaved ! loops with a finite number of loop iterations using information ! collected during strength reduction. ! The 'doloop_end' pattern describes the actual looping instruction (or ! the implicit looping operation) and the 'doloop_begin' pattern is an optional companion pattern that can be used for initialization needed for some low-overhead looping instructions. Note that some machines require the actual looping instruction to be emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting the true RTL for a looping instruction at the top of the loop can cause ! problems with flow analysis. So instead, a dummy 'doloop' insn is emitted at the end of the loop. The machine dependent reorg pass checks ! for the presence of this 'doloop' insn and then searches back to the top ! of the loop, where it inserts the true looping insn (provided there are ! no instructions in the loop which would cause problems). Any additional ! labels can be emitted at this point. In addition, if the desired ! special iteration counter register was not allocated, this machine ! dependent reorg pass could emit a traditional compare and jump instruction pair. ! The essential difference between the 'decrement_and_branch_until_zero' ! and the 'doloop_end' patterns is that the loop optimizer allocates an ! additional pseudo register for the latter as an iteration counter. This ! pseudo register cannot be used within the loop (i.e., general induction ! variables cannot be derived from it), however, in many cases the loop ! induction variable may become redundant and removed by the flow pass.  File: gccint.info, Node: Insn Canonicalizations, Next: Expander Definitions, Prev: Looping Patterns, Up: Machine Desc *************** number of insn patterns required. *** 24173,24217 **** In addition to algebraic simplifications, following canonicalizations are performed: ! * For commutative and comparison operators, a constant is always ! made the second operand. If a machine only supports a constant as ! the second operand, only patterns that match a constant in the ! second operand need be supplied. * For associative operators, a sequence of operators will always chain to the left; for instance, only the left operand of an ! integer `plus' can itself be a `plus'. `and', `ior', `xor', ! `plus', `mult', `smin', `smax', `umin', and `umax' are associative when applied to integers, and sometimes to floating-point. ! * For these operators, if only one operand is a `neg', `not', ! `mult', `plus', or `minus' expression, it will be the first ! operand. ! * In combinations of `neg', `mult', `plus', and `minus', the `neg' operations (if any) will be moved inside the operations as far as ! possible. For instance, `(neg (mult A B))' is canonicalized as ! `(mult (neg A) B)', but `(plus (mult (neg B) C) A)' is ! canonicalized as `(minus A (mult B C))'. ! * For the `compare' operator, a constant is always the second operand ! if the first argument is a condition code register or `(cc0)'. ! * An operand of `neg', `not', `mult', `plus', or `minus' is made the first operand under the same conditions as above. ! * `(ltu (plus A B) B)' is converted to `(ltu (plus A B) A)'. ! Likewise with `geu' instead of `ltu'. ! * `(minus X (const_int N))' is converted to `(plus X (const_int -N))'. ! * Within address computations (i.e., inside `mem'), a left shift is converted into the appropriate multiplication by a power of two. * De Morgan's Law is used to move bitwise negation inside a bitwise logical-and or logical-or operation. If this results in only one ! operand being a `not' expression, it will be the first one. A machine that has an instruction that performs a bitwise logical-and of one operand with the bitwise negation of the other --- 23843,23886 ---- In addition to algebraic simplifications, following canonicalizations are performed: ! * For commutative and comparison operators, a constant is always made ! the second operand. If a machine only supports a constant as the ! second operand, only patterns that match a constant in the second ! operand need be supplied. * For associative operators, a sequence of operators will always chain to the left; for instance, only the left operand of an ! integer 'plus' can itself be a 'plus'. 'and', 'ior', 'xor', ! 'plus', 'mult', 'smin', 'smax', 'umin', and 'umax' are associative when applied to integers, and sometimes to floating-point. ! * For these operators, if only one operand is a 'neg', 'not', 'mult', ! 'plus', or 'minus' expression, it will be the first operand. ! * In combinations of 'neg', 'mult', 'plus', and 'minus', the 'neg' operations (if any) will be moved inside the operations as far as ! possible. For instance, '(neg (mult A B))' is canonicalized as ! '(mult (neg A) B)', but '(plus (mult (neg B) C) A)' is ! canonicalized as '(minus A (mult B C))'. ! * For the 'compare' operator, a constant is always the second operand ! if the first argument is a condition code register or '(cc0)'. ! * An operand of 'neg', 'not', 'mult', 'plus', or 'minus' is made the first operand under the same conditions as above. ! * '(ltu (plus A B) B)' is converted to '(ltu (plus A B) A)'. ! Likewise with 'geu' instead of 'ltu'. ! * '(minus X (const_int N))' is converted to '(plus X (const_int -N))'. ! * Within address computations (i.e., inside 'mem'), a left shift is converted into the appropriate multiplication by a power of two. * De Morgan's Law is used to move bitwise negation inside a bitwise logical-and or logical-or operation. If this results in only one ! operand being a 'not' expression, it will be the first one. A machine that has an instruction that performs a bitwise logical-and of one operand with the bitwise negation of the other *************** are performed: *** 24237,24243 **** logically equivalent RTL expressions. * The only possible RTL expressions involving both bitwise ! exclusive-or and bitwise negation are `(xor:M X Y)' and `(not:M (xor:M X Y))'. * The sum of three items, one of which is a constant, will only --- 23906,23912 ---- logically equivalent RTL expressions. * The only possible RTL expressions involving both bitwise ! exclusive-or and bitwise negation are '(xor:M X Y)' and '(not:M (xor:M X Y))'. * The sum of three items, one of which is a constant, will only *************** are performed: *** 24245,24269 **** (plus:M (plus:M X Y) CONSTANT) ! * Equality comparisons of a group of bits (usually a single bit) ! with zero will be written using `zero_extract' rather than the ! equivalent `and' or `sign_extract' operations. ! ! * `(sign_extend:M1 (mult:M2 (sign_extend:M2 X) (sign_extend:M2 Y)))' ! is converted to `(mult:M1 (sign_extend:M1 X) (sign_extend:M1 Y))', ! and likewise for `zero_extend'. ! * `(sign_extend:M1 (mult:M2 (ashiftrt:M2 X S) (sign_extend:M2 Y)))' ! is converted to `(mult:M1 (sign_extend:M1 (ashiftrt:M2 X S)) ! (sign_extend:M1 Y))', and likewise for patterns using ! `zero_extend' and `lshiftrt'. If the second operand of `mult' is ! also a shift, then that is extended also. This transformation is ! only applied when it can be proven that the original operation had ! sufficient precision to prevent overflow. Further canonicalization rules are defined in the function ! `commutative_operand_precedence' in `gcc/rtlanal.c'.  File: gccint.info, Node: Expander Definitions, Next: Insn Splitting, Prev: Insn Canonicalizations, Up: Machine Desc --- 23914,23937 ---- (plus:M (plus:M X Y) CONSTANT) ! * Equality comparisons of a group of bits (usually a single bit) with ! zero will be written using 'zero_extract' rather than the ! equivalent 'and' or 'sign_extract' operations. ! * '(sign_extend:M1 (mult:M2 (sign_extend:M2 X) (sign_extend:M2 Y)))' ! is converted to '(mult:M1 (sign_extend:M1 X) (sign_extend:M1 Y))', ! and likewise for 'zero_extend'. + * '(sign_extend:M1 (mult:M2 (ashiftrt:M2 X S) (sign_extend:M2 Y)))' + is converted to '(mult:M1 (sign_extend:M1 (ashiftrt:M2 X S)) + (sign_extend:M1 Y))', and likewise for patterns using 'zero_extend' + and 'lshiftrt'. If the second operand of 'mult' is also a shift, + then that is extended also. This transformation is only applied + when it can be proven that the original operation had sufficient + precision to prevent overflow. Further canonicalization rules are defined in the function ! 'commutative_operand_precedence' in 'gcc/rtlanal.c'.  File: gccint.info, Node: Expander Definitions, Next: Insn Splitting, Prev: Insn Canonicalizations, Up: Machine Desc *************** File: gccint.info, Node: Expander Defin *** 24274,24303 **** On some target machines, some standard pattern names for RTL generation cannot be handled with single insn, but a sequence of RTL insns can represent them. For these target machines, you can write a ! `define_expand' to specify how to generate the sequence of RTL. ! A `define_expand' is an RTL expression that looks almost like a ! `define_insn'; but, unlike the latter, a `define_expand' is used only for RTL generation and it can produce more than one RTL insn. ! A `define_expand' RTX has four operands: ! * The name. Each `define_expand' must have a name, since the only use for it is to refer to it by name. * The RTL template. This is a vector of RTL expressions representing ! a sequence of separate instructions. Unlike `define_insn', there ! is no implicit surrounding `PARALLEL'. ! * The condition, a string containing a C expression. This ! expression is used to express how the availability of this pattern ! depends on subclasses of target machine, selected by command-line ! options when GCC is run. This is just like the condition of a ! `define_insn' that has a standard name. Therefore, the condition ! (if present) may not depend on the data in the insn being matched, ! but only the target-machine-type flags. The compiler needs to ! test these conditions during initialization in order to learn ! exactly which named instructions are available in a particular run. * The preparation statements, a string containing zero or more C statements which are to be executed before RTL code is generated --- 23942,23971 ---- On some target machines, some standard pattern names for RTL generation cannot be handled with single insn, but a sequence of RTL insns can represent them. For these target machines, you can write a ! 'define_expand' to specify how to generate the sequence of RTL. ! A 'define_expand' is an RTL expression that looks almost like a ! 'define_insn'; but, unlike the latter, a 'define_expand' is used only for RTL generation and it can produce more than one RTL insn. ! A 'define_expand' RTX has four operands: ! * The name. Each 'define_expand' must have a name, since the only use for it is to refer to it by name. * The RTL template. This is a vector of RTL expressions representing ! a sequence of separate instructions. Unlike 'define_insn', there ! is no implicit surrounding 'PARALLEL'. ! * The condition, a string containing a C expression. This expression ! is used to express how the availability of this pattern depends on ! subclasses of target machine, selected by command-line options when ! GCC is run. This is just like the condition of a 'define_insn' ! that has a standard name. Therefore, the condition (if present) ! may not depend on the data in the insn being matched, but only the ! target-machine-type flags. The compiler needs to test these ! conditions during initialization in order to learn exactly which ! named instructions are available in a particular run. * The preparation statements, a string containing zero or more C statements which are to be executed before RTL code is generated *************** for RTL generation and it can produce mo *** 24305,24318 **** Usually these statements prepare temporary registers for use as internal operands in the RTL template, but they can also generate ! RTL insns directly by calling routines such as `emit_insn', etc. Any such insns precede the ones that come from the RTL template. ! * Optionally, a vector containing the values of attributes. *Note Insn Attributes::. ! Every RTL insn emitted by a `define_expand' must match some ! `define_insn' in the machine description. Otherwise, the compiler will crash when trying to generate code for the insn or trying to optimize it. --- 23973,23986 ---- Usually these statements prepare temporary registers for use as internal operands in the RTL template, but they can also generate ! RTL insns directly by calling routines such as 'emit_insn', etc. Any such insns precede the ones that come from the RTL template. ! * Optionally, a vector containing the values of attributes. *Note Insn Attributes::. ! Every RTL insn emitted by a 'define_expand' must match some ! 'define_insn' in the machine description. Otherwise, the compiler will crash when trying to generate code for the insn or trying to optimize it. *************** also describes the operands that need to *** 24321,24371 **** is used. In particular, it gives a predicate for each operand. A true operand, which needs to be specified in order to generate RTL ! from the pattern, should be described with a `match_operand' in its first occurrence in the RTL template. This enters information on the operand's predicate into the tables that record such things. GCC uses the information to preload the operand into a register if that is required for valid RTL code. If the operand is referred to more than ! once, subsequent references should use `match_dup'. The RTL template may also refer to internal "operands" which are temporary registers or labels used only within the sequence made by the ! `define_expand'. Internal operands are substituted into the RTL ! template with `match_dup', never with `match_operand'. The values of the internal operands are not passed in as arguments by the compiler ! when it requests use of this pattern. Instead, they are computed ! within the pattern, in the preparation statements. These statements ! compute the values and store them into the appropriate elements of ! `operands' so that `match_dup' can find them. There are two special macros defined for use in the preparation ! statements: `DONE' and `FAIL'. Use them with a following semicolon, as a statement. ! `DONE' ! Use the `DONE' macro to end RTL generation for the pattern. The only RTL insns resulting from the pattern on this occasion will be ! those already emitted by explicit calls to `emit_insn' within the preparation statements; the RTL template will not be generated. ! `FAIL' Make the pattern fail on this occasion. When a pattern fails, it means that the pattern was not truly available. The calling routines in the compiler will try other strategies for code generation using other patterns. Failure is currently supported only for binary (addition, ! multiplication, shifting, etc.) and bit-field (`extv', `extzv', ! and `insv') operations. ! If the preparation falls through (invokes neither `DONE' nor `FAIL'), ! then the `define_expand' acts like a `define_insn' in that the RTL template is used to generate the insn. The RTL template is not used for matching, only for generating the ! initial insn list. If the preparation statement always invokes `DONE' ! or `FAIL', the RTL template may be reduced to a simple list of ! operands, such as this example: (define_expand "addsi3" [(match_operand:SI 0 "register_operand" "") --- 23989,24039 ---- is used. In particular, it gives a predicate for each operand. A true operand, which needs to be specified in order to generate RTL ! from the pattern, should be described with a 'match_operand' in its first occurrence in the RTL template. This enters information on the operand's predicate into the tables that record such things. GCC uses the information to preload the operand into a register if that is required for valid RTL code. If the operand is referred to more than ! once, subsequent references should use 'match_dup'. The RTL template may also refer to internal "operands" which are temporary registers or labels used only within the sequence made by the ! 'define_expand'. Internal operands are substituted into the RTL ! template with 'match_dup', never with 'match_operand'. The values of the internal operands are not passed in as arguments by the compiler ! when it requests use of this pattern. Instead, they are computed within ! the pattern, in the preparation statements. These statements compute ! the values and store them into the appropriate elements of 'operands' so ! that 'match_dup' can find them. There are two special macros defined for use in the preparation ! statements: 'DONE' and 'FAIL'. Use them with a following semicolon, as a statement. ! 'DONE' ! Use the 'DONE' macro to end RTL generation for the pattern. The only RTL insns resulting from the pattern on this occasion will be ! those already emitted by explicit calls to 'emit_insn' within the preparation statements; the RTL template will not be generated. ! 'FAIL' Make the pattern fail on this occasion. When a pattern fails, it means that the pattern was not truly available. The calling routines in the compiler will try other strategies for code generation using other patterns. Failure is currently supported only for binary (addition, ! multiplication, shifting, etc.) and bit-field ('extv', 'extzv', ! and 'insv') operations. ! If the preparation falls through (invokes neither 'DONE' nor 'FAIL'), ! then the 'define_expand' acts like a 'define_insn' in that the RTL template is used to generate the insn. The RTL template is not used for matching, only for generating the ! initial insn list. If the preparation statement always invokes 'DONE' ! or 'FAIL', the RTL template may be reduced to a simple list of operands, ! such as this example: (define_expand "addsi3" [(match_operand:SI 0 "register_operand" "") *************** operands, such as this example: *** 24394,24409 **** FAIL; }") ! This example uses `define_expand' so that it can generate an RTL insn for shifting when the shift-count is in the supported range of 0 to 3 but fail in other cases where machine insns aren't available. When it fails, the compiler tries another strategy using different patterns (such as, a library call). If the compiler were able to handle nontrivial condition-strings in ! patterns with names, then it would be possible to use a `define_insn' ! in that case. Here is another case (zero-extension on the 68000) which ! makes more use of the power of `define_expand': (define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "general_operand" "") --- 24062,24077 ---- FAIL; }") ! This example uses 'define_expand' so that it can generate an RTL insn for shifting when the shift-count is in the supported range of 0 to 3 but fail in other cases where machine insns aren't available. When it fails, the compiler tries another strategy using different patterns (such as, a library call). If the compiler were able to handle nontrivial condition-strings in ! patterns with names, then it would be possible to use a 'define_insn' in ! that case. Here is another case (zero-extension on the 68000) which ! makes more use of the power of 'define_expand': (define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "general_operand" "") *************** Here two RTL insns are generated, one to *** 24420,24435 **** and the other to copy the input operand into its low half. This sequence is incorrect if the input operand refers to [the old value of] the output operand, so the preparation statement makes sure this isn't ! so. The function `make_safe_from' copies the `operands[1]' into a ! temporary register if it refers to `operands[0]'. It does this by emitting another RTL insn. Finally, a third example shows the use of an internal operand. ! Zero-extension on the SPUR chip is done by `and'-ing the result against ! a halfword mask. But this mask cannot be represented by a `const_int' because the constant value is too large to be legitimate on this ! machine. So it must be copied into a register with `force_reg' and ! then the register used in the `and'. (define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "register_operand" "") --- 24088,24103 ---- and the other to copy the input operand into its low half. This sequence is incorrect if the input operand refers to [the old value of] the output operand, so the preparation statement makes sure this isn't ! so. The function 'make_safe_from' copies the 'operands[1]' into a ! temporary register if it refers to 'operands[0]'. It does this by emitting another RTL insn. Finally, a third example shows the use of an internal operand. ! Zero-extension on the SPUR chip is done by 'and'-ing the result against ! a halfword mask. But this mask cannot be represented by a 'const_int' because the constant value is too large to be legitimate on this ! machine. So it must be copied into a register with 'force_reg' and then ! the register used in the 'and'. (define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "register_operand" "") *************** then the register used in the `and'. *** 24441,24450 **** "operands[2] = force_reg (SImode, GEN_INT (65535)); ") ! _Note:_ If the `define_expand' is used to serve a standard binary or unary arithmetic operation or a bit-field operation, then the last insn ! it generates must not be a `code_label', `barrier' or `note'. It must ! be an `insn', `jump_insn' or `call_insn'. If you don't need a real insn at the end, emit an insn to copy the result of the operation into itself. Such an insn will generate no code, but it can avoid problems in the compiler. --- 24109,24118 ---- "operands[2] = force_reg (SImode, GEN_INT (65535)); ") ! _Note:_ If the 'define_expand' is used to serve a standard binary or unary arithmetic operation or a bit-field operation, then the last insn ! it generates must not be a 'code_label', 'barrier' or 'note'. It must ! be an 'insn', 'jump_insn' or 'call_insn'. If you don't need a real insn at the end, emit an insn to copy the result of the operation into itself. Such an insn will generate no code, but it can avoid problems in the compiler. *************** File: gccint.info, Node: Insn Splitting *** 24455,24466 **** 16.16 Defining How to Split Instructions ======================================== ! There are two cases where you should specify how to split a pattern ! into multiple insns. On machines that have instructions requiring ! delay slots (*note Delay Slots::) or that have instructions whose ! output is not available for multiple cycles (*note Processor pipeline ! description::), the compiler phases that optimize these cases need to ! be able to move insns into one-instruction delay slots. However, some insns may generate more than one machine instruction. These insns cannot be placed into a delay slot. --- 24123,24134 ---- 16.16 Defining How to Split Instructions ======================================== ! There are two cases where you should specify how to split a pattern into ! multiple insns. On machines that have instructions requiring delay ! slots (*note Delay Slots::) or that have instructions whose output is ! not available for multiple cycles (*note Processor pipeline ! description::), the compiler phases that optimize these cases need to be ! able to move insns into one-instruction delay slots. However, some insns may generate more than one machine instruction. These insns cannot be placed into a delay slot. *************** scheduling. *** 24474,24488 **** The insn combiner phase also splits putative insns. If three insns are merged into one insn with a complex expression that cannot be matched by ! some `define_insn' pattern, the combiner phase attempts to split the complex pattern into two insns that are recognized. Usually it can break the complex pattern into two patterns by splitting out some subexpression. However, in some other cases, such as performing an addition of a large constant in two insns on a RISC machine, the way to split the addition into two insns is machine-dependent. ! The `define_split' definition tells the compiler how to split a ! complex insn into several simpler insns. It looks like this: (define_split [INSN-PATTERN] --- 24142,24156 ---- The insn combiner phase also splits putative insns. If three insns are merged into one insn with a complex expression that cannot be matched by ! some 'define_insn' pattern, the combiner phase attempts to split the complex pattern into two insns that are recognized. Usually it can break the complex pattern into two patterns by splitting out some subexpression. However, in some other cases, such as performing an addition of a large constant in two insns on a RISC machine, the way to split the addition into two insns is machine-dependent. ! The 'define_split' definition tells the compiler how to split a complex ! insn into several simpler insns. It looks like this: (define_split [INSN-PATTERN] *************** complex insn into several simpler insns. *** 24493,24523 **** "PREPARATION-STATEMENTS") INSN-PATTERN is a pattern that needs to be split and CONDITION is the ! final condition to be tested, as in a `define_insn'. When an insn matching INSN-PATTERN and satisfying CONDITION is found, it is replaced in the insn list with the insns given by NEW-INSN-PATTERN-1, NEW-INSN-PATTERN-2, etc. The PREPARATION-STATEMENTS are similar to those statements that are ! specified for `define_expand' (*note Expander Definitions::) and are executed before the new RTL is generated to prepare for the generated code or emit some insns whose pattern is not fixed. Unlike those in ! `define_expand', however, these statements must not generate any new pseudo-registers. Once reload has completed, they also must not allocate any space in the stack frame. Patterns are matched against INSN-PATTERN in two different circumstances. If an insn needs to be split for delay slot scheduling or insn scheduling, the insn is already known to be valid, which means ! that it must have been matched by some `define_insn' and, if ! `reload_completed' is nonzero, is known to satisfy the constraints of ! that `define_insn'. In that case, the new insn patterns must also be ! insns that are matched by some `define_insn' and, if `reload_completed' is nonzero, must also satisfy the constraints of those definitions. ! As an example of this usage of `define_split', consider the following ! example from `a29k.md', which splits a `sign_extend' from `HImode' to ! `SImode' into a pair of shift insns: (define_split [(set (match_operand:SI 0 "gen_reg_operand" "") --- 24161,24191 ---- "PREPARATION-STATEMENTS") INSN-PATTERN is a pattern that needs to be split and CONDITION is the ! final condition to be tested, as in a 'define_insn'. When an insn matching INSN-PATTERN and satisfying CONDITION is found, it is replaced in the insn list with the insns given by NEW-INSN-PATTERN-1, NEW-INSN-PATTERN-2, etc. The PREPARATION-STATEMENTS are similar to those statements that are ! specified for 'define_expand' (*note Expander Definitions::) and are executed before the new RTL is generated to prepare for the generated code or emit some insns whose pattern is not fixed. Unlike those in ! 'define_expand', however, these statements must not generate any new pseudo-registers. Once reload has completed, they also must not allocate any space in the stack frame. Patterns are matched against INSN-PATTERN in two different circumstances. If an insn needs to be split for delay slot scheduling or insn scheduling, the insn is already known to be valid, which means ! that it must have been matched by some 'define_insn' and, if ! 'reload_completed' is nonzero, is known to satisfy the constraints of ! that 'define_insn'. In that case, the new insn patterns must also be ! insns that are matched by some 'define_insn' and, if 'reload_completed' is nonzero, must also satisfy the constraints of those definitions. ! As an example of this usage of 'define_split', consider the following ! example from 'a29k.md', which splits a 'sign_extend' from 'HImode' to ! 'SImode' into a pair of shift insns: (define_split [(set (match_operand:SI 0 "gen_reg_operand" "") *************** example from `a29k.md', which splits a ` *** 24533,24550 **** { operands[1] = gen_lowpart (SImode, operands[1]); }") When the combiner phase tries to split an insn pattern, it is always ! the case that the pattern is _not_ matched by any `define_insn'. The ! combiner pass first tries to split a single `set' expression and then ! the same `set' expression inside a `parallel', but followed by a ! `clobber' of a pseudo-reg to use as a scratch register. In these ! cases, the combiner expects exactly two new insn patterns to be ! generated. It will verify that these patterns match some `define_insn' ! definitions, so you need not do this test in the `define_split' (of ! course, there is no point in writing a `define_split' that will never ! produce insns that match). ! Here is an example of this use of `define_split', taken from ! `rs6000.md': (define_split [(set (match_operand:SI 0 "gen_reg_operand" "") --- 24201,24218 ---- { operands[1] = gen_lowpart (SImode, operands[1]); }") When the combiner phase tries to split an insn pattern, it is always ! the case that the pattern is _not_ matched by any 'define_insn'. The ! combiner pass first tries to split a single 'set' expression and then ! the same 'set' expression inside a 'parallel', but followed by a ! 'clobber' of a pseudo-reg to use as a scratch register. In these cases, ! the combiner expects exactly two new insn patterns to be generated. It ! will verify that these patterns match some 'define_insn' definitions, so ! you need not do this test in the 'define_split' (of course, there is no ! point in writing a 'define_split' that will never produce insns that ! match). ! Here is an example of this use of 'define_split', taken from ! 'rs6000.md': (define_split [(set (match_operand:SI 0 "gen_reg_operand" "") *************** produce insns that match). *** 24565,24574 **** operands[4] = GEN_INT (low); }") ! Here the predicate `non_add_cint_operand' matches any `const_int' that ! is _not_ a valid operand of a single add insn. The add with the ! smaller displacement is written so that it can be substituted into the ! address of a subsequent operation. An example that uses a scratch register, from the same file, generates an equality comparison of a register and a large constant: --- 24233,24242 ---- operands[4] = GEN_INT (low); }") ! Here the predicate 'non_add_cint_operand' matches any 'const_int' that ! is _not_ a valid operand of a single add insn. The add with the smaller ! displacement is written so that it can be substituted into the address ! of a subsequent operation. An example that uses a scratch register, from the same file, generates an equality comparison of a register and a large constant: *************** an equality comparison of a register and *** 24597,24605 **** operands[5] = GEN_INT (sextc); }") ! To avoid confusion, don't write a single `define_split' that accepts ! some insns that match some `define_insn' as well as some insns that ! don't. Instead, write two separate `define_split' definitions, one for the insns that are valid and one for the insns that are not valid. The splitter is allowed to split jump instructions into sequence of --- 24265,24273 ---- operands[5] = GEN_INT (sextc); }") ! To avoid confusion, don't write a single 'define_split' that accepts ! some insns that match some 'define_insn' as well as some insns that ! don't. Instead, write two separate 'define_split' definitions, one for the insns that are valid and one for the insns that are not valid. The splitter is allowed to split jump instructions into sequence of *************** instruction is always valid, as compiler *** 24612,24627 **** new jump. When new sequence contains multiple jump instructions or new labels, more assistance is needed. Splitter is required to create only unconditional jumps, or simple conditional jump instructions. ! Additionally it must attach a `REG_BR_PROB' note to each conditional ! jump. A global variable `split_branch_probability' holds the probability of the original branch in case it was a simple conditional jump, -1 otherwise. To simplify recomputing of edge frequencies, the ! new sequence is required to have only forward jumps to the newly ! created labels. ! For the common case where the pattern of a define_split exactly ! matches the pattern of a define_insn, use `define_insn_and_split'. It ! looks like this: (define_insn_and_split [INSN-PATTERN] --- 24280,24295 ---- new jump. When new sequence contains multiple jump instructions or new labels, more assistance is needed. Splitter is required to create only unconditional jumps, or simple conditional jump instructions. ! Additionally it must attach a 'REG_BR_PROB' note to each conditional ! jump. A global variable 'split_branch_probability' holds the probability of the original branch in case it was a simple conditional jump, -1 otherwise. To simplify recomputing of edge frequencies, the ! new sequence is required to have only forward jumps to the newly created ! labels. ! For the common case where the pattern of a define_split exactly matches ! the pattern of a define_insn, use 'define_insn_and_split'. It looks ! like this: (define_insn_and_split [INSN-PATTERN] *************** looks like this: *** 24635,24644 **** [INSN-ATTRIBUTES]) INSN-PATTERN, CONDITION, OUTPUT-TEMPLATE, and INSN-ATTRIBUTES are used ! as in `define_insn'. The NEW-INSN-PATTERN vector and the ! PREPARATION-STATEMENTS are used as in a `define_split'. The ! SPLIT-CONDITION is also used as in `define_split', with the additional ! behavior that if the condition starts with `&&', the condition used for the split will be the constructed as a logical "and" of the split condition with the insn condition. For example, from i386.md: --- 24303,24312 ---- [INSN-ATTRIBUTES]) INSN-PATTERN, CONDITION, OUTPUT-TEMPLATE, and INSN-ATTRIBUTES are used ! as in 'define_insn'. The NEW-INSN-PATTERN vector and the ! PREPARATION-STATEMENTS are used as in a 'define_split'. The ! SPLIT-CONDITION is also used as in 'define_split', with the additional ! behavior that if the condition starts with '&&', the condition used for the split will be the constructed as a logical "and" of the split condition with the insn condition. For example, from i386.md: *************** condition with the insn condition. For *** 24656,24667 **** [(set_attr "type" "alu1")]) In this case, the actual split condition will be ! `TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed'. ! The `define_insn_and_split' construction provides exactly the same ! functionality as two separate `define_insn' and `define_split' ! patterns. It exists for compactness, and as a maintenance tool to ! prevent having to ensure the two patterns' templates match.  File: gccint.info, Node: Including Patterns, Next: Peephole Definitions, Prev: Insn Splitting, Up: Machine Desc --- 24324,24335 ---- [(set_attr "type" "alu1")]) In this case, the actual split condition will be ! 'TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed'. ! The 'define_insn_and_split' construction provides exactly the same ! functionality as two separate 'define_insn' and 'define_split' patterns. ! It exists for compactness, and as a maintenance tool to prevent having ! to ensure the two patterns' templates match.  File: gccint.info, Node: Including Patterns, Next: Peephole Definitions, Prev: Insn Splitting, Up: Machine Desc *************** File: gccint.info, Node: Including Patt *** 24669,24676 **** 16.17 Including Patterns in Machine Descriptions. ================================================= ! The `include' pattern tells the compiler tools where to look for ! patterns that are in files other than in the file `.md'. This is used only at build time and there is no preprocessing allowed. It looks like: --- 24337,24344 ---- 16.17 Including Patterns in Machine Descriptions. ================================================= ! The 'include' pattern tells the compiler tools where to look for ! patterns that are in files other than in the file '.md'. This is used only at build time and there is no preprocessing allowed. It looks like: *************** only at build time and there is no prepr *** 24685,24692 **** (include "filestuff") Where PATHNAME is a string that specifies the location of the file, ! specifies the include file to be in `gcc/config/target/filestuff'. The ! directory `gcc/config/target' is regarded as the default directory. Machine descriptions may be split up into smaller more manageable subsections and placed into subdirectories. --- 24353,24360 ---- (include "filestuff") Where PATHNAME is a string that specifies the location of the file, ! specifies the include file to be in 'gcc/config/target/filestuff'. The ! directory 'gcc/config/target' is regarded as the default directory. Machine descriptions may be split up into smaller more manageable subsections and placed into subdirectories. *************** subsections and placed into subdirectori *** 24697,24713 **** (include "BOGUS/filestuff") the include file is specified to be in ! `gcc/config/TARGET/BOGUS/filestuff'. Specifying an absolute path for the include file such as; (include "/u2/BOGUS/filestuff") is permitted but is not encouraged. 16.17.1 RTL Generation Tool Options for Directory Search -------------------------------------------------------- ! The `-IDIR' option specifies directories to search for machine descriptions. For example: --- 24365,24382 ---- (include "BOGUS/filestuff") the include file is specified to be in ! 'gcc/config/TARGET/BOGUS/filestuff'. Specifying an absolute path for the include file such as; (include "/u2/BOGUS/filestuff") + is permitted but is not encouraged. 16.17.1 RTL Generation Tool Options for Directory Search -------------------------------------------------------- ! The '-IDIR' option specifies directories to search for machine descriptions. For example: *************** descriptions. For example: *** 24717,24723 **** searched for header files. This can be used to override a system machine definition file, substituting your own version, since these directories are searched before the default machine description file ! directories. If you use more than one `-I' option, the directories are scanned in left-to-right order; the standard default directory come after. --- 24386,24392 ---- searched for header files. This can be used to override a system machine definition file, substituting your own version, since these directories are searched before the default machine description file ! directories. If you use more than one '-I' option, the directories are scanned in left-to-right order; the standard default directory come after. *************** File: gccint.info, Node: Peephole Defin *** 24727,24733 **** 16.18 Machine-Specific Peephole Optimizers ========================================== ! In addition to instruction patterns the `md' file may contain definitions of machine-specific peephole optimizations. The combiner does not notice certain peephole optimizations when the --- 24396,24402 ---- 16.18 Machine-Specific Peephole Optimizers ========================================== ! In addition to instruction patterns the 'md' file may contain definitions of machine-specific peephole optimizations. The combiner does not notice certain peephole optimizations when the *************** computed in the first one. A machine-sp *** 24738,24749 **** detect such opportunities. There are two forms of peephole definitions that may be used. The ! original `define_peephole' is run at assembly output time to match ! insns and substitute assembly text. Use of `define_peephole' is ! deprecated. ! A newer `define_peephole2' matches insns and substitutes new insns. ! The `peephole2' pass is run after register allocation but before scheduling, which may result in much better code for targets that do scheduling. --- 24407,24417 ---- detect such opportunities. There are two forms of peephole definitions that may be used. The ! original 'define_peephole' is run at assembly output time to match insns ! and substitute assembly text. Use of 'define_peephole' is deprecated. ! A newer 'define_peephole2' matches insns and substitutes new insns. ! The 'peephole2' pass is run after register allocation but before scheduling, which may result in much better code for targets that do scheduling. *************** A definition looks like this: *** 24770,24776 **** The last string operand may be omitted if you are not using any machine-specific information in this machine description. If present, ! it must obey the same rules as in a `define_insn'. In this skeleton, INSN-PATTERN-1 and so on are patterns to match consecutive insns. The optimization applies to a sequence of insns when --- 24438,24444 ---- The last string operand may be omitted if you are not using any machine-specific information in this machine description. If present, ! it must obey the same rules as in a 'define_insn'. In this skeleton, INSN-PATTERN-1 and so on are patterns to match consecutive insns. The optimization applies to a sequence of insns when *************** INSN-PATTERN-1 matches the first one, IN *** 24778,24800 **** and so on. Each of the insns matched by a peephole must also match a ! `define_insn'. Peepholes are checked only at the last stage just ! before code generation, and only optionally. Therefore, any insn which ! would match a peephole but no `define_insn' will cause a crash in code generation in an unoptimized compilation, or at various optimization stages. ! The operands of the insns are matched with `match_operands', ! `match_operator', and `match_dup', as usual. What is not usual is that the operand numbers apply to all the insn patterns in the definition. So, you can check for identical operands in two insns by using ! `match_operand' in one insn and `match_dup' in the other. ! The operand constraints used in `match_operand' patterns do not have ! any direct effect on the applicability of the peephole, but they will ! be validated afterward, so make sure your constraints are general enough ! to apply whenever the peephole matches. If the peephole matches but ! the constraints are not satisfied, the compiler will crash. It is safe to omit constraints in all the operands of the peephole; or you can write constraints which serve as a double-check on the criteria --- 24446,24468 ---- and so on. Each of the insns matched by a peephole must also match a ! 'define_insn'. Peepholes are checked only at the last stage just before ! code generation, and only optionally. Therefore, any insn which would ! match a peephole but no 'define_insn' will cause a crash in code generation in an unoptimized compilation, or at various optimization stages. ! The operands of the insns are matched with 'match_operands', ! 'match_operator', and 'match_dup', as usual. What is not usual is that the operand numbers apply to all the insn patterns in the definition. So, you can check for identical operands in two insns by using ! 'match_operand' in one insn and 'match_dup' in the other. ! The operand constraints used in 'match_operand' patterns do not have ! any direct effect on the applicability of the peephole, but they will be ! validated afterward, so make sure your constraints are general enough to ! apply whenever the peephole matches. If the peephole matches but the ! constraints are not satisfied, the compiler will crash. It is safe to omit constraints in all the operands of the peephole; or you can write constraints which serve as a double-check on the criteria *************** allocation is complete. Therefore, the *** 24812,24833 **** which operands have ended up in which kinds of registers, just by looking at the operands. ! The way to refer to the operands in CONDITION is to write ! `operands[I]' for operand number I (as matched by `(match_operand I ! ...)'). Use the variable `insn' to refer to the last of the insns ! being matched; use `prev_active_insn' to find the preceding insns. When optimizing computations with intermediate results, you can use CONDITION to match only when the intermediate results are not used ! elsewhere. Use the C expression `dead_or_set_p (INSN, OP)', where INSN is the insn in which you expect the value to be used for the last time ! (from the value of `insn', together with use of `prev_nonnote_insn'), ! and OP is the intermediate value (from `operands[I]'). Applying the optimization means replacing the sequence of insns with one new insn. The TEMPLATE controls ultimate output of assembler code for this combined insn. It works exactly like the template of a ! `define_insn'. Operand numbers in this template are the same ones used in matching the original sequence of insns. The result of a defined peephole optimizer does not need to match any --- 24480,24501 ---- which operands have ended up in which kinds of registers, just by looking at the operands. ! The way to refer to the operands in CONDITION is to write 'operands[I]' ! for operand number I (as matched by '(match_operand I ...)'). Use the ! variable 'insn' to refer to the last of the insns being matched; use ! 'prev_active_insn' to find the preceding insns. When optimizing computations with intermediate results, you can use CONDITION to match only when the intermediate results are not used ! elsewhere. Use the C expression 'dead_or_set_p (INSN, OP)', where INSN is the insn in which you expect the value to be used for the last time ! (from the value of 'insn', together with use of 'prev_nonnote_insn'), ! and OP is the intermediate value (from 'operands[I]'). Applying the optimization means replacing the sequence of insns with one new insn. The TEMPLATE controls ultimate output of assembler code for this combined insn. It works exactly like the template of a ! 'define_insn'. Operand numbers in this template are the same ones used in matching the original sequence of insns. The result of a defined peephole optimizer does not need to match any *************** into *** 24875,24888 **** fmoved sp@+,fp0 INSN-PATTERN-1 and so on look _almost_ like the second operand of ! `define_insn'. There is one important difference: the second operand ! of `define_insn' consists of one or more RTX's enclosed in square ! brackets. Usually, there is only one: then the same action can be ! written as an element of a `define_peephole'. But when there are ! multiple actions in a `define_insn', they are implicitly enclosed in a ! `parallel'. Then you must explicitly write the `parallel', and the ! square brackets within it, in the `define_peephole'. Thus, if an insn ! pattern looks like this, (define_insn "divmodsi4" [(set (match_operand:SI 0 "general_operand" "=d") --- 24543,24555 ---- fmoved sp@+,fp0 INSN-PATTERN-1 and so on look _almost_ like the second operand of ! 'define_insn'. There is one important difference: the second operand of ! 'define_insn' consists of one or more RTX's enclosed in square brackets. ! Usually, there is only one: then the same action can be written as an ! element of a 'define_peephole'. But when there are multiple actions in ! a 'define_insn', they are implicitly enclosed in a 'parallel'. Then you ! must explicitly write the 'parallel', and the square brackets within it, ! in the 'define_peephole'. Thus, if an insn pattern looks like this, (define_insn "divmodsi4" [(set (match_operand:SI 0 "general_operand" "=d") *************** File: gccint.info, Node: define_peephol *** 24912,24918 **** 16.18.2 RTL to RTL Peephole Optimizers -------------------------------------- ! The `define_peephole2' definition tells the compiler how to substitute one sequence of instructions for another sequence, what additional scratch registers may be needed and what their lifetimes must be. --- 24579,24585 ---- 16.18.2 RTL to RTL Peephole Optimizers -------------------------------------- ! The 'define_peephole2' definition tells the compiler how to substitute one sequence of instructions for another sequence, what additional scratch registers may be needed and what their lifetimes must be. *************** scratch registers may be needed and what *** 24926,24932 **** ...] "PREPARATION-STATEMENTS") ! The definition is almost identical to `define_split' (*note Insn Splitting::) except that the pattern to match is not a single instruction, but a sequence of instructions. --- 24593,24599 ---- ...] "PREPARATION-STATEMENTS") ! The definition is almost identical to 'define_split' (*note Insn Splitting::) except that the pattern to match is not a single instruction, but a sequence of instructions. *************** instruction, but a sequence of instructi *** 24934,24943 **** output template. If appropriate registers are not free, the pattern will simply not match. ! Scratch registers are requested with a `match_scratch' pattern at the top level of the input pattern. The allocated register (initially) will be dead at the point requested within the original sequence. If the ! scratch is used at more than a single point, a `match_dup' pattern at the top level of the input pattern marks the last position in the input sequence at which the register must be available. --- 24601,24610 ---- output template. If appropriate registers are not free, the pattern will simply not match. ! Scratch registers are requested with a 'match_scratch' pattern at the top level of the input pattern. The allocated register (initially) will be dead at the point requested within the original sequence. If the ! scratch is used at more than a single point, a 'match_dup' pattern at the top level of the input pattern marks the last position in the input sequence at which the register must be available. *************** sequence at which the register must be a *** 24959,24965 **** This pattern tries to split a load from its use in the hopes that we'll be able to schedule around the memory load latency. It allocates a ! single `SImode' register of class `GENERAL_REGS' (`"r"') that needs to be live only at the point just before the arithmetic. A real example requiring extended scratch lifetimes is harder to come --- 24626,24632 ---- This pattern tries to split a load from its use in the hopes that we'll be able to schedule around the memory load latency. It allocates a ! single 'SImode' register of class 'GENERAL_REGS' ('"r"') that needs to be live only at the point just before the arithmetic. A real example requiring extended scratch lifetimes is harder to come *************** by, so here's a silly made-up example: *** 24978,24986 **** (set (match_dup 3) (match_dup 4))] "") ! If we had not added the `(match_dup 4)' in the middle of the input sequence, it might have been the case that the register we chose at the ! beginning of the sequence is killed by the first or second `set'.  File: gccint.info, Node: Insn Attributes, Next: Conditional Execution, Prev: Peephole Definitions, Up: Machine Desc --- 24645,24653 ---- (set (match_dup 3) (match_dup 4))] "") ! If we had not added the '(match_dup 4)' in the middle of the input sequence, it might have been the case that the register we chose at the ! beginning of the sequence is killed by the first or second 'set'.  File: gccint.info, Node: Insn Attributes, Next: Conditional Execution, Prev: Peephole Definitions, Up: Machine Desc *************** File: gccint.info, Node: Insn Attribute *** 24989,24999 **** ============================ In addition to describing the instruction supported by the target ! machine, the `md' file also defines a group of "attributes" and a set of values for each. Every generated insn is assigned a value for each ! attribute. One possible attribute would be the effect that the insn ! has on the machine's condition code. This attribute can then be used ! by `NOTICE_UPDATE_CC' to track the condition codes. * Menu: --- 24656,24666 ---- ============================ In addition to describing the instruction supported by the target ! machine, the 'md' file also defines a group of "attributes" and a set of values for each. Every generated insn is assigned a value for each ! attribute. One possible attribute would be the effect that the insn has ! on the machine's condition code. This attribute can then be used by ! 'NOTICE_UPDATE_CC' to track the condition codes. * Menu: *************** File: gccint.info, Node: Defining Attri *** 25012,25096 **** 16.19.1 Defining Attributes and their Values -------------------------------------------- ! The `define_attr' expression is used to define each attribute required by the target machine. It looks like: (define_attr NAME LIST-OF-VALUES DEFAULT) NAME is a string specifying the name of the attribute being defined. Some attributes are used in a special way by the rest of the compiler. ! The `enabled' attribute can be used to conditionally enable or disable ! insn alternatives (*note Disable Insn Alternatives::). The `predicable' ! attribute, together with a suitable `define_cond_exec' (*note Conditional Execution::), can be used to automatically generate ! conditional variants of instruction patterns. The compiler internally ! uses the names `ce_enabled' and `nonce_enabled', so they should not be used elsewhere as alternative names. ! LIST-OF-VALUES is either a string that specifies a comma-separated ! list of values that can be assigned to the attribute, or a null string ! to indicate that the attribute takes numeric values. DEFAULT is an attribute expression that gives the value of this attribute for insns that match patterns whose definition does not ! include an explicit value for this attribute. *Note Attr Example::, ! for more information on the handling of defaults. *Note Constant Attributes::, for information on attributes that do not depend on any particular insn. For each defined attribute, a number of definitions are written to the ! `insn-attr.h' file. For cases where an explicit set of values is specified for an attribute, the following are defined: ! * A `#define' is written for the symbol `HAVE_ATTR_NAME'. ! * An enumerated class is defined for `attr_NAME' with elements of ! the form `UPPER-NAME_UPPER-VALUE' where the attribute name and ! value are first converted to uppercase. ! * A function `get_attr_NAME' is defined that is passed an insn and returns the attribute value for that insn. ! For example, if the following is present in the `md' file: (define_attr "type" "branch,fp,load,store,arith" ...) ! the following lines will be written to the file `insn-attr.h'. #define HAVE_ATTR_type 1 enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD, TYPE_STORE, TYPE_ARITH}; extern enum attr_type get_attr_type (); ! If the attribute takes numeric values, no `enum' type will be defined ! and the function to obtain the attribute's value will return `int'. There are attributes which are tied to a specific meaning. These attributes are not free to use for other purposes: ! `length' ! The `length' attribute is used to calculate the length of emitted code chunks. This is especially important when verifying branch ! distances. *Note Insn Lengths::. ! `enabled' ! The `enabled' attribute can be defined to prevent certain alternatives of an insn definition from being used during code ! generation. *Note Disable Insn Alternatives::. For each of these special attributes, the corresponding ! `HAVE_ATTR_NAME' `#define' is also written when the attribute is not ! defined; in that case, it is defined as `0'. Another way of defining an attribute is to use: (define_enum_attr "ATTR" "ENUM" DEFAULT) ! This works in just the same way as `define_attr', except that the list of values is taken from a separate enumeration called ENUM (*note ! define_enum::). This form allows you to use the same list of values ! for several attributes without having to repeat the list each time. ! For example: (define_enum "processor" [ model_a --- 24679,24763 ---- 16.19.1 Defining Attributes and their Values -------------------------------------------- ! The 'define_attr' expression is used to define each attribute required by the target machine. It looks like: (define_attr NAME LIST-OF-VALUES DEFAULT) NAME is a string specifying the name of the attribute being defined. Some attributes are used in a special way by the rest of the compiler. ! The 'enabled' attribute can be used to conditionally enable or disable ! insn alternatives (*note Disable Insn Alternatives::). The 'predicable' ! attribute, together with a suitable 'define_cond_exec' (*note Conditional Execution::), can be used to automatically generate ! conditional variants of instruction patterns. The compiler internally ! uses the names 'ce_enabled' and 'nonce_enabled', so they should not be used elsewhere as alternative names. ! LIST-OF-VALUES is either a string that specifies a comma-separated list ! of values that can be assigned to the attribute, or a null string to ! indicate that the attribute takes numeric values. DEFAULT is an attribute expression that gives the value of this attribute for insns that match patterns whose definition does not ! include an explicit value for this attribute. *Note Attr Example::, for ! more information on the handling of defaults. *Note Constant Attributes::, for information on attributes that do not depend on any particular insn. For each defined attribute, a number of definitions are written to the ! 'insn-attr.h' file. For cases where an explicit set of values is specified for an attribute, the following are defined: ! * A '#define' is written for the symbol 'HAVE_ATTR_NAME'. ! * An enumerated class is defined for 'attr_NAME' with elements of the ! form 'UPPER-NAME_UPPER-VALUE' where the attribute name and value ! are first converted to uppercase. ! * A function 'get_attr_NAME' is defined that is passed an insn and returns the attribute value for that insn. ! For example, if the following is present in the 'md' file: (define_attr "type" "branch,fp,load,store,arith" ...) ! the following lines will be written to the file 'insn-attr.h'. #define HAVE_ATTR_type 1 enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD, TYPE_STORE, TYPE_ARITH}; extern enum attr_type get_attr_type (); ! If the attribute takes numeric values, no 'enum' type will be defined ! and the function to obtain the attribute's value will return 'int'. There are attributes which are tied to a specific meaning. These attributes are not free to use for other purposes: ! 'length' ! The 'length' attribute is used to calculate the length of emitted code chunks. This is especially important when verifying branch ! distances. *Note Insn Lengths::. ! 'enabled' ! The 'enabled' attribute can be defined to prevent certain alternatives of an insn definition from being used during code ! generation. *Note Disable Insn Alternatives::. For each of these special attributes, the corresponding ! 'HAVE_ATTR_NAME' '#define' is also written when the attribute is not ! defined; in that case, it is defined as '0'. Another way of defining an attribute is to use: (define_enum_attr "ATTR" "ENUM" DEFAULT) ! This works in just the same way as 'define_attr', except that the list of values is taken from a separate enumeration called ENUM (*note ! define_enum::). This form allows you to use the same list of values for ! several attributes without having to repeat the list each time. For ! example: (define_enum "processor" [ model_a *************** For example: *** 25109,25117 **** (define_attr "tune" "model_a,model_b,..." (const (symbol_ref "target_tune"))) ! but without duplicating the processor list. The second example ! defines two separate C enums (`attr_arch' and `attr_tune') whereas the ! first defines a single C enum (`processor').  File: gccint.info, Node: Expressions, Next: Tagging Insns, Prev: Defining Attributes, Up: Insn Attributes --- 24776,24784 ---- (define_attr "tune" "model_a,model_b,..." (const (symbol_ref "target_tune"))) ! but without duplicating the processor list. The second example defines ! two separate C enums ('attr_arch' and 'attr_tune') whereas the first ! defines a single C enum ('processor').  File: gccint.info, Node: Expressions, Next: Tagging Insns, Prev: Defining Attributes, Up: Insn Attributes *************** RTL expressions used to define attribute *** 25123,25232 **** plus a few specific to attribute definitions, to be discussed below. Attribute value expressions must have one of the following forms: ! `(const_int I)' The integer I specifies the value of a numeric attribute. I must be non-negative. The value of a numeric attribute can be specified either with a ! `const_int', or as an integer represented as a string in ! `const_string', `eq_attr' (see below), `attr', `symbol_ref', ! simple arithmetic expressions, and `set_attr' overrides on ! specific instructions (*note Tagging Insns::). ! `(const_string VALUE)' ! The string VALUE specifies a constant attribute value. If VALUE ! is specified as `"*"', it means that the default value of the attribute is to be used for the insn containing this expression. ! `"*"' obviously cannot be used in the DEFAULT expression of a ! `define_attr'. If the attribute whose value is being specified is numeric, VALUE must be a string containing a non-negative integer (normally ! `const_int' would be used in this case). Otherwise, it must contain one of the valid values for the attribute. ! `(if_then_else TEST TRUE-VALUE FALSE-VALUE)' TEST specifies an attribute test, whose format is defined below. The value of this expression is TRUE-VALUE if TEST is true, otherwise it is FALSE-VALUE. ! `(cond [TEST1 VALUE1 ...] DEFAULT)' The first operand of this expression is a vector containing an even number of expressions and consisting of pairs of TEST and VALUE ! expressions. The value of the `cond' expression is that of the VALUE corresponding to the first true TEST expression. If none of ! the TEST expressions are true, the value of the `cond' expression is that of the DEFAULT expression. TEST expressions can have one of the following forms: ! `(const_int I)' This test is true if I is nonzero and false otherwise. ! `(not TEST)' ! `(ior TEST1 TEST2)' ! `(and TEST1 TEST2)' These tests are true if the indicated logical function is true. ! `(match_operand:M N PRED CONSTRAINTS)' ! This test is true if operand N of the insn whose attribute value ! is being determined has mode M (this part of the test is ignored ! if M is `VOIDmode') and the function specified by the string PRED ! returns a nonzero value when passed operand N and mode M (this ! part of the test is ignored if PRED is the null string). The CONSTRAINTS operand is ignored and should be the null string. ! `(match_test C-EXPR)' The test is true if C expression C-EXPR is true. In non-constant attributes, C-EXPR has access to the following variables: ! INSN The rtl instruction under test. ! ! WHICH_ALTERNATIVE ! The `define_insn' alternative that INSN matches. *Note ! Output Statement::. ! ! OPERANDS An array of INSN's rtl operands. ! C-EXPR behaves like the condition in a C `if' statement, so there ! is no need to explicitly convert the expression into a boolean 0 ! or 1 value. For example, the following two tests are equivalent: (match_test "x & 2") (match_test "(x & 2) != 0") ! `(le ARITH1 ARITH2)' ! `(leu ARITH1 ARITH2)' ! `(lt ARITH1 ARITH2)' ! `(ltu ARITH1 ARITH2)' ! `(gt ARITH1 ARITH2)' ! `(gtu ARITH1 ARITH2)' ! `(ge ARITH1 ARITH2)' ! `(geu ARITH1 ARITH2)' ! `(ne ARITH1 ARITH2)' ! `(eq ARITH1 ARITH2)' These tests are true if the indicated comparison of the two arithmetic expressions is true. Arithmetic expressions are formed ! with `plus', `minus', `mult', `div', `mod', `abs', `neg', `and', ! `ior', `xor', `not', `ashift', `lshiftrt', and `ashiftrt' expressions. ! `const_int' and `symbol_ref' are always valid terms (*note Insn ! Lengths::,for additional forms). `symbol_ref' is a string ! denoting a C expression that yields an `int' when evaluated by the ! `get_attr_...' routine. It should normally be a global variable. ! `(eq_attr NAME VALUE)' NAME is a string specifying the name of an attribute. VALUE is a string that is either a valid value for attribute NAME, ! a comma-separated list of values, or `!' followed by a value or ! list. If VALUE does not begin with a `!', this test is true if ! the value of the NAME attribute of the current insn is in the list ! specified by VALUE. If VALUE begins with a `!', this test is true if the attribute's value is _not_ in the specified list. For example, --- 24790,24897 ---- plus a few specific to attribute definitions, to be discussed below. Attribute value expressions must have one of the following forms: ! '(const_int I)' The integer I specifies the value of a numeric attribute. I must be non-negative. The value of a numeric attribute can be specified either with a ! 'const_int', or as an integer represented as a string in ! 'const_string', 'eq_attr' (see below), 'attr', 'symbol_ref', simple ! arithmetic expressions, and 'set_attr' overrides on specific ! instructions (*note Tagging Insns::). ! '(const_string VALUE)' ! The string VALUE specifies a constant attribute value. If VALUE is ! specified as '"*"', it means that the default value of the attribute is to be used for the insn containing this expression. ! '"*"' obviously cannot be used in the DEFAULT expression of a ! 'define_attr'. If the attribute whose value is being specified is numeric, VALUE must be a string containing a non-negative integer (normally ! 'const_int' would be used in this case). Otherwise, it must contain one of the valid values for the attribute. ! '(if_then_else TEST TRUE-VALUE FALSE-VALUE)' TEST specifies an attribute test, whose format is defined below. The value of this expression is TRUE-VALUE if TEST is true, otherwise it is FALSE-VALUE. ! '(cond [TEST1 VALUE1 ...] DEFAULT)' The first operand of this expression is a vector containing an even number of expressions and consisting of pairs of TEST and VALUE ! expressions. The value of the 'cond' expression is that of the VALUE corresponding to the first true TEST expression. If none of ! the TEST expressions are true, the value of the 'cond' expression is that of the DEFAULT expression. TEST expressions can have one of the following forms: ! '(const_int I)' This test is true if I is nonzero and false otherwise. ! '(not TEST)' ! '(ior TEST1 TEST2)' ! '(and TEST1 TEST2)' These tests are true if the indicated logical function is true. ! '(match_operand:M N PRED CONSTRAINTS)' ! This test is true if operand N of the insn whose attribute value is ! being determined has mode M (this part of the test is ignored if M ! is 'VOIDmode') and the function specified by the string PRED ! returns a nonzero value when passed operand N and mode M (this part ! of the test is ignored if PRED is the null string). The CONSTRAINTS operand is ignored and should be the null string. ! '(match_test C-EXPR)' The test is true if C expression C-EXPR is true. In non-constant attributes, C-EXPR has access to the following variables: ! INSN The rtl instruction under test. ! WHICH_ALTERNATIVE ! The 'define_insn' alternative that INSN matches. *Note Output ! Statement::. ! OPERANDS An array of INSN's rtl operands. ! C-EXPR behaves like the condition in a C 'if' statement, so there ! is no need to explicitly convert the expression into a boolean 0 or ! 1 value. For example, the following two tests are equivalent: (match_test "x & 2") (match_test "(x & 2) != 0") ! '(le ARITH1 ARITH2)' ! '(leu ARITH1 ARITH2)' ! '(lt ARITH1 ARITH2)' ! '(ltu ARITH1 ARITH2)' ! '(gt ARITH1 ARITH2)' ! '(gtu ARITH1 ARITH2)' ! '(ge ARITH1 ARITH2)' ! '(geu ARITH1 ARITH2)' ! '(ne ARITH1 ARITH2)' ! '(eq ARITH1 ARITH2)' These tests are true if the indicated comparison of the two arithmetic expressions is true. Arithmetic expressions are formed ! with 'plus', 'minus', 'mult', 'div', 'mod', 'abs', 'neg', 'and', ! 'ior', 'xor', 'not', 'ashift', 'lshiftrt', and 'ashiftrt' expressions. ! 'const_int' and 'symbol_ref' are always valid terms (*note Insn ! Lengths::,for additional forms). 'symbol_ref' is a string denoting ! a C expression that yields an 'int' when evaluated by the ! 'get_attr_...' routine. It should normally be a global variable. ! '(eq_attr NAME VALUE)' NAME is a string specifying the name of an attribute. VALUE is a string that is either a valid value for attribute NAME, ! a comma-separated list of values, or '!' followed by a value or ! list. If VALUE does not begin with a '!', this test is true if the ! value of the NAME attribute of the current insn is in the list ! specified by VALUE. If VALUE begins with a '!', this test is true if the attribute's value is _not_ in the specified list. For example, *************** Attribute value expressions must have on *** 25237,25244 **** (ior (eq_attr "type" "load") (eq_attr "type" "store")) ! If NAME specifies an attribute of `alternative', it refers to the ! value of the compiler variable `which_alternative' (*note Output Statement::) and the values must be small integers. For example, (eq_attr "alternative" "2,3") --- 24902,24909 ---- (ior (eq_attr "type" "load") (eq_attr "type" "store")) ! If NAME specifies an attribute of 'alternative', it refers to the ! value of the compiler variable 'which_alternative' (*note Output Statement::) and the values must be small integers. For example, (eq_attr "alternative" "2,3") *************** Attribute value expressions must have on *** 25248,25269 **** (ior (eq (symbol_ref "which_alternative") (const_int 2)) (eq (symbol_ref "which_alternative") (const_int 3))) ! Note that, for most attributes, an `eq_attr' test is simplified in cases where the value of the attribute being tested is known for all insns matching a particular pattern. This is by far the most common case. ! `(attr_flag NAME)' ! The value of an `attr_flag' expression is true if the flag ! specified by NAME is true for the `insn' currently being scheduled. NAME is a string specifying one of a fixed set of flags to test. ! Test the flags `forward' and `backward' to determine the direction of a conditional branch. ! This example describes a conditional branch delay slot which can ! be nullified for forward branches that are taken (annul-true) or ! for backward branches which are not taken (annul-false). (define_delay (eq_attr "type" "cbranch") [(eq_attr "in_branch_delay" "true") --- 24913,24934 ---- (ior (eq (symbol_ref "which_alternative") (const_int 2)) (eq (symbol_ref "which_alternative") (const_int 3))) ! Note that, for most attributes, an 'eq_attr' test is simplified in cases where the value of the attribute being tested is known for all insns matching a particular pattern. This is by far the most common case. ! '(attr_flag NAME)' ! The value of an 'attr_flag' expression is true if the flag ! specified by NAME is true for the 'insn' currently being scheduled. NAME is a string specifying one of a fixed set of flags to test. ! Test the flags 'forward' and 'backward' to determine the direction of a conditional branch. ! This example describes a conditional branch delay slot which can be ! nullified for forward branches that are taken (annul-true) or for ! backward branches which are not taken (annul-false). (define_delay (eq_attr "type" "cbranch") [(eq_attr "in_branch_delay" "true") *************** Attribute value expressions must have on *** 25272,25286 **** (and (eq_attr "in_branch_delay" "true") (attr_flag "backward"))]) ! The `forward' and `backward' flags are false if the current `insn' being scheduled is not a conditional branch. ! `attr_flag' is only used during delay slot scheduling and has no meaning to other passes of the compiler. ! `(attr NAME)' The value of another attribute is returned. This is most useful ! for numeric attributes, as `eq_attr' and `attr_flag' produce more efficient code for non-numeric attributes.  --- 24937,24951 ---- (and (eq_attr "in_branch_delay" "true") (attr_flag "backward"))]) ! The 'forward' and 'backward' flags are false if the current 'insn' being scheduled is not a conditional branch. ! 'attr_flag' is only used during delay slot scheduling and has no meaning to other passes of the compiler. ! '(attr NAME)' The value of another attribute is returned. This is most useful ! for numeric attributes, as 'eq_attr' and 'attr_flag' produce more efficient code for non-numeric attributes.  *************** File: gccint.info, Node: Tagging Insns, *** 25290,25345 **** ------------------------------------------- The value assigned to an attribute of an insn is primarily determined by ! which pattern is matched by that insn (or which `define_peephole' ! generated it). Every `define_insn' and `define_peephole' can have an optional last argument to specify the values of attributes for matching ! insns. The value of any attribute not specified in a particular insn ! is set to the default value for that attribute, as specified in its ! `define_attr'. Extensive use of default values for attributes permits the specification of the values for only one or two attributes in the definition of most insn patterns, as seen in the example in the next section. ! The optional last argument of `define_insn' and `define_peephole' is a vector of expressions, each of which defines the value for a single ! attribute. The most general way of assigning an attribute's value is ! to use a `set' expression whose first operand is an `attr' expression giving the name of the attribute being set. The second operand of the ! `set' is an attribute expression (*note Expressions::) giving the value of the attribute. ! When the attribute value depends on the `alternative' attribute (i.e., which is the applicable alternative in the constraint of the insn), the ! `set_attr_alternative' expression can be used. It allows the specification of a vector of attribute expressions, one for each alternative. When the generality of arbitrary attribute expressions is not required, ! the simpler `set_attr' expression can be used, which allows specifying ! a string giving either a single attribute value or a list of attribute values, one for each alternative. The form of each of the above specifications is shown below. In each case, NAME is a string specifying the attribute to be set. ! `(set_attr NAME VALUE-STRING)' VALUE-STRING is either a string giving the desired attribute value, or a string containing a comma-separated list giving the values for succeeding alternatives. The number of elements must match the number of alternatives in the constraint of the insn pattern. ! Note that it may be useful to specify `*' for some alternative, in which case the attribute will assume its default value for insns matching that alternative. ! `(set_attr_alternative NAME [VALUE1 VALUE2 ...])' Depending on the alternative of the insn, the value will be one of ! the specified values. This is a shorthand for using a `cond' with ! tests on the `alternative' attribute. ! `(set (attr NAME) VALUE)' ! The first operand of this `set' must be the special RTL expression ! `attr', whose sole operand is a string giving the name of the attribute being set. VALUE is the value of the attribute. The following shows three different ways of representing the same --- 24955,25010 ---- ------------------------------------------- The value assigned to an attribute of an insn is primarily determined by ! which pattern is matched by that insn (or which 'define_peephole' ! generated it). Every 'define_insn' and 'define_peephole' can have an optional last argument to specify the values of attributes for matching ! insns. The value of any attribute not specified in a particular insn is ! set to the default value for that attribute, as specified in its ! 'define_attr'. Extensive use of default values for attributes permits the specification of the values for only one or two attributes in the definition of most insn patterns, as seen in the example in the next section. ! The optional last argument of 'define_insn' and 'define_peephole' is a vector of expressions, each of which defines the value for a single ! attribute. The most general way of assigning an attribute's value is to ! use a 'set' expression whose first operand is an 'attr' expression giving the name of the attribute being set. The second operand of the ! 'set' is an attribute expression (*note Expressions::) giving the value of the attribute. ! When the attribute value depends on the 'alternative' attribute (i.e., which is the applicable alternative in the constraint of the insn), the ! 'set_attr_alternative' expression can be used. It allows the specification of a vector of attribute expressions, one for each alternative. When the generality of arbitrary attribute expressions is not required, ! the simpler 'set_attr' expression can be used, which allows specifying a ! string giving either a single attribute value or a list of attribute values, one for each alternative. The form of each of the above specifications is shown below. In each case, NAME is a string specifying the attribute to be set. ! '(set_attr NAME VALUE-STRING)' VALUE-STRING is either a string giving the desired attribute value, or a string containing a comma-separated list giving the values for succeeding alternatives. The number of elements must match the number of alternatives in the constraint of the insn pattern. ! Note that it may be useful to specify '*' for some alternative, in which case the attribute will assume its default value for insns matching that alternative. ! '(set_attr_alternative NAME [VALUE1 VALUE2 ...])' Depending on the alternative of the insn, the value will be one of ! the specified values. This is a shorthand for using a 'cond' with ! tests on the 'alternative' attribute. ! '(set (attr NAME) VALUE)' ! The first operand of this 'set' must be the special RTL expression ! 'attr', whose sole operand is a string giving the name of the attribute being set. VALUE is the value of the attribute. The following shows three different ways of representing the same *************** attribute value specification: *** 25356,25380 **** (eq_attr "alternative" "2") (const_string "store")] (const_string "arith"))) ! The `define_asm_attributes' expression provides a mechanism to specify ! the attributes assigned to insns produced from an `asm' statement. It has the form: (define_asm_attributes [ATTR-SETS]) ! where ATTR-SETS is specified the same as for both the `define_insn' and ! the `define_peephole' expressions. These values will typically be the "worst case" attribute values. For example, they might indicate that the condition code will be clobbered. ! A specification for a `length' attribute is handled specially. The ! way to compute the length of an `asm' insn is to multiply the length ! specified in the expression `define_asm_attributes' by the number of ! machine instructions specified in the `asm' statement, determined by counting the number of semicolons and newlines in the string. ! Therefore, the value of the `length' attribute specified in a ! `define_asm_attributes' should be the maximum possible length of a single machine instruction.  --- 25021,25045 ---- (eq_attr "alternative" "2") (const_string "store")] (const_string "arith"))) ! The 'define_asm_attributes' expression provides a mechanism to specify ! the attributes assigned to insns produced from an 'asm' statement. It has the form: (define_asm_attributes [ATTR-SETS]) ! where ATTR-SETS is specified the same as for both the 'define_insn' and ! the 'define_peephole' expressions. These values will typically be the "worst case" attribute values. For example, they might indicate that the condition code will be clobbered. ! A specification for a 'length' attribute is handled specially. The way ! to compute the length of an 'asm' insn is to multiply the length ! specified in the expression 'define_asm_attributes' by the number of ! machine instructions specified in the 'asm' statement, determined by counting the number of semicolons and newlines in the string. ! Therefore, the value of the 'length' attribute specified in a ! 'define_asm_attributes' should be the maximum possible length of a single machine instruction.  *************** File: gccint.info, Node: Attr Example, *** 25385,25391 **** The judicious use of defaulting is important in the efficient use of insn attributes. Typically, insns are divided into "types" and an ! attribute, customarily called `type', is used to represent this value. This attribute is normally used only to define the default value for other attributes. An example will clarify this usage. --- 25050,25056 ---- The judicious use of defaulting is important in the efficient use of insn attributes. Typically, insns are divided into "types" and an ! attribute, customarily called 'type', is used to represent this value. This attribute is normally used only to define the default value for other attributes. An example will clarify this usage. *************** operations, floating point operations, a *** 25396,25407 **** Here we will concern ourselves with determining the effect of an insn on the condition code and will limit ourselves to the following possible ! effects: The condition code can be set unpredictably (clobbered), not ! be changed, be set to agree with the results of the operation, or only changed if the item previously set into the condition code has been modified. ! Here is part of a sample `md' file for such a machine: (define_attr "type" "load,store,arith,fp,branch" (const_string "arith")) --- 25061,25072 ---- Here we will concern ourselves with determining the effect of an insn on the condition code and will limit ourselves to the following possible ! effects: The condition code can be set unpredictably (clobbered), not be ! changed, be set to agree with the results of the operation, or only changed if the item previously set into the condition code has been modified. ! Here is part of a sample 'md' file for such a machine: (define_attr "type" "load,store,arith,fp,branch" (const_string "arith")) *************** File: gccint.info, Node: Insn Lengths, *** 25439,25464 **** For many machines, multiple types of branch instructions are provided, each for different length branch displacements. In most cases, the ! assembler will choose the correct instruction to use. However, when ! the assembler cannot do so, GCC can when a special attribute, the ! `length' attribute, is defined. This attribute must be defined to have ! numeric values by specifying a null string in its `define_attr'. ! In the case of the `length' attribute, two additional forms of arithmetic terms are allowed in test expressions: ! `(match_dup N)' This refers to the address of operand N of the current insn, which ! must be a `label_ref'. ! `(pc)' This refers to the address of the _current_ insn. It might have been more consistent with other usage to make this the address of the _next_ insn but this would be confusing because the length of the current insn is to be computed. For normal insns, the length will be determined by value of the ! `length' attribute. In the case of `addr_vec' and `addr_diff_vec' insn patterns, the length is computed as the number of vectors multiplied by the size of each vector. --- 25104,25129 ---- For many machines, multiple types of branch instructions are provided, each for different length branch displacements. In most cases, the ! assembler will choose the correct instruction to use. However, when the ! assembler cannot do so, GCC can when a special attribute, the 'length' ! attribute, is defined. This attribute must be defined to have numeric ! values by specifying a null string in its 'define_attr'. ! In the case of the 'length' attribute, two additional forms of arithmetic terms are allowed in test expressions: ! '(match_dup N)' This refers to the address of operand N of the current insn, which ! must be a 'label_ref'. ! '(pc)' This refers to the address of the _current_ insn. It might have been more consistent with other usage to make this the address of the _next_ insn but this would be confusing because the length of the current insn is to be computed. For normal insns, the length will be determined by value of the ! 'length' attribute. In the case of 'addr_vec' and 'addr_diff_vec' insn patterns, the length is computed as the number of vectors multiplied by the size of each vector. *************** the size of each vector. *** 25466,25483 **** The following macros can be used to refine the length computation: ! `ADJUST_INSN_LENGTH (INSN, LENGTH)' If defined, modifies the length assigned to instruction INSN as a function of the context in which it is used. LENGTH is an lvalue that contains the initially computed length of the insn and should be updated with the correct length of the insn. This macro will normally not be required. A case in which it is ! required is the ROMP. On this machine, the size of an `addr_vec' insn must be increased by two to compensate for the fact that alignment may be required. ! The routine that returns `get_attr_length' (the value of the `length' attribute) can be used by the output routine to determine the form of the branch instruction to be written, as the example below illustrates. --- 25131,25148 ---- The following macros can be used to refine the length computation: ! 'ADJUST_INSN_LENGTH (INSN, LENGTH)' If defined, modifies the length assigned to instruction INSN as a function of the context in which it is used. LENGTH is an lvalue that contains the initially computed length of the insn and should be updated with the correct length of the insn. This macro will normally not be required. A case in which it is ! required is the ROMP. On this machine, the size of an 'addr_vec' insn must be increased by two to compensate for the fact that alignment may be required. ! The routine that returns 'get_attr_length' (the value of the 'length' attribute) can be used by the output routine to determine the form of the branch instruction to be written, as the example below illustrates. *************** the branch instruction to be written, as *** 25485,25492 **** consider the IBM 360. If we adopt the convention that a register will be set to the starting address of a function, we can jump to labels within 4k of the start using a four-byte instruction. Otherwise, we ! need a six-byte sequence to load the address from memory and then ! branch to it. On such a machine, a pattern for a branch instruction might be specified as follows: --- 25150,25157 ---- consider the IBM 360. If we adopt the convention that a register will be set to the starting address of a function, we can jump to labels within 4k of the start using a four-byte instruction. Otherwise, we ! need a six-byte sequence to load the address from memory and then branch ! to it. On such a machine, a pattern for a branch instruction might be specified as follows: *************** File: gccint.info, Node: Constant Attri *** 25510,25517 **** 16.19.6 Constant Attributes --------------------------- ! A special form of `define_attr', where the expression for the default ! value is a `const' expression, indicates an attribute that is constant for a given run of the compiler. Constant attributes may be used to specify which variety of processor is used. For example, --- 25175,25182 ---- 16.19.6 Constant Attributes --------------------------- ! A special form of 'define_attr', where the expression for the default ! value is a 'const' expression, indicates an attribute that is constant for a given run of the compiler. Constant attributes may be used to specify which variety of processor is used. For example, *************** specify which variety of processor is us *** 25529,25537 **** The routine generated for constant attributes has no parameters as it does not depend on any particular insn. RTL expressions used to define ! the value of a constant attribute may use the `symbol_ref' form, but ! may not use either the `match_operand' form or `eq_attr' forms ! involving insn attributes.  File: gccint.info, Node: Delay Slots, Next: Processor pipeline description, Prev: Constant Attributes, Up: Insn Attributes --- 25194,25202 ---- The routine generated for constant attributes has no parameters as it does not depend on any particular insn. RTL expressions used to define ! the value of a constant attribute may use the 'symbol_ref' form, but may ! not use either the 'match_operand' form or 'eq_attr' forms involving ! insn attributes.  File: gccint.info, Node: Delay Slots, Next: Processor pipeline description, Prev: Constant Attributes, Up: Insn Attributes *************** File: gccint.info, Node: Delay Slots, *** 25542,25556 **** The insn attribute mechanism can be used to specify the requirements for delay slots, if any, on a target machine. An instruction is said to require a "delay slot" if some instructions that are physically after ! the instruction are executed as if they were located before it. ! Classic examples are branch and call instructions, which often execute ! the following instruction before the branch or call is performed. On some machines, conditional branch instructions can optionally ! "annul" instructions in the delay slot. This means that the ! instruction will not be executed for certain branch outcomes. Both ! instructions that annul if the branch is true and instructions that ! annul if the branch is false are supported. Delay slot scheduling differs from instruction scheduling in that determining whether an instruction needs a delay slot is dependent only --- 25207,25221 ---- The insn attribute mechanism can be used to specify the requirements for delay slots, if any, on a target machine. An instruction is said to require a "delay slot" if some instructions that are physically after ! the instruction are executed as if they were located before it. Classic ! examples are branch and call instructions, which often execute the ! following instruction before the branch or call is performed. On some machines, conditional branch instructions can optionally ! "annul" instructions in the delay slot. This means that the instruction ! will not be executed for certain branch outcomes. Both instructions ! that annul if the branch is true and instructions that annul if the ! branch is false are supported. Delay slot scheduling differs from instruction scheduling in that determining whether an instruction needs a delay slot is dependent only *************** instructions. See the next section for *** 25559,25595 **** instruction scheduling. The requirement of an insn needing one or more delay slots is indicated ! via the `define_delay' expression. It has the following form: (define_delay TEST [DELAY-1 ANNUL-TRUE-1 ANNUL-FALSE-1 DELAY-2 ANNUL-TRUE-2 ANNUL-FALSE-2 ...]) ! TEST is an attribute test that indicates whether this `define_delay' ! applies to a particular insn. If so, the number of required delay ! slots is determined by the length of the vector specified as the second argument. An insn placed in delay slot N must satisfy attribute test DELAY-N. ANNUL-TRUE-N is an attribute test that specifies which insns may be annulled if the branch is true. Similarly, ANNUL-FALSE-N ! specifies which insns in the delay slot may be annulled if the branch ! is false. If annulling is not supported for that delay slot, `(nil)' should be coded. For example, in the common case where branch and call insns require a single delay slot, which may contain any insn other than a branch or ! call, the following would be placed in the `md' file: (define_delay (eq_attr "type" "branch,call") [(eq_attr "type" "!branch,call") (nil) (nil)]) ! Multiple `define_delay' expressions may be specified. In this case, each such expression specifies different delay slot requirements and ! there must be no insn for which tests in two `define_delay' expressions are both true. For example, if we have a machine that requires one delay slot for ! branches but two for calls, no delay slot can contain a branch or call insn, and any valid insn in the delay slot for the branch can be annulled if the branch is true, we might represent this as follows: --- 25224,25260 ---- instruction scheduling. The requirement of an insn needing one or more delay slots is indicated ! via the 'define_delay' expression. It has the following form: (define_delay TEST [DELAY-1 ANNUL-TRUE-1 ANNUL-FALSE-1 DELAY-2 ANNUL-TRUE-2 ANNUL-FALSE-2 ...]) ! TEST is an attribute test that indicates whether this 'define_delay' ! applies to a particular insn. If so, the number of required delay slots ! is determined by the length of the vector specified as the second argument. An insn placed in delay slot N must satisfy attribute test DELAY-N. ANNUL-TRUE-N is an attribute test that specifies which insns may be annulled if the branch is true. Similarly, ANNUL-FALSE-N ! specifies which insns in the delay slot may be annulled if the branch is ! false. If annulling is not supported for that delay slot, '(nil)' should be coded. For example, in the common case where branch and call insns require a single delay slot, which may contain any insn other than a branch or ! call, the following would be placed in the 'md' file: (define_delay (eq_attr "type" "branch,call") [(eq_attr "type" "!branch,call") (nil) (nil)]) ! Multiple 'define_delay' expressions may be specified. In this case, each such expression specifies different delay slot requirements and ! there must be no insn for which tests in two 'define_delay' expressions are both true. For example, if we have a machine that requires one delay slot for ! branches but two for calls, no delay slot can contain a branch or call insn, and any valid insn in the delay slot for the branch can be annulled if the branch is true, we might represent this as follows: *************** superscalar RISC, and VLIW processors) h *** 25613,25621 **** which several instructions can be executed simultaneously. An instruction starts execution if its issue conditions are satisfied. If not, the instruction is stalled until its conditions are satisfied. ! Such "interlock (pipeline) delay" causes interruption of the fetching ! of successor instructions (or demands nop instructions, e.g. for some ! MIPS processors). There are two major kinds of interlock delays in modern processors. The first one is a data dependence delay determining "instruction --- 25278,25286 ---- which several instructions can be executed simultaneously. An instruction starts execution if its issue conditions are satisfied. If not, the instruction is stalled until its conditions are satisfied. ! Such "interlock (pipeline) delay" causes interruption of the fetching of ! successor instructions (or demands nop instructions, e.g. for some MIPS ! processors). There are two major kinds of interlock delays in modern processors. The first one is a data dependence delay determining "instruction *************** automatically generated from the process *** 25648,25655 **** pipeline hazard recognizer generated from the machine description is based on a deterministic finite state automaton (DFA): the instruction issue is possible if there is a transition from one automaton state to ! another one. This algorithm is very fast, and furthermore, its speed ! is not dependent on processor complexity(1). The rest of this section describes the directives that constitute an automaton-based processor pipeline description. The order of these --- 25313,25320 ---- pipeline hazard recognizer generated from the machine description is based on a deterministic finite state automaton (DFA): the instruction issue is possible if there is a transition from one automaton state to ! another one. This algorithm is very fast, and furthermore, its speed is ! not dependent on processor complexity(1). The rest of this section describes the directives that constitute an automaton-based processor pipeline description. The order of these *************** constructions within the machine descrip *** 25659,25674 **** generated and used for the pipeline hazards recognition. Sometimes the generated finite state automaton used by the pipeline hazard recognizer is large. If we use more than one automaton and bind functional units ! to the automata, the total size of the automata is usually less than ! the size of the single automaton. If there is no one such ! construction, only one finite state automaton is generated. (define_automaton AUTOMATA-NAMES) ! AUTOMATA-NAMES is a string giving names of the automata. The names ! are separated by commas. All the automata should have unique names. ! The automaton name is used in the constructions `define_cpu_unit' and ! `define_query_cpu_unit'. Each processor functional unit used in the description of instruction reservations should be described by the following construction. --- 25324,25339 ---- generated and used for the pipeline hazards recognition. Sometimes the generated finite state automaton used by the pipeline hazard recognizer is large. If we use more than one automaton and bind functional units ! to the automata, the total size of the automata is usually less than the ! size of the single automaton. If there is no one such construction, ! only one finite state automaton is generated. (define_automaton AUTOMATA-NAMES) ! AUTOMATA-NAMES is a string giving names of the automata. The names are ! separated by commas. All the automata should have unique names. The ! automaton name is used in the constructions 'define_cpu_unit' and ! 'define_query_cpu_unit'. Each processor functional unit used in the description of instruction reservations should be described by the following construction. *************** reservations should be described by the *** 25676,25704 **** (define_cpu_unit UNIT-NAMES [AUTOMATON-NAME]) UNIT-NAMES is a string giving the names of the functional units ! separated by commas. Don't use name `nothing', it is reserved for ! other goals. AUTOMATON-NAME is a string giving the name of the automaton with which the unit is bound. The automaton should be described in construction ! `define_automaton'. You should give "automaton-name", if there is a defined automaton. The assignment of units to automata are constrained by the uses of the ! units in insn reservations. The most important constraint is: if a ! unit reservation is present on a particular cycle of an alternative for ! an insn reservation, then some unit from the same automaton must be ! present on the same cycle for the other alternatives of the insn ! reservation. The rest of the constraints are mentioned in the ! description of the subsequent constructions. The following construction describes CPU functional units analogously ! to `define_cpu_unit'. The reservation of such units can be queried for ! an automaton state. The instruction scheduler never queries ! reservation of functional units for given automaton state. So as a ! rule, you don't need this construction. This construction could be ! used for future code generation goals (e.g. to generate VLIW insn ! templates). (define_query_cpu_unit UNIT-NAMES [AUTOMATON-NAME]) --- 25341,25368 ---- (define_cpu_unit UNIT-NAMES [AUTOMATON-NAME]) UNIT-NAMES is a string giving the names of the functional units ! separated by commas. Don't use name 'nothing', it is reserved for other ! goals. AUTOMATON-NAME is a string giving the name of the automaton with which the unit is bound. The automaton should be described in construction ! 'define_automaton'. You should give "automaton-name", if there is a defined automaton. The assignment of units to automata are constrained by the uses of the ! units in insn reservations. The most important constraint is: if a unit ! reservation is present on a particular cycle of an alternative for an ! insn reservation, then some unit from the same automaton must be present ! on the same cycle for the other alternatives of the insn reservation. ! The rest of the constraints are mentioned in the description of the ! subsequent constructions. The following construction describes CPU functional units analogously ! to 'define_cpu_unit'. The reservation of such units can be queried for ! an automaton state. The instruction scheduler never queries reservation ! of functional units for given automaton state. So as a rule, you don't ! need this construction. This construction could be used for future code ! generation goals (e.g. to generate VLIW insn templates). (define_query_cpu_unit UNIT-NAMES [AUTOMATON-NAME]) *************** There is an important difference between *** 25719,25745 **** automaton based pipeline description. The latency time is used for all dependencies when we use the old description. In the automaton based pipeline description, the given latency time is only used for true ! dependencies. The cost of anti-dependencies is always zero and the ! cost of output dependencies is the difference between latency times of ! the producing and consuming insns (if the difference is negative, the ! cost is considered to be zero). You can always change the default ! costs for any description by using the target hook ! `TARGET_SCHED_ADJUST_COST' (*note Scheduling::). INSN-NAME is a string giving the internal name of the insn. The ! internal names are used in constructions `define_bypass' and in the automaton description file generated for debugging. The internal name ! has nothing in common with the names in `define_insn'. It is a good practice to use insn classes described in the processor manual. CONDITION defines what RTL insns are described by this construction. You should remember that you will be in trouble if CONDITION for two or ! more different `define_insn_reservation' constructions is TRUE for an insn. In this case what reservation will be used for the insn is not defined. Such cases are not checked during generation of the pipeline hazards recognizer because in general recognizing that two conditions may have the same value is quite difficult (especially if the conditions ! contain `symbol_ref'). It is also not checked during the pipeline hazard recognizer work because it would slow down the recognizer considerably. --- 25383,25409 ---- automaton based pipeline description. The latency time is used for all dependencies when we use the old description. In the automaton based pipeline description, the given latency time is only used for true ! dependencies. The cost of anti-dependencies is always zero and the cost ! of output dependencies is the difference between latency times of the ! producing and consuming insns (if the difference is negative, the cost ! is considered to be zero). You can always change the default costs for ! any description by using the target hook 'TARGET_SCHED_ADJUST_COST' ! (*note Scheduling::). INSN-NAME is a string giving the internal name of the insn. The ! internal names are used in constructions 'define_bypass' and in the automaton description file generated for debugging. The internal name ! has nothing in common with the names in 'define_insn'. It is a good practice to use insn classes described in the processor manual. CONDITION defines what RTL insns are described by this construction. You should remember that you will be in trouble if CONDITION for two or ! more different 'define_insn_reservation' constructions is TRUE for an insn. In this case what reservation will be used for the insn is not defined. Such cases are not checked during generation of the pipeline hazards recognizer because in general recognizing that two conditions may have the same value is quite difficult (especially if the conditions ! contain 'symbol_ref'). It is also not checked during the pipeline hazard recognizer work because it would slow down the recognizer considerably. *************** expression according to the following sy *** 25765,25792 **** | "nothing" | "(" regexp ")" ! * `,' is used for describing the start of the next cycle in the reservation. ! * `|' is used for describing a reservation described by the first regular expression *or* a reservation described by the second regular expression *or* etc. ! * `+' is used for describing a reservation described by the first regular expression *and* a reservation described by the second regular expression *and* etc. ! * `*' is used for convenience and simply means a sequence in which the regular expression are repeated NUMBER times with cycle ! advancing (see `,'). ! * `cpu_function_unit_name' denotes reservation of the named functional unit. ! * `reservation_name' -- see description of construction ! `define_reservation'. ! * `nothing' denotes no unit reservations. Sometimes unit reservations for different insns contain common parts. In such case, you can simplify the pipeline description by describing --- 25429,25456 ---- | "nothing" | "(" regexp ")" ! * ',' is used for describing the start of the next cycle in the reservation. ! * '|' is used for describing a reservation described by the first regular expression *or* a reservation described by the second regular expression *or* etc. ! * '+' is used for describing a reservation described by the first regular expression *and* a reservation described by the second regular expression *and* etc. ! * '*' is used for convenience and simply means a sequence in which the regular expression are repeated NUMBER times with cycle ! advancing (see ','). ! * 'cpu_function_unit_name' denotes reservation of the named functional unit. ! * 'reservation_name' -- see description of construction ! 'define_reservation'. ! * 'nothing' denotes no unit reservations. Sometimes unit reservations for different insns contain common parts. In such case, you can simplify the pipeline description by describing *************** the common part by the following constru *** 25796,25803 **** RESERVATION-NAME is a string giving name of REGEXP. Functional unit names and reservation names are in the same name space. So the ! reservation names should be different from the functional unit names ! and can not be the reserved name `nothing'. The following construction is used to describe exceptions in the latency time for given instruction pair. This is so called bypasses. --- 25460,25467 ---- RESERVATION-NAME is a string giving name of REGEXP. Functional unit names and reservation names are in the same name space. So the ! reservation names should be different from the functional unit names and ! can not be the reserved name 'nothing'. The following construction is used to describe exceptions in the latency time for given instruction pair. This is so called bypasses. *************** latency time for given instruction pair. *** 25806,25830 **** [GUARD]) NUMBER defines when the result generated by the instructions given in ! string OUT_INSN_NAMES will be ready for the instructions given in ! string IN_INSN_NAMES. Each of these strings is a comma-separated list ! of filename-style globs and they refer to the names of ! `define_insn_reservation's. For example: (define_bypass 1 "cpu1_load_*, cpu1_store_*" "cpu1_load_*") ! defines a bypass between instructions that start with `cpu1_load_' or ! `cpu1_store_' and those that start with `cpu1_load_'. GUARD is an optional string giving the name of a C function which defines an additional guard for the bypass. The function will get the two insns as parameters. If the function returns zero the bypass will be ignored for this case. The additional guard is necessary to recognize complicated bypasses, e.g. when the consumer is only an ! address of insn `store' (not a stored value). If there are more one bypass with the same output and input insns, the chosen bypass is the first bypass with a guard in description whose ! guard function returns nonzero. If there is no such bypass, then ! bypass without the guard function is chosen. The following five constructions are usually used to describe VLIW processors, or more precisely, to describe a placement of small --- 25470,25494 ---- [GUARD]) NUMBER defines when the result generated by the instructions given in ! string OUT_INSN_NAMES will be ready for the instructions given in string ! IN_INSN_NAMES. Each of these strings is a comma-separated list of ! filename-style globs and they refer to the names of ! 'define_insn_reservation's. For example: (define_bypass 1 "cpu1_load_*, cpu1_store_*" "cpu1_load_*") ! defines a bypass between instructions that start with 'cpu1_load_' or ! 'cpu1_store_' and those that start with 'cpu1_load_'. GUARD is an optional string giving the name of a C function which defines an additional guard for the bypass. The function will get the two insns as parameters. If the function returns zero the bypass will be ignored for this case. The additional guard is necessary to recognize complicated bypasses, e.g. when the consumer is only an ! address of insn 'store' (not a stored value). If there are more one bypass with the same output and input insns, the chosen bypass is the first bypass with a guard in description whose ! guard function returns nonzero. If there is no such bypass, then bypass ! without the guard function is chosen. The following five constructions are usually used to describe VLIW processors, or more precisely, to describe a placement of small *************** commas. *** 25844,25850 **** comma. Currently pattern is one unit or units separated by white-spaces. ! The first construction (`exclusion_set') means that each functional unit in the first string can not be reserved simultaneously with a unit whose name is in the second string and vice versa. For example, the construction is useful for describing processors (e.g. some SPARC --- 25508,25514 ---- comma. Currently pattern is one unit or units separated by white-spaces. ! The first construction ('exclusion_set') means that each functional unit in the first string can not be reserved simultaneously with a unit whose name is in the second string and vice versa. For example, the construction is useful for describing processors (e.g. some SPARC *************** processors) with a fully pipelined float *** 25852,25911 **** can execute simultaneously only single floating point insns or only double floating point insns. ! The second construction (`presence_set') means that each functional unit in the first string can not be reserved unless at least one of ! pattern of units whose names are in the second string is reserved. ! This is an asymmetric relation. For example, it is useful for ! description that VLIW `slot1' is reserved after `slot0' reservation. ! We could describe it by the following construction (presence_set "slot1" "slot0") ! Or `slot1' is reserved only after `slot0' and unit `b0' reservation. In this case we could write (presence_set "slot1" "slot0 b0") ! The third construction (`final_presence_set') is analogous to ! `presence_set'. The difference between them is when checking is done. When an instruction is issued in given automaton state reflecting all current and planned unit reservations, the automaton state is changed. The first state is a source state, the second one is a result state. ! Checking for `presence_set' is done on the source state reservation, ! checking for `final_presence_set' is done on the result reservation. This construction is useful to describe a reservation which is actually two subsequent reservations. For example, if we use (presence_set "slot1" "slot0") ! the following insn will be never issued (because `slot1' requires ! `slot0' which is absent in the source state). (define_reservation "insn_and_nop" "slot0 + slot1") ! but it can be issued if we use analogous `final_presence_set'. ! The forth construction (`absence_set') means that each functional unit in the first string can be reserved only if each pattern of units whose names are in the second string is not reserved. This is an asymmetric ! relation (actually `exclusion_set' is analogous to this one but it is ! symmetric). For example it might be useful in a VLIW description to ! say that `slot0' cannot be reserved after either `slot1' or `slot2' ! have been reserved. This can be described as: (absence_set "slot0" "slot1, slot2") ! Or `slot2' can not be reserved if `slot0' and unit `b0' are reserved ! or `slot1' and unit `b1' are reserved. In this case we could write (absence_set "slot2" "slot0 b0, slot1 b1") All functional units mentioned in a set should belong to the same automaton. ! The last construction (`final_absence_set') is analogous to ! `absence_set' but checking is done on the result (state) reservation. ! See comments for `final_presence_set'. You can control the generator of the pipeline hazard recognizer with the following construction. --- 25516,25575 ---- can execute simultaneously only single floating point insns or only double floating point insns. ! The second construction ('presence_set') means that each functional unit in the first string can not be reserved unless at least one of ! pattern of units whose names are in the second string is reserved. This ! is an asymmetric relation. For example, it is useful for description ! that VLIW 'slot1' is reserved after 'slot0' reservation. We could ! describe it by the following construction (presence_set "slot1" "slot0") ! Or 'slot1' is reserved only after 'slot0' and unit 'b0' reservation. In this case we could write (presence_set "slot1" "slot0 b0") ! The third construction ('final_presence_set') is analogous to ! 'presence_set'. The difference between them is when checking is done. When an instruction is issued in given automaton state reflecting all current and planned unit reservations, the automaton state is changed. The first state is a source state, the second one is a result state. ! Checking for 'presence_set' is done on the source state reservation, ! checking for 'final_presence_set' is done on the result reservation. This construction is useful to describe a reservation which is actually two subsequent reservations. For example, if we use (presence_set "slot1" "slot0") ! the following insn will be never issued (because 'slot1' requires ! 'slot0' which is absent in the source state). (define_reservation "insn_and_nop" "slot0 + slot1") ! but it can be issued if we use analogous 'final_presence_set'. ! The forth construction ('absence_set') means that each functional unit in the first string can be reserved only if each pattern of units whose names are in the second string is not reserved. This is an asymmetric ! relation (actually 'exclusion_set' is analogous to this one but it is ! symmetric). For example it might be useful in a VLIW description to say ! that 'slot0' cannot be reserved after either 'slot1' or 'slot2' have ! been reserved. This can be described as: (absence_set "slot0" "slot1, slot2") ! Or 'slot2' can not be reserved if 'slot0' and unit 'b0' are reserved or ! 'slot1' and unit 'b1' are reserved. In this case we could write (absence_set "slot2" "slot0 b0, slot1 b1") All functional units mentioned in a set should belong to the same automaton. ! The last construction ('final_absence_set') is analogous to ! 'absence_set' but checking is done on the result (state) reservation. ! See comments for 'final_presence_set'. You can control the generator of the pipeline hazard recognizer with the following construction. *************** Currently there are the following option *** 25922,25959 **** * "time" means printing time statistics about the generation of automata. ! * "stats" means printing statistics about the generated automata ! such as the number of DFA states, NDFA states and arcs. * "v" means a generation of the file describing the result automata. ! The file has suffix `.dfa' and can be used for the description verification and debugging. ! * "w" means a generation of warning instead of error for ! non-critical errors. ! * "no-comb-vect" prevents the automaton generator from generating ! two data structures and comparing them for space efficiency. Using ! a comb vector to represent transitions may be better, but it can be very expensive to construct. This option is useful if the build process spends an unacceptably long time in genautomata. * "ndfa" makes nondeterministic finite state automata. This affects ! the treatment of operator `|' in the regular expressions. The usual treatment of the operator is to try the first alternative and, if the reservation is not possible, the second alternative. The nondeterministic treatment means trying all alternatives, some of them may be rejected by reservations in the subsequent insns. * "collapse-ndfa" modifies the behaviour of the generator when ! producing an automaton. An additional state transition to ! collapse a nondeterministic NDFA state to a deterministic DFA ! state is generated. It can be triggered by passing `const0_rtx' to state_transition. In such an automaton, cycle advance transitions are available only for these collapsed states. This option is ! useful for ports that want to use the `ndfa' option, but also want ! to use `define_query_cpu_unit' to assign units to insns issued in ! a cycle. * "progress" means output of a progress bar showing how many states were generated so far for automaton being processed. This is --- 25586,25623 ---- * "time" means printing time statistics about the generation of automata. ! * "stats" means printing statistics about the generated automata such ! as the number of DFA states, NDFA states and arcs. * "v" means a generation of the file describing the result automata. ! The file has suffix '.dfa' and can be used for the description verification and debugging. ! * "w" means a generation of warning instead of error for non-critical ! errors. ! * "no-comb-vect" prevents the automaton generator from generating two ! data structures and comparing them for space efficiency. Using a ! comb vector to represent transitions may be better, but it can be very expensive to construct. This option is useful if the build process spends an unacceptably long time in genautomata. * "ndfa" makes nondeterministic finite state automata. This affects ! the treatment of operator '|' in the regular expressions. The usual treatment of the operator is to try the first alternative and, if the reservation is not possible, the second alternative. The nondeterministic treatment means trying all alternatives, some of them may be rejected by reservations in the subsequent insns. * "collapse-ndfa" modifies the behaviour of the generator when ! producing an automaton. An additional state transition to collapse ! a nondeterministic NDFA state to a deterministic DFA state is ! generated. It can be triggered by passing 'const0_rtx' to state_transition. In such an automaton, cycle advance transitions are available only for these collapsed states. This option is ! useful for ports that want to use the 'ndfa' option, but also want ! to use 'define_query_cpu_unit' to assign units to insns issued in a ! cycle. * "progress" means output of a progress bar showing how many states were generated so far for automaton being processed. This is *************** Currently there are the following option *** 25963,25970 **** the huge automaton. As an example, consider a superscalar RISC machine which can issue ! three insns (two integer insns and one floating point insn) on the ! cycle but can finish only two insns. To describe this, we define the following functional units. (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline") --- 25627,25634 ---- the huge automaton. As an example, consider a superscalar RISC machine which can issue ! three insns (two integer insns and one floating point insn) on the cycle ! but can finish only two insns. To describe this, we define the following functional units. (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline") *************** following functional units. *** 25972,25987 **** All simple integer insns can be executed in any integer pipeline and their result is ready in two cycles. The simple integer insns are ! issued into the first pipeline unless it is reserved, otherwise they ! are issued into the second pipeline. Integer division and ! multiplication insns can be executed only in the second integer ! pipeline and their results are ready correspondingly in 8 and 4 cycles. ! The integer division is not pipelined, i.e. the subsequent integer ! division insn can not be issued until the current division insn ! finished. Floating point insns are fully pipelined and their results ! are ready in 3 cycles. Where the result of a floating point insn is ! used by an integer insn, an additional delay of one cycle is incurred. ! To describe all of this we could specify (define_cpu_unit "div") --- 25636,25651 ---- All simple integer insns can be executed in any integer pipeline and their result is ready in two cycles. The simple integer insns are ! issued into the first pipeline unless it is reserved, otherwise they are ! issued into the second pipeline. Integer division and multiplication ! insns can be executed only in the second integer pipeline and their ! results are ready correspondingly in 8 and 4 cycles. The integer ! division is not pipelined, i.e. the subsequent integer division insn can ! not be issued until the current division insn finished. Floating point ! insns are fully pipelined and their results are ready in 3 cycles. ! Where the result of a floating point insn is used by an integer insn, an ! additional delay of one cycle is incurred. To describe all of this we ! could specify (define_cpu_unit "div") *************** To describe all of this we could specify *** 26003,26021 **** (define_reservation "finish" "port0|port1") ! and use it in all `define_insn_reservation' as in the following construction (define_insn_reservation "simple" 2 (eq_attr "type" "int") "(i0_pipeline | i1_pipeline), finish") ! ---------- Footnotes ---------- ! (1) However, the size of the automaton depends on processor complexity. To limit this effect, machine descriptions can split orthogonal parts of the machine description among several automata: but ! then, since each of these must be stepped independently, this does ! cause a small decrease in the algorithm's performance.  File: gccint.info, Node: Conditional Execution, Next: Define Subst, Prev: Insn Attributes, Up: Machine Desc --- 25667,25685 ---- (define_reservation "finish" "port0|port1") ! and use it in all 'define_insn_reservation' as in the following construction (define_insn_reservation "simple" 2 (eq_attr "type" "int") "(i0_pipeline | i1_pipeline), finish") ! ---------- Footnotes ---------- ! (1) However, the size of the automaton depends on processor complexity. To limit this effect, machine descriptions can split orthogonal parts of the machine description among several automata: but ! then, since each of these must be stepped independently, this does cause ! a small decrease in the algorithm's performance.  File: gccint.info, Node: Conditional Execution, Next: Define Subst, Prev: Insn Attributes, Up: Machine Desc *************** A number of architectures provide for so *** 26027,26069 **** execution, or predication. The hallmark of this feature is the ability to nullify most of the instructions in the instruction set. When the instruction set is large and not entirely symmetric, it can be quite ! tedious to describe these forms directly in the `.md' file. An ! alternative is the `define_cond_exec' template. (define_cond_exec [PREDICATE-PATTERN] "CONDITION" "OUTPUT-TEMPLATE") ! PREDICATE-PATTERN is the condition that must be true for the insn to ! be executed at runtime and should match a relational operator. One can ! use `match_operator' to match several relational operators at once. ! Any `match_operand' operands must have no more than one alternative. ! CONDITION is a C expression that must be true for the generated ! pattern to match. ! OUTPUT-TEMPLATE is a string similar to the `define_insn' output ! template (*note Output Template::), except that the `*' and `@' special cases do not apply. This is only useful if the assembly text for the predicate is a simple prefix to the main insn. In order to handle the ! general case, there is a global variable `current_insn_predicate' that ! will contain the entire predicate if the current insn is predicated, ! and will otherwise be `NULL'. ! When `define_cond_exec' is used, an implicit reference to the ! `predicable' instruction attribute is made. *Note Insn Attributes::. This attribute must be a boolean (i.e. have exactly two elements in its ! LIST-OF-VALUES), with the possible values being `no' and `yes'. The default and all uses in the insns must be a simple constant, not a complex expressions. It may, however, depend on the alternative, by using a comma-separated list of values. If that is the case, the port ! should also define an `enabled' attribute (*note Disable Insn ! Alternatives::), which should also allow only `no' and `yes' as its values. ! For each `define_insn' for which the `predicable' attribute is true, a ! new `define_insn' pattern will be generated that matches a predicated version of the instruction. For example, (define_insn "addsi" --- 25691,25733 ---- execution, or predication. The hallmark of this feature is the ability to nullify most of the instructions in the instruction set. When the instruction set is large and not entirely symmetric, it can be quite ! tedious to describe these forms directly in the '.md' file. An ! alternative is the 'define_cond_exec' template. (define_cond_exec [PREDICATE-PATTERN] "CONDITION" "OUTPUT-TEMPLATE") ! PREDICATE-PATTERN is the condition that must be true for the insn to be ! executed at runtime and should match a relational operator. One can use ! 'match_operator' to match several relational operators at once. Any ! 'match_operand' operands must have no more than one alternative. ! CONDITION is a C expression that must be true for the generated pattern ! to match. ! OUTPUT-TEMPLATE is a string similar to the 'define_insn' output ! template (*note Output Template::), except that the '*' and '@' special cases do not apply. This is only useful if the assembly text for the predicate is a simple prefix to the main insn. In order to handle the ! general case, there is a global variable 'current_insn_predicate' that ! will contain the entire predicate if the current insn is predicated, and ! will otherwise be 'NULL'. ! When 'define_cond_exec' is used, an implicit reference to the ! 'predicable' instruction attribute is made. *Note Insn Attributes::. This attribute must be a boolean (i.e. have exactly two elements in its ! LIST-OF-VALUES), with the possible values being 'no' and 'yes'. The default and all uses in the insns must be a simple constant, not a complex expressions. It may, however, depend on the alternative, by using a comma-separated list of values. If that is the case, the port ! should also define an 'enabled' attribute (*note Disable Insn ! Alternatives::), which should also allow only 'no' and 'yes' as its values. ! For each 'define_insn' for which the 'predicable' attribute is true, a ! new 'define_insn' pattern will be generated that matches a predicated version of the instruction. For example, (define_insn "addsi" *************** File: gccint.info, Node: Define Subst, *** 26098,26108 **** For some hardware architectures there are common cases when the RTL templates for the instructions can be derived from the other RTL ! templates using simple transformations. E.g., `i386.md' contains an ! RTL template for the ordinary `sub' instruction-- `*subsi_1', and for ! the `sub' instruction with subsequent zero-extension--`*subsi_1_zext'. ! Such cases can be easily implemented by a single meta-template capable ! of generating a modified case based on the initial one: (define_subst "NAME" [INPUT-TEMPLATE] --- 25762,25772 ---- For some hardware architectures there are common cases when the RTL templates for the instructions can be derived from the other RTL ! templates using simple transformations. E.g., 'i386.md' contains an RTL ! template for the ordinary 'sub' instruction-- '*subsi_1', and for the ! 'sub' instruction with subsequent zero-extension--'*subsi_1_zext'. Such ! cases can be easily implemented by a single meta-template capable of ! generating a modified case based on the initial one: (define_subst "NAME" [INPUT-TEMPLATE] *************** output-template. *** 26118,26155 **** OUTPUT-TEMPLATE is a pattern that will be used in the resulting template. ! `define_subst' mechanism is tightly coupled with the notion of the ! subst attribute (*note Subst Iterators::). The use of `define_subst' ! is triggered by a reference to a subst attribute in the transforming ! RTL template. This reference initiates duplication of the source RTL template and substitution of the attributes with their values. The source RTL template is left unchanged, while the copy is transformed by ! `define_subst'. This transformation can fail in the case when the source RTL template is not matched against the input-template of the ! `define_subst'. In such case the copy is deleted. ! `define_subst' can be used only in `define_insn' and `define_expand', ! it cannot be used in other expressions (e.g. in ! `define_insn_and_split'). * Menu: ! * Define Subst Example:: Example of `define_subst' work. * Define Subst Pattern Matching:: Process of template comparison. * Define Subst Output Template:: Generation of output template.  File: gccint.info, Node: Define Subst Example, Next: Define Subst Pattern Matching, Up: Define Subst ! 16.21.1 `define_subst' Example ------------------------------ ! To illustrate how `define_subst' works, let us examine a simple ! template transformation. Suppose there are two kinds of instructions: one that touches flags and the other that does not. The instructions of the second type could be ! generated with the following `define_subst': (define_subst "add_clobber_subst" [(set (match_operand:SI 0 "" "") --- 25782,25819 ---- OUTPUT-TEMPLATE is a pattern that will be used in the resulting template. ! 'define_subst' mechanism is tightly coupled with the notion of the ! subst attribute (*note Subst Iterators::). The use of 'define_subst' is ! triggered by a reference to a subst attribute in the transforming RTL ! template. This reference initiates duplication of the source RTL template and substitution of the attributes with their values. The source RTL template is left unchanged, while the copy is transformed by ! 'define_subst'. This transformation can fail in the case when the source RTL template is not matched against the input-template of the ! 'define_subst'. In such case the copy is deleted. ! 'define_subst' can be used only in 'define_insn' and 'define_expand', ! it cannot be used in other expressions (e.g. in ! 'define_insn_and_split'). * Menu: ! * Define Subst Example:: Example of 'define_subst' work. * Define Subst Pattern Matching:: Process of template comparison. * Define Subst Output Template:: Generation of output template.  File: gccint.info, Node: Define Subst Example, Next: Define Subst Pattern Matching, Up: Define Subst ! 16.21.1 'define_subst' Example ------------------------------ ! To illustrate how 'define_subst' works, let us examine a simple template ! transformation. Suppose there are two kinds of instructions: one that touches flags and the other that does not. The instructions of the second type could be ! generated with the following 'define_subst': (define_subst "add_clobber_subst" [(set (match_operand:SI 0 "" "") *************** generated with the following `define_sub *** 26159,26169 **** (match_dup 1)) (clobber (reg:CC FLAGS_REG))] ! This `define_subst' can be applied to any RTL pattern containing `set' of mode SI and generates a copy with clobber when it is applied. ! Assume there is an RTL template for a `max' instruction to be used in ! `define_subst' mentioned above: (define_insn "maxsi" [(set (match_operand:SI 0 "register_operand" "=r") --- 25823,25833 ---- (match_dup 1)) (clobber (reg:CC FLAGS_REG))] ! This 'define_subst' can be applied to any RTL pattern containing 'set' of mode SI and generates a copy with clobber when it is applied. ! Assume there is an RTL template for a 'max' instruction to be used in ! 'define_subst' mentioned above: (define_insn "maxsi" [(set (match_operand:SI 0 "register_operand" "=r") *************** of mode SI and generates a copy with clo *** 26174,26193 **** "max\t{%2, %1, %0|%0, %1, %2}" [...]) ! To mark the RTL template for `define_subst' application, subst-attributes are used. They should be declared in advance: (define_subst_attr "add_clobber_name" "add_clobber_subst" "_noclobber" "_clobber") ! Here `add_clobber_name' is the attribute name, `add_clobber_subst' is ! the name of the corresponding `define_subst', the third argument ! (`_noclobber') is the attribute value that would be substituted into ! the unchanged version of the source RTL template, and the last argument ! (`_clobber') is the value that would be substituted into the second, transformed, version of the RTL template. Once the subst-attribute has been defined, it should be used in RTL ! templates which need to be processed by the `define_subst'. So, the original RTL template should be changed: (define_insn "maxsi" --- 25838,25857 ---- "max\t{%2, %1, %0|%0, %1, %2}" [...]) ! To mark the RTL template for 'define_subst' application, subst-attributes are used. They should be declared in advance: (define_subst_attr "add_clobber_name" "add_clobber_subst" "_noclobber" "_clobber") ! Here 'add_clobber_name' is the attribute name, 'add_clobber_subst' is ! the name of the corresponding 'define_subst', the third argument ! ('_noclobber') is the attribute value that would be substituted into the ! unchanged version of the source RTL template, and the last argument ! ('_clobber') is the value that would be substituted into the second, transformed, version of the RTL template. Once the subst-attribute has been defined, it should be used in RTL ! templates which need to be processed by the 'define_subst'. So, the original RTL template should be changed: (define_insn "maxsi" *************** original RTL template should be changed: *** 26199,26205 **** "max\t{%2, %1, %0|%0, %1, %2}" [...]) ! The result of the `define_subst' usage would look like the following: (define_insn "maxsi_noclobber" [(set (match_operand:SI 0 "register_operand" "=r") --- 25863,25869 ---- "max\t{%2, %1, %0|%0, %1, %2}" [...]) ! The result of the 'define_subst' usage would look like the following: (define_insn "maxsi_noclobber" [(set (match_operand:SI 0 "register_operand" "=r") *************** original RTL template should be changed: *** 26222,26288 ****  File: gccint.info, Node: Define Subst Pattern Matching, Next: Define Subst Output Template, Prev: Define Subst Example, Up: Define Subst ! 16.21.2 Pattern Matching in `define_subst' ------------------------------------------ ! All expressions, allowed in `define_insn' or `define_expand', are ! allowed in the input-template of `define_subst', except ! `match_par_dup', `match_scratch', `match_parallel'. The meanings of ! expressions in the input-template were changed: ! `match_operand' matches any expression (possibly, a subtree in ! RTL-template), if modes of the `match_operand' and this expression are ! the same, or mode of the `match_operand' is `VOIDmode', or this ! expression is `match_dup', `match_op_dup'. If the expression is ! `match_operand' too, and predicate of `match_operand' from the input pattern is not empty, then the predicates are compared. That can be used for more accurate filtering of accepted RTL-templates. ! `match_operator' matches common operators (like `plus', `minus'), ! `unspec', `unspec_volatile' operators and `match_operator's from the ! original pattern if the modes match and `match_operator' from the input pattern has the same number of operands as the operator from the original pattern.  File: gccint.info, Node: Define Subst Output Template, Prev: Define Subst Pattern Matching, Up: Define Subst ! 16.21.3 Generation of output template in `define_subst' ------------------------------------------------------- ! If all necessary checks for `define_subst' application pass, a new RTL-pattern, based on the output-template, is created to replace the old template. Like in input-patterns, meanings of some RTL expressions are ! changed when they are used in output-patterns of a `define_subst'. ! Thus, `match_dup' is used for copying the whole expression from the ! original pattern, which matched corresponding `match_operand' from the input pattern. ! `match_dup N' is used in the output template to be replaced with the ! expression from the original pattern, which matched `match_operand N' ! from the input pattern. As a consequence, `match_dup' cannot be used ! to point to `match_operand's from the output pattern, it should always ! refer to a `match_operand' from the input pattern. In the output template one can refer to the expressions from the original pattern and create new ones. For instance, some operands could ! be added by means of standard `match_operand'. ! After replacing `match_dup' with some RTL-subtree from the original ! pattern, it could happen that several `match_operand's in the output ! pattern have the same indexes. It is unknown, how many and what ! indexes would be used in the expression which would replace ! `match_dup', so such conflicts in indexes are inevitable. To overcome ! this issue, `match_operands' and `match_operators', which were ! introduced into the output pattern, are renumerated when all ! `match_dup's are replaced. ! Number of alternatives in `match_operand's introduced into the output ! template `M' could differ from the number of alternatives in the ! original pattern `N', so in the resultant pattern there would be `N*M' alternatives. Thus, constraints from the original pattern would be ! duplicated `N' times, constraints from the output pattern would be ! duplicated `M' times, producing all possible combinations.  File: gccint.info, Node: Constant Definitions, Next: Iterators, Prev: Define Subst, Up: Machine Desc --- 25886,25951 ----  File: gccint.info, Node: Define Subst Pattern Matching, Next: Define Subst Output Template, Prev: Define Subst Example, Up: Define Subst ! 16.21.2 Pattern Matching in 'define_subst' ------------------------------------------ ! All expressions, allowed in 'define_insn' or 'define_expand', are ! allowed in the input-template of 'define_subst', except 'match_par_dup', ! 'match_scratch', 'match_parallel'. The meanings of expressions in the ! input-template were changed: ! 'match_operand' matches any expression (possibly, a subtree in ! RTL-template), if modes of the 'match_operand' and this expression are ! the same, or mode of the 'match_operand' is 'VOIDmode', or this ! expression is 'match_dup', 'match_op_dup'. If the expression is ! 'match_operand' too, and predicate of 'match_operand' from the input pattern is not empty, then the predicates are compared. That can be used for more accurate filtering of accepted RTL-templates. ! 'match_operator' matches common operators (like 'plus', 'minus'), ! 'unspec', 'unspec_volatile' operators and 'match_operator's from the ! original pattern if the modes match and 'match_operator' from the input pattern has the same number of operands as the operator from the original pattern.  File: gccint.info, Node: Define Subst Output Template, Prev: Define Subst Pattern Matching, Up: Define Subst ! 16.21.3 Generation of output template in 'define_subst' ------------------------------------------------------- ! If all necessary checks for 'define_subst' application pass, a new RTL-pattern, based on the output-template, is created to replace the old template. Like in input-patterns, meanings of some RTL expressions are ! changed when they are used in output-patterns of a 'define_subst'. ! Thus, 'match_dup' is used for copying the whole expression from the ! original pattern, which matched corresponding 'match_operand' from the input pattern. ! 'match_dup N' is used in the output template to be replaced with the ! expression from the original pattern, which matched 'match_operand N' ! from the input pattern. As a consequence, 'match_dup' cannot be used to ! point to 'match_operand's from the output pattern, it should always ! refer to a 'match_operand' from the input pattern. In the output template one can refer to the expressions from the original pattern and create new ones. For instance, some operands could ! be added by means of standard 'match_operand'. ! After replacing 'match_dup' with some RTL-subtree from the original ! pattern, it could happen that several 'match_operand's in the output ! pattern have the same indexes. It is unknown, how many and what indexes ! would be used in the expression which would replace 'match_dup', so such ! conflicts in indexes are inevitable. To overcome this issue, ! 'match_operands' and 'match_operators', which were introduced into the ! output pattern, are renumerated when all 'match_dup's are replaced. ! Number of alternatives in 'match_operand's introduced into the output ! template 'M' could differ from the number of alternatives in the ! original pattern 'N', so in the resultant pattern there would be 'N*M' alternatives. Thus, constraints from the original pattern would be ! duplicated 'N' times, constraints from the output pattern would be ! duplicated 'M' times, producing all possible combinations.  File: gccint.info, Node: Constant Definitions, Next: Iterators, Prev: Define Subst, Up: Machine Desc *************** File: gccint.info, Node: Constant Defin *** 26293,26303 **** Using literal constants inside instruction patterns reduces legibility and can be a maintenance problem. ! To overcome this problem, you may use the `define_constants' expression. It contains a vector of name-value pairs. From that point on, wherever any of the names appears in the MD file, it is as if the corresponding value had been written instead. You may use ! `define_constants' multiple times; each appearance adds more constants to the table. It is an error to redefine a constant with a different value. --- 25956,25966 ---- Using literal constants inside instruction patterns reduces legibility and can be a maintenance problem. ! To overcome this problem, you may use the 'define_constants' expression. It contains a vector of name-value pairs. From that point on, wherever any of the names appears in the MD file, it is as if the corresponding value had been written instead. You may use ! 'define_constants' multiple times; each appearance adds more constants to the table. It is an error to redefine a constant with a different value. *************** value. *** 26334,26340 **** in the insn-codes.h header file as #defines. You can also use the machine description file to define enumerations. ! Like the constants defined by `define_constant', these enumerations are visible to both the machine description file and the main C code. The syntax is as follows: --- 25997,26003 ---- in the insn-codes.h header file as #defines. You can also use the machine description file to define enumerations. ! Like the constants defined by 'define_constant', these enumerations are visible to both the machine description file and the main C code. The syntax is as follows: *************** visible to both the machine description *** 26347,26353 **** ]) This definition causes the equivalent of the following C code to appear ! in `insn-constants.h': enum NAME { VALUE0 = 0, --- 26010,26016 ---- ]) This definition causes the equivalent of the following C code to appear ! in 'insn-constants.h': enum NAME { VALUE0 = 0, *************** in `insn-constants.h': *** 26357,26373 **** }; #define NUM_CNAME_VALUES (N + 1) ! where CNAME is the capitalized form of NAME. It also makes each ! VALUEI available in the machine description file, just as if it had ! been declared with: (define_constants [(VALUEI I)]) ! Each VALUEI is usually an upper-case identifier and usually begins ! with CNAME. ! You can split the enumeration definition into as many statements as ! you like. The above example is directly equivalent to: (define_c_enum "NAME" [VALUE0]) (define_c_enum "NAME" [VALUE1]) --- 26020,26036 ---- }; #define NUM_CNAME_VALUES (N + 1) ! where CNAME is the capitalized form of NAME. It also makes each VALUEI ! available in the machine description file, just as if it had been ! declared with: (define_constants [(VALUEI I)]) ! Each VALUEI is usually an upper-case identifier and usually begins with ! CNAME. ! You can split the enumeration definition into as many statements as you ! like. The above example is directly equivalent to: (define_c_enum "NAME" [VALUE0]) (define_c_enum "NAME" [VALUE1]) *************** you like. The above example is directly *** 26375,26408 **** (define_c_enum "NAME" [VALUEN]) Splitting the enumeration helps to improve the modularity of each ! individual `.md' file. For example, if a port defines its ! synchronization instructions in a separate `sync.md' file, it is convenient to define all synchronization-specific enumeration values in ! `sync.md' rather than in the main `.md' file. Some enumeration names have special significance to GCC: ! `unspecv' ! If an enumeration called `unspecv' is defined, GCC will use it ! when printing out `unspec_volatile' expressions. For example: (define_c_enum "unspecv" [ UNSPECV_BLOCKAGE ]) ! causes GCC to print `(unspec_volatile ... 0)' as: (unspec_volatile ... UNSPECV_BLOCKAGE) ! `unspec' ! If an enumeration called `unspec' is defined, GCC will use it when ! printing out `unspec' expressions. GCC will also use it when ! printing out `unspec_volatile' expressions unless an `unspecv' enumeration is also defined. You can therefore decide whether to keep separate enumerations for volatile and non-volatile expressions or whether to use the same enumeration for both. ! Another way of defining an enumeration is to use `define_enum': (define_enum "NAME" [ VALUE0 --- 26038,26071 ---- (define_c_enum "NAME" [VALUEN]) Splitting the enumeration helps to improve the modularity of each ! individual '.md' file. For example, if a port defines its ! synchronization instructions in a separate 'sync.md' file, it is convenient to define all synchronization-specific enumeration values in ! 'sync.md' rather than in the main '.md' file. Some enumeration names have special significance to GCC: ! 'unspecv' ! If an enumeration called 'unspecv' is defined, GCC will use it when ! printing out 'unspec_volatile' expressions. For example: (define_c_enum "unspecv" [ UNSPECV_BLOCKAGE ]) ! causes GCC to print '(unspec_volatile ... 0)' as: (unspec_volatile ... UNSPECV_BLOCKAGE) ! 'unspec' ! If an enumeration called 'unspec' is defined, GCC will use it when ! printing out 'unspec' expressions. GCC will also use it when ! printing out 'unspec_volatile' expressions unless an 'unspecv' enumeration is also defined. You can therefore decide whether to keep separate enumerations for volatile and non-volatile expressions or whether to use the same enumeration for both. ! Another way of defining an enumeration is to use 'define_enum': (define_enum "NAME" [ VALUE0 *************** convenient to define all synchronization *** 26421,26427 **** ]) where CVALUEI is the capitalized form of VALUEI. However, unlike ! `define_c_enum', the enumerations defined by `define_enum' can be used in attribute specifications (*note define_enum_attr::).  --- 26084,26090 ---- ]) where CVALUEI is the capitalized form of VALUEI. However, unlike ! 'define_c_enum', the enumerations defined by 'define_enum' can be used in attribute specifications (*note define_enum_attr::).  *************** Ports often need to define similar patte *** 26451,26467 **** modes. For example: * If a processor has hardware support for both single and double ! floating-point arithmetic, the `SFmode' patterns tend to be very ! similar to the `DFmode' ones. ! * If a port uses `SImode' pointers in one configuration and `DImode' ! pointers in another, it will usually have very similar `SImode' ! and `DImode' patterns for manipulating pointers. ! Mode iterators allow several patterns to be instantiated from one ! `.md' file template. They can be used with any type of rtx-based ! construct, such as a `define_insn', `define_split', or ! `define_peephole2'. * Menu: --- 26114,26129 ---- modes. For example: * If a processor has hardware support for both single and double ! floating-point arithmetic, the 'SFmode' patterns tend to be very ! similar to the 'DFmode' ones. ! * If a port uses 'SImode' pointers in one configuration and 'DImode' ! pointers in another, it will usually have very similar 'SImode' and ! 'DImode' patterns for manipulating pointers. ! Mode iterators allow several patterns to be instantiated from one '.md' ! file template. They can be used with any type of rtx-based construct, ! such as a 'define_insn', 'define_split', or 'define_peephole2'. * Menu: *************** The syntax for defining a mode iterator *** 26479,26507 **** (define_mode_iterator NAME [(MODE1 "COND1") ... (MODEN "CONDN")]) ! This allows subsequent `.md' file constructs to use the mode suffix ! `:NAME'. Every construct that does so will be expanded N times, once ! with every use of `:NAME' replaced by `:MODE1', once with every use ! replaced by `:MODE2', and so on. In the expansion for a particular MODEI, every C condition will also require that CONDI be true. For example: (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")]) ! defines a new mode suffix `:P'. Every construct that uses `:P' will ! be expanded twice, once with every `:P' replaced by `:SI' and once with ! every `:P' replaced by `:DI'. The `:SI' version will only apply if ! `Pmode == SImode' and the `:DI' version will only apply if `Pmode == DImode'. ! As with other `.md' conditions, an empty string is treated as "always ! true". `(MODE "")' can also be abbreviated to `MODE'. For example: (define_mode_iterator GPR [SI (DI "TARGET_64BIT")]) ! means that the `:DI' expansion only applies if `TARGET_64BIT' but that ! the `:SI' expansion has no such constraint. Iterators are applied in the order they are defined. This can be significant if two iterators are used in a construct that requires --- 26141,26169 ---- (define_mode_iterator NAME [(MODE1 "COND1") ... (MODEN "CONDN")]) ! This allows subsequent '.md' file constructs to use the mode suffix ! ':NAME'. Every construct that does so will be expanded N times, once ! with every use of ':NAME' replaced by ':MODE1', once with every use ! replaced by ':MODE2', and so on. In the expansion for a particular MODEI, every C condition will also require that CONDI be true. For example: (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")]) ! defines a new mode suffix ':P'. Every construct that uses ':P' will be ! expanded twice, once with every ':P' replaced by ':SI' and once with ! every ':P' replaced by ':DI'. The ':SI' version will only apply if ! 'Pmode == SImode' and the ':DI' version will only apply if 'Pmode == DImode'. ! As with other '.md' conditions, an empty string is treated as "always ! true". '(MODE "")' can also be abbreviated to 'MODE'. For example: (define_mode_iterator GPR [SI (DI "TARGET_64BIT")]) ! means that the ':DI' expansion only applies if 'TARGET_64BIT' but that ! the ':SI' expansion has no such constraint. Iterators are applied in the order they are defined. This can be significant if two iterators are used in a construct that requires *************** File: gccint.info, Node: Substitutions, *** 26513,26537 **** 16.23.1.2 Substitution in Mode Iterators ........................................ ! If an `.md' file construct uses mode iterators, each version of the construct will often need slightly different strings or modes. For example: ! * When a `define_expand' defines several `addM3' patterns (*note Standard Names::), each expander will need to use the appropriate mode name for M. ! * When a `define_insn' defines several instruction patterns, each instruction will often use a different assembler mnemonic. ! * When a `define_insn' requires operands with different modes, using an iterator for one of the operand modes usually requires a specific mode for the other operand(s). GCC supports such variations through a system of "mode attributes". ! There are two standard attributes: `mode', which is the name of the ! mode in lower case, and `MODE', which is the same thing in upper case. ! You can define other attributes using: (define_mode_attr NAME [(MODE1 "VALUE1") ... (MODEN "VALUEN")]) --- 26175,26199 ---- 16.23.1.2 Substitution in Mode Iterators ........................................ ! If an '.md' file construct uses mode iterators, each version of the construct will often need slightly different strings or modes. For example: ! * When a 'define_expand' defines several 'addM3' patterns (*note Standard Names::), each expander will need to use the appropriate mode name for M. ! * When a 'define_insn' defines several instruction patterns, each instruction will often use a different assembler mnemonic. ! * When a 'define_insn' requires operands with different modes, using an iterator for one of the operand modes usually requires a specific mode for the other operand(s). GCC supports such variations through a system of "mode attributes". ! There are two standard attributes: 'mode', which is the name of the mode ! in lower case, and 'MODE', which is the same thing in upper case. You ! can define other attributes using: (define_mode_attr NAME [(MODE1 "VALUE1") ... (MODEN "VALUEN")]) *************** You can define other attributes using: *** 26539,26557 **** associated with MODEI. When GCC replaces some :ITERATOR with :MODE, it will scan each string ! and mode in the pattern for sequences of the form `', ! where ATTR is the name of a mode attribute. If the attribute is ! defined for MODE, the whole `<...>' sequence will be replaced by the ! appropriate attribute value. ! For example, suppose an `.md' file has: (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")]) (define_mode_attr load [(SI "lw") (DI "ld")]) ! If one of the patterns that uses `:P' contains the string ! `"\t%0,%1"', the `SI' version of that pattern will use ! `"lw\t%0,%1"' and the `DI' version will use `"ld\t%0,%1"'. Here is an example of using an attribute for a mode: --- 26201,26219 ---- associated with MODEI. When GCC replaces some :ITERATOR with :MODE, it will scan each string ! and mode in the pattern for sequences of the form '', ! where ATTR is the name of a mode attribute. If the attribute is defined ! for MODE, the whole '<...>' sequence will be replaced by the appropriate ! attribute value. ! For example, suppose an '.md' file has: (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")]) (define_mode_attr load [(SI "lw") (DI "ld")]) ! If one of the patterns that uses ':P' contains the string ! '"\t%0,%1"', the 'SI' version of that pattern will use ! '"lw\t%0,%1"' and the 'DI' version will use '"ld\t%0,%1"'. Here is an example of using an attribute for a mode: *************** appropriate attribute value. *** 26560,26566 **** (define_insn ... (sign_extend:LONG (match_operand: ...)) ...) ! The `ITERATOR:' prefix may be omitted, in which case the substitution will be attempted for every iterator expansion.  --- 26222,26228 ---- (define_insn ... (sign_extend:LONG (match_operand: ...)) ...) ! The 'ITERATOR:' prefix may be omitted, in which case the substitution will be attempted for every iterator expansion.  *************** and attributes (among others): *** 26575,26581 **** (define_mode_iterator GPR [SI (DI "TARGET_64BIT")]) (define_mode_attr d [(SI "") (DI "d")]) ! and uses the following template to define both `subsi3' and `subdi3': (define_insn "sub3" [(set (match_operand:GPR 0 "register_operand" "=d") --- 26237,26243 ---- (define_mode_iterator GPR [SI (DI "TARGET_64BIT")]) (define_mode_attr d [(SI "") (DI "d")]) ! and uses the following template to define both 'subsi3' and 'subdi3': (define_insn "sub3" [(set (match_operand:GPR 0 "register_operand" "=d") *************** times, once with all uses of NAME replac *** 26628,26635 **** replaced by CODE2, and so on. *Note Defining Mode Iterators::. It is possible to define attributes for codes as well as for modes. ! There are two standard code attributes: `code', the name of the code in ! lower case, and `CODE', the name of the code in upper case. Other attributes are defined using: (define_code_attr NAME [(CODE1 "VALUE1") ... (CODEN "VALUEN")]) --- 26290,26297 ---- replaced by CODE2, and so on. *Note Defining Mode Iterators::. It is possible to define attributes for codes as well as for modes. ! There are two standard code attributes: 'code', the name of the code in ! lower case, and 'CODE', the name of the code in upper case. Other attributes are defined using: (define_code_attr NAME [(CODE1 "VALUE1") ... (CODEN "VALUEN")]) *************** Iterators::. *** 26693,26708 **** (define_int_iterator NAME [(INT1 "COND1") ... (INTN "CONDN")]) ! defines a pseudo integer constant NAME that can be instantiated as ! INTI if condition CONDI is true. Each INT must have the same rtx ! format. *Note RTL Classes::. Int iterators can appear in only those ! rtx fields that have 'i' as the specifier. This means that each INT has ! to be a constant defined using define_constant or define_c_enum. As with mode and code iterators, each pattern that uses NAME will be ! expanded N times, once with all uses of NAME replaced by INT1, once ! with all uses replaced by INT2, and so on. *Note Defining Mode ! Iterators::. It is possible to define attributes for ints as well as for codes and modes. Attributes are defined using: --- 26355,26369 ---- (define_int_iterator NAME [(INT1 "COND1") ... (INTN "CONDN")]) ! defines a pseudo integer constant NAME that can be instantiated as INTI ! if condition CONDI is true. Each INT must have the same rtx format. ! *Note RTL Classes::. Int iterators can appear in only those rtx fields ! that have 'i' as the specifier. This means that each INT has to be a ! constant defined using define_constant or define_c_enum. As with mode and code iterators, each pattern that uses NAME will be ! expanded N times, once with all uses of NAME replaced by INT1, once with ! all uses replaced by INT2, and so on. *Note Defining Mode Iterators::. It is possible to define attributes for ints as well as for codes and modes. Attributes are defined using: *************** used in RTL-pattern. *** 26762,26775 **** Subst iterators transform templates in the following way: the templates are duplicated, the subst-attributes in these templates are replaced with the corresponding values, and a new attribute is implicitly added ! to the given `define_insn'/`define_expand'. The name of the added ! attribute matches the name of `define_subst'. Such attributes are ! declared implicitly, and it is not allowed to have a `define_attr' ! named as a `define_subst'. ! Each subst iterator is linked to a `define_subst'. It is declared implicitly by the first appearance of the corresponding ! `define_subst_attr', and it is not allowed to define it explicitly. Declarations of subst-attributes have the following syntax: --- 26423,26436 ---- Subst iterators transform templates in the following way: the templates are duplicated, the subst-attributes in these templates are replaced with the corresponding values, and a new attribute is implicitly added ! to the given 'define_insn'/'define_expand'. The name of the added ! attribute matches the name of 'define_subst'. Such attributes are ! declared implicitly, and it is not allowed to have a 'define_attr' named ! as a 'define_subst'. ! Each subst iterator is linked to a 'define_subst'. It is declared implicitly by the first appearance of the corresponding ! 'define_subst_attr', and it is not allowed to define it explicitly. Declarations of subst-attributes have the following syntax: *************** implicitly by the first appearance of th *** 26778,26787 **** "NO-SUBST-VALUE" "SUBST-APPLIED-VALUE") ! NAME is a string with which the given subst-attribute could be ! referred to. ! SUBST-NAME shows which `define_subst' should be applied to an RTL-template if the given subst-attribute is present in the RTL-template. --- 26439,26448 ---- "NO-SUBST-VALUE" "SUBST-APPLIED-VALUE") ! NAME is a string with which the given subst-attribute could be referred ! to. ! SUBST-NAME shows which 'define_subst' should be applied to an RTL-template if the given subst-attribute is present in the RTL-template. *************** File: gccint.info, Node: Target Macros, *** 26797,26820 **** 17 Target Description Macros and Functions ****************************************** ! In addition to the file `MACHINE.md', a machine description includes a ! C header file conventionally given the name `MACHINE.h' and a C source ! file named `MACHINE.c'. The header file defines numerous macros that convey the information about the target machine that does not fit into ! the scheme of the `.md' file. The file `tm.h' should be a link to ! `MACHINE.h'. The header file `config.h' includes `tm.h' and most ! compiler source files include `config.h'. The source file defines a ! variable `targetm', which is a structure containing pointers to ! functions and data relating to the target machine. `MACHINE.c' should also contain their definitions, if they are not defined elsewhere in ! GCC, and other functions called through the macros defined in the `.h' file. * Menu: ! * Target Structure:: The `targetm' variable. * Driver:: Controlling how the driver runs the compilation passes. ! * Run-time Target:: Defining `-m' options like `-m68000' and `-m68020'. * Per-Function Data:: Defining data structures for per-function information. * Storage Layout:: Defining sizes and alignments of data. * Type Layout:: Defining sizes and properties of basic user data types. --- 26458,26481 ---- 17 Target Description Macros and Functions ****************************************** ! In addition to the file 'MACHINE.md', a machine description includes a C ! header file conventionally given the name 'MACHINE.h' and a C source ! file named 'MACHINE.c'. The header file defines numerous macros that convey the information about the target machine that does not fit into ! the scheme of the '.md' file. The file 'tm.h' should be a link to ! 'MACHINE.h'. The header file 'config.h' includes 'tm.h' and most ! compiler source files include 'config.h'. The source file defines a ! variable 'targetm', which is a structure containing pointers to ! functions and data relating to the target machine. 'MACHINE.c' should also contain their definitions, if they are not defined elsewhere in ! GCC, and other functions called through the macros defined in the '.h' file. * Menu: ! * Target Structure:: The 'targetm' variable. * Driver:: Controlling how the driver runs the compilation passes. ! * Run-time Target:: Defining '-m' options like '-m68000' and '-m68020'. * Per-Function Data:: Defining data structures for per-function information. * Storage Layout:: Defining sizes and alignments of data. * Type Layout:: Defining sizes and properties of basic user data types. *************** file. *** 26826,26832 **** * Trampolines:: Code set up at run time to enter a nested function. * Library Calls:: Controlling how library routines are implicitly called. * Addressing Modes:: Defining addressing modes valid for memory operands. ! * Anchored Addresses:: Defining how `-fsection-anchors' should work. * Condition Code:: Defining how insns update the condition code. * Costs:: Defining relative costs of different operations. * Scheduling:: Adjusting the behavior of the instruction scheduler. --- 26487,26493 ---- * Trampolines:: Code set up at run time to enter a nested function. * Library Calls:: Controlling how library routines are implicitly called. * Addressing Modes:: Defining addressing modes valid for memory operands. ! * Anchored Addresses:: Defining how '-fsection-anchors' should work. * Condition Code:: Defining how insns update the condition code. * Costs:: Defining relative costs of different operations. * Scheduling:: Adjusting the behavior of the instruction scheduler. *************** file. *** 26836,26842 **** * Debugging Info:: Defining the format of debugging output. * Floating Point:: Handling floating point for cross-compilers. * Mode Switching:: Insertion of mode-switching instructions. ! * Target Attributes:: Defining target-specific uses of `__attribute__'. * Emulated TLS:: Emulated TLS support. * MIPS Coprocessors:: MIPS coprocessor support and how to customize it. * PCH Target:: Validity checking for precompiled headers. --- 26497,26503 ---- * Debugging Info:: Defining the format of debugging output. * Floating Point:: Handling floating point for cross-compilers. * Mode Switching:: Insertion of mode-switching instructions. ! * Target Attributes:: Defining target-specific uses of '__attribute__'. * Emulated TLS:: Emulated TLS support. * MIPS Coprocessors:: MIPS coprocessor support and how to customize it. * PCH Target:: Validity checking for precompiled headers. *************** file. *** 26847,26864 ****  File: gccint.info, Node: Target Structure, Next: Driver, Up: Target Macros ! 17.1 The Global `targetm' Variable ================================== -- Variable: struct gcc_target targetm ! The target `.c' file must define the global `targetm' variable which contains pointers to functions and data relating to the ! target machine. The variable is declared in `target.h'; ! `target-def.h' defines the macro `TARGET_INITIALIZER' which is ! used to initialize the variable, and macros for the default ! initializers for elements of the structure. The `.c' file should ! override those macros for which the default definition is ! inappropriate. For example: #include "target.h" #include "target-def.h" --- 26508,26525 ----  File: gccint.info, Node: Target Structure, Next: Driver, Up: Target Macros ! 17.1 The Global 'targetm' Variable ================================== -- Variable: struct gcc_target targetm ! The target '.c' file must define the global 'targetm' variable which contains pointers to functions and data relating to the ! target machine. The variable is declared in 'target.h'; ! 'target-def.h' defines the macro 'TARGET_INITIALIZER' which is used ! to initialize the variable, and macros for the default initializers ! for elements of the structure. The '.c' file should override those ! macros for which the default definition is inappropriate. For ! example: #include "target.h" #include "target-def.h" *************** File: gccint.info, Node: Target Structu *** 26869,26899 **** struct gcc_target targetm = TARGET_INITIALIZER; ! Where a macro should be defined in the `.c' file in this manner to form ! part of the `targetm' structure, it is documented below as a "Target Hook" with a prototype. Many macros will change in future from being ! defined in the `.h' file to being part of the `targetm' structure. ! Similarly, there is a `targetcm' variable for hooks that are specific to front ends for C-family languages, documented as "C Target Hook". ! This is declared in `c-family/c-target.h', the initializer ! `TARGETCM_INITIALIZER' in `c-family/c-target-def.h'. If targets ! initialize `targetcm' themselves, they should set ! `target_has_targetcm=yes' in `config.gcc'; otherwise a default definition is used. ! Similarly, there is a `targetm_common' variable for hooks that are shared between the compiler driver and the compilers proper, documented ! as "Common Target Hook". This is declared in `common/common-target.h', ! the initializer `TARGETM_COMMON_INITIALIZER' in ! `common/common-target-def.h'. If targets initialize `targetm_common' ! themselves, they should set `target_has_targetm_common=yes' in ! `config.gcc'; otherwise a default definition is used.  File: gccint.info, Node: Driver, Next: Run-time Target, Prev: Target Structure, Up: Target Macros ! 17.2 Controlling the Compilation Driver, `gcc' ============================================== You can control the compilation driver. --- 26530,26560 ---- struct gcc_target targetm = TARGET_INITIALIZER; ! Where a macro should be defined in the '.c' file in this manner to form ! part of the 'targetm' structure, it is documented below as a "Target Hook" with a prototype. Many macros will change in future from being ! defined in the '.h' file to being part of the 'targetm' structure. ! Similarly, there is a 'targetcm' variable for hooks that are specific to front ends for C-family languages, documented as "C Target Hook". ! This is declared in 'c-family/c-target.h', the initializer ! 'TARGETCM_INITIALIZER' in 'c-family/c-target-def.h'. If targets ! initialize 'targetcm' themselves, they should set ! 'target_has_targetcm=yes' in 'config.gcc'; otherwise a default definition is used. ! Similarly, there is a 'targetm_common' variable for hooks that are shared between the compiler driver and the compilers proper, documented ! as "Common Target Hook". This is declared in 'common/common-target.h', ! the initializer 'TARGETM_COMMON_INITIALIZER' in ! 'common/common-target-def.h'. If targets initialize 'targetm_common' ! themselves, they should set 'target_has_targetm_common=yes' in ! 'config.gcc'; otherwise a default definition is used.  File: gccint.info, Node: Driver, Next: Run-time Target, Prev: Target Structure, Up: Target Macros ! 17.2 Controlling the Compilation Driver, 'gcc' ============================================== You can control the compilation driver. *************** You can control the compilation driver. *** 26903,26913 **** initializer for an array of strings, with no surrounding braces. The driver applies these specs to its own command line between ! loading default `specs' files (but not command-line specified ! ones) and choosing the multilib directory or running any ! subcommands. It applies them in the order given, so each spec can ! depend on the options added by earlier ones. It is also possible ! to remove options using `%' in such a case, the header provided may not conform to C99, depending on the type in question. The defaults for all of these macros are null pointers. --- 28056,28073 ---- -- Macro: UINT_FAST64_TYPE -- Macro: INTPTR_TYPE -- Macro: UINTPTR_TYPE ! C expressions for the standard types 'sig_atomic_t', 'int8_t', ! 'int16_t', 'int32_t', 'int64_t', 'uint8_t', 'uint16_t', 'uint32_t', ! 'uint64_t', 'int_least8_t', 'int_least16_t', 'int_least32_t', ! 'int_least64_t', 'uint_least8_t', 'uint_least16_t', ! 'uint_least32_t', 'uint_least64_t', 'int_fast8_t', 'int_fast16_t', ! 'int_fast32_t', 'int_fast64_t', 'uint_fast8_t', 'uint_fast16_t', ! 'uint_fast32_t', 'uint_fast64_t', 'intptr_t', and 'uintptr_t'. See ! 'SIZE_TYPE' above for more information. If any of these macros evaluates to a null pointer, the corresponding type is not supported; if GCC is configured to ! provide '' in such a case, the header provided may not conform to C99, depending on the type in question. The defaults for all of these macros are null pointers. *************** languages, rather than to fundamental as *** 28437,28458 **** vtable_index is odd, we can distinguish which variant of the union is in use. But, on some platforms function pointers can be odd, and so this doesn't work. In that case, we use the low-order bit ! of the `delta' field, and shift the remainder of the `delta' field to the left. GCC will automatically make the right selection about where to ! store this bit using the `FUNCTION_BOUNDARY' setting for your platform. However, some platforms such as ARM/Thumb have ! `FUNCTION_BOUNDARY' set such that functions always start at even addresses, but the lowest bit of pointers to functions indicate whether the function at that address is in ARM or Thumb mode. If ! this is the case of your architecture, you should define this ! macro to `ptrmemfunc_vbit_in_delta'. In general, you should not have to define this macro. On architectures in which function addresses are always even, ! according to `FUNCTION_BOUNDARY', GCC will automatically define ! this macro to `ptrmemfunc_vbit_in_pfn'. -- Macro: TARGET_VTABLE_USES_DESCRIPTORS Normally, the C++ compiler uses function pointers in vtables. This --- 28090,28111 ---- vtable_index is odd, we can distinguish which variant of the union is in use. But, on some platforms function pointers can be odd, and so this doesn't work. In that case, we use the low-order bit ! of the 'delta' field, and shift the remainder of the 'delta' field to the left. GCC will automatically make the right selection about where to ! store this bit using the 'FUNCTION_BOUNDARY' setting for your platform. However, some platforms such as ARM/Thumb have ! 'FUNCTION_BOUNDARY' set such that functions always start at even addresses, but the lowest bit of pointers to functions indicate whether the function at that address is in ARM or Thumb mode. If ! this is the case of your architecture, you should define this macro ! to 'ptrmemfunc_vbit_in_delta'. In general, you should not have to define this macro. On architectures in which function addresses are always even, ! according to 'FUNCTION_BOUNDARY', GCC will automatically define ! this macro to 'ptrmemfunc_vbit_in_pfn'. -- Macro: TARGET_VTABLE_USES_DESCRIPTORS Normally, the C++ compiler uses function pointers in vtables. This *************** languages, rather than to fundamental as *** 28469,28480 **** By default, the vtable entries are void pointers, the so the alignment is the same as pointer alignment. The value of this macro specifies the alignment of the vtable entry in bits. It ! should be defined only when special alignment is necessary. */ -- Macro: TARGET_VTABLE_DATA_ENTRY_DISTANCE There are a few non-descriptor entries in the vtable at offsets below zero. If these entries must be padded (say, to preserve the ! alignment specified by `TARGET_VTABLE_ENTRY_ALIGN'), set this to the number of words in each data entry.  --- 28122,28133 ---- By default, the vtable entries are void pointers, the so the alignment is the same as pointer alignment. The value of this macro specifies the alignment of the vtable entry in bits. It ! should be defined only when special alignment is necessary. */ -- Macro: TARGET_VTABLE_DATA_ENTRY_DISTANCE There are a few non-descriptor entries in the vtable at offsets below zero. If these entries must be padded (say, to preserve the ! alignment specified by 'TARGET_VTABLE_ENTRY_ALIGN'), set this to the number of words in each data entry.  *************** Registers have various characteristics. *** 28511,28519 **** -- Macro: FIRST_PSEUDO_REGISTER Number of hardware registers known to the compiler. They receive ! numbers 0 through `FIRST_PSEUDO_REGISTER-1'; thus, the first ! pseudo register's number really is assigned the number ! `FIRST_PSEUDO_REGISTER'. -- Macro: FIXED_REGISTERS An initializer that says which registers are used for fixed --- 28164,28172 ---- -- Macro: FIRST_PSEUDO_REGISTER Number of hardware registers known to the compiler. They receive ! numbers 0 through 'FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo ! register's number really is assigned the number ! 'FIRST_PSEUDO_REGISTER'. -- Macro: FIXED_REGISTERS An initializer that says which registers are used for fixed *************** Registers have various characteristics. *** 28532,28557 **** The table initialized from this macro, and the table initialized by the following one, may be overridden at run time either automatically, by the actions of the macro ! `CONDITIONAL_REGISTER_USAGE', or by the user with the command ! options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. -- Macro: CALL_USED_REGISTERS ! Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in general) by function calls as well as for fixed registers. This macro therefore identifies the registers that are not available for general allocation of values that must live across function calls. ! If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically saves it on function entry and restores it on function exit, if the register is used within the function. -- Macro: CALL_REALLY_USED_REGISTERS ! Like `CALL_USED_REGISTERS' except this macro doesn't require that ! the entire set of `FIXED_REGISTERS' be included. ! (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS'). This macro is optional. If not specified, it defaults to the value ! of `CALL_USED_REGISTERS'. -- Macro: HARD_REGNO_CALL_PART_CLOBBERED (REGNO, MODE) A C expression that is nonzero if it is not permissible to store a --- 28185,28210 ---- The table initialized from this macro, and the table initialized by the following one, may be overridden at run time either automatically, by the actions of the macro ! 'CONDITIONAL_REGISTER_USAGE', or by the user with the command ! options '-ffixed-REG', '-fcall-used-REG' and '-fcall-saved-REG'. -- Macro: CALL_USED_REGISTERS ! Like 'FIXED_REGISTERS' but has 1 for each register that is clobbered (in general) by function calls as well as for fixed registers. This macro therefore identifies the registers that are not available for general allocation of values that must live across function calls. ! If a register has 0 in 'CALL_USED_REGISTERS', the compiler automatically saves it on function entry and restores it on function exit, if the register is used within the function. -- Macro: CALL_REALLY_USED_REGISTERS ! Like 'CALL_USED_REGISTERS' except this macro doesn't require that ! the entire set of 'FIXED_REGISTERS' be included. ! ('CALL_USED_REGISTERS' must be a superset of 'FIXED_REGISTERS'). This macro is optional. If not specified, it defaults to the value ! of 'CALL_USED_REGISTERS'. -- Macro: HARD_REGNO_CALL_PART_CLOBBERED (REGNO, MODE) A C expression that is nonzero if it is not permissible to store a *************** Registers have various characteristics. *** 28561,28611 **** do not preserve the entire contents of a register across a call. -- Target Hook: void TARGET_CONDITIONAL_REGISTER_USAGE (void) ! This hook may conditionally modify five variables `fixed_regs', ! `call_used_regs', `global_regs', `reg_names', and ! `reg_class_contents', to take into account any dependence of these register sets on target flags. The first three of these are of ! type `char []' (interpreted as Boolean vectors). `global_regs' is ! a `const char *[]', and `reg_class_contents' is a `HARD_REG_SET'. ! Before the macro is called, `fixed_regs', `call_used_regs', ! `reg_class_contents', and `reg_names' have been initialized from ! `FIXED_REGISTERS', `CALL_USED_REGISTERS', `REG_CLASS_CONTENTS', ! and `REGISTER_NAMES', respectively. `global_regs' has been ! cleared, and any `-ffixed-REG', `-fcall-used-REG' and ! `-fcall-saved-REG' command options have been applied. If the usage of an entire class of registers depends on the target flags, you may indicate this to GCC by using this macro to modify ! `fixed_regs' and `call_used_regs' to 1 for each of the registers ! in the classes which should not be used by GCC. Also define the ! macro `REG_CLASS_FROM_LETTER' / `REG_CLASS_FROM_CONSTRAINT' to ! return `NO_REGS' if it is called with a letter for a class that ! shouldn't be used. ! (However, if this class is not included in `GENERAL_REGS' and all of the insn patterns whose constraints permit this class are controlled by target switches, then GCC will automatically avoid using these registers when the target switches are opposed to them.) -- Macro: INCOMING_REGNO (OUT) ! Define this macro if the target machine has register windows. ! This C expression returns the register number as seen by the ! called function corresponding to the register number OUT as seen ! by the calling function. Return OUT if register number OUT is not ! an outbound register. -- Macro: OUTGOING_REGNO (IN) ! Define this macro if the target machine has register windows. ! This C expression returns the register number as seen by the ! calling function corresponding to the register number IN as seen ! by the called function. Return IN if register number IN is not an ! inbound register. -- Macro: LOCAL_REGNO (REGNO) ! Define this macro if the target machine has register windows. ! This C expression returns true if the register is call-saved but ! is in the register window. Unlike most call-saved registers, such registers need not be explicitly restored on function exit or during non-local gotos. --- 28214,28264 ---- do not preserve the entire contents of a register across a call. -- Target Hook: void TARGET_CONDITIONAL_REGISTER_USAGE (void) ! This hook may conditionally modify five variables 'fixed_regs', ! 'call_used_regs', 'global_regs', 'reg_names', and ! 'reg_class_contents', to take into account any dependence of these register sets on target flags. The first three of these are of ! type 'char []' (interpreted as Boolean vectors). 'global_regs' is ! a 'const char *[]', and 'reg_class_contents' is a 'HARD_REG_SET'. ! Before the macro is called, 'fixed_regs', 'call_used_regs', ! 'reg_class_contents', and 'reg_names' have been initialized from ! 'FIXED_REGISTERS', 'CALL_USED_REGISTERS', 'REG_CLASS_CONTENTS', and ! 'REGISTER_NAMES', respectively. 'global_regs' has been cleared, ! and any '-ffixed-REG', '-fcall-used-REG' and '-fcall-saved-REG' ! command options have been applied. If the usage of an entire class of registers depends on the target flags, you may indicate this to GCC by using this macro to modify ! 'fixed_regs' and 'call_used_regs' to 1 for each of the registers in ! the classes which should not be used by GCC. Also define the macro ! 'REG_CLASS_FROM_LETTER' / 'REG_CLASS_FROM_CONSTRAINT' to return ! 'NO_REGS' if it is called with a letter for a class that shouldn't ! be used. ! (However, if this class is not included in 'GENERAL_REGS' and all of the insn patterns whose constraints permit this class are controlled by target switches, then GCC will automatically avoid using these registers when the target switches are opposed to them.) -- Macro: INCOMING_REGNO (OUT) ! Define this macro if the target machine has register windows. This ! C expression returns the register number as seen by the called ! function corresponding to the register number OUT as seen by the ! calling function. Return OUT if register number OUT is not an ! outbound register. -- Macro: OUTGOING_REGNO (IN) ! Define this macro if the target machine has register windows. This ! C expression returns the register number as seen by the calling ! function corresponding to the register number IN as seen by the ! called function. Return IN if register number IN is not an inbound ! register. -- Macro: LOCAL_REGNO (REGNO) ! Define this macro if the target machine has register windows. This ! C expression returns true if the register is call-saved but is in ! the register window. Unlike most call-saved registers, such registers need not be explicitly restored on function exit or during non-local gotos. *************** Registers are allocated in order. *** 28632,28638 **** One use of this macro is on machines where the highest numbered registers must always be saved and the save-multiple-registers instruction supports only sequences of consecutive registers. On ! such machines, define `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered allocable register first. -- Macro: ADJUST_REG_ALLOC_ORDER --- 28285,28291 ---- One use of this macro is on machines where the highest numbered registers must always be saved and the save-multiple-registers instruction supports only sequences of consecutive registers. On ! such machines, define 'REG_ALLOC_ORDER' to be an initializer that lists the highest numbered allocable register first. -- Macro: ADJUST_REG_ALLOC_ORDER *************** Registers are allocated in order. *** 28640,28661 **** allocate hard registers for pseudo-registers local to a basic block. ! Store the desired register order in the array `reg_alloc_order'. Element 0 should be the register to allocate first; element 1, the next register; and so on. The macro body should not assume anything about the contents of ! `reg_alloc_order' before execution of the macro. On most machines, it is not necessary to define this macro. -- Macro: HONOR_REG_ALLOC_ORDER Normally, IRA tries to estimate the costs for saving a register in ! the prologue and restoring it in the epilogue. This discourages ! it from using call-saved registers. If a machine wants to ensure ! that IRA allocates registers in the order given by REG_ALLOC_ORDER ! even if some call-saved registers appear earlier than call-used ! ones, this macro should be defined. -- Macro: IRA_HARD_REGNO_ADD_COST_MULTIPLIER (REGNO) In some case register allocation order is not enough for the --- 28293,28314 ---- allocate hard registers for pseudo-registers local to a basic block. ! Store the desired register order in the array 'reg_alloc_order'. Element 0 should be the register to allocate first; element 1, the next register; and so on. The macro body should not assume anything about the contents of ! 'reg_alloc_order' before execution of the macro. On most machines, it is not necessary to define this macro. -- Macro: HONOR_REG_ALLOC_ORDER Normally, IRA tries to estimate the costs for saving a register in ! the prologue and restoring it in the epilogue. This discourages it ! from using call-saved registers. If a machine wants to ensure that ! IRA allocates registers in the order given by REG_ALLOC_ORDER even ! if some call-saved registers appear earlier than call-used ones, ! this macro should be defined. -- Macro: IRA_HARD_REGNO_ADD_COST_MULTIPLIER (REGNO) In some case register allocation order is not enough for the *************** Registers are allocated in order. *** 28664,28670 **** based on REGNO. The cost of using REGNO for a pseudo will be increased by approximately the pseudo's usage frequency times the value returned by this macro. Not defining this macro is ! equivalent to having it always return `0.0'. On most machines, it is not necessary to define this macro. --- 28317,28323 ---- based on REGNO. The cost of using REGNO for a pseudo will be increased by approximately the pseudo's usage frequency times the value returned by this macro. Not defining this macro is ! equivalent to having it always return '0.0'. On most machines, it is not necessary to define this macro. *************** consecutive registers are needed for a g *** 28681,28689 **** -- Macro: HARD_REGNO_NREGS (REGNO, MODE) A C expression for the number of consecutive hard registers, starting at register number REGNO, required to hold a value of mode ! MODE. This macro must never return zero, even if a register ! cannot hold the requested mode - indicate that with ! HARD_REGNO_MODE_OK and/or CANNOT_CHANGE_MODE_CLASS instead. On a machine where all registers are exactly one word, a suitable definition of this macro is --- 28334,28342 ---- -- Macro: HARD_REGNO_NREGS (REGNO, MODE) A C expression for the number of consecutive hard registers, starting at register number REGNO, required to hold a value of mode ! MODE. This macro must never return zero, even if a register cannot ! hold the requested mode - indicate that with HARD_REGNO_MODE_OK ! and/or CANNOT_CHANGE_MODE_CLASS instead. On a machine where all registers are exactly one word, a suitable definition of this macro is *************** consecutive registers are needed for a g *** 28698,28721 **** in registers starting at register number REGNO (as determined by multiplying GCC's notion of the size of the register when containing this mode by the number of registers returned by ! `HARD_REGNO_NREGS'). By default this is zero. For example, if a floating-point value is stored in three 32-bit registers but takes up 128 bits in memory, then this would be nonzero. This macros only needs to be defined if there are cases where ! `subreg_get_info' would otherwise wrongly determine that a ! `subreg' can be represented by an offset to the register number, ! when in fact such a `subreg' would contain some of the padding not ! stored in registers and so not be representable. -- Macro: HARD_REGNO_NREGS_WITH_PADDING (REGNO, MODE) For values of REGNO and MODE for which ! `HARD_REGNO_NREGS_HAS_PADDING' returns nonzero, a C expression returning the greater number of registers required to hold the ! value including any padding. In the example above, the value ! would be four. -- Macro: REGMODE_NATURAL_SIZE (MODE) Define this macro if the natural size of registers that hold values --- 28351,28374 ---- in registers starting at register number REGNO (as determined by multiplying GCC's notion of the size of the register when containing this mode by the number of registers returned by ! 'HARD_REGNO_NREGS'). By default this is zero. For example, if a floating-point value is stored in three 32-bit registers but takes up 128 bits in memory, then this would be nonzero. This macros only needs to be defined if there are cases where ! 'subreg_get_info' would otherwise wrongly determine that a 'subreg' ! can be represented by an offset to the register number, when in ! fact such a 'subreg' would contain some of the padding not stored ! in registers and so not be representable. -- Macro: HARD_REGNO_NREGS_WITH_PADDING (REGNO, MODE) For values of REGNO and MODE for which ! 'HARD_REGNO_NREGS_HAS_PADDING' returns nonzero, a C expression returning the greater number of registers required to hold the ! value including any padding. In the example above, the value would ! be four. -- Macro: REGMODE_NATURAL_SIZE (MODE) Define this macro if the natural size of registers that hold values *************** consecutive registers are needed for a g *** 28742,28790 **** reject odd register numbers for such modes. The minimum requirement for a mode to be OK in a register is that ! the `movMODE' instruction pattern support moves between the register and other hard register in the same class and that moving a value into the register and back out not alter it. ! Since the same instruction used to move `word_mode' will work for all narrower integer modes, it is not necessary on any machine for ! `HARD_REGNO_MODE_OK' to distinguish between these modes, provided ! you define patterns `movhi', etc., to take advantage of this. This ! is useful because of the interaction between `HARD_REGNO_MODE_OK' ! and `MODES_TIEABLE_P'; it is very desirable for all integer modes to be tieable. Many machines have special registers for floating point arithmetic. Often people assume that floating point machine modes are allowed ! only in floating point registers. This is not true. Any ! registers that can hold integers can safely _hold_ a floating ! point machine mode, whether or not floating arithmetic can be done ! on it in those registers. Integer move instructions can be used ! to move the values. On some machines, though, the converse is true: fixed-point machine modes may not go in floating registers. This is true if the floating registers normalize any value stored in them, because storing a non-floating value there would garble it. In this case, ! `HARD_REGNO_MODE_OK' should reject fixed-point machine modes in floating registers. But if the floating registers do not automatically normalize, if you can store any bit pattern in one ! and retrieve it unchanged without a trap, then any machine mode ! may go in a floating register, so you can define this macro to say ! so. The primary significance of special floating registers is rather that they are the registers acceptable in floating point arithmetic instructions. However, this is of no concern to ! `HARD_REGNO_MODE_OK'. You handle it by writing the proper constraints for those instructions. On some machines, the floating registers are especially slow to ! access, so that it is better to store a value in a stack frame ! than in such a register if floating point arithmetic is not being ! done. As long as the floating registers are not in class ! `GENERAL_REGS', they will not be used unless some pattern's ! constraint asks for one. -- Macro: HARD_REGNO_RENAME_OK (FROM, TO) A C expression that is nonzero if it is OK to rename a hard --- 28395,28442 ---- reject odd register numbers for such modes. The minimum requirement for a mode to be OK in a register is that ! the 'movMODE' instruction pattern support moves between the register and other hard register in the same class and that moving a value into the register and back out not alter it. ! Since the same instruction used to move 'word_mode' will work for all narrower integer modes, it is not necessary on any machine for ! 'HARD_REGNO_MODE_OK' to distinguish between these modes, provided ! you define patterns 'movhi', etc., to take advantage of this. This ! is useful because of the interaction between 'HARD_REGNO_MODE_OK' ! and 'MODES_TIEABLE_P'; it is very desirable for all integer modes to be tieable. Many machines have special registers for floating point arithmetic. Often people assume that floating point machine modes are allowed ! only in floating point registers. This is not true. Any registers ! that can hold integers can safely _hold_ a floating point machine ! mode, whether or not floating arithmetic can be done on it in those ! registers. Integer move instructions can be used to move the ! values. On some machines, though, the converse is true: fixed-point machine modes may not go in floating registers. This is true if the floating registers normalize any value stored in them, because storing a non-floating value there would garble it. In this case, ! 'HARD_REGNO_MODE_OK' should reject fixed-point machine modes in floating registers. But if the floating registers do not automatically normalize, if you can store any bit pattern in one ! and retrieve it unchanged without a trap, then any machine mode may ! go in a floating register, so you can define this macro to say so. The primary significance of special floating registers is rather that they are the registers acceptable in floating point arithmetic instructions. However, this is of no concern to ! 'HARD_REGNO_MODE_OK'. You handle it by writing the proper constraints for those instructions. On some machines, the floating registers are especially slow to ! access, so that it is better to store a value in a stack frame than ! in such a register if floating point arithmetic is not being done. ! As long as the floating registers are not in class 'GENERAL_REGS', ! they will not be used unless some pattern's constraint asks for ! one. -- Macro: HARD_REGNO_RENAME_OK (FROM, TO) A C expression that is nonzero if it is OK to rename a hard *************** consecutive registers are needed for a g *** 28800,28829 **** A C expression that is nonzero if a value of mode MODE1 is accessible in mode MODE2 without copying. ! If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, ! MODE2)' are always the same for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' should be nonzero. If they differ for any R, you ! should define this macro to return zero unless some other ! mechanism ensures the accessibility of the value in a narrower ! mode. You should define this macro to return nonzero in as many cases as possible since doing so will allow GCC to perform better register allocation. -- Target Hook: bool TARGET_HARD_REGNO_SCRATCH_OK (unsigned int REGNO) ! This target hook should return `true' if it is OK to use a hard register REGNO as scratch reg in peephole2. One common use of this macro is to prevent using of a register that is not saved by a prologue in an interrupt handler. ! The default version of this hook always returns `true'. -- Macro: AVOID_CCMODE_COPIES Define this macro if the compiler should avoid copies to/from ! `CCmode' registers. You should only define this macro if support ! for copying to/from `CCmode' is incomplete.  File: gccint.info, Node: Leaf Functions, Next: Stack Registers, Prev: Values in Registers, Up: Registers --- 28452,28480 ---- A C expression that is nonzero if a value of mode MODE1 is accessible in mode MODE2 without copying. ! If 'HARD_REGNO_MODE_OK (R, MODE1)' and 'HARD_REGNO_MODE_OK (R, ! MODE2)' are always the same for any R, then 'MODES_TIEABLE_P (MODE1, MODE2)' should be nonzero. If they differ for any R, you ! should define this macro to return zero unless some other mechanism ! ensures the accessibility of the value in a narrower mode. You should define this macro to return nonzero in as many cases as possible since doing so will allow GCC to perform better register allocation. -- Target Hook: bool TARGET_HARD_REGNO_SCRATCH_OK (unsigned int REGNO) ! This target hook should return 'true' if it is OK to use a hard register REGNO as scratch reg in peephole2. One common use of this macro is to prevent using of a register that is not saved by a prologue in an interrupt handler. ! The default version of this hook always returns 'true'. -- Macro: AVOID_CCMODE_COPIES Define this macro if the compiler should avoid copies to/from ! 'CCmode' registers. You should only define this macro if support ! for copying to/from 'CCmode' is incomplete.  File: gccint.info, Node: Leaf Functions, Next: Stack Registers, Prev: Values in Registers, Up: Registers *************** File: gccint.info, Node: Leaf Functions *** 28832,28848 **** ------------------------------ On some machines, a leaf function (i.e., one which makes no calls) can ! run more efficiently if it does not make its own register window. ! Often this means it is required to receive its arguments in the ! registers where they are passed by the caller, instead of the registers ! where they would normally arrive. The special treatment for leaf functions generally applies only when other conditions are met; for example, often they may use only those registers for its own variables and temporaries. We use the term "leaf ! function" to mean a function that is suitable for this special ! handling, so that functions with no calls are not necessarily "leaf ! functions". GCC assigns register numbers before it knows whether the function is suitable for leaf function treatment. So it needs to renumber the --- 28483,28498 ---- ------------------------------ On some machines, a leaf function (i.e., one which makes no calls) can ! run more efficiently if it does not make its own register window. Often ! this means it is required to receive its arguments in the registers ! where they are passed by the caller, instead of the registers where they ! would normally arrive. The special treatment for leaf functions generally applies only when other conditions are met; for example, often they may use only those registers for its own variables and temporaries. We use the term "leaf ! function" to mean a function that is suitable for this special handling, ! so that functions with no calls are not necessarily "leaf functions". GCC assigns register numbers before it knows whether the function is suitable for leaf function treatment. So it needs to renumber the *************** accomplish this. *** 28854,28861 **** contains 1 for a register that is allowable in a candidate for leaf function treatment. ! If leaf function treatment involves renumbering the registers, ! then the registers marked here should be the ones before renumbering--those that GCC would ordinarily allocate. The registers which will actually be used in the assembler code, after renumbering, should not be marked with 1 in this vector. --- 28504,28511 ---- contains 1 for a register that is allowable in a candidate for leaf function treatment. ! If leaf function treatment involves renumbering the registers, then ! the registers marked here should be the ones before renumbering--those that GCC would ordinarily allocate. The registers which will actually be used in the assembler code, after renumbering, should not be marked with 1 in this vector. *************** accomplish this. *** 28876,28891 **** optimize the treatment of leaf functions, and registers need to be renumbered to do this. ! `TARGET_ASM_FUNCTION_PROLOGUE' and `TARGET_ASM_FUNCTION_EPILOGUE' must usually treat leaf functions specially. They can test the C variable ! `current_function_is_leaf' which is nonzero for leaf functions. ! `current_function_is_leaf' is set prior to local register allocation ! and is valid for the remaining compiler passes. They can also test the ! C variable `current_function_uses_only_leaf_regs' which is nonzero for leaf functions which only use leaf registers. ! `current_function_uses_only_leaf_regs' is valid after all passes that modify the instructions have been run and is only useful if ! `LEAF_REGISTERS' is defined.  File: gccint.info, Node: Stack Registers, Prev: Leaf Functions, Up: Registers --- 28526,28541 ---- optimize the treatment of leaf functions, and registers need to be renumbered to do this. ! 'TARGET_ASM_FUNCTION_PROLOGUE' and 'TARGET_ASM_FUNCTION_EPILOGUE' must usually treat leaf functions specially. They can test the C variable ! 'current_function_is_leaf' which is nonzero for leaf functions. ! 'current_function_is_leaf' is set prior to local register allocation and ! is valid for the remaining compiler passes. They can also test the C ! variable 'current_function_uses_only_leaf_regs' which is nonzero for leaf functions which only use leaf registers. ! 'current_function_uses_only_leaf_regs' is valid after all passes that modify the instructions have been run and is only useful if ! 'LEAF_REGISTERS' is defined.  File: gccint.info, Node: Stack Registers, Prev: Leaf Functions, Up: Registers *************** stack. *** 28902,28910 **** they must be consecutively numbered. Furthermore, the existing support for stack-like registers is specific to the 80387 floating point coprocessor. If you have a new architecture that uses stack-like ! registers, you will need to do substantial work on `reg-stack.c' and ! write your machine description to cooperate with it, as well as ! defining these macros. -- Macro: STACK_REGS Define this if the machine has any stack-like registers. --- 28552,28560 ---- they must be consecutively numbered. Furthermore, the existing support for stack-like registers is specific to the 80387 floating point coprocessor. If you have a new architecture that uses stack-like ! registers, you will need to do substantial work on 'reg-stack.c' and ! write your machine description to cooperate with it, as well as defining ! these macros. -- Macro: STACK_REGS Define this if the machine has any stack-like registers. *************** defining these macros. *** 28918,28925 **** of the stack. -- Macro: LAST_STACK_REG ! The number of the last stack-like register. This one is the ! bottom of the stack.  File: gccint.info, Node: Register Classes, Next: Old Constraints, Prev: Registers, Up: Target Macros --- 28568,28575 ---- of the stack. -- Macro: LAST_STACK_REG ! The number of the last stack-like register. This one is the bottom ! of the stack.  File: gccint.info, Node: Register Classes, Next: Old Constraints, Prev: Registers, Up: Target Macros *************** register classes that are allowed as ope *** 28939,28974 **** patterns. In general, each register will belong to several classes. In fact, one ! class must be named `ALL_REGS' and contain all the registers. Another ! class must be named `NO_REGS' and contain no registers. Often the ! union of two classes will be another class; however, this is not ! required. ! One of the classes must be named `GENERAL_REGS'. There is nothing ! terribly special about the name, but the operand constraint letters `r' ! and `g' specify this class. If `GENERAL_REGS' is the same as ! `ALL_REGS', just define it as a macro which expands to `ALL_REGS'. ! Order the classes so that if class X is contained in class Y then X ! has a lower class number than Y. ! The way classes other than `GENERAL_REGS' are specified in operand constraints is through machine-dependent operand constraint letters. You can define such letters to correspond to various classes, then use them in operand constraints. You must define the narrowest register classes for allocatable ! registers, so that each class either has no subclasses, or that for ! some mode, the move cost between registers within the class is cheaper ! than moving a register in the class to or from memory (*note Costs::). You should define a class for the union of two classes whenever some instruction allows both classes. For example, if an instruction allows ! either a floating point (coprocessor) register or a general register ! for a certain operand, you should define a class `FLOAT_OR_GENERAL_REGS' ! which includes both of them. Otherwise you will get suboptimal code, ! or even internal compiler errors when reload cannot find a register in ! the class computed via `reg_class_subunion'. You must also specify certain redundant information about the register classes: for each class, which classes contain it and which ones are --- 28589,28623 ---- patterns. In general, each register will belong to several classes. In fact, one ! class must be named 'ALL_REGS' and contain all the registers. Another ! class must be named 'NO_REGS' and contain no registers. Often the union ! of two classes will be another class; however, this is not required. ! One of the classes must be named 'GENERAL_REGS'. There is nothing ! terribly special about the name, but the operand constraint letters 'r' ! and 'g' specify this class. If 'GENERAL_REGS' is the same as ! 'ALL_REGS', just define it as a macro which expands to 'ALL_REGS'. ! Order the classes so that if class X is contained in class Y then X has ! a lower class number than Y. ! The way classes other than 'GENERAL_REGS' are specified in operand constraints is through machine-dependent operand constraint letters. You can define such letters to correspond to various classes, then use them in operand constraints. You must define the narrowest register classes for allocatable ! registers, so that each class either has no subclasses, or that for some ! mode, the move cost between registers within the class is cheaper than ! moving a register in the class to or from memory (*note Costs::). You should define a class for the union of two classes whenever some instruction allows both classes. For example, if an instruction allows ! either a floating point (coprocessor) register or a general register for ! a certain operand, you should define a class 'FLOAT_OR_GENERAL_REGS' ! which includes both of them. Otherwise you will get suboptimal code, or ! even internal compiler errors when reload cannot find a register in the ! class computed via 'reg_class_subunion'. You must also specify certain redundant information about the register classes: for each class, which classes contain it and which ones are *************** in their union. *** 28979,29007 **** certain class, all the registers used must belong to that class. Therefore, register classes cannot be used to enforce a requirement for a register pair to start with an even-numbered register. The way to ! specify this requirement is with `HARD_REGNO_MODE_OK'. Register classes used for input-operands of bitwise-and or shift instructions have a special requirement: each such class must have, for each fixed-point machine mode, a subclass whose registers can transfer that mode to or from memory. For example, on some machines, the ! operations for single-byte values (`QImode') are limited to certain registers. When this is so, each register class that is used in a bitwise-and or shift instruction must have a subclass consisting of registers from which single-byte values can be loaded or stored. This ! is so that `PREFERRED_RELOAD_CLASS' can always have a possible value to return. -- Data type: enum reg_class ! An enumerated type that must be defined with all the register ! class names as enumerated values. `NO_REGS' must be first. ! `ALL_REGS' must be the last register class, followed by one more ! enumerated value, `LIM_REG_CLASSES', which is not a register class ! but rather tells how many classes there are. ! Each register class has a number, which is the value of casting ! the class name to type `int'. The number serves as an index in ! many of the tables described below. -- Macro: N_REG_CLASSES The number of distinct register classes, defined as follows: --- 28628,28656 ---- certain class, all the registers used must belong to that class. Therefore, register classes cannot be used to enforce a requirement for a register pair to start with an even-numbered register. The way to ! specify this requirement is with 'HARD_REGNO_MODE_OK'. Register classes used for input-operands of bitwise-and or shift instructions have a special requirement: each such class must have, for each fixed-point machine mode, a subclass whose registers can transfer that mode to or from memory. For example, on some machines, the ! operations for single-byte values ('QImode') are limited to certain registers. When this is so, each register class that is used in a bitwise-and or shift instruction must have a subclass consisting of registers from which single-byte values can be loaded or stored. This ! is so that 'PREFERRED_RELOAD_CLASS' can always have a possible value to return. -- Data type: enum reg_class ! An enumerated type that must be defined with all the register class ! names as enumerated values. 'NO_REGS' must be first. 'ALL_REGS' ! must be the last register class, followed by one more enumerated ! value, 'LIM_REG_CLASSES', which is not a register class but rather ! tells how many classes there are. ! Each register class has a number, which is the value of casting the ! class name to type 'int'. The number serves as an index in many of ! the tables described below. -- Macro: N_REG_CLASSES The number of distinct register classes, defined as follows: *************** return. *** 29017,29032 **** An initializer containing the contents of the register classes, as integers which are bit masks. The Nth integer specifies the contents of class N. The way the integer MASK is interpreted is ! that register R is in the class if `MASK & (1 << R)' is 1. When the machine has more than 32 registers, an integer does not suffice. Then the integers are replaced by sub-initializers, ! braced groupings containing several integers. Each ! sub-initializer must be suitable as an initializer for the type ! `HARD_REG_SET' which is defined in `hard-reg-set.h'. In this ! situation, the first integer in each sub-initializer corresponds to ! registers 0 through 31, the second integer to registers 32 through ! 63, and so on. -- Macro: REGNO_REG_CLASS (REGNO) A C expression whose value is a register class containing hard --- 28666,28680 ---- An initializer containing the contents of the register classes, as integers which are bit masks. The Nth integer specifies the contents of class N. The way the integer MASK is interpreted is ! that register R is in the class if 'MASK & (1 << R)' is 1. When the machine has more than 32 registers, an integer does not suffice. Then the integers are replaced by sub-initializers, ! braced groupings containing several integers. Each sub-initializer ! must be suitable as an initializer for the type 'HARD_REG_SET' ! which is defined in 'hard-reg-set.h'. In this situation, the first ! integer in each sub-initializer corresponds to registers 0 through ! 31, the second integer to registers 32 through 63, and so on. -- Macro: REGNO_REG_CLASS (REGNO) A C expression whose value is a register class containing hard *************** return. *** 29040,29049 **** address which is the register value plus a displacement. -- Macro: MODE_BASE_REG_CLASS (MODE) ! This is a variation of the `BASE_REG_CLASS' macro which allows the selection of a base register in a mode dependent manner. If MODE is VOIDmode then it should return the same value as ! `BASE_REG_CLASS'. -- Macro: MODE_BASE_REG_REG_CLASS (MODE) A C expression whose value is the register class to which a valid --- 28688,28697 ---- address which is the register value plus a displacement. -- Macro: MODE_BASE_REG_CLASS (MODE) ! This is a variation of the 'BASE_REG_CLASS' macro which allows the selection of a base register in a mode dependent manner. If MODE is VOIDmode then it should return the same value as ! 'BASE_REG_CLASS'. -- Macro: MODE_BASE_REG_REG_CLASS (MODE) A C expression whose value is the register class to which a valid *************** return. *** 29058,29067 **** base register for a memory reference in mode MODE to address space ADDRESS_SPACE must belong. OUTER_CODE and INDEX_CODE define the context in which the base register occurs. OUTER_CODE is the code ! of the immediately enclosing expression (`MEM' for the top level ! of an address, `ADDRESS' for something that occurs in an ! `address_operand'). INDEX_CODE is the code of the corresponding ! index expression if OUTER_CODE is `PLUS'; `SCRATCH' otherwise. -- Macro: INDEX_REG_CLASS A macro whose definition is the name of the class to which a valid --- 28706,28715 ---- base register for a memory reference in mode MODE to address space ADDRESS_SPACE must belong. OUTER_CODE and INDEX_CODE define the context in which the base register occurs. OUTER_CODE is the code ! of the immediately enclosing expression ('MEM' for the top level of ! an address, 'ADDRESS' for something that occurs in an ! 'address_operand'). INDEX_CODE is the code of the corresponding ! index expression if OUTER_CODE is 'PLUS'; 'SCRATCH' otherwise. -- Macro: INDEX_REG_CLASS A macro whose definition is the name of the class to which a valid *************** return. *** 29074,29087 **** for use as a base register in operand addresses. -- Macro: REGNO_MODE_OK_FOR_BASE_P (NUM, MODE) ! A C expression that is just like `REGNO_OK_FOR_BASE_P', except that that expression may examine the mode of the memory reference in MODE. You should define this macro if the mode of the memory reference affects whether a register may be used as a base register. If you define this macro, the compiler will use it ! instead of `REGNO_OK_FOR_BASE_P'. The mode may be `VOIDmode' for ! addresses that appear outside a `MEM', i.e., as an ! `address_operand'. -- Macro: REGNO_MODE_OK_FOR_REG_BASE_P (NUM, MODE) A C expression which is nonzero if register number NUM is suitable --- 28722,28735 ---- for use as a base register in operand addresses. -- Macro: REGNO_MODE_OK_FOR_BASE_P (NUM, MODE) ! A C expression that is just like 'REGNO_OK_FOR_BASE_P', except that that expression may examine the mode of the memory reference in MODE. You should define this macro if the mode of the memory reference affects whether a register may be used as a base register. If you define this macro, the compiler will use it ! instead of 'REGNO_OK_FOR_BASE_P'. The mode may be 'VOIDmode' for ! addresses that appear outside a 'MEM', i.e., as an ! 'address_operand'. -- Macro: REGNO_MODE_OK_FOR_REG_BASE_P (NUM, MODE) A C expression which is nonzero if register number NUM is suitable *************** return. *** 29093,29114 **** uses. Use of this macro is deprecated; please use the more general ! `REGNO_MODE_CODE_OK_FOR_BASE_P'. -- Macro: REGNO_MODE_CODE_OK_FOR_BASE_P (NUM, MODE, ADDRESS_SPACE, OUTER_CODE, INDEX_CODE) A C expression which is nonzero if register number NUM is suitable for use as a base register in operand addresses, accessing memory in mode MODE in address space ADDRESS_SPACE. This is similar to ! `REGNO_MODE_OK_FOR_BASE_P', except that that expression may ! examine the context in which the register appears in the memory ! reference. OUTER_CODE is the code of the immediately enclosing ! expression (`MEM' if at the top level of the address, `ADDRESS' ! for something that occurs in an `address_operand'). INDEX_CODE is ! the code of the corresponding index expression if OUTER_CODE is ! `PLUS'; `SCRATCH' otherwise. The mode may be `VOIDmode' for ! addresses that appear outside a `MEM', i.e., as an ! `address_operand'. -- Macro: REGNO_OK_FOR_INDEX_P (NUM) A C expression which is nonzero if register number NUM is suitable --- 28741,28761 ---- uses. Use of this macro is deprecated; please use the more general ! 'REGNO_MODE_CODE_OK_FOR_BASE_P'. -- Macro: REGNO_MODE_CODE_OK_FOR_BASE_P (NUM, MODE, ADDRESS_SPACE, OUTER_CODE, INDEX_CODE) A C expression which is nonzero if register number NUM is suitable for use as a base register in operand addresses, accessing memory in mode MODE in address space ADDRESS_SPACE. This is similar to ! 'REGNO_MODE_OK_FOR_BASE_P', except that that expression may examine ! the context in which the register appears in the memory reference. ! OUTER_CODE is the code of the immediately enclosing expression ! ('MEM' if at the top level of the address, 'ADDRESS' for something ! that occurs in an 'address_operand'). INDEX_CODE is the code of ! the corresponding index expression if OUTER_CODE is 'PLUS'; ! 'SCRATCH' otherwise. The mode may be 'VOIDmode' for addresses that ! appear outside a 'MEM', i.e., as an 'address_operand'. -- Macro: REGNO_OK_FOR_INDEX_P (NUM) A C expression which is nonzero if register number NUM is suitable *************** return. *** 29130,29174 **** A target hook that places additional preference on the register class to use when it is necessary to rename a register in class RCLASS to another class, or perhaps NO_REGS, if no preferred ! register class is found or hook `preferred_rename_class' is not ! implemented. Sometimes returning a more restrictive class makes better code. For example, on ARM, thumb-2 instructions using ! `LO_REGS' may be smaller than instructions using `GENERIC_REGS'. ! By returning `LO_REGS' from `preferred_rename_class', code size ! can be reduced. -- Target Hook: reg_class_t TARGET_PREFERRED_RELOAD_CLASS (rtx X, reg_class_t RCLASS) A target hook that places additional restrictions on the register class to use when it is necessary to copy value X into a register ! in class RCLASS. The value is a register class; perhaps RCLASS, ! or perhaps another, smaller class. ! The default version of this hook always returns value of `rclass' argument. Sometimes returning a more restrictive class makes better code. ! For example, on the 68000, when X is an integer constant that is ! in range for a `moveq' instruction, the value of this macro is ! always `DATA_REGS' as long as RCLASS includes the data registers. ! Requiring a data register guarantees that a `moveq' will be used. ! One case where `TARGET_PREFERRED_RELOAD_CLASS' must not return ! RCLASS is if X is a legitimate constant which cannot be loaded ! into some register class. By returning `NO_REGS' you can force X ! into a memory location. For example, rs6000 can load immediate ! values into general-purpose registers, but does not have an ! instruction for loading an immediate value into a floating-point ! register, so `TARGET_PREFERRED_RELOAD_CLASS' returns `NO_REGS' when ! X is a floating-point constant. If the constant can't be loaded ! into any kind of register, code generation will be better if ! `TARGET_LEGITIMATE_CONSTANT_P' makes the constant illegitimate ! instead of using `TARGET_PREFERRED_RELOAD_CLASS'. ! If an insn has pseudos in it after register allocation, reload ! will go through the alternatives and call repeatedly ! `TARGET_PREFERRED_RELOAD_CLASS' to find the best one. Returning ! `NO_REGS', in this case, makes reload add a `!' in front of the constraint: the x86 back-end uses this feature to discourage usage of 387 registers when math is done in the SSE registers (and vice versa). --- 28777,28821 ---- A target hook that places additional preference on the register class to use when it is necessary to rename a register in class RCLASS to another class, or perhaps NO_REGS, if no preferred ! register class is found or hook 'preferred_rename_class' is not ! implemented. Sometimes returning a more restrictive class makes better code. For example, on ARM, thumb-2 instructions using ! 'LO_REGS' may be smaller than instructions using 'GENERIC_REGS'. ! By returning 'LO_REGS' from 'preferred_rename_class', code size can ! be reduced. -- Target Hook: reg_class_t TARGET_PREFERRED_RELOAD_CLASS (rtx X, reg_class_t RCLASS) A target hook that places additional restrictions on the register class to use when it is necessary to copy value X into a register ! in class RCLASS. The value is a register class; perhaps RCLASS, or ! perhaps another, smaller class. ! The default version of this hook always returns value of 'rclass' argument. Sometimes returning a more restrictive class makes better code. ! For example, on the 68000, when X is an integer constant that is in ! range for a 'moveq' instruction, the value of this macro is always ! 'DATA_REGS' as long as RCLASS includes the data registers. ! Requiring a data register guarantees that a 'moveq' will be used. ! One case where 'TARGET_PREFERRED_RELOAD_CLASS' must not return ! RCLASS is if X is a legitimate constant which cannot be loaded into ! some register class. By returning 'NO_REGS' you can force X into a ! memory location. For example, rs6000 can load immediate values ! into general-purpose registers, but does not have an instruction ! for loading an immediate value into a floating-point register, so ! 'TARGET_PREFERRED_RELOAD_CLASS' returns 'NO_REGS' when X is a ! floating-point constant. If the constant can't be loaded into any ! kind of register, code generation will be better if ! 'TARGET_LEGITIMATE_CONSTANT_P' makes the constant illegitimate ! instead of using 'TARGET_PREFERRED_RELOAD_CLASS'. ! If an insn has pseudos in it after register allocation, reload will ! go through the alternatives and call repeatedly ! 'TARGET_PREFERRED_RELOAD_CLASS' to find the best one. Returning ! 'NO_REGS', in this case, makes reload add a '!' in front of the constraint: the x86 back-end uses this feature to discourage usage of 387 registers when math is done in the SSE registers (and vice versa). *************** return. *** 29183,29224 **** #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS Sometimes returning a more restrictive class makes better code. ! For example, on the 68000, when X is an integer constant that is ! in range for a `moveq' instruction, the value of this macro is ! always `DATA_REGS' as long as CLASS includes the data registers. ! Requiring a data register guarantees that a `moveq' will be used. ! One case where `PREFERRED_RELOAD_CLASS' must not return CLASS is ! if X is a legitimate constant which cannot be loaded into some ! register class. By returning `NO_REGS' you can force X into a memory location. For example, rs6000 can load immediate values into general-purpose registers, but does not have an instruction for loading an immediate value into a floating-point register, so ! `PREFERRED_RELOAD_CLASS' returns `NO_REGS' when X is a floating-point constant. If the constant can't be loaded into any kind of register, code generation will be better if ! `TARGET_LEGITIMATE_CONSTANT_P' makes the constant illegitimate ! instead of using `TARGET_PREFERRED_RELOAD_CLASS'. ! If an insn has pseudos in it after register allocation, reload ! will go through the alternatives and call repeatedly ! `PREFERRED_RELOAD_CLASS' to find the best one. Returning ! `NO_REGS', in this case, makes reload add a `!' in front of the constraint: the x86 back-end uses this feature to discourage usage of 387 registers when math is done in the SSE registers (and vice versa). -- Target Hook: reg_class_t TARGET_PREFERRED_OUTPUT_RELOAD_CLASS (rtx X, reg_class_t RCLASS) ! Like `TARGET_PREFERRED_RELOAD_CLASS', but for output reloads instead of input reloads. ! The default version of this hook always returns value of `rclass' argument. ! You can also use `TARGET_PREFERRED_OUTPUT_RELOAD_CLASS' to discourage reload from using some alternatives, like ! `TARGET_PREFERRED_RELOAD_CLASS'. -- Macro: LIMIT_RELOAD_CLASS (MODE, CLASS) A C expression that places additional restrictions on the register --- 28830,28871 ---- #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS Sometimes returning a more restrictive class makes better code. ! For example, on the 68000, when X is an integer constant that is in ! range for a 'moveq' instruction, the value of this macro is always ! 'DATA_REGS' as long as CLASS includes the data registers. ! Requiring a data register guarantees that a 'moveq' will be used. ! One case where 'PREFERRED_RELOAD_CLASS' must not return CLASS is if ! X is a legitimate constant which cannot be loaded into some ! register class. By returning 'NO_REGS' you can force X into a memory location. For example, rs6000 can load immediate values into general-purpose registers, but does not have an instruction for loading an immediate value into a floating-point register, so ! 'PREFERRED_RELOAD_CLASS' returns 'NO_REGS' when X is a floating-point constant. If the constant can't be loaded into any kind of register, code generation will be better if ! 'TARGET_LEGITIMATE_CONSTANT_P' makes the constant illegitimate ! instead of using 'TARGET_PREFERRED_RELOAD_CLASS'. ! If an insn has pseudos in it after register allocation, reload will ! go through the alternatives and call repeatedly ! 'PREFERRED_RELOAD_CLASS' to find the best one. Returning ! 'NO_REGS', in this case, makes reload add a '!' in front of the constraint: the x86 back-end uses this feature to discourage usage of 387 registers when math is done in the SSE registers (and vice versa). -- Target Hook: reg_class_t TARGET_PREFERRED_OUTPUT_RELOAD_CLASS (rtx X, reg_class_t RCLASS) ! Like 'TARGET_PREFERRED_RELOAD_CLASS', but for output reloads instead of input reloads. ! The default version of this hook always returns value of 'rclass' argument. ! You can also use 'TARGET_PREFERRED_OUTPUT_RELOAD_CLASS' to discourage reload from using some alternatives, like ! 'TARGET_PREFERRED_RELOAD_CLASS'. -- Macro: LIMIT_RELOAD_CLASS (MODE, CLASS) A C expression that places additional restrictions on the register *************** return. *** 29226,29232 **** mode MODE in a reload register for which class CLASS would ordinarily be used. ! Unlike `PREFERRED_RELOAD_CLASS', this macro should be used when there are certain modes that simply can't go in certain reload classes. --- 28873,28879 ---- mode MODE in a reload register for which class CLASS would ordinarily be used. ! Unlike 'PREFERRED_RELOAD_CLASS', this macro should be used when there are certain modes that simply can't go in certain reload classes. *************** return. *** 29239,29257 **** -- Target Hook: reg_class_t TARGET_SECONDARY_RELOAD (bool IN_P, rtx X, reg_class_t RELOAD_CLASS, enum machine_mode RELOAD_MODE, secondary_reload_info *SRI) ! Many machines have some registers that cannot be copied directly ! to or from memory or even from other types of registers. An ! example is the `MQ' register, which on most machines, can only be ! copied to or from general registers, but not memory. Below, we ! shall be using the term 'intermediate register' when a move ! operation cannot be performed directly, but has to be done by ! copying the source into the intermediate register first, and then ! copying the intermediate register to the destination. An ! intermediate register always has the same mode as source and ! destination. Since it holds the actual value being copied, reload ! might apply optimizations to re-use an intermediate register and ! eliding the copy from the source when it can determine that the ! intermediate register still holds the required value. Another kind of secondary reload is required on some machines which allow copying all registers to and from memory, but require a --- 28886,28904 ---- -- Target Hook: reg_class_t TARGET_SECONDARY_RELOAD (bool IN_P, rtx X, reg_class_t RELOAD_CLASS, enum machine_mode RELOAD_MODE, secondary_reload_info *SRI) ! Many machines have some registers that cannot be copied directly to ! or from memory or even from other types of registers. An example ! is the 'MQ' register, which on most machines, can only be copied to ! or from general registers, but not memory. Below, we shall be ! using the term 'intermediate register' when a move operation cannot ! be performed directly, but has to be done by copying the source ! into the intermediate register first, and then copying the ! intermediate register to the destination. An intermediate register ! always has the same mode as source and destination. Since it holds ! the actual value being copied, reload might apply optimizations to ! re-use an intermediate register and eliding the copy from the ! source when it can determine that the intermediate register still ! holds the required value. Another kind of secondary reload is required on some machines which allow copying all registers to and from memory, but require a *************** return. *** 29274,29354 **** needs to be copied to rtx X in RELOAD_MODE. If copying a register of RELOAD_CLASS from/to X requires an ! intermediate register, the hook `secondary_reload' should return the register class required for this intermediate register. If no ! intermediate register is required, it should return NO_REGS. If more than one intermediate register is required, describe the one that is closest in the copy chain to the reload register. If scratch registers are needed, you also have to describe how to perform the copy from/to the reload register to/from this closest ! intermediate register. Or if no intermediate register is ! required, but still a scratch register is needed, describe the ! copy from/to the reload register to/from the reload operand X. ! You do this by setting `sri->icode' to the instruction code of a pattern in the md file which performs the move. Operands 0 and 1 ! are the output and input of this copy, respectively. Operands ! from operand 2 onward are for scratch operands. These scratch ! operands must have a mode, and a single-register-class output ! constraint. ! When an intermediate register is used, the `secondary_reload' hook will be called again to determine how to copy the intermediate register to/from the reload operand X, so your hook must also have code to handle the register class of the intermediate operand. ! X might be a pseudo-register or a `subreg' of a pseudo-register, which could either be in a hard register or in memory. Use ! `true_regnum' to find out; it will return -1 if the pseudo is in memory and the hard register number if it is in a register. ! Scratch operands in memory (constraint `"=m"' / `"=&m"') are currently not supported. For the time being, you will have to ! continue to use `SECONDARY_MEMORY_NEEDED' for that purpose. ! `copy_cost' also uses this target hook to find out how values are copied. If you want it to include some extra cost for the need to ! allocate (a) scratch register(s), set `sri->extra_cost' to the additional cost. Or if two dependent moves are supposed to have a lower cost than the sum of the individual moves due to expected fortuitous scheduling and/or special forwarding logic, you can set ! `sri->extra_cost' to a negative amount. -- Macro: SECONDARY_RELOAD_CLASS (CLASS, MODE, X) -- Macro: SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X) -- Macro: SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X) These macros are obsolete, new ports should use the target hook ! `TARGET_SECONDARY_RELOAD' instead. These are obsolete macros, replaced by the ! `TARGET_SECONDARY_RELOAD' target hook. Older ports still define these macros to indicate to the reload phase that it may need to allocate at least one register for a reload in addition to the register to contain the data. Specifically, if copying X to a register CLASS in MODE requires an intermediate register, you were ! supposed to define `SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of whose registers can be used as intermediate registers or scratch registers. If copying a register CLASS in MODE to X requires an intermediate ! or scratch register, `SECONDARY_OUTPUT_RELOAD_CLASS' was supposed to be defined be defined to return the largest register class required. If the requirements for input and output reloads were ! the same, the macro `SECONDARY_RELOAD_CLASS' should have been used instead of defining both macros identically. ! The values returned by these macros are often `GENERAL_REGS'. ! Return `NO_REGS' if no spare register is needed; i.e., if X can be directly copied to or from a register of CLASS in MODE without ! requiring a scratch register. Do not define this macro if it ! would always return `NO_REGS'. If a scratch register is required (either with or without an intermediate register), you were supposed to define patterns for ! `reload_inM' or `reload_outM', as required (*note Standard ! Names::. These patterns, which were normally implemented with a ! `define_expand', should be similar to the `movM' patterns, except that operand 2 is the scratch register. These patterns need constraints for the reload register and scratch --- 28921,29000 ---- needs to be copied to rtx X in RELOAD_MODE. If copying a register of RELOAD_CLASS from/to X requires an ! intermediate register, the hook 'secondary_reload' should return the register class required for this intermediate register. If no ! intermediate register is required, it should return NO_REGS. If more than one intermediate register is required, describe the one that is closest in the copy chain to the reload register. If scratch registers are needed, you also have to describe how to perform the copy from/to the reload register to/from this closest ! intermediate register. Or if no intermediate register is required, ! but still a scratch register is needed, describe the copy from/to ! the reload register to/from the reload operand X. ! You do this by setting 'sri->icode' to the instruction code of a pattern in the md file which performs the move. Operands 0 and 1 ! are the output and input of this copy, respectively. Operands from ! operand 2 onward are for scratch operands. These scratch operands ! must have a mode, and a single-register-class output constraint. ! When an intermediate register is used, the 'secondary_reload' hook will be called again to determine how to copy the intermediate register to/from the reload operand X, so your hook must also have code to handle the register class of the intermediate operand. ! X might be a pseudo-register or a 'subreg' of a pseudo-register, which could either be in a hard register or in memory. Use ! 'true_regnum' to find out; it will return -1 if the pseudo is in memory and the hard register number if it is in a register. ! Scratch operands in memory (constraint '"=m"' / '"=&m"') are currently not supported. For the time being, you will have to ! continue to use 'SECONDARY_MEMORY_NEEDED' for that purpose. ! 'copy_cost' also uses this target hook to find out how values are copied. If you want it to include some extra cost for the need to ! allocate (a) scratch register(s), set 'sri->extra_cost' to the additional cost. Or if two dependent moves are supposed to have a lower cost than the sum of the individual moves due to expected fortuitous scheduling and/or special forwarding logic, you can set ! 'sri->extra_cost' to a negative amount. -- Macro: SECONDARY_RELOAD_CLASS (CLASS, MODE, X) -- Macro: SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X) -- Macro: SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X) These macros are obsolete, new ports should use the target hook ! 'TARGET_SECONDARY_RELOAD' instead. These are obsolete macros, replaced by the ! 'TARGET_SECONDARY_RELOAD' target hook. Older ports still define these macros to indicate to the reload phase that it may need to allocate at least one register for a reload in addition to the register to contain the data. Specifically, if copying X to a register CLASS in MODE requires an intermediate register, you were ! supposed to define 'SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of whose registers can be used as intermediate registers or scratch registers. If copying a register CLASS in MODE to X requires an intermediate ! or scratch register, 'SECONDARY_OUTPUT_RELOAD_CLASS' was supposed to be defined be defined to return the largest register class required. If the requirements for input and output reloads were ! the same, the macro 'SECONDARY_RELOAD_CLASS' should have been used instead of defining both macros identically. ! The values returned by these macros are often 'GENERAL_REGS'. ! Return 'NO_REGS' if no spare register is needed; i.e., if X can be directly copied to or from a register of CLASS in MODE without ! requiring a scratch register. Do not define this macro if it would ! always return 'NO_REGS'. If a scratch register is required (either with or without an intermediate register), you were supposed to define patterns for ! 'reload_inM' or 'reload_outM', as required (*note Standard Names::. ! These patterns, which were normally implemented with a ! 'define_expand', should be similar to the 'movM' patterns, except that operand 2 is the scratch register. These patterns need constraints for the reload register and scratch *************** return. *** 29356,29374 **** reload register (whose class is CLASS) can meet the constraint given in the pattern, the value returned by these macros is used for the class of the scratch register. Otherwise, two additional ! reload registers are required. Their classes are obtained from ! the constraints in the insn pattern. ! X might be a pseudo-register or a `subreg' of a pseudo-register, which could either be in a hard register or in memory. Use ! `true_regnum' to find out; it will return -1 if the pseudo is in memory and the hard register number if it is in a register. These macros should not be used in the case where a particular class of registers can only be copied to memory and not to another class of registers. In that case, secondary reload registers are not needed and would not be helpful. Instead, a stack location ! must be used to perform the copy and the `movM' pattern should use memory as an intermediate storage. This case often occurs between floating-point and general registers. --- 29002,29020 ---- reload register (whose class is CLASS) can meet the constraint given in the pattern, the value returned by these macros is used for the class of the scratch register. Otherwise, two additional ! reload registers are required. Their classes are obtained from the ! constraints in the insn pattern. ! X might be a pseudo-register or a 'subreg' of a pseudo-register, which could either be in a hard register or in memory. Use ! 'true_regnum' to find out; it will return -1 if the pseudo is in memory and the hard register number if it is in a register. These macros should not be used in the case where a particular class of registers can only be copied to memory and not to another class of registers. In that case, secondary reload registers are not needed and would not be helpful. Instead, a stack location ! must be used to perform the copy and the 'movM' pattern should use memory as an intermediate storage. This case often occurs between floating-point and general registers. *************** return. *** 29383,29402 **** Do not define this macro if its value would always be zero. -- Macro: SECONDARY_MEMORY_NEEDED_RTX (MODE) ! Normally when `SECONDARY_MEMORY_NEEDED' is defined, the compiler allocates a stack slot for a memory location needed for register copies. If this macro is defined, the compiler instead uses the memory location defined by this macro. Do not define this macro if you do not define ! `SECONDARY_MEMORY_NEEDED'. -- Macro: SECONDARY_MEMORY_NEEDED_MODE (MODE) ! When the compiler needs a secondary memory location to copy ! between two registers of mode MODE, it normally allocates ! sufficient memory to hold a quantity of `BITS_PER_WORD' bits and ! performs the store and load operations in a mode that many bits ! wide and whose class is the same as that of MODE. This is right thing to do on most machines because it ensures that all bits of the register are copied and prevents accesses to the --- 29029,29048 ---- Do not define this macro if its value would always be zero. -- Macro: SECONDARY_MEMORY_NEEDED_RTX (MODE) ! Normally when 'SECONDARY_MEMORY_NEEDED' is defined, the compiler allocates a stack slot for a memory location needed for register copies. If this macro is defined, the compiler instead uses the memory location defined by this macro. Do not define this macro if you do not define ! 'SECONDARY_MEMORY_NEEDED'. -- Macro: SECONDARY_MEMORY_NEEDED_MODE (MODE) ! When the compiler needs a secondary memory location to copy between ! two registers of mode MODE, it normally allocates sufficient memory ! to hold a quantity of 'BITS_PER_WORD' bits and performs the store ! and load operations in a mode that many bits wide and whose class ! is the same as that of MODE. This is right thing to do on most machines because it ensures that all bits of the register are copied and prevents accesses to the *************** return. *** 29406,29426 **** However, this default behavior is not correct on some machines, such as the DEC Alpha, that store short integers in floating-point registers differently than in integer registers. On those ! machines, the default widening will not work correctly and you ! must define this macro to suppress that widening in some cases. ! See the file `alpha.h' for details. Do not define this macro if you do not define ! `SECONDARY_MEMORY_NEEDED' or if widening MODE to a mode that is ! `BITS_PER_WORD' bits wide is correct for your machine. -- Target Hook: bool TARGET_CLASS_LIKELY_SPILLED_P (reg_class_t RCLASS) ! A target hook which returns `true' if pseudos that have been assigned to registers of class RCLASS would likely be spilled because registers of RCLASS are needed for spill registers. ! The default version of this target hook returns `true' if RCLASS ! has exactly one register and `false' otherwise. On most machines, this default should be used. For generally register-starved machines, such as i386, or machines with right register constraints, such as SH, this hook can be used to avoid excessive --- 29052,29072 ---- However, this default behavior is not correct on some machines, such as the DEC Alpha, that store short integers in floating-point registers differently than in integer registers. On those ! machines, the default widening will not work correctly and you must ! define this macro to suppress that widening in some cases. See the ! file 'alpha.h' for details. Do not define this macro if you do not define ! 'SECONDARY_MEMORY_NEEDED' or if widening MODE to a mode that is ! 'BITS_PER_WORD' bits wide is correct for your machine. -- Target Hook: bool TARGET_CLASS_LIKELY_SPILLED_P (reg_class_t RCLASS) ! A target hook which returns 'true' if pseudos that have been assigned to registers of class RCLASS would likely be spilled because registers of RCLASS are needed for spill registers. ! The default version of this target hook returns 'true' if RCLASS ! has exactly one register and 'false' otherwise. On most machines, this default should be used. For generally register-starved machines, such as i386, or machines with right register constraints, such as SH, this hook can be used to avoid excessive *************** return. *** 29435,29459 **** A target hook returns the maximum number of consecutive registers of class RCLASS needed to hold a value of mode MODE. ! This is closely related to the macro `HARD_REGNO_NREGS'. In fact, ! the value returned by `TARGET_CLASS_MAX_NREGS (RCLASS, MODE)' ! target hook should be the maximum value of `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class RCLASS. This target hook helps control the handling of multiple-word values in the reload pass. ! The default version of this target hook returns the size of MODE ! in words. -- Macro: CLASS_MAX_NREGS (CLASS, MODE) A C expression for the maximum number of consecutive registers of class CLASS needed to hold a value of mode MODE. ! This is closely related to the macro `HARD_REGNO_NREGS'. In fact, ! the value of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be ! the maximum value of `HARD_REGNO_NREGS (REGNO, MODE)' for all ! REGNO values in the class CLASS. This macro helps control the handling of multiple-word values in the reload pass. --- 29081,29105 ---- A target hook returns the maximum number of consecutive registers of class RCLASS needed to hold a value of mode MODE. ! This is closely related to the macro 'HARD_REGNO_NREGS'. In fact, ! the value returned by 'TARGET_CLASS_MAX_NREGS (RCLASS, MODE)' ! target hook should be the maximum value of 'HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class RCLASS. This target hook helps control the handling of multiple-word values in the reload pass. ! The default version of this target hook returns the size of MODE in ! words. -- Macro: CLASS_MAX_NREGS (CLASS, MODE) A C expression for the maximum number of consecutive registers of class CLASS needed to hold a value of mode MODE. ! This is closely related to the macro 'HARD_REGNO_NREGS'. In fact, ! the value of the macro 'CLASS_MAX_NREGS (CLASS, MODE)' should be ! the maximum value of 'HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO ! values in the class CLASS. This macro helps control the handling of multiple-word values in the reload pass. *************** return. *** 29466,29473 **** into floating-point registers on the Alpha extends them to 64 bits. Therefore loading a 64-bit object and then storing it as a 32-bit object does not store the low-order 32 bits, as would be the case ! for a normal register. Therefore, `alpha.h' defines ! `CANNOT_CHANGE_MODE_CLASS' as below: #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \ --- 29112,29119 ---- into floating-point registers on the Alpha extends them to 64 bits. Therefore loading a 64-bit object and then storing it as a 32-bit object does not store the low-order 32 bits, as would be the case ! for a normal register. Therefore, 'alpha.h' defines ! 'CANNOT_CHANGE_MODE_CLASS' as below: #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \ *************** return. *** 29475,29508 **** -- Target Hook: bool TARGET_LRA_P (void) A target hook which returns true if we use LRA instead of reload ! pass. It means that LRA was ported to the target. The default version of this target hook returns always false. -- Target Hook: int TARGET_REGISTER_PRIORITY (int) A target hook which returns the register priority number to which ! the register HARD_REGNO belongs to. The bigger the number, the more preferable the hard register usage (when all other conditions ! are the same). This hook can be used to prefer some hard ! register over others in LRA. For example, some x86-64 register ! usage needs additional prefix which makes instructions longer. ! The hook can return lower priority number for such registers make ! them less favorable and as result making the generated code ! smaller. The default version of this target hook returns always ! zero. -- Target Hook: bool TARGET_DIFFERENT_ADDR_DISPLACEMENT_P (void) A target hook which returns true if an address with the same ! structure can have different maximal legitimate displacement. ! For example, the displacement can depend on memory mode or on ! operand combinations in the insn. The default version of this ! target hook returns always false. -- Target Hook: reg_class_t TARGET_SPILL_CLASS (reg_class_t, enum MACHINE_MODE) This hook defines a class of registers which could be used for ! spilling pseudos of the given mode and class, or `NO_REGS' if ! only memory should be used. Not defining this hook is equivalent ! to returning `NO_REGS' for all inputs.  File: gccint.info, Node: Old Constraints, Next: Stack and Calling, Prev: Register Classes, Up: Target Macros --- 29121,29153 ---- -- Target Hook: bool TARGET_LRA_P (void) A target hook which returns true if we use LRA instead of reload ! pass. It means that LRA was ported to the target. The default version of this target hook returns always false. -- Target Hook: int TARGET_REGISTER_PRIORITY (int) A target hook which returns the register priority number to which ! the register HARD_REGNO belongs to. The bigger the number, the more preferable the hard register usage (when all other conditions ! are the same). This hook can be used to prefer some hard register ! over others in LRA. For example, some x86-64 register usage needs ! additional prefix which makes instructions longer. The hook can ! return lower priority number for such registers make them less ! favorable and as result making the generated code smaller. The ! default version of this target hook returns always zero. -- Target Hook: bool TARGET_DIFFERENT_ADDR_DISPLACEMENT_P (void) A target hook which returns true if an address with the same ! structure can have different maximal legitimate displacement. For ! example, the displacement can depend on memory mode or on operand ! combinations in the insn. The default version of this target hook ! returns always false. -- Target Hook: reg_class_t TARGET_SPILL_CLASS (reg_class_t, enum MACHINE_MODE) This hook defines a class of registers which could be used for ! spilling pseudos of the given mode and class, or 'NO_REGS' if only ! memory should be used. Not defining this hook is equivalent to ! returning 'NO_REGS' for all inputs.  File: gccint.info, Node: Old Constraints, Next: Stack and Calling, Prev: Register Classes, Up: Target Macros *************** File: gccint.info, Node: Old Constraint *** 29510,29517 **** 17.9 Obsolete Macros for Defining Constraints ============================================= ! Machine-specific constraints can be defined with these macros instead ! of the machine description constructs described in *note Define Constraints::. This mechanism is obsolete. New ports should not use it; old ports should convert to the new mechanism. --- 29155,29162 ---- 17.9 Obsolete Macros for Defining Constraints ============================================= ! Machine-specific constraints can be defined with these macros instead of ! the machine description constructs described in *note Define Constraints::. This mechanism is obsolete. New ports should not use it; old ports should convert to the new mechanism. *************** it; old ports should convert to the new *** 29524,29579 **** should use DEFAULT_CONSTRAINT_LEN for all the characters that you don't want to handle specially. There are some sanity checks in genoutput.c that check the constraint lengths for the md file, so ! you can also use this macro to help you while you are ! transitioning from a byzantine single-letter-constraint scheme: ! when you return a negative length for a constraint you want to ! re-use, genoutput will complain about every instance where it is ! used in the md file. -- Macro: REG_CLASS_FROM_LETTER (CHAR) A C expression which defines the machine-dependent operand ! constraint letters for register classes. If CHAR is such a ! letter, the value should be the register class corresponding to ! it. Otherwise, the value should be `NO_REGS'. The register ! letter `r', corresponding to class `GENERAL_REGS', will not be ! passed to this macro; you do not need to handle it. -- Macro: REG_CLASS_FROM_CONSTRAINT (CHAR, STR) ! Like `REG_CLASS_FROM_LETTER', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. -- Macro: CONST_OK_FOR_LETTER_P (VALUE, C) A C expression that defines the machine-dependent operand ! constraint letters (`I', `J', `K', ... `P') that specify ! particular ranges of integer values. If C is one of those ! letters, the expression should check that VALUE, an integer, is in ! the appropriate range and return 1 if so, 0 otherwise. If C is ! not one of those letters, the value should be 0 regardless of ! VALUE. -- Macro: CONST_OK_FOR_CONSTRAINT_P (VALUE, C, STR) ! Like `CONST_OK_FOR_LETTER_P', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. -- Macro: CONST_DOUBLE_OK_FOR_LETTER_P (VALUE, C) A C expression that defines the machine-dependent operand ! constraint letters that specify particular ranges of ! `const_double' values (`G' or `H'). If C is one of those letters, the expression should check that ! VALUE, an RTX of code `const_double', is in the appropriate range ! and return 1 if so, 0 otherwise. If C is not one of those ! letters, the value should be 0 regardless of VALUE. ! `const_double' is used for all floating-point constants and for ! `DImode' fixed-point constants. A given letter can accept either ! or both kinds of values. It can use `GET_MODE' to distinguish between these kinds. -- Macro: CONST_DOUBLE_OK_FOR_CONSTRAINT_P (VALUE, C, STR) ! Like `CONST_DOUBLE_OK_FOR_LETTER_P', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. --- 29169,29222 ---- should use DEFAULT_CONSTRAINT_LEN for all the characters that you don't want to handle specially. There are some sanity checks in genoutput.c that check the constraint lengths for the md file, so ! you can also use this macro to help you while you are transitioning ! from a byzantine single-letter-constraint scheme: when you return a ! negative length for a constraint you want to re-use, genoutput will ! complain about every instance where it is used in the md file. -- Macro: REG_CLASS_FROM_LETTER (CHAR) A C expression which defines the machine-dependent operand ! constraint letters for register classes. If CHAR is such a letter, ! the value should be the register class corresponding to it. ! Otherwise, the value should be 'NO_REGS'. The register letter 'r', ! corresponding to class 'GENERAL_REGS', will not be passed to this ! macro; you do not need to handle it. -- Macro: REG_CLASS_FROM_CONSTRAINT (CHAR, STR) ! Like 'REG_CLASS_FROM_LETTER', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. -- Macro: CONST_OK_FOR_LETTER_P (VALUE, C) A C expression that defines the machine-dependent operand ! constraint letters ('I', 'J', 'K', ... 'P') that specify particular ! ranges of integer values. If C is one of those letters, the ! expression should check that VALUE, an integer, is in the ! appropriate range and return 1 if so, 0 otherwise. If C is not one ! of those letters, the value should be 0 regardless of VALUE. -- Macro: CONST_OK_FOR_CONSTRAINT_P (VALUE, C, STR) ! Like 'CONST_OK_FOR_LETTER_P', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. -- Macro: CONST_DOUBLE_OK_FOR_LETTER_P (VALUE, C) A C expression that defines the machine-dependent operand ! constraint letters that specify particular ranges of 'const_double' ! values ('G' or 'H'). If C is one of those letters, the expression should check that ! VALUE, an RTX of code 'const_double', is in the appropriate range ! and return 1 if so, 0 otherwise. If C is not one of those letters, ! the value should be 0 regardless of VALUE. ! 'const_double' is used for all floating-point constants and for ! 'DImode' fixed-point constants. A given letter can accept either ! or both kinds of values. It can use 'GET_MODE' to distinguish between these kinds. -- Macro: CONST_DOUBLE_OK_FOR_CONSTRAINT_P (VALUE, C, STR) ! Like 'CONST_DOUBLE_OK_FOR_LETTER_P', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. *************** it; old ports should convert to the new *** 29582,29647 **** constraint letters that can be used to segregate specific types of operands, usually memory references, for the target machine. Any letter that is not elsewhere defined and not matched by ! `REG_CLASS_FROM_LETTER' / `REG_CLASS_FROM_CONSTRAINT' may be used. Normally this macro will not be defined. ! If it is required for a particular target machine, it should ! return 1 if VALUE corresponds to the operand type represented by ! the constraint letter C. If C is not defined as an extra ! constraint, the value returned should be 0 regardless of VALUE. For example, on the ROMP, load instructions cannot have their output in r0 if the memory reference contains a symbolic address. ! Constraint letter `Q' is defined as representing a memory address that does _not_ contain a symbolic address. An alternative is ! specified with a `Q' constraint on the input and `r' on the ! output. The next alternative specifies `m' on the input and a ! register class that does not include r0 on the output. -- Macro: EXTRA_CONSTRAINT_STR (VALUE, C, STR) ! Like `EXTRA_CONSTRAINT', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. -- Macro: EXTRA_MEMORY_CONSTRAINT (C, STR) A C expression that defines the optional machine-dependent ! constraint letters, amongst those accepted by `EXTRA_CONSTRAINT', that should be treated like memory constraints by the reload pass. It should return 1 if the operand type represented by the constraint at the start of STR, the first letter of which is the ! letter C, comprises a subset of all memory references including ! all those whose address is simply a base register. This allows ! the reload pass to reload an operand, if it does not directly correspond to the operand type of C, by copying its address into a base register. For example, on the S/390, some instructions do not accept ! arbitrary memory references, but only those that do not make use ! of an index register. The constraint letter `Q' is defined via ! `EXTRA_CONSTRAINT' as representing a memory address of this type. ! If the letter `Q' is marked as `EXTRA_MEMORY_CONSTRAINT', a `Q' constraint can handle any memory operand, because the reload pass knows it can be reloaded by copying the memory address into a base ! register if required. This is analogous to the way an `o' constraint can handle any memory operand. -- Macro: EXTRA_ADDRESS_CONSTRAINT (C, STR) A C expression that defines the optional machine-dependent ! constraint letters, amongst those accepted by `EXTRA_CONSTRAINT' / ! `EXTRA_CONSTRAINT_STR', that should be treated like address constraints by the reload pass. It should return 1 if the operand type represented by the constraint at the start of STR, which starts with the letter C, ! comprises a subset of all memory addresses including all those ! that consist of just a base register. This allows the reload pass ! to reload an operand, if it does not directly correspond to the operand type of STR, by copying it into a base register. ! Any constraint marked as `EXTRA_ADDRESS_CONSTRAINT' can only be ! used with the `address_operand' predicate. It is treated ! analogously to the `p' constraint.  File: gccint.info, Node: Stack and Calling, Next: Varargs, Prev: Old Constraints, Up: Target Macros --- 29225,29290 ---- constraint letters that can be used to segregate specific types of operands, usually memory references, for the target machine. Any letter that is not elsewhere defined and not matched by ! 'REG_CLASS_FROM_LETTER' / 'REG_CLASS_FROM_CONSTRAINT' may be used. Normally this macro will not be defined. ! If it is required for a particular target machine, it should return ! 1 if VALUE corresponds to the operand type represented by the ! constraint letter C. If C is not defined as an extra constraint, ! the value returned should be 0 regardless of VALUE. For example, on the ROMP, load instructions cannot have their output in r0 if the memory reference contains a symbolic address. ! Constraint letter 'Q' is defined as representing a memory address that does _not_ contain a symbolic address. An alternative is ! specified with a 'Q' constraint on the input and 'r' on the output. ! The next alternative specifies 'm' on the input and a register ! class that does not include r0 on the output. -- Macro: EXTRA_CONSTRAINT_STR (VALUE, C, STR) ! Like 'EXTRA_CONSTRAINT', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. -- Macro: EXTRA_MEMORY_CONSTRAINT (C, STR) A C expression that defines the optional machine-dependent ! constraint letters, amongst those accepted by 'EXTRA_CONSTRAINT', that should be treated like memory constraints by the reload pass. It should return 1 if the operand type represented by the constraint at the start of STR, the first letter of which is the ! letter C, comprises a subset of all memory references including all ! those whose address is simply a base register. This allows the ! reload pass to reload an operand, if it does not directly correspond to the operand type of C, by copying its address into a base register. For example, on the S/390, some instructions do not accept ! arbitrary memory references, but only those that do not make use of ! an index register. The constraint letter 'Q' is defined via ! 'EXTRA_CONSTRAINT' as representing a memory address of this type. ! If the letter 'Q' is marked as 'EXTRA_MEMORY_CONSTRAINT', a 'Q' constraint can handle any memory operand, because the reload pass knows it can be reloaded by copying the memory address into a base ! register if required. This is analogous to the way an 'o' constraint can handle any memory operand. -- Macro: EXTRA_ADDRESS_CONSTRAINT (C, STR) A C expression that defines the optional machine-dependent ! constraint letters, amongst those accepted by 'EXTRA_CONSTRAINT' / ! 'EXTRA_CONSTRAINT_STR', that should be treated like address constraints by the reload pass. It should return 1 if the operand type represented by the constraint at the start of STR, which starts with the letter C, ! comprises a subset of all memory addresses including all those that ! consist of just a base register. This allows the reload pass to ! reload an operand, if it does not directly correspond to the operand type of STR, by copying it into a base register. ! Any constraint marked as 'EXTRA_ADDRESS_CONSTRAINT' can only be ! used with the 'address_operand' predicate. It is treated ! analogously to the 'p' constraint.  File: gccint.info, Node: Stack and Calling, Next: Varargs, Prev: Old Constraints, Up: Target Macros *************** Here is the basic stack layout. *** 29680,29701 **** Define this macro if pushing a word onto the stack moves the stack pointer to a smaller address. ! When we say, "define this macro if ...", it means that the ! compiler checks this macro only with `#ifdef' so the precise ! definition used does not matter. -- Macro: STACK_PUSH_CODE This macro defines the operation used when something is pushed on ! the stack. In RTL, a push operation will be `(set (mem (STACK_PUSH_CODE (reg sp))) ...)' ! The choices are `PRE_DEC', `POST_DEC', `PRE_INC', and `POST_INC'. Which of these is correct depends on the stack direction and on whether the stack pointer points to the last item on the stack or whether it points to the space for the next item on the stack. ! The default is `PRE_DEC' when `STACK_GROWS_DOWNWARD' is defined, ! which is almost always right, and `PRE_INC' otherwise, which is often wrong. -- Macro: FRAME_GROWS_DOWNWARD --- 29323,29344 ---- Define this macro if pushing a word onto the stack moves the stack pointer to a smaller address. ! When we say, "define this macro if ...", it means that the compiler ! checks this macro only with '#ifdef' so the precise definition used ! does not matter. -- Macro: STACK_PUSH_CODE This macro defines the operation used when something is pushed on ! the stack. In RTL, a push operation will be '(set (mem (STACK_PUSH_CODE (reg sp))) ...)' ! The choices are 'PRE_DEC', 'POST_DEC', 'PRE_INC', and 'POST_INC'. Which of these is correct depends on the stack direction and on whether the stack pointer points to the last item on the stack or whether it points to the space for the next item on the stack. ! The default is 'PRE_DEC' when 'STACK_GROWS_DOWNWARD' is defined, ! which is almost always right, and 'PRE_INC' otherwise, which is often wrong. -- Macro: FRAME_GROWS_DOWNWARD *************** Here is the basic stack layout. *** 29710,29737 **** Offset from the frame pointer to the first local variable slot to be allocated. ! If `FRAME_GROWS_DOWNWARD', find the next slot's offset by ! subtracting the first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by adding the length of the first slot to ! the value `STARTING_FRAME_OFFSET'. -- Macro: STACK_ALIGNMENT_NEEDED Define to zero to disable final alignment of the stack during reload. The nonzero default for this macro is suitable for most ports. ! On ports where `STARTING_FRAME_OFFSET' is nonzero or where there ! is a register save block following the local block that doesn't ! require alignment to `STACK_BOUNDARY', it may be beneficial to disable stack alignment and do it in the backend. -- Macro: STACK_POINTER_OFFSET Offset from the stack pointer register to the first location at ! which outgoing arguments are placed. If not specified, the ! default value of zero is used. This is the proper value for most ! machines. ! If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first location at which outgoing arguments are placed. -- Macro: FIRST_PARM_OFFSET (FUNDECL) --- 29353,29379 ---- Offset from the frame pointer to the first local variable slot to be allocated. ! If 'FRAME_GROWS_DOWNWARD', find the next slot's offset by ! subtracting the first slot's length from 'STARTING_FRAME_OFFSET'. Otherwise, it is found by adding the length of the first slot to ! the value 'STARTING_FRAME_OFFSET'. -- Macro: STACK_ALIGNMENT_NEEDED Define to zero to disable final alignment of the stack during reload. The nonzero default for this macro is suitable for most ports. ! On ports where 'STARTING_FRAME_OFFSET' is nonzero or where there is ! a register save block following the local block that doesn't ! require alignment to 'STACK_BOUNDARY', it may be beneficial to disable stack alignment and do it in the backend. -- Macro: STACK_POINTER_OFFSET Offset from the stack pointer register to the first location at ! which outgoing arguments are placed. If not specified, the default ! value of zero is used. This is the proper value for most machines. ! If 'ARGS_GROW_DOWNWARD', this is the offset to the location above the first location at which outgoing arguments are placed. -- Macro: FIRST_PARM_OFFSET (FUNDECL) *************** Here is the basic stack layout. *** 29739,29763 **** address. On some machines it may depend on the data type of the function. ! If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first argument's address. -- Macro: STACK_DYNAMIC_OFFSET (FUNDECL) Offset from the stack pointer register to an item dynamically ! allocated on the stack, e.g., by `alloca'. ! The default value for this macro is `STACK_POINTER_OFFSET' plus the length of the outgoing arguments. The default is correct for most ! machines. See `function.c' for details. -- Macro: INITIAL_FRAME_ADDRESS_RTX A C expression whose value is RTL representing the address of the ! initial stack frame. This address is passed to `RETURN_ADDR_RTX' ! and `DYNAMIC_CHAIN_ADDRESS'. If you don't define this macro, a reasonable default value will be used. Define this macro in order to make frame pointer elimination work in the presence of ! `__builtin_frame_address (count)' and `__builtin_return_address ! (count)' for `count' not equal to zero. -- Macro: DYNAMIC_CHAIN_ADDRESS (FRAMEADDR) A C expression whose value is RTL representing the address in a --- 29381,29405 ---- address. On some machines it may depend on the data type of the function. ! If 'ARGS_GROW_DOWNWARD', this is the offset to the location above the first argument's address. -- Macro: STACK_DYNAMIC_OFFSET (FUNDECL) Offset from the stack pointer register to an item dynamically ! allocated on the stack, e.g., by 'alloca'. ! The default value for this macro is 'STACK_POINTER_OFFSET' plus the length of the outgoing arguments. The default is correct for most ! machines. See 'function.c' for details. -- Macro: INITIAL_FRAME_ADDRESS_RTX A C expression whose value is RTL representing the address of the ! initial stack frame. This address is passed to 'RETURN_ADDR_RTX' ! and 'DYNAMIC_CHAIN_ADDRESS'. If you don't define this macro, a reasonable default value will be used. Define this macro in order to make frame pointer elimination work in the presence of ! '__builtin_frame_address (count)' and '__builtin_return_address ! (count)' for 'count' not equal to zero. -- Macro: DYNAMIC_CHAIN_ADDRESS (FRAMEADDR) A C expression whose value is RTL representing the address in a *************** Here is the basic stack layout. *** 29772,29787 **** -- Macro: SETUP_FRAME_ADDRESSES If defined, a C expression that produces the machine-specific code to setup the stack so that arbitrary frames can be accessed. For ! example, on the SPARC, we must flush all of the register windows ! to the stack before we can access arbitrary stack frames. You ! will seldom need to define this macro. -- Target Hook: rtx TARGET_BUILTIN_SETJMP_FRAME_VALUE (void) This target hook should return an rtx that is used to store the ! address of the current frame into the built in `setjmp' buffer. ! The default value, `virtual_stack_vars_rtx', is correct for most machines. One reason you may need to define this target hook is if ! `hard_frame_pointer_rtx' is the appropriate value on your machine. -- Macro: FRAME_ADDR_RTX (FRAMEADDR) A C expression whose value is RTL representing the value of the --- 29414,29429 ---- -- Macro: SETUP_FRAME_ADDRESSES If defined, a C expression that produces the machine-specific code to setup the stack so that arbitrary frames can be accessed. For ! example, on the SPARC, we must flush all of the register windows to ! the stack before we can access arbitrary stack frames. You will ! seldom need to define this macro. -- Target Hook: rtx TARGET_BUILTIN_SETJMP_FRAME_VALUE (void) This target hook should return an rtx that is used to store the ! address of the current frame into the built in 'setjmp' buffer. ! The default value, 'virtual_stack_vars_rtx', is correct for most machines. One reason you may need to define this target hook is if ! 'hard_frame_pointer_rtx' is the appropriate value on your machine. -- Macro: FRAME_ADDR_RTX (FRAMEADDR) A C expression whose value is RTL representing the value of the *************** Here is the basic stack layout. *** 29793,29805 **** -- Macro: RETURN_ADDR_RTX (COUNT, FRAMEADDR) A C expression whose value is RTL representing the value of the ! return address for the frame COUNT steps up from the current ! frame, after the prologue. FRAMEADDR is the frame pointer of the ! COUNT frame, or the frame pointer of the COUNT - 1 frame if ! `RETURN_ADDR_IN_PREVIOUS_FRAME' is defined. The value of the expression must always be the correct address when ! COUNT is zero, but may be `NULL_RTX' if there is no way to determine the return address of other frames. -- Macro: RETURN_ADDR_IN_PREVIOUS_FRAME --- 29435,29447 ---- -- Macro: RETURN_ADDR_RTX (COUNT, FRAMEADDR) A C expression whose value is RTL representing the value of the ! return address for the frame COUNT steps up from the current frame, ! after the prologue. FRAMEADDR is the frame pointer of the COUNT ! frame, or the frame pointer of the COUNT - 1 frame if ! 'RETURN_ADDR_IN_PREVIOUS_FRAME' is defined. The value of the expression must always be the correct address when ! COUNT is zero, but may be 'NULL_RTX' if there is no way to determine the return address of other frames. -- Macro: RETURN_ADDR_IN_PREVIOUS_FRAME *************** Here is the basic stack layout. *** 29809,29831 **** -- Macro: INCOMING_RETURN_ADDR_RTX A C expression whose value is RTL representing the location of the incoming return address at the beginning of any function, before ! the prologue. This RTL is either a `REG', indicating that the ! return value is saved in `REG', or a `MEM' representing a location in the stack. You only need to define this macro if you want to support call frame debugging information like that provided by DWARF 2. ! If this RTL is a `REG', you should also define ! `DWARF_FRAME_RETURN_COLUMN' to `DWARF_FRAME_REGNUM (REGNO)'. -- Macro: DWARF_ALT_FRAME_RETURN_COLUMN A C expression whose value is an integer giving a DWARF 2 column number that may be used as an alternative return column. The column must not correspond to any gcc hard register (that is, it ! must not be in the range of `DWARF_FRAME_REGNUM'). ! This macro can be useful if `DWARF_FRAME_RETURN_COLUMN' is set to a general register, but an alternative column needs to be used for signal frames. Some targets have also used different frame return columns over time. --- 29451,29473 ---- -- Macro: INCOMING_RETURN_ADDR_RTX A C expression whose value is RTL representing the location of the incoming return address at the beginning of any function, before ! the prologue. This RTL is either a 'REG', indicating that the ! return value is saved in 'REG', or a 'MEM' representing a location in the stack. You only need to define this macro if you want to support call frame debugging information like that provided by DWARF 2. ! If this RTL is a 'REG', you should also define ! 'DWARF_FRAME_RETURN_COLUMN' to 'DWARF_FRAME_REGNUM (REGNO)'. -- Macro: DWARF_ALT_FRAME_RETURN_COLUMN A C expression whose value is an integer giving a DWARF 2 column number that may be used as an alternative return column. The column must not correspond to any gcc hard register (that is, it ! must not be in the range of 'DWARF_FRAME_REGNUM'). ! This macro can be useful if 'DWARF_FRAME_RETURN_COLUMN' is set to a general register, but an alternative column needs to be used for signal frames. Some targets have also used different frame return columns over time. *************** Here is the basic stack layout. *** 29835,29842 **** number that is considered to always have the value zero. This should only be defined if the target has an architected zero register, and someone decided it was a good idea to use that ! register number to terminate the stack backtrace. New ports ! should avoid this. -- Target Hook: void TARGET_DWARF_HANDLE_FRAME_UNSPEC (const char *LABEL, rtx PATTERN, int INDEX) --- 29477,29484 ---- number that is considered to always have the value zero. This should only be defined if the target has an architected zero register, and someone decided it was a good idea to use that ! register number to terminate the stack backtrace. New ports should ! avoid this. -- Target Hook: void TARGET_DWARF_HANDLE_FRAME_UNSPEC (const char *LABEL, rtx PATTERN, int INDEX) *************** Here is the basic stack layout. *** 29848,29854 **** (set (reg) (unspec_volatile [...] UNSPECV_INDEX)). to let the backend emit the call frame instructions. LABEL is the CFI label attached to the insn, PATTERN is the pattern of the insn ! and INDEX is `UNSPEC_INDEX' or `UNSPECV_INDEX'. -- Macro: INCOMING_FRAME_SP_OFFSET A C expression whose value is an integer giving the offset, in --- 29490,29496 ---- (set (reg) (unspec_volatile [...] UNSPECV_INDEX)). to let the backend emit the call frame instructions. LABEL is the CFI label attached to the insn, PATTERN is the pattern of the insn ! and INDEX is 'UNSPEC_INDEX' or 'UNSPECV_INDEX'. -- Macro: INCOMING_FRAME_SP_OFFSET A C expression whose value is an integer giving the offset, in *************** Here is the basic stack layout. *** 29865,29904 **** A C expression whose value is an integer giving the offset, in bytes, from the argument pointer to the canonical frame address (cfa). The final value should coincide with that calculated by ! `INCOMING_FRAME_SP_OFFSET'. Which is unfortunately not usable during virtual register instantiation. ! The default value for this macro is `FIRST_PARM_OFFSET (fundecl) + crtl->args.pretend_args_size', which is correct for most machines; in general, the arguments are found immediately before the stack frame. Note that this is not the case on some targets that save ! registers into the caller's frame, such as SPARC and rs6000, and ! so such targets need to define this macro. ! You only need to define this macro if the default is incorrect, ! and you want to support call frame debugging information like that provided by DWARF 2. -- Macro: FRAME_POINTER_CFA_OFFSET (FUNDECL) If defined, a C expression whose value is an integer giving the offset in bytes from the frame pointer to the canonical frame address (cfa). The final value should coincide with that ! calculated by `INCOMING_FRAME_SP_OFFSET'. Normally the CFA is calculated as an offset from the argument ! pointer, via `ARG_POINTER_CFA_OFFSET', but if the argument pointer is variable due to the ABI, this may not be possible. If this macro is defined, it implies that the virtual register instantiation should be based on the frame pointer instead of the ! argument pointer. Only one of `FRAME_POINTER_CFA_OFFSET' and ! `ARG_POINTER_CFA_OFFSET' should be defined. -- Macro: CFA_FRAME_BASE_OFFSET (FUNDECL) If defined, a C expression whose value is an integer giving the ! offset in bytes from the canonical frame address (cfa) to the ! frame base used in DWARF 2 debug information. The default is ! zero. A different value may reduce the size of debug information ! on some ports.  File: gccint.info, Node: Exception Handling, Next: Stack Checking, Prev: Frame Layout, Up: Stack and Calling --- 29507,29546 ---- A C expression whose value is an integer giving the offset, in bytes, from the argument pointer to the canonical frame address (cfa). The final value should coincide with that calculated by ! 'INCOMING_FRAME_SP_OFFSET'. Which is unfortunately not usable during virtual register instantiation. ! The default value for this macro is 'FIRST_PARM_OFFSET (fundecl) + crtl->args.pretend_args_size', which is correct for most machines; in general, the arguments are found immediately before the stack frame. Note that this is not the case on some targets that save ! registers into the caller's frame, such as SPARC and rs6000, and so ! such targets need to define this macro. ! You only need to define this macro if the default is incorrect, and ! you want to support call frame debugging information like that provided by DWARF 2. -- Macro: FRAME_POINTER_CFA_OFFSET (FUNDECL) If defined, a C expression whose value is an integer giving the offset in bytes from the frame pointer to the canonical frame address (cfa). The final value should coincide with that ! calculated by 'INCOMING_FRAME_SP_OFFSET'. Normally the CFA is calculated as an offset from the argument ! pointer, via 'ARG_POINTER_CFA_OFFSET', but if the argument pointer is variable due to the ABI, this may not be possible. If this macro is defined, it implies that the virtual register instantiation should be based on the frame pointer instead of the ! argument pointer. Only one of 'FRAME_POINTER_CFA_OFFSET' and ! 'ARG_POINTER_CFA_OFFSET' should be defined. -- Macro: CFA_FRAME_BASE_OFFSET (FUNDECL) If defined, a C expression whose value is an integer giving the ! offset in bytes from the canonical frame address (cfa) to the frame ! base used in DWARF 2 debug information. The default is zero. A ! different value may reduce the size of debug information on some ! ports.  File: gccint.info, Node: Exception Handling, Next: Stack Checking, Prev: Frame Layout, Up: Stack and Calling *************** File: gccint.info, Node: Exception Hand *** 29907,29914 **** ---------------------------------- -- Macro: EH_RETURN_DATA_REGNO (N) ! A C expression whose value is the Nth register number used for ! data by exception handlers, or `INVALID_REGNUM' if fewer than N registers are usable. The exception handling library routines communicate with the --- 29549,29556 ---- ---------------------------------- -- Macro: EH_RETURN_DATA_REGNO (N) ! A C expression whose value is the Nth register number used for data ! by exception handlers, or 'INVALID_REGNUM' if fewer than N registers are usable. The exception handling library routines communicate with the *************** File: gccint.info, Node: Exception Hand *** 29948,29969 **** normal return address is stored. For targets that return by popping an address off the stack, this might be a memory address just below the _target_ call frame rather than inside the current ! call frame. If defined, `EH_RETURN_STACKADJ_RTX' will have already been assigned, so it may be used to calculate the location of the target call frame. Some targets have more complex requirements than storing to an address calculable during initial code generation. In that case ! the `eh_return' instruction pattern should be used instead. If you want to support call frame exception handling, you must ! define either this macro or the `eh_return' instruction pattern. -- Macro: RETURN_ADDR_OFFSET If defined, an integer-valued C expression for which rtl will be generated to add it to the exception handler address before it is ! searched in the exception handling tables, and to subtract it ! again from the address before using it to return to the exception handler. -- Macro: ASM_PREFERRED_EH_DATA_FORMAT (CODE, GLOBAL) --- 29590,29611 ---- normal return address is stored. For targets that return by popping an address off the stack, this might be a memory address just below the _target_ call frame rather than inside the current ! call frame. If defined, 'EH_RETURN_STACKADJ_RTX' will have already been assigned, so it may be used to calculate the location of the target call frame. Some targets have more complex requirements than storing to an address calculable during initial code generation. In that case ! the 'eh_return' instruction pattern should be used instead. If you want to support call frame exception handling, you must ! define either this macro or the 'eh_return' instruction pattern. -- Macro: RETURN_ADDR_OFFSET If defined, an integer-valued C expression for which rtl will be generated to add it to the exception handler address before it is ! searched in the exception handling tables, and to subtract it again ! from the address before using it to return to the exception handler. -- Macro: ASM_PREFERRED_EH_DATA_FORMAT (CODE, GLOBAL) *************** File: gccint.info, Node: Exception Hand *** 29975,29981 **** CODE is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is true if the symbol may be affected by dynamic relocations. The macro should return a combination of the ! `DW_EH_PE_*' defines as found in `dwarf2.h'. If this macro is not defined, pointers will not be encoded but represented directly. --- 29617,29623 ---- CODE is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is true if the symbol may be affected by dynamic relocations. The macro should return a combination of the ! 'DW_EH_PE_*' defines as found in 'dwarf2.h'. If this macro is not defined, pointers will not be encoded but represented directly. *************** File: gccint.info, Node: Exception Hand *** 29984,29996 **** ADDR, DONE) This macro allows the target to emit whatever special magic is required to represent the encoding chosen by ! `ASM_PREFERRED_EH_DATA_FORMAT'. Generic code takes care of pc-relative and indirect encodings; this must be defined if the target uses text-relative or data-relative encodings. This is a C statement that branches to DONE if the format was handled. ENCODING is the format chosen, SIZE is the number of ! bytes that the format occupies, ADDR is the `SYMBOL_REF' to be emitted. -- Macro: MD_FALLBACK_FRAME_STATE_FOR (CONTEXT, FS) --- 29626,29638 ---- ADDR, DONE) This macro allows the target to emit whatever special magic is required to represent the encoding chosen by ! 'ASM_PREFERRED_EH_DATA_FORMAT'. Generic code takes care of pc-relative and indirect encodings; this must be defined if the target uses text-relative or data-relative encodings. This is a C statement that branches to DONE if the format was handled. ENCODING is the format chosen, SIZE is the number of ! bytes that the format occupies, ADDR is the 'SYMBOL_REF' to be emitted. -- Macro: MD_FALLBACK_FRAME_STATE_FOR (CONTEXT, FS) *************** File: gccint.info, Node: Exception Hand *** 29999,30034 **** unwind data available. The most common reason to implement this macro is to unwind through signal frames. ! This macro is called from `uw_frame_state_for' in `unwind-dw2.c', ! `unwind-dw2-xtensa.c' and `unwind-ia64.c'. CONTEXT is an ! `_Unwind_Context'; FS is an `_Unwind_FrameState'. Examine ! `context->ra' for the address of the code being executed and ! `context->cfa' for the stack pointer value. If the frame can be decoded, the register save addresses should be updated in FS and ! the macro should evaluate to `_URC_NO_REASON'. If the frame ! cannot be decoded, the macro should evaluate to ! `_URC_END_OF_STACK'. For proper signal handling in Java this macro is accompanied by ! `MAKE_THROW_FRAME', defined in `libjava/include/*-signal.h' headers. -- Macro: MD_HANDLE_UNWABI (CONTEXT, FS) This macro allows the target to add operating system specific code ! to the call-frame unwinder to handle the IA-64 `.unwabi' unwinding directive, usually used for signal or interrupt frames. ! This macro is called from `uw_update_context' in libgcc's ! `unwind-ia64.c'. CONTEXT is an `_Unwind_Context'; FS is an ! `_Unwind_FrameState'. Examine `fs->unwabi' for the abi and ! context in the `.unwabi' directive. If the `.unwabi' directive ! can be handled, the register save addresses should be updated in ! FS. -- Macro: TARGET_USES_WEAK_UNWIND_INFO A C expression that evaluates to true if the target requires unwind ! info to be given comdat linkage. Define it to be `1' if comdat ! linkage is necessary. The default is `0'.  File: gccint.info, Node: Stack Checking, Next: Frame Registers, Prev: Exception Handling, Up: Stack and Calling --- 29641,29674 ---- unwind data available. The most common reason to implement this macro is to unwind through signal frames. ! This macro is called from 'uw_frame_state_for' in 'unwind-dw2.c', ! 'unwind-dw2-xtensa.c' and 'unwind-ia64.c'. CONTEXT is an ! '_Unwind_Context'; FS is an '_Unwind_FrameState'. Examine ! 'context->ra' for the address of the code being executed and ! 'context->cfa' for the stack pointer value. If the frame can be decoded, the register save addresses should be updated in FS and ! the macro should evaluate to '_URC_NO_REASON'. If the frame cannot ! be decoded, the macro should evaluate to '_URC_END_OF_STACK'. For proper signal handling in Java this macro is accompanied by ! 'MAKE_THROW_FRAME', defined in 'libjava/include/*-signal.h' headers. -- Macro: MD_HANDLE_UNWABI (CONTEXT, FS) This macro allows the target to add operating system specific code ! to the call-frame unwinder to handle the IA-64 '.unwabi' unwinding directive, usually used for signal or interrupt frames. ! This macro is called from 'uw_update_context' in libgcc's ! 'unwind-ia64.c'. CONTEXT is an '_Unwind_Context'; FS is an ! '_Unwind_FrameState'. Examine 'fs->unwabi' for the abi and context ! in the '.unwabi' directive. If the '.unwabi' directive can be ! handled, the register save addresses should be updated in FS. -- Macro: TARGET_USES_WEAK_UNWIND_INFO A C expression that evaluates to true if the target requires unwind ! info to be given comdat linkage. Define it to be '1' if comdat ! linkage is necessary. The default is '0'.  File: gccint.info, Node: Stack Checking, Next: Frame Registers, Prev: Exception Handling, Up: Stack and Calling *************** File: gccint.info, Node: Stack Checking *** 30037,30056 **** --------------------------------------------- GCC will check that stack references are within the boundaries of the ! stack, if the option `-fstack-check' is specified, in one of three ways: ! 1. If the value of the `STACK_CHECK_BUILTIN' macro is nonzero, GCC will assume that you have arranged for full stack checking to be done at appropriate places in the configuration files. GCC will not do other special processing. ! 2. If `STACK_CHECK_BUILTIN' is zero and the value of the ! `STACK_CHECK_STATIC_BUILTIN' macro is nonzero, GCC will assume ! that you have arranged for static stack checking (checking of the ! static stack frame of functions) to be done at appropriate places ! in the configuration files. GCC will only emit code to do dynamic ! stack checking (checking on dynamic stack allocations) using the ! third approach below. 3. If neither of the above are true, GCC will generate code to periodically "probe" the stack pointer using the values of the --- 29677,29696 ---- --------------------------------------------- GCC will check that stack references are within the boundaries of the ! stack, if the option '-fstack-check' is specified, in one of three ways: ! 1. If the value of the 'STACK_CHECK_BUILTIN' macro is nonzero, GCC will assume that you have arranged for full stack checking to be done at appropriate places in the configuration files. GCC will not do other special processing. ! 2. If 'STACK_CHECK_BUILTIN' is zero and the value of the ! 'STACK_CHECK_STATIC_BUILTIN' macro is nonzero, GCC will assume that ! you have arranged for static stack checking (checking of the static ! stack frame of functions) to be done at appropriate places in the ! configuration files. GCC will only emit code to do dynamic stack ! checking (checking on dynamic stack allocations) using the third ! approach below. 3. If neither of the above are true, GCC will generate code to periodically "probe" the stack pointer using the values of the *************** stack, if the option `-fstack-check' is *** 30058,30072 **** If neither STACK_CHECK_BUILTIN nor STACK_CHECK_STATIC_BUILTIN is defined, GCC will change its allocation strategy for large objects if ! the option `-fstack-check' is specified: they will always be allocated ! dynamically if their size exceeds `STACK_CHECK_MAX_VAR_SIZE' bytes. -- Macro: STACK_CHECK_BUILTIN A nonzero value if stack checking is done by the configuration files in a machine-dependent manner. You should define this macro if stack checking is required by the ABI of your machine or if you ! would like to do stack checking in some more efficient way than ! the generic approach. The default value of this macro is zero. -- Macro: STACK_CHECK_STATIC_BUILTIN A nonzero value if static stack checking is done by the --- 29698,29712 ---- If neither STACK_CHECK_BUILTIN nor STACK_CHECK_STATIC_BUILTIN is defined, GCC will change its allocation strategy for large objects if ! the option '-fstack-check' is specified: they will always be allocated ! dynamically if their size exceeds 'STACK_CHECK_MAX_VAR_SIZE' bytes. -- Macro: STACK_CHECK_BUILTIN A nonzero value if stack checking is done by the configuration files in a machine-dependent manner. You should define this macro if stack checking is required by the ABI of your machine or if you ! would like to do stack checking in some more efficient way than the ! generic approach. The default value of this macro is zero. -- Macro: STACK_CHECK_STATIC_BUILTIN A nonzero value if static stack checking is done by the *************** dynamically if their size exceeds `STACK *** 30076,30101 **** value of this macro is zero. -- Macro: STACK_CHECK_PROBE_INTERVAL_EXP ! An integer specifying the interval at which GCC must generate ! stack probe instructions, defined as 2 raised to this integer. ! You will normally define this macro so that the interval be no ! larger than the size of the "guard pages" at the end of a stack ! area. The default value of 12 (4096-byte interval) is suitable ! for most systems. -- Macro: STACK_CHECK_MOVING_SP An integer which is nonzero if GCC should move the stack pointer page by page when doing probes. This can be necessary on systems where the stack pointer contains the bottom address of the memory area accessible to the executing thread at any point in time. In ! this situation an alternate signal stack is required in order to ! be able to recover from a stack overflow. The default value of ! this macro is zero. -- Macro: STACK_CHECK_PROTECT The number of bytes of stack needed to recover from a stack overflow, for languages where such a recovery is supported. The ! default value of 75 words with the `setjmp'/`longjmp'-based exception handling mechanism and 8192 bytes with other exception handling mechanisms should be adequate for most machines. --- 29716,29741 ---- value of this macro is zero. -- Macro: STACK_CHECK_PROBE_INTERVAL_EXP ! An integer specifying the interval at which GCC must generate stack ! probe instructions, defined as 2 raised to this integer. You will ! normally define this macro so that the interval be no larger than ! the size of the "guard pages" at the end of a stack area. The ! default value of 12 (4096-byte interval) is suitable for most ! systems. -- Macro: STACK_CHECK_MOVING_SP An integer which is nonzero if GCC should move the stack pointer page by page when doing probes. This can be necessary on systems where the stack pointer contains the bottom address of the memory area accessible to the executing thread at any point in time. In ! this situation an alternate signal stack is required in order to be ! able to recover from a stack overflow. The default value of this ! macro is zero. -- Macro: STACK_CHECK_PROTECT The number of bytes of stack needed to recover from a stack overflow, for languages where such a recovery is supported. The ! default value of 75 words with the 'setjmp'/'longjmp'-based exception handling mechanism and 8192 bytes with other exception handling mechanisms should be adequate for most machines. *************** in the opposite case. *** 30106,30116 **** -- Macro: STACK_CHECK_MAX_FRAME_SIZE The maximum size of a stack frame, in bytes. GCC will generate probe instructions in non-leaf functions to ensure at least this ! many bytes of stack are available. If a stack frame is larger ! than this size, stack checking will not be reliable and GCC will ! issue a warning. The default is chosen so that GCC only generates ! one instruction on most systems. You should normally not change ! the default value of this macro. -- Macro: STACK_CHECK_FIXED_FRAME_SIZE GCC uses this value to generate the above warning message. It --- 29746,29756 ---- -- Macro: STACK_CHECK_MAX_FRAME_SIZE The maximum size of a stack frame, in bytes. GCC will generate probe instructions in non-leaf functions to ensure at least this ! many bytes of stack are available. If a stack frame is larger than ! this size, stack checking will not be reliable and GCC will issue a ! warning. The default is chosen so that GCC only generates one ! instruction on most systems. You should normally not change the ! default value of this macro. -- Macro: STACK_CHECK_FIXED_FRAME_SIZE GCC uses this value to generate the above warning message. It *************** in the opposite case. *** 30122,30128 **** -- Macro: STACK_CHECK_MAX_VAR_SIZE The maximum size, in bytes, of an object that GCC will place in the fixed area of the stack frame when the user specifies ! `-fstack-check'. GCC computed the default from the values of the above macros and you will normally not need to override that default. --- 29762,29768 ---- -- Macro: STACK_CHECK_MAX_VAR_SIZE The maximum size, in bytes, of an object that GCC will place in the fixed area of the stack frame when the user specifies ! '-fstack-check'. GCC computed the default from the values of the above macros and you will normally not need to override that default. *************** This discusses registers that address th *** 30136,30192 **** -- Macro: STACK_POINTER_REGNUM The register number of the stack pointer register, which must also ! be a fixed register according to `FIXED_REGISTERS'. On most machines, the hardware determines which register this is. -- Macro: FRAME_POINTER_REGNUM The register number of the frame pointer register, which is used to access automatic variables in the stack frame. On some machines, ! the hardware determines which register this is. On other ! machines, you can choose any register you wish for this purpose. -- Macro: HARD_FRAME_POINTER_REGNUM On some machines the offset between the frame pointer and starting offset of the automatic variables is not known until after register allocation has been done (for example, because the saved registers are between these two locations). On those machines, define ! `FRAME_POINTER_REGNUM' the number of a special, fixed register to be used internally until the offset is known, and define ! `HARD_FRAME_POINTER_REGNUM' to be the actual hard register number used for the frame pointer. You should define this macro only in the very rare circumstances when it is not possible to calculate the offset between the frame ! pointer and the automatic variables until after register ! allocation has been completed. When this macro is defined, you ! must also indicate in your definition of `ELIMINABLE_REGS' how to ! eliminate `FRAME_POINTER_REGNUM' into either ! `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'. Do not define this macro if it would be the same as ! `FRAME_POINTER_REGNUM'. -- Macro: ARG_POINTER_REGNUM The register number of the arg pointer register, which is used to ! access the function's argument list. On some machines, this is ! the same as the frame pointer register. On some machines, the ! hardware determines which register this is. On other machines, ! you can choose any register you wish for this purpose. If this is ! not the same register as the frame pointer register, then you must ! mark it as a fixed register according to `FIXED_REGISTERS', or ! arrange to be able to eliminate it (*note Elimination::). -- Macro: HARD_FRAME_POINTER_IS_FRAME_POINTER Define this to a preprocessor constant that is nonzero if ! `hard_frame_pointer_rtx' and `frame_pointer_rtx' should be the ! same. The default definition is `(HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)'; you only need to define this macro if that definition is not suitable for use in preprocessor conditionals. -- Macro: HARD_FRAME_POINTER_IS_ARG_POINTER Define this to a preprocessor constant that is nonzero if ! `hard_frame_pointer_rtx' and `arg_pointer_rtx' should be the same. ! The default definition is `(HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)'; you only need to define this macro if that definition is not suitable for use in preprocessor conditionals. --- 29776,29832 ---- -- Macro: STACK_POINTER_REGNUM The register number of the stack pointer register, which must also ! be a fixed register according to 'FIXED_REGISTERS'. On most machines, the hardware determines which register this is. -- Macro: FRAME_POINTER_REGNUM The register number of the frame pointer register, which is used to access automatic variables in the stack frame. On some machines, ! the hardware determines which register this is. On other machines, ! you can choose any register you wish for this purpose. -- Macro: HARD_FRAME_POINTER_REGNUM On some machines the offset between the frame pointer and starting offset of the automatic variables is not known until after register allocation has been done (for example, because the saved registers are between these two locations). On those machines, define ! 'FRAME_POINTER_REGNUM' the number of a special, fixed register to be used internally until the offset is known, and define ! 'HARD_FRAME_POINTER_REGNUM' to be the actual hard register number used for the frame pointer. You should define this macro only in the very rare circumstances when it is not possible to calculate the offset between the frame ! pointer and the automatic variables until after register allocation ! has been completed. When this macro is defined, you must also ! indicate in your definition of 'ELIMINABLE_REGS' how to eliminate ! 'FRAME_POINTER_REGNUM' into either 'HARD_FRAME_POINTER_REGNUM' or ! 'STACK_POINTER_REGNUM'. Do not define this macro if it would be the same as ! 'FRAME_POINTER_REGNUM'. -- Macro: ARG_POINTER_REGNUM The register number of the arg pointer register, which is used to ! access the function's argument list. On some machines, this is the ! same as the frame pointer register. On some machines, the hardware ! determines which register this is. On other machines, you can ! choose any register you wish for this purpose. If this is not the ! same register as the frame pointer register, then you must mark it ! as a fixed register according to 'FIXED_REGISTERS', or arrange to ! be able to eliminate it (*note Elimination::). -- Macro: HARD_FRAME_POINTER_IS_FRAME_POINTER Define this to a preprocessor constant that is nonzero if ! 'hard_frame_pointer_rtx' and 'frame_pointer_rtx' should be the ! same. The default definition is '(HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)'; you only need to define this macro if that definition is not suitable for use in preprocessor conditionals. -- Macro: HARD_FRAME_POINTER_IS_ARG_POINTER Define this to a preprocessor constant that is nonzero if ! 'hard_frame_pointer_rtx' and 'arg_pointer_rtx' should be the same. ! The default definition is '(HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)'; you only need to define this macro if that definition is not suitable for use in preprocessor conditionals. *************** This discusses registers that address th *** 30194,30203 **** The register number of the return address pointer register, which is used to access the current function's return address from the stack. On some machines, the return address is not at a fixed ! offset from the frame pointer or stack pointer or argument ! pointer. This register can be defined to point to the return ! address on the stack, and then be converted by `ELIMINABLE_REGS' ! into either the frame pointer or stack pointer. Do not define this macro unless there is no other way to get the return address from the stack. --- 29834,29843 ---- The register number of the return address pointer register, which is used to access the current function's return address from the stack. On some machines, the return address is not at a fixed ! offset from the frame pointer or stack pointer or argument pointer. ! This register can be defined to point to the return address on the ! stack, and then be converted by 'ELIMINABLE_REGS' into either the ! frame pointer or stack pointer. Do not define this macro unless there is no other way to get the return address from the stack. *************** This discusses registers that address th *** 30205,30238 **** -- Macro: STATIC_CHAIN_REGNUM -- Macro: STATIC_CHAIN_INCOMING_REGNUM Register numbers used for passing a function's static chain ! pointer. If register windows are used, the register number as ! seen by the called function is `STATIC_CHAIN_INCOMING_REGNUM', ! while the register number as seen by the calling function is ! `STATIC_CHAIN_REGNUM'. If these registers are the same, ! `STATIC_CHAIN_INCOMING_REGNUM' need not be defined. The static chain register need not be a fixed register. If the static chain is passed in memory, these macros should not be ! defined; instead, the `TARGET_STATIC_CHAIN' hook should be used. -- Target Hook: rtx TARGET_STATIC_CHAIN (const_tree FNDECL, bool INCOMING_P) ! This hook replaces the use of `STATIC_CHAIN_REGNUM' et al for targets that may use different static chain locations for different nested functions. This may be required if the target has function attributes that affect the calling conventions of the function and those calling conventions use different static chain locations. ! The default version of this hook uses `STATIC_CHAIN_REGNUM' et al. If the static chain is passed in memory, this hook should be used ! to provide rtx giving `mem' expressions that denote where they are ! stored. Often the `mem' expression as seen by the caller will be ! at an offset from the stack pointer and the `mem' expression as ! seen by the callee will be at an offset from the frame pointer. The ! variables `stack_pointer_rtx', `frame_pointer_rtx', and ! `arg_pointer_rtx' will have been initialized and should be used to refer to those items. -- Macro: DWARF_FRAME_REGISTERS --- 29845,29878 ---- -- Macro: STATIC_CHAIN_REGNUM -- Macro: STATIC_CHAIN_INCOMING_REGNUM Register numbers used for passing a function's static chain ! pointer. If register windows are used, the register number as seen ! by the called function is 'STATIC_CHAIN_INCOMING_REGNUM', while the ! register number as seen by the calling function is ! 'STATIC_CHAIN_REGNUM'. If these registers are the same, ! 'STATIC_CHAIN_INCOMING_REGNUM' need not be defined. The static chain register need not be a fixed register. If the static chain is passed in memory, these macros should not be ! defined; instead, the 'TARGET_STATIC_CHAIN' hook should be used. -- Target Hook: rtx TARGET_STATIC_CHAIN (const_tree FNDECL, bool INCOMING_P) ! This hook replaces the use of 'STATIC_CHAIN_REGNUM' et al for targets that may use different static chain locations for different nested functions. This may be required if the target has function attributes that affect the calling conventions of the function and those calling conventions use different static chain locations. ! The default version of this hook uses 'STATIC_CHAIN_REGNUM' et al. If the static chain is passed in memory, this hook should be used ! to provide rtx giving 'mem' expressions that denote where they are ! stored. Often the 'mem' expression as seen by the caller will be ! at an offset from the stack pointer and the 'mem' expression as ! seen by the callee will be at an offset from the frame pointer. ! The variables 'stack_pointer_rtx', 'frame_pointer_rtx', and ! 'arg_pointer_rtx' will have been initialized and should be used to refer to those items. -- Macro: DWARF_FRAME_REGISTERS *************** This discusses registers that address th *** 30250,30265 **** call-saved. If this macro is not defined, it defaults to ! `FIRST_PSEUDO_REGISTER'. -- Macro: PRE_GCC3_DWARF_FRAME_REGISTERS ! This macro is similar to `DWARF_FRAME_REGISTERS', but is provided for backward compatibility in pre GCC 3.0 compiled code. If this macro is not defined, it defaults to ! `DWARF_FRAME_REGISTERS'. -- Macro: DWARF_REG_TO_UNWIND_COLUMN (REGNO) Define this macro if the target's representation for dwarf registers is different than the internal representation for unwind column. Given a dwarf register, this macro should return the --- 29890,29907 ---- call-saved. If this macro is not defined, it defaults to ! 'FIRST_PSEUDO_REGISTER'. -- Macro: PRE_GCC3_DWARF_FRAME_REGISTERS ! ! This macro is similar to 'DWARF_FRAME_REGISTERS', but is provided for backward compatibility in pre GCC 3.0 compiled code. If this macro is not defined, it defaults to ! 'DWARF_FRAME_REGISTERS'. -- Macro: DWARF_REG_TO_UNWIND_COLUMN (REGNO) + Define this macro if the target's representation for dwarf registers is different than the internal representation for unwind column. Given a dwarf register, this macro should return the *************** This discusses registers that address th *** 30268,30300 **** See the PowerPC's SPE target for an example. -- Macro: DWARF_FRAME_REGNUM (REGNO) Define this macro if the target's representation for dwarf registers used in .eh_frame or .debug_frame is different from that used in other debug info sections. Given a GCC hard register number, this macro should return the .eh_frame register number. ! The default is `DBX_REGISTER_NUMBER (REGNO)'. ! -- Macro: DWARF2_FRAME_REG_OUT (REGNO, FOR_EH) - Define this macro to map register numbers held in the call frame - info that GCC has collected using `DWARF_FRAME_REGNUM' to those - that should be output in .debug_frame (`FOR_EH' is zero) and - .eh_frame (`FOR_EH' is nonzero). The default is to return `REGNO'. -- Macro: REG_VALUE_IN_UNWIND_CONTEXT - Define this macro if the target stores register values as - `_Unwind_Word' type in unwind context. It should be defined if - target register size is larger than the size of `void *'. The - default is to store register values as `void *' type. -- Macro: ASSUME_EXTENDED_UNWIND_CONTEXT Define this macro to be 1 if the target always uses extended unwind context with version, args_size and by_value fields. If it is undefined, it will be defined to 1 when ! `REG_VALUE_IN_UNWIND_CONTEXT' is defined and 0 otherwise. !  File: gccint.info, Node: Elimination, Next: Stack Arguments, Prev: Frame Registers, Up: Stack and Calling --- 29910,29942 ---- See the PowerPC's SPE target for an example. -- Macro: DWARF_FRAME_REGNUM (REGNO) + Define this macro if the target's representation for dwarf registers used in .eh_frame or .debug_frame is different from that used in other debug info sections. Given a GCC hard register number, this macro should return the .eh_frame register number. ! The default is 'DBX_REGISTER_NUMBER (REGNO)'. -- Macro: DWARF2_FRAME_REG_OUT (REGNO, FOR_EH) + Define this macro to map register numbers held in the call frame + info that GCC has collected using 'DWARF_FRAME_REGNUM' to those + that should be output in .debug_frame ('FOR_EH' is zero) and + .eh_frame ('FOR_EH' is nonzero). The default is to return 'REGNO'. -- Macro: REG_VALUE_IN_UNWIND_CONTEXT + Define this macro if the target stores register values as + '_Unwind_Word' type in unwind context. It should be defined if + target register size is larger than the size of 'void *'. The + default is to store register values as 'void *' type. -- Macro: ASSUME_EXTENDED_UNWIND_CONTEXT + Define this macro to be 1 if the target always uses extended unwind context with version, args_size and by_value fields. If it is undefined, it will be defined to 1 when ! 'REG_VALUE_IN_UNWIND_CONTEXT' is defined and 0 otherwise.  File: gccint.info, Node: Elimination, Next: Stack Arguments, Prev: Frame Registers, Up: Stack and Calling *************** File: gccint.info, Node: Elimination, *** 30305,30345 **** This is about eliminating the frame pointer and arg pointer. -- Target Hook: bool TARGET_FRAME_POINTER_REQUIRED (void) ! This target hook should return `true' if a function must have and use a frame pointer. This target hook is called in the reload ! pass. If its return value is `true' the function will have a ! frame pointer. This target hook can in principle examine the current function and decide according to the facts, but on most machines the constant ! `false' or the constant `true' suffices. Use `false' when the machine allows code to be generated with no frame pointer, and ! doing so saves some time or space. Use `true' when there is no possible advantage to avoiding a frame pointer. In certain cases, the compiler does not know how to produce valid code without a frame pointer. The compiler recognizes those cases and automatically gives the function a frame pointer regardless of ! what `TARGET_FRAME_POINTER_REQUIRED' returns. You don't need to worry about them. In a function that does not require a frame pointer, the frame pointer register can be allocated for ordinary usage, unless you ! mark it as a fixed register. See `FIXED_REGISTERS' for more information. ! Default return value is `false'. -- Macro: INITIAL_FRAME_POINTER_OFFSET (DEPTH-VAR) A C statement to store in the variable DEPTH-VAR the difference between the frame pointer and the stack pointer values immediately after the function prologue. The value would be computed from ! information such as the result of `get_frame_size ()' and the ! tables of registers `regs_ever_live' and `call_used_regs'. ! If `ELIMINABLE_REGS' is defined, this macro will be not be used and need not be defined. Otherwise, it must be defined even if ! `TARGET_FRAME_POINTER_REQUIRED' always returns true; in that case, you may set DEPTH-VAR to anything. -- Macro: ELIMINABLE_REGS --- 29947,29987 ---- This is about eliminating the frame pointer and arg pointer. -- Target Hook: bool TARGET_FRAME_POINTER_REQUIRED (void) ! This target hook should return 'true' if a function must have and use a frame pointer. This target hook is called in the reload ! pass. If its return value is 'true' the function will have a frame ! pointer. This target hook can in principle examine the current function and decide according to the facts, but on most machines the constant ! 'false' or the constant 'true' suffices. Use 'false' when the machine allows code to be generated with no frame pointer, and ! doing so saves some time or space. Use 'true' when there is no possible advantage to avoiding a frame pointer. In certain cases, the compiler does not know how to produce valid code without a frame pointer. The compiler recognizes those cases and automatically gives the function a frame pointer regardless of ! what 'TARGET_FRAME_POINTER_REQUIRED' returns. You don't need to worry about them. In a function that does not require a frame pointer, the frame pointer register can be allocated for ordinary usage, unless you ! mark it as a fixed register. See 'FIXED_REGISTERS' for more information. ! Default return value is 'false'. -- Macro: INITIAL_FRAME_POINTER_OFFSET (DEPTH-VAR) A C statement to store in the variable DEPTH-VAR the difference between the frame pointer and the stack pointer values immediately after the function prologue. The value would be computed from ! information such as the result of 'get_frame_size ()' and the ! tables of registers 'regs_ever_live' and 'call_used_regs'. ! If 'ELIMINABLE_REGS' is defined, this macro will be not be used and need not be defined. Otherwise, it must be defined even if ! 'TARGET_FRAME_POINTER_REQUIRED' always returns true; in that case, you may set DEPTH-VAR to anything. -- Macro: ELIMINABLE_REGS *************** This is about eliminating the frame poin *** 30353,30364 **** initializations, each of which specifies an original and replacement register. ! On some machines, the position of the argument pointer is not ! known until the compilation is completed. In such a case, a ! separate hard register must be used for the argument pointer. ! This register can be eliminated by replacing it with either the ! frame pointer or the argument pointer, depending on whether or not ! the frame pointer has been eliminated. In this case, you might specify: #define ELIMINABLE_REGS \ --- 29995,30006 ---- initializations, each of which specifies an original and replacement register. ! On some machines, the position of the argument pointer is not known ! until the compilation is completed. In such a case, a separate ! hard register must be used for the argument pointer. This register ! can be eliminated by replacing it with either the frame pointer or ! the argument pointer, depending on whether or not the frame pointer ! has been eliminated. In this case, you might specify: #define ELIMINABLE_REGS \ *************** This is about eliminating the frame poin *** 30371,30389 **** -- Target Hook: bool TARGET_CAN_ELIMINATE (const int FROM_REG, const int TO_REG) ! This target hook should returns `true' if the compiler is allowed to try to replace register number FROM_REG with register number ! TO_REG. This target hook need only be defined if `ELIMINABLE_REGS' ! is defined, and will usually be `true', since most of the cases preventing register elimination are things that the compiler already knows about. ! Default return value is `true'. -- Macro: INITIAL_ELIMINATION_OFFSET (FROM-REG, TO-REG, OFFSET-VAR) ! This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the initial difference between the specified pair of ! registers. This macro must be defined if `ELIMINABLE_REGS' is defined.  --- 30013,30031 ---- -- Target Hook: bool TARGET_CAN_ELIMINATE (const int FROM_REG, const int TO_REG) ! This target hook should returns 'true' if the compiler is allowed to try to replace register number FROM_REG with register number ! TO_REG. This target hook need only be defined if 'ELIMINABLE_REGS' ! is defined, and will usually be 'true', since most of the cases preventing register elimination are things that the compiler already knows about. ! Default return value is 'true'. -- Macro: INITIAL_ELIMINATION_OFFSET (FROM-REG, TO-REG, OFFSET-VAR) ! This macro is similar to 'INITIAL_FRAME_POINTER_OFFSET'. It specifies the initial difference between the specified pair of ! registers. This macro must be defined if 'ELIMINABLE_REGS' is defined.  *************** stack. See the following section for ot *** 30397,30405 **** certain arguments in registers. -- Target Hook: bool TARGET_PROMOTE_PROTOTYPES (const_tree FNTYPE) ! This target hook returns `true' if an argument declared in a ! prototype as an integral type smaller than `int' should actually be ! passed as an `int'. In addition to avoiding errors in certain cases of mismatch, it also makes for better code on certain machines. The default is to not promote prototypes. --- 30039,30047 ---- certain arguments in registers. -- Target Hook: bool TARGET_PROMOTE_PROTOTYPES (const_tree FNTYPE) ! This target hook returns 'true' if an argument declared in a ! prototype as an integral type smaller than 'int' should actually be ! passed as an 'int'. In addition to avoiding errors in certain cases of mismatch, it also makes for better code on certain machines. The default is to not promote prototypes. *************** certain arguments in registers. *** 30408,30420 **** outgoing arguments. If the target machine does not have a push instruction, set it to zero. That directs GCC to use an alternate strategy: to allocate the entire argument block and then store the ! arguments into it. When `PUSH_ARGS' is nonzero, `PUSH_ROUNDING' must be defined too. -- Macro: PUSH_ARGS_REVERSED A C expression. If nonzero, function arguments will be evaluated from last to first, rather than from first to last. If this macro ! is not defined, it defaults to `PUSH_ARGS' on targets where the stack and args grow in opposite directions, and 0 otherwise. -- Macro: PUSH_ROUNDING (NPUSHED) --- 30050,30062 ---- outgoing arguments. If the target machine does not have a push instruction, set it to zero. That directs GCC to use an alternate strategy: to allocate the entire argument block and then store the ! arguments into it. When 'PUSH_ARGS' is nonzero, 'PUSH_ROUNDING' must be defined too. -- Macro: PUSH_ARGS_REVERSED A C expression. If nonzero, function arguments will be evaluated from last to first, rather than from first to last. If this macro ! is not defined, it defaults to 'PUSH_ARGS' on targets where the stack and args grow in opposite directions, and 0 otherwise. -- Macro: PUSH_ROUNDING (NPUSHED) *************** certain arguments in registers. *** 30437,30447 **** -- Macro: ACCUMULATE_OUTGOING_ARGS A C expression. If nonzero, the maximum amount of space required for outgoing arguments will be computed and placed into ! `crtl->outgoing_args_size'. No space will be pushed onto the ! stack for each call; instead, the function prologue should ! increase the stack frame size by this amount. ! Setting both `PUSH_ARGS' and `ACCUMULATE_OUTGOING_ARGS' is not proper. -- Macro: REG_PARM_STACK_SPACE (FNDECL) --- 30079,30089 ---- -- Macro: ACCUMULATE_OUTGOING_ARGS A C expression. If nonzero, the maximum amount of space required for outgoing arguments will be computed and placed into ! 'crtl->outgoing_args_size'. No space will be pushed onto the stack ! for each call; instead, the function prologue should increase the ! stack frame size by this amount. ! Setting both 'PUSH_ARGS' and 'ACCUMULATE_OUTGOING_ARGS' is not proper. -- Macro: REG_PARM_STACK_SPACE (FNDECL) *************** certain arguments in registers. *** 30449,30482 **** been allocated for arguments even when their values are passed in registers. ! The value of this macro is the size, in bytes, of the area ! reserved for arguments passed in registers for the function ! represented by FNDECL, which can be zero if GCC is calling a ! library function. The argument FNDECL can be the FUNCTION_DECL, ! or the type itself of the function. This space can be allocated by the caller, or be a part of the ! machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says which. -- Macro: OUTGOING_REG_PARM_STACK_SPACE (FNTYPE) Define this to a nonzero value if it is the responsibility of the caller to allocate the area reserved for arguments passed in ! registers when calling a function of FNTYPE. FNTYPE may be NULL ! if the function called is a library function. ! If `ACCUMULATE_OUTGOING_ARGS' is defined, this macro controls whether the space for these arguments counts in the value of ! `crtl->outgoing_args_size'. -- Macro: STACK_PARMS_IN_REG_PARM_AREA ! Define this macro if `REG_PARM_STACK_SPACE' is defined, but the stack parameters don't skip the area specified by it. ! Normally, when a parameter is not passed in registers, it is ! placed on the stack beyond the `REG_PARM_STACK_SPACE' area. ! Defining this macro suppresses this behavior and causes the ! parameter to be passed on the stack in its natural location. -- Target Hook: int TARGET_RETURN_POPS_ARGS (tree FUNDECL, tree FUNTYPE, int SIZE) --- 30091,30124 ---- been allocated for arguments even when their values are passed in registers. ! The value of this macro is the size, in bytes, of the area reserved ! for arguments passed in registers for the function represented by ! FNDECL, which can be zero if GCC is calling a library function. ! The argument FNDECL can be the FUNCTION_DECL, or the type itself of ! the function. This space can be allocated by the caller, or be a part of the ! machine-dependent stack frame: 'OUTGOING_REG_PARM_STACK_SPACE' says which. -- Macro: OUTGOING_REG_PARM_STACK_SPACE (FNTYPE) Define this to a nonzero value if it is the responsibility of the caller to allocate the area reserved for arguments passed in ! registers when calling a function of FNTYPE. FNTYPE may be NULL if ! the function called is a library function. ! If 'ACCUMULATE_OUTGOING_ARGS' is defined, this macro controls whether the space for these arguments counts in the value of ! 'crtl->outgoing_args_size'. -- Macro: STACK_PARMS_IN_REG_PARM_AREA ! Define this macro if 'REG_PARM_STACK_SPACE' is defined, but the stack parameters don't skip the area specified by it. ! Normally, when a parameter is not passed in registers, it is placed ! on the stack beyond the 'REG_PARM_STACK_SPACE' area. Defining this ! macro suppresses this behavior and causes the parameter to be ! passed on the stack in its natural location. -- Target Hook: int TARGET_RETURN_POPS_ARGS (tree FUNDECL, tree FUNTYPE, int SIZE) *************** certain arguments in registers. *** 30487,30527 **** FUNDECL is a C variable whose value is a tree node that describes the function in question. Normally it is a node of type ! `FUNCTION_DECL' that describes the declaration of the function. ! From this you can obtain the `DECL_ATTRIBUTES' of the function. FUNTYPE is a C variable whose value is a tree node that describes the function in question. Normally it is a node of type ! `FUNCTION_TYPE' that describes the data type of the function. ! From this it is possible to obtain the data types of the value and arguments (if known). ! When a call to a library function is being considered, FUNDECL ! will contain an identifier node for the library function. Thus, if ! you need to distinguish among various library functions, you can ! do so by their names. Note that "library function" in this ! context means a function used to perform arithmetic, whose name is ! known specially in the compiler and was not mentioned in the C ! code being compiled. ! SIZE is the number of bytes of arguments passed on the stack. If ! a variable number of bytes is passed, it is zero, and argument popping will always be the responsibility of the calling function. On the VAX, all functions always pop their arguments, so the definition of this macro is SIZE. On the 68000, using the standard calling convention, no functions pop their arguments, so the value of the macro is always 0 in this case. But an alternative calling ! convention is available in which functions that take a fixed ! number of arguments pop them but other functions (such as ! `printf') pop nothing (the caller pops all). When this convention ! is in use, FUNTYPE is examined to determine whether a function ! takes a fixed number of arguments. -- Macro: CALL_POPS_ARGS (CUM) A C expression that should indicate the number of bytes a call sequence pops off the stack. It is added to the value of ! `RETURN_POPS_ARGS' when compiling a function call. CUM is the variable in which all arguments to the called function have been accumulated. --- 30129,30169 ---- FUNDECL is a C variable whose value is a tree node that describes the function in question. Normally it is a node of type ! 'FUNCTION_DECL' that describes the declaration of the function. ! From this you can obtain the 'DECL_ATTRIBUTES' of the function. FUNTYPE is a C variable whose value is a tree node that describes the function in question. Normally it is a node of type ! 'FUNCTION_TYPE' that describes the data type of the function. From ! this it is possible to obtain the data types of the value and arguments (if known). ! When a call to a library function is being considered, FUNDECL will ! contain an identifier node for the library function. Thus, if you ! need to distinguish among various library functions, you can do so ! by their names. Note that "library function" in this context means ! a function used to perform arithmetic, whose name is known ! specially in the compiler and was not mentioned in the C code being ! compiled. ! SIZE is the number of bytes of arguments passed on the stack. If a ! variable number of bytes is passed, it is zero, and argument popping will always be the responsibility of the calling function. On the VAX, all functions always pop their arguments, so the definition of this macro is SIZE. On the 68000, using the standard calling convention, no functions pop their arguments, so the value of the macro is always 0 in this case. But an alternative calling ! convention is available in which functions that take a fixed number ! of arguments pop them but other functions (such as 'printf') pop ! nothing (the caller pops all). When this convention is in use, ! FUNTYPE is examined to determine whether a function takes a fixed ! number of arguments. -- Macro: CALL_POPS_ARGS (CUM) A C expression that should indicate the number of bytes a call sequence pops off the stack. It is added to the value of ! 'RETURN_POPS_ARGS' when compiling a function call. CUM is the variable in which all arguments to the called function have been accumulated. *************** certain arguments in registers. *** 30530,30536 **** used that pops certain registers off the stack, depending on the arguments that have been passed to the function. Since this is a property of the call site, not of the called function, ! `RETURN_POPS_ARGS' is not appropriate.  File: gccint.info, Node: Register Arguments, Next: Scalar Return, Prev: Stack Arguments, Up: Stack and Calling --- 30172,30178 ---- used that pops certain registers off the stack, depending on the arguments that have been passed to the function. Since this is a property of the call site, not of the called function, ! 'RETURN_POPS_ARGS' is not appropriate.  File: gccint.info, Node: Register Arguments, Next: Scalar Return, Prev: Stack Arguments, Up: Stack and Calling *************** the stack. *** 30550,30618 **** The arguments are CA, which summarizes all the previous arguments; MODE, the machine mode of the argument; TYPE, the data type of the argument as a tree node or 0 if that is not known (which happens ! for C support library functions); and NAMED, which is `true' for ! an ordinary argument and `false' for nameless arguments that ! correspond to `...' in the called function's prototype. TYPE can be an incomplete type if a syntax error has previously occurred. ! The return value is usually either a `reg' RTX for the hard register in which to pass the argument, or zero to pass the argument on the stack. ! The value of the expression can also be a `parallel' RTX. This is ! used when an argument is passed in multiple locations. The mode ! of the `parallel' should be the mode of the entire argument. The ! `parallel' holds any number of `expr_list' pairs; each one describes where part of the argument is passed. In each ! `expr_list' the first operand must be a `reg' RTX for the hard register in which to pass this part of the argument, and the mode of the register RTX indicates how large this part of the argument ! is. The second operand of the `expr_list' is a `const_int' which gives the offset in bytes into the entire argument of where this ! part starts. As a special exception the first `expr_list' in the ! `parallel' RTX may have a first operand of zero. This indicates that the entire argument is also stored on the stack. ! The last time this hook is called, it is called with `MODE == ! VOIDmode', and its result is passed to the `call' or `call_value' pattern as operands 2 and 3 respectively. ! The usual way to make the ISO library `stdarg.h' work on a machine where some arguments are usually passed in registers, is to cause ! nameless arguments to be passed on the stack instead. This is ! done by making `TARGET_FUNCTION_ARG' return 0 whenever NAMED is ! `false'. ! You may use the hook `targetm.calls.must_pass_in_stack' in the ! definition of this macro to determine if this argument is of a ! type that must be passed in the stack. If `REG_PARM_STACK_SPACE' ! is not defined and `TARGET_FUNCTION_ARG' returns nonzero for such ! an argument, the compiler will abort. If `REG_PARM_STACK_SPACE' is ! defined, the argument will be computed in the stack and then ! loaded into a register. ! -- Target Hook: bool TARGET_MUST_PASS_IN_STACK (enum machine_mode ! MODE, const_tree TYPE) ! This target hook should return `true' if we should not pass TYPE ! solely in registers. The file `expr.h' defines a definition that ! is usually appropriate, refer to `expr.h' for additional documentation. ! -- Target Hook: rtx TARGET_FUNCTION_INCOMING_ARG (cumulative_args_t ! CA, enum machine_mode MODE, const_tree TYPE, bool NAMED) Define this hook if the target machine has "register windows", so that the register in which a function sees an arguments is not necessarily the same as the one in which the caller passed the argument. ! For such machines, `TARGET_FUNCTION_ARG' computes the register in which the caller passes the value, and ! `TARGET_FUNCTION_INCOMING_ARG' should be defined in a similar fashion to tell the function being called where the arguments will arrive. ! If `TARGET_FUNCTION_INCOMING_ARG' is not defined, ! `TARGET_FUNCTION_ARG' serves both purposes. -- Target Hook: int TARGET_ARG_PARTIAL_BYTES (cumulative_args_t CUM, enum machine_mode MODE, tree TYPE, bool NAMED) --- 30192,30259 ---- The arguments are CA, which summarizes all the previous arguments; MODE, the machine mode of the argument; TYPE, the data type of the argument as a tree node or 0 if that is not known (which happens ! for C support library functions); and NAMED, which is 'true' for an ! ordinary argument and 'false' for nameless arguments that ! correspond to '...' in the called function's prototype. TYPE can be an incomplete type if a syntax error has previously occurred. ! The return value is usually either a 'reg' RTX for the hard register in which to pass the argument, or zero to pass the argument on the stack. ! The value of the expression can also be a 'parallel' RTX. This is ! used when an argument is passed in multiple locations. The mode of ! the 'parallel' should be the mode of the entire argument. The ! 'parallel' holds any number of 'expr_list' pairs; each one describes where part of the argument is passed. In each ! 'expr_list' the first operand must be a 'reg' RTX for the hard register in which to pass this part of the argument, and the mode of the register RTX indicates how large this part of the argument ! is. The second operand of the 'expr_list' is a 'const_int' which gives the offset in bytes into the entire argument of where this ! part starts. As a special exception the first 'expr_list' in the ! 'parallel' RTX may have a first operand of zero. This indicates that the entire argument is also stored on the stack. ! The last time this hook is called, it is called with 'MODE == ! VOIDmode', and its result is passed to the 'call' or 'call_value' pattern as operands 2 and 3 respectively. ! The usual way to make the ISO library 'stdarg.h' work on a machine where some arguments are usually passed in registers, is to cause ! nameless arguments to be passed on the stack instead. This is done ! by making 'TARGET_FUNCTION_ARG' return 0 whenever NAMED is 'false'. ! You may use the hook 'targetm.calls.must_pass_in_stack' in the ! definition of this macro to determine if this argument is of a type ! that must be passed in the stack. If 'REG_PARM_STACK_SPACE' is not ! defined and 'TARGET_FUNCTION_ARG' returns nonzero for such an ! argument, the compiler will abort. If 'REG_PARM_STACK_SPACE' is ! defined, the argument will be computed in the stack and then loaded ! into a register. ! -- Target Hook: bool TARGET_MUST_PASS_IN_STACK (enum machine_mode MODE, ! const_tree TYPE) ! This target hook should return 'true' if we should not pass TYPE ! solely in registers. The file 'expr.h' defines a definition that ! is usually appropriate, refer to 'expr.h' for additional documentation. ! -- Target Hook: rtx TARGET_FUNCTION_INCOMING_ARG (cumulative_args_t CA, ! enum machine_mode MODE, const_tree TYPE, bool NAMED) Define this hook if the target machine has "register windows", so that the register in which a function sees an arguments is not necessarily the same as the one in which the caller passed the argument. ! For such machines, 'TARGET_FUNCTION_ARG' computes the register in which the caller passes the value, and ! 'TARGET_FUNCTION_INCOMING_ARG' should be defined in a similar fashion to tell the function being called where the arguments will arrive. ! If 'TARGET_FUNCTION_INCOMING_ARG' is not defined, ! 'TARGET_FUNCTION_ARG' serves both purposes. -- Target Hook: int TARGET_ARG_PARTIAL_BYTES (cumulative_args_t CUM, enum machine_mode MODE, tree TYPE, bool NAMED) *************** the stack. *** 30624,30650 **** On some machines, certain arguments must be passed partially in registers and partially in memory. On these machines, typically the first few words of arguments are passed in registers, and the ! rest on the stack. If a multi-word argument (a `double' or a structure) crosses that boundary, its first few words must be passed in registers and the rest must be pushed. This macro tells the compiler when this occurs, and how many bytes should go in registers. ! `TARGET_FUNCTION_ARG' for these arguments should return the first register to be used by the caller for this argument; likewise ! `TARGET_FUNCTION_INCOMING_ARG', for the called function. -- Target Hook: bool TARGET_PASS_BY_REFERENCE (cumulative_args_t CUM, enum machine_mode MODE, const_tree TYPE, bool NAMED) ! This target hook should return `true' if an argument at the position indicated by CUM should be passed by reference. This predicate is queried after target independent reasons for being ! passed by reference, such as `TREE_ADDRESSABLE (type)'. ! If the hook returns true, a copy of that argument is made in ! memory and a pointer to the argument is passed instead of the ! argument itself. The pointer is passed in whatever way is ! appropriate for passing a pointer to that type. -- Target Hook: bool TARGET_CALLEE_COPIES (cumulative_args_t CUM, enum machine_mode MODE, const_tree TYPE, bool NAMED) --- 30265,30291 ---- On some machines, certain arguments must be passed partially in registers and partially in memory. On these machines, typically the first few words of arguments are passed in registers, and the ! rest on the stack. If a multi-word argument (a 'double' or a structure) crosses that boundary, its first few words must be passed in registers and the rest must be pushed. This macro tells the compiler when this occurs, and how many bytes should go in registers. ! 'TARGET_FUNCTION_ARG' for these arguments should return the first register to be used by the caller for this argument; likewise ! 'TARGET_FUNCTION_INCOMING_ARG', for the called function. -- Target Hook: bool TARGET_PASS_BY_REFERENCE (cumulative_args_t CUM, enum machine_mode MODE, const_tree TYPE, bool NAMED) ! This target hook should return 'true' if an argument at the position indicated by CUM should be passed by reference. This predicate is queried after target independent reasons for being ! passed by reference, such as 'TREE_ADDRESSABLE (type)'. ! If the hook returns true, a copy of that argument is made in memory ! and a pointer to the argument is passed instead of the argument ! itself. The pointer is passed in whatever way is appropriate for ! passing a pointer to that type. -- Target Hook: bool TARGET_CALLEE_COPIES (cumulative_args_t CUM, enum machine_mode MODE, const_tree TYPE, bool NAMED) *************** the stack. *** 30661,30764 **** -- Macro: CUMULATIVE_ARGS A C type for declaring a variable that is used as the first ! argument of `TARGET_FUNCTION_ARG' and other related values. For ! some target machines, the type `int' suffices and can hold the number of bytes of argument so far. ! There is no need to record in `CUMULATIVE_ARGS' anything about the arguments that have been passed on the stack. The compiler has other variables to keep track of that. For target machines on which all arguments are passed on the stack, there is no need to ! store anything in `CUMULATIVE_ARGS'; however, the data structure ! must exist and should not be empty, so use `int'. -- Macro: OVERRIDE_ABI_FORMAT (FNDECL) If defined, this macro is called before generating any code for a function, but after the CFUN descriptor for the function has been ! created. The back end may use this macro to update CFUN to ! reflect an ABI other than that which would normally be used by ! default. If the compiler is generating code for a ! compiler-generated function, FNDECL may be `NULL'. -- Macro: INIT_CUMULATIVE_ARGS (CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) A C statement (sans semicolon) for initializing the variable CUM for the state at the beginning of the argument list. The variable ! has type `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node ! for the data type of the function which will receive the args, or ! 0 if the args are to a compiler support library function. For ! direct calls that are not libcalls, FNDECL contain the declaration ! node of the function. FNDECL is also set when ! `INIT_CUMULATIVE_ARGS' is used to find arguments for the function ! being compiled. N_NAMED_ARGS is set to the number of named ! arguments, including a structure return address if it is passed as ! a parameter, when making a call. When processing incoming ! arguments, N_NAMED_ARGS is set to -1. When processing a call to a compiler support library function, ! LIBNAME identifies which one. It is a `symbol_ref' rtx which contains the name of the function, as a string. LIBNAME is 0 when an ordinary C function call is being processed. Thus, each time this macro is called, either LIBNAME or FNTYPE is nonzero, but never both of them at once. -- Macro: INIT_CUMULATIVE_LIBCALL_ARGS (CUM, MODE, LIBNAME) ! Like `INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls, ! it gets a `MODE' argument instead of FNTYPE, that would be `NULL'. INDIRECT would always be zero, too. If this macro is not defined, ! `INIT_CUMULATIVE_ARGS (cum, NULL_RTX, libname, 0)' is used instead. -- Macro: INIT_CUMULATIVE_INCOMING_ARGS (CUM, FNTYPE, LIBNAME) ! Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the arguments for the function being compiled. If this ! macro is undefined, `INIT_CUMULATIVE_ARGS' is used instead. The value passed for LIBNAME is always 0, since library routines with special calling conventions are never compiled with GCC. The ! argument LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. ! -- Target Hook: void TARGET_FUNCTION_ARG_ADVANCE (cumulative_args_t ! CA, enum machine_mode MODE, const_tree TYPE, bool NAMED) This hook updates the summarizer variable pointed to by CA to advance past an argument in the argument list. The values MODE, TYPE and NAMED describe that argument. Once this is done, the variable CUM is suitable for analyzing the _following_ argument ! with `TARGET_FUNCTION_ARG', etc. This hook need not do anything if the argument in question was ! passed on the stack. The compiler knows how to track the amount ! of stack space used for arguments without any special help. -- Macro: FUNCTION_ARG_OFFSET (MODE, TYPE) If defined, a C expression that is the number of bytes to add to the offset of the argument passed in memory. This is needed for ! the SPU, which passes `char' and `short' arguments in the preferred slot that is in the middle of the quad word instead of starting at the top. -- Macro: FUNCTION_ARG_PADDING (MODE, TYPE) If defined, a C expression which determines whether, and in which direction, to pad out an argument with extra space. The value ! should be of type `enum direction': either `upward' to pad above ! the argument, `downward' to pad below, or `none' to inhibit padding. The _amount_ of padding is not controlled by this macro, but by the ! target hook `TARGET_FUNCTION_ARG_ROUND_BOUNDARY'. It is always just enough to reach the next multiple of that boundary. This macro has a default definition which is right for most ! systems. For little-endian machines, the default is to pad ! upward. For big-endian machines, the default is to pad downward ! for an argument of constant size shorter than an `int', and upward otherwise. -- Macro: PAD_VARARGS_DOWN If defined, a C expression which determines whether the default implementation of va_arg will attempt to pad down before reading the next argument, if that argument is smaller than its aligned ! space as controlled by `PARM_BOUNDARY'. If this macro is not ! defined, all such arguments are padded down if `BYTES_BIG_ENDIAN' is true. -- Macro: BLOCK_REG_PADDING (MODE, TYPE, FIRST) --- 30302,30405 ---- -- Macro: CUMULATIVE_ARGS A C type for declaring a variable that is used as the first ! argument of 'TARGET_FUNCTION_ARG' and other related values. For ! some target machines, the type 'int' suffices and can hold the number of bytes of argument so far. ! There is no need to record in 'CUMULATIVE_ARGS' anything about the arguments that have been passed on the stack. The compiler has other variables to keep track of that. For target machines on which all arguments are passed on the stack, there is no need to ! store anything in 'CUMULATIVE_ARGS'; however, the data structure ! must exist and should not be empty, so use 'int'. -- Macro: OVERRIDE_ABI_FORMAT (FNDECL) If defined, this macro is called before generating any code for a function, but after the CFUN descriptor for the function has been ! created. The back end may use this macro to update CFUN to reflect ! an ABI other than that which would normally be used by default. If ! the compiler is generating code for a compiler-generated function, ! FNDECL may be 'NULL'. -- Macro: INIT_CUMULATIVE_ARGS (CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) A C statement (sans semicolon) for initializing the variable CUM for the state at the beginning of the argument list. The variable ! has type 'CUMULATIVE_ARGS'. The value of FNTYPE is the tree node ! for the data type of the function which will receive the args, or 0 ! if the args are to a compiler support library function. For direct ! calls that are not libcalls, FNDECL contain the declaration node of ! the function. FNDECL is also set when 'INIT_CUMULATIVE_ARGS' is ! used to find arguments for the function being compiled. ! N_NAMED_ARGS is set to the number of named arguments, including a ! structure return address if it is passed as a parameter, when ! making a call. When processing incoming arguments, N_NAMED_ARGS is ! set to -1. When processing a call to a compiler support library function, ! LIBNAME identifies which one. It is a 'symbol_ref' rtx which contains the name of the function, as a string. LIBNAME is 0 when an ordinary C function call is being processed. Thus, each time this macro is called, either LIBNAME or FNTYPE is nonzero, but never both of them at once. -- Macro: INIT_CUMULATIVE_LIBCALL_ARGS (CUM, MODE, LIBNAME) ! Like 'INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls, it ! gets a 'MODE' argument instead of FNTYPE, that would be 'NULL'. INDIRECT would always be zero, too. If this macro is not defined, ! 'INIT_CUMULATIVE_ARGS (cum, NULL_RTX, libname, 0)' is used instead. -- Macro: INIT_CUMULATIVE_INCOMING_ARGS (CUM, FNTYPE, LIBNAME) ! Like 'INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the arguments for the function being compiled. If this ! macro is undefined, 'INIT_CUMULATIVE_ARGS' is used instead. The value passed for LIBNAME is always 0, since library routines with special calling conventions are never compiled with GCC. The ! argument LIBNAME exists for symmetry with 'INIT_CUMULATIVE_ARGS'. ! -- Target Hook: void TARGET_FUNCTION_ARG_ADVANCE (cumulative_args_t CA, ! enum machine_mode MODE, const_tree TYPE, bool NAMED) This hook updates the summarizer variable pointed to by CA to advance past an argument in the argument list. The values MODE, TYPE and NAMED describe that argument. Once this is done, the variable CUM is suitable for analyzing the _following_ argument ! with 'TARGET_FUNCTION_ARG', etc. This hook need not do anything if the argument in question was ! passed on the stack. The compiler knows how to track the amount of ! stack space used for arguments without any special help. -- Macro: FUNCTION_ARG_OFFSET (MODE, TYPE) If defined, a C expression that is the number of bytes to add to the offset of the argument passed in memory. This is needed for ! the SPU, which passes 'char' and 'short' arguments in the preferred slot that is in the middle of the quad word instead of starting at the top. -- Macro: FUNCTION_ARG_PADDING (MODE, TYPE) If defined, a C expression which determines whether, and in which direction, to pad out an argument with extra space. The value ! should be of type 'enum direction': either 'upward' to pad above ! the argument, 'downward' to pad below, or 'none' to inhibit padding. The _amount_ of padding is not controlled by this macro, but by the ! target hook 'TARGET_FUNCTION_ARG_ROUND_BOUNDARY'. It is always just enough to reach the next multiple of that boundary. This macro has a default definition which is right for most ! systems. For little-endian machines, the default is to pad upward. ! For big-endian machines, the default is to pad downward for an ! argument of constant size shorter than an 'int', and upward otherwise. -- Macro: PAD_VARARGS_DOWN If defined, a C expression which determines whether the default implementation of va_arg will attempt to pad down before reading the next argument, if that argument is smaller than its aligned ! space as controlled by 'PARM_BOUNDARY'. If this macro is not ! defined, all such arguments are padded down if 'BYTES_BIG_ENDIAN' is true. -- Macro: BLOCK_REG_PADDING (MODE, TYPE, FIRST) *************** the stack. *** 30766,30788 **** registers and memory. FIRST is nonzero if this is the only element. Defining this macro allows better control of register function parameters on big-endian machines, without using ! `PARALLEL' rtl. In particular, `MUST_PASS_IN_STACK' need not test padding and mode of types in registers, as there is no longer a ! "wrong" part of a register; For example, a three byte aggregate ! may be passed in the high part of a register if so required. -- Target Hook: unsigned int TARGET_FUNCTION_ARG_BOUNDARY (enum machine_mode MODE, const_tree TYPE) This hook returns the alignment boundary, in bits, of an argument with the specified mode and type. The default hook returns ! `PARM_BOUNDARY' for all arguments. -- Target Hook: unsigned int TARGET_FUNCTION_ARG_ROUND_BOUNDARY (enum machine_mode MODE, const_tree TYPE) ! Normally, the size of an argument is rounded up to `PARM_BOUNDARY', ! which is the default value for this hook. You can define this ! hook to return a different value if an argument size must be ! rounded to a larger value. -- Macro: FUNCTION_ARG_REGNO_P (REGNO) A C expression that is nonzero if REGNO is the number of a hard --- 30407,30429 ---- registers and memory. FIRST is nonzero if this is the only element. Defining this macro allows better control of register function parameters on big-endian machines, without using ! 'PARALLEL' rtl. In particular, 'MUST_PASS_IN_STACK' need not test padding and mode of types in registers, as there is no longer a ! "wrong" part of a register; For example, a three byte aggregate may ! be passed in the high part of a register if so required. -- Target Hook: unsigned int TARGET_FUNCTION_ARG_BOUNDARY (enum machine_mode MODE, const_tree TYPE) This hook returns the alignment boundary, in bits, of an argument with the specified mode and type. The default hook returns ! 'PARM_BOUNDARY' for all arguments. -- Target Hook: unsigned int TARGET_FUNCTION_ARG_ROUND_BOUNDARY (enum machine_mode MODE, const_tree TYPE) ! Normally, the size of an argument is rounded up to 'PARM_BOUNDARY', ! which is the default value for this hook. You can define this hook ! to return a different value if an argument size must be rounded to ! a larger value. -- Macro: FUNCTION_ARG_REGNO_P (REGNO) A C expression that is nonzero if REGNO is the number of a hard *************** the stack. *** 30797,30819 **** as two scalar parameters. By default, GCC will attempt to pack complex arguments into the target's word size. Some ABIs require complex arguments to be split and treated as their individual ! components. For example, on AIX64, complex floats should be ! passed in a pair of floating point registers, even though a ! complex float would fit in one 64-bit floating point register. ! The default value of this hook is `NULL', which is treated as always false. -- Target Hook: tree TARGET_BUILD_BUILTIN_VA_LIST (void) ! This hook returns a type node for `va_list' for the target. The ! default version of the hook returns `void*'. ! -- Target Hook: int TARGET_ENUM_VA_LIST_P (int IDX, const char ! **PNAME, tree *PTREE) ! This target hook is used in function `c_common_nodes_and_builtins' to iterate through the target specific builtin types for va_list. ! The variable IDX is used as iterator. PNAME has to be a pointer to ! a `const char *' and PTREE a pointer to a `tree' typed variable. The arguments PNAME and PTREE are used to store the result of this macro and are set to the name of the va_list builtin type and its internal type. If the return value of this macro is zero, then --- 30438,30460 ---- as two scalar parameters. By default, GCC will attempt to pack complex arguments into the target's word size. Some ABIs require complex arguments to be split and treated as their individual ! components. For example, on AIX64, complex floats should be passed ! in a pair of floating point registers, even though a complex float ! would fit in one 64-bit floating point register. ! The default value of this hook is 'NULL', which is treated as always false. -- Target Hook: tree TARGET_BUILD_BUILTIN_VA_LIST (void) ! This hook returns a type node for 'va_list' for the target. The ! default version of the hook returns 'void*'. ! -- Target Hook: int TARGET_ENUM_VA_LIST_P (int IDX, const char **PNAME, ! tree *PTREE) ! This target hook is used in function 'c_common_nodes_and_builtins' to iterate through the target specific builtin types for va_list. ! The variable IDX is used as iterator. PNAME has to be a pointer to ! a 'const char *' and PTREE a pointer to a 'tree' typed variable. The arguments PNAME and PTREE are used to store the result of this macro and are set to the name of the va_list builtin type and its internal type. If the return value of this macro is zero, then *************** the stack. *** 30823,30865 **** -- Target Hook: tree TARGET_FN_ABI_VA_LIST (tree FNDECL) This hook returns the va_list type of the calling convention specified by FNDECL. The default version of this hook returns ! `va_list_type_node'. -- Target Hook: tree TARGET_CANONICAL_VA_LIST_TYPE (tree TYPE) This hook returns the va_list type of the calling convention ! specified by the type of TYPE. If TYPE is not a valid va_list ! type, it returns `NULL_TREE'. -- Target Hook: tree TARGET_GIMPLIFY_VA_ARG_EXPR (tree VALIST, tree TYPE, gimple_seq *PRE_P, gimple_seq *POST_P) ! This hook performs target-specific gimplification of ! `VA_ARG_EXPR'. The first two parameters correspond to the ! arguments to `va_arg'; the latter two are as in ! `gimplify.c:gimplify_expr'. -- Target Hook: bool TARGET_VALID_POINTER_MODE (enum machine_mode MODE) Define this to return nonzero if the port can handle pointers with machine mode MODE. The default version of this hook returns true ! for both `ptr_mode' and `Pmode'. -- Target Hook: bool TARGET_REF_MAY_ALIAS_ERRNO (struct ao_ref_s *REF) ! Define this to return nonzero if the memory reference REF may ! alias with the system C library errno location. The default ! version of this hook assumes the system C library errno location ! is either a declaration of type int or accessed by dereferencing ! a pointer to int. -- Target Hook: bool TARGET_SCALAR_MODE_SUPPORTED_P (enum machine_mode MODE) Define this to return nonzero if the port is prepared to handle insns involving scalar mode MODE. For a scalar mode to be ! considered supported, all the basic arithmetic and comparisons ! must work. ! The default version of this hook returns true for any mode ! required to handle the basic C types (as defined by the port). ! Included here are the double-word arithmetic supported by the code ! in `optabs.c'. -- Target Hook: bool TARGET_VECTOR_MODE_SUPPORTED_P (enum machine_mode MODE) --- 30464,30505 ---- -- Target Hook: tree TARGET_FN_ABI_VA_LIST (tree FNDECL) This hook returns the va_list type of the calling convention specified by FNDECL. The default version of this hook returns ! 'va_list_type_node'. -- Target Hook: tree TARGET_CANONICAL_VA_LIST_TYPE (tree TYPE) This hook returns the va_list type of the calling convention ! specified by the type of TYPE. If TYPE is not a valid va_list ! type, it returns 'NULL_TREE'. -- Target Hook: tree TARGET_GIMPLIFY_VA_ARG_EXPR (tree VALIST, tree TYPE, gimple_seq *PRE_P, gimple_seq *POST_P) ! This hook performs target-specific gimplification of 'VA_ARG_EXPR'. ! The first two parameters correspond to the arguments to 'va_arg'; ! the latter two are as in 'gimplify.c:gimplify_expr'. -- Target Hook: bool TARGET_VALID_POINTER_MODE (enum machine_mode MODE) Define this to return nonzero if the port can handle pointers with machine mode MODE. The default version of this hook returns true ! for both 'ptr_mode' and 'Pmode'. -- Target Hook: bool TARGET_REF_MAY_ALIAS_ERRNO (struct ao_ref_s *REF) ! Define this to return nonzero if the memory reference REF may alias ! with the system C library errno location. The default version of ! this hook assumes the system C library errno location is either a ! declaration of type int or accessed by dereferencing a pointer to ! int. -- Target Hook: bool TARGET_SCALAR_MODE_SUPPORTED_P (enum machine_mode MODE) Define this to return nonzero if the port is prepared to handle insns involving scalar mode MODE. For a scalar mode to be ! considered supported, all the basic arithmetic and comparisons must ! work. ! The default version of this hook returns true for any mode required ! to handle the basic C types (as defined by the port). Included ! here are the double-word arithmetic supported by the code in ! 'optabs.c'. -- Target Hook: bool TARGET_VECTOR_MODE_SUPPORTED_P (enum machine_mode MODE) *************** the stack. *** 30871,30877 **** MODE, unsigned HOST_WIDE_INT NELEMS) Return true if GCC should try to use a scalar mode to store an array of NELEMS elements, given that each element has mode MODE. ! Returning true here overrides the usual `MAX_FIXED_MODE' limit and allows GCC to use any defined integer mode. One use of this hook is to support vector load and store operations --- 30511,30517 ---- MODE, unsigned HOST_WIDE_INT NELEMS) Return true if GCC should try to use a scalar mode to store an array of NELEMS elements, given that each element has mode MODE. ! Returning true here overrides the usual 'MAX_FIXED_MODE' limit and allows GCC to use any defined integer mode. One use of this hook is to support vector load and store operations *************** the stack. *** 30887,30902 **** int8x8_t val[3]; } int8x8x3_t; ! If this hook allows `val' to have a scalar mode, then `int8x8x3_t' ! can have the same mode. GCC can then store `int8x8x3_t's in registers rather than forcing them onto the stack. -- Target Hook: bool TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P (enum machine_mode MODE) Define this to return nonzero for machine modes for which the port has small register classes. If this target hook returns nonzero ! for a given MODE, the compiler will try to minimize the lifetime ! of registers in MODE. The hook may be called with `VOIDmode' as argument. In this case, the hook is expected to return nonzero if it returns nonzero for any mode. --- 30527,30542 ---- int8x8_t val[3]; } int8x8x3_t; ! If this hook allows 'val' to have a scalar mode, then 'int8x8x3_t' ! can have the same mode. GCC can then store 'int8x8x3_t's in registers rather than forcing them onto the stack. -- Target Hook: bool TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P (enum machine_mode MODE) Define this to return nonzero for machine modes for which the port has small register classes. If this target hook returns nonzero ! for a given MODE, the compiler will try to minimize the lifetime of ! registers in MODE. The hook may be called with 'VOIDmode' as argument. In this case, the hook is expected to return nonzero if it returns nonzero for any mode. *************** the stack. *** 30910,30934 **** in an instruction, but the machine modes of the registers set or used in the instruction are already known. And for some machines, register classes are small for, say, integer registers but not for ! floating point registers. For example, the AMD x86-64 ! architecture requires specific registers for the legacy x86 ! integer instructions, but there are many SSE registers for ! floating point operations. On such targets, a good strategy may ! be to return nonzero from this hook for `INTEGRAL_MODE_P' machine ! modes but zero for the SSE register classes. ! The default version of this hook returns false for any mode. It ! is always safe to redefine this hook to return with a nonzero ! value. But if you unnecessarily define it, you will reduce the ! amount of optimizations that can be performed in some cases. If ! you do not define this hook to return a nonzero value when it is ! required, the compiler will run out of spill registers and print a ! fatal error message. -- Target Hook: unsigned int TARGET_FLAGS_REGNUM If the target has a dedicated flags register, and it needs to use ! the post-reload comparison elimination pass, then this value ! should be set appropriately.  File: gccint.info, Node: Scalar Return, Next: Aggregate Return, Prev: Register Arguments, Up: Stack and Calling --- 30550,30574 ---- in an instruction, but the machine modes of the registers set or used in the instruction are already known. And for some machines, register classes are small for, say, integer registers but not for ! floating point registers. For example, the AMD x86-64 architecture ! requires specific registers for the legacy x86 integer ! instructions, but there are many SSE registers for floating point ! operations. On such targets, a good strategy may be to return ! nonzero from this hook for 'INTEGRAL_MODE_P' machine modes but zero ! for the SSE register classes. ! The default version of this hook returns false for any mode. It is ! always safe to redefine this hook to return with a nonzero value. ! But if you unnecessarily define it, you will reduce the amount of ! optimizations that can be performed in some cases. If you do not ! define this hook to return a nonzero value when it is required, the ! compiler will run out of spill registers and print a fatal error ! message. -- Target Hook: unsigned int TARGET_FLAGS_REGNUM If the target has a dedicated flags register, and it needs to use ! the post-reload comparison elimination pass, then this value should ! be set appropriately.  File: gccint.info, Node: Scalar Return, Next: Aggregate Return, Prev: Register Arguments, Up: Stack and Calling *************** values--values that can fit in registers *** 30941,30988 **** -- Target Hook: rtx TARGET_FUNCTION_VALUE (const_tree RET_TYPE, const_tree FN_DECL_OR_TYPE, bool OUTGOING) Define this to return an RTX representing the place where a function returns or receives a value of data type RET_TYPE, a tree node representing a data type. FN_DECL_OR_TYPE is a tree node ! representing `FUNCTION_DECL' or `FUNCTION_TYPE' of a function ! being called. If OUTGOING is false, the hook should compute the ! register in which the caller will see the return value. ! Otherwise, the hook should return an RTX representing the place ! where a function returns a value. ! On many machines, only `TYPE_MODE (RET_TYPE)' is relevant. (Actually, on most machines, scalar values are returned in the same place regardless of mode.) The value of the expression is usually ! a `reg' RTX for the hard register where the return value is stored. ! The value can also be a `parallel' RTX, if the return value is in ! multiple places. See `TARGET_FUNCTION_ARG' for an explanation of ! the `parallel' form. Note that the callee will populate every ! location specified in the `parallel', but if the first element of ! the `parallel' contains the whole return value, callers will use that element as the canonical location and ignore the others. The ! m68k port uses this type of `parallel' to return pointers in both ! `%a0' (the canonical location) and `%d0'. ! If `TARGET_PROMOTE_FUNCTION_RETURN' returns true, you must apply ! the same promotion rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type. If the precise function being called is known, FUNC is a tree node ! (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This ! makes it possible to use a different value-returning convention ! for specific functions when all their calls are known. Some target machines have "register windows" so that the register ! in which a function returns its value is not the same as the one ! in which the caller sees the value. For such machines, you should return different RTX depending on OUTGOING. ! `TARGET_FUNCTION_VALUE' is not used for return values with aggregate data types, because these are returned in another way. ! See `TARGET_STRUCT_VALUE_RTX' and related macros, below. -- Macro: FUNCTION_VALUE (VALTYPE, FUNC) ! This macro has been deprecated. Use `TARGET_FUNCTION_VALUE' for a new target instead. -- Macro: LIBCALL_VALUE (MODE) --- 30581,30629 ---- -- Target Hook: rtx TARGET_FUNCTION_VALUE (const_tree RET_TYPE, const_tree FN_DECL_OR_TYPE, bool OUTGOING) + Define this to return an RTX representing the place where a function returns or receives a value of data type RET_TYPE, a tree node representing a data type. FN_DECL_OR_TYPE is a tree node ! representing 'FUNCTION_DECL' or 'FUNCTION_TYPE' of a function being ! called. If OUTGOING is false, the hook should compute the register ! in which the caller will see the return value. Otherwise, the hook ! should return an RTX representing the place where a function ! returns a value. ! On many machines, only 'TYPE_MODE (RET_TYPE)' is relevant. (Actually, on most machines, scalar values are returned in the same place regardless of mode.) The value of the expression is usually ! a 'reg' RTX for the hard register where the return value is stored. ! The value can also be a 'parallel' RTX, if the return value is in ! multiple places. See 'TARGET_FUNCTION_ARG' for an explanation of ! the 'parallel' form. Note that the callee will populate every ! location specified in the 'parallel', but if the first element of ! the 'parallel' contains the whole return value, callers will use that element as the canonical location and ignore the others. The ! m68k port uses this type of 'parallel' to return pointers in both ! '%a0' (the canonical location) and '%d0'. ! If 'TARGET_PROMOTE_FUNCTION_RETURN' returns true, you must apply ! the same promotion rules specified in 'PROMOTE_MODE' if VALTYPE is a scalar type. If the precise function being called is known, FUNC is a tree node ! ('FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This ! makes it possible to use a different value-returning convention for ! specific functions when all their calls are known. Some target machines have "register windows" so that the register ! in which a function returns its value is not the same as the one in ! which the caller sees the value. For such machines, you should return different RTX depending on OUTGOING. ! 'TARGET_FUNCTION_VALUE' is not used for return values with aggregate data types, because these are returned in another way. ! See 'TARGET_STRUCT_VALUE_RTX' and related macros, below. -- Macro: FUNCTION_VALUE (VALTYPE, FUNC) ! This macro has been deprecated. Use 'TARGET_FUNCTION_VALUE' for a new target instead. -- Macro: LIBCALL_VALUE (MODE) *************** values--values that can fit in registers *** 31012,31018 **** register in which the values of called function may come back. A register whose use for returning values is limited to serving as ! the second of a pair (for a value of type `double', say) need not be recognized by this macro. So for most machines, this definition suffices: --- 30653,30659 ---- register in which the values of called function may come back. A register whose use for returning values is limited to serving as ! the second of a pair (for a value of type 'double', say) need not be recognized by this macro. So for most machines, this definition suffices: *************** values--values that can fit in registers *** 31023,31037 **** macro should recognize only the caller's register numbers. This macro has been deprecated. Use ! `TARGET_FUNCTION_VALUE_REGNO_P' for a new target instead. -- Target Hook: bool TARGET_FUNCTION_VALUE_REGNO_P (const unsigned int REGNO) ! A target hook that return `true' if REGNO is the number of a hard register in which the values of called function may come back. A register whose use for returning values is limited to serving as ! the second of a pair (for a value of type `double', say) need not be recognized by this target hook. If the machine has register windows, so that the caller and the --- 30664,30678 ---- macro should recognize only the caller's register numbers. This macro has been deprecated. Use ! 'TARGET_FUNCTION_VALUE_REGNO_P' for a new target instead. -- Target Hook: bool TARGET_FUNCTION_VALUE_REGNO_P (const unsigned int REGNO) ! A target hook that return 'true' if REGNO is the number of a hard register in which the values of called function may come back. A register whose use for returning values is limited to serving as ! the second of a pair (for a value of type 'double', say) need not be recognized by this target hook. If the machine has register windows, so that the caller and the *************** values--values that can fit in registers *** 31042,31062 **** used. -- Macro: APPLY_RESULT_SIZE ! Define this macro if `untyped_call' and `untyped_return' need more ! space than is implied by `FUNCTION_VALUE_REGNO_P' for saving and restoring an arbitrary return value. -- Target Hook: bool TARGET_RETURN_IN_MSB (const_tree TYPE) ! This hook should return true if values of type TYPE are returned ! at the most significant end of a register (in other words, if they ! are padded at the least significant end). You can assume that TYPE ! is returned in a register; the caller is required to check this. ! Note that the register provided by `TARGET_FUNCTION_VALUE' must be able to hold the complete return value. For example, if a 1-, 2- or 3-byte structure is returned at the most significant end of a ! 4-byte register, `TARGET_FUNCTION_VALUE' should provide an ! `SImode' rtx.  File: gccint.info, Node: Aggregate Return, Next: Caller Saves, Prev: Scalar Return, Up: Stack and Calling --- 30683,30703 ---- used. -- Macro: APPLY_RESULT_SIZE ! Define this macro if 'untyped_call' and 'untyped_return' need more ! space than is implied by 'FUNCTION_VALUE_REGNO_P' for saving and restoring an arbitrary return value. -- Target Hook: bool TARGET_RETURN_IN_MSB (const_tree TYPE) ! This hook should return true if values of type TYPE are returned at ! the most significant end of a register (in other words, if they are ! padded at the least significant end). You can assume that TYPE is ! returned in a register; the caller is required to check this. ! Note that the register provided by 'TARGET_FUNCTION_VALUE' must be able to hold the complete return value. For example, if a 1-, 2- or 3-byte structure is returned at the most significant end of a ! 4-byte register, 'TARGET_FUNCTION_VALUE' should provide an 'SImode' ! rtx.  File: gccint.info, Node: Aggregate Return, Next: Caller Saves, Prev: Scalar Return, Up: Stack and Calling *************** File: gccint.info, Node: Aggregate Retu *** 31064,31073 **** 17.10.9 How Large Values Are Returned ------------------------------------- ! When a function value's mode is `BLKmode' (and in some other cases), ! the value is not returned according to `TARGET_FUNCTION_VALUE' (*note ! Scalar Return::). Instead, the caller passes the address of a block of ! memory in which the value should be stored. This address is called the "structure value address". This section describes how to control returning structure values in --- 30705,30714 ---- 17.10.9 How Large Values Are Returned ------------------------------------- ! When a function value's mode is 'BLKmode' (and in some other cases), the ! value is not returned according to 'TARGET_FUNCTION_VALUE' (*note Scalar ! Return::). Instead, the caller passes the address of a block of memory ! in which the value should be stored. This address is called the "structure value address". This section describes how to control returning structure values in *************** memory. *** 31078,31126 **** This target hook should return a nonzero value to say to return the function value in memory, just as large structures are always returned. Here TYPE will be the data type of the value, and FNTYPE ! will be the type of the function doing the returning, or `NULL' for libcalls. ! Note that values of mode `BLKmode' must be explicitly handled by ! this function. Also, the option `-fpcc-struct-return' takes ! effect regardless of this macro. On most systems, it is possible ! to leave the hook undefined; this causes a default definition to ! be used, whose value is the constant 1 for `BLKmode' values, and 0 otherwise. Do not use this hook to indicate that structures and unions should always be returned in memory. You should instead use ! `DEFAULT_PCC_STRUCT_RETURN' to indicate this. -- Macro: DEFAULT_PCC_STRUCT_RETURN Define this macro to be 1 if all structure and union return values must be in memory. Since this results in slower code, this should ! be defined only if needed for compatibility with other compilers ! or with an ABI. If you define this macro to be 0, then the conventions used for structure and union return values are decided ! by the `TARGET_RETURN_IN_MEMORY' target hook. If not defined, this defaults to the value 1. -- Target Hook: rtx TARGET_STRUCT_VALUE_RTX (tree FNDECL, int INCOMING) This target hook should return the location of the structure value ! address (normally a `mem' or `reg'), or 0 if the address is passed ! as an "invisible" first argument. Note that FNDECL may be `NULL', for libcalls. You do not need to define this target hook if the address is always passed as an "invisible" first argument. On some architectures the place where the structure value address is found by the called function is not the same place that the ! caller put it. This can be due to register windows, or it could ! be because the function prologue moves it to a different place. ! INCOMING is `1' or `2' when the location is needed in the context ! of the called function, and `0' in the context of the caller. ! If INCOMING is nonzero and the address is to be found on the ! stack, return a `mem' which refers to the frame pointer. If ! INCOMING is `2', the result is being used to fetch the structure ! value address at the beginning of a function. If you need to emit ! adjusting code, you should do it at this point. -- Macro: PCC_STATIC_STRUCT_RETURN Define this macro if the usual system convention on the target --- 30719,30767 ---- This target hook should return a nonzero value to say to return the function value in memory, just as large structures are always returned. Here TYPE will be the data type of the value, and FNTYPE ! will be the type of the function doing the returning, or 'NULL' for libcalls. ! Note that values of mode 'BLKmode' must be explicitly handled by ! this function. Also, the option '-fpcc-struct-return' takes effect ! regardless of this macro. On most systems, it is possible to leave ! the hook undefined; this causes a default definition to be used, ! whose value is the constant 1 for 'BLKmode' values, and 0 otherwise. Do not use this hook to indicate that structures and unions should always be returned in memory. You should instead use ! 'DEFAULT_PCC_STRUCT_RETURN' to indicate this. -- Macro: DEFAULT_PCC_STRUCT_RETURN Define this macro to be 1 if all structure and union return values must be in memory. Since this results in slower code, this should ! be defined only if needed for compatibility with other compilers or ! with an ABI. If you define this macro to be 0, then the conventions used for structure and union return values are decided ! by the 'TARGET_RETURN_IN_MEMORY' target hook. If not defined, this defaults to the value 1. -- Target Hook: rtx TARGET_STRUCT_VALUE_RTX (tree FNDECL, int INCOMING) This target hook should return the location of the structure value ! address (normally a 'mem' or 'reg'), or 0 if the address is passed ! as an "invisible" first argument. Note that FNDECL may be 'NULL', for libcalls. You do not need to define this target hook if the address is always passed as an "invisible" first argument. On some architectures the place where the structure value address is found by the called function is not the same place that the ! caller put it. This can be due to register windows, or it could be ! because the function prologue moves it to a different place. ! INCOMING is '1' or '2' when the location is needed in the context ! of the called function, and '0' in the context of the caller. ! If INCOMING is nonzero and the address is to be found on the stack, ! return a 'mem' which refers to the frame pointer. If INCOMING is ! '2', the result is being used to fetch the structure value address ! at the beginning of a function. If you need to emit adjusting ! code, you should do it at this point. -- Macro: PCC_STATIC_STRUCT_RETURN Define this macro if the usual system convention on the target *************** memory. *** 31128,31149 **** function to return the address of a static variable containing the value. ! Do not define this if the usual system convention is for the ! caller to pass an address to the subroutine. ! This macro has effect in `-fpcc-struct-return' mode, but it does ! nothing when you use `-freg-struct-return' mode. -- Target Hook: enum machine_mode TARGET_GET_RAW_RESULT_MODE (int REGNO) This target hook returns the mode to be used when accessing raw ! return registers in `__builtin_return'. Define this macro if the value in REG_RAW_MODE is not correct. -- Target Hook: enum machine_mode TARGET_GET_RAW_ARG_MODE (int REGNO) This target hook returns the mode to be used when accessing raw ! argument registers in `__builtin_apply_args'. Define this macro ! if the value in REG_RAW_MODE is not correct.  File: gccint.info, Node: Caller Saves, Next: Function Entry, Prev: Aggregate Return, Up: Stack and Calling --- 30769,30790 ---- function to return the address of a static variable containing the value. ! Do not define this if the usual system convention is for the caller ! to pass an address to the subroutine. ! This macro has effect in '-fpcc-struct-return' mode, but it does ! nothing when you use '-freg-struct-return' mode. -- Target Hook: enum machine_mode TARGET_GET_RAW_RESULT_MODE (int REGNO) This target hook returns the mode to be used when accessing raw ! return registers in '__builtin_return'. Define this macro if the value in REG_RAW_MODE is not correct. -- Target Hook: enum machine_mode TARGET_GET_RAW_ARG_MODE (int REGNO) This target hook returns the mode to be used when accessing raw ! argument registers in '__builtin_apply_args'. Define this macro if ! the value in REG_RAW_MODE is not correct.  File: gccint.info, Node: Caller Saves, Next: Function Entry, Prev: Aggregate Return, Up: Stack and Calling *************** must live across calls. *** 31162,31175 **** should be 1 when this is worth doing, and 0 otherwise. If you don't define this macro, a default is used which is good on ! most machines: `4 * CALLS < REFS'. -- Macro: HARD_REGNO_CALLER_SAVE_MODE (REGNO, NREGS) A C expression specifying which mode is required for saving NREGS of a pseudo-register in call-clobbered hard register REGNO. If ! REGNO is unsuitable for caller save, `VOIDmode' should be ! returned. For most machines this macro need not be defined since ! GCC will select the smallest suitable mode.  File: gccint.info, Node: Function Entry, Next: Profiling, Prev: Caller Saves, Up: Stack and Calling --- 30803,30816 ---- should be 1 when this is worth doing, and 0 otherwise. If you don't define this macro, a default is used which is good on ! most machines: '4 * CALLS < REFS'. -- Macro: HARD_REGNO_CALLER_SAVE_MODE (REGNO, NREGS) A C expression specifying which mode is required for saving NREGS of a pseudo-register in call-clobbered hard register REGNO. If ! REGNO is unsuitable for caller save, 'VOIDmode' should be returned. ! For most machines this macro need not be defined since GCC will ! select the smallest suitable mode.  File: gccint.info, Node: Function Entry, Next: Profiling, Prev: Caller Saves, Up: Stack and Calling *************** This section describes the macros that o *** 31182,31223 **** -- Target Hook: void TARGET_ASM_FUNCTION_PROLOGUE (FILE *FILE, HOST_WIDE_INT SIZE) ! If defined, a function that outputs the assembler code for entry ! to a function. The prologue is responsible for setting up the ! stack frame, initializing the frame pointer register, saving ! registers that must be saved, and allocating SIZE additional bytes ! of storage for the local variables. SIZE is an integer. FILE is ! a stdio stream to which the assembler code should be output. The label for the beginning of the function need not be output by this macro. That has already been done when the macro is run. To determine which registers to save, the macro can refer to the ! array `regs_ever_live': element R is nonzero if hard register R is used anywhere within the function. This implies the function prologue should save register R, provided it is not one of the ! call-used registers. (`TARGET_ASM_FUNCTION_EPILOGUE' must ! likewise use `regs_ever_live'.) On machines that have "register windows", the function entry code does not save on the stack the registers that are in the windows, even if they are supposed to be preserved by function calls; ! instead it takes appropriate steps to "push" the register stack, ! if any non-call-used registers are used in the function. On machines where functions may or may not have frame-pointers, the function entry code must vary accordingly; it must set up the frame pointer if one is wanted, and not otherwise. To determine whether a frame pointer is in wanted, the macro can refer to the variable ! `frame_pointer_needed'. The variable's value will be 1 at run ! time in a function that needs a frame pointer. *Note ! Elimination::. The function entry code is responsible for allocating any stack space required for the function. This stack space consists of the regions listed below. In most cases, these regions are allocated ! in the order listed, with the last listed region closest to the ! top of the stack (the lowest address if `STACK_GROWS_DOWNWARD' is defined, and the highest address if it is not defined). You can use a different order for a machine if doing so is more convenient or required for compatibility reasons. Except in cases where --- 30823,30863 ---- -- Target Hook: void TARGET_ASM_FUNCTION_PROLOGUE (FILE *FILE, HOST_WIDE_INT SIZE) ! If defined, a function that outputs the assembler code for entry to ! a function. The prologue is responsible for setting up the stack ! frame, initializing the frame pointer register, saving registers ! that must be saved, and allocating SIZE additional bytes of storage ! for the local variables. SIZE is an integer. FILE is a stdio ! stream to which the assembler code should be output. The label for the beginning of the function need not be output by this macro. That has already been done when the macro is run. To determine which registers to save, the macro can refer to the ! array 'regs_ever_live': element R is nonzero if hard register R is used anywhere within the function. This implies the function prologue should save register R, provided it is not one of the ! call-used registers. ('TARGET_ASM_FUNCTION_EPILOGUE' must likewise ! use 'regs_ever_live'.) On machines that have "register windows", the function entry code does not save on the stack the registers that are in the windows, even if they are supposed to be preserved by function calls; ! instead it takes appropriate steps to "push" the register stack, if ! any non-call-used registers are used in the function. On machines where functions may or may not have frame-pointers, the function entry code must vary accordingly; it must set up the frame pointer if one is wanted, and not otherwise. To determine whether a frame pointer is in wanted, the macro can refer to the variable ! 'frame_pointer_needed'. The variable's value will be 1 at run time ! in a function that needs a frame pointer. *Note Elimination::. The function entry code is responsible for allocating any stack space required for the function. This stack space consists of the regions listed below. In most cases, these regions are allocated ! in the order listed, with the last listed region closest to the top ! of the stack (the lowest address if 'STACK_GROWS_DOWNWARD' is defined, and the highest address if it is not defined). You can use a different order for a machine if doing so is more convenient or required for compatibility reasons. Except in cases where *************** This section describes the macros that o *** 31241,31297 **** HOST_WIDE_INT SIZE) If defined, a function that outputs the assembler code for exit from a function. The epilogue is responsible for restoring the ! saved registers and stack pointer to their values when the ! function was called, and returning control to the caller. This ! macro takes the same arguments as the macro ! `TARGET_ASM_FUNCTION_PROLOGUE', and the registers to restore are ! determined from `regs_ever_live' and `CALL_USED_REGISTERS' in the ! same way. On some machines, there is a single instruction that does all the work of returning from the function. On these machines, give that ! instruction the name `return' and do not define the macro ! `TARGET_ASM_FUNCTION_EPILOGUE' at all. ! Do not define a pattern named `return' if you want the ! `TARGET_ASM_FUNCTION_EPILOGUE' to be used. If you want the target switches to control whether return instructions or epilogues are ! used, define a `return' pattern with a validity condition that ! tests the target switches appropriately. If the `return' ! pattern's validity condition is false, epilogues will be used. On machines where functions may or may not have frame-pointers, the function exit code must vary accordingly. Sometimes the code for these two cases is completely different. To determine whether a frame pointer is wanted, the macro can refer to the variable ! `frame_pointer_needed'. The variable's value will be 1 when compiling a function that needs a frame pointer. ! Normally, `TARGET_ASM_FUNCTION_PROLOGUE' and ! `TARGET_ASM_FUNCTION_EPILOGUE' must treat leaf functions specially. ! The C variable `current_function_is_leaf' is nonzero for such a function. *Note Leaf Functions::. On some machines, some functions pop their arguments on exit while others leave that for the caller to do. For example, the 68020 ! when given `-mrtd' pops arguments in functions that take a fixed number of arguments. ! Your definition of the macro `RETURN_POPS_ARGS' decides which ! functions pop their own arguments. `TARGET_ASM_FUNCTION_EPILOGUE' needs to know what was decided. The number of bytes of the current function's arguments that this function should pop is available in ! `crtl->args.pops_args'. *Note Scalar Return::. ! * A region of `crtl->args.pretend_args_size' bytes of uninitialized space just underneath the first argument arriving on the stack. ! (This may not be at the very start of the allocated stack region ! if the calling sequence has pushed anything else since pushing the stack arguments. But usually, on such machines, nothing else has been pushed yet, because the function prologue itself does all the ! pushing.) This region is used on machines where an argument may ! be passed partly in registers and partly in memory, and, in some ! cases to support the features in `'. * An area of memory used to save certain registers used by the function. The size of this area, which may also include space for --- 30881,30936 ---- HOST_WIDE_INT SIZE) If defined, a function that outputs the assembler code for exit from a function. The epilogue is responsible for restoring the ! saved registers and stack pointer to their values when the function ! was called, and returning control to the caller. This macro takes ! the same arguments as the macro 'TARGET_ASM_FUNCTION_PROLOGUE', and ! the registers to restore are determined from 'regs_ever_live' and ! 'CALL_USED_REGISTERS' in the same way. On some machines, there is a single instruction that does all the work of returning from the function. On these machines, give that ! instruction the name 'return' and do not define the macro ! 'TARGET_ASM_FUNCTION_EPILOGUE' at all. ! Do not define a pattern named 'return' if you want the ! 'TARGET_ASM_FUNCTION_EPILOGUE' to be used. If you want the target switches to control whether return instructions or epilogues are ! used, define a 'return' pattern with a validity condition that ! tests the target switches appropriately. If the 'return' pattern's ! validity condition is false, epilogues will be used. On machines where functions may or may not have frame-pointers, the function exit code must vary accordingly. Sometimes the code for these two cases is completely different. To determine whether a frame pointer is wanted, the macro can refer to the variable ! 'frame_pointer_needed'. The variable's value will be 1 when compiling a function that needs a frame pointer. ! Normally, 'TARGET_ASM_FUNCTION_PROLOGUE' and ! 'TARGET_ASM_FUNCTION_EPILOGUE' must treat leaf functions specially. ! The C variable 'current_function_is_leaf' is nonzero for such a function. *Note Leaf Functions::. On some machines, some functions pop their arguments on exit while others leave that for the caller to do. For example, the 68020 ! when given '-mrtd' pops arguments in functions that take a fixed number of arguments. ! Your definition of the macro 'RETURN_POPS_ARGS' decides which ! functions pop their own arguments. 'TARGET_ASM_FUNCTION_EPILOGUE' needs to know what was decided. The number of bytes of the current function's arguments that this function should pop is available in ! 'crtl->args.pops_args'. *Note Scalar Return::. ! * A region of 'crtl->args.pretend_args_size' bytes of uninitialized space just underneath the first argument arriving on the stack. ! (This may not be at the very start of the allocated stack region if ! the calling sequence has pushed anything else since pushing the stack arguments. But usually, on such machines, nothing else has been pushed yet, because the function prologue itself does all the ! pushing.) This region is used on machines where an argument may be ! passed partly in registers and partly in memory, and, in some cases ! to support the features in ''. * An area of memory used to save certain registers used by the function. The size of this area, which may also include space for *************** This section describes the macros that o *** 31306,31313 **** occur in the opposite order, with the save area closer to the top of the stack. ! * Optionally, when `ACCUMULATE_OUTGOING_ARGS' is defined, a region of ! `crtl->outgoing_args_size' bytes to be used for outgoing argument lists of the function. *Note Stack Arguments::. -- Macro: EXIT_IGNORE_STACK --- 30945,30952 ---- occur in the opposite order, with the save area closer to the top of the stack. ! * Optionally, when 'ACCUMULATE_OUTGOING_ARGS' is defined, a region of ! 'crtl->outgoing_args_size' bytes to be used for outgoing argument lists of the function. *Note Stack Arguments::. -- Macro: EXIT_IGNORE_STACK *************** This section describes the macros that o *** 31319,31341 **** Note that this macro's value is relevant only for functions for which frame pointers are maintained. It is never safe to delete a ! final stack adjustment in a function that has no frame pointer, ! and the compiler knows this regardless of `EXIT_IGNORE_STACK'. -- Macro: EPILOGUE_USES (REGNO) Define this macro as a C expression that is nonzero for registers ! that are used by the epilogue or the `return' pattern. The stack and frame pointer registers are already assumed to be used as needed. -- Macro: EH_USES (REGNO) Define this macro as a C expression that is nonzero for registers ! that are used by the exception handling mechanism, and so should ! be considered live on entry to an exception edge. -- Target Hook: void TARGET_ASM_OUTPUT_MI_THUNK (FILE *FILE, tree ! THUNK_FNDECL, HOST_WIDE_INT DELTA, HOST_WIDE_INT ! VCALL_OFFSET, tree FUNCTION) A function that outputs the assembler code for a thunk function, used to implement C++ virtual function calls with multiple inheritance. The thunk acts as a wrapper around a virtual --- 30958,30980 ---- Note that this macro's value is relevant only for functions for which frame pointers are maintained. It is never safe to delete a ! final stack adjustment in a function that has no frame pointer, and ! the compiler knows this regardless of 'EXIT_IGNORE_STACK'. -- Macro: EPILOGUE_USES (REGNO) Define this macro as a C expression that is nonzero for registers ! that are used by the epilogue or the 'return' pattern. The stack and frame pointer registers are already assumed to be used as needed. -- Macro: EH_USES (REGNO) Define this macro as a C expression that is nonzero for registers ! that are used by the exception handling mechanism, and so should be ! considered live on entry to an exception edge. -- Target Hook: void TARGET_ASM_OUTPUT_MI_THUNK (FILE *FILE, tree ! THUNK_FNDECL, HOST_WIDE_INT DELTA, HOST_WIDE_INT VCALL_OFFSET, ! tree FUNCTION) A function that outputs the assembler code for a thunk function, used to implement C++ virtual function calls with multiple inheritance. The thunk acts as a wrapper around a virtual *************** This section describes the macros that o *** 31344,31388 **** First, emit code to add the integer DELTA to the location that contains the incoming first argument. Assume that this argument ! contains a pointer, and is the one used to pass the `this' pointer in C++. This is the incoming argument _before_ the function ! prologue, e.g. `%o0' on a sparc. The addition must preserve the values of all other incoming arguments. Then, if VCALL_OFFSET is nonzero, an additional adjustment should ! be made after adding `delta'. In particular, if P is the adjusted pointer, the following adjustment should be made: p += (*((ptrdiff_t **)p))[vcall_offset/sizeof(ptrdiff_t)] After the additions, emit code to jump to FUNCTION, which is a ! `FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch the return address. Hence returning from FUNCTION will ! return to whoever called the current `thunk'. ! The effect must be as if FUNCTION had been called directly with ! the adjusted first argument. This macro is responsible for ! emitting all of the code for a thunk function; ! `TARGET_ASM_FUNCTION_PROLOGUE' and `TARGET_ASM_FUNCTION_EPILOGUE' are not invoked. The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been extracted from it.) It might possibly be useful on some targets, but probably not. ! If you do not define this macro, the target-independent code in ! the C++ front end will generate a less efficient heavyweight thunk ! that calls FUNCTION instead of jumping to it. The generic ! approach does not support varargs. -- Target Hook: bool TARGET_ASM_CAN_OUTPUT_MI_THUNK (const_tree ! THUNK_FNDECL, HOST_WIDE_INT DELTA, HOST_WIDE_INT ! VCALL_OFFSET, const_tree FUNCTION) ! A function that returns true if TARGET_ASM_OUTPUT_MI_THUNK would ! be able to output the assembler code for the thunk function ! specified by the arguments it is passed, and false otherwise. In ! the latter case, the generic approach will be used by the C++ ! front end, with the limitations previously exposed.  File: gccint.info, Node: Profiling, Next: Tail Calls, Prev: Function Entry, Up: Stack and Calling --- 30983,31027 ---- First, emit code to add the integer DELTA to the location that contains the incoming first argument. Assume that this argument ! contains a pointer, and is the one used to pass the 'this' pointer in C++. This is the incoming argument _before_ the function ! prologue, e.g. '%o0' on a sparc. The addition must preserve the values of all other incoming arguments. Then, if VCALL_OFFSET is nonzero, an additional adjustment should ! be made after adding 'delta'. In particular, if P is the adjusted pointer, the following adjustment should be made: p += (*((ptrdiff_t **)p))[vcall_offset/sizeof(ptrdiff_t)] After the additions, emit code to jump to FUNCTION, which is a ! 'FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch the return address. Hence returning from FUNCTION will ! return to whoever called the current 'thunk'. ! The effect must be as if FUNCTION had been called directly with the ! adjusted first argument. This macro is responsible for emitting ! all of the code for a thunk function; ! 'TARGET_ASM_FUNCTION_PROLOGUE' and 'TARGET_ASM_FUNCTION_EPILOGUE' are not invoked. The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been extracted from it.) It might possibly be useful on some targets, but probably not. ! If you do not define this macro, the target-independent code in the ! C++ front end will generate a less efficient heavyweight thunk that ! calls FUNCTION instead of jumping to it. The generic approach does ! not support varargs. -- Target Hook: bool TARGET_ASM_CAN_OUTPUT_MI_THUNK (const_tree ! THUNK_FNDECL, HOST_WIDE_INT DELTA, HOST_WIDE_INT VCALL_OFFSET, ! const_tree FUNCTION) ! A function that returns true if TARGET_ASM_OUTPUT_MI_THUNK would be ! able to output the assembler code for the thunk function specified ! by the arguments it is passed, and false otherwise. In the latter ! case, the generic approach will be used by the C++ front end, with ! the limitations previously exposed.  File: gccint.info, Node: Profiling, Next: Tail Calls, Prev: Function Entry, Up: Stack and Calling *************** These macros will help you generate code *** 31394,31422 **** -- Macro: FUNCTION_PROFILER (FILE, LABELNO) A C statement or compound statement to output to FILE some ! assembler code to call the profiling subroutine `mcount'. ! The details of how `mcount' expects to be called are determined by your operating system environment, not by GCC. To figure them out, compile a small program for profiling using the system's installed C compiler and look at the assembler code that results. ! Older implementations of `mcount' expect the address of a counter variable to be loaded into some register. The name of this ! variable is `LP' followed by the number LABELNO, so you would ! generate the name using `LP%d' in a `fprintf'. -- Macro: PROFILE_HOOK A C statement or compound statement to output to FILE some assembly ! code to call the profiling subroutine `mcount' even the target does not support profiling. -- Macro: NO_PROFILE_COUNTERS Define this macro to be an expression with a nonzero value if the ! `mcount' subroutine on your system does not need a counter variable allocated for each function. This is true for almost all modern implementations. If you define this macro, you must not use the ! LABELNO argument to `FUNCTION_PROFILER'. -- Macro: PROFILE_BEFORE_PROLOGUE Define this macro if the code for function profiling should come --- 31033,31061 ---- -- Macro: FUNCTION_PROFILER (FILE, LABELNO) A C statement or compound statement to output to FILE some ! assembler code to call the profiling subroutine 'mcount'. ! The details of how 'mcount' expects to be called are determined by your operating system environment, not by GCC. To figure them out, compile a small program for profiling using the system's installed C compiler and look at the assembler code that results. ! Older implementations of 'mcount' expect the address of a counter variable to be loaded into some register. The name of this ! variable is 'LP' followed by the number LABELNO, so you would ! generate the name using 'LP%d' in a 'fprintf'. -- Macro: PROFILE_HOOK A C statement or compound statement to output to FILE some assembly ! code to call the profiling subroutine 'mcount' even the target does not support profiling. -- Macro: NO_PROFILE_COUNTERS Define this macro to be an expression with a nonzero value if the ! 'mcount' subroutine on your system does not need a counter variable allocated for each function. This is true for almost all modern implementations. If you define this macro, you must not use the ! LABELNO argument to 'FUNCTION_PROFILER'. -- Macro: PROFILE_BEFORE_PROLOGUE Define this macro if the code for function profiling should come *************** File: gccint.info, Node: Tail Calls, N *** 31432,31456 **** -- Target Hook: bool TARGET_FUNCTION_OK_FOR_SIBCALL (tree DECL, tree EXP) True if it is ok to do sibling call optimization for the specified ! call expression EXP. DECL will be the called function, or `NULL' if this is an indirect call. It is not uncommon for limitations of calling conventions to prevent tail calls to functions outside the current unit of translation, or during PIC compilation. The hook is used to ! enforce these restrictions, as the `sibcall' md pattern can not ! fail, or fall over to a "normal" call. The criteria for ! successful sibling call optimization may vary greatly between ! different architectures. -- Target Hook: void TARGET_EXTRA_LIVE_ON_ENTRY (bitmap REGS) Add any hard registers to REGS that are live on entry to the function. This hook only needs to be defined to provide registers that cannot be found by examination of FUNCTION_ARG_REGNO_P, the callee saved registers, STATIC_CHAIN_INCOMING_REGNUM, ! STATIC_CHAIN_REGNUM, TARGET_STRUCT_VALUE_RTX, ! FRAME_POINTER_REGNUM, EH_USES, FRAME_POINTER_REGNUM, ! ARG_POINTER_REGNUM, and the PIC_OFFSET_TABLE_REGNUM. -- Target Hook: void TARGET_SET_UP_BY_PROLOGUE (struct hard_reg_set_container *) --- 31071,31095 ---- -- Target Hook: bool TARGET_FUNCTION_OK_FOR_SIBCALL (tree DECL, tree EXP) True if it is ok to do sibling call optimization for the specified ! call expression EXP. DECL will be the called function, or 'NULL' if this is an indirect call. It is not uncommon for limitations of calling conventions to prevent tail calls to functions outside the current unit of translation, or during PIC compilation. The hook is used to ! enforce these restrictions, as the 'sibcall' md pattern can not ! fail, or fall over to a "normal" call. The criteria for successful ! sibling call optimization may vary greatly between different ! architectures. -- Target Hook: void TARGET_EXTRA_LIVE_ON_ENTRY (bitmap REGS) Add any hard registers to REGS that are live on entry to the function. This hook only needs to be defined to provide registers that cannot be found by examination of FUNCTION_ARG_REGNO_P, the callee saved registers, STATIC_CHAIN_INCOMING_REGNUM, ! STATIC_CHAIN_REGNUM, TARGET_STRUCT_VALUE_RTX, FRAME_POINTER_REGNUM, ! EH_USES, FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, and the ! PIC_OFFSET_TABLE_REGNUM. -- Target Hook: void TARGET_SET_UP_BY_PROLOGUE (struct hard_reg_set_container *) *************** File: gccint.info, Node: Stack Smashing *** 31471,31493 **** ---------------------------------- -- Target Hook: tree TARGET_STACK_PROTECT_GUARD (void) ! This hook returns a `DECL' node for the external variable to use for the stack protection guard. This variable is initialized by the runtime to some random value and is used to initialize the guard value that is placed at the top of the local stack frame. ! The type of this variable must be `ptr_type_node'. The default version of this hook creates a variable called ! `__stack_chk_guard', which is normally defined in `libgcc2.c'. -- Target Hook: tree TARGET_STACK_PROTECT_FAIL (void) ! This hook returns a `CALL_EXPR' that alerts the runtime that the stack protect guard variable has been modified. This expression ! should involve a call to a `noreturn' function. The default version of this hook invokes a function called ! `__stack_chk_fail', taking no arguments. This function is ! normally defined in `libgcc2.c'. -- Common Target Hook: bool TARGET_SUPPORTS_SPLIT_STACK (bool REPORT, struct gcc_options *OPTS) --- 31110,31132 ---- ---------------------------------- -- Target Hook: tree TARGET_STACK_PROTECT_GUARD (void) ! This hook returns a 'DECL' node for the external variable to use for the stack protection guard. This variable is initialized by the runtime to some random value and is used to initialize the guard value that is placed at the top of the local stack frame. ! The type of this variable must be 'ptr_type_node'. The default version of this hook creates a variable called ! '__stack_chk_guard', which is normally defined in 'libgcc2.c'. -- Target Hook: tree TARGET_STACK_PROTECT_FAIL (void) ! This hook returns a 'CALL_EXPR' that alerts the runtime that the stack protect guard variable has been modified. This expression ! should involve a call to a 'noreturn' function. The default version of this hook invokes a function called ! '__stack_chk_fail', taking no arguments. This function is normally ! defined in 'libgcc2.c'. -- Common Target Hook: bool TARGET_SUPPORTS_SPLIT_STACK (bool REPORT, struct gcc_options *OPTS) *************** File: gccint.info, Node: Varargs, Next *** 31504,31637 **** 17.11 Implementing the Varargs Macros ===================================== ! GCC comes with an implementation of `' and `' that ! work without change on machines that pass arguments on the stack. ! Other machines require their own implementations of varargs, and the ! two machine independent header files must have conditionals to include ! it. ! ISO `' differs from traditional `' mainly in the ! calling convention for `va_start'. The traditional implementation ! takes just one argument, which is the variable in which to store the ! argument pointer. The ISO implementation of `va_start' takes an ! additional second argument. The user is supposed to write the last ! named argument of the function here. ! However, `va_start' should not use this argument. The way to find the end of the named arguments is with the built-in functions described below. -- Macro: __builtin_saveregs () ! Use this built-in function to save the argument registers in ! memory so that the varargs mechanism can access them. Both ISO ! and traditional versions of `va_start' must use ! `__builtin_saveregs', unless you use ! `TARGET_SETUP_INCOMING_VARARGS' (see below) instead. ! On some machines, `__builtin_saveregs' is open-coded under the ! control of the target hook `TARGET_EXPAND_BUILTIN_SAVEREGS'. On other machines, it calls a routine written in assembler language, ! found in `libgcc2.c'. ! Code generated for the call to `__builtin_saveregs' appears at the beginning of the function, as opposed to where the call to ! `__builtin_saveregs' is written, regardless of what the code is. This is because the registers must be saved before the function starts to use them for its own purposes. -- Macro: __builtin_next_arg (LASTARG) This builtin returns the address of the first anonymous stack ! argument, as type `void *'. If `ARGS_GROW_DOWNWARD', it returns the address of the location above the first anonymous stack ! argument. Use it in `va_start' to initialize the pointer for ! fetching arguments from the stack. Also use it in `va_start' to verify that the second parameter LASTARG is the last named argument of the current function. -- Macro: __builtin_classify_type (OBJECT) Since each machine has its own conventions for which data types are ! passed in which kind of register, your implementation of `va_arg' has to embody these conventions. The easiest way to categorize the ! specified data type is to use `__builtin_classify_type' together ! with `sizeof' and `__alignof__'. ! `__builtin_classify_type' ignores the value of OBJECT, considering only its data type. It returns an integer describing what kind of type that is--integer, floating, pointer, structure, and so on. ! The file `typeclass.h' defines an enumeration that you can use to ! interpret the values of `__builtin_classify_type'. These machine description macros help implement varargs: -- Target Hook: rtx TARGET_EXPAND_BUILTIN_SAVEREGS (void) ! If defined, this hook produces the machine-specific code for a ! call to `__builtin_saveregs'. This code will be moved to the very beginning of the function, before any parameter access are made. The return value of this function should be an RTX that contains ! the value to use as the return of `__builtin_saveregs'. -- Target Hook: void TARGET_SETUP_INCOMING_VARARGS (cumulative_args_t ARGS_SO_FAR, enum machine_mode MODE, tree TYPE, int *PRETEND_ARGS_SIZE, int SECOND_TIME) This target hook offers an alternative to using ! `__builtin_saveregs' and defining the hook ! `TARGET_EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register arguments into the stack so that all the arguments appear ! to have been passed consecutively on the stack. Once this is ! done, you can use the standard implementation of varargs that ! works for machines that pass all their arguments on the stack. ! The argument ARGS_SO_FAR points to the `CUMULATIVE_ARGS' data ! structure, containing the values that are obtained after ! processing the named arguments. The arguments MODE and TYPE ! describe the last named argument--its machine mode and its data ! type as a tree node. The target hook should do two things: first, push onto the stack all the argument registers _not_ used for the named arguments, and second, store the size of the data thus pushed into the ! `int'-valued variable pointed to by PRETEND_ARGS_SIZE. The value that you store here will serve as additional offset for setting up the stack frame. Because you must generate code to push the anonymous arguments at compile time without knowing their data types, ! `TARGET_SETUP_INCOMING_VARARGS' is only useful on machines that have just a single category of argument register and use it uniformly for all data types. ! If the argument SECOND_TIME is nonzero, it means that the ! arguments of the function are being analyzed for the second time. ! This happens for an inline function, which is not actually ! compiled until the end of the source file. The hook ! `TARGET_SETUP_INCOMING_VARARGS' should not generate any instructions in this case. -- Target Hook: bool TARGET_STRICT_ARGUMENT_NAMING (cumulative_args_t CA) ! Define this hook to return `true' if the location where a function argument is passed depends on whether or not it is a named argument. ! This hook controls how the NAMED argument to `TARGET_FUNCTION_ARG' is set for varargs and stdarg functions. If this hook returns ! `true', the NAMED argument is always true for named arguments, and ! false for unnamed arguments. If it returns `false', but ! `TARGET_PRETEND_OUTGOING_VARARGS_NAMED' returns `true', then all arguments are treated as named. Otherwise, all named arguments except the last are treated as named. ! You need not define this hook if it always returns `false'. -- Target Hook: bool TARGET_PRETEND_OUTGOING_VARARGS_NAMED (cumulative_args_t CA) If you need to conditionally change ABIs so that one works with ! `TARGET_SETUP_INCOMING_VARARGS', but the other works like neither ! `TARGET_SETUP_INCOMING_VARARGS' nor ! `TARGET_STRICT_ARGUMENT_NAMING' was defined, then define this hook ! to return `true' if `TARGET_SETUP_INCOMING_VARARGS' is used, ! `false' otherwise. Otherwise, you should not define this hook.  File: gccint.info, Node: Trampolines, Next: Library Calls, Prev: Varargs, Up: Target Macros --- 31143,31273 ---- 17.11 Implementing the Varargs Macros ===================================== ! GCC comes with an implementation of '' and '' that ! work without change on machines that pass arguments on the stack. Other ! machines require their own implementations of varargs, and the two ! machine independent header files must have conditionals to include it. ! ISO '' differs from traditional '' mainly in the ! calling convention for 'va_start'. The traditional implementation takes ! just one argument, which is the variable in which to store the argument ! pointer. The ISO implementation of 'va_start' takes an additional ! second argument. The user is supposed to write the last named argument ! of the function here. ! However, 'va_start' should not use this argument. The way to find the end of the named arguments is with the built-in functions described below. -- Macro: __builtin_saveregs () ! Use this built-in function to save the argument registers in memory ! so that the varargs mechanism can access them. Both ISO and ! traditional versions of 'va_start' must use '__builtin_saveregs', ! unless you use 'TARGET_SETUP_INCOMING_VARARGS' (see below) instead. ! On some machines, '__builtin_saveregs' is open-coded under the ! control of the target hook 'TARGET_EXPAND_BUILTIN_SAVEREGS'. On other machines, it calls a routine written in assembler language, ! found in 'libgcc2.c'. ! Code generated for the call to '__builtin_saveregs' appears at the beginning of the function, as opposed to where the call to ! '__builtin_saveregs' is written, regardless of what the code is. This is because the registers must be saved before the function starts to use them for its own purposes. -- Macro: __builtin_next_arg (LASTARG) This builtin returns the address of the first anonymous stack ! argument, as type 'void *'. If 'ARGS_GROW_DOWNWARD', it returns the address of the location above the first anonymous stack ! argument. Use it in 'va_start' to initialize the pointer for ! fetching arguments from the stack. Also use it in 'va_start' to verify that the second parameter LASTARG is the last named argument of the current function. -- Macro: __builtin_classify_type (OBJECT) Since each machine has its own conventions for which data types are ! passed in which kind of register, your implementation of 'va_arg' has to embody these conventions. The easiest way to categorize the ! specified data type is to use '__builtin_classify_type' together ! with 'sizeof' and '__alignof__'. ! '__builtin_classify_type' ignores the value of OBJECT, considering only its data type. It returns an integer describing what kind of type that is--integer, floating, pointer, structure, and so on. ! The file 'typeclass.h' defines an enumeration that you can use to ! interpret the values of '__builtin_classify_type'. These machine description macros help implement varargs: -- Target Hook: rtx TARGET_EXPAND_BUILTIN_SAVEREGS (void) ! If defined, this hook produces the machine-specific code for a call ! to '__builtin_saveregs'. This code will be moved to the very beginning of the function, before any parameter access are made. The return value of this function should be an RTX that contains ! the value to use as the return of '__builtin_saveregs'. -- Target Hook: void TARGET_SETUP_INCOMING_VARARGS (cumulative_args_t ARGS_SO_FAR, enum machine_mode MODE, tree TYPE, int *PRETEND_ARGS_SIZE, int SECOND_TIME) This target hook offers an alternative to using ! '__builtin_saveregs' and defining the hook ! 'TARGET_EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register arguments into the stack so that all the arguments appear ! to have been passed consecutively on the stack. Once this is done, ! you can use the standard implementation of varargs that works for ! machines that pass all their arguments on the stack. ! The argument ARGS_SO_FAR points to the 'CUMULATIVE_ARGS' data ! structure, containing the values that are obtained after processing ! the named arguments. The arguments MODE and TYPE describe the last ! named argument--its machine mode and its data type as a tree node. The target hook should do two things: first, push onto the stack all the argument registers _not_ used for the named arguments, and second, store the size of the data thus pushed into the ! 'int'-valued variable pointed to by PRETEND_ARGS_SIZE. The value that you store here will serve as additional offset for setting up the stack frame. Because you must generate code to push the anonymous arguments at compile time without knowing their data types, ! 'TARGET_SETUP_INCOMING_VARARGS' is only useful on machines that have just a single category of argument register and use it uniformly for all data types. ! If the argument SECOND_TIME is nonzero, it means that the arguments ! of the function are being analyzed for the second time. This ! happens for an inline function, which is not actually compiled ! until the end of the source file. The hook ! 'TARGET_SETUP_INCOMING_VARARGS' should not generate any instructions in this case. -- Target Hook: bool TARGET_STRICT_ARGUMENT_NAMING (cumulative_args_t CA) ! Define this hook to return 'true' if the location where a function argument is passed depends on whether or not it is a named argument. ! This hook controls how the NAMED argument to 'TARGET_FUNCTION_ARG' is set for varargs and stdarg functions. If this hook returns ! 'true', the NAMED argument is always true for named arguments, and ! false for unnamed arguments. If it returns 'false', but ! 'TARGET_PRETEND_OUTGOING_VARARGS_NAMED' returns 'true', then all arguments are treated as named. Otherwise, all named arguments except the last are treated as named. ! You need not define this hook if it always returns 'false'. -- Target Hook: bool TARGET_PRETEND_OUTGOING_VARARGS_NAMED (cumulative_args_t CA) If you need to conditionally change ABIs so that one works with ! 'TARGET_SETUP_INCOMING_VARARGS', but the other works like neither ! 'TARGET_SETUP_INCOMING_VARARGS' nor 'TARGET_STRICT_ARGUMENT_NAMING' ! was defined, then define this hook to return 'true' if ! 'TARGET_SETUP_INCOMING_VARARGS' is used, 'false' otherwise. ! Otherwise, you should not define this hook.  File: gccint.info, Node: Trampolines, Next: Library Calls, Prev: Varargs, Up: Target Macros *************** File: gccint.info, Node: Trampolines, *** 31639,31648 **** 17.12 Trampolines for Nested Functions ====================================== ! A "trampoline" is a small piece of code that is created at run time ! when the address of a nested function is taken. It normally resides on ! the stack, in the stack frame of the containing function. These macros ! tell GCC how to generate code to allocate and initialize a trampoline. The instructions in the trampoline must do two things: load a constant address into the static chain register, and jump to the real address of --- 31275,31284 ---- 17.12 Trampolines for Nested Functions ====================================== ! A "trampoline" is a small piece of code that is created at run time when ! the address of a nested function is taken. It normally resides on the ! stack, in the stack frame of the containing function. These macros tell ! GCC how to generate code to allocate and initialize a trampoline. The instructions in the trampoline must do two things: load a constant address into the static chain register, and jump to the real address of *************** may be necessary to take out pieces of t *** 31662,31670 **** separately. -- Target Hook: void TARGET_ASM_TRAMPOLINE_TEMPLATE (FILE *F) ! This hook is called by `assemble_trampoline_template' to output, ! on the stream F, assembler code for a block of data that contains ! the constant parts of a trampoline. This code should not include a label--the label is taken care of automatically. If you do not define this hook, it means no template is needed for --- 31298,31306 ---- separately. -- Target Hook: void TARGET_ASM_TRAMPOLINE_TEMPLATE (FILE *F) ! This hook is called by 'assemble_trampoline_template' to output, on ! the stream F, assembler code for a block of data that contains the ! constant parts of a trampoline. This code should not include a label--the label is taken care of automatically. If you do not define this hook, it means no template is needed for *************** separately. *** 31675,31681 **** -- Macro: TRAMPOLINE_SECTION Return the section into which the trampoline template is to be placed (*note Sections::). The default value is ! `readonly_data_section'. -- Macro: TRAMPOLINE_SIZE A C expression for the size in bytes of the trampoline, as an --- 31311,31317 ---- -- Macro: TRAMPOLINE_SECTION Return the section into which the trampoline template is to be placed (*note Sections::). The default value is ! 'readonly_data_section'. -- Macro: TRAMPOLINE_SIZE A C expression for the size in bytes of the trampoline, as an *************** separately. *** 31684,31706 **** -- Macro: TRAMPOLINE_ALIGNMENT Alignment required for trampolines, in bits. ! If you don't define this macro, the value of `FUNCTION_ALIGNMENT' is used for aligning trampolines. -- Target Hook: void TARGET_TRAMPOLINE_INIT (rtx M_TRAMP, tree FNDECL, rtx STATIC_CHAIN) This hook is called to initialize a trampoline. M_TRAMP is an RTX for the memory block for the trampoline; FNDECL is the ! `FUNCTION_DECL' for the nested function; STATIC_CHAIN is an RTX ! for the static chain value that should be passed to the function ! when it is called. ! If the target defines `TARGET_ASM_TRAMPOLINE_TEMPLATE', then the first thing this hook should do is emit a block move into M_TRAMP ! from the memory block returned by `assemble_trampoline_template'. Note that the block move need only cover the constant parts of the trampoline. If the target isolates the variable parts of the ! trampoline to the end, not all `TRAMPOLINE_SIZE' bytes need be copied. If the target requires any other actions, such as flushing caches --- 31320,31342 ---- -- Macro: TRAMPOLINE_ALIGNMENT Alignment required for trampolines, in bits. ! If you don't define this macro, the value of 'FUNCTION_ALIGNMENT' is used for aligning trampolines. -- Target Hook: void TARGET_TRAMPOLINE_INIT (rtx M_TRAMP, tree FNDECL, rtx STATIC_CHAIN) This hook is called to initialize a trampoline. M_TRAMP is an RTX for the memory block for the trampoline; FNDECL is the ! 'FUNCTION_DECL' for the nested function; STATIC_CHAIN is an RTX for ! the static chain value that should be passed to the function when ! it is called. ! If the target defines 'TARGET_ASM_TRAMPOLINE_TEMPLATE', then the first thing this hook should do is emit a block move into M_TRAMP ! from the memory block returned by 'assemble_trampoline_template'. Note that the block move need only cover the constant parts of the trampoline. If the target isolates the variable parts of the ! trampoline to the end, not all 'TRAMPOLINE_SIZE' bytes need be copied. If the target requires any other actions, such as flushing caches *************** separately. *** 31710,31726 **** -- Target Hook: rtx TARGET_TRAMPOLINE_ADJUST_ADDRESS (rtx ADDR) This hook should perform any machine-specific adjustment in the address of the trampoline. Its argument contains the address of ! the memory block that was passed to `TARGET_TRAMPOLINE_INIT'. In ! case the address to be used for a function call should be ! different from the address at which the template was stored, the ! different address should be returned; otherwise ADDR should be ! returned unchanged. If this hook is not defined, ADDR will be ! used for function calls. Implementing trampolines is difficult on many machines because they have separate instruction and data caches. Writing into a stack ! location fails to clear the memory in the instruction cache, so when ! the program jumps to that location, it executes the old contents. Here are two possible solutions. One is to clear the relevant parts of the instruction cache whenever a trampoline is set up. The other is to --- 31346,31362 ---- -- Target Hook: rtx TARGET_TRAMPOLINE_ADJUST_ADDRESS (rtx ADDR) This hook should perform any machine-specific adjustment in the address of the trampoline. Its argument contains the address of ! the memory block that was passed to 'TARGET_TRAMPOLINE_INIT'. In ! case the address to be used for a function call should be different ! from the address at which the template was stored, the different ! address should be returned; otherwise ADDR should be returned ! unchanged. If this hook is not defined, ADDR will be used for ! function calls. Implementing trampolines is difficult on many machines because they have separate instruction and data caches. Writing into a stack ! location fails to clear the memory in the instruction cache, so when the ! program jumps to that location, it executes the old contents. Here are two possible solutions. One is to clear the relevant parts of the instruction cache whenever a trampoline is set up. The other is to *************** the following macro. *** 31734,31760 **** -- Macro: CLEAR_INSN_CACHE (BEG, END) If defined, expands to a C expression clearing the _instruction cache_ in the specified interval. The definition of this macro ! would typically be a series of `asm' statements. Both BEG and END are both pointer expressions. To use a standard subroutine, define the following macro. In addition, you must make sure that the instructions in a trampoline fill an entire cache line with identical instructions, or else ensure that the beginning of the trampoline code is always aligned at the same point in ! its cache line. Look in `m68k.h' as a guide. -- Macro: TRANSFER_FROM_TRAMPOLINE Define this macro if trampolines need a special subroutine to do ! their work. The macro should expand to a series of `asm' statements which will be compiled with GCC. They go in a library ! function named `__transfer_from_trampoline'. If you need to avoid executing the ordinary prologue code of a compiled C function when you jump to the subroutine, you can do so by placing a special label of your own in the assembler code. Use ! one `asm' statement to generate an assembler label, and another to ! make the label global. Then trampolines can use that label to ! jump directly to your special assembler code.  File: gccint.info, Node: Library Calls, Next: Addressing Modes, Prev: Trampolines, Up: Target Macros --- 31370,31396 ---- -- Macro: CLEAR_INSN_CACHE (BEG, END) If defined, expands to a C expression clearing the _instruction cache_ in the specified interval. The definition of this macro ! would typically be a series of 'asm' statements. Both BEG and END are both pointer expressions. To use a standard subroutine, define the following macro. In addition, you must make sure that the instructions in a trampoline fill an entire cache line with identical instructions, or else ensure that the beginning of the trampoline code is always aligned at the same point in ! its cache line. Look in 'm68k.h' as a guide. -- Macro: TRANSFER_FROM_TRAMPOLINE Define this macro if trampolines need a special subroutine to do ! their work. The macro should expand to a series of 'asm' statements which will be compiled with GCC. They go in a library ! function named '__transfer_from_trampoline'. If you need to avoid executing the ordinary prologue code of a compiled C function when you jump to the subroutine, you can do so by placing a special label of your own in the assembler code. Use ! one 'asm' statement to generate an assembler label, and another to ! make the label global. Then trampolines can use that label to jump ! directly to your special assembler code.  File: gccint.info, Node: Library Calls, Next: Addressing Modes, Prev: Trampolines, Up: Target Macros *************** Here is an explanation of implicit calls *** 31766,31795 **** -- Macro: DECLARE_LIBRARY_RENAMES This macro, if defined, should expand to a piece of C code that ! will get expanded when compiling functions for libgcc.a. It can ! be used to provide alternate names for GCC's internal library functions if there are ABI-mandated names that the compiler should provide. -- Target Hook: void TARGET_INIT_LIBFUNCS (void) This hook should declare additional library routines or rename ! existing ones, using the functions `set_optab_libfunc' and ! `init_one_libfunc' defined in `optabs.c'. `init_optabs' calls ! this macro after initializing all the normal library routines. ! The default is to do nothing. Most ports don't need to define ! this hook. -- Target Hook: bool TARGET_LIBFUNC_GNU_PREFIX If false (the default), internal library routines start with two ! underscores. If set to true, these routines start with `__gnu_' ! instead. E.g., `__muldi3' changes to `__gnu_muldi3'. This ! currently only affects functions defined in `libgcc2.c'. If this ! is set to true, the `tm.h' file must also `#define LIBGCC2_GNU_PREFIX'. -- Macro: FLOAT_LIB_COMPARE_RETURNS_BOOL (MODE, COMPARISON) ! This macro should return `true' if the library routine that implements the floating point comparison operator COMPARISON in mode MODE will return a boolean, and FALSE if it will return a tristate. --- 31402,31431 ---- -- Macro: DECLARE_LIBRARY_RENAMES This macro, if defined, should expand to a piece of C code that ! will get expanded when compiling functions for libgcc.a. It can be ! used to provide alternate names for GCC's internal library functions if there are ABI-mandated names that the compiler should provide. -- Target Hook: void TARGET_INIT_LIBFUNCS (void) This hook should declare additional library routines or rename ! existing ones, using the functions 'set_optab_libfunc' and ! 'init_one_libfunc' defined in 'optabs.c'. 'init_optabs' calls this ! macro after initializing all the normal library routines. ! The default is to do nothing. Most ports don't need to define this ! hook. -- Target Hook: bool TARGET_LIBFUNC_GNU_PREFIX If false (the default), internal library routines start with two ! underscores. If set to true, these routines start with '__gnu_' ! instead. E.g., '__muldi3' changes to '__gnu_muldi3'. This ! currently only affects functions defined in 'libgcc2.c'. If this ! is set to true, the 'tm.h' file must also '#define LIBGCC2_GNU_PREFIX'. -- Macro: FLOAT_LIB_COMPARE_RETURNS_BOOL (MODE, COMPARISON) ! This macro should return 'true' if the library routine that implements the floating point comparison operator COMPARISON in mode MODE will return a boolean, and FALSE if it will return a tristate. *************** Here is an explanation of implicit calls *** 31799,31842 **** ports don't need to define this macro. -- Macro: TARGET_LIB_INT_CMP_BIASED ! This macro should evaluate to `true' if the integer comparison ! functions (like `__cmpdi2') return 0 to indicate that the first operand is smaller than the second, 1 to indicate that they are ! equal, and 2 to indicate that the first operand is greater than ! the second. If this macro evaluates to `false' the comparison functions return -1, 0, and 1 instead of 0, 1, and 2. If the ! target uses the routines in `libgcc.a', you do not need to define this macro. -- Macro: TARGET_EDOM ! The value of `EDOM' on the target machine, as a C integer constant expression. If you don't define this macro, GCC does not attempt ! to deposit the value of `EDOM' into `errno' directly. Look in ! `/usr/include/errno.h' to find the value of `EDOM' on your system. ! If you do not define `TARGET_EDOM', then compiled code reports ! domain errors by calling the library function and letting it ! report the error. If mathematical functions on your system use ! `matherr' when there is an error, then you should leave ! `TARGET_EDOM' undefined so that `matherr' is used normally. -- Macro: GEN_ERRNO_RTX Define this macro as a C expression to create an rtl expression ! that refers to the global "variable" `errno'. (On certain systems, ! `errno' may not actually be a variable.) If you don't define this macro, a reasonable default is used. -- Macro: TARGET_C99_FUNCTIONS ! When this macro is nonzero, GCC will implicitly optimize `sin' ! calls into `sinf' and similarly for other functions defined by C99 ! standard. The default is zero because a number of existing ! systems lack support for these functions in their runtime so this ! macro needs to be redefined to one on systems that do support the ! C99 runtime. -- Macro: TARGET_HAS_SINCOS When this macro is nonzero, GCC will implicitly optimize calls to ! `sin' and `cos' with the same argument to a call to `sincos'. The default is zero. The target has to provide the following functions: void sincos(double x, double *sin, double *cos); --- 31435,31478 ---- ports don't need to define this macro. -- Macro: TARGET_LIB_INT_CMP_BIASED ! This macro should evaluate to 'true' if the integer comparison ! functions (like '__cmpdi2') return 0 to indicate that the first operand is smaller than the second, 1 to indicate that they are ! equal, and 2 to indicate that the first operand is greater than the ! second. If this macro evaluates to 'false' the comparison functions return -1, 0, and 1 instead of 0, 1, and 2. If the ! target uses the routines in 'libgcc.a', you do not need to define this macro. -- Macro: TARGET_EDOM ! The value of 'EDOM' on the target machine, as a C integer constant expression. If you don't define this macro, GCC does not attempt ! to deposit the value of 'EDOM' into 'errno' directly. Look in ! '/usr/include/errno.h' to find the value of 'EDOM' on your system. ! If you do not define 'TARGET_EDOM', then compiled code reports ! domain errors by calling the library function and letting it report ! the error. If mathematical functions on your system use 'matherr' ! when there is an error, then you should leave 'TARGET_EDOM' ! undefined so that 'matherr' is used normally. -- Macro: GEN_ERRNO_RTX Define this macro as a C expression to create an rtl expression ! that refers to the global "variable" 'errno'. (On certain systems, ! 'errno' may not actually be a variable.) If you don't define this macro, a reasonable default is used. -- Macro: TARGET_C99_FUNCTIONS ! When this macro is nonzero, GCC will implicitly optimize 'sin' ! calls into 'sinf' and similarly for other functions defined by C99 ! standard. The default is zero because a number of existing systems ! lack support for these functions in their runtime so this macro ! needs to be redefined to one on systems that do support the C99 ! runtime. -- Macro: TARGET_HAS_SINCOS When this macro is nonzero, GCC will implicitly optimize calls to ! 'sin' and 'cos' with the same argument to a call to 'sincos'. The default is zero. The target has to provide the following functions: void sincos(double x, double *sin, double *cos); *************** Here is an explanation of implicit calls *** 31847,31855 **** Set this macro to 1 to use the "NeXT" Objective-C message sending conventions by default. This calling convention involves passing the object, the selector and the method arguments all at once to ! the method-lookup library function. This is the usual setting ! when targeting Darwin/Mac OS X systems, which have the NeXT ! runtime installed. If the macro is set to 0, the "GNU" Objective-C message sending convention will be used by default. This convention passes just --- 31483,31491 ---- Set this macro to 1 to use the "NeXT" Objective-C message sending conventions by default. This calling convention involves passing the object, the selector and the method arguments all at once to ! the method-lookup library function. This is the usual setting when ! targeting Darwin/Mac OS X systems, which have the NeXT runtime ! installed. If the macro is set to 0, the "GNU" Objective-C message sending convention will be used by default. This convention passes just *************** This is about addressing modes. *** 31890,31911 **** -- Macro: CONSTANT_ADDRESS_P (X) A C expression that is 1 if the RTX X is a constant which is a valid address. On most machines the default definition of ! `(CONSTANT_P (X) && GET_CODE (X) != CONST_DOUBLE)' is acceptable, but a few machines are more restrictive as to which constant addresses are supported. -- Macro: CONSTANT_P (X) ! `CONSTANT_P', which is defined by target-independent code, accepts integer-values expressions whose values are not explicitly known, ! such as `symbol_ref', `label_ref', and `high' expressions and ! `const' arithmetic expressions, in addition to `const_int' and ! `const_double' expressions. -- Macro: MAX_REGS_PER_ADDRESS A number, the maximum number of registers that can appear in a ! valid memory address. Note that it is up to you to specify a ! value equal to the maximum number that ! `TARGET_LEGITIMATE_ADDRESS_P' would ever accept. -- Target Hook: bool TARGET_LEGITIMATE_ADDRESS_P (enum machine_mode MODE, rtx X, bool STRICT) --- 31526,31547 ---- -- Macro: CONSTANT_ADDRESS_P (X) A C expression that is 1 if the RTX X is a constant which is a valid address. On most machines the default definition of ! '(CONSTANT_P (X) && GET_CODE (X) != CONST_DOUBLE)' is acceptable, but a few machines are more restrictive as to which constant addresses are supported. -- Macro: CONSTANT_P (X) ! 'CONSTANT_P', which is defined by target-independent code, accepts integer-values expressions whose values are not explicitly known, ! such as 'symbol_ref', 'label_ref', and 'high' expressions and ! 'const' arithmetic expressions, in addition to 'const_int' and ! 'const_double' expressions. -- Macro: MAX_REGS_PER_ADDRESS A number, the maximum number of registers that can appear in a ! valid memory address. Note that it is up to you to specify a value ! equal to the maximum number that 'TARGET_LEGITIMATE_ADDRESS_P' ! would ever accept. -- Target Hook: bool TARGET_LEGITIMATE_ADDRESS_P (enum machine_mode MODE, rtx X, bool STRICT) *************** This is about addressing modes. *** 31919,31966 **** The strict variant is used in the reload pass. It must be defined so that any pseudo-register that has not been allocated a hard register is considered a memory reference. This is because in ! contexts where some kind of register is required, a ! pseudo-register with no hard register must be rejected. For ! non-hard registers, the strict variant should look up the ! `reg_renumber' array; it should then proceed using the hard ! register number in the array, or treat the pseudo as a memory ! reference if the array holds `-1'. ! The non-strict variant is used in other passes. It must be ! defined to accept all pseudo-registers in every context where some ! kind of register is required. ! Normally, constant addresses which are the sum of a `symbol_ref' ! and an integer are stored inside a `const' RTX to mark them as constant. Therefore, there is no need to recognize such sums specifically as legitimate addresses. Normally you would simply ! recognize any `const' as legitimate. ! Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant ! sums that are not marked with `const'. It assumes that a naked ! `plus' indicates indexing. If so, then you _must_ reject such ! naked constant sums as illegitimate addresses, so that none of ! them will be given to `PRINT_OPERAND_ADDRESS'. On some machines, whether a symbolic address is legitimate depends on the section that the address refers to. On these machines, ! define the target hook `TARGET_ENCODE_SECTION_INFO' to store the ! information into the `symbol_ref', and then check for it here. ! When you see a `const', you will have to look inside it to find the ! `symbol_ref' in order to determine the section. *Note Assembler Format::. Some ports are still using a deprecated legacy substitute for this ! hook, the `GO_IF_LEGITIMATE_ADDRESS' macro. This macro has this syntax: #define GO_IF_LEGITIMATE_ADDRESS (MODE, X, LABEL) ! and should `goto LABEL' if the address X is a valid address on the target machine for a memory operand of mode MODE. Compiler source files that want to use the strict variant of this ! macro define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT' conditional to define the strict variant in that case and the non-strict variant otherwise. --- 31555,31601 ---- The strict variant is used in the reload pass. It must be defined so that any pseudo-register that has not been allocated a hard register is considered a memory reference. This is because in ! contexts where some kind of register is required, a pseudo-register ! with no hard register must be rejected. For non-hard registers, ! the strict variant should look up the 'reg_renumber' array; it ! should then proceed using the hard register number in the array, or ! treat the pseudo as a memory reference if the array holds '-1'. ! The non-strict variant is used in other passes. It must be defined ! to accept all pseudo-registers in every context where some kind of ! register is required. ! Normally, constant addresses which are the sum of a 'symbol_ref' ! and an integer are stored inside a 'const' RTX to mark them as constant. Therefore, there is no need to recognize such sums specifically as legitimate addresses. Normally you would simply ! recognize any 'const' as legitimate. ! Usually 'PRINT_OPERAND_ADDRESS' is not prepared to handle constant ! sums that are not marked with 'const'. It assumes that a naked ! 'plus' indicates indexing. If so, then you _must_ reject such ! naked constant sums as illegitimate addresses, so that none of them ! will be given to 'PRINT_OPERAND_ADDRESS'. On some machines, whether a symbolic address is legitimate depends on the section that the address refers to. On these machines, ! define the target hook 'TARGET_ENCODE_SECTION_INFO' to store the ! information into the 'symbol_ref', and then check for it here. ! When you see a 'const', you will have to look inside it to find the ! 'symbol_ref' in order to determine the section. *Note Assembler Format::. Some ports are still using a deprecated legacy substitute for this ! hook, the 'GO_IF_LEGITIMATE_ADDRESS' macro. This macro has this syntax: #define GO_IF_LEGITIMATE_ADDRESS (MODE, X, LABEL) ! and should 'goto LABEL' if the address X is a valid address on the target machine for a memory operand of mode MODE. Compiler source files that want to use the strict variant of this ! macro define the macro 'REG_OK_STRICT'. You should use an '#ifdef REG_OK_STRICT' conditional to define the strict variant in that case and the non-strict variant otherwise. *************** This is about addressing modes. *** 31968,31987 **** files that are recompiled when changes are made. -- Macro: TARGET_MEM_CONSTRAINT ! A single character to be used instead of the default `'m'' character for general memory addresses. This defines the constraint letter which matches the memory addresses accepted by ! `TARGET_LEGITIMATE_ADDRESS_P'. Define this macro if you want to support new address formats in your back end without changing the ! semantics of the `'m'' constraint. This is necessary in order to preserve functionality of inline assembly constructs using the ! `'m'' constraint. -- Macro: FIND_BASE_TERM (X) A C expression to determine the base term of address X, or to ! provide a simplified version of X from which `alias.c' can easily find the base term. This macro is used in only two places: ! `find_base_value' and `find_base_term' in `alias.c'. It is always safe for this macro to not be defined. It exists so that alias analysis can understand machine-dependent addresses. --- 31603,31622 ---- files that are recompiled when changes are made. -- Macro: TARGET_MEM_CONSTRAINT ! A single character to be used instead of the default ''m'' character for general memory addresses. This defines the constraint letter which matches the memory addresses accepted by ! 'TARGET_LEGITIMATE_ADDRESS_P'. Define this macro if you want to support new address formats in your back end without changing the ! semantics of the ''m'' constraint. This is necessary in order to preserve functionality of inline assembly constructs using the ! ''m'' constraint. -- Macro: FIND_BASE_TERM (X) A C expression to determine the base term of address X, or to ! provide a simplified version of X from which 'alias.c' can easily find the base term. This macro is used in only two places: ! 'find_base_value' and 'find_base_term' in 'alias.c'. It is always safe for this macro to not be defined. It exists so that alias analysis can understand machine-dependent addresses. *************** This is about addressing modes. *** 31994,32067 **** This hook is given an invalid memory address X for an operand of mode MODE and should try to return a valid memory address. ! X will always be the result of a call to `break_out_memory_refs', and OLDX will be the operand that was given to that function to produce X. ! The code of the hook should not alter the substructure of X. If ! it transforms X into a more legitimate form, it should return the ! new X. It is not necessary for this hook to come up with a legitimate ! address, with the exception of native TLS addresses (*note ! Emulated TLS::). The compiler has standard ways of doing so in ! all cases. In fact, if the target supports only emulated TLS, it ! is safe to omit this hook or make it return X if it cannot find a ! valid way to legitimize the address. But often a machine-dependent ! strategy can generate better code. -- Macro: LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) A C compound statement that attempts to replace X, which is an address that needs reloading, with a valid memory address for an ! operand of mode MODE. WIN will be a C statement label elsewhere ! in the code. It is not necessary to define this macro, but it ! might be useful for performance reasons. For example, on the i386, it is sometimes possible to use a single reload register instead of two by reloading a sum of two pseudo registers into a register. On the other hand, for number of RISC processors offsets are limited so that often an intermediate ! address needs to be generated in order to address a stack slot. ! By defining `LEGITIMIZE_RELOAD_ADDRESS' appropriately, the intermediate addresses generated for adjacent some stack slots can be made identical, and thus be shared. ! _Note_: This macro should be used with caution. It is necessary ! to know something of how reload works in order to effectively use ! this, and it is quite easy to produce macros that build in too ! much knowledge of reload internals. _Note_: This macro must be able to reload an address created by a previous invocation of this macro. If it fails to handle such addresses then the compiler may generate incorrect code or abort. ! The macro definition should use `push_reload' to indicate parts that need reloading; OPNUM, TYPE and IND_LEVELS are usually ! suitable to be passed unaltered to `push_reload'. The code generated by this macro must not alter the substructure of X. If it transforms X into a more legitimate form, it should assign X (which will always be a C variable) a new value. This also applies to parts that you change indirectly by calling ! `push_reload'. ! The macro definition may use `strict_memory_address_p' to test if the address has become legitimate. If you want to change only a part of X, one standard way of doing ! this is to use `copy_rtx'. Note, however, that it unshares only a single level of rtl. Thus, if the part to be changed is not at the top level, you'll need to replace first the top level. It is not ! necessary for this macro to come up with a legitimate address; ! but often a machine-dependent strategy can generate better code. -- Target Hook: bool TARGET_MODE_DEPENDENT_ADDRESS_P (const_rtx ADDR, addr_space_t ADDRSPACE) ! This hook returns `true' if memory address ADDR in address space ! ADDRSPACE can have different meanings depending on the machine ! mode of the memory reference it is used for or if the address is ! valid for some modes but not others. Autoincrement and autodecrement addresses typically have mode-dependent effects because the amount of the increment or --- 31629,31702 ---- This hook is given an invalid memory address X for an operand of mode MODE and should try to return a valid memory address. ! X will always be the result of a call to 'break_out_memory_refs', and OLDX will be the operand that was given to that function to produce X. ! The code of the hook should not alter the substructure of X. If it ! transforms X into a more legitimate form, it should return the new ! X. It is not necessary for this hook to come up with a legitimate ! address, with the exception of native TLS addresses (*note Emulated ! TLS::). The compiler has standard ways of doing so in all cases. ! In fact, if the target supports only emulated TLS, it is safe to ! omit this hook or make it return X if it cannot find a valid way to ! legitimize the address. But often a machine-dependent strategy can ! generate better code. -- Macro: LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) A C compound statement that attempts to replace X, which is an address that needs reloading, with a valid memory address for an ! operand of mode MODE. WIN will be a C statement label elsewhere in ! the code. It is not necessary to define this macro, but it might ! be useful for performance reasons. For example, on the i386, it is sometimes possible to use a single reload register instead of two by reloading a sum of two pseudo registers into a register. On the other hand, for number of RISC processors offsets are limited so that often an intermediate ! address needs to be generated in order to address a stack slot. By ! defining 'LEGITIMIZE_RELOAD_ADDRESS' appropriately, the intermediate addresses generated for adjacent some stack slots can be made identical, and thus be shared. ! _Note_: This macro should be used with caution. It is necessary to ! know something of how reload works in order to effectively use ! this, and it is quite easy to produce macros that build in too much ! knowledge of reload internals. _Note_: This macro must be able to reload an address created by a previous invocation of this macro. If it fails to handle such addresses then the compiler may generate incorrect code or abort. ! The macro definition should use 'push_reload' to indicate parts that need reloading; OPNUM, TYPE and IND_LEVELS are usually ! suitable to be passed unaltered to 'push_reload'. The code generated by this macro must not alter the substructure of X. If it transforms X into a more legitimate form, it should assign X (which will always be a C variable) a new value. This also applies to parts that you change indirectly by calling ! 'push_reload'. ! The macro definition may use 'strict_memory_address_p' to test if the address has become legitimate. If you want to change only a part of X, one standard way of doing ! this is to use 'copy_rtx'. Note, however, that it unshares only a single level of rtl. Thus, if the part to be changed is not at the top level, you'll need to replace first the top level. It is not ! necessary for this macro to come up with a legitimate address; but ! often a machine-dependent strategy can generate better code. -- Target Hook: bool TARGET_MODE_DEPENDENT_ADDRESS_P (const_rtx ADDR, addr_space_t ADDRSPACE) ! This hook returns 'true' if memory address ADDR in address space ! ADDRSPACE can have different meanings depending on the machine mode ! of the memory reference it is used for or if the address is valid ! for some modes but not others. Autoincrement and autodecrement addresses typically have mode-dependent effects because the amount of the increment or *************** This is about addressing modes. *** 32071,32094 **** You may assume that ADDR is a valid address for the machine. ! The default version of this hook returns `false'. -- Target Hook: bool TARGET_LEGITIMATE_CONSTANT_P (enum machine_mode MODE, rtx X) This hook returns true if X is a legitimate constant for a MODE-mode immediate operand on the target machine. You can assume ! that X satisfies `CONSTANT_P', so you need not check this. The default definition returns true. -- Target Hook: rtx TARGET_DELEGITIMIZE_ADDRESS (rtx X) This hook is used to undo the possibly obfuscating effects of the ! `LEGITIMIZE_ADDRESS' and `LEGITIMIZE_RELOAD_ADDRESS' target ! macros. Some backend implementations of these macros wrap symbol ! references inside an `UNSPEC' rtx to represent PIC or similar ! addressing modes. This target hook allows GCC's optimizers to ! understand the semantics of these opaque `UNSPEC's by converting ! them back into their original form. -- Target Hook: bool TARGET_CONST_NOT_OK_FOR_DEBUG_P (rtx X) This hook should return true if X should not be emitted into debug --- 31706,31729 ---- You may assume that ADDR is a valid address for the machine. ! The default version of this hook returns 'false'. -- Target Hook: bool TARGET_LEGITIMATE_CONSTANT_P (enum machine_mode MODE, rtx X) This hook returns true if X is a legitimate constant for a MODE-mode immediate operand on the target machine. You can assume ! that X satisfies 'CONSTANT_P', so you need not check this. The default definition returns true. -- Target Hook: rtx TARGET_DELEGITIMIZE_ADDRESS (rtx X) This hook is used to undo the possibly obfuscating effects of the ! 'LEGITIMIZE_ADDRESS' and 'LEGITIMIZE_RELOAD_ADDRESS' target macros. ! Some backend implementations of these macros wrap symbol references ! inside an 'UNSPEC' rtx to represent PIC or similar addressing ! modes. This target hook allows GCC's optimizers to understand the ! semantics of these opaque 'UNSPEC's by converting them back into ! their original form. -- Target Hook: bool TARGET_CONST_NOT_OK_FOR_DEBUG_P (rtx X) This hook should return true if X should not be emitted into debug *************** This is about addressing modes. *** 32111,32123 **** -- Target Hook: bool TARGET_USE_BLOCKS_FOR_CONSTANT_P (enum machine_mode MODE, const_rtx X) This hook should return true if pool entries for constant X can be ! placed in an `object_block' structure. MODE is the mode of X. The default version returns false for all constants. -- Target Hook: bool TARGET_USE_BLOCKS_FOR_DECL_P (const_tree DECL) This hook should return true if pool entries for DECL should be ! placed in an `object_block' structure. The default version returns true for all decls. --- 31746,31758 ---- -- Target Hook: bool TARGET_USE_BLOCKS_FOR_CONSTANT_P (enum machine_mode MODE, const_rtx X) This hook should return true if pool entries for constant X can be ! placed in an 'object_block' structure. MODE is the mode of X. The default version returns false for all constants. -- Target Hook: bool TARGET_USE_BLOCKS_FOR_DECL_P (const_tree DECL) This hook should return true if pool entries for DECL should be ! placed in an 'object_block' structure. The default version returns true for all decls. *************** This is about addressing modes. *** 32125,32135 **** MD_FN, bool SQRT) This hook should return the DECL of a function that implements reciprocal of the builtin function with builtin function code FN, ! or `NULL_TREE' if such a function is not available. MD_FN is true when FN is a code of a machine-dependent builtin function. When SQRT is true, additional optimizations that apply only to the reciprocal of a square root function are performed, and only ! reciprocals of `sqrt' function are valid. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD (void) This hook should return the DECL of a function F that given an --- 31760,31770 ---- MD_FN, bool SQRT) This hook should return the DECL of a function that implements reciprocal of the builtin function with builtin function code FN, ! or 'NULL_TREE' if such a function is not available. MD_FN is true when FN is a code of a machine-dependent builtin function. When SQRT is true, additional optimizations that apply only to the reciprocal of a square root function are performed, and only ! reciprocals of 'sqrt' function are valid. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD (void) This hook should return the DECL of a function F that given an *************** This is about addressing modes. *** 32139,32160 **** The autovectorizer, when vectorizing a load operation from an address ADDR that may be unaligned, will generate two vector loads ! from the two aligned addresses around ADDR. It then generates a ! `REALIGN_LOAD' operation to extract the relevant data from the two ! loaded vectors. The first two arguments to `REALIGN_LOAD', V1 and V2, are the two vectors, each of size VS, and the third argument, ! OFF, defines how the data will be extracted from these two ! vectors: if OFF is 0, then the returned vector is V2; otherwise, ! the returned vector is composed from the last VS-OFF elements of ! V1 concatenated to the first OFF elements of V2. ! If this hook is defined, the autovectorizer will generate a call ! to F (using the DECL tree that this hook returns) and will use the ! return value of F as the argument OFF to `REALIGN_LOAD'. Therefore, the mask M returned by F should comply with the ! semantics expected by `REALIGN_LOAD' described above. If this ! hook is not defined, then ADDR will be used as the argument OFF to ! `REALIGN_LOAD', in which case the low log2(VS) - 1 bits of ADDR will be considered. -- Target Hook: int TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST (enum --- 31774,31795 ---- The autovectorizer, when vectorizing a load operation from an address ADDR that may be unaligned, will generate two vector loads ! from the two aligned addresses around ADDR. It then generates a ! 'REALIGN_LOAD' operation to extract the relevant data from the two ! loaded vectors. The first two arguments to 'REALIGN_LOAD', V1 and V2, are the two vectors, each of size VS, and the third argument, ! OFF, defines how the data will be extracted from these two vectors: ! if OFF is 0, then the returned vector is V2; otherwise, the ! returned vector is composed from the last VS-OFF elements of V1 ! concatenated to the first OFF elements of V2. ! If this hook is defined, the autovectorizer will generate a call to ! F (using the DECL tree that this hook returns) and will use the ! return value of F as the argument OFF to 'REALIGN_LOAD'. Therefore, the mask M returned by F should comply with the ! semantics expected by 'REALIGN_LOAD' described above. If this hook ! is not defined, then ADDR will be used as the argument OFF to ! 'REALIGN_LOAD', in which case the low log2(VS) - 1 bits of ADDR will be considered. -- Target Hook: int TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST (enum *************** This is about addressing modes. *** 32170,32201 **** -- Target Hook: bool TARGET_VECTORIZE_VEC_PERM_CONST_OK (enum MACHINE_MODE, const unsigned char *SEL) ! Return true if a vector created for `vec_perm_const' is valid. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_CONVERSION (unsigned CODE, tree DEST_TYPE, tree SRC_TYPE) This hook should return the DECL of a function that implements conversion of the input vector of type SRC_TYPE to type DEST_TYPE. ! The value of CODE is one of the enumerators in `enum tree_code' and specifies how the conversion is to be applied (truncation, rounding, etc.). If this hook is defined, the autovectorizer will use the ! `TARGET_VECTORIZE_BUILTIN_CONVERSION' target hook when vectorizing ! conversion. Otherwise, it will return `NULL_TREE'. ! -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION ! (tree FNDECL, tree VEC_TYPE_OUT, tree VEC_TYPE_IN) This hook should return the decl of a function that implements the vectorized variant of the builtin function with builtin function ! code CODE or `NULL_TREE' if such a function is not available. The value of FNDECL is the builtin function declaration. The return type of the vectorized function shall be of vector type VEC_TYPE_OUT and the argument types should be VEC_TYPE_IN. ! -- Target Hook: bool TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT ! (enum machine_mode MODE, const_tree TYPE, int MISALIGNMENT, ! bool IS_PACKED) This hook should return true if the target supports misaligned vector store/load of a specific factor denoted in the MISALIGNMENT parameter. The vector store/load should be of machine mode MODE --- 31805,31836 ---- -- Target Hook: bool TARGET_VECTORIZE_VEC_PERM_CONST_OK (enum MACHINE_MODE, const unsigned char *SEL) ! Return true if a vector created for 'vec_perm_const' is valid. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_CONVERSION (unsigned CODE, tree DEST_TYPE, tree SRC_TYPE) This hook should return the DECL of a function that implements conversion of the input vector of type SRC_TYPE to type DEST_TYPE. ! The value of CODE is one of the enumerators in 'enum tree_code' and specifies how the conversion is to be applied (truncation, rounding, etc.). If this hook is defined, the autovectorizer will use the ! 'TARGET_VECTORIZE_BUILTIN_CONVERSION' target hook when vectorizing ! conversion. Otherwise, it will return 'NULL_TREE'. ! -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION (tree ! FNDECL, tree VEC_TYPE_OUT, tree VEC_TYPE_IN) This hook should return the decl of a function that implements the vectorized variant of the builtin function with builtin function ! code CODE or 'NULL_TREE' if such a function is not available. The value of FNDECL is the builtin function declaration. The return type of the vectorized function shall be of vector type VEC_TYPE_OUT and the argument types should be VEC_TYPE_IN. ! -- Target Hook: bool TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT (enum ! machine_mode MODE, const_tree TYPE, int MISALIGNMENT, bool ! IS_PACKED) This hook should return true if the target supports misaligned vector store/load of a specific factor denoted in the MISALIGNMENT parameter. The vector store/load should be of machine mode MODE *************** This is about addressing modes. *** 32206,32220 **** -- Target Hook: enum machine_mode TARGET_VECTORIZE_PREFERRED_SIMD_MODE (enum machine_mode MODE) This hook should return the preferred mode for vectorizing scalar ! mode MODE. The default is equal to `word_mode', because the vectorizer can do some transformations even in absence of specialized SIMD hardware. -- Target Hook: unsigned int ! TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES (void) This hook should return a mask of sizes that should be iterated over after trying to autovectorize using the vector size derived ! from the mode returned by `TARGET_VECTORIZE_PREFERRED_SIMD_MODE'. The default is zero which means to not iterate over other vector sizes. --- 31841,31855 ---- -- Target Hook: enum machine_mode TARGET_VECTORIZE_PREFERRED_SIMD_MODE (enum machine_mode MODE) This hook should return the preferred mode for vectorizing scalar ! mode MODE. The default is equal to 'word_mode', because the vectorizer can do some transformations even in absence of specialized SIMD hardware. -- Target Hook: unsigned int ! TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES (void) This hook should return a mask of sizes that should be iterated over after trying to autovectorize using the vector size derived ! from the mode returned by 'TARGET_VECTORIZE_PREFERRED_SIMD_MODE'. The default is zero which means to not iterate over other vector sizes. *************** TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SI *** 32223,32256 **** This hook should initialize target-specific data structures in preparation for modeling the costs of vectorizing a loop or basic block. The default allocates three unsigned integers for ! accumulating costs for the prologue, body, and epilogue of the ! loop or basic block. If LOOP_INFO is non-NULL, it identifies the ! loop being vectorized; otherwise a single block is being ! vectorized. -- Target Hook: unsigned TARGET_VECTORIZE_ADD_STMT_COST (void *DATA, ! int COUNT, enum vect_cost_for_stmt KIND, struct ! _stmt_vec_info *STMT_INFO, int MISALIGN, enum ! vect_cost_model_location WHERE) This hook should update the target-specific DATA in response to adding COUNT copies of the given KIND of statement to a loop or basic block. The default adds the builtin vectorizer cost for the ! copies of the statement to the accumulator specified by WHERE, ! (the prologue, body, or epilogue) and returns the amount added. ! The return value should be viewed as a tentative cost that may ! later be revised. ! -- Target Hook: void TARGET_VECTORIZE_FINISH_COST (void *DATA, ! unsigned *PROLOGUE_COST, unsigned *BODY_COST, unsigned ! *EPILOGUE_COST) ! This hook should complete calculations of the cost of vectorizing ! a loop or basic block based on DATA, and return the prologue, ! body, and epilogue costs as unsigned integers. The default ! returns the value of the three accumulators. -- Target Hook: void TARGET_VECTORIZE_DESTROY_COST_DATA (void *DATA) This hook should release DATA and any related data structures ! allocated by TARGET_VECTORIZE_INIT_COST. The default releases the accumulator. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_TM_LOAD (tree) --- 31858,31888 ---- This hook should initialize target-specific data structures in preparation for modeling the costs of vectorizing a loop or basic block. The default allocates three unsigned integers for ! accumulating costs for the prologue, body, and epilogue of the loop ! or basic block. If LOOP_INFO is non-NULL, it identifies the loop ! being vectorized; otherwise a single block is being vectorized. -- Target Hook: unsigned TARGET_VECTORIZE_ADD_STMT_COST (void *DATA, ! int COUNT, enum vect_cost_for_stmt KIND, struct _stmt_vec_info ! *STMT_INFO, int MISALIGN, enum vect_cost_model_location WHERE) This hook should update the target-specific DATA in response to adding COUNT copies of the given KIND of statement to a loop or basic block. The default adds the builtin vectorizer cost for the ! copies of the statement to the accumulator specified by WHERE, (the ! prologue, body, or epilogue) and returns the amount added. The ! return value should be viewed as a tentative cost that may later be ! revised. ! -- Target Hook: void TARGET_VECTORIZE_FINISH_COST (void *DATA, unsigned ! *PROLOGUE_COST, unsigned *BODY_COST, unsigned *EPILOGUE_COST) ! This hook should complete calculations of the cost of vectorizing a ! loop or basic block based on DATA, and return the prologue, body, ! and epilogue costs as unsigned integers. The default returns the ! value of the three accumulators. -- Target Hook: void TARGET_VECTORIZE_DESTROY_COST_DATA (void *DATA) This hook should release DATA and any related data structures ! allocated by TARGET_VECTORIZE_INIT_COST. The default releases the accumulator. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_TM_LOAD (tree) *************** TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SI *** 32264,32272 **** -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_GATHER (const_tree MEM_VECTYPE, const_tree INDEX_TYPE, int SCALE) Target builtin that implements vector gather operation. ! MEM_VECTYPE is the vector type of the load and INDEX_TYPE is ! scalar type of the index, scaled by SCALE. The default is ! `NULL_TREE' which means to not vectorize gather loads.  File: gccint.info, Node: Anchored Addresses, Next: Condition Code, Prev: Addressing Modes, Up: Target Macros --- 31896,31904 ---- -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_GATHER (const_tree MEM_VECTYPE, const_tree INDEX_TYPE, int SCALE) Target builtin that implements vector gather operation. ! MEM_VECTYPE is the vector type of the load and INDEX_TYPE is scalar ! type of the index, scaled by SCALE. The default is 'NULL_TREE' ! which means to not vectorize gather loads.  File: gccint.info, Node: Anchored Addresses, Next: Condition Code, Prev: Addressing Modes, Up: Target Macros *************** example, if we have: *** 32280,32287 **** static int a, b, c; int foo (void) { return a + b + c; } ! the code for `foo' will usually calculate three separate symbolic ! addresses: those of `a', `b' and `c'. On some targets, it would be better to calculate just one symbolic address and access the three variables relative to it. The equivalent pseudocode would be something like: --- 31912,31919 ---- static int a, b, c; int foo (void) { return a + b + c; } ! the code for 'foo' will usually calculate three separate symbolic ! addresses: those of 'a', 'b' and 'c'. On some targets, it would be better to calculate just one symbolic address and access the three variables relative to it. The equivalent pseudocode would be something like: *************** like: *** 32292,32304 **** return xr[&a - &x] + xr[&b - &x] + xr[&c - &x]; } ! (which isn't valid C). We refer to shared addresses like `x' as ! "section anchors". Their use is controlled by `-fsection-anchors'. The hooks below describe the target properties that GCC needs to know ! in order to make effective use of section anchors. It won't use ! section anchors at all unless either `TARGET_MIN_ANCHOR_OFFSET' or ! `TARGET_MAX_ANCHOR_OFFSET' is set to a nonzero value. -- Target Hook: HOST_WIDE_INT TARGET_MIN_ANCHOR_OFFSET The minimum offset that should be applied to a section anchor. On --- 31924,31936 ---- return xr[&a - &x] + xr[&b - &x] + xr[&c - &x]; } ! (which isn't valid C). We refer to shared addresses like 'x' as ! "section anchors". Their use is controlled by '-fsection-anchors'. The hooks below describe the target properties that GCC needs to know ! in order to make effective use of section anchors. It won't use section ! anchors at all unless either 'TARGET_MIN_ANCHOR_OFFSET' or ! 'TARGET_MAX_ANCHOR_OFFSET' is set to a nonzero value. -- Target Hook: HOST_WIDE_INT TARGET_MIN_ANCHOR_OFFSET The minimum offset that should be applied to a section anchor. On *************** section anchors at all unless either `TA *** 32307,32334 **** every mode. The default value is 0. -- Target Hook: HOST_WIDE_INT TARGET_MAX_ANCHOR_OFFSET ! Like `TARGET_MIN_ANCHOR_OFFSET', but the maximum (inclusive) ! offset that should be applied to section anchors. The default ! value is 0. -- Target Hook: void TARGET_ASM_OUTPUT_ANCHOR (rtx X) Write the assembly code to define section anchor X, which is a ! `SYMBOL_REF' for which `SYMBOL_REF_ANCHOR_P (X)' is true. The ! hook is called with the assembly output position set to the ! beginning of `SYMBOL_REF_BLOCK (X)'. ! If `ASM_OUTPUT_DEF' is available, the hook's default definition ! uses it to define the symbol as `. + SYMBOL_REF_BLOCK_OFFSET (X)'. ! If `ASM_OUTPUT_DEF' is not available, the hook's default definition ! is `NULL', which disables the use of section anchors altogether. -- Target Hook: bool TARGET_USE_ANCHORS_FOR_SYMBOL_P (const_rtx X) Return true if GCC should attempt to use anchors to access ! `SYMBOL_REF' X. You can assume `SYMBOL_REF_HAS_BLOCK_INFO_P (X)' ! and `!SYMBOL_REF_ANCHOR_P (X)'. ! The default version is correct for most targets, but you might ! need to intercept this hook to handle things like target-specific attributes or target-specific sections.  --- 31939,31965 ---- every mode. The default value is 0. -- Target Hook: HOST_WIDE_INT TARGET_MAX_ANCHOR_OFFSET ! Like 'TARGET_MIN_ANCHOR_OFFSET', but the maximum (inclusive) offset ! that should be applied to section anchors. The default value is 0. -- Target Hook: void TARGET_ASM_OUTPUT_ANCHOR (rtx X) Write the assembly code to define section anchor X, which is a ! 'SYMBOL_REF' for which 'SYMBOL_REF_ANCHOR_P (X)' is true. The hook ! is called with the assembly output position set to the beginning of ! 'SYMBOL_REF_BLOCK (X)'. ! If 'ASM_OUTPUT_DEF' is available, the hook's default definition ! uses it to define the symbol as '. + SYMBOL_REF_BLOCK_OFFSET (X)'. ! If 'ASM_OUTPUT_DEF' is not available, the hook's default definition ! is 'NULL', which disables the use of section anchors altogether. -- Target Hook: bool TARGET_USE_ANCHORS_FOR_SYMBOL_P (const_rtx X) Return true if GCC should attempt to use anchors to access ! 'SYMBOL_REF' X. You can assume 'SYMBOL_REF_HAS_BLOCK_INFO_P (X)' ! and '!SYMBOL_REF_ANCHOR_P (X)'. ! The default version is correct for most targets, but you might need ! to intercept this hook to handle things like target-specific attributes or target-specific sections.  *************** File: gccint.info, Node: Condition Code *** 32340,32356 **** The macros in this section can be split in two families, according to the two ways of representing condition codes in GCC. ! The first representation is the so called `(cc0)' representation ! (*note Jump Patterns::), where all instructions can have an implicit ! clobber of the condition codes. The second is the condition code ! register representation, which provides better schedulability for ! architectures that do have a condition code register, but on which most ! instructions do not affect it. The latter category includes most RISC ! machines. The implicit clobbering poses a strong restriction on the placement of the definition and use of the condition code, which need to be in ! adjacent insns for machines using `(cc0)'. This can prevent important optimizations on some machines. For example, on the IBM RS/6000, there is a delay for taken branches unless the condition code register is set three instructions earlier than the conditional branch. The instruction --- 31971,31986 ---- The macros in this section can be split in two families, according to the two ways of representing condition codes in GCC. ! The first representation is the so called '(cc0)' representation (*note ! Jump Patterns::), where all instructions can have an implicit clobber of ! the condition codes. The second is the condition code register ! representation, which provides better schedulability for architectures ! that do have a condition code register, but on which most instructions ! do not affect it. The latter category includes most RISC machines. The implicit clobbering poses a strong restriction on the placement of the definition and use of the condition code, which need to be in ! adjacent insns for machines using '(cc0)'. This can prevent important optimizations on some machines. For example, on the IBM RS/6000, there is a delay for taken branches unless the condition code register is set three instructions earlier than the conditional branch. The instruction *************** represent the condition code for new por *** 32362,32371 **** condition code register in the machine, use a hard register. If the condition code or comparison result can be placed in any general register, or if there are multiple condition registers, use a pseudo ! register. Registers used to store the condition code value will ! usually have a mode that is in class `MODE_CC'. ! Alternatively, you can use `BImode' if the comparison operator is specified already in the compare instruction. In this case, you are not interested in most macros in this section. --- 31992,32001 ---- condition code register in the machine, use a hard register. If the condition code or comparison result can be placed in any general register, or if there are multiple condition registers, use a pseudo ! register. Registers used to store the condition code value will usually ! have a mode that is in class 'MODE_CC'. ! Alternatively, you can use 'BImode' if the comparison operator is specified already in the compare instruction. In this case, you are not interested in most macros in this section. *************** interested in most macros in this sectio *** 32378,32387 ****  File: gccint.info, Node: CC0 Condition Codes, Next: MODE_CC Condition Codes, Up: Condition Code ! 17.16.1 Representation of condition codes using `(cc0)' ------------------------------------------------------- ! The file `conditions.h' defines a variable `cc_status' to describe how the condition code was computed (in case the interpretation of the condition code depends on the instruction that it was set by). This variable contains the RTL expressions on which the condition code is --- 32008,32017 ----  File: gccint.info, Node: CC0 Condition Codes, Next: MODE_CC Condition Codes, Up: Condition Code ! 17.16.1 Representation of condition codes using '(cc0)' ------------------------------------------------------- ! The file 'conditions.h' defines a variable 'cc_status' to describe how the condition code was computed (in case the interpretation of the condition code depends on the instruction that it was set by). This variable contains the RTL expressions on which the condition code is *************** currently based, and several standard fl *** 32389,32444 **** Sometimes additional machine-specific flags must be defined in the machine description header file. It can also add additional ! machine-specific information by defining `CC_STATUS_MDEP'. -- Macro: CC_STATUS_MDEP ! C code for a data type which is used for declaring the `mdep' ! component of `cc_status'. It defaults to `int'. ! This macro is not used on machines that do not use `cc0'. -- Macro: CC_STATUS_MDEP_INIT ! A C expression to initialize the `mdep' field to "empty". The default definition does nothing, since most machines don't use the field anyway. If you want to use the field, you should probably define this macro to initialize it. ! This macro is not used on machines that do not use `cc0'. -- Macro: NOTICE_UPDATE_CC (EXP, INSN) ! A C compound statement to set the components of `cc_status' appropriately for an insn INSN whose body is EXP. It is this macro's responsibility to recognize insns that set the condition code as a byproduct of other activity as well as those that ! explicitly set `(cc0)'. ! This macro is not used on machines that do not use `cc0'. If there are insns that do not set the condition code but do alter other machine registers, this macro must check to see whether they invalidate the expressions that the condition code is recorded as reflecting. For example, on the 68000, insns that store in address registers do not set the condition code, which means that usually ! `NOTICE_UPDATE_CC' can leave `cc_status' unaltered for such insns. But suppose that the previous insn set the condition code based on ! location `a4@(102)' and the current insn stores a new value in ! `a4'. Although the condition code is not changed by this, it will ! no longer be true that it reflects the contents of `a4@(102)'. ! Therefore, `NOTICE_UPDATE_CC' must alter `cc_status' in this case to say that nothing is known about the condition code value. ! The definition of `NOTICE_UPDATE_CC' must be prepared to deal with the results of peephole optimization: insns whose patterns are ! `parallel' RTXs containing various `reg', `mem' or constants which are just the operands. The RTL structure of these insns is not sufficient to indicate what the insns actually do. What ! `NOTICE_UPDATE_CC' should do when it sees one is just to run ! `CC_STATUS_INIT'. ! A possible definition of `NOTICE_UPDATE_CC' is to call a function that looks at an attribute (*note Insn Attributes::) named, for ! example, `cc'. This avoids having detailed information about ! patterns in two places, the `md' file and in `NOTICE_UPDATE_CC'.  File: gccint.info, Node: MODE_CC Condition Codes, Next: Cond Exec Macros, Prev: CC0 Condition Codes, Up: Condition Code --- 32019,32074 ---- Sometimes additional machine-specific flags must be defined in the machine description header file. It can also add additional ! machine-specific information by defining 'CC_STATUS_MDEP'. -- Macro: CC_STATUS_MDEP ! C code for a data type which is used for declaring the 'mdep' ! component of 'cc_status'. It defaults to 'int'. ! This macro is not used on machines that do not use 'cc0'. -- Macro: CC_STATUS_MDEP_INIT ! A C expression to initialize the 'mdep' field to "empty". The default definition does nothing, since most machines don't use the field anyway. If you want to use the field, you should probably define this macro to initialize it. ! This macro is not used on machines that do not use 'cc0'. -- Macro: NOTICE_UPDATE_CC (EXP, INSN) ! A C compound statement to set the components of 'cc_status' appropriately for an insn INSN whose body is EXP. It is this macro's responsibility to recognize insns that set the condition code as a byproduct of other activity as well as those that ! explicitly set '(cc0)'. ! This macro is not used on machines that do not use 'cc0'. If there are insns that do not set the condition code but do alter other machine registers, this macro must check to see whether they invalidate the expressions that the condition code is recorded as reflecting. For example, on the 68000, insns that store in address registers do not set the condition code, which means that usually ! 'NOTICE_UPDATE_CC' can leave 'cc_status' unaltered for such insns. But suppose that the previous insn set the condition code based on ! location 'a4@(102)' and the current insn stores a new value in ! 'a4'. Although the condition code is not changed by this, it will ! no longer be true that it reflects the contents of 'a4@(102)'. ! Therefore, 'NOTICE_UPDATE_CC' must alter 'cc_status' in this case to say that nothing is known about the condition code value. ! The definition of 'NOTICE_UPDATE_CC' must be prepared to deal with the results of peephole optimization: insns whose patterns are ! 'parallel' RTXs containing various 'reg', 'mem' or constants which are just the operands. The RTL structure of these insns is not sufficient to indicate what the insns actually do. What ! 'NOTICE_UPDATE_CC' should do when it sees one is just to run ! 'CC_STATUS_INIT'. ! A possible definition of 'NOTICE_UPDATE_CC' is to call a function that looks at an attribute (*note Insn Attributes::) named, for ! example, 'cc'. This avoids having detailed information about ! patterns in two places, the 'md' file and in 'NOTICE_UPDATE_CC'.  File: gccint.info, Node: MODE_CC Condition Codes, Next: Cond Exec Macros, Prev: CC0 Condition Codes, Up: Condition Code *************** File: gccint.info, Node: MODE_CC Condit *** 32448,32470 **** -- Macro: SELECT_CC_MODE (OP, X, Y) On many machines, the condition code may be produced by other ! instructions than compares, for example the branch can use ! directly the condition code set by a subtract instruction. ! However, on some machines when the condition code is set this way ! some bits (such as the overflow bit) are not set in the same way ! as a test instruction, so that a different branch instruction must ! be used for some conditional branches. When this happens, use the ! machine mode of the condition code register to record different ! formats of the condition code register. Modes can also be used to ! record which compare instruction (e.g. a signed or an unsigned comparison) produced the condition codes. ! If other modes than `CCmode' are required, add them to ! `MACHINE-modes.def' and define `SELECT_CC_MODE' to choose a mode given an operand of a compare. This is needed because the modes have to be chosen not only during RTL generation but also, for example, by instruction combination. The result of ! `SELECT_CC_MODE' should be consistent with the mode used in the patterns; for example to support the case of the add on the SPARC discussed above, we have the pattern --- 32078,32100 ---- -- Macro: SELECT_CC_MODE (OP, X, Y) On many machines, the condition code may be produced by other ! instructions than compares, for example the branch can use directly ! the condition code set by a subtract instruction. However, on some ! machines when the condition code is set this way some bits (such as ! the overflow bit) are not set in the same way as a test ! instruction, so that a different branch instruction must be used ! for some conditional branches. When this happens, use the machine ! mode of the condition code register to record different formats of ! the condition code register. Modes can also be used to record ! which compare instruction (e.g. a signed or an unsigned comparison) produced the condition codes. ! If other modes than 'CCmode' are required, add them to ! 'MACHINE-modes.def' and define 'SELECT_CC_MODE' to choose a mode given an operand of a compare. This is needed because the modes have to be chosen not only during RTL generation but also, for example, by instruction combination. The result of ! 'SELECT_CC_MODE' should be consistent with the mode used in the patterns; for example to support the case of the add on the SPARC discussed above, we have the pattern *************** File: gccint.info, Node: MODE_CC Condit *** 32477,32484 **** "" "...") ! together with a `SELECT_CC_MODE' that returns `CC_NOOVmode' for ! comparisons whose argument is a `plus': #define SELECT_CC_MODE(OP,X,Y) \ (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \ --- 32107,32114 ---- "" "...") ! together with a 'SELECT_CC_MODE' that returns 'CC_NOOVmode' for ! comparisons whose argument is a 'plus': #define SELECT_CC_MODE(OP,X,Y) \ (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \ *************** File: gccint.info, Node: MODE_CC Condit *** 32488,32544 **** ? CC_NOOVmode : CCmode)) Another reason to use modes is to retain information on which ! operands were used by the comparison; see `REVERSIBLE_CC_MODE' later in this section. You should define this macro if and only if you define extra CC ! modes in `MACHINE-modes.def'. -- Target Hook: void TARGET_CANONICALIZE_COMPARISON (int *CODE, rtx *OP0, rtx *OP1, bool OP0_PRESERVE_VALUE) (CODE, OP0, OP1, OP0_PRESERVE_VALUE) On some machines not all possible comparisons are defined, but you can convert an invalid comparison into a valid one. For example, ! the Alpha does not have a `GT' comparison, but you can use an `LT' comparison instead and swap the order of the operands. On such machines, implement this hook to do any required conversions. CODE is the initial comparison code and OP0 and OP1 are the left and right operands of the comparison, respectively. ! If OP0_PRESERVE_VALUE is `true' the implementation is not allowed to change the value of OP0 since the value might be used in RTXs ! which aren't comparisons. E.g. the implementation is not allowed to swap operands in that case. GCC will not assume that the comparison resulting from this macro is valid but will see if the resulting insn matches a pattern in ! the `md' file. You need not to implement this hook if it would never change the comparison code or operands. -- Macro: REVERSIBLE_CC_MODE (MODE) A C expression whose value is one if it is always safe to reverse a ! comparison whose mode is MODE. If `SELECT_CC_MODE' can ever ! return MODE for a floating-point inequality comparison, then ! `REVERSIBLE_CC_MODE (MODE)' must be zero. You need not define this macro if it would always returns zero or if the floating-point format is anything other than ! `IEEE_FLOAT_FORMAT'. For example, here is the definition used on the SPARC, where floating-point inequality comparisons are always ! given `CCFPEmode': #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) -- Macro: REVERSE_CONDITION (CODE, MODE) A C expression whose value is reversed condition code of the CODE for comparison done in CC_MODE MODE. The macro is used only in ! case `REVERSIBLE_CC_MODE (MODE)' is nonzero. Define this macro in case machine has some non-standard way how to reverse certain conditionals. For instance in case all floating point conditions ! are non-trapping, compiler may freely convert unordered compares ! to ordered one. Then definition may look like: #define REVERSE_CONDITION(CODE, MODE) \ ((MODE) != CCFPmode ? reverse_condition (CODE) \ --- 32118,32174 ---- ? CC_NOOVmode : CCmode)) Another reason to use modes is to retain information on which ! operands were used by the comparison; see 'REVERSIBLE_CC_MODE' later in this section. You should define this macro if and only if you define extra CC ! modes in 'MACHINE-modes.def'. -- Target Hook: void TARGET_CANONICALIZE_COMPARISON (int *CODE, rtx *OP0, rtx *OP1, bool OP0_PRESERVE_VALUE) (CODE, OP0, OP1, OP0_PRESERVE_VALUE) On some machines not all possible comparisons are defined, but you can convert an invalid comparison into a valid one. For example, ! the Alpha does not have a 'GT' comparison, but you can use an 'LT' comparison instead and swap the order of the operands. On such machines, implement this hook to do any required conversions. CODE is the initial comparison code and OP0 and OP1 are the left and right operands of the comparison, respectively. ! If OP0_PRESERVE_VALUE is 'true' the implementation is not allowed to change the value of OP0 since the value might be used in RTXs ! which aren't comparisons. E.g. the implementation is not allowed to swap operands in that case. GCC will not assume that the comparison resulting from this macro is valid but will see if the resulting insn matches a pattern in ! the 'md' file. You need not to implement this hook if it would never change the comparison code or operands. -- Macro: REVERSIBLE_CC_MODE (MODE) A C expression whose value is one if it is always safe to reverse a ! comparison whose mode is MODE. If 'SELECT_CC_MODE' can ever return ! MODE for a floating-point inequality comparison, then ! 'REVERSIBLE_CC_MODE (MODE)' must be zero. You need not define this macro if it would always returns zero or if the floating-point format is anything other than ! 'IEEE_FLOAT_FORMAT'. For example, here is the definition used on the SPARC, where floating-point inequality comparisons are always ! given 'CCFPEmode': #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) -- Macro: REVERSE_CONDITION (CODE, MODE) A C expression whose value is reversed condition code of the CODE for comparison done in CC_MODE MODE. The macro is used only in ! case 'REVERSIBLE_CC_MODE (MODE)' is nonzero. Define this macro in case machine has some non-standard way how to reverse certain conditionals. For instance in case all floating point conditions ! are non-trapping, compiler may freely convert unordered compares to ! ordered one. Then definition may look like: #define REVERSE_CONDITION(CODE, MODE) \ ((MODE) != CCFPmode ? reverse_condition (CODE) \ *************** File: gccint.info, Node: MODE_CC Condit *** 32546,32576 **** -- Target Hook: bool TARGET_FIXED_CONDITION_CODE_REGS (unsigned int *P1, unsigned int *P2) ! On targets which do not use `(cc0)', and which use a hard register rather than a pseudo-register to hold condition codes, the regular CSE passes are often not able to identify cases in which the hard ! register is set to a common value. Use this hook to enable a ! small pass which optimizes such cases. This hook should return ! true to enable this pass, and it should set the integers to which ! its arguments point to the hard register numbers used for ! condition codes. When there is only one such register, as is true ! on most systems, the integer pointed to by P2 should be set to ! `INVALID_REGNUM'. The default version of this hook returns false. -- Target Hook: enum machine_mode TARGET_CC_MODES_COMPATIBLE (enum machine_mode M1, enum machine_mode M2) On targets which use multiple condition code modes in class ! `MODE_CC', it is sometimes the case that a comparison can be validly done in more than one mode. On such a system, define this target hook to take two mode arguments and to return a mode in which both comparisons may be validly done. If there is no such ! mode, return `VOIDmode'. The default version of this hook checks whether the modes are the same. If they are, it returns that mode. If they are different, ! it returns `VOIDmode'.  File: gccint.info, Node: Cond Exec Macros, Prev: MODE_CC Condition Codes, Up: Condition Code --- 32176,32206 ---- -- Target Hook: bool TARGET_FIXED_CONDITION_CODE_REGS (unsigned int *P1, unsigned int *P2) ! On targets which do not use '(cc0)', and which use a hard register rather than a pseudo-register to hold condition codes, the regular CSE passes are often not able to identify cases in which the hard ! register is set to a common value. Use this hook to enable a small ! pass which optimizes such cases. This hook should return true to ! enable this pass, and it should set the integers to which its ! arguments point to the hard register numbers used for condition ! codes. When there is only one such register, as is true on most ! systems, the integer pointed to by P2 should be set to ! 'INVALID_REGNUM'. The default version of this hook returns false. -- Target Hook: enum machine_mode TARGET_CC_MODES_COMPATIBLE (enum machine_mode M1, enum machine_mode M2) On targets which use multiple condition code modes in class ! 'MODE_CC', it is sometimes the case that a comparison can be validly done in more than one mode. On such a system, define this target hook to take two mode arguments and to return a mode in which both comparisons may be validly done. If there is no such ! mode, return 'VOIDmode'. The default version of this hook checks whether the modes are the same. If they are, it returns that mode. If they are different, ! it returns 'VOIDmode'.  File: gccint.info, Node: Cond Exec Macros, Prev: MODE_CC Condition Codes, Up: Condition Code *************** on the target machine. *** 32594,32600 **** -- Macro: REGISTER_MOVE_COST (MODE, FROM, TO) A C expression for the cost of moving data of mode MODE from a register in class FROM to one in class TO. The classes are ! expressed using the enumeration values such as `GENERAL_REGS'. A value of 2 is the default; other values are interpreted relative to that. --- 32224,32230 ---- -- Macro: REGISTER_MOVE_COST (MODE, FROM, TO) A C expression for the cost of moving data of mode MODE from a register in class FROM to one in class TO. The classes are ! expressed using the enumeration values such as 'GENERAL_REGS'. A value of 2 is the default; other values are interpreted relative to that. *************** on the target machine. *** 32602,32623 **** same as TO; on some machines it is expensive to move between registers if they are not general registers. ! If reload sees an insn consisting of a single `set' between two ! hard registers, and if `REGISTER_MOVE_COST' applied to their classes returns a value of 2, reload does not check to ensure that the constraints of the insn are met. Setting a cost of other than 2 will allow reload to verify that the constraints are met. You ! should do this if the `movM' pattern's constraints do not allow such copying. These macros are obsolete, new ports should use the target hook ! `TARGET_REGISTER_MOVE_COST' instead. -- Target Hook: int TARGET_REGISTER_MOVE_COST (enum machine_mode MODE, reg_class_t FROM, reg_class_t TO) This target hook should return the cost of moving data of mode MODE from a register in class FROM to one in class TO. The classes are ! expressed using the enumeration values such as `GENERAL_REGS'. A value of 2 is the default; other values are interpreted relative to that. --- 32232,32253 ---- same as TO; on some machines it is expensive to move between registers if they are not general registers. ! If reload sees an insn consisting of a single 'set' between two ! hard registers, and if 'REGISTER_MOVE_COST' applied to their classes returns a value of 2, reload does not check to ensure that the constraints of the insn are met. Setting a cost of other than 2 will allow reload to verify that the constraints are met. You ! should do this if the 'movM' pattern's constraints do not allow such copying. These macros are obsolete, new ports should use the target hook ! 'TARGET_REGISTER_MOVE_COST' instead. -- Target Hook: int TARGET_REGISTER_MOVE_COST (enum machine_mode MODE, reg_class_t FROM, reg_class_t TO) This target hook should return the cost of moving data of mode MODE from a register in class FROM to one in class TO. The classes are ! expressed using the enumeration values such as 'GENERAL_REGS'. A value of 2 is the default; other values are interpreted relative to that. *************** on the target machine. *** 32625,32636 **** same as TO; on some machines it is expensive to move between registers if they are not general registers. ! If reload sees an insn consisting of a single `set' between two ! hard registers, and if `TARGET_REGISTER_MOVE_COST' applied to their classes returns a value of 2, reload does not check to ensure that the constraints of the insn are met. Setting a cost of other than 2 will allow reload to verify that the constraints are met. You ! should do this if the `movM' pattern's constraints do not allow such copying. The default version of this function returns 2. --- 32255,32266 ---- same as TO; on some machines it is expensive to move between registers if they are not general registers. ! If reload sees an insn consisting of a single 'set' between two ! hard registers, and if 'TARGET_REGISTER_MOVE_COST' applied to their classes returns a value of 2, reload does not check to ensure that the constraints of the insn are met. Setting a cost of other than 2 will allow reload to verify that the constraints are met. You ! should do this if the 'movM' pattern's constraints do not allow such copying. The default version of this function returns 2. *************** on the target machine. *** 32638,32645 **** -- Macro: MEMORY_MOVE_COST (MODE, CLASS, IN) A C expression for the cost of moving data of mode MODE between a register of class CLASS and memory; IN is zero if the value is to ! be written to memory, nonzero if it is to be read in. This cost ! is relative to those in `REGISTER_MOVE_COST'. If moving between registers and memory is more expensive than between two registers, you should define this macro to express the relative cost. --- 32268,32275 ---- -- Macro: MEMORY_MOVE_COST (MODE, CLASS, IN) A C expression for the cost of moving data of mode MODE between a register of class CLASS and memory; IN is zero if the value is to ! be written to memory, nonzero if it is to be read in. This cost is ! relative to those in 'REGISTER_MOVE_COST'. If moving between registers and memory is more expensive than between two registers, you should define this macro to express the relative cost. *************** on the target machine. *** 32650,32675 **** mechanism is more complex than copying via an intermediate, define this macro to reflect the actual cost of the move. ! GCC defines the function `memory_move_secondary_cost' if secondary reloads are needed. It computes the costs due to copying via a secondary register. If your machine copies from memory using a secondary register in the conventional way but the default base value of 4 is not correct for your machine, define this macro to ! add some other value to the result of that function. The ! arguments to that function are the same as to this macro. These macros are obsolete, new ports should use the target hook ! `TARGET_MEMORY_MOVE_COST' instead. -- Target Hook: int TARGET_MEMORY_MOVE_COST (enum machine_mode MODE, reg_class_t RCLASS, bool IN) This target hook should return the cost of moving data of mode MODE ! between a register of class RCLASS and memory; IN is `false' if ! the value is to be written to memory, `true' if it is to be read ! in. This cost is relative to those in `TARGET_REGISTER_MOVE_COST'. ! If moving between registers and memory is more expensive than ! between two registers, you should add this target hook to express ! the relative cost. If you do not add this target hook, GCC uses a default cost of 4 plus the cost of copying via a secondary reload register, if one is --- 32280,32305 ---- mechanism is more complex than copying via an intermediate, define this macro to reflect the actual cost of the move. ! GCC defines the function 'memory_move_secondary_cost' if secondary reloads are needed. It computes the costs due to copying via a secondary register. If your machine copies from memory using a secondary register in the conventional way but the default base value of 4 is not correct for your machine, define this macro to ! add some other value to the result of that function. The arguments ! to that function are the same as to this macro. These macros are obsolete, new ports should use the target hook ! 'TARGET_MEMORY_MOVE_COST' instead. -- Target Hook: int TARGET_MEMORY_MOVE_COST (enum machine_mode MODE, reg_class_t RCLASS, bool IN) This target hook should return the cost of moving data of mode MODE ! between a register of class RCLASS and memory; IN is 'false' if the ! value is to be written to memory, 'true' if it is to be read in. ! This cost is relative to those in 'TARGET_REGISTER_MOVE_COST'. If ! moving between registers and memory is more expensive than between ! two registers, you should add this target hook to express the ! relative cost. If you do not add this target hook, GCC uses a default cost of 4 plus the cost of copying via a secondary reload register, if one is *************** on the target machine. *** 32678,32699 **** mechanism is more complex than copying via an intermediate, use this target hook to reflect the actual cost of the move. ! GCC defines the function `memory_move_secondary_cost' if secondary reloads are needed. It computes the costs due to copying via a secondary register. If your machine copies from memory using a secondary register in the conventional way but the default base ! value of 4 is not correct for your machine, use this target hook ! to add some other value to the result of that function. The ! arguments to that function are the same as to this target hook. -- Macro: BRANCH_COST (SPEED_P, PREDICTABLE_P) A C expression for the cost of a branch instruction. A value of 1 is the default; other values are interpreted relative to that. Parameter SPEED_P is true when the branch in question should be ! optimized for speed. When it is false, `BRANCH_COST' should ! return a value optimal for code size rather than performance. ! PREDICTABLE_P is true for well-predicted branches. On many ! architectures the `BRANCH_COST' can be reduced then. Here are additional macros which do not specify precise relative costs, but only that certain actions are more expensive than GCC would --- 32308,32329 ---- mechanism is more complex than copying via an intermediate, use this target hook to reflect the actual cost of the move. ! GCC defines the function 'memory_move_secondary_cost' if secondary reloads are needed. It computes the costs due to copying via a secondary register. If your machine copies from memory using a secondary register in the conventional way but the default base ! value of 4 is not correct for your machine, use this target hook to ! add some other value to the result of that function. The arguments ! to that function are the same as to this target hook. -- Macro: BRANCH_COST (SPEED_P, PREDICTABLE_P) A C expression for the cost of a branch instruction. A value of 1 is the default; other values are interpreted relative to that. Parameter SPEED_P is true when the branch in question should be ! optimized for speed. When it is false, 'BRANCH_COST' should return ! a value optimal for code size rather than performance. ! PREDICTABLE_P is true for well-predicted branches. On many ! architectures the 'BRANCH_COST' can be reduced then. Here are additional macros which do not specify precise relative costs, but only that certain actions are more expensive than GCC would *************** ordinarily expect. *** 32701,32707 **** -- Macro: SLOW_BYTE_ACCESS Define this macro as a C expression which is nonzero if accessing ! less than a word of memory (i.e. a `char' or a `short') is no faster than accessing a word of memory, i.e., if such access require more than one instruction or if there is no difference in cost between byte and (aligned) word loads. --- 32331,32337 ---- -- Macro: SLOW_BYTE_ACCESS Define this macro as a C expression which is nonzero if accessing ! less than a word of memory (i.e. a 'char' or a 'short') is no faster than accessing a word of memory, i.e., if such access require more than one instruction or if there is no difference in cost between byte and (aligned) word loads. *************** ordinarily expect. *** 32715,32734 **** structure, but to different bytes. -- Macro: SLOW_UNALIGNED_ACCESS (MODE, ALIGNMENT) ! Define this macro to be the value 1 if memory accesses described ! by the MODE and ALIGNMENT parameters have a cost many times greater than aligned accesses, for example if they are emulated in a trap handler. When this macro is nonzero, the compiler will act as if ! `STRICT_ALIGNMENT' were nonzero when generating code for block moves. This can cause significantly more instructions to be produced. Therefore, do not set this macro nonzero if unaligned accesses only add a cycle or two to the time for a memory access. If the value of this macro is always zero, it need not be defined. If this macro is defined, it should produce a nonzero value when ! `STRICT_ALIGNMENT' is nonzero. -- Macro: MOVE_RATIO (SPEED) The threshold of number of scalar memory-to-memory move insns, --- 32345,32364 ---- structure, but to different bytes. -- Macro: SLOW_UNALIGNED_ACCESS (MODE, ALIGNMENT) ! Define this macro to be the value 1 if memory accesses described by ! the MODE and ALIGNMENT parameters have a cost many times greater than aligned accesses, for example if they are emulated in a trap handler. When this macro is nonzero, the compiler will act as if ! 'STRICT_ALIGNMENT' were nonzero when generating code for block moves. This can cause significantly more instructions to be produced. Therefore, do not set this macro nonzero if unaligned accesses only add a cycle or two to the time for a memory access. If the value of this macro is always zero, it need not be defined. If this macro is defined, it should produce a nonzero value when ! 'STRICT_ALIGNMENT' is nonzero. -- Macro: MOVE_RATIO (SPEED) The threshold of number of scalar memory-to-memory move insns, *************** ordinarily expect. *** 32738,32744 **** increased code size. Note that on machines where the corresponding move insn is a ! `define_expand' that emits a sequence of insns, this macro counts the number of such sequences. The parameter SPEED is true if the code is currently being --- 32368,32374 ---- increased code size. Note that on machines where the corresponding move insn is a ! 'define_expand' that emits a sequence of insns, this macro counts the number of such sequences. The parameter SPEED is true if the code is currently being *************** ordinarily expect. *** 32747,32761 **** If you don't define this, a reasonable default is used. -- Macro: MOVE_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether `move_by_pieces' will be used to copy a chunk of memory, or whether some other block move ! mechanism will be used. Defaults to 1 if `move_by_pieces_ninsns' ! returns less than `MOVE_RATIO'. -- Macro: MOVE_MAX_PIECES ! A C expression used by `move_by_pieces' to determine the largest unit a load or store used to copy memory is. Defaults to ! `MOVE_MAX'. -- Macro: CLEAR_RATIO (SPEED) The threshold of number of scalar move insns, _below_ which a --- 32377,32391 ---- If you don't define this, a reasonable default is used. -- Macro: MOVE_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether 'move_by_pieces' will be used to copy a chunk of memory, or whether some other block move ! mechanism will be used. Defaults to 1 if 'move_by_pieces_ninsns' ! returns less than 'MOVE_RATIO'. -- Macro: MOVE_MAX_PIECES ! A C expression used by 'move_by_pieces' to determine the largest unit a load or store used to copy memory is. Defaults to ! 'MOVE_MAX'. -- Macro: CLEAR_RATIO (SPEED) The threshold of number of scalar move insns, _below_ which a *************** ordinarily expect. *** 32770,32779 **** If you don't define this, a reasonable default is used. -- Macro: CLEAR_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether `clear_by_pieces' will be used to clear a chunk of memory, or whether some other block clear ! mechanism will be used. Defaults to 1 if `move_by_pieces_ninsns' ! returns less than `CLEAR_RATIO'. -- Macro: SET_RATIO (SPEED) The threshold of number of scalar move insns, _below_ which a --- 32400,32409 ---- If you don't define this, a reasonable default is used. -- Macro: CLEAR_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether 'clear_by_pieces' will be used to clear a chunk of memory, or whether some other block clear ! mechanism will be used. Defaults to 1 if 'move_by_pieces_ninsns' ! returns less than 'CLEAR_RATIO'. -- Macro: SET_RATIO (SPEED) The threshold of number of scalar move insns, _below_ which a *************** ordinarily expect. *** 32785,32846 **** The parameter SPEED is true if the code is currently being optimized for speed rather than size. ! If you don't define this, it defaults to the value of `MOVE_RATIO'. -- Macro: SET_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether `store_by_pieces' will be used to set a chunk of memory to a constant value, or whether some ! other mechanism will be used. Used by `__builtin_memset' when storing values other than constant zero. Defaults to 1 if ! `move_by_pieces_ninsns' returns less than `SET_RATIO'. -- Macro: STORE_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether `store_by_pieces' will be used to set a chunk of memory to a constant string value, or whether some other mechanism will be used. Used by ! `__builtin_strcpy' when called with a constant source string. ! Defaults to 1 if `move_by_pieces_ninsns' returns less than ! `MOVE_RATIO'. -- Macro: USE_LOAD_POST_INCREMENT (MODE) A C expression used to determine whether a load postincrement is a good thing to use for a given mode. Defaults to the value of ! `HAVE_POST_INCREMENT'. -- Macro: USE_LOAD_POST_DECREMENT (MODE) A C expression used to determine whether a load postdecrement is a good thing to use for a given mode. Defaults to the value of ! `HAVE_POST_DECREMENT'. -- Macro: USE_LOAD_PRE_INCREMENT (MODE) A C expression used to determine whether a load preincrement is a good thing to use for a given mode. Defaults to the value of ! `HAVE_PRE_INCREMENT'. -- Macro: USE_LOAD_PRE_DECREMENT (MODE) A C expression used to determine whether a load predecrement is a good thing to use for a given mode. Defaults to the value of ! `HAVE_PRE_DECREMENT'. -- Macro: USE_STORE_POST_INCREMENT (MODE) ! A C expression used to determine whether a store postincrement is ! a good thing to use for a given mode. Defaults to the value of ! `HAVE_POST_INCREMENT'. -- Macro: USE_STORE_POST_DECREMENT (MODE) ! A C expression used to determine whether a store postdecrement is ! a good thing to use for a given mode. Defaults to the value of ! `HAVE_POST_DECREMENT'. -- Macro: USE_STORE_PRE_INCREMENT (MODE) This macro is used to determine whether a store preincrement is a good thing to use for a given mode. Defaults to the value of ! `HAVE_PRE_INCREMENT'. -- Macro: USE_STORE_PRE_DECREMENT (MODE) This macro is used to determine whether a store predecrement is a good thing to use for a given mode. Defaults to the value of ! `HAVE_PRE_DECREMENT'. -- Macro: NO_FUNCTION_CSE Define this macro if it is as good or better to call a constant --- 32415,32476 ---- The parameter SPEED is true if the code is currently being optimized for speed rather than size. ! If you don't define this, it defaults to the value of 'MOVE_RATIO'. -- Macro: SET_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether 'store_by_pieces' will be used to set a chunk of memory to a constant value, or whether some ! other mechanism will be used. Used by '__builtin_memset' when storing values other than constant zero. Defaults to 1 if ! 'move_by_pieces_ninsns' returns less than 'SET_RATIO'. -- Macro: STORE_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether 'store_by_pieces' will be used to set a chunk of memory to a constant string value, or whether some other mechanism will be used. Used by ! '__builtin_strcpy' when called with a constant source string. ! Defaults to 1 if 'move_by_pieces_ninsns' returns less than ! 'MOVE_RATIO'. -- Macro: USE_LOAD_POST_INCREMENT (MODE) A C expression used to determine whether a load postincrement is a good thing to use for a given mode. Defaults to the value of ! 'HAVE_POST_INCREMENT'. -- Macro: USE_LOAD_POST_DECREMENT (MODE) A C expression used to determine whether a load postdecrement is a good thing to use for a given mode. Defaults to the value of ! 'HAVE_POST_DECREMENT'. -- Macro: USE_LOAD_PRE_INCREMENT (MODE) A C expression used to determine whether a load preincrement is a good thing to use for a given mode. Defaults to the value of ! 'HAVE_PRE_INCREMENT'. -- Macro: USE_LOAD_PRE_DECREMENT (MODE) A C expression used to determine whether a load predecrement is a good thing to use for a given mode. Defaults to the value of ! 'HAVE_PRE_DECREMENT'. -- Macro: USE_STORE_POST_INCREMENT (MODE) ! A C expression used to determine whether a store postincrement is a ! good thing to use for a given mode. Defaults to the value of ! 'HAVE_POST_INCREMENT'. -- Macro: USE_STORE_POST_DECREMENT (MODE) ! A C expression used to determine whether a store postdecrement is a ! good thing to use for a given mode. Defaults to the value of ! 'HAVE_POST_DECREMENT'. -- Macro: USE_STORE_PRE_INCREMENT (MODE) This macro is used to determine whether a store preincrement is a good thing to use for a given mode. Defaults to the value of ! 'HAVE_PRE_INCREMENT'. -- Macro: USE_STORE_PRE_DECREMENT (MODE) This macro is used to determine whether a store predecrement is a good thing to use for a given mode. Defaults to the value of ! 'HAVE_PRE_DECREMENT'. -- Macro: NO_FUNCTION_CSE Define this macro if it is as good or better to call a constant *************** ordinarily expect. *** 32848,32897 **** -- Macro: LOGICAL_OP_NON_SHORT_CIRCUIT Define this macro if a non-short-circuit operation produced by ! `fold_range_test ()' is optimal. This macro defaults to true if ! `BRANCH_COST' is greater than or equal to the value 2. ! -- Target Hook: bool TARGET_RTX_COSTS (rtx X, int CODE, int ! OUTER_CODE, int OPNO, int *TOTAL, bool SPEED) This target hook describes the relative costs of RTL expressions. The cost may depend on the precise form of the expression, which is available for examination in X, and the fact that X appears as operand OPNO of an expression with rtx code OUTER_CODE. That is, ! the hook can assume that there is some rtx Y such that `GET_CODE ! (Y) == OUTER_CODE' and such that either (a) `XEXP (Y, OPNO) == X' ! or (b) `XVEC (Y, OPNO)' contains X. CODE is X's expression code--redundant, since it can be obtained ! with `GET_CODE (X)'. ! In implementing this hook, you can use the construct ! `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions. ! On entry to the hook, `*TOTAL' contains a default estimate for the cost of the expression. The hook should modify this value as ! necessary. Traditionally, the default costs are `COSTS_N_INSNS ! (5)' for multiplications, `COSTS_N_INSNS (7)' for division and ! modulus operations, and `COSTS_N_INSNS (1)' for all other operations. ! When optimizing for code size, i.e. when `speed' is false, this ! target hook should be used to estimate the relative size cost of ! an expression, again relative to `COSTS_N_INSNS'. The hook returns true when all subexpressions of X have been ! processed, and false when `rtx_cost' should recurse. ! -- Target Hook: int TARGET_ADDRESS_COST (rtx ADDRESS, enum ! machine_mode MODE, addr_space_t AS, bool SPEED) This hook computes the cost of an addressing mode that contains ADDRESS. If not defined, the cost is computed from the ADDRESS ! expression and the `TARGET_RTX_COST' hook. ! For most CISC machines, the default cost is a good approximation ! of the true cost of the addressing mode. However, on RISC ! machines, all instructions normally have the same length and ! execution time. Hence all addresses will have equal costs. In cases where more than one form of an address is known, the form with the lowest cost will be used. If multiple forms have the --- 32478,32527 ---- -- Macro: LOGICAL_OP_NON_SHORT_CIRCUIT Define this macro if a non-short-circuit operation produced by ! 'fold_range_test ()' is optimal. This macro defaults to true if ! 'BRANCH_COST' is greater than or equal to the value 2. ! -- Target Hook: bool TARGET_RTX_COSTS (rtx X, int CODE, int OUTER_CODE, ! int OPNO, int *TOTAL, bool SPEED) This target hook describes the relative costs of RTL expressions. The cost may depend on the precise form of the expression, which is available for examination in X, and the fact that X appears as operand OPNO of an expression with rtx code OUTER_CODE. That is, ! the hook can assume that there is some rtx Y such that 'GET_CODE ! (Y) == OUTER_CODE' and such that either (a) 'XEXP (Y, OPNO) == X' ! or (b) 'XVEC (Y, OPNO)' contains X. CODE is X's expression code--redundant, since it can be obtained ! with 'GET_CODE (X)'. ! In implementing this hook, you can use the construct 'COSTS_N_INSNS ! (N)' to specify a cost equal to N fast instructions. ! On entry to the hook, '*TOTAL' contains a default estimate for the cost of the expression. The hook should modify this value as ! necessary. Traditionally, the default costs are 'COSTS_N_INSNS ! (5)' for multiplications, 'COSTS_N_INSNS (7)' for division and ! modulus operations, and 'COSTS_N_INSNS (1)' for all other operations. ! When optimizing for code size, i.e. when 'speed' is false, this ! target hook should be used to estimate the relative size cost of an ! expression, again relative to 'COSTS_N_INSNS'. The hook returns true when all subexpressions of X have been ! processed, and false when 'rtx_cost' should recurse. ! -- Target Hook: int TARGET_ADDRESS_COST (rtx ADDRESS, enum machine_mode ! MODE, addr_space_t AS, bool SPEED) This hook computes the cost of an addressing mode that contains ADDRESS. If not defined, the cost is computed from the ADDRESS ! expression and the 'TARGET_RTX_COST' hook. ! For most CISC machines, the default cost is a good approximation of ! the true cost of the addressing mode. However, on RISC machines, ! all instructions normally have the same length and execution time. ! Hence all addresses will have equal costs. In cases where more than one form of an address is known, the form with the lowest cost will be used. If multiple forms have the *************** ordinarily expect. *** 32903,32923 **** register and memory references will be indirect through that register. On machines where the cost of the addressing mode containing the sum is no higher than that of a simple indirect ! reference, this will produce an additional instruction and ! possibly require an additional register. Proper specification of ! this macro eliminates this overhead for such machines. This hook is never called with an invalid address. On machines where an address involving more than one register is as cheap as an address computation involving only one register, ! defining `TARGET_ADDRESS_COST' to reflect this can cause two registers to be live over a region of code where only one would ! have been if `TARGET_ADDRESS_COST' were not defined in that ! manner. This effect should be considered in the definition of ! this macro. Equivalent costs should probably only be given to ! addresses with different numbers of registers on machines with ! lots of registers.  File: gccint.info, Node: Scheduling, Next: Sections, Prev: Costs, Up: Target Macros --- 32533,32552 ---- register and memory references will be indirect through that register. On machines where the cost of the addressing mode containing the sum is no higher than that of a simple indirect ! reference, this will produce an additional instruction and possibly ! require an additional register. Proper specification of this macro ! eliminates this overhead for such machines. This hook is never called with an invalid address. On machines where an address involving more than one register is as cheap as an address computation involving only one register, ! defining 'TARGET_ADDRESS_COST' to reflect this can cause two registers to be live over a region of code where only one would ! have been if 'TARGET_ADDRESS_COST' were not defined in that manner. ! This effect should be considered in the definition of this macro. ! Equivalent costs should probably only be given to addresses with ! different numbers of registers on machines with lots of registers.  File: gccint.info, Node: Scheduling, Next: Sections, Prev: Costs, Up: Target Macros *************** them: try the first ones in this list fi *** 32936,32958 **** Although the insn scheduler can define itself the possibility of issue an insn on the same cycle, the value can serve as an additional constraint to issue insns on the same simulated ! processor cycle (see hooks `TARGET_SCHED_REORDER' and ! `TARGET_SCHED_REORDER2'). This value must be constant over the entire compilation. If you need it to vary depending on what the ! instructions are, you must use `TARGET_SCHED_VARIABLE_ISSUE'. -- Target Hook: int TARGET_SCHED_VARIABLE_ISSUE (FILE *FILE, int VERBOSE, rtx INSN, int MORE) This hook is executed by the scheduler after it has scheduled an insn from the ready list. It should return the number of insns which can still be issued in the current cycle. The default is ! `MORE - 1' for insns other than `CLOBBER' and `USE', which ! normally are not counted against the issue rate. You should ! define this hook if some insns take more machine resources than ! others, so that fewer insns can follow them in the same cycle. ! FILE is either a null pointer, or a stdio stream to write any ! debug output to. VERBOSE is the verbose level provided by ! `-fsched-verbose-N'. INSN is the instruction that was scheduled. -- Target Hook: int TARGET_SCHED_ADJUST_COST (rtx INSN, rtx LINK, rtx DEP_INSN, int COST) --- 32565,32587 ---- Although the insn scheduler can define itself the possibility of issue an insn on the same cycle, the value can serve as an additional constraint to issue insns on the same simulated ! processor cycle (see hooks 'TARGET_SCHED_REORDER' and ! 'TARGET_SCHED_REORDER2'). This value must be constant over the entire compilation. If you need it to vary depending on what the ! instructions are, you must use 'TARGET_SCHED_VARIABLE_ISSUE'. -- Target Hook: int TARGET_SCHED_VARIABLE_ISSUE (FILE *FILE, int VERBOSE, rtx INSN, int MORE) This hook is executed by the scheduler after it has scheduled an insn from the ready list. It should return the number of insns which can still be issued in the current cycle. The default is ! 'MORE - 1' for insns other than 'CLOBBER' and 'USE', which normally ! are not counted against the issue rate. You should define this ! hook if some insns take more machine resources than others, so that ! fewer insns can follow them in the same cycle. FILE is either a ! null pointer, or a stdio stream to write any debug output to. ! VERBOSE is the verbose level provided by '-fsched-verbose-N'. INSN ! is the instruction that was scheduled. -- Target Hook: int TARGET_SCHED_ADJUST_COST (rtx INSN, rtx LINK, rtx DEP_INSN, int COST) *************** them: try the first ones in this list fi *** 32971,33009 **** -- Target Hook: int TARGET_SCHED_ADJUST_PRIORITY (rtx INSN, int PRIORITY) ! This hook adjusts the integer scheduling priority PRIORITY of ! INSN. It should return the new priority. Increase the priority to execute INSN earlier, reduce the priority to execute INSN later. ! Do not define this hook if you do not need to adjust the ! scheduling priorities of insns. -- Target Hook: int TARGET_SCHED_REORDER (FILE *FILE, int VERBOSE, rtx *READY, int *N_READYP, int CLOCK) This hook is executed by the scheduler after it has scheduled the ready list, to allow the machine description to reorder it (for ! example to combine two small instructions together on `VLIW' machines). FILE is either a null pointer, or a stdio stream to write any debug output to. VERBOSE is the verbose level provided ! by `-fsched-verbose-N'. READY is a pointer to the ready list of ! instructions that are ready to be scheduled. N_READYP is a ! pointer to the number of elements in the ready list. The scheduler ! reads the ready list in reverse order, starting with ! READY[*N_READYP - 1] and going to READY[0]. CLOCK is the timer ! tick of the scheduler. You may modify the ready list and the ! number of ready insns. The return value is the number of insns ! that can issue this cycle; normally this is just `issue_rate'. ! See also `TARGET_SCHED_REORDER2'. ! -- Target Hook: int TARGET_SCHED_REORDER2 (FILE *FILE, int VERBOSE, ! rtx *READY, int *N_READYP, int CLOCK) ! Like `TARGET_SCHED_REORDER', but called at a different time. That ! function is called whenever the scheduler starts a new cycle. ! This one is called once per iteration over a cycle, immediately ! after `TARGET_SCHED_VARIABLE_ISSUE'; it can reorder the ready list ! and return the number of insns to be scheduled in the same cycle. Defining this hook can be useful if there are frequent situations ! where scheduling one insn causes other insns to become ready in ! the same cycle. These other insns can then be taken into account properly. -- Target Hook: void TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK (rtx --- 32600,32638 ---- -- Target Hook: int TARGET_SCHED_ADJUST_PRIORITY (rtx INSN, int PRIORITY) ! This hook adjusts the integer scheduling priority PRIORITY of INSN. ! It should return the new priority. Increase the priority to execute INSN earlier, reduce the priority to execute INSN later. ! Do not define this hook if you do not need to adjust the scheduling ! priorities of insns. -- Target Hook: int TARGET_SCHED_REORDER (FILE *FILE, int VERBOSE, rtx *READY, int *N_READYP, int CLOCK) This hook is executed by the scheduler after it has scheduled the ready list, to allow the machine description to reorder it (for ! example to combine two small instructions together on 'VLIW' machines). FILE is either a null pointer, or a stdio stream to write any debug output to. VERBOSE is the verbose level provided ! by '-fsched-verbose-N'. READY is a pointer to the ready list of ! instructions that are ready to be scheduled. N_READYP is a pointer ! to the number of elements in the ready list. The scheduler reads ! the ready list in reverse order, starting with READY[*N_READYP - 1] ! and going to READY[0]. CLOCK is the timer tick of the scheduler. ! You may modify the ready list and the number of ready insns. The ! return value is the number of insns that can issue this cycle; ! normally this is just 'issue_rate'. See also ! 'TARGET_SCHED_REORDER2'. ! -- Target Hook: int TARGET_SCHED_REORDER2 (FILE *FILE, int VERBOSE, rtx ! *READY, int *N_READYP, int CLOCK) ! Like 'TARGET_SCHED_REORDER', but called at a different time. That ! function is called whenever the scheduler starts a new cycle. This ! one is called once per iteration over a cycle, immediately after ! 'TARGET_SCHED_VARIABLE_ISSUE'; it can reorder the ready list and ! return the number of insns to be scheduled in the same cycle. Defining this hook can be useful if there are frequent situations ! where scheduling one insn causes other insns to become ready in the ! same cycle. These other insns can then be taken into account properly. -- Target Hook: void TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK (rtx *************** them: try the first ones in this list fi *** 33021,33054 **** This hook is executed by the scheduler at the beginning of each block of instructions that are to be scheduled. FILE is either a null pointer, or a stdio stream to write any debug output to. ! VERBOSE is the verbose level provided by `-fsched-verbose-N'. MAX_READY is the maximum number of insns in the current scheduling region that can be live at the same time. This can be used to allocate scratch space if it is needed, e.g. by ! `TARGET_SCHED_REORDER'. -- Target Hook: void TARGET_SCHED_FINISH (FILE *FILE, int VERBOSE) This hook is executed by the scheduler at the end of each block of instructions that are to be scheduled. It can be used to perform ! cleanup of any actions done by the other scheduling hooks. FILE ! is either a null pointer, or a stdio stream to write any debug ! output to. VERBOSE is the verbose level provided by ! `-fsched-verbose-N'. ! -- Target Hook: void TARGET_SCHED_INIT_GLOBAL (FILE *FILE, int ! VERBOSE, int OLD_MAX_UID) This hook is executed by the scheduler after function level initializations. FILE is either a null pointer, or a stdio stream to write any debug output to. VERBOSE is the verbose level ! provided by `-fsched-verbose-N'. OLD_MAX_UID is the maximum insn uid when scheduling begins. -- Target Hook: void TARGET_SCHED_FINISH_GLOBAL (FILE *FILE, int VERBOSE) This is the cleanup hook corresponding to ! `TARGET_SCHED_INIT_GLOBAL'. FILE is either a null pointer, or a stdio stream to write any debug output to. VERBOSE is the verbose ! level provided by `-fsched-verbose-N'. -- Target Hook: rtx TARGET_SCHED_DFA_PRE_CYCLE_INSN (void) The hook returns an RTL insn. The automaton state used in the --- 32650,32682 ---- This hook is executed by the scheduler at the beginning of each block of instructions that are to be scheduled. FILE is either a null pointer, or a stdio stream to write any debug output to. ! VERBOSE is the verbose level provided by '-fsched-verbose-N'. MAX_READY is the maximum number of insns in the current scheduling region that can be live at the same time. This can be used to allocate scratch space if it is needed, e.g. by ! 'TARGET_SCHED_REORDER'. -- Target Hook: void TARGET_SCHED_FINISH (FILE *FILE, int VERBOSE) This hook is executed by the scheduler at the end of each block of instructions that are to be scheduled. It can be used to perform ! cleanup of any actions done by the other scheduling hooks. FILE is ! either a null pointer, or a stdio stream to write any debug output ! to. VERBOSE is the verbose level provided by '-fsched-verbose-N'. ! -- Target Hook: void TARGET_SCHED_INIT_GLOBAL (FILE *FILE, int VERBOSE, ! int OLD_MAX_UID) This hook is executed by the scheduler after function level initializations. FILE is either a null pointer, or a stdio stream to write any debug output to. VERBOSE is the verbose level ! provided by '-fsched-verbose-N'. OLD_MAX_UID is the maximum insn uid when scheduling begins. -- Target Hook: void TARGET_SCHED_FINISH_GLOBAL (FILE *FILE, int VERBOSE) This is the cleanup hook corresponding to ! 'TARGET_SCHED_INIT_GLOBAL'. FILE is either a null pointer, or a stdio stream to write any debug output to. VERBOSE is the verbose ! level provided by '-fsched-verbose-N'. -- Target Hook: rtx TARGET_SCHED_DFA_PRE_CYCLE_INSN (void) The hook returns an RTL insn. The automaton state used in the *************** them: try the first ones in this list fi *** 33056,33087 **** when the new simulated processor cycle starts. Usage of the hook may simplify the automaton pipeline description for some VLIW processors. If the hook is defined, it is used only for the ! automaton based pipeline description. The default is not to ! change the state when the new simulated processor cycle starts. -- Target Hook: void TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN (void) The hook can be used to initialize data used by the previous hook. -- Target Hook: rtx TARGET_SCHED_DFA_POST_CYCLE_INSN (void) ! The hook is analogous to `TARGET_SCHED_DFA_PRE_CYCLE_INSN' but used to changed the state as if the insn were scheduled when the new simulated processor cycle finishes. -- Target Hook: void TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN (void) ! The hook is analogous to `TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN' but used to initialize data used by the previous hook. -- Target Hook: void TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE (void) ! The hook to notify target that the current simulated cycle is ! about to finish. The hook is analogous to ! `TARGET_SCHED_DFA_PRE_CYCLE_INSN' but used to change the state in more complicated situations - e.g., when advancing state on a single insn is not enough. -- Target Hook: void TARGET_SCHED_DFA_POST_ADVANCE_CYCLE (void) The hook to notify target that new simulated cycle has just started. The hook is analogous to ! `TARGET_SCHED_DFA_POST_CYCLE_INSN' but used to change the state in more complicated situations - e.g., when advancing state on a single insn is not enough. --- 32684,32715 ---- when the new simulated processor cycle starts. Usage of the hook may simplify the automaton pipeline description for some VLIW processors. If the hook is defined, it is used only for the ! automaton based pipeline description. The default is not to change ! the state when the new simulated processor cycle starts. -- Target Hook: void TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN (void) The hook can be used to initialize data used by the previous hook. -- Target Hook: rtx TARGET_SCHED_DFA_POST_CYCLE_INSN (void) ! The hook is analogous to 'TARGET_SCHED_DFA_PRE_CYCLE_INSN' but used to changed the state as if the insn were scheduled when the new simulated processor cycle finishes. -- Target Hook: void TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN (void) ! The hook is analogous to 'TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN' but used to initialize data used by the previous hook. -- Target Hook: void TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE (void) ! The hook to notify target that the current simulated cycle is about ! to finish. The hook is analogous to ! 'TARGET_SCHED_DFA_PRE_CYCLE_INSN' but used to change the state in more complicated situations - e.g., when advancing state on a single insn is not enough. -- Target Hook: void TARGET_SCHED_DFA_POST_ADVANCE_CYCLE (void) The hook to notify target that new simulated cycle has just started. The hook is analogous to ! 'TARGET_SCHED_DFA_POST_CYCLE_INSN' but used to change the state in more complicated situations - e.g., when advancing state on a single insn is not enough. *************** them: try the first ones in this list fi *** 33090,33102 **** This hook controls better choosing an insn from the ready insn queue for the DFA-based insn scheduler. Usually the scheduler chooses the first insn from the queue. If the hook returns a ! positive value, an additional scheduler code tries all ! permutations of `TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ! ()' subsequent ready insns to choose an insn whose issue will ! result in maximal number of issued insns on the same cycle. For ! the VLIW processor, the code could actually solve the problem of ! packing simple insns into the VLIW insn. Of course, if the rules ! of VLIW packing are described in the automaton. This code also could be used for superscalar RISC processors. Let us consider a superscalar RISC processor with 3 pipelines. Some --- 32718,32730 ---- This hook controls better choosing an insn from the ready insn queue for the DFA-based insn scheduler. Usually the scheduler chooses the first insn from the queue. If the hook returns a ! positive value, an additional scheduler code tries all permutations ! of 'TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ()' subsequent ! ready insns to choose an insn whose issue will result in maximal ! number of issued insns on the same cycle. For the VLIW processor, ! the code could actually solve the problem of packing simple insns ! into the VLIW insn. Of course, if the rules of VLIW packing are ! described in the automaton. This code also could be used for superscalar RISC processors. Let us consider a superscalar RISC processor with 3 pipelines. Some *************** them: try the first ones in this list fi *** 33114,33120 **** The default is no multipass scheduling. -- Target Hook: int ! TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD (rtx INSN) This hook controls what insns from the ready insn queue will be considered for the multipass insn scheduling. If the hook returns zero for INSN, the insn will be not chosen to be issued. --- 32742,32750 ---- The default is no multipass scheduling. -- Target Hook: int ! TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD (rtx ! INSN) ! This hook controls what insns from the ready insn queue will be considered for the multipass insn scheduling. If the hook returns zero for INSN, the insn will be not chosen to be issued. *************** TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_L *** 33129,33144 **** -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE (void *DATA, char *READY_TRY, int N_READY, rtx INSN, const void *PREV_DATA) ! This hook is called when multipass scheduling evaluates ! instruction INSN. -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK (const void *DATA, char *READY_TRY, int N_READY) ! This is called when multipass scheduling backtracks from ! evaluation of an instruction. ! -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END (const ! void *DATA) This hook notifies the target about the result of the concluded current round of multipass scheduling. --- 32759,32774 ---- -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE (void *DATA, char *READY_TRY, int N_READY, rtx INSN, const void *PREV_DATA) ! This hook is called when multipass scheduling evaluates instruction ! INSN. -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK (const void *DATA, char *READY_TRY, int N_READY) ! This is called when multipass scheduling backtracks from evaluation ! of an instruction. ! -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END (const void ! *DATA) This hook notifies the target about the result of the concluded current round of multipass scheduling. *************** TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_L *** 33165,33191 **** -- Target Hook: bool TARGET_SCHED_IS_COSTLY_DEPENDENCE (struct _dep *_DEP, int COST, int DISTANCE) ! This hook is used to define which dependences are considered ! costly by the target, so costly that it is not advisable to ! schedule the insns that are involved in the dependence too close ! to one another. The parameters to this hook are as follows: The ! first parameter _DEP is the dependence being evaluated. The ! second parameter COST is the cost of the dependence as estimated ! by the scheduler, and the third parameter DISTANCE is the distance ! in cycles between the two insns. The hook returns `true' if ! considering the distance between the two insns the dependence ! between them is considered costly by the target, and `false' ! otherwise. Defining this hook can be useful in multiple-issue out-of-order ! machines, where (a) it's practically hopeless to predict the ! actual data/resource delays, however: (b) there's a better chance ! to predict the actual grouping that will be formed, and (c) ! correctly emulating the grouping can be very important. In such ! targets one may want to allow issuing dependent insns closer to ! one another--i.e., closer than the dependence distance; however, ! not in cases of "costly dependences", which this hooks allows to ! define. -- Target Hook: void TARGET_SCHED_H_I_D_EXTENDED (void) This hook is called by the insn scheduler after emitting a new --- 32795,32819 ---- -- Target Hook: bool TARGET_SCHED_IS_COSTLY_DEPENDENCE (struct _dep *_DEP, int COST, int DISTANCE) ! This hook is used to define which dependences are considered costly ! by the target, so costly that it is not advisable to schedule the ! insns that are involved in the dependence too close to one another. ! The parameters to this hook are as follows: The first parameter ! _DEP is the dependence being evaluated. The second parameter COST ! is the cost of the dependence as estimated by the scheduler, and ! the third parameter DISTANCE is the distance in cycles between the ! two insns. The hook returns 'true' if considering the distance ! between the two insns the dependence between them is considered ! costly by the target, and 'false' otherwise. Defining this hook can be useful in multiple-issue out-of-order ! machines, where (a) it's practically hopeless to predict the actual ! data/resource delays, however: (b) there's a better chance to ! predict the actual grouping that will be formed, and (c) correctly ! emulating the grouping can be very important. In such targets one ! may want to allow issuing dependent insns closer to one ! another--i.e., closer than the dependence distance; however, not in ! cases of "costly dependences", which this hooks allows to define. -- Target Hook: void TARGET_SCHED_H_I_D_EXTENDED (void) This hook is called by the insn scheduler after emitting a new *************** TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_L *** 33200,33242 **** CLEAN_P) Initialize store pointed to by TC to hold target scheduling context. It CLEAN_P is true then initialize TC as if scheduler is ! at the beginning of the block. Otherwise, copy the current ! context into TC. -- Target Hook: void TARGET_SCHED_SET_SCHED_CONTEXT (void *TC) Copy target scheduling context pointed to by TC to the current context. -- Target Hook: void TARGET_SCHED_CLEAR_SCHED_CONTEXT (void *TC) ! Deallocate internal data in target scheduling context pointed to ! by TC. -- Target Hook: void TARGET_SCHED_FREE_SCHED_CONTEXT (void *TC) Deallocate a store for target scheduling context pointed to by TC. ! -- Target Hook: int TARGET_SCHED_SPECULATE_INSN (rtx INSN, int ! REQUEST, rtx *NEW_PAT) This hook is called by the insn scheduler when INSN has only speculative dependencies and therefore can be scheduled speculatively. The hook is used to check if the pattern of INSN has a speculative version and, in case of successful check, to generate that speculative pattern. The hook should return 1, if the instruction has a speculative form, or -1, if it doesn't. ! REQUEST describes the type of requested speculation. If the ! return value equals 1 then NEW_PAT is assigned the generated ! speculative pattern. -- Target Hook: bool TARGET_SCHED_NEEDS_BLOCK_P (int DEP_STATUS) This hook is called by the insn scheduler during generation of ! recovery code for INSN. It should return `true', if the corresponding check instruction should branch to recovery code, or ! `false' otherwise. -- Target Hook: rtx TARGET_SCHED_GEN_SPEC_CHECK (rtx INSN, rtx LABEL, int MUTATE_P) ! This hook is called by the insn scheduler to generate a pattern ! for recovery check instruction. If MUTATE_P is zero, then INSN is ! a speculative instruction for which the check should be generated. LABEL is either a label of a basic block, where recovery code should be emitted, or a null pointer, when requested check doesn't branch to recovery code (a simple check). If MUTATE_P is nonzero, --- 32828,32870 ---- CLEAN_P) Initialize store pointed to by TC to hold target scheduling context. It CLEAN_P is true then initialize TC as if scheduler is ! at the beginning of the block. Otherwise, copy the current context ! into TC. -- Target Hook: void TARGET_SCHED_SET_SCHED_CONTEXT (void *TC) Copy target scheduling context pointed to by TC to the current context. -- Target Hook: void TARGET_SCHED_CLEAR_SCHED_CONTEXT (void *TC) ! Deallocate internal data in target scheduling context pointed to by ! TC. -- Target Hook: void TARGET_SCHED_FREE_SCHED_CONTEXT (void *TC) Deallocate a store for target scheduling context pointed to by TC. ! -- Target Hook: int TARGET_SCHED_SPECULATE_INSN (rtx INSN, int REQUEST, ! rtx *NEW_PAT) This hook is called by the insn scheduler when INSN has only speculative dependencies and therefore can be scheduled speculatively. The hook is used to check if the pattern of INSN has a speculative version and, in case of successful check, to generate that speculative pattern. The hook should return 1, if the instruction has a speculative form, or -1, if it doesn't. ! REQUEST describes the type of requested speculation. If the return ! value equals 1 then NEW_PAT is assigned the generated speculative ! pattern. -- Target Hook: bool TARGET_SCHED_NEEDS_BLOCK_P (int DEP_STATUS) This hook is called by the insn scheduler during generation of ! recovery code for INSN. It should return 'true', if the corresponding check instruction should branch to recovery code, or ! 'false' otherwise. -- Target Hook: rtx TARGET_SCHED_GEN_SPEC_CHECK (rtx INSN, rtx LABEL, int MUTATE_P) ! This hook is called by the insn scheduler to generate a pattern for ! recovery check instruction. If MUTATE_P is zero, then INSN is a ! speculative instruction for which the check should be generated. LABEL is either a label of a basic block, where recovery code should be emitted, or a null pointer, when requested check doesn't branch to recovery code (a simple check). If MUTATE_P is nonzero, *************** TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_L *** 33245,33264 **** null. -- Target Hook: bool ! TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC (const_rtx ! INSN) This hook is used as a workaround for ! `TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD' not being called on the first instruction of the ready list. The hook is used to discard speculative instructions that stand first in the ready list from being scheduled on the current cycle. If the hook ! returns `false', INSN will not be chosen to be issued. For ! non-speculative instructions, the hook should always return ! `true'. For example, in the ia64 backend the hook is used to ! cancel data speculative insns when the ALAT table is nearly full. ! -- Target Hook: void TARGET_SCHED_SET_SCHED_FLAGS (struct ! spec_info_def *SPEC_INFO) This hook is used by the insn scheduler to find out what features should be enabled/used. The structure *SPEC_INFO should be filled in by the target. The structure describes speculation types that --- 32873,32892 ---- null. -- Target Hook: bool ! TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC ! (const_rtx INSN) This hook is used as a workaround for ! 'TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD' not being called on the first instruction of the ready list. The hook is used to discard speculative instructions that stand first in the ready list from being scheduled on the current cycle. If the hook ! returns 'false', INSN will not be chosen to be issued. For ! non-speculative instructions, the hook should always return 'true'. ! For example, in the ia64 backend the hook is used to cancel data ! speculative insns when the ALAT table is nearly full. ! -- Target Hook: void TARGET_SCHED_SET_SCHED_FLAGS (struct spec_info_def ! *SPEC_INFO) This hook is used by the insn scheduler to find out what features should be enabled/used. The structure *SPEC_INFO should be filled in by the target. The structure describes speculation types that *************** TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_L *** 33268,33277 **** This hook is called by the swing modulo scheduler to calculate a resource-based lower bound which is based on the resources available in the machine and the resources required by each ! instruction. The target backend can use G to calculate such ! bound. A very simple lower bound will be used in case this hook ! is not implemented: the total number of instructions divided by ! the issue rate. -- Target Hook: bool TARGET_SCHED_DISPATCH (rtx INSN, int X) This hook is called by Haifa Scheduler. It returns true if --- 32896,32905 ---- This hook is called by the swing modulo scheduler to calculate a resource-based lower bound which is based on the resources available in the machine and the resources required by each ! instruction. The target backend can use G to calculate such bound. ! A very simple lower bound will be used in case this hook is not ! implemented: the total number of instructions divided by the issue ! rate. -- Target Hook: bool TARGET_SCHED_DISPATCH (rtx INSN, int X) This hook is called by Haifa Scheduler. It returns true if *************** TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_L *** 33283,33294 **** specified in its second parameter. -- Target Hook: bool TARGET_SCHED_EXPOSED_PIPELINE ! True if the processor has an exposed pipeline, which means that ! not just the order of instructions is important for correctness ! when scheduling, but also the latencies of operations. ! -- Target Hook: int TARGET_SCHED_REASSOCIATION_WIDTH (unsigned int ! OPC, enum machine_mode MODE) This hook is called by tree reassociator to determine a level of parallelism required in output calculations chain. --- 32911,32922 ---- specified in its second parameter. -- Target Hook: bool TARGET_SCHED_EXPOSED_PIPELINE ! True if the processor has an exposed pipeline, which means that not ! just the order of instructions is important for correctness when ! scheduling, but also the latencies of operations. ! -- Target Hook: int TARGET_SCHED_REASSOCIATION_WIDTH (unsigned int OPC, ! enum machine_mode MODE) This hook is called by tree reassociator to determine a level of parallelism required in output calculations chain. *************** section", which holds initialized writab *** 33305,33338 **** which holds uninitialized data. Some systems have other kinds of sections. ! `varasm.c' provides several well-known sections, such as ! `text_section', `data_section' and `bss_section'. The normal way of ! controlling a `FOO_section' variable is to define the associated ! `FOO_SECTION_ASM_OP' macro, as described below. The macros are only ! read once, when `varasm.c' initializes itself, so their values must be run-time constants. They may however depend on command-line flags. ! _Note:_ Some run-time files, such `crtstuff.c', also make use of the ! `FOO_SECTION_ASM_OP' macros, and expect them to be string literals. Some assemblers require a different string to be written every time a section is selected. If your assembler falls into this category, you ! should define the `TARGET_ASM_INIT_SECTIONS' hook and use ! `get_unnamed_section' to set up the sections. ! You must always create a `text_section', either by defining ! `TEXT_SECTION_ASM_OP' or by initializing `text_section' in ! `TARGET_ASM_INIT_SECTIONS'. The same is true of `data_section' and ! `DATA_SECTION_ASM_OP'. If you do not create a distinct ! `readonly_data_section', the default is to reuse `text_section'. ! All the other `varasm.c' sections are optional, and are null if the target does not provide them. -- Macro: TEXT_SECTION_ASM_OP A C expression whose value is a string, including spacing, ! containing the assembler operation that should precede ! instructions and read-only data. Normally `"\t.text"' is right. -- Macro: HOT_TEXT_SECTION_NAME If defined, a C string constant for the name of the section --- 32933,32966 ---- which holds uninitialized data. Some systems have other kinds of sections. ! 'varasm.c' provides several well-known sections, such as ! 'text_section', 'data_section' and 'bss_section'. The normal way of ! controlling a 'FOO_section' variable is to define the associated ! 'FOO_SECTION_ASM_OP' macro, as described below. The macros are only ! read once, when 'varasm.c' initializes itself, so their values must be run-time constants. They may however depend on command-line flags. ! _Note:_ Some run-time files, such 'crtstuff.c', also make use of the ! 'FOO_SECTION_ASM_OP' macros, and expect them to be string literals. Some assemblers require a different string to be written every time a section is selected. If your assembler falls into this category, you ! should define the 'TARGET_ASM_INIT_SECTIONS' hook and use ! 'get_unnamed_section' to set up the sections. ! You must always create a 'text_section', either by defining ! 'TEXT_SECTION_ASM_OP' or by initializing 'text_section' in ! 'TARGET_ASM_INIT_SECTIONS'. The same is true of 'data_section' and ! 'DATA_SECTION_ASM_OP'. If you do not create a distinct ! 'readonly_data_section', the default is to reuse 'text_section'. ! All the other 'varasm.c' sections are optional, and are null if the target does not provide them. -- Macro: TEXT_SECTION_ASM_OP A C expression whose value is a string, including spacing, ! containing the assembler operation that should precede instructions ! and read-only data. Normally '"\t.text"' is right. -- Macro: HOT_TEXT_SECTION_NAME If defined, a C string constant for the name of the section *************** target does not provide them. *** 33347,33353 **** -- Macro: DATA_SECTION_ASM_OP A C expression whose value is a string, including spacing, containing the assembler operation to identify the following data ! as writable initialized data. Normally `"\t.data"' is right. -- Macro: SDATA_SECTION_ASM_OP If defined, a C expression whose value is a string, including --- 32975,32981 ---- -- Macro: DATA_SECTION_ASM_OP A C expression whose value is a string, including spacing, containing the assembler operation to identify the following data ! as writable initialized data. Normally '"\t.data"' is right. -- Macro: SDATA_SECTION_ASM_OP If defined, a C expression whose value is a string, including *************** target does not provide them. *** 33363,33371 **** If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as uninitialized global data. If not defined, and ! `ASM_OUTPUT_ALIGNED_BSS' not defined, uninitialized global data ! will be output in the data section if `-fno-common' is passed, ! otherwise `ASM_OUTPUT_COMMON' will be used. -- Macro: SBSS_SECTION_ASM_OP If defined, a C expression whose value is a string, including --- 32991,32999 ---- If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as uninitialized global data. If not defined, and ! 'ASM_OUTPUT_ALIGNED_BSS' not defined, uninitialized global data ! will be output in the data section if '-fno-common' is passed, ! otherwise 'ASM_OUTPUT_COMMON' will be used. -- Macro: SBSS_SECTION_ASM_OP If defined, a C expression whose value is a string, including *************** target does not provide them. *** 33375,33393 **** -- Macro: TLS_COMMON_ASM_OP If defined, a C expression whose value is a string containing the assembler operation to identify the following data as thread-local ! common data. The default is `".tls_common"'. -- Macro: TLS_SECTION_ASM_FLAG If defined, a C expression whose value is a character constant containing the flag used to mark a section as a TLS section. The ! default is `'T''. -- Macro: INIT_SECTION_ASM_OP If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as initialization code. If not defined, GCC will assume such a section does not exist. This section has no ! corresponding `init_section' variable; it is used entirely in runtime code. -- Macro: FINI_SECTION_ASM_OP --- 33003,33021 ---- -- Macro: TLS_COMMON_ASM_OP If defined, a C expression whose value is a string containing the assembler operation to identify the following data as thread-local ! common data. The default is '".tls_common"'. -- Macro: TLS_SECTION_ASM_FLAG If defined, a C expression whose value is a character constant containing the flag used to mark a section as a TLS section. The ! default is ''T''. -- Macro: INIT_SECTION_ASM_OP If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as initialization code. If not defined, GCC will assume such a section does not exist. This section has no ! corresponding 'init_section' variable; it is used entirely in runtime code. -- Macro: FINI_SECTION_ASM_OP *************** target does not provide them. *** 33395,33450 **** spacing, containing the assembler operation to identify the following data as finalization code. If not defined, GCC will assume such a section does not exist. This section has no ! corresponding `fini_section' variable; it is used entirely in runtime code. -- Macro: INIT_ARRAY_SECTION_ASM_OP If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the ! following data as part of the `.init_array' (or equivalent) section. If not defined, GCC will assume such a section does not ! exist. Do not define both this macro and `INIT_SECTION_ASM_OP'. -- Macro: FINI_ARRAY_SECTION_ASM_OP If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the ! following data as part of the `.fini_array' (or equivalent) section. If not defined, GCC will assume such a section does not ! exist. Do not define both this macro and `FINI_SECTION_ASM_OP'. -- Macro: CRT_CALL_STATIC_FUNCTION (SECTION_OP, FUNCTION) If defined, an ASM statement that switches to a different section via SECTION_OP, calls FUNCTION, and switches back to the text ! section. This is used in `crtstuff.c' if `INIT_SECTION_ASM_OP' or ! `FINI_SECTION_ASM_OP' to calls to initialization and finalization functions from the init and fini sections. By default, this macro ! uses a simple function call. Some ports need hand-crafted ! assembly code to avoid dependencies on registers initialized in ! the function prologue or to ensure that constant pools don't end ! up too far way in the text section. -- Macro: TARGET_LIBGCC_SDATA_SECTION If defined, a string which names the section into which small variables defined in crtstuff and libgcc should go. This is useful when the target has options for optimizing access to small data, ! and you want the crtstuff and libgcc routines to be conservative ! in what they expect of your application yet liberal in what your ! application expects. For example, for targets with a `.sdata' ! section (like MIPS), you could compile crtstuff with `-G 0' so ! that it doesn't require small data support from your application, ! but use this macro to put small data into `.sdata' so that your application can access these variables whether it uses small data or not. -- Macro: FORCE_CODE_SECTION_ALIGN If defined, an ASM statement that aligns a code section to some arbitrary boundary. This is used to force all fragments of the ! `.init' and `.fini' sections to have to same alignment and thus prevent the linker from having to add any padding. -- Macro: JUMP_TABLES_IN_TEXT_SECTION Define this macro to be an expression with a nonzero value if jump ! tables (for `tablejump' insns) should be output in the text section, along with the assembler instructions. Otherwise, the readonly data section is used. --- 33023,33078 ---- spacing, containing the assembler operation to identify the following data as finalization code. If not defined, GCC will assume such a section does not exist. This section has no ! corresponding 'fini_section' variable; it is used entirely in runtime code. -- Macro: INIT_ARRAY_SECTION_ASM_OP If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the ! following data as part of the '.init_array' (or equivalent) section. If not defined, GCC will assume such a section does not ! exist. Do not define both this macro and 'INIT_SECTION_ASM_OP'. -- Macro: FINI_ARRAY_SECTION_ASM_OP If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the ! following data as part of the '.fini_array' (or equivalent) section. If not defined, GCC will assume such a section does not ! exist. Do not define both this macro and 'FINI_SECTION_ASM_OP'. -- Macro: CRT_CALL_STATIC_FUNCTION (SECTION_OP, FUNCTION) If defined, an ASM statement that switches to a different section via SECTION_OP, calls FUNCTION, and switches back to the text ! section. This is used in 'crtstuff.c' if 'INIT_SECTION_ASM_OP' or ! 'FINI_SECTION_ASM_OP' to calls to initialization and finalization functions from the init and fini sections. By default, this macro ! uses a simple function call. Some ports need hand-crafted assembly ! code to avoid dependencies on registers initialized in the function ! prologue or to ensure that constant pools don't end up too far way ! in the text section. -- Macro: TARGET_LIBGCC_SDATA_SECTION If defined, a string which names the section into which small variables defined in crtstuff and libgcc should go. This is useful when the target has options for optimizing access to small data, ! and you want the crtstuff and libgcc routines to be conservative in ! what they expect of your application yet liberal in what your ! application expects. For example, for targets with a '.sdata' ! section (like MIPS), you could compile crtstuff with '-G 0' so that ! it doesn't require small data support from your application, but ! use this macro to put small data into '.sdata' so that your application can access these variables whether it uses small data or not. -- Macro: FORCE_CODE_SECTION_ALIGN If defined, an ASM statement that aligns a code section to some arbitrary boundary. This is used to force all fragments of the ! '.init' and '.fini' sections to have to same alignment and thus prevent the linker from having to add any padding. -- Macro: JUMP_TABLES_IN_TEXT_SECTION Define this macro to be an expression with a nonzero value if jump ! tables (for 'tablejump' insns) should be output in the text section, along with the assembler instructions. Otherwise, the readonly data section is used. *************** target does not provide them. *** 33453,33460 **** -- Target Hook: void TARGET_ASM_INIT_SECTIONS (void) Define this hook if you need to do something special to set up the ! `varasm.c' sections, or if your target has some special sections ! of its own that you need to create. GCC calls this hook after processing the command line, but before writing any assembly code, and before calling any of the --- 33081,33088 ---- -- Target Hook: void TARGET_ASM_INIT_SECTIONS (void) Define this hook if you need to do something special to set up the ! 'varasm.c' sections, or if your target has some special sections of ! its own that you need to create. GCC calls this hook after processing the command line, but before writing any assembly code, and before calling any of the *************** target does not provide them. *** 33466,33547 **** should be placed in a read-write section; bit 0 should be set if local relocations should be placed in a read-write section. ! The default version of this function returns 3 when `-fpic' is in effect, and 0 otherwise. The hook is typically redefined when the target cannot support (some kinds of) dynamic relocations in read-only sections even in executables. -- Target Hook: section * TARGET_ASM_SELECT_SECTION (tree EXP, int RELOC, unsigned HOST_WIDE_INT ALIGN) ! Return the section into which EXP should be placed. You can ! assume that EXP is either a `VAR_DECL' node or a constant of some ! sort. RELOC indicates whether the initial value of EXP requires ! link-time relocations. Bit 0 is set when variable contains local ! relocations only, while bit 1 is set for global relocations. ! ALIGN is the constant alignment in bits. The default version of this function takes care of putting ! read-only variables in `readonly_data_section'. See also USE_SELECT_SECTION_FOR_FUNCTIONS. -- Macro: USE_SELECT_SECTION_FOR_FUNCTIONS Define this macro if you wish TARGET_ASM_SELECT_SECTION to be ! called for `FUNCTION_DECL's as well as for variables and constants. ! In the case of a `FUNCTION_DECL', RELOC will be zero if the ! function has been determined to be likely to be called, and ! nonzero if it is unlikely to be called. -- Target Hook: void TARGET_ASM_UNIQUE_SECTION (tree DECL, int RELOC) ! Build up a unique section name, expressed as a `STRING_CST' node, ! and assign it to `DECL_SECTION_NAME (DECL)'. As with ! `TARGET_ASM_SELECT_SECTION', RELOC indicates whether the initial value of EXP requires link-time relocations. The default version of this function appends the symbol name to the ELF section name that would normally be used for the symbol. For ! example, the function `foo' would be placed in `.text.foo'. Whatever the actual target object format, this is often good enough. -- Target Hook: section * TARGET_ASM_FUNCTION_RODATA_SECTION (tree DECL) ! Return the readonly data section associated with ! `DECL_SECTION_NAME (DECL)'. The default version of this function ! selects `.gnu.linkonce.r.name' if the function's section is ! `.gnu.linkonce.t.name', `.rodata.name' if function is in ! `.text.name', and the normal readonly-data section otherwise. -- Target Hook: const char * TARGET_ASM_MERGEABLE_RODATA_PREFIX ! Usually, the compiler uses the prefix `".rodata"' to construct section names for mergeable constant data. Define this macro to override the string if a different section name should be used. -- Target Hook: section * TARGET_ASM_TM_CLONE_TABLE_SECTION (void) Return the section that should be used for transactional memory ! clone tables. -- Target Hook: section * TARGET_ASM_SELECT_RTX_SECTION (enum machine_mode MODE, rtx X, unsigned HOST_WIDE_INT ALIGN) ! Return the section into which a constant X, of mode MODE, should ! be placed. You can assume that X is some kind of constant in RTL. ! The argument MODE is redundant except in the case of a `const_int' rtx. ALIGN is the constant alignment in bits. The default version of this function takes care of putting symbolic ! constants in `flag_pic' mode in `data_section' and everything else ! in `readonly_data_section'. ! -- Target Hook: tree TARGET_MANGLE_DECL_ASSEMBLER_NAME (tree DECL, ! tree ID) Define this hook if you need to postprocess the assembler name ! generated by target-independent code. The ID provided to this ! hook will be the computed name (e.g., the macro `DECL_NAME' of the ! DECL in C, or the mangled name of the DECL in C++). The return ! value of the hook is an `IDENTIFIER_NODE' for the appropriate ! mangled name on your target system. The default implementation of ! this hook just returns the ID provided. -- Target Hook: void TARGET_ENCODE_SECTION_INFO (tree DECL, rtx RTL, int NEW_DECL_P) --- 33094,33175 ---- should be placed in a read-write section; bit 0 should be set if local relocations should be placed in a read-write section. ! The default version of this function returns 3 when '-fpic' is in effect, and 0 otherwise. The hook is typically redefined when the target cannot support (some kinds of) dynamic relocations in read-only sections even in executables. -- Target Hook: section * TARGET_ASM_SELECT_SECTION (tree EXP, int RELOC, unsigned HOST_WIDE_INT ALIGN) ! Return the section into which EXP should be placed. You can assume ! that EXP is either a 'VAR_DECL' node or a constant of some sort. ! RELOC indicates whether the initial value of EXP requires link-time ! relocations. Bit 0 is set when variable contains local relocations ! only, while bit 1 is set for global relocations. ALIGN is the ! constant alignment in bits. The default version of this function takes care of putting ! read-only variables in 'readonly_data_section'. See also USE_SELECT_SECTION_FOR_FUNCTIONS. -- Macro: USE_SELECT_SECTION_FOR_FUNCTIONS Define this macro if you wish TARGET_ASM_SELECT_SECTION to be ! called for 'FUNCTION_DECL's as well as for variables and constants. ! In the case of a 'FUNCTION_DECL', RELOC will be zero if the ! function has been determined to be likely to be called, and nonzero ! if it is unlikely to be called. -- Target Hook: void TARGET_ASM_UNIQUE_SECTION (tree DECL, int RELOC) ! Build up a unique section name, expressed as a 'STRING_CST' node, ! and assign it to 'DECL_SECTION_NAME (DECL)'. As with ! 'TARGET_ASM_SELECT_SECTION', RELOC indicates whether the initial value of EXP requires link-time relocations. The default version of this function appends the symbol name to the ELF section name that would normally be used for the symbol. For ! example, the function 'foo' would be placed in '.text.foo'. Whatever the actual target object format, this is often good enough. -- Target Hook: section * TARGET_ASM_FUNCTION_RODATA_SECTION (tree DECL) ! Return the readonly data section associated with 'DECL_SECTION_NAME ! (DECL)'. The default version of this function selects ! '.gnu.linkonce.r.name' if the function's section is ! '.gnu.linkonce.t.name', '.rodata.name' if function is in ! '.text.name', and the normal readonly-data section otherwise. -- Target Hook: const char * TARGET_ASM_MERGEABLE_RODATA_PREFIX ! Usually, the compiler uses the prefix '".rodata"' to construct section names for mergeable constant data. Define this macro to override the string if a different section name should be used. -- Target Hook: section * TARGET_ASM_TM_CLONE_TABLE_SECTION (void) Return the section that should be used for transactional memory ! clone tables. -- Target Hook: section * TARGET_ASM_SELECT_RTX_SECTION (enum machine_mode MODE, rtx X, unsigned HOST_WIDE_INT ALIGN) ! Return the section into which a constant X, of mode MODE, should be ! placed. You can assume that X is some kind of constant in RTL. ! The argument MODE is redundant except in the case of a 'const_int' rtx. ALIGN is the constant alignment in bits. The default version of this function takes care of putting symbolic ! constants in 'flag_pic' mode in 'data_section' and everything else ! in 'readonly_data_section'. ! -- Target Hook: tree TARGET_MANGLE_DECL_ASSEMBLER_NAME (tree DECL, tree ! ID) Define this hook if you need to postprocess the assembler name ! generated by target-independent code. The ID provided to this hook ! will be the computed name (e.g., the macro 'DECL_NAME' of the DECL ! in C, or the mangled name of the DECL in C++). The return value of ! the hook is an 'IDENTIFIER_NODE' for the appropriate mangled name ! on your target system. The default implementation of this hook ! just returns the ID provided. -- Target Hook: void TARGET_ENCODE_SECTION_INFO (tree DECL, rtx RTL, int NEW_DECL_P) *************** target does not provide them. *** 33552,33613 **** The hook is executed immediately after rtl has been created for DECL, which may be a variable or function declaration or an entry in the constant pool. In either case, RTL is the rtl in question. ! Do _not_ use `DECL_RTL (DECL)' in this hook; that field may not have been initialized yet. In the case of a constant, it is safe to assume that the rtl is a ! `mem' whose address is a `symbol_ref'. Most decls will also have this form, but that is not guaranteed. Global register variables, ! for instance, will have a `reg' for their rtl. (Normally the ! right thing to do with such unusual rtl is leave it alone.) ! The NEW_DECL_P argument will be true if this is the first time ! that `TARGET_ENCODE_SECTION_INFO' has been invoked on this decl. ! It will be false for subsequent invocations, which will happen for duplicate declarations. Whether or not anything must be done for the duplicate declaration depends on whether the hook examines ! `DECL_ATTRIBUTES'. NEW_DECL_P is always true when the hook is called for a constant. The usual thing for this hook to do is to record flags in the ! `symbol_ref', using `SYMBOL_REF_FLAG' or `SYMBOL_REF_FLAGS'. Historically, the name string was modified if it was necessary to encode more than one bit of information, but this practice is now ! discouraged; use `SYMBOL_REF_FLAGS'. ! The default definition of this hook, `default_encode_section_info' ! in `varasm.c', sets a number of commonly-useful bits in ! `SYMBOL_REF_FLAGS'. Check whether the default does what you need before overriding it. -- Target Hook: const char * TARGET_STRIP_NAME_ENCODING (const char *NAME) ! Decode NAME and return the real name part, sans the characters ! that `TARGET_ENCODE_SECTION_INFO' may have added. -- Target Hook: bool TARGET_IN_SMALL_DATA_P (const_tree EXP) Returns true if EXP should be placed into a "small data" section. The default version of this hook always returns false. -- Target Hook: bool TARGET_HAVE_SRODATA_SECTION ! Contains the value true if the target places read-only "small ! data" into a separate section. The default value is false. -- Target Hook: bool TARGET_PROFILE_BEFORE_PROLOGUE (void) It returns true if target wants profile code emitted before prologue. The default version of this hook use the target macro ! `PROFILE_BEFORE_PROLOGUE'. -- Target Hook: bool TARGET_BINDS_LOCAL_P (const_tree EXP) ! Returns true if EXP names an object for which name resolution ! rules must resolve to the current "module" (dynamic shared library ! or executable image). The default version of this hook implements the name resolution ! rules for ELF, which has a looser model of global name binding ! than other currently supported object file formats. -- Target Hook: bool TARGET_HAVE_TLS Contains the value true if the target supports thread-local --- 33180,33241 ---- The hook is executed immediately after rtl has been created for DECL, which may be a variable or function declaration or an entry in the constant pool. In either case, RTL is the rtl in question. ! Do _not_ use 'DECL_RTL (DECL)' in this hook; that field may not have been initialized yet. In the case of a constant, it is safe to assume that the rtl is a ! 'mem' whose address is a 'symbol_ref'. Most decls will also have this form, but that is not guaranteed. Global register variables, ! for instance, will have a 'reg' for their rtl. (Normally the right ! thing to do with such unusual rtl is leave it alone.) ! The NEW_DECL_P argument will be true if this is the first time that ! 'TARGET_ENCODE_SECTION_INFO' has been invoked on this decl. It ! will be false for subsequent invocations, which will happen for duplicate declarations. Whether or not anything must be done for the duplicate declaration depends on whether the hook examines ! 'DECL_ATTRIBUTES'. NEW_DECL_P is always true when the hook is called for a constant. The usual thing for this hook to do is to record flags in the ! 'symbol_ref', using 'SYMBOL_REF_FLAG' or 'SYMBOL_REF_FLAGS'. Historically, the name string was modified if it was necessary to encode more than one bit of information, but this practice is now ! discouraged; use 'SYMBOL_REF_FLAGS'. ! The default definition of this hook, 'default_encode_section_info' ! in 'varasm.c', sets a number of commonly-useful bits in ! 'SYMBOL_REF_FLAGS'. Check whether the default does what you need before overriding it. -- Target Hook: const char * TARGET_STRIP_NAME_ENCODING (const char *NAME) ! Decode NAME and return the real name part, sans the characters that ! 'TARGET_ENCODE_SECTION_INFO' may have added. -- Target Hook: bool TARGET_IN_SMALL_DATA_P (const_tree EXP) Returns true if EXP should be placed into a "small data" section. The default version of this hook always returns false. -- Target Hook: bool TARGET_HAVE_SRODATA_SECTION ! Contains the value true if the target places read-only "small data" ! into a separate section. The default value is false. -- Target Hook: bool TARGET_PROFILE_BEFORE_PROLOGUE (void) It returns true if target wants profile code emitted before prologue. The default version of this hook use the target macro ! 'PROFILE_BEFORE_PROLOGUE'. -- Target Hook: bool TARGET_BINDS_LOCAL_P (const_tree EXP) ! Returns true if EXP names an object for which name resolution rules ! must resolve to the current "module" (dynamic shared library or ! executable image). The default version of this hook implements the name resolution ! rules for ELF, which has a looser model of global name binding than ! other currently supported object file formats. -- Target Hook: bool TARGET_HAVE_TLS Contains the value true if the target supports thread-local *************** File: gccint.info, Node: PIC, Next: As *** 33622,33630 **** This section describes macros that help implement generation of position independent code. Simply defining these macros is not enough to generate valid PIC; you must also add support to the hook ! `TARGET_LEGITIMATE_ADDRESS_P' and to the macro `PRINT_OPERAND_ADDRESS', ! as well as `LEGITIMIZE_ADDRESS'. You must modify the definition of ! `movsi' to do something appropriate when the source operand contains a symbolic address. You may also need to alter the handling of switch statements so that they use relative addresses. --- 33250,33258 ---- This section describes macros that help implement generation of position independent code. Simply defining these macros is not enough to generate valid PIC; you must also add support to the hook ! 'TARGET_LEGITIMATE_ADDRESS_P' and to the macro 'PRINT_OPERAND_ADDRESS', ! as well as 'LEGITIMIZE_ADDRESS'. You must modify the definition of ! 'movsi' to do something appropriate when the source operand contains a symbolic address. You may also need to alter the handling of switch statements so that they use relative addresses. *************** statements so that they use relative add *** 33636,33656 **** once, as with the stack pointer and frame pointer registers. If this macro is not defined, it is up to the machine-dependent files to allocate such a register (if necessary). Note that this ! register must be fixed when in use (e.g. when `flag_pic' is true). -- Macro: PIC_OFFSET_TABLE_REG_CALL_CLOBBERED A C expression that is nonzero if the register defined by ! `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. If not defined, the default is zero. Do not define this macro if ! `PIC_OFFSET_TABLE_REGNUM' is not defined. -- Macro: LEGITIMATE_PIC_OPERAND_P (X) A C expression that is nonzero if X is a legitimate immediate operand on the target machine when generating position independent ! code. You can assume that X satisfies `CONSTANT_P', so you need not check this. You can also assume FLAG_PIC is true, so you need not check it either. You need not define this macro if all ! constants (including `SYMBOL_REF') can be immediate operands when generating position independent code.  --- 33264,33284 ---- once, as with the stack pointer and frame pointer registers. If this macro is not defined, it is up to the machine-dependent files to allocate such a register (if necessary). Note that this ! register must be fixed when in use (e.g. when 'flag_pic' is true). -- Macro: PIC_OFFSET_TABLE_REG_CALL_CLOBBERED A C expression that is nonzero if the register defined by ! 'PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. If not defined, the default is zero. Do not define this macro if ! 'PIC_OFFSET_TABLE_REGNUM' is not defined. -- Macro: LEGITIMATE_PIC_OPERAND_P (X) A C expression that is nonzero if X is a legitimate immediate operand on the target machine when generating position independent ! code. You can assume that X satisfies 'CONSTANT_P', so you need not check this. You can also assume FLAG_PIC is true, so you need not check it either. You need not define this macro if all ! constants (including 'SYMBOL_REF') can be immediate operands when generating position independent code.  *************** File: gccint.info, Node: File Framework *** 33688,33744 **** This describes the overall framework of an assembly file. -- Target Hook: void TARGET_ASM_FILE_START (void) ! Output to `asm_out_file' any text which the assembler expects to find at the beginning of a file. The default behavior is controlled by two flags, documented below. Unless your target's ! assembler is quite unusual, if you override the default, you ! should call `default_file_start' at some point in your target ! hook. This lets other target files rely on these variables. -- Target Hook: bool TARGET_ASM_FILE_START_APP_OFF ! If this flag is true, the text of the macro `ASM_APP_OFF' will be printed as the very first line in the assembly file, unless ! `-fverbose-asm' is in effect. (If that macro has been defined to the empty string, this variable has no effect.) With the normal ! definition of `ASM_APP_OFF', the effect is to notify the GNU assembler that it need not bother stripping comments or extra whitespace from its input. This allows it to work a bit faster. The default is false. You should not set it to true unless you ! have verified that your port does not generate any extra ! whitespace or comments that will cause GAS to issue errors in ! NO_APP mode. -- Target Hook: bool TARGET_ASM_FILE_START_FILE_DIRECTIVE ! If this flag is true, `output_file_directive' will be called for ! the primary source file, immediately after printing `ASM_APP_OFF' (if that is enabled). Most ELF assemblers expect this to be done. The default is false. -- Target Hook: void TARGET_ASM_FILE_END (void) ! Output to `asm_out_file' any text which the assembler expects to find at the end of a file. The default is to output nothing. -- Function: void file_end_indicate_exec_stack () ! Some systems use a common convention, the `.note.GNU-stack' ! special section, to indicate whether or not an object file relies ! on the stack being executable. If your system uses this ! convention, you should define `TARGET_ASM_FILE_END' to this ! function. If you need to do other things in that hook, have your ! hook function call this function. -- Target Hook: void TARGET_ASM_LTO_START (void) ! Output to `asm_out_file' any text which the assembler expects to find at the start of an LTO section. The default is to output nothing. -- Target Hook: void TARGET_ASM_LTO_END (void) ! Output to `asm_out_file' any text which the assembler expects to find at the end of an LTO section. The default is to output nothing. -- Target Hook: void TARGET_ASM_CODE_END (void) ! Output to `asm_out_file' any text which is needed before emitting unwind info and debug info at the end of a file. Some targets emit here PIC setup thunks that cannot be emitted at the end of file, because they couldn't have unwind info then. The default is to --- 33316,33371 ---- This describes the overall framework of an assembly file. -- Target Hook: void TARGET_ASM_FILE_START (void) ! Output to 'asm_out_file' any text which the assembler expects to find at the beginning of a file. The default behavior is controlled by two flags, documented below. Unless your target's ! assembler is quite unusual, if you override the default, you should ! call 'default_file_start' at some point in your target hook. This ! lets other target files rely on these variables. -- Target Hook: bool TARGET_ASM_FILE_START_APP_OFF ! If this flag is true, the text of the macro 'ASM_APP_OFF' will be printed as the very first line in the assembly file, unless ! '-fverbose-asm' is in effect. (If that macro has been defined to the empty string, this variable has no effect.) With the normal ! definition of 'ASM_APP_OFF', the effect is to notify the GNU assembler that it need not bother stripping comments or extra whitespace from its input. This allows it to work a bit faster. The default is false. You should not set it to true unless you ! have verified that your port does not generate any extra whitespace ! or comments that will cause GAS to issue errors in NO_APP mode. -- Target Hook: bool TARGET_ASM_FILE_START_FILE_DIRECTIVE ! If this flag is true, 'output_file_directive' will be called for ! the primary source file, immediately after printing 'ASM_APP_OFF' (if that is enabled). Most ELF assemblers expect this to be done. The default is false. -- Target Hook: void TARGET_ASM_FILE_END (void) ! Output to 'asm_out_file' any text which the assembler expects to find at the end of a file. The default is to output nothing. -- Function: void file_end_indicate_exec_stack () ! Some systems use a common convention, the '.note.GNU-stack' special ! section, to indicate whether or not an object file relies on the ! stack being executable. If your system uses this convention, you ! should define 'TARGET_ASM_FILE_END' to this function. If you need ! to do other things in that hook, have your hook function call this ! function. -- Target Hook: void TARGET_ASM_LTO_START (void) ! Output to 'asm_out_file' any text which the assembler expects to find at the start of an LTO section. The default is to output nothing. -- Target Hook: void TARGET_ASM_LTO_END (void) ! Output to 'asm_out_file' any text which the assembler expects to find at the end of an LTO section. The default is to output nothing. -- Target Hook: void TARGET_ASM_CODE_END (void) ! Output to 'asm_out_file' any text which is needed before emitting unwind info and debug info at the end of a file. Some targets emit here PIC setup thunks that cannot be emitted at the end of file, because they couldn't have unwind info then. The default is to *************** This describes the overall framework of *** 33746,33765 **** -- Macro: ASM_COMMENT_START A C string constant describing how to begin a comment in the target ! assembler language. The compiler assumes that the comment will ! end at the end of the line. -- Macro: ASM_APP_ON ! A C string constant for text to be output before each `asm' ! statement or group of consecutive ones. Normally this is ! `"#APP"', which is a comment that has no effect on most assemblers ! but tells the GNU assembler that it must check the lines that ! follow for all valid assembler constructs. -- Macro: ASM_APP_OFF ! A C string constant for text to be output after each `asm' statement or group of consecutive ones. Normally this is ! `"#NO_APP"', which tells the GNU assembler to resume making the time-saving assumptions that are valid for ordinary compiler output. --- 33373,33392 ---- -- Macro: ASM_COMMENT_START A C string constant describing how to begin a comment in the target ! assembler language. The compiler assumes that the comment will end ! at the end of the line. -- Macro: ASM_APP_ON ! A C string constant for text to be output before each 'asm' ! statement or group of consecutive ones. Normally this is '"#APP"', ! which is a comment that has no effect on most assemblers but tells ! the GNU assembler that it must check the lines that follow for all ! valid assembler constructs. -- Macro: ASM_APP_OFF ! A C string constant for text to be output after each 'asm' statement or group of consecutive ones. Normally this is ! '"#NO_APP"', which tells the GNU assembler to resume making the time-saving assumptions that are valid for ordinary compiler output. *************** This describes the overall framework of *** 33777,33813 **** indicates that filename NAME is the current source file to the stdio stream FILE. ! This target hook need not be defined if the standard form of ! output for the file format in use is appropriate. -- Target Hook: void TARGET_ASM_OUTPUT_IDENT (const char *NAME) ! Output a string based on NAME, suitable for the `#ident' ! directive, or the equivalent directive or pragma in non-C-family ! languages. If this hook is not defined, nothing is output for the ! `#ident' directive. -- Macro: OUTPUT_QUOTED_STRING (STREAM, STRING) A C statement to output the string STRING to the stdio stream ! STREAM. If you do not call the function `output_quoted_string' in ! your config files, GCC will only call it to output filenames to ! the assembler source. So you can use it to canonicalize the format ! of the filename using this macro. -- Target Hook: void TARGET_ASM_NAMED_SECTION (const char *NAME, unsigned int FLAGS, tree DECL) Output assembly directives to switch to section NAME. The section should have attributes as specified by FLAGS, which is a bit mask ! of the `SECTION_*' flags defined in `output.h'. If DECL is ! non-NULL, it is the `VAR_DECL' or `FUNCTION_DECL' with which this section is associated. -- Target Hook: section * TARGET_ASM_FUNCTION_SECTION (tree DECL, enum node_frequency FREQ, bool STARTUP, bool EXIT) ! Return preferred text (sub)section for function DECL. Main ! purpose of this function is to separate cold, normal and hot ! functions. STARTUP is true when function is known to be used only ! at startup (from static constructors or it is `main()'). EXIT is ! true when function is known to be used only at exit (from static destructors). Return NULL if function should go to default text section. --- 33404,33440 ---- indicates that filename NAME is the current source file to the stdio stream FILE. ! This target hook need not be defined if the standard form of output ! for the file format in use is appropriate. -- Target Hook: void TARGET_ASM_OUTPUT_IDENT (const char *NAME) ! Output a string based on NAME, suitable for the '#ident' directive, ! or the equivalent directive or pragma in non-C-family languages. ! If this hook is not defined, nothing is output for the '#ident' ! directive. -- Macro: OUTPUT_QUOTED_STRING (STREAM, STRING) A C statement to output the string STRING to the stdio stream ! STREAM. If you do not call the function 'output_quoted_string' in ! your config files, GCC will only call it to output filenames to the ! assembler source. So you can use it to canonicalize the format of ! the filename using this macro. -- Target Hook: void TARGET_ASM_NAMED_SECTION (const char *NAME, unsigned int FLAGS, tree DECL) Output assembly directives to switch to section NAME. The section should have attributes as specified by FLAGS, which is a bit mask ! of the 'SECTION_*' flags defined in 'output.h'. If DECL is ! non-NULL, it is the 'VAR_DECL' or 'FUNCTION_DECL' with which this section is associated. -- Target Hook: section * TARGET_ASM_FUNCTION_SECTION (tree DECL, enum node_frequency FREQ, bool STARTUP, bool EXIT) ! Return preferred text (sub)section for function DECL. Main purpose ! of this function is to separate cold, normal and hot functions. ! STARTUP is true when function is known to be used only at startup ! (from static constructors or it is 'main()'). EXIT is true when ! function is known to be used only at exit (from static destructors). Return NULL if function should go to default text section. *************** This describes the overall framework of *** 33815,33846 **** *FILE, tree DECL, bool NEW_IS_COLD) Used by the target to emit any assembler directives or additional labels needed when a function is partitioned between different ! sections. Output should be written to FILE. The function decl ! is available as DECL and the new section is `cold' if NEW_IS_COLD ! is `true'. -- Common Target Hook: bool TARGET_HAVE_NAMED_SECTIONS This flag is true if the target supports ! `TARGET_ASM_NAMED_SECTION'. It must not be modified by command-line option processing. -- Target Hook: bool TARGET_HAVE_SWITCHABLE_BSS_SECTIONS This flag is true if we can create zeroed data by switching to a ! BSS section and then using `ASM_OUTPUT_SKIP' to allocate the space. This is true on most ELF targets. -- Target Hook: unsigned int TARGET_SECTION_TYPE_FLAGS (tree DECL, const char *NAME, int RELOC) Choose a set of section attributes for use by ! `TARGET_ASM_NAMED_SECTION' based on a variable or function decl, a section name, and whether or not the declaration's initializer may contain runtime relocations. DECL may be null, in which case read-write data should be assumed. The default version of this function handles choosing code vs data, ! read-only vs read-write data, and `flag_pic'. You should only ! need to override this if your target has special flags that might ! be set via `__attribute__'. -- Target Hook: int TARGET_ASM_RECORD_GCC_SWITCHES (print_switch_type TYPE, const char *TEXT) --- 33442,33473 ---- *FILE, tree DECL, bool NEW_IS_COLD) Used by the target to emit any assembler directives or additional labels needed when a function is partitioned between different ! sections. Output should be written to FILE. The function decl is ! available as DECL and the new section is 'cold' if NEW_IS_COLD is ! 'true'. -- Common Target Hook: bool TARGET_HAVE_NAMED_SECTIONS This flag is true if the target supports ! 'TARGET_ASM_NAMED_SECTION'. It must not be modified by command-line option processing. -- Target Hook: bool TARGET_HAVE_SWITCHABLE_BSS_SECTIONS This flag is true if we can create zeroed data by switching to a ! BSS section and then using 'ASM_OUTPUT_SKIP' to allocate the space. This is true on most ELF targets. -- Target Hook: unsigned int TARGET_SECTION_TYPE_FLAGS (tree DECL, const char *NAME, int RELOC) Choose a set of section attributes for use by ! 'TARGET_ASM_NAMED_SECTION' based on a variable or function decl, a section name, and whether or not the declaration's initializer may contain runtime relocations. DECL may be null, in which case read-write data should be assumed. The default version of this function handles choosing code vs data, ! read-only vs read-write data, and 'flag_pic'. You should only need ! to override this if your target has special flags that might be set ! via '__attribute__'. -- Target Hook: int TARGET_ASM_RECORD_GCC_SWITCHES (print_switch_type TYPE, const char *TEXT) *************** This describes the overall framework of *** 33849,33880 **** are enabled. The TYPE argument specifies what is being recorded. It can take the following values: ! `SWITCH_TYPE_PASSED' TEXT is a command line switch that has been set by the user. ! `SWITCH_TYPE_ENABLED' TEXT is an option which has been enabled. This might be as a direct result of a command line switch, or because it is enabled by default or because it has been enabled as a side effect of a different command line switch. For example, the ! `-O2' switch enables various different individual ! optimization passes. ! `SWITCH_TYPE_DESCRIPTIVE' TEXT is either NULL or some descriptive text which should be ignored. If TEXT is NULL then it is being used to warn the target hook that either recording is starting or ending. The first time TYPE is SWITCH_TYPE_DESCRIPTIVE and TEXT is NULL, ! the warning is for start up and the second time the warning ! is for wind down. This feature is to allow the target hook ! to make any necessary preparations before it starts to record switches and to perform any necessary tidying up after it has finished recording switches. ! `SWITCH_TYPE_LINE_START' This option can be ignored by this target hook. ! `SWITCH_TYPE_LINE_END' This option can be ignored by this target hook. The hook's return value must be zero. Other return values may be --- 33476,33507 ---- are enabled. The TYPE argument specifies what is being recorded. It can take the following values: ! 'SWITCH_TYPE_PASSED' TEXT is a command line switch that has been set by the user. ! 'SWITCH_TYPE_ENABLED' TEXT is an option which has been enabled. This might be as a direct result of a command line switch, or because it is enabled by default or because it has been enabled as a side effect of a different command line switch. For example, the ! '-O2' switch enables various different individual optimization ! passes. ! 'SWITCH_TYPE_DESCRIPTIVE' TEXT is either NULL or some descriptive text which should be ignored. If TEXT is NULL then it is being used to warn the target hook that either recording is starting or ending. The first time TYPE is SWITCH_TYPE_DESCRIPTIVE and TEXT is NULL, ! the warning is for start up and the second time the warning is ! for wind down. This feature is to allow the target hook to ! make any necessary preparations before it starts to record switches and to perform any necessary tidying up after it has finished recording switches. ! 'SWITCH_TYPE_LINE_START' This option can be ignored by this target hook. ! 'SWITCH_TYPE_LINE_END' This option can be ignored by this target hook. The hook's return value must be zero. Other return values may be *************** This describes the overall framework of *** 33885,33895 **** it records the switches as ASCII text inside a new, string mergeable section in the assembler output file. The name of the new section is provided by the ! `TARGET_ASM_RECORD_GCC_SWITCHES_SECTION' target hook. -- Target Hook: const char * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION This is the name of the section that will be created by the example ! ELF implementation of the `TARGET_ASM_RECORD_GCC_SWITCHES' target hook.  --- 33512,33522 ---- it records the switches as ASCII text inside a new, string mergeable section in the assembler output file. The name of the new section is provided by the ! 'TARGET_ASM_RECORD_GCC_SWITCHES_SECTION' target hook. -- Target Hook: const char * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION This is the name of the section that will be created by the example ! ELF implementation of the 'TARGET_ASM_RECORD_GCC_SWITCHES' target hook.  *************** File: gccint.info, Node: Data Output, *** 33908,33917 **** -- Target Hook: const char * TARGET_ASM_UNALIGNED_DI_OP -- Target Hook: const char * TARGET_ASM_UNALIGNED_TI_OP These hooks specify assembly directives for creating certain kinds ! of integer object. The `TARGET_ASM_BYTE_OP' directive creates a ! byte-sized object, the `TARGET_ASM_ALIGNED_HI_OP' one creates an aligned two-byte object, and so on. Any of the hooks may be ! `NULL', indicating that no suitable directive is available. The compiler will print these strings at the start of a new line, followed immediately by the object's initial value. In most cases, --- 33535,33544 ---- -- Target Hook: const char * TARGET_ASM_UNALIGNED_DI_OP -- Target Hook: const char * TARGET_ASM_UNALIGNED_TI_OP These hooks specify assembly directives for creating certain kinds ! of integer object. The 'TARGET_ASM_BYTE_OP' directive creates a ! byte-sized object, the 'TARGET_ASM_ALIGNED_HI_OP' one creates an aligned two-byte object, and so on. Any of the hooks may be ! 'NULL', indicating that no suitable directive is available. The compiler will print these strings at the start of a new line, followed immediately by the object's initial value. In most cases, *************** File: gccint.info, Node: Data Output, *** 33919,33966 **** -- Target Hook: bool TARGET_ASM_INTEGER (rtx X, unsigned int SIZE, int ALIGNED_P) ! The `assemble_integer' function uses this hook to output an ! integer object. X is the object's value, SIZE is its size in ! bytes and ALIGNED_P indicates whether it is aligned. The function ! should return `true' if it was able to output the object. If it ! returns false, `assemble_integer' will try to split the object ! into smaller parts. The default implementation of this hook will use the ! `TARGET_ASM_BYTE_OP' family of strings, returning `false' when the ! relevant string is `NULL'. -- Target Hook: bool TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA (FILE *FILE, rtx X) ! A target hook to recognize RTX patterns that `output_addr_const' can't deal with, and output assembly code to FILE corresponding to the pattern X. This may be used to allow machine-dependent ! `UNSPEC's to appear within constants. If target hook fails to recognize a pattern, it must return ! `false', so that a standard error message is printed. If it ! prints an error message itself, by calling, for example, ! `output_operand_lossage', it may just return `true'. -- Macro: ASM_OUTPUT_ASCII (STREAM, PTR, LEN) A C statement to output to the stdio stream STREAM an assembler instruction to assemble a string constant containing the LEN bytes ! at PTR. PTR will be a C expression of type `char *' and LEN a C ! expression of type `int'. ! If the assembler has a `.ascii' pseudo-op as found in the Berkeley ! Unix assembler, do not define the macro `ASM_OUTPUT_ASCII'. -- Macro: ASM_OUTPUT_FDESC (STREAM, DECL, N) A C statement to output word N of a function descriptor for DECL. ! This must be defined if `TARGET_VTABLE_USES_DESCRIPTORS' is defined, and is otherwise unused. -- Macro: CONSTANT_POOL_BEFORE_FUNCTION You may define this macro as a C expression. You should define the expression to have a nonzero value if GCC should output the ! constant pool for a function before the code for the function, or ! a zero value if GCC should output the constant pool after the function. If you do not define this macro, the usual case, GCC will output the constant pool before the function. --- 33546,33593 ---- -- Target Hook: bool TARGET_ASM_INTEGER (rtx X, unsigned int SIZE, int ALIGNED_P) ! The 'assemble_integer' function uses this hook to output an integer ! object. X is the object's value, SIZE is its size in bytes and ! ALIGNED_P indicates whether it is aligned. The function should ! return 'true' if it was able to output the object. If it returns ! false, 'assemble_integer' will try to split the object into smaller ! parts. The default implementation of this hook will use the ! 'TARGET_ASM_BYTE_OP' family of strings, returning 'false' when the ! relevant string is 'NULL'. -- Target Hook: bool TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA (FILE *FILE, rtx X) ! A target hook to recognize RTX patterns that 'output_addr_const' can't deal with, and output assembly code to FILE corresponding to the pattern X. This may be used to allow machine-dependent ! 'UNSPEC's to appear within constants. If target hook fails to recognize a pattern, it must return ! 'false', so that a standard error message is printed. If it prints ! an error message itself, by calling, for example, ! 'output_operand_lossage', it may just return 'true'. -- Macro: ASM_OUTPUT_ASCII (STREAM, PTR, LEN) A C statement to output to the stdio stream STREAM an assembler instruction to assemble a string constant containing the LEN bytes ! at PTR. PTR will be a C expression of type 'char *' and LEN a C ! expression of type 'int'. ! If the assembler has a '.ascii' pseudo-op as found in the Berkeley ! Unix assembler, do not define the macro 'ASM_OUTPUT_ASCII'. -- Macro: ASM_OUTPUT_FDESC (STREAM, DECL, N) A C statement to output word N of a function descriptor for DECL. ! This must be defined if 'TARGET_VTABLE_USES_DESCRIPTORS' is defined, and is otherwise unused. -- Macro: CONSTANT_POOL_BEFORE_FUNCTION You may define this macro as a C expression. You should define the expression to have a nonzero value if GCC should output the ! constant pool for a function before the code for the function, or a ! zero value if GCC should output the constant pool after the function. If you do not define this macro, the usual case, GCC will output the constant pool before the function. *************** File: gccint.info, Node: Data Output, *** 33975,33990 **** If no constant-pool prefix is required, the usual case, this macro need not be defined. ! -- Macro: ASM_OUTPUT_SPECIAL_POOL_ENTRY (FILE, X, MODE, ALIGN, ! LABELNO, JUMPTO) A C statement (with or without semicolon) to output a constant in ! the constant pool, if it needs special treatment. (This macro ! need not do anything for RTL expressions that can be output ! normally.) The argument FILE is the standard I/O stream to output the assembler code on. X is the RTL expression for the constant to ! output, and MODE is the machine mode (in case X is a `const_int'). ALIGN is the required alignment for the value X; you should output an assembler directive to force this much alignment. --- 33602,33616 ---- If no constant-pool prefix is required, the usual case, this macro need not be defined. ! -- Macro: ASM_OUTPUT_SPECIAL_POOL_ENTRY (FILE, X, MODE, ALIGN, LABELNO, ! JUMPTO) A C statement (with or without semicolon) to output a constant in ! the constant pool, if it needs special treatment. (This macro need ! not do anything for RTL expressions that can be output normally.) The argument FILE is the standard I/O stream to output the assembler code on. X is the RTL expression for the constant to ! output, and MODE is the machine mode (in case X is a 'const_int'). ALIGN is the required alignment for the value X; you should output an assembler directive to force this much alignment. *************** File: gccint.info, Node: Data Output, *** 33993,34002 **** responsible for outputting the label definition at the proper place. Here is how to do this: ! `(*targetm.asm_out.internal_label)' (FILE, "LC", LABELNO); When you output a pool entry specially, you should end with a ! `goto' to the label JUMPTO. This will prevent the same pool entry from being output a second time in the usual manner. You need not define this macro if it would do nothing. --- 33619,33628 ---- responsible for outputting the label definition at the proper place. Here is how to do this: ! (*targetm.asm_out.internal_label) (FILE, "LC", LABELNO); When you output a pool entry specially, you should end with a ! 'goto' to the label JUMPTO. This will prevent the same pool entry from being output a second time in the usual manner. You need not define this macro if it would do nothing. *************** File: gccint.info, Node: Data Output, *** 34019,34035 **** line separator uses multiple characters. If you do not define this macro, the default is that only the ! character `;' is treated as a logical line separator. -- Target Hook: const char * TARGET_ASM_OPEN_PAREN -- Target Hook: const char * TARGET_ASM_CLOSE_PAREN ! These target hooks are C string constants, describing the syntax ! in the assembler for grouping arithmetic expressions. If not overridden, they default to normal parentheses, which is correct for most assemblers. ! These macros are provided by `real.h' for writing the definitions of ! `ASM_OUTPUT_DOUBLE' and the like: -- Macro: REAL_VALUE_TO_TARGET_SINGLE (X, L) -- Macro: REAL_VALUE_TO_TARGET_DOUBLE (X, L) --- 33645,33661 ---- line separator uses multiple characters. If you do not define this macro, the default is that only the ! character ';' is treated as a logical line separator. -- Target Hook: const char * TARGET_ASM_OPEN_PAREN -- Target Hook: const char * TARGET_ASM_CLOSE_PAREN ! These target hooks are C string constants, describing the syntax in ! the assembler for grouping arithmetic expressions. If not overridden, they default to normal parentheses, which is correct for most assemblers. ! These macros are provided by 'real.h' for writing the definitions of ! 'ASM_OUTPUT_DOUBLE' and the like: -- Macro: REAL_VALUE_TO_TARGET_SINGLE (X, L) -- Macro: REAL_VALUE_TO_TARGET_DOUBLE (X, L) *************** File: gccint.info, Node: Data Output, *** 34037,34055 **** -- Macro: REAL_VALUE_TO_TARGET_DECIMAL32 (X, L) -- Macro: REAL_VALUE_TO_TARGET_DECIMAL64 (X, L) -- Macro: REAL_VALUE_TO_TARGET_DECIMAL128 (X, L) ! These translate X, of type `REAL_VALUE_TYPE', to the target's floating point representation, and store its bit pattern in the ! variable L. For `REAL_VALUE_TO_TARGET_SINGLE' and ! `REAL_VALUE_TO_TARGET_DECIMAL32', this variable should be a simple ! `long int'. For the others, it should be an array of `long int'. The number of elements in this array is determined by the size of the desired target floating point data type: 32 bits of it go in ! each `long int' array element. Each array element holds 32 bits ! of the result, even if `long int' is wider than 32 bits on the ! host machine. The array element values are designed so that you can print them ! out using `fprintf' in the order they should appear in the target machine's memory.  --- 33663,33681 ---- -- Macro: REAL_VALUE_TO_TARGET_DECIMAL32 (X, L) -- Macro: REAL_VALUE_TO_TARGET_DECIMAL64 (X, L) -- Macro: REAL_VALUE_TO_TARGET_DECIMAL128 (X, L) ! These translate X, of type 'REAL_VALUE_TYPE', to the target's floating point representation, and store its bit pattern in the ! variable L. For 'REAL_VALUE_TO_TARGET_SINGLE' and ! 'REAL_VALUE_TO_TARGET_DECIMAL32', this variable should be a simple ! 'long int'. For the others, it should be an array of 'long int'. The number of elements in this array is determined by the size of the desired target floating point data type: 32 bits of it go in ! each 'long int' array element. Each array element holds 32 bits of ! the result, even if 'long int' is wider than 32 bits on the host ! machine. The array element values are designed so that you can print them ! out using 'fprintf' in the order they should appear in the target machine's memory.  *************** Each of the macros in this section is us *** 34062,34072 **** outputting a single uninitialized variable. -- Macro: ASM_OUTPUT_COMMON (STREAM, NAME, SIZE, ROUNDED) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM the assembler definition of a common-label named NAME whose ! size is SIZE bytes. The variable ROUNDED is the size rounded up ! to whatever alignment the caller wants. It is possible that SIZE ! may be zero, for instance if a struct with no other member than a zero-length array is defined. In this case, the backend must output a symbol definition that allocates at least one byte, both so that the address of the resulting object does not compare equal --- 33688,33698 ---- outputting a single uninitialized variable. -- Macro: ASM_OUTPUT_COMMON (STREAM, NAME, SIZE, ROUNDED) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! the assembler definition of a common-label named NAME whose size is ! SIZE bytes. The variable ROUNDED is the size rounded up to ! whatever alignment the caller wants. It is possible that SIZE may ! be zero, for instance if a struct with no other member than a zero-length array is defined. In this case, the backend must output a symbol definition that allocates at least one byte, both so that the address of the resulting object does not compare equal *************** outputting a single uninitialized variab *** 34074,34154 **** the concept of a zero-sized common symbol, as that is how they represent an ordinary undefined external. ! Use the expression `assemble_name (STREAM, NAME)' to output the ! name itself; before and after that, output the additional ! assembler syntax for defining the name, and a newline. This macro controls how the assembler definitions of uninitialized common global variables are output. -- Macro: ASM_OUTPUT_ALIGNED_COMMON (STREAM, NAME, SIZE, ALIGNMENT) ! Like `ASM_OUTPUT_COMMON' except takes the required alignment as a separate, explicit argument. If you define this macro, it is used ! in place of `ASM_OUTPUT_COMMON', and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits. -- Macro: ASM_OUTPUT_ALIGNED_DECL_COMMON (STREAM, DECL, NAME, SIZE, ALIGNMENT) ! Like `ASM_OUTPUT_ALIGNED_COMMON' except that DECL of the variable ! to be output, if there is one, or `NULL_TREE' if there is no corresponding variable. If you define this macro, GCC will use it ! in place of both `ASM_OUTPUT_COMMON' and ! `ASM_OUTPUT_ALIGNED_COMMON'. Define this macro when you need to see the variable's decl in order to chose what to output. -- Macro: ASM_OUTPUT_ALIGNED_BSS (STREAM, DECL, NAME, SIZE, ALIGNMENT) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM the assembler definition of uninitialized global DECL named ! NAME whose size is SIZE bytes. The variable ALIGNMENT is the ! alignment specified as the number of bits. ! Try to use function `asm_output_aligned_bss' defined in file ! `varasm.c' when defining this macro. If unable, use the expression ! `assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline. There are two ways of handling global BSS. One is to define this ! macro. The other is to have `TARGET_ASM_SELECT_SECTION' return a switchable BSS section (*note TARGET_HAVE_SWITCHABLE_BSS_SECTIONS::). You do not need to do both. ! Some languages do not have `common' data, and require a non-common form of global BSS in order to handle uninitialized globals efficiently. C++ is one example of this. However, if the target does not support global BSS, the front end may choose to make globals common in order to save space in the object file. -- Macro: ASM_OUTPUT_LOCAL (STREAM, NAME, SIZE, ROUNDED) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM the assembler definition of a local-common-label named NAME ! whose size is SIZE bytes. The variable ROUNDED is the size ! rounded up to whatever alignment the caller wants. ! Use the expression `assemble_name (STREAM, NAME)' to output the ! name itself; before and after that, output the additional ! assembler syntax for defining the name, and a newline. This macro controls how the assembler definitions of uninitialized static variables are output. -- Macro: ASM_OUTPUT_ALIGNED_LOCAL (STREAM, NAME, SIZE, ALIGNMENT) ! Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate, explicit argument. If you define this macro, it is used ! in place of `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits. -- Macro: ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE, ALIGNMENT) ! Like `ASM_OUTPUT_ALIGNED_DECL' except that DECL of the variable to ! be output, if there is one, or `NULL_TREE' if there is no corresponding variable. If you define this macro, GCC will use it ! in place of both `ASM_OUTPUT_DECL' and `ASM_OUTPUT_ALIGNED_DECL'. ! Define this macro when you need to see the variable's decl in ! order to chose what to output.  File: gccint.info, Node: Label Output, Next: Initialization, Prev: Uninitialized Data, Up: Assembler Format --- 33700,33780 ---- the concept of a zero-sized common symbol, as that is how they represent an ordinary undefined external. ! Use the expression 'assemble_name (STREAM, NAME)' to output the ! name itself; before and after that, output the additional assembler ! syntax for defining the name, and a newline. This macro controls how the assembler definitions of uninitialized common global variables are output. -- Macro: ASM_OUTPUT_ALIGNED_COMMON (STREAM, NAME, SIZE, ALIGNMENT) ! Like 'ASM_OUTPUT_COMMON' except takes the required alignment as a separate, explicit argument. If you define this macro, it is used ! in place of 'ASM_OUTPUT_COMMON', and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits. -- Macro: ASM_OUTPUT_ALIGNED_DECL_COMMON (STREAM, DECL, NAME, SIZE, ALIGNMENT) ! Like 'ASM_OUTPUT_ALIGNED_COMMON' except that DECL of the variable ! to be output, if there is one, or 'NULL_TREE' if there is no corresponding variable. If you define this macro, GCC will use it ! in place of both 'ASM_OUTPUT_COMMON' and ! 'ASM_OUTPUT_ALIGNED_COMMON'. Define this macro when you need to see the variable's decl in order to chose what to output. -- Macro: ASM_OUTPUT_ALIGNED_BSS (STREAM, DECL, NAME, SIZE, ALIGNMENT) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! the assembler definition of uninitialized global DECL named NAME ! whose size is SIZE bytes. The variable ALIGNMENT is the alignment ! specified as the number of bits. ! Try to use function 'asm_output_aligned_bss' defined in file ! 'varasm.c' when defining this macro. If unable, use the expression ! 'assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline. There are two ways of handling global BSS. One is to define this ! macro. The other is to have 'TARGET_ASM_SELECT_SECTION' return a switchable BSS section (*note TARGET_HAVE_SWITCHABLE_BSS_SECTIONS::). You do not need to do both. ! Some languages do not have 'common' data, and require a non-common form of global BSS in order to handle uninitialized globals efficiently. C++ is one example of this. However, if the target does not support global BSS, the front end may choose to make globals common in order to save space in the object file. -- Macro: ASM_OUTPUT_LOCAL (STREAM, NAME, SIZE, ROUNDED) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! the assembler definition of a local-common-label named NAME whose ! size is SIZE bytes. The variable ROUNDED is the size rounded up to ! whatever alignment the caller wants. ! Use the expression 'assemble_name (STREAM, NAME)' to output the ! name itself; before and after that, output the additional assembler ! syntax for defining the name, and a newline. This macro controls how the assembler definitions of uninitialized static variables are output. -- Macro: ASM_OUTPUT_ALIGNED_LOCAL (STREAM, NAME, SIZE, ALIGNMENT) ! Like 'ASM_OUTPUT_LOCAL' except takes the required alignment as a separate, explicit argument. If you define this macro, it is used ! in place of 'ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits. -- Macro: ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE, ALIGNMENT) ! Like 'ASM_OUTPUT_ALIGNED_DECL' except that DECL of the variable to ! be output, if there is one, or 'NULL_TREE' if there is no corresponding variable. If you define this macro, GCC will use it ! in place of both 'ASM_OUTPUT_DECL' and 'ASM_OUTPUT_ALIGNED_DECL'. ! Define this macro when you need to see the variable's decl in order ! to chose what to output.  File: gccint.info, Node: Label Output, Next: Initialization, Prev: Uninitialized Data, Up: Assembler Format *************** File: gccint.info, Node: Label Output, *** 34159,34409 **** This is about outputting labels. -- Macro: ASM_OUTPUT_LABEL (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM the assembler definition of a label named NAME. Use the ! expression `assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline. A default definition of this macro is provided which is correct for most systems. - -- Macro: ASM_OUTPUT_FUNCTION_LABEL (STREAM, NAME, DECL) - A C statement (sans semicolon) to output to the stdio stream - STREAM the assembler definition of a label named NAME of a - function. Use the expression `assemble_name (STREAM, NAME)' to - output the name itself; before and after that, output the - additional assembler syntax for defining the name, and a newline. - A default definition of this macro is provided which is correct - for most systems. - If this macro is not defined, then the function name is defined in ! the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). -- Macro: ASM_OUTPUT_INTERNAL_LABEL (STREAM, NAME) ! Identical to `ASM_OUTPUT_LABEL', except that NAME is known to ! refer to a compiler-generated label. The default definition uses ! `assemble_name_raw', which is like `assemble_name' except that it is more efficient. -- Macro: SIZE_ASM_OP A C string containing the appropriate assembler directive to specify the size of a symbol, without any arguments. On systems ! that use ELF, the default (in `config/elfos.h') is `"\t.size\t"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default ! definitions of `ASM_OUTPUT_SIZE_DIRECTIVE' and ! `ASM_OUTPUT_MEASURED_SIZE' for your system. If you need your own custom definitions of those macros, or if you do not need explicit symbol sizes at all, do not define this macro. -- Macro: ASM_OUTPUT_SIZE_DIRECTIVE (STREAM, NAME, SIZE) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM a directive telling the assembler that the size of the ! symbol NAME is SIZE. SIZE is a `HOST_WIDE_INT'. If you define ! `SIZE_ASM_OP', a default definition of this macro is provided. -- Macro: ASM_OUTPUT_MEASURED_SIZE (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM a directive telling the assembler to calculate the size of ! the symbol NAME by subtracting its address from the current ! address. ! If you define `SIZE_ASM_OP', a default definition of this macro is provided. The default assumes that the assembler recognizes a ! special `.' symbol as referring to the current address, and can calculate the difference between this and another symbol. If your ! assembler does not recognize `.' or cannot do calculations with ! it, you will need to redefine `ASM_OUTPUT_MEASURED_SIZE' to use ! some other technique. -- Macro: NO_DOLLAR_IN_LABEL Define this macro if the assembler does not accept the character ! `$' in label names. By default constructors and destructors in ! G++ have `$' in the identifiers. If this macro is defined, `.' is ! used instead. -- Macro: NO_DOT_IN_LABEL Define this macro if the assembler does not accept the character ! `.' in label names. By default constructors and destructors in G++ ! have names that use `.'. If this macro is defined, these names ! are rewritten to avoid `.'. -- Macro: TYPE_ASM_OP A C string containing the appropriate assembler directive to specify the type of a symbol, without any arguments. On systems ! that use ELF, the default (in `config/elfos.h') is `"\t.type\t"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default ! definition of `ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you need your own custom definition of this macro, or if you do not need explicit symbol types at all, do not define this macro. -- Macro: TYPE_OPERAND_FMT ! A C string which specifies (using `printf' syntax) the format of ! the second operand to `TYPE_ASM_OP'. On systems that use ELF, the ! default (in `config/elfos.h') is `"@%s"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default ! definition of `ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you need your own custom definition of this macro, or if you do not need explicit symbol types at all, do not define this macro. -- Macro: ASM_OUTPUT_TYPE_DIRECTIVE (STREAM, TYPE) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM a directive telling the assembler that the type of the ! symbol NAME is TYPE. TYPE is a C string; currently, that string ! is always either `"function"' or `"object"', but you should not ! count on this. ! If you define `TYPE_ASM_OP' and `TYPE_OPERAND_FMT', a default definition of this macro is provided. -- Macro: ASM_DECLARE_FUNCTION_NAME (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM any text necessary for declaring the name NAME of a ! function which is being defined. This macro is responsible for ! outputting the label definition (perhaps using ! `ASM_OUTPUT_FUNCTION_LABEL'). The argument DECL is the ! `FUNCTION_DECL' tree node representing the function. If this macro is not defined, then the function name is defined in the usual manner as a label (by means of ! `ASM_OUTPUT_FUNCTION_LABEL'). ! You may wish to use `ASM_OUTPUT_TYPE_DIRECTIVE' in the definition of this macro. -- Macro: ASM_DECLARE_FUNCTION_SIZE (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM any text necessary for declaring the size of a function ! which is being defined. The argument NAME is the name of the ! function. The argument DECL is the `FUNCTION_DECL' tree node ! representing the function. If this macro is not defined, then the function size is not defined. ! You may wish to use `ASM_OUTPUT_MEASURED_SIZE' in the definition ! of this macro. -- Macro: ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM any text necessary for declaring the name NAME of an ! initialized variable which is being defined. This macro must ! output the label definition (perhaps using `ASM_OUTPUT_LABEL'). ! The argument DECL is the `VAR_DECL' tree node representing the ! variable. If this macro is not defined, then the variable name is defined in ! the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). ! You may wish to use `ASM_OUTPUT_TYPE_DIRECTIVE' and/or ! `ASM_OUTPUT_SIZE_DIRECTIVE' in the definition of this macro. -- Target Hook: void TARGET_ASM_DECLARE_CONSTANT_NAME (FILE *FILE, const char *NAME, const_tree EXPR, HOST_WIDE_INT SIZE) A target hook to output to the stdio stream FILE any text necessary for declaring the name NAME of a constant which is being defined. ! This target hook is responsible for outputting the label ! definition (perhaps using `assemble_label'). The argument EXP is ! the value of the constant, and SIZE is the size of the constant in ! bytes. The NAME will be an internal label. The default version of this target hook, define the NAME in the ! usual manner as a label (by means of `assemble_label'). ! You may wish to use `ASM_OUTPUT_TYPE_DIRECTIVE' in this target hook. -- Macro: ASM_DECLARE_REGISTER_GLOBAL (STREAM, DECL, REGNO, NAME) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM any text necessary for claiming a register REGNO for a ! global variable DECL with name NAME. If you don't define this macro, that is equivalent to defining it to do nothing. -- Macro: ASM_FINISH_DECLARE_OBJECT (STREAM, DECL, TOPLEVEL, ATEND) A C statement (sans semicolon) to finish up declaring a variable ! name once the compiler has processed its initializer fully and ! thus has had a chance to determine the size of an array when ! controlled by an initializer. This is used on systems where it's ! necessary to declare something about the size of the object. If you don't define this macro, that is equivalent to defining it to do nothing. ! You may wish to use `ASM_OUTPUT_SIZE_DIRECTIVE' and/or ! `ASM_OUTPUT_MEASURED_SIZE' in the definition of this macro. -- Target Hook: void TARGET_ASM_GLOBALIZE_LABEL (FILE *STREAM, const char *NAME) ! This target hook is a function to output to the stdio stream ! STREAM some commands that will make the label NAME global; that ! is, available for reference from other files. The default implementation relies on a proper definition of ! `GLOBAL_ASM_OP'. ! -- Target Hook: void TARGET_ASM_GLOBALIZE_DECL_NAME (FILE *STREAM, ! tree DECL) ! This target hook is a function to output to the stdio stream ! STREAM some commands that will make the name associated with DECL ! global; that is, available for reference from other files. The default implementation uses the TARGET_ASM_GLOBALIZE_LABEL target hook. -- Macro: ASM_WEAKEN_LABEL (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM some commands that will make the label NAME weak; that is, available for reference from other files but only used if no other ! definition is available. Use the expression `assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for making that name weak, and a newline. ! If you don't define this macro or `ASM_WEAKEN_DECL', GCC will not ! support weak symbols and you should not define the `SUPPORTS_WEAK' macro. -- Macro: ASM_WEAKEN_DECL (STREAM, DECL, NAME, VALUE) ! Combines (and replaces) the function of `ASM_WEAKEN_LABEL' and ! `ASM_OUTPUT_WEAK_ALIAS', allowing access to the associated function ! or variable decl. If VALUE is not `NULL', this C statement should output to the stdio stream STREAM assembler code which defines (equates) the weak symbol NAME to have the value VALUE. If VALUE ! is `NULL', it should output commands to make NAME weak. -- Macro: ASM_OUTPUT_WEAKREF (STREAM, DECL, NAME, VALUE) ! Outputs a directive that enables NAME to be used to refer to ! symbol VALUE with weak-symbol semantics. `decl' is the ! declaration of `name'. -- Macro: SUPPORTS_WEAK A preprocessor constant expression which evaluates to true if the target supports weak symbols. ! If you don't define this macro, `defaults.h' provides a default ! definition. If either `ASM_WEAKEN_LABEL' or `ASM_WEAKEN_DECL' is ! defined, the default definition is `1'; otherwise, it is `0'. -- Macro: TARGET_SUPPORTS_WEAK A C expression which evaluates to true if the target supports weak symbols. ! If you don't define this macro, `defaults.h' provides a default ! definition. The default definition is `(SUPPORTS_WEAK)'. Define this macro if you want to control weak symbol support with a ! compiler flag such as `-melf'. -- Macro: MAKE_DECL_ONE_ONLY (DECL) A C statement (sans semicolon) to mark DECL to be emitted as a public symbol such that extra copies in multiple translation units will be discarded by the linker. Define this macro if your object ! file format provides support for this concept, such as the `COMDAT' section flags in the Microsoft Windows PE/COFF format, and this support requires changes to DECL, such as putting it in a separate section. --- 33785,34032 ---- This is about outputting labels. -- Macro: ASM_OUTPUT_LABEL (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! the assembler definition of a label named NAME. Use the expression ! 'assemble_name (STREAM, NAME)' to output the name itself; before ! and after that, output the additional assembler syntax for defining ! the name, and a newline. A default definition of this macro is ! provided which is correct for most systems. ! ! -- Macro: ASM_OUTPUT_FUNCTION_LABEL (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! the assembler definition of a label named NAME of a function. Use ! the expression 'assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline. A default definition of this macro is provided which is correct for most systems. If this macro is not defined, then the function name is defined in ! the usual manner as a label (by means of 'ASM_OUTPUT_LABEL'). -- Macro: ASM_OUTPUT_INTERNAL_LABEL (STREAM, NAME) ! Identical to 'ASM_OUTPUT_LABEL', except that NAME is known to refer ! to a compiler-generated label. The default definition uses ! 'assemble_name_raw', which is like 'assemble_name' except that it is more efficient. -- Macro: SIZE_ASM_OP A C string containing the appropriate assembler directive to specify the size of a symbol, without any arguments. On systems ! that use ELF, the default (in 'config/elfos.h') is '"\t.size\t"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default ! definitions of 'ASM_OUTPUT_SIZE_DIRECTIVE' and ! 'ASM_OUTPUT_MEASURED_SIZE' for your system. If you need your own custom definitions of those macros, or if you do not need explicit symbol sizes at all, do not define this macro. -- Macro: ASM_OUTPUT_SIZE_DIRECTIVE (STREAM, NAME, SIZE) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! a directive telling the assembler that the size of the symbol NAME ! is SIZE. SIZE is a 'HOST_WIDE_INT'. If you define 'SIZE_ASM_OP', ! a default definition of this macro is provided. -- Macro: ASM_OUTPUT_MEASURED_SIZE (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! a directive telling the assembler to calculate the size of the ! symbol NAME by subtracting its address from the current address. ! If you define 'SIZE_ASM_OP', a default definition of this macro is provided. The default assumes that the assembler recognizes a ! special '.' symbol as referring to the current address, and can calculate the difference between this and another symbol. If your ! assembler does not recognize '.' or cannot do calculations with it, ! you will need to redefine 'ASM_OUTPUT_MEASURED_SIZE' to use some ! other technique. -- Macro: NO_DOLLAR_IN_LABEL Define this macro if the assembler does not accept the character ! '$' in label names. By default constructors and destructors in G++ ! have '$' in the identifiers. If this macro is defined, '.' is used ! instead. -- Macro: NO_DOT_IN_LABEL Define this macro if the assembler does not accept the character ! '.' in label names. By default constructors and destructors in G++ ! have names that use '.'. If this macro is defined, these names are ! rewritten to avoid '.'. -- Macro: TYPE_ASM_OP A C string containing the appropriate assembler directive to specify the type of a symbol, without any arguments. On systems ! that use ELF, the default (in 'config/elfos.h') is '"\t.type\t"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default ! definition of 'ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you need your own custom definition of this macro, or if you do not need explicit symbol types at all, do not define this macro. -- Macro: TYPE_OPERAND_FMT ! A C string which specifies (using 'printf' syntax) the format of ! the second operand to 'TYPE_ASM_OP'. On systems that use ELF, the ! default (in 'config/elfos.h') is '"@%s"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default ! definition of 'ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you need your own custom definition of this macro, or if you do not need explicit symbol types at all, do not define this macro. -- Macro: ASM_OUTPUT_TYPE_DIRECTIVE (STREAM, TYPE) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! a directive telling the assembler that the type of the symbol NAME ! is TYPE. TYPE is a C string; currently, that string is always ! either '"function"' or '"object"', but you should not count on ! this. ! If you define 'TYPE_ASM_OP' and 'TYPE_OPERAND_FMT', a default definition of this macro is provided. -- Macro: ASM_DECLARE_FUNCTION_NAME (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! any text necessary for declaring the name NAME of a function which ! is being defined. This macro is responsible for outputting the ! label definition (perhaps using 'ASM_OUTPUT_FUNCTION_LABEL'). The ! argument DECL is the 'FUNCTION_DECL' tree node representing the ! function. If this macro is not defined, then the function name is defined in the usual manner as a label (by means of ! 'ASM_OUTPUT_FUNCTION_LABEL'). ! You may wish to use 'ASM_OUTPUT_TYPE_DIRECTIVE' in the definition of this macro. -- Macro: ASM_DECLARE_FUNCTION_SIZE (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! any text necessary for declaring the size of a function which is ! being defined. The argument NAME is the name of the function. The ! argument DECL is the 'FUNCTION_DECL' tree node representing the ! function. If this macro is not defined, then the function size is not defined. ! You may wish to use 'ASM_OUTPUT_MEASURED_SIZE' in the definition of ! this macro. -- Macro: ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! any text necessary for declaring the name NAME of an initialized ! variable which is being defined. This macro must output the label ! definition (perhaps using 'ASM_OUTPUT_LABEL'). The argument DECL ! is the 'VAR_DECL' tree node representing the variable. If this macro is not defined, then the variable name is defined in ! the usual manner as a label (by means of 'ASM_OUTPUT_LABEL'). ! You may wish to use 'ASM_OUTPUT_TYPE_DIRECTIVE' and/or ! 'ASM_OUTPUT_SIZE_DIRECTIVE' in the definition of this macro. -- Target Hook: void TARGET_ASM_DECLARE_CONSTANT_NAME (FILE *FILE, const char *NAME, const_tree EXPR, HOST_WIDE_INT SIZE) A target hook to output to the stdio stream FILE any text necessary for declaring the name NAME of a constant which is being defined. ! This target hook is responsible for outputting the label definition ! (perhaps using 'assemble_label'). The argument EXP is the value of ! the constant, and SIZE is the size of the constant in bytes. The ! NAME will be an internal label. The default version of this target hook, define the NAME in the ! usual manner as a label (by means of 'assemble_label'). ! You may wish to use 'ASM_OUTPUT_TYPE_DIRECTIVE' in this target hook. -- Macro: ASM_DECLARE_REGISTER_GLOBAL (STREAM, DECL, REGNO, NAME) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! any text necessary for claiming a register REGNO for a global ! variable DECL with name NAME. If you don't define this macro, that is equivalent to defining it to do nothing. -- Macro: ASM_FINISH_DECLARE_OBJECT (STREAM, DECL, TOPLEVEL, ATEND) A C statement (sans semicolon) to finish up declaring a variable ! name once the compiler has processed its initializer fully and thus ! has had a chance to determine the size of an array when controlled ! by an initializer. This is used on systems where it's necessary to ! declare something about the size of the object. If you don't define this macro, that is equivalent to defining it to do nothing. ! You may wish to use 'ASM_OUTPUT_SIZE_DIRECTIVE' and/or ! 'ASM_OUTPUT_MEASURED_SIZE' in the definition of this macro. -- Target Hook: void TARGET_ASM_GLOBALIZE_LABEL (FILE *STREAM, const char *NAME) ! This target hook is a function to output to the stdio stream STREAM ! some commands that will make the label NAME global; that is, ! available for reference from other files. The default implementation relies on a proper definition of ! 'GLOBAL_ASM_OP'. ! -- Target Hook: void TARGET_ASM_GLOBALIZE_DECL_NAME (FILE *STREAM, tree ! DECL) ! This target hook is a function to output to the stdio stream STREAM ! some commands that will make the name associated with DECL global; ! that is, available for reference from other files. The default implementation uses the TARGET_ASM_GLOBALIZE_LABEL target hook. -- Macro: ASM_WEAKEN_LABEL (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! some commands that will make the label NAME weak; that is, available for reference from other files but only used if no other ! definition is available. Use the expression 'assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for making that name weak, and a newline. ! If you don't define this macro or 'ASM_WEAKEN_DECL', GCC will not ! support weak symbols and you should not define the 'SUPPORTS_WEAK' macro. -- Macro: ASM_WEAKEN_DECL (STREAM, DECL, NAME, VALUE) ! Combines (and replaces) the function of 'ASM_WEAKEN_LABEL' and ! 'ASM_OUTPUT_WEAK_ALIAS', allowing access to the associated function ! or variable decl. If VALUE is not 'NULL', this C statement should output to the stdio stream STREAM assembler code which defines (equates) the weak symbol NAME to have the value VALUE. If VALUE ! is 'NULL', it should output commands to make NAME weak. -- Macro: ASM_OUTPUT_WEAKREF (STREAM, DECL, NAME, VALUE) ! Outputs a directive that enables NAME to be used to refer to symbol ! VALUE with weak-symbol semantics. 'decl' is the declaration of ! 'name'. -- Macro: SUPPORTS_WEAK A preprocessor constant expression which evaluates to true if the target supports weak symbols. ! If you don't define this macro, 'defaults.h' provides a default ! definition. If either 'ASM_WEAKEN_LABEL' or 'ASM_WEAKEN_DECL' is ! defined, the default definition is '1'; otherwise, it is '0'. -- Macro: TARGET_SUPPORTS_WEAK A C expression which evaluates to true if the target supports weak symbols. ! If you don't define this macro, 'defaults.h' provides a default ! definition. The default definition is '(SUPPORTS_WEAK)'. Define this macro if you want to control weak symbol support with a ! compiler flag such as '-melf'. -- Macro: MAKE_DECL_ONE_ONLY (DECL) A C statement (sans semicolon) to mark DECL to be emitted as a public symbol such that extra copies in multiple translation units will be discarded by the linker. Define this macro if your object ! file format provides support for this concept, such as the 'COMDAT' section flags in the Microsoft Windows PE/COFF format, and this support requires changes to DECL, such as putting it in a separate section. *************** This is about outputting labels. *** 34412,34422 **** A C expression which evaluates to true if the target supports one-only semantics. ! If you don't define this macro, `varasm.c' provides a default ! definition. If `MAKE_DECL_ONE_ONLY' is defined, the default ! definition is `1'; otherwise, it is `0'. Define this macro if you want to control one-only symbol support with a compiler flag, or if ! setting the `DECL_ONE_ONLY' flag is enough to mark a declaration to be emitted as one-only. -- Target Hook: void TARGET_ASM_ASSEMBLE_VISIBILITY (tree DECL, int --- 34035,34045 ---- A C expression which evaluates to true if the target supports one-only semantics. ! If you don't define this macro, 'varasm.c' provides a default ! definition. If 'MAKE_DECL_ONE_ONLY' is defined, the default ! definition is '1'; otherwise, it is '0'. Define this macro if you want to control one-only symbol support with a compiler flag, or if ! setting the 'DECL_ONE_ONLY' flag is enough to mark a declaration to be emitted as one-only. -- Target Hook: void TARGET_ASM_ASSEMBLE_VISIBILITY (tree DECL, int *************** This is about outputting labels. *** 34428,34465 **** -- Macro: TARGET_WEAK_NOT_IN_ARCHIVE_TOC A C expression that evaluates to true if the target's linker ! expects that weak symbols do not appear in a static archive's ! table of contents. The default is `0'. Leaving weak symbols out of an archive's table of contents means that, if a symbol will only have a definition in one translation unit and will have undefined references from other translation units, that symbol should not be weak. Defining this macro to be nonzero will thus have the effect that certain symbols that would ! normally be weak (explicit template instantiations, and vtables ! for polymorphic classes with noninline key methods) will instead ! be nonweak. The C++ ABI requires this macro to be zero. Define this macro for targets where full C++ ABI compliance is impossible and where ! linker restrictions require weak symbols to be left out of a ! static archive's table of contents. -- Macro: ASM_OUTPUT_EXTERNAL (STREAM, DECL, NAME) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM any text necessary for declaring the name of an external ! symbol named NAME which is referenced in this compilation but not ! defined. The value of DECL is the tree node for the declaration. This macro need not be defined if it does not need to output ! anything. The GNU assembler and most Unix assemblers don't ! require anything. -- Target Hook: void TARGET_ASM_EXTERNAL_LIBCALL (rtx SYMREF) This target hook is a function to output to ASM_OUT_FILE an assembler pseudo-op to declare a library function name external. The name of the library function is given by SYMREF, which is a ! `symbol_ref'. -- Target Hook: void TARGET_ASM_MARK_DECL_PRESERVED (const char *SYMBOL) --- 34051,34088 ---- -- Macro: TARGET_WEAK_NOT_IN_ARCHIVE_TOC A C expression that evaluates to true if the target's linker ! expects that weak symbols do not appear in a static archive's table ! of contents. The default is '0'. Leaving weak symbols out of an archive's table of contents means that, if a symbol will only have a definition in one translation unit and will have undefined references from other translation units, that symbol should not be weak. Defining this macro to be nonzero will thus have the effect that certain symbols that would ! normally be weak (explicit template instantiations, and vtables for ! polymorphic classes with noninline key methods) will instead be ! nonweak. The C++ ABI requires this macro to be zero. Define this macro for targets where full C++ ABI compliance is impossible and where ! linker restrictions require weak symbols to be left out of a static ! archive's table of contents. -- Macro: ASM_OUTPUT_EXTERNAL (STREAM, DECL, NAME) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! any text necessary for declaring the name of an external symbol ! named NAME which is referenced in this compilation but not defined. ! The value of DECL is the tree node for the declaration. This macro need not be defined if it does not need to output ! anything. The GNU assembler and most Unix assemblers don't require ! anything. -- Target Hook: void TARGET_ASM_EXTERNAL_LIBCALL (rtx SYMREF) This target hook is a function to output to ASM_OUT_FILE an assembler pseudo-op to declare a library function name external. The name of the library function is given by SYMREF, which is a ! 'symbol_ref'. -- Target Hook: void TARGET_ASM_MARK_DECL_PRESERVED (const char *SYMBOL) *************** This is about outputting labels. *** 34468,34502 **** uses the .no_dead_code_strip directive. -- Macro: ASM_OUTPUT_LABELREF (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM a reference in assembler syntax to a label named NAME. ! This should add `_' to the front of the name, if that is customary ! on your operating system, as it is in most Berkeley Unix systems. ! This macro is used in `assemble_name'. -- Target Hook: tree TARGET_MANGLE_ASSEMBLER_NAME (const char *NAME) ! Given a symbol NAME, perform same mangling as `varasm.c''s ! `assemble_name', but in memory rather than to a file stream, ! returning result as an `IDENTIFIER_NODE'. Required for correct ! LTO symtabs. The default implementation calls the ! `TARGET_STRIP_NAME_ENCODING' hook and then prepends the ! `USER_LABEL_PREFIX', if any. -- Macro: ASM_OUTPUT_SYMBOL_REF (STREAM, SYM) A C statement (sans semicolon) to output a reference to ! `SYMBOL_REF' SYM. If not defined, `assemble_name' will be used to output the name of the symbol. This macro may be used to modify the way a symbol is referenced depending on information encoded by ! `TARGET_ENCODE_SECTION_INFO'. -- Macro: ASM_OUTPUT_LABEL_REF (STREAM, BUF) A C statement (sans semicolon) to output a reference to BUF, the ! result of `ASM_GENERATE_INTERNAL_LABEL'. If not defined, ! `assemble_name' will be used to output the name of the symbol. ! This macro is not used by `output_asm_label', or the `%l' ! specifier that calls it; the intention is that this macro should ! be set when it is necessary to output a label differently when its ! address is being taken. -- Target Hook: void TARGET_ASM_INTERNAL_LABEL (FILE *STREAM, const char *PREFIX, unsigned long LABELNO) --- 34091,34125 ---- uses the .no_dead_code_strip directive. -- Macro: ASM_OUTPUT_LABELREF (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! a reference in assembler syntax to a label named NAME. This should ! add '_' to the front of the name, if that is customary on your ! operating system, as it is in most Berkeley Unix systems. This ! macro is used in 'assemble_name'. -- Target Hook: tree TARGET_MANGLE_ASSEMBLER_NAME (const char *NAME) ! Given a symbol NAME, perform same mangling as 'varasm.c''s ! 'assemble_name', but in memory rather than to a file stream, ! returning result as an 'IDENTIFIER_NODE'. Required for correct LTO ! symtabs. The default implementation calls the ! 'TARGET_STRIP_NAME_ENCODING' hook and then prepends the ! 'USER_LABEL_PREFIX', if any. -- Macro: ASM_OUTPUT_SYMBOL_REF (STREAM, SYM) A C statement (sans semicolon) to output a reference to ! 'SYMBOL_REF' SYM. If not defined, 'assemble_name' will be used to output the name of the symbol. This macro may be used to modify the way a symbol is referenced depending on information encoded by ! 'TARGET_ENCODE_SECTION_INFO'. -- Macro: ASM_OUTPUT_LABEL_REF (STREAM, BUF) A C statement (sans semicolon) to output a reference to BUF, the ! result of 'ASM_GENERATE_INTERNAL_LABEL'. If not defined, ! 'assemble_name' will be used to output the name of the symbol. ! This macro is not used by 'output_asm_label', or the '%l' specifier ! that calls it; the intention is that this macro should be set when ! it is necessary to output a label differently when its address is ! being taken. -- Target Hook: void TARGET_ASM_INTERNAL_LABEL (FILE *STREAM, const char *PREFIX, unsigned long LABELNO) *************** This is about outputting labels. *** 34507,34556 **** labels used for user-level functions and variables. Otherwise, certain programs will have name conflicts with internal labels. ! It is desirable to exclude internal labels from the symbol table ! of the object file. Most assemblers have a naming convention for ! labels that should be excluded; on many systems, the letter `L' at the beginning of a label has this effect. You should find out what convention your system uses, and follow it. The default version of this function utilizes ! `ASM_GENERATE_INTERNAL_LABEL'. -- Macro: ASM_OUTPUT_DEBUG_LABEL (STREAM, PREFIX, NUM) A C statement to output to the stdio stream STREAM a debug info ! label whose name is made from the string PREFIX and the number ! NUM. This is useful for VLIW targets, where debug info labels may ! need to be treated differently than branch target labels. On some systems, branch target labels must be at the beginning of instruction bundles, but debug info labels can occur in the middle of instruction bundles. If this macro is not defined, then ! `(*targetm.asm_out.internal_label)' will be used. -- Macro: ASM_GENERATE_INTERNAL_LABEL (STRING, PREFIX, NUM) ! A C statement to store into the string STRING a label whose name ! is made from the string PREFIX and the number NUM. ! This string, when output subsequently by `assemble_name', should ! produce the output that `(*targetm.asm_out.internal_label)' would produce with the same PREFIX and NUM. ! If the string begins with `*', then `assemble_name' will output ! the rest of the string unchanged. It is often convenient for ! `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the ! string doesn't start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and may change it. (Of course, ! `ASM_OUTPUT_LABELREF' is also part of your machine description, so you should know what it does on your machine.) -- Macro: ASM_FORMAT_PRIVATE_NAME (OUTVAR, NAME, NUMBER) A C expression to assign to OUTVAR (which is a variable of type ! `char *') a newly allocated string made from the string NAME and the number NUMBER, with some suitable punctuation added. Use ! `alloca' to get space for the string. ! The string will be used as an argument to `ASM_OUTPUT_LABELREF' to produce an assembler label for an internal static variable whose name is NAME. Therefore, the string must be such as to result in valid assembler code. The argument NUMBER is different each time --- 34130,34179 ---- labels used for user-level functions and variables. Otherwise, certain programs will have name conflicts with internal labels. ! It is desirable to exclude internal labels from the symbol table of ! the object file. Most assemblers have a naming convention for ! labels that should be excluded; on many systems, the letter 'L' at the beginning of a label has this effect. You should find out what convention your system uses, and follow it. The default version of this function utilizes ! 'ASM_GENERATE_INTERNAL_LABEL'. -- Macro: ASM_OUTPUT_DEBUG_LABEL (STREAM, PREFIX, NUM) A C statement to output to the stdio stream STREAM a debug info ! label whose name is made from the string PREFIX and the number NUM. ! This is useful for VLIW targets, where debug info labels may need ! to be treated differently than branch target labels. On some systems, branch target labels must be at the beginning of instruction bundles, but debug info labels can occur in the middle of instruction bundles. If this macro is not defined, then ! '(*targetm.asm_out.internal_label)' will be used. -- Macro: ASM_GENERATE_INTERNAL_LABEL (STRING, PREFIX, NUM) ! A C statement to store into the string STRING a label whose name is ! made from the string PREFIX and the number NUM. ! This string, when output subsequently by 'assemble_name', should ! produce the output that '(*targetm.asm_out.internal_label)' would produce with the same PREFIX and NUM. ! If the string begins with '*', then 'assemble_name' will output the ! rest of the string unchanged. It is often convenient for ! 'ASM_GENERATE_INTERNAL_LABEL' to use '*' in this way. If the ! string doesn't start with '*', then 'ASM_OUTPUT_LABELREF' gets to output the string, and may change it. (Of course, ! 'ASM_OUTPUT_LABELREF' is also part of your machine description, so you should know what it does on your machine.) -- Macro: ASM_FORMAT_PRIVATE_NAME (OUTVAR, NAME, NUMBER) A C expression to assign to OUTVAR (which is a variable of type ! 'char *') a newly allocated string made from the string NAME and the number NUMBER, with some suitable punctuation added. Use ! 'alloca' to get space for the string. ! The string will be used as an argument to 'ASM_OUTPUT_LABELREF' to produce an assembler label for an internal static variable whose name is NAME. Therefore, the string must be such as to result in valid assembler code. The argument NUMBER is different each time *************** This is about outputting labels. *** 34559,34566 **** Ideally this string should not be a valid C identifier, to prevent any conflict with the user's own symbols. Most assemblers allow ! periods or percent signs in assembler symbols; putting at least ! one of these between the name and the number will suffice. If this macro is not defined, a default definition will be provided which is correct for most systems. --- 34182,34189 ---- Ideally this string should not be a valid C identifier, to prevent any conflict with the user's own symbols. Most assemblers allow ! periods or percent signs in assembler symbols; putting at least one ! of these between the name and the number will suffice. If this macro is not defined, a default definition will be provided which is correct for most systems. *************** This is about outputting labels. *** 34569,34575 **** A C statement to output to the stdio stream STREAM assembler code which defines (equates) the symbol NAME to have the value VALUE. ! If `SET_ASM_OP' is defined, a default definition is provided which is correct for most systems. -- Macro: ASM_OUTPUT_DEF_FROM_DECLS (STREAM, DECL_OF_NAME, --- 34192,34198 ---- A C statement to output to the stdio stream STREAM assembler code which defines (equates) the symbol NAME to have the value VALUE. ! If 'SET_ASM_OP' is defined, a default definition is provided which is correct for most systems. -- Macro: ASM_OUTPUT_DEF_FROM_DECLS (STREAM, DECL_OF_NAME, *************** This is about outputting labels. *** 34577,34586 **** A C statement to output to the stdio stream STREAM assembler code which defines (equates) the symbol whose tree node is DECL_OF_NAME to have the value of the tree node DECL_OF_VALUE. This macro will ! be used in preference to `ASM_OUTPUT_DEF' if it is defined and if the tree nodes are available. ! If `SET_ASM_OP' is defined, a default definition is provided which is correct for most systems. -- Macro: TARGET_DEFERRED_OUTPUT_DEFS (DECL_OF_NAME, DECL_OF_VALUE) --- 34200,34209 ---- A C statement to output to the stdio stream STREAM assembler code which defines (equates) the symbol whose tree node is DECL_OF_NAME to have the value of the tree node DECL_OF_VALUE. This macro will ! be used in preference to 'ASM_OUTPUT_DEF' if it is defined and if the tree nodes are available. ! If 'SET_ASM_OP' is defined, a default definition is provided which is correct for most systems. -- Macro: TARGET_DEFERRED_OUTPUT_DEFS (DECL_OF_NAME, DECL_OF_VALUE) *************** This is about outputting labels. *** 34589,34604 **** have the value of the tree node DECL_OF_VALUE should be emitted near the end of the current compilation unit. The default is to not defer output of defines. This macro affects defines output by ! `ASM_OUTPUT_DEF' and `ASM_OUTPUT_DEF_FROM_DECLS'. -- Macro: ASM_OUTPUT_WEAK_ALIAS (STREAM, NAME, VALUE) A C statement to output to the stdio stream STREAM assembler code which defines (equates) the weak symbol NAME to have the value ! VALUE. If VALUE is `NULL', it defines NAME as an undefined weak symbol. Define this macro if the target only supports weak aliases; define ! `ASM_OUTPUT_DEF' instead if possible. -- Macro: OBJC_GEN_METHOD_LABEL (BUF, IS_INST, CLASS_NAME, CAT_NAME, SEL_NAME) --- 34212,34227 ---- have the value of the tree node DECL_OF_VALUE should be emitted near the end of the current compilation unit. The default is to not defer output of defines. This macro affects defines output by ! 'ASM_OUTPUT_DEF' and 'ASM_OUTPUT_DEF_FROM_DECLS'. -- Macro: ASM_OUTPUT_WEAK_ALIAS (STREAM, NAME, VALUE) A C statement to output to the stdio stream STREAM assembler code which defines (equates) the weak symbol NAME to have the value ! VALUE. If VALUE is 'NULL', it defines NAME as an undefined weak symbol. Define this macro if the target only supports weak aliases; define ! 'ASM_OUTPUT_DEF' instead if possible. -- Macro: OBJC_GEN_METHOD_LABEL (BUF, IS_INST, CLASS_NAME, CAT_NAME, SEL_NAME) *************** This is about outputting labels. *** 34606,34630 **** Objective-C methods. The default name is a unique method number followed by the name of ! the class (e.g. `_1_Foo'). For methods in categories, the name of the category is also included in the assembler name (e.g. ! `_1_Foo_Bar'). These names are safe on most systems, but make debugging difficult ! since the method's selector is not present in the name. ! Therefore, particular systems define other ways of computing names. ! BUF is an expression of type `char *' which gives you a buffer in which to store the name; its length is as long as CLASS_NAME, CAT_NAME and SEL_NAME put together, plus 50 characters extra. The argument IS_INST specifies whether the method is an instance method or a class method; CLASS_NAME is the name of the class; ! CAT_NAME is the name of the category (or `NULL' if the method is not in a category); and SEL_NAME is the name of the selector. ! On systems where the assembler can handle quoted names, you can ! use this macro to provide more human-readable names.  File: gccint.info, Node: Initialization, Next: Macros for Initialization, Prev: Label Output, Up: Assembler Format --- 34229,34253 ---- Objective-C methods. The default name is a unique method number followed by the name of ! the class (e.g. '_1_Foo'). For methods in categories, the name of the category is also included in the assembler name (e.g. ! '_1_Foo_Bar'). These names are safe on most systems, but make debugging difficult ! since the method's selector is not present in the name. Therefore, ! particular systems define other ways of computing names. ! BUF is an expression of type 'char *' which gives you a buffer in which to store the name; its length is as long as CLASS_NAME, CAT_NAME and SEL_NAME put together, plus 50 characters extra. The argument IS_INST specifies whether the method is an instance method or a class method; CLASS_NAME is the name of the class; ! CAT_NAME is the name of the category (or 'NULL' if the method is not in a category); and SEL_NAME is the name of the selector. ! On systems where the assembler can handle quoted names, you can use ! this macro to provide more human-readable names.  File: gccint.info, Node: Initialization, Next: Macros for Initialization, Prev: Label Output, Up: Assembler Format *************** File: gccint.info, Node: Initialization *** 34635,34641 **** The compiled code for certain languages includes "constructors" (also called "initialization routines")--functions to initialize data in the program when the program is started. These functions need to be called ! before the program is "started"--that is to say, before `main' is called. Compiling some languages generates "destructors" (also called --- 34258,34264 ---- The compiled code for certain languages includes "constructors" (also called "initialization routines")--functions to initialize data in the program when the program is started. These functions need to be called ! before the program is "started"--that is to say, before 'main' is called. Compiling some languages generates "destructors" (also called *************** initialization and termination functions *** 34652,34659 **** Much of the structure is common to all four variations. The linker must build two lists of these functions--a list of ! initialization functions, called `__CTOR_LIST__', and a list of ! termination functions, called `__DTOR_LIST__'. Each list always begins with an ignored function pointer (which may hold 0, -1, or a count of the function pointers after it, depending on --- 34275,34282 ---- Much of the structure is common to all four variations. The linker must build two lists of these functions--a list of ! initialization functions, called '__CTOR_LIST__', and a list of ! termination functions, called '__DTOR_LIST__'. Each list always begins with an ignored function pointer (which may hold 0, -1, or a count of the function pointers after it, depending on *************** pointers to constructors (or destructors *** 34662,34742 **** pointer containing zero. Depending on the operating system and its executable file format, ! either `crtstuff.c' or `libgcc2.c' traverses these lists at startup ! time and exit time. Constructors are called in reverse order of the ! list; destructors in forward order. The best way to handle static constructors works only for object file formats which provide arbitrarily-named sections. A section is set aside for a list of constructors, and another for a list of destructors. ! Traditionally these are called `.ctors' and `.dtors'. Each object file that defines an initialization function also puts a word in the constructor section to point to that function. The linker accumulates ! all these words into one contiguous `.ctors' section. Termination functions are handled similarly. ! This method will be chosen as the default by `target-def.h' if ! `TARGET_ASM_NAMED_SECTION' is defined. A target that does not support arbitrary sections, but does support special designated constructor and ! destructor sections may define `CTORS_SECTION_ASM_OP' and ! `DTORS_SECTION_ASM_OP' to achieve the same effect. When arbitrary sections are available, there are two variants, ! depending upon how the code in `crtstuff.c' is called. On systems that ! support a ".init" section which is executed at program startup, parts ! of `crtstuff.c' are compiled into that section. The program is linked ! by the `gcc' driver like this: ld -o OUTPUT_FILE crti.o crtbegin.o ... -lgcc crtend.o crtn.o ! The prologue of a function (`__init') appears in the `.init' section ! of `crti.o'; the epilogue appears in `crtn.o'. Likewise for the ! function `__fini' in the ".fini" section. Normally these files are ! provided by the operating system or by the GNU C library, but are ! provided by GCC for a few targets. ! The objects `crtbegin.o' and `crtend.o' are (for most targets) ! compiled from `crtstuff.c'. They contain, among other things, code ! fragments within the `.init' and `.fini' sections that branch to ! routines in the `.text' section. The linker will pull all parts of a ! section together, which results in a complete `__init' function that ! invokes the routines we need at startup. ! To use this variant, you must define the `INIT_SECTION_ASM_OP' macro properly. If no init section is available, when GCC compiles any function called ! `main' (or more accurately, any function designated as a program entry ! point by the language front end calling `expand_main_function'), it ! inserts a procedure call to `__main' as the first executable code after ! the function prologue. The `__main' function is defined in `libgcc2.c' and runs the global constructors. In file formats that don't support arbitrary sections, there are again ! two variants. In the simplest variant, the GNU linker (GNU `ld') and ! an `a.out' format must be used. In this case, `TARGET_ASM_CONSTRUCTOR' ! is defined to produce a `.stabs' entry of type `N_SETT', referencing ! the name `__CTOR_LIST__', and with the address of the void function containing the initialization code as its value. The GNU linker ! recognizes this as a request to add the value to a "set"; the values ! are accumulated, and are eventually placed in the executable as a ! vector in the format described above, with a leading (ignored) count ! and a trailing zero element. `TARGET_ASM_DESTRUCTOR' is handled ! similarly. Since no init section is available, the absence of ! `INIT_SECTION_ASM_OP' causes the compilation of `main' to call `__main' ! as above, starting the initialization process. The last variant uses neither arbitrary sections nor the GNU linker. This is preferable when you want to do dynamic linking and when using ! file formats which the GNU linker does not support, such as `ECOFF'. In ! this case, `TARGET_HAVE_CTORS_DTORS' is false, initialization and termination functions are recognized simply by their names. This ! requires an extra program in the linkage step, called `collect2'. This program pretends to be the linker, for use with GCC; it does its job by running the ordinary linker, but also arranges to include the vectors of initialization and termination functions. These functions are called ! via `__main' as described above. In order to use this method, ! `use_collect2' must be defined in the target in `config.gcc'. The following section describes the specific macros that control and customize the handling of initialization and termination functions. --- 34285,34365 ---- pointer containing zero. Depending on the operating system and its executable file format, ! either 'crtstuff.c' or 'libgcc2.c' traverses these lists at startup time ! and exit time. Constructors are called in reverse order of the list; ! destructors in forward order. The best way to handle static constructors works only for object file formats which provide arbitrarily-named sections. A section is set aside for a list of constructors, and another for a list of destructors. ! Traditionally these are called '.ctors' and '.dtors'. Each object file that defines an initialization function also puts a word in the constructor section to point to that function. The linker accumulates ! all these words into one contiguous '.ctors' section. Termination functions are handled similarly. ! This method will be chosen as the default by 'target-def.h' if ! 'TARGET_ASM_NAMED_SECTION' is defined. A target that does not support arbitrary sections, but does support special designated constructor and ! destructor sections may define 'CTORS_SECTION_ASM_OP' and ! 'DTORS_SECTION_ASM_OP' to achieve the same effect. When arbitrary sections are available, there are two variants, ! depending upon how the code in 'crtstuff.c' is called. On systems that ! support a ".init" section which is executed at program startup, parts of ! 'crtstuff.c' are compiled into that section. The program is linked by ! the 'gcc' driver like this: ld -o OUTPUT_FILE crti.o crtbegin.o ... -lgcc crtend.o crtn.o ! The prologue of a function ('__init') appears in the '.init' section of ! 'crti.o'; the epilogue appears in 'crtn.o'. Likewise for the function ! '__fini' in the ".fini" section. Normally these files are provided by ! the operating system or by the GNU C library, but are provided by GCC ! for a few targets. ! The objects 'crtbegin.o' and 'crtend.o' are (for most targets) compiled ! from 'crtstuff.c'. They contain, among other things, code fragments ! within the '.init' and '.fini' sections that branch to routines in the ! '.text' section. The linker will pull all parts of a section together, ! which results in a complete '__init' function that invokes the routines ! we need at startup. ! To use this variant, you must define the 'INIT_SECTION_ASM_OP' macro properly. If no init section is available, when GCC compiles any function called ! 'main' (or more accurately, any function designated as a program entry ! point by the language front end calling 'expand_main_function'), it ! inserts a procedure call to '__main' as the first executable code after ! the function prologue. The '__main' function is defined in 'libgcc2.c' and runs the global constructors. In file formats that don't support arbitrary sections, there are again ! two variants. In the simplest variant, the GNU linker (GNU 'ld') and an ! 'a.out' format must be used. In this case, 'TARGET_ASM_CONSTRUCTOR' is ! defined to produce a '.stabs' entry of type 'N_SETT', referencing the ! name '__CTOR_LIST__', and with the address of the void function containing the initialization code as its value. The GNU linker ! recognizes this as a request to add the value to a "set"; the values are ! accumulated, and are eventually placed in the executable as a vector in ! the format described above, with a leading (ignored) count and a ! trailing zero element. 'TARGET_ASM_DESTRUCTOR' is handled similarly. ! Since no init section is available, the absence of 'INIT_SECTION_ASM_OP' ! causes the compilation of 'main' to call '__main' as above, starting the ! initialization process. The last variant uses neither arbitrary sections nor the GNU linker. This is preferable when you want to do dynamic linking and when using ! file formats which the GNU linker does not support, such as 'ECOFF'. In ! this case, 'TARGET_HAVE_CTORS_DTORS' is false, initialization and termination functions are recognized simply by their names. This ! requires an extra program in the linkage step, called 'collect2'. This program pretends to be the linker, for use with GCC; it does its job by running the ordinary linker, but also arranges to include the vectors of initialization and termination functions. These functions are called ! via '__main' as described above. In order to use this method, ! 'use_collect2' must be defined in the target in 'config.gcc'. The following section describes the specific macros that control and customize the handling of initialization and termination functions. *************** and termination functions: *** 34756,34769 **** initialization code. If not defined, GCC will assume such a section does not exist. When you are using special sections for initialization and termination functions, this macro also controls ! how `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions. -- Macro: HAS_INIT_SECTION ! If defined, `main' will not call `__main' as described above. ! This macro should be defined for systems that control start-up code ! on a symbol-by-symbol basis, such as OSF/1, and should not be ! defined explicitly for systems that support `INIT_SECTION_ASM_OP'. -- Macro: LD_INIT_SWITCH If defined, a C string constant for a switch that tells the linker --- 34379,34392 ---- initialization code. If not defined, GCC will assume such a section does not exist. When you are using special sections for initialization and termination functions, this macro also controls ! how 'crtstuff.c' and 'libgcc2.c' arrange to run the initialization functions. -- Macro: HAS_INIT_SECTION ! If defined, 'main' will not call '__main' as described above. This ! macro should be defined for systems that control start-up code on a ! symbol-by-symbol basis, such as OSF/1, and should not be defined ! explicitly for systems that support 'INIT_SECTION_ASM_OP'. -- Macro: LD_INIT_SWITCH If defined, a C string constant for a switch that tells the linker *************** and termination functions: *** 34778,34861 **** automatically called when a shared library is loaded. The function should call FUNC, which takes no arguments. If not defined, and the object format requires an explicit initialization function, ! then a function called `_GLOBAL__DI' will be generated. This function and the following one are used by collect2 when ! linking a shared library that needs constructors or destructors, ! or has DWARF2 exception tables embedded in the code. -- Macro: COLLECT_SHARED_FINI_FUNC (STREAM, FUNC) If defined, a C statement that will write a function that can be automatically called when a shared library is unloaded. The function should call FUNC, which takes no arguments. If not defined, and the object format requires an explicit finalization ! function, then a function called `_GLOBAL__DD' will be generated. -- Macro: INVOKE__main ! If defined, `main' will call `__main' despite the presence of ! `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the init section is not actually run automatically, but is still useful for collecting the lists of constructors and destructors. -- Macro: SUPPORTS_INIT_PRIORITY ! If nonzero, the C++ `init_priority' attribute is supported and the compiler should emit instructions to control the order of initialization of objects. If zero, the compiler will issue an ! error message upon encountering an `init_priority' attribute. -- Target Hook: bool TARGET_HAVE_CTORS_DTORS This value is true if the target supports some "native" method of collecting constructors and destructors to be run at startup and ! exit. It is false if we must use `collect2'. -- Target Hook: void TARGET_ASM_CONSTRUCTOR (rtx SYMBOL, int PRIORITY) If defined, a function that outputs assembler code to arrange to call the function referenced by SYMBOL at initialization time. ! Assume that SYMBOL is a `SYMBOL_REF' for a function taking no arguments and with no return value. If the target supports initialization priorities, PRIORITY is a value between 0 and ! `MAX_INIT_PRIORITY'; otherwise it must be `DEFAULT_INIT_PRIORITY'. If this macro is not defined by the target, a suitable default will be chosen if (1) the target supports arbitrary section names, (2) ! the target defines `CTORS_SECTION_ASM_OP', or (3) `USE_COLLECT2' ! is not defined. -- Target Hook: void TARGET_ASM_DESTRUCTOR (rtx SYMBOL, int PRIORITY) ! This is like `TARGET_ASM_CONSTRUCTOR' but used for termination functions rather than initialization functions. ! If `TARGET_HAVE_CTORS_DTORS' is true, the initialization routine generated for the generated object file will have static linkage. ! If your system uses `collect2' as the means of processing ! constructors, then that program normally uses `nm' to scan an object ! file for constructor functions to be called. On certain kinds of systems, you can define this macro to make ! `collect2' work faster (and, in some cases, make it work at all): -- Macro: OBJECT_FORMAT_COFF Define this macro if the system uses COFF (Common Object File ! Format) object files, so that `collect2' can assume this format ! and scan object files directly for dynamic constructor/destructor functions. ! This macro is effective only in a native compiler; `collect2' as ! part of a cross compiler always uses `nm' for the target machine. -- Macro: REAL_NM_FILE_NAME Define this macro as a C string constant containing the file name ! to use to execute `nm'. The default is to search the path ! normally for `nm'. -- Macro: NM_FLAGS ! `collect2' calls `nm' to scan object files for static constructors ! and destructors and LTO info. By default, `-n' is passed. Define ! `NM_FLAGS' to a C string constant if other options are needed to ! get the same output format as GNU `nm -n' produces. If your system supports shared libraries and has a program to list the dynamic dependencies of a given library or executable, you can define --- 34401,34484 ---- automatically called when a shared library is loaded. The function should call FUNC, which takes no arguments. If not defined, and the object format requires an explicit initialization function, ! then a function called '_GLOBAL__DI' will be generated. This function and the following one are used by collect2 when ! linking a shared library that needs constructors or destructors, or ! has DWARF2 exception tables embedded in the code. -- Macro: COLLECT_SHARED_FINI_FUNC (STREAM, FUNC) If defined, a C statement that will write a function that can be automatically called when a shared library is unloaded. The function should call FUNC, which takes no arguments. If not defined, and the object format requires an explicit finalization ! function, then a function called '_GLOBAL__DD' will be generated. -- Macro: INVOKE__main ! If defined, 'main' will call '__main' despite the presence of ! 'INIT_SECTION_ASM_OP'. This macro should be defined for systems where the init section is not actually run automatically, but is still useful for collecting the lists of constructors and destructors. -- Macro: SUPPORTS_INIT_PRIORITY ! If nonzero, the C++ 'init_priority' attribute is supported and the compiler should emit instructions to control the order of initialization of objects. If zero, the compiler will issue an ! error message upon encountering an 'init_priority' attribute. -- Target Hook: bool TARGET_HAVE_CTORS_DTORS This value is true if the target supports some "native" method of collecting constructors and destructors to be run at startup and ! exit. It is false if we must use 'collect2'. -- Target Hook: void TARGET_ASM_CONSTRUCTOR (rtx SYMBOL, int PRIORITY) If defined, a function that outputs assembler code to arrange to call the function referenced by SYMBOL at initialization time. ! Assume that SYMBOL is a 'SYMBOL_REF' for a function taking no arguments and with no return value. If the target supports initialization priorities, PRIORITY is a value between 0 and ! 'MAX_INIT_PRIORITY'; otherwise it must be 'DEFAULT_INIT_PRIORITY'. If this macro is not defined by the target, a suitable default will be chosen if (1) the target supports arbitrary section names, (2) ! the target defines 'CTORS_SECTION_ASM_OP', or (3) 'USE_COLLECT2' is ! not defined. -- Target Hook: void TARGET_ASM_DESTRUCTOR (rtx SYMBOL, int PRIORITY) ! This is like 'TARGET_ASM_CONSTRUCTOR' but used for termination functions rather than initialization functions. ! If 'TARGET_HAVE_CTORS_DTORS' is true, the initialization routine generated for the generated object file will have static linkage. ! If your system uses 'collect2' as the means of processing constructors, ! then that program normally uses 'nm' to scan an object file for ! constructor functions to be called. On certain kinds of systems, you can define this macro to make ! 'collect2' work faster (and, in some cases, make it work at all): -- Macro: OBJECT_FORMAT_COFF Define this macro if the system uses COFF (Common Object File ! Format) object files, so that 'collect2' can assume this format and ! scan object files directly for dynamic constructor/destructor functions. ! This macro is effective only in a native compiler; 'collect2' as ! part of a cross compiler always uses 'nm' for the target machine. -- Macro: REAL_NM_FILE_NAME Define this macro as a C string constant containing the file name ! to use to execute 'nm'. The default is to search the path normally ! for 'nm'. -- Macro: NM_FLAGS ! 'collect2' calls 'nm' to scan object files for static constructors ! and destructors and LTO info. By default, '-n' is passed. Define ! 'NM_FLAGS' to a C string constant if other options are needed to ! get the same output format as GNU 'nm -n' produces. If your system supports shared libraries and has a program to list the dynamic dependencies of a given library or executable, you can define *************** these macros to enable support for runni *** 34863,34886 **** termination functions in shared libraries: -- Macro: LDD_SUFFIX ! Define this macro to a C string constant containing the name of ! the program which lists dynamic dependencies, like `ldd' under ! SunOS 4. -- Macro: PARSE_LDD_OUTPUT (PTR) Define this macro to be C code that extracts filenames from the ! output of the program denoted by `LDD_SUFFIX'. PTR is a variable ! of type `char *' that points to the beginning of a line of output ! from `LDD_SUFFIX'. If the line lists a dynamic dependency, the code must advance PTR to the beginning of the filename on that ! line. Otherwise, it must set PTR to `NULL'. -- Macro: SHLIB_SUFFIX Define this macro to a C string constant containing the default ! shared library extension of the target (e.g., `".so"'). `collect2' strips version information after this suffix when generating global constructor and destructor names. This define is only needed on ! targets that use `collect2' to process constructors and destructors.  --- 34486,34508 ---- termination functions in shared libraries: -- Macro: LDD_SUFFIX ! Define this macro to a C string constant containing the name of the ! program which lists dynamic dependencies, like 'ldd' under SunOS 4. -- Macro: PARSE_LDD_OUTPUT (PTR) Define this macro to be C code that extracts filenames from the ! output of the program denoted by 'LDD_SUFFIX'. PTR is a variable ! of type 'char *' that points to the beginning of a line of output ! from 'LDD_SUFFIX'. If the line lists a dynamic dependency, the code must advance PTR to the beginning of the filename on that ! line. Otherwise, it must set PTR to 'NULL'. -- Macro: SHLIB_SUFFIX Define this macro to a C string constant containing the default ! shared library extension of the target (e.g., '".so"'). 'collect2' strips version information after this suffix when generating global constructor and destructor names. This define is only needed on ! targets that use 'collect2' to process constructors and destructors.  *************** This describes assembler instruction out *** 34898,34919 **** language. -- Macro: ADDITIONAL_REGISTER_NAMES ! If defined, a C initializer for an array of structures containing ! a name and a register number. This macro defines additional names ! for hard registers, thus allowing the `asm' option in declarations to refer to registers using alternate names. -- Macro: OVERLAPPING_REGISTER_NAMES If defined, a C initializer for an array of structures containing a name, a register number and a count of the number of consecutive machine registers the name overlaps. This macro defines additional ! names for hard registers, thus allowing the `asm' option in declarations to refer to registers using alternate names. Unlike ! `ADDITIONAL_REGISTER_NAMES', this macro should be used when the register name implies multiple underlying registers. This macro should be used when it is important that a clobber in an ! `asm' statement clobbers all the underlying values implied by the register name. For example, on ARM, clobbering the double-precision VFP register "d0" implies clobbering both single-precision registers "s0" and "s1". --- 34520,34541 ---- language. -- Macro: ADDITIONAL_REGISTER_NAMES ! If defined, a C initializer for an array of structures containing a ! name and a register number. This macro defines additional names ! for hard registers, thus allowing the 'asm' option in declarations to refer to registers using alternate names. -- Macro: OVERLAPPING_REGISTER_NAMES If defined, a C initializer for an array of structures containing a name, a register number and a count of the number of consecutive machine registers the name overlaps. This macro defines additional ! names for hard registers, thus allowing the 'asm' option in declarations to refer to registers using alternate names. Unlike ! 'ADDITIONAL_REGISTER_NAMES', this macro should be used when the register name implies multiple underlying registers. This macro should be used when it is important that a clobber in an ! 'asm' statement clobbers all the underlying values implied by the register name. For example, on ARM, clobbering the double-precision VFP register "d0" implies clobbering both single-precision registers "s0" and "s1". *************** This describes assembler instruction out *** 34924,34944 **** The definition is a C statement or statements which output an assembler instruction opcode to the stdio stream STREAM. The ! macro-operand PTR is a variable of type `char *' which points to ! the opcode name in its "internal" form--the form that is written ! in the machine description. The definition should output the ! opcode name to STREAM, performing any translation you desire, and increment the variable PTR to point at the end of the opcode so that it will not be output twice. In fact, your macro definition may process less than the entire opcode name, or more than the opcode name; but if you want to ! process text that includes `%'-sequences to substitute operands, you must take care of the substitution yourself. Just be sure to increment PTR over whatever text should not be output normally. If you need to look at the operand values, they can be found as the ! elements of `recog_data.operand'. If the macro definition does nothing, the instruction is output in the usual way. --- 34546,34566 ---- The definition is a C statement or statements which output an assembler instruction opcode to the stdio stream STREAM. The ! macro-operand PTR is a variable of type 'char *' which points to ! the opcode name in its "internal" form--the form that is written in ! the machine description. The definition should output the opcode ! name to STREAM, performing any translation you desire, and increment the variable PTR to point at the end of the opcode so that it will not be output twice. In fact, your macro definition may process less than the entire opcode name, or more than the opcode name; but if you want to ! process text that includes '%'-sequences to substitute operands, you must take care of the substitution yourself. Just be sure to increment PTR over whatever text should not be output normally. If you need to look at the operand values, they can be found as the ! elements of 'recog_data.operand'. If the macro definition does nothing, the instruction is output in the usual way. *************** This describes assembler instruction out *** 34949,34967 **** they will be output differently. Here the argument OPVEC is the vector containing the operands ! extracted from INSN, and NOPERANDS is the number of elements of ! the vector which contain meaningful data for this insn. The ! contents of this vector are what will be used to convert the insn ! template into assembler code, so you can change the assembler ! output by changing the contents of the vector. This macro is useful when various assembler syntaxes share a single file of instruction patterns; by defining this macro differently, you can cause a large class of instructions to be output differently (such as with rearranged operands). Naturally, variations in assembler syntax affecting individual insn patterns ! ought to be handled by writing conditional output routines in ! those patterns. If this macro is not defined, it is equivalent to a null statement. --- 34571,34589 ---- they will be output differently. Here the argument OPVEC is the vector containing the operands ! extracted from INSN, and NOPERANDS is the number of elements of the ! vector which contain meaningful data for this insn. The contents ! of this vector are what will be used to convert the insn template ! into assembler code, so you can change the assembler output by ! changing the contents of the vector. This macro is useful when various assembler syntaxes share a single file of instruction patterns; by defining this macro differently, you can cause a large class of instructions to be output differently (such as with rearranged operands). Naturally, variations in assembler syntax affecting individual insn patterns ! ought to be handled by writing conditional output routines in those ! patterns. If this macro is not defined, it is equivalent to a null statement. *************** This describes assembler instruction out *** 34972,34982 **** the assembler if necessary. Here the argument OPVEC is the vector containing the operands ! extracted from INSN, and NOPERANDS is the number of elements of ! the vector which contain meaningful data for this insn. The ! contents of this vector are what was used to convert the insn ! template into assembler code, so you can change the assembler mode ! by checking the contents of the vector. -- Macro: PRINT_OPERAND (STREAM, X, CODE) A C compound statement to output to stdio stream STREAM the --- 34594,34604 ---- the assembler if necessary. Here the argument OPVEC is the vector containing the operands ! extracted from INSN, and NOPERANDS is the number of elements of the ! vector which contain meaningful data for this insn. The contents ! of this vector are what was used to convert the insn template into ! assembler code, so you can change the assembler mode by checking ! the contents of the vector. -- Macro: PRINT_OPERAND (STREAM, X, CODE) A C compound statement to output to stdio stream STREAM the *************** This describes assembler instruction out *** 34986,35009 **** CODE is a value that can be used to specify one of several ways of printing the operand. It is used when identical operands must be printed differently depending on the context. CODE comes from the ! `%' specification that was used to request printing of the ! operand. If the specification was just `%DIGIT' then CODE is 0; ! if the specification was `%LTR DIGIT' then CODE is the ASCII code ! for LTR. If X is a register, this macro should print the register's name. ! The names can be found in an array `reg_names' whose type is `char ! *[]'. `reg_names' is initialized from `REGISTER_NAMES'. ! When the machine description has a specification `%PUNCT' (a `%' followed by a punctuation character), this macro is called with a null pointer for X and the punctuation character for CODE. -- Macro: PRINT_OPERAND_PUNCT_VALID_P (CODE) A C expression which evaluates to true if CODE is a valid ! punctuation character for use in the `PRINT_OPERAND' macro. If ! `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no ! punctuation characters (except for the standard one, `%') are used in this way. -- Macro: PRINT_OPERAND_ADDRESS (STREAM, X) --- 34608,34630 ---- CODE is a value that can be used to specify one of several ways of printing the operand. It is used when identical operands must be printed differently depending on the context. CODE comes from the ! '%' specification that was used to request printing of the operand. ! If the specification was just '%DIGIT' then CODE is 0; if the ! specification was '%LTR DIGIT' then CODE is the ASCII code for LTR. If X is a register, this macro should print the register's name. ! The names can be found in an array 'reg_names' whose type is 'char ! *[]'. 'reg_names' is initialized from 'REGISTER_NAMES'. ! When the machine description has a specification '%PUNCT' (a '%' followed by a punctuation character), this macro is called with a null pointer for X and the punctuation character for CODE. -- Macro: PRINT_OPERAND_PUNCT_VALID_P (CODE) A C expression which evaluates to true if CODE is a valid ! punctuation character for use in the 'PRINT_OPERAND' macro. If ! 'PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no ! punctuation characters (except for the standard one, '%') are used in this way. -- Macro: PRINT_OPERAND_ADDRESS (STREAM, X) *************** This describes assembler instruction out *** 35013,35025 **** On some machines, the syntax for a symbolic address depends on the section that the address refers to. On these machines, define the ! hook `TARGET_ENCODE_SECTION_INFO' to store the information into the ! `symbol_ref', and then check for it here. *Note Assembler Format::. -- Macro: DBR_OUTPUT_SEQEND (FILE) A C statement, to be executed after all slot-filler instructions ! have been output. If necessary, call `dbr_sequence_length' to determine the number of slots filled in a sequence (zero if not currently outputting a sequence), to decide how many no-ops to output, or whatever. --- 34634,34646 ---- On some machines, the syntax for a symbolic address depends on the section that the address refers to. On these machines, define the ! hook 'TARGET_ENCODE_SECTION_INFO' to store the information into the ! 'symbol_ref', and then check for it here. *Note Assembler Format::. -- Macro: DBR_OUTPUT_SEQEND (FILE) A C statement, to be executed after all slot-filler instructions ! have been output. If necessary, call 'dbr_sequence_length' to determine the number of slots filled in a sequence (zero if not currently outputting a sequence), to decide how many no-ops to output, or whatever. *************** This describes assembler instruction out *** 35030,35053 **** Note that output routines for instructions with delay slots must be prepared to deal with not being output as part of a sequence (i.e. when ! the scheduling pass is not run, or when no slot fillers could be ! found.) The variable `final_sequence' is null when not processing a ! sequence, otherwise it contains the `sequence' rtx being output. -- Macro: REGISTER_PREFIX -- Macro: LOCAL_LABEL_PREFIX -- Macro: USER_LABEL_PREFIX -- Macro: IMMEDIATE_PREFIX ! If defined, C string expressions to be used for the `%R', `%L', ! `%U', and `%I' options of `asm_fprintf' (see `final.c'). These ! are useful when a single `md' file must support multiple assembler ! formats. In that case, the various `tm.h' files can define these macros differently. -- Macro: ASM_FPRINTF_EXTENSIONS (FILE, ARGPTR, FORMAT) ! If defined this macro should expand to a series of `case' ! statements which will be parsed inside the `switch' statement of ! the `asm_fprintf' function. This allows targets to define extra printf formats which may useful when generating their assembler statements. Note that uppercase letters are reserved for future generic extensions to asm_fprintf, and so are not available to --- 34651,34674 ---- Note that output routines for instructions with delay slots must be prepared to deal with not being output as part of a sequence (i.e. when ! the scheduling pass is not run, or when no slot fillers could be found.) ! The variable 'final_sequence' is null when not processing a sequence, ! otherwise it contains the 'sequence' rtx being output. -- Macro: REGISTER_PREFIX -- Macro: LOCAL_LABEL_PREFIX -- Macro: USER_LABEL_PREFIX -- Macro: IMMEDIATE_PREFIX ! If defined, C string expressions to be used for the '%R', '%L', ! '%U', and '%I' options of 'asm_fprintf' (see 'final.c'). These are ! useful when a single 'md' file must support multiple assembler ! formats. In that case, the various 'tm.h' files can define these macros differently. -- Macro: ASM_FPRINTF_EXTENSIONS (FILE, ARGPTR, FORMAT) ! If defined this macro should expand to a series of 'case' ! statements which will be parsed inside the 'switch' statement of ! the 'asm_fprintf' function. This allows targets to define extra printf formats which may useful when generating their assembler statements. Note that uppercase letters are reserved for future generic extensions to asm_fprintf, and so are not available to *************** sequence, otherwise it contains the `seq *** 35063,35085 **** use, with zero as the first variant. If this macro is defined, you may use constructs of the form ! `{option0|option1|option2...}' ! in the output templates of patterns (*note Output Template::) or ! in the first argument of `asm_fprintf'. This construct outputs ! `option0', `option1', `option2', etc., if the value of ! `ASSEMBLER_DIALECT' is zero, one, two, etc. Any special characters within these strings retain their usual meaning. If there are fewer alternatives within the braces than the value of ! `ASSEMBLER_DIALECT', the construct outputs nothing. ! If you do not define this macro, the characters `{', `|' and `}' ! do not have any special meaning when used in templates or operands ! to `asm_fprintf'. ! Define the macros `REGISTER_PREFIX', `LOCAL_LABEL_PREFIX', ! `USER_LABEL_PREFIX' and `IMMEDIATE_PREFIX' if you can express the variations in assembler language syntax with that mechanism. ! Define `ASSEMBLER_DIALECT' and use the `{option0|option1}' syntax if the syntax variant are larger and involve such things as different opcodes or operand order. --- 34684,34706 ---- use, with zero as the first variant. If this macro is defined, you may use constructs of the form ! '{option0|option1|option2...}' ! in the output templates of patterns (*note Output Template::) or in ! the first argument of 'asm_fprintf'. This construct outputs ! 'option0', 'option1', 'option2', etc., if the value of ! 'ASSEMBLER_DIALECT' is zero, one, two, etc. Any special characters within these strings retain their usual meaning. If there are fewer alternatives within the braces than the value of ! 'ASSEMBLER_DIALECT', the construct outputs nothing. ! If you do not define this macro, the characters '{', '|' and '}' do ! not have any special meaning when used in templates or operands to ! 'asm_fprintf'. ! Define the macros 'REGISTER_PREFIX', 'LOCAL_LABEL_PREFIX', ! 'USER_LABEL_PREFIX' and 'IMMEDIATE_PREFIX' if you can express the variations in assembler language syntax with that mechanism. ! Define 'ASSEMBLER_DIALECT' and use the '{option0|option1}' syntax if the syntax variant are larger and involve such things as different opcodes or operand order. *************** sequence, otherwise it contains the `seq *** 35090,35097 **** -- Macro: ASM_OUTPUT_REG_POP (STREAM, REGNO) A C expression to output to STREAM some assembler code which will ! pop hard register number REGNO off of the stack. The code need ! not be optimal, since this macro is used only when profiling.  File: gccint.info, Node: Dispatch Tables, Next: Exception Region Output, Prev: Instruction Output, Up: Assembler Format --- 34711,34718 ---- -- Macro: ASM_OUTPUT_REG_POP (STREAM, REGNO) A C expression to output to STREAM some assembler code which will ! pop hard register number REGNO off of the stack. The code need not ! be optimal, since this macro is used only when profiling.  File: gccint.info, Node: Dispatch Tables, Next: Exception Region Output, Prev: Instruction Output, Up: Assembler Format *************** This concerns dispatch tables. *** 35106,35112 **** pseudo-instruction to generate a difference between two labels. VALUE and REL are the numbers of two internal labels. The definitions of these labels are output using ! `(*targetm.asm_out.internal_label)', and they must be printed in the same way here. For example, fprintf (STREAM, "\t.word L%d-L%d\n", --- 34727,34733 ---- pseudo-instruction to generate a difference between two labels. VALUE and REL are the numbers of two internal labels. The definitions of these labels are output using ! '(*targetm.asm_out.internal_label)', and they must be printed in the same way here. For example, fprintf (STREAM, "\t.word L%d-L%d\n", *************** This concerns dispatch tables. *** 35115,35121 **** You must provide this macro on machines where the addresses in a dispatch table are relative to the table's own address. If defined, GCC will also use this macro on all machines when ! producing PIC. BODY is the body of the `ADDR_DIFF_VEC'; it is provided so that the mode and flags can be read. -- Macro: ASM_OUTPUT_ADDR_VEC_ELT (STREAM, VALUE) --- 34736,34742 ---- You must provide this macro on machines where the addresses in a dispatch table are relative to the table's own address. If defined, GCC will also use this macro on all machines when ! producing PIC. BODY is the body of the 'ADDR_DIFF_VEC'; it is provided so that the mode and flags can be read. -- Macro: ASM_OUTPUT_ADDR_VEC_ELT (STREAM, VALUE) *************** This concerns dispatch tables. *** 35126,35155 **** stream STREAM an assembler pseudo-instruction to generate a reference to a label. VALUE is the number of an internal label whose definition is output using ! `(*targetm.asm_out.internal_label)'. For example, fprintf (STREAM, "\t.word L%d\n", VALUE) -- Macro: ASM_OUTPUT_CASE_LABEL (STREAM, PREFIX, NUM, TABLE) Define this if the label before a jump-table needs to be output specially. The first three arguments are the same as for ! `(*targetm.asm_out.internal_label)'; the fourth argument is the ! jump-table which follows (a `jump_insn' containing an `addr_vec' ! or `addr_diff_vec'). ! This feature is used on system V to output a `swbeg' statement for the table. If this macro is not defined, these labels are output with ! `(*targetm.asm_out.internal_label)'. -- Macro: ASM_OUTPUT_CASE_END (STREAM, NUM, TABLE) Define this if something special must be output at the end of a jump-table. The definition should be a C statement to be executed after the assembler code for the table is written. It should write ! the appropriate code to stdio stream STREAM. The argument TABLE ! is the jump-table insn, and NUM is the label-number of the ! preceding label. If this macro is not defined, nothing special is output at the end of the jump-table. --- 34747,34776 ---- stream STREAM an assembler pseudo-instruction to generate a reference to a label. VALUE is the number of an internal label whose definition is output using ! '(*targetm.asm_out.internal_label)'. For example, fprintf (STREAM, "\t.word L%d\n", VALUE) -- Macro: ASM_OUTPUT_CASE_LABEL (STREAM, PREFIX, NUM, TABLE) Define this if the label before a jump-table needs to be output specially. The first three arguments are the same as for ! '(*targetm.asm_out.internal_label)'; the fourth argument is the ! jump-table which follows (a 'jump_insn' containing an 'addr_vec' or ! 'addr_diff_vec'). ! This feature is used on system V to output a 'swbeg' statement for the table. If this macro is not defined, these labels are output with ! '(*targetm.asm_out.internal_label)'. -- Macro: ASM_OUTPUT_CASE_END (STREAM, NUM, TABLE) Define this if something special must be output at the end of a jump-table. The definition should be a C statement to be executed after the assembler code for the table is written. It should write ! the appropriate code to stdio stream STREAM. The argument TABLE is ! the jump-table insn, and NUM is the label-number of the preceding ! label. If this macro is not defined, nothing special is output at the end of the jump-table. *************** This concerns dispatch tables. *** 35161,35168 **** should write the appropriate label, for the FDE associated with the function declaration DECL, to the stdio stream STREAM. The third argument, FOR_EH, is a boolean: true if this is for an exception ! table. The fourth argument, EMPTY, is a boolean: true if this is ! a placeholder label for an omitted FDE. The default is that FDEs are not given nonlocal labels. --- 34782,34789 ---- should write the appropriate label, for the FDE associated with the function declaration DECL, to the stdio stream STREAM. The third argument, FOR_EH, is a boolean: true if this is for an exception ! table. The fourth argument, EMPTY, is a boolean: true if this is a ! placeholder label for an omitted FDE. The default is that FDEs are not given nonlocal labels. *************** This concerns dispatch tables. *** 35175,35194 **** -- Target Hook: void TARGET_ASM_EMIT_EXCEPT_PERSONALITY (rtx PERSONALITY) ! If the target implements `TARGET_ASM_UNWIND_EMIT', this hook may ! be used to emit a directive to install a personality hook into the ! unwind info. This hook should not be used if dwarf2 unwind info ! is used. -- Target Hook: void TARGET_ASM_UNWIND_EMIT (FILE *STREAM, rtx INSN) This target hook emits assembly directives required to unwind the given instruction. This is only used when ! `TARGET_EXCEPT_UNWIND_INFO' returns `UI_TARGET'. -- Target Hook: bool TARGET_ASM_UNWIND_EMIT_BEFORE_INSN ! True if the `TARGET_ASM_UNWIND_EMIT' hook should be called before ! the assembly for INSN has been emitted, false if the hook should ! be called afterward.  File: gccint.info, Node: Exception Region Output, Next: Alignment Output, Prev: Dispatch Tables, Up: Assembler Format --- 34796,34815 ---- -- Target Hook: void TARGET_ASM_EMIT_EXCEPT_PERSONALITY (rtx PERSONALITY) ! If the target implements 'TARGET_ASM_UNWIND_EMIT', this hook may be ! used to emit a directive to install a personality hook into the ! unwind info. This hook should not be used if dwarf2 unwind info is ! used. -- Target Hook: void TARGET_ASM_UNWIND_EMIT (FILE *STREAM, rtx INSN) This target hook emits assembly directives required to unwind the given instruction. This is only used when ! 'TARGET_EXCEPT_UNWIND_INFO' returns 'UI_TARGET'. -- Target Hook: bool TARGET_ASM_UNWIND_EMIT_BEFORE_INSN ! True if the 'TARGET_ASM_UNWIND_EMIT' hook should be called before ! the assembly for INSN has been emitted, false if the hook should be ! called afterward.  File: gccint.info, Node: Exception Region Output, Next: Alignment Output, Prev: Dispatch Tables, Up: Assembler Format *************** region. *** 35203,35210 **** If defined, a C string constant for the name of the section containing exception handling frame unwind information. If not defined, GCC will provide a default definition if the target ! supports named sections. `crtstuff.c' uses this macro to switch ! to the appropriate section. You should define this symbol if your target supports DWARF 2 frame unwind information and the default definition does not work. --- 34824,34831 ---- If defined, a C string constant for the name of the section containing exception handling frame unwind information. If not defined, GCC will provide a default definition if the target ! supports named sections. 'crtstuff.c' uses this macro to switch to ! the appropriate section. You should define this symbol if your target supports DWARF 2 frame unwind information and the default definition does not work. *************** region. *** 35215,35221 **** might be necessary, for instance, if the system linker does garbage collection and sections cannot be marked as not to be collected. ! Do not define this macro unless `TARGET_ASM_NAMED_SECTION' is also defined. -- Macro: EH_TABLES_CAN_BE_READ_ONLY --- 34836,34842 ---- might be necessary, for instance, if the system linker does garbage collection and sections cannot be marked as not to be collected. ! Do not define this macro unless 'TARGET_ASM_NAMED_SECTION' is also defined. -- Macro: EH_TABLES_CAN_BE_READ_ONLY *************** region. *** 35225,35290 **** read-only and read-write sections into a single read-write section. -- Macro: MASK_RETURN_ADDR ! An rtx used to mask the return address found via ! `RETURN_ADDR_RTX', so that it does not contain any extraneous set ! bits in it. -- Macro: DWARF2_UNWIND_INFO Define this macro to 0 if your target supports DWARF 2 frame unwind information, but it does not yet work with exception handling. Otherwise, if your target supports this information (if it defines ! `INCOMING_RETURN_ADDR_RTX' and `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1. -- Common Target Hook: enum unwind_info_type TARGET_EXCEPT_UNWIND_INFO (struct gcc_options *OPTS) This hook defines the mechanism that will be used for exception handling by the target. If the target has ABI specified unwind ! tables, the hook should return `UI_TARGET'. If the target is to ! use the `setjmp'/`longjmp'-based exception handling scheme, the ! hook should return `UI_SJLJ'. If the target supports DWARF 2 ! frame unwind information, the hook should return `UI_DWARF2'. A target may, if exceptions are disabled, choose to return ! `UI_NONE'. This may end up simplifying other parts of target-specific code. The default implementation of this hook ! never returns `UI_NONE'. Note that the value returned by this hook should be constant. It should not depend on anything except the command-line switches ! described by OPTS. In particular, the setting `UI_SJLJ' must be fixed at compiler start-up as C pre-processor macros and builtin functions related to exception handling are set up depending on this setting. The default implementation of the hook first honors the ! `--enable-sjlj-exceptions' configure option, then ! `DWARF2_UNWIND_INFO', and finally defaults to `UI_SJLJ'. If ! `DWARF2_UNWIND_INFO' depends on command-line options, the target must define this hook so that OPTS is used correctly. -- Common Target Hook: bool TARGET_UNWIND_TABLES_DEFAULT ! This variable should be set to `true' if the target ABI requires ! unwinding tables even when exceptions are not used. It must not ! be modified by command-line option processing. -- Macro: DONT_USE_BUILTIN_SETJMP ! Define this macro to 1 if the `setjmp'/`longjmp'-based scheme ! should use the `setjmp'/`longjmp' functions from the C library ! instead of the `__builtin_setjmp'/`__builtin_longjmp' machinery. -- Macro: JMP_BUF_SIZE ! This macro has no effect unless `DONT_USE_BUILTIN_SETJMP' is also ! defined. Define this macro if the default size of `jmp_buf' buffer ! for the `setjmp'/`longjmp'-based exception handling mechanism is not large enough, or if it is much too large. The default size is ! `FIRST_PSEUDO_REGISTER * sizeof(void *)'. -- Macro: DWARF_CIE_DATA_ALIGNMENT This macro need only be defined if the target might save registers in the function prologue at an offset to the stack pointer that is ! not aligned to `UNITS_PER_WORD'. The definition should be the ! negative minimum alignment if `STACK_GROWS_DOWNWARD' is defined, and the positive minimum alignment otherwise. *Note SDB and DWARF::. Only applicable if the target supports DWARF 2 frame unwind information. --- 34846,34910 ---- read-only and read-write sections into a single read-write section. -- Macro: MASK_RETURN_ADDR ! An rtx used to mask the return address found via 'RETURN_ADDR_RTX', ! so that it does not contain any extraneous set bits in it. -- Macro: DWARF2_UNWIND_INFO Define this macro to 0 if your target supports DWARF 2 frame unwind information, but it does not yet work with exception handling. Otherwise, if your target supports this information (if it defines ! 'INCOMING_RETURN_ADDR_RTX' and 'OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1. -- Common Target Hook: enum unwind_info_type TARGET_EXCEPT_UNWIND_INFO (struct gcc_options *OPTS) This hook defines the mechanism that will be used for exception handling by the target. If the target has ABI specified unwind ! tables, the hook should return 'UI_TARGET'. If the target is to ! use the 'setjmp'/'longjmp'-based exception handling scheme, the ! hook should return 'UI_SJLJ'. If the target supports DWARF 2 frame ! unwind information, the hook should return 'UI_DWARF2'. A target may, if exceptions are disabled, choose to return ! 'UI_NONE'. This may end up simplifying other parts of target-specific code. The default implementation of this hook ! never returns 'UI_NONE'. Note that the value returned by this hook should be constant. It should not depend on anything except the command-line switches ! described by OPTS. In particular, the setting 'UI_SJLJ' must be fixed at compiler start-up as C pre-processor macros and builtin functions related to exception handling are set up depending on this setting. The default implementation of the hook first honors the ! '--enable-sjlj-exceptions' configure option, then ! 'DWARF2_UNWIND_INFO', and finally defaults to 'UI_SJLJ'. If ! 'DWARF2_UNWIND_INFO' depends on command-line options, the target must define this hook so that OPTS is used correctly. -- Common Target Hook: bool TARGET_UNWIND_TABLES_DEFAULT ! This variable should be set to 'true' if the target ABI requires ! unwinding tables even when exceptions are not used. It must not be ! modified by command-line option processing. -- Macro: DONT_USE_BUILTIN_SETJMP ! Define this macro to 1 if the 'setjmp'/'longjmp'-based scheme ! should use the 'setjmp'/'longjmp' functions from the C library ! instead of the '__builtin_setjmp'/'__builtin_longjmp' machinery. -- Macro: JMP_BUF_SIZE ! This macro has no effect unless 'DONT_USE_BUILTIN_SETJMP' is also ! defined. Define this macro if the default size of 'jmp_buf' buffer ! for the 'setjmp'/'longjmp'-based exception handling mechanism is not large enough, or if it is much too large. The default size is ! 'FIRST_PSEUDO_REGISTER * sizeof(void *)'. -- Macro: DWARF_CIE_DATA_ALIGNMENT This macro need only be defined if the target might save registers in the function prologue at an offset to the stack pointer that is ! not aligned to 'UNITS_PER_WORD'. The definition should be the ! negative minimum alignment if 'STACK_GROWS_DOWNWARD' is defined, and the positive minimum alignment otherwise. *Note SDB and DWARF::. Only applicable if the target supports DWARF 2 frame unwind information. *************** region. *** 35292,35298 **** -- Target Hook: bool TARGET_TERMINATE_DW2_EH_FRAME_INFO Contains the value true if the target should add a zero word onto the end of a Dwarf-2 frame info section when used for exception ! handling. Default value is false if `EH_FRAME_SECTION_NAME' is defined, and true otherwise. -- Target Hook: rtx TARGET_DWARF_REGISTER_SPAN (rtx REG) --- 34912,34918 ---- -- Target Hook: bool TARGET_TERMINATE_DW2_EH_FRAME_INFO Contains the value true if the target should add a zero word onto the end of a Dwarf-2 frame info section when used for exception ! handling. Default value is false if 'EH_FRAME_SECTION_NAME' is defined, and true otherwise. -- Target Hook: rtx TARGET_DWARF_REGISTER_SPAN (rtx REG) *************** region. *** 35301,35328 **** if the register and its mode are represented in Dwarf in non-contiguous locations, or if the register should be represented in more than one register in Dwarf. Otherwise, this hook should ! return `NULL_RTX'. If not defined, the default is to return ! `NULL_RTX'. -- Target Hook: void TARGET_INIT_DWARF_REG_SIZES_EXTRA (tree ADDRESS) If some registers are represented in Dwarf-2 unwind information in multiple pieces, define this hook to fill in information about the sizes of those pieces in the table used by the unwinder at runtime. ! It will be called by `expand_builtin_init_dwarf_reg_sizes' after filling in a single size corresponding to each hard register; ADDRESS is the address of the table. -- Target Hook: bool TARGET_ASM_TTYPE (rtx SYM) This hook is used to output a reference from a frame unwinding table to the type_info object identified by SYM. It should return ! `true' if the reference was output. Returning `false' will cause the reference to be output using the normal Dwarf2 routines. -- Target Hook: bool TARGET_ARM_EABI_UNWINDER ! This flag should be set to `true' on targets that use an ARM EABI ! based unwinding library, and `false' on other targets. This effects the format of unwinding tables, and how the unwinder in ! entered after running a cleanup. The default is `false'.  File: gccint.info, Node: Alignment Output, Prev: Exception Region Output, Up: Assembler Format --- 34921,34948 ---- if the register and its mode are represented in Dwarf in non-contiguous locations, or if the register should be represented in more than one register in Dwarf. Otherwise, this hook should ! return 'NULL_RTX'. If not defined, the default is to return ! 'NULL_RTX'. -- Target Hook: void TARGET_INIT_DWARF_REG_SIZES_EXTRA (tree ADDRESS) If some registers are represented in Dwarf-2 unwind information in multiple pieces, define this hook to fill in information about the sizes of those pieces in the table used by the unwinder at runtime. ! It will be called by 'expand_builtin_init_dwarf_reg_sizes' after filling in a single size corresponding to each hard register; ADDRESS is the address of the table. -- Target Hook: bool TARGET_ASM_TTYPE (rtx SYM) This hook is used to output a reference from a frame unwinding table to the type_info object identified by SYM. It should return ! 'true' if the reference was output. Returning 'false' will cause the reference to be output using the normal Dwarf2 routines. -- Target Hook: bool TARGET_ARM_EABI_UNWINDER ! This flag should be set to 'true' on targets that use an ARM EABI ! based unwinding library, and 'false' on other targets. This effects the format of unwinding tables, and how the unwinder in ! entered after running a cleanup. The default is 'false'.  File: gccint.info, Node: Alignment Output, Prev: Exception Region Output, Up: Assembler Format *************** This describes commands for alignment. *** 35342,35358 **** Unless it's necessary to inspect the LABEL parameter, it is better to set the variable ALIGN_JUMPS in the target's ! `TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the ! user's selection in ALIGN_JUMPS in a `JUMP_ALIGN' implementation. -- Target Hook: int TARGET_ASM_JUMP_ALIGN_MAX_SKIP (rtx LABEL) The maximum number of bytes to skip before LABEL when applying ! `JUMP_ALIGN'. This works only if `ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: LABEL_ALIGN_AFTER_BARRIER (LABEL) The alignment (log base 2) to put in front of LABEL, which follows ! a `BARRIER'. This macro need not be defined if you don't want any special alignment to be done at such a time. Most machine descriptions do --- 34962,34978 ---- Unless it's necessary to inspect the LABEL parameter, it is better to set the variable ALIGN_JUMPS in the target's ! 'TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the ! user's selection in ALIGN_JUMPS in a 'JUMP_ALIGN' implementation. -- Target Hook: int TARGET_ASM_JUMP_ALIGN_MAX_SKIP (rtx LABEL) The maximum number of bytes to skip before LABEL when applying ! 'JUMP_ALIGN'. This works only if 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: LABEL_ALIGN_AFTER_BARRIER (LABEL) The alignment (log base 2) to put in front of LABEL, which follows ! a 'BARRIER'. This macro need not be defined if you don't want any special alignment to be done at such a time. Most machine descriptions do *************** This describes commands for alignment. *** 35361,35421 **** -- Target Hook: int TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (rtx LABEL) The maximum number of bytes to skip before LABEL when applying ! `LABEL_ALIGN_AFTER_BARRIER'. This works only if ! `ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: LOOP_ALIGN (LABEL) The alignment (log base 2) to put in front of LABEL, which follows ! a `NOTE_INSN_LOOP_BEG' note. This macro need not be defined if you don't want any special alignment to be done at such a time. Most machine descriptions do not currently define the macro. Unless it's necessary to inspect the LABEL parameter, it is better ! to set the variable `align_loops' in the target's ! `TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the ! user's selection in `align_loops' in a `LOOP_ALIGN' implementation. -- Target Hook: int TARGET_ASM_LOOP_ALIGN_MAX_SKIP (rtx LABEL) ! The maximum number of bytes to skip when applying `LOOP_ALIGN' to ! LABEL. This works only if `ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: LABEL_ALIGN (LABEL) The alignment (log base 2) to put in front of LABEL. If ! `LABEL_ALIGN_AFTER_BARRIER' / `LOOP_ALIGN' specify a different alignment, the maximum of the specified values is used. Unless it's necessary to inspect the LABEL parameter, it is better ! to set the variable `align_labels' in the target's ! `TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the ! user's selection in `align_labels' in a `LABEL_ALIGN' implementation. -- Target Hook: int TARGET_ASM_LABEL_ALIGN_MAX_SKIP (rtx LABEL) ! The maximum number of bytes to skip when applying `LABEL_ALIGN' to ! LABEL. This works only if `ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: ASM_OUTPUT_SKIP (STREAM, NBYTES) A C statement to output to the stdio stream STREAM an assembler ! instruction to advance the location counter by NBYTES bytes. ! Those bytes should be zero when loaded. NBYTES will be a C ! expression of type `unsigned HOST_WIDE_INT'. -- Macro: ASM_NO_SKIP_IN_TEXT ! Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text section because it fails to put zeros in the bytes that are ! skipped. This is true on many Unix systems, where the pseudo-op ! to skip bytes produces no-op instructions rather than zeros when ! used in the text section. -- Macro: ASM_OUTPUT_ALIGN (STREAM, POWER) A C statement to output to the stdio stream STREAM an assembler command to advance the location counter to a multiple of 2 to the ! POWER bytes. POWER will be a C expression of type `int'. -- Macro: ASM_OUTPUT_ALIGN_WITH_NOP (STREAM, POWER) ! Like `ASM_OUTPUT_ALIGN', except that the "nop" instruction is used for padding, if necessary. -- Macro: ASM_OUTPUT_MAX_SKIP_ALIGN (STREAM, POWER, MAX_SKIP) --- 34981,35041 ---- -- Target Hook: int TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (rtx LABEL) The maximum number of bytes to skip before LABEL when applying ! 'LABEL_ALIGN_AFTER_BARRIER'. This works only if ! 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: LOOP_ALIGN (LABEL) The alignment (log base 2) to put in front of LABEL, which follows ! a 'NOTE_INSN_LOOP_BEG' note. This macro need not be defined if you don't want any special alignment to be done at such a time. Most machine descriptions do not currently define the macro. Unless it's necessary to inspect the LABEL parameter, it is better ! to set the variable 'align_loops' in the target's ! 'TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the ! user's selection in 'align_loops' in a 'LOOP_ALIGN' implementation. -- Target Hook: int TARGET_ASM_LOOP_ALIGN_MAX_SKIP (rtx LABEL) ! The maximum number of bytes to skip when applying 'LOOP_ALIGN' to ! LABEL. This works only if 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: LABEL_ALIGN (LABEL) The alignment (log base 2) to put in front of LABEL. If ! 'LABEL_ALIGN_AFTER_BARRIER' / 'LOOP_ALIGN' specify a different alignment, the maximum of the specified values is used. Unless it's necessary to inspect the LABEL parameter, it is better ! to set the variable 'align_labels' in the target's ! 'TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the ! user's selection in 'align_labels' in a 'LABEL_ALIGN' implementation. -- Target Hook: int TARGET_ASM_LABEL_ALIGN_MAX_SKIP (rtx LABEL) ! The maximum number of bytes to skip when applying 'LABEL_ALIGN' to ! LABEL. This works only if 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: ASM_OUTPUT_SKIP (STREAM, NBYTES) A C statement to output to the stdio stream STREAM an assembler ! instruction to advance the location counter by NBYTES bytes. Those ! bytes should be zero when loaded. NBYTES will be a C expression of ! type 'unsigned HOST_WIDE_INT'. -- Macro: ASM_NO_SKIP_IN_TEXT ! Define this macro if 'ASM_OUTPUT_SKIP' should not be used in the text section because it fails to put zeros in the bytes that are ! skipped. This is true on many Unix systems, where the pseudo-op to ! skip bytes produces no-op instructions rather than zeros when used ! in the text section. -- Macro: ASM_OUTPUT_ALIGN (STREAM, POWER) A C statement to output to the stdio stream STREAM an assembler command to advance the location counter to a multiple of 2 to the ! POWER bytes. POWER will be a C expression of type 'int'. -- Macro: ASM_OUTPUT_ALIGN_WITH_NOP (STREAM, POWER) ! Like 'ASM_OUTPUT_ALIGN', except that the "nop" instruction is used for padding, if necessary. -- Macro: ASM_OUTPUT_MAX_SKIP_ALIGN (STREAM, POWER, MAX_SKIP) *************** This describes commands for alignment. *** 35423,35429 **** command to advance the location counter to a multiple of 2 to the POWER bytes, but only if MAX_SKIP or fewer bytes are needed to satisfy the alignment request. POWER and MAX_SKIP will be a C ! expression of type `int'.  File: gccint.info, Node: Debugging Info, Next: Floating Point, Prev: Assembler Format, Up: Target Macros --- 35043,35049 ---- command to advance the location counter to a multiple of 2 to the POWER bytes, but only if MAX_SKIP or fewer bytes are needed to satisfy the alignment request. POWER and MAX_SKIP will be a C ! expression of type 'int'.  File: gccint.info, Node: Debugging Info, Next: Floating Point, Prev: Assembler Format, Up: Target Macros *************** These macros affect all debugging format *** 35452,35471 **** -- Macro: DBX_REGISTER_NUMBER (REGNO) A C expression that returns the DBX register number for the ! compiler register number REGNO. In the default macro provided, ! the value of this expression will be REGNO itself. But sometimes ! there are some registers that the compiler knows about and DBX ! does not, or vice versa. In such cases, some register may need to ! have one number in the compiler and another for DBX. If two registers have consecutive numbers inside GCC, and they can be used as a pair to hold a multiword value, then they _must_ have ! consecutive numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers will be unable to access such a pair, because ! they expect register pairs to be consecutive in their own ! numbering scheme. ! If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not preserve register pairs, then what you must do instead is redefine the actual register numbering scheme. --- 35072,35091 ---- -- Macro: DBX_REGISTER_NUMBER (REGNO) A C expression that returns the DBX register number for the ! compiler register number REGNO. In the default macro provided, the ! value of this expression will be REGNO itself. But sometimes there ! are some registers that the compiler knows about and DBX does not, ! or vice versa. In such cases, some register may need to have one ! number in the compiler and another for DBX. If two registers have consecutive numbers inside GCC, and they can be used as a pair to hold a multiword value, then they _must_ have ! consecutive numbers after renumbering with 'DBX_REGISTER_NUMBER'. Otherwise, debuggers will be unable to access such a pair, because ! they expect register pairs to be consecutive in their own numbering ! scheme. ! If you find yourself defining 'DBX_REGISTER_NUMBER' in way that does not preserve register pairs, then what you must do instead is redefine the actual register numbering scheme. *************** These macros affect all debugging format *** 35476,35482 **** and gives the offset from the frame-pointer. This is required for targets that produce debugging output for DBX or COFF-style debugging output for SDB and allow the frame-pointer to be ! eliminated when the `-g' options is used. -- Macro: DEBUGGER_ARG_OFFSET (OFFSET, X) A C expression that returns the integer offset value for an --- 35096,35102 ---- and gives the offset from the frame-pointer. This is required for targets that produce debugging output for DBX or COFF-style debugging output for SDB and allow the frame-pointer to be ! eliminated when the '-g' options is used. -- Macro: DEBUGGER_ARG_OFFSET (OFFSET, X) A C expression that returns the integer offset value for an *************** These macros affect all debugging format *** 35485,35505 **** -- Macro: PREFERRED_DEBUGGING_TYPE A C expression that returns the type of debugging output GCC should ! produce when the user specifies just `-g'. Define this if you ! have arranged for GCC to support more than one format of debugging ! output. Currently, the allowable values are `DBX_DEBUG', ! `SDB_DEBUG', `DWARF_DEBUG', `DWARF2_DEBUG', `XCOFF_DEBUG', ! `VMS_DEBUG', and `VMS_AND_DWARF2_DEBUG'. ! When the user specifies `-ggdb', GCC normally also uses the value of this macro to select the debugging output format, but with two ! exceptions. If `DWARF2_DEBUGGING_INFO' is defined, GCC uses the ! value `DWARF2_DEBUG'. Otherwise, if `DBX_DEBUGGING_INFO' is ! defined, GCC uses `DBX_DEBUG'. The value of this macro only affects the default debugging output; the user can always get a specific type of output by using ! `-gstabs', `-gcoff', `-gdwarf-2', `-gxcoff', or `-gvms'.  File: gccint.info, Node: DBX Options, Next: DBX Hooks, Prev: All Debuggers, Up: Debugging Info --- 35105,35125 ---- -- Macro: PREFERRED_DEBUGGING_TYPE A C expression that returns the type of debugging output GCC should ! produce when the user specifies just '-g'. Define this if you have ! arranged for GCC to support more than one format of debugging ! output. Currently, the allowable values are 'DBX_DEBUG', ! 'SDB_DEBUG', 'DWARF_DEBUG', 'DWARF2_DEBUG', 'XCOFF_DEBUG', ! 'VMS_DEBUG', and 'VMS_AND_DWARF2_DEBUG'. ! When the user specifies '-ggdb', GCC normally also uses the value of this macro to select the debugging output format, but with two ! exceptions. If 'DWARF2_DEBUGGING_INFO' is defined, GCC uses the ! value 'DWARF2_DEBUG'. Otherwise, if 'DBX_DEBUGGING_INFO' is ! defined, GCC uses 'DBX_DEBUG'. The value of this macro only affects the default debugging output; the user can always get a specific type of output by using ! '-gstabs', '-gcoff', '-gdwarf-2', '-gxcoff', or '-gvms'.  File: gccint.info, Node: DBX Options, Next: DBX Hooks, Prev: All Debuggers, Up: Debugging Info *************** File: gccint.info, Node: DBX Options, *** 35510,35521 **** These are specific options for DBX output. -- Macro: DBX_DEBUGGING_INFO ! Define this macro if GCC should produce debugging output for DBX ! in response to the `-g' option. -- Macro: XCOFF_DEBUGGING_INFO Define this macro if GCC should produce XCOFF format debugging ! output in response to the `-g' option. This is a variant of DBX format. -- Macro: DEFAULT_GDB_EXTENSIONS --- 35130,35141 ---- These are specific options for DBX output. -- Macro: DBX_DEBUGGING_INFO ! Define this macro if GCC should produce debugging output for DBX in ! response to the '-g' option. -- Macro: XCOFF_DEBUGGING_INFO Define this macro if GCC should produce XCOFF format debugging ! output in response to the '-g' option. This is a variant of DBX format. -- Macro: DEFAULT_GDB_EXTENSIONS *************** These are specific options for DBX outpu *** 35526,35564 **** information if there is any occasion to. -- Macro: DEBUG_SYMS_TEXT ! Define this macro if all `.stabs' commands should be output while in the text section. -- Macro: ASM_STABS_OP ! A C string constant, including spacing, naming the assembler ! pseudo op to use instead of `"\t.stabs\t"' to define an ordinary ! debugging symbol. If you don't define this macro, `"\t.stabs\t"' ! is used. This macro applies only to DBX debugging information ! format. -- Macro: ASM_STABD_OP ! A C string constant, including spacing, naming the assembler ! pseudo op to use instead of `"\t.stabd\t"' to define a debugging ! symbol whose value is the current location. If you don't define ! this macro, `"\t.stabd\t"' is used. This macro applies only to ! DBX debugging information format. -- Macro: ASM_STABN_OP ! A C string constant, including spacing, naming the assembler ! pseudo op to use instead of `"\t.stabn\t"' to define a debugging ! symbol with no name. If you don't define this macro, ! `"\t.stabn\t"' is used. This macro applies only to DBX debugging ! information format. -- Macro: DBX_NO_XREFS Define this macro if DBX on your system does not support the ! construct `xsTAGNAME'. On some systems, this construct is used to describe a forward reference to a structure named TAGNAME. On other systems, this construct is not supported at all. -- Macro: DBX_CONTIN_LENGTH A symbol name in DBX-format debugging information is normally ! continued (split into two separate `.stabs' directives) when it exceeds a certain length (by default, 80 characters). On some operating systems, DBX requires this splitting; on others, splitting must not be done. You can inhibit splitting by defining --- 35146,35182 ---- information if there is any occasion to. -- Macro: DEBUG_SYMS_TEXT ! Define this macro if all '.stabs' commands should be output while in the text section. -- Macro: ASM_STABS_OP ! A C string constant, including spacing, naming the assembler pseudo ! op to use instead of '"\t.stabs\t"' to define an ordinary debugging ! symbol. If you don't define this macro, '"\t.stabs\t"' is used. ! This macro applies only to DBX debugging information format. -- Macro: ASM_STABD_OP ! A C string constant, including spacing, naming the assembler pseudo ! op to use instead of '"\t.stabd\t"' to define a debugging symbol ! whose value is the current location. If you don't define this ! macro, '"\t.stabd\t"' is used. This macro applies only to DBX ! debugging information format. -- Macro: ASM_STABN_OP ! A C string constant, including spacing, naming the assembler pseudo ! op to use instead of '"\t.stabn\t"' to define a debugging symbol ! with no name. If you don't define this macro, '"\t.stabn\t"' is ! used. This macro applies only to DBX debugging information format. -- Macro: DBX_NO_XREFS Define this macro if DBX on your system does not support the ! construct 'xsTAGNAME'. On some systems, this construct is used to describe a forward reference to a structure named TAGNAME. On other systems, this construct is not supported at all. -- Macro: DBX_CONTIN_LENGTH A symbol name in DBX-format debugging information is normally ! continued (split into two separate '.stabs' directives) when it exceeds a certain length (by default, 80 characters). On some operating systems, DBX requires this splitting; on others, splitting must not be done. You can inhibit splitting by defining *************** These are specific options for DBX outpu *** 35567,35627 **** length you desire. -- Macro: DBX_CONTIN_CHAR ! Normally continuation is indicated by adding a `\' character to ! the end of a `.stabs' string when a continuation follows. To use ! a different character instead, define this macro as a character constant for the character you want to use. Do not define this macro if backslash is correct for your system. -- Macro: DBX_STATIC_STAB_DATA_SECTION Define this macro if it is necessary to go to the data section ! before outputting the `.stabs' pseudo-op for a non-global static variable. -- Macro: DBX_TYPE_DECL_STABS_CODE ! The value to use in the "code" field of the `.stabs' directive for ! a typedef. The default is `N_LSYM'. -- Macro: DBX_STATIC_CONST_VAR_CODE ! The value to use in the "code" field of the `.stabs' directive for a static variable located in the text section. DBX format does not ! provide any "right" way to do this. The default is `N_FUN'. -- Macro: DBX_REGPARM_STABS_CODE ! The value to use in the "code" field of the `.stabs' directive for a parameter passed in registers. DBX format does not provide any ! "right" way to do this. The default is `N_RSYM'. -- Macro: DBX_REGPARM_STABS_LETTER The letter to use in DBX symbol data to identify a symbol as a parameter passed in registers. DBX format does not customarily ! provide any way to do this. The default is `'P''. -- Macro: DBX_FUNCTION_FIRST Define this macro if the DBX information for a function and its arguments should precede the assembler code for the function. ! Normally, in DBX format, the debugging information entirely ! follows the assembler code. -- Macro: DBX_BLOCKS_FUNCTION_RELATIVE Define this macro, with value 1, if the value of a symbol ! describing the scope of a block (`N_LBRAC' or `N_RBRAC') should be relative to the start of the enclosing function. Normally, GCC uses an absolute address. -- Macro: DBX_LINES_FUNCTION_RELATIVE Define this macro, with value 1, if the value of a symbol ! indicating the current line number (`N_SLINE') should be relative to the start of the enclosing function. Normally, GCC uses an absolute address. -- Macro: DBX_USE_BINCL ! Define this macro if GCC should generate `N_BINCL' and `N_EINCL' stabs for included header files, as on Sun systems. This macro ! also directs GCC to output a type number as a pair of a file ! number and a type number within the file. Normally, GCC does not ! generate `N_BINCL' or `N_EINCL' stabs, and it outputs a single ! number for a type number.  File: gccint.info, Node: DBX Hooks, Next: File Names and DBX, Prev: DBX Options, Up: Debugging Info --- 35185,35245 ---- length you desire. -- Macro: DBX_CONTIN_CHAR ! Normally continuation is indicated by adding a '\' character to the ! end of a '.stabs' string when a continuation follows. To use a ! different character instead, define this macro as a character constant for the character you want to use. Do not define this macro if backslash is correct for your system. -- Macro: DBX_STATIC_STAB_DATA_SECTION Define this macro if it is necessary to go to the data section ! before outputting the '.stabs' pseudo-op for a non-global static variable. -- Macro: DBX_TYPE_DECL_STABS_CODE ! The value to use in the "code" field of the '.stabs' directive for ! a typedef. The default is 'N_LSYM'. -- Macro: DBX_STATIC_CONST_VAR_CODE ! The value to use in the "code" field of the '.stabs' directive for a static variable located in the text section. DBX format does not ! provide any "right" way to do this. The default is 'N_FUN'. -- Macro: DBX_REGPARM_STABS_CODE ! The value to use in the "code" field of the '.stabs' directive for a parameter passed in registers. DBX format does not provide any ! "right" way to do this. The default is 'N_RSYM'. -- Macro: DBX_REGPARM_STABS_LETTER The letter to use in DBX symbol data to identify a symbol as a parameter passed in registers. DBX format does not customarily ! provide any way to do this. The default is ''P''. -- Macro: DBX_FUNCTION_FIRST Define this macro if the DBX information for a function and its arguments should precede the assembler code for the function. ! Normally, in DBX format, the debugging information entirely follows ! the assembler code. -- Macro: DBX_BLOCKS_FUNCTION_RELATIVE Define this macro, with value 1, if the value of a symbol ! describing the scope of a block ('N_LBRAC' or 'N_RBRAC') should be relative to the start of the enclosing function. Normally, GCC uses an absolute address. -- Macro: DBX_LINES_FUNCTION_RELATIVE Define this macro, with value 1, if the value of a symbol ! indicating the current line number ('N_SLINE') should be relative to the start of the enclosing function. Normally, GCC uses an absolute address. -- Macro: DBX_USE_BINCL ! Define this macro if GCC should generate 'N_BINCL' and 'N_EINCL' stabs for included header files, as on Sun systems. This macro ! also directs GCC to output a type number as a pair of a file number ! and a type number within the file. Normally, GCC does not generate ! 'N_BINCL' or 'N_EINCL' stabs, and it outputs a single number for a ! type number.  File: gccint.info, Node: DBX Hooks, Next: File Names and DBX, Prev: DBX Options, Up: Debugging Info *************** These are hooks for DBX format. *** 35635,35655 **** A C statement to output DBX debugging information before code for line number LINE of the current source file to the stdio stream STREAM. COUNTER is the number of time the macro was invoked, ! including the current invocation; it is intended to generate ! unique labels in the assembly output. This macro should not be defined if the default output is correct, or if it can be made correct by defining ! `DBX_LINES_FUNCTION_RELATIVE'. -- Macro: NO_DBX_FUNCTION_END Some stabs encapsulation formats (in particular ECOFF), cannot ! handle the `.stabs "",N_FUN,,0,0,Lscope-function-1' gdb dbx extension construct. On those machines, define this macro to turn this feature off without disturbing the rest of the gdb extensions. -- Macro: NO_DBX_BNSYM_ENSYM ! Some assemblers cannot handle the `.stabd BNSYM/ENSYM,0,0' gdb dbx extension construct. On those machines, define this macro to turn this feature off without disturbing the rest of the gdb extensions. --- 35253,35273 ---- A C statement to output DBX debugging information before code for line number LINE of the current source file to the stdio stream STREAM. COUNTER is the number of time the macro was invoked, ! including the current invocation; it is intended to generate unique ! labels in the assembly output. This macro should not be defined if the default output is correct, or if it can be made correct by defining ! 'DBX_LINES_FUNCTION_RELATIVE'. -- Macro: NO_DBX_FUNCTION_END Some stabs encapsulation formats (in particular ECOFF), cannot ! handle the '.stabs "",N_FUN,,0,0,Lscope-function-1' gdb dbx extension construct. On those machines, define this macro to turn this feature off without disturbing the rest of the gdb extensions. -- Macro: NO_DBX_BNSYM_ENSYM ! Some assemblers cannot handle the '.stabd BNSYM/ENSYM,0,0' gdb dbx extension construct. On those machines, define this macro to turn this feature off without disturbing the rest of the gdb extensions. *************** This describes file names in DBX format. *** 35671,35679 **** DBX debugging information is appropriate. It may be necessary to refer to a label equal to the beginning of ! the text section. You can use `assemble_name (stream, ! ltext_label_name)' to do so. If you do this, you must also set ! the variable USED_LTEXT_LABEL_NAME to `true'. -- Macro: NO_DBX_MAIN_SOURCE_DIRECTORY Define this macro, with value 1, if GCC should not emit an --- 35289,35297 ---- DBX debugging information is appropriate. It may be necessary to refer to a label equal to the beginning of ! the text section. You can use 'assemble_name (stream, ! ltext_label_name)' to do so. If you do this, you must also set the ! variable USED_LTEXT_LABEL_NAME to 'true'. -- Macro: NO_DBX_MAIN_SOURCE_DIRECTORY Define this macro, with value 1, if GCC should not emit an *************** This describes file names in DBX format. *** 35683,35703 **** -- Macro: NO_DBX_GCC_MARKER Define this macro, with value 1, if GCC should not emit an indication that this object file was compiled by GCC. The default ! is to emit an `N_OPT' stab at the beginning of every source file, ! with `gcc2_compiled.' for the string and value 0. -- Macro: DBX_OUTPUT_MAIN_SOURCE_FILE_END (STREAM, NAME) A C statement to output DBX debugging information at the end of ! compilation of the main source file NAME. Output should be ! written to the stdio stream STREAM. If you don't define this macro, nothing special is output at the end of compilation, which is correct for most machines. -- Macro: DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END Define this macro _instead of_ defining ! `DBX_OUTPUT_MAIN_SOURCE_FILE_END', if what needs to be output at ! the end of compilation is an `N_SO' stab with an empty string, whose value is the highest absolute text address in the file.  --- 35301,35321 ---- -- Macro: NO_DBX_GCC_MARKER Define this macro, with value 1, if GCC should not emit an indication that this object file was compiled by GCC. The default ! is to emit an 'N_OPT' stab at the beginning of every source file, ! with 'gcc2_compiled.' for the string and value 0. -- Macro: DBX_OUTPUT_MAIN_SOURCE_FILE_END (STREAM, NAME) A C statement to output DBX debugging information at the end of ! compilation of the main source file NAME. Output should be written ! to the stdio stream STREAM. If you don't define this macro, nothing special is output at the end of compilation, which is correct for most machines. -- Macro: DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END Define this macro _instead of_ defining ! 'DBX_OUTPUT_MAIN_SOURCE_FILE_END', if what needs to be output at ! the end of compilation is an 'N_SO' stab with an empty string, whose value is the highest absolute text address in the file.  *************** Here are macros for SDB and DWARF output *** 35710,35751 **** -- Macro: SDB_DEBUGGING_INFO Define this macro if GCC should produce COFF-style debugging output ! for SDB in response to the `-g' option. -- Macro: DWARF2_DEBUGGING_INFO Define this macro if GCC should produce dwarf version 2 format ! debugging output in response to the `-g' option. -- Target Hook: int TARGET_DWARF_CALLING_CONVENTION (const_tree FUNCTION) Define this to enable the dwarf attribute ! `DW_AT_calling_convention' to be emitted for each function. ! Instead of an integer return the enum value for the `DW_CC_' tag. To support optional call frame debugging information, you must also ! define `INCOMING_RETURN_ADDR_RTX' and either set ! `RTX_FRAME_RELATED_P' on the prologue insns if you use RTL for the ! prologue, or call `dwarf2out_def_cfa' and `dwarf2out_reg_save' as ! appropriate from `TARGET_ASM_FUNCTION_PROLOGUE' if you don't. -- Macro: DWARF2_FRAME_INFO Define this macro to a nonzero value if GCC should always output ! Dwarf 2 frame information. If `TARGET_EXCEPT_UNWIND_INFO' (*note ! Exception Region Output::) returns `UI_DWARF2', and exceptions are ! enabled, GCC will output this information not matter how you ! define `DWARF2_FRAME_INFO'. -- Target Hook: enum unwind_info_type TARGET_DEBUG_UNWIND_INFO (void) This hook defines the mechanism that will be used for describing frame unwind information to the debugger. Normally the hook will ! return `UI_DWARF2' if DWARF 2 debug information is enabled, and ! return `UI_NONE' otherwise. ! A target may return `UI_DWARF2' even when DWARF 2 debug information is disabled in order to always output DWARF 2 frame information. ! A target may return `UI_TARGET' if it has ABI specified unwind tables. This will suppress generation of the normal debug frame unwind information. --- 35328,35369 ---- -- Macro: SDB_DEBUGGING_INFO Define this macro if GCC should produce COFF-style debugging output ! for SDB in response to the '-g' option. -- Macro: DWARF2_DEBUGGING_INFO Define this macro if GCC should produce dwarf version 2 format ! debugging output in response to the '-g' option. -- Target Hook: int TARGET_DWARF_CALLING_CONVENTION (const_tree FUNCTION) Define this to enable the dwarf attribute ! 'DW_AT_calling_convention' to be emitted for each function. ! Instead of an integer return the enum value for the 'DW_CC_' tag. To support optional call frame debugging information, you must also ! define 'INCOMING_RETURN_ADDR_RTX' and either set ! 'RTX_FRAME_RELATED_P' on the prologue insns if you use RTL for the ! prologue, or call 'dwarf2out_def_cfa' and 'dwarf2out_reg_save' as ! appropriate from 'TARGET_ASM_FUNCTION_PROLOGUE' if you don't. -- Macro: DWARF2_FRAME_INFO Define this macro to a nonzero value if GCC should always output ! Dwarf 2 frame information. If 'TARGET_EXCEPT_UNWIND_INFO' (*note ! Exception Region Output::) returns 'UI_DWARF2', and exceptions are ! enabled, GCC will output this information not matter how you define ! 'DWARF2_FRAME_INFO'. -- Target Hook: enum unwind_info_type TARGET_DEBUG_UNWIND_INFO (void) This hook defines the mechanism that will be used for describing frame unwind information to the debugger. Normally the hook will ! return 'UI_DWARF2' if DWARF 2 debug information is enabled, and ! return 'UI_NONE' otherwise. ! A target may return 'UI_DWARF2' even when DWARF 2 debug information is disabled in order to always output DWARF 2 frame information. ! A target may return 'UI_TARGET' if it has ABI specified unwind tables. This will suppress generation of the normal debug frame unwind information. *************** Here are macros for SDB and DWARF output *** 35756,35769 **** works. -- Target Hook: bool TARGET_WANT_DEBUG_PUB_SECTIONS ! True if the `.debug_pubtypes' and `.debug_pubnames' sections ! should be emitted. These sections are not used on most platforms, ! and in particular GDB does not use them. -- Target Hook: bool TARGET_FORCE_AT_COMP_DIR ! True if the `DW_AT_comp_dir' attribute should be emitted for each ! compilation unit. This attribute is required for the darwin ! linker to emit debug information. -- Target Hook: bool TARGET_DELAY_SCHED2 True if sched2 is not to be run at its normal place. This usually --- 35374,35387 ---- works. -- Target Hook: bool TARGET_WANT_DEBUG_PUB_SECTIONS ! True if the '.debug_pubtypes' and '.debug_pubnames' sections should ! be emitted. These sections are not used on most platforms, and in ! particular GDB does not use them. -- Target Hook: bool TARGET_FORCE_AT_COMP_DIR ! True if the 'DW_AT_comp_dir' attribute should be emitted for each ! compilation unit. This attribute is required for the darwin linker ! to emit debug information. -- Target Hook: bool TARGET_DELAY_SCHED2 True if sched2 is not to be run at its normal place. This usually *************** Here are macros for SDB and DWARF output *** 35790,35797 **** -- Macro: ASM_OUTPUT_DWARF_PCREL (STREAM, SIZE, LABEL) A C statement to issue assembly directives that create a ! self-relative reference to the given LABEL, using an integer of ! the given SIZE. -- Macro: ASM_OUTPUT_DWARF_TABLE_REF (LABEL) A C statement to issue assembly directives that create a reference --- 35408,35415 ---- -- Macro: ASM_OUTPUT_DWARF_PCREL (STREAM, SIZE, LABEL) A C statement to issue assembly directives that create a ! self-relative reference to the given LABEL, using an integer of the ! given SIZE. -- Macro: ASM_OUTPUT_DWARF_TABLE_REF (LABEL) A C statement to issue assembly directives that create a reference *************** Here are macros for SDB and DWARF output *** 35805,35821 **** DTP-relative reference to the given TLS symbol of the specified size. ! -- Macro: PUT_SDB_... Define these macros to override the assembler syntax for the ! special SDB assembler directives. See `sdbout.c' for a list of these macros and their arguments. If the standard syntax is used, you need not define them yourself. -- Macro: SDB_DELIM Some assemblers do not support a semicolon as a delimiter, even between SDB assembler directives. In that case, define this macro ! to be the delimiter to use (usually `\n'). It is not necessary to ! define a new set of `PUT_SDB_OP' macros if this is the only change required. -- Macro: SDB_ALLOW_UNKNOWN_REFERENCES --- 35423,35439 ---- DTP-relative reference to the given TLS symbol of the specified size. ! -- Macro: PUT_SDB_ ... Define these macros to override the assembler syntax for the ! special SDB assembler directives. See 'sdbout.c' for a list of these macros and their arguments. If the standard syntax is used, you need not define them yourself. -- Macro: SDB_DELIM Some assemblers do not support a semicolon as a delimiter, even between SDB assembler directives. In that case, define this macro ! to be the delimiter to use (usually '\n'). It is not necessary to ! define a new set of 'PUT_SDB_OP' macros if this is the only change required. -- Macro: SDB_ALLOW_UNKNOWN_REFERENCES *************** Here are macros for SDB and DWARF output *** 35831,35837 **** -- Macro: SDB_OUTPUT_SOURCE_LINE (STREAM, LINE) A C statement to output SDB debugging information before code for line number LINE of the current source file to the stdio stream ! STREAM. The default is to emit an `.ln' directive.  File: gccint.info, Node: VMS Debug, Prev: SDB and DWARF, Up: Debugging Info --- 35449,35455 ---- -- Macro: SDB_OUTPUT_SOURCE_LINE (STREAM, LINE) A C statement to output SDB debugging information before code for line number LINE of the current source file to the stdio stream ! STREAM. The default is to emit an '.ln' directive.  File: gccint.info, Node: VMS Debug, Prev: SDB and DWARF, Up: Debugging Info *************** File: gccint.info, Node: VMS Debug, Pr *** 35842,35853 **** Here are macros for VMS debug format. -- Macro: VMS_DEBUGGING_INFO ! Define this macro if GCC should produce debugging output for VMS ! in response to the `-g' option. The default behavior for VMS is ! to generate minimal debug info for a traceback in the absence of ! `-g' unless explicitly overridden with `-g0'. This behavior is ! controlled by `TARGET_OPTION_OPTIMIZATION' and ! `TARGET_OPTION_OVERRIDE'.  File: gccint.info, Node: Floating Point, Next: Mode Switching, Prev: Debugging Info, Up: Target Macros --- 35460,35471 ---- Here are macros for VMS debug format. -- Macro: VMS_DEBUGGING_INFO ! Define this macro if GCC should produce debugging output for VMS in ! response to the '-g' option. The default behavior for VMS is to ! generate minimal debug info for a traceback in the absence of '-g' ! unless explicitly overridden with '-g0'. This behavior is ! controlled by 'TARGET_OPTION_OPTIMIZATION' and ! 'TARGET_OPTION_OVERRIDE'.  File: gccint.info, Node: Floating Point, Next: Mode Switching, Prev: Debugging Info, Up: Target Macros *************** the target's arithmetic. To ensure cons *** 35869,35889 **** emulation to work with floating point values, even when the host and target floating point formats are identical. ! The following macros are provided by `real.h' for the compiler to use. All parts of the compiler which generate or optimize floating-point calculations must use these macros. They may evaluate their operands more than once, so operands must not have side effects. -- Macro: REAL_VALUE_TYPE The C data type to be used to hold a floating point value in the ! target machine's format. Typically this is a `struct' containing ! an array of `HOST_WIDE_INT', but all code should treat it as an opaque quantity. -- Macro: int REAL_VALUES_EQUAL (REAL_VALUE_TYPE X, REAL_VALUE_TYPE Y) Compares for equality the two values, X and Y. If the target floating point format supports negative zeroes and/or NaNs, ! `REAL_VALUES_EQUAL (-0.0, 0.0)' is true, and `REAL_VALUES_EQUAL (NaN, NaN)' is false. -- Macro: int REAL_VALUES_LESS (REAL_VALUE_TYPE X, REAL_VALUE_TYPE Y) --- 35487,35507 ---- emulation to work with floating point values, even when the host and target floating point formats are identical. ! The following macros are provided by 'real.h' for the compiler to use. All parts of the compiler which generate or optimize floating-point calculations must use these macros. They may evaluate their operands more than once, so operands must not have side effects. -- Macro: REAL_VALUE_TYPE The C data type to be used to hold a floating point value in the ! target machine's format. Typically this is a 'struct' containing ! an array of 'HOST_WIDE_INT', but all code should treat it as an opaque quantity. -- Macro: int REAL_VALUES_EQUAL (REAL_VALUE_TYPE X, REAL_VALUE_TYPE Y) Compares for equality the two values, X and Y. If the target floating point format supports negative zeroes and/or NaNs, ! 'REAL_VALUES_EQUAL (-0.0, 0.0)' is true, and 'REAL_VALUES_EQUAL (NaN, NaN)' is false. -- Macro: int REAL_VALUES_LESS (REAL_VALUE_TYPE X, REAL_VALUE_TYPE Y) *************** more than once, so operands must not hav *** 35919,35931 **** X and Y, storing the result in OUTPUT (which must be a variable). The operation to be performed is specified by CODE. Only the ! following codes are supported: `PLUS_EXPR', `MINUS_EXPR', ! `MULT_EXPR', `RDIV_EXPR', `MAX_EXPR', `MIN_EXPR'. ! If `REAL_ARITHMETIC' is asked to evaluate division by zero and the target's floating point format cannot represent infinity, it will ! call `abort'. Callers should check for this situation first, using ! `MODE_HAS_INFINITIES'. *Note Storage Layout::. -- Macro: REAL_VALUE_TYPE REAL_VALUE_NEGATE (REAL_VALUE_TYPE X) Returns the negative of the floating point value X. --- 35537,35549 ---- X and Y, storing the result in OUTPUT (which must be a variable). The operation to be performed is specified by CODE. Only the ! following codes are supported: 'PLUS_EXPR', 'MINUS_EXPR', ! 'MULT_EXPR', 'RDIV_EXPR', 'MAX_EXPR', 'MIN_EXPR'. ! If 'REAL_ARITHMETIC' is asked to evaluate division by zero and the target's floating point format cannot represent infinity, it will ! call 'abort'. Callers should check for this situation first, using ! 'MODE_HAS_INFINITIES'. *Note Storage Layout::. -- Macro: REAL_VALUE_TYPE REAL_VALUE_NEGATE (REAL_VALUE_TYPE X) Returns the negative of the floating point value X. *************** File: gccint.info, Node: Mode Switching *** 35954,35996 **** The following macros control mode switching optimizations: -- Macro: OPTIMIZE_MODE_SWITCHING (ENTITY) ! Define this macro if the port needs extra instructions inserted ! for mode switching in an optimizing compilation. For an example, the SH4 can perform both single and double precision floating point operations, but to perform a single precision operation, the FPSCR PR bit has to be cleared, while for ! a double precision operation, this bit has to be set. Changing ! the PR bit requires a general purpose register as a scratch ! register, hence these FPSCR sets have to be inserted before ! reload, i.e. you can't put this into instruction emitting or ! `TARGET_MACHINE_DEPENDENT_REORG'. You can have multiple entities that are mode-switched, and select at run time which entities actually need it. ! `OPTIMIZE_MODE_SWITCHING' should return nonzero for any ENTITY ! that needs mode-switching. If you define this macro, you also ! have to define `NUM_MODES_FOR_MODE_SWITCHING', `MODE_NEEDED', ! `MODE_PRIORITY_TO_MODE' and `EMIT_MODE_SET'. `MODE_AFTER', ! `MODE_ENTRY', and `MODE_EXIT' are optional. -- Macro: NUM_MODES_FOR_MODE_SWITCHING ! If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as initializer for an array of integers. Each initializer element N refers to an entity that needs mode switching, and specifies the number of different modes that might need to be set for this entity. The position of the initializer in the ! initializer--starting counting at zero--determines the integer ! that is used to refer to the mode-switched entity in question. In macros that take mode arguments / yield a mode result, modes are represented as numbers 0 ... N - 1. N is used to specify that no mode switch is needed / supplied. -- Macro: MODE_NEEDED (ENTITY, INSN) ENTITY is an integer specifying a mode-switched entity. If ! `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to return an integer value not larger than the corresponding element ! in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY must be switched into prior to the execution of INSN. -- Macro: MODE_AFTER (ENTITY, MODE, INSN) --- 35572,35614 ---- The following macros control mode switching optimizations: -- Macro: OPTIMIZE_MODE_SWITCHING (ENTITY) ! Define this macro if the port needs extra instructions inserted for ! mode switching in an optimizing compilation. For an example, the SH4 can perform both single and double precision floating point operations, but to perform a single precision operation, the FPSCR PR bit has to be cleared, while for ! a double precision operation, this bit has to be set. Changing the ! PR bit requires a general purpose register as a scratch register, ! hence these FPSCR sets have to be inserted before reload, i.e. you ! can't put this into instruction emitting or ! 'TARGET_MACHINE_DEPENDENT_REORG'. You can have multiple entities that are mode-switched, and select at run time which entities actually need it. ! 'OPTIMIZE_MODE_SWITCHING' should return nonzero for any ENTITY that ! needs mode-switching. If you define this macro, you also have to ! define 'NUM_MODES_FOR_MODE_SWITCHING', 'MODE_NEEDED', ! 'MODE_PRIORITY_TO_MODE' and 'EMIT_MODE_SET'. 'MODE_AFTER', ! 'MODE_ENTRY', and 'MODE_EXIT' are optional. -- Macro: NUM_MODES_FOR_MODE_SWITCHING ! If you define 'OPTIMIZE_MODE_SWITCHING', you have to define this as initializer for an array of integers. Each initializer element N refers to an entity that needs mode switching, and specifies the number of different modes that might need to be set for this entity. The position of the initializer in the ! initializer--starting counting at zero--determines the integer that ! is used to refer to the mode-switched entity in question. In macros that take mode arguments / yield a mode result, modes are represented as numbers 0 ... N - 1. N is used to specify that no mode switch is needed / supplied. -- Macro: MODE_NEEDED (ENTITY, INSN) ENTITY is an integer specifying a mode-switched entity. If ! 'OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to return an integer value not larger than the corresponding element ! in 'NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY must be switched into prior to the execution of INSN. -- Macro: MODE_AFTER (ENTITY, MODE, INSN) *************** The following macros control mode switch *** 36001,36044 **** -- Macro: MODE_ENTRY (ENTITY) If this macro is defined, it is evaluated for every ENTITY that ! needs mode switching. It should evaluate to an integer, which is ! a mode that ENTITY is assumed to be switched to at function entry. ! If `MODE_ENTRY' is defined then `MODE_EXIT' must be defined. -- Macro: MODE_EXIT (ENTITY) If this macro is defined, it is evaluated for every ENTITY that ! needs mode switching. It should evaluate to an integer, which is ! a mode that ENTITY is assumed to be switched to at function exit. ! If `MODE_EXIT' is defined then `MODE_ENTRY' must be defined. -- Macro: MODE_PRIORITY_TO_MODE (ENTITY, N) This macro specifies the order in which modes for ENTITY are processed. 0 is the highest priority, ! `NUM_MODES_FOR_MODE_SWITCHING[ENTITY] - 1' the lowest. The value of the macro should be an integer designating a mode for ENTITY. ! For any fixed ENTITY, `mode_priority_to_mode' (ENTITY, N) shall be ! a bijection in 0 ... `num_modes_for_mode_switching[ENTITY] - 1'. -- Macro: EMIT_MODE_SET (ENTITY, MODE, HARD_REGS_LIVE) ! Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE ! is the set of hard registers live at the point where the insn(s) ! are to be inserted.  File: gccint.info, Node: Target Attributes, Next: Emulated TLS, Prev: Mode Switching, Up: Target Macros ! 17.25 Defining target-specific uses of `__attribute__' ====================================================== Target-specific attributes may be defined for functions, data and types. These are described using the following target hooks; they also need to ! be documented in `extend.texi'. -- Target Hook: const struct attribute_spec * TARGET_ATTRIBUTE_TABLE ! If defined, this target hook points to an array of `struct ! attribute_spec' (defined in `tree.h') specifying the machine ! specific attributes for this target and some of the restrictions ! on the entities to which these attributes are applied and the arguments they take. -- Target Hook: bool TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P (const_tree --- 35619,35662 ---- -- Macro: MODE_ENTRY (ENTITY) If this macro is defined, it is evaluated for every ENTITY that ! needs mode switching. It should evaluate to an integer, which is a ! mode that ENTITY is assumed to be switched to at function entry. ! If 'MODE_ENTRY' is defined then 'MODE_EXIT' must be defined. -- Macro: MODE_EXIT (ENTITY) If this macro is defined, it is evaluated for every ENTITY that ! needs mode switching. It should evaluate to an integer, which is a ! mode that ENTITY is assumed to be switched to at function exit. If ! 'MODE_EXIT' is defined then 'MODE_ENTRY' must be defined. -- Macro: MODE_PRIORITY_TO_MODE (ENTITY, N) This macro specifies the order in which modes for ENTITY are processed. 0 is the highest priority, ! 'NUM_MODES_FOR_MODE_SWITCHING[ENTITY] - 1' the lowest. The value of the macro should be an integer designating a mode for ENTITY. ! For any fixed ENTITY, 'mode_priority_to_mode' (ENTITY, N) shall be ! a bijection in 0 ... 'num_modes_for_mode_switching[ENTITY] - 1'. -- Macro: EMIT_MODE_SET (ENTITY, MODE, HARD_REGS_LIVE) ! Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE is ! the set of hard registers live at the point where the insn(s) are ! to be inserted.  File: gccint.info, Node: Target Attributes, Next: Emulated TLS, Prev: Mode Switching, Up: Target Macros ! 17.25 Defining target-specific uses of '__attribute__' ====================================================== Target-specific attributes may be defined for functions, data and types. These are described using the following target hooks; they also need to ! be documented in 'extend.texi'. -- Target Hook: const struct attribute_spec * TARGET_ATTRIBUTE_TABLE ! If defined, this target hook points to an array of 'struct ! attribute_spec' (defined in 'tree.h') specifying the machine ! specific attributes for this target and some of the restrictions on ! the entities to which these attributes are applied and the arguments they take. -- Target Hook: bool TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P (const_tree *************** be documented in `extend.texi'. *** 36052,36061 **** -- Target Hook: int TARGET_COMP_TYPE_ATTRIBUTES (const_tree TYPE1, const_tree TYPE2) If defined, this target hook is a function which returns zero if ! the attributes on TYPE1 and TYPE2 are incompatible, one if they ! are compatible, and two if they are nearly compatible (which ! causes a warning to be generated). If this is not defined, ! machine-specific attributes are supposed always to be compatible. -- Target Hook: void TARGET_SET_DEFAULT_TYPE_ATTRIBUTES (tree TYPE) If defined, this target hook is a function which assigns default --- 35670,35679 ---- -- Target Hook: int TARGET_COMP_TYPE_ATTRIBUTES (const_tree TYPE1, const_tree TYPE2) If defined, this target hook is a function which returns zero if ! the attributes on TYPE1 and TYPE2 are incompatible, one if they are ! compatible, and two if they are nearly compatible (which causes a ! warning to be generated). If this is not defined, machine-specific ! attributes are supposed always to be compatible. -- Target Hook: void TARGET_SET_DEFAULT_TYPE_ATTRIBUTES (tree TYPE) If defined, this target hook is a function which assigns default *************** be documented in `extend.texi'. *** 36065,36188 **** TYPE2) Define this target hook if the merging of type attributes needs special handling. If defined, the result is a list of the combined ! `TYPE_ATTRIBUTES' of TYPE1 and TYPE2. It is assumed that ! `comptypes' has already been called and returned 1. This function ! may call `merge_attributes' to handle machine-independent merging. -- Target Hook: tree TARGET_MERGE_DECL_ATTRIBUTES (tree OLDDECL, tree NEWDECL) Define this target hook if the merging of decl attributes needs special handling. If defined, the result is a list of the combined ! `DECL_ATTRIBUTES' of OLDDECL and NEWDECL. NEWDECL is a duplicate declaration of OLDDECL. Examples of when this is needed are when one attribute overrides another, or when an attribute is nullified by a subsequent definition. This function may call ! `merge_attributes' to handle machine-independent merging. ! If the only target-specific handling you require is `dllimport' ! for Microsoft Windows targets, you should define the macro ! `TARGET_DLLIMPORT_DECL_ATTRIBUTES' to `1'. The compiler will then ! define a function called `merge_dllimport_decl_attributes' which can then be defined as the expansion of ! `TARGET_MERGE_DECL_ATTRIBUTES'. You can also add ! `handle_dll_attribute' in the attribute table for your port to ! perform initial processing of the `dllimport' and `dllexport' ! attributes. This is done in `i386/cygwin.h' and `i386/i386.c', ! for example. -- Target Hook: bool TARGET_VALID_DLLIMPORT_ATTRIBUTE_P (const_tree DECL) ! DECL is a variable or function with `__attribute__((dllimport))' specified. Use this hook if the target needs to add extra ! validation checks to `handle_dll_attribute'. -- Macro: TARGET_DECLSPEC Define this macro to a nonzero value if you want to treat ! `__declspec(X)' as equivalent to `__attribute((X))'. By default, this behavior is enabled only for targets that define ! `TARGET_DLLIMPORT_DECL_ATTRIBUTES'. The current implementation of ! `__declspec' is via a built-in macro, but you should not rely on this implementation detail. -- Target Hook: void TARGET_INSERT_ATTRIBUTES (tree NODE, tree *ATTR_PTR) ! Define this target hook if you want to be able to add attributes ! to a decl when it is being created. This is normally useful for ! back ends which wish to implement a pragma by using the attributes ! which correspond to the pragma's effect. The NODE argument is the ! decl which is being created. The ATTR_PTR argument is a pointer ! to the attribute list for this decl. The list itself should not ! be modified, since it may be shared with other decls, but ! attributes may be chained on the head of the list and `*ATTR_PTR' ! modified to point to the new attributes, or a copy of the list may ! be made if further changes are needed. -- Target Hook: bool TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P (const_tree FNDECL) ! This target hook returns `true' if it is ok to inline FNDECL into the current function, despite its having target-specific ! attributes, `false' otherwise. By default, if a function has a target specific attribute attached to it, it will not be inlined. ! -- Target Hook: bool TARGET_OPTION_VALID_ATTRIBUTE_P (tree FNDECL, ! tree NAME, tree ARGS, int FLAGS) ! This hook is called to parse `attribute(target("..."))', which allows setting target-specific options on individual functions. These function-specific options may differ from the options ! specified on the command line. The hook should return `true' if the options are valid. ! The hook should set the `DECL_FUNCTION_SPECIFIC_TARGET' field in the function declaration to hold a pointer to a target-specific ! `struct cl_target_option' structure. -- Target Hook: void TARGET_OPTION_SAVE (struct cl_target_option *PTR) This hook is called to save any additional target-specific ! information in the `struct cl_target_option' structure for function-specific options. *Note Option file format::. -- Target Hook: void TARGET_OPTION_RESTORE (struct cl_target_option *PTR) This hook is called to restore any additional target-specific ! information in the `struct cl_target_option' structure for function-specific options. -- Target Hook: void TARGET_OPTION_PRINT (FILE *FILE, int INDENT, struct cl_target_option *PTR) This hook is called to print any additional target-specific ! information in the `struct cl_target_option' structure for function-specific options. -- Target Hook: bool TARGET_OPTION_PRAGMA_PARSE (tree ARGS, tree POP_TARGET) ! This target hook parses the options for `#pragma GCC target', which sets the target-specific options for functions that occur later in ! the input stream. The options accepted should be the same as ! those handled by the `TARGET_OPTION_VALID_ATTRIBUTE_P' hook. -- Target Hook: void TARGET_OPTION_OVERRIDE (void) ! Sometimes certain combinations of command options do not make ! sense on a particular target machine. You can override the hook ! `TARGET_OPTION_OVERRIDE' to take account of this. This hooks is called once just after all the command options have been parsed. Don't use this hook to turn on various extra optimizations for ! `-O'. That is what `TARGET_OPTION_OPTIMIZATION' is for. If you need to do something whenever the optimization level is changed via the optimize attribute or pragma, see ! `TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE' -- Target Hook: bool TARGET_OPTION_FUNCTION_VERSIONS (tree DECL1, tree DECL2) ! This target hook returns `true' if DECL1 and DECL2 are versions of the same function. DECL1 and DECL2 are function versions if and only if they have the same function signature and different target specific attributes, that is, they are compiled for different target machines. -- Target Hook: bool TARGET_CAN_INLINE_P (tree CALLER, tree CALLEE) ! This target hook returns `false' if the CALLER function cannot inline CALLEE, based on target specific information. By default, inlining is not allowed if the callee function has function specific target options and the caller does not use the same --- 35683,35806 ---- TYPE2) Define this target hook if the merging of type attributes needs special handling. If defined, the result is a list of the combined ! 'TYPE_ATTRIBUTES' of TYPE1 and TYPE2. It is assumed that ! 'comptypes' has already been called and returned 1. This function ! may call 'merge_attributes' to handle machine-independent merging. -- Target Hook: tree TARGET_MERGE_DECL_ATTRIBUTES (tree OLDDECL, tree NEWDECL) Define this target hook if the merging of decl attributes needs special handling. If defined, the result is a list of the combined ! 'DECL_ATTRIBUTES' of OLDDECL and NEWDECL. NEWDECL is a duplicate declaration of OLDDECL. Examples of when this is needed are when one attribute overrides another, or when an attribute is nullified by a subsequent definition. This function may call ! 'merge_attributes' to handle machine-independent merging. ! If the only target-specific handling you require is 'dllimport' for ! Microsoft Windows targets, you should define the macro ! 'TARGET_DLLIMPORT_DECL_ATTRIBUTES' to '1'. The compiler will then ! define a function called 'merge_dllimport_decl_attributes' which can then be defined as the expansion of ! 'TARGET_MERGE_DECL_ATTRIBUTES'. You can also add ! 'handle_dll_attribute' in the attribute table for your port to ! perform initial processing of the 'dllimport' and 'dllexport' ! attributes. This is done in 'i386/cygwin.h' and 'i386/i386.c', for ! example. -- Target Hook: bool TARGET_VALID_DLLIMPORT_ATTRIBUTE_P (const_tree DECL) ! DECL is a variable or function with '__attribute__((dllimport))' specified. Use this hook if the target needs to add extra ! validation checks to 'handle_dll_attribute'. -- Macro: TARGET_DECLSPEC Define this macro to a nonzero value if you want to treat ! '__declspec(X)' as equivalent to '__attribute((X))'. By default, this behavior is enabled only for targets that define ! 'TARGET_DLLIMPORT_DECL_ATTRIBUTES'. The current implementation of ! '__declspec' is via a built-in macro, but you should not rely on this implementation detail. -- Target Hook: void TARGET_INSERT_ATTRIBUTES (tree NODE, tree *ATTR_PTR) ! Define this target hook if you want to be able to add attributes to ! a decl when it is being created. This is normally useful for back ! ends which wish to implement a pragma by using the attributes which ! correspond to the pragma's effect. The NODE argument is the decl ! which is being created. The ATTR_PTR argument is a pointer to the ! attribute list for this decl. The list itself should not be ! modified, since it may be shared with other decls, but attributes ! may be chained on the head of the list and '*ATTR_PTR' modified to ! point to the new attributes, or a copy of the list may be made if ! further changes are needed. -- Target Hook: bool TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P (const_tree FNDECL) ! This target hook returns 'true' if it is ok to inline FNDECL into the current function, despite its having target-specific ! attributes, 'false' otherwise. By default, if a function has a target specific attribute attached to it, it will not be inlined. ! -- Target Hook: bool TARGET_OPTION_VALID_ATTRIBUTE_P (tree FNDECL, tree ! NAME, tree ARGS, int FLAGS) ! This hook is called to parse 'attribute(target("..."))', which allows setting target-specific options on individual functions. These function-specific options may differ from the options ! specified on the command line. The hook should return 'true' if the options are valid. ! The hook should set the 'DECL_FUNCTION_SPECIFIC_TARGET' field in the function declaration to hold a pointer to a target-specific ! 'struct cl_target_option' structure. -- Target Hook: void TARGET_OPTION_SAVE (struct cl_target_option *PTR) This hook is called to save any additional target-specific ! information in the 'struct cl_target_option' structure for function-specific options. *Note Option file format::. -- Target Hook: void TARGET_OPTION_RESTORE (struct cl_target_option *PTR) This hook is called to restore any additional target-specific ! information in the 'struct cl_target_option' structure for function-specific options. -- Target Hook: void TARGET_OPTION_PRINT (FILE *FILE, int INDENT, struct cl_target_option *PTR) This hook is called to print any additional target-specific ! information in the 'struct cl_target_option' structure for function-specific options. -- Target Hook: bool TARGET_OPTION_PRAGMA_PARSE (tree ARGS, tree POP_TARGET) ! This target hook parses the options for '#pragma GCC target', which sets the target-specific options for functions that occur later in ! the input stream. The options accepted should be the same as those ! handled by the 'TARGET_OPTION_VALID_ATTRIBUTE_P' hook. -- Target Hook: void TARGET_OPTION_OVERRIDE (void) ! Sometimes certain combinations of command options do not make sense ! on a particular target machine. You can override the hook ! 'TARGET_OPTION_OVERRIDE' to take account of this. This hooks is called once just after all the command options have been parsed. Don't use this hook to turn on various extra optimizations for ! '-O'. That is what 'TARGET_OPTION_OPTIMIZATION' is for. If you need to do something whenever the optimization level is changed via the optimize attribute or pragma, see ! 'TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE' -- Target Hook: bool TARGET_OPTION_FUNCTION_VERSIONS (tree DECL1, tree DECL2) ! This target hook returns 'true' if DECL1 and DECL2 are versions of the same function. DECL1 and DECL2 are function versions if and only if they have the same function signature and different target specific attributes, that is, they are compiled for different target machines. -- Target Hook: bool TARGET_CAN_INLINE_P (tree CALLER, tree CALLEE) ! This target hook returns 'false' if the CALLER function cannot inline CALLEE, based on target specific information. By default, inlining is not allowed if the callee function has function specific target options and the caller does not use the same *************** layer. *** 36203,36210 **** The emulation layer works by creating a control object for every TLS object. To access the TLS object, a lookup function is provided which, ! when given the address of the control object, will return the address ! of the current thread's instance of the TLS object. -- Target Hook: const char * TARGET_EMUTLS_GET_ADDRESS Contains the name of the helper function that uses a TLS control --- 35821,35828 ---- The emulation layer works by creating a control object for every TLS object. To access the TLS object, a lookup function is provided which, ! when given the address of the control object, will return the address of ! the current thread's instance of the TLS object. -- Target Hook: const char * TARGET_EMUTLS_GET_ADDRESS Contains the name of the helper function that uses a TLS control *************** of the current thread's instance of the *** 36214,36253 **** -- Target Hook: const char * TARGET_EMUTLS_REGISTER_COMMON Contains the name of the helper function that should be used at program startup to register TLS objects that are implicitly ! initialized to zero. If this is `NULL', all TLS objects will have explicit initializers. The default causes libgcc's emulated TLS registration function to be used. -- Target Hook: const char * TARGET_EMUTLS_VAR_SECTION Contains the name of the section in which TLS control variables ! should be placed. The default of `NULL' allows these to be placed in any section. -- Target Hook: const char * TARGET_EMUTLS_TMPL_SECTION Contains the name of the section in which TLS initializers should ! be placed. The default of `NULL' allows these to be placed in any section. -- Target Hook: const char * TARGET_EMUTLS_VAR_PREFIX Contains the prefix to be prepended to TLS control variable names. ! The default of `NULL' uses a target-specific prefix. -- Target Hook: const char * TARGET_EMUTLS_TMPL_PREFIX Contains the prefix to be prepended to TLS initializer objects. ! The default of `NULL' uses a target-specific prefix. -- Target Hook: tree TARGET_EMUTLS_VAR_FIELDS (tree TYPE, tree *NAME) Specifies a function that generates the FIELD_DECLs for a TLS control object type. TYPE is the RECORD_TYPE the fields are for and NAME should be filled with the structure tag, if the default of ! `__emutls_object' is unsuitable. The default creates a type suitable for libgcc's emulated TLS function. -- Target Hook: tree TARGET_EMUTLS_VAR_INIT (tree VAR, tree DECL, tree TMPL_ADDR) Specifies a function that generates the CONSTRUCTOR to initialize a ! TLS control object. VAR is the TLS control object, DECL is the ! TLS object and TMPL_ADDR is the address of the initializer. The default initializes libgcc's emulated TLS control object. -- Target Hook: bool TARGET_EMUTLS_VAR_ALIGN_FIXED --- 35832,35871 ---- -- Target Hook: const char * TARGET_EMUTLS_REGISTER_COMMON Contains the name of the helper function that should be used at program startup to register TLS objects that are implicitly ! initialized to zero. If this is 'NULL', all TLS objects will have explicit initializers. The default causes libgcc's emulated TLS registration function to be used. -- Target Hook: const char * TARGET_EMUTLS_VAR_SECTION Contains the name of the section in which TLS control variables ! should be placed. The default of 'NULL' allows these to be placed in any section. -- Target Hook: const char * TARGET_EMUTLS_TMPL_SECTION Contains the name of the section in which TLS initializers should ! be placed. The default of 'NULL' allows these to be placed in any section. -- Target Hook: const char * TARGET_EMUTLS_VAR_PREFIX Contains the prefix to be prepended to TLS control variable names. ! The default of 'NULL' uses a target-specific prefix. -- Target Hook: const char * TARGET_EMUTLS_TMPL_PREFIX Contains the prefix to be prepended to TLS initializer objects. ! The default of 'NULL' uses a target-specific prefix. -- Target Hook: tree TARGET_EMUTLS_VAR_FIELDS (tree TYPE, tree *NAME) Specifies a function that generates the FIELD_DECLs for a TLS control object type. TYPE is the RECORD_TYPE the fields are for and NAME should be filled with the structure tag, if the default of ! '__emutls_object' is unsuitable. The default creates a type suitable for libgcc's emulated TLS function. -- Target Hook: tree TARGET_EMUTLS_VAR_INIT (tree VAR, tree DECL, tree TMPL_ADDR) Specifies a function that generates the CONSTRUCTOR to initialize a ! TLS control object. VAR is the TLS control object, DECL is the TLS ! object and TMPL_ADDR is the address of the initializer. The default initializes libgcc's emulated TLS control object. -- Target Hook: bool TARGET_EMUTLS_VAR_ALIGN_FIXED *************** of the current thread's instance of the *** 36256,36262 **** optimize single objects. The default is false. -- Target Hook: bool TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS ! Specifies whether a DWARF `DW_OP_form_tls_address' location descriptor may be used to describe emulated TLS control objects.  --- 35874,35880 ---- optimize single objects. The default is false. -- Target Hook: bool TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS ! Specifies whether a DWARF 'DW_OP_form_tls_address' location descriptor may be used to describe emulated TLS control objects.  *************** and memory using asm-ized variables. Fo *** 36277,36283 **** ("c0r1" is the default name of register 1 in coprocessor 0; alternate names may be added as described below, or the default names may be ! overridden entirely in `SUBTARGET_CONDITIONAL_REGISTER_USAGE'.) Coprocessor registers are assumed to be epilogue-used; sets to them will be preserved even if it does not appear that the register is used --- 35895,35901 ---- ("c0r1" is the default name of register 1 in coprocessor 0; alternate names may be added as described below, or the default names may be ! overridden entirely in 'SUBTARGET_CONDITIONAL_REGISTER_USAGE'.) Coprocessor registers are assumed to be epilogue-used; sets to them will be preserved even if it does not appear that the register is used *************** File: gccint.info, Node: PCH Target, N *** 36298,36328 **** -- Target Hook: void * TARGET_GET_PCH_VALIDITY (size_t *SZ) This hook returns a pointer to the data needed by ! `TARGET_PCH_VALID_P' and sets `*SZ' to the size of the data in bytes. -- Target Hook: const char * TARGET_PCH_VALID_P (const void *DATA, size_t SZ) This hook checks whether the options used to create a PCH file are ! compatible with the current settings. It returns `NULL' if so and a suitable error message if not. Error messages will be presented ! to the user and must be localized using `_(MSG)'. ! DATA is the data that was returned by `TARGET_GET_PCH_VALIDITY' when the PCH file was created and SZ is the size of that data in bytes. It's safe to assume that the data was created by the same version of the compiler, so no format checking is needed. ! The default definition of `default_pch_valid_p' should be suitable for most targets. -- Target Hook: const char * TARGET_CHECK_PCH_TARGET_FLAGS (int PCH_FLAGS) If this hook is nonnull, the default implementation of ! `TARGET_PCH_VALID_P' will use it to check for compatible values of ! `target_flags'. PCH_FLAGS specifies the value that `target_flags' ! had when the PCH file was created. The return value is the same ! as for `TARGET_PCH_VALID_P'. -- Target Hook: void TARGET_PREPARE_PCH_SAVE (void) Called before writing out a PCH file. If the target has some --- 35916,35946 ---- -- Target Hook: void * TARGET_GET_PCH_VALIDITY (size_t *SZ) This hook returns a pointer to the data needed by ! 'TARGET_PCH_VALID_P' and sets '*SZ' to the size of the data in bytes. -- Target Hook: const char * TARGET_PCH_VALID_P (const void *DATA, size_t SZ) This hook checks whether the options used to create a PCH file are ! compatible with the current settings. It returns 'NULL' if so and a suitable error message if not. Error messages will be presented ! to the user and must be localized using '_(MSG)'. ! DATA is the data that was returned by 'TARGET_GET_PCH_VALIDITY' when the PCH file was created and SZ is the size of that data in bytes. It's safe to assume that the data was created by the same version of the compiler, so no format checking is needed. ! The default definition of 'default_pch_valid_p' should be suitable for most targets. -- Target Hook: const char * TARGET_CHECK_PCH_TARGET_FLAGS (int PCH_FLAGS) If this hook is nonnull, the default implementation of ! 'TARGET_PCH_VALID_P' will use it to check for compatible values of ! 'target_flags'. PCH_FLAGS specifies the value that 'target_flags' ! had when the PCH file was created. The return value is the same as ! for 'TARGET_PCH_VALID_P'. -- Target Hook: void TARGET_PREPARE_PCH_SAVE (void) Called before writing out a PCH file. If the target has some *************** File: gccint.info, Node: C++ ABI, Next *** 36343,36362 **** -- Target Hook: bool TARGET_CXX_GUARD_MASK_BIT (void) This hook determines how guard variables are used. It should ! return `false' (the default) if the first byte should be used. A ! return value of `true' indicates that only the least significant bit should be used. -- Target Hook: tree TARGET_CXX_GET_COOKIE_SIZE (tree TYPE) This hook returns the size of the cookie to use when allocating an array whose elements have the indicated TYPE. Assumes that it is ! already known that a cookie is needed. The default is `max(sizeof (size_t), alignof(type))', as defined in section 2.7 of the IA64/Generic C++ ABI. -- Target Hook: bool TARGET_CXX_COOKIE_HAS_SIZE (void) ! This hook should return `true' if the element size should be ! stored in array cookies. The default is to return `false'. -- Target Hook: int TARGET_CXX_IMPORT_EXPORT_CLASS (tree TYPE, int IMPORT_EXPORT) --- 35961,35980 ---- -- Target Hook: bool TARGET_CXX_GUARD_MASK_BIT (void) This hook determines how guard variables are used. It should ! return 'false' (the default) if the first byte should be used. A ! return value of 'true' indicates that only the least significant bit should be used. -- Target Hook: tree TARGET_CXX_GET_COOKIE_SIZE (tree TYPE) This hook returns the size of the cookie to use when allocating an array whose elements have the indicated TYPE. Assumes that it is ! already known that a cookie is needed. The default is 'max(sizeof (size_t), alignof(type))', as defined in section 2.7 of the IA64/Generic C++ ABI. -- Target Hook: bool TARGET_CXX_COOKIE_HAS_SIZE (void) ! This hook should return 'true' if the element size should be stored ! in array cookies. The default is to return 'false'. -- Target Hook: int TARGET_CXX_IMPORT_EXPORT_CLASS (tree TYPE, int IMPORT_EXPORT) *************** File: gccint.info, Node: C++ ABI, Next *** 36368,36376 **** the backend's targeted operating system. -- Target Hook: bool TARGET_CXX_CDTOR_RETURNS_THIS (void) ! This hook should return `true' if constructors and destructors ! return the address of the object created/destroyed. The default ! is to return `false'. -- Target Hook: bool TARGET_CXX_KEY_METHOD_MAY_BE_INLINE (void) This hook returns true if the key method for a class (i.e., the --- 35986,35994 ---- the backend's targeted operating system. -- Target Hook: bool TARGET_CXX_CDTOR_RETURNS_THIS (void) ! This hook should return 'true' if constructors and destructors ! return the address of the object created/destroyed. The default is ! to return 'false'. -- Target Hook: bool TARGET_CXX_KEY_METHOD_MAY_BE_INLINE (void) This hook returns true if the key method for a class (i.e., the *************** File: gccint.info, Node: C++ ABI, Next *** 36380,36386 **** function so long as the function is not declared inline in the class definition. Under some variants of the ABI, an inline function can never be the key method. The default is to return ! `true'. -- Target Hook: void TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY (tree DECL) --- 35998,36004 ---- function so long as the function is not declared inline in the class definition. Under some variants of the ABI, an inline function can never be the key method. The default is to return ! 'true'. -- Target Hook: void TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY (tree DECL) *************** File: gccint.info, Node: C++ ABI, Next *** 36389,36395 **** external linkage in this translation unit. No ELF visibility has been explicitly specified. If the target needs to specify a visibility other than that of the containing class, use this hook ! to set `DECL_VISIBILITY' and `DECL_VISIBILITY_SPECIFIED'. -- Target Hook: bool TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT (void) This hook returns true (the default) if virtual tables and other --- 36007,36013 ---- external linkage in this translation unit. No ELF visibility has been explicitly specified. If the target needs to specify a visibility other than that of the containing class, use this hook ! to set 'DECL_VISIBILITY' and 'DECL_VISIBILITY_SPECIFIED'. -- Target Hook: bool TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT (void) This hook returns true (the default) if virtual tables and other *************** File: gccint.info, Node: C++ ABI, Next *** 36404,36429 **** be COMDAT, false if it should not be COMDAT. -- Target Hook: bool TARGET_CXX_USE_AEABI_ATEXIT (void) ! This hook returns true if `__aeabi_atexit' (as defined by the ARM EABI) should be used to register static destructors when ! `-fuse-cxa-atexit' is in effect. The default is to return false ! to use `__cxa_atexit'. -- Target Hook: bool TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT (void) ! This hook returns true if the target `atexit' function can be used ! in the same manner as `__cxa_atexit' to register C++ static ! destructors. This requires that `atexit'-registered functions in shared libraries are run in the correct order when the libraries ! are unloaded. The default is to return false. -- Target Hook: void TARGET_CXX_ADJUST_CLASS_AT_DEFINITION (tree TYPE) ! TYPE is a C++ class (i.e., RECORD_TYPE or UNION_TYPE) that has ! just been defined. Use this hook to make adjustments to the class ! (eg, tweak visibility or perform any other required target modifications). -- Target Hook: tree TARGET_CXX_DECL_MANGLING_CONTEXT (const_tree DECL) ! Return target-specific mangling context of DECL or `NULL_TREE'.  File: gccint.info, Node: Named Address Spaces, Next: Misc, Prev: C++ ABI, Up: Target Macros --- 36022,36047 ---- be COMDAT, false if it should not be COMDAT. -- Target Hook: bool TARGET_CXX_USE_AEABI_ATEXIT (void) ! This hook returns true if '__aeabi_atexit' (as defined by the ARM EABI) should be used to register static destructors when ! '-fuse-cxa-atexit' is in effect. The default is to return false to ! use '__cxa_atexit'. -- Target Hook: bool TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT (void) ! This hook returns true if the target 'atexit' function can be used ! in the same manner as '__cxa_atexit' to register C++ static ! destructors. This requires that 'atexit'-registered functions in shared libraries are run in the correct order when the libraries ! are unloaded. The default is to return false. -- Target Hook: void TARGET_CXX_ADJUST_CLASS_AT_DEFINITION (tree TYPE) ! TYPE is a C++ class (i.e., RECORD_TYPE or UNION_TYPE) that has just ! been defined. Use this hook to make adjustments to the class (eg, ! tweak visibility or perform any other required target modifications). -- Target Hook: tree TARGET_CXX_DECL_MANGLING_CONTEXT (const_tree DECL) ! Return target-specific mangling context of DECL or 'NULL_TREE'.  File: gccint.info, Node: Named Address Spaces, Next: Misc, Prev: C++ ABI, Up: Target Macros *************** File: gccint.info, Node: Named Address *** 36432,36453 **** ============================================= The draft technical report of the ISO/IEC JTC1 S22 WG14 N1275 standards ! committee, `Programming Languages - C - Extensions to support embedded processors', specifies a syntax for embedded processors to specify alternate address spaces. You can configure a GCC port to support section 5.1 of the draft report to add support for address spaces other than the default address space. These address spaces are new keywords ! that are similar to the `volatile' and `const' type attributes. Pointers to named address spaces can have a different size than pointers to the generic address space. ! For example, the SPU port uses the `__ea' address space to refer to memory in the host processor, rather than memory local to the SPU ! processor. Access to memory in the `__ea' address space involves issuing DMA operations to move data between the host processor and the ! local processor memory address space. Pointers in the `__ea' address ! space are either 32 bits or 64 bits based on the `-mea32' or `-mea64' switches (native SPU pointers are always 32 bits). Internally, address spaces are represented as a small integer in the --- 36050,36071 ---- ============================================= The draft technical report of the ISO/IEC JTC1 S22 WG14 N1275 standards ! committee, 'Programming Languages - C - Extensions to support embedded processors', specifies a syntax for embedded processors to specify alternate address spaces. You can configure a GCC port to support section 5.1 of the draft report to add support for address spaces other than the default address space. These address spaces are new keywords ! that are similar to the 'volatile' and 'const' type attributes. Pointers to named address spaces can have a different size than pointers to the generic address space. ! For example, the SPU port uses the '__ea' address space to refer to memory in the host processor, rather than memory local to the SPU ! processor. Access to memory in the '__ea' address space involves issuing DMA operations to move data between the host processor and the ! local processor memory address space. Pointers in the '__ea' address ! space are either 32 bits or 64 bits based on the '-mea32' or '-mea64' switches (native SPU pointers are always 32 bits). Internally, address spaces are represented as a small integer in the *************** range 0 to 15 with address space 0 being *** 36455,36462 **** address space. To register a named address space qualifier keyword with the C front ! end, the target may call the `c_register_addr_space' routine. For ! example, the SPU port uses the following to declare `__ea' as the keyword for named address space #1: #define ADDR_SPACE_EA 1 c_register_addr_space ("__ea", ADDR_SPACE_EA); --- 36073,36080 ---- address space. To register a named address space qualifier keyword with the C front ! end, the target may call the 'c_register_addr_space' routine. For ! example, the SPU port uses the following to declare '__ea' as the keyword for named address space #1: #define ADDR_SPACE_EA 1 c_register_addr_space ("__ea", ADDR_SPACE_EA); *************** keyword for named address space #1: *** 36465,36505 **** (addr_space_t ADDRESS_SPACE) Define this to return the machine mode to use for pointers to ADDRESS_SPACE if the target supports named address spaces. The ! default version of this hook returns `ptr_mode' for the generic address space only. -- Target Hook: enum machine_mode TARGET_ADDR_SPACE_ADDRESS_MODE (addr_space_t ADDRESS_SPACE) Define this to return the machine mode to use for addresses in ADDRESS_SPACE if the target supports named address spaces. The ! default version of this hook returns `Pmode' for the generic address space only. -- Target Hook: bool TARGET_ADDR_SPACE_VALID_POINTER_MODE (enum machine_mode MODE, addr_space_t AS) Define this to return nonzero if the port can handle pointers with machine mode MODE to address space AS. This target hook is the ! same as the `TARGET_VALID_POINTER_MODE' target hook, except that ! it includes explicit named address space support. The default ! version of this hook returns true for the modes returned by either ! the `TARGET_ADDR_SPACE_POINTER_MODE' or ! `TARGET_ADDR_SPACE_ADDRESS_MODE' target hooks for the given ! address space. -- Target Hook: bool TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P (enum machine_mode MODE, rtx EXP, bool STRICT, addr_space_t AS) Define this to return true if EXP is a valid address for mode MODE in the named address space AS. The STRICT parameter says whether strict addressing is in effect after reload has finished. This ! target hook is the same as the `TARGET_LEGITIMATE_ADDRESS_P' ! target hook, except that it includes explicit named address space ! support. -- Target Hook: rtx TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS (rtx X, rtx OLDX, enum machine_mode MODE, addr_space_t AS) Define this to modify an invalid address X to be a valid address with mode MODE in the named address space AS. This target hook is ! the same as the `TARGET_LEGITIMIZE_ADDRESS' target hook, except that it includes explicit named address space support. -- Target Hook: bool TARGET_ADDR_SPACE_SUBSET_P (addr_space_t SUBSET, --- 36083,36122 ---- (addr_space_t ADDRESS_SPACE) Define this to return the machine mode to use for pointers to ADDRESS_SPACE if the target supports named address spaces. The ! default version of this hook returns 'ptr_mode' for the generic address space only. -- Target Hook: enum machine_mode TARGET_ADDR_SPACE_ADDRESS_MODE (addr_space_t ADDRESS_SPACE) Define this to return the machine mode to use for addresses in ADDRESS_SPACE if the target supports named address spaces. The ! default version of this hook returns 'Pmode' for the generic address space only. -- Target Hook: bool TARGET_ADDR_SPACE_VALID_POINTER_MODE (enum machine_mode MODE, addr_space_t AS) Define this to return nonzero if the port can handle pointers with machine mode MODE to address space AS. This target hook is the ! same as the 'TARGET_VALID_POINTER_MODE' target hook, except that it ! includes explicit named address space support. The default version ! of this hook returns true for the modes returned by either the ! 'TARGET_ADDR_SPACE_POINTER_MODE' or ! 'TARGET_ADDR_SPACE_ADDRESS_MODE' target hooks for the given address ! space. -- Target Hook: bool TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P (enum machine_mode MODE, rtx EXP, bool STRICT, addr_space_t AS) Define this to return true if EXP is a valid address for mode MODE in the named address space AS. The STRICT parameter says whether strict addressing is in effect after reload has finished. This ! target hook is the same as the 'TARGET_LEGITIMATE_ADDRESS_P' target ! hook, except that it includes explicit named address space support. -- Target Hook: rtx TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS (rtx X, rtx OLDX, enum machine_mode MODE, addr_space_t AS) Define this to modify an invalid address X to be a valid address with mode MODE in the named address space AS. This target hook is ! the same as the 'TARGET_LEGITIMIZE_ADDRESS' target hook, except that it includes explicit named address space support. -- Target Hook: bool TARGET_ADDR_SPACE_SUBSET_P (addr_space_t SUBSET, *************** keyword for named address space #1: *** 36518,36524 **** a new pointer expression with type TO_TYPE that points to a different named address space. When this hook it called, it is guaranteed that one of the two address spaces is a subset of the ! other, as determined by the `TARGET_ADDR_SPACE_SUBSET_P' target hook.  --- 36135,36141 ---- a new pointer expression with type TO_TYPE that points to a different named address space. When this hook it called, it is guaranteed that one of the two address spaces is a subset of the ! other, as determined by the 'TARGET_ADDR_SPACE_SUBSET_P' target hook.  *************** Here are several miscellaneous parameter *** 36533,36540 **** Define this boolean macro to indicate whether or not your architecture has conditional branches that can span all of memory. It is used in conjunction with an optimization that partitions hot ! and cold basic blocks into separate sections of the executable. ! If this macro is set to false, gcc will convert any conditional branches that attempt to cross between sections into unconditional branches or indirect jumps. --- 36150,36157 ---- Define this boolean macro to indicate whether or not your architecture has conditional branches that can span all of memory. It is used in conjunction with an optimization that partitions hot ! and cold basic blocks into separate sections of the executable. If ! this macro is set to false, gcc will convert any conditional branches that attempt to cross between sections into unconditional branches or indirect jumps. *************** Here are several miscellaneous parameter *** 36552,36562 **** elements of a jump-table should have. -- Macro: CASE_VECTOR_SHORTEN_MODE (MIN_OFFSET, MAX_OFFSET, BODY) ! Optional: return the preferred mode for an `addr_diff_vec' when ! the minimum and maximum offset are known. If you define this, it enables extra code in branch shortening to deal with ! `addr_diff_vec'. To make this work, you also have to define ! `INSN_ALIGN' and make the alignment for `addr_diff_vec' explicit. The BODY argument is provided so that the offset_unsigned and scale flags can be updated. --- 36169,36179 ---- elements of a jump-table should have. -- Macro: CASE_VECTOR_SHORTEN_MODE (MIN_OFFSET, MAX_OFFSET, BODY) ! Optional: return the preferred mode for an 'addr_diff_vec' when the ! minimum and maximum offset are known. If you define this, it enables extra code in branch shortening to deal with ! 'addr_diff_vec'. To make this work, you also have to define ! 'INSN_ALIGN' and make the alignment for 'addr_diff_vec' explicit. The BODY argument is provided so that the offset_unsigned and scale flags can be updated. *************** Here are several miscellaneous parameter *** 36564,36577 **** Define this macro to be a C expression to indicate when jump-tables should contain relative addresses. You need not define this macro if jump-tables never contain relative addresses, or jump-tables ! should contain relative addresses only when `-fPIC' or `-fPIC' is in effect. -- Target Hook: unsigned int TARGET_CASE_VALUES_THRESHOLD (void) This function return the smallest number of different values for which it is best to use a jump-table instead of a tree of conditional branches. The default is four for machines with a ! `casesi' instruction and five otherwise. This is best for most machines. -- Macro: WORD_REGISTER_OPERATIONS --- 36181,36194 ---- Define this macro to be a C expression to indicate when jump-tables should contain relative addresses. You need not define this macro if jump-tables never contain relative addresses, or jump-tables ! should contain relative addresses only when '-fPIC' or '-fPIC' is in effect. -- Target Hook: unsigned int TARGET_CASE_VALUES_THRESHOLD (void) This function return the smallest number of different values for which it is best to use a jump-table instead of a tree of conditional branches. The default is four for machines with a ! 'casesi' instruction and five otherwise. This is best for most machines. -- Macro: WORD_REGISTER_OPERATIONS *************** Here are several miscellaneous parameter *** 36582,36611 **** -- Macro: LOAD_EXTEND_OP (MEM_MODE) Define this macro to be a C expression indicating when insns that ! read memory in MEM_MODE, an integral mode narrower than a word, ! set the bits outside of MEM_MODE to be either the sign-extension ! or the zero-extension of the data read. Return `SIGN_EXTEND' for ! values of MEM_MODE for which the insn sign-extends, `ZERO_EXTEND' ! for which it zero-extends, and `UNKNOWN' for other modes. This macro is not called with MEM_MODE non-integral or with a width ! greater than or equal to `BITS_PER_WORD', so you may return any value in this case. Do not define this macro if it would always ! return `UNKNOWN'. On machines where this macro is defined, you ! will normally define it as the constant `SIGN_EXTEND' or ! `ZERO_EXTEND'. ! You may return a non-`UNKNOWN' value even if for some hard registers the sign extension is not performed, if for the ! `REGNO_REG_CLASS' of these hard registers ! `CANNOT_CHANGE_MODE_CLASS' returns nonzero when the FROM mode is MEM_MODE and the TO mode is any integral mode larger than this but ! not larger than `word_mode'. ! You must return `UNKNOWN' if for some hard registers that allow ! this mode, `CANNOT_CHANGE_MODE_CLASS' says that they cannot change ! to `word_mode', but that they can change to another integral mode ! that is larger then MEM_MODE but still smaller than `word_mode'. -- Macro: SHORT_IMMEDIATES_SIGN_EXTEND Define this macro if loading short immediate values into registers --- 36199,36228 ---- -- Macro: LOAD_EXTEND_OP (MEM_MODE) Define this macro to be a C expression indicating when insns that ! read memory in MEM_MODE, an integral mode narrower than a word, set ! the bits outside of MEM_MODE to be either the sign-extension or the ! zero-extension of the data read. Return 'SIGN_EXTEND' for values ! of MEM_MODE for which the insn sign-extends, 'ZERO_EXTEND' for ! which it zero-extends, and 'UNKNOWN' for other modes. This macro is not called with MEM_MODE non-integral or with a width ! greater than or equal to 'BITS_PER_WORD', so you may return any value in this case. Do not define this macro if it would always ! return 'UNKNOWN'. On machines where this macro is defined, you ! will normally define it as the constant 'SIGN_EXTEND' or ! 'ZERO_EXTEND'. ! You may return a non-'UNKNOWN' value even if for some hard registers the sign extension is not performed, if for the ! 'REGNO_REG_CLASS' of these hard registers ! 'CANNOT_CHANGE_MODE_CLASS' returns nonzero when the FROM mode is MEM_MODE and the TO mode is any integral mode larger than this but ! not larger than 'word_mode'. ! You must return 'UNKNOWN' if for some hard registers that allow ! this mode, 'CANNOT_CHANGE_MODE_CLASS' says that they cannot change ! to 'word_mode', but that they can change to another integral mode ! that is larger then MEM_MODE but still smaller than 'word_mode'. -- Macro: SHORT_IMMEDIATES_SIGN_EXTEND Define this macro if loading short immediate values into registers *************** Here are several miscellaneous parameter *** 36613,36620 **** -- Target Hook: unsigned int TARGET_MIN_DIVISIONS_FOR_RECIP_MUL (enum machine_mode MODE) ! When `-ffast-math' is in effect, GCC tries to optimize divisions ! by the same divisor, by turning them into multiplications by the reciprocal. This target hook specifies the minimum number of divisions that should be there for GCC to perform the optimization for a variable of mode MODE. The default implementation returns 3 --- 36230,36237 ---- -- Target Hook: unsigned int TARGET_MIN_DIVISIONS_FOR_RECIP_MUL (enum machine_mode MODE) ! When '-ffast-math' is in effect, GCC tries to optimize divisions by ! the same divisor, by turning them into multiplications by the reciprocal. This target hook specifies the minimum number of divisions that should be there for GCC to perform the optimization for a variable of mode MODE. The default implementation returns 3 *************** Here are several miscellaneous parameter *** 36629,36650 **** -- Macro: MAX_MOVE_MAX The maximum number of bytes that a single instruction can move quickly between memory and registers or between two memory ! locations. If this is undefined, the default is `MOVE_MAX'. Otherwise, it is the constant value that is the largest value that ! `MOVE_MAX' can have at run-time. -- Macro: SHIFT_COUNT_TRUNCATED A C expression that is nonzero if on this machine the number of bits actually used for the count of a shift operation is equal to ! the number of bits needed to represent the size of the object ! being shifted. When this macro is nonzero, the compiler will ! assume that it is safe to omit a sign-extend, zero-extend, and ! certain bitwise `and' instructions that truncates the count of a ! shift operation. On machines that have instructions that act on ! bit-fields at variable positions, which may include `bit test' ! instructions, a nonzero `SHIFT_COUNT_TRUNCATED' also enables ! deletion of truncations of the values that serve as arguments to ! bit-field instructions. If both types of instructions truncate the count (for shifts) and position (for bit-field operations), or if no variable-position --- 36246,36267 ---- -- Macro: MAX_MOVE_MAX The maximum number of bytes that a single instruction can move quickly between memory and registers or between two memory ! locations. If this is undefined, the default is 'MOVE_MAX'. Otherwise, it is the constant value that is the largest value that ! 'MOVE_MAX' can have at run-time. -- Macro: SHIFT_COUNT_TRUNCATED A C expression that is nonzero if on this machine the number of bits actually used for the count of a shift operation is equal to ! the number of bits needed to represent the size of the object being ! shifted. When this macro is nonzero, the compiler will assume that ! it is safe to omit a sign-extend, zero-extend, and certain bitwise ! 'and' instructions that truncates the count of a shift operation. ! On machines that have instructions that act on bit-fields at ! variable positions, which may include 'bit test' instructions, a ! nonzero 'SHIFT_COUNT_TRUNCATED' also enables deletion of ! truncations of the values that serve as arguments to bit-field ! instructions. If both types of instructions truncate the count (for shifts) and position (for bit-field operations), or if no variable-position *************** Here are several miscellaneous parameter *** 36652,36663 **** However, on some machines, such as the 80386 and the 680x0, truncation only applies to shift operations and not the (real or ! pretended) bit-field operations. Define `SHIFT_COUNT_TRUNCATED' ! to be zero on such machines. Instead, add patterns to the `md' ! file that include the implied truncation of the shift instructions. ! You need not define this macro if it would always have the value ! of zero. -- Target Hook: unsigned HOST_WIDE_INT TARGET_SHIFT_TRUNCATION_MASK (enum machine_mode MODE) --- 36269,36280 ---- However, on some machines, such as the 80386 and the 680x0, truncation only applies to shift operations and not the (real or ! pretended) bit-field operations. Define 'SHIFT_COUNT_TRUNCATED' to ! be zero on such machines. Instead, add patterns to the 'md' file ! that include the implied truncation of the shift instructions. ! You need not define this macro if it would always have the value of ! zero. -- Target Hook: unsigned HOST_WIDE_INT TARGET_SHIFT_TRUNCATION_MASK (enum machine_mode MODE) *************** Here are several miscellaneous parameter *** 36672,36685 **** should return 0. A return value of 0 indicates that no particular behavior is guaranteed. ! Note that, unlike `SHIFT_COUNT_TRUNCATED', this function does ! _not_ apply to general shift rtxes; it applies only to instructions ! that are generated by the named shift patterns. The default implementation of this function returns ! `GET_MODE_BITSIZE (MODE) - 1' if `SHIFT_COUNT_TRUNCATED' and 0 otherwise. This definition is always safe, but if ! `SHIFT_COUNT_TRUNCATED' is false, and some shift patterns nevertheless truncate the shift count, you may get better code by overriding it. --- 36289,36302 ---- should return 0. A return value of 0 indicates that no particular behavior is guaranteed. ! Note that, unlike 'SHIFT_COUNT_TRUNCATED', this function does _not_ ! apply to general shift rtxes; it applies only to instructions that ! are generated by the named shift patterns. The default implementation of this function returns ! 'GET_MODE_BITSIZE (MODE) - 1' if 'SHIFT_COUNT_TRUNCATED' and 0 otherwise. This definition is always safe, but if ! 'SHIFT_COUNT_TRUNCATED' is false, and some shift patterns nevertheless truncate the shift count, you may get better code by overriding it. *************** Here are several miscellaneous parameter *** 36691,36733 **** On many machines, this expression can be 1. ! When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for ! modes for which `MODES_TIEABLE_P' is 0, suboptimal code can result. ! If this is the case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve things. -- Target Hook: int TARGET_MODE_REP_EXTENDED (enum machine_mode MODE, enum machine_mode REP_MODE) The representation of an integral mode can be such that the values ! are always extended to a wider integral mode. Return ! `SIGN_EXTEND' if values of MODE are represented in sign-extended ! form to REP_MODE. Return `UNKNOWN' otherwise. (Currently, none ! of the targets use zero-extended representation this way so unlike ! `LOAD_EXTEND_OP', `TARGET_MODE_REP_EXTENDED' is expected to return ! either `SIGN_EXTEND' or `UNKNOWN'. Also no target extends MODE to REP_MODE so that REP_MODE is not the next widest integral mode and currently we take advantage of this fact.) ! Similarly to `LOAD_EXTEND_OP' you may return a non-`UNKNOWN' value ! even if the extension is not performed on certain hard registers ! as long as for the `REGNO_REG_CLASS' of these hard registers ! `CANNOT_CHANGE_MODE_CLASS' returns nonzero. ! Note that `TARGET_MODE_REP_EXTENDED' and `LOAD_EXTEND_OP' describe ! two related properties. If you define `TARGET_MODE_REP_EXTENDED ! (mode, word_mode)' you probably also want to define ! `LOAD_EXTEND_OP (mode)' to return the same type of extension. ! In order to enforce the representation of `mode', ! `TRULY_NOOP_TRUNCATION' should return false when truncating to ! `mode'. -- Macro: STORE_FLAG_VALUE A C expression describing the value returned by a comparison operator with an integral mode and stored by a store-flag ! instruction (`cstoreMODE4') when the condition is true. This ! description must apply to _all_ the `cstoreMODE4' patterns and all ! the comparison operators whose results have a `MODE_INT' mode. A value of 1 or -1 means that the instruction implementing the comparison operator returns exactly 1 or -1 when the comparison is --- 36308,36350 ---- On many machines, this expression can be 1. ! When 'TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for ! modes for which 'MODES_TIEABLE_P' is 0, suboptimal code can result. ! If this is the case, making 'TRULY_NOOP_TRUNCATION' return 0 in such cases may improve things. -- Target Hook: int TARGET_MODE_REP_EXTENDED (enum machine_mode MODE, enum machine_mode REP_MODE) The representation of an integral mode can be such that the values ! are always extended to a wider integral mode. Return 'SIGN_EXTEND' ! if values of MODE are represented in sign-extended form to ! REP_MODE. Return 'UNKNOWN' otherwise. (Currently, none of the ! targets use zero-extended representation this way so unlike ! 'LOAD_EXTEND_OP', 'TARGET_MODE_REP_EXTENDED' is expected to return ! either 'SIGN_EXTEND' or 'UNKNOWN'. Also no target extends MODE to REP_MODE so that REP_MODE is not the next widest integral mode and currently we take advantage of this fact.) ! Similarly to 'LOAD_EXTEND_OP' you may return a non-'UNKNOWN' value ! even if the extension is not performed on certain hard registers as ! long as for the 'REGNO_REG_CLASS' of these hard registers ! 'CANNOT_CHANGE_MODE_CLASS' returns nonzero. ! Note that 'TARGET_MODE_REP_EXTENDED' and 'LOAD_EXTEND_OP' describe ! two related properties. If you define 'TARGET_MODE_REP_EXTENDED ! (mode, word_mode)' you probably also want to define 'LOAD_EXTEND_OP ! (mode)' to return the same type of extension. ! In order to enforce the representation of 'mode', ! 'TRULY_NOOP_TRUNCATION' should return false when truncating to ! 'mode'. -- Macro: STORE_FLAG_VALUE A C expression describing the value returned by a comparison operator with an integral mode and stored by a store-flag ! instruction ('cstoreMODE4') when the condition is true. This ! description must apply to _all_ the 'cstoreMODE4' patterns and all ! the comparison operators whose results have a 'MODE_INT' mode. A value of 1 or -1 means that the instruction implementing the comparison operator returns exactly 1 or -1 when the comparison is *************** Here are several miscellaneous parameter *** 36735,36751 **** indicates which bits of the result are guaranteed to be 1 when the comparison is true. This value is interpreted in the mode of the comparison operation, which is given by the mode of the first ! operand in the `cstoreMODE4' pattern. Either the low bit or the ! sign bit of `STORE_FLAG_VALUE' be on. Presently, only those bits are used by the compiler. ! If `STORE_FLAG_VALUE' is neither 1 or -1, the compiler will generate code that depends only on the specified bits. It can also replace comparison operators with equivalent operations if they cause the required bits to be set, even if the remaining bits are undefined. For example, on a machine whose comparison operators ! return an `SImode' value and where `STORE_FLAG_VALUE' is defined as ! `0x80000000', saying that just the sign bit is relevant, the expression (ne:SI (and:SI X (const_int POWER-OF-2)) (const_int 0)) --- 36352,36368 ---- indicates which bits of the result are guaranteed to be 1 when the comparison is true. This value is interpreted in the mode of the comparison operation, which is given by the mode of the first ! operand in the 'cstoreMODE4' pattern. Either the low bit or the ! sign bit of 'STORE_FLAG_VALUE' be on. Presently, only those bits are used by the compiler. ! If 'STORE_FLAG_VALUE' is neither 1 or -1, the compiler will generate code that depends only on the specified bits. It can also replace comparison operators with equivalent operations if they cause the required bits to be set, even if the remaining bits are undefined. For example, on a machine whose comparison operators ! return an 'SImode' value and where 'STORE_FLAG_VALUE' is defined as ! '0x80000000', saying that just the sign bit is relevant, the expression (ne:SI (and:SI X (const_int POWER-OF-2)) (const_int 0)) *************** Here are several miscellaneous parameter *** 36754,36777 **** (ashift:SI X (const_int N)) ! where N is the appropriate shift count to move the bit being ! tested into the sign bit. There is no way to describe a machine that always sets the ! low-order bit for a true value, but does not guarantee the value ! of any other bits, but we do not know of any machine that has such ! an instruction. If you are trying to port GCC to such a machine, include an instruction to perform a logical-and of the result with 1 in the pattern for the comparison operators and let us know at . Often, a machine will have multiple instructions that obtain a value from a comparison (or the condition codes). Here are rules ! to guide the choice of value for `STORE_FLAG_VALUE', and hence the instructions to be used: * Use the shortest sequence that yields a valid definition for ! `STORE_FLAG_VALUE'. It is more efficient for the compiler to "normalize" the value (convert it to, e.g., 1 or 0) than for the comparison operators to do so because there may be opportunities to combine the normalization with other --- 36371,36394 ---- (ashift:SI X (const_int N)) ! where N is the appropriate shift count to move the bit being tested ! into the sign bit. There is no way to describe a machine that always sets the ! low-order bit for a true value, but does not guarantee the value of ! any other bits, but we do not know of any machine that has such an ! instruction. If you are trying to port GCC to such a machine, include an instruction to perform a logical-and of the result with 1 in the pattern for the comparison operators and let us know at . Often, a machine will have multiple instructions that obtain a value from a comparison (or the condition codes). Here are rules ! to guide the choice of value for 'STORE_FLAG_VALUE', and hence the instructions to be used: * Use the shortest sequence that yields a valid definition for ! 'STORE_FLAG_VALUE'. It is more efficient for the compiler to "normalize" the value (convert it to, e.g., 1 or 0) than for the comparison operators to do so because there may be opportunities to combine the normalization with other *************** Here are several miscellaneous parameter *** 36781,36851 **** being slightly preferred on machines with expensive jumps and 1 preferred on other machines. ! * As a second choice, choose a value of `0x80000001' if instructions exist that set both the sign and low-order bits but do not define the others. ! * Otherwise, use a value of `0x80000000'. Many machines can produce both the value chosen for ! `STORE_FLAG_VALUE' and its negation in the same number of instructions. On those machines, you should also define a pattern for those cases, e.g., one matching (set A (neg:M (ne:M B C))) ! Some machines can also perform `and' or `plus' operations on condition code values with less instructions than the corresponding ! `cstoreMODE4' insn followed by `and' or `plus'. On those ! machines, define the appropriate patterns. Use the names `incscc' ! and `decscc', respectively, for the patterns which perform `plus' ! or `minus' operations on condition code values. See `rs6000.md' ! for some examples. The GNU Superoptimizer can be used to find ! such instruction sequences on other machines. If this macro is not defined, the default value, 1, is used. You ! need not define `STORE_FLAG_VALUE' if the machine has no store-flag instructions, or if the value generated by these instructions is 1. -- Macro: FLOAT_STORE_FLAG_VALUE (MODE) ! A C expression that gives a nonzero `REAL_VALUE_TYPE' value that is returned when comparison operators with floating-point results are true. Define this macro on machines that have comparison ! operations that return floating-point values. If there are no ! such operations, do not define this macro. -- Macro: VECTOR_STORE_FLAG_VALUE (MODE) A C expression that gives a rtx representing the nonzero true element for vector comparisons. The returned rtx should be valid ! for the inner mode of MODE which is guaranteed to be a vector ! mode. Define this macro on machines that have vector comparison operations that return a vector result. If there are no such operations, do not define this macro. Typically, this macro is ! defined as `const1_rtx' or `constm1_rtx'. This macro may return ! `NULL_RTX' to prevent the compiler optimizing such vector comparison operations for the given mode. -- Macro: CLZ_DEFINED_VALUE_AT_ZERO (MODE, VALUE) -- Macro: CTZ_DEFINED_VALUE_AT_ZERO (MODE, VALUE) A C expression that indicates whether the architecture defines a ! value for `clz' or `ctz' with a zero operand. A result of `0' ! indicates the value is undefined. If the value is defined for ! only the RTL expression, the macro should evaluate to `1'; if the ! value applies also to the corresponding optab entry (which is ! normally the case if it expands directly into the corresponding ! RTL), then the macro should evaluate to `2'. In the cases where ! the value is defined, VALUE should be set to this value. ! If this macro is not defined, the value of `clz' or `ctz' at zero is assumed to be undefined. ! This macro must be defined if the target's expansion for `ffs' relies on a particular value to get correct results. Otherwise it is not necessary, though it may be used to optimize some corner ! cases, and to provide a default expansion for the `ffs' optab. ! Note that regardless of this macro the "definedness" of `clz' and ! `ctz' at zero do _not_ extend to the builtin functions visible to the user. Thus one may be free to adjust the value at will to match the target expansion of these operations without fear of breaking the API. --- 36398,36468 ---- being slightly preferred on machines with expensive jumps and 1 preferred on other machines. ! * As a second choice, choose a value of '0x80000001' if instructions exist that set both the sign and low-order bits but do not define the others. ! * Otherwise, use a value of '0x80000000'. Many machines can produce both the value chosen for ! 'STORE_FLAG_VALUE' and its negation in the same number of instructions. On those machines, you should also define a pattern for those cases, e.g., one matching (set A (neg:M (ne:M B C))) ! Some machines can also perform 'and' or 'plus' operations on condition code values with less instructions than the corresponding ! 'cstoreMODE4' insn followed by 'and' or 'plus'. On those machines, ! define the appropriate patterns. Use the names 'incscc' and ! 'decscc', respectively, for the patterns which perform 'plus' or ! 'minus' operations on condition code values. See 'rs6000.md' for ! some examples. The GNU Superoptimizer can be used to find such ! instruction sequences on other machines. If this macro is not defined, the default value, 1, is used. You ! need not define 'STORE_FLAG_VALUE' if the machine has no store-flag instructions, or if the value generated by these instructions is 1. -- Macro: FLOAT_STORE_FLAG_VALUE (MODE) ! A C expression that gives a nonzero 'REAL_VALUE_TYPE' value that is returned when comparison operators with floating-point results are true. Define this macro on machines that have comparison ! operations that return floating-point values. If there are no such ! operations, do not define this macro. -- Macro: VECTOR_STORE_FLAG_VALUE (MODE) A C expression that gives a rtx representing the nonzero true element for vector comparisons. The returned rtx should be valid ! for the inner mode of MODE which is guaranteed to be a vector mode. ! Define this macro on machines that have vector comparison operations that return a vector result. If there are no such operations, do not define this macro. Typically, this macro is ! defined as 'const1_rtx' or 'constm1_rtx'. This macro may return ! 'NULL_RTX' to prevent the compiler optimizing such vector comparison operations for the given mode. -- Macro: CLZ_DEFINED_VALUE_AT_ZERO (MODE, VALUE) -- Macro: CTZ_DEFINED_VALUE_AT_ZERO (MODE, VALUE) A C expression that indicates whether the architecture defines a ! value for 'clz' or 'ctz' with a zero operand. A result of '0' ! indicates the value is undefined. If the value is defined for only ! the RTL expression, the macro should evaluate to '1'; if the value ! applies also to the corresponding optab entry (which is normally ! the case if it expands directly into the corresponding RTL), then ! the macro should evaluate to '2'. In the cases where the value is ! defined, VALUE should be set to this value. ! If this macro is not defined, the value of 'clz' or 'ctz' at zero is assumed to be undefined. ! This macro must be defined if the target's expansion for 'ffs' relies on a particular value to get correct results. Otherwise it is not necessary, though it may be used to optimize some corner ! cases, and to provide a default expansion for the 'ffs' optab. ! Note that regardless of this macro the "definedness" of 'clz' and ! 'ctz' at zero do _not_ extend to the builtin functions visible to the user. Thus one may be free to adjust the value at will to match the target expansion of these operations without fear of breaking the API. *************** Here are several miscellaneous parameter *** 36853,36984 **** -- Macro: Pmode An alias for the machine mode for pointers. On most machines, define this to be the integer mode corresponding to the width of a ! hardware pointer; `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines you must define this to be one of the ! partial integer modes, such as `PSImode'. ! The width of `Pmode' must be at least as large as the value of ! `POINTER_SIZE'. If it is not equal, you must define the macro ! `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to ! `Pmode'. -- Macro: FUNCTION_MODE An alias for the machine mode used for memory references to ! functions being called, in `call' RTL expressions. On most CISC machines, where an instruction can begin at any byte address, this ! should be `QImode'. On most RISC machines, where all instructions have fixed size and alignment, this should be a mode with the same size and alignment as the machine instruction words - typically ! `SImode' or `HImode'. -- Macro: STDC_0_IN_SYSTEM_HEADERS ! In normal operation, the preprocessor expands `__STDC__' to the constant 1, to signify that GCC conforms to ISO Standard C. On some hosts, like Solaris, the system compiler uses a different ! convention, where `__STDC__' is normally 0, but is 1 if the user specifies strict conformance to the C Standard. ! Defining `STDC_0_IN_SYSTEM_HEADERS' makes GNU CPP follows the host ! convention when processing system header files, but when ! processing user files `__STDC__' will always expand to 1. -- C Target Hook: const char * TARGET_C_PREINCLUDE (void) ! Define this hook to return the name of a header file to be ! included at the start of all compilations, as if it had been ! included with `#include '. If this hook returns `NULL', or ! is not defined, or the header is not found, or if the user ! specifies `-ffreestanding' or `-nostdinc', no header is included. ! This hook can be used together with a header provided by the ! system C library to implement ISO C requirements for certain ! macros to be predefined that describe properties of the whole ! implementation rather than just the compiler. -- Macro: NO_IMPLICIT_EXTERN_C ! Define this macro if the system header files support C++ as well ! as C. This macro inhibits the usual method of using system header files in C++, which is to pretend that the file's contents are ! enclosed in `extern "C" {...}'. -- Macro: REGISTER_TARGET_PRAGMAS () Define this macro if you want to implement any target-specific pragmas. If defined, it is a C expression which makes a series of ! calls to `c_register_pragma' or `c_register_pragma_with_expansion' for each pragma. The macro may also do any setup required for the pragmas. ! The primary reason to define this macro is to provide ! compatibility with other compilers for the same target. In ! general, we discourage definition of target-specific pragmas for ! GCC. If the pragma can be implemented by attributes then you should ! consider defining the target hook `TARGET_INSERT_ATTRIBUTES' as well. Preprocessor macros that appear on pragma lines are not expanded. ! All `#pragma' directives that do not match any registered pragma are silently ignored, unless the user specifies ! `-Wunknown-pragmas'. -- Function: void c_register_pragma (const char *SPACE, const char *NAME, void (*CALLBACK) (struct cpp_reader *)) -- Function: void c_register_pragma_with_expansion (const char *SPACE, const char *NAME, void (*CALLBACK) (struct cpp_reader *)) ! Each call to `c_register_pragma' or ! `c_register_pragma_with_expansion' establishes one pragma. The CALLBACK routine will be called when the preprocessor encounters a pragma of the form #pragma [SPACE] NAME ... ! SPACE is the case-sensitive namespace of the pragma, or `NULL' to put the pragma in the global namespace. The callback routine receives PFILE as its first argument, which can be passed on to ! cpplib's functions if necessary. You can lex tokens after the ! NAME by calling `pragma_lex'. Tokens that are not read by the ! callback will be silently ignored. The end of the line is ! indicated by a token of type `CPP_EOF'. Macro expansion occurs on ! the arguments of pragmas registered with ! `c_register_pragma_with_expansion' but not on the arguments of ! pragmas registered with `c_register_pragma'. ! Note that the use of `pragma_lex' is specific to the C and C++ compilers. It will not work in the Java or Fortran compilers, or ! any other language compilers for that matter. Thus if ! `pragma_lex' is going to be called from target-specific code, it ! must only be done so when building the C and C++ compilers. This ! can be done by defining the variables `c_target_objs' and ! `cxx_target_objs' in the target entry in the `config.gcc' file. ! These variables should name the target-specific, language-specific ! object file which contains the code that uses `pragma_lex'. Note ! it will also be necessary to add a rule to the makefile fragment ! pointed to by `tmake_file' that shows how to build this object ! file. -- Macro: HANDLE_PRAGMA_PACK_WITH_EXPANSION Define this macro if macros should be expanded in the arguments of ! `#pragma pack'. -- Macro: TARGET_DEFAULT_PACK_STRUCT If your target requires a structure packing default other than 0 (meaning the machine default), define this macro to the necessary ! value (in bytes). This must be a value that would also be valid ! to use with `#pragma pack()' (that is, a small power of two). -- Macro: DOLLARS_IN_IDENTIFIERS ! Define this macro to control use of the character `$' in ! identifier names for the C family of languages. 0 means `$' is ! not allowed by default; 1 means it is allowed. 1 is the default; ! there is no need to define this macro in that case. -- Macro: INSN_SETS_ARE_DELAYED (INSN) Define this macro as a C expression that is nonzero if it is safe for the delay slot scheduler to place instructions in the delay slot of INSN, even if they appear to use a resource set or ! clobbered in INSN. INSN is always a `jump_insn' or an `insn'; GCC ! knows that every `call_insn' has this behavior. On machines where ! some `insn' or `jump_insn' is really a function call and hence has this behavior, you should define this macro. You need not define this macro if it would always return zero. --- 36470,36600 ---- -- Macro: Pmode An alias for the machine mode for pointers. On most machines, define this to be the integer mode corresponding to the width of a ! hardware pointer; 'SImode' on 32-bit machine or 'DImode' on 64-bit machines. On some machines you must define this to be one of the ! partial integer modes, such as 'PSImode'. ! The width of 'Pmode' must be at least as large as the value of ! 'POINTER_SIZE'. If it is not equal, you must define the macro ! 'POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to ! 'Pmode'. -- Macro: FUNCTION_MODE An alias for the machine mode used for memory references to ! functions being called, in 'call' RTL expressions. On most CISC machines, where an instruction can begin at any byte address, this ! should be 'QImode'. On most RISC machines, where all instructions have fixed size and alignment, this should be a mode with the same size and alignment as the machine instruction words - typically ! 'SImode' or 'HImode'. -- Macro: STDC_0_IN_SYSTEM_HEADERS ! In normal operation, the preprocessor expands '__STDC__' to the constant 1, to signify that GCC conforms to ISO Standard C. On some hosts, like Solaris, the system compiler uses a different ! convention, where '__STDC__' is normally 0, but is 1 if the user specifies strict conformance to the C Standard. ! Defining 'STDC_0_IN_SYSTEM_HEADERS' makes GNU CPP follows the host ! convention when processing system header files, but when processing ! user files '__STDC__' will always expand to 1. -- C Target Hook: const char * TARGET_C_PREINCLUDE (void) ! Define this hook to return the name of a header file to be included ! at the start of all compilations, as if it had been included with ! '#include '. If this hook returns 'NULL', or is not defined, ! or the header is not found, or if the user specifies ! '-ffreestanding' or '-nostdinc', no header is included. ! This hook can be used together with a header provided by the system ! C library to implement ISO C requirements for certain macros to be ! predefined that describe properties of the whole implementation ! rather than just the compiler. -- Macro: NO_IMPLICIT_EXTERN_C ! Define this macro if the system header files support C++ as well as ! C. This macro inhibits the usual method of using system header files in C++, which is to pretend that the file's contents are ! enclosed in 'extern "C" {...}'. -- Macro: REGISTER_TARGET_PRAGMAS () Define this macro if you want to implement any target-specific pragmas. If defined, it is a C expression which makes a series of ! calls to 'c_register_pragma' or 'c_register_pragma_with_expansion' for each pragma. The macro may also do any setup required for the pragmas. ! The primary reason to define this macro is to provide compatibility ! with other compilers for the same target. In general, we ! discourage definition of target-specific pragmas for GCC. If the pragma can be implemented by attributes then you should ! consider defining the target hook 'TARGET_INSERT_ATTRIBUTES' as well. Preprocessor macros that appear on pragma lines are not expanded. ! All '#pragma' directives that do not match any registered pragma are silently ignored, unless the user specifies ! '-Wunknown-pragmas'. -- Function: void c_register_pragma (const char *SPACE, const char *NAME, void (*CALLBACK) (struct cpp_reader *)) -- Function: void c_register_pragma_with_expansion (const char *SPACE, const char *NAME, void (*CALLBACK) (struct cpp_reader *)) ! ! Each call to 'c_register_pragma' or ! 'c_register_pragma_with_expansion' establishes one pragma. The CALLBACK routine will be called when the preprocessor encounters a pragma of the form #pragma [SPACE] NAME ... ! SPACE is the case-sensitive namespace of the pragma, or 'NULL' to put the pragma in the global namespace. The callback routine receives PFILE as its first argument, which can be passed on to ! cpplib's functions if necessary. You can lex tokens after the NAME ! by calling 'pragma_lex'. Tokens that are not read by the callback ! will be silently ignored. The end of the line is indicated by a ! token of type 'CPP_EOF'. Macro expansion occurs on the arguments ! of pragmas registered with 'c_register_pragma_with_expansion' but ! not on the arguments of pragmas registered with ! 'c_register_pragma'. ! Note that the use of 'pragma_lex' is specific to the C and C++ compilers. It will not work in the Java or Fortran compilers, or ! any other language compilers for that matter. Thus if 'pragma_lex' ! is going to be called from target-specific code, it must only be ! done so when building the C and C++ compilers. This can be done by ! defining the variables 'c_target_objs' and 'cxx_target_objs' in the ! target entry in the 'config.gcc' file. These variables should name ! the target-specific, language-specific object file which contains ! the code that uses 'pragma_lex'. Note it will also be necessary to ! add a rule to the makefile fragment pointed to by 'tmake_file' that ! shows how to build this object file. -- Macro: HANDLE_PRAGMA_PACK_WITH_EXPANSION Define this macro if macros should be expanded in the arguments of ! '#pragma pack'. -- Macro: TARGET_DEFAULT_PACK_STRUCT If your target requires a structure packing default other than 0 (meaning the machine default), define this macro to the necessary ! value (in bytes). This must be a value that would also be valid to ! use with '#pragma pack()' (that is, a small power of two). -- Macro: DOLLARS_IN_IDENTIFIERS ! Define this macro to control use of the character '$' in identifier ! names for the C family of languages. 0 means '$' is not allowed by ! default; 1 means it is allowed. 1 is the default; there is no need ! to define this macro in that case. -- Macro: INSN_SETS_ARE_DELAYED (INSN) Define this macro as a C expression that is nonzero if it is safe for the delay slot scheduler to place instructions in the delay slot of INSN, even if they appear to use a resource set or ! clobbered in INSN. INSN is always a 'jump_insn' or an 'insn'; GCC ! knows that every 'call_insn' has this behavior. On machines where ! some 'insn' or 'jump_insn' is really a function call and hence has this behavior, you should define this macro. You need not define this macro if it would always return zero. *************** Here are several miscellaneous parameter *** 36987,37089 **** Define this macro as a C expression that is nonzero if it is safe for the delay slot scheduler to place instructions in the delay slot of INSN, even if they appear to set or clobber a resource ! referenced in INSN. INSN is always a `jump_insn' or an `insn'. ! On machines where some `insn' or `jump_insn' is really a function ! call and its operands are registers whose use is actually in the ! subroutine it calls, you should define this macro. Doing so ! allows the delay slot scheduler to move instructions which copy ! arguments into the argument registers into the delay slot of INSN. You need not define this macro if it would always return zero. -- Macro: MULTIPLE_SYMBOL_SPACES Define this macro as a C expression that is nonzero if, in some ! cases, global symbols from one translation unit may not be bound ! to undefined symbols in another translation unit without user intervention. For instance, under Microsoft Windows symbols must be explicitly imported from shared libraries (DLLs). You need not define this macro if it would always evaluate to zero. ! -- Target Hook: tree TARGET_MD_ASM_CLOBBERS (tree OUTPUTS, tree ! INPUTS, tree CLOBBERS) ! This target hook should add to CLOBBERS `STRING_CST' trees for any hard regs the port wishes to automatically clobber for an asm. It ! should return the result of the last `tree_cons' used to add a clobber. The OUTPUTS, INPUTS and CLOBBER lists are the corresponding parameters to the asm and may be inspected to avoid clobbering a register that is an input or output of the asm. You ! can use `tree_overlaps_hard_reg_set', declared in `tree.h', to test for overlap with regards to asm-declared registers. -- Macro: MATH_LIBRARY ! Define this macro as a C string constant for the linker argument ! to link in the system math library, minus the initial `"-l"', or ! `""' if the target does not have a separate math library. ! You need only define this macro if the default of `"m"' is wrong. -- Macro: LIBRARY_PATH_ENV Define this macro as a C string constant for the environment variable that specifies where the linker should look for libraries. ! You need only define this macro if the default of `"LIBRARY_PATH"' is wrong. -- Macro: TARGET_POSIX_IO Define this macro if the target supports the following POSIX file ! functions, access, mkdir and file locking with fcntl / F_SETLKW. ! Defining `TARGET_POSIX_IO' will enable the test coverage code to use file locking when exiting a program, which avoids race ! conditions if the program has forked. It will also create directories at run-time for cross-profiling. -- Macro: MAX_CONDITIONAL_EXECUTE A C expression for the maximum number of instructions to execute via conditional execution instructions instead of a branch. A ! value of `BRANCH_COST'+1 is the default if the machine does not ! use cc0, and 1 if it does use cc0. -- Macro: IFCVT_MODIFY_TESTS (CE_INFO, TRUE_EXPR, FALSE_EXPR) ! Used if the target needs to perform machine-dependent ! modifications on the conditionals used for turning basic blocks ! into conditionally executed code. CE_INFO points to a data ! structure, `struct ce_if_block', which contains information about ! the currently processed blocks. TRUE_EXPR and FALSE_EXPR are the ! tests that are used for converting the then-block and the ! else-block, respectively. Set either TRUE_EXPR or FALSE_EXPR to a ! null pointer if the tests cannot be converted. -- Macro: IFCVT_MODIFY_MULTIPLE_TESTS (CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) ! Like `IFCVT_MODIFY_TESTS', but used when converting more ! complicated if-statements into conditions combined by `and' and ! `or' operations. BB contains the basic block that contains the test that is currently being processed and about to be turned into a condition. -- Macro: IFCVT_MODIFY_INSN (CE_INFO, PATTERN, INSN) A C expression to modify the PATTERN of an INSN that is to be converted to conditional execution format. CE_INFO points to a ! data structure, `struct ce_if_block', which contains information about the currently processed blocks. -- Macro: IFCVT_MODIFY_FINAL (CE_INFO) ! A C expression to perform any final machine dependent ! modifications in converting code to conditional execution. The ! involved basic blocks can be found in the `struct ce_if_block' ! structure that is pointed to by CE_INFO. -- Macro: IFCVT_MODIFY_CANCEL (CE_INFO) A C expression to cancel any machine dependent modifications in converting code to conditional execution. The involved basic ! blocks can be found in the `struct ce_if_block' structure that is pointed to by CE_INFO. -- Macro: IFCVT_MACHDEP_INIT (CE_INFO) A C expression to initialize any machine specific data for ! if-conversion of the if-block in the `struct ce_if_block' ! structure that is pointed to by CE_INFO. -- Target Hook: void TARGET_MACHINE_DEPENDENT_REORG (void) If non-null, this hook performs a target-specific pass over the --- 36603,36706 ---- Define this macro as a C expression that is nonzero if it is safe for the delay slot scheduler to place instructions in the delay slot of INSN, even if they appear to set or clobber a resource ! referenced in INSN. INSN is always a 'jump_insn' or an 'insn'. On ! machines where some 'insn' or 'jump_insn' is really a function call ! and its operands are registers whose use is actually in the ! subroutine it calls, you should define this macro. Doing so allows ! the delay slot scheduler to move instructions which copy arguments ! into the argument registers into the delay slot of INSN. You need not define this macro if it would always return zero. -- Macro: MULTIPLE_SYMBOL_SPACES Define this macro as a C expression that is nonzero if, in some ! cases, global symbols from one translation unit may not be bound to ! undefined symbols in another translation unit without user intervention. For instance, under Microsoft Windows symbols must be explicitly imported from shared libraries (DLLs). You need not define this macro if it would always evaluate to zero. ! -- Target Hook: tree TARGET_MD_ASM_CLOBBERS (tree OUTPUTS, tree INPUTS, ! tree CLOBBERS) ! This target hook should add to CLOBBERS 'STRING_CST' trees for any hard regs the port wishes to automatically clobber for an asm. It ! should return the result of the last 'tree_cons' used to add a clobber. The OUTPUTS, INPUTS and CLOBBER lists are the corresponding parameters to the asm and may be inspected to avoid clobbering a register that is an input or output of the asm. You ! can use 'tree_overlaps_hard_reg_set', declared in 'tree.h', to test for overlap with regards to asm-declared registers. -- Macro: MATH_LIBRARY ! Define this macro as a C string constant for the linker argument to ! link in the system math library, minus the initial '"-l"', or '""' ! if the target does not have a separate math library. ! You need only define this macro if the default of '"m"' is wrong. -- Macro: LIBRARY_PATH_ENV Define this macro as a C string constant for the environment variable that specifies where the linker should look for libraries. ! You need only define this macro if the default of '"LIBRARY_PATH"' is wrong. -- Macro: TARGET_POSIX_IO Define this macro if the target supports the following POSIX file ! functions, access, mkdir and file locking with fcntl / F_SETLKW. ! Defining 'TARGET_POSIX_IO' will enable the test coverage code to use file locking when exiting a program, which avoids race ! conditions if the program has forked. It will also create directories at run-time for cross-profiling. -- Macro: MAX_CONDITIONAL_EXECUTE + A C expression for the maximum number of instructions to execute via conditional execution instructions instead of a branch. A ! value of 'BRANCH_COST'+1 is the default if the machine does not use ! cc0, and 1 if it does use cc0. -- Macro: IFCVT_MODIFY_TESTS (CE_INFO, TRUE_EXPR, FALSE_EXPR) ! Used if the target needs to perform machine-dependent modifications ! on the conditionals used for turning basic blocks into ! conditionally executed code. CE_INFO points to a data structure, ! 'struct ce_if_block', which contains information about the ! currently processed blocks. TRUE_EXPR and FALSE_EXPR are the tests ! that are used for converting the then-block and the else-block, ! respectively. Set either TRUE_EXPR or FALSE_EXPR to a null pointer ! if the tests cannot be converted. -- Macro: IFCVT_MODIFY_MULTIPLE_TESTS (CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) ! Like 'IFCVT_MODIFY_TESTS', but used when converting more ! complicated if-statements into conditions combined by 'and' and ! 'or' operations. BB contains the basic block that contains the test that is currently being processed and about to be turned into a condition. -- Macro: IFCVT_MODIFY_INSN (CE_INFO, PATTERN, INSN) A C expression to modify the PATTERN of an INSN that is to be converted to conditional execution format. CE_INFO points to a ! data structure, 'struct ce_if_block', which contains information about the currently processed blocks. -- Macro: IFCVT_MODIFY_FINAL (CE_INFO) ! A C expression to perform any final machine dependent modifications ! in converting code to conditional execution. The involved basic ! blocks can be found in the 'struct ce_if_block' structure that is ! pointed to by CE_INFO. -- Macro: IFCVT_MODIFY_CANCEL (CE_INFO) A C expression to cancel any machine dependent modifications in converting code to conditional execution. The involved basic ! blocks can be found in the 'struct ce_if_block' structure that is pointed to by CE_INFO. -- Macro: IFCVT_MACHDEP_INIT (CE_INFO) A C expression to initialize any machine specific data for ! if-conversion of the if-block in the 'struct ce_if_block' structure ! that is pointed to by CE_INFO. -- Target Hook: void TARGET_MACHINE_DEPENDENT_REORG (void) If non-null, this hook performs a target-specific pass over the *************** Here are several miscellaneous parameter *** 37105,37120 **** functions that need to be defined. It should be a function that performs the necessary setup. ! Machine specific built-in functions can be useful to expand ! special machine instructions that would otherwise not normally be ! generated because they have no equivalent in the source language ! (for example, SIMD vector instructions or prefetch instructions). To create a built-in function, call the function ! `lang_hooks.builtin_function' which is defined by the language front end. You can use any type nodes set up by ! `build_common_tree_nodes'; only language front ends that use those ! two functions will call `TARGET_INIT_BUILTINS'. -- Target Hook: tree TARGET_BUILTIN_DECL (unsigned CODE, bool INITIALIZE_P) --- 36722,36737 ---- functions that need to be defined. It should be a function that performs the necessary setup. ! Machine specific built-in functions can be useful to expand special ! machine instructions that would otherwise not normally be generated ! because they have no equivalent in the source language (for ! example, SIMD vector instructions or prefetch instructions). To create a built-in function, call the function ! 'lang_hooks.builtin_function' which is defined by the language front end. You can use any type nodes set up by ! 'build_common_tree_nodes'; only language front ends that use those ! two functions will call 'TARGET_INIT_BUILTINS'. -- Target Hook: tree TARGET_BUILTIN_DECL (unsigned CODE, bool INITIALIZE_P) *************** Here are several miscellaneous parameter *** 37123,37135 **** returns the builtin function declaration for the builtin function code CODE. If there is no such builtin and it cannot be initialized at this time if INITIALIZE_P is true the function ! should return `NULL_TREE'. If CODE is out of range the function ! should return `error_mark_node'. -- Target Hook: rtx TARGET_EXPAND_BUILTIN (tree EXP, rtx TARGET, rtx SUBTARGET, enum machine_mode MODE, int IGNORE) Expand a call to a machine specific built-in function that was set ! up by `TARGET_INIT_BUILTINS'. EXP is the expression for the function call; the result should go to TARGET if that is convenient, and have mode MODE if that is convenient. SUBTARGET may be used as the target for computing one of EXP's operands. --- 36740,36753 ---- returns the builtin function declaration for the builtin function code CODE. If there is no such builtin and it cannot be initialized at this time if INITIALIZE_P is true the function ! should return 'NULL_TREE'. If CODE is out of range the function ! should return 'error_mark_node'. -- Target Hook: rtx TARGET_EXPAND_BUILTIN (tree EXP, rtx TARGET, rtx SUBTARGET, enum machine_mode MODE, int IGNORE) + Expand a call to a machine specific built-in function that was set ! up by 'TARGET_INIT_BUILTINS'. EXP is the expression for the function call; the result should go to TARGET if that is convenient, and have mode MODE if that is convenient. SUBTARGET may be used as the target for computing one of EXP's operands. *************** Here are several miscellaneous parameter *** 37139,37177 **** -- Target Hook: tree TARGET_RESOLVE_OVERLOADED_BUILTIN (unsigned int LOC, tree FNDECL, void *ARGLIST) Select a replacement for a machine specific built-in function that ! was set up by `TARGET_INIT_BUILTINS'. This is done _before_ regular type checking, and so allows the target to implement a crude form of function overloading. FNDECL is the declaration of the built-in function. ARGLIST is the list of arguments passed to the built-in function. The result is a complete expression that ! implements the operation, usually another `CALL_EXPR'. ARGLIST ! really has type `VEC(tree,gc)*' ! -- Target Hook: tree TARGET_FOLD_BUILTIN (tree FNDECL, int N_ARGS, ! tree *ARGP, bool IGNORE) ! Fold a call to a machine specific built-in function that was set ! up by `TARGET_INIT_BUILTINS'. FNDECL is the declaration of the ! built-in function. N_ARGS is the number of arguments passed to ! the function; the arguments themselves are pointed to by ARGP. ! The result is another tree containing a simplified expression for ! the call's result. If IGNORE is true the value will be ignored. -- Target Hook: int TARGET_COMPARE_VERSION_PRIORITY (tree DECL1, tree DECL2) ! This hook is used to compare the target attributes in two ! functions to determine which function's features get higher ! priority. This is used during function multi-versioning to figure ! out the order in which two versions must be dispatched. A ! function version with a higher priority is checked for dispatching ! earlier. DECL1 and DECL2 are the two function decls that will be ! compared. -- Target Hook: tree TARGET_GET_FUNCTION_VERSIONS_DISPATCHER (void *DECL) This hook is used to get the dispatcher function for a set of ! function versions. The dispatcher function is called to invoke ! the right function version at run-time. DECL is one version from a ! set of semantically identical versions. -- Target Hook: tree TARGET_GENERATE_VERSION_DISPATCHER_BODY (void *ARG) --- 36757,36794 ---- -- Target Hook: tree TARGET_RESOLVE_OVERLOADED_BUILTIN (unsigned int LOC, tree FNDECL, void *ARGLIST) Select a replacement for a machine specific built-in function that ! was set up by 'TARGET_INIT_BUILTINS'. This is done _before_ regular type checking, and so allows the target to implement a crude form of function overloading. FNDECL is the declaration of the built-in function. ARGLIST is the list of arguments passed to the built-in function. The result is a complete expression that ! implements the operation, usually another 'CALL_EXPR'. ARGLIST ! really has type 'VEC(tree,gc)*' ! -- Target Hook: tree TARGET_FOLD_BUILTIN (tree FNDECL, int N_ARGS, tree ! *ARGP, bool IGNORE) ! Fold a call to a machine specific built-in function that was set up ! by 'TARGET_INIT_BUILTINS'. FNDECL is the declaration of the ! built-in function. N_ARGS is the number of arguments passed to the ! function; the arguments themselves are pointed to by ARGP. The ! result is another tree containing a simplified expression for the ! call's result. If IGNORE is true the value will be ignored. -- Target Hook: int TARGET_COMPARE_VERSION_PRIORITY (tree DECL1, tree DECL2) ! This hook is used to compare the target attributes in two functions ! to determine which function's features get higher priority. This ! is used during function multi-versioning to figure out the order in ! which two versions must be dispatched. A function version with a ! higher priority is checked for dispatching earlier. DECL1 and ! DECL2 are the two function decls that will be compared. -- Target Hook: tree TARGET_GET_FUNCTION_VERSIONS_DISPATCHER (void *DECL) This hook is used to get the dispatcher function for a set of ! function versions. The dispatcher function is called to invoke the ! right function version at run-time. DECL is one version from a set ! of semantically identical versions. -- Target Hook: tree TARGET_GENERATE_VERSION_DISPATCHER_BODY (void *ARG) *************** Here are several miscellaneous parameter *** 37182,37192 **** -- Target Hook: const char * TARGET_INVALID_WITHIN_DOLOOP (const_rtx INSN) Take an instruction in INSN and return NULL if it is valid within a low-overhead loop, otherwise return a string explaining why doloop could not be applied. ! Many targets use special registers for low-overhead looping. For any instruction that clobbers these this function should return a string indicating the reason why the doloop could not be applied. By default, the RTL loop optimizer does not use a present doloop --- 36799,36810 ---- -- Target Hook: const char * TARGET_INVALID_WITHIN_DOLOOP (const_rtx INSN) + Take an instruction in INSN and return NULL if it is valid within a low-overhead loop, otherwise return a string explaining why doloop could not be applied. ! Many targets use special registers for low-overhead looping. For any instruction that clobbers these this function should return a string indicating the reason why the doloop could not be applied. By default, the RTL loop optimizer does not use a present doloop *************** Here are several miscellaneous parameter *** 37194,37286 **** instructions. -- Target Hook: bool TARGET_LEGITIMATE_COMBINED_INSN (rtx INSN) ! Take an instruction in INSN and return `false' if the instruction is not appropriate as a combination of two or more instructions. The default is to accept all instructions. -- Macro: MD_CAN_REDIRECT_BRANCH (BRANCH1, BRANCH2) Take a branch insn in BRANCH1 and another in BRANCH2. Return true if redirecting BRANCH1 to the destination of BRANCH2 is possible. On some targets, branches may have a limited range. Optimizing the ! filling of delay slots can result in branches being redirected, ! and this may in turn cause a branch offset to overflow. -- Target Hook: bool TARGET_CAN_FOLLOW_JUMP (const_rtx FOLLOWER, const_rtx FOLLOWEE) ! FOLLOWER and FOLLOWEE are JUMP_INSN instructions; return true if ! FOLLOWER may be modified to follow FOLLOWEE; false, if it can't. For example, on some targets, certain kinds of branches can't be ! made to follow through a hot/cold partitioning. -- Target Hook: bool TARGET_COMMUTATIVE_P (const_rtx X, int OUTER_CODE) ! This target hook returns `true' if X is considered to be commutative. Usually, this is just COMMUTATIVE_P (X), but the HP PA doesn't consider PLUS to be commutative inside a MEM. OUTER_CODE is the rtx code of the enclosing rtl, if known, otherwise it is UNKNOWN. -- Target Hook: rtx TARGET_ALLOCATE_INITIAL_VALUE (rtx HARD_REG) When the initial value of a hard register has been copied in a pseudo register, it is often not necessary to actually allocate ! another register to this pseudo register, because the original ! hard register or a stack slot it has been saved into can be used. ! `TARGET_ALLOCATE_INITIAL_VALUE' is called at the start of register allocation once for each hard register that had its initial value ! copied by using `get_func_hard_reg_initial_val' or ! `get_hard_reg_initial_val'. Possible values are `NULL_RTX', if ! you don't want to do any special allocation, a `REG' rtx--that ! would typically be the hard register itself, if it is known not to ! be clobbered--or a `MEM'. If you are returning a `MEM', this is ! only a hint for the allocator; it might decide to use another ! register anyways. You may use `current_function_is_leaf' or ! `REG_N_SETS' in the hook to determine if the hard register in ! question will not be clobbered. The default value of this hook is ! `NULL', which disables any special allocation. -- Target Hook: int TARGET_UNSPEC_MAY_TRAP_P (const_rtx X, unsigned FLAGS) ! This target hook returns nonzero if X, an `unspec' or ! `unspec_volatile' operation, might cause a trap. Targets can use ! this hook to enhance precision of analysis for `unspec' and ! `unspec_volatile' operations. You may call `may_trap_p_1' to analyze inner elements of X in which case FLAGS should be passed along. -- Target Hook: void TARGET_SET_CURRENT_FUNCTION (tree DECL) The compiler invokes this hook whenever it changes its current ! function context (`cfun'). You can define this function if the back end needs to perform any initialization or reset actions on a per-function basis. For example, it may be used to implement function attributes that affect register usage or code generation patterns. The argument DECL is the declaration for the new ! function context, and may be null to indicate that the compiler ! has left a function context and is returning to processing at the ! top level. The default hook function does nothing. ! GCC sets `cfun' to a dummy function context during initialization ! of some parts of the back end. The hook function is not invoked ! in this situation; you need not worry about the hook being invoked recursively, or when the back end is in a partially-initialized ! state. `cfun' might be `NULL' to indicate processing at top level, outside of any function scope. -- Macro: TARGET_OBJECT_SUFFIX Define this macro to be a C string representing the suffix for object files on your target machine. If you do not define this ! macro, GCC will use `.o' as the suffix for object files. -- Macro: TARGET_EXECUTABLE_SUFFIX Define this macro to be a C string representing the suffix to be ! automatically added to executable files on your target machine. ! If you do not define this macro, GCC will use the null string as ! the suffix for executable files. -- Macro: COLLECT_EXPORT_LIST ! If defined, `collect2' will scan the individual object files specified on its command line and create an export list for the linker. Define this macro for systems like AIX, where the linker ! discards object files that are not referenced from `main' and uses export lists. -- Macro: MODIFY_JNI_METHOD_CALL (MDECL) --- 36812,36906 ---- instructions. -- Target Hook: bool TARGET_LEGITIMATE_COMBINED_INSN (rtx INSN) ! Take an instruction in INSN and return 'false' if the instruction is not appropriate as a combination of two or more instructions. The default is to accept all instructions. -- Macro: MD_CAN_REDIRECT_BRANCH (BRANCH1, BRANCH2) + Take a branch insn in BRANCH1 and another in BRANCH2. Return true if redirecting BRANCH1 to the destination of BRANCH2 is possible. On some targets, branches may have a limited range. Optimizing the ! filling of delay slots can result in branches being redirected, and ! this may in turn cause a branch offset to overflow. -- Target Hook: bool TARGET_CAN_FOLLOW_JUMP (const_rtx FOLLOWER, const_rtx FOLLOWEE) ! FOLLOWER and FOLLOWEE are JUMP_INSN instructions; return true if ! FOLLOWER may be modified to follow FOLLOWEE; false, if it can't. For example, on some targets, certain kinds of branches can't be ! made to follow through a hot/cold partitioning. -- Target Hook: bool TARGET_COMMUTATIVE_P (const_rtx X, int OUTER_CODE) ! This target hook returns 'true' if X is considered to be commutative. Usually, this is just COMMUTATIVE_P (X), but the HP PA doesn't consider PLUS to be commutative inside a MEM. OUTER_CODE is the rtx code of the enclosing rtl, if known, otherwise it is UNKNOWN. -- Target Hook: rtx TARGET_ALLOCATE_INITIAL_VALUE (rtx HARD_REG) + When the initial value of a hard register has been copied in a pseudo register, it is often not necessary to actually allocate ! another register to this pseudo register, because the original hard ! register or a stack slot it has been saved into can be used. ! 'TARGET_ALLOCATE_INITIAL_VALUE' is called at the start of register allocation once for each hard register that had its initial value ! copied by using 'get_func_hard_reg_initial_val' or ! 'get_hard_reg_initial_val'. Possible values are 'NULL_RTX', if you ! don't want to do any special allocation, a 'REG' rtx--that would ! typically be the hard register itself, if it is known not to be ! clobbered--or a 'MEM'. If you are returning a 'MEM', this is only ! a hint for the allocator; it might decide to use another register ! anyways. You may use 'current_function_is_leaf' or 'REG_N_SETS' in ! the hook to determine if the hard register in question will not be ! clobbered. The default value of this hook is 'NULL', which ! disables any special allocation. -- Target Hook: int TARGET_UNSPEC_MAY_TRAP_P (const_rtx X, unsigned FLAGS) ! This target hook returns nonzero if X, an 'unspec' or ! 'unspec_volatile' operation, might cause a trap. Targets can use ! this hook to enhance precision of analysis for 'unspec' and ! 'unspec_volatile' operations. You may call 'may_trap_p_1' to analyze inner elements of X in which case FLAGS should be passed along. -- Target Hook: void TARGET_SET_CURRENT_FUNCTION (tree DECL) The compiler invokes this hook whenever it changes its current ! function context ('cfun'). You can define this function if the back end needs to perform any initialization or reset actions on a per-function basis. For example, it may be used to implement function attributes that affect register usage or code generation patterns. The argument DECL is the declaration for the new ! function context, and may be null to indicate that the compiler has ! left a function context and is returning to processing at the top ! level. The default hook function does nothing. ! GCC sets 'cfun' to a dummy function context during initialization ! of some parts of the back end. The hook function is not invoked in ! this situation; you need not worry about the hook being invoked recursively, or when the back end is in a partially-initialized ! state. 'cfun' might be 'NULL' to indicate processing at top level, outside of any function scope. -- Macro: TARGET_OBJECT_SUFFIX Define this macro to be a C string representing the suffix for object files on your target machine. If you do not define this ! macro, GCC will use '.o' as the suffix for object files. -- Macro: TARGET_EXECUTABLE_SUFFIX Define this macro to be a C string representing the suffix to be ! automatically added to executable files on your target machine. If ! you do not define this macro, GCC will use the null string as the ! suffix for executable files. -- Macro: COLLECT_EXPORT_LIST ! If defined, 'collect2' will scan the individual object files specified on its command line and create an export list for the linker. Define this macro for systems like AIX, where the linker ! discards object files that are not referenced from 'main' and uses export lists. -- Macro: MODIFY_JNI_METHOD_CALL (MDECL) *************** Here are several miscellaneous parameter *** 37288,37294 **** method call MDECL, if Java Native Interface (JNI) methods must be invoked differently from other methods on your target. For example, on 32-bit Microsoft Windows, JNI methods must be invoked ! using the `stdcall' calling convention and this macro is then defined as this expression: build_type_attribute_variant (MDECL, --- 36908,36914 ---- method call MDECL, if Java Native Interface (JNI) methods must be invoked differently from other methods on your target. For example, on 32-bit Microsoft Windows, JNI methods must be invoked ! using the 'stdcall' calling convention and this macro is then defined as this expression: build_type_attribute_variant (MDECL, *************** Here are several miscellaneous parameter *** 37297,37307 **** NULL)) -- Target Hook: bool TARGET_CANNOT_MODIFY_JUMPS_P (void) ! This target hook returns `true' past the point in which new jump ! instructions could be created. On machines that require a ! register for every jump such as the SHmedia ISA of SH5, this point ! would typically be reload, so this target hook should be defined ! to a function such as: static bool cannot_modify_jumps_past_reload_p () --- 36917,36927 ---- NULL)) -- Target Hook: bool TARGET_CANNOT_MODIFY_JUMPS_P (void) ! This target hook returns 'true' past the point in which new jump ! instructions could be created. On machines that require a register ! for every jump such as the SHmedia ISA of SH5, this point would ! typically be reload, so this target hook should be defined to a ! function such as: static bool cannot_modify_jumps_past_reload_p () *************** Here are several miscellaneous parameter *** 37312,37334 **** -- Target Hook: reg_class_t TARGET_BRANCH_TARGET_REGISTER_CLASS (void) This target hook returns a register class for which branch target register optimizations should be applied. All registers in this ! class should be usable interchangeably. After reload, registers ! in this class will be re-allocated and loads will be hoisted out ! of loops and be subjected to inter-block scheduling. -- Target Hook: bool TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED (bool AFTER_PROLOGUE_EPILOGUE_GEN) Branch target register optimization will by default exclude ! callee-saved registers that are not already live during the ! current function; if this target hook returns true, they will be ! included. The target code must than make sure that all target ! registers in the class returned by ! `TARGET_BRANCH_TARGET_REGISTER_CLASS' that might need saving are ! saved. AFTER_PROLOGUE_EPILOGUE_GEN indicates if prologues and ! epilogues have already been generated. Note, even if you only ! return true when AFTER_PROLOGUE_EPILOGUE_GEN is false, you still ! are likely to have to make special provisions in ! `INITIAL_ELIMINATION_OFFSET' to reserve space for caller-saved target registers. -- Target Hook: bool TARGET_HAVE_CONDITIONAL_EXECUTION (void) --- 36932,36953 ---- -- Target Hook: reg_class_t TARGET_BRANCH_TARGET_REGISTER_CLASS (void) This target hook returns a register class for which branch target register optimizations should be applied. All registers in this ! class should be usable interchangeably. After reload, registers in ! this class will be re-allocated and loads will be hoisted out of ! loops and be subjected to inter-block scheduling. -- Target Hook: bool TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED (bool AFTER_PROLOGUE_EPILOGUE_GEN) Branch target register optimization will by default exclude ! callee-saved registers that are not already live during the current ! function; if this target hook returns true, they will be included. ! The target code must than make sure that all target registers in ! the class returned by 'TARGET_BRANCH_TARGET_REGISTER_CLASS' that ! might need saving are saved. AFTER_PROLOGUE_EPILOGUE_GEN indicates ! if prologues and epilogues have already been generated. Note, even ! if you only return true when AFTER_PROLOGUE_EPILOGUE_GEN is false, ! you still are likely to have to make special provisions in ! 'INITIAL_ELIMINATION_OFFSET' to reserve space for caller-saved target registers. -- Target Hook: bool TARGET_HAVE_CONDITIONAL_EXECUTION (void) *************** Here are several miscellaneous parameter *** 37340,37348 **** -- Target Hook: unsigned TARGET_LOOP_UNROLL_ADJUST (unsigned NUNROLL, struct loop *LOOP) This target hook returns a new value for the number of times LOOP ! should be unrolled. The parameter NUNROLL is the number of times ! the loop is to be unrolled. The parameter LOOP is a pointer to the ! loop, which is going to be checked for unrolling. This target hook is required only when the target has special constraints like maximum number of memory accesses. --- 36959,36967 ---- -- Target Hook: unsigned TARGET_LOOP_UNROLL_ADJUST (unsigned NUNROLL, struct loop *LOOP) This target hook returns a new value for the number of times LOOP ! should be unrolled. The parameter NUNROLL is the number of times ! the loop is to be unrolled. The parameter LOOP is a pointer to the ! loop, which is going to be checked for unrolling. This target hook is required only when the target has special constraints like maximum number of memory accesses. *************** Here are several miscellaneous parameter *** 37353,37421 **** exponentiation by an integer constant inline. When this value is defined, exponentiation requiring more than this number of multiplications is implemented by calling the system library's ! `pow', `powf' or `powl' routines. The default value places no upper bound on the multiplication count. -- Macro: void TARGET_EXTRA_INCLUDES (const char *SYSROOT, const char *IPREFIX, int STDINC) This target hook should register any extra include files for the ! target. The parameter STDINC indicates if normal include files ! are present. The parameter SYSROOT is the system root directory. ! The parameter IPREFIX is the prefix for the gcc directory. -- Macro: void TARGET_EXTRA_PRE_INCLUDES (const char *SYSROOT, const char *IPREFIX, int STDINC) This target hook should register any extra include files for the ! target before any standard headers. The parameter STDINC ! indicates if normal include files are present. The parameter ! SYSROOT is the system root directory. The parameter IPREFIX is ! the prefix for the gcc directory. -- Macro: void TARGET_OPTF (char *PATH) This target hook should register special include paths for the target. The parameter PATH is the include to register. On Darwin systems, this is used for Framework includes, which have semantics ! that are different from `-I'. -- Macro: bool TARGET_USE_LOCAL_THUNK_ALIAS_P (tree FNDECL) ! This target macro returns `true' if it is safe to use a local alias ! for a virtual function FNDECL when constructing thunks, `false' ! otherwise. By default, the macro returns `true' for all ! functions, if a target supports aliases (i.e. defines ! `ASM_OUTPUT_DEF'), `false' otherwise, -- Macro: TARGET_FORMAT_TYPES If defined, this macro is the name of a global variable containing ! target-specific format checking information for the `-Wformat' option. The default is to have no target-specific format checks. -- Macro: TARGET_N_FORMAT_TYPES If defined, this macro is the number of entries in ! `TARGET_FORMAT_TYPES'. -- Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES If defined, this macro is the name of a global variable containing ! target-specific format overrides for the `-Wformat' option. The ! default is to have no target-specific format overrides. If defined, ! `TARGET_FORMAT_TYPES' must be defined, too. -- Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT If defined, this macro specifies the number of entries in ! `TARGET_OVERRIDES_FORMAT_ATTRIBUTES'. -- Macro: TARGET_OVERRIDES_FORMAT_INIT If defined, this macro specifies the optional initialization ! routine for target specific customizations of the system printf ! and scanf formatter settings. -- Target Hook: bool TARGET_RELAXED_ORDERING ! If set to `true', means that the target's memory model does not guarantee that loads which do not depend on one another will access main memory in the order of the instruction stream; if ordering is important, an explicit memory barrier must be used. This is true of many recent processors which implement a policy of "relaxed," "weak," or "release" memory consistency, such as Alpha, PowerPC, ! and ia64. The default is `false'. -- Target Hook: const char * TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN (const_tree TYPELIST, const_tree FUNCDECL, const_tree VAL) --- 36972,37040 ---- exponentiation by an integer constant inline. When this value is defined, exponentiation requiring more than this number of multiplications is implemented by calling the system library's ! 'pow', 'powf' or 'powl' routines. The default value places no upper bound on the multiplication count. -- Macro: void TARGET_EXTRA_INCLUDES (const char *SYSROOT, const char *IPREFIX, int STDINC) This target hook should register any extra include files for the ! target. The parameter STDINC indicates if normal include files are ! present. The parameter SYSROOT is the system root directory. The ! parameter IPREFIX is the prefix for the gcc directory. -- Macro: void TARGET_EXTRA_PRE_INCLUDES (const char *SYSROOT, const char *IPREFIX, int STDINC) This target hook should register any extra include files for the ! target before any standard headers. The parameter STDINC indicates ! if normal include files are present. The parameter SYSROOT is the ! system root directory. The parameter IPREFIX is the prefix for the ! gcc directory. -- Macro: void TARGET_OPTF (char *PATH) This target hook should register special include paths for the target. The parameter PATH is the include to register. On Darwin systems, this is used for Framework includes, which have semantics ! that are different from '-I'. -- Macro: bool TARGET_USE_LOCAL_THUNK_ALIAS_P (tree FNDECL) ! This target macro returns 'true' if it is safe to use a local alias ! for a virtual function FNDECL when constructing thunks, 'false' ! otherwise. By default, the macro returns 'true' for all functions, ! if a target supports aliases (i.e. defines 'ASM_OUTPUT_DEF'), ! 'false' otherwise, -- Macro: TARGET_FORMAT_TYPES If defined, this macro is the name of a global variable containing ! target-specific format checking information for the '-Wformat' option. The default is to have no target-specific format checks. -- Macro: TARGET_N_FORMAT_TYPES If defined, this macro is the number of entries in ! 'TARGET_FORMAT_TYPES'. -- Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES If defined, this macro is the name of a global variable containing ! target-specific format overrides for the '-Wformat' option. The ! default is to have no target-specific format overrides. If ! defined, 'TARGET_FORMAT_TYPES' must be defined, too. -- Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT If defined, this macro specifies the number of entries in ! 'TARGET_OVERRIDES_FORMAT_ATTRIBUTES'. -- Macro: TARGET_OVERRIDES_FORMAT_INIT If defined, this macro specifies the optional initialization ! routine for target specific customizations of the system printf and ! scanf formatter settings. -- Target Hook: bool TARGET_RELAXED_ORDERING ! If set to 'true', means that the target's memory model does not guarantee that loads which do not depend on one another will access main memory in the order of the instruction stream; if ordering is important, an explicit memory barrier must be used. This is true of many recent processors which implement a policy of "relaxed," "weak," or "release" memory consistency, such as Alpha, PowerPC, ! and ia64. The default is 'false'. -- Target Hook: const char * TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN (const_tree TYPELIST, const_tree FUNCDECL, const_tree VAL) *************** Here are several miscellaneous parameter *** 37426,37493 **** -- Target Hook: const char * TARGET_INVALID_CONVERSION (const_tree FROMTYPE, const_tree TOTYPE) If defined, this macro returns the diagnostic message when it is ! invalid to convert from FROMTYPE to TOTYPE, or `NULL' if validity should be determined by the front end. -- Target Hook: const char * TARGET_INVALID_UNARY_OP (int OP, const_tree TYPE) If defined, this macro returns the diagnostic message when it is invalid to apply operation OP (where unary plus is denoted by ! `CONVERT_EXPR') to an operand of type TYPE, or `NULL' if validity should be determined by the front end. -- Target Hook: const char * TARGET_INVALID_BINARY_OP (int OP, const_tree TYPE1, const_tree TYPE2) If defined, this macro returns the diagnostic message when it is ! invalid to apply operation OP to operands of types TYPE1 and ! TYPE2, or `NULL' if validity should be determined by the front end. -- Target Hook: const char * TARGET_INVALID_PARAMETER_TYPE (const_tree TYPE) If defined, this macro returns the diagnostic message when it is ! invalid for functions to include parameters of type TYPE, or ! `NULL' if validity should be determined by the front end. This is currently used only by the C and C++ front ends. -- Target Hook: const char * TARGET_INVALID_RETURN_TYPE (const_tree TYPE) If defined, this macro returns the diagnostic message when it is ! invalid for functions to have return type TYPE, or `NULL' if validity should be determined by the front end. This is currently used only by the C and C++ front ends. -- Target Hook: tree TARGET_PROMOTED_TYPE (const_tree TYPE) If defined, this target hook returns the type to which values of TYPE should be promoted when they appear in expressions, analogous ! to the integer promotions, or `NULL_TREE' to use the front end's normal promotion rules. This hook is useful when there are target-specific types with special promotion rules. This is currently used only by the C and C++ front ends. -- Target Hook: tree TARGET_CONVERT_TO_TYPE (tree TYPE, tree EXPR) If defined, this hook returns the result of converting EXPR to ! TYPE. It should return the converted expression, or `NULL_TREE' ! to apply the front end's normal conversion rules. This hook is ! useful when there are target-specific types with special ! conversion rules. This is currently used only by the C and C++ ! front ends. -- Macro: TARGET_USE_JCR_SECTION This macro determines whether to use the JCR section to register ! Java classes. By default, TARGET_USE_JCR_SECTION is defined to 1 ! if both SUPPORTS_WEAK and TARGET_HAVE_NAMED_SECTIONS are true, ! else 0. -- Macro: OBJC_JBLEN This macro determines the size of the objective C jump buffer for ! the NeXT runtime. By default, OBJC_JBLEN is defined to an innocuous value. -- Macro: LIBGCC2_UNWIND_ATTRIBUTE Define this macro if any target-specific attributes need to be ! attached to the functions in `libgcc' that provide low-level support for call stack unwinding. It is used in declarations in ! `unwind-generic.h' and the associated definitions of those functions. -- Target Hook: void TARGET_UPDATE_STACK_BOUNDARY (void) --- 37045,37111 ---- -- Target Hook: const char * TARGET_INVALID_CONVERSION (const_tree FROMTYPE, const_tree TOTYPE) If defined, this macro returns the diagnostic message when it is ! invalid to convert from FROMTYPE to TOTYPE, or 'NULL' if validity should be determined by the front end. -- Target Hook: const char * TARGET_INVALID_UNARY_OP (int OP, const_tree TYPE) If defined, this macro returns the diagnostic message when it is invalid to apply operation OP (where unary plus is denoted by ! 'CONVERT_EXPR') to an operand of type TYPE, or 'NULL' if validity should be determined by the front end. -- Target Hook: const char * TARGET_INVALID_BINARY_OP (int OP, const_tree TYPE1, const_tree TYPE2) If defined, this macro returns the diagnostic message when it is ! invalid to apply operation OP to operands of types TYPE1 and TYPE2, ! or 'NULL' if validity should be determined by the front end. -- Target Hook: const char * TARGET_INVALID_PARAMETER_TYPE (const_tree TYPE) If defined, this macro returns the diagnostic message when it is ! invalid for functions to include parameters of type TYPE, or 'NULL' ! if validity should be determined by the front end. This is currently used only by the C and C++ front ends. -- Target Hook: const char * TARGET_INVALID_RETURN_TYPE (const_tree TYPE) If defined, this macro returns the diagnostic message when it is ! invalid for functions to have return type TYPE, or 'NULL' if validity should be determined by the front end. This is currently used only by the C and C++ front ends. -- Target Hook: tree TARGET_PROMOTED_TYPE (const_tree TYPE) If defined, this target hook returns the type to which values of TYPE should be promoted when they appear in expressions, analogous ! to the integer promotions, or 'NULL_TREE' to use the front end's normal promotion rules. This hook is useful when there are target-specific types with special promotion rules. This is currently used only by the C and C++ front ends. -- Target Hook: tree TARGET_CONVERT_TO_TYPE (tree TYPE, tree EXPR) If defined, this hook returns the result of converting EXPR to ! TYPE. It should return the converted expression, or 'NULL_TREE' to ! apply the front end's normal conversion rules. This hook is useful ! when there are target-specific types with special conversion rules. ! This is currently used only by the C and C++ front ends. -- Macro: TARGET_USE_JCR_SECTION This macro determines whether to use the JCR section to register ! Java classes. By default, TARGET_USE_JCR_SECTION is defined to 1 ! if both SUPPORTS_WEAK and TARGET_HAVE_NAMED_SECTIONS are true, else ! 0. -- Macro: OBJC_JBLEN This macro determines the size of the objective C jump buffer for ! the NeXT runtime. By default, OBJC_JBLEN is defined to an innocuous value. -- Macro: LIBGCC2_UNWIND_ATTRIBUTE Define this macro if any target-specific attributes need to be ! attached to the functions in 'libgcc' that provide low-level support for call stack unwinding. It is used in declarations in ! 'unwind-generic.h' and the associated definitions of those functions. -- Target Hook: void TARGET_UPDATE_STACK_BOUNDARY (void) *************** Here are several miscellaneous parameter *** 37495,37511 **** necessary. -- Target Hook: rtx TARGET_GET_DRAP_RTX (void) ! This hook should return an rtx for Dynamic Realign Argument ! Pointer (DRAP) if a different argument pointer register is needed ! to access the function's argument list due to stack realignment. ! Return `NULL' if no DRAP is needed. -- Target Hook: bool TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS (void) When optimization is disabled, this hook indicates whether or not arguments should be allocated to stack slots. Normally, GCC allocates stacks slots for arguments when not optimizing in order to make debugging easier. However, when a function is declared ! with `__attribute__((naked))', there is no stack frame, and the compiler cannot safely move arguments from the registers in which they are passed to the stack. Therefore, this hook should return true in general, but false for naked functions. The default --- 37113,37129 ---- necessary. -- Target Hook: rtx TARGET_GET_DRAP_RTX (void) ! This hook should return an rtx for Dynamic Realign Argument Pointer ! (DRAP) if a different argument pointer register is needed to access ! the function's argument list due to stack realignment. Return ! 'NULL' if no DRAP is needed. -- Target Hook: bool TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS (void) When optimization is disabled, this hook indicates whether or not arguments should be allocated to stack slots. Normally, GCC allocates stacks slots for arguments when not optimizing in order to make debugging easier. However, when a function is declared ! with '__attribute__((naked))', there is no stack frame, and the compiler cannot safely move arguments from the registers in which they are passed to the stack. Therefore, this hook should return true in general, but false for naked functions. The default *************** Here are several miscellaneous parameter *** 37516,37532 **** synthesize a constant. If there is another constant already in a register that is close enough in value then it is preferable that the new constant is computed from this register using immediate ! addition or subtraction. We accomplish this through CSE. Besides ! the value of the constant we also add a lower and an upper ! constant anchor to the available expressions. These are then ! queried when encountering new constants. The anchors are computed ! by rounding the constant up and down to a multiple of the value of ! `TARGET_CONST_ANCHOR'. `TARGET_CONST_ANCHOR' should be the ! maximum positive value accepted by immediate-add plus one. We ! currently assume that the value of `TARGET_CONST_ANCHOR' is a ! power of 2. For example, on MIPS, where add-immediate takes a ! 16-bit signed value, `TARGET_CONST_ANCHOR' is set to `0x8000'. ! The default value is zero, which disables this optimization. -- Target Hook: unsigned HOST_WIDE_INT TARGET_ASAN_SHADOW_OFFSET (void) Return the offset bitwise ored into shifted address to get --- 37134,37150 ---- synthesize a constant. If there is another constant already in a register that is close enough in value then it is preferable that the new constant is computed from this register using immediate ! addition or subtraction. We accomplish this through CSE. Besides ! the value of the constant we also add a lower and an upper constant ! anchor to the available expressions. These are then queried when ! encountering new constants. The anchors are computed by rounding ! the constant up and down to a multiple of the value of ! 'TARGET_CONST_ANCHOR'. 'TARGET_CONST_ANCHOR' should be the maximum ! positive value accepted by immediate-add plus one. We currently ! assume that the value of 'TARGET_CONST_ANCHOR' is a power of 2. ! For example, on MIPS, where add-immediate takes a 16-bit signed ! value, 'TARGET_CONST_ANCHOR' is set to '0x8000'. The default value ! is zero, which disables this optimization. -- Target Hook: unsigned HOST_WIDE_INT TARGET_ASAN_SHADOW_OFFSET (void) Return the offset bitwise ored into shifted address to get *************** Here are several miscellaneous parameter *** 37535,37546 **** -- Target Hook: unsigned HOST_WIDE_INT TARGET_MEMMODEL_CHECK (unsigned HOST_WIDE_INT VAL) ! Validate target specific memory model mask bits. When NULL no target specific memory model bits are allowed. -- Target Hook: unsigned char TARGET_ATOMIC_TEST_AND_SET_TRUEVAL This value should be set if the result written by ! `atomic_test_and_set' is not exactly 1, i.e. the `bool' `true'.  File: gccint.info, Node: Host Config, Next: Fragments, Prev: Target Macros, Up: Top --- 37153,37164 ---- -- Target Hook: unsigned HOST_WIDE_INT TARGET_MEMMODEL_CHECK (unsigned HOST_WIDE_INT VAL) ! Validate target specific memory model mask bits. When NULL no target specific memory model bits are allowed. -- Target Hook: unsigned char TARGET_ATOMIC_TEST_AND_SET_TRUEVAL This value should be set if the result written by ! 'atomic_test_and_set' is not exactly 1, i.e. the 'bool' 'true'.  File: gccint.info, Node: Host Config, Next: Fragments, Prev: Target Macros, Up: Top *************** File: gccint.info, Node: Host Config, *** 37549,37571 **** ********************* Most details about the machine and system on which the compiler is ! actually running are detected by the `configure' script. Some things ! are impossible for `configure' to detect; these are described in two ! ways, either by macros defined in a file named `xm-MACHINE.h' or by ! hook functions in the file specified by the OUT_HOST_HOOK_OBJ variable ! in `config.gcc'. (The intention is that very few hosts will need a ! header file but nearly every fully supported host will need to override ! some hooks.) If you need to define only a few macros, and they have simple ! definitions, consider using the `xm_defines' variable in your ! `config.gcc' entry instead of creating a host configuration header. *Note System Config::. * Menu: * Host Common:: Things every host probably needs implemented. ! * Filesystem:: Your host can't have the letter `a' in filenames? * Host Misc:: Rare configuration options for hosts.  --- 37167,37189 ---- ********************* Most details about the machine and system on which the compiler is ! actually running are detected by the 'configure' script. Some things ! are impossible for 'configure' to detect; these are described in two ! ways, either by macros defined in a file named 'xm-MACHINE.h' or by hook ! functions in the file specified by the OUT_HOST_HOOK_OBJ variable in ! 'config.gcc'. (The intention is that very few hosts will need a header ! file but nearly every fully supported host will need to override some ! hooks.) If you need to define only a few macros, and they have simple ! definitions, consider using the 'xm_defines' variable in your ! 'config.gcc' entry instead of creating a host configuration header. *Note System Config::. * Menu: * Host Common:: Things every host probably needs implemented. ! * Filesystem:: Your host can't have the letter 'a' in filenames? * Host Misc:: Rare configuration options for hosts.  *************** File: gccint.info, Node: Host Common, *** 37577,37583 **** Some things are just not portable, even between similar operating systems, and are too difficult for autoconf to detect. They get implemented using hook functions in the file specified by the ! HOST_HOOK_OBJ variable in `config.gcc'. -- Host Hook: void HOST_HOOKS_EXTRA_SIGNALS (void) This host hook is used to set up handling for extra signals. The --- 37195,37201 ---- Some things are just not portable, even between similar operating systems, and are too difficult for autoconf to detect. They get implemented using hook functions in the file specified by the ! HOST_HOOK_OBJ variable in 'config.gcc'. -- Host Hook: void HOST_HOOKS_EXTRA_SIGNALS (void) This host hook is used to set up handling for extra signals. The *************** HOST_HOOK_OBJ variable in `config.gcc'. *** 37587,37606 **** FD) This host hook returns the address of some space that is likely to be free in some subsequent invocation of the compiler. We intend ! to load the PCH data at this address such that the data need not ! be relocated. The area should be able to hold SIZE bytes. If the ! host uses `mmap', FD is an open file descriptor that can be used for probing. ! -- Host Hook: int HOST_HOOKS_GT_PCH_USE_ADDRESS (void * ADDRESS, ! size_t SIZE, int FD, size_t OFFSET) ! This host hook is called when a PCH file is about to be loaded. ! We want to load SIZE bytes from FD at OFFSET into memory at ! ADDRESS. The given address will be the result of a previous ! invocation of `HOST_HOOKS_GT_PCH_GET_ADDRESS'. Return -1 if we ! couldn't allocate SIZE bytes at ADDRESS. Return 0 if the memory ! is allocated but the data is not loaded. Return 1 if the hook has ! performed everything. If the implementation uses reserved address space, free any reserved space beyond SIZE, regardless of the return value. If no --- 37205,37223 ---- FD) This host hook returns the address of some space that is likely to be free in some subsequent invocation of the compiler. We intend ! to load the PCH data at this address such that the data need not be ! relocated. The area should be able to hold SIZE bytes. If the ! host uses 'mmap', FD is an open file descriptor that can be used for probing. ! -- Host Hook: int HOST_HOOKS_GT_PCH_USE_ADDRESS (void * ADDRESS, size_t ! SIZE, int FD, size_t OFFSET) ! This host hook is called when a PCH file is about to be loaded. We ! want to load SIZE bytes from FD at OFFSET into memory at ADDRESS. ! The given address will be the result of a previous invocation of ! 'HOST_HOOKS_GT_PCH_GET_ADDRESS'. Return -1 if we couldn't allocate ! SIZE bytes at ADDRESS. Return 0 if the memory is allocated but the ! data is not loaded. Return 1 if the hook has performed everything. If the implementation uses reserved address space, free any reserved space beyond SIZE, regardless of the return value. If no *************** File: gccint.info, Node: Filesystem, N *** 37626,37683 **** GCC needs to know a number of things about the semantics of the host machine's filesystem. Filesystems with Unix and MS-DOS semantics are ! automatically detected. For other systems, you can define the ! following macros in `xm-MACHINE.h'. ! `HAVE_DOS_BASED_FILE_SYSTEM' ! This macro is automatically defined by `system.h' if the host file system obeys the semantics defined by MS-DOS instead of Unix. DOS file systems are case insensitive, file specifications may begin ! with a drive letter, and both forward slash and backslash (`/' and ! `\') are directory separators. ! `DIR_SEPARATOR' ! `DIR_SEPARATOR_2' If defined, these macros expand to character constants specifying separators for directory names within a file specification. ! `system.h' will automatically give them appropriate values on Unix and MS-DOS file systems. If your file system is neither of these, ! define one or both appropriately in `xm-MACHINE.h'. However, operating systems like VMS, where constructing a pathname is more complicated than just stringing together directory names separated by a special character, should not define either of these macros. ! `PATH_SEPARATOR' If defined, this macro should expand to a character constant specifying the separator for elements of search paths. The default ! value is a colon (`:'). DOS-based systems usually, but not ! always, use semicolon (`;'). ! `VMS' Define this macro if the host system is VMS. ! `HOST_OBJECT_SUFFIX' Define this macro to be a C string representing the suffix for object files on your host machine. If you do not define this ! macro, GCC will use `.o' as the suffix for object files. ! `HOST_EXECUTABLE_SUFFIX' Define this macro to be a C string representing the suffix for executable files on your host machine. If you do not define this macro, GCC will use the null string as the suffix for executable files. ! `HOST_BIT_BUCKET' A pathname defined by the host operating system, which can be ! opened as a file and written to, but all the information written ! is discarded. This is commonly known as a "bit bucket" or "null ! device". If you do not define this macro, GCC will use ! `/dev/null' as the bit bucket. If the host does not support a bit ! bucket, define this macro to an invalid filename. ! `UPDATE_PATH_HOST_CANONICALIZE (PATH)' If defined, a C statement (sans semicolon) that performs host-dependent canonicalization when a path used in a compilation driver or preprocessor is canonicalized. PATH is a malloc-ed path --- 37243,37300 ---- GCC needs to know a number of things about the semantics of the host machine's filesystem. Filesystems with Unix and MS-DOS semantics are ! automatically detected. For other systems, you can define the following ! macros in 'xm-MACHINE.h'. ! 'HAVE_DOS_BASED_FILE_SYSTEM' ! This macro is automatically defined by 'system.h' if the host file system obeys the semantics defined by MS-DOS instead of Unix. DOS file systems are case insensitive, file specifications may begin ! with a drive letter, and both forward slash and backslash ('/' and ! '\') are directory separators. ! 'DIR_SEPARATOR' ! 'DIR_SEPARATOR_2' If defined, these macros expand to character constants specifying separators for directory names within a file specification. ! 'system.h' will automatically give them appropriate values on Unix and MS-DOS file systems. If your file system is neither of these, ! define one or both appropriately in 'xm-MACHINE.h'. However, operating systems like VMS, where constructing a pathname is more complicated than just stringing together directory names separated by a special character, should not define either of these macros. ! 'PATH_SEPARATOR' If defined, this macro should expand to a character constant specifying the separator for elements of search paths. The default ! value is a colon (':'). DOS-based systems usually, but not always, ! use semicolon (';'). ! 'VMS' Define this macro if the host system is VMS. ! 'HOST_OBJECT_SUFFIX' Define this macro to be a C string representing the suffix for object files on your host machine. If you do not define this ! macro, GCC will use '.o' as the suffix for object files. ! 'HOST_EXECUTABLE_SUFFIX' Define this macro to be a C string representing the suffix for executable files on your host machine. If you do not define this macro, GCC will use the null string as the suffix for executable files. ! 'HOST_BIT_BUCKET' A pathname defined by the host operating system, which can be ! opened as a file and written to, but all the information written is ! discarded. This is commonly known as a "bit bucket" or "null ! device". If you do not define this macro, GCC will use '/dev/null' ! as the bit bucket. If the host does not support a bit bucket, ! define this macro to an invalid filename. ! 'UPDATE_PATH_HOST_CANONICALIZE (PATH)' If defined, a C statement (sans semicolon) that performs host-dependent canonicalization when a path used in a compilation driver or preprocessor is canonicalized. PATH is a malloc-ed path *************** following macros in `xm-MACHINE.h'. *** 37685,37703 **** into a different buffer, the old path should be freed and the new buffer should have been allocated with malloc. ! `DUMPFILE_FORMAT' Define this macro to be a C string representing the format to use for constructing the index part of debugging dump file names. The ! resultant string must fit in fifteen bytes. The full filename ! will be the concatenation of: the prefix of the assembler file ! name, the string resulting from applying this format to an index ! number, and a string unique to each dump file kind, e.g. `rtl'. ! If you do not define this macro, GCC will use `.%02d.'. You should define this macro if using the default will create an invalid file name. ! `DELETE_IF_ORDINARY' Define this macro to be a C statement (sans semicolon) that performs host-dependent removal of ordinary temp files in the compilation driver. --- 37302,37320 ---- into a different buffer, the old path should be freed and the new buffer should have been allocated with malloc. ! 'DUMPFILE_FORMAT' Define this macro to be a C string representing the format to use for constructing the index part of debugging dump file names. The ! resultant string must fit in fifteen bytes. The full filename will ! be the concatenation of: the prefix of the assembler file name, the ! string resulting from applying this format to an index number, and ! a string unique to each dump file kind, e.g. 'rtl'. ! If you do not define this macro, GCC will use '.%02d.'. You should define this macro if using the default will create an invalid file name. ! 'DELETE_IF_ORDINARY' Define this macro to be a C statement (sans semicolon) that performs host-dependent removal of ordinary temp files in the compilation driver. *************** following macros in `xm-MACHINE.h'. *** 37707,37715 **** reliably remove the temp file as, for example, on VMS which allows multiple versions of a file. ! `HOST_LACKS_INODE_NUMBERS' ! Define this macro if the host filesystem does not report ! meaningful inode numbers in struct stat.  File: gccint.info, Node: Host Misc, Prev: Filesystem, Up: Host Config --- 37324,37332 ---- reliably remove the temp file as, for example, on VMS which allows multiple versions of a file. ! 'HOST_LACKS_INODE_NUMBERS' ! Define this macro if the host filesystem does not report meaningful ! inode numbers in struct stat.  File: gccint.info, Node: Host Misc, Prev: Filesystem, Up: Host Config *************** File: gccint.info, Node: Host Misc, Pr *** 37717,37773 **** 18.3 Host Misc ============== ! `FATAL_EXIT_CODE' A C expression for the status code to be returned when the compiler exits after serious errors. The default is the system-provided ! macro `EXIT_FAILURE', or `1' if the system doesn't define that macro. Define this macro only if these defaults are incorrect. ! `SUCCESS_EXIT_CODE' A C expression for the status code to be returned when the compiler exits without serious errors. (Warnings are not serious errors.) ! The default is the system-provided macro `EXIT_SUCCESS', or `0' if the system doesn't define that macro. Define this macro only if these defaults are incorrect. ! `USE_C_ALLOCA' Define this macro if GCC should use the C implementation of ! `alloca' provided by `libiberty.a'. This only affects how some parts of the compiler itself allocate memory. It does not change code generation. ! When GCC is built with a compiler other than itself, the C `alloca' is always used. This is because most other implementations have serious bugs. You should define this macro only on a system where ! no stack-based `alloca' can possibly work. For instance, if a system has a small limit on the size of the stack, GCC's builtin ! `alloca' will not work reliably. ! `COLLECT2_HOST_INITIALIZATION' If defined, a C statement (sans semicolon) that performs ! host-dependent initialization when `collect2' is being initialized. ! `GCC_DRIVER_HOST_INITIALIZATION' If defined, a C statement (sans semicolon) that performs host-dependent initialization when a compilation driver is being initialized. ! `HOST_LONG_LONG_FORMAT' ! If defined, the string used to indicate an argument of type `long ! long' to functions like `printf'. The default value is `"ll"'. ! `HOST_LONG_FORMAT' ! If defined, the string used to indicate an argument of type `long' ! to functions like `printf'. The default value is `"l"'. ! `HOST_PTR_PRINTF' ! If defined, the string used to indicate an argument of type `void ! *' to functions like `printf'. The default value is `"%p"'. ! In addition, if `configure' generates an incorrect definition of any ! of the macros in `auto-host.h', you can override that definition in a ! host configuration header. If you need to do this, first see if it is ! possible to fix `configure'.  File: gccint.info, Node: Fragments, Next: Collect2, Prev: Host Config, Up: Top --- 37334,37390 ---- 18.3 Host Misc ============== ! 'FATAL_EXIT_CODE' A C expression for the status code to be returned when the compiler exits after serious errors. The default is the system-provided ! macro 'EXIT_FAILURE', or '1' if the system doesn't define that macro. Define this macro only if these defaults are incorrect. ! 'SUCCESS_EXIT_CODE' A C expression for the status code to be returned when the compiler exits without serious errors. (Warnings are not serious errors.) ! The default is the system-provided macro 'EXIT_SUCCESS', or '0' if the system doesn't define that macro. Define this macro only if these defaults are incorrect. ! 'USE_C_ALLOCA' Define this macro if GCC should use the C implementation of ! 'alloca' provided by 'libiberty.a'. This only affects how some parts of the compiler itself allocate memory. It does not change code generation. ! When GCC is built with a compiler other than itself, the C 'alloca' is always used. This is because most other implementations have serious bugs. You should define this macro only on a system where ! no stack-based 'alloca' can possibly work. For instance, if a system has a small limit on the size of the stack, GCC's builtin ! 'alloca' will not work reliably. ! 'COLLECT2_HOST_INITIALIZATION' If defined, a C statement (sans semicolon) that performs ! host-dependent initialization when 'collect2' is being initialized. ! 'GCC_DRIVER_HOST_INITIALIZATION' If defined, a C statement (sans semicolon) that performs host-dependent initialization when a compilation driver is being initialized. ! 'HOST_LONG_LONG_FORMAT' ! If defined, the string used to indicate an argument of type 'long ! long' to functions like 'printf'. The default value is '"ll"'. ! 'HOST_LONG_FORMAT' ! If defined, the string used to indicate an argument of type 'long' ! to functions like 'printf'. The default value is '"l"'. ! 'HOST_PTR_PRINTF' ! If defined, the string used to indicate an argument of type 'void ! *' to functions like 'printf'. The default value is '"%p"'. ! In addition, if 'configure' generates an incorrect definition of any of ! the macros in 'auto-host.h', you can override that definition in a host ! configuration header. If you need to do this, first see if it is ! possible to fix 'configure'.  File: gccint.info, Node: Fragments, Next: Collect2, Prev: Host Config, Up: Top *************** File: gccint.info, Node: Fragments, Ne *** 37775,37802 **** 19 Makefile Fragments ********************* ! When you configure GCC using the `configure' script, it will construct ! the file `Makefile' from the template file `Makefile.in'. When it does ! this, it can incorporate makefile fragments from the `config' ! directory. These are used to set Makefile parameters that are not ! amenable to being calculated by autoconf. The list of fragments to ! incorporate is set by `config.gcc' (and occasionally `config.build' and ! `config.host'); *Note System Config::. ! Fragments are named either `t-TARGET' or `x-HOST', depending on ! whether they are relevant to configuring GCC to produce code for a ! particular target, or to configuring GCC to run on a particular host. ! Here TARGET and HOST are mnemonics which usually have some relationship ! to the canonical system name, but no formal connection. If these files do not exist, it means nothing needs to be added for a ! given target or host. Most targets need a few `t-TARGET' fragments, ! but needing `x-HOST' fragments is rare. * Menu: ! * Target Fragment:: Writing `t-TARGET' files. ! * Host Fragment:: Writing `x-HOST' files.  File: gccint.info, Node: Target Fragment, Next: Host Fragment, Up: Fragments --- 37392,37419 ---- 19 Makefile Fragments ********************* ! When you configure GCC using the 'configure' script, it will construct ! the file 'Makefile' from the template file 'Makefile.in'. When it does ! this, it can incorporate makefile fragments from the 'config' directory. ! These are used to set Makefile parameters that are not amenable to being ! calculated by autoconf. The list of fragments to incorporate is set by ! 'config.gcc' (and occasionally 'config.build' and 'config.host'); *Note ! System Config::. ! Fragments are named either 't-TARGET' or 'x-HOST', depending on whether ! they are relevant to configuring GCC to produce code for a particular ! target, or to configuring GCC to run on a particular host. Here TARGET ! and HOST are mnemonics which usually have some relationship to the ! canonical system name, but no formal connection. If these files do not exist, it means nothing needs to be added for a ! given target or host. Most targets need a few 't-TARGET' fragments, but ! needing 'x-HOST' fragments is rare. * Menu: ! * Target Fragment:: Writing 't-TARGET' files. ! * Host Fragment:: Writing 'x-HOST' files.  File: gccint.info, Node: Target Fragment, Next: Host Fragment, Up: Fragments *************** File: gccint.info, Node: Target Fragmen *** 37806,37974 **** Target makefile fragments can set these Makefile variables. ! `LIBGCC2_CFLAGS' ! Compiler flags to use when compiling `libgcc2.c'. ! `LIB2FUNCS_EXTRA' A list of source file names to be compiled or assembled and ! inserted into `libgcc.a'. ! `CRTSTUFF_T_CFLAGS' ! Special flags used when compiling `crtstuff.c'. *Note Initialization::. ! `CRTSTUFF_T_CFLAGS_S' ! Special flags used when compiling `crtstuff.c' for shared linking. ! Used if you use `crtbeginS.o' and `crtendS.o' in `EXTRA-PARTS'. *Note Initialization::. ! `MULTILIB_OPTIONS' For some targets, invoking GCC in different ways produces objects that can not be linked together. For example, for some targets GCC produces both big and little endian code. For these targets, you ! must arrange for multiple versions of `libgcc.a' to be compiled, one for each set of incompatible options. When GCC invokes the ! linker, it arranges to link in the right version of `libgcc.a', based on the command line options used. ! The `MULTILIB_OPTIONS' macro lists the set of options for which ! special versions of `libgcc.a' must be built. Write options that are mutually incompatible side by side, separated by a slash. Write options that may be used together separated by a space. The build procedure will build all combinations of compatible options. ! For example, if you set `MULTILIB_OPTIONS' to `m68000/m68020 ! msoft-float', `Makefile' will build special versions of `libgcc.a' ! using the following sets of options: `-m68000', `-m68020', ! `-msoft-float', `-m68000 -msoft-float', and `-m68020 -msoft-float'. ! `MULTILIB_DIRNAMES' ! If `MULTILIB_OPTIONS' is used, this variable specifies the directory names that should be used to hold the various libraries. ! Write one element in `MULTILIB_DIRNAMES' for each element in ! `MULTILIB_OPTIONS'. If `MULTILIB_DIRNAMES' is not used, the ! default value will be `MULTILIB_OPTIONS', with all slashes treated as spaces. ! `MULTILIB_DIRNAMES' describes the multilib directories using GCC conventions and is applied to directories that are part of the GCC installation. When multilib-enabled, the compiler will add a subdirectory of the form PREFIX/MULTILIB before each directory in the search path for libraries and crt files. ! For example, if `MULTILIB_OPTIONS' is set to `m68000/m68020 ! msoft-float', then the default value of `MULTILIB_DIRNAMES' is ! `m68000 m68020 msoft-float'. You may specify a different value if you desire a different set of directory names. ! `MULTILIB_MATCHES' ! Sometimes the same option may be written in two different ways. ! If an option is listed in `MULTILIB_OPTIONS', GCC needs to know ! about any synonyms. In that case, set `MULTILIB_MATCHES' to a ! list of items of the form `option=option' to describe all relevant ! synonyms. For example, `m68000=mc68000 m68020=mc68020'. ! `MULTILIB_EXCEPTIONS' ! Sometimes when there are multiple sets of `MULTILIB_OPTIONS' being specified, there are combinations that should not be built. In ! that case, set `MULTILIB_EXCEPTIONS' to be all of the switch exceptions in shell case syntax that should not be built. For example the ARM processor cannot execute both hardware floating point instructions and the reduced size THUMB instructions at the same time, so there is no need to build libraries with both of ! these options enabled. Therefore `MULTILIB_EXCEPTIONS' is set to: *mthumb/*mhard-float* ! `MULTILIB_REQUIRED' Sometimes when there are only a few combinations are required, it ! would be a big effort to come up with a `MULTILIB_EXCEPTIONS' list to cover all undesired ones. In such a case, just listing all the ! required combinations in `MULTILIB_REQUIRED' would be more straightforward. ! The way to specify the entries in `MULTILIB_REQUIRED' is same with ! the way used for `MULTILIB_EXCEPTIONS', only this time what are required will be specified. Suppose there are multiple sets of ! `MULTILIB_OPTIONS' and only two combinations are required, one for ARMv7-M and one for ARMv7-R with hard floating-point ABI and FPU, ! the `MULTILIB_REQUIRED' can be set to: ! `MULTILIB_REQUIRED' = mthumb/march=armv7-m ! `MULTILIB_REQUIRED' += march=armv7-r/mfloat-abi=hard/mfpu=vfpv3-d16 ! The `MULTILIB_REQUIRED' can be used together with ! `MULTILIB_EXCEPTIONS'. The option combinations generated from ! `MULTILIB_OPTIONS' will be filtered by `MULTILIB_EXCEPTIONS' and ! then by `MULTILIB_REQUIRED'. ! `MULTILIB_REUSE' Sometimes it is desirable to reuse one existing multilib for different sets of options. Such kind of reuse can minimize the number of multilib variants. And for some targets it is better to reuse an existing multilib than to fall back to default multilib when there is no corresponding multilib. This can be done by ! adding reuse rules to `MULTILIB_REUSE'. A reuse rule is comprised of two parts connected by equality sign. The left part is option set used to build multilib and the right part is option set that will reuse this multilib. The order of options in the left part matters and should be same with those ! specified in `MULTILIB_REQUIRED' or aligned with order in ! `MULTILIB_OPTIONS'. There is no such limitation for options in right part as we don't build multilib from them. But the equality sign in both parts should be replaced with period. ! The `MULTILIB_REUSE' is different from `MULTILIB_MATCHES' in that it sets up relations between two option sets rather than two options. Here is an example to demo how we reuse libraries built in Thumb mode for applications built in ARM mode: ! `MULTILIB_REUSE' = mthumb/march.armv7-r=marm/march.armv7-r ! Before the advent of `MULTILIB_REUSE', GCC select multilib by ! comparing command line options with options used to build ! multilib. The `MULTILIB_REUSE' is complementary to that way. ! Only when the original comparison matches nothing it will work to ! see if it is OK to reuse some existing multilib. ! `MULTILIB_EXTRA_OPTS' Sometimes it is desirable that when building multiple versions of ! `libgcc.a' certain options should always be passed on to the ! compiler. In that case, set `MULTILIB_EXTRA_OPTS' to be the list of options to be used for all builds. If you set this, you should ! probably set `CRTSTUFF_T_CFLAGS' to a dash followed by it. ! `MULTILIB_OSDIRNAMES' ! If `MULTILIB_OPTIONS' is used, this variable specifies a list of subdirectory names, that are used to modify the search path ! depending on the chosen multilib. Unlike `MULTILIB_DIRNAMES', ! `MULTILIB_OSDIRNAMES' describes the multilib directories using operating systems conventions, and is applied to the directories ! such as `lib' or those in the `LIBRARY_PATH' environment variable. ! The format is either the same as of `MULTILIB_DIRNAMES', or a set ! of mappings. When it is the same as `MULTILIB_DIRNAMES', it describes the multilib directories using operating system conventions, rather than GCC conventions. When it is a set of mappings of the form GCCDIR=OSDIR, the left side gives the GCC convention and the right gives the equivalent OS defined location. ! If the OSDIR part begins with a `!', GCC will not search in the non-multilib directory and use exclusively the multilib directory. Otherwise, the compiler will examine the search path for libraries and crt files twice; the first time it will add MULTILIB to each directory in the search path, the second it will not. For configurations that support both multilib and multiarch, ! `MULTILIB_OSDIRNAMES' also encodes the multiarch name, thus ! subsuming `MULTIARCH_DIRNAME'. The multiarch name is appended to each directory name, separated by a colon (e.g. ! `../lib32:i386-linux-gnu'). Each multiarch subdirectory will be searched before the corresponding OS multilib directory, for example ! `/lib/i386-linux-gnu' before `/lib/../lib32'. The multiarch name will also be used to modify the system header search path, as ! explained for `MULTIARCH_DIRNAME'. ! `MULTIARCH_DIRNAME' This variable specifies the multiarch name for configurations that are multiarch-enabled but not multilibbed configurations. --- 37423,37591 ---- Target makefile fragments can set these Makefile variables. ! 'LIBGCC2_CFLAGS' ! Compiler flags to use when compiling 'libgcc2.c'. ! 'LIB2FUNCS_EXTRA' A list of source file names to be compiled or assembled and ! inserted into 'libgcc.a'. ! 'CRTSTUFF_T_CFLAGS' ! Special flags used when compiling 'crtstuff.c'. *Note Initialization::. ! 'CRTSTUFF_T_CFLAGS_S' ! Special flags used when compiling 'crtstuff.c' for shared linking. ! Used if you use 'crtbeginS.o' and 'crtendS.o' in 'EXTRA-PARTS'. *Note Initialization::. ! 'MULTILIB_OPTIONS' For some targets, invoking GCC in different ways produces objects that can not be linked together. For example, for some targets GCC produces both big and little endian code. For these targets, you ! must arrange for multiple versions of 'libgcc.a' to be compiled, one for each set of incompatible options. When GCC invokes the ! linker, it arranges to link in the right version of 'libgcc.a', based on the command line options used. ! The 'MULTILIB_OPTIONS' macro lists the set of options for which ! special versions of 'libgcc.a' must be built. Write options that are mutually incompatible side by side, separated by a slash. Write options that may be used together separated by a space. The build procedure will build all combinations of compatible options. ! For example, if you set 'MULTILIB_OPTIONS' to 'm68000/m68020 ! msoft-float', 'Makefile' will build special versions of 'libgcc.a' ! using the following sets of options: '-m68000', '-m68020', ! '-msoft-float', '-m68000 -msoft-float', and '-m68020 -msoft-float'. ! 'MULTILIB_DIRNAMES' ! If 'MULTILIB_OPTIONS' is used, this variable specifies the directory names that should be used to hold the various libraries. ! Write one element in 'MULTILIB_DIRNAMES' for each element in ! 'MULTILIB_OPTIONS'. If 'MULTILIB_DIRNAMES' is not used, the ! default value will be 'MULTILIB_OPTIONS', with all slashes treated as spaces. ! 'MULTILIB_DIRNAMES' describes the multilib directories using GCC conventions and is applied to directories that are part of the GCC installation. When multilib-enabled, the compiler will add a subdirectory of the form PREFIX/MULTILIB before each directory in the search path for libraries and crt files. ! For example, if 'MULTILIB_OPTIONS' is set to 'm68000/m68020 ! msoft-float', then the default value of 'MULTILIB_DIRNAMES' is ! 'm68000 m68020 msoft-float'. You may specify a different value if you desire a different set of directory names. ! 'MULTILIB_MATCHES' ! Sometimes the same option may be written in two different ways. If ! an option is listed in 'MULTILIB_OPTIONS', GCC needs to know about ! any synonyms. In that case, set 'MULTILIB_MATCHES' to a list of ! items of the form 'option=option' to describe all relevant ! synonyms. For example, 'm68000=mc68000 m68020=mc68020'. ! 'MULTILIB_EXCEPTIONS' ! Sometimes when there are multiple sets of 'MULTILIB_OPTIONS' being specified, there are combinations that should not be built. In ! that case, set 'MULTILIB_EXCEPTIONS' to be all of the switch exceptions in shell case syntax that should not be built. For example the ARM processor cannot execute both hardware floating point instructions and the reduced size THUMB instructions at the same time, so there is no need to build libraries with both of ! these options enabled. Therefore 'MULTILIB_EXCEPTIONS' is set to: *mthumb/*mhard-float* ! 'MULTILIB_REQUIRED' Sometimes when there are only a few combinations are required, it ! would be a big effort to come up with a 'MULTILIB_EXCEPTIONS' list to cover all undesired ones. In such a case, just listing all the ! required combinations in 'MULTILIB_REQUIRED' would be more straightforward. ! The way to specify the entries in 'MULTILIB_REQUIRED' is same with ! the way used for 'MULTILIB_EXCEPTIONS', only this time what are required will be specified. Suppose there are multiple sets of ! 'MULTILIB_OPTIONS' and only two combinations are required, one for ARMv7-M and one for ARMv7-R with hard floating-point ABI and FPU, ! the 'MULTILIB_REQUIRED' can be set to: ! MULTILIB_REQUIRED = mthumb/march=armv7-m ! MULTILIB_REQUIRED += march=armv7-r/mfloat-abi=hard/mfpu=vfpv3-d16 ! The 'MULTILIB_REQUIRED' can be used together with ! 'MULTILIB_EXCEPTIONS'. The option combinations generated from ! 'MULTILIB_OPTIONS' will be filtered by 'MULTILIB_EXCEPTIONS' and ! then by 'MULTILIB_REQUIRED'. ! 'MULTILIB_REUSE' Sometimes it is desirable to reuse one existing multilib for different sets of options. Such kind of reuse can minimize the number of multilib variants. And for some targets it is better to reuse an existing multilib than to fall back to default multilib when there is no corresponding multilib. This can be done by ! adding reuse rules to 'MULTILIB_REUSE'. A reuse rule is comprised of two parts connected by equality sign. The left part is option set used to build multilib and the right part is option set that will reuse this multilib. The order of options in the left part matters and should be same with those ! specified in 'MULTILIB_REQUIRED' or aligned with order in ! 'MULTILIB_OPTIONS'. There is no such limitation for options in right part as we don't build multilib from them. But the equality sign in both parts should be replaced with period. ! The 'MULTILIB_REUSE' is different from 'MULTILIB_MATCHES' in that it sets up relations between two option sets rather than two options. Here is an example to demo how we reuse libraries built in Thumb mode for applications built in ARM mode: ! MULTILIB_REUSE = mthumb/march.armv7-r=marm/march.armv7-r ! Before the advent of 'MULTILIB_REUSE', GCC select multilib by ! comparing command line options with options used to build multilib. ! The 'MULTILIB_REUSE' is complementary to that way. Only when the ! original comparison matches nothing it will work to see if it is OK ! to reuse some existing multilib. ! 'MULTILIB_EXTRA_OPTS' Sometimes it is desirable that when building multiple versions of ! 'libgcc.a' certain options should always be passed on to the ! compiler. In that case, set 'MULTILIB_EXTRA_OPTS' to be the list of options to be used for all builds. If you set this, you should ! probably set 'CRTSTUFF_T_CFLAGS' to a dash followed by it. ! 'MULTILIB_OSDIRNAMES' ! If 'MULTILIB_OPTIONS' is used, this variable specifies a list of subdirectory names, that are used to modify the search path ! depending on the chosen multilib. Unlike 'MULTILIB_DIRNAMES', ! 'MULTILIB_OSDIRNAMES' describes the multilib directories using operating systems conventions, and is applied to the directories ! such as 'lib' or those in the 'LIBRARY_PATH' environment variable. ! The format is either the same as of 'MULTILIB_DIRNAMES', or a set ! of mappings. When it is the same as 'MULTILIB_DIRNAMES', it describes the multilib directories using operating system conventions, rather than GCC conventions. When it is a set of mappings of the form GCCDIR=OSDIR, the left side gives the GCC convention and the right gives the equivalent OS defined location. ! If the OSDIR part begins with a '!', GCC will not search in the non-multilib directory and use exclusively the multilib directory. Otherwise, the compiler will examine the search path for libraries and crt files twice; the first time it will add MULTILIB to each directory in the search path, the second it will not. For configurations that support both multilib and multiarch, ! 'MULTILIB_OSDIRNAMES' also encodes the multiarch name, thus ! subsuming 'MULTIARCH_DIRNAME'. The multiarch name is appended to each directory name, separated by a colon (e.g. ! '../lib32:i386-linux-gnu'). Each multiarch subdirectory will be searched before the corresponding OS multilib directory, for example ! '/lib/i386-linux-gnu' before '/lib/../lib32'. The multiarch name will also be used to modify the system header search path, as ! explained for 'MULTIARCH_DIRNAME'. ! 'MULTIARCH_DIRNAME' This variable specifies the multiarch name for configurations that are multiarch-enabled but not multilibbed configurations. *************** Target makefile fragments can set these *** 37977,38010 **** locations. The compiler will add a multiarch subdirectory of the form PREFIX/MULTIARCH before each directory in the library and crt search path. It will also add two directories ! `LOCAL_INCLUDE_DIR'/MULTIARCH and ! `NATIVE_SYSTEM_HEADER_DIR'/MULTIARCH) to the system header search ! path, respectively before `LOCAL_INCLUDE_DIR' and ! `NATIVE_SYSTEM_HEADER_DIR'. ! `MULTIARCH_DIRNAME' is not used for configurations that support both multilib and multiarch. In that case, multiarch names are ! encoded in `MULTILIB_OSDIRNAMES' instead. More documentation about multiarch can be found at ! `http://wiki.debian.org/Multiarch'. ! `SPECS' ! Unfortunately, setting `MULTILIB_EXTRA_OPTS' is not enough, since it does not affect the build of target libraries, at least not the build of the default multilib. One possible work-around is to use ! `DRIVER_SELF_SPECS' to bring options from the `specs' file as if ! they had been passed in the compiler driver command line. ! However, you don't want to be adding these options after the ! toolchain is installed, so you can instead tweak the `specs' file ! that will be used during the toolchain build, while you still ! install the original, built-in `specs'. The trick is to set ! `SPECS' to some other filename (say `specs.install'), that will ! then be created out of the built-in specs, and introduce a ! `Makefile' rule to generate the `specs' file that's going to be ! used at build time out of your `specs.install'. ! `T_CFLAGS' These are extra flags to pass to the C compiler. They are used both when building GCC, and when compiling things with the just-built GCC. This variable is deprecated and should not be --- 37594,37627 ---- locations. The compiler will add a multiarch subdirectory of the form PREFIX/MULTIARCH before each directory in the library and crt search path. It will also add two directories ! 'LOCAL_INCLUDE_DIR'/MULTIARCH and ! 'NATIVE_SYSTEM_HEADER_DIR'/MULTIARCH) to the system header search ! path, respectively before 'LOCAL_INCLUDE_DIR' and ! 'NATIVE_SYSTEM_HEADER_DIR'. ! 'MULTIARCH_DIRNAME' is not used for configurations that support both multilib and multiarch. In that case, multiarch names are ! encoded in 'MULTILIB_OSDIRNAMES' instead. More documentation about multiarch can be found at ! . ! 'SPECS' ! Unfortunately, setting 'MULTILIB_EXTRA_OPTS' is not enough, since it does not affect the build of target libraries, at least not the build of the default multilib. One possible work-around is to use ! 'DRIVER_SELF_SPECS' to bring options from the 'specs' file as if ! they had been passed in the compiler driver command line. However, ! you don't want to be adding these options after the toolchain is ! installed, so you can instead tweak the 'specs' file that will be ! used during the toolchain build, while you still install the ! original, built-in 'specs'. The trick is to set 'SPECS' to some ! other filename (say 'specs.install'), that will then be created out ! of the built-in specs, and introduce a 'Makefile' rule to generate ! the 'specs' file that's going to be used at build time out of your ! 'specs.install'. ! 'T_CFLAGS' These are extra flags to pass to the C compiler. They are used both when building GCC, and when compiling things with the just-built GCC. This variable is deprecated and should not be *************** File: gccint.info, Node: Host Fragment, *** 38016,38094 **** 19.2 Host Makefile Fragments ============================ ! The use of `x-HOST' fragments is discouraged. You should only use it for makefile dependencies.  File: gccint.info, Node: Collect2, Next: Header Dirs, Prev: Fragments, Up: Top ! 20 `collect2' ************* ! GCC uses a utility called `collect2' on nearly all systems to arrange ! to call various initialization functions at start time. ! The program `collect2' works by linking the program once and looking through the linker output file for symbols with particular names indicating they are constructor functions. If it finds any, it creates ! a new temporary `.c' file containing a table of them, compiles it, and links the program a second time including that file. The actual calls to the constructors are carried out by a subroutine ! called `__main', which is called (automatically) at the beginning of ! the body of `main' (provided `main' was compiled with GNU CC). Calling ! `__main' is necessary, even when compiling C code, to allow linking C ! and C++ object code together. (If you use `-nostdlib', you get an ! unresolved reference to `__main', since it's defined in the standard ! GCC library. Include `-lgcc' at the end of your compiler command line ! to resolve this reference.) ! The program `collect2' is installed as `ld' in the directory where the ! passes of the compiler are installed. When `collect2' needs to find ! the _real_ `ld', it tries the following file names: * a hard coded linker file name, if GCC was configured with the ! `--with-ld' option. ! * `real-ld' in the directories listed in the compiler's search directories. ! * `real-ld' in the directories listed in the environment variable ! `PATH'. ! * The file specified in the `REAL_LD_FILE_NAME' configuration macro, if specified. ! * `ld' in the compiler's search directories, except that `collect2' will not execute itself recursively. ! * `ld' in `PATH'. "The compiler's search directories" means all the directories where ! `gcc' searches for passes of the compiler. This includes directories ! that you specify with `-B'. Cross-compilers search a little differently: ! * `real-ld' in the compiler's search directories. ! * `TARGET-real-ld' in `PATH'. ! * The file specified in the `REAL_LD_FILE_NAME' configuration macro, if specified. ! * `ld' in the compiler's search directories. ! * `TARGET-ld' in `PATH'. ! `collect2' explicitly avoids running `ld' using the file name under ! which `collect2' itself was invoked. In fact, it remembers up a list ! of such names--in case one copy of `collect2' finds another copy (or ! version) of `collect2' installed as `ld' in a second place in the ! search path. ! `collect2' searches for the utilities `nm' and `strip' using the same ! algorithm as above for `ld'.  File: gccint.info, Node: Header Dirs, Next: Type Information, Prev: Collect2, Up: Top --- 37633,37711 ---- 19.2 Host Makefile Fragments ============================ ! The use of 'x-HOST' fragments is discouraged. You should only use it for makefile dependencies.  File: gccint.info, Node: Collect2, Next: Header Dirs, Prev: Fragments, Up: Top ! 20 'collect2' ************* ! GCC uses a utility called 'collect2' on nearly all systems to arrange to ! call various initialization functions at start time. ! The program 'collect2' works by linking the program once and looking through the linker output file for symbols with particular names indicating they are constructor functions. If it finds any, it creates ! a new temporary '.c' file containing a table of them, compiles it, and links the program a second time including that file. The actual calls to the constructors are carried out by a subroutine ! called '__main', which is called (automatically) at the beginning of the ! body of 'main' (provided 'main' was compiled with GNU CC). Calling ! '__main' is necessary, even when compiling C code, to allow linking C ! and C++ object code together. (If you use '-nostdlib', you get an ! unresolved reference to '__main', since it's defined in the standard GCC ! library. Include '-lgcc' at the end of your compiler command line to ! resolve this reference.) ! The program 'collect2' is installed as 'ld' in the directory where the ! passes of the compiler are installed. When 'collect2' needs to find the ! _real_ 'ld', it tries the following file names: * a hard coded linker file name, if GCC was configured with the ! '--with-ld' option. ! * 'real-ld' in the directories listed in the compiler's search directories. ! * 'real-ld' in the directories listed in the environment variable ! 'PATH'. ! * The file specified in the 'REAL_LD_FILE_NAME' configuration macro, if specified. ! * 'ld' in the compiler's search directories, except that 'collect2' will not execute itself recursively. ! * 'ld' in 'PATH'. "The compiler's search directories" means all the directories where ! 'gcc' searches for passes of the compiler. This includes directories ! that you specify with '-B'. Cross-compilers search a little differently: ! * 'real-ld' in the compiler's search directories. ! * 'TARGET-real-ld' in 'PATH'. ! * The file specified in the 'REAL_LD_FILE_NAME' configuration macro, if specified. ! * 'ld' in the compiler's search directories. ! * 'TARGET-ld' in 'PATH'. ! 'collect2' explicitly avoids running 'ld' using the file name under ! which 'collect2' itself was invoked. In fact, it remembers up a list of ! such names--in case one copy of 'collect2' finds another copy (or ! version) of 'collect2' installed as 'ld' in a second place in the search ! path. ! 'collect2' searches for the utilities 'nm' and 'strip' using the same ! algorithm as above for 'ld'.  File: gccint.info, Node: Header Dirs, Next: Type Information, Prev: Collect2, Up: Top *************** File: gccint.info, Node: Header Dirs, *** 38096,38124 **** 21 Standard Header File Directories *********************************** ! `GCC_INCLUDE_DIR' means the same thing for native and cross. It is where GCC stores its private include files, and also where GCC stores ! the fixed include files. A cross compiled GCC runs `fixincludes' on ! the header files in `$(tooldir)/include'. (If the cross compilation ! header files need to be fixed, they must be installed before GCC is ! built. If the cross compilation header files are already suitable for ! GCC, nothing special need be done). ! `GPLUSPLUS_INCLUDE_DIR' means the same thing for native and cross. It ! is where `g++' looks first for header files. The C++ library installs only target independent header files in that directory. ! `LOCAL_INCLUDE_DIR' is used only by native compilers. GCC doesn't ! install anything there. It is normally `/usr/local/include'. This is where local additions to a packaged system should place header files. ! `CROSS_INCLUDE_DIR' is used only by cross compilers. GCC doesn't install anything there. ! `TOOL_INCLUDE_DIR' is used for both native and cross compilers. It is the place for other packages to install header files that GCC will use. ! For a cross-compiler, this is the equivalent of `/usr/include'. When ! you build a cross-compiler, `fixincludes' processes any header files in this directory.  --- 37713,37741 ---- 21 Standard Header File Directories *********************************** ! 'GCC_INCLUDE_DIR' means the same thing for native and cross. It is where GCC stores its private include files, and also where GCC stores ! the fixed include files. A cross compiled GCC runs 'fixincludes' on the ! header files in '$(tooldir)/include'. (If the cross compilation header ! files need to be fixed, they must be installed before GCC is built. If ! the cross compilation header files are already suitable for GCC, nothing ! special need be done). ! 'GPLUSPLUS_INCLUDE_DIR' means the same thing for native and cross. It ! is where 'g++' looks first for header files. The C++ library installs only target independent header files in that directory. ! 'LOCAL_INCLUDE_DIR' is used only by native compilers. GCC doesn't ! install anything there. It is normally '/usr/local/include'. This is where local additions to a packaged system should place header files. ! 'CROSS_INCLUDE_DIR' is used only by cross compilers. GCC doesn't install anything there. ! 'TOOL_INCLUDE_DIR' is used for both native and cross compilers. It is the place for other packages to install header files that GCC will use. ! For a cross-compiler, this is the equivalent of '/usr/include'. When ! you build a cross-compiler, 'fixincludes' processes any header files in this directory.  *************** implement precompiled headers. *** 38134,38159 **** A full C++ parser would be too complicated for this task, so a limited subset of C++ is interpreted and special markers are used to determine ! what parts of the source to look at. All `struct', `union' and ! `template' structure declarations that define data structures that are allocated under control of the garbage collector must be marked. All global variables that hold pointers to garbage-collected memory must ! also be marked. Finally, all global variables that need to be saved ! and restored by a precompiled header must be marked. (The precompiled header mechanism can only save static variables if they're scalar. ! Complex data structures must be allocated in garbage-collected memory ! to be saved in a precompiled header.) The full format of a marker is GTY (([OPTION] [(PARAM)], [OPTION] [(PARAM)] ...)) ! but in most cases no options are needed. The outer double parentheses ! are still necessary, though: `GTY(())'. Markers can appear: * In a structure definition, before the open brace; ! ! * In a global variable declaration, after the keyword `static' or ! `extern'; and ! * In a structure field definition, before the name of the field. Here are some examples of marking simple data structures and globals. --- 37751,37774 ---- A full C++ parser would be too complicated for this task, so a limited subset of C++ is interpreted and special markers are used to determine ! what parts of the source to look at. All 'struct', 'union' and ! 'template' structure declarations that define data structures that are allocated under control of the garbage collector must be marked. All global variables that hold pointers to garbage-collected memory must ! also be marked. Finally, all global variables that need to be saved and ! restored by a precompiled header must be marked. (The precompiled header mechanism can only save static variables if they're scalar. ! Complex data structures must be allocated in garbage-collected memory to ! be saved in a precompiled header.) The full format of a marker is GTY (([OPTION] [(PARAM)], [OPTION] [(PARAM)] ...)) ! but in most cases no options are needed. The outer double parentheses ! are still necessary, though: 'GTY(())'. Markers can appear: * In a structure definition, before the open brace; ! * In a global variable declaration, after the keyword 'static' or ! 'extern'; and * In a structure field definition, before the name of the field. Here are some examples of marking simple data structures and globals. *************** are still necessary, though: `GTY(())'. *** 38171,38200 **** static GTY(()) struct TAG *LIST; /* points to GC memory */ static GTY(()) int COUNTER; /* save counter in a PCH */ ! The parser understands simple typedefs such as `typedef struct TAG ! *NAME;' and `typedef int NAME;'. These don't need to be marked. ! Since `gengtype''s understanding of C++ is limited, there are several constructs and declarations that are not supported inside classes/structures marked for automatic GC code generation. The ! following C++ constructs produce a `gengtype' error on structures/classes marked for automatic GC code generation: * Type definitions inside classes/structures are not supported. - * Enumerations inside classes/structures are not supported. ! If you have a class or structure using any of the above constructs, ! you need to mark that class as `GTY ((user))' and provide your own ! marking routines (see section *note User GC:: for details). It is always valid to include function definitions inside classes. ! Those are always ignored by `gengtype', as it only cares about data members. * Menu: ! * GTY Options:: What goes inside a `GTY(())'. * User GC:: Adding user-provided GC marking routines. * GGC Roots:: Making global variables GGC roots. * Files:: How the generated files work. --- 37786,37814 ---- static GTY(()) struct TAG *LIST; /* points to GC memory */ static GTY(()) int COUNTER; /* save counter in a PCH */ ! The parser understands simple typedefs such as 'typedef struct TAG ! *NAME;' and 'typedef int NAME;'. These don't need to be marked. ! Since 'gengtype''s understanding of C++ is limited, there are several constructs and declarations that are not supported inside classes/structures marked for automatic GC code generation. The ! following C++ constructs produce a 'gengtype' error on structures/classes marked for automatic GC code generation: * Type definitions inside classes/structures are not supported. * Enumerations inside classes/structures are not supported. ! If you have a class or structure using any of the above constructs, you ! need to mark that class as 'GTY ((user))' and provide your own marking ! routines (see section *note User GC:: for details). It is always valid to include function definitions inside classes. ! Those are always ignored by 'gengtype', as it only cares about data members. * Menu: ! * GTY Options:: What goes inside a 'GTY(())'. * User GC:: Adding user-provided GC marking routines. * GGC Roots:: Making global variables GGC roots. * Files:: How the generated files work. *************** members. *** 38204,38235 ****  File: gccint.info, Node: GTY Options, Next: User GC, Up: Type Information ! 22.1 The Inside of a `GTY(())' ============================== ! Sometimes the C code is not enough to fully describe the type ! structure. Extra information can be provided with `GTY' options and ! additional markers. Some options take a parameter, which may be either ! a string or a type name, depending on the parameter. If an option ! takes no parameter, it is acceptable either to omit the parameter ! entirely, or to provide an empty string as a parameter. For example, ! `GTY ((skip))' and `GTY ((skip ("")))' are equivalent. When the parameter is a string, often it is a fragment of C code. Four special escapes may be used in these strings, to refer to pieces of the data structure being marked: ! `%h' The current structure. ! ! `%1' The structure that immediately contains the current structure. ! ! `%0' The outermost structure that contains the current structure. ! ! `%a' ! A partial expression of the form `[i1][i2]...' that indexes the array item currently being marked. For instance, suppose that you have a structure of the form --- 37818,37846 ----  File: gccint.info, Node: GTY Options, Next: User GC, Up: Type Information ! 22.1 The Inside of a 'GTY(())' ============================== ! Sometimes the C code is not enough to fully describe the type structure. ! Extra information can be provided with 'GTY' options and additional ! markers. Some options take a parameter, which may be either a string or ! a type name, depending on the parameter. If an option takes no ! parameter, it is acceptable either to omit the parameter entirely, or to ! provide an empty string as a parameter. For example, 'GTY ((skip))' and ! 'GTY ((skip ("")))' are equivalent. When the parameter is a string, often it is a fragment of C code. Four special escapes may be used in these strings, to refer to pieces of the data structure being marked: ! '%h' The current structure. ! '%1' The structure that immediately contains the current structure. ! '%0' The outermost structure that contains the current structure. ! '%a' ! A partial expression of the form '[i1][i2]...' that indexes the array item currently being marked. For instance, suppose that you have a structure of the form *************** data structure being marked: *** 38239,38247 **** struct B { struct A foo[12]; }; ! and `b' is a variable of type `struct B'. When marking `b.foo[11]', ! `%h' would expand to `b.foo[11]', `%0' and `%1' would both expand to ! `b', and `%a' would expand to `[11]'. As in ordinary C, adjacent strings will be concatenated; this is helpful when you have a complicated expression. --- 37850,37858 ---- struct B { struct A foo[12]; }; ! and 'b' is a variable of type 'struct B'. When marking 'b.foo[11]', ! '%h' would expand to 'b.foo[11]', '%0' and '%1' would both expand to ! 'b', and '%a' would expand to '[11]'. As in ordinary C, adjacent strings will be concatenated; this is helpful when you have a complicated expression. *************** helpful when you have a complicated expr *** 38251,38257 **** The available options are: ! `length ("EXPRESSION")' There are two places the type machinery will need to be explicitly told the length of an array of non-atomic objects. The first case is when a structure ends in a variable-length array, like this: --- 37862,37869 ---- The available options are: ! 'length ("EXPRESSION")' ! There are two places the type machinery will need to be explicitly told the length of an array of non-atomic objects. The first case is when a structure ends in a variable-length array, like this: *************** helpful when you have a complicated expr *** 38260,38302 **** rtx GTY ((length ("%h.num_elem"))) elem[1]; }; ! In this case, the `length' option is used to override the specified ! array length (which should usually be `1'). The parameter of the option is a fragment of C code that calculates the length. The second case is when a structure or a global variable contains a pointer to an array, like this: struct gimple_omp_for_iter * GTY((length ("%h.collapse"))) iter; ! In this case, `iter' has been allocated by writing something like x->iter = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse); ! and the `collapse' provides the length of the field. ! This second use of `length' also works on global variables, like: static GTY((length("reg_known_value_size"))) rtx *reg_known_value; ! Note that the `length' option is only meant for use with arrays of ! non-atomic objects, that is, objects that contain pointers ! pointing to other GTY-managed objects. For other GC-allocated ! arrays and strings you should use `atomic'. ! `skip' ! If `skip' is applied to a field, the type machinery will ignore it. This is somewhat dangerous; the only safe use is in a union when one field really isn't ever used. ! `desc ("EXPRESSION")' ! `tag ("CONSTANT")' ! `default' ! The type machinery needs to be told which field of a `union' is currently active. This is done by giving each field a constant ! `tag' value, and then specifying a discriminator using `desc'. ! The value of the expression given by `desc' is compared against ! each `tag' value, each of which should be different. If no `tag' ! is matched, the field marked with `default' is used if there is ! one, otherwise no field in the union will be marked. ! In the `desc' option, the "current structure" is the union that it ! discriminates. Use `%1' to mean the structure containing it. ! There are no escapes available to the `tag' option, since it is a constant. For example, --- 37872,37917 ---- rtx GTY ((length ("%h.num_elem"))) elem[1]; }; ! In this case, the 'length' option is used to override the specified ! array length (which should usually be '1'). The parameter of the option is a fragment of C code that calculates the length. The second case is when a structure or a global variable contains a pointer to an array, like this: struct gimple_omp_for_iter * GTY((length ("%h.collapse"))) iter; ! In this case, 'iter' has been allocated by writing something like x->iter = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse); ! and the 'collapse' provides the length of the field. ! This second use of 'length' also works on global variables, like: ! static GTY((length("reg_known_value_size"))) rtx *reg_known_value; ! Note that the 'length' option is only meant for use with arrays of ! non-atomic objects, that is, objects that contain pointers pointing ! to other GTY-managed objects. For other GC-allocated arrays and ! strings you should use 'atomic'. ! 'skip' ! ! If 'skip' is applied to a field, the type machinery will ignore it. This is somewhat dangerous; the only safe use is in a union when one field really isn't ever used. ! 'desc ("EXPRESSION")' ! 'tag ("CONSTANT")' ! 'default' ! ! The type machinery needs to be told which field of a 'union' is currently active. This is done by giving each field a constant ! 'tag' value, and then specifying a discriminator using 'desc'. The ! value of the expression given by 'desc' is compared against each ! 'tag' value, each of which should be different. If no 'tag' is ! matched, the field marked with 'default' is used if there is one, ! otherwise no field in the union will be marked. ! In the 'desc' option, the "current structure" is the union that it ! discriminates. Use '%1' to mean the structure containing it. ! There are no escapes available to the 'tag' option, since it is a constant. For example, *************** helpful when you have a complicated expr *** 38311,38330 **** }; In this example, the value of BINDING_HAS_LEVEL_P when applied to a ! `struct tree_binding *' is presumed to be 0 or 1. If 1, the type ! mechanism will treat the field `level' as being present and if 0, ! will treat the field `scope' as being present. - `param_is (TYPE)' - `use_param' Sometimes it's convenient to define some data structure to work on ! generic pointers (that is, `PTR') and then use it with a specific ! type. `param_is' specifies the real type pointed to, and ! `use_param' says where in the generic data structure that type should be put. ! For instance, to have a `htab_t' that points to trees, one would ! write the definition of `htab_t' like this: typedef struct GTY(()) { ... void ** GTY ((use_param, ...)) entries; --- 37926,37946 ---- }; In this example, the value of BINDING_HAS_LEVEL_P when applied to a ! 'struct tree_binding *' is presumed to be 0 or 1. If 1, the type ! mechanism will treat the field 'level' as being present and if 0, ! will treat the field 'scope' as being present. ! ! 'param_is (TYPE)' ! 'use_param' Sometimes it's convenient to define some data structure to work on ! generic pointers (that is, 'PTR') and then use it with a specific ! type. 'param_is' specifies the real type pointed to, and ! 'use_param' says where in the generic data structure that type should be put. ! For instance, to have a 'htab_t' that points to trees, one would ! write the definition of 'htab_t' like this: typedef struct GTY(()) { ... void ** GTY ((use_param, ...)) entries; *************** helpful when you have a complicated expr *** 38333,38393 **** and then declare variables like this: static htab_t GTY ((param_is (union tree_node))) ict; ! `paramN_is (TYPE)' ! `use_paramN' In more complicated cases, the data structure might need to work on several different types, which might not necessarily all be ! pointers. For this, `param1_is' through `param9_is' may be used to ! specify the real type of a field identified by `use_param1' through ! `use_param9'. - `use_params' When a structure contains another structure that is parameterized, there's no need to do anything special, the inner structure inherits the parameters of the outer one. When a structure ! contains a pointer to a parameterized structure, the type ! machinery won't automatically detect this (it could, it just ! doesn't yet), so it's necessary to tell it that the pointed-to ! structure should use the same parameters as the outer structure. ! This is done by marking the pointer with the `use_params' option. ! `deletable' ! `deletable', when applied to a global variable, indicates that when garbage collection runs, there's no need to mark anything pointed ! to by this variable, it can just be set to `NULL' instead. This ! is used to keep a list of free structures around for re-use. - `if_marked ("EXPRESSION")' Suppose you want some kinds of object to be unique, and so you put them in a hash table. If garbage collection marks the hash table, ! these objects will never be freed, even if the last other ! reference to them goes away. GGC has special handling to deal ! with this: if you use the `if_marked' option on a global hash ! table, GGC will call the routine whose name is the parameter to ! the option on each hash table entry. If the routine returns ! nonzero, the hash table entry will be marked as usual. If the ! routine returns zero, the hash table entry will be deleted. ! The routine `ggc_marked_p' can be used to determine if an element has been marked already; in fact, the usual case is to use ! `if_marked ("ggc_marked_p")'. - `mark_hook ("HOOK-ROUTINE-NAME")' If provided for a structure or union type, the given HOOK-ROUTINE-NAME (between double-quotes) is the name of a routine called when the garbage collector has just marked the data as ! reachable. This routine should not change the data, or call any ggc ! routine. Its only argument is a pointer to the just marked (const) ! structure or union. ! `maybe_undef' ! When applied to a field, `maybe_undef' indicates that it's OK if the structure that this fields points to is never defined, so long ! as this field is always `NULL'. This is used to avoid requiring backends to define certain optional structures. It doesn't work with language frontends. ! `nested_ptr (TYPE, "TO EXPRESSION", "FROM EXPRESSION")' The type machinery expects all pointers to point to the start of an object. Sometimes for abstraction purposes it's convenient to have a pointer which points inside an object. So long as it's possible --- 37949,38016 ---- and then declare variables like this: static htab_t GTY ((param_is (union tree_node))) ict; ! 'paramN_is (TYPE)' ! 'use_paramN' ! In more complicated cases, the data structure might need to work on several different types, which might not necessarily all be ! pointers. For this, 'param1_is' through 'param9_is' may be used to ! specify the real type of a field identified by 'use_param1' through ! 'use_param9'. ! ! 'use_params' When a structure contains another structure that is parameterized, there's no need to do anything special, the inner structure inherits the parameters of the outer one. When a structure ! contains a pointer to a parameterized structure, the type machinery ! won't automatically detect this (it could, it just doesn't yet), so ! it's necessary to tell it that the pointed-to structure should use ! the same parameters as the outer structure. This is done by ! marking the pointer with the 'use_params' option. ! 'deletable' ! ! 'deletable', when applied to a global variable, indicates that when garbage collection runs, there's no need to mark anything pointed ! to by this variable, it can just be set to 'NULL' instead. This is ! used to keep a list of free structures around for re-use. ! ! 'if_marked ("EXPRESSION")' Suppose you want some kinds of object to be unique, and so you put them in a hash table. If garbage collection marks the hash table, ! these objects will never be freed, even if the last other reference ! to them goes away. GGC has special handling to deal with this: if ! you use the 'if_marked' option on a global hash table, GGC will ! call the routine whose name is the parameter to the option on each ! hash table entry. If the routine returns nonzero, the hash table ! entry will be marked as usual. If the routine returns zero, the ! hash table entry will be deleted. ! The routine 'ggc_marked_p' can be used to determine if an element has been marked already; in fact, the usual case is to use ! 'if_marked ("ggc_marked_p")'. ! ! 'mark_hook ("HOOK-ROUTINE-NAME")' If provided for a structure or union type, the given HOOK-ROUTINE-NAME (between double-quotes) is the name of a routine called when the garbage collector has just marked the data as ! reachable. This routine should not change the data, or call any ! ggc routine. Its only argument is a pointer to the just marked ! (const) structure or union. ! 'maybe_undef' ! ! When applied to a field, 'maybe_undef' indicates that it's OK if the structure that this fields points to is never defined, so long ! as this field is always 'NULL'. This is used to avoid requiring backends to define certain optional structures. It doesn't work with language frontends. ! 'nested_ptr (TYPE, "TO EXPRESSION", "FROM EXPRESSION")' ! The type machinery expects all pointers to point to the start of an object. Sometimes for abstraction purposes it's convenient to have a pointer which points inside an object. So long as it's possible *************** helpful when you have a complicated expr *** 38395,38445 **** pointers can still be used. TYPE is the type of the original object, the TO EXPRESSION returns the pointer given the original object, and the FROM EXPRESSION returns the original object given ! the pointer. The pointer will be available using the `%h' escape. - `chain_next ("EXPRESSION")' - `chain_prev ("EXPRESSION")' - `chain_circular ("EXPRESSION")' It's helpful for the type machinery to know if objects are often chained together in long lists; this lets it generate code that uses less stack space by iterating along the list instead of ! recursing down it. `chain_next' is an expression for the next ! item in the list, `chain_prev' is an expression for the previous ! item. For singly linked lists, use only `chain_next'; for doubly ! linked lists, use both. The machinery requires that taking the ! next item of the previous item gives the original item. ! `chain_circular' is similar to `chain_next', but can be used for ! circular single linked lists. - `reorder ("FUNCTION NAME")' Some data structures depend on the relative ordering of pointers. If the precompiled header machinery needs to change that ordering, ! it will call the function referenced by the `reorder' option, ! before changing the pointers in the object that's pointed to by ! the field the option applies to. The function must take four arguments, with the signature ! `void *, void *, gt_pointer_operator, void *'. The first ! parameter is a pointer to the structure that contains the object ! being updated, or the object itself if there is no containing ! structure. The second parameter is a cookie that should be ! ignored. The third parameter is a routine that, given a pointer, ! will update it to its correct new value. The fourth parameter is ! a cookie that must be passed to the second parameter. PCH cannot handle data structures that depend on the absolute ! values of pointers. `reorder' functions can be expensive. When ! possible, it is better to depend on properties of the data, like ! an ID number or the hash of a string instead. - `variable_size' The type machinery expects the types to be of constant size. When this is not true, for example, with structs that have array fields ! or unions, the type machinery cannot tell how many bytes need to ! be allocated at each allocation. The `variable_size' is used to ! mark such types. The type machinery then provides allocators that ! take a parameter indicating an exact size of object being ! allocated. Note that the size must be provided in bytes whereas ! the `length' option works with array lengths in number of elements. For example, struct GTY((variable_size)) sorted_fields_type { --- 38018,38071 ---- pointers can still be used. TYPE is the type of the original object, the TO EXPRESSION returns the pointer given the original object, and the FROM EXPRESSION returns the original object given ! the pointer. The pointer will be available using the '%h' escape. ! ! 'chain_next ("EXPRESSION")' ! 'chain_prev ("EXPRESSION")' ! 'chain_circular ("EXPRESSION")' It's helpful for the type machinery to know if objects are often chained together in long lists; this lets it generate code that uses less stack space by iterating along the list instead of ! recursing down it. 'chain_next' is an expression for the next item ! in the list, 'chain_prev' is an expression for the previous item. ! For singly linked lists, use only 'chain_next'; for doubly linked ! lists, use both. The machinery requires that taking the next item ! of the previous item gives the original item. 'chain_circular' is ! similar to 'chain_next', but can be used for circular single linked ! lists. ! ! 'reorder ("FUNCTION NAME")' Some data structures depend on the relative ordering of pointers. If the precompiled header machinery needs to change that ordering, ! it will call the function referenced by the 'reorder' option, ! before changing the pointers in the object that's pointed to by the ! field the option applies to. The function must take four arguments, with the signature ! 'void *, void *, gt_pointer_operator, void *'. The first parameter ! is a pointer to the structure that contains the object being ! updated, or the object itself if there is no containing structure. ! The second parameter is a cookie that should be ignored. The third ! parameter is a routine that, given a pointer, will update it to its ! correct new value. The fourth parameter is a cookie that must be ! passed to the second parameter. PCH cannot handle data structures that depend on the absolute ! values of pointers. 'reorder' functions can be expensive. When ! possible, it is better to depend on properties of the data, like an ! ID number or the hash of a string instead. ! ! 'variable_size' The type machinery expects the types to be of constant size. When this is not true, for example, with structs that have array fields ! or unions, the type machinery cannot tell how many bytes need to be ! allocated at each allocation. The 'variable_size' is used to mark ! such types. The type machinery then provides allocators that take ! a parameter indicating an exact size of object being allocated. ! Note that the size must be provided in bytes whereas the 'length' ! option works with array lengths in number of elements. For example, struct GTY((variable_size)) sorted_fields_type { *************** helpful when you have a complicated expr *** 38447,38511 **** tree GTY((length ("%h.len"))) elts[1]; }; ! Then the objects of `struct sorted_fields_type' are allocated in GC memory as follows: field_vec = ggc_alloc_sorted_fields_type (size); ! If FIELD_VEC->ELTS stores N elements, then SIZE could be ! calculated as follows: size_t size = sizeof (struct sorted_fields_type) + n * sizeof (tree); ! `atomic' ! The `atomic' option can only be used with pointers. It informs ! the GC machinery that the memory that the pointer points to does ! not contain any pointers, and hence it should be treated by the GC ! and PCH machinery as an "atomic" block of memory that does not ! need to be examined when scanning memory for pointers. In ! particular, the machinery will not scan that memory for pointers ! to mark them as reachable (when marking pointers for GC) or to ! relocate them (when writing a PCH file). ! The `atomic' option differs from the `skip' option. `atomic' ! keeps the memory under Garbage Collection, but makes the GC ignore ! the contents of the memory. `skip' is more drastic in that it ! causes the pointer and the memory to be completely ignored by the ! Garbage Collector. So, memory marked as `atomic' is automatically ! freed when no longer reachable, while memory marked as `skip' is ! not. ! The `atomic' option must be used with great care, because all ! sorts of problem can occur if used incorrectly, that is, if the ! memory the pointer points to does actually contain a pointer. Here is an example of how to use it: struct GTY(()) my_struct { int number_of_elements; unsigned int * GTY ((atomic)) elements; }; ! In this case, `elements' is a pointer under GC, and the memory it points to needs to be allocated using the Garbage Collector, and will be freed automatically by the Garbage Collector when it is no ! longer referenced. But the memory that the pointer points to is ! an array of `unsigned int' elements, and the GC must not try to ! scan it to find pointers to mark or relocate, which is why it is ! marked with the `atomic' option. Note that, currently, global variables can not be marked with ! `atomic'; only fields of a struct can. This is a known ! limitation. It would be useful to be able to mark global pointers ! with `atomic' to make the PCH machinery aware of them so that they ! are saved and restored correctly to PCH files. ! `special ("NAME")' ! The `special' option is used to mark types that have to be dealt with by special case machinery. The parameter is the name of the ! special case. See `gengtype.c' for further details. Avoid adding new special cases unless there is no other alternative. ! `user' ! The `user' option indicates that the code to mark structure fields ! is completely handled by user-provided routines. See section ! *note User GC:: for details on what functions need to be provided.  File: gccint.info, Node: User GC, Next: GGC Roots, Prev: GTY Options, Up: Type Information --- 38073,38139 ---- tree GTY((length ("%h.len"))) elts[1]; }; ! Then the objects of 'struct sorted_fields_type' are allocated in GC memory as follows: field_vec = ggc_alloc_sorted_fields_type (size); ! If FIELD_VEC->ELTS stores N elements, then SIZE could be calculated ! as follows: size_t size = sizeof (struct sorted_fields_type) + n * sizeof (tree); ! 'atomic' ! The 'atomic' option can only be used with pointers. It informs the ! GC machinery that the memory that the pointer points to does not ! contain any pointers, and hence it should be treated by the GC and ! PCH machinery as an "atomic" block of memory that does not need to ! be examined when scanning memory for pointers. In particular, the ! machinery will not scan that memory for pointers to mark them as ! reachable (when marking pointers for GC) or to relocate them (when ! writing a PCH file). ! The 'atomic' option differs from the 'skip' option. 'atomic' keeps ! the memory under Garbage Collection, but makes the GC ignore the ! contents of the memory. 'skip' is more drastic in that it causes ! the pointer and the memory to be completely ignored by the Garbage ! Collector. So, memory marked as 'atomic' is automatically freed ! when no longer reachable, while memory marked as 'skip' is not. ! ! The 'atomic' option must be used with great care, because all sorts ! of problem can occur if used incorrectly, that is, if the memory ! the pointer points to does actually contain a pointer. Here is an example of how to use it: struct GTY(()) my_struct { int number_of_elements; unsigned int * GTY ((atomic)) elements; }; ! In this case, 'elements' is a pointer under GC, and the memory it points to needs to be allocated using the Garbage Collector, and will be freed automatically by the Garbage Collector when it is no ! longer referenced. But the memory that the pointer points to is an ! array of 'unsigned int' elements, and the GC must not try to scan ! it to find pointers to mark or relocate, which is why it is marked ! with the 'atomic' option. Note that, currently, global variables can not be marked with ! 'atomic'; only fields of a struct can. This is a known limitation. ! It would be useful to be able to mark global pointers with 'atomic' ! to make the PCH machinery aware of them so that they are saved and ! restored correctly to PCH files. ! 'special ("NAME")' ! ! The 'special' option is used to mark types that have to be dealt with by special case machinery. The parameter is the name of the ! special case. See 'gengtype.c' for further details. Avoid adding new special cases unless there is no other alternative. ! 'user' ! ! The 'user' option indicates that the code to mark structure fields ! is completely handled by user-provided routines. See section *note ! User GC:: for details on what functions need to be provided.  File: gccint.info, Node: User GC, Next: GGC Roots, Prev: GTY Options, Up: Type Information *************** File: gccint.info, Node: User GC, Next *** 38513,38525 **** 22.2 Support for user-provided GC marking routines ================================================== ! The garbage collector supports types for which no automatic marking ! code is generated. For these types, the user is required to provide ! three functions: one to act as a marker for garbage collection, and two functions to act as marker and pointer walker for pre-compiled headers. ! Given a structure `struct GTY((user)) my_struct', the following ! functions should be defined to mark `my_struct': void gt_ggc_mx (my_struct *p) { --- 38141,38153 ---- 22.2 Support for user-provided GC marking routines ================================================== ! The garbage collector supports types for which no automatic marking code ! is generated. For these types, the user is required to provide three ! functions: one to act as a marker for garbage collection, and two functions to act as marker and pointer walker for pre-compiled headers. ! Given a structure 'struct GTY((user)) my_struct', the following ! functions should be defined to mark 'my_struct': void gt_ggc_mx (my_struct *p) { *************** functions should be defined to mark `my_ *** 38539,38568 **** op (&(tp->fld), cookie); } ! In general, each marker `M' should call `M' for every pointer field in the structure. Fields that are not allocated in GC or are not pointers must be ignored. ! For embedded lists (e.g., structures with a `next' or `prev' pointer), the marker must follow the chain and mark every element in it. ! Note that the rules for the pointer walker `gt_pch_nx (my_struct *, ! gt_pointer_operator, void *)' are slightly different. In this case, ! the operation `op' must be applied to the _address_ of every pointer ! field. 22.2.1 User-provided marking routines for template types -------------------------------------------------------- ! When a template type `TP' is marked with `GTY', all instances of that ! type are considered user-provided types. This means that the ! individual instances of `TP' do not need to be marked with `GTY'. The ! user needs to provide template functions to mark all the fields of the ! type. ! The following code snippets represent all the functions that need to ! be provided. Note that type `TP' may reference to more than one type. ! In these snippets, there is only one type `T', but there could be more. template void gt_ggc_mx (TP *tp) --- 38167,38194 ---- op (&(tp->fld), cookie); } ! In general, each marker 'M' should call 'M' for every pointer field in the structure. Fields that are not allocated in GC or are not pointers must be ignored. ! For embedded lists (e.g., structures with a 'next' or 'prev' pointer), the marker must follow the chain and mark every element in it. ! Note that the rules for the pointer walker 'gt_pch_nx (my_struct *, ! gt_pointer_operator, void *)' are slightly different. In this case, the ! operation 'op' must be applied to the _address_ of every pointer field. 22.2.1 User-provided marking routines for template types -------------------------------------------------------- ! When a template type 'TP' is marked with 'GTY', all instances of that ! type are considered user-provided types. This means that the individual ! instances of 'TP' do not need to be marked with 'GTY'. The user needs ! to provide template functions to mark all the fields of the type. ! The following code snippets represent all the functions that need to be ! provided. Note that type 'TP' may reference to more than one type. In ! these snippets, there is only one type 'T', but there could be more. template void gt_ggc_mx (TP *tp) *************** In these snippets, there is only one typ *** 38600,38617 **** gt_pch_nx (&(tp->fld), op, cookie); } ! Support for user-defined types is currently limited. The following restrictions apply: ! 1. Type `TP' and all the argument types `T' must be marked with `GTY'. ! 2. Type `TP' can only have type names in its argument list. ! 3. The pointer walker functions are different for `TP' and `TP'. In the case of `TP', references to `T' must be handled by ! calling `gt_pch_nx' (which will, in turn, walk all the pointers ! inside fields of `T'). In the case of `TP', references to `T ! *' must be handled by calling the `op' function on the address of the pointer (see the code snippets above).  --- 38226,38243 ---- gt_pch_nx (&(tp->fld), op, cookie); } ! Support for user-defined types is currently limited. The following restrictions apply: ! 1. Type 'TP' and all the argument types 'T' must be marked with 'GTY'. ! 2. Type 'TP' can only have type names in its argument list. ! 3. The pointer walker functions are different for 'TP' and 'TP'. In the case of 'TP', references to 'T' must be handled by ! calling 'gt_pch_nx' (which will, in turn, walk all the pointers ! inside fields of 'T'). In the case of 'TP', references to 'T ! *' must be handled by calling the 'op' function on the address of the pointer (see the code snippets above).  *************** In addition to keeping track of types, t *** 38624,38637 **** the global variables ("roots") that the garbage collector starts at. Roots must be declared using one of the following syntaxes: ! * `extern GTY(([OPTIONS])) TYPE NAME;' ! ! * `static GTY(([OPTIONS])) TYPE NAME;' ! The syntax ! * `GTY(([OPTIONS])) TYPE NAME;' ! is _not_ accepted. There should be an `extern' declaration of such a variable in a header somewhere--mark that, not the definition. Or, if ! the variable is only used in one file, make it `static'.  File: gccint.info, Node: Files, Next: Invoking the garbage collector, Prev: GGC Roots, Up: Type Information --- 38250,38262 ---- the global variables ("roots") that the garbage collector starts at. Roots must be declared using one of the following syntaxes: ! * 'extern GTY(([OPTIONS])) TYPE NAME;' ! * 'static GTY(([OPTIONS])) TYPE NAME;' ! The syntax ! * 'GTY(([OPTIONS])) TYPE NAME;' ! is _not_ accepted. There should be an 'extern' declaration of such a variable in a header somewhere--mark that, not the definition. Or, if ! the variable is only used in one file, make it 'static'.  File: gccint.info, Node: Files, Next: Invoking the garbage collector, Prev: GGC Roots, Up: Type Information *************** File: gccint.info, Node: Files, Next: *** 38639,38695 **** 22.4 Source Files Containing Type Information ============================================= ! Whenever you add `GTY' markers to a source file that previously had ! none, or create a new source file containing `GTY' markers, there are three things you need to do: 1. You need to add the file to the list of source files the type machinery scans. There are four cases: a. For a back-end file, this is usually done automatically; if ! not, you should add it to `target_gtfiles' in the appropriate ! port's entries in `config.gcc'. b. For files shared by all front ends, add the filename to the ! `GTFILES' variable in `Makefile.in'. c. For files that are part of one front end, add the filename to ! the `gtfiles' variable defined in the appropriate ! `config-lang.in'. Headers should appear before non-headers ! in this list. d. For files that are part of some but not all front ends, add ! the filename to the `gtfiles' variable of _all_ the front ends that use it. 2. If the file was a header file, you'll need to check that it's included in the right place to be visible to the generated files. ! For a back-end header file, this should be done automatically. ! For a front-end header file, it needs to be included by the same ! file that includes `gtype-LANG.h'. For other header files, it ! needs to be included in `gtype-desc.c', which is a generated file, ! so add it to `ifiles' in `open_base_file' in `gengtype.c'. For source files that aren't header files, the machinery will generate a header file that should be included in the source file ! you just changed. The file will be called `gt-PATH.h' where PATH ! is the pathname relative to the `gcc' directory with slashes replaced by -, so for example the header file to be included in ! `cp/parser.c' is called `gt-cp-parser.c'. The generated header file should be included after everything else in the source file. Don't forget to mention this file as a dependency in the ! `Makefile'! ! For language frontends, there is another file that needs to be included ! somewhere. It will be called `gtype-LANG.h', where LANG is the name of the subdirectory the language is contained in. ! Plugins can add additional root tables. Run the `gengtype' utility in ! plugin mode as `gengtype -P pluginout.h SOURCE-DIR FILE-LIST PLUGIN*.C' ! with your plugin files PLUGIN*.C using `GTY' to generate the ! PLUGINOUT.H file. The GCC build tree is needed to be present in that ! mode.  File: gccint.info, Node: Invoking the garbage collector, Next: Troubleshooting, Prev: Files, Up: Type Information --- 38264,38318 ---- 22.4 Source Files Containing Type Information ============================================= ! Whenever you add 'GTY' markers to a source file that previously had ! none, or create a new source file containing 'GTY' markers, there are three things you need to do: 1. You need to add the file to the list of source files the type machinery scans. There are four cases: a. For a back-end file, this is usually done automatically; if ! not, you should add it to 'target_gtfiles' in the appropriate ! port's entries in 'config.gcc'. b. For files shared by all front ends, add the filename to the ! 'GTFILES' variable in 'Makefile.in'. c. For files that are part of one front end, add the filename to ! the 'gtfiles' variable defined in the appropriate ! 'config-lang.in'. Headers should appear before non-headers in ! this list. d. For files that are part of some but not all front ends, add ! the filename to the 'gtfiles' variable of _all_ the front ends that use it. 2. If the file was a header file, you'll need to check that it's included in the right place to be visible to the generated files. ! For a back-end header file, this should be done automatically. For ! a front-end header file, it needs to be included by the same file ! that includes 'gtype-LANG.h'. For other header files, it needs to ! be included in 'gtype-desc.c', which is a generated file, so add it ! to 'ifiles' in 'open_base_file' in 'gengtype.c'. For source files that aren't header files, the machinery will generate a header file that should be included in the source file ! you just changed. The file will be called 'gt-PATH.h' where PATH ! is the pathname relative to the 'gcc' directory with slashes replaced by -, so for example the header file to be included in ! 'cp/parser.c' is called 'gt-cp-parser.c'. The generated header file should be included after everything else in the source file. Don't forget to mention this file as a dependency in the ! 'Makefile'! For language frontends, there is another file that needs to be included ! somewhere. It will be called 'gtype-LANG.h', where LANG is the name of the subdirectory the language is contained in. ! Plugins can add additional root tables. Run the 'gengtype' utility in ! plugin mode as 'gengtype -P pluginout.h SOURCE-DIR FILE-LIST PLUGIN*.C' ! with your plugin files PLUGIN*.C using 'GTY' to generate the PLUGINOUT.H ! file. The GCC build tree is needed to be present in that mode.  File: gccint.info, Node: Invoking the garbage collector, Next: Troubleshooting, Prev: Files, Up: Type Information *************** File: gccint.info, Node: Invoking the g *** 38697,38718 **** 22.5 How to invoke the garbage collector ======================================== ! The GCC garbage collector GGC is only invoked explicitly. In contrast with many other garbage collectors, it is not implicitly invoked by ! allocation routines when a lot of memory has been consumed. So the only ! way to have GGC reclaim storage is to call the `ggc_collect' function ! explicitly. This call is an expensive operation, as it may have to ! scan the entire heap. Beware that local variables (on the GCC call ! stack) are not followed by such an invocation (as many other garbage ! collectors do): you should reference all your data from static or ! external `GTY'-ed variables, and it is advised to call `ggc_collect' ! with a shallow call stack. The GGC is an exact mark and sweep garbage ! collector (so it does not scan the call stack for pointers). In ! practice GCC passes don't often call `ggc_collect' themselves, because ! it is called by the pass manager between passes. ! At the time of the `ggc_collect' call all pointers in the GC-marked ! structures must be valid or `NULL'. In practice this means that there should not be uninitialized pointer fields in the structures even if your code never reads or writes those fields at a particular instance. One way to ensure this is to use cleared versions of allocators unless --- 38320,38341 ---- 22.5 How to invoke the garbage collector ======================================== ! The GCC garbage collector GGC is only invoked explicitly. In contrast with many other garbage collectors, it is not implicitly invoked by ! allocation routines when a lot of memory has been consumed. So the only ! way to have GGC reclaim storage is to call the 'ggc_collect' function ! explicitly. This call is an expensive operation, as it may have to scan ! the entire heap. Beware that local variables (on the GCC call stack) ! are not followed by such an invocation (as many other garbage collectors ! do): you should reference all your data from static or external 'GTY'-ed ! variables, and it is advised to call 'ggc_collect' with a shallow call ! stack. The GGC is an exact mark and sweep garbage collector (so it does ! not scan the call stack for pointers). In practice GCC passes don't ! often call 'ggc_collect' themselves, because it is called by the pass ! manager between passes. ! At the time of the 'ggc_collect' call all pointers in the GC-marked ! structures must be valid or 'NULL'. In practice this means that there should not be uninitialized pointer fields in the structures even if your code never reads or writes those fields at a particular instance. One way to ensure this is to use cleared versions of allocators unless *************** With the current garbage collector imple *** 38728,38746 **** show up as GCC compilation errors. Some of the most commonly encountered issues are described below. ! * Gengtype does not produce allocators for a `GTY'-marked type. Gengtype checks if there is at least one possible path from GC roots to at least one instance of each type before outputting ! allocators. If there is no such path, the `GTY' markers will be ignored and no allocators will be output. Solve this by making sure that there exists at least one such path. If creating it is unfeasible or raises a "code smell", consider if you really must use GC for allocating such type. ! * Link-time errors about undefined `gt_ggc_r_foo_bar' and ! similarly-named symbols. Check if your `foo_bar' source file has ! `#include "gt-foo_bar.h"' as its very last line. !  File: gccint.info, Node: Plugins, Next: LTO, Prev: Type Information, Up: Top --- 38351,38368 ---- show up as GCC compilation errors. Some of the most commonly encountered issues are described below. ! * Gengtype does not produce allocators for a 'GTY'-marked type. Gengtype checks if there is at least one possible path from GC roots to at least one instance of each type before outputting ! allocators. If there is no such path, the 'GTY' markers will be ignored and no allocators will be output. Solve this by making sure that there exists at least one such path. If creating it is unfeasible or raises a "code smell", consider if you really must use GC for allocating such type. ! * Link-time errors about undefined 'gt_ggc_r_foo_bar' and ! similarly-named symbols. Check if your 'foo_bar' source file has ! '#include "gt-foo_bar.h"' as its very last line.  File: gccint.info, Node: Plugins, Next: LTO, Prev: Type Information, Up: Top *************** File: gccint.info, Node: Plugins loadin *** 38775,38797 **** 23.1 Loading Plugins ==================== ! Plugins are supported on platforms that support `-ldl -rdynamic'. They ! are loaded by the compiler using `dlopen' and invoked at pre-determined locations in the compilation process. Plugins are loaded with ! `-fplugin=/path/to/NAME.so' `-fplugin-arg-NAME-KEY1[=VALUE1]' ! The plugin arguments are parsed by GCC and passed to respective ! plugins as key-value pairs. Multiple plugins can be invoked by ! specifying multiple `-fplugin' arguments. A plugin can be simply given by its short name (no dots or slashes). ! When simply passing `-fplugin=NAME', the plugin is loaded from the ! `plugin' directory, so `-fplugin=NAME' is the same as `-fplugin=`gcc ! -print-file-name=plugin`/NAME.so', using backquote shell syntax to ! query the `plugin' directory.  File: gccint.info, Node: Plugin API, Next: Plugins pass, Prev: Plugins loading, Up: Plugins --- 38397,38419 ---- 23.1 Loading Plugins ==================== ! Plugins are supported on platforms that support '-ldl -rdynamic'. They ! are loaded by the compiler using 'dlopen' and invoked at pre-determined locations in the compilation process. Plugins are loaded with ! '-fplugin=/path/to/NAME.so' '-fplugin-arg-NAME-KEY1[=VALUE1]' ! The plugin arguments are parsed by GCC and passed to respective plugins ! as key-value pairs. Multiple plugins can be invoked by specifying ! multiple '-fplugin' arguments. A plugin can be simply given by its short name (no dots or slashes). ! When simply passing '-fplugin=NAME', the plugin is loaded from the ! 'plugin' directory, so '-fplugin=NAME' is the same as '-fplugin=`gcc ! -print-file-name=plugin`/NAME.so', using backquote shell syntax to query ! the 'plugin' directory.  File: gccint.info, Node: Plugin API, Next: Plugins pass, Prev: Plugins loading, Up: Plugins *************** File: gccint.info, Node: Plugin API, N *** 38800,38815 **** =============== Plugins are activated by the compiler at specific events as defined in ! `gcc-plugin.h'. For each event of interest, the plugin should call ! `register_callback' specifying the name of the event and address of the callback function that will handle that event. ! The header `gcc-plugin.h' must be the first gcc header to be included. 23.2.1 Plugin license check --------------------------- ! Every plugin should define the global symbol `plugin_is_GPL_compatible' to assert that it has been licensed under a GPL-compatible license. If this symbol does not exist, the compiler will emit a fatal error and exit with the error message: --- 38422,38437 ---- =============== Plugins are activated by the compiler at specific events as defined in ! 'gcc-plugin.h'. For each event of interest, the plugin should call ! 'register_callback' specifying the name of the event and address of the callback function that will handle that event. ! The header 'gcc-plugin.h' must be the first gcc header to be included. 23.2.1 Plugin license check --------------------------- ! Every plugin should define the global symbol 'plugin_is_GPL_compatible' to assert that it has been licensed under a GPL-compatible license. If this symbol does not exist, the compiler will emit a fatal error and exit with the error message: *************** exit with the error message: *** 38819,38847 **** compilation terminated The declared type of the symbol should be int, to match a forward ! declaration in `gcc-plugin.h' that suppresses C++ mangling. It does ! not need to be in any allocated section, though. The compiler merely ! asserts that the symbol exists in the global scope. Something like ! this is enough: int plugin_is_GPL_compatible; 23.2.2 Plugin initialization ---------------------------- ! Every plugin should export a function called `plugin_init' that is ! called right after the plugin is loaded. This function is responsible for registering all the callbacks required by the plugin and do any other required initialization. ! This function is called from `compile_file' right before invoking the ! parser. The arguments to `plugin_init' are: ! ! * `plugin_info': Plugin invocation information. ! * `version': GCC version. ! The `plugin_info' struct is defined as follows: struct plugin_name_args { --- 38441,38468 ---- compilation terminated The declared type of the symbol should be int, to match a forward ! declaration in 'gcc-plugin.h' that suppresses C++ mangling. It does not ! need to be in any allocated section, though. The compiler merely ! asserts that the symbol exists in the global scope. Something like this ! is enough: int plugin_is_GPL_compatible; 23.2.2 Plugin initialization ---------------------------- ! Every plugin should export a function called 'plugin_init' that is ! called right after the plugin is loaded. This function is responsible for registering all the callbacks required by the plugin and do any other required initialization. ! This function is called from 'compile_file' right before invoking the ! parser. The arguments to 'plugin_init' are: ! * 'plugin_info': Plugin invocation information. ! * 'version': GCC version. ! The 'plugin_info' struct is defined as follows: struct plugin_name_args { *************** parser. The arguments to `plugin_init' *** 38856,38862 **** const char *help; /* Help string provided by plugin. */ } ! If initialization fails, `plugin_init' must return a non-zero value. Otherwise, it should return 0. The version of the GCC compiler loading the plugin is described by the --- 38477,38483 ---- const char *help; /* Help string provided by plugin. */ } ! If initialization fails, 'plugin_init' must return a non-zero value. Otherwise, it should return 0. The version of the GCC compiler loading the plugin is described by the *************** following structure: *** 38871,38882 **** const char *configuration_arguments; }; ! The function `plugin_default_version_check' takes two pointers to such ! structure and compare them field by field. It can be used by the ! plugin's `plugin_init' function. The version of GCC used to compile the plugin can be found in the ! symbol `gcc_version' defined in the header `plugin-version.h'. The recommended version check to perform looks like #include "plugin-version.h" --- 38492,38503 ---- const char *configuration_arguments; }; ! The function 'plugin_default_version_check' takes two pointers to such ! structure and compare them field by field. It can be used by the ! plugin's 'plugin_init' function. The version of GCC used to compile the plugin can be found in the ! symbol 'gcc_version' defined in the header 'plugin-version.h'. The recommended version check to perform looks like #include "plugin-version.h" *************** Callback functions have the following pr *** 38950,38975 **** In addition, plugins can also look up the enumerator of a named event, and / or generate new events dynamically, by calling the function ! `get_named_event_id'. ! To register a callback, the plugin calls `register_callback' with the arguments: ! * `char *name': Plugin name. ! ! * `int event': The event code. ! ! * `plugin_callback_func callback': The function that handles `event'. ! ! * `void *user_data': Pointer to plugin-specific data. For the PLUGIN_PASS_MANAGER_SETUP, PLUGIN_INFO, PLUGIN_REGISTER_GGC_ROOTS and PLUGIN_REGISTER_GGC_CACHES pseudo-events ! the `callback' should be null, and the `user_data' is specific. ! When the PLUGIN_PRAGMAS event is triggered (with a null pointer as ! data from GCC), plugins may register their own pragmas using functions ! like `c_register_pragma' or `c_register_pragma_with_expansion'.  File: gccint.info, Node: Plugins pass, Next: Plugins GC, Prev: Plugin API, Up: Plugins --- 38571,38593 ---- In addition, plugins can also look up the enumerator of a named event, and / or generate new events dynamically, by calling the function ! 'get_named_event_id'. ! To register a callback, the plugin calls 'register_callback' with the arguments: ! * 'char *name': Plugin name. ! * 'int event': The event code. ! * 'plugin_callback_func callback': The function that handles 'event'. ! * 'void *user_data': Pointer to plugin-specific data. For the PLUGIN_PASS_MANAGER_SETUP, PLUGIN_INFO, PLUGIN_REGISTER_GGC_ROOTS and PLUGIN_REGISTER_GGC_CACHES pseudo-events ! the 'callback' should be null, and the 'user_data' is specific. ! When the PLUGIN_PRAGMAS event is triggered (with a null pointer as data ! from GCC), plugins may register their own pragmas using functions like ! 'c_register_pragma' or 'c_register_pragma_with_expansion'.  File: gccint.info, Node: Plugins pass, Next: Plugins GC, Prev: Plugin API, Up: Plugins *************** File: gccint.info, Node: Plugins pass, *** 38977,38990 **** 23.3 Interacting with the pass manager ====================================== ! There needs to be a way to add/reorder/remove passes dynamically. This is useful for both analysis plugins (plugging in after a certain pass such as CFG or an IPA pass) and optimization plugins. Basic support for inserting new passes or replacing existing passes is ! provided. A plugin registers a new pass with GCC by calling ! `register_callback' with the `PLUGIN_PASS_MANAGER_SETUP' event and a ! pointer to a `struct register_pass_info' object defined as follows enum pass_positioning_ops { --- 38595,38608 ---- 23.3 Interacting with the pass manager ====================================== ! There needs to be a way to add/reorder/remove passes dynamically. This is useful for both analysis plugins (plugging in after a certain pass such as CFG or an IPA pass) and optimization plugins. Basic support for inserting new passes or replacing existing passes is ! provided. A plugin registers a new pass with GCC by calling ! 'register_callback' with the 'PLUGIN_PASS_MANAGER_SETUP' event and a ! pointer to a 'struct register_pass_info' object defined as follows enum pass_positioning_ops { *************** File: gccint.info, Node: Plugins GC, N *** 39031,39062 **** =============================================== Some plugins may want to be informed when GGC (the GCC Garbage ! Collector) is running. They can register callbacks for the ! `PLUGIN_GGC_START' and `PLUGIN_GGC_END' events (for which the callback ! is called with a null `gcc_data') to be notified of the start or end of the GCC garbage collection. ! Some plugins may need to have GGC mark additional data. This can be ! done by registering a callback (called with a null `gcc_data') for the ! `PLUGIN_GGC_MARKING' event. Such callbacks can call the `ggc_set_mark' ! routine, preferably through the `ggc_mark' macro (and conversely, these routines should usually not be used in plugins outside of the ! `PLUGIN_GGC_MARKING' event). ! Some plugins may need to add extra GGC root tables, e.g. to handle ! their own `GTY'-ed data. This can be done with the ! `PLUGIN_REGISTER_GGC_ROOTS' pseudo-event with a null callback and the ! extra root table (of type `struct ggc_root_tab*') as `user_data'. ! Plugins that want to use the `if_marked' hash table option can add the ! extra GGC cache tables generated by `gengtype' using the ! `PLUGIN_REGISTER_GGC_CACHES' pseudo-event with a null callback and the ! extra cache table (of type `struct ggc_cache_tab*') as `user_data'. ! Running the `gengtype -p SOURCE-DIR FILE-LIST PLUGIN*.C ...' utility generates these extra root tables. You should understand the details of memory management inside GCC ! before using `PLUGIN_GGC_MARKING', `PLUGIN_REGISTER_GGC_ROOTS' or ! `PLUGIN_REGISTER_GGC_CACHES'.  File: gccint.info, Node: Plugins description, Next: Plugins attr, Prev: Plugins GC, Up: Plugins --- 38649,38680 ---- =============================================== Some plugins may want to be informed when GGC (the GCC Garbage ! Collector) is running. They can register callbacks for the ! 'PLUGIN_GGC_START' and 'PLUGIN_GGC_END' events (for which the callback ! is called with a null 'gcc_data') to be notified of the start or end of the GCC garbage collection. ! Some plugins may need to have GGC mark additional data. This can be ! done by registering a callback (called with a null 'gcc_data') for the ! 'PLUGIN_GGC_MARKING' event. Such callbacks can call the 'ggc_set_mark' ! routine, preferably through the 'ggc_mark' macro (and conversely, these routines should usually not be used in plugins outside of the ! 'PLUGIN_GGC_MARKING' event). ! Some plugins may need to add extra GGC root tables, e.g. to handle ! their own 'GTY'-ed data. This can be done with the ! 'PLUGIN_REGISTER_GGC_ROOTS' pseudo-event with a null callback and the ! extra root table (of type 'struct ggc_root_tab*') as 'user_data'. ! Plugins that want to use the 'if_marked' hash table option can add the ! extra GGC cache tables generated by 'gengtype' using the ! 'PLUGIN_REGISTER_GGC_CACHES' pseudo-event with a null callback and the ! extra cache table (of type 'struct ggc_cache_tab*') as 'user_data'. ! Running the 'gengtype -p SOURCE-DIR FILE-LIST PLUGIN*.C ...' utility generates these extra root tables. You should understand the details of memory management inside GCC ! before using 'PLUGIN_GGC_MARKING', 'PLUGIN_REGISTER_GGC_ROOTS' or ! 'PLUGIN_REGISTER_GGC_CACHES'.  File: gccint.info, Node: Plugins description, Next: Plugins attr, Prev: Plugins GC, Up: Plugins *************** File: gccint.info, Node: Plugins descri *** 39064,39070 **** 23.5 Giving information about a plugin ====================================== ! A plugin should give some information to the user about itself. This uses the following structure: struct plugin_info --- 38682,38688 ---- 23.5 Giving information about a plugin ====================================== ! A plugin should give some information to the user about itself. This uses the following structure: struct plugin_info *************** uses the following structure: *** 39073,39080 **** const char *help; }; ! Such a structure is passed as the `user_data' by the plugin's init ! routine using `register_callback' with the `PLUGIN_INFO' pseudo-event and a null callback.  --- 38691,38698 ---- const char *help; }; ! Such a structure is passed as the 'user_data' by the plugin's init ! routine using 'register_callback' with the 'PLUGIN_INFO' pseudo-event and a null callback.  *************** File: gccint.info, Node: Plugins attr, *** 39086,39093 **** For analysis (or other) purposes it is useful to be able to add custom attributes or pragmas. ! The `PLUGIN_ATTRIBUTES' callback is called during attribute ! registration. Use the `register_attribute' function to register custom attributes. /* Attribute handler callback */ --- 38704,38711 ---- For analysis (or other) purposes it is useful to be able to add custom attributes or pragmas. ! The 'PLUGIN_ATTRIBUTES' callback is called during attribute ! registration. Use the 'register_attribute' function to register custom attributes. /* Attribute handler callback */ *************** attributes. *** 39112,39119 **** register_attribute (&user_attr); } ! The `PLUGIN_PRAGMAS' callback is called during pragmas registration. ! Use the `c_register_pragma' or `c_register_pragma_with_expansion' functions to register custom pragmas. /* Plugin callback called during pragmas registration. Registered with --- 38730,38737 ---- register_attribute (&user_attr); } ! The 'PLUGIN_PRAGMAS' callback is called during pragmas registration. ! Use the 'c_register_pragma' or 'c_register_pragma_with_expansion' functions to register custom pragmas. /* Plugin callback called during pragmas registration. Registered with *************** functions to register custom pragmas. *** 39127,39134 **** c_register_pragma ("GCCPLUGIN", "sayhello", handle_pragma_sayhello); } ! It is suggested to pass `"GCCPLUGIN"' (or a short name identifying ! your plugin) as the "space" argument of your pragma.  File: gccint.info, Node: Plugins recording, Next: Plugins gate, Prev: Plugins attr, Up: Plugins --- 38745,38752 ---- c_register_pragma ("GCCPLUGIN", "sayhello", handle_pragma_sayhello); } ! It is suggested to pass '"GCCPLUGIN"' (or a short name identifying your ! plugin) as the "space" argument of your pragma.  File: gccint.info, Node: Plugins recording, Next: Plugins gate, Prev: Plugins attr, Up: Plugins *************** File: gccint.info, Node: Plugins record *** 39137,39150 **** =============================================== The event PLUGIN_PASS_EXECUTION passes the pointer to the executed pass ! (the same as current_pass) as `gcc_data' to the callback. You can also inspect cfun to find out about which function this pass is executed for. Note that this event will only be invoked if the gate check (if applicable, modified by PLUGIN_OVERRIDE_GATE) succeeds. You can use ! other hooks, like `PLUGIN_ALL_PASSES_START', `PLUGIN_ALL_PASSES_END', ! `PLUGIN_ALL_IPA_PASSES_START', `PLUGIN_ALL_IPA_PASSES_END', ! `PLUGIN_EARLY_GIMPLE_PASSES_START', and/or ! `PLUGIN_EARLY_GIMPLE_PASSES_END' to manipulate global state in your plugin(s) in order to get context for the pass execution.  --- 38755,38768 ---- =============================================== The event PLUGIN_PASS_EXECUTION passes the pointer to the executed pass ! (the same as current_pass) as 'gcc_data' to the callback. You can also inspect cfun to find out about which function this pass is executed for. Note that this event will only be invoked if the gate check (if applicable, modified by PLUGIN_OVERRIDE_GATE) succeeds. You can use ! other hooks, like 'PLUGIN_ALL_PASSES_START', 'PLUGIN_ALL_PASSES_END', ! 'PLUGIN_ALL_IPA_PASSES_START', 'PLUGIN_ALL_IPA_PASSES_END', ! 'PLUGIN_EARLY_GIMPLE_PASSES_START', and/or ! 'PLUGIN_EARLY_GIMPLE_PASSES_END' to manipulate global state in your plugin(s) in order to get context for the pass execution.  *************** File: gccint.info, Node: Plugins gate, *** 39155,39162 **** After the original gate function for a pass is called, its result - the gate status - is stored as an integer. Then the event ! `PLUGIN_OVERRIDE_GATE' is invoked, with a pointer to the gate status in ! the `gcc_data' parameter to the callback function. A nonzero value of the gate status means that the pass is to be executed. You can both read and write the gate status via the passed pointer. --- 38773,38780 ---- After the original gate function for a pass is called, its result - the gate status - is stored as an integer. Then the event ! 'PLUGIN_OVERRIDE_GATE' is invoked, with a pointer to the gate status in ! the 'gcc_data' parameter to the callback function. A nonzero value of the gate status means that the pass is to be executed. You can both read and write the gate status via the passed pointer. *************** File: gccint.info, Node: Plugins tracki *** 39169,39177 **** When your plugin is loaded, you can inspect the various pass lists to determine what passes are available. However, other plugins might add new passes. Also, future changes to GCC might cause generic passes to ! be added after plugin loading. When a pass is first added to one of ! the pass lists, the event `PLUGIN_NEW_PASS' is invoked, with the ! callback parameter `gcc_data' pointing to the new pass.  File: gccint.info, Node: Plugins building, Prev: Plugins tracking, Up: Plugins --- 38787,38795 ---- When your plugin is loaded, you can inspect the various pass lists to determine what passes are available. However, other plugins might add new passes. Also, future changes to GCC might cause generic passes to ! be added after plugin loading. When a pass is first added to one of the ! pass lists, the event 'PLUGIN_NEW_PASS' is invoked, with the callback ! parameter 'gcc_data' pointing to the new pass.  File: gccint.info, Node: Plugins building, Prev: Plugins tracking, Up: Plugins *************** File: gccint.info, Node: Plugins buildi *** 39180,39201 **** ========================== If plugins are enabled, GCC installs the headers needed to build a ! plugin (somewhere in the installation tree, e.g. under `/usr/local'). ! In particular a `plugin/include' directory is installed, containing all the header files needed to build plugins. ! On most systems, you can query this `plugin' directory by invoking ! `gcc -print-file-name=plugin' (replace if needed `gcc' with the ! appropriate program path). ! Inside plugins, this `plugin' directory name can be queried by calling ! `default_plugin_dir_name ()'. Plugins may know, when they are compiled, the GCC version for which ! `plugin-version.h' is provided. The constant macros ! `GCCPLUGIN_VERSION_MAJOR', `GCCPLUGIN_VERSION_MINOR', ! `GCCPLUGIN_VERSION_PATCHLEVEL', `GCCPLUGIN_VERSION' are integer ! numbers, so a plugin could ensure it is built for GCC 4.7 with #if GCCPLUGIN_VERSION != 4007 #error this GCC plugin is for GCC 4.7 #endif --- 38798,38819 ---- ========================== If plugins are enabled, GCC installs the headers needed to build a ! plugin (somewhere in the installation tree, e.g. under '/usr/local'). ! In particular a 'plugin/include' directory is installed, containing all the header files needed to build plugins. ! On most systems, you can query this 'plugin' directory by invoking 'gcc ! -print-file-name=plugin' (replace if needed 'gcc' with the appropriate ! program path). ! Inside plugins, this 'plugin' directory name can be queried by calling ! 'default_plugin_dir_name ()'. Plugins may know, when they are compiled, the GCC version for which ! 'plugin-version.h' is provided. The constant macros ! 'GCCPLUGIN_VERSION_MAJOR', 'GCCPLUGIN_VERSION_MINOR', ! 'GCCPLUGIN_VERSION_PATCHLEVEL', 'GCCPLUGIN_VERSION' are integer numbers, ! so a plugin could ensure it is built for GCC 4.7 with #if GCCPLUGIN_VERSION != 4007 #error this GCC plugin is for GCC 4.7 #endif *************** numbers, so a plugin could ensure it is *** 39211,39224 **** plugin.so: $(PLUGIN_OBJECT_FILES) $(GCC) -shared $^ -o $@ ! A single source file plugin may be built with `gcc -I`gcc -print-file-name=plugin`/include -fPIC -shared -O2 plugin.c -o ! plugin.so', using backquote shell syntax to query the `plugin' directory. ! When a plugin needs to use `gengtype', be sure that both `gengtype' ! and `gtype.state' have the same version as the GCC for which the plugin ! is built.  File: gccint.info, Node: LTO, Next: Funding, Prev: Plugins, Up: Top --- 38829,38842 ---- plugin.so: $(PLUGIN_OBJECT_FILES) $(GCC) -shared $^ -o $@ ! A single source file plugin may be built with 'gcc -I`gcc -print-file-name=plugin`/include -fPIC -shared -O2 plugin.c -o ! plugin.so', using backquote shell syntax to query the 'plugin' directory. ! When a plugin needs to use 'gengtype', be sure that both 'gengtype' and ! 'gtype.state' have the same version as the GCC for which the plugin is ! built.  File: gccint.info, Node: LTO, Next: Funding, Prev: Plugins, Up: Top *************** File: gccint.info, Node: LTO, Next: Fu *** 39228,39237 **** Link Time Optimization (LTO) gives GCC the capability of dumping its internal representation (GIMPLE) to disk, so that all the different ! compilation units that make up a single executable can be optimized as ! a single module. This expands the scope of inter-procedural ! optimizations to encompass the whole program (or, rather, everything ! that is visible at link time). * Menu: --- 38846,38855 ---- Link Time Optimization (LTO) gives GCC the capability of dumping its internal representation (GIMPLE) to disk, so that all the different ! compilation units that make up a single executable can be optimized as a ! single module. This expands the scope of inter-procedural optimizations ! to encompass the whole program (or, rather, everything that is visible ! at link time). * Menu: *************** that is visible at link time). *** 39240,39246 **** * IPA:: Using summary information in IPA passes. * WHOPR:: Whole program assumptions, linker plugin and symbol visibilities. ! * Internal flags:: Internal flags controlling `lto1'.  File: gccint.info, Node: LTO Overview, Next: LTO object file layout, Up: LTO --- 38858,38864 ---- * IPA:: Using summary information in IPA passes. * WHOPR:: Whole program assumptions, linker plugin and symbol visibilities. ! * Internal flags:: Internal flags controlling 'lto1'.  File: gccint.info, Node: LTO Overview, Next: LTO object file layout, Up: LTO *************** File: gccint.info, Node: LTO Overview, *** 39249,39255 **** ==================== Link time optimization is implemented as a GCC front end for a bytecode ! representation of GIMPLE that is emitted in special sections of `.o' files. Currently, LTO support is enabled in most ELF-based systems, as well as darwin, cygwin and mingw systems. --- 38867,38873 ---- ==================== Link time optimization is implemented as a GCC front end for a bytecode ! representation of GIMPLE that is emitted in special sections of '.o' files. Currently, LTO support is enabled in most ELF-based systems, as well as darwin, cygwin and mingw systems. *************** Additionally, one might be able to ship *** 39261,39276 **** could be used both for development and the production of optimized builds. A, perhaps surprising, side effect of this feature is that any mistake in the toolchain that leads to LTO information not being used ! (e.g. an older `libtool' calling `ld' directly). This is both an ! advantage, as the system is more robust, and a disadvantage, as the ! user is not informed that the optimization has been disabled. The current implementation only produces "fat" objects, effectively doubling compilation time and increasing file sizes up to 5x the ! original size. This hides the problem that some tools, such as `ar' ! and `nm', need to understand symbol tables of LTO sections. These ! tools were extended to use the plugin infrastructure, and with these ! problems solved, GCC will also support "slim" objects consisting of the intermediate code alone. At the highest level, LTO splits the compiler in two. The first half --- 38879,38894 ---- could be used both for development and the production of optimized builds. A, perhaps surprising, side effect of this feature is that any mistake in the toolchain that leads to LTO information not being used ! (e.g. an older 'libtool' calling 'ld' directly). This is both an ! advantage, as the system is more robust, and a disadvantage, as the user ! is not informed that the optimization has been disabled. The current implementation only produces "fat" objects, effectively doubling compilation time and increasing file sizes up to 5x the ! original size. This hides the problem that some tools, such as 'ar' and ! 'nm', need to understand symbol tables of LTO sections. These tools ! were extended to use the plugin infrastructure, and with these problems ! solved, GCC will also support "slim" objects consisting of the intermediate code alone. At the highest level, LTO splits the compiler in two. The first half *************** data structures needed to optimize and g *** 39279,39326 **** declarations, types, the callgraph and the GIMPLE representation of function bodies. ! When `-flto' is given during compilation of a source file, the pass ! manager executes all the passes in `all_lto_gen_passes'. Currently, this phase is composed of two IPA passes: ! * `pass_ipa_lto_gimple_out' This pass executes the function ! `lto_output' in `lto-streamer-out.c', which traverses the call graph encoding every reachable declaration, type and function. This generates a memory representation of all the file sections described below. ! * `pass_ipa_lto_finish_out' This pass executes the function ! `produce_asm_for_decls' in `lto-streamer-out.c', which takes the memory image built in the previous pass and encodes it in the corresponding ELF file sections. ! The second half of LTO support is the "reader". This is implemented ! as the GCC front end `lto1' in `lto/lto.c'. When `collect2' detects a ! link set of `.o'/`.a' files with LTO information and the `-flto' is ! enabled, it invokes `lto1' which reads the set of files and aggregates ! them into a single translation unit for optimization. The main entry ! point for the reader is `lto/lto.c':`lto_main'. 24.1.1 LTO modes of operation ----------------------------- One of the main goals of the GCC link-time infrastructure was to allow ! effective compilation of large programs. For this reason GCC ! implements two link-time compilation modes. ! 1. _LTO mode_, in which the whole program is read into the compiler ! at link-time and optimized in a similar way as if it were a single source-level compilation unit. 2. _WHOPR or partitioned mode_, designed to utilize multiple CPUs and/or a distributed compilation environment to quickly link large applications. WHOPR stands for WHOle Program optimizeR (not to be ! confused with the semantics of `-fwhole-program'). It partitions ! the aggregated callgraph from many different `.o' files and distributes the compilation of the sub-graphs to different CPUs. Note that distributed compilation is not implemented yet, but since ! the parallelism is facilitated via generating a `Makefile', it would be easy to implement. WHOPR splits LTO into three main stages: --- 38897,38944 ---- declarations, types, the callgraph and the GIMPLE representation of function bodies. ! When '-flto' is given during compilation of a source file, the pass ! manager executes all the passes in 'all_lto_gen_passes'. Currently, this phase is composed of two IPA passes: ! * 'pass_ipa_lto_gimple_out' This pass executes the function ! 'lto_output' in 'lto-streamer-out.c', which traverses the call graph encoding every reachable declaration, type and function. This generates a memory representation of all the file sections described below. ! * 'pass_ipa_lto_finish_out' This pass executes the function ! 'produce_asm_for_decls' in 'lto-streamer-out.c', which takes the memory image built in the previous pass and encodes it in the corresponding ELF file sections. ! The second half of LTO support is the "reader". This is implemented as ! the GCC front end 'lto1' in 'lto/lto.c'. When 'collect2' detects a link ! set of '.o'/'.a' files with LTO information and the '-flto' is enabled, ! it invokes 'lto1' which reads the set of files and aggregates them into ! a single translation unit for optimization. The main entry point for ! the reader is 'lto/lto.c':'lto_main'. 24.1.1 LTO modes of operation ----------------------------- One of the main goals of the GCC link-time infrastructure was to allow ! effective compilation of large programs. For this reason GCC implements ! two link-time compilation modes. ! 1. _LTO mode_, in which the whole program is read into the compiler at ! link-time and optimized in a similar way as if it were a single source-level compilation unit. 2. _WHOPR or partitioned mode_, designed to utilize multiple CPUs and/or a distributed compilation environment to quickly link large applications. WHOPR stands for WHOle Program optimizeR (not to be ! confused with the semantics of '-fwhole-program'). It partitions ! the aggregated callgraph from many different '.o' files and distributes the compilation of the sub-graphs to different CPUs. Note that distributed compilation is not implemented yet, but since ! the parallelism is facilitated via generating a 'Makefile', it would be easy to implement. WHOPR splits LTO into three main stages: *************** implements two link-time compilation mod *** 39334,39342 **** global call-graph is generated, and a global analysis procedure makes transformation decisions. The global call-graph is partitioned to facilitate parallel optimization during phase 3. ! The results of the WPA stage are stored into new object files ! which contain the partitions of program expressed in the ! intermediate language and the optimization decisions. 3. Local transformations (LTRANS) This stage executes in parallel. All the decisions made during phase 2 are implemented locally in --- 38952,38960 ---- global call-graph is generated, and a global analysis procedure makes transformation decisions. The global call-graph is partitioned to facilitate parallel optimization during phase 3. ! The results of the WPA stage are stored into new object files which ! contain the partitions of program expressed in the intermediate ! language and the optimization decisions. 3. Local transformations (LTRANS) This stage executes in parallel. All the decisions made during phase 2 are implemented locally in *************** implements two link-time compilation mod *** 39345,39362 **** during the phase 2 may be performed on the local call-graph partitions. ! WHOPR can be seen as an extension of the usual LTO mode of ! compilation. In LTO, WPA and LTRANS are executed within a single ! execution of the compiler, after the whole program has been read into ! memory. When compiling in WHOPR mode, the callgraph is partitioned during the ! WPA stage. The whole program is split into a given number of ! partitions of roughly the same size. The compiler tries to minimize ! the number of references which cross partition boundaries. The main ! advantage of WHOPR is to allow the parallel execution of LTRANS stages, ! which are the most time-consuming part of the compilation process. ! Additionally, it avoids the need to load the whole program into memory.  File: gccint.info, Node: LTO object file layout, Next: IPA, Prev: LTO Overview, Up: LTO --- 38963,38979 ---- during the phase 2 may be performed on the local call-graph partitions. ! WHOPR can be seen as an extension of the usual LTO mode of compilation. ! In LTO, WPA and LTRANS are executed within a single execution of the ! compiler, after the whole program has been read into memory. When compiling in WHOPR mode, the callgraph is partitioned during the ! WPA stage. The whole program is split into a given number of partitions ! of roughly the same size. The compiler tries to minimize the number of ! references which cross partition boundaries. The main advantage of ! WHOPR is to allow the parallel execution of LTRANS stages, which are the ! most time-consuming part of the compilation process. Additionally, it ! avoids the need to load the whole program into memory.  File: gccint.info, Node: LTO object file layout, Next: IPA, Prev: LTO Overview, Up: LTO *************** File: gccint.info, Node: LTO object fil *** 39366,39378 **** LTO information is stored in several ELF sections inside object files. Data structures and enum codes for sections are defined in ! `lto-streamer.h'. ! These sections are emitted from `lto-streamer-out.c' and mapped in all ! at once from `lto/lto.c':`lto_file_read'. The individual functions dealing with the reading/writing of each section are described below. ! * Command line options (`.gnu.lto_.opts') This section contains the command line options used to generate the object files. This is used at link time to determine the --- 38983,38995 ---- LTO information is stored in several ELF sections inside object files. Data structures and enum codes for sections are defined in ! 'lto-streamer.h'. ! These sections are emitted from 'lto-streamer-out.c' and mapped in all ! at once from 'lto/lto.c':'lto_file_read'. The individual functions dealing with the reading/writing of each section are described below. ! * Command line options ('.gnu.lto_.opts') This section contains the command line options used to generate the object files. This is used at link time to determine the *************** dealing with the reading/writing of each *** 39385,39396 **** the options saved on all the files in a link-time set are applied globally. No attempt is made at validating the combination of flags (other than the usual validation done by option processing). ! This is implemented in `lto/lto.c':`lto_read_all_file_options'. ! * Symbol table (`.gnu.lto_.symtab') This table replaces the ELF symbol table for functions and ! variables represented in the LTO IL. Symbols used and exported by the optimized assembly code of "fat" objects might not match the ones used and exported by the intermediate code. This table is necessary because the intermediate code is less optimized and thus --- 39002,39013 ---- the options saved on all the files in a link-time set are applied globally. No attempt is made at validating the combination of flags (other than the usual validation done by option processing). ! This is implemented in 'lto/lto.c':'lto_read_all_file_options'. ! * Symbol table ('.gnu.lto_.symtab') This table replaces the ELF symbol table for functions and ! variables represented in the LTO IL. Symbols used and exported by the optimized assembly code of "fat" objects might not match the ones used and exported by the intermediate code. This table is necessary because the intermediate code is less optimized and thus *************** dealing with the reading/writing of each *** 39404,39467 **** symbol table was used. The symbol table is emitted in ! `lto-streamer-out.c':`produce_symtab'. ! * Global declarations and types (`.gnu.lto_.decls') This section contains an intermediate language dump of all declarations and types required to represent the callgraph, static variables and top-level debug info. The contents of this section are emitted in ! `lto-streamer-out.c':`produce_asm_for_decls'. Types and symbols are emitted in a topological order that preserves the sharing of pointers when the file is read back in ! (`lto.c':`read_cgraph_and_symbols'). ! * The callgraph (`.gnu.lto_.cgraph') This section contains the basic data structure used by the GCC inter-procedural optimization infrastructure. This section stores an annotated multi-graph which represents the functions and call ! sites as well as the variables, aliases and top-level `asm' statements. ! This section is emitted in `lto-streamer-out.c':`output_cgraph' ! and read in `lto-cgraph.c':`input_cgraph'. ! * IPA references (`.gnu.lto_.refs') This section contains references between function and static ! variables. It is emitted by `lto-cgraph.c':`output_refs' and read ! by `lto-cgraph.c':`input_refs'. ! * Function bodies (`.gnu.lto_.function_body.') This section contains function bodies in the intermediate language representation. Every function body is in a separate section to allow copying of the section independently to different object files or reading the function on demand. ! Functions are emitted in `lto-streamer-out.c':`output_function' ! and read in `lto-streamer-in.c':`input_function'. ! * Static variable initializers (`.gnu.lto_.vars') This section contains all the symbols in the global variable pool. ! It is emitted by `lto-cgraph.c':`output_varpool' and read in ! `lto-cgraph.c':`input_cgraph'. * Summaries and optimization summaries used by IPA passes ! (`.gnu.lto_.', where `' is one of `jmpfuncs', ! `pureconst' or `reference') These sections are used by IPA passes that need to emit summary ! information during LTO generation to be read and aggregated at ! link time. Each pass is responsible for implementing two pass ! manager hooks: one for writing the summary and another for reading ! it in. The format of these sections is entirely up to each ! individual pass. The only requirement is that the writer and ! reader hooks agree on the format.  File: gccint.info, Node: IPA, Next: WHOPR, Prev: LTO object file layout, Up: LTO --- 39021,39084 ---- symbol table was used. The symbol table is emitted in ! 'lto-streamer-out.c':'produce_symtab'. ! * Global declarations and types ('.gnu.lto_.decls') This section contains an intermediate language dump of all declarations and types required to represent the callgraph, static variables and top-level debug info. The contents of this section are emitted in ! 'lto-streamer-out.c':'produce_asm_for_decls'. Types and symbols are emitted in a topological order that preserves the sharing of pointers when the file is read back in ! ('lto.c':'read_cgraph_and_symbols'). ! * The callgraph ('.gnu.lto_.cgraph') This section contains the basic data structure used by the GCC inter-procedural optimization infrastructure. This section stores an annotated multi-graph which represents the functions and call ! sites as well as the variables, aliases and top-level 'asm' statements. ! This section is emitted in 'lto-streamer-out.c':'output_cgraph' and ! read in 'lto-cgraph.c':'input_cgraph'. ! * IPA references ('.gnu.lto_.refs') This section contains references between function and static ! variables. It is emitted by 'lto-cgraph.c':'output_refs' and read ! by 'lto-cgraph.c':'input_refs'. ! * Function bodies ('.gnu.lto_.function_body.') This section contains function bodies in the intermediate language representation. Every function body is in a separate section to allow copying of the section independently to different object files or reading the function on demand. ! Functions are emitted in 'lto-streamer-out.c':'output_function' and ! read in 'lto-streamer-in.c':'input_function'. ! * Static variable initializers ('.gnu.lto_.vars') This section contains all the symbols in the global variable pool. ! It is emitted by 'lto-cgraph.c':'output_varpool' and read in ! 'lto-cgraph.c':'input_cgraph'. * Summaries and optimization summaries used by IPA passes ! ('.gnu.lto_.', where '' is one of 'jmpfuncs', 'pureconst' ! or 'reference') These sections are used by IPA passes that need to emit summary ! information during LTO generation to be read and aggregated at link ! time. Each pass is responsible for implementing two pass manager ! hooks: one for writing the summary and another for reading it in. ! The format of these sections is entirely up to each individual ! pass. The only requirement is that the writer and reader hooks ! agree on the format.  File: gccint.info, Node: IPA, Next: WHOPR, Prev: LTO object file layout, Up: LTO *************** optimization pass is split into several *** 39480,39525 **** different times during WHOPR compilation: * LGEN time ! 1. _Generate summary_ (`generate_summary' in `struct ! ipa_opt_pass_d'). This stage analyzes every function body ! and variable initializer is examined and stores relevant information into a pass-specific data structure. ! 2. _Write summary_ (`write_summary' in `struct ipa_opt_pass_d'). This stage writes all the pass-specific information generated ! by `generate_summary'. Summaries go into their own ! `LTO_section_*' sections that have to be declared in ! `lto-streamer.h':`enum lto_section_type'. A new section is ! created by calling `create_output_block' and data can be ! written using the `lto_output_*' routines. * WPA time ! 1. _Read summary_ (`read_summary' in `struct ipa_opt_pass_d'). This stage reads all the pass-specific information in exactly ! the same order that it was written by `write_summary'. ! 2. _Execute_ (`execute' in `struct opt_pass'). This performs inter-procedural propagation. This must be done without actual access to the individual function bodies or variable ! initializers. Typically, this results in a transitive ! closure operation over the summary information of all the ! nodes in the callgraph. ! 3. _Write optimization summary_ (`write_optimization_summary' in ! `struct ipa_opt_pass_d'). This writes the result of the inter-procedural propagation into the object file. This can use the same data structures and helper routines used in ! `write_summary'. * LTRANS time ! 1. _Read optimization summary_ (`read_optimization_summary' in ! `struct ipa_opt_pass_d'). The counterpart to ! `write_optimization_summary'. This reads the interprocedural optimization decisions in exactly the same format emitted by ! `write_optimization_summary'. ! 2. _Transform_ (`function_transform' and `variable_transform' in ! `struct ipa_opt_pass_d'). The actual function bodies and variable initializers are updated based on the information passed down from the _Execute_ stage. --- 39097,39142 ---- different times during WHOPR compilation: * LGEN time ! 1. _Generate summary_ ('generate_summary' in 'struct ! ipa_opt_pass_d'). This stage analyzes every function body and ! variable initializer is examined and stores relevant information into a pass-specific data structure. ! 2. _Write summary_ ('write_summary' in 'struct ipa_opt_pass_d'). This stage writes all the pass-specific information generated ! by 'generate_summary'. Summaries go into their own ! 'LTO_section_*' sections that have to be declared in ! 'lto-streamer.h':'enum lto_section_type'. A new section is ! created by calling 'create_output_block' and data can be ! written using the 'lto_output_*' routines. * WPA time ! 1. _Read summary_ ('read_summary' in 'struct ipa_opt_pass_d'). This stage reads all the pass-specific information in exactly ! the same order that it was written by 'write_summary'. ! 2. _Execute_ ('execute' in 'struct opt_pass'). This performs inter-procedural propagation. This must be done without actual access to the individual function bodies or variable ! initializers. Typically, this results in a transitive closure ! operation over the summary information of all the nodes in the ! callgraph. ! 3. _Write optimization summary_ ('write_optimization_summary' in ! 'struct ipa_opt_pass_d'). This writes the result of the inter-procedural propagation into the object file. This can use the same data structures and helper routines used in ! 'write_summary'. * LTRANS time ! 1. _Read optimization summary_ ('read_optimization_summary' in ! 'struct ipa_opt_pass_d'). The counterpart to ! 'write_optimization_summary'. This reads the interprocedural optimization decisions in exactly the same format emitted by ! 'write_optimization_summary'. ! 2. _Transform_ ('function_transform' and 'variable_transform' in ! 'struct ipa_opt_pass_d'). The actual function bodies and variable initializers are updated based on the information passed down from the _Execute_ stage. *************** LTO, WHOPR and classic non-LTO compilati *** 39539,39545 **** To simplify development, the GCC pass manager differentiates between normal inter-procedural passes and small inter-procedural passes. A ! _small inter-procedural pass_ (`SIMPLE_IPA_PASS') is a pass that does everything at once and thus it can not be executed during WPA in WHOPR mode. It defines only the _Execute_ stage and during this stage it accesses and modifies the function bodies. Such passes are useful for --- 39156,39162 ---- To simplify development, the GCC pass manager differentiates between normal inter-procedural passes and small inter-procedural passes. A ! _small inter-procedural pass_ ('SIMPLE_IPA_PASS') is a pass that does everything at once and thus it can not be executed during WPA in WHOPR mode. It defines only the _Execute_ stage and during this stage it accesses and modifies the function bodies. Such passes are useful for *************** development of a new inter-procedural pa *** 39551,39563 **** 24.3.1 Virtual clones --------------------- ! One of the main challenges of introducing the WHOPR compilation mode ! was addressing the interactions between optimization passes. In LTO compilation mode, the passes are executed in a sequence, each of which ! consists of analysis (or _Generate summary_), propagation (or ! _Execute_) and _Transform_ stages. Once the work of one pass is ! finished, the next pass sees the updated program representation and can ! execute. This makes the individual passes dependent on each other. In WHOPR mode all passes first execute their _Generate summary_ stage. Then summary writing marks the end of the LGEN stage. At WPA time, the --- 39168,39180 ---- 24.3.1 Virtual clones --------------------- ! One of the main challenges of introducing the WHOPR compilation mode was ! addressing the interactions between optimization passes. In LTO compilation mode, the passes are executed in a sequence, each of which ! consists of analysis (or _Generate summary_), propagation (or _Execute_) ! and _Transform_ stages. Once the work of one pass is finished, the next ! pass sees the updated program representation and can execute. This ! makes the individual passes dependent on each other. In WHOPR mode all passes first execute their _Generate summary_ stage. Then summary writing marks the end of the LGEN stage. At WPA time, the *************** summaries are read back into memory and *** 39565,39602 **** stage. Optimization summaries are streamed and sent to LTRANS, where all the passes execute the _Transform_ stage. ! Most optimization passes split naturally into analysis, propagation ! and transformation stages. But some do not. The main problem arises ! when one pass performs changes and the following pass gets confused by ! seeing different callgraphs between the _Transform_ stage and the ! _Generate summary_ or _Execute_ stage. This means that the passes are ! required to communicate their decisions with each other. To facilitate this communication, the GCC callgraph infrastructure implements _virtual clones_, a method of representing the changes ! performed by the optimization passes in the callgraph without needing ! to update function bodies. ! A _virtual clone_ in the callgraph is a function that has no ! associated body, just a description of how to create its body based on ! a different function (which itself may be a virtual clone). The description of function modifications includes adjustments to the function's signature (which allows, for example, removing or adding ! function arguments), substitutions to perform on the function body, ! and, for inlined functions, a pointer to the function that it will be ! inlined into. It is also possible to redirect any edge of the callgraph from a function to its virtual clone. This implies updating of the call site to adjust for the new function signature. ! Most of the transformations performed by inter-procedural ! optimizations can be represented via virtual clones. For instance, a ! constant propagation pass can produce a virtual clone of the function ! which replaces one of its arguments by a constant. The inliner can ! represent its decisions by producing a clone of a function whose body ! will be later integrated into a given function. Using _virtual clones_, the program can be easily updated during the _Execute_ stage, solving most of pass interactions problems that would --- 39182,39219 ---- stage. Optimization summaries are streamed and sent to LTRANS, where all the passes execute the _Transform_ stage. ! Most optimization passes split naturally into analysis, propagation and ! transformation stages. But some do not. The main problem arises when ! one pass performs changes and the following pass gets confused by seeing ! different callgraphs between the _Transform_ stage and the _Generate ! summary_ or _Execute_ stage. This means that the passes are required to ! communicate their decisions with each other. To facilitate this communication, the GCC callgraph infrastructure implements _virtual clones_, a method of representing the changes ! performed by the optimization passes in the callgraph without needing to ! update function bodies. ! A _virtual clone_ in the callgraph is a function that has no associated ! body, just a description of how to create its body based on a different ! function (which itself may be a virtual clone). The description of function modifications includes adjustments to the function's signature (which allows, for example, removing or adding ! function arguments), substitutions to perform on the function body, and, ! for inlined functions, a pointer to the function that it will be inlined ! into. It is also possible to redirect any edge of the callgraph from a function to its virtual clone. This implies updating of the call site to adjust for the new function signature. ! Most of the transformations performed by inter-procedural optimizations ! can be represented via virtual clones. For instance, a constant ! propagation pass can produce a virtual clone of the function which ! replaces one of its arguments by a constant. The inliner can represent ! its decisions by producing a clone of a function whose body will be ! later integrated into a given function. Using _virtual clones_, the program can be easily updated during the _Execute_ stage, solving most of pass interactions problems that would *************** otherwise occur during _Transform_. *** 39604,39617 **** Virtual clones are later materialized in the LTRANS stage and turned into real functions. Passes executed after the virtual clone were ! introduced also perform their _Transform_ stage on new functions, so ! for a pass there is no significant difference between operating on a ! real function or a virtual clone introduced before its _Execute_ stage. ! Optimization passes then work on virtual clones introduced before ! their _Execute_ stage as if they were real functions. The only ! difference is that clones are not visible during the _Generate Summary_ ! stage. To keep function summaries updated, the callgraph interface allows an optimizer to register a callback that is called every time a new clone --- 39221,39233 ---- Virtual clones are later materialized in the LTRANS stage and turned into real functions. Passes executed after the virtual clone were ! introduced also perform their _Transform_ stage on new functions, so for ! a pass there is no significant difference between operating on a real ! function or a virtual clone introduced before its _Execute_ stage. ! Optimization passes then work on virtual clones introduced before their ! _Execute_ stage as if they were real functions. The only difference is ! that clones are not visible during the _Generate Summary_ stage. To keep function summaries updated, the callgraph interface allows an optimizer to register a callback that is called every time a new clone *************** summaries updated for the _Transform_ st *** 39626,39644 **** --------------------- GCC represents IPA references in the callgraph. For a function or ! variable `A', the _IPA reference_ is a list of all locations where the ! address of `A' is taken and, when `A' is a variable, a list of all ! direct stores and reads to/from `A'. References represent an oriented multi-graph on the union of nodes of the callgraph and the varpool. See ! `ipa-reference.c':`ipa_reference_write_optimization_summary' and ! `ipa-reference.c':`ipa_reference_read_optimization_summary' for details. 24.3.3 Jump functions --------------------- ! Suppose that an optimization pass sees a function `A' and it knows the values of (some of) its arguments. The _jump function_ describes the ! value of a parameter of a given function call in function `A' based on this knowledge. Jump functions are used by several optimizations, such as the --- 39242,39260 ---- --------------------- GCC represents IPA references in the callgraph. For a function or ! variable 'A', the _IPA reference_ is a list of all locations where the ! address of 'A' is taken and, when 'A' is a variable, a list of all ! direct stores and reads to/from 'A'. References represent an oriented multi-graph on the union of nodes of the callgraph and the varpool. See ! 'ipa-reference.c':'ipa_reference_write_optimization_summary' and ! 'ipa-reference.c':'ipa_reference_read_optimization_summary' for details. 24.3.3 Jump functions --------------------- ! Suppose that an optimization pass sees a function 'A' and it knows the values of (some of) its arguments. The _jump function_ describes the ! value of a parameter of a given function call in function 'A' based on this knowledge. Jump functions are used by several optimizations, such as the *************** File: gccint.info, Node: WHOPR, Next: *** 39653,39710 **** ===================================================================== Link-time optimization gives relatively minor benefits when used alone. ! The problem is that propagation of inter-procedural information does ! not work well across functions and variables that are called or ! referenced by other compilation units (such as from a dynamically ! linked library). We say that such functions and variables are ! _externally visible_. To make the situation even more difficult, many applications organize themselves as a set of shared libraries, and the default ELF visibility rules allow one to overwrite any externally visible symbol with a different symbol at runtime. This basically disables any optimizations ! across such functions and variables, because the compiler cannot be ! sure that the function body it is seeing is the same function body that ! will be used at runtime. Any function or variable not declared ! `static' in the sources degrades the quality of inter-procedural ! optimization. To avoid this problem the compiler must assume that it sees the whole ! program when doing link-time optimization. Strictly speaking, the ! whole program is rarely visible even at link-time. Standard system ! libraries are usually linked dynamically or not provided with the ! link-time information. In GCC, the whole program option ! (`-fwhole-program') asserts that every function and variable defined in ! the current compilation unit is static, except for function `main' ! (note: at link time, the current unit is the union of all objects ! compiled with LTO). Since some functions and variables need to be ! referenced externally, for example by another DSO or from an assembler ! file, GCC also provides the function and variable attribute ! `externally_visible' which can be used to disable the effect of ! `-fwhole-program' on a specific symbol. The whole program mode assumptions are slightly more complex in C++, where inline functions in headers are put into _COMDAT_ sections. COMDAT function and variables can be defined by multiple object files ! and their bodies are unified at link-time and dynamic link-time. ! COMDAT functions are changed to local only when their address is not ! taken and thus un-sharing them with a library is not harmful. COMDAT ! variables always remain externally visible, however for readonly ! variables it is assumed that their initializers cannot be overwritten ! by a different value. ! GCC provides the function and variable attribute `visibility' that can be used to specify the visibility of externally visible symbols (or ! alternatively an `-fdefault-visibility' command line option). ELF ! defines the `default', `protected', `hidden' and `internal' visibilities. ! The most commonly used is visibility is `hidden'. It specifies that the symbol cannot be referenced from outside of the current shared ! library. Unfortunately, this information cannot be used directly by ! the link-time optimization in the compiler since the whole shared ! library also might contain non-LTO objects and those are not visible to ! the compiler. GCC solves this problem using linker plugins. A _linker plugin_ is an interface to the linker that allows an external program to claim the --- 39269,39323 ---- ===================================================================== Link-time optimization gives relatively minor benefits when used alone. ! The problem is that propagation of inter-procedural information does not ! work well across functions and variables that are called or referenced ! by other compilation units (such as from a dynamically linked library). ! We say that such functions and variables are _externally visible_. To make the situation even more difficult, many applications organize themselves as a set of shared libraries, and the default ELF visibility rules allow one to overwrite any externally visible symbol with a different symbol at runtime. This basically disables any optimizations ! across such functions and variables, because the compiler cannot be sure ! that the function body it is seeing is the same function body that will ! be used at runtime. Any function or variable not declared 'static' in ! the sources degrades the quality of inter-procedural optimization. To avoid this problem the compiler must assume that it sees the whole ! program when doing link-time optimization. Strictly speaking, the whole ! program is rarely visible even at link-time. Standard system libraries ! are usually linked dynamically or not provided with the link-time ! information. In GCC, the whole program option ('-fwhole-program') ! asserts that every function and variable defined in the current ! compilation unit is static, except for function 'main' (note: at link ! time, the current unit is the union of all objects compiled with LTO). ! Since some functions and variables need to be referenced externally, for ! example by another DSO or from an assembler file, GCC also provides the ! function and variable attribute 'externally_visible' which can be used ! to disable the effect of '-fwhole-program' on a specific symbol. The whole program mode assumptions are slightly more complex in C++, where inline functions in headers are put into _COMDAT_ sections. COMDAT function and variables can be defined by multiple object files ! and their bodies are unified at link-time and dynamic link-time. COMDAT ! functions are changed to local only when their address is not taken and ! thus un-sharing them with a library is not harmful. COMDAT variables ! always remain externally visible, however for readonly variables it is ! assumed that their initializers cannot be overwritten by a different ! value. ! GCC provides the function and variable attribute 'visibility' that can be used to specify the visibility of externally visible symbols (or ! alternatively an '-fdefault-visibility' command line option). ELF ! defines the 'default', 'protected', 'hidden' and 'internal' visibilities. ! The most commonly used is visibility is 'hidden'. It specifies that the symbol cannot be referenced from outside of the current shared ! library. Unfortunately, this information cannot be used directly by the ! link-time optimization in the compiler since the whole shared library ! also might contain non-LTO objects and those are not visible to the ! compiler. GCC solves this problem using linker plugins. A _linker plugin_ is an interface to the linker that allows an external program to claim the *************** ownership of a given object file. The l *** 39712,39751 **** procedure by querying the plugin about the symbol table of the claimed objects and once the linking decisions are complete, the plugin is allowed to provide the final object file before the actual linking is ! made. The linker plugin obtains the symbol resolution information ! which specifies which symbols provided by the claimed objects are bound ! from the rest of a binary being linked. ! Currently, the linker plugin works only in combination with the Gold linker, but a GNU ld implementation is under development. ! GCC is designed to be independent of the rest of the toolchain and ! aims to support linkers without plugin support. For this reason it ! does not use the linker plugin by default. Instead, the object files ! are examined by `collect2' before being passed to the linker and ! objects found to have LTO sections are passed to `lto1' first. This ! mode does not work for library archives. The decision on what object ! files from the archive are needed depends on the actual linking and ! thus GCC would have to implement the linker itself. The resolution ! information is missing too and thus GCC needs to make an educated guess ! based on `-fwhole-program'. Without the linker plugin GCC also assumes ! that symbols are declared `hidden' and not referred by non-LTO code by default.  File: gccint.info, Node: Internal flags, Prev: WHOPR, Up: LTO ! 24.5 Internal flags controlling `lto1' ====================================== ! The following flags are passed into `lto1' and are not meant to be used directly from the command line. * -fwpa This option runs the serial part of the link-time optimizer performing the inter-procedural propagation (WPA mode). The compiler reads in summary information from all inputs and performs ! an analysis based on summary information only. It generates ! object files for subsequent runs of the link-time optimizer where individual object files are optimized using both summary information from the WPA mode and the actual function bodies. It then drives the LTRANS phase. --- 39325,39364 ---- procedure by querying the plugin about the symbol table of the claimed objects and once the linking decisions are complete, the plugin is allowed to provide the final object file before the actual linking is ! made. The linker plugin obtains the symbol resolution information which ! specifies which symbols provided by the claimed objects are bound from ! the rest of a binary being linked. ! Currently, the linker plugin works only in combination with the Gold linker, but a GNU ld implementation is under development. ! GCC is designed to be independent of the rest of the toolchain and aims ! to support linkers without plugin support. For this reason it does not ! use the linker plugin by default. Instead, the object files are ! examined by 'collect2' before being passed to the linker and objects ! found to have LTO sections are passed to 'lto1' first. This mode does ! not work for library archives. The decision on what object files from ! the archive are needed depends on the actual linking and thus GCC would ! have to implement the linker itself. The resolution information is ! missing too and thus GCC needs to make an educated guess based on ! '-fwhole-program'. Without the linker plugin GCC also assumes that ! symbols are declared 'hidden' and not referred by non-LTO code by default.  File: gccint.info, Node: Internal flags, Prev: WHOPR, Up: LTO ! 24.5 Internal flags controlling 'lto1' ====================================== ! The following flags are passed into 'lto1' and are not meant to be used directly from the command line. * -fwpa This option runs the serial part of the link-time optimizer performing the inter-procedural propagation (WPA mode). The compiler reads in summary information from all inputs and performs ! an analysis based on summary information only. It generates object ! files for subsequent runs of the link-time optimizer where individual object files are optimized using both summary information from the WPA mode and the actual function bodies. It then drives the LTRANS phase. *************** directly from the command line. *** 39755,39763 **** previous run of the LTO in WPA mode. In the LTRANS mode, LTO optimizes an object and produces the final assembly. ! * -fltrans-output-list=FILE This option specifies a file to which ! the names of LTRANS output files are written. This option is only ! meaningful in conjunction with `-fwpa'.  File: gccint.info, Node: Funding, Next: GNU Project, Prev: LTO, Up: Top --- 39368,39376 ---- previous run of the LTO in WPA mode. In the LTRANS mode, LTO optimizes an object and produces the final assembly. ! * -fltrans-output-list=FILE This option specifies a file to which the ! names of LTRANS output files are written. This option is only ! meaningful in conjunction with '-fwpa'.  File: gccint.info, Node: Funding, Next: GNU Project, Prev: LTO, Up: Top *************** to free software developers--the Free So *** 39776,39783 **** The way to convince distributors to do this is to demand it and expect it from them. So when you compare distributors, judge them partly by ! how much they give to free software development. Show distributors ! they must compete to be the one who gives the most. To make this approach work, you must insist on numbers that you can compare, such as, "We will donate ten dollars to the Frobnitz project --- 39389,39396 ---- The way to convince distributors to do this is to demand it and expect it from them. So when you compare distributors, judge them partly by ! how much they give to free software development. Show distributors they ! must compete to be the one who gives the most. To make this approach work, you must insist on numbers that you can compare, such as, "We will donate ten dollars to the Frobnitz project *************** for comparison. *** 39787,39794 **** Even a precise fraction "of the profits from this disk" is not very meaningful, since creative accounting and unrelated business decisions ! can greatly alter what fraction of the sales price counts as profit. ! If the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all. Some redistributors do development work themselves. This is useful --- 39400,39407 ---- Even a precise fraction "of the profits from this disk" is not very meaningful, since creative accounting and unrelated business decisions ! can greatly alter what fraction of the sales price counts as profit. If ! the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all. Some redistributors do development work themselves. This is useful *************** difference than others. For example, ma *** 39798,39805 **** a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ! ports such as adding a new CPU to the GNU Compiler Collection ! contribute more; major new features or packages contribute the most. By establishing the idea that supporting further development is "the proper thing to do" when distributing free software for a fee, we can --- 39411,39418 ---- a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ! ports such as adding a new CPU to the GNU Compiler Collection contribute ! more; major new features or packages contribute the most. By establishing the idea that supporting further development is "the proper thing to do" when distributing free software for a fee, we can *************** now widely used; though these systems ar *** 39823,39830 **** they are more accurately called GNU/Linux systems. For more information, see: ! `http://www.gnu.org/' ! `http://www.gnu.org/gnu/linux-and-gnu.html'  File: gccint.info, Node: Copying, Next: GNU Free Documentation License, Prev: GNU Project, Up: Top --- 39436,39443 ---- they are more accurately called GNU/Linux systems. For more information, see: ! !  File: gccint.info, Node: Copying, Next: GNU Free Documentation License, Prev: GNU Project, Up: Top *************** GNU General Public License *** 39834,39840 **** Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 39447,39453 ---- Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU General Public License for most of o *** 39854,39880 **** any other work released this way by its authors. You can apply it to your programs, too. ! When we speak of free software, we are referring to freedom, not ! price. Our General Public Licenses are designed to make sure that you ! have the freedom to distribute copies of free software (and charge for ! them if you wish), that you receive source code or can get it if you ! want it, that you can change the software or use pieces of it in new ! free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you ! have certain responsibilities if you distribute copies of the software, ! or if you modify it: responsibilities to respect the freedom of others. ! For example, if you distribute copies of such a program, whether ! gratis or for a fee, you must pass on to the recipients the same ! freedoms that you received. You must make sure that they, too, receive ! or can get the source code. And you must show them these terms so they ! know their rights. ! Developers that use the GNU GPL protect your rights with two steps: ! (1) assert copyright on the software, and (2) offer you this License ! giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and --- 39467,39493 ---- any other work released this way by its authors. You can apply it to your programs, too. ! When we speak of free software, we are referring to freedom, not price. ! Our General Public Licenses are designed to make sure that you have the ! freedom to distribute copies of free software (and charge for them if ! you wish), that you receive source code or can get it if you want it, ! that you can change the software or use pieces of it in new free ! programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you have ! certain responsibilities if you distribute copies of the software, or if ! you modify it: responsibilities to respect the freedom of others. ! For example, if you distribute copies of such a program, whether gratis ! or for a fee, you must pass on to the recipients the same freedoms that ! you received. You must make sure that they, too, receive or can get the ! source code. And you must show them these terms so they know their ! rights. ! Developers that use the GNU GPL protect your rights with two steps: (1) ! assert copyright on the software, and (2) offer you this License giving ! you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and *************** changed, so that their problems will not *** 39883,39898 **** authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the ! manufacturer can do so. This is fundamentally incompatible with the ! aim of protecting users' freedom to change the software. The ! systematic pattern of such abuse occurs in the area of products for ! individuals to use, which is precisely where it is most unacceptable. ! Therefore, we have designed this version of the GPL to prohibit the ! practice for those products. If such problems arise substantially in ! other domains, we stand ready to extend this provision to those domains ! in future versions of the GPL, as needed to protect the freedom of ! users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of --- 39496,39510 ---- authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the manufacturer ! can do so. This is fundamentally incompatible with the aim of ! protecting users' freedom to change the software. The systematic ! pattern of such abuse occurs in the area of products for individuals to ! use, which is precisely where it is most unacceptable. Therefore, we ! have designed this version of the GPL to prohibit the practice for those ! products. If such problems arise substantially in other domains, we ! stand ready to extend this provision to those domains in future versions ! of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of *************** TERMS AND CONDITIONS *** 39929,39936 **** To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it ! on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. --- 39541,39548 ---- To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it on ! a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. *************** TERMS AND CONDITIONS *** 39944,39951 **** to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may ! convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. --- 39556,39563 ---- to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may convey ! the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. *************** TERMS AND CONDITIONS *** 39953,39960 **** 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any ! non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in --- 39565,39572 ---- 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any non-source ! form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in *************** TERMS AND CONDITIONS *** 39965,39974 **** The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work ! with that Major Component, or to implement a Standard Interface ! for which an implementation is available to the public in source ! code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code --- 39577,39586 ---- The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work with ! that Major Component, or to implement a Standard Interface for ! which an implementation is available to the public in source code ! form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code *************** TERMS AND CONDITIONS *** 39976,39990 **** The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including ! scripts to control those activities. However, it does not include ! the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files ! associated with source files for the work, and the source code for ! shared libraries and dynamically linked subprograms that the work ! is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. --- 39588,39602 ---- The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including scripts ! to control those activities. However, it does not include the ! work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files associated ! with source files for the work, and the source code for shared ! libraries and dynamically linked subprograms that the work is ! specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. *************** TERMS AND CONDITIONS *** 40001,40022 **** copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, ! given its content, constitutes a covered work. This License ! acknowledges your rights of fair use or other equivalent, as ! provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for ! you, or provide you with facilities for running those works, ! provided that you comply with the terms of this License in ! conveying all material for which you do not control copyright. ! Those thus making or running the covered works for you must do so ! exclusively on your behalf, under your direction and control, on ! terms that prohibit them from making any copies of your ! copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section --- 39613,39634 ---- copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, given ! its content, constitutes a covered work. This License acknowledges ! your rights of fair use or other equivalent, as provided by ! copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for you, ! or provide you with facilities for running those works, provided ! that you comply with the terms of this License in conveying all ! material for which you do not control copyright. Those thus making ! or running the covered works for you must do so exclusively on your ! behalf, under your direction and control, on terms that prohibit ! them from making any copies of your copyrighted material outside ! their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section *************** TERMS AND CONDITIONS *** 40033,40040 **** When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention ! to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. --- 39645,39652 ---- When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention to ! limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. *************** TERMS AND CONDITIONS *** 40104,40111 **** b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for ! as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a --- 39716,39723 ---- b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for as ! long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a *************** TERMS AND CONDITIONS *** 40115,40146 **** to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of ! the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access ! to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated ! by you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to ! the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long ! as needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. - A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. --- 39727,39757 ---- to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of the ! written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access to ! the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated by ! you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to the ! object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long as ! needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. *************** TERMS AND CONDITIONS *** 40148,40155 **** A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product ! is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the --- 39759,39766 ---- A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product is ! a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the *************** TERMS AND CONDITIONS *** 40180,40190 **** The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or ! installed by the recipient, or for the User Product in which it ! has been modified or installed. Access to a network may be denied ! when the modification itself materially and adversely affects the ! operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information --- 39791,39801 ---- The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or installed ! by the recipient, or for the User Product in which it has been ! modified or installed. Access to a network may be denied when the ! modification itself materially and adversely affects the operation ! of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information *************** TERMS AND CONDITIONS *** 40214,40221 **** Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License ! with terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or --- 39825,39832 ---- Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License with ! terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or *************** TERMS AND CONDITIONS *** 40225,40233 **** Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be ! marked in reasonable ways as different from the original ! version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or --- 39836,39843 ---- Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be marked ! in reasonable ways as different from the original version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or *************** TERMS AND CONDITIONS *** 40246,40256 **** you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or ! conveying under this License, you may add to a covered work ! material governed by the terms of that license document, provided ! that the further restriction does not survive such relicensing or ! conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the --- 39856,39865 ---- you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or conveying ! under this License, you may add to a covered work material governed ! by the terms of that license document, provided that the further ! restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the *************** TERMS AND CONDITIONS *** 40266,40278 **** You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under ! the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 39875,39887 ---- You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under the ! third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** TERMS AND CONDITIONS *** 40284,40293 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, you do not qualify to receive new ! licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. --- 39893,39902 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, you do not qualify to receive new licenses ! for the same material under section 10. 9. Acceptance Not Required for Having Copies. *************** TERMS AND CONDITIONS *** 40301,40307 **** by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and --- 39910,39916 ---- by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and *************** TERMS AND CONDITIONS *** 40315,40335 **** covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to ! possession of the Corresponding Source of the work from the ! predecessor in interest, if the predecessor has it or can get it ! with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for ! exercise of rights granted under this License, and you may not ! initiate litigation (including a cross-claim or counterclaim in a ! lawsuit) alleging that any patent claim is infringed by making, ! using, selling, offering for sale, or importing the Program or any ! portion of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. --- 39924,39944 ---- covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to possession ! of the Corresponding Source of the work from the predecessor in ! interest, if the predecessor has it or can get it with reasonable ! efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for exercise ! of rights granted under this License, and you may not initiate ! litigation (including a cross-claim or counterclaim in a lawsuit) ! alleging that any patent claim is infringed by making, using, ! selling, offering for sale, or importing the Program or any portion ! of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. *************** TERMS AND CONDITIONS *** 40349,40363 **** Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its ! contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To ! "grant" such a patent license to a party means to make such an ! agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available --- 39958,39972 ---- Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its contributor ! version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To "grant" ! such a patent license to a party means to make such an agreement or ! commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available *************** TERMS AND CONDITIONS *** 40387,40422 **** conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under ! which you make payment to the third party based on the extent of ! your activity of conveying the work, and under which the third ! party grants, to any of the parties who would receive the covered ! work from you, a discriminatory patent license (a) in connection ! with copies of the covered work conveyed by you (or copies made ! from those copies), or (b) primarily for and in connection with ! specific products or compilations that contain the covered work, ! unless you entered into that arrangement, or that patent license ! was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, ! agreement or otherwise) that contradict the conditions of this ! License, they do not excuse you from the conditions of this ! License. If you cannot convey a covered work so as to satisfy ! simultaneously your obligations under this License and any other ! pertinent obligations, then as a consequence you may not convey it ! at all. For example, if you agree to terms that obligate you to ! collect a royalty for further conveying from those to whom you ! convey the Program, the only way you could satisfy both those ! terms and this License would be to refrain entirely from conveying ! the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed --- 39996,40030 ---- conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under which ! you make payment to the third party based on the extent of your ! activity of conveying the work, and under which the third party ! grants, to any of the parties who would receive the covered work ! from you, a discriminatory patent license (a) in connection with ! copies of the covered work conveyed by you (or copies made from ! those copies), or (b) primarily for and in connection with specific ! products or compilations that contain the covered work, unless you ! entered into that arrangement, or that patent license was granted, ! prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, agreement ! or otherwise) that contradict the conditions of this License, they ! do not excuse you from the conditions of this License. If you ! cannot convey a covered work so as to satisfy simultaneously your ! obligations under this License and any other pertinent obligations, ! then as a consequence you may not convey it at all. For example, ! if you agree to terms that obligate you to collect a royalty for ! further conveying from those to whom you convey the Program, the ! only way you could satisfy both those terms and this License would ! be to refrain entirely from conveying the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed *************** TERMS AND CONDITIONS *** 40427,40448 **** General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. ! Such new versions will be similar in spirit to the present ! version, but may differ in detail to address new problems or ! concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the ! Free Software Foundation. If the Program does not specify a ! version number of the GNU General Public License, you may choose ! any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that --- 40035,40055 ---- General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. Such ! new versions will be similar in spirit to the present version, but ! may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the Free ! Software Foundation. If the Program does not specify a version ! number of the GNU General Public License, you may choose any ! version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that *************** TERMS AND CONDITIONS *** 40454,40477 **** author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU ! FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD --- 40061,40084 ---- author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR ! DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD *************** TERMS AND CONDITIONS *** 40479,40485 **** PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, --- 40086,40092 ---- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, *************** TERMS AND CONDITIONS *** 40488,40494 **** connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. - END OF TERMS AND CONDITIONS =========================== --- 40095,40100 ---- *************** possible use to the public, the best way *** 40500,40508 **** free software which everyone can redistribute and change under these terms. ! To do so, attach the following notices to the program. It is safest ! to attach them to the start of each source file to most effectively ! state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES. --- 40106,40114 ---- free software which everyone can redistribute and change under these terms. ! To do so, attach the following notices to the program. It is safest to ! attach them to the start of each source file to most effectively state ! the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES. *************** state the exclusion of warranty; and eac *** 40519,40538 **** General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see `http://www.gnu.org/licenses/'. Also add information on how to contact you by electronic and paper mail. ! If the program does terminal interaction, make it output a short ! notice like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type `show c' for details. ! The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". --- 40125,40144 ---- General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. ! If the program does terminal interaction, make it output a short notice ! like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type 'show c' for details. ! The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". *************** use an "about box". *** 40540,40553 **** You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see `http://www.gnu.org/licenses/'. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read `http://www.gnu.org/philosophy/why-not-lgpl.html'.  File: gccint.info, Node: GNU Free Documentation License, Next: Contributors, Prev: Copying, Up: Top --- 40146,40159 ---- You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read .  File: gccint.info, Node: GNU Free Documentation License, Next: Contributors, Prev: Copying, Up: Top *************** GNU Free Documentation License *** 40558,40564 **** Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 40164,40170 ---- Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU Free Documentation License *** 40583,40603 **** free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. ! We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it ! can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You ! accept the license if you copy, modify or distribute the work in a ! way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with --- 40189,40209 ---- free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. We ! recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it can ! be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You accept ! the license if you copy, modify or distribute the work in a way ! requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with *************** GNU Free Documentation License *** 40615,40626 **** regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in ! the notice that says that the Document is released under this ! License. If a section does not fit the above definition of ! Secondary then it is not allowed to be designated as Invariant. ! The Document may contain zero Invariant Sections. If the Document ! does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice --- 40221,40232 ---- regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in the ! notice that says that the Document is released under this License. ! If a section does not fit the above definition of Secondary then it ! is not allowed to be designated as Invariant. The Document may ! contain zero Invariant Sections. If the Document does not identify ! any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice *************** GNU Free Documentation License *** 40631,40657 **** A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images ! composed of pixels) generic paint programs or (for drawings) some ! widely available drawing editor, and that is suitable for input to ! text formatters or for automatic translation to a variety of ! formats suitable for input to text formatters. A copy made in an ! otherwise Transparent file format whose markup, or absence of ! markup, has been arranged to thwart or discourage subsequent ! modification by readers is not Transparent. An image format is ! not Transparent if used for any substantial amount of text. A ! copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and ! standard-conforming simple HTML, PostScript or PDF designed for ! human modification. Examples of transparent image formats include ! PNG, XCF and JPG. Opaque formats include proprietary formats that ! can be read and edited only by proprietary word processors, SGML or ! XML for which the DTD and/or processing tools are not generally ! available, and the machine-generated HTML, PostScript or PDF ! produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the --- 40237,40263 ---- A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images composed ! of pixels) generic paint programs or (for drawings) some widely ! available drawing editor, and that is suitable for input to text ! formatters or for automatic translation to a variety of formats ! suitable for input to text formatters. A copy made in an otherwise ! Transparent file format whose markup, or absence of markup, has ! been arranged to thwart or discourage subsequent modification by ! readers is not Transparent. An image format is not Transparent if ! used for any substantial amount of text. A copy that is not ! "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and standard-conforming ! simple HTML, PostScript or PDF designed for human modification. ! Examples of transparent image formats include PNG, XCF and JPG. ! Opaque formats include proprietary formats that can be read and ! edited only by proprietary word processors, SGML or XML for which ! the DTD and/or processing tools are not generally available, and ! the machine-generated HTML, PostScript or PDF produced by some word ! processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the *************** GNU Free Documentation License *** 40689,40696 **** may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow ! the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. --- 40295,40302 ---- may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow the ! conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. *************** GNU Free Documentation License *** 40704,40715 **** these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the ! title equally prominent and visible. You may add other material ! on the covers in addition. Copying with changes limited to the ! covers, as long as they preserve the title of the Document and ! satisfy these conditions, can be treated as verbatim copying in ! other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit --- 40310,40320 ---- these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the title ! equally prominent and visible. You may add other material on the ! covers in addition. Copying with changes limited to the covers, as ! long as they preserve the title of the Document and satisfy these ! conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit *************** GNU Free Documentation License *** 40717,40756 **** adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a ! machine-readable Transparent copy along with each Opaque copy, or ! state in or with each Opaque copy a computer-network location from ! which the general network-using public has access to download ! using public-standard network protocols a complete Transparent ! copy of the Document, free of added material. If you use the ! latter option, you must take reasonably prudent steps, when you ! begin distribution of Opaque copies in quantity, to ensure that ! this Transparent copy will remain thus accessible at the stated ! location until at least one year after the last time you ! distribute an Opaque copy (directly or through your agents or ! retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of ! copies, to give them a chance to provide you with an updated ! version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with ! the Modified Version filling the role of the Document, thus ! licensing distribution and modification of the Modified Version to ! whoever possesses a copy of it. In addition, you must do these ! things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of ! previous versions (which should, if there were any, be listed ! in the History section of the Document). You may use the ! same title as a previous version if the original publisher of ! that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in --- 40322,40360 ---- adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a machine-readable ! Transparent copy along with each Opaque copy, or state in or with ! each Opaque copy a computer-network location from which the general ! network-using public has access to download using public-standard ! network protocols a complete Transparent copy of the Document, free ! of added material. If you use the latter option, you must take ! reasonably prudent steps, when you begin distribution of Opaque ! copies in quantity, to ensure that this Transparent copy will ! remain thus accessible at the stated location until at least one ! year after the last time you distribute an Opaque copy (directly or ! through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of copies, ! to give them a chance to provide you with an updated version of the ! Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with the ! Modified Version filling the role of the Document, thus licensing ! distribution and modification of the Modified Version to whoever ! possesses a copy of it. In addition, you must do these things in ! the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of previous ! versions (which should, if there were any, be listed in the ! History section of the Document). You may use the same title ! as a previous version if the original publisher of that ! version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in *************** GNU Free Documentation License *** 40780,40810 **** I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on ! the Title Page. If there is no section Entitled "History" in ! the Document, create one stating the title, year, authors, ! and publisher of the Document as given on its Title Page, ! then add an item describing the Modified Version as stated in ! the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in ! the "History" section. You may omit a network location for a ! work that was published at least four years before the ! Document itself, or if the original publisher of the version ! it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the ! section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, ! unaltered in their text and in their titles. Section numbers ! or the equivalent are not considered part of the section ! titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. --- 40384,40413 ---- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on the ! Title Page. If there is no section Entitled "History" in the ! Document, create one stating the title, year, authors, and ! publisher of the Document as given on its Title Page, then add ! an item describing the Modified Version as stated in the ! previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in the ! "History" section. You may omit a network location for a work ! that was published at least four years before the Document ! itself, or if the original publisher of the version it refers ! to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the section ! all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, unaltered ! in their text and in their titles. Section numbers or the ! equivalent are not considered part of the section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. *************** GNU Free Documentation License *** 40817,40827 **** If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option ! designate some or all of these sections as invariant. To do this, ! add their titles to the list of Invariant Sections in the Modified ! Version's license notice. These titles must be distinct from any ! other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various --- 40420,40430 ---- If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option designate ! some or all of these sections as invariant. To do this, add their ! titles to the list of Invariant Sections in the Modified Version's ! license notice. These titles must be distinct from any other ! section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various *************** GNU Free Documentation License *** 40830,40844 **** definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end ! of the list of Cover Texts in the Modified Version. Only one ! passage of Front-Cover Text and one of Back-Cover Text may be ! added by (or through arrangements made by) any one entity. If the ! Document already includes a cover text for the same cover, ! previously added by you or by arrangement made by the same entity ! you are acting on behalf of, you may not add another; but you may ! replace the old one, on explicit permission from the previous ! publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to --- 40433,40447 ---- definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end of ! the list of Cover Texts in the Modified Version. Only one passage ! of Front-Cover Text and one of Back-Cover Text may be added by (or ! through arrangements made by) any one entity. If the Document ! already includes a cover text for the same cover, previously added ! by you or by arrangement made by the same entity you are acting on ! behalf of, you may not add another; but you may replace the old ! one, on explicit permission from the previous publisher that added ! the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to *************** GNU Free Documentation License *** 40848,40855 **** You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination ! all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. --- 40451,40458 ---- You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination all ! of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. *************** GNU Free Documentation License *** 40876,40895 **** documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the ! documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow ! this License in all other respects regarding verbatim copying of ! that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of ! a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this --- 40479,40498 ---- documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the documents ! in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow this ! License in all other respects regarding verbatim copying of that ! document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of a ! storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this *************** GNU Free Documentation License *** 40934,40941 **** However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 40537,40544 ---- However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** GNU Free Documentation License *** 40947,40979 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, receipt of a copy of some or all of ! the same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! `http://www.gnu.org/copyleft/'. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If ! the Document does not specify a version number of this License, ! you may choose any version ever published (not as a draft) by the ! Free Software Foundation. If the Document specifies that a proxy ! can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also --- 40550,40582 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, receipt of a copy of some or all of the ! same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! . Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If the ! Document does not specify a version number of this License, you may ! choose any version ever published (not as a draft) by the Free ! Software Foundation. If the Document specifies that a proxy can ! decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also *************** GNU Free Documentation License *** 41003,41009 **** site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. - ADDENDUM: How to use this License for your documents ==================================================== --- 40606,40611 ---- *************** notices just after the title page: *** 41020,41026 **** Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, ! replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts --- 40622,40628 ---- Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, ! replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts *************** combination of the three, merge those tw *** 41031,41039 **** situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of ! free software license, such as the GNU General Public License, to ! permit their use in free software.  File: gccint.info, Node: Contributors, Next: Option Index, Prev: GNU Free Documentation License, Up: Top --- 40633,40641 ---- situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of free ! software license, such as the GNU General Public License, to permit ! their use in free software.  File: gccint.info, Node: Contributors, Next: Option Index, Prev: GNU Free Documentation License, Up: Top *************** File: gccint.info, Node: Contributors, *** 41041,41049 **** Contributors to GCC ******************* ! The GCC project would like to thank its many contributors. Without ! them the project would not have been nearly as successful as it has ! been. Any omissions in this list are accidental. Feel free to contact or if you have been left out or some of your contributions are not listed. Please keep this list in alphabetical order. --- 40643,40651 ---- Contributors to GCC ******************* ! The GCC project would like to thank its many contributors. Without them ! the project would not have been nearly as successful as it has been. ! Any omissions in this list are accidental. Feel free to contact or if you have been left out or some of your contributions are not listed. Please keep this list in alphabetical order. *************** alphabetical order. *** 41172,41178 **** * The GNU Classpath project for all of their merged runtime code. ! * Nick Clifton for arm, mcore, fr30, v850, m32r, rx work, `--help', and other random hacking. * Michael Cook for libstdc++ cleanup patches to reduce warnings. --- 40774,40780 ---- * The GNU Classpath project for all of their merged runtime code. ! * Nick Clifton for arm, mcore, fr30, v850, m32r, rx work, '--help', and other random hacking. * Michael Cook for libstdc++ cleanup patches to reduce warnings. *************** alphabetical order. *** 41193,41200 **** * Paul Dale for his work to add uClinux platform support to the m68k backend. ! * Dario Dariol contributed the four varieties of sample programs ! that print a copy of their source. * Russell Davidson for fstream and stringstream fixes in libstdc++. --- 40795,40802 ---- * Paul Dale for his work to add uClinux platform support to the m68k backend. ! * Dario Dariol contributed the four varieties of sample programs that ! print a copy of their source. * Russell Davidson for fstream and stringstream fixes in libstdc++. *************** alphabetical order. *** 41209,41224 **** * Gabriel Dos Reis for contributions to G++, contributions and maintenance of GCC diagnostics infrastructure, libstdc++-v3, ! including `valarray<>', `complex<>', maintaining the numerics ! library (including that pesky `' :-) and keeping ! up-to-date anything to do with numbers. * Ulrich Drepper for his work on glibc, testing of GCC using glibc, ! ISO C99 support, CFG dumping support, etc., plus support of the ! C++ runtime libraries including for all kinds of C interface ! issues, contributing and maintaining `complex<>', sanity checking ! and disbursement, configuration architecture, libio maintenance, ! and early math work. * Zdenek Dvorak for a new loop unroller and various fixes. --- 40811,40826 ---- * Gabriel Dos Reis for contributions to G++, contributions and maintenance of GCC diagnostics infrastructure, libstdc++-v3, ! including 'valarray<>', 'complex<>', maintaining the numerics ! library (including that pesky '' :-) and keeping up-to-date ! anything to do with numbers. * Ulrich Drepper for his work on glibc, testing of GCC using glibc, ! ISO C99 support, CFG dumping support, etc., plus support of the C++ ! runtime libraries including for all kinds of C interface issues, ! contributing and maintaining 'complex<>', sanity checking and ! disbursement, configuration architecture, libio maintenance, and ! early math work. * Zdenek Dvorak for a new loop unroller and various fixes. *************** alphabetical order. *** 41269,41279 **** * Peter Gerwinski for various bug fixes and the Pascal front end. * Kaveh R. Ghazi for his direction via the steering committee, ! amazing work to make `-W -Wall -W* -Werror' useful, and testing ! GCC on a plethora of platforms. Kaveh extends his gratitude to ! the CAIP Center at Rutgers University for providing him with ! computing resources to work on Free Software from the late 1980s ! to 2010. * John Gilmore for a donation to the FSF earmarked improving GNU Java. --- 40871,40880 ---- * Peter Gerwinski for various bug fixes and the Pascal front end. * Kaveh R. Ghazi for his direction via the steering committee, ! amazing work to make '-W -Wall -W* -Werror' useful, and testing GCC ! on a plethora of platforms. Kaveh extends his gratitude to the ! CAIP Center at Rutgers University for providing him with computing ! resources to work on Free Software from the late 1980s to 2010. * John Gilmore for a donation to the FSF earmarked improving GNU Java. *************** alphabetical order. *** 41285,41302 **** support, improved leaf function register allocation, and his direction via the steering committee. ! * Anthony Green for his `-Os' contributions, the moxie port, and ! Java front end work. ! * Stu Grossman for gdb hacking, allowing GCJ developers to debug ! Java code. * Michael K. Gschwind contributed the port to the PDP-11. * Richard Guenther for his ongoing middle-end contributions and bug fixes and for release management. ! * Ron Guilmette implemented the `protoize' and `unprotoize' tools, the support for Dwarf symbolic debugging information, and much of the support for System V Release 4. He has also worked heavily on the Intel 386 and 860 support. --- 40886,40903 ---- support, improved leaf function register allocation, and his direction via the steering committee. ! * Anthony Green for his '-Os' contributions, the moxie port, and Java ! front end work. ! * Stu Grossman for gdb hacking, allowing GCJ developers to debug Java ! code. * Michael K. Gschwind contributed the port to the PDP-11. * Richard Guenther for his ongoing middle-end contributions and bug fixes and for release management. ! * Ron Guilmette implemented the 'protoize' and 'unprotoize' tools, the support for Dwarf symbolic debugging information, and much of the support for System V Release 4. He has also worked heavily on the Intel 386 and 860 support. *************** alphabetical order. *** 41315,41322 **** series 300. * Michael Hayes for various thankless work he's done trying to get ! the c30/c40 ports functional. Lots of loop and unroll ! improvements and fixes. * Dara Hazeghi for wading through myriads of target-specific bug reports. --- 40916,40923 ---- series 300. * Michael Hayes for various thankless work he's done trying to get ! the c30/c40 ports functional. Lots of loop and unroll improvements ! and fixes. * Dara Hazeghi for wading through myriads of target-specific bug reports. *************** alphabetical order. *** 41350,41357 **** * Falk Hueffner for working on C and optimization bug reports. ! * Bernardo Innocenti for his m68k work, including merging of ! ColdFire improvements and uClinux support. * Christian Iseli for various bug fixes. --- 40951,40958 ---- * Falk Hueffner for working on C and optimization bug reports. ! * Bernardo Innocenti for his m68k work, including merging of ColdFire ! improvements and uClinux support. * Christian Iseli for various bug fixes. *************** alphabetical order. *** 41399,41411 **** * Richard Kenner of the New York University Ultracomputer Research Laboratory wrote the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the ! support for instruction attributes. He also made changes to ! better support RISC processors including changes to common ! subexpression elimination, strength reduction, function calling ! sequence handling, and condition code support, in addition to ! generalizing the code for frame pointer elimination and delay slot ! scheduling. Richard Kenner was also the head maintainer of GCC ! for several years. * Mumit Khan for various contributions to the Cygwin and Mingw32 ports and maintaining binary releases for Microsoft Windows hosts, --- 41000,41012 ---- * Richard Kenner of the New York University Ultracomputer Research Laboratory wrote the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the ! support for instruction attributes. He also made changes to better ! support RISC processors including changes to common subexpression ! elimination, strength reduction, function calling sequence ! handling, and condition code support, in addition to generalizing ! the code for frame pointer elimination and delay slot scheduling. ! Richard Kenner was also the head maintainer of GCC for several ! years. * Mumit Khan for various contributions to the Cygwin and Mingw32 ports and maintaining binary releases for Microsoft Windows hosts, *************** alphabetical order. *** 41428,41438 **** * Asher Langton and Mike Kumbera for contributing Cray pointer support to GNU Fortran, and for other GNU Fortran improvements. ! * Jeff Law for his direction via the steering committee, ! coordinating the entire egcs project and GCC 2.95, rolling out ! snapshots and releases, handling merges from GCC2, reviewing tons ! of patches that might have fallen through the cracks else, and ! random but extensive hacking. * Walter Lee for work on the TILE-Gx and TILEPro ports. --- 41029,41039 ---- * Asher Langton and Mike Kumbera for contributing Cray pointer support to GNU Fortran, and for other GNU Fortran improvements. ! * Jeff Law for his direction via the steering committee, coordinating ! the entire egcs project and GCC 2.95, rolling out snapshots and ! releases, handling merges from GCC2, reviewing tons of patches that ! might have fallen through the cracks else, and random but extensive ! hacking. * Walter Lee for work on the TILE-Gx and TILEPro ports. *************** alphabetical order. *** 41461,41467 **** * Weiwen Liu for testing and various bug fixes. ! * Manuel Lo'pez-Iba'n~ez for improving `-Wconversion' and many other diagnostics fixes and improvements. * Dave Love for his ongoing work with the Fortran front end and --- 41062,41068 ---- * Weiwen Liu for testing and various bug fixes. ! * Manuel Lo'pez-Iba'n~ez for improving '-Wconversion' and many other diagnostics fixes and improvements. * Dave Love for his ongoing work with the Fortran front end and *************** alphabetical order. *** 41478,41491 **** * Greg McGary for random fixes and (someday) bounded pointers. * Andrew MacLeod for his ongoing work in building a real EH system, ! various code generation improvements, work on the global ! optimizer, etc. * Vladimir Makarov for hacking some ugly i960 problems, PowerPC ! hacking improvements to compile-time performance, overall ! knowledge and direction in the area of instruction scheduling, and ! design and implementation of the automaton based instruction ! scheduler. * Bob Manson for his behind the scenes work on dejagnu. --- 41079,41091 ---- * Greg McGary for random fixes and (someday) bounded pointers. * Andrew MacLeod for his ongoing work in building a real EH system, ! various code generation improvements, work on the global optimizer, ! etc. * Vladimir Makarov for hacking some ugly i960 problems, PowerPC ! hacking improvements to compile-time performance, overall knowledge ! and direction in the area of instruction scheduling, and design and ! implementation of the automaton based instruction scheduler. * Bob Manson for his behind the scenes work on dejagnu. *************** alphabetical order. *** 41518,41524 **** * Mark Mitchell for his direction via the steering committee, mountains of C++ work, load/store hoisting out of loops, alias ! analysis improvements, ISO C `restrict' support, and serving as release manager from 2000 to 2011. * Alan Modra for various GNU/Linux bits and testing. --- 41118,41124 ---- * Mark Mitchell for his direction via the steering committee, mountains of C++ work, load/store hoisting out of loops, alias ! analysis improvements, ISO C 'restrict' support, and serving as release manager from 2000 to 2011. * Alan Modra for various GNU/Linux bits and testing. *************** alphabetical order. *** 41528,41536 **** * Jason Molenda for major help in the care and feeding of all the services on the gcc.gnu.org (formerly egcs.cygnus.com) ! machine--mail, web services, ftp services, etc etc. Doing all ! this work on scrap paper and the backs of envelopes would have ! been... difficult. * Catherine Moore for fixing various ugly problems we have sent her way, including the haifa bug which was killing the Alpha & PowerPC --- 41128,41136 ---- * Jason Molenda for major help in the care and feeding of all the services on the gcc.gnu.org (formerly egcs.cygnus.com) ! machine--mail, web services, ftp services, etc etc. Doing all this ! work on scrap paper and the backs of envelopes would have been... ! difficult. * Catherine Moore for fixing various ugly problems we have sent her way, including the haifa bug which was killing the Alpha & PowerPC *************** alphabetical order. *** 41542,41549 **** initial IA-64 port. * Stephen Moshier contributed the floating point emulator that ! assists in cross-compilation and permits support for floating ! point numbers wider than 64 bits and for ISO C99 support. * Bill Moyer for his behind the scenes work on various issues. --- 41142,41149 ---- initial IA-64 port. * Stephen Moshier contributed the floating point emulator that ! assists in cross-compilation and permits support for floating point ! numbers wider than 64 bits and for ISO C99 support. * Bill Moyer for his behind the scenes work on various issues. *************** alphabetical order. *** 41566,41574 **** * NeXT, Inc. donated the front end that supports the Objective-C language. ! * Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to ! the search engine setup, various documentation fixes and other ! small fixes. * Geoff Noer for his work on getting cygwin native builds working. --- 41166,41174 ---- * NeXT, Inc. donated the front end that supports the Objective-C language. ! * Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the ! search engine setup, various documentation fixes and other small ! fixes. * Geoff Noer for his work on getting cygwin native builds working. *************** alphabetical order. *** 41576,41583 **** tracking web pages, GIMPLE tuples, and assorted fixes. * David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, ! FreeBSD/ARM, FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and ! related infrastructure improvements. * Alexandre Oliva for various build infrastructure improvements, scripts and amazing testing work, including keeping libtool issues --- 41176,41183 ---- tracking web pages, GIMPLE tuples, and assorted fixes. * David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, ! FreeBSD/ARM, FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related ! infrastructure improvements. * Alexandre Oliva for various build infrastructure improvements, scripts and amazing testing work, including keeping libtool issues *************** alphabetical order. *** 41589,41596 **** * Rainer Orth for random MIPS work, including improvements to GCC's o32 ABI support, improvements to dejagnu's MIPS support, Java ! configuration clean-ups and porting work, and maintaining the ! IRIX, Solaris 2, and Tru64 UNIX ports. * Hartmut Penner for work on the s390 port. --- 41189,41196 ---- * Rainer Orth for random MIPS work, including improvements to GCC's o32 ABI support, improvements to dejagnu's MIPS support, Java ! configuration clean-ups and porting work, and maintaining the IRIX, ! Solaris 2, and Tru64 UNIX ports. * Hartmut Penner for work on the s390 port. *************** alphabetical order. *** 41640,41646 **** * David Ronis inspired and encouraged Craig to rewrite the G77 documentation in texinfo format by contributing a first pass at a ! translation of the old `g77-0.5.16/f/DOC' file. * Ken Rose for fixes to GCC's delay slot filling code. --- 41240,41246 ---- * David Ronis inspired and encouraged Craig to rewrite the G77 documentation in texinfo format by contributing a first pass at a ! translation of the old 'g77-0.5.16/f/DOC' file. * Ken Rose for fixes to GCC's delay slot filling code. *************** alphabetical order. *** 41670,41677 **** * Tobias Schlu"ter for work on GNU Fortran. * Bernd Schmidt for various code generation improvements and major ! work in the reload pass, serving as release manager for GCC ! 2.95.3, and work on the Blackfin and C6X ports. * Peter Schmid for constant testing of libstdc++--especially application testing, going above and beyond what was requested for --- 41270,41277 ---- * Tobias Schlu"ter for work on GNU Fortran. * Bernd Schmidt for various code generation improvements and major ! work in the reload pass, serving as release manager for GCC 2.95.3, ! and work on the Blackfin and C6X ports. * Peter Schmid for constant testing of libstdc++--especially application testing, going above and beyond what was requested for *************** alphabetical order. *** 41699,41706 **** from the LWG (thereby keeping GCC in line with updates from the ISO). ! * Franz Sirl for his ongoing work with making the PPC port stable ! for GNU/Linux. * Andrey Slepuhin for assorted AIX hacking. --- 41299,41306 ---- from the LWG (thereby keeping GCC in line with updates from the ISO). ! * Franz Sirl for his ongoing work with making the PPC port stable for ! GNU/Linux. * Andrey Slepuhin for assorted AIX hacking. *************** alphabetical order. *** 41714,41721 **** * Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite entries. Also for providing the patch to G77 ! to add rudimentary support for `INTEGER*1', `INTEGER*2', and ! `LOGICAL*1'. * Zdenek Sojka for running automated regression testing of GCC and reporting numerous bugs. --- 41314,41321 ---- * Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite entries. Also for providing the patch to G77 ! to add rudimentary support for 'INTEGER*1', 'INTEGER*2', and ! 'LOGICAL*1'. * Zdenek Sojka for running automated regression testing of GCC and reporting numerous bugs. *************** alphabetical order. *** 41739,41746 **** * John Stracke for his Java HTTP protocol fixes. ! * Mike Stump for his Elxsi port, G++ contributions over the years ! and more recently his vxworks contributions * Jeff Sturm for Java porting help, bug fixes, and encouragement. --- 41339,41346 ---- * John Stracke for his Java HTTP protocol fixes. ! * Mike Stump for his Elxsi port, G++ contributions over the years and ! more recently his vxworks contributions * Jeff Sturm for Java porting help, bug fixes, and encouragement. *************** alphabetical order. *** 41794,41801 **** * Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML guidance. ! * Dean Wakerley for converting the install documentation from HTML ! to texinfo in time for GCC 3.0. * Krister Walfridsson for random bug fixes. --- 41394,41401 ---- * Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML guidance. ! * Dean Wakerley for converting the install documentation from HTML to ! texinfo in time for GCC 3.0. * Krister Walfridsson for random bug fixes. *************** alphabetical order. *** 41825,41832 **** * Bob Wilson from Tensilica, Inc. for the Xtensa port. * Jim Wilson for his direction via the steering committee, tackling ! hard problems in various places that nobody else wanted to work ! on, strength reduction and other loop optimizations. * Paul Woegerer and Tal Agmon for the CRX port. --- 41425,41432 ---- * Bob Wilson from Tensilica, Inc. for the Xtensa port. * Jim Wilson for his direction via the steering committee, tackling ! hard problems in various places that nobody else wanted to work on, ! strength reduction and other loop optimizations. * Paul Woegerer and Tal Agmon for the CRX port. *************** alphabetical order. *** 41847,41853 **** * Gilles Zunino for help porting Java to Irix. - The following people are recognized for their contributions to GNAT, the Ada front end of GCC: * Bernard Banner --- 41447,41452 ---- *************** the Ada front end of GCC: *** 41944,42045 **** * Samuel Tardieu - The following people are recognized for their contributions of new features, bug reports, testing and integration of classpath/libgcj for GCC version 4.1: ! * Lillian Angel for `JTree' implementation and lots Free Swing additions and bug fixes. ! * Wolfgang Baer for `GapContent' bug fixes. ! * Anthony Balkissoon for `JList', Free Swing 1.5 updates and mouse ! event fixes, lots of Free Swing work including `JTable' editing. * Stuart Ballard for RMI constant fixes. ! * Goffredo Baroncelli for `HTTPURLConnection' fixes. ! * Gary Benson for `MessageFormat' fixes. ! * Daniel Bonniot for `Serialization' fixes. ! * Chris Burdess for lots of gnu.xml and http protocol fixes, `StAX' ! and `DOM xml:id' support. ! * Ka-Hing Cheung for `TreePath' and `TreeSelection' fixes. * Archie Cobbs for build fixes, VM interface updates, ! `URLClassLoader' updates. * Kelley Cook for build fixes. ! * Martin Cordova for Suggestions for better `SocketTimeoutException'. ! * David Daney for `BitSet' bug fixes, `HttpURLConnection' rewrite ! and improvements. * Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo ! 2D support. Lots of imageio framework additions, lots of AWT and Free Swing bug fixes. ! * Jeroen Frijters for `ClassLoader' and nio cleanups, serialization ! fixes, better `Proxy' support, bug fixes and IKVM integration. ! * Santiago Gala for `AccessControlContext' fixes. ! * Nicolas Geoffray for `VMClassLoader' and `AccessController' improvements. ! * David Gilbert for `basic' and `metal' icon and plaf support and lots of documenting, Lots of Free Swing and metal theme additions. ! `MetalIconFactory' implementation. ! * Anthony Green for `MIDI' framework, `ALSA' and `DSSI' providers. ! * Andrew Haley for `Serialization' and `URLClassLoader' fixes, gcj build speedups. ! * Kim Ho for `JFileChooser' implementation. ! * Andrew John Hughes for `Locale' and net fixes, URI RFC2986 ! updates, `Serialization' fixes, `Properties' XML support and ! generic branch work, VMIntegration guide update. ! * Bastiaan Huisman for `TimeZone' bug fixing. * Andreas Jaeger for mprec updates. ! * Paul Jenner for better `-Werror' support. ! * Ito Kazumitsu for `NetworkInterface' implementation and updates. ! * Roman Kennke for `BoxLayout', `GrayFilter' and `SplitPane', plus ! bug fixes all over. Lots of Free Swing work including styled text. ! * Simon Kitching for `String' cleanups and optimization suggestions. ! * Michael Koch for configuration fixes, `Locale' updates, bug and build fixes. * Guilhem Lavaux for configuration, thread and channel fixes and ! Kaffe integration. JCL native `Pointer' updates. Logger bug fixes. * David Lichteblau for JCL support library global/local reference cleanups. * Aaron Luchko for JDWP updates and documentation fixes. ! * Ziga Mahkovec for `Graphics2D' upgraded to Cairo 0.5 and new regex features. ! * Sven de Marothy for BMP imageio support, CSS and `TextLayout' ! fixes. `GtkImage' rewrite, 2D, awt, free swing and date/time fixes and implementing the Qt4 peers. ! * Casey Marshall for crypto algorithm fixes, `FileChannel' lock, ! `SystemLogger' and `FileHandler' rotate implementations, NIO ! `FileChannel.map' support, security and policy updates. * Bryce McKinlay for RMI work. --- 41543,41644 ---- * Samuel Tardieu The following people are recognized for their contributions of new features, bug reports, testing and integration of classpath/libgcj for GCC version 4.1: ! * Lillian Angel for 'JTree' implementation and lots Free Swing additions and bug fixes. ! * Wolfgang Baer for 'GapContent' bug fixes. ! * Anthony Balkissoon for 'JList', Free Swing 1.5 updates and mouse ! event fixes, lots of Free Swing work including 'JTable' editing. * Stuart Ballard for RMI constant fixes. ! * Goffredo Baroncelli for 'HTTPURLConnection' fixes. ! * Gary Benson for 'MessageFormat' fixes. ! * Daniel Bonniot for 'Serialization' fixes. ! * Chris Burdess for lots of gnu.xml and http protocol fixes, 'StAX' ! and 'DOM xml:id' support. ! * Ka-Hing Cheung for 'TreePath' and 'TreeSelection' fixes. * Archie Cobbs for build fixes, VM interface updates, ! 'URLClassLoader' updates. * Kelley Cook for build fixes. ! * Martin Cordova for Suggestions for better 'SocketTimeoutException'. ! * David Daney for 'BitSet' bug fixes, 'HttpURLConnection' rewrite and ! improvements. * Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo ! 2D support. Lots of imageio framework additions, lots of AWT and Free Swing bug fixes. ! * Jeroen Frijters for 'ClassLoader' and nio cleanups, serialization ! fixes, better 'Proxy' support, bug fixes and IKVM integration. ! * Santiago Gala for 'AccessControlContext' fixes. ! * Nicolas Geoffray for 'VMClassLoader' and 'AccessController' improvements. ! * David Gilbert for 'basic' and 'metal' icon and plaf support and lots of documenting, Lots of Free Swing and metal theme additions. ! 'MetalIconFactory' implementation. ! * Anthony Green for 'MIDI' framework, 'ALSA' and 'DSSI' providers. ! * Andrew Haley for 'Serialization' and 'URLClassLoader' fixes, gcj build speedups. ! * Kim Ho for 'JFileChooser' implementation. ! * Andrew John Hughes for 'Locale' and net fixes, URI RFC2986 updates, ! 'Serialization' fixes, 'Properties' XML support and generic branch ! work, VMIntegration guide update. ! * Bastiaan Huisman for 'TimeZone' bug fixing. * Andreas Jaeger for mprec updates. ! * Paul Jenner for better '-Werror' support. ! * Ito Kazumitsu for 'NetworkInterface' implementation and updates. ! * Roman Kennke for 'BoxLayout', 'GrayFilter' and 'SplitPane', plus ! bug fixes all over. Lots of Free Swing work including styled text. ! * Simon Kitching for 'String' cleanups and optimization suggestions. ! * Michael Koch for configuration fixes, 'Locale' updates, bug and build fixes. * Guilhem Lavaux for configuration, thread and channel fixes and ! Kaffe integration. JCL native 'Pointer' updates. Logger bug ! fixes. * David Lichteblau for JCL support library global/local reference cleanups. * Aaron Luchko for JDWP updates and documentation fixes. ! * Ziga Mahkovec for 'Graphics2D' upgraded to Cairo 0.5 and new regex features. ! * Sven de Marothy for BMP imageio support, CSS and 'TextLayout' ! fixes. 'GtkImage' rewrite, 2D, awt, free swing and date/time fixes and implementing the Qt4 peers. ! * Casey Marshall for crypto algorithm fixes, 'FileChannel' lock, ! 'SystemLogger' and 'FileHandler' rotate implementations, NIO ! 'FileChannel.map' support, security and policy updates. * Bryce McKinlay for RMI work. *************** GCC version 4.1: *** 42050,42095 **** * Rainer Orth for build fixes. ! * Andrew Overholt for `File' locking fixes. ! * Ingo Proetel for `Image', `Logger' and `URLClassLoader' updates. ! * Olga Rodimina for `MenuSelectionManager' implementation. ! * Jan Roehrich for `BasicTreeUI' and `JTree' fixes. * Julian Scheid for documentation updates and gjdoc support. * Christian Schlichtherle for zip fixes and cleanups. * Robert Schuster for documentation updates and beans fixes, ! `TreeNode' enumerations and `ActionCommand' and various fixes, XML and URL, AWT and Free Swing bug fixes. * Keith Seitz for lots of JDWP work. * Christian Thalinger for 64-bit cleanups, Configuration and VM ! interface fixes and `CACAO' integration, `fdlibm' updates. ! * Gael Thomas for `VMClassLoader' boot packages support suggestions. ! * Andreas Tobler for Darwin and Solaris testing and fixing, `Qt4' ! support for Darwin/OS X, `Graphics2D' support, `gtk+' updates. ! * Dalibor Topic for better `DEBUG' support, build cleanups and Kaffe ! integration. `Qt4' build infrastructure, `SHA1PRNG' and ! `GdkPixbugDecoder' updates. * Tom Tromey for Eclipse integration, generics work, lots of bug fixes and gcj integration including coordinating The Big Merge. * Mark Wielaard for bug fixes, packaging and release management, ! `Clipboard' implementation, system call interrupts and network ! timeouts and `GdkPixpufDecoder' fixes. ! ! In addition to the above, all of which also contributed time and ! energy in testing GCC, we would like to thank the following for their contributions to testing: * Michael Abd-El-Malek --- 41649,41693 ---- * Rainer Orth for build fixes. ! * Andrew Overholt for 'File' locking fixes. ! * Ingo Proetel for 'Image', 'Logger' and 'URLClassLoader' updates. ! * Olga Rodimina for 'MenuSelectionManager' implementation. ! * Jan Roehrich for 'BasicTreeUI' and 'JTree' fixes. * Julian Scheid for documentation updates and gjdoc support. * Christian Schlichtherle for zip fixes and cleanups. * Robert Schuster for documentation updates and beans fixes, ! 'TreeNode' enumerations and 'ActionCommand' and various fixes, XML and URL, AWT and Free Swing bug fixes. * Keith Seitz for lots of JDWP work. * Christian Thalinger for 64-bit cleanups, Configuration and VM ! interface fixes and 'CACAO' integration, 'fdlibm' updates. ! * Gael Thomas for 'VMClassLoader' boot packages support suggestions. ! * Andreas Tobler for Darwin and Solaris testing and fixing, 'Qt4' ! support for Darwin/OS X, 'Graphics2D' support, 'gtk+' updates. ! * Dalibor Topic for better 'DEBUG' support, build cleanups and Kaffe ! integration. 'Qt4' build infrastructure, 'SHA1PRNG' and ! 'GdkPixbugDecoder' updates. * Tom Tromey for Eclipse integration, generics work, lots of bug fixes and gcj integration including coordinating The Big Merge. * Mark Wielaard for bug fixes, packaging and release management, ! 'Clipboard' implementation, system call interrupts and network ! timeouts and 'GdkPixpufDecoder' fixes. ! In addition to the above, all of which also contributed time and energy ! in testing GCC, we would like to thank the following for their contributions to testing: * Michael Abd-El-Malek *************** File: gccint.info, Node: Option Index, *** 42258,42266 **** Option Index ************ ! GCC's command line options are indexed here without any initial `-' or ! `--'. Where an option has both positive and negative forms (such as ! `-fOPTION' and `-fno-OPTION'), relevant entries in the manual are indexed under the most appropriate form; it may sometimes be useful to look up both forms. --- 41856,41864 ---- Option Index ************ ! GCC's command line options are indexed here without any initial '-' or ! '--'. Where an option has both positive and negative forms (such as ! '-fOPTION' and '-fno-OPTION'), relevant entries in the manual are indexed under the most appropriate form; it may sometimes be useful to look up both forms. *************** Concept Index *** 42282,45812 **** [index] * Menu: ! * ! in constraint: Multi-Alternative. (line 47) ! * # in constraint: Modifiers. (line 67) ! * # in template: Output Template. (line 66) * #pragma: Misc. (line 379) ! * % in constraint: Modifiers. (line 45) * % in GTY option: GTY Options. (line 18) ! * % in template: Output Template. (line 6) ! * & in constraint: Modifiers. (line 25) * (nil): RTL Objects. (line 73) ! * * in constraint: Modifiers. (line 72) ! * * in template: Output Statement. (line 29) ! * + in constraint: Modifiers. (line 12) ! * -fsection-anchors <1>: Anchored Addresses. (line 6) ! * -fsection-anchors: Special Accessors. (line 120) ! * /c in RTL dump: Flags. (line 221) ! * /f in RTL dump: Flags. (line 229) ! * /i in RTL dump: Flags. (line 274) ! * /j in RTL dump: Flags. (line 286) ! * /s in RTL dump: Flags. (line 245) ! * /u in RTL dump: Flags. (line 296) ! * /v in RTL dump: Flags. (line 328) ! * 0 in constraint: Simple Constraints. (line 130) ! * < in constraint: Simple Constraints. (line 48) ! * = in constraint: Modifiers. (line 8) ! * > in constraint: Simple Constraints. (line 61) ! * ? in constraint: Multi-Alternative. (line 41) * \: Output Template. (line 46) * __absvdi2: Integer library routines. - (line 107) - * __absvsi2: Integer library routines. (line 106) * __addda3: Fixed-point fractional library routines. ! (line 45) * __adddf3: Soft float library routines. ! (line 23) * __adddq3: Fixed-point fractional library routines. ! (line 33) * __addha3: Fixed-point fractional library routines. ! (line 43) * __addhq3: Fixed-point fractional library routines. - (line 30) - * __addqq3: Fixed-point fractional library routines. (line 29) * __addsa3: Fixed-point fractional library routines. ! (line 44) * __addsf3: Soft float library routines. ! (line 22) * __addsq3: Fixed-point fractional library routines. ! (line 31) * __addta3: Fixed-point fractional library routines. ! (line 47) * __addtf3: Soft float library routines. ! (line 25) * __adduda3: Fixed-point fractional library routines. ! (line 53) * __addudq3: Fixed-point fractional library routines. ! (line 41) * __adduha3: Fixed-point fractional library routines. ! (line 49) * __adduhq3: Fixed-point fractional library routines. - (line 37) - * __adduqq3: Fixed-point fractional library routines. (line 35) * __addusa3: Fixed-point fractional library routines. ! (line 51) * __addusq3: Fixed-point fractional library routines. ! (line 39) * __adduta3: Fixed-point fractional library routines. ! (line 55) * __addvdi3: Integer library routines. - (line 111) - * __addvsi3: Integer library routines. (line 110) * __addxf3: Soft float library routines. ! (line 27) * __ashlda3: Fixed-point fractional library routines. ! (line 351) * __ashldi3: Integer library routines. ! (line 14) * __ashldq3: Fixed-point fractional library routines. ! (line 340) * __ashlha3: Fixed-point fractional library routines. ! (line 349) * __ashlhq3: Fixed-point fractional library routines. - (line 337) - * __ashlqq3: Fixed-point fractional library routines. (line 336) * __ashlsa3: Fixed-point fractional library routines. ! (line 350) * __ashlsi3: Integer library routines. ! (line 13) * __ashlsq3: Fixed-point fractional library routines. ! (line 338) * __ashlta3: Fixed-point fractional library routines. ! (line 353) * __ashlti3: Integer library routines. ! (line 15) * __ashluda3: Fixed-point fractional library routines. ! (line 359) * __ashludq3: Fixed-point fractional library routines. ! (line 348) * __ashluha3: Fixed-point fractional library routines. ! (line 355) * __ashluhq3: Fixed-point fractional library routines. - (line 344) - * __ashluqq3: Fixed-point fractional library routines. (line 342) * __ashlusa3: Fixed-point fractional library routines. ! (line 357) * __ashlusq3: Fixed-point fractional library routines. ! (line 346) * __ashluta3: Fixed-point fractional library routines. ! (line 361) * __ashrda3: Fixed-point fractional library routines. ! (line 371) * __ashrdi3: Integer library routines. ! (line 19) * __ashrdq3: Fixed-point fractional library routines. ! (line 368) * __ashrha3: Fixed-point fractional library routines. ! (line 369) * __ashrhq3: Fixed-point fractional library routines. - (line 365) - * __ashrqq3: Fixed-point fractional library routines. (line 364) * __ashrsa3: Fixed-point fractional library routines. ! (line 370) * __ashrsi3: Integer library routines. ! (line 18) * __ashrsq3: Fixed-point fractional library routines. ! (line 366) * __ashrta3: Fixed-point fractional library routines. ! (line 373) * __ashrti3: Integer library routines. ! (line 20) * __bid_adddd3: Decimal float library routines. ! (line 25) * __bid_addsd3: Decimal float library routines. ! (line 21) * __bid_addtd3: Decimal float library routines. ! (line 29) * __bid_divdd3: Decimal float library routines. ! (line 68) * __bid_divsd3: Decimal float library routines. ! (line 64) * __bid_divtd3: Decimal float library routines. ! (line 72) * __bid_eqdd2: Decimal float library routines. ! (line 259) * __bid_eqsd2: Decimal float library routines. ! (line 257) * __bid_eqtd2: Decimal float library routines. ! (line 261) * __bid_extendddtd2: Decimal float library routines. ! (line 92) * __bid_extendddtf: Decimal float library routines. ! (line 140) * __bid_extendddxf: Decimal float library routines. ! (line 134) * __bid_extenddfdd: Decimal float library routines. ! (line 147) * __bid_extenddftd: Decimal float library routines. ! (line 107) * __bid_extendsddd2: Decimal float library routines. ! (line 88) * __bid_extendsddf: Decimal float library routines. ! (line 128) * __bid_extendsdtd2: Decimal float library routines. ! (line 90) * __bid_extendsdtf: Decimal float library routines. ! (line 138) * __bid_extendsdxf: Decimal float library routines. ! (line 132) * __bid_extendsfdd: Decimal float library routines. ! (line 103) * __bid_extendsfsd: Decimal float library routines. ! (line 145) * __bid_extendsftd: Decimal float library routines. ! (line 105) * __bid_extendtftd: Decimal float library routines. ! (line 149) * __bid_extendxftd: Decimal float library routines. ! (line 109) * __bid_fixdddi: Decimal float library routines. ! (line 170) * __bid_fixddsi: Decimal float library routines. ! (line 162) * __bid_fixsddi: Decimal float library routines. ! (line 168) * __bid_fixsdsi: Decimal float library routines. ! (line 160) * __bid_fixtddi: Decimal float library routines. ! (line 172) * __bid_fixtdsi: Decimal float library routines. ! (line 164) * __bid_fixunsdddi: Decimal float library routines. ! (line 187) * __bid_fixunsddsi: Decimal float library routines. ! (line 178) * __bid_fixunssddi: Decimal float library routines. ! (line 185) * __bid_fixunssdsi: Decimal float library routines. ! (line 176) * __bid_fixunstddi: Decimal float library routines. ! (line 189) * __bid_fixunstdsi: Decimal float library routines. ! (line 180) * __bid_floatdidd: Decimal float library routines. ! (line 205) * __bid_floatdisd: Decimal float library routines. ! (line 203) * __bid_floatditd: Decimal float library routines. ! (line 207) * __bid_floatsidd: Decimal float library routines. ! (line 196) * __bid_floatsisd: Decimal float library routines. ! (line 194) * __bid_floatsitd: Decimal float library routines. ! (line 198) * __bid_floatunsdidd: Decimal float library routines. ! (line 223) * __bid_floatunsdisd: Decimal float library routines. ! (line 221) * __bid_floatunsditd: Decimal float library routines. ! (line 225) * __bid_floatunssidd: Decimal float library routines. ! (line 214) * __bid_floatunssisd: Decimal float library routines. ! (line 212) * __bid_floatunssitd: Decimal float library routines. ! (line 216) * __bid_gedd2: Decimal float library routines. ! (line 277) * __bid_gesd2: Decimal float library routines. ! (line 275) * __bid_getd2: Decimal float library routines. ! (line 279) * __bid_gtdd2: Decimal float library routines. ! (line 304) * __bid_gtsd2: Decimal float library routines. ! (line 302) * __bid_gttd2: Decimal float library routines. ! (line 306) * __bid_ledd2: Decimal float library routines. ! (line 295) * __bid_lesd2: Decimal float library routines. ! (line 293) * __bid_letd2: Decimal float library routines. ! (line 297) * __bid_ltdd2: Decimal float library routines. ! (line 286) * __bid_ltsd2: Decimal float library routines. ! (line 284) * __bid_lttd2: Decimal float library routines. ! (line 288) * __bid_muldd3: Decimal float library routines. ! (line 54) * __bid_mulsd3: Decimal float library routines. ! (line 50) * __bid_multd3: Decimal float library routines. ! (line 58) * __bid_nedd2: Decimal float library routines. ! (line 268) * __bid_negdd2: Decimal float library routines. ! (line 78) * __bid_negsd2: Decimal float library routines. ! (line 76) * __bid_negtd2: Decimal float library routines. ! (line 80) * __bid_nesd2: Decimal float library routines. ! (line 266) * __bid_netd2: Decimal float library routines. ! (line 270) * __bid_subdd3: Decimal float library routines. ! (line 39) * __bid_subsd3: Decimal float library routines. ! (line 35) * __bid_subtd3: Decimal float library routines. ! (line 43) * __bid_truncdddf: Decimal float library routines. ! (line 153) * __bid_truncddsd2: Decimal float library routines. ! (line 94) * __bid_truncddsf: Decimal float library routines. ! (line 124) * __bid_truncdfsd: Decimal float library routines. ! (line 111) * __bid_truncsdsf: Decimal float library routines. ! (line 151) * __bid_trunctddd2: Decimal float library routines. ! (line 98) * __bid_trunctddf: Decimal float library routines. ! (line 130) * __bid_trunctdsd2: Decimal float library routines. ! (line 96) * __bid_trunctdsf: Decimal float library routines. ! (line 126) * __bid_trunctdtf: Decimal float library routines. ! (line 155) * __bid_trunctdxf: Decimal float library routines. ! (line 136) * __bid_trunctfdd: Decimal float library routines. ! (line 119) * __bid_trunctfsd: Decimal float library routines. ! (line 115) * __bid_truncxfdd: Decimal float library routines. ! (line 117) * __bid_truncxfsd: Decimal float library routines. ! (line 113) * __bid_unorddd2: Decimal float library routines. ! (line 235) * __bid_unordsd2: Decimal float library routines. ! (line 233) * __bid_unordtd2: Decimal float library routines. ! (line 237) * __bswapdi2: Integer library routines. - (line 162) - * __bswapsi2: Integer library routines. (line 161) ! * __builtin_classify_type: Varargs. (line 51) ! * __builtin_next_arg: Varargs. (line 42) ! * __builtin_saveregs: Varargs. (line 24) * __clear_cache: Miscellaneous routines. ! (line 10) * __clzdi2: Integer library routines. - (line 131) - * __clzsi2: Integer library routines. (line 130) * __clzti2: Integer library routines. ! (line 132) * __cmpda2: Fixed-point fractional library routines. ! (line 451) * __cmpdf2: Soft float library routines. ! (line 164) * __cmpdi2: Integer library routines. ! (line 87) * __cmpdq2: Fixed-point fractional library routines. ! (line 441) * __cmpha2: Fixed-point fractional library routines. ! (line 449) * __cmphq2: Fixed-point fractional library routines. - (line 438) - * __cmpqq2: Fixed-point fractional library routines. (line 437) * __cmpsa2: Fixed-point fractional library routines. ! (line 450) * __cmpsf2: Soft float library routines. ! (line 163) * __cmpsq2: Fixed-point fractional library routines. ! (line 439) * __cmpta2: Fixed-point fractional library routines. ! (line 453) * __cmptf2: Soft float library routines. ! (line 165) * __cmpti2: Integer library routines. ! (line 88) * __cmpuda2: Fixed-point fractional library routines. ! (line 458) * __cmpudq2: Fixed-point fractional library routines. ! (line 448) * __cmpuha2: Fixed-point fractional library routines. ! (line 455) * __cmpuhq2: Fixed-point fractional library routines. - (line 444) - * __cmpuqq2: Fixed-point fractional library routines. (line 443) * __cmpusa2: Fixed-point fractional library routines. ! (line 456) * __cmpusq2: Fixed-point fractional library routines. ! (line 446) * __cmputa2: Fixed-point fractional library routines. ! (line 460) * __CTOR_LIST__: Initialization. (line 25) * __ctzdi2: Integer library routines. - (line 138) - * __ctzsi2: Integer library routines. (line 137) * __ctzti2: Integer library routines. ! (line 139) * __divda3: Fixed-point fractional library routines. ! (line 227) * __divdc3: Soft float library routines. ! (line 252) * __divdf3: Soft float library routines. ! (line 48) * __divdi3: Integer library routines. ! (line 25) * __divdq3: Fixed-point fractional library routines. ! (line 223) * __divha3: Fixed-point fractional library routines. ! (line 225) * __divhq3: Fixed-point fractional library routines. - (line 220) - * __divqq3: Fixed-point fractional library routines. (line 219) * __divsa3: Fixed-point fractional library routines. ! (line 226) * __divsc3: Soft float library routines. ! (line 250) * __divsf3: Soft float library routines. ! (line 47) * __divsi3: Integer library routines. ! (line 24) * __divsq3: Fixed-point fractional library routines. ! (line 221) * __divta3: Fixed-point fractional library routines. ! (line 229) * __divtc3: Soft float library routines. ! (line 254) * __divtf3: Soft float library routines. ! (line 50) * __divti3: Integer library routines. ! (line 26) * __divxc3: Soft float library routines. ! (line 256) * __divxf3: Soft float library routines. ! (line 52) * __dpd_adddd3: Decimal float library routines. ! (line 23) * __dpd_addsd3: Decimal float library routines. ! (line 19) * __dpd_addtd3: Decimal float library routines. ! (line 27) * __dpd_divdd3: Decimal float library routines. ! (line 66) * __dpd_divsd3: Decimal float library routines. ! (line 62) * __dpd_divtd3: Decimal float library routines. ! (line 70) * __dpd_eqdd2: Decimal float library routines. ! (line 258) * __dpd_eqsd2: Decimal float library routines. ! (line 256) * __dpd_eqtd2: Decimal float library routines. ! (line 260) * __dpd_extendddtd2: Decimal float library routines. ! (line 91) * __dpd_extendddtf: Decimal float library routines. ! (line 139) * __dpd_extendddxf: Decimal float library routines. ! (line 133) * __dpd_extenddfdd: Decimal float library routines. ! (line 146) * __dpd_extenddftd: Decimal float library routines. ! (line 106) * __dpd_extendsddd2: Decimal float library routines. ! (line 87) * __dpd_extendsddf: Decimal float library routines. ! (line 127) * __dpd_extendsdtd2: Decimal float library routines. ! (line 89) * __dpd_extendsdtf: Decimal float library routines. ! (line 137) * __dpd_extendsdxf: Decimal float library routines. ! (line 131) * __dpd_extendsfdd: Decimal float library routines. ! (line 102) * __dpd_extendsfsd: Decimal float library routines. ! (line 144) * __dpd_extendsftd: Decimal float library routines. ! (line 104) * __dpd_extendtftd: Decimal float library routines. ! (line 148) * __dpd_extendxftd: Decimal float library routines. ! (line 108) * __dpd_fixdddi: Decimal float library routines. ! (line 169) * __dpd_fixddsi: Decimal float library routines. ! (line 161) * __dpd_fixsddi: Decimal float library routines. ! (line 167) * __dpd_fixsdsi: Decimal float library routines. ! (line 159) * __dpd_fixtddi: Decimal float library routines. ! (line 171) * __dpd_fixtdsi: Decimal float library routines. ! (line 163) * __dpd_fixunsdddi: Decimal float library routines. ! (line 186) * __dpd_fixunsddsi: Decimal float library routines. ! (line 177) * __dpd_fixunssddi: Decimal float library routines. ! (line 184) * __dpd_fixunssdsi: Decimal float library routines. ! (line 175) * __dpd_fixunstddi: Decimal float library routines. ! (line 188) * __dpd_fixunstdsi: Decimal float library routines. ! (line 179) * __dpd_floatdidd: Decimal float library routines. ! (line 204) * __dpd_floatdisd: Decimal float library routines. ! (line 202) * __dpd_floatditd: Decimal float library routines. ! (line 206) * __dpd_floatsidd: Decimal float library routines. ! (line 195) * __dpd_floatsisd: Decimal float library routines. ! (line 193) * __dpd_floatsitd: Decimal float library routines. ! (line 197) * __dpd_floatunsdidd: Decimal float library routines. ! (line 222) * __dpd_floatunsdisd: Decimal float library routines. ! (line 220) * __dpd_floatunsditd: Decimal float library routines. ! (line 224) * __dpd_floatunssidd: Decimal float library routines. ! (line 213) * __dpd_floatunssisd: Decimal float library routines. ! (line 211) * __dpd_floatunssitd: Decimal float library routines. ! (line 215) * __dpd_gedd2: Decimal float library routines. ! (line 276) * __dpd_gesd2: Decimal float library routines. ! (line 274) * __dpd_getd2: Decimal float library routines. ! (line 278) * __dpd_gtdd2: Decimal float library routines. ! (line 303) * __dpd_gtsd2: Decimal float library routines. ! (line 301) * __dpd_gttd2: Decimal float library routines. ! (line 305) * __dpd_ledd2: Decimal float library routines. ! (line 294) * __dpd_lesd2: Decimal float library routines. ! (line 292) * __dpd_letd2: Decimal float library routines. ! (line 296) * __dpd_ltdd2: Decimal float library routines. ! (line 285) * __dpd_ltsd2: Decimal float library routines. ! (line 283) * __dpd_lttd2: Decimal float library routines. ! (line 287) * __dpd_muldd3: Decimal float library routines. ! (line 52) * __dpd_mulsd3: Decimal float library routines. ! (line 48) * __dpd_multd3: Decimal float library routines. ! (line 56) * __dpd_nedd2: Decimal float library routines. ! (line 267) * __dpd_negdd2: Decimal float library routines. ! (line 77) * __dpd_negsd2: Decimal float library routines. ! (line 75) * __dpd_negtd2: Decimal float library routines. ! (line 79) * __dpd_nesd2: Decimal float library routines. ! (line 265) * __dpd_netd2: Decimal float library routines. ! (line 269) * __dpd_subdd3: Decimal float library routines. ! (line 37) * __dpd_subsd3: Decimal float library routines. ! (line 33) * __dpd_subtd3: Decimal float library routines. ! (line 41) * __dpd_truncdddf: Decimal float library routines. ! (line 152) * __dpd_truncddsd2: Decimal float library routines. ! (line 93) * __dpd_truncddsf: Decimal float library routines. ! (line 123) * __dpd_truncdfsd: Decimal float library routines. ! (line 110) * __dpd_truncsdsf: Decimal float library routines. ! (line 150) * __dpd_trunctddd2: Decimal float library routines. ! (line 97) * __dpd_trunctddf: Decimal float library routines. ! (line 129) * __dpd_trunctdsd2: Decimal float library routines. ! (line 95) * __dpd_trunctdsf: Decimal float library routines. ! (line 125) * __dpd_trunctdtf: Decimal float library routines. ! (line 154) * __dpd_trunctdxf: Decimal float library routines. ! (line 135) * __dpd_trunctfdd: Decimal float library routines. ! (line 118) * __dpd_trunctfsd: Decimal float library routines. ! (line 114) * __dpd_truncxfdd: Decimal float library routines. ! (line 116) * __dpd_truncxfsd: Decimal float library routines. ! (line 112) * __dpd_unorddd2: Decimal float library routines. ! (line 234) * __dpd_unordsd2: Decimal float library routines. ! (line 232) * __dpd_unordtd2: Decimal float library routines. ! (line 236) * __DTOR_LIST__: Initialization. (line 25) * __eqdf2: Soft float library routines. - (line 194) - * __eqsf2: Soft float library routines. (line 193) * __eqtf2: Soft float library routines. ! (line 195) * __extenddftf2: Soft float library routines. ! (line 68) * __extenddfxf2: Soft float library routines. ! (line 69) * __extendsfdf2: Soft float library routines. ! (line 65) * __extendsftf2: Soft float library routines. ! (line 66) * __extendsfxf2: Soft float library routines. ! (line 67) * __ffsdi2: Integer library routines. ! (line 144) * __ffsti2: Integer library routines. ! (line 145) * __fixdfdi: Soft float library routines. ! (line 88) * __fixdfsi: Soft float library routines. ! (line 81) * __fixdfti: Soft float library routines. ! (line 94) * __fixsfdi: Soft float library routines. ! (line 87) * __fixsfsi: Soft float library routines. ! (line 80) * __fixsfti: Soft float library routines. ! (line 93) * __fixtfdi: Soft float library routines. ! (line 89) * __fixtfsi: Soft float library routines. ! (line 82) * __fixtfti: Soft float library routines. ! (line 95) * __fixunsdfdi: Soft float library routines. ! (line 108) * __fixunsdfsi: Soft float library routines. ! (line 101) * __fixunsdfti: Soft float library routines. ! (line 115) * __fixunssfdi: Soft float library routines. ! (line 107) * __fixunssfsi: Soft float library routines. ! (line 100) * __fixunssfti: Soft float library routines. ! (line 114) * __fixunstfdi: Soft float library routines. ! (line 109) * __fixunstfsi: Soft float library routines. ! (line 102) * __fixunstfti: Soft float library routines. ! (line 116) * __fixunsxfdi: Soft float library routines. ! (line 110) * __fixunsxfsi: Soft float library routines. ! (line 103) * __fixunsxfti: Soft float library routines. ! (line 117) * __fixxfdi: Soft float library routines. ! (line 90) * __fixxfsi: Soft float library routines. ! (line 83) * __fixxfti: Soft float library routines. ! (line 96) * __floatdidf: Soft float library routines. - (line 128) - * __floatdisf: Soft float library routines. (line 127) * __floatditf: Soft float library routines. ! (line 129) * __floatdixf: Soft float library routines. ! (line 130) * __floatsidf: Soft float library routines. - (line 122) - * __floatsisf: Soft float library routines. (line 121) * __floatsitf: Soft float library routines. ! (line 123) * __floatsixf: Soft float library routines. ! (line 124) * __floattidf: Soft float library routines. - (line 134) - * __floattisf: Soft float library routines. (line 133) * __floattitf: Soft float library routines. ! (line 135) * __floattixf: Soft float library routines. ! (line 136) * __floatundidf: Soft float library routines. - (line 146) - * __floatundisf: Soft float library routines. (line 145) * __floatunditf: Soft float library routines. ! (line 147) * __floatundixf: Soft float library routines. ! (line 148) * __floatunsidf: Soft float library routines. - (line 140) - * __floatunsisf: Soft float library routines. (line 139) * __floatunsitf: Soft float library routines. ! (line 141) * __floatunsixf: Soft float library routines. ! (line 142) * __floatuntidf: Soft float library routines. - (line 152) - * __floatuntisf: Soft float library routines. (line 151) * __floatuntitf: Soft float library routines. ! (line 153) * __floatuntixf: Soft float library routines. ! (line 154) * __fractdadf: Fixed-point fractional library routines. ! (line 636) * __fractdadi: Fixed-point fractional library routines. ! (line 633) * __fractdadq: Fixed-point fractional library routines. ! (line 616) * __fractdaha2: Fixed-point fractional library routines. ! (line 617) * __fractdahi: Fixed-point fractional library routines. ! (line 631) * __fractdahq: Fixed-point fractional library routines. ! (line 614) * __fractdaqi: Fixed-point fractional library routines. ! (line 630) * __fractdaqq: Fixed-point fractional library routines. ! (line 613) * __fractdasa2: Fixed-point fractional library routines. ! (line 618) * __fractdasf: Fixed-point fractional library routines. ! (line 635) * __fractdasi: Fixed-point fractional library routines. ! (line 632) * __fractdasq: Fixed-point fractional library routines. ! (line 615) * __fractdata2: Fixed-point fractional library routines. ! (line 619) * __fractdati: Fixed-point fractional library routines. ! (line 634) * __fractdauda: Fixed-point fractional library routines. ! (line 627) * __fractdaudq: Fixed-point fractional library routines. ! (line 624) * __fractdauha: Fixed-point fractional library routines. ! (line 625) * __fractdauhq: Fixed-point fractional library routines. - (line 621) - * __fractdauqq: Fixed-point fractional library routines. (line 620) * __fractdausa: Fixed-point fractional library routines. ! (line 626) * __fractdausq: Fixed-point fractional library routines. ! (line 622) * __fractdauta: Fixed-point fractional library routines. ! (line 629) * __fractdfda: Fixed-point fractional library routines. ! (line 1025) * __fractdfdq: Fixed-point fractional library routines. ! (line 1022) * __fractdfha: Fixed-point fractional library routines. ! (line 1023) * __fractdfhq: Fixed-point fractional library routines. - (line 1020) - * __fractdfqq: Fixed-point fractional library routines. (line 1019) * __fractdfsa: Fixed-point fractional library routines. ! (line 1024) * __fractdfsq: Fixed-point fractional library routines. ! (line 1021) * __fractdfta: Fixed-point fractional library routines. ! (line 1026) * __fractdfuda: Fixed-point fractional library routines. ! (line 1033) * __fractdfudq: Fixed-point fractional library routines. ! (line 1030) * __fractdfuha: Fixed-point fractional library routines. ! (line 1031) * __fractdfuhq: Fixed-point fractional library routines. - (line 1028) - * __fractdfuqq: Fixed-point fractional library routines. (line 1027) * __fractdfusa: Fixed-point fractional library routines. ! (line 1032) * __fractdfusq: Fixed-point fractional library routines. ! (line 1029) * __fractdfuta: Fixed-point fractional library routines. ! (line 1034) * __fractdida: Fixed-point fractional library routines. ! (line 975) * __fractdidq: Fixed-point fractional library routines. ! (line 972) * __fractdiha: Fixed-point fractional library routines. ! (line 973) * __fractdihq: Fixed-point fractional library routines. - (line 970) - * __fractdiqq: Fixed-point fractional library routines. (line 969) * __fractdisa: Fixed-point fractional library routines. ! (line 974) * __fractdisq: Fixed-point fractional library routines. ! (line 971) * __fractdita: Fixed-point fractional library routines. ! (line 976) * __fractdiuda: Fixed-point fractional library routines. ! (line 983) * __fractdiudq: Fixed-point fractional library routines. ! (line 980) * __fractdiuha: Fixed-point fractional library routines. ! (line 981) * __fractdiuhq: Fixed-point fractional library routines. - (line 978) - * __fractdiuqq: Fixed-point fractional library routines. (line 977) * __fractdiusa: Fixed-point fractional library routines. ! (line 982) * __fractdiusq: Fixed-point fractional library routines. ! (line 979) * __fractdiuta: Fixed-point fractional library routines. ! (line 984) * __fractdqda: Fixed-point fractional library routines. ! (line 544) * __fractdqdf: Fixed-point fractional library routines. ! (line 566) * __fractdqdi: Fixed-point fractional library routines. ! (line 563) * __fractdqha: Fixed-point fractional library routines. ! (line 542) * __fractdqhi: Fixed-point fractional library routines. ! (line 561) * __fractdqhq2: Fixed-point fractional library routines. ! (line 540) * __fractdqqi: Fixed-point fractional library routines. ! (line 560) * __fractdqqq2: Fixed-point fractional library routines. ! (line 539) * __fractdqsa: Fixed-point fractional library routines. ! (line 543) * __fractdqsf: Fixed-point fractional library routines. ! (line 565) * __fractdqsi: Fixed-point fractional library routines. ! (line 562) * __fractdqsq2: Fixed-point fractional library routines. ! (line 541) * __fractdqta: Fixed-point fractional library routines. ! (line 545) * __fractdqti: Fixed-point fractional library routines. ! (line 564) * __fractdquda: Fixed-point fractional library routines. ! (line 557) * __fractdqudq: Fixed-point fractional library routines. ! (line 552) * __fractdquha: Fixed-point fractional library routines. ! (line 554) * __fractdquhq: Fixed-point fractional library routines. - (line 548) - * __fractdquqq: Fixed-point fractional library routines. (line 547) * __fractdqusa: Fixed-point fractional library routines. ! (line 555) * __fractdqusq: Fixed-point fractional library routines. ! (line 550) * __fractdquta: Fixed-point fractional library routines. ! (line 559) * __fracthada2: Fixed-point fractional library routines. ! (line 572) * __fracthadf: Fixed-point fractional library routines. ! (line 590) * __fracthadi: Fixed-point fractional library routines. ! (line 587) * __fracthadq: Fixed-point fractional library routines. ! (line 570) * __fracthahi: Fixed-point fractional library routines. ! (line 585) * __fracthahq: Fixed-point fractional library routines. ! (line 568) * __fracthaqi: Fixed-point fractional library routines. ! (line 584) * __fracthaqq: Fixed-point fractional library routines. ! (line 567) * __fracthasa2: Fixed-point fractional library routines. ! (line 571) * __fracthasf: Fixed-point fractional library routines. ! (line 589) * __fracthasi: Fixed-point fractional library routines. ! (line 586) * __fracthasq: Fixed-point fractional library routines. ! (line 569) * __fracthata2: Fixed-point fractional library routines. ! (line 573) * __fracthati: Fixed-point fractional library routines. ! (line 588) * __fracthauda: Fixed-point fractional library routines. ! (line 581) * __fracthaudq: Fixed-point fractional library routines. ! (line 578) * __fracthauha: Fixed-point fractional library routines. ! (line 579) * __fracthauhq: Fixed-point fractional library routines. - (line 575) - * __fracthauqq: Fixed-point fractional library routines. (line 574) * __fracthausa: Fixed-point fractional library routines. ! (line 580) * __fracthausq: Fixed-point fractional library routines. ! (line 576) * __fracthauta: Fixed-point fractional library routines. ! (line 583) * __fracthida: Fixed-point fractional library routines. ! (line 943) * __fracthidq: Fixed-point fractional library routines. ! (line 940) * __fracthiha: Fixed-point fractional library routines. ! (line 941) * __fracthihq: Fixed-point fractional library routines. - (line 938) - * __fracthiqq: Fixed-point fractional library routines. (line 937) * __fracthisa: Fixed-point fractional library routines. ! (line 942) * __fracthisq: Fixed-point fractional library routines. ! (line 939) * __fracthita: Fixed-point fractional library routines. ! (line 944) * __fracthiuda: Fixed-point fractional library routines. ! (line 951) * __fracthiudq: Fixed-point fractional library routines. ! (line 948) * __fracthiuha: Fixed-point fractional library routines. ! (line 949) * __fracthiuhq: Fixed-point fractional library routines. - (line 946) - * __fracthiuqq: Fixed-point fractional library routines. (line 945) * __fracthiusa: Fixed-point fractional library routines. ! (line 950) * __fracthiusq: Fixed-point fractional library routines. ! (line 947) * __fracthiuta: Fixed-point fractional library routines. ! (line 952) * __fracthqda: Fixed-point fractional library routines. ! (line 498) * __fracthqdf: Fixed-point fractional library routines. ! (line 514) * __fracthqdi: Fixed-point fractional library routines. ! (line 511) * __fracthqdq2: Fixed-point fractional library routines. ! (line 495) * __fracthqha: Fixed-point fractional library routines. ! (line 496) * __fracthqhi: Fixed-point fractional library routines. - (line 509) - * __fracthqqi: Fixed-point fractional library routines. (line 508) * __fracthqqq2: Fixed-point fractional library routines. ! (line 493) * __fracthqsa: Fixed-point fractional library routines. ! (line 497) * __fracthqsf: Fixed-point fractional library routines. ! (line 513) * __fracthqsi: Fixed-point fractional library routines. ! (line 510) * __fracthqsq2: Fixed-point fractional library routines. ! (line 494) * __fracthqta: Fixed-point fractional library routines. ! (line 499) * __fracthqti: Fixed-point fractional library routines. ! (line 512) * __fracthquda: Fixed-point fractional library routines. ! (line 506) * __fracthqudq: Fixed-point fractional library routines. ! (line 503) * __fracthquha: Fixed-point fractional library routines. ! (line 504) * __fracthquhq: Fixed-point fractional library routines. - (line 501) - * __fracthquqq: Fixed-point fractional library routines. (line 500) * __fracthqusa: Fixed-point fractional library routines. ! (line 505) * __fracthqusq: Fixed-point fractional library routines. ! (line 502) * __fracthquta: Fixed-point fractional library routines. ! (line 507) * __fractqida: Fixed-point fractional library routines. ! (line 925) * __fractqidq: Fixed-point fractional library routines. ! (line 922) * __fractqiha: Fixed-point fractional library routines. ! (line 923) * __fractqihq: Fixed-point fractional library routines. - (line 920) - * __fractqiqq: Fixed-point fractional library routines. (line 919) * __fractqisa: Fixed-point fractional library routines. ! (line 924) * __fractqisq: Fixed-point fractional library routines. ! (line 921) * __fractqita: Fixed-point fractional library routines. ! (line 926) * __fractqiuda: Fixed-point fractional library routines. ! (line 934) * __fractqiudq: Fixed-point fractional library routines. ! (line 931) * __fractqiuha: Fixed-point fractional library routines. ! (line 932) * __fractqiuhq: Fixed-point fractional library routines. - (line 928) - * __fractqiuqq: Fixed-point fractional library routines. (line 927) * __fractqiusa: Fixed-point fractional library routines. ! (line 933) * __fractqiusq: Fixed-point fractional library routines. ! (line 929) * __fractqiuta: Fixed-point fractional library routines. ! (line 936) * __fractqqda: Fixed-point fractional library routines. ! (line 474) * __fractqqdf: Fixed-point fractional library routines. ! (line 492) * __fractqqdi: Fixed-point fractional library routines. ! (line 489) * __fractqqdq2: Fixed-point fractional library routines. ! (line 471) * __fractqqha: Fixed-point fractional library routines. ! (line 472) * __fractqqhi: Fixed-point fractional library routines. ! (line 487) * __fractqqhq2: Fixed-point fractional library routines. ! (line 469) * __fractqqqi: Fixed-point fractional library routines. ! (line 486) * __fractqqsa: Fixed-point fractional library routines. ! (line 473) * __fractqqsf: Fixed-point fractional library routines. ! (line 491) * __fractqqsi: Fixed-point fractional library routines. ! (line 488) * __fractqqsq2: Fixed-point fractional library routines. ! (line 470) * __fractqqta: Fixed-point fractional library routines. ! (line 475) * __fractqqti: Fixed-point fractional library routines. ! (line 490) * __fractqquda: Fixed-point fractional library routines. ! (line 483) * __fractqqudq: Fixed-point fractional library routines. ! (line 480) * __fractqquha: Fixed-point fractional library routines. ! (line 481) * __fractqquhq: Fixed-point fractional library routines. - (line 477) - * __fractqquqq: Fixed-point fractional library routines. (line 476) * __fractqqusa: Fixed-point fractional library routines. ! (line 482) * __fractqqusq: Fixed-point fractional library routines. ! (line 478) * __fractqquta: Fixed-point fractional library routines. ! (line 485) * __fractsada2: Fixed-point fractional library routines. ! (line 596) * __fractsadf: Fixed-point fractional library routines. ! (line 612) * __fractsadi: Fixed-point fractional library routines. ! (line 609) * __fractsadq: Fixed-point fractional library routines. ! (line 594) * __fractsaha2: Fixed-point fractional library routines. ! (line 595) * __fractsahi: Fixed-point fractional library routines. ! (line 607) * __fractsahq: Fixed-point fractional library routines. ! (line 592) * __fractsaqi: Fixed-point fractional library routines. ! (line 606) * __fractsaqq: Fixed-point fractional library routines. ! (line 591) * __fractsasf: Fixed-point fractional library routines. ! (line 611) * __fractsasi: Fixed-point fractional library routines. ! (line 608) * __fractsasq: Fixed-point fractional library routines. ! (line 593) * __fractsata2: Fixed-point fractional library routines. ! (line 597) * __fractsati: Fixed-point fractional library routines. ! (line 610) * __fractsauda: Fixed-point fractional library routines. ! (line 604) * __fractsaudq: Fixed-point fractional library routines. ! (line 601) * __fractsauha: Fixed-point fractional library routines. ! (line 602) * __fractsauhq: Fixed-point fractional library routines. - (line 599) - * __fractsauqq: Fixed-point fractional library routines. (line 598) * __fractsausa: Fixed-point fractional library routines. ! (line 603) * __fractsausq: Fixed-point fractional library routines. ! (line 600) * __fractsauta: Fixed-point fractional library routines. ! (line 605) * __fractsfda: Fixed-point fractional library routines. ! (line 1009) * __fractsfdq: Fixed-point fractional library routines. ! (line 1006) * __fractsfha: Fixed-point fractional library routines. ! (line 1007) * __fractsfhq: Fixed-point fractional library routines. - (line 1004) - * __fractsfqq: Fixed-point fractional library routines. (line 1003) * __fractsfsa: Fixed-point fractional library routines. ! (line 1008) * __fractsfsq: Fixed-point fractional library routines. ! (line 1005) * __fractsfta: Fixed-point fractional library routines. ! (line 1010) * __fractsfuda: Fixed-point fractional library routines. ! (line 1017) * __fractsfudq: Fixed-point fractional library routines. ! (line 1014) * __fractsfuha: Fixed-point fractional library routines. ! (line 1015) * __fractsfuhq: Fixed-point fractional library routines. - (line 1012) - * __fractsfuqq: Fixed-point fractional library routines. (line 1011) * __fractsfusa: Fixed-point fractional library routines. ! (line 1016) * __fractsfusq: Fixed-point fractional library routines. ! (line 1013) * __fractsfuta: Fixed-point fractional library routines. ! (line 1018) * __fractsida: Fixed-point fractional library routines. ! (line 959) * __fractsidq: Fixed-point fractional library routines. ! (line 956) * __fractsiha: Fixed-point fractional library routines. ! (line 957) * __fractsihq: Fixed-point fractional library routines. - (line 954) - * __fractsiqq: Fixed-point fractional library routines. (line 953) * __fractsisa: Fixed-point fractional library routines. ! (line 958) * __fractsisq: Fixed-point fractional library routines. ! (line 955) * __fractsita: Fixed-point fractional library routines. ! (line 960) * __fractsiuda: Fixed-point fractional library routines. ! (line 967) * __fractsiudq: Fixed-point fractional library routines. ! (line 964) * __fractsiuha: Fixed-point fractional library routines. ! (line 965) * __fractsiuhq: Fixed-point fractional library routines. - (line 962) - * __fractsiuqq: Fixed-point fractional library routines. (line 961) * __fractsiusa: Fixed-point fractional library routines. ! (line 966) * __fractsiusq: Fixed-point fractional library routines. ! (line 963) * __fractsiuta: Fixed-point fractional library routines. ! (line 968) * __fractsqda: Fixed-point fractional library routines. ! (line 520) * __fractsqdf: Fixed-point fractional library routines. ! (line 538) * __fractsqdi: Fixed-point fractional library routines. ! (line 535) * __fractsqdq2: Fixed-point fractional library routines. ! (line 517) * __fractsqha: Fixed-point fractional library routines. ! (line 518) * __fractsqhi: Fixed-point fractional library routines. ! (line 533) * __fractsqhq2: Fixed-point fractional library routines. ! (line 516) * __fractsqqi: Fixed-point fractional library routines. ! (line 532) * __fractsqqq2: Fixed-point fractional library routines. ! (line 515) * __fractsqsa: Fixed-point fractional library routines. ! (line 519) * __fractsqsf: Fixed-point fractional library routines. ! (line 537) * __fractsqsi: Fixed-point fractional library routines. ! (line 534) * __fractsqta: Fixed-point fractional library routines. ! (line 521) * __fractsqti: Fixed-point fractional library routines. ! (line 536) * __fractsquda: Fixed-point fractional library routines. ! (line 529) * __fractsqudq: Fixed-point fractional library routines. ! (line 526) * __fractsquha: Fixed-point fractional library routines. ! (line 527) * __fractsquhq: Fixed-point fractional library routines. - (line 523) - * __fractsquqq: Fixed-point fractional library routines. (line 522) * __fractsqusa: Fixed-point fractional library routines. ! (line 528) * __fractsqusq: Fixed-point fractional library routines. ! (line 524) * __fractsquta: Fixed-point fractional library routines. ! (line 531) * __fracttada2: Fixed-point fractional library routines. ! (line 643) * __fracttadf: Fixed-point fractional library routines. ! (line 664) * __fracttadi: Fixed-point fractional library routines. ! (line 661) * __fracttadq: Fixed-point fractional library routines. ! (line 640) * __fracttaha2: Fixed-point fractional library routines. ! (line 641) * __fracttahi: Fixed-point fractional library routines. ! (line 659) * __fracttahq: Fixed-point fractional library routines. ! (line 638) * __fracttaqi: Fixed-point fractional library routines. ! (line 658) * __fracttaqq: Fixed-point fractional library routines. ! (line 637) * __fracttasa2: Fixed-point fractional library routines. ! (line 642) * __fracttasf: Fixed-point fractional library routines. ! (line 663) * __fracttasi: Fixed-point fractional library routines. ! (line 660) * __fracttasq: Fixed-point fractional library routines. ! (line 639) * __fracttati: Fixed-point fractional library routines. ! (line 662) * __fracttauda: Fixed-point fractional library routines. ! (line 655) * __fracttaudq: Fixed-point fractional library routines. ! (line 650) * __fracttauha: Fixed-point fractional library routines. ! (line 652) * __fracttauhq: Fixed-point fractional library routines. - (line 646) - * __fracttauqq: Fixed-point fractional library routines. (line 645) * __fracttausa: Fixed-point fractional library routines. ! (line 653) * __fracttausq: Fixed-point fractional library routines. ! (line 648) * __fracttauta: Fixed-point fractional library routines. ! (line 657) * __fracttida: Fixed-point fractional library routines. ! (line 991) * __fracttidq: Fixed-point fractional library routines. ! (line 988) * __fracttiha: Fixed-point fractional library routines. ! (line 989) * __fracttihq: Fixed-point fractional library routines. - (line 986) - * __fracttiqq: Fixed-point fractional library routines. (line 985) * __fracttisa: Fixed-point fractional library routines. ! (line 990) * __fracttisq: Fixed-point fractional library routines. ! (line 987) * __fracttita: Fixed-point fractional library routines. ! (line 992) * __fracttiuda: Fixed-point fractional library routines. ! (line 1000) * __fracttiudq: Fixed-point fractional library routines. ! (line 997) * __fracttiuha: Fixed-point fractional library routines. ! (line 998) * __fracttiuhq: Fixed-point fractional library routines. - (line 994) - * __fracttiuqq: Fixed-point fractional library routines. (line 993) * __fracttiusa: Fixed-point fractional library routines. ! (line 999) * __fracttiusq: Fixed-point fractional library routines. ! (line 995) * __fracttiuta: Fixed-point fractional library routines. ! (line 1002) * __fractudada: Fixed-point fractional library routines. ! (line 858) * __fractudadf: Fixed-point fractional library routines. ! (line 881) * __fractudadi: Fixed-point fractional library routines. ! (line 878) * __fractudadq: Fixed-point fractional library routines. ! (line 855) * __fractudaha: Fixed-point fractional library routines. ! (line 856) * __fractudahi: Fixed-point fractional library routines. ! (line 876) * __fractudahq: Fixed-point fractional library routines. ! (line 852) * __fractudaqi: Fixed-point fractional library routines. ! (line 875) * __fractudaqq: Fixed-point fractional library routines. ! (line 851) * __fractudasa: Fixed-point fractional library routines. ! (line 857) * __fractudasf: Fixed-point fractional library routines. ! (line 880) * __fractudasi: Fixed-point fractional library routines. ! (line 877) * __fractudasq: Fixed-point fractional library routines. ! (line 853) * __fractudata: Fixed-point fractional library routines. ! (line 860) * __fractudati: Fixed-point fractional library routines. ! (line 879) * __fractudaudq: Fixed-point fractional library routines. ! (line 868) * __fractudauha2: Fixed-point fractional library routines. ! (line 870) * __fractudauhq: Fixed-point fractional library routines. - (line 864) - * __fractudauqq: Fixed-point fractional library routines. (line 862) * __fractudausa2: Fixed-point fractional library routines. ! (line 872) * __fractudausq: Fixed-point fractional library routines. ! (line 866) * __fractudauta2: Fixed-point fractional library routines. ! (line 874) * __fractudqda: Fixed-point fractional library routines. ! (line 766) * __fractudqdf: Fixed-point fractional library routines. ! (line 791) * __fractudqdi: Fixed-point fractional library routines. ! (line 787) * __fractudqdq: Fixed-point fractional library routines. ! (line 761) * __fractudqha: Fixed-point fractional library routines. ! (line 763) * __fractudqhi: Fixed-point fractional library routines. ! (line 785) * __fractudqhq: Fixed-point fractional library routines. ! (line 757) * __fractudqqi: Fixed-point fractional library routines. ! (line 784) * __fractudqqq: Fixed-point fractional library routines. ! (line 756) * __fractudqsa: Fixed-point fractional library routines. ! (line 764) * __fractudqsf: Fixed-point fractional library routines. ! (line 790) * __fractudqsi: Fixed-point fractional library routines. ! (line 786) * __fractudqsq: Fixed-point fractional library routines. ! (line 759) * __fractudqta: Fixed-point fractional library routines. ! (line 768) * __fractudqti: Fixed-point fractional library routines. ! (line 789) * __fractudquda: Fixed-point fractional library routines. ! (line 780) * __fractudquha: Fixed-point fractional library routines. ! (line 776) * __fractudquhq2: Fixed-point fractional library routines. - (line 772) - * __fractudquqq2: Fixed-point fractional library routines. (line 770) * __fractudqusa: Fixed-point fractional library routines. ! (line 778) * __fractudqusq2: Fixed-point fractional library routines. ! (line 774) * __fractudquta: Fixed-point fractional library routines. ! (line 782) * __fractuhada: Fixed-point fractional library routines. ! (line 799) * __fractuhadf: Fixed-point fractional library routines. ! (line 822) * __fractuhadi: Fixed-point fractional library routines. ! (line 819) * __fractuhadq: Fixed-point fractional library routines. ! (line 796) * __fractuhaha: Fixed-point fractional library routines. ! (line 797) * __fractuhahi: Fixed-point fractional library routines. ! (line 817) * __fractuhahq: Fixed-point fractional library routines. ! (line 793) * __fractuhaqi: Fixed-point fractional library routines. ! (line 816) * __fractuhaqq: Fixed-point fractional library routines. ! (line 792) * __fractuhasa: Fixed-point fractional library routines. ! (line 798) * __fractuhasf: Fixed-point fractional library routines. ! (line 821) * __fractuhasi: Fixed-point fractional library routines. ! (line 818) * __fractuhasq: Fixed-point fractional library routines. ! (line 794) * __fractuhata: Fixed-point fractional library routines. ! (line 801) * __fractuhati: Fixed-point fractional library routines. ! (line 820) * __fractuhauda2: Fixed-point fractional library routines. ! (line 813) * __fractuhaudq: Fixed-point fractional library routines. ! (line 809) * __fractuhauhq: Fixed-point fractional library routines. - (line 805) - * __fractuhauqq: Fixed-point fractional library routines. (line 803) * __fractuhausa2: Fixed-point fractional library routines. ! (line 811) * __fractuhausq: Fixed-point fractional library routines. ! (line 807) * __fractuhauta2: Fixed-point fractional library routines. ! (line 815) * __fractuhqda: Fixed-point fractional library routines. ! (line 702) * __fractuhqdf: Fixed-point fractional library routines. ! (line 723) * __fractuhqdi: Fixed-point fractional library routines. ! (line 720) * __fractuhqdq: Fixed-point fractional library routines. ! (line 699) * __fractuhqha: Fixed-point fractional library routines. ! (line 700) * __fractuhqhi: Fixed-point fractional library routines. ! (line 718) * __fractuhqhq: Fixed-point fractional library routines. ! (line 697) * __fractuhqqi: Fixed-point fractional library routines. ! (line 717) * __fractuhqqq: Fixed-point fractional library routines. ! (line 696) * __fractuhqsa: Fixed-point fractional library routines. ! (line 701) * __fractuhqsf: Fixed-point fractional library routines. ! (line 722) * __fractuhqsi: Fixed-point fractional library routines. ! (line 719) * __fractuhqsq: Fixed-point fractional library routines. ! (line 698) * __fractuhqta: Fixed-point fractional library routines. ! (line 703) * __fractuhqti: Fixed-point fractional library routines. ! (line 721) * __fractuhquda: Fixed-point fractional library routines. ! (line 714) * __fractuhqudq2: Fixed-point fractional library routines. ! (line 709) * __fractuhquha: Fixed-point fractional library routines. ! (line 711) * __fractuhquqq2: Fixed-point fractional library routines. ! (line 705) * __fractuhqusa: Fixed-point fractional library routines. ! (line 712) * __fractuhqusq2: Fixed-point fractional library routines. ! (line 707) * __fractuhquta: Fixed-point fractional library routines. ! (line 716) * __fractunsdadi: Fixed-point fractional library routines. ! (line 1555) * __fractunsdahi: Fixed-point fractional library routines. - (line 1553) - * __fractunsdaqi: Fixed-point fractional library routines. (line 1552) * __fractunsdasi: Fixed-point fractional library routines. ! (line 1554) * __fractunsdati: Fixed-point fractional library routines. ! (line 1556) * __fractunsdida: Fixed-point fractional library routines. ! (line 1707) * __fractunsdidq: Fixed-point fractional library routines. ! (line 1704) * __fractunsdiha: Fixed-point fractional library routines. ! (line 1705) * __fractunsdihq: Fixed-point fractional library routines. - (line 1702) - * __fractunsdiqq: Fixed-point fractional library routines. (line 1701) * __fractunsdisa: Fixed-point fractional library routines. ! (line 1706) * __fractunsdisq: Fixed-point fractional library routines. ! (line 1703) * __fractunsdita: Fixed-point fractional library routines. ! (line 1708) * __fractunsdiuda: Fixed-point fractional library routines. ! (line 1720) * __fractunsdiudq: Fixed-point fractional library routines. ! (line 1715) * __fractunsdiuha: Fixed-point fractional library routines. ! (line 1717) * __fractunsdiuhq: Fixed-point fractional library routines. - (line 1711) - * __fractunsdiuqq: Fixed-point fractional library routines. (line 1710) * __fractunsdiusa: Fixed-point fractional library routines. ! (line 1718) * __fractunsdiusq: Fixed-point fractional library routines. ! (line 1713) * __fractunsdiuta: Fixed-point fractional library routines. ! (line 1722) * __fractunsdqdi: Fixed-point fractional library routines. ! (line 1539) * __fractunsdqhi: Fixed-point fractional library routines. - (line 1537) - * __fractunsdqqi: Fixed-point fractional library routines. (line 1536) * __fractunsdqsi: Fixed-point fractional library routines. ! (line 1538) * __fractunsdqti: Fixed-point fractional library routines. ! (line 1541) * __fractunshadi: Fixed-point fractional library routines. ! (line 1545) * __fractunshahi: Fixed-point fractional library routines. - (line 1543) - * __fractunshaqi: Fixed-point fractional library routines. (line 1542) * __fractunshasi: Fixed-point fractional library routines. ! (line 1544) * __fractunshati: Fixed-point fractional library routines. ! (line 1546) * __fractunshida: Fixed-point fractional library routines. ! (line 1663) * __fractunshidq: Fixed-point fractional library routines. ! (line 1660) * __fractunshiha: Fixed-point fractional library routines. ! (line 1661) * __fractunshihq: Fixed-point fractional library routines. - (line 1658) - * __fractunshiqq: Fixed-point fractional library routines. (line 1657) * __fractunshisa: Fixed-point fractional library routines. ! (line 1662) * __fractunshisq: Fixed-point fractional library routines. ! (line 1659) * __fractunshita: Fixed-point fractional library routines. ! (line 1664) * __fractunshiuda: Fixed-point fractional library routines. ! (line 1676) * __fractunshiudq: Fixed-point fractional library routines. ! (line 1671) * __fractunshiuha: Fixed-point fractional library routines. ! (line 1673) * __fractunshiuhq: Fixed-point fractional library routines. - (line 1667) - * __fractunshiuqq: Fixed-point fractional library routines. (line 1666) * __fractunshiusa: Fixed-point fractional library routines. ! (line 1674) * __fractunshiusq: Fixed-point fractional library routines. ! (line 1669) * __fractunshiuta: Fixed-point fractional library routines. ! (line 1678) * __fractunshqdi: Fixed-point fractional library routines. ! (line 1529) * __fractunshqhi: Fixed-point fractional library routines. - (line 1527) - * __fractunshqqi: Fixed-point fractional library routines. (line 1526) * __fractunshqsi: Fixed-point fractional library routines. ! (line 1528) * __fractunshqti: Fixed-point fractional library routines. ! (line 1530) * __fractunsqida: Fixed-point fractional library routines. ! (line 1641) * __fractunsqidq: Fixed-point fractional library routines. ! (line 1638) * __fractunsqiha: Fixed-point fractional library routines. ! (line 1639) * __fractunsqihq: Fixed-point fractional library routines. - (line 1636) - * __fractunsqiqq: Fixed-point fractional library routines. (line 1635) * __fractunsqisa: Fixed-point fractional library routines. ! (line 1640) * __fractunsqisq: Fixed-point fractional library routines. ! (line 1637) * __fractunsqita: Fixed-point fractional library routines. ! (line 1642) * __fractunsqiuda: Fixed-point fractional library routines. ! (line 1654) * __fractunsqiudq: Fixed-point fractional library routines. ! (line 1649) * __fractunsqiuha: Fixed-point fractional library routines. ! (line 1651) * __fractunsqiuhq: Fixed-point fractional library routines. - (line 1645) - * __fractunsqiuqq: Fixed-point fractional library routines. (line 1644) * __fractunsqiusa: Fixed-point fractional library routines. ! (line 1652) * __fractunsqiusq: Fixed-point fractional library routines. ! (line 1647) * __fractunsqiuta: Fixed-point fractional library routines. ! (line 1656) * __fractunsqqdi: Fixed-point fractional library routines. ! (line 1524) * __fractunsqqhi: Fixed-point fractional library routines. - (line 1522) - * __fractunsqqqi: Fixed-point fractional library routines. (line 1521) * __fractunsqqsi: Fixed-point fractional library routines. ! (line 1523) * __fractunsqqti: Fixed-point fractional library routines. ! (line 1525) * __fractunssadi: Fixed-point fractional library routines. ! (line 1550) * __fractunssahi: Fixed-point fractional library routines. - (line 1548) - * __fractunssaqi: Fixed-point fractional library routines. (line 1547) * __fractunssasi: Fixed-point fractional library routines. ! (line 1549) * __fractunssati: Fixed-point fractional library routines. ! (line 1551) * __fractunssida: Fixed-point fractional library routines. ! (line 1685) * __fractunssidq: Fixed-point fractional library routines. ! (line 1682) * __fractunssiha: Fixed-point fractional library routines. ! (line 1683) * __fractunssihq: Fixed-point fractional library routines. - (line 1680) - * __fractunssiqq: Fixed-point fractional library routines. (line 1679) * __fractunssisa: Fixed-point fractional library routines. ! (line 1684) * __fractunssisq: Fixed-point fractional library routines. ! (line 1681) * __fractunssita: Fixed-point fractional library routines. ! (line 1686) * __fractunssiuda: Fixed-point fractional library routines. ! (line 1698) * __fractunssiudq: Fixed-point fractional library routines. ! (line 1693) * __fractunssiuha: Fixed-point fractional library routines. ! (line 1695) * __fractunssiuhq: Fixed-point fractional library routines. - (line 1689) - * __fractunssiuqq: Fixed-point fractional library routines. (line 1688) * __fractunssiusa: Fixed-point fractional library routines. ! (line 1696) * __fractunssiusq: Fixed-point fractional library routines. ! (line 1691) * __fractunssiuta: Fixed-point fractional library routines. ! (line 1700) * __fractunssqdi: Fixed-point fractional library routines. ! (line 1534) * __fractunssqhi: Fixed-point fractional library routines. - (line 1532) - * __fractunssqqi: Fixed-point fractional library routines. (line 1531) * __fractunssqsi: Fixed-point fractional library routines. ! (line 1533) * __fractunssqti: Fixed-point fractional library routines. ! (line 1535) * __fractunstadi: Fixed-point fractional library routines. ! (line 1560) * __fractunstahi: Fixed-point fractional library routines. - (line 1558) - * __fractunstaqi: Fixed-point fractional library routines. (line 1557) * __fractunstasi: Fixed-point fractional library routines. ! (line 1559) * __fractunstati: Fixed-point fractional library routines. ! (line 1562) * __fractunstida: Fixed-point fractional library routines. ! (line 1730) * __fractunstidq: Fixed-point fractional library routines. ! (line 1727) * __fractunstiha: Fixed-point fractional library routines. ! (line 1728) * __fractunstihq: Fixed-point fractional library routines. - (line 1724) - * __fractunstiqq: Fixed-point fractional library routines. (line 1723) * __fractunstisa: Fixed-point fractional library routines. ! (line 1729) * __fractunstisq: Fixed-point fractional library routines. ! (line 1725) * __fractunstita: Fixed-point fractional library routines. ! (line 1732) * __fractunstiuda: Fixed-point fractional library routines. ! (line 1746) * __fractunstiudq: Fixed-point fractional library routines. ! (line 1740) * __fractunstiuha: Fixed-point fractional library routines. ! (line 1742) * __fractunstiuhq: Fixed-point fractional library routines. - (line 1736) - * __fractunstiuqq: Fixed-point fractional library routines. (line 1734) * __fractunstiusa: Fixed-point fractional library routines. ! (line 1744) * __fractunstiusq: Fixed-point fractional library routines. ! (line 1738) * __fractunstiuta: Fixed-point fractional library routines. ! (line 1748) * __fractunsudadi: Fixed-point fractional library routines. ! (line 1622) * __fractunsudahi: Fixed-point fractional library routines. - (line 1618) - * __fractunsudaqi: Fixed-point fractional library routines. (line 1616) * __fractunsudasi: Fixed-point fractional library routines. ! (line 1620) * __fractunsudati: Fixed-point fractional library routines. ! (line 1624) * __fractunsudqdi: Fixed-point fractional library routines. ! (line 1596) * __fractunsudqhi: Fixed-point fractional library routines. - (line 1592) - * __fractunsudqqi: Fixed-point fractional library routines. (line 1590) * __fractunsudqsi: Fixed-point fractional library routines. ! (line 1594) * __fractunsudqti: Fixed-point fractional library routines. ! (line 1598) * __fractunsuhadi: Fixed-point fractional library routines. ! (line 1606) * __fractunsuhahi: Fixed-point fractional library routines. - (line 1602) - * __fractunsuhaqi: Fixed-point fractional library routines. (line 1600) * __fractunsuhasi: Fixed-point fractional library routines. ! (line 1604) * __fractunsuhati: Fixed-point fractional library routines. ! (line 1608) * __fractunsuhqdi: Fixed-point fractional library routines. ! (line 1576) * __fractunsuhqhi: Fixed-point fractional library routines. - (line 1574) - * __fractunsuhqqi: Fixed-point fractional library routines. (line 1573) * __fractunsuhqsi: Fixed-point fractional library routines. ! (line 1575) * __fractunsuhqti: Fixed-point fractional library routines. ! (line 1578) * __fractunsuqqdi: Fixed-point fractional library routines. ! (line 1570) * __fractunsuqqhi: Fixed-point fractional library routines. - (line 1566) - * __fractunsuqqqi: Fixed-point fractional library routines. (line 1564) * __fractunsuqqsi: Fixed-point fractional library routines. ! (line 1568) * __fractunsuqqti: Fixed-point fractional library routines. ! (line 1572) * __fractunsusadi: Fixed-point fractional library routines. ! (line 1612) * __fractunsusahi: Fixed-point fractional library routines. - (line 1610) - * __fractunsusaqi: Fixed-point fractional library routines. (line 1609) * __fractunsusasi: Fixed-point fractional library routines. ! (line 1611) * __fractunsusati: Fixed-point fractional library routines. ! (line 1614) * __fractunsusqdi: Fixed-point fractional library routines. ! (line 1586) * __fractunsusqhi: Fixed-point fractional library routines. - (line 1582) - * __fractunsusqqi: Fixed-point fractional library routines. (line 1580) * __fractunsusqsi: Fixed-point fractional library routines. ! (line 1584) * __fractunsusqti: Fixed-point fractional library routines. ! (line 1588) * __fractunsutadi: Fixed-point fractional library routines. ! (line 1632) * __fractunsutahi: Fixed-point fractional library routines. - (line 1628) - * __fractunsutaqi: Fixed-point fractional library routines. (line 1626) * __fractunsutasi: Fixed-point fractional library routines. ! (line 1630) * __fractunsutati: Fixed-point fractional library routines. ! (line 1634) * __fractuqqda: Fixed-point fractional library routines. ! (line 672) * __fractuqqdf: Fixed-point fractional library routines. ! (line 695) * __fractuqqdi: Fixed-point fractional library routines. ! (line 692) * __fractuqqdq: Fixed-point fractional library routines. ! (line 669) * __fractuqqha: Fixed-point fractional library routines. ! (line 670) * __fractuqqhi: Fixed-point fractional library routines. ! (line 690) * __fractuqqhq: Fixed-point fractional library routines. ! (line 666) * __fractuqqqi: Fixed-point fractional library routines. ! (line 689) * __fractuqqqq: Fixed-point fractional library routines. ! (line 665) * __fractuqqsa: Fixed-point fractional library routines. ! (line 671) * __fractuqqsf: Fixed-point fractional library routines. ! (line 694) * __fractuqqsi: Fixed-point fractional library routines. ! (line 691) * __fractuqqsq: Fixed-point fractional library routines. ! (line 667) * __fractuqqta: Fixed-point fractional library routines. ! (line 674) * __fractuqqti: Fixed-point fractional library routines. ! (line 693) * __fractuqquda: Fixed-point fractional library routines. ! (line 686) * __fractuqqudq2: Fixed-point fractional library routines. ! (line 680) * __fractuqquha: Fixed-point fractional library routines. ! (line 682) * __fractuqquhq2: Fixed-point fractional library routines. ! (line 676) * __fractuqqusa: Fixed-point fractional library routines. ! (line 684) * __fractuqqusq2: Fixed-point fractional library routines. ! (line 678) * __fractuqquta: Fixed-point fractional library routines. ! (line 688) * __fractusada: Fixed-point fractional library routines. ! (line 829) * __fractusadf: Fixed-point fractional library routines. ! (line 850) * __fractusadi: Fixed-point fractional library routines. ! (line 847) * __fractusadq: Fixed-point fractional library routines. ! (line 826) * __fractusaha: Fixed-point fractional library routines. ! (line 827) * __fractusahi: Fixed-point fractional library routines. ! (line 845) * __fractusahq: Fixed-point fractional library routines. ! (line 824) * __fractusaqi: Fixed-point fractional library routines. ! (line 844) * __fractusaqq: Fixed-point fractional library routines. ! (line 823) * __fractusasa: Fixed-point fractional library routines. ! (line 828) * __fractusasf: Fixed-point fractional library routines. ! (line 849) * __fractusasi: Fixed-point fractional library routines. ! (line 846) * __fractusasq: Fixed-point fractional library routines. ! (line 825) * __fractusata: Fixed-point fractional library routines. ! (line 830) * __fractusati: Fixed-point fractional library routines. ! (line 848) * __fractusauda2: Fixed-point fractional library routines. ! (line 841) * __fractusaudq: Fixed-point fractional library routines. ! (line 837) * __fractusauha2: Fixed-point fractional library routines. ! (line 839) * __fractusauhq: Fixed-point fractional library routines. - (line 833) - * __fractusauqq: Fixed-point fractional library routines. (line 832) * __fractusausq: Fixed-point fractional library routines. ! (line 835) * __fractusauta2: Fixed-point fractional library routines. ! (line 843) * __fractusqda: Fixed-point fractional library routines. ! (line 731) * __fractusqdf: Fixed-point fractional library routines. ! (line 754) * __fractusqdi: Fixed-point fractional library routines. ! (line 751) * __fractusqdq: Fixed-point fractional library routines. ! (line 728) * __fractusqha: Fixed-point fractional library routines. ! (line 729) * __fractusqhi: Fixed-point fractional library routines. ! (line 749) * __fractusqhq: Fixed-point fractional library routines. ! (line 725) * __fractusqqi: Fixed-point fractional library routines. ! (line 748) * __fractusqqq: Fixed-point fractional library routines. ! (line 724) * __fractusqsa: Fixed-point fractional library routines. ! (line 730) * __fractusqsf: Fixed-point fractional library routines. ! (line 753) * __fractusqsi: Fixed-point fractional library routines. ! (line 750) * __fractusqsq: Fixed-point fractional library routines. ! (line 726) * __fractusqta: Fixed-point fractional library routines. ! (line 733) * __fractusqti: Fixed-point fractional library routines. ! (line 752) * __fractusquda: Fixed-point fractional library routines. ! (line 745) * __fractusqudq2: Fixed-point fractional library routines. ! (line 739) * __fractusquha: Fixed-point fractional library routines. ! (line 741) * __fractusquhq2: Fixed-point fractional library routines. - (line 737) - * __fractusquqq2: Fixed-point fractional library routines. (line 735) * __fractusqusa: Fixed-point fractional library routines. ! (line 743) * __fractusquta: Fixed-point fractional library routines. ! (line 747) * __fractutada: Fixed-point fractional library routines. ! (line 893) * __fractutadf: Fixed-point fractional library routines. ! (line 918) * __fractutadi: Fixed-point fractional library routines. ! (line 914) * __fractutadq: Fixed-point fractional library routines. ! (line 888) * __fractutaha: Fixed-point fractional library routines. ! (line 890) * __fractutahi: Fixed-point fractional library routines. ! (line 912) * __fractutahq: Fixed-point fractional library routines. ! (line 884) * __fractutaqi: Fixed-point fractional library routines. ! (line 911) * __fractutaqq: Fixed-point fractional library routines. ! (line 883) * __fractutasa: Fixed-point fractional library routines. ! (line 891) * __fractutasf: Fixed-point fractional library routines. ! (line 917) * __fractutasi: Fixed-point fractional library routines. ! (line 913) * __fractutasq: Fixed-point fractional library routines. ! (line 886) * __fractutata: Fixed-point fractional library routines. ! (line 895) * __fractutati: Fixed-point fractional library routines. ! (line 916) * __fractutauda2: Fixed-point fractional library routines. ! (line 909) * __fractutaudq: Fixed-point fractional library routines. ! (line 903) * __fractutauha2: Fixed-point fractional library routines. ! (line 905) * __fractutauhq: Fixed-point fractional library routines. - (line 899) - * __fractutauqq: Fixed-point fractional library routines. (line 897) * __fractutausa2: Fixed-point fractional library routines. ! (line 907) * __fractutausq: Fixed-point fractional library routines. ! (line 901) * __gedf2: Soft float library routines. - (line 206) - * __gesf2: Soft float library routines. (line 205) * __getf2: Soft float library routines. ! (line 207) * __gtdf2: Soft float library routines. - (line 224) - * __gtsf2: Soft float library routines. (line 223) * __gttf2: Soft float library routines. ! (line 225) * __ledf2: Soft float library routines. - (line 218) - * __lesf2: Soft float library routines. (line 217) * __letf2: Soft float library routines. ! (line 219) * __lshrdi3: Integer library routines. - (line 31) - * __lshrsi3: Integer library routines. (line 30) * __lshrti3: Integer library routines. ! (line 32) * __lshruda3: Fixed-point fractional library routines. ! (line 390) * __lshrudq3: Fixed-point fractional library routines. ! (line 384) * __lshruha3: Fixed-point fractional library routines. ! (line 386) * __lshruhq3: Fixed-point fractional library routines. - (line 380) - * __lshruqq3: Fixed-point fractional library routines. (line 378) * __lshrusa3: Fixed-point fractional library routines. ! (line 388) * __lshrusq3: Fixed-point fractional library routines. ! (line 382) * __lshruta3: Fixed-point fractional library routines. ! (line 392) * __ltdf2: Soft float library routines. - (line 212) - * __ltsf2: Soft float library routines. (line 211) * __lttf2: Soft float library routines. ! (line 213) * __main: Collect2. (line 15) * __moddi3: Integer library routines. - (line 37) - * __modsi3: Integer library routines. (line 36) * __modti3: Integer library routines. ! (line 38) * __morestack_current_segment: Miscellaneous routines. ! (line 46) * __morestack_initial_sp: Miscellaneous routines. ! (line 47) * __morestack_segments: Miscellaneous routines. ! (line 45) * __mulda3: Fixed-point fractional library routines. ! (line 171) * __muldc3: Soft float library routines. ! (line 241) * __muldf3: Soft float library routines. ! (line 40) * __muldi3: Integer library routines. ! (line 43) * __muldq3: Fixed-point fractional library routines. ! (line 159) * __mulha3: Fixed-point fractional library routines. ! (line 169) * __mulhq3: Fixed-point fractional library routines. - (line 156) - * __mulqq3: Fixed-point fractional library routines. (line 155) * __mulsa3: Fixed-point fractional library routines. ! (line 170) * __mulsc3: Soft float library routines. ! (line 239) * __mulsf3: Soft float library routines. ! (line 39) * __mulsi3: Integer library routines. ! (line 42) * __mulsq3: Fixed-point fractional library routines. ! (line 157) * __multa3: Fixed-point fractional library routines. ! (line 173) * __multc3: Soft float library routines. ! (line 243) * __multf3: Soft float library routines. ! (line 42) * __multi3: Integer library routines. ! (line 44) * __muluda3: Fixed-point fractional library routines. ! (line 179) * __muludq3: Fixed-point fractional library routines. ! (line 167) * __muluha3: Fixed-point fractional library routines. ! (line 175) * __muluhq3: Fixed-point fractional library routines. - (line 163) - * __muluqq3: Fixed-point fractional library routines. (line 161) * __mulusa3: Fixed-point fractional library routines. ! (line 177) * __mulusq3: Fixed-point fractional library routines. ! (line 165) * __muluta3: Fixed-point fractional library routines. ! (line 181) * __mulvdi3: Integer library routines. - (line 115) - * __mulvsi3: Integer library routines. (line 114) * __mulxc3: Soft float library routines. ! (line 245) * __mulxf3: Soft float library routines. ! (line 44) * __nedf2: Soft float library routines. ! (line 200) * __negda2: Fixed-point fractional library routines. ! (line 299) * __negdf2: Soft float library routines. ! (line 56) * __negdi2: Integer library routines. ! (line 47) * __negdq2: Fixed-point fractional library routines. ! (line 289) * __negha2: Fixed-point fractional library routines. ! (line 297) * __neghq2: Fixed-point fractional library routines. - (line 287) - * __negqq2: Fixed-point fractional library routines. (line 286) * __negsa2: Fixed-point fractional library routines. ! (line 298) * __negsf2: Soft float library routines. ! (line 55) * __negsq2: Fixed-point fractional library routines. ! (line 288) * __negta2: Fixed-point fractional library routines. ! (line 300) * __negtf2: Soft float library routines. ! (line 57) * __negti2: Integer library routines. ! (line 48) * __neguda2: Fixed-point fractional library routines. ! (line 305) * __negudq2: Fixed-point fractional library routines. ! (line 296) * __neguha2: Fixed-point fractional library routines. ! (line 302) * __neguhq2: Fixed-point fractional library routines. - (line 292) - * __neguqq2: Fixed-point fractional library routines. (line 291) * __negusa2: Fixed-point fractional library routines. ! (line 303) * __negusq2: Fixed-point fractional library routines. ! (line 294) * __neguta2: Fixed-point fractional library routines. ! (line 307) * __negvdi2: Integer library routines. - (line 119) - * __negvsi2: Integer library routines. (line 118) * __negxf2: Soft float library routines. ! (line 58) * __nesf2: Soft float library routines. ! (line 199) * __netf2: Soft float library routines. ! (line 201) * __paritydi2: Integer library routines. - (line 151) - * __paritysi2: Integer library routines. (line 150) * __parityti2: Integer library routines. ! (line 152) * __popcountdi2: Integer library routines. - (line 157) - * __popcountsi2: Integer library routines. (line 156) * __popcountti2: Integer library routines. ! (line 158) * __powidf2: Soft float library routines. - (line 233) - * __powisf2: Soft float library routines. (line 232) * __powitf2: Soft float library routines. ! (line 234) * __powixf2: Soft float library routines. ! (line 235) * __satfractdadq: Fixed-point fractional library routines. ! (line 1153) * __satfractdaha2: Fixed-point fractional library routines. ! (line 1154) * __satfractdahq: Fixed-point fractional library routines. - (line 1151) - * __satfractdaqq: Fixed-point fractional library routines. (line 1150) * __satfractdasa2: Fixed-point fractional library routines. ! (line 1155) * __satfractdasq: Fixed-point fractional library routines. ! (line 1152) * __satfractdata2: Fixed-point fractional library routines. ! (line 1156) * __satfractdauda: Fixed-point fractional library routines. ! (line 1166) * __satfractdaudq: Fixed-point fractional library routines. ! (line 1162) * __satfractdauha: Fixed-point fractional library routines. ! (line 1164) * __satfractdauhq: Fixed-point fractional library routines. - (line 1159) - * __satfractdauqq: Fixed-point fractional library routines. (line 1158) * __satfractdausa: Fixed-point fractional library routines. ! (line 1165) * __satfractdausq: Fixed-point fractional library routines. ! (line 1160) * __satfractdauta: Fixed-point fractional library routines. ! (line 1168) * __satfractdfda: Fixed-point fractional library routines. ! (line 1506) * __satfractdfdq: Fixed-point fractional library routines. ! (line 1503) * __satfractdfha: Fixed-point fractional library routines. ! (line 1504) * __satfractdfhq: Fixed-point fractional library routines. - (line 1501) - * __satfractdfqq: Fixed-point fractional library routines. (line 1500) * __satfractdfsa: Fixed-point fractional library routines. ! (line 1505) * __satfractdfsq: Fixed-point fractional library routines. ! (line 1502) * __satfractdfta: Fixed-point fractional library routines. ! (line 1507) * __satfractdfuda: Fixed-point fractional library routines. ! (line 1515) * __satfractdfudq: Fixed-point fractional library routines. ! (line 1512) * __satfractdfuha: Fixed-point fractional library routines. ! (line 1513) * __satfractdfuhq: Fixed-point fractional library routines. - (line 1509) - * __satfractdfuqq: Fixed-point fractional library routines. (line 1508) * __satfractdfusa: Fixed-point fractional library routines. ! (line 1514) * __satfractdfusq: Fixed-point fractional library routines. ! (line 1510) * __satfractdfuta: Fixed-point fractional library routines. ! (line 1517) * __satfractdida: Fixed-point fractional library routines. ! (line 1456) * __satfractdidq: Fixed-point fractional library routines. ! (line 1453) * __satfractdiha: Fixed-point fractional library routines. ! (line 1454) * __satfractdihq: Fixed-point fractional library routines. - (line 1451) - * __satfractdiqq: Fixed-point fractional library routines. (line 1450) * __satfractdisa: Fixed-point fractional library routines. ! (line 1455) * __satfractdisq: Fixed-point fractional library routines. ! (line 1452) * __satfractdita: Fixed-point fractional library routines. ! (line 1457) * __satfractdiuda: Fixed-point fractional library routines. ! (line 1464) * __satfractdiudq: Fixed-point fractional library routines. ! (line 1461) * __satfractdiuha: Fixed-point fractional library routines. ! (line 1462) * __satfractdiuhq: Fixed-point fractional library routines. - (line 1459) - * __satfractdiuqq: Fixed-point fractional library routines. (line 1458) * __satfractdiusa: Fixed-point fractional library routines. ! (line 1463) * __satfractdiusq: Fixed-point fractional library routines. ! (line 1460) * __satfractdiuta: Fixed-point fractional library routines. ! (line 1465) * __satfractdqda: Fixed-point fractional library routines. ! (line 1098) * __satfractdqha: Fixed-point fractional library routines. ! (line 1096) * __satfractdqhq2: Fixed-point fractional library routines. - (line 1094) - * __satfractdqqq2: Fixed-point fractional library routines. (line 1093) * __satfractdqsa: Fixed-point fractional library routines. ! (line 1097) * __satfractdqsq2: Fixed-point fractional library routines. ! (line 1095) * __satfractdqta: Fixed-point fractional library routines. ! (line 1099) * __satfractdquda: Fixed-point fractional library routines. ! (line 1111) * __satfractdqudq: Fixed-point fractional library routines. ! (line 1106) * __satfractdquha: Fixed-point fractional library routines. ! (line 1108) * __satfractdquhq: Fixed-point fractional library routines. - (line 1102) - * __satfractdquqq: Fixed-point fractional library routines. (line 1101) * __satfractdqusa: Fixed-point fractional library routines. ! (line 1109) * __satfractdqusq: Fixed-point fractional library routines. ! (line 1104) * __satfractdquta: Fixed-point fractional library routines. ! (line 1113) * __satfracthada2: Fixed-point fractional library routines. ! (line 1119) * __satfracthadq: Fixed-point fractional library routines. ! (line 1117) * __satfracthahq: Fixed-point fractional library routines. - (line 1115) - * __satfracthaqq: Fixed-point fractional library routines. (line 1114) * __satfracthasa2: Fixed-point fractional library routines. ! (line 1118) * __satfracthasq: Fixed-point fractional library routines. ! (line 1116) * __satfracthata2: Fixed-point fractional library routines. ! (line 1120) * __satfracthauda: Fixed-point fractional library routines. ! (line 1132) * __satfracthaudq: Fixed-point fractional library routines. ! (line 1127) * __satfracthauha: Fixed-point fractional library routines. ! (line 1129) * __satfracthauhq: Fixed-point fractional library routines. - (line 1123) - * __satfracthauqq: Fixed-point fractional library routines. (line 1122) * __satfracthausa: Fixed-point fractional library routines. ! (line 1130) * __satfracthausq: Fixed-point fractional library routines. ! (line 1125) * __satfracthauta: Fixed-point fractional library routines. ! (line 1134) * __satfracthida: Fixed-point fractional library routines. ! (line 1424) * __satfracthidq: Fixed-point fractional library routines. ! (line 1421) * __satfracthiha: Fixed-point fractional library routines. ! (line 1422) * __satfracthihq: Fixed-point fractional library routines. - (line 1419) - * __satfracthiqq: Fixed-point fractional library routines. (line 1418) * __satfracthisa: Fixed-point fractional library routines. ! (line 1423) * __satfracthisq: Fixed-point fractional library routines. ! (line 1420) * __satfracthita: Fixed-point fractional library routines. ! (line 1425) * __satfracthiuda: Fixed-point fractional library routines. ! (line 1432) * __satfracthiudq: Fixed-point fractional library routines. ! (line 1429) * __satfracthiuha: Fixed-point fractional library routines. ! (line 1430) * __satfracthiuhq: Fixed-point fractional library routines. - (line 1427) - * __satfracthiuqq: Fixed-point fractional library routines. (line 1426) * __satfracthiusa: Fixed-point fractional library routines. ! (line 1431) * __satfracthiusq: Fixed-point fractional library routines. ! (line 1428) * __satfracthiuta: Fixed-point fractional library routines. ! (line 1433) * __satfracthqda: Fixed-point fractional library routines. ! (line 1064) * __satfracthqdq2: Fixed-point fractional library routines. ! (line 1061) * __satfracthqha: Fixed-point fractional library routines. ! (line 1062) * __satfracthqqq2: Fixed-point fractional library routines. ! (line 1059) * __satfracthqsa: Fixed-point fractional library routines. ! (line 1063) * __satfracthqsq2: Fixed-point fractional library routines. ! (line 1060) * __satfracthqta: Fixed-point fractional library routines. ! (line 1065) * __satfracthquda: Fixed-point fractional library routines. ! (line 1072) * __satfracthqudq: Fixed-point fractional library routines. ! (line 1069) * __satfracthquha: Fixed-point fractional library routines. ! (line 1070) * __satfracthquhq: Fixed-point fractional library routines. - (line 1067) - * __satfracthquqq: Fixed-point fractional library routines. (line 1066) * __satfracthqusa: Fixed-point fractional library routines. ! (line 1071) * __satfracthqusq: Fixed-point fractional library routines. ! (line 1068) * __satfracthquta: Fixed-point fractional library routines. ! (line 1073) * __satfractqida: Fixed-point fractional library routines. ! (line 1402) * __satfractqidq: Fixed-point fractional library routines. ! (line 1399) * __satfractqiha: Fixed-point fractional library routines. ! (line 1400) * __satfractqihq: Fixed-point fractional library routines. - (line 1397) - * __satfractqiqq: Fixed-point fractional library routines. (line 1396) * __satfractqisa: Fixed-point fractional library routines. ! (line 1401) * __satfractqisq: Fixed-point fractional library routines. ! (line 1398) * __satfractqita: Fixed-point fractional library routines. ! (line 1403) * __satfractqiuda: Fixed-point fractional library routines. ! (line 1415) * __satfractqiudq: Fixed-point fractional library routines. ! (line 1410) * __satfractqiuha: Fixed-point fractional library routines. ! (line 1412) * __satfractqiuhq: Fixed-point fractional library routines. - (line 1406) - * __satfractqiuqq: Fixed-point fractional library routines. (line 1405) * __satfractqiusa: Fixed-point fractional library routines. ! (line 1413) * __satfractqiusq: Fixed-point fractional library routines. ! (line 1408) * __satfractqiuta: Fixed-point fractional library routines. ! (line 1417) * __satfractqqda: Fixed-point fractional library routines. ! (line 1043) * __satfractqqdq2: Fixed-point fractional library routines. ! (line 1040) * __satfractqqha: Fixed-point fractional library routines. ! (line 1041) * __satfractqqhq2: Fixed-point fractional library routines. ! (line 1038) * __satfractqqsa: Fixed-point fractional library routines. ! (line 1042) * __satfractqqsq2: Fixed-point fractional library routines. ! (line 1039) * __satfractqqta: Fixed-point fractional library routines. ! (line 1044) * __satfractqquda: Fixed-point fractional library routines. ! (line 1056) * __satfractqqudq: Fixed-point fractional library routines. ! (line 1051) * __satfractqquha: Fixed-point fractional library routines. ! (line 1053) * __satfractqquhq: Fixed-point fractional library routines. - (line 1047) - * __satfractqquqq: Fixed-point fractional library routines. (line 1046) * __satfractqqusa: Fixed-point fractional library routines. ! (line 1054) * __satfractqqusq: Fixed-point fractional library routines. ! (line 1049) * __satfractqquta: Fixed-point fractional library routines. ! (line 1058) * __satfractsada2: Fixed-point fractional library routines. ! (line 1140) * __satfractsadq: Fixed-point fractional library routines. ! (line 1138) * __satfractsaha2: Fixed-point fractional library routines. ! (line 1139) * __satfractsahq: Fixed-point fractional library routines. - (line 1136) - * __satfractsaqq: Fixed-point fractional library routines. (line 1135) * __satfractsasq: Fixed-point fractional library routines. ! (line 1137) * __satfractsata2: Fixed-point fractional library routines. ! (line 1141) * __satfractsauda: Fixed-point fractional library routines. ! (line 1148) * __satfractsaudq: Fixed-point fractional library routines. ! (line 1145) * __satfractsauha: Fixed-point fractional library routines. ! (line 1146) * __satfractsauhq: Fixed-point fractional library routines. - (line 1143) - * __satfractsauqq: Fixed-point fractional library routines. (line 1142) * __satfractsausa: Fixed-point fractional library routines. ! (line 1147) * __satfractsausq: Fixed-point fractional library routines. ! (line 1144) * __satfractsauta: Fixed-point fractional library routines. ! (line 1149) * __satfractsfda: Fixed-point fractional library routines. ! (line 1490) * __satfractsfdq: Fixed-point fractional library routines. ! (line 1487) * __satfractsfha: Fixed-point fractional library routines. ! (line 1488) * __satfractsfhq: Fixed-point fractional library routines. - (line 1485) - * __satfractsfqq: Fixed-point fractional library routines. (line 1484) * __satfractsfsa: Fixed-point fractional library routines. ! (line 1489) * __satfractsfsq: Fixed-point fractional library routines. ! (line 1486) * __satfractsfta: Fixed-point fractional library routines. ! (line 1491) * __satfractsfuda: Fixed-point fractional library routines. ! (line 1498) * __satfractsfudq: Fixed-point fractional library routines. ! (line 1495) * __satfractsfuha: Fixed-point fractional library routines. ! (line 1496) * __satfractsfuhq: Fixed-point fractional library routines. - (line 1493) - * __satfractsfuqq: Fixed-point fractional library routines. (line 1492) * __satfractsfusa: Fixed-point fractional library routines. ! (line 1497) * __satfractsfusq: Fixed-point fractional library routines. ! (line 1494) * __satfractsfuta: Fixed-point fractional library routines. ! (line 1499) * __satfractsida: Fixed-point fractional library routines. ! (line 1440) * __satfractsidq: Fixed-point fractional library routines. ! (line 1437) * __satfractsiha: Fixed-point fractional library routines. ! (line 1438) * __satfractsihq: Fixed-point fractional library routines. - (line 1435) - * __satfractsiqq: Fixed-point fractional library routines. (line 1434) * __satfractsisa: Fixed-point fractional library routines. ! (line 1439) * __satfractsisq: Fixed-point fractional library routines. ! (line 1436) * __satfractsita: Fixed-point fractional library routines. ! (line 1441) * __satfractsiuda: Fixed-point fractional library routines. ! (line 1448) * __satfractsiudq: Fixed-point fractional library routines. ! (line 1445) * __satfractsiuha: Fixed-point fractional library routines. ! (line 1446) * __satfractsiuhq: Fixed-point fractional library routines. - (line 1443) - * __satfractsiuqq: Fixed-point fractional library routines. (line 1442) * __satfractsiusa: Fixed-point fractional library routines. ! (line 1447) * __satfractsiusq: Fixed-point fractional library routines. ! (line 1444) * __satfractsiuta: Fixed-point fractional library routines. ! (line 1449) * __satfractsqda: Fixed-point fractional library routines. ! (line 1079) * __satfractsqdq2: Fixed-point fractional library routines. ! (line 1076) * __satfractsqha: Fixed-point fractional library routines. ! (line 1077) * __satfractsqhq2: Fixed-point fractional library routines. - (line 1075) - * __satfractsqqq2: Fixed-point fractional library routines. (line 1074) * __satfractsqsa: Fixed-point fractional library routines. ! (line 1078) * __satfractsqta: Fixed-point fractional library routines. ! (line 1080) * __satfractsquda: Fixed-point fractional library routines. ! (line 1090) * __satfractsqudq: Fixed-point fractional library routines. ! (line 1086) * __satfractsquha: Fixed-point fractional library routines. ! (line 1088) * __satfractsquhq: Fixed-point fractional library routines. - (line 1083) - * __satfractsquqq: Fixed-point fractional library routines. (line 1082) * __satfractsqusa: Fixed-point fractional library routines. ! (line 1089) * __satfractsqusq: Fixed-point fractional library routines. ! (line 1084) * __satfractsquta: Fixed-point fractional library routines. ! (line 1092) * __satfracttada2: Fixed-point fractional library routines. ! (line 1175) * __satfracttadq: Fixed-point fractional library routines. ! (line 1172) * __satfracttaha2: Fixed-point fractional library routines. ! (line 1173) * __satfracttahq: Fixed-point fractional library routines. - (line 1170) - * __satfracttaqq: Fixed-point fractional library routines. (line 1169) * __satfracttasa2: Fixed-point fractional library routines. ! (line 1174) * __satfracttasq: Fixed-point fractional library routines. ! (line 1171) * __satfracttauda: Fixed-point fractional library routines. ! (line 1187) * __satfracttaudq: Fixed-point fractional library routines. ! (line 1182) * __satfracttauha: Fixed-point fractional library routines. ! (line 1184) * __satfracttauhq: Fixed-point fractional library routines. - (line 1178) - * __satfracttauqq: Fixed-point fractional library routines. (line 1177) * __satfracttausa: Fixed-point fractional library routines. ! (line 1185) * __satfracttausq: Fixed-point fractional library routines. ! (line 1180) * __satfracttauta: Fixed-point fractional library routines. ! (line 1189) * __satfracttida: Fixed-point fractional library routines. ! (line 1472) * __satfracttidq: Fixed-point fractional library routines. ! (line 1469) * __satfracttiha: Fixed-point fractional library routines. ! (line 1470) * __satfracttihq: Fixed-point fractional library routines. - (line 1467) - * __satfracttiqq: Fixed-point fractional library routines. (line 1466) * __satfracttisa: Fixed-point fractional library routines. ! (line 1471) * __satfracttisq: Fixed-point fractional library routines. ! (line 1468) * __satfracttita: Fixed-point fractional library routines. ! (line 1473) * __satfracttiuda: Fixed-point fractional library routines. ! (line 1481) * __satfracttiudq: Fixed-point fractional library routines. ! (line 1478) * __satfracttiuha: Fixed-point fractional library routines. ! (line 1479) * __satfracttiuhq: Fixed-point fractional library routines. - (line 1475) - * __satfracttiuqq: Fixed-point fractional library routines. (line 1474) * __satfracttiusa: Fixed-point fractional library routines. ! (line 1480) * __satfracttiusq: Fixed-point fractional library routines. ! (line 1476) * __satfracttiuta: Fixed-point fractional library routines. ! (line 1483) * __satfractudada: Fixed-point fractional library routines. ! (line 1351) * __satfractudadq: Fixed-point fractional library routines. ! (line 1347) * __satfractudaha: Fixed-point fractional library routines. ! (line 1349) * __satfractudahq: Fixed-point fractional library routines. - (line 1344) - * __satfractudaqq: Fixed-point fractional library routines. (line 1343) * __satfractudasa: Fixed-point fractional library routines. ! (line 1350) * __satfractudasq: Fixed-point fractional library routines. ! (line 1345) * __satfractudata: Fixed-point fractional library routines. ! (line 1353) * __satfractudaudq: Fixed-point fractional library routines. ! (line 1361) * __satfractudauha2: Fixed-point fractional library routines. ! (line 1363) * __satfractudauhq: Fixed-point fractional library routines. - (line 1357) - * __satfractudauqq: Fixed-point fractional library routines. (line 1355) * __satfractudausa2: Fixed-point fractional library routines. ! (line 1365) * __satfractudausq: Fixed-point fractional library routines. ! (line 1359) * __satfractudauta2: Fixed-point fractional library routines. ! (line 1367) * __satfractudqda: Fixed-point fractional library routines. ! (line 1276) * __satfractudqdq: Fixed-point fractional library routines. ! (line 1271) * __satfractudqha: Fixed-point fractional library routines. ! (line 1273) * __satfractudqhq: Fixed-point fractional library routines. - (line 1267) - * __satfractudqqq: Fixed-point fractional library routines. (line 1266) * __satfractudqsa: Fixed-point fractional library routines. ! (line 1274) * __satfractudqsq: Fixed-point fractional library routines. ! (line 1269) * __satfractudqta: Fixed-point fractional library routines. ! (line 1278) * __satfractudquda: Fixed-point fractional library routines. ! (line 1290) * __satfractudquha: Fixed-point fractional library routines. ! (line 1286) * __satfractudquhq2: Fixed-point fractional library routines. - (line 1282) - * __satfractudquqq2: Fixed-point fractional library routines. (line 1280) * __satfractudqusa: Fixed-point fractional library routines. ! (line 1288) * __satfractudqusq2: Fixed-point fractional library routines. ! (line 1284) * __satfractudquta: Fixed-point fractional library routines. ! (line 1292) * __satfractuhada: Fixed-point fractional library routines. ! (line 1304) * __satfractuhadq: Fixed-point fractional library routines. ! (line 1299) * __satfractuhaha: Fixed-point fractional library routines. ! (line 1301) * __satfractuhahq: Fixed-point fractional library routines. - (line 1295) - * __satfractuhaqq: Fixed-point fractional library routines. (line 1294) * __satfractuhasa: Fixed-point fractional library routines. ! (line 1302) * __satfractuhasq: Fixed-point fractional library routines. ! (line 1297) * __satfractuhata: Fixed-point fractional library routines. ! (line 1306) * __satfractuhauda2: Fixed-point fractional library routines. ! (line 1318) * __satfractuhaudq: Fixed-point fractional library routines. ! (line 1314) * __satfractuhauhq: Fixed-point fractional library routines. - (line 1310) - * __satfractuhauqq: Fixed-point fractional library routines. (line 1308) * __satfractuhausa2: Fixed-point fractional library routines. ! (line 1316) * __satfractuhausq: Fixed-point fractional library routines. ! (line 1312) * __satfractuhauta2: Fixed-point fractional library routines. ! (line 1320) * __satfractuhqda: Fixed-point fractional library routines. ! (line 1224) * __satfractuhqdq: Fixed-point fractional library routines. ! (line 1221) * __satfractuhqha: Fixed-point fractional library routines. ! (line 1222) * __satfractuhqhq: Fixed-point fractional library routines. - (line 1219) - * __satfractuhqqq: Fixed-point fractional library routines. (line 1218) * __satfractuhqsa: Fixed-point fractional library routines. ! (line 1223) * __satfractuhqsq: Fixed-point fractional library routines. ! (line 1220) * __satfractuhqta: Fixed-point fractional library routines. ! (line 1225) * __satfractuhquda: Fixed-point fractional library routines. ! (line 1236) * __satfractuhqudq2: Fixed-point fractional library routines. ! (line 1231) * __satfractuhquha: Fixed-point fractional library routines. ! (line 1233) * __satfractuhquqq2: Fixed-point fractional library routines. ! (line 1227) * __satfractuhqusa: Fixed-point fractional library routines. ! (line 1234) * __satfractuhqusq2: Fixed-point fractional library routines. ! (line 1229) * __satfractuhquta: Fixed-point fractional library routines. ! (line 1238) * __satfractunsdida: Fixed-point fractional library routines. ! (line 1834) * __satfractunsdidq: Fixed-point fractional library routines. ! (line 1831) * __satfractunsdiha: Fixed-point fractional library routines. ! (line 1832) * __satfractunsdihq: Fixed-point fractional library routines. - (line 1828) - * __satfractunsdiqq: Fixed-point fractional library routines. (line 1827) * __satfractunsdisa: Fixed-point fractional library routines. ! (line 1833) * __satfractunsdisq: Fixed-point fractional library routines. ! (line 1829) * __satfractunsdita: Fixed-point fractional library routines. ! (line 1836) * __satfractunsdiuda: Fixed-point fractional library routines. ! (line 1850) * __satfractunsdiudq: Fixed-point fractional library routines. ! (line 1844) * __satfractunsdiuha: Fixed-point fractional library routines. ! (line 1846) * __satfractunsdiuhq: Fixed-point fractional library routines. - (line 1840) - * __satfractunsdiuqq: Fixed-point fractional library routines. (line 1838) * __satfractunsdiusa: Fixed-point fractional library routines. ! (line 1848) * __satfractunsdiusq: Fixed-point fractional library routines. ! (line 1842) * __satfractunsdiuta: Fixed-point fractional library routines. ! (line 1852) * __satfractunshida: Fixed-point fractional library routines. ! (line 1786) * __satfractunshidq: Fixed-point fractional library routines. ! (line 1783) * __satfractunshiha: Fixed-point fractional library routines. ! (line 1784) * __satfractunshihq: Fixed-point fractional library routines. - (line 1780) - * __satfractunshiqq: Fixed-point fractional library routines. (line 1779) * __satfractunshisa: Fixed-point fractional library routines. ! (line 1785) * __satfractunshisq: Fixed-point fractional library routines. ! (line 1781) * __satfractunshita: Fixed-point fractional library routines. ! (line 1788) * __satfractunshiuda: Fixed-point fractional library routines. ! (line 1802) * __satfractunshiudq: Fixed-point fractional library routines. ! (line 1796) * __satfractunshiuha: Fixed-point fractional library routines. ! (line 1798) * __satfractunshiuhq: Fixed-point fractional library routines. - (line 1792) - * __satfractunshiuqq: Fixed-point fractional library routines. (line 1790) * __satfractunshiusa: Fixed-point fractional library routines. ! (line 1800) * __satfractunshiusq: Fixed-point fractional library routines. ! (line 1794) * __satfractunshiuta: Fixed-point fractional library routines. ! (line 1804) * __satfractunsqida: Fixed-point fractional library routines. ! (line 1760) * __satfractunsqidq: Fixed-point fractional library routines. ! (line 1757) * __satfractunsqiha: Fixed-point fractional library routines. ! (line 1758) * __satfractunsqihq: Fixed-point fractional library routines. - (line 1754) - * __satfractunsqiqq: Fixed-point fractional library routines. (line 1753) * __satfractunsqisa: Fixed-point fractional library routines. ! (line 1759) * __satfractunsqisq: Fixed-point fractional library routines. ! (line 1755) * __satfractunsqita: Fixed-point fractional library routines. ! (line 1762) * __satfractunsqiuda: Fixed-point fractional library routines. ! (line 1776) * __satfractunsqiudq: Fixed-point fractional library routines. ! (line 1770) * __satfractunsqiuha: Fixed-point fractional library routines. ! (line 1772) * __satfractunsqiuhq: Fixed-point fractional library routines. - (line 1766) - * __satfractunsqiuqq: Fixed-point fractional library routines. (line 1764) * __satfractunsqiusa: Fixed-point fractional library routines. ! (line 1774) * __satfractunsqiusq: Fixed-point fractional library routines. ! (line 1768) * __satfractunsqiuta: Fixed-point fractional library routines. ! (line 1778) * __satfractunssida: Fixed-point fractional library routines. ! (line 1811) * __satfractunssidq: Fixed-point fractional library routines. ! (line 1808) * __satfractunssiha: Fixed-point fractional library routines. ! (line 1809) * __satfractunssihq: Fixed-point fractional library routines. - (line 1806) - * __satfractunssiqq: Fixed-point fractional library routines. (line 1805) * __satfractunssisa: Fixed-point fractional library routines. ! (line 1810) * __satfractunssisq: Fixed-point fractional library routines. ! (line 1807) * __satfractunssita: Fixed-point fractional library routines. ! (line 1812) * __satfractunssiuda: Fixed-point fractional library routines. ! (line 1824) * __satfractunssiudq: Fixed-point fractional library routines. ! (line 1819) * __satfractunssiuha: Fixed-point fractional library routines. ! (line 1821) * __satfractunssiuhq: Fixed-point fractional library routines. - (line 1815) - * __satfractunssiuqq: Fixed-point fractional library routines. (line 1814) * __satfractunssiusa: Fixed-point fractional library routines. ! (line 1822) * __satfractunssiusq: Fixed-point fractional library routines. ! (line 1817) * __satfractunssiuta: Fixed-point fractional library routines. ! (line 1826) * __satfractunstida: Fixed-point fractional library routines. ! (line 1864) * __satfractunstidq: Fixed-point fractional library routines. ! (line 1859) * __satfractunstiha: Fixed-point fractional library routines. ! (line 1861) * __satfractunstihq: Fixed-point fractional library routines. - (line 1855) - * __satfractunstiqq: Fixed-point fractional library routines. (line 1854) * __satfractunstisa: Fixed-point fractional library routines. ! (line 1862) * __satfractunstisq: Fixed-point fractional library routines. ! (line 1857) * __satfractunstita: Fixed-point fractional library routines. ! (line 1866) * __satfractunstiuda: Fixed-point fractional library routines. ! (line 1880) * __satfractunstiudq: Fixed-point fractional library routines. ! (line 1874) * __satfractunstiuha: Fixed-point fractional library routines. ! (line 1876) * __satfractunstiuhq: Fixed-point fractional library routines. - (line 1870) - * __satfractunstiuqq: Fixed-point fractional library routines. (line 1868) * __satfractunstiusa: Fixed-point fractional library routines. ! (line 1878) * __satfractunstiusq: Fixed-point fractional library routines. ! (line 1872) * __satfractunstiuta: Fixed-point fractional library routines. ! (line 1882) * __satfractuqqda: Fixed-point fractional library routines. ! (line 1201) * __satfractuqqdq: Fixed-point fractional library routines. ! (line 1196) * __satfractuqqha: Fixed-point fractional library routines. ! (line 1198) * __satfractuqqhq: Fixed-point fractional library routines. - (line 1192) - * __satfractuqqqq: Fixed-point fractional library routines. (line 1191) * __satfractuqqsa: Fixed-point fractional library routines. ! (line 1199) * __satfractuqqsq: Fixed-point fractional library routines. ! (line 1194) * __satfractuqqta: Fixed-point fractional library routines. ! (line 1203) * __satfractuqquda: Fixed-point fractional library routines. ! (line 1215) * __satfractuqqudq2: Fixed-point fractional library routines. ! (line 1209) * __satfractuqquha: Fixed-point fractional library routines. ! (line 1211) * __satfractuqquhq2: Fixed-point fractional library routines. ! (line 1205) * __satfractuqqusa: Fixed-point fractional library routines. ! (line 1213) * __satfractuqqusq2: Fixed-point fractional library routines. ! (line 1207) * __satfractuqquta: Fixed-point fractional library routines. ! (line 1217) * __satfractusada: Fixed-point fractional library routines. ! (line 1327) * __satfractusadq: Fixed-point fractional library routines. ! (line 1324) * __satfractusaha: Fixed-point fractional library routines. ! (line 1325) * __satfractusahq: Fixed-point fractional library routines. - (line 1322) - * __satfractusaqq: Fixed-point fractional library routines. (line 1321) * __satfractusasa: Fixed-point fractional library routines. ! (line 1326) * __satfractusasq: Fixed-point fractional library routines. ! (line 1323) * __satfractusata: Fixed-point fractional library routines. ! (line 1328) * __satfractusauda2: Fixed-point fractional library routines. ! (line 1339) * __satfractusaudq: Fixed-point fractional library routines. ! (line 1335) * __satfractusauha2: Fixed-point fractional library routines. ! (line 1337) * __satfractusauhq: Fixed-point fractional library routines. - (line 1331) - * __satfractusauqq: Fixed-point fractional library routines. (line 1330) * __satfractusausq: Fixed-point fractional library routines. ! (line 1333) * __satfractusauta2: Fixed-point fractional library routines. ! (line 1341) * __satfractusqda: Fixed-point fractional library routines. ! (line 1248) * __satfractusqdq: Fixed-point fractional library routines. ! (line 1244) * __satfractusqha: Fixed-point fractional library routines. ! (line 1246) * __satfractusqhq: Fixed-point fractional library routines. - (line 1241) - * __satfractusqqq: Fixed-point fractional library routines. (line 1240) * __satfractusqsa: Fixed-point fractional library routines. ! (line 1247) * __satfractusqsq: Fixed-point fractional library routines. ! (line 1242) * __satfractusqta: Fixed-point fractional library routines. ! (line 1250) * __satfractusquda: Fixed-point fractional library routines. ! (line 1262) * __satfractusqudq2: Fixed-point fractional library routines. ! (line 1256) * __satfractusquha: Fixed-point fractional library routines. ! (line 1258) * __satfractusquhq2: Fixed-point fractional library routines. - (line 1254) - * __satfractusquqq2: Fixed-point fractional library routines. (line 1252) * __satfractusqusa: Fixed-point fractional library routines. ! (line 1260) * __satfractusquta: Fixed-point fractional library routines. ! (line 1264) * __satfractutada: Fixed-point fractional library routines. ! (line 1379) * __satfractutadq: Fixed-point fractional library routines. ! (line 1374) * __satfractutaha: Fixed-point fractional library routines. ! (line 1376) * __satfractutahq: Fixed-point fractional library routines. - (line 1370) - * __satfractutaqq: Fixed-point fractional library routines. (line 1369) * __satfractutasa: Fixed-point fractional library routines. ! (line 1377) * __satfractutasq: Fixed-point fractional library routines. ! (line 1372) * __satfractutata: Fixed-point fractional library routines. ! (line 1381) * __satfractutauda2: Fixed-point fractional library routines. ! (line 1395) * __satfractutaudq: Fixed-point fractional library routines. ! (line 1389) * __satfractutauha2: Fixed-point fractional library routines. ! (line 1391) * __satfractutauhq: Fixed-point fractional library routines. - (line 1385) - * __satfractutauqq: Fixed-point fractional library routines. (line 1383) * __satfractutausa2: Fixed-point fractional library routines. ! (line 1393) * __satfractutausq: Fixed-point fractional library routines. ! (line 1387) * __splitstack_find: Miscellaneous routines. ! (line 18) * __ssaddda3: Fixed-point fractional library routines. ! (line 67) * __ssadddq3: Fixed-point fractional library routines. ! (line 63) * __ssaddha3: Fixed-point fractional library routines. ! (line 65) * __ssaddhq3: Fixed-point fractional library routines. - (line 60) - * __ssaddqq3: Fixed-point fractional library routines. (line 59) * __ssaddsa3: Fixed-point fractional library routines. ! (line 66) * __ssaddsq3: Fixed-point fractional library routines. ! (line 61) * __ssaddta3: Fixed-point fractional library routines. ! (line 69) * __ssashlda3: Fixed-point fractional library routines. ! (line 402) * __ssashldq3: Fixed-point fractional library routines. ! (line 399) * __ssashlha3: Fixed-point fractional library routines. ! (line 400) * __ssashlhq3: Fixed-point fractional library routines. ! (line 396) * __ssashlsa3: Fixed-point fractional library routines. ! (line 401) * __ssashlsq3: Fixed-point fractional library routines. ! (line 397) * __ssashlta3: Fixed-point fractional library routines. ! (line 404) * __ssdivda3: Fixed-point fractional library routines. ! (line 261) * __ssdivdq3: Fixed-point fractional library routines. ! (line 257) * __ssdivha3: Fixed-point fractional library routines. ! (line 259) * __ssdivhq3: Fixed-point fractional library routines. - (line 254) - * __ssdivqq3: Fixed-point fractional library routines. (line 253) * __ssdivsa3: Fixed-point fractional library routines. ! (line 260) * __ssdivsq3: Fixed-point fractional library routines. ! (line 255) * __ssdivta3: Fixed-point fractional library routines. ! (line 263) * __ssmulda3: Fixed-point fractional library routines. ! (line 193) * __ssmuldq3: Fixed-point fractional library routines. ! (line 189) * __ssmulha3: Fixed-point fractional library routines. ! (line 191) * __ssmulhq3: Fixed-point fractional library routines. - (line 186) - * __ssmulqq3: Fixed-point fractional library routines. (line 185) * __ssmulsa3: Fixed-point fractional library routines. ! (line 192) * __ssmulsq3: Fixed-point fractional library routines. ! (line 187) * __ssmulta3: Fixed-point fractional library routines. ! (line 195) * __ssnegda2: Fixed-point fractional library routines. ! (line 316) * __ssnegdq2: Fixed-point fractional library routines. ! (line 313) * __ssnegha2: Fixed-point fractional library routines. ! (line 314) * __ssneghq2: Fixed-point fractional library routines. - (line 311) - * __ssnegqq2: Fixed-point fractional library routines. (line 310) * __ssnegsa2: Fixed-point fractional library routines. ! (line 315) * __ssnegsq2: Fixed-point fractional library routines. ! (line 312) * __ssnegta2: Fixed-point fractional library routines. ! (line 317) * __sssubda3: Fixed-point fractional library routines. ! (line 129) * __sssubdq3: Fixed-point fractional library routines. ! (line 125) * __sssubha3: Fixed-point fractional library routines. ! (line 127) * __sssubhq3: Fixed-point fractional library routines. - (line 122) - * __sssubqq3: Fixed-point fractional library routines. (line 121) * __sssubsa3: Fixed-point fractional library routines. ! (line 128) * __sssubsq3: Fixed-point fractional library routines. ! (line 123) * __sssubta3: Fixed-point fractional library routines. ! (line 131) * __subda3: Fixed-point fractional library routines. ! (line 107) * __subdf3: Soft float library routines. ! (line 31) * __subdq3: Fixed-point fractional library routines. ! (line 95) * __subha3: Fixed-point fractional library routines. ! (line 105) * __subhq3: Fixed-point fractional library routines. - (line 92) - * __subqq3: Fixed-point fractional library routines. (line 91) * __subsa3: Fixed-point fractional library routines. ! (line 106) * __subsf3: Soft float library routines. ! (line 30) * __subsq3: Fixed-point fractional library routines. ! (line 93) * __subta3: Fixed-point fractional library routines. ! (line 109) * __subtf3: Soft float library routines. ! (line 33) * __subuda3: Fixed-point fractional library routines. ! (line 115) * __subudq3: Fixed-point fractional library routines. ! (line 103) * __subuha3: Fixed-point fractional library routines. ! (line 111) * __subuhq3: Fixed-point fractional library routines. - (line 99) - * __subuqq3: Fixed-point fractional library routines. (line 97) * __subusa3: Fixed-point fractional library routines. ! (line 113) * __subusq3: Fixed-point fractional library routines. ! (line 101) * __subuta3: Fixed-point fractional library routines. ! (line 117) * __subvdi3: Integer library routines. - (line 123) - * __subvsi3: Integer library routines. (line 122) * __subxf3: Soft float library routines. ! (line 35) * __truncdfsf2: Soft float library routines. ! (line 76) * __trunctfdf2: Soft float library routines. ! (line 73) * __trunctfsf2: Soft float library routines. ! (line 75) * __truncxfdf2: Soft float library routines. ! (line 72) * __truncxfsf2: Soft float library routines. ! (line 74) * __ucmpdi2: Integer library routines. ! (line 93) * __ucmpti2: Integer library routines. ! (line 95) * __udivdi3: Integer library routines. ! (line 54) * __udivmoddi4: Integer library routines. ! (line 61) * __udivmodti4: Integer library routines. ! (line 63) * __udivsi3: Integer library routines. ! (line 52) * __udivti3: Integer library routines. ! (line 56) * __udivuda3: Fixed-point fractional library routines. ! (line 246) * __udivudq3: Fixed-point fractional library routines. ! (line 240) * __udivuha3: Fixed-point fractional library routines. ! (line 242) * __udivuhq3: Fixed-point fractional library routines. - (line 236) - * __udivuqq3: Fixed-point fractional library routines. (line 234) * __udivusa3: Fixed-point fractional library routines. ! (line 244) * __udivusq3: Fixed-point fractional library routines. ! (line 238) * __udivuta3: Fixed-point fractional library routines. ! (line 248) * __umoddi3: Integer library routines. - (line 71) - * __umodsi3: Integer library routines. (line 69) * __umodti3: Integer library routines. ! (line 73) * __unorddf2: Soft float library routines. - (line 173) - * __unordsf2: Soft float library routines. (line 172) * __unordtf2: Soft float library routines. ! (line 174) * __usadduda3: Fixed-point fractional library routines. ! (line 85) * __usaddudq3: Fixed-point fractional library routines. ! (line 79) * __usadduha3: Fixed-point fractional library routines. ! (line 81) * __usadduhq3: Fixed-point fractional library routines. - (line 75) - * __usadduqq3: Fixed-point fractional library routines. (line 73) * __usaddusa3: Fixed-point fractional library routines. ! (line 83) * __usaddusq3: Fixed-point fractional library routines. ! (line 77) * __usadduta3: Fixed-point fractional library routines. ! (line 87) * __usashluda3: Fixed-point fractional library routines. ! (line 421) * __usashludq3: Fixed-point fractional library routines. ! (line 415) * __usashluha3: Fixed-point fractional library routines. ! (line 417) * __usashluhq3: Fixed-point fractional library routines. - (line 411) - * __usashluqq3: Fixed-point fractional library routines. (line 409) * __usashlusa3: Fixed-point fractional library routines. ! (line 419) * __usashlusq3: Fixed-point fractional library routines. ! (line 413) * __usashluta3: Fixed-point fractional library routines. ! (line 423) * __usdivuda3: Fixed-point fractional library routines. ! (line 280) * __usdivudq3: Fixed-point fractional library routines. ! (line 274) * __usdivuha3: Fixed-point fractional library routines. ! (line 276) * __usdivuhq3: Fixed-point fractional library routines. - (line 270) - * __usdivuqq3: Fixed-point fractional library routines. (line 268) * __usdivusa3: Fixed-point fractional library routines. ! (line 278) * __usdivusq3: Fixed-point fractional library routines. ! (line 272) * __usdivuta3: Fixed-point fractional library routines. ! (line 282) * __usmuluda3: Fixed-point fractional library routines. ! (line 212) * __usmuludq3: Fixed-point fractional library routines. ! (line 206) * __usmuluha3: Fixed-point fractional library routines. ! (line 208) * __usmuluhq3: Fixed-point fractional library routines. - (line 202) - * __usmuluqq3: Fixed-point fractional library routines. (line 200) * __usmulusa3: Fixed-point fractional library routines. ! (line 210) * __usmulusq3: Fixed-point fractional library routines. ! (line 204) * __usmuluta3: Fixed-point fractional library routines. ! (line 214) * __usneguda2: Fixed-point fractional library routines. ! (line 331) * __usnegudq2: Fixed-point fractional library routines. ! (line 326) * __usneguha2: Fixed-point fractional library routines. ! (line 328) * __usneguhq2: Fixed-point fractional library routines. - (line 322) - * __usneguqq2: Fixed-point fractional library routines. (line 321) * __usnegusa2: Fixed-point fractional library routines. ! (line 329) * __usnegusq2: Fixed-point fractional library routines. ! (line 324) * __usneguta2: Fixed-point fractional library routines. ! (line 333) * __ussubuda3: Fixed-point fractional library routines. ! (line 148) * __ussubudq3: Fixed-point fractional library routines. ! (line 142) * __ussubuha3: Fixed-point fractional library routines. ! (line 144) * __ussubuhq3: Fixed-point fractional library routines. - (line 138) - * __ussubuqq3: Fixed-point fractional library routines. (line 136) * __ussubusa3: Fixed-point fractional library routines. ! (line 146) * __ussubusq3: Fixed-point fractional library routines. ! (line 140) * __ussubuta3: Fixed-point fractional library routines. ! (line 150) ! * abort: Portability. (line 21) ! * abs: Arithmetic. (line 200) ! * abs and attributes: Expressions. (line 85) * ABS_EXPR: Unary and Binary Expressions. (line 6) - * absence_set: Processor pipeline description. - (line 224) - * absM2 instruction pattern: Standard Names. (line 535) - * absolute value: Arithmetic. (line 200) * access to operands: Accessors. (line 6) * access to special operands: Special Accessors. (line 6) * accessors: Accessors. (line 6) ! * ACCUM_TYPE_SIZE: Type Layout. (line 88) ! * ACCUMULATE_OUTGOING_ARGS: Stack Arguments. (line 49) ! * ACCUMULATE_OUTGOING_ARGS and stack frames: Function Entry. (line 135) ! * ADA_LONG_TYPE_SIZE: Type Layout. (line 26) * Adding a new GIMPLE statement code: Adding a new GIMPLE statement code. (line 6) ! * ADDITIONAL_REGISTER_NAMES: Instruction Output. (line 15) ! * addM3 instruction pattern: Standard Names. (line 263) ! * addMODEcc instruction pattern: Standard Names. (line 1050) ! * addr_diff_vec: Side Effects. (line 308) ! * addr_diff_vec, length of: Insn Lengths. (line 26) ! * ADDR_EXPR: Storage References. (line 6) ! * addr_vec: Side Effects. (line 303) ! * addr_vec, length of: Insn Lengths. (line 26) ! * address constraints: Simple Constraints. (line 164) ! * address_operand <1>: Simple Constraints. (line 168) ! * address_operand: Machine-Independent Predicates. ! (line 63) * addressing modes: Addressing Modes. (line 6) ! * ADJUST_FIELD_ALIGN: Storage Layout. (line 197) * ADJUST_INSN_LENGTH: Insn Lengths. (line 35) ! * ADJUST_REG_ALLOC_ORDER: Allocation Order. (line 23) * aggregates as return values: Aggregate Return. (line 6) * alias: Alias analysis. (line 6) * ALL_REGS: Register Classes. (line 17) - * allocate_stack instruction pattern: Standard Names. (line 1375) * alternate entry points: Insns. (line 146) * anchored addresses: Anchored Addresses. (line 6) ! * and: Arithmetic. (line 158) ! * and and attributes: Expressions. (line 50) ! * and, canonicalization of: Insn Canonicalizations. ! (line 52) ! * andM3 instruction pattern: Standard Names. (line 269) * annotations: Annotations. (line 6) * APPLY_RESULT_SIZE: Scalar Return. (line 112) ! * ARG_POINTER_CFA_OFFSET: Frame Layout. (line 194) ! * ARG_POINTER_REGNUM: Frame Registers. (line 41) ! * ARG_POINTER_REGNUM and virtual registers: Regs and Memory. (line 65) ! * arg_pointer_rtx: Frame Registers. (line 104) ! * ARGS_GROW_DOWNWARD: Frame Layout. (line 35) * argument passing: Interface. (line 36) * arguments in registers: Register Arguments. (line 6) * arguments on stack: Stack Arguments. (line 6) * arithmetic library: Soft float library routines. (line 6) ! * arithmetic shift: Arithmetic. (line 173) ! * arithmetic shift with signed saturation: Arithmetic. (line 173) ! * arithmetic shift with unsigned saturation: Arithmetic. (line 173) * arithmetic, in RTL: Arithmetic. (line 6) ! * ARITHMETIC_TYPE_P: Types for C++. (line 61) * array: Types. (line 6) * ARRAY_RANGE_REF: Storage References. (line 6) * ARRAY_REF: Storage References. (line 6) * ARRAY_TYPE: Types. (line 6) ! * AS_NEEDS_DASH_FOR_PIPED_INPUT: Driver. (line 89) ! * ashift: Arithmetic. (line 173) ! * ashift and attributes: Expressions. (line 85) ! * ashiftrt: Arithmetic. (line 190) ! * ashiftrt and attributes: Expressions. (line 85) ! * ashlM3 instruction pattern: Standard Names. (line 510) ! * ashrM3 instruction pattern: Standard Names. (line 520) ! * ASM_APP_OFF: File Framework. (line 78) ! * ASM_APP_ON: File Framework. (line 71) ! * ASM_COMMENT_START: File Framework. (line 66) ! * ASM_DECLARE_FUNCTION_NAME: Label Output. (line 111) ! * ASM_DECLARE_FUNCTION_SIZE: Label Output. (line 126) ! * ASM_DECLARE_OBJECT_NAME: Label Output. (line 139) ! * ASM_DECLARE_REGISTER_GLOBAL: Label Output. (line 168) ! * ASM_FINAL_SPEC: Driver. (line 82) ! * ASM_FINISH_DECLARE_OBJECT: Label Output. (line 176) ! * ASM_FORMAT_PRIVATE_NAME: Label Output. (line 395) ! * asm_fprintf: Instruction Output. (line 151) ! * ASM_FPRINTF_EXTENSIONS: Instruction Output. (line 162) ! * ASM_GENERATE_INTERNAL_LABEL: Label Output. (line 379) ! * asm_input: Side Effects. (line 290) ! * asm_input and /v: Flags. (line 76) ! * ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX: Exception Handling. (line 82) ! * ASM_NO_SKIP_IN_TEXT: Alignment Output. (line 79) ! * asm_noperands: Insns. (line 314) ! * asm_operands and /v: Flags. (line 76) ! * asm_operands, RTL sharing: Sharing. (line 45) ! * asm_operands, usage: Assembler. (line 6) ! * ASM_OUTPUT_ADDR_DIFF_ELT: Dispatch Tables. (line 9) ! * ASM_OUTPUT_ADDR_VEC_ELT: Dispatch Tables. (line 26) ! * ASM_OUTPUT_ALIGN: Alignment Output. (line 86) ! * ASM_OUTPUT_ALIGN_WITH_NOP: Alignment Output. (line 91) ! * ASM_OUTPUT_ALIGNED_BSS: Uninitialized Data. (line 46) ! * ASM_OUTPUT_ALIGNED_COMMON: Uninitialized Data. (line 30) ! * ASM_OUTPUT_ALIGNED_DECL_COMMON: Uninitialized Data. (line 38) ! * ASM_OUTPUT_ALIGNED_DECL_LOCAL: Uninitialized Data. (line 91) ! * ASM_OUTPUT_ALIGNED_LOCAL: Uninitialized Data. (line 83) ! * ASM_OUTPUT_ASCII: Data Output. (line 51) ! * ASM_OUTPUT_CASE_END: Dispatch Tables. (line 51) ! * ASM_OUTPUT_CASE_LABEL: Dispatch Tables. (line 38) ! * ASM_OUTPUT_COMMON: Uninitialized Data. (line 10) ! * ASM_OUTPUT_DEBUG_LABEL: Label Output. (line 367) ! * ASM_OUTPUT_DEF: Label Output. (line 416) ! * ASM_OUTPUT_DEF_FROM_DECLS: Label Output. (line 424) ! * ASM_OUTPUT_DWARF_DELTA: SDB and DWARF. (line 74) ! * ASM_OUTPUT_DWARF_OFFSET: SDB and DWARF. (line 83) ! * ASM_OUTPUT_DWARF_PCREL: SDB and DWARF. (line 89) ! * ASM_OUTPUT_DWARF_TABLE_REF: SDB and DWARF. (line 94) ! * ASM_OUTPUT_DWARF_VMS_DELTA: SDB and DWARF. (line 78) ! * ASM_OUTPUT_EXTERNAL: Label Output. (line 296) ! * ASM_OUTPUT_FDESC: Data Output. (line 60) ! * ASM_OUTPUT_FUNCTION_LABEL: Label Output. (line 17) ! * ASM_OUTPUT_INTERNAL_LABEL: Label Output. (line 29) ! * ASM_OUTPUT_LABEL: Label Output. (line 9) ! * ASM_OUTPUT_LABEL_REF: Label Output. (line 340) ! * ASM_OUTPUT_LABELREF: Label Output. (line 318) ! * ASM_OUTPUT_LOCAL: Uninitialized Data. (line 70) ! * ASM_OUTPUT_MAX_SKIP_ALIGN: Alignment Output. (line 95) ! * ASM_OUTPUT_MEASURED_SIZE: Label Output. (line 53) ! * ASM_OUTPUT_OPCODE: Instruction Output. (line 36) ! * ASM_OUTPUT_POOL_EPILOGUE: Data Output. (line 110) ! * ASM_OUTPUT_POOL_PROLOGUE: Data Output. (line 73) ! * ASM_OUTPUT_REG_POP: Instruction Output. (line 206) ! * ASM_OUTPUT_REG_PUSH: Instruction Output. (line 201) ! * ASM_OUTPUT_SIZE_DIRECTIVE: Label Output. (line 47) ! * ASM_OUTPUT_SKIP: Alignment Output. (line 73) ! * ASM_OUTPUT_SOURCE_FILENAME: File Framework. (line 85) ! * ASM_OUTPUT_SPECIAL_POOL_ENTRY: Data Output. (line 85) ! * ASM_OUTPUT_SYMBOL_REF: Label Output. (line 333) ! * ASM_OUTPUT_TYPE_DIRECTIVE: Label Output. (line 101) ! * ASM_OUTPUT_WEAK_ALIAS: Label Output. (line 442) ! * ASM_OUTPUT_WEAKREF: Label Output. (line 228) ! * ASM_PREFERRED_EH_DATA_FORMAT: Exception Handling. (line 67) ! * ASM_SPEC: Driver. (line 74) ! * ASM_STABD_OP: DBX Options. (line 36) ! * ASM_STABN_OP: DBX Options. (line 43) ! * ASM_STABS_OP: DBX Options. (line 29) ! * ASM_WEAKEN_DECL: Label Output. (line 220) ! * ASM_WEAKEN_LABEL: Label Output. (line 207) ! * assemble_name: Label Output. (line 8) ! * assemble_name_raw: Label Output. (line 28) * assembler format: File Framework. (line 6) * assembler instructions in RTL: Assembler. (line 6) ! * ASSEMBLER_DIALECT: Instruction Output. (line 174) * assigning attribute values to insns: Tagging Insns. (line 6) ! * ASSUME_EXTENDED_UNWIND_CONTEXT: Frame Registers. (line 164) * asterisk in template: Output Statement. (line 29) ! * atan2M3 instruction pattern: Standard Names. (line 618) ! * atomic: GTY Options. (line 254) ! * atomic_add_fetchMODE instruction pattern: Standard Names. (line 1808) ! * atomic_addMODE instruction pattern: Standard Names. (line 1779) ! * atomic_and_fetchMODE instruction pattern: Standard Names. (line 1808) ! * atomic_andMODE instruction pattern: Standard Names. (line 1779) ! * atomic_compare_and_swapMODE instruction pattern: Standard Names. ! (line 1715) ! * atomic_exchangeMODE instruction pattern: Standard Names. (line 1767) ! * atomic_fetch_addMODE instruction pattern: Standard Names. (line 1793) ! * atomic_fetch_andMODE instruction pattern: Standard Names. (line 1793) ! * atomic_fetch_nandMODE instruction pattern: Standard Names. (line 1793) ! * atomic_fetch_orMODE instruction pattern: Standard Names. (line 1793) ! * atomic_fetch_subMODE instruction pattern: Standard Names. (line 1793) ! * atomic_fetch_xorMODE instruction pattern: Standard Names. (line 1793) ! * atomic_loadMODE instruction pattern: Standard Names. (line 1746) ! * atomic_nand_fetchMODE instruction pattern: Standard Names. (line 1808) ! * atomic_nandMODE instruction pattern: Standard Names. (line 1779) ! * atomic_or_fetchMODE instruction pattern: Standard Names. (line 1808) ! * atomic_orMODE instruction pattern: Standard Names. (line 1779) ! * atomic_storeMODE instruction pattern: Standard Names. (line 1756) ! * atomic_sub_fetchMODE instruction pattern: Standard Names. (line 1808) ! * atomic_subMODE instruction pattern: Standard Names. (line 1779) ! * atomic_test_and_set instruction pattern: Standard Names. (line 1825) ! * atomic_xor_fetchMODE instruction pattern: Standard Names. (line 1808) ! * atomic_xorMODE instruction pattern: Standard Names. (line 1779) * attr <1>: Tagging Insns. (line 54) - * attr: Expressions. (line 165) - * attr_flag: Expressions. (line 140) * attribute expressions: Expressions. (line 6) * attribute specifications: Attr Example. (line 6) * attribute specifications example: Attr Example. (line 6) - * ATTRIBUTE_ALIGNED_VALUE: Storage Layout. (line 179) * attributes: Attributes. (line 6) * attributes, defining: Defining Attributes. (line 6) * attributes, target-specific: Target Attributes. (line 6) ! * autoincrement addressing, availability: Portability. (line 21) * autoincrement/decrement addressing: Simple Constraints. (line 30) * automata_option: Processor pipeline description. ! (line 305) * automaton based pipeline description: Processor pipeline description. (line 6) * automaton based scheduler: Processor pipeline description. (line 6) * AVOID_CCMODE_COPIES: Values in Registers. ! (line 153) * backslash: Output Template. (line 46) * barrier: Insns. (line 166) ! * barrier and /f: Flags. (line 107) ! * barrier and /v: Flags. (line 44) ! * BASE_REG_CLASS: Register Classes. (line 114) * basic block: Basic Blocks. (line 6) * Basic Statements: Basic Statements. (line 6) * basic-block.h: Control Flow. (line 6) - * BASIC_BLOCK: Basic Blocks. (line 14) * basic_block: Basic Blocks. (line 6) * BB_HEAD, BB_END: Maintaining the CFG. ! (line 77) ! * bb_seq: GIMPLE sequences. (line 73) ! * BIGGEST_ALIGNMENT: Storage Layout. (line 169) ! * BIGGEST_FIELD_ALIGNMENT: Storage Layout. (line 190) * BImode: Machine Modes. (line 22) * BIND_EXPR: Unary and Binary Expressions. (line 6) * BINFO_TYPE: Classes. (line 6) * bit-fields: Bit-Fields. (line 6) * BIT_AND_EXPR: Unary and Binary Expressions. (line 6) * BIT_IOR_EXPR: Unary and Binary Expressions. --- 41880,45433 ---- [index] * Menu: ! * '!' in constraint: Multi-Alternative. (line 47) ! * '#' in constraint: Modifiers. (line 67) ! * '#' in template: Output Template. (line 66) * #pragma: Misc. (line 379) ! * '%' in constraint: Modifiers. (line 45) * % in GTY option: GTY Options. (line 18) ! * '%' in template: Output Template. (line 6) ! * '&' in constraint: Modifiers. (line 25) * (nil): RTL Objects. (line 73) ! * '*' in constraint: Modifiers. (line 72) ! * '*' in template: Output Statement. (line 29) ! * '+' in constraint: Modifiers. (line 12) ! * '-fsection-anchors': Special Accessors. (line 117) ! * '-fsection-anchors' <1>: Anchored Addresses. (line 6) ! * '/c' in RTL dump: Flags. (line 221) ! * '/f' in RTL dump: Flags. (line 229) ! * '/i' in RTL dump: Flags. (line 274) ! * '/j' in RTL dump: Flags. (line 286) ! * '/s' in RTL dump: Flags. (line 245) ! * '/u' in RTL dump: Flags. (line 296) ! * '/v' in RTL dump: Flags. (line 328) ! * '0' in constraint: Simple Constraints. (line 128) ! * '<' in constraint: Simple Constraints. (line 47) ! * '=' in constraint: Modifiers. (line 8) ! * '>' in constraint: Simple Constraints. (line 59) ! * '?' in constraint: Multi-Alternative. (line 41) * \: Output Template. (line 46) * __absvdi2: Integer library routines. (line 106) + * __absvsi2: Integer library routines. + (line 105) * __addda3: Fixed-point fractional library routines. ! (line 44) * __adddf3: Soft float library routines. ! (line 22) * __adddq3: Fixed-point fractional library routines. ! (line 31) * __addha3: Fixed-point fractional library routines. ! (line 41) * __addhq3: Fixed-point fractional library routines. (line 29) + * __addqq3: Fixed-point fractional library routines. + (line 27) * __addsa3: Fixed-point fractional library routines. ! (line 43) * __addsf3: Soft float library routines. ! (line 21) * __addsq3: Fixed-point fractional library routines. ! (line 30) * __addta3: Fixed-point fractional library routines. ! (line 45) * __addtf3: Soft float library routines. ! (line 23) * __adduda3: Fixed-point fractional library routines. ! (line 51) * __addudq3: Fixed-point fractional library routines. ! (line 39) * __adduha3: Fixed-point fractional library routines. ! (line 47) * __adduhq3: Fixed-point fractional library routines. (line 35) + * __adduqq3: Fixed-point fractional library routines. + (line 33) * __addusa3: Fixed-point fractional library routines. ! (line 49) * __addusq3: Fixed-point fractional library routines. ! (line 37) * __adduta3: Fixed-point fractional library routines. ! (line 53) * __addvdi3: Integer library routines. (line 110) + * __addvsi3: Integer library routines. + (line 109) * __addxf3: Soft float library routines. ! (line 25) * __ashlda3: Fixed-point fractional library routines. ! (line 350) * __ashldi3: Integer library routines. ! (line 13) * __ashldq3: Fixed-point fractional library routines. ! (line 338) * __ashlha3: Fixed-point fractional library routines. ! (line 348) * __ashlhq3: Fixed-point fractional library routines. (line 336) + * __ashlqq3: Fixed-point fractional library routines. + (line 335) * __ashlsa3: Fixed-point fractional library routines. ! (line 349) * __ashlsi3: Integer library routines. ! (line 12) * __ashlsq3: Fixed-point fractional library routines. ! (line 337) * __ashlta3: Fixed-point fractional library routines. ! (line 351) * __ashlti3: Integer library routines. ! (line 14) * __ashluda3: Fixed-point fractional library routines. ! (line 357) * __ashludq3: Fixed-point fractional library routines. ! (line 346) * __ashluha3: Fixed-point fractional library routines. ! (line 353) * __ashluhq3: Fixed-point fractional library routines. (line 342) + * __ashluqq3: Fixed-point fractional library routines. + (line 340) * __ashlusa3: Fixed-point fractional library routines. ! (line 355) * __ashlusq3: Fixed-point fractional library routines. ! (line 344) * __ashluta3: Fixed-point fractional library routines. ! (line 359) * __ashrda3: Fixed-point fractional library routines. ! (line 370) * __ashrdi3: Integer library routines. ! (line 18) * __ashrdq3: Fixed-point fractional library routines. ! (line 366) * __ashrha3: Fixed-point fractional library routines. ! (line 368) * __ashrhq3: Fixed-point fractional library routines. (line 364) + * __ashrqq3: Fixed-point fractional library routines. + (line 363) * __ashrsa3: Fixed-point fractional library routines. ! (line 369) * __ashrsi3: Integer library routines. ! (line 17) * __ashrsq3: Fixed-point fractional library routines. ! (line 365) * __ashrta3: Fixed-point fractional library routines. ! (line 371) * __ashrti3: Integer library routines. ! (line 19) * __bid_adddd3: Decimal float library routines. ! (line 23) * __bid_addsd3: Decimal float library routines. ! (line 19) * __bid_addtd3: Decimal float library routines. ! (line 27) * __bid_divdd3: Decimal float library routines. ! (line 66) * __bid_divsd3: Decimal float library routines. ! (line 62) * __bid_divtd3: Decimal float library routines. ! (line 70) * __bid_eqdd2: Decimal float library routines. ! (line 258) * __bid_eqsd2: Decimal float library routines. ! (line 256) * __bid_eqtd2: Decimal float library routines. ! (line 260) * __bid_extendddtd2: Decimal float library routines. ! (line 91) * __bid_extendddtf: Decimal float library routines. ! (line 139) * __bid_extendddxf: Decimal float library routines. ! (line 133) * __bid_extenddfdd: Decimal float library routines. ! (line 146) * __bid_extenddftd: Decimal float library routines. ! (line 106) * __bid_extendsddd2: Decimal float library routines. ! (line 87) * __bid_extendsddf: Decimal float library routines. ! (line 127) * __bid_extendsdtd2: Decimal float library routines. ! (line 89) * __bid_extendsdtf: Decimal float library routines. ! (line 137) * __bid_extendsdxf: Decimal float library routines. ! (line 131) * __bid_extendsfdd: Decimal float library routines. ! (line 102) * __bid_extendsfsd: Decimal float library routines. ! (line 144) * __bid_extendsftd: Decimal float library routines. ! (line 104) * __bid_extendtftd: Decimal float library routines. ! (line 148) * __bid_extendxftd: Decimal float library routines. ! (line 108) * __bid_fixdddi: Decimal float library routines. ! (line 169) * __bid_fixddsi: Decimal float library routines. ! (line 161) * __bid_fixsddi: Decimal float library routines. ! (line 167) * __bid_fixsdsi: Decimal float library routines. ! (line 159) * __bid_fixtddi: Decimal float library routines. ! (line 171) * __bid_fixtdsi: Decimal float library routines. ! (line 163) * __bid_fixunsdddi: Decimal float library routines. ! (line 186) * __bid_fixunsddsi: Decimal float library routines. ! (line 177) * __bid_fixunssddi: Decimal float library routines. ! (line 184) * __bid_fixunssdsi: Decimal float library routines. ! (line 175) * __bid_fixunstddi: Decimal float library routines. ! (line 188) * __bid_fixunstdsi: Decimal float library routines. ! (line 179) * __bid_floatdidd: Decimal float library routines. ! (line 204) * __bid_floatdisd: Decimal float library routines. ! (line 202) * __bid_floatditd: Decimal float library routines. ! (line 206) * __bid_floatsidd: Decimal float library routines. ! (line 195) * __bid_floatsisd: Decimal float library routines. ! (line 193) * __bid_floatsitd: Decimal float library routines. ! (line 197) * __bid_floatunsdidd: Decimal float library routines. ! (line 222) * __bid_floatunsdisd: Decimal float library routines. ! (line 220) * __bid_floatunsditd: Decimal float library routines. ! (line 224) * __bid_floatunssidd: Decimal float library routines. ! (line 213) * __bid_floatunssisd: Decimal float library routines. ! (line 211) * __bid_floatunssitd: Decimal float library routines. ! (line 215) * __bid_gedd2: Decimal float library routines. ! (line 276) * __bid_gesd2: Decimal float library routines. ! (line 274) * __bid_getd2: Decimal float library routines. ! (line 278) * __bid_gtdd2: Decimal float library routines. ! (line 303) * __bid_gtsd2: Decimal float library routines. ! (line 301) * __bid_gttd2: Decimal float library routines. ! (line 305) * __bid_ledd2: Decimal float library routines. ! (line 294) * __bid_lesd2: Decimal float library routines. ! (line 292) * __bid_letd2: Decimal float library routines. ! (line 296) * __bid_ltdd2: Decimal float library routines. ! (line 285) * __bid_ltsd2: Decimal float library routines. ! (line 283) * __bid_lttd2: Decimal float library routines. ! (line 287) * __bid_muldd3: Decimal float library routines. ! (line 52) * __bid_mulsd3: Decimal float library routines. ! (line 48) * __bid_multd3: Decimal float library routines. ! (line 56) * __bid_nedd2: Decimal float library routines. ! (line 267) * __bid_negdd2: Decimal float library routines. ! (line 77) * __bid_negsd2: Decimal float library routines. ! (line 75) * __bid_negtd2: Decimal float library routines. ! (line 79) * __bid_nesd2: Decimal float library routines. ! (line 265) * __bid_netd2: Decimal float library routines. ! (line 269) * __bid_subdd3: Decimal float library routines. ! (line 37) * __bid_subsd3: Decimal float library routines. ! (line 33) * __bid_subtd3: Decimal float library routines. ! (line 41) * __bid_truncdddf: Decimal float library routines. ! (line 152) * __bid_truncddsd2: Decimal float library routines. ! (line 93) * __bid_truncddsf: Decimal float library routines. ! (line 123) * __bid_truncdfsd: Decimal float library routines. ! (line 110) * __bid_truncsdsf: Decimal float library routines. ! (line 150) * __bid_trunctddd2: Decimal float library routines. ! (line 97) * __bid_trunctddf: Decimal float library routines. ! (line 129) * __bid_trunctdsd2: Decimal float library routines. ! (line 95) * __bid_trunctdsf: Decimal float library routines. ! (line 125) * __bid_trunctdtf: Decimal float library routines. ! (line 154) * __bid_trunctdxf: Decimal float library routines. ! (line 135) * __bid_trunctfdd: Decimal float library routines. ! (line 118) * __bid_trunctfsd: Decimal float library routines. ! (line 114) * __bid_truncxfdd: Decimal float library routines. ! (line 116) * __bid_truncxfsd: Decimal float library routines. ! (line 112) * __bid_unorddd2: Decimal float library routines. ! (line 234) * __bid_unordsd2: Decimal float library routines. ! (line 232) * __bid_unordtd2: Decimal float library routines. ! (line 236) * __bswapdi2: Integer library routines. (line 161) ! * __bswapsi2: Integer library routines. ! (line 160) ! * __builtin_classify_type: Varargs. (line 48) ! * __builtin_next_arg: Varargs. (line 39) ! * __builtin_saveregs: Varargs. (line 22) * __clear_cache: Miscellaneous routines. ! (line 9) * __clzdi2: Integer library routines. (line 130) + * __clzsi2: Integer library routines. + (line 129) * __clzti2: Integer library routines. ! (line 131) * __cmpda2: Fixed-point fractional library routines. ! (line 450) * __cmpdf2: Soft float library routines. ! (line 163) * __cmpdi2: Integer library routines. ! (line 86) * __cmpdq2: Fixed-point fractional library routines. ! (line 439) * __cmpha2: Fixed-point fractional library routines. ! (line 448) * __cmphq2: Fixed-point fractional library routines. (line 437) + * __cmpqq2: Fixed-point fractional library routines. + (line 436) * __cmpsa2: Fixed-point fractional library routines. ! (line 449) * __cmpsf2: Soft float library routines. ! (line 162) * __cmpsq2: Fixed-point fractional library routines. ! (line 438) * __cmpta2: Fixed-point fractional library routines. ! (line 451) * __cmptf2: Soft float library routines. ! (line 164) * __cmpti2: Integer library routines. ! (line 87) * __cmpuda2: Fixed-point fractional library routines. ! (line 456) * __cmpudq2: Fixed-point fractional library routines. ! (line 446) * __cmpuha2: Fixed-point fractional library routines. ! (line 453) * __cmpuhq2: Fixed-point fractional library routines. (line 443) + * __cmpuqq2: Fixed-point fractional library routines. + (line 441) * __cmpusa2: Fixed-point fractional library routines. ! (line 455) * __cmpusq2: Fixed-point fractional library routines. ! (line 444) * __cmputa2: Fixed-point fractional library routines. ! (line 458) * __CTOR_LIST__: Initialization. (line 25) * __ctzdi2: Integer library routines. (line 137) + * __ctzsi2: Integer library routines. + (line 136) * __ctzti2: Integer library routines. ! (line 138) * __divda3: Fixed-point fractional library routines. ! (line 226) * __divdc3: Soft float library routines. ! (line 250) * __divdf3: Soft float library routines. ! (line 47) * __divdi3: Integer library routines. ! (line 24) * __divdq3: Fixed-point fractional library routines. ! (line 221) * __divha3: Fixed-point fractional library routines. ! (line 223) * __divhq3: Fixed-point fractional library routines. (line 219) + * __divqq3: Fixed-point fractional library routines. + (line 217) * __divsa3: Fixed-point fractional library routines. ! (line 225) * __divsc3: Soft float library routines. ! (line 248) * __divsf3: Soft float library routines. ! (line 46) * __divsi3: Integer library routines. ! (line 23) * __divsq3: Fixed-point fractional library routines. ! (line 220) * __divta3: Fixed-point fractional library routines. ! (line 227) * __divtc3: Soft float library routines. ! (line 252) * __divtf3: Soft float library routines. ! (line 48) * __divti3: Integer library routines. ! (line 25) * __divxc3: Soft float library routines. ! (line 254) * __divxf3: Soft float library routines. ! (line 50) * __dpd_adddd3: Decimal float library routines. ! (line 21) * __dpd_addsd3: Decimal float library routines. ! (line 17) * __dpd_addtd3: Decimal float library routines. ! (line 25) * __dpd_divdd3: Decimal float library routines. ! (line 64) * __dpd_divsd3: Decimal float library routines. ! (line 60) * __dpd_divtd3: Decimal float library routines. ! (line 68) * __dpd_eqdd2: Decimal float library routines. ! (line 257) * __dpd_eqsd2: Decimal float library routines. ! (line 255) * __dpd_eqtd2: Decimal float library routines. ! (line 259) * __dpd_extendddtd2: Decimal float library routines. ! (line 90) * __dpd_extendddtf: Decimal float library routines. ! (line 138) * __dpd_extendddxf: Decimal float library routines. ! (line 132) * __dpd_extenddfdd: Decimal float library routines. ! (line 145) * __dpd_extenddftd: Decimal float library routines. ! (line 105) * __dpd_extendsddd2: Decimal float library routines. ! (line 86) * __dpd_extendsddf: Decimal float library routines. ! (line 126) * __dpd_extendsdtd2: Decimal float library routines. ! (line 88) * __dpd_extendsdtf: Decimal float library routines. ! (line 136) * __dpd_extendsdxf: Decimal float library routines. ! (line 130) * __dpd_extendsfdd: Decimal float library routines. ! (line 101) * __dpd_extendsfsd: Decimal float library routines. ! (line 143) * __dpd_extendsftd: Decimal float library routines. ! (line 103) * __dpd_extendtftd: Decimal float library routines. ! (line 147) * __dpd_extendxftd: Decimal float library routines. ! (line 107) * __dpd_fixdddi: Decimal float library routines. ! (line 168) * __dpd_fixddsi: Decimal float library routines. ! (line 160) * __dpd_fixsddi: Decimal float library routines. ! (line 166) * __dpd_fixsdsi: Decimal float library routines. ! (line 158) * __dpd_fixtddi: Decimal float library routines. ! (line 170) * __dpd_fixtdsi: Decimal float library routines. ! (line 162) * __dpd_fixunsdddi: Decimal float library routines. ! (line 185) * __dpd_fixunsddsi: Decimal float library routines. ! (line 176) * __dpd_fixunssddi: Decimal float library routines. ! (line 183) * __dpd_fixunssdsi: Decimal float library routines. ! (line 174) * __dpd_fixunstddi: Decimal float library routines. ! (line 187) * __dpd_fixunstdsi: Decimal float library routines. ! (line 178) * __dpd_floatdidd: Decimal float library routines. ! (line 203) * __dpd_floatdisd: Decimal float library routines. ! (line 201) * __dpd_floatditd: Decimal float library routines. ! (line 205) * __dpd_floatsidd: Decimal float library routines. ! (line 194) * __dpd_floatsisd: Decimal float library routines. ! (line 192) * __dpd_floatsitd: Decimal float library routines. ! (line 196) * __dpd_floatunsdidd: Decimal float library routines. ! (line 221) * __dpd_floatunsdisd: Decimal float library routines. ! (line 219) * __dpd_floatunsditd: Decimal float library routines. ! (line 223) * __dpd_floatunssidd: Decimal float library routines. ! (line 212) * __dpd_floatunssisd: Decimal float library routines. ! (line 210) * __dpd_floatunssitd: Decimal float library routines. ! (line 214) * __dpd_gedd2: Decimal float library routines. ! (line 275) * __dpd_gesd2: Decimal float library routines. ! (line 273) * __dpd_getd2: Decimal float library routines. ! (line 277) * __dpd_gtdd2: Decimal float library routines. ! (line 302) * __dpd_gtsd2: Decimal float library routines. ! (line 300) * __dpd_gttd2: Decimal float library routines. ! (line 304) * __dpd_ledd2: Decimal float library routines. ! (line 293) * __dpd_lesd2: Decimal float library routines. ! (line 291) * __dpd_letd2: Decimal float library routines. ! (line 295) * __dpd_ltdd2: Decimal float library routines. ! (line 284) * __dpd_ltsd2: Decimal float library routines. ! (line 282) * __dpd_lttd2: Decimal float library routines. ! (line 286) * __dpd_muldd3: Decimal float library routines. ! (line 50) * __dpd_mulsd3: Decimal float library routines. ! (line 46) * __dpd_multd3: Decimal float library routines. ! (line 54) * __dpd_nedd2: Decimal float library routines. ! (line 266) * __dpd_negdd2: Decimal float library routines. ! (line 76) * __dpd_negsd2: Decimal float library routines. ! (line 74) * __dpd_negtd2: Decimal float library routines. ! (line 78) * __dpd_nesd2: Decimal float library routines. ! (line 264) * __dpd_netd2: Decimal float library routines. ! (line 268) * __dpd_subdd3: Decimal float library routines. ! (line 35) * __dpd_subsd3: Decimal float library routines. ! (line 31) * __dpd_subtd3: Decimal float library routines. ! (line 39) * __dpd_truncdddf: Decimal float library routines. ! (line 151) * __dpd_truncddsd2: Decimal float library routines. ! (line 92) * __dpd_truncddsf: Decimal float library routines. ! (line 122) * __dpd_truncdfsd: Decimal float library routines. ! (line 109) * __dpd_truncsdsf: Decimal float library routines. ! (line 149) * __dpd_trunctddd2: Decimal float library routines. ! (line 96) * __dpd_trunctddf: Decimal float library routines. ! (line 128) * __dpd_trunctdsd2: Decimal float library routines. ! (line 94) * __dpd_trunctdsf: Decimal float library routines. ! (line 124) * __dpd_trunctdtf: Decimal float library routines. ! (line 153) * __dpd_trunctdxf: Decimal float library routines. ! (line 134) * __dpd_trunctfdd: Decimal float library routines. ! (line 117) * __dpd_trunctfsd: Decimal float library routines. ! (line 113) * __dpd_truncxfdd: Decimal float library routines. ! (line 115) * __dpd_truncxfsd: Decimal float library routines. ! (line 111) * __dpd_unorddd2: Decimal float library routines. ! (line 233) * __dpd_unordsd2: Decimal float library routines. ! (line 231) * __dpd_unordtd2: Decimal float library routines. ! (line 235) * __DTOR_LIST__: Initialization. (line 25) * __eqdf2: Soft float library routines. (line 193) + * __eqsf2: Soft float library routines. + (line 192) * __eqtf2: Soft float library routines. ! (line 194) * __extenddftf2: Soft float library routines. ! (line 67) * __extenddfxf2: Soft float library routines. ! (line 68) * __extendsfdf2: Soft float library routines. ! (line 64) * __extendsftf2: Soft float library routines. ! (line 65) * __extendsfxf2: Soft float library routines. ! (line 66) * __ffsdi2: Integer library routines. ! (line 143) * __ffsti2: Integer library routines. ! (line 144) * __fixdfdi: Soft float library routines. ! (line 87) * __fixdfsi: Soft float library routines. ! (line 80) * __fixdfti: Soft float library routines. ! (line 93) * __fixsfdi: Soft float library routines. ! (line 86) * __fixsfsi: Soft float library routines. ! (line 79) * __fixsfti: Soft float library routines. ! (line 92) * __fixtfdi: Soft float library routines. ! (line 88) * __fixtfsi: Soft float library routines. ! (line 81) * __fixtfti: Soft float library routines. ! (line 94) * __fixunsdfdi: Soft float library routines. ! (line 107) * __fixunsdfsi: Soft float library routines. ! (line 100) * __fixunsdfti: Soft float library routines. ! (line 114) * __fixunssfdi: Soft float library routines. ! (line 106) * __fixunssfsi: Soft float library routines. ! (line 99) * __fixunssfti: Soft float library routines. ! (line 113) * __fixunstfdi: Soft float library routines. ! (line 108) * __fixunstfsi: Soft float library routines. ! (line 101) * __fixunstfti: Soft float library routines. ! (line 115) * __fixunsxfdi: Soft float library routines. ! (line 109) * __fixunsxfsi: Soft float library routines. ! (line 102) * __fixunsxfti: Soft float library routines. ! (line 116) * __fixxfdi: Soft float library routines. ! (line 89) * __fixxfsi: Soft float library routines. ! (line 82) * __fixxfti: Soft float library routines. ! (line 95) * __floatdidf: Soft float library routines. (line 127) + * __floatdisf: Soft float library routines. + (line 126) * __floatditf: Soft float library routines. ! (line 128) * __floatdixf: Soft float library routines. ! (line 129) * __floatsidf: Soft float library routines. (line 121) + * __floatsisf: Soft float library routines. + (line 120) * __floatsitf: Soft float library routines. ! (line 122) * __floatsixf: Soft float library routines. ! (line 123) * __floattidf: Soft float library routines. (line 133) + * __floattisf: Soft float library routines. + (line 132) * __floattitf: Soft float library routines. ! (line 134) * __floattixf: Soft float library routines. ! (line 135) * __floatundidf: Soft float library routines. (line 145) + * __floatundisf: Soft float library routines. + (line 144) * __floatunditf: Soft float library routines. ! (line 146) * __floatundixf: Soft float library routines. ! (line 147) * __floatunsidf: Soft float library routines. (line 139) + * __floatunsisf: Soft float library routines. + (line 138) * __floatunsitf: Soft float library routines. ! (line 140) * __floatunsixf: Soft float library routines. ! (line 141) * __floatuntidf: Soft float library routines. (line 151) + * __floatuntisf: Soft float library routines. + (line 150) * __floatuntitf: Soft float library routines. ! (line 152) * __floatuntixf: Soft float library routines. ! (line 153) * __fractdadf: Fixed-point fractional library routines. ! (line 635) * __fractdadi: Fixed-point fractional library routines. ! (line 632) * __fractdadq: Fixed-point fractional library routines. ! (line 615) * __fractdaha2: Fixed-point fractional library routines. ! (line 616) * __fractdahi: Fixed-point fractional library routines. ! (line 630) * __fractdahq: Fixed-point fractional library routines. ! (line 613) * __fractdaqi: Fixed-point fractional library routines. ! (line 629) * __fractdaqq: Fixed-point fractional library routines. ! (line 612) * __fractdasa2: Fixed-point fractional library routines. ! (line 617) * __fractdasf: Fixed-point fractional library routines. ! (line 634) * __fractdasi: Fixed-point fractional library routines. ! (line 631) * __fractdasq: Fixed-point fractional library routines. ! (line 614) * __fractdata2: Fixed-point fractional library routines. ! (line 618) * __fractdati: Fixed-point fractional library routines. ! (line 633) * __fractdauda: Fixed-point fractional library routines. ! (line 626) * __fractdaudq: Fixed-point fractional library routines. ! (line 622) * __fractdauha: Fixed-point fractional library routines. ! (line 624) * __fractdauhq: Fixed-point fractional library routines. (line 620) + * __fractdauqq: Fixed-point fractional library routines. + (line 619) * __fractdausa: Fixed-point fractional library routines. ! (line 625) * __fractdausq: Fixed-point fractional library routines. ! (line 621) * __fractdauta: Fixed-point fractional library routines. ! (line 627) * __fractdfda: Fixed-point fractional library routines. ! (line 1024) * __fractdfdq: Fixed-point fractional library routines. ! (line 1021) * __fractdfha: Fixed-point fractional library routines. ! (line 1022) * __fractdfhq: Fixed-point fractional library routines. (line 1019) + * __fractdfqq: Fixed-point fractional library routines. + (line 1018) * __fractdfsa: Fixed-point fractional library routines. ! (line 1023) * __fractdfsq: Fixed-point fractional library routines. ! (line 1020) * __fractdfta: Fixed-point fractional library routines. ! (line 1025) * __fractdfuda: Fixed-point fractional library routines. ! (line 1032) * __fractdfudq: Fixed-point fractional library routines. ! (line 1029) * __fractdfuha: Fixed-point fractional library routines. ! (line 1030) * __fractdfuhq: Fixed-point fractional library routines. (line 1027) + * __fractdfuqq: Fixed-point fractional library routines. + (line 1026) * __fractdfusa: Fixed-point fractional library routines. ! (line 1031) * __fractdfusq: Fixed-point fractional library routines. ! (line 1028) * __fractdfuta: Fixed-point fractional library routines. ! (line 1033) * __fractdida: Fixed-point fractional library routines. ! (line 974) * __fractdidq: Fixed-point fractional library routines. ! (line 971) * __fractdiha: Fixed-point fractional library routines. ! (line 972) * __fractdihq: Fixed-point fractional library routines. (line 969) + * __fractdiqq: Fixed-point fractional library routines. + (line 968) * __fractdisa: Fixed-point fractional library routines. ! (line 973) * __fractdisq: Fixed-point fractional library routines. ! (line 970) * __fractdita: Fixed-point fractional library routines. ! (line 975) * __fractdiuda: Fixed-point fractional library routines. ! (line 982) * __fractdiudq: Fixed-point fractional library routines. ! (line 979) * __fractdiuha: Fixed-point fractional library routines. ! (line 980) * __fractdiuhq: Fixed-point fractional library routines. (line 977) + * __fractdiuqq: Fixed-point fractional library routines. + (line 976) * __fractdiusa: Fixed-point fractional library routines. ! (line 981) * __fractdiusq: Fixed-point fractional library routines. ! (line 978) * __fractdiuta: Fixed-point fractional library routines. ! (line 983) * __fractdqda: Fixed-point fractional library routines. ! (line 543) * __fractdqdf: Fixed-point fractional library routines. ! (line 565) * __fractdqdi: Fixed-point fractional library routines. ! (line 562) * __fractdqha: Fixed-point fractional library routines. ! (line 541) * __fractdqhi: Fixed-point fractional library routines. ! (line 560) * __fractdqhq2: Fixed-point fractional library routines. ! (line 539) * __fractdqqi: Fixed-point fractional library routines. ! (line 559) * __fractdqqq2: Fixed-point fractional library routines. ! (line 538) * __fractdqsa: Fixed-point fractional library routines. ! (line 542) * __fractdqsf: Fixed-point fractional library routines. ! (line 564) * __fractdqsi: Fixed-point fractional library routines. ! (line 561) * __fractdqsq2: Fixed-point fractional library routines. ! (line 540) * __fractdqta: Fixed-point fractional library routines. ! (line 544) * __fractdqti: Fixed-point fractional library routines. ! (line 563) * __fractdquda: Fixed-point fractional library routines. ! (line 555) * __fractdqudq: Fixed-point fractional library routines. ! (line 550) * __fractdquha: Fixed-point fractional library routines. ! (line 552) * __fractdquhq: Fixed-point fractional library routines. (line 547) + * __fractdquqq: Fixed-point fractional library routines. + (line 545) * __fractdqusa: Fixed-point fractional library routines. ! (line 554) * __fractdqusq: Fixed-point fractional library routines. ! (line 548) * __fractdquta: Fixed-point fractional library routines. ! (line 557) * __fracthada2: Fixed-point fractional library routines. ! (line 571) * __fracthadf: Fixed-point fractional library routines. ! (line 589) * __fracthadi: Fixed-point fractional library routines. ! (line 586) * __fracthadq: Fixed-point fractional library routines. ! (line 569) * __fracthahi: Fixed-point fractional library routines. ! (line 584) * __fracthahq: Fixed-point fractional library routines. ! (line 567) * __fracthaqi: Fixed-point fractional library routines. ! (line 583) * __fracthaqq: Fixed-point fractional library routines. ! (line 566) * __fracthasa2: Fixed-point fractional library routines. ! (line 570) * __fracthasf: Fixed-point fractional library routines. ! (line 588) * __fracthasi: Fixed-point fractional library routines. ! (line 585) * __fracthasq: Fixed-point fractional library routines. ! (line 568) * __fracthata2: Fixed-point fractional library routines. ! (line 572) * __fracthati: Fixed-point fractional library routines. ! (line 587) * __fracthauda: Fixed-point fractional library routines. ! (line 580) * __fracthaudq: Fixed-point fractional library routines. ! (line 576) * __fracthauha: Fixed-point fractional library routines. ! (line 578) * __fracthauhq: Fixed-point fractional library routines. (line 574) + * __fracthauqq: Fixed-point fractional library routines. + (line 573) * __fracthausa: Fixed-point fractional library routines. ! (line 579) * __fracthausq: Fixed-point fractional library routines. ! (line 575) * __fracthauta: Fixed-point fractional library routines. ! (line 581) * __fracthida: Fixed-point fractional library routines. ! (line 942) * __fracthidq: Fixed-point fractional library routines. ! (line 939) * __fracthiha: Fixed-point fractional library routines. ! (line 940) * __fracthihq: Fixed-point fractional library routines. (line 937) + * __fracthiqq: Fixed-point fractional library routines. + (line 936) * __fracthisa: Fixed-point fractional library routines. ! (line 941) * __fracthisq: Fixed-point fractional library routines. ! (line 938) * __fracthita: Fixed-point fractional library routines. ! (line 943) * __fracthiuda: Fixed-point fractional library routines. ! (line 950) * __fracthiudq: Fixed-point fractional library routines. ! (line 947) * __fracthiuha: Fixed-point fractional library routines. ! (line 948) * __fracthiuhq: Fixed-point fractional library routines. (line 945) + * __fracthiuqq: Fixed-point fractional library routines. + (line 944) * __fracthiusa: Fixed-point fractional library routines. ! (line 949) * __fracthiusq: Fixed-point fractional library routines. ! (line 946) * __fracthiuta: Fixed-point fractional library routines. ! (line 951) * __fracthqda: Fixed-point fractional library routines. ! (line 497) * __fracthqdf: Fixed-point fractional library routines. ! (line 513) * __fracthqdi: Fixed-point fractional library routines. ! (line 510) * __fracthqdq2: Fixed-point fractional library routines. ! (line 494) * __fracthqha: Fixed-point fractional library routines. ! (line 495) * __fracthqhi: Fixed-point fractional library routines. (line 508) + * __fracthqqi: Fixed-point fractional library routines. + (line 507) * __fracthqqq2: Fixed-point fractional library routines. ! (line 492) * __fracthqsa: Fixed-point fractional library routines. ! (line 496) * __fracthqsf: Fixed-point fractional library routines. ! (line 512) * __fracthqsi: Fixed-point fractional library routines. ! (line 509) * __fracthqsq2: Fixed-point fractional library routines. ! (line 493) * __fracthqta: Fixed-point fractional library routines. ! (line 498) * __fracthqti: Fixed-point fractional library routines. ! (line 511) * __fracthquda: Fixed-point fractional library routines. ! (line 505) * __fracthqudq: Fixed-point fractional library routines. ! (line 502) * __fracthquha: Fixed-point fractional library routines. ! (line 503) * __fracthquhq: Fixed-point fractional library routines. (line 500) + * __fracthquqq: Fixed-point fractional library routines. + (line 499) * __fracthqusa: Fixed-point fractional library routines. ! (line 504) * __fracthqusq: Fixed-point fractional library routines. ! (line 501) * __fracthquta: Fixed-point fractional library routines. ! (line 506) * __fractqida: Fixed-point fractional library routines. ! (line 924) * __fractqidq: Fixed-point fractional library routines. ! (line 921) * __fractqiha: Fixed-point fractional library routines. ! (line 922) * __fractqihq: Fixed-point fractional library routines. (line 919) + * __fractqiqq: Fixed-point fractional library routines. + (line 918) * __fractqisa: Fixed-point fractional library routines. ! (line 923) * __fractqisq: Fixed-point fractional library routines. ! (line 920) * __fractqita: Fixed-point fractional library routines. ! (line 925) * __fractqiuda: Fixed-point fractional library routines. ! (line 933) * __fractqiudq: Fixed-point fractional library routines. ! (line 929) * __fractqiuha: Fixed-point fractional library routines. ! (line 931) * __fractqiuhq: Fixed-point fractional library routines. (line 927) + * __fractqiuqq: Fixed-point fractional library routines. + (line 926) * __fractqiusa: Fixed-point fractional library routines. ! (line 932) * __fractqiusq: Fixed-point fractional library routines. ! (line 928) * __fractqiuta: Fixed-point fractional library routines. ! (line 934) * __fractqqda: Fixed-point fractional library routines. ! (line 473) * __fractqqdf: Fixed-point fractional library routines. ! (line 491) * __fractqqdi: Fixed-point fractional library routines. ! (line 488) * __fractqqdq2: Fixed-point fractional library routines. ! (line 470) * __fractqqha: Fixed-point fractional library routines. ! (line 471) * __fractqqhi: Fixed-point fractional library routines. ! (line 486) * __fractqqhq2: Fixed-point fractional library routines. ! (line 468) * __fractqqqi: Fixed-point fractional library routines. ! (line 485) * __fractqqsa: Fixed-point fractional library routines. ! (line 472) * __fractqqsf: Fixed-point fractional library routines. ! (line 490) * __fractqqsi: Fixed-point fractional library routines. ! (line 487) * __fractqqsq2: Fixed-point fractional library routines. ! (line 469) * __fractqqta: Fixed-point fractional library routines. ! (line 474) * __fractqqti: Fixed-point fractional library routines. ! (line 489) * __fractqquda: Fixed-point fractional library routines. ! (line 482) * __fractqqudq: Fixed-point fractional library routines. ! (line 478) * __fractqquha: Fixed-point fractional library routines. ! (line 480) * __fractqquhq: Fixed-point fractional library routines. (line 476) + * __fractqquqq: Fixed-point fractional library routines. + (line 475) * __fractqqusa: Fixed-point fractional library routines. ! (line 481) * __fractqqusq: Fixed-point fractional library routines. ! (line 477) * __fractqquta: Fixed-point fractional library routines. ! (line 483) * __fractsada2: Fixed-point fractional library routines. ! (line 595) * __fractsadf: Fixed-point fractional library routines. ! (line 611) * __fractsadi: Fixed-point fractional library routines. ! (line 608) * __fractsadq: Fixed-point fractional library routines. ! (line 593) * __fractsaha2: Fixed-point fractional library routines. ! (line 594) * __fractsahi: Fixed-point fractional library routines. ! (line 606) * __fractsahq: Fixed-point fractional library routines. ! (line 591) * __fractsaqi: Fixed-point fractional library routines. ! (line 605) * __fractsaqq: Fixed-point fractional library routines. ! (line 590) * __fractsasf: Fixed-point fractional library routines. ! (line 610) * __fractsasi: Fixed-point fractional library routines. ! (line 607) * __fractsasq: Fixed-point fractional library routines. ! (line 592) * __fractsata2: Fixed-point fractional library routines. ! (line 596) * __fractsati: Fixed-point fractional library routines. ! (line 609) * __fractsauda: Fixed-point fractional library routines. ! (line 603) * __fractsaudq: Fixed-point fractional library routines. ! (line 600) * __fractsauha: Fixed-point fractional library routines. ! (line 601) * __fractsauhq: Fixed-point fractional library routines. (line 598) + * __fractsauqq: Fixed-point fractional library routines. + (line 597) * __fractsausa: Fixed-point fractional library routines. ! (line 602) * __fractsausq: Fixed-point fractional library routines. ! (line 599) * __fractsauta: Fixed-point fractional library routines. ! (line 604) * __fractsfda: Fixed-point fractional library routines. ! (line 1008) * __fractsfdq: Fixed-point fractional library routines. ! (line 1005) * __fractsfha: Fixed-point fractional library routines. ! (line 1006) * __fractsfhq: Fixed-point fractional library routines. (line 1003) + * __fractsfqq: Fixed-point fractional library routines. + (line 1002) * __fractsfsa: Fixed-point fractional library routines. ! (line 1007) * __fractsfsq: Fixed-point fractional library routines. ! (line 1004) * __fractsfta: Fixed-point fractional library routines. ! (line 1009) * __fractsfuda: Fixed-point fractional library routines. ! (line 1016) * __fractsfudq: Fixed-point fractional library routines. ! (line 1013) * __fractsfuha: Fixed-point fractional library routines. ! (line 1014) * __fractsfuhq: Fixed-point fractional library routines. (line 1011) + * __fractsfuqq: Fixed-point fractional library routines. + (line 1010) * __fractsfusa: Fixed-point fractional library routines. ! (line 1015) * __fractsfusq: Fixed-point fractional library routines. ! (line 1012) * __fractsfuta: Fixed-point fractional library routines. ! (line 1017) * __fractsida: Fixed-point fractional library routines. ! (line 958) * __fractsidq: Fixed-point fractional library routines. ! (line 955) * __fractsiha: Fixed-point fractional library routines. ! (line 956) * __fractsihq: Fixed-point fractional library routines. (line 953) + * __fractsiqq: Fixed-point fractional library routines. + (line 952) * __fractsisa: Fixed-point fractional library routines. ! (line 957) * __fractsisq: Fixed-point fractional library routines. ! (line 954) * __fractsita: Fixed-point fractional library routines. ! (line 959) * __fractsiuda: Fixed-point fractional library routines. ! (line 966) * __fractsiudq: Fixed-point fractional library routines. ! (line 963) * __fractsiuha: Fixed-point fractional library routines. ! (line 964) * __fractsiuhq: Fixed-point fractional library routines. (line 961) + * __fractsiuqq: Fixed-point fractional library routines. + (line 960) * __fractsiusa: Fixed-point fractional library routines. ! (line 965) * __fractsiusq: Fixed-point fractional library routines. ! (line 962) * __fractsiuta: Fixed-point fractional library routines. ! (line 967) * __fractsqda: Fixed-point fractional library routines. ! (line 519) * __fractsqdf: Fixed-point fractional library routines. ! (line 537) * __fractsqdi: Fixed-point fractional library routines. ! (line 534) * __fractsqdq2: Fixed-point fractional library routines. ! (line 516) * __fractsqha: Fixed-point fractional library routines. ! (line 517) * __fractsqhi: Fixed-point fractional library routines. ! (line 532) * __fractsqhq2: Fixed-point fractional library routines. ! (line 515) * __fractsqqi: Fixed-point fractional library routines. ! (line 531) * __fractsqqq2: Fixed-point fractional library routines. ! (line 514) * __fractsqsa: Fixed-point fractional library routines. ! (line 518) * __fractsqsf: Fixed-point fractional library routines. ! (line 536) * __fractsqsi: Fixed-point fractional library routines. ! (line 533) * __fractsqta: Fixed-point fractional library routines. ! (line 520) * __fractsqti: Fixed-point fractional library routines. ! (line 535) * __fractsquda: Fixed-point fractional library routines. ! (line 528) * __fractsqudq: Fixed-point fractional library routines. ! (line 524) * __fractsquha: Fixed-point fractional library routines. ! (line 526) * __fractsquhq: Fixed-point fractional library routines. (line 522) + * __fractsquqq: Fixed-point fractional library routines. + (line 521) * __fractsqusa: Fixed-point fractional library routines. ! (line 527) * __fractsqusq: Fixed-point fractional library routines. ! (line 523) * __fractsquta: Fixed-point fractional library routines. ! (line 529) * __fracttada2: Fixed-point fractional library routines. ! (line 642) * __fracttadf: Fixed-point fractional library routines. ! (line 663) * __fracttadi: Fixed-point fractional library routines. ! (line 660) * __fracttadq: Fixed-point fractional library routines. ! (line 639) * __fracttaha2: Fixed-point fractional library routines. ! (line 640) * __fracttahi: Fixed-point fractional library routines. ! (line 658) * __fracttahq: Fixed-point fractional library routines. ! (line 637) * __fracttaqi: Fixed-point fractional library routines. ! (line 657) * __fracttaqq: Fixed-point fractional library routines. ! (line 636) * __fracttasa2: Fixed-point fractional library routines. ! (line 641) * __fracttasf: Fixed-point fractional library routines. ! (line 662) * __fracttasi: Fixed-point fractional library routines. ! (line 659) * __fracttasq: Fixed-point fractional library routines. ! (line 638) * __fracttati: Fixed-point fractional library routines. ! (line 661) * __fracttauda: Fixed-point fractional library routines. ! (line 653) * __fracttaudq: Fixed-point fractional library routines. ! (line 648) * __fracttauha: Fixed-point fractional library routines. ! (line 650) * __fracttauhq: Fixed-point fractional library routines. (line 645) + * __fracttauqq: Fixed-point fractional library routines. + (line 643) * __fracttausa: Fixed-point fractional library routines. ! (line 652) * __fracttausq: Fixed-point fractional library routines. ! (line 646) * __fracttauta: Fixed-point fractional library routines. ! (line 655) * __fracttida: Fixed-point fractional library routines. ! (line 990) * __fracttidq: Fixed-point fractional library routines. ! (line 987) * __fracttiha: Fixed-point fractional library routines. ! (line 988) * __fracttihq: Fixed-point fractional library routines. (line 985) + * __fracttiqq: Fixed-point fractional library routines. + (line 984) * __fracttisa: Fixed-point fractional library routines. ! (line 989) * __fracttisq: Fixed-point fractional library routines. ! (line 986) * __fracttita: Fixed-point fractional library routines. ! (line 991) * __fracttiuda: Fixed-point fractional library routines. ! (line 999) * __fracttiudq: Fixed-point fractional library routines. ! (line 995) * __fracttiuha: Fixed-point fractional library routines. ! (line 997) * __fracttiuhq: Fixed-point fractional library routines. (line 993) + * __fracttiuqq: Fixed-point fractional library routines. + (line 992) * __fracttiusa: Fixed-point fractional library routines. ! (line 998) * __fracttiusq: Fixed-point fractional library routines. ! (line 994) * __fracttiuta: Fixed-point fractional library routines. ! (line 1000) * __fractudada: Fixed-point fractional library routines. ! (line 857) * __fractudadf: Fixed-point fractional library routines. ! (line 880) * __fractudadi: Fixed-point fractional library routines. ! (line 877) * __fractudadq: Fixed-point fractional library routines. ! (line 853) * __fractudaha: Fixed-point fractional library routines. ! (line 855) * __fractudahi: Fixed-point fractional library routines. ! (line 875) * __fractudahq: Fixed-point fractional library routines. ! (line 851) * __fractudaqi: Fixed-point fractional library routines. ! (line 874) * __fractudaqq: Fixed-point fractional library routines. ! (line 850) * __fractudasa: Fixed-point fractional library routines. ! (line 856) * __fractudasf: Fixed-point fractional library routines. ! (line 879) * __fractudasi: Fixed-point fractional library routines. ! (line 876) * __fractudasq: Fixed-point fractional library routines. ! (line 852) * __fractudata: Fixed-point fractional library routines. ! (line 858) * __fractudati: Fixed-point fractional library routines. ! (line 878) * __fractudaudq: Fixed-point fractional library routines. ! (line 866) * __fractudauha2: Fixed-point fractional library routines. ! (line 868) * __fractudauhq: Fixed-point fractional library routines. (line 862) + * __fractudauqq: Fixed-point fractional library routines. + (line 860) * __fractudausa2: Fixed-point fractional library routines. ! (line 870) * __fractudausq: Fixed-point fractional library routines. ! (line 864) * __fractudauta2: Fixed-point fractional library routines. ! (line 872) * __fractudqda: Fixed-point fractional library routines. ! (line 764) * __fractudqdf: Fixed-point fractional library routines. ! (line 790) * __fractudqdi: Fixed-point fractional library routines. ! (line 786) * __fractudqdq: Fixed-point fractional library routines. ! (line 759) * __fractudqha: Fixed-point fractional library routines. ! (line 761) * __fractudqhi: Fixed-point fractional library routines. ! (line 784) * __fractudqhq: Fixed-point fractional library routines. ! (line 756) * __fractudqqi: Fixed-point fractional library routines. ! (line 782) * __fractudqqq: Fixed-point fractional library routines. ! (line 754) * __fractudqsa: Fixed-point fractional library routines. ! (line 763) * __fractudqsf: Fixed-point fractional library routines. ! (line 789) * __fractudqsi: Fixed-point fractional library routines. ! (line 785) * __fractudqsq: Fixed-point fractional library routines. ! (line 757) * __fractudqta: Fixed-point fractional library routines. ! (line 766) * __fractudqti: Fixed-point fractional library routines. ! (line 787) * __fractudquda: Fixed-point fractional library routines. ! (line 778) * __fractudquha: Fixed-point fractional library routines. ! (line 774) * __fractudquhq2: Fixed-point fractional library routines. (line 770) + * __fractudquqq2: Fixed-point fractional library routines. + (line 768) * __fractudqusa: Fixed-point fractional library routines. ! (line 776) * __fractudqusq2: Fixed-point fractional library routines. ! (line 772) * __fractudquta: Fixed-point fractional library routines. ! (line 780) * __fractuhada: Fixed-point fractional library routines. ! (line 798) * __fractuhadf: Fixed-point fractional library routines. ! (line 821) * __fractuhadi: Fixed-point fractional library routines. ! (line 818) * __fractuhadq: Fixed-point fractional library routines. ! (line 794) * __fractuhaha: Fixed-point fractional library routines. ! (line 796) * __fractuhahi: Fixed-point fractional library routines. ! (line 816) * __fractuhahq: Fixed-point fractional library routines. ! (line 792) * __fractuhaqi: Fixed-point fractional library routines. ! (line 815) * __fractuhaqq: Fixed-point fractional library routines. ! (line 791) * __fractuhasa: Fixed-point fractional library routines. ! (line 797) * __fractuhasf: Fixed-point fractional library routines. ! (line 820) * __fractuhasi: Fixed-point fractional library routines. ! (line 817) * __fractuhasq: Fixed-point fractional library routines. ! (line 793) * __fractuhata: Fixed-point fractional library routines. ! (line 799) * __fractuhati: Fixed-point fractional library routines. ! (line 819) * __fractuhauda2: Fixed-point fractional library routines. ! (line 811) * __fractuhaudq: Fixed-point fractional library routines. ! (line 807) * __fractuhauhq: Fixed-point fractional library routines. (line 803) + * __fractuhauqq: Fixed-point fractional library routines. + (line 801) * __fractuhausa2: Fixed-point fractional library routines. ! (line 809) * __fractuhausq: Fixed-point fractional library routines. ! (line 805) * __fractuhauta2: Fixed-point fractional library routines. ! (line 813) * __fractuhqda: Fixed-point fractional library routines. ! (line 701) * __fractuhqdf: Fixed-point fractional library routines. ! (line 722) * __fractuhqdi: Fixed-point fractional library routines. ! (line 719) * __fractuhqdq: Fixed-point fractional library routines. ! (line 698) * __fractuhqha: Fixed-point fractional library routines. ! (line 699) * __fractuhqhi: Fixed-point fractional library routines. ! (line 717) * __fractuhqhq: Fixed-point fractional library routines. ! (line 696) * __fractuhqqi: Fixed-point fractional library routines. ! (line 716) * __fractuhqqq: Fixed-point fractional library routines. ! (line 695) * __fractuhqsa: Fixed-point fractional library routines. ! (line 700) * __fractuhqsf: Fixed-point fractional library routines. ! (line 721) * __fractuhqsi: Fixed-point fractional library routines. ! (line 718) * __fractuhqsq: Fixed-point fractional library routines. ! (line 697) * __fractuhqta: Fixed-point fractional library routines. ! (line 702) * __fractuhqti: Fixed-point fractional library routines. ! (line 720) * __fractuhquda: Fixed-point fractional library routines. ! (line 712) * __fractuhqudq2: Fixed-point fractional library routines. ! (line 707) * __fractuhquha: Fixed-point fractional library routines. ! (line 709) * __fractuhquqq2: Fixed-point fractional library routines. ! (line 703) * __fractuhqusa: Fixed-point fractional library routines. ! (line 711) * __fractuhqusq2: Fixed-point fractional library routines. ! (line 705) * __fractuhquta: Fixed-point fractional library routines. ! (line 714) * __fractunsdadi: Fixed-point fractional library routines. ! (line 1554) * __fractunsdahi: Fixed-point fractional library routines. (line 1552) + * __fractunsdaqi: Fixed-point fractional library routines. + (line 1551) * __fractunsdasi: Fixed-point fractional library routines. ! (line 1553) * __fractunsdati: Fixed-point fractional library routines. ! (line 1555) * __fractunsdida: Fixed-point fractional library routines. ! (line 1706) * __fractunsdidq: Fixed-point fractional library routines. ! (line 1703) * __fractunsdiha: Fixed-point fractional library routines. ! (line 1704) * __fractunsdihq: Fixed-point fractional library routines. (line 1701) + * __fractunsdiqq: Fixed-point fractional library routines. + (line 1700) * __fractunsdisa: Fixed-point fractional library routines. ! (line 1705) * __fractunsdisq: Fixed-point fractional library routines. ! (line 1702) * __fractunsdita: Fixed-point fractional library routines. ! (line 1707) * __fractunsdiuda: Fixed-point fractional library routines. ! (line 1718) * __fractunsdiudq: Fixed-point fractional library routines. ! (line 1713) * __fractunsdiuha: Fixed-point fractional library routines. ! (line 1715) * __fractunsdiuhq: Fixed-point fractional library routines. (line 1710) + * __fractunsdiuqq: Fixed-point fractional library routines. + (line 1708) * __fractunsdiusa: Fixed-point fractional library routines. ! (line 1717) * __fractunsdiusq: Fixed-point fractional library routines. ! (line 1711) * __fractunsdiuta: Fixed-point fractional library routines. ! (line 1720) * __fractunsdqdi: Fixed-point fractional library routines. ! (line 1538) * __fractunsdqhi: Fixed-point fractional library routines. (line 1536) + * __fractunsdqqi: Fixed-point fractional library routines. + (line 1535) * __fractunsdqsi: Fixed-point fractional library routines. ! (line 1537) * __fractunsdqti: Fixed-point fractional library routines. ! (line 1539) * __fractunshadi: Fixed-point fractional library routines. ! (line 1544) * __fractunshahi: Fixed-point fractional library routines. (line 1542) + * __fractunshaqi: Fixed-point fractional library routines. + (line 1541) * __fractunshasi: Fixed-point fractional library routines. ! (line 1543) * __fractunshati: Fixed-point fractional library routines. ! (line 1545) * __fractunshida: Fixed-point fractional library routines. ! (line 1662) * __fractunshidq: Fixed-point fractional library routines. ! (line 1659) * __fractunshiha: Fixed-point fractional library routines. ! (line 1660) * __fractunshihq: Fixed-point fractional library routines. (line 1657) + * __fractunshiqq: Fixed-point fractional library routines. + (line 1656) * __fractunshisa: Fixed-point fractional library routines. ! (line 1661) * __fractunshisq: Fixed-point fractional library routines. ! (line 1658) * __fractunshita: Fixed-point fractional library routines. ! (line 1663) * __fractunshiuda: Fixed-point fractional library routines. ! (line 1674) * __fractunshiudq: Fixed-point fractional library routines. ! (line 1669) * __fractunshiuha: Fixed-point fractional library routines. ! (line 1671) * __fractunshiuhq: Fixed-point fractional library routines. (line 1666) + * __fractunshiuqq: Fixed-point fractional library routines. + (line 1664) * __fractunshiusa: Fixed-point fractional library routines. ! (line 1673) * __fractunshiusq: Fixed-point fractional library routines. ! (line 1667) * __fractunshiuta: Fixed-point fractional library routines. ! (line 1676) * __fractunshqdi: Fixed-point fractional library routines. ! (line 1528) * __fractunshqhi: Fixed-point fractional library routines. (line 1526) + * __fractunshqqi: Fixed-point fractional library routines. + (line 1525) * __fractunshqsi: Fixed-point fractional library routines. ! (line 1527) * __fractunshqti: Fixed-point fractional library routines. ! (line 1529) * __fractunsqida: Fixed-point fractional library routines. ! (line 1640) * __fractunsqidq: Fixed-point fractional library routines. ! (line 1637) * __fractunsqiha: Fixed-point fractional library routines. ! (line 1638) * __fractunsqihq: Fixed-point fractional library routines. (line 1635) + * __fractunsqiqq: Fixed-point fractional library routines. + (line 1634) * __fractunsqisa: Fixed-point fractional library routines. ! (line 1639) * __fractunsqisq: Fixed-point fractional library routines. ! (line 1636) * __fractunsqita: Fixed-point fractional library routines. ! (line 1641) * __fractunsqiuda: Fixed-point fractional library routines. ! (line 1652) * __fractunsqiudq: Fixed-point fractional library routines. ! (line 1647) * __fractunsqiuha: Fixed-point fractional library routines. ! (line 1649) * __fractunsqiuhq: Fixed-point fractional library routines. (line 1644) + * __fractunsqiuqq: Fixed-point fractional library routines. + (line 1642) * __fractunsqiusa: Fixed-point fractional library routines. ! (line 1651) * __fractunsqiusq: Fixed-point fractional library routines. ! (line 1645) * __fractunsqiuta: Fixed-point fractional library routines. ! (line 1654) * __fractunsqqdi: Fixed-point fractional library routines. ! (line 1523) * __fractunsqqhi: Fixed-point fractional library routines. (line 1521) + * __fractunsqqqi: Fixed-point fractional library routines. + (line 1520) * __fractunsqqsi: Fixed-point fractional library routines. ! (line 1522) * __fractunsqqti: Fixed-point fractional library routines. ! (line 1524) * __fractunssadi: Fixed-point fractional library routines. ! (line 1549) * __fractunssahi: Fixed-point fractional library routines. (line 1547) + * __fractunssaqi: Fixed-point fractional library routines. + (line 1546) * __fractunssasi: Fixed-point fractional library routines. ! (line 1548) * __fractunssati: Fixed-point fractional library routines. ! (line 1550) * __fractunssida: Fixed-point fractional library routines. ! (line 1684) * __fractunssidq: Fixed-point fractional library routines. ! (line 1681) * __fractunssiha: Fixed-point fractional library routines. ! (line 1682) * __fractunssihq: Fixed-point fractional library routines. (line 1679) + * __fractunssiqq: Fixed-point fractional library routines. + (line 1678) * __fractunssisa: Fixed-point fractional library routines. ! (line 1683) * __fractunssisq: Fixed-point fractional library routines. ! (line 1680) * __fractunssita: Fixed-point fractional library routines. ! (line 1685) * __fractunssiuda: Fixed-point fractional library routines. ! (line 1696) * __fractunssiudq: Fixed-point fractional library routines. ! (line 1691) * __fractunssiuha: Fixed-point fractional library routines. ! (line 1693) * __fractunssiuhq: Fixed-point fractional library routines. (line 1688) + * __fractunssiuqq: Fixed-point fractional library routines. + (line 1686) * __fractunssiusa: Fixed-point fractional library routines. ! (line 1695) * __fractunssiusq: Fixed-point fractional library routines. ! (line 1689) * __fractunssiuta: Fixed-point fractional library routines. ! (line 1698) * __fractunssqdi: Fixed-point fractional library routines. ! (line 1533) * __fractunssqhi: Fixed-point fractional library routines. (line 1531) + * __fractunssqqi: Fixed-point fractional library routines. + (line 1530) * __fractunssqsi: Fixed-point fractional library routines. ! (line 1532) * __fractunssqti: Fixed-point fractional library routines. ! (line 1534) * __fractunstadi: Fixed-point fractional library routines. ! (line 1559) * __fractunstahi: Fixed-point fractional library routines. (line 1557) + * __fractunstaqi: Fixed-point fractional library routines. + (line 1556) * __fractunstasi: Fixed-point fractional library routines. ! (line 1558) * __fractunstati: Fixed-point fractional library routines. ! (line 1560) * __fractunstida: Fixed-point fractional library routines. ! (line 1729) * __fractunstidq: Fixed-point fractional library routines. ! (line 1725) * __fractunstiha: Fixed-point fractional library routines. ! (line 1727) * __fractunstihq: Fixed-point fractional library routines. (line 1723) + * __fractunstiqq: Fixed-point fractional library routines. + (line 1722) * __fractunstisa: Fixed-point fractional library routines. ! (line 1728) * __fractunstisq: Fixed-point fractional library routines. ! (line 1724) * __fractunstita: Fixed-point fractional library routines. ! (line 1730) * __fractunstiuda: Fixed-point fractional library routines. ! (line 1744) * __fractunstiudq: Fixed-point fractional library routines. ! (line 1738) * __fractunstiuha: Fixed-point fractional library routines. ! (line 1740) * __fractunstiuhq: Fixed-point fractional library routines. (line 1734) + * __fractunstiuqq: Fixed-point fractional library routines. + (line 1732) * __fractunstiusa: Fixed-point fractional library routines. ! (line 1742) * __fractunstiusq: Fixed-point fractional library routines. ! (line 1736) * __fractunstiuta: Fixed-point fractional library routines. ! (line 1746) * __fractunsudadi: Fixed-point fractional library routines. ! (line 1620) * __fractunsudahi: Fixed-point fractional library routines. (line 1616) + * __fractunsudaqi: Fixed-point fractional library routines. + (line 1614) * __fractunsudasi: Fixed-point fractional library routines. ! (line 1618) * __fractunsudati: Fixed-point fractional library routines. ! (line 1622) * __fractunsudqdi: Fixed-point fractional library routines. ! (line 1594) * __fractunsudqhi: Fixed-point fractional library routines. (line 1590) + * __fractunsudqqi: Fixed-point fractional library routines. + (line 1588) * __fractunsudqsi: Fixed-point fractional library routines. ! (line 1592) * __fractunsudqti: Fixed-point fractional library routines. ! (line 1596) * __fractunsuhadi: Fixed-point fractional library routines. ! (line 1604) * __fractunsuhahi: Fixed-point fractional library routines. (line 1600) + * __fractunsuhaqi: Fixed-point fractional library routines. + (line 1598) * __fractunsuhasi: Fixed-point fractional library routines. ! (line 1602) * __fractunsuhati: Fixed-point fractional library routines. ! (line 1606) * __fractunsuhqdi: Fixed-point fractional library routines. ! (line 1575) * __fractunsuhqhi: Fixed-point fractional library routines. (line 1573) + * __fractunsuhqqi: Fixed-point fractional library routines. + (line 1572) * __fractunsuhqsi: Fixed-point fractional library routines. ! (line 1574) * __fractunsuhqti: Fixed-point fractional library routines. ! (line 1576) * __fractunsuqqdi: Fixed-point fractional library routines. ! (line 1568) * __fractunsuqqhi: Fixed-point fractional library routines. (line 1564) + * __fractunsuqqqi: Fixed-point fractional library routines. + (line 1562) * __fractunsuqqsi: Fixed-point fractional library routines. ! (line 1566) * __fractunsuqqti: Fixed-point fractional library routines. ! (line 1570) * __fractunsusadi: Fixed-point fractional library routines. ! (line 1611) * __fractunsusahi: Fixed-point fractional library routines. (line 1609) + * __fractunsusaqi: Fixed-point fractional library routines. + (line 1608) * __fractunsusasi: Fixed-point fractional library routines. ! (line 1610) * __fractunsusati: Fixed-point fractional library routines. ! (line 1612) * __fractunsusqdi: Fixed-point fractional library routines. ! (line 1584) * __fractunsusqhi: Fixed-point fractional library routines. (line 1580) + * __fractunsusqqi: Fixed-point fractional library routines. + (line 1578) * __fractunsusqsi: Fixed-point fractional library routines. ! (line 1582) * __fractunsusqti: Fixed-point fractional library routines. ! (line 1586) * __fractunsutadi: Fixed-point fractional library routines. ! (line 1630) * __fractunsutahi: Fixed-point fractional library routines. (line 1626) + * __fractunsutaqi: Fixed-point fractional library routines. + (line 1624) * __fractunsutasi: Fixed-point fractional library routines. ! (line 1628) * __fractunsutati: Fixed-point fractional library routines. ! (line 1632) * __fractuqqda: Fixed-point fractional library routines. ! (line 671) * __fractuqqdf: Fixed-point fractional library routines. ! (line 694) * __fractuqqdi: Fixed-point fractional library routines. ! (line 691) * __fractuqqdq: Fixed-point fractional library routines. ! (line 667) * __fractuqqha: Fixed-point fractional library routines. ! (line 669) * __fractuqqhi: Fixed-point fractional library routines. ! (line 689) * __fractuqqhq: Fixed-point fractional library routines. ! (line 665) * __fractuqqqi: Fixed-point fractional library routines. ! (line 688) * __fractuqqqq: Fixed-point fractional library routines. ! (line 664) * __fractuqqsa: Fixed-point fractional library routines. ! (line 670) * __fractuqqsf: Fixed-point fractional library routines. ! (line 693) * __fractuqqsi: Fixed-point fractional library routines. ! (line 690) * __fractuqqsq: Fixed-point fractional library routines. ! (line 666) * __fractuqqta: Fixed-point fractional library routines. ! (line 672) * __fractuqqti: Fixed-point fractional library routines. ! (line 692) * __fractuqquda: Fixed-point fractional library routines. ! (line 684) * __fractuqqudq2: Fixed-point fractional library routines. ! (line 678) * __fractuqquha: Fixed-point fractional library routines. ! (line 680) * __fractuqquhq2: Fixed-point fractional library routines. ! (line 674) * __fractuqqusa: Fixed-point fractional library routines. ! (line 682) * __fractuqqusq2: Fixed-point fractional library routines. ! (line 676) * __fractuqquta: Fixed-point fractional library routines. ! (line 686) * __fractusada: Fixed-point fractional library routines. ! (line 828) * __fractusadf: Fixed-point fractional library routines. ! (line 849) * __fractusadi: Fixed-point fractional library routines. ! (line 846) * __fractusadq: Fixed-point fractional library routines. ! (line 825) * __fractusaha: Fixed-point fractional library routines. ! (line 826) * __fractusahi: Fixed-point fractional library routines. ! (line 844) * __fractusahq: Fixed-point fractional library routines. ! (line 823) * __fractusaqi: Fixed-point fractional library routines. ! (line 843) * __fractusaqq: Fixed-point fractional library routines. ! (line 822) * __fractusasa: Fixed-point fractional library routines. ! (line 827) * __fractusasf: Fixed-point fractional library routines. ! (line 848) * __fractusasi: Fixed-point fractional library routines. ! (line 845) * __fractusasq: Fixed-point fractional library routines. ! (line 824) * __fractusata: Fixed-point fractional library routines. ! (line 829) * __fractusati: Fixed-point fractional library routines. ! (line 847) * __fractusauda2: Fixed-point fractional library routines. ! (line 839) * __fractusaudq: Fixed-point fractional library routines. ! (line 835) * __fractusauha2: Fixed-point fractional library routines. ! (line 837) * __fractusauhq: Fixed-point fractional library routines. (line 832) + * __fractusauqq: Fixed-point fractional library routines. + (line 830) * __fractusausq: Fixed-point fractional library routines. ! (line 833) * __fractusauta2: Fixed-point fractional library routines. ! (line 841) * __fractusqda: Fixed-point fractional library routines. ! (line 730) * __fractusqdf: Fixed-point fractional library routines. ! (line 753) * __fractusqdi: Fixed-point fractional library routines. ! (line 750) * __fractusqdq: Fixed-point fractional library routines. ! (line 726) * __fractusqha: Fixed-point fractional library routines. ! (line 728) * __fractusqhi: Fixed-point fractional library routines. ! (line 748) * __fractusqhq: Fixed-point fractional library routines. ! (line 724) * __fractusqqi: Fixed-point fractional library routines. ! (line 747) * __fractusqqq: Fixed-point fractional library routines. ! (line 723) * __fractusqsa: Fixed-point fractional library routines. ! (line 729) * __fractusqsf: Fixed-point fractional library routines. ! (line 752) * __fractusqsi: Fixed-point fractional library routines. ! (line 749) * __fractusqsq: Fixed-point fractional library routines. ! (line 725) * __fractusqta: Fixed-point fractional library routines. ! (line 731) * __fractusqti: Fixed-point fractional library routines. ! (line 751) * __fractusquda: Fixed-point fractional library routines. ! (line 743) * __fractusqudq2: Fixed-point fractional library routines. ! (line 737) * __fractusquha: Fixed-point fractional library routines. ! (line 739) * __fractusquhq2: Fixed-point fractional library routines. (line 735) + * __fractusquqq2: Fixed-point fractional library routines. + (line 733) * __fractusqusa: Fixed-point fractional library routines. ! (line 741) * __fractusquta: Fixed-point fractional library routines. ! (line 745) * __fractutada: Fixed-point fractional library routines. ! (line 891) * __fractutadf: Fixed-point fractional library routines. ! (line 917) * __fractutadi: Fixed-point fractional library routines. ! (line 913) * __fractutadq: Fixed-point fractional library routines. ! (line 886) * __fractutaha: Fixed-point fractional library routines. ! (line 888) * __fractutahi: Fixed-point fractional library routines. ! (line 911) * __fractutahq: Fixed-point fractional library routines. ! (line 883) * __fractutaqi: Fixed-point fractional library routines. ! (line 909) * __fractutaqq: Fixed-point fractional library routines. ! (line 881) * __fractutasa: Fixed-point fractional library routines. ! (line 890) * __fractutasf: Fixed-point fractional library routines. ! (line 916) * __fractutasi: Fixed-point fractional library routines. ! (line 912) * __fractutasq: Fixed-point fractional library routines. ! (line 884) * __fractutata: Fixed-point fractional library routines. ! (line 893) * __fractutati: Fixed-point fractional library routines. ! (line 914) * __fractutauda2: Fixed-point fractional library routines. ! (line 907) * __fractutaudq: Fixed-point fractional library routines. ! (line 901) * __fractutauha2: Fixed-point fractional library routines. ! (line 903) * __fractutauhq: Fixed-point fractional library routines. (line 897) + * __fractutauqq: Fixed-point fractional library routines. + (line 895) * __fractutausa2: Fixed-point fractional library routines. ! (line 905) * __fractutausq: Fixed-point fractional library routines. ! (line 899) * __gedf2: Soft float library routines. (line 205) + * __gesf2: Soft float library routines. + (line 204) * __getf2: Soft float library routines. ! (line 206) * __gtdf2: Soft float library routines. (line 223) + * __gtsf2: Soft float library routines. + (line 222) * __gttf2: Soft float library routines. ! (line 224) * __ledf2: Soft float library routines. (line 217) + * __lesf2: Soft float library routines. + (line 216) * __letf2: Soft float library routines. ! (line 218) * __lshrdi3: Integer library routines. (line 30) + * __lshrsi3: Integer library routines. + (line 29) * __lshrti3: Integer library routines. ! (line 31) * __lshruda3: Fixed-point fractional library routines. ! (line 388) * __lshrudq3: Fixed-point fractional library routines. ! (line 382) * __lshruha3: Fixed-point fractional library routines. ! (line 384) * __lshruhq3: Fixed-point fractional library routines. (line 378) + * __lshruqq3: Fixed-point fractional library routines. + (line 376) * __lshrusa3: Fixed-point fractional library routines. ! (line 386) * __lshrusq3: Fixed-point fractional library routines. ! (line 380) * __lshruta3: Fixed-point fractional library routines. ! (line 390) * __ltdf2: Soft float library routines. (line 211) + * __ltsf2: Soft float library routines. + (line 210) * __lttf2: Soft float library routines. ! (line 212) * __main: Collect2. (line 15) * __moddi3: Integer library routines. (line 36) + * __modsi3: Integer library routines. + (line 35) * __modti3: Integer library routines. ! (line 37) * __morestack_current_segment: Miscellaneous routines. ! (line 45) * __morestack_initial_sp: Miscellaneous routines. ! (line 46) * __morestack_segments: Miscellaneous routines. ! (line 44) * __mulda3: Fixed-point fractional library routines. ! (line 170) * __muldc3: Soft float library routines. ! (line 239) * __muldf3: Soft float library routines. ! (line 39) * __muldi3: Integer library routines. ! (line 42) * __muldq3: Fixed-point fractional library routines. ! (line 157) * __mulha3: Fixed-point fractional library routines. ! (line 167) * __mulhq3: Fixed-point fractional library routines. (line 155) + * __mulqq3: Fixed-point fractional library routines. + (line 153) * __mulsa3: Fixed-point fractional library routines. ! (line 169) * __mulsc3: Soft float library routines. ! (line 237) * __mulsf3: Soft float library routines. ! (line 38) * __mulsi3: Integer library routines. ! (line 41) * __mulsq3: Fixed-point fractional library routines. ! (line 156) * __multa3: Fixed-point fractional library routines. ! (line 171) * __multc3: Soft float library routines. ! (line 241) * __multf3: Soft float library routines. ! (line 40) * __multi3: Integer library routines. ! (line 43) * __muluda3: Fixed-point fractional library routines. ! (line 177) * __muludq3: Fixed-point fractional library routines. ! (line 165) * __muluha3: Fixed-point fractional library routines. ! (line 173) * __muluhq3: Fixed-point fractional library routines. (line 161) + * __muluqq3: Fixed-point fractional library routines. + (line 159) * __mulusa3: Fixed-point fractional library routines. ! (line 175) * __mulusq3: Fixed-point fractional library routines. ! (line 163) * __muluta3: Fixed-point fractional library routines. ! (line 179) * __mulvdi3: Integer library routines. (line 114) + * __mulvsi3: Integer library routines. + (line 113) * __mulxc3: Soft float library routines. ! (line 243) * __mulxf3: Soft float library routines. ! (line 42) * __nedf2: Soft float library routines. ! (line 199) * __negda2: Fixed-point fractional library routines. ! (line 298) * __negdf2: Soft float library routines. ! (line 55) * __negdi2: Integer library routines. ! (line 46) * __negdq2: Fixed-point fractional library routines. ! (line 288) * __negha2: Fixed-point fractional library routines. ! (line 296) * __neghq2: Fixed-point fractional library routines. (line 286) + * __negqq2: Fixed-point fractional library routines. + (line 285) * __negsa2: Fixed-point fractional library routines. ! (line 297) * __negsf2: Soft float library routines. ! (line 54) * __negsq2: Fixed-point fractional library routines. ! (line 287) * __negta2: Fixed-point fractional library routines. ! (line 299) * __negtf2: Soft float library routines. ! (line 56) * __negti2: Integer library routines. ! (line 47) * __neguda2: Fixed-point fractional library routines. ! (line 303) * __negudq2: Fixed-point fractional library routines. ! (line 294) * __neguha2: Fixed-point fractional library routines. ! (line 300) * __neguhq2: Fixed-point fractional library routines. (line 291) + * __neguqq2: Fixed-point fractional library routines. + (line 289) * __negusa2: Fixed-point fractional library routines. ! (line 302) * __negusq2: Fixed-point fractional library routines. ! (line 292) * __neguta2: Fixed-point fractional library routines. ! (line 305) * __negvdi2: Integer library routines. (line 118) + * __negvsi2: Integer library routines. + (line 117) * __negxf2: Soft float library routines. ! (line 57) * __nesf2: Soft float library routines. ! (line 198) * __netf2: Soft float library routines. ! (line 200) * __paritydi2: Integer library routines. (line 150) + * __paritysi2: Integer library routines. + (line 149) * __parityti2: Integer library routines. ! (line 151) * __popcountdi2: Integer library routines. (line 156) + * __popcountsi2: Integer library routines. + (line 155) * __popcountti2: Integer library routines. ! (line 157) * __powidf2: Soft float library routines. (line 232) + * __powisf2: Soft float library routines. + (line 231) * __powitf2: Soft float library routines. ! (line 233) * __powixf2: Soft float library routines. ! (line 234) * __satfractdadq: Fixed-point fractional library routines. ! (line 1152) * __satfractdaha2: Fixed-point fractional library routines. ! (line 1153) * __satfractdahq: Fixed-point fractional library routines. (line 1150) + * __satfractdaqq: Fixed-point fractional library routines. + (line 1149) * __satfractdasa2: Fixed-point fractional library routines. ! (line 1154) * __satfractdasq: Fixed-point fractional library routines. ! (line 1151) * __satfractdata2: Fixed-point fractional library routines. ! (line 1155) * __satfractdauda: Fixed-point fractional library routines. ! (line 1165) * __satfractdaudq: Fixed-point fractional library routines. ! (line 1160) * __satfractdauha: Fixed-point fractional library routines. ! (line 1162) * __satfractdauhq: Fixed-point fractional library routines. (line 1158) + * __satfractdauqq: Fixed-point fractional library routines. + (line 1156) * __satfractdausa: Fixed-point fractional library routines. ! (line 1164) * __satfractdausq: Fixed-point fractional library routines. ! (line 1159) * __satfractdauta: Fixed-point fractional library routines. ! (line 1166) * __satfractdfda: Fixed-point fractional library routines. ! (line 1505) * __satfractdfdq: Fixed-point fractional library routines. ! (line 1502) * __satfractdfha: Fixed-point fractional library routines. ! (line 1503) * __satfractdfhq: Fixed-point fractional library routines. (line 1500) + * __satfractdfqq: Fixed-point fractional library routines. + (line 1499) * __satfractdfsa: Fixed-point fractional library routines. ! (line 1504) * __satfractdfsq: Fixed-point fractional library routines. ! (line 1501) * __satfractdfta: Fixed-point fractional library routines. ! (line 1506) * __satfractdfuda: Fixed-point fractional library routines. ! (line 1514) * __satfractdfudq: Fixed-point fractional library routines. ! (line 1510) * __satfractdfuha: Fixed-point fractional library routines. ! (line 1512) * __satfractdfuhq: Fixed-point fractional library routines. (line 1508) + * __satfractdfuqq: Fixed-point fractional library routines. + (line 1507) * __satfractdfusa: Fixed-point fractional library routines. ! (line 1513) * __satfractdfusq: Fixed-point fractional library routines. ! (line 1509) * __satfractdfuta: Fixed-point fractional library routines. ! (line 1515) * __satfractdida: Fixed-point fractional library routines. ! (line 1455) * __satfractdidq: Fixed-point fractional library routines. ! (line 1452) * __satfractdiha: Fixed-point fractional library routines. ! (line 1453) * __satfractdihq: Fixed-point fractional library routines. (line 1450) + * __satfractdiqq: Fixed-point fractional library routines. + (line 1449) * __satfractdisa: Fixed-point fractional library routines. ! (line 1454) * __satfractdisq: Fixed-point fractional library routines. ! (line 1451) * __satfractdita: Fixed-point fractional library routines. ! (line 1456) * __satfractdiuda: Fixed-point fractional library routines. ! (line 1463) * __satfractdiudq: Fixed-point fractional library routines. ! (line 1460) * __satfractdiuha: Fixed-point fractional library routines. ! (line 1461) * __satfractdiuhq: Fixed-point fractional library routines. (line 1458) + * __satfractdiuqq: Fixed-point fractional library routines. + (line 1457) * __satfractdiusa: Fixed-point fractional library routines. ! (line 1462) * __satfractdiusq: Fixed-point fractional library routines. ! (line 1459) * __satfractdiuta: Fixed-point fractional library routines. ! (line 1464) * __satfractdqda: Fixed-point fractional library routines. ! (line 1097) * __satfractdqha: Fixed-point fractional library routines. ! (line 1095) * __satfractdqhq2: Fixed-point fractional library routines. (line 1093) + * __satfractdqqq2: Fixed-point fractional library routines. + (line 1092) * __satfractdqsa: Fixed-point fractional library routines. ! (line 1096) * __satfractdqsq2: Fixed-point fractional library routines. ! (line 1094) * __satfractdqta: Fixed-point fractional library routines. ! (line 1098) * __satfractdquda: Fixed-point fractional library routines. ! (line 1109) * __satfractdqudq: Fixed-point fractional library routines. ! (line 1104) * __satfractdquha: Fixed-point fractional library routines. ! (line 1106) * __satfractdquhq: Fixed-point fractional library routines. (line 1101) + * __satfractdquqq: Fixed-point fractional library routines. + (line 1099) * __satfractdqusa: Fixed-point fractional library routines. ! (line 1108) * __satfractdqusq: Fixed-point fractional library routines. ! (line 1102) * __satfractdquta: Fixed-point fractional library routines. ! (line 1111) * __satfracthada2: Fixed-point fractional library routines. ! (line 1118) * __satfracthadq: Fixed-point fractional library routines. ! (line 1116) * __satfracthahq: Fixed-point fractional library routines. (line 1114) + * __satfracthaqq: Fixed-point fractional library routines. + (line 1113) * __satfracthasa2: Fixed-point fractional library routines. ! (line 1117) * __satfracthasq: Fixed-point fractional library routines. ! (line 1115) * __satfracthata2: Fixed-point fractional library routines. ! (line 1119) * __satfracthauda: Fixed-point fractional library routines. ! (line 1130) * __satfracthaudq: Fixed-point fractional library routines. ! (line 1125) * __satfracthauha: Fixed-point fractional library routines. ! (line 1127) * __satfracthauhq: Fixed-point fractional library routines. (line 1122) + * __satfracthauqq: Fixed-point fractional library routines. + (line 1120) * __satfracthausa: Fixed-point fractional library routines. ! (line 1129) * __satfracthausq: Fixed-point fractional library routines. ! (line 1123) * __satfracthauta: Fixed-point fractional library routines. ! (line 1132) * __satfracthida: Fixed-point fractional library routines. ! (line 1423) * __satfracthidq: Fixed-point fractional library routines. ! (line 1420) * __satfracthiha: Fixed-point fractional library routines. ! (line 1421) * __satfracthihq: Fixed-point fractional library routines. (line 1418) + * __satfracthiqq: Fixed-point fractional library routines. + (line 1417) * __satfracthisa: Fixed-point fractional library routines. ! (line 1422) * __satfracthisq: Fixed-point fractional library routines. ! (line 1419) * __satfracthita: Fixed-point fractional library routines. ! (line 1424) * __satfracthiuda: Fixed-point fractional library routines. ! (line 1431) * __satfracthiudq: Fixed-point fractional library routines. ! (line 1428) * __satfracthiuha: Fixed-point fractional library routines. ! (line 1429) * __satfracthiuhq: Fixed-point fractional library routines. (line 1426) + * __satfracthiuqq: Fixed-point fractional library routines. + (line 1425) * __satfracthiusa: Fixed-point fractional library routines. ! (line 1430) * __satfracthiusq: Fixed-point fractional library routines. ! (line 1427) * __satfracthiuta: Fixed-point fractional library routines. ! (line 1432) * __satfracthqda: Fixed-point fractional library routines. ! (line 1063) * __satfracthqdq2: Fixed-point fractional library routines. ! (line 1060) * __satfracthqha: Fixed-point fractional library routines. ! (line 1061) * __satfracthqqq2: Fixed-point fractional library routines. ! (line 1058) * __satfracthqsa: Fixed-point fractional library routines. ! (line 1062) * __satfracthqsq2: Fixed-point fractional library routines. ! (line 1059) * __satfracthqta: Fixed-point fractional library routines. ! (line 1064) * __satfracthquda: Fixed-point fractional library routines. ! (line 1071) * __satfracthqudq: Fixed-point fractional library routines. ! (line 1068) * __satfracthquha: Fixed-point fractional library routines. ! (line 1069) * __satfracthquhq: Fixed-point fractional library routines. (line 1066) + * __satfracthquqq: Fixed-point fractional library routines. + (line 1065) * __satfracthqusa: Fixed-point fractional library routines. ! (line 1070) * __satfracthqusq: Fixed-point fractional library routines. ! (line 1067) * __satfracthquta: Fixed-point fractional library routines. ! (line 1072) * __satfractqida: Fixed-point fractional library routines. ! (line 1401) * __satfractqidq: Fixed-point fractional library routines. ! (line 1398) * __satfractqiha: Fixed-point fractional library routines. ! (line 1399) * __satfractqihq: Fixed-point fractional library routines. (line 1396) + * __satfractqiqq: Fixed-point fractional library routines. + (line 1395) * __satfractqisa: Fixed-point fractional library routines. ! (line 1400) * __satfractqisq: Fixed-point fractional library routines. ! (line 1397) * __satfractqita: Fixed-point fractional library routines. ! (line 1402) * __satfractqiuda: Fixed-point fractional library routines. ! (line 1413) * __satfractqiudq: Fixed-point fractional library routines. ! (line 1408) * __satfractqiuha: Fixed-point fractional library routines. ! (line 1410) * __satfractqiuhq: Fixed-point fractional library routines. (line 1405) + * __satfractqiuqq: Fixed-point fractional library routines. + (line 1403) * __satfractqiusa: Fixed-point fractional library routines. ! (line 1412) * __satfractqiusq: Fixed-point fractional library routines. ! (line 1406) * __satfractqiuta: Fixed-point fractional library routines. ! (line 1415) * __satfractqqda: Fixed-point fractional library routines. ! (line 1042) * __satfractqqdq2: Fixed-point fractional library routines. ! (line 1039) * __satfractqqha: Fixed-point fractional library routines. ! (line 1040) * __satfractqqhq2: Fixed-point fractional library routines. ! (line 1037) * __satfractqqsa: Fixed-point fractional library routines. ! (line 1041) * __satfractqqsq2: Fixed-point fractional library routines. ! (line 1038) * __satfractqqta: Fixed-point fractional library routines. ! (line 1043) * __satfractqquda: Fixed-point fractional library routines. ! (line 1054) * __satfractqqudq: Fixed-point fractional library routines. ! (line 1049) * __satfractqquha: Fixed-point fractional library routines. ! (line 1051) * __satfractqquhq: Fixed-point fractional library routines. (line 1046) + * __satfractqquqq: Fixed-point fractional library routines. + (line 1044) * __satfractqqusa: Fixed-point fractional library routines. ! (line 1053) * __satfractqqusq: Fixed-point fractional library routines. ! (line 1047) * __satfractqquta: Fixed-point fractional library routines. ! (line 1056) * __satfractsada2: Fixed-point fractional library routines. ! (line 1139) * __satfractsadq: Fixed-point fractional library routines. ! (line 1137) * __satfractsaha2: Fixed-point fractional library routines. ! (line 1138) * __satfractsahq: Fixed-point fractional library routines. (line 1135) + * __satfractsaqq: Fixed-point fractional library routines. + (line 1134) * __satfractsasq: Fixed-point fractional library routines. ! (line 1136) * __satfractsata2: Fixed-point fractional library routines. ! (line 1140) * __satfractsauda: Fixed-point fractional library routines. ! (line 1147) * __satfractsaudq: Fixed-point fractional library routines. ! (line 1144) * __satfractsauha: Fixed-point fractional library routines. ! (line 1145) * __satfractsauhq: Fixed-point fractional library routines. (line 1142) + * __satfractsauqq: Fixed-point fractional library routines. + (line 1141) * __satfractsausa: Fixed-point fractional library routines. ! (line 1146) * __satfractsausq: Fixed-point fractional library routines. ! (line 1143) * __satfractsauta: Fixed-point fractional library routines. ! (line 1148) * __satfractsfda: Fixed-point fractional library routines. ! (line 1489) * __satfractsfdq: Fixed-point fractional library routines. ! (line 1486) * __satfractsfha: Fixed-point fractional library routines. ! (line 1487) * __satfractsfhq: Fixed-point fractional library routines. (line 1484) + * __satfractsfqq: Fixed-point fractional library routines. + (line 1483) * __satfractsfsa: Fixed-point fractional library routines. ! (line 1488) * __satfractsfsq: Fixed-point fractional library routines. ! (line 1485) * __satfractsfta: Fixed-point fractional library routines. ! (line 1490) * __satfractsfuda: Fixed-point fractional library routines. ! (line 1497) * __satfractsfudq: Fixed-point fractional library routines. ! (line 1494) * __satfractsfuha: Fixed-point fractional library routines. ! (line 1495) * __satfractsfuhq: Fixed-point fractional library routines. (line 1492) + * __satfractsfuqq: Fixed-point fractional library routines. + (line 1491) * __satfractsfusa: Fixed-point fractional library routines. ! (line 1496) * __satfractsfusq: Fixed-point fractional library routines. ! (line 1493) * __satfractsfuta: Fixed-point fractional library routines. ! (line 1498) * __satfractsida: Fixed-point fractional library routines. ! (line 1439) * __satfractsidq: Fixed-point fractional library routines. ! (line 1436) * __satfractsiha: Fixed-point fractional library routines. ! (line 1437) * __satfractsihq: Fixed-point fractional library routines. (line 1434) + * __satfractsiqq: Fixed-point fractional library routines. + (line 1433) * __satfractsisa: Fixed-point fractional library routines. ! (line 1438) * __satfractsisq: Fixed-point fractional library routines. ! (line 1435) * __satfractsita: Fixed-point fractional library routines. ! (line 1440) * __satfractsiuda: Fixed-point fractional library routines. ! (line 1447) * __satfractsiudq: Fixed-point fractional library routines. ! (line 1444) * __satfractsiuha: Fixed-point fractional library routines. ! (line 1445) * __satfractsiuhq: Fixed-point fractional library routines. (line 1442) + * __satfractsiuqq: Fixed-point fractional library routines. + (line 1441) * __satfractsiusa: Fixed-point fractional library routines. ! (line 1446) * __satfractsiusq: Fixed-point fractional library routines. ! (line 1443) * __satfractsiuta: Fixed-point fractional library routines. ! (line 1448) * __satfractsqda: Fixed-point fractional library routines. ! (line 1078) * __satfractsqdq2: Fixed-point fractional library routines. ! (line 1075) * __satfractsqha: Fixed-point fractional library routines. ! (line 1076) * __satfractsqhq2: Fixed-point fractional library routines. (line 1074) + * __satfractsqqq2: Fixed-point fractional library routines. + (line 1073) * __satfractsqsa: Fixed-point fractional library routines. ! (line 1077) * __satfractsqta: Fixed-point fractional library routines. ! (line 1079) * __satfractsquda: Fixed-point fractional library routines. ! (line 1089) * __satfractsqudq: Fixed-point fractional library routines. ! (line 1084) * __satfractsquha: Fixed-point fractional library routines. ! (line 1086) * __satfractsquhq: Fixed-point fractional library routines. (line 1082) + * __satfractsquqq: Fixed-point fractional library routines. + (line 1080) * __satfractsqusa: Fixed-point fractional library routines. ! (line 1088) * __satfractsqusq: Fixed-point fractional library routines. ! (line 1083) * __satfractsquta: Fixed-point fractional library routines. ! (line 1090) * __satfracttada2: Fixed-point fractional library routines. ! (line 1174) * __satfracttadq: Fixed-point fractional library routines. ! (line 1171) * __satfracttaha2: Fixed-point fractional library routines. ! (line 1172) * __satfracttahq: Fixed-point fractional library routines. (line 1169) + * __satfracttaqq: Fixed-point fractional library routines. + (line 1168) * __satfracttasa2: Fixed-point fractional library routines. ! (line 1173) * __satfracttasq: Fixed-point fractional library routines. ! (line 1170) * __satfracttauda: Fixed-point fractional library routines. ! (line 1185) * __satfracttaudq: Fixed-point fractional library routines. ! (line 1180) * __satfracttauha: Fixed-point fractional library routines. ! (line 1182) * __satfracttauhq: Fixed-point fractional library routines. (line 1177) + * __satfracttauqq: Fixed-point fractional library routines. + (line 1175) * __satfracttausa: Fixed-point fractional library routines. ! (line 1184) * __satfracttausq: Fixed-point fractional library routines. ! (line 1178) * __satfracttauta: Fixed-point fractional library routines. ! (line 1187) * __satfracttida: Fixed-point fractional library routines. ! (line 1471) * __satfracttidq: Fixed-point fractional library routines. ! (line 1468) * __satfracttiha: Fixed-point fractional library routines. ! (line 1469) * __satfracttihq: Fixed-point fractional library routines. (line 1466) + * __satfracttiqq: Fixed-point fractional library routines. + (line 1465) * __satfracttisa: Fixed-point fractional library routines. ! (line 1470) * __satfracttisq: Fixed-point fractional library routines. ! (line 1467) * __satfracttita: Fixed-point fractional library routines. ! (line 1472) * __satfracttiuda: Fixed-point fractional library routines. ! (line 1480) * __satfracttiudq: Fixed-point fractional library routines. ! (line 1476) * __satfracttiuha: Fixed-point fractional library routines. ! (line 1478) * __satfracttiuhq: Fixed-point fractional library routines. (line 1474) + * __satfracttiuqq: Fixed-point fractional library routines. + (line 1473) * __satfracttiusa: Fixed-point fractional library routines. ! (line 1479) * __satfracttiusq: Fixed-point fractional library routines. ! (line 1475) * __satfracttiuta: Fixed-point fractional library routines. ! (line 1481) * __satfractudada: Fixed-point fractional library routines. ! (line 1350) * __satfractudadq: Fixed-point fractional library routines. ! (line 1345) * __satfractudaha: Fixed-point fractional library routines. ! (line 1347) * __satfractudahq: Fixed-point fractional library routines. (line 1343) + * __satfractudaqq: Fixed-point fractional library routines. + (line 1341) * __satfractudasa: Fixed-point fractional library routines. ! (line 1349) * __satfractudasq: Fixed-point fractional library routines. ! (line 1344) * __satfractudata: Fixed-point fractional library routines. ! (line 1351) * __satfractudaudq: Fixed-point fractional library routines. ! (line 1359) * __satfractudauha2: Fixed-point fractional library routines. ! (line 1361) * __satfractudauhq: Fixed-point fractional library routines. (line 1355) + * __satfractudauqq: Fixed-point fractional library routines. + (line 1353) * __satfractudausa2: Fixed-point fractional library routines. ! (line 1363) * __satfractudausq: Fixed-point fractional library routines. ! (line 1357) * __satfractudauta2: Fixed-point fractional library routines. ! (line 1365) * __satfractudqda: Fixed-point fractional library routines. ! (line 1274) * __satfractudqdq: Fixed-point fractional library routines. ! (line 1269) * __satfractudqha: Fixed-point fractional library routines. ! (line 1271) * __satfractudqhq: Fixed-point fractional library routines. (line 1266) + * __satfractudqqq: Fixed-point fractional library routines. + (line 1264) * __satfractudqsa: Fixed-point fractional library routines. ! (line 1273) * __satfractudqsq: Fixed-point fractional library routines. ! (line 1267) * __satfractudqta: Fixed-point fractional library routines. ! (line 1276) * __satfractudquda: Fixed-point fractional library routines. ! (line 1288) * __satfractudquha: Fixed-point fractional library routines. ! (line 1284) * __satfractudquhq2: Fixed-point fractional library routines. (line 1280) + * __satfractudquqq2: Fixed-point fractional library routines. + (line 1278) * __satfractudqusa: Fixed-point fractional library routines. ! (line 1286) * __satfractudqusq2: Fixed-point fractional library routines. ! (line 1282) * __satfractudquta: Fixed-point fractional library routines. ! (line 1290) * __satfractuhada: Fixed-point fractional library routines. ! (line 1302) * __satfractuhadq: Fixed-point fractional library routines. ! (line 1297) * __satfractuhaha: Fixed-point fractional library routines. ! (line 1299) * __satfractuhahq: Fixed-point fractional library routines. (line 1294) + * __satfractuhaqq: Fixed-point fractional library routines. + (line 1292) * __satfractuhasa: Fixed-point fractional library routines. ! (line 1301) * __satfractuhasq: Fixed-point fractional library routines. ! (line 1295) * __satfractuhata: Fixed-point fractional library routines. ! (line 1304) * __satfractuhauda2: Fixed-point fractional library routines. ! (line 1316) * __satfractuhaudq: Fixed-point fractional library routines. ! (line 1312) * __satfractuhauhq: Fixed-point fractional library routines. (line 1308) + * __satfractuhauqq: Fixed-point fractional library routines. + (line 1306) * __satfractuhausa2: Fixed-point fractional library routines. ! (line 1314) * __satfractuhausq: Fixed-point fractional library routines. ! (line 1310) * __satfractuhauta2: Fixed-point fractional library routines. ! (line 1318) * __satfractuhqda: Fixed-point fractional library routines. ! (line 1223) * __satfractuhqdq: Fixed-point fractional library routines. ! (line 1220) * __satfractuhqha: Fixed-point fractional library routines. ! (line 1221) * __satfractuhqhq: Fixed-point fractional library routines. (line 1218) + * __satfractuhqqq: Fixed-point fractional library routines. + (line 1217) * __satfractuhqsa: Fixed-point fractional library routines. ! (line 1222) * __satfractuhqsq: Fixed-point fractional library routines. ! (line 1219) * __satfractuhqta: Fixed-point fractional library routines. ! (line 1224) * __satfractuhquda: Fixed-point fractional library routines. ! (line 1234) * __satfractuhqudq2: Fixed-point fractional library routines. ! (line 1229) * __satfractuhquha: Fixed-point fractional library routines. ! (line 1231) * __satfractuhquqq2: Fixed-point fractional library routines. ! (line 1225) * __satfractuhqusa: Fixed-point fractional library routines. ! (line 1233) * __satfractuhqusq2: Fixed-point fractional library routines. ! (line 1227) * __satfractuhquta: Fixed-point fractional library routines. ! (line 1236) * __satfractunsdida: Fixed-point fractional library routines. ! (line 1833) * __satfractunsdidq: Fixed-point fractional library routines. ! (line 1829) * __satfractunsdiha: Fixed-point fractional library routines. ! (line 1831) * __satfractunsdihq: Fixed-point fractional library routines. (line 1827) + * __satfractunsdiqq: Fixed-point fractional library routines. + (line 1826) * __satfractunsdisa: Fixed-point fractional library routines. ! (line 1832) * __satfractunsdisq: Fixed-point fractional library routines. ! (line 1828) * __satfractunsdita: Fixed-point fractional library routines. ! (line 1834) * __satfractunsdiuda: Fixed-point fractional library routines. ! (line 1848) * __satfractunsdiudq: Fixed-point fractional library routines. ! (line 1842) * __satfractunsdiuha: Fixed-point fractional library routines. ! (line 1844) * __satfractunsdiuhq: Fixed-point fractional library routines. (line 1838) + * __satfractunsdiuqq: Fixed-point fractional library routines. + (line 1836) * __satfractunsdiusa: Fixed-point fractional library routines. ! (line 1846) * __satfractunsdiusq: Fixed-point fractional library routines. ! (line 1840) * __satfractunsdiuta: Fixed-point fractional library routines. ! (line 1850) * __satfractunshida: Fixed-point fractional library routines. ! (line 1785) * __satfractunshidq: Fixed-point fractional library routines. ! (line 1781) * __satfractunshiha: Fixed-point fractional library routines. ! (line 1783) * __satfractunshihq: Fixed-point fractional library routines. (line 1779) + * __satfractunshiqq: Fixed-point fractional library routines. + (line 1778) * __satfractunshisa: Fixed-point fractional library routines. ! (line 1784) * __satfractunshisq: Fixed-point fractional library routines. ! (line 1780) * __satfractunshita: Fixed-point fractional library routines. ! (line 1786) * __satfractunshiuda: Fixed-point fractional library routines. ! (line 1800) * __satfractunshiudq: Fixed-point fractional library routines. ! (line 1794) * __satfractunshiuha: Fixed-point fractional library routines. ! (line 1796) * __satfractunshiuhq: Fixed-point fractional library routines. (line 1790) + * __satfractunshiuqq: Fixed-point fractional library routines. + (line 1788) * __satfractunshiusa: Fixed-point fractional library routines. ! (line 1798) * __satfractunshiusq: Fixed-point fractional library routines. ! (line 1792) * __satfractunshiuta: Fixed-point fractional library routines. ! (line 1802) * __satfractunsqida: Fixed-point fractional library routines. ! (line 1759) * __satfractunsqidq: Fixed-point fractional library routines. ! (line 1755) * __satfractunsqiha: Fixed-point fractional library routines. ! (line 1757) * __satfractunsqihq: Fixed-point fractional library routines. (line 1753) + * __satfractunsqiqq: Fixed-point fractional library routines. + (line 1752) * __satfractunsqisa: Fixed-point fractional library routines. ! (line 1758) * __satfractunsqisq: Fixed-point fractional library routines. ! (line 1754) * __satfractunsqita: Fixed-point fractional library routines. ! (line 1760) * __satfractunsqiuda: Fixed-point fractional library routines. ! (line 1774) * __satfractunsqiudq: Fixed-point fractional library routines. ! (line 1768) * __satfractunsqiuha: Fixed-point fractional library routines. ! (line 1770) * __satfractunsqiuhq: Fixed-point fractional library routines. (line 1764) + * __satfractunsqiuqq: Fixed-point fractional library routines. + (line 1762) * __satfractunsqiusa: Fixed-point fractional library routines. ! (line 1772) * __satfractunsqiusq: Fixed-point fractional library routines. ! (line 1766) * __satfractunsqiuta: Fixed-point fractional library routines. ! (line 1776) * __satfractunssida: Fixed-point fractional library routines. ! (line 1810) * __satfractunssidq: Fixed-point fractional library routines. ! (line 1807) * __satfractunssiha: Fixed-point fractional library routines. ! (line 1808) * __satfractunssihq: Fixed-point fractional library routines. (line 1805) + * __satfractunssiqq: Fixed-point fractional library routines. + (line 1804) * __satfractunssisa: Fixed-point fractional library routines. ! (line 1809) * __satfractunssisq: Fixed-point fractional library routines. ! (line 1806) * __satfractunssita: Fixed-point fractional library routines. ! (line 1811) * __satfractunssiuda: Fixed-point fractional library routines. ! (line 1822) * __satfractunssiudq: Fixed-point fractional library routines. ! (line 1817) * __satfractunssiuha: Fixed-point fractional library routines. ! (line 1819) * __satfractunssiuhq: Fixed-point fractional library routines. (line 1814) + * __satfractunssiuqq: Fixed-point fractional library routines. + (line 1812) * __satfractunssiusa: Fixed-point fractional library routines. ! (line 1821) * __satfractunssiusq: Fixed-point fractional library routines. ! (line 1815) * __satfractunssiuta: Fixed-point fractional library routines. ! (line 1824) * __satfractunstida: Fixed-point fractional library routines. ! (line 1862) * __satfractunstidq: Fixed-point fractional library routines. ! (line 1857) * __satfractunstiha: Fixed-point fractional library routines. ! (line 1859) * __satfractunstihq: Fixed-point fractional library routines. (line 1854) + * __satfractunstiqq: Fixed-point fractional library routines. + (line 1852) * __satfractunstisa: Fixed-point fractional library routines. ! (line 1861) * __satfractunstisq: Fixed-point fractional library routines. ! (line 1855) * __satfractunstita: Fixed-point fractional library routines. ! (line 1864) * __satfractunstiuda: Fixed-point fractional library routines. ! (line 1878) * __satfractunstiudq: Fixed-point fractional library routines. ! (line 1872) * __satfractunstiuha: Fixed-point fractional library routines. ! (line 1874) * __satfractunstiuhq: Fixed-point fractional library routines. (line 1868) + * __satfractunstiuqq: Fixed-point fractional library routines. + (line 1866) * __satfractunstiusa: Fixed-point fractional library routines. ! (line 1876) * __satfractunstiusq: Fixed-point fractional library routines. ! (line 1870) * __satfractunstiuta: Fixed-point fractional library routines. ! (line 1880) * __satfractuqqda: Fixed-point fractional library routines. ! (line 1199) * __satfractuqqdq: Fixed-point fractional library routines. ! (line 1194) * __satfractuqqha: Fixed-point fractional library routines. ! (line 1196) * __satfractuqqhq: Fixed-point fractional library routines. (line 1191) + * __satfractuqqqq: Fixed-point fractional library routines. + (line 1189) * __satfractuqqsa: Fixed-point fractional library routines. ! (line 1198) * __satfractuqqsq: Fixed-point fractional library routines. ! (line 1192) * __satfractuqqta: Fixed-point fractional library routines. ! (line 1201) * __satfractuqquda: Fixed-point fractional library routines. ! (line 1213) * __satfractuqqudq2: Fixed-point fractional library routines. ! (line 1207) * __satfractuqquha: Fixed-point fractional library routines. ! (line 1209) * __satfractuqquhq2: Fixed-point fractional library routines. ! (line 1203) * __satfractuqqusa: Fixed-point fractional library routines. ! (line 1211) * __satfractuqqusq2: Fixed-point fractional library routines. ! (line 1205) * __satfractuqquta: Fixed-point fractional library routines. ! (line 1215) * __satfractusada: Fixed-point fractional library routines. ! (line 1326) * __satfractusadq: Fixed-point fractional library routines. ! (line 1323) * __satfractusaha: Fixed-point fractional library routines. ! (line 1324) * __satfractusahq: Fixed-point fractional library routines. (line 1321) + * __satfractusaqq: Fixed-point fractional library routines. + (line 1320) * __satfractusasa: Fixed-point fractional library routines. ! (line 1325) * __satfractusasq: Fixed-point fractional library routines. ! (line 1322) * __satfractusata: Fixed-point fractional library routines. ! (line 1327) * __satfractusauda2: Fixed-point fractional library routines. ! (line 1337) * __satfractusaudq: Fixed-point fractional library routines. ! (line 1333) * __satfractusauha2: Fixed-point fractional library routines. ! (line 1335) * __satfractusauhq: Fixed-point fractional library routines. (line 1330) + * __satfractusauqq: Fixed-point fractional library routines. + (line 1328) * __satfractusausq: Fixed-point fractional library routines. ! (line 1331) * __satfractusauta2: Fixed-point fractional library routines. ! (line 1339) * __satfractusqda: Fixed-point fractional library routines. ! (line 1247) * __satfractusqdq: Fixed-point fractional library routines. ! (line 1242) * __satfractusqha: Fixed-point fractional library routines. ! (line 1244) * __satfractusqhq: Fixed-point fractional library routines. (line 1240) + * __satfractusqqq: Fixed-point fractional library routines. + (line 1238) * __satfractusqsa: Fixed-point fractional library routines. ! (line 1246) * __satfractusqsq: Fixed-point fractional library routines. ! (line 1241) * __satfractusqta: Fixed-point fractional library routines. ! (line 1248) * __satfractusquda: Fixed-point fractional library routines. ! (line 1260) * __satfractusqudq2: Fixed-point fractional library routines. ! (line 1254) * __satfractusquha: Fixed-point fractional library routines. ! (line 1256) * __satfractusquhq2: Fixed-point fractional library routines. (line 1252) + * __satfractusquqq2: Fixed-point fractional library routines. + (line 1250) * __satfractusqusa: Fixed-point fractional library routines. ! (line 1258) * __satfractusquta: Fixed-point fractional library routines. ! (line 1262) * __satfractutada: Fixed-point fractional library routines. ! (line 1377) * __satfractutadq: Fixed-point fractional library routines. ! (line 1372) * __satfractutaha: Fixed-point fractional library routines. ! (line 1374) * __satfractutahq: Fixed-point fractional library routines. (line 1369) + * __satfractutaqq: Fixed-point fractional library routines. + (line 1367) * __satfractutasa: Fixed-point fractional library routines. ! (line 1376) * __satfractutasq: Fixed-point fractional library routines. ! (line 1370) * __satfractutata: Fixed-point fractional library routines. ! (line 1379) * __satfractutauda2: Fixed-point fractional library routines. ! (line 1393) * __satfractutaudq: Fixed-point fractional library routines. ! (line 1387) * __satfractutauha2: Fixed-point fractional library routines. ! (line 1389) * __satfractutauhq: Fixed-point fractional library routines. (line 1383) + * __satfractutauqq: Fixed-point fractional library routines. + (line 1381) * __satfractutausa2: Fixed-point fractional library routines. ! (line 1391) * __satfractutausq: Fixed-point fractional library routines. ! (line 1385) * __splitstack_find: Miscellaneous routines. ! (line 15) * __ssaddda3: Fixed-point fractional library routines. ! (line 66) * __ssadddq3: Fixed-point fractional library routines. ! (line 61) * __ssaddha3: Fixed-point fractional library routines. ! (line 63) * __ssaddhq3: Fixed-point fractional library routines. (line 59) + * __ssaddqq3: Fixed-point fractional library routines. + (line 57) * __ssaddsa3: Fixed-point fractional library routines. ! (line 65) * __ssaddsq3: Fixed-point fractional library routines. ! (line 60) * __ssaddta3: Fixed-point fractional library routines. ! (line 67) * __ssashlda3: Fixed-point fractional library routines. ! (line 401) * __ssashldq3: Fixed-point fractional library routines. ! (line 397) * __ssashlha3: Fixed-point fractional library routines. ! (line 399) * __ssashlhq3: Fixed-point fractional library routines. ! (line 395) * __ssashlsa3: Fixed-point fractional library routines. ! (line 400) * __ssashlsq3: Fixed-point fractional library routines. ! (line 396) * __ssashlta3: Fixed-point fractional library routines. ! (line 402) * __ssdivda3: Fixed-point fractional library routines. ! (line 260) * __ssdivdq3: Fixed-point fractional library routines. ! (line 255) * __ssdivha3: Fixed-point fractional library routines. ! (line 257) * __ssdivhq3: Fixed-point fractional library routines. (line 253) + * __ssdivqq3: Fixed-point fractional library routines. + (line 251) * __ssdivsa3: Fixed-point fractional library routines. ! (line 259) * __ssdivsq3: Fixed-point fractional library routines. ! (line 254) * __ssdivta3: Fixed-point fractional library routines. ! (line 261) * __ssmulda3: Fixed-point fractional library routines. ! (line 192) * __ssmuldq3: Fixed-point fractional library routines. ! (line 187) * __ssmulha3: Fixed-point fractional library routines. ! (line 189) * __ssmulhq3: Fixed-point fractional library routines. (line 185) + * __ssmulqq3: Fixed-point fractional library routines. + (line 183) * __ssmulsa3: Fixed-point fractional library routines. ! (line 191) * __ssmulsq3: Fixed-point fractional library routines. ! (line 186) * __ssmulta3: Fixed-point fractional library routines. ! (line 193) * __ssnegda2: Fixed-point fractional library routines. ! (line 315) * __ssnegdq2: Fixed-point fractional library routines. ! (line 312) * __ssnegha2: Fixed-point fractional library routines. ! (line 313) * __ssneghq2: Fixed-point fractional library routines. (line 310) + * __ssnegqq2: Fixed-point fractional library routines. + (line 309) * __ssnegsa2: Fixed-point fractional library routines. ! (line 314) * __ssnegsq2: Fixed-point fractional library routines. ! (line 311) * __ssnegta2: Fixed-point fractional library routines. ! (line 316) * __sssubda3: Fixed-point fractional library routines. ! (line 128) * __sssubdq3: Fixed-point fractional library routines. ! (line 123) * __sssubha3: Fixed-point fractional library routines. ! (line 125) * __sssubhq3: Fixed-point fractional library routines. (line 121) + * __sssubqq3: Fixed-point fractional library routines. + (line 119) * __sssubsa3: Fixed-point fractional library routines. ! (line 127) * __sssubsq3: Fixed-point fractional library routines. ! (line 122) * __sssubta3: Fixed-point fractional library routines. ! (line 129) * __subda3: Fixed-point fractional library routines. ! (line 106) * __subdf3: Soft float library routines. ! (line 30) * __subdq3: Fixed-point fractional library routines. ! (line 93) * __subha3: Fixed-point fractional library routines. ! (line 103) * __subhq3: Fixed-point fractional library routines. (line 91) + * __subqq3: Fixed-point fractional library routines. + (line 89) * __subsa3: Fixed-point fractional library routines. ! (line 105) * __subsf3: Soft float library routines. ! (line 29) * __subsq3: Fixed-point fractional library routines. ! (line 92) * __subta3: Fixed-point fractional library routines. ! (line 107) * __subtf3: Soft float library routines. ! (line 31) * __subuda3: Fixed-point fractional library routines. ! (line 113) * __subudq3: Fixed-point fractional library routines. ! (line 101) * __subuha3: Fixed-point fractional library routines. ! (line 109) * __subuhq3: Fixed-point fractional library routines. (line 97) + * __subuqq3: Fixed-point fractional library routines. + (line 95) * __subusa3: Fixed-point fractional library routines. ! (line 111) * __subusq3: Fixed-point fractional library routines. ! (line 99) * __subuta3: Fixed-point fractional library routines. ! (line 115) * __subvdi3: Integer library routines. (line 122) + * __subvsi3: Integer library routines. + (line 121) * __subxf3: Soft float library routines. ! (line 33) * __truncdfsf2: Soft float library routines. ! (line 75) * __trunctfdf2: Soft float library routines. ! (line 72) * __trunctfsf2: Soft float library routines. ! (line 74) * __truncxfdf2: Soft float library routines. ! (line 71) * __truncxfsf2: Soft float library routines. ! (line 73) * __ucmpdi2: Integer library routines. ! (line 92) * __ucmpti2: Integer library routines. ! (line 93) * __udivdi3: Integer library routines. ! (line 52) * __udivmoddi4: Integer library routines. ! (line 59) * __udivmodti4: Integer library routines. ! (line 61) * __udivsi3: Integer library routines. ! (line 50) * __udivti3: Integer library routines. ! (line 54) * __udivuda3: Fixed-point fractional library routines. ! (line 244) * __udivudq3: Fixed-point fractional library routines. ! (line 238) * __udivuha3: Fixed-point fractional library routines. ! (line 240) * __udivuhq3: Fixed-point fractional library routines. (line 234) + * __udivuqq3: Fixed-point fractional library routines. + (line 232) * __udivusa3: Fixed-point fractional library routines. ! (line 242) * __udivusq3: Fixed-point fractional library routines. ! (line 236) * __udivuta3: Fixed-point fractional library routines. ! (line 246) * __umoddi3: Integer library routines. (line 69) + * __umodsi3: Integer library routines. + (line 67) * __umodti3: Integer library routines. ! (line 71) * __unorddf2: Soft float library routines. (line 172) + * __unordsf2: Soft float library routines. + (line 171) * __unordtf2: Soft float library routines. ! (line 173) * __usadduda3: Fixed-point fractional library routines. ! (line 83) * __usaddudq3: Fixed-point fractional library routines. ! (line 77) * __usadduha3: Fixed-point fractional library routines. ! (line 79) * __usadduhq3: Fixed-point fractional library routines. (line 73) + * __usadduqq3: Fixed-point fractional library routines. + (line 71) * __usaddusa3: Fixed-point fractional library routines. ! (line 81) * __usaddusq3: Fixed-point fractional library routines. ! (line 75) * __usadduta3: Fixed-point fractional library routines. ! (line 85) * __usashluda3: Fixed-point fractional library routines. ! (line 419) * __usashludq3: Fixed-point fractional library routines. ! (line 413) * __usashluha3: Fixed-point fractional library routines. ! (line 415) * __usashluhq3: Fixed-point fractional library routines. (line 409) + * __usashluqq3: Fixed-point fractional library routines. + (line 407) * __usashlusa3: Fixed-point fractional library routines. ! (line 417) * __usashlusq3: Fixed-point fractional library routines. ! (line 411) * __usashluta3: Fixed-point fractional library routines. ! (line 421) * __usdivuda3: Fixed-point fractional library routines. ! (line 278) * __usdivudq3: Fixed-point fractional library routines. ! (line 272) * __usdivuha3: Fixed-point fractional library routines. ! (line 274) * __usdivuhq3: Fixed-point fractional library routines. (line 268) + * __usdivuqq3: Fixed-point fractional library routines. + (line 266) * __usdivusa3: Fixed-point fractional library routines. ! (line 276) * __usdivusq3: Fixed-point fractional library routines. ! (line 270) * __usdivuta3: Fixed-point fractional library routines. ! (line 280) * __usmuluda3: Fixed-point fractional library routines. ! (line 210) * __usmuludq3: Fixed-point fractional library routines. ! (line 204) * __usmuluha3: Fixed-point fractional library routines. ! (line 206) * __usmuluhq3: Fixed-point fractional library routines. (line 200) + * __usmuluqq3: Fixed-point fractional library routines. + (line 198) * __usmulusa3: Fixed-point fractional library routines. ! (line 208) * __usmulusq3: Fixed-point fractional library routines. ! (line 202) * __usmuluta3: Fixed-point fractional library routines. ! (line 212) * __usneguda2: Fixed-point fractional library routines. ! (line 329) * __usnegudq2: Fixed-point fractional library routines. ! (line 324) * __usneguha2: Fixed-point fractional library routines. ! (line 326) * __usneguhq2: Fixed-point fractional library routines. (line 321) + * __usneguqq2: Fixed-point fractional library routines. + (line 319) * __usnegusa2: Fixed-point fractional library routines. ! (line 328) * __usnegusq2: Fixed-point fractional library routines. ! (line 322) * __usneguta2: Fixed-point fractional library routines. ! (line 331) * __ussubuda3: Fixed-point fractional library routines. ! (line 146) * __ussubudq3: Fixed-point fractional library routines. ! (line 140) * __ussubuha3: Fixed-point fractional library routines. ! (line 142) * __ussubuhq3: Fixed-point fractional library routines. (line 136) + * __ussubuqq3: Fixed-point fractional library routines. + (line 134) * __ussubusa3: Fixed-point fractional library routines. ! (line 144) * __ussubusq3: Fixed-point fractional library routines. ! (line 138) * __ussubuta3: Fixed-point fractional library routines. ! (line 148) ! * abort: Portability. (line 20) ! * abs: Arithmetic. (line 201) ! * 'abs' and attributes: Expressions. (line 83) ! * absence_set: Processor pipeline description. ! (line 223) ! * 'absM2' instruction pattern: Standard Names. (line 529) ! * absolute value: Arithmetic. (line 201) * ABS_EXPR: Unary and Binary Expressions. (line 6) * access to operands: Accessors. (line 6) * access to special operands: Special Accessors. (line 6) * accessors: Accessors. (line 6) ! * ACCUMULATE_OUTGOING_ARGS: Stack Arguments. (line 48) ! * 'ACCUMULATE_OUTGOING_ARGS' and stack frames: Function Entry. ! (line 133) ! * ACCUM_TYPE_SIZE: Type Layout. (line 87) ! * ADA_LONG_TYPE_SIZE: Type Layout. (line 25) * Adding a new GIMPLE statement code: Adding a new GIMPLE statement code. (line 6) ! * ADDITIONAL_REGISTER_NAMES: Instruction Output. (line 14) ! * 'addM3' instruction pattern: Standard Names. (line 260) ! * 'addMODEcc' instruction pattern: Standard Names. (line 1044) ! * address constraints: Simple Constraints. (line 162) * addressing modes: Addressing Modes. (line 6) ! * address_operand: Machine-Independent Predicates. ! (line 62) ! * address_operand <1>: Simple Constraints. (line 166) ! * addr_diff_vec: Side Effects. (line 306) ! * 'addr_diff_vec', length of: Insn Lengths. (line 26) ! * ADDR_EXPR: Storage References. (line 6) ! * addr_vec: Side Effects. (line 301) ! * 'addr_vec', length of: Insn Lengths. (line 26) ! * ADJUST_FIELD_ALIGN: Storage Layout. (line 195) * ADJUST_INSN_LENGTH: Insn Lengths. (line 35) ! * ADJUST_REG_ALLOC_ORDER: Allocation Order. (line 22) * aggregates as return values: Aggregate Return. (line 6) * alias: Alias analysis. (line 6) + * 'allocate_stack' instruction pattern: Standard Names. (line 1364) * ALL_REGS: Register Classes. (line 17) * alternate entry points: Insns. (line 146) * anchored addresses: Anchored Addresses. (line 6) ! * and: Arithmetic. (line 159) ! * 'and' and attributes: Expressions. (line 50) ! * 'and', canonicalization of: Insn Canonicalizations. ! (line 51) ! * 'andM3' instruction pattern: Standard Names. (line 266) * annotations: Annotations. (line 6) * APPLY_RESULT_SIZE: Scalar Return. (line 112) ! * ARGS_GROW_DOWNWARD: Frame Layout. (line 34) * argument passing: Interface. (line 36) * arguments in registers: Register Arguments. (line 6) * arguments on stack: Stack Arguments. (line 6) + * ARG_POINTER_CFA_OFFSET: Frame Layout. (line 192) + * ARG_POINTER_REGNUM: Frame Registers. (line 40) + * 'ARG_POINTER_REGNUM' and virtual registers: Regs and Memory. + (line 65) + * arg_pointer_rtx: Frame Registers. (line 104) * arithmetic library: Soft float library routines. (line 6) ! * arithmetic shift: Arithmetic. (line 174) ! * arithmetic shift with signed saturation: Arithmetic. (line 174) ! * arithmetic shift with unsigned saturation: Arithmetic. (line 174) * arithmetic, in RTL: Arithmetic. (line 6) ! * ARITHMETIC_TYPE_P: Types for C++. (line 59) * array: Types. (line 6) * ARRAY_RANGE_REF: Storage References. (line 6) * ARRAY_REF: Storage References. (line 6) * ARRAY_TYPE: Types. (line 6) ! * ashift: Arithmetic. (line 174) ! * 'ashift' and attributes: Expressions. (line 83) ! * ashiftrt: Arithmetic. (line 191) ! * 'ashiftrt' and attributes: Expressions. (line 83) ! * 'ashlM3' instruction pattern: Standard Names. (line 504) ! * 'ashrM3' instruction pattern: Standard Names. (line 514) ! * ASM_APP_OFF: File Framework. (line 76) ! * ASM_APP_ON: File Framework. (line 69) ! * ASM_COMMENT_START: File Framework. (line 64) ! * ASM_DECLARE_FUNCTION_NAME: Label Output. (line 108) ! * ASM_DECLARE_FUNCTION_SIZE: Label Output. (line 123) ! * ASM_DECLARE_OBJECT_NAME: Label Output. (line 136) ! * ASM_DECLARE_REGISTER_GLOBAL: Label Output. (line 164) ! * ASM_FINAL_SPEC: Driver. (line 81) ! * ASM_FINISH_DECLARE_OBJECT: Label Output. (line 172) ! * ASM_FORMAT_PRIVATE_NAME: Label Output. (line 391) ! * asm_fprintf: Instruction Output. (line 150) ! * ASM_FPRINTF_EXTENSIONS: Instruction Output. (line 160) ! * ASM_GENERATE_INTERNAL_LABEL: Label Output. (line 375) ! * asm_input: Side Effects. (line 288) ! * 'asm_input' and '/v': Flags. (line 76) ! * ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX: Exception Handling. (line 80) ! * asm_noperands: Insns. (line 311) ! * ASM_NO_SKIP_IN_TEXT: Alignment Output. (line 78) ! * 'asm_operands' and '/v': Flags. (line 76) ! * 'asm_operands', RTL sharing: Sharing. (line 45) ! * 'asm_operands', usage: Assembler. (line 6) ! * ASM_OUTPUT_ADDR_DIFF_ELT: Dispatch Tables. (line 8) ! * ASM_OUTPUT_ADDR_VEC_ELT: Dispatch Tables. (line 25) ! * ASM_OUTPUT_ALIGN: Alignment Output. (line 85) ! * ASM_OUTPUT_ALIGNED_BSS: Uninitialized Data. (line 45) ! * ASM_OUTPUT_ALIGNED_COMMON: Uninitialized Data. (line 29) ! * ASM_OUTPUT_ALIGNED_DECL_COMMON: Uninitialized Data. (line 36) ! * ASM_OUTPUT_ALIGNED_DECL_LOCAL: Uninitialized Data. (line 89) ! * ASM_OUTPUT_ALIGNED_LOCAL: Uninitialized Data. (line 82) ! * ASM_OUTPUT_ALIGN_WITH_NOP: Alignment Output. (line 90) ! * ASM_OUTPUT_ASCII: Data Output. (line 50) ! * ASM_OUTPUT_CASE_END: Dispatch Tables. (line 50) ! * ASM_OUTPUT_CASE_LABEL: Dispatch Tables. (line 37) ! * ASM_OUTPUT_COMMON: Uninitialized Data. (line 9) ! * ASM_OUTPUT_DEBUG_LABEL: Label Output. (line 363) ! * ASM_OUTPUT_DEF: Label Output. (line 412) ! * ASM_OUTPUT_DEF_FROM_DECLS: Label Output. (line 419) ! * ASM_OUTPUT_DWARF_DELTA: SDB and DWARF. (line 73) ! * ASM_OUTPUT_DWARF_OFFSET: SDB and DWARF. (line 82) ! * ASM_OUTPUT_DWARF_PCREL: SDB and DWARF. (line 88) ! * ASM_OUTPUT_DWARF_TABLE_REF: SDB and DWARF. (line 93) ! * ASM_OUTPUT_DWARF_VMS_DELTA: SDB and DWARF. (line 77) ! * ASM_OUTPUT_EXTERNAL: Label Output. (line 292) ! * ASM_OUTPUT_FDESC: Data Output. (line 59) ! * ASM_OUTPUT_FUNCTION_LABEL: Label Output. (line 16) ! * ASM_OUTPUT_INTERNAL_LABEL: Label Output. (line 27) ! * ASM_OUTPUT_LABEL: Label Output. (line 8) ! * ASM_OUTPUT_LABELREF: Label Output. (line 314) ! * ASM_OUTPUT_LABEL_REF: Label Output. (line 336) ! * ASM_OUTPUT_LOCAL: Uninitialized Data. (line 69) ! * ASM_OUTPUT_MAX_SKIP_ALIGN: Alignment Output. (line 94) ! * ASM_OUTPUT_MEASURED_SIZE: Label Output. (line 51) ! * ASM_OUTPUT_OPCODE: Instruction Output. (line 35) ! * ASM_OUTPUT_POOL_EPILOGUE: Data Output. (line 108) ! * ASM_OUTPUT_POOL_PROLOGUE: Data Output. (line 72) ! * ASM_OUTPUT_REG_POP: Instruction Output. (line 204) ! * ASM_OUTPUT_REG_PUSH: Instruction Output. (line 199) ! * ASM_OUTPUT_SIZE_DIRECTIVE: Label Output. (line 45) ! * ASM_OUTPUT_SKIP: Alignment Output. (line 72) ! * ASM_OUTPUT_SOURCE_FILENAME: File Framework. (line 83) ! * ASM_OUTPUT_SPECIAL_POOL_ENTRY: Data Output. (line 83) ! * ASM_OUTPUT_SYMBOL_REF: Label Output. (line 329) ! * ASM_OUTPUT_TYPE_DIRECTIVE: Label Output. (line 98) ! * ASM_OUTPUT_WEAKREF: Label Output. (line 224) ! * ASM_OUTPUT_WEAK_ALIAS: Label Output. (line 438) ! * ASM_PREFERRED_EH_DATA_FORMAT: Exception Handling. (line 66) ! * ASM_SPEC: Driver. (line 73) ! * ASM_STABD_OP: DBX Options. (line 34) ! * ASM_STABN_OP: DBX Options. (line 41) ! * ASM_STABS_OP: DBX Options. (line 28) ! * ASM_WEAKEN_DECL: Label Output. (line 216) ! * ASM_WEAKEN_LABEL: Label Output. (line 203) * assembler format: File Framework. (line 6) * assembler instructions in RTL: Assembler. (line 6) ! * ASSEMBLER_DIALECT: Instruction Output. (line 172) ! * assemble_name: Label Output. (line 8) ! * assemble_name_raw: Label Output. (line 27) * assigning attribute values to insns: Tagging Insns. (line 6) ! * ASSUME_EXTENDED_UNWIND_CONTEXT: Frame Registers. (line 165) * asterisk in template: Output Statement. (line 29) ! * AS_NEEDS_DASH_FOR_PIPED_INPUT: Driver. (line 88) ! * 'atan2M3' instruction pattern: Standard Names. (line 612) ! * atomic: GTY Options. (line 266) ! * 'atomic_addMODE' instruction pattern: Standard Names. (line 1775) ! * 'atomic_add_fetchMODE' instruction pattern: Standard Names. ! (line 1806) ! * 'atomic_andMODE' instruction pattern: Standard Names. (line 1775) ! * 'atomic_and_fetchMODE' instruction pattern: Standard Names. ! (line 1806) ! * 'atomic_compare_and_swapMODE' instruction pattern: Standard Names. ! (line 1711) ! * 'atomic_exchangeMODE' instruction pattern: Standard Names. (line 1763) ! * 'atomic_fetch_addMODE' instruction pattern: Standard Names. ! (line 1790) ! * 'atomic_fetch_andMODE' instruction pattern: Standard Names. ! (line 1790) ! * 'atomic_fetch_nandMODE' instruction pattern: Standard Names. ! (line 1790) ! * 'atomic_fetch_orMODE' instruction pattern: Standard Names. (line 1790) ! * 'atomic_fetch_subMODE' instruction pattern: Standard Names. ! (line 1790) ! * 'atomic_fetch_xorMODE' instruction pattern: Standard Names. ! (line 1790) ! * 'atomic_loadMODE' instruction pattern: Standard Names. (line 1742) ! * 'atomic_nandMODE' instruction pattern: Standard Names. (line 1775) ! * 'atomic_nand_fetchMODE' instruction pattern: Standard Names. ! (line 1806) ! * 'atomic_orMODE' instruction pattern: Standard Names. (line 1775) ! * 'atomic_or_fetchMODE' instruction pattern: Standard Names. (line 1806) ! * 'atomic_storeMODE' instruction pattern: Standard Names. (line 1752) ! * 'atomic_subMODE' instruction pattern: Standard Names. (line 1775) ! * 'atomic_sub_fetchMODE' instruction pattern: Standard Names. ! (line 1806) ! * 'atomic_test_and_set' instruction pattern: Standard Names. (line 1824) ! * 'atomic_xorMODE' instruction pattern: Standard Names. (line 1775) ! * 'atomic_xor_fetchMODE' instruction pattern: Standard Names. ! (line 1806) ! * attr: Expressions. (line 163) * attr <1>: Tagging Insns. (line 54) * attribute expressions: Expressions. (line 6) * attribute specifications: Attr Example. (line 6) * attribute specifications example: Attr Example. (line 6) * attributes: Attributes. (line 6) * attributes, defining: Defining Attributes. (line 6) * attributes, target-specific: Target Attributes. (line 6) ! * ATTRIBUTE_ALIGNED_VALUE: Storage Layout. (line 177) ! * attr_flag: Expressions. (line 138) ! * autoincrement addressing, availability: Portability. (line 20) * autoincrement/decrement addressing: Simple Constraints. (line 30) * automata_option: Processor pipeline description. ! (line 304) * automaton based pipeline description: Processor pipeline description. (line 6) + * automaton based pipeline description <1>: Processor pipeline description. + (line 49) * automaton based scheduler: Processor pipeline description. (line 6) * AVOID_CCMODE_COPIES: Values in Registers. ! (line 150) * backslash: Output Template. (line 46) * barrier: Insns. (line 166) ! * 'barrier' and '/f': Flags. (line 107) ! * 'barrier' and '/v': Flags. (line 44) ! * BASE_REG_CLASS: Register Classes. (line 111) * basic block: Basic Blocks. (line 6) * Basic Statements: Basic Statements. (line 6) * basic-block.h: Control Flow. (line 6) * basic_block: Basic Blocks. (line 6) + * BASIC_BLOCK: Basic Blocks. (line 14) * BB_HEAD, BB_END: Maintaining the CFG. ! (line 76) ! * bb_seq: GIMPLE sequences. (line 72) ! * BIGGEST_ALIGNMENT: Storage Layout. (line 167) ! * BIGGEST_FIELD_ALIGNMENT: Storage Layout. (line 188) * BImode: Machine Modes. (line 22) * BIND_EXPR: Unary and Binary Expressions. (line 6) * BINFO_TYPE: Classes. (line 6) * bit-fields: Bit-Fields. (line 6) + * BITFIELD_NBYTES_LIMITED: Storage Layout. (line 390) + * BITS_BIG_ENDIAN: Storage Layout. (line 11) + * 'BITS_BIG_ENDIAN', effect on 'sign_extract': Bit-Fields. (line 8) + * BITS_PER_UNIT: Storage Layout. (line 50) + * BITS_PER_WORD: Storage Layout. (line 55) + * bitwise complement: Arithmetic. (line 155) + * bitwise exclusive-or: Arithmetic. (line 169) + * bitwise inclusive-or: Arithmetic. (line 164) + * bitwise logical-and: Arithmetic. (line 159) * BIT_AND_EXPR: Unary and Binary Expressions. (line 6) * BIT_IOR_EXPR: Unary and Binary Expressions. *************** Concept Index *** 45815,45848 **** (line 6) * BIT_XOR_EXPR: Unary and Binary Expressions. (line 6) ! * BITFIELD_NBYTES_LIMITED: Storage Layout. (line 394) ! * BITS_BIG_ENDIAN: Storage Layout. (line 12) ! * BITS_BIG_ENDIAN, effect on sign_extract: Bit-Fields. (line 8) ! * BITS_PER_UNIT: Storage Layout. (line 51) ! * BITS_PER_WORD: Storage Layout. (line 56) ! * bitwise complement: Arithmetic. (line 154) ! * bitwise exclusive-or: Arithmetic. (line 168) ! * bitwise inclusive-or: Arithmetic. (line 163) ! * bitwise logical-and: Arithmetic. (line 158) ! * BLKmode: Machine Modes. (line 183) ! * BLKmode, and function return values: Calls. (line 23) ! * BLOCK_FOR_INSN, gimple_bb: Maintaining the CFG. ! (line 29) ! * BLOCK_REG_PADDING: Register Arguments. (line 230) ! * blockage instruction pattern: Standard Names. (line 1578) * Blocks: Blocks. (line 6) ! * bool: Misc. (line 857) ! * BOOL_TYPE_SIZE: Type Layout. (line 44) * BOOLEAN_TYPE: Types. (line 6) * branch prediction: Profile information. (line 24) ! * BRANCH_COST: Costs. (line 105) ! * break_out_memory_refs: Addressing Modes. (line 135) * BREAK_STMT: Statements for C++. (line 6) ! * BSS_SECTION_ASM_OP: Sections. (line 68) * bswap: Arithmetic. (line 247) ! * bswapM2 instruction pattern: Standard Names. (line 528) ! * btruncM2 instruction pattern: Standard Names. (line 636) * build0: Macros and Functions. (line 16) * build1: Macros and Functions. --- 45436,45460 ---- (line 6) * BIT_XOR_EXPR: Unary and Binary Expressions. (line 6) ! * BLKmode: Machine Modes. (line 182) ! * 'BLKmode', and function return values: Calls. (line 23) ! * 'blockage' instruction pattern: Standard Names. (line 1566) * Blocks: Blocks. (line 6) ! * BLOCK_FOR_INSN, gimple_bb: Maintaining the CFG. ! (line 28) ! * BLOCK_REG_PADDING: Register Arguments. (line 228) ! * bool: Misc. (line 858) * BOOLEAN_TYPE: Types. (line 6) + * BOOL_TYPE_SIZE: Type Layout. (line 43) * branch prediction: Profile information. (line 24) ! * BRANCH_COST: Costs. (line 104) ! * break_out_memory_refs: Addressing Modes. (line 134) * BREAK_STMT: Statements for C++. (line 6) ! * BSS_SECTION_ASM_OP: Sections. (line 67) * bswap: Arithmetic. (line 247) ! * 'bswapM2' instruction pattern: Standard Names. (line 522) ! * 'btruncM2' instruction pattern: Standard Names. (line 630) * build0: Macros and Functions. (line 16) * build1: Macros and Functions. *************** Concept Index *** 45857,46008 **** (line 21) * build6: Macros and Functions. (line 22) ! * builtin_longjmp instruction pattern: Standard Names. (line 1475) ! * builtin_setjmp_receiver instruction pattern: Standard Names. ! (line 1465) ! * builtin_setjmp_setup instruction pattern: Standard Names. (line 1454) ! * byte_mode: Machine Modes. (line 336) ! * BYTES_BIG_ENDIAN: Storage Layout. (line 24) ! * BYTES_BIG_ENDIAN, effect on subreg: Regs and Memory. (line 221) * C statements for assembler output: Output Statement. (line 6) * C99 math functions, implicit usage: Library Calls. (line 70) - * C_COMMON_OVERRIDE_OPTIONS: Run-time Target. (line 137) - * c_register_pragma: Misc. (line 402) - * c_register_pragma_with_expansion: Misc. (line 404) - * call <1>: Side Effects. (line 92) * call: Flags. (line 221) ! * call instruction pattern: Standard Names. (line 1107) ! * call usage: Calls. (line 10) ! * call, in call_insn: Flags. (line 33) ! * call, in mem: Flags. (line 81) * call-clobbered register: Register Basics. (line 35) * call-saved register: Register Basics. (line 35) * call-used register: Register Basics. (line 35) * CALL_EXPR: Unary and Binary Expressions. (line 6) * call_insn: Insns. (line 95) ! * call_insn and /c: Flags. (line 33) ! * call_insn and /f: Flags. (line 107) ! * call_insn and /i: Flags. (line 24) ! * call_insn and /j: Flags. (line 161) ! * call_insn and /s: Flags. (line 49) ! * call_insn and /u: Flags. (line 19) ! * call_insn and /u or /i: Flags. (line 29) ! * call_insn and /v: Flags. (line 44) * CALL_INSN_FUNCTION_USAGE: Insns. (line 101) ! * call_pop instruction pattern: Standard Names. (line 1135) ! * CALL_POPS_ARGS: Stack Arguments. (line 133) ! * CALL_REALLY_USED_REGISTERS: Register Basics. (line 46) ! * CALL_USED_REGISTERS: Register Basics. (line 35) * call_used_regs: Register Basics. (line 59) ! * call_value instruction pattern: Standard Names. (line 1127) ! * call_value_pop instruction pattern: Standard Names. (line 1135) ! * CALLER_SAVE_PROFITABLE: Caller Saves. (line 11) ! * calling conventions: Stack and Calling. (line 6) ! * calling functions in RTL: Calls. (line 6) ! * can_create_pseudo_p: Standard Names. (line 75) ! * can_fallthru: Basic Blocks. (line 67) * canadian: Configure Terms. (line 6) ! * CANNOT_CHANGE_MODE_CLASS: Register Classes. (line 538) ! * CANNOT_CHANGE_MODE_CLASS and subreg semantics: Regs and Memory. ! (line 280) * canonicalization of instructions: Insn Canonicalizations. (line 6) ! * canonicalize_funcptr_for_compare instruction pattern: Standard Names. ! (line 1306) ! * CASE_VECTOR_MODE: Misc. (line 27) ! * CASE_VECTOR_PC_RELATIVE: Misc. (line 40) ! * CASE_VECTOR_SHORTEN_MODE: Misc. (line 31) ! * casesi instruction pattern: Standard Names. (line 1229) ! * cbranchMODE4 instruction pattern: Standard Names. (line 1096) * cc0 <1>: CC0 Condition Codes. (line 6) ! * cc0: Regs and Memory. (line 307) ! * cc0, RTL sharing: Sharing. (line 27) ! * cc0_rtx: Regs and Memory. (line 333) ! * CC1_SPEC: Driver. (line 56) ! * CC1PLUS_SPEC: Driver. (line 64) * cc_status: CC0 Condition Codes. (line 6) * CC_STATUS_MDEP: CC0 Condition Codes. ! (line 17) * CC_STATUS_MDEP_INIT: CC0 Condition Codes. ! (line 23) ! * CCmode <1>: MODE_CC Condition Codes. ! (line 6) ! * CCmode: Machine Modes. (line 176) ! * CDImode: Machine Modes. (line 202) * CEIL_DIV_EXPR: Unary and Binary Expressions. (line 6) * CEIL_MOD_EXPR: Unary and Binary Expressions. (line 6) ! * ceilM2 instruction pattern: Standard Names. (line 652) ! * CFA_FRAME_BASE_OFFSET: Frame Layout. (line 226) * CFG verification: Maintaining the CFG. ! (line 119) * CFG, Control Flow Graph: Control Flow. (line 6) * cfghooks.h: Maintaining the CFG. (line 6) ! * cgraph_finalize_function: Parsing pass. (line 52) ! * chain_circular: GTY Options. (line 196) ! * chain_next: GTY Options. (line 196) ! * chain_prev: GTY Options. (line 196) * change_address: Standard Names. (line 47) ! * CHAR_TYPE_SIZE: Type Layout. (line 39) ! * check_stack instruction pattern: Standard Names. (line 1393) ! * CHImode: Machine Modes. (line 202) * class definitions, register: Register Classes. (line 6) * class preference constraints: Class Preferences. (line 6) * class, scope: Classes. (line 6) - * CLASS_MAX_NREGS: Register Classes. (line 526) - * CLASS_TYPE_P: Types for C++. (line 65) * classes of RTX codes: RTL Classes. (line 6) * CLASSTYPE_DECLARED_CLASS: Classes. (line 6) * CLASSTYPE_HAS_MUTABLE: Classes. (line 85) * CLASSTYPE_NON_POD_P: Classes. (line 90) * CLEANUP_DECL: Statements for C++. (line 6) * CLEANUP_EXPR: Statements for C++. (line 6) * CLEANUP_POINT_EXPR: Unary and Binary Expressions. (line 6) * CLEANUP_STMT: Statements for C++. (line 6) ! * Cleanups: Cleanups. (line 6) ! * CLEAR_BY_PIECES_P: Costs. (line 188) ! * clear_cache instruction pattern: Standard Names. (line 1885) ! * CLEAR_INSN_CACHE: Trampolines. (line 99) ! * CLEAR_RATIO: Costs. (line 176) * clobber: Side Effects. (line 106) * clrsb: Arithmetic. (line 216) * clz: Arithmetic. (line 223) ! * CLZ_DEFINED_VALUE_AT_ZERO: Misc. (line 305) ! * clzM2 instruction pattern: Standard Names. (line 717) ! * cmpmemM instruction pattern: Standard Names. (line 850) ! * cmpstrM instruction pattern: Standard Names. (line 829) ! * cmpstrnM instruction pattern: Standard Names. (line 816) * code generation RTL sequences: Expander Definitions. (line 6) ! * code iterators in .md files: Code Iterators. (line 6) ! * CODE_LABEL: Basic Blocks. (line 50) * code_label: Insns. (line 125) ! * code_label and /i: Flags. (line 59) ! * code_label and /v: Flags. (line 44) * CODE_LABEL_NUMBER: Insns. (line 125) ! * codes, RTL expression: RTL Objects. (line 47) ! * COImode: Machine Modes. (line 202) * COLLECT2_HOST_INITIALIZATION: Host Misc. (line 32) ! * COLLECT_EXPORT_LIST: Misc. (line 756) * COLLECT_SHARED_FINI_FUNC: Macros for Initialization. ! (line 44) * COLLECT_SHARED_INIT_FUNC: Macros for Initialization. ! (line 33) * commit_edge_insertions: Maintaining the CFG. ! (line 107) ! * compare: Arithmetic. (line 43) ! * compare, canonicalization of: Insn Canonicalizations. ! (line 37) * comparison_operator: Machine-Independent Predicates. ! (line 111) * compiler passes and files: Passes. (line 6) ! * complement, bitwise: Arithmetic. (line 154) * COMPLEX_CST: Constant expressions. (line 6) * COMPLEX_EXPR: Unary and Binary Expressions. --- 45469,45626 ---- (line 21) * build6: Macros and Functions. (line 22) ! * 'builtin_longjmp' instruction pattern: Standard Names. (line 1462) ! * 'builtin_setjmp_receiver' instruction pattern: Standard Names. ! (line 1452) ! * 'builtin_setjmp_setup' instruction pattern: Standard Names. ! (line 1441) ! * BYTES_BIG_ENDIAN: Storage Layout. (line 23) ! * 'BYTES_BIG_ENDIAN', effect on 'subreg': Regs and Memory. (line 219) ! * byte_mode: Machine Modes. (line 335) * C statements for assembler output: Output Statement. (line 6) * C99 math functions, implicit usage: Library Calls. (line 70) * call: Flags. (line 221) ! * call <1>: Side Effects. (line 92) ! * 'call' instruction pattern: Standard Names. (line 1101) ! * 'call' usage: Calls. (line 10) ! * 'call', in 'call_insn': Flags. (line 33) ! * 'call', in 'mem': Flags. (line 81) * call-clobbered register: Register Basics. (line 35) + * call-clobbered register <1>: Register Basics. (line 46) + * call-clobbered register <2>: Register Basics. (line 53) * call-saved register: Register Basics. (line 35) + * call-saved register <1>: Register Basics. (line 46) + * call-saved register <2>: Register Basics. (line 53) * call-used register: Register Basics. (line 35) + * call-used register <1>: Register Basics. (line 46) + * call-used register <2>: Register Basics. (line 53) + * CALLER_SAVE_PROFITABLE: Caller Saves. (line 10) + * calling conventions: Stack and Calling. (line 6) + * calling functions in RTL: Calls. (line 6) * CALL_EXPR: Unary and Binary Expressions. (line 6) * call_insn: Insns. (line 95) ! * 'call_insn' and '/c': Flags. (line 33) ! * 'call_insn' and '/f': Flags. (line 107) ! * 'call_insn' and '/i': Flags. (line 24) ! * 'call_insn' and '/j': Flags. (line 161) ! * 'call_insn' and '/s': Flags. (line 49) ! * 'call_insn' and '/s' <1>: Flags. (line 148) ! * 'call_insn' and '/u': Flags. (line 19) ! * 'call_insn' and '/u' <1>: Flags. (line 39) ! * 'call_insn' and '/u' or '/i': Flags. (line 29) ! * 'call_insn' and '/v': Flags. (line 44) * CALL_INSN_FUNCTION_USAGE: Insns. (line 101) ! * 'call_pop' instruction pattern: Standard Names. (line 1129) ! * CALL_POPS_ARGS: Stack Arguments. (line 132) ! * CALL_REALLY_USED_REGISTERS: Register Basics. (line 45) ! * CALL_USED_REGISTERS: Register Basics. (line 34) * call_used_regs: Register Basics. (line 59) ! * 'call_value' instruction pattern: Standard Names. (line 1121) ! * 'call_value_pop' instruction pattern: Standard Names. (line 1129) * canadian: Configure Terms. (line 6) ! * CANNOT_CHANGE_MODE_CLASS: Register Classes. (line 533) ! * 'CANNOT_CHANGE_MODE_CLASS' and subreg semantics: Regs and Memory. ! (line 276) * canonicalization of instructions: Insn Canonicalizations. (line 6) ! * 'canonicalize_funcptr_for_compare' instruction pattern: Standard Names. ! (line 1296) ! * can_create_pseudo_p: Standard Names. (line 75) ! * can_fallthru: Basic Blocks. (line 67) ! * 'casesi' instruction pattern: Standard Names. (line 1222) ! * CASE_VECTOR_MODE: Misc. (line 26) ! * CASE_VECTOR_PC_RELATIVE: Misc. (line 39) ! * CASE_VECTOR_SHORTEN_MODE: Misc. (line 30) ! * 'cbranchMODE4' instruction pattern: Standard Names. (line 1090) ! * cc0: Regs and Memory. (line 303) * cc0 <1>: CC0 Condition Codes. (line 6) ! * 'cc0', RTL sharing: Sharing. (line 27) ! * cc0_rtx: Regs and Memory. (line 329) ! * CC1PLUS_SPEC: Driver. (line 63) ! * CC1_SPEC: Driver. (line 55) ! * CCmode: Machine Modes. (line 175) ! * CCmode <1>: MODE_CC Condition Codes. ! (line 6) * cc_status: CC0 Condition Codes. (line 6) * CC_STATUS_MDEP: CC0 Condition Codes. ! (line 16) * CC_STATUS_MDEP_INIT: CC0 Condition Codes. ! (line 22) ! * CDImode: Machine Modes. (line 201) ! * 'ceilM2' instruction pattern: Standard Names. (line 646) * CEIL_DIV_EXPR: Unary and Binary Expressions. (line 6) * CEIL_MOD_EXPR: Unary and Binary Expressions. (line 6) ! * CFA_FRAME_BASE_OFFSET: Frame Layout. (line 224) * CFG verification: Maintaining the CFG. ! (line 117) * CFG, Control Flow Graph: Control Flow. (line 6) * cfghooks.h: Maintaining the CFG. (line 6) ! * cgraph_finalize_function: Parsing pass. (line 51) ! * chain_circular: GTY Options. (line 205) ! * chain_next: GTY Options. (line 205) ! * chain_prev: GTY Options. (line 205) * change_address: Standard Names. (line 47) ! * CHAR_TYPE_SIZE: Type Layout. (line 38) ! * 'check_stack' instruction pattern: Standard Names. (line 1382) ! * CHImode: Machine Modes. (line 201) * class definitions, register: Register Classes. (line 6) * class preference constraints: Class Preferences. (line 6) * class, scope: Classes. (line 6) * classes of RTX codes: RTL Classes. (line 6) * CLASSTYPE_DECLARED_CLASS: Classes. (line 6) * CLASSTYPE_HAS_MUTABLE: Classes. (line 85) * CLASSTYPE_NON_POD_P: Classes. (line 90) + * CLASS_MAX_NREGS: Register Classes. (line 521) + * CLASS_TYPE_P: Types for C++. (line 63) + * Cleanups: Cleanups. (line 6) * CLEANUP_DECL: Statements for C++. (line 6) * CLEANUP_EXPR: Statements for C++. (line 6) * CLEANUP_POINT_EXPR: Unary and Binary Expressions. (line 6) * CLEANUP_STMT: Statements for C++. (line 6) ! * CLEAR_BY_PIECES_P: Costs. (line 187) ! * 'clear_cache' instruction pattern: Standard Names. (line 1887) ! * CLEAR_INSN_CACHE: Trampolines. (line 98) ! * CLEAR_RATIO: Costs. (line 175) * clobber: Side Effects. (line 106) * clrsb: Arithmetic. (line 216) * clz: Arithmetic. (line 223) ! * 'clzM2' instruction pattern: Standard Names. (line 711) ! * CLZ_DEFINED_VALUE_AT_ZERO: Misc. (line 304) ! * 'cmpmemM' instruction pattern: Standard Names. (line 844) ! * 'cmpstrM' instruction pattern: Standard Names. (line 823) ! * 'cmpstrnM' instruction pattern: Standard Names. (line 810) * code generation RTL sequences: Expander Definitions. (line 6) ! * code iterators in '.md' files: Code Iterators. (line 6) ! * codes, RTL expression: RTL Objects. (line 47) * code_label: Insns. (line 125) ! * CODE_LABEL: Basic Blocks. (line 50) ! * 'code_label' and '/i': Flags. (line 59) ! * 'code_label' and '/v': Flags. (line 44) * CODE_LABEL_NUMBER: Insns. (line 125) ! * COImode: Machine Modes. (line 201) * COLLECT2_HOST_INITIALIZATION: Host Misc. (line 32) ! * COLLECT_EXPORT_LIST: Misc. (line 758) * COLLECT_SHARED_FINI_FUNC: Macros for Initialization. ! (line 43) * COLLECT_SHARED_INIT_FUNC: Macros for Initialization. ! (line 32) * commit_edge_insertions: Maintaining the CFG. ! (line 105) ! * compare: Arithmetic. (line 46) ! * 'compare', canonicalization of: Insn Canonicalizations. ! (line 36) * comparison_operator: Machine-Independent Predicates. ! (line 110) * compiler passes and files: Passes. (line 6) ! * complement, bitwise: Arithmetic. (line 155) * COMPLEX_CST: Constant expressions. (line 6) * COMPLEX_EXPR: Unary and Binary Expressions. *************** Concept Index *** 46017,46095 **** * COMPOUND_LITERAL_EXPR: Unary and Binary Expressions. (line 6) * COMPOUND_LITERAL_EXPR_DECL: Unary and Binary Expressions. ! (line 375) * COMPOUND_LITERAL_EXPR_DECL_EXPR: Unary and Binary Expressions. ! (line 375) ! * computed jump: Edges. (line 128) * computing the length of an insn: Insn Lengths. (line 6) ! * concat: Regs and Memory. (line 385) ! * concatn: Regs and Memory. (line 391) * cond: Comparisons. (line 90) ! * cond and attributes: Expressions. (line 37) ! * cond_exec: Side Effects. (line 254) ! * COND_EXPR: Unary and Binary Expressions. ! (line 6) ! * condition code register: Regs and Memory. (line 307) * condition code status: Condition Code. (line 6) * condition codes: Comparisons. (line 20) - * conditional execution <1>: Cond Exec Macros. (line 6) * conditional execution: Conditional Execution. (line 6) * Conditional Expressions: Conditional Expressions. (line 6) * conditions, in patterns: Patterns. (line 43) ! * configuration file <1>: Host Misc. (line 6) * configuration file: Filesystem. (line 6) * configure terms: Configure Terms. (line 6) * CONJ_EXPR: Unary and Binary Expressions. (line 6) ! * const: Constants. (line 110) ! * CONST0_RTX: Constants. (line 130) * const0_rtx: Constants. (line 21) ! * CONST1_RTX: Constants. (line 130) * const1_rtx: Constants. (line 21) ! * CONST2_RTX: Constants. (line 130) * const2_rtx: Constants. (line 21) ! * CONST_DECL: Declarations. (line 6) ! * const_double: Constants. (line 37) ! * const_double, RTL sharing: Sharing. (line 29) ! * CONST_DOUBLE_LOW: Constants. (line 50) ! * CONST_DOUBLE_OK_FOR_CONSTRAINT_P: Old Constraints. (line 69) ! * CONST_DOUBLE_OK_FOR_LETTER_P: Old Constraints. (line 54) ! * const_double_operand: Machine-Independent Predicates. ! (line 21) ! * const_fixed: Constants. (line 63) ! * const_int: Constants. (line 8) ! * const_int and attribute tests: Expressions. (line 47) ! * const_int and attributes: Expressions. (line 10) ! * const_int, RTL sharing: Sharing. (line 23) ! * const_int_operand: Machine-Independent Predicates. ! (line 16) ! * CONST_OK_FOR_CONSTRAINT_P: Old Constraints. (line 49) ! * CONST_OK_FOR_LETTER_P: Old Constraints. (line 40) ! * const_string: Constants. (line 82) ! * const_string and attributes: Expressions. (line 20) ! * const_true_rtx: Constants. (line 31) ! * const_vector: Constants. (line 70) ! * const_vector, RTL sharing: Sharing. (line 32) * constant attributes: Constant Attributes. (line 6) * constant definitions: Constant Definitions. (line 6) ! * CONSTANT_ADDRESS_P: Addressing Modes. (line 29) ! * CONSTANT_ALIGNMENT: Storage Layout. (line 237) ! * CONSTANT_P: Addressing Modes. (line 36) * CONSTANT_POOL_ADDRESS_P: Flags. (line 10) ! * CONSTANT_POOL_BEFORE_FUNCTION: Data Output. (line 65) ! * constants in constraints: Simple Constraints. (line 70) * constm1_rtx: Constants. (line 21) * constraint modifier characters: Modifiers. (line 6) ! * constraint, matching: Simple Constraints. (line 142) ! * CONSTRAINT_LEN: Old Constraints. (line 12) ! * constraint_num: C Constraint Interface. ! (line 38) ! * constraint_satisfied_p: C Constraint Interface. ! (line 54) * constraints: Constraints. (line 6) * constraints, defining: Define Constraints. (line 6) * constraints, defining, obsolete method: Old Constraints. (line 6) --- 45635,45686 ---- * COMPOUND_LITERAL_EXPR: Unary and Binary Expressions. (line 6) * COMPOUND_LITERAL_EXPR_DECL: Unary and Binary Expressions. ! (line 373) * COMPOUND_LITERAL_EXPR_DECL_EXPR: Unary and Binary Expressions. ! (line 373) ! * computed jump: Edges. (line 127) * computing the length of an insn: Insn Lengths. (line 6) ! * concat: Regs and Memory. (line 381) ! * concatn: Regs and Memory. (line 387) * cond: Comparisons. (line 90) ! * 'cond' and attributes: Expressions. (line 37) ! * condition code register: Regs and Memory. (line 303) * condition code status: Condition Code. (line 6) * condition codes: Comparisons. (line 20) * conditional execution: Conditional Execution. (line 6) + * conditional execution <1>: Cond Exec Macros. (line 6) * Conditional Expressions: Conditional Expressions. (line 6) * conditions, in patterns: Patterns. (line 43) ! * cond_exec: Side Effects. (line 253) ! * COND_EXPR: Unary and Binary Expressions. ! (line 6) * configuration file: Filesystem. (line 6) + * configuration file <1>: Host Misc. (line 6) * configure terms: Configure Terms. (line 6) * CONJ_EXPR: Unary and Binary Expressions. (line 6) ! * const: Constants. (line 109) * const0_rtx: Constants. (line 21) ! * CONST0_RTX: Constants. (line 129) * const1_rtx: Constants. (line 21) ! * CONST1_RTX: Constants. (line 129) * const2_rtx: Constants. (line 21) ! * CONST2_RTX: Constants. (line 129) * constant attributes: Constant Attributes. (line 6) * constant definitions: Constant Definitions. (line 6) ! * constants in constraints: Simple Constraints. (line 68) ! * CONSTANT_ADDRESS_P: Addressing Modes. (line 28) ! * CONSTANT_ALIGNMENT: Storage Layout. (line 233) ! * CONSTANT_P: Addressing Modes. (line 35) * CONSTANT_POOL_ADDRESS_P: Flags. (line 10) ! * CONSTANT_POOL_BEFORE_FUNCTION: Data Output. (line 64) * constm1_rtx: Constants. (line 21) * constraint modifier characters: Modifiers. (line 6) ! * constraint, matching: Simple Constraints. (line 140) * constraints: Constraints. (line 6) * constraints, defining: Define Constraints. (line 6) * constraints, defining, obsolete method: Old Constraints. (line 6) *************** Concept Index *** 46097,46106 **** --- 45688,45724 ---- (line 6) * constraints, testing: C Constraint Interface. (line 6) + * CONSTRAINT_LEN: Old Constraints. (line 11) + * constraint_num: C Constraint Interface. + (line 37) + * constraint_satisfied_p: C Constraint Interface. + (line 52) * CONSTRUCTOR: Unary and Binary Expressions. (line 6) * constructors, automatic calls: Collect2. (line 15) * constructors, output of: Initialization. (line 6) + * CONST_DECL: Declarations. (line 6) + * const_double: Constants. (line 37) + * 'const_double', RTL sharing: Sharing. (line 29) + * CONST_DOUBLE_LOW: Constants. (line 49) + * CONST_DOUBLE_OK_FOR_CONSTRAINT_P: Old Constraints. (line 66) + * CONST_DOUBLE_OK_FOR_LETTER_P: Old Constraints. (line 51) + * const_double_operand: Machine-Independent Predicates. + (line 20) + * const_fixed: Constants. (line 62) + * const_int: Constants. (line 8) + * 'const_int' and attribute tests: Expressions. (line 47) + * 'const_int' and attributes: Expressions. (line 10) + * 'const_int', RTL sharing: Sharing. (line 23) + * const_int_operand: Machine-Independent Predicates. + (line 15) + * CONST_OK_FOR_CONSTRAINT_P: Old Constraints. (line 46) + * CONST_OK_FOR_LETTER_P: Old Constraints. (line 38) + * const_string: Constants. (line 81) + * 'const_string' and attributes: Expressions. (line 20) + * const_true_rtx: Constants. (line 31) + * const_vector: Constants. (line 69) + * 'const_vector', RTL sharing: Sharing. (line 32) * container: Containers. (line 6) * CONTINUE_STMT: Statements for C++. (line 6) * contributors: Contributors. (line 6) *************** Concept Index *** 46110,46240 **** * conversions: Conversions. (line 6) * CONVERT_EXPR: Unary and Binary Expressions. (line 6) ! * copy_rtx: Addressing Modes. (line 190) * copy_rtx_if_shared: Sharing. (line 64) ! * copysignM3 instruction pattern: Standard Names. (line 698) ! * cosM2 instruction pattern: Standard Names. (line 564) * costs of instructions: Costs. (line 6) ! * CP_INTEGRAL_TYPE: Types for C++. (line 57) * cp_namespace_decls: Namespaces. (line 49) * CP_TYPE_CONST_NON_VOLATILE_P: Types for C++. (line 33) * CP_TYPE_CONST_P: Types for C++. (line 24) * cp_type_quals: Types for C++. (line 6) * CP_TYPE_RESTRICT_P: Types for C++. (line 30) * CP_TYPE_VOLATILE_P: Types for C++. (line 27) ! * CPLUSPLUS_CPP_SPEC: Driver. (line 51) ! * CPP_SPEC: Driver. (line 44) ! * CQImode: Machine Modes. (line 202) * cross compilation and floating point: Floating Point. (line 6) ! * CRT_CALL_STATIC_FUNCTION: Sections. (line 121) ! * crtl->args.pops_args: Function Entry. (line 106) ! * crtl->args.pretend_args_size: Function Entry. (line 112) * crtl->outgoing_args_size: Stack Arguments. (line 48) * CRTSTUFF_T_CFLAGS: Target Fragment. (line 15) * CRTSTUFF_T_CFLAGS_S: Target Fragment. (line 19) ! * CSImode: Machine Modes. (line 202) ! * cstoreMODE4 instruction pattern: Standard Names. (line 1057) ! * CTImode: Machine Modes. (line 202) ! * ctrapMM4 instruction pattern: Standard Names. (line 1547) * ctz: Arithmetic. (line 231) ! * CTZ_DEFINED_VALUE_AT_ZERO: Misc. (line 306) ! * ctzM2 instruction pattern: Standard Names. (line 726) ! * CUMULATIVE_ARGS: Register Arguments. (line 128) ! * current_function_is_leaf: Leaf Functions. (line 51) ! * current_function_uses_only_leaf_regs: Leaf Functions. (line 51) * current_insn_predicate: Conditional Execution. (line 26) ! * DAmode: Machine Modes. (line 152) * data bypass: Processor pipeline description. ! (line 106) * data dependence delays: Processor pipeline description. (line 6) * Data Dependency Analysis: Dependency analysis. (line 6) * data structures: Per-Function Data. (line 6) ! * DATA_ALIGNMENT: Storage Layout. (line 224) ! * DATA_SECTION_ASM_OP: Sections. (line 53) ! * DBR_OUTPUT_SEQEND: Instruction Output. (line 135) ! * dbr_sequence_length: Instruction Output. (line 134) ! * DBX_BLOCKS_FUNCTION_RELATIVE: DBX Options. (line 103) ! * DBX_CONTIN_CHAR: DBX Options. (line 66) ! * DBX_CONTIN_LENGTH: DBX Options. (line 56) ! * DBX_DEBUGGING_INFO: DBX Options. (line 9) ! * DBX_FUNCTION_FIRST: DBX Options. (line 97) ! * DBX_LINES_FUNCTION_RELATIVE: DBX Options. (line 109) ! * DBX_NO_XREFS: DBX Options. (line 50) ! * DBX_OUTPUT_MAIN_SOURCE_FILE_END: File Names and DBX. (line 34) ! * DBX_OUTPUT_MAIN_SOURCE_FILENAME: File Names and DBX. (line 9) * DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END: File Names and DBX. ! (line 42) ! * DBX_OUTPUT_SOURCE_LINE: DBX Hooks. (line 9) ! * DBX_REGISTER_NUMBER: All Debuggers. (line 9) ! * DBX_REGPARM_STABS_CODE: DBX Options. (line 87) ! * DBX_REGPARM_STABS_LETTER: DBX Options. (line 92) ! * DBX_STATIC_CONST_VAR_CODE: DBX Options. (line 82) ! * DBX_STATIC_STAB_DATA_SECTION: DBX Options. (line 73) ! * DBX_TYPE_DECL_STABS_CODE: DBX Options. (line 78) ! * DBX_USE_BINCL: DBX Options. (line 115) ! * DCmode: Machine Modes. (line 197) * DDmode: Machine Modes. (line 90) * De Morgan's law: Insn Canonicalizations. ! (line 52) * dead_or_set_p: define_peephole. (line 65) * debug_expr: Debug Information. (line 22) * DEBUG_EXPR_DECL: Declarations. (line 6) ! * debug_insn: Insns. (line 245) ! * DEBUG_SYMS_TEXT: DBX Options. (line 25) ! * DEBUGGER_ARG_OFFSET: All Debuggers. (line 37) ! * DEBUGGER_AUTO_OFFSET: All Debuggers. (line 28) * decimal float library: Decimal float library routines. (line 6) * DECL_ALIGN: Declarations. (line 6) * DECL_ANTICIPATED: Functions for C++. (line 42) * DECL_ARGUMENTS: Function Basics. (line 36) * DECL_ARRAY_DELETE_OPERATOR_P: Functions for C++. (line 158) - * DECL_ARTIFICIAL <1>: Function Properties. - (line 47) - * DECL_ARTIFICIAL <2>: Function Basics. (line 6) * DECL_ARTIFICIAL: Working with declarations. (line 24) * DECL_ASSEMBLER_NAME: Function Basics. (line 6) ! * DECL_ATTRIBUTES: Attributes. (line 22) * DECL_BASE_CONSTRUCTOR_P: Functions for C++. (line 88) * DECL_COMPLETE_CONSTRUCTOR_P: Functions for C++. (line 84) * DECL_COMPLETE_DESTRUCTOR_P: Functions for C++. (line 98) - * DECL_CONST_MEMFUNC_P: Functions for C++. (line 71) * DECL_CONSTRUCTOR_P: Functions for C++. (line 77) * DECL_CONTEXT: Namespaces. (line 31) * DECL_CONV_FN_P: Functions for C++. (line 105) * DECL_COPY_CONSTRUCTOR_P: Functions for C++. (line 92) * DECL_DESTRUCTOR_P: Functions for C++. (line 95) ! * DECL_EXTERN_C_FUNCTION_P: Functions for C++. (line 46) * DECL_EXTERNAL <1>: Function Properties. (line 25) ! * DECL_EXTERNAL: Declarations. (line 6) * DECL_FUNCTION_MEMBER_P: Functions for C++. (line 61) * DECL_FUNCTION_SPECIFIC_OPTIMIZATION <1>: Function Properties. (line 61) ! * DECL_FUNCTION_SPECIFIC_OPTIMIZATION: Function Basics. (line 6) * DECL_FUNCTION_SPECIFIC_TARGET <1>: Function Properties. (line 55) - * DECL_FUNCTION_SPECIFIC_TARGET: Function Basics. (line 6) * DECL_GLOBAL_CTOR_P: Functions for C++. (line 108) * DECL_GLOBAL_DTOR_P: Functions for C++. (line 112) - * DECL_INITIAL <1>: Function Basics. (line 51) * DECL_INITIAL: Declarations. (line 6) * DECL_LINKONCE_P: Functions for C++. (line 50) * DECL_LOCAL_FUNCTION_P: Functions for C++. (line 38) * DECL_MAIN_P: Functions for C++. (line 34) - * DECL_NAME <1>: Namespaces. (line 20) - * DECL_NAME <2>: Function Basics. (line 6) * DECL_NAME: Working with declarations. (line 7) * DECL_NAMESPACE_ALIAS: Namespaces. (line 35) * DECL_NAMESPACE_STD_P: Namespaces. (line 45) - * DECL_NON_THUNK_FUNCTION_P: Functions for C++. (line 138) * DECL_NONCONVERTING_P: Functions for C++. (line 80) * DECL_NONSTATIC_MEMBER_FUNCTION_P: Functions for C++. (line 68) * DECL_OVERLOADED_OPERATOR_P: Functions for C++. (line 102) * DECL_PURE_P: Function Properties. (line 40) --- 45728,45869 ---- * conversions: Conversions. (line 6) * CONVERT_EXPR: Unary and Binary Expressions. (line 6) ! * 'copysignM3' instruction pattern: Standard Names. (line 692) ! * copy_rtx: Addressing Modes. (line 189) * copy_rtx_if_shared: Sharing. (line 64) ! * 'cosM2' instruction pattern: Standard Names. (line 558) * costs of instructions: Costs. (line 6) ! * CPLUSPLUS_CPP_SPEC: Driver. (line 50) ! * CPP_SPEC: Driver. (line 43) ! * CP_INTEGRAL_TYPE: Types for C++. (line 55) * cp_namespace_decls: Namespaces. (line 49) * CP_TYPE_CONST_NON_VOLATILE_P: Types for C++. (line 33) * CP_TYPE_CONST_P: Types for C++. (line 24) * cp_type_quals: Types for C++. (line 6) + * cp_type_quals <1>: Types for C++. (line 16) * CP_TYPE_RESTRICT_P: Types for C++. (line 30) * CP_TYPE_VOLATILE_P: Types for C++. (line 27) ! * CQImode: Machine Modes. (line 201) * cross compilation and floating point: Floating Point. (line 6) ! * crtl->args.pops_args: Function Entry. (line 104) ! * crtl->args.pretend_args_size: Function Entry. (line 110) * crtl->outgoing_args_size: Stack Arguments. (line 48) * CRTSTUFF_T_CFLAGS: Target Fragment. (line 15) * CRTSTUFF_T_CFLAGS_S: Target Fragment. (line 19) ! * CRT_CALL_STATIC_FUNCTION: Sections. (line 120) ! * CSImode: Machine Modes. (line 201) ! * 'cstoreMODE4' instruction pattern: Standard Names. (line 1051) ! * CTImode: Machine Modes. (line 201) ! * 'ctrapMM4' instruction pattern: Standard Names. (line 1534) * ctz: Arithmetic. (line 231) ! * 'ctzM2' instruction pattern: Standard Names. (line 720) ! * CTZ_DEFINED_VALUE_AT_ZERO: Misc. (line 305) ! * CUMULATIVE_ARGS: Register Arguments. (line 126) ! * current_function_is_leaf: Leaf Functions. (line 50) ! * current_function_uses_only_leaf_regs: Leaf Functions. (line 50) * current_insn_predicate: Conditional Execution. (line 26) ! * C_COMMON_OVERRIDE_OPTIONS: Run-time Target. (line 136) ! * c_register_pragma: Misc. (line 399) ! * c_register_pragma_with_expansion: Misc. (line 401) ! * DAmode: Machine Modes. (line 151) * data bypass: Processor pipeline description. ! (line 105) ! * data bypass <1>: Processor pipeline description. ! (line 196) * data dependence delays: Processor pipeline description. (line 6) * Data Dependency Analysis: Dependency analysis. (line 6) * data structures: Per-Function Data. (line 6) ! * DATA_ALIGNMENT: Storage Layout. (line 220) ! * DATA_SECTION_ASM_OP: Sections. (line 52) ! * DBR_OUTPUT_SEQEND: Instruction Output. (line 133) ! * dbr_sequence_length: Instruction Output. (line 133) ! * DBX_BLOCKS_FUNCTION_RELATIVE: DBX Options. (line 100) ! * DBX_CONTIN_CHAR: DBX Options. (line 63) ! * DBX_CONTIN_LENGTH: DBX Options. (line 53) ! * DBX_DEBUGGING_INFO: DBX Options. (line 8) ! * DBX_FUNCTION_FIRST: DBX Options. (line 94) ! * DBX_LINES_FUNCTION_RELATIVE: DBX Options. (line 106) ! * DBX_NO_XREFS: DBX Options. (line 47) ! * DBX_OUTPUT_MAIN_SOURCE_FILENAME: File Names and DBX. (line 8) ! * DBX_OUTPUT_MAIN_SOURCE_FILE_END: File Names and DBX. (line 33) * DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END: File Names and DBX. ! (line 41) ! * DBX_OUTPUT_SOURCE_LINE: DBX Hooks. (line 8) ! * DBX_REGISTER_NUMBER: All Debuggers. (line 8) ! * DBX_REGPARM_STABS_CODE: DBX Options. (line 84) ! * DBX_REGPARM_STABS_LETTER: DBX Options. (line 89) ! * DBX_STATIC_CONST_VAR_CODE: DBX Options. (line 79) ! * DBX_STATIC_STAB_DATA_SECTION: DBX Options. (line 70) ! * DBX_TYPE_DECL_STABS_CODE: DBX Options. (line 75) ! * DBX_USE_BINCL: DBX Options. (line 112) ! * DCmode: Machine Modes. (line 196) * DDmode: Machine Modes. (line 90) * De Morgan's law: Insn Canonicalizations. ! (line 51) * dead_or_set_p: define_peephole. (line 65) + * DEBUGGER_ARG_OFFSET: All Debuggers. (line 36) + * DEBUGGER_AUTO_OFFSET: All Debuggers. (line 27) * debug_expr: Debug Information. (line 22) * DEBUG_EXPR_DECL: Declarations. (line 6) ! * debug_insn: Insns. (line 243) ! * DEBUG_SYMS_TEXT: DBX Options. (line 24) * decimal float library: Decimal float library routines. (line 6) + * declaration: Declarations. (line 6) + * declarations, RTL: RTL Declarations. (line 6) + * DECLARE_LIBRARY_RENAMES: Library Calls. (line 8) * DECL_ALIGN: Declarations. (line 6) * DECL_ANTICIPATED: Functions for C++. (line 42) * DECL_ARGUMENTS: Function Basics. (line 36) * DECL_ARRAY_DELETE_OPERATOR_P: Functions for C++. (line 158) * DECL_ARTIFICIAL: Working with declarations. (line 24) + * DECL_ARTIFICIAL <1>: Function Basics. (line 6) + * DECL_ARTIFICIAL <2>: Function Properties. + (line 47) * DECL_ASSEMBLER_NAME: Function Basics. (line 6) ! * DECL_ASSEMBLER_NAME <1>: Function Basics. (line 19) ! * DECL_ATTRIBUTES: Attributes. (line 21) * DECL_BASE_CONSTRUCTOR_P: Functions for C++. (line 88) * DECL_COMPLETE_CONSTRUCTOR_P: Functions for C++. (line 84) * DECL_COMPLETE_DESTRUCTOR_P: Functions for C++. (line 98) * DECL_CONSTRUCTOR_P: Functions for C++. (line 77) + * DECL_CONST_MEMFUNC_P: Functions for C++. (line 71) * DECL_CONTEXT: Namespaces. (line 31) * DECL_CONV_FN_P: Functions for C++. (line 105) * DECL_COPY_CONSTRUCTOR_P: Functions for C++. (line 92) * DECL_DESTRUCTOR_P: Functions for C++. (line 95) ! * DECL_EXTERNAL: Declarations. (line 6) * DECL_EXTERNAL <1>: Function Properties. (line 25) ! * DECL_EXTERN_C_FUNCTION_P: Functions for C++. (line 46) * DECL_FUNCTION_MEMBER_P: Functions for C++. (line 61) + * DECL_FUNCTION_SPECIFIC_OPTIMIZATION: Function Basics. (line 6) * DECL_FUNCTION_SPECIFIC_OPTIMIZATION <1>: Function Properties. (line 61) ! * DECL_FUNCTION_SPECIFIC_TARGET: Function Basics. (line 6) * DECL_FUNCTION_SPECIFIC_TARGET <1>: Function Properties. (line 55) * DECL_GLOBAL_CTOR_P: Functions for C++. (line 108) * DECL_GLOBAL_DTOR_P: Functions for C++. (line 112) * DECL_INITIAL: Declarations. (line 6) + * DECL_INITIAL <1>: Function Basics. (line 51) * DECL_LINKONCE_P: Functions for C++. (line 50) * DECL_LOCAL_FUNCTION_P: Functions for C++. (line 38) * DECL_MAIN_P: Functions for C++. (line 34) * DECL_NAME: Working with declarations. (line 7) + * DECL_NAME <1>: Function Basics. (line 6) + * DECL_NAME <2>: Function Basics. (line 9) + * DECL_NAME <3>: Namespaces. (line 20) * DECL_NAMESPACE_ALIAS: Namespaces. (line 35) * DECL_NAMESPACE_STD_P: Namespaces. (line 45) * DECL_NONCONVERTING_P: Functions for C++. (line 80) * DECL_NONSTATIC_MEMBER_FUNCTION_P: Functions for C++. (line 68) + * DECL_NON_THUNK_FUNCTION_P: Functions for C++. (line 138) * DECL_OVERLOADED_OPERATOR_P: Functions for C++. (line 102) * DECL_PURE_P: Function Properties. (line 40) *************** Concept Index *** 46248,46299 **** * DECL_VIRTUAL_P: Function Properties. (line 44) * DECL_VOLATILE_MEMFUNC_P: Functions for C++. (line 74) ! * declaration: Declarations. (line 6) ! * declarations, RTL: RTL Declarations. (line 6) ! * DECLARE_LIBRARY_RENAMES: Library Calls. (line 9) ! * decrement_and_branch_until_zero instruction pattern: Standard Names. ! (line 1267) * default: GTY Options. (line 82) * default_file_start: File Framework. (line 8) ! * DEFAULT_GDB_EXTENSIONS: DBX Options. (line 18) ! * DEFAULT_PCC_STRUCT_RETURN: Aggregate Return. (line 35) ! * DEFAULT_SIGNED_CHAR: Type Layout. (line 161) ! * define_address_constraint: Define Constraints. (line 107) * define_asm_attributes: Tagging Insns. (line 73) * define_attr: Defining Attributes. (line 6) * define_automaton: Processor pipeline description. (line 53) * define_bypass: Processor pipeline description. ! (line 197) ! * define_c_enum: Constant Definitions. ! (line 49) * define_code_attr: Code Iterators. (line 6) * define_code_iterator: Code Iterators. (line 6) * define_cond_exec: Conditional Execution. (line 13) * define_constants: Constant Definitions. (line 6) ! * define_constraint: Define Constraints. (line 48) * define_cpu_unit: Processor pipeline description. (line 68) * define_delay: Delay Slots. (line 25) * define_enum: Constant Definitions. (line 118) - * define_enum_attr <1>: Constant Definitions. - (line 136) * define_enum_attr: Defining Attributes. (line 76) * define_expand: Expander Definitions. (line 11) * define_insn: Patterns. (line 6) ! * define_insn example: Example. (line 6) * define_insn_and_split: Insn Splitting. (line 170) * define_insn_reservation: Processor pipeline description. ! (line 106) * define_int_attr: Int Iterators. (line 6) * define_int_iterator: Int Iterators. (line 6) ! * define_memory_constraint: Define Constraints. (line 88) * define_mode_attr: Substitutions. (line 6) * define_mode_iterator: Defining Mode Iterators. (line 6) --- 45877,45925 ---- * DECL_VIRTUAL_P: Function Properties. (line 44) * DECL_VOLATILE_MEMFUNC_P: Functions for C++. (line 74) ! * 'decrement_and_branch_until_zero' instruction pattern: Standard Names. ! (line 1259) * default: GTY Options. (line 82) * default_file_start: File Framework. (line 8) ! * DEFAULT_GDB_EXTENSIONS: DBX Options. (line 17) ! * DEFAULT_PCC_STRUCT_RETURN: Aggregate Return. (line 34) ! * DEFAULT_SIGNED_CHAR: Type Layout. (line 160) ! * define_address_constraint: Define Constraints. (line 99) * define_asm_attributes: Tagging Insns. (line 73) * define_attr: Defining Attributes. (line 6) * define_automaton: Processor pipeline description. (line 53) * define_bypass: Processor pipeline description. ! (line 196) * define_code_attr: Code Iterators. (line 6) * define_code_iterator: Code Iterators. (line 6) * define_cond_exec: Conditional Execution. (line 13) * define_constants: Constant Definitions. (line 6) ! * define_constraint: Define Constraints. (line 45) * define_cpu_unit: Processor pipeline description. (line 68) + * define_c_enum: Constant Definitions. + (line 49) * define_delay: Delay Slots. (line 25) * define_enum: Constant Definitions. (line 118) * define_enum_attr: Defining Attributes. (line 76) + * define_enum_attr <1>: Constant Definitions. + (line 136) * define_expand: Expander Definitions. (line 11) * define_insn: Patterns. (line 6) ! * 'define_insn' example: Example. (line 6) * define_insn_and_split: Insn Splitting. (line 170) * define_insn_reservation: Processor pipeline description. ! (line 105) * define_int_attr: Int Iterators. (line 6) * define_int_iterator: Int Iterators. (line 6) ! * define_memory_constraint: Define Constraints. (line 80) * define_mode_attr: Substitutions. (line 6) * define_mode_iterator: Defining Mode Iterators. (line 6) *************** Concept Index *** 46303,46323 **** (line 6) * define_query_cpu_unit: Processor pipeline description. (line 90) ! * define_register_constraint: Define Constraints. (line 28) * define_reservation: Processor pipeline description. ! (line 186) * define_special_predicate: Defining Predicates. (line 6) * define_split: Insn Splitting. (line 32) ! * define_subst <1>: Subst Iterators. (line 6) ! * define_subst <2>: Define Subst Output Template. (line 6) ! * define_subst <3>: Define Subst Pattern Matching. (line 6) ! * define_subst <4>: Define Subst Example. (line 6) ! * define_subst: Define Subst. (line 6) * define_subst_attr: Subst Iterators. (line 6) * defining attributes and their values: Defining Attributes. (line 6) * defining constraints: Define Constraints. (line 6) --- 45929,45951 ---- (line 6) * define_query_cpu_unit: Processor pipeline description. (line 90) ! * define_register_constraint: Define Constraints. (line 26) * define_reservation: Processor pipeline description. ! (line 185) * define_special_predicate: Defining Predicates. (line 6) * define_split: Insn Splitting. (line 32) ! * define_subst: Define Subst. (line 6) ! * define_subst <1>: Define Subst Example. (line 6) ! * define_subst <2>: Define Subst Pattern Matching. (line 6) ! * define_subst <3>: Define Subst Output Template. (line 6) ! * define_subst <4>: Define Subst. (line 14) ! * define_subst <5>: Subst Iterators. (line 6) * define_subst_attr: Subst Iterators. (line 6) + * define_subst_attr <1>: Subst Iterators. (line 26) * defining attributes and their values: Defining Attributes. (line 6) * defining constraints: Define Constraints. (line 6) *************** Concept Index *** 46331,46410 **** * defining RTL sequences for code generation: Expander Definitions. (line 6) * delay slots, defining: Delay Slots. (line 6) ! * deletable: GTY Options. (line 150) * DELETE_IF_ORDINARY: Filesystem. (line 79) * Dependent Patterns: Dependent Patterns. (line 6) * desc: GTY Options. (line 82) * destructors, output of: Initialization. (line 6) * deterministic finite state automaton: Processor pipeline description. (line 6) ! * DF_SIZE: Type Layout. (line 137) * DFmode: Machine Modes. (line 73) ! * digits in constraint: Simple Constraints. (line 130) * DImode: Machine Modes. (line 45) * DIR_SEPARATOR: Filesystem. (line 18) * DIR_SEPARATOR_2: Filesystem. (line 19) - * directory options .md: Including Patterns. (line 44) * disabling certain registers: Register Basics. (line 73) * dispatch table: Dispatch Tables. (line 8) ! * div: Arithmetic. (line 116) ! * div and attributes: Expressions. (line 85) ! * division: Arithmetic. (line 116) ! * divM3 instruction pattern: Standard Names. (line 269) ! * divmodM4 instruction pattern: Standard Names. (line 490) ! * DO_BODY: Statements for C++. (line 6) ! * DO_COND: Statements for C++. (line 6) ! * DO_STMT: Statements for C++. (line 6) ! * DOLLARS_IN_IDENTIFIERS: Misc. (line 446) ! * doloop_begin instruction pattern: Standard Names. (line 1299) ! * doloop_end instruction pattern: Standard Names. (line 1277) * DONE: Expander Definitions. (line 77) * DONT_USE_BUILTIN_SETJMP: Exception Region Output. ! (line 79) ! * DOUBLE_TYPE_SIZE: Type Layout. (line 53) * DQmode: Machine Modes. (line 115) * driver: Driver. (line 6) ! * DRIVER_SELF_SPECS: Driver. (line 9) * DUMPFILE_FORMAT: Filesystem. (line 67) ! * DWARF2_ASM_LINE_DEBUG_INFO: SDB and DWARF. (line 50) ! * DWARF2_DEBUGGING_INFO: SDB and DWARF. (line 13) ! * DWARF2_FRAME_INFO: SDB and DWARF. (line 30) ! * DWARF2_FRAME_REG_OUT: Frame Registers. (line 150) * DWARF2_UNWIND_INFO: Exception Region Output. ! (line 40) ! * DWARF_ALT_FRAME_RETURN_COLUMN: Frame Layout. (line 152) * DWARF_CIE_DATA_ALIGNMENT: Exception Region Output. ! (line 91) ! * DWARF_FRAME_REGISTERS: Frame Registers. (line 110) ! * DWARF_FRAME_REGNUM: Frame Registers. (line 142) * DWARF_REG_TO_UNWIND_COLUMN: Frame Registers. (line 134) ! * DWARF_ZERO_REG: Frame Layout. (line 163) ! * DYNAMIC_CHAIN_ADDRESS: Frame Layout. (line 92) ! * E in constraint: Simple Constraints. (line 89) * earlyclobber operand: Modifiers. (line 25) * edge: Edges. (line 6) * edge in the flow graph: Edges. (line 6) * edge iterators: Edges. (line 15) * edge splitting: Maintaining the CFG. ! (line 107) ! * EDGE_ABNORMAL: Edges. (line 128) ! * EDGE_ABNORMAL, EDGE_ABNORMAL_CALL: Edges. (line 172) ! * EDGE_ABNORMAL, EDGE_EH: Edges. (line 96) ! * EDGE_ABNORMAL, EDGE_SIBCALL: Edges. (line 122) ! * EDGE_FALLTHRU, force_nonfallthru: Edges. (line 86) ! * EDOM, implicit usage: Library Calls. (line 52) * EH_FRAME_IN_DATA_SECTION: Exception Region Output. ! (line 20) * EH_FRAME_SECTION_NAME: Exception Region Output. ! (line 10) ! * eh_return instruction pattern: Standard Names. (line 1481) ! * EH_RETURN_DATA_REGNO: Exception Handling. (line 7) ! * EH_RETURN_HANDLER_RTX: Exception Handling. (line 39) ! * EH_RETURN_STACKADJ_RTX: Exception Handling. (line 22) * EH_TABLES_CAN_BE_READ_ONLY: Exception Region Output. ! (line 29) ! * EH_USES: Function Entry. (line 158) * ei_edge: Edges. (line 43) * ei_end_p: Edges. (line 27) * ei_last: Edges. (line 23) --- 45959,46042 ---- * defining RTL sequences for code generation: Expander Definitions. (line 6) * delay slots, defining: Delay Slots. (line 6) ! * deletable: GTY Options. (line 154) * DELETE_IF_ORDINARY: Filesystem. (line 79) * Dependent Patterns: Dependent Patterns. (line 6) * desc: GTY Options. (line 82) * destructors, output of: Initialization. (line 6) * deterministic finite state automaton: Processor pipeline description. (line 6) ! * deterministic finite state automaton <1>: Processor pipeline description. ! (line 304) * DFmode: Machine Modes. (line 73) ! * DF_SIZE: Type Layout. (line 136) ! * digits in constraint: Simple Constraints. (line 128) * DImode: Machine Modes. (line 45) + * directory options .md: Including Patterns. (line 45) * DIR_SEPARATOR: Filesystem. (line 18) * DIR_SEPARATOR_2: Filesystem. (line 19) * disabling certain registers: Register Basics. (line 73) * dispatch table: Dispatch Tables. (line 8) ! * div: Arithmetic. (line 117) ! * 'div' and attributes: Expressions. (line 83) ! * division: Arithmetic. (line 117) ! * division <1>: Arithmetic. (line 131) ! * division <2>: Arithmetic. (line 137) ! * 'divM3' instruction pattern: Standard Names. (line 266) ! * 'divmodM4' instruction pattern: Standard Names. (line 484) ! * DOLLARS_IN_IDENTIFIERS: Misc. (line 444) ! * 'doloop_begin' instruction pattern: Standard Names. (line 1289) ! * 'doloop_end' instruction pattern: Standard Names. (line 1269) * DONE: Expander Definitions. (line 77) * DONT_USE_BUILTIN_SETJMP: Exception Region Output. ! (line 77) ! * DOUBLE_TYPE_SIZE: Type Layout. (line 52) ! * DO_BODY: Statements for C++. (line 6) ! * DO_COND: Statements for C++. (line 6) ! * DO_STMT: Statements for C++. (line 6) * DQmode: Machine Modes. (line 115) * driver: Driver. (line 6) ! * DRIVER_SELF_SPECS: Driver. (line 8) * DUMPFILE_FORMAT: Filesystem. (line 67) ! * DWARF2_ASM_LINE_DEBUG_INFO: SDB and DWARF. (line 49) ! * DWARF2_DEBUGGING_INFO: SDB and DWARF. (line 12) ! * DWARF2_FRAME_INFO: SDB and DWARF. (line 29) ! * DWARF2_FRAME_REG_OUT: Frame Registers. (line 151) * DWARF2_UNWIND_INFO: Exception Region Output. ! (line 38) ! * DWARF_ALT_FRAME_RETURN_COLUMN: Frame Layout. (line 150) * DWARF_CIE_DATA_ALIGNMENT: Exception Region Output. ! (line 89) ! * DWARF_FRAME_REGISTERS: Frame Registers. (line 109) ! * DWARF_FRAME_REGNUM: Frame Registers. (line 143) * DWARF_REG_TO_UNWIND_COLUMN: Frame Registers. (line 134) ! * DWARF_ZERO_REG: Frame Layout. (line 161) ! * DYNAMIC_CHAIN_ADDRESS: Frame Layout. (line 90) ! * 'E' in constraint: Simple Constraints. (line 87) * earlyclobber operand: Modifiers. (line 25) * edge: Edges. (line 6) * edge in the flow graph: Edges. (line 6) * edge iterators: Edges. (line 15) * edge splitting: Maintaining the CFG. ! (line 105) ! * EDGE_ABNORMAL: Edges. (line 127) ! * EDGE_ABNORMAL, EDGE_ABNORMAL_CALL: Edges. (line 171) ! * EDGE_ABNORMAL, EDGE_EH: Edges. (line 95) ! * EDGE_ABNORMAL, EDGE_SIBCALL: Edges. (line 121) ! * EDGE_FALLTHRU, force_nonfallthru: Edges. (line 85) ! * 'EDOM', implicit usage: Library Calls. (line 52) * EH_FRAME_IN_DATA_SECTION: Exception Region Output. ! (line 19) * EH_FRAME_SECTION_NAME: Exception Region Output. ! (line 9) ! * 'eh_return' instruction pattern: Standard Names. (line 1468) ! * EH_RETURN_DATA_REGNO: Exception Handling. (line 6) ! * EH_RETURN_HANDLER_RTX: Exception Handling. (line 38) ! * EH_RETURN_STACKADJ_RTX: Exception Handling. (line 21) * EH_TABLES_CAN_BE_READ_ONLY: Exception Region Output. ! (line 28) ! * EH_USES: Function Entry. (line 155) * ei_edge: Edges. (line 43) * ei_end_p: Edges. (line 27) * ei_last: Edges. (line 23) *************** Concept Index *** 46413,46520 **** * ei_prev: Edges. (line 39) * ei_safe_safe: Edges. (line 47) * ei_start: Edges. (line 19) ! * ELIMINABLE_REGS: Elimination. (line 47) * ELSE_CLAUSE: Statements for C++. (line 6) * Embedded C: Fixed-point fractional library routines. (line 6) ! * EMIT_MODE_SET: Mode Switching. (line 75) * Empty Statements: Empty Statements. (line 6) * EMPTY_CLASS_EXPR: Statements for C++. (line 6) ! * EMPTY_FIELD_BOUNDARY: Storage Layout. (line 307) * Emulated TLS: Emulated TLS. (line 6) * enabled: Disable Insn Alternatives. (line 6) ! * ENDFILE_SPEC: Driver. (line 156) ! * endianness: Portability. (line 21) * ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR: Basic Blocks. (line 10) * enum machine_mode: Machine Modes. (line 6) ! * enum reg_class: Register Classes. (line 72) * ENUMERAL_TYPE: Types. (line 6) * enumerations: Constant Definitions. (line 49) * epilogue: Function Entry. (line 6) ! * epilogue instruction pattern: Standard Names. (line 1519) ! * EPILOGUE_USES: Function Entry. (line 152) * eq: Comparisons. (line 52) ! * eq and attributes: Expressions. (line 85) ! * eq_attr: Expressions. (line 106) * EQ_EXPR: Unary and Binary Expressions. (line 6) ! * equal: Comparisons. (line 52) ! * errno, implicit usage: Library Calls. (line 64) * EXACT_DIV_EXPR: Unary and Binary Expressions. (line 6) * examining SSA_NAMEs: SSA. (line 216) * exception handling <1>: Exception Handling. (line 6) ! * exception handling: Edges. (line 96) ! * exception_receiver instruction pattern: Standard Names. (line 1445) * exclamation point: Multi-Alternative. (line 47) * exclusion_set: Processor pipeline description. ! (line 224) ! * exclusive-or, bitwise: Arithmetic. (line 168) * EXIT_EXPR: Unary and Binary Expressions. (line 6) ! * EXIT_IGNORE_STACK: Function Entry. (line 140) * expander definitions: Expander Definitions. (line 6) ! * expM2 instruction pattern: Standard Names. (line 593) * EXPR_FILENAME: Working with declarations. (line 14) * EXPR_LINENO: Working with declarations. (line 20) ! * expr_list: Insns. (line 552) * EXPR_STMT: Statements for C++. (line 6) * EXPR_STMT_EXPR: Statements for C++. (line 6) ! * expression: Expression trees. (line 6) ! * expression codes: RTL Objects. (line 47) ! * extendMN2 instruction pattern: Standard Names. (line 908) ! * extensible constraints: Simple Constraints. (line 173) ! * EXTRA_ADDRESS_CONSTRAINT: Old Constraints. (line 123) ! * EXTRA_CONSTRAINT: Old Constraints. (line 74) ! * EXTRA_CONSTRAINT_STR: Old Constraints. (line 95) ! * EXTRA_MEMORY_CONSTRAINT: Old Constraints. (line 100) ! * EXTRA_SPECS: Driver. (line 183) ! * extv instruction pattern: Standard Names. (line 999) ! * extvM instruction pattern: Standard Names. (line 944) ! * extvmisalignM instruction pattern: Standard Names. (line 954) ! * extzv instruction pattern: Standard Names. (line 1017) ! * extzvM instruction pattern: Standard Names. (line 968) ! * extzvmisalignM instruction pattern: Standard Names. (line 971) ! * F in constraint: Simple Constraints. (line 94) * FAIL: Expander Definitions. (line 83) ! * fall-thru: Edges. (line 69) * FATAL_EXIT_CODE: Host Misc. (line 6) * FDL, GNU Free Documentation License: GNU Free Documentation License. (line 6) * features, optional, in system conventions: Run-time Target. (line 59) * ffs: Arithmetic. (line 211) ! * ffsM2 instruction pattern: Standard Names. (line 707) * FIELD_DECL: Declarations. (line 6) - * file_end_indicate_exec_stack: File Framework. (line 41) * files and passes of the compiler: Passes. (line 6) * files, generated: Files. (line 6) * final_absence_set: Processor pipeline description. ! (line 224) ! * FINAL_PRESCAN_INSN: Instruction Output. (line 61) * final_presence_set: Processor pipeline description. ! (line 224) ! * final_sequence: Instruction Output. (line 145) ! * FIND_BASE_TERM: Addressing Modes. (line 119) ! * FINI_ARRAY_SECTION_ASM_OP: Sections. (line 114) ! * FINI_SECTION_ASM_OP: Sections. (line 99) * finite state automaton minimization: Processor pipeline description. ! (line 305) ! * FIRST_PARM_OFFSET: Frame Layout. (line 67) ! * FIRST_PARM_OFFSET and virtual registers: Regs and Memory. (line 65) ! * FIRST_PSEUDO_REGISTER: Register Basics. (line 9) ! * FIRST_STACK_REG: Stack Registers. (line 27) * FIRST_VIRTUAL_REGISTER: Regs and Memory. (line 51) * fix: Conversions. (line 66) - * FIX_TRUNC_EXPR: Unary and Binary Expressions. - (line 6) - * fix_truncMN2 instruction pattern: Standard Names. (line 895) * fixed register: Register Basics. (line 15) * fixed-point fractional library: Fixed-point fractional library routines. (line 6) --- 46045,46150 ---- * ei_prev: Edges. (line 39) * ei_safe_safe: Edges. (line 47) * ei_start: Edges. (line 19) ! * ELIMINABLE_REGS: Elimination. (line 46) * ELSE_CLAUSE: Statements for C++. (line 6) * Embedded C: Fixed-point fractional library routines. (line 6) ! * EMIT_MODE_SET: Mode Switching. (line 74) * Empty Statements: Empty Statements. (line 6) * EMPTY_CLASS_EXPR: Statements for C++. (line 6) ! * EMPTY_FIELD_BOUNDARY: Storage Layout. (line 303) * Emulated TLS: Emulated TLS. (line 6) * enabled: Disable Insn Alternatives. (line 6) ! * ENDFILE_SPEC: Driver. (line 155) ! * endianness: Portability. (line 20) * ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR: Basic Blocks. (line 10) * enum machine_mode: Machine Modes. (line 6) ! * enum reg_class: Register Classes. (line 70) * ENUMERAL_TYPE: Types. (line 6) * enumerations: Constant Definitions. (line 49) * epilogue: Function Entry. (line 6) ! * 'epilogue' instruction pattern: Standard Names. (line 1506) ! * EPILOGUE_USES: Function Entry. (line 149) * eq: Comparisons. (line 52) ! * 'eq' and attributes: Expressions. (line 83) ! * equal: Comparisons. (line 52) ! * eq_attr: Expressions. (line 104) * EQ_EXPR: Unary and Binary Expressions. (line 6) ! * 'errno', implicit usage: Library Calls. (line 64) * EXACT_DIV_EXPR: Unary and Binary Expressions. (line 6) * examining SSA_NAMEs: SSA. (line 216) + * exception handling: Edges. (line 95) * exception handling <1>: Exception Handling. (line 6) ! * 'exception_receiver' instruction pattern: Standard Names. (line 1433) * exclamation point: Multi-Alternative. (line 47) * exclusion_set: Processor pipeline description. ! (line 223) ! * exclusive-or, bitwise: Arithmetic. (line 169) * EXIT_EXPR: Unary and Binary Expressions. (line 6) ! * EXIT_IGNORE_STACK: Function Entry. (line 137) * expander definitions: Expander Definitions. (line 6) ! * 'expM2' instruction pattern: Standard Names. (line 587) ! * expression: Expression trees. (line 6) ! * expression codes: RTL Objects. (line 47) * EXPR_FILENAME: Working with declarations. (line 14) * EXPR_LINENO: Working with declarations. (line 20) ! * expr_list: Insns. (line 546) * EXPR_STMT: Statements for C++. (line 6) * EXPR_STMT_EXPR: Statements for C++. (line 6) ! * 'extendMN2' instruction pattern: Standard Names. (line 902) ! * extensible constraints: Simple Constraints. (line 171) ! * EXTRA_ADDRESS_CONSTRAINT: Old Constraints. (line 120) ! * EXTRA_CONSTRAINT: Old Constraints. (line 71) ! * EXTRA_CONSTRAINT_STR: Old Constraints. (line 92) ! * EXTRA_MEMORY_CONSTRAINT: Old Constraints. (line 97) ! * EXTRA_SPECS: Driver. (line 182) ! * 'extv' instruction pattern: Standard Names. (line 993) ! * 'extvM' instruction pattern: Standard Names. (line 938) ! * 'extvmisalignM' instruction pattern: Standard Names. (line 948) ! * 'extzv' instruction pattern: Standard Names. (line 1011) ! * 'extzvM' instruction pattern: Standard Names. (line 962) ! * 'extzvmisalignM' instruction pattern: Standard Names. (line 965) ! * 'F' in constraint: Simple Constraints. (line 92) * FAIL: Expander Definitions. (line 83) ! * fall-thru: Edges. (line 68) * FATAL_EXIT_CODE: Host Misc. (line 6) * FDL, GNU Free Documentation License: GNU Free Documentation License. (line 6) * features, optional, in system conventions: Run-time Target. (line 59) * ffs: Arithmetic. (line 211) ! * 'ffsM2' instruction pattern: Standard Names. (line 701) * FIELD_DECL: Declarations. (line 6) * files and passes of the compiler: Passes. (line 6) * files, generated: Files. (line 6) + * file_end_indicate_exec_stack: File Framework. (line 39) * final_absence_set: Processor pipeline description. ! (line 223) ! * FINAL_PRESCAN_INSN: Instruction Output. (line 60) * final_presence_set: Processor pipeline description. ! (line 223) ! * final_sequence: Instruction Output. (line 144) ! * FIND_BASE_TERM: Addressing Modes. (line 117) * finite state automaton minimization: Processor pipeline description. ! (line 304) ! * FINI_ARRAY_SECTION_ASM_OP: Sections. (line 113) ! * FINI_SECTION_ASM_OP: Sections. (line 98) ! * FIRST_PARM_OFFSET: Frame Layout. (line 65) ! * 'FIRST_PARM_OFFSET' and virtual registers: Regs and Memory. ! (line 65) ! * FIRST_PSEUDO_REGISTER: Register Basics. (line 8) ! * FIRST_STACK_REG: Stack Registers. (line 26) * FIRST_VIRTUAL_REGISTER: Regs and Memory. (line 51) * fix: Conversions. (line 66) * fixed register: Register Basics. (line 15) * fixed-point fractional library: Fixed-point fractional library routines. (line 6) *************** Concept Index *** 46523,46618 **** * FIXED_CST: Constant expressions. (line 6) * FIXED_POINT_TYPE: Types. (line 6) ! * FIXED_REGISTERS: Register Basics. (line 15) * fixed_regs: Register Basics. (line 59) ! * fixMN2 instruction pattern: Standard Names. (line 875) ! * fixuns_truncMN2 instruction pattern: Standard Names. (line 899) ! * fixunsMN2 instruction pattern: Standard Names. (line 884) * flags in RTL expression: Flags. (line 6) * float: Conversions. (line 58) * FLOAT_EXPR: Unary and Binary Expressions. (line 6) * float_extend: Conversions. (line 33) ! * FLOAT_LIB_COMPARE_RETURNS_BOOL: Library Calls. (line 33) ! * FLOAT_STORE_FLAG_VALUE: Misc. (line 287) * float_truncate: Conversions. (line 53) ! * FLOAT_TYPE_SIZE: Type Layout. (line 49) ! * FLOAT_WORDS_BIG_ENDIAN: Storage Layout. (line 42) ! * FLOAT_WORDS_BIG_ENDIAN, (lack of) effect on subreg: Regs and Memory. ! (line 226) ! * floating point and cross compilation: Floating Point. (line 6) ! * floatMN2 instruction pattern: Standard Names. (line 867) ! * floatunsMN2 instruction pattern: Standard Names. (line 871) * FLOOR_DIV_EXPR: Unary and Binary Expressions. (line 6) * FLOOR_MOD_EXPR: Unary and Binary Expressions. (line 6) - * floorM2 instruction pattern: Standard Names. (line 628) * flow-insensitive alias analysis: Alias analysis. (line 6) * flow-sensitive alias analysis: Alias analysis. (line 6) ! * fma: Arithmetic. (line 111) ! * fmaM4 instruction pattern: Standard Names. (line 279) ! * fmodM3 instruction pattern: Standard Names. (line 546) ! * fmsM4 instruction pattern: Standard Names. (line 286) ! * fnmaM4 instruction pattern: Standard Names. (line 292) ! * fnmsM4 instruction pattern: Standard Names. (line 298) * FOR_BODY: Statements for C++. (line 6) * FOR_COND: Statements for C++. (line 6) * FOR_EXPR: Statements for C++. (line 6) * FOR_INIT_STMT: Statements for C++. (line 6) * FOR_STMT: Statements for C++. (line 6) - * FORCE_CODE_SECTION_ALIGN: Sections. (line 145) - * force_reg: Standard Names. (line 36) - * fract_convert: Conversions. (line 82) - * FRACT_TYPE_SIZE: Type Layout. (line 68) * fractional types: Fixed-point fractional library routines. (line 6) ! * fractMN2 instruction pattern: Standard Names. (line 917) ! * fractunsMN2 instruction pattern: Standard Names. (line 932) * frame layout: Frame Layout. (line 6) ! * FRAME_ADDR_RTX: Frame Layout. (line 116) ! * FRAME_GROWS_DOWNWARD: Frame Layout. (line 31) ! * FRAME_GROWS_DOWNWARD and virtual registers: Regs and Memory. (line 69) ! * FRAME_POINTER_CFA_OFFSET: Frame Layout. (line 212) * frame_pointer_needed: Function Entry. (line 34) ! * FRAME_POINTER_REGNUM: Frame Registers. (line 14) ! * FRAME_POINTER_REGNUM and virtual registers: Regs and Memory. (line 74) * frame_pointer_rtx: Frame Registers. (line 104) * frame_related: Flags. (line 229) ! * frame_related, in insn, call_insn, jump_insn, barrier, and set: Flags. (line 107) ! * frame_related, in mem: Flags. (line 85) ! * frame_related, in reg: Flags. (line 94) ! * frame_related, in symbol_ref: Flags. (line 165) * frequency, count, BB_FREQ_BASE: Profile information. (line 30) ! * ftruncM2 instruction pattern: Standard Names. (line 890) ! * function <1>: Functions for C++. (line 6) * function: Functions. (line 6) * function call conventions: Interface. (line 6) * function entry and exit: Function Entry. (line 6) * function entry point, alternate function entry point: Edges. ! (line 181) * function properties: Function Properties. (line 6) * function-call insns: Calls. (line 6) ! * FUNCTION_ARG_OFFSET: Register Arguments. (line 198) ! * FUNCTION_ARG_PADDING: Register Arguments. (line 205) ! * FUNCTION_ARG_REGNO_P: Register Arguments. (line 253) ! * FUNCTION_BOUNDARY: Storage Layout. (line 166) ! * FUNCTION_DECL <1>: Functions for C++. (line 6) * FUNCTION_DECL: Functions. (line 6) ! * FUNCTION_MODE: Misc. (line 342) ! * FUNCTION_PROFILER: Profiling. (line 9) * FUNCTION_TYPE: Types. (line 6) * FUNCTION_VALUE: Scalar Return. (line 52) * FUNCTION_VALUE_REGNO_P: Scalar Return. (line 78) - * functions, leaf: Leaf Functions. (line 6) * fundamental type: Types. (line 6) ! * g in constraint: Simple Constraints. (line 120) ! * G in constraint: Simple Constraints. (line 98) * garbage collector, invocation: Invoking the garbage collector. (line 6) * garbage collector, troubleshooting: Troubleshooting. (line 6) --- 46153,46251 ---- * FIXED_CST: Constant expressions. (line 6) * FIXED_POINT_TYPE: Types. (line 6) ! * FIXED_REGISTERS: Register Basics. (line 14) * fixed_regs: Register Basics. (line 59) ! * 'fixMN2' instruction pattern: Standard Names. (line 869) ! * 'fixunsMN2' instruction pattern: Standard Names. (line 878) ! * 'fixuns_truncMN2' instruction pattern: Standard Names. (line 893) ! * 'fix_truncMN2' instruction pattern: Standard Names. (line 889) ! * FIX_TRUNC_EXPR: Unary and Binary Expressions. ! (line 6) * flags in RTL expression: Flags. (line 6) * float: Conversions. (line 58) + * floating point and cross compilation: Floating Point. (line 6) + * 'floatMN2' instruction pattern: Standard Names. (line 861) + * 'floatunsMN2' instruction pattern: Standard Names. (line 865) * FLOAT_EXPR: Unary and Binary Expressions. (line 6) * float_extend: Conversions. (line 33) ! * FLOAT_LIB_COMPARE_RETURNS_BOOL: Library Calls. (line 32) ! * FLOAT_STORE_FLAG_VALUE: Misc. (line 286) * float_truncate: Conversions. (line 53) ! * FLOAT_TYPE_SIZE: Type Layout. (line 48) ! * FLOAT_WORDS_BIG_ENDIAN: Storage Layout. (line 41) ! * 'FLOAT_WORDS_BIG_ENDIAN', (lack of) effect on 'subreg': Regs and Memory. ! (line 224) ! * 'floorM2' instruction pattern: Standard Names. (line 622) * FLOOR_DIV_EXPR: Unary and Binary Expressions. (line 6) * FLOOR_MOD_EXPR: Unary and Binary Expressions. (line 6) * flow-insensitive alias analysis: Alias analysis. (line 6) * flow-sensitive alias analysis: Alias analysis. (line 6) ! * fma: Arithmetic. (line 112) ! * 'fmaM4' instruction pattern: Standard Names. (line 276) ! * 'fmodM3' instruction pattern: Standard Names. (line 540) ! * 'fmsM4' instruction pattern: Standard Names. (line 283) ! * 'fnmaM4' instruction pattern: Standard Names. (line 289) ! * 'fnmsM4' instruction pattern: Standard Names. (line 295) ! * FORCE_CODE_SECTION_ALIGN: Sections. (line 144) ! * force_reg: Standard Names. (line 36) * FOR_BODY: Statements for C++. (line 6) * FOR_COND: Statements for C++. (line 6) * FOR_EXPR: Statements for C++. (line 6) * FOR_INIT_STMT: Statements for C++. (line 6) * FOR_STMT: Statements for C++. (line 6) * fractional types: Fixed-point fractional library routines. (line 6) ! * 'fractMN2' instruction pattern: Standard Names. (line 911) ! * 'fractunsMN2' instruction pattern: Standard Names. (line 926) ! * fract_convert: Conversions. (line 82) ! * FRACT_TYPE_SIZE: Type Layout. (line 67) * frame layout: Frame Layout. (line 6) ! * FRAME_ADDR_RTX: Frame Layout. (line 114) ! * FRAME_GROWS_DOWNWARD: Frame Layout. (line 30) ! * 'FRAME_GROWS_DOWNWARD' and virtual registers: Regs and Memory. (line 69) ! * FRAME_POINTER_CFA_OFFSET: Frame Layout. (line 210) * frame_pointer_needed: Function Entry. (line 34) ! * FRAME_POINTER_REGNUM: Frame Registers. (line 13) ! * 'FRAME_POINTER_REGNUM' and virtual registers: Regs and Memory. (line 74) * frame_pointer_rtx: Frame Registers. (line 104) * frame_related: Flags. (line 229) ! * 'frame_related', in 'insn', 'call_insn', 'jump_insn', 'barrier', and 'set': Flags. (line 107) ! * 'frame_related', in 'mem': Flags. (line 85) ! * 'frame_related', in 'reg': Flags. (line 94) ! * 'frame_related', in 'symbol_ref': Flags. (line 165) * frequency, count, BB_FREQ_BASE: Profile information. (line 30) ! * 'ftruncM2' instruction pattern: Standard Names. (line 884) * function: Functions. (line 6) + * function <1>: Functions for C++. (line 6) * function call conventions: Interface. (line 6) * function entry and exit: Function Entry. (line 6) * function entry point, alternate function entry point: Edges. ! (line 180) * function properties: Function Properties. (line 6) * function-call insns: Calls. (line 6) ! * functions, leaf: Leaf Functions. (line 6) ! * FUNCTION_ARG_OFFSET: Register Arguments. (line 196) ! * FUNCTION_ARG_PADDING: Register Arguments. (line 203) ! * FUNCTION_ARG_REGNO_P: Register Arguments. (line 251) ! * FUNCTION_BOUNDARY: Storage Layout. (line 164) * FUNCTION_DECL: Functions. (line 6) ! * FUNCTION_DECL <1>: Functions for C++. (line 6) ! * FUNCTION_MODE: Misc. (line 341) ! * FUNCTION_PROFILER: Profiling. (line 8) * FUNCTION_TYPE: Types. (line 6) * FUNCTION_VALUE: Scalar Return. (line 52) * FUNCTION_VALUE_REGNO_P: Scalar Return. (line 78) * fundamental type: Types. (line 6) ! * 'G' in constraint: Simple Constraints. (line 96) ! * 'g' in constraint: Simple Constraints. (line 118) * garbage collector, invocation: Invoking the garbage collector. (line 6) * garbage collector, troubleshooting: Troubleshooting. (line 6) *************** Concept Index *** 46621,47210 **** * gcov_type: Profile information. (line 41) * ge: Comparisons. (line 72) ! * ge and attributes: Expressions. (line 85) ! * GE_EXPR: Unary and Binary Expressions. ! (line 6) ! * GEN_ERRNO_RTX: Library Calls. (line 65) * gencodes: RTL passes. (line 18) * general_operand: Machine-Independent Predicates. ! (line 105) ! * GENERAL_REGS: Register Classes. (line 23) * generated files: Files. (line 6) * generating assembler output: Output Statement. (line 6) * generating insns: RTL Template. (line 6) - * GENERIC <1>: GENERIC. (line 6) * GENERIC: Parsing pass. (line 6) * generic predicates: Machine-Independent Predicates. (line 6) * genflags: RTL passes. (line 18) ! * get_attr: Expressions. (line 101) * get_attr_length: Insn Lengths. (line 46) ! * GET_CLASS_NARROWEST_MODE: Machine Modes. (line 333) * GET_CODE: RTL Objects. (line 47) * get_frame_size: Elimination. (line 34) * get_insns: Insns. (line 34) * get_last_insn: Insns. (line 34) ! * GET_MODE: Machine Modes. (line 280) ! * GET_MODE_ALIGNMENT: Machine Modes. (line 320) ! * GET_MODE_BITSIZE: Machine Modes. (line 304) ! * GET_MODE_CLASS: Machine Modes. (line 294) ! * GET_MODE_FBIT: Machine Modes. (line 311) ! * GET_MODE_IBIT: Machine Modes. (line 307) ! * GET_MODE_MASK: Machine Modes. (line 315) ! * GET_MODE_NAME: Machine Modes. (line 291) ! * GET_MODE_NUNITS: Machine Modes. (line 329) ! * GET_MODE_SIZE: Machine Modes. (line 301) ! * GET_MODE_UNIT_SIZE: Machine Modes. (line 323) ! * GET_MODE_WIDER_MODE: Machine Modes. (line 297) * GET_RTX_CLASS: RTL Classes. (line 6) * GET_RTX_FORMAT: RTL Classes. (line 131) * GET_RTX_LENGTH: RTL Classes. (line 128) ! * get_thread_pointerMODE instruction pattern: Standard Names. (line 1856) * geu: Comparisons. (line 72) ! * geu and attributes: Expressions. (line 85) * GGC: Type Information. (line 6) * ggc_collect: Invoking the garbage collector. (line 6) ! * GIMPLE <1>: GIMPLE. (line 6) ! * GIMPLE <2>: Gimplification pass. (line 6) ! * GIMPLE: Parsing pass. (line 14) * GIMPLE Exception Handling: GIMPLE Exception Handling. (line 6) * GIMPLE instruction set: GIMPLE instruction set. (line 6) * GIMPLE sequences: GIMPLE sequences. (line 6) - * GIMPLE statement iterators <1>: Maintaining the CFG. - (line 34) * GIMPLE statement iterators: Basic Blocks. (line 78) * gimple_addresses_taken: Manipulating GIMPLE statements. ! (line 90) ! * GIMPLE_ASM: GIMPLE_ASM. (line 6) ! * gimple_asm_clear_volatile: GIMPLE_ASM. (line 63) ! * gimple_asm_clobber_op: GIMPLE_ASM. (line 46) ! * gimple_asm_input_op: GIMPLE_ASM. (line 30) ! * gimple_asm_nclobbers: GIMPLE_ASM. (line 27) ! * gimple_asm_ninputs: GIMPLE_ASM. (line 21) ! * gimple_asm_noutputs: GIMPLE_ASM. (line 24) ! * gimple_asm_output_op: GIMPLE_ASM. (line 38) ! * gimple_asm_set_clobber_op: GIMPLE_ASM. (line 50) ! * gimple_asm_set_input_op: GIMPLE_ASM. (line 34) ! * gimple_asm_set_output_op: GIMPLE_ASM. (line 42) ! * gimple_asm_set_volatile: GIMPLE_ASM. (line 60) ! * gimple_asm_string: GIMPLE_ASM. (line 53) ! * gimple_asm_volatile_p: GIMPLE_ASM. (line 57) ! * GIMPLE_ASSIGN: GIMPLE_ASSIGN. (line 6) ! * gimple_assign_cast_p <1>: GIMPLE_ASSIGN. (line 93) ! * gimple_assign_cast_p: Logical Operators. (line 160) ! * gimple_assign_lhs: GIMPLE_ASSIGN. (line 51) ! * gimple_assign_lhs_ptr: GIMPLE_ASSIGN. (line 54) ! * gimple_assign_rhs1: GIMPLE_ASSIGN. (line 57) ! * gimple_assign_rhs1_ptr: GIMPLE_ASSIGN. (line 60) ! * gimple_assign_rhs2: GIMPLE_ASSIGN. (line 64) ! * gimple_assign_rhs2_ptr: GIMPLE_ASSIGN. (line 67) ! * gimple_assign_rhs3: GIMPLE_ASSIGN. (line 71) ! * gimple_assign_rhs3_ptr: GIMPLE_ASSIGN. (line 74) ! * gimple_assign_rhs_class: GIMPLE_ASSIGN. (line 46) ! * gimple_assign_rhs_code: GIMPLE_ASSIGN. (line 41) ! * gimple_assign_set_lhs: GIMPLE_ASSIGN. (line 78) ! * gimple_assign_set_rhs1: GIMPLE_ASSIGN. (line 81) ! * gimple_assign_set_rhs2: GIMPLE_ASSIGN. (line 85) ! * gimple_assign_set_rhs3: GIMPLE_ASSIGN. (line 89) * gimple_bb: Manipulating GIMPLE statements. ! (line 18) ! * GIMPLE_BIND: GIMPLE_BIND. (line 6) ! * gimple_bind_add_seq: GIMPLE_BIND. (line 36) ! * gimple_bind_add_stmt: GIMPLE_BIND. (line 32) ! * gimple_bind_append_vars: GIMPLE_BIND. (line 19) ! * gimple_bind_block: GIMPLE_BIND. (line 40) ! * gimple_bind_body: GIMPLE_BIND. (line 23) ! * gimple_bind_set_block: GIMPLE_BIND. (line 45) ! * gimple_bind_set_body: GIMPLE_BIND. (line 28) ! * gimple_bind_set_vars: GIMPLE_BIND. (line 15) ! * gimple_bind_vars: GIMPLE_BIND. (line 12) * gimple_block: Manipulating GIMPLE statements. ! (line 21) ! * gimple_build_asm: GIMPLE_ASM. (line 8) ! * gimple_build_asm_vec: GIMPLE_ASM. (line 17) ! * gimple_build_assign: GIMPLE_ASSIGN. (line 7) ! * gimple_build_assign_with_ops: GIMPLE_ASSIGN. (line 30) ! * gimple_build_bind: GIMPLE_BIND. (line 8) ! * gimple_build_call: GIMPLE_CALL. (line 8) ! * gimple_build_call_from_tree: GIMPLE_CALL. (line 16) ! * gimple_build_call_vec: GIMPLE_CALL. (line 25) ! * gimple_build_catch: GIMPLE_CATCH. (line 8) ! * gimple_build_cond: GIMPLE_COND. (line 8) ! * gimple_build_cond_from_tree: GIMPLE_COND. (line 16) ! * gimple_build_debug_bind: GIMPLE_DEBUG. (line 8) ! * gimple_build_eh_filter: GIMPLE_EH_FILTER. (line 8) ! * gimple_build_goto: GIMPLE_LABEL. (line 18) ! * gimple_build_label: GIMPLE_LABEL. (line 7) ! * gimple_build_nop: GIMPLE_NOP. (line 7) ! * gimple_build_omp_atomic_load: GIMPLE_OMP_ATOMIC_LOAD. ! (line 8) ! * gimple_build_omp_atomic_store: GIMPLE_OMP_ATOMIC_STORE. ! (line 7) ! * gimple_build_omp_continue: GIMPLE_OMP_CONTINUE. ! (line 8) ! * gimple_build_omp_critical: GIMPLE_OMP_CRITICAL. ! (line 8) ! * gimple_build_omp_for: GIMPLE_OMP_FOR. (line 9) ! * gimple_build_omp_master: GIMPLE_OMP_MASTER. (line 7) ! * gimple_build_omp_ordered: GIMPLE_OMP_ORDERED. (line 7) ! * gimple_build_omp_parallel: GIMPLE_OMP_PARALLEL. ! (line 8) ! * gimple_build_omp_return: GIMPLE_OMP_RETURN. (line 7) ! * gimple_build_omp_section: GIMPLE_OMP_SECTION. (line 7) ! * gimple_build_omp_sections: GIMPLE_OMP_SECTIONS. ! (line 8) ! * gimple_build_omp_sections_switch: GIMPLE_OMP_SECTIONS. ! (line 14) ! * gimple_build_omp_single: GIMPLE_OMP_SINGLE. (line 8) ! * gimple_build_resx: GIMPLE_RESX. (line 7) ! * gimple_build_return: GIMPLE_RETURN. (line 7) ! * gimple_build_switch: GIMPLE_SWITCH. (line 8) ! * gimple_build_try: GIMPLE_TRY. (line 8) ! * gimple_build_wce: GIMPLE_WITH_CLEANUP_EXPR. ! (line 7) ! * GIMPLE_CALL: GIMPLE_CALL. (line 6) ! * gimple_call_arg: GIMPLE_CALL. (line 66) ! * gimple_call_arg_ptr: GIMPLE_CALL. (line 71) ! * gimple_call_cannot_inline_p: GIMPLE_CALL. (line 91) ! * gimple_call_chain: GIMPLE_CALL. (line 57) ! * gimple_call_copy_skip_args: GIMPLE_CALL. (line 98) ! * gimple_call_fn: GIMPLE_CALL. (line 38) ! * gimple_call_fndecl: GIMPLE_CALL. (line 46) ! * gimple_call_lhs: GIMPLE_CALL. (line 29) ! * gimple_call_lhs_ptr: GIMPLE_CALL. (line 32) ! * gimple_call_mark_uninlinable: GIMPLE_CALL. (line 88) ! * gimple_call_noreturn_p: GIMPLE_CALL. (line 94) ! * gimple_call_num_args: GIMPLE_CALL. (line 63) ! * gimple_call_return_type: GIMPLE_CALL. (line 54) ! * gimple_call_set_arg: GIMPLE_CALL. (line 76) ! * gimple_call_set_chain: GIMPLE_CALL. (line 60) ! * gimple_call_set_fn: GIMPLE_CALL. (line 42) ! * gimple_call_set_fndecl: GIMPLE_CALL. (line 51) ! * gimple_call_set_lhs: GIMPLE_CALL. (line 35) ! * gimple_call_set_tail: GIMPLE_CALL. (line 80) ! * gimple_call_tail_p: GIMPLE_CALL. (line 85) ! * GIMPLE_CATCH: GIMPLE_CATCH. (line 6) ! * gimple_catch_handler: GIMPLE_CATCH. (line 20) ! * gimple_catch_set_handler: GIMPLE_CATCH. (line 28) ! * gimple_catch_set_types: GIMPLE_CATCH. (line 24) ! * gimple_catch_types: GIMPLE_CATCH. (line 13) ! * gimple_catch_types_ptr: GIMPLE_CATCH. (line 16) * gimple_code: Manipulating GIMPLE statements. ! (line 15) ! * GIMPLE_COND: GIMPLE_COND. (line 6) ! * gimple_cond_code: GIMPLE_COND. (line 21) ! * gimple_cond_false_label: GIMPLE_COND. (line 60) ! * gimple_cond_lhs: GIMPLE_COND. (line 30) ! * gimple_cond_make_false: GIMPLE_COND. (line 64) ! * gimple_cond_make_true: GIMPLE_COND. (line 67) ! * gimple_cond_rhs: GIMPLE_COND. (line 38) ! * gimple_cond_set_code: GIMPLE_COND. (line 26) ! * gimple_cond_set_false_label: GIMPLE_COND. (line 56) ! * gimple_cond_set_lhs: GIMPLE_COND. (line 34) ! * gimple_cond_set_rhs: GIMPLE_COND. (line 42) ! * gimple_cond_set_true_label: GIMPLE_COND. (line 51) ! * gimple_cond_true_label: GIMPLE_COND. (line 46) * gimple_copy: Manipulating GIMPLE statements. ! (line 147) ! * GIMPLE_DEBUG: GIMPLE_DEBUG. (line 6) ! * GIMPLE_DEBUG_BIND: GIMPLE_DEBUG. (line 6) ! * gimple_debug_bind_get_value: GIMPLE_DEBUG. (line 48) ! * gimple_debug_bind_get_value_ptr: GIMPLE_DEBUG. (line 53) ! * gimple_debug_bind_get_var: GIMPLE_DEBUG. (line 45) ! * gimple_debug_bind_has_value_p: GIMPLE_DEBUG. (line 70) ! * gimple_debug_bind_p: Logical Operators. (line 164) ! * gimple_debug_bind_reset_value: GIMPLE_DEBUG. (line 66) ! * gimple_debug_bind_set_value: GIMPLE_DEBUG. (line 62) ! * gimple_debug_bind_set_var: GIMPLE_DEBUG. (line 58) * gimple_def_ops: Manipulating GIMPLE statements. ! (line 94) ! * GIMPLE_EH_FILTER: GIMPLE_EH_FILTER. (line 6) ! * gimple_eh_filter_failure: GIMPLE_EH_FILTER. (line 19) ! * gimple_eh_filter_must_not_throw: GIMPLE_EH_FILTER. (line 33) ! * gimple_eh_filter_set_failure: GIMPLE_EH_FILTER. (line 29) ! * gimple_eh_filter_set_must_not_throw: GIMPLE_EH_FILTER. (line 37) ! * gimple_eh_filter_set_types: GIMPLE_EH_FILTER. (line 24) ! * gimple_eh_filter_types: GIMPLE_EH_FILTER. (line 12) ! * gimple_eh_filter_types_ptr: GIMPLE_EH_FILTER. (line 15) * gimple_expr_code: Manipulating GIMPLE statements. ! (line 31) * gimple_expr_type: Manipulating GIMPLE statements. ! (line 24) ! * gimple_goto_dest: GIMPLE_LABEL. (line 21) ! * gimple_goto_set_dest: GIMPLE_LABEL. (line 24) * gimple_has_mem_ops: Manipulating GIMPLE statements. ! (line 72) * gimple_has_ops: Manipulating GIMPLE statements. ! (line 69) * gimple_has_volatile_ops: Manipulating GIMPLE statements. ! (line 134) ! * GIMPLE_LABEL: GIMPLE_LABEL. (line 6) ! * gimple_label_label: GIMPLE_LABEL. (line 11) ! * gimple_label_set_label: GIMPLE_LABEL. (line 14) * gimple_loaded_syms: Manipulating GIMPLE statements. ! (line 122) * gimple_locus: Manipulating GIMPLE statements. ! (line 42) * gimple_locus_empty_p: Manipulating GIMPLE statements. ! (line 48) * gimple_modified_p: Manipulating GIMPLE statements. ! (line 130) * gimple_no_warning_p: Manipulating GIMPLE statements. ! (line 51) ! * GIMPLE_NOP: GIMPLE_NOP. (line 6) ! * gimple_nop_p: GIMPLE_NOP. (line 10) * gimple_num_ops <1>: Manipulating GIMPLE statements. ! (line 75) ! * gimple_num_ops: Logical Operators. (line 78) ! * GIMPLE_OMP_ATOMIC_LOAD: GIMPLE_OMP_ATOMIC_LOAD. (line 6) ! * gimple_omp_atomic_load_lhs: GIMPLE_OMP_ATOMIC_LOAD. ! (line 17) ! * gimple_omp_atomic_load_rhs: GIMPLE_OMP_ATOMIC_LOAD. ! (line 24) ! * gimple_omp_atomic_load_set_lhs: GIMPLE_OMP_ATOMIC_LOAD. (line 14) ! * gimple_omp_atomic_load_set_rhs: GIMPLE_OMP_ATOMIC_LOAD. ! (line 21) ! * GIMPLE_OMP_ATOMIC_STORE: GIMPLE_OMP_ATOMIC_STORE. (line 6) ! * gimple_omp_atomic_store_set_val: GIMPLE_OMP_ATOMIC_STORE. (line 12) ! * gimple_omp_atomic_store_val: GIMPLE_OMP_ATOMIC_STORE. (line 15) ! * gimple_omp_body: GIMPLE_OMP_PARALLEL. ! (line 24) ! * GIMPLE_OMP_CONTINUE: GIMPLE_OMP_CONTINUE. (line 6) ! * gimple_omp_continue_control_def: GIMPLE_OMP_CONTINUE. ! (line 13) ! * gimple_omp_continue_control_def_ptr: GIMPLE_OMP_CONTINUE. ! (line 17) ! * gimple_omp_continue_control_use: GIMPLE_OMP_CONTINUE. ! (line 24) ! * gimple_omp_continue_control_use_ptr: GIMPLE_OMP_CONTINUE. ! (line 28) ! * gimple_omp_continue_set_control_def: GIMPLE_OMP_CONTINUE. ! (line 20) ! * gimple_omp_continue_set_control_use: GIMPLE_OMP_CONTINUE. ! (line 31) ! * GIMPLE_OMP_CRITICAL: GIMPLE_OMP_CRITICAL. (line 6) ! * gimple_omp_critical_name: GIMPLE_OMP_CRITICAL. (line 13) ! * gimple_omp_critical_name_ptr: GIMPLE_OMP_CRITICAL. ! (line 16) ! * gimple_omp_critical_set_name: GIMPLE_OMP_CRITICAL. ! (line 21) ! * GIMPLE_OMP_FOR: GIMPLE_OMP_FOR. (line 6) ! * gimple_omp_for_clauses: GIMPLE_OMP_FOR. (line 20) ! * gimple_omp_for_clauses_ptr: GIMPLE_OMP_FOR. (line 23) ! * gimple_omp_for_cond: GIMPLE_OMP_FOR. (line 83) ! * gimple_omp_for_final: GIMPLE_OMP_FOR. (line 51) ! * gimple_omp_for_final_ptr: GIMPLE_OMP_FOR. (line 54) ! * gimple_omp_for_incr: GIMPLE_OMP_FOR. (line 61) ! * gimple_omp_for_incr_ptr: GIMPLE_OMP_FOR. (line 64) ! * gimple_omp_for_index: GIMPLE_OMP_FOR. (line 31) ! * gimple_omp_for_index_ptr: GIMPLE_OMP_FOR. (line 34) ! * gimple_omp_for_initial: GIMPLE_OMP_FOR. (line 41) ! * gimple_omp_for_initial_ptr: GIMPLE_OMP_FOR. (line 44) ! * gimple_omp_for_pre_body: GIMPLE_OMP_FOR. (line 70) ! * gimple_omp_for_set_clauses: GIMPLE_OMP_FOR. (line 27) ! * gimple_omp_for_set_cond: GIMPLE_OMP_FOR. (line 80) ! * gimple_omp_for_set_final: GIMPLE_OMP_FOR. (line 58) ! * gimple_omp_for_set_incr: GIMPLE_OMP_FOR. (line 67) ! * gimple_omp_for_set_index: GIMPLE_OMP_FOR. (line 38) ! * gimple_omp_for_set_initial: GIMPLE_OMP_FOR. (line 48) ! * gimple_omp_for_set_pre_body: GIMPLE_OMP_FOR. (line 75) ! * GIMPLE_OMP_MASTER: GIMPLE_OMP_MASTER. (line 6) ! * GIMPLE_OMP_ORDERED: GIMPLE_OMP_ORDERED. (line 6) ! * GIMPLE_OMP_PARALLEL: GIMPLE_OMP_PARALLEL. (line 6) ! * gimple_omp_parallel_child_fn: GIMPLE_OMP_PARALLEL. ! (line 42) ! * gimple_omp_parallel_child_fn_ptr: GIMPLE_OMP_PARALLEL. ! (line 46) ! * gimple_omp_parallel_clauses: GIMPLE_OMP_PARALLEL. ! (line 31) ! * gimple_omp_parallel_clauses_ptr: GIMPLE_OMP_PARALLEL. ! (line 34) ! * gimple_omp_parallel_combined_p: GIMPLE_OMP_PARALLEL. (line 16) ! * gimple_omp_parallel_data_arg: GIMPLE_OMP_PARALLEL. ! (line 54) ! * gimple_omp_parallel_data_arg_ptr: GIMPLE_OMP_PARALLEL. ! (line 58) ! * gimple_omp_parallel_set_child_fn: GIMPLE_OMP_PARALLEL. ! (line 51) ! * gimple_omp_parallel_set_clauses: GIMPLE_OMP_PARALLEL. ! (line 38) ! * gimple_omp_parallel_set_combined_p: GIMPLE_OMP_PARALLEL. (line 20) ! * gimple_omp_parallel_set_data_arg: GIMPLE_OMP_PARALLEL. ! (line 62) ! * GIMPLE_OMP_RETURN: GIMPLE_OMP_RETURN. (line 6) ! * gimple_omp_return_nowait_p: GIMPLE_OMP_RETURN. (line 14) ! * gimple_omp_return_set_nowait: GIMPLE_OMP_RETURN. (line 11) ! * GIMPLE_OMP_SECTION: GIMPLE_OMP_SECTION. (line 6) ! * gimple_omp_section_last_p: GIMPLE_OMP_SECTION. (line 12) ! * gimple_omp_section_set_last: GIMPLE_OMP_SECTION. (line 16) ! * GIMPLE_OMP_SECTIONS: GIMPLE_OMP_SECTIONS. ! (line 6) ! * gimple_omp_sections_clauses: GIMPLE_OMP_SECTIONS. ! (line 30) ! * gimple_omp_sections_clauses_ptr: GIMPLE_OMP_SECTIONS. ! (line 33) ! * gimple_omp_sections_control: GIMPLE_OMP_SECTIONS. ! (line 17) ! * gimple_omp_sections_control_ptr: GIMPLE_OMP_SECTIONS. ! (line 21) ! * gimple_omp_sections_set_clauses: GIMPLE_OMP_SECTIONS. ! (line 37) ! * gimple_omp_sections_set_control: GIMPLE_OMP_SECTIONS. (line 26) ! * gimple_omp_set_body: GIMPLE_OMP_PARALLEL. ! (line 28) ! * GIMPLE_OMP_SINGLE: GIMPLE_OMP_SINGLE. (line 6) ! * gimple_omp_single_clauses: GIMPLE_OMP_SINGLE. (line 14) ! * gimple_omp_single_clauses_ptr: GIMPLE_OMP_SINGLE. (line 17) ! * gimple_omp_single_set_clauses: GIMPLE_OMP_SINGLE. (line 21) * gimple_op <1>: Manipulating GIMPLE statements. ! (line 81) ! * gimple_op: Logical Operators. (line 81) ! * gimple_op_ptr: Manipulating GIMPLE statements. ! (line 84) * gimple_ops <1>: Manipulating GIMPLE statements. ! (line 78) ! * gimple_ops: Logical Operators. (line 84) ! * GIMPLE_PHI: GIMPLE_PHI. (line 6) ! * gimple_phi_arg: GIMPLE_PHI. (line 25) ! * gimple_phi_capacity: GIMPLE_PHI. (line 7) ! * gimple_phi_num_args: GIMPLE_PHI. (line 11) ! * gimple_phi_result: GIMPLE_PHI. (line 16) ! * gimple_phi_result_ptr: GIMPLE_PHI. (line 19) ! * gimple_phi_set_arg: GIMPLE_PHI. (line 30) ! * gimple_phi_set_result: GIMPLE_PHI. (line 22) * gimple_plf: Manipulating GIMPLE statements. ! (line 66) ! * GIMPLE_RESX: GIMPLE_RESX. (line 6) ! * gimple_resx_region: GIMPLE_RESX. (line 13) ! * gimple_resx_set_region: GIMPLE_RESX. (line 16) ! * GIMPLE_RETURN: GIMPLE_RETURN. (line 6) ! * gimple_return_retval: GIMPLE_RETURN. (line 10) ! * gimple_return_set_retval: GIMPLE_RETURN. (line 14) ! * gimple_seq_add_seq: GIMPLE sequences. (line 32) ! * gimple_seq_add_stmt: GIMPLE sequences. (line 26) ! * gimple_seq_alloc: GIMPLE sequences. (line 62) ! * gimple_seq_copy: GIMPLE sequences. (line 67) ! * gimple_seq_deep_copy: GIMPLE sequences. (line 37) ! * gimple_seq_empty_p: GIMPLE sequences. (line 70) ! * gimple_seq_first: GIMPLE sequences. (line 44) ! * gimple_seq_init: GIMPLE sequences. (line 59) ! * gimple_seq_last: GIMPLE sequences. (line 47) ! * gimple_seq_reverse: GIMPLE sequences. (line 40) ! * gimple_seq_set_first: GIMPLE sequences. (line 55) ! * gimple_seq_set_last: GIMPLE sequences. (line 51) ! * gimple_seq_singleton_p: GIMPLE sequences. (line 79) * gimple_set_block: Manipulating GIMPLE statements. ! (line 39) * gimple_set_def_ops: Manipulating GIMPLE statements. ! (line 98) * gimple_set_has_volatile_ops: Manipulating GIMPLE statements. ! (line 138) * gimple_set_locus: Manipulating GIMPLE statements. ! (line 45) * gimple_set_op: Manipulating GIMPLE statements. ! (line 87) * gimple_set_plf: Manipulating GIMPLE statements. ! (line 62) * gimple_set_use_ops: Manipulating GIMPLE statements. ! (line 105) * gimple_set_vdef_ops: Manipulating GIMPLE statements. ! (line 119) * gimple_set_visited: Manipulating GIMPLE statements. ! (line 55) * gimple_set_vuse_ops: Manipulating GIMPLE statements. ! (line 112) * gimple_statement_base: Tuple representation. (line 14) * gimple_statement_with_ops: Tuple representation. (line 96) * gimple_stored_syms: Manipulating GIMPLE statements. ! (line 126) ! * GIMPLE_SWITCH: GIMPLE_SWITCH. (line 6) ! * gimple_switch_default_label: GIMPLE_SWITCH. (line 39) ! * gimple_switch_index: GIMPLE_SWITCH. (line 24) ! * gimple_switch_label: GIMPLE_SWITCH. (line 30) ! * gimple_switch_num_labels: GIMPLE_SWITCH. (line 15) ! * gimple_switch_set_default_label: GIMPLE_SWITCH. (line 43) ! * gimple_switch_set_index: GIMPLE_SWITCH. (line 27) ! * gimple_switch_set_label: GIMPLE_SWITCH. (line 35) ! * gimple_switch_set_num_labels: GIMPLE_SWITCH. (line 20) ! * GIMPLE_TRY: GIMPLE_TRY. (line 6) ! * gimple_try_catch_is_cleanup: GIMPLE_TRY. (line 20) ! * gimple_try_cleanup: GIMPLE_TRY. (line 27) ! * gimple_try_eval: GIMPLE_TRY. (line 23) ! * gimple_try_kind: GIMPLE_TRY. (line 16) ! * gimple_try_set_catch_is_cleanup: GIMPLE_TRY. (line 32) ! * gimple_try_set_cleanup: GIMPLE_TRY. (line 41) ! * gimple_try_set_eval: GIMPLE_TRY. (line 36) * gimple_use_ops: Manipulating GIMPLE statements. ! (line 101) * gimple_vdef_ops: Manipulating GIMPLE statements. ! (line 115) * gimple_visited_p: Manipulating GIMPLE statements. ! (line 58) * gimple_vuse_ops: Manipulating GIMPLE statements. ! (line 108) ! * gimple_wce_cleanup: GIMPLE_WITH_CLEANUP_EXPR. ! (line 11) ! * gimple_wce_cleanup_eh_only: GIMPLE_WITH_CLEANUP_EXPR. ! (line 18) ! * gimple_wce_set_cleanup: GIMPLE_WITH_CLEANUP_EXPR. ! (line 15) ! * gimple_wce_set_cleanup_eh_only: GIMPLE_WITH_CLEANUP_EXPR. ! (line 22) ! * GIMPLE_WITH_CLEANUP_EXPR: GIMPLE_WITH_CLEANUP_EXPR. (line 6) * gimplification <1>: Gimplification pass. (line 6) ! * gimplification: Parsing pass. (line 14) ! * gimplifier: Parsing pass. (line 14) ! * gimplify_assign: GIMPLE_ASSIGN. (line 19) * gimplify_expr: Gimplification pass. (line 18) * gimplify_function_tree: Gimplification pass. (line 18) * GLOBAL_INIT_PRIORITY: Functions for C++. (line 141) * global_regs: Register Basics. (line 59) ! * GO_IF_LEGITIMATE_ADDRESS: Addressing Modes. (line 91) * greater than: Comparisons. (line 60) ! * gsi_after_labels: Sequence iterators. (line 76) ! * gsi_bb: Sequence iterators. (line 83) * gsi_commit_edge_inserts <1>: Maintaining the CFG. ! (line 107) ! * gsi_commit_edge_inserts: Sequence iterators. (line 194) ! * gsi_commit_one_edge_insert: Sequence iterators. (line 190) * gsi_end_p <1>: Maintaining the CFG. ! (line 49) ! * gsi_end_p: Sequence iterators. (line 60) ! * gsi_for_stmt: Sequence iterators. (line 157) * gsi_insert_after <1>: Maintaining the CFG. ! (line 61) ! * gsi_insert_after: Sequence iterators. (line 147) * gsi_insert_before <1>: Maintaining the CFG. ! (line 67) ! * gsi_insert_before: Sequence iterators. (line 136) * gsi_insert_on_edge <1>: Maintaining the CFG. ! (line 107) ! * gsi_insert_on_edge: Sequence iterators. (line 174) ! * gsi_insert_on_edge_immediate: Sequence iterators. (line 185) ! * gsi_insert_seq_after: Sequence iterators. (line 154) ! * gsi_insert_seq_before: Sequence iterators. (line 143) ! * gsi_insert_seq_on_edge: Sequence iterators. (line 179) * gsi_last <1>: Maintaining the CFG. ! (line 45) ! * gsi_last: Sequence iterators. (line 50) ! * gsi_last_bb: Sequence iterators. (line 56) ! * gsi_link_after: Sequence iterators. (line 115) ! * gsi_link_before: Sequence iterators. (line 105) ! * gsi_link_seq_after: Sequence iterators. (line 110) ! * gsi_link_seq_before: Sequence iterators. (line 99) ! * gsi_move_after: Sequence iterators. (line 161) ! * gsi_move_before: Sequence iterators. (line 166) ! * gsi_move_to_bb_end: Sequence iterators. (line 171) * gsi_next <1>: Maintaining the CFG. ! (line 53) ! * gsi_next: Sequence iterators. (line 66) ! * gsi_one_before_end_p: Sequence iterators. (line 63) * gsi_prev <1>: Maintaining the CFG. ! (line 57) ! * gsi_prev: Sequence iterators. (line 69) * gsi_remove <1>: Maintaining the CFG. ! (line 73) ! * gsi_remove: Sequence iterators. (line 90) ! * gsi_replace: Sequence iterators. (line 130) ! * gsi_seq: Sequence iterators. (line 86) ! * gsi_split_seq_after: Sequence iterators. (line 120) ! * gsi_split_seq_before: Sequence iterators. (line 125) * gsi_start <1>: Maintaining the CFG. ! (line 41) ! * gsi_start: Sequence iterators. (line 40) ! * gsi_start_bb: Sequence iterators. (line 46) ! * gsi_stmt: Sequence iterators. (line 72) ! * gsi_stmt_ptr: Sequence iterators. (line 80) * gt: Comparisons. (line 60) ! * gt and attributes: Expressions. (line 85) ! * GT_EXPR: Unary and Binary Expressions. ! (line 6) * gtu: Comparisons. (line 64) ! * gtu and attributes: Expressions. (line 85) * GTY: Type Information. (line 6) ! * H in constraint: Simple Constraints. (line 98) ! * HAmode: Machine Modes. (line 144) ! * HANDLE_PRAGMA_PACK_WITH_EXPANSION: Misc. (line 436) * HANDLER: Statements for C++. (line 6) * HANDLER_BODY: Statements for C++. (line 6) * HANDLER_PARMS: Statements for C++. (line 6) * hard registers: Regs and Memory. (line 9) ! * HARD_FRAME_POINTER_IS_ARG_POINTER: Frame Registers. (line 58) ! * HARD_FRAME_POINTER_IS_FRAME_POINTER: Frame Registers. (line 51) ! * HARD_FRAME_POINTER_REGNUM: Frame Registers. (line 20) ! * HARD_REGNO_CALL_PART_CLOBBERED: Register Basics. (line 53) ! * HARD_REGNO_CALLER_SAVE_MODE: Caller Saves. (line 20) * HARD_REGNO_MODE_OK: Values in Registers. ! (line 58) * HARD_REGNO_NREGS: Values in Registers. ! (line 11) * HARD_REGNO_NREGS_HAS_PADDING: Values in Registers. ! (line 25) * HARD_REGNO_NREGS_WITH_PADDING: Values in Registers. ! (line 43) * HARD_REGNO_RENAME_OK: Values in Registers. ! (line 119) * HAS_INIT_SECTION: Macros for Initialization. ! (line 19) ! * HAS_LONG_COND_BRANCH: Misc. (line 9) ! * HAS_LONG_UNCOND_BRANCH: Misc. (line 18) * HAVE_DOS_BASED_FILE_SYSTEM: Filesystem. (line 11) ! * HAVE_POST_DECREMENT: Addressing Modes. (line 12) ! * HAVE_POST_INCREMENT: Addressing Modes. (line 11) ! * HAVE_POST_MODIFY_DISP: Addressing Modes. (line 18) ! * HAVE_POST_MODIFY_REG: Addressing Modes. (line 24) ! * HAVE_PRE_DECREMENT: Addressing Modes. (line 10) ! * HAVE_PRE_INCREMENT: Addressing Modes. (line 9) ! * HAVE_PRE_MODIFY_DISP: Addressing Modes. (line 17) ! * HAVE_PRE_MODIFY_REG: Addressing Modes. (line 23) ! * HCmode: Machine Modes. (line 197) * HFmode: Machine Modes. (line 58) ! * high: Constants. (line 120) * HImode: Machine Modes. (line 29) ! * HImode, in insn: Insns. (line 278) ! * HONOR_REG_ALLOC_ORDER: Allocation Order. (line 37) * host configuration: Host Config. (line 6) * host functions: Host Common. (line 6) * host hooks: Host Common. (line 6) * host makefile fragment: Host Fragment. (line 6) * HOST_BIT_BUCKET: Filesystem. (line 51) * HOST_EXECUTABLE_SUFFIX: Filesystem. (line 45) ! * HOST_HOOKS_EXTRA_SIGNALS: Host Common. (line 12) ! * HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY: Host Common. (line 45) ! * HOST_HOOKS_GT_PCH_GET_ADDRESS: Host Common. (line 17) ! * HOST_HOOKS_GT_PCH_USE_ADDRESS: Host Common. (line 26) * HOST_LACKS_INODE_NUMBERS: Filesystem. (line 89) * HOST_LONG_FORMAT: Host Misc. (line 45) * HOST_LONG_LONG_FORMAT: Host Misc. (line 41) * HOST_OBJECT_SUFFIX: Filesystem. (line 40) * HOST_PTR_PRINTF: Host Misc. (line 49) ! * HOT_TEXT_SECTION_NAME: Sections. (line 43) * HQmode: Machine Modes. (line 107) ! * I in constraint: Simple Constraints. (line 81) ! * i in constraint: Simple Constraints. (line 70) * identifier: Identifiers. (line 6) * IDENTIFIER_LENGTH: Identifiers. (line 22) * IDENTIFIER_NODE: Identifiers. (line 6) --- 46254,46862 ---- * gcov_type: Profile information. (line 41) * ge: Comparisons. (line 72) ! * 'ge' and attributes: Expressions. (line 83) * gencodes: RTL passes. (line 18) * general_operand: Machine-Independent Predicates. ! (line 104) ! * GENERAL_REGS: Register Classes. (line 22) * generated files: Files. (line 6) * generating assembler output: Output Statement. (line 6) * generating insns: RTL Template. (line 6) * GENERIC: Parsing pass. (line 6) + * GENERIC <1>: GENERIC. (line 6) * generic predicates: Machine-Independent Predicates. (line 6) * genflags: RTL passes. (line 18) ! * GEN_ERRNO_RTX: Library Calls. (line 64) ! * get_attr: Expressions. (line 99) * get_attr_length: Insn Lengths. (line 46) ! * GET_CLASS_NARROWEST_MODE: Machine Modes. (line 332) * GET_CODE: RTL Objects. (line 47) * get_frame_size: Elimination. (line 34) * get_insns: Insns. (line 34) * get_last_insn: Insns. (line 34) ! * GET_MODE: Machine Modes. (line 279) ! * GET_MODE_ALIGNMENT: Machine Modes. (line 319) ! * GET_MODE_BITSIZE: Machine Modes. (line 303) ! * GET_MODE_CLASS: Machine Modes. (line 293) ! * GET_MODE_FBIT: Machine Modes. (line 310) ! * GET_MODE_IBIT: Machine Modes. (line 306) ! * GET_MODE_MASK: Machine Modes. (line 314) ! * GET_MODE_NAME: Machine Modes. (line 290) ! * GET_MODE_NUNITS: Machine Modes. (line 328) ! * GET_MODE_SIZE: Machine Modes. (line 300) ! * GET_MODE_UNIT_SIZE: Machine Modes. (line 322) ! * GET_MODE_WIDER_MODE: Machine Modes. (line 296) * GET_RTX_CLASS: RTL Classes. (line 6) * GET_RTX_FORMAT: RTL Classes. (line 131) * GET_RTX_LENGTH: RTL Classes. (line 128) ! * 'get_thread_pointerMODE' instruction pattern: Standard Names. (line 1856) * geu: Comparisons. (line 72) ! * 'geu' and attributes: Expressions. (line 83) ! * GE_EXPR: Unary and Binary Expressions. ! (line 6) * GGC: Type Information. (line 6) * ggc_collect: Invoking the garbage collector. (line 6) ! * GIMPLE: Parsing pass. (line 13) ! * GIMPLE <1>: Gimplification pass. (line 6) ! * GIMPLE <2>: GIMPLE. (line 6) * GIMPLE Exception Handling: GIMPLE Exception Handling. (line 6) * GIMPLE instruction set: GIMPLE instruction set. (line 6) * GIMPLE sequences: GIMPLE sequences. (line 6) * GIMPLE statement iterators: Basic Blocks. (line 78) + * GIMPLE statement iterators <1>: Maintaining the CFG. + (line 33) * gimple_addresses_taken: Manipulating GIMPLE statements. ! (line 89) ! * 'GIMPLE_ASM': 'GIMPLE_ASM'. (line 6) ! * gimple_asm_clear_volatile: 'GIMPLE_ASM'. (line 62) ! * gimple_asm_clobber_op: 'GIMPLE_ASM'. (line 44) ! * gimple_asm_input_op: 'GIMPLE_ASM'. (line 29) ! * gimple_asm_nclobbers: 'GIMPLE_ASM'. (line 26) ! * gimple_asm_ninputs: 'GIMPLE_ASM'. (line 20) ! * gimple_asm_noutputs: 'GIMPLE_ASM'. (line 23) ! * gimple_asm_output_op: 'GIMPLE_ASM'. (line 36) ! * gimple_asm_set_clobber_op: 'GIMPLE_ASM'. (line 48) ! * gimple_asm_set_input_op: 'GIMPLE_ASM'. (line 32) ! * gimple_asm_set_output_op: 'GIMPLE_ASM'. (line 40) ! * gimple_asm_set_volatile: 'GIMPLE_ASM'. (line 59) ! * gimple_asm_string: 'GIMPLE_ASM'. (line 52) ! * gimple_asm_volatile_p: 'GIMPLE_ASM'. (line 56) ! * 'GIMPLE_ASSIGN': 'GIMPLE_ASSIGN'. (line 6) ! * gimple_assign_cast_p: Logical Operators. (line 158) ! * gimple_assign_cast_p <1>: 'GIMPLE_ASSIGN'. (line 92) ! * gimple_assign_lhs: 'GIMPLE_ASSIGN'. (line 50) ! * gimple_assign_lhs_ptr: 'GIMPLE_ASSIGN'. (line 53) ! * gimple_assign_rhs1: 'GIMPLE_ASSIGN'. (line 56) ! * gimple_assign_rhs1_ptr: 'GIMPLE_ASSIGN'. (line 59) ! * gimple_assign_rhs2: 'GIMPLE_ASSIGN'. (line 63) ! * gimple_assign_rhs2_ptr: 'GIMPLE_ASSIGN'. (line 66) ! * gimple_assign_rhs3: 'GIMPLE_ASSIGN'. (line 70) ! * gimple_assign_rhs3_ptr: 'GIMPLE_ASSIGN'. (line 73) ! * gimple_assign_rhs_class: 'GIMPLE_ASSIGN'. (line 44) ! * gimple_assign_rhs_code: 'GIMPLE_ASSIGN'. (line 40) ! * gimple_assign_set_lhs: 'GIMPLE_ASSIGN'. (line 77) ! * gimple_assign_set_rhs1: 'GIMPLE_ASSIGN'. (line 80) ! * gimple_assign_set_rhs2: 'GIMPLE_ASSIGN'. (line 84) ! * gimple_assign_set_rhs3: 'GIMPLE_ASSIGN'. (line 88) * gimple_bb: Manipulating GIMPLE statements. ! (line 17) ! * 'GIMPLE_BIND': 'GIMPLE_BIND'. (line 6) ! * gimple_bind_add_seq: 'GIMPLE_BIND'. (line 34) ! * gimple_bind_add_stmt: 'GIMPLE_BIND'. (line 31) ! * gimple_bind_append_vars: 'GIMPLE_BIND'. (line 18) ! * gimple_bind_block: 'GIMPLE_BIND'. (line 39) ! * gimple_bind_body: 'GIMPLE_BIND'. (line 22) ! * gimple_bind_set_block: 'GIMPLE_BIND'. (line 44) ! * gimple_bind_set_body: 'GIMPLE_BIND'. (line 26) ! * gimple_bind_set_vars: 'GIMPLE_BIND'. (line 14) ! * gimple_bind_vars: 'GIMPLE_BIND'. (line 11) * gimple_block: Manipulating GIMPLE statements. ! (line 20) ! * gimple_build_asm: 'GIMPLE_ASM'. (line 6) ! * gimple_build_asm_vec: 'GIMPLE_ASM'. (line 15) ! * gimple_build_assign: 'GIMPLE_ASSIGN'. (line 6) ! * gimple_build_assign_with_ops: 'GIMPLE_ASSIGN'. (line 28) ! * gimple_build_bind: 'GIMPLE_BIND'. (line 6) ! * gimple_build_call: 'GIMPLE_CALL'. (line 6) ! * gimple_build_call_from_tree: 'GIMPLE_CALL'. (line 15) ! * gimple_build_call_vec: 'GIMPLE_CALL'. (line 23) ! * gimple_build_catch: 'GIMPLE_CATCH'. (line 6) ! * gimple_build_cond: 'GIMPLE_COND'. (line 6) ! * gimple_build_cond_from_tree: 'GIMPLE_COND'. (line 14) ! * gimple_build_debug_bind: 'GIMPLE_DEBUG'. (line 6) ! * gimple_build_eh_filter: 'GIMPLE_EH_FILTER'. (line 6) ! * gimple_build_goto: 'GIMPLE_LABEL'. (line 17) ! * gimple_build_label: 'GIMPLE_LABEL'. (line 6) ! * gimple_build_nop: 'GIMPLE_NOP'. (line 6) ! * gimple_build_omp_atomic_load: 'GIMPLE_OMP_ATOMIC_LOAD'. ! (line 6) ! * gimple_build_omp_atomic_store: 'GIMPLE_OMP_ATOMIC_STORE'. ! (line 6) ! * gimple_build_omp_continue: 'GIMPLE_OMP_CONTINUE'. ! (line 6) ! * gimple_build_omp_critical: 'GIMPLE_OMP_CRITICAL'. ! (line 6) ! * gimple_build_omp_for: 'GIMPLE_OMP_FOR'. (line 6) ! * gimple_build_omp_master: 'GIMPLE_OMP_MASTER'. ! (line 6) ! * gimple_build_omp_ordered: 'GIMPLE_OMP_ORDERED'. ! (line 6) ! * gimple_build_omp_parallel: 'GIMPLE_OMP_PARALLEL'. ! (line 6) ! * gimple_build_omp_return: 'GIMPLE_OMP_RETURN'. ! (line 6) ! * gimple_build_omp_section: 'GIMPLE_OMP_SECTION'. ! (line 6) ! * gimple_build_omp_sections: 'GIMPLE_OMP_SECTIONS'. ! (line 6) ! * gimple_build_omp_sections_switch: 'GIMPLE_OMP_SECTIONS'. ! (line 13) ! * gimple_build_omp_single: 'GIMPLE_OMP_SINGLE'. ! (line 6) ! * gimple_build_resx: 'GIMPLE_RESX'. (line 6) ! * gimple_build_return: 'GIMPLE_RETURN'. (line 6) ! * gimple_build_switch: 'GIMPLE_SWITCH'. (line 6) ! * gimple_build_try: 'GIMPLE_TRY'. (line 6) ! * gimple_build_wce: 'GIMPLE_WITH_CLEANUP_EXPR'. ! (line 6) ! * 'GIMPLE_CALL': 'GIMPLE_CALL'. (line 6) ! * gimple_call_arg: 'GIMPLE_CALL'. (line 65) ! * gimple_call_arg_ptr: 'GIMPLE_CALL'. (line 69) ! * gimple_call_cannot_inline_p: 'GIMPLE_CALL'. (line 90) ! * gimple_call_chain: 'GIMPLE_CALL'. (line 56) ! * gimple_call_copy_skip_args: 'GIMPLE_CALL'. (line 96) ! * gimple_call_fn: 'GIMPLE_CALL'. (line 37) ! * gimple_call_fndecl: 'GIMPLE_CALL'. (line 45) ! * gimple_call_lhs: 'GIMPLE_CALL'. (line 28) ! * gimple_call_lhs_ptr: 'GIMPLE_CALL'. (line 31) ! * gimple_call_mark_uninlinable: 'GIMPLE_CALL'. (line 87) ! * gimple_call_noreturn_p: 'GIMPLE_CALL'. (line 93) ! * gimple_call_num_args: 'GIMPLE_CALL'. (line 62) ! * gimple_call_return_type: 'GIMPLE_CALL'. (line 53) ! * gimple_call_set_arg: 'GIMPLE_CALL'. (line 74) ! * gimple_call_set_chain: 'GIMPLE_CALL'. (line 59) ! * gimple_call_set_fn: 'GIMPLE_CALL'. (line 41) ! * gimple_call_set_fndecl: 'GIMPLE_CALL'. (line 50) ! * gimple_call_set_lhs: 'GIMPLE_CALL'. (line 34) ! * gimple_call_set_tail: 'GIMPLE_CALL'. (line 79) ! * gimple_call_tail_p: 'GIMPLE_CALL'. (line 84) ! * 'GIMPLE_CATCH': 'GIMPLE_CATCH'. (line 6) ! * gimple_catch_handler: 'GIMPLE_CATCH'. (line 19) ! * gimple_catch_set_handler: 'GIMPLE_CATCH'. (line 26) ! * gimple_catch_set_types: 'GIMPLE_CATCH'. (line 23) ! * gimple_catch_types: 'GIMPLE_CATCH'. (line 12) ! * gimple_catch_types_ptr: 'GIMPLE_CATCH'. (line 15) * gimple_code: Manipulating GIMPLE statements. ! (line 14) ! * 'GIMPLE_COND': 'GIMPLE_COND'. (line 6) ! * gimple_cond_code: 'GIMPLE_COND'. (line 20) ! * gimple_cond_false_label: 'GIMPLE_COND'. (line 59) ! * gimple_cond_lhs: 'GIMPLE_COND'. (line 29) ! * gimple_cond_make_false: 'GIMPLE_COND'. (line 63) ! * gimple_cond_make_true: 'GIMPLE_COND'. (line 66) ! * gimple_cond_rhs: 'GIMPLE_COND'. (line 37) ! * gimple_cond_set_code: 'GIMPLE_COND'. (line 24) ! * gimple_cond_set_false_label: 'GIMPLE_COND'. (line 54) ! * gimple_cond_set_lhs: 'GIMPLE_COND'. (line 33) ! * gimple_cond_set_rhs: 'GIMPLE_COND'. (line 41) ! * gimple_cond_set_true_label: 'GIMPLE_COND'. (line 49) ! * gimple_cond_true_label: 'GIMPLE_COND'. (line 45) * gimple_copy: Manipulating GIMPLE statements. ! (line 146) ! * 'GIMPLE_DEBUG': 'GIMPLE_DEBUG'. (line 6) ! * 'GIMPLE_DEBUG_BIND': 'GIMPLE_DEBUG'. (line 6) ! * gimple_debug_bind_get_value: 'GIMPLE_DEBUG'. (line 46) ! * gimple_debug_bind_get_value_ptr: 'GIMPLE_DEBUG'. (line 50) ! * gimple_debug_bind_get_var: 'GIMPLE_DEBUG'. (line 43) ! * gimple_debug_bind_has_value_p: 'GIMPLE_DEBUG'. (line 68) ! * gimple_debug_bind_p: Logical Operators. (line 162) ! * gimple_debug_bind_reset_value: 'GIMPLE_DEBUG'. (line 64) ! * gimple_debug_bind_set_value: 'GIMPLE_DEBUG'. (line 59) ! * gimple_debug_bind_set_var: 'GIMPLE_DEBUG'. (line 55) * gimple_def_ops: Manipulating GIMPLE statements. ! (line 93) ! * 'GIMPLE_EH_FILTER': 'GIMPLE_EH_FILTER'. (line 6) ! * gimple_eh_filter_failure: 'GIMPLE_EH_FILTER'. (line 18) ! * gimple_eh_filter_must_not_throw: 'GIMPLE_EH_FILTER'. (line 32) ! * gimple_eh_filter_set_failure: 'GIMPLE_EH_FILTER'. (line 27) ! * gimple_eh_filter_set_must_not_throw: 'GIMPLE_EH_FILTER'. (line 35) ! * gimple_eh_filter_set_types: 'GIMPLE_EH_FILTER'. (line 22) ! * gimple_eh_filter_types: 'GIMPLE_EH_FILTER'. (line 11) ! * gimple_eh_filter_types_ptr: 'GIMPLE_EH_FILTER'. (line 14) * gimple_expr_code: Manipulating GIMPLE statements. ! (line 30) * gimple_expr_type: Manipulating GIMPLE statements. ! (line 23) ! * gimple_goto_dest: 'GIMPLE_LABEL'. (line 20) ! * gimple_goto_set_dest: 'GIMPLE_LABEL'. (line 23) * gimple_has_mem_ops: Manipulating GIMPLE statements. ! (line 71) * gimple_has_ops: Manipulating GIMPLE statements. ! (line 68) * gimple_has_volatile_ops: Manipulating GIMPLE statements. ! (line 133) ! * 'GIMPLE_LABEL': 'GIMPLE_LABEL'. (line 6) ! * gimple_label_label: 'GIMPLE_LABEL'. (line 10) ! * gimple_label_set_label: 'GIMPLE_LABEL'. (line 13) * gimple_loaded_syms: Manipulating GIMPLE statements. ! (line 121) * gimple_locus: Manipulating GIMPLE statements. ! (line 41) * gimple_locus_empty_p: Manipulating GIMPLE statements. ! (line 47) * gimple_modified_p: Manipulating GIMPLE statements. ! (line 129) ! * 'GIMPLE_NOP': 'GIMPLE_NOP'. (line 6) ! * gimple_nop_p: 'GIMPLE_NOP'. (line 9) * gimple_no_warning_p: Manipulating GIMPLE statements. ! (line 50) ! * gimple_num_ops: Logical Operators. (line 76) * gimple_num_ops <1>: Manipulating GIMPLE statements. ! (line 74) ! * 'GIMPLE_OMP_ATOMIC_LOAD': 'GIMPLE_OMP_ATOMIC_LOAD'. (line 6) ! * gimple_omp_atomic_load_lhs: 'GIMPLE_OMP_ATOMIC_LOAD'. ! (line 16) ! * gimple_omp_atomic_load_rhs: 'GIMPLE_OMP_ATOMIC_LOAD'. ! (line 23) ! * gimple_omp_atomic_load_set_lhs: 'GIMPLE_OMP_ATOMIC_LOAD'. ! (line 12) ! * gimple_omp_atomic_load_set_rhs: 'GIMPLE_OMP_ATOMIC_LOAD'. ! (line 19) ! * 'GIMPLE_OMP_ATOMIC_STORE': 'GIMPLE_OMP_ATOMIC_STORE'. ! (line 6) ! * gimple_omp_atomic_store_set_val: 'GIMPLE_OMP_ATOMIC_STORE'. ! (line 10) ! * gimple_omp_atomic_store_val: 'GIMPLE_OMP_ATOMIC_STORE'. (line 14) ! * gimple_omp_body: 'GIMPLE_OMP_PARALLEL'. ! (line 23) ! * 'GIMPLE_OMP_CONTINUE': 'GIMPLE_OMP_CONTINUE'. (line 6) ! * gimple_omp_continue_control_def: 'GIMPLE_OMP_CONTINUE'. (line 12) ! * gimple_omp_continue_control_def_ptr: 'GIMPLE_OMP_CONTINUE'. ! (line 16) ! * gimple_omp_continue_control_use: 'GIMPLE_OMP_CONTINUE'. ! (line 23) ! * gimple_omp_continue_control_use_ptr: 'GIMPLE_OMP_CONTINUE'. ! (line 27) ! * gimple_omp_continue_set_control_def: 'GIMPLE_OMP_CONTINUE'. ! (line 19) ! * gimple_omp_continue_set_control_use: 'GIMPLE_OMP_CONTINUE'. ! (line 30) ! * 'GIMPLE_OMP_CRITICAL': 'GIMPLE_OMP_CRITICAL'. ! (line 6) ! * gimple_omp_critical_name: 'GIMPLE_OMP_CRITICAL'. ! (line 12) ! * gimple_omp_critical_name_ptr: 'GIMPLE_OMP_CRITICAL'. (line 15) ! * gimple_omp_critical_set_name: 'GIMPLE_OMP_CRITICAL'. ! (line 19) ! * 'GIMPLE_OMP_FOR': 'GIMPLE_OMP_FOR'. (line 6) ! * gimple_omp_for_clauses: 'GIMPLE_OMP_FOR'. (line 19) ! * gimple_omp_for_clauses_ptr: 'GIMPLE_OMP_FOR'. (line 22) ! * gimple_omp_for_cond: 'GIMPLE_OMP_FOR'. (line 82) ! * gimple_omp_for_final: 'GIMPLE_OMP_FOR'. (line 50) ! * gimple_omp_for_final_ptr: 'GIMPLE_OMP_FOR'. (line 53) ! * gimple_omp_for_incr: 'GIMPLE_OMP_FOR'. (line 60) ! * gimple_omp_for_incr_ptr: 'GIMPLE_OMP_FOR'. (line 63) ! * gimple_omp_for_index: 'GIMPLE_OMP_FOR'. (line 30) ! * gimple_omp_for_index_ptr: 'GIMPLE_OMP_FOR'. (line 33) ! * gimple_omp_for_initial: 'GIMPLE_OMP_FOR'. (line 40) ! * gimple_omp_for_initial_ptr: 'GIMPLE_OMP_FOR'. (line 43) ! * gimple_omp_for_pre_body: 'GIMPLE_OMP_FOR'. (line 69) ! * gimple_omp_for_set_clauses: 'GIMPLE_OMP_FOR'. (line 25) ! * gimple_omp_for_set_cond: 'GIMPLE_OMP_FOR'. (line 78) ! * gimple_omp_for_set_final: 'GIMPLE_OMP_FOR'. (line 56) ! * gimple_omp_for_set_incr: 'GIMPLE_OMP_FOR'. (line 66) ! * gimple_omp_for_set_index: 'GIMPLE_OMP_FOR'. (line 36) ! * gimple_omp_for_set_initial: 'GIMPLE_OMP_FOR'. (line 46) ! * gimple_omp_for_set_pre_body: 'GIMPLE_OMP_FOR'. (line 73) ! * 'GIMPLE_OMP_MASTER': 'GIMPLE_OMP_MASTER'. (line 6) ! * 'GIMPLE_OMP_ORDERED': 'GIMPLE_OMP_ORDERED'. (line 6) ! * 'GIMPLE_OMP_PARALLEL': 'GIMPLE_OMP_PARALLEL'. ! (line 6) ! * gimple_omp_parallel_child_fn: 'GIMPLE_OMP_PARALLEL'. ! (line 41) ! * gimple_omp_parallel_child_fn_ptr: 'GIMPLE_OMP_PARALLEL'. ! (line 45) ! * gimple_omp_parallel_clauses: 'GIMPLE_OMP_PARALLEL'. ! (line 30) ! * gimple_omp_parallel_clauses_ptr: 'GIMPLE_OMP_PARALLEL'. ! (line 33) ! * gimple_omp_parallel_combined_p: 'GIMPLE_OMP_PARALLEL'. ! (line 15) ! * gimple_omp_parallel_data_arg: 'GIMPLE_OMP_PARALLEL'. ! (line 53) ! * gimple_omp_parallel_data_arg_ptr: 'GIMPLE_OMP_PARALLEL'. ! (line 57) ! * gimple_omp_parallel_set_child_fn: 'GIMPLE_OMP_PARALLEL'. ! (line 49) ! * gimple_omp_parallel_set_clauses: 'GIMPLE_OMP_PARALLEL'. ! (line 36) ! * gimple_omp_parallel_set_combined_p: 'GIMPLE_OMP_PARALLEL'. ! (line 19) ! * gimple_omp_parallel_set_data_arg: 'GIMPLE_OMP_PARALLEL'. ! (line 60) ! * 'GIMPLE_OMP_RETURN': 'GIMPLE_OMP_RETURN'. ! (line 6) ! * gimple_omp_return_nowait_p: 'GIMPLE_OMP_RETURN'. (line 13) ! * gimple_omp_return_set_nowait: 'GIMPLE_OMP_RETURN'. ! (line 10) ! * 'GIMPLE_OMP_SECTION': 'GIMPLE_OMP_SECTION'. (line 6) ! * 'GIMPLE_OMP_SECTIONS': 'GIMPLE_OMP_SECTIONS'. ! (line 6) ! * gimple_omp_sections_clauses: 'GIMPLE_OMP_SECTIONS'. ! (line 29) ! * gimple_omp_sections_clauses_ptr: 'GIMPLE_OMP_SECTIONS'. ! (line 32) ! * gimple_omp_sections_control: 'GIMPLE_OMP_SECTIONS'. (line 16) ! * gimple_omp_sections_control_ptr: 'GIMPLE_OMP_SECTIONS'. (line 20) ! * gimple_omp_sections_set_clauses: 'GIMPLE_OMP_SECTIONS'. ! (line 35) ! * gimple_omp_sections_set_control: 'GIMPLE_OMP_SECTIONS'. ! (line 24) ! * gimple_omp_section_last_p: 'GIMPLE_OMP_SECTION'. ! (line 11) ! * gimple_omp_section_set_last: 'GIMPLE_OMP_SECTION'. ! (line 15) ! * gimple_omp_set_body: 'GIMPLE_OMP_PARALLEL'. (line 26) ! * 'GIMPLE_OMP_SINGLE': 'GIMPLE_OMP_SINGLE'. ! (line 6) ! * gimple_omp_single_clauses: 'GIMPLE_OMP_SINGLE'. ! (line 13) ! * gimple_omp_single_clauses_ptr: 'GIMPLE_OMP_SINGLE'. ! (line 16) ! * gimple_omp_single_set_clauses: 'GIMPLE_OMP_SINGLE'. ! (line 19) ! * gimple_op: Logical Operators. (line 79) * gimple_op <1>: Manipulating GIMPLE statements. ! (line 80) ! * gimple_ops: Logical Operators. (line 82) * gimple_ops <1>: Manipulating GIMPLE statements. ! (line 77) ! * gimple_op_ptr: Manipulating GIMPLE statements. ! (line 83) ! * 'GIMPLE_PHI': 'GIMPLE_PHI'. (line 6) ! * gimple_phi_arg: 'GIMPLE_PHI'. (line 24) ! * gimple_phi_capacity: 'GIMPLE_PHI'. (line 6) ! * gimple_phi_num_args: 'GIMPLE_PHI'. (line 10) ! * gimple_phi_result: 'GIMPLE_PHI'. (line 15) ! * gimple_phi_result_ptr: 'GIMPLE_PHI'. (line 18) ! * gimple_phi_set_arg: 'GIMPLE_PHI'. (line 28) ! * gimple_phi_set_result: 'GIMPLE_PHI'. (line 21) * gimple_plf: Manipulating GIMPLE statements. ! (line 64) ! * 'GIMPLE_RESX': 'GIMPLE_RESX'. (line 6) ! * gimple_resx_region: 'GIMPLE_RESX'. (line 12) ! * gimple_resx_set_region: 'GIMPLE_RESX'. (line 15) ! * 'GIMPLE_RETURN': 'GIMPLE_RETURN'. (line 6) ! * gimple_return_retval: 'GIMPLE_RETURN'. (line 9) ! * gimple_return_set_retval: 'GIMPLE_RETURN'. (line 12) ! * gimple_seq_add_seq: GIMPLE sequences. (line 30) ! * gimple_seq_add_stmt: GIMPLE sequences. (line 24) ! * gimple_seq_alloc: GIMPLE sequences. (line 61) ! * gimple_seq_copy: GIMPLE sequences. (line 65) ! * gimple_seq_deep_copy: GIMPLE sequences. (line 36) ! * gimple_seq_empty_p: GIMPLE sequences. (line 69) ! * gimple_seq_first: GIMPLE sequences. (line 43) ! * gimple_seq_init: GIMPLE sequences. (line 58) ! * gimple_seq_last: GIMPLE sequences. (line 46) ! * gimple_seq_reverse: GIMPLE sequences. (line 39) ! * gimple_seq_set_first: GIMPLE sequences. (line 53) ! * gimple_seq_set_last: GIMPLE sequences. (line 49) ! * gimple_seq_singleton_p: GIMPLE sequences. (line 78) * gimple_set_block: Manipulating GIMPLE statements. ! (line 38) * gimple_set_def_ops: Manipulating GIMPLE statements. ! (line 96) * gimple_set_has_volatile_ops: Manipulating GIMPLE statements. ! (line 136) * gimple_set_locus: Manipulating GIMPLE statements. ! (line 44) * gimple_set_op: Manipulating GIMPLE statements. ! (line 86) * gimple_set_plf: Manipulating GIMPLE statements. ! (line 60) * gimple_set_use_ops: Manipulating GIMPLE statements. ! (line 103) * gimple_set_vdef_ops: Manipulating GIMPLE statements. ! (line 117) * gimple_set_visited: Manipulating GIMPLE statements. ! (line 53) * gimple_set_vuse_ops: Manipulating GIMPLE statements. ! (line 110) * gimple_statement_base: Tuple representation. (line 14) * gimple_statement_with_ops: Tuple representation. (line 96) * gimple_stored_syms: Manipulating GIMPLE statements. ! (line 125) ! * 'GIMPLE_SWITCH': 'GIMPLE_SWITCH'. (line 6) ! * gimple_switch_default_label: 'GIMPLE_SWITCH'. (line 38) ! * gimple_switch_index: 'GIMPLE_SWITCH'. (line 23) ! * gimple_switch_label: 'GIMPLE_SWITCH'. (line 29) ! * gimple_switch_num_labels: 'GIMPLE_SWITCH'. (line 14) ! * gimple_switch_set_default_label: 'GIMPLE_SWITCH'. (line 41) ! * gimple_switch_set_index: 'GIMPLE_SWITCH'. (line 26) ! * gimple_switch_set_label: 'GIMPLE_SWITCH'. (line 33) ! * gimple_switch_set_num_labels: 'GIMPLE_SWITCH'. (line 18) ! * 'GIMPLE_TRY': 'GIMPLE_TRY'. (line 6) ! * gimple_try_catch_is_cleanup: 'GIMPLE_TRY'. (line 19) ! * gimple_try_cleanup: 'GIMPLE_TRY'. (line 26) ! * gimple_try_eval: 'GIMPLE_TRY'. (line 22) ! * gimple_try_kind: 'GIMPLE_TRY'. (line 15) ! * gimple_try_set_catch_is_cleanup: 'GIMPLE_TRY'. (line 30) ! * gimple_try_set_cleanup: 'GIMPLE_TRY'. (line 39) ! * gimple_try_set_eval: 'GIMPLE_TRY'. (line 34) * gimple_use_ops: Manipulating GIMPLE statements. ! (line 100) * gimple_vdef_ops: Manipulating GIMPLE statements. ! (line 114) * gimple_visited_p: Manipulating GIMPLE statements. ! (line 57) * gimple_vuse_ops: Manipulating GIMPLE statements. ! (line 107) ! * gimple_wce_cleanup: 'GIMPLE_WITH_CLEANUP_EXPR'. ! (line 10) ! * gimple_wce_cleanup_eh_only: 'GIMPLE_WITH_CLEANUP_EXPR'. ! (line 17) ! * gimple_wce_set_cleanup: 'GIMPLE_WITH_CLEANUP_EXPR'. ! (line 13) ! * gimple_wce_set_cleanup_eh_only: 'GIMPLE_WITH_CLEANUP_EXPR'. ! (line 20) ! * 'GIMPLE_WITH_CLEANUP_EXPR': 'GIMPLE_WITH_CLEANUP_EXPR'. (line 6) + * gimplification: Parsing pass. (line 13) * gimplification <1>: Gimplification pass. (line 6) ! * gimplifier: Parsing pass. (line 13) ! * gimplify_assign: 'GIMPLE_ASSIGN'. (line 17) * gimplify_expr: Gimplification pass. (line 18) * gimplify_function_tree: Gimplification pass. (line 18) * GLOBAL_INIT_PRIORITY: Functions for C++. (line 141) * global_regs: Register Basics. (line 59) ! * 'GO_IF_LEGITIMATE_ADDRESS': Addressing Modes. (line 90) * greater than: Comparisons. (line 60) ! * greater than <1>: Comparisons. (line 64) ! * greater than <2>: Comparisons. (line 72) ! * gsi_after_labels: Sequence iterators. (line 74) ! * gsi_bb: Sequence iterators. (line 82) ! * gsi_commit_edge_inserts: Sequence iterators. (line 193) * gsi_commit_edge_inserts <1>: Maintaining the CFG. ! (line 105) ! * gsi_commit_one_edge_insert: Sequence iterators. (line 188) ! * gsi_end_p: Sequence iterators. (line 59) * gsi_end_p <1>: Maintaining the CFG. ! (line 48) ! * gsi_for_stmt: Sequence iterators. (line 156) ! * gsi_insert_after: Sequence iterators. (line 145) * gsi_insert_after <1>: Maintaining the CFG. ! (line 60) ! * gsi_insert_before: Sequence iterators. (line 134) * gsi_insert_before <1>: Maintaining the CFG. ! (line 66) ! * gsi_insert_on_edge: Sequence iterators. (line 173) * gsi_insert_on_edge <1>: Maintaining the CFG. ! (line 105) ! * gsi_insert_on_edge_immediate: Sequence iterators. (line 183) ! * gsi_insert_seq_after: Sequence iterators. (line 152) ! * gsi_insert_seq_before: Sequence iterators. (line 141) ! * gsi_insert_seq_on_edge: Sequence iterators. (line 177) ! * gsi_last: Sequence iterators. (line 49) * gsi_last <1>: Maintaining the CFG. ! (line 44) ! * gsi_last_bb: Sequence iterators. (line 55) ! * gsi_link_after: Sequence iterators. (line 113) ! * gsi_link_before: Sequence iterators. (line 103) ! * gsi_link_seq_after: Sequence iterators. (line 108) ! * gsi_link_seq_before: Sequence iterators. (line 97) ! * gsi_move_after: Sequence iterators. (line 159) ! * gsi_move_before: Sequence iterators. (line 164) ! * gsi_move_to_bb_end: Sequence iterators. (line 169) ! * gsi_next: Sequence iterators. (line 65) * gsi_next <1>: Maintaining the CFG. ! (line 52) ! * gsi_one_before_end_p: Sequence iterators. (line 62) ! * gsi_prev: Sequence iterators. (line 68) * gsi_prev <1>: Maintaining the CFG. ! (line 56) ! * gsi_remove: Sequence iterators. (line 88) * gsi_remove <1>: Maintaining the CFG. ! (line 72) ! * gsi_replace: Sequence iterators. (line 128) ! * gsi_seq: Sequence iterators. (line 85) ! * gsi_split_seq_after: Sequence iterators. (line 118) ! * gsi_split_seq_before: Sequence iterators. (line 123) ! * gsi_start: Sequence iterators. (line 39) * gsi_start <1>: Maintaining the CFG. ! (line 40) ! * gsi_start_bb: Sequence iterators. (line 45) ! * gsi_stmt: Sequence iterators. (line 71) ! * gsi_stmt_ptr: Sequence iterators. (line 79) * gt: Comparisons. (line 60) ! * 'gt' and attributes: Expressions. (line 83) * gtu: Comparisons. (line 64) ! * 'gtu' and attributes: Expressions. (line 83) * GTY: Type Information. (line 6) ! * GT_EXPR: Unary and Binary Expressions. ! (line 6) ! * 'H' in constraint: Simple Constraints. (line 96) ! * HAmode: Machine Modes. (line 143) * HANDLER: Statements for C++. (line 6) * HANDLER_BODY: Statements for C++. (line 6) * HANDLER_PARMS: Statements for C++. (line 6) + * HANDLE_PRAGMA_PACK_WITH_EXPANSION: Misc. (line 434) * hard registers: Regs and Memory. (line 9) ! * HARD_FRAME_POINTER_IS_ARG_POINTER: Frame Registers. (line 57) ! * HARD_FRAME_POINTER_IS_FRAME_POINTER: Frame Registers. (line 50) ! * HARD_FRAME_POINTER_REGNUM: Frame Registers. (line 19) ! * HARD_REGNO_CALLER_SAVE_MODE: Caller Saves. (line 19) ! * HARD_REGNO_CALL_PART_CLOBBERED: Register Basics. (line 52) * HARD_REGNO_MODE_OK: Values in Registers. ! (line 57) * HARD_REGNO_NREGS: Values in Registers. ! (line 10) * HARD_REGNO_NREGS_HAS_PADDING: Values in Registers. ! (line 24) * HARD_REGNO_NREGS_WITH_PADDING: Values in Registers. ! (line 42) * HARD_REGNO_RENAME_OK: Values in Registers. ! (line 117) * HAS_INIT_SECTION: Macros for Initialization. ! (line 18) ! * HAS_LONG_COND_BRANCH: Misc. (line 8) ! * HAS_LONG_UNCOND_BRANCH: Misc. (line 17) * HAVE_DOS_BASED_FILE_SYSTEM: Filesystem. (line 11) ! * HAVE_POST_DECREMENT: Addressing Modes. (line 11) ! * HAVE_POST_INCREMENT: Addressing Modes. (line 10) ! * HAVE_POST_MODIFY_DISP: Addressing Modes. (line 17) ! * HAVE_POST_MODIFY_REG: Addressing Modes. (line 23) ! * HAVE_PRE_DECREMENT: Addressing Modes. (line 9) ! * HAVE_PRE_INCREMENT: Addressing Modes. (line 8) ! * HAVE_PRE_MODIFY_DISP: Addressing Modes. (line 16) ! * HAVE_PRE_MODIFY_REG: Addressing Modes. (line 22) ! * HCmode: Machine Modes. (line 196) * HFmode: Machine Modes. (line 58) ! * high: Constants. (line 119) * HImode: Machine Modes. (line 29) ! * 'HImode', in 'insn': Insns. (line 275) ! * HONOR_REG_ALLOC_ORDER: Allocation Order. (line 36) * host configuration: Host Config. (line 6) * host functions: Host Common. (line 6) * host hooks: Host Common. (line 6) * host makefile fragment: Host Fragment. (line 6) * HOST_BIT_BUCKET: Filesystem. (line 51) * HOST_EXECUTABLE_SUFFIX: Filesystem. (line 45) ! * HOST_HOOKS_EXTRA_SIGNALS: Host Common. (line 11) ! * HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY: Host Common. (line 43) ! * HOST_HOOKS_GT_PCH_GET_ADDRESS: Host Common. (line 15) ! * HOST_HOOKS_GT_PCH_USE_ADDRESS: Host Common. (line 24) * HOST_LACKS_INODE_NUMBERS: Filesystem. (line 89) * HOST_LONG_FORMAT: Host Misc. (line 45) * HOST_LONG_LONG_FORMAT: Host Misc. (line 41) * HOST_OBJECT_SUFFIX: Filesystem. (line 40) * HOST_PTR_PRINTF: Host Misc. (line 49) ! * HOT_TEXT_SECTION_NAME: Sections. (line 42) * HQmode: Machine Modes. (line 107) ! * 'i' in constraint: Simple Constraints. (line 68) ! * 'I' in constraint: Simple Constraints. (line 79) * identifier: Identifiers. (line 6) * IDENTIFIER_LENGTH: Identifiers. (line 22) * IDENTIFIER_NODE: Identifiers. (line 6) *************** Concept Index *** 47213,47279 **** * IDENTIFIER_TYPENAME_P: Identifiers. (line 33) * IEEE 754-2008: Decimal float library routines. (line 6) * IF_COND: Statements for C++. (line 6) ! * if_marked: GTY Options. (line 156) * IF_STMT: Statements for C++. (line 6) * if_then_else: Comparisons. (line 80) ! * if_then_else and attributes: Expressions. (line 32) ! * if_then_else usage: Side Effects. (line 56) ! * IFCVT_MACHDEP_INIT: Misc. (line 560) ! * IFCVT_MODIFY_CANCEL: Misc. (line 554) ! * IFCVT_MODIFY_FINAL: Misc. (line 548) ! * IFCVT_MODIFY_INSN: Misc. (line 542) ! * IFCVT_MODIFY_MULTIPLE_TESTS: Misc. (line 535) ! * IFCVT_MODIFY_TESTS: Misc. (line 524) * IMAGPART_EXPR: Unary and Binary Expressions. (line 6) ! * Immediate Uses: SSA Operands. (line 274) * immediate_operand: Machine-Independent Predicates. ! (line 11) ! * IMMEDIATE_PREFIX: Instruction Output. (line 155) ! * in_struct: Flags. (line 245) ! * in_struct, in code_label and note: Flags. (line 59) ! * in_struct, in insn and jump_insn and call_insn: Flags. (line 49) ! * in_struct, in insn, jump_insn and call_insn: Flags. (line 148) ! * in_struct, in subreg: Flags. (line 187) * include: Including Patterns. (line 6) ! * INCLUDE_DEFAULTS: Driver. (line 328) ! * inclusive-or, bitwise: Arithmetic. (line 163) ! * INCOMING_FRAME_SP_OFFSET: Frame Layout. (line 183) ! * INCOMING_REGNO: Register Basics. (line 88) ! * INCOMING_RETURN_ADDR_RTX: Frame Layout. (line 139) ! * INCOMING_STACK_BOUNDARY: Storage Layout. (line 161) ! * INDEX_REG_CLASS: Register Classes. (line 143) ! * indirect_jump instruction pattern: Standard Names. (line 1225) * indirect_operand: Machine-Independent Predicates. ! (line 71) * INDIRECT_REF: Storage References. (line 6) ! * INIT_ARRAY_SECTION_ASM_OP: Sections. (line 107) ! * INIT_CUMULATIVE_ARGS: Register Arguments. (line 150) ! * INIT_CUMULATIVE_INCOMING_ARGS: Register Arguments. (line 177) ! * INIT_CUMULATIVE_LIBCALL_ARGS: Register Arguments. (line 171) ! * INIT_ENVIRONMENT: Driver. (line 306) ! * INIT_EXPANDERS: Per-Function Data. (line 39) * INIT_EXPR: Unary and Binary Expressions. (line 6) ! * init_machine_status: Per-Function Data. (line 45) * init_one_libfunc: Library Calls. (line 15) * INIT_SECTION_ASM_OP <1>: Macros for Initialization. ! (line 10) ! * INIT_SECTION_ASM_OP: Sections. (line 91) ! * INITIAL_ELIMINATION_OFFSET: Elimination. (line 85) ! * INITIAL_FRAME_ADDRESS_RTX: Frame Layout. (line 83) ! * INITIAL_FRAME_POINTER_OFFSET: Elimination. (line 35) ! * initialization routines: Initialization. (line 6) * inlining: Target Attributes. (line 95) * insert_insn_on_edge: Maintaining the CFG. ! (line 107) * insn: Insns. (line 63) ! * insn and /f: Flags. (line 107) ! * insn and /j: Flags. (line 157) ! * insn and /s: Flags. (line 49) ! * insn and /u: Flags. (line 39) ! * insn and /v: Flags. (line 44) * insn attributes: Insn Attributes. (line 6) * insn canonicalization: Insn Canonicalizations. (line 6) --- 46865,46927 ---- * IDENTIFIER_TYPENAME_P: Identifiers. (line 33) * IEEE 754-2008: Decimal float library routines. (line 6) + * IFCVT_MACHDEP_INIT: Misc. (line 559) + * IFCVT_MODIFY_CANCEL: Misc. (line 553) + * IFCVT_MODIFY_FINAL: Misc. (line 547) + * IFCVT_MODIFY_INSN: Misc. (line 541) + * IFCVT_MODIFY_MULTIPLE_TESTS: Misc. (line 533) + * IFCVT_MODIFY_TESTS: Misc. (line 523) * IF_COND: Statements for C++. (line 6) ! * if_marked: GTY Options. (line 161) * IF_STMT: Statements for C++. (line 6) * if_then_else: Comparisons. (line 80) ! * 'if_then_else' and attributes: Expressions. (line 32) ! * 'if_then_else' usage: Side Effects. (line 56) * IMAGPART_EXPR: Unary and Binary Expressions. (line 6) ! * Immediate Uses: SSA Operands. (line 271) * immediate_operand: Machine-Independent Predicates. ! (line 10) ! * IMMEDIATE_PREFIX: Instruction Output. (line 153) * include: Including Patterns. (line 6) ! * INCLUDE_DEFAULTS: Driver. (line 327) ! * inclusive-or, bitwise: Arithmetic. (line 164) ! * INCOMING_FRAME_SP_OFFSET: Frame Layout. (line 181) ! * INCOMING_REGNO: Register Basics. (line 87) ! * INCOMING_RETURN_ADDR_RTX: Frame Layout. (line 137) ! * INCOMING_STACK_BOUNDARY: Storage Layout. (line 159) ! * INDEX_REG_CLASS: Register Classes. (line 140) ! * 'indirect_jump' instruction pattern: Standard Names. (line 1218) * indirect_operand: Machine-Independent Predicates. ! (line 70) * INDIRECT_REF: Storage References. (line 6) ! * initialization routines: Initialization. (line 6) ! * INITIAL_ELIMINATION_OFFSET: Elimination. (line 84) ! * INITIAL_FRAME_ADDRESS_RTX: Frame Layout. (line 81) ! * INITIAL_FRAME_POINTER_OFFSET: Elimination. (line 34) ! * INIT_ARRAY_SECTION_ASM_OP: Sections. (line 106) ! * INIT_CUMULATIVE_ARGS: Register Arguments. (line 147) ! * INIT_CUMULATIVE_INCOMING_ARGS: Register Arguments. (line 175) ! * INIT_CUMULATIVE_LIBCALL_ARGS: Register Arguments. (line 169) ! * INIT_ENVIRONMENT: Driver. (line 305) ! * INIT_EXPANDERS: Per-Function Data. (line 36) * INIT_EXPR: Unary and Binary Expressions. (line 6) ! * init_machine_status: Per-Function Data. (line 42) * init_one_libfunc: Library Calls. (line 15) + * INIT_SECTION_ASM_OP: Sections. (line 90) * INIT_SECTION_ASM_OP <1>: Macros for Initialization. ! (line 9) * inlining: Target Attributes. (line 95) * insert_insn_on_edge: Maintaining the CFG. ! (line 105) * insn: Insns. (line 63) ! * 'insn' and '/f': Flags. (line 107) ! * 'insn' and '/j': Flags. (line 157) ! * 'insn' and '/s': Flags. (line 49) ! * 'insn' and '/s' <1>: Flags. (line 148) ! * 'insn' and '/u': Flags. (line 39) ! * 'insn' and '/v': Flags. (line 44) * insn attributes: Insn Attributes. (line 6) * insn canonicalization: Insn Canonicalizations. (line 6) *************** Concept Index *** 47283,47322 **** * insn splitting: Insn Splitting. (line 6) * insn-attr.h: Defining Attributes. (line 32) * INSN_ANNULLED_BRANCH_P: Flags. (line 39) ! * INSN_CODE: Insns. (line 305) * INSN_DELETED_P: Flags. (line 44) * INSN_FROM_TARGET_P: Flags. (line 49) ! * insn_list: Insns. (line 552) ! * INSN_REFERENCES_ARE_DELAYED: Misc. (line 463) ! * INSN_SETS_ARE_DELAYED: Misc. (line 452) * INSN_UID: Insns. (line 23) ! * INSN_VAR_LOCATION: Insns. (line 245) ! * insns: Insns. (line 6) ! * insns, generating: RTL Template. (line 6) ! * insns, recognizing: RTL Template. (line 6) * instruction attributes: Insn Attributes. (line 6) * instruction latency time: Processor pipeline description. (line 6) * instruction patterns: Patterns. (line 6) * instruction splitting: Insn Splitting. (line 6) ! * insv instruction pattern: Standard Names. (line 1023) ! * insvM instruction pattern: Standard Names. (line 975) ! * insvmisalignM instruction pattern: Standard Names. (line 985) ! * int iterators in .md files: Int Iterators. (line 6) ! * INT16_TYPE: Type Layout. (line 254) ! * INT32_TYPE: Type Layout. (line 255) ! * INT64_TYPE: Type Layout. (line 256) ! * INT8_TYPE: Type Layout. (line 253) ! * INT_FAST16_TYPE: Type Layout. (line 270) ! * INT_FAST32_TYPE: Type Layout. (line 271) ! * INT_FAST64_TYPE: Type Layout. (line 272) ! * INT_FAST8_TYPE: Type Layout. (line 269) ! * INT_LEAST16_TYPE: Type Layout. (line 262) ! * INT_LEAST32_TYPE: Type Layout. (line 263) ! * INT_LEAST64_TYPE: Type Layout. (line 264) ! * INT_LEAST8_TYPE: Type Layout. (line 261) ! * INT_TYPE_SIZE: Type Layout. (line 12) * INTEGER_CST: Constant expressions. (line 6) * INTEGER_TYPE: Types. (line 6) --- 46931,46965 ---- * insn splitting: Insn Splitting. (line 6) * insn-attr.h: Defining Attributes. (line 32) + * insns: Insns. (line 6) + * insns, generating: RTL Template. (line 6) + * insns, recognizing: RTL Template. (line 6) * INSN_ANNULLED_BRANCH_P: Flags. (line 39) ! * INSN_CODE: Insns. (line 302) * INSN_DELETED_P: Flags. (line 44) * INSN_FROM_TARGET_P: Flags. (line 49) ! * insn_list: Insns. (line 546) ! * INSN_REFERENCES_ARE_DELAYED: Misc. (line 461) ! * INSN_SETS_ARE_DELAYED: Misc. (line 450) * INSN_UID: Insns. (line 23) ! * INSN_VAR_LOCATION: Insns. (line 243) * instruction attributes: Insn Attributes. (line 6) * instruction latency time: Processor pipeline description. (line 6) + * instruction latency time <1>: Processor pipeline description. + (line 105) + * instruction latency time <2>: Processor pipeline description. + (line 196) * instruction patterns: Patterns. (line 6) * instruction splitting: Insn Splitting. (line 6) ! * 'insv' instruction pattern: Standard Names. (line 1017) ! * 'insvM' instruction pattern: Standard Names. (line 969) ! * 'insvmisalignM' instruction pattern: Standard Names. (line 979) ! * int iterators in '.md' files: Int Iterators. (line 6) ! * INT16_TYPE: Type Layout. (line 253) ! * INT32_TYPE: Type Layout. (line 254) ! * INT64_TYPE: Type Layout. (line 255) ! * INT8_TYPE: Type Layout. (line 252) * INTEGER_CST: Constant expressions. (line 6) * INTEGER_TYPE: Types. (line 6) *************** Concept Index *** 47324,47474 **** * interfacing to GCC output: Interface. (line 6) * interlock delays: Processor pipeline description. (line 6) ! * intermediate representation lowering: Parsing pass. (line 14) ! * INTMAX_TYPE: Type Layout. (line 230) ! * INTPTR_TYPE: Type Layout. (line 277) * introduction: Top. (line 6) * INVOKE__main: Macros for Initialization. (line 51) ! * ior: Arithmetic. (line 163) ! * ior and attributes: Expressions. (line 50) ! * ior, canonicalization of: Insn Canonicalizations. ! (line 52) ! * iorM3 instruction pattern: Standard Names. (line 269) ! * IRA_HARD_REGNO_ADD_COST_MULTIPLIER: Allocation Order. (line 45) ! * IS_ASM_LOGICAL_LINE_SEPARATOR: Data Output. (line 121) ! * is_gimple_addressable: Logical Operators. (line 115) ! * is_gimple_asm_val: Logical Operators. (line 119) ! * is_gimple_assign: Logical Operators. (line 151) ! * is_gimple_call: Logical Operators. (line 154) ! * is_gimple_call_addr: Logical Operators. (line 122) ! * is_gimple_constant: Logical Operators. (line 130) ! * is_gimple_debug: Logical Operators. (line 157) ! * is_gimple_ip_invariant: Logical Operators. (line 139) ! * is_gimple_ip_invariant_address: Logical Operators. (line 144) ! * is_gimple_mem_ref_addr: Logical Operators. (line 126) ! * is_gimple_min_invariant: Logical Operators. (line 133) ! * is_gimple_omp: GIMPLE_OMP_PARALLEL. ! (line 65) ! * is_gimple_val: Logical Operators. (line 109) ! * iterators in .md files: Iterators. (line 6) * IV analysis on GIMPLE: Scalar evolutions. (line 6) * IV analysis on RTL: loop-iv. (line 6) * JMP_BUF_SIZE: Exception Region Output. ! (line 84) * jump: Flags. (line 286) ! * jump instruction pattern: Standard Names. (line 1102) * jump instruction patterns: Jump Patterns. (line 6) ! * jump instructions and set: Side Effects. (line 56) ! * jump, in call_insn: Flags. (line 161) ! * jump, in insn: Flags. (line 157) ! * jump, in mem: Flags. (line 70) ! * JUMP_ALIGN: Alignment Output. (line 9) * jump_insn: Insns. (line 73) ! * jump_insn and /f: Flags. (line 107) ! * jump_insn and /s: Flags. (line 49) ! * jump_insn and /u: Flags. (line 39) ! * jump_insn and /v: Flags. (line 44) * JUMP_LABEL: Insns. (line 80) ! * JUMP_TABLES_IN_TEXT_SECTION: Sections. (line 151) ! * Jumps: Jumps. (line 6) ! * LABEL_ALIGN: Alignment Output. (line 58) ! * LABEL_ALIGN_AFTER_BARRIER: Alignment Output. (line 27) * LABEL_ALT_ENTRY_P: Insns. (line 146) - * LABEL_ALTERNATE_NAME: Edges. (line 181) * LABEL_DECL: Declarations. (line 6) * LABEL_KIND: Insns. (line 146) * LABEL_NUSES: Insns. (line 142) * LABEL_PRESERVE_P: Flags. (line 59) ! * label_ref: Constants. (line 97) ! * label_ref and /v: Flags. (line 65) ! * label_ref, RTL sharing: Sharing. (line 35) * LABEL_REF_NONLOCAL_P: Flags. (line 65) - * lang_hooks.gimplify_expr: Gimplification pass. - (line 18) - * lang_hooks.parse_file: Parsing pass. (line 6) * language-dependent trees: Language-dependent trees. (line 6) * language-independent intermediate representation: Parsing pass. ! (line 14) * large return values: Aggregate Return. (line 6) ! * LARGEST_EXPONENT_IS_NORMAL: Storage Layout. (line 486) ! * LAST_STACK_REG: Stack Registers. (line 31) * LAST_VIRTUAL_REGISTER: Regs and Memory. (line 51) ! * lceilMN2: Standard Names. (line 693) * LCSSA: LCSSA. (line 6) * LD_FINI_SWITCH: Macros for Initialization. ! (line 29) * LD_INIT_SWITCH: Macros for Initialization. ! (line 25) ! * LDD_SUFFIX: Macros for Initialization. ! (line 122) * le: Comparisons. (line 76) ! * le and attributes: Expressions. (line 85) ! * LE_EXPR: Unary and Binary Expressions. ! (line 6) * leaf functions: Leaf Functions. (line 6) ! * leaf_function_p: Standard Names. (line 1187) ! * LEAF_REG_REMAP: Leaf Functions. (line 39) ! * LEAF_REGISTERS: Leaf Functions. (line 25) ! * left rotate: Arithmetic. (line 195) ! * left shift: Arithmetic. (line 173) ! * LEGITIMATE_PIC_OPERAND_P: PIC. (line 32) ! * LEGITIMIZE_RELOAD_ADDRESS: Addressing Modes. (line 153) ! * length: GTY Options. (line 50) * less than: Comparisons. (line 68) * less than or equal: Comparisons. (line 76) * leu: Comparisons. (line 76) ! * leu and attributes: Expressions. (line 85) ! * lfloorMN2: Standard Names. (line 688) * LIB2FUNCS_EXTRA: Target Fragment. (line 11) - * LIB_SPEC: Driver. (line 108) * LIBCALL_VALUE: Scalar Return. (line 56) ! * libgcc.a: Library Calls. (line 6) * LIBGCC2_CFLAGS: Target Fragment. (line 8) ! * LIBGCC2_GNU_PREFIX: Type Layout. (line 128) ! * LIBGCC2_HAS_DF_MODE: Type Layout. (line 109) ! * LIBGCC2_HAS_TF_MODE: Type Layout. (line 122) ! * LIBGCC2_HAS_XF_MODE: Type Layout. (line 116) ! * LIBGCC2_LONG_DOUBLE_TYPE_SIZE: Type Layout. (line 103) * LIBGCC2_UNWIND_ATTRIBUTE: Misc. (line 963) ! * LIBGCC_SPEC: Driver. (line 116) * library subroutine names: Library Calls. (line 6) ! * LIBRARY_PATH_ENV: Misc. (line 503) ! * LIMIT_RELOAD_CLASS: Register Classes. (line 300) * Linear loop transformations framework: Lambda. (line 6) ! * LINK_COMMAND_SPEC: Driver. (line 237) ! * LINK_EH_SPEC: Driver. (line 143) ! * LINK_GCC_C_SEQUENCE_SPEC: Driver. (line 233) ! * LINK_LIBGCC_SPECIAL_1: Driver. (line 228) ! * LINK_SPEC: Driver. (line 101) * list: Containers. (line 6) * Liveness representation: Liveness information. (line 6) ! * lo_sum: Arithmetic. (line 24) ! * load address instruction: Simple Constraints. (line 164) ! * LOAD_EXTEND_OP: Misc. (line 60) ! * load_multiple instruction pattern: Standard Names. (line 137) ! * Local Register Allocator (LRA): RTL passes. (line 200) ! * LOCAL_ALIGNMENT: Storage Layout. (line 250) * LOCAL_CLASS_P: Classes. (line 73) ! * LOCAL_DECL_ALIGNMENT: Storage Layout. (line 287) ! * LOCAL_INCLUDE_DIR: Driver. (line 313) ! * LOCAL_LABEL_PREFIX: Instruction Output. (line 153) ! * LOCAL_REGNO: Register Basics. (line 102) ! * LOG_LINKS: Insns. (line 324) * Logical Operators: Logical Operators. (line 6) ! * logical-and, bitwise: Arithmetic. (line 158) ! * LOGICAL_OP_NON_SHORT_CIRCUIT: Costs. (line 265) ! * logM2 instruction pattern: Standard Names. (line 601) ! * LONG_ACCUM_TYPE_SIZE: Type Layout. (line 93) ! * LONG_DOUBLE_TYPE_SIZE: Type Layout. (line 58) ! * LONG_FRACT_TYPE_SIZE: Type Layout. (line 73) ! * LONG_LONG_ACCUM_TYPE_SIZE: Type Layout. (line 98) ! * LONG_LONG_FRACT_TYPE_SIZE: Type Layout. (line 78) ! * LONG_LONG_TYPE_SIZE: Type Layout. (line 33) ! * LONG_TYPE_SIZE: Type Layout. (line 22) ! * longjmp and automatic variables: Interface. (line 52) * Loop analysis: Loop representation. (line 6) * Loop manipulation: Loop manipulation. (line 6) --- 46967,47133 ---- * interfacing to GCC output: Interface. (line 6) * interlock delays: Processor pipeline description. (line 6) ! * intermediate representation lowering: Parsing pass. (line 13) ! * INTMAX_TYPE: Type Layout. (line 229) ! * INTPTR_TYPE: Type Layout. (line 276) * introduction: Top. (line 6) + * INT_FAST16_TYPE: Type Layout. (line 269) + * INT_FAST32_TYPE: Type Layout. (line 270) + * INT_FAST64_TYPE: Type Layout. (line 271) + * INT_FAST8_TYPE: Type Layout. (line 268) + * INT_LEAST16_TYPE: Type Layout. (line 261) + * INT_LEAST32_TYPE: Type Layout. (line 262) + * INT_LEAST64_TYPE: Type Layout. (line 263) + * INT_LEAST8_TYPE: Type Layout. (line 260) + * INT_TYPE_SIZE: Type Layout. (line 11) * INVOKE__main: Macros for Initialization. + (line 50) + * in_struct: Flags. (line 245) + * 'in_struct', in 'code_label' and 'note': Flags. (line 59) + * 'in_struct', in 'insn' and 'jump_insn' and 'call_insn': Flags. + (line 49) + * 'in_struct', in 'insn', 'jump_insn' and 'call_insn': Flags. + (line 148) + * 'in_struct', in 'subreg': Flags. (line 187) + * ior: Arithmetic. (line 164) + * 'ior' and attributes: Expressions. (line 50) + * 'ior', canonicalization of: Insn Canonicalizations. (line 51) ! * 'iorM3' instruction pattern: Standard Names. (line 266) ! * IRA_HARD_REGNO_ADD_COST_MULTIPLIER: Allocation Order. (line 44) ! * IS_ASM_LOGICAL_LINE_SEPARATOR: Data Output. (line 119) ! * is_gimple_addressable: Logical Operators. (line 113) ! * is_gimple_asm_val: Logical Operators. (line 117) ! * is_gimple_assign: Logical Operators. (line 149) ! * is_gimple_call: Logical Operators. (line 152) ! * is_gimple_call_addr: Logical Operators. (line 120) ! * is_gimple_constant: Logical Operators. (line 128) ! * is_gimple_debug: Logical Operators. (line 155) ! * is_gimple_ip_invariant: Logical Operators. (line 137) ! * is_gimple_ip_invariant_address: Logical Operators. (line 142) ! * is_gimple_mem_ref_addr: Logical Operators. (line 124) ! * is_gimple_min_invariant: Logical Operators. (line 131) ! * is_gimple_omp: 'GIMPLE_OMP_PARALLEL'. ! (line 64) ! * is_gimple_val: Logical Operators. (line 107) ! * iterators in '.md' files: Iterators. (line 6) * IV analysis on GIMPLE: Scalar evolutions. (line 6) * IV analysis on RTL: loop-iv. (line 6) * JMP_BUF_SIZE: Exception Region Output. ! (line 82) * jump: Flags. (line 286) ! * 'jump' instruction pattern: Standard Names. (line 1096) * jump instruction patterns: Jump Patterns. (line 6) ! * jump instructions and 'set': Side Effects. (line 56) ! * 'jump', in 'call_insn': Flags. (line 161) ! * 'jump', in 'insn': Flags. (line 157) ! * 'jump', in 'mem': Flags. (line 70) ! * Jumps: Jumps. (line 6) ! * JUMP_ALIGN: Alignment Output. (line 8) * jump_insn: Insns. (line 73) ! * 'jump_insn' and '/f': Flags. (line 107) ! * 'jump_insn' and '/s': Flags. (line 49) ! * 'jump_insn' and '/s' <1>: Flags. (line 148) ! * 'jump_insn' and '/u': Flags. (line 39) ! * 'jump_insn' and '/v': Flags. (line 44) * JUMP_LABEL: Insns. (line 80) ! * JUMP_TABLES_IN_TEXT_SECTION: Sections. (line 150) ! * LABEL_ALIGN: Alignment Output. (line 57) ! * LABEL_ALIGN_AFTER_BARRIER: Alignment Output. (line 26) ! * LABEL_ALTERNATE_NAME: Edges. (line 180) * LABEL_ALT_ENTRY_P: Insns. (line 146) * LABEL_DECL: Declarations. (line 6) * LABEL_KIND: Insns. (line 146) * LABEL_NUSES: Insns. (line 142) * LABEL_PRESERVE_P: Flags. (line 59) ! * label_ref: Constants. (line 96) ! * 'label_ref' and '/v': Flags. (line 65) ! * 'label_ref', RTL sharing: Sharing. (line 35) * LABEL_REF_NONLOCAL_P: Flags. (line 65) * language-dependent trees: Language-dependent trees. (line 6) * language-independent intermediate representation: Parsing pass. ! (line 13) ! * lang_hooks.gimplify_expr: Gimplification pass. ! (line 18) ! * lang_hooks.parse_file: Parsing pass. (line 6) * large return values: Aggregate Return. (line 6) ! * LARGEST_EXPONENT_IS_NORMAL: Storage Layout. (line 480) ! * LAST_STACK_REG: Stack Registers. (line 30) * LAST_VIRTUAL_REGISTER: Regs and Memory. (line 51) ! * 'lceilMN2': Standard Names. (line 687) * LCSSA: LCSSA. (line 6) + * LDD_SUFFIX: Macros for Initialization. + (line 121) * LD_FINI_SWITCH: Macros for Initialization. ! (line 28) * LD_INIT_SWITCH: Macros for Initialization. ! (line 24) * le: Comparisons. (line 76) ! * 'le' and attributes: Expressions. (line 83) * leaf functions: Leaf Functions. (line 6) ! * leaf_function_p: Standard Names. (line 1180) ! * LEAF_REGISTERS: Leaf Functions. (line 23) ! * LEAF_REG_REMAP: Leaf Functions. (line 37) ! * left rotate: Arithmetic. (line 196) ! * left shift: Arithmetic. (line 174) ! * LEGITIMATE_PIC_OPERAND_P: PIC. (line 31) ! * LEGITIMIZE_RELOAD_ADDRESS: Addressing Modes. (line 150) ! * length: GTY Options. (line 47) * less than: Comparisons. (line 68) * less than or equal: Comparisons. (line 76) * leu: Comparisons. (line 76) ! * 'leu' and attributes: Expressions. (line 83) ! * LE_EXPR: Unary and Binary Expressions. ! (line 6) ! * 'lfloorMN2': Standard Names. (line 682) * LIB2FUNCS_EXTRA: Target Fragment. (line 11) * LIBCALL_VALUE: Scalar Return. (line 56) ! * 'libgcc.a': Library Calls. (line 6) * LIBGCC2_CFLAGS: Target Fragment. (line 8) ! * LIBGCC2_GNU_PREFIX: Type Layout. (line 127) ! * LIBGCC2_HAS_DF_MODE: Type Layout. (line 108) ! * LIBGCC2_HAS_TF_MODE: Type Layout. (line 121) ! * LIBGCC2_HAS_XF_MODE: Type Layout. (line 115) ! * LIBGCC2_LONG_DOUBLE_TYPE_SIZE: Type Layout. (line 102) * LIBGCC2_UNWIND_ATTRIBUTE: Misc. (line 963) ! * LIBGCC_SPEC: Driver. (line 115) * library subroutine names: Library Calls. (line 6) ! * LIBRARY_PATH_ENV: Misc. (line 501) ! * LIB_SPEC: Driver. (line 107) ! * LIMIT_RELOAD_CLASS: Register Classes. (line 296) * Linear loop transformations framework: Lambda. (line 6) ! * LINK_COMMAND_SPEC: Driver. (line 236) ! * LINK_EH_SPEC: Driver. (line 142) ! * LINK_GCC_C_SEQUENCE_SPEC: Driver. (line 232) ! * LINK_LIBGCC_SPECIAL_1: Driver. (line 227) ! * LINK_SPEC: Driver. (line 100) * list: Containers. (line 6) * Liveness representation: Liveness information. (line 6) ! * load address instruction: Simple Constraints. (line 162) ! * LOAD_EXTEND_OP: Misc. (line 59) ! * 'load_multiple' instruction pattern: Standard Names. (line 136) ! * Local Register Allocator (LRA): RTL passes. (line 199) ! * LOCAL_ALIGNMENT: Storage Layout. (line 246) * LOCAL_CLASS_P: Classes. (line 73) ! * LOCAL_DECL_ALIGNMENT: Storage Layout. (line 283) ! * LOCAL_INCLUDE_DIR: Driver. (line 312) ! * LOCAL_LABEL_PREFIX: Instruction Output. (line 151) ! * LOCAL_REGNO: Register Basics. (line 101) * Logical Operators: Logical Operators. (line 6) ! * logical-and, bitwise: Arithmetic. (line 159) ! * LOGICAL_OP_NON_SHORT_CIRCUIT: Costs. (line 264) ! * 'logM2' instruction pattern: Standard Names. (line 595) ! * LOG_LINKS: Insns. (line 321) ! * 'longjmp' and automatic variables: Interface. (line 52) ! * LONG_ACCUM_TYPE_SIZE: Type Layout. (line 92) ! * LONG_DOUBLE_TYPE_SIZE: Type Layout. (line 57) ! * LONG_FRACT_TYPE_SIZE: Type Layout. (line 72) ! * LONG_LONG_ACCUM_TYPE_SIZE: Type Layout. (line 97) ! * LONG_LONG_FRACT_TYPE_SIZE: Type Layout. (line 77) ! * LONG_LONG_TYPE_SIZE: Type Layout. (line 32) ! * LONG_TYPE_SIZE: Type Layout. (line 21) * Loop analysis: Loop representation. (line 6) * Loop manipulation: Loop manipulation. (line 6) *************** Concept Index *** 47476,47504 **** * Loop representation: Loop representation. (line 6) * Loop-closed SSA form: LCSSA. (line 6) ! * LOOP_ALIGN: Alignment Output. (line 41) * LOOP_EXPR: Unary and Binary Expressions. (line 6) - * looping instruction patterns: Looping Patterns. (line 6) * lowering, language-dependent intermediate representation: Parsing pass. ! (line 14) ! * lrintMN2: Standard Names. (line 678) ! * lroundMN2: Standard Names. (line 683) * LSHIFT_EXPR: Unary and Binary Expressions. (line 6) ! * lshiftrt: Arithmetic. (line 190) ! * lshiftrt and attributes: Expressions. (line 85) ! * lshrM3 instruction pattern: Standard Names. (line 520) * lt: Comparisons. (line 68) ! * lt and attributes: Expressions. (line 85) ! * LT_EXPR: Unary and Binary Expressions. ! (line 6) * LTGT_EXPR: Unary and Binary Expressions. (line 6) * lto: LTO. (line 6) * ltrans: LTO. (line 6) * ltu: Comparisons. (line 68) ! * m in constraint: Simple Constraints. (line 17) * machine attributes: Target Attributes. (line 6) * machine description macros: Target Macros. (line 6) * machine descriptions: Machine Desc. (line 6) --- 47135,47164 ---- * Loop representation: Loop representation. (line 6) * Loop-closed SSA form: LCSSA. (line 6) ! * looping instruction patterns: Looping Patterns. (line 6) ! * LOOP_ALIGN: Alignment Output. (line 40) * LOOP_EXPR: Unary and Binary Expressions. (line 6) * lowering, language-dependent intermediate representation: Parsing pass. ! (line 13) ! * lo_sum: Arithmetic. (line 25) ! * 'lrintMN2': Standard Names. (line 672) ! * 'lroundMN2': Standard Names. (line 677) ! * lshiftrt: Arithmetic. (line 191) ! * 'lshiftrt' and attributes: Expressions. (line 83) * LSHIFT_EXPR: Unary and Binary Expressions. (line 6) ! * 'lshrM3' instruction pattern: Standard Names. (line 514) * lt: Comparisons. (line 68) ! * 'lt' and attributes: Expressions. (line 83) * LTGT_EXPR: Unary and Binary Expressions. (line 6) * lto: LTO. (line 6) * ltrans: LTO. (line 6) * ltu: Comparisons. (line 68) ! * LT_EXPR: Unary and Binary Expressions. ! (line 6) ! * 'm' in constraint: Simple Constraints. (line 17) * machine attributes: Target Attributes. (line 6) * machine description macros: Target Macros. (line 6) * machine descriptions: Machine Desc. (line 6) *************** Concept Index *** 47509,47666 **** * machine-independent predicates: Machine-Independent Predicates. (line 6) * macros, target description: Target Macros. (line 6) ! * maddMN4 instruction pattern: Standard Names. (line 443) ! * MAKE_DECL_ONE_ONLY: Label Output. (line 250) ! * make_safe_from: Expander Definitions. ! (line 151) * makefile fragment: Fragments. (line 6) * makefile targets: Makefile. (line 6) ! * MALLOC_ABI_ALIGNMENT: Storage Layout. (line 175) * Manipulating GIMPLE statements: Manipulating GIMPLE statements. (line 6) - * mark_hook: GTY Options. (line 171) * marking roots: GGC Roots. (line 6) * MASK_RETURN_ADDR: Exception Region Output. ! (line 35) ! * match_dup <1>: define_peephole2. (line 28) * match_dup: RTL Template. (line 73) ! * match_dup and attributes: Insn Lengths. (line 16) ! * match_op_dup: RTL Template. (line 163) * match_operand: RTL Template. (line 16) ! * match_operand and attributes: Expressions. (line 55) * match_operator: RTL Template. (line 95) ! * match_par_dup: RTL Template. (line 219) * match_parallel: RTL Template. (line 172) ! * match_scratch <1>: define_peephole2. (line 28) * match_scratch: RTL Template. (line 58) ! * match_test and attributes: Expressions. (line 64) ! * matching constraint: Simple Constraints. (line 142) ! * matching operands: Output Template. (line 49) * math library: Soft float library routines. (line 6) * math, in RTL: Arithmetic. (line 6) - * MATH_LIBRARY: Misc. (line 496) * matherr: Library Calls. (line 52) ! * MAX_BITS_PER_WORD: Storage Layout. (line 60) ! * MAX_CONDITIONAL_EXECUTE: Misc. (line 518) ! * MAX_FIXED_MODE_SIZE: Storage Layout. (line 433) ! * MAX_MOVE_MAX: Misc. (line 106) ! * MAX_OFILE_ALIGNMENT: Storage Layout. (line 212) ! * MAX_REGS_PER_ADDRESS: Addressing Modes. (line 43) ! * MAX_STACK_ALIGNMENT: Storage Layout. (line 205) ! * maxM3 instruction pattern: Standard Names. (line 304) ! * may_trap_p, tree_could_trap_p: Edges. (line 115) ! * maybe_undef: GTY Options. (line 179) * mcount: Profiling. (line 12) * MD_CAN_REDIRECT_BRANCH: Misc. (line 678) ! * MD_EXEC_PREFIX: Driver. (line 268) ! * MD_FALLBACK_FRAME_STATE_FOR: Exception Handling. (line 94) ! * MD_HANDLE_UNWABI: Exception Handling. (line 114) ! * MD_STARTFILE_PREFIX: Driver. (line 296) ! * MD_STARTFILE_PREFIX_1: Driver. (line 301) ! * mem: Regs and Memory. (line 374) ! * mem and /c: Flags. (line 81) ! * mem and /f: Flags. (line 85) ! * mem and /j: Flags. (line 70) ! * mem and /u: Flags. (line 134) ! * mem and /v: Flags. (line 76) ! * mem, RTL sharing: Sharing. (line 40) ! * MEM_ADDR_SPACE: Special Accessors. (line 49) * MEM_ALIAS_SET: Special Accessors. (line 9) ! * MEM_ALIGN: Special Accessors. (line 46) ! * MEM_EXPR: Special Accessors. (line 20) * MEM_KEEP_ALIAS_SET_P: Flags. (line 70) * MEM_NOTRAP_P: Flags. (line 81) ! * MEM_OFFSET: Special Accessors. (line 32) ! * MEM_OFFSET_KNOWN_P: Special Accessors. (line 28) * MEM_POINTER: Flags. (line 85) * MEM_READONLY_P: Flags. (line 134) * MEM_REF: Storage References. (line 6) ! * mem_signal_fenceMODE instruction pattern: Standard Names. (line 1844) ! * MEM_SIZE: Special Accessors. (line 40) ! * MEM_SIZE_KNOWN_P: Special Accessors. (line 36) ! * mem_thread_fenceMODE instruction pattern: Standard Names. (line 1836) * MEM_VOLATILE_P: Flags. (line 76) - * memory model: Memory model. (line 6) - * memory reference, nonoffsettable: Simple Constraints. (line 256) - * memory references in constraints: Simple Constraints. (line 17) - * memory_barrier instruction pattern: Standard Names. (line 1585) - * MEMORY_MOVE_COST: Costs. (line 54) - * memory_operand: Machine-Independent Predicates. - (line 58) * METHOD_TYPE: Types. (line 6) ! * MIN_UNITS_PER_WORD: Storage Layout. (line 70) ! * MINIMUM_ALIGNMENT: Storage Layout. (line 300) ! * MINIMUM_ATOMIC_ALIGNMENT: Storage Layout. (line 183) ! * minM3 instruction pattern: Standard Names. (line 304) ! * minus: Arithmetic. (line 36) ! * minus and attributes: Expressions. (line 85) ! * minus, canonicalization of: Insn Canonicalizations. (line 27) * MINUS_EXPR: Unary and Binary Expressions. (line 6) * MIPS coprocessor-definition macros: MIPS Coprocessors. (line 6) ! * mod: Arithmetic. (line 136) ! * mod and attributes: Expressions. (line 85) ! * mode classes: Machine Modes. (line 219) ! * mode iterators in .md files: Mode Iterators. (line 6) * mode switching: Mode Switching. (line 6) ! * MODE_ACCUM: Machine Modes. (line 249) ! * MODE_AFTER: Mode Switching. (line 49) ! * MODE_BASE_REG_CLASS: Register Classes. (line 119) ! * MODE_BASE_REG_REG_CLASS: Register Classes. (line 125) * MODE_CC <1>: MODE_CC Condition Codes. (line 6) ! * MODE_CC: Machine Modes. (line 268) ! * MODE_CODE_BASE_REG_CLASS: Register Classes. (line 133) ! * MODE_COMPLEX_FLOAT: Machine Modes. (line 260) ! * MODE_COMPLEX_INT: Machine Modes. (line 257) ! * MODE_DECIMAL_FLOAT: Machine Modes. (line 237) ! * MODE_ENTRY: Mode Switching. (line 55) ! * MODE_EXIT: Mode Switching. (line 61) ! * MODE_FLOAT: Machine Modes. (line 233) ! * MODE_FRACT: Machine Modes. (line 241) ! * MODE_FUNCTION: Machine Modes. (line 264) ! * MODE_INT: Machine Modes. (line 225) ! * MODE_NEEDED: Mode Switching. (line 42) ! * MODE_PARTIAL_INT: Machine Modes. (line 229) ! * MODE_PRIORITY_TO_MODE: Mode Switching. (line 67) ! * MODE_RANDOM: Machine Modes. (line 273) ! * MODE_UACCUM: Machine Modes. (line 253) ! * MODE_UFRACT: Machine Modes. (line 245) ! * MODES_TIEABLE_P: Values in Registers. ! (line 129) * modifiers in constraints: Modifiers. (line 6) * MODIFY_EXPR: Unary and Binary Expressions. (line 6) ! * MODIFY_JNI_METHOD_CALL: Misc. (line 763) ! * modM3 instruction pattern: Standard Names. (line 269) ! * modulo scheduling: RTL passes. (line 132) ! * MOVE_BY_PIECES_P: Costs. (line 165) ! * MOVE_MAX: Misc. (line 101) ! * MOVE_MAX_PIECES: Costs. (line 171) ! * MOVE_RATIO: Costs. (line 149) ! * movM instruction pattern: Standard Names. (line 11) ! * movmemM instruction pattern: Standard Names. (line 750) ! * movmisalignM instruction pattern: Standard Names. (line 126) ! * movMODEcc instruction pattern: Standard Names. (line 1037) ! * movstr instruction pattern: Standard Names. (line 785) ! * movstrictM instruction pattern: Standard Names. (line 120) ! * msubMN4 instruction pattern: Standard Names. (line 466) ! * mulhisi3 instruction pattern: Standard Names. (line 419) ! * mulM3 instruction pattern: Standard Names. (line 269) ! * mulqihi3 instruction pattern: Standard Names. (line 423) ! * mulsidi3 instruction pattern: Standard Names. (line 423) ! * mult: Arithmetic. (line 92) ! * mult and attributes: Expressions. (line 85) ! * mult, canonicalization of: Insn Canonicalizations. (line 27) ! * MULT_EXPR: Unary and Binary Expressions. ! (line 6) ! * MULT_HIGHPART_EXPR: Unary and Binary Expressions. ! (line 6) * MULTIARCH_DIRNAME: Target Fragment. (line 170) ! * MULTILIB_DEFAULTS: Driver. (line 253) * MULTILIB_DIRNAMES: Target Fragment. (line 44) * MULTILIB_EXCEPTIONS: Target Fragment. (line 70) * MULTILIB_EXTRA_OPTS: Target Fragment. (line 132) --- 47169,47326 ---- * machine-independent predicates: Machine-Independent Predicates. (line 6) * macros, target description: Target Macros. (line 6) ! * 'maddMN4' instruction pattern: Standard Names. (line 437) * makefile fragment: Fragments. (line 6) * makefile targets: Makefile. (line 6) ! * MAKE_DECL_ONE_ONLY: Label Output. (line 246) ! * make_safe_from: Expander Definitions. ! (line 151) ! * MALLOC_ABI_ALIGNMENT: Storage Layout. (line 173) * Manipulating GIMPLE statements: Manipulating GIMPLE statements. (line 6) * marking roots: GGC Roots. (line 6) + * mark_hook: GTY Options. (line 177) * MASK_RETURN_ADDR: Exception Region Output. ! (line 34) ! * matching constraint: Simple Constraints. (line 140) ! * matching operands: Output Template. (line 49) * match_dup: RTL Template. (line 73) ! * match_dup <1>: define_peephole2. (line 28) ! * 'match_dup' and attributes: Insn Lengths. (line 16) * match_operand: RTL Template. (line 16) ! * 'match_operand' and attributes: Expressions. (line 55) * match_operator: RTL Template. (line 95) ! * match_op_dup: RTL Template. (line 163) * match_parallel: RTL Template. (line 172) ! * match_par_dup: RTL Template. (line 219) * match_scratch: RTL Template. (line 58) ! * match_scratch <1>: define_peephole2. (line 28) ! * 'match_test' and attributes: Expressions. (line 64) * math library: Soft float library routines. (line 6) * math, in RTL: Arithmetic. (line 6) * matherr: Library Calls. (line 52) ! * MATH_LIBRARY: Misc. (line 494) ! * 'maxM3' instruction pattern: Standard Names. (line 301) ! * MAX_BITS_PER_WORD: Storage Layout. (line 59) ! * MAX_CONDITIONAL_EXECUTE: Misc. (line 516) ! * MAX_FIXED_MODE_SIZE: Storage Layout. (line 428) ! * MAX_MOVE_MAX: Misc. (line 105) ! * MAX_OFILE_ALIGNMENT: Storage Layout. (line 208) ! * MAX_REGS_PER_ADDRESS: Addressing Modes. (line 42) ! * MAX_STACK_ALIGNMENT: Storage Layout. (line 202) ! * maybe_undef: GTY Options. (line 186) ! * may_trap_p, tree_could_trap_p: Edges. (line 114) * mcount: Profiling. (line 12) * MD_CAN_REDIRECT_BRANCH: Misc. (line 678) ! * MD_EXEC_PREFIX: Driver. (line 267) ! * MD_FALLBACK_FRAME_STATE_FOR: Exception Handling. (line 93) ! * MD_HANDLE_UNWABI: Exception Handling. (line 112) ! * MD_STARTFILE_PREFIX: Driver. (line 295) ! * MD_STARTFILE_PREFIX_1: Driver. (line 300) ! * mem: Regs and Memory. (line 370) ! * 'mem' and '/c': Flags. (line 81) ! * 'mem' and '/f': Flags. (line 85) ! * 'mem' and '/j': Flags. (line 70) ! * 'mem' and '/u': Flags. (line 134) ! * 'mem' and '/v': Flags. (line 76) ! * 'mem', RTL sharing: Sharing. (line 40) ! * memory model: Memory model. (line 6) ! * memory reference, nonoffsettable: Simple Constraints. (line 254) ! * memory references in constraints: Simple Constraints. (line 17) ! * 'memory_barrier' instruction pattern: Standard Names. (line 1574) ! * MEMORY_MOVE_COST: Costs. (line 53) ! * memory_operand: Machine-Independent Predicates. ! (line 57) ! * MEM_ADDR_SPACE: Special Accessors. (line 48) * MEM_ALIAS_SET: Special Accessors. (line 9) ! * MEM_ALIGN: Special Accessors. (line 45) ! * MEM_EXPR: Special Accessors. (line 19) * MEM_KEEP_ALIAS_SET_P: Flags. (line 70) * MEM_NOTRAP_P: Flags. (line 81) ! * MEM_OFFSET: Special Accessors. (line 31) ! * MEM_OFFSET_KNOWN_P: Special Accessors. (line 27) * MEM_POINTER: Flags. (line 85) * MEM_READONLY_P: Flags. (line 134) * MEM_REF: Storage References. (line 6) ! * 'mem_signal_fenceMODE' instruction pattern: Standard Names. ! (line 1844) ! * MEM_SIZE: Special Accessors. (line 39) ! * MEM_SIZE_KNOWN_P: Special Accessors. (line 35) ! * 'mem_thread_fenceMODE' instruction pattern: Standard Names. ! (line 1836) * MEM_VOLATILE_P: Flags. (line 76) * METHOD_TYPE: Types. (line 6) ! * MINIMUM_ALIGNMENT: Storage Layout. (line 296) ! * MINIMUM_ATOMIC_ALIGNMENT: Storage Layout. (line 181) ! * 'minM3' instruction pattern: Standard Names. (line 301) ! * minus: Arithmetic. (line 38) ! * 'minus' and attributes: Expressions. (line 83) ! * 'minus', canonicalization of: Insn Canonicalizations. (line 27) * MINUS_EXPR: Unary and Binary Expressions. (line 6) + * MIN_UNITS_PER_WORD: Storage Layout. (line 69) * MIPS coprocessor-definition macros: MIPS Coprocessors. (line 6) ! * mod: Arithmetic. (line 137) ! * 'mod' and attributes: Expressions. (line 83) ! * mode classes: Machine Modes. (line 218) ! * mode iterators in '.md' files: Mode Iterators. (line 6) * mode switching: Mode Switching. (line 6) ! * MODES_TIEABLE_P: Values in Registers. ! (line 127) ! * MODE_ACCUM: Machine Modes. (line 248) ! * MODE_AFTER: Mode Switching. (line 48) ! * MODE_BASE_REG_CLASS: Register Classes. (line 116) ! * MODE_BASE_REG_REG_CLASS: Register Classes. (line 122) ! * MODE_CC: Machine Modes. (line 267) * MODE_CC <1>: MODE_CC Condition Codes. (line 6) ! * MODE_CODE_BASE_REG_CLASS: Register Classes. (line 129) ! * MODE_COMPLEX_FLOAT: Machine Modes. (line 259) ! * MODE_COMPLEX_INT: Machine Modes. (line 256) ! * MODE_DECIMAL_FLOAT: Machine Modes. (line 236) ! * MODE_ENTRY: Mode Switching. (line 54) ! * MODE_EXIT: Mode Switching. (line 60) ! * MODE_FLOAT: Machine Modes. (line 232) ! * MODE_FRACT: Machine Modes. (line 240) ! * MODE_FUNCTION: Machine Modes. (line 263) ! * MODE_INT: Machine Modes. (line 224) ! * MODE_NEEDED: Mode Switching. (line 41) ! * MODE_PARTIAL_INT: Machine Modes. (line 228) ! * MODE_PRIORITY_TO_MODE: Mode Switching. (line 66) ! * MODE_RANDOM: Machine Modes. (line 272) ! * MODE_UACCUM: Machine Modes. (line 252) ! * MODE_UFRACT: Machine Modes. (line 244) * modifiers in constraints: Modifiers. (line 6) * MODIFY_EXPR: Unary and Binary Expressions. (line 6) ! * MODIFY_JNI_METHOD_CALL: Misc. (line 765) ! * 'modM3' instruction pattern: Standard Names. (line 266) ! * modulo scheduling: RTL passes. (line 131) ! * MOVE_BY_PIECES_P: Costs. (line 164) ! * MOVE_MAX: Misc. (line 100) ! * MOVE_MAX_PIECES: Costs. (line 170) ! * MOVE_RATIO: Costs. (line 148) ! * 'movM' instruction pattern: Standard Names. (line 11) ! * 'movmemM' instruction pattern: Standard Names. (line 744) ! * 'movmisalignM' instruction pattern: Standard Names. (line 125) ! * 'movMODEcc' instruction pattern: Standard Names. (line 1031) ! * 'movstr' instruction pattern: Standard Names. (line 779) ! * 'movstrictM' instruction pattern: Standard Names. (line 119) ! * 'msubMN4' instruction pattern: Standard Names. (line 460) ! * 'mulhisi3' instruction pattern: Standard Names. (line 413) ! * 'mulM3' instruction pattern: Standard Names. (line 266) ! * 'mulqihi3' instruction pattern: Standard Names. (line 417) ! * 'mulsidi3' instruction pattern: Standard Names. (line 417) ! * mult: Arithmetic. (line 93) ! * 'mult' and attributes: Expressions. (line 83) ! * 'mult', canonicalization of: Insn Canonicalizations. (line 27) ! * 'mult', canonicalization of <1>: Insn Canonicalizations. ! (line 91) * MULTIARCH_DIRNAME: Target Fragment. (line 170) ! * MULTILIB_DEFAULTS: Driver. (line 252) * MULTILIB_DIRNAMES: Target Fragment. (line 44) * MULTILIB_EXCEPTIONS: Target Fragment. (line 70) * MULTILIB_EXTRA_OPTS: Target Fragment. (line 132) *************** Concept Index *** 47670,47777 **** * MULTILIB_REQUIRED: Target Fragment. (line 82) * MULTILIB_REUSE: Target Fragment. (line 103) * multiple alternative constraints: Multi-Alternative. (line 6) ! * MULTIPLE_SYMBOL_SPACES: Misc. (line 476) ! * multiplication: Arithmetic. (line 92) ! * multiplication with signed saturation: Arithmetic. (line 92) ! * multiplication with unsigned saturation: Arithmetic. (line 92) ! * n in constraint: Simple Constraints. (line 75) ! * N_REG_CLASSES: Register Classes. (line 83) * name: Identifiers. (line 6) * named address spaces: Named Address Spaces. (line 6) * named patterns and conditions: Patterns. (line 47) * names, pattern: Standard Names. (line 6) * namespace, scope: Namespaces. (line 6) - * NAMESPACE_DECL <1>: Namespaces. (line 6) * NAMESPACE_DECL: Declarations. (line 6) ! * NATIVE_SYSTEM_HEADER_COMPONENT: Driver. (line 323) * ne: Comparisons. (line 56) ! * ne and attributes: Expressions. (line 85) ! * NE_EXPR: Unary and Binary Expressions. ! (line 6) ! * nearbyintM2 instruction pattern: Standard Names. (line 660) ! * neg: Arithmetic. (line 81) ! * neg and attributes: Expressions. (line 85) ! * neg, canonicalization of: Insn Canonicalizations. (line 27) * NEGATE_EXPR: Unary and Binary Expressions. (line 6) ! * negation: Arithmetic. (line 81) ! * negation with signed saturation: Arithmetic. (line 81) ! * negation with unsigned saturation: Arithmetic. (line 81) ! * negM2 instruction pattern: Standard Names. (line 532) * nested functions, trampolines for: Trampolines. (line 6) ! * nested_ptr: GTY Options. (line 186) * next_bb, prev_bb, FOR_EACH_BB, FOR_ALL_BB: Basic Blocks. (line 25) * NEXT_INSN: Insns. (line 30) ! * NEXT_OBJC_RUNTIME: Library Calls. (line 88) * nil: RTL Objects. (line 73) * NM_FLAGS: Macros for Initialization. ! (line 111) ! * NO_DBX_BNSYM_ENSYM: DBX Hooks. (line 26) ! * NO_DBX_FUNCTION_END: DBX Hooks. (line 20) ! * NO_DBX_GCC_MARKER: File Names and DBX. (line 28) ! * NO_DBX_MAIN_SOURCE_DIRECTORY: File Names and DBX. (line 23) ! * NO_DOLLAR_IN_LABEL: Label Output. (line 67) ! * NO_DOT_IN_LABEL: Label Output. (line 73) ! * NO_FUNCTION_CSE: Costs. (line 261) ! * NO_IMPLICIT_EXTERN_C: Misc. (line 374) ! * NO_PROFILE_COUNTERS: Profiling. (line 28) ! * NO_REGS: Register Classes. (line 17) ! * NON_LVALUE_EXPR: Unary and Binary Expressions. ! (line 6) * nondeterministic finite state automaton: Processor pipeline description. ! (line 305) * nonimmediate_operand: Machine-Independent Predicates. ! (line 101) ! * nonlocal goto handler: Edges. (line 172) ! * nonlocal_goto instruction pattern: Standard Names. (line 1417) ! * nonlocal_goto_receiver instruction pattern: Standard Names. ! (line 1434) * nonmemory_operand: Machine-Independent Predicates. ! (line 97) ! * nonoffsettable memory reference: Simple Constraints. (line 256) ! * nop instruction pattern: Standard Names. (line 1220) * NOP_EXPR: Unary and Binary Expressions. (line 6) * normal predicates: Predicates. (line 31) ! * not: Arithmetic. (line 154) ! * not and attributes: Expressions. (line 50) * not equal: Comparisons. (line 56) ! * not, canonicalization of: Insn Canonicalizations. (line 27) ! * note: Insns. (line 174) ! * note and /i: Flags. (line 59) ! * note and /v: Flags. (line 44) * NOTE_INSN_BASIC_BLOCK: Basic Blocks. (line 50) ! * NOTE_INSN_BLOCK_BEG: Insns. (line 199) ! * NOTE_INSN_BLOCK_END: Insns. (line 199) ! * NOTE_INSN_DELETED: Insns. (line 189) ! * NOTE_INSN_DELETED_LABEL: Insns. (line 194) ! * NOTE_INSN_EH_REGION_BEG: Insns. (line 205) ! * NOTE_INSN_EH_REGION_END: Insns. (line 205) ! * NOTE_INSN_FUNCTION_BEG: Insns. (line 229) ! * NOTE_INSN_LOOP_BEG: Insns. (line 213) ! * NOTE_INSN_LOOP_CONT: Insns. (line 219) ! * NOTE_INSN_LOOP_END: Insns. (line 213) ! * NOTE_INSN_LOOP_VTOP: Insns. (line 223) ! * NOTE_INSN_VAR_LOCATION: Insns. (line 233) ! * NOTE_LINE_NUMBER: Insns. (line 174) ! * NOTE_SOURCE_FILE: Insns. (line 174) ! * NOTE_VAR_LOCATION: Insns. (line 233) * NOTICE_UPDATE_CC: CC0 Condition Codes. ! (line 31) ! * NUM_MACHINE_MODES: Machine Modes. (line 286) ! * NUM_MODES_FOR_MODE_SWITCHING: Mode Switching. (line 30) * Number of iterations analysis: Number of iterations. (line 6) ! * o in constraint: Simple Constraints. (line 23) ! * OBJC_GEN_METHOD_LABEL: Label Output. (line 452) * OBJC_JBLEN: Misc. (line 958) * OBJECT_FORMAT_COFF: Macros for Initialization. ! (line 97) ! * OFFSET_TYPE: Types. (line 6) * offsettable address: Simple Constraints. (line 23) * OImode: Machine Modes. (line 51) * Omega a solver for linear programming problems: Omega. (line 6) * OMP_ATOMIC: OpenMP. (line 6) --- 47330,47442 ---- * MULTILIB_REQUIRED: Target Fragment. (line 82) * MULTILIB_REUSE: Target Fragment. (line 103) * multiple alternative constraints: Multi-Alternative. (line 6) ! * MULTIPLE_SYMBOL_SPACES: Misc. (line 474) ! * multiplication: Arithmetic. (line 93) ! * multiplication with signed saturation: Arithmetic. (line 93) ! * multiplication with unsigned saturation: Arithmetic. (line 93) ! * MULT_EXPR: Unary and Binary Expressions. ! (line 6) ! * MULT_HIGHPART_EXPR: Unary and Binary Expressions. ! (line 6) ! * 'n' in constraint: Simple Constraints. (line 73) * name: Identifiers. (line 6) * named address spaces: Named Address Spaces. (line 6) * named patterns and conditions: Patterns. (line 47) * names, pattern: Standard Names. (line 6) * namespace, scope: Namespaces. (line 6) * NAMESPACE_DECL: Declarations. (line 6) ! * NAMESPACE_DECL <1>: Namespaces. (line 6) ! * NATIVE_SYSTEM_HEADER_COMPONENT: Driver. (line 322) * ne: Comparisons. (line 56) ! * 'ne' and attributes: Expressions. (line 83) ! * 'nearbyintM2' instruction pattern: Standard Names. (line 654) ! * neg: Arithmetic. (line 82) ! * 'neg' and attributes: Expressions. (line 83) ! * 'neg', canonicalization of: Insn Canonicalizations. (line 27) * NEGATE_EXPR: Unary and Binary Expressions. (line 6) ! * negation: Arithmetic. (line 82) ! * negation with signed saturation: Arithmetic. (line 82) ! * negation with unsigned saturation: Arithmetic. (line 82) ! * 'negM2' instruction pattern: Standard Names. (line 526) * nested functions, trampolines for: Trampolines. (line 6) ! * nested_ptr: GTY Options. (line 194) * next_bb, prev_bb, FOR_EACH_BB, FOR_ALL_BB: Basic Blocks. (line 25) * NEXT_INSN: Insns. (line 30) ! * NEXT_OBJC_RUNTIME: Library Calls. (line 87) ! * NE_EXPR: Unary and Binary Expressions. ! (line 6) * nil: RTL Objects. (line 73) * NM_FLAGS: Macros for Initialization. ! (line 110) * nondeterministic finite state automaton: Processor pipeline description. ! (line 304) * nonimmediate_operand: Machine-Independent Predicates. ! (line 100) ! * nonlocal goto handler: Edges. (line 171) ! * 'nonlocal_goto' instruction pattern: Standard Names. (line 1406) ! * 'nonlocal_goto_receiver' instruction pattern: Standard Names. ! (line 1423) * nonmemory_operand: Machine-Independent Predicates. ! (line 96) ! * nonoffsettable memory reference: Simple Constraints. (line 254) ! * NON_LVALUE_EXPR: Unary and Binary Expressions. ! (line 6) ! * 'nop' instruction pattern: Standard Names. (line 1213) * NOP_EXPR: Unary and Binary Expressions. (line 6) * normal predicates: Predicates. (line 31) ! * not: Arithmetic. (line 155) ! * 'not' and attributes: Expressions. (line 50) * not equal: Comparisons. (line 56) ! * 'not', canonicalization of: Insn Canonicalizations. (line 27) ! * note: Insns. (line 173) ! * 'note' and '/i': Flags. (line 59) ! * 'note' and '/v': Flags. (line 44) * NOTE_INSN_BASIC_BLOCK: Basic Blocks. (line 50) ! * NOTE_INSN_BASIC_BLOCK <1>: Basic Blocks. (line 52) ! * NOTE_INSN_BLOCK_BEG: Insns. (line 198) ! * NOTE_INSN_BLOCK_END: Insns. (line 198) ! * NOTE_INSN_DELETED: Insns. (line 188) ! * NOTE_INSN_DELETED_LABEL: Insns. (line 193) ! * NOTE_INSN_EH_REGION_BEG: Insns. (line 204) ! * NOTE_INSN_EH_REGION_END: Insns. (line 204) ! * NOTE_INSN_FUNCTION_BEG: Insns. (line 228) ! * NOTE_INSN_LOOP_BEG: Insns. (line 212) ! * NOTE_INSN_LOOP_CONT: Insns. (line 218) ! * NOTE_INSN_LOOP_END: Insns. (line 212) ! * NOTE_INSN_LOOP_VTOP: Insns. (line 222) ! * NOTE_INSN_VAR_LOCATION: Insns. (line 232) ! * NOTE_LINE_NUMBER: Insns. (line 173) ! * NOTE_SOURCE_FILE: Insns. (line 173) ! * NOTE_VAR_LOCATION: Insns. (line 232) * NOTICE_UPDATE_CC: CC0 Condition Codes. ! (line 30) ! * NO_DBX_BNSYM_ENSYM: DBX Hooks. (line 25) ! * NO_DBX_FUNCTION_END: DBX Hooks. (line 19) ! * NO_DBX_GCC_MARKER: File Names and DBX. (line 27) ! * NO_DBX_MAIN_SOURCE_DIRECTORY: File Names and DBX. (line 22) ! * NO_DOLLAR_IN_LABEL: Label Output. (line 64) ! * NO_DOT_IN_LABEL: Label Output. (line 70) ! * NO_FUNCTION_CSE: Costs. (line 260) ! * NO_IMPLICIT_EXTERN_C: Misc. (line 373) ! * NO_PROFILE_COUNTERS: Profiling. (line 27) ! * NO_REGS: Register Classes. (line 17) * Number of iterations analysis: Number of iterations. (line 6) ! * NUM_MACHINE_MODES: Machine Modes. (line 285) ! * NUM_MODES_FOR_MODE_SWITCHING: Mode Switching. (line 29) ! * N_REG_CLASSES: Register Classes. (line 81) ! * 'o' in constraint: Simple Constraints. (line 23) ! * OBJC_GEN_METHOD_LABEL: Label Output. (line 447) * OBJC_JBLEN: Misc. (line 958) * OBJECT_FORMAT_COFF: Macros for Initialization. ! (line 96) * offsettable address: Simple Constraints. (line 23) + * OFFSET_TYPE: Types. (line 6) * OImode: Machine Modes. (line 51) * Omega a solver for linear programming problems: Omega. (line 6) * OMP_ATOMIC: OpenMP. (line 6) *************** Concept Index *** 47786,48095 **** * OMP_SECTION: OpenMP. (line 6) * OMP_SECTIONS: OpenMP. (line 6) * OMP_SINGLE: OpenMP. (line 6) ! * one_cmplM2 instruction pattern: Standard Names. (line 747) * operand access: Accessors. (line 6) ! * Operand Access Routines: SSA Operands. (line 119) * operand constraints: Constraints. (line 6) ! * Operand Iterators: SSA Operands. (line 119) * operand predicates: Predicates. (line 6) * operand substitution: Output Template. (line 6) - * operands <1>: Patterns. (line 53) - * operands: SSA Operands. (line 6) * Operands: Operands. (line 6) * operator predicates: Predicates. (line 6) ! * optc-gen.awk: Options. (line 6) * Optimization infrastructure for GIMPLE: Tree SSA. (line 6) ! * OPTIMIZE_MODE_SWITCHING: Mode Switching. (line 9) * option specification files: Options. (line 6) - * OPTION_DEFAULT_SPECS: Driver. (line 26) * optional hardware or system features: Run-time Target. (line 59) ! * options, directory search: Including Patterns. (line 44) * order of register allocation: Allocation Order. (line 6) * ordered_comparison_operator: Machine-Independent Predicates. ! (line 116) * ORDERED_EXPR: Unary and Binary Expressions. (line 6) * Ordering of Patterns: Pattern Ordering. (line 6) ! * ORIGINAL_REGNO: Special Accessors. (line 54) ! * other register constraints: Simple Constraints. (line 173) * outgoing_args_size: Stack Arguments. (line 48) ! * OUTGOING_REG_PARM_STACK_SPACE: Stack Arguments. (line 74) ! * OUTGOING_REGNO: Register Basics. (line 95) * output of assembler code: File Framework. (line 6) * output statements: Output Statement. (line 6) * output templates: Output Template. (line 6) ! * output_asm_insn: Output Statement. (line 53) ! * OUTPUT_QUOTED_STRING: File Framework. (line 108) ! * OVERLAPPING_REGISTER_NAMES: Instruction Output. (line 21) * OVERLOAD: Functions for C++. (line 6) ! * OVERRIDE_ABI_FORMAT: Register Arguments. (line 141) * OVL_CURRENT: Functions for C++. (line 6) * OVL_NEXT: Functions for C++. (line 6) ! * p in constraint: Simple Constraints. (line 164) ! * PAD_VARARGS_DOWN: Register Arguments. (line 222) ! * parallel: Side Effects. (line 210) ! * param_is: GTY Options. (line 114) * parameters, c++ abi: C++ ABI. (line 6) * parameters, miscellaneous: Misc. (line 6) * parameters, precompiled headers: PCH Target. (line 6) ! * paramN_is: GTY Options. (line 132) * parity: Arithmetic. (line 243) ! * parityM2 instruction pattern: Standard Names. (line 741) ! * PARM_BOUNDARY: Storage Layout. (line 140) * PARM_DECL: Declarations. (line 6) * PARSE_LDD_OUTPUT: Macros for Initialization. ! (line 127) ! * pass_duplicate_computed_gotos: Edges. (line 162) * passes and files of the compiler: Passes. (line 6) * passing arguments: Interface. (line 36) * PATH_SEPARATOR: Filesystem. (line 31) ! * PATTERN: Insns. (line 294) * pattern conditions: Patterns. (line 43) * pattern names: Standard Names. (line 6) * Pattern Ordering: Pattern Ordering. (line 6) * patterns: Patterns. (line 6) ! * pc: Regs and Memory. (line 361) ! * pc and attributes: Insn Lengths. (line 20) ! * pc, RTL sharing: Sharing. (line 25) ! * PC_REGNUM: Register Basics. (line 109) ! * pc_rtx: Regs and Memory. (line 366) ! * PCC_BITFIELD_TYPE_MATTERS: Storage Layout. (line 326) ! * PCC_STATIC_STRUCT_RETURN: Aggregate Return. (line 65) * PDImode: Machine Modes. (line 40) ! * peephole optimization, RTL representation: Side Effects. (line 244) * peephole optimizer definitions: Peephole Definitions. (line 6) * per-function data: Per-Function Data. (line 6) * percent sign: Output Template. (line 6) * PHI nodes: SSA. (line 31) ! * PHI_ARG_DEF: SSA. (line 71) ! * PHI_ARG_EDGE: SSA. (line 68) ! * PHI_ARG_ELT: SSA. (line 63) ! * PHI_NUM_ARGS: SSA. (line 59) ! * PHI_RESULT: SSA. (line 56) * PIC: PIC. (line 6) ! * PIC_OFFSET_TABLE_REG_CALL_CLOBBERED: PIC. (line 26) ! * PIC_OFFSET_TABLE_REGNUM: PIC. (line 16) * pipeline hazard recognizer: Processor pipeline description. (line 6) * Plugins: Plugins. (line 6) * plus: Arithmetic. (line 14) ! * plus and attributes: Expressions. (line 85) ! * plus, canonicalization of: Insn Canonicalizations. (line 27) * PLUS_EXPR: Unary and Binary Expressions. (line 6) ! * Pmode: Misc. (line 330) * pmode_register_operand: Machine-Independent Predicates. ! (line 35) * pointer: Types. (line 6) * POINTER_PLUS_EXPR: Unary and Binary Expressions. (line 6) ! * POINTER_SIZE: Storage Layout. (line 76) * POINTER_TYPE: Types. (line 6) - * POINTERS_EXTEND_UNSIGNED: Storage Layout. (line 82) - * pop_operand: Machine-Independent Predicates. - (line 88) * popcount: Arithmetic. (line 239) ! * popcountM2 instruction pattern: Standard Names. (line 735) ! * pops_args: Function Entry. (line 106) * portability: Portability. (line 6) * position independent code: PIC. (line 6) * post_dec: Incdec. (line 25) * post_inc: Incdec. (line 30) * post_modify: Incdec. (line 33) * post_order_compute, inverted_post_order_compute, walk_dominator_tree: Basic Blocks. (line 34) ! * POSTDECREMENT_EXPR: Unary and Binary Expressions. ! (line 6) ! * POSTINCREMENT_EXPR: Unary and Binary Expressions. ! (line 6) ! * POWI_MAX_MULTS: Misc. (line 826) ! * powM3 instruction pattern: Standard Names. (line 609) * pragma: Misc. (line 379) - * pre_dec: Incdec. (line 8) - * PRE_GCC3_DWARF_FRAME_REGISTERS: Frame Registers. (line 127) - * pre_inc: Incdec. (line 22) - * pre_modify: Incdec. (line 51) * PREDECREMENT_EXPR: Unary and Binary Expressions. (line 6) * predefined macros: Run-time Target. (line 6) * predicates: Predicates. (line 6) * predicates and machine modes: Predicates. (line 31) - * predication <1>: Cond Exec Macros. (line 6) * predication: Conditional Execution. (line 6) * predict.def: Profile information. (line 24) ! * PREFERRED_DEBUGGING_TYPE: All Debuggers. (line 42) ! * PREFERRED_RELOAD_CLASS: Register Classes. (line 253) ! * PREFERRED_STACK_BOUNDARY: Storage Layout. (line 154) ! * prefetch: Side Effects. (line 318) ! * prefetch and /v: Flags. (line 214) ! * prefetch instruction pattern: Standard Names. (line 1562) * PREFETCH_SCHEDULE_BARRIER_P: Flags. (line 214) * PREINCREMENT_EXPR: Unary and Binary Expressions. (line 6) * presence_set: Processor pipeline description. ! (line 224) * preserving SSA form: SSA. (line 76) * preserving virtual SSA form: SSA. (line 184) ! * pretend_args_size: Function Entry. (line 112) * prev_active_insn: define_peephole. (line 60) * PREV_INSN: Insns. (line 26) ! * PRINT_OPERAND: Instruction Output. (line 96) ! * PRINT_OPERAND_ADDRESS: Instruction Output. (line 124) ! * PRINT_OPERAND_PUNCT_VALID_P: Instruction Output. (line 117) ! * probe_stack instruction pattern: Standard Names. (line 1409) ! * probe_stack_address instruction pattern: Standard Names. (line 1402) * processor functional units: Processor pipeline description. (line 6) * processor pipeline description: Processor pipeline description. (line 6) ! * product: Arithmetic. (line 92) * profile feedback: Profile information. (line 14) * profile representation: Profile information. (line 6) ! * PROFILE_BEFORE_PROLOGUE: Profiling. (line 35) ! * PROFILE_HOOK: Profiling. (line 23) * profiling, code generation: Profiling. (line 6) ! * program counter: Regs and Memory. (line 362) * prologue: Function Entry. (line 6) ! * prologue instruction pattern: Standard Names. (line 1500) ! * PROMOTE_MODE: Storage Layout. (line 93) * pseudo registers: Regs and Memory. (line 9) * PSImode: Machine Modes. (line 32) ! * PTRDIFF_TYPE: Type Layout. (line 201) * purge_dead_edges <1>: Maintaining the CFG. - (line 82) - * purge_dead_edges: Edges. (line 104) - * push address instruction: Simple Constraints. (line 164) - * PUSH_ARGS: Stack Arguments. (line 18) - * PUSH_ARGS_REVERSED: Stack Arguments. (line 26) - * push_operand: Machine-Independent Predicates. (line 81) ! * push_reload: Addressing Modes. (line 177) ! * PUSH_ROUNDING: Stack Arguments. (line 32) ! * pushM1 instruction pattern: Standard Names. (line 256) * PUT_CODE: RTL Objects. (line 47) ! * PUT_MODE: Machine Modes. (line 283) ! * PUT_REG_NOTE_KIND: Insns. (line 357) ! * PUT_SDB_: SDB and DWARF. (line 106) ! * QCmode: Machine Modes. (line 197) * QFmode: Machine Modes. (line 54) * QImode: Machine Modes. (line 25) ! * QImode, in insn: Insns. (line 278) * QQmode: Machine Modes. (line 103) - * qualified type <1>: Types for C++. (line 6) * qualified type: Types. (line 6) * querying function unit reservations: Processor pipeline description. (line 90) * question mark: Multi-Alternative. (line 41) ! * quotient: Arithmetic. (line 116) ! * r in constraint: Simple Constraints. (line 66) * RDIV_EXPR: Unary and Binary Expressions. (line 6) ! * READONLY_DATA_SECTION_ASM_OP: Sections. (line 63) * real operands: SSA Operands. (line 6) ! * REAL_ARITHMETIC: Floating Point. (line 66) * REAL_CST: Constant expressions. (line 6) ! * REAL_LIBGCC_SPEC: Driver. (line 125) * REAL_NM_FILE_NAME: Macros for Initialization. ! (line 106) * REAL_TYPE: Types. (line 6) ! * REAL_VALUE_ABS: Floating Point. (line 82) ! * REAL_VALUE_ATOF: Floating Point. (line 50) ! * REAL_VALUE_FIX: Floating Point. (line 41) ! * REAL_VALUE_FROM_INT: Floating Point. (line 92) ! * REAL_VALUE_ISINF: Floating Point. (line 59) ! * REAL_VALUE_ISNAN: Floating Point. (line 62) ! * REAL_VALUE_NEGATE: Floating Point. (line 79) ! * REAL_VALUE_NEGATIVE: Floating Point. (line 56) ! * REAL_VALUE_TO_INT: Floating Point. (line 86) ! * REAL_VALUE_TO_TARGET_DECIMAL128: Data Output. (line 145) ! * REAL_VALUE_TO_TARGET_DECIMAL32: Data Output. (line 143) ! * REAL_VALUE_TO_TARGET_DECIMAL64: Data Output. (line 144) ! * REAL_VALUE_TO_TARGET_DOUBLE: Data Output. (line 141) ! * REAL_VALUE_TO_TARGET_LONG_DOUBLE: Data Output. (line 142) ! * REAL_VALUE_TO_TARGET_SINGLE: Data Output. (line 140) ! * REAL_VALUE_TYPE: Floating Point. (line 26) ! * REAL_VALUE_UNSIGNED_FIX: Floating Point. (line 45) ! * REAL_VALUES_EQUAL: Floating Point. (line 32) ! * REAL_VALUES_LESS: Floating Point. (line 38) ! * REALPART_EXPR: Unary and Binary Expressions. ! (line 6) ! * recog_data.operand: Instruction Output. (line 54) * recognizing insns: RTL Template. (line 6) ! * RECORD_TYPE <1>: Classes. (line 6) * RECORD_TYPE: Types. (line 6) * redirect_edge_and_branch: Profile information. (line 71) * redirect_edge_and_branch, redirect_jump: Maintaining the CFG. ! (line 92) ! * reduc_smax_M instruction pattern: Standard Names. (line 310) ! * reduc_smin_M instruction pattern: Standard Names. (line 310) ! * reduc_splus_M instruction pattern: Standard Names. (line 322) ! * reduc_umax_M instruction pattern: Standard Names. (line 316) ! * reduc_umin_M instruction pattern: Standard Names. (line 316) ! * reduc_uplus_M instruction pattern: Standard Names. (line 328) * reference: Types. (line 6) * REFERENCE_TYPE: Types. (line 6) * reg: Regs and Memory. (line 9) ! * reg and /f: Flags. (line 94) ! * reg and /i: Flags. (line 89) ! * reg and /v: Flags. (line 98) ! * reg, RTL sharing: Sharing. (line 17) ! * REG_ALLOC_ORDER: Allocation Order. (line 9) ! * REG_BR_PRED: Insns. (line 538) ! * REG_BR_PROB: Insns. (line 532) ! * REG_BR_PROB_BASE, BB_FREQ_BASE, count: Profile information. ! (line 82) ! * REG_BR_PROB_BASE, EDGE_FREQUENCY: Profile information. ! (line 52) ! * REG_CC_SETTER: Insns. (line 503) ! * REG_CC_USER: Insns. (line 503) ! * REG_CLASS_CONTENTS: Register Classes. (line 93) ! * reg_class_contents: Register Basics. (line 59) ! * REG_CLASS_FROM_CONSTRAINT: Old Constraints. (line 35) ! * REG_CLASS_FROM_LETTER: Old Constraints. (line 27) ! * REG_CLASS_NAMES: Register Classes. (line 88) ! * REG_CROSSING_JUMP: Insns. (line 416) ! * REG_DEAD: Insns. (line 368) ! * REG_DEAD, REG_UNUSED: Liveness information. ! (line 32) ! * REG_DEP_ANTI: Insns. (line 525) ! * REG_DEP_OUTPUT: Insns. (line 521) ! * REG_DEP_TRUE: Insns. (line 518) ! * REG_EH_REGION, EDGE_ABNORMAL_CALL: Edges. (line 110) ! * REG_EQUAL: Insns. (line 431) ! * REG_EQUIV: Insns. (line 431) ! * REG_EXPR: Special Accessors. (line 60) ! * REG_FRAME_RELATED_EXPR: Insns. (line 544) ! * REG_FUNCTION_VALUE_P: Flags. (line 89) ! * REG_INC: Insns. (line 384) ! * reg_label and /v: Flags. (line 65) ! * REG_LABEL_OPERAND: Insns. (line 398) ! * REG_LABEL_TARGET: Insns. (line 407) ! * reg_names <1>: Instruction Output. (line 108) ! * reg_names: Register Basics. (line 59) ! * REG_NONNEG: Insns. (line 390) ! * REG_NOTE_KIND: Insns. (line 357) ! * REG_NOTES: Insns. (line 331) ! * REG_OFFSET: Special Accessors. (line 64) ! * REG_OK_STRICT: Addressing Modes. (line 100) ! * REG_PARM_STACK_SPACE: Stack Arguments. (line 59) ! * REG_PARM_STACK_SPACE, and TARGET_FUNCTION_ARG: Register Arguments. ! (line 51) ! * REG_POINTER: Flags. (line 94) ! * REG_SETJMP: Insns. (line 425) ! * REG_UNUSED: Insns. (line 377) ! * REG_USERVAR_P: Flags. (line 98) ! * REG_VALUE_IN_UNWIND_CONTEXT: Frame Registers. (line 157) ! * REG_WORDS_BIG_ENDIAN: Storage Layout. (line 36) * regclass_for_constraint: C Constraint Interface. ! (line 60) * register allocation order: Allocation Order. (line 6) * register class definitions: Register Classes. (line 6) * register class preference constraints: Class Preferences. (line 6) --- 47451,47717 ---- * OMP_SECTION: OpenMP. (line 6) * OMP_SECTIONS: OpenMP. (line 6) * OMP_SINGLE: OpenMP. (line 6) ! * 'one_cmplM2' instruction pattern: Standard Names. (line 741) * operand access: Accessors. (line 6) ! * Operand Access Routines: SSA Operands. (line 116) * operand constraints: Constraints. (line 6) ! * Operand Iterators: SSA Operands. (line 116) * operand predicates: Predicates. (line 6) * operand substitution: Output Template. (line 6) * Operands: Operands. (line 6) + * operands: SSA Operands. (line 6) + * operands <1>: Patterns. (line 53) * operator predicates: Predicates. (line 6) ! * 'optc-gen.awk': Options. (line 6) * Optimization infrastructure for GIMPLE: Tree SSA. (line 6) ! * OPTIMIZE_MODE_SWITCHING: Mode Switching. (line 8) * option specification files: Options. (line 6) * optional hardware or system features: Run-time Target. (line 59) ! * options, directory search: Including Patterns. (line 45) ! * OPTION_DEFAULT_SPECS: Driver. (line 25) * order of register allocation: Allocation Order. (line 6) * ordered_comparison_operator: Machine-Independent Predicates. ! (line 115) * ORDERED_EXPR: Unary and Binary Expressions. (line 6) * Ordering of Patterns: Pattern Ordering. (line 6) ! * ORIGINAL_REGNO: Special Accessors. (line 53) ! * other register constraints: Simple Constraints. (line 171) * outgoing_args_size: Stack Arguments. (line 48) ! * OUTGOING_REGNO: Register Basics. (line 94) ! * OUTGOING_REG_PARM_STACK_SPACE: Stack Arguments. (line 73) * output of assembler code: File Framework. (line 6) * output statements: Output Statement. (line 6) * output templates: Output Template. (line 6) ! * output_asm_insn: Output Statement. (line 52) ! * OUTPUT_QUOTED_STRING: File Framework. (line 106) ! * OVERLAPPING_REGISTER_NAMES: Instruction Output. (line 20) * OVERLOAD: Functions for C++. (line 6) ! * OVERRIDE_ABI_FORMAT: Register Arguments. (line 139) * OVL_CURRENT: Functions for C++. (line 6) * OVL_NEXT: Functions for C++. (line 6) ! * 'p' in constraint: Simple Constraints. (line 162) ! * PAD_VARARGS_DOWN: Register Arguments. (line 220) ! * parallel: Side Effects. (line 209) * parameters, c++ abi: C++ ABI. (line 6) * parameters, miscellaneous: Misc. (line 6) * parameters, precompiled headers: PCH Target. (line 6) ! * paramN_is: GTY Options. (line 134) ! * param_is: GTY Options. (line 115) * parity: Arithmetic. (line 243) ! * 'parityM2' instruction pattern: Standard Names. (line 735) ! * PARM_BOUNDARY: Storage Layout. (line 138) * PARM_DECL: Declarations. (line 6) * PARSE_LDD_OUTPUT: Macros for Initialization. ! (line 125) * passes and files of the compiler: Passes. (line 6) * passing arguments: Interface. (line 36) + * pass_duplicate_computed_gotos: Edges. (line 161) * PATH_SEPARATOR: Filesystem. (line 31) ! * PATTERN: Insns. (line 291) * pattern conditions: Patterns. (line 43) * pattern names: Standard Names. (line 6) * Pattern Ordering: Pattern Ordering. (line 6) * patterns: Patterns. (line 6) ! * pc: Regs and Memory. (line 357) ! * 'pc' and attributes: Insn Lengths. (line 20) ! * 'pc', RTL sharing: Sharing. (line 25) ! * PCC_BITFIELD_TYPE_MATTERS: Storage Layout. (line 322) ! * PCC_STATIC_STRUCT_RETURN: Aggregate Return. (line 64) ! * PC_REGNUM: Register Basics. (line 108) ! * pc_rtx: Regs and Memory. (line 362) * PDImode: Machine Modes. (line 40) ! * peephole optimization, RTL representation: Side Effects. (line 243) * peephole optimizer definitions: Peephole Definitions. (line 6) * per-function data: Per-Function Data. (line 6) * percent sign: Output Template. (line 6) * PHI nodes: SSA. (line 31) ! * PHI_ARG_DEF: SSA. (line 70) ! * PHI_ARG_EDGE: SSA. (line 67) ! * PHI_ARG_ELT: SSA. (line 62) ! * PHI_NUM_ARGS: SSA. (line 58) ! * PHI_RESULT: SSA. (line 55) * PIC: PIC. (line 6) ! * PIC_OFFSET_TABLE_REGNUM: PIC. (line 15) ! * PIC_OFFSET_TABLE_REG_CALL_CLOBBERED: PIC. (line 25) * pipeline hazard recognizer: Processor pipeline description. (line 6) + * pipeline hazard recognizer <1>: Processor pipeline description. + (line 53) * Plugins: Plugins. (line 6) * plus: Arithmetic. (line 14) ! * 'plus' and attributes: Expressions. (line 83) ! * 'plus', canonicalization of: Insn Canonicalizations. (line 27) * PLUS_EXPR: Unary and Binary Expressions. (line 6) ! * Pmode: Misc. (line 329) * pmode_register_operand: Machine-Independent Predicates. ! (line 34) * pointer: Types. (line 6) + * POINTERS_EXTEND_UNSIGNED: Storage Layout. (line 81) * POINTER_PLUS_EXPR: Unary and Binary Expressions. (line 6) ! * POINTER_SIZE: Storage Layout. (line 75) * POINTER_TYPE: Types. (line 6) * popcount: Arithmetic. (line 239) ! * 'popcountM2' instruction pattern: Standard Names. (line 729) ! * pops_args: Function Entry. (line 104) ! * pop_operand: Machine-Independent Predicates. ! (line 87) * portability: Portability. (line 6) * position independent code: PIC. (line 6) + * POSTDECREMENT_EXPR: Unary and Binary Expressions. + (line 6) + * POSTINCREMENT_EXPR: Unary and Binary Expressions. + (line 6) * post_dec: Incdec. (line 25) * post_inc: Incdec. (line 30) * post_modify: Incdec. (line 33) * post_order_compute, inverted_post_order_compute, walk_dominator_tree: Basic Blocks. (line 34) ! * POWI_MAX_MULTS: Misc. (line 827) ! * 'powM3' instruction pattern: Standard Names. (line 603) * pragma: Misc. (line 379) * PREDECREMENT_EXPR: Unary and Binary Expressions. (line 6) * predefined macros: Run-time Target. (line 6) * predicates: Predicates. (line 6) * predicates and machine modes: Predicates. (line 31) * predication: Conditional Execution. (line 6) + * predication <1>: Cond Exec Macros. (line 6) * predict.def: Profile information. (line 24) ! * PREFERRED_DEBUGGING_TYPE: All Debuggers. (line 41) ! * PREFERRED_RELOAD_CLASS: Register Classes. (line 249) ! * PREFERRED_STACK_BOUNDARY: Storage Layout. (line 152) ! * prefetch: Side Effects. (line 316) ! * 'prefetch' and '/v': Flags. (line 214) ! * 'prefetch' instruction pattern: Standard Names. (line 1549) * PREFETCH_SCHEDULE_BARRIER_P: Flags. (line 214) * PREINCREMENT_EXPR: Unary and Binary Expressions. (line 6) * presence_set: Processor pipeline description. ! (line 223) * preserving SSA form: SSA. (line 76) * preserving virtual SSA form: SSA. (line 184) ! * pretend_args_size: Function Entry. (line 110) * prev_active_insn: define_peephole. (line 60) * PREV_INSN: Insns. (line 26) ! * pre_dec: Incdec. (line 8) ! * PRE_GCC3_DWARF_FRAME_REGISTERS: Frame Registers. (line 126) ! * pre_inc: Incdec. (line 22) ! * pre_modify: Incdec. (line 52) ! * PRINT_OPERAND: Instruction Output. (line 95) ! * PRINT_OPERAND_ADDRESS: Instruction Output. (line 122) ! * PRINT_OPERAND_PUNCT_VALID_P: Instruction Output. (line 115) ! * 'probe_stack' instruction pattern: Standard Names. (line 1398) ! * 'probe_stack_address' instruction pattern: Standard Names. (line 1391) * processor functional units: Processor pipeline description. (line 6) + * processor functional units <1>: Processor pipeline description. + (line 68) * processor pipeline description: Processor pipeline description. (line 6) ! * product: Arithmetic. (line 93) * profile feedback: Profile information. (line 14) * profile representation: Profile information. (line 6) ! * PROFILE_BEFORE_PROLOGUE: Profiling. (line 34) ! * PROFILE_HOOK: Profiling. (line 22) * profiling, code generation: Profiling. (line 6) ! * program counter: Regs and Memory. (line 358) * prologue: Function Entry. (line 6) ! * 'prologue' instruction pattern: Standard Names. (line 1487) ! * PROMOTE_MODE: Storage Layout. (line 92) * pseudo registers: Regs and Memory. (line 9) * PSImode: Machine Modes. (line 32) ! * PTRDIFF_TYPE: Type Layout. (line 200) ! * purge_dead_edges: Edges. (line 103) * purge_dead_edges <1>: Maintaining the CFG. (line 81) ! * push address instruction: Simple Constraints. (line 162) ! * 'pushM1' instruction pattern: Standard Names. (line 253) ! * PUSH_ARGS: Stack Arguments. (line 17) ! * PUSH_ARGS_REVERSED: Stack Arguments. (line 25) ! * push_operand: Machine-Independent Predicates. ! (line 80) ! * push_reload: Addressing Modes. (line 176) ! * PUSH_ROUNDING: Stack Arguments. (line 31) * PUT_CODE: RTL Objects. (line 47) ! * PUT_MODE: Machine Modes. (line 282) ! * PUT_REG_NOTE_KIND: Insns. (line 353) ! * PUT_SDB_: SDB and DWARF. (line 105) ! * QCmode: Machine Modes. (line 196) * QFmode: Machine Modes. (line 54) * QImode: Machine Modes. (line 25) ! * 'QImode', in 'insn': Insns. (line 275) * QQmode: Machine Modes. (line 103) * qualified type: Types. (line 6) + * qualified type <1>: Types for C++. (line 6) * querying function unit reservations: Processor pipeline description. (line 90) * question mark: Multi-Alternative. (line 41) ! * quotient: Arithmetic. (line 117) ! * 'r' in constraint: Simple Constraints. (line 64) * RDIV_EXPR: Unary and Binary Expressions. (line 6) ! * READONLY_DATA_SECTION_ASM_OP: Sections. (line 62) * real operands: SSA Operands. (line 6) ! * REALPART_EXPR: Unary and Binary Expressions. ! (line 6) ! * REAL_ARITHMETIC: Floating Point. (line 64) * REAL_CST: Constant expressions. (line 6) ! * REAL_LIBGCC_SPEC: Driver. (line 124) * REAL_NM_FILE_NAME: Macros for Initialization. ! (line 105) * REAL_TYPE: Types. (line 6) ! * REAL_VALUES_EQUAL: Floating Point. (line 31) ! * REAL_VALUES_LESS: Floating Point. (line 37) ! * REAL_VALUE_ABS: Floating Point. (line 81) ! * REAL_VALUE_ATOF: Floating Point. (line 48) ! * REAL_VALUE_FIX: Floating Point. (line 40) ! * REAL_VALUE_FROM_INT: Floating Point. (line 90) ! * REAL_VALUE_ISINF: Floating Point. (line 58) ! * REAL_VALUE_ISNAN: Floating Point. (line 61) ! * REAL_VALUE_NEGATE: Floating Point. (line 78) ! * REAL_VALUE_NEGATIVE: Floating Point. (line 55) ! * REAL_VALUE_TO_INT: Floating Point. (line 84) ! * REAL_VALUE_TO_TARGET_DECIMAL128: Data Output. (line 143) ! * REAL_VALUE_TO_TARGET_DECIMAL32: Data Output. (line 141) ! * REAL_VALUE_TO_TARGET_DECIMAL64: Data Output. (line 142) ! * REAL_VALUE_TO_TARGET_DOUBLE: Data Output. (line 139) ! * REAL_VALUE_TO_TARGET_LONG_DOUBLE: Data Output. (line 140) ! * REAL_VALUE_TO_TARGET_SINGLE: Data Output. (line 138) ! * REAL_VALUE_TYPE: Floating Point. (line 25) ! * REAL_VALUE_UNSIGNED_FIX: Floating Point. (line 43) * recognizing insns: RTL Template. (line 6) ! * recog_data.operand: Instruction Output. (line 54) * RECORD_TYPE: Types. (line 6) + * RECORD_TYPE <1>: Classes. (line 6) * redirect_edge_and_branch: Profile information. (line 71) * redirect_edge_and_branch, redirect_jump: Maintaining the CFG. ! (line 90) ! * 'reduc_smax_M' instruction pattern: Standard Names. (line 307) ! * 'reduc_smin_M' instruction pattern: Standard Names. (line 307) ! * 'reduc_splus_M' instruction pattern: Standard Names. (line 319) ! * 'reduc_umax_M' instruction pattern: Standard Names. (line 313) ! * 'reduc_umin_M' instruction pattern: Standard Names. (line 313) ! * 'reduc_uplus_M' instruction pattern: Standard Names. (line 325) * reference: Types. (line 6) * REFERENCE_TYPE: Types. (line 6) * reg: Regs and Memory. (line 9) ! * 'reg' and '/f': Flags. (line 94) ! * 'reg' and '/i': Flags. (line 89) ! * 'reg' and '/v': Flags. (line 98) ! * 'reg', RTL sharing: Sharing. (line 17) * regclass_for_constraint: C Constraint Interface. ! (line 58) * register allocation order: Allocation Order. (line 6) * register class definitions: Register Classes. (line 6) * register class preference constraints: Class Preferences. (line 6) *************** Concept Index *** 48097,48192 **** (line 69) * Register Transfer Language (RTL): RTL. (line 6) * register usage: Registers. (line 6) - * REGISTER_MOVE_COST: Costs. (line 10) - * REGISTER_NAMES: Instruction Output. (line 9) - * register_operand: Machine-Independent Predicates. - (line 30) - * REGISTER_PREFIX: Instruction Output. (line 152) - * REGISTER_TARGET_PRAGMAS: Misc. (line 380) * registers arguments: Register Arguments. (line 6) ! * registers in constraints: Simple Constraints. (line 66) * REGMODE_NATURAL_SIZE: Values in Registers. ! (line 50) ! * REGNO_MODE_CODE_OK_FOR_BASE_P: Register Classes. (line 176) ! * REGNO_MODE_OK_FOR_BASE_P: Register Classes. (line 153) ! * REGNO_MODE_OK_FOR_REG_BASE_P: Register Classes. (line 163) ! * REGNO_OK_FOR_BASE_P: Register Classes. (line 149) ! * REGNO_OK_FOR_INDEX_P: Register Classes. (line 190) ! * REGNO_REG_CLASS: Register Classes. (line 108) * regs_ever_live: Function Entry. (line 21) * regular expressions: Processor pipeline description. (line 6) * relative costs: Costs. (line 6) ! * RELATIVE_PREFIX_NOT_LINKDIR: Driver. (line 263) ! * reload_completed: Standard Names. (line 1187) ! * reload_in instruction pattern: Standard Names. (line 99) * reload_in_progress: Standard Names. (line 57) ! * reload_out instruction pattern: Standard Names. (line 99) ! * reloading: RTL passes. (line 183) ! * remainder: Arithmetic. (line 136) ! * remainderM3 instruction pattern: Standard Names. (line 555) ! * reorder: GTY Options. (line 210) * representation of RTL: RTL. (line 6) * reservation delays: Processor pipeline description. (line 6) ! * rest_of_decl_compilation: Parsing pass. (line 52) ! * rest_of_type_compilation: Parsing pass. (line 52) ! * restore_stack_block instruction pattern: Standard Names. (line 1322) ! * restore_stack_function instruction pattern: Standard Names. ! (line 1322) ! * restore_stack_nonlocal instruction pattern: Standard Names. ! (line 1322) * RESULT_DECL: Declarations. (line 6) * return: Side Effects. (line 72) ! * return instruction pattern: Standard Names. (line 1160) * return values in registers: Scalar Return. (line 6) ! * RETURN_ADDR_IN_PREVIOUS_FRAME: Frame Layout. (line 135) ! * RETURN_ADDR_OFFSET: Exception Handling. (line 60) ! * RETURN_ADDR_RTX: Frame Layout. (line 124) ! * RETURN_ADDRESS_POINTER_REGNUM: Frame Registers. (line 65) * RETURN_EXPR: Statements for C++. (line 6) * RETURN_STMT: Statements for C++. (line 6) * return_val: Flags. (line 274) ! * return_val, in call_insn: Flags. (line 24) ! * return_val, in reg: Flags. (line 89) ! * return_val, in symbol_ref: Flags. (line 202) ! * returning aggregate values: Aggregate Return. (line 6) ! * returning structures and unions: Interface. (line 10) * reverse probability: Profile information. (line 66) * REVERSE_CONDITION: MODE_CC Condition Codes. ! (line 92) * REVERSIBLE_CC_MODE: MODE_CC Condition Codes. ! (line 78) ! * right rotate: Arithmetic. (line 195) ! * right shift: Arithmetic. (line 190) ! * rintM2 instruction pattern: Standard Names. (line 668) * RISC: Processor pipeline description. (line 6) * roots, marking: GGC Roots. (line 6) ! * rotate: Arithmetic. (line 195) ! * rotatert: Arithmetic. (line 195) ! * rotlM3 instruction pattern: Standard Names. (line 520) ! * rotrM3 instruction pattern: Standard Names. (line 520) * ROUND_DIV_EXPR: Unary and Binary Expressions. (line 6) * ROUND_MOD_EXPR: Unary and Binary Expressions. (line 6) ! * ROUND_TOWARDS_ZERO: Storage Layout. (line 477) ! * ROUND_TYPE_ALIGN: Storage Layout. (line 424) ! * roundM2 instruction pattern: Standard Names. (line 644) * RSHIFT_EXPR: Unary and Binary Expressions. (line 6) * RTL addition: Arithmetic. (line 14) * RTL addition with signed saturation: Arithmetic. (line 14) * RTL addition with unsigned saturation: Arithmetic. (line 14) * RTL classes: RTL Classes. (line 6) ! * RTL comparison: Arithmetic. (line 43) * RTL comparison operations: Comparisons. (line 6) * RTL constant expression types: Constants. (line 6) * RTL constants: Constants. (line 6) * RTL declarations: RTL Declarations. (line 6) ! * RTL difference: Arithmetic. (line 36) * RTL expression: RTL Objects. (line 6) * RTL expressions for arithmetic: Arithmetic. (line 6) * RTL format: RTL Classes. (line 72) --- 47719,47866 ---- (line 69) * Register Transfer Language (RTL): RTL. (line 6) * register usage: Registers. (line 6) * registers arguments: Register Arguments. (line 6) ! * registers in constraints: Simple Constraints. (line 64) ! * REGISTER_MOVE_COST: Costs. (line 9) ! * REGISTER_NAMES: Instruction Output. (line 8) ! * register_operand: Machine-Independent Predicates. ! (line 29) ! * REGISTER_PREFIX: Instruction Output. (line 150) ! * REGISTER_TARGET_PRAGMAS: Misc. (line 379) * REGMODE_NATURAL_SIZE: Values in Registers. ! (line 49) ! * REGNO_MODE_CODE_OK_FOR_BASE_P: Register Classes. (line 172) ! * REGNO_MODE_OK_FOR_BASE_P: Register Classes. (line 150) ! * REGNO_MODE_OK_FOR_REG_BASE_P: Register Classes. (line 160) ! * REGNO_OK_FOR_BASE_P: Register Classes. (line 146) ! * REGNO_OK_FOR_INDEX_P: Register Classes. (line 186) ! * REGNO_REG_CLASS: Register Classes. (line 105) * regs_ever_live: Function Entry. (line 21) * regular expressions: Processor pipeline description. (line 6) + * regular expressions <1>: Processor pipeline description. + (line 105) + * REG_ALLOC_ORDER: Allocation Order. (line 8) + * REG_BR_PRED: Insns. (line 532) + * REG_BR_PROB: Insns. (line 526) + * REG_BR_PROB_BASE, BB_FREQ_BASE, count: Profile information. + (line 82) + * REG_BR_PROB_BASE, EDGE_FREQUENCY: Profile information. + (line 52) + * REG_CC_SETTER: Insns. (line 498) + * REG_CC_USER: Insns. (line 498) + * reg_class_contents: Register Basics. (line 59) + * REG_CLASS_CONTENTS: Register Classes. (line 91) + * REG_CLASS_FROM_CONSTRAINT: Old Constraints. (line 33) + * REG_CLASS_FROM_LETTER: Old Constraints. (line 25) + * REG_CLASS_NAMES: Register Classes. (line 86) + * REG_CROSSING_JUMP: Insns. (line 412) + * REG_DEAD: Insns. (line 364) + * REG_DEAD, REG_UNUSED: Liveness information. + (line 32) + * REG_DEP_ANTI: Insns. (line 520) + * REG_DEP_OUTPUT: Insns. (line 516) + * REG_DEP_TRUE: Insns. (line 513) + * REG_EH_REGION, EDGE_ABNORMAL_CALL: Edges. (line 109) + * REG_EQUAL: Insns. (line 427) + * REG_EQUIV: Insns. (line 427) + * REG_EXPR: Special Accessors. (line 58) + * REG_FRAME_RELATED_EXPR: Insns. (line 538) + * REG_FUNCTION_VALUE_P: Flags. (line 89) + * REG_INC: Insns. (line 380) + * 'reg_label' and '/v': Flags. (line 65) + * REG_LABEL_OPERAND: Insns. (line 394) + * REG_LABEL_TARGET: Insns. (line 403) + * reg_names: Register Basics. (line 59) + * reg_names <1>: Instruction Output. (line 107) + * REG_NONNEG: Insns. (line 386) + * REG_NOTES: Insns. (line 328) + * REG_NOTE_KIND: Insns. (line 353) + * REG_OFFSET: Special Accessors. (line 62) + * REG_OK_STRICT: Addressing Modes. (line 99) + * REG_PARM_STACK_SPACE: Stack Arguments. (line 58) + * 'REG_PARM_STACK_SPACE', and 'TARGET_FUNCTION_ARG': Register Arguments. + (line 50) + * REG_POINTER: Flags. (line 94) + * REG_SETJMP: Insns. (line 421) + * REG_UNUSED: Insns. (line 373) + * REG_USERVAR_P: Flags. (line 98) + * REG_VALUE_IN_UNWIND_CONTEXT: Frame Registers. (line 158) + * REG_WORDS_BIG_ENDIAN: Storage Layout. (line 35) * relative costs: Costs. (line 6) ! * RELATIVE_PREFIX_NOT_LINKDIR: Driver. (line 262) ! * reloading: RTL passes. (line 182) ! * reload_completed: Standard Names. (line 1180) ! * 'reload_in' instruction pattern: Standard Names. (line 98) * reload_in_progress: Standard Names. (line 57) ! * 'reload_out' instruction pattern: Standard Names. (line 98) ! * remainder: Arithmetic. (line 137) ! * 'remainderM3' instruction pattern: Standard Names. (line 549) ! * reorder: GTY Options. (line 220) * representation of RTL: RTL. (line 6) * reservation delays: Processor pipeline description. (line 6) ! * 'restore_stack_block' instruction pattern: Standard Names. (line 1312) ! * 'restore_stack_function' instruction pattern: Standard Names. ! (line 1312) ! * 'restore_stack_nonlocal' instruction pattern: Standard Names. ! (line 1312) ! * rest_of_decl_compilation: Parsing pass. (line 51) ! * rest_of_type_compilation: Parsing pass. (line 51) * RESULT_DECL: Declarations. (line 6) * return: Side Effects. (line 72) ! * 'return' instruction pattern: Standard Names. (line 1154) * return values in registers: Scalar Return. (line 6) ! * returning aggregate values: Aggregate Return. (line 6) ! * returning structures and unions: Interface. (line 10) ! * RETURN_ADDRESS_POINTER_REGNUM: Frame Registers. (line 64) ! * RETURN_ADDR_IN_PREVIOUS_FRAME: Frame Layout. (line 133) ! * RETURN_ADDR_OFFSET: Exception Handling. (line 59) ! * RETURN_ADDR_RTX: Frame Layout. (line 122) * RETURN_EXPR: Statements for C++. (line 6) * RETURN_STMT: Statements for C++. (line 6) * return_val: Flags. (line 274) ! * 'return_val', in 'call_insn': Flags. (line 24) ! * 'return_val', in 'reg': Flags. (line 89) ! * 'return_val', in 'symbol_ref': Flags. (line 202) * reverse probability: Profile information. (line 66) * REVERSE_CONDITION: MODE_CC Condition Codes. ! (line 91) * REVERSIBLE_CC_MODE: MODE_CC Condition Codes. ! (line 77) ! * right rotate: Arithmetic. (line 196) ! * right shift: Arithmetic. (line 191) ! * 'rintM2' instruction pattern: Standard Names. (line 662) * RISC: Processor pipeline description. (line 6) + * RISC <1>: Processor pipeline description. + (line 223) * roots, marking: GGC Roots. (line 6) ! * rotate: Arithmetic. (line 196) ! * rotate <1>: Arithmetic. (line 196) ! * rotatert: Arithmetic. (line 196) ! * 'rotlM3' instruction pattern: Standard Names. (line 514) ! * 'rotrM3' instruction pattern: Standard Names. (line 514) ! * 'roundM2' instruction pattern: Standard Names. (line 638) * ROUND_DIV_EXPR: Unary and Binary Expressions. (line 6) * ROUND_MOD_EXPR: Unary and Binary Expressions. (line 6) ! * ROUND_TOWARDS_ZERO: Storage Layout. (line 471) ! * ROUND_TYPE_ALIGN: Storage Layout. (line 419) * RSHIFT_EXPR: Unary and Binary Expressions. (line 6) * RTL addition: Arithmetic. (line 14) * RTL addition with signed saturation: Arithmetic. (line 14) * RTL addition with unsigned saturation: Arithmetic. (line 14) * RTL classes: RTL Classes. (line 6) ! * RTL comparison: Arithmetic. (line 46) * RTL comparison operations: Comparisons. (line 6) * RTL constant expression types: Constants. (line 6) * RTL constants: Constants. (line 6) * RTL declarations: RTL Declarations. (line 6) ! * RTL difference: Arithmetic. (line 38) * RTL expression: RTL Objects. (line 6) * RTL expressions for arithmetic: Arithmetic. (line 6) * RTL format: RTL Classes. (line 72) *************** Concept Index *** 48205,48213 **** * RTL side effect expressions: Side Effects. (line 6) * RTL strings: RTL Objects. (line 6) * RTL structure sharing assumptions: Sharing. (line 6) ! * RTL subtraction: Arithmetic. (line 36) ! * RTL subtraction with signed saturation: Arithmetic. (line 36) ! * RTL subtraction with unsigned saturation: Arithmetic. (line 36) * RTL sum: Arithmetic. (line 14) * RTL vectors: RTL Objects. (line 6) * RTL_CONST_CALL_P: Flags. (line 19) --- 47879,47887 ---- * RTL side effect expressions: Side Effects. (line 6) * RTL strings: RTL Objects. (line 6) * RTL structure sharing assumptions: Sharing. (line 6) ! * RTL subtraction: Arithmetic. (line 38) ! * RTL subtraction with signed saturation: Arithmetic. (line 38) ! * RTL subtraction with unsigned saturation: Arithmetic. (line 38) * RTL sum: Arithmetic. (line 14) * RTL vectors: RTL Objects. (line 6) * RTL_CONST_CALL_P: Flags. (line 19) *************** Concept Index *** 48219,48991 **** * RTX_FRAME_RELATED_P: Flags. (line 107) * run-time conventions: Interface. (line 6) * run-time target specification: Run-time Target. (line 6) ! * s in constraint: Simple Constraints. (line 102) ! * same_type_p: Types. (line 88) ! * SAmode: Machine Modes. (line 148) ! * sat_fract: Conversions. (line 90) ! * satfractMN2 instruction pattern: Standard Names. (line 925) ! * satfractunsMN2 instruction pattern: Standard Names. (line 938) * satisfies_constraint_: C Constraint Interface. ! (line 47) * SAVE_EXPR: Unary and Binary Expressions. (line 6) ! * save_stack_block instruction pattern: Standard Names. (line 1322) ! * save_stack_function instruction pattern: Standard Names. (line 1322) ! * save_stack_nonlocal instruction pattern: Standard Names. (line 1322) ! * SBSS_SECTION_ASM_OP: Sections. (line 76) * Scalar evolutions: Scalar evolutions. (line 6) * scalars, returned as values: Scalar Return. (line 6) * SCHED_GROUP_P: Flags. (line 148) ! * SCmode: Machine Modes. (line 197) ! * scratch: Regs and Memory. (line 298) ! * scratch operands: Regs and Memory. (line 298) ! * scratch, RTL sharing: Sharing. (line 35) * scratch_operand: Machine-Independent Predicates. ! (line 50) ! * SDATA_SECTION_ASM_OP: Sections. (line 58) ! * SDB_ALLOW_FORWARD_REFERENCES: SDB and DWARF. (line 124) ! * SDB_ALLOW_UNKNOWN_REFERENCES: SDB and DWARF. (line 119) ! * SDB_DEBUGGING_INFO: SDB and DWARF. (line 9) ! * SDB_DELIM: SDB and DWARF. (line 112) ! * SDB_OUTPUT_SOURCE_LINE: SDB and DWARF. (line 129) * SDmode: Machine Modes. (line 85) ! * sdot_prodM instruction pattern: Standard Names. (line 334) ! * search options: Including Patterns. (line 44) ! * SECONDARY_INPUT_RELOAD_CLASS: Register Classes. (line 396) ! * SECONDARY_MEMORY_NEEDED: Register Classes. (line 452) ! * SECONDARY_MEMORY_NEEDED_MODE: Register Classes. (line 471) ! * SECONDARY_MEMORY_NEEDED_RTX: Register Classes. (line 462) ! * SECONDARY_OUTPUT_RELOAD_CLASS: Register Classes. (line 397) ! * SECONDARY_RELOAD_CLASS: Register Classes. (line 395) * SELECT_CC_MODE: MODE_CC Condition Codes. ! (line 7) ! * sequence: Side Effects. (line 260) * Sequence iterators: Sequence iterators. (line 6) * set: Side Effects. (line 15) ! * set and /f: Flags. (line 107) ! * SET_ASM_OP: Label Output. (line 419) * set_attr: Tagging Insns. (line 31) * set_attr_alternative: Tagging Insns. (line 49) ! * set_bb_seq: GIMPLE sequences. (line 76) ! * SET_BY_PIECES_P: Costs. (line 206) * SET_DEST: Side Effects. (line 69) * SET_IS_RETURN_P: Flags. (line 157) * SET_LABEL_KIND: Insns. (line 146) * set_optab_libfunc: Library Calls. (line 15) ! * SET_RATIO: Costs. (line 194) * SET_SRC: Side Effects. (line 69) ! * set_thread_pointerMODE instruction pattern: Standard Names. (line 1856) * SET_TYPE_STRUCTURAL_EQUALITY: Types. (line 6) ! * setmemM instruction pattern: Standard Names. (line 793) ! * SETUP_FRAME_ADDRESSES: Frame Layout. (line 102) ! * SF_SIZE: Type Layout. (line 136) * SFmode: Machine Modes. (line 66) * sharing of RTL components: Sharing. (line 6) ! * shift: Arithmetic. (line 173) ! * SHIFT_COUNT_TRUNCATED: Misc. (line 113) * SHLIB_SUFFIX: Macros for Initialization. ! (line 135) ! * SHORT_ACCUM_TYPE_SIZE: Type Layout. (line 83) ! * SHORT_FRACT_TYPE_SIZE: Type Layout. (line 63) ! * SHORT_IMMEDIATES_SIGN_EXTEND: Misc. (line 87) ! * SHORT_TYPE_SIZE: Type Layout. (line 16) ! * sibcall_epilogue instruction pattern: Standard Names. (line 1532) ! * sibling call: Edges. (line 122) * SIBLING_CALL_P: Flags. (line 161) ! * SIG_ATOMIC_TYPE: Type Layout. (line 252) * sign_extend: Conversions. (line 23) * sign_extract: Bit-Fields. (line 8) ! * sign_extract, canonicalization of: Insn Canonicalizations. ! (line 88) ! * signed division: Arithmetic. (line 116) ! * signed division with signed saturation: Arithmetic. (line 116) ! * signed maximum: Arithmetic. (line 141) ! * signed minimum: Arithmetic. (line 141) * SImode: Machine Modes. (line 37) * simple constraints: Simple Constraints. (line 6) * simple_return: Side Effects. (line 86) ! * simple_return instruction pattern: Standard Names. (line 1176) * sincos math function, implicit usage: Library Calls. (line 78) ! * sincosM3 instruction pattern: Standard Names. (line 580) ! * sinM2 instruction pattern: Standard Names. (line 572) ! * SIZE_ASM_OP: Label Output. (line 35) ! * SIZE_TYPE: Type Layout. (line 175) ! * SIZETYPE: Type Layout. (line 191) ! * skip: GTY Options. (line 77) ! * SLOW_BYTE_ACCESS: Costs. (line 118) ! * SLOW_UNALIGNED_ACCESS: Costs. (line 133) ! * smax: Arithmetic. (line 141) ! * smin: Arithmetic. (line 141) ! * sms, swing, software pipelining: RTL passes. (line 132) ! * smulM3_highpart instruction pattern: Standard Names. (line 435) * soft float library: Soft float library routines. (line 6) ! * special: GTY Options. (line 295) * special predicates: Predicates. (line 31) * SPECS: Target Fragment. (line 191) * speed of instructions: Costs. (line 6) - * split_block: Maintaining the CFG. - (line 99) * splitting instructions: Insn Splitting. (line 6) * SQmode: Machine Modes. (line 111) * sqrt: Arithmetic. (line 207) ! * sqrtM2 instruction pattern: Standard Names. (line 538) * square root: Arithmetic. (line 207) ! * ss_abs: Arithmetic. (line 200) ! * ss_ashift: Arithmetic. (line 173) ! * ss_div: Arithmetic. (line 116) ! * ss_minus: Arithmetic. (line 36) ! * ss_mult: Arithmetic. (line 92) ! * ss_neg: Arithmetic. (line 81) * ss_plus: Arithmetic. (line 14) * ss_truncate: Conversions. (line 43) - * SSA: SSA. (line 6) - * SSA_NAME_DEF_STMT: SSA. (line 219) - * SSA_NAME_VERSION: SSA. (line 224) - * ssaddM3 instruction pattern: Standard Names. (line 269) - * ssashlM3 instruction pattern: Standard Names. (line 510) - * ssdivM3 instruction pattern: Standard Names. (line 269) - * ssmaddMN4 instruction pattern: Standard Names. (line 458) - * ssmsubMN4 instruction pattern: Standard Names. (line 482) - * ssmulM3 instruction pattern: Standard Names. (line 269) - * ssnegM2 instruction pattern: Standard Names. (line 532) - * sssubM3 instruction pattern: Standard Names. (line 269) - * ssum_widenM3 instruction pattern: Standard Names. (line 344) * stack arguments: Stack Arguments. (line 6) * stack frame layout: Frame Layout. (line 6) * stack smashing protection: Stack Smashing Protection. (line 6) ! * STACK_ALIGNMENT_NEEDED: Frame Layout. (line 48) ! * STACK_BOUNDARY: Storage Layout. (line 146) ! * STACK_CHECK_BUILTIN: Stack Checking. (line 32) ! * STACK_CHECK_FIXED_FRAME_SIZE: Stack Checking. (line 83) ! * STACK_CHECK_MAX_FRAME_SIZE: Stack Checking. (line 74) ! * STACK_CHECK_MAX_VAR_SIZE: Stack Checking. (line 90) ! * STACK_CHECK_MOVING_SP: Stack Checking. (line 54) ! * STACK_CHECK_PROBE_INTERVAL_EXP: Stack Checking. (line 46) ! * STACK_CHECK_PROTECT: Stack Checking. (line 63) ! * STACK_CHECK_STATIC_BUILTIN: Stack Checking. (line 39) ! * STACK_DYNAMIC_OFFSET: Frame Layout. (line 75) ! * STACK_DYNAMIC_OFFSET and virtual registers: Regs and Memory. (line 83) ! * STACK_GROWS_DOWNWARD: Frame Layout. (line 9) ! * STACK_PARMS_IN_REG_PARM_AREA: Stack Arguments. (line 84) ! * STACK_POINTER_OFFSET: Frame Layout. (line 58) ! * STACK_POINTER_OFFSET and virtual registers: Regs and Memory. (line 93) ! * STACK_POINTER_REGNUM: Frame Registers. (line 9) ! * STACK_POINTER_REGNUM and virtual registers: Regs and Memory. (line 83) * stack_pointer_rtx: Frame Registers. (line 104) ! * stack_protect_set instruction pattern: Standard Names. (line 1866) ! * stack_protect_test instruction pattern: Standard Names. (line 1876) ! * STACK_PUSH_CODE: Frame Layout. (line 17) ! * STACK_REG_COVER_CLASS: Stack Registers. (line 23) ! * STACK_REGS: Stack Registers. (line 20) ! * STACK_SAVEAREA_MODE: Storage Layout. (line 440) ! * STACK_SIZE_MODE: Storage Layout. (line 452) ! * STACK_SLOT_ALIGNMENT: Storage Layout. (line 271) * standard pattern names: Standard Names. (line 6) ! * STANDARD_STARTFILE_PREFIX: Driver. (line 275) ! * STANDARD_STARTFILE_PREFIX_1: Driver. (line 282) ! * STANDARD_STARTFILE_PREFIX_2: Driver. (line 289) ! * STARTFILE_SPEC: Driver. (line 148) ! * STARTING_FRAME_OFFSET: Frame Layout. (line 39) ! * STARTING_FRAME_OFFSET and virtual registers: Regs and Memory. (line 74) * Statement and operand traversals: Statement and operand traversals. (line 6) * Statement Sequences: Statement Sequences. (line 6) ! * statements <1>: Statements for C++. (line 6) * statements: Function Properties. (line 6) ! * Statements: Statements. (line 6) * Static profile estimation: Profile information. (line 24) * static single assignment: SSA. (line 6) ! * STATIC_CHAIN_INCOMING_REGNUM: Frame Registers. (line 78) ! * STATIC_CHAIN_REGNUM: Frame Registers. (line 77) ! * stdarg.h and register arguments: Register Arguments. (line 45) ! * STDC_0_IN_SYSTEM_HEADERS: Misc. (line 351) * STMT_EXPR: Unary and Binary Expressions. (line 6) * STMT_IS_FULL_EXPR_P: Statements for C++. (line 22) * storage layout: Storage Layout. (line 6) ! * STORE_BY_PIECES_P: Costs. (line 213) ! * STORE_FLAG_VALUE: Misc. (line 202) ! * store_multiple instruction pattern: Standard Names. (line 160) ! * strcpy: Storage Layout. (line 231) ! * STRICT_ALIGNMENT: Storage Layout. (line 321) * strict_low_part: RTL Declarations. (line 9) ! * strict_memory_address_p: Addressing Modes. (line 187) * STRING_CST: Constant expressions. (line 6) * STRING_POOL_ADDRESS_P: Flags. (line 165) ! * strlenM instruction pattern: Standard Names. (line 860) * structure value address: Aggregate Return. (line 6) - * STRUCTURE_SIZE_BOUNDARY: Storage Layout. (line 313) * structures, returning: Interface. (line 10) ! * subM3 instruction pattern: Standard Names. (line 269) * SUBOBJECT: Statements for C++. (line 6) * SUBOBJECT_CLEANUP: Statements for C++. (line 6) * subreg: Regs and Memory. (line 97) ! * subreg and /s: Flags. (line 187) ! * subreg and /u: Flags. (line 180) ! * subreg and /u and /v: Flags. (line 170) ! * subreg, in strict_low_part: RTL Declarations. (line 9) ! * SUBREG_BYTE: Regs and Memory. (line 289) * SUBREG_PROMOTED_UNSIGNED_P: Flags. (line 170) * SUBREG_PROMOTED_UNSIGNED_SET: Flags. (line 180) * SUBREG_PROMOTED_VAR_P: Flags. (line 187) ! * SUBREG_REG: Regs and Memory. (line 289) ! * subst iterators in .md files: Subst Iterators. (line 6) * SUCCESS_EXIT_CODE: Host Misc. (line 12) * SUPPORTS_INIT_PRIORITY: Macros for Initialization. ! (line 58) ! * SUPPORTS_ONE_ONLY: Label Output. (line 259) ! * SUPPORTS_WEAK: Label Output. (line 233) * SWITCH_BODY: Statements for C++. (line 6) * SWITCH_COND: Statements for C++. (line 6) * SWITCH_STMT: Statements for C++. (line 6) ! * SWITCHABLE_TARGET: Run-time Target. (line 165) ! * SYMBOL_FLAG_ANCHOR: Special Accessors. (line 120) ! * SYMBOL_FLAG_EXTERNAL: Special Accessors. (line 102) ! * SYMBOL_FLAG_FUNCTION: Special Accessors. (line 95) ! * SYMBOL_FLAG_HAS_BLOCK_INFO: Special Accessors. (line 116) ! * SYMBOL_FLAG_LOCAL: Special Accessors. (line 98) ! * SYMBOL_FLAG_SMALL: Special Accessors. (line 107) ! * SYMBOL_FLAG_TLS_SHIFT: Special Accessors. (line 111) ! * symbol_ref: Constants. (line 87) ! * symbol_ref and /f: Flags. (line 165) ! * symbol_ref and /i: Flags. (line 202) ! * symbol_ref and /u: Flags. (line 10) ! * symbol_ref and /v: Flags. (line 206) ! * symbol_ref, RTL sharing: Sharing. (line 20) ! * SYMBOL_REF_ANCHOR_P: Special Accessors. (line 120) ! * SYMBOL_REF_BLOCK: Special Accessors. (line 133) ! * SYMBOL_REF_BLOCK_OFFSET: Special Accessors. (line 138) ! * SYMBOL_REF_CONSTANT: Special Accessors. (line 81) ! * SYMBOL_REF_DATA: Special Accessors. (line 85) ! * SYMBOL_REF_DECL: Special Accessors. (line 69) ! * SYMBOL_REF_EXTERNAL_P: Special Accessors. (line 102) * SYMBOL_REF_FLAG: Flags. (line 206) ! * SYMBOL_REF_FLAG, in TARGET_ENCODE_SECTION_INFO: Sections. (line 277) ! * SYMBOL_REF_FLAGS: Special Accessors. (line 89) ! * SYMBOL_REF_FUNCTION_P: Special Accessors. (line 95) ! * SYMBOL_REF_HAS_BLOCK_INFO_P: Special Accessors. (line 116) ! * SYMBOL_REF_LOCAL_P: Special Accessors. (line 98) ! * SYMBOL_REF_SMALL_P: Special Accessors. (line 107) ! * SYMBOL_REF_TLS_MODEL: Special Accessors. (line 111) * SYMBOL_REF_USED: Flags. (line 197) * SYMBOL_REF_WEAK: Flags. (line 202) ! * symbolic label: Sharing. (line 20) ! * sync_addMODE instruction pattern: Standard Names. (line 1631) ! * sync_andMODE instruction pattern: Standard Names. (line 1631) ! * sync_compare_and_swapMODE instruction pattern: Standard Names. ! (line 1591) ! * sync_iorMODE instruction pattern: Standard Names. (line 1631) ! * sync_lock_releaseMODE instruction pattern: Standard Names. (line 1696) ! * sync_lock_test_and_setMODE instruction pattern: Standard Names. ! (line 1670) ! * sync_nandMODE instruction pattern: Standard Names. (line 1631) ! * sync_new_addMODE instruction pattern: Standard Names. (line 1663) ! * sync_new_andMODE instruction pattern: Standard Names. (line 1663) ! * sync_new_iorMODE instruction pattern: Standard Names. (line 1663) ! * sync_new_nandMODE instruction pattern: Standard Names. (line 1663) ! * sync_new_subMODE instruction pattern: Standard Names. (line 1663) ! * sync_new_xorMODE instruction pattern: Standard Names. (line 1663) ! * sync_old_addMODE instruction pattern: Standard Names. (line 1646) ! * sync_old_andMODE instruction pattern: Standard Names. (line 1646) ! * sync_old_iorMODE instruction pattern: Standard Names. (line 1646) ! * sync_old_nandMODE instruction pattern: Standard Names. (line 1646) ! * sync_old_subMODE instruction pattern: Standard Names. (line 1646) ! * sync_old_xorMODE instruction pattern: Standard Names. (line 1646) ! * sync_subMODE instruction pattern: Standard Names. (line 1631) ! * sync_xorMODE instruction pattern: Standard Names. (line 1631) ! * SYSROOT_HEADERS_SUFFIX_SPEC: Driver. (line 177) ! * SYSROOT_SUFFIX_SPEC: Driver. (line 172) ! * t-TARGET: Target Fragment. (line 6) * table jump: Basic Blocks. (line 67) ! * tablejump instruction pattern: Standard Names. (line 1249) * tag: GTY Options. (line 82) * tagging insns: Tagging Insns. (line 6) * tail calls: Tail Calls. (line 6) ! * TAmode: Machine Modes. (line 156) * target attributes: Target Attributes. (line 6) * target description macros: Target Macros. (line 6) * target functions: Target Structure. (line 6) * target hooks: Target Structure. (line 6) * target makefile fragment: Target Fragment. (line 6) * target specifications: Run-time Target. (line 6) * TARGET_ADDR_SPACE_ADDRESS_MODE: Named Address Spaces. ! (line 45) * TARGET_ADDR_SPACE_CONVERT: Named Address Spaces. ! (line 88) * TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P: Named Address Spaces. ! (line 63) * TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS: Named Address Spaces. ! (line 72) * TARGET_ADDR_SPACE_POINTER_MODE: Named Address Spaces. ! (line 38) * TARGET_ADDR_SPACE_SUBSET_P: Named Address Spaces. ! (line 79) * TARGET_ADDR_SPACE_VALID_POINTER_MODE: Named Address Spaces. ! (line 52) ! * TARGET_ADDRESS_COST: Costs. (line 302) ! * TARGET_ALIGN_ANON_BITFIELD: Storage Layout. (line 398) ! * TARGET_ALLOCATE_INITIAL_VALUE: Misc. (line 700) * TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS: Misc. (line 980) ! * TARGET_ALWAYS_STRIP_DOTDOT: Driver. (line 247) ! * TARGET_ARG_PARTIAL_BYTES: Register Arguments. (line 84) * TARGET_ARM_EABI_UNWINDER: Exception Region Output. ! (line 129) ! * TARGET_ARRAY_MODE_SUPPORTED_P: Register Arguments. (line 337) * TARGET_ASAN_SHADOW_OFFSET: Misc. (line 1008) ! * TARGET_ASM_ALIGNED_DI_OP: Data Output. (line 10) ! * TARGET_ASM_ALIGNED_HI_OP: Data Output. (line 8) ! * TARGET_ASM_ALIGNED_SI_OP: Data Output. (line 9) ! * TARGET_ASM_ALIGNED_TI_OP: Data Output. (line 11) ! * TARGET_ASM_ASSEMBLE_VISIBILITY: Label Output. (line 271) ! * TARGET_ASM_BYTE_OP: Data Output. (line 7) ! * TARGET_ASM_CAN_OUTPUT_MI_THUNK: Function Entry. (line 207) ! * TARGET_ASM_CLOSE_PAREN: Data Output. (line 131) ! * TARGET_ASM_CODE_END: File Framework. (line 59) * TARGET_ASM_CONSTRUCTOR: Macros for Initialization. ! (line 69) ! * TARGET_ASM_DECLARE_CONSTANT_NAME: Label Output. (line 154) * TARGET_ASM_DESTRUCTOR: Macros for Initialization. ! (line 83) ! * TARGET_ASM_EMIT_EXCEPT_PERSONALITY: Dispatch Tables. (line 82) ! * TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL: Dispatch Tables. (line 74) ! * TARGET_ASM_EMIT_UNWIND_LABEL: Dispatch Tables. (line 63) ! * TARGET_ASM_EXTERNAL_LIBCALL: Label Output. (line 306) ! * TARGET_ASM_FILE_END: File Framework. (line 37) ! * TARGET_ASM_FILE_START: File Framework. (line 9) ! * TARGET_ASM_FILE_START_APP_OFF: File Framework. (line 17) ! * TARGET_ASM_FILE_START_FILE_DIRECTIVE: File Framework. (line 31) ! * TARGET_ASM_FINAL_POSTSCAN_INSN: Instruction Output. (line 84) ! * TARGET_ASM_FUNCTION_BEGIN_EPILOGUE: Function Entry. (line 61) ! * TARGET_ASM_FUNCTION_END_PROLOGUE: Function Entry. (line 55) ! * TARGET_ASM_FUNCTION_EPILOGUE: Function Entry. (line 68) ! * TARGET_ASM_FUNCTION_PROLOGUE: Function Entry. (line 11) ! * TARGET_ASM_FUNCTION_RODATA_SECTION: Sections. (line 215) ! * TARGET_ASM_FUNCTION_SECTION: File Framework. (line 124) * TARGET_ASM_FUNCTION_SWITCHED_TEXT_SECTIONS: File Framework. ! (line 134) ! * TARGET_ASM_GLOBALIZE_DECL_NAME: Label Output. (line 199) ! * TARGET_ASM_GLOBALIZE_LABEL: Label Output. (line 190) ! * TARGET_ASM_INIT_SECTIONS: Sections. (line 160) ! * TARGET_ASM_INTEGER: Data Output. (line 27) ! * TARGET_ASM_INTERNAL_LABEL: Label Output. (line 350) ! * TARGET_ASM_JUMP_ALIGN_MAX_SKIP: Alignment Output. (line 22) * TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP: Alignment Output. ! (line 36) ! * TARGET_ASM_LABEL_ALIGN_MAX_SKIP: Alignment Output. (line 69) ! * TARGET_ASM_LOOP_ALIGN_MAX_SKIP: Alignment Output. (line 54) ! * TARGET_ASM_LTO_END: File Framework. (line 54) ! * TARGET_ASM_LTO_START: File Framework. (line 49) ! * TARGET_ASM_MARK_DECL_PRESERVED: Label Output. (line 313) ! * TARGET_ASM_MERGEABLE_RODATA_PREFIX: Sections. (line 222) ! * TARGET_ASM_NAMED_SECTION: File Framework. (line 116) ! * TARGET_ASM_OPEN_PAREN: Data Output. (line 130) ! * TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA: Data Output. (line 40) ! * TARGET_ASM_OUTPUT_ANCHOR: Anchored Addresses. (line 44) ! * TARGET_ASM_OUTPUT_DWARF_DTPREL: SDB and DWARF. (line 101) ! * TARGET_ASM_OUTPUT_IDENT: File Framework. (line 102) ! * TARGET_ASM_OUTPUT_MI_THUNK: Function Entry. (line 165) ! * TARGET_ASM_OUTPUT_SOURCE_FILENAME: File Framework. (line 94) ! * TARGET_ASM_RECORD_GCC_SWITCHES: File Framework. (line 165) ! * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION: File Framework. (line 209) ! * TARGET_ASM_RELOC_RW_MASK: Sections. (line 169) ! * TARGET_ASM_SELECT_RTX_SECTION: Sections. (line 232) ! * TARGET_ASM_SELECT_SECTION: Sections. (line 181) ! * TARGET_ASM_TM_CLONE_TABLE_SECTION: Sections. (line 227) ! * TARGET_ASM_TRAMPOLINE_TEMPLATE: Trampolines. (line 29) * TARGET_ASM_TTYPE: Exception Region Output. ! (line 123) ! * TARGET_ASM_UNALIGNED_DI_OP: Data Output. (line 14) ! * TARGET_ASM_UNALIGNED_HI_OP: Data Output. (line 12) ! * TARGET_ASM_UNALIGNED_SI_OP: Data Output. (line 13) ! * TARGET_ASM_UNALIGNED_TI_OP: Data Output. (line 15) ! * TARGET_ASM_UNIQUE_SECTION: Sections. (line 202) ! * TARGET_ASM_UNWIND_EMIT: Dispatch Tables. (line 88) ! * TARGET_ASM_UNWIND_EMIT_BEFORE_INSN: Dispatch Tables. (line 93) * TARGET_ATOMIC_TEST_AND_SET_TRUEVAL: Misc. (line 1018) ! * TARGET_ATTRIBUTE_TABLE: Target Attributes. (line 11) ! * TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P: Target Attributes. (line 19) ! * TARGET_BINDS_LOCAL_P: Sections. (line 309) ! * TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED: Misc. (line 797) ! * TARGET_BRANCH_TARGET_REGISTER_CLASS: Misc. (line 789) ! * TARGET_BUILD_BUILTIN_VA_LIST: Register Arguments. (line 273) ! * TARGET_BUILTIN_DECL: Misc. (line 597) ! * TARGET_BUILTIN_RECIPROCAL: Addressing Modes. (line 264) ! * TARGET_BUILTIN_SETJMP_FRAME_VALUE: Frame Layout. (line 109) ! * TARGET_C99_FUNCTIONS: Library Calls. (line 71) ! * TARGET_C_PREINCLUDE: Misc. (line 362) ! * TARGET_CALLEE_COPIES: Register Arguments. (line 116) ! * TARGET_CAN_ELIMINATE: Elimination. (line 75) ! * TARGET_CAN_FOLLOW_JUMP: Misc. (line 687) ! * TARGET_CAN_INLINE_P: Target Attributes. (line 158) ! * TARGET_CANNOT_FORCE_CONST_MEM: Addressing Modes. (line 237) ! * TARGET_CANNOT_MODIFY_JUMPS_P: Misc. (line 776) ! * TARGET_CANONICAL_VA_LIST_TYPE: Register Arguments. (line 294) * TARGET_CANONICALIZE_COMPARISON: MODE_CC Condition Codes. ! (line 57) ! * TARGET_CASE_VALUES_THRESHOLD: Misc. (line 47) * TARGET_CC_MODES_COMPATIBLE: MODE_CC Condition Codes. ! (line 121) ! * TARGET_CHECK_PCH_TARGET_FLAGS: PCH Target. (line 28) ! * TARGET_CHECK_STRING_OBJECT_FORMAT_ARG: Run-time Target. (line 121) ! * TARGET_CLASS_LIKELY_SPILLED_P: Register Classes. (line 494) ! * TARGET_CLASS_MAX_NREGS: Register Classes. (line 511) ! * TARGET_COMMUTATIVE_P: Misc. (line 693) ! * TARGET_COMP_TYPE_ATTRIBUTES: Target Attributes. (line 27) ! * TARGET_COMPARE_VERSION_PRIORITY: Misc. (line 637) ! * TARGET_CONDITIONAL_REGISTER_USAGE: Register Basics. (line 60) * TARGET_CONST_ANCHOR: Misc. (line 991) ! * TARGET_CONST_NOT_OK_FOR_DEBUG_P: Addressing Modes. (line 232) ! * TARGET_CONVERT_TO_TYPE: Misc. (line 944) ! * TARGET_CPU_CPP_BUILTINS: Run-time Target. (line 9) ! * TARGET_CXX_ADJUST_CLASS_AT_DEFINITION: C++ ABI. (line 87) ! * TARGET_CXX_CDTOR_RETURNS_THIS: C++ ABI. (line 38) ! * TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT: C++ ABI. (line 62) ! * TARGET_CXX_COOKIE_HAS_SIZE: C++ ABI. (line 25) ! * TARGET_CXX_DECL_MANGLING_CONTEXT: C++ ABI. (line 93) ! * TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY: C++ ABI. (line 54) ! * TARGET_CXX_GET_COOKIE_SIZE: C++ ABI. (line 18) ! * TARGET_CXX_GUARD_MASK_BIT: C++ ABI. (line 12) ! * TARGET_CXX_GUARD_TYPE: C++ ABI. (line 7) ! * TARGET_CXX_IMPORT_EXPORT_CLASS: C++ ABI. (line 30) ! * TARGET_CXX_KEY_METHOD_MAY_BE_INLINE: C++ ABI. (line 43) ! * TARGET_CXX_LIBRARY_RTTI_COMDAT: C++ ABI. (line 69) ! * TARGET_CXX_USE_AEABI_ATEXIT: C++ ABI. (line 74) ! * TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT: C++ ABI. (line 80) ! * TARGET_DEBUG_UNWIND_INFO: SDB and DWARF. (line 37) ! * TARGET_DECIMAL_FLOAT_SUPPORTED_P: Storage Layout. (line 524) ! * TARGET_DECLSPEC: Target Attributes. (line 73) ! * TARGET_DEFAULT_PACK_STRUCT: Misc. (line 440) ! * TARGET_DEFAULT_SHORT_ENUMS: Type Layout. (line 167) ! * TARGET_DEFAULT_TARGET_FLAGS: Run-time Target. (line 56) ! * TARGET_DEFERRED_OUTPUT_DEFS: Label Output. (line 434) ! * TARGET_DELAY_SCHED2: SDB and DWARF. (line 66) ! * TARGET_DELAY_VARTRACK: SDB and DWARF. (line 70) ! * TARGET_DELEGITIMIZE_ADDRESS: Addressing Modes. (line 223) ! * TARGET_DIFFERENT_ADDR_DISPLACEMENT_P: Register Classes. (line 570) * TARGET_DLLIMPORT_DECL_ATTRIBUTES: Target Attributes. (line 55) ! * TARGET_DWARF_CALLING_CONVENTION: SDB and DWARF. (line 18) ! * TARGET_DWARF_HANDLE_FRAME_UNSPEC: Frame Layout. (line 172) * TARGET_DWARF_REGISTER_SPAN: Exception Region Output. ! (line 106) ! * TARGET_EDOM: Library Calls. (line 53) ! * TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS: Emulated TLS. (line 68) ! * TARGET_EMUTLS_GET_ADDRESS: Emulated TLS. (line 19) ! * TARGET_EMUTLS_REGISTER_COMMON: Emulated TLS. (line 24) ! * TARGET_EMUTLS_TMPL_PREFIX: Emulated TLS. (line 45) ! * TARGET_EMUTLS_TMPL_SECTION: Emulated TLS. (line 36) ! * TARGET_EMUTLS_VAR_ALIGN_FIXED: Emulated TLS. (line 63) ! * TARGET_EMUTLS_VAR_FIELDS: Emulated TLS. (line 49) ! * TARGET_EMUTLS_VAR_INIT: Emulated TLS. (line 57) ! * TARGET_EMUTLS_VAR_PREFIX: Emulated TLS. (line 41) ! * TARGET_EMUTLS_VAR_SECTION: Emulated TLS. (line 31) ! * TARGET_ENCODE_SECTION_INFO: Sections. (line 253) ! * TARGET_ENCODE_SECTION_INFO and address validation: Addressing Modes. ! (line 83) ! * TARGET_ENCODE_SECTION_INFO usage: Instruction Output. (line 128) ! * TARGET_ENUM_VA_LIST_P: Register Arguments. (line 278) * TARGET_EXCEPT_UNWIND_INFO: Exception Region Output. ! (line 48) ! * TARGET_EXECUTABLE_SUFFIX: Misc. (line 750) ! * TARGET_EXPAND_BUILTIN: Misc. (line 607) ! * TARGET_EXPAND_BUILTIN_SAVEREGS: Varargs. (line 67) ! * TARGET_EXPAND_TO_RTL_HOOK: Storage Layout. (line 530) * TARGET_EXPR: Unary and Binary Expressions. (line 6) * TARGET_EXTRA_INCLUDES: Misc. (line 837) ! * TARGET_EXTRA_LIVE_ON_ENTRY: Tail Calls. (line 21) * TARGET_EXTRA_PRE_INCLUDES: Misc. (line 844) * TARGET_FIXED_CONDITION_CODE_REGS: MODE_CC Condition Codes. ! (line 106) ! * TARGET_FIXED_POINT_SUPPORTED_P: Storage Layout. (line 527) ! * target_flags: Run-time Target. (line 52) ! * TARGET_FLAGS_REGNUM: Register Arguments. (line 394) ! * TARGET_FLT_EVAL_METHOD: Type Layout. (line 148) ! * TARGET_FN_ABI_VA_LIST: Register Arguments. (line 289) ! * TARGET_FOLD_BUILTIN: Misc. (line 628) ! * TARGET_FORCE_AT_COMP_DIR: SDB and DWARF. (line 61) ! * TARGET_FORMAT_TYPES: Misc. (line 864) ! * TARGET_FRAME_POINTER_REQUIRED: Elimination. (line 9) ! * TARGET_FUNCTION_ARG: Register Arguments. (line 12) ! * TARGET_FUNCTION_ARG_ADVANCE: Register Arguments. (line 187) ! * TARGET_FUNCTION_ARG_BOUNDARY: Register Arguments. (line 241) ! * TARGET_FUNCTION_ARG_ROUND_BOUNDARY: Register Arguments. (line 247) ! * TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P: Target Attributes. (line 95) ! * TARGET_FUNCTION_INCOMING_ARG: Register Arguments. (line 68) ! * TARGET_FUNCTION_OK_FOR_SIBCALL: Tail Calls. (line 8) ! * TARGET_FUNCTION_VALUE: Scalar Return. (line 11) ! * TARGET_FUNCTION_VALUE_REGNO_P: Scalar Return. (line 97) ! * TARGET_GENERATE_VERSION_DISPATCHER_BODY: Misc. (line 654) * TARGET_GET_DRAP_RTX: Misc. (line 974) ! * TARGET_GET_FUNCTION_VERSIONS_DISPATCHER: Misc. (line 647) ! * TARGET_GET_PCH_VALIDITY: PCH Target. (line 7) ! * TARGET_GET_RAW_ARG_MODE: Aggregate Return. (line 83) ! * TARGET_GET_RAW_RESULT_MODE: Aggregate Return. (line 78) ! * TARGET_GIMPLIFY_VA_ARG_EXPR: Register Arguments. (line 300) ! * TARGET_HANDLE_C_OPTION: Run-time Target. (line 75) ! * TARGET_HANDLE_OPTION: Run-time Target. (line 62) * TARGET_HARD_REGNO_SCRATCH_OK: Values in Registers. ! (line 144) ! * TARGET_HAS_SINCOS: Library Calls. (line 79) ! * TARGET_HAVE_CONDITIONAL_EXECUTION: Misc. (line 811) * TARGET_HAVE_CTORS_DTORS: Macros for Initialization. ! (line 64) ! * TARGET_HAVE_NAMED_SECTIONS: File Framework. (line 141) ! * TARGET_HAVE_SRODATA_SECTION: Sections. (line 298) ! * TARGET_HAVE_SWITCHABLE_BSS_SECTIONS: File Framework. (line 146) ! * TARGET_HAVE_TLS: Sections. (line 318) ! * TARGET_IN_SMALL_DATA_P: Sections. (line 294) ! * TARGET_INIT_BUILTINS: Misc. (line 580) * TARGET_INIT_DWARF_REG_SIZES_EXTRA: Exception Region Output. ! (line 115) ! * TARGET_INIT_LIBFUNCS: Library Calls. (line 16) ! * TARGET_INSERT_ATTRIBUTES: Target Attributes. (line 82) ! * TARGET_INSTANTIATE_DECLS: Storage Layout. (line 538) * TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN: Misc. (line 898) * TARGET_INVALID_BINARY_OP: Misc. (line 917) * TARGET_INVALID_CONVERSION: Misc. (line 904) * TARGET_INVALID_PARAMETER_TYPE: Misc. (line 923) * TARGET_INVALID_RETURN_TYPE: Misc. (line 930) * TARGET_INVALID_UNARY_OP: Misc. (line 910) ! * TARGET_INVALID_WITHIN_DOLOOP: Misc. (line 661) ! * TARGET_LEGITIMATE_ADDRESS_P: Addressing Modes. (line 50) * TARGET_LEGITIMATE_COMBINED_INSN: Misc. (line 673) ! * TARGET_LEGITIMATE_CONSTANT_P: Addressing Modes. (line 216) ! * TARGET_LEGITIMIZE_ADDRESS: Addressing Modes. (line 132) ! * TARGET_LIB_INT_CMP_BIASED: Library Calls. (line 43) ! * TARGET_LIBCALL_VALUE: Scalar Return. (line 66) ! * TARGET_LIBFUNC_GNU_PREFIX: Library Calls. (line 25) ! * TARGET_LIBGCC_CMP_RETURN_MODE: Storage Layout. (line 461) ! * TARGET_LIBGCC_SDATA_SECTION: Sections. (line 132) ! * TARGET_LIBGCC_SHIFT_COUNT_MODE: Storage Layout. (line 467) * TARGET_LOOP_UNROLL_ADJUST: Misc. (line 818) ! * TARGET_LRA_P: Register Classes. (line 553) ! * TARGET_MACHINE_DEPENDENT_REORG: Misc. (line 565) ! * TARGET_MANGLE_ASSEMBLER_NAME: Label Output. (line 325) ! * TARGET_MANGLE_DECL_ASSEMBLER_NAME: Sections. (line 243) ! * TARGET_MANGLE_TYPE: Storage Layout. (line 542) ! * TARGET_MAX_ANCHOR_OFFSET: Anchored Addresses. (line 39) ! * TARGET_MD_ASM_CLOBBERS: Misc. (line 486) ! * TARGET_MEM_CONSTRAINT: Addressing Modes. (line 109) * TARGET_MEM_REF: Storage References. (line 6) ! * TARGET_MEMBER_TYPE_FORCES_BLK: Storage Layout. (line 413) ! * TARGET_MEMMODEL_CHECK: Misc. (line 1014) ! * TARGET_MEMORY_MOVE_COST: Costs. (line 81) ! * TARGET_MERGE_DECL_ATTRIBUTES: Target Attributes. (line 47) ! * TARGET_MERGE_TYPE_ATTRIBUTES: Target Attributes. (line 39) ! * TARGET_MIN_ANCHOR_OFFSET: Anchored Addresses. (line 33) ! * TARGET_MIN_DIVISIONS_FOR_RECIP_MUL: Misc. (line 92) ! * TARGET_MODE_DEPENDENT_ADDRESS_P: Addressing Modes. (line 199) ! * TARGET_MODE_REP_EXTENDED: Misc. (line 177) ! * TARGET_MS_BITFIELD_LAYOUT_P: Storage Layout. (line 497) ! * TARGET_MUST_PASS_IN_STACK: Register Arguments. (line 61) ! * TARGET_MUST_PASS_IN_STACK, and TARGET_FUNCTION_ARG: Register Arguments. ! (line 51) ! * TARGET_N_FORMAT_TYPES: Misc. (line 869) ! * TARGET_NARROW_VOLATILE_BITFIELD: Storage Layout. (line 404) ! * TARGET_OBJC_CONSTRUCT_STRING_OBJECT: Run-time Target. (line 90) ! * TARGET_OBJC_DECLARE_CLASS_DEFINITION: Run-time Target. (line 111) * TARGET_OBJC_DECLARE_UNRESOLVED_CLASS_REFERENCE: Run-time Target. ! (line 106) ! * TARGET_OBJECT_SUFFIX: Misc. (line 745) ! * TARGET_OBJFMT_CPP_BUILTINS: Run-time Target. (line 46) ! * TARGET_OPTF: Misc. (line 851) ! * TARGET_OPTION_DEFAULT_PARAMS: Run-time Target. (line 161) ! * TARGET_OPTION_FUNCTION_VERSIONS: Target Attributes. (line 151) ! * TARGET_OPTION_INIT_STRUCT: Run-time Target. (line 158) ! * TARGET_OPTION_OPTIMIZATION_TABLE: Run-time Target. (line 144) ! * TARGET_OPTION_OVERRIDE: Target Attributes. (line 137) ! * TARGET_OPTION_PRAGMA_PARSE: Target Attributes. (line 131) ! * TARGET_OPTION_PRINT: Target Attributes. (line 125) ! * TARGET_OPTION_RESTORE: Target Attributes. (line 119) ! * TARGET_OPTION_SAVE: Target Attributes. (line 113) ! * TARGET_OPTION_VALID_ATTRIBUTE_P: Target Attributes. (line 102) ! * TARGET_OS_CPP_BUILTINS: Run-time Target. (line 42) ! * TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE: Run-time Target. (line 127) ! * TARGET_OVERRIDES_FORMAT_ATTRIBUTES: Misc. (line 873) ! * TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT: Misc. (line 879) ! * TARGET_OVERRIDES_FORMAT_INIT: Misc. (line 883) ! * TARGET_PASS_BY_REFERENCE: Register Arguments. (line 104) ! * TARGET_PCH_VALID_P: PCH Target. (line 13) ! * TARGET_POSIX_IO: Misc. (line 510) ! * TARGET_PREFERRED_OUTPUT_RELOAD_CLASS: Register Classes. (line 289) ! * TARGET_PREFERRED_RELOAD_CLASS: Register Classes. (line 218) ! * TARGET_PREFERRED_RENAME_CLASS: Register Classes. (line 206) ! * TARGET_PREPARE_PCH_SAVE: PCH Target. (line 35) ! * TARGET_PRETEND_OUTGOING_VARARGS_NAMED: Varargs. (line 128) ! * TARGET_PROFILE_BEFORE_PROLOGUE: Sections. (line 302) ! * TARGET_PROMOTE_FUNCTION_MODE: Storage Layout. (line 118) ! * TARGET_PROMOTE_PROTOTYPES: Stack Arguments. (line 11) ! * TARGET_PROMOTED_TYPE: Misc. (line 936) ! * TARGET_PTRMEMFUNC_VBIT_LOCATION: Type Layout. (line 295) ! * TARGET_REF_MAY_ALIAS_ERRNO: Register Arguments. (line 311) ! * TARGET_REGISTER_MOVE_COST: Costs. (line 33) ! * TARGET_REGISTER_PRIORITY: Register Classes. (line 558) ! * TARGET_RELAXED_ORDERING: Misc. (line 888) ! * TARGET_RESOLVE_OVERLOADED_BUILTIN: Misc. (line 617) ! * TARGET_RETURN_IN_MEMORY: Aggregate Return. (line 17) * TARGET_RETURN_IN_MSB: Scalar Return. (line 117) ! * TARGET_RETURN_POPS_ARGS: Stack Arguments. (line 94) ! * TARGET_RTX_COSTS: Costs. (line 271) ! * TARGET_SCALAR_MODE_SUPPORTED_P: Register Arguments. (line 319) ! * TARGET_SCHED_ADJUST_COST: Scheduling. (line 37) ! * TARGET_SCHED_ADJUST_PRIORITY: Scheduling. (line 52) ! * TARGET_SCHED_ALLOC_SCHED_CONTEXT: Scheduling. (line 274) ! * TARGET_SCHED_CLEAR_SCHED_CONTEXT: Scheduling. (line 289) ! * TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK: Scheduling. (line 89) ! * TARGET_SCHED_DFA_NEW_CYCLE: Scheduling. (line 235) ! * TARGET_SCHED_DFA_POST_ADVANCE_CYCLE: Scheduling. (line 160) ! * TARGET_SCHED_DFA_POST_CYCLE_INSN: Scheduling. (line 144) ! * TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE: Scheduling. (line 153) ! * TARGET_SCHED_DFA_PRE_CYCLE_INSN: Scheduling. (line 132) ! * TARGET_SCHED_DISPATCH: Scheduling. (line 355) ! * TARGET_SCHED_DISPATCH_DO: Scheduling. (line 360) ! * TARGET_SCHED_EXPOSED_PIPELINE: Scheduling. (line 364) ! * TARGET_SCHED_FINISH: Scheduling. (line 109) ! * TARGET_SCHED_FINISH_GLOBAL: Scheduling. (line 126) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK: Scheduling. (line 215) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BEGIN: Scheduling. (line 204) * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD: Scheduling. ! (line 168) * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD: Scheduling. ! (line 196) * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC: Scheduling. ! (line 328) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END: Scheduling. (line 220) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_FINI: Scheduling. (line 230) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_INIT: Scheduling. (line 225) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE: Scheduling. (line 210) ! * TARGET_SCHED_FREE_SCHED_CONTEXT: Scheduling. (line 293) ! * TARGET_SCHED_GEN_SPEC_CHECK: Scheduling. (line 315) ! * TARGET_SCHED_H_I_D_EXTENDED: Scheduling. (line 269) ! * TARGET_SCHED_INIT: Scheduling. (line 99) ! * TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN: Scheduling. (line 149) ! * TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN: Scheduling. (line 141) ! * TARGET_SCHED_INIT_GLOBAL: Scheduling. (line 118) ! * TARGET_SCHED_INIT_SCHED_CONTEXT: Scheduling. (line 279) ! * TARGET_SCHED_IS_COSTLY_DEPENDENCE: Scheduling. (line 246) ! * TARGET_SCHED_ISSUE_RATE: Scheduling. (line 12) ! * TARGET_SCHED_NEEDS_BLOCK_P: Scheduling. (line 308) ! * TARGET_SCHED_REASSOCIATION_WIDTH: Scheduling. (line 370) ! * TARGET_SCHED_REORDER: Scheduling. (line 60) ! * TARGET_SCHED_REORDER2: Scheduling. (line 77) ! * TARGET_SCHED_SET_SCHED_CONTEXT: Scheduling. (line 285) ! * TARGET_SCHED_SET_SCHED_FLAGS: Scheduling. (line 340) ! * TARGET_SCHED_SMS_RES_MII: Scheduling. (line 346) ! * TARGET_SCHED_SPECULATE_INSN: Scheduling. (line 297) ! * TARGET_SCHED_VARIABLE_ISSUE: Scheduling. (line 24) ! * TARGET_SECONDARY_RELOAD: Register Classes. (line 318) ! * TARGET_SECTION_TYPE_FLAGS: File Framework. (line 152) ! * TARGET_SET_CURRENT_FUNCTION: Misc. (line 727) ! * TARGET_SET_DEFAULT_TYPE_ATTRIBUTES: Target Attributes. (line 34) ! * TARGET_SET_UP_BY_PROLOGUE: Tail Calls. (line 31) ! * TARGET_SETUP_INCOMING_VARARGS: Varargs. (line 76) ! * TARGET_SHIFT_TRUNCATION_MASK: Misc. (line 140) * TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P: Register Arguments. ! (line 361) ! * TARGET_SPILL_CLASS: Register Classes. (line 578) ! * TARGET_SPLIT_COMPLEX_ARG: Register Arguments. (line 261) * TARGET_STACK_PROTECT_FAIL: Stack Smashing Protection. ! (line 17) * TARGET_STACK_PROTECT_GUARD: Stack Smashing Protection. ! (line 7) ! * TARGET_STATIC_CHAIN: Frame Registers. (line 92) ! * TARGET_STRICT_ARGUMENT_NAMING: Varargs. (line 112) ! * TARGET_STRING_OBJECT_REF_TYPE_P: Run-time Target. (line 116) ! * TARGET_STRIP_NAME_ENCODING: Sections. (line 290) ! * TARGET_STRUCT_VALUE_RTX: Aggregate Return. (line 45) * TARGET_SUPPORTS_SPLIT_STACK: Stack Smashing Protection. ! (line 27) ! * TARGET_SUPPORTS_WEAK: Label Output. (line 241) * TARGET_TERMINATE_DW2_EH_FRAME_INFO: Exception Region Output. ! (line 100) ! * TARGET_TRAMPOLINE_ADJUST_ADDRESS: Trampolines. (line 75) ! * TARGET_TRAMPOLINE_INIT: Trampolines. (line 56) ! * TARGET_UNSPEC_MAY_TRAP_P: Misc. (line 719) * TARGET_UNWIND_TABLES_DEFAULT: Exception Region Output. ! (line 74) ! * TARGET_UNWIND_WORD_MODE: Storage Layout. (line 473) * TARGET_UPDATE_STACK_BOUNDARY: Misc. (line 970) ! * TARGET_USE_ANCHORS_FOR_SYMBOL_P: Anchored Addresses. (line 55) ! * TARGET_USE_BLOCKS_FOR_CONSTANT_P: Addressing Modes. (line 251) ! * TARGET_USE_BLOCKS_FOR_DECL_P: Addressing Modes. (line 257) * TARGET_USE_JCR_SECTION: Misc. (line 952) ! * TARGET_USES_WEAK_UNWIND_INFO: Exception Handling. (line 126) ! * TARGET_VALID_DLLIMPORT_ATTRIBUTE_P: Target Attributes. (line 68) ! * TARGET_VALID_POINTER_MODE: Register Arguments. (line 306) ! * TARGET_VECTOR_ALIGNMENT: Storage Layout. (line 264) ! * TARGET_VECTOR_MODE_SUPPORTED_P: Register Arguments. (line 331) ! * TARGET_VECTORIZE_ADD_STMT_COST: Addressing Modes. (line 373) * TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES: Addressing Modes. ! (line 353) ! * TARGET_VECTORIZE_BUILTIN_CONVERSION: Addressing Modes. (line 315) ! * TARGET_VECTORIZE_BUILTIN_GATHER: Addressing Modes. (line 404) ! * TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD: Addressing Modes. (line 273) ! * TARGET_VECTORIZE_BUILTIN_TM_LOAD: Addressing Modes. (line 395) ! * TARGET_VECTORIZE_BUILTIN_TM_STORE: Addressing Modes. (line 399) * TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST: Addressing Modes. ! (line 300) * TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION: Addressing Modes. ! (line 327) ! * TARGET_VECTORIZE_DESTROY_COST_DATA: Addressing Modes. (line 390) ! * TARGET_VECTORIZE_FINISH_COST: Addressing Modes. (line 384) ! * TARGET_VECTORIZE_INIT_COST: Addressing Modes. (line 361) ! * TARGET_VECTORIZE_PREFERRED_SIMD_MODE: Addressing Modes. (line 346) * TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT: Addressing Modes. ! (line 337) ! * TARGET_VECTORIZE_VEC_PERM_CONST_OK: Addressing Modes. (line 311) * TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE: Addressing Modes. ! (line 306) ! * TARGET_VTABLE_DATA_ENTRY_DISTANCE: Type Layout. (line 348) ! * TARGET_VTABLE_ENTRY_ALIGN: Type Layout. (line 342) ! * TARGET_VTABLE_USES_DESCRIPTORS: Type Layout. (line 331) ! * TARGET_WANT_DEBUG_PUB_SECTIONS: SDB and DWARF. (line 56) ! * TARGET_WARN_FUNC_RETURN: Tail Calls. (line 36) ! * TARGET_WEAK_NOT_IN_ARCHIVE_TOC: Label Output. (line 277) ! * targetm: Target Structure. (line 7) ! * targets, makefile: Makefile. (line 6) ! * TCmode: Machine Modes. (line 197) * TDmode: Machine Modes. (line 94) * TEMPLATE_DECL: Declarations. (line 6) * Temporaries: Temporaries. (line 6) * termination routines: Initialization. (line 6) * testing constraints: C Constraint Interface. (line 6) ! * TEXT_SECTION_ASM_OP: Sections. (line 38) ! * TF_SIZE: Type Layout. (line 139) * TFmode: Machine Modes. (line 98) * THEN_CLAUSE: Statements for C++. (line 6) ! * THREAD_MODEL_SPEC: Driver. (line 163) * THROW_EXPR: Unary and Binary Expressions. (line 6) * THUNK_DECL: Declarations. (line 6) * THUNK_DELTA: Declarations. (line 6) * TImode: Machine Modes. (line 48) ! * TImode, in insn: Insns. (line 278) ! * TLS_COMMON_ASM_OP: Sections. (line 81) ! * TLS_SECTION_ASM_FLAG: Sections. (line 86) ! * tm.h macros: Target Macros. (line 6) * TQFmode: Machine Modes. (line 62) * TQmode: Machine Modes. (line 119) - * TRAMPOLINE_ALIGNMENT: Trampolines. (line 49) - * TRAMPOLINE_SECTION: Trampolines. (line 40) - * TRAMPOLINE_SIZE: Trampolines. (line 45) * trampolines for nested functions: Trampolines. (line 6) ! * TRANSFER_FROM_TRAMPOLINE: Trampolines. (line 111) ! * trap instruction pattern: Standard Names. (line 1542) * tree <1>: Macros and Functions. (line 6) - * tree: Tree overview. (line 6) * Tree SSA: Tree SSA. (line 6) * TREE_CHAIN: Macros and Functions. (line 6) --- 47893,48669 ---- * RTX_FRAME_RELATED_P: Flags. (line 107) * run-time conventions: Interface. (line 6) * run-time target specification: Run-time Target. (line 6) ! * 's' in constraint: Simple Constraints. (line 100) ! * same_type_p: Types. (line 86) ! * SAmode: Machine Modes. (line 147) ! * 'satfractMN2' instruction pattern: Standard Names. (line 919) ! * 'satfractunsMN2' instruction pattern: Standard Names. (line 932) * satisfies_constraint_: C Constraint Interface. ! (line 46) ! * sat_fract: Conversions. (line 90) * SAVE_EXPR: Unary and Binary Expressions. (line 6) ! * 'save_stack_block' instruction pattern: Standard Names. (line 1312) ! * 'save_stack_function' instruction pattern: Standard Names. (line 1312) ! * 'save_stack_nonlocal' instruction pattern: Standard Names. (line 1312) ! * SBSS_SECTION_ASM_OP: Sections. (line 75) * Scalar evolutions: Scalar evolutions. (line 6) * scalars, returned as values: Scalar Return. (line 6) * SCHED_GROUP_P: Flags. (line 148) ! * SCmode: Machine Modes. (line 196) ! * scratch: Regs and Memory. (line 294) ! * scratch operands: Regs and Memory. (line 294) ! * 'scratch', RTL sharing: Sharing. (line 35) * scratch_operand: Machine-Independent Predicates. ! (line 49) ! * SDATA_SECTION_ASM_OP: Sections. (line 57) ! * SDB_ALLOW_FORWARD_REFERENCES: SDB and DWARF. (line 123) ! * SDB_ALLOW_UNKNOWN_REFERENCES: SDB and DWARF. (line 118) ! * SDB_DEBUGGING_INFO: SDB and DWARF. (line 8) ! * SDB_DELIM: SDB and DWARF. (line 111) ! * SDB_OUTPUT_SOURCE_LINE: SDB and DWARF. (line 128) * SDmode: Machine Modes. (line 85) ! * 'sdot_prodM' instruction pattern: Standard Names. (line 331) ! * search options: Including Patterns. (line 45) ! * SECONDARY_INPUT_RELOAD_CLASS: Register Classes. (line 391) ! * SECONDARY_MEMORY_NEEDED: Register Classes. (line 447) ! * SECONDARY_MEMORY_NEEDED_MODE: Register Classes. (line 466) ! * SECONDARY_MEMORY_NEEDED_RTX: Register Classes. (line 457) ! * SECONDARY_OUTPUT_RELOAD_CLASS: Register Classes. (line 392) ! * SECONDARY_RELOAD_CLASS: Register Classes. (line 390) * SELECT_CC_MODE: MODE_CC Condition Codes. ! (line 6) ! * sequence: Side Effects. (line 258) * Sequence iterators: Sequence iterators. (line 6) * set: Side Effects. (line 15) ! * 'set' and '/f': Flags. (line 107) ! * 'setmemM' instruction pattern: Standard Names. (line 787) ! * SETUP_FRAME_ADDRESSES: Frame Layout. (line 100) ! * SET_ASM_OP: Label Output. (line 416) ! * SET_ASM_OP <1>: Label Output. (line 427) * set_attr: Tagging Insns. (line 31) * set_attr_alternative: Tagging Insns. (line 49) ! * set_bb_seq: GIMPLE sequences. (line 75) ! * SET_BY_PIECES_P: Costs. (line 205) * SET_DEST: Side Effects. (line 69) * SET_IS_RETURN_P: Flags. (line 157) * SET_LABEL_KIND: Insns. (line 146) * set_optab_libfunc: Library Calls. (line 15) ! * SET_RATIO: Costs. (line 193) * SET_SRC: Side Effects. (line 69) ! * 'set_thread_pointerMODE' instruction pattern: Standard Names. (line 1856) * SET_TYPE_STRUCTURAL_EQUALITY: Types. (line 6) ! * SET_TYPE_STRUCTURAL_EQUALITY <1>: Types. (line 81) * SFmode: Machine Modes. (line 66) + * SF_SIZE: Type Layout. (line 135) * sharing of RTL components: Sharing. (line 6) ! * shift: Arithmetic. (line 174) ! * SHIFT_COUNT_TRUNCATED: Misc. (line 112) * SHLIB_SUFFIX: Macros for Initialization. ! (line 133) ! * SHORT_ACCUM_TYPE_SIZE: Type Layout. (line 82) ! * SHORT_FRACT_TYPE_SIZE: Type Layout. (line 62) ! * SHORT_IMMEDIATES_SIGN_EXTEND: Misc. (line 86) ! * SHORT_TYPE_SIZE: Type Layout. (line 15) ! * 'sibcall_epilogue' instruction pattern: Standard Names. (line 1519) ! * sibling call: Edges. (line 121) * SIBLING_CALL_P: Flags. (line 161) ! * signed division: Arithmetic. (line 117) ! * signed division with signed saturation: Arithmetic. (line 117) ! * signed maximum: Arithmetic. (line 142) ! * signed minimum: Arithmetic. (line 142) * sign_extend: Conversions. (line 23) * sign_extract: Bit-Fields. (line 8) ! * 'sign_extract', canonicalization of: Insn Canonicalizations. ! (line 87) ! * SIG_ATOMIC_TYPE: Type Layout. (line 251) * SImode: Machine Modes. (line 37) * simple constraints: Simple Constraints. (line 6) * simple_return: Side Effects. (line 86) ! * 'simple_return' instruction pattern: Standard Names. (line 1169) * sincos math function, implicit usage: Library Calls. (line 78) ! * 'sincosM3' instruction pattern: Standard Names. (line 574) ! * 'sinM2' instruction pattern: Standard Names. (line 566) ! * SIZETYPE: Type Layout. (line 190) ! * SIZE_ASM_OP: Label Output. (line 33) ! * SIZE_TYPE: Type Layout. (line 174) ! * skip: GTY Options. (line 76) ! * SLOW_BYTE_ACCESS: Costs. (line 117) ! * SLOW_UNALIGNED_ACCESS: Costs. (line 132) ! * smax: Arithmetic. (line 142) ! * smin: Arithmetic. (line 142) ! * sms, swing, software pipelining: RTL passes. (line 131) ! * 'smulM3_highpart' instruction pattern: Standard Names. (line 429) * soft float library: Soft float library routines. (line 6) ! * special: GTY Options. (line 307) * special predicates: Predicates. (line 31) * SPECS: Target Fragment. (line 191) * speed of instructions: Costs. (line 6) * splitting instructions: Insn Splitting. (line 6) + * split_block: Maintaining the CFG. + (line 97) * SQmode: Machine Modes. (line 111) * sqrt: Arithmetic. (line 207) ! * 'sqrtM2' instruction pattern: Standard Names. (line 532) * square root: Arithmetic. (line 207) ! * SSA: SSA. (line 6) ! * 'ssaddM3' instruction pattern: Standard Names. (line 266) ! * 'ssashlM3' instruction pattern: Standard Names. (line 504) ! * SSA_NAME_DEF_STMT: SSA. (line 218) ! * SSA_NAME_VERSION: SSA. (line 223) ! * 'ssdivM3' instruction pattern: Standard Names. (line 266) ! * 'ssmaddMN4' instruction pattern: Standard Names. (line 452) ! * 'ssmsubMN4' instruction pattern: Standard Names. (line 476) ! * 'ssmulM3' instruction pattern: Standard Names. (line 266) ! * 'ssnegM2' instruction pattern: Standard Names. (line 526) ! * 'sssubM3' instruction pattern: Standard Names. (line 266) ! * 'ssum_widenM3' instruction pattern: Standard Names. (line 340) ! * ss_abs: Arithmetic. (line 201) ! * ss_ashift: Arithmetic. (line 174) ! * ss_div: Arithmetic. (line 117) ! * ss_minus: Arithmetic. (line 38) ! * ss_mult: Arithmetic. (line 93) ! * ss_neg: Arithmetic. (line 82) * ss_plus: Arithmetic. (line 14) * ss_truncate: Conversions. (line 43) * stack arguments: Stack Arguments. (line 6) * stack frame layout: Frame Layout. (line 6) * stack smashing protection: Stack Smashing Protection. (line 6) ! * STACK_ALIGNMENT_NEEDED: Frame Layout. (line 47) ! * STACK_BOUNDARY: Storage Layout. (line 144) ! * STACK_CHECK_BUILTIN: Stack Checking. (line 31) ! * STACK_CHECK_FIXED_FRAME_SIZE: Stack Checking. (line 82) ! * STACK_CHECK_MAX_FRAME_SIZE: Stack Checking. (line 73) ! * STACK_CHECK_MAX_VAR_SIZE: Stack Checking. (line 89) ! * STACK_CHECK_MOVING_SP: Stack Checking. (line 53) ! * STACK_CHECK_PROBE_INTERVAL_EXP: Stack Checking. (line 45) ! * STACK_CHECK_PROTECT: Stack Checking. (line 62) ! * STACK_CHECK_STATIC_BUILTIN: Stack Checking. (line 38) ! * STACK_DYNAMIC_OFFSET: Frame Layout. (line 73) ! * 'STACK_DYNAMIC_OFFSET' and virtual registers: Regs and Memory. (line 83) ! * STACK_GROWS_DOWNWARD: Frame Layout. (line 8) ! * STACK_PARMS_IN_REG_PARM_AREA: Stack Arguments. (line 83) ! * STACK_POINTER_OFFSET: Frame Layout. (line 57) ! * 'STACK_POINTER_OFFSET' and virtual registers: Regs and Memory. (line 93) ! * STACK_POINTER_REGNUM: Frame Registers. (line 8) ! * 'STACK_POINTER_REGNUM' and virtual registers: Regs and Memory. (line 83) * stack_pointer_rtx: Frame Registers. (line 104) ! * 'stack_protect_set' instruction pattern: Standard Names. (line 1866) ! * 'stack_protect_test' instruction pattern: Standard Names. (line 1877) ! * STACK_PUSH_CODE: Frame Layout. (line 16) ! * STACK_REGS: Stack Registers. (line 19) ! * STACK_REG_COVER_CLASS: Stack Registers. (line 22) ! * STACK_SAVEAREA_MODE: Storage Layout. (line 435) ! * STACK_SIZE_MODE: Storage Layout. (line 446) ! * STACK_SLOT_ALIGNMENT: Storage Layout. (line 267) * standard pattern names: Standard Names. (line 6) ! * STANDARD_STARTFILE_PREFIX: Driver. (line 274) ! * STANDARD_STARTFILE_PREFIX_1: Driver. (line 281) ! * STANDARD_STARTFILE_PREFIX_2: Driver. (line 288) ! * STARTFILE_SPEC: Driver. (line 147) ! * STARTING_FRAME_OFFSET: Frame Layout. (line 38) ! * 'STARTING_FRAME_OFFSET' and virtual registers: Regs and Memory. (line 74) * Statement and operand traversals: Statement and operand traversals. (line 6) * Statement Sequences: Statement Sequences. (line 6) ! * Statements: Statements. (line 6) * statements: Function Properties. (line 6) ! * statements <1>: Statements for C++. (line 6) * Static profile estimation: Profile information. (line 24) * static single assignment: SSA. (line 6) ! * STATIC_CHAIN_INCOMING_REGNUM: Frame Registers. (line 77) ! * STATIC_CHAIN_REGNUM: Frame Registers. (line 76) ! * 'stdarg.h' and register arguments: Register Arguments. (line 45) ! * STDC_0_IN_SYSTEM_HEADERS: Misc. (line 350) * STMT_EXPR: Unary and Binary Expressions. (line 6) * STMT_IS_FULL_EXPR_P: Statements for C++. (line 22) * storage layout: Storage Layout. (line 6) ! * STORE_BY_PIECES_P: Costs. (line 212) ! * STORE_FLAG_VALUE: Misc. (line 201) ! * 'store_multiple' instruction pattern: Standard Names. (line 159) ! * strcpy: Storage Layout. (line 228) ! * STRICT_ALIGNMENT: Storage Layout. (line 317) * strict_low_part: RTL Declarations. (line 9) ! * strict_memory_address_p: Addressing Modes. (line 186) * STRING_CST: Constant expressions. (line 6) * STRING_POOL_ADDRESS_P: Flags. (line 165) ! * 'strlenM' instruction pattern: Standard Names. (line 854) * structure value address: Aggregate Return. (line 6) * structures, returning: Interface. (line 10) ! * STRUCTURE_SIZE_BOUNDARY: Storage Layout. (line 309) ! * 'subM3' instruction pattern: Standard Names. (line 266) * SUBOBJECT: Statements for C++. (line 6) * SUBOBJECT_CLEANUP: Statements for C++. (line 6) * subreg: Regs and Memory. (line 97) ! * 'subreg' and '/s': Flags. (line 187) ! * 'subreg' and '/u': Flags. (line 180) ! * 'subreg' and '/u' and '/v': Flags. (line 170) ! * 'subreg', in 'strict_low_part': RTL Declarations. (line 9) ! * SUBREG_BYTE: Regs and Memory. (line 285) * SUBREG_PROMOTED_UNSIGNED_P: Flags. (line 170) * SUBREG_PROMOTED_UNSIGNED_SET: Flags. (line 180) * SUBREG_PROMOTED_VAR_P: Flags. (line 187) ! * SUBREG_REG: Regs and Memory. (line 285) ! * subst iterators in '.md' files: Subst Iterators. (line 6) * SUCCESS_EXIT_CODE: Host Misc. (line 12) * SUPPORTS_INIT_PRIORITY: Macros for Initialization. ! (line 57) ! * SUPPORTS_ONE_ONLY: Label Output. (line 255) ! * SUPPORTS_WEAK: Label Output. (line 229) ! * SWITCHABLE_TARGET: Run-time Target. (line 164) * SWITCH_BODY: Statements for C++. (line 6) * SWITCH_COND: Statements for C++. (line 6) * SWITCH_STMT: Statements for C++. (line 6) ! * symbolic label: Sharing. (line 20) ! * SYMBOL_FLAG_ANCHOR: Special Accessors. (line 117) ! * SYMBOL_FLAG_EXTERNAL: Special Accessors. (line 99) ! * SYMBOL_FLAG_FUNCTION: Special Accessors. (line 92) ! * SYMBOL_FLAG_HAS_BLOCK_INFO: Special Accessors. (line 113) ! * SYMBOL_FLAG_LOCAL: Special Accessors. (line 95) ! * SYMBOL_FLAG_SMALL: Special Accessors. (line 104) ! * SYMBOL_FLAG_TLS_SHIFT: Special Accessors. (line 108) ! * symbol_ref: Constants. (line 86) ! * 'symbol_ref' and '/f': Flags. (line 165) ! * 'symbol_ref' and '/i': Flags. (line 202) ! * 'symbol_ref' and '/u': Flags. (line 10) ! * 'symbol_ref' and '/v': Flags. (line 206) ! * 'symbol_ref', RTL sharing: Sharing. (line 20) ! * SYMBOL_REF_ANCHOR_P: Special Accessors. (line 117) ! * SYMBOL_REF_BLOCK: Special Accessors. (line 130) ! * SYMBOL_REF_BLOCK_OFFSET: Special Accessors. (line 135) ! * SYMBOL_REF_CONSTANT: Special Accessors. (line 78) ! * SYMBOL_REF_DATA: Special Accessors. (line 82) ! * SYMBOL_REF_DECL: Special Accessors. (line 67) ! * SYMBOL_REF_EXTERNAL_P: Special Accessors. (line 99) * SYMBOL_REF_FLAG: Flags. (line 206) ! * 'SYMBOL_REF_FLAG', in 'TARGET_ENCODE_SECTION_INFO': Sections. ! (line 277) ! * SYMBOL_REF_FLAGS: Special Accessors. (line 86) ! * SYMBOL_REF_FUNCTION_P: Special Accessors. (line 92) ! * SYMBOL_REF_HAS_BLOCK_INFO_P: Special Accessors. (line 113) ! * SYMBOL_REF_LOCAL_P: Special Accessors. (line 95) ! * SYMBOL_REF_SMALL_P: Special Accessors. (line 104) ! * SYMBOL_REF_TLS_MODEL: Special Accessors. (line 108) * SYMBOL_REF_USED: Flags. (line 197) * SYMBOL_REF_WEAK: Flags. (line 202) ! * 'sync_addMODE' instruction pattern: Standard Names. (line 1622) ! * 'sync_andMODE' instruction pattern: Standard Names. (line 1622) ! * 'sync_compare_and_swapMODE' instruction pattern: Standard Names. ! (line 1581) ! * 'sync_iorMODE' instruction pattern: Standard Names. (line 1622) ! * 'sync_lock_releaseMODE' instruction pattern: Standard Names. ! (line 1691) ! * 'sync_lock_test_and_setMODE' instruction pattern: Standard Names. ! (line 1664) ! * 'sync_nandMODE' instruction pattern: Standard Names. (line 1622) ! * 'sync_new_addMODE' instruction pattern: Standard Names. (line 1656) ! * 'sync_new_andMODE' instruction pattern: Standard Names. (line 1656) ! * 'sync_new_iorMODE' instruction pattern: Standard Names. (line 1656) ! * 'sync_new_nandMODE' instruction pattern: Standard Names. (line 1656) ! * 'sync_new_subMODE' instruction pattern: Standard Names. (line 1656) ! * 'sync_new_xorMODE' instruction pattern: Standard Names. (line 1656) ! * 'sync_old_addMODE' instruction pattern: Standard Names. (line 1638) ! * 'sync_old_andMODE' instruction pattern: Standard Names. (line 1638) ! * 'sync_old_iorMODE' instruction pattern: Standard Names. (line 1638) ! * 'sync_old_nandMODE' instruction pattern: Standard Names. (line 1638) ! * 'sync_old_subMODE' instruction pattern: Standard Names. (line 1638) ! * 'sync_old_xorMODE' instruction pattern: Standard Names. (line 1638) ! * 'sync_subMODE' instruction pattern: Standard Names. (line 1622) ! * 'sync_xorMODE' instruction pattern: Standard Names. (line 1622) ! * SYSROOT_HEADERS_SUFFIX_SPEC: Driver. (line 176) ! * SYSROOT_SUFFIX_SPEC: Driver. (line 171) ! * 't-TARGET': Target Fragment. (line 6) * table jump: Basic Blocks. (line 67) ! * 'tablejump' instruction pattern: Standard Names. (line 1242) * tag: GTY Options. (line 82) * tagging insns: Tagging Insns. (line 6) * tail calls: Tail Calls. (line 6) ! * TAmode: Machine Modes. (line 155) * target attributes: Target Attributes. (line 6) * target description macros: Target Macros. (line 6) * target functions: Target Structure. (line 6) * target hooks: Target Structure. (line 6) * target makefile fragment: Target Fragment. (line 6) * target specifications: Run-time Target. (line 6) + * targetm: Target Structure. (line 6) + * targets, makefile: Makefile. (line 6) + * TARGET_ADDRESS_COST: Costs. (line 300) * TARGET_ADDR_SPACE_ADDRESS_MODE: Named Address Spaces. ! (line 43) * TARGET_ADDR_SPACE_CONVERT: Named Address Spaces. ! (line 85) * TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P: Named Address Spaces. ! (line 61) * TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS: Named Address Spaces. ! (line 69) * TARGET_ADDR_SPACE_POINTER_MODE: Named Address Spaces. ! (line 36) * TARGET_ADDR_SPACE_SUBSET_P: Named Address Spaces. ! (line 76) * TARGET_ADDR_SPACE_VALID_POINTER_MODE: Named Address Spaces. ! (line 50) ! * TARGET_ALIGN_ANON_BITFIELD: Storage Layout. (line 394) ! * TARGET_ALLOCATE_INITIAL_VALUE: Misc. (line 701) * TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS: Misc. (line 980) ! * TARGET_ALWAYS_STRIP_DOTDOT: Driver. (line 246) ! * TARGET_ARG_PARTIAL_BYTES: Register Arguments. (line 81) * TARGET_ARM_EABI_UNWINDER: Exception Region Output. ! (line 127) ! * TARGET_ARRAY_MODE_SUPPORTED_P: Register Arguments. (line 333) * TARGET_ASAN_SHADOW_OFFSET: Misc. (line 1008) ! * TARGET_ASM_ALIGNED_DI_OP: Data Output. (line 9) ! * TARGET_ASM_ALIGNED_HI_OP: Data Output. (line 7) ! * TARGET_ASM_ALIGNED_SI_OP: Data Output. (line 8) ! * TARGET_ASM_ALIGNED_TI_OP: Data Output. (line 10) ! * TARGET_ASM_ASSEMBLE_VISIBILITY: Label Output. (line 266) ! * TARGET_ASM_BYTE_OP: Data Output. (line 6) ! * TARGET_ASM_CAN_OUTPUT_MI_THUNK: Function Entry. (line 202) ! * TARGET_ASM_CLOSE_PAREN: Data Output. (line 129) ! * TARGET_ASM_CODE_END: File Framework. (line 57) * TARGET_ASM_CONSTRUCTOR: Macros for Initialization. ! (line 68) ! * TARGET_ASM_DECLARE_CONSTANT_NAME: Label Output. (line 149) * TARGET_ASM_DESTRUCTOR: Macros for Initialization. ! (line 82) ! * TARGET_ASM_EMIT_EXCEPT_PERSONALITY: Dispatch Tables. (line 80) ! * TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL: Dispatch Tables. (line 73) ! * TARGET_ASM_EMIT_UNWIND_LABEL: Dispatch Tables. (line 61) ! * TARGET_ASM_EXTERNAL_LIBCALL: Label Output. (line 302) ! * TARGET_ASM_FILE_END: File Framework. (line 35) ! * TARGET_ASM_FILE_START: File Framework. (line 8) ! * TARGET_ASM_FILE_START_APP_OFF: File Framework. (line 16) ! * TARGET_ASM_FILE_START_FILE_DIRECTIVE: File Framework. (line 29) ! * TARGET_ASM_FINAL_POSTSCAN_INSN: Instruction Output. (line 82) ! * TARGET_ASM_FUNCTION_BEGIN_EPILOGUE: Function Entry. (line 59) ! * TARGET_ASM_FUNCTION_END_PROLOGUE: Function Entry. (line 53) ! * TARGET_ASM_FUNCTION_EPILOGUE: Function Entry. (line 65) ! * TARGET_ASM_FUNCTION_PROLOGUE: Function Entry. (line 9) ! * TARGET_ASM_FUNCTION_RODATA_SECTION: Sections. (line 213) ! * TARGET_ASM_FUNCTION_SECTION: File Framework. (line 121) * TARGET_ASM_FUNCTION_SWITCHED_TEXT_SECTIONS: File Framework. ! (line 131) ! * TARGET_ASM_GLOBALIZE_DECL_NAME: Label Output. (line 194) ! * TARGET_ASM_GLOBALIZE_LABEL: Label Output. (line 185) ! * TARGET_ASM_INIT_SECTIONS: Sections. (line 159) ! * TARGET_ASM_INTEGER: Data Output. (line 25) ! * TARGET_ASM_INTERNAL_LABEL: Label Output. (line 345) ! * TARGET_ASM_JUMP_ALIGN_MAX_SKIP: Alignment Output. (line 21) * TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP: Alignment Output. ! (line 34) ! * TARGET_ASM_LABEL_ALIGN_MAX_SKIP: Alignment Output. (line 68) ! * TARGET_ASM_LOOP_ALIGN_MAX_SKIP: Alignment Output. (line 53) ! * TARGET_ASM_LTO_END: File Framework. (line 52) ! * TARGET_ASM_LTO_START: File Framework. (line 47) ! * TARGET_ASM_MARK_DECL_PRESERVED: Label Output. (line 308) ! * TARGET_ASM_MERGEABLE_RODATA_PREFIX: Sections. (line 221) ! * TARGET_ASM_NAMED_SECTION: File Framework. (line 113) ! * TARGET_ASM_OPEN_PAREN: Data Output. (line 128) ! * TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA: Data Output. (line 38) ! * TARGET_ASM_OUTPUT_ANCHOR: Anchored Addresses. (line 42) ! * TARGET_ASM_OUTPUT_DWARF_DTPREL: SDB and DWARF. (line 99) ! * TARGET_ASM_OUTPUT_IDENT: File Framework. (line 100) ! * TARGET_ASM_OUTPUT_MI_THUNK: Function Entry. (line 160) ! * TARGET_ASM_OUTPUT_SOURCE_FILENAME: File Framework. (line 91) ! * TARGET_ASM_RECORD_GCC_SWITCHES: File Framework. (line 162) ! * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION: File Framework. (line 207) ! * TARGET_ASM_RELOC_RW_MASK: Sections. (line 168) ! * TARGET_ASM_SELECT_RTX_SECTION: Sections. (line 230) ! * TARGET_ASM_SELECT_SECTION: Sections. (line 179) ! * TARGET_ASM_TM_CLONE_TABLE_SECTION: Sections. (line 226) ! * TARGET_ASM_TRAMPOLINE_TEMPLATE: Trampolines. (line 28) * TARGET_ASM_TTYPE: Exception Region Output. ! (line 121) ! * TARGET_ASM_UNALIGNED_DI_OP: Data Output. (line 13) ! * TARGET_ASM_UNALIGNED_HI_OP: Data Output. (line 11) ! * TARGET_ASM_UNALIGNED_SI_OP: Data Output. (line 12) ! * TARGET_ASM_UNALIGNED_TI_OP: Data Output. (line 14) ! * TARGET_ASM_UNIQUE_SECTION: Sections. (line 201) ! * TARGET_ASM_UNWIND_EMIT: Dispatch Tables. (line 87) ! * TARGET_ASM_UNWIND_EMIT_BEFORE_INSN: Dispatch Tables. (line 92) * TARGET_ATOMIC_TEST_AND_SET_TRUEVAL: Misc. (line 1018) ! * TARGET_ATTRIBUTE_TABLE: Target Attributes. (line 10) ! * TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P: Target Attributes. (line 17) ! * TARGET_BINDS_LOCAL_P: Sections. (line 308) ! * TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED: Misc. (line 798) ! * TARGET_BRANCH_TARGET_REGISTER_CLASS: Misc. (line 791) ! * TARGET_BUILD_BUILTIN_VA_LIST: Register Arguments. (line 271) ! * TARGET_BUILTIN_DECL: Misc. (line 595) ! * TARGET_BUILTIN_RECIPROCAL: Addressing Modes. (line 261) ! * TARGET_BUILTIN_SETJMP_FRAME_VALUE: Frame Layout. (line 107) ! * TARGET_C99_FUNCTIONS: Library Calls. (line 70) ! * TARGET_CALLEE_COPIES: Register Arguments. (line 113) ! * TARGET_CANNOT_FORCE_CONST_MEM: Addressing Modes. (line 234) ! * TARGET_CANNOT_MODIFY_JUMPS_P: Misc. (line 778) * TARGET_CANONICALIZE_COMPARISON: MODE_CC Condition Codes. ! (line 54) ! * TARGET_CANONICAL_VA_LIST_TYPE: Register Arguments. (line 292) ! * TARGET_CAN_ELIMINATE: Elimination. (line 73) ! * TARGET_CAN_FOLLOW_JUMP: Misc. (line 687) ! * TARGET_CAN_INLINE_P: Target Attributes. (line 157) ! * TARGET_CASE_VALUES_THRESHOLD: Misc. (line 46) * TARGET_CC_MODES_COMPATIBLE: MODE_CC Condition Codes. ! (line 119) ! * TARGET_CHECK_PCH_TARGET_FLAGS: PCH Target. (line 26) ! * TARGET_CHECK_STRING_OBJECT_FORMAT_ARG: Run-time Target. (line 119) ! * TARGET_CLASS_LIKELY_SPILLED_P: Register Classes. (line 489) ! * TARGET_CLASS_MAX_NREGS: Register Classes. (line 505) ! * TARGET_COMMUTATIVE_P: Misc. (line 694) ! * TARGET_COMPARE_VERSION_PRIORITY: Misc. (line 636) ! * TARGET_COMP_TYPE_ATTRIBUTES: Target Attributes. (line 25) ! * TARGET_CONDITIONAL_REGISTER_USAGE: Register Basics. (line 59) * TARGET_CONST_ANCHOR: Misc. (line 991) ! * TARGET_CONST_NOT_OK_FOR_DEBUG_P: Addressing Modes. (line 230) ! * TARGET_CONVERT_TO_TYPE: Misc. (line 945) ! * TARGET_CPU_CPP_BUILTINS: Run-time Target. (line 8) ! * TARGET_CXX_ADJUST_CLASS_AT_DEFINITION: C++ ABI. (line 86) ! * TARGET_CXX_CDTOR_RETURNS_THIS: C++ ABI. (line 37) ! * TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT: C++ ABI. (line 61) ! * TARGET_CXX_COOKIE_HAS_SIZE: C++ ABI. (line 24) ! * TARGET_CXX_DECL_MANGLING_CONTEXT: C++ ABI. (line 92) ! * TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY: C++ ABI. (line 52) ! * TARGET_CXX_GET_COOKIE_SIZE: C++ ABI. (line 17) ! * TARGET_CXX_GUARD_MASK_BIT: C++ ABI. (line 11) ! * TARGET_CXX_GUARD_TYPE: C++ ABI. (line 6) ! * TARGET_CXX_IMPORT_EXPORT_CLASS: C++ ABI. (line 28) ! * TARGET_CXX_KEY_METHOD_MAY_BE_INLINE: C++ ABI. (line 42) ! * TARGET_CXX_LIBRARY_RTTI_COMDAT: C++ ABI. (line 68) ! * TARGET_CXX_USE_AEABI_ATEXIT: C++ ABI. (line 73) ! * TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT: C++ ABI. (line 79) ! * TARGET_C_PREINCLUDE: Misc. (line 361) ! * TARGET_DEBUG_UNWIND_INFO: SDB and DWARF. (line 36) ! * TARGET_DECIMAL_FLOAT_SUPPORTED_P: Storage Layout. (line 518) ! * TARGET_DECLSPEC: Target Attributes. (line 72) ! * TARGET_DEFAULT_PACK_STRUCT: Misc. (line 438) ! * TARGET_DEFAULT_SHORT_ENUMS: Type Layout. (line 166) ! * TARGET_DEFAULT_TARGET_FLAGS: Run-time Target. (line 55) ! * TARGET_DEFERRED_OUTPUT_DEFS: Label Output. (line 430) ! * TARGET_DELAY_SCHED2: SDB and DWARF. (line 65) ! * TARGET_DELAY_VARTRACK: SDB and DWARF. (line 69) ! * TARGET_DELEGITIMIZE_ADDRESS: Addressing Modes. (line 221) ! * TARGET_DIFFERENT_ADDR_DISPLACEMENT_P: Register Classes. (line 564) * TARGET_DLLIMPORT_DECL_ATTRIBUTES: Target Attributes. (line 55) ! * TARGET_DWARF_CALLING_CONVENTION: SDB and DWARF. (line 16) ! * TARGET_DWARF_HANDLE_FRAME_UNSPEC: Frame Layout. (line 169) * TARGET_DWARF_REGISTER_SPAN: Exception Region Output. ! (line 104) ! * TARGET_EDOM: Library Calls. (line 52) ! * TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS: Emulated TLS. (line 67) ! * TARGET_EMUTLS_GET_ADDRESS: Emulated TLS. (line 18) ! * TARGET_EMUTLS_REGISTER_COMMON: Emulated TLS. (line 23) ! * TARGET_EMUTLS_TMPL_PREFIX: Emulated TLS. (line 44) ! * TARGET_EMUTLS_TMPL_SECTION: Emulated TLS. (line 35) ! * TARGET_EMUTLS_VAR_ALIGN_FIXED: Emulated TLS. (line 62) ! * TARGET_EMUTLS_VAR_FIELDS: Emulated TLS. (line 48) ! * TARGET_EMUTLS_VAR_INIT: Emulated TLS. (line 55) ! * TARGET_EMUTLS_VAR_PREFIX: Emulated TLS. (line 40) ! * TARGET_EMUTLS_VAR_SECTION: Emulated TLS. (line 30) ! * TARGET_ENCODE_SECTION_INFO: Sections. (line 251) ! * 'TARGET_ENCODE_SECTION_INFO' and address validation: Addressing Modes. ! (line 82) ! * 'TARGET_ENCODE_SECTION_INFO' usage: Instruction Output. (line 127) ! * TARGET_ENUM_VA_LIST_P: Register Arguments. (line 275) * TARGET_EXCEPT_UNWIND_INFO: Exception Region Output. ! (line 45) ! * TARGET_EXECUTABLE_SUFFIX: Misc. (line 752) ! * TARGET_EXPAND_BUILTIN: Misc. (line 605) ! * TARGET_EXPAND_BUILTIN_SAVEREGS: Varargs. (line 64) ! * TARGET_EXPAND_TO_RTL_HOOK: Storage Layout. (line 524) * TARGET_EXPR: Unary and Binary Expressions. (line 6) * TARGET_EXTRA_INCLUDES: Misc. (line 837) ! * TARGET_EXTRA_LIVE_ON_ENTRY: Tail Calls. (line 20) * TARGET_EXTRA_PRE_INCLUDES: Misc. (line 844) * TARGET_FIXED_CONDITION_CODE_REGS: MODE_CC Condition Codes. ! (line 104) ! * TARGET_FIXED_POINT_SUPPORTED_P: Storage Layout. (line 521) ! * target_flags: Run-time Target. (line 51) ! * TARGET_FLAGS_REGNUM: Register Arguments. (line 391) ! * TARGET_FLT_EVAL_METHOD: Type Layout. (line 147) ! * TARGET_FN_ABI_VA_LIST: Register Arguments. (line 287) ! * TARGET_FOLD_BUILTIN: Misc. (line 627) ! * TARGET_FORCE_AT_COMP_DIR: SDB and DWARF. (line 60) ! * TARGET_FORMAT_TYPES: Misc. (line 865) ! * TARGET_FRAME_POINTER_REQUIRED: Elimination. (line 8) ! * TARGET_FUNCTION_ARG: Register Arguments. (line 10) ! * TARGET_FUNCTION_ARG_ADVANCE: Register Arguments. (line 184) ! * TARGET_FUNCTION_ARG_BOUNDARY: Register Arguments. (line 238) ! * TARGET_FUNCTION_ARG_ROUND_BOUNDARY: Register Arguments. (line 244) ! * TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P: Target Attributes. (line 93) ! * TARGET_FUNCTION_INCOMING_ARG: Register Arguments. (line 65) ! * TARGET_FUNCTION_OK_FOR_SIBCALL: Tail Calls. (line 6) ! * TARGET_FUNCTION_VALUE: Scalar Return. (line 9) ! * TARGET_FUNCTION_VALUE_REGNO_P: Scalar Return. (line 96) ! * TARGET_GENERATE_VERSION_DISPATCHER_BODY: Misc. (line 652) * TARGET_GET_DRAP_RTX: Misc. (line 974) ! * TARGET_GET_FUNCTION_VERSIONS_DISPATCHER: Misc. (line 645) ! * TARGET_GET_PCH_VALIDITY: PCH Target. (line 6) ! * TARGET_GET_RAW_ARG_MODE: Aggregate Return. (line 82) ! * TARGET_GET_RAW_RESULT_MODE: Aggregate Return. (line 76) ! * TARGET_GIMPLIFY_VA_ARG_EXPR: Register Arguments. (line 297) ! * TARGET_HANDLE_C_OPTION: Run-time Target. (line 73) ! * TARGET_HANDLE_OPTION: Run-time Target. (line 59) * TARGET_HARD_REGNO_SCRATCH_OK: Values in Registers. ! (line 141) ! * TARGET_HAS_SINCOS: Library Calls. (line 78) ! * TARGET_HAVE_CONDITIONAL_EXECUTION: Misc. (line 812) * TARGET_HAVE_CTORS_DTORS: Macros for Initialization. ! (line 63) ! * TARGET_HAVE_NAMED_SECTIONS: File Framework. (line 139) ! * TARGET_HAVE_SRODATA_SECTION: Sections. (line 297) ! * TARGET_HAVE_SWITCHABLE_BSS_SECTIONS: File Framework. (line 144) ! * TARGET_HAVE_TLS: Sections. (line 317) ! * TARGET_INIT_BUILTINS: Misc. (line 579) * TARGET_INIT_DWARF_REG_SIZES_EXTRA: Exception Region Output. ! (line 113) ! * TARGET_INIT_LIBFUNCS: Library Calls. (line 15) ! * TARGET_INSERT_ATTRIBUTES: Target Attributes. (line 80) ! * TARGET_INSTANTIATE_DECLS: Storage Layout. (line 532) * TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN: Misc. (line 898) * TARGET_INVALID_BINARY_OP: Misc. (line 917) * TARGET_INVALID_CONVERSION: Misc. (line 904) * TARGET_INVALID_PARAMETER_TYPE: Misc. (line 923) * TARGET_INVALID_RETURN_TYPE: Misc. (line 930) * TARGET_INVALID_UNARY_OP: Misc. (line 910) ! * TARGET_INVALID_WITHIN_DOLOOP: Misc. (line 659) ! * TARGET_IN_SMALL_DATA_P: Sections. (line 293) ! * TARGET_LEGITIMATE_ADDRESS_P: Addressing Modes. (line 48) * TARGET_LEGITIMATE_COMBINED_INSN: Misc. (line 673) ! * TARGET_LEGITIMATE_CONSTANT_P: Addressing Modes. (line 213) ! * TARGET_LEGITIMIZE_ADDRESS: Addressing Modes. (line 129) ! * TARGET_LIBCALL_VALUE: Scalar Return. (line 65) ! * TARGET_LIBFUNC_GNU_PREFIX: Library Calls. (line 24) ! * TARGET_LIBGCC_CMP_RETURN_MODE: Storage Layout. (line 455) ! * TARGET_LIBGCC_SDATA_SECTION: Sections. (line 131) ! * TARGET_LIBGCC_SHIFT_COUNT_MODE: Storage Layout. (line 461) ! * TARGET_LIB_INT_CMP_BIASED: Library Calls. (line 42) * TARGET_LOOP_UNROLL_ADJUST: Misc. (line 818) ! * TARGET_LRA_P: Register Classes. (line 548) ! * TARGET_MACHINE_DEPENDENT_REORG: Misc. (line 564) ! * TARGET_MANGLE_ASSEMBLER_NAME: Label Output. (line 321) ! * TARGET_MANGLE_DECL_ASSEMBLER_NAME: Sections. (line 241) ! * TARGET_MANGLE_TYPE: Storage Layout. (line 536) ! * TARGET_MAX_ANCHOR_OFFSET: Anchored Addresses. (line 38) ! * TARGET_MD_ASM_CLOBBERS: Misc. (line 483) ! * TARGET_MEMBER_TYPE_FORCES_BLK: Storage Layout. (line 407) ! * TARGET_MEMMODEL_CHECK: Misc. (line 1013) ! * TARGET_MEMORY_MOVE_COST: Costs. (line 79) ! * TARGET_MEM_CONSTRAINT: Addressing Modes. (line 107) * TARGET_MEM_REF: Storage References. (line 6) ! * TARGET_MERGE_DECL_ATTRIBUTES: Target Attributes. (line 45) ! * TARGET_MERGE_TYPE_ATTRIBUTES: Target Attributes. (line 37) ! * TARGET_MIN_ANCHOR_OFFSET: Anchored Addresses. (line 32) ! * TARGET_MIN_DIVISIONS_FOR_RECIP_MUL: Misc. (line 90) ! * TARGET_MODE_DEPENDENT_ADDRESS_P: Addressing Modes. (line 196) ! * TARGET_MODE_REP_EXTENDED: Misc. (line 175) ! * TARGET_MS_BITFIELD_LAYOUT_P: Storage Layout. (line 490) ! * TARGET_MUST_PASS_IN_STACK: Register Arguments. (line 58) ! * 'TARGET_MUST_PASS_IN_STACK', and 'TARGET_FUNCTION_ARG': Register Arguments. ! (line 50) ! * TARGET_NARROW_VOLATILE_BITFIELD: Storage Layout. (line 400) ! * TARGET_N_FORMAT_TYPES: Misc. (line 870) ! * TARGET_OBJC_CONSTRUCT_STRING_OBJECT: Run-time Target. (line 88) ! * TARGET_OBJC_DECLARE_CLASS_DEFINITION: Run-time Target. (line 109) * TARGET_OBJC_DECLARE_UNRESOLVED_CLASS_REFERENCE: Run-time Target. ! (line 104) ! * TARGET_OBJECT_SUFFIX: Misc. (line 747) ! * TARGET_OBJFMT_CPP_BUILTINS: Run-time Target. (line 45) ! * TARGET_OPTF: Misc. (line 852) ! * TARGET_OPTION_DEFAULT_PARAMS: Run-time Target. (line 160) ! * TARGET_OPTION_FUNCTION_VERSIONS: Target Attributes. (line 149) ! * TARGET_OPTION_INIT_STRUCT: Run-time Target. (line 156) ! * TARGET_OPTION_OPTIMIZATION_TABLE: Run-time Target. (line 142) ! * TARGET_OPTION_OVERRIDE: Target Attributes. (line 136) ! * TARGET_OPTION_PRAGMA_PARSE: Target Attributes. (line 129) ! * TARGET_OPTION_PRINT: Target Attributes. (line 123) ! * TARGET_OPTION_RESTORE: Target Attributes. (line 117) ! * TARGET_OPTION_SAVE: Target Attributes. (line 112) ! * TARGET_OPTION_VALID_ATTRIBUTE_P: Target Attributes. (line 100) ! * TARGET_OS_CPP_BUILTINS: Run-time Target. (line 41) ! * TARGET_OVERRIDES_FORMAT_ATTRIBUTES: Misc. (line 874) ! * TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT: Misc. (line 880) ! * TARGET_OVERRIDES_FORMAT_INIT: Misc. (line 884) ! * TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE: Run-time Target. (line 126) ! * TARGET_PASS_BY_REFERENCE: Register Arguments. (line 101) ! * TARGET_PCH_VALID_P: PCH Target. (line 11) ! * TARGET_POSIX_IO: Misc. (line 508) ! * TARGET_PREFERRED_OUTPUT_RELOAD_CLASS: Register Classes. (line 284) ! * TARGET_PREFERRED_RELOAD_CLASS: Register Classes. (line 213) ! * TARGET_PREFERRED_RENAME_CLASS: Register Classes. (line 201) ! * TARGET_PREPARE_PCH_SAVE: PCH Target. (line 34) ! * TARGET_PRETEND_OUTGOING_VARARGS_NAMED: Varargs. (line 123) ! * TARGET_PROFILE_BEFORE_PROLOGUE: Sections. (line 301) ! * TARGET_PROMOTED_TYPE: Misc. (line 937) ! * TARGET_PROMOTE_FUNCTION_MODE: Storage Layout. (line 114) ! * TARGET_PROMOTE_PROTOTYPES: Stack Arguments. (line 10) ! * TARGET_PTRMEMFUNC_VBIT_LOCATION: Type Layout. (line 293) ! * TARGET_REF_MAY_ALIAS_ERRNO: Register Arguments. (line 308) ! * TARGET_REGISTER_MOVE_COST: Costs. (line 31) ! * TARGET_REGISTER_PRIORITY: Register Classes. (line 553) ! * TARGET_RELAXED_ORDERING: Misc. (line 889) ! * TARGET_RESOLVE_OVERLOADED_BUILTIN: Misc. (line 616) ! * TARGET_RETURN_IN_MEMORY: Aggregate Return. (line 15) * TARGET_RETURN_IN_MSB: Scalar Return. (line 117) ! * TARGET_RETURN_POPS_ARGS: Stack Arguments. (line 92) ! * TARGET_RTX_COSTS: Costs. (line 269) ! * TARGET_SCALAR_MODE_SUPPORTED_P: Register Arguments. (line 315) ! * TARGET_SCHED_ADJUST_COST: Scheduling. (line 35) ! * TARGET_SCHED_ADJUST_PRIORITY: Scheduling. (line 50) ! * TARGET_SCHED_ALLOC_SCHED_CONTEXT: Scheduling. (line 272) ! * TARGET_SCHED_CLEAR_SCHED_CONTEXT: Scheduling. (line 287) ! * TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK: Scheduling. (line 87) ! * TARGET_SCHED_DFA_NEW_CYCLE: Scheduling. (line 234) ! * TARGET_SCHED_DFA_POST_ADVANCE_CYCLE: Scheduling. (line 158) ! * TARGET_SCHED_DFA_POST_CYCLE_INSN: Scheduling. (line 142) ! * TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE: Scheduling. (line 151) ! * TARGET_SCHED_DFA_PRE_CYCLE_INSN: Scheduling. (line 130) ! * TARGET_SCHED_DISPATCH: Scheduling. (line 353) ! * TARGET_SCHED_DISPATCH_DO: Scheduling. (line 358) ! * TARGET_SCHED_EXPOSED_PIPELINE: Scheduling. (line 362) ! * TARGET_SCHED_FINISH: Scheduling. (line 108) ! * TARGET_SCHED_FINISH_GLOBAL: Scheduling. (line 123) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK: Scheduling. (line 214) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BEGIN: Scheduling. (line 203) * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD: Scheduling. ! (line 165) * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD: Scheduling. ! (line 193) * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC: Scheduling. ! (line 324) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END: Scheduling. (line 219) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_FINI: Scheduling. (line 229) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_INIT: Scheduling. (line 224) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE: Scheduling. (line 208) ! * TARGET_SCHED_FREE_SCHED_CONTEXT: Scheduling. (line 291) ! * TARGET_SCHED_GEN_SPEC_CHECK: Scheduling. (line 312) ! * TARGET_SCHED_H_I_D_EXTENDED: Scheduling. (line 267) ! * TARGET_SCHED_INIT: Scheduling. (line 97) ! * TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN: Scheduling. (line 147) ! * TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN: Scheduling. (line 139) ! * TARGET_SCHED_INIT_GLOBAL: Scheduling. (line 115) ! * TARGET_SCHED_INIT_SCHED_CONTEXT: Scheduling. (line 276) ! * TARGET_SCHED_ISSUE_RATE: Scheduling. (line 11) ! * TARGET_SCHED_IS_COSTLY_DEPENDENCE: Scheduling. (line 245) ! * TARGET_SCHED_NEEDS_BLOCK_P: Scheduling. (line 306) ! * TARGET_SCHED_REASSOCIATION_WIDTH: Scheduling. (line 367) ! * TARGET_SCHED_REORDER: Scheduling. (line 58) ! * TARGET_SCHED_REORDER2: Scheduling. (line 75) ! * TARGET_SCHED_SET_SCHED_CONTEXT: Scheduling. (line 283) ! * TARGET_SCHED_SET_SCHED_FLAGS: Scheduling. (line 337) ! * TARGET_SCHED_SMS_RES_MII: Scheduling. (line 344) ! * TARGET_SCHED_SPECULATE_INSN: Scheduling. (line 294) ! * TARGET_SCHED_VARIABLE_ISSUE: Scheduling. (line 22) ! * TARGET_SECONDARY_RELOAD: Register Classes. (line 312) ! * TARGET_SECTION_TYPE_FLAGS: File Framework. (line 149) ! * TARGET_SETUP_INCOMING_VARARGS: Varargs. (line 71) ! * TARGET_SET_CURRENT_FUNCTION: Misc. (line 729) ! * TARGET_SET_DEFAULT_TYPE_ATTRIBUTES: Target Attributes. (line 33) ! * TARGET_SET_UP_BY_PROLOGUE: Tail Calls. (line 29) ! * TARGET_SHIFT_TRUNCATION_MASK: Misc. (line 138) * TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P: Register Arguments. ! (line 357) ! * TARGET_SPILL_CLASS: Register Classes. (line 571) ! * TARGET_SPLIT_COMPLEX_ARG: Register Arguments. (line 259) * TARGET_STACK_PROTECT_FAIL: Stack Smashing Protection. ! (line 16) * TARGET_STACK_PROTECT_GUARD: Stack Smashing Protection. ! (line 6) ! * TARGET_STATIC_CHAIN: Frame Registers. (line 90) ! * TARGET_STRICT_ARGUMENT_NAMING: Varargs. (line 107) ! * TARGET_STRING_OBJECT_REF_TYPE_P: Run-time Target. (line 114) ! * TARGET_STRIP_NAME_ENCODING: Sections. (line 288) ! * TARGET_STRUCT_VALUE_RTX: Aggregate Return. (line 44) * TARGET_SUPPORTS_SPLIT_STACK: Stack Smashing Protection. ! (line 25) ! * TARGET_SUPPORTS_WEAK: Label Output. (line 237) * TARGET_TERMINATE_DW2_EH_FRAME_INFO: Exception Region Output. ! (line 98) ! * TARGET_TRAMPOLINE_ADJUST_ADDRESS: Trampolines. (line 74) ! * TARGET_TRAMPOLINE_INIT: Trampolines. (line 54) ! * TARGET_UNSPEC_MAY_TRAP_P: Misc. (line 720) * TARGET_UNWIND_TABLES_DEFAULT: Exception Region Output. ! (line 72) ! * TARGET_UNWIND_WORD_MODE: Storage Layout. (line 467) * TARGET_UPDATE_STACK_BOUNDARY: Misc. (line 970) ! * TARGET_USES_WEAK_UNWIND_INFO: Exception Handling. (line 123) ! * TARGET_USE_ANCHORS_FOR_SYMBOL_P: Anchored Addresses. (line 53) ! * TARGET_USE_BLOCKS_FOR_CONSTANT_P: Addressing Modes. (line 248) ! * TARGET_USE_BLOCKS_FOR_DECL_P: Addressing Modes. (line 255) * TARGET_USE_JCR_SECTION: Misc. (line 952) ! * TARGET_VALID_DLLIMPORT_ATTRIBUTE_P: Target Attributes. (line 66) ! * TARGET_VALID_POINTER_MODE: Register Arguments. (line 303) ! * TARGET_VECTORIZE_ADD_STMT_COST: Addressing Modes. (line 367) * TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES: Addressing Modes. ! (line 350) ! * TARGET_VECTORIZE_BUILTIN_CONVERSION: Addressing Modes. (line 312) ! * TARGET_VECTORIZE_BUILTIN_GATHER: Addressing Modes. (line 398) ! * TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD: Addressing Modes. (line 271) ! * TARGET_VECTORIZE_BUILTIN_TM_LOAD: Addressing Modes. (line 390) ! * TARGET_VECTORIZE_BUILTIN_TM_STORE: Addressing Modes. (line 394) * TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST: Addressing Modes. ! (line 297) * TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION: Addressing Modes. ! (line 324) ! * TARGET_VECTORIZE_DESTROY_COST_DATA: Addressing Modes. (line 385) ! * TARGET_VECTORIZE_FINISH_COST: Addressing Modes. (line 378) ! * TARGET_VECTORIZE_INIT_COST: Addressing Modes. (line 358) ! * TARGET_VECTORIZE_PREFERRED_SIMD_MODE: Addressing Modes. (line 343) * TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT: Addressing Modes. ! (line 333) * TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE: Addressing Modes. ! (line 303) ! * TARGET_VECTORIZE_VEC_PERM_CONST_OK: Addressing Modes. (line 308) ! * TARGET_VECTOR_ALIGNMENT: Storage Layout. (line 260) ! * TARGET_VECTOR_MODE_SUPPORTED_P: Register Arguments. (line 327) ! * TARGET_VTABLE_DATA_ENTRY_DISTANCE: Type Layout. (line 346) ! * TARGET_VTABLE_ENTRY_ALIGN: Type Layout. (line 340) ! * TARGET_VTABLE_USES_DESCRIPTORS: Type Layout. (line 329) ! * TARGET_WANT_DEBUG_PUB_SECTIONS: SDB and DWARF. (line 55) ! * TARGET_WARN_FUNC_RETURN: Tail Calls. (line 35) ! * TARGET_WEAK_NOT_IN_ARCHIVE_TOC: Label Output. (line 273) ! * TCmode: Machine Modes. (line 196) * TDmode: Machine Modes. (line 94) * TEMPLATE_DECL: Declarations. (line 6) * Temporaries: Temporaries. (line 6) * termination routines: Initialization. (line 6) * testing constraints: C Constraint Interface. (line 6) ! * TEXT_SECTION_ASM_OP: Sections. (line 37) * TFmode: Machine Modes. (line 98) + * TF_SIZE: Type Layout. (line 138) * THEN_CLAUSE: Statements for C++. (line 6) ! * THREAD_MODEL_SPEC: Driver. (line 162) * THROW_EXPR: Unary and Binary Expressions. (line 6) * THUNK_DECL: Declarations. (line 6) * THUNK_DELTA: Declarations. (line 6) * TImode: Machine Modes. (line 48) ! * 'TImode', in 'insn': Insns. (line 275) ! * TLS_COMMON_ASM_OP: Sections. (line 80) ! * TLS_SECTION_ASM_FLAG: Sections. (line 85) ! * 'tm.h' macros: Target Macros. (line 6) * TQFmode: Machine Modes. (line 62) * TQmode: Machine Modes. (line 119) * trampolines for nested functions: Trampolines. (line 6) ! * TRAMPOLINE_ALIGNMENT: Trampolines. (line 48) ! * TRAMPOLINE_SECTION: Trampolines. (line 39) ! * TRAMPOLINE_SIZE: Trampolines. (line 44) ! * TRANSFER_FROM_TRAMPOLINE: Trampolines. (line 110) ! * 'trap' instruction pattern: Standard Names. (line 1529) ! * tree: Tree overview. (line 6) * tree <1>: Macros and Functions. (line 6) * Tree SSA: Tree SSA. (line 6) * TREE_CHAIN: Macros and Functions. (line 6) *************** Concept Index *** 49000,49008 **** (line 6) * TREE_LIST: Containers. (line 6) * TREE_OPERAND: Expression trees. (line 6) * TREE_PUBLIC <1>: Function Properties. (line 28) - * TREE_PUBLIC: Function Basics. (line 6) * TREE_PURPOSE: Containers. (line 6) * TREE_READONLY: Function Properties. (line 37) --- 48678,48686 ---- (line 6) * TREE_LIST: Containers. (line 6) * TREE_OPERAND: Expression trees. (line 6) + * TREE_PUBLIC: Function Basics. (line 6) * TREE_PUBLIC <1>: Function Properties. (line 28) * TREE_PURPOSE: Containers. (line 6) * TREE_READONLY: Function Properties. (line 37) *************** Concept Index *** 49016,49050 **** (line 6) * TREE_THIS_VOLATILE: Function Properties. (line 34) - * TREE_TYPE <1>: Types for C++. (line 6) - * TREE_TYPE <2>: Function Basics. (line 47) - * TREE_TYPE <3>: Expression trees. (line 6) - * TREE_TYPE <4>: Working with declarations. - (line 11) - * TREE_TYPE <5>: Types. (line 6) * TREE_TYPE: Macros and Functions. (line 6) * TREE_VALUE: Containers. (line 6) * TREE_VEC: Containers. (line 6) * TREE_VEC_ELT: Containers. (line 6) * TREE_VEC_LENGTH: Containers. (line 6) ! * TRULY_NOOP_TRUNCATION: Misc. (line 163) * TRUNC_DIV_EXPR: Unary and Binary Expressions. (line 6) * TRUNC_MOD_EXPR: Unary and Binary Expressions. (line 6) - * truncate: Conversions. (line 38) - * truncMN2 instruction pattern: Standard Names. (line 903) - * TRUTH_AND_EXPR: Unary and Binary Expressions. - (line 6) * TRUTH_ANDIF_EXPR: Unary and Binary Expressions. (line 6) ! * TRUTH_NOT_EXPR: Unary and Binary Expressions. (line 6) ! * TRUTH_OR_EXPR: Unary and Binary Expressions. (line 6) * TRUTH_ORIF_EXPR: Unary and Binary Expressions. (line 6) * TRUTH_XOR_EXPR: Unary and Binary Expressions. (line 6) * TRY_BLOCK: Statements for C++. (line 6) --- 48694,48729 ---- (line 6) * TREE_THIS_VOLATILE: Function Properties. (line 34) * TREE_TYPE: Macros and Functions. (line 6) + * TREE_TYPE <1>: Types. (line 6) + * TREE_TYPE <2>: Working with declarations. + (line 11) + * TREE_TYPE <3>: Expression trees. (line 6) + * TREE_TYPE <4>: Expression trees. (line 17) + * TREE_TYPE <5>: Function Basics. (line 47) + * TREE_TYPE <6>: Types for C++. (line 6) * TREE_VALUE: Containers. (line 6) * TREE_VEC: Containers. (line 6) * TREE_VEC_ELT: Containers. (line 6) * TREE_VEC_LENGTH: Containers. (line 6) ! * TRULY_NOOP_TRUNCATION: Misc. (line 162) ! * truncate: Conversions. (line 38) ! * 'truncMN2' instruction pattern: Standard Names. (line 897) * TRUNC_DIV_EXPR: Unary and Binary Expressions. (line 6) * TRUNC_MOD_EXPR: Unary and Binary Expressions. (line 6) * TRUTH_ANDIF_EXPR: Unary and Binary Expressions. (line 6) ! * TRUTH_AND_EXPR: Unary and Binary Expressions. (line 6) ! * TRUTH_NOT_EXPR: Unary and Binary Expressions. (line 6) * TRUTH_ORIF_EXPR: Unary and Binary Expressions. (line 6) + * TRUTH_OR_EXPR: Unary and Binary Expressions. + (line 6) * TRUTH_XOR_EXPR: Unary and Binary Expressions. (line 6) * TRY_BLOCK: Statements for C++. (line 6) *************** Concept Index *** 49056,49329 **** (line 6) * type: Types. (line 6) * type declaration: Declarations. (line 6) ! * TYPE_ALIGN <1>: Types for C++. (line 6) * TYPE_ALIGN: Types. (line 6) ! * TYPE_ARG_TYPES <1>: Types for C++. (line 6) * TYPE_ARG_TYPES: Types. (line 6) ! * TYPE_ASM_OP: Label Output. (line 79) ! * TYPE_ATTRIBUTES: Attributes. (line 25) * TYPE_BINFO: Classes. (line 6) ! * TYPE_BUILT_IN: Types for C++. (line 68) * TYPE_CANONICAL: Types. (line 6) ! * TYPE_CONTEXT <1>: Types for C++. (line 6) * TYPE_CONTEXT: Types. (line 6) * TYPE_DECL: Declarations. (line 6) - * TYPE_FIELDS <1>: Classes. (line 6) - * TYPE_FIELDS <2>: Types for C++. (line 6) * TYPE_FIELDS: Types. (line 6) * TYPE_HAS_ARRAY_NEW_OPERATOR: Classes. (line 96) * TYPE_HAS_DEFAULT_CONSTRUCTOR: Classes. (line 81) * TYPE_HAS_MUTABLE_P: Classes. (line 86) * TYPE_HAS_NEW_OPERATOR: Classes. (line 93) - * TYPE_MAIN_VARIANT <1>: Types for C++. (line 6) * TYPE_MAIN_VARIANT: Types. (line 6) * TYPE_MAX_VALUE: Types. (line 6) - * TYPE_METHOD_BASETYPE <1>: Types for C++. (line 6) - * TYPE_METHOD_BASETYPE: Types. (line 6) * TYPE_METHODS: Classes. (line 6) * TYPE_MIN_VALUE: Types. (line 6) - * TYPE_NAME <1>: Types for C++. (line 6) * TYPE_NAME: Types. (line 6) * TYPE_NOTHROW_P: Functions for C++. (line 154) - * TYPE_OFFSET_BASETYPE <1>: Types for C++. (line 6) * TYPE_OFFSET_BASETYPE: Types. (line 6) ! * TYPE_OPERAND_FMT: Label Output. (line 90) * TYPE_OVERLOADS_ARRAY_REF: Classes. (line 104) * TYPE_OVERLOADS_ARROW: Classes. (line 107) * TYPE_OVERLOADS_CALL_EXPR: Classes. (line 100) * TYPE_POLYMORPHIC_P: Classes. (line 77) - * TYPE_PRECISION <1>: Types for C++. (line 6) * TYPE_PRECISION: Types. (line 6) ! * TYPE_PTR_P: Types for C++. (line 74) * TYPE_PTRDATAMEM_P: Types for C++. (line 6) ! * TYPE_PTRFN_P: Types for C++. (line 78) ! * TYPE_PTROB_P: Types for C++. (line 81) * TYPE_PTROBV_P: Types for C++. (line 6) ! * TYPE_QUAL_CONST <1>: Types for C++. (line 6) * TYPE_QUAL_CONST: Types. (line 6) ! * TYPE_QUAL_RESTRICT <1>: Types for C++. (line 6) * TYPE_QUAL_RESTRICT: Types. (line 6) ! * TYPE_QUAL_VOLATILE <1>: Types for C++. (line 6) * TYPE_QUAL_VOLATILE: Types. (line 6) * TYPE_RAISES_EXCEPTIONS: Functions for C++. (line 149) - * TYPE_SIZE <1>: Types for C++. (line 6) * TYPE_SIZE: Types. (line 6) * TYPE_STRUCTURAL_EQUALITY_P: Types. (line 6) ! * TYPE_UNQUALIFIED <1>: Types for C++. (line 6) * TYPE_UNQUALIFIED: Types. (line 6) * TYPE_VFIELD: Classes. (line 6) ! * TYPENAME_TYPE: Types for C++. (line 6) ! * TYPENAME_TYPE_FULLNAME <1>: Types for C++. (line 6) ! * TYPENAME_TYPE_FULLNAME: Types. (line 6) ! * TYPEOF_TYPE: Types for C++. (line 6) ! * UDAmode: Machine Modes. (line 168) ! * udiv: Arithmetic. (line 130) ! * udivM3 instruction pattern: Standard Names. (line 269) ! * udivmodM4 instruction pattern: Standard Names. (line 507) ! * udot_prodM instruction pattern: Standard Names. (line 335) ! * UDQmode: Machine Modes. (line 136) ! * UHAmode: Machine Modes. (line 160) ! * UHQmode: Machine Modes. (line 128) ! * UINT16_TYPE: Type Layout. (line 258) ! * UINT32_TYPE: Type Layout. (line 259) ! * UINT64_TYPE: Type Layout. (line 260) ! * UINT8_TYPE: Type Layout. (line 257) ! * UINT_FAST16_TYPE: Type Layout. (line 274) ! * UINT_FAST32_TYPE: Type Layout. (line 275) ! * UINT_FAST64_TYPE: Type Layout. (line 276) ! * UINT_FAST8_TYPE: Type Layout. (line 273) ! * UINT_LEAST16_TYPE: Type Layout. (line 266) ! * UINT_LEAST32_TYPE: Type Layout. (line 267) ! * UINT_LEAST64_TYPE: Type Layout. (line 268) ! * UINT_LEAST8_TYPE: Type Layout. (line 265) ! * UINTMAX_TYPE: Type Layout. (line 241) ! * UINTPTR_TYPE: Type Layout. (line 278) ! * umaddMN4 instruction pattern: Standard Names. (line 454) ! * umax: Arithmetic. (line 149) ! * umaxM3 instruction pattern: Standard Names. (line 269) ! * umin: Arithmetic. (line 149) ! * uminM3 instruction pattern: Standard Names. (line 269) ! * umod: Arithmetic. (line 136) ! * umodM3 instruction pattern: Standard Names. (line 269) ! * umsubMN4 instruction pattern: Standard Names. (line 478) ! * umulhisi3 instruction pattern: Standard Names. (line 426) ! * umulM3_highpart instruction pattern: Standard Names. (line 440) ! * umulqihi3 instruction pattern: Standard Names. (line 426) ! * umulsidi3 instruction pattern: Standard Names. (line 426) * unchanging: Flags. (line 296) ! * unchanging, in call_insn: Flags. (line 19) ! * unchanging, in jump_insn, call_insn and insn: Flags. (line 39) ! * unchanging, in mem: Flags. (line 134) ! * unchanging, in subreg: Flags. (line 170) ! * unchanging, in symbol_ref: Flags. (line 10) * UNEQ_EXPR: Unary and Binary Expressions. (line 6) * UNGE_EXPR: Unary and Binary Expressions. (line 6) * UNGT_EXPR: Unary and Binary Expressions. (line 6) - * UNION_TYPE <1>: Classes. (line 6) - * UNION_TYPE: Types. (line 6) * unions, returning: Interface. (line 10) ! * UNITS_PER_WORD: Storage Layout. (line 66) ! * UNKNOWN_TYPE <1>: Types for C++. (line 6) * UNKNOWN_TYPE: Types. (line 6) * UNLE_EXPR: Unary and Binary Expressions. (line 6) ! * UNLIKELY_EXECUTED_TEXT_SECTION_NAME: Sections. (line 49) * UNLT_EXPR: Unary and Binary Expressions. (line 6) * UNORDERED_EXPR: Unary and Binary Expressions. (line 6) * unshare_all_rtl: Sharing. (line 58) ! * unsigned division: Arithmetic. (line 130) ! * unsigned division with unsigned saturation: Arithmetic. (line 130) * unsigned greater than: Comparisons. (line 64) * unsigned less than: Comparisons. (line 68) ! * unsigned minimum and maximum: Arithmetic. (line 149) * unsigned_fix: Conversions. (line 77) * unsigned_float: Conversions. (line 62) * unsigned_fract_convert: Conversions. (line 97) * unsigned_sat_fract: Conversions. (line 103) * unspec <1>: Constant Definitions. (line 111) ! * unspec: Side Effects. (line 293) * unspec_volatile <1>: Constant Definitions. (line 99) ! * unspec_volatile: Side Effects. (line 293) ! * untyped_call instruction pattern: Standard Names. (line 1145) ! * untyped_return instruction pattern: Standard Names. (line 1209) * UPDATE_PATH_HOST_CANONICALIZE (PATH): Filesystem. (line 59) * update_ssa: SSA. (line 76) - * update_stmt <1>: SSA Operands. (line 6) * update_stmt: Manipulating GIMPLE statements. ! (line 141) * update_stmt_if_modified: Manipulating GIMPLE statements. ! (line 144) * UQQmode: Machine Modes. (line 123) ! * us_ashift: Arithmetic. (line 173) ! * us_minus: Arithmetic. (line 36) ! * us_mult: Arithmetic. (line 92) ! * us_neg: Arithmetic. (line 81) ! * us_plus: Arithmetic. (line 14) ! * us_truncate: Conversions. (line 48) ! * usaddM3 instruction pattern: Standard Names. (line 269) ! * USAmode: Machine Modes. (line 164) ! * usashlM3 instruction pattern: Standard Names. (line 510) ! * usdivM3 instruction pattern: Standard Names. (line 269) * use: Side Effects. (line 168) - * USE_C_ALLOCA: Host Misc. (line 19) - * USE_LD_AS_NEEDED: Driver. (line 136) - * USE_LOAD_POST_DECREMENT: Costs. (line 226) - * USE_LOAD_POST_INCREMENT: Costs. (line 221) - * USE_LOAD_PRE_DECREMENT: Costs. (line 236) - * USE_LOAD_PRE_INCREMENT: Costs. (line 231) - * use_param: GTY Options. (line 114) - * use_paramN: GTY Options. (line 132) - * use_params: GTY Options. (line 140) - * USE_SELECT_SECTION_FOR_FUNCTIONS: Sections. (line 194) - * USE_STORE_POST_DECREMENT: Costs. (line 246) - * USE_STORE_POST_INCREMENT: Costs. (line 241) - * USE_STORE_PRE_DECREMENT: Costs. (line 256) - * USE_STORE_PRE_INCREMENT: Costs. (line 251) * used: Flags. (line 314) ! * used, in symbol_ref: Flags. (line 197) ! * user: GTY Options. (line 301) * user gc: User GC. (line 6) ! * USER_LABEL_PREFIX: Instruction Output. (line 154) * USING_STMT: Statements for C++. (line 6) ! * usmaddMN4 instruction pattern: Standard Names. (line 462) ! * usmsubMN4 instruction pattern: Standard Names. (line 486) ! * usmulhisi3 instruction pattern: Standard Names. (line 430) ! * usmulM3 instruction pattern: Standard Names. (line 269) ! * usmulqihi3 instruction pattern: Standard Names. (line 430) ! * usmulsidi3 instruction pattern: Standard Names. (line 430) ! * usnegM2 instruction pattern: Standard Names. (line 532) ! * USQmode: Machine Modes. (line 132) ! * ussubM3 instruction pattern: Standard Names. (line 269) ! * usum_widenM3 instruction pattern: Standard Names. (line 345) ! * UTAmode: Machine Modes. (line 172) ! * UTQmode: Machine Modes. (line 140) ! * V in constraint: Simple Constraints. (line 43) ! * VA_ARG_EXPR: Unary and Binary Expressions. ! (line 6) * values, returned by functions: Scalar Return. (line 6) - * VAR_DECL: Declarations. (line 6) - * var_location: Debug Information. (line 14) * varargs implementation: Varargs. (line 6) * variable: Declarations. (line 6) * Variable Location Debug Information in RTL: Debug Information. (line 6) ! * variable_size: GTY Options. (line 230) ! * vashlM3 instruction pattern: Standard Names. (line 524) ! * vashrM3 instruction pattern: Standard Names. (line 524) ! * vcondMN instruction pattern: Standard Names. (line 214) * vec_concat: Vector Operations. (line 28) * vec_duplicate: Vector Operations. (line 33) ! * vec_extractM instruction pattern: Standard Names. (line 204) ! * vec_initM instruction pattern: Standard Names. (line 209) ! * vec_load_lanesMN instruction pattern: Standard Names. (line 166) * VEC_LSHIFT_EXPR: Vectors. (line 6) * vec_merge: Vector Operations. (line 11) * VEC_PACK_FIX_TRUNC_EXPR: Vectors. (line 6) * VEC_PACK_SAT_EXPR: Vectors. (line 6) ! * vec_pack_sfix_trunc_M instruction pattern: Standard Names. (line 372) ! * vec_pack_ssat_M instruction pattern: Standard Names. (line 365) * VEC_PACK_TRUNC_EXPR: Vectors. (line 6) ! * vec_pack_trunc_M instruction pattern: Standard Names. (line 358) ! * vec_pack_ufix_trunc_M instruction pattern: Standard Names. (line 372) ! * vec_pack_usat_M instruction pattern: Standard Names. (line 365) ! * vec_perm_constM instruction pattern: Standard Names. (line 242) ! * vec_permM instruction pattern: Standard Names. (line 224) * VEC_RSHIFT_EXPR: Vectors. (line 6) * vec_select: Vector Operations. (line 19) ! * vec_setM instruction pattern: Standard Names. (line 199) ! * vec_shl_M instruction pattern: Standard Names. (line 352) ! * vec_shr_M instruction pattern: Standard Names. (line 352) ! * vec_store_lanesMN instruction pattern: Standard Names. (line 188) * VEC_UNPACK_FLOAT_HI_EXPR: Vectors. (line 6) * VEC_UNPACK_FLOAT_LO_EXPR: Vectors. (line 6) * VEC_UNPACK_HI_EXPR: Vectors. (line 6) * VEC_UNPACK_LO_EXPR: Vectors. (line 6) - * vec_unpacks_float_hi_M instruction pattern: Standard Names. - (line 394) - * vec_unpacks_float_lo_M instruction pattern: Standard Names. - (line 394) - * vec_unpacks_hi_M instruction pattern: Standard Names. (line 379) - * vec_unpacks_lo_M instruction pattern: Standard Names. (line 379) - * vec_unpacku_float_hi_M instruction pattern: Standard Names. - (line 394) - * vec_unpacku_float_lo_M instruction pattern: Standard Names. - (line 394) - * vec_unpacku_hi_M instruction pattern: Standard Names. (line 387) - * vec_unpacku_lo_M instruction pattern: Standard Names. (line 387) * VEC_WIDEN_MULT_HI_EXPR: Vectors. (line 6) * VEC_WIDEN_MULT_LO_EXPR: Vectors. (line 6) ! * vec_widen_smult_even_M instruction pattern: Standard Names. ! (line 403) ! * vec_widen_smult_hi_M instruction pattern: Standard Names. (line 403) ! * vec_widen_smult_lo_M instruction pattern: Standard Names. (line 403) ! * vec_widen_smult_odd_M instruction pattern: Standard Names. (line 403) ! * vec_widen_sshiftl_hi_M instruction pattern: Standard Names. ! (line 412) ! * vec_widen_sshiftl_lo_M instruction pattern: Standard Names. ! (line 412) ! * vec_widen_umult_even_M instruction pattern: Standard Names. ! (line 403) ! * vec_widen_umult_hi_M instruction pattern: Standard Names. (line 403) ! * vec_widen_umult_lo_M instruction pattern: Standard Names. (line 403) ! * vec_widen_umult_odd_M instruction pattern: Standard Names. (line 403) ! * vec_widen_ushiftl_hi_M instruction pattern: Standard Names. ! (line 412) ! * vec_widen_ushiftl_lo_M instruction pattern: Standard Names. ! (line 412) ! * vector: Containers. (line 6) ! * vector operations: Vector Operations. (line 6) ! * VECTOR_CST: Constant expressions. ! (line 6) ! * VECTOR_STORE_FLAG_VALUE: Misc. (line 294) * verify_flow_info: Maintaining the CFG. ! (line 119) * virtual operands: SSA Operands. (line 6) * VIRTUAL_INCOMING_ARGS_REGNUM: Regs and Memory. (line 59) * VIRTUAL_OUTGOING_ARGS_REGNUM: Regs and Memory. (line 87) --- 48735,49030 ---- (line 6) * type: Types. (line 6) * type declaration: Declarations. (line 6) ! * TYPENAME_TYPE: Types for C++. (line 6) ! * TYPENAME_TYPE_FULLNAME: Types. (line 6) ! * TYPENAME_TYPE_FULLNAME <1>: Types for C++. (line 6) ! * TYPEOF_TYPE: Types for C++. (line 6) * TYPE_ALIGN: Types. (line 6) ! * TYPE_ALIGN <1>: Types. (line 30) ! * TYPE_ALIGN <2>: Types for C++. (line 6) ! * TYPE_ALIGN <3>: Types for C++. (line 44) * TYPE_ARG_TYPES: Types. (line 6) ! * TYPE_ARG_TYPES <1>: Types for C++. (line 6) ! * TYPE_ASM_OP: Label Output. (line 76) ! * TYPE_ATTRIBUTES: Attributes. (line 24) * TYPE_BINFO: Classes. (line 6) ! * TYPE_BUILT_IN: Types for C++. (line 66) * TYPE_CANONICAL: Types. (line 6) ! * TYPE_CANONICAL <1>: Types. (line 41) * TYPE_CONTEXT: Types. (line 6) + * TYPE_CONTEXT <1>: Types for C++. (line 6) * TYPE_DECL: Declarations. (line 6) * TYPE_FIELDS: Types. (line 6) + * TYPE_FIELDS <1>: Types for C++. (line 6) + * TYPE_FIELDS <2>: Classes. (line 6) * TYPE_HAS_ARRAY_NEW_OPERATOR: Classes. (line 96) * TYPE_HAS_DEFAULT_CONSTRUCTOR: Classes. (line 81) * TYPE_HAS_MUTABLE_P: Classes. (line 86) * TYPE_HAS_NEW_OPERATOR: Classes. (line 93) * TYPE_MAIN_VARIANT: Types. (line 6) + * TYPE_MAIN_VARIANT <1>: Types. (line 19) + * TYPE_MAIN_VARIANT <2>: Types for C++. (line 6) * TYPE_MAX_VALUE: Types. (line 6) * TYPE_METHODS: Classes. (line 6) + * TYPE_METHOD_BASETYPE: Types. (line 6) + * TYPE_METHOD_BASETYPE <1>: Types for C++. (line 6) * TYPE_MIN_VALUE: Types. (line 6) * TYPE_NAME: Types. (line 6) + * TYPE_NAME <1>: Types. (line 33) + * TYPE_NAME <2>: Types for C++. (line 6) + * TYPE_NAME <3>: Types for C++. (line 47) * TYPE_NOTHROW_P: Functions for C++. (line 154) * TYPE_OFFSET_BASETYPE: Types. (line 6) ! * TYPE_OFFSET_BASETYPE <1>: Types for C++. (line 6) ! * TYPE_OPERAND_FMT: Label Output. (line 87) * TYPE_OVERLOADS_ARRAY_REF: Classes. (line 104) * TYPE_OVERLOADS_ARROW: Classes. (line 107) * TYPE_OVERLOADS_CALL_EXPR: Classes. (line 100) * TYPE_POLYMORPHIC_P: Classes. (line 77) * TYPE_PRECISION: Types. (line 6) ! * TYPE_PRECISION <1>: Types for C++. (line 6) * TYPE_PTRDATAMEM_P: Types for C++. (line 6) ! * TYPE_PTRDATAMEM_P <1>: Types for C++. (line 69) ! * TYPE_PTRFN_P: Types for C++. (line 76) * TYPE_PTROBV_P: Types for C++. (line 6) ! * TYPE_PTROB_P: Types for C++. (line 79) ! * TYPE_PTR_P: Types for C++. (line 72) * TYPE_QUAL_CONST: Types. (line 6) ! * TYPE_QUAL_CONST <1>: Types for C++. (line 6) * TYPE_QUAL_RESTRICT: Types. (line 6) ! * TYPE_QUAL_RESTRICT <1>: Types for C++. (line 6) * TYPE_QUAL_VOLATILE: Types. (line 6) + * TYPE_QUAL_VOLATILE <1>: Types for C++. (line 6) * TYPE_RAISES_EXCEPTIONS: Functions for C++. (line 149) * TYPE_SIZE: Types. (line 6) + * TYPE_SIZE <1>: Types. (line 25) + * TYPE_SIZE <2>: Types for C++. (line 6) + * TYPE_SIZE <3>: Types for C++. (line 39) * TYPE_STRUCTURAL_EQUALITY_P: Types. (line 6) ! * TYPE_STRUCTURAL_EQUALITY_P <1>: Types. (line 77) * TYPE_UNQUALIFIED: Types. (line 6) + * TYPE_UNQUALIFIED <1>: Types for C++. (line 6) * TYPE_VFIELD: Classes. (line 6) ! * UDAmode: Machine Modes. (line 167) ! * udiv: Arithmetic. (line 131) ! * 'udivM3' instruction pattern: Standard Names. (line 266) ! * 'udivmodM4' instruction pattern: Standard Names. (line 501) ! * 'udot_prodM' instruction pattern: Standard Names. (line 332) ! * UDQmode: Machine Modes. (line 135) ! * UHAmode: Machine Modes. (line 159) ! * UHQmode: Machine Modes. (line 127) ! * UINT16_TYPE: Type Layout. (line 257) ! * UINT32_TYPE: Type Layout. (line 258) ! * UINT64_TYPE: Type Layout. (line 259) ! * UINT8_TYPE: Type Layout. (line 256) ! * UINTMAX_TYPE: Type Layout. (line 240) ! * UINTPTR_TYPE: Type Layout. (line 277) ! * UINT_FAST16_TYPE: Type Layout. (line 273) ! * UINT_FAST32_TYPE: Type Layout. (line 274) ! * UINT_FAST64_TYPE: Type Layout. (line 275) ! * UINT_FAST8_TYPE: Type Layout. (line 272) ! * UINT_LEAST16_TYPE: Type Layout. (line 265) ! * UINT_LEAST32_TYPE: Type Layout. (line 266) ! * UINT_LEAST64_TYPE: Type Layout. (line 267) ! * UINT_LEAST8_TYPE: Type Layout. (line 264) ! * 'umaddMN4' instruction pattern: Standard Names. (line 448) ! * umax: Arithmetic. (line 150) ! * 'umaxM3' instruction pattern: Standard Names. (line 266) ! * umin: Arithmetic. (line 150) ! * 'uminM3' instruction pattern: Standard Names. (line 266) ! * umod: Arithmetic. (line 137) ! * 'umodM3' instruction pattern: Standard Names. (line 266) ! * 'umsubMN4' instruction pattern: Standard Names. (line 472) ! * 'umulhisi3' instruction pattern: Standard Names. (line 420) ! * 'umulM3_highpart' instruction pattern: Standard Names. (line 434) ! * 'umulqihi3' instruction pattern: Standard Names. (line 420) ! * 'umulsidi3' instruction pattern: Standard Names. (line 420) * unchanging: Flags. (line 296) ! * 'unchanging', in 'call_insn': Flags. (line 19) ! * 'unchanging', in 'jump_insn', 'call_insn' and 'insn': Flags. ! (line 39) ! * 'unchanging', in 'mem': Flags. (line 134) ! * 'unchanging', in 'subreg': Flags. (line 170) ! * 'unchanging', in 'subreg' <1>: Flags. (line 180) ! * 'unchanging', in 'symbol_ref': Flags. (line 10) * UNEQ_EXPR: Unary and Binary Expressions. (line 6) * UNGE_EXPR: Unary and Binary Expressions. (line 6) * UNGT_EXPR: Unary and Binary Expressions. (line 6) * unions, returning: Interface. (line 10) ! * UNION_TYPE: Types. (line 6) ! * UNION_TYPE <1>: Classes. (line 6) ! * UNITS_PER_WORD: Storage Layout. (line 65) * UNKNOWN_TYPE: Types. (line 6) + * UNKNOWN_TYPE <1>: Types for C++. (line 6) * UNLE_EXPR: Unary and Binary Expressions. (line 6) ! * UNLIKELY_EXECUTED_TEXT_SECTION_NAME: Sections. (line 48) * UNLT_EXPR: Unary and Binary Expressions. (line 6) * UNORDERED_EXPR: Unary and Binary Expressions. (line 6) * unshare_all_rtl: Sharing. (line 58) ! * unsigned division: Arithmetic. (line 131) ! * unsigned division with unsigned saturation: Arithmetic. (line 131) * unsigned greater than: Comparisons. (line 64) + * unsigned greater than <1>: Comparisons. (line 72) * unsigned less than: Comparisons. (line 68) ! * unsigned less than <1>: Comparisons. (line 76) ! * unsigned minimum and maximum: Arithmetic. (line 150) * unsigned_fix: Conversions. (line 77) * unsigned_float: Conversions. (line 62) * unsigned_fract_convert: Conversions. (line 97) * unsigned_sat_fract: Conversions. (line 103) + * unspec: Side Effects. (line 291) * unspec <1>: Constant Definitions. (line 111) ! * unspec_volatile: Side Effects. (line 291) * unspec_volatile <1>: Constant Definitions. (line 99) ! * 'untyped_call' instruction pattern: Standard Names. (line 1139) ! * 'untyped_return' instruction pattern: Standard Names. (line 1202) * UPDATE_PATH_HOST_CANONICALIZE (PATH): Filesystem. (line 59) * update_ssa: SSA. (line 76) * update_stmt: Manipulating GIMPLE statements. ! (line 140) ! * update_stmt <1>: SSA Operands. (line 6) * update_stmt_if_modified: Manipulating GIMPLE statements. ! (line 143) * UQQmode: Machine Modes. (line 123) ! * 'usaddM3' instruction pattern: Standard Names. (line 266) ! * USAmode: Machine Modes. (line 163) ! * 'usashlM3' instruction pattern: Standard Names. (line 504) ! * 'usdivM3' instruction pattern: Standard Names. (line 266) * use: Side Effects. (line 168) * used: Flags. (line 314) ! * 'used', in 'symbol_ref': Flags. (line 197) ! * user: GTY Options. (line 314) * user gc: User GC. (line 6) ! * USER_LABEL_PREFIX: Instruction Output. (line 152) ! * USE_C_ALLOCA: Host Misc. (line 19) ! * USE_LD_AS_NEEDED: Driver. (line 135) ! * USE_LOAD_POST_DECREMENT: Costs. (line 225) ! * USE_LOAD_POST_INCREMENT: Costs. (line 220) ! * USE_LOAD_PRE_DECREMENT: Costs. (line 235) ! * USE_LOAD_PRE_INCREMENT: Costs. (line 230) ! * use_param: GTY Options. (line 115) ! * use_paramN: GTY Options. (line 134) ! * use_params: GTY Options. (line 143) ! * USE_SELECT_SECTION_FOR_FUNCTIONS: Sections. (line 193) ! * USE_STORE_POST_DECREMENT: Costs. (line 245) ! * USE_STORE_POST_INCREMENT: Costs. (line 240) ! * USE_STORE_PRE_DECREMENT: Costs. (line 255) ! * USE_STORE_PRE_INCREMENT: Costs. (line 250) * USING_STMT: Statements for C++. (line 6) ! * 'usmaddMN4' instruction pattern: Standard Names. (line 456) ! * 'usmsubMN4' instruction pattern: Standard Names. (line 480) ! * 'usmulhisi3' instruction pattern: Standard Names. (line 424) ! * 'usmulM3' instruction pattern: Standard Names. (line 266) ! * 'usmulqihi3' instruction pattern: Standard Names. (line 424) ! * 'usmulsidi3' instruction pattern: Standard Names. (line 424) ! * 'usnegM2' instruction pattern: Standard Names. (line 526) ! * USQmode: Machine Modes. (line 131) ! * 'ussubM3' instruction pattern: Standard Names. (line 266) ! * 'usum_widenM3' instruction pattern: Standard Names. (line 341) ! * us_ashift: Arithmetic. (line 174) ! * us_minus: Arithmetic. (line 38) ! * us_mult: Arithmetic. (line 93) ! * us_neg: Arithmetic. (line 82) ! * us_plus: Arithmetic. (line 14) ! * us_truncate: Conversions. (line 48) ! * UTAmode: Machine Modes. (line 171) ! * UTQmode: Machine Modes. (line 139) ! * 'V' in constraint: Simple Constraints. (line 43) * values, returned by functions: Scalar Return. (line 6) * varargs implementation: Varargs. (line 6) * variable: Declarations. (line 6) * Variable Location Debug Information in RTL: Debug Information. (line 6) ! * variable_size: GTY Options. (line 241) ! * VAR_DECL: Declarations. (line 6) ! * var_location: Debug Information. (line 14) ! * 'vashlM3' instruction pattern: Standard Names. (line 518) ! * 'vashrM3' instruction pattern: Standard Names. (line 518) ! * VA_ARG_EXPR: Unary and Binary Expressions. ! (line 6) ! * 'vcondMN' instruction pattern: Standard Names. (line 213) ! * vector: Containers. (line 6) ! * vector operations: Vector Operations. (line 6) ! * VECTOR_CST: Constant expressions. ! (line 6) ! * VECTOR_STORE_FLAG_VALUE: Misc. (line 293) * vec_concat: Vector Operations. (line 28) * vec_duplicate: Vector Operations. (line 33) ! * 'vec_extractM' instruction pattern: Standard Names. (line 203) ! * 'vec_initM' instruction pattern: Standard Names. (line 208) ! * 'vec_load_lanesMN' instruction pattern: Standard Names. (line 165) * VEC_LSHIFT_EXPR: Vectors. (line 6) * vec_merge: Vector Operations. (line 11) * VEC_PACK_FIX_TRUNC_EXPR: Vectors. (line 6) * VEC_PACK_SAT_EXPR: Vectors. (line 6) ! * 'vec_pack_sfix_trunc_M' instruction pattern: Standard Names. ! (line 367) ! * 'vec_pack_ssat_M' instruction pattern: Standard Names. (line 360) * VEC_PACK_TRUNC_EXPR: Vectors. (line 6) ! * 'vec_pack_trunc_M' instruction pattern: Standard Names. (line 353) ! * 'vec_pack_ufix_trunc_M' instruction pattern: Standard Names. ! (line 367) ! * 'vec_pack_usat_M' instruction pattern: Standard Names. (line 360) ! * 'vec_permM' instruction pattern: Standard Names. (line 223) ! * 'vec_perm_constM' instruction pattern: Standard Names. (line 239) * VEC_RSHIFT_EXPR: Vectors. (line 6) * vec_select: Vector Operations. (line 19) ! * 'vec_setM' instruction pattern: Standard Names. (line 198) ! * 'vec_shl_M' instruction pattern: Standard Names. (line 347) ! * 'vec_shr_M' instruction pattern: Standard Names. (line 347) ! * 'vec_store_lanesMN' instruction pattern: Standard Names. (line 187) ! * 'vec_unpacks_float_hi_M' instruction pattern: Standard Names. ! (line 388) ! * 'vec_unpacks_float_lo_M' instruction pattern: Standard Names. ! (line 388) ! * 'vec_unpacks_hi_M' instruction pattern: Standard Names. (line 374) ! * 'vec_unpacks_lo_M' instruction pattern: Standard Names. (line 374) ! * 'vec_unpacku_float_hi_M' instruction pattern: Standard Names. ! (line 388) ! * 'vec_unpacku_float_lo_M' instruction pattern: Standard Names. ! (line 388) ! * 'vec_unpacku_hi_M' instruction pattern: Standard Names. (line 381) ! * 'vec_unpacku_lo_M' instruction pattern: Standard Names. (line 381) * VEC_UNPACK_FLOAT_HI_EXPR: Vectors. (line 6) * VEC_UNPACK_FLOAT_LO_EXPR: Vectors. (line 6) * VEC_UNPACK_HI_EXPR: Vectors. (line 6) * VEC_UNPACK_LO_EXPR: Vectors. (line 6) * VEC_WIDEN_MULT_HI_EXPR: Vectors. (line 6) * VEC_WIDEN_MULT_LO_EXPR: Vectors. (line 6) ! * 'vec_widen_smult_even_M' instruction pattern: Standard Names. ! (line 397) ! * 'vec_widen_smult_hi_M' instruction pattern: Standard Names. ! (line 397) ! * 'vec_widen_smult_lo_M' instruction pattern: Standard Names. ! (line 397) ! * 'vec_widen_smult_odd_M' instruction pattern: Standard Names. ! (line 397) ! * 'vec_widen_sshiftl_hi_M' instruction pattern: Standard Names. ! (line 406) ! * 'vec_widen_sshiftl_lo_M' instruction pattern: Standard Names. ! (line 406) ! * 'vec_widen_umult_even_M' instruction pattern: Standard Names. ! (line 397) ! * 'vec_widen_umult_hi_M' instruction pattern: Standard Names. ! (line 397) ! * 'vec_widen_umult_lo_M' instruction pattern: Standard Names. ! (line 397) ! * 'vec_widen_umult_odd_M' instruction pattern: Standard Names. ! (line 397) ! * 'vec_widen_ushiftl_hi_M' instruction pattern: Standard Names. ! (line 406) ! * 'vec_widen_ushiftl_lo_M' instruction pattern: Standard Names. ! (line 406) * verify_flow_info: Maintaining the CFG. ! (line 117) * virtual operands: SSA Operands. (line 6) * VIRTUAL_INCOMING_ARGS_REGNUM: Regs and Memory. (line 59) * VIRTUAL_OUTGOING_ARGS_REGNUM: Regs and Memory. (line 87) *************** Concept Index *** 49331,49772 **** * VIRTUAL_STACK_VARS_REGNUM: Regs and Memory. (line 69) * VLIW: Processor pipeline description. (line 6) ! * vlshrM3 instruction pattern: Standard Names. (line 524) * VMS: Filesystem. (line 37) ! * VMS_DEBUGGING_INFO: VMS Debug. (line 9) * VOID_TYPE: Types. (line 6) - * VOIDmode: Machine Modes. (line 190) * volatil: Flags. (line 328) ! * volatil, in insn, call_insn, jump_insn, code_label, barrier, and note: Flags. (line 44) ! * volatil, in label_ref and reg_label: Flags. (line 65) ! * volatil, in mem, asm_operands, and asm_input: Flags. (line 76) ! * volatil, in reg: Flags. (line 98) ! * volatil, in subreg: Flags. (line 170) ! * volatil, in symbol_ref: Flags. (line 206) * volatile memory references: Flags. (line 329) ! * volatile, in prefetch: Flags. (line 214) * voting between constraint alternatives: Class Preferences. (line 6) ! * vrotlM3 instruction pattern: Standard Names. (line 524) ! * vrotrM3 instruction pattern: Standard Names. (line 524) ! * walk_dominator_tree: SSA. (line 254) * walk_gimple_op: Statement and operand traversals. ! (line 32) * walk_gimple_seq: Statement and operand traversals. ! (line 50) * walk_gimple_stmt: Statement and operand traversals. ! (line 13) ! * walk_use_def_chains: SSA. (line 230) ! * WCHAR_TYPE: Type Layout. (line 209) ! * WCHAR_TYPE_SIZE: Type Layout. (line 217) ! * which_alternative: Output Statement. (line 59) * WHILE_BODY: Statements for C++. (line 6) * WHILE_COND: Statements for C++. (line 6) * WHILE_STMT: Statements for C++. (line 6) * whopr: LTO. (line 6) ! * WIDEST_HARDWARE_FP_SIZE: Type Layout. (line 154) ! * window_save instruction pattern: Standard Names. (line 1513) ! * WINT_TYPE: Type Layout. (line 222) ! * word_mode: Machine Modes. (line 336) ! * WORD_REGISTER_OPERATIONS: Misc. (line 54) ! * WORDS_BIG_ENDIAN: Storage Layout. (line 29) ! * WORDS_BIG_ENDIAN, effect on subreg: Regs and Memory. (line 217) * wpa: LTO. (line 6) ! * X in constraint: Simple Constraints. (line 124) ! * x-HOST: Host Fragment. (line 6) ! * XCmode: Machine Modes. (line 197) ! * XCOFF_DEBUGGING_INFO: DBX Options. (line 13) * XEXP: Accessors. (line 6) - * XF_SIZE: Type Layout. (line 138) * XFmode: Machine Modes. (line 79) * XINT: Accessors. (line 6) ! * xm-MACHINE.h <1>: Host Misc. (line 6) ! * xm-MACHINE.h: Filesystem. (line 6) ! * xor: Arithmetic. (line 168) ! * xor, canonicalization of: Insn Canonicalizations. ! (line 79) ! * xorM3 instruction pattern: Standard Names. (line 269) * XSTR: Accessors. (line 6) * XVEC: Accessors. (line 41) * XVECEXP: Accessors. (line 48) * XVECLEN: Accessors. (line 44) * XWINT: Accessors. (line 6) * zero_extend: Conversions. (line 28) ! * zero_extendMN2 instruction pattern: Standard Names. (line 913) * zero_extract: Bit-Fields. (line 30) ! * zero_extract, canonicalization of: Insn Canonicalizations. ! (line 88)  Tag Table: ! Node: Top1828 ! Node: Contributing4916 ! Node: Portability5657 ! Node: Interface7445 ! Node: Libgcc10485 ! Node: Integer library routines12326 ! Node: Soft float library routines19168 ! Node: Decimal float library routines31105 ! Node: Fixed-point fractional library routines46862 ! Node: Exception handling routines147260 ! Node: Miscellaneous routines148367 ! Node: Languages150487 ! Node: Source Tree152036 ! Node: Configure Terms152618 ! Node: Top Level155576 ! Node: gcc Directory159150 ! Node: Subdirectories160100 ! Node: Configuration162267 ! Node: Config Fragments162987 ! Node: System Config164216 ! Node: Configuration Files165152 ! Node: Build167977 ! Node: Makefile168389 ! Ref: Makefile-Footnote-1175192 ! Ref: Makefile-Footnote-2175337 ! Node: Library Files175409 ! Node: Headers175971 ! Node: Documentation178054 ! Node: Texinfo Manuals178913 ! Node: Man Page Generation181246 ! Node: Miscellaneous Docs183161 ! Node: Front End184555 ! Node: Front End Directory188248 ! Node: Front End Config189568 ! Node: Front End Makefile192394 ! Node: Back End196176 ! Node: Testsuites199973 ! Node: Test Idioms200904 ! Node: Test Directives204301 ! Node: Directives204828 ! Node: Selectors215138 ! Node: Effective-Target Keywords216496 ! Ref: arm_neon_ok224055 ! Ref: arm_neonv2_ok224213 ! Ref: arm_neon_fp16_ok224385 ! Node: Add Options234186 ! Node: Require Support235383 ! Node: Final Actions237890 ! Node: Ada Tests243057 ! Node: C Tests244389 ! Node: libgcj Tests248812 ! Node: LTO Testing249939 ! Node: gcov Testing251586 ! Node: profopt Testing254573 ! Node: compat Testing256288 ! Node: Torture Tests260528 ! Node: Options262145 ! Node: Option file format262585 ! Node: Option properties269575 ! Node: Passes282454 ! Node: Parsing pass283198 ! Node: Gimplification pass286728 ! Node: Pass manager288561 ! Node: Tree SSA passes290355 ! Node: RTL passes312827 ! Node: RTL325958 ! Node: RTL Objects328146 ! Node: RTL Classes332020 ! Node: Accessors337018 ! Node: Special Accessors339412 ! Node: Flags345182 ! Node: Machine Modes359906 ! Node: Constants372218 ! Node: Regs and Memory378948 ! Node: Arithmetic396849 ! Node: Comparisons406939 ! Node: Bit-Fields411231 ! Node: Vector Operations412783 ! Node: Conversions414665 ! Node: RTL Declarations419163 ! Node: Side Effects419984 ! Node: Incdec436584 ! Node: Assembler439919 ! Node: Debug Information441464 ! Node: Insns442662 ! Node: Calls469156 ! Node: Sharing471749 ! Node: Reading RTL474859 ! Node: GENERIC475851 ! Node: Deficiencies477724 ! Node: Tree overview477965 ! Node: Macros and Functions482092 ! Node: Identifiers482917 ! Node: Containers484528 ! Node: Types485685 ! Node: Declarations497781 ! Node: Working with declarations498276 ! Node: Internal structure503882 ! Node: Current structure hierarchy504266 ! Node: Adding new DECL node types506360 ! Node: Attributes510433 ! Node: Expression trees511678 ! Node: Constant expressions513431 ! Node: Storage References517650 ! Node: Unary and Binary Expressions521169 ! Node: Vectors541031 ! Node: Statements545758 ! Node: Basic Statements546278 ! Node: Blocks550785 ! Node: Statement Sequences552189 ! Node: Empty Statements552522 ! Node: Jumps553096 ! Node: Cleanups553749 ! Node: OpenMP555517 ! Node: Functions561357 ! Node: Function Basics561828 ! Node: Function Properties565513 ! Node: Language-dependent trees568295 ! Node: C and C++ Trees569181 ! Node: Types for C++572085 ! Node: Namespaces577063 ! Node: Classes580170 ! Node: Functions for C++585248 ! Node: Statements for C++591501 ! Node: C++ Expressions599549 ! Node: Java Trees601050 ! Node: GIMPLE601163 ! Node: Tuple representation604784 ! Node: GIMPLE instruction set613060 ! Node: GIMPLE Exception Handling614728 ! Node: Temporaries616642 ! Ref: Temporaries-Footnote-1617957 ! Node: Operands618020 ! Node: Compound Expressions618782 ! Node: Compound Lvalues619016 ! Node: Conditional Expressions619778 ! Node: Logical Operators620436 ! Node: Manipulating GIMPLE statements627193 ! Node: Tuple specific accessors633127 ! Node: `GIMPLE_ASM'633946 ! Node: `GIMPLE_ASSIGN'636579 ! Node: `GIMPLE_BIND'640685 ! Node: `GIMPLE_CALL'642492 ! Node: `GIMPLE_CATCH'646762 ! Node: `GIMPLE_COND'647906 ! Node: `GIMPLE_DEBUG'650694 ! Node: `GIMPLE_EH_FILTER'654077 ! Node: `GIMPLE_LABEL'655565 ! Node: `GIMPLE_NOP'656540 ! Node: `GIMPLE_OMP_ATOMIC_LOAD'656909 ! Node: `GIMPLE_OMP_ATOMIC_STORE'657819 ! Node: `GIMPLE_OMP_CONTINUE'658458 ! Node: `GIMPLE_OMP_CRITICAL'659808 ! Node: `GIMPLE_OMP_FOR'660745 ! Node: `GIMPLE_OMP_MASTER'664260 ! Node: `GIMPLE_OMP_ORDERED'664643 ! Node: `GIMPLE_OMP_PARALLEL'665043 ! Node: `GIMPLE_OMP_RETURN'667815 ! Node: `GIMPLE_OMP_SECTION'668465 ! Node: `GIMPLE_OMP_SECTIONS'669131 ! Node: `GIMPLE_OMP_SINGLE'670737 ! Node: `GIMPLE_PHI'671674 ! Node: `GIMPLE_RESX'672960 ! Node: `GIMPLE_RETURN'673679 ! Node: `GIMPLE_SWITCH'674247 ! Node: `GIMPLE_TRY'676047 ! Node: `GIMPLE_WITH_CLEANUP_EXPR'677837 ! Node: GIMPLE sequences678720 ! Node: Sequence iterators681926 ! Node: Adding a new GIMPLE statement code690382 ! Node: Statement and operand traversals691658 ! Node: Tree SSA694258 ! Node: Annotations696044 ! Node: SSA Operands696570 ! Node: SSA711101 ! Node: Alias analysis723221 ! Node: Memory model727001 ! Node: Loop Analysis and Representation728364 ! Node: Loop representation729545 ! Node: Loop querying736465 ! Node: Loop manipulation739298 ! Node: LCSSA741666 ! Node: Scalar evolutions743738 ! Node: loop-iv746982 ! Node: Number of iterations748908 ! Node: Dependency analysis751717 ! Node: Lambda758085 ! Node: Omega759756 ! Node: Control Flow761321 ! Node: Basic Blocks763087 ! Node: Edges768378 ! Node: Profile information777010 ! Node: Maintaining the CFG781694 ! Node: Liveness information787556 ! Node: Machine Desc789682 ! Node: Overview792245 ! Node: Patterns794286 ! Node: Example797724 ! Node: RTL Template799159 ! Node: Output Template809814 ! Node: Output Statement813779 ! Node: Predicates818118 ! Node: Machine-Independent Predicates821036 ! Node: Defining Predicates825981 ! Node: Constraints831946 ! Node: Simple Constraints833428 ! Node: Multi-Alternative846284 ! Node: Class Preferences849125 ! Node: Modifiers850017 ! Node: Machine Constraints854263 ! Node: Disable Insn Alternatives904313 ! Node: Define Constraints907215 ! Node: C Constraint Interface914002 ! Node: Standard Names917643 ! Ref: shift patterns940194 ! Ref: prologue instruction pattern985134 ! Ref: window_save instruction pattern985627 ! Ref: epilogue instruction pattern985902 ! Node: Pattern Ordering1003473 ! Node: Dependent Patterns1004709 ! Node: Jump Patterns1006329 ! Ref: Jump Patterns-Footnote-11008473 ! Node: Looping Patterns1008519 ! Node: Insn Canonicalizations1013247 ! Node: Expander Definitions1017838 ! Node: Insn Splitting1026050 ! Node: Including Patterns1035652 ! Node: Peephole Definitions1037432 ! Node: define_peephole1038685 ! Node: define_peephole21045016 ! Node: Insn Attributes1048083 ! Node: Defining Attributes1049189 ! Ref: define_enum_attr1052400 ! Node: Expressions1053435 ! Node: Tagging Insns1060184 ! Node: Attr Example1064537 ! Node: Insn Lengths1066911 ! Node: Constant Attributes1069970 ! Node: Delay Slots1071139 ! Node: Processor pipeline description1074363 ! Ref: Processor pipeline description-Footnote-11093176 ! Node: Conditional Execution1093498 ! Node: Define Subst1096560 ! Node: Define Subst Example1098594 ! Node: Define Subst Pattern Matching1101588 ! Node: Define Subst Output Template1102813 ! Node: Constant Definitions1104883 ! Ref: define_enum1108665 ! Node: Iterators1109153 ! Node: Mode Iterators1109731 ! Node: Defining Mode Iterators1110709 ! Node: Substitutions1112203 ! Node: Examples1114444 ! Node: Code Iterators1115892 ! Node: Int Iterators1118171 ! Node: Subst Iterators1120629 ! Node: Target Macros1122321 ! Node: Target Structure1125409 ! Node: Driver1127524 ! Node: Run-time Target1146307 ! Node: Per-Function Data1155460 ! Node: Storage Layout1158225 ! Node: Type Layout1184300 ! Node: Registers1199627 ! Node: Register Basics1200601 ! Node: Allocation Order1206106 ! Node: Values in Registers1208552 ! Node: Leaf Functions1216041 ! Node: Stack Registers1218899 ! Node: Register Classes1220171 ! Node: Old Constraints1250176 ! Node: Stack and Calling1257328 ! Node: Frame Layout1257862 ! Node: Exception Handling1268742 ! Node: Stack Checking1274964 ! Node: Frame Registers1279777 ! Node: Elimination1288036 ! Node: Stack Arguments1292265 ! Node: Register Arguments1299127 ! Node: Scalar Return1319443 ! Node: Aggregate Return1325529 ! Node: Caller Saves1329739 ! Node: Function Entry1330917 ! Node: Profiling1342021 ! Node: Tail Calls1343720 ! Node: Stack Smashing Protection1345623 ! Node: Varargs1347251 ! Node: Trampolines1353947 ! Node: Library Calls1359990 ! Node: Addressing Modes1364929 ! Node: Anchored Addresses1384963 ! Node: Condition Code1387612 ! Node: CC0 Condition Codes1389741 ! Node: MODE_CC Condition Codes1392987 ! Node: Cond Exec Macros1399508 ! Node: Costs1399854 ! Node: Scheduling1416323 ! Node: Sections1435729 ! Node: PIC1451427 ! Node: Assembler Format1453487 ! Node: File Framework1454625 ! Ref: TARGET_HAVE_SWITCHABLE_BSS_SECTIONS1461566 ! Node: Data Output1464831 ! Node: Uninitialized Data1472607 ! Node: Label Output1477618 ! Node: Initialization1500586 ! Node: Macros for Initialization1506548 ! Node: Instruction Output1513271 ! Node: Dispatch Tables1523773 ! Node: Exception Region Output1528151 ! Node: Alignment Output1534834 ! Node: Debugging Info1539379 ! Node: All Debuggers1540049 ! Node: DBX Options1542904 ! Node: DBX Hooks1548353 ! Node: File Names and DBX1549662 ! Node: SDB and DWARF1551774 ! Node: VMS Debug1557846 ! Node: Floating Point1558433 ! Node: Mode Switching1562909 ! Node: Target Attributes1566905 ! Node: Emulated TLS1575219 ! Node: MIPS Coprocessors1578609 ! Node: PCH Target1579906 ! Node: C++ ABI1581748 ! Node: Named Address Spaces1586540 ! Node: Misc1591479 ! Ref: TARGET_SHIFT_TRUNCATION_MASK1598221 ! Node: Host Config1643387 ! Node: Host Common1644455 ! Node: Filesystem1646834 ! Node: Host Misc1650949 ! Node: Fragments1653398 ! Node: Target Fragment1654593 ! Node: Host Fragment1665226 ! Node: Collect21665466 ! Node: Header Dirs1668102 ! Node: Type Information1669525 ! Node: GTY Options1672748 ! Node: User GC1687069 ! Node: GGC Roots1690796 ! Node: Files1691512 ! Node: Invoking the garbage collector1694219 ! Node: Troubleshooting1695722 ! Node: Plugins1696798 ! Node: Plugins loading1697916 ! Node: Plugin API1698785 ! Node: Plugins pass1705814 ! Node: Plugins GC1707783 ! Node: Plugins description1709443 ! Node: Plugins attr1709978 ! Node: Plugins recording1711863 ! Node: Plugins gate1712713 ! Node: Plugins tracking1713304 ! Node: Plugins building1713892 ! Node: LTO1715678 ! Node: LTO Overview1716539 ! Node: LTO object file layout1722371 ! Node: IPA1727003 ! Node: WHOPR1735968 ! Node: Internal flags1740659 ! Node: Funding1741871 ! Node: GNU Project1744354 ! Node: Copying1745003 ! Node: GNU Free Documentation License1782534 ! Node: Contributors1807674 ! Node: Option Index1845079 ! Node: Concept Index1845883  End Tag Table --- 49032,49477 ---- * VIRTUAL_STACK_VARS_REGNUM: Regs and Memory. (line 69) * VLIW: Processor pipeline description. (line 6) ! * VLIW <1>: Processor pipeline description. ! (line 223) ! * 'vlshrM3' instruction pattern: Standard Names. (line 518) * VMS: Filesystem. (line 37) ! * VMS_DEBUGGING_INFO: VMS Debug. (line 8) ! * VOIDmode: Machine Modes. (line 189) * VOID_TYPE: Types. (line 6) * volatil: Flags. (line 328) ! * 'volatil', in 'insn', 'call_insn', 'jump_insn', 'code_label', 'barrier', and 'note': Flags. (line 44) ! * 'volatil', in 'label_ref' and 'reg_label': Flags. (line 65) ! * 'volatil', in 'mem', 'asm_operands', and 'asm_input': Flags. ! (line 76) ! * 'volatil', in 'reg': Flags. (line 98) ! * 'volatil', in 'subreg': Flags. (line 170) ! * 'volatil', in 'subreg' <1>: Flags. (line 180) ! * 'volatil', in 'symbol_ref': Flags. (line 206) * volatile memory references: Flags. (line 329) ! * 'volatile', in 'prefetch': Flags. (line 214) * voting between constraint alternatives: Class Preferences. (line 6) ! * 'vrotlM3' instruction pattern: Standard Names. (line 518) ! * 'vrotrM3' instruction pattern: Standard Names. (line 518) ! * walk_dominator_tree: SSA. (line 253) * walk_gimple_op: Statement and operand traversals. ! (line 30) * walk_gimple_seq: Statement and operand traversals. ! (line 47) * walk_gimple_stmt: Statement and operand traversals. ! (line 10) ! * walk_use_def_chains: SSA. (line 229) ! * WCHAR_TYPE: Type Layout. (line 208) ! * WCHAR_TYPE_SIZE: Type Layout. (line 216) ! * which_alternative: Output Statement. (line 58) * WHILE_BODY: Statements for C++. (line 6) * WHILE_COND: Statements for C++. (line 6) * WHILE_STMT: Statements for C++. (line 6) * whopr: LTO. (line 6) ! * WIDEST_HARDWARE_FP_SIZE: Type Layout. (line 153) ! * 'window_save' instruction pattern: Standard Names. (line 1500) ! * WINT_TYPE: Type Layout. (line 221) ! * WORDS_BIG_ENDIAN: Storage Layout. (line 28) ! * 'WORDS_BIG_ENDIAN', effect on 'subreg': Regs and Memory. (line 215) ! * word_mode: Machine Modes. (line 335) ! * WORD_REGISTER_OPERATIONS: Misc. (line 53) * wpa: LTO. (line 6) ! * 'X' in constraint: Simple Constraints. (line 122) ! * 'x-HOST': Host Fragment. (line 6) ! * XCmode: Machine Modes. (line 196) ! * XCOFF_DEBUGGING_INFO: DBX Options. (line 12) * XEXP: Accessors. (line 6) * XFmode: Machine Modes. (line 79) + * XF_SIZE: Type Layout. (line 137) * XINT: Accessors. (line 6) ! * 'xm-MACHINE.h': Filesystem. (line 6) ! * 'xm-MACHINE.h' <1>: Host Misc. (line 6) ! * xor: Arithmetic. (line 169) ! * 'xor', canonicalization of: Insn Canonicalizations. ! (line 78) ! * 'xorM3' instruction pattern: Standard Names. (line 266) * XSTR: Accessors. (line 6) * XVEC: Accessors. (line 41) * XVECEXP: Accessors. (line 48) * XVECLEN: Accessors. (line 44) * XWINT: Accessors. (line 6) * zero_extend: Conversions. (line 28) ! * 'zero_extendMN2' instruction pattern: Standard Names. (line 907) * zero_extract: Bit-Fields. (line 30) ! * 'zero_extract', canonicalization of: Insn Canonicalizations. ! (line 87)  Tag Table: ! Node: Top1789 ! Node: Contributing4877 ! Node: Portability5606 ! Node: Interface7394 ! Node: Libgcc10435 ! Node: Integer library routines12262 ! Node: Soft float library routines19104 ! Node: Decimal float library routines31042 ! Node: Fixed-point fractional library routines46800 ! Node: Exception handling routines147196 ! Node: Miscellaneous routines148303 ! Node: Languages150423 ! Node: Source Tree151970 ! Node: Configure Terms152552 ! Node: Top Level155508 ! Node: gcc Directory159083 ! Node: Subdirectories160035 ! Node: Configuration162203 ! Node: Config Fragments162923 ! Node: System Config164148 ! Node: Configuration Files165084 ! Node: Build167901 ! Node: Makefile168313 ! Ref: Makefile-Footnote-1175117 ! Ref: Makefile-Footnote-2175264 ! Node: Library Files175338 ! Node: Headers175900 ! Node: Documentation177983 ! Node: Texinfo Manuals178842 ! Node: Man Page Generation181171 ! Node: Miscellaneous Docs183084 ! Node: Front End184471 ! Node: Front End Directory188145 ! Node: Front End Config189461 ! Node: Front End Makefile192277 ! Node: Back End196045 ! Node: Testsuites199826 ! Node: Test Idioms200757 ! Node: Test Directives204155 ! Node: Directives204682 ! Node: Selectors214979 ! Node: Effective-Target Keywords216335 ! Ref: arm_neon_ok223889 ! Ref: arm_neonv2_ok224047 ! Ref: arm_neon_fp16_ok224219 ! Node: Add Options234024 ! Node: Require Support235221 ! Node: Final Actions237728 ! Node: Ada Tests242893 ! Node: C Tests244224 ! Node: libgcj Tests248619 ! Node: LTO Testing249746 ! Node: gcov Testing251394 ! Node: profopt Testing254384 ! Node: compat Testing256099 ! Node: Torture Tests260339 ! Node: Options261954 ! Node: Option file format262395 ! Node: Option properties269384 ! Node: Passes282260 ! Node: Parsing pass283000 ! Node: Gimplification pass286528 ! Node: Pass manager288361 ! Node: Tree SSA passes290156 ! Node: RTL passes312610 ! Node: RTL325725 ! Node: RTL Objects327906 ! Node: RTL Classes331780 ! Node: Accessors336777 ! Node: Special Accessors339171 ! Node: Flags344958 ! Node: Machine Modes359684 ! Node: Constants371994 ! Node: Regs and Memory378722 ! Node: Arithmetic396610 ! Node: Comparisons406692 ! Node: Bit-Fields410984 ! Node: Vector Operations412536 ! Node: Conversions414417 ! Node: RTL Declarations418915 ! Node: Side Effects419736 ! Node: Incdec436330 ! Node: Assembler439666 ! Node: Debug Information441211 ! Node: Insns442408 ! Node: Calls468899 ! Node: Sharing471492 ! Node: Reading RTL474603 ! Node: GENERIC475594 ! Node: Deficiencies477465 ! Node: Tree overview477706 ! Node: Macros and Functions481830 ! Node: Identifiers482655 ! Node: Containers484264 ! Node: Types485421 ! Node: Declarations497495 ! Node: Working with declarations497990 ! Node: Internal structure503594 ! Node: Current structure hierarchy503978 ! Node: Adding new DECL node types506071 ! Node: Attributes510143 ! Node: Expression trees511387 ! Node: Constant expressions513141 ! Node: Storage References517354 ! Node: Unary and Binary Expressions520873 ! Node: Vectors540725 ! Node: Statements545457 ! Node: Basic Statements545977 ! Node: Blocks550484 ! Node: Statement Sequences551888 ! Node: Empty Statements552221 ! Node: Jumps552795 ! Node: Cleanups553448 ! Node: OpenMP555215 ! Node: Functions561060 ! Node: Function Basics561531 ! Node: Function Properties565215 ! Node: Language-dependent trees567996 ! Node: C and C++ Trees568883 ! Node: Types for C++571787 ! Node: Namespaces576757 ! Node: Classes579863 ! Node: Functions for C++584940 ! Node: Statements for C++591191 ! Node: C++ Expressions599244 ! Node: Java Trees600749 ! Node: GIMPLE600862 ! Node: Tuple representation604486 ! Node: GIMPLE instruction set612790 ! Node: GIMPLE Exception Handling614406 ! Node: Temporaries616318 ! Ref: Temporaries-Footnote-1617636 ! Node: Operands617701 ! Node: Compound Expressions618462 ! Node: Compound Lvalues618696 ! Node: Conditional Expressions619458 ! Node: Logical Operators620117 ! Node: Manipulating GIMPLE statements626873 ! Node: Tuple specific accessors632809 ! Node: 'GIMPLE_ASM'633628 ! Node: 'GIMPLE_ASSIGN'636261 ! Node: 'GIMPLE_BIND'640367 ! Node: 'GIMPLE_CALL'642175 ! Node: 'GIMPLE_CATCH'646446 ! Node: 'GIMPLE_COND'647590 ! Node: 'GIMPLE_DEBUG'650378 ! Node: 'GIMPLE_EH_FILTER'653756 ! Node: 'GIMPLE_LABEL'655244 ! Node: 'GIMPLE_NOP'656219 ! Node: 'GIMPLE_OMP_ATOMIC_LOAD'656588 ! Node: 'GIMPLE_OMP_ATOMIC_STORE'657498 ! Node: 'GIMPLE_OMP_CONTINUE'658138 ! Node: 'GIMPLE_OMP_CRITICAL'659488 ! Node: 'GIMPLE_OMP_FOR'660426 ! Node: 'GIMPLE_OMP_MASTER'663941 ! Node: 'GIMPLE_OMP_ORDERED'664325 ! Node: 'GIMPLE_OMP_PARALLEL'664725 ! Node: 'GIMPLE_OMP_RETURN'667497 ! Node: 'GIMPLE_OMP_SECTION'668148 ! Node: 'GIMPLE_OMP_SECTIONS'668814 ! Node: 'GIMPLE_OMP_SINGLE'670421 ! Node: 'GIMPLE_PHI'671359 ! Node: 'GIMPLE_RESX'672646 ! Node: 'GIMPLE_RETURN'673365 ! Node: 'GIMPLE_SWITCH'673933 ! Node: 'GIMPLE_TRY'675735 ! Node: 'GIMPLE_WITH_CLEANUP_EXPR'677526 ! Node: GIMPLE sequences678409 ! Node: Sequence iterators681615 ! Node: Adding a new GIMPLE statement code690070 ! Node: Statement and operand traversals691346 ! Node: Tree SSA693938 ! Node: Annotations695755 ! Node: SSA Operands696281 ! Node: SSA710806 ! Node: Alias analysis722926 ! Node: Memory model726700 ! Node: Loop Analysis and Representation728059 ! Node: Loop representation729236 ! Node: Loop querying736153 ! Node: Loop manipulation738969 ! Node: LCSSA741330 ! Node: Scalar evolutions743399 ! Node: loop-iv746643 ! Node: Number of iterations748565 ! Node: Dependency analysis751371 ! Node: Lambda757736 ! Node: Omega759408 ! Node: Control Flow760973 ! Node: Basic Blocks762749 ! Node: Edges768038 ! Node: Profile information776667 ! Node: Maintaining the CFG781351 ! Node: Liveness information787212 ! Node: Machine Desc789338 ! Node: Overview791881 ! Node: Patterns793921 ! Node: Example797359 ! Node: RTL Template798793 ! Node: Output Template809448 ! Node: Output Statement813411 ! Node: Predicates817750 ! Node: Machine-Independent Predicates820668 ! Node: Defining Predicates825612 ! Node: Constraints831575 ! Node: Simple Constraints833057 ! Node: Multi-Alternative845897 ! Node: Class Preferences848738 ! Node: Modifiers849630 ! Node: Machine Constraints853876 ! Node: Disable Insn Alternatives904472 ! Node: Define Constraints907373 ! Node: C Constraint Interface914158 ! Node: Standard Names917810 ! Ref: shift patterns940354 ! Ref: prologue instruction pattern985257 ! Ref: window_save instruction pattern985750 ! Ref: epilogue instruction pattern986027 ! Node: Pattern Ordering1003613 ! Node: Dependent Patterns1004849 ! Node: Jump Patterns1006469 ! Ref: Jump Patterns-Footnote-11008616 ! Node: Looping Patterns1008664 ! Node: Insn Canonicalizations1013393 ! Node: Expander Definitions1017978 ! Node: Insn Splitting1026192 ! Node: Including Patterns1035793 ! Node: Peephole Definitions1037574 ! Node: define_peephole1038827 ! Node: define_peephole21045157 ! Node: Insn Attributes1048224 ! Node: Defining Attributes1049330 ! Ref: define_enum_attr1052545 ! Node: Expressions1053581 ! Node: Tagging Insns1060331 ! Node: Attr Example1064684 ! Node: Insn Lengths1067057 ! Node: Constant Attributes1070116 ! Node: Delay Slots1071285 ! Node: Processor pipeline description1074509 ! Ref: Processor pipeline description-Footnote-11093327 ! Node: Conditional Execution1093651 ! Node: Define Subst1096714 ! Node: Define Subst Example1098750 ! Node: Define Subst Pattern Matching1101744 ! Node: Define Subst Output Template1102970 ! Node: Constant Definitions1105040 ! Ref: define_enum1108822 ! Node: Iterators1109310 ! Node: Mode Iterators1109888 ! Node: Defining Mode Iterators1110866 ! Node: Substitutions1112360 ! Node: Examples1114602 ! Node: Code Iterators1116050 ! Node: Int Iterators1118329 ! Node: Subst Iterators1120788 ! Node: Target Macros1122480 ! Node: Target Structure1125568 ! Node: Driver1127684 ! Node: Run-time Target1146469 ! Node: Per-Function Data1155634 ! Node: Storage Layout1158398 ! Node: Type Layout1184453 ! Node: Registers1199776 ! Node: Register Basics1200750 ! Node: Allocation Order1206258 ! Node: Values in Registers1208704 ! Node: Leaf Functions1216182 ! Node: Stack Registers1219041 ! Node: Register Classes1220313 ! Node: Old Constraints1250280 ! Node: Stack and Calling1257420 ! Node: Frame Layout1257954 ! Node: Exception Handling1268830 ! Node: Stack Checking1275042 ! Node: Frame Registers1279856 ! Node: Elimination1288115 ! Node: Stack Arguments1292345 ! Node: Register Arguments1299208 ! Node: Scalar Return1319511 ! Node: Aggregate Return1325598 ! Node: Caller Saves1329809 ! Node: Function Entry1330986 ! Node: Profiling1342080 ! Node: Tail Calls1343779 ! Node: Stack Smashing Protection1345682 ! Node: Varargs1347310 ! Node: Trampolines1353997 ! Node: Library Calls1360040 ! Node: Addressing Modes1364979 ! Node: Anchored Addresses1384994 ! Node: Condition Code1387637 ! Node: CC0 Condition Codes1389766 ! Node: MODE_CC Condition Codes1393012 ! Node: Cond Exec Macros1399536 ! Node: Costs1399882 ! Node: Scheduling1416344 ! Node: Sections1435761 ! Node: PIC1451459 ! Node: Assembler Format1453518 ! Node: File Framework1454656 ! Ref: TARGET_HAVE_SWITCHABLE_BSS_SECTIONS1461588 ! Node: Data Output1464858 ! Node: Uninitialized Data1472627 ! Node: Label Output1477638 ! Node: Initialization1500594 ! Node: Macros for Initialization1506555 ! Node: Instruction Output1513274 ! Node: Dispatch Tables1523769 ! Node: Exception Region Output1528147 ! Node: Alignment Output1534825 ! Node: Debugging Info1539371 ! Node: All Debuggers1540041 ! Node: DBX Options1542896 ! Node: DBX Hooks1548334 ! Node: File Names and DBX1549643 ! Node: SDB and DWARF1551755 ! Node: VMS Debug1557827 ! Node: Floating Point1558414 ! Node: Mode Switching1562890 ! Node: Target Attributes1566886 ! Node: Emulated TLS1575200 ! Node: MIPS Coprocessors1578590 ! Node: PCH Target1579887 ! Node: C++ ABI1581729 ! Node: Named Address Spaces1586523 ! Node: Misc1591457 ! Ref: TARGET_SHIFT_TRUNCATION_MASK1598199 ! Node: Host Config1643355 ! Node: Host Common1644423 ! Node: Filesystem1646797 ! Node: Host Misc1650912 ! Node: Fragments1653361 ! Node: Target Fragment1654556 ! Node: Host Fragment1665184 ! Node: Collect21665424 ! Node: Header Dirs1668060 ! Node: Type Information1669483 ! Node: GTY Options1672702 ! Node: User GC1687036 ! Node: GGC Roots1690767 ! Node: Files1691480 ! Node: Invoking the garbage collector1694187 ! Node: Troubleshooting1695692 ! Node: Plugins1696767 ! Node: Plugins loading1697885 ! Node: Plugin API1698755 ! Node: Plugins pass1705783 ! Node: Plugins GC1707754 ! Node: Plugins description1709419 ! Node: Plugins attr1709955 ! Node: Plugins recording1711841 ! Node: Plugins gate1712691 ! Node: Plugins tracking1713282 ! Node: Plugins building1713870 ! Node: LTO1715657 ! Node: LTO Overview1716518 ! Node: LTO object file layout1722350 ! Node: IPA1726980 ! Node: WHOPR1735945 ! Node: Internal flags1740634 ! Node: Funding1741846 ! Node: GNU Project1744330 ! Node: Copying1744979 ! Node: GNU Free Documentation License1782490 ! Node: Contributors1807610 ! Node: Option Index1845011 ! Node: Concept Index1845815  End Tag Table diff -Nrcpad gcc-4.8.1/gcc/doc/gcj-dbtool.1 gcc-4.8.2/gcc/doc/gcj-dbtool.1 *** gcc-4.8.1/gcc/doc/gcj-dbtool.1 Fri May 31 09:47:33 2013 --- gcc-4.8.2/gcc/doc/gcj-dbtool.1 Wed Oct 16 08:05:51 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "GCJ-DBTOOL 1" ! .TH GCJ-DBTOOL 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "GCJ-DBTOOL 1" ! .TH GCJ-DBTOOL 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.8.1/gcc/doc/gcj.1 gcc-4.8.2/gcc/doc/gcj.1 *** gcc-4.8.1/gcc/doc/gcj.1 Fri May 31 09:47:33 2013 --- gcc-4.8.2/gcc/doc/gcj.1 Wed Oct 16 08:05:51 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "GCJ 1" ! .TH GCJ 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "GCJ 1" ! .TH GCJ 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** It is safe to use this option if you are *** 431,439 **** .IP "\fB\-fjni\fR" 4 .IX Item "-fjni" With \fBgcj\fR there are two options for writing native methods: \s-1CNI\s0 ! and \s-1JNI\s0. By default \fBgcj\fR assumes you are using \s-1CNI\s0. If you are compiling a class with native methods, and these methods are implemented ! using \s-1JNI\s0, then you must use \f(CW\*(C`\-fjni\*(C'\fR. This option causes \&\fBgcj\fR to generate stubs which will invoke the underlying \s-1JNI\s0 methods. .IP "\fB\-fno\-assert\fR" 4 --- 440,448 ---- .IP "\fB\-fjni\fR" 4 .IX Item "-fjni" With \fBgcj\fR there are two options for writing native methods: \s-1CNI\s0 ! and \s-1JNI. \s0 By default \fBgcj\fR assumes you are using \s-1CNI. \s0 If you are compiling a class with native methods, and these methods are implemented ! using \s-1JNI,\s0 then you must use \f(CW\*(C`\-fjni\*(C'\fR. This option causes \&\fBgcj\fR to generate stubs which will invoke the underlying \s-1JNI\s0 methods. .IP "\fB\-fno\-assert\fR" 4 *************** So this flag isn't very useful yet, exce *** 470,476 **** \&\f(CW\*(C`\-\-disable\-assertions\*(C'\fR. .IP "\fB\-findirect\-dispatch\fR" 4 .IX Item "-findirect-dispatch" ! \&\fBgcj\fR has a special binary compatibility \s-1ABI\s0, which is enabled by the \f(CW\*(C`\-findirect\-dispatch\*(C'\fR option. In this mode, the code generated by \fBgcj\fR honors the binary compatibility guarantees in the Java Language Specification, and the resulting object files do --- 479,485 ---- \&\f(CW\*(C`\-\-disable\-assertions\*(C'\fR. .IP "\fB\-findirect\-dispatch\fR" 4 .IX Item "-findirect-dispatch" ! \&\fBgcj\fR has a special binary compatibility \s-1ABI,\s0 which is enabled by the \f(CW\*(C`\-findirect\-dispatch\*(C'\fR option. In this mode, the code generated by \fBgcj\fR honors the binary compatibility guarantees in the Java Language Specification, and the resulting object files do *************** interpreted and compiled code. *** 481,490 **** Note that, at present, \f(CW\*(C`\-findirect\-dispatch\*(C'\fR can only be used when compiling \fI.class\fR files. It will not work when compiling from source. \s-1CNI\s0 also does not yet work with the binary compatibility ! \&\s-1ABI\s0. These restrictions will be lifted in some future release. .Sp ! However, if you compile \s-1CNI\s0 code with the standard \s-1ABI\s0, you can call ! it from code built with the binary compatibility \s-1ABI\s0. .IP "\fB\-fbootstrap\-classes\fR" 4 .IX Item "-fbootstrap-classes" This option can be use to tell \f(CW\*(C`libgcj\*(C'\fR that the compiled classes --- 490,499 ---- Note that, at present, \f(CW\*(C`\-findirect\-dispatch\*(C'\fR can only be used when compiling \fI.class\fR files. It will not work when compiling from source. \s-1CNI\s0 also does not yet work with the binary compatibility ! \&\s-1ABI. \s0 These restrictions will be lifted in some future release. .Sp ! However, if you compile \s-1CNI\s0 code with the standard \s-1ABI,\s0 you can call ! it from code built with the binary compatibility \s-1ABI.\s0 .IP "\fB\-fbootstrap\-classes\fR" 4 .IX Item "-fbootstrap-classes" This option can be use to tell \f(CW\*(C`libgcj\*(C'\fR that the compiled classes *************** the ability to use certain reflection ca *** 503,515 **** Java runtime environment. When set all meta-data except for that which is needed to obtain correct runtime semantics is eliminated. .Sp ! For code that does not use reflection (i.e. serialization, \s-1RMI\s0, \s-1CORBA\s0 or call methods in the \f(CW\*(C`java.lang.reflect\*(C'\fR package), \&\f(CW\*(C`\-freduced\-reflection\*(C'\fR will result in proper operation with a savings in executable code size. .Sp ! \&\s-1JNI\s0 (\f(CW\*(C`\-fjni\*(C'\fR) and the binary compatibility \s-1ABI\s0 ! (\f(CW\*(C`\-findirect\-dispatch\*(C'\fR) do not work properly without full reflection meta-data. Because of this, it is an error to use these options with \f(CW\*(C`\-freduced\-reflection\*(C'\fR. .Sp --- 512,524 ---- Java runtime environment. When set all meta-data except for that which is needed to obtain correct runtime semantics is eliminated. .Sp ! For code that does not use reflection (i.e. serialization, \s-1RMI, CORBA\s0 or call methods in the \f(CW\*(C`java.lang.reflect\*(C'\fR package), \&\f(CW\*(C`\-freduced\-reflection\*(C'\fR will result in proper operation with a savings in executable code size. .Sp ! \&\s-1JNI \s0(\f(CW\*(C`\-fjni\*(C'\fR) and the binary compatibility \s-1ABI ! \&\s0(\f(CW\*(C`\-findirect\-dispatch\*(C'\fR) do not work properly without full reflection meta-data. Because of this, it is an error to use these options with \f(CW\*(C`\-freduced\-reflection\*(C'\fR. .Sp *************** a \f(CW\*(C`SecurityManager\*(C'\fR may *** 519,525 **** reflection meta-data. .SS "Configure-time Options" .IX Subsection "Configure-time Options" ! Some \fBgcj\fR code generations options affect the resulting \s-1ABI\s0, and so can only be meaningfully given when \f(CW\*(C`libgcj\*(C'\fR, the runtime package, is configured. \f(CW\*(C`libgcj\*(C'\fR puts the appropriate options from this group into a \fBspec\fR file which is read by \fBgcj\fR. These --- 528,534 ---- reflection meta-data. .SS "Configure-time Options" .IX Subsection "Configure-time Options" ! Some \fBgcj\fR code generations options affect the resulting \s-1ABI,\s0 and so can only be meaningfully given when \f(CW\*(C`libgcj\*(C'\fR, the runtime package, is configured. \f(CW\*(C`libgcj\*(C'\fR puts the appropriate options from this group into a \fBspec\fR file which is read by \fBgcj\fR. These diff -Nrcpad gcc-4.8.1/gcc/doc/gcj.info gcc-4.8.2/gcc/doc/gcj.info *** gcc-4.8.1/gcc/doc/gcj.info Fri May 31 09:58:14 2013 --- gcc-4.8.2/gcc/doc/gcj.info Wed Oct 16 08:16:29 2013 *************** *** 1,5 **** ! This is doc/gcj.info, produced by makeinfo version 4.13 from ! /d/gcc-4.8.1/gcc-4.8.1/gcc/java/gcj.texi. Copyright (C) 2001-2013 Free Software Foundation, Inc. --- 1,4 ---- ! This is gcj.info, produced by makeinfo version 5.1 from gcj.texi. Copyright (C) 2001-2013 Free Software Foundation, Inc. *************** is included in the section entitled "GNU *** 17,25 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. ! INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * Gcj: (gcj). Ahead-of-time compiler for the Java language --- 16,23 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * Gcj: (gcj). Ahead-of-time compiler for the Java language *************** START-INFO-DIR-ENTRY *** 45,50 **** --- 43,49 ---- into one system-wide database. END-INFO-DIR-ENTRY + Copyright (C) 2001-2013 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document *************** is included in the section entitled "GNU *** 61,68 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development.  File: gcj.info, Node: Top, Next: Copying, Up: (dir) --- 60,67 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development.  File: gcj.info, Node: Top, Next: Copying, Up: (dir) *************** File: gcj.info, Node: Top, Next: Copyi *** 70,85 **** Introduction ************ ! This manual describes how to use `gcj', the GNU compiler for the Java ! programming language. `gcj' can generate both `.class' files and ! object files, and it can read both Java source code and `.class' files. * Menu: * Copying:: The GNU General Public License * GNU Free Documentation License:: How you can share and copy this manual ! * Invoking gcj:: Compiler options supported by `gcj' * Compatibility:: Compatibility between gcj and other tools for Java * Invoking jcf-dump:: Print information about class files * Invoking gij:: Interpreting Java bytecodes --- 69,84 ---- Introduction ************ ! This manual describes how to use 'gcj', the GNU compiler for the Java ! programming language. 'gcj' can generate both '.class' files and object ! files, and it can read both Java source code and '.class' files. * Menu: * Copying:: The GNU General Public License * GNU Free Documentation License:: How you can share and copy this manual ! * Invoking gcj:: Compiler options supported by 'gcj' * Compatibility:: Compatibility between gcj and other tools for Java * Invoking jcf-dump:: Print information about class files * Invoking gij:: Interpreting Java bytecodes *************** GNU General Public License *** 103,109 **** Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 102,108 ---- Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** want it, that you can change the softwar *** 131,139 **** free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you ! have certain responsibilities if you distribute copies of the software, ! or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same --- 130,138 ---- free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you have ! certain responsibilities if you distribute copies of the software, or if ! you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same *************** changed, so that their problems will not *** 152,167 **** authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the ! manufacturer can do so. This is fundamentally incompatible with the ! aim of protecting users' freedom to change the software. The ! systematic pattern of such abuse occurs in the area of products for ! individuals to use, which is precisely where it is most unacceptable. ! Therefore, we have designed this version of the GPL to prohibit the ! practice for those products. If such problems arise substantially in ! other domains, we stand ready to extend this provision to those domains ! in future versions of the GPL, as needed to protect the freedom of ! users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of --- 151,165 ---- authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the manufacturer ! can do so. This is fundamentally incompatible with the aim of ! protecting users' freedom to change the software. The systematic ! pattern of such abuse occurs in the area of products for individuals to ! use, which is precisely where it is most unacceptable. Therefore, we ! have designed this version of the GPL to prohibit the practice for those ! products. If such problems arise substantially in other domains, we ! stand ready to extend this provision to those domains in future versions ! of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of *************** TERMS AND CONDITIONS *** 198,205 **** To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it ! on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. --- 196,203 ---- To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it on ! a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. *************** TERMS AND CONDITIONS *** 213,220 **** to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may ! convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. --- 211,218 ---- to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may convey ! the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. *************** TERMS AND CONDITIONS *** 222,229 **** 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any ! non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in --- 220,227 ---- 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any non-source ! form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in *************** TERMS AND CONDITIONS *** 234,243 **** The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work ! with that Major Component, or to implement a Standard Interface ! for which an implementation is available to the public in source ! code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code --- 232,241 ---- The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work with ! that Major Component, or to implement a Standard Interface for ! which an implementation is available to the public in source code ! form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code *************** TERMS AND CONDITIONS *** 245,259 **** The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including ! scripts to control those activities. However, it does not include ! the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files ! associated with source files for the work, and the source code for ! shared libraries and dynamically linked subprograms that the work ! is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. --- 243,257 ---- The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including scripts ! to control those activities. However, it does not include the ! work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files associated ! with source files for the work, and the source code for shared ! libraries and dynamically linked subprograms that the work is ! specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. *************** TERMS AND CONDITIONS *** 270,291 **** copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, ! given its content, constitutes a covered work. This License ! acknowledges your rights of fair use or other equivalent, as ! provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for ! you, or provide you with facilities for running those works, ! provided that you comply with the terms of this License in ! conveying all material for which you do not control copyright. ! Those thus making or running the covered works for you must do so ! exclusively on your behalf, under your direction and control, on ! terms that prohibit them from making any copies of your ! copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section --- 268,289 ---- copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, given ! its content, constitutes a covered work. This License acknowledges ! your rights of fair use or other equivalent, as provided by ! copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for you, ! or provide you with facilities for running those works, provided ! that you comply with the terms of this License in conveying all ! material for which you do not control copyright. Those thus making ! or running the covered works for you must do so exclusively on your ! behalf, under your direction and control, on terms that prohibit ! them from making any copies of your copyrighted material outside ! their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section *************** TERMS AND CONDITIONS *** 302,309 **** When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention ! to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. --- 300,307 ---- When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention to ! limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. *************** TERMS AND CONDITIONS *** 373,380 **** b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for ! as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a --- 371,378 ---- b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for as ! long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a *************** TERMS AND CONDITIONS *** 384,415 **** to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of ! the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access ! to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated ! by you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to ! the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long ! as needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. - A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. --- 382,412 ---- to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of the ! written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access to ! the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated by ! you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to the ! object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long as ! needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. *************** TERMS AND CONDITIONS *** 417,424 **** A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product ! is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the --- 414,421 ---- A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product is ! a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the *************** TERMS AND CONDITIONS *** 449,459 **** The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or ! installed by the recipient, or for the User Product in which it ! has been modified or installed. Access to a network may be denied ! when the modification itself materially and adversely affects the ! operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information --- 446,456 ---- The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or installed ! by the recipient, or for the User Product in which it has been ! modified or installed. Access to a network may be denied when the ! modification itself materially and adversely affects the operation ! of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information *************** TERMS AND CONDITIONS *** 483,490 **** Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License ! with terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or --- 480,487 ---- Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License with ! terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or *************** TERMS AND CONDITIONS *** 494,502 **** Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be ! marked in reasonable ways as different from the original ! version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or --- 491,498 ---- Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be marked ! in reasonable ways as different from the original version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or *************** TERMS AND CONDITIONS *** 515,525 **** you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or ! conveying under this License, you may add to a covered work ! material governed by the terms of that license document, provided ! that the further restriction does not survive such relicensing or ! conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the --- 511,520 ---- you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or conveying ! under this License, you may add to a covered work material governed ! by the terms of that license document, provided that the further ! restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the *************** TERMS AND CONDITIONS *** 535,547 **** You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under ! the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 530,542 ---- You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under the ! third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** TERMS AND CONDITIONS *** 553,562 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, you do not qualify to receive new ! licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. --- 548,557 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, you do not qualify to receive new licenses ! for the same material under section 10. 9. Acceptance Not Required for Having Copies. *************** TERMS AND CONDITIONS *** 570,576 **** by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and --- 565,571 ---- by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and *************** TERMS AND CONDITIONS *** 584,604 **** covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to ! possession of the Corresponding Source of the work from the ! predecessor in interest, if the predecessor has it or can get it ! with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for ! exercise of rights granted under this License, and you may not ! initiate litigation (including a cross-claim or counterclaim in a ! lawsuit) alleging that any patent claim is infringed by making, ! using, selling, offering for sale, or importing the Program or any ! portion of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. --- 579,599 ---- covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to possession ! of the Corresponding Source of the work from the predecessor in ! interest, if the predecessor has it or can get it with reasonable ! efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for exercise ! of rights granted under this License, and you may not initiate ! litigation (including a cross-claim or counterclaim in a lawsuit) ! alleging that any patent claim is infringed by making, using, ! selling, offering for sale, or importing the Program or any portion ! of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. *************** TERMS AND CONDITIONS *** 618,632 **** Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its ! contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To ! "grant" such a patent license to a party means to make such an ! agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available --- 613,627 ---- Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its contributor ! version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To "grant" ! such a patent license to a party means to make such an agreement or ! commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available *************** TERMS AND CONDITIONS *** 656,691 **** conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under ! which you make payment to the third party based on the extent of ! your activity of conveying the work, and under which the third ! party grants, to any of the parties who would receive the covered ! work from you, a discriminatory patent license (a) in connection ! with copies of the covered work conveyed by you (or copies made ! from those copies), or (b) primarily for and in connection with ! specific products or compilations that contain the covered work, ! unless you entered into that arrangement, or that patent license ! was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, ! agreement or otherwise) that contradict the conditions of this ! License, they do not excuse you from the conditions of this ! License. If you cannot convey a covered work so as to satisfy ! simultaneously your obligations under this License and any other ! pertinent obligations, then as a consequence you may not convey it ! at all. For example, if you agree to terms that obligate you to ! collect a royalty for further conveying from those to whom you ! convey the Program, the only way you could satisfy both those ! terms and this License would be to refrain entirely from conveying ! the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed --- 651,685 ---- conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under which ! you make payment to the third party based on the extent of your ! activity of conveying the work, and under which the third party ! grants, to any of the parties who would receive the covered work ! from you, a discriminatory patent license (a) in connection with ! copies of the covered work conveyed by you (or copies made from ! those copies), or (b) primarily for and in connection with specific ! products or compilations that contain the covered work, unless you ! entered into that arrangement, or that patent license was granted, ! prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, agreement ! or otherwise) that contradict the conditions of this License, they ! do not excuse you from the conditions of this License. If you ! cannot convey a covered work so as to satisfy simultaneously your ! obligations under this License and any other pertinent obligations, ! then as a consequence you may not convey it at all. For example, ! if you agree to terms that obligate you to collect a royalty for ! further conveying from those to whom you convey the Program, the ! only way you could satisfy both those terms and this License would ! be to refrain entirely from conveying the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed *************** TERMS AND CONDITIONS *** 696,717 **** General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. ! Such new versions will be similar in spirit to the present ! version, but may differ in detail to address new problems or ! concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the ! Free Software Foundation. If the Program does not specify a ! version number of the GNU General Public License, you may choose ! any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that --- 690,710 ---- General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. Such ! new versions will be similar in spirit to the present version, but ! may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the Free ! Software Foundation. If the Program does not specify a version ! number of the GNU General Public License, you may choose any ! version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that *************** TERMS AND CONDITIONS *** 723,746 **** author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU ! FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD --- 716,739 ---- author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR ! DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD *************** TERMS AND CONDITIONS *** 748,754 **** PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, --- 741,747 ---- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, *************** TERMS AND CONDITIONS *** 757,763 **** connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. - END OF TERMS AND CONDITIONS =========================== --- 750,755 ---- *************** state the exclusion of warranty; and eac *** 788,794 **** General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see `http://www.gnu.org/licenses/'. Also add information on how to contact you by electronic and paper mail. --- 780,786 ---- General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. *************** mail. *** 797,807 **** notice like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type `show c' for details. ! The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". --- 789,799 ---- notice like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type 'show c' for details. ! The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". *************** use an "about box". *** 809,822 **** You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see `http://www.gnu.org/licenses/'. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read `http://www.gnu.org/philosophy/why-not-lgpl.html'.  File: gcj.info, Node: GNU Free Documentation License, Next: Invoking gcj, Prev: Copying, Up: Top --- 801,814 ---- You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read .  File: gcj.info, Node: GNU Free Documentation License, Next: Invoking gcj, Prev: Copying, Up: Top *************** GNU Free Documentation License *** 827,833 **** Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 819,825 ---- Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU Free Documentation License *** 852,872 **** free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. ! We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it ! can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You ! accept the license if you copy, modify or distribute the work in a ! way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with --- 844,864 ---- free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. We ! recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it can ! be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You accept ! the license if you copy, modify or distribute the work in a way ! requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with *************** GNU Free Documentation License *** 884,895 **** regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in ! the notice that says that the Document is released under this ! License. If a section does not fit the above definition of ! Secondary then it is not allowed to be designated as Invariant. ! The Document may contain zero Invariant Sections. If the Document ! does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice --- 876,887 ---- regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in the ! notice that says that the Document is released under this License. ! If a section does not fit the above definition of Secondary then it ! is not allowed to be designated as Invariant. The Document may ! contain zero Invariant Sections. If the Document does not identify ! any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice *************** GNU Free Documentation License *** 900,926 **** A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images ! composed of pixels) generic paint programs or (for drawings) some ! widely available drawing editor, and that is suitable for input to ! text formatters or for automatic translation to a variety of ! formats suitable for input to text formatters. A copy made in an ! otherwise Transparent file format whose markup, or absence of ! markup, has been arranged to thwart or discourage subsequent ! modification by readers is not Transparent. An image format is ! not Transparent if used for any substantial amount of text. A ! copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and ! standard-conforming simple HTML, PostScript or PDF designed for ! human modification. Examples of transparent image formats include ! PNG, XCF and JPG. Opaque formats include proprietary formats that ! can be read and edited only by proprietary word processors, SGML or ! XML for which the DTD and/or processing tools are not generally ! available, and the machine-generated HTML, PostScript or PDF ! produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the --- 892,918 ---- A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images composed ! of pixels) generic paint programs or (for drawings) some widely ! available drawing editor, and that is suitable for input to text ! formatters or for automatic translation to a variety of formats ! suitable for input to text formatters. A copy made in an otherwise ! Transparent file format whose markup, or absence of markup, has ! been arranged to thwart or discourage subsequent modification by ! readers is not Transparent. An image format is not Transparent if ! used for any substantial amount of text. A copy that is not ! "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and standard-conforming ! simple HTML, PostScript or PDF designed for human modification. ! Examples of transparent image formats include PNG, XCF and JPG. ! Opaque formats include proprietary formats that can be read and ! edited only by proprietary word processors, SGML or XML for which ! the DTD and/or processing tools are not generally available, and ! the machine-generated HTML, PostScript or PDF produced by some word ! processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the *************** GNU Free Documentation License *** 958,965 **** may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow ! the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. --- 950,957 ---- may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow the ! conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. *************** GNU Free Documentation License *** 973,984 **** these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the ! title equally prominent and visible. You may add other material ! on the covers in addition. Copying with changes limited to the ! covers, as long as they preserve the title of the Document and ! satisfy these conditions, can be treated as verbatim copying in ! other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit --- 965,975 ---- these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the title ! equally prominent and visible. You may add other material on the ! covers in addition. Copying with changes limited to the covers, as ! long as they preserve the title of the Document and satisfy these ! conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit *************** GNU Free Documentation License *** 986,1025 **** adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a ! machine-readable Transparent copy along with each Opaque copy, or ! state in or with each Opaque copy a computer-network location from ! which the general network-using public has access to download ! using public-standard network protocols a complete Transparent ! copy of the Document, free of added material. If you use the ! latter option, you must take reasonably prudent steps, when you ! begin distribution of Opaque copies in quantity, to ensure that ! this Transparent copy will remain thus accessible at the stated ! location until at least one year after the last time you ! distribute an Opaque copy (directly or through your agents or ! retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of ! copies, to give them a chance to provide you with an updated ! version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with ! the Modified Version filling the role of the Document, thus ! licensing distribution and modification of the Modified Version to ! whoever possesses a copy of it. In addition, you must do these ! things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of ! previous versions (which should, if there were any, be listed ! in the History section of the Document). You may use the ! same title as a previous version if the original publisher of ! that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in --- 977,1015 ---- adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a machine-readable ! Transparent copy along with each Opaque copy, or state in or with ! each Opaque copy a computer-network location from which the general ! network-using public has access to download using public-standard ! network protocols a complete Transparent copy of the Document, free ! of added material. If you use the latter option, you must take ! reasonably prudent steps, when you begin distribution of Opaque ! copies in quantity, to ensure that this Transparent copy will ! remain thus accessible at the stated location until at least one ! year after the last time you distribute an Opaque copy (directly or ! through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of copies, ! to give them a chance to provide you with an updated version of the ! Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with the ! Modified Version filling the role of the Document, thus licensing ! distribution and modification of the Modified Version to whoever ! possesses a copy of it. In addition, you must do these things in ! the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of previous ! versions (which should, if there were any, be listed in the ! History section of the Document). You may use the same title ! as a previous version if the original publisher of that ! version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in *************** GNU Free Documentation License *** 1049,1079 **** I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on ! the Title Page. If there is no section Entitled "History" in ! the Document, create one stating the title, year, authors, ! and publisher of the Document as given on its Title Page, ! then add an item describing the Modified Version as stated in ! the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in ! the "History" section. You may omit a network location for a ! work that was published at least four years before the ! Document itself, or if the original publisher of the version ! it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the ! section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, ! unaltered in their text and in their titles. Section numbers ! or the equivalent are not considered part of the section ! titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. --- 1039,1068 ---- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on the ! Title Page. If there is no section Entitled "History" in the ! Document, create one stating the title, year, authors, and ! publisher of the Document as given on its Title Page, then add ! an item describing the Modified Version as stated in the ! previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in the ! "History" section. You may omit a network location for a work ! that was published at least four years before the Document ! itself, or if the original publisher of the version it refers ! to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the section ! all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, unaltered ! in their text and in their titles. Section numbers or the ! equivalent are not considered part of the section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. *************** GNU Free Documentation License *** 1086,1096 **** If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option ! designate some or all of these sections as invariant. To do this, ! add their titles to the list of Invariant Sections in the Modified ! Version's license notice. These titles must be distinct from any ! other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various --- 1075,1085 ---- If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option designate ! some or all of these sections as invariant. To do this, add their ! titles to the list of Invariant Sections in the Modified Version's ! license notice. These titles must be distinct from any other ! section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various *************** GNU Free Documentation License *** 1099,1113 **** definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end ! of the list of Cover Texts in the Modified Version. Only one ! passage of Front-Cover Text and one of Back-Cover Text may be ! added by (or through arrangements made by) any one entity. If the ! Document already includes a cover text for the same cover, ! previously added by you or by arrangement made by the same entity ! you are acting on behalf of, you may not add another; but you may ! replace the old one, on explicit permission from the previous ! publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to --- 1088,1102 ---- definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end of ! the list of Cover Texts in the Modified Version. Only one passage ! of Front-Cover Text and one of Back-Cover Text may be added by (or ! through arrangements made by) any one entity. If the Document ! already includes a cover text for the same cover, previously added ! by you or by arrangement made by the same entity you are acting on ! behalf of, you may not add another; but you may replace the old ! one, on explicit permission from the previous publisher that added ! the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to *************** GNU Free Documentation License *** 1117,1124 **** You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination ! all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. --- 1106,1113 ---- You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination all ! of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. *************** GNU Free Documentation License *** 1145,1164 **** documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the ! documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow ! this License in all other respects regarding verbatim copying of ! that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of ! a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this --- 1134,1153 ---- documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the documents ! in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow this ! License in all other respects regarding verbatim copying of that ! document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of a ! storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this *************** GNU Free Documentation License *** 1203,1210 **** However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 1192,1199 ---- However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** GNU Free Documentation License *** 1216,1248 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, receipt of a copy of some or all of ! the same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! `http://www.gnu.org/copyleft/'. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If ! the Document does not specify a version number of this License, ! you may choose any version ever published (not as a draft) by the ! Free Software Foundation. If the Document specifies that a proxy ! can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also --- 1205,1237 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, receipt of a copy of some or all of the ! same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! . Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If the ! Document does not specify a version number of this License, you may ! choose any version ever published (not as a draft) by the Free ! Software Foundation. If the Document specifies that a proxy can ! decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also *************** GNU Free Documentation License *** 1272,1278 **** site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. - ADDENDUM: How to use this License for your documents ==================================================== --- 1261,1266 ---- *************** notices just after the title page: *** 1289,1295 **** Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts --- 1277,1283 ---- Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts *************** combination of the three, merge those tw *** 1300,1308 **** situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of ! free software license, such as the GNU General Public License, to ! permit their use in free software.  File: gcj.info, Node: Invoking gcj, Next: Compatibility, Prev: GNU Free Documentation License, Up: Top --- 1288,1296 ---- situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of free ! software license, such as the GNU General Public License, to permit ! their use in free software.  File: gcj.info, Node: Invoking gcj, Next: Compatibility, Prev: GNU Free Documentation License, Up: Top *************** File: gcj.info, Node: Invoking gcj, Ne *** 1310,1318 **** 1 Invoking gcj ************** ! As `gcj' is just another front end to `gcc', it supports many of the same options as gcc. *Note Option Summary: (gcc)Option Summary. This ! manual only documents the options specific to `gcj'. * Menu: --- 1298,1306 ---- 1 Invoking gcj ************** ! As 'gcj' is just another front end to 'gcc', it supports many of the same options as gcc. *Note Option Summary: (gcc)Option Summary. This ! manual only documents the options specific to 'gcj'. * Menu: *************** File: gcj.info, Node: Input and output *** 1330,1370 **** 1.1 Input and output files ========================== ! A `gcj' command is like a `gcc' command, in that it consists of a ! number of options and file names. The following kinds of input file ! names are supported: ! `FILE.java' Java source files. ! ! `FILE.class' Java bytecode files. ! ! `FILE.zip' ! `FILE.jar' ! An archive containing one or more `.class' files, all of which are compiled. The archive may be compressed. Files in an archive ! which don't end with `.class' are treated as resource files; they ! are compiled into the resulting object file as `core:' URLs. ! ! `@FILE' A file containing a whitespace-separated list of input file names. ! (Currently, these must all be `.java' source files, but that may change.) Each named file is compiled, just as if it had been on the command line. ! `LIBRARY.a' ! `LIBRARY.so' ! `-lLIBNAME' ! Libraries to use when linking. See the `gcc' manual. ! ! You can specify more than one input file on the `gcj' command line, ! in which case they will all be compiled. If you specify a `-o FILENAME' option, all the input files will be compiled together, producing a single output file, named FILENAME. This is allowed even when using ! `-S' or `-c', but not when using `-C' or `--resource'. (This is an ! extension beyond the what plain `gcc' allows.) (If more than one input ! file is specified, all must currently be `.java' files, though we hope to fix this.)  --- 1318,1354 ---- 1.1 Input and output files ========================== ! A 'gcj' command is like a 'gcc' command, in that it consists of a number ! of options and file names. The following kinds of input file names are ! supported: ! 'FILE.java' Java source files. ! 'FILE.class' Java bytecode files. ! 'FILE.zip' ! 'FILE.jar' ! An archive containing one or more '.class' files, all of which are compiled. The archive may be compressed. Files in an archive ! which don't end with '.class' are treated as resource files; they ! are compiled into the resulting object file as 'core:' URLs. ! '@FILE' A file containing a whitespace-separated list of input file names. ! (Currently, these must all be '.java' source files, but that may change.) Each named file is compiled, just as if it had been on the command line. + 'LIBRARY.a' + 'LIBRARY.so' + '-lLIBNAME' + Libraries to use when linking. See the 'gcc' manual. ! You can specify more than one input file on the 'gcj' command line, ! in which case they will all be compiled. If you specify a '-o FILENAME' option, all the input files will be compiled together, producing a single output file, named FILENAME. This is allowed even when using ! '-S' or '-c', but not when using '-C' or '--resource'. (This is an ! extension beyond the what plain 'gcc' allows.) (If more than one input ! file is specified, all must currently be '.java' files, though we hope to fix this.)  *************** File: gcj.info, Node: Input Options, N *** 1373,1451 **** 1.2 Input Options ================= ! `gcj' has options to control where it looks to find files it needs. ! For instance, `gcj' might need to load a class that is referenced by ! the file it has been asked to compile. Like other compilers for the ! Java language, `gcj' has a notion of a "class path". There are several options and environment variables which can be used to manipulate the ! class path. When `gcj' looks for a given class, it searches the class ! path looking for matching `.class' or `.java' file. `gcj' comes with a ! built-in class path which points at the installed `libgcj.jar', a file which contains all the standard classes. In the text below, a directory or path component can refer either to ! an actual directory on the filesystem, or to a `.zip' or `.jar' file, ! which `gcj' will search as if it is a directory. ! `-IDIR' ! All directories specified by `-I' are kept in order and prepended to the class path constructed from all the other options. Unless ! compatibility with tools like `javac' is important, we recommend ! always using `-I' instead of the other options for manipulating the class path. ! `--classpath=PATH' This sets the class path to PATH, a colon-separated list of paths (on Windows-based systems, a semicolon-separate list of paths). This does not override the builtin ("boot") search path. ! `--CLASSPATH=PATH' ! Deprecated synonym for `--classpath'. ! `--bootclasspath=PATH' Where to find the standard builtin classes, such as ! `java.lang.String'. ! `--extdirs=PATH' For each directory in the PATH, place the contents of that directory at the end of the class path. ! `CLASSPATH' This is an environment variable which holds a list of paths. The final class path is constructed like so: ! * First come all directories specified via `-I'. ! * If `--classpath' is specified, its value is appended. Otherwise, ! if the `CLASSPATH' environment variable is specified, then its ! value is appended. Otherwise, the current directory (`"."') is appended. ! * If `--bootclasspath' was specified, append its value. Otherwise, ! append the built-in system directory, `libgcj.jar'. ! * Finally, if `--extdirs' was specified, append the contents of the specified directories at the end of the class path. Otherwise, append the contents of the built-in extdirs at ! `$(prefix)/share/java/ext'. ! The classfile built by `gcj' for the class `java.lang.Object' (and ! placed in `libgcj.jar') contains a special zero length attribute ! `gnu.gcj.gcj-compiled'. The compiler looks for this attribute when ! loading `java.lang.Object' and will report an error if it isn't found, unless it compiles to bytecode (the option ! `-fforce-classes-archive-check' can be used to override this behavior ! in this particular case.) ! `-fforce-classes-archive-check' This forces the compiler to always check for the special zero ! length attribute `gnu.gcj.gcj-compiled' in `java.lang.Object' and issue an error if it isn't found. ! `-fsource=VERSION' ! This option is used to choose the source version accepted by ! `gcj'. The default is `1.5'.  File: gcj.info, Node: Encodings, Next: Warnings, Prev: Input Options, Up: Invoking gcj --- 1357,1435 ---- 1.2 Input Options ================= ! 'gcj' has options to control where it looks to find files it needs. For ! instance, 'gcj' might need to load a class that is referenced by the ! file it has been asked to compile. Like other compilers for the Java ! language, 'gcj' has a notion of a "class path". There are several options and environment variables which can be used to manipulate the ! class path. When 'gcj' looks for a given class, it searches the class ! path looking for matching '.class' or '.java' file. 'gcj' comes with a ! built-in class path which points at the installed 'libgcj.jar', a file which contains all the standard classes. In the text below, a directory or path component can refer either to ! an actual directory on the filesystem, or to a '.zip' or '.jar' file, ! which 'gcj' will search as if it is a directory. ! '-IDIR' ! All directories specified by '-I' are kept in order and prepended to the class path constructed from all the other options. Unless ! compatibility with tools like 'javac' is important, we recommend ! always using '-I' instead of the other options for manipulating the class path. ! '--classpath=PATH' This sets the class path to PATH, a colon-separated list of paths (on Windows-based systems, a semicolon-separate list of paths). This does not override the builtin ("boot") search path. ! '--CLASSPATH=PATH' ! Deprecated synonym for '--classpath'. ! '--bootclasspath=PATH' Where to find the standard builtin classes, such as ! 'java.lang.String'. ! '--extdirs=PATH' For each directory in the PATH, place the contents of that directory at the end of the class path. ! 'CLASSPATH' This is an environment variable which holds a list of paths. The final class path is constructed like so: ! * First come all directories specified via '-I'. ! * If '--classpath' is specified, its value is appended. Otherwise, ! if the 'CLASSPATH' environment variable is specified, then its ! value is appended. Otherwise, the current directory ('"."') is appended. ! * If '--bootclasspath' was specified, append its value. Otherwise, ! append the built-in system directory, 'libgcj.jar'. ! * Finally, if '--extdirs' was specified, append the contents of the specified directories at the end of the class path. Otherwise, append the contents of the built-in extdirs at ! '$(prefix)/share/java/ext'. ! The classfile built by 'gcj' for the class 'java.lang.Object' (and ! placed in 'libgcj.jar') contains a special zero length attribute ! 'gnu.gcj.gcj-compiled'. The compiler looks for this attribute when ! loading 'java.lang.Object' and will report an error if it isn't found, unless it compiles to bytecode (the option ! '-fforce-classes-archive-check' can be used to override this behavior in ! this particular case.) ! '-fforce-classes-archive-check' This forces the compiler to always check for the special zero ! length attribute 'gnu.gcj.gcj-compiled' in 'java.lang.Object' and issue an error if it isn't found. ! '-fsource=VERSION' ! This option is used to choose the source version accepted by 'gcj'. ! The default is '1.5'.  File: gcj.info, Node: Encodings, Next: Warnings, Prev: Input Options, Up: Invoking gcj *************** File: gcj.info, Node: Encodings, Next: *** 1454,1476 **** ============= The Java programming language uses Unicode throughout. In an effort to ! integrate well with other locales, `gcj' allows `.java' files to be ! written using almost any encoding. `gcj' knows how to convert these encodings into its internal encoding at compile time. ! You can use the `--encoding=NAME' option to specify an encoding (of ! a particular character set) to use for source files. If this is not ! specified, the default encoding comes from your current locale. If ! your host system has insufficient locale support, then `gcj' assumes ! the default encoding to be the `UTF-8' encoding of Unicode. ! To implement `--encoding', `gcj' simply uses the host platform's ! `iconv' conversion routine. This means that in practice `gcj' is limited by the capabilities of the host platform. ! The names allowed for the argument `--encoding' vary from platform ! to platform (since they are not standardized anywhere). However, `gcj' ! implements the encoding named `UTF-8' internally, so if you choose to use this for your source files you can be assured that it will work on every host. --- 1438,1460 ---- ============= The Java programming language uses Unicode throughout. In an effort to ! integrate well with other locales, 'gcj' allows '.java' files to be ! written using almost any encoding. 'gcj' knows how to convert these encodings into its internal encoding at compile time. ! You can use the '--encoding=NAME' option to specify an encoding (of a ! particular character set) to use for source files. If this is not ! specified, the default encoding comes from your current locale. If your ! host system has insufficient locale support, then 'gcj' assumes the ! default encoding to be the 'UTF-8' encoding of Unicode. ! To implement '--encoding', 'gcj' simply uses the host platform's ! 'iconv' conversion routine. This means that in practice 'gcj' is limited by the capabilities of the host platform. ! The names allowed for the argument '--encoding' vary from platform to ! platform (since they are not standardized anywhere). However, 'gcj' ! implements the encoding named 'UTF-8' internally, so if you choose to use this for your source files you can be assured that it will work on every host. *************** File: gcj.info, Node: Warnings, Next: *** 1480,1512 **** 1.4 Warnings ============ ! `gcj' implements several warnings. As with other generic `gcc' ! warnings, if an option of the form `-Wfoo' enables a warning, then ! `-Wno-foo' will disable it. Here we've chosen to document the form of the warning which will have an effect - the default being the opposite of what is listed. ! `-Wredundant-modifiers' ! With this flag, `gcj' will warn about redundant modifiers. For ! instance, it will warn if an interface method is declared `public'. ! `-Wextraneous-semicolon' ! This causes `gcj' to warn about empty statements. Empty statements have been deprecated. ! `-Wno-out-of-date' ! This option will cause `gcj' not to warn when a source file is ! newer than its matching class file. By default `gcj' will warn about this. ! `-Wno-deprecated' Warn if a deprecated class, method, or field is referred to. ! `-Wunused' ! This is the same as `gcc''s `-Wunused'. ! `-Wall' ! This is the same as `-Wredundant-modifiers -Wextraneous-semicolon -Wunused'.  --- 1464,1496 ---- 1.4 Warnings ============ ! 'gcj' implements several warnings. As with other generic 'gcc' ! warnings, if an option of the form '-Wfoo' enables a warning, then ! '-Wno-foo' will disable it. Here we've chosen to document the form of the warning which will have an effect - the default being the opposite of what is listed. ! '-Wredundant-modifiers' ! With this flag, 'gcj' will warn about redundant modifiers. For ! instance, it will warn if an interface method is declared 'public'. ! '-Wextraneous-semicolon' ! This causes 'gcj' to warn about empty statements. Empty statements have been deprecated. ! '-Wno-out-of-date' ! This option will cause 'gcj' not to warn when a source file is ! newer than its matching class file. By default 'gcj' will warn about this. ! '-Wno-deprecated' Warn if a deprecated class, method, or field is referred to. ! '-Wunused' ! This is the same as 'gcc''s '-Wunused'. ! '-Wall' ! This is the same as '-Wredundant-modifiers -Wextraneous-semicolon -Wunused'.  *************** File: gcj.info, Node: Linking, Next: C *** 1517,1578 **** To turn a Java application into an executable program, you need to link it with the needed libraries, just as for C or C++. The linker by ! default looks for a global function named `main'. Since Java does not have global functions, and a collection of Java classes may have more ! than one class with a `main' method, you need to let the linker know ! which of those `main' methods it should invoke when starting the application. You can do that in any of these ways: ! * Specify the class containing the desired `main' method when you ! link the application, using the `--main' flag, described below. ! * Link the Java package(s) into a shared library (dll) rather than an ! executable. Then invoke the application using the `gij' program, ! making sure that `gij' can find the libraries it needs. ! ! * Link the Java packages(s) with the flag `-lgij', which links in ! the `main' routine from the `gij' command. This allows you to ! select the class whose `main' method you want to run when you run ! the application. You can also use other `gij' flags, such as `-D' ! flags to set properties. Using the `-lgij' library (rather than ! the `gij' program of the previous mechanism) has some advantages: it is compatible with static linking, and does not require configuring or installing libraries. ! These `gij' options relate to linking an executable: ! `--main=CLASSNAME' This option is used when linking to specify the name of the class ! whose `main' method should be invoked when the resulting ! executable is run. ! `-DNAME[=VALUE]' ! This option can only be used with `--main'. It defines a system property named NAME with value VALUE. If VALUE is not specified then it defaults to the empty string. These system properties are initialized at the program's startup and can be retrieved at ! runtime using the `java.lang.System.getProperty' method. ! `-lgij' Create an application whose command-line processing is that of the ! `gij' command. ! This option is an alternative to using `--main'; you cannot use both. ! `-static-libgcj' This option causes linking to be done against a static version of the libgcj runtime library. This option is only available if corresponding linker support exists. *Caution:* Static linking of libgcj may cause essential parts of libgcj to be omitted. Some parts of libgcj use reflection to load ! classes at runtime. Since the linker does not see these ! references at link time, it can omit the referred to classes. The ! result is usually (but not always) a `ClassNotFoundException' ! being thrown at runtime. Caution must be used when using this ! option. For more details see: ! `http://gcc.gnu.org/wiki/Statically%20linking%20libgcj'  File: gcj.info, Node: Code Generation, Next: Configure-time Options, Prev: Linking, Up: Invoking gcj --- 1501,1559 ---- To turn a Java application into an executable program, you need to link it with the needed libraries, just as for C or C++. The linker by ! default looks for a global function named 'main'. Since Java does not have global functions, and a collection of Java classes may have more ! than one class with a 'main' method, you need to let the linker know ! which of those 'main' methods it should invoke when starting the application. You can do that in any of these ways: ! * Specify the class containing the desired 'main' method when you ! link the application, using the '--main' flag, described below. * Link the Java package(s) into a shared library (dll) rather than an ! executable. Then invoke the application using the 'gij' program, ! making sure that 'gij' can find the libraries it needs. ! * Link the Java packages(s) with the flag '-lgij', which links in the ! 'main' routine from the 'gij' command. This allows you to select ! the class whose 'main' method you want to run when you run the ! application. You can also use other 'gij' flags, such as '-D' ! flags to set properties. Using the '-lgij' library (rather than ! the 'gij' program of the previous mechanism) has some advantages: it is compatible with static linking, and does not require configuring or installing libraries. ! These 'gij' options relate to linking an executable: ! '--main=CLASSNAME' This option is used when linking to specify the name of the class ! whose 'main' method should be invoked when the resulting executable ! is run. ! '-DNAME[=VALUE]' ! This option can only be used with '--main'. It defines a system property named NAME with value VALUE. If VALUE is not specified then it defaults to the empty string. These system properties are initialized at the program's startup and can be retrieved at ! runtime using the 'java.lang.System.getProperty' method. ! '-lgij' Create an application whose command-line processing is that of the ! 'gij' command. ! This option is an alternative to using '--main'; you cannot use both. ! '-static-libgcj' This option causes linking to be done against a static version of the libgcj runtime library. This option is only available if corresponding linker support exists. *Caution:* Static linking of libgcj may cause essential parts of libgcj to be omitted. Some parts of libgcj use reflection to load ! classes at runtime. Since the linker does not see these references ! at link time, it can omit the referred to classes. The result is ! usually (but not always) a 'ClassNotFoundException' being thrown at ! runtime. Caution must be used when using this option. For more ! details see:  File: gcj.info, Node: Code Generation, Next: Configure-time Options, Prev: Linking, Up: Invoking gcj *************** File: gcj.info, Node: Code Generation, *** 1580,1765 **** 1.6 Code Generation =================== ! In addition to the many `gcc' options controlling code generation, ! `gcj' has several options specific to itself. ! `-C' ! This option is used to tell `gcj' to generate bytecode (`.class' files) rather than object code. ! `--resource RESOURCE-NAME' ! This option is used to tell `gcj' to compile the contents of a ! given file to object code so it may be accessed at runtime with ! the core protocol handler as `core:/RESOURCE-NAME'. Note that RESOURCE-NAME is the name of the resource as found at runtime; for ! instance, it could be used in a call to `ResourceBundle.getBundle'. The actual file name to be compiled this way must be specified separately. ! `-ftarget=VERSION' ! This can be used with `-C' to choose the version of bytecode ! emitted by `gcj'. The default is `1.5'. When not generating bytecode, this option has no effect. ! `-d DIRECTORY' ! When used with `-C', this causes all generated `.class' files to ! be put in the appropriate subdirectory of DIRECTORY. By default ! they will be put in subdirectories of the current working ! directory. ! `-fno-bounds-check' ! By default, `gcj' generates code which checks the bounds of all array indexing operations. With this option, these checks are omitted, which can improve performance for code that uses arrays extensively. Note that this can result in unpredictable behavior if the code in question actually does violate array bounds constraints. It is safe to use this option if you are sure that ! your code will never throw an `ArrayIndexOutOfBoundsException'. ! `-fno-store-check' Don't generate array store checks. When storing objects into arrays, a runtime check is normally generated in order to ensure ! that the object is assignment compatible with the component type ! of the array (which may not be known at compile-time). With this ! option, these checks are omitted. This can improve performance ! for code which stores objects into arrays frequently. It is safe ! to use this option if you are sure your code will never throw an ! `ArrayStoreException'. ! `-fjni' ! With `gcj' there are two options for writing native methods: CNI ! and JNI. By default `gcj' assumes you are using CNI. If you are compiling a class with native methods, and these methods are ! implemented using JNI, then you must use `-fjni'. This option ! causes `gcj' to generate stubs which will invoke the underlying JNI methods. ! `-fno-assert' ! Don't recognize the `assert' keyword. This is for compatibility with older versions of the language specification. ! `-fno-optimize-static-class-initialization' ! When the optimization level is greater or equal to `-O2', `gcj' will try to optimize the way calls into the runtime are made to initialize static classes upon their first use (this optimization ! isn't carried out if `-C' was specified.) When compiling to native ! code, `-fno-optimize-static-class-initialization' will turn this optimization off, regardless of the optimization level in use. ! `--disable-assertions[=CLASS-OR-PACKAGE]' Don't include code for checking assertions in the compiled code. ! If `=CLASS-OR-PACKAGE' is missing disables assertion code generation for all classes, unless overridden by a more specific ! `--enable-assertions' flag. If CLASS-OR-PACKAGE is a class name, ! only disables generating assertion checks within the named class ! or its inner classes. If CLASS-OR-PACKAGE is a package name, ! disables generating assertion checks within the named package or a subpackage. By default, assertions are enabled when generating class files or when not optimizing, and disabled when generating optimized binaries. ! `--enable-assertions[=CLASS-OR-PACKAGE]' Generates code to check assertions. The option is perhaps misnamed, as you still need to turn on assertion checking at run-time, and we don't support any easy way to do that. So this flag isn't very useful yet, except to partially override ! `--disable-assertions'. ! `-findirect-dispatch' ! `gcj' has a special binary compatibility ABI, which is enabled by ! the `-findirect-dispatch' option. In this mode, the code ! generated by `gcj' honors the binary compatibility guarantees in ! the Java Language Specification, and the resulting object files do ! not need to be directly linked against their dependencies. ! Instead, all dependencies are looked up at runtime. This allows ! free mixing of interpreted and compiled code. ! Note that, at present, `-findirect-dispatch' can only be used when ! compiling `.class' files. It will not work when compiling from source. CNI also does not yet work with the binary compatibility ! ABI. These restrictions will be lifted in some future release. However, if you compile CNI code with the standard ABI, you can call it from code built with the binary compatibility ABI. ! `-fbootstrap-classes' ! This option can be use to tell `libgcj' that the compiled classes should be loaded by the bootstrap loader, not the system class loader. By default, if you compile a class and link it into an ! executable, it will be treated as if it was loaded using the ! system class loader. This is convenient, as it means that things ! like `Class.forName()' will search `CLASSPATH' to find the desired class. ! `-freduced-reflection' ! This option causes the code generated by `gcj' to contain a ! reduced amount of the class meta-data used to support runtime ! reflection. The cost of this savings is the loss of the ability to ! use certain reflection capabilities of the standard Java runtime ! environment. When set all meta-data except for that which is ! needed to obtain correct runtime semantics is eliminated. ! For code that does not use reflection (i.e. serialization, RMI, ! CORBA or call methods in the `java.lang.reflect' package), ! `-freduced-reflection' will result in proper operation with a savings in executable code size. ! JNI (`-fjni') and the binary compatibility ABI ! (`-findirect-dispatch') do not work properly without full ! reflection meta-data. Because of this, it is an error to use ! these options with `-freduced-reflection'. *Caution:* If there is no reflection meta-data, code that uses a ! `SecurityManager' may not work properly. Also calling ! `Class.forName()' may fail if the calling method has no reflection meta-data. -  File: gcj.info, Node: Configure-time Options, Prev: Code Generation, Up: Invoking gcj 1.7 Configure-time Options ========================== ! Some `gcj' code generations options affect the resulting ABI, and so ! can only be meaningfully given when `libgcj', the runtime package, is ! configured. `libgcj' puts the appropriate options from this group into ! a `spec' file which is read by `gcj'. These options are listed here ! for completeness; if you are using `libgcj' then you won't want to ! touch these options. ! `-fuse-boehm-gc' This enables the use of the Boehm GC bitmap marking code. In ! particular this causes `gcj' to put an object marking descriptor into each vtable. ! `-fhash-synchronization' ! By default, synchronization data (the data used for `synchronize', ! `wait', and `notify') is pointed to by a word in each object. ! With this option `gcj' assumes that this information is stored in a ! hash table and not in the object itself. ! `-fuse-divide-subroutine' On some systems, a library routine is called to perform integer division. This is required to get exception handling correct when dividing by zero. ! `-fcheck-references' On some systems it's necessary to insert inline checks whenever accessing an object via a reference. On other systems you won't ! need this because null pointer accesses are caught automatically ! by the processor. ! `-fuse-atomic-builtins' On some systems, GCC can generate code for built-in atomic operations. Use this option to force gcj to use these builtins when compiling Java code. Where this capability is present it should be automatically detected, so you won't usually need to use this option. -  File: gcj.info, Node: Compatibility, Next: Invoking jcf-dump, Prev: Invoking gcj, Up: Top --- 1561,1743 ---- 1.6 Code Generation =================== ! In addition to the many 'gcc' options controlling code generation, 'gcj' ! has several options specific to itself. ! '-C' ! This option is used to tell 'gcj' to generate bytecode ('.class' files) rather than object code. ! '--resource RESOURCE-NAME' ! This option is used to tell 'gcj' to compile the contents of a ! given file to object code so it may be accessed at runtime with the ! core protocol handler as 'core:/RESOURCE-NAME'. Note that RESOURCE-NAME is the name of the resource as found at runtime; for ! instance, it could be used in a call to 'ResourceBundle.getBundle'. The actual file name to be compiled this way must be specified separately. ! '-ftarget=VERSION' ! This can be used with '-C' to choose the version of bytecode ! emitted by 'gcj'. The default is '1.5'. When not generating bytecode, this option has no effect. ! '-d DIRECTORY' ! When used with '-C', this causes all generated '.class' files to be ! put in the appropriate subdirectory of DIRECTORY. By default they ! will be put in subdirectories of the current working directory. ! '-fno-bounds-check' ! By default, 'gcj' generates code which checks the bounds of all array indexing operations. With this option, these checks are omitted, which can improve performance for code that uses arrays extensively. Note that this can result in unpredictable behavior if the code in question actually does violate array bounds constraints. It is safe to use this option if you are sure that ! your code will never throw an 'ArrayIndexOutOfBoundsException'. ! '-fno-store-check' Don't generate array store checks. When storing objects into arrays, a runtime check is normally generated in order to ensure ! that the object is assignment compatible with the component type of ! the array (which may not be known at compile-time). With this ! option, these checks are omitted. This can improve performance for ! code which stores objects into arrays frequently. It is safe to ! use this option if you are sure your code will never throw an ! 'ArrayStoreException'. ! '-fjni' ! With 'gcj' there are two options for writing native methods: CNI ! and JNI. By default 'gcj' assumes you are using CNI. If you are compiling a class with native methods, and these methods are ! implemented using JNI, then you must use '-fjni'. This option ! causes 'gcj' to generate stubs which will invoke the underlying JNI methods. ! '-fno-assert' ! Don't recognize the 'assert' keyword. This is for compatibility with older versions of the language specification. ! '-fno-optimize-static-class-initialization' ! When the optimization level is greater or equal to '-O2', 'gcj' will try to optimize the way calls into the runtime are made to initialize static classes upon their first use (this optimization ! isn't carried out if '-C' was specified.) When compiling to native ! code, '-fno-optimize-static-class-initialization' will turn this optimization off, regardless of the optimization level in use. ! '--disable-assertions[=CLASS-OR-PACKAGE]' Don't include code for checking assertions in the compiled code. ! If '=CLASS-OR-PACKAGE' is missing disables assertion code generation for all classes, unless overridden by a more specific ! '--enable-assertions' flag. If CLASS-OR-PACKAGE is a class name, ! only disables generating assertion checks within the named class or ! its inner classes. If CLASS-OR-PACKAGE is a package name, disables ! generating assertion checks within the named package or a subpackage. By default, assertions are enabled when generating class files or when not optimizing, and disabled when generating optimized binaries. ! '--enable-assertions[=CLASS-OR-PACKAGE]' Generates code to check assertions. The option is perhaps misnamed, as you still need to turn on assertion checking at run-time, and we don't support any easy way to do that. So this flag isn't very useful yet, except to partially override ! '--disable-assertions'. ! '-findirect-dispatch' ! 'gcj' has a special binary compatibility ABI, which is enabled by ! the '-findirect-dispatch' option. In this mode, the code generated ! by 'gcj' honors the binary compatibility guarantees in the Java ! Language Specification, and the resulting object files do not need ! to be directly linked against their dependencies. Instead, all ! dependencies are looked up at runtime. This allows free mixing of ! interpreted and compiled code. ! Note that, at present, '-findirect-dispatch' can only be used when ! compiling '.class' files. It will not work when compiling from source. CNI also does not yet work with the binary compatibility ! ABI. These restrictions will be lifted in some future release. However, if you compile CNI code with the standard ABI, you can call it from code built with the binary compatibility ABI. ! '-fbootstrap-classes' ! This option can be use to tell 'libgcj' that the compiled classes should be loaded by the bootstrap loader, not the system class loader. By default, if you compile a class and link it into an ! executable, it will be treated as if it was loaded using the system ! class loader. This is convenient, as it means that things like ! 'Class.forName()' will search 'CLASSPATH' to find the desired class. ! '-freduced-reflection' ! This option causes the code generated by 'gcj' to contain a reduced ! amount of the class meta-data used to support runtime reflection. ! The cost of this savings is the loss of the ability to use certain ! reflection capabilities of the standard Java runtime environment. ! When set all meta-data except for that which is needed to obtain ! correct runtime semantics is eliminated. ! For code that does not use reflection (i.e. serialization, RMI, ! CORBA or call methods in the 'java.lang.reflect' package), ! '-freduced-reflection' will result in proper operation with a savings in executable code size. ! JNI ('-fjni') and the binary compatibility ABI ! ('-findirect-dispatch') do not work properly without full ! reflection meta-data. Because of this, it is an error to use these ! options with '-freduced-reflection'. *Caution:* If there is no reflection meta-data, code that uses a ! 'SecurityManager' may not work properly. Also calling ! 'Class.forName()' may fail if the calling method has no reflection meta-data.  File: gcj.info, Node: Configure-time Options, Prev: Code Generation, Up: Invoking gcj 1.7 Configure-time Options ========================== ! Some 'gcj' code generations options affect the resulting ABI, and so can ! only be meaningfully given when 'libgcj', the runtime package, is ! configured. 'libgcj' puts the appropriate options from this group into ! a 'spec' file which is read by 'gcj'. These options are listed here for ! completeness; if you are using 'libgcj' then you won't want to touch ! these options. ! '-fuse-boehm-gc' This enables the use of the Boehm GC bitmap marking code. In ! particular this causes 'gcj' to put an object marking descriptor into each vtable. ! '-fhash-synchronization' ! By default, synchronization data (the data used for 'synchronize', ! 'wait', and 'notify') is pointed to by a word in each object. With ! this option 'gcj' assumes that this information is stored in a hash ! table and not in the object itself. ! '-fuse-divide-subroutine' On some systems, a library routine is called to perform integer division. This is required to get exception handling correct when dividing by zero. ! '-fcheck-references' On some systems it's necessary to insert inline checks whenever accessing an object via a reference. On other systems you won't ! need this because null pointer accesses are caught automatically by ! the processor. ! '-fuse-atomic-builtins' On some systems, GCC can generate code for built-in atomic operations. Use this option to force gcj to use these builtins when compiling Java code. Where this capability is present it should be automatically detected, so you won't usually need to use this option.  File: gcj.info, Node: Compatibility, Next: Invoking jcf-dump, Prev: Invoking gcj, Up: Top *************** File: gcj.info, Node: Compatibility, N *** 1767,1780 **** ************************************** As we believe it is important that the Java platform not be fragmented, ! `gcj' and `libgcj' try to conform to the relevant Java specifications. However, limited manpower and incomplete and unclear documentation work ! against us. So, there are caveats to using `gcj'. * Menu: ! * Limitations:: ! * Extensions::  File: gcj.info, Node: Limitations, Next: Extensions, Up: Compatibility --- 1745,1758 ---- ************************************** As we believe it is important that the Java platform not be fragmented, ! 'gcj' and 'libgcj' try to conform to the relevant Java specifications. However, limited manpower and incomplete and unclear documentation work ! against us. So, there are caveats to using 'gcj'. * Menu: ! * Limitations:: ! * Extensions::  File: gcj.info, Node: Limitations, Next: Extensions, Up: Compatibility *************** File: gcj.info, Node: Limitations, Nex *** 1784,1813 **** This list of compatibility issues is by no means complete. ! * `gcj' implements the JDK 1.2 language. It supports inner classes ! and the new 1.4 `assert' keyword. It does not yet support the ! Java 2 `strictfp' keyword (it recognizes the keyword but ignores ! it). ! * `libgcj' is largely compatible with the JDK 1.2 libraries. ! However, `libgcj' is missing many packages, most notably ! `java.awt'. There are also individual missing classes and methods. We currently do not have a list showing differences between ! `libgcj' and the Java 2 platform. ! * Sometimes the `libgcj' implementation of a method or class differs from the JDK implementation. This is not always a bug. Still, if ! it affects you, it probably makes sense to report it so that we ! can discuss the appropriate response. ! * `gcj' does not currently allow for piecemeal replacement of ! components within `libgcj'. Unfortunately, programmers often want to use newer versions of certain packages, such as those provided by the Apache Software Foundation's Jakarta project. This has ! forced us to place the `org.w3c.dom' and `org.xml.sax' packages ! into their own libraries, separate from `libgcj'. If you intend to use these classes, you must link them explicitly with ! `-l-org-w3c-dom' and `-l-org-xml-sax'. Future versions of `gcj' may not have this restriction.  --- 1762,1790 ---- This list of compatibility issues is by no means complete. ! * 'gcj' implements the JDK 1.2 language. It supports inner classes ! and the new 1.4 'assert' keyword. It does not yet support the Java ! 2 'strictfp' keyword (it recognizes the keyword but ignores it). ! * 'libgcj' is largely compatible with the JDK 1.2 libraries. ! However, 'libgcj' is missing many packages, most notably ! 'java.awt'. There are also individual missing classes and methods. We currently do not have a list showing differences between ! 'libgcj' and the Java 2 platform. ! * Sometimes the 'libgcj' implementation of a method or class differs from the JDK implementation. This is not always a bug. Still, if ! it affects you, it probably makes sense to report it so that we can ! discuss the appropriate response. ! * 'gcj' does not currently allow for piecemeal replacement of ! components within 'libgcj'. Unfortunately, programmers often want to use newer versions of certain packages, such as those provided by the Apache Software Foundation's Jakarta project. This has ! forced us to place the 'org.w3c.dom' and 'org.xml.sax' packages ! into their own libraries, separate from 'libgcj'. If you intend to use these classes, you must link them explicitly with ! '-l-org-w3c-dom' and '-l-org-xml-sax'. Future versions of 'gcj' may not have this restriction.  *************** File: gcj.info, Node: Extensions, Prev *** 1816,1873 **** 2.2 Extra features unique to gcj ================================ ! The main feature of `gcj' is that it can compile programs written in ! the Java programming language to native code. Most extensions that ! have been added are to facilitate this functionality. ! * `gcj' makes it easy and efficient to mix code written in Java and C++. *Note About CNI::, for more info on how to use this in your programs. * When you compile your classes into a shared library using ! `-findirect-dispatch' then add them to the system-wide classmap.db ! file using `gcj-dbtool', they will be automatically loaded by the ! `libgcj' system classloader. This is the new, preferred classname-to-library resolution mechanism. *Note Invoking gcj-dbtool::, for more information on using the classmap database. * The old classname-to-library lookup mechanism is still supported ! through the `gnu.gcj.runtime.VMClassLoader.library_control' property, but it is deprecated and will likely be removed in some ! future release. When trying to load a class `gnu.pkg.SomeClass' the system classloader will first try to load the shared library ! `lib-gnu-pkg-SomeClass.so', if that fails to load the class then ! it will try to load `lib-gnu-pkg.so' and finally when the class is ! still not loaded it will try to load `lib-gnu.so'. Note that all ! `.'s will be transformed into `-'s and that searching for inner classes starts with their outermost outer class. If the class cannot be found this way the system classloader tries to use the ! `libgcj' bytecode interpreter to load the class from the standard classpath. This process can be controlled to some degree via the ! `gnu.gcj.runtime.VMClassLoader.library_control' property; *Note libgcj Runtime Properties::. ! * `libgcj' includes a special `gcjlib' URL type. A URL of this form ! is like a `jar' URL, and looks like ! `gcjlib:/path/to/shared/library.so!/path/to/resource'. An access ! to one of these URLs causes the shared library to be `dlopen()'d, and then the resource is looked for in that library. These URLs are most useful when used in conjunction with ! `java.net.URLClassLoader'. Note that, due to implementation limitations, currently any such URL can be accessed by only one class loader, and libraries are never unloaded. This means some ! care must be exercised to make sure that a `gcjlib' URL is not accessed by more than one class loader at once. In a future release this limitation will be lifted, and such libraries will be mapped privately. ! * A program compiled by `gcj' will examine the `GCJ_PROPERTIES' environment variable and change its behavior in some ways. In ! particular `GCJ_PROPERTIES' holds a list of assignments to global ! properties, such as would be set with the `-D' option to `java'. ! For instance, `java.compiler=gcj' is a valid (but currently ! meaningless) setting. !  File: gcj.info, Node: Invoking jcf-dump, Next: Invoking gij, Prev: Compatibility, Up: Top --- 1793,1849 ---- 2.2 Extra features unique to gcj ================================ ! The main feature of 'gcj' is that it can compile programs written in the ! Java programming language to native code. Most extensions that have ! been added are to facilitate this functionality. ! * 'gcj' makes it easy and efficient to mix code written in Java and C++. *Note About CNI::, for more info on how to use this in your programs. * When you compile your classes into a shared library using ! '-findirect-dispatch' then add them to the system-wide classmap.db ! file using 'gcj-dbtool', they will be automatically loaded by the ! 'libgcj' system classloader. This is the new, preferred classname-to-library resolution mechanism. *Note Invoking gcj-dbtool::, for more information on using the classmap database. * The old classname-to-library lookup mechanism is still supported ! through the 'gnu.gcj.runtime.VMClassLoader.library_control' property, but it is deprecated and will likely be removed in some ! future release. When trying to load a class 'gnu.pkg.SomeClass' the system classloader will first try to load the shared library ! 'lib-gnu-pkg-SomeClass.so', if that fails to load the class then it ! will try to load 'lib-gnu-pkg.so' and finally when the class is ! still not loaded it will try to load 'lib-gnu.so'. Note that all ! '.'s will be transformed into '-'s and that searching for inner classes starts with their outermost outer class. If the class cannot be found this way the system classloader tries to use the ! 'libgcj' bytecode interpreter to load the class from the standard classpath. This process can be controlled to some degree via the ! 'gnu.gcj.runtime.VMClassLoader.library_control' property; *Note libgcj Runtime Properties::. ! * 'libgcj' includes a special 'gcjlib' URL type. A URL of this form ! is like a 'jar' URL, and looks like ! 'gcjlib:/path/to/shared/library.so!/path/to/resource'. An access ! to one of these URLs causes the shared library to be 'dlopen()'d, and then the resource is looked for in that library. These URLs are most useful when used in conjunction with ! 'java.net.URLClassLoader'. Note that, due to implementation limitations, currently any such URL can be accessed by only one class loader, and libraries are never unloaded. This means some ! care must be exercised to make sure that a 'gcjlib' URL is not accessed by more than one class loader at once. In a future release this limitation will be lifted, and such libraries will be mapped privately. ! * A program compiled by 'gcj' will examine the 'GCJ_PROPERTIES' environment variable and change its behavior in some ways. In ! particular 'GCJ_PROPERTIES' holds a list of assignments to global ! properties, such as would be set with the '-D' option to 'java'. ! For instance, 'java.compiler=gcj' is a valid (but currently ! meaningless) setting.  File: gcj.info, Node: Invoking jcf-dump, Next: Invoking gij, Prev: Compatibility, Up: Top *************** File: gcj.info, Node: Invoking jcf-dump *** 1875,1911 **** 3 Invoking jcf-dump ******************* ! This is a class file examiner, similar to `javap'. It will print information about a number of classes, which are specified by class name or file name. ! `-c' Disassemble method bodies. By default method bodies are not printed. ! `--print-constants' Print the constant pool. When printing a reference to a constant also print its index in the constant pool. ! `--javap' ! Generate output in `javap' format. The implementation of this feature is very incomplete. ! `--classpath=PATH' ! `--CLASSPATH=PATH' ! `-IDIRECTORY' ! `-o FILE' ! These options as the same as the corresponding `gcj' options. ! `--help' Print help, then exit. ! `--version' Print version number, then exit. ! `-v, --verbose' Print extra information while running. Implies ! `--print-constants'.  File: gcj.info, Node: Invoking gij, Next: Invoking gcj-dbtool, Prev: Invoking jcf-dump, Up: Top --- 1851,1887 ---- 3 Invoking jcf-dump ******************* ! This is a class file examiner, similar to 'javap'. It will print information about a number of classes, which are specified by class name or file name. ! '-c' Disassemble method bodies. By default method bodies are not printed. ! '--print-constants' Print the constant pool. When printing a reference to a constant also print its index in the constant pool. ! '--javap' ! Generate output in 'javap' format. The implementation of this feature is very incomplete. ! '--classpath=PATH' ! '--CLASSPATH=PATH' ! '-IDIRECTORY' ! '-o FILE' ! These options as the same as the corresponding 'gcj' options. ! '--help' Print help, then exit. ! '--version' Print version number, then exit. ! '-v, --verbose' Print extra information while running. Implies ! '--print-constants'.  File: gcj.info, Node: Invoking gij, Next: Invoking gcj-dbtool, Prev: Invoking jcf-dump, Up: Top *************** File: gcj.info, Node: Invoking gij, Ne *** 1913,2012 **** 4 Invoking gij ************** ! `gij' is a Java bytecode interpreter included with `libgcj'. `gij' is not available on every platform; porting it requires a small amount of assembly programming which has not been done for all the targets ! supported by `gcj'. ! The primary argument to `gij' is the name of a class or, with ! `-jar', a jar file. Options before this argument are interpreted by ! `gij'; remaining options are passed to the interpreted program. ! If a class name is specified and this class does not have a `main' ! method with the appropriate signature (a `static void' method with a ! `String[]' as its sole argument), then `gij' will print an error and exit. ! If a jar file is specified then `gij' will use information in it to ! determine which class' `main' method will be invoked. ! `gij' will invoke the `main' method with all the remaining command-line options. ! Note that `gij' is not limited to interpreting code. Because ! `libgcj' includes a class loader which can dynamically load shared ! objects, it is possible to give `gij' the name of a class which has ! been compiled and put into a shared library on the class path. ! `-cp PATH' ! `-classpath PATH' Set the initial class path. The class path is used for finding class and resource files. If specified, this option overrides the ! `CLASSPATH' environment variable. Note that this option is ! ignored if `-jar' is used. ! `-DNAME[=VALUE]' This defines a system property named NAME with value VALUE. If ! VALUE is not specified then it defaults to the empty string. ! These system properties are initialized at the program's startup ! and can be retrieved at runtime using the ! `java.lang.System.getProperty' method. ! `-ms=NUMBER' ! Equivalent to `-Xms'. ! `-mx=NUMBER' ! Equivalent to `-Xmx'. ! `-noverify' ! Do not verify compliance of bytecode with the VM specification. In ! addition, this option disables type verification which is ! otherwise performed on BC-ABI compiled code. ! `-X' ! `-XARGUMENT' ! Supplying `-X' by itself will cause `gij' to list all the ! supported `-X' options. Currently these options are supported: ! `-XmsSIZE' Set the initial heap size. ! `-XmxSIZE' Set the maximum heap size. ! `-XssSIZE' Set the thread stack size. ! Unrecognized `-X' options are ignored, for compatibility with ! other runtimes. ! `-jar' ! This indicates that the name passed to `gij' should be interpreted as the name of a jar file, not a class. ! `--help' ! `-?' Print help, then exit. ! `--showversion' Print version number and continue. ! `--fullversion' Print detailed version information, then exit. ! `--version' Print version number, then exit. ! `-verbose' ! `-verbose:class' ! Each time a class is initialized, print a short message on ! standard error. ! `gij' also recognizes and ignores the following options, for ! compatibility with existing application launch scripts: `-client', ! `-server', `-hotspot', `-jrockit', `-agentlib', `-agentpath', `-debug', ! `-d32', `-d64', `-javaagent', `-noclassgc', `-verify', and ! `-verifyremote'.  File: gcj.info, Node: Invoking gcj-dbtool, Next: Invoking jv-convert, Prev: Invoking gij, Up: Top --- 1889,1988 ---- 4 Invoking gij ************** ! 'gij' is a Java bytecode interpreter included with 'libgcj'. 'gij' is not available on every platform; porting it requires a small amount of assembly programming which has not been done for all the targets ! supported by 'gcj'. ! The primary argument to 'gij' is the name of a class or, with '-jar', ! a jar file. Options before this argument are interpreted by 'gij'; ! remaining options are passed to the interpreted program. ! If a class name is specified and this class does not have a 'main' ! method with the appropriate signature (a 'static void' method with a ! 'String[]' as its sole argument), then 'gij' will print an error and exit. ! If a jar file is specified then 'gij' will use information in it to ! determine which class' 'main' method will be invoked. ! 'gij' will invoke the 'main' method with all the remaining command-line options. ! Note that 'gij' is not limited to interpreting code. Because ! 'libgcj' includes a class loader which can dynamically load shared ! objects, it is possible to give 'gij' the name of a class which has been ! compiled and put into a shared library on the class path. ! '-cp PATH' ! '-classpath PATH' Set the initial class path. The class path is used for finding class and resource files. If specified, this option overrides the ! 'CLASSPATH' environment variable. Note that this option is ignored ! if '-jar' is used. ! '-DNAME[=VALUE]' This defines a system property named NAME with value VALUE. If ! VALUE is not specified then it defaults to the empty string. These ! system properties are initialized at the program's startup and can ! be retrieved at runtime using the 'java.lang.System.getProperty' ! method. ! '-ms=NUMBER' ! Equivalent to '-Xms'. ! '-mx=NUMBER' ! Equivalent to '-Xmx'. ! '-noverify' ! Do not verify compliance of bytecode with the VM specification. In ! addition, this option disables type verification which is otherwise ! performed on BC-ABI compiled code. ! '-X' ! '-XARGUMENT' ! Supplying '-X' by itself will cause 'gij' to list all the supported ! '-X' options. Currently these options are supported: ! '-XmsSIZE' Set the initial heap size. ! '-XmxSIZE' Set the maximum heap size. ! '-XssSIZE' Set the thread stack size. ! Unrecognized '-X' options are ignored, for compatibility with other ! runtimes. ! '-jar' ! This indicates that the name passed to 'gij' should be interpreted as the name of a jar file, not a class. ! '--help' ! '-?' Print help, then exit. ! '--showversion' Print version number and continue. ! '--fullversion' Print detailed version information, then exit. ! '--version' Print version number, then exit. ! '-verbose' ! '-verbose:class' ! Each time a class is initialized, print a short message on standard ! error. ! 'gij' also recognizes and ignores the following options, for ! compatibility with existing application launch scripts: '-client', ! '-server', '-hotspot', '-jrockit', '-agentlib', '-agentpath', '-debug', ! '-d32', '-d64', '-javaagent', '-noclassgc', '-verify', and ! '-verifyremote'.  File: gcj.info, Node: Invoking gcj-dbtool, Next: Invoking jv-convert, Prev: Invoking gij, Up: Top *************** File: gcj.info, Node: Invoking gcj-dbto *** 2014,2116 **** 5 Invoking gcj-dbtool. ********************** ! `gcj-dbtool' is a tool for creating and manipulating class file mapping ! databases. `libgcj' can use these databases to find a shared library corresponding to the bytecode representation of a class. This functionality is useful for ahead-of-time compilation of a program that ! has no knowledge of `gcj'. ! `gcj-dbtool' works best if all the jar files added to it are ! compiled using `-findirect-dispatch'. ! Note that `gcj-dbtool' is currently available as "preview technology". We believe it is a reasonable way to allow application-transparent ahead-of-time compilation, but this is an unexplored area. We welcome your comments. ! `-n DBFILE [SIZE]' This creates a new database. Currently, databases cannot be resized; you can choose a larger initial size if desired. The default size is 32,749. ! `-a DBFILE JARFILE LIB' ! `-f DBFILE JARFILE LIB' This adds a jar file to the database. For each class file in the jar, a cryptographic signature of the bytecode representation of the class is recorded in the database. At runtime, a class is looked up by its signature and the compiled form of the class is ! looked for in the corresponding shared library. The `-a' option ! will verify that LIB exists before adding it to the database; `-f' skips this check. ! `[`-'][`-0'] -m DBFILE DBFILE,[DBFILE]' Merge a number of databases. The output database overwrites any existing database. To add databases into an existing database, include the destination in the list of sources. ! If `-' or `-0' are used, the list of files to read is taken from ! standard input instead of the command line. For `-0', Input filenames are terminated by a null character instead of by whitespace. Useful when arguments might contain white space. The GNU find -print0 option produces input suitable for this mode. ! `-t DBFILE' Test a database. ! `-l DBFILE' List the contents of a database. ! `-p' Print the name of the default database. If there is no default ! database, this prints a blank line. If LIBDIR is specified, use ! it instead of the default library directory component of the ! database name. ! `--help' Print a help message, then exit. ! `--version' ! `-v' Print version information, then exit. -  File: gcj.info, Node: Invoking jv-convert, Next: Invoking grmic, Prev: Invoking gcj-dbtool, Up: Top 6 Invoking jv-convert ********************* ! `jv-convert' [`OPTION'] ... [INPUTFILE [OUTPUTFILE]] ! `jv-convert' is a utility included with `libgcj' which converts a ! file from one encoding to another. It is similar to the Unix `iconv' utility. ! The encodings supported by `jv-convert' are platform-dependent. Currently there is no way to get a list of all supported encodings. ! `--encoding NAME' ! `--from NAME' Use NAME as the input encoding. The default is the current locale's encoding. ! `--to NAME' ! Use NAME as the output encoding. The default is the `JavaSrc' ! encoding; this is ASCII with `\u' escapes for non-ASCII characters. ! `-i FILE' Read from FILE. The default is to read from standard input. ! `-o FILE' Write to FILE. The default is to write to standard output. ! `--reverse' Swap the input and output encodings. ! `--help' Print a help message, then exit. ! `--version' Print version information, then exit.  --- 1990,2091 ---- 5 Invoking gcj-dbtool. ********************** ! 'gcj-dbtool' is a tool for creating and manipulating class file mapping ! databases. 'libgcj' can use these databases to find a shared library corresponding to the bytecode representation of a class. This functionality is useful for ahead-of-time compilation of a program that ! has no knowledge of 'gcj'. ! 'gcj-dbtool' works best if all the jar files added to it are compiled ! using '-findirect-dispatch'. ! Note that 'gcj-dbtool' is currently available as "preview technology". We believe it is a reasonable way to allow application-transparent ahead-of-time compilation, but this is an unexplored area. We welcome your comments. ! '-n DBFILE [SIZE]' This creates a new database. Currently, databases cannot be resized; you can choose a larger initial size if desired. The default size is 32,749. ! '-a DBFILE JARFILE LIB' ! '-f DBFILE JARFILE LIB' This adds a jar file to the database. For each class file in the jar, a cryptographic signature of the bytecode representation of the class is recorded in the database. At runtime, a class is looked up by its signature and the compiled form of the class is ! looked for in the corresponding shared library. The '-a' option ! will verify that LIB exists before adding it to the database; '-f' skips this check. ! '[-][-0] -m DBFILE DBFILE,[DBFILE]' Merge a number of databases. The output database overwrites any existing database. To add databases into an existing database, include the destination in the list of sources. ! If '-' or '-0' are used, the list of files to read is taken from ! standard input instead of the command line. For '-0', Input filenames are terminated by a null character instead of by whitespace. Useful when arguments might contain white space. The GNU find -print0 option produces input suitable for this mode. ! '-t DBFILE' Test a database. ! '-l DBFILE' List the contents of a database. ! '-p' Print the name of the default database. If there is no default ! database, this prints a blank line. If LIBDIR is specified, use it ! instead of the default library directory component of the database ! name. ! '--help' Print a help message, then exit. ! '--version' ! '-v' Print version information, then exit.  File: gcj.info, Node: Invoking jv-convert, Next: Invoking grmic, Prev: Invoking gcj-dbtool, Up: Top 6 Invoking jv-convert ********************* ! 'jv-convert' ['OPTION'] ... [INPUTFILE [OUTPUTFILE]] ! 'jv-convert' is a utility included with 'libgcj' which converts a ! file from one encoding to another. It is similar to the Unix 'iconv' utility. ! The encodings supported by 'jv-convert' are platform-dependent. Currently there is no way to get a list of all supported encodings. ! '--encoding NAME' ! '--from NAME' Use NAME as the input encoding. The default is the current locale's encoding. ! '--to NAME' ! Use NAME as the output encoding. The default is the 'JavaSrc' ! encoding; this is ASCII with '\u' escapes for non-ASCII characters. ! '-i FILE' Read from FILE. The default is to read from standard input. ! '-o FILE' Write to FILE. The default is to write to standard output. ! '--reverse' Swap the input and output encodings. ! '--help' Print a help message, then exit. ! '--version' Print version information, then exit.  *************** File: gcj.info, Node: Invoking grmic, *** 2119,2167 **** 7 Invoking grmic **************** ! `grmic' [`OPTION'] ... CLASS ... ! `grmic' is a utility included with `libgcj' which generates stubs ! for remote objects. Note that this program isn't yet fully compatible with the JDK ! `grmic'. Some options, such as `-classpath', are recognized but currently ignored. We have left these options undocumented for now. ! Long options can also be given with a GNU-style leading `--'. For ! instance, `--help' is accepted. ! `-keep' ! `-keepgenerated' ! By default, `grmic' deletes intermediate files. Either of these options causes it not to delete such files. ! `-v1.1' ! Cause `grmic' to create stubs and skeletons for the 1.1 protocol version. ! `-vcompat' ! Cause `grmic' to create stubs and skeletons compatible with both the 1.1 and 1.2 protocol versions. This is the default. ! `-v1.2' ! Cause `grmic' to create stubs and skeletons for the 1.2 protocol version. ! `-nocompile' Don't compile the generated files. ! `-verbose' ! Print information about what `grmic' is doing. ! `-d DIRECTORY' ! Put output files in DIRECTORY. By default the files are put in ! the current working directory. ! `-help' Print a help message, then exit. ! `-version' Print version information, then exit.  --- 2094,2142 ---- 7 Invoking grmic **************** ! 'grmic' ['OPTION'] ... CLASS ... ! 'grmic' is a utility included with 'libgcj' which generates stubs for ! remote objects. Note that this program isn't yet fully compatible with the JDK ! 'grmic'. Some options, such as '-classpath', are recognized but currently ignored. We have left these options undocumented for now. ! Long options can also be given with a GNU-style leading '--'. For ! instance, '--help' is accepted. ! '-keep' ! '-keepgenerated' ! By default, 'grmic' deletes intermediate files. Either of these options causes it not to delete such files. ! '-v1.1' ! Cause 'grmic' to create stubs and skeletons for the 1.1 protocol version. ! '-vcompat' ! Cause 'grmic' to create stubs and skeletons compatible with both the 1.1 and 1.2 protocol versions. This is the default. ! '-v1.2' ! Cause 'grmic' to create stubs and skeletons for the 1.2 protocol version. ! '-nocompile' Don't compile the generated files. ! '-verbose' ! Print information about what 'grmic' is doing. ! '-d DIRECTORY' ! Put output files in DIRECTORY. By default the files are put in the ! current working directory. ! '-help' Print a help message, then exit. ! '-version' Print version information, then exit.  *************** File: gcj.info, Node: Invoking gc-analy *** 2170,2187 **** 8 Invoking gc-analyze ********************* ! `gc-analyze' [`OPTION'] ... [FILE] ! `gc-analyze' prints an analysis of a GC memory dump to standard out. The memory dumps may be created by calling ! `gnu.gcj.util.GCInfo.enumerate(String namePrefix)' from java code. A memory dump will be created on an out of memory condition if ! `gnu.gcj.util.GCInfo.setOOMDump(String namePrefix)' is called before ! the out of memory occurs. ! Running this program will create two files: `TestDump001' and ! `TestDump001.bytes'. import gnu.gcj.util.*; import java.util.*; --- 2145,2162 ---- 8 Invoking gc-analyze ********************* ! 'gc-analyze' ['OPTION'] ... [FILE] ! 'gc-analyze' prints an analysis of a GC memory dump to standard out. The memory dumps may be created by calling ! 'gnu.gcj.util.GCInfo.enumerate(String namePrefix)' from java code. A memory dump will be created on an out of memory condition if ! 'gnu.gcj.util.GCInfo.setOOMDump(String namePrefix)' is called before the ! out of memory occurs. ! Running this program will create two files: 'TestDump001' and ! 'TestDump001.bytes'. import gnu.gcj.util.*; import java.util.*; *************** the out of memory occurs. *** 2203,2223 **** gc-analyze -v TestDump001 ! `--verbose' ! `-v' Verbose output. ! `-p TOOL-PREFIX' ! Prefix added to the names of the `nm' and `readelf' commands. ! `-d DIRECTORY' Directory that contains the executable and shared libraries used when the dump was generated. ! `--help' Print a help message, then exit. ! `--version' Print version information, then exit.  --- 2178,2198 ---- gc-analyze -v TestDump001 ! '--verbose' ! '-v' Verbose output. ! '-p TOOL-PREFIX' ! Prefix added to the names of the 'nm' and 'readelf' commands. ! '-d DIRECTORY' Directory that contains the executable and shared libraries used when the dump was generated. ! '--help' Print a help message, then exit. ! '--version' Print version information, then exit.  *************** File: gcj.info, Node: Invoking aot-comp *** 2226,2267 **** 9 Invoking aot-compile ********************** ! `aot-compile' is a script that searches a directory for Java bytecode ! (as class files, or in jars) and uses `gcj' to compile it to native ! code and generate the databases from it. ! `-M, --make=PATH' ! Specify the path to the `make' executable to use. ! `-C, --gcj=PATH' ! Specify the path to the `gcj' executable to use. ! `-D, --dbtool=PATH' ! Specify the path to the `gcj-dbtool' executable to use. ! `-m, --makeflags=FLAGS' ! Specify flags to pass to `make' during the build. ! `-c, --gcjflags=FLAGS' ! Specify flags to pass to `gcj' during compilation, in addition to '-fPIC -findirect-dispatch -fjni'. ! `-l, --ldflags=FLAGS' ! Specify flags to pass to `gcj' during linking, in addition to '-Wl,-Bsymbolic'. ! `-e, --exclude=PATH' Do not compile PATH. -  File: gcj.info, Node: Invoking rebuild-gcj-db, Next: About CNI, Prev: Invoking aot-compile, Up: Top 10 Invoking rebuild-gcj-db ************************** ! `rebuild-gcj-db' is a script that merges the per-solib databases made by ! `aot-compile' into one system-wide database so `gij' can find the solibs.  --- 2201,2241 ---- 9 Invoking aot-compile ********************** ! 'aot-compile' is a script that searches a directory for Java bytecode ! (as class files, or in jars) and uses 'gcj' to compile it to native code ! and generate the databases from it. ! '-M, --make=PATH' ! Specify the path to the 'make' executable to use. ! '-C, --gcj=PATH' ! Specify the path to the 'gcj' executable to use. ! '-D, --dbtool=PATH' ! Specify the path to the 'gcj-dbtool' executable to use. ! '-m, --makeflags=FLAGS' ! Specify flags to pass to 'make' during the build. ! '-c, --gcjflags=FLAGS' ! Specify flags to pass to 'gcj' during compilation, in addition to '-fPIC -findirect-dispatch -fjni'. ! '-l, --ldflags=FLAGS' ! Specify flags to pass to 'gcj' during linking, in addition to '-Wl,-Bsymbolic'. ! '-e, --exclude=PATH' Do not compile PATH.  File: gcj.info, Node: Invoking rebuild-gcj-db, Next: About CNI, Prev: Invoking aot-compile, Up: Top 10 Invoking rebuild-gcj-db ************************** ! 'rebuild-gcj-db' is a script that merges the per-solib databases made by ! 'aot-compile' into one system-wide database so 'gij' can find the solibs.  *************** File: gcj.info, Node: Basic concepts, *** 2304,2312 **** In terms of languages features, Java is mostly a subset of C++. Java has a few important extensions, plus a powerful standard class library, but on the whole that does not change the basic similarity. Java is a ! hybrid object-oriented language, with a few native types, in addition ! to class types. It is class-based, where a class may have static as ! well as per-object fields, and static as well as instance methods. Non-static methods may be virtual, and may be overloaded. Overloading is resolved at compile time by matching the actual argument types against the parameter types. Virtual methods are implemented using --- 2278,2286 ---- In terms of languages features, Java is mostly a subset of C++. Java has a few important extensions, plus a powerful standard class library, but on the whole that does not change the basic similarity. Java is a ! hybrid object-oriented language, with a few native types, in addition to ! class types. It is class-based, where a class may have static as well ! as per-object fields, and static as well as instance methods. Non-static methods may be virtual, and may be overloaded. Overloading is resolved at compile time by matching the actual argument types against the parameter types. Virtual methods are implemented using *************** method. Classes are organized in a pack *** 2316,2328 **** All of the listed attributes are also true of C++, though C++ has extra features (for example in C++ objects may be allocated not just on ! the heap, but also statically or in a local stack frame). Because ! `gcj' uses the same compiler technology as G++ (the GNU C++ compiler), ! it is possible to make the intersection of the two languages use the ! same ABI (object representation and calling conventions). The key idea ! in CNI is that Java objects are C++ objects, and all Java classes are ! C++ classes (but not the other way around). So the most important task ! in integrating Java and C++ is to remove gratuitous incompatibilities. You write CNI code as a regular C++ source file. (You do have to use a Java/CNI-aware C++ compiler, specifically a recent version of G++.) --- 2290,2302 ---- All of the listed attributes are also true of C++, though C++ has extra features (for example in C++ objects may be allocated not just on ! the heap, but also statically or in a local stack frame). Because 'gcj' ! uses the same compiler technology as G++ (the GNU C++ compiler), it is ! possible to make the intersection of the two languages use the same ABI ! (object representation and calling conventions). The key idea in CNI is ! that Java objects are C++ objects, and all Java classes are C++ classes ! (but not the other way around). So the most important task in ! integrating Java and C++ is to remove gratuitous incompatibilities. You write CNI code as a regular C++ source file. (You do have to use a Java/CNI-aware C++ compiler, specifically a recent version of G++.) *************** and then must include one header file fo *** 2337,2350 **** #include #include ! These header files are automatically generated by `gcjh'. CNI provides some functions and macros to make using Java objects and primitive types from C++ easier. In general, these CNI functions and ! macros start with the `Jv' prefix, for example the function ! `JvNewObjectArray'. This convention is used to avoid conflicts with other libraries. Internal functions in CNI start with the prefix ! `_Jv_'. You should not call these; if you find a need to, let us know and we will try to come up with an alternate solution. 11.1.1 Limitations --- 2311,2324 ---- #include #include ! These header files are automatically generated by 'gcjh'. CNI provides some functions and macros to make using Java objects and primitive types from C++ easier. In general, these CNI functions and ! macros start with the 'Jv' prefix, for example the function ! 'JvNewObjectArray'. This convention is used to avoid conflicts with other libraries. Internal functions in CNI start with the prefix ! '_Jv_'. You should not call these; if you find a need to, let us know and we will try to come up with an alternate solution. 11.1.1 Limitations *************** freed from the shackles of Java, a CNI C *** 2355,2361 **** rules of the Java programming language. For example: it is not possible to declare a method in a CNI class ! that will take a C string (`char*') as an argument, or to declare a member variable of some non-Java datatype.  --- 2329,2335 ---- rules of the Java programming language. For example: it is not possible to declare a method in a CNI class ! that will take a C string ('char*') as an argument, or to declare a member variable of some non-Java datatype.  *************** sub-packages. Every class belongs to ei *** 2370,2379 **** package that has a hierarchical and globally unique name. A Java package is mapped to a C++ "namespace". The Java class ! `java.lang.String' is in the package `java.lang', which is a ! sub-package of `java'. The C++ equivalent is the class ! `java::lang::String', which is in the namespace `java::lang' which is ! in the namespace `java'. Here is how you could express this: --- 2344,2352 ---- package that has a hierarchical and globally unique name. A Java package is mapped to a C++ "namespace". The Java class ! 'java.lang.String' is in the package 'java.lang', which is a sub-package ! of 'java'. The C++ equivalent is the class 'java::lang::String', which ! is in the namespace 'java::lang' which is in the namespace 'java'. Here is how you could express this: *************** Here is how you could express this: *** 2391,2397 **** ... }; ! The `gcjh' tool automatically generates the necessary namespace declarations. 11.2.1 Leaving out package names --- 2364,2370 ---- ... }; ! The 'gcjh' tool automatically generates the necessary namespace declarations. 11.2.1 Leaving out package names *************** declarations. *** 2400,2419 **** Always using the fully-qualified name of a java class can be tiresomely verbose. Using the full qualified name also ties the code to a single package making code changes necessary should the class move from one ! package to another. The Java `package' declaration specifies that the ! following class declarations are in the named package, without having ! to explicitly name the full package qualifiers. The `package' ! declaration can be followed by zero or more `import' declarations, which ! allows either a single class or all the classes in a package to be ! named by a simple identifier. C++ provides something similar with the ! `using' declaration and directive. In Java: import PACKAGE-NAME.CLASS-NAME; allows the program text to refer to CLASS-NAME as a shorthand for the ! fully qualified name: `PACKAGE-NAME.CLASS-NAME'. To achieve the same effect C++, you have to do this: --- 2373,2392 ---- Always using the fully-qualified name of a java class can be tiresomely verbose. Using the full qualified name also ties the code to a single package making code changes necessary should the class move from one ! package to another. The Java 'package' declaration specifies that the ! following class declarations are in the named package, without having to ! explicitly name the full package qualifiers. The 'package' declaration ! can be followed by zero or more 'import' declarations, which allows ! either a single class or all the classes in a package to be named by a ! simple identifier. C++ provides something similar with the 'using' ! declaration and directive. In Java: import PACKAGE-NAME.CLASS-NAME; allows the program text to refer to CLASS-NAME as a shorthand for the ! fully qualified name: 'PACKAGE-NAME.CLASS-NAME'. To achieve the same effect C++, you have to do this: *************** Java can also cause imports on demand, l *** 2423,2430 **** import PACKAGE-NAME.*; ! Doing this allows any class from the package PACKAGE-NAME to be ! referred to only by its class-name within the program text. The same effect can be achieved in C++ like this: --- 2396,2403 ---- import PACKAGE-NAME.*; ! Doing this allows any class from the package PACKAGE-NAME to be referred ! to only by its class-name within the program text. The same effect can be achieved in C++ like this: *************** example) so CNI provides a special C++ t *** 2444,2477 **** type: *Java type* *C/C++ typename* *Description* ! `char' `jchar' 16 bit Unicode character ! `boolean' `jboolean' logical (true or false) values ! `byte' `jbyte' 8-bit signed integer ! `short' `jshort' 16 bit signed integer ! `int' `jint' 32 bit signed integer ! `long' `jlong' 64 bit signed integer ! `float' `jfloat' 32 bit IEEE floating point number ! `double' `jdouble' 64 bit IEEE floating point number ! `void' `void' no value When referring to a Java type You should always use these C++ ! typenames (e.g.: `jint') to avoid disappointment. 11.3.1 Reference types associated with primitive types ------------------------------------------------------ In Java each primitive type has an associated reference type, e.g.: ! `boolean' has an associated `java.lang.Boolean.TYPE' class. In order ! to make working with such classes easier GCJ provides the macro ! `JvPrimClass': -- macro: JvPrimClass type ! Return a pointer to the `Class' object corresponding to the type supplied. JvPrimClass(void) => java.lang.Void.TYPE -  File: gcj.info, Node: Reference types, Next: Interfaces, Prev: Primitive types, Up: About CNI --- 2417,2449 ---- type: *Java type* *C/C++ typename* *Description* ! 'char' 'jchar' 16 bit Unicode character ! 'boolean' 'jboolean' logical (true or false) values ! 'byte' 'jbyte' 8-bit signed integer ! 'short' 'jshort' 16 bit signed integer ! 'int' 'jint' 32 bit signed integer ! 'long' 'jlong' 64 bit signed integer ! 'float' 'jfloat' 32 bit IEEE floating point number ! 'double' 'jdouble' 64 bit IEEE floating point number ! 'void' 'void' no value When referring to a Java type You should always use these C++ ! typenames (e.g.: 'jint') to avoid disappointment. 11.3.1 Reference types associated with primitive types ------------------------------------------------------ In Java each primitive type has an associated reference type, e.g.: ! 'boolean' has an associated 'java.lang.Boolean.TYPE' class. In order to ! make working with such classes easier GCJ provides the macro ! 'JvPrimClass': -- macro: JvPrimClass type ! Return a pointer to the 'Class' object corresponding to the type supplied. JvPrimClass(void) => java.lang.Void.TYPE  File: gcj.info, Node: Reference types, Next: Interfaces, Prev: Primitive types, Up: About CNI *************** File: gcj.info, Node: Reference types, *** 2480,2501 **** A Java reference type is treated as a class in C++. Classes and interfaces are handled this way. A Java reference is translated to a ! C++ pointer, so for instance a Java `java.lang.String' becomes, in C++, ! `java::lang::String *'. CNI provides a few built-in typedefs for the most common classes: *Java type* *C++ typename* *Description* ! `java.lang.Object' `jobject' Object type ! `java.lang.String' `jstring' String type ! `java.lang.Class' `jclass' Class type ! ! Every Java class or interface has a corresponding `Class' instance. ! These can be accessed in CNI via the static `class$' field of a class. ! The `class$' field is of type `Class' (and not `Class *'), so you will ! typically take the address of it. ! Here is how you can refer to the class of `String', which in Java ! would be written `String.class': using namespace java::lang; doSomething (&String::class$); --- 2452,2473 ---- A Java reference type is treated as a class in C++. Classes and interfaces are handled this way. A Java reference is translated to a ! C++ pointer, so for instance a Java 'java.lang.String' becomes, in C++, ! 'java::lang::String *'. CNI provides a few built-in typedefs for the most common classes: *Java type* *C++ typename* *Description* ! 'java.lang.Object' 'jobject' Object type ! 'java.lang.String' 'jstring' String type ! 'java.lang.Class' 'jclass' Class type ! Every Java class or interface has a corresponding 'Class' instance. ! These can be accessed in CNI via the static 'class$' field of a class. ! The 'class$' field is of type 'Class' (and not 'Class *'), so you will ! typically take the address of it. ! ! Here is how you can refer to the class of 'String', which in Java ! would be written 'String.class': using namespace java::lang; doSomething (&String::class$); *************** File: gcj.info, Node: Interfaces, Next *** 2509,2522 **** A Java class can "implement" zero or more "interfaces", in addition to inheriting from a single base class. ! CNI allows CNI code to implement methods of interfaces. You can ! also call methods through interface references, with some limitations. ! CNI doesn't understand interface inheritance at all yet. So, you ! can only call an interface method when the declared type of the field ! being called matches the interface which declares that method. The ! workaround is to cast the interface reference to the right ! superinterface. For example if you have: --- 2481,2493 ---- A Java class can "implement" zero or more "interfaces", in addition to inheriting from a single base class. ! CNI allows CNI code to implement methods of interfaces. You can also ! call methods through interface references, with some limitations. ! CNI doesn't understand interface inheritance at all yet. So, you can ! only call an interface method when the declared type of the field being ! called matches the interface which declares that method. The workaround ! is to cast the interface reference to the right superinterface. For example if you have: *************** superinterface. *** 2530,2537 **** void b(); } ! and declare a variable of type `B' in C++, you can't call `a()' ! unless you cast it to an `A' first.  File: gcj.info, Node: Objects and Classes, Next: Class Initialization, Prev: Interfaces, Up: About CNI --- 2501,2508 ---- void b(); } ! and declare a variable of type 'B' in C++, you can't call 'a()' ! unless you cast it to an 'A' first.  File: gcj.info, Node: Objects and Classes, Next: Class Initialization, Prev: Interfaces, Up: About CNI *************** File: gcj.info, Node: Objects and Class *** 2542,2554 **** 11.6.1 Classes -------------- ! All Java classes are derived from `java.lang.Object'. C++ does not ! have a unique root class, but we use the C++ class `java::lang::Object' ! as the C++ version of the `java.lang.Object' Java class. All other ! Java classes are mapped into corresponding C++ classes derived from ! `java::lang::Object'. ! Interface inheritance (the `implements' keyword) is currently not reflected in the C++ mapping. 11.6.2 Object fields --- 2513,2525 ---- 11.6.1 Classes -------------- ! All Java classes are derived from 'java.lang.Object'. C++ does not have ! a unique root class, but we use the C++ class 'java::lang::Object' as ! the C++ version of the 'java.lang.Object' Java class. All other Java ! classes are mapped into corresponding C++ classes derived from ! 'java::lang::Object'. ! Interface inheritance (the 'implements' keyword) is currently not reflected in the C++ mapping. 11.6.2 Object fields *************** reflected in the C++ mapping. *** 2556,2573 **** Each object contains an object header, followed by the instance fields of the class, in order. The object header consists of a single pointer ! to a dispatch or virtual function table. (There may be extra fields ! _in front of_ the object, for example for memory management, but this ! is invisible to the application, and the reference to the object points ! to the dispatch table pointer.) The fields are laid out in the same order, alignment, and size as in ! C++. Specifically, 8-bit and 16-bit native types (`byte', `short', ! `char', and `boolean') are _not_ widened to 32 bits. Note that the ! Java VM does extend 8-bit and 16-bit types to 32 bits when on the VM ! stack or temporary registers. ! If you include the `gcjh'-generated header for a class, you can access fields of Java classes in the _natural_ way. For example, given the following Java class: --- 2527,2544 ---- Each object contains an object header, followed by the instance fields of the class, in order. The object header consists of a single pointer ! to a dispatch or virtual function table. (There may be extra fields _in ! front of_ the object, for example for memory management, but this is ! invisible to the application, and the reference to the object points to ! the dispatch table pointer.) The fields are laid out in the same order, alignment, and size as in ! C++. Specifically, 8-bit and 16-bit native types ('byte', 'short', ! 'char', and 'boolean') are _not_ widened to 32 bits. Note that the Java ! VM does extend 8-bit and 16-bit types to 32 bits when on the VM stack or ! temporary registers. ! If you include the 'gcjh'-generated header for a class, you can access fields of Java classes in the _natural_ way. For example, given the following Java class: *************** the following Java class: *** 2595,2603 **** ------------------------ CNI does not strictly enforce the Java access specifiers, because Java ! permissions cannot be directly mapped into C++ permission. Private ! Java fields and methods are mapped to private C++ fields and methods, ! but other fields and methods are mapped to public fields and methods.  File: gcj.info, Node: Class Initialization, Next: Object allocation, Prev: Objects and Classes, Up: About CNI --- 2566,2574 ---- ------------------------ CNI does not strictly enforce the Java access specifiers, because Java ! permissions cannot be directly mapped into C++ permission. Private Java ! fields and methods are mapped to private C++ fields and methods, but ! other fields and methods are mapped to public fields and methods.  File: gcj.info, Node: Class Initialization, Next: Object allocation, Prev: Objects and Classes, Up: About CNI *************** File: gcj.info, Node: Class Initializat *** 2606,2649 **** ========================= Java requires that each class be automatically initialized at the time ! of the first active use. Initializing a class involves initializing ! the static fields, running code in class initializer methods, and initializing base classes. There may also be some implementation ! specific actions, such as allocating `String' objects corresponding to string literals in the code. ! The GCJ compiler inserts calls to `JvInitClass' at appropriate ! places to ensure that a class is initialized when required. The C++ ! compiler does not insert these calls automatically--it is the ! programmer's responsibility to make sure classes are initialized. ! However, this is fairly painless because of the conventions assumed by ! the Java system. ! First, `libgcj' will make sure a class is initialized before an ! instance of that object is created. This is one of the ! responsibilities of the `new' operation. This is taken care of both in ! Java code, and in C++ code. When G++ sees a `new' of a Java class, it ! will call a routine in `libgcj' to allocate the object, and that ! routine will take care of initializing the class. Note however that ! this does not happen for Java arrays; you must allocate those using the ! appropriate CNI function. It follows that you can access an instance ! field, or call an instance (non-static) method and be safe in the ! knowledge that the class and all of its base classes have been ! initialized. Invoking a static method is also safe. This is because the Java compiler adds code to the start of a static method to make sure the ! class is initialized. However, the C++ compiler does not add this ! extra code. Hence, if you write a native static method using CNI, you ! are responsible for calling `JvInitClass' before doing anything else in ! the method (unless you are sure it is safe to leave it out). Accessing a static field also requires the class of the field to be ! initialized. The Java compiler will generate code to call ! `JvInitClass' before getting or setting the field. However, the C++ ! compiler will not generate this extra code, so it is your ! responsibility to make sure the class is initialized before you access ! a static field from C++.  File: gcj.info, Node: Object allocation, Next: Memory allocation, Prev: Class Initialization, Up: About CNI --- 2577,2617 ---- ========================= Java requires that each class be automatically initialized at the time ! of the first active use. Initializing a class involves initializing the ! static fields, running code in class initializer methods, and initializing base classes. There may also be some implementation ! specific actions, such as allocating 'String' objects corresponding to string literals in the code. ! The GCJ compiler inserts calls to 'JvInitClass' at appropriate places ! to ensure that a class is initialized when required. The C++ compiler ! does not insert these calls automatically--it is the programmer's ! responsibility to make sure classes are initialized. However, this is ! fairly painless because of the conventions assumed by the Java system. ! First, 'libgcj' will make sure a class is initialized before an ! instance of that object is created. This is one of the responsibilities ! of the 'new' operation. This is taken care of both in Java code, and in ! C++ code. When G++ sees a 'new' of a Java class, it will call a routine ! in 'libgcj' to allocate the object, and that routine will take care of ! initializing the class. Note however that this does not happen for Java ! arrays; you must allocate those using the appropriate CNI function. It ! follows that you can access an instance field, or call an instance ! (non-static) method and be safe in the knowledge that the class and all ! of its base classes have been initialized. Invoking a static method is also safe. This is because the Java compiler adds code to the start of a static method to make sure the ! class is initialized. However, the C++ compiler does not add this extra ! code. Hence, if you write a native static method using CNI, you are ! responsible for calling 'JvInitClass' before doing anything else in the ! method (unless you are sure it is safe to leave it out). Accessing a static field also requires the class of the field to be ! initialized. The Java compiler will generate code to call 'JvInitClass' ! before getting or setting the field. However, the C++ compiler will not ! generate this extra code, so it is your responsibility to make sure the ! class is initialized before you access a static field from C++.  File: gcj.info, Node: Object allocation, Next: Memory allocation, Prev: Class Initialization, Up: About CNI *************** expression", e.g.: *** 2660,2668 **** objects have to be explicitly deleted; in Java they are automatically deleted by the garbage collector. Using CNI, you can allocate a new Java object using standard C++ syntax and the C++ compiler will allocate ! memory from the garbage collector. If you have overloaded ! constructors, the compiler will choose the correct one using standard ! C++ overload resolution rules. For example: --- 2628,2636 ---- objects have to be explicitly deleted; in Java they are automatically deleted by the garbage collector. Using CNI, you can allocate a new Java object using standard C++ syntax and the C++ compiler will allocate ! memory from the garbage collector. If you have overloaded constructors, ! the compiler will choose the correct one using standard C++ overload ! resolution rules. For example: *************** File: gcj.info, Node: Memory allocation *** 2674,2690 **** 11.9 Memory allocation ====================== ! When allocating memory in CNI methods it is best to handle ! out-of-memory conditions by throwing a Java exception. These functions ! are provided for that purpose: -- Function: void* JvMalloc (jsize SIZE) ! Calls malloc. Throws `java.lang.OutOfMemoryError' if allocation fails. -- Function: void* JvRealloc (void* PTR, jsize SIZE) ! Calls realloc. Throws `java.lang.OutOfMemoryError' if ! reallocation fails. -- Function: void JvFree (void* PTR) Calls free. --- 2642,2658 ---- 11.9 Memory allocation ====================== ! When allocating memory in CNI methods it is best to handle out-of-memory ! conditions by throwing a Java exception. These functions are provided ! for that purpose: -- Function: void* JvMalloc (jsize SIZE) ! Calls malloc. Throws 'java.lang.OutOfMemoryError' if allocation fails. -- Function: void* JvRealloc (void* PTR, jsize SIZE) ! Calls realloc. Throws 'java.lang.OutOfMemoryError' if reallocation ! fails. -- Function: void JvFree (void* PTR) Calls free. *************** While in many ways Java is similar to C *** 2699,2708 **** in its treatment of arrays. C arrays are based on the idea of pointer arithmetic, which would be incompatible with Java's security requirements. Java arrays are true objects (array types inherit from ! `java.lang.Object'). An array-valued variable is one that contains a reference (pointer) to an array object. ! Referencing a Java array in C++ code is done using the `JArray' template, which as defined as follows: class __JArray : public java::lang::Object --- 2667,2676 ---- in its treatment of arrays. C arrays are based on the idea of pointer arithmetic, which would be incompatible with Java's security requirements. Java arrays are true objects (array types inherit from ! 'java.lang.Object'). An array-valued variable is one that contains a reference (pointer) to an array object. ! Referencing a Java array in C++ code is done using the 'JArray' template, which as defined as follows: class __JArray : public java::lang::Object *************** template, which as defined as follows: *** 2719,2725 **** T& operator[](jint i) { return data[i]; } }; ! There are a number of `typedef's which correspond to `typedef's from the JNI. Each is the type of an array holding objects of the relevant type: --- 2687,2693 ---- T& operator[](jint i) { return data[i]; } }; ! There are a number of 'typedef's which correspond to 'typedef's from the JNI. Each is the type of an array holding objects of the relevant type: *************** type: *** 2735,2753 **** typedef JArray *jdoubleArray; -- Method on template: T* elements (JArray ARRAY) ! This template function can be used to get a pointer to the ! elements of the `array'. For instance, you can fetch a pointer to ! the integers that make up an `int[]' like so: extern jintArray foo; jint *intp = elements (foo); The name of this function may change in the future. ! -- Function: jobjectArray JvNewObjectArray (jsize LENGTH, jclass ! KLASS, jobject INIT) This creates a new array whose elements have reference type. ! `klass' is the type of elements of the array and `init' is the initial value put into every slot in the array. using namespace java::lang; --- 2703,2721 ---- typedef JArray *jdoubleArray; -- Method on template: T* elements (JArray ARRAY) ! This template function can be used to get a pointer to the elements ! of the 'array'. For instance, you can fetch a pointer to the ! integers that make up an 'int[]' like so: extern jintArray foo; jint *intp = elements (foo); The name of this function may change in the future. ! -- Function: jobjectArray JvNewObjectArray (jsize LENGTH, jclass KLASS, ! jobject INIT) This creates a new array whose elements have reference type. ! 'klass' is the type of elements of the array and 'init' is the initial value put into every slot in the array. using namespace java::lang; *************** File: gcj.info, Node: Methods, Next: S *** 2784,2793 **** ============= Java methods are mapped directly into C++ methods. The header files ! generated by `gcjh' include the appropriate method definitions. ! Basically, the generated methods have the same names and ! _corresponding_ types as the Java methods, and are called in the ! natural manner. 11.11.1 Overloading ------------------- --- 2752,2760 ---- ============= Java methods are mapped directly into C++ methods. The header files ! generated by 'gcjh' include the appropriate method definitions. ! Basically, the generated methods have the same names and _corresponding_ ! types as the Java methods, and are called in the natural manner. 11.11.1 Overloading ------------------- *************** Both Java and C++ provide method overloa *** 2796,2807 **** a class have the same name, and the correct one is chosen (at compile time) depending on the argument types. The rules for choosing the correct method are (as expected) more complicated in C++ than in Java, ! but given a set of overloaded methods generated by `gcjh' the C++ compiler will choose the expected one. Common assemblers and linkers are not aware of C++ overloading, so ! the standard implementation strategy is to encode the parameter types ! of a method into its assembly-level name. This encoding is called "mangling", and the encoded name is the "mangled name". The same mechanism is used to implement Java overloading. For C++/Java interoperability, it is important that both the Java and C++ compilers --- 2763,2774 ---- a class have the same name, and the correct one is chosen (at compile time) depending on the argument types. The rules for choosing the correct method are (as expected) more complicated in C++ than in Java, ! but given a set of overloaded methods generated by 'gcjh' the C++ compiler will choose the expected one. Common assemblers and linkers are not aware of C++ overloading, so ! the standard implementation strategy is to encode the parameter types of ! a method into its assembly-level name. This encoding is called "mangling", and the encoded name is the "mangled name". The same mechanism is used to implement Java overloading. For C++/Java interoperability, it is important that both the Java and C++ compilers *************** use the _same_ encoding scheme. *** 2811,2817 **** ---------------------- Static Java methods are invoked in CNI using the standard C++ syntax, ! using the `::' operator rather than the `.' operator. For example: --- 2778,2784 ---- ---------------------- Static Java methods are invoked in CNI using the standard C++ syntax, ! using the '::' operator rather than the '.' operator. For example: *************** For example: *** 2831,2845 **** --------------------------- Constructors are called implicitly as part of object allocation using ! the `new' operator. For example: java::lang::Integer *x = new java::lang::Integer(234); Java does not allow a constructor to be a native method. This ! limitation can be coded round however because a constructor can _call_ ! a native method. 11.11.4 Instance methods ------------------------ --- 2798,2812 ---- --------------------------- Constructors are called implicitly as part of object allocation using ! the 'new' operator. For example: java::lang::Integer *x = new java::lang::Integer(234); Java does not allow a constructor to be a native method. This ! limitation can be coded round however because a constructor can _call_ a ! native method. 11.11.4 Instance methods ------------------------ *************** File: gcj.info, Node: Strings, Next: M *** 2877,2911 **** ============= CNI provides a number of utility functions for working with Java Java ! `String' objects. The names and interfaces are analogous to those of JNI. -- Function: jstring JvNewString (const jchar* CHARS, jsize LEN) ! Returns a Java `String' object with characters from the array of Unicode characters CHARS up to the index LEN in that array. -- Function: jstring JvNewStringLatin1 (const char* BYTES, jsize LEN) ! Returns a Java `String' made up of LEN bytes from BYTES. -- Function: jstring JvNewStringLatin1 (const char* BYTES) ! As above but the length of the `String' is `strlen(BYTES)'. -- Function: jstring JvNewStringUTF (const char* BYTES) ! Returns a `String' which is made up of the UTF encoded characters present in the C string BYTES. -- Function: jchar* JvGetStringChars (jstring STR) ! Returns a pointer to an array of characters making up the `String' STR. -- Function: int JvGetStringUTFLength (jstring STR) Returns the number of bytes required to encode the contents of the ! `String' STR in UTF-8. -- Function: jsize JvGetStringUTFRegion (jstring STR, jsize START, jsize LEN, char* BUF) ! Puts the UTF-8 encoding of a region of the `String' STR into the ! buffer `buf'. The region to fetch is marked by START and LEN. Note that BUF is a buffer, not a C string. It is _not_ null terminated. --- 2844,2878 ---- ============= CNI provides a number of utility functions for working with Java Java ! 'String' objects. The names and interfaces are analogous to those of JNI. -- Function: jstring JvNewString (const jchar* CHARS, jsize LEN) ! Returns a Java 'String' object with characters from the array of Unicode characters CHARS up to the index LEN in that array. -- Function: jstring JvNewStringLatin1 (const char* BYTES, jsize LEN) ! Returns a Java 'String' made up of LEN bytes from BYTES. -- Function: jstring JvNewStringLatin1 (const char* BYTES) ! As above but the length of the 'String' is 'strlen(BYTES)'. -- Function: jstring JvNewStringUTF (const char* BYTES) ! Returns a 'String' which is made up of the UTF encoded characters present in the C string BYTES. -- Function: jchar* JvGetStringChars (jstring STR) ! Returns a pointer to an array of characters making up the 'String' STR. -- Function: int JvGetStringUTFLength (jstring STR) Returns the number of bytes required to encode the contents of the ! 'String' STR in UTF-8. -- Function: jsize JvGetStringUTFRegion (jstring STR, jsize START, jsize LEN, char* BUF) ! Puts the UTF-8 encoding of a region of the 'String' STR into the ! buffer 'buf'. The region to fetch is marked by START and LEN. Note that BUF is a buffer, not a C string. It is _not_ null terminated. *************** None of the following is possible with C *** 2938,2944 **** . . . ! } // `uint' is not a valid Java type, neither is `char*' Of course, it is ok to use C/C++ types within the scope of a method: --- 2905,2911 ---- . . . ! } // 'uint' is not a valid Java type, neither is 'char*' Of course, it is ok to use C/C++ types within the scope of a method: *************** Of course, it is ok to use C/C++ types w *** 2955,2962 **** --------------- The above restriction can be problematic, so CNI includes the ! `gnu.gcj.RawData' class. The `RawData' class is a "non-scanned ! reference" type. In other words variables declared of type `RawData' can contain any data and are not checked by the compiler or memory manager in any way. --- 2922,2929 ---- --------------- The above restriction can be problematic, so CNI includes the ! 'gnu.gcj.RawData' class. The 'RawData' class is a "non-scanned ! reference" type. In other words variables declared of type 'RawData' can contain any data and are not checked by the compiler or memory manager in any way. *************** Here are some examples: *** 2996,3008 **** 11.13.2 RawDataManaged ---------------------- ! `gnu.gcj.RawDataManaged' is another type used to indicate special data ! used by native code. Unlike the `RawData' type, fields declared as ! `RawDataManaged' will be "marked" by the memory manager and considered for garbage collection. ! Native data which is allocated using CNI's `JvAllocBytes()' function ! and stored in a `RawDataManaged' will be automatically freed when the Java object it is associated with becomes unreachable. 11.13.3 Native memory allocation --- 2963,2975 ---- 11.13.2 RawDataManaged ---------------------- ! 'gnu.gcj.RawDataManaged' is another type used to indicate special data ! used by native code. Unlike the 'RawData' type, fields declared as ! 'RawDataManaged' will be "marked" by the memory manager and considered for garbage collection. ! Native data which is allocated using CNI's 'JvAllocBytes()' function ! and stored in a 'RawDataManaged' will be automatically freed when the Java object it is associated with becomes unreachable. 11.13.3 Native memory allocation *************** Java object it is associated with become *** 3014,3035 **** but will be freed if no references to it are discovered. This function can be useful if you need to associate some native ! data with a Java object. Using a CNI's special `RawDataManaged' ! type, native data allocated with `JvAllocBytes' will be automatically freed when the Java object itself becomes unreachable. 11.13.4 Posix signals --------------------- ! On Posix based systems the `libgcj' library uses several signals internally. CNI code should not attempt to use the same signals as ! doing so may cause `libgcj' and/or the CNI code to fail. ! SIGSEGV is used on many systems to generate `NullPointerExceptions'. ! SIGCHLD is used internally by `Runtime.exec()'. Several other signals (that vary from platform to platform) can be used by the memory manager ! and by `Thread.interrupt()'.  File: gcj.info, Node: Exception Handling, Next: Synchronization, Prev: Mixing with C++, Up: About CNI --- 2981,3002 ---- but will be freed if no references to it are discovered. This function can be useful if you need to associate some native ! data with a Java object. Using a CNI's special 'RawDataManaged' ! type, native data allocated with 'JvAllocBytes' will be automatically freed when the Java object itself becomes unreachable. 11.13.4 Posix signals --------------------- ! On Posix based systems the 'libgcj' library uses several signals internally. CNI code should not attempt to use the same signals as ! doing so may cause 'libgcj' and/or the CNI code to fail. ! SIGSEGV is used on many systems to generate 'NullPointerExceptions'. ! SIGCHLD is used internally by 'Runtime.exec()'. Several other signals (that vary from platform to platform) can be used by the memory manager ! and by 'Thread.interrupt()'.  File: gcj.info, Node: Exception Handling, Next: Synchronization, Prev: Mixing with C++, Up: About CNI *************** are not yet perfectly integrated. The m *** 3042,3061 **** type information facilities of the two languages are not integrated. Still, things work fairly well. You can throw a Java exception from ! C++ using the ordinary `throw' construct, and this exception can be caught by Java code. Similarly, you can catch an exception thrown from ! Java using the C++ `catch' construct. Here is an example: if (i >= count) throw new java::lang::IndexOutOfBoundsException(); ! Normally, G++ will automatically detect when you are writing C++ ! code that uses Java exceptions, and handle them appropriately. ! However, if C++ code only needs to execute destructors when Java ! exceptions are thrown through it, GCC will guess incorrectly. Sample ! problematic code: struct S { ~S(); }; --- 3009,3027 ---- type information facilities of the two languages are not integrated. Still, things work fairly well. You can throw a Java exception from ! C++ using the ordinary 'throw' construct, and this exception can be caught by Java code. Similarly, you can catch an exception thrown from ! Java using the C++ 'catch' construct. Here is an example: if (i >= count) throw new java::lang::IndexOutOfBoundsException(); ! Normally, G++ will automatically detect when you are writing C++ code ! that uses Java exceptions, and handle them appropriately. However, if ! C++ code only needs to execute destructors when Java exceptions are ! thrown through it, GCC will guess incorrectly. Sample problematic code: struct S { ~S(); }; *************** problematic code: *** 3067,3078 **** bar(); } ! The usual effect of an incorrect guess is a link failure, ! complaining of a missing routine called `__gxx_personality_v0'. You can inform the compiler that Java exceptions are to be used in a translation unit, irrespective of what it might think, by writing ! `#pragma GCC java_exceptions' at the head of the file. This `#pragma' must appear before any functions that throw or catch exceptions, or run destructors when exceptions are thrown through them. --- 3033,3044 ---- bar(); } ! The usual effect of an incorrect guess is a link failure, complaining ! of a missing routine called '__gxx_personality_v0'. You can inform the compiler that Java exceptions are to be used in a translation unit, irrespective of what it might think, by writing ! '#pragma GCC java_exceptions' at the head of the file. This '#pragma' must appear before any functions that throw or catch exceptions, or run destructors when exceptions are thrown through them. *************** File: gcj.info, Node: Synchronization, *** 3083,3101 **** ===================== Each Java object has an implicit monitor. The Java VM uses the ! instruction `monitorenter' to acquire and lock a monitor, and ! `monitorexit' to release it. ! The corresponding CNI macros are `JvMonitorEnter' and ! `JvMonitorExit' (JNI has similar methods `MonitorEnter' and ! `MonitorExit'). The Java source language does not provide direct access to these ! primitives. Instead, there is a `synchronized' statement that does an ! implicit `monitorenter' before entry to the block, and does a ! `monitorexit' on exit from the block. Note that the lock has to be released even when the block is abnormally terminated by an exception, ! which means there is an implicit `try finally' surrounding synchronization locks. From C++, it makes sense to use a destructor to release a lock. CNI --- 3049,3066 ---- ===================== Each Java object has an implicit monitor. The Java VM uses the ! instruction 'monitorenter' to acquire and lock a monitor, and ! 'monitorexit' to release it. ! The corresponding CNI macros are 'JvMonitorEnter' and 'JvMonitorExit' ! (JNI has similar methods 'MonitorEnter' and 'MonitorExit'). The Java source language does not provide direct access to these ! primitives. Instead, there is a 'synchronized' statement that does an ! implicit 'monitorenter' before entry to the block, and does a ! 'monitorexit' on exit from the block. Note that the lock has to be released even when the block is abnormally terminated by an exception, ! which means there is an implicit 'try finally' surrounding synchronization locks. From C++, it makes sense to use a destructor to release a lock. CNI *************** might become this C++ code: *** 3121,3136 **** CODE; } ! Java also has methods with the `synchronized' attribute. This is ! equivalent to wrapping the entire method body in a `synchronized' statement. (Alternatively, an implementation could require the caller to do the synchronization. This is not practical for a compiler, because each virtual method call would have to test at run-time if ! synchronization is needed.) Since in `gcj' the `synchronized' ! attribute is handled by the method implementation, it is up to the ! programmer of a synchronized native method to handle the synchronization ! (in the C++ implementation of the method). In other words, you need to ! manually add `JvSynchronize' in a `native synchronized' method.  File: gcj.info, Node: Invocation, Next: Reflection, Prev: Synchronization, Up: About CNI --- 3086,3101 ---- CODE; } ! Java also has methods with the 'synchronized' attribute. This is ! equivalent to wrapping the entire method body in a 'synchronized' statement. (Alternatively, an implementation could require the caller to do the synchronization. This is not practical for a compiler, because each virtual method call would have to test at run-time if ! synchronization is needed.) Since in 'gcj' the 'synchronized' attribute ! is handled by the method implementation, it is up to the programmer of a ! synchronized native method to handle the synchronization (in the C++ ! implementation of the method). In other words, you need to manually add ! 'JvSynchronize' in a 'native synchronized' method.  File: gcj.info, Node: Invocation, Next: Reflection, Prev: Synchronization, Up: About CNI *************** File: gcj.info, Node: Invocation, Next *** 3139,3160 **** ================ CNI permits C++ applications to make calls into Java classes, in ! addition to allowing Java code to call into C++. Several functions, known as the "invocation API", are provided to support this. -- Function: jint JvCreateJavaVM (JvVMInitArgs* VM_ARGS) ! Initializes the Java runtime. This function performs essential initialization of the threads interface, garbage collector, ! exception handling and other key aspects of the runtime. It must ! be called once by an application with a non-Java `main()' ! function, before any other Java or CNI calls are made. It is ! safe, but not recommended, to call `JvCreateJavaVM()' more than ! once provided it is only called from a single thread. The VMARGS ! parameter can be used to specify initialization parameters for the ! Java runtime. It may be `NULL'. JvVMInitArgs represents a list of virtual machine initialization ! arguments. `JvCreateJavaVM()' ignores the version field. typedef struct JvVMOption { --- 3104,3126 ---- ================ CNI permits C++ applications to make calls into Java classes, in ! addition to allowing Java code to call into C++. Several functions, known as the "invocation API", are provided to support this. -- Function: jint JvCreateJavaVM (JvVMInitArgs* VM_ARGS) ! ! Initializes the Java runtime. This function performs essential initialization of the threads interface, garbage collector, ! exception handling and other key aspects of the runtime. It must ! be called once by an application with a non-Java 'main()' function, ! before any other Java or CNI calls are made. It is safe, but not ! recommended, to call 'JvCreateJavaVM()' more than once provided it ! is only called from a single thread. The VMARGS parameter can be ! used to specify initialization parameters for the Java runtime. It ! may be 'NULL'. JvVMInitArgs represents a list of virtual machine initialization ! arguments. 'JvCreateJavaVM()' ignores the version field. typedef struct JvVMOption { *************** known as the "invocation API", are provi *** 3179,3218 **** jboolean ignoreUnrecognized; } JvVMInitArgs; ! `JvCreateJavaVM()' returns `0' upon success, or `-1' if the ! runtime is already initialized. ! _Note:_ In GCJ 3.1, the `vm_args' parameter is ignored. It is recognized and used as of release 4.0. -- Function: java::lang::Thread* JvAttachCurrentThread (jstring NAME, java::lang::ThreadGroup* GROUP) Registers an existing thread with the Java runtime. This must be called once from each thread, before that thread makes any other ! Java or CNI calls. It must be called after `JvCreateJavaVM'. NAME ! specifies a name for the thread. It may be `NULL', in which case a name will be generated. GROUP is the ThreadGroup in which this ! thread will be a member. If it is `NULL', the thread will be a member of the main thread group. The return value is the Java ! `Thread' object that represents the thread. It is safe to call ! `JvAttachCurrentThread()' more than once from the same thread. If the thread is already attached, the call is ignored and the current thread object is returned. -- Function: jint JvDetachCurrentThread () ! Unregisters a thread from the Java runtime. This should be called ! by threads that were attached using `JvAttachCurrentThread()', ! after they have finished making calls to Java code. This ensures that any resources associated with the thread become eligible for ! garbage collection. This function returns `0' upon success, or ! `-1' if the current thread is not attached. 11.16.1 Handling uncaught exceptions ------------------------------------ If an exception is thrown from Java code called using the invocation API, and no handler for the exception can be found, the runtime will ! abort the application. In order to make the application more robust, it is recommended that code which uses the invocation API be wrapped by a top-level try/catch block that catches all Java exceptions. --- 3145,3184 ---- jboolean ignoreUnrecognized; } JvVMInitArgs; ! 'JvCreateJavaVM()' returns '0' upon success, or '-1' if the runtime ! is already initialized. ! _Note:_ In GCJ 3.1, the 'vm_args' parameter is ignored. It is recognized and used as of release 4.0. -- Function: java::lang::Thread* JvAttachCurrentThread (jstring NAME, java::lang::ThreadGroup* GROUP) Registers an existing thread with the Java runtime. This must be called once from each thread, before that thread makes any other ! Java or CNI calls. It must be called after 'JvCreateJavaVM'. NAME ! specifies a name for the thread. It may be 'NULL', in which case a name will be generated. GROUP is the ThreadGroup in which this ! thread will be a member. If it is 'NULL', the thread will be a member of the main thread group. The return value is the Java ! 'Thread' object that represents the thread. It is safe to call ! 'JvAttachCurrentThread()' more than once from the same thread. If the thread is already attached, the call is ignored and the current thread object is returned. -- Function: jint JvDetachCurrentThread () ! Unregisters a thread from the Java runtime. This should be called ! by threads that were attached using 'JvAttachCurrentThread()', ! after they have finished making calls to Java code. This ensures that any resources associated with the thread become eligible for ! garbage collection. This function returns '0' upon success, or ! '-1' if the current thread is not attached. 11.16.1 Handling uncaught exceptions ------------------------------------ If an exception is thrown from Java code called using the invocation API, and no handler for the exception can be found, the runtime will ! abort the application. In order to make the application more robust, it is recommended that code which uses the invocation API be wrapped by a top-level try/catch block that catches all Java exceptions. *************** top-level try/catch block that catches a *** 3221,3233 **** The following code demonstrates the use of the invocation API. In this example, the C++ application initializes the Java runtime and attaches ! itself. The `java.lang.System' class is initialized in order to access ! its `out' field, and a Java string is printed. Finally, the thread is detached from the runtime once it has finished making Java calls. Everything is wrapped with a try/catch block to provide a default handler for any uncaught exceptions. ! The example can be compiled with `c++ -c test.cc; gcj test.o'. // test.cc #include --- 3187,3199 ---- The following code demonstrates the use of the invocation API. In this example, the C++ application initializes the Java runtime and attaches ! itself. The 'java.lang.System' class is initialized in order to access ! its 'out' field, and a Java string is printed. Finally, the thread is detached from the runtime once it has finished making Java calls. Everything is wrapped with a try/catch block to provide a default handler for any uncaught exceptions. ! The example can be compiled with 'c++ -c test.cc; gcj test.o'. // test.cc #include *************** File: gcj.info, Node: Reflection, Prev *** 3266,3282 **** Reflection is possible with CNI code, it functions similarly to how it functions with JNI. ! The types `jfieldID' and `jmethodID' are as in JNI. The functions: ! * `JvFromReflectedField', ! ! * `JvFromReflectedMethod', ! ! * `JvToReflectedField' ! ! * `JvToFromReflectedMethod' will be added shortly, as will other functions corresponding to JNI. --- 3232,3245 ---- Reflection is possible with CNI code, it functions similarly to how it functions with JNI. ! The types 'jfieldID' and 'jmethodID' are as in JNI. The functions: ! * 'JvFromReflectedField', ! * 'JvFromReflectedMethod', ! * 'JvToReflectedField' ! * 'JvToFromReflectedMethod' will be added shortly, as will other functions corresponding to JNI. *************** File: gcj.info, Node: System properties *** 3286,3305 **** 12 System properties ******************** ! The runtime behavior of the `libgcj' library can be modified by setting certain system properties. These properties can be compiled into the ! program using the `-DNAME[=VALUE]' option to `gcj' or by setting them explicitly in the program by calling the ! `java.lang.System.setProperty()' method. Some system properties are only used for informational purposes (like giving a version number or a user name). A program can inspect the current value of a property by ! calling the `java.lang.System.getProperty()' method. * Menu: ! * Standard Properties:: Standard properties supported by `libgcj' * GNU Classpath Properties:: Properties found in Classpath based libraries ! * libgcj Runtime Properties:: Properties specific to `libgcj'  File: gcj.info, Node: Standard Properties, Next: GNU Classpath Properties, Up: System properties --- 3249,3268 ---- 12 System properties ******************** ! The runtime behavior of the 'libgcj' library can be modified by setting certain system properties. These properties can be compiled into the ! program using the '-DNAME[=VALUE]' option to 'gcj' or by setting them explicitly in the program by calling the ! 'java.lang.System.setProperty()' method. Some system properties are only used for informational purposes (like giving a version number or a user name). A program can inspect the current value of a property by ! calling the 'java.lang.System.getProperty()' method. * Menu: ! * Standard Properties:: Standard properties supported by 'libgcj' * GNU Classpath Properties:: Properties found in Classpath based libraries ! * libgcj Runtime Properties:: Properties specific to 'libgcj'  File: gcj.info, Node: Standard Properties, Next: GNU Classpath Properties, Up: System properties *************** File: gcj.info, Node: Standard Properti *** 3310,3487 **** The following properties are normally found in all implementations of the core libraries for the Java language. ! `java.version' ! The `libgcj' version number. ! `java.vendor' ! Set to `The Free Software Foundation, Inc.' ! `java.vendor.url' ! Set to `http://gcc.gnu.org/java/'. ! `java.home' ! The directory where `gcj' was installed. Taken from the `--prefix' ! option given to `configure'. ! `java.class.version' The class format version number supported by the libgcj byte code ! interpreter. (Currently `46.0') ! `java.vm.specification.version' ! The Virtual Machine Specification version implemented by `libgcj'. ! (Currently `1.0') ! `java.vm.specification.vendor' The name of the Virtual Machine specification designer. ! `java.vm.specification.name' ! The name of the Virtual Machine specification (Set to `Java ! Virtual Machine Specification'). ! `java.vm.version' ! The `gcj' version number. ! `java.vm.vendor' ! Set to `The Free Software Foundation, Inc.' ! `java.vm.name' ! Set to `GNU libgcj'. ! `java.specification.version' The Runtime Environment specification version implemented by ! `libgcj'. (Currently set to `1.3') ! `java.specification.vendor' The Runtime Environment specification designer. ! `java.specification.name' ! The name of the Runtime Environment specification (Set to `Java Platform API Specification'). ! `java.class.path' The paths (jar files, zip files and directories) used for finding class files. ! `java.library.path' Directory path used for finding native libraries. ! `java.io.tmpdir' The directory used to put temporary files in. ! `java.compiler' Name of the Just In Time compiler to use by the byte code ! interpreter. Currently not used in `libgcj'. ! `java.ext.dirs' Directories containing jar files with extra libraries. Will be used when resolving classes. ! `java.protocol.handler.pkgs' ! A `|' separated list of package names that is used to find classes ! that implement handlers for `java.net.URL'. ! `java.rmi.server.codebase' ! A list of URLs that is used by the `java.rmi.server.RMIClassLoader' to load classes from. ! `jdbc.drivers' A list of class names that will be loaded by the ! `java.sql.DriverManager' when it starts up. ! `file.separator' The separator used in when directories are included in a filename ! (normally `/' or `\' ). ! `file.encoding' ! The default character encoding used when converting platform ! native files to Unicode (usually set to `8859_1'). ! `path.separator' The standard separator used when a string contains multiple paths ! (normally `:' or `;'), the string is usually not a valid character to use in normal directory names.) ! `line.separator' ! The default line separator used on the platform (normally `\n', ! `\r' or a combination of those two characters). ! `policy.provider' The class name used for the default policy provider returned by ! `java.security.Policy.getPolicy'. ! `user.name' The name of the user running the program. Can be the full name, the login name or empty if unknown. ! `user.home' The default directory to put user specific files in. ! `user.dir' The current working directory from which the program was started. ! `user.language' ! The default language as used by the `java.util.Locale' class. ! `user.region' ! The default region as used by the `java.util.Local' class. ! `user.variant' The default variant of the language and region local used. ! `user.timezone' ! The default timezone as used by the `java.util.TimeZone' class. ! `os.name' The operating system/kernel name that the program runs on. ! `os.arch' The hardware that we are running on. ! `os.version' The version number of the operating system/kernel. ! `awt.appletWarning' The string to display when an untrusted applet is displayed. ! Returned by `java.awt.Window.getWarningString()' when the window is "insecure". ! `awt.toolkit' The class name used for initializing the default ! `java.awt.Toolkit'. Defaults to `gnu.awt.gtk.GtkToolkit'. ! `http.proxyHost' Name of proxy host for http connections. ! `http.proxyPort' Port number to use when a proxy host is in use. -  File: gcj.info, Node: GNU Classpath Properties, Next: libgcj Runtime Properties, Prev: Standard Properties, Up: System properties 12.2 GNU Classpath Properties ============================= ! `libgcj' is based on the GNU Classpath (Essential Libraries for Java) a GNU project to create free core class libraries for use with virtual machines and compilers for the Java language. The following properties are common to libraries based on GNU Classpath. ! `gcj.dumpobject' Enables printing serialization debugging by the ! `java.io.ObjectInput' and `java.io.ObjectOutput' classes when set to something else then the empty string. Only used when running a debug build of the library. ! `gnu.classpath.vm.shortname' ! This is a succinct name of the virtual machine. For `libgcj', ! this will always be `libgcj'. ! `gnu.classpath.home.url' A base URL used for finding system property files (e.g., ! `classpath.security'). By default this is a `file:' URL pointing ! to the `lib' directory under `java.home'. !  File: gcj.info, Node: libgcj Runtime Properties, Prev: GNU Classpath Properties, Up: System properties --- 3273,3448 ---- The following properties are normally found in all implementations of the core libraries for the Java language. ! 'java.version' ! The 'libgcj' version number. ! 'java.vendor' ! Set to 'The Free Software Foundation, Inc.' ! 'java.vendor.url' ! Set to . ! 'java.home' ! The directory where 'gcj' was installed. Taken from the '--prefix' ! option given to 'configure'. ! 'java.class.version' The class format version number supported by the libgcj byte code ! interpreter. (Currently '46.0') ! 'java.vm.specification.version' ! The Virtual Machine Specification version implemented by 'libgcj'. ! (Currently '1.0') ! 'java.vm.specification.vendor' The name of the Virtual Machine specification designer. ! 'java.vm.specification.name' ! The name of the Virtual Machine specification (Set to 'Java Virtual ! Machine Specification'). ! 'java.vm.version' ! The 'gcj' version number. ! 'java.vm.vendor' ! Set to 'The Free Software Foundation, Inc.' ! 'java.vm.name' ! Set to 'GNU libgcj'. ! 'java.specification.version' The Runtime Environment specification version implemented by ! 'libgcj'. (Currently set to '1.3') ! 'java.specification.vendor' The Runtime Environment specification designer. ! 'java.specification.name' ! The name of the Runtime Environment specification (Set to 'Java Platform API Specification'). ! 'java.class.path' The paths (jar files, zip files and directories) used for finding class files. ! 'java.library.path' Directory path used for finding native libraries. ! 'java.io.tmpdir' The directory used to put temporary files in. ! 'java.compiler' Name of the Just In Time compiler to use by the byte code ! interpreter. Currently not used in 'libgcj'. ! 'java.ext.dirs' Directories containing jar files with extra libraries. Will be used when resolving classes. ! 'java.protocol.handler.pkgs' ! A '|' separated list of package names that is used to find classes ! that implement handlers for 'java.net.URL'. ! 'java.rmi.server.codebase' ! A list of URLs that is used by the 'java.rmi.server.RMIClassLoader' to load classes from. ! 'jdbc.drivers' A list of class names that will be loaded by the ! 'java.sql.DriverManager' when it starts up. ! 'file.separator' The separator used in when directories are included in a filename ! (normally '/' or '\' ). ! 'file.encoding' ! The default character encoding used when converting platform native ! files to Unicode (usually set to '8859_1'). ! 'path.separator' The standard separator used when a string contains multiple paths ! (normally ':' or ';'), the string is usually not a valid character to use in normal directory names.) ! 'line.separator' ! The default line separator used on the platform (normally '\n', ! '\r' or a combination of those two characters). ! 'policy.provider' The class name used for the default policy provider returned by ! 'java.security.Policy.getPolicy'. ! 'user.name' The name of the user running the program. Can be the full name, the login name or empty if unknown. ! 'user.home' The default directory to put user specific files in. ! 'user.dir' The current working directory from which the program was started. ! 'user.language' ! The default language as used by the 'java.util.Locale' class. ! 'user.region' ! The default region as used by the 'java.util.Local' class. ! 'user.variant' The default variant of the language and region local used. ! 'user.timezone' ! The default timezone as used by the 'java.util.TimeZone' class. ! 'os.name' The operating system/kernel name that the program runs on. ! 'os.arch' The hardware that we are running on. ! 'os.version' The version number of the operating system/kernel. ! 'awt.appletWarning' The string to display when an untrusted applet is displayed. ! Returned by 'java.awt.Window.getWarningString()' when the window is "insecure". ! 'awt.toolkit' The class name used for initializing the default ! 'java.awt.Toolkit'. Defaults to 'gnu.awt.gtk.GtkToolkit'. ! 'http.proxyHost' Name of proxy host for http connections. ! 'http.proxyPort' Port number to use when a proxy host is in use.  File: gcj.info, Node: GNU Classpath Properties, Next: libgcj Runtime Properties, Prev: Standard Properties, Up: System properties 12.2 GNU Classpath Properties ============================= ! 'libgcj' is based on the GNU Classpath (Essential Libraries for Java) a GNU project to create free core class libraries for use with virtual machines and compilers for the Java language. The following properties are common to libraries based on GNU Classpath. ! 'gcj.dumpobject' Enables printing serialization debugging by the ! 'java.io.ObjectInput' and 'java.io.ObjectOutput' classes when set to something else then the empty string. Only used when running a debug build of the library. ! 'gnu.classpath.vm.shortname' ! This is a succinct name of the virtual machine. For 'libgcj', this ! will always be 'libgcj'. ! 'gnu.classpath.home.url' A base URL used for finding system property files (e.g., ! 'classpath.security'). By default this is a 'file:' URL pointing ! to the 'lib' directory under 'java.home'.  File: gcj.info, Node: libgcj Runtime Properties, Prev: GNU Classpath Properties, Up: System properties *************** File: gcj.info, Node: libgcj Runtime Pr *** 3489,3585 **** 12.3 libgcj Runtime Properties ============================== ! The following properties are specific to the `libgcj' runtime and will normally not be found in other core libraries for the java language. ! `java.fullversion' ! The combination of `java.vm.name' and `java.vm.version'. ! `java.vm.info' ! Same as `java.fullversion'. ! `impl.prefix' ! Used by the `java.net.DatagramSocket' class when set to something else then the empty string. When set all newly created ! `DatagramSocket's will try to load a class ! `java.net.[impl.prefix]DatagramSocketImpl' instead of the normal ! `java.net.PlainDatagramSocketImpl'. ! `gnu.gcj.progname' ! The class or binary name that was used to invoke the program. This ! will be the name of the "main" class in the case where the `gij' front end is used, or the program binary name in the case where an application is compiled to a native binary. ! `gnu.gcj.user.realname' The real name of the user, as taken from the password file. This may not always hold only the user's name (as some sites put extra information in this field). Also, this property is not available on all platforms. ! `gnu.gcj.runtime.NameFinder.use_addr2line' ! Whether an external process, `addr2line', should be used to ! determine line number information when tracing the stack. Setting ! this to `false' may suppress line numbers when printing stack traces and when using the java.util.logging infrastructure. However, performance may improve significantly for applications that print stack traces or make logging calls frequently. ! `gnu.gcj.runtime.NameFinder.show_raw' Whether the address of a stack frame should be printed when the ! line number is unavailable. Setting this to `true' will cause the name of the object and the offset within that object to be printed when no line number is available. This allows for off-line decoding of stack traces if necessary debug information is ! available. The default is `false', no raw addresses are printed. ! `gnu.gcj.runtime.NameFinder.remove_unknown' Whether stack frames for non-java code should be included in a ! stack trace. The default value is `true', stack frames for ! non-java code are suppressed. Setting this to `false' will cause any non-java stack frames to be printed in addition to frames for the java code. ! `gnu.gcj.runtime.VMClassLoader.library_control' This controls how shared libraries are automatically loaded by the ! built-in class loader. If this property is set to `full', a full search is done for each requested class. If this property is set ! to `cache', then any failed lookups are cached and not tried again. ! If this property is set to `never' (the default), then lookups are never done. For more information, *Note Extensions::. ! `gnu.gcj.runtime.endorsed.dirs' ! This is like the standard `java.endorsed.dirs', property, but specifies some extra directories which are searched after the standard endorsed directories. This is primarily useful for ! telling `libgcj' about additional libraries which are ordinarily incorporated into the JDK, and which should be loaded by the ! bootstrap class loader, but which are not yet part of `libgcj' itself for some reason. ! `gnu.gcj.jit.compiler' ! This is the full path to `gcj' executable which should be used to ! compile classes just-in-time when `ClassLoader.defineClass' is ! called. If not set, `gcj' will not be invoked by the runtime; ! this can also be controlled via `Compiler.disable'. ! `gnu.gcj.jit.options' This is a space-separated string of options which should be passed ! to `gcj' when in JIT mode. If not set, a sensible default is chosen. ! `gnu.gcj.jit.cachedir' ! This is the directory where cached shared library files are ! stored. If not set, JIT compilation is disabled. This should ! never be set to a directory that is writable by any other user. ! `gnu.gcj.precompiled.db.path' This is a sequence of file names, each referring to a file created ! by `gcj-dbtool'. These files will be used by `libgcj' to find shared libraries corresponding to classes that are loaded from ! bytecode. `libgcj' often has a built-in default database; it can ! be queried using `gcj-dbtool -p'. !  File: gcj.info, Node: Resources, Next: Index, Prev: System properties, Up: Top --- 3450,3545 ---- 12.3 libgcj Runtime Properties ============================== ! The following properties are specific to the 'libgcj' runtime and will normally not be found in other core libraries for the java language. ! 'java.fullversion' ! The combination of 'java.vm.name' and 'java.vm.version'. ! 'java.vm.info' ! Same as 'java.fullversion'. ! 'impl.prefix' ! Used by the 'java.net.DatagramSocket' class when set to something else then the empty string. When set all newly created ! 'DatagramSocket's will try to load a class ! 'java.net.[impl.prefix]DatagramSocketImpl' instead of the normal ! 'java.net.PlainDatagramSocketImpl'. ! 'gnu.gcj.progname' ! The class or binary name that was used to invoke the program. This ! will be the name of the "main" class in the case where the 'gij' front end is used, or the program binary name in the case where an application is compiled to a native binary. ! 'gnu.gcj.user.realname' The real name of the user, as taken from the password file. This may not always hold only the user's name (as some sites put extra information in this field). Also, this property is not available on all platforms. ! 'gnu.gcj.runtime.NameFinder.use_addr2line' ! Whether an external process, 'addr2line', should be used to ! determine line number information when tracing the stack. Setting ! this to 'false' may suppress line numbers when printing stack traces and when using the java.util.logging infrastructure. However, performance may improve significantly for applications that print stack traces or make logging calls frequently. ! 'gnu.gcj.runtime.NameFinder.show_raw' Whether the address of a stack frame should be printed when the ! line number is unavailable. Setting this to 'true' will cause the name of the object and the offset within that object to be printed when no line number is available. This allows for off-line decoding of stack traces if necessary debug information is ! available. The default is 'false', no raw addresses are printed. ! 'gnu.gcj.runtime.NameFinder.remove_unknown' Whether stack frames for non-java code should be included in a ! stack trace. The default value is 'true', stack frames for ! non-java code are suppressed. Setting this to 'false' will cause any non-java stack frames to be printed in addition to frames for the java code. ! 'gnu.gcj.runtime.VMClassLoader.library_control' This controls how shared libraries are automatically loaded by the ! built-in class loader. If this property is set to 'full', a full search is done for each requested class. If this property is set ! to 'cache', then any failed lookups are cached and not tried again. ! If this property is set to 'never' (the default), then lookups are never done. For more information, *Note Extensions::. ! 'gnu.gcj.runtime.endorsed.dirs' ! This is like the standard 'java.endorsed.dirs', property, but specifies some extra directories which are searched after the standard endorsed directories. This is primarily useful for ! telling 'libgcj' about additional libraries which are ordinarily incorporated into the JDK, and which should be loaded by the ! bootstrap class loader, but which are not yet part of 'libgcj' itself for some reason. ! 'gnu.gcj.jit.compiler' ! This is the full path to 'gcj' executable which should be used to ! compile classes just-in-time when 'ClassLoader.defineClass' is ! called. If not set, 'gcj' will not be invoked by the runtime; this ! can also be controlled via 'Compiler.disable'. ! 'gnu.gcj.jit.options' This is a space-separated string of options which should be passed ! to 'gcj' when in JIT mode. If not set, a sensible default is chosen. ! 'gnu.gcj.jit.cachedir' ! This is the directory where cached shared library files are stored. ! If not set, JIT compilation is disabled. This should never be set ! to a directory that is writable by any other user. ! 'gnu.gcj.precompiled.db.path' This is a sequence of file names, each referring to a file created ! by 'gcj-dbtool'. These files will be used by 'libgcj' to find shared libraries corresponding to classes that are loaded from ! bytecode. 'libgcj' often has a built-in default database; it can ! be queried using 'gcj-dbtool -p'.  File: gcj.info, Node: Resources, Next: Index, Prev: System properties, Up: Top *************** File: gcj.info, Node: Resources, Next: *** 3587,3606 **** 13 Resources ************ ! While writing `gcj' and `libgcj' we have, of course, relied heavily on documentation from Sun Microsystems. In particular we have used The Java Language Specification (both first and second editions), the Java Class Libraries (volumes one and two), and the Java Virtual Machine Specification. In addition we've used Sun's online documentation. ! The current `gcj' home page is `http://gcc.gnu.org/java/'. ! For more information on GCC, see `http://gcc.gnu.org/'. ! Some `libgcj' testing is done using the Mauve test suite. This is a free software Java class library test suite which is being written ! because the JCK is not free. See `http://www.sourceware.org/mauve/' ! for more information.  File: gcj.info, Node: Index, Prev: Resources, Up: Top --- 3547,3566 ---- 13 Resources ************ ! While writing 'gcj' and 'libgcj' we have, of course, relied heavily on documentation from Sun Microsystems. In particular we have used The Java Language Specification (both first and second editions), the Java Class Libraries (volumes one and two), and the Java Virtual Machine Specification. In addition we've used Sun's online documentation. ! The current 'gcj' home page is . ! For more information on GCC, see . ! Some 'libgcj' testing is done using the Mauve test suite. This is a free software Java class library test suite which is being written ! because the JCK is not free. See for ! more information.  File: gcj.info, Node: Index, Prev: Resources, Up: Top *************** Index *** 3613,3691 **** * class path: Input Options. (line 6) * class$: Reference types. (line 20) ! * elements on template: Arrays. (line 46) * FDL, GNU Free Documentation License: GNU Free Documentation License. (line 6) * GCJ_PROPERTIES: Extensions. (line 56) * jclass: Reference types. (line 16) * jobject: Reference types. (line 16) * jstring: Reference types. (line 16) ! * JvAllocBytes: Mixing with C++. (line 99) ! * JvAttachCurrentThread: Invocation. (line 55) ! * JvCreateJavaVM: Invocation. (line 11) * JvDetachCurrentThread: Invocation. (line 68) ! * JvFree: Memory allocation. (line 19) ! * JvGetArrayLength: Arrays. (line 86) ! * JvGetStringChars: Strings. (line 25) ! * JvGetStringUTFLength: Strings. (line 29) ! * JvGetStringUTFRegion: Strings. (line 34) ! * JvMalloc: Memory allocation. (line 11) ! * JvNewBooleanArray: Arrays. (line 83) ! * JvNewObjectArray: Arrays. (line 57) ! * JvNewString: Strings. (line 11) ! * JvNewStringLatin1: Strings. (line 15) ! * JvNewStringUTF: Strings. (line 21) ! * JvPrimClass: Primitive types. (line 36) ! * JvRealloc: Memory allocation. (line 15)  Tag Table: ! Node: Top2715 ! Node: Copying4134 ! Node: GNU Free Documentation License41684 ! Node: Invoking gcj66827 ! Node: Input and output files67590 ! Node: Input Options69116 ! Node: Encodings72390 ! Node: Warnings73596 ! Node: Linking74709 ! Node: Code Generation77648 ! Node: Configure-time Options84428 ! Node: Compatibility86168 ! Node: Limitations86652 ! Node: Extensions88234 ! Node: Invoking jcf-dump91328 ! Node: Invoking gij92273 ! Node: Invoking gcj-dbtool95524 ! Node: Invoking jv-convert97990 ! Node: Invoking grmic99069 ! Node: Invoking gc-analyze100455 ! Node: Invoking aot-compile101896 ! Node: Invoking rebuild-gcj-db102845 ! Node: About CNI103155 ! Node: Basic concepts104614 ! Node: Packages107510 ! Node: Primitive types109838 ! Node: Reference types111516 ! Node: Interfaces112605 ! Node: Objects and Classes113516 ! Node: Class Initialization115711 ! Node: Object allocation118053 ! Node: Memory allocation118843 ! Node: Arrays119475 ! Node: Methods122285 ! Node: Strings125106 ! Node: Mixing with C++126610 ! Node: Exception Handling130081 ! Node: Synchronization131715 ! Node: Invocation133705 ! Node: Reflection138641 ! Node: System properties139102 ! Node: Standard Properties139979 ! Node: GNU Classpath Properties144411 ! Node: libgcj Runtime Properties145458 ! Node: Resources149960 ! Node: Index150774  End Tag Table --- 3573,3653 ---- * class path: Input Options. (line 6) * class$: Reference types. (line 20) ! * elements on template: Arrays. (line 45) * FDL, GNU Free Documentation License: GNU Free Documentation License. (line 6) * GCJ_PROPERTIES: Extensions. (line 56) + * GCJ_PROPERTIES <1>: Extensions. (line 56) * jclass: Reference types. (line 16) * jobject: Reference types. (line 16) * jstring: Reference types. (line 16) ! * JvAllocBytes: Mixing with C++. (line 98) ! * JvAttachCurrentThread: Invocation. (line 54) ! * JvCreateJavaVM: Invocation. (line 10) * JvDetachCurrentThread: Invocation. (line 68) ! * JvFree: Memory allocation. (line 18) ! * JvGetArrayLength: Arrays. (line 85) ! * JvGetStringChars: Strings. (line 24) ! * JvGetStringUTFLength: Strings. (line 28) ! * JvGetStringUTFRegion: Strings. (line 32) ! * JvMalloc: Memory allocation. (line 10) ! * JvNewBooleanArray: Arrays. (line 82) ! * JvNewObjectArray: Arrays. (line 55) ! * JvNewString: Strings. (line 10) ! * JvNewStringLatin1: Strings. (line 14) ! * JvNewStringLatin1 <1>: Strings. (line 17) ! * JvNewStringUTF: Strings. (line 20) ! * JvPrimClass: Primitive types. (line 35) ! * JvRealloc: Memory allocation. (line 14)  Tag Table: ! Node: Top2678 ! Node: Copying4097 ! Node: GNU Free Documentation License41628 ! Node: Invoking gcj66751 ! Node: Input and output files67514 ! Node: Input Options69036 ! Node: Encodings72311 ! Node: Warnings73517 ! Node: Linking74630 ! Node: Code Generation77563 ! Node: Configure-time Options84339 ! Node: Compatibility86079 ! Node: Limitations86598 ! Node: Extensions88176 ! Node: Invoking jcf-dump91267 ! Node: Invoking gij92212 ! Node: Invoking gcj-dbtool95468 ! Node: Invoking jv-convert97929 ! Node: Invoking grmic99008 ! Node: Invoking gc-analyze100394 ! Node: Invoking aot-compile101835 ! Node: Invoking rebuild-gcj-db102783 ! Node: About CNI103093 ! Node: Basic concepts104552 ! Node: Packages107448 ! Node: Primitive types109776 ! Node: Reference types111453 ! Node: Interfaces112537 ! Node: Objects and Classes113448 ! Node: Class Initialization115643 ! Node: Object allocation117986 ! Node: Memory allocation118776 ! Node: Arrays119408 ! Node: Methods122218 ! Node: Strings125039 ! Node: Mixing with C++126543 ! Node: Exception Handling130016 ! Node: Synchronization131651 ! Node: Invocation133640 ! Node: Reflection138592 ! Node: System properties139050 ! Node: Standard Properties139927 ! Node: GNU Classpath Properties144358 ! Node: libgcj Runtime Properties145404 ! Node: Resources149907 ! Node: Index150721  End Tag Table diff -Nrcpad gcc-4.8.1/gcc/doc/gcov.1 gcc-4.8.2/gcc/doc/gcov.1 *** gcc-4.8.1/gcc/doc/gcov.1 Fri May 31 09:14:49 2013 --- gcc-4.8.2/gcc/doc/gcov.1 Wed Oct 16 07:33:29 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "GCOV 1" ! .TH GCOV 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "GCOV 1" ! .TH GCOV 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** in fine-tuning the performance of your p *** 199,205 **** timing information you can use along with the information you get from \&\fBgcov\fR. .PP ! \&\fBgcov\fR works only on code compiled with \s-1GCC\s0. It is not compatible with any other profiling or test coverage mechanism. .SH "OPTIONS" .IX Header "OPTIONS" --- 208,214 ---- timing information you can use along with the information you get from \&\fBgcov\fR. .PP ! \&\fBgcov\fR works only on code compiled with \s-1GCC. \s0 It is not compatible with any other profiling or test coverage mechanism. .SH "OPTIONS" .IX Header "OPTIONS" diff -Nrcpad gcc-4.8.1/gcc/doc/gfdl.7 gcc-4.8.2/gcc/doc/gfdl.7 *** gcc-4.8.1/gcc/doc/gfdl.7 Fri May 31 09:14:51 2013 --- gcc-4.8.2/gcc/doc/gfdl.7 Wed Oct 16 07:33:31 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "GFDL 7" ! .TH GFDL 7 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "GFDL 7" ! .TH GFDL 7 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** whether it is published as a printed boo *** 170,176 **** principally for works whose purpose is instruction or reference. .IP "1." 4 .IX Item "1." ! \&\s-1APPLICABILITY\s0 \s-1AND\s0 \s-1DEFINITIONS\s0 .Sp This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be --- 179,185 ---- principally for works whose purpose is instruction or reference. .IP "1." 4 .IX Item "1." ! \&\s-1APPLICABILITY AND DEFINITIONS\s0 .Sp This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be *************** of text. A copy that is not \*(L"Transp *** 226,238 **** Examples of suitable formats for Transparent copies include plain \&\s-1ASCII\s0 without markup, Texinfo input format, LaTeX input format, \s-1SGML\s0 or \s-1XML\s0 using a publicly available ! \&\s-1DTD\s0, and standard-conforming simple \s-1HTML\s0, PostScript or \s-1PDF\s0 designed for human modification. Examples ! of transparent image formats include \s-1PNG\s0, \s-1XCF\s0 and ! \&\s-1JPG\s0. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, \s-1SGML\s0 or \&\s-1XML\s0 for which the \s-1DTD\s0 and/or processing tools are ! not generally available, and the machine-generated \s-1HTML\s0, PostScript or \s-1PDF\s0 produced by some word processors for output purposes only. .Sp --- 235,247 ---- Examples of suitable formats for Transparent copies include plain \&\s-1ASCII\s0 without markup, Texinfo input format, LaTeX input format, \s-1SGML\s0 or \s-1XML\s0 using a publicly available ! \&\s-1DTD,\s0 and standard-conforming simple \s-1HTML,\s0 PostScript or \s-1PDF\s0 designed for human modification. Examples ! of transparent image formats include \s-1PNG, XCF\s0 and ! \&\s-1JPG. \s0 Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, \s-1SGML\s0 or \&\s-1XML\s0 for which the \s-1DTD\s0 and/or processing tools are ! not generally available, and the machine-generated \s-1HTML,\s0 PostScript or \s-1PDF\s0 produced by some word processors for output purposes only. .Sp *************** preceding the beginning of the body of t *** 246,258 **** The \*(L"publisher\*(R" means any person or entity that distributes copies of the Document to the public. .Sp ! A section \*(L"Entitled \s-1XYZ\s0\*(R" means a named subunit of the Document whose title either is precisely \s-1XYZ\s0 or contains \s-1XYZ\s0 in parentheses following text that translates \s-1XYZ\s0 in another language. (Here \s-1XYZ\s0 stands for a specific section name mentioned below, such as \*(L"Acknowledgements\*(R", \&\*(L"Dedications\*(R", \*(L"Endorsements\*(R", or \*(L"History\*(R".) To \*(L"Preserve the Title\*(R" of such a section when you modify the Document means that it remains a ! section \*(L"Entitled \s-1XYZ\s0\*(R" according to this definition. .Sp The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty --- 255,267 ---- The \*(L"publisher\*(R" means any person or entity that distributes copies of the Document to the public. .Sp ! A section \*(L"Entitled \s-1XYZ\*(R"\s0 means a named subunit of the Document whose title either is precisely \s-1XYZ\s0 or contains \s-1XYZ\s0 in parentheses following text that translates \s-1XYZ\s0 in another language. (Here \s-1XYZ\s0 stands for a specific section name mentioned below, such as \*(L"Acknowledgements\*(R", \&\*(L"Dedications\*(R", \*(L"Endorsements\*(R", or \*(L"History\*(R".) To \*(L"Preserve the Title\*(R" of such a section when you modify the Document means that it remains a ! section \*(L"Entitled \s-1XYZ\*(R"\s0 according to this definition. .Sp The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty *************** implication that these Warranty Disclaim *** 262,268 **** no effect on the meaning of this License. .IP "2." 4 .IX Item "2." ! \&\s-1VERBATIM\s0 \s-1COPYING\s0 .Sp You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the --- 271,277 ---- no effect on the meaning of this License. .IP "2." 4 .IX Item "2." ! \&\s-1VERBATIM COPYING\s0 .Sp You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the *************** You may also lend copies, under the same *** 278,284 **** you may publicly display copies. .IP "3." 4 .IX Item "3." ! \&\s-1COPYING\s0 \s-1IN\s0 \s-1QUANTITY\s0 .Sp If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the --- 287,293 ---- you may publicly display copies. .IP "3." 4 .IX Item "3." ! \&\s-1COPYING IN QUANTITY\s0 .Sp If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the *************** imply endorsement of any Modified Versio *** 434,440 **** .RE .IP "5." 4 .IX Item "5." ! \&\s-1COMBINING\s0 \s-1DOCUMENTS\s0 .Sp You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified --- 443,449 ---- .RE .IP "5." 4 .IX Item "5." ! \&\s-1COMBINING DOCUMENTS\s0 .Sp You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified *************** and any sections Entitled \*(L"Dedicatio *** 459,465 **** sections Entitled \*(L"Endorsements.\*(R" .IP "6." 4 .IX Item "6." ! \&\s-1COLLECTIONS\s0 \s-1OF\s0 \s-1DOCUMENTS\s0 .Sp You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this --- 468,474 ---- sections Entitled \*(L"Endorsements.\*(R" .IP "6." 4 .IX Item "6." ! \&\s-1COLLECTIONS OF DOCUMENTS\s0 .Sp You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this *************** License into the extracted document, and *** 473,479 **** other respects regarding verbatim copying of that document. .IP "7." 4 .IX Item "7." ! \&\s-1AGGREGATION\s0 \s-1WITH\s0 \s-1INDEPENDENT\s0 \s-1WORKS\s0 .Sp A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or --- 482,488 ---- other respects regarding verbatim copying of that document. .IP "7." 4 .IX Item "7." ! \&\s-1AGGREGATION WITH INDEPENDENT WORKS\s0 .Sp A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or *************** reinstated, receipt of a copy of some or *** 542,548 **** not give you any rights to use it. .IP "10." 4 .IX Item "10." ! \&\s-1FUTURE\s0 \s-1REVISIONS\s0 \s-1OF\s0 \s-1THIS\s0 \s-1LICENSE\s0 .Sp The Free Software Foundation may publish new, revised versions of the \s-1GNU\s0 Free Documentation License from time to time. Such new --- 551,557 ---- not give you any rights to use it. .IP "10." 4 .IX Item "10." ! \&\s-1FUTURE REVISIONS OF THIS LICENSE\s0 .Sp The Free Software Foundation may publish new, revised versions of the \s-1GNU\s0 Free Documentation License from time to time. Such new *************** Document. *** 570,576 **** World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A ! \&\*(L"Massive Multiauthor Collaboration\*(R" (or \*(L"\s-1MMC\s0\*(R") contained in the site means any set of copyrightable works thus published on the \s-1MMC\s0 site. .Sp --- 579,585 ---- World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A ! \&\*(L"Massive Multiauthor Collaboration\*(R" (or \*(L"\s-1MMC\*(R"\s0) contained in the site means any set of copyrightable works thus published on the \s-1MMC\s0 site. .Sp *************** in part, as part of another Document. *** 585,592 **** .Sp An \s-1MMC\s0 is \*(L"eligible for relicensing\*(R" if it is licensed under this License, and if all works that were first published under this License ! somewhere other than this \s-1MMC\s0, and subsequently incorporated in whole ! or in part into the \s-1MMC\s0, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008. .Sp The operator of an \s-1MMC\s0 Site may republish an \s-1MMC\s0 contained in the site --- 594,601 ---- .Sp An \s-1MMC\s0 is \*(L"eligible for relicensing\*(R" if it is licensed under this License, and if all works that were first published under this License ! somewhere other than this \s-1MMC,\s0 and subsequently incorporated in whole ! or in part into the \s-1MMC, \\fIs0\fR\|(1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008. .Sp The operator of an \s-1MMC\s0 Site may republish an \s-1MMC\s0 contained in the site diff -Nrcpad gcc-4.8.1/gcc/doc/gfortran.1 gcc-4.8.2/gcc/doc/gfortran.1 *** gcc-4.8.1/gcc/doc/gfortran.1 Fri May 31 09:58:17 2013 --- gcc-4.8.2/gcc/doc/gfortran.1 Wed Oct 16 08:16:31 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "GFORTRAN 1" ! .TH GFORTRAN 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "GFORTRAN 1" ! .TH GFORTRAN 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** backslash character to \*(L"C\-style\*(R *** 290,296 **** combinations are expanded \f(CW\*(C`\ea\*(C'\fR, \f(CW\*(C`\eb\*(C'\fR, \f(CW\*(C`\ef\*(C'\fR, \f(CW\*(C`\en\*(C'\fR, \&\f(CW\*(C`\er\*(C'\fR, \f(CW\*(C`\et\*(C'\fR, \f(CW\*(C`\ev\*(C'\fR, \f(CW\*(C`\e\e\*(C'\fR, and \f(CW\*(C`\e0\*(C'\fR to the \s-1ASCII\s0 characters alert, backspace, form feed, newline, carriage return, ! horizontal tab, vertical tab, backslash, and \s-1NUL\s0, respectively. Additionally, \f(CW\*(C`\ex\*(C'\fR\fInn\fR, \f(CW\*(C`\eu\*(C'\fR\fInnnn\fR and \&\f(CW\*(C`\eU\*(C'\fR\fInnnnnnnn\fR (where each \fIn\fR is a hexadecimal digit) are translated into the Unicode characters corresponding to the specified code --- 299,305 ---- combinations are expanded \f(CW\*(C`\ea\*(C'\fR, \f(CW\*(C`\eb\*(C'\fR, \f(CW\*(C`\ef\*(C'\fR, \f(CW\*(C`\en\*(C'\fR, \&\f(CW\*(C`\er\*(C'\fR, \f(CW\*(C`\et\*(C'\fR, \f(CW\*(C`\ev\*(C'\fR, \f(CW\*(C`\e\e\*(C'\fR, and \f(CW\*(C`\e0\*(C'\fR to the \s-1ASCII\s0 characters alert, backspace, form feed, newline, carriage return, ! horizontal tab, vertical tab, backslash, and \s-1NUL,\s0 respectively. Additionally, \f(CW\*(C`\ex\*(C'\fR\fInn\fR, \f(CW\*(C`\eu\*(C'\fR\fInnnn\fR and \&\f(CW\*(C`\eU\*(C'\fR\fInnnnnnnn\fR (where each \fIn\fR is a hexadecimal digit) are translated into the Unicode characters corresponding to the specified code *************** While technically legal these usually in *** 746,755 **** This currently produces a warning under the following circumstances: .RS 4 .IP "\(bu" 4 ! An \s-1INTEGER\s0 \s-1SELECT\s0 construct has a \s-1CASE\s0 that can never be matched as its lower value is greater than its upper value. .IP "\(bu" 4 ! A \s-1LOGICAL\s0 \s-1SELECT\s0 construct has three \s-1CASE\s0 statements. .IP "\(bu" 4 A \s-1TRANSFER\s0 specifies a source that is shorter than the destination. .IP "\(bu" 4 --- 755,764 ---- This currently produces a warning under the following circumstances: .RS 4 .IP "\(bu" 4 ! An \s-1INTEGER SELECT\s0 construct has a \s-1CASE\s0 that can never be matched as its lower value is greater than its upper value. .IP "\(bu" 4 ! A \s-1LOGICAL SELECT\s0 construct has three \s-1CASE\s0 statements. .IP "\(bu" 4 A \s-1TRANSFER\s0 specifies a source that is shorter than the destination. .IP "\(bu" 4 *************** exceptions: \fBinvalid\fR (invalid float *** 856,863 **** in a floating point operation), \fBinexact\fR (loss of precision during operation), and \fBdenormal\fR (operation performed on a denormal value). The first five exceptions correspond to the five ! \&\s-1IEEE\s0 754 exceptions, whereas the last one (\fBdenormal\fR) is not ! part of the \s-1IEEE\s0 754 standard but is available on some common architectures such as x86. .Sp The first three exceptions (\fBinvalid\fR, \fBzero\fR, and --- 865,872 ---- in a floating point operation), \fBinexact\fR (loss of precision during operation), and \fBdenormal\fR (operation performed on a denormal value). The first five exceptions correspond to the five ! \&\s-1IEEE 754\s0 exceptions, whereas the last one (\fBdenormal\fR) is not ! part of the \s-1IEEE 754\s0 standard but is available on some common architectures such as x86. .Sp The first three exceptions (\fBinvalid\fR, \fBzero\fR, and *************** extra argument in the calling sequence t *** 989,995 **** store the return value. Under the default \s-1GNU\s0 calling conventions, such functions simply return their results as they would in \s-1GNU\s0 C\-\-\-default \f(CW\*(C`REAL\*(C'\fR functions return the C type \f(CW\*(C`float\*(C'\fR, and ! \&\f(CW\*(C`COMPLEX\*(C'\fR functions return the \s-1GNU\s0 C type \f(CW\*(C`complex\*(C'\fR. Additionally, this option implies the \fB\-fsecond\-underscore\fR option, unless \fB\-fno\-second\-underscore\fR is explicitly requested. .Sp --- 998,1004 ---- store the return value. Under the default \s-1GNU\s0 calling conventions, such functions simply return their results as they would in \s-1GNU\s0 C\-\-\-default \f(CW\*(C`REAL\*(C'\fR functions return the C type \f(CW\*(C`float\*(C'\fR, and ! \&\f(CW\*(C`COMPLEX\*(C'\fR functions return the \s-1GNU C\s0 type \f(CW\*(C`complex\*(C'\fR. Additionally, this option implies the \fB\-fsecond\-underscore\fR option, unless \fB\-fno\-second\-underscore\fR is explicitly requested. .Sp diff -Nrcpad gcc-4.8.1/gcc/doc/gij.1 gcc-4.8.2/gcc/doc/gij.1 *** gcc-4.8.1/gcc/doc/gij.1 Fri May 31 09:47:33 2013 --- gcc-4.8.2/gcc/doc/gij.1 Wed Oct 16 08:05:51 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "GIJ 1" ! .TH GIJ 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "GIJ 1" ! .TH GIJ 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.8.1/gcc/doc/gpl.7 gcc-4.8.2/gcc/doc/gpl.7 *** gcc-4.8.1/gcc/doc/gpl.7 Fri May 31 09:58:16 2013 --- gcc-4.8.2/gcc/doc/gpl.7 Wed Oct 16 08:16:31 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "GPL 7" ! .TH GPL 7 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "GPL 7" ! .TH GPL 7 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** freedoms that you received. You must ma *** 176,182 **** receive or can get the source code. And you must show them these terms so they know their rights. .PP ! Developers that use the \s-1GNU\s0 \s-1GPL\s0 protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. .PP --- 185,191 ---- receive or can get the source code. And you must show them these terms so they know their rights. .PP ! Developers that use the \s-1GNU GPL\s0 protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. .PP *************** individuals to use, which is precisely w *** 195,201 **** Therefore, we have designed this version of the \s-1GPL\s0 to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those ! domains in future versions of the \s-1GPL\s0, as needed to protect the freedom of users. .PP Finally, every program is threatened constantly by software patents. --- 204,210 ---- Therefore, we have designed this version of the \s-1GPL\s0 to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those ! domains in future versions of the \s-1GPL,\s0 as needed to protect the freedom of users. .PP Finally, every program is threatened constantly by software patents. *************** assures that patents cannot be used to r *** 207,213 **** .PP The precise terms and conditions for copying, distribution and modification follow. ! .SS "\s-1TERMS\s0 \s-1AND\s0 \s-1CONDITIONS\s0" .IX Subsection "TERMS AND CONDITIONS" .IP "0. Definitions." 4 .IX Item "0. Definitions." --- 216,222 ---- .PP The precise terms and conditions for copying, distribution and modification follow. ! .SS "\s-1TERMS AND CONDITIONS\s0" .IX Subsection "TERMS AND CONDITIONS" .IP "0. Definitions." 4 .IX Item "0. Definitions." *************** author or copyright holder as a result o *** 742,767 **** later version. .IP "15. Disclaimer of Warranty." 4 .IX Item "15. Disclaimer of Warranty." ! \&\s-1THERE\s0 \s-1IS\s0 \s-1NO\s0 \s-1WARRANTY\s0 \s-1FOR\s0 \s-1THE\s0 \s-1PROGRAM\s0, \s-1TO\s0 \s-1THE\s0 \s-1EXTENT\s0 \s-1PERMITTED\s0 \s-1BY\s0 ! \&\s-1APPLICABLE\s0 \s-1LAW\s0. \s-1EXCEPT\s0 \s-1WHEN\s0 \s-1OTHERWISE\s0 \s-1STATED\s0 \s-1IN\s0 \s-1WRITING\s0 \s-1THE\s0 \s-1COPYRIGHT\s0 ! \&\s-1HOLDERS\s0 \s-1AND/OR\s0 \s-1OTHER\s0 \s-1PARTIES\s0 \s-1PROVIDE\s0 \s-1THE\s0 \s-1PROGRAM\s0 \*(L"\s-1AS\s0 \s-1IS\s0\*(R" \s-1WITHOUT\s0 ! \&\s-1WARRANTY\s0 \s-1OF\s0 \s-1ANY\s0 \s-1KIND\s0, \s-1EITHER\s0 \s-1EXPRESSED\s0 \s-1OR\s0 \s-1IMPLIED\s0, \s-1INCLUDING\s0, \s-1BUT\s0 \s-1NOT\s0 ! \&\s-1LIMITED\s0 \s-1TO\s0, \s-1THE\s0 \s-1IMPLIED\s0 \s-1WARRANTIES\s0 \s-1OF\s0 \s-1MERCHANTABILITY\s0 \s-1AND\s0 \s-1FITNESS\s0 \s-1FOR\s0 ! A \s-1PARTICULAR\s0 \s-1PURPOSE\s0. \s-1THE\s0 \s-1ENTIRE\s0 \s-1RISK\s0 \s-1AS\s0 \s-1TO\s0 \s-1THE\s0 \s-1QUALITY\s0 \s-1AND\s0 ! \&\s-1PERFORMANCE\s0 \s-1OF\s0 \s-1THE\s0 \s-1PROGRAM\s0 \s-1IS\s0 \s-1WITH\s0 \s-1YOU\s0. \s-1SHOULD\s0 \s-1THE\s0 \s-1PROGRAM\s0 \s-1PROVE\s0 ! \&\s-1DEFECTIVE\s0, \s-1YOU\s0 \s-1ASSUME\s0 \s-1THE\s0 \s-1COST\s0 \s-1OF\s0 \s-1ALL\s0 \s-1NECESSARY\s0 \s-1SERVICING\s0, \s-1REPAIR\s0 \s-1OR\s0 ! \&\s-1CORRECTION\s0. .IP "16. Limitation of Liability." 4 .IX Item "16. Limitation of Liability." ! \&\s-1IN\s0 \s-1NO\s0 \s-1EVENT\s0 \s-1UNLESS\s0 \s-1REQUIRED\s0 \s-1BY\s0 \s-1APPLICABLE\s0 \s-1LAW\s0 \s-1OR\s0 \s-1AGREED\s0 \s-1TO\s0 \s-1IN\s0 \s-1WRITING\s0 ! \&\s-1WILL\s0 \s-1ANY\s0 \s-1COPYRIGHT\s0 \s-1HOLDER\s0, \s-1OR\s0 \s-1ANY\s0 \s-1OTHER\s0 \s-1PARTY\s0 \s-1WHO\s0 \s-1MODIFIES\s0 \s-1AND/OR\s0 ! \&\s-1CONVEYS\s0 \s-1THE\s0 \s-1PROGRAM\s0 \s-1AS\s0 \s-1PERMITTED\s0 \s-1ABOVE\s0, \s-1BE\s0 \s-1LIABLE\s0 \s-1TO\s0 \s-1YOU\s0 \s-1FOR\s0 \s-1DAMAGES\s0, ! \&\s-1INCLUDING\s0 \s-1ANY\s0 \s-1GENERAL\s0, \s-1SPECIAL\s0, \s-1INCIDENTAL\s0 \s-1OR\s0 \s-1CONSEQUENTIAL\s0 \s-1DAMAGES\s0 ! \&\s-1ARISING\s0 \s-1OUT\s0 \s-1OF\s0 \s-1THE\s0 \s-1USE\s0 \s-1OR\s0 \s-1INABILITY\s0 \s-1TO\s0 \s-1USE\s0 \s-1THE\s0 \s-1PROGRAM\s0 (\s-1INCLUDING\s0 \s-1BUT\s0 ! \&\s-1NOT\s0 \s-1LIMITED\s0 \s-1TO\s0 \s-1LOSS\s0 \s-1OF\s0 \s-1DATA\s0 \s-1OR\s0 \s-1DATA\s0 \s-1BEING\s0 \s-1RENDERED\s0 \s-1INACCURATE\s0 \s-1OR\s0 ! \&\s-1LOSSES\s0 \s-1SUSTAINED\s0 \s-1BY\s0 \s-1YOU\s0 \s-1OR\s0 \s-1THIRD\s0 \s-1PARTIES\s0 \s-1OR\s0 A \s-1FAILURE\s0 \s-1OF\s0 \s-1THE\s0 \s-1PROGRAM\s0 ! \&\s-1TO\s0 \s-1OPERATE\s0 \s-1WITH\s0 \s-1ANY\s0 \s-1OTHER\s0 \s-1PROGRAMS\s0), \s-1EVEN\s0 \s-1IF\s0 \s-1SUCH\s0 \s-1HOLDER\s0 \s-1OR\s0 \s-1OTHER\s0 ! \&\s-1PARTY\s0 \s-1HAS\s0 \s-1BEEN\s0 \s-1ADVISED\s0 \s-1OF\s0 \s-1THE\s0 \s-1POSSIBILITY\s0 \s-1OF\s0 \s-1SUCH\s0 \s-1DAMAGES\s0. .IP "17. Interpretation of Sections 15 and 16." 4 .IX Item "17. Interpretation of Sections 15 and 16." If the disclaimer of warranty and limitation of liability provided --- 751,776 ---- later version. .IP "15. Disclaimer of Warranty." 4 .IX Item "15. Disclaimer of Warranty." ! \&\s-1THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT ! HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM \*(L"AS IS\*(R" WITHOUT ! WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT ! LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ! A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND ! PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE ! DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR ! CORRECTION.\s0 .IP "16. Limitation of Liability." 4 .IX Item "16. Limitation of Liability." ! \&\s-1IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING ! WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR ! CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, ! INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ! ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM \s0(\s-1INCLUDING BUT ! NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR ! LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM ! TO OPERATE WITH ANY OTHER PROGRAMS\s0), \s-1EVEN IF SUCH HOLDER OR OTHER ! PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.\s0 .IP "17. Interpretation of Sections 15 and 16." 4 .IX Item "17. Interpretation of Sections 15 and 16." If the disclaimer of warranty and limitation of liability provided *************** reviewing courts shall apply local law t *** 770,776 **** an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. ! .SS "\s-1END\s0 \s-1OF\s0 \s-1TERMS\s0 \s-1AND\s0 \s-1CONDITIONS\s0" .IX Subsection "END OF TERMS AND CONDITIONS" .SS "How to Apply These Terms to Your New Programs" .IX Subsection "How to Apply These Terms to Your New Programs" --- 779,785 ---- an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. ! .SS "\s-1END OF TERMS AND CONDITIONS\s0" .IX Subsection "END OF TERMS AND CONDITIONS" .SS "How to Apply These Terms to Your New Programs" .IX Subsection "How to Apply These Terms to Your New Programs" *************** use an \*(L"about box\*(R". *** 821,827 **** .PP You should also get your employer (if you work as a programmer) or school, if any, to sign a \*(L"copyright disclaimer\*(R" for the program, if necessary. ! For more information on this, and how to apply and follow the \s-1GNU\s0 \s-1GPL\s0, see <\fBhttp://www.gnu.org/licenses/\fR>. .PP The \s-1GNU\s0 General Public License does not permit incorporating your --- 830,836 ---- .PP You should also get your employer (if you work as a programmer) or school, if any, to sign a \*(L"copyright disclaimer\*(R" for the program, if necessary. ! For more information on this, and how to apply and follow the \s-1GNU GPL,\s0 see <\fBhttp://www.gnu.org/licenses/\fR>. .PP The \s-1GNU\s0 General Public License does not permit incorporating your diff -Nrcpad gcc-4.8.1/gcc/doc/grmic.1 gcc-4.8.2/gcc/doc/grmic.1 *** gcc-4.8.1/gcc/doc/grmic.1 Fri May 31 09:47:33 2013 --- gcc-4.8.2/gcc/doc/grmic.1 Wed Oct 16 08:05:51 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "GRMIC 1" ! .TH GRMIC 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "GRMIC 1" ! .TH GRMIC 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** grmic \- Generate stubs for Remote Metho *** 139,146 **** \&\fBgrmic\fR is a utility included with \f(CW\*(C`libgcj\*(C'\fR which generates stubs for remote objects. .PP ! Note that this program isn't yet fully compatible with the \s-1JDK\s0 ! \&\fBgrmic\fR. Some options, such as \fB\-classpath\fR, are recognized but currently ignored. We have left these options undocumented for now. .PP --- 148,155 ---- \&\fBgrmic\fR is a utility included with \f(CW\*(C`libgcj\*(C'\fR which generates stubs for remote objects. .PP ! Note that this program isn't yet fully compatible with the \s-1JDK ! \&\s0\fBgrmic\fR. Some options, such as \fB\-classpath\fR, are recognized but currently ignored. We have left these options undocumented for now. .PP diff -Nrcpad gcc-4.8.1/gcc/doc/implement-cxx.texi gcc-4.8.2/gcc/doc/implement-cxx.texi *** gcc-4.8.1/gcc/doc/implement-cxx.texi Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/doc/implement-cxx.texi Wed Sep 18 11:07:16 2013 *************** *** 9,16 **** A conforming implementation of ISO C++ is required to document its choice of behavior in each of the areas that are designated ``implementation defined''. The following lists all such areas, ! along with the section numbers from the ISO/IEC 14822:1998 and ISO/IEC ! 14822:2003 standards. Some areas are only implementation-defined in one version of the standard. Some choices depend on the externally determined ABI for the platform --- 9,16 ---- A conforming implementation of ISO C++ is required to document its choice of behavior in each of the areas that are designated ``implementation defined''. The following lists all such areas, ! along with the section numbers from the ISO/IEC 14882:1998 and ISO/IEC ! 14882:2003 standards. Some areas are only implementation-defined in one version of the standard. Some choices depend on the externally determined ABI for the platform diff -Nrcpad gcc-4.8.1/gcc/doc/invoke.texi gcc-4.8.2/gcc/doc/invoke.texi *** gcc-4.8.1/gcc/doc/invoke.texi Fri Mar 29 13:41:29 2013 --- gcc-4.8.2/gcc/doc/invoke.texi Wed Jun 19 19:55:50 2013 *************** Intel Core CPU with 64-bit extensions, M *** 13726,13733 **** SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C instruction set support. @item atom ! Intel Atom CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support. @item k6 --- 13726,13738 ---- SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C instruction set support. + @item core-avx2 + Intel Core CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, + SSE4.1, SSE4.2, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2 + and F16C instruction set support. + @item atom ! Intel Atom CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support. @item k6 diff -Nrcpad gcc-4.8.1/gcc/doc/jcf-dump.1 gcc-4.8.2/gcc/doc/jcf-dump.1 *** gcc-4.8.1/gcc/doc/jcf-dump.1 Fri May 31 09:47:33 2013 --- gcc-4.8.2/gcc/doc/jcf-dump.1 Wed Oct 16 08:05:51 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "JCF-DUMP 1" ! .TH JCF-DUMP 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "JCF-DUMP 1" ! .TH JCF-DUMP 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.8.1/gcc/doc/jv-convert.1 gcc-4.8.2/gcc/doc/jv-convert.1 *** gcc-4.8.1/gcc/doc/jv-convert.1 Fri May 31 09:47:33 2013 --- gcc-4.8.2/gcc/doc/jv-convert.1 Wed Oct 16 08:05:51 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "JV-CONVERT 1" ! .TH JV-CONVERT 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "JV-CONVERT 1" ! .TH JV-CONVERT 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.8.1/gcc/doc/rebuild-gcj-db.1 gcc-4.8.2/gcc/doc/rebuild-gcj-db.1 *** gcc-4.8.1/gcc/doc/rebuild-gcj-db.1 Fri May 31 09:58:17 2013 --- gcc-4.8.2/gcc/doc/rebuild-gcj-db.1 Wed Oct 16 08:16:31 2013 *************** *** 1,4 **** ! .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== --- 1,4 ---- ! .\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.20) .\" .\" Standard preamble: .\" ======================================================================== *************** *** 38,43 **** --- 38,45 ---- . ds PI \(*p . ds L" `` . ds R" '' + . ds C` + . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. *************** *** 48,64 **** .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 50,73 ---- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. + . if !\nF==2 \{ + . nr % 0 + . nr F 2 + . \} + . \} .\} + .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 124,130 **** .\" ======================================================================== .\" .IX Title "REBUILD-GCJ-DB 1" ! .TH REBUILD-GCJ-DB 1 "2013-05-31" "gcc-4.8.1" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 133,139 ---- .\" ======================================================================== .\" .IX Title "REBUILD-GCJ-DB 1" ! .TH REBUILD-GCJ-DB 1 "2013-10-16" "gcc-4.8.2" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.8.1/gcc/explow.c gcc-4.8.2/gcc/explow.c *** gcc-4.8.1/gcc/explow.c Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/explow.c Mon Sep 9 13:11:45 2013 *************** plus_constant (enum machine_mode mode, r *** 106,115 **** if (overflow) gcc_unreachable (); ! return immed_double_int_const (v, VOIDmode); } ! return GEN_INT (INTVAL (x) + c); case CONST_DOUBLE: { --- 106,115 ---- if (overflow) gcc_unreachable (); ! return immed_double_int_const (v, mode); } ! return gen_int_mode (INTVAL (x) + c, mode); case CONST_DOUBLE: { *************** plus_constant (enum machine_mode mode, r *** 124,130 **** To fix, add constant support wider than CONST_DOUBLE. */ gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT); ! return immed_double_int_const (v, VOIDmode); } case MEM: --- 124,130 ---- To fix, add constant support wider than CONST_DOUBLE. */ gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT); ! return immed_double_int_const (v, mode); } case MEM: diff -Nrcpad gcc-4.8.1/gcc/expr.c gcc-4.8.2/gcc/expr.c *** gcc-4.8.1/gcc/expr.c Tue May 14 06:28:12 2013 --- gcc-4.8.2/gcc/expr.c Thu Aug 29 18:37:46 2013 *************** struct store_by_pieces_d *** 119,125 **** int reverse; }; ! static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode, struct move_by_pieces_d *); static bool block_move_libcall_safe_for_call_parm (void); static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT); --- 119,125 ---- int reverse; }; ! static void move_by_pieces_1 (insn_gen_fn, machine_mode, struct move_by_pieces_d *); static bool block_move_libcall_safe_for_call_parm (void); static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT); *************** static void emit_block_move_via_loop (rt *** 128,134 **** static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode); static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int); static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int); ! static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode, struct store_by_pieces_d *); static tree clear_storage_libcall_fn (int); static rtx compress_float_constant (rtx, rtx); --- 128,134 ---- static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode); static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int); static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int); ! static void store_by_pieces_2 (insn_gen_fn, machine_mode, struct store_by_pieces_d *); static tree clear_storage_libcall_fn (int); static rtx compress_float_constant (rtx, rtx); *************** move_by_pieces_ninsns (unsigned HOST_WID *** 1043,1049 **** to make a move insn for that mode. DATA has all the other info. */ static void ! move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode, struct move_by_pieces_d *data) { unsigned int size = GET_MODE_SIZE (mode); --- 1043,1049 ---- to make a move insn for that mode. DATA has all the other info. */ static void ! move_by_pieces_1 (insn_gen_fn genfun, machine_mode mode, struct move_by_pieces_d *data) { unsigned int size = GET_MODE_SIZE (mode); *************** store_by_pieces_1 (struct store_by_piece *** 2657,2663 **** to make a move insn for that mode. DATA has all the other info. */ static void ! store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode, struct store_by_pieces_d *data) { unsigned int size = GET_MODE_SIZE (mode); --- 2657,2663 ---- to make a move insn for that mode. DATA has all the other info. */ static void ! store_by_pieces_2 (insn_gen_fn genfun, machine_mode mode, struct store_by_pieces_d *data) { unsigned int size = GET_MODE_SIZE (mode); diff -Nrcpad gcc-4.8.1/gcc/file-find.c gcc-4.8.2/gcc/file-find.c *** gcc-4.8.1/gcc/file-find.c Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/file-find.c Wed Jun 19 20:59:25 2013 *************** find_file_set_debug(bool debug_state) *** 31,37 **** } char * ! find_a_file (struct path_prefix *pprefix, const char *name) { char *temp; struct prefix_list *pl; --- 31,37 ---- } char * ! find_a_file (struct path_prefix *pprefix, const char *name, int mode) { char *temp; struct prefix_list *pl; *************** find_a_file (struct path_prefix *pprefix *** 50,56 **** if (IS_ABSOLUTE_PATH (name)) { ! if (access (name, X_OK) == 0) { strcpy (temp, name); --- 50,56 ---- if (IS_ABSOLUTE_PATH (name)) { ! if (access (name, mode) == 0) { strcpy (temp, name); *************** find_a_file (struct path_prefix *pprefix *** 66,72 **** strcpy (temp, name); strcat (temp, HOST_EXECUTABLE_SUFFIX); ! if (access (temp, X_OK) == 0) return temp; #endif --- 66,72 ---- strcpy (temp, name); strcat (temp, HOST_EXECUTABLE_SUFFIX); ! if (access (temp, mode) == 0) return temp; #endif *************** find_a_file (struct path_prefix *pprefix *** 83,89 **** if (stat (temp, &st) >= 0 && ! S_ISDIR (st.st_mode) ! && access (temp, X_OK) == 0) return temp; #ifdef HOST_EXECUTABLE_SUFFIX --- 83,89 ---- if (stat (temp, &st) >= 0 && ! S_ISDIR (st.st_mode) ! && access (temp, mode) == 0) return temp; #ifdef HOST_EXECUTABLE_SUFFIX *************** find_a_file (struct path_prefix *pprefix *** 93,99 **** if (stat (temp, &st) >= 0 && ! S_ISDIR (st.st_mode) ! && access (temp, X_OK) == 0) return temp; #endif } --- 93,99 ---- if (stat (temp, &st) >= 0 && ! S_ISDIR (st.st_mode) ! && access (temp, mode) == 0) return temp; #endif } diff -Nrcpad gcc-4.8.1/gcc/file-find.h gcc-4.8.2/gcc/file-find.h *** gcc-4.8.1/gcc/file-find.h Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/file-find.h Wed Jun 19 20:59:25 2013 *************** struct path_prefix *** 38,44 **** }; extern void find_file_set_debug (bool); ! extern char *find_a_file (struct path_prefix *, const char *); extern void add_prefix (struct path_prefix *, const char *); extern void prefix_from_env (const char *, struct path_prefix *); extern void prefix_from_string (const char *, struct path_prefix *); --- 38,44 ---- }; extern void find_file_set_debug (bool); ! extern char *find_a_file (struct path_prefix *, const char *, int); extern void add_prefix (struct path_prefix *, const char *); extern void prefix_from_env (const char *, struct path_prefix *); extern void prefix_from_string (const char *, struct path_prefix *); diff -Nrcpad gcc-4.8.1/gcc/fold-const.c gcc-4.8.2/gcc/fold-const.c *** gcc-4.8.1/gcc/fold-const.c Fri May 17 08:52:36 2013 --- gcc-4.8.2/gcc/fold-const.c Mon Sep 30 20:16:14 2013 *************** negate_expr_p (tree t) *** 469,479 **** and actually traps on some architectures. But if overflow is undefined, we can negate, because - (INT_MIN / 1) is an overflow. */ ! if (INTEGRAL_TYPE_P (TREE_TYPE (t)) ! && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))) ! break; ! return negate_expr_p (TREE_OPERAND (t, 1)) ! || negate_expr_p (TREE_OPERAND (t, 0)); case NOP_EXPR: /* Negate -((double)float) as (double)(-float). */ --- 469,492 ---- and actually traps on some architectures. But if overflow is undefined, we can negate, because - (INT_MIN / 1) is an overflow. */ ! if (INTEGRAL_TYPE_P (TREE_TYPE (t))) ! { ! if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))) ! break; ! /* If overflow is undefined then we have to be careful because ! we ask whether it's ok to associate the negate with the ! division which is not ok for example for ! -((a - b) / c) where (-(a - b)) / c may invoke undefined ! overflow because of negating INT_MIN. So do not use ! negate_expr_p here but open-code the two important cases. */ ! if (TREE_CODE (TREE_OPERAND (t, 0)) == NEGATE_EXPR ! || (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST ! && may_negate_without_overflow_p (TREE_OPERAND (t, 0)))) ! return true; ! } ! else if (negate_expr_p (TREE_OPERAND (t, 0))) ! return true; ! return negate_expr_p (TREE_OPERAND (t, 1)); case NOP_EXPR: /* Negate -((double)float) as (double)(-float). */ *************** fold_negate_expr (location_t loc, tree t *** 653,668 **** return fold_build2_loc (loc, TREE_CODE (t), type, TREE_OPERAND (t, 0), negate_expr (tem)); } tem = TREE_OPERAND (t, 0); ! if (negate_expr_p (tem)) ! { ! if (INTEGRAL_TYPE_P (type) ! && (TREE_CODE (tem) != INTEGER_CST ! || tree_int_cst_equal (tem, TYPE_MIN_VALUE (type)))) ! fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC); ! return fold_build2_loc (loc, TREE_CODE (t), type, ! negate_expr (tem), TREE_OPERAND (t, 1)); ! } } break; --- 666,685 ---- return fold_build2_loc (loc, TREE_CODE (t), type, TREE_OPERAND (t, 0), negate_expr (tem)); } + /* If overflow is undefined then we have to be careful because + we ask whether it's ok to associate the negate with the + division which is not ok for example for + -((a - b) / c) where (-(a - b)) / c may invoke undefined + overflow because of negating INT_MIN. So do not use + negate_expr_p here but open-code the two important cases. */ tem = TREE_OPERAND (t, 0); ! if ((INTEGRAL_TYPE_P (type) ! && (TREE_CODE (tem) == NEGATE_EXPR ! || (TREE_CODE (tem) == INTEGER_CST ! && may_negate_without_overflow_p (tem)))) ! || !INTEGRAL_TYPE_P (type)) ! return fold_build2_loc (loc, TREE_CODE (t), type, ! negate_expr (tem), TREE_OPERAND (t, 1)); } break; *************** build_range_check (location_t loc, tree *** 4220,4226 **** } if (low == 0 && high == 0) ! return build_int_cst (type, 1); if (low == 0) return fold_build2_loc (loc, LE_EXPR, type, exp, --- 4237,4243 ---- } if (low == 0 && high == 0) ! return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp); if (low == 0) return fold_build2_loc (loc, LE_EXPR, type, exp, *************** exact_inverse (tree type, tree cst) *** 9851,9856 **** --- 9868,9891 ---- } } + /* Mask out the tz least significant bits of X of type TYPE where + tz is the number of trailing zeroes in Y. */ + static double_int + mask_with_tz (tree type, double_int x, double_int y) + { + int tz = y.trailing_zeros (); + + if (tz > 0) + { + double_int mask; + + mask = ~double_int::mask (tz); + mask = mask.ext (TYPE_PRECISION (type), TYPE_UNSIGNED (type)); + return mask & x; + } + return x; + } + /* Fold a binary expression of code CODE and type TYPE with operands OP0 and OP1. LOC is the location of the resulting expression. Return the folded expression if folding is successful. Otherwise, *************** fold_binary_loc (location_t loc, *** 11175,11180 **** --- 11210,11217 ---- { double_int c1, c2, c3, msk; int width = TYPE_PRECISION (type), w; + bool try_simplify = true; + c1 = tree_to_double_int (TREE_OPERAND (arg0, 1)); c2 = tree_to_double_int (arg1); *************** fold_binary_loc (location_t loc, *** 11209,11215 **** break; } } ! if (c3 != c1) return fold_build2_loc (loc, BIT_IOR_EXPR, type, fold_build2_loc (loc, BIT_AND_EXPR, type, TREE_OPERAND (arg0, 0), --- 11246,11266 ---- break; } } ! ! /* If X is a tree of the form (Y * K1) & K2, this might conflict ! with that optimization from the BIT_AND_EXPR optimizations. ! This could end up in an infinite recursion. */ ! if (TREE_CODE (TREE_OPERAND (arg0, 0)) == MULT_EXPR ! && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)) ! == INTEGER_CST) ! { ! tree t = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1); ! double_int masked = mask_with_tz (type, c3, tree_to_double_int (t)); ! ! try_simplify = (masked != c1); ! } ! ! if (try_simplify && c3 != c1) return fold_build2_loc (loc, BIT_IOR_EXPR, type, fold_build2_loc (loc, BIT_AND_EXPR, type, TREE_OPERAND (arg0, 0), *************** fold_binary_loc (location_t loc, *** 11599,11620 **** && TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) { ! int arg1tz ! = tree_to_double_int (TREE_OPERAND (arg0, 1)).trailing_zeros (); ! if (arg1tz > 0) ! { ! double_int arg1mask, masked; ! arg1mask = ~double_int::mask (arg1tz); ! arg1mask = arg1mask.ext (TYPE_PRECISION (type), ! TYPE_UNSIGNED (type)); ! masked = arg1mask & tree_to_double_int (arg1); ! if (masked.is_zero ()) ! return omit_two_operands_loc (loc, type, build_zero_cst (type), ! arg0, arg1); ! else if (masked != tree_to_double_int (arg1)) ! return fold_build2_loc (loc, code, type, op0, ! double_int_to_tree (type, masked)); ! } } /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M, --- 11650,11665 ---- && TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) { ! double_int masked ! = mask_with_tz (type, tree_to_double_int (arg1), ! tree_to_double_int (TREE_OPERAND (arg0, 1))); ! ! if (masked.is_zero ()) ! return omit_two_operands_loc (loc, type, build_zero_cst (type), ! arg0, arg1); ! else if (masked != tree_to_double_int (arg1)) ! return fold_build2_loc (loc, code, type, op0, ! double_int_to_tree (type, masked)); } /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M, *************** fold_ternary_loc (location_t loc, enum t *** 14040,14053 **** && integer_zerop (op2) && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1))) { /* sign_bit_p only checks ARG1 bits within A's precision. If has wider type than A, bits outside of A's precision in need to be checked. If they are all 0, this optimization needs to be done in unsigned A's type, if they are all 1 in signed A's type, otherwise this can't be done. */ ! if (TYPE_PRECISION (TREE_TYPE (tem)) ! < TYPE_PRECISION (TREE_TYPE (arg1)) && TYPE_PRECISION (TREE_TYPE (tem)) < TYPE_PRECISION (type)) { --- 14085,14113 ---- && integer_zerop (op2) && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1))) { + /* sign_bit_p looks through both zero and sign extensions, + but for this optimization only sign extensions are + usable. */ + tree tem2 = TREE_OPERAND (arg0, 0); + while (tem != tem2) + { + if (TREE_CODE (tem2) != NOP_EXPR + || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0)))) + { + tem = NULL_TREE; + break; + } + tem2 = TREE_OPERAND (tem2, 0); + } /* sign_bit_p only checks ARG1 bits within A's precision. If has wider type than A, bits outside of A's precision in need to be checked. If they are all 0, this optimization needs to be done in unsigned A's type, if they are all 1 in signed A's type, otherwise this can't be done. */ ! if (tem ! && TYPE_PRECISION (TREE_TYPE (tem)) ! < TYPE_PRECISION (TREE_TYPE (arg1)) && TYPE_PRECISION (TREE_TYPE (tem)) < TYPE_PRECISION (type)) { diff -Nrcpad gcc-4.8.1/gcc/fortran/ChangeLog gcc-4.8.2/gcc/fortran/ChangeLog *** gcc-4.8.1/gcc/fortran/ChangeLog Fri May 31 09:01:57 2013 --- gcc-4.8.2/gcc/fortran/ChangeLog Wed Oct 16 07:19:55 2013 *************** *** 1,3 **** --- 1,82 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + + 2013-10-04 Tobias Burnus + + Backport from mainline + 2013-09-25 Tobias Burnus + + PR fortran/57697 + PR fortran/58469 + * resolve.c (generate_component_assignments): Avoid double free + at runtime and freeing a still-being used expr. + + 2013-08-24 Mikael Morin + + PR fortran/57798 + * trans-array.c (gfc_conv_ss_startstride, set_loop_bounds, + gfc_set_delta): Generate preliminary code before the outermost loop. + + 2013-08-24 Mikael Morin + + * trans-array.c (gfc_conv_section_startstride): Move &loop->pre access + to the callers. + (gfc_conv_ss_startstride, gfc_conv_expr_descriptor): Update callers. + + 2013-08-24 Janus Weil + + Backport from trunk: + 2013-08-22 Janus Weil + + PR fortran/58185 + * match.c (copy_ts_from_selector_to_associate): Only build class + container for polymorphic selector. Some cleanup. + + 2013-08-11 Janus Weil + + Backport from trunk: + 2013-08-09 Janus Weil + + PR fortran/58058 + * trans-intrinsic.c (gfc_conv_intrinsic_transfer): Free the temporary + string, if necessary. + + 2013-07-28 Tobias Burnus + + Backport from mainline + 2013-05-28 Dominique d'Humieres + + PR fortran/57435 + * module.c (check_for_ambiguous): Avoid null pointer deref. + + 2013-07-08 Tobias Burnus + + PR fortran/57785 + * simplify.c (compute_dot_product): Complex conjugate for + dot_product. + (gfc_simplify_dot_product, gfc_simplify_matmul): Update call. + + 2013-06-11 Tobias Burnus + + PR fortran/57508 + * resolve.c (get_temp_from_expr): Don't copy function + result attributes to temporary. + + 2013-06-04 Tobias Burnus + + Backport from mainline + 2013-05-22 Tobias Burnus + + PR fortran/57364 + * resolve.c (get_temp_from_expr): Commit created sym. + + 2013-05-31 Janus Weil + Tobias Burnus + + PR fortran/57217 + * interface.c (check_dummy_characteristics): Symmetrize type check. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/gcc/fortran/gfortran.info gcc-4.8.2/gcc/fortran/gfortran.info *** gcc-4.8.1/gcc/fortran/gfortran.info Fri May 31 09:58:14 2013 --- gcc-4.8.2/gcc/fortran/gfortran.info Wed Oct 16 08:16:28 2013 *************** *** 1,5 **** ! This is doc/gfortran.info, produced by makeinfo version 4.13 from ! /d/gcc-4.8.1/gcc-4.8.1/gcc/fortran/gfortran.texi. Copyright (C) 1999-2013 Free Software Foundation, Inc. --- 1,5 ---- ! This is gfortran.info, produced by makeinfo version 5.1 from ! gfortran.texi. Copyright (C) 1999-2013 Free Software Foundation, Inc. *************** Free Documentation License". *** 18,32 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. ! INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * gfortran: (gfortran). The GNU Fortran Compiler. END-INFO-DIR-ENTRY This file documents the use and the internals of the GNU Fortran ! compiler, (`gfortran'). Published by the Free Software Foundation 51 Franklin Street, Fifth Floor Boston, MA 02110-1301 USA --- 18,32 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * gfortran: (gfortran). The GNU Fortran Compiler. END-INFO-DIR-ENTRY + This file documents the use and the internals of the GNU Fortran ! compiler, ('gfortran'). Published by the Free Software Foundation 51 Franklin Street, Fifth Floor Boston, MA 02110-1301 USA *************** Free Documentation License". *** 48,55 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development.  File: gfortran.info, Node: Top, Next: Introduction, Up: (dir) --- 48,55 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development.  File: gfortran.info, Node: Top, Next: Introduction, Up: (dir) *************** File: gfortran.info, Node: Top, Next: *** 57,64 **** Introduction ************ ! This manual documents the use of `gfortran', the GNU Fortran compiler. ! You can find in this manual how to invoke `gfortran', as well as its features and incompatibilities. * Menu: --- 57,64 ---- Introduction ************ ! This manual documents the use of 'gfortran', the GNU Fortran compiler. ! You can find in this manual how to invoke 'gfortran', as well as its features and incompatibilities. * Menu: *************** features and incompatibilities. *** 66,72 **** * Introduction:: Part I: Invoking GNU Fortran ! * Invoking GNU Fortran:: Command options supported by `gfortran'. * Runtime:: Influencing runtime behavior with environment variables. Part II: Language Reference --- 66,72 ---- * Introduction:: Part I: Invoking GNU Fortran ! * Invoking GNU Fortran:: Command options supported by 'gfortran'. * Runtime:: Influencing runtime behavior with environment variables. Part II: Language Reference *************** File: gfortran.info, Node: Introduction *** 93,99 **** ************** The GNU Fortran compiler front end was designed initially as a free ! replacement for, or alternative to, the Unix `f95' command; `gfortran' is the command you will use to invoke the compiler. * Menu: --- 93,99 ---- ************** The GNU Fortran compiler front end was designed initially as a free ! replacement for, or alternative to, the Unix 'f95' command; 'gfortran' is the command you will use to invoke the compiler. * Menu: *************** completely, parts of the Fortran 2003 an *** 116,189 **** several vendor extensions. The development goal is to provide the following features: ! * Read a user's program, stored in a file and containing ! instructions written in Fortran 77, Fortran 90, Fortran 95, ! Fortran 2003 or Fortran 2008. This file contains "source code". ! * Translate the user's program into instructions a computer can ! carry out more quickly than it takes to translate the instructions ! in the first place. The result after compilation of a program is ! "machine code", code designed to be efficiently translated and ! processed by a machine such as your computer. Humans usually are ! not as good writing machine code as they are at writing Fortran ! (or C++, Ada, or Java), because it is easy to make tiny mistakes ! writing machine code. * Provide the user with information about the reasons why the compiler is unable to create a binary from the source code. Usually this will be the case if the source code is flawed. The Fortran 90 standard requires that the compiler can point out ! mistakes to the user. An incorrect usage of the language causes ! an "error message". The compiler will also attempt to diagnose cases where the user's ! program contains a correct usage of the language, but instructs ! the computer to do something questionable. This kind of ! diagnostics message is called a "warning message". * Provide optional information about the translation passes from the source code to machine code. This can help a user of the compiler to find the cause of certain bugs which may not be obvious in the ! source code, but may be more easily found at a lower level ! compiler output. It also helps developers to find bugs in the ! compiler itself. * Provide information in the generated machine code that can make it easier to find bugs in the program (using a debugging tool, called ! a "debugger", such as the GNU Debugger `gdb'). ! * Locate and gather machine code already generated to perform ! actions requested by statements in the user's program. This ! machine code is organized into "modules" and is located and ! "linked" to the user program. The GNU Fortran compiler consists of several components: ! * A version of the `gcc' command (which also might be installed as ! the system's `cc' command) that also understands and accepts ! Fortran source code. The `gcc' command is the "driver" program for ! all the languages in the GNU Compiler Collection (GCC); With `gcc', you can compile the source code of any language for which a front end is available in GCC. ! * The `gfortran' command itself, which also might be installed as the ! system's `f95' command. `gfortran' is just another driver program, but specifically for the Fortran compiler only. The difference ! with `gcc' is that `gfortran' will automatically link the correct libraries to your program. * A collection of run-time libraries. These libraries contain the ! machine code needed to support capabilities of the Fortran ! language that are not directly provided by the machine code ! generated by the `gfortran' compilation phase, such as intrinsic ! functions and subroutines, and routines for interaction with files ! and the operating system. ! * The Fortran compiler itself, (`f951'). This is the GNU Fortran parser and code generator, linked to and interfaced with the GCC ! backend library. `f951' "translates" the source code to assembler code. You would typically not use this program directly; instead, ! the `gcc' or `gfortran' driver programs will call it for you.  File: gfortran.info, Node: GNU Fortran and GCC, Next: Preprocessing and conditional compilation, Prev: About GNU Fortran, Up: Introduction --- 116,189 ---- several vendor extensions. The development goal is to provide the following features: ! * Read a user's program, stored in a file and containing instructions ! written in Fortran 77, Fortran 90, Fortran 95, Fortran 2003 or ! Fortran 2008. This file contains "source code". ! * Translate the user's program into instructions a computer can carry ! out more quickly than it takes to translate the instructions in the ! first place. The result after compilation of a program is "machine ! code", code designed to be efficiently translated and processed by ! a machine such as your computer. Humans usually are not as good ! writing machine code as they are at writing Fortran (or C++, Ada, ! or Java), because it is easy to make tiny mistakes writing machine ! code. * Provide the user with information about the reasons why the compiler is unable to create a binary from the source code. Usually this will be the case if the source code is flawed. The Fortran 90 standard requires that the compiler can point out ! mistakes to the user. An incorrect usage of the language causes an ! "error message". The compiler will also attempt to diagnose cases where the user's ! program contains a correct usage of the language, but instructs the ! computer to do something questionable. This kind of diagnostics ! message is called a "warning message". * Provide optional information about the translation passes from the source code to machine code. This can help a user of the compiler to find the cause of certain bugs which may not be obvious in the ! source code, but may be more easily found at a lower level compiler ! output. It also helps developers to find bugs in the compiler ! itself. * Provide information in the generated machine code that can make it easier to find bugs in the program (using a debugging tool, called ! a "debugger", such as the GNU Debugger 'gdb'). ! * Locate and gather machine code already generated to perform actions ! requested by statements in the user's program. This machine code ! is organized into "modules" and is located and "linked" to the user ! program. The GNU Fortran compiler consists of several components: ! * A version of the 'gcc' command (which also might be installed as ! the system's 'cc' command) that also understands and accepts ! Fortran source code. The 'gcc' command is the "driver" program for ! all the languages in the GNU Compiler Collection (GCC); With 'gcc', you can compile the source code of any language for which a front end is available in GCC. ! * The 'gfortran' command itself, which also might be installed as the ! system's 'f95' command. 'gfortran' is just another driver program, but specifically for the Fortran compiler only. The difference ! with 'gcc' is that 'gfortran' will automatically link the correct libraries to your program. * A collection of run-time libraries. These libraries contain the ! machine code needed to support capabilities of the Fortran language ! that are not directly provided by the machine code generated by the ! 'gfortran' compilation phase, such as intrinsic functions and ! subroutines, and routines for interaction with files and the ! operating system. ! * The Fortran compiler itself, ('f951'). This is the GNU Fortran parser and code generator, linked to and interfaced with the GCC ! backend library. 'f951' "translates" the source code to assembler code. You would typically not use this program directly; instead, ! the 'gcc' or 'gfortran' driver programs will call it for you.  File: gfortran.info, Node: GNU Fortran and GCC, Next: Preprocessing and conditional compilation, Prev: About GNU Fortran, Up: Introduction *************** File: gfortran.info, Node: GNU Fortran *** 194,229 **** GNU Fortran is a part of GCC, the "GNU Compiler Collection". GCC consists of a collection of front ends for various languages, which translate the source code into a language-independent form called ! "GENERIC". This is then processed by a common middle end which ! provides optimization, and then passed to one of a collection of back ! ends which generate code for different computer architectures and ! operating systems. ! Functionally, this is implemented with a driver program (`gcc') ! which provides the command-line interface for the compiler. It calls ! the relevant compiler front-end program (e.g., `f951' for Fortran) for ! each file in the source code, and then calls the assembler and linker ! as appropriate to produce the compiled output. In a copy of GCC which ! has been compiled with Fortran language support enabled, `gcc' will ! recognize files with `.f', `.for', `.ftn', `.f90', `.f95', `.f03' and ! `.f08' extensions as Fortran source code, and compile it accordingly. ! A `gfortran' driver program is also provided, which is identical to ! `gcc' except that it automatically links the Fortran runtime libraries ! into the compiled program. ! Source files with `.f', `.for', `.fpp', `.ftn', `.F', `.FOR', ! `.FPP', and `.FTN' extensions are treated as fixed form. Source files ! with `.f90', `.f95', `.f03', `.f08', `.F90', `.F95', `.F03' and `.F08' ! extensions are treated as free form. The capitalized versions of ! either form are run through preprocessing. Source files with the lower ! case `.fpp' extension are also run through preprocessing. This manual specifically documents the Fortran front end, which ! handles the programming language's syntax and semantics. The aspects ! of GCC which relate to the optimization passes and the back-end code generation are documented in the GCC manual; see *note Introduction: ! (gcc)Top. The two manuals together provide a complete reference for ! the GNU Fortran compiler.  File: gfortran.info, Node: Preprocessing and conditional compilation, Next: GNU Fortran and G77, Prev: GNU Fortran and GCC, Up: Introduction --- 194,229 ---- GNU Fortran is a part of GCC, the "GNU Compiler Collection". GCC consists of a collection of front ends for various languages, which translate the source code into a language-independent form called ! "GENERIC". This is then processed by a common middle end which provides ! optimization, and then passed to one of a collection of back ends which ! generate code for different computer architectures and operating ! systems. ! Functionally, this is implemented with a driver program ('gcc') which ! provides the command-line interface for the compiler. It calls the ! relevant compiler front-end program (e.g., 'f951' for Fortran) for each ! file in the source code, and then calls the assembler and linker as ! appropriate to produce the compiled output. In a copy of GCC which has ! been compiled with Fortran language support enabled, 'gcc' will ! recognize files with '.f', '.for', '.ftn', '.f90', '.f95', '.f03' and ! '.f08' extensions as Fortran source code, and compile it accordingly. A ! 'gfortran' driver program is also provided, which is identical to 'gcc' ! except that it automatically links the Fortran runtime libraries into ! the compiled program. ! Source files with '.f', '.for', '.fpp', '.ftn', '.F', '.FOR', '.FPP', ! and '.FTN' extensions are treated as fixed form. Source files with ! '.f90', '.f95', '.f03', '.f08', '.F90', '.F95', '.F03' and '.F08' ! extensions are treated as free form. The capitalized versions of either ! form are run through preprocessing. Source files with the lower case ! '.fpp' extension are also run through preprocessing. This manual specifically documents the Fortran front end, which ! handles the programming language's syntax and semantics. The aspects of ! GCC which relate to the optimization passes and the back-end code generation are documented in the GCC manual; see *note Introduction: ! (gcc)Top. The two manuals together provide a complete reference for the ! GNU Fortran compiler.  File: gfortran.info, Node: Preprocessing and conditional compilation, Next: GNU Fortran and G77, Prev: GNU Fortran and GCC, Up: Introduction *************** File: gfortran.info, Node: Preprocessin *** 233,262 **** Many Fortran compilers including GNU Fortran allow passing the source code through a C preprocessor (CPP; sometimes also called the Fortran ! preprocessor, FPP) to allow for conditional compilation. In the case ! of GNU Fortran, this is the GNU C Preprocessor in the traditional mode. ! On systems with case-preserving file names, the preprocessor is ! automatically invoked if the filename extension is `.F', `.FOR', ! `.FTN', `.fpp', `.FPP', `.F90', `.F95', `.F03' or `.F08'. To manually ! invoke the preprocessor on any file, use `-cpp', to disable ! preprocessing on files where the preprocessor is run automatically, use ! `-nocpp'. If a preprocessed file includes another file with the Fortran ! `INCLUDE' statement, the included file is not preprocessed. To preprocess included files, use the equivalent preprocessor statement ! `#include'. ! If GNU Fortran invokes the preprocessor, `__GFORTRAN__' is defined ! and `__GNUC__', `__GNUC_MINOR__' and `__GNUC_PATCHLEVEL__' can be used ! to determine the version of the compiler. See *note Overview: ! (cpp)Top. for details. While CPP is the de-facto standard for preprocessing Fortran code, Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines Conditional Compilation, which is not widely used and not directly supported by the GNU Fortran compiler. You can use the program coco to ! preprocess such files (`http://www.daniellnagle.com/coco.html').  File: gfortran.info, Node: GNU Fortran and G77, Next: Project Status, Prev: Preprocessing and conditional compilation, Up: Introduction --- 233,261 ---- Many Fortran compilers including GNU Fortran allow passing the source code through a C preprocessor (CPP; sometimes also called the Fortran ! preprocessor, FPP) to allow for conditional compilation. In the case of ! GNU Fortran, this is the GNU C Preprocessor in the traditional mode. On ! systems with case-preserving file names, the preprocessor is ! automatically invoked if the filename extension is '.F', '.FOR', '.FTN', ! '.fpp', '.FPP', '.F90', '.F95', '.F03' or '.F08'. To manually invoke ! the preprocessor on any file, use '-cpp', to disable preprocessing on ! files where the preprocessor is run automatically, use '-nocpp'. If a preprocessed file includes another file with the Fortran ! 'INCLUDE' statement, the included file is not preprocessed. To preprocess included files, use the equivalent preprocessor statement ! '#include'. ! If GNU Fortran invokes the preprocessor, '__GFORTRAN__' is defined ! and '__GNUC__', '__GNUC_MINOR__' and '__GNUC_PATCHLEVEL__' can be used ! to determine the version of the compiler. See *note Overview: (cpp)Top. ! for details. While CPP is the de-facto standard for preprocessing Fortran code, Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines Conditional Compilation, which is not widely used and not directly supported by the GNU Fortran compiler. You can use the program coco to ! preprocess such files ().  File: gfortran.info, Node: GNU Fortran and G77, Next: Project Status, Prev: Preprocessing and conditional compilation, Up: Introduction *************** File: gfortran.info, Node: GNU Fortran *** 264,275 **** 1.4 GNU Fortran and G77 ======================= ! The GNU Fortran compiler is the successor to `g77', the Fortran 77 ! front end included in GCC prior to version 4. It is an entirely new ! program that has been designed to provide Fortran 95 support and ! extensibility for future Fortran language standards, as well as ! providing backwards compatibility for Fortran 77 and nearly all of the ! GNU language extensions supported by `g77'.  File: gfortran.info, Node: Project Status, Next: Standards, Prev: GNU Fortran and G77, Up: Introduction --- 263,274 ---- 1.4 GNU Fortran and G77 ======================= ! The GNU Fortran compiler is the successor to 'g77', the Fortran 77 front ! end included in GCC prior to version 4. It is an entirely new program ! that has been designed to provide Fortran 95 support and extensibility ! for future Fortran language standards, as well as providing backwards ! compatibility for Fortran 77 and nearly all of the GNU language ! extensions supported by 'g77'.  File: gfortran.info, Node: Project Status, Next: Standards, Prev: GNU Fortran and G77, Up: Introduction *************** File: gfortran.info, Node: Project Stat *** 277,292 **** 1.5 Project Status ================== ! As soon as `gfortran' can parse all of the statements correctly, ! it will be in the "larva" state. When we generate code, the ! "puppa" state. When `gfortran' is done, we'll see if it will be a beautiful butterfly, or just a big bug.... -Andy Vaught, April 2000 The start of the GNU Fortran 95 project was announced on the GCC ! homepage in March 18, 2000 (even though Andy had already been working ! on it for a while, of course). The GNU Fortran compiler is able to compile nearly all standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs, --- 276,291 ---- 1.5 Project Status ================== ! As soon as 'gfortran' can parse all of the statements correctly, it ! will be in the "larva" state. When we generate code, the "puppa" ! state. When 'gfortran' is done, we'll see if it will be a beautiful butterfly, or just a big bug.... -Andy Vaught, April 2000 The start of the GNU Fortran 95 project was announced on the GCC ! homepage in March 18, 2000 (even though Andy had already been working on ! it for a while, of course). The GNU Fortran compiler is able to compile nearly all standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs, *************** produces acceptable results on the LAPAC *** 302,319 **** (http://www.netlib.org/lapack/faq.html#1.21). It also provides respectable performance on the Polyhedron Fortran compiler benchmarks (http://www.polyhedron.com/pb05.html) and the Livermore Fortran Kernels ! test ! (http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html). It ! has been used to compile a number of large real-world programs, including the HIRLAM weather-forecasting code (http://mysite.verizon.net/serveall/moene.pdf) and the Tonto quantum chemistry package (http://www.theochem.uwa.edu.au/tonto/); see ! `http://gcc.gnu.org/wiki/GfortranApps' for an extended list. Among other things, the GNU Fortran compiler is intended as a replacement for G77. At this point, nearly all programs that could be ! compiled with G77 can be compiled with GNU Fortran, although there are ! a few minor known regressions. The primary work remaining to be done on GNU Fortran falls into three categories: bug fixing (primarily regarding the treatment of invalid --- 301,317 ---- (http://www.netlib.org/lapack/faq.html#1.21). It also provides respectable performance on the Polyhedron Fortran compiler benchmarks (http://www.polyhedron.com/pb05.html) and the Livermore Fortran Kernels ! test (http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html). ! It has been used to compile a number of large real-world programs, including the HIRLAM weather-forecasting code (http://mysite.verizon.net/serveall/moene.pdf) and the Tonto quantum chemistry package (http://www.theochem.uwa.edu.au/tonto/); see ! for an extended list. Among other things, the GNU Fortran compiler is intended as a replacement for G77. At this point, nearly all programs that could be ! compiled with G77 can be compiled with GNU Fortran, although there are a ! few minor known regressions. The primary work remaining to be done on GNU Fortran falls into three categories: bug fixing (primarily regarding the treatment of invalid *************** File: gfortran.info, Node: Standards, *** 332,353 **** * Varying Length Character Strings:: ! The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95). ! As such, it can also compile essentially all standard-compliant Fortran ! 90 and Fortran 77 programs. It also supports the ISO/IEC TR-15581 enhancements to allocatable arrays. GNU Fortran also have a partial support for ISO/IEC 1539-1:2004 (Fortran 2003), ISO/IEC 1539-1:2010 (Fortran 2008), the Technical ! Specification `Further Interoperability of Fortran with C' (ISO/IEC TS 29113:2012). Full support of those standards and future Fortran ! standards is planned. The current status of the support is can be ! found in the *note Fortran 2003 status::, *note Fortran 2008 status:: ! and *note TS 29113 status:: sections of the documentation. Additionally, the GNU Fortran compilers supports the OpenMP specification (version 3.1, ! `http://openmp.org/wp/openmp-specifications/').  File: gfortran.info, Node: Varying Length Character Strings, Up: Standards --- 330,351 ---- * Varying Length Character Strings:: ! The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95). As ! such, it can also compile essentially all standard-compliant Fortran 90 ! and Fortran 77 programs. It also supports the ISO/IEC TR-15581 enhancements to allocatable arrays. GNU Fortran also have a partial support for ISO/IEC 1539-1:2004 (Fortran 2003), ISO/IEC 1539-1:2010 (Fortran 2008), the Technical ! Specification 'Further Interoperability of Fortran with C' (ISO/IEC TS 29113:2012). Full support of those standards and future Fortran ! standards is planned. The current status of the support is can be found ! in the *note Fortran 2003 status::, *note Fortran 2008 status:: and ! *note TS 29113 status:: sections of the documentation. Additionally, the GNU Fortran compilers supports the OpenMP specification (version 3.1, ! ).  File: gfortran.info, Node: Varying Length Character Strings, Up: Standards *************** The Fortran 95 standard specifies in Par *** 359,371 **** varying length character strings. While GNU Fortran currently does not support such strings directly, there exist two Fortran implementations for them, which work with GNU Fortran. They can be found at ! `http://www.fortran.com/iso_varying_string.f95' and at ! `ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/'. Deferred-length character strings of Fortran 2003 supports part of ! the features of `ISO_VARYING_STRING' and should be considered as ! replacement. (Namely, allocatable or pointers of the type ! `character(len=:)'.)  File: gfortran.info, Node: Invoking GNU Fortran, Next: Runtime, Prev: Introduction, Up: Top --- 357,369 ---- varying length character strings. While GNU Fortran currently does not support such strings directly, there exist two Fortran implementations for them, which work with GNU Fortran. They can be found at ! and at ! . Deferred-length character strings of Fortran 2003 supports part of ! the features of 'ISO_VARYING_STRING' and should be considered as ! replacement. (Namely, allocatable or pointers of the type ! 'character(len=:)'.)  File: gfortran.info, Node: Invoking GNU Fortran, Next: Runtime, Prev: Introduction, Up: Top *************** File: gfortran.info, Node: Invoking GNU *** 373,397 **** 2 GNU Fortran Command Options ***************************** ! The `gfortran' command supports all the options supported by the `gcc' command. Only options specific to GNU Fortran are documented here. *Note GCC Command Options: (gcc)Invoking GCC, for information on the ! non-Fortran-specific aspects of the `gcc' command (and, therefore, the ! `gfortran' command). ! All GCC and GNU Fortran options are accepted both by `gfortran' and ! by `gcc' (as well as any other drivers built at the same time, such as ! `g++'), since adding GNU Fortran to the GCC distribution enables acceptance of GNU Fortran options by all of the relevant drivers. ! In some cases, options have positive and negative forms; the ! negative form of `-ffoo' would be `-fno-foo'. This manual documents ! only one of these two forms, whichever one is not the default. * Menu: ! * Option Summary:: Brief list of all `gfortran' options, without explanations. * Fortran Dialect Options:: Controlling the variant of Fortran language compiled. --- 371,395 ---- 2 GNU Fortran Command Options ***************************** ! The 'gfortran' command supports all the options supported by the 'gcc' command. Only options specific to GNU Fortran are documented here. *Note GCC Command Options: (gcc)Invoking GCC, for information on the ! non-Fortran-specific aspects of the 'gcc' command (and, therefore, the ! 'gfortran' command). ! All GCC and GNU Fortran options are accepted both by 'gfortran' and ! by 'gcc' (as well as any other drivers built at the same time, such as ! 'g++'), since adding GNU Fortran to the GCC distribution enables acceptance of GNU Fortran options by all of the relevant drivers. ! In some cases, options have positive and negative forms; the negative ! form of '-ffoo' would be '-fno-foo'. This manual documents only one of ! these two forms, whichever one is not the default. * Menu: ! * Option Summary:: Brief list of all 'gfortran' options, without explanations. * Fortran Dialect Options:: Controlling the variant of Fortran language compiled. *************** only one of these two forms, whichever o *** 403,409 **** * Runtime Options:: Influencing runtime behavior * Code Gen Options:: Specifying conventions for function calls, data layout and register usage. ! * Environment Variables:: Environment variables that affect `gfortran'.  File: gfortran.info, Node: Option Summary, Next: Fortran Dialect Options, Up: Invoking GNU Fortran --- 401,407 ---- * Runtime Options:: Influencing runtime behavior * Code Gen Options:: Specifying conventions for function calls, data layout and register usage. ! * Environment Variables:: Environment variables that affect 'gfortran'.  File: gfortran.info, Node: Option Summary, Next: Fortran Dialect Options, Up: Invoking GNU Fortran *************** File: gfortran.info, Node: Option Summa *** 411,418 **** 2.1 Option summary ================== ! Here is a summary of all the options specific to GNU Fortran, grouped ! by type. Explanations are in the following sections. _Fortran Language Options_ *Note Options controlling Fortran dialect: Fortran Dialect Options. --- 409,416 ---- 2.1 Option summary ================== ! Here is a summary of all the options specific to GNU Fortran, grouped by ! type. Explanations are in the following sections. _Fortran Language Options_ *Note Options controlling Fortran dialect: Fortran Dialect Options. *************** _Preprocessing Options_ *** 437,444 **** -undef _Error and Warning Options_ ! *Note Options to request or suppress errors and warnings: Error ! and Warning Options. -Waliasing -Wall -Wampersand -Warray-bounds -Wc-binding-type -Wcharacter-truncation -Wconversion -Wfunction-elimination -Wimplicit-interface --- 435,442 ---- -undef _Error and Warning Options_ ! *Note Options to request or suppress errors and warnings: Error and ! Warning Options. -Waliasing -Wall -Wampersand -Warray-bounds -Wc-binding-type -Wcharacter-truncation -Wconversion -Wfunction-elimination -Wimplicit-interface *************** _Code Generation Options_ *** 482,488 **** -fsecond-underscore -fpack-derived -frealloc-lhs -frecursive -frepack-arrays -fshort-enums -fstack-arrays -  File: gfortran.info, Node: Fortran Dialect Options, Next: Preprocessing Options, Prev: Option Summary, Up: Invoking GNU Fortran --- 480,485 ---- *************** File: gfortran.info, Node: Fortran Dial *** 492,661 **** The following options control the details of the Fortran dialect accepted by the compiler: ! `-ffree-form' ! `-ffixed-form' Specify the layout used by the source file. The free form layout was introduced in Fortran 90. Fixed form was traditionally used in older Fortran programs. When neither option is specified, the source form is determined by the file extension. ! `-fall-intrinsics' This option causes all intrinsic procedures (including the GNU-specific extensions) to be accepted. This can be useful with ! `-std=f95' to force standard-compliance but get access to the full ! range of intrinsics available with `gfortran'. As a consequence, ! `-Wintrinsics-std' will be ignored and no user-defined procedure with the same name as any intrinsic will be called except when it ! is explicitly declared `EXTERNAL'. ! `-fd-lines-as-code' ! `-fd-lines-as-comments' ! Enable special treatment for lines beginning with `d' or `D' in ! fixed form sources. If the `-fd-lines-as-code' option is given they are treated as if the first column contained a blank. If the ! `-fd-lines-as-comments' option is given, they are treated as comment lines. ! `-fdefault-double-8' ! Set the `DOUBLE PRECISION' type to an 8 byte wide type. If ! `-fdefault-real-8' is given, `DOUBLE PRECISION' would instead be ! promoted to 16 bytes if possible, and `-fdefault-double-8' can be ! used to prevent this. The kind of real constants like `1.d0' will ! not be changed by `-fdefault-real-8' though, so also ! `-fdefault-double-8' does not affect it. ! `-fdefault-integer-8' Set the default integer and logical types to an 8 byte wide type. Do nothing if this is already the default. This option also ! affects the kind of integer constants like `42'. ! `-fdefault-real-8' Set the default real type to an 8 byte wide type. Do nothing if this is already the default. This option also affects the kind of ! non-double real constants like `1.0', and does promote the default ! width of `DOUBLE PRECISION' to 16 bytes if possible, unless ! `-fdefault-double-8' is given, too. ! `-fdollar-ok' ! Allow `$' as a valid non-first character in a symbol name. Symbols ! that start with `$' are rejected since it is unclear which rules to apply to implicit typing as different vendors implement different ! rules. Using `$' in `IMPLICIT' statements is also rejected. ! `-fbackslash' Change the interpretation of backslashes in string literals from a ! single backslash character to "C-style" escape characters. The ! following combinations are expanded `\a', `\b', `\f', `\n', `\r', ! `\t', `\v', `\\', and `\0' to the ASCII characters alert, backspace, form feed, newline, carriage return, horizontal tab, vertical tab, backslash, and NUL, respectively. Additionally, ! `\x'NN, `\u'NNNN and `\U'NNNNNNNN (where each N is a hexadecimal digit) are translated into the Unicode characters corresponding to ! the specified code points. All other combinations of a character preceded by \ are unexpanded. ! `-fmodule-private' ! Set the default accessibility of module entities to `PRIVATE'. Use-associated entities will not be accessible unless they are ! explicitly declared as `PUBLIC'. ! `-ffixed-line-length-N' Set column after which characters are ignored in typical fixed-form lines in the source file, and through which spaces are assumed (as if padded to that length) after the ends of short fixed-form lines. Popular values for N include 72 (the standard and the default), 80 (card image), and 132 (corresponding to "extended-source" options ! in some popular compilers). N may also be `none', meaning that ! the entire line is meaningful and that continued character ! constants never have implicit spaces appended to them to fill out ! the line. `-ffixed-line-length-0' means the same thing as ! `-ffixed-line-length-none'. ! `-ffree-line-length-N' Set column after which characters are ignored in typical free-form ! lines in the source file. The default value is 132. N may be ! `none', meaning that the entire line is meaningful. ! `-ffree-line-length-0' means the same thing as ! `-ffree-line-length-none'. ! `-fmax-identifier-length=N' ! Specify the maximum allowed identifier length. Typical values are 31 (Fortran 95) and 63 (Fortran 2003 and Fortran 2008). ! `-fimplicit-none' Specify that no implicit typing is allowed, unless overridden by ! explicit `IMPLICIT' statements. This is the equivalent of adding ! `implicit none' to the start of every procedure. ! `-finteger-4-integer-8' ! Promote all `INTEGER(KIND=4)' entities to an `INTEGER(KIND=8)' ! entities. If `KIND=8' is unavailable, then an error will be issued. This option should be used with care and may not be suitable for your codes. Areas of possible concern include calls ! to external procedures, alignment in `EQUIVALENCE' and/or ! `COMMON', generic interfaces, BOZ literal constant conversion, and ! I/O. Inspection of the intermediate representation of the ! translated Fortran code, produced by `-fdump-tree-original', is ! suggested. ! `-fcray-pointer' Enable the Cray pointer extension, which provides C-like pointer functionality. ! `-fopenmp' ! Enable the OpenMP extensions. This includes OpenMP `!$omp' ! directives in free form and `c$omp', `*$omp' and `!$omp' ! directives in fixed form, `!$' conditional compilation sentinels ! in free form and `c$', `*$' and `!$' sentinels in fixed form, and ! when linking arranges for the OpenMP runtime library to be linked ! in. The option `-fopenmp' implies `-frecursive'. ! `-fno-range-check' Disable range checking on results of simplification of constant expressions during compilation. For example, GNU Fortran will give ! an error at compile time when simplifying `a = 1. / 0'. With this ! option, no error will be given and `a' will be assigned the value ! `+Infinity'. If an expression evaluates to a value outside of the ! relevant range of [`-HUGE()':`HUGE()'], then the expression will ! be replaced by `-Inf' or `+Inf' as appropriate. Similarly, `DATA ! i/Z'FFFFFFFF'/' will result in an integer overflow on most ! systems, but with `-fno-range-check' the value will "wrap around" ! and `i' will be initialized to -1 instead. ! `-freal-4-real-8' ! `-freal-4-real-10' ! `-freal-8-real-4' ! `-freal-8-real-10' ! `-freal-8-real-16' ! Promote all `REAL(KIND=M)' entities to `REAL(KIND=N)' entities. ! If `REAL(KIND=N)' is unavailable, then an error will be issued. ! All other real kind types are unaffected by this option. These ! options should be used with care and may not be suitable for your ! codes. Areas of possible concern include calls to external ! procedures, alignment in `EQUIVALENCE' and/or `COMMON', generic ! interfaces, BOZ literal constant conversion, and I/O. Inspection ! of the intermediate representation of the translated Fortran code, ! produced by `-fdump-tree-original', is suggested. ! `-std=STD' Specify the standard to which the program is expected to conform, ! which may be one of `f95', `f2003', `f2008', `gnu', or `legacy'. ! The default value for STD is `gnu', which specifies a superset of the Fortran 95 standard that includes all of the extensions supported by GNU Fortran, although warnings will be given for obsolete extensions not recommended for use in new code. The ! `legacy' value is equivalent but without the warnings for obsolete extensions, and may be useful for old non-standard programs. The ! `f95', `f2003' and `f2008' values specify strict conformance to ! the Fortran 95, Fortran 2003 and Fortran 2008 standards, ! respectively; errors are given for all extensions beyond the ! relevant language standard, and warnings are given for the Fortran ! 77 features that are permitted but obsolescent in later standards. ! `-std=f2008ts' allows the Fortran 2008 standard including the ! additions of the Technical Specification (TS) 29113 on Further ! Interoperability of Fortran with C. !  File: gfortran.info, Node: Preprocessing Options, Next: Error and Warning Options, Prev: Fortran Dialect Options, Up: Invoking GNU Fortran --- 489,656 ---- The following options control the details of the Fortran dialect accepted by the compiler: ! '-ffree-form' ! '-ffixed-form' Specify the layout used by the source file. The free form layout was introduced in Fortran 90. Fixed form was traditionally used in older Fortran programs. When neither option is specified, the source form is determined by the file extension. ! '-fall-intrinsics' This option causes all intrinsic procedures (including the GNU-specific extensions) to be accepted. This can be useful with ! '-std=f95' to force standard-compliance but get access to the full ! range of intrinsics available with 'gfortran'. As a consequence, ! '-Wintrinsics-std' will be ignored and no user-defined procedure with the same name as any intrinsic will be called except when it ! is explicitly declared 'EXTERNAL'. ! '-fd-lines-as-code' ! '-fd-lines-as-comments' ! Enable special treatment for lines beginning with 'd' or 'D' in ! fixed form sources. If the '-fd-lines-as-code' option is given they are treated as if the first column contained a blank. If the ! '-fd-lines-as-comments' option is given, they are treated as comment lines. ! '-fdefault-double-8' ! Set the 'DOUBLE PRECISION' type to an 8 byte wide type. If ! '-fdefault-real-8' is given, 'DOUBLE PRECISION' would instead be ! promoted to 16 bytes if possible, and '-fdefault-double-8' can be ! used to prevent this. The kind of real constants like '1.d0' will ! not be changed by '-fdefault-real-8' though, so also ! '-fdefault-double-8' does not affect it. ! '-fdefault-integer-8' Set the default integer and logical types to an 8 byte wide type. Do nothing if this is already the default. This option also ! affects the kind of integer constants like '42'. ! '-fdefault-real-8' Set the default real type to an 8 byte wide type. Do nothing if this is already the default. This option also affects the kind of ! non-double real constants like '1.0', and does promote the default ! width of 'DOUBLE PRECISION' to 16 bytes if possible, unless ! '-fdefault-double-8' is given, too. ! '-fdollar-ok' ! Allow '$' as a valid non-first character in a symbol name. Symbols ! that start with '$' are rejected since it is unclear which rules to apply to implicit typing as different vendors implement different ! rules. Using '$' in 'IMPLICIT' statements is also rejected. ! '-fbackslash' Change the interpretation of backslashes in string literals from a ! single backslash character to "C-style" escape characters. The ! following combinations are expanded '\a', '\b', '\f', '\n', '\r', ! '\t', '\v', '\\', and '\0' to the ASCII characters alert, backspace, form feed, newline, carriage return, horizontal tab, vertical tab, backslash, and NUL, respectively. Additionally, ! '\x'NN, '\u'NNNN and '\U'NNNNNNNN (where each N is a hexadecimal digit) are translated into the Unicode characters corresponding to ! the specified code points. All other combinations of a character preceded by \ are unexpanded. ! '-fmodule-private' ! Set the default accessibility of module entities to 'PRIVATE'. Use-associated entities will not be accessible unless they are ! explicitly declared as 'PUBLIC'. ! '-ffixed-line-length-N' Set column after which characters are ignored in typical fixed-form lines in the source file, and through which spaces are assumed (as if padded to that length) after the ends of short fixed-form lines. Popular values for N include 72 (the standard and the default), 80 (card image), and 132 (corresponding to "extended-source" options ! in some popular compilers). N may also be 'none', meaning that the ! entire line is meaningful and that continued character constants ! never have implicit spaces appended to them to fill out the line. ! '-ffixed-line-length-0' means the same thing as ! '-ffixed-line-length-none'. ! '-ffree-line-length-N' Set column after which characters are ignored in typical free-form ! lines in the source file. The default value is 132. N may be ! 'none', meaning that the entire line is meaningful. ! '-ffree-line-length-0' means the same thing as ! '-ffree-line-length-none'. ! '-fmax-identifier-length=N' ! Specify the maximum allowed identifier length. Typical values are 31 (Fortran 95) and 63 (Fortran 2003 and Fortran 2008). ! '-fimplicit-none' Specify that no implicit typing is allowed, unless overridden by ! explicit 'IMPLICIT' statements. This is the equivalent of adding ! 'implicit none' to the start of every procedure. ! '-finteger-4-integer-8' ! Promote all 'INTEGER(KIND=4)' entities to an 'INTEGER(KIND=8)' ! entities. If 'KIND=8' is unavailable, then an error will be issued. This option should be used with care and may not be suitable for your codes. Areas of possible concern include calls ! to external procedures, alignment in 'EQUIVALENCE' and/or 'COMMON', ! generic interfaces, BOZ literal constant conversion, and I/O. ! Inspection of the intermediate representation of the translated ! Fortran code, produced by '-fdump-tree-original', is suggested. ! '-fcray-pointer' Enable the Cray pointer extension, which provides C-like pointer functionality. ! '-fopenmp' ! Enable the OpenMP extensions. This includes OpenMP '!$omp' ! directives in free form and 'c$omp', '*$omp' and '!$omp' directives ! in fixed form, '!$' conditional compilation sentinels in free form ! and 'c$', '*$' and '!$' sentinels in fixed form, and when linking ! arranges for the OpenMP runtime library to be linked in. The ! option '-fopenmp' implies '-frecursive'. ! '-fno-range-check' Disable range checking on results of simplification of constant expressions during compilation. For example, GNU Fortran will give ! an error at compile time when simplifying 'a = 1. / 0'. With this ! option, no error will be given and 'a' will be assigned the value ! '+Infinity'. If an expression evaluates to a value outside of the ! relevant range of ['-HUGE()':'HUGE()'], then the expression will be ! replaced by '-Inf' or '+Inf' as appropriate. Similarly, 'DATA ! i/Z'FFFFFFFF'/' will result in an integer overflow on most systems, ! but with '-fno-range-check' the value will "wrap around" and 'i' ! will be initialized to -1 instead. ! '-freal-4-real-8' ! '-freal-4-real-10' ! '-freal-8-real-4' ! '-freal-8-real-10' ! '-freal-8-real-16' ! Promote all 'REAL(KIND=M)' entities to 'REAL(KIND=N)' entities. If ! 'REAL(KIND=N)' is unavailable, then an error will be issued. All ! other real kind types are unaffected by this option. These options ! should be used with care and may not be suitable for your codes. ! Areas of possible concern include calls to external procedures, ! alignment in 'EQUIVALENCE' and/or 'COMMON', generic interfaces, BOZ ! literal constant conversion, and I/O. Inspection of the ! intermediate representation of the translated Fortran code, ! produced by '-fdump-tree-original', is suggested. ! '-std=STD' Specify the standard to which the program is expected to conform, ! which may be one of 'f95', 'f2003', 'f2008', 'gnu', or 'legacy'. ! The default value for STD is 'gnu', which specifies a superset of the Fortran 95 standard that includes all of the extensions supported by GNU Fortran, although warnings will be given for obsolete extensions not recommended for use in new code. The ! 'legacy' value is equivalent but without the warnings for obsolete extensions, and may be useful for old non-standard programs. The ! 'f95', 'f2003' and 'f2008' values specify strict conformance to the ! Fortran 95, Fortran 2003 and Fortran 2008 standards, respectively; ! errors are given for all extensions beyond the relevant language ! standard, and warnings are given for the Fortran 77 features that ! are permitted but obsolescent in later standards. '-std=f2008ts' ! allows the Fortran 2008 standard including the additions of the ! Technical Specification (TS) 29113 on Further Interoperability of ! Fortran with C.  File: gfortran.info, Node: Preprocessing Options, Next: Error and Warning Options, Prev: Fortran Dialect Options, Up: Invoking GNU Fortran *************** File: gfortran.info, Node: Preprocessin *** 663,820 **** 2.3 Enable and customize preprocessing ====================================== ! Preprocessor related options. See section *note Preprocessing and ! conditional compilation:: for more detailed information on ! preprocessing in `gfortran'. ! `-cpp' ! `-nocpp' ! Enable preprocessing. The preprocessor is automatically invoked if ! the file extension is `.fpp', `.FPP', `.F', `.FOR', `.FTN', ! `.F90', `.F95', `.F03' or `.F08'. Use this option to manually ! enable preprocessing of any kind of Fortran file. To disable preprocessing of files with any of the above listed ! extensions, use the negative form: `-nocpp'. ! The preprocessor is run in traditional mode. Any restrictions of the file-format, especially the limits on line length, apply for preprocessed output as well, so it might be advisable to use the ! `-ffree-line-length-none' or `-ffixed-line-length-none' options. ! `-dM' ! Instead of the normal output, generate a list of `'#define'' directives for all the macros defined during the execution of the ! preprocessor, including predefined macros. This gives you a way of finding out what is predefined in your version of the preprocessor. ! Assuming you have no file `foo.f90', the command touch foo.f90; gfortran -cpp -E -dM foo.f90 will show all the predefined macros. ! `-dD' ! Like `-dM' except in two respects: it does not include the ! predefined macros, and it outputs both the `#define' directives ! and the result of preprocessing. Both kinds of output go to the standard output file. ! `-dN' ! Like `-dD', but emit only the macro names, not their expansions. ! `-dU' ! Like `dD' except that only macros that are expanded, or whose definedness is tested in preprocessor directives, are output; the output is delayed until the use or test of the macro; and ! `'#undef'' directives are also output for macros tested but undefined at the time. ! `-dI' ! Output `'#include'' directives in addition to the result of preprocessing. ! `-fworking-directory' Enable generation of linemarkers in the preprocessor output that will let the compiler know the current working directory at the ! time of preprocessing. When this option is enabled, the preprocessor will emit, after the initial linemarker, a second linemarker with the current working directory followed by two ! slashes. GCC will use this directory, when it is present in the ! preprocessed input, as the directory emitted as the current ! working directory in some debugging information formats. This ! option is implicitly enabled if debugging information is enabled, ! but this can be inhibited with the negated form ! `-fno-working-directory'. If the `-P' flag is present in the ! command line, this option has no effect, since no `#line' ! directives are emitted whatsoever. ! `-idirafter DIR' Search DIR for include files, but do it after all directories ! specified with `-I' and the standard system directories have been ! exhausted. DIR is treated as a system include directory. If dir ! begins with `=', then the `=' will be replaced by the sysroot ! prefix; see `--sysroot' and `-isysroot'. ! `-imultilib DIR' Use DIR as a subdirectory of the directory containing target-specific C++ headers. ! `-iprefix PREFIX' ! Specify PREFIX as the prefix for subsequent `-iwithprefix' ! options. If the PREFIX represents a directory, you should include ! the final `'/''. ! `-isysroot DIR' ! This option is like the `--sysroot' option, but applies only to ! header files. See the `--sysroot' option for more information. ! `-iquote DIR' ! Search DIR only for header files requested with `#include "file"'; ! they are not searched for `#include ', before all directories ! specified by `-I' and before the standard system directories. If ! DIR begins with `=', then the `=' will be replaced by the sysroot ! prefix; see `--sysroot' and `-isysroot'. ! `-isystem DIR' Search DIR for header files, after all directories specified by ! `-I' but before the standard system directories. Mark it as a system directory, so that it gets the same special treatment as is ! applied to the standard system directories. If DIR begins with ! `=', then the `=' will be replaced by the sysroot prefix; see ! `--sysroot' and `-isysroot'. ! `-nostdinc' Do not search the standard system directories for header files. ! Only the directories you have specified with `-I' options (and the directory of the current file, if appropriate) are searched. ! `-undef' Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined. ! `-APREDICATE=ANSWER' Make an assertion with the predicate PREDICATE and answer ANSWER. This form is preferred to the older form -A predicate(answer), which is still supported, because it does not use shell special characters. ! `-A-PREDICATE=ANSWER' Cancel an assertion with the predicate PREDICATE and answer ANSWER. ! `-C' ! Do not discard comments. All comments are passed through to the ! output file, except for comments in processed directives, which ! are deleted along with the directive. ! You should be prepared for side effects when using `-C'; it causes the preprocessor to treat comments as tokens in their own right. For example, comments appearing at the start of what would be a directive line have the effect of turning that line into an ordinary source line, since the first token on the line is no ! longer a `'#''. ! Warning: this currently handles C-Style comments only. The preprocessor does not yet recognize Fortran-style comments. ! `-CC' ! Do not discard comments, including during macro expansion. This is ! like `-C', except that comments contained within macros are also passed through to the output file where the macro is expanded. ! In addition to the side-effects of the `-C' option, the `-CC' ! option causes all C++-style comments inside a macro to be ! converted to C-style comments. This is to prevent later use of ! that macro from inadvertently commenting out the remainder of the ! source line. The `-CC' option is generally used to support lint ! comments. ! Warning: this currently handles C- and C++-Style comments only. The ! preprocessor does not yet recognize Fortran-style comments. ! `-DNAME' ! Predefine name as a macro, with definition `1'. ! `-DNAME=DEFINITION' The contents of DEFINITION are tokenized and processed as if they ! appeared during translation phase three in a `'#define'' directive. In particular, the definition will be truncated by embedded newline characters. --- 658,813 ---- 2.3 Enable and customize preprocessing ====================================== ! Preprocessor related options. See section *note Preprocessing and ! conditional compilation:: for more detailed information on preprocessing ! in 'gfortran'. ! '-cpp' ! '-nocpp' ! Enable preprocessing. The preprocessor is automatically invoked if ! the file extension is '.fpp', '.FPP', '.F', '.FOR', '.FTN', '.F90', ! '.F95', '.F03' or '.F08'. Use this option to manually enable ! preprocessing of any kind of Fortran file. To disable preprocessing of files with any of the above listed ! extensions, use the negative form: '-nocpp'. ! The preprocessor is run in traditional mode. Any restrictions of the file-format, especially the limits on line length, apply for preprocessed output as well, so it might be advisable to use the ! '-ffree-line-length-none' or '-ffixed-line-length-none' options. ! '-dM' ! Instead of the normal output, generate a list of ''#define'' directives for all the macros defined during the execution of the ! preprocessor, including predefined macros. This gives you a way of finding out what is predefined in your version of the preprocessor. ! Assuming you have no file 'foo.f90', the command touch foo.f90; gfortran -cpp -E -dM foo.f90 will show all the predefined macros. ! '-dD' ! Like '-dM' except in two respects: it does not include the ! predefined macros, and it outputs both the '#define' directives and ! the result of preprocessing. Both kinds of output go to the standard output file. ! '-dN' ! Like '-dD', but emit only the macro names, not their expansions. ! '-dU' ! Like 'dD' except that only macros that are expanded, or whose definedness is tested in preprocessor directives, are output; the output is delayed until the use or test of the macro; and ! ''#undef'' directives are also output for macros tested but undefined at the time. ! '-dI' ! Output ''#include'' directives in addition to the result of preprocessing. ! '-fworking-directory' Enable generation of linemarkers in the preprocessor output that will let the compiler know the current working directory at the ! time of preprocessing. When this option is enabled, the preprocessor will emit, after the initial linemarker, a second linemarker with the current working directory followed by two ! slashes. GCC will use this directory, when it is present in the ! preprocessed input, as the directory emitted as the current working ! directory in some debugging information formats. This option is ! implicitly enabled if debugging information is enabled, but this ! can be inhibited with the negated form '-fno-working-directory'. ! If the '-P' flag is present in the command line, this option has no ! effect, since no '#line' directives are emitted whatsoever. ! '-idirafter DIR' Search DIR for include files, but do it after all directories ! specified with '-I' and the standard system directories have been ! exhausted. DIR is treated as a system include directory. If dir ! begins with '=', then the '=' will be replaced by the sysroot ! prefix; see '--sysroot' and '-isysroot'. ! '-imultilib DIR' Use DIR as a subdirectory of the directory containing target-specific C++ headers. ! '-iprefix PREFIX' ! Specify PREFIX as the prefix for subsequent '-iwithprefix' options. ! If the PREFIX represents a directory, you should include the final ! ''/''. ! '-isysroot DIR' ! This option is like the '--sysroot' option, but applies only to ! header files. See the '--sysroot' option for more information. ! '-iquote DIR' ! Search DIR only for header files requested with '#include "file"'; ! they are not searched for '#include ', before all directories ! specified by '-I' and before the standard system directories. If ! DIR begins with '=', then the '=' will be replaced by the sysroot ! prefix; see '--sysroot' and '-isysroot'. ! '-isystem DIR' Search DIR for header files, after all directories specified by ! '-I' but before the standard system directories. Mark it as a system directory, so that it gets the same special treatment as is ! applied to the standard system directories. If DIR begins with ! '=', then the '=' will be replaced by the sysroot prefix; see ! '--sysroot' and '-isysroot'. ! '-nostdinc' Do not search the standard system directories for header files. ! Only the directories you have specified with '-I' options (and the directory of the current file, if appropriate) are searched. ! '-undef' Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined. ! '-APREDICATE=ANSWER' Make an assertion with the predicate PREDICATE and answer ANSWER. This form is preferred to the older form -A predicate(answer), which is still supported, because it does not use shell special characters. ! '-A-PREDICATE=ANSWER' Cancel an assertion with the predicate PREDICATE and answer ANSWER. ! '-C' ! Do not discard comments. All comments are passed through to the ! output file, except for comments in processed directives, which are ! deleted along with the directive. ! You should be prepared for side effects when using '-C'; it causes the preprocessor to treat comments as tokens in their own right. For example, comments appearing at the start of what would be a directive line have the effect of turning that line into an ordinary source line, since the first token on the line is no ! longer a ''#''. ! Warning: this currently handles C-Style comments only. The preprocessor does not yet recognize Fortran-style comments. ! '-CC' ! Do not discard comments, including during macro expansion. This is ! like '-C', except that comments contained within macros are also passed through to the output file where the macro is expanded. ! In addition to the side-effects of the '-C' option, the '-CC' ! option causes all C++-style comments inside a macro to be converted ! to C-style comments. This is to prevent later use of that macro ! from inadvertently commenting out the remainder of the source line. ! The '-CC' option is generally used to support lint comments. ! Warning: this currently handles C- and C++-Style comments only. ! The preprocessor does not yet recognize Fortran-style comments. ! '-DNAME' ! Predefine name as a macro, with definition '1'. ! '-DNAME=DEFINITION' The contents of DEFINITION are tokenized and processed as if they ! appeared during translation phase three in a ''#define'' directive. In particular, the definition will be truncated by embedded newline characters. *************** preprocessing in `gfortran'. *** 824,851 **** If you wish to define a function-like macro on the command line, write its argument list with surrounding parentheses before the ! equals sign (if any). Parentheses are meaningful to most shells, ! so you will need to quote the option. With sh and csh, ! `-D'name(args...)=definition'' works. ! `-D' and `-U' options are processed in the order they are given on ! the command line. All -imacros file and -include file options are processed after all -D and -U options. ! `-H' Print the name of each header file used, in addition to other ! normal activities. Each name is indented to show how deep in the ! `'#include'' stack it is. ! `-P' Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers. ! `-UNAME' Cancel any previous definition of NAME, either built in or provided ! with a `-D' option.  File: gfortran.info, Node: Error and Warning Options, Next: Debugging Options, Prev: Preprocessing Options, Up: Invoking GNU Fortran --- 817,844 ---- If you wish to define a function-like macro on the command line, write its argument list with surrounding parentheses before the ! equals sign (if any). Parentheses are meaningful to most shells, ! so you will need to quote the option. With sh and csh, ! '-D'name(args...)=definition'' works. ! '-D' and '-U' options are processed in the order they are given on ! the command line. All -imacros file and -include file options are processed after all -D and -U options. ! '-H' Print the name of each header file used, in addition to other ! normal activities. Each name is indented to show how deep in the ! ''#include'' stack it is. ! '-P' Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers. ! '-UNAME' Cancel any previous definition of NAME, either built in or provided ! with a '-D' option.  File: gfortran.info, Node: Error and Warning Options, Next: Debugging Options, Prev: Preprocessing Options, Up: Invoking GNU Fortran *************** to aid in debugging, but will not produc *** 860,924 **** Warnings are diagnostic messages that report constructions which are not inherently erroneous but which are risky or suggest there is likely ! to be a bug in the program. Unless `-Werror' is specified, they do not prevent compilation of the program. ! You can request many specific warnings with options beginning `-W', ! for example `-Wimplicit' to request warnings on implicit declarations. Each of these specific warning options also has a negative form ! beginning `-Wno-' to turn off warnings; for example, `-Wno-implicit'. This manual lists only one of the two forms, whichever is not the default. These options control the amount and kinds of errors and warnings produced by GNU Fortran: ! `-fmax-errors=N' Limits the maximum number of error messages to N, at which point ! GNU Fortran bails out rather than attempting to continue ! processing the source code. If N is 0, there is no limit on the ! number of error messages produced. ! `-fsyntax-only' Check the code for syntax errors, but do not actually compile it. This will generate module files for each module present in the code, but no other output file. ! `-pedantic' ! Issue warnings for uses of extensions to Fortran 95. `-pedantic' also applies to C-language constructs where they occur in GNU ! Fortran source files, such as use of `\e' in a character constant ! within a directive like `#include'. Valid Fortran 95 programs should compile properly with or without this option. However, without this option, certain GNU extensions and traditional Fortran features are supported as well. With this option, many of them are rejected. ! Some users try to use `-pedantic' to check programs for conformance. They soon find that it does not do quite what they want--it finds some nonstandard practices, but not all. However, improvements to GNU Fortran in this area are welcome. ! This should be used in conjunction with `-std=f95', `-std=f2003' ! or `-std=f2008'. ! `-pedantic-errors' ! Like `-pedantic', except that errors are produced rather than warnings. ! `-Wall' Enables commonly used warning options pertaining to usage that we recommend avoiding and that we believe are easy to avoid. This ! currently includes `-Waliasing', `-Wampersand', `-Wconversion', ! `-Wsurprising', `-Wc-binding-type', `-Wintrinsics-std', ! `-Wno-tabs', `-Wintrinsic-shadow', `-Wline-truncation', ! `-Wtarget-lifetime', `-Wreal-q-constant' and `-Wunused'. ! `-Waliasing' ! Warn about possible aliasing of dummy arguments. Specifically, it warns if the same actual argument is associated with a dummy ! argument with `INTENT(IN)' and a dummy argument with `INTENT(OUT)' in a call with an explicit interface. The following example will trigger the warning. --- 853,917 ---- Warnings are diagnostic messages that report constructions which are not inherently erroneous but which are risky or suggest there is likely ! to be a bug in the program. Unless '-Werror' is specified, they do not prevent compilation of the program. ! You can request many specific warnings with options beginning '-W', ! for example '-Wimplicit' to request warnings on implicit declarations. Each of these specific warning options also has a negative form ! beginning '-Wno-' to turn off warnings; for example, '-Wno-implicit'. This manual lists only one of the two forms, whichever is not the default. These options control the amount and kinds of errors and warnings produced by GNU Fortran: ! '-fmax-errors=N' Limits the maximum number of error messages to N, at which point ! GNU Fortran bails out rather than attempting to continue processing ! the source code. If N is 0, there is no limit on the number of ! error messages produced. ! '-fsyntax-only' Check the code for syntax errors, but do not actually compile it. This will generate module files for each module present in the code, but no other output file. ! '-pedantic' ! Issue warnings for uses of extensions to Fortran 95. '-pedantic' also applies to C-language constructs where they occur in GNU ! Fortran source files, such as use of '\e' in a character constant ! within a directive like '#include'. Valid Fortran 95 programs should compile properly with or without this option. However, without this option, certain GNU extensions and traditional Fortran features are supported as well. With this option, many of them are rejected. ! Some users try to use '-pedantic' to check programs for conformance. They soon find that it does not do quite what they want--it finds some nonstandard practices, but not all. However, improvements to GNU Fortran in this area are welcome. ! This should be used in conjunction with '-std=f95', '-std=f2003' or ! '-std=f2008'. ! '-pedantic-errors' ! Like '-pedantic', except that errors are produced rather than warnings. ! '-Wall' Enables commonly used warning options pertaining to usage that we recommend avoiding and that we believe are easy to avoid. This ! currently includes '-Waliasing', '-Wampersand', '-Wconversion', ! '-Wsurprising', '-Wc-binding-type', '-Wintrinsics-std', ! '-Wno-tabs', '-Wintrinsic-shadow', '-Wline-truncation', ! '-Wtarget-lifetime', '-Wreal-q-constant' and '-Wunused'. ! '-Waliasing' ! Warn about possible aliasing of dummy arguments. Specifically, it warns if the same actual argument is associated with a dummy ! argument with 'INTENT(IN)' and a dummy argument with 'INTENT(OUT)' in a call with an explicit interface. The following example will trigger the warning. *************** produced by GNU Fortran: *** 932,998 **** call bar(a,a) ! `-Wampersand' ! Warn about missing ampersand in continued character constants. The ! warning is given with `-Wampersand', `-pedantic', `-std=f95', ! `-std=f2003' and `-std=f2008'. Note: With no ampersand given in a continued character constant, GNU Fortran assumes continuation at the first non-comment, non-whitespace character after the ampersand that initiated the continuation. ! `-Warray-temporaries' Warn about array temporaries generated by the compiler. The information generated by this warning is sometimes useful in optimization, in order to avoid such temporaries. ! `-Wc-binding-type' Warn if the a variable might not be C interoperable. In particular, warn if the variable has been declared using an intrinsic type with default kind instead of using a kind parameter ! defined for C interoperability in the intrinsic `ISO_C_Binding' ! module. This option is implied by `-Wall'. ! `-Wcharacter-truncation' Warn when a character assignment will truncate the assigned string. ! `-Wline-truncation' Warn when a source code line will be truncated. This option is ! implied by `-Wall'. ! `-Wconversion' ! Warn about implicit conversions that are likely to change the ! value of the expression after conversion. Implied by `-Wall'. ! `-Wconversion-extra' Warn about implicit conversions between different types and kinds. ! `-Wextra' Enables some warning options for usages of language features which ! may be problematic. This currently includes `-Wcompare-reals' and ! `-Wunused-parameter'. ! `-Wimplicit-interface' Warn if a procedure is called without an explicit interface. Note this only checks that an explicit interface is present. It does not check that the declared interfaces are consistent across program units. ! `-Wimplicit-procedure' Warn if a procedure is called that has neither an explicit ! interface nor has been declared as `EXTERNAL'. ! `-Wintrinsics-std' ! Warn if `gfortran' finds a procedure named like an intrinsic not ! available in the currently selected standard (with `-std') and ! treats it as `EXTERNAL' procedure because of this. ! `-fall-intrinsics' can be used to never trigger this behavior and always link to the intrinsic regardless of the selected standard. ! `-Wreal-q-constant' ! Produce a warning if a real-literal-constant contains a `q' exponent-letter. ! `-Wsurprising' Produce a warning when "suspicious" code constructs are encountered. While technically legal these usually indicate that an error has been made. --- 925,991 ---- call bar(a,a) ! '-Wampersand' ! Warn about missing ampersand in continued character constants. The ! warning is given with '-Wampersand', '-pedantic', '-std=f95', ! '-std=f2003' and '-std=f2008'. Note: With no ampersand given in a continued character constant, GNU Fortran assumes continuation at the first non-comment, non-whitespace character after the ampersand that initiated the continuation. ! '-Warray-temporaries' Warn about array temporaries generated by the compiler. The information generated by this warning is sometimes useful in optimization, in order to avoid such temporaries. ! '-Wc-binding-type' Warn if the a variable might not be C interoperable. In particular, warn if the variable has been declared using an intrinsic type with default kind instead of using a kind parameter ! defined for C interoperability in the intrinsic 'ISO_C_Binding' ! module. This option is implied by '-Wall'. ! '-Wcharacter-truncation' Warn when a character assignment will truncate the assigned string. ! '-Wline-truncation' Warn when a source code line will be truncated. This option is ! implied by '-Wall'. ! '-Wconversion' ! Warn about implicit conversions that are likely to change the value ! of the expression after conversion. Implied by '-Wall'. ! '-Wconversion-extra' Warn about implicit conversions between different types and kinds. ! '-Wextra' Enables some warning options for usages of language features which ! may be problematic. This currently includes '-Wcompare-reals' and ! '-Wunused-parameter'. ! '-Wimplicit-interface' Warn if a procedure is called without an explicit interface. Note this only checks that an explicit interface is present. It does not check that the declared interfaces are consistent across program units. ! '-Wimplicit-procedure' Warn if a procedure is called that has neither an explicit ! interface nor has been declared as 'EXTERNAL'. ! '-Wintrinsics-std' ! Warn if 'gfortran' finds a procedure named like an intrinsic not ! available in the currently selected standard (with '-std') and ! treats it as 'EXTERNAL' procedure because of this. ! '-fall-intrinsics' can be used to never trigger this behavior and always link to the intrinsic regardless of the selected standard. ! '-Wreal-q-constant' ! Produce a warning if a real-literal-constant contains a 'q' exponent-letter. ! '-Wsurprising' Produce a warning when "suspicious" code constructs are encountered. While technically legal these usually indicate that an error has been made. *************** produced by GNU Fortran: *** 1009,1091 **** destination. * The type of a function result is declared more than once with ! the same type. If `-pedantic' or standard-conforming mode is enabled, this is an error. ! * A `CHARACTER' variable is declared with negative length. ! `-Wtabs' By default, tabs are accepted as whitespace, but tabs are not members of the Fortran Character Set. For continuation lines, a ! tab followed by a digit between 1 and 9 is supported. `-Wno-tabs' ! will cause a warning to be issued if a tab is encountered. Note, ! `-Wno-tabs' is active for `-pedantic', `-std=f95', `-std=f2003', ! `-std=f2008' and `-Wall'. ! `-Wunderflow' Produce a warning when numerical constant expressions are encountered, which yield an UNDERFLOW during compilation. ! `-Wintrinsic-shadow' Warn if a user-defined procedure or module procedure has the same name as an intrinsic; in this case, an explicit interface or ! `EXTERNAL' or `INTRINSIC' declaration might be needed to get calls later resolved to the desired intrinsic/procedure. This option is ! implied by `-Wall'. ! `-Wunused-dummy-argument' ! Warn about unused dummy arguments. This option is implied by ! `-Wall'. ! `-Wunused-parameter' ! Contrary to `gcc''s meaning of `-Wunused-parameter', `gfortran''s implementation of this option does not warn about unused dummy ! arguments (see `-Wunused-dummy-argument'), but about unused ! `PARAMETER' values. `-Wunused-parameter' is not included in ! `-Wall' but is implied by `-Wall -Wextra'. ! `-Walign-commons' ! By default, `gfortran' warns about any occasion of variables being ! padded for proper alignment inside a `COMMON' block. This warning ! can be turned off via `-Wno-align-commons'. See also ! `-falign-commons'. ! `-Wfunction-elimination' Warn if any calls to functions are eliminated by the optimizations ! enabled by the `-ffrontend-optimize' option. ! `-Wrealloc-lhs' Warn when the compiler might insert code to for allocation or reallocation of an allocatable array variable of intrinsic type in ! intrinsic assignments. In hot loops, the Fortran 2003 ! reallocation feature may reduce the performance. If the array is ! already allocated with the correct shape, consider using a ! whole-array array-spec (e.g. `(:,:,:)') for the variable on the ! left-hand side to prevent the reallocation check. Note that in ! some cases the warning is shown, even if the compiler will ! optimize reallocation checks away. For instance, when the ! right-hand side contains the same variable multiplied by a scalar. ! See also `-frealloc-lhs'. ! `-Wrealloc-lhs-all' Warn when the compiler inserts code to for allocation or reallocation of an allocatable variable; this includes scalars and derived types. ! `-Wcompare-reals' Warn when comparing real or complex types for equality or ! inequality. This option is implied by `-Wextra'. ! `-Wtarget-lifetime' Warn if the pointer in a pointer assignment might be longer than ! the its target. This option is implied by `-Wall'. ! `-Werror' Turns all warnings into errors. *Note Options to Request or Suppress Errors and Warnings: ! (gcc)Warning Options, for information on more options offered by the ! GBE shared by `gfortran', `gcc' and other GNU compilers. Some of these have no effect when compiling programs written in Fortran. --- 1002,1083 ---- destination. * The type of a function result is declared more than once with ! the same type. If '-pedantic' or standard-conforming mode is enabled, this is an error. ! * A 'CHARACTER' variable is declared with negative length. ! '-Wtabs' By default, tabs are accepted as whitespace, but tabs are not members of the Fortran Character Set. For continuation lines, a ! tab followed by a digit between 1 and 9 is supported. '-Wno-tabs' ! will cause a warning to be issued if a tab is encountered. Note, ! '-Wno-tabs' is active for '-pedantic', '-std=f95', '-std=f2003', ! '-std=f2008' and '-Wall'. ! '-Wunderflow' Produce a warning when numerical constant expressions are encountered, which yield an UNDERFLOW during compilation. ! '-Wintrinsic-shadow' Warn if a user-defined procedure or module procedure has the same name as an intrinsic; in this case, an explicit interface or ! 'EXTERNAL' or 'INTRINSIC' declaration might be needed to get calls later resolved to the desired intrinsic/procedure. This option is ! implied by '-Wall'. ! '-Wunused-dummy-argument' ! Warn about unused dummy arguments. This option is implied by ! '-Wall'. ! '-Wunused-parameter' ! Contrary to 'gcc''s meaning of '-Wunused-parameter', 'gfortran''s implementation of this option does not warn about unused dummy ! arguments (see '-Wunused-dummy-argument'), but about unused ! 'PARAMETER' values. '-Wunused-parameter' is not included in ! '-Wall' but is implied by '-Wall -Wextra'. ! '-Walign-commons' ! By default, 'gfortran' warns about any occasion of variables being ! padded for proper alignment inside a 'COMMON' block. This warning ! can be turned off via '-Wno-align-commons'. See also ! '-falign-commons'. ! '-Wfunction-elimination' Warn if any calls to functions are eliminated by the optimizations ! enabled by the '-ffrontend-optimize' option. ! '-Wrealloc-lhs' Warn when the compiler might insert code to for allocation or reallocation of an allocatable array variable of intrinsic type in ! intrinsic assignments. In hot loops, the Fortran 2003 reallocation ! feature may reduce the performance. If the array is already ! allocated with the correct shape, consider using a whole-array ! array-spec (e.g. '(:,:,:)') for the variable on the left-hand side ! to prevent the reallocation check. Note that in some cases the ! warning is shown, even if the compiler will optimize reallocation ! checks away. For instance, when the right-hand side contains the ! same variable multiplied by a scalar. See also '-frealloc-lhs'. ! '-Wrealloc-lhs-all' Warn when the compiler inserts code to for allocation or reallocation of an allocatable variable; this includes scalars and derived types. ! '-Wcompare-reals' Warn when comparing real or complex types for equality or ! inequality. This option is implied by '-Wextra'. ! '-Wtarget-lifetime' Warn if the pointer in a pointer assignment might be longer than ! the its target. This option is implied by '-Wall'. ! '-Werror' Turns all warnings into errors. *Note Options to Request or Suppress Errors and Warnings: ! (gcc)Warning Options, for information on more options offered by the GBE ! shared by 'gfortran', 'gcc' and other GNU compilers. Some of these have no effect when compiling programs written in Fortran. *************** File: gfortran.info, Node: Debugging Op *** 1099,1155 **** GNU Fortran has various special options that are used for debugging either your program or the GNU Fortran compiler. ! `-fdump-fortran-original' Output the internal parse tree after translating the source program into internal representation. Only really useful for debugging the GNU Fortran compiler itself. ! `-fdump-optimized-tree' Output the parse tree after front-end optimization. Only really useful for debugging the GNU Fortran compiler itself. Output the internal parse tree after translating the source program into internal representation. Only really useful for debugging the GNU Fortran compiler itself. This option is deprecated; use ! `-fdump-fortran-original' instead. ! `-ffpe-trap=LIST' Specify a list of floating point exception traps to enable. On ! most systems, if a floating point exception occurs and the trap ! for that exception is enabled, a SIGFPE signal will be sent and ! the program being aborted, producing a core file useful for ! debugging. LIST is a (possibly empty) comma-separated list of the ! following exceptions: `invalid' (invalid floating point operation, ! such as `SQRT(-1.0)'), `zero' (division by zero), `overflow' ! (overflow in a floating point operation), `underflow' (underflow ! in a floating point operation), `inexact' (loss of precision ! during operation), and `denormal' (operation performed on a ! denormal value). The first five exceptions correspond to the five ! IEEE 754 exceptions, whereas the last one (`denormal') is not part ! of the IEEE 754 standard but is available on some common ! architectures such as x86. ! The first three exceptions (`invalid', `zero', and `overflow') often indicate serious errors, and unless the program has provisions for dealing with these exceptions, enabling traps for these three exceptions is probably a good idea. Many, if not most, floating point operations incur loss of ! precision due to rounding, and hence the `ffpe-trap=inexact' is likely to be uninteresting in practice. By default no exception traps are enabled. ! `-fno-backtrace' When a serious runtime error is encountered or a deadly signal is emitted (segmentation fault, illegal instruction, bus error, floating-point exception, and the other POSIX signals that have the ! action `core'), the Fortran runtime library tries to output a ! backtrace of the error. `-fno-backtrace' disables the backtrace ! generation. This option only has influence for compilation of the Fortran main program. - *Note Options for Debugging Your Program or GCC: (gcc)Debugging Options, for more information on debugging options. --- 1091,1145 ---- GNU Fortran has various special options that are used for debugging either your program or the GNU Fortran compiler. ! '-fdump-fortran-original' Output the internal parse tree after translating the source program into internal representation. Only really useful for debugging the GNU Fortran compiler itself. ! '-fdump-optimized-tree' Output the parse tree after front-end optimization. Only really useful for debugging the GNU Fortran compiler itself. Output the internal parse tree after translating the source program into internal representation. Only really useful for debugging the GNU Fortran compiler itself. This option is deprecated; use ! '-fdump-fortran-original' instead. ! '-ffpe-trap=LIST' Specify a list of floating point exception traps to enable. On ! most systems, if a floating point exception occurs and the trap for ! that exception is enabled, a SIGFPE signal will be sent and the ! program being aborted, producing a core file useful for debugging. ! LIST is a (possibly empty) comma-separated list of the following ! exceptions: 'invalid' (invalid floating point operation, such as ! 'SQRT(-1.0)'), 'zero' (division by zero), 'overflow' (overflow in a ! floating point operation), 'underflow' (underflow in a floating ! point operation), 'inexact' (loss of precision during operation), ! and 'denormal' (operation performed on a denormal value). The ! first five exceptions correspond to the five IEEE 754 exceptions, ! whereas the last one ('denormal') is not part of the IEEE 754 ! standard but is available on some common architectures such as x86. ! The first three exceptions ('invalid', 'zero', and 'overflow') often indicate serious errors, and unless the program has provisions for dealing with these exceptions, enabling traps for these three exceptions is probably a good idea. Many, if not most, floating point operations incur loss of ! precision due to rounding, and hence the 'ffpe-trap=inexact' is likely to be uninteresting in practice. By default no exception traps are enabled. ! '-fno-backtrace' When a serious runtime error is encountered or a deadly signal is emitted (segmentation fault, illegal instruction, bus error, floating-point exception, and the other POSIX signals that have the ! action 'core'), the Fortran runtime library tries to output a ! backtrace of the error. '-fno-backtrace' disables the backtrace ! generation. This option only has influence for compilation of the Fortran main program. *Note Options for Debugging Your Program or GCC: (gcc)Debugging Options, for more information on debugging options. *************** File: gfortran.info, Node: Directory Op *** 1159,1194 **** 2.6 Options for directory search ================================ ! These options affect how GNU Fortran searches for files specified by ! the `INCLUDE' directive and where it searches for previously compiled modules. ! It also affects the search paths used by `cpp' when used to preprocess Fortran source. ! `-IDIR' ! These affect interpretation of the `INCLUDE' directive (as well as ! of the `#include' directive of the `cpp' preprocessor). ! Also note that the general behavior of `-I' and `INCLUDE' is ! pretty much the same as of `-I' with `#include' in the `cpp' ! preprocessor, with regard to looking for `header.gcc' files and ! other such things. ! This path is also used to search for `.mod' files when previously ! compiled modules are required by a `USE' statement. *Note Options for Directory Search: (gcc)Directory Options, for ! information on the `-I' option. ! `-JDIR' ! This option specifies where to put `.mod' files for compiled modules. It is also added to the list of directories to searched ! by an `USE' statement. The default is the current directory. ! `-fintrinsic-modules-path DIR' This option specifies the location of pre-compiled intrinsic modules, if they are not in the default location expected by the compiler. --- 1149,1184 ---- 2.6 Options for directory search ================================ ! These options affect how GNU Fortran searches for files specified by the ! 'INCLUDE' directive and where it searches for previously compiled modules. ! It also affects the search paths used by 'cpp' when used to preprocess Fortran source. ! '-IDIR' ! These affect interpretation of the 'INCLUDE' directive (as well as ! of the '#include' directive of the 'cpp' preprocessor). ! Also note that the general behavior of '-I' and 'INCLUDE' is pretty ! much the same as of '-I' with '#include' in the 'cpp' preprocessor, ! with regard to looking for 'header.gcc' files and other such ! things. ! This path is also used to search for '.mod' files when previously ! compiled modules are required by a 'USE' statement. *Note Options for Directory Search: (gcc)Directory Options, for ! information on the '-I' option. ! '-JDIR' ! This option specifies where to put '.mod' files for compiled modules. It is also added to the list of directories to searched ! by an 'USE' statement. The default is the current directory. ! '-fintrinsic-modules-path DIR' This option specifies the location of pre-compiled intrinsic modules, if they are not in the default location expected by the compiler. *************** File: gfortran.info, Node: Link Options *** 1200,1212 **** ================================ These options come into play when the compiler links object files into ! an executable output file. They are meaningless if the compiler is not doing a link step. ! `-static-libgfortran' ! On systems that provide `libgfortran' as a shared and a static ! library, this option forces the use of the static version. If no ! shared version of `libgfortran' was built when the compiler was configured, this option has no effect.  --- 1190,1202 ---- ================================ These options come into play when the compiler links object files into ! an executable output file. They are meaningless if the compiler is not doing a link step. ! '-static-libgfortran' ! On systems that provide 'libgfortran' as a shared and a static ! library, this option forces the use of the static version. If no ! shared version of 'libgfortran' was built when the compiler was configured, this option has no effect.  *************** File: gfortran.info, Node: Runtime Opti *** 1218,1255 **** These options affect the runtime behavior of programs compiled with GNU Fortran. ! `-fconvert=CONVERSION' Specify the representation of data for unformatted files. Valid ! values for conversion are: `native', the default; `swap', swap ! between big- and little-endian; `big-endian', use big-endian ! representation for unformatted files; `little-endian', use little-endian representation for unformatted files. ! _This option has an effect only when used in the main program. ! The `CONVERT' specifier and the GFORTRAN_CONVERT_UNIT environment ! variable override the default specified by `-fconvert'._ ! `-frecord-marker=LENGTH' Specify the length of record markers for unformatted files. Valid values for LENGTH are 4 and 8. Default is 4. _This is different ! from previous versions of `gfortran'_, which specified a default record marker length of 8 on most systems. If you want to read or ! write files compatible with earlier versions of `gfortran', use ! `-frecord-marker=8'. ! `-fmax-subrecord-length=LENGTH' Specify the maximum length for a subrecord. The maximum permitted value for length is 2147483639, which is also the default. Only really useful for use by the gfortran testsuite. ! `-fsign-zero' When enabled, floating point numbers of value zero with the sign bit set are written as negative number in formatted output and ! treated as negative in the `SIGN' intrinsic. `-fno-sign-zero' ! does not print the negative sign of zero values (or values rounded ! to zero for I/O) and regards zero as positive number in the `SIGN' ! intrinsic for compatibility with Fortran 77. The default is ! `-fsign-zero'.  File: gfortran.info, Node: Code Gen Options, Next: Environment Variables, Prev: Runtime Options, Up: Invoking GNU Fortran --- 1208,1245 ---- These options affect the runtime behavior of programs compiled with GNU Fortran. ! '-fconvert=CONVERSION' Specify the representation of data for unformatted files. Valid ! values for conversion are: 'native', the default; 'swap', swap ! between big- and little-endian; 'big-endian', use big-endian ! representation for unformatted files; 'little-endian', use little-endian representation for unformatted files. ! _This option has an effect only when used in the main program. The ! 'CONVERT' specifier and the GFORTRAN_CONVERT_UNIT environment ! variable override the default specified by '-fconvert'._ ! '-frecord-marker=LENGTH' Specify the length of record markers for unformatted files. Valid values for LENGTH are 4 and 8. Default is 4. _This is different ! from previous versions of 'gfortran'_, which specified a default record marker length of 8 on most systems. If you want to read or ! write files compatible with earlier versions of 'gfortran', use ! '-frecord-marker=8'. ! '-fmax-subrecord-length=LENGTH' Specify the maximum length for a subrecord. The maximum permitted value for length is 2147483639, which is also the default. Only really useful for use by the gfortran testsuite. ! '-fsign-zero' When enabled, floating point numbers of value zero with the sign bit set are written as negative number in formatted output and ! treated as negative in the 'SIGN' intrinsic. '-fno-sign-zero' does ! not print the negative sign of zero values (or values rounded to ! zero for I/O) and regards zero as positive number in the 'SIGN' ! intrinsic for compatibility with Fortran 77. The default is ! '-fsign-zero'.  File: gfortran.info, Node: Code Gen Options, Next: Environment Variables, Prev: Runtime Options, Up: Invoking GNU Fortran *************** File: gfortran.info, Node: Code Gen Opt *** 1257,1341 **** 2.9 Options for code generation conventions =========================================== ! These machine-independent options control the interface conventions ! used in code generation. Most of them have both positive and negative forms; the negative form ! of `-ffoo' would be `-fno-foo'. In the table below, only one of the forms is listed--the one which is not the default. You can figure out ! the other form by either removing `no-' or adding it. ! `-fno-automatic' Treat each program unit (except those marked as RECURSIVE) as if ! the `SAVE' statement were specified for every local variable and ! array referenced in it. Does not affect common blocks. (Some ! Fortran compilers provide this option under the name `-static' or ! `-save'.) The default, which is `-fautomatic', uses the stack for local variables smaller than the value given by ! `-fmax-stack-var-size'. Use the option `-frecursive' to use no static memory. ! `-ff2c' Generate code designed to be compatible with code generated by ! `g77' and `f2c'. ! The calling conventions used by `g77' (originally implemented in ! `f2c') require functions that return type default `REAL' to ! actually return the C type `double', and functions that return ! type `COMPLEX' to return the values via an extra argument in the ! calling sequence that points to where to store the return value. ! Under the default GNU calling conventions, such functions simply ! return their results as they would in GNU C--default `REAL' ! functions return the C type `float', and `COMPLEX' functions ! return the GNU C type `complex'. Additionally, this option ! implies the `-fsecond-underscore' option, unless ! `-fno-second-underscore' is explicitly requested. This does not affect the generation of code that interfaces with ! the `libgfortran' library. _Caution:_ It is not a good idea to mix Fortran code compiled with ! `-ff2c' with code compiled with the default `-fno-f2c' calling ! conventions as, calling `COMPLEX' or default `REAL' functions between program parts which were compiled with different calling conventions will break at execution time. ! _Caution:_ This will break code which passes intrinsic functions ! of type default `REAL' or `COMPLEX' as actual arguments, as the ! library implementations use the `-fno-f2c' calling conventions. ! `-fno-underscoring' Do not transform names of entities specified in the Fortran source file by appending underscores to them. ! With `-funderscoring' in effect, GNU Fortran appends one ! underscore to external names with no underscores. This is done to ! ensure compatibility with code produced by many UNIX Fortran ! compilers. ! _Caution_: The default behavior of GNU Fortran is incompatible ! with `f2c' and `g77', please use the `-ff2c' option if you want ! object files compiled with GNU Fortran to be compatible with ! object code created with these tools. ! Use of `-fno-underscoring' is not recommended unless you are experimenting with issues such as integration of GNU Fortran into existing system environments (vis-a`-vis existing libraries, tools, and so on). ! For example, with `-funderscoring', and assuming other defaults ! like `-fcase-lower' and that `j()' and `max_count()' are external ! functions while `my_var' and `lvar' are local variables, a statement like I = J() + MAX_COUNT (MY_VAR, LVAR) is implemented as something akin to: i = j_() + max_count__(&my_var__, &lvar); ! With `-fno-underscoring', the same statement is implemented as: i = j() + max_count(&my_var, &lvar); ! Use of `-fno-underscoring' allows direct specification of user-defined names while debugging and when interfacing GNU Fortran code with other languages. --- 1247,1330 ---- 2.9 Options for code generation conventions =========================================== ! These machine-independent options control the interface conventions used ! in code generation. Most of them have both positive and negative forms; the negative form ! of '-ffoo' would be '-fno-foo'. In the table below, only one of the forms is listed--the one which is not the default. You can figure out ! the other form by either removing 'no-' or adding it. ! '-fno-automatic' Treat each program unit (except those marked as RECURSIVE) as if ! the 'SAVE' statement were specified for every local variable and ! array referenced in it. Does not affect common blocks. (Some ! Fortran compilers provide this option under the name '-static' or ! '-save'.) The default, which is '-fautomatic', uses the stack for local variables smaller than the value given by ! '-fmax-stack-var-size'. Use the option '-frecursive' to use no static memory. ! '-ff2c' Generate code designed to be compatible with code generated by ! 'g77' and 'f2c'. ! The calling conventions used by 'g77' (originally implemented in ! 'f2c') require functions that return type default 'REAL' to ! actually return the C type 'double', and functions that return type ! 'COMPLEX' to return the values via an extra argument in the calling ! sequence that points to where to store the return value. Under the ! default GNU calling conventions, such functions simply return their ! results as they would in GNU C--default 'REAL' functions return the ! C type 'float', and 'COMPLEX' functions return the GNU C type ! 'complex'. Additionally, this option implies the ! '-fsecond-underscore' option, unless '-fno-second-underscore' is ! explicitly requested. This does not affect the generation of code that interfaces with ! the 'libgfortran' library. _Caution:_ It is not a good idea to mix Fortran code compiled with ! '-ff2c' with code compiled with the default '-fno-f2c' calling ! conventions as, calling 'COMPLEX' or default 'REAL' functions between program parts which were compiled with different calling conventions will break at execution time. ! _Caution:_ This will break code which passes intrinsic functions of ! type default 'REAL' or 'COMPLEX' as actual arguments, as the ! library implementations use the '-fno-f2c' calling conventions. ! '-fno-underscoring' Do not transform names of entities specified in the Fortran source file by appending underscores to them. ! With '-funderscoring' in effect, GNU Fortran appends one underscore ! to external names with no underscores. This is done to ensure ! compatibility with code produced by many UNIX Fortran compilers. ! _Caution_: The default behavior of GNU Fortran is incompatible with ! 'f2c' and 'g77', please use the '-ff2c' option if you want object ! files compiled with GNU Fortran to be compatible with object code ! created with these tools. ! Use of '-fno-underscoring' is not recommended unless you are experimenting with issues such as integration of GNU Fortran into existing system environments (vis-a`-vis existing libraries, tools, and so on). ! For example, with '-funderscoring', and assuming other defaults ! like '-fcase-lower' and that 'j()' and 'max_count()' are external ! functions while 'my_var' and 'lvar' are local variables, a statement like I = J() + MAX_COUNT (MY_VAR, LVAR) is implemented as something akin to: i = j_() + max_count__(&my_var__, &lvar); ! With '-fno-underscoring', the same statement is implemented as: i = j() + max_count(&my_var, &lvar); ! Use of '-fno-underscoring' allows direct specification of user-defined names while debugging and when interfacing GNU Fortran code with other languages. *************** the other form by either removing `no-' *** 1343,1356 **** interface implemented by GNU Fortran for an external name matches the interface implemented by some other language for that same name. That is, getting code produced by GNU Fortran to link to ! code produced by some other compiler using this or any other ! method can be only a small part of the overall solution--getting ! the code generated by both compilers to agree on issues other than ! naming can require significant effort, and, unlike naming ! disagreements, linkers normally cannot detect disagreements in ! these other areas. ! Also, note that with `-fno-underscoring', the lack of appended underscores introduces the very real possibility that a user-defined external name will conflict with a name in a system library, which could make finding unresolved-reference bugs quite --- 1332,1344 ---- interface implemented by GNU Fortran for an external name matches the interface implemented by some other language for that same name. That is, getting code produced by GNU Fortran to link to ! code produced by some other compiler using this or any other method ! can be only a small part of the overall solution--getting the code ! generated by both compilers to agree on issues other than naming ! can require significant effort, and, unlike naming disagreements, ! linkers normally cannot detect disagreements in these other areas. ! Also, note that with '-fno-underscoring', the lack of appended underscores introduces the very real possibility that a user-defined external name will conflict with a name in a system library, which could make finding unresolved-reference bugs quite *************** the other form by either removing `no-' *** 1358,1369 **** show up only as buggy behavior at run time. In future versions of GNU Fortran we hope to improve naming and ! linking issues so that debugging always involves using the names ! as they appear in the source, even if the names as seen by the ! linker are mangled to prevent accidental linking between ! procedures with incompatible interfaces. ! `-fno-whole-file' This flag causes the compiler to resolve and translate each procedure in a file separately. --- 1346,1357 ---- show up only as buggy behavior at run time. In future versions of GNU Fortran we hope to improve naming and ! linking issues so that debugging always involves using the names as ! they appear in the source, even if the names as seen by the linker ! are mangled to prevent accidental linking between procedures with ! incompatible interfaces. ! '-fno-whole-file' This flag causes the compiler to resolve and translate each procedure in a file separately. *************** the other form by either removing `no-' *** 1377,1432 **** before the reference and the duplication of backend tree declarations eliminated. ! The `-fno-whole-file' option is deprecated and may lead to wrong code. ! `-fsecond-underscore' By default, GNU Fortran appends an underscore to external names. ! If this option is used GNU Fortran appends two underscores to ! names with underscores and one underscore to external names with ! no underscores. GNU Fortran also appends two underscores to ! internal names with underscores to avoid naming collisions with ! external names. ! This option has no effect if `-fno-underscoring' is in effect. It ! is implied by the `-ff2c' option. ! Otherwise, with this option, an external name such as `MAX_COUNT' is implemented as a reference to the link-time external symbol ! `max_count__', instead of `max_count_'. This is required for ! compatibility with `g77' and `f2c', and is implied by use of the ! `-ff2c' option. ! `-fcoarray=' ! `none' Disable coarray support; using coarray declarations and image-control statements will produce a compile-time error. (Default) ! `single' ! Single-image mode, i.e. `num_images()' is always one. ! `lib' Library-based coarray parallelization; a suitable GNU Fortran coarray library needs to be linked. ! `-fcheck=' Enable the generation of run-time checks; the argument shall be a comma-delimited list of the following keywords. ! `all' ! Enable all run-time test of `-fcheck'. ! `array-temps' Warns at run time when for passing an actual argument a ! temporary array had to be generated. The information ! generated by this warning is sometimes useful in ! optimization, in order to avoid such temporaries. Note: The warning is only printed once per location. ! `bounds' Enable generation of run-time checks for array subscripts and against the declared minimum and maximum values. It also checks array indices for assumed and deferred shape arrays --- 1365,1421 ---- before the reference and the duplication of backend tree declarations eliminated. ! The '-fno-whole-file' option is deprecated and may lead to wrong code. ! '-fsecond-underscore' By default, GNU Fortran appends an underscore to external names. ! If this option is used GNU Fortran appends two underscores to names ! with underscores and one underscore to external names with no ! underscores. GNU Fortran also appends two underscores to internal ! names with underscores to avoid naming collisions with external ! names. ! This option has no effect if '-fno-underscoring' is in effect. It ! is implied by the '-ff2c' option. ! Otherwise, with this option, an external name such as 'MAX_COUNT' is implemented as a reference to the link-time external symbol ! 'max_count__', instead of 'max_count_'. This is required for ! compatibility with 'g77' and 'f2c', and is implied by use of the ! '-ff2c' option. ! '-fcoarray=' ! 'none' Disable coarray support; using coarray declarations and image-control statements will produce a compile-time error. (Default) ! 'single' ! Single-image mode, i.e. 'num_images()' is always one. ! 'lib' Library-based coarray parallelization; a suitable GNU Fortran coarray library needs to be linked. ! '-fcheck=' ! Enable the generation of run-time checks; the argument shall be a comma-delimited list of the following keywords. ! 'all' ! Enable all run-time test of '-fcheck'. ! 'array-temps' Warns at run time when for passing an actual argument a ! temporary array had to be generated. The information ! generated by this warning is sometimes useful in optimization, ! in order to avoid such temporaries. Note: The warning is only printed once per location. ! 'bounds' Enable generation of run-time checks for array subscripts and against the declared minimum and maximum values. It also checks array indices for assumed and deferred shape arrays *************** the other form by either removing `no-' *** 1434,1472 **** string lengths are equal for character array constructors without an explicit typespec. ! Some checks require that `-fcheck=bounds' is set for the compilation of the main program. Note: In the future this may also include other forms of checking, e.g., checking substring references. ! `do' Enable generation of run-time checks for invalid modification of loop iteration variables. ! `mem' Enable generation of run-time checks for memory allocation. Note: This option does not affect explicit allocations using ! the `ALLOCATE' statement, which will be always checked. ! `pointer' Enable generation of run-time checks for pointers and allocatables. ! `recursion' Enable generation of run-time checks for recursively called subroutines and functions which are not marked as recursive. ! See also `-frecursive'. Note: This check does not work for OpenMP programs and is disabled if used together with ! `-frecursive' and `-fopenmp'. ! `-fbounds-check' ! Deprecated alias for `-fcheck=bounds'. ! `-fcheck-array-temporaries' ! Deprecated alias for `-fcheck=array-temps'. ! `-fmax-array-constructor=N' This option can be used to increase the upper limit permitted in array constructors. The code below requires this option to expand the array at compile time. --- 1423,1461 ---- string lengths are equal for character array constructors without an explicit typespec. ! Some checks require that '-fcheck=bounds' is set for the compilation of the main program. Note: In the future this may also include other forms of checking, e.g., checking substring references. ! 'do' Enable generation of run-time checks for invalid modification of loop iteration variables. ! 'mem' Enable generation of run-time checks for memory allocation. Note: This option does not affect explicit allocations using ! the 'ALLOCATE' statement, which will be always checked. ! 'pointer' Enable generation of run-time checks for pointers and allocatables. ! 'recursion' Enable generation of run-time checks for recursively called subroutines and functions which are not marked as recursive. ! See also '-frecursive'. Note: This check does not work for OpenMP programs and is disabled if used together with ! '-frecursive' and '-fopenmp'. ! '-fbounds-check' ! Deprecated alias for '-fcheck=bounds'. ! '-fcheck-array-temporaries' ! Deprecated alias for '-fcheck=array-temps'. ! '-fmax-array-constructor=N' This option can be used to increase the upper limit permitted in array constructors. The code below requires this option to expand the array at compile time. *************** the other form by either removing `no-' *** 1479,1496 **** print '(10(I0,1X))', i end program test ! _Caution: This option can lead to long compile times and excessively large object files._ The default value for N is 65535. ! `-fmax-stack-var-size=N' This option specifies the size in bytes of the largest array that will be put on the stack; if the size is exceeded static memory is used (except in procedures marked as RECURSIVE). Use the option ! `-frecursive' to allow for recursive procedures which do not have ! a RECURSIVE attribute or for parallel programs. Use ! `-fno-automatic' to never use the stack. This option currently only affects local arrays declared with constant bounds, and may not apply to all character variables. --- 1468,1485 ---- print '(10(I0,1X))', i end program test ! _Caution: This option can lead to long compile times and excessively large object files._ The default value for N is 65535. ! '-fmax-stack-var-size=N' This option specifies the size in bytes of the largest array that will be put on the stack; if the size is exceeded static memory is used (except in procedures marked as RECURSIVE). Use the option ! '-frecursive' to allow for recursive procedures which do not have a ! RECURSIVE attribute or for parallel programs. Use '-fno-automatic' ! to never use the stack. This option currently only affects local arrays declared with constant bounds, and may not apply to all character variables. *************** the other form by either removing `no-' *** 1498,1646 **** The default value for N is 32768. ! `-fstack-arrays' Adding this option will make the Fortran compiler put all local arrays, even those of unknown size onto stack memory. If your program uses very large local arrays it is possible that you will have to extend your runtime limits for stack memory on some ! operating systems. This flag is enabled by default at optimization ! level `-Ofast'. ! `-fpack-derived' This option tells GNU Fortran to pack derived type members as closely as possible. Code compiled with this option is likely to be incompatible with code compiled without this option, and may execute slower. ! `-frepack-arrays' In some circumstances GNU Fortran may pass assumed shape array sections via a descriptor describing a noncontiguous area of memory. This option adds code to the function prologue to repack the data into a contiguous block at runtime. ! This should result in faster accesses to the array. However it ! can introduce significant overhead to the function call, ! especially when the passed data is noncontiguous. ! `-fshort-enums' This option is provided for interoperability with C code that was ! compiled with the `-fshort-enums' option. It will make GNU ! Fortran choose the smallest `INTEGER' kind a given enumerator set ! will fit in, and give all its enumerators this kind. ! `-fexternal-blas' ! This option will make `gfortran' generate calls to BLAS functions ! for some matrix operations like `MATMUL', instead of using our own algorithms, if the size of the matrices involved is larger than a ! given limit (see `-fblas-matmul-limit'). This may be profitable ! if an optimized vendor BLAS library is available. The BLAS ! library will have to be specified at link time. ! `-fblas-matmul-limit=N' ! Only significant when `-fexternal-blas' is in effect. Matrix multiplication of matrices with size larger than (or equal to) N will be performed by calls to BLAS functions, while others will be ! handled by `gfortran' internal algorithms. If the matrices involved are not square, the size comparison is performed using the geometric mean of the dimensions of the argument and result matrices. The default value for N is 30. ! `-frecursive' Allow indirect recursion by forcing all local arrays to be ! allocated on the stack. This flag cannot be used together with ! `-fmax-stack-var-size=' or `-fno-automatic'. ! `-finit-local-zero' ! `-finit-integer=N' ! `-finit-real=' ! `-finit-logical=' ! `-finit-character=N' ! The `-finit-local-zero' option instructs the compiler to ! initialize local `INTEGER', `REAL', and `COMPLEX' variables to ! zero, `LOGICAL' variables to false, and `CHARACTER' variables to a ! string of null bytes. Finer-grained initialization options are ! provided by the `-finit-integer=N', ! `-finit-real=' (which also initializes the ! real and imaginary parts of local `COMPLEX' variables), ! `-finit-logical=', and `-finit-character=N' (where N ! is an ASCII character value) options. These options do not ! initialize * allocatable arrays - * components of derived type variables ! ! * variables that appear in an `EQUIVALENCE' statement. (These limitations may be removed in future releases). ! Note that the `-finit-real=nan' option initializes `REAL' and ! `COMPLEX' variables with a quiet NaN. For a signalling NaN use ! `-finit-real=snan'; note, however, that compile-time optimizations may convert them into quiet NaN and that trapping needs to be ! enabled (e.g. via `-ffpe-trap'). ! Finally, note that enabling any of the `-finit-*' options will ! silence warnings that would have been emitted by `-Wuninitialized' for the affected local variables. ! `-falign-commons' ! By default, `gfortran' enforces proper alignment of all variables ! in a `COMMON' block by padding them as needed. On certain platforms this is mandatory, on others it increases performance. ! If a `COMMON' block is not declared with consistent data types everywhere, this padding can cause trouble, and ! `-fno-align-commons' can be used to disable automatic alignment. The same form of this option should be used for all files that ! share a `COMMON' block. To avoid potential alignment issues in ! `COMMON' blocks, it is recommended to order objects from largest ! to smallest. ! `-fno-protect-parens' By default the parentheses in expression are honored for all optimization levels such that the compiler does not do any ! re-association. Using `-fno-protect-parens' allows the compiler to ! reorder `REAL' and `COMPLEX' expressions to produce faster code. ! Note that for the re-association optimization `-fno-signed-zeros' ! and `-fno-trapping-math' need to be in effect. The parentheses ! protection is enabled by default, unless `-Ofast' is given. ! `-frealloc-lhs' An allocatable left-hand side of an intrinsic assignment is automatically (re)allocated if it is either unallocated or has a ! different shape. The option is enabled by default except when ! `-std=f95' is given. See also `-Wrealloc-lhs'. ! `-faggressive-function-elimination' Functions with identical argument lists are eliminated within ! statements, regardless of whether these functions are marked ! `PURE' or not. For example, in a = f(b,c) + f(b,c) ! there will only be a single call to `f'. This option only works ! if `-ffrontend-optimize' is in effect. ! `-ffrontend-optimize' This option performs front-end optimization, based on manipulating ! parts the Fortran parse tree. Enabled by default by any `-O' option. Optimizations enabled by this option include elimination of identical function calls within expressions, removing ! unnecessary calls to `TRIM' in comparisons and assignments and ! replacing `TRIM(a)' with `a(1:LEN_TRIM(a))'. It can be deselected ! by specifying `-fno-frontend-optimize'. ! *Note Options for Code Generation Conventions: (gcc)Code Gen ! Options, for information on more options offered by the GBE shared by ! `gfortran', `gcc', and other GNU compilers.  File: gfortran.info, Node: Environment Variables, Prev: Code Gen Options, Up: Invoking GNU Fortran ! 2.10 Environment variables affecting `gfortran' =============================================== ! The `gfortran' compiler currently does not make use of any environment variables to control its operation above and beyond those that affect ! the operation of `gcc'. *Note Environment Variables Affecting GCC: (gcc)Environment Variables, for information on environment variables. --- 1487,1632 ---- The default value for N is 32768. ! '-fstack-arrays' Adding this option will make the Fortran compiler put all local arrays, even those of unknown size onto stack memory. If your program uses very large local arrays it is possible that you will have to extend your runtime limits for stack memory on some ! operating systems. This flag is enabled by default at optimization ! level '-Ofast'. ! '-fpack-derived' This option tells GNU Fortran to pack derived type members as closely as possible. Code compiled with this option is likely to be incompatible with code compiled without this option, and may execute slower. ! '-frepack-arrays' In some circumstances GNU Fortran may pass assumed shape array sections via a descriptor describing a noncontiguous area of memory. This option adds code to the function prologue to repack the data into a contiguous block at runtime. ! This should result in faster accesses to the array. However it can ! introduce significant overhead to the function call, especially ! when the passed data is noncontiguous. ! '-fshort-enums' This option is provided for interoperability with C code that was ! compiled with the '-fshort-enums' option. It will make GNU Fortran ! choose the smallest 'INTEGER' kind a given enumerator set will fit ! in, and give all its enumerators this kind. ! '-fexternal-blas' ! This option will make 'gfortran' generate calls to BLAS functions ! for some matrix operations like 'MATMUL', instead of using our own algorithms, if the size of the matrices involved is larger than a ! given limit (see '-fblas-matmul-limit'). This may be profitable if ! an optimized vendor BLAS library is available. The BLAS library ! will have to be specified at link time. ! '-fblas-matmul-limit=N' ! Only significant when '-fexternal-blas' is in effect. Matrix multiplication of matrices with size larger than (or equal to) N will be performed by calls to BLAS functions, while others will be ! handled by 'gfortran' internal algorithms. If the matrices involved are not square, the size comparison is performed using the geometric mean of the dimensions of the argument and result matrices. The default value for N is 30. ! '-frecursive' Allow indirect recursion by forcing all local arrays to be ! allocated on the stack. This flag cannot be used together with ! '-fmax-stack-var-size=' or '-fno-automatic'. ! '-finit-local-zero' ! '-finit-integer=N' ! '-finit-real=' ! '-finit-logical=' ! '-finit-character=N' ! The '-finit-local-zero' option instructs the compiler to initialize ! local 'INTEGER', 'REAL', and 'COMPLEX' variables to zero, 'LOGICAL' ! variables to false, and 'CHARACTER' variables to a string of null ! bytes. Finer-grained initialization options are provided by the ! '-finit-integer=N', '-finit-real=' (which ! also initializes the real and imaginary parts of local 'COMPLEX' ! variables), '-finit-logical=', and '-finit-character=N' ! (where N is an ASCII character value) options. These options do ! not initialize * allocatable arrays * components of derived type variables ! * variables that appear in an 'EQUIVALENCE' statement. (These limitations may be removed in future releases). ! Note that the '-finit-real=nan' option initializes 'REAL' and ! 'COMPLEX' variables with a quiet NaN. For a signalling NaN use ! '-finit-real=snan'; note, however, that compile-time optimizations may convert them into quiet NaN and that trapping needs to be ! enabled (e.g. via '-ffpe-trap'). ! Finally, note that enabling any of the '-finit-*' options will ! silence warnings that would have been emitted by '-Wuninitialized' for the affected local variables. ! '-falign-commons' ! By default, 'gfortran' enforces proper alignment of all variables ! in a 'COMMON' block by padding them as needed. On certain platforms this is mandatory, on others it increases performance. ! If a 'COMMON' block is not declared with consistent data types everywhere, this padding can cause trouble, and ! '-fno-align-commons' can be used to disable automatic alignment. The same form of this option should be used for all files that ! share a 'COMMON' block. To avoid potential alignment issues in ! 'COMMON' blocks, it is recommended to order objects from largest to ! smallest. ! '-fno-protect-parens' By default the parentheses in expression are honored for all optimization levels such that the compiler does not do any ! re-association. Using '-fno-protect-parens' allows the compiler to ! reorder 'REAL' and 'COMPLEX' expressions to produce faster code. ! Note that for the re-association optimization '-fno-signed-zeros' ! and '-fno-trapping-math' need to be in effect. The parentheses ! protection is enabled by default, unless '-Ofast' is given. ! '-frealloc-lhs' An allocatable left-hand side of an intrinsic assignment is automatically (re)allocated if it is either unallocated or has a ! different shape. The option is enabled by default except when ! '-std=f95' is given. See also '-Wrealloc-lhs'. ! '-faggressive-function-elimination' Functions with identical argument lists are eliminated within ! statements, regardless of whether these functions are marked 'PURE' ! or not. For example, in a = f(b,c) + f(b,c) ! there will only be a single call to 'f'. This option only works if ! '-ffrontend-optimize' is in effect. ! '-ffrontend-optimize' This option performs front-end optimization, based on manipulating ! parts the Fortran parse tree. Enabled by default by any '-O' option. Optimizations enabled by this option include elimination of identical function calls within expressions, removing ! unnecessary calls to 'TRIM' in comparisons and assignments and ! replacing 'TRIM(a)' with 'a(1:LEN_TRIM(a))'. It can be deselected ! by specifying '-fno-frontend-optimize'. ! *Note Options for Code Generation Conventions: (gcc)Code Gen Options, ! for information on more options offered by the GBE shared by 'gfortran', ! 'gcc', and other GNU compilers.  File: gfortran.info, Node: Environment Variables, Prev: Code Gen Options, Up: Invoking GNU Fortran ! 2.10 Environment variables affecting 'gfortran' =============================================== ! The 'gfortran' compiler currently does not make use of any environment variables to control its operation above and beyond those that affect ! the operation of 'gcc'. *Note Environment Variables Affecting GCC: (gcc)Environment Variables, for information on environment variables. *************** behavior of programs compiled with GNU F *** 1651,1660 ****  File: gfortran.info, Node: Runtime, Next: Fortran 2003 and 2008 status, Prev: Invoking GNU Fortran, Up: Top ! 3 Runtime: Influencing runtime behavior with environment variables ! ******************************************************************* ! The behavior of the `gfortran' can be influenced by environment variables. Malformed environment variables are silently ignored. --- 1637,1646 ----  File: gfortran.info, Node: Runtime, Next: Fortran 2003 and 2008 status, Prev: Invoking GNU Fortran, Up: Top ! 3 Runtime: Influencing runtime behavior with environment variables ! ****************************************************************** ! The behavior of the 'gfortran' can be influenced by environment variables. Malformed environment variables are silently ignored. *************** variables. *** 1677,1702 ****  File: gfortran.info, Node: TMPDIR, Next: GFORTRAN_STDIN_UNIT, Up: Runtime ! 3.1 `TMPDIR'--Directory for scratch files ========================================= ! When opening a file with `STATUS='SCRATCH'', GNU Fortran tries to ! create the file in one of the potential directories by testing each ! directory in the order below. ! 1. The environment variable `TMPDIR', if it exists. ! 2. On the MinGW target, the directory returned by the `GetTempPath' ! function. Alternatively, on the Cygwin target, the `TMP' and ! `TEMP' environment variables, if they exist, in that order. ! 3. The `P_tmpdir' macro if it is defined, otherwise the directory ! `/tmp'.  File: gfortran.info, Node: GFORTRAN_STDIN_UNIT, Next: GFORTRAN_STDOUT_UNIT, Prev: TMPDIR, Up: Runtime ! 3.2 `GFORTRAN_STDIN_UNIT'--Unit number for standard input ========================================================= This environment variable can be used to select the unit number --- 1663,1688 ----  File: gfortran.info, Node: TMPDIR, Next: GFORTRAN_STDIN_UNIT, Up: Runtime ! 3.1 'TMPDIR'--Directory for scratch files ========================================= ! When opening a file with 'STATUS='SCRATCH'', GNU Fortran tries to create ! the file in one of the potential directories by testing each directory ! in the order below. ! 1. The environment variable 'TMPDIR', if it exists. ! 2. On the MinGW target, the directory returned by the 'GetTempPath' ! function. Alternatively, on the Cygwin target, the 'TMP' and ! 'TEMP' environment variables, if they exist, in that order. ! 3. The 'P_tmpdir' macro if it is defined, otherwise the directory ! '/tmp'.  File: gfortran.info, Node: GFORTRAN_STDIN_UNIT, Next: GFORTRAN_STDOUT_UNIT, Prev: TMPDIR, Up: Runtime ! 3.2 'GFORTRAN_STDIN_UNIT'--Unit number for standard input ========================================================= This environment variable can be used to select the unit number *************** default value is 5. *** 1706,1712 ****  File: gfortran.info, Node: GFORTRAN_STDOUT_UNIT, Next: GFORTRAN_STDERR_UNIT, Prev: GFORTRAN_STDIN_UNIT, Up: Runtime ! 3.3 `GFORTRAN_STDOUT_UNIT'--Unit number for standard output =========================================================== This environment variable can be used to select the unit number --- 1692,1698 ----  File: gfortran.info, Node: GFORTRAN_STDOUT_UNIT, Next: GFORTRAN_STDERR_UNIT, Prev: GFORTRAN_STDIN_UNIT, Up: Runtime ! 3.3 'GFORTRAN_STDOUT_UNIT'--Unit number for standard output =========================================================== This environment variable can be used to select the unit number *************** default value is 6. *** 1716,1722 ****  File: gfortran.info, Node: GFORTRAN_STDERR_UNIT, Next: GFORTRAN_UNBUFFERED_ALL, Prev: GFORTRAN_STDOUT_UNIT, Up: Runtime ! 3.4 `GFORTRAN_STDERR_UNIT'--Unit number for standard error ========================================================== This environment variable can be used to select the unit number --- 1702,1708 ----  File: gfortran.info, Node: GFORTRAN_STDERR_UNIT, Next: GFORTRAN_UNBUFFERED_ALL, Prev: GFORTRAN_STDOUT_UNIT, Up: Runtime ! 3.4 'GFORTRAN_STDERR_UNIT'--Unit number for standard error ========================================================== This environment variable can be used to select the unit number *************** default value is 0. *** 1726,1788 ****  File: gfortran.info, Node: GFORTRAN_UNBUFFERED_ALL, Next: GFORTRAN_UNBUFFERED_PRECONNECTED, Prev: GFORTRAN_STDERR_UNIT, Up: Runtime ! 3.5 `GFORTRAN_UNBUFFERED_ALL'--Do not buffer I/O on all units ============================================================= This environment variable controls whether all I/O is unbuffered. If ! the first letter is `y', `Y' or `1', all I/O is unbuffered. This will slow down small sequential reads and writes. If the first letter is ! `n', `N' or `0', I/O is buffered. This is the default.  File: gfortran.info, Node: GFORTRAN_UNBUFFERED_PRECONNECTED, Next: GFORTRAN_SHOW_LOCUS, Prev: GFORTRAN_UNBUFFERED_ALL, Up: Runtime ! 3.6 `GFORTRAN_UNBUFFERED_PRECONNECTED'--Do not buffer I/O on preconnected units =============================================================================== ! The environment variable named `GFORTRAN_UNBUFFERED_PRECONNECTED' controls whether I/O on a preconnected unit (i.e. STDOUT or STDERR) is ! unbuffered. If the first letter is `y', `Y' or `1', I/O is unbuffered. This will slow down small sequential reads and writes. If the first ! letter is `n', `N' or `0', I/O is buffered. This is the default.  File: gfortran.info, Node: GFORTRAN_SHOW_LOCUS, Next: GFORTRAN_OPTIONAL_PLUS, Prev: GFORTRAN_UNBUFFERED_PRECONNECTED, Up: Runtime ! 3.7 `GFORTRAN_SHOW_LOCUS'--Show location for runtime errors =========================================================== ! If the first letter is `y', `Y' or `1', filename and line numbers for ! runtime errors are printed. If the first letter is `n', `N' or `0', do not print filename and line numbers for runtime errors. The default is to print the location.  File: gfortran.info, Node: GFORTRAN_OPTIONAL_PLUS, Next: GFORTRAN_DEFAULT_RECL, Prev: GFORTRAN_SHOW_LOCUS, Up: Runtime ! 3.8 `GFORTRAN_OPTIONAL_PLUS'--Print leading + where permitted ============================================================= ! If the first letter is `y', `Y' or `1', a plus sign is printed where ! permitted by the Fortran standard. If the first letter is `n', `N' or ! `0', a plus sign is not printed in most cases. Default is not to print plus signs.  File: gfortran.info, Node: GFORTRAN_DEFAULT_RECL, Next: GFORTRAN_LIST_SEPARATOR, Prev: GFORTRAN_OPTIONAL_PLUS, Up: Runtime ! 3.9 `GFORTRAN_DEFAULT_RECL'--Default record length for new files ================================================================ ! This environment variable specifies the default record length, in ! bytes, for files which are opened without a `RECL' tag in the `OPEN' ! statement. This must be a positive integer. The default value is ! 1073741824 bytes (1 GB).  File: gfortran.info, Node: GFORTRAN_LIST_SEPARATOR, Next: GFORTRAN_CONVERT_UNIT, Prev: GFORTRAN_DEFAULT_RECL, Up: Runtime ! 3.10 `GFORTRAN_LIST_SEPARATOR'--Separator for list output ========================================================= This environment variable specifies the separator when writing --- 1712,1774 ----  File: gfortran.info, Node: GFORTRAN_UNBUFFERED_ALL, Next: GFORTRAN_UNBUFFERED_PRECONNECTED, Prev: GFORTRAN_STDERR_UNIT, Up: Runtime ! 3.5 'GFORTRAN_UNBUFFERED_ALL'--Do not buffer I/O on all units ============================================================= This environment variable controls whether all I/O is unbuffered. If ! the first letter is 'y', 'Y' or '1', all I/O is unbuffered. This will slow down small sequential reads and writes. If the first letter is ! 'n', 'N' or '0', I/O is buffered. This is the default.  File: gfortran.info, Node: GFORTRAN_UNBUFFERED_PRECONNECTED, Next: GFORTRAN_SHOW_LOCUS, Prev: GFORTRAN_UNBUFFERED_ALL, Up: Runtime ! 3.6 'GFORTRAN_UNBUFFERED_PRECONNECTED'--Do not buffer I/O on preconnected units =============================================================================== ! The environment variable named 'GFORTRAN_UNBUFFERED_PRECONNECTED' controls whether I/O on a preconnected unit (i.e. STDOUT or STDERR) is ! unbuffered. If the first letter is 'y', 'Y' or '1', I/O is unbuffered. This will slow down small sequential reads and writes. If the first ! letter is 'n', 'N' or '0', I/O is buffered. This is the default.  File: gfortran.info, Node: GFORTRAN_SHOW_LOCUS, Next: GFORTRAN_OPTIONAL_PLUS, Prev: GFORTRAN_UNBUFFERED_PRECONNECTED, Up: Runtime ! 3.7 'GFORTRAN_SHOW_LOCUS'--Show location for runtime errors =========================================================== ! If the first letter is 'y', 'Y' or '1', filename and line numbers for ! runtime errors are printed. If the first letter is 'n', 'N' or '0', do not print filename and line numbers for runtime errors. The default is to print the location.  File: gfortran.info, Node: GFORTRAN_OPTIONAL_PLUS, Next: GFORTRAN_DEFAULT_RECL, Prev: GFORTRAN_SHOW_LOCUS, Up: Runtime ! 3.8 'GFORTRAN_OPTIONAL_PLUS'--Print leading + where permitted ============================================================= ! If the first letter is 'y', 'Y' or '1', a plus sign is printed where ! permitted by the Fortran standard. If the first letter is 'n', 'N' or ! '0', a plus sign is not printed in most cases. Default is not to print plus signs.  File: gfortran.info, Node: GFORTRAN_DEFAULT_RECL, Next: GFORTRAN_LIST_SEPARATOR, Prev: GFORTRAN_OPTIONAL_PLUS, Up: Runtime ! 3.9 'GFORTRAN_DEFAULT_RECL'--Default record length for new files ================================================================ ! This environment variable specifies the default record length, in bytes, ! for files which are opened without a 'RECL' tag in the 'OPEN' statement. ! This must be a positive integer. The default value is 1073741824 bytes ! (1 GB).  File: gfortran.info, Node: GFORTRAN_LIST_SEPARATOR, Next: GFORTRAN_CONVERT_UNIT, Prev: GFORTRAN_DEFAULT_RECL, Up: Runtime ! 3.10 'GFORTRAN_LIST_SEPARATOR'--Separator for list output ========================================================= This environment variable specifies the separator when writing *************** list-directed output. It may contain an *** 1790,1844 **** one comma. If you specify this on the command line, be sure to quote spaces, as in $ GFORTRAN_LIST_SEPARATOR=' , ' ./a.out ! when `a.out' is the compiled Fortran program that you want to run. Default is a single space.  File: gfortran.info, Node: GFORTRAN_CONVERT_UNIT, Next: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_LIST_SEPARATOR, Up: Runtime ! 3.11 `GFORTRAN_CONVERT_UNIT'--Set endianness for unformatted I/O ================================================================ ! By setting the `GFORTRAN_CONVERT_UNIT' variable, it is possible to ! change the representation of data for unformatted files. The syntax ! for the `GFORTRAN_CONVERT_UNIT' variable is: GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ; mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ; exception: mode ':' unit_list | unit_list ; unit_list: unit_spec | unit_list unit_spec ; unit_spec: INTEGER | INTEGER '-' INTEGER ; ! The variable consists of an optional default mode, followed by a ! list of optional exceptions, which are separated by semicolons from the preceding default and each other. Each exception consists of a format ! and a comma-separated list of units. Valid values for the modes are ! the same as for the `CONVERT' specifier: ! ! `NATIVE' Use the native format. This is the default. ! ! `SWAP' Swap between little- and big-endian. ! ! `LITTLE_ENDIAN' Use the little-endian format for unformatted files. ! ! `BIG_ENDIAN' Use the big-endian format for unformatted files. ! A missing mode for an exception is taken to mean `BIG_ENDIAN'. ! Examples of values for `GFORTRAN_CONVERT_UNIT' are: ! `'big_endian'' Do all unformatted I/O in big_endian mode. ! `'little_endian;native:10-20,25'' Do all unformatted I/O in little_endian mode, except for units 10 to 20 and 25, which are in native format. ! ! `'10-20'' Units 10 to 20 are big-endian, the rest is native. Setting the environment variables should be done on the command line ! or via the `export' command for `sh'-compatible shells and via `setenv' ! for `csh'-compatible shells. ! Example for `sh': $ gfortran foo.f90 $ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out ! Example code for `csh': % gfortran foo.f90 % setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20' % ./a.out --- 1776,1825 ---- one comma. If you specify this on the command line, be sure to quote spaces, as in $ GFORTRAN_LIST_SEPARATOR=' , ' ./a.out ! when 'a.out' is the compiled Fortran program that you want to run. Default is a single space.  File: gfortran.info, Node: GFORTRAN_CONVERT_UNIT, Next: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_LIST_SEPARATOR, Up: Runtime ! 3.11 'GFORTRAN_CONVERT_UNIT'--Set endianness for unformatted I/O ================================================================ ! By setting the 'GFORTRAN_CONVERT_UNIT' variable, it is possible to ! change the representation of data for unformatted files. The syntax for ! the 'GFORTRAN_CONVERT_UNIT' variable is: GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ; mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ; exception: mode ':' unit_list | unit_list ; unit_list: unit_spec | unit_list unit_spec ; unit_spec: INTEGER | INTEGER '-' INTEGER ; ! The variable consists of an optional default mode, followed by a list ! of optional exceptions, which are separated by semicolons from the preceding default and each other. Each exception consists of a format ! and a comma-separated list of units. Valid values for the modes are the ! same as for the 'CONVERT' specifier: ! 'NATIVE' Use the native format. This is the default. ! 'SWAP' Swap between little- and big-endian. ! 'LITTLE_ENDIAN' Use the little-endian format for unformatted files. ! 'BIG_ENDIAN' Use the big-endian format for unformatted files. ! A missing mode for an exception is taken to mean 'BIG_ENDIAN'. ! Examples of values for 'GFORTRAN_CONVERT_UNIT' are: ! ''big_endian'' Do all unformatted I/O in big_endian mode. ! ''little_endian;native:10-20,25'' Do all unformatted I/O in little_endian mode, except for units 10 to 20 and 25, which are in native format. ! ''10-20'' Units 10 to 20 are big-endian, the rest is native. Setting the environment variables should be done on the command line ! or via the 'export' command for 'sh'-compatible shells and via 'setenv' ! for 'csh'-compatible shells. ! Example for 'sh': $ gfortran foo.f90 $ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out ! Example code for 'csh': % gfortran foo.f90 % setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20' % ./a.out *************** for `csh'-compatible shells. *** 1847,1856 **** carries a significant speed overhead. If speed in this area matters to you, it is best if you use this only for data that needs to be portable. ! *Note CONVERT specifier::, for an alternative way to specify the ! data representation for unformatted files. *Note Runtime Options::, for setting a default data representation for the whole program. The ! `CONVERT' specifier overrides the `-fconvert' compile options. _Note that the values specified via the GFORTRAN_CONVERT_UNIT environment variable will override the CONVERT specifier in the open --- 1828,1837 ---- carries a significant speed overhead. If speed in this area matters to you, it is best if you use this only for data that needs to be portable. ! *Note CONVERT specifier::, for an alternative way to specify the data ! representation for unformatted files. *Note Runtime Options::, for setting a default data representation for the whole program. The ! 'CONVERT' specifier overrides the '-fconvert' compile options. _Note that the values specified via the GFORTRAN_CONVERT_UNIT environment variable will override the CONVERT specifier in the open *************** not have the source code of their progra *** 1860,1873 ****  File: gfortran.info, Node: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_CONVERT_UNIT, Up: Runtime ! 3.12 `GFORTRAN_ERROR_BACKTRACE'--Show backtrace on run-time errors ================================================================== ! If the `GFORTRAN_ERROR_BACKTRACE' variable is set to `y', `Y' or `1' (only the first letter is relevant) then a backtrace is printed when a serious run-time error occurs. To disable the backtracing, set the ! variable to `n', `N', `0'. Default is to print a backtrace unless the ! `-fno-backtrace' compile option was used.  File: gfortran.info, Node: Fortran 2003 and 2008 status, Next: Compiler Characteristics, Prev: Runtime, Up: Top --- 1841,1854 ----  File: gfortran.info, Node: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_CONVERT_UNIT, Up: Runtime ! 3.12 'GFORTRAN_ERROR_BACKTRACE'--Show backtrace on run-time errors ================================================================== ! If the 'GFORTRAN_ERROR_BACKTRACE' variable is set to 'y', 'Y' or '1' (only the first letter is relevant) then a backtrace is printed when a serious run-time error occurs. To disable the backtracing, set the ! variable to 'n', 'N', '0'. Default is to print a backtrace unless the ! '-fno-backtrace' compile option was used.  File: gfortran.info, Node: Fortran 2003 and 2008 status, Next: Compiler Characteristics, Prev: Runtime, Up: Top *************** can be found below. See also the wiki p *** 1892,1987 **** (http://gcc.gnu.org/wiki/Fortran2003) about Fortran 2003. * Procedure pointers including procedure-pointer components with ! `PASS' attribute. * Procedures which are bound to a derived type (type-bound ! procedures) including `PASS', `PROCEDURE' and `GENERIC', and operators bound to a type. * Abstract interfaces and type extension with the possibility to override type-bound procedures or to have deferred binding. ! * Polymorphic entities ("`CLASS'") for derived types - including ! `SAME_TYPE_AS', `EXTENDS_TYPE_OF' and `SELECT TYPE' for scalars ! and arrays, including unlimited polymorphism. * Generic interface names, which have the same name as derived types, ! are now supported. This allows one to write constructor functions. Note that Fortran does not support static constructor functions. For static variables, only default initialization or structure-constructor initialization are available. ! * The `ASSOCIATE' construct. * Interoperability with C including enumerations, * In structure constructors the components with default values may be omitted. ! * Extensions to the `ALLOCATE' statement, allowing for a type-specification with type parameter and for allocation and ! initialization from a `SOURCE=' expression; `ALLOCATE' and ! `DEALLOCATE' optionally return an error message string via ! `ERRMSG='. * Reallocation on assignment: If an intrinsic assignment is used, an allocatable variable on the left-hand side is automatically allocated (if unallocated) or reallocated (if the shape is ! different). Currently, scalar deferred character length left-hand sides are correctly handled but arrays are not yet fully implemented. ! * Transferring of allocations via `MOVE_ALLOC'. ! * The `PRIVATE' and `PUBLIC' attributes may be given individually to derived-type components. * In pointer assignments, the lower bound may be specified and the remapping of elements is supported. ! * For pointers an `INTENT' may be specified which affect the association status not the value of the pointer target. ! * Intrinsics `command_argument_count', `get_command', ! `get_command_argument', and `get_environment_variable'. ! * Support for Unicode characters (ISO 10646) and UTF-8, including ! the `SELECTED_CHAR_KIND' and `NEW_LINE' intrinsic functions. * Support for binary, octal and hexadecimal (BOZ) constants in the ! intrinsic functions `INT', `REAL', `CMPLX' and `DBLE'. * Support for namelist variables with allocatable and pointer attribute and nonconstant length type parameter. ! * Array constructors using square brackets. That is, `[...]' rather ! than `(/.../)'. Type-specification for array constructors like ! `(/ some-type :: ... /)'. * Extensions to the specification and initialization expressions, including the support for intrinsics with real and complex arguments. ! * Support for the asynchronous input/output syntax; however, the ! data transfer is currently always synchronously performed. ! * `FLUSH' statement. ! * `IOMSG=' specifier for I/O statements. ! * Support for the declaration of enumeration constants via the ! `ENUM' and `ENUMERATOR' statements. Interoperability with `gcc' ! is guaranteed also for the case where the `-fshort-enums' command ! line option is given. * TR 15581: ! * `ALLOCATABLE' dummy arguments. ! ! * `ALLOCATABLE' function results ! ! * `ALLOCATABLE' components of derived types ! * The `OPEN' statement supports the `ACCESS='STREAM'' specifier, allowing I/O without any record structure. * Namelist input/output for internal files. --- 1873,1966 ---- (http://gcc.gnu.org/wiki/Fortran2003) about Fortran 2003. * Procedure pointers including procedure-pointer components with ! 'PASS' attribute. * Procedures which are bound to a derived type (type-bound ! procedures) including 'PASS', 'PROCEDURE' and 'GENERIC', and operators bound to a type. * Abstract interfaces and type extension with the possibility to override type-bound procedures or to have deferred binding. ! * Polymorphic entities ("'CLASS'") for derived types - including ! 'SAME_TYPE_AS', 'EXTENDS_TYPE_OF' and 'SELECT TYPE' for scalars and ! arrays, including unlimited polymorphism. * Generic interface names, which have the same name as derived types, ! are now supported. This allows one to write constructor functions. Note that Fortran does not support static constructor functions. For static variables, only default initialization or structure-constructor initialization are available. ! * The 'ASSOCIATE' construct. * Interoperability with C including enumerations, * In structure constructors the components with default values may be omitted. ! * Extensions to the 'ALLOCATE' statement, allowing for a type-specification with type parameter and for allocation and ! initialization from a 'SOURCE=' expression; 'ALLOCATE' and ! 'DEALLOCATE' optionally return an error message string via ! 'ERRMSG='. * Reallocation on assignment: If an intrinsic assignment is used, an allocatable variable on the left-hand side is automatically allocated (if unallocated) or reallocated (if the shape is ! different). Currently, scalar deferred character length left-hand sides are correctly handled but arrays are not yet fully implemented. ! * Transferring of allocations via 'MOVE_ALLOC'. ! * The 'PRIVATE' and 'PUBLIC' attributes may be given individually to derived-type components. * In pointer assignments, the lower bound may be specified and the remapping of elements is supported. ! * For pointers an 'INTENT' may be specified which affect the association status not the value of the pointer target. ! * Intrinsics 'command_argument_count', 'get_command', ! 'get_command_argument', and 'get_environment_variable'. ! * Support for Unicode characters (ISO 10646) and UTF-8, including the ! 'SELECTED_CHAR_KIND' and 'NEW_LINE' intrinsic functions. * Support for binary, octal and hexadecimal (BOZ) constants in the ! intrinsic functions 'INT', 'REAL', 'CMPLX' and 'DBLE'. * Support for namelist variables with allocatable and pointer attribute and nonconstant length type parameter. ! * Array constructors using square brackets. That is, '[...]' rather ! than '(/.../)'. Type-specification for array constructors like '(/ ! some-type :: ... /)'. * Extensions to the specification and initialization expressions, including the support for intrinsics with real and complex arguments. ! * Support for the asynchronous input/output syntax; however, the data ! transfer is currently always synchronously performed. ! * 'FLUSH' statement. ! * 'IOMSG=' specifier for I/O statements. ! * Support for the declaration of enumeration constants via the 'ENUM' ! and 'ENUMERATOR' statements. Interoperability with 'gcc' is ! guaranteed also for the case where the '-fshort-enums' command line ! option is given. * TR 15581: ! * 'ALLOCATABLE' dummy arguments. ! * 'ALLOCATABLE' function results ! * 'ALLOCATABLE' components of derived types ! * The 'OPEN' statement supports the 'ACCESS='STREAM'' specifier, allowing I/O without any record structure. * Namelist input/output for internal files. *************** can be found below. See also the wiki p *** 1990,2015 **** a decimal comma instead of a decimal point, setting whether a plus sign should appear for positive numbers. ! * The `PROTECTED' statement and attribute. ! * The `VALUE' statement and attribute. ! * The `VOLATILE' statement and attribute. ! * The `IMPORT' statement, allowing to import host-associated derived types. ! * The intrinsic modules `ISO_FORTRAN_ENVIRONMENT' is supported, ! which contains parameters of the I/O units, storage sizes. ! Additionally, procedures for C interoperability are available in ! the `ISO_C_BINDING' module. ! ! * `USE' statement with `INTRINSIC' and `NON_INTRINSIC' attribute; ! supported intrinsic modules: `ISO_FORTRAN_ENV', `ISO_C_BINDING', ! `OMP_LIB' and `OMP_LIB_KINDS'. ! * Renaming of operators in the `USE' statement.  File: gfortran.info, Node: Fortran 2008 status, Next: TS 29113 status, Prev: Fortran 2003 status, Up: Fortran 2003 and 2008 status --- 1969,1993 ---- a decimal comma instead of a decimal point, setting whether a plus sign should appear for positive numbers. ! * The 'PROTECTED' statement and attribute. ! * The 'VALUE' statement and attribute. ! * The 'VOLATILE' statement and attribute. ! * The 'IMPORT' statement, allowing to import host-associated derived types. ! * The intrinsic modules 'ISO_FORTRAN_ENVIRONMENT' is supported, which ! contains parameters of the I/O units, storage sizes. Additionally, ! procedures for C interoperability are available in the ! 'ISO_C_BINDING' module. ! * 'USE' statement with 'INTRINSIC' and 'NON_INTRINSIC' attribute; ! supported intrinsic modules: 'ISO_FORTRAN_ENV', 'ISO_C_BINDING', ! 'OMP_LIB' and 'OMP_LIB_KINDS'. + * Renaming of operators in the 'USE' statement.  File: gfortran.info, Node: Fortran 2008 status, Next: TS 29113 status, Prev: Fortran 2003 status, Up: Fortran 2003 and 2008 status *************** informally known as Fortran 2008. The o *** 2022,2031 **** from International Organization for Standardization (ISO) or its national member organizations. The the final draft (FDIS) can be downloaded free of charge from ! `http://www.nag.co.uk/sc22wg5/links.html'. Fortran is developed by the Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1 of the International Organization for Standardization and the ! International Electrotechnical Commission (IEC). This group is known as WG5 (http://www.nag.co.uk/sc22wg5/). The GNU Fortran compiler supports several of the new features of --- 2000,2009 ---- from International Organization for Standardization (ISO) or its national member organizations. The the final draft (FDIS) can be downloaded free of charge from ! . Fortran is developed by the Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1 of the International Organization for Standardization and the ! International Electrotechnical Commission (IEC). This group is known as WG5 (http://www.nag.co.uk/sc22wg5/). The GNU Fortran compiler supports several of the new features of *************** Fortran 2008; the wiki (http://gcc.gnu.o *** 2033,2124 **** some information about the current Fortran 2008 implementation status. In particular, the following is implemented. ! * The `-std=f2008' option and support for the file extensions `.f08' ! and `.F08'. ! * The `OPEN' statement now supports the `NEWUNIT=' option, which returns a unique file unit, thus preventing inadvertent use of the same unit in different parts of the program. ! * The `g0' format descriptor and unlimited format items. ! * The mathematical intrinsics `ASINH', `ACOSH', `ATANH', `ERF', ! `ERFC', `GAMMA', `LOG_GAMMA', `BESSEL_J0', `BESSEL_J1', ! `BESSEL_JN', `BESSEL_Y0', `BESSEL_Y1', `BESSEL_YN', `HYPOT', ! `NORM2', and `ERFC_SCALED'. ! * Using complex arguments with `TAN', `SINH', `COSH', `TANH', ! `ASIN', `ACOS', and `ATAN' is now possible; `ATAN'(Y,X) is now an ! alias for `ATAN2'(Y,X). ! * Support of the `PARITY' intrinsic functions. ! * The following bit intrinsics: `LEADZ' and `TRAILZ' for counting ! the number of leading and trailing zero bits, `POPCNT' and ! `POPPAR' for counting the number of one bits and returning the ! parity; `BGE', `BGT', `BLE', and `BLT' for bitwise comparisons; ! `DSHIFTL' and `DSHIFTR' for combined left and right shifts, ! `MASKL' and `MASKR' for simple left and right justified masks, ! `MERGE_BITS' for a bitwise merge using a mask, `SHIFTA', `SHIFTL' ! and `SHIFTR' for shift operations, and the transformational bit ! intrinsics `IALL', `IANY' and `IPARITY'. ! * Support of the `EXECUTE_COMMAND_LINE' intrinsic subroutine. ! * Support for the `STORAGE_SIZE' intrinsic inquiry function. ! * The `INT{8,16,32}' and `REAL{32,64,128}' kind type parameters and ! the array-valued named constants `INTEGER_KINDS', `LOGICAL_KINDS', ! `REAL_KINDS' and `CHARACTER_KINDS' of the intrinsic module ! `ISO_FORTRAN_ENV'. ! * The module procedures `C_SIZEOF' of the intrinsic module ! `ISO_C_BINDINGS' and `COMPILER_VERSION' and `COMPILER_OPTIONS' of ! `ISO_FORTRAN_ENV'. ! * Coarray support for serial programs with `-fcoarray=single' flag and experimental support for multiple images with the ! `-fcoarray=lib' flag. ! * The `DO CONCURRENT' construct is supported. ! * The `BLOCK' construct is supported. ! * The `STOP' and the new `ERROR STOP' statements now support all constant expressions. ! * Support for the `CONTIGUOUS' attribute. ! * Support for `ALLOCATE' with `MOLD'. ! * Support for the `IMPURE' attribute for procedures, which allows ! for `ELEMENTAL' procedures without the restrictions of `PURE'. ! * Null pointers (including `NULL()') and not-allocated variables can be used as actual argument to optional non-pointer, non-allocatable dummy arguments, denoting an absent argument. ! * Non-pointer variables with `TARGET' attribute can be used as ! actual argument to `POINTER' dummies with `INTENT(IN)'. * Pointers including procedure pointers and those in a derived type (pointer components) can now be initialized by a target instead of ! only by `NULL'. ! * The `EXIT' statement (with construct-name) can be now be used to ! leave not only the `DO' but also the `ASSOCIATE', `BLOCK', `IF', ! `SELECT CASE' and `SELECT TYPE' constructs. * Internal procedures can now be used as actual argument. ! * Minor features: obsolesce diagnostics for `ENTRY' with ! `-std=f2008'; a line may start with a semicolon; for internal and ! module procedures `END' can be used instead of `END SUBROUTINE' ! and `END FUNCTION'; `SELECTED_REAL_KIND' now also takes a `RADIX' argument; intrinsic types are supported for ! `TYPE'(INTRINSIC-TYPE-SPEC); multiple type-bound procedures can be ! declared in a single `PROCEDURE' statement; implied-shape arrays ! are supported for named constants (`PARAMETER').  File: gfortran.info, Node: TS 29113 status, Prev: Fortran 2008 status, Up: Fortran 2003 and 2008 status --- 2011,2102 ---- some information about the current Fortran 2008 implementation status. In particular, the following is implemented. ! * The '-std=f2008' option and support for the file extensions '.f08' ! and '.F08'. ! * The 'OPEN' statement now supports the 'NEWUNIT=' option, which returns a unique file unit, thus preventing inadvertent use of the same unit in different parts of the program. ! * The 'g0' format descriptor and unlimited format items. ! * The mathematical intrinsics 'ASINH', 'ACOSH', 'ATANH', 'ERF', ! 'ERFC', 'GAMMA', 'LOG_GAMMA', 'BESSEL_J0', 'BESSEL_J1', ! 'BESSEL_JN', 'BESSEL_Y0', 'BESSEL_Y1', 'BESSEL_YN', 'HYPOT', ! 'NORM2', and 'ERFC_SCALED'. ! * Using complex arguments with 'TAN', 'SINH', 'COSH', 'TANH', 'ASIN', ! 'ACOS', and 'ATAN' is now possible; 'ATAN'(Y,X) is now an alias for ! 'ATAN2'(Y,X). ! * Support of the 'PARITY' intrinsic functions. ! * The following bit intrinsics: 'LEADZ' and 'TRAILZ' for counting the ! number of leading and trailing zero bits, 'POPCNT' and 'POPPAR' for ! counting the number of one bits and returning the parity; 'BGE', ! 'BGT', 'BLE', and 'BLT' for bitwise comparisons; 'DSHIFTL' and ! 'DSHIFTR' for combined left and right shifts, 'MASKL' and 'MASKR' ! for simple left and right justified masks, 'MERGE_BITS' for a ! bitwise merge using a mask, 'SHIFTA', 'SHIFTL' and 'SHIFTR' for ! shift operations, and the transformational bit intrinsics 'IALL', ! 'IANY' and 'IPARITY'. ! * Support of the 'EXECUTE_COMMAND_LINE' intrinsic subroutine. ! * Support for the 'STORAGE_SIZE' intrinsic inquiry function. ! * The 'INT{8,16,32}' and 'REAL{32,64,128}' kind type parameters and ! the array-valued named constants 'INTEGER_KINDS', 'LOGICAL_KINDS', ! 'REAL_KINDS' and 'CHARACTER_KINDS' of the intrinsic module ! 'ISO_FORTRAN_ENV'. ! * The module procedures 'C_SIZEOF' of the intrinsic module ! 'ISO_C_BINDINGS' and 'COMPILER_VERSION' and 'COMPILER_OPTIONS' of ! 'ISO_FORTRAN_ENV'. ! * Coarray support for serial programs with '-fcoarray=single' flag and experimental support for multiple images with the ! '-fcoarray=lib' flag. ! * The 'DO CONCURRENT' construct is supported. ! * The 'BLOCK' construct is supported. ! * The 'STOP' and the new 'ERROR STOP' statements now support all constant expressions. ! * Support for the 'CONTIGUOUS' attribute. ! * Support for 'ALLOCATE' with 'MOLD'. ! * Support for the 'IMPURE' attribute for procedures, which allows for ! 'ELEMENTAL' procedures without the restrictions of 'PURE'. ! * Null pointers (including 'NULL()') and not-allocated variables can be used as actual argument to optional non-pointer, non-allocatable dummy arguments, denoting an absent argument. ! * Non-pointer variables with 'TARGET' attribute can be used as actual ! argument to 'POINTER' dummies with 'INTENT(IN)'. * Pointers including procedure pointers and those in a derived type (pointer components) can now be initialized by a target instead of ! only by 'NULL'. ! * The 'EXIT' statement (with construct-name) can be now be used to ! leave not only the 'DO' but also the 'ASSOCIATE', 'BLOCK', 'IF', ! 'SELECT CASE' and 'SELECT TYPE' constructs. * Internal procedures can now be used as actual argument. ! * Minor features: obsolesce diagnostics for 'ENTRY' with ! '-std=f2008'; a line may start with a semicolon; for internal and ! module procedures 'END' can be used instead of 'END SUBROUTINE' and ! 'END FUNCTION'; 'SELECTED_REAL_KIND' now also takes a 'RADIX' argument; intrinsic types are supported for ! 'TYPE'(INTRINSIC-TYPE-SPEC); multiple type-bound procedures can be ! declared in a single 'PROCEDURE' statement; implied-shape arrays ! are supported for named constants ('PARAMETER').  File: gfortran.info, Node: TS 29113 status, Prev: Fortran 2008 status, Up: Fortran 2003 and 2008 status *************** following is implemented. *** 2134,2152 **** See also *note Further Interoperability of Fortran with C::. ! * The `-std=f2008ts' option. ! * The `OPTIONAL' attribute is allowed for dummy arguments of ! `BIND(C) procedures.' ! * The `RANK' intrinsic is supported. ! * GNU Fortran's implementation for variables with `ASYNCHRONOUS' attribute is compatible with TS 29113. ! * Assumed types (`TYPE(*)'. ! * Assumed-rank (`DIMENSION(..)'). However, the array descriptor of the TS is not yet supported.  --- 2112,2130 ---- See also *note Further Interoperability of Fortran with C::. ! * The '-std=f2008ts' option. ! * The 'OPTIONAL' attribute is allowed for dummy arguments of 'BIND(C) ! procedures.' ! * The 'RANK' intrinsic is supported. ! * GNU Fortran's implementation for variables with 'ASYNCHRONOUS' attribute is compatible with TS 29113. ! * Assumed types ('TYPE(*)'. ! * Assumed-rank ('DIMENSION(..)'). However, the array descriptor of the TS is not yet supported.  *************** File: gfortran.info, Node: KIND Type Pa *** 2172,2210 **** 5.1 KIND Type Parameters ======================== ! The `KIND' type parameters supported by GNU Fortran for the primitive data types are: ! `INTEGER' 1, 2, 4, 8*, 16*, default: 4 (1) ! `LOGICAL' 1, 2, 4, 8*, 16*, default: 4 (1) ! `REAL' 4, 8, 10*, 16*, default: 4 (2) ! `COMPLEX' 4, 8, 10*, 16*, default: 4 (2) ! `CHARACTER' 1, 4, default: 1 - * = not available on all systems (1) Unless -fdefault-integer-8 is used (2) Unless -fdefault-real-8 is used ! The `KIND' value matches the storage size in bytes, except for ! `COMPLEX' where the storage size is twice as much (or both real and ! imaginary part are a real value of the given size). It is recommended ! to use the `SELECTED_CHAR_KIND', `SELECTED_INT_KIND' and ! `SELECTED_REAL_KIND' intrinsics or the `INT8', `INT16', `INT32', ! `INT64', `REAL32', `REAL64', and `REAL128' parameters of the ! `ISO_FORTRAN_ENV' module instead of the concrete values. The available ! kind parameters can be found in the constant arrays `CHARACTER_KINDS', ! `INTEGER_KINDS', `LOGICAL_KINDS' and `REAL_KINDS' in the ! `ISO_FORTRAN_ENV' module (see *note ISO_FORTRAN_ENV::).  File: gfortran.info, Node: Internal representation of LOGICAL variables, Next: Thread-safety of the runtime library, Prev: KIND Type Parameters, Up: Compiler Characteristics --- 2150,2187 ---- 5.1 KIND Type Parameters ======================== ! The 'KIND' type parameters supported by GNU Fortran for the primitive data types are: ! 'INTEGER' 1, 2, 4, 8*, 16*, default: 4 (1) ! 'LOGICAL' 1, 2, 4, 8*, 16*, default: 4 (1) ! 'REAL' 4, 8, 10*, 16*, default: 4 (2) ! 'COMPLEX' 4, 8, 10*, 16*, default: 4 (2) ! 'CHARACTER' 1, 4, default: 1 * = not available on all systems (1) Unless -fdefault-integer-8 is used (2) Unless -fdefault-real-8 is used ! The 'KIND' value matches the storage size in bytes, except for 'COMPLEX' ! where the storage size is twice as much (or both real and imaginary part ! are a real value of the given size). It is recommended to use the ! 'SELECTED_CHAR_KIND', 'SELECTED_INT_KIND' and 'SELECTED_REAL_KIND' ! intrinsics or the 'INT8', 'INT16', 'INT32', 'INT64', 'REAL32', 'REAL64', ! and 'REAL128' parameters of the 'ISO_FORTRAN_ENV' module instead of the ! concrete values. The available kind parameters can be found in the ! constant arrays 'CHARACTER_KINDS', 'INTEGER_KINDS', 'LOGICAL_KINDS' and ! 'REAL_KINDS' in the 'ISO_FORTRAN_ENV' module (see *note ! ISO_FORTRAN_ENV::).  File: gfortran.info, Node: Internal representation of LOGICAL variables, Next: Thread-safety of the runtime library, Prev: KIND Type Parameters, Up: Compiler Characteristics *************** File: gfortran.info, Node: Internal rep *** 2212,2236 **** 5.2 Internal representation of LOGICAL variables ================================================ ! The Fortran standard does not specify how variables of `LOGICAL' type ! are represented, beyond requiring that `LOGICAL' variables of default ! kind have the same storage size as default `INTEGER' and `REAL' variables. The GNU Fortran internal representation is as follows. ! A `LOGICAL(KIND=N)' variable is represented as an `INTEGER(KIND=N)' ! variable, however, with only two permissible values: `1' for `.TRUE.' ! and `0' for `.FALSE.'. Any other integer value results in undefined behavior. ! Note that for mixed-language programming using the `ISO_C_BINDING' ! feature, there is a `C_BOOL' kind that can be used to create ! `LOGICAL(KIND=C_BOOL)' variables which are interoperable with the C99 ! _Bool type. The C99 _Bool type has an internal representation ! described in the C99 standard, which is identical to the above ! description, i.e. with 1 for true and 0 for false being the only ! permissible values. Thus the internal representation of `LOGICAL' ! variables in GNU Fortran is identical to C99 _Bool, except for a ! possible difference in storage size depending on the kind.  File: gfortran.info, Node: Thread-safety of the runtime library, Next: Data consistency and durability, Prev: Internal representation of LOGICAL variables, Up: Compiler Characteristics --- 2189,2213 ---- 5.2 Internal representation of LOGICAL variables ================================================ ! The Fortran standard does not specify how variables of 'LOGICAL' type ! are represented, beyond requiring that 'LOGICAL' variables of default ! kind have the same storage size as default 'INTEGER' and 'REAL' variables. The GNU Fortran internal representation is as follows. ! A 'LOGICAL(KIND=N)' variable is represented as an 'INTEGER(KIND=N)' ! variable, however, with only two permissible values: '1' for '.TRUE.' ! and '0' for '.FALSE.'. Any other integer value results in undefined behavior. ! Note that for mixed-language programming using the 'ISO_C_BINDING' ! feature, there is a 'C_BOOL' kind that can be used to create ! 'LOGICAL(KIND=C_BOOL)' variables which are interoperable with the C99 ! _Bool type. The C99 _Bool type has an internal representation described ! in the C99 standard, which is identical to the above description, i.e. ! with 1 for true and 0 for false being the only permissible values. Thus ! the internal representation of 'LOGICAL' variables in GNU Fortran is ! identical to C99 _Bool, except for a possible difference in storage size ! depending on the kind.  File: gfortran.info, Node: Thread-safety of the runtime library, Next: Data consistency and durability, Prev: Internal representation of LOGICAL variables, Up: Compiler Characteristics *************** File: gfortran.info, Node: Thread-safet *** 2238,2261 **** 5.3 Thread-safety of the runtime library ======================================== ! GNU Fortran can be used in programs with multiple threads, e.g. by ! using OpenMP, by calling OS thread handling functions via the ! `ISO_C_BINDING' facility, or by GNU Fortran compiled library code being ! called from a multi-threaded program. ! The GNU Fortran runtime library, (`libgfortran'), supports being called concurrently from multiple threads with the following exceptions. ! During library initialization, the C `getenv' function is used, ! which need not be thread-safe. Similarly, the `getenv' function is ! used to implement the `GET_ENVIRONMENT_VARIABLE' and `GETENV' ! intrinsics. It is the responsibility of the user to ensure that the ! environment is not being updated concurrently when any of these actions ! are taking place. ! The `EXECUTE_COMMAND_LINE' and `SYSTEM' intrinsics are implemented ! with the `system' function, which need not be thread-safe. It is the ! responsibility of the user to ensure that `system' is not called concurrently. Finally, for platforms not supporting thread-safe POSIX functions, --- 2215,2237 ---- 5.3 Thread-safety of the runtime library ======================================== ! GNU Fortran can be used in programs with multiple threads, e.g. by using ! OpenMP, by calling OS thread handling functions via the 'ISO_C_BINDING' ! facility, or by GNU Fortran compiled library code being called from a ! multi-threaded program. ! The GNU Fortran runtime library, ('libgfortran'), supports being called concurrently from multiple threads with the following exceptions. ! During library initialization, the C 'getenv' function is used, which ! need not be thread-safe. Similarly, the 'getenv' function is used to ! implement the 'GET_ENVIRONMENT_VARIABLE' and 'GETENV' intrinsics. It is ! the responsibility of the user to ensure that the environment is not ! being updated concurrently when any of these actions are taking place. ! The 'EXECUTE_COMMAND_LINE' and 'SYSTEM' intrinsics are implemented ! with the 'system' function, which need not be thread-safe. It is the ! responsibility of the user to ensure that 'system' is not called concurrently. Finally, for platforms not supporting thread-safe POSIX functions, *************** This section contains a brief overview o *** 2272,2283 **** and durability issues when doing I/O. With respect to durability, GNU Fortran makes no effort to ensure ! that data is committed to stable storage. If this is required, the GNU ! Fortran programmer can use the intrinsic `FNUM' to retrieve the low ! level file descriptor corresponding to an open Fortran unit. Then, ! using e.g. the `ISO_C_BINDING' feature, one can call the underlying ! system call to flush dirty data to stable storage, such as `fsync' on ! POSIX, `_commit' on MingW, or `fcntl(fd, F_FULLSYNC, 0)' on Mac OS X. The following example shows how to call fsync: ! Declare the interface for POSIX fsync function --- 2248,2259 ---- and durability issues when doing I/O. With respect to durability, GNU Fortran makes no effort to ensure ! that data is committed to stable storage. If this is required, the GNU ! Fortran programmer can use the intrinsic 'FNUM' to retrieve the low ! level file descriptor corresponding to an open Fortran unit. Then, ! using e.g. the 'ISO_C_BINDING' feature, one can call the underlying ! system call to flush dirty data to stable storage, such as 'fsync' on ! POSIX, '_commit' on MingW, or 'fcntl(fd, F_FULLSYNC, 0)' on Mac OS X. The following example shows how to call fsync: ! Declare the interface for POSIX fsync function *************** The following example shows how to call *** 2307,2336 **** if (ret /= 0) stop "Error calling FSYNC" With respect to consistency, for regular files GNU Fortran uses ! buffered I/O in order to improve performance. This buffer is flushed ! automatically when full and in some other situations, e.g. when closing ! a unit. It can also be explicitly flushed with the `FLUSH' statement. ! Also, the buffering can be turned off with the ! `GFORTRAN_UNBUFFERED_ALL' and `GFORTRAN_UNBUFFERED_PRECONNECTED' ! environment variables. Special files, such as terminals and pipes, are ! always unbuffered. Sometimes, however, further things may need to be ! done in order to allow other processes to see data that GNU Fortran has ! written, as follows. The Windows platform supports a relaxed metadata consistency model, ! where file metadata is written to the directory lazily. This means ! that, for instance, the `dir' command can show a stale size for a file. One can force a directory metadata update by closing the unit, or by ! calling `_commit' on the file descriptor. Note, though, that `_commit' will force all dirty data to stable storage, which is often a very slow operation. The Network File System (NFS) implements a relaxed consistency model ! called open-to-close consistency. Closing a file forces dirty data and metadata to be flushed to the server, and opening a file forces the client to contact the server in order to revalidate cached data. ! `fsync' will also force a flush of dirty data and metadata to the ! server. Similar to `open' and `close', acquiring and releasing `fcntl' file locks, if the server supports them, will also force cache validation and flushing dirty data and metadata. --- 2283,2311 ---- if (ret /= 0) stop "Error calling FSYNC" With respect to consistency, for regular files GNU Fortran uses ! buffered I/O in order to improve performance. This buffer is flushed ! automatically when full and in some other situations, e.g. when closing ! a unit. It can also be explicitly flushed with the 'FLUSH' statement. ! Also, the buffering can be turned off with the 'GFORTRAN_UNBUFFERED_ALL' ! and 'GFORTRAN_UNBUFFERED_PRECONNECTED' environment variables. Special ! files, such as terminals and pipes, are always unbuffered. Sometimes, ! however, further things may need to be done in order to allow other ! processes to see data that GNU Fortran has written, as follows. The Windows platform supports a relaxed metadata consistency model, ! where file metadata is written to the directory lazily. This means ! that, for instance, the 'dir' command can show a stale size for a file. One can force a directory metadata update by closing the unit, or by ! calling '_commit' on the file descriptor. Note, though, that '_commit' will force all dirty data to stable storage, which is often a very slow operation. The Network File System (NFS) implements a relaxed consistency model ! called open-to-close consistency. Closing a file forces dirty data and metadata to be flushed to the server, and opening a file forces the client to contact the server in order to revalidate cached data. ! 'fsync' will also force a flush of dirty data and metadata to the ! server. Similar to 'open' and 'close', acquiring and releasing 'fcntl' file locks, if the server supports them, will also force cache validation and flushing dirty data and metadata. *************** GNU Fortran implements a number of exten *** 2362,2373 **** This chapter contains information on their syntax and meaning. There are currently two categories of GNU Fortran extensions, those that provide functionality beyond that provided by any standard, and those ! that are supported by GNU Fortran purely for backward compatibility ! with legacy compilers. By default, `-std=gnu' allows the compiler to ! accept both types of extensions, but to warn about the use of the ! latter. Specifying either `-std=f95', `-std=f2003' or `-std=f2008' ! disables both types of extensions, and `-std=legacy' allows both ! without warning. * Menu: --- 2337,2347 ---- This chapter contains information on their syntax and meaning. There are currently two categories of GNU Fortran extensions, those that provide functionality beyond that provided by any standard, and those ! that are supported by GNU Fortran purely for backward compatibility with ! legacy compilers. By default, '-std=gnu' allows the compiler to accept ! both types of extensions, but to warn about the use of the latter. ! Specifying either '-std=f95', '-std=f2003' or '-std=f2008' disables both ! types of extensions, and '-std=legacy' allows both without warning. * Menu: *************** without warning. *** 2378,2384 **** * Commas in FORMAT specifications:: * Missing period in FORMAT specifications:: * I/O item lists:: ! * `Q' exponent-letter:: * BOZ literal constants:: * Real array indices:: * Unary operators:: --- 2352,2358 ---- * Commas in FORMAT specifications:: * Missing period in FORMAT specifications:: * I/O item lists:: ! * 'Q' exponent-letter:: * BOZ literal constants:: * Real array indices:: * Unary operators:: *************** File: gfortran.info, Node: Old-style ki *** 2398,2414 **** GNU Fortran allows old-style kind specifications in declarations. These look like: TYPESPEC*size x,y,z ! where `TYPESPEC' is a basic type (`INTEGER', `REAL', etc.), and ! where `size' is a byte count corresponding to the storage size of a ! valid kind for that type. (For `COMPLEX' variables, `size' is the ! total size of the real and imaginary parts.) The statement then ! declares `x', `y' and `z' to be of type `TYPESPEC' with the appropriate ! kind. This is equivalent to the standard-conforming declaration TYPESPEC(k) x,y,z ! where `k' is the kind parameter suitable for the intended precision. ! As kind parameters are implementation-dependent, use the `KIND', ! `SELECTED_INT_KIND' and `SELECTED_REAL_KIND' intrinsics to retrieve the ! correct value, for instance `REAL*8 x' can be replaced by: INTEGER, PARAMETER :: dbl = KIND(1.0d0) REAL(KIND=dbl) :: x --- 2372,2388 ---- GNU Fortran allows old-style kind specifications in declarations. These look like: TYPESPEC*size x,y,z ! where 'TYPESPEC' is a basic type ('INTEGER', 'REAL', etc.), and where ! 'size' is a byte count corresponding to the storage size of a valid kind ! for that type. (For 'COMPLEX' variables, 'size' is the total size of ! the real and imaginary parts.) The statement then declares 'x', 'y' and ! 'z' to be of type 'TYPESPEC' with the appropriate kind. This is ! equivalent to the standard-conforming declaration TYPESPEC(k) x,y,z ! where 'k' is the kind parameter suitable for the intended precision. As ! kind parameters are implementation-dependent, use the 'KIND', ! 'SELECTED_INT_KIND' and 'SELECTED_REAL_KIND' intrinsics to retrieve the ! correct value, for instance 'REAL*8 x' can be replaced by: INTEGER, PARAMETER :: dbl = KIND(1.0d0) REAL(KIND=dbl) :: x *************** File: gfortran.info, Node: Old-style va *** 2421,2432 **** GNU Fortran allows old-style initialization of variables of the form: INTEGER i/1/,j/2/ REAL x(2,2) /3*0.,1./ ! The syntax for the initializers is as for the `DATA' statement, but ! unlike in a `DATA' statement, an initializer only applies to the variable immediately preceding the initialization. In other words, ! something like `INTEGER I,J/2,3/' is not valid. This style of initialization is only allowed in declarations without double colons ! (`::'); the double colons were introduced in Fortran 90, which also introduced a standard syntax for initializing variables in type declarations. --- 2395,2406 ---- GNU Fortran allows old-style initialization of variables of the form: INTEGER i/1/,j/2/ REAL x(2,2) /3*0.,1./ ! The syntax for the initializers is as for the 'DATA' statement, but ! unlike in a 'DATA' statement, an initializer only applies to the variable immediately preceding the initialization. In other words, ! something like 'INTEGER I,J/2,3/' is not valid. This style of initialization is only allowed in declarations without double colons ! ('::'); the double colons were introduced in Fortran 90, which also introduced a standard syntax for initializing variables in type declarations. *************** are: *** 2441,2447 **** DATA i/1/, j/2/, x/3*0.,1./ Note that variables which are explicitly initialized in declarations ! or in `DATA' statements automatically acquire the `SAVE' attribute.  File: gfortran.info, Node: Extensions to namelist, Next: X format descriptor without count field, Prev: Old-style variable initialization, Up: Extensions implemented in GNU Fortran --- 2415,2421 ---- DATA i/1/, j/2/, x/3*0.,1./ Note that variables which are explicitly initialized in declarations ! or in 'DATA' statements automatically acquire the 'SAVE' attribute.  File: gfortran.info, Node: Extensions to namelist, Next: X format descriptor without count field, Prev: Old-style variable initialization, Up: Extensions implemented in GNU Fortran *************** types. The output from a namelist write *** 2455,2471 **** read. The output has all names in upper case and indentation to column 1 after the namelist name. Two extensions are permitted: ! Old-style use of `$' instead of `&' $MYNML X(:)%Y(2) = 1.0 2.0 3.0 CH(1:4) = "abcd" $END ! It should be noted that the default terminator is `/' rather than ! `&END'. Querying of the namelist when inputting from stdin. After at least ! one space, entering `?' sends to stdout the namelist name and the names of the variables in the namelist: ? --- 2429,2445 ---- read. The output has all names in upper case and indentation to column 1 after the namelist name. Two extensions are permitted: ! Old-style use of '$' instead of '&' $MYNML X(:)%Y(2) = 1.0 2.0 3.0 CH(1:4) = "abcd" $END ! It should be noted that the default terminator is '/' rather than ! '&END'. Querying of the namelist when inputting from stdin. After at least ! one space, entering '?' sends to stdout the namelist name and the names of the variables in the namelist: ? *************** of the variables in the namelist: *** 2475,2481 **** ch &end ! Entering `=?' outputs the namelist to stdout, as if `WRITE(*,NML = mynml)' had been called: =? --- 2449,2455 ---- ch &end ! Entering '=?' outputs the namelist to stdout, as if 'WRITE(*,NML = mynml)' had been called: =? *************** mynml)' had been called: *** 2486,2495 **** CH=abcd, / To aid this dialog, when input is from stdin, errors send their ! messages to stderr and execution continues, even if `IOSTAT' is set. ! `PRINT' namelist is permitted. This causes an error if `-std=f95' ! is used. PROGRAM test_print REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/) NAMELIST /mynml/ x --- 2460,2469 ---- CH=abcd, / To aid this dialog, when input is from stdin, errors send their ! messages to stderr and execution continues, even if 'IOSTAT' is set. ! 'PRINT' namelist is permitted. This causes an error if '-std=f95' is ! used. PROGRAM test_print REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/) NAMELIST /mynml/ x *************** is used. *** 2497,2503 **** END PROGRAM test_print Expanded namelist reads are permitted. This causes an error if ! `-std=f95' is used. In the following example, the first element of the array will be given the value 0.00 and the two succeeding elements will be given the values 1.00 and 2.00. &MYNML --- 2471,2477 ---- END PROGRAM test_print Expanded namelist reads are permitted. This causes an error if ! '-std=f95' is used. In the following example, the first element of the array will be given the value 0.00 and the two succeeding elements will be given the values 1.00 and 2.00. &MYNML *************** be given the values 1.00 and 2.00. *** 2507,2518 ****  File: gfortran.info, Node: X format descriptor without count field, Next: Commas in FORMAT specifications, Prev: Extensions to namelist, Up: Extensions implemented in GNU Fortran ! 6.1.4 `X' format descriptor without count field ----------------------------------------------- ! To support legacy codes, GNU Fortran permits the count field of the `X' ! edit descriptor in `FORMAT' statements to be omitted. When omitted, ! the count is implicitly assumed to be one. PRINT 10, 2, 3 10 FORMAT (I1, X, I1) --- 2481,2492 ----  File: gfortran.info, Node: X format descriptor without count field, Next: Commas in FORMAT specifications, Prev: Extensions to namelist, Up: Extensions implemented in GNU Fortran ! 6.1.4 'X' format descriptor without count field ----------------------------------------------- ! To support legacy codes, GNU Fortran permits the count field of the 'X' ! edit descriptor in 'FORMAT' statements to be omitted. When omitted, the ! count is implicitly assumed to be one. PRINT 10, 2, 3 10 FORMAT (I1, X, I1) *************** the count is implicitly assumed to be on *** 2520,2531 ****  File: gfortran.info, Node: Commas in FORMAT specifications, Next: Missing period in FORMAT specifications, Prev: X format descriptor without count field, Up: Extensions implemented in GNU Fortran ! 6.1.5 Commas in `FORMAT' specifications --------------------------------------- To support legacy codes, GNU Fortran allows the comma separator to be omitted immediately before and after character string edit descriptors ! in `FORMAT' statements. PRINT 10, 2, 3 10 FORMAT ('FOO='I1' BAR='I2) --- 2494,2505 ----  File: gfortran.info, Node: Commas in FORMAT specifications, Next: Missing period in FORMAT specifications, Prev: X format descriptor without count field, Up: Extensions implemented in GNU Fortran ! 6.1.5 Commas in 'FORMAT' specifications --------------------------------------- To support legacy codes, GNU Fortran allows the comma separator to be omitted immediately before and after character string edit descriptors ! in 'FORMAT' statements. PRINT 10, 2, 3 10 FORMAT ('FOO='I1' BAR='I2) *************** in `FORMAT' statements. *** 2533,2543 ****  File: gfortran.info, Node: Missing period in FORMAT specifications, Next: I/O item lists, Prev: Commas in FORMAT specifications, Up: Extensions implemented in GNU Fortran ! 6.1.6 Missing period in `FORMAT' specifications ----------------------------------------------- To support legacy codes, GNU Fortran allows missing periods in format ! specifications if and only if `-std=legacy' is given on the command line. This is considered non-conforming code and is discouraged. REAL :: value --- 2507,2517 ----  File: gfortran.info, Node: Missing period in FORMAT specifications, Next: I/O item lists, Prev: Commas in FORMAT specifications, Up: Extensions implemented in GNU Fortran ! 6.1.6 Missing period in 'FORMAT' specifications ----------------------------------------------- To support legacy codes, GNU Fortran allows missing periods in format ! specifications if and only if '-std=legacy' is given on the command line. This is considered non-conforming code and is discouraged. REAL :: value *************** line. This is considered non-conforming *** 2545,2618 **** 10 FORMAT ('F4')  ! File: gfortran.info, Node: I/O item lists, Next: `Q' exponent-letter, Prev: Missing period in FORMAT specifications, Up: Extensions implemented in GNU Fortran 6.1.7 I/O item lists -------------------- To support legacy codes, GNU Fortran allows the input item list of the ! `READ' statement, and the output item lists of the `WRITE' and `PRINT' statements, to start with a comma.  ! File: gfortran.info, Node: `Q' exponent-letter, Next: BOZ literal constants, Prev: I/O item lists, Up: Extensions implemented in GNU Fortran ! 6.1.8 `Q' exponent-letter ------------------------- GNU Fortran accepts real literal constants with an exponent-letter of ! `Q', for example, `1.23Q45'. The constant is interpreted as a ! `REAL(16)' entity on targets that support this type. If the target ! does not support `REAL(16)' but has a `REAL(10)' type, then the ! real-literal-constant will be interpreted as a `REAL(10)' entity. In ! the absence of `REAL(16)' and `REAL(10)', an error will occur.  ! File: gfortran.info, Node: BOZ literal constants, Next: Real array indices, Prev: `Q' exponent-letter, Up: Extensions implemented in GNU Fortran 6.1.9 BOZ literal constants --------------------------- ! Besides decimal constants, Fortran also supports binary (`b'), octal ! (`o') and hexadecimal (`z') integer constants. The syntax is: `prefix ! quote digits quote', were the prefix is either `b', `o' or `z', quote ! is either `'' or `"' and the digits are for binary `0' or `1', for ! octal between `0' and `7', and for hexadecimal between `0' and `F'. ! (Example: `b'01011101''.) Up to Fortran 95, BOZ literals were only allowed to initialize integer variables in DATA statements. Since Fortran 2003 BOZ literals ! are also allowed as argument of `REAL', `DBLE', `INT' and `CMPLX'; the result is the same as if the integer BOZ literal had been converted by ! `TRANSFER' to, respectively, `real', `double precision', `integer' or ! `complex'. As GNU Fortran extension the intrinsic procedures `FLOAT', ! `DFLOAT', `COMPLEX' and `DCMPLX' are treated alike. ! As an extension, GNU Fortran allows hexadecimal BOZ literal ! constants to be specified using the `X' prefix, in addition to the ! standard `Z' prefix. The BOZ literal can also be specified by adding a ! suffix to the string, for example, `Z'ABC'' and `'ABC'Z' are equivalent. Furthermore, GNU Fortran allows using BOZ literal constants outside DATA statements and the four intrinsic functions allowed by Fortran 2003. In DATA statements, in direct assignments, where the right-hand side only contains a BOZ literal constant, and for old-style ! initializers of the form `integer i /o'0173'/', the constant is ! transferred as if `TRANSFER' had been used; for `COMPLEX' numbers, only ! the real part is initialized unless `CMPLX' is used. In all other ! cases, the BOZ literal constant is converted to an `INTEGER' value with the largest decimal representation. This value is then converted numerically to the type and kind of the variable in question. (For ! instance, `real :: r = b'0000001' + 1' initializes `r' with `2.0'.) As different compilers implement the extension differently, one should be careful when doing bitwise initialization of non-integer variables. ! Note that initializing an `INTEGER' variable with a statement such ! as `DATA i/Z'FFFFFFFF'/' will give an integer overflow error rather ! than the desired result of -1 when `i' is a 32-bit integer on a system ! that supports 64-bit integers. The `-fno-range-check' option can be ! used as a workaround for legacy code that initializes integers in this ! manner.  File: gfortran.info, Node: Real array indices, Next: Unary operators, Prev: BOZ literal constants, Up: Extensions implemented in GNU Fortran --- 2519,2591 ---- 10 FORMAT ('F4')  ! File: gfortran.info, Node: I/O item lists, Next: 'Q' exponent-letter, Prev: Missing period in FORMAT specifications, Up: Extensions implemented in GNU Fortran 6.1.7 I/O item lists -------------------- To support legacy codes, GNU Fortran allows the input item list of the ! 'READ' statement, and the output item lists of the 'WRITE' and 'PRINT' statements, to start with a comma.  ! File: gfortran.info, Node: 'Q' exponent-letter, Next: BOZ literal constants, Prev: I/O item lists, Up: Extensions implemented in GNU Fortran ! 6.1.8 'Q' exponent-letter ------------------------- GNU Fortran accepts real literal constants with an exponent-letter of ! 'Q', for example, '1.23Q45'. The constant is interpreted as a ! 'REAL(16)' entity on targets that support this type. If the target does ! not support 'REAL(16)' but has a 'REAL(10)' type, then the ! real-literal-constant will be interpreted as a 'REAL(10)' entity. In ! the absence of 'REAL(16)' and 'REAL(10)', an error will occur.  ! File: gfortran.info, Node: BOZ literal constants, Next: Real array indices, Prev: 'Q' exponent-letter, Up: Extensions implemented in GNU Fortran 6.1.9 BOZ literal constants --------------------------- ! Besides decimal constants, Fortran also supports binary ('b'), octal ! ('o') and hexadecimal ('z') integer constants. The syntax is: 'prefix ! quote digits quote', were the prefix is either 'b', 'o' or 'z', quote is ! either ''' or '"' and the digits are for binary '0' or '1', for octal ! between '0' and '7', and for hexadecimal between '0' and 'F'. (Example: ! 'b'01011101''.) Up to Fortran 95, BOZ literals were only allowed to initialize integer variables in DATA statements. Since Fortran 2003 BOZ literals ! are also allowed as argument of 'REAL', 'DBLE', 'INT' and 'CMPLX'; the result is the same as if the integer BOZ literal had been converted by ! 'TRANSFER' to, respectively, 'real', 'double precision', 'integer' or ! 'complex'. As GNU Fortran extension the intrinsic procedures 'FLOAT', ! 'DFLOAT', 'COMPLEX' and 'DCMPLX' are treated alike. ! As an extension, GNU Fortran allows hexadecimal BOZ literal constants ! to be specified using the 'X' prefix, in addition to the standard 'Z' ! prefix. The BOZ literal can also be specified by adding a suffix to the ! string, for example, 'Z'ABC'' and ''ABC'Z' are equivalent. Furthermore, GNU Fortran allows using BOZ literal constants outside DATA statements and the four intrinsic functions allowed by Fortran 2003. In DATA statements, in direct assignments, where the right-hand side only contains a BOZ literal constant, and for old-style ! initializers of the form 'integer i /o'0173'/', the constant is ! transferred as if 'TRANSFER' had been used; for 'COMPLEX' numbers, only ! the real part is initialized unless 'CMPLX' is used. In all other ! cases, the BOZ literal constant is converted to an 'INTEGER' value with the largest decimal representation. This value is then converted numerically to the type and kind of the variable in question. (For ! instance, 'real :: r = b'0000001' + 1' initializes 'r' with '2.0'.) As different compilers implement the extension differently, one should be careful when doing bitwise initialization of non-integer variables. ! Note that initializing an 'INTEGER' variable with a statement such as ! 'DATA i/Z'FFFFFFFF'/' will give an integer overflow error rather than ! the desired result of -1 when 'i' is a 32-bit integer on a system that ! supports 64-bit integers. The '-fno-range-check' option can be used as ! a workaround for legacy code that initializes integers in this manner.  File: gfortran.info, Node: Real array indices, Next: Unary operators, Prev: BOZ literal constants, Up: Extensions implemented in GNU Fortran *************** File: gfortran.info, Node: Real array i *** 2620,2626 **** 6.1.10 Real array indices ------------------------- ! As an extension, GNU Fortran allows the use of `REAL' expressions or variables as array indices.  --- 2593,2599 ---- 6.1.10 Real array indices ------------------------- ! As an extension, GNU Fortran allows the use of 'REAL' expressions or variables as array indices.  *************** the need for parenthesis. *** 2638,2662 ****  File: gfortran.info, Node: Implicitly convert LOGICAL and INTEGER values, Next: Hollerith constants support, Prev: Unary operators, Up: Extensions implemented in GNU Fortran ! 6.1.12 Implicitly convert `LOGICAL' and `INTEGER' values -------------------------------------------------------- As an extension for backwards compatibility with other compilers, GNU ! Fortran allows the implicit conversion of `LOGICAL' values to `INTEGER' ! values and vice versa. When converting from a `LOGICAL' to an ! `INTEGER', `.FALSE.' is interpreted as zero, and `.TRUE.' is ! interpreted as one. When converting from `INTEGER' to `LOGICAL', the ! value zero is interpreted as `.FALSE.' and any nonzero value is ! interpreted as `.TRUE.'. LOGICAL :: l l = 1 - INTEGER :: i i = .TRUE. ! However, there is no implicit conversion of `INTEGER' values in ! `if'-statements, nor of `LOGICAL' or `INTEGER' values in I/O operations.  File: gfortran.info, Node: Hollerith constants support, Next: Cray pointers, Prev: Implicitly convert LOGICAL and INTEGER values, Up: Extensions implemented in GNU Fortran --- 2611,2634 ----  File: gfortran.info, Node: Implicitly convert LOGICAL and INTEGER values, Next: Hollerith constants support, Prev: Unary operators, Up: Extensions implemented in GNU Fortran ! 6.1.12 Implicitly convert 'LOGICAL' and 'INTEGER' values -------------------------------------------------------- As an extension for backwards compatibility with other compilers, GNU ! Fortran allows the implicit conversion of 'LOGICAL' values to 'INTEGER' ! values and vice versa. When converting from a 'LOGICAL' to an ! 'INTEGER', '.FALSE.' is interpreted as zero, and '.TRUE.' is interpreted ! as one. When converting from 'INTEGER' to 'LOGICAL', the value zero is ! interpreted as '.FALSE.' and any nonzero value is interpreted as ! '.TRUE.'. LOGICAL :: l l = 1 INTEGER :: i i = .TRUE. ! However, there is no implicit conversion of 'INTEGER' values in ! 'if'-statements, nor of 'LOGICAL' or 'INTEGER' values in I/O operations.  File: gfortran.info, Node: Hollerith constants support, Next: Cray pointers, Prev: Implicitly convert LOGICAL and INTEGER values, Up: Extensions implemented in GNU Fortran *************** File: gfortran.info, Node: Hollerith co *** 2665,2676 **** ---------------------------------- GNU Fortran supports Hollerith constants in assignments, function ! arguments, and `DATA' and `ASSIGN' statements. A Hollerith constant is written as a string of characters preceded by an integer constant ! indicating the character count, and the letter `H' or `h', and stored ! in bytewise fashion in a numeric (`INTEGER', `REAL', or `complex') or ! `LOGICAL' variable. The constant will be padded or truncated to fit ! the size of the variable in which it is stored. Examples of valid uses of Hollerith constants: complex*16 x(2) --- 2637,2648 ---- ---------------------------------- GNU Fortran supports Hollerith constants in assignments, function ! arguments, and 'DATA' and 'ASSIGN' statements. A Hollerith constant is written as a string of characters preceded by an integer constant ! indicating the character count, and the letter 'H' or 'h', and stored in ! bytewise fashion in a numeric ('INTEGER', 'REAL', or 'complex') or ! 'LOGICAL' variable. The constant will be padded or truncated to fit the ! size of the variable in which it is stored. Examples of valid uses of Hollerith constants: complex*16 x(2) *************** the size of the variable in which it is *** 2685,2696 **** In general, Hollerith constants were used to provide a rudimentary facility for handling character strings in early Fortran compilers, ! prior to the introduction of `CHARACTER' variables in Fortran 77; in ! those cases, the standard-compliant equivalent is to convert the ! program to use proper character strings. On occasion, there may be a ! case where the intent is specifically to initialize a numeric variable ! with a given byte sequence. In these cases, the same result can be ! obtained by using the `TRANSFER' statement, as in this example. INTEGER(KIND=4) :: a a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd --- 2657,2668 ---- In general, Hollerith constants were used to provide a rudimentary facility for handling character strings in early Fortran compilers, ! prior to the introduction of 'CHARACTER' variables in Fortran 77; in ! those cases, the standard-compliant equivalent is to convert the program ! to use proper character strings. On occasion, there may be a case where ! the intent is specifically to initialize a numeric variable with a given ! byte sequence. In these cases, the same result can be obtained by using ! the 'TRANSFER' statement, as in this example. INTEGER(KIND=4) :: a a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd *************** variables: an integer "pointer" that hol *** 2710,2726 **** or, pointer ( , ), ( , ), ... The pointer is an integer that is intended to hold a memory address. ! The pointee may be an array or scalar. A pointee can be an assumed ! size array--that is, the last dimension may be left unspecified by ! using a `*' in place of a value--but a pointee cannot be an assumed ! shape array. No space is allocated for the pointee. The pointee may have its type declared before or after the pointer statement, and its array specification (if any) may be declared before, during, or after the pointer statement. The pointer may be declared as an integer prior to the pointer statement. However, some machines have ! default integer sizes that are different than the size of a pointer, ! and so the following code is not portable: integer ipt pointer (ipt, iarr) If a pointer is declared with a kind that is too small, the compiler --- 2682,2698 ---- or, pointer ( , ), ( , ), ... The pointer is an integer that is intended to hold a memory address. ! The pointee may be an array or scalar. A pointee can be an assumed size ! array--that is, the last dimension may be left unspecified by using a ! '*' in place of a value--but a pointee cannot be an assumed shape array. ! No space is allocated for the pointee. The pointee may have its type declared before or after the pointer statement, and its array specification (if any) may be declared before, during, or after the pointer statement. The pointer may be declared as an integer prior to the pointer statement. However, some machines have ! default integer sizes that are different than the size of a pointer, and ! so the following code is not portable: integer ipt pointer (ipt, iarr) If a pointer is declared with a kind that is too small, the compiler *************** explicit declaration of ipt's type is om *** 2731,2761 **** ensure that ipt is an integer variable large enough to hold a pointer. Pointer arithmetic is valid with Cray pointers, but it is not the ! same as C pointer arithmetic. Cray pointers are just ordinary ! integers, so the user is responsible for determining how many bytes to ! add to a pointer in order to increment it. Consider the following ! example: real target(10) real pointee(10) pointer (ipt, pointee) ipt = loc (target) ipt = ipt + 1 ! The last statement does not set `ipt' to the address of `target(1)', ! as it would in C pointer arithmetic. Adding `1' to `ipt' just adds one ! byte to the address stored in `ipt'. Any expression involving the pointee will be translated to use the value stored in the pointer as the base address. To get the address of elements, this extension provides an intrinsic ! function `LOC()'. The `LOC()' function is equivalent to the `&' operator in C, except the address is cast to an integer type: real ar(10) pointer(ipt, arpte(10)) real arpte ipt = loc(ar) ! Makes arpte is an alias for ar arpte(1) = 1.0 ! Sets ar(1) to 1.0 ! The pointer can also be set by a call to the `MALLOC' intrinsic (see *note MALLOC::). Cray pointees often are used to alias an existing variable. For --- 2703,2732 ---- ensure that ipt is an integer variable large enough to hold a pointer. Pointer arithmetic is valid with Cray pointers, but it is not the ! same as C pointer arithmetic. Cray pointers are just ordinary integers, ! so the user is responsible for determining how many bytes to add to a ! pointer in order to increment it. Consider the following example: real target(10) real pointee(10) pointer (ipt, pointee) ipt = loc (target) ipt = ipt + 1 ! The last statement does not set 'ipt' to the address of 'target(1)', ! as it would in C pointer arithmetic. Adding '1' to 'ipt' just adds one ! byte to the address stored in 'ipt'. Any expression involving the pointee will be translated to use the value stored in the pointer as the base address. To get the address of elements, this extension provides an intrinsic ! function 'LOC()'. The 'LOC()' function is equivalent to the '&' operator in C, except the address is cast to an integer type: real ar(10) pointer(ipt, arpte(10)) real arpte ipt = loc(ar) ! Makes arpte is an alias for ar arpte(1) = 1.0 ! Sets ar(1) to 1.0 ! The pointer can also be set by a call to the 'MALLOC' intrinsic (see *note MALLOC::). Cray pointees often are used to alias an existing variable. For *************** example: *** 2764,2793 **** integer iarr(10) pointer (ipt, iarr) ipt = loc(target) ! As long as `ipt' remains unchanged, `iarr' is now an alias for ! `target'. The optimizer, however, will not detect this aliasing, so it ! is unsafe to use `iarr' and `target' simultaneously. Using a pointee ! in any way that violates the Fortran aliasing rules or assumptions is illegal. It is the user's responsibility to avoid doing this; the compiler works under the assumption that no such aliasing occurs. Cray pointers will work correctly when there is no aliasing (i.e., when they are used to access a dynamically allocated block of memory), and also in any routine where a pointee is used, but any variable with ! which it shares storage is not used. Code that violates these rules ! may not run as the user intends. This is not a bug in the optimizer; ! any code that violates the aliasing rules is illegal. (Note that this ! is not unique to GNU Fortran; any Fortran compiler that supports Cray pointers will "incorrectly" optimize code with illegal aliasing.) There are a number of restrictions on the attributes that can be applied to Cray pointers and pointees. Pointees may not have the ! `ALLOCATABLE', `INTENT', `OPTIONAL', `DUMMY', `TARGET', `INTRINSIC', or ! `POINTER' attributes. Pointers may not have the `DIMENSION', ! `POINTER', `TARGET', `ALLOCATABLE', `EXTERNAL', or `INTRINSIC' ! attributes, nor may they be function results. Pointees may not occur ! in more than one pointer statement. A pointee cannot be a pointer. ! Pointees cannot occur in equivalence, common, or data statements. A Cray pointer may also point to a function or a subroutine. For example, the following excerpt is valid: --- 2735,2764 ---- integer iarr(10) pointer (ipt, iarr) ipt = loc(target) ! As long as 'ipt' remains unchanged, 'iarr' is now an alias for ! 'target'. The optimizer, however, will not detect this aliasing, so it ! is unsafe to use 'iarr' and 'target' simultaneously. Using a pointee in ! any way that violates the Fortran aliasing rules or assumptions is illegal. It is the user's responsibility to avoid doing this; the compiler works under the assumption that no such aliasing occurs. Cray pointers will work correctly when there is no aliasing (i.e., when they are used to access a dynamically allocated block of memory), and also in any routine where a pointee is used, but any variable with ! which it shares storage is not used. Code that violates these rules may ! not run as the user intends. This is not a bug in the optimizer; any ! code that violates the aliasing rules is illegal. (Note that this is ! not unique to GNU Fortran; any Fortran compiler that supports Cray pointers will "incorrectly" optimize code with illegal aliasing.) There are a number of restrictions on the attributes that can be applied to Cray pointers and pointees. Pointees may not have the ! 'ALLOCATABLE', 'INTENT', 'OPTIONAL', 'DUMMY', 'TARGET', 'INTRINSIC', or ! 'POINTER' attributes. Pointers may not have the 'DIMENSION', 'POINTER', ! 'TARGET', 'ALLOCATABLE', 'EXTERNAL', or 'INTRINSIC' attributes, nor may ! they be function results. Pointees may not occur in more than one ! pointer statement. A pointee cannot be a pointer. Pointees cannot ! occur in equivalence, common, or data statements. A Cray pointer may also point to a function or a subroutine. For example, the following excerpt is valid: *************** example, the following excerpt is valid: *** 2804,2835 **** A pointer may be modified during the course of a program, and this will change the location to which the pointee refers. However, when ! pointees are passed as arguments, they are treated as ordinary ! variables in the invoked function. Subsequent changes to the pointer ! will not change the base address of the array that was passed.  File: gfortran.info, Node: CONVERT specifier, Next: OpenMP, Prev: Cray pointers, Up: Extensions implemented in GNU Fortran ! 6.1.15 `CONVERT' specifier -------------------------- GNU Fortran allows the conversion of unformatted data between little- and big-endian representation to facilitate moving of data between ! different systems. The conversion can be indicated with the `CONVERT' ! specifier on the `OPEN' statement. *Note GFORTRAN_CONVERT_UNIT::, for an alternative way of specifying the data format via an environment variable. ! Valid values for `CONVERT' are: ! `CONVERT='NATIVE'' Use the native format. This is the default. ! ! `CONVERT='SWAP'' Swap between little- and big-endian. ! ! `CONVERT='LITTLE_ENDIAN'' Use the little-endian representation for unformatted files. ! ! `CONVERT='BIG_ENDIAN'' Use the big-endian representation for unformatted files. Using the option could look like this: --- 2775,2803 ---- A pointer may be modified during the course of a program, and this will change the location to which the pointee refers. However, when ! pointees are passed as arguments, they are treated as ordinary variables ! in the invoked function. Subsequent changes to the pointer will not ! change the base address of the array that was passed.  File: gfortran.info, Node: CONVERT specifier, Next: OpenMP, Prev: Cray pointers, Up: Extensions implemented in GNU Fortran ! 6.1.15 'CONVERT' specifier -------------------------- GNU Fortran allows the conversion of unformatted data between little- and big-endian representation to facilitate moving of data between ! different systems. The conversion can be indicated with the 'CONVERT' ! specifier on the 'OPEN' statement. *Note GFORTRAN_CONVERT_UNIT::, for an alternative way of specifying the data format via an environment variable. ! Valid values for 'CONVERT' are: ! 'CONVERT='NATIVE'' Use the native format. This is the default. ! 'CONVERT='SWAP'' Swap between little- and big-endian. ! 'CONVERT='LITTLE_ENDIAN'' Use the little-endian representation for unformatted files. ! 'CONVERT='BIG_ENDIAN'' Use the big-endian representation for unformatted files. Using the option could look like this: *************** variable. *** 2837,2850 **** convert='big_endian') The value of the conversion can be queried by using ! `INQUIRE(CONVERT=ch)'. The values returned are `'BIG_ENDIAN'' and ! `'LITTLE_ENDIAN''. ! `CONVERT' works between big- and little-endian for `INTEGER' values ! of all supported kinds and for `REAL' on IEEE systems of kinds 4 and 8. Conversion between different "extended double" types on different architectures such as m68k and x86_64, which GNU Fortran supports as ! `REAL(KIND=10)' and `REAL(KIND=16)', will probably not work. _Note that the values specified via the GFORTRAN_CONVERT_UNIT environment variable will override the CONVERT specifier in the open --- 2805,2818 ---- convert='big_endian') The value of the conversion can be queried by using ! 'INQUIRE(CONVERT=ch)'. The values returned are ''BIG_ENDIAN'' and ! ''LITTLE_ENDIAN''. ! 'CONVERT' works between big- and little-endian for 'INTEGER' values ! of all supported kinds and for 'REAL' on IEEE systems of kinds 4 and 8. Conversion between different "extended double" types on different architectures such as m68k and x86_64, which GNU Fortran supports as ! 'REAL(KIND=10)' and 'REAL(KIND=16)', will probably not work. _Note that the values specified via the GFORTRAN_CONVERT_UNIT environment variable will override the CONVERT specifier in the open *************** run-time behavior. *** 2871,2886 **** GNU Fortran strives to be compatible to the OpenMP Application Program Interface v3.1 (http://www.openmp.org/mp-documents/spec31.pdf). ! To enable the processing of the OpenMP directive `!$omp' in ! free-form source code; the `c$omp', `*$omp' and `!$omp' directives in ! fixed form; the `!$' conditional compilation sentinels in free form; ! and the `c$', `*$' and `!$' sentinels in fixed form, `gfortran' needs ! to be invoked with the `-fopenmp'. This also arranges for automatic ! linking of the GNU OpenMP runtime library *note libgomp: (libgomp)Top. The OpenMP Fortran runtime library routines are provided both in a ! form of a Fortran 90 module named `omp_lib' and in a form of a Fortran ! `include' file named `omp_lib.h'. An example of a parallelized loop taken from Appendix A.1 of the OpenMP Application Program Interface v2.5: --- 2839,2854 ---- GNU Fortran strives to be compatible to the OpenMP Application Program Interface v3.1 (http://www.openmp.org/mp-documents/spec31.pdf). ! To enable the processing of the OpenMP directive '!$omp' in free-form ! source code; the 'c$omp', '*$omp' and '!$omp' directives in fixed form; ! the '!$' conditional compilation sentinels in free form; and the 'c$', ! '*$' and '!$' sentinels in fixed form, 'gfortran' needs to be invoked ! with the '-fopenmp'. This also arranges for automatic linking of the ! GNU OpenMP runtime library *note libgomp: (libgomp)Top. The OpenMP Fortran runtime library routines are provided both in a ! form of a Fortran 90 module named 'omp_lib' and in a form of a Fortran ! 'include' file named 'omp_lib.h'. An example of a parallelized loop taken from Appendix A.1 of the OpenMP Application Program Interface v2.5: *************** OpenMP Application Program Interface v2. *** 2895,2933 **** END SUBROUTINE A1 Please note: ! * `-fopenmp' implies `-frecursive', i.e., all local arrays will be ! allocated on the stack. When porting existing code to OpenMP, ! this may lead to surprising results, especially to segmentation ! faults if the stacksize is limited. * On glibc-based systems, OpenMP enabled applications cannot be statically linked due to limitations of the underlying pthreads-implementation. It might be possible to get a working ! solution if `-Wl,--whole-archive -lpthread -Wl,--no-whole-archive' is added to the command line. However, this is not supported by ! `gcc' and thus not recommended.  File: gfortran.info, Node: Argument list functions, Prev: OpenMP, Up: Extensions implemented in GNU Fortran ! 6.1.17 Argument list functions `%VAL', `%REF' and `%LOC' -------------------------------------------------------- ! GNU Fortran supports argument list functions `%VAL', `%REF' and `%LOC' ! statements, for backward compatibility with g77. It is recommended ! that these should be used only for code that is accessing facilities ! outside of GNU Fortran, such as operating system or windowing ! facilities. It is best to constrain such uses to isolated portions of ! a program-portions that deal specifically and exclusively with ! low-level, system-dependent facilities. Such portions might well ! provide a portable interface for use by the program as a whole, but are ! themselves not portable, and should be thoroughly tested each time they ! are rebuilt using a new compiler or version of a compiler. ! `%VAL' passes a scalar argument by value, `%REF' passes it by ! reference and `%LOC' passes its memory location. Since gfortran ! already passes scalar arguments by reference, `%REF' is in effect a ! do-nothing. `%LOC' has the same effect as a Fortran pointer. An example of passing an argument by value to a C subroutine foo.: C --- 2863,2901 ---- END SUBROUTINE A1 Please note: ! * '-fopenmp' implies '-frecursive', i.e., all local arrays will be ! allocated on the stack. When porting existing code to OpenMP, this ! may lead to surprising results, especially to segmentation faults ! if the stacksize is limited. * On glibc-based systems, OpenMP enabled applications cannot be statically linked due to limitations of the underlying pthreads-implementation. It might be possible to get a working ! solution if '-Wl,--whole-archive -lpthread -Wl,--no-whole-archive' is added to the command line. However, this is not supported by ! 'gcc' and thus not recommended.  File: gfortran.info, Node: Argument list functions, Prev: OpenMP, Up: Extensions implemented in GNU Fortran ! 6.1.17 Argument list functions '%VAL', '%REF' and '%LOC' -------------------------------------------------------- ! GNU Fortran supports argument list functions '%VAL', '%REF' and '%LOC' ! statements, for backward compatibility with g77. It is recommended that ! these should be used only for code that is accessing facilities outside ! of GNU Fortran, such as operating system or windowing facilities. It is ! best to constrain such uses to isolated portions of a program-portions ! that deal specifically and exclusively with low-level, system-dependent ! facilities. Such portions might well provide a portable interface for ! use by the program as a whole, but are themselves not portable, and ! should be thoroughly tested each time they are rebuilt using a new ! compiler or version of a compiler. ! '%VAL' passes a scalar argument by value, '%REF' passes it by ! reference and '%LOC' passes its memory location. Since gfortran already ! passes scalar arguments by reference, '%REF' is in effect a do-nothing. ! '%LOC' has the same effect as a Fortran pointer. An example of passing an argument by value to a C subroutine foo.: C *************** do-nothing. `%LOC' has the same effect *** 2940,2948 **** end For details refer to the g77 manual ! `http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top'. ! Also, `c_by_val.f' and its partner `c_by_val.c' of the GNU Fortran testsuite are worth a look.  --- 2908,2916 ---- end For details refer to the g77 manual ! . ! Also, 'c_by_val.f' and its partner 'c_by_val.c' of the GNU Fortran testsuite are worth a look.  *************** some features crucial to users in the fi *** 2957,2964 **** existence of a number of important extensions to the language. While some of the most useful or popular extensions are supported by the GNU Fortran compiler, not all existing extensions are supported. This ! section aims at listing these extensions and offering advice on how ! best make code that uses them running with the GNU Fortran compiler. * Menu: --- 2925,2932 ---- existence of a number of important extensions to the language. While some of the most useful or popular extensions are supported by the GNU Fortran compiler, not all existing extensions are supported. This ! section aims at listing these extensions and offering advice on how best ! make code that uses them running with the GNU Fortran compiler. * Menu: *************** best make code that uses them running wi *** 2970,2976 ****  File: gfortran.info, Node: STRUCTURE and RECORD, Next: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran ! 6.2.1 `STRUCTURE' and `RECORD' ------------------------------ Record structures are a pre-Fortran-90 vendor extension to create --- 2938,2944 ----  File: gfortran.info, Node: STRUCTURE and RECORD, Next: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran ! 6.2.1 'STRUCTURE' and 'RECORD' ------------------------------ Record structures are a pre-Fortran-90 vendor extension to create *************** structures, only Fortran 90's "derived t *** 2979,2988 **** syntax. In many cases, record structures can easily be converted to derived ! types. To convert, replace `STRUCTURE /'STRUCTURE-NAME`/' by `TYPE' ! TYPE-NAME. Additionally, replace `RECORD /'STRUCTURE-NAME`/' by ! `TYPE('TYPE-NAME`)'. Finally, in the component access, replace the ! period (`.') by the percent sign (`%'). Here is an example of code using the non portable record structure syntax: --- 2947,2956 ---- syntax. In many cases, record structures can easily be converted to derived ! types. To convert, replace 'STRUCTURE /'STRUCTURE-NAME'/' by 'TYPE' ! TYPE-NAME. Additionally, replace 'RECORD /'STRUCTURE-NAME'/' by ! 'TYPE('TYPE-NAME')'. Finally, in the component access, replace the ! period ('.') by the percent sign ('%'). Here is an example of code using the non portable record structure syntax: *************** This code can easily be rewritten in the *** 3040,3051 ****  File: gfortran.info, Node: ENCODE and DECODE statements, Next: Variable FORMAT expressions, Prev: STRUCTURE and RECORD, Up: Extensions not implemented in GNU Fortran ! 6.2.2 `ENCODE' and `DECODE' statements -------------------------------------- ! GNU Fortran does not support the `ENCODE' and `DECODE' statements. ! These statements are best replaced by `READ' and `WRITE' statements ! involving internal files (`CHARACTER' variables and arrays), which have been part of the Fortran standard since Fortran 77. For example, replace a code fragment like --- 3008,3019 ----  File: gfortran.info, Node: ENCODE and DECODE statements, Next: Variable FORMAT expressions, Prev: STRUCTURE and RECORD, Up: Extensions not implemented in GNU Fortran ! 6.2.2 'ENCODE' and 'DECODE' statements -------------------------------------- ! GNU Fortran does not support the 'ENCODE' and 'DECODE' statements. ! These statements are best replaced by 'READ' and 'WRITE' statements ! involving internal files ('CHARACTER' variables and arrays), which have been part of the Fortran standard since Fortran 77. For example, replace a code fragment like *************** with the following: *** 3082,3096 ****  File: gfortran.info, Node: Variable FORMAT expressions, Next: Alternate complex function syntax, Prev: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran ! 6.2.3 Variable `FORMAT' expressions ----------------------------------- ! A variable `FORMAT' expression is format statement which includes angle ! brackets enclosing a Fortran expression: `FORMAT(I)'. GNU Fortran does not support this legacy extension. The effect of variable format expressions can be reproduced by using the more powerful (and standard) ! combination of internal output and string formats. For example, ! replace a code fragment like this: WRITE(6,20) INT1 20 FORMAT(I) --- 3050,3064 ----  File: gfortran.info, Node: Variable FORMAT expressions, Next: Alternate complex function syntax, Prev: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran ! 6.2.3 Variable 'FORMAT' expressions ----------------------------------- ! A variable 'FORMAT' expression is format statement which includes angle ! brackets enclosing a Fortran expression: 'FORMAT(I)'. GNU Fortran does not support this legacy extension. The effect of variable format expressions can be reproduced by using the more powerful (and standard) ! combination of internal output and string formats. For example, replace ! a code fragment like this: WRITE(6,20) INT1 20 FORMAT(I) *************** File: gfortran.info, Node: Alternate co *** 3121,3131 **** 6.2.4 Alternate complex function syntax --------------------------------------- ! Some Fortran compilers, including `g77', let the user declare complex ! functions with the syntax `COMPLEX FUNCTION name*16()', as well as ! `COMPLEX*16 FUNCTION name()'. Both are non-standard, legacy ! extensions. `gfortran' accepts the latter form, which is more common, ! but not the former.  File: gfortran.info, Node: Mixed-Language Programming, Next: Intrinsic Procedures, Prev: Extensions, Up: Top --- 3089,3099 ---- 6.2.4 Alternate complex function syntax --------------------------------------- ! Some Fortran compilers, including 'g77', let the user declare complex ! functions with the syntax 'COMPLEX FUNCTION name*16()', as well as ! 'COMPLEX*16 FUNCTION name()'. Both are non-standard, legacy extensions. ! 'gfortran' accepts the latter form, which is more common, but not the ! former.  File: gfortran.info, Node: Mixed-Language Programming, Next: Intrinsic Procedures, Prev: Extensions, Up: Top *************** File: gfortran.info, Node: Mixed-Langua *** 3139,3148 **** * GNU Fortran Compiler Directives:: * Non-Fortran Main Program:: ! This chapter is about mixed-language interoperability, but also ! applies if one links Fortran code compiled by different compilers. In ! most cases, use of the C Binding features of the Fortran 2003 standard ! is sufficient, and their use is highly recommended.  File: gfortran.info, Node: Interoperability with C, Next: GNU Fortran Compiler Directives, Up: Mixed-Language Programming --- 3107,3116 ---- * GNU Fortran Compiler Directives:: * Non-Fortran Main Program:: ! This chapter is about mixed-language interoperability, but also applies ! if one links Fortran code compiled by different compilers. In most ! cases, use of the C Binding features of the Fortran 2003 standard is ! sufficient, and their use is highly recommended.  File: gfortran.info, Node: Interoperability with C, Next: GNU Fortran Compiler Directives, Up: Mixed-Language Programming *************** File: gfortran.info, Node: Interoperabi *** 3159,3179 **** * Working with Pointers:: * Further Interoperability of Fortran with C:: ! Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized ! way to generate procedure and derived-type declarations and global ! variables which are interoperable with C (ISO/IEC 9899:1999). The ! `bind(C)' attribute has been added to inform the compiler that a symbol ! shall be interoperable with C; also, some constraints are added. Note, ! however, that not all C features have a Fortran equivalent or vice ! versa. For instance, neither C's unsigned integers nor C's functions ! with variable number of arguments have an equivalent in Fortran. ! Note that array dimensions are reversely ordered in C and that ! arrays in C always start with index 0 while in Fortran they start by ! default with 1. Thus, an array declaration `A(n,m)' in Fortran matches ! `A[m][n]' in C and accessing the element `A(i,j)' matches ! `A[j-1][i-1]'. The element following `A(i,j)' (C: `A[j-1][i-1]'; ! assuming i < n) in memory is `A(i+1,j)' (C: `A[j-1][i]').  File: gfortran.info, Node: Intrinsic Types, Next: Derived Types and struct, Up: Interoperability with C --- 3127,3147 ---- * Working with Pointers:: * Further Interoperability of Fortran with C:: ! Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized way ! to generate procedure and derived-type declarations and global variables ! which are interoperable with C (ISO/IEC 9899:1999). The 'bind(C)' ! attribute has been added to inform the compiler that a symbol shall be ! interoperable with C; also, some constraints are added. Note, however, ! that not all C features have a Fortran equivalent or vice versa. For ! instance, neither C's unsigned integers nor C's functions with variable ! number of arguments have an equivalent in Fortran. ! Note that array dimensions are reversely ordered in C and that arrays ! in C always start with index 0 while in Fortran they start by default ! with 1. Thus, an array declaration 'A(n,m)' in Fortran matches ! 'A[m][n]' in C and accessing the element 'A(i,j)' matches 'A[j-1][i-1]'. ! The element following 'A(i,j)' (C: 'A[j-1][i-1]'; assuming i < n) in ! memory is 'A(i+1,j)' (C: 'A[j-1][i]').  File: gfortran.info, Node: Intrinsic Types, Next: Derived Types and struct, Up: Interoperability with C *************** File: gfortran.info, Node: Intrinsic Ty *** 3182,3191 **** --------------------- In order to ensure that exactly the same variable type and kind is used ! in C and Fortran, the named constants shall be used which are defined ! in the `ISO_C_BINDING' intrinsic module. That module contains named constants for kind parameters and character named constants for the ! escape sequences in C. For a list of the constants, see *note ISO_C_BINDING::.  --- 3150,3159 ---- --------------------- In order to ensure that exactly the same variable type and kind is used ! in C and Fortran, the named constants shall be used which are defined in ! the 'ISO_C_BINDING' intrinsic module. That module contains named constants for kind parameters and character named constants for the ! escape sequences in C. For a list of the constants, see *note ISO_C_BINDING::.  *************** File: gfortran.info, Node: Derived Type *** 3194,3201 **** 7.1.2 Derived Types and struct ------------------------------ ! For compatibility of derived types with `struct', one needs to use the ! `BIND(C)' attribute in the type declaration. For instance, the following type declaration USE ISO_C_BINDING --- 3162,3169 ---- 7.1.2 Derived Types and struct ------------------------------ ! For compatibility of derived types with 'struct', one needs to use the ! 'BIND(C)' attribute in the type declaration. For instance, the following type declaration USE ISO_C_BINDING *************** following type declaration *** 3207,3213 **** CHARACTER(KIND=C_CHAR) :: str(5) END TYPE ! matches the following `struct' declaration in C struct { int i1, i2; --- 3175,3181 ---- CHARACTER(KIND=C_CHAR) :: str(5) END TYPE ! matches the following 'struct' declaration in C struct { int i1, i2; *************** following type declaration *** 3219,3228 **** } myType; Derived types with the C binding attribute shall not have the ! `sequence' attribute, type parameters, the `extends' attribute, nor type-bound procedures. Every component must be of interoperable type ! and kind and may not have the `pointer' or `allocatable' attribute. ! The names of the components are irrelevant for interoperability. As there exist no direct Fortran equivalents, neither unions nor structs with bit field or variable-length array members are --- 3187,3196 ---- } myType; Derived types with the C binding attribute shall not have the ! 'sequence' attribute, type parameters, the 'extends' attribute, nor type-bound procedures. Every component must be of interoperable type ! and kind and may not have the 'pointer' or 'allocatable' attribute. The ! names of the components are irrelevant for interoperability. As there exist no direct Fortran equivalents, neither unions nor structs with bit field or variable-length array members are *************** File: gfortran.info, Node: Interoperabl *** 3236,3244 **** Variables can be made accessible from C using the C binding attribute, optionally together with specifying a binding name. Those variables ! have to be declared in the declaration part of a `MODULE', be of ! interoperable type, and have neither the `pointer' nor the ! `allocatable' attribute. MODULE m USE myType_module --- 3204,3212 ---- Variables can be made accessible from C using the C binding attribute, optionally together with specifying a binding name. Those variables ! have to be declared in the declaration part of a 'MODULE', be of ! interoperable type, and have neither the 'pointer' nor the 'allocatable' ! attribute. MODULE m USE myType_module *************** interoperable type, and have neither the *** 3247,3260 **** type(myType), bind(C) :: tp END MODULE ! Here, `_MyProject_flags' is the case-sensitive name of the variable ! as seen from C programs while `global_flag' is the case-insensitive ! name as seen from Fortran. If no binding name is specified, as for TP, ! the C binding name is the (lowercase) Fortran binding name. If a ! binding name is specified, only a single variable may be after the ! double colon. Note of warning: You cannot use a global variable to ! access ERRNO of the C library as the C standard allows it to be a ! macro. Use the `IERRNO' intrinsic (GNU extension) instead.  File: gfortran.info, Node: Interoperable Subroutines and Functions, Next: Working with Pointers, Prev: Interoperable Global Variables, Up: Interoperability with C --- 3215,3228 ---- type(myType), bind(C) :: tp END MODULE ! Here, '_MyProject_flags' is the case-sensitive name of the variable ! as seen from C programs while 'global_flag' is the case-insensitive name ! as seen from Fortran. If no binding name is specified, as for TP, the C ! binding name is the (lowercase) Fortran binding name. If a binding name ! is specified, only a single variable may be after the double colon. ! Note of warning: You cannot use a global variable to access ERRNO of the ! C library as the C standard allows it to be a macro. Use the 'IERRNO' ! intrinsic (GNU extension) instead.  File: gfortran.info, Node: Interoperable Subroutines and Functions, Next: Working with Pointers, Prev: Interoperable Global Variables, Up: Interoperability with C *************** File: gfortran.info, Node: Interoperabl *** 3262,3282 **** 7.1.4 Interoperable Subroutines and Functions --------------------------------------------- ! Subroutines and functions have to have the `BIND(C)' attribute to be ! compatible with C. The dummy argument declaration is relatively straightforward. However, one needs to be careful because C uses call-by-value by default while Fortran behaves usually similar to call-by-reference. Furthermore, strings and pointers are handled differently. Note that in Fortran 2003 and 2008 only explicit size and assumed-size arrays are supported but not assumed-shape or ! deferred-shape (i.e. allocatable or pointer) arrays. However, those are allowed since the Technical Specification 29113, see *note Further Interoperability of Fortran with C:: ! To pass a variable by value, use the `VALUE' attribute. Thus, the following C prototype ! `int func(int i, int *j)' matches the Fortran declaration --- 3230,3250 ---- 7.1.4 Interoperable Subroutines and Functions --------------------------------------------- ! Subroutines and functions have to have the 'BIND(C)' attribute to be ! compatible with C. The dummy argument declaration is relatively straightforward. However, one needs to be careful because C uses call-by-value by default while Fortran behaves usually similar to call-by-reference. Furthermore, strings and pointers are handled differently. Note that in Fortran 2003 and 2008 only explicit size and assumed-size arrays are supported but not assumed-shape or ! deferred-shape (i.e. allocatable or pointer) arrays. However, those are allowed since the Technical Specification 29113, see *note Further Interoperability of Fortran with C:: ! To pass a variable by value, use the 'VALUE' attribute. Thus, the following C prototype ! int func(int i, int *j) matches the Fortran declaration *************** following C prototype *** 3285,3297 **** integer(c_int), VALUE :: i integer(c_int) :: j ! Note that pointer arguments also frequently need the `VALUE' attribute, see *note Working with Pointers::. Strings are handled quite differently in C and Fortran. In C a ! string is a `NUL'-terminated array of characters while in Fortran each string has a length associated with it and is thus not terminated (by ! e.g. `NUL'). For example, if one wants to use the following C function, #include --- 3253,3265 ---- integer(c_int), VALUE :: i integer(c_int) :: j ! Note that pointer arguments also frequently need the 'VALUE' attribute, see *note Working with Pointers::. Strings are handled quite differently in C and Fortran. In C a ! string is a 'NUL'-terminated array of characters while in Fortran each string has a length associated with it and is thus not terminated (by ! e.g. 'NUL'). For example, if one wants to use the following C function, #include *************** function, *** 3311,3330 **** end interface call print_c(C_CHAR_"Hello World"//C_NULL_CHAR) ! As the example shows, one needs to ensure that the string is `NUL' ! terminated. Additionally, the dummy argument STRING of `print_C' is a ! length-one assumed-size array; using `character(len=*)' is not allowed. ! The example above uses `c_char_"Hello World"' to ensure the string literal has the right type; typically the default character kind and ! `c_char' are the same and thus `"Hello World"' is equivalent. However, the standard does not guarantee this. The use of strings is now further illustrated using the C library ! function `strncpy', whose prototype is char *strncpy(char *restrict s1, const char *restrict s2, size_t n); ! The function `strncpy' copies at most N characters from string S2 to S1 and returns S1. In the following example, we ignore the return value: --- 3279,3298 ---- end interface call print_c(C_CHAR_"Hello World"//C_NULL_CHAR) ! As the example shows, one needs to ensure that the string is 'NUL' ! terminated. Additionally, the dummy argument STRING of 'print_C' is a ! length-one assumed-size array; using 'character(len=*)' is not allowed. ! The example above uses 'c_char_"Hello World"' to ensure the string literal has the right type; typically the default character kind and ! 'c_char' are the same and thus '"Hello World"' is equivalent. However, the standard does not guarantee this. The use of strings is now further illustrated using the C library ! function 'strncpy', whose prototype is char *strncpy(char *restrict s1, const char *restrict s2, size_t n); ! The function 'strncpy' copies at most N characters from string S2 to S1 and returns S1. In the following example, we ignore the return value: *************** File: gfortran.info, Node: Working with *** 3357,3366 **** --------------------------- C pointers are represented in Fortran via the special opaque derived ! type `type(c_ptr)' (with private components). Thus one needs to use intrinsic conversion procedures to convert from or to C pointers. ! For some applications, using an assumed type (`TYPE(*)') can be an alternative to a C pointer; see *note Further Interoperability of Fortran with C::. --- 3325,3334 ---- --------------------------- C pointers are represented in Fortran via the special opaque derived ! type 'type(c_ptr)' (with private components). Thus one needs to use intrinsic conversion procedures to convert from or to C pointers. ! For some applications, using an assumed type ('TYPE(*)') can be an alternative to a C pointer; see *note Further Interoperability of Fortran with C::. *************** Fortran with C::. *** 3377,3398 **** call c_f_pointer(cptr2, ps) call c_f_pointer(cptr2, pa, shape=[7]) ! When converting C to Fortran arrays, the one-dimensional `SHAPE' argument has to be passed. If a pointer is a dummy-argument of an interoperable procedure, it ! usually has to be declared using the `VALUE' attribute. `void*' ! matches `TYPE(C_PTR), VALUE', while `TYPE(C_PTR)' alone matches ! `void**'. Procedure pointers are handled analogously to pointers; the C type is ! `TYPE(C_FUNPTR)' and the intrinsic conversion procedures are ! `C_F_PROCPOINTER' and `C_FUNLOC'. Let us consider two examples of actually passing a procedure pointer from C to Fortran and vice versa. Note that these examples are also ! very similar to passing ordinary pointers between both languages. First, ! consider this code in C: /* Procedure implemented in Fortran. */ void get_values (void (*)(double)); --- 3345,3365 ---- call c_f_pointer(cptr2, ps) call c_f_pointer(cptr2, pa, shape=[7]) ! When converting C to Fortran arrays, the one-dimensional 'SHAPE' argument has to be passed. If a pointer is a dummy-argument of an interoperable procedure, it ! usually has to be declared using the 'VALUE' attribute. 'void*' matches ! 'TYPE(C_PTR), VALUE', while 'TYPE(C_PTR)' alone matches 'void**'. Procedure pointers are handled analogously to pointers; the C type is ! 'TYPE(C_FUNPTR)' and the intrinsic conversion procedures are ! 'C_F_PROCPOINTER' and 'C_FUNLOC'. Let us consider two examples of actually passing a procedure pointer from C to Fortran and vice versa. Note that these examples are also ! very similar to passing ordinary pointers between both languages. ! First, consider this code in C: /* Procedure implemented in Fortran. */ void get_values (void (*)(double)); *************** consider this code in C: *** 3411,3419 **** get_values (&print_it); } ! A matching implementation for `get_values' in Fortran, that correctly receives the procedure pointer from C and is able to call it, is given ! in the following `MODULE': MODULE m IMPLICIT NONE --- 3378,3386 ---- get_values (&print_it); } ! A matching implementation for 'get_values' in Fortran, that correctly receives the procedure pointer from C and is able to call it, is given ! in the following 'MODULE': MODULE m IMPLICIT NONE *************** File: gfortran.info, Node: Further Inte *** 3504,3569 **** The Technical Specification ISO/IEC TS 29113:2012 on further interoperability of Fortran with C extends the interoperability support ! of Fortran 2003 and Fortran 2008. Besides removing some restrictions ! and constraints, it adds assumed-type (`TYPE(*)') and assumed-rank ! (`dimension') variables and allows for interoperability of assumed-shape, assumed-rank and deferred-shape arrays, including allocatables and pointers. Note: Currently, GNU Fortran does not support the array descriptor (dope vector) as specified in the Technical Specification, but uses an ! array descriptor with different fields. The Chasm Language ! Interoperability Tools, `http://chasm-interop.sourceforge.net/', ! provide an interface to GNU Fortran's array descriptor. The Technical Specification adds the following new features, which are supported by GNU Fortran: ! * The `ASYNCHRONOUS' attribute has been clarified and extended to allow its use with asynchronous communication in user-provided libraries such as in implementations of the Message Passing Interface specification. ! * Many constraints have been relaxed, in particular for the `C_LOC' ! and `C_F_POINTER' intrinsics. ! * The `OPTIONAL' attribute is now allowed for dummy arguments; an ! absent argument matches a `NULL' pointer. ! * Assumed types (`TYPE(*)') have been added, which may only be used for dummy arguments. They are unlimited polymorphic but contrary ! to `CLASS(*)' they do not contain any type information, similar to ! C's `void *' pointers. Expressions of any type and kind can be ! passed; thus, it can be used as replacement for `TYPE(C_PTR)', ! avoiding the use of `C_LOC' in the caller. ! Note, however, that `TYPE(*)' only accepts scalar arguments, ! unless the `DIMENSION' is explicitly specified. As `DIMENSION(*)' ! only supports array (including array elements) but no scalars, it ! is not a full replacement for `C_LOC'. On the other hand, ! assumed-type assumed-rank dummy arguments (`TYPE(*), ! DIMENSION(..)') allow for both scalars and arrays, but require ! special code on the callee side to handle the array descriptor. ! * Assumed-shape arrays (`DIMENSION(..)') as dummy argument allow ! that scalars and arrays of any rank can be passed as actual ! argument. As the Technical Specification does not provide for ! direct means to operate with them, they have to be used either ! from the C side or be converted using `C_LOC' and `C_F_POINTER' to ! scalars or arrays of a specific rank. The rank can be determined ! using the `RANK' intrinisic. Currently unimplemented: * GNU Fortran always uses an array descriptor, which does not match ! the one of the Technical Specification. The ! `ISO_Fortran_binding.h' header file and the C functions it specifies are not available. * Using assumed-shape, assumed-rank and deferred-shape arrays in ! `BIND(C)' procedures is not fully supported. In particular, C ! interoperable strings of other length than one are not supported ! as this requires the new array descriptor.  File: gfortran.info, Node: GNU Fortran Compiler Directives, Next: Non-Fortran Main Program, Prev: Interoperability with C, Up: Mixed-Language Programming --- 3471,3536 ---- The Technical Specification ISO/IEC TS 29113:2012 on further interoperability of Fortran with C extends the interoperability support ! of Fortran 2003 and Fortran 2008. Besides removing some restrictions ! and constraints, it adds assumed-type ('TYPE(*)') and assumed-rank ! ('dimension') variables and allows for interoperability of assumed-shape, assumed-rank and deferred-shape arrays, including allocatables and pointers. Note: Currently, GNU Fortran does not support the array descriptor (dope vector) as specified in the Technical Specification, but uses an ! array descriptor with different fields. The Chasm Language ! Interoperability Tools, , provide ! an interface to GNU Fortran's array descriptor. The Technical Specification adds the following new features, which are supported by GNU Fortran: ! * The 'ASYNCHRONOUS' attribute has been clarified and extended to allow its use with asynchronous communication in user-provided libraries such as in implementations of the Message Passing Interface specification. ! * Many constraints have been relaxed, in particular for the 'C_LOC' ! and 'C_F_POINTER' intrinsics. ! * The 'OPTIONAL' attribute is now allowed for dummy arguments; an ! absent argument matches a 'NULL' pointer. ! * Assumed types ('TYPE(*)') have been added, which may only be used for dummy arguments. They are unlimited polymorphic but contrary ! to 'CLASS(*)' they do not contain any type information, similar to ! C's 'void *' pointers. Expressions of any type and kind can be ! passed; thus, it can be used as replacement for 'TYPE(C_PTR)', ! avoiding the use of 'C_LOC' in the caller. ! Note, however, that 'TYPE(*)' only accepts scalar arguments, unless ! the 'DIMENSION' is explicitly specified. As 'DIMENSION(*)' only ! supports array (including array elements) but no scalars, it is not ! a full replacement for 'C_LOC'. On the other hand, assumed-type ! assumed-rank dummy arguments ('TYPE(*), DIMENSION(..)') allow for ! both scalars and arrays, but require special code on the callee ! side to handle the array descriptor. ! * Assumed-shape arrays ('DIMENSION(..)') as dummy argument allow that ! scalars and arrays of any rank can be passed as actual argument. ! As the Technical Specification does not provide for direct means to ! operate with them, they have to be used either from the C side or ! be converted using 'C_LOC' and 'C_F_POINTER' to scalars or arrays ! of a specific rank. The rank can be determined using the 'RANK' ! intrinisic. Currently unimplemented: * GNU Fortran always uses an array descriptor, which does not match ! the one of the Technical Specification. The ! 'ISO_Fortran_binding.h' header file and the C functions it specifies are not available. * Using assumed-shape, assumed-rank and deferred-shape arrays in ! 'BIND(C)' procedures is not fully supported. In particular, C ! interoperable strings of other length than one are not supported as ! this requires the new array descriptor.  File: gfortran.info, Node: GNU Fortran Compiler Directives, Next: Non-Fortran Main Program, Prev: Interoperability with C, Up: Mixed-Language Programming *************** allow the user to choose specific implem *** 3577,3593 **** directives can be used to set attributes of variables and procedures which are not part of the standard. Whether a given attribute is supported and its exact effects depend on both the operating system and ! on the processor; see *note C Extensions: (gcc)Top. for details. For procedures and procedure pointers, the following attributes can be used to change the calling convention: ! * `CDECL' - standard C calling convention ! ! * `STDCALL' - convention where the called procedure pops the stack ! ! * `FASTCALL' - part of the arguments are passed via registers ! instead using the stack Besides changing the calling convention, the attributes also influence the decoration of the symbol name, e.g., by a leading --- 3544,3558 ---- directives can be used to set attributes of variables and procedures which are not part of the standard. Whether a given attribute is supported and its exact effects depend on both the operating system and ! on the processor; see *note C Extensions: (gcc)Top. for details. For procedures and procedure pointers, the following attributes can be used to change the calling convention: ! * 'CDECL' - standard C calling convention ! * 'STDCALL' - convention where the called procedure pops the stack ! * 'FASTCALL' - part of the arguments are passed via registers instead ! using the stack Besides changing the calling convention, the attributes also influence the decoration of the symbol name, e.g., by a leading *************** the stack. When assigning a procedure t *** 3596,3615 **** should use the same calling convention. On some systems, procedures and global variables (module variables ! and `COMMON' blocks) need special handling to be accessible when they are in a shared library. The following attributes are available: ! * `DLLEXPORT' - provide a global pointer to a pointer in the DLL ! ! * `DLLIMPORT' - reference the function or variable using a global pointer The attributes are specified using the syntax ! `!GCC$ ATTRIBUTES' ATTRIBUTE-LIST `::' VARIABLE-LIST where in free-form source code only whitespace is allowed before ! `!GCC$' and in fixed-form source code `!GCC$', `cGCC$' or `*GCC$' shall start in the first column. For procedures, the compiler directives shall be placed into the body --- 3561,3579 ---- should use the same calling convention. On some systems, procedures and global variables (module variables ! and 'COMMON' blocks) need special handling to be accessible when they are in a shared library. The following attributes are available: ! * 'DLLEXPORT' - provide a global pointer to a pointer in the DLL ! * 'DLLIMPORT' - reference the function or variable using a global pointer The attributes are specified using the syntax ! '!GCC$ ATTRIBUTES' ATTRIBUTE-LIST '::' VARIABLE-LIST where in free-form source code only whitespace is allowed before ! '!GCC$' and in fixed-form source code '!GCC$', 'cGCC$' or '*GCC$' shall start in the first column. For procedures, the compiler directives shall be placed into the body *************** File: gfortran.info, Node: Non-Fortran *** 3631,3661 **** * _gfortran_set_fpe:: Set when a Floating Point Exception should be raised * _gfortran_set_max_subrecord_length:: Set subrecord length ! Even if you are doing mixed-language programming, it is very likely ! that you do not need to know or use the information in this section. ! Since it is about the internal structure of GNU Fortran, it may also ! change in GCC minor releases. ! When you compile a `PROGRAM' with GNU Fortran, a function with the ! name `main' (in the symbol table of the object file) is generated, ! which initializes the libgfortran library and then calls the actual ! program which uses the name `MAIN__', for historic reasons. If you ! link GNU Fortran compiled procedures to, e.g., a C or C++ program or to ! a Fortran program compiled by a different compiler, the libgfortran ! library is not initialized and thus a few intrinsic procedures do not ! work properly, e.g. those for obtaining the command-line arguments. ! Therefore, if your `PROGRAM' is not compiled with GNU Fortran and ! the GNU Fortran compiled procedures require intrinsics relying on the library initialization, you need to initialize the library yourself. ! Using the default options, gfortran calls `_gfortran_set_args' and ! `_gfortran_set_options'. The initialization of the former is needed if ! the called procedures access the command line (and for backtracing); ! the latter sets some flags based on the standard chosen or to enable backtracing. In typical programs, it is not necessary to call any initialization function. ! If your `PROGRAM' is compiled with GNU Fortran, you shall not call any of the following functions. The libgfortran initialization functions are shown in C syntax but using C bindings they are also accessible from Fortran. --- 3595,3625 ---- * _gfortran_set_fpe:: Set when a Floating Point Exception should be raised * _gfortran_set_max_subrecord_length:: Set subrecord length ! Even if you are doing mixed-language programming, it is very likely that ! you do not need to know or use the information in this section. Since ! it is about the internal structure of GNU Fortran, it may also change in ! GCC minor releases. ! When you compile a 'PROGRAM' with GNU Fortran, a function with the ! name 'main' (in the symbol table of the object file) is generated, which ! initializes the libgfortran library and then calls the actual program ! which uses the name 'MAIN__', for historic reasons. If you link GNU ! Fortran compiled procedures to, e.g., a C or C++ program or to a Fortran ! program compiled by a different compiler, the libgfortran library is not ! initialized and thus a few intrinsic procedures do not work properly, ! e.g. those for obtaining the command-line arguments. ! Therefore, if your 'PROGRAM' is not compiled with GNU Fortran and the ! GNU Fortran compiled procedures require intrinsics relying on the library initialization, you need to initialize the library yourself. ! Using the default options, gfortran calls '_gfortran_set_args' and ! '_gfortran_set_options'. The initialization of the former is needed if ! the called procedures access the command line (and for backtracing); the ! latter sets some flags based on the standard chosen or to enable backtracing. In typical programs, it is not necessary to call any initialization function. ! If your 'PROGRAM' is compiled with GNU Fortran, you shall not call any of the following functions. The libgfortran initialization functions are shown in C syntax but using C bindings they are also accessible from Fortran. *************** accessible from Fortran. *** 3663,3684 ****  File: gfortran.info, Node: _gfortran_set_args, Next: _gfortran_set_options, Up: Non-Fortran Main Program ! 7.3.1 `_gfortran_set_args' -- Save command-line arguments --------------------------------------------------------- _Description_: ! `_gfortran_set_args' saves the command-line arguments; this ! initialization is required if any of the command-line intrinsics ! is called. Additionally, it shall be called if backtracing is ! enabled (see `_gfortran_set_options'). _Syntax_: ! `void _gfortran_set_args (int argc, char *argv[])' _Arguments_: ! ARGC number of command line argument strings ! ARGV the command-line argument strings; argv[0] is ! the pathname of the executable itself. _Example_: int main (int argc, char *argv[]) --- 3627,3648 ----  File: gfortran.info, Node: _gfortran_set_args, Next: _gfortran_set_options, Up: Non-Fortran Main Program ! 7.3.1 '_gfortran_set_args' -- Save command-line arguments --------------------------------------------------------- _Description_: ! '_gfortran_set_args' saves the command-line arguments; this ! initialization is required if any of the command-line intrinsics is ! called. Additionally, it shall be called if backtracing is enabled ! (see '_gfortran_set_options'). _Syntax_: ! 'void _gfortran_set_args (int argc, char *argv[])' _Arguments_: ! ARGC number of command line argument strings ! ARGV the command-line argument strings; argv[0] is ! the pathname of the executable itself. _Example_: int main (int argc, char *argv[]) *************** _Example_: *** 3691,3747 ****  File: gfortran.info, Node: _gfortran_set_options, Next: _gfortran_set_convert, Prev: _gfortran_set_args, Up: Non-Fortran Main Program ! 7.3.2 `_gfortran_set_options' -- Set library option flags --------------------------------------------------------- _Description_: ! `_gfortran_set_options' sets several flags related to the Fortran standard to be used, whether backtracing should be enabled and whether range checks should be performed. The syntax allows for ! upward compatibility since the number of passed flags is ! specified; for non-passed flags, the default value is used. See ! also *note Code Gen Options::. Please note that not all flags are ! actually used. _Syntax_: ! `void _gfortran_set_options (int num, int options[])' _Arguments_: ! NUM number of options passed ! ARGV The list of flag values _option flag list_: ! OPTION[0] Allowed standard; can give run-time errors if ! e.g. an input-output edit descriptor is ! invalid in a given standard. Possible values ! are (bitwise or-ed) `GFC_STD_F77' (1), ! `GFC_STD_F95_OBS' (2), `GFC_STD_F95_DEL' (4), ! `GFC_STD_F95' (8), `GFC_STD_F2003' (16), ! `GFC_STD_GNU' (32), `GFC_STD_LEGACY' (64), ! `GFC_STD_F2008' (128), `GFC_STD_F2008_OBS' ! (256) and GFC_STD_F2008_TS (512). Default: ! `GFC_STD_F95_OBS | GFC_STD_F95_DEL | ! GFC_STD_F95 | GFC_STD_F2003 | GFC_STD_F2008 | ! GFC_STD_F2008_TS | GFC_STD_F2008_OBS | ! GFC_STD_F77 | GFC_STD_GNU | GFC_STD_LEGACY'. ! OPTION[1] Standard-warning flag; prints a warning to ! standard error. Default: `GFC_STD_F95_DEL | ! GFC_STD_LEGACY'. ! OPTION[2] If non zero, enable pedantic checking. ! Default: off. ! OPTION[3] Unused. ! OPTION[4] If non zero, enable backtracing on run-time ! errors. Default: off. Note: Installs a ! signal handler and requires command-line ! initialization using `_gfortran_set_args'. ! OPTION[5] If non zero, supports signed zeros. Default: ! enabled. ! OPTION[6] Enables run-time checking. Possible values ! are (bitwise or-ed): GFC_RTCHECK_BOUNDS (1), ! GFC_RTCHECK_ARRAY_TEMPS (2), ! GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO ! (16), GFC_RTCHECK_POINTER (32). Default: ! disabled. _Example_: /* Use gfortran 4.8 default options. */ --- 3655,3710 ----  File: gfortran.info, Node: _gfortran_set_options, Next: _gfortran_set_convert, Prev: _gfortran_set_args, Up: Non-Fortran Main Program ! 7.3.2 '_gfortran_set_options' -- Set library option flags --------------------------------------------------------- _Description_: ! '_gfortran_set_options' sets several flags related to the Fortran standard to be used, whether backtracing should be enabled and whether range checks should be performed. The syntax allows for ! upward compatibility since the number of passed flags is specified; ! for non-passed flags, the default value is used. See also *note ! Code Gen Options::. Please note that not all flags are actually ! used. _Syntax_: ! 'void _gfortran_set_options (int num, int options[])' _Arguments_: ! NUM number of options passed ! ARGV The list of flag values _option flag list_: ! OPTION[0] Allowed standard; can give run-time errors if ! e.g. an input-output edit descriptor is invalid ! in a given standard. Possible values are ! (bitwise or-ed) 'GFC_STD_F77' (1), ! 'GFC_STD_F95_OBS' (2), 'GFC_STD_F95_DEL' (4), ! 'GFC_STD_F95' (8), 'GFC_STD_F2003' (16), ! 'GFC_STD_GNU' (32), 'GFC_STD_LEGACY' (64), ! 'GFC_STD_F2008' (128), 'GFC_STD_F2008_OBS' (256) ! and GFC_STD_F2008_TS (512). Default: ! 'GFC_STD_F95_OBS | GFC_STD_F95_DEL | GFC_STD_F95 ! | GFC_STD_F2003 | GFC_STD_F2008 | ! GFC_STD_F2008_TS | GFC_STD_F2008_OBS | ! GFC_STD_F77 | GFC_STD_GNU | GFC_STD_LEGACY'. ! OPTION[1] Standard-warning flag; prints a warning to ! standard error. Default: 'GFC_STD_F95_DEL | ! GFC_STD_LEGACY'. ! OPTION[2] If non zero, enable pedantic checking. Default: ! off. ! OPTION[3] Unused. ! OPTION[4] If non zero, enable backtracing on run-time ! errors. Default: off. Note: Installs a signal ! handler and requires command-line initialization ! using '_gfortran_set_args'. ! OPTION[5] If non zero, supports signed zeros. Default: ! enabled. ! OPTION[6] Enables run-time checking. Possible values are ! (bitwise or-ed): GFC_RTCHECK_BOUNDS (1), ! GFC_RTCHECK_ARRAY_TEMPS (2), ! GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO (16), ! GFC_RTCHECK_POINTER (32). Default: disabled. _Example_: /* Use gfortran 4.8 default options. */ *************** _Example_: *** 3751,3771 ****  File: gfortran.info, Node: _gfortran_set_convert, Next: _gfortran_set_record_marker, Prev: _gfortran_set_options, Up: Non-Fortran Main Program ! 7.3.3 `_gfortran_set_convert' -- Set endian conversion ------------------------------------------------------ _Description_: ! `_gfortran_set_convert' set the representation of data for unformatted files. _Syntax_: ! `void _gfortran_set_convert (int conv)' _Arguments_: ! CONV Endian conversion, possible values: ! GFC_CONVERT_NATIVE (0, default), ! GFC_CONVERT_SWAP (1), GFC_CONVERT_BIG (2), ! GFC_CONVERT_LITTLE (3). _Example_: int main (int argc, char *argv[]) --- 3714,3734 ----  File: gfortran.info, Node: _gfortran_set_convert, Next: _gfortran_set_record_marker, Prev: _gfortran_set_options, Up: Non-Fortran Main Program ! 7.3.3 '_gfortran_set_convert' -- Set endian conversion ------------------------------------------------------ _Description_: ! '_gfortran_set_convert' set the representation of data for unformatted files. _Syntax_: ! 'void _gfortran_set_convert (int conv)' _Arguments_: ! CONV Endian conversion, possible values: ! GFC_CONVERT_NATIVE (0, default), ! GFC_CONVERT_SWAP (1), GFC_CONVERT_BIG (2), ! GFC_CONVERT_LITTLE (3). _Example_: int main (int argc, char *argv[]) *************** _Example_: *** 3779,3797 ****  File: gfortran.info, Node: _gfortran_set_record_marker, Next: _gfortran_set_fpe, Prev: _gfortran_set_convert, Up: Non-Fortran Main Program ! 7.3.4 `_gfortran_set_record_marker' -- Set length of record markers ------------------------------------------------------------------- _Description_: ! `_gfortran_set_record_marker' sets the length of record markers ! for unformatted files. _Syntax_: ! `void _gfortran_set_record_marker (int val)' _Arguments_: ! VAL Length of the record marker; valid values are ! 4 and 8. Default is 4. _Example_: int main (int argc, char *argv[]) --- 3742,3760 ----  File: gfortran.info, Node: _gfortran_set_record_marker, Next: _gfortran_set_fpe, Prev: _gfortran_set_convert, Up: Non-Fortran Main Program ! 7.3.4 '_gfortran_set_record_marker' -- Set length of record markers ------------------------------------------------------------------- _Description_: ! '_gfortran_set_record_marker' sets the length of record markers for ! unformatted files. _Syntax_: ! 'void _gfortran_set_record_marker (int val)' _Arguments_: ! VAL Length of the record marker; valid values are 4 ! and 8. Default is 4. _Example_: int main (int argc, char *argv[]) *************** _Example_: *** 3805,3828 ****  File: gfortran.info, Node: _gfortran_set_fpe, Next: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_record_marker, Up: Non-Fortran Main Program ! 7.3.5 `_gfortran_set_fpe' -- Enable floating point exception traps ------------------------------------------------------------------ _Description_: ! `_gfortran_set_fpe' enables floating point exception traps for the specified exceptions. On most systems, this will result in a SIGFPE signal being sent and the program being aborted. _Syntax_: ! `void _gfortran_set_fpe (int val)' _Arguments_: ! OPTION[0] IEEE exceptions. Possible values are (bitwise ! or-ed) zero (0, default) no trapping, ! `GFC_FPE_INVALID' (1), `GFC_FPE_DENORMAL' (2), ! `GFC_FPE_ZERO' (4), `GFC_FPE_OVERFLOW' (8), ! `GFC_FPE_UNDERFLOW' (16), and ! `GFC_FPE_INEXACT' (32). _Example_: int main (int argc, char *argv[]) --- 3768,3791 ----  File: gfortran.info, Node: _gfortran_set_fpe, Next: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_record_marker, Up: Non-Fortran Main Program ! 7.3.5 '_gfortran_set_fpe' -- Enable floating point exception traps ------------------------------------------------------------------ _Description_: ! '_gfortran_set_fpe' enables floating point exception traps for the specified exceptions. On most systems, this will result in a SIGFPE signal being sent and the program being aborted. _Syntax_: ! 'void _gfortran_set_fpe (int val)' _Arguments_: ! OPTION[0] IEEE exceptions. Possible values are (bitwise ! or-ed) zero (0, default) no trapping, ! 'GFC_FPE_INVALID' (1), 'GFC_FPE_DENORMAL' (2), ! 'GFC_FPE_ZERO' (4), 'GFC_FPE_OVERFLOW' (8), ! 'GFC_FPE_UNDERFLOW' (16), and 'GFC_FPE_INEXACT' ! (32). _Example_: int main (int argc, char *argv[]) *************** _Example_: *** 3837,3857 ****  File: gfortran.info, Node: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_fpe, Up: Non-Fortran Main Program ! 7.3.6 `_gfortran_set_max_subrecord_length' -- Set subrecord length ------------------------------------------------------------------ _Description_: ! `_gfortran_set_max_subrecord_length' set the maximum length for a subrecord. This option only makes sense for testing and debugging of unformatted I/O. _Syntax_: ! `void _gfortran_set_max_subrecord_length (int val)' _Arguments_: ! VAL the maximum length for a subrecord; the ! maximum permitted value is 2147483639, which ! is also the default. _Example_: int main (int argc, char *argv[]) --- 3800,3820 ----  File: gfortran.info, Node: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_fpe, Up: Non-Fortran Main Program ! 7.3.6 '_gfortran_set_max_subrecord_length' -- Set subrecord length ------------------------------------------------------------------ _Description_: ! '_gfortran_set_max_subrecord_length' set the maximum length for a subrecord. This option only makes sense for testing and debugging of unformatted I/O. _Syntax_: ! 'void _gfortran_set_max_subrecord_length (int val)' _Arguments_: ! VAL the maximum length for a subrecord; the maximum ! permitted value is 2147483639, which is also the ! default. _Example_: int main (int argc, char *argv[]) *************** File: gfortran.info, Node: Intrinsic Pr *** 3871,4132 **** * Menu: * Introduction: Introduction to Intrinsics ! * `ABORT': ABORT, Abort the program ! * `ABS': ABS, Absolute value ! * `ACCESS': ACCESS, Checks file access modes ! * `ACHAR': ACHAR, Character in ASCII collating sequence ! * `ACOS': ACOS, Arccosine function ! * `ACOSH': ACOSH, Inverse hyperbolic cosine function ! * `ADJUSTL': ADJUSTL, Left adjust a string ! * `ADJUSTR': ADJUSTR, Right adjust a string ! * `AIMAG': AIMAG, Imaginary part of complex number ! * `AINT': AINT, Truncate to a whole number ! * `ALARM': ALARM, Set an alarm clock ! * `ALL': ALL, Determine if all values are true ! * `ALLOCATED': ALLOCATED, Status of allocatable entity ! * `AND': AND, Bitwise logical AND ! * `ANINT': ANINT, Nearest whole number ! * `ANY': ANY, Determine if any values are true ! * `ASIN': ASIN, Arcsine function ! * `ASINH': ASINH, Inverse hyperbolic sine function ! * `ASSOCIATED': ASSOCIATED, Status of a pointer or pointer/target pair ! * `ATAN': ATAN, Arctangent function ! * `ATAN2': ATAN2, Arctangent function ! * `ATANH': ATANH, Inverse hyperbolic tangent function ! * `ATOMIC_DEFINE': ATOMIC_DEFINE, Setting a variable atomically ! * `ATOMIC_REF': ATOMIC_REF, Obtaining the value of a variable atomically ! * `BACKTRACE': BACKTRACE, Show a backtrace ! * `BESSEL_J0': BESSEL_J0, Bessel function of the first kind of order 0 ! * `BESSEL_J1': BESSEL_J1, Bessel function of the first kind of order 1 ! * `BESSEL_JN': BESSEL_JN, Bessel function of the first kind ! * `BESSEL_Y0': BESSEL_Y0, Bessel function of the second kind of order 0 ! * `BESSEL_Y1': BESSEL_Y1, Bessel function of the second kind of order 1 ! * `BESSEL_YN': BESSEL_YN, Bessel function of the second kind ! * `BGE': BGE, Bitwise greater than or equal to ! * `BGT': BGT, Bitwise greater than ! * `BIT_SIZE': BIT_SIZE, Bit size inquiry function ! * `BLE': BLE, Bitwise less than or equal to ! * `BLT': BLT, Bitwise less than ! * `BTEST': BTEST, Bit test function ! * `C_ASSOCIATED': C_ASSOCIATED, Status of a C pointer ! * `C_F_POINTER': C_F_POINTER, Convert C into Fortran pointer ! * `C_F_PROCPOINTER': C_F_PROCPOINTER, Convert C into Fortran procedure pointer ! * `C_FUNLOC': C_FUNLOC, Obtain the C address of a procedure ! * `C_LOC': C_LOC, Obtain the C address of an object ! * `C_SIZEOF': C_SIZEOF, Size in bytes of an expression ! * `CEILING': CEILING, Integer ceiling function ! * `CHAR': CHAR, Integer-to-character conversion function ! * `CHDIR': CHDIR, Change working directory ! * `CHMOD': CHMOD, Change access permissions of files ! * `CMPLX': CMPLX, Complex conversion function ! * `COMMAND_ARGUMENT_COUNT': COMMAND_ARGUMENT_COUNT, Get number of command line arguments ! * `COMPILER_OPTIONS': COMPILER_OPTIONS, Options passed to the compiler ! * `COMPILER_VERSION': COMPILER_VERSION, Compiler version string ! * `COMPLEX': COMPLEX, Complex conversion function ! * `CONJG': CONJG, Complex conjugate function ! * `COS': COS, Cosine function ! * `COSH': COSH, Hyperbolic cosine function ! * `COUNT': COUNT, Count occurrences of TRUE in an array ! * `CPU_TIME': CPU_TIME, CPU time subroutine ! * `CSHIFT': CSHIFT, Circular shift elements of an array ! * `CTIME': CTIME, Subroutine (or function) to convert a time into a string ! * `DATE_AND_TIME': DATE_AND_TIME, Date and time subroutine ! * `DBLE': DBLE, Double precision conversion function ! * `DCMPLX': DCMPLX, Double complex conversion function ! * `DIGITS': DIGITS, Significant digits function ! * `DIM': DIM, Positive difference ! * `DOT_PRODUCT': DOT_PRODUCT, Dot product function ! * `DPROD': DPROD, Double product function ! * `DREAL': DREAL, Double real part function ! * `DSHIFTL': DSHIFTL, Combined left shift ! * `DSHIFTR': DSHIFTR, Combined right shift ! * `DTIME': DTIME, Execution time subroutine (or function) ! * `EOSHIFT': EOSHIFT, End-off shift elements of an array ! * `EPSILON': EPSILON, Epsilon function ! * `ERF': ERF, Error function ! * `ERFC': ERFC, Complementary error function ! * `ERFC_SCALED': ERFC_SCALED, Exponentially-scaled complementary error function ! * `ETIME': ETIME, Execution time subroutine (or function) ! * `EXECUTE_COMMAND_LINE': EXECUTE_COMMAND_LINE, Execute a shell command ! * `EXIT': EXIT, Exit the program with status. ! * `EXP': EXP, Exponential function ! * `EXPONENT': EXPONENT, Exponent function ! * `EXTENDS_TYPE_OF': EXTENDS_TYPE_OF, Query dynamic type for extension ! * `FDATE': FDATE, Subroutine (or function) to get the current time as a string ! * `FGET': FGET, Read a single character in stream mode from stdin ! * `FGETC': FGETC, Read a single character in stream mode ! * `FLOOR': FLOOR, Integer floor function ! * `FLUSH': FLUSH, Flush I/O unit(s) ! * `FNUM': FNUM, File number function ! * `FPUT': FPUT, Write a single character in stream mode to stdout ! * `FPUTC': FPUTC, Write a single character in stream mode ! * `FRACTION': FRACTION, Fractional part of the model representation ! * `FREE': FREE, Memory de-allocation subroutine ! * `FSEEK': FSEEK, Low level file positioning subroutine ! * `FSTAT': FSTAT, Get file status ! * `FTELL': FTELL, Current stream position ! * `GAMMA': GAMMA, Gamma function ! * `GERROR': GERROR, Get last system error message ! * `GETARG': GETARG, Get command line arguments ! * `GET_COMMAND': GET_COMMAND, Get the entire command line ! * `GET_COMMAND_ARGUMENT': GET_COMMAND_ARGUMENT, Get command line arguments ! * `GETCWD': GETCWD, Get current working directory ! * `GETENV': GETENV, Get an environmental variable ! * `GET_ENVIRONMENT_VARIABLE': GET_ENVIRONMENT_VARIABLE, Get an environmental variable ! * `GETGID': GETGID, Group ID function ! * `GETLOG': GETLOG, Get login name ! * `GETPID': GETPID, Process ID function ! * `GETUID': GETUID, User ID function ! * `GMTIME': GMTIME, Convert time to GMT info ! * `HOSTNM': HOSTNM, Get system host name ! * `HUGE': HUGE, Largest number of a kind ! * `HYPOT': HYPOT, Euclidean distance function ! * `IACHAR': IACHAR, Code in ASCII collating sequence ! * `IALL': IALL, Bitwise AND of array elements ! * `IAND': IAND, Bitwise logical and ! * `IANY': IANY, Bitwise OR of array elements ! * `IARGC': IARGC, Get the number of command line arguments ! * `IBCLR': IBCLR, Clear bit ! * `IBITS': IBITS, Bit extraction ! * `IBSET': IBSET, Set bit ! * `ICHAR': ICHAR, Character-to-integer conversion function ! * `IDATE': IDATE, Current local time (day/month/year) ! * `IEOR': IEOR, Bitwise logical exclusive or ! * `IERRNO': IERRNO, Function to get the last system error number ! * `IMAGE_INDEX': IMAGE_INDEX, Cosubscript to image index conversion ! * `INDEX': INDEX intrinsic, Position of a substring within a string ! * `INT': INT, Convert to integer type ! * `INT2': INT2, Convert to 16-bit integer type ! * `INT8': INT8, Convert to 64-bit integer type ! * `IOR': IOR, Bitwise logical or ! * `IPARITY': IPARITY, Bitwise XOR of array elements ! * `IRAND': IRAND, Integer pseudo-random number ! * `IS_IOSTAT_END': IS_IOSTAT_END, Test for end-of-file value ! * `IS_IOSTAT_EOR': IS_IOSTAT_EOR, Test for end-of-record value ! * `ISATTY': ISATTY, Whether a unit is a terminal device ! * `ISHFT': ISHFT, Shift bits ! * `ISHFTC': ISHFTC, Shift bits circularly ! * `ISNAN': ISNAN, Tests for a NaN ! * `ITIME': ITIME, Current local time (hour/minutes/seconds) ! * `KILL': KILL, Send a signal to a process ! * `KIND': KIND, Kind of an entity ! * `LBOUND': LBOUND, Lower dimension bounds of an array ! * `LCOBOUND': LCOBOUND, Lower codimension bounds of an array ! * `LEADZ': LEADZ, Number of leading zero bits of an integer ! * `LEN': LEN, Length of a character entity ! * `LEN_TRIM': LEN_TRIM, Length of a character entity without trailing blank characters ! * `LGE': LGE, Lexical greater than or equal ! * `LGT': LGT, Lexical greater than ! * `LINK': LINK, Create a hard link ! * `LLE': LLE, Lexical less than or equal ! * `LLT': LLT, Lexical less than ! * `LNBLNK': LNBLNK, Index of the last non-blank character in a string ! * `LOC': LOC, Returns the address of a variable ! * `LOG': LOG, Logarithm function ! * `LOG10': LOG10, Base 10 logarithm function ! * `LOG_GAMMA': LOG_GAMMA, Logarithm of the Gamma function ! * `LOGICAL': LOGICAL, Convert to logical type ! * `LONG': LONG, Convert to integer type ! * `LSHIFT': LSHIFT, Left shift bits ! * `LSTAT': LSTAT, Get file status ! * `LTIME': LTIME, Convert time to local time info ! * `MALLOC': MALLOC, Dynamic memory allocation function ! * `MASKL': MASKL, Left justified mask ! * `MASKR': MASKR, Right justified mask ! * `MATMUL': MATMUL, matrix multiplication ! * `MAX': MAX, Maximum value of an argument list ! * `MAXEXPONENT': MAXEXPONENT, Maximum exponent of a real kind ! * `MAXLOC': MAXLOC, Location of the maximum value within an array ! * `MAXVAL': MAXVAL, Maximum value of an array ! * `MCLOCK': MCLOCK, Time function ! * `MCLOCK8': MCLOCK8, Time function (64-bit) ! * `MERGE': MERGE, Merge arrays ! * `MERGE_BITS': MERGE_BITS, Merge of bits under mask ! * `MIN': MIN, Minimum value of an argument list ! * `MINEXPONENT': MINEXPONENT, Minimum exponent of a real kind ! * `MINLOC': MINLOC, Location of the minimum value within an array ! * `MINVAL': MINVAL, Minimum value of an array ! * `MOD': MOD, Remainder function ! * `MODULO': MODULO, Modulo function ! * `MOVE_ALLOC': MOVE_ALLOC, Move allocation from one object to another ! * `MVBITS': MVBITS, Move bits from one integer to another ! * `NEAREST': NEAREST, Nearest representable number ! * `NEW_LINE': NEW_LINE, New line character ! * `NINT': NINT, Nearest whole number ! * `NORM2': NORM2, Euclidean vector norm ! * `NOT': NOT, Logical negation ! * `NULL': NULL, Function that returns an disassociated pointer ! * `NUM_IMAGES': NUM_IMAGES, Number of images ! * `OR': OR, Bitwise logical OR ! * `PACK': PACK, Pack an array into an array of rank one ! * `PARITY': PARITY, Reduction with exclusive OR ! * `PERROR': PERROR, Print system error message ! * `POPCNT': POPCNT, Number of bits set ! * `POPPAR': POPPAR, Parity of the number of bits set ! * `PRECISION': PRECISION, Decimal precision of a real kind ! * `PRESENT': PRESENT, Determine whether an optional dummy argument is specified ! * `PRODUCT': PRODUCT, Product of array elements ! * `RADIX': RADIX, Base of a data model ! * `RAN': RAN, Real pseudo-random number ! * `RAND': RAND, Real pseudo-random number ! * `RANDOM_NUMBER': RANDOM_NUMBER, Pseudo-random number ! * `RANDOM_SEED': RANDOM_SEED, Initialize a pseudo-random number sequence ! * `RANGE': RANGE, Decimal exponent range ! * `RANK' : RANK, Rank of a data object ! * `REAL': REAL, Convert to real type ! * `RENAME': RENAME, Rename a file ! * `REPEAT': REPEAT, Repeated string concatenation ! * `RESHAPE': RESHAPE, Function to reshape an array ! * `RRSPACING': RRSPACING, Reciprocal of the relative spacing ! * `RSHIFT': RSHIFT, Right shift bits ! * `SAME_TYPE_AS': SAME_TYPE_AS, Query dynamic types for equality ! * `SCALE': SCALE, Scale a real value ! * `SCAN': SCAN, Scan a string for the presence of a set of characters ! * `SECNDS': SECNDS, Time function ! * `SECOND': SECOND, CPU time function ! * `SELECTED_CHAR_KIND': SELECTED_CHAR_KIND, Choose character kind ! * `SELECTED_INT_KIND': SELECTED_INT_KIND, Choose integer kind ! * `SELECTED_REAL_KIND': SELECTED_REAL_KIND, Choose real kind ! * `SET_EXPONENT': SET_EXPONENT, Set the exponent of the model ! * `SHAPE': SHAPE, Determine the shape of an array ! * `SHIFTA': SHIFTA, Right shift with fill ! * `SHIFTL': SHIFTL, Left shift ! * `SHIFTR': SHIFTR, Right shift ! * `SIGN': SIGN, Sign copying function ! * `SIGNAL': SIGNAL, Signal handling subroutine (or function) ! * `SIN': SIN, Sine function ! * `SINH': SINH, Hyperbolic sine function ! * `SIZE': SIZE, Function to determine the size of an array ! * `SIZEOF': SIZEOF, Determine the size in bytes of an expression ! * `SLEEP': SLEEP, Sleep for the specified number of seconds ! * `SPACING': SPACING, Smallest distance between two numbers of a given type ! * `SPREAD': SPREAD, Add a dimension to an array ! * `SQRT': SQRT, Square-root function ! * `SRAND': SRAND, Reinitialize the random number generator ! * `STAT': STAT, Get file status ! * `STORAGE_SIZE': STORAGE_SIZE, Storage size in bits ! * `SUM': SUM, Sum of array elements ! * `SYMLNK': SYMLNK, Create a symbolic link ! * `SYSTEM': SYSTEM, Execute a shell command ! * `SYSTEM_CLOCK': SYSTEM_CLOCK, Time function ! * `TAN': TAN, Tangent function ! * `TANH': TANH, Hyperbolic tangent function ! * `THIS_IMAGE': THIS_IMAGE, Cosubscript index of this image ! * `TIME': TIME, Time function ! * `TIME8': TIME8, Time function (64-bit) ! * `TINY': TINY, Smallest positive number of a real kind ! * `TRAILZ': TRAILZ, Number of trailing zero bits of an integer ! * `TRANSFER': TRANSFER, Transfer bit patterns ! * `TRANSPOSE': TRANSPOSE, Transpose an array of rank two ! * `TRIM': TRIM, Remove trailing blank characters of a string ! * `TTYNAM': TTYNAM, Get the name of a terminal device. ! * `UBOUND': UBOUND, Upper dimension bounds of an array ! * `UCOBOUND': UCOBOUND, Upper codimension bounds of an array ! * `UMASK': UMASK, Set the file creation mask ! * `UNLINK': UNLINK, Remove a file from the file system ! * `UNPACK': UNPACK, Unpack an array of rank one into an array ! * `VERIFY': VERIFY, Scan a string for the absence of a set of characters ! * `XOR': XOR, Bitwise logical exclusive or  File: gfortran.info, Node: Introduction to Intrinsics, Next: ABORT, Up: Intrinsic Procedures --- 3834,4095 ---- * Menu: * Introduction: Introduction to Intrinsics ! * 'ABORT': ABORT, Abort the program ! * 'ABS': ABS, Absolute value ! * 'ACCESS': ACCESS, Checks file access modes ! * 'ACHAR': ACHAR, Character in ASCII collating sequence ! * 'ACOS': ACOS, Arccosine function ! * 'ACOSH': ACOSH, Inverse hyperbolic cosine function ! * 'ADJUSTL': ADJUSTL, Left adjust a string ! * 'ADJUSTR': ADJUSTR, Right adjust a string ! * 'AIMAG': AIMAG, Imaginary part of complex number ! * 'AINT': AINT, Truncate to a whole number ! * 'ALARM': ALARM, Set an alarm clock ! * 'ALL': ALL, Determine if all values are true ! * 'ALLOCATED': ALLOCATED, Status of allocatable entity ! * 'AND': AND, Bitwise logical AND ! * 'ANINT': ANINT, Nearest whole number ! * 'ANY': ANY, Determine if any values are true ! * 'ASIN': ASIN, Arcsine function ! * 'ASINH': ASINH, Inverse hyperbolic sine function ! * 'ASSOCIATED': ASSOCIATED, Status of a pointer or pointer/target pair ! * 'ATAN': ATAN, Arctangent function ! * 'ATAN2': ATAN2, Arctangent function ! * 'ATANH': ATANH, Inverse hyperbolic tangent function ! * 'ATOMIC_DEFINE': ATOMIC_DEFINE, Setting a variable atomically ! * 'ATOMIC_REF': ATOMIC_REF, Obtaining the value of a variable atomically ! * 'BACKTRACE': BACKTRACE, Show a backtrace ! * 'BESSEL_J0': BESSEL_J0, Bessel function of the first kind of order 0 ! * 'BESSEL_J1': BESSEL_J1, Bessel function of the first kind of order 1 ! * 'BESSEL_JN': BESSEL_JN, Bessel function of the first kind ! * 'BESSEL_Y0': BESSEL_Y0, Bessel function of the second kind of order 0 ! * 'BESSEL_Y1': BESSEL_Y1, Bessel function of the second kind of order 1 ! * 'BESSEL_YN': BESSEL_YN, Bessel function of the second kind ! * 'BGE': BGE, Bitwise greater than or equal to ! * 'BGT': BGT, Bitwise greater than ! * 'BIT_SIZE': BIT_SIZE, Bit size inquiry function ! * 'BLE': BLE, Bitwise less than or equal to ! * 'BLT': BLT, Bitwise less than ! * 'BTEST': BTEST, Bit test function ! * 'C_ASSOCIATED': C_ASSOCIATED, Status of a C pointer ! * 'C_F_POINTER': C_F_POINTER, Convert C into Fortran pointer ! * 'C_F_PROCPOINTER': C_F_PROCPOINTER, Convert C into Fortran procedure pointer ! * 'C_FUNLOC': C_FUNLOC, Obtain the C address of a procedure ! * 'C_LOC': C_LOC, Obtain the C address of an object ! * 'C_SIZEOF': C_SIZEOF, Size in bytes of an expression ! * 'CEILING': CEILING, Integer ceiling function ! * 'CHAR': CHAR, Integer-to-character conversion function ! * 'CHDIR': CHDIR, Change working directory ! * 'CHMOD': CHMOD, Change access permissions of files ! * 'CMPLX': CMPLX, Complex conversion function ! * 'COMMAND_ARGUMENT_COUNT': COMMAND_ARGUMENT_COUNT, Get number of command line arguments ! * 'COMPILER_OPTIONS': COMPILER_OPTIONS, Options passed to the compiler ! * 'COMPILER_VERSION': COMPILER_VERSION, Compiler version string ! * 'COMPLEX': COMPLEX, Complex conversion function ! * 'CONJG': CONJG, Complex conjugate function ! * 'COS': COS, Cosine function ! * 'COSH': COSH, Hyperbolic cosine function ! * 'COUNT': COUNT, Count occurrences of TRUE in an array ! * 'CPU_TIME': CPU_TIME, CPU time subroutine ! * 'CSHIFT': CSHIFT, Circular shift elements of an array ! * 'CTIME': CTIME, Subroutine (or function) to convert a time into a string ! * 'DATE_AND_TIME': DATE_AND_TIME, Date and time subroutine ! * 'DBLE': DBLE, Double precision conversion function ! * 'DCMPLX': DCMPLX, Double complex conversion function ! * 'DIGITS': DIGITS, Significant digits function ! * 'DIM': DIM, Positive difference ! * 'DOT_PRODUCT': DOT_PRODUCT, Dot product function ! * 'DPROD': DPROD, Double product function ! * 'DREAL': DREAL, Double real part function ! * 'DSHIFTL': DSHIFTL, Combined left shift ! * 'DSHIFTR': DSHIFTR, Combined right shift ! * 'DTIME': DTIME, Execution time subroutine (or function) ! * 'EOSHIFT': EOSHIFT, End-off shift elements of an array ! * 'EPSILON': EPSILON, Epsilon function ! * 'ERF': ERF, Error function ! * 'ERFC': ERFC, Complementary error function ! * 'ERFC_SCALED': ERFC_SCALED, Exponentially-scaled complementary error function ! * 'ETIME': ETIME, Execution time subroutine (or function) ! * 'EXECUTE_COMMAND_LINE': EXECUTE_COMMAND_LINE, Execute a shell command ! * 'EXIT': EXIT, Exit the program with status. ! * 'EXP': EXP, Exponential function ! * 'EXPONENT': EXPONENT, Exponent function ! * 'EXTENDS_TYPE_OF': EXTENDS_TYPE_OF, Query dynamic type for extension ! * 'FDATE': FDATE, Subroutine (or function) to get the current time as a string ! * 'FGET': FGET, Read a single character in stream mode from stdin ! * 'FGETC': FGETC, Read a single character in stream mode ! * 'FLOOR': FLOOR, Integer floor function ! * 'FLUSH': FLUSH, Flush I/O unit(s) ! * 'FNUM': FNUM, File number function ! * 'FPUT': FPUT, Write a single character in stream mode to stdout ! * 'FPUTC': FPUTC, Write a single character in stream mode ! * 'FRACTION': FRACTION, Fractional part of the model representation ! * 'FREE': FREE, Memory de-allocation subroutine ! * 'FSEEK': FSEEK, Low level file positioning subroutine ! * 'FSTAT': FSTAT, Get file status ! * 'FTELL': FTELL, Current stream position ! * 'GAMMA': GAMMA, Gamma function ! * 'GERROR': GERROR, Get last system error message ! * 'GETARG': GETARG, Get command line arguments ! * 'GET_COMMAND': GET_COMMAND, Get the entire command line ! * 'GET_COMMAND_ARGUMENT': GET_COMMAND_ARGUMENT, Get command line arguments ! * 'GETCWD': GETCWD, Get current working directory ! * 'GETENV': GETENV, Get an environmental variable ! * 'GET_ENVIRONMENT_VARIABLE': GET_ENVIRONMENT_VARIABLE, Get an environmental variable ! * 'GETGID': GETGID, Group ID function ! * 'GETLOG': GETLOG, Get login name ! * 'GETPID': GETPID, Process ID function ! * 'GETUID': GETUID, User ID function ! * 'GMTIME': GMTIME, Convert time to GMT info ! * 'HOSTNM': HOSTNM, Get system host name ! * 'HUGE': HUGE, Largest number of a kind ! * 'HYPOT': HYPOT, Euclidean distance function ! * 'IACHAR': IACHAR, Code in ASCII collating sequence ! * 'IALL': IALL, Bitwise AND of array elements ! * 'IAND': IAND, Bitwise logical and ! * 'IANY': IANY, Bitwise OR of array elements ! * 'IARGC': IARGC, Get the number of command line arguments ! * 'IBCLR': IBCLR, Clear bit ! * 'IBITS': IBITS, Bit extraction ! * 'IBSET': IBSET, Set bit ! * 'ICHAR': ICHAR, Character-to-integer conversion function ! * 'IDATE': IDATE, Current local time (day/month/year) ! * 'IEOR': IEOR, Bitwise logical exclusive or ! * 'IERRNO': IERRNO, Function to get the last system error number ! * 'IMAGE_INDEX': IMAGE_INDEX, Cosubscript to image index conversion ! * 'INDEX': INDEX intrinsic, Position of a substring within a string ! * 'INT': INT, Convert to integer type ! * 'INT2': INT2, Convert to 16-bit integer type ! * 'INT8': INT8, Convert to 64-bit integer type ! * 'IOR': IOR, Bitwise logical or ! * 'IPARITY': IPARITY, Bitwise XOR of array elements ! * 'IRAND': IRAND, Integer pseudo-random number ! * 'IS_IOSTAT_END': IS_IOSTAT_END, Test for end-of-file value ! * 'IS_IOSTAT_EOR': IS_IOSTAT_EOR, Test for end-of-record value ! * 'ISATTY': ISATTY, Whether a unit is a terminal device ! * 'ISHFT': ISHFT, Shift bits ! * 'ISHFTC': ISHFTC, Shift bits circularly ! * 'ISNAN': ISNAN, Tests for a NaN ! * 'ITIME': ITIME, Current local time (hour/minutes/seconds) ! * 'KILL': KILL, Send a signal to a process ! * 'KIND': KIND, Kind of an entity ! * 'LBOUND': LBOUND, Lower dimension bounds of an array ! * 'LCOBOUND': LCOBOUND, Lower codimension bounds of an array ! * 'LEADZ': LEADZ, Number of leading zero bits of an integer ! * 'LEN': LEN, Length of a character entity ! * 'LEN_TRIM': LEN_TRIM, Length of a character entity without trailing blank characters ! * 'LGE': LGE, Lexical greater than or equal ! * 'LGT': LGT, Lexical greater than ! * 'LINK': LINK, Create a hard link ! * 'LLE': LLE, Lexical less than or equal ! * 'LLT': LLT, Lexical less than ! * 'LNBLNK': LNBLNK, Index of the last non-blank character in a string ! * 'LOC': LOC, Returns the address of a variable ! * 'LOG': LOG, Logarithm function ! * 'LOG10': LOG10, Base 10 logarithm function ! * 'LOG_GAMMA': LOG_GAMMA, Logarithm of the Gamma function ! * 'LOGICAL': LOGICAL, Convert to logical type ! * 'LONG': LONG, Convert to integer type ! * 'LSHIFT': LSHIFT, Left shift bits ! * 'LSTAT': LSTAT, Get file status ! * 'LTIME': LTIME, Convert time to local time info ! * 'MALLOC': MALLOC, Dynamic memory allocation function ! * 'MASKL': MASKL, Left justified mask ! * 'MASKR': MASKR, Right justified mask ! * 'MATMUL': MATMUL, matrix multiplication ! * 'MAX': MAX, Maximum value of an argument list ! * 'MAXEXPONENT': MAXEXPONENT, Maximum exponent of a real kind ! * 'MAXLOC': MAXLOC, Location of the maximum value within an array ! * 'MAXVAL': MAXVAL, Maximum value of an array ! * 'MCLOCK': MCLOCK, Time function ! * 'MCLOCK8': MCLOCK8, Time function (64-bit) ! * 'MERGE': MERGE, Merge arrays ! * 'MERGE_BITS': MERGE_BITS, Merge of bits under mask ! * 'MIN': MIN, Minimum value of an argument list ! * 'MINEXPONENT': MINEXPONENT, Minimum exponent of a real kind ! * 'MINLOC': MINLOC, Location of the minimum value within an array ! * 'MINVAL': MINVAL, Minimum value of an array ! * 'MOD': MOD, Remainder function ! * 'MODULO': MODULO, Modulo function ! * 'MOVE_ALLOC': MOVE_ALLOC, Move allocation from one object to another ! * 'MVBITS': MVBITS, Move bits from one integer to another ! * 'NEAREST': NEAREST, Nearest representable number ! * 'NEW_LINE': NEW_LINE, New line character ! * 'NINT': NINT, Nearest whole number ! * 'NORM2': NORM2, Euclidean vector norm ! * 'NOT': NOT, Logical negation ! * 'NULL': NULL, Function that returns an disassociated pointer ! * 'NUM_IMAGES': NUM_IMAGES, Number of images ! * 'OR': OR, Bitwise logical OR ! * 'PACK': PACK, Pack an array into an array of rank one ! * 'PARITY': PARITY, Reduction with exclusive OR ! * 'PERROR': PERROR, Print system error message ! * 'POPCNT': POPCNT, Number of bits set ! * 'POPPAR': POPPAR, Parity of the number of bits set ! * 'PRECISION': PRECISION, Decimal precision of a real kind ! * 'PRESENT': PRESENT, Determine whether an optional dummy argument is specified ! * 'PRODUCT': PRODUCT, Product of array elements ! * 'RADIX': RADIX, Base of a data model ! * 'RAN': RAN, Real pseudo-random number ! * 'RAND': RAND, Real pseudo-random number ! * 'RANDOM_NUMBER': RANDOM_NUMBER, Pseudo-random number ! * 'RANDOM_SEED': RANDOM_SEED, Initialize a pseudo-random number sequence ! * 'RANGE': RANGE, Decimal exponent range ! * 'RANK' : RANK, Rank of a data object ! * 'REAL': REAL, Convert to real type ! * 'RENAME': RENAME, Rename a file ! * 'REPEAT': REPEAT, Repeated string concatenation ! * 'RESHAPE': RESHAPE, Function to reshape an array ! * 'RRSPACING': RRSPACING, Reciprocal of the relative spacing ! * 'RSHIFT': RSHIFT, Right shift bits ! * 'SAME_TYPE_AS': SAME_TYPE_AS, Query dynamic types for equality ! * 'SCALE': SCALE, Scale a real value ! * 'SCAN': SCAN, Scan a string for the presence of a set of characters ! * 'SECNDS': SECNDS, Time function ! * 'SECOND': SECOND, CPU time function ! * 'SELECTED_CHAR_KIND': SELECTED_CHAR_KIND, Choose character kind ! * 'SELECTED_INT_KIND': SELECTED_INT_KIND, Choose integer kind ! * 'SELECTED_REAL_KIND': SELECTED_REAL_KIND, Choose real kind ! * 'SET_EXPONENT': SET_EXPONENT, Set the exponent of the model ! * 'SHAPE': SHAPE, Determine the shape of an array ! * 'SHIFTA': SHIFTA, Right shift with fill ! * 'SHIFTL': SHIFTL, Left shift ! * 'SHIFTR': SHIFTR, Right shift ! * 'SIGN': SIGN, Sign copying function ! * 'SIGNAL': SIGNAL, Signal handling subroutine (or function) ! * 'SIN': SIN, Sine function ! * 'SINH': SINH, Hyperbolic sine function ! * 'SIZE': SIZE, Function to determine the size of an array ! * 'SIZEOF': SIZEOF, Determine the size in bytes of an expression ! * 'SLEEP': SLEEP, Sleep for the specified number of seconds ! * 'SPACING': SPACING, Smallest distance between two numbers of a given type ! * 'SPREAD': SPREAD, Add a dimension to an array ! * 'SQRT': SQRT, Square-root function ! * 'SRAND': SRAND, Reinitialize the random number generator ! * 'STAT': STAT, Get file status ! * 'STORAGE_SIZE': STORAGE_SIZE, Storage size in bits ! * 'SUM': SUM, Sum of array elements ! * 'SYMLNK': SYMLNK, Create a symbolic link ! * 'SYSTEM': SYSTEM, Execute a shell command ! * 'SYSTEM_CLOCK': SYSTEM_CLOCK, Time function ! * 'TAN': TAN, Tangent function ! * 'TANH': TANH, Hyperbolic tangent function ! * 'THIS_IMAGE': THIS_IMAGE, Cosubscript index of this image ! * 'TIME': TIME, Time function ! * 'TIME8': TIME8, Time function (64-bit) ! * 'TINY': TINY, Smallest positive number of a real kind ! * 'TRAILZ': TRAILZ, Number of trailing zero bits of an integer ! * 'TRANSFER': TRANSFER, Transfer bit patterns ! * 'TRANSPOSE': TRANSPOSE, Transpose an array of rank two ! * 'TRIM': TRIM, Remove trailing blank characters of a string ! * 'TTYNAM': TTYNAM, Get the name of a terminal device. ! * 'UBOUND': UBOUND, Upper dimension bounds of an array ! * 'UCOBOUND': UCOBOUND, Upper codimension bounds of an array ! * 'UMASK': UMASK, Set the file creation mask ! * 'UNLINK': UNLINK, Remove a file from the file system ! * 'UNPACK': UNPACK, Unpack an array of rank one into an array ! * 'VERIFY': VERIFY, Scan a string for the absence of a set of characters ! * 'XOR': XOR, Bitwise logical exclusive or  File: gfortran.info, Node: Introduction to Intrinsics, Next: ABORT, Up: Intrinsic Procedures *************** either the Fortran 95 standard, the Fort *** 4143,4186 **** 2008 standard is unintentional, and the standard(s) should be considered authoritative. ! The enumeration of the `KIND' type parameter is processor defined in the Fortran 95 standard. GNU Fortran defines the default integer type ! and default real type by `INTEGER(KIND=4)' and `REAL(KIND=4)', respectively. The standard mandates that both data types shall have another kind, which have more precision. On typical target ! architectures supported by `gfortran', this kind type parameter is ! `KIND=8'. Hence, `REAL(KIND=8)' and `DOUBLE PRECISION' are equivalent. In the description of generic intrinsic procedures, the kind type ! parameter will be specified by `KIND=*', and in the description of specific names for an intrinsic procedure the kind type parameter will ! be explicitly given (e.g., `REAL(KIND=4)' or `REAL(KIND=8)'). Finally, ! for brevity the optional `KIND=' syntax will be omitted. Many of the intrinsic procedures take one or more optional arguments. This document follows the convention used in the Fortran 95 standard, and denotes such arguments by square brackets. ! GNU Fortran offers the `-std=f95' and `-std=gnu' options, which can ! be used to restrict the set of intrinsic procedures to a given ! standard. By default, `gfortran' sets the `-std=gnu' option, and so ! all intrinsic procedures described here are accepted. There is one ! caveat. For a select group of intrinsic procedures, `g77' implemented ! both a function and a subroutine. Both classes have been implemented ! in `gfortran' for backwards compatibility with `g77'. It is noted here ! that these functions and subroutines cannot be intermixed in a given ! subprogram. In the descriptions that follow, the applicable standard ! for each intrinsic procedure is noted.  File: gfortran.info, Node: ABORT, Next: ABS, Prev: Introduction to Intrinsics, Up: Intrinsic Procedures ! 8.2 `ABORT' -- Abort the program ================================ _Description_: ! `ABORT' causes immediate termination of the program. On operating ! systems that support a core dump, `ABORT' will produce a core dump. ! It will also print a backtrace, unless `-fno-backtrace' is given. _Standard_: GNU extension --- 4106,4149 ---- 2008 standard is unintentional, and the standard(s) should be considered authoritative. ! The enumeration of the 'KIND' type parameter is processor defined in the Fortran 95 standard. GNU Fortran defines the default integer type ! and default real type by 'INTEGER(KIND=4)' and 'REAL(KIND=4)', respectively. The standard mandates that both data types shall have another kind, which have more precision. On typical target ! architectures supported by 'gfortran', this kind type parameter is ! 'KIND=8'. Hence, 'REAL(KIND=8)' and 'DOUBLE PRECISION' are equivalent. In the description of generic intrinsic procedures, the kind type ! parameter will be specified by 'KIND=*', and in the description of specific names for an intrinsic procedure the kind type parameter will ! be explicitly given (e.g., 'REAL(KIND=4)' or 'REAL(KIND=8)'). Finally, ! for brevity the optional 'KIND=' syntax will be omitted. Many of the intrinsic procedures take one or more optional arguments. This document follows the convention used in the Fortran 95 standard, and denotes such arguments by square brackets. ! GNU Fortran offers the '-std=f95' and '-std=gnu' options, which can ! be used to restrict the set of intrinsic procedures to a given standard. ! By default, 'gfortran' sets the '-std=gnu' option, and so all intrinsic ! procedures described here are accepted. There is one caveat. For a ! select group of intrinsic procedures, 'g77' implemented both a function ! and a subroutine. Both classes have been implemented in 'gfortran' for ! backwards compatibility with 'g77'. It is noted here that these ! functions and subroutines cannot be intermixed in a given subprogram. ! In the descriptions that follow, the applicable standard for each ! intrinsic procedure is noted.  File: gfortran.info, Node: ABORT, Next: ABS, Prev: Introduction to Intrinsics, Up: Intrinsic Procedures ! 8.2 'ABORT' -- Abort the program ================================ _Description_: ! 'ABORT' causes immediate termination of the program. On operating ! systems that support a core dump, 'ABORT' will produce a core dump. ! It will also print a backtrace, unless '-fno-backtrace' is given. _Standard_: GNU extension *************** _Class_: *** 4189,4195 **** Subroutine _Syntax_: ! `CALL ABORT' _Return value_: Does not return. --- 4152,4158 ---- Subroutine _Syntax_: ! 'CALL ABORT' _Return value_: Does not return. *************** _Example_: *** 4203,4217 **** _See also_: *note EXIT::, *note KILL::, *note BACKTRACE:: -  File: gfortran.info, Node: ABS, Next: ACCESS, Prev: ABORT, Up: Intrinsic Procedures ! 8.3 `ABS' -- Absolute value =========================== _Description_: ! `ABS(A)' computes the absolute value of `A'. _Standard_: Fortran 77 and later, has overloads that are GNU extensions --- 4166,4179 ---- _See also_: *note EXIT::, *note KILL::, *note BACKTRACE::  File: gfortran.info, Node: ABS, Next: ACCESS, Prev: ABORT, Up: Intrinsic Procedures ! 8.3 'ABS' -- Absolute value =========================== _Description_: ! 'ABS(A)' computes the absolute value of 'A'. _Standard_: Fortran 77 and later, has overloads that are GNU extensions *************** _Class_: *** 4220,4234 **** Elemental function _Syntax_: ! `RESULT = ABS(A)' _Arguments_: ! A The type of the argument shall be an `INTEGER', ! `REAL', or `COMPLEX'. _Return value_: The return value is of the same type and kind as the argument ! except the return value is `REAL' for a `COMPLEX' argument. _Example_: program test_abs --- 4182,4196 ---- Elemental function _Syntax_: ! 'RESULT = ABS(A)' _Arguments_: ! A The type of the argument shall be an 'INTEGER', ! 'REAL', or 'COMPLEX'. _Return value_: The return value is of the same type and kind as the argument ! except the return value is 'REAL' for a 'COMPLEX' argument. _Example_: program test_abs *************** _Example_: *** 4241,4270 **** end program test_abs _Specific names_: ! Name Argument Return type Standard ! `ABS(A)' `REAL(4) A' `REAL(4)' Fortran 77 and ! later ! `CABS(A)' `COMPLEX(4) `REAL(4)' Fortran 77 and ! A' later ! `DABS(A)' `REAL(8) A' `REAL(8)' Fortran 77 and ! later ! `IABS(A)' `INTEGER(4) `INTEGER(4)' Fortran 77 and ! A' later ! `ZABS(A)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! A' ! `CDABS(A)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! A'  File: gfortran.info, Node: ACCESS, Next: ACHAR, Prev: ABS, Up: Intrinsic Procedures ! 8.4 `ACCESS' -- Checks file access modes ======================================== _Description_: ! `ACCESS(NAME, MODE)' checks whether the file NAME exists, is ! readable, writable or executable. Except for the executable check, ! `ACCESS' can be replaced by Fortran 95's `INQUIRE'. _Standard_: GNU extension --- 4203,4232 ---- end program test_abs _Specific names_: ! Name Argument Return type Standard ! 'ABS(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and ! later ! 'CABS(A)' 'COMPLEX(4) 'REAL(4)' Fortran 77 and ! A' later ! 'DABS(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and ! later ! 'IABS(A)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and ! A' later ! 'ZABS(A)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! A' ! 'CDABS(A)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! A'  File: gfortran.info, Node: ACCESS, Next: ACHAR, Prev: ABS, Up: Intrinsic Procedures ! 8.4 'ACCESS' -- Checks file access modes ======================================== _Description_: ! 'ACCESS(NAME, MODE)' checks whether the file NAME exists, is ! readable, writable or executable. Except for the executable check, ! 'ACCESS' can be replaced by Fortran 95's 'INQUIRE'. _Standard_: GNU extension *************** _Class_: *** 4273,4295 **** Inquiry function _Syntax_: ! `RESULT = ACCESS(NAME, MODE)' _Arguments_: ! NAME Scalar `CHARACTER' of default kind with the ! file name. Tailing blank are ignored unless ! the character `achar(0)' is present, then all ! characters up to and excluding `achar(0)' are ! used as file name. ! MODE Scalar `CHARACTER' of default kind with the ! file access mode, may be any concatenation of ! `"r"' (readable), `"w"' (writable) and `"x"' ! (executable), or `" "' to check for existence. _Return value_: ! Returns a scalar `INTEGER', which is `0' if the file is accessible in the given mode; otherwise or if an invalid argument has been ! given for `MODE' the value `1' is returned. _Example_: program access_test --- 4235,4257 ---- Inquiry function _Syntax_: ! 'RESULT = ACCESS(NAME, MODE)' _Arguments_: ! NAME Scalar 'CHARACTER' of default kind with the file ! name. Tailing blank are ignored unless the ! character 'achar(0)' is present, then all ! characters up to and excluding 'achar(0)' are ! used as file name. ! MODE Scalar 'CHARACTER' of default kind with the file ! access mode, may be any concatenation of '"r"' ! (readable), '"w"' (writable) and '"x"' ! (executable), or '" "' to check for existence. _Return value_: ! Returns a scalar 'INTEGER', which is '0' if the file is accessible in the given mode; otherwise or if an invalid argument has been ! given for 'MODE' the value '1' is returned. _Example_: program access_test *************** _Example_: *** 4303,4321 **** if(access(file2,'rwx') == 0) & print *, trim(file2),' is readable, writable and executable' end program access_test - _Specific names_: - _See also_:  File: gfortran.info, Node: ACHAR, Next: ACOS, Prev: ACCESS, Up: Intrinsic Procedures ! 8.5 `ACHAR' -- Character in ASCII collating sequence ==================================================== _Description_: ! `ACHAR(I)' returns the character located at position `I' in the ASCII collating sequence. _Standard_: --- 4265,4281 ---- if(access(file2,'rwx') == 0) & print *, trim(file2),' is readable, writable and executable' end program access_test _Specific names_: _See also_:  File: gfortran.info, Node: ACHAR, Next: ACOS, Prev: ACCESS, Up: Intrinsic Procedures ! 8.5 'ACHAR' -- Character in ASCII collating sequence ==================================================== _Description_: ! 'ACHAR(I)' returns the character located at position 'I' in the ASCII collating sequence. _Standard_: *************** _Class_: *** 4325,4340 **** Elemental function _Syntax_: ! `RESULT = ACHAR(I [, KIND])' _Arguments_: ! I The type shall be `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `CHARACTER' with a length of one. If the KIND argument is present, the return value is of the specified kind and of the default kind otherwise. --- 4285,4300 ---- Elemental function _Syntax_: ! 'RESULT = ACHAR(I [, KIND])' _Arguments_: ! I The type shall be 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'CHARACTER' with a length of one. If the KIND argument is present, the return value is of the specified kind and of the default kind otherwise. *************** _Note_: *** 4351,4365 **** _See also_: *note CHAR::, *note IACHAR::, *note ICHAR:: -  File: gfortran.info, Node: ACOS, Next: ACOSH, Prev: ACHAR, Up: Intrinsic Procedures ! 8.6 `ACOS' -- Arccosine function ================================ _Description_: ! `ACOS(X)' computes the arccosine of X (inverse of `COS(X)'). _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later --- 4311,4324 ---- _See also_: *note CHAR::, *note IACHAR::, *note ICHAR::  File: gfortran.info, Node: ACOS, Next: ACOSH, Prev: ACHAR, Up: Intrinsic Procedures ! 8.6 'ACOS' -- Arccosine function ================================ _Description_: ! 'ACOS(X)' computes the arccosine of X (inverse of 'COS(X)'). _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later *************** _Class_: *** 4368,4379 **** Elemental function _Syntax_: ! `RESULT = ACOS(X)' _Arguments_: ! X The type shall either be `REAL' with a ! magnitude that is less than or equal to one - ! or the type shall be `COMPLEX'. _Return value_: The return value is of the same type and kind as X. The real part --- 4327,4338 ---- Elemental function _Syntax_: ! 'RESULT = ACOS(X)' _Arguments_: ! X The type shall either be 'REAL' with a magnitude ! that is less than or equal to one - or the type ! shall be 'COMPLEX'. _Return value_: The return value is of the same type and kind as X. The real part *************** _Example_: *** 4387,4410 **** end program test_acos _Specific names_: ! Name Argument Return type Standard ! `ACOS(X)' `REAL(4) X' `REAL(4)' Fortran 77 and ! later ! `DACOS(X)' `REAL(8) X' `REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note COS:: -  File: gfortran.info, Node: ACOSH, Next: ADJUSTL, Prev: ACOS, Up: Intrinsic Procedures ! 8.7 `ACOSH' -- Inverse hyperbolic cosine function ================================================= _Description_: ! `ACOSH(X)' computes the inverse hyperbolic cosine of X. _Standard_: Fortran 2008 and later --- 4346,4368 ---- end program test_acos _Specific names_: ! Name Argument Return type Standard ! 'ACOS(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and ! later ! 'DACOS(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note COS::  File: gfortran.info, Node: ACOSH, Next: ADJUSTL, Prev: ACOS, Up: Intrinsic Procedures ! 8.7 'ACOSH' -- Inverse hyperbolic cosine function ================================================= _Description_: ! 'ACOSH(X)' computes the inverse hyperbolic cosine of X. _Standard_: Fortran 2008 and later *************** _Class_: *** 4413,4426 **** Elemental function _Syntax_: ! `RESULT = ACOSH(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value has the same type and kind as X. If X is complex, ! the imaginary part of the result is in radians and lies between 0 \leq \Im \acosh(x) \leq \pi. _Example_: --- 4371,4384 ---- Elemental function _Syntax_: ! 'RESULT = ACOSH(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value has the same type and kind as X. If X is complex, ! the imaginary part of the result is in radians and lies between 0 \leq \Im \acosh(x) \leq \pi. _Example_: *************** _Example_: *** 4430,4437 **** END PROGRAM _Specific names_: ! Name Argument Return type Standard ! `DACOSH(X)' `REAL(8) X' `REAL(8)' GNU extension _See also_: Inverse function: *note COSH:: --- 4388,4395 ---- END PROGRAM _Specific names_: ! Name Argument Return type Standard ! 'DACOSH(X)' 'REAL(8) X' 'REAL(8)' GNU extension _See also_: Inverse function: *note COSH:: *************** _See also_: *** 4439,4449 ****  File: gfortran.info, Node: ADJUSTL, Next: ADJUSTR, Prev: ACOSH, Up: Intrinsic Procedures ! 8.8 `ADJUSTL' -- Left adjust a string ===================================== _Description_: ! `ADJUSTL(STRING)' will left adjust a string by removing leading spaces. Spaces are inserted at the end of the string as needed. _Standard_: --- 4397,4407 ----  File: gfortran.info, Node: ADJUSTL, Next: ADJUSTR, Prev: ACOSH, Up: Intrinsic Procedures ! 8.8 'ADJUSTL' -- Left adjust a string ===================================== _Description_: ! 'ADJUSTL(STRING)' will left adjust a string by removing leading spaces. Spaces are inserted at the end of the string as needed. _Standard_: *************** _Class_: *** 4453,4465 **** Elemental function _Syntax_: ! `RESULT = ADJUSTL(STRING)' _Arguments_: ! STRING The type shall be `CHARACTER'. _Return value_: ! The return value is of type `CHARACTER' and of the same kind as STRING where leading spaces are removed and the same number of spaces are inserted on the end of STRING. --- 4411,4423 ---- Elemental function _Syntax_: ! 'RESULT = ADJUSTL(STRING)' _Arguments_: ! STRING The type shall be 'CHARACTER'. _Return value_: ! The return value is of type 'CHARACTER' and of the same kind as STRING where leading spaces are removed and the same number of spaces are inserted on the end of STRING. *************** _See also_: *** 4476,4486 ****  File: gfortran.info, Node: ADJUSTR, Next: AIMAG, Prev: ADJUSTL, Up: Intrinsic Procedures ! 8.9 `ADJUSTR' -- Right adjust a string ====================================== _Description_: ! `ADJUSTR(STRING)' will right adjust a string by removing trailing spaces. Spaces are inserted at the start of the string as needed. _Standard_: --- 4434,4444 ----  File: gfortran.info, Node: ADJUSTR, Next: AIMAG, Prev: ADJUSTL, Up: Intrinsic Procedures ! 8.9 'ADJUSTR' -- Right adjust a string ====================================== _Description_: ! 'ADJUSTR(STRING)' will right adjust a string by removing trailing spaces. Spaces are inserted at the start of the string as needed. _Standard_: *************** _Class_: *** 4490,4502 **** Elemental function _Syntax_: ! `RESULT = ADJUSTR(STRING)' _Arguments_: ! STR The type shall be `CHARACTER'. _Return value_: ! The return value is of type `CHARACTER' and of the same kind as STRING where trailing spaces are removed and the same number of spaces are inserted at the start of STRING. --- 4448,4460 ---- Elemental function _Syntax_: ! 'RESULT = ADJUSTR(STRING)' _Arguments_: ! STR The type shall be 'CHARACTER'. _Return value_: ! The return value is of type 'CHARACTER' and of the same kind as STRING where trailing spaces are removed and the same number of spaces are inserted at the start of STRING. *************** _See also_: *** 4513,4525 ****  File: gfortran.info, Node: AIMAG, Next: AINT, Prev: ADJUSTR, Up: Intrinsic Procedures ! 8.10 `AIMAG' -- Imaginary part of complex number ================================================ _Description_: ! `AIMAG(Z)' yields the imaginary part of complex argument `Z'. The ! `IMAG(Z)' and `IMAGPART(Z)' intrinsic functions are provided for ! compatibility with `g77', and their use in new code is strongly discouraged. _Standard_: --- 4471,4483 ----  File: gfortran.info, Node: AIMAG, Next: AINT, Prev: ADJUSTR, Up: Intrinsic Procedures ! 8.10 'AIMAG' -- Imaginary part of complex number ================================================ _Description_: ! 'AIMAG(Z)' yields the imaginary part of complex argument 'Z'. The ! 'IMAG(Z)' and 'IMAGPART(Z)' intrinsic functions are provided for ! compatibility with 'g77', and their use in new code is strongly discouraged. _Standard_: *************** _Class_: *** 4529,4541 **** Elemental function _Syntax_: ! `RESULT = AIMAG(Z)' _Arguments_: ! Z The type of the argument shall be `COMPLEX'. _Return value_: ! The return value is of type `REAL' with the kind type parameter of the argument. _Example_: --- 4487,4499 ---- Elemental function _Syntax_: ! 'RESULT = AIMAG(Z)' _Arguments_: ! Z The type of the argument shall be 'COMPLEX'. _Return value_: ! The return value is of type 'REAL' with the kind type parameter of the argument. _Example_: *************** _Example_: *** 4548,4568 **** end program test_aimag _Specific names_: ! Name Argument Return type Standard ! `AIMAG(Z)' `COMPLEX Z' `REAL' GNU extension ! `DIMAG(Z)' `COMPLEX(8) `REAL(8)' GNU extension ! Z' ! `IMAG(Z)' `COMPLEX Z' `REAL' GNU extension ! `IMAGPART(Z)' `COMPLEX Z' `REAL' GNU extension  File: gfortran.info, Node: AINT, Next: ALARM, Prev: AIMAG, Up: Intrinsic Procedures ! 8.11 `AINT' -- Truncate to a whole number ========================================= _Description_: ! `AINT(A [, KIND])' truncates its argument to a whole number. _Standard_: Fortran 77 and later --- 4506,4526 ---- end program test_aimag _Specific names_: ! Name Argument Return type Standard ! 'AIMAG(Z)' 'COMPLEX Z' 'REAL' GNU extension ! 'DIMAG(Z)' 'COMPLEX(8) 'REAL(8)' GNU extension ! Z' ! 'IMAG(Z)' 'COMPLEX Z' 'REAL' GNU extension ! 'IMAGPART(Z)' 'COMPLEX Z' 'REAL' GNU extension  File: gfortran.info, Node: AINT, Next: ALARM, Prev: AIMAG, Up: Intrinsic Procedures ! 8.11 'AINT' -- Truncate to a whole number ========================================= _Description_: ! 'AINT(A [, KIND])' truncates its argument to a whole number. _Standard_: Fortran 77 and later *************** _Class_: *** 4571,4589 **** Elemental function _Syntax_: ! `RESULT = AINT(A [, KIND])' _Arguments_: ! A The type of the argument shall be `REAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `REAL' with the kind type parameter of the argument if the optional KIND is absent; otherwise, the kind type parameter will be given by KIND. If the magnitude of X is ! less than one, `AINT(X)' returns zero. If the magnitude is equal to or greater than one then it returns the largest whole number that does not exceed its magnitude. The sign is the same as the sign of X. --- 4529,4547 ---- Elemental function _Syntax_: ! 'RESULT = AINT(A [, KIND])' _Arguments_: ! A The type of the argument shall be 'REAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'REAL' with the kind type parameter of the argument if the optional KIND is absent; otherwise, the kind type parameter will be given by KIND. If the magnitude of X is ! less than one, 'AINT(X)' returns zero. If the magnitude is equal to or greater than one then it returns the largest whole number that does not exceed its magnitude. The sign is the same as the sign of X. *************** _Example_: *** 4599,4623 **** end program test_aint _Specific names_: ! Name Argument Return type Standard ! `AINT(A)' `REAL(4) A' `REAL(4)' Fortran 77 and ! later ! `DINT(A)' `REAL(8) A' `REAL(8)' Fortran 77 and ! later  File: gfortran.info, Node: ALARM, Next: ALL, Prev: AINT, Up: Intrinsic Procedures ! 8.12 `ALARM' -- Execute a routine after a given delay ===================================================== _Description_: ! `ALARM(SECONDS, HANDLER [, STATUS])' causes external subroutine ! HANDLER to be executed after a delay of SECONDS by using ! `alarm(2)' to set up a signal and `signal(2)' to catch it. If ! STATUS is supplied, it will be returned with the number of seconds ! remaining until any previously scheduled alarm was due to be ! delivered, or zero if there was no previously scheduled alarm. _Standard_: GNU extension --- 4557,4581 ---- end program test_aint _Specific names_: ! Name Argument Return type Standard ! 'AINT(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and ! later ! 'DINT(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and ! later  File: gfortran.info, Node: ALARM, Next: ALL, Prev: AINT, Up: Intrinsic Procedures ! 8.12 'ALARM' -- Execute a routine after a given delay ===================================================== _Description_: ! 'ALARM(SECONDS, HANDLER [, STATUS])' causes external subroutine ! HANDLER to be executed after a delay of SECONDS by using 'alarm(2)' ! to set up a signal and 'signal(2)' to catch it. If STATUS is ! supplied, it will be returned with the number of seconds remaining ! until any previously scheduled alarm was due to be delivered, or ! zero if there was no previously scheduled alarm. _Standard_: GNU extension *************** _Class_: *** 4626,4645 **** Subroutine _Syntax_: ! `CALL ALARM(SECONDS, HANDLER [, STATUS])' _Arguments_: ! SECONDS The type of the argument shall be a scalar ! `INTEGER'. It is `INTENT(IN)'. ! HANDLER Signal handler (`INTEGER FUNCTION' or ! `SUBROUTINE') or dummy/global `INTEGER' ! scalar. The scalar values may be either ! `SIG_IGN=1' to ignore the alarm generated or ! `SIG_DFL=0' to set the default action. It is ! `INTENT(IN)'. ! STATUS (Optional) STATUS shall be a scalar variable ! of the default `INTEGER' kind. It is ! `INTENT(OUT)'. _Example_: program test_alarm --- 4584,4602 ---- Subroutine _Syntax_: ! 'CALL ALARM(SECONDS, HANDLER [, STATUS])' _Arguments_: ! SECONDS The type of the argument shall be a scalar ! 'INTEGER'. It is 'INTENT(IN)'. ! HANDLER Signal handler ('INTEGER FUNCTION' or ! 'SUBROUTINE') or dummy/global 'INTEGER' scalar. ! The scalar values may be either 'SIG_IGN=1' to ! ignore the alarm generated or 'SIG_DFL=0' to set ! the default action. It is 'INTENT(IN)'. ! STATUS (Optional) STATUS shall be a scalar variable of ! the default 'INTEGER' kind. It is ! 'INTENT(OUT)'. _Example_: program test_alarm *************** _Example_: *** 4655,4665 ****  File: gfortran.info, Node: ALL, Next: ALLOCATED, Prev: ALARM, Up: Intrinsic Procedures ! 8.13 `ALL' -- All values in MASK along DIM are true =================================================== _Description_: ! `ALL(MASK [, DIM])' determines if all the values are true in MASK in the array along dimension DIM. _Standard_: --- 4612,4622 ----  File: gfortran.info, Node: ALL, Next: ALLOCATED, Prev: ALARM, Up: Intrinsic Procedures ! 8.13 'ALL' -- All values in MASK along DIM are true =================================================== _Description_: ! 'ALL(MASK [, DIM])' determines if all the values are true in MASK in the array along dimension DIM. _Standard_: *************** _Class_: *** 4669,4698 **** Transformational function _Syntax_: ! `RESULT = ALL(MASK [, DIM])' _Arguments_: ! MASK The type of the argument shall be `LOGICAL' and ! it shall not be scalar. ! DIM (Optional) DIM shall be a scalar integer with ! a value that lies between one and the rank of ! MASK. _Return value_: ! `ALL(MASK)' returns a scalar value of type `LOGICAL' where the ! kind type parameter is the same as the kind type parameter of ! MASK. If DIM is present, then `ALL(MASK, DIM)' returns an array ! with the rank of MASK minus 1. The shape is determined from the ! shape of MASK where the DIM dimension is elided. ! ! (A) ! `ALL(MASK)' is true if all elements of MASK are true. It ! also is true if MASK has zero size; otherwise, it is false. ! (B) ! If the rank of MASK is one, then `ALL(MASK,DIM)' is equivalent ! to `ALL(MASK)'. If the rank is greater than one, then ! `ALL(MASK,DIM)' is determined by applying `ALL' to the array sections. _Example_: --- 4626,4654 ---- Transformational function _Syntax_: ! 'RESULT = ALL(MASK [, DIM])' _Arguments_: ! MASK The type of the argument shall be 'LOGICAL' and ! it shall not be scalar. ! DIM (Optional) DIM shall be a scalar integer with a ! value that lies between one and the rank of ! MASK. _Return value_: ! 'ALL(MASK)' returns a scalar value of type 'LOGICAL' where the kind ! type parameter is the same as the kind type parameter of MASK. If ! DIM is present, then 'ALL(MASK, DIM)' returns an array with the ! rank of MASK minus 1. The shape is determined from the shape of ! MASK where the DIM dimension is elided. ! (A) ! 'ALL(MASK)' is true if all elements of MASK are true. It also ! is true if MASK has zero size; otherwise, it is false. ! (B) ! If the rank of MASK is one, then 'ALL(MASK,DIM)' is equivalent ! to 'ALL(MASK)'. If the rank is greater than one, then ! 'ALL(MASK,DIM)' is determined by applying 'ALL' to the array sections. _Example_: *************** _Example_: *** 4715,4746 ****  File: gfortran.info, Node: ALLOCATED, Next: AND, Prev: ALL, Up: Intrinsic Procedures ! 8.14 `ALLOCATED' -- Status of an allocatable entity =================================================== _Description_: ! `ALLOCATED(ARRAY)' and `ALLOCATED(SCALAR)' check the allocation status of ARRAY and SCALAR, respectively. _Standard_: ! Fortran 95 and later. Note, the `SCALAR=' keyword and allocatable scalar entities are available in Fortran 2003 and later. _Class_: Inquiry function _Syntax_: ! `RESULT = ALLOCATED(ARRAY)' ! `RESULT = ALLOCATED(SCALAR)' _Arguments_: ! ARRAY The argument shall be an `ALLOCATABLE' array. ! SCALAR The argument shall be an `ALLOCATABLE' scalar. _Return value_: ! The return value is a scalar `LOGICAL' with the default logical ! kind type parameter. If the argument is allocated, then the ! result is `.TRUE.'; otherwise, it returns `.FALSE.' _Example_: program test_allocated --- 4671,4702 ----  File: gfortran.info, Node: ALLOCATED, Next: AND, Prev: ALL, Up: Intrinsic Procedures ! 8.14 'ALLOCATED' -- Status of an allocatable entity =================================================== _Description_: ! 'ALLOCATED(ARRAY)' and 'ALLOCATED(SCALAR)' check the allocation status of ARRAY and SCALAR, respectively. _Standard_: ! Fortran 95 and later. Note, the 'SCALAR=' keyword and allocatable scalar entities are available in Fortran 2003 and later. _Class_: Inquiry function _Syntax_: ! 'RESULT = ALLOCATED(ARRAY)' ! 'RESULT = ALLOCATED(SCALAR)' _Arguments_: ! ARRAY The argument shall be an 'ALLOCATABLE' array. ! SCALAR The argument shall be an 'ALLOCATABLE' scalar. _Return value_: ! The return value is a scalar 'LOGICAL' with the default logical ! kind type parameter. If the argument is allocated, then the result ! is '.TRUE.'; otherwise, it returns '.FALSE.' _Example_: program test_allocated *************** _Example_: *** 4752,4762 ****  File: gfortran.info, Node: AND, Next: ANINT, Prev: ALLOCATED, Up: Intrinsic Procedures ! 8.15 `AND' -- Bitwise logical AND ================================= _Description_: ! Bitwise logical `AND'. This intrinsic routine is provided for backwards compatibility with GNU Fortran 77. For integer arguments, programmers should consider --- 4708,4718 ----  File: gfortran.info, Node: AND, Next: ANINT, Prev: ALLOCATED, Up: Intrinsic Procedures ! 8.15 'AND' -- Bitwise logical AND ================================= _Description_: ! Bitwise logical 'AND'. This intrinsic routine is provided for backwards compatibility with GNU Fortran 77. For integer arguments, programmers should consider *************** _Class_: *** 4770,4787 **** Function _Syntax_: ! `RESULT = AND(I, J)' _Arguments_: ! I The type shall be either a scalar `INTEGER' ! type or a scalar `LOGICAL' type. ! J The type shall be the same as the type of I. _Return value_: ! The return type is either a scalar `INTEGER' or a scalar ! `LOGICAL'. If the kind type parameters differ, then the smaller ! kind type is implicitly converted to larger kind, and the return ! has the larger kind. _Example_: PROGRAM test_and --- 4726,4743 ---- Function _Syntax_: ! 'RESULT = AND(I, J)' _Arguments_: ! I The type shall be either a scalar 'INTEGER' type ! or a scalar 'LOGICAL' type. ! J The type shall be the same as the type of I. _Return value_: ! The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'. ! If the kind type parameters differ, then the smaller kind type is ! implicitly converted to larger kind, and the return has the larger ! kind. _Example_: PROGRAM test_and *************** _See also_: *** 4799,4809 ****  File: gfortran.info, Node: ANINT, Next: ANY, Prev: AND, Up: Intrinsic Procedures ! 8.16 `ANINT' -- Nearest whole number ==================================== _Description_: ! `ANINT(A [, KIND])' rounds its argument to the nearest whole number. _Standard_: --- 4755,4765 ----  File: gfortran.info, Node: ANINT, Next: ANY, Prev: AND, Up: Intrinsic Procedures ! 8.16 'ANINT' -- Nearest whole number ==================================== _Description_: ! 'ANINT(A [, KIND])' rounds its argument to the nearest whole number. _Standard_: *************** _Class_: *** 4813,4832 **** Elemental function _Syntax_: ! `RESULT = ANINT(A [, KIND])' _Arguments_: ! A The type of the argument shall be `REAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: The return value is of type real with the kind type parameter of the argument if the optional KIND is absent; otherwise, the kind type parameter will be given by KIND. If A is greater than zero, ! `ANINT(A)' returns `AINT(X+0.5)'. If A is less than or equal to ! zero then it returns `AINT(X-0.5)'. _Example_: program test_anint --- 4769,4788 ---- Elemental function _Syntax_: ! 'RESULT = ANINT(A [, KIND])' _Arguments_: ! A The type of the argument shall be 'REAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: The return value is of type real with the kind type parameter of the argument if the optional KIND is absent; otherwise, the kind type parameter will be given by KIND. If A is greater than zero, ! 'ANINT(A)' returns 'AINT(X+0.5)'. If A is less than or equal to ! zero then it returns 'AINT(X-0.5)'. _Example_: program test_anint *************** _Example_: *** 4839,4859 **** end program test_anint _Specific names_: ! Name Argument Return type Standard ! `AINT(A)' `REAL(4) A' `REAL(4)' Fortran 77 and ! later ! `DNINT(A)' `REAL(8) A' `REAL(8)' Fortran 77 and ! later  File: gfortran.info, Node: ANY, Next: ASIN, Prev: ANINT, Up: Intrinsic Procedures ! 8.17 `ANY' -- Any value in MASK along DIM is true ================================================= _Description_: ! `ANY(MASK [, DIM])' determines if any of the values in the logical ! array MASK along dimension DIM are `.TRUE.'. _Standard_: Fortran 95 and later --- 4795,4815 ---- end program test_anint _Specific names_: ! Name Argument Return type Standard ! 'AINT(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and ! later ! 'DNINT(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and ! later  File: gfortran.info, Node: ANY, Next: ASIN, Prev: ANINT, Up: Intrinsic Procedures ! 8.17 'ANY' -- Any value in MASK along DIM is true ================================================= _Description_: ! 'ANY(MASK [, DIM])' determines if any of the values in the logical ! array MASK along dimension DIM are '.TRUE.'. _Standard_: Fortran 95 and later *************** _Class_: *** 4862,4892 **** Transformational function _Syntax_: ! `RESULT = ANY(MASK [, DIM])' _Arguments_: ! MASK The type of the argument shall be `LOGICAL' and ! it shall not be scalar. ! DIM (Optional) DIM shall be a scalar integer with ! a value that lies between one and the rank of ! MASK. _Return value_: ! `ANY(MASK)' returns a scalar value of type `LOGICAL' where the ! kind type parameter is the same as the kind type parameter of ! MASK. If DIM is present, then `ANY(MASK, DIM)' returns an array ! with the rank of MASK minus 1. The shape is determined from the ! shape of MASK where the DIM dimension is elided. ! ! (A) ! `ANY(MASK)' is true if any element of MASK is true; ! otherwise, it is false. It also is false if MASK has zero ! size. ! (B) ! If the rank of MASK is one, then `ANY(MASK,DIM)' is equivalent ! to `ANY(MASK)'. If the rank is greater than one, then ! `ANY(MASK,DIM)' is determined by applying `ANY' to the array sections. _Example_: --- 4818,4846 ---- Transformational function _Syntax_: ! 'RESULT = ANY(MASK [, DIM])' _Arguments_: ! MASK The type of the argument shall be 'LOGICAL' and ! it shall not be scalar. ! DIM (Optional) DIM shall be a scalar integer with a ! value that lies between one and the rank of ! MASK. _Return value_: ! 'ANY(MASK)' returns a scalar value of type 'LOGICAL' where the kind ! type parameter is the same as the kind type parameter of MASK. If ! DIM is present, then 'ANY(MASK, DIM)' returns an array with the ! rank of MASK minus 1. The shape is determined from the shape of ! MASK where the DIM dimension is elided. ! (A) ! 'ANY(MASK)' is true if any element of MASK is true; otherwise, ! it is false. It also is false if MASK has zero size. ! (B) ! If the rank of MASK is one, then 'ANY(MASK,DIM)' is equivalent ! to 'ANY(MASK)'. If the rank is greater than one, then ! 'ANY(MASK,DIM)' is determined by applying 'ANY' to the array sections. _Example_: *************** _Example_: *** 4909,4919 ****  File: gfortran.info, Node: ASIN, Next: ASINH, Prev: ANY, Up: Intrinsic Procedures ! 8.18 `ASIN' -- Arcsine function =============================== _Description_: ! `ASIN(X)' computes the arcsine of its X (inverse of `SIN(X)'). _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later --- 4863,4873 ----  File: gfortran.info, Node: ASIN, Next: ASINH, Prev: ANY, Up: Intrinsic Procedures ! 8.18 'ASIN' -- Arcsine function =============================== _Description_: ! 'ASIN(X)' computes the arcsine of its X (inverse of 'SIN(X)'). _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later *************** _Class_: *** 4922,4933 **** Elemental function _Syntax_: ! `RESULT = ASIN(X)' _Arguments_: ! X The type shall be either `REAL' and a ! magnitude that is less than or equal to one - ! or be `COMPLEX'. _Return value_: The return value is of the same type and kind as X. The real part --- 4876,4887 ---- Elemental function _Syntax_: ! 'RESULT = ASIN(X)' _Arguments_: ! X The type shall be either 'REAL' and a magnitude ! that is less than or equal to one - or be ! 'COMPLEX'. _Return value_: The return value is of the same type and kind as X. The real part *************** _Example_: *** 4941,4964 **** end program test_asin _Specific names_: ! Name Argument Return type Standard ! `ASIN(X)' `REAL(4) X' `REAL(4)' Fortran 77 and ! later ! `DASIN(X)' `REAL(8) X' `REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note SIN:: -  File: gfortran.info, Node: ASINH, Next: ASSOCIATED, Prev: ASIN, Up: Intrinsic Procedures ! 8.19 `ASINH' -- Inverse hyperbolic sine function ================================================ _Description_: ! `ASINH(X)' computes the inverse hyperbolic sine of X. _Standard_: Fortran 2008 and later --- 4895,4917 ---- end program test_asin _Specific names_: ! Name Argument Return type Standard ! 'ASIN(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and ! later ! 'DASIN(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note SIN::  File: gfortran.info, Node: ASINH, Next: ASSOCIATED, Prev: ASIN, Up: Intrinsic Procedures ! 8.19 'ASINH' -- Inverse hyperbolic sine function ================================================ _Description_: ! 'ASINH(X)' computes the inverse hyperbolic sine of X. _Standard_: Fortran 2008 and later *************** _Class_: *** 4967,4979 **** Elemental function _Syntax_: ! `RESULT = ASINH(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value is of the same type and kind as X. If X is complex, the imaginary part of the result is in radians and lies between -\pi/2 \leq \Im \asinh(x) \leq \pi/2. --- 4920,4932 ---- Elemental function _Syntax_: ! 'RESULT = ASINH(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value is of the same type and kind as X. If X is complex, the imaginary part of the result is in radians and lies between -\pi/2 \leq \Im \asinh(x) \leq \pi/2. *************** _Example_: *** 4984,4991 **** END PROGRAM _Specific names_: ! Name Argument Return type Standard ! `DASINH(X)' `REAL(8) X' `REAL(8)' GNU extension. _See also_: Inverse function: *note SINH:: --- 4937,4944 ---- END PROGRAM _Specific names_: ! Name Argument Return type Standard ! 'DASINH(X)' 'REAL(8) X' 'REAL(8)' GNU extension. _See also_: Inverse function: *note SINH:: *************** _See also_: *** 4993,5003 ****  File: gfortran.info, Node: ASSOCIATED, Next: ATAN, Prev: ASINH, Up: Intrinsic Procedures ! 8.20 `ASSOCIATED' -- Status of a pointer or pointer/target pair =============================================================== _Description_: ! `ASSOCIATED(POINTER [, TARGET])' determines the status of the pointer POINTER or if POINTER is associated with the target TARGET. _Standard_: --- 4946,4956 ----  File: gfortran.info, Node: ASSOCIATED, Next: ATAN, Prev: ASINH, Up: Intrinsic Procedures ! 8.20 'ASSOCIATED' -- Status of a pointer or pointer/target pair =============================================================== _Description_: ! 'ASSOCIATED(POINTER [, TARGET])' determines the status of the pointer POINTER or if POINTER is associated with the target TARGET. _Standard_: *************** _Class_: *** 5007,5049 **** Inquiry function _Syntax_: ! `RESULT = ASSOCIATED(POINTER [, TARGET])' _Arguments_: ! POINTER POINTER shall have the `POINTER' attribute and ! it can be of any type. ! TARGET (Optional) TARGET shall be a pointer or a ! target. It must have the same type, kind type ! parameter, and array rank as POINTER. The association status of neither POINTER nor TARGET shall be undefined. _Return value_: ! `ASSOCIATED(POINTER)' returns a scalar value of type `LOGICAL(4)'. There are several cases: ! (A) When the optional TARGET is not present then ! `ASSOCIATED(POINTER)' is true if POINTER is associated with a target; otherwise, it returns false. ! ! (B) If TARGET is present and a scalar target, the result is true if TARGET is not a zero-sized storage sequence and the target associated with POINTER occupies the same storage units. If POINTER is disassociated, the result is false. ! ! (C) If TARGET is present and an array target, the result is true if TARGET and POINTER have the same shape, are not zero-sized arrays, are arrays whose elements are not zero-sized storage sequences, and TARGET and POINTER occupy the same storage units in array element order. As in case(B), the result is false, if POINTER is disassociated. ! ! (D) If TARGET is present and an scalar pointer, the result is true if TARGET is associated with POINTER, the target associated with TARGET are not zero-sized storage sequences and occupy ! the same storage units. The result is false, if either ! TARGET or POINTER is disassociated. ! ! (E) If TARGET is present and an array pointer, the result is true if target associated with POINTER and the target associated with TARGET have the same shape, are not zero-sized arrays, are arrays whose elements are not zero-sized storage sequences, --- 4960,4998 ---- Inquiry function _Syntax_: ! 'RESULT = ASSOCIATED(POINTER [, TARGET])' _Arguments_: ! POINTER POINTER shall have the 'POINTER' attribute and ! it can be of any type. ! TARGET (Optional) TARGET shall be a pointer or a ! target. It must have the same type, kind type ! parameter, and array rank as POINTER. The association status of neither POINTER nor TARGET shall be undefined. _Return value_: ! 'ASSOCIATED(POINTER)' returns a scalar value of type 'LOGICAL(4)'. There are several cases: ! (A) When the optional TARGET is not present then ! 'ASSOCIATED(POINTER)' is true if POINTER is associated with a target; otherwise, it returns false. ! (B) If TARGET is present and a scalar target, the result is true if TARGET is not a zero-sized storage sequence and the target associated with POINTER occupies the same storage units. If POINTER is disassociated, the result is false. ! (C) If TARGET is present and an array target, the result is true if TARGET and POINTER have the same shape, are not zero-sized arrays, are arrays whose elements are not zero-sized storage sequences, and TARGET and POINTER occupy the same storage units in array element order. As in case(B), the result is false, if POINTER is disassociated. ! (D) If TARGET is present and an scalar pointer, the result is true if TARGET is associated with POINTER, the target associated with TARGET are not zero-sized storage sequences and occupy ! the same storage units. The result is false, if either TARGET ! or POINTER is disassociated. ! (E) If TARGET is present and an array pointer, the result is true if target associated with POINTER and the target associated with TARGET have the same shape, are not zero-sized arrays, are arrays whose elements are not zero-sized storage sequences, *************** _See also_: *** 5067,5077 ****  File: gfortran.info, Node: ATAN, Next: ATAN2, Prev: ASSOCIATED, Up: Intrinsic Procedures ! 8.21 `ATAN' -- Arctangent function ================================== _Description_: ! `ATAN(X)' computes the arctangent of X. _Standard_: Fortran 77 and later, for a complex argument and for two arguments --- 5016,5026 ----  File: gfortran.info, Node: ATAN, Next: ATAN2, Prev: ASSOCIATED, Up: Intrinsic Procedures ! 8.21 'ATAN' -- Arctangent function ================================== _Description_: ! 'ATAN(X)' computes the arctangent of X. _Standard_: Fortran 77 and later, for a complex argument and for two arguments *************** _Class_: *** 5081,5101 **** Elemental function _Syntax_: ! `RESULT = ATAN(X)' ! `RESULT = ATAN(Y, X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'; if Y is ! present, X shall be REAL. ! Y shall ! be of the ! same type ! and kind ! as X. _Return value_: The return value is of the same type and kind as X. If Y is ! present, the result is identical to `ATAN2(Y,X)'. Otherwise, it the arcus tangent of X, where the real part of the result is in radians and lies in the range -\pi/2 \leq \Re \atan(x) \leq \pi/2. --- 5030,5050 ---- Elemental function _Syntax_: ! 'RESULT = ATAN(X)' ! 'RESULT = ATAN(Y, X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'; if Y is ! present, X shall be REAL. ! Y shall ! be of the ! same type ! and kind ! as X. _Return value_: The return value is of the same type and kind as X. If Y is ! present, the result is identical to 'ATAN2(Y,X)'. Otherwise, it the arcus tangent of X, where the real part of the result is in radians and lies in the range -\pi/2 \leq \Re \atan(x) \leq \pi/2. *************** _Example_: *** 5106,5131 **** end program test_atan _Specific names_: ! Name Argument Return type Standard ! `ATAN(X)' `REAL(4) X' `REAL(4)' Fortran 77 and ! later ! `DATAN(X)' `REAL(8) X' `REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note TAN:: -  File: gfortran.info, Node: ATAN2, Next: ATANH, Prev: ATAN, Up: Intrinsic Procedures ! 8.22 `ATAN2' -- Arctangent function =================================== _Description_: ! `ATAN2(Y, X)' computes the principal value of the argument ! function of the complex number X + i Y. This function can be used ! to transform from Cartesian into polar coordinates and allows to determine the angle in the correct quadrant. _Standard_: --- 5055,5079 ---- end program test_atan _Specific names_: ! Name Argument Return type Standard ! 'ATAN(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and ! later ! 'DATAN(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note TAN::  File: gfortran.info, Node: ATAN2, Next: ATANH, Prev: ATAN, Up: Intrinsic Procedures ! 8.22 'ATAN2' -- Arctangent function =================================== _Description_: ! 'ATAN2(Y, X)' computes the principal value of the argument function ! of the complex number X + i Y. This function can be used to ! transform from Cartesian into polar coordinates and allows to determine the angle in the correct quadrant. _Standard_: *************** _Class_: *** 5135,5151 **** Elemental function _Syntax_: ! `RESULT = ATAN2(Y, X)' _Arguments_: ! Y The type shall be `REAL'. ! X The type and kind type parameter shall be the ! same as Y. If Y is zero, then X must be ! nonzero. _Return value_: ! The return value has the same type and kind type parameter as Y. It ! is the principal value of the complex number X + i Y. If X is nonzero, then it lies in the range -\pi \le \atan (x) \leq \pi. The sign is positive if Y is positive. If Y is zero, then the return value is zero if X is strictly positive, \pi if X is --- 5083,5099 ---- Elemental function _Syntax_: ! 'RESULT = ATAN2(Y, X)' _Arguments_: ! Y The type shall be 'REAL'. ! X The type and kind type parameter shall be the ! same as Y. If Y is zero, then X must be ! nonzero. _Return value_: ! The return value has the same type and kind type parameter as Y. ! It is the principal value of the complex number X + i Y. If X is nonzero, then it lies in the range -\pi \le \atan (x) \leq \pi. The sign is positive if Y is positive. If Y is zero, then the return value is zero if X is strictly positive, \pi if X is *************** _Example_: *** 5160,5179 **** end program test_atan2 _Specific names_: ! Name Argument Return type Standard ! `ATAN2(X, `REAL(4) X, `REAL(4)' Fortran 77 and ! Y)' Y' later ! `DATAN2(X, `REAL(8) X, `REAL(8)' Fortran 77 and ! Y)' Y' later  File: gfortran.info, Node: ATANH, Next: ATOMIC_DEFINE, Prev: ATAN2, Up: Intrinsic Procedures ! 8.23 `ATANH' -- Inverse hyperbolic tangent function =================================================== _Description_: ! `ATANH(X)' computes the inverse hyperbolic tangent of X. _Standard_: Fortran 2008 and later --- 5108,5127 ---- end program test_atan2 _Specific names_: ! Name Argument Return type Standard ! 'ATAN2(X, 'REAL(4) X, 'REAL(4)' Fortran 77 and ! Y)' Y' later ! 'DATAN2(X, 'REAL(8) X, 'REAL(8)' Fortran 77 and ! Y)' Y' later  File: gfortran.info, Node: ATANH, Next: ATOMIC_DEFINE, Prev: ATAN2, Up: Intrinsic Procedures ! 8.23 'ATANH' -- Inverse hyperbolic tangent function =================================================== _Description_: ! 'ATANH(X)' computes the inverse hyperbolic tangent of X. _Standard_: Fortran 2008 and later *************** _Class_: *** 5182,5194 **** Elemental function _Syntax_: ! `RESULT = ATANH(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value has same type and kind as X. If X is complex, the imaginary part of the result is in radians and lies between -\pi/2 \leq \Im \atanh(x) \leq \pi/2. --- 5130,5142 ---- Elemental function _Syntax_: ! 'RESULT = ATANH(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value has same type and kind as X. If X is complex, the imaginary part of the result is in radians and lies between -\pi/2 \leq \Im \atanh(x) \leq \pi/2. *************** _Example_: *** 5199,5206 **** END PROGRAM _Specific names_: ! Name Argument Return type Standard ! `DATANH(X)' `REAL(8) X' `REAL(8)' GNU extension _See also_: Inverse function: *note TANH:: --- 5147,5154 ---- END PROGRAM _Specific names_: ! Name Argument Return type Standard ! 'DATANH(X)' 'REAL(8) X' 'REAL(8)' GNU extension _See also_: Inverse function: *note TANH:: *************** _See also_: *** 5208,5218 ****  File: gfortran.info, Node: ATOMIC_DEFINE, Next: ATOMIC_REF, Prev: ATANH, Up: Intrinsic Procedures ! 8.24 `ATOMIC_DEFINE' -- Setting a variable atomically ===================================================== _Description_: ! `ATOMIC_DEFINE(ATOM, VALUE)' defines the variable ATOM with the value VALUE atomically. _Standard_: --- 5156,5166 ----  File: gfortran.info, Node: ATOMIC_DEFINE, Next: ATOMIC_REF, Prev: ATANH, Up: Intrinsic Procedures ! 8.24 'ATOMIC_DEFINE' -- Setting a variable atomically ===================================================== _Description_: ! 'ATOMIC_DEFINE(ATOM, VALUE)' defines the variable ATOM with the value VALUE atomically. _Standard_: *************** _Class_: *** 5222,5238 **** Atomic subroutine _Syntax_: ! `CALL ATOMIC_DEFINE(ATOM, VALUE)' _Arguments_: ! ATOM Scalar coarray or coindexed variable of either ! integer type with ! `ATOMIC_INT_KIND' kind or logical type ! with `ATOMIC_LOGICAL_KIND' kind. ! VALURE Scalar and of the same type as ATOM. If the ! kind is different, the ! value is converted to the kind of ! ATOM. _Example_: program atomic --- 5170,5184 ---- Atomic subroutine _Syntax_: ! 'CALL ATOMIC_DEFINE(ATOM, VALUE)' _Arguments_: ! ATOM Scalar coarray or coindexed variable of either ! integer type with 'ATOMIC_INT_KIND' kind or ! logical type with 'ATOMIC_LOGICAL_KIND' kind. ! VALURE Scalar and of the same type as ATOM. If the ! kind is different, the value is converted to the ! kind of ATOM. _Example_: program atomic *************** _See also_: *** 5247,5257 ****  File: gfortran.info, Node: ATOMIC_REF, Next: BACKTRACE, Prev: ATOMIC_DEFINE, Up: Intrinsic Procedures ! 8.25 `ATOMIC_REF' -- Obtaining the value of a variable atomically ================================================================= _Description_: ! `ATOMIC_DEFINE(ATOM, VALUE)' atomically assigns the value of the variable ATOM to VALUE. _Standard_: --- 5193,5203 ----  File: gfortran.info, Node: ATOMIC_REF, Next: BACKTRACE, Prev: ATOMIC_DEFINE, Up: Intrinsic Procedures ! 8.25 'ATOMIC_REF' -- Obtaining the value of a variable atomically ================================================================= _Description_: ! 'ATOMIC_DEFINE(ATOM, VALUE)' atomically assigns the value of the variable ATOM to VALUE. _Standard_: *************** _Class_: *** 5261,5277 **** Atomic subroutine _Syntax_: ! `CALL ATOMIC_REF(VALUE, ATOM)' _Arguments_: ! VALURE Scalar and of the same type as ATOM. If the ! kind is different, the ! value is converted to the kind of ! ATOM. ! ATOM Scalar coarray or coindexed variable of either ! integer type with ! `ATOMIC_INT_KIND' kind or logical type ! with `ATOMIC_LOGICAL_KIND' kind. _Example_: program atomic --- 5207,5221 ---- Atomic subroutine _Syntax_: ! 'CALL ATOMIC_REF(VALUE, ATOM)' _Arguments_: ! VALURE Scalar and of the same type as ATOM. If the ! kind is different, the value is converted to the ! kind of ATOM. ! ATOM Scalar coarray or coindexed variable of either ! integer type with 'ATOMIC_INT_KIND' kind or ! logical type with 'ATOMIC_LOGICAL_KIND' kind. _Example_: program atomic *************** _See also_: *** 5292,5305 ****  File: gfortran.info, Node: BACKTRACE, Next: BESSEL_J0, Prev: ATOMIC_REF, Up: Intrinsic Procedures ! 8.26 `BACKTRACE' -- Show a backtrace ==================================== _Description_: ! `BACKTRACE' shows a backtrace at an arbitrary place in user code. ! Program execution continues normally afterwards. The backtrace ! information is printed to the unit corresponding to `ERROR_UNIT' ! in `ISO_FORTRAN_ENV'. _Standard_: GNU Extension --- 5236,5249 ----  File: gfortran.info, Node: BACKTRACE, Next: BESSEL_J0, Prev: ATOMIC_REF, Up: Intrinsic Procedures ! 8.26 'BACKTRACE' -- Show a backtrace ==================================== _Description_: ! 'BACKTRACE' shows a backtrace at an arbitrary place in user code. ! Program execution continues normally afterwards. The backtrace ! information is printed to the unit corresponding to 'ERROR_UNIT' in ! 'ISO_FORTRAN_ENV'. _Standard_: GNU Extension *************** _Class_: *** 5308,5314 **** Subroutine _Syntax_: ! `CALL BACKTRACE' _Arguments_: None --- 5252,5258 ---- Subroutine _Syntax_: ! 'CALL BACKTRACE' _Arguments_: None *************** _See also_: *** 5319,5330 ****  File: gfortran.info, Node: BESSEL_J0, Next: BESSEL_J1, Prev: BACKTRACE, Up: Intrinsic Procedures ! 8.27 `BESSEL_J0' -- Bessel function of the first kind of order 0 ================================================================ _Description_: ! `BESSEL_J0(X)' computes the Bessel function of the first kind of ! order 0 of X. This function is available under the name `BESJ0' as a GNU extension. _Standard_: --- 5263,5274 ----  File: gfortran.info, Node: BESSEL_J0, Next: BESSEL_J1, Prev: BACKTRACE, Up: Intrinsic Procedures ! 8.27 'BESSEL_J0' -- Bessel function of the first kind of order 0 ================================================================ _Description_: ! 'BESSEL_J0(X)' computes the Bessel function of the first kind of ! order 0 of X. This function is available under the name 'BESJ0' as a GNU extension. _Standard_: *************** _Class_: *** 5334,5348 **** Elemental function _Syntax_: ! `RESULT = BESSEL_J0(X)' _Arguments_: ! X The type shall be `REAL', and it shall be ! scalar. _Return value_: ! The return value is of type `REAL' and lies in the range - ! 0.4027... \leq Bessel (0,x) \leq 1. It has the same kind as X. _Example_: program test_besj0 --- 5278,5292 ---- Elemental function _Syntax_: ! 'RESULT = BESSEL_J0(X)' _Arguments_: ! X The type shall be 'REAL', and it shall be ! scalar. _Return value_: ! The return value is of type 'REAL' and lies in the range - ! 0.4027... \leq Bessel (0,x) \leq 1. It has the same kind as X. _Example_: program test_besj0 *************** _Example_: *** 5351,5368 **** end program test_besj0 _Specific names_: ! Name Argument Return type Standard ! `DBESJ0(X)' `REAL(8) X' `REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_J1, Next: BESSEL_JN, Prev: BESSEL_J0, Up: Intrinsic Procedures ! 8.28 `BESSEL_J1' -- Bessel function of the first kind of order 1 ================================================================ _Description_: ! `BESSEL_J1(X)' computes the Bessel function of the first kind of ! order 1 of X. This function is available under the name `BESJ1' as a GNU extension. _Standard_: --- 5295,5312 ---- end program test_besj0 _Specific names_: ! Name Argument Return type Standard ! 'DBESJ0(X)' 'REAL(8) X' 'REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_J1, Next: BESSEL_JN, Prev: BESSEL_J0, Up: Intrinsic Procedures ! 8.28 'BESSEL_J1' -- Bessel function of the first kind of order 1 ================================================================ _Description_: ! 'BESSEL_J1(X)' computes the Bessel function of the first kind of ! order 1 of X. This function is available under the name 'BESJ1' as a GNU extension. _Standard_: *************** _Class_: *** 5372,5386 **** Elemental function _Syntax_: ! `RESULT = BESSEL_J1(X)' _Arguments_: ! X The type shall be `REAL', and it shall be ! scalar. _Return value_: ! The return value is of type `REAL' and it lies in the range - ! 0.5818... \leq Bessel (0,x) \leq 0.5818 . It has the same kind as X. _Example_: --- 5316,5330 ---- Elemental function _Syntax_: ! 'RESULT = BESSEL_J1(X)' _Arguments_: ! X The type shall be 'REAL', and it shall be ! scalar. _Return value_: ! The return value is of type 'REAL' and it lies in the range - ! 0.5818... \leq Bessel (0,x) \leq 0.5818 . It has the same kind as X. _Example_: *************** _Example_: *** 5390,5411 **** end program test_besj1 _Specific names_: ! Name Argument Return type Standard ! `DBESJ1(X)' `REAL(8) X' `REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_JN, Next: BESSEL_Y0, Prev: BESSEL_J1, Up: Intrinsic Procedures ! 8.29 `BESSEL_JN' -- Bessel function of the first kind ===================================================== _Description_: ! `BESSEL_JN(N, X)' computes the Bessel function of the first kind of ! order N of X. This function is available under the name `BESJN' as a GNU extension. If N and X are arrays, their ranks and shapes shall conform. ! `BESSEL_JN(N1, N2, X)' returns an array with the Bessel functions of the first kind of the orders N1 to N2. _Standard_: --- 5334,5355 ---- end program test_besj1 _Specific names_: ! Name Argument Return type Standard ! 'DBESJ1(X)' 'REAL(8) X' 'REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_JN, Next: BESSEL_Y0, Prev: BESSEL_J1, Up: Intrinsic Procedures ! 8.29 'BESSEL_JN' -- Bessel function of the first kind ===================================================== _Description_: ! 'BESSEL_JN(N, X)' computes the Bessel function of the first kind of ! order N of X. This function is available under the name 'BESJN' as a GNU extension. If N and X are arrays, their ranks and shapes shall conform. ! 'BESSEL_JN(N1, N2, X)' returns an array with the Bessel functions of the first kind of the orders N1 to N2. _Standard_: *************** _Standard_: *** 5413,5436 **** _Class_: Elemental function, except for the transformational function ! `BESSEL_JN(N1, N2, X)' _Syntax_: ! `RESULT = BESSEL_JN(N, X)' ! `RESULT = BESSEL_JN(N1, N2, X)' _Arguments_: ! N Shall be a scalar or an array of type ! `INTEGER'. ! N1 Shall be a non-negative scalar of type ! `INTEGER'. ! N2 Shall be a non-negative scalar of type ! `INTEGER'. ! X Shall be a scalar or an array of type `REAL'; ! for `BESSEL_JN(N1, N2, X)' it shall be scalar. _Return value_: ! The return value is a scalar of type `REAL'. It has the same kind as X. _Note_: --- 5357,5379 ---- _Class_: Elemental function, except for the transformational function ! 'BESSEL_JN(N1, N2, X)' _Syntax_: ! 'RESULT = BESSEL_JN(N, X)' ! 'RESULT = BESSEL_JN(N1, N2, X)' _Arguments_: ! N Shall be a scalar or an array of type 'INTEGER'. ! N1 Shall be a non-negative scalar of type ! 'INTEGER'. ! N2 Shall be a non-negative scalar of type ! 'INTEGER'. ! X Shall be a scalar or an array of type 'REAL'; ! for 'BESSEL_JN(N1, N2, X)' it shall be scalar. _Return value_: ! The return value is a scalar of type 'REAL'. It has the same kind as X. _Note_: *************** _Example_: *** 5445,5464 **** end program test_besjn _Specific names_: ! Name Argument Return type Standard ! `DBESJN(N, `INTEGER N' `REAL(8)' GNU extension ! X)' ! `REAL(8) X'  File: gfortran.info, Node: BESSEL_Y0, Next: BESSEL_Y1, Prev: BESSEL_JN, Up: Intrinsic Procedures ! 8.30 `BESSEL_Y0' -- Bessel function of the second kind of order 0 ================================================================= _Description_: ! `BESSEL_Y0(X)' computes the Bessel function of the second kind of ! order 0 of X. This function is available under the name `BESY0' as a GNU extension. _Standard_: --- 5388,5407 ---- end program test_besjn _Specific names_: ! Name Argument Return type Standard ! 'DBESJN(N, 'INTEGER N' 'REAL(8)' GNU extension ! X)' ! 'REAL(8) X'  File: gfortran.info, Node: BESSEL_Y0, Next: BESSEL_Y1, Prev: BESSEL_JN, Up: Intrinsic Procedures ! 8.30 'BESSEL_Y0' -- Bessel function of the second kind of order 0 ================================================================= _Description_: ! 'BESSEL_Y0(X)' computes the Bessel function of the second kind of ! order 0 of X. This function is available under the name 'BESY0' as a GNU extension. _Standard_: *************** _Class_: *** 5468,5481 **** Elemental function _Syntax_: ! `RESULT = BESSEL_Y0(X)' _Arguments_: ! X The type shall be `REAL', and it shall be ! scalar. _Return value_: ! The return value is a scalar of type `REAL'. It has the same kind as X. _Example_: --- 5411,5424 ---- Elemental function _Syntax_: ! 'RESULT = BESSEL_Y0(X)' _Arguments_: ! X The type shall be 'REAL', and it shall be ! scalar. _Return value_: ! The return value is a scalar of type 'REAL'. It has the same kind as X. _Example_: *************** _Example_: *** 5485,5502 **** end program test_besy0 _Specific names_: ! Name Argument Return type Standard ! `DBESY0(X)' `REAL(8) X' `REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_Y1, Next: BESSEL_YN, Prev: BESSEL_Y0, Up: Intrinsic Procedures ! 8.31 `BESSEL_Y1' -- Bessel function of the second kind of order 1 ================================================================= _Description_: ! `BESSEL_Y1(X)' computes the Bessel function of the second kind of ! order 1 of X. This function is available under the name `BESY1' as a GNU extension. _Standard_: --- 5428,5445 ---- end program test_besy0 _Specific names_: ! Name Argument Return type Standard ! 'DBESY0(X)' 'REAL(8) X' 'REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_Y1, Next: BESSEL_YN, Prev: BESSEL_Y0, Up: Intrinsic Procedures ! 8.31 'BESSEL_Y1' -- Bessel function of the second kind of order 1 ================================================================= _Description_: ! 'BESSEL_Y1(X)' computes the Bessel function of the second kind of ! order 1 of X. This function is available under the name 'BESY1' as a GNU extension. _Standard_: *************** _Class_: *** 5506,5519 **** Elemental function _Syntax_: ! `RESULT = BESSEL_Y1(X)' _Arguments_: ! X The type shall be `REAL', and it shall be ! scalar. _Return value_: ! The return value is a scalar of type `REAL'. It has the same kind as X. _Example_: --- 5449,5462 ---- Elemental function _Syntax_: ! 'RESULT = BESSEL_Y1(X)' _Arguments_: ! X The type shall be 'REAL', and it shall be ! scalar. _Return value_: ! The return value is a scalar of type 'REAL'. It has the same kind as X. _Example_: *************** _Example_: *** 5523,5544 **** end program test_besy1 _Specific names_: ! Name Argument Return type Standard ! `DBESY1(X)' `REAL(8) X' `REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_YN, Next: BGE, Prev: BESSEL_Y1, Up: Intrinsic Procedures ! 8.32 `BESSEL_YN' -- Bessel function of the second kind ====================================================== _Description_: ! `BESSEL_YN(N, X)' computes the Bessel function of the second kind ! of order N of X. This function is available under the name `BESYN' as a GNU extension. If N and X are arrays, their ranks and shapes shall conform. ! `BESSEL_YN(N1, N2, X)' returns an array with the Bessel functions of the first kind of the orders N1 to N2. _Standard_: --- 5466,5487 ---- end program test_besy1 _Specific names_: ! Name Argument Return type Standard ! 'DBESY1(X)' 'REAL(8) X' 'REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_YN, Next: BGE, Prev: BESSEL_Y1, Up: Intrinsic Procedures ! 8.32 'BESSEL_YN' -- Bessel function of the second kind ====================================================== _Description_: ! 'BESSEL_YN(N, X)' computes the Bessel function of the second kind ! of order N of X. This function is available under the name 'BESYN' as a GNU extension. If N and X are arrays, their ranks and shapes shall conform. ! 'BESSEL_YN(N1, N2, X)' returns an array with the Bessel functions of the first kind of the orders N1 to N2. _Standard_: *************** _Standard_: *** 5546,5569 **** _Class_: Elemental function, except for the transformational function ! `BESSEL_YN(N1, N2, X)' _Syntax_: ! `RESULT = BESSEL_YN(N, X)' ! `RESULT = BESSEL_YN(N1, N2, X)' _Arguments_: ! N Shall be a scalar or an array of type ! `INTEGER' . ! N1 Shall be a non-negative scalar of type ! `INTEGER'. ! N2 Shall be a non-negative scalar of type ! `INTEGER'. ! X Shall be a scalar or an array of type `REAL'; ! for `BESSEL_YN(N1, N2, X)' it shall be scalar. _Return value_: ! The return value is a scalar of type `REAL'. It has the same kind as X. _Note_: --- 5489,5512 ---- _Class_: Elemental function, except for the transformational function ! 'BESSEL_YN(N1, N2, X)' _Syntax_: ! 'RESULT = BESSEL_YN(N, X)' ! 'RESULT = BESSEL_YN(N1, N2, X)' _Arguments_: ! N Shall be a scalar or an array of type 'INTEGER' ! . ! N1 Shall be a non-negative scalar of type ! 'INTEGER'. ! N2 Shall be a non-negative scalar of type ! 'INTEGER'. ! X Shall be a scalar or an array of type 'REAL'; ! for 'BESSEL_YN(N1, N2, X)' it shall be scalar. _Return value_: ! The return value is a scalar of type 'REAL'. It has the same kind as X. _Note_: *************** _Example_: *** 5578,5591 **** end program test_besyn _Specific names_: ! Name Argument Return type Standard ! `DBESYN(N,X)' `INTEGER N' `REAL(8)' GNU extension ! `REAL(8) X'  File: gfortran.info, Node: BGE, Next: BGT, Prev: BESSEL_YN, Up: Intrinsic Procedures ! 8.33 `BGE' -- Bitwise greater than or equal to ============================================== _Description_: --- 5521,5534 ---- end program test_besyn _Specific names_: ! Name Argument Return type Standard ! 'DBESYN(N,X)' 'INTEGER N' 'REAL(8)' GNU extension ! 'REAL(8) X'  File: gfortran.info, Node: BGE, Next: BGT, Prev: BESSEL_YN, Up: Intrinsic Procedures ! 8.33 'BGE' -- Bitwise greater than or equal to ============================================== _Description_: *************** _Class_: *** 5599,5613 **** Elemental function _Syntax_: ! `RESULT = BGE(I, J)' _Arguments_: ! I Shall be of `INTEGER' type. ! J Shall be of `INTEGER' type, and of the same ! kind as I. _Return value_: ! The return value is of type `LOGICAL' and of the default kind. _See also_: *note BGT::, *note BLE::, *note BLT:: --- 5542,5556 ---- Elemental function _Syntax_: ! 'RESULT = BGE(I, J)' _Arguments_: ! I Shall be of 'INTEGER' type. ! J Shall be of 'INTEGER' type, and of the same kind ! as I. _Return value_: ! The return value is of type 'LOGICAL' and of the default kind. _See also_: *note BGT::, *note BLE::, *note BLT:: *************** _See also_: *** 5615,5621 ****  File: gfortran.info, Node: BGT, Next: BIT_SIZE, Prev: BGE, Up: Intrinsic Procedures ! 8.34 `BGT' -- Bitwise greater than ================================== _Description_: --- 5558,5564 ----  File: gfortran.info, Node: BGT, Next: BIT_SIZE, Prev: BGE, Up: Intrinsic Procedures ! 8.34 'BGT' -- Bitwise greater than ================================== _Description_: *************** _Class_: *** 5628,5642 **** Elemental function _Syntax_: ! `RESULT = BGT(I, J)' _Arguments_: ! I Shall be of `INTEGER' type. ! J Shall be of `INTEGER' type, and of the same ! kind as I. _Return value_: ! The return value is of type `LOGICAL' and of the default kind. _See also_: *note BGE::, *note BLE::, *note BLT:: --- 5571,5585 ---- Elemental function _Syntax_: ! 'RESULT = BGT(I, J)' _Arguments_: ! I Shall be of 'INTEGER' type. ! J Shall be of 'INTEGER' type, and of the same kind ! as I. _Return value_: ! The return value is of type 'LOGICAL' and of the default kind. _See also_: *note BGE::, *note BLE::, *note BLT:: *************** _See also_: *** 5644,5656 ****  File: gfortran.info, Node: BIT_SIZE, Next: BLE, Prev: BGT, Up: Intrinsic Procedures ! 8.35 `BIT_SIZE' -- Bit size inquiry function ============================================ _Description_: ! `BIT_SIZE(I)' returns the number of bits (integer precision plus sign bit) represented by the type of I. The result of ! `BIT_SIZE(I)' is independent of the actual value of I. _Standard_: Fortran 95 and later --- 5587,5599 ----  File: gfortran.info, Node: BIT_SIZE, Next: BLE, Prev: BGT, Up: Intrinsic Procedures ! 8.35 'BIT_SIZE' -- Bit size inquiry function ============================================ _Description_: ! 'BIT_SIZE(I)' returns the number of bits (integer precision plus sign bit) represented by the type of I. The result of ! 'BIT_SIZE(I)' is independent of the actual value of I. _Standard_: Fortran 95 and later *************** _Class_: *** 5659,5671 **** Inquiry function _Syntax_: ! `RESULT = BIT_SIZE(I)' _Arguments_: ! I The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' _Example_: program test_bit_size --- 5602,5614 ---- Inquiry function _Syntax_: ! 'RESULT = BIT_SIZE(I)' _Arguments_: ! I The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' _Example_: program test_bit_size *************** _Example_: *** 5678,5684 ****  File: gfortran.info, Node: BLE, Next: BLT, Prev: BIT_SIZE, Up: Intrinsic Procedures ! 8.36 `BLE' -- Bitwise less than or equal to =========================================== _Description_: --- 5621,5627 ----  File: gfortran.info, Node: BLE, Next: BLT, Prev: BIT_SIZE, Up: Intrinsic Procedures ! 8.36 'BLE' -- Bitwise less than or equal to =========================================== _Description_: *************** _Class_: *** 5692,5706 **** Elemental function _Syntax_: ! `RESULT = BLE(I, J)' _Arguments_: ! I Shall be of `INTEGER' type. ! J Shall be of `INTEGER' type, and of the same ! kind as I. _Return value_: ! The return value is of type `LOGICAL' and of the default kind. _See also_: *note BGT::, *note BGE::, *note BLT:: --- 5635,5649 ---- Elemental function _Syntax_: ! 'RESULT = BLE(I, J)' _Arguments_: ! I Shall be of 'INTEGER' type. ! J Shall be of 'INTEGER' type, and of the same kind ! as I. _Return value_: ! The return value is of type 'LOGICAL' and of the default kind. _See also_: *note BGT::, *note BGE::, *note BLT:: *************** _See also_: *** 5708,5714 ****  File: gfortran.info, Node: BLT, Next: BTEST, Prev: BLE, Up: Intrinsic Procedures ! 8.37 `BLT' -- Bitwise less than =============================== _Description_: --- 5651,5657 ----  File: gfortran.info, Node: BLT, Next: BTEST, Prev: BLE, Up: Intrinsic Procedures ! 8.37 'BLT' -- Bitwise less than =============================== _Description_: *************** _Class_: *** 5721,5735 **** Elemental function _Syntax_: ! `RESULT = BLT(I, J)' _Arguments_: ! I Shall be of `INTEGER' type. ! J Shall be of `INTEGER' type, and of the same ! kind as I. _Return value_: ! The return value is of type `LOGICAL' and of the default kind. _See also_: *note BGE::, *note BGT::, *note BLE:: --- 5664,5678 ---- Elemental function _Syntax_: ! 'RESULT = BLT(I, J)' _Arguments_: ! I Shall be of 'INTEGER' type. ! J Shall be of 'INTEGER' type, and of the same kind ! as I. _Return value_: ! The return value is of type 'LOGICAL' and of the default kind. _See also_: *note BGE::, *note BGT::, *note BLE:: *************** _See also_: *** 5737,5747 ****  File: gfortran.info, Node: BTEST, Next: C_ASSOCIATED, Prev: BLT, Up: Intrinsic Procedures ! 8.38 `BTEST' -- Bit test function ================================= _Description_: ! `BTEST(I,POS)' returns logical `.TRUE.' if the bit at POS in I is set. The counting of the bits starts at 0. _Standard_: --- 5680,5690 ----  File: gfortran.info, Node: BTEST, Next: C_ASSOCIATED, Prev: BLT, Up: Intrinsic Procedures ! 8.38 'BTEST' -- Bit test function ================================= _Description_: ! 'BTEST(I,POS)' returns logical '.TRUE.' if the bit at POS in I is set. The counting of the bits starts at 0. _Standard_: *************** _Class_: *** 5751,5764 **** Elemental function _Syntax_: ! `RESULT = BTEST(I, POS)' _Arguments_: ! I The type shall be `INTEGER'. ! POS The type shall be `INTEGER'. _Return value_: ! The return value is of type `LOGICAL' _Example_: program test_btest --- 5694,5707 ---- Elemental function _Syntax_: ! 'RESULT = BTEST(I, POS)' _Arguments_: ! I The type shall be 'INTEGER'. ! POS The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'LOGICAL' _Example_: program test_btest *************** _Example_: *** 5774,5784 ****  File: gfortran.info, Node: C_ASSOCIATED, Next: C_F_POINTER, Prev: BTEST, Up: Intrinsic Procedures ! 8.39 `C_ASSOCIATED' -- Status of a C pointer ============================================ _Description_: ! `C_ASSOCIATED(c_prt_1[, c_ptr_2])' determines the status of the C pointer C_PTR_1 or if C_PTR_1 is associated with the target C_PTR_2. --- 5717,5727 ----  File: gfortran.info, Node: C_ASSOCIATED, Next: C_F_POINTER, Prev: BTEST, Up: Intrinsic Procedures ! 8.39 'C_ASSOCIATED' -- Status of a C pointer ============================================ _Description_: ! 'C_ASSOCIATED(c_prt_1[, c_ptr_2])' determines the status of the C pointer C_PTR_1 or if C_PTR_1 is associated with the target C_PTR_2. *************** _Class_: *** 5789,5802 **** Inquiry function _Syntax_: ! `RESULT = C_ASSOCIATED(c_prt_1[, c_ptr_2])' _Arguments_: ! C_PTR_1 Scalar of the type `C_PTR' or `C_FUNPTR'. ! C_PTR_2 (Optional) Scalar of the same type as C_PTR_1. _Return value_: ! The return value is of type `LOGICAL'; it is `.false.' if either C_PTR_1 is a C NULL pointer or if C_PTR1 and C_PTR_2 point to different addresses. --- 5732,5745 ---- Inquiry function _Syntax_: ! 'RESULT = C_ASSOCIATED(c_prt_1[, c_ptr_2])' _Arguments_: ! C_PTR_1 Scalar of the type 'C_PTR' or 'C_FUNPTR'. ! C_PTR_2 (Optional) Scalar of the same type as C_PTR_1. _Return value_: ! The return value is of type 'LOGICAL'; it is '.false.' if either C_PTR_1 is a C NULL pointer or if C_PTR1 and C_PTR_2 point to different addresses. *************** _See also_: *** 5816,5826 ****  File: gfortran.info, Node: C_F_POINTER, Next: C_F_PROCPOINTER, Prev: C_ASSOCIATED, Up: Intrinsic Procedures ! 8.40 `C_F_POINTER' -- Convert C into Fortran pointer ==================================================== _Description_: ! `C_F_POINTER(CPTR, FPTR[, SHAPE])' assigns the target of the C pointer CPTR to the Fortran pointer FPTR and specifies its shape. _Standard_: --- 5759,5769 ----  File: gfortran.info, Node: C_F_POINTER, Next: C_F_PROCPOINTER, Prev: C_ASSOCIATED, Up: Intrinsic Procedures ! 8.40 'C_F_POINTER' -- Convert C into Fortran pointer ==================================================== _Description_: ! 'C_F_POINTER(CPTR, FPTR[, SHAPE])' assigns the target of the C pointer CPTR to the Fortran pointer FPTR and specifies its shape. _Standard_: *************** _Class_: *** 5830,5845 **** Subroutine _Syntax_: ! `CALL C_F_POINTER(CPTR, FPTR[, SHAPE])' _Arguments_: ! CPTR scalar of the type `C_PTR'. It is `INTENT(IN)'. ! FPTR pointer interoperable with CPTR. It is ! `INTENT(OUT)'. ! SHAPE (Optional) Rank-one array of type `INTEGER' ! with `INTENT(IN)'. It shall be present if and ! only if FPTR is an array. The size must be ! equal to the rank of FPTR. _Example_: program main --- 5773,5788 ---- Subroutine _Syntax_: ! 'CALL C_F_POINTER(CPTR, FPTR[, SHAPE])' _Arguments_: ! CPTR scalar of the type 'C_PTR'. It is 'INTENT(IN)'. ! FPTR pointer interoperable with CPTR. It is ! 'INTENT(OUT)'. ! SHAPE (Optional) Rank-one array of type 'INTEGER' with ! 'INTENT(IN)'. It shall be present if and only ! if FPTR is an array. The size must be equal to ! the rank of FPTR. _Example_: program main *************** _See also_: *** 5863,5873 ****  File: gfortran.info, Node: C_F_PROCPOINTER, Next: C_FUNLOC, Prev: C_F_POINTER, Up: Intrinsic Procedures ! 8.41 `C_F_PROCPOINTER' -- Convert C into Fortran procedure pointer ================================================================== _Description_: ! `C_F_PROCPOINTER(CPTR, FPTR)' Assign the target of the C function pointer CPTR to the Fortran procedure pointer FPTR. _Standard_: --- 5806,5816 ----  File: gfortran.info, Node: C_F_PROCPOINTER, Next: C_FUNLOC, Prev: C_F_POINTER, Up: Intrinsic Procedures ! 8.41 'C_F_PROCPOINTER' -- Convert C into Fortran procedure pointer ================================================================== _Description_: ! 'C_F_PROCPOINTER(CPTR, FPTR)' Assign the target of the C function pointer CPTR to the Fortran procedure pointer FPTR. _Standard_: *************** _Class_: *** 5877,5889 **** Subroutine _Syntax_: ! `CALL C_F_PROCPOINTER(cptr, fptr)' _Arguments_: ! CPTR scalar of the type `C_FUNPTR'. It is ! `INTENT(IN)'. ! FPTR procedure pointer interoperable with CPTR. It ! is `INTENT(OUT)'. _Example_: program main --- 5820,5832 ---- Subroutine _Syntax_: ! 'CALL C_F_PROCPOINTER(cptr, fptr)' _Arguments_: ! CPTR scalar of the type 'C_FUNPTR'. It is ! 'INTENT(IN)'. ! FPTR procedure pointer interoperable with CPTR. It ! is 'INTENT(OUT)'. _Example_: program main *************** _See also_: *** 5914,5924 ****  File: gfortran.info, Node: C_FUNLOC, Next: C_LOC, Prev: C_F_PROCPOINTER, Up: Intrinsic Procedures ! 8.42 `C_FUNLOC' -- Obtain the C address of a procedure ====================================================== _Description_: ! `C_FUNLOC(x)' determines the C address of the argument. _Standard_: Fortran 2003 and later --- 5857,5867 ----  File: gfortran.info, Node: C_FUNLOC, Next: C_LOC, Prev: C_F_PROCPOINTER, Up: Intrinsic Procedures ! 8.42 'C_FUNLOC' -- Obtain the C address of a procedure ====================================================== _Description_: ! 'C_FUNLOC(x)' determines the C address of the argument. _Standard_: Fortran 2003 and later *************** _Class_: *** 5927,5940 **** Inquiry function _Syntax_: ! `RESULT = C_FUNLOC(x)' _Arguments_: ! X Interoperable function or pointer to such ! function. _Return value_: ! The return value is of type `C_FUNPTR' and contains the C address of the argument. _Example_: --- 5870,5883 ---- Inquiry function _Syntax_: ! 'RESULT = C_FUNLOC(x)' _Arguments_: ! X Interoperable function or pointer to such ! function. _Return value_: ! The return value is of type 'C_FUNPTR' and contains the C address of the argument. _Example_: *************** _See also_: *** 5967,5977 ****  File: gfortran.info, Node: C_LOC, Next: C_SIZEOF, Prev: C_FUNLOC, Up: Intrinsic Procedures ! 8.43 `C_LOC' -- Obtain the C address of an object ================================================= _Description_: ! `C_LOC(X)' determines the C address of the argument. _Standard_: Fortran 2003 and later --- 5910,5920 ----  File: gfortran.info, Node: C_LOC, Next: C_SIZEOF, Prev: C_FUNLOC, Up: Intrinsic Procedures ! 8.43 'C_LOC' -- Obtain the C address of an object ================================================= _Description_: ! 'C_LOC(X)' determines the C address of the argument. _Standard_: Fortran 2003 and later *************** _Class_: *** 5980,5997 **** Inquiry function _Syntax_: ! `RESULT = C_LOC(X)' _Arguments_: ! X Shall have either the POINTER or TARGET ! attribute. It shall not be a coindexed object. It ! shall either be a variable with interoperable ! type and kind type parameters, or be a scalar, ! nonpolymorphic variable with no length type ! parameters. _Return value_: ! The return value is of type `C_PTR' and contains the C address of the argument. _Example_: --- 5923,5940 ---- Inquiry function _Syntax_: ! 'RESULT = C_LOC(X)' _Arguments_: ! X Shall have either the POINTER or TARGET attribute. ! It shall not be a coindexed object. It shall either ! be a variable with interoperable type and kind type ! parameters, or be a scalar, nonpolymorphic variable ! with no length type parameters. ! _Return value_: ! The return value is of type 'C_PTR' and contains the C address of the argument. _Example_: *************** _See also_: *** 6011,6043 ****  File: gfortran.info, Node: C_SIZEOF, Next: CEILING, Prev: C_LOC, Up: Intrinsic Procedures ! 8.44 `C_SIZEOF' -- Size in bytes of an expression ================================================= _Description_: ! `C_SIZEOF(X)' calculates the number of bytes of storage the ! expression `X' occupies. _Standard_: Fortran 2008 _Class_: ! Inquiry function of the module `ISO_C_BINDING' _Syntax_: ! `N = C_SIZEOF(X)' _Arguments_: ! X The argument shall be an interoperable data ! entity. _Return value_: The return value is of type integer and of the system-dependent ! kind `C_SIZE_T' (from the `ISO_C_BINDING' module). Its value is the ! number of bytes occupied by the argument. If the argument has the ! `POINTER' attribute, the number of bytes of the storage area pointed to is returned. If the argument is of a derived type with ! `POINTER' or `ALLOCATABLE' components, the return value does not account for the sizes of the data pointed to by these components. _Example_: --- 5954,5986 ----  File: gfortran.info, Node: C_SIZEOF, Next: CEILING, Prev: C_LOC, Up: Intrinsic Procedures ! 8.44 'C_SIZEOF' -- Size in bytes of an expression ================================================= _Description_: ! 'C_SIZEOF(X)' calculates the number of bytes of storage the ! expression 'X' occupies. _Standard_: Fortran 2008 _Class_: ! Inquiry function of the module 'ISO_C_BINDING' _Syntax_: ! 'N = C_SIZEOF(X)' _Arguments_: ! X The argument shall be an interoperable data ! entity. _Return value_: The return value is of type integer and of the system-dependent ! kind 'C_SIZE_T' (from the 'ISO_C_BINDING' module). Its value is ! the number of bytes occupied by the argument. If the argument has ! the 'POINTER' attribute, the number of bytes of the storage area pointed to is returned. If the argument is of a derived type with ! 'POINTER' or 'ALLOCATABLE' components, the return value does not account for the sizes of the data pointed to by these components. _Example_: *************** _Example_: *** 6046,6053 **** real(c_float) :: r, s(5) print *, (c_sizeof(s)/c_sizeof(r) == 5) end ! The example will print `.TRUE.' unless you are using a platform ! where default `REAL' variables are unusually padded. _See also_: *note SIZEOF::, *note STORAGE_SIZE:: --- 5989,5996 ---- real(c_float) :: r, s(5) print *, (c_sizeof(s)/c_sizeof(r) == 5) end ! The example will print '.TRUE.' unless you are using a platform ! where default 'REAL' variables are unusually padded. _See also_: *note SIZEOF::, *note STORAGE_SIZE:: *************** _See also_: *** 6055,6065 ****  File: gfortran.info, Node: CEILING, Next: CHAR, Prev: C_SIZEOF, Up: Intrinsic Procedures ! 8.45 `CEILING' -- Integer ceiling function ========================================== _Description_: ! `CEILING(A)' returns the least integer greater than or equal to A. _Standard_: Fortran 95 and later --- 5998,6008 ----  File: gfortran.info, Node: CEILING, Next: CHAR, Prev: C_SIZEOF, Up: Intrinsic Procedures ! 8.45 'CEILING' -- Integer ceiling function ========================================== _Description_: ! 'CEILING(A)' returns the least integer greater than or equal to A. _Standard_: Fortran 95 and later *************** _Class_: *** 6068,6084 **** Elemental function _Syntax_: ! `RESULT = CEILING(A [, KIND])' _Arguments_: ! A The type shall be `REAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER(KIND)' if KIND is present and ! a default-kind `INTEGER' otherwise. _Example_: program test_ceiling --- 6011,6027 ---- Elemental function _Syntax_: ! 'RESULT = CEILING(A [, KIND])' _Arguments_: ! A The type shall be 'REAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER(KIND)' if KIND is present and ! a default-kind 'INTEGER' otherwise. _Example_: program test_ceiling *************** _Example_: *** 6091,6106 **** _See also_: *note FLOOR::, *note NINT:: -  File: gfortran.info, Node: CHAR, Next: CHDIR, Prev: CEILING, Up: Intrinsic Procedures ! 8.46 `CHAR' -- Character conversion function ============================================ _Description_: ! `CHAR(I [, KIND])' returns the character represented by the ! integer I. _Standard_: Fortran 77 and later --- 6034,6048 ---- _See also_: *note FLOOR::, *note NINT::  File: gfortran.info, Node: CHAR, Next: CHDIR, Prev: CEILING, Up: Intrinsic Procedures ! 8.46 'CHAR' -- Character conversion function ============================================ _Description_: ! 'CHAR(I [, KIND])' returns the character represented by the integer ! I. _Standard_: Fortran 77 and later *************** _Class_: *** 6109,6124 **** Elemental function _Syntax_: ! `RESULT = CHAR(I [, KIND])' _Arguments_: ! I The type shall be `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `CHARACTER(1)' _Example_: program test_char --- 6051,6066 ---- Elemental function _Syntax_: ! 'RESULT = CHAR(I [, KIND])' _Arguments_: ! I The type shall be 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'CHARACTER(1)' _Example_: program test_char *************** _Example_: *** 6129,6136 **** end program test_char _Specific names_: ! Name Argument Return type Standard ! `CHAR(I)' `INTEGER I' `CHARACTER(LEN=1)'F77 and later _Note_: See *note ICHAR:: for a discussion of converting between numerical --- 6071,6078 ---- end program test_char _Specific names_: ! Name Argument Return type Standard ! 'CHAR(I)' 'INTEGER I' 'CHARACTER(LEN=1)'F77 and later _Note_: See *note ICHAR:: for a discussion of converting between numerical *************** _Note_: *** 6139,6149 **** _See also_: *note ACHAR::, *note IACHAR::, *note ICHAR:: -  File: gfortran.info, Node: CHDIR, Next: CHMOD, Prev: CHAR, Up: Intrinsic Procedures ! 8.47 `CHDIR' -- Change working directory ======================================== _Description_: --- 6081,6090 ---- _See also_: *note ACHAR::, *note IACHAR::, *note ICHAR::  File: gfortran.info, Node: CHDIR, Next: CHMOD, Prev: CHAR, Up: Intrinsic Procedures ! 8.47 'CHDIR' -- Change working directory ======================================== _Description_: *************** _Class_: *** 6159,6174 **** Subroutine, function _Syntax_: ! `CALL CHDIR(NAME [, STATUS])' ! `STATUS = CHDIR(NAME)' _Arguments_: ! NAME The type shall be `CHARACTER' of default kind ! and shall specify a valid path within the file ! system. ! STATUS (Optional) `INTEGER' status flag of the default ! kind. Returns 0 on success, and a system ! specific and nonzero error code otherwise. _Example_: PROGRAM test_chdir --- 6100,6115 ---- Subroutine, function _Syntax_: ! 'CALL CHDIR(NAME [, STATUS])' ! 'STATUS = CHDIR(NAME)' _Arguments_: ! NAME The type shall be 'CHARACTER' of default kind ! and shall specify a valid path within the file ! system. ! STATUS (Optional) 'INTEGER' status flag of the default ! kind. Returns 0 on success, and a system ! specific and nonzero error code otherwise. _Example_: PROGRAM test_chdir *************** _See also_: *** 6186,6196 ****  File: gfortran.info, Node: CHMOD, Next: CMPLX, Prev: CHDIR, Up: Intrinsic Procedures ! 8.48 `CHMOD' -- Change access permissions of files ================================================== _Description_: ! `CHMOD' changes the permissions of a file. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 6127,6137 ----  File: gfortran.info, Node: CHMOD, Next: CMPLX, Prev: CHDIR, Up: Intrinsic Procedures ! 8.48 'CHMOD' -- Change access permissions of files ================================================== _Description_: ! 'CHMOD' changes the permissions of a file. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 6202,6238 **** Subroutine, function _Syntax_: ! `CALL CHMOD(NAME, MODE[, STATUS])' ! `STATUS = CHMOD(NAME, MODE)' _Arguments_: ! NAME Scalar `CHARACTER' of default kind with the ! file name. Trailing blanks are ignored unless ! the character `achar(0)' is present, then all ! characters up to and excluding `achar(0)' are ! used as the file name. ! MODE Scalar `CHARACTER' of default kind giving the ! file permission. MODE uses the same syntax as ! the `chmod' utility as defined by the POSIX ! standard. The argument shall either be a ! string of a nonnegative octal number or a ! symbolic mode. ! STATUS (optional) scalar `INTEGER', which is `0' on ! success and nonzero otherwise. _Return value_: ! In either syntax, STATUS is set to `0' on success and nonzero otherwise. _Example_: ! `CHMOD' as subroutine program chmod_test implicit none integer :: status call chmod('test.dat','u+x',status) print *, 'Status: ', status end program chmod_test ! `CHMOD' as function: program chmod_test implicit none integer :: status --- 6143,6182 ---- Subroutine, function _Syntax_: ! 'CALL CHMOD(NAME, MODE[, STATUS])' ! 'STATUS = CHMOD(NAME, MODE)' _Arguments_: ! ! NAME Scalar 'CHARACTER' of default kind with the file ! name. Trailing blanks are ignored unless the ! character 'achar(0)' is present, then all ! characters up to and excluding 'achar(0)' are ! used as the file name. ! ! MODE Scalar 'CHARACTER' of default kind giving the ! file permission. MODE uses the same syntax as ! the 'chmod' utility as defined by the POSIX ! standard. The argument shall either be a string ! of a nonnegative octal number or a symbolic ! mode. ! ! STATUS (optional) scalar 'INTEGER', which is '0' on ! success and nonzero otherwise. _Return value_: ! In either syntax, STATUS is set to '0' on success and nonzero otherwise. _Example_: ! 'CHMOD' as subroutine program chmod_test implicit none integer :: status call chmod('test.dat','u+x',status) print *, 'Status: ', status end program chmod_test ! 'CHMOD' as function: program chmod_test implicit none integer :: status *************** _Example_: *** 6240,6258 **** print *, 'Status: ', status end program chmod_test -  File: gfortran.info, Node: CMPLX, Next: COMMAND_ARGUMENT_COUNT, Prev: CHMOD, Up: Intrinsic Procedures ! 8.49 `CMPLX' -- Complex conversion function =========================================== _Description_: ! `CMPLX(X [, Y [, KIND]])' returns a complex number where X is converted to the real component. If Y is present it is converted ! to the imaginary component. If Y is not present then the ! imaginary component is set to 0.0. If X is complex then Y must ! not be present. _Standard_: Fortran 77 and later --- 6184,6201 ---- print *, 'Status: ', status end program chmod_test  File: gfortran.info, Node: CMPLX, Next: COMMAND_ARGUMENT_COUNT, Prev: CHMOD, Up: Intrinsic Procedures ! 8.49 'CMPLX' -- Complex conversion function =========================================== _Description_: ! 'CMPLX(X [, Y [, KIND]])' returns a complex number where X is converted to the real component. If Y is present it is converted ! to the imaginary component. If Y is not present then the imaginary ! component is set to 0.0. If X is complex then Y must not be ! present. _Standard_: Fortran 77 and later *************** _Class_: *** 6261,6281 **** Elemental function _Syntax_: ! `RESULT = CMPLX(X [, Y [, KIND]])' _Arguments_: ! X The type may be `INTEGER', `REAL', or ! `COMPLEX'. ! Y (Optional; only allowed if X is not ! `COMPLEX'.) May be `INTEGER' or `REAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of `COMPLEX' type, with a kind equal to KIND ! if it is specified. If KIND is not specified, the result is of ! the default `COMPLEX' kind, regardless of the kinds of X and Y. _Example_: program test_cmplx --- 6204,6223 ---- Elemental function _Syntax_: ! 'RESULT = CMPLX(X [, Y [, KIND]])' _Arguments_: ! X The type may be 'INTEGER', 'REAL', or 'COMPLEX'. ! Y (Optional; only allowed if X is not 'COMPLEX'.) ! May be 'INTEGER' or 'REAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of 'COMPLEX' type, with a kind equal to KIND if ! it is specified. If KIND is not specified, the result is of the ! default 'COMPLEX' kind, regardless of the kinds of X and Y. _Example_: program test_cmplx *************** _See also_: *** 6292,6302 ****  File: gfortran.info, Node: COMMAND_ARGUMENT_COUNT, Next: COMPILER_OPTIONS, Prev: CMPLX, Up: Intrinsic Procedures ! 8.50 `COMMAND_ARGUMENT_COUNT' -- Get number of command line arguments ===================================================================== _Description_: ! `COMMAND_ARGUMENT_COUNT' returns the number of arguments passed on the command line when the containing program was invoked. _Standard_: --- 6234,6244 ----  File: gfortran.info, Node: COMMAND_ARGUMENT_COUNT, Next: COMPILER_OPTIONS, Prev: CMPLX, Up: Intrinsic Procedures ! 8.50 'COMMAND_ARGUMENT_COUNT' -- Get number of command line arguments ===================================================================== _Description_: ! 'COMMAND_ARGUMENT_COUNT' returns the number of arguments passed on the command line when the containing program was invoked. _Standard_: *************** _Class_: *** 6306,6318 **** Inquiry function _Syntax_: ! `RESULT = COMMAND_ARGUMENT_COUNT()' _Arguments_: ! None _Return value_: ! The return value is an `INTEGER' of default kind. _Example_: program test_command_argument_count --- 6248,6260 ---- Inquiry function _Syntax_: ! 'RESULT = COMMAND_ARGUMENT_COUNT()' _Arguments_: ! None _Return value_: ! The return value is an 'INTEGER' of default kind. _Example_: program test_command_argument_count *************** _See also_: *** 6327,6347 ****  File: gfortran.info, Node: COMPILER_OPTIONS, Next: COMPILER_VERSION, Prev: COMMAND_ARGUMENT_COUNT, Up: Intrinsic Procedures ! 8.51 `COMPILER_OPTIONS' -- Options passed to the compiler ========================================================= _Description_: ! `COMPILER_OPTIONS' returns a string with the options used for compiling. _Standard_: Fortran 2008 _Class_: ! Inquiry function of the module `ISO_FORTRAN_ENV' _Syntax_: ! `STR = COMPILER_OPTIONS()' _Arguments_: None. --- 6269,6289 ----  File: gfortran.info, Node: COMPILER_OPTIONS, Next: COMPILER_VERSION, Prev: COMMAND_ARGUMENT_COUNT, Up: Intrinsic Procedures ! 8.51 'COMPILER_OPTIONS' -- Options passed to the compiler ========================================================= _Description_: ! 'COMPILER_OPTIONS' returns a string with the options used for compiling. _Standard_: Fortran 2008 _Class_: ! Inquiry function of the module 'ISO_FORTRAN_ENV' _Syntax_: ! 'STR = COMPILER_OPTIONS()' _Arguments_: None. *************** _Arguments_: *** 6349,6355 **** _Return value_: The return value is a default-kind string with system-dependent length. It contains the compiler flags used to compile the file, ! which called the `COMPILER_OPTIONS' intrinsic. _Example_: use iso_fortran_env --- 6291,6297 ---- _Return value_: The return value is a default-kind string with system-dependent length. It contains the compiler flags used to compile the file, ! which called the 'COMPILER_OPTIONS' intrinsic. _Example_: use iso_fortran_env *************** _See also_: *** 6364,6384 ****  File: gfortran.info, Node: COMPILER_VERSION, Next: COMPLEX, Prev: COMPILER_OPTIONS, Up: Intrinsic Procedures ! 8.52 `COMPILER_VERSION' -- Compiler version string ================================================== _Description_: ! `COMPILER_VERSION' returns a string with the name and the version of the compiler. _Standard_: Fortran 2008 _Class_: ! Inquiry function of the module `ISO_FORTRAN_ENV' _Syntax_: ! `STR = COMPILER_VERSION()' _Arguments_: None. --- 6306,6326 ----  File: gfortran.info, Node: COMPILER_VERSION, Next: COMPLEX, Prev: COMPILER_OPTIONS, Up: Intrinsic Procedures ! 8.52 'COMPILER_VERSION' -- Compiler version string ================================================== _Description_: ! 'COMPILER_VERSION' returns a string with the name and the version of the compiler. _Standard_: Fortran 2008 _Class_: ! Inquiry function of the module 'ISO_FORTRAN_ENV' _Syntax_: ! 'STR = COMPILER_VERSION()' _Arguments_: None. *************** _See also_: *** 6401,6411 ****  File: gfortran.info, Node: COMPLEX, Next: CONJG, Prev: COMPILER_VERSION, Up: Intrinsic Procedures ! 8.53 `COMPLEX' -- Complex conversion function ============================================= _Description_: ! `COMPLEX(X, Y)' returns a complex number where X is converted to the real component and Y is converted to the imaginary component. _Standard_: --- 6343,6353 ----  File: gfortran.info, Node: COMPLEX, Next: CONJG, Prev: COMPILER_VERSION, Up: Intrinsic Procedures ! 8.53 'COMPLEX' -- Complex conversion function ============================================= _Description_: ! 'COMPLEX(X, Y)' returns a complex number where X is converted to the real component and Y is converted to the imaginary component. _Standard_: *************** _Class_: *** 6415,6433 **** Elemental function _Syntax_: ! `RESULT = COMPLEX(X, Y)' _Arguments_: ! X The type may be `INTEGER' or `REAL'. ! Y The type may be `INTEGER' or `REAL'. _Return value_: ! If X and Y are both of `INTEGER' type, then the return value is of ! default `COMPLEX' type. ! If X and Y are of `REAL' type, or one is of `REAL' type and one is ! of `INTEGER' type, then the return value is of `COMPLEX' type with ! a kind equal to that of the `REAL' argument with the highest precision. _Example_: --- 6357,6375 ---- Elemental function _Syntax_: ! 'RESULT = COMPLEX(X, Y)' _Arguments_: ! X The type may be 'INTEGER' or 'REAL'. ! Y The type may be 'INTEGER' or 'REAL'. _Return value_: ! If X and Y are both of 'INTEGER' type, then the return value is of ! default 'COMPLEX' type. ! If X and Y are of 'REAL' type, or one is of 'REAL' type and one is ! of 'INTEGER' type, then the return value is of 'COMPLEX' type with ! a kind equal to that of the 'REAL' argument with the highest precision. _Example_: *************** _See also_: *** 6443,6454 ****  File: gfortran.info, Node: CONJG, Next: COS, Prev: COMPLEX, Up: Intrinsic Procedures ! 8.54 `CONJG' -- Complex conjugate function ========================================== _Description_: ! `CONJG(Z)' returns the conjugate of Z. If Z is `(x, y)' then the ! result is `(x, -y)' _Standard_: Fortran 77 and later, has overloads that are GNU extensions --- 6385,6396 ----  File: gfortran.info, Node: CONJG, Next: COS, Prev: COMPLEX, Up: Intrinsic Procedures ! 8.54 'CONJG' -- Complex conjugate function ========================================== _Description_: ! 'CONJG(Z)' returns the conjugate of Z. If Z is '(x, y)' then the ! result is '(x, -y)' _Standard_: Fortran 77 and later, has overloads that are GNU extensions *************** _Class_: *** 6457,6469 **** Elemental function _Syntax_: ! `Z = CONJG(Z)' _Arguments_: ! Z The type shall be `COMPLEX'. _Return value_: ! The return value is of type `COMPLEX'. _Example_: program test_conjg --- 6399,6411 ---- Elemental function _Syntax_: ! 'Z = CONJG(Z)' _Arguments_: ! Z The type shall be 'COMPLEX'. _Return value_: ! The return value is of type 'COMPLEX'. _Example_: program test_conjg *************** _Example_: *** 6476,6494 **** end program test_conjg _Specific names_: ! Name Argument Return type Standard ! `CONJG(Z)' `COMPLEX Z' `COMPLEX' GNU extension ! `DCONJG(Z)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! Z'  File: gfortran.info, Node: COS, Next: COSH, Prev: CONJG, Up: Intrinsic Procedures ! 8.55 `COS' -- Cosine function ============================= _Description_: ! `COS(X)' computes the cosine of X. _Standard_: Fortran 77 and later, has overloads that are GNU extensions --- 6418,6436 ---- end program test_conjg _Specific names_: ! Name Argument Return type Standard ! 'CONJG(Z)' 'COMPLEX Z' 'COMPLEX' GNU extension ! 'DCONJG(Z)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! Z'  File: gfortran.info, Node: COS, Next: COSH, Prev: CONJG, Up: Intrinsic Procedures ! 8.55 'COS' -- Cosine function ============================= _Description_: ! 'COS(X)' computes the cosine of X. _Standard_: Fortran 77 and later, has overloads that are GNU extensions *************** _Class_: *** 6497,6511 **** Elemental function _Syntax_: ! `RESULT = COS(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value is of the same type and kind as X. The real part ! of the result is in radians. If X is of the type `REAL', the ! return value lies in the range -1 \leq \cos (x) \leq 1. _Example_: program test_cos --- 6439,6453 ---- Elemental function _Syntax_: ! 'RESULT = COS(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value is of the same type and kind as X. The real part ! of the result is in radians. If X is of the type 'REAL', the ! return value lies in the range -1 \leq \cos (x) \leq 1. _Example_: program test_cos *************** _Example_: *** 6514,6543 **** end program test_cos _Specific names_: ! Name Argument Return type Standard ! `COS(X)' `REAL(4) X' `REAL(4)' Fortran 77 and ! later ! `DCOS(X)' `REAL(8) X' `REAL(8)' Fortran 77 and ! later ! `CCOS(X)' `COMPLEX(4) `COMPLEX(4)' Fortran 77 and ! X' later ! `ZCOS(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! X' ! `CDCOS(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! X' _See also_: Inverse function: *note ACOS:: -  File: gfortran.info, Node: COSH, Next: COUNT, Prev: COS, Up: Intrinsic Procedures ! 8.56 `COSH' -- Hyperbolic cosine function ========================================= _Description_: ! `COSH(X)' computes the hyperbolic cosine of X. _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later --- 6456,6484 ---- end program test_cos _Specific names_: ! Name Argument Return type Standard ! 'COS(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and ! later ! 'DCOS(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and ! later ! 'CCOS(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 77 and ! X' later ! 'ZCOS(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! X' ! 'CDCOS(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! X' _See also_: Inverse function: *note ACOS::  File: gfortran.info, Node: COSH, Next: COUNT, Prev: COS, Up: Intrinsic Procedures ! 8.56 'COSH' -- Hyperbolic cosine function ========================================= _Description_: ! 'COSH(X)' computes the hyperbolic cosine of X. _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later *************** _Class_: *** 6546,6559 **** Elemental function _Syntax_: ! `X = COSH(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value has same type and kind as X. If X is complex, the ! imaginary part of the result is in radians. If X is `REAL', the return value has a lower bound of one, \cosh (x) \geq 1. _Example_: --- 6487,6500 ---- Elemental function _Syntax_: ! 'X = COSH(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value has same type and kind as X. If X is complex, the ! imaginary part of the result is in radians. If X is 'REAL', the return value has a lower bound of one, \cosh (x) \geq 1. _Example_: *************** _Example_: *** 6563,6590 **** end program test_cosh _Specific names_: ! Name Argument Return type Standard ! `COSH(X)' `REAL(4) X' `REAL(4)' Fortran 77 and ! later ! `DCOSH(X)' `REAL(8) X' `REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note ACOSH:: -  File: gfortran.info, Node: COUNT, Next: CPU_TIME, Prev: COSH, Up: Intrinsic Procedures ! 8.57 `COUNT' -- Count function ============================== _Description_: ! Counts the number of `.TRUE.' elements in a logical MASK, or, if the DIM argument is supplied, counts the number of elements along each row of the array in the DIM direction. If the array has zero ! size, or all of the elements of MASK are `.FALSE.', then the ! result is `0'. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later --- 6504,6531 ---- end program test_cosh _Specific names_: ! Name Argument Return type Standard ! 'COSH(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and ! later ! 'DCOSH(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note ACOSH::  File: gfortran.info, Node: COUNT, Next: CPU_TIME, Prev: COSH, Up: Intrinsic Procedures ! 8.57 'COUNT' -- Count function ============================== _Description_: ! ! Counts the number of '.TRUE.' elements in a logical MASK, or, if the DIM argument is supplied, counts the number of elements along each row of the array in the DIM direction. If the array has zero ! size, or all of the elements of MASK are '.FALSE.', then the result ! is '0'. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later *************** _Class_: *** 6593,6609 **** Transformational function _Syntax_: ! `RESULT = COUNT(MASK [, DIM, KIND])' _Arguments_: ! MASK The type shall be `LOGICAL'. ! DIM (Optional) The type shall be `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is present, the result is an array with a rank one less than the rank of ARRAY, and a size corresponding to the shape of ARRAY with the --- 6534,6550 ---- Transformational function _Syntax_: ! 'RESULT = COUNT(MASK [, DIM, KIND])' _Arguments_: ! MASK The type shall be 'LOGICAL'. ! DIM (Optional) The type shall be 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is present, the result is an array with a rank one less than the rank of ARRAY, and a size corresponding to the shape of ARRAY with the *************** _Example_: *** 6635,6654 ****  File: gfortran.info, Node: CPU_TIME, Next: CSHIFT, Prev: COUNT, Up: Intrinsic Procedures ! 8.58 `CPU_TIME' -- CPU elapsed time in seconds ============================================== _Description_: ! Returns a `REAL' value representing the elapsed CPU time in seconds. This is useful for testing segments of code to determine execution time. If a time source is available, time will be reported with ! microsecond resolution. If no time source is available, TIME is ! set to `-1.0'. Note that TIME may contain a, system dependent, arbitrary offset ! and may not start with `0.0'. For `CPU_TIME', the absolute value is meaningless, only differences between subsequent calls to this subroutine, as shown in the example below, should be used. --- 6576,6595 ----  File: gfortran.info, Node: CPU_TIME, Next: CSHIFT, Prev: COUNT, Up: Intrinsic Procedures ! 8.58 'CPU_TIME' -- CPU elapsed time in seconds ============================================== _Description_: ! Returns a 'REAL' value representing the elapsed CPU time in seconds. This is useful for testing segments of code to determine execution time. If a time source is available, time will be reported with ! microsecond resolution. If no time source is available, TIME is ! set to '-1.0'. Note that TIME may contain a, system dependent, arbitrary offset ! and may not start with '0.0'. For 'CPU_TIME', the absolute value is meaningless, only differences between subsequent calls to this subroutine, as shown in the example below, should be used. *************** _Class_: *** 6659,6668 **** Subroutine _Syntax_: ! `CALL CPU_TIME(TIME)' _Arguments_: ! TIME The type shall be `REAL' with `INTENT(OUT)'. _Return value_: None --- 6600,6609 ---- Subroutine _Syntax_: ! 'CALL CPU_TIME(TIME)' _Arguments_: ! TIME The type shall be 'REAL' with 'INTENT(OUT)'. _Return value_: None *************** _See also_: *** 6682,6700 ****  File: gfortran.info, Node: CSHIFT, Next: CTIME, Prev: CPU_TIME, Up: Intrinsic Procedures ! 8.59 `CSHIFT' -- Circular shift elements of an array ==================================================== _Description_: ! `CSHIFT(ARRAY, SHIFT [, DIM])' performs a circular shift on ! elements of ARRAY along the dimension of DIM. If DIM is omitted ! it is taken to be `1'. DIM is a scalar of type `INTEGER' in the ! range of 1 \leq DIM \leq n) where n is the rank of ARRAY. If the ! rank of ARRAY is one, then all elements of ARRAY are shifted by ! SHIFT places. If rank is greater than one, then all complete rank ! one sections of ARRAY along the given dimension are shifted. ! Elements shifted out one end of each rank one section are shifted ! back in the other end. _Standard_: Fortran 95 and later --- 6623,6641 ----  File: gfortran.info, Node: CSHIFT, Next: CTIME, Prev: CPU_TIME, Up: Intrinsic Procedures ! 8.59 'CSHIFT' -- Circular shift elements of an array ==================================================== _Description_: ! 'CSHIFT(ARRAY, SHIFT [, DIM])' performs a circular shift on ! elements of ARRAY along the dimension of DIM. If DIM is omitted it ! is taken to be '1'. DIM is a scalar of type 'INTEGER' in the range ! of 1 \leq DIM \leq n) where n is the rank of ARRAY. If the rank of ! ARRAY is one, then all elements of ARRAY are shifted by SHIFT ! places. If rank is greater than one, then all complete rank one ! sections of ARRAY along the given dimension are shifted. Elements ! shifted out one end of each rank one section are shifted back in ! the other end. _Standard_: Fortran 95 and later *************** _Class_: *** 6703,6714 **** Transformational function _Syntax_: ! `RESULT = CSHIFT(ARRAY, SHIFT [, DIM])' _Arguments_: ! ARRAY Shall be an array of any type. ! SHIFT The type shall be `INTEGER'. ! DIM The type shall be `INTEGER'. _Return value_: Returns an array of same type and rank as the ARRAY argument. --- 6644,6655 ---- Transformational function _Syntax_: ! 'RESULT = CSHIFT(ARRAY, SHIFT [, DIM])' _Arguments_: ! ARRAY Shall be an array of any type. ! SHIFT The type shall be 'INTEGER'. ! DIM The type shall be 'INTEGER'. _Return value_: Returns an array of same type and rank as the ARRAY argument. *************** _Example_: *** 6730,6743 ****  File: gfortran.info, Node: CTIME, Next: DATE_AND_TIME, Prev: CSHIFT, Up: Intrinsic Procedures ! 8.60 `CTIME' -- Convert a time into a string ============================================ _Description_: ! `CTIME' converts a system time value, such as returned by `TIME8', ! to a string. Unless the application has called `setlocale', the output will be in the default locale, of length 24 and of the form ! `Sat Aug 19 18:13:14 1995'. In other locales, a longer string may result. This intrinsic is provided in both subroutine and function forms; --- 6671,6684 ----  File: gfortran.info, Node: CTIME, Next: DATE_AND_TIME, Prev: CSHIFT, Up: Intrinsic Procedures ! 8.60 'CTIME' -- Convert a time into a string ============================================ _Description_: ! 'CTIME' converts a system time value, such as returned by 'TIME8', ! to a string. Unless the application has called 'setlocale', the output will be in the default locale, of length 24 and of the form ! 'Sat Aug 19 18:13:14 1995'. In other locales, a longer string may result. This intrinsic is provided in both subroutine and function forms; *************** _Class_: *** 6750,6766 **** Subroutine, function _Syntax_: ! `CALL CTIME(TIME, RESULT)'. ! `RESULT = CTIME(TIME)'. _Arguments_: ! TIME The type shall be of type `INTEGER'. ! RESULT The type shall be of type `CHARACTER' and of ! default kind. It is an `INTENT(OUT)' argument. ! If the length of this variable is too short ! for the time and date string to fit ! completely, it will be blank on procedure ! return. _Return value_: The converted date and time as a string. --- 6691,6706 ---- Subroutine, function _Syntax_: ! 'CALL CTIME(TIME, RESULT)'. ! 'RESULT = CTIME(TIME)'. _Arguments_: ! TIME The type shall be of type 'INTEGER'. ! RESULT The type shall be of type 'CHARACTER' and of ! default kind. It is an 'INTENT(OUT)' argument. ! If the length of this variable is too short for ! the time and date string to fit completely, it ! will be blank on procedure return. _Return value_: The converted date and time as a string. *************** _Example_: *** 6778,6812 **** end program test_ctime _See Also_: ! *note DATE_AND_TIME::, *note GMTIME::, *note LTIME::, *note ! TIME::, *note TIME8::  File: gfortran.info, Node: DATE_AND_TIME, Next: DBLE, Prev: CTIME, Up: Intrinsic Procedures ! 8.61 `DATE_AND_TIME' -- Date and time subroutine ================================================ _Description_: ! `DATE_AND_TIME(DATE, TIME, ZONE, VALUES)' gets the corresponding date and time information from the real-time system clock. DATE is ! `INTENT(OUT)' and has form ccyymmdd. TIME is `INTENT(OUT)' and ! has form hhmmss.sss. ZONE is `INTENT(OUT)' and has form (+-)hhmm, representing the difference with respect to Coordinated Universal ! Time (UTC). Unavailable time and date parameters return blanks. ! VALUES is `INTENT(OUT)' and provides the following: ! `VALUE(1)': The year ! `VALUE(2)': The month ! `VALUE(3)': The day of the month ! `VALUE(4)': Time difference with UTC ! in minutes ! `VALUE(5)': The hour of the day ! `VALUE(6)': The minutes of the hour ! `VALUE(7)': The seconds of the minute ! `VALUE(8)': The milliseconds of the ! second _Standard_: Fortran 95 and later --- 6718,6752 ---- end program test_ctime _See Also_: ! *note DATE_AND_TIME::, *note GMTIME::, *note LTIME::, *note TIME::, ! *note TIME8::  File: gfortran.info, Node: DATE_AND_TIME, Next: DBLE, Prev: CTIME, Up: Intrinsic Procedures ! 8.61 'DATE_AND_TIME' -- Date and time subroutine ================================================ _Description_: ! 'DATE_AND_TIME(DATE, TIME, ZONE, VALUES)' gets the corresponding date and time information from the real-time system clock. DATE is ! 'INTENT(OUT)' and has form ccyymmdd. TIME is 'INTENT(OUT)' and has ! form hhmmss.sss. ZONE is 'INTENT(OUT)' and has form (+-)hhmm, representing the difference with respect to Coordinated Universal ! Time (UTC). Unavailable time and date parameters return blanks. ! VALUES is 'INTENT(OUT)' and provides the following: ! 'VALUE(1)': The year ! 'VALUE(2)': The month ! 'VALUE(3)': The day of the month ! 'VALUE(4)': Time difference with UTC in ! minutes ! 'VALUE(5)': The hour of the day ! 'VALUE(6)': The minutes of the hour ! 'VALUE(7)': The seconds of the minute ! 'VALUE(8)': The milliseconds of the ! second _Standard_: Fortran 95 and later *************** _Class_: *** 6815,6831 **** Subroutine _Syntax_: ! `CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])' _Arguments_: ! DATE (Optional) The type shall be `CHARACTER(LEN=8)' ! or larger, and of default kind. ! TIME (Optional) The type shall be ! `CHARACTER(LEN=10)' or larger, and of default ! kind. ! ZONE (Optional) The type shall be `CHARACTER(LEN=5)' ! or larger, and of default kind. ! VALUES (Optional) The type shall be `INTEGER(8)'. _Return value_: None --- 6755,6770 ---- Subroutine _Syntax_: ! 'CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])' _Arguments_: ! DATE (Optional) The type shall be 'CHARACTER(LEN=8)' ! or larger, and of default kind. ! TIME (Optional) The type shall be 'CHARACTER(LEN=10)' ! or larger, and of default kind. ! ZONE (Optional) The type shall be 'CHARACTER(LEN=5)' ! or larger, and of default kind. ! VALUES (Optional) The type shall be 'INTEGER(8)'. _Return value_: None *************** _See also_: *** 6851,6861 ****  File: gfortran.info, Node: DBLE, Next: DCMPLX, Prev: DATE_AND_TIME, Up: Intrinsic Procedures ! 8.62 `DBLE' -- Double conversion function ========================================= _Description_: ! `DBLE(A)' Converts A to double precision real type. _Standard_: Fortran 77 and later --- 6790,6800 ----  File: gfortran.info, Node: DBLE, Next: DCMPLX, Prev: DATE_AND_TIME, Up: Intrinsic Procedures ! 8.62 'DBLE' -- Double conversion function ========================================= _Description_: ! 'DBLE(A)' Converts A to double precision real type. _Standard_: Fortran 77 and later *************** _Class_: *** 6864,6874 **** Elemental function _Syntax_: ! `RESULT = DBLE(A)' _Arguments_: ! A The type shall be `INTEGER', `REAL', or ! `COMPLEX'. _Return value_: The return value is of type double precision real. --- 6803,6813 ---- Elemental function _Syntax_: ! 'RESULT = DBLE(A)' _Arguments_: ! A The type shall be 'INTEGER', 'REAL', or ! 'COMPLEX'. _Return value_: The return value is of type double precision real. *************** _See also_: *** 6887,6901 ****  File: gfortran.info, Node: DCMPLX, Next: DIGITS, Prev: DBLE, Up: Intrinsic Procedures ! 8.63 `DCMPLX' -- Double complex conversion function =================================================== _Description_: ! `DCMPLX(X [,Y])' returns a double complex number where X is converted to the real component. If Y is present it is converted ! to the imaginary component. If Y is not present then the ! imaginary component is set to 0.0. If X is complex then Y must ! not be present. _Standard_: GNU extension --- 6826,6840 ----  File: gfortran.info, Node: DCMPLX, Next: DIGITS, Prev: DBLE, Up: Intrinsic Procedures ! 8.63 'DCMPLX' -- Double complex conversion function =================================================== _Description_: ! 'DCMPLX(X [,Y])' returns a double complex number where X is converted to the real component. If Y is present it is converted ! to the imaginary component. If Y is not present then the imaginary ! component is set to 0.0. If X is complex then Y must not be ! present. _Standard_: GNU extension *************** _Class_: *** 6904,6919 **** Elemental function _Syntax_: ! `RESULT = DCMPLX(X [, Y])' _Arguments_: ! X The type may be `INTEGER', `REAL', or ! `COMPLEX'. ! Y (Optional if X is not `COMPLEX'.) May be ! `INTEGER' or `REAL'. _Return value_: ! The return value is of type `COMPLEX(8)' _Example_: program test_dcmplx --- 6843,6857 ---- Elemental function _Syntax_: ! 'RESULT = DCMPLX(X [, Y])' _Arguments_: ! X The type may be 'INTEGER', 'REAL', or 'COMPLEX'. ! Y (Optional if X is not 'COMPLEX'.) May be ! 'INTEGER' or 'REAL'. _Return value_: ! The return value is of type 'COMPLEX(8)' _Example_: program test_dcmplx *************** _Example_: *** 6930,6943 ****  File: gfortran.info, Node: DIGITS, Next: DIM, Prev: DCMPLX, Up: Intrinsic Procedures ! 8.64 `DIGITS' -- Significant binary digits function =================================================== _Description_: ! `DIGITS(X)' returns the number of significant binary digits of the ! internal model representation of X. For example, on a system ! using a 32-bit floating point representation, a default real ! number would likely return 24. _Standard_: Fortran 95 and later --- 6868,6881 ----  File: gfortran.info, Node: DIGITS, Next: DIM, Prev: DCMPLX, Up: Intrinsic Procedures ! 8.64 'DIGITS' -- Significant binary digits function =================================================== _Description_: ! 'DIGITS(X)' returns the number of significant binary digits of the ! internal model representation of X. For example, on a system using ! a 32-bit floating point representation, a default real number would ! likely return 24. _Standard_: Fortran 95 and later *************** _Class_: *** 6946,6958 **** Inquiry function _Syntax_: ! `RESULT = DIGITS(X)' _Arguments_: ! X The type may be `INTEGER' or `REAL'. _Return value_: ! The return value is of type `INTEGER'. _Example_: program test_digits --- 6884,6896 ---- Inquiry function _Syntax_: ! 'RESULT = DIGITS(X)' _Arguments_: ! X The type may be 'INTEGER' or 'REAL'. _Return value_: ! The return value is of type 'INTEGER'. _Example_: program test_digits *************** _Example_: *** 6967,6977 ****  File: gfortran.info, Node: DIM, Next: DOT_PRODUCT, Prev: DIGITS, Up: Intrinsic Procedures ! 8.65 `DIM' -- Positive difference ================================= _Description_: ! `DIM(X,Y)' returns the difference `X-Y' if the result is positive; otherwise returns zero. _Standard_: --- 6905,6915 ----  File: gfortran.info, Node: DIM, Next: DOT_PRODUCT, Prev: DIGITS, Up: Intrinsic Procedures ! 8.65 'DIM' -- Positive difference ================================= _Description_: ! 'DIM(X,Y)' returns the difference 'X-Y' if the result is positive; otherwise returns zero. _Standard_: *************** _Class_: *** 6981,6994 **** Elemental function _Syntax_: ! `RESULT = DIM(X, Y)' _Arguments_: ! X The type shall be `INTEGER' or `REAL' ! Y The type shall be the same type and kind as X. _Return value_: ! The return value is of type `INTEGER' or `REAL'. _Example_: program test_dim --- 6919,6932 ---- Elemental function _Syntax_: ! 'RESULT = DIM(X, Y)' _Arguments_: ! X The type shall be 'INTEGER' or 'REAL' ! Y The type shall be the same type and kind as X. _Return value_: ! The return value is of type 'INTEGER' or 'REAL'. _Example_: program test_dim *************** _Example_: *** 7001,7029 **** end program test_dim _Specific names_: ! Name Argument Return type Standard ! `DIM(X,Y)' `REAL(4) X, `REAL(4)' Fortran 77 and ! Y' later ! `IDIM(X,Y)' `INTEGER(4) `INTEGER(4)' Fortran 77 and ! X, Y' later ! `DDIM(X,Y)' `REAL(8) X, `REAL(8)' Fortran 77 and ! Y' later  File: gfortran.info, Node: DOT_PRODUCT, Next: DPROD, Prev: DIM, Up: Intrinsic Procedures ! 8.66 `DOT_PRODUCT' -- Dot product function ========================================== _Description_: ! `DOT_PRODUCT(VECTOR_A, VECTOR_B)' computes the dot product multiplication of two vectors VECTOR_A and VECTOR_B. The two ! vectors may be either numeric or logical and must be arrays of ! rank one and of equal size. If the vectors are `INTEGER' or ! `REAL', the result is `SUM(VECTOR_A*VECTOR_B)'. If the vectors are ! `COMPLEX', the result is `SUM(CONJG(VECTOR_A)*VECTOR_B)'. If the ! vectors are `LOGICAL', the result is `ANY(VECTOR_A .AND. ! VECTOR_B)'. _Standard_: Fortran 95 and later --- 6939,6966 ---- end program test_dim _Specific names_: ! Name Argument Return type Standard ! 'DIM(X,Y)' 'REAL(4) X, 'REAL(4)' Fortran 77 and ! Y' later ! 'IDIM(X,Y)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and ! X, Y' later ! 'DDIM(X,Y)' 'REAL(8) X, 'REAL(8)' Fortran 77 and ! Y' later  File: gfortran.info, Node: DOT_PRODUCT, Next: DPROD, Prev: DIM, Up: Intrinsic Procedures ! 8.66 'DOT_PRODUCT' -- Dot product function ========================================== _Description_: ! 'DOT_PRODUCT(VECTOR_A, VECTOR_B)' computes the dot product multiplication of two vectors VECTOR_A and VECTOR_B. The two ! vectors may be either numeric or logical and must be arrays of rank ! one and of equal size. If the vectors are 'INTEGER' or 'REAL', the ! result is 'SUM(VECTOR_A*VECTOR_B)'. If the vectors are 'COMPLEX', ! the result is 'SUM(CONJG(VECTOR_A)*VECTOR_B)'. If the vectors are ! 'LOGICAL', the result is 'ANY(VECTOR_A .AND. VECTOR_B)'. _Standard_: Fortran 95 and later *************** _Class_: *** 7032,7050 **** Transformational function _Syntax_: ! `RESULT = DOT_PRODUCT(VECTOR_A, VECTOR_B)' _Arguments_: ! VECTOR_A The type shall be numeric or `LOGICAL', rank 1. ! VECTOR_B The type shall be numeric if VECTOR_A is of ! numeric type or `LOGICAL' if VECTOR_A is of ! type `LOGICAL'. VECTOR_B shall be a rank-one ! array. _Return value_: If the arguments are numeric, the return value is a scalar of ! numeric type, `INTEGER', `REAL', or `COMPLEX'. If the arguments ! are `LOGICAL', the return value is `.TRUE.' or `.FALSE.'. _Example_: program test_dot_prod --- 6969,6986 ---- Transformational function _Syntax_: ! 'RESULT = DOT_PRODUCT(VECTOR_A, VECTOR_B)' _Arguments_: ! VECTOR_A The type shall be numeric or 'LOGICAL', rank 1. ! VECTOR_B The type shall be numeric if VECTOR_A is of ! numeric type or 'LOGICAL' if VECTOR_A is of type ! 'LOGICAL'. VECTOR_B shall be a rank-one array. _Return value_: If the arguments are numeric, the return value is a scalar of ! numeric type, 'INTEGER', 'REAL', or 'COMPLEX'. If the arguments ! are 'LOGICAL', the return value is '.TRUE.' or '.FALSE.'. _Example_: program test_dot_prod *************** _Example_: *** 7061,7071 ****  File: gfortran.info, Node: DPROD, Next: DREAL, Prev: DOT_PRODUCT, Up: Intrinsic Procedures ! 8.67 `DPROD' -- Double product function ======================================= _Description_: ! `DPROD(X,Y)' returns the product `X*Y'. _Standard_: Fortran 77 and later --- 6997,7007 ----  File: gfortran.info, Node: DPROD, Next: DREAL, Prev: DOT_PRODUCT, Up: Intrinsic Procedures ! 8.67 'DPROD' -- Double product function ======================================= _Description_: ! 'DPROD(X,Y)' returns the product 'X*Y'. _Standard_: Fortran 77 and later *************** _Class_: *** 7074,7087 **** Elemental function _Syntax_: ! `RESULT = DPROD(X, Y)' _Arguments_: ! X The type shall be `REAL'. ! Y The type shall be `REAL'. _Return value_: ! The return value is of type `REAL(8)'. _Example_: program test_dprod --- 7010,7023 ---- Elemental function _Syntax_: ! 'RESULT = DPROD(X, Y)' _Arguments_: ! X The type shall be 'REAL'. ! Y The type shall be 'REAL'. _Return value_: ! The return value is of type 'REAL(8)'. _Example_: program test_dprod *************** _Example_: *** 7093,7111 **** end program test_dprod _Specific names_: ! Name Argument Return type Standard ! `DPROD(X,Y)' `REAL(4) X, `REAL(4)' Fortran 77 and ! Y' later !  File: gfortran.info, Node: DREAL, Next: DSHIFTL, Prev: DPROD, Up: Intrinsic Procedures ! 8.68 `DREAL' -- Double real part function ========================================= _Description_: ! `DREAL(Z)' returns the real part of complex variable Z. _Standard_: GNU extension --- 7029,7046 ---- end program test_dprod _Specific names_: ! Name Argument Return type Standard ! 'DPROD(X,Y)' 'REAL(4) X, 'REAL(4)' Fortran 77 and ! Y' later  File: gfortran.info, Node: DREAL, Next: DSHIFTL, Prev: DPROD, Up: Intrinsic Procedures ! 8.68 'DREAL' -- Double real part function ========================================= _Description_: ! 'DREAL(Z)' returns the real part of complex variable Z. _Standard_: GNU extension *************** _Class_: *** 7114,7126 **** Elemental function _Syntax_: ! `RESULT = DREAL(A)' _Arguments_: ! A The type shall be `COMPLEX(8)'. _Return value_: ! The return value is of type `REAL(8)'. _Example_: program test_dreal --- 7049,7061 ---- Elemental function _Syntax_: ! 'RESULT = DREAL(A)' _Arguments_: ! A The type shall be 'COMPLEX(8)'. _Return value_: ! The return value is of type 'REAL(8)'. _Example_: program test_dreal *************** _Example_: *** 7131,7145 **** _See also_: *note AIMAG:: -  File: gfortran.info, Node: DSHIFTL, Next: DSHIFTR, Prev: DREAL, Up: Intrinsic Procedures ! 8.69 `DSHIFTL' -- Combined left shift ===================================== _Description_: ! `DSHIFTL(I, J, SHIFT)' combines bits of I and J. The rightmost SHIFT bits of the result are the leftmost SHIFT bits of J, and the remaining bits are the rightmost bits of I. --- 7066,7079 ---- _See also_: *note AIMAG::  File: gfortran.info, Node: DSHIFTL, Next: DSHIFTR, Prev: DREAL, Up: Intrinsic Procedures ! 8.69 'DSHIFTL' -- Combined left shift ===================================== _Description_: ! 'DSHIFTL(I, J, SHIFT)' combines bits of I and J. The rightmost SHIFT bits of the result are the leftmost SHIFT bits of J, and the remaining bits are the rightmost bits of I. *************** _Class_: *** 7150,7172 **** Elemental function _Syntax_: ! `RESULT = DSHIFTL(I, J, SHIFT)' _Arguments_: ! I Shall be of type `INTEGER' or a BOZ constant. ! J Shall be of type `INTEGER' or a BOZ constant. ! If both I and J have integer type, then they ! shall have the same kind type parameter. I and ! J shall not both be BOZ constants. ! SHIFT Shall be of type `INTEGER'. It shall be ! nonnegative. If I is not a BOZ constant, then ! SHIFT shall be less than or equal to ! `BIT_SIZE(I)'; otherwise, SHIFT shall be less ! than or equal to `BIT_SIZE(J)'. _Return value_: If either I or J is a BOZ constant, it is first converted as if by ! the intrinsic function `INT' to an integer type with the kind type parameter of the other. _See also_: --- 7084,7106 ---- Elemental function _Syntax_: ! 'RESULT = DSHIFTL(I, J, SHIFT)' _Arguments_: ! I Shall be of type 'INTEGER' or a BOZ constant. ! J Shall be of type 'INTEGER' or a BOZ constant. ! If both I and J have integer type, then they ! shall have the same kind type parameter. I and ! J shall not both be BOZ constants. ! SHIFT Shall be of type 'INTEGER'. It shall be ! nonnegative. If I is not a BOZ constant, then ! SHIFT shall be less than or equal to ! 'BIT_SIZE(I)'; otherwise, SHIFT shall be less ! than or equal to 'BIT_SIZE(J)'. _Return value_: If either I or J is a BOZ constant, it is first converted as if by ! the intrinsic function 'INT' to an integer type with the kind type parameter of the other. _See also_: *************** _See also_: *** 7175,7187 ****  File: gfortran.info, Node: DSHIFTR, Next: DTIME, Prev: DSHIFTL, Up: Intrinsic Procedures ! 8.70 `DSHIFTR' -- Combined right shift ====================================== _Description_: ! `DSHIFTR(I, J, SHIFT)' combines bits of I and J. The leftmost ! SHIFT bits of the result are the rightmost SHIFT bits of I, and ! the remaining bits are the leftmost bits of J. _Standard_: Fortran 2008 and later --- 7109,7121 ----  File: gfortran.info, Node: DSHIFTR, Next: DTIME, Prev: DSHIFTL, Up: Intrinsic Procedures ! 8.70 'DSHIFTR' -- Combined right shift ====================================== _Description_: ! 'DSHIFTR(I, J, SHIFT)' combines bits of I and J. The leftmost ! SHIFT bits of the result are the rightmost SHIFT bits of I, and the ! remaining bits are the leftmost bits of J. _Standard_: Fortran 2008 and later *************** _Class_: *** 7190,7212 **** Elemental function _Syntax_: ! `RESULT = DSHIFTR(I, J, SHIFT)' _Arguments_: ! I Shall be of type `INTEGER' or a BOZ constant. ! J Shall be of type `INTEGER' or a BOZ constant. ! If both I and J have integer type, then they ! shall have the same kind type parameter. I and ! J shall not both be BOZ constants. ! SHIFT Shall be of type `INTEGER'. It shall be ! nonnegative. If I is not a BOZ constant, then ! SHIFT shall be less than or equal to ! `BIT_SIZE(I)'; otherwise, SHIFT shall be less ! than or equal to `BIT_SIZE(J)'. _Return value_: If either I or J is a BOZ constant, it is first converted as if by ! the intrinsic function `INT' to an integer type with the kind type parameter of the other. _See also_: --- 7124,7146 ---- Elemental function _Syntax_: ! 'RESULT = DSHIFTR(I, J, SHIFT)' _Arguments_: ! I Shall be of type 'INTEGER' or a BOZ constant. ! J Shall be of type 'INTEGER' or a BOZ constant. ! If both I and J have integer type, then they ! shall have the same kind type parameter. I and ! J shall not both be BOZ constants. ! SHIFT Shall be of type 'INTEGER'. It shall be ! nonnegative. If I is not a BOZ constant, then ! SHIFT shall be less than or equal to ! 'BIT_SIZE(I)'; otherwise, SHIFT shall be less ! than or equal to 'BIT_SIZE(J)'. _Return value_: If either I or J is a BOZ constant, it is first converted as if by ! the intrinsic function 'INT' to an integer type with the kind type parameter of the other. _See also_: *************** _See also_: *** 7215,7256 ****  File: gfortran.info, Node: DTIME, Next: EOSHIFT, Prev: DSHIFTR, Up: Intrinsic Procedures ! 8.71 `DTIME' -- Execution time subroutine (or function) ======================================================= _Description_: ! `DTIME(VALUES, TIME)' initially returns the number of seconds of runtime since the start of the process's execution in TIME. VALUES ! returns the user and system components of this time in `VALUES(1)' ! and `VALUES(2)' respectively. TIME is equal to `VALUES(1) + VALUES(2)'. ! Subsequent invocations of `DTIME' return values accumulated since the previous invocation. ! On some systems, the underlying timings are represented using ! types with sufficiently small limits that overflows (wrap around) ! are possible, such as 32-bit types. Therefore, the values returned ! by this intrinsic might be, or become, negative, or numerically ! less than previous values, during a single run of the compiled ! program. ! Please note, that this implementation is thread safe if used ! within OpenMP directives, i.e., its state will be consistent while ! called from multiple threads. However, if `DTIME' is called from ! multiple threads, the result is still the time since the last ! invocation. This may not give the intended results. If possible, ! use `CPU_TIME' instead. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! VALUES and TIME are `INTENT(OUT)' and provide the following: ! `VALUES(1)': User time in seconds. ! `VALUES(2)': System time in seconds. ! `TIME': Run time since start in ! seconds. _Standard_: GNU extension --- 7149,7189 ----  File: gfortran.info, Node: DTIME, Next: EOSHIFT, Prev: DSHIFTR, Up: Intrinsic Procedures ! 8.71 'DTIME' -- Execution time subroutine (or function) ======================================================= _Description_: ! 'DTIME(VALUES, TIME)' initially returns the number of seconds of runtime since the start of the process's execution in TIME. VALUES ! returns the user and system components of this time in 'VALUES(1)' ! and 'VALUES(2)' respectively. TIME is equal to 'VALUES(1) + VALUES(2)'. ! Subsequent invocations of 'DTIME' return values accumulated since the previous invocation. ! On some systems, the underlying timings are represented using types ! with sufficiently small limits that overflows (wrap around) are ! possible, such as 32-bit types. Therefore, the values returned by ! this intrinsic might be, or become, negative, or numerically less ! than previous values, during a single run of the compiled program. ! Please note, that this implementation is thread safe if used within ! OpenMP directives, i.e., its state will be consistent while called ! from multiple threads. However, if 'DTIME' is called from multiple ! threads, the result is still the time since the last invocation. ! This may not give the intended results. If possible, use ! 'CPU_TIME' instead. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! VALUES and TIME are 'INTENT(OUT)' and provide the following: ! 'VALUES(1)': User time in seconds. ! 'VALUES(2)': System time in seconds. ! 'TIME': Run time since start in ! seconds. _Standard_: GNU extension *************** _Class_: *** 7259,7270 **** Subroutine, function _Syntax_: ! `CALL DTIME(VALUES, TIME)'. ! `TIME = DTIME(VALUES)', (not recommended). _Arguments_: ! VALUES The type shall be `REAL(4), DIMENSION(2)'. ! TIME The type shall be `REAL(4)'. _Return value_: Elapsed time in seconds since the last invocation or since the --- 7192,7203 ---- Subroutine, function _Syntax_: ! 'CALL DTIME(VALUES, TIME)'. ! 'TIME = DTIME(VALUES)', (not recommended). _Arguments_: ! VALUES The type shall be 'REAL(4), DIMENSION(2)'. ! TIME The type shall be 'REAL(4)'. _Return value_: Elapsed time in seconds since the last invocation or since the *************** _Example_: *** 7291,7321 **** _See also_: *note CPU_TIME:: -  File: gfortran.info, Node: EOSHIFT, Next: EPSILON, Prev: DTIME, Up: Intrinsic Procedures ! 8.72 `EOSHIFT' -- End-off shift elements of an array ==================================================== _Description_: ! `EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM])' performs an end-off shift ! on elements of ARRAY along the dimension of DIM. If DIM is ! omitted it is taken to be `1'. DIM is a scalar of type `INTEGER' ! in the range of 1 \leq DIM \leq n) where n is the rank of ARRAY. ! If the rank of ARRAY is one, then all elements of ARRAY are ! shifted by SHIFT places. If rank is greater than one, then all ! complete rank one sections of ARRAY along the given dimension are ! shifted. Elements shifted out one end of each rank one section ! are dropped. If BOUNDARY is present then the corresponding value ! of from BOUNDARY is copied back in the other end. If BOUNDARY is ! not present then the following are copied in depending on the type ! of ARRAY. ! _Array _Boundary Value_ ! Type_ ! Numeric 0 of the type and kind of ARRAY. ! Logical `.FALSE.'. Character(LEN)LEN blanks. _Standard_: --- 7224,7253 ---- _See also_: *note CPU_TIME::  File: gfortran.info, Node: EOSHIFT, Next: EPSILON, Prev: DTIME, Up: Intrinsic Procedures ! 8.72 'EOSHIFT' -- End-off shift elements of an array ==================================================== _Description_: ! 'EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM])' performs an end-off shift ! on elements of ARRAY along the dimension of DIM. If DIM is omitted ! it is taken to be '1'. DIM is a scalar of type 'INTEGER' in the ! range of 1 \leq DIM \leq n) where n is the rank of ARRAY. If the ! rank of ARRAY is one, then all elements of ARRAY are shifted by ! SHIFT places. If rank is greater than one, then all complete rank ! one sections of ARRAY along the given dimension are shifted. ! Elements shifted out one end of each rank one section are dropped. ! If BOUNDARY is present then the corresponding value of from ! BOUNDARY is copied back in the other end. If BOUNDARY is not ! present then the following are copied in depending on the type of ! ARRAY. ! _Array _Boundary Value_ ! Type_ ! Numeric 0 of the type and kind of ARRAY. ! Logical '.FALSE.'. Character(LEN)LEN blanks. _Standard_: *************** _Class_: *** 7325,7337 **** Transformational function _Syntax_: ! `RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])' _Arguments_: ! ARRAY May be any type, not scalar. ! SHIFT The type shall be `INTEGER'. ! BOUNDARY Same type as ARRAY. ! DIM The type shall be `INTEGER'. _Return value_: Returns an array of same type and rank as the ARRAY argument. --- 7257,7269 ---- Transformational function _Syntax_: ! 'RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])' _Arguments_: ! ARRAY May be any type, not scalar. ! SHIFT The type shall be 'INTEGER'. ! BOUNDARY Same type as ARRAY. ! DIM The type shall be 'INTEGER'. _Return value_: Returns an array of same type and rank as the ARRAY argument. *************** _Example_: *** 7353,7363 ****  File: gfortran.info, Node: EPSILON, Next: ERF, Prev: EOSHIFT, Up: Intrinsic Procedures ! 8.73 `EPSILON' -- Epsilon function ================================== _Description_: ! `EPSILON(X)' returns the smallest number E of the same kind as X such that 1 + E > 1. _Standard_: --- 7285,7295 ----  File: gfortran.info, Node: EPSILON, Next: ERF, Prev: EOSHIFT, Up: Intrinsic Procedures ! 8.73 'EPSILON' -- Epsilon function ================================== _Description_: ! 'EPSILON(X)' returns the smallest number E of the same kind as X such that 1 + E > 1. _Standard_: *************** _Class_: *** 7367,7376 **** Inquiry function _Syntax_: ! `RESULT = EPSILON(X)' _Arguments_: ! X The type shall be `REAL'. _Return value_: The return value is of same type as the argument. --- 7299,7308 ---- Inquiry function _Syntax_: ! 'RESULT = EPSILON(X)' _Arguments_: ! X The type shall be 'REAL'. _Return value_: The return value is of same type as the argument. *************** _Example_: *** 7386,7396 ****  File: gfortran.info, Node: ERF, Next: ERFC, Prev: EPSILON, Up: Intrinsic Procedures ! 8.74 `ERF' -- Error function ============================ _Description_: ! `ERF(X)' computes the error function of X. _Standard_: Fortran 2008 and later --- 7318,7328 ----  File: gfortran.info, Node: ERF, Next: ERFC, Prev: EPSILON, Up: Intrinsic Procedures ! 8.74 'ERF' -- Error function ============================ _Description_: ! 'ERF(X)' computes the error function of X. _Standard_: Fortran 2008 and later *************** _Class_: *** 7399,7411 **** Elemental function _Syntax_: ! `RESULT = ERF(X)' _Arguments_: ! X The type shall be `REAL'. _Return value_: ! The return value is of type `REAL', of the same kind as X and lies in the range -1 \leq erf (x) \leq 1 . _Example_: --- 7331,7343 ---- Elemental function _Syntax_: ! 'RESULT = ERF(X)' _Arguments_: ! X The type shall be 'REAL'. _Return value_: ! The return value is of type 'REAL', of the same kind as X and lies in the range -1 \leq erf (x) \leq 1 . _Example_: *************** _Example_: *** 7415,7431 **** end program test_erf _Specific names_: ! Name Argument Return type Standard ! `DERF(X)' `REAL(8) X' `REAL(8)' GNU extension  File: gfortran.info, Node: ERFC, Next: ERFC_SCALED, Prev: ERF, Up: Intrinsic Procedures ! 8.75 `ERFC' -- Error function ============================= _Description_: ! `ERFC(X)' computes the complementary error function of X. _Standard_: Fortran 2008 and later --- 7347,7363 ---- end program test_erf _Specific names_: ! Name Argument Return type Standard ! 'DERF(X)' 'REAL(8) X' 'REAL(8)' GNU extension  File: gfortran.info, Node: ERFC, Next: ERFC_SCALED, Prev: ERF, Up: Intrinsic Procedures ! 8.75 'ERFC' -- Error function ============================= _Description_: ! 'ERFC(X)' computes the complementary error function of X. _Standard_: Fortran 2008 and later *************** _Class_: *** 7434,7447 **** Elemental function _Syntax_: ! `RESULT = ERFC(X)' _Arguments_: ! X The type shall be `REAL'. _Return value_: ! The return value is of type `REAL' and of the same kind as X. It ! lies in the range 0 \leq erfc (x) \leq 2 . _Example_: program test_erfc --- 7366,7379 ---- Elemental function _Syntax_: ! 'RESULT = ERFC(X)' _Arguments_: ! X The type shall be 'REAL'. _Return value_: ! The return value is of type 'REAL' and of the same kind as X. It ! lies in the range 0 \leq erfc (x) \leq 2 . _Example_: program test_erfc *************** _Example_: *** 7450,7466 **** end program test_erfc _Specific names_: ! Name Argument Return type Standard ! `DERFC(X)' `REAL(8) X' `REAL(8)' GNU extension  File: gfortran.info, Node: ERFC_SCALED, Next: ETIME, Prev: ERFC, Up: Intrinsic Procedures ! 8.76 `ERFC_SCALED' -- Error function ==================================== _Description_: ! `ERFC_SCALED(X)' computes the exponentially-scaled complementary error function of X. _Standard_: --- 7382,7398 ---- end program test_erfc _Specific names_: ! Name Argument Return type Standard ! 'DERFC(X)' 'REAL(8) X' 'REAL(8)' GNU extension  File: gfortran.info, Node: ERFC_SCALED, Next: ETIME, Prev: ERFC, Up: Intrinsic Procedures ! 8.76 'ERFC_SCALED' -- Error function ==================================== _Description_: ! 'ERFC_SCALED(X)' computes the exponentially-scaled complementary error function of X. _Standard_: *************** _Class_: *** 7470,7482 **** Elemental function _Syntax_: ! `RESULT = ERFC_SCALED(X)' _Arguments_: ! X The type shall be `REAL'. _Return value_: ! The return value is of type `REAL' and of the same kind as X. _Example_: program test_erfc_scaled --- 7402,7414 ---- Elemental function _Syntax_: ! 'RESULT = ERFC_SCALED(X)' _Arguments_: ! X The type shall be 'REAL'. _Return value_: ! The return value is of type 'REAL' and of the same kind as X. _Example_: program test_erfc_scaled *************** _Example_: *** 7487,7517 ****  File: gfortran.info, Node: ETIME, Next: EXECUTE_COMMAND_LINE, Prev: ERFC_SCALED, Up: Intrinsic Procedures ! 8.77 `ETIME' -- Execution time subroutine (or function) ======================================================= _Description_: ! `ETIME(VALUES, TIME)' returns the number of seconds of runtime ! since the start of the process's execution in TIME. VALUES ! returns the user and system components of this time in `VALUES(1)' ! and `VALUES(2)' respectively. TIME is equal to `VALUES(1) + VALUES(2)'. ! On some systems, the underlying timings are represented using ! types with sufficiently small limits that overflows (wrap around) ! are possible, such as 32-bit types. Therefore, the values returned ! by this intrinsic might be, or become, negative, or numerically ! less than previous values, during a single run of the compiled ! program. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! VALUES and TIME are `INTENT(OUT)' and provide the following: ! `VALUES(1)': User time in seconds. ! `VALUES(2)': System time in seconds. ! `TIME': Run time since start in seconds. _Standard_: GNU extension --- 7419,7448 ----  File: gfortran.info, Node: ETIME, Next: EXECUTE_COMMAND_LINE, Prev: ERFC_SCALED, Up: Intrinsic Procedures ! 8.77 'ETIME' -- Execution time subroutine (or function) ======================================================= _Description_: ! 'ETIME(VALUES, TIME)' returns the number of seconds of runtime ! since the start of the process's execution in TIME. VALUES returns ! the user and system components of this time in 'VALUES(1)' and ! 'VALUES(2)' respectively. TIME is equal to 'VALUES(1) + VALUES(2)'. ! On some systems, the underlying timings are represented using types ! with sufficiently small limits that overflows (wrap around) are ! possible, such as 32-bit types. Therefore, the values returned by ! this intrinsic might be, or become, negative, or numerically less ! than previous values, during a single run of the compiled program. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! VALUES and TIME are 'INTENT(OUT)' and provide the following: ! 'VALUES(1)': User time in seconds. ! 'VALUES(2)': System time in seconds. ! 'TIME': Run time since start in seconds. _Standard_: GNU extension *************** _Class_: *** 7520,7531 **** Subroutine, function _Syntax_: ! `CALL ETIME(VALUES, TIME)'. ! `TIME = ETIME(VALUES)', (not recommended). _Arguments_: ! VALUES The type shall be `REAL(4), DIMENSION(2)'. ! TIME The type shall be `REAL(4)'. _Return value_: Elapsed time in seconds since the start of program execution. --- 7451,7462 ---- Subroutine, function _Syntax_: ! 'CALL ETIME(VALUES, TIME)'. ! 'TIME = ETIME(VALUES)', (not recommended). _Arguments_: ! VALUES The type shall be 'REAL(4), DIMENSION(2)'. ! TIME The type shall be 'REAL(4)'. _Return value_: Elapsed time in seconds since the start of program execution. *************** _Example_: *** 7551,7583 **** _See also_: *note CPU_TIME:: -  File: gfortran.info, Node: EXECUTE_COMMAND_LINE, Next: EXIT, Prev: ETIME, Up: Intrinsic Procedures ! 8.78 `EXECUTE_COMMAND_LINE' -- Execute a shell command ====================================================== _Description_: ! `EXECUTE_COMMAND_LINE' runs a shell command, synchronously or asynchronously. ! The `COMMAND' argument is passed to the shell and executed, using ! the C library's `system' call. (The shell is `sh' on Unix ! systems, and `cmd.exe' on Windows.) If `WAIT' is present and has ! the value false, the execution of the command is asynchronous if ! the system supports it; otherwise, the command is executed ! synchronously. The three last arguments allow the user to get status information. ! After synchronous execution, `EXITSTAT' contains the integer exit ! code of the command, as returned by `system'. `CMDSTAT' is set to zero if the command line was executed (whatever its exit status ! was). `CMDMSG' is assigned an error message if an error has occurred. ! Note that the `system' function need not be thread-safe. It is the ! responsibility of the user to ensure that `system' is not called concurrently. _Standard_: --- 7482,7512 ---- _See also_: *note CPU_TIME::  File: gfortran.info, Node: EXECUTE_COMMAND_LINE, Next: EXIT, Prev: ETIME, Up: Intrinsic Procedures ! 8.78 'EXECUTE_COMMAND_LINE' -- Execute a shell command ====================================================== _Description_: ! 'EXECUTE_COMMAND_LINE' runs a shell command, synchronously or asynchronously. ! The 'COMMAND' argument is passed to the shell and executed, using ! the C library's 'system' call. (The shell is 'sh' on Unix systems, ! and 'cmd.exe' on Windows.) If 'WAIT' is present and has the value ! false, the execution of the command is asynchronous if the system ! supports it; otherwise, the command is executed synchronously. The three last arguments allow the user to get status information. ! After synchronous execution, 'EXITSTAT' contains the integer exit ! code of the command, as returned by 'system'. 'CMDSTAT' is set to zero if the command line was executed (whatever its exit status ! was). 'CMDMSG' is assigned an error message if an error has occurred. ! Note that the 'system' function need not be thread-safe. It is the ! responsibility of the user to ensure that 'system' is not called concurrently. _Standard_: *************** _Class_: *** 7587,7604 **** Subroutine _Syntax_: ! `CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ])' _Arguments_: ! COMMAND Shall be a default `CHARACTER' scalar. ! WAIT (Optional) Shall be a default `LOGICAL' scalar. ! EXITSTAT (Optional) Shall be an `INTEGER' of the ! default kind. ! CMDSTAT (Optional) Shall be an `INTEGER' of the ! default kind. ! CMDMSG (Optional) Shall be an `CHARACTER' scalar of ! the default kind. _Example_: program test_exec --- 7516,7533 ---- Subroutine _Syntax_: ! 'CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ])' _Arguments_: ! COMMAND Shall be a default 'CHARACTER' scalar. ! WAIT (Optional) Shall be a default 'LOGICAL' scalar. ! EXITSTAT (Optional) Shall be an 'INTEGER' of the default ! kind. ! CMDSTAT (Optional) Shall be an 'INTEGER' of the default ! kind. ! CMDMSG (Optional) Shall be an 'CHARACTER' scalar of the ! default kind. _Example_: program test_exec *************** _Example_: *** 7613,7623 **** end program test_exec _Note_: ! Because this intrinsic is implemented in terms of the `system' function call, its behavior with respect to signaling is processor ! dependent. In particular, on POSIX-compliant systems, the SIGINT and SIGQUIT signals will be ignored, and the SIGCHLD will be ! blocked. As such, if the parent process is terminated, the child process might not be terminated alongside. _See also_: --- 7542,7553 ---- end program test_exec _Note_: ! ! Because this intrinsic is implemented in terms of the 'system' function call, its behavior with respect to signaling is processor ! dependent. In particular, on POSIX-compliant systems, the SIGINT and SIGQUIT signals will be ignored, and the SIGCHLD will be ! blocked. As such, if the parent process is terminated, the child process might not be terminated alongside. _See also_: *************** _See also_: *** 7626,7637 ****  File: gfortran.info, Node: EXIT, Next: EXP, Prev: EXECUTE_COMMAND_LINE, Up: Intrinsic Procedures ! 8.79 `EXIT' -- Exit the program with status. ============================================ _Description_: ! `EXIT' causes immediate termination of the program with status. ! If status is omitted it returns the canonical _success_ for the system. All Fortran I/O units are closed. _Standard_: --- 7556,7567 ----  File: gfortran.info, Node: EXIT, Next: EXP, Prev: EXECUTE_COMMAND_LINE, Up: Intrinsic Procedures ! 8.79 'EXIT' -- Exit the program with status. ============================================ _Description_: ! 'EXIT' causes immediate termination of the program with status. If ! status is omitted it returns the canonical _success_ for the system. All Fortran I/O units are closed. _Standard_: *************** _Class_: *** 7641,7653 **** Subroutine _Syntax_: ! `CALL EXIT([STATUS])' _Arguments_: ! STATUS Shall be an `INTEGER' of the default kind. _Return value_: ! `STATUS' is passed to the parent process on exit. _Example_: program test_exit --- 7571,7583 ---- Subroutine _Syntax_: ! 'CALL EXIT([STATUS])' _Arguments_: ! STATUS Shall be an 'INTEGER' of the default kind. _Return value_: ! 'STATUS' is passed to the parent process on exit. _Example_: program test_exit *************** _See also_: *** 7662,7672 ****  File: gfortran.info, Node: EXP, Next: EXPONENT, Prev: EXIT, Up: Intrinsic Procedures ! 8.80 `EXP' -- Exponential function ================================== _Description_: ! `EXP(X)' computes the base e exponential of X. _Standard_: Fortran 77 and later, has overloads that are GNU extensions --- 7592,7602 ----  File: gfortran.info, Node: EXP, Next: EXPONENT, Prev: EXIT, Up: Intrinsic Procedures ! 8.80 'EXP' -- Exponential function ================================== _Description_: ! 'EXP(X)' computes the base e exponential of X. _Standard_: Fortran 77 and later, has overloads that are GNU extensions *************** _Class_: *** 7675,7684 **** Elemental function _Syntax_: ! `RESULT = EXP(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: The return value has same type and kind as X. --- 7605,7614 ---- Elemental function _Syntax_: ! 'RESULT = EXP(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: The return value has same type and kind as X. *************** _Example_: *** 7690,7715 **** end program test_exp _Specific names_: ! Name Argument Return type Standard ! `EXP(X)' `REAL(4) X' `REAL(4)' Fortran 77 and ! later ! `DEXP(X)' `REAL(8) X' `REAL(8)' Fortran 77 and ! later ! `CEXP(X)' `COMPLEX(4) `COMPLEX(4)' Fortran 77 and ! X' later ! `ZEXP(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! X' ! `CDEXP(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! X'  File: gfortran.info, Node: EXPONENT, Next: EXTENDS_TYPE_OF, Prev: EXP, Up: Intrinsic Procedures ! 8.81 `EXPONENT' -- Exponent function ==================================== _Description_: ! `EXPONENT(X)' returns the value of the exponent part of X. If X is zero the value returned is zero. _Standard_: --- 7620,7645 ---- end program test_exp _Specific names_: ! Name Argument Return type Standard ! 'EXP(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and ! later ! 'DEXP(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and ! later ! 'CEXP(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 77 and ! X' later ! 'ZEXP(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! X' ! 'CDEXP(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! X'  File: gfortran.info, Node: EXPONENT, Next: EXTENDS_TYPE_OF, Prev: EXP, Up: Intrinsic Procedures ! 8.81 'EXPONENT' -- Exponent function ==================================== _Description_: ! 'EXPONENT(X)' returns the value of the exponent part of X. If X is zero the value returned is zero. _Standard_: *************** _Class_: *** 7719,7731 **** Elemental function _Syntax_: ! `RESULT = EXPONENT(X)' _Arguments_: ! X The type shall be `REAL'. _Return value_: ! The return value is of type default `INTEGER'. _Example_: program test_exponent --- 7649,7661 ---- Elemental function _Syntax_: ! 'RESULT = EXPONENT(X)' _Arguments_: ! X The type shall be 'REAL'. _Return value_: ! The return value is of type default 'INTEGER'. _Example_: program test_exponent *************** _Example_: *** 7739,7746 ****  File: gfortran.info, Node: EXTENDS_TYPE_OF, Next: FDATE, Prev: EXPONENT, Up: Intrinsic Procedures ! 8.82 `EXTENDS_TYPE_OF' -- Query dynamic type for extension ! =========================================================== _Description_: Query dynamic type for extension. --- 7669,7676 ----  File: gfortran.info, Node: EXTENDS_TYPE_OF, Next: FDATE, Prev: EXPONENT, Up: Intrinsic Procedures ! 8.82 'EXTENDS_TYPE_OF' -- Query dynamic type for extension ! ========================================================== _Description_: Query dynamic type for extension. *************** _Class_: *** 7752,7767 **** Inquiry function _Syntax_: ! `RESULT = EXTENDS_TYPE_OF(A, MOLD)' _Arguments_: ! A Shall be an object of extensible declared type ! or unlimited polymorphic. ! MOLD Shall be an object of extensible declared type ! or unlimited polymorphic. _Return value_: ! The return value is a scalar of type default logical. It is true if and only if the dynamic type of A is an extension type of the dynamic type of MOLD. --- 7682,7697 ---- Inquiry function _Syntax_: ! 'RESULT = EXTENDS_TYPE_OF(A, MOLD)' _Arguments_: ! A Shall be an object of extensible declared type ! or unlimited polymorphic. ! MOLD Shall be an object of extensible declared type ! or unlimited polymorphic. _Return value_: ! The return value is a scalar of type default logical. It is true if and only if the dynamic type of A is an extension type of the dynamic type of MOLD. *************** _See also_: *** 7771,7782 ****  File: gfortran.info, Node: FDATE, Next: FGET, Prev: EXTENDS_TYPE_OF, Up: Intrinsic Procedures ! 8.83 `FDATE' -- Get the current time as a string ================================================ _Description_: ! `FDATE(DATE)' returns the current date (using the same format as ! `CTIME') in DATE. It is equivalent to `CALL CTIME(DATE, TIME())'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 7701,7712 ----  File: gfortran.info, Node: FDATE, Next: FGET, Prev: EXTENDS_TYPE_OF, Up: Intrinsic Procedures ! 8.83 'FDATE' -- Get the current time as a string ================================================ _Description_: ! 'FDATE(DATE)' returns the current date (using the same format as ! 'CTIME') in DATE. It is equivalent to 'CALL CTIME(DATE, TIME())'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 7788,7803 **** Subroutine, function _Syntax_: ! `CALL FDATE(DATE)'. ! `DATE = FDATE()'. _Arguments_: ! DATE The type shall be of type `CHARACTER' of the ! default kind. It is an `INTENT(OUT)' argument. ! If the length of this variable is too short ! for the date and time string to fit ! completely, it will be blank on procedure ! return. _Return value_: The current date and time as a string. --- 7718,7732 ---- Subroutine, function _Syntax_: ! 'CALL FDATE(DATE)'. ! 'DATE = FDATE()'. _Arguments_: ! DATE The type shall be of type 'CHARACTER' of the ! default kind. It is an 'INTENT(OUT)' argument. ! If the length of this variable is too short for ! the date and time string to fit completely, it ! will be blank on procedure return. _Return value_: The current date and time as a string. *************** _See also_: *** 7821,7843 ****  File: gfortran.info, Node: FGET, Next: FGETC, Prev: FDATE, Up: Intrinsic Procedures ! 8.84 `FGET' -- Read a single character in stream mode from stdin ================================================================ _Description_: Read a single character in stream mode from stdin by bypassing ! normal formatted output. Stream I/O should not be mixed with normal record-oriented (formatted or unformatted) I/O on the same unit; the results are unpredictable. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the `FGET' intrinsic is provided for backwards ! compatibility with `g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new ! stream IO feature in new code for future portability. See also ! *note Fortran 2003 status::. _Standard_: GNU extension --- 7750,7772 ----  File: gfortran.info, Node: FGET, Next: FGETC, Prev: FDATE, Up: Intrinsic Procedures ! 8.84 'FGET' -- Read a single character in stream mode from stdin ================================================================ _Description_: Read a single character in stream mode from stdin by bypassing ! normal formatted output. Stream I/O should not be mixed with normal record-oriented (formatted or unformatted) I/O on the same unit; the results are unpredictable. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the 'FGET' intrinsic is provided for backwards ! compatibility with 'g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new stream ! IO feature in new code for future portability. See also *note ! Fortran 2003 status::. _Standard_: GNU extension *************** _Class_: *** 7846,7860 **** Subroutine, function _Syntax_: ! `CALL FGET(C [, STATUS])' ! `STATUS = FGET(C)' _Arguments_: ! C The type shall be `CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type `INTEGER'. ! Returns 0 on success, -1 on end-of-file, and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fget --- 7775,7789 ---- Subroutine, function _Syntax_: ! 'CALL FGET(C [, STATUS])' ! 'STATUS = FGET(C)' _Arguments_: ! C The type shall be 'CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type 'INTEGER'. ! Returns 0 on success, -1 on end-of-file, and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fget *************** _See also_: *** 7877,7883 ****  File: gfortran.info, Node: FGETC, Next: FLOOR, Prev: FGET, Up: Intrinsic Procedures ! 8.85 `FGETC' -- Read a single character in stream mode ====================================================== _Description_: --- 7806,7812 ----  File: gfortran.info, Node: FGETC, Next: FLOOR, Prev: FGET, Up: Intrinsic Procedures ! 8.85 'FGETC' -- Read a single character in stream mode ====================================================== _Description_: *************** _Description_: *** 7889,7899 **** This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the `FGET' intrinsic is provided for backwards ! compatibility with `g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new ! stream IO feature in new code for future portability. See also ! *note Fortran 2003 status::. _Standard_: GNU extension --- 7818,7828 ---- This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the 'FGET' intrinsic is provided for backwards ! compatibility with 'g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new stream ! IO feature in new code for future portability. See also *note ! Fortran 2003 status::. _Standard_: GNU extension *************** _Class_: *** 7902,7917 **** Subroutine, function _Syntax_: ! `CALL FGETC(UNIT, C [, STATUS])' ! `STATUS = FGETC(UNIT, C)' _Arguments_: ! UNIT The type shall be `INTEGER'. ! C The type shall be `CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type `INTEGER'. ! Returns 0 on success, -1 on end-of-file and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fgetc --- 7831,7846 ---- Subroutine, function _Syntax_: ! 'CALL FGETC(UNIT, C [, STATUS])' ! 'STATUS = FGETC(UNIT, C)' _Arguments_: ! UNIT The type shall be 'INTEGER'. ! C The type shall be 'CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type 'INTEGER'. ! Returns 0 on success, -1 on end-of-file and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fgetc *************** _See also_: *** 7933,7943 ****  File: gfortran.info, Node: FLOOR, Next: FLUSH, Prev: FGETC, Up: Intrinsic Procedures ! 8.86 `FLOOR' -- Integer floor function ====================================== _Description_: ! `FLOOR(A)' returns the greatest integer less than or equal to X. _Standard_: Fortran 95 and later --- 7862,7872 ----  File: gfortran.info, Node: FLOOR, Next: FLUSH, Prev: FGETC, Up: Intrinsic Procedures ! 8.86 'FLOOR' -- Integer floor function ====================================== _Description_: ! 'FLOOR(A)' returns the greatest integer less than or equal to X. _Standard_: Fortran 95 and later *************** _Class_: *** 7946,7962 **** Elemental function _Syntax_: ! `RESULT = FLOOR(A [, KIND])' _Arguments_: ! A The type shall be `REAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER(KIND)' if KIND is present and ! of default-kind `INTEGER' otherwise. _Example_: program test_floor --- 7875,7891 ---- Elemental function _Syntax_: ! 'RESULT = FLOOR(A [, KIND])' _Arguments_: ! A The type shall be 'REAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER(KIND)' if KIND is present and ! of default-kind 'INTEGER' otherwise. _Example_: program test_floor *************** _Example_: *** 7969,7983 **** _See also_: *note CEILING::, *note NINT:: -  File: gfortran.info, Node: FLUSH, Next: FNUM, Prev: FLOOR, Up: Intrinsic Procedures ! 8.87 `FLUSH' -- Flush I/O unit(s) ================================= _Description_: ! Flushes Fortran unit(s) currently open for output. Without the optional argument, all units are flushed, otherwise just the unit specified. --- 7898,7911 ---- _See also_: *note CEILING::, *note NINT::  File: gfortran.info, Node: FLUSH, Next: FNUM, Prev: FLOOR, Up: Intrinsic Procedures ! 8.87 'FLUSH' -- Flush I/O unit(s) ================================= _Description_: ! Flushes Fortran unit(s) currently open for output. Without the optional argument, all units are flushed, otherwise just the unit specified. *************** _Class_: *** 7988,8011 **** Subroutine _Syntax_: ! `CALL FLUSH(UNIT)' _Arguments_: ! UNIT (Optional) The type shall be `INTEGER'. _Note_: ! Beginning with the Fortran 2003 standard, there is a `FLUSH' ! statement that should be preferred over the `FLUSH' intrinsic. ! The `FLUSH' intrinsic and the Fortran 2003 `FLUSH' statement have identical effect: they flush the runtime library's I/O buffer so ! that the data becomes visible to other processes. This does not guarantee that the data is committed to disk. ! On POSIX systems, you can request that all data is transferred to ! the storage device by calling the `fsync' function, with the POSIX file descriptor of the I/O unit as argument (retrieved with GNU ! intrinsic `FNUM'). The following example shows how: ! Declare the interface for POSIX fsync function interface --- 7916,7939 ---- Subroutine _Syntax_: ! 'CALL FLUSH(UNIT)' _Arguments_: ! UNIT (Optional) The type shall be 'INTEGER'. _Note_: ! Beginning with the Fortran 2003 standard, there is a 'FLUSH' ! statement that should be preferred over the 'FLUSH' intrinsic. ! The 'FLUSH' intrinsic and the Fortran 2003 'FLUSH' statement have identical effect: they flush the runtime library's I/O buffer so ! that the data becomes visible to other processes. This does not guarantee that the data is committed to disk. ! On POSIX systems, you can request that all data is transferred to ! the storage device by calling the 'fsync' function, with the POSIX file descriptor of the I/O unit as argument (retrieved with GNU ! intrinsic 'FNUM'). The following example shows how: ! Declare the interface for POSIX fsync function interface *************** _Note_: *** 8033,8048 **** ! Handle possible error if (ret /= 0) stop "Error calling FSYNC" -  File: gfortran.info, Node: FNUM, Next: FPUT, Prev: FLUSH, Up: Intrinsic Procedures ! 8.88 `FNUM' -- File number function =================================== _Description_: ! `FNUM(UNIT)' returns the POSIX file descriptor number ! corresponding to the open Fortran I/O unit `UNIT'. _Standard_: GNU extension --- 7961,7975 ---- ! Handle possible error if (ret /= 0) stop "Error calling FSYNC"  File: gfortran.info, Node: FNUM, Next: FPUT, Prev: FLUSH, Up: Intrinsic Procedures ! 8.88 'FNUM' -- File number function =================================== _Description_: ! 'FNUM(UNIT)' returns the POSIX file descriptor number corresponding ! to the open Fortran I/O unit 'UNIT'. _Standard_: GNU extension *************** _Class_: *** 8051,8063 **** Function _Syntax_: ! `RESULT = FNUM(UNIT)' _Arguments_: ! UNIT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' _Example_: program test_fnum --- 7978,7990 ---- Function _Syntax_: ! 'RESULT = FNUM(UNIT)' _Arguments_: ! UNIT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' _Example_: program test_fnum *************** _Example_: *** 8071,8093 ****  File: gfortran.info, Node: FPUT, Next: FPUTC, Prev: FNUM, Up: Intrinsic Procedures ! 8.89 `FPUT' -- Write a single character in stream mode to stdout ================================================================ _Description_: Write a single character in stream mode to stdout by bypassing ! normal formatted output. Stream I/O should not be mixed with normal record-oriented (formatted or unformatted) I/O on the same unit; the results are unpredictable. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the `FGET' intrinsic is provided for backwards ! compatibility with `g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new ! stream IO feature in new code for future portability. See also ! *note Fortran 2003 status::. _Standard_: GNU extension --- 7998,8020 ----  File: gfortran.info, Node: FPUT, Next: FPUTC, Prev: FNUM, Up: Intrinsic Procedures ! 8.89 'FPUT' -- Write a single character in stream mode to stdout ================================================================ _Description_: Write a single character in stream mode to stdout by bypassing ! normal formatted output. Stream I/O should not be mixed with normal record-oriented (formatted or unformatted) I/O on the same unit; the results are unpredictable. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the 'FGET' intrinsic is provided for backwards ! compatibility with 'g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new stream ! IO feature in new code for future portability. See also *note ! Fortran 2003 status::. _Standard_: GNU extension *************** _Class_: *** 8096,8110 **** Subroutine, function _Syntax_: ! `CALL FPUT(C [, STATUS])' ! `STATUS = FPUT(C)' _Arguments_: ! C The type shall be `CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type `INTEGER'. ! Returns 0 on success, -1 on end-of-file and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fput --- 8023,8037 ---- Subroutine, function _Syntax_: ! 'CALL FPUT(C [, STATUS])' ! 'STATUS = FPUT(C)' _Arguments_: ! C The type shall be 'CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type 'INTEGER'. ! Returns 0 on success, -1 on end-of-file and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fput *************** _See also_: *** 8121,8143 ****  File: gfortran.info, Node: FPUTC, Next: FRACTION, Prev: FPUT, Up: Intrinsic Procedures ! 8.90 `FPUTC' -- Write a single character in stream mode ======================================================= _Description_: Write a single character in stream mode by bypassing normal ! formatted output. Stream I/O should not be mixed with normal record-oriented (formatted or unformatted) I/O on the same unit; the results are unpredictable. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the `FGET' intrinsic is provided for backwards ! compatibility with `g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new ! stream IO feature in new code for future portability. See also ! *note Fortran 2003 status::. _Standard_: GNU extension --- 8048,8070 ----  File: gfortran.info, Node: FPUTC, Next: FRACTION, Prev: FPUT, Up: Intrinsic Procedures ! 8.90 'FPUTC' -- Write a single character in stream mode ======================================================= _Description_: Write a single character in stream mode by bypassing normal ! formatted output. Stream I/O should not be mixed with normal record-oriented (formatted or unformatted) I/O on the same unit; the results are unpredictable. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the 'FGET' intrinsic is provided for backwards ! compatibility with 'g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new stream ! IO feature in new code for future portability. See also *note ! Fortran 2003 status::. _Standard_: GNU extension *************** _Class_: *** 8146,8161 **** Subroutine, function _Syntax_: ! `CALL FPUTC(UNIT, C [, STATUS])' ! `STATUS = FPUTC(UNIT, C)' _Arguments_: ! UNIT The type shall be `INTEGER'. ! C The type shall be `CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type `INTEGER'. ! Returns 0 on success, -1 on end-of-file and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fputc --- 8073,8088 ---- Subroutine, function _Syntax_: ! 'CALL FPUTC(UNIT, C [, STATUS])' ! 'STATUS = FPUTC(UNIT, C)' _Arguments_: ! UNIT The type shall be 'INTEGER'. ! C The type shall be 'CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type 'INTEGER'. ! Returns 0 on success, -1 on end-of-file and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fputc *************** _See also_: *** 8175,8186 ****  File: gfortran.info, Node: FRACTION, Next: FREE, Prev: FPUTC, Up: Intrinsic Procedures ! 8.91 `FRACTION' -- Fractional part of the model representation ============================================================== _Description_: ! `FRACTION(X)' returns the fractional part of the model ! representation of `X'. _Standard_: Fortran 95 and later --- 8102,8113 ----  File: gfortran.info, Node: FRACTION, Next: FREE, Prev: FPUTC, Up: Intrinsic Procedures ! 8.91 'FRACTION' -- Fractional part of the model representation ============================================================== _Description_: ! 'FRACTION(X)' returns the fractional part of the model ! representation of 'X'. _Standard_: Fortran 95 and later *************** _Class_: *** 8189,8203 **** Elemental function _Syntax_: ! `Y = FRACTION(X)' _Arguments_: ! X The type of the argument shall be a `REAL'. _Return value_: ! The return value is of the same type and kind as the argument. ! The fractional part of the model representation of `X' is returned; ! it is `X * RADIX(X)**(-EXPONENT(X))'. _Example_: program test_fraction --- 8116,8130 ---- Elemental function _Syntax_: ! 'Y = FRACTION(X)' _Arguments_: ! X The type of the argument shall be a 'REAL'. _Return value_: ! The return value is of the same type and kind as the argument. The ! fractional part of the model representation of 'X' is returned; it ! is 'X * RADIX(X)**(-EXPONENT(X))'. _Example_: program test_fraction *************** _Example_: *** 8206,8224 **** print *, fraction(x), x * radix(x)**(-exponent(x)) end program test_fraction -  File: gfortran.info, Node: FREE, Next: FSEEK, Prev: FRACTION, Up: Intrinsic Procedures ! 8.92 `FREE' -- Frees memory =========================== _Description_: ! Frees memory previously allocated by `MALLOC'. The `FREE' intrinsic is an extension intended to be used with Cray pointers, and is provided in GNU Fortran to allow user to compile legacy ! code. For new code using Fortran 95 pointers, the memory ! de-allocation intrinsic is `DEALLOCATE'. _Standard_: GNU extension --- 8133,8150 ---- print *, fraction(x), x * radix(x)**(-exponent(x)) end program test_fraction  File: gfortran.info, Node: FREE, Next: FSEEK, Prev: FRACTION, Up: Intrinsic Procedures ! 8.92 'FREE' -- Frees memory =========================== _Description_: ! Frees memory previously allocated by 'MALLOC'. The 'FREE' intrinsic is an extension intended to be used with Cray pointers, and is provided in GNU Fortran to allow user to compile legacy ! code. For new code using Fortran 95 pointers, the memory ! de-allocation intrinsic is 'DEALLOCATE'. _Standard_: GNU extension *************** _Class_: *** 8227,8244 **** Subroutine _Syntax_: ! `CALL FREE(PTR)' _Arguments_: ! PTR The type shall be `INTEGER'. It represents the ! location of the memory that should be ! de-allocated. _Return value_: None _Example_: ! See `MALLOC' for an example. _See also_: *note MALLOC:: --- 8153,8170 ---- Subroutine _Syntax_: ! 'CALL FREE(PTR)' _Arguments_: ! PTR The type shall be 'INTEGER'. It represents the ! location of the memory that should be ! de-allocated. _Return value_: None _Example_: ! See 'MALLOC' for an example. _See also_: *note MALLOC:: *************** _See also_: *** 8246,8265 ****  File: gfortran.info, Node: FSEEK, Next: FSTAT, Prev: FREE, Up: Intrinsic Procedures ! 8.93 `FSEEK' -- Low level file positioning subroutine ===================================================== _Description_: ! Moves UNIT to the specified OFFSET. If WHENCE is set to 0, the ! OFFSET is taken as an absolute value `SEEK_SET', if set to 1, ! OFFSET is taken to be relative to the current position `SEEK_CUR', ! and if set to 2 relative to the end of the file `SEEK_END'. On ! error, STATUS is set to a nonzero value. If STATUS the seek fails silently. This intrinsic routine is not fully backwards compatible with ! `g77'. In `g77', the `FSEEK' takes a statement label instead of a ! STATUS variable. If FSEEK is used in old code, change CALL FSEEK(UNIT, OFFSET, WHENCE, *label) to INTEGER :: status --- 8172,8191 ----  File: gfortran.info, Node: FSEEK, Next: FSTAT, Prev: FREE, Up: Intrinsic Procedures ! 8.93 'FSEEK' -- Low level file positioning subroutine ===================================================== _Description_: ! Moves UNIT to the specified OFFSET. If WHENCE is set to 0, the ! OFFSET is taken as an absolute value 'SEEK_SET', if set to 1, ! OFFSET is taken to be relative to the current position 'SEEK_CUR', ! and if set to 2 relative to the end of the file 'SEEK_END'. On ! error, STATUS is set to a nonzero value. If STATUS the seek fails silently. This intrinsic routine is not fully backwards compatible with ! 'g77'. In 'g77', the 'FSEEK' takes a statement label instead of a ! STATUS variable. If FSEEK is used in old code, change CALL FSEEK(UNIT, OFFSET, WHENCE, *label) to INTEGER :: status *************** _Description_: *** 8268,8274 **** Please note that GNU Fortran provides the Fortran 2003 Stream facility. Programmers should consider the use of new stream IO ! feature in new code for future portability. See also *note Fortran 2003 status::. _Standard_: --- 8194,8200 ---- Please note that GNU Fortran provides the Fortran 2003 Stream facility. Programmers should consider the use of new stream IO ! feature in new code for future portability. See also *note Fortran 2003 status::. _Standard_: *************** _Class_: *** 8278,8292 **** Subroutine _Syntax_: ! `CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])' _Arguments_: ! UNIT Shall be a scalar of type `INTEGER'. ! OFFSET Shall be a scalar of type `INTEGER'. ! WHENCE Shall be a scalar of type `INTEGER'. Its ! value shall be either 0, 1 or 2. ! STATUS (Optional) shall be a scalar of type ! `INTEGER(4)'. _Example_: PROGRAM test_fseek --- 8204,8218 ---- Subroutine _Syntax_: ! 'CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])' _Arguments_: ! UNIT Shall be a scalar of type 'INTEGER'. ! OFFSET Shall be a scalar of type 'INTEGER'. ! WHENCE Shall be a scalar of type 'INTEGER'. Its value ! shall be either 0, 1 or 2. ! STATUS (Optional) shall be a scalar of type ! 'INTEGER(4)'. _Example_: PROGRAM test_fseek *************** _See also_: *** 8316,8329 ****  File: gfortran.info, Node: FSTAT, Next: FTELL, Prev: FSEEK, Up: Intrinsic Procedures ! 8.94 `FSTAT' -- Get file status =============================== _Description_: ! `FSTAT' is identical to *note STAT::, except that information ! about an already opened file is obtained. ! The elements in `VALUES' are the same as described by *note STAT::. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 8242,8255 ----  File: gfortran.info, Node: FSTAT, Next: FTELL, Prev: FSEEK, Up: Intrinsic Procedures ! 8.94 'FSTAT' -- Get file status =============================== _Description_: ! 'FSTAT' is identical to *note STAT::, except that information about ! an already opened file is obtained. ! The elements in 'VALUES' are the same as described by *note STAT::. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 8335,8349 **** Subroutine, function _Syntax_: ! `CALL FSTAT(UNIT, VALUES [, STATUS])' ! `STATUS = FSTAT(UNIT, VALUES)' _Arguments_: ! UNIT An open I/O unit number of type `INTEGER'. ! VALUES The type shall be `INTEGER(4), DIMENSION(13)'. ! STATUS (Optional) status flag of type `INTEGER(4)'. ! Returns 0 on success and a system specific ! error code otherwise. _Example_: See *note STAT:: for an example. --- 8261,8275 ---- Subroutine, function _Syntax_: ! 'CALL FSTAT(UNIT, VALUES [, STATUS])' ! 'STATUS = FSTAT(UNIT, VALUES)' _Arguments_: ! UNIT An open I/O unit number of type 'INTEGER'. ! VALUES The type shall be 'INTEGER(4), DIMENSION(13)'. ! STATUS (Optional) status flag of type 'INTEGER(4)'. ! Returns 0 on success and a system specific error ! code otherwise. _Example_: See *note STAT:: for an example. *************** _See also_: *** 8354,8360 ****  File: gfortran.info, Node: FTELL, Next: GAMMA, Prev: FSTAT, Up: Intrinsic Procedures ! 8.95 `FTELL' -- Current stream position ======================================= _Description_: --- 8280,8286 ----  File: gfortran.info, Node: FTELL, Next: GAMMA, Prev: FSTAT, Up: Intrinsic Procedures ! 8.95 'FTELL' -- Current stream position ======================================= _Description_: *************** _Class_: *** 8370,8381 **** Subroutine, function _Syntax_: ! `CALL FTELL(UNIT, OFFSET)' ! `OFFSET = FTELL(UNIT)' _Arguments_: ! OFFSET Shall of type `INTEGER'. ! UNIT Shall of type `INTEGER'. _Return value_: In either syntax, OFFSET is set to the current offset of unit --- 8296,8307 ---- Subroutine, function _Syntax_: ! 'CALL FTELL(UNIT, OFFSET)' ! 'OFFSET = FTELL(UNIT)' _Arguments_: ! OFFSET Shall of type 'INTEGER'. ! UNIT Shall of type 'INTEGER'. _Return value_: In either syntax, OFFSET is set to the current offset of unit *************** _See also_: *** 8395,8407 ****  File: gfortran.info, Node: GAMMA, Next: GERROR, Prev: FTELL, Up: Intrinsic Procedures ! 8.96 `GAMMA' -- Gamma function ============================== _Description_: ! `GAMMA(X)' computes Gamma (\Gamma) of X. For positive, integer ! values of X the Gamma function simplifies to the factorial ! function \Gamma(x)=(x-1)!. _Standard_: Fortran 2008 and later --- 8321,8333 ----  File: gfortran.info, Node: GAMMA, Next: GERROR, Prev: FTELL, Up: Intrinsic Procedures ! 8.96 'GAMMA' -- Gamma function ============================== _Description_: ! 'GAMMA(X)' computes Gamma (\Gamma) of X. For positive, integer ! values of X the Gamma function simplifies to the factorial function ! \Gamma(x)=(x-1)!. _Standard_: Fortran 2008 and later *************** _Class_: *** 8410,8423 **** Elemental function _Syntax_: ! `X = GAMMA(X)' _Arguments_: ! X Shall be of type `REAL' and neither zero nor a ! negative integer. _Return value_: ! The return value is of type `REAL' of the same kind as X. _Example_: program test_gamma --- 8336,8349 ---- Elemental function _Syntax_: ! 'X = GAMMA(X)' _Arguments_: ! X Shall be of type 'REAL' and neither zero nor a ! negative integer. _Return value_: ! The return value is of type 'REAL' of the same kind as X. _Example_: program test_gamma *************** _Example_: *** 8426,8448 **** end program test_gamma _Specific names_: ! Name Argument Return type Standard ! `GAMMA(X)' `REAL(4) X' `REAL(4)' GNU Extension ! `DGAMMA(X)' `REAL(8) X' `REAL(8)' GNU Extension _See also_: Logarithm of the Gamma function: *note LOG_GAMMA:: -  File: gfortran.info, Node: GERROR, Next: GETARG, Prev: GAMMA, Up: Intrinsic Procedures ! 8.97 `GERROR' -- Get last system error message ============================================== _Description_: Returns the system error message corresponding to the last system ! error. This resembles the functionality of `strerror(3)' in C. _Standard_: GNU extension --- 8352,8373 ---- end program test_gamma _Specific names_: ! Name Argument Return type Standard ! 'GAMMA(X)' 'REAL(4) X' 'REAL(4)' GNU Extension ! 'DGAMMA(X)' 'REAL(8) X' 'REAL(8)' GNU Extension _See also_: Logarithm of the Gamma function: *note LOG_GAMMA::  File: gfortran.info, Node: GERROR, Next: GETARG, Prev: GAMMA, Up: Intrinsic Procedures ! 8.97 'GERROR' -- Get last system error message ============================================== _Description_: Returns the system error message corresponding to the last system ! error. This resembles the functionality of 'strerror(3)' in C. _Standard_: GNU extension *************** _Class_: *** 8451,8460 **** Subroutine _Syntax_: ! `CALL GERROR(RESULT)' _Arguments_: ! RESULT Shall of type `CHARACTER' and of default _Example_: PROGRAM test_gerror --- 8376,8385 ---- Subroutine _Syntax_: ! 'CALL GERROR(RESULT)' _Arguments_: ! RESULT Shall of type 'CHARACTER' and of default _Example_: PROGRAM test_gerror *************** _See also_: *** 8469,8475 ****  File: gfortran.info, Node: GETARG, Next: GET_COMMAND, Prev: GERROR, Up: Intrinsic Procedures ! 8.98 `GETARG' -- Get command line arguments =========================================== _Description_: --- 8394,8400 ----  File: gfortran.info, Node: GETARG, Next: GET_COMMAND, Prev: GERROR, Up: Intrinsic Procedures ! 8.98 'GETARG' -- Get command line arguments =========================================== _Description_: *************** _Class_: *** 8488,8506 **** Subroutine _Syntax_: ! `CALL GETARG(POS, VALUE)' _Arguments_: ! POS Shall be of type `INTEGER' and not wider than ! the default integer kind; POS \geq 0 ! VALUE Shall be of type `CHARACTER' and of default ! kind. ! VALUE Shall be of type `CHARACTER'. _Return value_: ! After `GETARG' returns, the VALUE argument holds the POSth command ! line argument. If VALUE can not hold the argument, it is truncated ! to fit the length of VALUE. If there are less than POS arguments specified at the command line, VALUE will be filled with blanks. If POS = 0, VALUE is set to the name of the program (on systems that support this feature). --- 8413,8431 ---- Subroutine _Syntax_: ! 'CALL GETARG(POS, VALUE)' _Arguments_: ! POS Shall be of type 'INTEGER' and not wider than ! the default integer kind; POS \geq 0 ! VALUE Shall be of type 'CHARACTER' and of default ! kind. ! VALUE Shall be of type 'CHARACTER'. _Return value_: ! After 'GETARG' returns, the VALUE argument holds the POSth command ! line argument. If VALUE can not hold the argument, it is truncated ! to fit the length of VALUE. If there are less than POS arguments specified at the command line, VALUE will be filled with blanks. If POS = 0, VALUE is set to the name of the program (on systems that support this feature). *************** _See also_: *** 8525,8531 ****  File: gfortran.info, Node: GET_COMMAND, Next: GET_COMMAND_ARGUMENT, Prev: GETARG, Up: Intrinsic Procedures ! 8.99 `GET_COMMAND' -- Get the entire command line ================================================= _Description_: --- 8450,8456 ----  File: gfortran.info, Node: GET_COMMAND, Next: GET_COMMAND_ARGUMENT, Prev: GETARG, Up: Intrinsic Procedures ! 8.99 'GET_COMMAND' -- Get the entire command line ================================================= _Description_: *************** _Class_: *** 8539,8558 **** Subroutine _Syntax_: ! `CALL GET_COMMAND([COMMAND, LENGTH, STATUS])' _Arguments_: ! COMMAND (Optional) shall be of type `CHARACTER' and of ! default kind. ! LENGTH (Optional) Shall be of type `INTEGER' and of ! default kind. ! STATUS (Optional) Shall be of type `INTEGER' and of ! default kind. _Return value_: If COMMAND is present, stores the entire command line that was used ! to invoke the program in COMMAND. If LENGTH is present, it is ! assigned the length of the command line. If STATUS is present, it is assigned 0 upon success of the command, -1 if COMMAND is too short to store the command line, or a positive value in case of an error. --- 8464,8483 ---- Subroutine _Syntax_: ! 'CALL GET_COMMAND([COMMAND, LENGTH, STATUS])' _Arguments_: ! COMMAND (Optional) shall be of type 'CHARACTER' and of ! default kind. ! LENGTH (Optional) Shall be of type 'INTEGER' and of ! default kind. ! STATUS (Optional) Shall be of type 'INTEGER' and of ! default kind. _Return value_: If COMMAND is present, stores the entire command line that was used ! to invoke the program in COMMAND. If LENGTH is present, it is ! assigned the length of the command line. If STATUS is present, it is assigned 0 upon success of the command, -1 if COMMAND is too short to store the command line, or a positive value in case of an error. *************** _See also_: *** 8570,8581 ****  File: gfortran.info, Node: GET_COMMAND_ARGUMENT, Next: GETCWD, Prev: GET_COMMAND, Up: Intrinsic Procedures ! 8.100 `GET_COMMAND_ARGUMENT' -- Get command line arguments ========================================================== _Description_: ! Retrieve the NUMBER-th argument that was passed on the command ! line when the containing program was invoked. _Standard_: Fortran 2003 and later --- 8495,8506 ----  File: gfortran.info, Node: GET_COMMAND_ARGUMENT, Next: GETCWD, Prev: GET_COMMAND, Up: Intrinsic Procedures ! 8.100 'GET_COMMAND_ARGUMENT' -- Get command line arguments ========================================================== _Description_: ! Retrieve the NUMBER-th argument that was passed on the command line ! when the containing program was invoked. _Standard_: Fortran 2003 and later *************** _Class_: *** 8584,8612 **** Subroutine _Syntax_: ! `CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])' _Arguments_: ! NUMBER Shall be a scalar of type `INTEGER' and of ! default kind, NUMBER \geq 0 ! VALUE (Optional) Shall be a scalar of type ! `CHARACTER' and of default kind. ! LENGTH (Optional) Shall be a scalar of type `INTEGER' ! and of default kind. ! STATUS (Optional) Shall be a scalar of type `INTEGER' ! and of default kind. _Return value_: ! After `GET_COMMAND_ARGUMENT' returns, the VALUE argument holds the ! NUMBER-th command line argument. If VALUE can not hold the ! argument, it is truncated to fit the length of VALUE. If there are less than NUMBER arguments specified at the command line, VALUE will be filled with blanks. If NUMBER = 0, VALUE is set to the ! name of the program (on systems that support this feature). The LENGTH argument contains the length of the NUMBER-th command line ! argument. If the argument retrieval fails, STATUS is a positive ! number; if VALUE contains a truncated command line argument, ! STATUS is -1; and otherwise the STATUS is zero. _Example_: PROGRAM test_get_command_argument --- 8509,8537 ---- Subroutine _Syntax_: ! 'CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])' _Arguments_: ! NUMBER Shall be a scalar of type 'INTEGER' and of ! default kind, NUMBER \geq 0 ! VALUE (Optional) Shall be a scalar of type 'CHARACTER' ! and of default kind. ! LENGTH (Optional) Shall be a scalar of type 'INTEGER' ! and of default kind. ! STATUS (Optional) Shall be a scalar of type 'INTEGER' ! and of default kind. _Return value_: ! After 'GET_COMMAND_ARGUMENT' returns, the VALUE argument holds the ! NUMBER-th command line argument. If VALUE can not hold the ! argument, it is truncated to fit the length of VALUE. If there are less than NUMBER arguments specified at the command line, VALUE will be filled with blanks. If NUMBER = 0, VALUE is set to the ! name of the program (on systems that support this feature). The LENGTH argument contains the length of the NUMBER-th command line ! argument. If the argument retrieval fails, STATUS is a positive ! number; if VALUE contains a truncated command line argument, STATUS ! is -1; and otherwise the STATUS is zero. _Example_: PROGRAM test_get_command_argument *************** _See also_: *** 8629,8635 ****  File: gfortran.info, Node: GETCWD, Next: GETENV, Prev: GET_COMMAND_ARGUMENT, Up: Intrinsic Procedures ! 8.101 `GETCWD' -- Get current working directory =============================================== _Description_: --- 8554,8560 ----  File: gfortran.info, Node: GETCWD, Next: GETENV, Prev: GET_COMMAND_ARGUMENT, Up: Intrinsic Procedures ! 8.101 'GETCWD' -- Get current working directory =============================================== _Description_: *************** _Class_: *** 8645,8659 **** Subroutine, function _Syntax_: ! `CALL GETCWD(C [, STATUS])' ! `STATUS = GETCWD(C)' _Arguments_: ! C The type shall be `CHARACTER' and of default ! kind. ! STATUS (Optional) status flag. Returns 0 on success, ! a system specific and nonzero error code ! otherwise. _Example_: PROGRAM test_getcwd --- 8570,8584 ---- Subroutine, function _Syntax_: ! 'CALL GETCWD(C [, STATUS])' ! 'STATUS = GETCWD(C)' _Arguments_: ! C The type shall be 'CHARACTER' and of default ! kind. ! STATUS (Optional) status flag. Returns 0 on success, a ! system specific and nonzero error code ! otherwise. _Example_: PROGRAM test_getcwd *************** _See also_: *** 8668,8674 ****  File: gfortran.info, Node: GETENV, Next: GET_ENVIRONMENT_VARIABLE, Prev: GETCWD, Up: Intrinsic Procedures ! 8.102 `GETENV' -- Get an environmental variable =============================================== _Description_: --- 8593,8599 ----  File: gfortran.info, Node: GETENV, Next: GET_ENVIRONMENT_VARIABLE, Prev: GETCWD, Up: Intrinsic Procedures ! 8.102 'GETENV' -- Get an environmental variable =============================================== _Description_: *************** _Description_: *** 8679,8687 **** of the *note GET_ENVIRONMENT_VARIABLE:: intrinsic defined by the Fortran 2003 standard. ! Note that `GETENV' need not be thread-safe. It is the responsibility of the user to ensure that the environment is not ! being updated concurrently with a call to the `GETENV' intrinsic. _Standard_: GNU extension --- 8604,8612 ---- of the *note GET_ENVIRONMENT_VARIABLE:: intrinsic defined by the Fortran 2003 standard. ! Note that 'GETENV' need not be thread-safe. It is the responsibility of the user to ensure that the environment is not ! being updated concurrently with a call to the 'GETENV' intrinsic. _Standard_: GNU extension *************** _Class_: *** 8690,8706 **** Subroutine _Syntax_: ! `CALL GETENV(NAME, VALUE)' _Arguments_: ! NAME Shall be of type `CHARACTER' and of default ! kind. ! VALUE Shall be of type `CHARACTER' and of default ! kind. _Return value_: ! Stores the value of NAME in VALUE. If VALUE is not large enough to ! hold the data, it is truncated. If NAME is not set, VALUE will be filled with blanks. _Example_: --- 8615,8631 ---- Subroutine _Syntax_: ! 'CALL GETENV(NAME, VALUE)' _Arguments_: ! NAME Shall be of type 'CHARACTER' and of default ! kind. ! VALUE Shall be of type 'CHARACTER' and of default ! kind. _Return value_: ! Stores the value of NAME in VALUE. If VALUE is not large enough to ! hold the data, it is truncated. If NAME is not set, VALUE will be filled with blanks. _Example_: *************** _See also_: *** 8716,8731 ****  File: gfortran.info, Node: GET_ENVIRONMENT_VARIABLE, Next: GETGID, Prev: GETENV, Up: Intrinsic Procedures ! 8.103 `GET_ENVIRONMENT_VARIABLE' -- Get an environmental variable ================================================================= _Description_: Get the VALUE of the environmental variable NAME. ! Note that `GET_ENVIRONMENT_VARIABLE' need not be thread-safe. It is the responsibility of the user to ensure that the environment is not being updated concurrently with a call to the ! `GET_ENVIRONMENT_VARIABLE' intrinsic. _Standard_: Fortran 2003 and later --- 8641,8656 ----  File: gfortran.info, Node: GET_ENVIRONMENT_VARIABLE, Next: GETGID, Prev: GETENV, Up: Intrinsic Procedures ! 8.103 'GET_ENVIRONMENT_VARIABLE' -- Get an environmental variable ================================================================= _Description_: Get the VALUE of the environmental variable NAME. ! Note that 'GET_ENVIRONMENT_VARIABLE' need not be thread-safe. It is the responsibility of the user to ensure that the environment is not being updated concurrently with a call to the ! 'GET_ENVIRONMENT_VARIABLE' intrinsic. _Standard_: Fortran 2003 and later *************** _Class_: *** 8734,8766 **** Subroutine _Syntax_: ! `CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS, TRIM_NAME)' _Arguments_: ! NAME Shall be a scalar of type `CHARACTER' and of ! default kind. ! VALUE (Optional) Shall be a scalar of type ! `CHARACTER' and of default kind. ! LENGTH (Optional) Shall be a scalar of type `INTEGER' ! and of default kind. ! STATUS (Optional) Shall be a scalar of type `INTEGER' ! and of default kind. ! TRIM_NAME (Optional) Shall be a scalar of type `LOGICAL' ! and of default kind. _Return value_: ! Stores the value of NAME in VALUE. If VALUE is not large enough to ! hold the data, it is truncated. If NAME is not set, VALUE will be ! filled with blanks. Argument LENGTH contains the length needed for ! storing the environment variable NAME or zero if it is not ! present. STATUS is -1 if VALUE is present but too short for the ! environment variable; it is 1 if the environment variable does not ! exist and 2 if the processor does not support environment ! variables; in all other cases STATUS is zero. If TRIM_NAME is ! present with the value `.FALSE.', the trailing blanks in NAME are ! significant; otherwise they are not part of the environment ! variable name. _Example_: PROGRAM test_getenv --- 8659,8690 ---- Subroutine _Syntax_: ! 'CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS, TRIM_NAME)' _Arguments_: ! NAME Shall be a scalar of type 'CHARACTER' and of ! default kind. ! VALUE (Optional) Shall be a scalar of type 'CHARACTER' ! and of default kind. ! LENGTH (Optional) Shall be a scalar of type 'INTEGER' ! and of default kind. ! STATUS (Optional) Shall be a scalar of type 'INTEGER' ! and of default kind. ! TRIM_NAME (Optional) Shall be a scalar of type 'LOGICAL' ! and of default kind. _Return value_: ! Stores the value of NAME in VALUE. If VALUE is not large enough to ! hold the data, it is truncated. If NAME is not set, VALUE will be ! filled with blanks. Argument LENGTH contains the length needed for ! storing the environment variable NAME or zero if it is not present. ! STATUS is -1 if VALUE is present but too short for the environment ! variable; it is 1 if the environment variable does not exist and 2 ! if the processor does not support environment variables; in all ! other cases STATUS is zero. If TRIM_NAME is present with the value ! '.FALSE.', the trailing blanks in NAME are significant; otherwise ! they are not part of the environment variable name. _Example_: PROGRAM test_getenv *************** _Example_: *** 8772,8778 ****  File: gfortran.info, Node: GETGID, Next: GETLOG, Prev: GET_ENVIRONMENT_VARIABLE, Up: Intrinsic Procedures ! 8.104 `GETGID' -- Group ID function =================================== _Description_: --- 8696,8702 ----  File: gfortran.info, Node: GETGID, Next: GETLOG, Prev: GET_ENVIRONMENT_VARIABLE, Up: Intrinsic Procedures ! 8.104 'GETGID' -- Group ID function =================================== _Description_: *************** _Class_: *** 8785,8797 **** Function _Syntax_: ! `RESULT = GETGID()' _Return value_: ! The return value of `GETGID' is an `INTEGER' of the default kind. _Example_: ! See `GETPID' for an example. _See also_: *note GETPID::, *note GETUID:: --- 8709,8721 ---- Function _Syntax_: ! 'RESULT = GETGID()' _Return value_: ! The return value of 'GETGID' is an 'INTEGER' of the default kind. _Example_: ! See 'GETPID' for an example. _See also_: *note GETPID::, *note GETUID:: *************** _See also_: *** 8799,8805 ****  File: gfortran.info, Node: GETLOG, Next: GETPID, Prev: GETGID, Up: Intrinsic Procedures ! 8.105 `GETLOG' -- Get login name ================================ _Description_: --- 8723,8729 ----  File: gfortran.info, Node: GETLOG, Next: GETPID, Prev: GETGID, Up: Intrinsic Procedures ! 8.105 'GETLOG' -- Get login name ================================ _Description_: *************** _Class_: *** 8812,8827 **** Subroutine _Syntax_: ! `CALL GETLOG(C)' _Arguments_: ! C Shall be of type `CHARACTER' and of default ! kind. _Return value_: Stores the current user name in LOGIN. (On systems where POSIX ! functions `geteuid' and `getpwuid' are not available, and the ! `getlogin' function is not implemented either, this will return a blank string.) _Example_: --- 8736,8751 ---- Subroutine _Syntax_: ! 'CALL GETLOG(C)' _Arguments_: ! C Shall be of type 'CHARACTER' and of default ! kind. _Return value_: Stores the current user name in LOGIN. (On systems where POSIX ! functions 'geteuid' and 'getpwuid' are not available, and the ! 'getlogin' function is not implemented either, this will return a blank string.) _Example_: *************** _See also_: *** 8837,8843 ****  File: gfortran.info, Node: GETPID, Next: GETUID, Prev: GETLOG, Up: Intrinsic Procedures ! 8.106 `GETPID' -- Process ID function ===================================== _Description_: --- 8761,8767 ----  File: gfortran.info, Node: GETPID, Next: GETUID, Prev: GETLOG, Up: Intrinsic Procedures ! 8.106 'GETPID' -- Process ID function ===================================== _Description_: *************** _Class_: *** 8850,8859 **** Function _Syntax_: ! `RESULT = GETPID()' _Return value_: ! The return value of `GETPID' is an `INTEGER' of the default kind. _Example_: program info --- 8774,8783 ---- Function _Syntax_: ! 'RESULT = GETPID()' _Return value_: ! The return value of 'GETPID' is an 'INTEGER' of the default kind. _Example_: program info *************** _See also_: *** 8868,8874 ****  File: gfortran.info, Node: GETUID, Next: GMTIME, Prev: GETPID, Up: Intrinsic Procedures ! 8.107 `GETUID' -- User ID function ================================== _Description_: --- 8792,8798 ----  File: gfortran.info, Node: GETUID, Next: GMTIME, Prev: GETPID, Up: Intrinsic Procedures ! 8.107 'GETUID' -- User ID function ================================== _Description_: *************** _Class_: *** 8881,8893 **** Function _Syntax_: ! `RESULT = GETUID()' _Return value_: ! The return value of `GETUID' is an `INTEGER' of the default kind. _Example_: ! See `GETPID' for an example. _See also_: *note GETPID::, *note GETLOG:: --- 8805,8817 ---- Function _Syntax_: ! 'RESULT = GETUID()' _Return value_: ! The return value of 'GETUID' is an 'INTEGER' of the default kind. _Example_: ! See 'GETPID' for an example. _See also_: *note GETPID::, *note GETLOG:: *************** _See also_: *** 8895,8908 ****  File: gfortran.info, Node: GMTIME, Next: HOSTNM, Prev: GETUID, Up: Intrinsic Procedures ! 8.108 `GMTIME' -- Convert time to GMT info ========================================== _Description_: ! Given a system time value TIME (as provided by the `TIME8' intrinsic), fills VALUES with values extracted from it appropriate to the UTC time zone (Universal Coordinated Time, also known in ! some countries as GMT, Greenwich Mean Time), using `gmtime(3)'. _Standard_: GNU extension --- 8819,8832 ----  File: gfortran.info, Node: GMTIME, Next: HOSTNM, Prev: GETUID, Up: Intrinsic Procedures ! 8.108 'GMTIME' -- Convert time to GMT info ========================================== _Description_: ! Given a system time value TIME (as provided by the 'TIME8' intrinsic), fills VALUES with values extracted from it appropriate to the UTC time zone (Universal Coordinated Time, also known in ! some countries as GMT, Greenwich Mean Time), using 'gmtime(3)'. _Standard_: GNU extension *************** _Class_: *** 8911,8943 **** Subroutine _Syntax_: ! `CALL GMTIME(TIME, VALUES)' _Arguments_: ! TIME An `INTEGER' scalar expression corresponding ! to a system time, with `INTENT(IN)'. ! VALUES A default `INTEGER' array with 9 elements, ! with `INTENT(OUT)'. _Return value_: The elements of VALUES are assigned as follows: 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap seconds - 2. Minutes after the hour, range 0-59 - 3. Hours past midnight, range 0-23 - 4. Day of month, range 0-31 - 5. Number of months since January, range 0-12 - 6. Years since 1900 - 7. Number of days since Sunday, range 0-6 - 8. Days since January 1 - 9. Daylight savings indicator: positive if daylight savings is in effect, zero if not, and negative if the information is not available. --- 8835,8859 ---- Subroutine _Syntax_: ! 'CALL GMTIME(TIME, VALUES)' _Arguments_: ! TIME An 'INTEGER' scalar expression corresponding to ! a system time, with 'INTENT(IN)'. ! VALUES A default 'INTEGER' array with 9 elements, with ! 'INTENT(OUT)'. _Return value_: The elements of VALUES are assigned as follows: 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap seconds 2. Minutes after the hour, range 0-59 3. Hours past midnight, range 0-23 4. Day of month, range 0-31 5. Number of months since January, range 0-12 6. Years since 1900 7. Number of days since Sunday, range 0-6 8. Days since January 1 9. Daylight savings indicator: positive if daylight savings is in effect, zero if not, and negative if the information is not available. *************** _Return value_: *** 8945,8955 **** _See also_: *note CTIME::, *note LTIME::, *note TIME::, *note TIME8:: -  File: gfortran.info, Node: HOSTNM, Next: HUGE, Prev: GMTIME, Up: Intrinsic Procedures ! 8.109 `HOSTNM' -- Get system host name ====================================== _Description_: --- 8861,8870 ---- _See also_: *note CTIME::, *note LTIME::, *note TIME::, *note TIME8::  File: gfortran.info, Node: HOSTNM, Next: HUGE, Prev: GMTIME, Up: Intrinsic Procedures ! 8.109 'HOSTNM' -- Get system host name ====================================== _Description_: *************** _Class_: *** 8966,8994 **** Subroutine, function _Syntax_: ! `CALL HOSTNM(C [, STATUS])' ! `STATUS = HOSTNM(NAME)' _Arguments_: ! C Shall of type `CHARACTER' and of default kind. ! STATUS (Optional) status flag of type `INTEGER'. ! Returns 0 on success, or a system specific ! error code otherwise. _Return value_: In either syntax, NAME is set to the current hostname if it can be obtained, or to a blank string otherwise. -  File: gfortran.info, Node: HUGE, Next: HYPOT, Prev: HOSTNM, Up: Intrinsic Procedures ! 8.110 `HUGE' -- Largest number of a kind ======================================== _Description_: ! `HUGE(X)' returns the largest number that is not an infinity in ! the model of the type of `X'. _Standard_: Fortran 95 and later --- 8881,8908 ---- Subroutine, function _Syntax_: ! 'CALL HOSTNM(C [, STATUS])' ! 'STATUS = HOSTNM(NAME)' _Arguments_: ! C Shall of type 'CHARACTER' and of default kind. ! STATUS (Optional) status flag of type 'INTEGER'. ! Returns 0 on success, or a system specific error ! code otherwise. _Return value_: In either syntax, NAME is set to the current hostname if it can be obtained, or to a blank string otherwise.  File: gfortran.info, Node: HUGE, Next: HYPOT, Prev: HOSTNM, Up: Intrinsic Procedures ! 8.110 'HUGE' -- Largest number of a kind ======================================== _Description_: ! 'HUGE(X)' returns the largest number that is not an infinity in the ! model of the type of 'X'. _Standard_: Fortran 95 and later *************** _Class_: *** 8997,9006 **** Inquiry function _Syntax_: ! `RESULT = HUGE(X)' _Arguments_: ! X Shall be of type `REAL' or `INTEGER'. _Return value_: The return value is of the same type and kind as X --- 8911,8920 ---- Inquiry function _Syntax_: ! 'RESULT = HUGE(X)' _Arguments_: ! X Shall be of type 'REAL' or 'INTEGER'. _Return value_: The return value is of the same type and kind as X *************** _Example_: *** 9014,9025 ****  File: gfortran.info, Node: HYPOT, Next: IACHAR, Prev: HUGE, Up: Intrinsic Procedures ! 8.111 `HYPOT' -- Euclidean distance function ============================================ _Description_: ! `HYPOT(X,Y)' is the Euclidean distance function. It is equal to ! \sqrtX^2 + Y^2, without undue underflow or overflow. _Standard_: Fortran 2008 and later --- 8928,8939 ----  File: gfortran.info, Node: HYPOT, Next: IACHAR, Prev: HUGE, Up: Intrinsic Procedures ! 8.111 'HYPOT' -- Euclidean distance function ============================================ _Description_: ! 'HYPOT(X,Y)' is the Euclidean distance function. It is equal to ! \sqrt{X^2 + Y^2}, without undue underflow or overflow. _Standard_: Fortran 2008 and later *************** _Class_: *** 9028,9039 **** Elemental function _Syntax_: ! `RESULT = HYPOT(X, Y)' _Arguments_: ! X The type shall be `REAL'. ! Y The type and kind type parameter shall be the ! same as X. _Return value_: The return value has the same type and kind type parameter as X. --- 8942,8953 ---- Elemental function _Syntax_: ! 'RESULT = HYPOT(X, Y)' _Arguments_: ! X The type shall be 'REAL'. ! Y The type and kind type parameter shall be the ! same as X. _Return value_: The return value has the same type and kind type parameter as X. *************** _Example_: *** 9047,9058 ****  File: gfortran.info, Node: IACHAR, Next: IALL, Prev: HYPOT, Up: Intrinsic Procedures ! 8.112 `IACHAR' -- Code in ASCII collating sequence ================================================== _Description_: ! `IACHAR(C)' returns the code for the ASCII character in the first ! character position of `C'. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later --- 8961,8972 ----  File: gfortran.info, Node: IACHAR, Next: IALL, Prev: HYPOT, Up: Intrinsic Procedures ! 8.112 'IACHAR' -- Code in ASCII collating sequence ================================================== _Description_: ! 'IACHAR(C)' returns the code for the ASCII character in the first ! character position of 'C'. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later *************** _Class_: *** 9061,9077 **** Elemental function _Syntax_: ! `RESULT = IACHAR(C [, KIND])' _Arguments_: ! C Shall be a scalar `CHARACTER', with ! `INTENT(IN)' ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: --- 8975,8990 ---- Elemental function _Syntax_: ! 'RESULT = IACHAR(C [, KIND])' _Arguments_: ! C Shall be a scalar 'CHARACTER', with 'INTENT(IN)' ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: *************** _Note_: *** 9087,9102 **** _See also_: *note ACHAR::, *note CHAR::, *note ICHAR:: -  File: gfortran.info, Node: IALL, Next: IAND, Prev: IACHAR, Up: Intrinsic Procedures ! 8.113 `IALL' -- Bitwise AND of array elements ============================================= _Description_: Reduces with bitwise AND the elements of ARRAY along dimension DIM ! if the corresponding element in MASK is `TRUE'. _Standard_: Fortran 2008 and later --- 9000,9014 ---- _See also_: *note ACHAR::, *note CHAR::, *note ICHAR::  File: gfortran.info, Node: IALL, Next: IAND, Prev: IACHAR, Up: Intrinsic Procedures ! 8.113 'IALL' -- Bitwise AND of array elements ============================================= _Description_: Reduces with bitwise AND the elements of ARRAY along dimension DIM ! if the corresponding element in MASK is 'TRUE'. _Standard_: Fortran 2008 and later *************** _Class_: *** 9105,9127 **** Transformational function _Syntax_: ! `RESULT = IALL(ARRAY[, MASK])' ! `RESULT = IALL(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type `LOGICAL' and ! either be a scalar or an array of the same ! shape as ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the bitwise ALL of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. --- 9017,9039 ---- Transformational function _Syntax_: ! 'RESULT = IALL(ARRAY[, MASK])' ! 'RESULT = IALL(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type 'LOGICAL' and either ! be a scalar or an array of the same shape as ! ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the bitwise ALL of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. *************** _See also_: *** 9142,9152 ****  File: gfortran.info, Node: IAND, Next: IANY, Prev: IALL, Up: Intrinsic Procedures ! 8.114 `IAND' -- Bitwise logical and =================================== _Description_: ! Bitwise logical `AND'. _Standard_: Fortran 95 and later --- 9054,9064 ----  File: gfortran.info, Node: IAND, Next: IANY, Prev: IALL, Up: Intrinsic Procedures ! 8.114 'IAND' -- Bitwise logical and =================================== _Description_: ! Bitwise logical 'AND'. _Standard_: Fortran 95 and later *************** _Class_: *** 9155,9172 **** Elemental function _Syntax_: ! `RESULT = IAND(I, J)' _Arguments_: ! I The type shall be `INTEGER'. ! J The type shall be `INTEGER', of the same kind ! as I. (As a GNU extension, different kinds ! are also permitted.) _Return value_: ! The return type is `INTEGER', of the same kind as the arguments. ! (If the argument kinds differ, it is of the same kind as the ! larger argument.) _Example_: PROGRAM test_iand --- 9067,9084 ---- Elemental function _Syntax_: ! 'RESULT = IAND(I, J)' _Arguments_: ! I The type shall be 'INTEGER'. ! J The type shall be 'INTEGER', of the same kind as ! I. (As a GNU extension, different kinds are ! also permitted.) _Return value_: ! The return type is 'INTEGER', of the same kind as the arguments. ! (If the argument kinds differ, it is of the same kind as the larger ! argument.) _Example_: PROGRAM test_iand *************** _See also_: *** 9179,9194 **** *note IOR::, *note IEOR::, *note IBITS::, *note IBSET::, *note IBCLR::, *note NOT:: -  File: gfortran.info, Node: IANY, Next: IARGC, Prev: IAND, Up: Intrinsic Procedures ! 8.115 `IANY' -- Bitwise OR of array elements ============================================ _Description_: Reduces with bitwise OR (inclusive or) the elements of ARRAY along ! dimension DIM if the corresponding element in MASK is `TRUE'. _Standard_: Fortran 2008 and later --- 9091,9105 ---- *note IOR::, *note IEOR::, *note IBITS::, *note IBSET::, *note IBCLR::, *note NOT::  File: gfortran.info, Node: IANY, Next: IARGC, Prev: IAND, Up: Intrinsic Procedures ! 8.115 'IANY' -- Bitwise OR of array elements ============================================ _Description_: Reduces with bitwise OR (inclusive or) the elements of ARRAY along ! dimension DIM if the corresponding element in MASK is 'TRUE'. _Standard_: Fortran 2008 and later *************** _Class_: *** 9197,9219 **** Transformational function _Syntax_: ! `RESULT = IANY(ARRAY[, MASK])' ! `RESULT = IANY(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type `LOGICAL' and ! either be a scalar or an array of the same ! shape as ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the bitwise OR of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. --- 9108,9130 ---- Transformational function _Syntax_: ! 'RESULT = IANY(ARRAY[, MASK])' ! 'RESULT = IANY(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type 'LOGICAL' and either ! be a scalar or an array of the same shape as ! ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the bitwise OR of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. *************** _See also_: *** 9234,9244 ****  File: gfortran.info, Node: IARGC, Next: IBCLR, Prev: IANY, Up: Intrinsic Procedures ! 8.116 `IARGC' -- Get the number of command line arguments ========================================================= _Description_: ! `IARGC' returns the number of arguments passed on the command line when the containing program was invoked. This intrinsic routine is provided for backwards compatibility with --- 9145,9155 ----  File: gfortran.info, Node: IARGC, Next: IBCLR, Prev: IANY, Up: Intrinsic Procedures ! 8.116 'IARGC' -- Get the number of command line arguments ========================================================= _Description_: ! 'IARGC' returns the number of arguments passed on the command line when the containing program was invoked. This intrinsic routine is provided for backwards compatibility with *************** _Class_: *** 9253,9265 **** Function _Syntax_: ! `RESULT = IARGC()' _Arguments_: None. _Return value_: ! The number of command line arguments, type `INTEGER(4)'. _Example_: See *note GETARG:: --- 9164,9176 ---- Function _Syntax_: ! 'RESULT = IARGC()' _Arguments_: None. _Return value_: ! The number of command line arguments, type 'INTEGER(4)'. _Example_: See *note GETARG:: *************** _See also_: *** 9273,9283 ****  File: gfortran.info, Node: IBCLR, Next: IBITS, Prev: IARGC, Up: Intrinsic Procedures ! 8.117 `IBCLR' -- Clear bit ========================== _Description_: ! `IBCLR' returns the value of I with the bit at position POS set to zero. _Standard_: --- 9184,9194 ----  File: gfortran.info, Node: IBCLR, Next: IBITS, Prev: IARGC, Up: Intrinsic Procedures ! 8.117 'IBCLR' -- Clear bit ========================== _Description_: ! 'IBCLR' returns the value of I with the bit at position POS set to zero. _Standard_: *************** _Class_: *** 9287,9317 **** Elemental function _Syntax_: ! `RESULT = IBCLR(I, POS)' _Arguments_: ! I The type shall be `INTEGER'. ! POS The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note IBITS::, *note IBSET::, *note IAND::, *note IOR::, *note IEOR::, *note MVBITS:: -  File: gfortran.info, Node: IBITS, Next: IBSET, Prev: IBCLR, Up: Intrinsic Procedures ! 8.118 `IBITS' -- Bit extraction =============================== _Description_: ! `IBITS' extracts a field of length LEN from I, starting from bit position POS and extending left for LEN bits. The result is right-justified and the remaining bits are zeroed. The value of ! `POS+LEN' must be less than or equal to the value `BIT_SIZE(I)'. _Standard_: Fortran 95 and later --- 9198,9227 ---- Elemental function _Syntax_: ! 'RESULT = IBCLR(I, POS)' _Arguments_: ! I The type shall be 'INTEGER'. ! POS The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note IBITS::, *note IBSET::, *note IAND::, *note IOR::, *note IEOR::, *note MVBITS::  File: gfortran.info, Node: IBITS, Next: IBSET, Prev: IBCLR, Up: Intrinsic Procedures ! 8.118 'IBITS' -- Bit extraction =============================== _Description_: ! 'IBITS' extracts a field of length LEN from I, starting from bit position POS and extending left for LEN bits. The result is right-justified and the remaining bits are zeroed. The value of ! 'POS+LEN' must be less than or equal to the value 'BIT_SIZE(I)'. _Standard_: Fortran 95 and later *************** _Class_: *** 9320,9347 **** Elemental function _Syntax_: ! `RESULT = IBITS(I, POS, LEN)' _Arguments_: ! I The type shall be `INTEGER'. ! POS The type shall be `INTEGER'. ! LEN The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: ! *note BIT_SIZE::, *note IBCLR::, *note IBSET::, *note IAND::, ! *note IOR::, *note IEOR::  File: gfortran.info, Node: IBSET, Next: ICHAR, Prev: IBITS, Up: Intrinsic Procedures ! 8.119 `IBSET' -- Set bit ======================== _Description_: ! `IBSET' returns the value of I with the bit at position POS set to one. _Standard_: --- 9230,9257 ---- Elemental function _Syntax_: ! 'RESULT = IBITS(I, POS, LEN)' _Arguments_: ! I The type shall be 'INTEGER'. ! POS The type shall be 'INTEGER'. ! LEN The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: ! *note BIT_SIZE::, *note IBCLR::, *note IBSET::, *note IAND::, *note ! IOR::, *note IEOR::  File: gfortran.info, Node: IBSET, Next: ICHAR, Prev: IBITS, Up: Intrinsic Procedures ! 8.119 'IBSET' -- Set bit ======================== _Description_: ! 'IBSET' returns the value of I with the bit at position POS set to one. _Standard_: *************** _Class_: *** 9351,9379 **** Elemental function _Syntax_: ! `RESULT = IBSET(I, POS)' _Arguments_: ! I The type shall be `INTEGER'. ! POS The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note IBCLR::, *note IBITS::, *note IAND::, *note IOR::, *note IEOR::, *note MVBITS:: -  File: gfortran.info, Node: ICHAR, Next: IDATE, Prev: IBSET, Up: Intrinsic Procedures ! 8.120 `ICHAR' -- Character-to-integer conversion function ========================================================= _Description_: ! `ICHAR(C)' returns the code for the character in the first ! character position of `C' in the system's native character set. The correspondence between characters and their codes is not necessarily the same across different GNU Fortran implementations. --- 9261,9288 ---- Elemental function _Syntax_: ! 'RESULT = IBSET(I, POS)' _Arguments_: ! I The type shall be 'INTEGER'. ! POS The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note IBCLR::, *note IBITS::, *note IAND::, *note IOR::, *note IEOR::, *note MVBITS::  File: gfortran.info, Node: ICHAR, Next: IDATE, Prev: IBSET, Up: Intrinsic Procedures ! 8.120 'ICHAR' -- Character-to-integer conversion function ========================================================= _Description_: ! 'ICHAR(C)' returns the code for the character in the first ! character position of 'C' in the system's native character set. The correspondence between characters and their codes is not necessarily the same across different GNU Fortran implementations. *************** _Class_: *** 9384,9400 **** Elemental function _Syntax_: ! `RESULT = ICHAR(C [, KIND])' _Arguments_: ! C Shall be a scalar `CHARACTER', with ! `INTENT(IN)' ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: --- 9293,9308 ---- Elemental function _Syntax_: ! 'RESULT = ICHAR(C [, KIND])' _Arguments_: ! C Shall be a scalar 'CHARACTER', with 'INTENT(IN)' ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: *************** _Example_: *** 9404,9418 **** end program test_ichar _Specific names_: ! Name Argument Return type Standard ! `ICHAR(C)' `CHARACTER `INTEGER(4)' Fortran 77 and ! C' later _Note_: No intrinsic exists to convert between a numeric value and a formatted character string representation - for instance, given the ! `CHARACTER' value `'154'', obtaining an `INTEGER' or `REAL' value ! with the value 154, or vice versa. Instead, this functionality is provided by internal-file I/O, as in the following example: program read_val integer value --- 9312,9326 ---- end program test_ichar _Specific names_: ! Name Argument Return type Standard ! 'ICHAR(C)' 'CHARACTER 'INTEGER(4)' Fortran 77 and ! C' later _Note_: No intrinsic exists to convert between a numeric value and a formatted character string representation - for instance, given the ! 'CHARACTER' value ''154'', obtaining an 'INTEGER' or 'REAL' value ! with the value 154, or vice versa. Instead, this functionality is provided by internal-file I/O, as in the following example: program read_val integer value *************** _Note_: *** 9431,9446 **** _See also_: *note ACHAR::, *note CHAR::, *note IACHAR:: -  File: gfortran.info, Node: IDATE, Next: IEOR, Prev: ICHAR, Up: Intrinsic Procedures ! 8.121 `IDATE' -- Get current local time subroutine (day/month/year) =================================================================== _Description_: ! `IDATE(VALUES)' Fills VALUES with the numerical values at the ! current local time. The day (in the range 1-31), month (in the range 1-12), and year appear in elements 1, 2, and 3 of VALUES, respectively. The year has four significant digits. --- 9339,9353 ---- _See also_: *note ACHAR::, *note CHAR::, *note IACHAR::  File: gfortran.info, Node: IDATE, Next: IEOR, Prev: ICHAR, Up: Intrinsic Procedures ! 8.121 'IDATE' -- Get current local time subroutine (day/month/year) =================================================================== _Description_: ! 'IDATE(VALUES)' Fills VALUES with the numerical values at the ! current local time. The day (in the range 1-31), month (in the range 1-12), and year appear in elements 1, 2, and 3 of VALUES, respectively. The year has four significant digits. *************** _Class_: *** 9451,9461 **** Subroutine _Syntax_: ! `CALL IDATE(VALUES)' _Arguments_: ! VALUES The type shall be `INTEGER, DIMENSION(3)' and ! the kind shall be the default integer kind. _Return value_: Does not return anything. --- 9358,9368 ---- Subroutine _Syntax_: ! 'CALL IDATE(VALUES)' _Arguments_: ! VALUES The type shall be 'INTEGER, DIMENSION(3)' and ! the kind shall be the default integer kind. _Return value_: Does not return anything. *************** _Example_: *** 9472,9482 ****  File: gfortran.info, Node: IEOR, Next: IERRNO, Prev: IDATE, Up: Intrinsic Procedures ! 8.122 `IEOR' -- Bitwise logical exclusive or ============================================ _Description_: ! `IEOR' returns the bitwise Boolean exclusive-OR of I and J. _Standard_: Fortran 95 and later --- 9379,9389 ----  File: gfortran.info, Node: IEOR, Next: IERRNO, Prev: IDATE, Up: Intrinsic Procedures ! 8.122 'IEOR' -- Bitwise logical exclusive or ============================================ _Description_: ! 'IEOR' returns the bitwise Boolean exclusive-OR of I and J. _Standard_: Fortran 95 and later *************** _Class_: *** 9485,9502 **** Elemental function _Syntax_: ! `RESULT = IEOR(I, J)' _Arguments_: ! I The type shall be `INTEGER'. ! J The type shall be `INTEGER', of the same kind ! as I. (As a GNU extension, different kinds ! are also permitted.) _Return value_: ! The return type is `INTEGER', of the same kind as the arguments. ! (If the argument kinds differ, it is of the same kind as the ! larger argument.) _See also_: *note IOR::, *note IAND::, *note IBITS::, *note IBSET::, *note --- 9392,9409 ---- Elemental function _Syntax_: ! 'RESULT = IEOR(I, J)' _Arguments_: ! I The type shall be 'INTEGER'. ! J The type shall be 'INTEGER', of the same kind as ! I. (As a GNU extension, different kinds are ! also permitted.) _Return value_: ! The return type is 'INTEGER', of the same kind as the arguments. ! (If the argument kinds differ, it is of the same kind as the larger ! argument.) _See also_: *note IOR::, *note IAND::, *note IBITS::, *note IBSET::, *note *************** _See also_: *** 9505,9515 ****  File: gfortran.info, Node: IERRNO, Next: IMAGE_INDEX, Prev: IEOR, Up: Intrinsic Procedures ! 8.123 `IERRNO' -- Get the last system error number ================================================== _Description_: ! Returns the last system error number, as given by the C `errno' variable. _Standard_: --- 9412,9422 ----  File: gfortran.info, Node: IERRNO, Next: IMAGE_INDEX, Prev: IEOR, Up: Intrinsic Procedures ! 8.123 'IERRNO' -- Get the last system error number ================================================== _Description_: ! Returns the last system error number, as given by the C 'errno' variable. _Standard_: *************** _Class_: *** 9519,9531 **** Function _Syntax_: ! `RESULT = IERRNO()' _Arguments_: None. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _See also_: --- 9426,9438 ---- Function _Syntax_: ! 'RESULT = IERRNO()' _Arguments_: None. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _See also_: *************** _See also_: *** 9534,9540 ****  File: gfortran.info, Node: IMAGE_INDEX, Next: INDEX intrinsic, Prev: IERRNO, Up: Intrinsic Procedures ! 8.124 `IMAGE_INDEX' -- Function that converts a cosubscript to an image index ============================================================================= _Description_: --- 9441,9447 ----  File: gfortran.info, Node: IMAGE_INDEX, Next: INDEX intrinsic, Prev: IERRNO, Up: Intrinsic Procedures ! 8.124 'IMAGE_INDEX' -- Function that converts a cosubscript to an image index ============================================================================= _Description_: *************** _Class_: *** 9547,9562 **** Inquiry function. _Syntax_: ! `RESULT = IMAGE_INDEX(COARRAY, SUB)' _Arguments_: None. ! COARRAY Coarray of any type. ! SUB default integer rank-1 array of a size equal to ! the corank of COARRAY. _Return value_: Scalar default integer with the value of the image index which ! corresponds to the cosubscripts. For invalid cosubscripts the result is zero. _Example_: --- 9454,9469 ---- Inquiry function. _Syntax_: ! 'RESULT = IMAGE_INDEX(COARRAY, SUB)' _Arguments_: None. ! COARRAY Coarray of any type. ! SUB default integer rank-1 array of a size equal to ! the corank of COARRAY. _Return value_: Scalar default integer with the value of the image index which ! corresponds to the cosubscripts. For invalid cosubscripts the result is zero. _Example_: *************** _See also_: *** 9570,9576 ****  File: gfortran.info, Node: INDEX intrinsic, Next: INT, Prev: IMAGE_INDEX, Up: Intrinsic Procedures ! 8.125 `INDEX' -- Position of a substring within a string ======================================================== _Description_: --- 9477,9483 ----  File: gfortran.info, Node: INDEX intrinsic, Next: INT, Prev: IMAGE_INDEX, Up: Intrinsic Procedures ! 8.125 'INDEX' -- Position of a substring within a string ======================================================== _Description_: *************** _Class_: *** 9587,9613 **** Elemental function _Syntax_: ! `RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])' _Arguments_: ! STRING Shall be a scalar `CHARACTER', with ! `INTENT(IN)' ! SUBSTRING Shall be a scalar `CHARACTER', with ! `INTENT(IN)' ! BACK (Optional) Shall be a scalar `LOGICAL', with ! `INTENT(IN)' ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Specific names_: ! Name Argument Return type Standard ! `INDEX(STRING,`CHARACTER' `INTEGER(4)' Fortran 77 and ! SUBSTRING)' later _See also_: *note SCAN::, *note VERIFY:: --- 9494,9518 ---- Elemental function _Syntax_: ! 'RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])' _Arguments_: ! STRING Shall be a scalar 'CHARACTER', with 'INTENT(IN)' ! SUBSTRING Shall be a scalar 'CHARACTER', with 'INTENT(IN)' ! BACK (Optional) Shall be a scalar 'LOGICAL', with ! 'INTENT(IN)' ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Specific names_: ! Name Argument Return type Standard ! 'INDEX(STRING, 'CHARACTER' 'INTEGER(4)' Fortran 77 and ! SUBSTRING)' later _See also_: *note SCAN::, *note VERIFY:: *************** _See also_: *** 9615,9621 ****  File: gfortran.info, Node: INT, Next: INT2, Prev: INDEX intrinsic, Up: Intrinsic Procedures ! 8.126 `INT' -- Convert to integer type ====================================== _Description_: --- 9520,9526 ----  File: gfortran.info, Node: INT, Next: INT2, Prev: INDEX intrinsic, Up: Intrinsic Procedures ! 8.126 'INT' -- Convert to integer type ====================================== _Description_: *************** _Class_: *** 9628,9657 **** Elemental function _Syntax_: ! `RESULT = INT(A [, KIND))' _Arguments_: ! A Shall be of type `INTEGER', `REAL', or ! `COMPLEX'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! These functions return a `INTEGER' variable or array under the following rules: ! (A) ! If A is of type `INTEGER', `INT(A) = A' ! ! (B) ! If A is of type `REAL' and |A| < 1, `INT(A)' equals `0'. If ! |A| \geq 1, then `INT(A)' equals the largest integer that ! does not exceed the range of A and whose sign is the same as ! the sign of A. ! ! (C) ! If A is of type `COMPLEX', rule B is applied to the real part of A. _Example_: --- 9533,9560 ---- Elemental function _Syntax_: ! 'RESULT = INT(A [, KIND))' _Arguments_: ! A Shall be of type 'INTEGER', 'REAL', or ! 'COMPLEX'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! These functions return a 'INTEGER' variable or array under the following rules: ! (A) ! If A is of type 'INTEGER', 'INT(A) = A' ! (B) ! If A is of type 'REAL' and |A| < 1, 'INT(A)' equals '0'. If ! |A| \geq 1, then 'INT(A)' equals the largest integer that does ! not exceed the range of A and whose sign is the same as the ! sign of A. ! (C) ! If A is of type 'COMPLEX', rule B is applied to the real part of A. _Example_: *************** _Example_: *** 9663,9689 **** end program _Specific names_: ! Name Argument Return type Standard ! `INT(A)' `REAL(4) A' `INTEGER' Fortran 77 and ! later ! `IFIX(A)' `REAL(4) A' `INTEGER' Fortran 77 and ! later ! `IDINT(A)' `REAL(8) A' `INTEGER' Fortran 77 and ! later !  File: gfortran.info, Node: INT2, Next: INT8, Prev: INT, Up: Intrinsic Procedures ! 8.127 `INT2' -- Convert to 16-bit integer type ============================================== _Description_: ! Convert to a `KIND=2' integer type. This is equivalent to the ! standard `INT' intrinsic with an optional argument of `KIND=2', ! and is only included for backwards compatibility. ! The `SHORT' intrinsic is equivalent to `INT2'. _Standard_: GNU extension --- 9566,9591 ---- end program _Specific names_: ! Name Argument Return type Standard ! 'INT(A)' 'REAL(4) A' 'INTEGER' Fortran 77 and ! later ! 'IFIX(A)' 'REAL(4) A' 'INTEGER' Fortran 77 and ! later ! 'IDINT(A)' 'REAL(8) A' 'INTEGER' Fortran 77 and ! later  File: gfortran.info, Node: INT2, Next: INT8, Prev: INT, Up: Intrinsic Procedures ! 8.127 'INT2' -- Convert to 16-bit integer type ============================================== _Description_: ! Convert to a 'KIND=2' integer type. This is equivalent to the ! standard 'INT' intrinsic with an optional argument of 'KIND=2', and ! is only included for backwards compatibility. ! The 'SHORT' intrinsic is equivalent to 'INT2'. _Standard_: GNU extension *************** _Class_: *** 9692,9705 **** Elemental function _Syntax_: ! `RESULT = INT2(A)' _Arguments_: ! A Shall be of type `INTEGER', `REAL', or ! `COMPLEX'. _Return value_: ! The return value is a `INTEGER(2)' variable. _See also_: *note INT::, *note INT8::, *note LONG:: --- 9594,9607 ---- Elemental function _Syntax_: ! 'RESULT = INT2(A)' _Arguments_: ! A Shall be of type 'INTEGER', 'REAL', or ! 'COMPLEX'. _Return value_: ! The return value is a 'INTEGER(2)' variable. _See also_: *note INT::, *note INT8::, *note LONG:: *************** _See also_: *** 9707,9719 ****  File: gfortran.info, Node: INT8, Next: IOR, Prev: INT2, Up: Intrinsic Procedures ! 8.128 `INT8' -- Convert to 64-bit integer type ============================================== _Description_: ! Convert to a `KIND=8' integer type. This is equivalent to the ! standard `INT' intrinsic with an optional argument of `KIND=8', ! and is only included for backwards compatibility. _Standard_: GNU extension --- 9609,9621 ----  File: gfortran.info, Node: INT8, Next: IOR, Prev: INT2, Up: Intrinsic Procedures ! 8.128 'INT8' -- Convert to 64-bit integer type ============================================== _Description_: ! Convert to a 'KIND=8' integer type. This is equivalent to the ! standard 'INT' intrinsic with an optional argument of 'KIND=8', and ! is only included for backwards compatibility. _Standard_: GNU extension *************** _Class_: *** 9722,9735 **** Elemental function _Syntax_: ! `RESULT = INT8(A)' _Arguments_: ! A Shall be of type `INTEGER', `REAL', or ! `COMPLEX'. _Return value_: ! The return value is a `INTEGER(8)' variable. _See also_: *note INT::, *note INT2::, *note LONG:: --- 9624,9637 ---- Elemental function _Syntax_: ! 'RESULT = INT8(A)' _Arguments_: ! A Shall be of type 'INTEGER', 'REAL', or ! 'COMPLEX'. _Return value_: ! The return value is a 'INTEGER(8)' variable. _See also_: *note INT::, *note INT2::, *note LONG:: *************** _See also_: *** 9737,9747 ****  File: gfortran.info, Node: IOR, Next: IPARITY, Prev: INT8, Up: Intrinsic Procedures ! 8.129 `IOR' -- Bitwise logical or ================================= _Description_: ! `IOR' returns the bitwise Boolean inclusive-OR of I and J. _Standard_: Fortran 95 and later --- 9639,9649 ----  File: gfortran.info, Node: IOR, Next: IPARITY, Prev: INT8, Up: Intrinsic Procedures ! 8.129 'IOR' -- Bitwise logical or ================================= _Description_: ! 'IOR' returns the bitwise Boolean inclusive-OR of I and J. _Standard_: Fortran 95 and later *************** _Class_: *** 9750,9767 **** Elemental function _Syntax_: ! `RESULT = IOR(I, J)' _Arguments_: ! I The type shall be `INTEGER'. ! J The type shall be `INTEGER', of the same kind ! as I. (As a GNU extension, different kinds ! are also permitted.) _Return value_: ! The return type is `INTEGER', of the same kind as the arguments. ! (If the argument kinds differ, it is of the same kind as the ! larger argument.) _See also_: *note IEOR::, *note IAND::, *note IBITS::, *note IBSET::, *note --- 9652,9669 ---- Elemental function _Syntax_: ! 'RESULT = IOR(I, J)' _Arguments_: ! I The type shall be 'INTEGER'. ! J The type shall be 'INTEGER', of the same kind as ! I. (As a GNU extension, different kinds are ! also permitted.) _Return value_: ! The return type is 'INTEGER', of the same kind as the arguments. ! (If the argument kinds differ, it is of the same kind as the larger ! argument.) _See also_: *note IEOR::, *note IAND::, *note IBITS::, *note IBSET::, *note *************** _See also_: *** 9770,9781 ****  File: gfortran.info, Node: IPARITY, Next: IRAND, Prev: IOR, Up: Intrinsic Procedures ! 8.130 `IPARITY' -- Bitwise XOR of array elements ================================================ _Description_: Reduces with bitwise XOR (exclusive or) the elements of ARRAY along ! dimension DIM if the corresponding element in MASK is `TRUE'. _Standard_: Fortran 2008 and later --- 9672,9683 ----  File: gfortran.info, Node: IPARITY, Next: IRAND, Prev: IOR, Up: Intrinsic Procedures ! 8.130 'IPARITY' -- Bitwise XOR of array elements ================================================ _Description_: Reduces with bitwise XOR (exclusive or) the elements of ARRAY along ! dimension DIM if the corresponding element in MASK is 'TRUE'. _Standard_: Fortran 2008 and later *************** _Class_: *** 9784,9806 **** Transformational function _Syntax_: ! `RESULT = IPARITY(ARRAY[, MASK])' ! `RESULT = IPARITY(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type `LOGICAL' and ! either be a scalar or an array of the same ! shape as ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the bitwise XOR of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. --- 9686,9708 ---- Transformational function _Syntax_: ! 'RESULT = IPARITY(ARRAY[, MASK])' ! 'RESULT = IPARITY(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type 'LOGICAL' and either ! be a scalar or an array of the same shape as ! ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the bitwise XOR of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. *************** _See also_: *** 9821,9841 ****  File: gfortran.info, Node: IRAND, Next: IS_IOSTAT_END, Prev: IPARITY, Up: Intrinsic Procedures ! 8.131 `IRAND' -- Integer pseudo-random number ============================================= _Description_: ! `IRAND(FLAG)' returns a pseudo-random number from a uniform distribution between 0 and a system-dependent limit (which is in ! most cases 2147483647). If FLAG is 0, the next number in the current sequence is returned; if FLAG is 1, the generator is ! restarted by `CALL SRAND(0)'; if FLAG has any other value, it is ! used as a new seed with `SRAND'. This intrinsic routine is provided for backwards compatibility with ! GNU Fortran 77. It implements a simple modulo generator as provided ! by `g77'. For new code, one should consider the use of *note ! RANDOM_NUMBER:: as it implements a superior algorithm. _Standard_: GNU extension --- 9723,9743 ----  File: gfortran.info, Node: IRAND, Next: IS_IOSTAT_END, Prev: IPARITY, Up: Intrinsic Procedures ! 8.131 'IRAND' -- Integer pseudo-random number ============================================= _Description_: ! 'IRAND(FLAG)' returns a pseudo-random number from a uniform distribution between 0 and a system-dependent limit (which is in ! most cases 2147483647). If FLAG is 0, the next number in the current sequence is returned; if FLAG is 1, the generator is ! restarted by 'CALL SRAND(0)'; if FLAG has any other value, it is ! used as a new seed with 'SRAND'. This intrinsic routine is provided for backwards compatibility with ! GNU Fortran 77. It implements a simple modulo generator as ! provided by 'g77'. For new code, one should consider the use of ! *note RANDOM_NUMBER:: as it implements a superior algorithm. _Standard_: GNU extension *************** _Class_: *** 9844,9856 **** Function _Syntax_: ! `RESULT = IRAND(I)' _Arguments_: ! I Shall be a scalar `INTEGER' of kind 4. _Return value_: ! The return value is of `INTEGER(kind=4)' type. _Example_: program test_irand --- 9746,9758 ---- Function _Syntax_: ! 'RESULT = IRAND(I)' _Arguments_: ! I Shall be a scalar 'INTEGER' of kind 4. _Return value_: ! The return value is of 'INTEGER(kind=4)' type. _Example_: program test_irand *************** _Example_: *** 9861,9878 **** print *, irand(seed), irand(), irand(), irand() end program test_irand -  File: gfortran.info, Node: IS_IOSTAT_END, Next: IS_IOSTAT_EOR, Prev: IRAND, Up: Intrinsic Procedures ! 8.132 `IS_IOSTAT_END' -- Test for end-of-file value =================================================== _Description_: ! `IS_IOSTAT_END' tests whether an variable has the value of the I/O ! status "end of file". The function is equivalent to comparing the ! variable with the `IOSTAT_END' parameter of the intrinsic module ! `ISO_FORTRAN_ENV'. _Standard_: Fortran 2003 and later --- 9763,9779 ---- print *, irand(seed), irand(), irand(), irand() end program test_irand  File: gfortran.info, Node: IS_IOSTAT_END, Next: IS_IOSTAT_EOR, Prev: IRAND, Up: Intrinsic Procedures ! 8.132 'IS_IOSTAT_END' -- Test for end-of-file value =================================================== _Description_: ! 'IS_IOSTAT_END' tests whether an variable has the value of the I/O ! status "end of file". The function is equivalent to comparing the ! variable with the 'IOSTAT_END' parameter of the intrinsic module ! 'ISO_FORTRAN_ENV'. _Standard_: Fortran 2003 and later *************** _Class_: *** 9881,9895 **** Elemental function _Syntax_: ! `RESULT = IS_IOSTAT_END(I)' _Arguments_: ! I Shall be of the type `INTEGER'. _Return value_: ! Returns a `LOGICAL' of the default kind, which `.TRUE.' if I has ! the value which indicates an end of file condition for `IOSTAT=' ! specifiers, and is `.FALSE.' otherwise. _Example_: PROGRAM iostat --- 9782,9796 ---- Elemental function _Syntax_: ! 'RESULT = IS_IOSTAT_END(I)' _Arguments_: ! I Shall be of the type 'INTEGER'. _Return value_: ! Returns a 'LOGICAL' of the default kind, which '.TRUE.' if I has ! the value which indicates an end of file condition for 'IOSTAT=' ! specifiers, and is '.FALSE.' otherwise. _Example_: PROGRAM iostat *************** _Example_: *** 9903,9916 ****  File: gfortran.info, Node: IS_IOSTAT_EOR, Next: ISATTY, Prev: IS_IOSTAT_END, Up: Intrinsic Procedures ! 8.133 `IS_IOSTAT_EOR' -- Test for end-of-record value ===================================================== _Description_: ! `IS_IOSTAT_EOR' tests whether an variable has the value of the I/O ! status "end of record". The function is equivalent to comparing the ! variable with the `IOSTAT_EOR' parameter of the intrinsic module ! `ISO_FORTRAN_ENV'. _Standard_: Fortran 2003 and later --- 9804,9817 ----  File: gfortran.info, Node: IS_IOSTAT_EOR, Next: ISATTY, Prev: IS_IOSTAT_END, Up: Intrinsic Procedures ! 8.133 'IS_IOSTAT_EOR' -- Test for end-of-record value ===================================================== _Description_: ! 'IS_IOSTAT_EOR' tests whether an variable has the value of the I/O ! status "end of record". The function is equivalent to comparing ! the variable with the 'IOSTAT_EOR' parameter of the intrinsic ! module 'ISO_FORTRAN_ENV'. _Standard_: Fortran 2003 and later *************** _Class_: *** 9919,9933 **** Elemental function _Syntax_: ! `RESULT = IS_IOSTAT_EOR(I)' _Arguments_: ! I Shall be of the type `INTEGER'. _Return value_: ! Returns a `LOGICAL' of the default kind, which `.TRUE.' if I has ! the value which indicates an end of file condition for `IOSTAT=' ! specifiers, and is `.FALSE.' otherwise. _Example_: PROGRAM iostat --- 9820,9834 ---- Elemental function _Syntax_: ! 'RESULT = IS_IOSTAT_EOR(I)' _Arguments_: ! I Shall be of the type 'INTEGER'. _Return value_: ! Returns a 'LOGICAL' of the default kind, which '.TRUE.' if I has ! the value which indicates an end of file condition for 'IOSTAT=' ! specifiers, and is '.FALSE.' otherwise. _Example_: PROGRAM iostat *************** _Example_: *** 9941,9947 ****  File: gfortran.info, Node: ISATTY, Next: ISHFT, Prev: IS_IOSTAT_EOR, Up: Intrinsic Procedures ! 8.134 `ISATTY' -- Whether a unit is a terminal device. ====================================================== _Description_: --- 9842,9848 ----  File: gfortran.info, Node: ISATTY, Next: ISHFT, Prev: IS_IOSTAT_EOR, Up: Intrinsic Procedures ! 8.134 'ISATTY' -- Whether a unit is a terminal device. ====================================================== _Description_: *************** _Class_: *** 9954,9967 **** Function _Syntax_: ! `RESULT = ISATTY(UNIT)' _Arguments_: ! UNIT Shall be a scalar `INTEGER'. _Return value_: ! Returns `.TRUE.' if the UNIT is connected to a terminal device, ! `.FALSE.' otherwise. _Example_: PROGRAM test_isatty --- 9855,9868 ---- Function _Syntax_: ! 'RESULT = ISATTY(UNIT)' _Arguments_: ! UNIT Shall be a scalar 'INTEGER'. _Return value_: ! Returns '.TRUE.' if the UNIT is connected to a terminal device, ! '.FALSE.' otherwise. _Example_: PROGRAM test_isatty *************** _Example_: *** 9970,9991 **** write(*,*) isatty(unit=unit) END DO END PROGRAM - _See also_: *note TTYNAM::  File: gfortran.info, Node: ISHFT, Next: ISHFTC, Prev: ISATTY, Up: Intrinsic Procedures ! 8.135 `ISHFT' -- Shift bits =========================== _Description_: ! `ISHFT' returns a value corresponding to I with all of the bits shifted SHIFT places. A value of SHIFT greater than zero corresponds to a left shift, a value of zero corresponds to no ! shift, and a value less than zero corresponds to a right shift. ! If the absolute value of SHIFT is greater than `BIT_SIZE(I)', the value is undefined. Bits shifted out from the left end or right end are lost; zeros are shifted in from the opposite end. --- 9871,9891 ---- write(*,*) isatty(unit=unit) END DO END PROGRAM _See also_: *note TTYNAM::  File: gfortran.info, Node: ISHFT, Next: ISHFTC, Prev: ISATTY, Up: Intrinsic Procedures ! 8.135 'ISHFT' -- Shift bits =========================== _Description_: ! 'ISHFT' returns a value corresponding to I with all of the bits shifted SHIFT places. A value of SHIFT greater than zero corresponds to a left shift, a value of zero corresponds to no ! shift, and a value less than zero corresponds to a right shift. If ! the absolute value of SHIFT is greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted out from the left end or right end are lost; zeros are shifted in from the opposite end. *************** _Class_: *** 9996,10009 **** Elemental function _Syntax_: ! `RESULT = ISHFT(I, SHIFT)' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note ISHFTC:: --- 9896,9909 ---- Elemental function _Syntax_: ! 'RESULT = ISHFT(I, SHIFT)' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note ISHFTC:: *************** _See also_: *** 10011,10028 ****  File: gfortran.info, Node: ISHFTC, Next: ISNAN, Prev: ISHFT, Up: Intrinsic Procedures ! 8.136 `ISHFTC' -- Shift bits circularly ======================================= _Description_: ! `ISHFTC' returns a value corresponding to I with the rightmost ! SIZE bits shifted circularly SHIFT places; that is, bits shifted ! out one end are shifted into the opposite end. A value of SHIFT ! greater than zero corresponds to a left shift, a value of zero ! corresponds to no shift, and a value less than zero corresponds to ! a right shift. The absolute value of SHIFT must be less than ! SIZE. If the SIZE argument is omitted, it is taken to be ! equivalent to `BIT_SIZE(I)'. _Standard_: Fortran 95 and later --- 9911,9928 ----  File: gfortran.info, Node: ISHFTC, Next: ISNAN, Prev: ISHFT, Up: Intrinsic Procedures ! 8.136 'ISHFTC' -- Shift bits circularly ======================================= _Description_: ! 'ISHFTC' returns a value corresponding to I with the rightmost SIZE ! bits shifted circularly SHIFT places; that is, bits shifted out one ! end are shifted into the opposite end. A value of SHIFT greater ! than zero corresponds to a left shift, a value of zero corresponds ! to no shift, and a value less than zero corresponds to a right ! shift. The absolute value of SHIFT must be less than SIZE. If the ! SIZE argument is omitted, it is taken to be equivalent to ! 'BIT_SIZE(I)'. _Standard_: Fortran 95 and later *************** _Class_: *** 10031,10047 **** Elemental function _Syntax_: ! `RESULT = ISHFTC(I, SHIFT [, SIZE])' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. ! SIZE (Optional) The type shall be `INTEGER'; the ! value must be greater than zero and less than ! or equal to `BIT_SIZE(I)'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note ISHFT:: --- 9931,9947 ---- Elemental function _Syntax_: ! 'RESULT = ISHFTC(I, SHIFT [, SIZE])' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. ! SIZE (Optional) The type shall be 'INTEGER'; the ! value must be greater than zero and less than or ! equal to 'BIT_SIZE(I)'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note ISHFT:: *************** _See also_: *** 10049,10061 ****  File: gfortran.info, Node: ISNAN, Next: ITIME, Prev: ISHFTC, Up: Intrinsic Procedures ! 8.137 `ISNAN' -- Test for a NaN =============================== _Description_: ! `ISNAN' tests whether a floating-point value is an IEEE Not-a-Number (NaN). - _Standard_: GNU extension --- 9949,9960 ----  File: gfortran.info, Node: ISNAN, Next: ITIME, Prev: ISHFTC, Up: Intrinsic Procedures ! 8.137 'ISNAN' -- Test for a NaN =============================== _Description_: ! 'ISNAN' tests whether a floating-point value is an IEEE Not-a-Number (NaN). _Standard_: GNU extension *************** _Class_: *** 10063,10076 **** Elemental function _Syntax_: ! `ISNAN(X)' _Arguments_: ! X Variable of the type `REAL'. _Return value_: ! Returns a default-kind `LOGICAL'. The returned value is `TRUE' if ! X is a NaN and `FALSE' otherwise. _Example_: program test_nan --- 9962,9976 ---- Elemental function _Syntax_: ! 'ISNAN(X)' _Arguments_: ! X Variable of the type 'REAL'. ! _Return value_: ! Returns a default-kind 'LOGICAL'. The returned value is 'TRUE' if ! X is a NaN and 'FALSE' otherwise. _Example_: program test_nan *************** _Example_: *** 10084,10095 ****  File: gfortran.info, Node: ITIME, Next: KILL, Prev: ISNAN, Up: Intrinsic Procedures ! 8.138 `ITIME' -- Get current local time subroutine (hour/minutes/seconds) ========================================================================= _Description_: ! `IDATE(VALUES)' Fills VALUES with the numerical values at the ! current local time. The hour (in the range 1-24), minute (in the range 1-60), and seconds (in the range 1-60) appear in elements 1, 2, and 3 of VALUES, respectively. --- 9984,9995 ----  File: gfortran.info, Node: ITIME, Next: KILL, Prev: ISNAN, Up: Intrinsic Procedures ! 8.138 'ITIME' -- Get current local time subroutine (hour/minutes/seconds) ========================================================================= _Description_: ! 'IDATE(VALUES)' Fills VALUES with the numerical values at the ! current local time. The hour (in the range 1-24), minute (in the range 1-60), and seconds (in the range 1-60) appear in elements 1, 2, and 3 of VALUES, respectively. *************** _Class_: *** 10100,10110 **** Subroutine _Syntax_: ! `CALL ITIME(VALUES)' _Arguments_: ! VALUES The type shall be `INTEGER, DIMENSION(3)' and ! the kind shall be the default integer kind. _Return value_: Does not return anything. --- 10000,10010 ---- Subroutine _Syntax_: ! 'CALL ITIME(VALUES)' _Arguments_: ! VALUES The type shall be 'INTEGER, DIMENSION(3)' and ! the kind shall be the default integer kind. _Return value_: Does not return anything. *************** _Example_: *** 10121,10134 ****  File: gfortran.info, Node: KILL, Next: KIND, Prev: ITIME, Up: Intrinsic Procedures ! 8.139 `KILL' -- Send a signal to a process ========================================== _Description_: - _Standard_: Sends the signal specified by SIGNAL to the process PID. See ! `kill(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 10021,10033 ----  File: gfortran.info, Node: KILL, Next: KIND, Prev: ITIME, Up: Intrinsic Procedures ! 8.139 'KILL' -- Send a signal to a process ========================================== _Description_: _Standard_: Sends the signal specified by SIGNAL to the process PID. See ! 'kill(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 10137,10151 **** Subroutine, function _Syntax_: ! `CALL KILL(C, VALUE [, STATUS])' ! `STATUS = KILL(C, VALUE)' _Arguments_: ! C Shall be a scalar `INTEGER', with `INTENT(IN)' ! VALUE Shall be a scalar `INTEGER', with `INTENT(IN)' ! STATUS (Optional) status flag of type `INTEGER(4)' or ! `INTEGER(8)'. Returns 0 on success, or a ! system-specific error code otherwise. _See also_: *note ABORT::, *note EXIT:: --- 10036,10050 ---- Subroutine, function _Syntax_: ! 'CALL KILL(C, VALUE [, STATUS])' ! 'STATUS = KILL(C, VALUE)' _Arguments_: ! C Shall be a scalar 'INTEGER', with 'INTENT(IN)' ! VALUE Shall be a scalar 'INTEGER', with 'INTENT(IN)' ! STATUS (Optional) status flag of type 'INTEGER(4)' or ! 'INTEGER(8)'. Returns 0 on success, or a ! system-specific error code otherwise. _See also_: *note ABORT::, *note EXIT:: *************** _See also_: *** 10153,10163 ****  File: gfortran.info, Node: KIND, Next: LBOUND, Prev: KILL, Up: Intrinsic Procedures ! 8.140 `KIND' -- Kind of an entity ================================= _Description_: ! `KIND(X)' returns the kind value of the entity X. _Standard_: Fortran 95 and later --- 10052,10062 ----  File: gfortran.info, Node: KIND, Next: LBOUND, Prev: KILL, Up: Intrinsic Procedures ! 8.140 'KIND' -- Kind of an entity ================================= _Description_: ! 'KIND(X)' returns the kind value of the entity X. _Standard_: Fortran 95 and later *************** _Class_: *** 10166,10179 **** Inquiry function _Syntax_: ! `K = KIND(X)' _Arguments_: ! X Shall be of type `LOGICAL', `INTEGER', `REAL', ! `COMPLEX' or `CHARACTER'. _Return value_: ! The return value is a scalar of type `INTEGER' and of the default integer kind. _Example_: --- 10065,10078 ---- Inquiry function _Syntax_: ! 'K = KIND(X)' _Arguments_: ! X Shall be of type 'LOGICAL', 'INTEGER', 'REAL', ! 'COMPLEX' or 'CHARACTER'. _Return value_: ! The return value is a scalar of type 'INTEGER' and of the default integer kind. _Example_: *************** _Example_: *** 10185,10201 **** print *, "The default logical kind is ", kl end program test_kind -  File: gfortran.info, Node: LBOUND, Next: LCOBOUND, Prev: KIND, Up: Intrinsic Procedures ! 8.141 `LBOUND' -- Lower dimension bounds of an array ==================================================== _Description_: ! Returns the lower bounds of an array, or a single lower bound ! along the DIM dimension. ! _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later --- 10084,10098 ---- print *, "The default logical kind is ", kl end program test_kind  File: gfortran.info, Node: LBOUND, Next: LCOBOUND, Prev: KIND, Up: Intrinsic Procedures ! 8.141 'LBOUND' -- Lower dimension bounds of an array ==================================================== _Description_: ! Returns the lower bounds of an array, or a single lower bound along ! the DIM dimension. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later *************** _Class_: *** 10203,10226 **** Inquiry function _Syntax_: ! `RESULT = LBOUND(ARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an array, of any type. ! DIM (Optional) Shall be a scalar `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the lower bounds of ARRAY. If DIM is present, the result is a scalar corresponding to the lower ! bound of the array along that dimension. If ARRAY is an ! expression rather than a whole array or array structure component, ! or if it has a zero extent along the relevant dimension, the lower ! bound is taken to be 1. _See also_: *note UBOUND::, *note LCOBOUND:: --- 10100,10123 ---- Inquiry function _Syntax_: ! 'RESULT = LBOUND(ARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an array, of any type. ! DIM (Optional) Shall be a scalar 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the lower bounds of ARRAY. If DIM is present, the result is a scalar corresponding to the lower ! bound of the array along that dimension. If ARRAY is an expression ! rather than a whole array or array structure component, or if it ! has a zero extent along the relevant dimension, the lower bound is ! taken to be 1. _See also_: *note UBOUND::, *note LCOBOUND:: *************** _See also_: *** 10228,10240 ****  File: gfortran.info, Node: LCOBOUND, Next: LEADZ, Prev: LBOUND, Up: Intrinsic Procedures ! 8.142 `LCOBOUND' -- Lower codimension bounds of an array ======================================================== _Description_: Returns the lower bounds of a coarray, or a single lower cobound along the DIM codimension. - _Standard_: Fortran 2008 and later --- 10125,10136 ----  File: gfortran.info, Node: LCOBOUND, Next: LEADZ, Prev: LBOUND, Up: Intrinsic Procedures ! 8.142 'LCOBOUND' -- Lower codimension bounds of an array ======================================================== _Description_: Returns the lower bounds of a coarray, or a single lower cobound along the DIM codimension. _Standard_: Fortran 2008 and later *************** _Class_: *** 10242,10258 **** Inquiry function _Syntax_: ! `RESULT = LCOBOUND(COARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an coarray, of any type. ! DIM (Optional) Shall be a scalar `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the lower cobounds of COARRAY. If DIM is present, the result is a scalar corresponding to the --- 10138,10154 ---- Inquiry function _Syntax_: ! 'RESULT = LCOBOUND(COARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an coarray, of any type. ! DIM (Optional) Shall be a scalar 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the lower cobounds of COARRAY. If DIM is present, the result is a scalar corresponding to the *************** _See also_: *** 10264,10274 ****  File: gfortran.info, Node: LEADZ, Next: LEN, Prev: LCOBOUND, Up: Intrinsic Procedures ! 8.143 `LEADZ' -- Number of leading zero bits of an integer ========================================================== _Description_: ! `LEADZ' returns the number of leading zero bits of an integer. _Standard_: Fortran 2008 and later --- 10160,10170 ----  File: gfortran.info, Node: LEADZ, Next: LEN, Prev: LCOBOUND, Up: Intrinsic Procedures ! 8.143 'LEADZ' -- Number of leading zero bits of an integer ========================================================== _Description_: ! 'LEADZ' returns the number of leading zero bits of an integer. _Standard_: Fortran 2008 and later *************** _Class_: *** 10277,10290 **** Elemental function _Syntax_: ! `RESULT = LEADZ(I)' _Arguments_: ! I Shall be of type `INTEGER'. _Return value_: ! The type of the return value is the default `INTEGER'. If all the ! bits of `I' are zero, the result value is `BIT_SIZE(I)'. _Example_: PROGRAM test_leadz --- 10173,10186 ---- Elemental function _Syntax_: ! 'RESULT = LEADZ(I)' _Arguments_: ! I Shall be of type 'INTEGER'. _Return value_: ! The type of the return value is the default 'INTEGER'. If all the ! bits of 'I' are zero, the result value is 'BIT_SIZE(I)'. _Example_: PROGRAM test_leadz *************** _See also_: *** 10298,10304 ****  File: gfortran.info, Node: LEN, Next: LEN_TRIM, Prev: LEADZ, Up: Intrinsic Procedures ! 8.144 `LEN' -- Length of a character entity =========================================== _Description_: --- 10194,10200 ----  File: gfortran.info, Node: LEN, Next: LEN_TRIM, Prev: LEADZ, Up: Intrinsic Procedures ! 8.144 'LEN' -- Length of a character entity =========================================== _Description_: *************** _Class_: *** 10314,10336 **** Inquiry function _Syntax_: ! `L = LEN(STRING [, KIND])' _Arguments_: ! STRING Shall be a scalar or array of type ! `CHARACTER', with `INTENT(IN)' ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Specific names_: ! Name Argument Return type Standard ! `LEN(STRING)' `CHARACTER' `INTEGER' Fortran 77 and ! later _See also_: *note LEN_TRIM::, *note ADJUSTL::, *note ADJUSTR:: --- 10210,10232 ---- Inquiry function _Syntax_: ! 'L = LEN(STRING [, KIND])' _Arguments_: ! STRING Shall be a scalar or array of type 'CHARACTER', ! with 'INTENT(IN)' ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Specific names_: ! Name Argument Return type Standard ! 'LEN(STRING)' 'CHARACTER' 'INTEGER' Fortran 77 and ! later _See also_: *note LEN_TRIM::, *note ADJUSTL::, *note ADJUSTR:: *************** _See also_: *** 10338,10344 ****  File: gfortran.info, Node: LEN_TRIM, Next: LGE, Prev: LEN, Up: Intrinsic Procedures ! 8.145 `LEN_TRIM' -- Length of a character entity without trailing blank characters ================================================================================== _Description_: --- 10234,10240 ----  File: gfortran.info, Node: LEN_TRIM, Next: LGE, Prev: LEN, Up: Intrinsic Procedures ! 8.145 'LEN_TRIM' -- Length of a character entity without trailing blank characters ================================================================================== _Description_: *************** _Class_: *** 10352,10368 **** Elemental function _Syntax_: ! `RESULT = LEN_TRIM(STRING [, KIND])' _Arguments_: ! STRING Shall be a scalar of type `CHARACTER', with ! `INTENT(IN)' ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _See also_: --- 10248,10264 ---- Elemental function _Syntax_: ! 'RESULT = LEN_TRIM(STRING [, KIND])' _Arguments_: ! STRING Shall be a scalar of type 'CHARACTER', with ! 'INTENT(IN)' ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _See also_: *************** _See also_: *** 10371,10377 ****  File: gfortran.info, Node: LGE, Next: LGT, Prev: LEN_TRIM, Up: Intrinsic Procedures ! 8.146 `LGE' -- Lexical greater than or equal ============================================ _Description_: --- 10267,10273 ----  File: gfortran.info, Node: LGE, Next: LGT, Prev: LEN_TRIM, Up: Intrinsic Procedures ! 8.146 'LGE' -- Lexical greater than or equal ============================================ _Description_: *************** _Description_: *** 10381,10391 **** same length, the shorter is compared as if spaces were appended to it to form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics `LGE', `LGT', `LLE', ! and `LLT' differ from the corresponding intrinsic operators ! `.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the ! processor's character ordering (which is not ASCII on some ! targets), whereas the former always use the ASCII ordering. _Standard_: Fortran 77 and later --- 10277,10287 ---- same length, the shorter is compared as if spaces were appended to it to form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE', ! and 'LLT' differ from the corresponding intrinsic operators '.GE.', ! '.GT.', '.LE.', and '.LT.', in that the latter use the processor's ! character ordering (which is not ASCII on some targets), whereas ! the former always use the ASCII ordering. _Standard_: Fortran 77 and later *************** _Class_: *** 10394,10413 **** Elemental function _Syntax_: ! `RESULT = LGE(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default `CHARACTER' type. ! STRING_B Shall be of default `CHARACTER' type. _Return value_: ! Returns `.TRUE.' if `STRING_A >= STRING_B', and `.FALSE.' otherwise, based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! `LGE(STRING_A,`CHARACTER' `LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGT::, *note LLE::, *note LLT:: --- 10290,10309 ---- Elemental function _Syntax_: ! 'RESULT = LGE(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default 'CHARACTER' type. ! STRING_B Shall be of default 'CHARACTER' type. _Return value_: ! Returns '.TRUE.' if 'STRING_A >= STRING_B', and '.FALSE.' otherwise, based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! 'LGE(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGT::, *note LLE::, *note LLT:: *************** _See also_: *** 10415,10435 ****  File: gfortran.info, Node: LGT, Next: LINK, Prev: LGE, Up: Intrinsic Procedures ! 8.147 `LGT' -- Lexical greater than =================================== _Description_: Determines whether one string is lexically greater than another string, where the two strings are interpreted as containing ASCII character codes. If the String A and String B are not the same ! length, the shorter is compared as if spaces were appended to it ! to form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics `LGE', `LGT', `LLE', ! and `LLT' differ from the corresponding intrinsic operators ! `.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the ! processor's character ordering (which is not ASCII on some ! targets), whereas the former always use the ASCII ordering. _Standard_: Fortran 77 and later --- 10311,10331 ----  File: gfortran.info, Node: LGT, Next: LINK, Prev: LGE, Up: Intrinsic Procedures ! 8.147 'LGT' -- Lexical greater than =================================== _Description_: Determines whether one string is lexically greater than another string, where the two strings are interpreted as containing ASCII character codes. If the String A and String B are not the same ! length, the shorter is compared as if spaces were appended to it to ! form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE', ! and 'LLT' differ from the corresponding intrinsic operators '.GE.', ! '.GT.', '.LE.', and '.LT.', in that the latter use the processor's ! character ordering (which is not ASCII on some targets), whereas ! the former always use the ASCII ordering. _Standard_: Fortran 77 and later *************** _Class_: *** 10438,10457 **** Elemental function _Syntax_: ! `RESULT = LGT(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default `CHARACTER' type. ! STRING_B Shall be of default `CHARACTER' type. _Return value_: ! Returns `.TRUE.' if `STRING_A > STRING_B', and `.FALSE.' ! otherwise, based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! `LGT(STRING_A,`CHARACTER' `LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGE::, *note LLE::, *note LLT:: --- 10334,10353 ---- Elemental function _Syntax_: ! 'RESULT = LGT(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default 'CHARACTER' type. ! STRING_B Shall be of default 'CHARACTER' type. _Return value_: ! Returns '.TRUE.' if 'STRING_A > STRING_B', and '.FALSE.' otherwise, ! based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! 'LGT(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGE::, *note LLE::, *note LLT:: *************** _See also_: *** 10459,10473 ****  File: gfortran.info, Node: LINK, Next: LLE, Prev: LGT, Up: Intrinsic Procedures ! 8.148 `LINK' -- Create a hard link ================================== _Description_: ! Makes a (hard) link from file PATH1 to PATH2. A null character ! (`CHAR(0)') can be used to mark the end of the names in PATH1 and PATH2; otherwise, trailing blanks in the file names are ignored. If the STATUS argument is supplied, it contains 0 on success or a ! nonzero error code upon return; see `link(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 10355,10369 ----  File: gfortran.info, Node: LINK, Next: LLE, Prev: LGT, Up: Intrinsic Procedures ! 8.148 'LINK' -- Create a hard link ================================== _Description_: ! Makes a (hard) link from file PATH1 to PATH2. A null character ! ('CHAR(0)') can be used to mark the end of the names in PATH1 and PATH2; otherwise, trailing blanks in the file names are ignored. If the STATUS argument is supplied, it contains 0 on success or a ! nonzero error code upon return; see 'link(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 10479,10491 **** Subroutine, function _Syntax_: ! `CALL LINK(PATH1, PATH2 [, STATUS])' ! `STATUS = LINK(PATH1, PATH2)' _Arguments_: ! PATH1 Shall be of default `CHARACTER' type. ! PATH2 Shall be of default `CHARACTER' type. ! STATUS (Optional) Shall be of default `INTEGER' type. _See also_: *note SYMLNK::, *note UNLINK:: --- 10375,10387 ---- Subroutine, function _Syntax_: ! 'CALL LINK(PATH1, PATH2 [, STATUS])' ! 'STATUS = LINK(PATH1, PATH2)' _Arguments_: ! PATH1 Shall be of default 'CHARACTER' type. ! PATH2 Shall be of default 'CHARACTER' type. ! STATUS (Optional) Shall be of default 'INTEGER' type. _See also_: *note SYMLNK::, *note UNLINK:: *************** _See also_: *** 10493,10514 ****  File: gfortran.info, Node: LLE, Next: LLT, Prev: LINK, Up: Intrinsic Procedures ! 8.149 `LLE' -- Lexical less than or equal ========================================= _Description_: Determines whether one string is lexically less than or equal to ! another string, where the two strings are interpreted as ! containing ASCII character codes. If the String A and String B ! are not the same length, the shorter is compared as if spaces were ! appended to it to form a value that has the same length as the ! longer. ! In general, the lexical comparison intrinsics `LGE', `LGT', `LLE', ! and `LLT' differ from the corresponding intrinsic operators ! `.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the ! processor's character ordering (which is not ASCII on some ! targets), whereas the former always use the ASCII ordering. _Standard_: Fortran 77 and later --- 10389,10409 ----  File: gfortran.info, Node: LLE, Next: LLT, Prev: LINK, Up: Intrinsic Procedures ! 8.149 'LLE' -- Lexical less than or equal ========================================= _Description_: Determines whether one string is lexically less than or equal to ! another string, where the two strings are interpreted as containing ! ASCII character codes. If the String A and String B are not the ! same length, the shorter is compared as if spaces were appended to ! it to form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE', ! and 'LLT' differ from the corresponding intrinsic operators '.GE.', ! '.GT.', '.LE.', and '.LT.', in that the latter use the processor's ! character ordering (which is not ASCII on some targets), whereas ! the former always use the ASCII ordering. _Standard_: Fortran 77 and later *************** _Class_: *** 10517,10536 **** Elemental function _Syntax_: ! `RESULT = LLE(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default `CHARACTER' type. ! STRING_B Shall be of default `CHARACTER' type. _Return value_: ! Returns `.TRUE.' if `STRING_A <= STRING_B', and `.FALSE.' otherwise, based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! `LLE(STRING_A,`CHARACTER' `LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGE::, *note LGT::, *note LLT:: --- 10412,10431 ---- Elemental function _Syntax_: ! 'RESULT = LLE(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default 'CHARACTER' type. ! STRING_B Shall be of default 'CHARACTER' type. _Return value_: ! Returns '.TRUE.' if 'STRING_A <= STRING_B', and '.FALSE.' otherwise, based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! 'LLE(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGE::, *note LGT::, *note LLT:: *************** _See also_: *** 10538,10558 ****  File: gfortran.info, Node: LLT, Next: LNBLNK, Prev: LLE, Up: Intrinsic Procedures ! 8.150 `LLT' -- Lexical less than ================================ _Description_: Determines whether one string is lexically less than another string, where the two strings are interpreted as containing ASCII character codes. If the String A and String B are not the same ! length, the shorter is compared as if spaces were appended to it ! to form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics `LGE', `LGT', `LLE', ! and `LLT' differ from the corresponding intrinsic operators ! `.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the ! processor's character ordering (which is not ASCII on some ! targets), whereas the former always use the ASCII ordering. _Standard_: Fortran 77 and later --- 10433,10453 ----  File: gfortran.info, Node: LLT, Next: LNBLNK, Prev: LLE, Up: Intrinsic Procedures ! 8.150 'LLT' -- Lexical less than ================================ _Description_: Determines whether one string is lexically less than another string, where the two strings are interpreted as containing ASCII character codes. If the String A and String B are not the same ! length, the shorter is compared as if spaces were appended to it to ! form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE', ! and 'LLT' differ from the corresponding intrinsic operators '.GE.', ! '.GT.', '.LE.', and '.LT.', in that the latter use the processor's ! character ordering (which is not ASCII on some targets), whereas ! the former always use the ASCII ordering. _Standard_: Fortran 77 and later *************** _Class_: *** 10561,10580 **** Elemental function _Syntax_: ! `RESULT = LLT(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default `CHARACTER' type. ! STRING_B Shall be of default `CHARACTER' type. _Return value_: ! Returns `.TRUE.' if `STRING_A < STRING_B', and `.FALSE.' ! otherwise, based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! `LLT(STRING_A,`CHARACTER' `LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGE::, *note LGT::, *note LLE:: --- 10456,10475 ---- Elemental function _Syntax_: ! 'RESULT = LLT(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default 'CHARACTER' type. ! STRING_B Shall be of default 'CHARACTER' type. _Return value_: ! Returns '.TRUE.' if 'STRING_A < STRING_B', and '.FALSE.' otherwise, ! based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! 'LLT(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGE::, *note LGT::, *note LLE:: *************** _See also_: *** 10582,10593 ****  File: gfortran.info, Node: LNBLNK, Next: LOC, Prev: LLT, Up: Intrinsic Procedures ! 8.151 `LNBLNK' -- Index of the last non-blank character in a string =================================================================== _Description_: Returns the length of a character string, ignoring any trailing ! blanks. This is identical to the standard `LEN_TRIM' intrinsic, and is only included for backwards compatibility. _Standard_: --- 10477,10488 ----  File: gfortran.info, Node: LNBLNK, Next: LOC, Prev: LLT, Up: Intrinsic Procedures ! 8.151 'LNBLNK' -- Index of the last non-blank character in a string =================================================================== _Description_: Returns the length of a character string, ignoring any trailing ! blanks. This is identical to the standard 'LEN_TRIM' intrinsic, and is only included for backwards compatibility. _Standard_: *************** _Class_: *** 10597,10610 **** Elemental function _Syntax_: ! `RESULT = LNBLNK(STRING)' _Arguments_: ! STRING Shall be a scalar of type `CHARACTER', with ! `INTENT(IN)' _Return value_: ! The return value is of `INTEGER(kind=4)' type. _See also_: *note INDEX intrinsic::, *note LEN_TRIM:: --- 10492,10505 ---- Elemental function _Syntax_: ! 'RESULT = LNBLNK(STRING)' _Arguments_: ! STRING Shall be a scalar of type 'CHARACTER', with ! 'INTENT(IN)' _Return value_: ! The return value is of 'INTEGER(kind=4)' type. _See also_: *note INDEX intrinsic::, *note LEN_TRIM:: *************** _See also_: *** 10612,10622 ****  File: gfortran.info, Node: LOC, Next: LOG, Prev: LNBLNK, Up: Intrinsic Procedures ! 8.152 `LOC' -- Returns the address of a variable ================================================ _Description_: ! `LOC(X)' returns the address of X as an integer. _Standard_: GNU extension --- 10507,10517 ----  File: gfortran.info, Node: LOC, Next: LOG, Prev: LNBLNK, Up: Intrinsic Procedures ! 8.152 'LOC' -- Returns the address of a variable ================================================ _Description_: ! 'LOC(X)' returns the address of X as an integer. _Standard_: GNU extension *************** _Class_: *** 10625,10637 **** Inquiry function _Syntax_: ! `RESULT = LOC(X)' _Arguments_: ! X Variable of any type. _Return value_: ! The return value is of type `INTEGER', with a `KIND' corresponding to the size (in bytes) of a memory address on the target machine. _Example_: --- 10520,10532 ---- Inquiry function _Syntax_: ! 'RESULT = LOC(X)' _Arguments_: ! X Variable of any type. _Return value_: ! The return value is of type 'INTEGER', with a 'KIND' corresponding to the size (in bytes) of a memory address on the target machine. _Example_: *************** _Example_: *** 10645,10655 ****  File: gfortran.info, Node: LOG, Next: LOG10, Prev: LOC, Up: Intrinsic Procedures ! 8.153 `LOG' -- Natural logarithm function ========================================= _Description_: ! `LOG(X)' computes the natural logarithm of X, i.e. the logarithm to the base e. _Standard_: --- 10540,10550 ----  File: gfortran.info, Node: LOG, Next: LOG10, Prev: LOC, Up: Intrinsic Procedures ! 8.153 'LOG' -- Natural logarithm function ========================================= _Description_: ! 'LOG(X)' computes the natural logarithm of X, i.e. the logarithm to the base e. _Standard_: *************** _Class_: *** 10659,10672 **** Elemental function _Syntax_: ! `RESULT = LOG(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value is of type `REAL' or `COMPLEX'. The kind type ! parameter is the same as X. If X is `COMPLEX', the imaginary part \omega is in the range -\pi \leq \omega \leq \pi. _Example_: --- 10554,10567 ---- Elemental function _Syntax_: ! 'RESULT = LOG(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value is of type 'REAL' or 'COMPLEX'. The kind type ! parameter is the same as X. If X is 'COMPLEX', the imaginary part \omega is in the range -\pi \leq \omega \leq \pi. _Example_: *************** _Example_: *** 10678,10701 **** end program test_log _Specific names_: ! Name Argument Return type Standard ! `ALOG(X)' `REAL(4) X' `REAL(4)' f95, gnu ! `DLOG(X)' `REAL(8) X' `REAL(8)' f95, gnu ! `CLOG(X)' `COMPLEX(4) `COMPLEX(4)' f95, gnu ! X' ! `ZLOG(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu ! X' ! `CDLOG(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu ! X'  File: gfortran.info, Node: LOG10, Next: LOG_GAMMA, Prev: LOG, Up: Intrinsic Procedures ! 8.154 `LOG10' -- Base 10 logarithm function =========================================== _Description_: ! `LOG10(X)' computes the base 10 logarithm of X. _Standard_: Fortran 77 and later --- 10573,10596 ---- end program test_log _Specific names_: ! Name Argument Return type Standard ! 'ALOG(X)' 'REAL(4) X' 'REAL(4)' f95, gnu ! 'DLOG(X)' 'REAL(8) X' 'REAL(8)' f95, gnu ! 'CLOG(X)' 'COMPLEX(4) 'COMPLEX(4)' f95, gnu ! X' ! 'ZLOG(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu ! X' ! 'CDLOG(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu ! X'  File: gfortran.info, Node: LOG10, Next: LOG_GAMMA, Prev: LOG, Up: Intrinsic Procedures ! 8.154 'LOG10' -- Base 10 logarithm function =========================================== _Description_: ! 'LOG10(X)' computes the base 10 logarithm of X. _Standard_: Fortran 77 and later *************** _Class_: *** 10704,10716 **** Elemental function _Syntax_: ! `RESULT = LOG10(X)' _Arguments_: ! X The type shall be `REAL'. _Return value_: ! The return value is of type `REAL' or `COMPLEX'. The kind type parameter is the same as X. _Example_: --- 10599,10611 ---- Elemental function _Syntax_: ! 'RESULT = LOG10(X)' _Arguments_: ! X The type shall be 'REAL'. _Return value_: ! The return value is of type 'REAL' or 'COMPLEX'. The kind type parameter is the same as X. _Example_: *************** _Example_: *** 10720,10739 **** end program test_log10 _Specific names_: ! Name Argument Return type Standard ! `ALOG10(X)' `REAL(4) X' `REAL(4)' Fortran 95 and ! later ! `DLOG10(X)' `REAL(8) X' `REAL(8)' Fortran 95 and ! later  File: gfortran.info, Node: LOG_GAMMA, Next: LOGICAL, Prev: LOG10, Up: Intrinsic Procedures ! 8.155 `LOG_GAMMA' -- Logarithm of the Gamma function ==================================================== _Description_: ! `LOG_GAMMA(X)' computes the natural logarithm of the absolute value of the Gamma (\Gamma) function. _Standard_: --- 10615,10634 ---- end program test_log10 _Specific names_: ! Name Argument Return type Standard ! 'ALOG10(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and ! later ! 'DLOG10(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and ! later  File: gfortran.info, Node: LOG_GAMMA, Next: LOGICAL, Prev: LOG10, Up: Intrinsic Procedures ! 8.155 'LOG_GAMMA' -- Logarithm of the Gamma function ==================================================== _Description_: ! 'LOG_GAMMA(X)' computes the natural logarithm of the absolute value of the Gamma (\Gamma) function. _Standard_: *************** _Class_: *** 10743,10756 **** Elemental function _Syntax_: ! `X = LOG_GAMMA(X)' _Arguments_: ! X Shall be of type `REAL' and neither zero nor a ! negative integer. _Return value_: ! The return value is of type `REAL' of the same kind as X. _Example_: program test_log_gamma --- 10638,10651 ---- Elemental function _Syntax_: ! 'X = LOG_GAMMA(X)' _Arguments_: ! X Shall be of type 'REAL' and neither zero nor a ! negative integer. _Return value_: ! The return value is of type 'REAL' of the same kind as X. _Example_: program test_log_gamma *************** _Example_: *** 10759,10781 **** end program test_log_gamma _Specific names_: ! Name Argument Return type Standard ! `LGAMMA(X)' `REAL(4) X' `REAL(4)' GNU Extension ! `ALGAMA(X)' `REAL(4) X' `REAL(4)' GNU Extension ! `DLGAMA(X)' `REAL(8) X' `REAL(8)' GNU Extension _See also_: Gamma function: *note GAMMA:: -  File: gfortran.info, Node: LOGICAL, Next: LONG, Prev: LOG_GAMMA, Up: Intrinsic Procedures ! 8.156 `LOGICAL' -- Convert to logical type ========================================== _Description_: ! Converts one kind of `LOGICAL' variable to another. _Standard_: Fortran 95 and later --- 10654,10675 ---- end program test_log_gamma _Specific names_: ! Name Argument Return type Standard ! 'LGAMMA(X)' 'REAL(4) X' 'REAL(4)' GNU Extension ! 'ALGAMA(X)' 'REAL(4) X' 'REAL(4)' GNU Extension ! 'DLGAMA(X)' 'REAL(8) X' 'REAL(8)' GNU Extension _See also_: Gamma function: *note GAMMA::  File: gfortran.info, Node: LOGICAL, Next: LONG, Prev: LOG_GAMMA, Up: Intrinsic Procedures ! 8.156 'LOGICAL' -- Convert to logical type ========================================== _Description_: ! Converts one kind of 'LOGICAL' variable to another. _Standard_: Fortran 95 and later *************** _Class_: *** 10784,10799 **** Elemental function _Syntax_: ! `RESULT = LOGICAL(L [, KIND])' _Arguments_: ! L The type shall be `LOGICAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is a `LOGICAL' value equal to L, with a kind corresponding to KIND, or of the default logical kind if KIND is not given. --- 10678,10693 ---- Elemental function _Syntax_: ! 'RESULT = LOGICAL(L [, KIND])' _Arguments_: ! L The type shall be 'LOGICAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is a 'LOGICAL' value equal to L, with a kind corresponding to KIND, or of the default logical kind if KIND is not given. *************** _See also_: *** 10803,10816 ****  File: gfortran.info, Node: LONG, Next: LSHIFT, Prev: LOGICAL, Up: Intrinsic Procedures ! 8.157 `LONG' -- Convert to integer type ======================================= _Description_: ! Convert to a `KIND=4' integer type, which is the same size as a C ! `long' integer. This is equivalent to the standard `INT' ! intrinsic with an optional argument of `KIND=4', and is only ! included for backwards compatibility. _Standard_: GNU extension --- 10697,10710 ----  File: gfortran.info, Node: LONG, Next: LSHIFT, Prev: LOGICAL, Up: Intrinsic Procedures ! 8.157 'LONG' -- Convert to integer type ======================================= _Description_: ! Convert to a 'KIND=4' integer type, which is the same size as a C ! 'long' integer. This is equivalent to the standard 'INT' intrinsic ! with an optional argument of 'KIND=4', and is only included for ! backwards compatibility. _Standard_: GNU extension *************** _Class_: *** 10819,10832 **** Elemental function _Syntax_: ! `RESULT = LONG(A)' _Arguments_: ! A Shall be of type `INTEGER', `REAL', or ! `COMPLEX'. _Return value_: ! The return value is a `INTEGER(4)' variable. _See also_: *note INT::, *note INT2::, *note INT8:: --- 10713,10726 ---- Elemental function _Syntax_: ! 'RESULT = LONG(A)' _Arguments_: ! A Shall be of type 'INTEGER', 'REAL', or ! 'COMPLEX'. _Return value_: ! The return value is a 'INTEGER(4)' variable. _See also_: *note INT::, *note INT2::, *note INT8:: *************** _See also_: *** 10834,10851 ****  File: gfortran.info, Node: LSHIFT, Next: LSTAT, Prev: LONG, Up: Intrinsic Procedures ! 8.158 `LSHIFT' -- Left shift bits ================================= _Description_: ! `LSHIFT' returns a value corresponding to I with all of the bits shifted left by SHIFT places. If the absolute value of SHIFT is ! greater than `BIT_SIZE(I)', the value is undefined. Bits shifted out from the left end are lost; zeros are shifted in from the opposite end. ! This function has been superseded by the `ISHFT' intrinsic, which ! is standard in Fortran 95 and later, and the `SHIFTL' intrinsic, which is standard in Fortran 2008 and later. _Standard_: --- 10728,10745 ----  File: gfortran.info, Node: LSHIFT, Next: LSTAT, Prev: LONG, Up: Intrinsic Procedures ! 8.158 'LSHIFT' -- Left shift bits ================================= _Description_: ! 'LSHIFT' returns a value corresponding to I with all of the bits shifted left by SHIFT places. If the absolute value of SHIFT is ! greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted out from the left end are lost; zeros are shifted in from the opposite end. ! This function has been superseded by the 'ISHFT' intrinsic, which ! is standard in Fortran 95 and later, and the 'SHIFTL' intrinsic, which is standard in Fortran 2008 and later. _Standard_: *************** _Class_: *** 10855,10886 **** Elemental function _Syntax_: ! `RESULT = LSHIFT(I, SHIFT)' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note ISHFT::, *note ISHFTC::, *note RSHIFT::, *note SHIFTA::, *note SHIFTL::, *note SHIFTR:: -  File: gfortran.info, Node: LSTAT, Next: LTIME, Prev: LSHIFT, Up: Intrinsic Procedures ! 8.159 `LSTAT' -- Get file status ================================ _Description_: ! `LSTAT' is identical to *note STAT::, except that if path is a symbolic link, then the link itself is statted, not the file that it refers to. ! The elements in `VALUES' are the same as described by *note STAT::. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 10749,10779 ---- Elemental function _Syntax_: ! 'RESULT = LSHIFT(I, SHIFT)' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note ISHFT::, *note ISHFTC::, *note RSHIFT::, *note SHIFTA::, *note SHIFTL::, *note SHIFTR::  File: gfortran.info, Node: LSTAT, Next: LTIME, Prev: LSHIFT, Up: Intrinsic Procedures ! 8.159 'LSTAT' -- Get file status ================================ _Description_: ! 'LSTAT' is identical to *note STAT::, except that if path is a symbolic link, then the link itself is statted, not the file that it refers to. ! The elements in 'VALUES' are the same as described by *note STAT::. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 10892,10907 **** Subroutine, function _Syntax_: ! `CALL LSTAT(NAME, VALUES [, STATUS])' ! `STATUS = LSTAT(NAME, VALUES)' _Arguments_: ! NAME The type shall be `CHARACTER' of the default ! kind, a valid path within the file system. ! VALUES The type shall be `INTEGER(4), DIMENSION(13)'. ! STATUS (Optional) status flag of type `INTEGER(4)'. ! Returns 0 on success and a system specific ! error code otherwise. _Example_: See *note STAT:: for an example. --- 10785,10800 ---- Subroutine, function _Syntax_: ! 'CALL LSTAT(NAME, VALUES [, STATUS])' ! 'STATUS = LSTAT(NAME, VALUES)' _Arguments_: ! NAME The type shall be 'CHARACTER' of the default ! kind, a valid path within the file system. ! VALUES The type shall be 'INTEGER(4), DIMENSION(13)'. ! STATUS (Optional) status flag of type 'INTEGER(4)'. ! Returns 0 on success and a system specific error ! code otherwise. _Example_: See *note STAT:: for an example. *************** _See also_: *** 10912,10924 ****  File: gfortran.info, Node: LTIME, Next: MALLOC, Prev: LSTAT, Up: Intrinsic Procedures ! 8.160 `LTIME' -- Convert time to local time info ================================================ _Description_: ! Given a system time value TIME (as provided by the `TIME8' intrinsic), fills VALUES with values extracted from it appropriate ! to the local time zone using `localtime(3)'. _Standard_: GNU extension --- 10805,10817 ----  File: gfortran.info, Node: LTIME, Next: MALLOC, Prev: LSTAT, Up: Intrinsic Procedures ! 8.160 'LTIME' -- Convert time to local time info ================================================ _Description_: ! Given a system time value TIME (as provided by the 'TIME8' intrinsic), fills VALUES with values extracted from it appropriate ! to the local time zone using 'localtime(3)'. _Standard_: GNU extension *************** _Class_: *** 10927,10959 **** Subroutine _Syntax_: ! `CALL LTIME(TIME, VALUES)' _Arguments_: ! TIME An `INTEGER' scalar expression corresponding ! to a system time, with `INTENT(IN)'. ! VALUES A default `INTEGER' array with 9 elements, ! with `INTENT(OUT)'. _Return value_: The elements of VALUES are assigned as follows: 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap seconds - 2. Minutes after the hour, range 0-59 - 3. Hours past midnight, range 0-23 - 4. Day of month, range 0-31 - 5. Number of months since January, range 0-12 - 6. Years since 1900 - 7. Number of days since Sunday, range 0-6 - 8. Days since January 1 - 9. Daylight savings indicator: positive if daylight savings is in effect, zero if not, and negative if the information is not available. --- 10820,10844 ---- Subroutine _Syntax_: ! 'CALL LTIME(TIME, VALUES)' _Arguments_: ! TIME An 'INTEGER' scalar expression corresponding to ! a system time, with 'INTENT(IN)'. ! VALUES A default 'INTEGER' array with 9 elements, with ! 'INTENT(OUT)'. _Return value_: The elements of VALUES are assigned as follows: 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap seconds 2. Minutes after the hour, range 0-59 3. Hours past midnight, range 0-23 4. Day of month, range 0-31 5. Number of months since January, range 0-12 6. Years since 1900 7. Number of days since Sunday, range 0-6 8. Days since January 1 9. Daylight savings indicator: positive if daylight savings is in effect, zero if not, and negative if the information is not available. *************** _Return value_: *** 10961,10980 **** _See also_: *note CTIME::, *note GMTIME::, *note TIME::, *note TIME8:: -  File: gfortran.info, Node: MALLOC, Next: MASKL, Prev: LTIME, Up: Intrinsic Procedures ! 8.161 `MALLOC' -- Allocate dynamic memory ========================================= _Description_: ! `MALLOC(SIZE)' allocates SIZE bytes of dynamic memory and returns ! the address of the allocated memory. The `MALLOC' intrinsic is an extension intended to be used with Cray pointers, and is provided ! in GNU Fortran to allow the user to compile legacy code. For new code using Fortran 95 pointers, the memory allocation intrinsic is ! `ALLOCATE'. _Standard_: GNU extension --- 10846,10864 ---- _See also_: *note CTIME::, *note GMTIME::, *note TIME::, *note TIME8::  File: gfortran.info, Node: MALLOC, Next: MASKL, Prev: LTIME, Up: Intrinsic Procedures ! 8.161 'MALLOC' -- Allocate dynamic memory ========================================= _Description_: ! 'MALLOC(SIZE)' allocates SIZE bytes of dynamic memory and returns ! the address of the allocated memory. The 'MALLOC' intrinsic is an extension intended to be used with Cray pointers, and is provided ! in GNU Fortran to allow the user to compile legacy code. For new code using Fortran 95 pointers, the memory allocation intrinsic is ! 'ALLOCATE'. _Standard_: GNU extension *************** _Class_: *** 10983,11000 **** Function _Syntax_: ! `PTR = MALLOC(SIZE)' _Arguments_: ! SIZE The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER(K)', with K such that ! variables of type `INTEGER(K)' have the same size as C pointers ! (`sizeof(void *)'). _Example_: ! The following example demonstrates the use of `MALLOC' and `FREE' with Cray pointers. program test_malloc --- 10867,10884 ---- Function _Syntax_: ! 'PTR = MALLOC(SIZE)' _Arguments_: ! SIZE The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER(K)', with K such that ! variables of type 'INTEGER(K)' have the same size as C pointers ! ('sizeof(void *)'). _Example_: ! The following example demonstrates the use of 'MALLOC' and 'FREE' with Cray pointers. program test_malloc *************** _See also_: *** 11021,11031 ****  File: gfortran.info, Node: MASKL, Next: MASKR, Prev: MALLOC, Up: Intrinsic Procedures ! 8.162 `MASKL' -- Left justified mask ==================================== _Description_: ! `MASKL(I[, KIND])' has its leftmost I bits set to 1, and the remaining bits set to 0. _Standard_: --- 10905,10915 ----  File: gfortran.info, Node: MASKL, Next: MASKR, Prev: MALLOC, Up: Intrinsic Procedures ! 8.162 'MASKL' -- Left justified mask ==================================== _Description_: ! 'MASKL(I[, KIND])' has its leftmost I bits set to 1, and the remaining bits set to 0. _Standard_: *************** _Class_: *** 11035,11049 **** Elemental function _Syntax_: ! `RESULT = MASKL(I[, KIND])' _Arguments_: ! I Shall be of type `INTEGER'. ! KIND Shall be a scalar constant expression of type ! `INTEGER'. _Return value_: ! The return value is of type `INTEGER'. If KIND is present, it specifies the kind value of the return type; otherwise, it is of the default integer kind. --- 10919,10933 ---- Elemental function _Syntax_: ! 'RESULT = MASKL(I[, KIND])' _Arguments_: ! I Shall be of type 'INTEGER'. ! KIND Shall be a scalar constant expression of type ! 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER'. If KIND is present, it specifies the kind value of the return type; otherwise, it is of the default integer kind. *************** _See also_: *** 11053,11063 ****  File: gfortran.info, Node: MASKR, Next: MATMUL, Prev: MASKL, Up: Intrinsic Procedures ! 8.163 `MASKR' -- Right justified mask ===================================== _Description_: ! `MASKL(I[, KIND])' has its rightmost I bits set to 1, and the remaining bits set to 0. _Standard_: --- 10937,10947 ----  File: gfortran.info, Node: MASKR, Next: MATMUL, Prev: MASKL, Up: Intrinsic Procedures ! 8.163 'MASKR' -- Right justified mask ===================================== _Description_: ! 'MASKL(I[, KIND])' has its rightmost I bits set to 1, and the remaining bits set to 0. _Standard_: *************** _Class_: *** 11067,11081 **** Elemental function _Syntax_: ! `RESULT = MASKR(I[, KIND])' _Arguments_: ! I Shall be of type `INTEGER'. ! KIND Shall be a scalar constant expression of type ! `INTEGER'. _Return value_: ! The return value is of type `INTEGER'. If KIND is present, it specifies the kind value of the return type; otherwise, it is of the default integer kind. --- 10951,10965 ---- Elemental function _Syntax_: ! 'RESULT = MASKR(I[, KIND])' _Arguments_: ! I Shall be of type 'INTEGER'. ! KIND Shall be a scalar constant expression of type ! 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER'. If KIND is present, it specifies the kind value of the return type; otherwise, it is of the default integer kind. *************** _See also_: *** 11085,11091 ****  File: gfortran.info, Node: MATMUL, Next: MAX, Prev: MASKR, Up: Intrinsic Procedures ! 8.164 `MATMUL' -- matrix multiplication ======================================= _Description_: --- 10969,10975 ----  File: gfortran.info, Node: MATMUL, Next: MAX, Prev: MASKR, Up: Intrinsic Procedures ! 8.164 'MATMUL' -- matrix multiplication ======================================= _Description_: *************** _Class_: *** 11098,11126 **** Transformational function _Syntax_: ! `RESULT = MATMUL(MATRIX_A, MATRIX_B)' _Arguments_: ! MATRIX_A An array of `INTEGER', `REAL', `COMPLEX', or ! `LOGICAL' type, with a rank of one or two. ! MATRIX_B An array of `INTEGER', `REAL', or `COMPLEX' ! type if MATRIX_A is of a numeric type; ! otherwise, an array of `LOGICAL' type. The ! rank shall be one or two, and the first (or ! only) dimension of MATRIX_B shall be equal to ! the last (or only) dimension of MATRIX_A. _Return value_: The matrix product of MATRIX_A and MATRIX_B. The type and kind of the result follow the usual type and kind promotion rules, as for ! the `*' or `.AND.' operators. _See also_:  File: gfortran.info, Node: MAX, Next: MAXEXPONENT, Prev: MATMUL, Up: Intrinsic Procedures ! 8.165 `MAX' -- Maximum value of an argument list ================================================ _Description_: --- 10982,11010 ---- Transformational function _Syntax_: ! 'RESULT = MATMUL(MATRIX_A, MATRIX_B)' _Arguments_: ! MATRIX_A An array of 'INTEGER', 'REAL', 'COMPLEX', or ! 'LOGICAL' type, with a rank of one or two. ! MATRIX_B An array of 'INTEGER', 'REAL', or 'COMPLEX' type ! if MATRIX_A is of a numeric type; otherwise, an ! array of 'LOGICAL' type. The rank shall be one ! or two, and the first (or only) dimension of ! MATRIX_B shall be equal to the last (or only) ! dimension of MATRIX_A. _Return value_: The matrix product of MATRIX_A and MATRIX_B. The type and kind of the result follow the usual type and kind promotion rules, as for ! the '*' or '.AND.' operators. _See also_:  File: gfortran.info, Node: MAX, Next: MAXEXPONENT, Prev: MATMUL, Up: Intrinsic Procedures ! 8.165 'MAX' -- Maximum value of an argument list ================================================ _Description_: *************** _Class_: *** 11133,11176 **** Elemental function _Syntax_: ! `RESULT = MAX(A1, A2 [, A3 [, ...]])' _Arguments_: ! A1 The type shall be `INTEGER' or `REAL'. ! A2, A3, An expression of the same type and kind as A1. ! ... (As a GNU extension, arguments of different ! kinds are permitted.) _Return value_: The return value corresponds to the maximum value among the arguments, and has the same type and kind as the first argument. _Specific names_: ! Name Argument Return type Standard ! `MAX0(A1)' `INTEGER(4) `INTEGER(4)' Fortran 77 and ! A1' later ! `AMAX0(A1)' `INTEGER(4) `REAL(MAX(X))'Fortran 77 and ! A1' later ! `MAX1(A1)' `REAL A1' `INT(MAX(X))' Fortran 77 and ! later ! `AMAX1(A1)' `REAL(4) A1' `REAL(4)' Fortran 77 and ! later ! `DMAX1(A1)' `REAL(8) A1' `REAL(8)' Fortran 77 and ! later _See also_: *note MAXLOC:: *note MAXVAL::, *note MIN:: -  File: gfortran.info, Node: MAXEXPONENT, Next: MAXLOC, Prev: MAX, Up: Intrinsic Procedures ! 8.166 `MAXEXPONENT' -- Maximum exponent of a real kind ====================================================== _Description_: ! `MAXEXPONENT(X)' returns the maximum exponent in the model of the ! type of `X'. _Standard_: Fortran 95 and later --- 11017,11059 ---- Elemental function _Syntax_: ! 'RESULT = MAX(A1, A2 [, A3 [, ...]])' _Arguments_: ! A1 The type shall be 'INTEGER' or 'REAL'. ! A2, A3, An expression of the same type and kind as A1. ! ... (As a GNU extension, arguments of different ! kinds are permitted.) _Return value_: The return value corresponds to the maximum value among the arguments, and has the same type and kind as the first argument. _Specific names_: ! Name Argument Return type Standard ! 'MAX0(A1)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and ! A1' later ! 'AMAX0(A1)' 'INTEGER(4) 'REAL(MAX(X))' Fortran 77 and ! A1' later ! 'MAX1(A1)' 'REAL A1' 'INT(MAX(X))' Fortran 77 and ! later ! 'AMAX1(A1)' 'REAL(4) A1' 'REAL(4)' Fortran 77 and ! later ! 'DMAX1(A1)' 'REAL(8) A1' 'REAL(8)' Fortran 77 and ! later _See also_: *note MAXLOC:: *note MAXVAL::, *note MIN::  File: gfortran.info, Node: MAXEXPONENT, Next: MAXLOC, Prev: MAX, Up: Intrinsic Procedures ! 8.166 'MAXEXPONENT' -- Maximum exponent of a real kind ====================================================== _Description_: ! 'MAXEXPONENT(X)' returns the maximum exponent in the model of the ! type of 'X'. _Standard_: Fortran 95 and later *************** _Class_: *** 11179,11191 **** Inquiry function _Syntax_: ! `RESULT = MAXEXPONENT(X)' _Arguments_: ! X Shall be of type `REAL'. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _Example_: --- 11062,11074 ---- Inquiry function _Syntax_: ! 'RESULT = MAXEXPONENT(X)' _Arguments_: ! X Shall be of type 'REAL'. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _Example_: *************** _Example_: *** 11200,11206 ****  File: gfortran.info, Node: MAXLOC, Next: MAXVAL, Prev: MAXEXPONENT, Up: Intrinsic Procedures ! 8.167 `MAXLOC' -- Location of the maximum value within an array =============================================================== _Description_: --- 11083,11089 ----  File: gfortran.info, Node: MAXLOC, Next: MAXVAL, Prev: MAXEXPONENT, Up: Intrinsic Procedures ! 8.167 'MAXLOC' -- Location of the maximum value within an array =============================================================== _Description_: *************** _Description_: *** 11208,11220 **** maximum value, or, if the DIM argument is supplied, determines the locations of the maximum element along each row of the array in the DIM direction. If MASK is present, only the elements for which ! MASK is `.TRUE.' are considered. If more than one element in the array has the maximum value, the location returned is that of the first such element in array element order. If the array has zero ! size, or all of the elements of MASK are `.FALSE.', then the ! result is an array of zeroes. Similarly, if DIM is supplied and ! all of the elements of MASK along a given row are zero, the result ! value for that row is zero. _Standard_: Fortran 95 and later --- 11091,11103 ---- maximum value, or, if the DIM argument is supplied, determines the locations of the maximum element along each row of the array in the DIM direction. If MASK is present, only the elements for which ! MASK is '.TRUE.' are considered. If more than one element in the array has the maximum value, the location returned is that of the first such element in array element order. If the array has zero ! size, or all of the elements of MASK are '.FALSE.', then the result ! is an array of zeroes. Similarly, if DIM is supplied and all of ! the elements of MASK along a given row are zero, the result value ! for that row is zero. _Standard_: Fortran 95 and later *************** _Class_: *** 11223,11239 **** Transformational function _Syntax_: ! `RESULT = MAXLOC(ARRAY, DIM [, MASK])' ! `RESULT = MAXLOC(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' or `REAL'. ! DIM (Optional) Shall be a scalar of type ! `INTEGER', with a value between one and the ! rank of ARRAY, inclusive. It may not be an ! optional dummy argument. ! MASK Shall be an array of type `LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, the result is a rank-one array with a length --- 11106,11122 ---- Transformational function _Syntax_: ! 'RESULT = MAXLOC(ARRAY, DIM [, MASK])' ! 'RESULT = MAXLOC(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' or 'REAL'. ! DIM (Optional) Shall be a scalar of type 'INTEGER', ! with a value between one and the rank of ARRAY, ! inclusive. It may not be an optional dummy ! argument. ! MASK Shall be an array of type 'LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, the result is a rank-one array with a length *************** _Return value_: *** 11241,11266 **** array with a rank one less than the rank of ARRAY, and a size corresponding to the size of ARRAY with the DIM dimension removed. If DIM is present and ARRAY has a rank of one, the result is a ! scalar. In all cases, the result is of default `INTEGER' type. _See also_: *note MAX::, *note MAXVAL:: -  File: gfortran.info, Node: MAXVAL, Next: MCLOCK, Prev: MAXLOC, Up: Intrinsic Procedures ! 8.168 `MAXVAL' -- Maximum value of an array =========================================== _Description_: ! Determines the maximum value of the elements in an array value, ! or, if the DIM argument is supplied, determines the maximum value ! along each row of the array in the DIM direction. If MASK is ! present, only the elements for which MASK is `.TRUE.' are ! considered. If the array has zero size, or all of the elements of ! MASK are `.FALSE.', then the result is `-HUGE(ARRAY)' if ARRAY is ! numeric, or a string of nulls if ARRAY is of character type. _Standard_: Fortran 95 and later --- 11124,11148 ---- array with a rank one less than the rank of ARRAY, and a size corresponding to the size of ARRAY with the DIM dimension removed. If DIM is present and ARRAY has a rank of one, the result is a ! scalar. In all cases, the result is of default 'INTEGER' type. _See also_: *note MAX::, *note MAXVAL::  File: gfortran.info, Node: MAXVAL, Next: MCLOCK, Prev: MAXLOC, Up: Intrinsic Procedures ! 8.168 'MAXVAL' -- Maximum value of an array =========================================== _Description_: ! Determines the maximum value of the elements in an array value, or, ! if the DIM argument is supplied, determines the maximum value along ! each row of the array in the DIM direction. If MASK is present, ! only the elements for which MASK is '.TRUE.' are considered. If ! the array has zero size, or all of the elements of MASK are ! '.FALSE.', then the result is '-HUGE(ARRAY)' if ARRAY is numeric, ! or a string of nulls if ARRAY is of character type. _Standard_: Fortran 95 and later *************** _Class_: *** 11269,11285 **** Transformational function _Syntax_: ! `RESULT = MAXVAL(ARRAY, DIM [, MASK])' ! `RESULT = MAXVAL(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' or `REAL'. ! DIM (Optional) Shall be a scalar of type ! `INTEGER', with a value between one and the ! rank of ARRAY, inclusive. It may not be an ! optional dummy argument. ! MASK Shall be an array of type `LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, or if ARRAY has a rank of one, the result is a --- 11151,11167 ---- Transformational function _Syntax_: ! 'RESULT = MAXVAL(ARRAY, DIM [, MASK])' ! 'RESULT = MAXVAL(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' or 'REAL'. ! DIM (Optional) Shall be a scalar of type 'INTEGER', ! with a value between one and the rank of ARRAY, ! inclusive. It may not be an optional dummy ! argument. ! MASK Shall be an array of type 'LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, or if ARRAY has a rank of one, the result is a *************** _See also_: *** 11294,11308 ****  File: gfortran.info, Node: MCLOCK, Next: MCLOCK8, Prev: MAXVAL, Up: Intrinsic Procedures ! 8.169 `MCLOCK' -- Time function =============================== _Description_: Returns the number of clock ticks since the start of the process, ! based on the function `clock(3)' in the C standard library. This intrinsic is not fully portable, such as to systems with ! 32-bit `INTEGER' types but supporting times wider than 32 bits. Therefore, the values returned by this intrinsic might be, or become, negative, or numerically less than previous values, during a single run of the compiled program. --- 11176,11190 ----  File: gfortran.info, Node: MCLOCK, Next: MCLOCK8, Prev: MAXVAL, Up: Intrinsic Procedures ! 8.169 'MCLOCK' -- Time function =============================== _Description_: Returns the number of clock ticks since the start of the process, ! based on the function 'clock(3)' in the C standard library. This intrinsic is not fully portable, such as to systems with ! 32-bit 'INTEGER' types but supporting times wider than 32 bits. Therefore, the values returned by this intrinsic might be, or become, negative, or numerically less than previous values, during a single run of the compiled program. *************** _Class_: *** 11314,11349 **** Function _Syntax_: ! `RESULT = MCLOCK()' _Return value_: ! The return value is a scalar of type `INTEGER(4)', equal to the ! number of clock ticks since the start of the process, or `-1' if ! the system does not support `clock(3)'. _See also_: ! *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, ! *note TIME:: !  File: gfortran.info, Node: MCLOCK8, Next: MERGE, Prev: MCLOCK, Up: Intrinsic Procedures ! 8.170 `MCLOCK8' -- Time function (64-bit) ========================================= _Description_: Returns the number of clock ticks since the start of the process, ! based on the function `clock(3)' in the C standard library. _Warning:_ this intrinsic does not increase the range of the timing ! values over that returned by `clock(3)'. On a system with a 32-bit ! `clock(3)', `MCLOCK8' will return a 32-bit value, even though it ! is converted to a 64-bit `INTEGER(8)' value. That means overflows ! of the 32-bit value can still occur. Therefore, the values ! returned by this intrinsic might be or become negative or ! numerically less than previous values during a single run of the ! compiled program. _Standard_: GNU extension --- 11196,11229 ---- Function _Syntax_: ! 'RESULT = MCLOCK()' _Return value_: ! The return value is a scalar of type 'INTEGER(4)', equal to the ! number of clock ticks since the start of the process, or '-1' if ! the system does not support 'clock(3)'. _See also_: ! *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note ! TIME::  File: gfortran.info, Node: MCLOCK8, Next: MERGE, Prev: MCLOCK, Up: Intrinsic Procedures ! 8.170 'MCLOCK8' -- Time function (64-bit) ========================================= _Description_: Returns the number of clock ticks since the start of the process, ! based on the function 'clock(3)' in the C standard library. _Warning:_ this intrinsic does not increase the range of the timing ! values over that returned by 'clock(3)'. On a system with a 32-bit ! 'clock(3)', 'MCLOCK8' will return a 32-bit value, even though it is ! converted to a 64-bit 'INTEGER(8)' value. That means overflows of ! the 32-bit value can still occur. Therefore, the values returned ! by this intrinsic might be or become negative or numerically less ! than previous values during a single run of the compiled program. _Standard_: GNU extension *************** _Class_: *** 11352,11379 **** Function _Syntax_: ! `RESULT = MCLOCK8()' _Return value_: ! The return value is a scalar of type `INTEGER(8)', equal to the ! number of clock ticks since the start of the process, or `-1' if ! the system does not support `clock(3)'. _See also_: ! *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, ! *note TIME8:: !  File: gfortran.info, Node: MERGE, Next: MERGE_BITS, Prev: MCLOCK8, Up: Intrinsic Procedures ! 8.171 `MERGE' -- Merge variables ================================ _Description_: Select values from two arrays according to a logical mask. The ! result is equal to TSOURCE if MASK is `.TRUE.', or equal to ! FSOURCE if it is `.FALSE.'. _Standard_: Fortran 95 and later --- 11232,11258 ---- Function _Syntax_: ! 'RESULT = MCLOCK8()' _Return value_: ! The return value is a scalar of type 'INTEGER(8)', equal to the ! number of clock ticks since the start of the process, or '-1' if ! the system does not support 'clock(3)'. _See also_: ! *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note ! TIME8::  File: gfortran.info, Node: MERGE, Next: MERGE_BITS, Prev: MCLOCK8, Up: Intrinsic Procedures ! 8.171 'MERGE' -- Merge variables ================================ _Description_: Select values from two arrays according to a logical mask. The ! result is equal to TSOURCE if MASK is '.TRUE.', or equal to FSOURCE ! if it is '.FALSE.'. _Standard_: Fortran 95 and later *************** _Class_: *** 11382,11410 **** Elemental function _Syntax_: ! `RESULT = MERGE(TSOURCE, FSOURCE, MASK)' _Arguments_: ! TSOURCE May be of any type. ! FSOURCE Shall be of the same type and type parameters ! as TSOURCE. ! MASK Shall be of type `LOGICAL'. _Return value_: The result is of the same type and type parameters as TSOURCE. -  File: gfortran.info, Node: MERGE_BITS, Next: MIN, Prev: MERGE, Up: Intrinsic Procedures ! 8.172 `MERGE_BITS' -- Merge of bits under mask ============================================== _Description_: ! `MERGE_BITS(I, J, MASK)' merges the bits of I and J as determined by the mask. The i-th bit of the result is equal to the i-th bit ! of I if the i-th bit of MASK is 1; it is equal to the i-th bit of ! J otherwise. _Standard_: Fortran 2008 and later --- 11261,11288 ---- Elemental function _Syntax_: ! 'RESULT = MERGE(TSOURCE, FSOURCE, MASK)' _Arguments_: ! TSOURCE May be of any type. ! FSOURCE Shall be of the same type and type parameters as ! TSOURCE. ! MASK Shall be of type 'LOGICAL'. _Return value_: The result is of the same type and type parameters as TSOURCE.  File: gfortran.info, Node: MERGE_BITS, Next: MIN, Prev: MERGE, Up: Intrinsic Procedures ! 8.172 'MERGE_BITS' -- Merge of bits under mask ============================================== _Description_: ! 'MERGE_BITS(I, J, MASK)' merges the bits of I and J as determined by the mask. The i-th bit of the result is equal to the i-th bit ! of I if the i-th bit of MASK is 1; it is equal to the i-th bit of J ! otherwise. _Standard_: Fortran 2008 and later *************** _Class_: *** 11413,11435 **** Elemental function _Syntax_: ! `RESULT = MERGE_BITS(I, J, MASK)' _Arguments_: ! I Shall be of type `INTEGER'. ! J Shall be of type `INTEGER' and of the same ! kind as I. ! MASK Shall be of type `INTEGER' and of the same ! kind as I. _Return value_: The result is of the same type and kind as I. -  File: gfortran.info, Node: MIN, Next: MINEXPONENT, Prev: MERGE_BITS, Up: Intrinsic Procedures ! 8.173 `MIN' -- Minimum value of an argument list ================================================ _Description_: --- 11291,11312 ---- Elemental function _Syntax_: ! 'RESULT = MERGE_BITS(I, J, MASK)' _Arguments_: ! I Shall be of type 'INTEGER'. ! J Shall be of type 'INTEGER' and of the same kind ! as I. ! MASK Shall be of type 'INTEGER' and of the same kind ! as I. _Return value_: The result is of the same type and kind as I.  File: gfortran.info, Node: MIN, Next: MINEXPONENT, Prev: MERGE_BITS, Up: Intrinsic Procedures ! 8.173 'MIN' -- Minimum value of an argument list ================================================ _Description_: *************** _Class_: *** 11442,11471 **** Elemental function _Syntax_: ! `RESULT = MIN(A1, A2 [, A3, ...])' _Arguments_: ! A1 The type shall be `INTEGER' or `REAL'. ! A2, A3, An expression of the same type and kind as A1. ! ... (As a GNU extension, arguments of different ! kinds are permitted.) _Return value_: The return value corresponds to the maximum value among the arguments, and has the same type and kind as the first argument. _Specific names_: ! Name Argument Return type Standard ! `MIN0(A1)' `INTEGER(4) `INTEGER(4)' Fortran 77 and ! A1' later ! `AMIN0(A1)' `INTEGER(4) `REAL(4)' Fortran 77 and ! A1' later ! `MIN1(A1)' `REAL A1' `INTEGER(4)' Fortran 77 and ! later ! `AMIN1(A1)' `REAL(4) A1' `REAL(4)' Fortran 77 and ! later ! `DMIN1(A1)' `REAL(8) A1' `REAL(8)' Fortran 77 and ! later _See also_: *note MAX::, *note MINLOC::, *note MINVAL:: --- 11319,11348 ---- Elemental function _Syntax_: ! 'RESULT = MIN(A1, A2 [, A3, ...])' _Arguments_: ! A1 The type shall be 'INTEGER' or 'REAL'. ! A2, A3, An expression of the same type and kind as A1. ! ... (As a GNU extension, arguments of different ! kinds are permitted.) _Return value_: The return value corresponds to the maximum value among the arguments, and has the same type and kind as the first argument. _Specific names_: ! Name Argument Return type Standard ! 'MIN0(A1)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and ! A1' later ! 'AMIN0(A1)' 'INTEGER(4) 'REAL(4)' Fortran 77 and ! A1' later ! 'MIN1(A1)' 'REAL A1' 'INTEGER(4)' Fortran 77 and ! later ! 'AMIN1(A1)' 'REAL(4) A1' 'REAL(4)' Fortran 77 and ! later ! 'DMIN1(A1)' 'REAL(8) A1' 'REAL(8)' Fortran 77 and ! later _See also_: *note MAX::, *note MINLOC::, *note MINVAL:: *************** _See also_: *** 11473,11484 ****  File: gfortran.info, Node: MINEXPONENT, Next: MINLOC, Prev: MIN, Up: Intrinsic Procedures ! 8.174 `MINEXPONENT' -- Minimum exponent of a real kind ====================================================== _Description_: ! `MINEXPONENT(X)' returns the minimum exponent in the model of the ! type of `X'. _Standard_: Fortran 95 and later --- 11350,11361 ----  File: gfortran.info, Node: MINEXPONENT, Next: MINLOC, Prev: MIN, Up: Intrinsic Procedures ! 8.174 'MINEXPONENT' -- Minimum exponent of a real kind ====================================================== _Description_: ! 'MINEXPONENT(X)' returns the minimum exponent in the model of the ! type of 'X'. _Standard_: Fortran 95 and later *************** _Class_: *** 11487,11508 **** Inquiry function _Syntax_: ! `RESULT = MINEXPONENT(X)' _Arguments_: ! X Shall be of type `REAL'. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _Example_: ! See `MAXEXPONENT' for an example.  File: gfortran.info, Node: MINLOC, Next: MINVAL, Prev: MINEXPONENT, Up: Intrinsic Procedures ! 8.175 `MINLOC' -- Location of the minimum value within an array =============================================================== _Description_: --- 11364,11385 ---- Inquiry function _Syntax_: ! 'RESULT = MINEXPONENT(X)' _Arguments_: ! X Shall be of type 'REAL'. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _Example_: ! See 'MAXEXPONENT' for an example.  File: gfortran.info, Node: MINLOC, Next: MINVAL, Prev: MINEXPONENT, Up: Intrinsic Procedures ! 8.175 'MINLOC' -- Location of the minimum value within an array =============================================================== _Description_: *************** _Description_: *** 11510,11522 **** minimum value, or, if the DIM argument is supplied, determines the locations of the minimum element along each row of the array in the DIM direction. If MASK is present, only the elements for which ! MASK is `.TRUE.' are considered. If more than one element in the array has the minimum value, the location returned is that of the first such element in array element order. If the array has zero ! size, or all of the elements of MASK are `.FALSE.', then the ! result is an array of zeroes. Similarly, if DIM is supplied and ! all of the elements of MASK along a given row are zero, the result ! value for that row is zero. _Standard_: Fortran 95 and later --- 11387,11399 ---- minimum value, or, if the DIM argument is supplied, determines the locations of the minimum element along each row of the array in the DIM direction. If MASK is present, only the elements for which ! MASK is '.TRUE.' are considered. If more than one element in the array has the minimum value, the location returned is that of the first such element in array element order. If the array has zero ! size, or all of the elements of MASK are '.FALSE.', then the result ! is an array of zeroes. Similarly, if DIM is supplied and all of ! the elements of MASK along a given row are zero, the result value ! for that row is zero. _Standard_: Fortran 95 and later *************** _Class_: *** 11525,11541 **** Transformational function _Syntax_: ! `RESULT = MINLOC(ARRAY, DIM [, MASK])' ! `RESULT = MINLOC(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' or `REAL'. ! DIM (Optional) Shall be a scalar of type ! `INTEGER', with a value between one and the ! rank of ARRAY, inclusive. It may not be an ! optional dummy argument. ! MASK Shall be an array of type `LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, the result is a rank-one array with a length --- 11402,11418 ---- Transformational function _Syntax_: ! 'RESULT = MINLOC(ARRAY, DIM [, MASK])' ! 'RESULT = MINLOC(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' or 'REAL'. ! DIM (Optional) Shall be a scalar of type 'INTEGER', ! with a value between one and the rank of ARRAY, ! inclusive. It may not be an optional dummy ! argument. ! MASK Shall be an array of type 'LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, the result is a rank-one array with a length *************** _Return value_: *** 11543,11569 **** array with a rank one less than the rank of ARRAY, and a size corresponding to the size of ARRAY with the DIM dimension removed. If DIM is present and ARRAY has a rank of one, the result is a ! scalar. In all cases, the result is of default `INTEGER' type. _See also_: *note MIN::, *note MINVAL:: -  File: gfortran.info, Node: MINVAL, Next: MOD, Prev: MINLOC, Up: Intrinsic Procedures ! 8.176 `MINVAL' -- Minimum value of an array =========================================== _Description_: ! Determines the minimum value of the elements in an array value, ! or, if the DIM argument is supplied, determines the minimum value ! along each row of the array in the DIM direction. If MASK is ! present, only the elements for which MASK is `.TRUE.' are ! considered. If the array has zero size, or all of the elements of ! MASK are `.FALSE.', then the result is `HUGE(ARRAY)' if ARRAY is ! numeric, or a string of `CHAR(255)' characters if ARRAY is of ! character type. _Standard_: Fortran 95 and later --- 11420,11444 ---- array with a rank one less than the rank of ARRAY, and a size corresponding to the size of ARRAY with the DIM dimension removed. If DIM is present and ARRAY has a rank of one, the result is a ! scalar. In all cases, the result is of default 'INTEGER' type. _See also_: *note MIN::, *note MINVAL::  File: gfortran.info, Node: MINVAL, Next: MOD, Prev: MINLOC, Up: Intrinsic Procedures ! 8.176 'MINVAL' -- Minimum value of an array =========================================== _Description_: ! Determines the minimum value of the elements in an array value, or, ! if the DIM argument is supplied, determines the minimum value along ! each row of the array in the DIM direction. If MASK is present, ! only the elements for which MASK is '.TRUE.' are considered. If ! the array has zero size, or all of the elements of MASK are ! '.FALSE.', then the result is 'HUGE(ARRAY)' if ARRAY is numeric, or ! a string of 'CHAR(255)' characters if ARRAY is of character type. _Standard_: Fortran 95 and later *************** _Class_: *** 11572,11588 **** Transformational function _Syntax_: ! `RESULT = MINVAL(ARRAY, DIM [, MASK])' ! `RESULT = MINVAL(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' or `REAL'. ! DIM (Optional) Shall be a scalar of type ! `INTEGER', with a value between one and the ! rank of ARRAY, inclusive. It may not be an ! optional dummy argument. ! MASK Shall be an array of type `LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, or if ARRAY has a rank of one, the result is a --- 11447,11463 ---- Transformational function _Syntax_: ! 'RESULT = MINVAL(ARRAY, DIM [, MASK])' ! 'RESULT = MINVAL(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' or 'REAL'. ! DIM (Optional) Shall be a scalar of type 'INTEGER', ! with a value between one and the rank of ARRAY, ! inclusive. It may not be an optional dummy ! argument. ! MASK Shall be an array of type 'LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, or if ARRAY has a rank of one, the result is a *************** _Return value_: *** 11594,11608 **** _See also_: *note MIN::, *note MINLOC:: -  File: gfortran.info, Node: MOD, Next: MODULO, Prev: MINVAL, Up: Intrinsic Procedures ! 8.177 `MOD' -- Remainder function ================================= _Description_: ! `MOD(A,P)' computes the remainder of the division of A by P. _Standard_: Fortran 77 and later --- 11469,11482 ---- _See also_: *note MIN::, *note MINLOC::  File: gfortran.info, Node: MOD, Next: MODULO, Prev: MINVAL, Up: Intrinsic Procedures ! 8.177 'MOD' -- Remainder function ================================= _Description_: ! 'MOD(A,P)' computes the remainder of the division of A by P. _Standard_: Fortran 77 and later *************** _Class_: *** 11611,11628 **** Elemental function _Syntax_: ! `RESULT = MOD(A, P)' _Arguments_: ! A Shall be a scalar of type `INTEGER' or `REAL'. ! P Shall be a scalar of the same type and kind as ! A and not equal to zero. _Return value_: ! The return value is the result of `A - (INT(A/P) * P)'. The type and kind of the return value is the same as that of the arguments. ! The returned value has the same sign as A and a magnitude less ! than the magnitude of P. _Example_: program test_mod --- 11485,11502 ---- Elemental function _Syntax_: ! 'RESULT = MOD(A, P)' _Arguments_: ! A Shall be a scalar of type 'INTEGER' or 'REAL'. ! P Shall be a scalar of the same type and kind as A ! and not equal to zero. _Return value_: ! The return value is the result of 'A - (INT(A/P) * P)'. The type and kind of the return value is the same as that of the arguments. ! The returned value has the same sign as A and a magnitude less than ! the magnitude of P. _Example_: program test_mod *************** _Example_: *** 11643,11668 **** end program test_mod _Specific names_: ! Name Arguments Return type Standard ! `MOD(A,P)' `INTEGER `INTEGER' Fortran 95 and ! A,P' later ! `AMOD(A,P)' `REAL(4) `REAL(4)' Fortran 95 and ! A,P' later ! `DMOD(A,P)' `REAL(8) `REAL(8)' Fortran 95 and ! A,P' later _See also_: *note MODULO:: -  File: gfortran.info, Node: MODULO, Next: MOVE_ALLOC, Prev: MOD, Up: Intrinsic Procedures ! 8.178 `MODULO' -- Modulo function ================================= _Description_: ! `MODULO(A,P)' computes the A modulo P. _Standard_: Fortran 95 and later --- 11517,11541 ---- end program test_mod _Specific names_: ! Name Arguments Return type Standard ! 'MOD(A,P)' 'INTEGER 'INTEGER' Fortran 95 and ! A,P' later ! 'AMOD(A,P)' 'REAL(4) 'REAL(4)' Fortran 95 and ! A,P' later ! 'DMOD(A,P)' 'REAL(8) 'REAL(8)' Fortran 95 and ! A,P' later _See also_: *note MODULO::  File: gfortran.info, Node: MODULO, Next: MOVE_ALLOC, Prev: MOD, Up: Intrinsic Procedures ! 8.178 'MODULO' -- Modulo function ================================= _Description_: ! 'MODULO(A,P)' computes the A modulo P. _Standard_: Fortran 95 and later *************** _Class_: *** 11671,11691 **** Elemental function _Syntax_: ! `RESULT = MODULO(A, P)' _Arguments_: ! A Shall be a scalar of type `INTEGER' or `REAL'. ! P Shall be a scalar of the same type and kind as ! A. It shall not be zero. _Return value_: The type and kind of the result are those of the arguments. ! If A and P are of type `INTEGER': ! `MODULO(A,P)' has the value R such that `A=Q*P+R', where Q is an integer and R is between 0 (inclusive) and P (exclusive). ! ! If A and P are of type `REAL': ! `MODULO(A,P)' has the value of `A - FLOOR (A / P) * P'. The returned value has the same sign as P and a magnitude less than the magnitude of P. --- 11544,11563 ---- Elemental function _Syntax_: ! 'RESULT = MODULO(A, P)' _Arguments_: ! A Shall be a scalar of type 'INTEGER' or 'REAL'. ! P Shall be a scalar of the same type and kind as ! A. It shall not be zero. _Return value_: The type and kind of the result are those of the arguments. ! If A and P are of type 'INTEGER': ! 'MODULO(A,P)' has the value R such that 'A=Q*P+R', where Q is an integer and R is between 0 (inclusive) and P (exclusive). ! If A and P are of type 'REAL': ! 'MODULO(A,P)' has the value of 'A - FLOOR (A / P) * P'. The returned value has the same sign as P and a magnitude less than the magnitude of P. *************** _Example_: *** 11704,11718 **** _See also_: *note MOD:: -  File: gfortran.info, Node: MOVE_ALLOC, Next: MVBITS, Prev: MODULO, Up: Intrinsic Procedures ! 8.179 `MOVE_ALLOC' -- Move allocation from one object to another ================================================================ _Description_: ! `MOVE_ALLOC(FROM, TO)' moves the allocation from FROM to TO. FROM will become deallocated in the process. _Standard_: --- 11576,11589 ---- _See also_: *note MOD::  File: gfortran.info, Node: MOVE_ALLOC, Next: MVBITS, Prev: MODULO, Up: Intrinsic Procedures ! 8.179 'MOVE_ALLOC' -- Move allocation from one object to another ================================================================ _Description_: ! 'MOVE_ALLOC(FROM, TO)' moves the allocation from FROM to TO. FROM will become deallocated in the process. _Standard_: *************** _Class_: *** 11722,11734 **** Pure subroutine _Syntax_: ! `CALL MOVE_ALLOC(FROM, TO)' _Arguments_: ! FROM `ALLOCATABLE', `INTENT(INOUT)', may be of any ! type and kind. ! TO `ALLOCATABLE', `INTENT(OUT)', shall be of the ! same type, kind and rank as FROM. _Return value_: None --- 11593,11605 ---- Pure subroutine _Syntax_: ! 'CALL MOVE_ALLOC(FROM, TO)' _Arguments_: ! FROM 'ALLOCATABLE', 'INTENT(INOUT)', may be of any ! type and kind. ! TO 'ALLOCATABLE', 'INTENT(OUT)', shall be of the ! same type, kind and rank as FROM. _Return value_: None *************** _Example_: *** 11747,11761 ****  File: gfortran.info, Node: MVBITS, Next: NEAREST, Prev: MOVE_ALLOC, Up: Intrinsic Procedures ! 8.180 `MVBITS' -- Move bits from one integer to another ======================================================= _Description_: ! Moves LEN bits from positions FROMPOS through `FROMPOS+LEN-1' of ! FROM to positions TOPOS through `TOPOS+LEN-1' of TO. The portion of argument TO not affected by the movement of bits is unchanged. ! The values of `FROMPOS+LEN-1' and `TOPOS+LEN-1' must be less than ! `BIT_SIZE(FROM)'. _Standard_: Fortran 95 and later --- 11618,11632 ----  File: gfortran.info, Node: MVBITS, Next: NEAREST, Prev: MOVE_ALLOC, Up: Intrinsic Procedures ! 8.180 'MVBITS' -- Move bits from one integer to another ======================================================= _Description_: ! Moves LEN bits from positions FROMPOS through 'FROMPOS+LEN-1' of ! FROM to positions TOPOS through 'TOPOS+LEN-1' of TO. The portion of argument TO not affected by the movement of bits is unchanged. ! The values of 'FROMPOS+LEN-1' and 'TOPOS+LEN-1' must be less than ! 'BIT_SIZE(FROM)'. _Standard_: Fortran 95 and later *************** _Class_: *** 11764,11778 **** Elemental subroutine _Syntax_: ! `CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)' _Arguments_: ! FROM The type shall be `INTEGER'. ! FROMPOS The type shall be `INTEGER'. ! LEN The type shall be `INTEGER'. ! TO The type shall be `INTEGER', of the same kind ! as FROM. ! TOPOS The type shall be `INTEGER'. _See also_: *note IBCLR::, *note IBSET::, *note IBITS::, *note IAND::, *note --- 11635,11649 ---- Elemental subroutine _Syntax_: ! 'CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)' _Arguments_: ! FROM The type shall be 'INTEGER'. ! FROMPOS The type shall be 'INTEGER'. ! LEN The type shall be 'INTEGER'. ! TO The type shall be 'INTEGER', of the same kind as ! FROM. ! TOPOS The type shall be 'INTEGER'. _See also_: *note IBCLR::, *note IBSET::, *note IBITS::, *note IAND::, *note *************** _See also_: *** 11781,11792 ****  File: gfortran.info, Node: NEAREST, Next: NEW_LINE, Prev: MVBITS, Up: Intrinsic Procedures ! 8.181 `NEAREST' -- Nearest representable number =============================================== _Description_: ! `NEAREST(X, S)' returns the processor-representable number nearest ! to `X' in the direction indicated by the sign of `S'. _Standard_: Fortran 95 and later --- 11652,11663 ----  File: gfortran.info, Node: NEAREST, Next: NEW_LINE, Prev: MVBITS, Up: Intrinsic Procedures ! 8.181 'NEAREST' -- Nearest representable number =============================================== _Description_: ! 'NEAREST(X, S)' returns the processor-representable number nearest ! to 'X' in the direction indicated by the sign of 'S'. _Standard_: Fortran 95 and later *************** _Class_: *** 11795,11811 **** Elemental function _Syntax_: ! `RESULT = NEAREST(X, S)' _Arguments_: ! X Shall be of type `REAL'. ! S Shall be of type `REAL' and not equal to zero. _Return value_: ! The return value is of the same type as `X'. If `S' is positive, ! `NEAREST' returns the processor-representable number greater than ! `X' and nearest to it. If `S' is negative, `NEAREST' returns the ! processor-representable number smaller than `X' and nearest to it. _Example_: program test_nearest --- 11666,11682 ---- Elemental function _Syntax_: ! 'RESULT = NEAREST(X, S)' _Arguments_: ! X Shall be of type 'REAL'. ! S Shall be of type 'REAL' and not equal to zero. _Return value_: ! The return value is of the same type as 'X'. If 'S' is positive, ! 'NEAREST' returns the processor-representable number greater than ! 'X' and nearest to it. If 'S' is negative, 'NEAREST' returns the ! processor-representable number smaller than 'X' and nearest to it. _Example_: program test_nearest *************** _Example_: *** 11818,11828 ****  File: gfortran.info, Node: NEW_LINE, Next: NINT, Prev: NEAREST, Up: Intrinsic Procedures ! 8.182 `NEW_LINE' -- New line character ====================================== _Description_: ! `NEW_LINE(C)' returns the new-line character. _Standard_: Fortran 2003 and later --- 11689,11699 ----  File: gfortran.info, Node: NEW_LINE, Next: NINT, Prev: NEAREST, Up: Intrinsic Procedures ! 8.182 'NEW_LINE' -- New line character ====================================== _Description_: ! 'NEW_LINE(C)' returns the new-line character. _Standard_: Fortran 2003 and later *************** _Class_: *** 11831,11841 **** Inquiry function _Syntax_: ! `RESULT = NEW_LINE(C)' _Arguments_: ! C The argument shall be a scalar or array of the ! type `CHARACTER'. _Return value_: Returns a CHARACTER scalar of length one with the new-line --- 11702,11712 ---- Inquiry function _Syntax_: ! 'RESULT = NEW_LINE(C)' _Arguments_: ! C The argument shall be a scalar or array of the ! type 'CHARACTER'. _Return value_: Returns a CHARACTER scalar of length one with the new-line *************** _Example_: *** 11850,11860 ****  File: gfortran.info, Node: NINT, Next: NORM2, Prev: NEW_LINE, Up: Intrinsic Procedures ! 8.183 `NINT' -- Nearest whole number ==================================== _Description_: ! `NINT(A)' rounds its argument to the nearest whole number. _Standard_: Fortran 77 and later, with KIND argument Fortran 90 and later --- 11721,11731 ----  File: gfortran.info, Node: NINT, Next: NORM2, Prev: NEW_LINE, Up: Intrinsic Procedures ! 8.183 'NINT' -- Nearest whole number ==================================== _Description_: ! 'NINT(A)' rounds its argument to the nearest whole number. _Standard_: Fortran 77 and later, with KIND argument Fortran 90 and later *************** _Class_: *** 11863,11880 **** Elemental function _Syntax_: ! `RESULT = NINT(A [, KIND])' _Arguments_: ! A The type of the argument shall be `REAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: Returns A with the fractional portion of its magnitude eliminated by rounding to the nearest whole number and with its sign ! preserved, converted to an `INTEGER' of the default kind. _Example_: program test_nint --- 11734,11751 ---- Elemental function _Syntax_: ! 'RESULT = NINT(A [, KIND])' _Arguments_: ! A The type of the argument shall be 'REAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: Returns A with the fractional portion of its magnitude eliminated by rounding to the nearest whole number and with its sign ! preserved, converted to an 'INTEGER' of the default kind. _Example_: program test_nint *************** _Example_: *** 11886,11905 **** end program test_nint _Specific names_: ! Name Argument Return Type Standard ! `NINT(A)' `REAL(4) A' `INTEGER' Fortran 95 and ! later ! `IDNINT(A)' `REAL(8) A' `INTEGER' Fortran 95 and ! later _See also_: *note CEILING::, *note FLOOR:: -  File: gfortran.info, Node: NORM2, Next: NOT, Prev: NINT, Up: Intrinsic Procedures ! 8.184 `NORM2' -- Euclidean vector norms ======================================= _Description_: --- 11757,11775 ---- end program test_nint _Specific names_: ! Name Argument Return Type Standard ! 'NINT(A)' 'REAL(4) A' 'INTEGER' Fortran 95 and ! later ! 'IDNINT(A)' 'REAL(8) A' 'INTEGER' Fortran 95 and ! later _See also_: *note CEILING::, *note FLOOR::  File: gfortran.info, Node: NORM2, Next: NOT, Prev: NINT, Up: Intrinsic Procedures ! 8.184 'NORM2' -- Euclidean vector norms ======================================= _Description_: *************** _Class_: *** 11913,11933 **** Transformational function _Syntax_: ! `RESULT = NORM2(ARRAY[, DIM])' _Arguments_: ! ARRAY Shall be an array of type `REAL' ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the square root of the sum of all ! elements in ARRAY squared is returned. Otherwise, an array of ! rank n-1, where n equals the rank of ARRAY, and a shape similar to ! that of ARRAY with dimension DIM dropped is returned. _Example_: PROGRAM test_sum --- 11783,11803 ---- Transformational function _Syntax_: ! 'RESULT = NORM2(ARRAY[, DIM])' _Arguments_: ! ARRAY Shall be an array of type 'REAL' ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the square root of the sum of all ! elements in ARRAY squared is returned. Otherwise, an array of rank ! n-1, where n equals the rank of ARRAY, and a shape similar to that ! of ARRAY with dimension DIM dropped is returned. _Example_: PROGRAM test_sum *************** _Example_: *** 11938,11948 ****  File: gfortran.info, Node: NOT, Next: NULL, Prev: NORM2, Up: Intrinsic Procedures ! 8.185 `NOT' -- Logical negation =============================== _Description_: ! `NOT' returns the bitwise Boolean inverse of I. _Standard_: Fortran 95 and later --- 11808,11818 ----  File: gfortran.info, Node: NOT, Next: NULL, Prev: NORM2, Up: Intrinsic Procedures ! 8.185 'NOT' -- Logical negation =============================== _Description_: ! 'NOT' returns the bitwise Boolean inverse of I. _Standard_: Fortran 95 and later *************** _Class_: *** 11951,11973 **** Elemental function _Syntax_: ! `RESULT = NOT(I)' _Arguments_: ! I The type shall be `INTEGER'. _Return value_: ! The return type is `INTEGER', of the same kind as the argument. _See also_: *note IAND::, *note IEOR::, *note IOR::, *note IBITS::, *note IBSET::, *note IBCLR:: -  File: gfortran.info, Node: NULL, Next: NUM_IMAGES, Prev: NOT, Up: Intrinsic Procedures ! 8.186 `NULL' -- Function that returns an disassociated pointer ============================================================== _Description_: --- 11821,11842 ---- Elemental function _Syntax_: ! 'RESULT = NOT(I)' _Arguments_: ! I The type shall be 'INTEGER'. _Return value_: ! The return type is 'INTEGER', of the same kind as the argument. _See also_: *note IAND::, *note IEOR::, *note IOR::, *note IBITS::, *note IBSET::, *note IBCLR::  File: gfortran.info, Node: NULL, Next: NUM_IMAGES, Prev: NOT, Up: Intrinsic Procedures ! 8.186 'NULL' -- Function that returns an disassociated pointer ============================================================== _Description_: *************** _Description_: *** 11976,11982 **** If MOLD is present, a disassociated pointer of the same type is returned, otherwise the type is determined by context. ! In Fortran 95, MOLD is optional. Please note that Fortran 2003 includes cases where it is required. _Standard_: --- 11845,11851 ---- If MOLD is present, a disassociated pointer of the same type is returned, otherwise the type is determined by context. ! In Fortran 95, MOLD is optional. Please note that Fortran 2003 includes cases where it is required. _Standard_: *************** _Class_: *** 11986,11996 **** Transformational function _Syntax_: ! `PTR => NULL([MOLD])' _Arguments_: ! MOLD (Optional) shall be a pointer of any ! association status and of any type. _Return value_: A disassociated pointer. --- 11855,11865 ---- Transformational function _Syntax_: ! 'PTR => NULL([MOLD])' _Arguments_: ! MOLD (Optional) shall be a pointer of any association ! status and of any type. _Return value_: A disassociated pointer. *************** _See also_: *** 12004,12010 ****  File: gfortran.info, Node: NUM_IMAGES, Next: OR, Prev: NULL, Up: Intrinsic Procedures ! 8.187 `NUM_IMAGES' -- Function that returns the number of images ================================================================ _Description_: --- 11873,11879 ----  File: gfortran.info, Node: NUM_IMAGES, Next: OR, Prev: NULL, Up: Intrinsic Procedures ! 8.187 'NUM_IMAGES' -- Function that returns the number of images ================================================================ _Description_: *************** _Class_: *** 12017,12023 **** Transformational function _Syntax_: ! `RESULT = NUM_IMAGES()' _Arguments_: None. --- 11886,11892 ---- Transformational function _Syntax_: ! 'RESULT = NUM_IMAGES()' _Arguments_: None. *************** _See also_: *** 12041,12051 ****  File: gfortran.info, Node: OR, Next: PACK, Prev: NUM_IMAGES, Up: Intrinsic Procedures ! 8.188 `OR' -- Bitwise logical OR ================================ _Description_: ! Bitwise logical `OR'. This intrinsic routine is provided for backwards compatibility with GNU Fortran 77. For integer arguments, programmers should consider --- 11910,11920 ----  File: gfortran.info, Node: OR, Next: PACK, Prev: NUM_IMAGES, Up: Intrinsic Procedures ! 8.188 'OR' -- Bitwise logical OR ================================ _Description_: ! Bitwise logical 'OR'. This intrinsic routine is provided for backwards compatibility with GNU Fortran 77. For integer arguments, programmers should consider *************** _Class_: *** 12059,12076 **** Function _Syntax_: ! `RESULT = OR(I, J)' _Arguments_: ! I The type shall be either a scalar `INTEGER' ! type or a scalar `LOGICAL' type. ! J The type shall be the same as the type of J. _Return value_: ! The return type is either a scalar `INTEGER' or a scalar ! `LOGICAL'. If the kind type parameters differ, then the smaller ! kind type is implicitly converted to larger kind, and the return ! has the larger kind. _Example_: PROGRAM test_or --- 11928,11945 ---- Function _Syntax_: ! 'RESULT = OR(I, J)' _Arguments_: ! I The type shall be either a scalar 'INTEGER' type ! or a scalar 'LOGICAL' type. ! J The type shall be the same as the type of J. _Return value_: ! The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'. ! If the kind type parameters differ, then the smaller kind type is ! implicitly converted to larger kind, and the return has the larger ! kind. _Example_: PROGRAM test_or *************** _See also_: *** 12088,12101 ****  File: gfortran.info, Node: PACK, Next: PARITY, Prev: OR, Up: Intrinsic Procedures ! 8.189 `PACK' -- Pack an array into an array of rank one ======================================================= _Description_: Stores the elements of ARRAY in an array of rank one. The beginning of the resulting array is made up of elements whose ! MASK equals `TRUE'. Afterwards, positions are filled with elements taken from VECTOR. _Standard_: --- 11957,11970 ----  File: gfortran.info, Node: PACK, Next: PARITY, Prev: OR, Up: Intrinsic Procedures ! 8.189 'PACK' -- Pack an array into an array of rank one ======================================================= _Description_: Stores the elements of ARRAY in an array of rank one. The beginning of the resulting array is made up of elements whose ! MASK equals 'TRUE'. Afterwards, positions are filled with elements taken from VECTOR. _Standard_: *************** _Class_: *** 12105,12129 **** Transformational function _Syntax_: ! `RESULT = PACK(ARRAY, MASK[,VECTOR]' _Arguments_: ! ARRAY Shall be an array of any type. ! MASK Shall be an array of type `LOGICAL' and of the ! same size as ARRAY. Alternatively, it may be a ! `LOGICAL' scalar. ! VECTOR (Optional) shall be an array of the same type ! as ARRAY and of rank one. If present, the ! number of elements in VECTOR shall be equal to ! or greater than the number of true elements in ! MASK. If MASK is scalar, the number of ! elements in VECTOR shall be equal to or ! greater than the number of elements in ARRAY. _Return value_: The result is an array of rank one and the same type as that of ARRAY. If VECTOR is present, the result size is that of VECTOR, ! the number of `TRUE' values in MASK otherwise. _Example_: Gathering nonzero elements from an array: --- 11974,11998 ---- Transformational function _Syntax_: ! 'RESULT = PACK(ARRAY, MASK[,VECTOR]' _Arguments_: ! ARRAY Shall be an array of any type. ! MASK Shall be an array of type 'LOGICAL' and of the ! same size as ARRAY. Alternatively, it may be a ! 'LOGICAL' scalar. ! VECTOR (Optional) shall be an array of the same type as ! ARRAY and of rank one. If present, the number ! of elements in VECTOR shall be equal to or ! greater than the number of true elements in ! MASK. If MASK is scalar, the number of elements ! in VECTOR shall be equal to or greater than the ! number of elements in ARRAY. _Return value_: The result is an array of rank one and the same type as that of ARRAY. If VECTOR is present, the result size is that of VECTOR, ! the number of 'TRUE' values in MASK otherwise. _Example_: Gathering nonzero elements from an array: *************** _See also_: *** 12147,12157 ****  File: gfortran.info, Node: PARITY, Next: PERROR, Prev: PACK, Up: Intrinsic Procedures ! 8.190 `PARITY' -- Reduction with exclusive OR ============================================= _Description_: ! Calculates the parity, i.e. the reduction using `.XOR.', of MASK along dimension DIM. _Standard_: --- 12016,12026 ----  File: gfortran.info, Node: PARITY, Next: PERROR, Prev: PACK, Up: Intrinsic Procedures ! 8.190 'PARITY' -- Reduction with exclusive OR ============================================= _Description_: ! Calculates the parity, i.e. the reduction using '.XOR.', of MASK along dimension DIM. _Standard_: *************** _Class_: *** 12161,12179 **** Transformational function _Syntax_: ! `RESULT = PARITY(MASK[, DIM])' _Arguments_: ! LOGICAL Shall be an array of type `LOGICAL' ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of MASK. _Return value_: The result is of the same type as MASK. If DIM is absent, a scalar with the parity of all elements in MASK ! is returned, i.e. true if an odd number of elements is `.true.' and false otherwise. If DIM is present, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of MASK with dimension DIM dropped is returned. --- 12030,12048 ---- Transformational function _Syntax_: ! 'RESULT = PARITY(MASK[, DIM])' _Arguments_: ! LOGICAL Shall be an array of type 'LOGICAL' ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of MASK. _Return value_: The result is of the same type as MASK. If DIM is absent, a scalar with the parity of all elements in MASK ! is returned, i.e. true if an odd number of elements is '.true.' and false otherwise. If DIM is present, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of MASK with dimension DIM dropped is returned. *************** _Example_: *** 12187,12199 ****  File: gfortran.info, Node: PERROR, Next: POPCNT, Prev: PARITY, Up: Intrinsic Procedures ! 8.191 `PERROR' -- Print system error message ============================================ _Description_: ! Prints (on the C `stderr' stream) a newline-terminated error ! message corresponding to the last system error. This is prefixed by ! STRING, a colon and a space. See `perror(3)'. _Standard_: GNU extension --- 12056,12068 ----  File: gfortran.info, Node: PERROR, Next: POPCNT, Prev: PARITY, Up: Intrinsic Procedures ! 8.191 'PERROR' -- Print system error message ============================================ _Description_: ! Prints (on the C 'stderr' stream) a newline-terminated error ! message corresponding to the last system error. This is prefixed ! by STRING, a colon and a space. See 'perror(3)'. _Standard_: GNU extension *************** _Class_: *** 12202,12212 **** Subroutine _Syntax_: ! `CALL PERROR(STRING)' _Arguments_: ! STRING A scalar of type `CHARACTER' and of the ! default kind. _See also_: *note IERRNO:: --- 12071,12081 ---- Subroutine _Syntax_: ! 'CALL PERROR(STRING)' _Arguments_: ! STRING A scalar of type 'CHARACTER' and of the default ! kind. _See also_: *note IERRNO:: *************** _See also_: *** 12214,12225 ****  File: gfortran.info, Node: POPCNT, Next: POPPAR, Prev: PERROR, Up: Intrinsic Procedures ! 8.192 `POPCNT' -- Number of bits set ==================================== _Description_: ! `POPCNT(I)' returns the number of bits set ('1' bits) in the binary ! representation of `I'. _Standard_: Fortran 2008 and later --- 12083,12094 ----  File: gfortran.info, Node: POPCNT, Next: POPPAR, Prev: PERROR, Up: Intrinsic Procedures ! 8.192 'POPCNT' -- Number of bits set ==================================== _Description_: ! 'POPCNT(I)' returns the number of bits set ('1' bits) in the binary ! representation of 'I'. _Standard_: Fortran 2008 and later *************** _Class_: *** 12228,12240 **** Elemental function _Syntax_: ! `RESULT = POPCNT(I)' _Arguments_: ! I Shall be of type `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _See also_: --- 12097,12109 ---- Elemental function _Syntax_: ! 'RESULT = POPCNT(I)' _Arguments_: ! I Shall be of type 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _See also_: *************** _Example_: *** 12250,12262 ****  File: gfortran.info, Node: POPPAR, Next: PRECISION, Prev: POPCNT, Up: Intrinsic Procedures ! 8.193 `POPPAR' -- Parity of the number of bits set ================================================== _Description_: ! `POPPAR(I)' returns parity of the integer `I', i.e. the parity of the number of bits set ('1' bits) in the binary representation of ! `I'. It is equal to 0 if `I' has an even number of bits set, and 1 for an odd number of '1' bits. _Standard_: --- 12119,12131 ----  File: gfortran.info, Node: POPPAR, Next: PRECISION, Prev: POPCNT, Up: Intrinsic Procedures ! 8.193 'POPPAR' -- Parity of the number of bits set ================================================== _Description_: ! 'POPPAR(I)' returns parity of the integer 'I', i.e. the parity of the number of bits set ('1' bits) in the binary representation of ! 'I'. It is equal to 0 if 'I' has an even number of bits set, and 1 for an odd number of '1' bits. _Standard_: *************** _Class_: *** 12266,12278 **** Elemental function _Syntax_: ! `RESULT = POPPAR(I)' _Arguments_: ! I Shall be of type `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _See also_: --- 12135,12147 ---- Elemental function _Syntax_: ! 'RESULT = POPPAR(I)' _Arguments_: ! I Shall be of type 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _See also_: *************** _Example_: *** 12288,12299 ****  File: gfortran.info, Node: PRECISION, Next: PRESENT, Prev: POPPAR, Up: Intrinsic Procedures ! 8.194 `PRECISION' -- Decimal precision of a real kind ===================================================== _Description_: ! `PRECISION(X)' returns the decimal precision in the model of the ! type of `X'. _Standard_: Fortran 95 and later --- 12157,12168 ----  File: gfortran.info, Node: PRECISION, Next: PRESENT, Prev: POPPAR, Up: Intrinsic Procedures ! 8.194 'PRECISION' -- Decimal precision of a real kind ===================================================== _Description_: ! 'PRECISION(X)' returns the decimal precision in the model of the ! type of 'X'. _Standard_: Fortran 95 and later *************** _Class_: *** 12302,12314 **** Inquiry function _Syntax_: ! `RESULT = PRECISION(X)' _Arguments_: ! X Shall be of type `REAL' or `COMPLEX'. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _See also_: --- 12171,12183 ---- Inquiry function _Syntax_: ! 'RESULT = PRECISION(X)' _Arguments_: ! X Shall be of type 'REAL' or 'COMPLEX'. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _See also_: *************** _Example_: *** 12326,12332 ****  File: gfortran.info, Node: PRESENT, Next: PRODUCT, Prev: PRECISION, Up: Intrinsic Procedures ! 8.195 `PRESENT' -- Determine whether an optional dummy argument is specified ============================================================================ _Description_: --- 12195,12201 ----  File: gfortran.info, Node: PRESENT, Next: PRODUCT, Prev: PRECISION, Up: Intrinsic Procedures ! 8.195 'PRESENT' -- Determine whether an optional dummy argument is specified ============================================================================ _Description_: *************** _Class_: *** 12339,12356 **** Inquiry function _Syntax_: ! `RESULT = PRESENT(A)' _Arguments_: ! A May be of any type and may be a pointer, ! scalar or array value, or a dummy procedure. ! It shall be the name of an optional dummy ! argument accessible within the current ! subroutine or function. _Return value_: ! Returns either `TRUE' if the optional argument A is present, or ! `FALSE' otherwise. _Example_: PROGRAM test_present --- 12208,12225 ---- Inquiry function _Syntax_: ! 'RESULT = PRESENT(A)' _Arguments_: ! A May be of any type and may be a pointer, scalar ! or array value, or a dummy procedure. It shall ! be the name of an optional dummy argument ! accessible within the current subroutine or ! function. _Return value_: ! Returns either 'TRUE' if the optional argument A is present, or ! 'FALSE' otherwise. _Example_: PROGRAM test_present *************** _Example_: *** 12365,12376 ****  File: gfortran.info, Node: PRODUCT, Next: RADIX, Prev: PRESENT, Up: Intrinsic Procedures ! 8.196 `PRODUCT' -- Product of array elements ============================================ _Description_: Multiplies the elements of ARRAY along dimension DIM if the ! corresponding element in MASK is `TRUE'. _Standard_: Fortran 95 and later --- 12234,12245 ----  File: gfortran.info, Node: PRODUCT, Next: RADIX, Prev: PRESENT, Up: Intrinsic Procedures ! 8.196 'PRODUCT' -- Product of array elements ============================================ _Description_: Multiplies the elements of ARRAY along dimension DIM if the ! corresponding element in MASK is 'TRUE'. _Standard_: Fortran 95 and later *************** _Class_: *** 12379,12402 **** Transformational function _Syntax_: ! `RESULT = PRODUCT(ARRAY[, MASK])' ! `RESULT = PRODUCT(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER', `REAL' or ! `COMPLEX'. ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type `LOGICAL' and ! either be a scalar or an array of the same ! shape as ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the product of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. --- 12248,12271 ---- Transformational function _Syntax_: ! 'RESULT = PRODUCT(ARRAY[, MASK])' ! 'RESULT = PRODUCT(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER', 'REAL' or ! 'COMPLEX'. ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type 'LOGICAL' and either ! be a scalar or an array of the same shape as ! ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the product of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. *************** _See also_: *** 12413,12423 ****  File: gfortran.info, Node: RADIX, Next: RAN, Prev: PRODUCT, Up: Intrinsic Procedures ! 8.197 `RADIX' -- Base of a model number ======================================= _Description_: ! `RADIX(X)' returns the base of the model representing the entity X. _Standard_: Fortran 95 and later --- 12282,12292 ----  File: gfortran.info, Node: RADIX, Next: RAN, Prev: PRODUCT, Up: Intrinsic Procedures ! 8.197 'RADIX' -- Base of a model number ======================================= _Description_: ! 'RADIX(X)' returns the base of the model representing the entity X. _Standard_: Fortran 95 and later *************** _Class_: *** 12426,12438 **** Inquiry function _Syntax_: ! `RESULT = RADIX(X)' _Arguments_: ! X Shall be of type `INTEGER' or `REAL' _Return value_: ! The return value is a scalar of type `INTEGER' and of the default integer kind. _See also_: --- 12295,12307 ---- Inquiry function _Syntax_: ! 'RESULT = RADIX(X)' _Arguments_: ! X Shall be of type 'INTEGER' or 'REAL' _Return value_: ! The return value is a scalar of type 'INTEGER' and of the default integer kind. _See also_: *************** _Example_: *** 12444,12459 **** print *, "The radix for the default real kind is", radix(0.0) end program test_radix -  File: gfortran.info, Node: RAN, Next: RAND, Prev: RADIX, Up: Intrinsic Procedures ! 8.198 `RAN' -- Real pseudo-random number ======================================== _Description_: ! For compatibility with HP FORTRAN 77/iX, the `RAN' intrinsic is ! provided as an alias for `RAND'. See *note RAND:: for complete documentation. _Standard_: --- 12313,12327 ---- print *, "The radix for the default real kind is", radix(0.0) end program test_radix  File: gfortran.info, Node: RAN, Next: RAND, Prev: RADIX, Up: Intrinsic Procedures ! 8.198 'RAN' -- Real pseudo-random number ======================================== _Description_: ! For compatibility with HP FORTRAN 77/iX, the 'RAN' intrinsic is ! provided as an alias for 'RAND'. See *note RAND:: for complete documentation. _Standard_: *************** _See also_: *** 12468,12487 ****  File: gfortran.info, Node: RAND, Next: RANDOM_NUMBER, Prev: RAN, Up: Intrinsic Procedures ! 8.199 `RAND' -- Real pseudo-random number ========================================= _Description_: ! `RAND(FLAG)' returns a pseudo-random number from a uniform ! distribution between 0 and 1. If FLAG is 0, the next number in the current sequence is returned; if FLAG is 1, the generator is ! restarted by `CALL SRAND(0)'; if FLAG has any other value, it is ! used as a new seed with `SRAND'. This intrinsic routine is provided for backwards compatibility with ! GNU Fortran 77. It implements a simple modulo generator as provided ! by `g77'. For new code, one should consider the use of *note ! RANDOM_NUMBER:: as it implements a superior algorithm. _Standard_: GNU extension --- 12336,12355 ----  File: gfortran.info, Node: RAND, Next: RANDOM_NUMBER, Prev: RAN, Up: Intrinsic Procedures ! 8.199 'RAND' -- Real pseudo-random number ========================================= _Description_: ! 'RAND(FLAG)' returns a pseudo-random number from a uniform ! distribution between 0 and 1. If FLAG is 0, the next number in the current sequence is returned; if FLAG is 1, the generator is ! restarted by 'CALL SRAND(0)'; if FLAG has any other value, it is ! used as a new seed with 'SRAND'. This intrinsic routine is provided for backwards compatibility with ! GNU Fortran 77. It implements a simple modulo generator as ! provided by 'g77'. For new code, one should consider the use of ! *note RANDOM_NUMBER:: as it implements a superior algorithm. _Standard_: GNU extension *************** _Class_: *** 12490,12502 **** Function _Syntax_: ! `RESULT = RAND(I)' _Arguments_: ! I Shall be a scalar `INTEGER' of kind 4. _Return value_: ! The return value is of `REAL' type and the default kind. _Example_: program test_rand --- 12358,12370 ---- Function _Syntax_: ! 'RESULT = RAND(I)' _Arguments_: ! I Shall be a scalar 'INTEGER' of kind 4. _Return value_: ! The return value is of 'REAL' type and the default kind. _Example_: program test_rand *************** _Example_: *** 12510,12544 **** _See also_: *note SRAND::, *note RANDOM_NUMBER:: -  File: gfortran.info, Node: RANDOM_NUMBER, Next: RANDOM_SEED, Prev: RAND, Up: Intrinsic Procedures ! 8.200 `RANDOM_NUMBER' -- Pseudo-random number ============================================= _Description_: Returns a single pseudorandom number or an array of pseudorandom ! numbers from the uniform distribution over the range 0 \leq x < 1. The runtime-library implements George Marsaglia's KISS (Keep It Simple Stupid) random number generator (RNG). This RNG combines: 1. The congruential generator x(n) = 69069 \cdot x(n-1) + ! 1327217885 with a period of 2^32, ! ! 2. A 3-shift shift-register generator with a period of 2^32 - 1, ! 3. Two 16-bit multiply-with-carry generators with a period of ! 597273182964842497 > 2^59. ! The overall period exceeds 2^123. Please note, this RNG is thread safe if used within OpenMP directives, i.e., its state will be consistent while called from multiple threads. However, the KISS generator does not create random numbers in parallel from multiple sources, but in sequence ! from a single source. If an OpenMP-enabled application heavily ! relies on random numbers, one should consider employing a ! dedicated parallel random number generator instead. _Standard_: Fortran 95 and later --- 12378,12410 ---- _See also_: *note SRAND::, *note RANDOM_NUMBER::  File: gfortran.info, Node: RANDOM_NUMBER, Next: RANDOM_SEED, Prev: RAND, Up: Intrinsic Procedures ! 8.200 'RANDOM_NUMBER' -- Pseudo-random number ============================================= _Description_: Returns a single pseudorandom number or an array of pseudorandom ! numbers from the uniform distribution over the range 0 \leq x < 1. The runtime-library implements George Marsaglia's KISS (Keep It Simple Stupid) random number generator (RNG). This RNG combines: 1. The congruential generator x(n) = 69069 \cdot x(n-1) + ! 1327217885 with a period of 2^{32}, ! 2. A 3-shift shift-register generator with a period of 2^{32} - ! 1, 3. Two 16-bit multiply-with-carry generators with a period of ! 597273182964842497 > 2^{59}. ! The overall period exceeds 2^{123}. Please note, this RNG is thread safe if used within OpenMP directives, i.e., its state will be consistent while called from multiple threads. However, the KISS generator does not create random numbers in parallel from multiple sources, but in sequence ! from a single source. If an OpenMP-enabled application heavily ! relies on random numbers, one should consider employing a dedicated ! parallel random number generator instead. _Standard_: Fortran 95 and later *************** _Class_: *** 12547,12556 **** Subroutine _Syntax_: ! `RANDOM_NUMBER(HARVEST)' _Arguments_: ! HARVEST Shall be a scalar or an array of type `REAL'. _Example_: program test_random_number --- 12413,12422 ---- Subroutine _Syntax_: ! 'RANDOM_NUMBER(HARVEST)' _Arguments_: ! HARVEST Shall be a scalar or an array of type 'REAL'. _Example_: program test_random_number *************** _See also_: *** 12565,12583 ****  File: gfortran.info, Node: RANDOM_SEED, Next: RANGE, Prev: RANDOM_NUMBER, Up: Intrinsic Procedures ! 8.201 `RANDOM_SEED' -- Initialize a pseudo-random number sequence ================================================================= _Description_: Restarts or queries the state of the pseudorandom number generator ! used by `RANDOM_NUMBER'. ! If `RANDOM_SEED' is called without arguments, it is initialized to ! a default state. The example below shows how to initialize the random seed with a varying seed in order to ensure a different ! random number sequence for each invocation of the program. Note ! that setting any of the seed values to zero should be avoided as ! it can result in poor quality random numbers being generated. _Standard_: Fortran 95 and later --- 12431,12449 ----  File: gfortran.info, Node: RANDOM_SEED, Next: RANGE, Prev: RANDOM_NUMBER, Up: Intrinsic Procedures ! 8.201 'RANDOM_SEED' -- Initialize a pseudo-random number sequence ================================================================= _Description_: Restarts or queries the state of the pseudorandom number generator ! used by 'RANDOM_NUMBER'. ! If 'RANDOM_SEED' is called without arguments, it is initialized to ! a default state. The example below shows how to initialize the random seed with a varying seed in order to ensure a different ! random number sequence for each invocation of the program. Note ! that setting any of the seed values to zero should be avoided as it ! can result in poor quality random numbers being generated. _Standard_: Fortran 95 and later *************** _Class_: *** 12586,12608 **** Subroutine _Syntax_: ! `CALL RANDOM_SEED([SIZE, PUT, GET])' _Arguments_: ! SIZE (Optional) Shall be a scalar and of type ! default `INTEGER', with `INTENT(OUT)'. It ! specifies the minimum size of the arrays used ! with the PUT and GET arguments. ! PUT (Optional) Shall be an array of type default ! `INTEGER' and rank one. It is `INTENT(IN)' and ! the size of the array must be larger than or ! equal to the number returned by the SIZE ! argument. ! GET (Optional) Shall be an array of type default ! `INTEGER' and rank one. It is `INTENT(OUT)' ! and the size of the array must be larger than ! or equal to the number returned by the SIZE ! argument. _Example_: subroutine init_random_seed() --- 12452,12474 ---- Subroutine _Syntax_: ! 'CALL RANDOM_SEED([SIZE, PUT, GET])' _Arguments_: ! SIZE (Optional) Shall be a scalar and of type default ! 'INTEGER', with 'INTENT(OUT)'. It specifies the ! minimum size of the arrays used with the PUT and ! GET arguments. ! PUT (Optional) Shall be an array of type default ! 'INTEGER' and rank one. It is 'INTENT(IN)' and ! the size of the array must be larger than or ! equal to the number returned by the SIZE ! argument. ! GET (Optional) Shall be an array of type default ! 'INTEGER' and rank one. It is 'INTENT(OUT)' and ! the size of the array must be larger than or ! equal to the number returned by the SIZE ! argument. _Example_: subroutine init_random_seed() *************** _See also_: *** 12659,12670 ****  File: gfortran.info, Node: RANGE, Next: RANK, Prev: RANDOM_SEED, Up: Intrinsic Procedures ! 8.202 `RANGE' -- Decimal exponent range ======================================= _Description_: ! `RANGE(X)' returns the decimal exponent range in the model of the ! type of `X'. _Standard_: Fortran 95 and later --- 12525,12536 ----  File: gfortran.info, Node: RANGE, Next: RANK, Prev: RANDOM_SEED, Up: Intrinsic Procedures ! 8.202 'RANGE' -- Decimal exponent range ======================================= _Description_: ! 'RANGE(X)' returns the decimal exponent range in the model of the ! type of 'X'. _Standard_: Fortran 95 and later *************** _Class_: *** 12673,12702 **** Inquiry function _Syntax_: ! `RESULT = RANGE(X)' _Arguments_: ! X Shall be of type `INTEGER', `REAL' or ! `COMPLEX'. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _See also_: *note SELECTED_REAL_KIND::, *note PRECISION:: _Example_: ! See `PRECISION' for an example.  File: gfortran.info, Node: RANK, Next: REAL, Prev: RANGE, Up: Intrinsic Procedures ! 8.203 `RANK' -- Rank of a data object ===================================== _Description_: ! `RANK(A)' returns the rank of a scalar or array data object. _Standard_: Technical Specification (TS) 29113 --- 12539,12567 ---- Inquiry function _Syntax_: ! 'RESULT = RANGE(X)' _Arguments_: ! X Shall be of type 'INTEGER', 'REAL' or 'COMPLEX'. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _See also_: *note SELECTED_REAL_KIND::, *note PRECISION:: _Example_: ! See 'PRECISION' for an example.  File: gfortran.info, Node: RANK, Next: REAL, Prev: RANGE, Up: Intrinsic Procedures ! 8.203 'RANK' -- Rank of a data object ===================================== _Description_: ! 'RANK(A)' returns the rank of a scalar or array data object. _Standard_: Technical Specification (TS) 29113 *************** _Class_: *** 12705,12718 **** Inquiry function _Syntax_: ! `RESULT = RANGE(A)' _Arguments_: ! A can be of any type _Return value_: ! The return value is of type `INTEGER' and of the default integer ! kind. For arrays, their rank is returned; for scalars zero is returned. _Example_: --- 12570,12583 ---- Inquiry function _Syntax_: ! 'RESULT = RANGE(A)' _Arguments_: ! A can be of any type _Return value_: ! The return value is of type 'INTEGER' and of the default integer ! kind. For arrays, their rank is returned; for scalars zero is returned. _Example_: *************** _Example_: *** 12723,12738 **** print *, rank(a), rank(b) ! Prints: 0 3 end program test_rank -  File: gfortran.info, Node: REAL, Next: RENAME, Prev: RANK, Up: Intrinsic Procedures ! 8.204 `REAL' -- Convert to real type ==================================== _Description_: ! `REAL(A [, KIND])' converts its argument A to a real type. The ! `REALPART' function is provided for compatibility with `g77', and its use is strongly discouraged. _Standard_: --- 12588,12602 ---- print *, rank(a), rank(b) ! Prints: 0 3 end program test_rank  File: gfortran.info, Node: REAL, Next: RENAME, Prev: RANK, Up: Intrinsic Procedures ! 8.204 'REAL' -- Convert to real type ==================================== _Description_: ! 'REAL(A [, KIND])' converts its argument A to a real type. The ! 'REALPART' function is provided for compatibility with 'g77', and its use is strongly discouraged. _Standard_: *************** _Class_: *** 12742,12770 **** Elemental function _Syntax_: ! `RESULT = REAL(A [, KIND])' ! `RESULT = REALPART(Z)' _Arguments_: ! A Shall be `INTEGER', `REAL', or `COMPLEX'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! These functions return a `REAL' variable or array under the following rules: ! (A) ! `REAL(A)' is converted to a default real type if A is an integer or real variable. ! ! (B) ! `REAL(A)' is converted to a real type with the kind type parameter of A if A is a complex variable. ! ! (C) ! `REAL(A, KIND)' is converted to a real type with kind type parameter KIND if A is a complex, integer, or real variable. _Example_: --- 12606,12632 ---- Elemental function _Syntax_: ! 'RESULT = REAL(A [, KIND])' ! 'RESULT = REALPART(Z)' _Arguments_: ! A Shall be 'INTEGER', 'REAL', or 'COMPLEX'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! These functions return a 'REAL' variable or array under the following rules: ! (A) ! 'REAL(A)' is converted to a default real type if A is an integer or real variable. ! (B) ! 'REAL(A)' is converted to a real type with the kind type parameter of A if A is a complex variable. ! (C) ! 'REAL(A, KIND)' is converted to a real type with kind type parameter KIND if A is a complex, integer, or real variable. _Example_: *************** _Example_: *** 12774,12802 **** end program test_real _Specific names_: ! Name Argument Return type Standard ! `FLOAT(A)' `INTEGER(4)' `REAL(4)' Fortran 77 and ! later ! `DFLOAT(A)' `INTEGER(4)' `REAL(8)' GNU extension ! `SNGL(A)' `INTEGER(8)' `REAL(4)' Fortran 77 and ! later _See also_: *note DBLE:: -  File: gfortran.info, Node: RENAME, Next: REPEAT, Prev: REAL, Up: Intrinsic Procedures ! 8.205 `RENAME' -- Rename a file =============================== _Description_: ! Renames a file from file PATH1 to PATH2. A null character ! (`CHAR(0)') can be used to mark the end of the names in PATH1 and PATH2; otherwise, trailing blanks in the file names are ignored. If the STATUS argument is supplied, it contains 0 on success or a ! nonzero error code upon return; see `rename(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 12636,12663 ---- end program test_real _Specific names_: ! Name Argument Return type Standard ! 'FLOAT(A)' 'INTEGER(4)' 'REAL(4)' Fortran 77 and ! later ! 'DFLOAT(A)' 'INTEGER(4)' 'REAL(8)' GNU extension ! 'SNGL(A)' 'INTEGER(8)' 'REAL(4)' Fortran 77 and ! later _See also_: *note DBLE::  File: gfortran.info, Node: RENAME, Next: REPEAT, Prev: REAL, Up: Intrinsic Procedures ! 8.205 'RENAME' -- Rename a file =============================== _Description_: ! Renames a file from file PATH1 to PATH2. A null character ! ('CHAR(0)') can be used to mark the end of the names in PATH1 and PATH2; otherwise, trailing blanks in the file names are ignored. If the STATUS argument is supplied, it contains 0 on success or a ! nonzero error code upon return; see 'rename(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 12808,12829 **** Subroutine, function _Syntax_: ! `CALL RENAME(PATH1, PATH2 [, STATUS])' ! `STATUS = RENAME(PATH1, PATH2)' _Arguments_: ! PATH1 Shall be of default `CHARACTER' type. ! PATH2 Shall be of default `CHARACTER' type. ! STATUS (Optional) Shall be of default `INTEGER' type. _See also_: *note LINK:: -  File: gfortran.info, Node: REPEAT, Next: RESHAPE, Prev: RENAME, Up: Intrinsic Procedures ! 8.206 `REPEAT' -- Repeated string concatenation =============================================== _Description_: --- 12669,12689 ---- Subroutine, function _Syntax_: ! 'CALL RENAME(PATH1, PATH2 [, STATUS])' ! 'STATUS = RENAME(PATH1, PATH2)' _Arguments_: ! PATH1 Shall be of default 'CHARACTER' type. ! PATH2 Shall be of default 'CHARACTER' type. ! STATUS (Optional) Shall be of default 'INTEGER' type. _See also_: *note LINK::  File: gfortran.info, Node: REPEAT, Next: RESHAPE, Prev: RENAME, Up: Intrinsic Procedures ! 8.206 'REPEAT' -- Repeated string concatenation =============================================== _Description_: *************** _Class_: *** 12836,12849 **** Transformational function _Syntax_: ! `RESULT = REPEAT(STRING, NCOPIES)' _Arguments_: ! STRING Shall be scalar and of type `CHARACTER'. ! NCOPIES Shall be scalar and of type `INTEGER'. _Return value_: ! A new scalar of type `CHARACTER' built up from NCOPIES copies of STRING. _Example_: --- 12696,12709 ---- Transformational function _Syntax_: ! 'RESULT = REPEAT(STRING, NCOPIES)' _Arguments_: ! STRING Shall be scalar and of type 'CHARACTER'. ! NCOPIES Shall be scalar and of type 'INTEGER'. _Return value_: ! A new scalar of type 'CHARACTER' built up from NCOPIES copies of STRING. _Example_: *************** _Example_: *** 12854,12864 ****  File: gfortran.info, Node: RESHAPE, Next: RRSPACING, Prev: REPEAT, Up: Intrinsic Procedures ! 8.207 `RESHAPE' -- Function to reshape an array =============================================== _Description_: ! Reshapes SOURCE to correspond to SHAPE. If necessary, the new array may be padded with elements from PAD or permuted as defined by ORDER. --- 12714,12724 ----  File: gfortran.info, Node: RESHAPE, Next: RRSPACING, Prev: REPEAT, Up: Intrinsic Procedures ! 8.207 'RESHAPE' -- Function to reshape an array =============================================== _Description_: ! Reshapes SOURCE to correspond to SHAPE. If necessary, the new array may be padded with elements from PAD or permuted as defined by ORDER. *************** _Class_: *** 12869,12888 **** Transformational function _Syntax_: ! `RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])' _Arguments_: ! SOURCE Shall be an array of any type. ! SHAPE Shall be of type `INTEGER' and an array of ! rank one. Its values must be positive or zero. ! PAD (Optional) shall be an array of the same type ! as SOURCE. ! ORDER (Optional) shall be of type `INTEGER' and an ! array of the same shape as SHAPE. Its values ! shall be a permutation of the numbers from 1 ! to n, where n is the size of SHAPE. If ORDER ! is absent, the natural ordering shall be ! assumed. _Return value_: The result is an array of shape SHAPE with the same type as SOURCE. --- 12729,12747 ---- Transformational function _Syntax_: ! 'RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])' _Arguments_: ! SOURCE Shall be an array of any type. ! SHAPE Shall be of type 'INTEGER' and an array of rank ! one. Its values must be positive or zero. ! PAD (Optional) shall be an array of the same type as ! SOURCE. ! ORDER (Optional) shall be of type 'INTEGER' and an ! array of the same shape as SHAPE. Its values ! shall be a permutation of the numbers from 1 to ! n, where n is the size of SHAPE. If ORDER is ! absent, the natural ordering shall be assumed. _Return value_: The result is an array of shape SHAPE with the same type as SOURCE. *************** _See also_: *** 12900,12910 ****  File: gfortran.info, Node: RRSPACING, Next: RSHIFT, Prev: RESHAPE, Up: Intrinsic Procedures ! 8.208 `RRSPACING' -- Reciprocal of the relative spacing ======================================================= _Description_: ! `RRSPACING(X)' returns the reciprocal of the relative spacing of model numbers near X. _Standard_: --- 12759,12769 ----  File: gfortran.info, Node: RRSPACING, Next: RSHIFT, Prev: RESHAPE, Up: Intrinsic Procedures ! 8.208 'RRSPACING' -- Reciprocal of the relative spacing ======================================================= _Description_: ! 'RRSPACING(X)' returns the reciprocal of the relative spacing of model numbers near X. _Standard_: *************** _Class_: *** 12914,12927 **** Elemental function _Syntax_: ! `RESULT = RRSPACING(X)' _Arguments_: ! X Shall be of type `REAL'. _Return value_: The return value is of the same type and kind as X. The value ! returned is equal to `ABS(FRACTION(X)) * FLOAT(RADIX(X))**DIGITS(X)'. _See also_: --- 12773,12786 ---- Elemental function _Syntax_: ! 'RESULT = RRSPACING(X)' _Arguments_: ! X Shall be of type 'REAL'. _Return value_: The return value is of the same type and kind as X. The value ! returned is equal to 'ABS(FRACTION(X)) * FLOAT(RADIX(X))**DIGITS(X)'. _See also_: *************** _See also_: *** 12930,12947 ****  File: gfortran.info, Node: RSHIFT, Next: SAME_TYPE_AS, Prev: RRSPACING, Up: Intrinsic Procedures ! 8.209 `RSHIFT' -- Right shift bits ================================== _Description_: ! `RSHIFT' returns a value corresponding to I with all of the bits shifted right by SHIFT places. If the absolute value of SHIFT is ! greater than `BIT_SIZE(I)', the value is undefined. Bits shifted ! out from the right end are lost. The fill is arithmetic: the bits shifted in from the left end are equal to the leftmost bit, which in two's complement representation is the sign bit. ! This function has been superseded by the `SHIFTA' intrinsic, which is standard in Fortran 2008 and later. _Standard_: --- 12789,12806 ----  File: gfortran.info, Node: RSHIFT, Next: SAME_TYPE_AS, Prev: RRSPACING, Up: Intrinsic Procedures ! 8.209 'RSHIFT' -- Right shift bits ================================== _Description_: ! 'RSHIFT' returns a value corresponding to I with all of the bits shifted right by SHIFT places. If the absolute value of SHIFT is ! greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted ! out from the right end are lost. The fill is arithmetic: the bits shifted in from the left end are equal to the leftmost bit, which in two's complement representation is the sign bit. ! This function has been superseded by the 'SHIFTA' intrinsic, which is standard in Fortran 2008 and later. _Standard_: *************** _Class_: *** 12951,12975 **** Elemental function _Syntax_: ! `RESULT = RSHIFT(I, SHIFT)' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note ISHFT::, *note ISHFTC::, *note LSHIFT::, *note SHIFTA::, *note SHIFTR::, *note SHIFTL:: -  File: gfortran.info, Node: SAME_TYPE_AS, Next: SCALE, Prev: RSHIFT, Up: Intrinsic Procedures ! 8.210 `SAME_TYPE_AS' -- Query dynamic types for equality ! ========================================================= _Description_: Query dynamic types for equality. --- 12810,12833 ---- Elemental function _Syntax_: ! 'RESULT = RSHIFT(I, SHIFT)' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note ISHFT::, *note ISHFTC::, *note LSHIFT::, *note SHIFTA::, *note SHIFTR::, *note SHIFTL::  File: gfortran.info, Node: SAME_TYPE_AS, Next: SCALE, Prev: RSHIFT, Up: Intrinsic Procedures ! 8.210 'SAME_TYPE_AS' -- Query dynamic types for equality ! ======================================================== _Description_: Query dynamic types for equality. *************** _Class_: *** 12981,13011 **** Inquiry function _Syntax_: ! `RESULT = SAME_TYPE_AS(A, B)' _Arguments_: ! A Shall be an object of extensible declared type ! or unlimited polymorphic. ! B Shall be an object of extensible declared type ! or unlimited polymorphic. _Return value_: ! The return value is a scalar of type default logical. It is true if and only if the dynamic type of A is the same as the dynamic type of B. _See also_: *note EXTENDS_TYPE_OF:: -  File: gfortran.info, Node: SCALE, Next: SCAN, Prev: SAME_TYPE_AS, Up: Intrinsic Procedures ! 8.211 `SCALE' -- Scale a real value =================================== _Description_: ! `SCALE(X,I)' returns `X * RADIX(X)**I'. _Standard_: Fortran 95 and later --- 12839,12868 ---- Inquiry function _Syntax_: ! 'RESULT = SAME_TYPE_AS(A, B)' _Arguments_: ! A Shall be an object of extensible declared type ! or unlimited polymorphic. ! B Shall be an object of extensible declared type ! or unlimited polymorphic. _Return value_: ! The return value is a scalar of type default logical. It is true if and only if the dynamic type of A is the same as the dynamic type of B. _See also_: *note EXTENDS_TYPE_OF::  File: gfortran.info, Node: SCALE, Next: SCAN, Prev: SAME_TYPE_AS, Up: Intrinsic Procedures ! 8.211 'SCALE' -- Scale a real value =================================== _Description_: ! 'SCALE(X,I)' returns 'X * RADIX(X)**I'. _Standard_: Fortran 95 and later *************** _Class_: *** 13014,13028 **** Elemental function _Syntax_: ! `RESULT = SCALE(X, I)' _Arguments_: ! X The type of the argument shall be a `REAL'. ! I The type of the argument shall be a `INTEGER'. _Return value_: The return value is of the same type and kind as X. Its value is ! `X * RADIX(X)**I'. _Example_: program test_scale --- 12871,12885 ---- Elemental function _Syntax_: ! 'RESULT = SCALE(X, I)' _Arguments_: ! X The type of the argument shall be a 'REAL'. ! I The type of the argument shall be a 'INTEGER'. _Return value_: The return value is of the same type and kind as X. Its value is ! 'X * RADIX(X)**I'. _Example_: program test_scale *************** _Example_: *** 13031,13049 **** print *, scale(x,i), x*radix(x)**i end program test_scale -  File: gfortran.info, Node: SCAN, Next: SECNDS, Prev: SCALE, Up: Intrinsic Procedures ! 8.212 `SCAN' -- Scan a string for the presence of a set of characters ===================================================================== _Description_: Scans a STRING for any of the characters in a SET of characters. ! If BACK is either absent or equals `FALSE', this function returns the position of the leftmost character of STRING that is in SET. ! If BACK equals `TRUE', the rightmost position is returned. If no character of SET is found in STRING, the result is zero. _Standard_: --- 12888,12905 ---- print *, scale(x,i), x*radix(x)**i end program test_scale  File: gfortran.info, Node: SCAN, Next: SECNDS, Prev: SCALE, Up: Intrinsic Procedures ! 8.212 'SCAN' -- Scan a string for the presence of a set of characters ===================================================================== _Description_: Scans a STRING for any of the characters in a SET of characters. ! If BACK is either absent or equals 'FALSE', this function returns the position of the leftmost character of STRING that is in SET. ! If BACK equals 'TRUE', the rightmost position is returned. If no character of SET is found in STRING, the result is zero. _Standard_: *************** _Class_: *** 13053,13070 **** Elemental function _Syntax_: ! `RESULT = SCAN(STRING, SET[, BACK [, KIND]])' _Arguments_: ! STRING Shall be of type `CHARACTER'. ! SET Shall be of type `CHARACTER'. ! BACK (Optional) shall be of type `LOGICAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: --- 12909,12926 ---- Elemental function _Syntax_: ! 'RESULT = SCAN(STRING, SET[, BACK [, KIND]])' _Arguments_: ! STRING Shall be of type 'CHARACTER'. ! SET Shall be of type 'CHARACTER'. ! BACK (Optional) shall be of type 'LOGICAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: *************** _See also_: *** 13080,13092 ****  File: gfortran.info, Node: SECNDS, Next: SECOND, Prev: SCAN, Up: Intrinsic Procedures ! 8.213 `SECNDS' -- Time function =============================== _Description_: ! `SECNDS(X)' gets the time in seconds from the real-time system ! clock. X is a reference time, also in seconds. If this is zero, ! the time in seconds from midnight is returned. This function is non-standard and its use is discouraged. _Standard_: --- 12936,12948 ----  File: gfortran.info, Node: SECNDS, Next: SECOND, Prev: SCAN, Up: Intrinsic Procedures ! 8.213 'SECNDS' -- Time function =============================== _Description_: ! 'SECNDS(X)' gets the time in seconds from the real-time system ! clock. X is a reference time, also in seconds. If this is zero, ! the time in seconds from midnight is returned. This function is non-standard and its use is discouraged. _Standard_: *************** _Class_: *** 13096,13106 **** Function _Syntax_: ! `RESULT = SECNDS (X)' _Arguments_: ! T Shall be of type `REAL(4)'. ! X Shall be of type `REAL(4)'. _Return value_: None --- 12952,12962 ---- Function _Syntax_: ! 'RESULT = SECNDS (X)' _Arguments_: ! T Shall be of type 'REAL(4)'. ! X Shall be of type 'REAL(4)'. _Return value_: None *************** _Example_: *** 13120,13132 ****  File: gfortran.info, Node: SECOND, Next: SELECTED_CHAR_KIND, Prev: SECNDS, Up: Intrinsic Procedures ! 8.214 `SECOND' -- CPU time function =================================== _Description_: ! Returns a `REAL(4)' value representing the elapsed CPU time in seconds. This provides the same functionality as the standard ! `CPU_TIME' intrinsic, and is only included for backwards compatibility. This intrinsic is provided in both subroutine and function forms; --- 12976,12988 ----  File: gfortran.info, Node: SECOND, Next: SELECTED_CHAR_KIND, Prev: SECNDS, Up: Intrinsic Procedures ! 8.214 'SECOND' -- CPU time function =================================== _Description_: ! Returns a 'REAL(4)' value representing the elapsed CPU time in seconds. This provides the same functionality as the standard ! 'CPU_TIME' intrinsic, and is only included for backwards compatibility. This intrinsic is provided in both subroutine and function forms; *************** _Class_: *** 13139,13149 **** Subroutine, function _Syntax_: ! `CALL SECOND(TIME)' ! `TIME = SECOND()' _Arguments_: ! TIME Shall be of type `REAL(4)'. _Return value_: In either syntax, TIME is set to the process's current runtime in --- 12995,13005 ---- Subroutine, function _Syntax_: ! 'CALL SECOND(TIME)' ! 'TIME = SECOND()' _Arguments_: ! TIME Shall be of type 'REAL(4)'. _Return value_: In either syntax, TIME is set to the process's current runtime in *************** _Return value_: *** 13152,13168 **** _See also_: *note CPU_TIME:: -  File: gfortran.info, Node: SELECTED_CHAR_KIND, Next: SELECTED_INT_KIND, Prev: SECOND, Up: Intrinsic Procedures ! 8.215 `SELECTED_CHAR_KIND' -- Choose character kind =================================================== _Description_: ! `SELECTED_CHAR_KIND(NAME)' returns the kind value for the character set named NAME, if a character set with such a name is supported, ! or -1 otherwise. Currently, supported character sets include "ASCII" and "DEFAULT", which are equivalent, and "ISO_10646" (Universal Character Set, UCS-4) which is commonly known as Unicode. --- 13008,13024 ---- _See also_: *note CPU_TIME::  File: gfortran.info, Node: SELECTED_CHAR_KIND, Next: SELECTED_INT_KIND, Prev: SECOND, Up: Intrinsic Procedures ! 8.215 'SELECTED_CHAR_KIND' -- Choose character kind =================================================== _Description_: ! ! 'SELECTED_CHAR_KIND(NAME)' returns the kind value for the character set named NAME, if a character set with such a name is supported, ! or -1 otherwise. Currently, supported character sets include "ASCII" and "DEFAULT", which are equivalent, and "ISO_10646" (Universal Character Set, UCS-4) which is commonly known as Unicode. *************** _Class_: *** 13174,13184 **** Transformational function _Syntax_: ! `RESULT = SELECTED_CHAR_KIND(NAME)' _Arguments_: ! NAME Shall be a scalar and of the default character ! type. _Example_: program character_kind --- 13030,13040 ---- Transformational function _Syntax_: ! 'RESULT = SELECTED_CHAR_KIND(NAME)' _Arguments_: ! NAME Shall be a scalar and of the default character ! type. _Example_: program character_kind *************** _Example_: *** 13204,13217 ****  File: gfortran.info, Node: SELECTED_INT_KIND, Next: SELECTED_REAL_KIND, Prev: SELECTED_CHAR_KIND, Up: Intrinsic Procedures ! 8.216 `SELECTED_INT_KIND' -- Choose integer kind ================================================ _Description_: ! `SELECTED_INT_KIND(R)' return the kind value of the smallest integer type that can represent all values ranging from -10^R ! (exclusive) to 10^R (exclusive). If there is no integer kind that ! accommodates this range, `SELECTED_INT_KIND' returns -1. _Standard_: Fortran 95 and later --- 13060,13073 ----  File: gfortran.info, Node: SELECTED_INT_KIND, Next: SELECTED_REAL_KIND, Prev: SELECTED_CHAR_KIND, Up: Intrinsic Procedures ! 8.216 'SELECTED_INT_KIND' -- Choose integer kind ================================================ _Description_: ! 'SELECTED_INT_KIND(R)' return the kind value of the smallest integer type that can represent all values ranging from -10^R ! (exclusive) to 10^R (exclusive). If there is no integer kind that ! accommodates this range, 'SELECTED_INT_KIND' returns -1. _Standard_: Fortran 95 and later *************** _Class_: *** 13220,13229 **** Transformational function _Syntax_: ! `RESULT = SELECTED_INT_KIND(R)' _Arguments_: ! R Shall be a scalar and of type `INTEGER'. _Example_: program large_integers --- 13076,13085 ---- Transformational function _Syntax_: ! 'RESULT = SELECTED_INT_KIND(R)' _Arguments_: ! R Shall be a scalar and of type 'INTEGER'. _Example_: program large_integers *************** _Example_: *** 13242,13298 ****  File: gfortran.info, Node: SELECTED_REAL_KIND, Next: SET_EXPONENT, Prev: SELECTED_INT_KIND, Up: Intrinsic Procedures ! 8.217 `SELECTED_REAL_KIND' -- Choose real kind ============================================== _Description_: ! `SELECTED_REAL_KIND(P,R)' returns the kind value of a real data ! type with decimal precision of at least `P' digits, exponent range ! of at least `R', and with a radix of `RADIX'. _Standard_: ! Fortran 95 and later, with `RADIX' Fortran 2008 or later _Class_: Transformational function _Syntax_: ! `RESULT = SELECTED_REAL_KIND([P, R, RADIX])' _Arguments_: ! P (Optional) shall be a scalar and of type ! `INTEGER'. ! R (Optional) shall be a scalar and of type ! `INTEGER'. ! RADIX (Optional) shall be a scalar and of type ! `INTEGER'. Before Fortran 2008, at least one of the arguments R or P shall be present; since Fortran 2008, they are assumed to be zero if absent. _Return value_: ! `SELECTED_REAL_KIND' returns the value of the kind type parameter ! of a real data type with decimal precision of at least `P' digits, ! a decimal exponent range of at least `R', and with the requested ! `RADIX'. If the `RADIX' parameter is absent, real kinds with any ! radix can be returned. If more than one real data type meet the criteria, the kind of the data type with the smallest decimal ! precision is returned. If no real data type matches the criteria, the result is ! -1 if the processor does not support a real data type with a ! precision greater than or equal to `P', but the `R' and ! `RADIX' requirements can be fulfilled ! ! -2 if the processor does not support a real type with an exponent ! range greater than or equal to `R', but `P' and `RADIX' are fulfillable ! ! -3 if `RADIX' but not `P' and `R' requirements are fulfillable ! ! -4 if `RADIX' and either `P' or `R' requirements are fulfillable ! ! -5 if there is no real type with the given `RADIX' _See also_: *note PRECISION::, *note RANGE::, *note RADIX:: --- 13098,13151 ----  File: gfortran.info, Node: SELECTED_REAL_KIND, Next: SET_EXPONENT, Prev: SELECTED_INT_KIND, Up: Intrinsic Procedures ! 8.217 'SELECTED_REAL_KIND' -- Choose real kind ============================================== _Description_: ! 'SELECTED_REAL_KIND(P,R)' returns the kind value of a real data ! type with decimal precision of at least 'P' digits, exponent range ! of at least 'R', and with a radix of 'RADIX'. _Standard_: ! Fortran 95 and later, with 'RADIX' Fortran 2008 or later _Class_: Transformational function _Syntax_: ! 'RESULT = SELECTED_REAL_KIND([P, R, RADIX])' _Arguments_: ! P (Optional) shall be a scalar and of type ! 'INTEGER'. ! R (Optional) shall be a scalar and of type ! 'INTEGER'. ! RADIX (Optional) shall be a scalar and of type ! 'INTEGER'. Before Fortran 2008, at least one of the arguments R or P shall be present; since Fortran 2008, they are assumed to be zero if absent. _Return value_: ! ! 'SELECTED_REAL_KIND' returns the value of the kind type parameter ! of a real data type with decimal precision of at least 'P' digits, ! a decimal exponent range of at least 'R', and with the requested ! 'RADIX'. If the 'RADIX' parameter is absent, real kinds with any ! radix can be returned. If more than one real data type meet the criteria, the kind of the data type with the smallest decimal ! precision is returned. If no real data type matches the criteria, the result is ! -1 if the processor does not support a real data type with a ! precision greater than or equal to 'P', but the 'R' and ! 'RADIX' requirements can be fulfilled ! -2 if the processor does not support a real type with an exponent ! range greater than or equal to 'R', but 'P' and 'RADIX' are fulfillable ! -3 if 'RADIX' but not 'P' and 'R' requirements are fulfillable ! -4 if 'RADIX' and either 'P' or 'R' requirements are fulfillable ! -5 if there is no real type with the given 'RADIX' _See also_: *note PRECISION::, *note RANGE::, *note RADIX:: *************** _Example_: *** 13314,13324 ****  File: gfortran.info, Node: SET_EXPONENT, Next: SHAPE, Prev: SELECTED_REAL_KIND, Up: Intrinsic Procedures ! 8.218 `SET_EXPONENT' -- Set the exponent of the model ===================================================== _Description_: ! `SET_EXPONENT(X, I)' returns the real number whose fractional part is that that of X and whose exponent part is I. _Standard_: --- 13167,13177 ----  File: gfortran.info, Node: SET_EXPONENT, Next: SHAPE, Prev: SELECTED_REAL_KIND, Up: Intrinsic Procedures ! 8.218 'SET_EXPONENT' -- Set the exponent of the model ===================================================== _Description_: ! 'SET_EXPONENT(X, I)' returns the real number whose fractional part is that that of X and whose exponent part is I. _Standard_: *************** _Class_: *** 13328,13343 **** Elemental function _Syntax_: ! `RESULT = SET_EXPONENT(X, I)' _Arguments_: ! X Shall be of type `REAL'. ! I Shall be of type `INTEGER'. _Return value_: The return value is of the same type and kind as X. The real number whose fractional part is that that of X and whose exponent ! part if I is returned; it is `FRACTION(X) * RADIX(X)**I'. _Example_: PROGRAM test_setexp --- 13181,13196 ---- Elemental function _Syntax_: ! 'RESULT = SET_EXPONENT(X, I)' _Arguments_: ! X Shall be of type 'REAL'. ! I Shall be of type 'INTEGER'. _Return value_: The return value is of the same type and kind as X. The real number whose fractional part is that that of X and whose exponent ! part if I is returned; it is 'FRACTION(X) * RADIX(X)**I'. _Example_: PROGRAM test_setexp *************** _Example_: *** 13346,13356 **** PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i END PROGRAM -  File: gfortran.info, Node: SHAPE, Next: SHIFTA, Prev: SET_EXPONENT, Up: Intrinsic Procedures ! 8.219 `SHAPE' -- Determine the shape of an array ================================================ _Description_: --- 13199,13208 ---- PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i END PROGRAM  File: gfortran.info, Node: SHAPE, Next: SHIFTA, Prev: SET_EXPONENT, Up: Intrinsic Procedures ! 8.219 'SHAPE' -- Determine the shape of an array ================================================ _Description_: *************** _Class_: *** 13363,13385 **** Inquiry function _Syntax_: ! `RESULT = SHAPE(SOURCE [, KIND])' _Arguments_: ! SOURCE Shall be an array or scalar of any type. If ! SOURCE is a pointer it must be associated and ! allocatable arrays must be allocated. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! An `INTEGER' array of rank one with as many elements as SOURCE has ! dimensions. The elements of the resulting array correspond to the ! extend of SOURCE along the respective dimensions. If SOURCE is a ! scalar, the result is the rank one array of size zero. If KIND is ! absent, the return value has the default integer kind otherwise ! the specified kind. _Example_: PROGRAM test_shape --- 13215,13237 ---- Inquiry function _Syntax_: ! 'RESULT = SHAPE(SOURCE [, KIND])' _Arguments_: ! SOURCE Shall be an array or scalar of any type. If ! SOURCE is a pointer it must be associated and ! allocatable arrays must be allocated. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! An 'INTEGER' array of rank one with as many elements as SOURCE has ! dimensions. The elements of the resulting array correspond to the ! extend of SOURCE along the respective dimensions. If SOURCE is a ! scalar, the result is the rank one array of size zero. If KIND is ! absent, the return value has the default integer kind otherwise the ! specified kind. _Example_: PROGRAM test_shape *************** _See also_: *** 13394,13407 ****  File: gfortran.info, Node: SHIFTA, Next: SHIFTL, Prev: SHAPE, Up: Intrinsic Procedures ! 8.220 `SHIFTA' -- Right shift with fill ======================================= _Description_: ! `SHIFTA' returns a value corresponding to I with all of the bits shifted right by SHIFT places. If the absolute value of SHIFT is ! greater than `BIT_SIZE(I)', the value is undefined. Bits shifted ! out from the right end are lost. The fill is arithmetic: the bits shifted in from the left end are equal to the leftmost bit, which in two's complement representation is the sign bit. --- 13246,13259 ----  File: gfortran.info, Node: SHIFTA, Next: SHIFTL, Prev: SHAPE, Up: Intrinsic Procedures ! 8.220 'SHIFTA' -- Right shift with fill ======================================= _Description_: ! 'SHIFTA' returns a value corresponding to I with all of the bits shifted right by SHIFT places. If the absolute value of SHIFT is ! greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted ! out from the right end are lost. The fill is arithmetic: the bits shifted in from the left end are equal to the leftmost bit, which in two's complement representation is the sign bit. *************** _Class_: *** 13412,13425 **** Elemental function _Syntax_: ! `RESULT = SHIFTA(I, SHIFT)' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note SHIFTL::, *note SHIFTR:: --- 13264,13277 ---- Elemental function _Syntax_: ! 'RESULT = SHIFTA(I, SHIFT)' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note SHIFTL::, *note SHIFTR:: *************** _See also_: *** 13427,13439 ****  File: gfortran.info, Node: SHIFTL, Next: SHIFTR, Prev: SHIFTA, Up: Intrinsic Procedures ! 8.221 `SHIFTL' -- Left shift ============================ _Description_: ! `SHIFTL' returns a value corresponding to I with all of the bits shifted left by SHIFT places. If the absolute value of SHIFT is ! greater than `BIT_SIZE(I)', the value is undefined. Bits shifted out from the left end are lost, and bits shifted in from the right end are set to 0. --- 13279,13291 ----  File: gfortran.info, Node: SHIFTL, Next: SHIFTR, Prev: SHIFTA, Up: Intrinsic Procedures ! 8.221 'SHIFTL' -- Left shift ============================ _Description_: ! 'SHIFTL' returns a value corresponding to I with all of the bits shifted left by SHIFT places. If the absolute value of SHIFT is ! greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted out from the left end are lost, and bits shifted in from the right end are set to 0. *************** _Class_: *** 13444,13457 **** Elemental function _Syntax_: ! `RESULT = SHIFTL(I, SHIFT)' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note SHIFTA::, *note SHIFTR:: --- 13296,13309 ---- Elemental function _Syntax_: ! 'RESULT = SHIFTL(I, SHIFT)' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note SHIFTA::, *note SHIFTR:: *************** _See also_: *** 13459,13471 ****  File: gfortran.info, Node: SHIFTR, Next: SIGN, Prev: SHIFTL, Up: Intrinsic Procedures ! 8.222 `SHIFTR' -- Right shift ============================= _Description_: ! `SHIFTR' returns a value corresponding to I with all of the bits shifted right by SHIFT places. If the absolute value of SHIFT is ! greater than `BIT_SIZE(I)', the value is undefined. Bits shifted out from the right end are lost, and bits shifted in from the left end are set to 0. --- 13311,13323 ----  File: gfortran.info, Node: SHIFTR, Next: SIGN, Prev: SHIFTL, Up: Intrinsic Procedures ! 8.222 'SHIFTR' -- Right shift ============================= _Description_: ! 'SHIFTR' returns a value corresponding to I with all of the bits shifted right by SHIFT places. If the absolute value of SHIFT is ! greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted out from the right end are lost, and bits shifted in from the left end are set to 0. *************** _Class_: *** 13476,13489 **** Elemental function _Syntax_: ! `RESULT = SHIFTR(I, SHIFT)' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note SHIFTA::, *note SHIFTL:: --- 13328,13341 ---- Elemental function _Syntax_: ! 'RESULT = SHIFTR(I, SHIFT)' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note SHIFTA::, *note SHIFTL:: *************** _See also_: *** 13491,13501 ****  File: gfortran.info, Node: SIGN, Next: SIGNAL, Prev: SHIFTR, Up: Intrinsic Procedures ! 8.223 `SIGN' -- Sign copying function ===================================== _Description_: ! `SIGN(A,B)' returns the value of A with the sign of B. _Standard_: Fortran 77 and later --- 13343,13353 ----  File: gfortran.info, Node: SIGN, Next: SIGNAL, Prev: SHIFTR, Up: Intrinsic Procedures ! 8.223 'SIGN' -- Sign copying function ===================================== _Description_: ! 'SIGN(A,B)' returns the value of A with the sign of B. _Standard_: Fortran 77 and later *************** _Class_: *** 13504,13518 **** Elemental function _Syntax_: ! `RESULT = SIGN(A, B)' _Arguments_: ! A Shall be of type `INTEGER' or `REAL' ! B Shall be of the same type and kind as A _Return value_: The kind of the return value is that of A and B. If B\ge 0 then ! the result is `ABS(A)', else it is `-ABS(A)'. _Example_: program test_sign --- 13356,13370 ---- Elemental function _Syntax_: ! 'RESULT = SIGN(A, B)' _Arguments_: ! A Shall be of type 'INTEGER' or 'REAL' ! B Shall be of the same type and kind as A _Return value_: The kind of the return value is that of A and B. If B\ge 0 then ! the result is 'ABS(A)', else it is '-ABS(A)'. _Example_: program test_sign *************** _Example_: *** 13526,13554 **** end program test_sign _Specific names_: ! Name Arguments Return type Standard ! `SIGN(A,B)' `REAL(4) A, `REAL(4)' f77, gnu ! B' ! `ISIGN(A,B)' `INTEGER(4) `INTEGER(4)' f77, gnu ! A, B' ! `DSIGN(A,B)' `REAL(8) A, `REAL(8)' f77, gnu ! B'  File: gfortran.info, Node: SIGNAL, Next: SIN, Prev: SIGN, Up: Intrinsic Procedures ! 8.224 `SIGNAL' -- Signal handling subroutine (or function) ========================================================== _Description_: ! `SIGNAL(NUMBER, HANDLER [, STATUS])' causes external subroutine HANDLER to be executed with a single integer argument when signal NUMBER occurs. If HANDLER is an integer, it can be used to turn ! off handling of signal NUMBER or revert to its default action. ! See `signal(2)'. ! If `SIGNAL' is called as a subroutine and the STATUS argument is ! supplied, it is set to the value returned by `signal(2)'. _Standard_: GNU extension --- 13378,13406 ---- end program test_sign _Specific names_: ! Name Arguments Return type Standard ! 'SIGN(A,B)' 'REAL(4) A, 'REAL(4)' f77, gnu ! B' ! 'ISIGN(A,B)' 'INTEGER(4) 'INTEGER(4)' f77, gnu ! A, B' ! 'DSIGN(A,B)' 'REAL(8) A, 'REAL(8)' f77, gnu ! B'  File: gfortran.info, Node: SIGNAL, Next: SIN, Prev: SIGN, Up: Intrinsic Procedures ! 8.224 'SIGNAL' -- Signal handling subroutine (or function) ========================================================== _Description_: ! 'SIGNAL(NUMBER, HANDLER [, STATUS])' causes external subroutine HANDLER to be executed with a single integer argument when signal NUMBER occurs. If HANDLER is an integer, it can be used to turn ! off handling of signal NUMBER or revert to its default action. See ! 'signal(2)'. ! If 'SIGNAL' is called as a subroutine and the STATUS argument is ! supplied, it is set to the value returned by 'signal(2)'. _Standard_: GNU extension *************** _Class_: *** 13557,13575 **** Subroutine, function _Syntax_: ! `CALL SIGNAL(NUMBER, HANDLER [, STATUS])' ! `STATUS = SIGNAL(NUMBER, HANDLER)' _Arguments_: ! NUMBER Shall be a scalar integer, with `INTENT(IN)' ! HANDLER Signal handler (`INTEGER FUNCTION' or ! `SUBROUTINE') or dummy/global `INTEGER' scalar. ! `INTEGER'. It is `INTENT(IN)'. ! STATUS (Optional) STATUS shall be a scalar integer. ! It has `INTENT(OUT)'. _Return value_: ! The `SIGNAL' function returns the value returned by `signal(2)'. _Example_: program test_signal --- 13409,13427 ---- Subroutine, function _Syntax_: ! 'CALL SIGNAL(NUMBER, HANDLER [, STATUS])' ! 'STATUS = SIGNAL(NUMBER, HANDLER)' _Arguments_: ! NUMBER Shall be a scalar integer, with 'INTENT(IN)' ! HANDLER Signal handler ('INTEGER FUNCTION' or ! 'SUBROUTINE') or dummy/global 'INTEGER' scalar. ! 'INTEGER'. It is 'INTENT(IN)'. ! STATUS (Optional) STATUS shall be a scalar integer. It ! has 'INTENT(OUT)'. _Return value_: ! The 'SIGNAL' function returns the value returned by 'signal(2)'. _Example_: program test_signal *************** _Example_: *** 13585,13595 ****  File: gfortran.info, Node: SIN, Next: SINH, Prev: SIGNAL, Up: Intrinsic Procedures ! 8.225 `SIN' -- Sine function ============================ _Description_: ! `SIN(X)' computes the sine of X. _Standard_: Fortran 77 and later --- 13437,13447 ----  File: gfortran.info, Node: SIN, Next: SINH, Prev: SIGNAL, Up: Intrinsic Procedures ! 8.225 'SIN' -- Sine function ============================ _Description_: ! 'SIN(X)' computes the sine of X. _Standard_: Fortran 77 and later *************** _Class_: *** 13598,13607 **** Elemental function _Syntax_: ! `RESULT = SIN(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: The return value has same type and kind as X. --- 13450,13459 ---- Elemental function _Syntax_: ! 'RESULT = SIN(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: The return value has same type and kind as X. *************** _Example_: *** 13613,13627 **** end program test_sin _Specific names_: ! Name Argument Return type Standard ! `SIN(X)' `REAL(4) X' `REAL(4)' f77, gnu ! `DSIN(X)' `REAL(8) X' `REAL(8)' f95, gnu ! `CSIN(X)' `COMPLEX(4) `COMPLEX(4)' f95, gnu ! X' ! `ZSIN(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu ! X' ! `CDSIN(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu ! X' _See also_: *note ASIN:: --- 13465,13479 ---- end program test_sin _Specific names_: ! Name Argument Return type Standard ! 'SIN(X)' 'REAL(4) X' 'REAL(4)' f77, gnu ! 'DSIN(X)' 'REAL(8) X' 'REAL(8)' f95, gnu ! 'CSIN(X)' 'COMPLEX(4) 'COMPLEX(4)' f95, gnu ! X' ! 'ZSIN(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu ! X' ! 'CDSIN(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu ! X' _See also_: *note ASIN:: *************** _See also_: *** 13629,13639 ****  File: gfortran.info, Node: SINH, Next: SIZE, Prev: SIN, Up: Intrinsic Procedures ! 8.226 `SINH' -- Hyperbolic sine function ======================================== _Description_: ! `SINH(X)' computes the hyperbolic sine of X. _Standard_: Fortran 95 and later, for a complex argument Fortran 2008 or later --- 13481,13491 ----  File: gfortran.info, Node: SINH, Next: SIZE, Prev: SIN, Up: Intrinsic Procedures ! 8.226 'SINH' -- Hyperbolic sine function ======================================== _Description_: ! 'SINH(X)' computes the hyperbolic sine of X. _Standard_: Fortran 95 and later, for a complex argument Fortran 2008 or later *************** _Class_: *** 13642,13651 **** Elemental function _Syntax_: ! `RESULT = SINH(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: The return value has same type and kind as X. --- 13494,13503 ---- Elemental function _Syntax_: ! 'RESULT = SINH(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: The return value has same type and kind as X. *************** _Example_: *** 13657,13667 **** end program test_sinh _Specific names_: ! Name Argument Return type Standard ! `SINH(X)' `REAL(4) X' `REAL(4)' Fortran 95 and ! later ! `DSINH(X)' `REAL(8) X' `REAL(8)' Fortran 95 and ! later _See also_: *note ASINH:: --- 13509,13519 ---- end program test_sinh _Specific names_: ! Name Argument Return type Standard ! 'SINH(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and ! later ! 'DSINH(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and ! later _See also_: *note ASINH:: *************** _See also_: *** 13669,13675 ****  File: gfortran.info, Node: SIZE, Next: SIZEOF, Prev: SINH, Up: Intrinsic Procedures ! 8.227 `SIZE' -- Determine the size of an array ============================================== _Description_: --- 13521,13527 ----  File: gfortran.info, Node: SIZE, Next: SIZEOF, Prev: SINH, Up: Intrinsic Procedures ! 8.227 'SIZE' -- Determine the size of an array ============================================== _Description_: *************** _Class_: *** 13683,13703 **** Inquiry function _Syntax_: ! `RESULT = SIZE(ARRAY[, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an array of any type. If ARRAY is a ! pointer it must be associated and allocatable ! arrays must be allocated. ! DIM (Optional) shall be a scalar of type `INTEGER' ! and its value shall be in the range from 1 to ! n, where n equals the rank of ARRAY. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: --- 13535,13555 ---- Inquiry function _Syntax_: ! 'RESULT = SIZE(ARRAY[, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an array of any type. If ARRAY is a ! pointer it must be associated and allocatable ! arrays must be allocated. ! DIM (Optional) shall be a scalar of type 'INTEGER' ! and its value shall be in the range from 1 to n, ! where n equals the rank of ARRAY. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: *************** _See also_: *** 13711,13722 ****  File: gfortran.info, Node: SIZEOF, Next: SLEEP, Prev: SIZE, Up: Intrinsic Procedures ! 8.228 `SIZEOF' -- Size in bytes of an expression ================================================ _Description_: ! `SIZEOF(X)' calculates the number of bytes of storage the ! expression `X' occupies. _Standard_: GNU extension --- 13563,13574 ----  File: gfortran.info, Node: SIZEOF, Next: SLEEP, Prev: SIZE, Up: Intrinsic Procedures ! 8.228 'SIZEOF' -- Size in bytes of an expression ================================================ _Description_: ! 'SIZEOF(X)' calculates the number of bytes of storage the ! expression 'X' occupies. _Standard_: GNU extension *************** _Class_: *** 13725,13746 **** Intrinsic function _Syntax_: ! `N = SIZEOF(X)' _Arguments_: ! X The argument shall be of any type, rank or ! shape. _Return value_: The return value is of type integer and of the system-dependent ! kind C_SIZE_T (from the ISO_C_BINDING module). Its value is the number of bytes occupied by the argument. If the argument has the ! `POINTER' attribute, the number of bytes of the storage area pointed to is returned. If the argument is of a derived type with ! `POINTER' or `ALLOCATABLE' components, the return value does not account for the sizes of the data pointed to by these components. If the argument is polymorphic, the size according to the declared ! type is returned. The argument may not be a procedure or procedure pointer. _Example_: --- 13577,13598 ---- Intrinsic function _Syntax_: ! 'N = SIZEOF(X)' _Arguments_: ! X The argument shall be of any type, rank or ! shape. _Return value_: The return value is of type integer and of the system-dependent ! kind C_SIZE_T (from the ISO_C_BINDING module). Its value is the number of bytes occupied by the argument. If the argument has the ! 'POINTER' attribute, the number of bytes of the storage area pointed to is returned. If the argument is of a derived type with ! 'POINTER' or 'ALLOCATABLE' components, the return value does not account for the sizes of the data pointed to by these components. If the argument is polymorphic, the size according to the declared ! type is returned. The argument may not be a procedure or procedure pointer. _Example_: *************** _Example_: *** 13748,13755 **** real :: r, s(5) print *, (sizeof(s)/sizeof(r) == 5) end ! The example will print `.TRUE.' unless you are using a platform ! where default `REAL' variables are unusually padded. _See also_: *note C_SIZEOF::, *note STORAGE_SIZE:: --- 13600,13607 ---- real :: r, s(5) print *, (sizeof(s)/sizeof(r) == 5) end ! The example will print '.TRUE.' unless you are using a platform ! where default 'REAL' variables are unusually padded. _See also_: *note C_SIZEOF::, *note STORAGE_SIZE:: *************** _See also_: *** 13757,13763 ****  File: gfortran.info, Node: SLEEP, Next: SPACING, Prev: SIZEOF, Up: Intrinsic Procedures ! 8.229 `SLEEP' -- Sleep for the specified number of seconds ========================================================== _Description_: --- 13609,13615 ----  File: gfortran.info, Node: SLEEP, Next: SPACING, Prev: SIZEOF, Up: Intrinsic Procedures ! 8.229 'SLEEP' -- Sleep for the specified number of seconds ========================================================== _Description_: *************** _Class_: *** 13771,13780 **** Subroutine _Syntax_: ! `CALL SLEEP(SECONDS)' _Arguments_: ! SECONDS The type shall be of default `INTEGER'. _Example_: program test_sleep --- 13623,13632 ---- Subroutine _Syntax_: ! 'CALL SLEEP(SECONDS)' _Arguments_: ! SECONDS The type shall be of default 'INTEGER'. _Example_: program test_sleep *************** _Example_: *** 13784,13790 ****  File: gfortran.info, Node: SPACING, Next: SPREAD, Prev: SLEEP, Up: Intrinsic Procedures ! 8.230 `SPACING' -- Smallest distance between two numbers of a given type ======================================================================== _Description_: --- 13636,13642 ----  File: gfortran.info, Node: SPACING, Next: SPREAD, Prev: SLEEP, Up: Intrinsic Procedures ! 8.230 'SPACING' -- Smallest distance between two numbers of a given type ======================================================================== _Description_: *************** _Class_: *** 13798,13807 **** Elemental function _Syntax_: ! `RESULT = SPACING(X)' _Arguments_: ! X Shall be of type `REAL'. _Return value_: The result is of the same type as the input argument X. --- 13650,13659 ---- Elemental function _Syntax_: ! 'RESULT = SPACING(X)' _Arguments_: ! X Shall be of type 'REAL'. _Return value_: The result is of the same type as the input argument X. *************** _See also_: *** 13821,13832 ****  File: gfortran.info, Node: SPREAD, Next: SQRT, Prev: SPACING, Up: Intrinsic Procedures ! 8.231 `SPREAD' -- Add a dimension to an array ============================================= _Description_: ! Replicates a SOURCE array NCOPIES times along a specified ! dimension DIM. _Standard_: Fortran 95 and later --- 13673,13684 ----  File: gfortran.info, Node: SPREAD, Next: SQRT, Prev: SPACING, Up: Intrinsic Procedures ! 8.231 'SPREAD' -- Add a dimension to an array ============================================= _Description_: ! Replicates a SOURCE array NCOPIES times along a specified dimension ! DIM. _Standard_: Fortran 95 and later *************** _Class_: *** 13835,13849 **** Transformational function _Syntax_: ! `RESULT = SPREAD(SOURCE, DIM, NCOPIES)' _Arguments_: ! SOURCE Shall be a scalar or an array of any type and ! a rank less than seven. ! DIM Shall be a scalar of type `INTEGER' with a ! value in the range from 1 to n+1, where n ! equals the rank of SOURCE. ! NCOPIES Shall be a scalar of type `INTEGER'. _Return value_: The result is an array of the same type as SOURCE and has rank n+1 --- 13687,13701 ---- Transformational function _Syntax_: ! 'RESULT = SPREAD(SOURCE, DIM, NCOPIES)' _Arguments_: ! SOURCE Shall be a scalar or an array of any type and a ! rank less than seven. ! DIM Shall be a scalar of type 'INTEGER' with a value ! in the range from 1 to n+1, where n equals the ! rank of SOURCE. ! NCOPIES Shall be a scalar of type 'INTEGER'. _Return value_: The result is an array of the same type as SOURCE and has rank n+1 *************** _See also_: *** 13862,13872 ****  File: gfortran.info, Node: SQRT, Next: SRAND, Prev: SPREAD, Up: Intrinsic Procedures ! 8.232 `SQRT' -- Square-root function ==================================== _Description_: ! `SQRT(X)' computes the square root of X. _Standard_: Fortran 77 and later --- 13714,13724 ----  File: gfortran.info, Node: SQRT, Next: SRAND, Prev: SPREAD, Up: Intrinsic Procedures ! 8.232 'SQRT' -- Square-root function ==================================== _Description_: ! 'SQRT(X)' computes the square root of X. _Standard_: Fortran 77 and later *************** _Class_: *** 13875,13887 **** Elemental function _Syntax_: ! `RESULT = SQRT(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value is of type `REAL' or `COMPLEX'. The kind type parameter is the same as X. _Example_: --- 13727,13739 ---- Elemental function _Syntax_: ! 'RESULT = SQRT(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value is of type 'REAL' or 'COMPLEX'. The kind type parameter is the same as X. _Example_: *************** _Example_: *** 13893,13919 **** end program test_sqrt _Specific names_: ! Name Argument Return type Standard ! `SQRT(X)' `REAL(4) X' `REAL(4)' Fortran 95 and ! later ! `DSQRT(X)' `REAL(8) X' `REAL(8)' Fortran 95 and ! later ! `CSQRT(X)' `COMPLEX(4) `COMPLEX(4)' Fortran 95 and ! X' later ! `ZSQRT(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! X' ! `CDSQRT(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! X'  File: gfortran.info, Node: SRAND, Next: STAT, Prev: SQRT, Up: Intrinsic Procedures ! 8.233 `SRAND' -- Reinitialize the random number generator ========================================================= _Description_: ! `SRAND' reinitializes the pseudo-random number generator called by ! `RAND' and `IRAND'. The new seed used by the generator is specified by the required argument SEED. _Standard_: --- 13745,13771 ---- end program test_sqrt _Specific names_: ! Name Argument Return type Standard ! 'SQRT(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and ! later ! 'DSQRT(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and ! later ! 'CSQRT(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 95 and ! X' later ! 'ZSQRT(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! X' ! 'CDSQRT(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! X'  File: gfortran.info, Node: SRAND, Next: STAT, Prev: SQRT, Up: Intrinsic Procedures ! 8.233 'SRAND' -- Reinitialize the random number generator ========================================================= _Description_: ! 'SRAND' reinitializes the pseudo-random number generator called by ! 'RAND' and 'IRAND'. The new seed used by the generator is specified by the required argument SEED. _Standard_: *************** _Class_: *** 13923,13978 **** Subroutine _Syntax_: ! `CALL SRAND(SEED)' _Arguments_: ! SEED Shall be a scalar `INTEGER(kind=4)'. _Return value_: Does not return anything. _Example_: ! See `RAND' and `IRAND' for examples. _Notes_: ! The Fortran 2003 standard specifies the intrinsic `RANDOM_SEED' to ! initialize the pseudo-random numbers generator and `RANDOM_NUMBER' ! to generate pseudo-random numbers. Please note that in GNU ! Fortran, these two sets of intrinsics (`RAND', `IRAND' and `SRAND' ! on the one hand, `RANDOM_NUMBER' and `RANDOM_SEED' on the other hand) access two independent pseudo-random number generators. _See also_: *note RAND::, *note RANDOM_SEED::, *note RANDOM_NUMBER:: -  File: gfortran.info, Node: STAT, Next: STORAGE_SIZE, Prev: SRAND, Up: Intrinsic Procedures ! 8.234 `STAT' -- Get file status =============================== _Description_: ! This function returns information about a file. No permissions are required on the file itself, but execute (search) permission is required on all of the directories in path that lead to the file. ! The elements that are obtained and stored in the array `VALUES': ! `VALUES(1)'Device ID ! `VALUES(2)'Inode number ! `VALUES(3)'File mode ! `VALUES(4)'Number of links ! `VALUES(5)'Owner's uid ! `VALUES(6)'Owner's gid ! `VALUES(7)'ID of device containing directory entry for ! file (0 if not available) ! `VALUES(8)'File size (bytes) ! `VALUES(9)'Last access time ! `VALUES(10)'Last modification time ! `VALUES(11)'Last file status change time ! `VALUES(12)'Preferred I/O block size (-1 if not available) ! `VALUES(13)'Number of blocks allocated (-1 if not ! available) Not all these elements are relevant on all systems. If an element is not relevant, it is returned as 0. --- 13775,13828 ---- Subroutine _Syntax_: ! 'CALL SRAND(SEED)' _Arguments_: ! SEED Shall be a scalar 'INTEGER(kind=4)'. _Return value_: Does not return anything. _Example_: ! See 'RAND' and 'IRAND' for examples. _Notes_: ! The Fortran 2003 standard specifies the intrinsic 'RANDOM_SEED' to ! initialize the pseudo-random numbers generator and 'RANDOM_NUMBER' ! to generate pseudo-random numbers. Please note that in GNU ! Fortran, these two sets of intrinsics ('RAND', 'IRAND' and 'SRAND' ! on the one hand, 'RANDOM_NUMBER' and 'RANDOM_SEED' on the other hand) access two independent pseudo-random number generators. _See also_: *note RAND::, *note RANDOM_SEED::, *note RANDOM_NUMBER::  File: gfortran.info, Node: STAT, Next: STORAGE_SIZE, Prev: SRAND, Up: Intrinsic Procedures ! 8.234 'STAT' -- Get file status =============================== _Description_: ! This function returns information about a file. No permissions are required on the file itself, but execute (search) permission is required on all of the directories in path that lead to the file. ! The elements that are obtained and stored in the array 'VALUES': ! 'VALUES(1)' Device ID ! 'VALUES(2)' Inode number ! 'VALUES(3)' File mode ! 'VALUES(4)' Number of links ! 'VALUES(5)' Owner's uid ! 'VALUES(6)' Owner's gid ! 'VALUES(7)' ID of device containing directory entry for file ! (0 if not available) ! 'VALUES(8)' File size (bytes) ! 'VALUES(9)' Last access time ! 'VALUES(10)'Last modification time ! 'VALUES(11)'Last file status change time ! 'VALUES(12)'Preferred I/O block size (-1 if not available) ! 'VALUES(13)'Number of blocks allocated (-1 if not available) Not all these elements are relevant on all systems. If an element is not relevant, it is returned as 0. *************** _Class_: *** 13987,14002 **** Subroutine, function _Syntax_: ! `CALL STAT(NAME, VALUES [, STATUS])' ! `STATUS = STAT(NAME, VALUES)' _Arguments_: ! NAME The type shall be `CHARACTER', of the default ! kind and a valid path within the file system. ! VALUES The type shall be `INTEGER(4), DIMENSION(13)'. ! STATUS (Optional) status flag of type `INTEGER(4)'. ! Returns 0 on success and a system specific ! error code otherwise. _Example_: PROGRAM test_stat --- 13837,13852 ---- Subroutine, function _Syntax_: ! 'CALL STAT(NAME, VALUES [, STATUS])' ! 'STATUS = STAT(NAME, VALUES)' _Arguments_: ! NAME The type shall be 'CHARACTER', of the default ! kind and a valid path within the file system. ! VALUES The type shall be 'INTEGER(4), DIMENSION(13)'. ! STATUS (Optional) status flag of type 'INTEGER(4)'. ! Returns 0 on success and a system specific error ! code otherwise. _Example_: PROGRAM test_stat *************** _See also_: *** 14028,14058 ****  File: gfortran.info, Node: STORAGE_SIZE, Next: SUM, Prev: STAT, Up: Intrinsic Procedures ! 8.235 `STORAGE_SIZE' -- Storage size in bits ============================================ _Description_: Returns the storage size of argument A in bits. - _Standard_: Fortran 2008 and later - _Class_: Inquiry function - _Syntax_: ! `RESULT = STORAGE_SIZE(A [, KIND])' _Arguments_: ! A Shall be a scalar or array of any type. ! KIND (Optional) shall be a scalar integer constant ! expression. _Return Value_: The result is a scalar integer with the kind type parameter specified by KIND (or default integer type if KIND is missing). ! The result value is the size expressed in bits for an element of ! an array that has the dynamic type and type parameters of A. _See also_: *note C_SIZEOF::, *note SIZEOF:: --- 13878,13905 ----  File: gfortran.info, Node: STORAGE_SIZE, Next: SUM, Prev: STAT, Up: Intrinsic Procedures ! 8.235 'STORAGE_SIZE' -- Storage size in bits ============================================ _Description_: Returns the storage size of argument A in bits. _Standard_: Fortran 2008 and later _Class_: Inquiry function _Syntax_: ! 'RESULT = STORAGE_SIZE(A [, KIND])' _Arguments_: ! A Shall be a scalar or array of any type. ! KIND (Optional) shall be a scalar integer constant ! expression. _Return Value_: The result is a scalar integer with the kind type parameter specified by KIND (or default integer type if KIND is missing). ! The result value is the size expressed in bits for an element of an ! array that has the dynamic type and type parameters of A. _See also_: *note C_SIZEOF::, *note SIZEOF:: *************** _See also_: *** 14060,14071 ****  File: gfortran.info, Node: SUM, Next: SYMLNK, Prev: STORAGE_SIZE, Up: Intrinsic Procedures ! 8.236 `SUM' -- Sum of array elements ==================================== _Description_: ! Adds the elements of ARRAY along dimension DIM if the ! corresponding element in MASK is `TRUE'. _Standard_: Fortran 95 and later --- 13907,13918 ----  File: gfortran.info, Node: SUM, Next: SYMLNK, Prev: STORAGE_SIZE, Up: Intrinsic Procedures ! 8.236 'SUM' -- Sum of array elements ==================================== _Description_: ! Adds the elements of ARRAY along dimension DIM if the corresponding ! element in MASK is 'TRUE'. _Standard_: Fortran 95 and later *************** _Class_: *** 14074,14099 **** Transformational function _Syntax_: ! `RESULT = SUM(ARRAY[, MASK])' ! `RESULT = SUM(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER', `REAL' or ! `COMPLEX'. ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type `LOGICAL' and ! either be a scalar or an array of the same ! shape as ARRAY. _Return value_: The result is of the same type as ARRAY. ! If DIM is absent, a scalar with the sum of all elements in ARRAY ! is returned. Otherwise, an array of rank n-1, where n equals the ! rank of ARRAY, and a shape similar to that of ARRAY with dimension ! DIM dropped is returned. _Example_: PROGRAM test_sum --- 13921,13946 ---- Transformational function _Syntax_: ! 'RESULT = SUM(ARRAY[, MASK])' ! 'RESULT = SUM(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER', 'REAL' or ! 'COMPLEX'. ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type 'LOGICAL' and either ! be a scalar or an array of the same shape as ! ARRAY. _Return value_: The result is of the same type as ARRAY. ! If DIM is absent, a scalar with the sum of all elements in ARRAY is ! returned. Otherwise, an array of rank n-1, where n equals the rank ! of ARRAY, and a shape similar to that of ARRAY with dimension DIM ! dropped is returned. _Example_: PROGRAM test_sum *************** _See also_: *** 14108,14123 ****  File: gfortran.info, Node: SYMLNK, Next: SYSTEM, Prev: SUM, Up: Intrinsic Procedures ! 8.237 `SYMLNK' -- Create a symbolic link ======================================== _Description_: ! Makes a symbolic link from file PATH1 to PATH2. A null character ! (`CHAR(0)') can be used to mark the end of the names in PATH1 and PATH2; otherwise, trailing blanks in the file names are ignored. If the STATUS argument is supplied, it contains 0 on success or a ! nonzero error code upon return; see `symlink(2)'. If the system ! does not supply `symlink(2)', `ENOSYS' is returned. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 13955,13970 ----  File: gfortran.info, Node: SYMLNK, Next: SYSTEM, Prev: SUM, Up: Intrinsic Procedures ! 8.237 'SYMLNK' -- Create a symbolic link ======================================== _Description_: ! Makes a symbolic link from file PATH1 to PATH2. A null character ! ('CHAR(0)') can be used to mark the end of the names in PATH1 and PATH2; otherwise, trailing blanks in the file names are ignored. If the STATUS argument is supplied, it contains 0 on success or a ! nonzero error code upon return; see 'symlink(2)'. If the system ! does not supply 'symlink(2)', 'ENOSYS' is returned. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 14129,14164 **** Subroutine, function _Syntax_: ! `CALL SYMLNK(PATH1, PATH2 [, STATUS])' ! `STATUS = SYMLNK(PATH1, PATH2)' _Arguments_: ! PATH1 Shall be of default `CHARACTER' type. ! PATH2 Shall be of default `CHARACTER' type. ! STATUS (Optional) Shall be of default `INTEGER' type. _See also_: *note LINK::, *note UNLINK:: -  File: gfortran.info, Node: SYSTEM, Next: SYSTEM_CLOCK, Prev: SYMLNK, Up: Intrinsic Procedures ! 8.238 `SYSTEM' -- Execute a shell command ========================================= _Description_: ! Passes the command COMMAND to a shell (see `system(3)'). If argument STATUS is present, it contains the value returned by ! `system(3)', which is presumably 0 if the shell command succeeded. Note that which shell is used to invoke the command is system-dependent and environment-dependent. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the `system' function need not be thread-safe. It is the ! responsibility of the user to ensure that `system' is not called concurrently. _Standard_: --- 13976,14010 ---- Subroutine, function _Syntax_: ! 'CALL SYMLNK(PATH1, PATH2 [, STATUS])' ! 'STATUS = SYMLNK(PATH1, PATH2)' _Arguments_: ! PATH1 Shall be of default 'CHARACTER' type. ! PATH2 Shall be of default 'CHARACTER' type. ! STATUS (Optional) Shall be of default 'INTEGER' type. _See also_: *note LINK::, *note UNLINK::  File: gfortran.info, Node: SYSTEM, Next: SYSTEM_CLOCK, Prev: SYMLNK, Up: Intrinsic Procedures ! 8.238 'SYSTEM' -- Execute a shell command ========================================= _Description_: ! Passes the command COMMAND to a shell (see 'system(3)'). If argument STATUS is present, it contains the value returned by ! 'system(3)', which is presumably 0 if the shell command succeeded. Note that which shell is used to invoke the command is system-dependent and environment-dependent. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the 'system' function need not be thread-safe. It is the ! responsibility of the user to ensure that 'system' is not called concurrently. _Standard_: *************** _Class_: *** 14168,14179 **** Subroutine, function _Syntax_: ! `CALL SYSTEM(COMMAND [, STATUS])' ! `STATUS = SYSTEM(COMMAND)' _Arguments_: ! COMMAND Shall be of default `CHARACTER' type. ! STATUS (Optional) Shall be of default `INTEGER' type. _See also_: *note EXECUTE_COMMAND_LINE::, which is part of the Fortran 2008 --- 14014,14025 ---- Subroutine, function _Syntax_: ! 'CALL SYSTEM(COMMAND [, STATUS])' ! 'STATUS = SYSTEM(COMMAND)' _Arguments_: ! COMMAND Shall be of default 'CHARACTER' type. ! STATUS (Optional) Shall be of default 'INTEGER' type. _See also_: *note EXECUTE_COMMAND_LINE::, which is part of the Fortran 2008 *************** _See also_: *** 14182,14212 ****  File: gfortran.info, Node: SYSTEM_CLOCK, Next: TAN, Prev: SYSTEM, Up: Intrinsic Procedures ! 8.239 `SYSTEM_CLOCK' -- Time function ===================================== _Description_: ! Determines the COUNT of a processor clock since an unspecified ! time in the past modulo COUNT_MAX, COUNT_RATE determines the ! number of clock ticks per second. If the platform supports a high ! resolution monotonic clock, that clock is used and can provide up ! to nanosecond resolution. If a high resolution monotonic clock is ! not available, the implementation falls back to a potentially lower resolution realtime clock. COUNT_RATE is system dependent and can vary depending on the kind ! of the arguments. For KIND=4 arguments, COUNT usually represents milliseconds, while for KIND=8 arguments, COUNT typically ! represents micro- or nanoseconds. COUNT_MAX usually equals ! `HUGE(COUNT_MAX)'. ! If there is no clock, COUNT is set to `-HUGE(COUNT)', and COUNT_RATE and COUNT_MAX are set to zero. When running on a platform using the GNU C library (glibc), or a derivative thereof, the high resolution monotonic clock is available only when linking with the RT library. This can be done ! explicitly by adding the `-lrt' flag when linking the application, but is also done implicitly when using OpenMP. _Standard_: --- 14028,14058 ----  File: gfortran.info, Node: SYSTEM_CLOCK, Next: TAN, Prev: SYSTEM, Up: Intrinsic Procedures ! 8.239 'SYSTEM_CLOCK' -- Time function ===================================== _Description_: ! Determines the COUNT of a processor clock since an unspecified time ! in the past modulo COUNT_MAX, COUNT_RATE determines the number of ! clock ticks per second. If the platform supports a high resolution ! monotonic clock, that clock is used and can provide up to ! nanosecond resolution. If a high resolution monotonic clock is not ! available, the implementation falls back to a potentially lower resolution realtime clock. COUNT_RATE is system dependent and can vary depending on the kind ! of the arguments. For KIND=4 arguments, COUNT usually represents milliseconds, while for KIND=8 arguments, COUNT typically ! represents micro- or nanoseconds. COUNT_MAX usually equals ! 'HUGE(COUNT_MAX)'. ! If there is no clock, COUNT is set to '-HUGE(COUNT)', and COUNT_RATE and COUNT_MAX are set to zero. When running on a platform using the GNU C library (glibc), or a derivative thereof, the high resolution monotonic clock is available only when linking with the RT library. This can be done ! explicitly by adding the '-lrt' flag when linking the application, but is also done implicitly when using OpenMP. _Standard_: *************** _Class_: *** 14216,14230 **** Subroutine _Syntax_: ! `CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])' _Arguments_: ! COUNT (Optional) shall be a scalar of type `INTEGER' ! with `INTENT(OUT)'. ! COUNT_RATE (Optional) shall be a scalar of type `INTEGER' ! with `INTENT(OUT)'. ! COUNT_MAX (Optional) shall be a scalar of type `INTEGER' ! with `INTENT(OUT)'. _Example_: PROGRAM test_system_clock --- 14062,14076 ---- Subroutine _Syntax_: ! 'CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])' _Arguments_: ! COUNT (Optional) shall be a scalar of type 'INTEGER' ! with 'INTENT(OUT)'. ! COUNT_RATE (Optional) shall be a scalar of type 'INTEGER' ! with 'INTENT(OUT)'. ! COUNT_MAX (Optional) shall be a scalar of type 'INTEGER' ! with 'INTENT(OUT)'. _Example_: PROGRAM test_system_clock *************** _See also_: *** 14239,14249 ****  File: gfortran.info, Node: TAN, Next: TANH, Prev: SYSTEM_CLOCK, Up: Intrinsic Procedures ! 8.240 `TAN' -- Tangent function =============================== _Description_: ! `TAN(X)' computes the tangent of X. _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later --- 14085,14095 ----  File: gfortran.info, Node: TAN, Next: TANH, Prev: SYSTEM_CLOCK, Up: Intrinsic Procedures ! 8.240 'TAN' -- Tangent function =============================== _Description_: ! 'TAN(X)' computes the tangent of X. _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later *************** _Class_: *** 14252,14261 **** Elemental function _Syntax_: ! `RESULT = TAN(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: The return value has same type and kind as X. --- 14098,14107 ---- Elemental function _Syntax_: ! 'RESULT = TAN(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: The return value has same type and kind as X. *************** _Example_: *** 14267,14277 **** end program test_tan _Specific names_: ! Name Argument Return type Standard ! `TAN(X)' `REAL(4) X' `REAL(4)' Fortran 95 and ! later ! `DTAN(X)' `REAL(8) X' `REAL(8)' Fortran 95 and ! later _See also_: *note ATAN:: --- 14113,14123 ---- end program test_tan _Specific names_: ! Name Argument Return type Standard ! 'TAN(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and ! later ! 'DTAN(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and ! later _See also_: *note ATAN:: *************** _See also_: *** 14279,14289 ****  File: gfortran.info, Node: TANH, Next: THIS_IMAGE, Prev: TAN, Up: Intrinsic Procedures ! 8.241 `TANH' -- Hyperbolic tangent function =========================================== _Description_: ! `TANH(X)' computes the hyperbolic tangent of X. _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later --- 14125,14135 ----  File: gfortran.info, Node: TANH, Next: THIS_IMAGE, Prev: TAN, Up: Intrinsic Procedures ! 8.241 'TANH' -- Hyperbolic tangent function =========================================== _Description_: ! 'TANH(X)' computes the hyperbolic tangent of X. _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later *************** _Class_: *** 14292,14306 **** Elemental function _Syntax_: ! `X = TANH(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value has same type and kind as X. If X is complex, the ! imaginary part of the result is in radians. If X is `REAL', the ! return value lies in the range - 1 \leq tanh(x) \leq 1 . _Example_: program test_tanh --- 14138,14152 ---- Elemental function _Syntax_: ! 'X = TANH(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value has same type and kind as X. If X is complex, the ! imaginary part of the result is in radians. If X is 'REAL', the ! return value lies in the range - 1 \leq tanh(x) \leq 1 . _Example_: program test_tanh *************** _Example_: *** 14309,14319 **** end program test_tanh _Specific names_: ! Name Argument Return type Standard ! `TANH(X)' `REAL(4) X' `REAL(4)' Fortran 95 and ! later ! `DTANH(X)' `REAL(8) X' `REAL(8)' Fortran 95 and ! later _See also_: *note ATANH:: --- 14155,14165 ---- end program test_tanh _Specific names_: ! Name Argument Return type Standard ! 'TANH(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and ! later ! 'DTANH(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and ! later _See also_: *note ATANH:: *************** _See also_: *** 14321,14327 ****  File: gfortran.info, Node: THIS_IMAGE, Next: TIME, Prev: TANH, Up: Intrinsic Procedures ! 8.242 `THIS_IMAGE' -- Function that returns the cosubscript index of this image =============================================================================== _Description_: --- 14167,14173 ----  File: gfortran.info, Node: THIS_IMAGE, Next: TIME, Prev: TANH, Up: Intrinsic Procedures ! 8.242 'THIS_IMAGE' -- Function that returns the cosubscript index of this image =============================================================================== _Description_: *************** _Class_: *** 14334,14356 **** Transformational function _Syntax_: ! `RESULT = THIS_IMAGE()' ! `RESULT = THIS_IMAGE(COARRAY [, DIM])' _Arguments_: ! COARRAY Coarray of any type (optional; if DIM ! present, required). ! DIM default integer scalar (optional). If present, ! DIM shall be between one and the corank of ! COARRAY. _Return value_: ! Default integer. If COARRAY is not present, it is scalar and its ! value is the index of the invoking image. Otherwise, if DIM is not present, a rank-1 array with corank elements is returned, containing the cosubscripts for COARRAY specifying the invoking ! image. If DIM is present, a scalar is returned, with the value of ! the DIM element of `THIS_IMAGE(COARRAY)'. _Example_: INTEGER :: value[*] --- 14180,14202 ---- Transformational function _Syntax_: ! 'RESULT = THIS_IMAGE()' ! 'RESULT = THIS_IMAGE(COARRAY [, DIM])' _Arguments_: ! COARRAY Coarray of any type (optional; if DIM present, ! required). ! DIM default integer scalar (optional). If present, ! DIM shall be between one and the corank of ! COARRAY. _Return value_: ! Default integer. If COARRAY is not present, it is scalar and its ! value is the index of the invoking image. Otherwise, if DIM is not present, a rank-1 array with corank elements is returned, containing the cosubscripts for COARRAY specifying the invoking ! image. If DIM is present, a scalar is returned, with the value of ! the DIM element of 'THIS_IMAGE(COARRAY)'. _Example_: INTEGER :: value[*] *************** _See also_: *** 14369,14384 ****  File: gfortran.info, Node: TIME, Next: TIME8, Prev: THIS_IMAGE, Up: Intrinsic Procedures ! 8.243 `TIME' -- Time function ============================= _Description_: Returns the current time encoded as an integer (in the manner of ! the function `time(3)' in the C standard library). This value is ! suitable for passing to `CTIME', `GMTIME', and `LTIME'. This intrinsic is not fully portable, such as to systems with ! 32-bit `INTEGER' types but supporting times wider than 32 bits. Therefore, the values returned by this intrinsic might be, or become, negative, or numerically less than previous values, during a single run of the compiled program. --- 14215,14230 ----  File: gfortran.info, Node: TIME, Next: TIME8, Prev: THIS_IMAGE, Up: Intrinsic Procedures ! 8.243 'TIME' -- Time function ============================= _Description_: Returns the current time encoded as an integer (in the manner of ! the function 'time(3)' in the C standard library). This value is ! suitable for passing to 'CTIME', 'GMTIME', and 'LTIME'. This intrinsic is not fully portable, such as to systems with ! 32-bit 'INTEGER' types but supporting times wider than 32 bits. Therefore, the values returned by this intrinsic might be, or become, negative, or numerically less than previous values, during a single run of the compiled program. *************** _Class_: *** 14394,14425 **** Function _Syntax_: ! `RESULT = TIME()' _Return value_: ! The return value is a scalar of type `INTEGER(4)'. _See also_: ! *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, ! *note TIME8:: !  File: gfortran.info, Node: TIME8, Next: TINY, Prev: TIME, Up: Intrinsic Procedures ! 8.244 `TIME8' -- Time function (64-bit) ======================================= _Description_: Returns the current time encoded as an integer (in the manner of ! the function `time(3)' in the C standard library). This value is ! suitable for passing to `CTIME', `GMTIME', and `LTIME'. _Warning:_ this intrinsic does not increase the range of the timing ! values over that returned by `time(3)'. On a system with a 32-bit ! `time(3)', `TIME8' will return a 32-bit value, even though it is ! converted to a 64-bit `INTEGER(8)' value. That means overflows of ! the 32-bit value can still occur. Therefore, the values returned by this intrinsic might be or become negative or numerically less than previous values during a single run of the compiled program. --- 14240,14270 ---- Function _Syntax_: ! 'RESULT = TIME()' _Return value_: ! The return value is a scalar of type 'INTEGER(4)'. _See also_: ! *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note ! TIME8::  File: gfortran.info, Node: TIME8, Next: TINY, Prev: TIME, Up: Intrinsic Procedures ! 8.244 'TIME8' -- Time function (64-bit) ======================================= _Description_: Returns the current time encoded as an integer (in the manner of ! the function 'time(3)' in the C standard library). This value is ! suitable for passing to 'CTIME', 'GMTIME', and 'LTIME'. _Warning:_ this intrinsic does not increase the range of the timing ! values over that returned by 'time(3)'. On a system with a 32-bit ! 'time(3)', 'TIME8' will return a 32-bit value, even though it is ! converted to a 64-bit 'INTEGER(8)' value. That means overflows of ! the 32-bit value can still occur. Therefore, the values returned by this intrinsic might be or become negative or numerically less than previous values during a single run of the compiled program. *************** _Class_: *** 14430,14454 **** Function _Syntax_: ! `RESULT = TIME8()' _Return value_: ! The return value is a scalar of type `INTEGER(8)'. _See also_: *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK8::, *note TIME:: -  File: gfortran.info, Node: TINY, Next: TRAILZ, Prev: TIME8, Up: Intrinsic Procedures ! 8.245 `TINY' -- Smallest positive number of a real kind ======================================================= _Description_: ! `TINY(X)' returns the smallest positive (non zero) number in the ! model of the type of `X'. _Standard_: Fortran 95 and later --- 14275,14298 ---- Function _Syntax_: ! 'RESULT = TIME8()' _Return value_: ! The return value is a scalar of type 'INTEGER(8)'. _See also_: *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK8::, *note TIME::  File: gfortran.info, Node: TINY, Next: TRAILZ, Prev: TIME8, Up: Intrinsic Procedures ! 8.245 'TINY' -- Smallest positive number of a real kind ======================================================= _Description_: ! 'TINY(X)' returns the smallest positive (non zero) number in the ! model of the type of 'X'. _Standard_: Fortran 95 and later *************** _Class_: *** 14457,14481 **** Inquiry function _Syntax_: ! `RESULT = TINY(X)' _Arguments_: ! X Shall be of type `REAL'. _Return value_: The return value is of the same type and kind as X _Example_: ! See `HUGE' for an example.  File: gfortran.info, Node: TRAILZ, Next: TRANSFER, Prev: TINY, Up: Intrinsic Procedures ! 8.246 `TRAILZ' -- Number of trailing zero bits of an integer ============================================================ _Description_: ! `TRAILZ' returns the number of trailing zero bits of an integer. _Standard_: Fortran 2008 and later --- 14301,14325 ---- Inquiry function _Syntax_: ! 'RESULT = TINY(X)' _Arguments_: ! X Shall be of type 'REAL'. _Return value_: The return value is of the same type and kind as X _Example_: ! See 'HUGE' for an example.  File: gfortran.info, Node: TRAILZ, Next: TRANSFER, Prev: TINY, Up: Intrinsic Procedures ! 8.246 'TRAILZ' -- Number of trailing zero bits of an integer ============================================================ _Description_: ! 'TRAILZ' returns the number of trailing zero bits of an integer. _Standard_: Fortran 2008 and later *************** _Class_: *** 14484,14497 **** Elemental function _Syntax_: ! `RESULT = TRAILZ(I)' _Arguments_: ! I Shall be of type `INTEGER'. _Return value_: ! The type of the return value is the default `INTEGER'. If all the ! bits of `I' are zero, the result value is `BIT_SIZE(I)'. _Example_: PROGRAM test_trailz --- 14328,14341 ---- Elemental function _Syntax_: ! 'RESULT = TRAILZ(I)' _Arguments_: ! I Shall be of type 'INTEGER'. _Return value_: ! The type of the return value is the default 'INTEGER'. If all the ! bits of 'I' are zero, the result value is 'BIT_SIZE(I)'. _Example_: PROGRAM test_trailz *************** _See also_: *** 14504,14510 ****  File: gfortran.info, Node: TRANSFER, Next: TRANSPOSE, Prev: TRAILZ, Up: Intrinsic Procedures ! 8.247 `TRANSFER' -- Transfer bit patterns ========================================= _Description_: --- 14348,14354 ----  File: gfortran.info, Node: TRANSFER, Next: TRANSPOSE, Prev: TRAILZ, Up: Intrinsic Procedures ! 8.247 'TRANSFER' -- Transfer bit patterns ========================================= _Description_: *************** _Class_: *** 14522,14533 **** Transformational function _Syntax_: ! `RESULT = TRANSFER(SOURCE, MOLD[, SIZE])' _Arguments_: ! SOURCE Shall be a scalar or an array of any type. ! MOLD Shall be a scalar or an array of any type. ! SIZE (Optional) shall be a scalar of type `INTEGER'. _Return value_: The result has the same type as MOLD, with the bit level --- 14366,14377 ---- Transformational function _Syntax_: ! 'RESULT = TRANSFER(SOURCE, MOLD[, SIZE])' _Arguments_: ! SOURCE Shall be a scalar or an array of any type. ! MOLD Shall be a scalar or an array of any type. ! SIZE (Optional) shall be a scalar of type 'INTEGER'. _Return value_: The result has the same type as MOLD, with the bit level *************** _Return value_: *** 14535,14541 **** one-dimensional array of length SIZE. If SIZE is absent but MOLD is an array (of any size or shape), the result is a one- dimensional array of the minimum length needed to contain the ! entirety of the bitwise representation of SOURCE. If SIZE is absent and MOLD is a scalar, the result is a scalar. If the bitwise representation of the result is longer than that of --- 14379,14385 ---- one-dimensional array of length SIZE. If SIZE is absent but MOLD is an array (of any size or shape), the result is a one- dimensional array of the minimum length needed to contain the ! entirety of the bitwise representation of SOURCE. If SIZE is absent and MOLD is a scalar, the result is a scalar. If the bitwise representation of the result is longer than that of *************** _Return value_: *** 14545,14553 **** When the resulting bit representation does not correspond to a valid representation of a variable of the same type as MOLD, the results are undefined, and subsequent operations on the result ! cannot be guaranteed to produce sensible behavior. For example, ! it is possible to create `LOGICAL' variables for which `VAR' and ! `.NOT.VAR' both appear to be true. _Example_: PROGRAM test_transfer --- 14389,14397 ---- When the resulting bit representation does not correspond to a valid representation of a variable of the same type as MOLD, the results are undefined, and subsequent operations on the result ! cannot be guaranteed to produce sensible behavior. For example, it ! is possible to create 'LOGICAL' variables for which 'VAR' and ! '.NOT.VAR' both appear to be true. _Example_: PROGRAM test_transfer *************** _Example_: *** 14558,14569 ****  File: gfortran.info, Node: TRANSPOSE, Next: TRIM, Prev: TRANSFER, Up: Intrinsic Procedures ! 8.248 `TRANSPOSE' -- Transpose an array of rank two =================================================== _Description_: ! Transpose an array of rank two. Element (i, j) of the result has ! the value `MATRIX(j, i)', for all i, j. _Standard_: Fortran 95 and later --- 14402,14413 ----  File: gfortran.info, Node: TRANSPOSE, Next: TRIM, Prev: TRANSFER, Up: Intrinsic Procedures ! 8.248 'TRANSPOSE' -- Transpose an array of rank two =================================================== _Description_: ! Transpose an array of rank two. Element (i, j) of the result has ! the value 'MATRIX(j, i)', for all i, j. _Standard_: Fortran 95 and later *************** _Class_: *** 14572,14591 **** Transformational function _Syntax_: ! `RESULT = TRANSPOSE(MATRIX)' _Arguments_: ! MATRIX Shall be an array of any type and have a rank ! of two. _Return value_: ! The result has the same type as MATRIX, and has shape `(/ m, n /)' ! if MATRIX has shape `(/ n, m /)'.  File: gfortran.info, Node: TRIM, Next: TTYNAM, Prev: TRANSPOSE, Up: Intrinsic Procedures ! 8.249 `TRIM' -- Remove trailing blank characters of a string ============================================================ _Description_: --- 14416,14435 ---- Transformational function _Syntax_: ! 'RESULT = TRANSPOSE(MATRIX)' _Arguments_: ! MATRIX Shall be an array of any type and have a rank of ! two. _Return value_: ! The result has the same type as MATRIX, and has shape '(/ m, n /)' ! if MATRIX has shape '(/ n, m /)'.  File: gfortran.info, Node: TRIM, Next: TTYNAM, Prev: TRANSPOSE, Up: Intrinsic Procedures ! 8.249 'TRIM' -- Remove trailing blank characters of a string ============================================================ _Description_: *************** _Class_: *** 14598,14610 **** Transformational function _Syntax_: ! `RESULT = TRIM(STRING)' _Arguments_: ! STRING Shall be a scalar of type `CHARACTER'. _Return value_: ! A scalar of type `CHARACTER' which length is that of STRING less the number of trailing blanks. _Example_: --- 14442,14454 ---- Transformational function _Syntax_: ! 'RESULT = TRIM(STRING)' _Arguments_: ! STRING Shall be a scalar of type 'CHARACTER'. _Return value_: ! A scalar of type 'CHARACTER' which length is that of STRING less the number of trailing blanks. _Example_: *************** _See also_: *** 14619,14630 ****  File: gfortran.info, Node: TTYNAM, Next: UBOUND, Prev: TRIM, Up: Intrinsic Procedures ! 8.250 `TTYNAM' -- Get the name of a terminal device. ==================================================== _Description_: ! Get the name of a terminal device. For more information, see ! `ttyname(3)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 14463,14474 ----  File: gfortran.info, Node: TTYNAM, Next: UBOUND, Prev: TRIM, Up: Intrinsic Procedures ! 8.250 'TTYNAM' -- Get the name of a terminal device. ==================================================== _Description_: ! Get the name of a terminal device. For more information, see ! 'ttyname(3)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 14636,14647 **** Subroutine, function _Syntax_: ! `CALL TTYNAM(UNIT, NAME)' ! `NAME = TTYNAM(UNIT)' _Arguments_: ! UNIT Shall be a scalar `INTEGER'. ! NAME Shall be of type `CHARACTER'. _Example_: PROGRAM test_ttynam --- 14480,14491 ---- Subroutine, function _Syntax_: ! 'CALL TTYNAM(UNIT, NAME)' ! 'NAME = TTYNAM(UNIT)' _Arguments_: ! UNIT Shall be a scalar 'INTEGER'. ! NAME Shall be of type 'CHARACTER'. _Example_: PROGRAM test_ttynam *************** _See also_: *** 14657,14669 ****  File: gfortran.info, Node: UBOUND, Next: UCOBOUND, Prev: TTYNAM, Up: Intrinsic Procedures ! 8.251 `UBOUND' -- Upper dimension bounds of an array ==================================================== _Description_: ! Returns the upper bounds of an array, or a single upper bound ! along the DIM dimension. ! _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later --- 14501,14512 ----  File: gfortran.info, Node: UBOUND, Next: UCOBOUND, Prev: TTYNAM, Up: Intrinsic Procedures ! 8.251 'UBOUND' -- Upper dimension bounds of an array ==================================================== _Description_: ! Returns the upper bounds of an array, or a single upper bound along ! the DIM dimension. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later *************** _Class_: *** 14671,14695 **** Inquiry function _Syntax_: ! `RESULT = UBOUND(ARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an array, of any type. ! DIM (Optional) Shall be a scalar `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the upper bounds of ARRAY. If DIM is present, the result is a scalar corresponding to the upper ! bound of the array along that dimension. If ARRAY is an ! expression rather than a whole array or array structure component, ! or if it has a zero extent along the relevant dimension, the upper ! bound is taken to be the number of elements along the relevant ! dimension. _See also_: *note LBOUND::, *note LCOBOUND:: --- 14514,14537 ---- Inquiry function _Syntax_: ! 'RESULT = UBOUND(ARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an array, of any type. ! DIM (Optional) Shall be a scalar 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the upper bounds of ARRAY. If DIM is present, the result is a scalar corresponding to the upper ! bound of the array along that dimension. If ARRAY is an expression ! rather than a whole array or array structure component, or if it ! has a zero extent along the relevant dimension, the upper bound is ! taken to be the number of elements along the relevant dimension. _See also_: *note LBOUND::, *note LCOBOUND:: *************** _See also_: *** 14697,14709 ****  File: gfortran.info, Node: UCOBOUND, Next: UMASK, Prev: UBOUND, Up: Intrinsic Procedures ! 8.252 `UCOBOUND' -- Upper codimension bounds of an array ======================================================== _Description_: Returns the upper cobounds of a coarray, or a single upper cobound along the DIM codimension. - _Standard_: Fortran 2008 and later --- 14539,14550 ----  File: gfortran.info, Node: UCOBOUND, Next: UMASK, Prev: UBOUND, Up: Intrinsic Procedures ! 8.252 'UCOBOUND' -- Upper codimension bounds of an array ======================================================== _Description_: Returns the upper cobounds of a coarray, or a single upper cobound along the DIM codimension. _Standard_: Fortran 2008 and later *************** _Class_: *** 14711,14727 **** Inquiry function _Syntax_: ! `RESULT = UCOBOUND(COARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an coarray, of any type. ! DIM (Optional) Shall be a scalar `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the lower cobounds of COARRAY. If DIM is present, the result is a scalar corresponding to the --- 14552,14568 ---- Inquiry function _Syntax_: ! 'RESULT = UCOBOUND(COARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an coarray, of any type. ! DIM (Optional) Shall be a scalar 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the lower cobounds of COARRAY. If DIM is present, the result is a scalar corresponding to the *************** _See also_: *** 14733,14745 ****  File: gfortran.info, Node: UMASK, Next: UNLINK, Prev: UCOBOUND, Up: Intrinsic Procedures ! 8.253 `UMASK' -- Set the file creation mask =========================================== _Description_: ! Sets the file creation mask to MASK. If called as a function, it ! returns the old value. If called as a subroutine and argument OLD ! if it is supplied, it is set to the old value. See `umask(2)'. _Standard_: GNU extension --- 14574,14586 ----  File: gfortran.info, Node: UMASK, Next: UNLINK, Prev: UCOBOUND, Up: Intrinsic Procedures ! 8.253 'UMASK' -- Set the file creation mask =========================================== _Description_: ! Sets the file creation mask to MASK. If called as a function, it ! returns the old value. If called as a subroutine and argument OLD ! if it is supplied, it is set to the old value. See 'umask(2)'. _Standard_: GNU extension *************** _Class_: *** 14748,14773 **** Subroutine, function _Syntax_: ! `CALL UMASK(MASK [, OLD])' ! `OLD = UMASK(MASK)' _Arguments_: ! MASK Shall be a scalar of type `INTEGER'. ! OLD (Optional) Shall be a scalar of type `INTEGER'. !  File: gfortran.info, Node: UNLINK, Next: UNPACK, Prev: UMASK, Up: Intrinsic Procedures ! 8.254 `UNLINK' -- Remove a file from the file system ==================================================== _Description_: ! Unlinks the file PATH. A null character (`CHAR(0)') can be used to ! mark the end of the name in PATH; otherwise, trailing blanks in ! the file name are ignored. If the STATUS argument is supplied, it contains 0 on success or a nonzero error code upon return; see ! `unlink(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 14589,14613 ---- Subroutine, function _Syntax_: ! 'CALL UMASK(MASK [, OLD])' ! 'OLD = UMASK(MASK)' _Arguments_: ! MASK Shall be a scalar of type 'INTEGER'. ! OLD (Optional) Shall be a scalar of type 'INTEGER'.  File: gfortran.info, Node: UNLINK, Next: UNPACK, Prev: UMASK, Up: Intrinsic Procedures ! 8.254 'UNLINK' -- Remove a file from the file system ==================================================== _Description_: ! Unlinks the file PATH. A null character ('CHAR(0)') can be used to ! mark the end of the name in PATH; otherwise, trailing blanks in the ! file name are ignored. If the STATUS argument is supplied, it contains 0 on success or a nonzero error code upon return; see ! 'unlink(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 14779,14790 **** Subroutine, function _Syntax_: ! `CALL UNLINK(PATH [, STATUS])' ! `STATUS = UNLINK(PATH)' _Arguments_: ! PATH Shall be of default `CHARACTER' type. ! STATUS (Optional) Shall be of default `INTEGER' type. _See also_: *note LINK::, *note SYMLNK:: --- 14619,14630 ---- Subroutine, function _Syntax_: ! 'CALL UNLINK(PATH [, STATUS])' ! 'STATUS = UNLINK(PATH)' _Arguments_: ! PATH Shall be of default 'CHARACTER' type. ! STATUS (Optional) Shall be of default 'INTEGER' type. _See also_: *note LINK::, *note SYMLNK:: *************** _See also_: *** 14792,14798 ****  File: gfortran.info, Node: UNPACK, Next: VERIFY, Prev: UNLINK, Up: Intrinsic Procedures ! 8.255 `UNPACK' -- Unpack an array of rank one into an array =========================================================== _Description_: --- 14632,14638 ----  File: gfortran.info, Node: UNPACK, Next: VERIFY, Prev: UNLINK, Up: Intrinsic Procedures ! 8.255 'UNPACK' -- Unpack an array of rank one into an array =========================================================== _Description_: *************** _Class_: *** 14805,14822 **** Transformational function _Syntax_: ! `RESULT = UNPACK(VECTOR, MASK, FIELD)' _Arguments_: ! VECTOR Shall be an array of any type and rank one. It ! shall have at least as many elements as MASK ! has `TRUE' values. ! MASK Shall be an array of type `LOGICAL'. ! FIELD Shall be of the same type as VECTOR and have ! the same shape as MASK. _Return value_: ! The resulting array corresponds to FIELD with `TRUE' elements of MASK replaced by values from VECTOR in array element order. _Example_: --- 14645,14662 ---- Transformational function _Syntax_: ! 'RESULT = UNPACK(VECTOR, MASK, FIELD)' _Arguments_: ! VECTOR Shall be an array of any type and rank one. It ! shall have at least as many elements as MASK has ! 'TRUE' values. ! MASK Shall be an array of type 'LOGICAL'. ! FIELD Shall be of the same type as VECTOR and have the ! same shape as MASK. _Return value_: ! The resulting array corresponds to FIELD with 'TRUE' elements of MASK replaced by values from VECTOR in array element order. _Example_: *************** _See also_: *** 14835,14851 ****  File: gfortran.info, Node: VERIFY, Next: XOR, Prev: UNPACK, Up: Intrinsic Procedures ! 8.256 `VERIFY' -- Scan a string for characters not a given set ============================================================== _Description_: Verifies that all the characters in STRING belong to the set of characters in SET. ! If BACK is either absent or equals `FALSE', this function returns the position of the leftmost character of STRING that is not in ! SET. If BACK equals `TRUE', the rightmost position is returned. If ! all characters of STRING are found in SET, the result is zero. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later --- 14675,14691 ----  File: gfortran.info, Node: VERIFY, Next: XOR, Prev: UNPACK, Up: Intrinsic Procedures ! 8.256 'VERIFY' -- Scan a string for characters not a given set ============================================================== _Description_: Verifies that all the characters in STRING belong to the set of characters in SET. ! If BACK is either absent or equals 'FALSE', this function returns the position of the leftmost character of STRING that is not in ! SET. If BACK equals 'TRUE', the rightmost position is returned. ! If all characters of STRING are found in SET, the result is zero. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later *************** _Class_: *** 14854,14871 **** Elemental function _Syntax_: ! `RESULT = VERIFY(STRING, SET[, BACK [, KIND]])' _Arguments_: ! STRING Shall be of type `CHARACTER'. ! SET Shall be of type `CHARACTER'. ! BACK (Optional) shall be of type `LOGICAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: --- 14694,14711 ---- Elemental function _Syntax_: ! 'RESULT = VERIFY(STRING, SET[, BACK [, KIND]])' _Arguments_: ! STRING Shall be of type 'CHARACTER'. ! SET Shall be of type 'CHARACTER'. ! BACK (Optional) shall be of type 'LOGICAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: *************** _See also_: *** 14883,14889 ****  File: gfortran.info, Node: XOR, Prev: VERIFY, Up: Intrinsic Procedures ! 8.257 `XOR' -- Bitwise logical exclusive OR =========================================== _Description_: --- 14723,14729 ----  File: gfortran.info, Node: XOR, Prev: VERIFY, Up: Intrinsic Procedures ! 8.257 'XOR' -- Bitwise logical exclusive OR =========================================== _Description_: *************** _Description_: *** 14892,14898 **** This intrinsic routine is provided for backwards compatibility with GNU Fortran 77. For integer arguments, programmers should consider the use of the *note IEOR:: intrinsic and for logical arguments the ! `.NEQV.' operator, which are both defined by the Fortran standard. _Standard_: GNU extension --- 14732,14738 ---- This intrinsic routine is provided for backwards compatibility with GNU Fortran 77. For integer arguments, programmers should consider the use of the *note IEOR:: intrinsic and for logical arguments the ! '.NEQV.' operator, which are both defined by the Fortran standard. _Standard_: GNU extension *************** _Class_: *** 14901,14918 **** Function _Syntax_: ! `RESULT = XOR(I, J)' _Arguments_: ! I The type shall be either a scalar `INTEGER' ! type or a scalar `LOGICAL' type. ! J The type shall be the same as the type of I. _Return value_: ! The return type is either a scalar `INTEGER' or a scalar ! `LOGICAL'. If the kind type parameters differ, then the smaller ! kind type is implicitly converted to larger kind, and the return ! has the larger kind. _Example_: PROGRAM test_xor --- 14741,14758 ---- Function _Syntax_: ! 'RESULT = XOR(I, J)' _Arguments_: ! I The type shall be either a scalar 'INTEGER' type ! or a scalar 'LOGICAL' type. ! J The type shall be the same as the type of I. _Return value_: ! The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'. ! If the kind type parameters differ, then the smaller kind type is ! implicitly converted to larger kind, and the return has the larger ! kind. _Example_: PROGRAM test_xor *************** File: gfortran.info, Node: Intrinsic Mo *** 14942,15057 ****  File: gfortran.info, Node: ISO_FORTRAN_ENV, Next: ISO_C_BINDING, Up: Intrinsic Modules ! 9.1 `ISO_FORTRAN_ENV' ===================== _Standard_: Fortran 2003 and later, except when otherwise noted ! The `ISO_FORTRAN_ENV' module provides the following scalar default-integer named constants: ! `ATOMIC_INT_KIND': Default-kind integer constant to be used as kind parameter when ! defining integer variables used in atomic operations. (Fortran 2008 or later.) ! `ATOMIC_LOGICAL_KIND': Default-kind integer constant to be used as kind parameter when ! defining logical variables used in atomic operations. (Fortran 2008 or later.) ! `CHARACTER_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the `CHARACTER' type. (Fortran 2008 or later.) ! `CHARACTER_STORAGE_SIZE': Size in bits of the character storage unit. ! `ERROR_UNIT': Identifies the preconnected unit used for error reporting. ! `FILE_STORAGE_SIZE': Size in bits of the file-storage unit. ! `INPUT_UNIT': ! Identifies the preconnected unit identified by the asterisk (`*') ! in `READ' statement. ! `INT8', `INT16', `INT32', `INT64': ! Kind type parameters to specify an INTEGER type with a storage ! size of 16, 32, and 64 bits. It is negative if a target platform ! does not support the particular kind. (Fortran 2008 or later.) ! `INTEGER_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the `INTEGER' type. (Fortran 2008 or later.) ! `IOSTAT_END': ! The value assigned to the variable passed to the `IOSTAT=' specifier of an input/output statement if an end-of-file condition occurred. ! `IOSTAT_EOR': ! The value assigned to the variable passed to the `IOSTAT=' specifier of an input/output statement if an end-of-record condition occurred. ! `IOSTAT_INQUIRE_INTERNAL_UNIT': ! Scalar default-integer constant, used by `INQUIRE' for the ! `IOSTAT=' specifier to denote an that a unit number identifies an ! internal unit. (Fortran 2008 or later.) ! `NUMERIC_STORAGE_SIZE': The size in bits of the numeric storage unit. ! `LOGICAL_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the `LOGICAL' type. (Fortran 2008 or later.) ! `OUTPUT_UNIT': ! Identifies the preconnected unit identified by the asterisk (`*') ! in `WRITE' statement. ! `REAL32', `REAL64', `REAL128': Kind type parameters to specify a REAL type with a storage size of ! 32, 64, and 128 bits. It is negative if a target platform does not ! support the particular kind. (Fortran 2008 or later.) ! `REAL_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the `REAL' type. (Fortran 2008 or later.) ! `STAT_LOCKED': Scalar default-integer constant used as STAT= return value by ! `LOCK' to denote that the lock variable is locked by the executing ! image. (Fortran 2008 or later.) ! `STAT_LOCKED_OTHER_IMAGE': Scalar default-integer constant used as STAT= return value by ! `UNLOCK' to denote that the lock variable is locked by another ! image. (Fortran 2008 or later.) ! `STAT_STOPPED_IMAGE': Positive, scalar default-integer constant used as STAT= return value if the argument in the statement requires synchronisation with an image, which has initiated the termination of the ! execution. (Fortran 2008 or later.) ! `STAT_UNLOCKED': Scalar default-integer constant used as STAT= return value by ! `UNLOCK' to denote that the lock variable is unlocked. (Fortran 2008 or later.) The module provides the following derived type: ! `LOCK_TYPE': ! Derived type with private components to be use with the `LOCK' and ! `UNLOCK' statement. A variable of its type has to be always declared as coarray and may not appear in a variable-definition context. (Fortran 2008 or later.) --- 14782,14897 ----  File: gfortran.info, Node: ISO_FORTRAN_ENV, Next: ISO_C_BINDING, Up: Intrinsic Modules ! 9.1 'ISO_FORTRAN_ENV' ===================== _Standard_: Fortran 2003 and later, except when otherwise noted ! The 'ISO_FORTRAN_ENV' module provides the following scalar default-integer named constants: ! 'ATOMIC_INT_KIND': Default-kind integer constant to be used as kind parameter when ! defining integer variables used in atomic operations. (Fortran 2008 or later.) ! 'ATOMIC_LOGICAL_KIND': Default-kind integer constant to be used as kind parameter when ! defining logical variables used in atomic operations. (Fortran 2008 or later.) ! 'CHARACTER_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the 'CHARACTER' type. (Fortran 2008 or later.) ! 'CHARACTER_STORAGE_SIZE': Size in bits of the character storage unit. ! 'ERROR_UNIT': Identifies the preconnected unit used for error reporting. ! 'FILE_STORAGE_SIZE': Size in bits of the file-storage unit. ! 'INPUT_UNIT': ! Identifies the preconnected unit identified by the asterisk ('*') ! in 'READ' statement. ! 'INT8', 'INT16', 'INT32', 'INT64': ! Kind type parameters to specify an INTEGER type with a storage size ! of 16, 32, and 64 bits. It is negative if a target platform does ! not support the particular kind. (Fortran 2008 or later.) ! 'INTEGER_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the 'INTEGER' type. (Fortran 2008 or later.) ! 'IOSTAT_END': ! The value assigned to the variable passed to the 'IOSTAT=' specifier of an input/output statement if an end-of-file condition occurred. ! 'IOSTAT_EOR': ! The value assigned to the variable passed to the 'IOSTAT=' specifier of an input/output statement if an end-of-record condition occurred. ! 'IOSTAT_INQUIRE_INTERNAL_UNIT': ! Scalar default-integer constant, used by 'INQUIRE' for the ! 'IOSTAT=' specifier to denote an that a unit number identifies an ! internal unit. (Fortran 2008 or later.) ! 'NUMERIC_STORAGE_SIZE': The size in bits of the numeric storage unit. ! 'LOGICAL_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the 'LOGICAL' type. (Fortran 2008 or later.) ! 'OUTPUT_UNIT': ! Identifies the preconnected unit identified by the asterisk ('*') ! in 'WRITE' statement. ! 'REAL32', 'REAL64', 'REAL128': Kind type parameters to specify a REAL type with a storage size of ! 32, 64, and 128 bits. It is negative if a target platform does not ! support the particular kind. (Fortran 2008 or later.) ! 'REAL_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the 'REAL' type. (Fortran 2008 or later.) ! 'STAT_LOCKED': Scalar default-integer constant used as STAT= return value by ! 'LOCK' to denote that the lock variable is locked by the executing ! image. (Fortran 2008 or later.) ! 'STAT_LOCKED_OTHER_IMAGE': Scalar default-integer constant used as STAT= return value by ! 'UNLOCK' to denote that the lock variable is locked by another ! image. (Fortran 2008 or later.) ! 'STAT_STOPPED_IMAGE': Positive, scalar default-integer constant used as STAT= return value if the argument in the statement requires synchronisation with an image, which has initiated the termination of the ! execution. (Fortran 2008 or later.) ! 'STAT_UNLOCKED': Scalar default-integer constant used as STAT= return value by ! 'UNLOCK' to denote that the lock variable is unlocked. (Fortran 2008 or later.) The module provides the following derived type: ! 'LOCK_TYPE': ! Derived type with private components to be use with the 'LOCK' and ! 'UNLOCK' statement. A variable of its type has to be always declared as coarray and may not appear in a variable-definition context. (Fortran 2008 or later.) *************** COMPILER_OPTIONS:: and *note COMPILER_VE *** 15061,15067 ****  File: gfortran.info, Node: ISO_C_BINDING, Next: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_FORTRAN_ENV, Up: Intrinsic Modules ! 9.2 `ISO_C_BINDING' =================== _Standard_: --- 14901,14907 ----  File: gfortran.info, Node: ISO_C_BINDING, Next: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_FORTRAN_ENV, Up: Intrinsic Modules ! 9.2 'ISO_C_BINDING' =================== _Standard_: *************** _Standard_: *** 15071,15200 **** definition can be found in the section Intrinsic Procedures of this manual. ! `C_ASSOCIATED' ! ! `C_F_POINTER' ! ! `C_F_PROCPOINTER' ! ! `C_FUNLOC' ! ! `C_LOC' ! ! `C_SIZEOF' ! The `ISO_C_BINDING' module provides the following named constants of type default integer, which can be used as KIND type parameters. In addition to the integer named constants required by the Fortran ! 2003 standard and `C_PTRDIFF_T' of TS 29113, GNU Fortran provides as an extension named constants for the 128-bit integer types supported by the ! C compiler: `C_INT128_T, C_INT_LEAST128_T, C_INT_FAST128_T'. ! Furthermore, if `__float128' is supported in C, the named constants ! `C_FLOAT128, C_FLOAT128_COMPLEX' are defined. Fortran Named constant C type Extension ! Type ! `INTEGER' `C_INT' `int' ! `INTEGER' `C_SHORT' `short int' ! `INTEGER' `C_LONG' `long int' ! `INTEGER' `C_LONG_LONG' `long long int' ! `INTEGER' `C_SIGNED_CHAR' `signed char'/`unsigned ! char' ! `INTEGER' `C_SIZE_T' `size_t' ! `INTEGER' `C_INT8_T' `int8_t' ! `INTEGER' `C_INT16_T' `int16_t' ! `INTEGER' `C_INT32_T' `int32_t' ! `INTEGER' `C_INT64_T' `int64_t' ! `INTEGER' `C_INT128_T' `int128_t' Ext. ! `INTEGER' `C_INT_LEAST8_T' `int_least8_t' ! `INTEGER' `C_INT_LEAST16_T' `int_least16_t' ! `INTEGER' `C_INT_LEAST32_T' `int_least32_t' ! `INTEGER' `C_INT_LEAST64_T' `int_least64_t' ! `INTEGER' `C_INT_LEAST128_T' `int_least128_t' Ext. ! `INTEGER' `C_INT_FAST8_T' `int_fast8_t' ! `INTEGER' `C_INT_FAST16_T' `int_fast16_t' ! `INTEGER' `C_INT_FAST32_T' `int_fast32_t' ! `INTEGER' `C_INT_FAST64_T' `int_fast64_t' ! `INTEGER' `C_INT_FAST128_T' `int_fast128_t' Ext. ! `INTEGER' `C_INTMAX_T' `intmax_t' ! `INTEGER' `C_INTPTR_T' `intptr_t' ! `INTEGER' `C_PTRDIFF_T' `intptr_t' TS 29113 ! `REAL' `C_FLOAT' `float' ! `REAL' `C_DOUBLE' `double' ! `REAL' `C_LONG_DOUBLE' `long double' ! `REAL' `C_FLOAT128' `__float128' Ext. ! `COMPLEX' `C_FLOAT_COMPLEX' `float _Complex' ! `COMPLEX' `C_DOUBLE_COMPLEX' `double _Complex' ! `COMPLEX' `C_LONG_DOUBLE_COMPLEX' `long double _Complex' ! `REAL' `C_FLOAT128_COMPLEX' `__float128 _Complex' Ext. ! `LOGICAL' `C_BOOL' `_Bool' ! `CHARACTER' `C_CHAR' `char' Additionally, the following parameters of type ! `CHARACTER(KIND=C_CHAR)' are defined. Name C definition Value ! `C_NULL_CHAR' null character `'\0'' ! `C_ALERT' alert `'\a'' ! `C_BACKSPACE' backspace `'\b'' ! `C_FORM_FEED' form feed `'\f'' ! `C_NEW_LINE' new line `'\n'' ! `C_CARRIAGE_RETURN'carriage return `'\r'' ! `C_HORIZONTAL_TAB'horizontal tab `'\t'' ! `C_VERTICAL_TAB'vertical tab `'\v'' Moreover, the following two named constants are defined: Name Type ! `C_NULL_PTR' `C_PTR' ! `C_NULL_FUNPTR'`C_FUNPTR' ! Both are equivalent to the value `NULL' in C.  File: gfortran.info, Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_C_BINDING, Up: Intrinsic Modules ! 9.3 OpenMP Modules `OMP_LIB' and `OMP_LIB_KINDS' ================================================ _Standard_: OpenMP Application Program Interface v3.1 The OpenMP Fortran runtime library routines are provided both in a ! form of two Fortran 90 modules, named `OMP_LIB' and `OMP_LIB_KINDS', ! and in a form of a Fortran `include' file named `omp_lib.h'. The ! procedures provided by `OMP_LIB' can be found in the *note ! Introduction: (libgomp)Top. manual, the named constants defined in the ! modules are listed below. For details refer to the actual OpenMP Application Program Interface v3.1 (http://www.openmp.org/mp-documents/spec31.pdf). ! `OMP_LIB_KINDS' provides the following scalar default-integer named constants: ! `omp_lock_kind' ! ! `omp_nest_lock_kind' ! ! `omp_sched_kind' ! `OMP_LIB' provides the scalar default-integer named constant ! `openmp_version' with a value of the form YYYYMM, where `yyyy' is the year and MM the month of the OpenMP version; for OpenMP v3.1 the value ! is `201107'. And the following scalar integer named constants of the kind ! `omp_sched_kind': ! ! `omp_sched_static' ! ! `omp_sched_dynamic' ! ! `omp_sched_guided' ! `omp_sched_auto'  File: gfortran.info, Node: Contributing, Next: Copying, Prev: Intrinsic Modules, Up: Top --- 14911,15030 ---- definition can be found in the section Intrinsic Procedures of this manual. ! 'C_ASSOCIATED' ! 'C_F_POINTER' ! 'C_F_PROCPOINTER' ! 'C_FUNLOC' ! 'C_LOC' ! 'C_SIZEOF' ! The 'ISO_C_BINDING' module provides the following named constants of type default integer, which can be used as KIND type parameters. In addition to the integer named constants required by the Fortran ! 2003 standard and 'C_PTRDIFF_T' of TS 29113, GNU Fortran provides as an extension named constants for the 128-bit integer types supported by the ! C compiler: 'C_INT128_T, C_INT_LEAST128_T, C_INT_FAST128_T'. ! Furthermore, if '__float128' is supported in C, the named constants ! 'C_FLOAT128, C_FLOAT128_COMPLEX' are defined. Fortran Named constant C type Extension ! Type ! 'INTEGER' 'C_INT' 'int' ! 'INTEGER' 'C_SHORT' 'short int' ! 'INTEGER' 'C_LONG' 'long int' ! 'INTEGER' 'C_LONG_LONG' 'long long int' ! 'INTEGER' 'C_SIGNED_CHAR' 'signed char'/'unsigned ! char' ! 'INTEGER' 'C_SIZE_T' 'size_t' ! 'INTEGER' 'C_INT8_T' 'int8_t' ! 'INTEGER' 'C_INT16_T' 'int16_t' ! 'INTEGER' 'C_INT32_T' 'int32_t' ! 'INTEGER' 'C_INT64_T' 'int64_t' ! 'INTEGER' 'C_INT128_T' 'int128_t' Ext. ! 'INTEGER' 'C_INT_LEAST8_T' 'int_least8_t' ! 'INTEGER' 'C_INT_LEAST16_T' 'int_least16_t' ! 'INTEGER' 'C_INT_LEAST32_T' 'int_least32_t' ! 'INTEGER' 'C_INT_LEAST64_T' 'int_least64_t' ! 'INTEGER' 'C_INT_LEAST128_T' 'int_least128_t' Ext. ! 'INTEGER' 'C_INT_FAST8_T' 'int_fast8_t' ! 'INTEGER' 'C_INT_FAST16_T' 'int_fast16_t' ! 'INTEGER' 'C_INT_FAST32_T' 'int_fast32_t' ! 'INTEGER' 'C_INT_FAST64_T' 'int_fast64_t' ! 'INTEGER' 'C_INT_FAST128_T' 'int_fast128_t' Ext. ! 'INTEGER' 'C_INTMAX_T' 'intmax_t' ! 'INTEGER' 'C_INTPTR_T' 'intptr_t' ! 'INTEGER' 'C_PTRDIFF_T' 'intptr_t' TS 29113 ! 'REAL' 'C_FLOAT' 'float' ! 'REAL' 'C_DOUBLE' 'double' ! 'REAL' 'C_LONG_DOUBLE' 'long double' ! 'REAL' 'C_FLOAT128' '__float128' Ext. ! 'COMPLEX' 'C_FLOAT_COMPLEX' 'float _Complex' ! 'COMPLEX' 'C_DOUBLE_COMPLEX' 'double _Complex' ! 'COMPLEX' 'C_LONG_DOUBLE_COMPLEX' 'long double _Complex' ! 'REAL' 'C_FLOAT128_COMPLEX' '__float128 _Complex' Ext. ! 'LOGICAL' 'C_BOOL' '_Bool' ! 'CHARACTER' 'C_CHAR' 'char' Additionally, the following parameters of type ! 'CHARACTER(KIND=C_CHAR)' are defined. Name C definition Value ! 'C_NULL_CHAR' null character ''\0'' ! 'C_ALERT' alert ''\a'' ! 'C_BACKSPACE' backspace ''\b'' ! 'C_FORM_FEED' form feed ''\f'' ! 'C_NEW_LINE' new line ''\n'' ! 'C_CARRIAGE_RETURN'carriage return ''\r'' ! 'C_HORIZONTAL_TAB'horizontal tab ''\t'' ! 'C_VERTICAL_TAB'vertical tab ''\v'' Moreover, the following two named constants are defined: Name Type ! 'C_NULL_PTR' 'C_PTR' ! 'C_NULL_FUNPTR''C_FUNPTR' ! Both are equivalent to the value 'NULL' in C.  File: gfortran.info, Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_C_BINDING, Up: Intrinsic Modules ! 9.3 OpenMP Modules 'OMP_LIB' and 'OMP_LIB_KINDS' ================================================ _Standard_: OpenMP Application Program Interface v3.1 The OpenMP Fortran runtime library routines are provided both in a ! form of two Fortran 90 modules, named 'OMP_LIB' and 'OMP_LIB_KINDS', and ! in a form of a Fortran 'include' file named 'omp_lib.h'. The procedures ! provided by 'OMP_LIB' can be found in the *note Introduction: ! (libgomp)Top. manual, the named constants defined in the modules are ! listed below. For details refer to the actual OpenMP Application Program Interface v3.1 (http://www.openmp.org/mp-documents/spec31.pdf). ! 'OMP_LIB_KINDS' provides the following scalar default-integer named constants: ! 'omp_lock_kind' ! 'omp_nest_lock_kind' ! 'omp_sched_kind' ! 'OMP_LIB' provides the scalar default-integer named constant ! 'openmp_version' with a value of the form YYYYMM, where 'yyyy' is the year and MM the month of the OpenMP version; for OpenMP v3.1 the value ! is '201107'. And the following scalar integer named constants of the kind ! 'omp_sched_kind': ! 'omp_sched_static' ! 'omp_sched_dynamic' ! 'omp_sched_guided' ! 'omp_sched_auto'  File: gfortran.info, Node: Contributing, Next: Copying, Prev: Intrinsic Modules, Up: Top *************** File: gfortran.info, Node: Contributing *** 15202,15210 **** Contributing ************ ! Free software is only possible if people contribute to efforts to ! create it. We're always in need of more people helping out with ideas ! and comments, writing documentation and contributing code. If you want to contribute to GNU Fortran, have a look at the long lists of projects you can take on. Some of these projects are small, --- 15032,15040 ---- Contributing ************ ! Free software is only possible if people contribute to efforts to create ! it. We're always in need of more people helping out with ideas and ! comments, writing documentation and contributing code. If you want to contribute to GNU Fortran, have a look at the long lists of projects you can take on. Some of these projects are small, *************** with GCC was written by _Paul Brook_. *** 15234,15302 **** significant help to the GNU Fortran project (in alphabetical order): - Janne Blomqvist - - Steven Bosscher - - Paul Brook - - Tobias Burnus - - Franc,ois-Xavier Coudert - - Bud Davis - - Jerry DeLisle - - Erik Edelmann - - Bernhard Fischer - - Daniel Franke - - Richard Guenther - - Richard Henderson - - Katherine Holcomb - - Jakub Jelinek - - Niels Kristian Bech Jensen - - Steven Johnson - - Steven G. Kargl - - Thomas Koenig - - Asher Langton - - H. J. Lu - - Toon Moene - - Brooks Moses - - Andrew Pinski - - Tim Prince - - Christopher D. Rickett - - Richard Sandiford - - Tobias Schlu"ter - - Roger Sayle - - Paul Thomas - - Andy Vaught - - Feng Wang - - Janus Weil - - Daniel Kraft The following people have contributed bug reports, smaller or larger --- 15064,15100 ---- *************** patches, and much needed feedback and en *** 15304,15316 **** project: - Bill Clodius - - Dominique d'Humie`res - - Kate Hedstrom - - Erik Schnetter - - Joost VandeVondele Many other individuals have helped debug, test and improve the GNU --- 15102,15110 ---- *************** Projects *** 15326,15354 **** _Help build the test suite_ Solicit more code for donation to the test suite: the more ! extensive the testsuite, the smaller the risk of breaking things ! in the future! We can keep code private on request. _Bug hunting/squishing_ ! Find bugs and write more test cases! Test cases are especially very ! welcome, because it allows us to concentrate on fixing bugs instead of isolating them. Going through the bugzilla database at ! `http://gcc.gnu.org/bugzilla/' to reduce testcases posted there and add more information (for example, for which version does the ! testcase work, for which versions does it fail?) is also very helpful. -  File: gfortran.info, Node: Proposed Extensions, Prev: Projects, Up: Contributing Proposed Extensions =================== ! Here's a list of proposed extensions for the GNU Fortran compiler, in ! no particular order. Most of these are necessary to be fully ! compatible with existing Fortran compilers, but they are not part of ! the official J3 Fortran 95 standard. Compiler extensions: -------------------- --- 15120,15147 ---- _Help build the test suite_ Solicit more code for donation to the test suite: the more ! extensive the testsuite, the smaller the risk of breaking things in ! the future! We can keep code private on request. _Bug hunting/squishing_ ! Find bugs and write more test cases! Test cases are especially ! very welcome, because it allows us to concentrate on fixing bugs instead of isolating them. Going through the bugzilla database at ! to reduce testcases posted there and add more information (for example, for which version does the ! testcase work, for which versions does it fail?) is also very helpful.  File: gfortran.info, Node: Proposed Extensions, Prev: Projects, Up: Contributing Proposed Extensions =================== ! Here's a list of proposed extensions for the GNU Fortran compiler, in no ! particular order. Most of these are necessary to be fully compatible ! with existing Fortran compilers, but they are not part of the official ! J3 Fortran 95 standard. Compiler extensions: -------------------- *************** Compiler extensions: *** 15357,15364 **** * Automatically extend single precision constants to double. ! * Compile code that conserves memory by dynamically allocating ! common and module storage either on stack or heap. * Compile flag to generate code for array conformance checking (suggest -CC). --- 15150,15157 ---- * Automatically extend single precision constants to double. ! * Compile code that conserves memory by dynamically allocating common ! and module storage either on stack or heap. * Compile flag to generate code for array conformance checking (suggest -CC). *************** Environment Options *** 15406,15412 **** * Environment variable forcing standard output to be line buffered (Unix). -  File: gfortran.info, Node: Copying, Next: GNU Free Documentation License, Prev: Contributing, Up: Top --- 15199,15204 ---- *************** GNU General Public License *** 15415,15421 **** Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 15207,15213 ---- Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** want it, that you can change the softwar *** 15443,15451 **** free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you ! have certain responsibilities if you distribute copies of the software, ! or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same --- 15235,15243 ---- free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you have ! certain responsibilities if you distribute copies of the software, or if ! you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same *************** changed, so that their problems will not *** 15464,15479 **** authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the ! manufacturer can do so. This is fundamentally incompatible with the ! aim of protecting users' freedom to change the software. The ! systematic pattern of such abuse occurs in the area of products for ! individuals to use, which is precisely where it is most unacceptable. ! Therefore, we have designed this version of the GPL to prohibit the ! practice for those products. If such problems arise substantially in ! other domains, we stand ready to extend this provision to those domains ! in future versions of the GPL, as needed to protect the freedom of ! users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of --- 15256,15270 ---- authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the manufacturer ! can do so. This is fundamentally incompatible with the aim of ! protecting users' freedom to change the software. The systematic ! pattern of such abuse occurs in the area of products for individuals to ! use, which is precisely where it is most unacceptable. Therefore, we ! have designed this version of the GPL to prohibit the practice for those ! products. If such problems arise substantially in other domains, we ! stand ready to extend this provision to those domains in future versions ! of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of *************** TERMS AND CONDITIONS *** 15510,15517 **** To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it ! on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. --- 15301,15308 ---- To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it on ! a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. *************** TERMS AND CONDITIONS *** 15525,15532 **** to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may ! convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. --- 15316,15323 ---- to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may convey ! the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. *************** TERMS AND CONDITIONS *** 15534,15541 **** 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any ! non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in --- 15325,15332 ---- 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any non-source ! form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in *************** TERMS AND CONDITIONS *** 15546,15555 **** The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work ! with that Major Component, or to implement a Standard Interface ! for which an implementation is available to the public in source ! code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code --- 15337,15346 ---- The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work with ! that Major Component, or to implement a Standard Interface for ! which an implementation is available to the public in source code ! form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code *************** TERMS AND CONDITIONS *** 15557,15571 **** The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including ! scripts to control those activities. However, it does not include ! the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files ! associated with source files for the work, and the source code for ! shared libraries and dynamically linked subprograms that the work ! is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. --- 15348,15362 ---- The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including scripts ! to control those activities. However, it does not include the ! work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files associated ! with source files for the work, and the source code for shared ! libraries and dynamically linked subprograms that the work is ! specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. *************** TERMS AND CONDITIONS *** 15582,15603 **** copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, ! given its content, constitutes a covered work. This License ! acknowledges your rights of fair use or other equivalent, as ! provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for ! you, or provide you with facilities for running those works, ! provided that you comply with the terms of this License in ! conveying all material for which you do not control copyright. ! Those thus making or running the covered works for you must do so ! exclusively on your behalf, under your direction and control, on ! terms that prohibit them from making any copies of your ! copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section --- 15373,15394 ---- copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, given ! its content, constitutes a covered work. This License acknowledges ! your rights of fair use or other equivalent, as provided by ! copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for you, ! or provide you with facilities for running those works, provided ! that you comply with the terms of this License in conveying all ! material for which you do not control copyright. Those thus making ! or running the covered works for you must do so exclusively on your ! behalf, under your direction and control, on terms that prohibit ! them from making any copies of your copyrighted material outside ! their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section *************** TERMS AND CONDITIONS *** 15614,15621 **** When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention ! to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. --- 15405,15412 ---- When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention to ! limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. *************** TERMS AND CONDITIONS *** 15685,15692 **** b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for ! as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a --- 15476,15483 ---- b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for as ! long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a *************** TERMS AND CONDITIONS *** 15696,15727 **** to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of ! the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access ! to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated ! by you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to ! the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long ! as needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. - A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. --- 15487,15517 ---- to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of the ! written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access to ! the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated by ! you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to the ! object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long as ! needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. *************** TERMS AND CONDITIONS *** 15729,15736 **** A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product ! is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the --- 15519,15526 ---- A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product is ! a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the *************** TERMS AND CONDITIONS *** 15761,15771 **** The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or ! installed by the recipient, or for the User Product in which it ! has been modified or installed. Access to a network may be denied ! when the modification itself materially and adversely affects the ! operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information --- 15551,15561 ---- The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or installed ! by the recipient, or for the User Product in which it has been ! modified or installed. Access to a network may be denied when the ! modification itself materially and adversely affects the operation ! of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information *************** TERMS AND CONDITIONS *** 15795,15802 **** Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License ! with terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or --- 15585,15592 ---- Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License with ! terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or *************** TERMS AND CONDITIONS *** 15806,15814 **** Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be ! marked in reasonable ways as different from the original ! version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or --- 15596,15603 ---- Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be marked ! in reasonable ways as different from the original version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or *************** TERMS AND CONDITIONS *** 15827,15837 **** you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or ! conveying under this License, you may add to a covered work ! material governed by the terms of that license document, provided ! that the further restriction does not survive such relicensing or ! conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the --- 15616,15625 ---- you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or conveying ! under this License, you may add to a covered work material governed ! by the terms of that license document, provided that the further ! restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the *************** TERMS AND CONDITIONS *** 15847,15859 **** You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under ! the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 15635,15647 ---- You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under the ! third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** TERMS AND CONDITIONS *** 15865,15874 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, you do not qualify to receive new ! licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. --- 15653,15662 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, you do not qualify to receive new licenses ! for the same material under section 10. 9. Acceptance Not Required for Having Copies. *************** TERMS AND CONDITIONS *** 15882,15888 **** by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and --- 15670,15676 ---- by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and *************** TERMS AND CONDITIONS *** 15896,15916 **** covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to ! possession of the Corresponding Source of the work from the ! predecessor in interest, if the predecessor has it or can get it ! with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for ! exercise of rights granted under this License, and you may not ! initiate litigation (including a cross-claim or counterclaim in a ! lawsuit) alleging that any patent claim is infringed by making, ! using, selling, offering for sale, or importing the Program or any ! portion of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. --- 15684,15704 ---- covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to possession ! of the Corresponding Source of the work from the predecessor in ! interest, if the predecessor has it or can get it with reasonable ! efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for exercise ! of rights granted under this License, and you may not initiate ! litigation (including a cross-claim or counterclaim in a lawsuit) ! alleging that any patent claim is infringed by making, using, ! selling, offering for sale, or importing the Program or any portion ! of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. *************** TERMS AND CONDITIONS *** 15930,15944 **** Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its ! contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To ! "grant" such a patent license to a party means to make such an ! agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available --- 15718,15732 ---- Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its contributor ! version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To "grant" ! such a patent license to a party means to make such an agreement or ! commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available *************** TERMS AND CONDITIONS *** 15968,16003 **** conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under ! which you make payment to the third party based on the extent of ! your activity of conveying the work, and under which the third ! party grants, to any of the parties who would receive the covered ! work from you, a discriminatory patent license (a) in connection ! with copies of the covered work conveyed by you (or copies made ! from those copies), or (b) primarily for and in connection with ! specific products or compilations that contain the covered work, ! unless you entered into that arrangement, or that patent license ! was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, ! agreement or otherwise) that contradict the conditions of this ! License, they do not excuse you from the conditions of this ! License. If you cannot convey a covered work so as to satisfy ! simultaneously your obligations under this License and any other ! pertinent obligations, then as a consequence you may not convey it ! at all. For example, if you agree to terms that obligate you to ! collect a royalty for further conveying from those to whom you ! convey the Program, the only way you could satisfy both those ! terms and this License would be to refrain entirely from conveying ! the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed --- 15756,15790 ---- conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under which ! you make payment to the third party based on the extent of your ! activity of conveying the work, and under which the third party ! grants, to any of the parties who would receive the covered work ! from you, a discriminatory patent license (a) in connection with ! copies of the covered work conveyed by you (or copies made from ! those copies), or (b) primarily for and in connection with specific ! products or compilations that contain the covered work, unless you ! entered into that arrangement, or that patent license was granted, ! prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, agreement ! or otherwise) that contradict the conditions of this License, they ! do not excuse you from the conditions of this License. If you ! cannot convey a covered work so as to satisfy simultaneously your ! obligations under this License and any other pertinent obligations, ! then as a consequence you may not convey it at all. For example, ! if you agree to terms that obligate you to collect a royalty for ! further conveying from those to whom you convey the Program, the ! only way you could satisfy both those terms and this License would ! be to refrain entirely from conveying the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed *************** TERMS AND CONDITIONS *** 16008,16029 **** General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. ! Such new versions will be similar in spirit to the present ! version, but may differ in detail to address new problems or ! concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the ! Free Software Foundation. If the Program does not specify a ! version number of the GNU General Public License, you may choose ! any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that --- 15795,15815 ---- General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. Such ! new versions will be similar in spirit to the present version, but ! may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the Free ! Software Foundation. If the Program does not specify a version ! number of the GNU General Public License, you may choose any ! version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that *************** TERMS AND CONDITIONS *** 16035,16058 **** author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU ! FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD --- 15821,15844 ---- author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR ! DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD *************** TERMS AND CONDITIONS *** 16060,16066 **** PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, --- 15846,15852 ---- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, *************** TERMS AND CONDITIONS *** 16069,16075 **** connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. - END OF TERMS AND CONDITIONS =========================== --- 15855,15860 ---- *************** state the exclusion of warranty; and eac *** 16100,16106 **** General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see `http://www.gnu.org/licenses/'. Also add information on how to contact you by electronic and paper mail. --- 15885,15891 ---- General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. *************** mail. *** 16109,16119 **** notice like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type `show c' for details. ! The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". --- 15894,15904 ---- notice like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type 'show c' for details. ! The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". *************** use an "about box". *** 16121,16134 **** You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see `http://www.gnu.org/licenses/'. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read `http://www.gnu.org/philosophy/why-not-lgpl.html'.  File: gfortran.info, Node: GNU Free Documentation License, Next: Funding, Prev: Copying, Up: Top --- 15906,15919 ---- You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read .  File: gfortran.info, Node: GNU Free Documentation License, Next: Funding, Prev: Copying, Up: Top *************** GNU Free Documentation License *** 16139,16145 **** Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 15924,15930 ---- Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU Free Documentation License *** 16164,16184 **** free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. ! We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it ! can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You ! accept the license if you copy, modify or distribute the work in a ! way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with --- 15949,15969 ---- free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. We ! recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it can ! be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You accept ! the license if you copy, modify or distribute the work in a way ! requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with *************** GNU Free Documentation License *** 16196,16207 **** regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in ! the notice that says that the Document is released under this ! License. If a section does not fit the above definition of ! Secondary then it is not allowed to be designated as Invariant. ! The Document may contain zero Invariant Sections. If the Document ! does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice --- 15981,15992 ---- regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in the ! notice that says that the Document is released under this License. ! If a section does not fit the above definition of Secondary then it ! is not allowed to be designated as Invariant. The Document may ! contain zero Invariant Sections. If the Document does not identify ! any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice *************** GNU Free Documentation License *** 16212,16238 **** A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images ! composed of pixels) generic paint programs or (for drawings) some ! widely available drawing editor, and that is suitable for input to ! text formatters or for automatic translation to a variety of ! formats suitable for input to text formatters. A copy made in an ! otherwise Transparent file format whose markup, or absence of ! markup, has been arranged to thwart or discourage subsequent ! modification by readers is not Transparent. An image format is ! not Transparent if used for any substantial amount of text. A ! copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and ! standard-conforming simple HTML, PostScript or PDF designed for ! human modification. Examples of transparent image formats include ! PNG, XCF and JPG. Opaque formats include proprietary formats that ! can be read and edited only by proprietary word processors, SGML or ! XML for which the DTD and/or processing tools are not generally ! available, and the machine-generated HTML, PostScript or PDF ! produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the --- 15997,16023 ---- A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images composed ! of pixels) generic paint programs or (for drawings) some widely ! available drawing editor, and that is suitable for input to text ! formatters or for automatic translation to a variety of formats ! suitable for input to text formatters. A copy made in an otherwise ! Transparent file format whose markup, or absence of markup, has ! been arranged to thwart or discourage subsequent modification by ! readers is not Transparent. An image format is not Transparent if ! used for any substantial amount of text. A copy that is not ! "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and standard-conforming ! simple HTML, PostScript or PDF designed for human modification. ! Examples of transparent image formats include PNG, XCF and JPG. ! Opaque formats include proprietary formats that can be read and ! edited only by proprietary word processors, SGML or XML for which ! the DTD and/or processing tools are not generally available, and ! the machine-generated HTML, PostScript or PDF produced by some word ! processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the *************** GNU Free Documentation License *** 16270,16277 **** may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow ! the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. --- 16055,16062 ---- may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow the ! conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. *************** GNU Free Documentation License *** 16285,16296 **** these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the ! title equally prominent and visible. You may add other material ! on the covers in addition. Copying with changes limited to the ! covers, as long as they preserve the title of the Document and ! satisfy these conditions, can be treated as verbatim copying in ! other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit --- 16070,16080 ---- these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the title ! equally prominent and visible. You may add other material on the ! covers in addition. Copying with changes limited to the covers, as ! long as they preserve the title of the Document and satisfy these ! conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit *************** GNU Free Documentation License *** 16298,16337 **** adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a ! machine-readable Transparent copy along with each Opaque copy, or ! state in or with each Opaque copy a computer-network location from ! which the general network-using public has access to download ! using public-standard network protocols a complete Transparent ! copy of the Document, free of added material. If you use the ! latter option, you must take reasonably prudent steps, when you ! begin distribution of Opaque copies in quantity, to ensure that ! this Transparent copy will remain thus accessible at the stated ! location until at least one year after the last time you ! distribute an Opaque copy (directly or through your agents or ! retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of ! copies, to give them a chance to provide you with an updated ! version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with ! the Modified Version filling the role of the Document, thus ! licensing distribution and modification of the Modified Version to ! whoever possesses a copy of it. In addition, you must do these ! things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of ! previous versions (which should, if there were any, be listed ! in the History section of the Document). You may use the ! same title as a previous version if the original publisher of ! that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in --- 16082,16120 ---- adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a machine-readable ! Transparent copy along with each Opaque copy, or state in or with ! each Opaque copy a computer-network location from which the general ! network-using public has access to download using public-standard ! network protocols a complete Transparent copy of the Document, free ! of added material. If you use the latter option, you must take ! reasonably prudent steps, when you begin distribution of Opaque ! copies in quantity, to ensure that this Transparent copy will ! remain thus accessible at the stated location until at least one ! year after the last time you distribute an Opaque copy (directly or ! through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of copies, ! to give them a chance to provide you with an updated version of the ! Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with the ! Modified Version filling the role of the Document, thus licensing ! distribution and modification of the Modified Version to whoever ! possesses a copy of it. In addition, you must do these things in ! the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of previous ! versions (which should, if there were any, be listed in the ! History section of the Document). You may use the same title ! as a previous version if the original publisher of that ! version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in *************** GNU Free Documentation License *** 16361,16391 **** I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on ! the Title Page. If there is no section Entitled "History" in ! the Document, create one stating the title, year, authors, ! and publisher of the Document as given on its Title Page, ! then add an item describing the Modified Version as stated in ! the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in ! the "History" section. You may omit a network location for a ! work that was published at least four years before the ! Document itself, or if the original publisher of the version ! it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the ! section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, ! unaltered in their text and in their titles. Section numbers ! or the equivalent are not considered part of the section ! titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. --- 16144,16173 ---- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on the ! Title Page. If there is no section Entitled "History" in the ! Document, create one stating the title, year, authors, and ! publisher of the Document as given on its Title Page, then add ! an item describing the Modified Version as stated in the ! previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in the ! "History" section. You may omit a network location for a work ! that was published at least four years before the Document ! itself, or if the original publisher of the version it refers ! to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the section ! all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, unaltered ! in their text and in their titles. Section numbers or the ! equivalent are not considered part of the section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. *************** GNU Free Documentation License *** 16398,16408 **** If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option ! designate some or all of these sections as invariant. To do this, ! add their titles to the list of Invariant Sections in the Modified ! Version's license notice. These titles must be distinct from any ! other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various --- 16180,16190 ---- If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option designate ! some or all of these sections as invariant. To do this, add their ! titles to the list of Invariant Sections in the Modified Version's ! license notice. These titles must be distinct from any other ! section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various *************** GNU Free Documentation License *** 16411,16425 **** definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end ! of the list of Cover Texts in the Modified Version. Only one ! passage of Front-Cover Text and one of Back-Cover Text may be ! added by (or through arrangements made by) any one entity. If the ! Document already includes a cover text for the same cover, ! previously added by you or by arrangement made by the same entity ! you are acting on behalf of, you may not add another; but you may ! replace the old one, on explicit permission from the previous ! publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to --- 16193,16207 ---- definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end of ! the list of Cover Texts in the Modified Version. Only one passage ! of Front-Cover Text and one of Back-Cover Text may be added by (or ! through arrangements made by) any one entity. If the Document ! already includes a cover text for the same cover, previously added ! by you or by arrangement made by the same entity you are acting on ! behalf of, you may not add another; but you may replace the old ! one, on explicit permission from the previous publisher that added ! the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to *************** GNU Free Documentation License *** 16429,16436 **** You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination ! all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. --- 16211,16218 ---- You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination all ! of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. *************** GNU Free Documentation License *** 16457,16476 **** documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the ! documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow ! this License in all other respects regarding verbatim copying of ! that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of ! a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this --- 16239,16258 ---- documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the documents ! in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow this ! License in all other respects regarding verbatim copying of that ! document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of a ! storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this *************** GNU Free Documentation License *** 16515,16522 **** However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 16297,16304 ---- However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** GNU Free Documentation License *** 16528,16560 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, receipt of a copy of some or all of ! the same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! `http://www.gnu.org/copyleft/'. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If ! the Document does not specify a version number of this License, ! you may choose any version ever published (not as a draft) by the ! Free Software Foundation. If the Document specifies that a proxy ! can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also --- 16310,16342 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, receipt of a copy of some or all of the ! same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! . Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If the ! Document does not specify a version number of this License, you may ! choose any version ever published (not as a draft) by the Free ! Software Foundation. If the Document specifies that a proxy can ! decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also *************** GNU Free Documentation License *** 16584,16590 **** site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. - ADDENDUM: How to use this License for your documents ==================================================== --- 16366,16371 ---- *************** notices just after the title page: *** 16601,16607 **** Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts --- 16382,16388 ---- Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts *************** combination of the three, merge those tw *** 16612,16620 **** situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of ! free software license, such as the GNU General Public License, to ! permit their use in free software.  File: gfortran.info, Node: Funding, Next: Option Index, Prev: GNU Free Documentation License, Up: Top --- 16393,16401 ---- situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of free ! software license, such as the GNU General Public License, to permit ! their use in free software.  File: gfortran.info, Node: Funding, Next: Option Index, Prev: GNU Free Documentation License, Up: Top *************** for comparison. *** 16644,16651 **** Even a precise fraction "of the profits from this disk" is not very meaningful, since creative accounting and unrelated business decisions ! can greatly alter what fraction of the sales price counts as profit. ! If the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all. Some redistributors do development work themselves. This is useful --- 16425,16432 ---- Even a precise fraction "of the profits from this disk" is not very meaningful, since creative accounting and unrelated business decisions ! can greatly alter what fraction of the sales price counts as profit. If ! the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all. Some redistributors do development work themselves. This is useful *************** difference than others. For example, ma *** 16655,16662 **** a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ! ports such as adding a new CPU to the GNU Compiler Collection ! contribute more; major new features or packages contribute the most. By establishing the idea that supporting further development is "the proper thing to do" when distributing free software for a fee, we can --- 16436,16443 ---- a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ! ports such as adding a new CPU to the GNU Compiler Collection contribute ! more; major new features or packages contribute the most. By establishing the idea that supporting further development is "the proper thing to do" when distributing free software for a fee, we can *************** File: gfortran.info, Node: Option Index *** 16672,16892 **** Option Index ************ ! `gfortran''s command line options are indexed here without any initial ! `-' or `--'. Where an option has both positive and negative forms ! (such as -foption and -fno-option), relevant entries in the manual are ! indexed under the most appropriate form; it may sometimes be useful to ! look up both forms. [index] * Menu: ! * A-PREDICATE=ANSWER: Preprocessing Options. ! (line 120) ! * APREDICATE=ANSWER: Preprocessing Options. ! (line 114) ! * backslash: Fortran Dialect Options. (line 60) ! * C: Preprocessing Options. ! (line 123) ! * CC: Preprocessing Options. ! (line 138) ! * cpp: Preprocessing Options. (line 12) ! * dD: Preprocessing Options. (line 35) ! * dI: Preprocessing Options. (line 51) ! * dM: Preprocessing Options. (line 26) ! * dN: Preprocessing Options. (line 41) ! * DNAME: Preprocessing Options. ! (line 153) ! * DNAME=DEFINITION: Preprocessing Options. ! (line 156) ! * dU: Preprocessing Options. (line 44) ! * faggressive-function-elimination: Code Gen Options. (line 361) ! * falign-commons: Code Gen Options. (line 334) ! * fall-intrinsics: Fortran Dialect Options. (line 17) ! * fblas-matmul-limit: Code Gen Options. (line 286) ! * fbounds-check: Code Gen Options. (line 210) ! * fcheck: Code Gen Options. (line 161) ! * fcheck-array-temporaries: Code Gen Options. (line 213) ! * fcoarray: Code Gen Options. (line 147) ! * fconvert=CONVERSION: Runtime Options. (line 10) ! * fcray-pointer: Fortran Dialect Options. ! (line 117) ! * fd-lines-as-code: Fortran Dialect Options. (line 27) ! * fd-lines-as-comments: Fortran Dialect Options. (line 27) ! * fdefault-double-8: Fortran Dialect Options. (line 34) ! * fdefault-integer-8: Fortran Dialect Options. (line 42) ! * fdefault-real-8: Fortran Dialect Options. (line 47) ! * fdollar-ok: Fortran Dialect Options. (line 54) ! * fdump-fortran-optimized: Debugging Options. (line 15) ! * fdump-fortran-original: Debugging Options. (line 10) ! * fdump-parse-tree: Debugging Options. (line 18) ! * fexternal-blas: Code Gen Options. (line 278) * ff2c: Code Gen Options. (line 25) ! * ffixed-line-length-N: Fortran Dialect Options. (line 77) ! * ffpe-trap=LIST: Debugging Options. (line 24) ! * ffree-form: Fortran Dialect Options. (line 11) ! * ffree-line-length-N: Fortran Dialect Options. (line 90) ! * fimplicit-none: Fortran Dialect Options. (line 101) ! * finit-character: Code Gen Options. (line 306) ! * finit-integer: Code Gen Options. (line 306) ! * finit-local-zero: Code Gen Options. (line 306) ! * finit-logical: Code Gen Options. (line 306) ! * finit-real: Code Gen Options. (line 306) ! * finteger-4-integer-8: Fortran Dialect Options. (line 106) ! * fintrinsic-modules-path DIR: Directory Options. (line 36) ! * fmax-array-constructor: Code Gen Options. (line 216) ! * fmax-errors=N: Error and Warning Options. (line 27) ! * fmax-identifier-length=N: Fortran Dialect Options. (line 97) ! * fmax-stack-var-size: Code Gen Options. (line 234) ! * fmax-subrecord-length=LENGTH: Runtime Options. (line 29) ! * fmodule-private: Fortran Dialect Options. (line 72) ! * fno-automatic: Code Gen Options. (line 15) ! * fno-backtrace: Debugging Options. (line 51) ! * fno-fixed-form: Fortran Dialect Options. (line 11) ! * fno-protect-parens: Code Gen Options. (line 346) ! * fno-underscoring: Code Gen Options. (line 54) ! * fno-whole-file: Code Gen Options. (line 113) ! * fopenmp: Fortran Dialect Options. ! (line 121) ! * fpack-derived: Code Gen Options. (line 256) ! * fpp: Preprocessing Options. (line 12) ! * frange-check: Fortran Dialect Options. ! (line 129) ! * freal-4-real-10: Fortran Dialect Options. ! (line 145) ! * freal-4-real-16: Fortran Dialect Options. ! (line 145) ! * freal-4-real-8: Fortran Dialect Options. ! (line 145) ! * freal-8-real-10: Fortran Dialect Options. ! (line 145) ! * freal-8-real-16: Fortran Dialect Options. ! (line 145) ! * freal-8-real-4: Fortran Dialect Options. ! (line 145) ! * frealloc-lhs: Code Gen Options. (line 355) ! * frecord-marker=LENGTH: Runtime Options. (line 21) ! * frecursive: Code Gen Options. (line 297) ! * frepack-arrays: Code Gen Options. (line 262) ! * frontend-optimize: Code Gen Options. (line 369) ! * fsecond-underscore: Code Gen Options. (line 130) ! * fshort-enums <1>: Fortran 2003 status. (line 88) ! * fshort-enums: Code Gen Options. (line 272) ! * fsign-zero: Runtime Options. (line 34) ! * fstack-arrays: Code Gen Options. (line 248) ! * fsyntax-only: Error and Warning Options. (line 33) ! * fworking-directory: Preprocessing Options. (line 55) ! * H: Preprocessing Options. ! (line 176) ! * IDIR: Directory Options. (line 14) ! * idirafter DIR: Preprocessing Options. ! (line 70) ! * imultilib DIR: Preprocessing Options. ! (line 77) ! * iprefix PREFIX: Preprocessing Options. ! (line 81) ! * iquote DIR: Preprocessing Options. ! (line 90) ! * isysroot DIR: Preprocessing Options. ! (line 86) ! * isystem DIR: Preprocessing Options. ! (line 97) ! * JDIR: Directory Options. (line 29) ! * MDIR: Directory Options. (line 29) ! * nostdinc: Preprocessing Options. ! (line 105) ! * P: Preprocessing Options. ! (line 181) ! * pedantic: Error and Warning Options. (line 38) ! * pedantic-errors: Error and Warning Options. (line 57) ! * static-libgfortran: Link Options. (line 11) ! * std=STD option: Fortran Dialect Options. ! (line 156) ! * UNAME: Preprocessing Options. ! (line 187) ! * undef: Preprocessing Options. ! (line 110) ! * Waliasing: Error and Warning Options. (line 69) ! * Walign-commons: Error and Warning Options. (line 198) ! * Wall: Error and Warning Options. (line 61) ! * Wampersand: Error and Warning Options. (line 86) ! * Warray-temporaries: Error and Warning Options. (line 94) ! * Wc-binding-type: Error and Warning Options. (line 99) ! * Wcharacter-truncation: Error and Warning Options. (line 106) ! * Wcompare-reals: Error and Warning Options. ! (line 226) ! * Wconversion: Error and Warning Options. (line 113) ! * Wconversion-extra: Error and Warning Options. (line 117) ! * Werror: Error and Warning Options. ! (line 234) ! * Wextra: Error and Warning Options. (line 120) ! * Wfunction-elimination: Error and Warning Options. (line 204) ! * Wimplicit-interface: Error and Warning Options. (line 125) ! * Wimplicit-procedure: Error and Warning Options. (line 131) ! * Wintrinsic-shadow: Error and Warning Options. (line 180) ! * Wintrinsics-std: Error and Warning Options. (line 135) ! * Wline-truncation: Error and Warning Options. (line 109) ! * Wreal-q-constant: Error and Warning Options. (line 142) ! * Wrealloc-lhs: Error and Warning Options. (line 208) ! * Wrealloc-lhs-all: Error and Warning Options. ! (line 221) ! * Wsurprising: Error and Warning Options. (line 146) ! * Wtabs: Error and Warning Options. (line 168) ! * Wtargt-lifetime: Error and Warning Options. ! (line 230) ! * Wunderflow: Error and Warning Options. (line 176) ! * Wunused-dummy-argument: Error and Warning Options. (line 187) ! * Wunused-parameter: Error and Warning Options. (line 191)  --- 16453,16673 ---- Option Index ************ ! 'gfortran''s command line options are indexed here without any initial ! '-' or '--'. Where an option has both positive and negative forms (such ! as -foption and -fno-option), relevant entries in the manual are indexed ! under the most appropriate form; it may sometimes be useful to look up ! both forms. [index] * Menu: ! * 'A-PREDICATE=ANSWER': Preprocessing Options. ! (line 119) ! * 'APREDICATE=ANSWER': Preprocessing Options. ! (line 113) ! * 'backslash': Fortran Dialect Options. (line 60) ! * 'C': Preprocessing Options. ! (line 122) ! * 'CC': Preprocessing Options. ! (line 137) ! * 'cpp': Preprocessing Options. (line 12) ! * 'dD': Preprocessing Options. (line 35) ! * 'dI': Preprocessing Options. (line 51) ! * 'dM': Preprocessing Options. (line 26) ! * 'dN': Preprocessing Options. (line 41) ! * 'DNAME': Preprocessing Options. ! (line 151) ! * 'DNAME=DEFINITION': Preprocessing Options. ! (line 154) ! * 'dU': Preprocessing Options. (line 44) ! * 'faggressive-function-elimination': Code Gen Options. (line 357) ! * 'falign-commons': Code Gen Options. (line 330) ! * 'fall-intrinsics': Fortran Dialect Options. (line 17) ! * 'fblas-matmul-limit': Code Gen Options. (line 285) ! * 'fbounds-check': Code Gen Options. (line 209) ! * 'fcheck': Code Gen Options. (line 159) ! * 'fcheck-array-temporaries': Code Gen Options. (line 212) ! * 'fcoarray': Code Gen Options. (line 145) ! * 'fconvert='CONVERSION: Runtime Options. (line 10) ! * 'fcray-pointer': Fortran Dialect Options. ! (line 116) ! * 'fd-lines-as-code': Fortran Dialect Options. (line 27) ! * 'fd-lines-as-comments': Fortran Dialect Options. (line 27) ! * 'fdefault-double-8': Fortran Dialect Options. (line 34) ! * 'fdefault-integer-8': Fortran Dialect Options. (line 42) ! * 'fdefault-real-8': Fortran Dialect Options. (line 47) ! * 'fdollar-ok': Fortran Dialect Options. (line 54) ! * 'fdump-fortran-optimized': Debugging Options. (line 15) ! * 'fdump-fortran-original': Debugging Options. (line 10) ! * 'fdump-parse-tree': Debugging Options. (line 18) ! * 'fexternal-blas': Code Gen Options. (line 277) * ff2c: Code Gen Options. (line 25) ! * 'ffixed-line-length-'N: Fortran Dialect Options. (line 77) ! * 'ffpe-trap='LIST: Debugging Options. (line 24) ! * 'ffree-form': Fortran Dialect Options. (line 11) ! * 'ffree-line-length-'N: Fortran Dialect Options. (line 90) ! * 'fimplicit-none': Fortran Dialect Options. (line 101) ! * 'finit-character': Code Gen Options. (line 305) ! * 'finit-integer': Code Gen Options. (line 305) ! * 'finit-local-zero': Code Gen Options. (line 305) ! * 'finit-logical': Code Gen Options. (line 305) ! * 'finit-real': Code Gen Options. (line 305) ! * 'finteger-4-integer-8': Fortran Dialect Options. (line 106) ! * 'fintrinsic-modules-path' DIR: Directory Options. (line 36) ! * 'fmax-array-constructor': Code Gen Options. (line 215) ! * 'fmax-errors='N: Error and Warning Options. (line 27) ! * 'fmax-identifier-length='N: Fortran Dialect Options. (line 97) ! * 'fmax-stack-var-size': Code Gen Options. (line 233) ! * 'fmax-subrecord-length='LENGTH: Runtime Options. (line 29) ! * 'fmodule-private': Fortran Dialect Options. (line 72) ! * 'fno-automatic': Code Gen Options. (line 15) ! * 'fno-backtrace': Debugging Options. (line 50) ! * 'fno-fixed-form': Fortran Dialect Options. (line 11) ! * 'fno-protect-parens': Code Gen Options. (line 342) ! * 'fno-underscoring': Code Gen Options. (line 54) ! * 'fno-whole-file': Code Gen Options. (line 111) ! * 'fopenmp': Fortran Dialect Options. ! (line 120) ! * 'fpack-derived': Code Gen Options. (line 255) ! * 'fpp': Preprocessing Options. (line 12) ! * 'frange-check': Fortran Dialect Options. ! (line 128) ! * 'freal-4-real-10': Fortran Dialect Options. ! (line 144) ! * 'freal-4-real-16': Fortran Dialect Options. ! (line 144) ! * 'freal-4-real-8': Fortran Dialect Options. ! (line 144) ! * 'freal-8-real-10': Fortran Dialect Options. ! (line 144) ! * 'freal-8-real-16': Fortran Dialect Options. ! (line 144) ! * 'freal-8-real-4': Fortran Dialect Options. ! (line 144) ! * 'frealloc-lhs': Code Gen Options. (line 351) ! * 'frecord-marker='LENGTH: Runtime Options. (line 21) ! * 'frecursive': Code Gen Options. (line 296) ! * 'frepack-arrays': Code Gen Options. (line 261) ! * 'frontend-optimize': Code Gen Options. (line 365) ! * 'fsecond-underscore': Code Gen Options. (line 128) ! * 'fshort-enums': Code Gen Options. (line 271) ! * 'fshort-enums' <1>: Fortran 2003 status. (line 88) ! * 'fsign-zero': Runtime Options. (line 34) ! * 'fstack-arrays': Code Gen Options. (line 247) ! * 'fsyntax-only': Error and Warning Options. (line 33) ! * 'fworking-directory': Preprocessing Options. (line 55) ! * 'H': Preprocessing Options. ! (line 174) ! * 'I'DIR: Directory Options. (line 14) ! * 'idirafter DIR': Preprocessing Options. ! (line 69) ! * 'imultilib DIR': Preprocessing Options. ! (line 76) ! * 'iprefix PREFIX': Preprocessing Options. ! (line 80) ! * 'iquote DIR': Preprocessing Options. ! (line 89) ! * 'isysroot DIR': Preprocessing Options. ! (line 85) ! * 'isystem DIR': Preprocessing Options. ! (line 96) ! * 'J'DIR: Directory Options. (line 29) ! * 'M'DIR: Directory Options. (line 29) ! * 'nostdinc': Preprocessing Options. ! (line 104) ! * 'P': Preprocessing Options. ! (line 179) ! * 'pedantic': Error and Warning Options. (line 38) ! * 'pedantic-errors': Error and Warning Options. (line 57) ! * 'static-libgfortran': Link Options. (line 11) ! * 'std='STD option: Fortran Dialect Options. ! (line 155) ! * 'UNAME': Preprocessing Options. ! (line 185) ! * 'undef': Preprocessing Options. ! (line 109) ! * 'Waliasing': Error and Warning Options. (line 69) ! * 'Walign-commons': Error and Warning Options. (line 198) ! * 'Wall': Error and Warning Options. (line 61) ! * 'Wampersand': Error and Warning Options. (line 86) ! * 'Warray-temporaries': Error and Warning Options. (line 94) ! * 'Wc-binding-type': Error and Warning Options. (line 99) ! * 'Wcharacter-truncation': Error and Warning Options. (line 106) ! * 'Wcompare-reals': Error and Warning Options. ! (line 225) ! * 'Wconversion': Error and Warning Options. (line 113) ! * 'Wconversion-extra': Error and Warning Options. (line 117) ! * 'Werror': Error and Warning Options. ! (line 233) ! * 'Wextra': Error and Warning Options. (line 120) ! * 'Wfunction-elimination': Error and Warning Options. (line 204) ! * 'Wimplicit-interface': Error and Warning Options. (line 125) ! * 'Wimplicit-procedure': Error and Warning Options. (line 131) ! * 'Wintrinsic-shadow': Error and Warning Options. (line 180) ! * 'Wintrinsics-std': Error and Warning Options. (line 135) ! * 'Wline-truncation': Error and Warning Options. (line 109) ! * 'Wreal-q-constant': Error and Warning Options. (line 142) ! * 'Wrealloc-lhs': Error and Warning Options. (line 208) ! * 'Wrealloc-lhs-all': Error and Warning Options. ! (line 220) ! * 'Wsurprising': Error and Warning Options. (line 146) ! * 'Wtabs': Error and Warning Options. (line 168) ! * 'Wtargt-lifetime': Error and Warning Options. ! (line 229) ! * 'Wunderflow': Error and Warning Options. (line 176) ! * 'Wunused-dummy-argument': Error and Warning Options. (line 187) ! * 'Wunused-parameter': Error and Warning Options. (line 191)  *************** Keyword Index *** 16898,16914 **** [index] * Menu: ! * $: Fortran Dialect Options. (line 54) ! * %LOC: Argument list functions. (line 6) ! * %REF: Argument list functions. (line 6) ! * %VAL: Argument list functions. (line 6) ! * &: Error and Warning Options. (line 86) ! * [...]: Fortran 2003 status. (line 73) * _gfortran_set_args: _gfortran_set_args. (line 6) * _gfortran_set_convert: _gfortran_set_convert. (line 6) --- 16679,16695 ---- [index] * Menu: ! * '$': Fortran Dialect Options. (line 54) ! * '%LOC': Argument list functions. (line 6) ! * '%REF': Argument list functions. (line 6) ! * '%VAL': Argument list functions. (line 6) ! * '&': Error and Warning Options. (line 86) ! * '[...]': Fortran 2003 status. (line 73) * _gfortran_set_args: _gfortran_set_args. (line 6) * _gfortran_set_convert: _gfortran_set_convert. (line 6) *************** Keyword Index *** 16923,16934 **** * ABS: ABS. (line 6) * absolute value: ABS. (line 6) * ACCESS: ACCESS. (line 6) ! * ACCESS='STREAM' I/O: Fortran 2003 status. (line 100) * ACHAR: ACHAR. (line 6) * ACOS: ACOS. (line 6) * ACOSH: ACOSH. (line 6) - * adjust string <1>: ADJUSTR. (line 6) * adjust string: ADJUSTL. (line 6) * ADJUSTL: ADJUSTL. (line 6) * ADJUSTR: ADJUSTR. (line 6) * AIMAG: AIMAG. (line 6) --- 16704,16715 ---- * ABS: ABS. (line 6) * absolute value: ABS. (line 6) * ACCESS: ACCESS. (line 6) ! * 'ACCESS='STREAM'' I/O: Fortran 2003 status. (line 98) * ACHAR: ACHAR. (line 6) * ACOS: ACOS. (line 6) * ACOSH: ACOSH. (line 6) * adjust string: ADJUSTL. (line 6) + * adjust string <1>: ADJUSTR. (line 6) * ADJUSTL: ADJUSTL. (line 6) * ADJUSTR: ADJUSTR. (line 6) * AIMAG: AIMAG. (line 6) *************** Keyword Index *** 16937,16952 **** * ALGAMA: LOG_GAMMA. (line 6) * aliasing: Error and Warning Options. (line 69) ! * alignment of COMMON blocks <1>: Code Gen Options. (line 334) ! * alignment of COMMON blocks: Error and Warning Options. (line 198) * ALL: ALL. (line 6) * all warnings: Error and Warning Options. (line 61) ! * ALLOCATABLE components of derived types: Fortran 2003 status. ! (line 98) ! * ALLOCATABLE dummy arguments: Fortran 2003 status. (line 94) ! * ALLOCATABLE function results: Fortran 2003 status. (line 96) * ALLOCATED: ALLOCATED. (line 6) * allocation, moving: MOVE_ALLOC. (line 6) * allocation, status: ALLOCATED. (line 6) --- 16718,16733 ---- * ALGAMA: LOG_GAMMA. (line 6) * aliasing: Error and Warning Options. (line 69) ! * alignment of 'COMMON' blocks: Error and Warning Options. (line 198) + * alignment of 'COMMON' blocks <1>: Code Gen Options. (line 330) * ALL: ALL. (line 6) * all warnings: Error and Warning Options. (line 61) ! * 'ALLOCATABLE' components of derived types: Fortran 2003 status. ! (line 96) ! * 'ALLOCATABLE' dummy arguments: Fortran 2003 status. (line 94) ! * 'ALLOCATABLE' function results: Fortran 2003 status. (line 95) * ALLOCATED: ALLOCATED. (line 6) * allocation, moving: MOVE_ALLOC. (line 6) * allocation, status: ALLOCATED. (line 6) *************** Keyword Index *** 16965,16986 **** * area hyperbolic tangent: ATANH. (line 6) * argument list functions: Argument list functions. (line 6) - * arguments, to program <1>: IARGC. (line 6) - * arguments, to program <2>: GET_COMMAND_ARGUMENT. - (line 6) - * arguments, to program <3>: GET_COMMAND. (line 6) - * arguments, to program <4>: GETARG. (line 6) * arguments, to program: COMMAND_ARGUMENT_COUNT. (line 6) * array, add elements: SUM. (line 6) * array, AND: IALL. (line 6) - * array, apply condition <1>: ANY. (line 6) * array, apply condition: ALL. (line 6) ! * array, bounds checking: Code Gen Options. (line 161) * array, change dimensions: RESHAPE. (line 6) * array, combine arrays: MERGE. (line 6) - * array, condition testing <1>: ANY. (line 6) * array, condition testing: ALL. (line 6) * array, conditionally add elements: SUM. (line 6) * array, conditionally count elements: COUNT. (line 6) * array, conditionally multiply elements: PRODUCT. (line 6) --- 16746,16767 ---- * area hyperbolic tangent: ATANH. (line 6) * argument list functions: Argument list functions. (line 6) * arguments, to program: COMMAND_ARGUMENT_COUNT. (line 6) + * arguments, to program <1>: GETARG. (line 6) + * arguments, to program <2>: GET_COMMAND. (line 6) + * arguments, to program <3>: GET_COMMAND_ARGUMENT. + (line 6) + * arguments, to program <4>: IARGC. (line 6) * array, add elements: SUM. (line 6) * array, AND: IALL. (line 6) * array, apply condition: ALL. (line 6) ! * array, apply condition <1>: ANY. (line 6) ! * array, bounds checking: Code Gen Options. (line 159) * array, change dimensions: RESHAPE. (line 6) * array, combine arrays: MERGE. (line 6) * array, condition testing: ALL. (line 6) + * array, condition testing <1>: ANY. (line 6) * array, conditionally add elements: SUM. (line 6) * array, conditionally count elements: COUNT. (line 6) * array, conditionally multiply elements: PRODUCT. (line 6) *************** Keyword Index *** 16990,16997 **** * array, duplicate elements: SPREAD. (line 6) * array, element counting: COUNT. (line 6) * array, gather elements: PACK. (line 6) - * array, increase dimension <1>: UNPACK. (line 6) * array, increase dimension: SPREAD. (line 6) * array, indices of type real: Real array indices. (line 6) * array, location of maximum element: MAXLOC. (line 6) * array, location of minimum element: MINLOC. (line 6) --- 16771,16778 ---- * array, duplicate elements: SPREAD. (line 6) * array, element counting: COUNT. (line 6) * array, gather elements: PACK. (line 6) * array, increase dimension: SPREAD. (line 6) + * array, increase dimension <1>: UNPACK. (line 6) * array, indices of type real: Real array indices. (line 6) * array, location of maximum element: MAXLOC. (line 6) * array, location of minimum element: MINLOC. (line 6) *************** Keyword Index *** 17000,17007 **** * array, merge arrays: MERGE. (line 6) * array, minimum value: MINVAL. (line 6) * array, multiply elements: PRODUCT. (line 6) - * array, number of elements <1>: SIZE. (line 6) * array, number of elements: COUNT. (line 6) * array, OR: IANY. (line 6) * array, packing: PACK. (line 6) * array, parity: IPARITY. (line 6) --- 16781,16788 ---- * array, merge arrays: MERGE. (line 6) * array, minimum value: MINVAL. (line 6) * array, multiply elements: PRODUCT. (line 6) * array, number of elements: COUNT. (line 6) + * array, number of elements <1>: SIZE. (line 6) * array, OR: IANY. (line 6) * array, packing: PACK. (line 6) * array, parity: IPARITY. (line 6) *************** Keyword Index *** 17020,17027 **** * array, unpacking: UNPACK. (line 6) * array, upper bound: UBOUND. (line 6) * array, XOR: IPARITY. (line 6) - * ASCII collating sequence <1>: IACHAR. (line 6) * ASCII collating sequence: ACHAR. (line 6) * ASIN: ASIN. (line 6) * ASINH: ASINH. (line 6) * ASSOCIATED: ASSOCIATED. (line 6) --- 16801,16808 ---- * array, unpacking: UNPACK. (line 6) * array, upper bound: UBOUND. (line 6) * array, XOR: IPARITY. (line 6) * ASCII collating sequence: ACHAR. (line 6) + * ASCII collating sequence <1>: IACHAR. (line 6) * ASIN: ASIN. (line 6) * ASINH: ASINH. (line 6) * ASSOCIATED: ASSOCIATED. (line 6) *************** Keyword Index *** 17037,17055 **** * Authors: Contributors. (line 6) * backslash: Fortran Dialect Options. (line 60) - * backtrace: BACKTRACE. (line 6) * BACKTRACE: BACKTRACE. (line 6) ! * backtrace: Debugging Options. (line 51) * base 10 logarithm function: LOG10. (line 6) * BESJ0: BESSEL_J0. (line 6) * BESJ1: BESSEL_J1. (line 6) * BESJN: BESSEL_JN. (line 6) - * Bessel function, first kind <1>: BESSEL_JN. (line 6) - * Bessel function, first kind <2>: BESSEL_J1. (line 6) * Bessel function, first kind: BESSEL_J0. (line 6) ! * Bessel function, second kind <1>: BESSEL_YN. (line 6) ! * Bessel function, second kind <2>: BESSEL_Y1. (line 6) * Bessel function, second kind: BESSEL_Y0. (line 6) * BESSEL_J0: BESSEL_J0. (line 6) * BESSEL_J1: BESSEL_J1. (line 6) * BESSEL_JN: BESSEL_JN. (line 6) --- 16818,16836 ---- * Authors: Contributors. (line 6) * backslash: Fortran Dialect Options. (line 60) * BACKTRACE: BACKTRACE. (line 6) ! * backtrace: Debugging Options. (line 50) ! * backtrace <1>: BACKTRACE. (line 6) * base 10 logarithm function: LOG10. (line 6) * BESJ0: BESSEL_J0. (line 6) * BESJ1: BESSEL_J1. (line 6) * BESJN: BESSEL_JN. (line 6) * Bessel function, first kind: BESSEL_J0. (line 6) ! * Bessel function, first kind <1>: BESSEL_J1. (line 6) ! * Bessel function, first kind <2>: BESSEL_JN. (line 6) * Bessel function, second kind: BESSEL_Y0. (line 6) + * Bessel function, second kind <1>: BESSEL_Y1. (line 6) + * Bessel function, second kind <2>: BESSEL_YN. (line 6) * BESSEL_J0: BESSEL_J0. (line 6) * BESSEL_J1: BESSEL_J1. (line 6) * BESSEL_JN: BESSEL_JN. (line 6) *************** Keyword Index *** 17061,17114 **** * BESYN: BESSEL_YN. (line 6) * BGE: BGE. (line 6) * BGT: BGT. (line 6) - * binary representation <1>: POPPAR. (line 6) * binary representation: POPCNT. (line 6) ! * BIT_SIZE: BIT_SIZE. (line 6) * bits set: POPCNT. (line 6) * bits, AND of array elements: IALL. (line 6) * bits, clear: IBCLR. (line 6) * bits, extract: IBITS. (line 6) * bits, get: IBITS. (line 6) * bits, merge: MERGE_BITS. (line 6) - * bits, move <1>: TRANSFER. (line 6) * bits, move: MVBITS. (line 6) * bits, negate: NOT. (line 6) * bits, number of: BIT_SIZE. (line 6) * bits, OR of array elements: IANY. (line 6) * bits, set: IBSET. (line 6) * bits, shift: ISHFT. (line 6) * bits, shift circular: ISHFTC. (line 6) - * bits, shift left <1>: SHIFTL. (line 6) * bits, shift left: LSHIFT. (line 6) ! * bits, shift right <1>: SHIFTR. (line 6) ! * bits, shift right <2>: SHIFTA. (line 6) * bits, shift right: RSHIFT. (line 6) * bits, testing: BTEST. (line 6) * bits, unset: IBCLR. (line 6) * bits, XOR of array elements: IPARITY. (line 6) - * bitwise comparison <1>: BLT. (line 6) - * bitwise comparison <2>: BLE. (line 6) - * bitwise comparison <3>: BGT. (line 6) * bitwise comparison: BGE. (line 6) ! * bitwise logical and <1>: IAND. (line 6) * bitwise logical and: AND. (line 6) ! * bitwise logical exclusive or <1>: XOR. (line 6) * bitwise logical exclusive or: IEOR. (line 6) * bitwise logical not: NOT. (line 6) - * bitwise logical or <1>: OR. (line 6) * bitwise logical or: IOR. (line 6) * BLE: BLE. (line 6) * BLT: BLT. (line 6) ! * bounds checking: Code Gen Options. (line 161) * BOZ literal constants: BOZ literal constants. (line 6) * BTEST: BTEST. (line 6) - * C_ASSOCIATED: C_ASSOCIATED. (line 6) - * C_F_POINTER: C_F_POINTER. (line 6) - * C_F_PROCPOINTER: C_F_PROCPOINTER. (line 6) - * C_FUNLOC: C_FUNLOC. (line 6) - * C_LOC: C_LOC. (line 6) - * C_SIZEOF: C_SIZEOF. (line 6) * CABS: ABS. (line 6) * calling convention: Code Gen Options. (line 25) * CCOS: COS. (line 6) --- 16842,16889 ---- * BESYN: BESSEL_YN. (line 6) * BGE: BGE. (line 6) * BGT: BGT. (line 6) * binary representation: POPCNT. (line 6) ! * binary representation <1>: POPPAR. (line 6) * bits set: POPCNT. (line 6) * bits, AND of array elements: IALL. (line 6) * bits, clear: IBCLR. (line 6) * bits, extract: IBITS. (line 6) * bits, get: IBITS. (line 6) * bits, merge: MERGE_BITS. (line 6) * bits, move: MVBITS. (line 6) + * bits, move <1>: TRANSFER. (line 6) * bits, negate: NOT. (line 6) * bits, number of: BIT_SIZE. (line 6) * bits, OR of array elements: IANY. (line 6) * bits, set: IBSET. (line 6) * bits, shift: ISHFT. (line 6) * bits, shift circular: ISHFTC. (line 6) * bits, shift left: LSHIFT. (line 6) ! * bits, shift left <1>: SHIFTL. (line 6) * bits, shift right: RSHIFT. (line 6) + * bits, shift right <1>: SHIFTA. (line 6) + * bits, shift right <2>: SHIFTR. (line 6) * bits, testing: BTEST. (line 6) * bits, unset: IBCLR. (line 6) * bits, XOR of array elements: IPARITY. (line 6) * bitwise comparison: BGE. (line 6) ! * bitwise comparison <1>: BGT. (line 6) ! * bitwise comparison <2>: BLE. (line 6) ! * bitwise comparison <3>: BLT. (line 6) * bitwise logical and: AND. (line 6) ! * bitwise logical and <1>: IAND. (line 6) * bitwise logical exclusive or: IEOR. (line 6) + * bitwise logical exclusive or <1>: XOR. (line 6) * bitwise logical not: NOT. (line 6) * bitwise logical or: IOR. (line 6) + * bitwise logical or <1>: OR. (line 6) + * BIT_SIZE: BIT_SIZE. (line 6) * BLE: BLE. (line 6) * BLT: BLT. (line 6) ! * bounds checking: Code Gen Options. (line 159) * BOZ literal constants: BOZ literal constants. (line 6) * BTEST: BTEST. (line 6) * CABS: ABS. (line 6) * calling convention: Code Gen Options. (line 25) * CCOS: COS. (line 6) *************** Keyword Index *** 17118,17163 **** * CDLOG: LOG. (line 6) * CDSIN: SIN. (line 6) * CDSQRT: SQRT. (line 6) - * ceiling: CEILING. (line 6) * CEILING: CEILING. (line 6) * ceiling: ANINT. (line 6) * CEXP: EXP. (line 6) * CHAR: CHAR. (line 6) * character kind: SELECTED_CHAR_KIND. (line 6) * character set: Fortran Dialect Options. (line 54) * CHDIR: CHDIR. (line 6) ! * checking array temporaries: Code Gen Options. (line 161) ! * checking subscripts: Code Gen Options. (line 161) * CHMOD: CHMOD. (line 6) - * clock ticks <1>: SYSTEM_CLOCK. (line 6) - * clock ticks <2>: MCLOCK8. (line 6) * clock ticks: MCLOCK. (line 6) * CLOG: LOG. (line 6) * CMPLX: CMPLX. (line 6) ! * coarray, IMAGE_INDEX: IMAGE_INDEX. (line 6) * coarray, lower bound: LCOBOUND. (line 6) ! * coarray, NUM_IMAGES: NUM_IMAGES. (line 6) ! * coarray, THIS_IMAGE: THIS_IMAGE. (line 6) * coarray, upper bound: UCOBOUND. (line 6) ! * coarrays: Code Gen Options. (line 147) * code generation, conventions: Code Gen Options. (line 6) - * collating sequence, ASCII <1>: IACHAR. (line 6) * collating sequence, ASCII: ACHAR. (line 6) * command line: EXECUTE_COMMAND_LINE. (line 6) * command options: Invoking GNU Fortran. (line 6) - * command-line arguments <1>: IARGC. (line 6) - * command-line arguments <2>: GET_COMMAND_ARGUMENT. - (line 6) - * command-line arguments <3>: GET_COMMAND. (line 6) - * command-line arguments <4>: GETARG. (line 6) * command-line arguments: COMMAND_ARGUMENT_COUNT. (line 6) ! * command-line arguments, number of <1>: IARGC. (line 6) * command-line arguments, number of: COMMAND_ARGUMENT_COUNT. (line 6) * COMMAND_ARGUMENT_COUNT: COMMAND_ARGUMENT_COUNT. (line 6) * compiler flags inquiry function: COMPILER_OPTIONS. (line 6) --- 16893,16938 ---- * CDLOG: LOG. (line 6) * CDSIN: SIN. (line 6) * CDSQRT: SQRT. (line 6) * CEILING: CEILING. (line 6) * ceiling: ANINT. (line 6) + * ceiling <1>: CEILING. (line 6) * CEXP: EXP. (line 6) * CHAR: CHAR. (line 6) * character kind: SELECTED_CHAR_KIND. (line 6) * character set: Fortran Dialect Options. (line 54) * CHDIR: CHDIR. (line 6) ! * checking array temporaries: Code Gen Options. (line 159) ! * checking subscripts: Code Gen Options. (line 159) * CHMOD: CHMOD. (line 6) * clock ticks: MCLOCK. (line 6) + * clock ticks <1>: MCLOCK8. (line 6) + * clock ticks <2>: SYSTEM_CLOCK. (line 6) * CLOG: LOG. (line 6) * CMPLX: CMPLX. (line 6) ! * coarray, 'IMAGE_INDEX': IMAGE_INDEX. (line 6) * coarray, lower bound: LCOBOUND. (line 6) ! * coarray, 'NUM_IMAGES': NUM_IMAGES. (line 6) ! * coarray, 'THIS_IMAGE': THIS_IMAGE. (line 6) * coarray, upper bound: UCOBOUND. (line 6) ! * coarrays: Code Gen Options. (line 145) * code generation, conventions: Code Gen Options. (line 6) * collating sequence, ASCII: ACHAR. (line 6) + * collating sequence, ASCII <1>: IACHAR. (line 6) * command line: EXECUTE_COMMAND_LINE. (line 6) * command options: Invoking GNU Fortran. (line 6) * command-line arguments: COMMAND_ARGUMENT_COUNT. (line 6) ! * command-line arguments <1>: GETARG. (line 6) ! * command-line arguments <2>: GET_COMMAND. (line 6) ! * command-line arguments <3>: GET_COMMAND_ARGUMENT. ! (line 6) ! * command-line arguments <4>: IARGC. (line 6) * command-line arguments, number of: COMMAND_ARGUMENT_COUNT. (line 6) + * command-line arguments, number of <1>: IARGC. (line 6) * COMMAND_ARGUMENT_COUNT: COMMAND_ARGUMENT_COUNT. (line 6) * compiler flags inquiry function: COMPILER_OPTIONS. (line 6) *************** Keyword Index *** 17168,17179 **** * complex conjugate: CONJG. (line 6) * Complex function: Alternate complex function syntax. (line 6) - * complex numbers, conversion to <1>: DCMPLX. (line 6) - * complex numbers, conversion to <2>: COMPLEX. (line 6) * complex numbers, conversion to: CMPLX. (line 6) * complex numbers, imaginary part: AIMAG. (line 6) - * complex numbers, real part <1>: REAL. (line 6) * complex numbers, real part: DREAL. (line 6) * Conditional compilation: Preprocessing and conditional compilation. (line 6) * CONJG: CONJG. (line 6) --- 16943,16954 ---- * complex conjugate: CONJG. (line 6) * Complex function: Alternate complex function syntax. (line 6) * complex numbers, conversion to: CMPLX. (line 6) + * complex numbers, conversion to <1>: COMPLEX. (line 6) + * complex numbers, conversion to <2>: DCMPLX. (line 6) * complex numbers, imaginary part: AIMAG. (line 6) * complex numbers, real part: DREAL. (line 6) + * complex numbers, real part <1>: REAL. (line 6) * Conditional compilation: Preprocessing and conditional compilation. (line 6) * CONJG: CONJG. (line 6) *************** Keyword Index *** 17183,17207 **** * Contributors: Contributors. (line 6) * conversion: Error and Warning Options. (line 113) * conversion, to character: CHAR. (line 6) - * conversion, to complex <1>: DCMPLX. (line 6) - * conversion, to complex <2>: COMPLEX. (line 6) * conversion, to complex: CMPLX. (line 6) ! * conversion, to integer <1>: LONG. (line 6) ! * conversion, to integer <2>: INT8. (line 6) ! * conversion, to integer <3>: INT2. (line 6) ! * conversion, to integer <4>: INT. (line 6) ! * conversion, to integer <5>: ICHAR. (line 6) ! * conversion, to integer <6>: IACHAR. (line 6) * conversion, to integer: Implicitly convert LOGICAL and INTEGER values. (line 6) ! * conversion, to logical <1>: LOGICAL. (line 6) * conversion, to logical: Implicitly convert LOGICAL and INTEGER values. (line 6) ! * conversion, to real <1>: REAL. (line 6) * conversion, to real: DBLE. (line 6) * conversion, to string: CTIME. (line 6) ! * CONVERT specifier: CONVERT specifier. (line 6) * core, dump: ABORT. (line 6) * COS: COS. (line 6) * COSH: COSH. (line 6) --- 16958,16984 ---- * Contributors: Contributors. (line 6) * conversion: Error and Warning Options. (line 113) + * conversion <1>: Error and Warning Options. + (line 117) * conversion, to character: CHAR. (line 6) * conversion, to complex: CMPLX. (line 6) ! * conversion, to complex <1>: COMPLEX. (line 6) ! * conversion, to complex <2>: DCMPLX. (line 6) * conversion, to integer: Implicitly convert LOGICAL and INTEGER values. (line 6) ! * conversion, to integer <1>: IACHAR. (line 6) ! * conversion, to integer <2>: ICHAR. (line 6) ! * conversion, to integer <3>: INT. (line 6) ! * conversion, to integer <4>: INT2. (line 6) ! * conversion, to integer <5>: INT8. (line 6) ! * conversion, to integer <6>: LONG. (line 6) * conversion, to logical: Implicitly convert LOGICAL and INTEGER values. (line 6) ! * conversion, to logical <1>: LOGICAL. (line 6) * conversion, to real: DBLE. (line 6) + * conversion, to real <1>: REAL. (line 6) * conversion, to string: CTIME. (line 6) ! * 'CONVERT' specifier: CONVERT specifier. (line 6) * core, dump: ABORT. (line 6) * COS: COS. (line 6) * COSH: COSH. (line 6) *************** Keyword Index *** 17210,17233 **** * cosine, hyperbolic, inverse: ACOSH. (line 6) * cosine, inverse: ACOS. (line 6) * COUNT: COUNT. (line 6) - * CPP <1>: Preprocessing Options. - (line 6) * CPP: Preprocessing and conditional compilation. (line 6) * CPU_TIME: CPU_TIME. (line 6) * Credits: Contributors. (line 6) * CSHIFT: CSHIFT. (line 6) * CSIN: SIN. (line 6) * CSQRT: SQRT. (line 6) * CTIME: CTIME. (line 6) - * current date <1>: IDATE. (line 6) - * current date <2>: FDATE. (line 6) * current date: DATE_AND_TIME. (line 6) ! * current time <1>: TIME8. (line 6) ! * current time <2>: TIME. (line 6) ! * current time <3>: ITIME. (line 6) ! * current time <4>: FDATE. (line 6) * current time: DATE_AND_TIME. (line 6) * DABS: ABS. (line 6) * DACOS: ACOS. (line 6) * DACOSH: ACOSH. (line 6) --- 16987,17016 ---- * cosine, hyperbolic, inverse: ACOSH. (line 6) * cosine, inverse: ACOS. (line 6) * COUNT: COUNT. (line 6) * CPP: Preprocessing and conditional compilation. (line 6) + * CPP <1>: Preprocessing Options. + (line 6) * CPU_TIME: CPU_TIME. (line 6) * Credits: Contributors. (line 6) * CSHIFT: CSHIFT. (line 6) * CSIN: SIN. (line 6) * CSQRT: SQRT. (line 6) * CTIME: CTIME. (line 6) * current date: DATE_AND_TIME. (line 6) ! * current date <1>: FDATE. (line 6) ! * current date <2>: IDATE. (line 6) * current time: DATE_AND_TIME. (line 6) + * current time <1>: FDATE. (line 6) + * current time <2>: ITIME. (line 6) + * current time <3>: TIME. (line 6) + * current time <4>: TIME8. (line 6) + * C_ASSOCIATED: C_ASSOCIATED. (line 6) + * C_FUNLOC: C_FUNLOC. (line 6) + * C_F_POINTER: C_F_POINTER. (line 6) + * C_F_PROCPOINTER: C_F_PROCPOINTER. (line 6) + * C_LOC: C_LOC. (line 6) + * C_SIZEOF: C_SIZEOF. (line 6) * DABS: ABS. (line 6) * DACOS: ACOS. (line 6) * DACOSH: ACOSH. (line 6) *************** Keyword Index *** 17236,17244 **** * DATAN: ATAN. (line 6) * DATAN2: ATAN2. (line 6) * DATANH: ATANH. (line 6) - * date, current <1>: IDATE. (line 6) - * date, current <2>: FDATE. (line 6) * date, current: DATE_AND_TIME. (line 6) * DATE_AND_TIME: DATE_AND_TIME. (line 6) * DBESJ0: BESSEL_J0. (line 6) * DBESJ1: BESSEL_J1. (line 6) --- 17019,17027 ---- * DATAN: ATAN. (line 6) * DATAN2: ATAN2. (line 6) * DATANH: ATANH. (line 6) * date, current: DATE_AND_TIME. (line 6) + * date, current <1>: FDATE. (line 6) + * date, current <2>: IDATE. (line 6) * DATE_AND_TIME: DATE_AND_TIME. (line 6) * DBESJ0: BESSEL_J0. (line 6) * DBESJ1: BESSEL_J1. (line 6) *************** Keyword Index *** 17255,17264 **** * debugging information options: Debugging Options. (line 6) * debugging, preprocessor: Preprocessing Options. (line 26) ! * DECODE: ENCODE and DECODE statements. (line 6) - * delayed execution <1>: SLEEP. (line 6) * delayed execution: ALARM. (line 6) * DEXP: EXP. (line 6) * DFLOAT: REAL. (line 6) * DGAMMA: GAMMA. (line 6) --- 17038,17055 ---- * debugging information options: Debugging Options. (line 6) * debugging, preprocessor: Preprocessing Options. (line 26) ! * debugging, preprocessor <1>: Preprocessing Options. ! (line 35) ! * debugging, preprocessor <2>: Preprocessing Options. ! (line 41) ! * debugging, preprocessor <3>: Preprocessing Options. ! (line 44) ! * debugging, preprocessor <4>: Preprocessing Options. ! (line 51) ! * 'DECODE': ENCODE and DECODE statements. (line 6) * delayed execution: ALARM. (line 6) + * delayed execution <1>: SLEEP. (line 6) * DEXP: EXP. (line 6) * DFLOAT: REAL. (line 6) * DGAMMA: GAMMA. (line 6) *************** Keyword Index *** 17268,17274 **** * DIM: DIM. (line 6) * DIMAG: AIMAG. (line 6) * DINT: AINT. (line 6) ! * directive, INCLUDE: Directory Options. (line 6) * directory, options: Directory Options. (line 6) * directory, search paths for inclusion: Directory Options. (line 14) * division, modulo: MODULO. (line 6) --- 17059,17065 ---- * DIM: DIM. (line 6) * DIMAG: AIMAG. (line 6) * DINT: AINT. (line 6) ! * directive, 'INCLUDE': Directory Options. (line 6) * directory, options: Directory Options. (line 6) * directory, search paths for inclusion: Directory Options. (line 14) * division, modulo: MODULO. (line 6) *************** Keyword Index *** 17295,17314 **** * DTIME: DTIME. (line 6) * dummy argument, unused: Error and Warning Options. (line 187) - * elapsed time <1>: SECOND. (line 6) - * elapsed time <2>: SECNDS. (line 6) * elapsed time: DTIME. (line 6) * Elimination of functions with identical argument lists: Code Gen Options. ! (line 361) ! * ENCODE: ENCODE and DECODE statements. (line 6) ! * ENUM statement: Fortran 2003 status. (line 88) ! * ENUMERATOR statement: Fortran 2003 status. (line 88) ! * environment variable <1>: GET_ENVIRONMENT_VARIABLE. (line 6) * environment variable <2>: GETENV. (line 6) ! * environment variable <3>: Runtime. (line 6) ! * environment variable: Environment Variables. (line 6) * EOSHIFT: EOSHIFT. (line 6) * EPSILON: EPSILON. (line 6) --- 17086,17105 ---- * DTIME: DTIME. (line 6) * dummy argument, unused: Error and Warning Options. (line 187) * elapsed time: DTIME. (line 6) + * elapsed time <1>: SECNDS. (line 6) + * elapsed time <2>: SECOND. (line 6) * Elimination of functions with identical argument lists: Code Gen Options. ! (line 357) ! * 'ENCODE': ENCODE and DECODE statements. (line 6) ! * 'ENUM' statement: Fortran 2003 status. (line 88) ! * 'ENUMERATOR' statement: Fortran 2003 status. (line 88) ! * environment variable: Environment Variables. (line 6) + * environment variable <1>: Runtime. (line 6) * environment variable <2>: GETENV. (line 6) ! * environment variable <3>: GET_ENVIRONMENT_VARIABLE. (line 6) * EOSHIFT: EOSHIFT. (line 6) * EPSILON: EPSILON. (line 6) *************** Keyword Index *** 17332,17341 **** * EXP: EXP. (line 6) * EXPONENT: EXPONENT. (line 6) * exponential function: EXP. (line 6) - * exponential function, inverse <1>: LOG10. (line 6) * exponential function, inverse: LOG. (line 6) ! * expression size <1>: SIZEOF. (line 6) * expression size: C_SIZEOF. (line 6) * EXTENDS_TYPE_OF: EXTENDS_TYPE_OF. (line 6) * extensions: Extensions. (line 6) * extensions, implemented: Extensions implemented in GNU Fortran. --- 17123,17132 ---- * EXP: EXP. (line 6) * EXPONENT: EXPONENT. (line 6) * exponential function: EXP. (line 6) * exponential function, inverse: LOG. (line 6) ! * exponential function, inverse <1>: LOG10. (line 6) * expression size: C_SIZEOF. (line 6) + * expression size <1>: SIZEOF. (line 6) * EXTENDS_TYPE_OF: EXTENDS_TYPE_OF. (line 6) * extensions: Extensions. (line 6) * extensions, implemented: Extensions implemented in GNU Fortran. *************** Keyword Index *** 17344,17350 **** (line 6) * extra warnings: Error and Warning Options. (line 120) ! * f2c calling convention: Code Gen Options. (line 25) * Factorial function: GAMMA. (line 6) * FDATE: FDATE. (line 6) * FDL, GNU Free Documentation License: GNU Free Documentation License. --- 17135,17142 ---- (line 6) * extra warnings: Error and Warning Options. (line 120) ! * 'f2c' calling convention: Code Gen Options. (line 25) ! * 'f2c' calling convention <1>: Code Gen Options. (line 128) * Factorial function: GAMMA. (line 6) * FDATE: FDATE. (line 6) * FDL, GNU Free Documentation License: GNU Free Documentation License. *************** Keyword Index *** 17353,17377 **** * FGETC: FGETC. (line 6) * file format, fixed: Fortran Dialect Options. (line 11) * file format, free: Fortran Dialect Options. (line 11) * file operation, file number: FNUM. (line 6) * file operation, flush: FLUSH. (line 6) - * file operation, position <1>: FTELL. (line 6) * file operation, position: FSEEK. (line 6) ! * file operation, read character <1>: FGETC. (line 6) * file operation, read character: FGET. (line 6) * file operation, seek: FSEEK. (line 6) - * file operation, write character <1>: FPUTC. (line 6) * file operation, write character: FPUT. (line 6) * file system, access mode: ACCESS. (line 6) * file system, change access mode: CHMOD. (line 6) - * file system, create link <1>: SYMLNK. (line 6) * file system, create link: LINK. (line 6) * file system, file creation mask: UMASK. (line 6) - * file system, file status <1>: STAT. (line 6) - * file system, file status <2>: LSTAT. (line 6) * file system, file status: FSTAT. (line 6) * file system, hard link: LINK. (line 6) * file system, remove file: UNLINK. (line 6) * file system, rename file: RENAME. (line 6) --- 17145,17173 ---- * FGETC: FGETC. (line 6) * file format, fixed: Fortran Dialect Options. (line 11) + * file format, fixed <1>: Fortran Dialect Options. + (line 77) * file format, free: Fortran Dialect Options. (line 11) + * file format, free <1>: Fortran Dialect Options. + (line 90) * file operation, file number: FNUM. (line 6) * file operation, flush: FLUSH. (line 6) * file operation, position: FSEEK. (line 6) ! * file operation, position <1>: FTELL. (line 6) * file operation, read character: FGET. (line 6) + * file operation, read character <1>: FGETC. (line 6) * file operation, seek: FSEEK. (line 6) * file operation, write character: FPUT. (line 6) + * file operation, write character <1>: FPUTC. (line 6) * file system, access mode: ACCESS. (line 6) * file system, change access mode: CHMOD. (line 6) * file system, create link: LINK. (line 6) + * file system, create link <1>: SYMLNK. (line 6) * file system, file creation mask: UMASK. (line 6) * file system, file status: FSTAT. (line 6) + * file system, file status <1>: LSTAT. (line 6) + * file system, file status <2>: STAT. (line 6) * file system, hard link: LINK. (line 6) * file system, remove file: UNLINK. (line 6) * file system, rename file: RENAME. (line 6) *************** Keyword Index *** 17381,17397 **** * floating point, exponent: EXPONENT. (line 6) * floating point, fraction: FRACTION. (line 6) * floating point, nearest different: NEAREST. (line 6) - * floating point, relative spacing <1>: SPACING. (line 6) * floating point, relative spacing: RRSPACING. (line 6) * floating point, scale: SCALE. (line 6) * floating point, set exponent: SET_EXPONENT. (line 6) - * floor: FLOOR. (line 6) * FLOOR: FLOOR. (line 6) * floor: AINT. (line 6) * FLUSH: FLUSH. (line 6) ! * FLUSH statement: Fortran 2003 status. (line 84) * FNUM: FNUM. (line 6) ! * FORMAT: Variable FORMAT expressions. (line 6) * Fortran 77: GNU Fortran and G77. (line 6) * FPP: Preprocessing and conditional compilation. --- 17177,17193 ---- * floating point, exponent: EXPONENT. (line 6) * floating point, fraction: FRACTION. (line 6) * floating point, nearest different: NEAREST. (line 6) * floating point, relative spacing: RRSPACING. (line 6) + * floating point, relative spacing <1>: SPACING. (line 6) * floating point, scale: SCALE. (line 6) * floating point, set exponent: SET_EXPONENT. (line 6) * FLOOR: FLOOR. (line 6) * floor: AINT. (line 6) + * floor <1>: FLOOR. (line 6) * FLUSH: FLUSH. (line 6) ! * 'FLUSH' statement: Fortran 2003 status. (line 84) * FNUM: FNUM. (line 6) ! * 'FORMAT': Variable FORMAT expressions. (line 6) * Fortran 77: GNU Fortran and G77. (line 6) * FPP: Preprocessing and conditional compilation. *************** Keyword Index *** 17400,17423 **** * FPUTC: FPUTC. (line 6) * FRACTION: FRACTION. (line 6) * FREE: FREE. (line 6) ! * Front-end optimization: Code Gen Options. (line 369) * FSEEK: FSEEK. (line 6) * FSTAT: FSTAT. (line 6) * FTELL: FTELL. (line 6) * function elimination: Error and Warning Options. (line 204) ! * g77: GNU Fortran and G77. (line 6) ! * g77 calling convention: Code Gen Options. (line 25) * GAMMA: GAMMA. (line 6) * Gamma function: GAMMA. (line 6) * Gamma function, logarithm of: LOG_GAMMA. (line 6) * GCC: GNU Fortran and GCC. (line 6) * GERROR: GERROR. (line 6) - * GET_COMMAND: GET_COMMAND. (line 6) - * GET_COMMAND_ARGUMENT: GET_COMMAND_ARGUMENT. - (line 6) - * GET_ENVIRONMENT_VARIABLE: GET_ENVIRONMENT_VARIABLE. - (line 6) * GETARG: GETARG. (line 6) * GETCWD: GETCWD. (line 6) * GETENV: GETENV. (line 6) --- 17196,17215 ---- * FPUTC: FPUTC. (line 6) * FRACTION: FRACTION. (line 6) * FREE: FREE. (line 6) ! * Front-end optimization: Code Gen Options. (line 365) * FSEEK: FSEEK. (line 6) * FSTAT: FSTAT. (line 6) * FTELL: FTELL. (line 6) * function elimination: Error and Warning Options. (line 204) ! * 'g77': GNU Fortran and G77. (line 6) ! * 'g77' calling convention: Code Gen Options. (line 25) ! * 'g77' calling convention <1>: Code Gen Options. (line 128) * GAMMA: GAMMA. (line 6) * Gamma function: GAMMA. (line 6) * Gamma function, logarithm of: LOG_GAMMA. (line 6) * GCC: GNU Fortran and GCC. (line 6) * GERROR: GERROR. (line 6) * GETARG: GETARG. (line 6) * GETCWD: GETCWD. (line 6) * GETENV: GETENV. (line 6) *************** Keyword Index *** 17425,17430 **** --- 17217,17227 ---- * GETLOG: GETLOG. (line 6) * GETPID: GETPID. (line 6) * GETUID: GETUID. (line 6) + * GET_COMMAND: GET_COMMAND. (line 6) + * GET_COMMAND_ARGUMENT: GET_COMMAND_ARGUMENT. + (line 6) + * GET_ENVIRONMENT_VARIABLE: GET_ENVIRONMENT_VARIABLE. + (line 6) * GMTIME: GMTIME. (line 6) * GNU Compiler Collection: GNU Fortran and GCC. (line 6) * GNU Fortran command options: Invoking GNU Fortran. *************** Keyword Index *** 17463,17475 **** * IERRNO: IERRNO. (line 6) * IFIX: INT. (line 6) * IMAG: AIMAG. (line 6) - * IMAGE_INDEX: IMAGE_INDEX. (line 6) * images, cosubscript to image index conversion: IMAGE_INDEX. (line 6) * images, index of this image: THIS_IMAGE. (line 6) * images, number of: NUM_IMAGES. (line 6) * IMAGPART: AIMAG. (line 6) ! * IMPORT statement: Fortran 2003 status. (line 115) ! * INCLUDE directive: Directory Options. (line 6) * inclusion, directory search paths for: Directory Options. (line 14) * INDEX: INDEX intrinsic. (line 6) * INT: INT. (line 6) --- 17260,17272 ---- * IERRNO: IERRNO. (line 6) * IFIX: INT. (line 6) * IMAG: AIMAG. (line 6) * images, cosubscript to image index conversion: IMAGE_INDEX. (line 6) * images, index of this image: THIS_IMAGE. (line 6) * images, number of: NUM_IMAGES. (line 6) + * IMAGE_INDEX: IMAGE_INDEX. (line 6) * IMAGPART: AIMAG. (line 6) ! * 'IMPORT' statement: Fortran 2003 status. (line 113) ! * 'INCLUDE' directive: Directory Options. (line 6) * inclusion, directory search paths for: Directory Options. (line 14) * INDEX: INDEX intrinsic. (line 6) * INT: INT. (line 6) *************** Keyword Index *** 17487,17512 **** * inverse hyperbolic cosine: ACOSH. (line 6) * inverse hyperbolic sine: ASINH. (line 6) * inverse hyperbolic tangent: ATANH. (line 6) ! * IOMSG= specifier: Fortran 2003 status. (line 86) * IOR: IOR. (line 6) ! * IOSTAT, end of file: IS_IOSTAT_END. (line 6) ! * IOSTAT, end of record: IS_IOSTAT_EOR. (line 6) * IPARITY: IPARITY. (line 6) * IRAND: IRAND. (line 6) - * IS_IOSTAT_END: IS_IOSTAT_END. (line 6) - * IS_IOSTAT_EOR: IS_IOSTAT_EOR. (line 6) * ISATTY: ISATTY. (line 6) * ISHFT: ISHFT. (line 6) * ISHFTC: ISHFTC. (line 6) * ISIGN: SIGN. (line 6) * ISNAN: ISNAN. (line 6) ! * ISO_FORTRAN_ENV statement: Fortran 2003 status. (line 123) * ITIME: ITIME. (line 6) * KILL: KILL. (line 6) - * kind: KIND. (line 6) * KIND: KIND. (line 6) * kind: KIND Type Parameters. (line 6) * kind, character: SELECTED_CHAR_KIND. (line 6) * kind, integer: SELECTED_INT_KIND. (line 6) * kind, old-style: Old-style kind specifications. --- 17284,17309 ---- * inverse hyperbolic cosine: ACOSH. (line 6) * inverse hyperbolic sine: ASINH. (line 6) * inverse hyperbolic tangent: ATANH. (line 6) ! * 'IOMSG=' specifier: Fortran 2003 status. (line 86) * IOR: IOR. (line 6) ! * 'IOSTAT', end of file: IS_IOSTAT_END. (line 6) ! * 'IOSTAT', end of record: IS_IOSTAT_EOR. (line 6) * IPARITY: IPARITY. (line 6) * IRAND: IRAND. (line 6) * ISATTY: ISATTY. (line 6) * ISHFT: ISHFT. (line 6) * ISHFTC: ISHFTC. (line 6) * ISIGN: SIGN. (line 6) * ISNAN: ISNAN. (line 6) ! * 'ISO_FORTRAN_ENV' statement: Fortran 2003 status. (line 121) ! * IS_IOSTAT_END: IS_IOSTAT_END. (line 6) ! * IS_IOSTAT_EOR: IS_IOSTAT_EOR. (line 6) * ITIME: ITIME. (line 6) * KILL: KILL. (line 6) * KIND: KIND. (line 6) * kind: KIND Type Parameters. (line 6) + * kind <1>: KIND. (line 6) * kind, character: SELECTED_CHAR_KIND. (line 6) * kind, integer: SELECTED_INT_KIND. (line 6) * kind, old-style: Old-style kind specifications. *************** Keyword Index *** 17521,17534 **** * left shift, combined: DSHIFTL. (line 6) * LEN: LEN. (line 6) * LEN_TRIM: LEN_TRIM. (line 6) - * lexical comparison of strings <1>: LLT. (line 6) - * lexical comparison of strings <2>: LLE. (line 6) - * lexical comparison of strings <3>: LGT. (line 6) * lexical comparison of strings: LGE. (line 6) * LGAMMA: LOG_GAMMA. (line 6) * LGE: LGE. (line 6) * LGT: LGT. (line 6) * libf2c calling convention: Code Gen Options. (line 25) * libgfortran initialization, set_args: _gfortran_set_args. (line 6) * libgfortran initialization, set_convert: _gfortran_set_convert. (line 6) --- 17318,17332 ---- * left shift, combined: DSHIFTL. (line 6) * LEN: LEN. (line 6) * LEN_TRIM: LEN_TRIM. (line 6) * lexical comparison of strings: LGE. (line 6) + * lexical comparison of strings <1>: LGT. (line 6) + * lexical comparison of strings <2>: LLE. (line 6) + * lexical comparison of strings <3>: LLT. (line 6) * LGAMMA: LOG_GAMMA. (line 6) * LGE: LGE. (line 6) * LGT: LGT. (line 6) * libf2c calling convention: Code Gen Options. (line 25) + * libf2c calling convention <1>: Code Gen Options. (line 128) * libgfortran initialization, set_args: _gfortran_set_args. (line 6) * libgfortran initialization, set_convert: _gfortran_set_convert. (line 6) *************** Keyword Index *** 17550,17570 **** * location of a variable in memory: LOC. (line 6) * LOG: LOG. (line 6) * LOG10: LOG10. (line 6) - * LOG_GAMMA: LOG_GAMMA. (line 6) * logarithm function: LOG. (line 6) * logarithm function with base 10: LOG10. (line 6) * logarithm function, inverse: EXP. (line 6) * LOGICAL: LOGICAL. (line 6) - * logical and, bitwise <1>: IAND. (line 6) * logical and, bitwise: AND. (line 6) ! * logical exclusive or, bitwise <1>: XOR. (line 6) * logical exclusive or, bitwise: IEOR. (line 6) * logical not, bitwise: NOT. (line 6) - * logical or, bitwise <1>: OR. (line 6) * logical or, bitwise: IOR. (line 6) * logical, variable representation: Internal representation of LOGICAL variables. (line 6) * login name: GETLOG. (line 6) * LONG: LONG. (line 6) * LSHIFT: LSHIFT. (line 6) * LSTAT: LSTAT. (line 6) --- 17348,17368 ---- * location of a variable in memory: LOC. (line 6) * LOG: LOG. (line 6) * LOG10: LOG10. (line 6) * logarithm function: LOG. (line 6) * logarithm function with base 10: LOG10. (line 6) * logarithm function, inverse: EXP. (line 6) * LOGICAL: LOGICAL. (line 6) * logical and, bitwise: AND. (line 6) ! * logical and, bitwise <1>: IAND. (line 6) * logical exclusive or, bitwise: IEOR. (line 6) + * logical exclusive or, bitwise <1>: XOR. (line 6) * logical not, bitwise: NOT. (line 6) * logical or, bitwise: IOR. (line 6) + * logical or, bitwise <1>: OR. (line 6) * logical, variable representation: Internal representation of LOGICAL variables. (line 6) * login name: GETLOG. (line 6) + * LOG_GAMMA: LOG_GAMMA. (line 6) * LONG: LONG. (line 6) * LSHIFT: LSHIFT. (line 6) * LSTAT: LSTAT. (line 6) *************** Keyword Index *** 17581,17593 **** * MAX0: MAX. (line 6) * MAX1: MAX. (line 6) * MAXEXPONENT: MAXEXPONENT. (line 6) - * maximum value <1>: MAXVAL. (line 6) * maximum value: MAX. (line 6) * MAXLOC: MAXLOC. (line 6) * MAXVAL: MAXVAL. (line 6) * MCLOCK: MCLOCK. (line 6) * MCLOCK8: MCLOCK8. (line 6) ! * memory checking: Code Gen Options. (line 161) * MERGE: MERGE. (line 6) * MERGE_BITS: MERGE_BITS. (line 6) * messages, error: Error and Warning Options. --- 17379,17391 ---- * MAX0: MAX. (line 6) * MAX1: MAX. (line 6) * MAXEXPONENT: MAXEXPONENT. (line 6) * maximum value: MAX. (line 6) + * maximum value <1>: MAXVAL. (line 6) * MAXLOC: MAXLOC. (line 6) * MAXVAL: MAXVAL. (line 6) * MCLOCK: MCLOCK. (line 6) * MCLOCK8: MCLOCK8. (line 6) ! * memory checking: Code Gen Options. (line 159) * MERGE: MERGE. (line 6) * MERGE_BITS: MERGE_BITS. (line 6) * messages, error: Error and Warning Options. *************** Keyword Index *** 17598,17605 **** * MIN0: MIN. (line 6) * MIN1: MIN. (line 6) * MINEXPONENT: MINEXPONENT. (line 6) - * minimum value <1>: MINVAL. (line 6) * minimum value: MIN. (line 6) * MINLOC: MINLOC. (line 6) * MINVAL: MINVAL. (line 6) * Mixed-language programming: Mixed-Language Programming. --- 17396,17403 ---- * MIN0: MIN. (line 6) * MIN1: MIN. (line 6) * MINEXPONENT: MINEXPONENT. (line 6) * minimum value: MIN. (line 6) + * minimum value <1>: MINVAL. (line 6) * MINLOC: MINLOC. (line 6) * MINVAL: MINVAL. (line 6) * Mixed-language programming: Mixed-Language Programming. *************** Keyword Index *** 17618,17625 **** * module entities: Fortran Dialect Options. (line 72) * module search path: Directory Options. (line 14) ! * modulo: MODULO. (line 6) * MODULO: MODULO. (line 6) * MOVE_ALLOC: MOVE_ALLOC. (line 6) * moving allocation: MOVE_ALLOC. (line 6) * multiply array elements: PRODUCT. (line 6) --- 17416,17425 ---- * module entities: Fortran Dialect Options. (line 72) * module search path: Directory Options. (line 14) ! * module search path <1>: Directory Options. (line 29) ! * module search path <2>: Directory Options. (line 36) * MODULO: MODULO. (line 6) + * modulo: MODULO. (line 6) * MOVE_ALLOC: MOVE_ALLOC. (line 6) * moving allocation: MOVE_ALLOC. (line 6) * multiply array elements: PRODUCT. (line 6) *************** Keyword Index *** 17628,17644 **** (line 6) * natural logarithm function: LOG. (line 6) * NEAREST: NEAREST. (line 6) - * NEW_LINE: NEW_LINE. (line 6) * newline: NEW_LINE. (line 6) * NINT: NINT. (line 6) * norm, Euclidean: NORM2. (line 6) * NORM2: NORM2. (line 6) * NOT: NOT. (line 6) * NULL: NULL. (line 6) * NUM_IMAGES: NUM_IMAGES. (line 6) - * OpenMP <1>: OpenMP. (line 6) * OpenMP: Fortran Dialect Options. ! (line 121) * operators, unary: Unary operators. (line 6) * options inquiry function: COMPILER_OPTIONS. (line 6) * options, code generation: Code Gen Options. (line 6) --- 17428,17444 ---- (line 6) * natural logarithm function: LOG. (line 6) * NEAREST: NEAREST. (line 6) * newline: NEW_LINE. (line 6) + * NEW_LINE: NEW_LINE. (line 6) * NINT: NINT. (line 6) * norm, Euclidean: NORM2. (line 6) * NORM2: NORM2. (line 6) * NOT: NOT. (line 6) * NULL: NULL. (line 6) * NUM_IMAGES: NUM_IMAGES. (line 6) * OpenMP: Fortran Dialect Options. ! (line 120) ! * OpenMP <1>: OpenMP. (line 6) * operators, unary: Unary operators. (line 6) * options inquiry function: COMPILER_OPTIONS. (line 6) * options, code generation: Code Gen Options. (line 6) *************** Keyword Index *** 17650,17656 **** (line 6) * options, Fortran dialect: Fortran Dialect Options. (line 11) ! * options, gfortran command: Invoking GNU Fortran. (line 6) * options, linking: Link Options. (line 6) * options, negative forms: Invoking GNU Fortran. --- 17450,17456 ---- (line 6) * options, Fortran dialect: Fortran Dialect Options. (line 11) ! * options, 'gfortran' command: Invoking GNU Fortran. (line 6) * options, linking: Link Options. (line 6) * options, negative forms: Invoking GNU Fortran. *************** Keyword Index *** 17658,17664 **** * options, preprocessor: Preprocessing Options. (line 6) * options, real kind type promotion: Fortran Dialect Options. ! (line 145) * options, run-time: Code Gen Options. (line 6) * options, runtime: Runtime Options. (line 6) * options, warnings: Error and Warning Options. --- 17458,17464 ---- * options, preprocessor: Preprocessing Options. (line 6) * options, real kind type promotion: Fortran Dialect Options. ! (line 144) * options, run-time: Code Gen Options. (line 6) * options, runtime: Runtime Options. (line 6) * options, warnings: Error and Warning Options. *************** Keyword Index *** 17666,17687 **** * OR: OR. (line 6) * output, newline: NEW_LINE. (line 6) * PACK: PACK. (line 6) - * parity: POPPAR. (line 6) - * Parity: PARITY. (line 6) * PARITY: PARITY. (line 6) * paths, search: Directory Options. (line 14) * PERROR: PERROR. (line 6) ! * pointer checking: Code Gen Options. (line 161) * pointer, C address of pointers: C_F_PROCPOINTER. (line 6) * pointer, C address of procedures: C_FUNLOC. (line 6) * pointer, C association status: C_ASSOCIATED. (line 6) * pointer, convert C to Fortran: C_F_POINTER. (line 6) - * pointer, cray <1>: MALLOC. (line 6) - * pointer, cray: FREE. (line 6) * pointer, Cray: Cray pointers. (line 6) * pointer, disassociated: NULL. (line 6) - * pointer, status <1>: NULL. (line 6) * pointer, status: ASSOCIATED. (line 6) * POPCNT: POPCNT. (line 6) * POPPAR: POPPAR. (line 6) * positive difference: DIM. (line 6) --- 17466,17489 ---- * OR: OR. (line 6) * output, newline: NEW_LINE. (line 6) * PACK: PACK. (line 6) * PARITY: PARITY. (line 6) + * Parity: PARITY. (line 6) + * parity: POPPAR. (line 6) * paths, search: Directory Options. (line 14) + * paths, search <1>: Directory Options. (line 29) + * paths, search <2>: Directory Options. (line 36) * PERROR: PERROR. (line 6) ! * pointer checking: Code Gen Options. (line 159) * pointer, C address of pointers: C_F_PROCPOINTER. (line 6) * pointer, C address of procedures: C_FUNLOC. (line 6) * pointer, C association status: C_ASSOCIATED. (line 6) * pointer, convert C to Fortran: C_F_POINTER. (line 6) * pointer, Cray: Cray pointers. (line 6) + * pointer, cray: FREE. (line 6) + * pointer, cray <1>: MALLOC. (line 6) * pointer, disassociated: NULL. (line 6) * pointer, status: ASSOCIATED. (line 6) + * pointer, status <1>: NULL. (line 6) * POPCNT: POPCNT. (line 6) * POPPAR: POPPAR. (line 6) * positive difference: DIM. (line 6) *************** Keyword Index *** 17689,17709 **** * Preprocessing: Preprocessing and conditional compilation. (line 6) * preprocessing, assertion: Preprocessing Options. ! (line 114) * preprocessing, define macros: Preprocessing Options. ! (line 153) * preprocessing, include path: Preprocessing Options. ! (line 70) * preprocessing, keep comments: Preprocessing Options. ! (line 123) * preprocessing, no linemarkers: Preprocessing Options. ! (line 181) * preprocessing, undefine macros: Preprocessing Options. ! (line 187) * preprocessor: Preprocessing Options. (line 6) * preprocessor, debugging: Preprocessing Options. (line 26) * preprocessor, disable: Preprocessing Options. (line 12) * preprocessor, enable: Preprocessing Options. --- 17491,17535 ---- * Preprocessing: Preprocessing and conditional compilation. (line 6) * preprocessing, assertion: Preprocessing Options. ! (line 113) ! * preprocessing, assertion <1>: Preprocessing Options. ! (line 119) * preprocessing, define macros: Preprocessing Options. ! (line 151) ! * preprocessing, define macros <1>: Preprocessing Options. ! (line 154) * preprocessing, include path: Preprocessing Options. ! (line 69) ! * preprocessing, include path <1>: Preprocessing Options. ! (line 76) ! * preprocessing, include path <2>: Preprocessing Options. ! (line 80) ! * preprocessing, include path <3>: Preprocessing Options. ! (line 85) ! * preprocessing, include path <4>: Preprocessing Options. ! (line 89) ! * preprocessing, include path <5>: Preprocessing Options. ! (line 96) * preprocessing, keep comments: Preprocessing Options. ! (line 122) ! * preprocessing, keep comments <1>: Preprocessing Options. ! (line 137) * preprocessing, no linemarkers: Preprocessing Options. ! (line 179) * preprocessing, undefine macros: Preprocessing Options. ! (line 185) * preprocessor: Preprocessing Options. (line 6) * preprocessor, debugging: Preprocessing Options. (line 26) + * preprocessor, debugging <1>: Preprocessing Options. + (line 35) + * preprocessor, debugging <2>: Preprocessing Options. + (line 41) + * preprocessor, debugging <3>: Preprocessing Options. + (line 44) + * preprocessor, debugging <4>: Preprocessing Options. + (line 51) * preprocessor, disable: Preprocessing Options. (line 12) * preprocessor, enable: Preprocessing Options. *************** Keyword Index *** 17723,17800 **** * product, vector: DOT_PRODUCT. (line 6) * program termination: EXIT. (line 6) * program termination, with core dump: ABORT. (line 6) ! * PROTECTED statement: Fortran 2003 status. (line 109) ! * Q exponent-letter: Q exponent-letter. (line 6) * RADIX: RADIX. (line 6) * radix, real: SELECTED_REAL_KIND. (line 6) * RAN: RAN. (line 6) * RAND: RAND. (line 6) - * random number generation <1>: RANDOM_NUMBER. (line 6) - * random number generation <2>: RAND. (line 6) - * random number generation <3>: RAN. (line 6) * random number generation: IRAND. (line 6) ! * random number generation, seeding <1>: SRAND. (line 6) * random number generation, seeding: RANDOM_SEED. (line 6) * RANDOM_NUMBER: RANDOM_NUMBER. (line 6) * RANDOM_SEED: RANDOM_SEED. (line 6) * RANGE: RANGE. (line 6) ! * range checking: Code Gen Options. (line 161) ! * rank: RANK. (line 6) * RANK: RANK. (line 6) * re-association of parenthesized expressions: Code Gen Options. ! (line 346) ! * read character, stream mode <1>: FGETC. (line 6) * read character, stream mode: FGET. (line 6) * REAL: REAL. (line 6) * real kind: SELECTED_REAL_KIND. (line 6) * real number, exponent: EXPONENT. (line 6) * real number, fraction: FRACTION. (line 6) * real number, nearest different: NEAREST. (line 6) - * real number, relative spacing <1>: SPACING. (line 6) * real number, relative spacing: RRSPACING. (line 6) * real number, scale: SCALE. (line 6) * real number, set exponent: SET_EXPONENT. (line 6) ! * Reallocate the LHS in assignments: Code Gen Options. (line 355) * Reallocate the LHS in assignments, notification: Error and Warning Options. (line 208) * REALPART: REAL. (line 6) ! * RECORD: STRUCTURE and RECORD. (line 6) * Reduction, XOR: PARITY. (line 6) * remainder: MOD. (line 6) * RENAME: RENAME. (line 6) ! * repacking arrays: Code Gen Options. (line 262) * REPEAT: REPEAT. (line 6) * RESHAPE: RESHAPE. (line 6) * right shift, combined: DSHIFTR. (line 6) * root: SQRT. (line 6) - * rounding, ceiling <1>: CEILING. (line 6) * rounding, ceiling: ANINT. (line 6) ! * rounding, floor <1>: FLOOR. (line 6) * rounding, floor: AINT. (line 6) * rounding, nearest whole number: NINT. (line 6) * RRSPACING: RRSPACING. (line 6) * RSHIFT: RSHIFT. (line 6) ! * run-time checking: Code Gen Options. (line 161) * SAME_TYPE_AS: SAME_TYPE_AS. (line 6) ! * SAVE statement: Code Gen Options. (line 15) * SCALE: SCALE. (line 6) * SCAN: SCAN. (line 6) * search path: Directory Options. (line 6) * search paths, for included files: Directory Options. (line 14) * SECNDS: SECNDS. (line 6) * SECOND: SECOND. (line 6) - * seeding a random number generator <1>: SRAND. (line 6) * seeding a random number generator: RANDOM_SEED. (line 6) * SELECTED_CHAR_KIND: SELECTED_CHAR_KIND. (line 6) * SELECTED_INT_KIND: SELECTED_INT_KIND. (line 6) * SELECTED_REAL_KIND: SELECTED_REAL_KIND. (line 6) * SET_EXPONENT: SET_EXPONENT. (line 6) * SHAPE: SHAPE. (line 6) - * shift, left <1>: SHIFTL. (line 6) * shift, left: DSHIFTL. (line 6) ! * shift, right <1>: SHIFTR. (line 6) * shift, right: DSHIFTR. (line 6) * shift, right with fill: SHIFTA. (line 6) * SHIFTA: SHIFTA. (line 6) * SHIFTL: SHIFTL. (line 6) --- 17549,17626 ---- * product, vector: DOT_PRODUCT. (line 6) * program termination: EXIT. (line 6) * program termination, with core dump: ABORT. (line 6) ! * 'PROTECTED' statement: Fortran 2003 status. (line 107) ! * 'Q' exponent-letter: 'Q' exponent-letter. (line 6) * RADIX: RADIX. (line 6) * radix, real: SELECTED_REAL_KIND. (line 6) * RAN: RAN. (line 6) * RAND: RAND. (line 6) * random number generation: IRAND. (line 6) ! * random number generation <1>: RAN. (line 6) ! * random number generation <2>: RAND. (line 6) ! * random number generation <3>: RANDOM_NUMBER. (line 6) * random number generation, seeding: RANDOM_SEED. (line 6) + * random number generation, seeding <1>: SRAND. (line 6) * RANDOM_NUMBER: RANDOM_NUMBER. (line 6) * RANDOM_SEED: RANDOM_SEED. (line 6) * RANGE: RANGE. (line 6) ! * range checking: Code Gen Options. (line 159) * RANK: RANK. (line 6) + * rank: RANK. (line 6) * re-association of parenthesized expressions: Code Gen Options. ! (line 342) * read character, stream mode: FGET. (line 6) + * read character, stream mode <1>: FGETC. (line 6) * REAL: REAL. (line 6) * real kind: SELECTED_REAL_KIND. (line 6) * real number, exponent: EXPONENT. (line 6) * real number, fraction: FRACTION. (line 6) * real number, nearest different: NEAREST. (line 6) * real number, relative spacing: RRSPACING. (line 6) + * real number, relative spacing <1>: SPACING. (line 6) * real number, scale: SCALE. (line 6) * real number, set exponent: SET_EXPONENT. (line 6) ! * Reallocate the LHS in assignments: Code Gen Options. (line 351) * Reallocate the LHS in assignments, notification: Error and Warning Options. (line 208) * REALPART: REAL. (line 6) ! * 'RECORD': STRUCTURE and RECORD. (line 6) * Reduction, XOR: PARITY. (line 6) * remainder: MOD. (line 6) * RENAME: RENAME. (line 6) ! * repacking arrays: Code Gen Options. (line 261) * REPEAT: REPEAT. (line 6) * RESHAPE: RESHAPE. (line 6) * right shift, combined: DSHIFTR. (line 6) * root: SQRT. (line 6) * rounding, ceiling: ANINT. (line 6) ! * rounding, ceiling <1>: CEILING. (line 6) * rounding, floor: AINT. (line 6) + * rounding, floor <1>: FLOOR. (line 6) * rounding, nearest whole number: NINT. (line 6) * RRSPACING: RRSPACING. (line 6) * RSHIFT: RSHIFT. (line 6) ! * run-time checking: Code Gen Options. (line 159) * SAME_TYPE_AS: SAME_TYPE_AS. (line 6) ! * 'SAVE' statement: Code Gen Options. (line 15) * SCALE: SCALE. (line 6) * SCAN: SCAN. (line 6) * search path: Directory Options. (line 6) * search paths, for included files: Directory Options. (line 14) * SECNDS: SECNDS. (line 6) * SECOND: SECOND. (line 6) * seeding a random number generator: RANDOM_SEED. (line 6) + * seeding a random number generator <1>: SRAND. (line 6) * SELECTED_CHAR_KIND: SELECTED_CHAR_KIND. (line 6) * SELECTED_INT_KIND: SELECTED_INT_KIND. (line 6) * SELECTED_REAL_KIND: SELECTED_REAL_KIND. (line 6) * SET_EXPONENT: SET_EXPONENT. (line 6) * SHAPE: SHAPE. (line 6) * shift, left: DSHIFTL. (line 6) ! * shift, left <1>: SHIFTL. (line 6) * shift, right: DSHIFTR. (line 6) + * shift, right <1>: SHIFTR. (line 6) * shift, right with fill: SHIFTA. (line 6) * SHIFTA: SHIFTA. (line 6) * SHIFTL: SHIFTL. (line 6) *************** Keyword Index *** 17811,17818 **** * SINH: SINH. (line 6) * SIZE: SIZE. (line 6) * size of a variable, in bits: BIT_SIZE. (line 6) - * size of an expression <1>: SIZEOF. (line 6) * size of an expression: C_SIZEOF. (line 6) * SIZEOF: SIZEOF. (line 6) * SLEEP: SLEEP. (line 6) * SNGL: REAL. (line 6) --- 17637,17644 ---- * SINH: SINH. (line 6) * SIZE: SIZE. (line 6) * size of a variable, in bits: BIT_SIZE. (line 6) * size of an expression: C_SIZEOF. (line 6) + * size of an expression <1>: SIZEOF. (line 6) * SIZEOF: SIZEOF. (line 6) * SLEEP: SLEEP. (line 6) * SNGL: REAL. (line 6) *************** Keyword Index *** 17823,17851 **** * SRAND: SRAND. (line 6) * Standards: Standards. (line 6) * STAT: STAT. (line 6) ! * statement, ENUM: Fortran 2003 status. (line 88) ! * statement, ENUMERATOR: Fortran 2003 status. (line 88) ! * statement, FLUSH: Fortran 2003 status. (line 84) ! * statement, IMPORT: Fortran 2003 status. (line 115) ! * statement, ISO_FORTRAN_ENV: Fortran 2003 status. (line 123) ! * statement, PROTECTED: Fortran 2003 status. (line 109) ! * statement, SAVE: Code Gen Options. (line 15) ! * statement, USE, INTRINSIC: Fortran 2003 status. (line 123) ! * statement, VALUE: Fortran 2003 status. (line 111) ! * statement, VOLATILE: Fortran 2003 status. (line 113) * storage size: STORAGE_SIZE. (line 6) * STORAGE_SIZE: STORAGE_SIZE. (line 6) ! * STREAM I/O: Fortran 2003 status. (line 100) ! * stream mode, read character <1>: FGETC. (line 6) * stream mode, read character: FGET. (line 6) ! * stream mode, write character <1>: FPUTC. (line 6) * stream mode, write character: FPUT. (line 6) * string, adjust left: ADJUSTL. (line 6) * string, adjust right: ADJUSTR. (line 6) - * string, comparison <1>: LLT. (line 6) - * string, comparison <2>: LLE. (line 6) - * string, comparison <3>: LGT. (line 6) * string, comparison: LGE. (line 6) * string, concatenate: REPEAT. (line 6) * string, find missing set: VERIFY. (line 6) * string, find non-blank character: LNBLNK. (line 6) --- 17649,17677 ---- * SRAND: SRAND. (line 6) * Standards: Standards. (line 6) * STAT: STAT. (line 6) ! * statement, 'ENUM': Fortran 2003 status. (line 88) ! * statement, 'ENUMERATOR': Fortran 2003 status. (line 88) ! * statement, 'FLUSH': Fortran 2003 status. (line 84) ! * statement, 'IMPORT': Fortran 2003 status. (line 113) ! * statement, 'ISO_FORTRAN_ENV': Fortran 2003 status. (line 121) ! * statement, 'PROTECTED': Fortran 2003 status. (line 107) ! * statement, 'SAVE': Code Gen Options. (line 15) ! * statement, 'USE, INTRINSIC': Fortran 2003 status. (line 121) ! * statement, 'VALUE': Fortran 2003 status. (line 109) ! * statement, 'VOLATILE': Fortran 2003 status. (line 111) * storage size: STORAGE_SIZE. (line 6) * STORAGE_SIZE: STORAGE_SIZE. (line 6) ! * 'STREAM' I/O: Fortran 2003 status. (line 98) * stream mode, read character: FGET. (line 6) ! * stream mode, read character <1>: FGETC. (line 6) * stream mode, write character: FPUT. (line 6) + * stream mode, write character <1>: FPUTC. (line 6) * string, adjust left: ADJUSTL. (line 6) * string, adjust right: ADJUSTR. (line 6) * string, comparison: LGE. (line 6) + * string, comparison <1>: LGT. (line 6) + * string, comparison <2>: LLE. (line 6) + * string, comparison <3>: LLT. (line 6) * string, concatenate: REPEAT. (line 6) * string, find missing set: VERIFY. (line 6) * string, find non-blank character: LNBLNK. (line 6) *************** Keyword Index *** 17857,17866 **** * string, repeat: REPEAT. (line 6) * strings, varying length: Varying Length Character Strings. (line 6) ! * STRUCTURE: STRUCTURE and RECORD. (line 6) ! * structure packing: Code Gen Options. (line 256) ! * subscript checking: Code Gen Options. (line 161) * substring position: INDEX intrinsic. (line 6) * SUM: SUM. (line 6) * sum array elements: SUM. (line 6) --- 17683,17692 ---- * string, repeat: REPEAT. (line 6) * strings, varying length: Varying Length Character Strings. (line 6) ! * 'STRUCTURE': STRUCTURE and RECORD. (line 6) ! * structure packing: Code Gen Options. (line 255) ! * subscript checking: Code Gen Options. (line 159) * substring position: INDEX intrinsic. (line 6) * SUM: SUM. (line 6) * sum array elements: SUM. (line 6) *************** Keyword Index *** 17869,17895 **** * symbol names: Fortran Dialect Options. (line 54) * symbol names, transforming: Code Gen Options. (line 54) * symbol names, underscores: Code Gen Options. (line 54) * SYMLNK: SYMLNK. (line 6) * syntax checking: Error and Warning Options. (line 33) * SYSTEM: SYSTEM. (line 6) - * system, error handling <1>: PERROR. (line 6) - * system, error handling <2>: IERRNO. (line 6) * system, error handling: GERROR. (line 6) * system, group ID: GETGID. (line 6) * system, host name: HOSTNM. (line 6) * system, login name: GETLOG. (line 6) * system, process ID: GETPID. (line 6) * system, signal handling: SIGNAL. (line 6) - * system, system call <1>: SYSTEM. (line 6) * system, system call: EXECUTE_COMMAND_LINE. (line 6) ! * system, terminal <1>: TTYNAM. (line 6) * system, terminal: ISATTY. (line 6) * system, user ID: GETUID. (line 6) - * system, working directory <1>: GETCWD. (line 6) * system, working directory: CHDIR. (line 6) * SYSTEM_CLOCK: SYSTEM_CLOCK. (line 6) * tabulators: Error and Warning Options. (line 168) --- 17695,17723 ---- * symbol names: Fortran Dialect Options. (line 54) * symbol names, transforming: Code Gen Options. (line 54) + * symbol names, transforming <1>: Code Gen Options. (line 128) * symbol names, underscores: Code Gen Options. (line 54) + * symbol names, underscores <1>: Code Gen Options. (line 128) * SYMLNK: SYMLNK. (line 6) * syntax checking: Error and Warning Options. (line 33) * SYSTEM: SYSTEM. (line 6) * system, error handling: GERROR. (line 6) + * system, error handling <1>: IERRNO. (line 6) + * system, error handling <2>: PERROR. (line 6) * system, group ID: GETGID. (line 6) * system, host name: HOSTNM. (line 6) * system, login name: GETLOG. (line 6) * system, process ID: GETPID. (line 6) * system, signal handling: SIGNAL. (line 6) * system, system call: EXECUTE_COMMAND_LINE. (line 6) ! * system, system call <1>: SYSTEM. (line 6) * system, terminal: ISATTY. (line 6) + * system, terminal <1>: TTYNAM. (line 6) * system, user ID: GETUID. (line 6) * system, working directory: CHDIR. (line 6) + * system, working directory <1>: GETCWD. (line 6) * SYSTEM_CLOCK: SYSTEM_CLOCK. (line 6) * tabulators: Error and Warning Options. (line 168) *************** Keyword Index *** 17897,17904 **** * tangent: TAN. (line 6) * tangent, hyperbolic: TANH. (line 6) * tangent, hyperbolic, inverse: ATANH. (line 6) - * tangent, inverse <1>: ATAN2. (line 6) * tangent, inverse: ATAN. (line 6) * TANH: TANH. (line 6) * terminate program: EXIT. (line 6) * terminate program, with core dump: ABORT. (line 6) --- 17725,17732 ---- * tangent: TAN. (line 6) * tangent, hyperbolic: TANH. (line 6) * tangent, hyperbolic, inverse: ATANH. (line 6) * tangent, inverse: ATAN. (line 6) + * tangent, inverse <1>: ATAN2. (line 6) * TANH: TANH. (line 6) * terminate program: EXIT. (line 6) * terminate program, with core dump: ABORT. (line 6) *************** Keyword Index *** 17906,17943 **** * thread-safety, threads: Thread-safety of the runtime library. (line 6) * TIME: TIME. (line 6) - * time, clock ticks <1>: SYSTEM_CLOCK. (line 6) - * time, clock ticks <2>: MCLOCK8. (line 6) * time, clock ticks: MCLOCK. (line 6) * time, conversion to GMT info: GMTIME. (line 6) * time, conversion to local time info: LTIME. (line 6) * time, conversion to string: CTIME. (line 6) - * time, current <1>: TIME8. (line 6) - * time, current <2>: TIME. (line 6) - * time, current <3>: ITIME. (line 6) - * time, current <4>: FDATE. (line 6) * time, current: DATE_AND_TIME. (line 6) ! * time, elapsed <1>: SECOND. (line 6) ! * time, elapsed <2>: SECNDS. (line 6) ! * time, elapsed <3>: ETIME. (line 6) ! * time, elapsed <4>: DTIME. (line 6) * time, elapsed: CPU_TIME. (line 6) * TIME8: TIME8. (line 6) * TINY: TINY. (line 6) * TR 15581: Fortran 2003 status. (line 93) ! * trace: Debugging Options. (line 51) * TRAILZ: TRAILZ. (line 6) * TRANSFER: TRANSFER. (line 6) * transforming symbol names: Code Gen Options. (line 54) ! * transpose: TRANSPOSE. (line 6) * TRANSPOSE: TRANSPOSE. (line 6) * trigonometric function, cosine: COS. (line 6) * trigonometric function, cosine, inverse: ACOS. (line 6) * trigonometric function, sine: SIN. (line 6) * trigonometric function, sine, inverse: ASIN. (line 6) * trigonometric function, tangent: TAN. (line 6) - * trigonometric function, tangent, inverse <1>: ATAN2. (line 6) * trigonometric function, tangent, inverse: ATAN. (line 6) * TRIM: TRIM. (line 6) * TTYNAM: TTYNAM. (line 6) * type cast: TRANSFER. (line 6) --- 17734,17772 ---- * thread-safety, threads: Thread-safety of the runtime library. (line 6) * TIME: TIME. (line 6) * time, clock ticks: MCLOCK. (line 6) + * time, clock ticks <1>: MCLOCK8. (line 6) + * time, clock ticks <2>: SYSTEM_CLOCK. (line 6) * time, conversion to GMT info: GMTIME. (line 6) * time, conversion to local time info: LTIME. (line 6) * time, conversion to string: CTIME. (line 6) * time, current: DATE_AND_TIME. (line 6) ! * time, current <1>: FDATE. (line 6) ! * time, current <2>: ITIME. (line 6) ! * time, current <3>: TIME. (line 6) ! * time, current <4>: TIME8. (line 6) * time, elapsed: CPU_TIME. (line 6) + * time, elapsed <1>: DTIME. (line 6) + * time, elapsed <2>: ETIME. (line 6) + * time, elapsed <3>: SECNDS. (line 6) + * time, elapsed <4>: SECOND. (line 6) * TIME8: TIME8. (line 6) * TINY: TINY. (line 6) * TR 15581: Fortran 2003 status. (line 93) ! * trace: Debugging Options. (line 50) * TRAILZ: TRAILZ. (line 6) * TRANSFER: TRANSFER. (line 6) * transforming symbol names: Code Gen Options. (line 54) ! * transforming symbol names <1>: Code Gen Options. (line 128) * TRANSPOSE: TRANSPOSE. (line 6) + * transpose: TRANSPOSE. (line 6) * trigonometric function, cosine: COS. (line 6) * trigonometric function, cosine, inverse: ACOS. (line 6) * trigonometric function, sine: SIN. (line 6) * trigonometric function, sine, inverse: ASIN. (line 6) * trigonometric function, tangent: TAN. (line 6) * trigonometric function, tangent, inverse: ATAN. (line 6) + * trigonometric function, tangent, inverse <1>: ATAN2. (line 6) * TRIM: TRIM. (line 6) * TTYNAM: TTYNAM. (line 6) * type cast: TRANSFER. (line 6) *************** Keyword Index *** 17947,17961 **** * underflow: Error and Warning Options. (line 176) * underscore: Code Gen Options. (line 54) * UNLINK: UNLINK. (line 6) * UNPACK: UNPACK. (line 6) * unused dummy argument: Error and Warning Options. (line 187) * unused parameter: Error and Warning Options. (line 191) ! * USE, INTRINSIC statement: Fortran 2003 status. (line 123) * user id: GETUID. (line 6) ! * VALUE statement: Fortran 2003 status. (line 111) * Varying length character strings: Varying Length Character Strings. (line 6) * Varying length strings: Varying Length Character Strings. --- 17776,17791 ---- * underflow: Error and Warning Options. (line 176) * underscore: Code Gen Options. (line 54) + * underscore <1>: Code Gen Options. (line 128) * UNLINK: UNLINK. (line 6) * UNPACK: UNPACK. (line 6) * unused dummy argument: Error and Warning Options. (line 187) * unused parameter: Error and Warning Options. (line 191) ! * 'USE, INTRINSIC' statement: Fortran 2003 status. (line 121) * user id: GETUID. (line 6) ! * 'VALUE' statement: Fortran 2003 status. (line 109) * Varying length character strings: Varying Length Character Strings. (line 6) * Varying length strings: Varying Length Character Strings. *************** Keyword Index *** 17963,17974 **** * vector product: DOT_PRODUCT. (line 6) * VERIFY: VERIFY. (line 6) * version of the compiler: COMPILER_VERSION. (line 6) ! * VOLATILE statement: Fortran 2003 status. (line 113) * warning, C binding type: Error and Warning Options. (line 99) * warnings, aliasing: Error and Warning Options. (line 69) ! * warnings, alignment of COMMON blocks: Error and Warning Options. (line 198) * warnings, all: Error and Warning Options. (line 61) --- 17793,17804 ---- * vector product: DOT_PRODUCT. (line 6) * VERIFY: VERIFY. (line 6) * version of the compiler: COMPILER_VERSION. (line 6) ! * 'VOLATILE' statement: Fortran 2003 status. (line 111) * warning, C binding type: Error and Warning Options. (line 99) * warnings, aliasing: Error and Warning Options. (line 69) ! * warnings, alignment of 'COMMON' blocks: Error and Warning Options. (line 198) * warnings, all: Error and Warning Options. (line 61) *************** Keyword Index *** 17980,17985 **** --- 17810,17817 ---- (line 106) * warnings, conversion: Error and Warning Options. (line 113) + * warnings, conversion <1>: Error and Warning Options. + (line 117) * warnings, extra: Error and Warning Options. (line 120) * warnings, function elimination: Error and Warning Options. *************** Keyword Index *** 17996,18002 **** (line 109) * warnings, non-standard intrinsics: Error and Warning Options. (line 135) ! * warnings, q exponent-letter: Error and Warning Options. (line 142) * warnings, suppressing: Error and Warning Options. (line 6) --- 17828,17834 ---- (line 109) * warnings, non-standard intrinsics: Error and Warning Options. (line 135) ! * warnings, 'q' exponent-letter: Error and Warning Options. (line 142) * warnings, suppressing: Error and Warning Options. (line 6) *************** Keyword Index *** 18005,18025 **** * warnings, tabs: Error and Warning Options. (line 168) * warnings, to errors: Error and Warning Options. ! (line 234) * warnings, underflow: Error and Warning Options. (line 176) * warnings, unused dummy argument: Error and Warning Options. (line 187) * warnings, unused parameter: Error and Warning Options. (line 191) - * write character, stream mode <1>: FPUTC. (line 6) * write character, stream mode: FPUT. (line 6) * XOR: XOR. (line 6) * XOR reduction: PARITY. (line 6) * ZABS: ABS. (line 6) * ZCOS: COS. (line 6) - * zero bits <1>: TRAILZ. (line 6) * zero bits: LEADZ. (line 6) * ZEXP: EXP. (line 6) * ZLOG: LOG. (line 6) * ZSIN: SIN. (line 6) --- 17837,17857 ---- * warnings, tabs: Error and Warning Options. (line 168) * warnings, to errors: Error and Warning Options. ! (line 233) * warnings, underflow: Error and Warning Options. (line 176) * warnings, unused dummy argument: Error and Warning Options. (line 187) * warnings, unused parameter: Error and Warning Options. (line 191) * write character, stream mode: FPUT. (line 6) + * write character, stream mode <1>: FPUTC. (line 6) * XOR: XOR. (line 6) * XOR reduction: PARITY. (line 6) * ZABS: ABS. (line 6) * ZCOS: COS. (line 6) * zero bits: LEADZ. (line 6) + * zero bits <1>: TRAILZ. (line 6) * ZEXP: EXP. (line 6) * ZLOG: LOG. (line 6) * ZSIN: SIN. (line 6) *************** Keyword Index *** 18028,18385 ****  Tag Table: ! Node: Top1990 ! Node: Introduction3377 ! Node: About GNU Fortran4126 ! Node: GNU Fortran and GCC8115 ! Node: Preprocessing and conditional compilation10229 ! Node: GNU Fortran and G7711873 ! Node: Project Status12446 ! Node: Standards14893 ! Node: Varying Length Character Strings15906 ! Node: Invoking GNU Fortran16657 ! Node: Option Summary18380 ! Node: Fortran Dialect Options21783 ! Node: Preprocessing Options30279 ! Node: Error and Warning Options38510 ! Node: Debugging Options48571 ! Node: Directory Options51554 ! Node: Link Options52989 ! Node: Runtime Options53613 ! Node: Code Gen Options55518 ! Node: Environment Variables72500 ! Node: Runtime73105 ! Node: TMPDIR74207 ! Node: GFORTRAN_STDIN_UNIT74876 ! Node: GFORTRAN_STDOUT_UNIT75258 ! Node: GFORTRAN_STDERR_UNIT75659 ! Node: GFORTRAN_UNBUFFERED_ALL76061 ! Node: GFORTRAN_UNBUFFERED_PRECONNECTED76592 ! Node: GFORTRAN_SHOW_LOCUS77236 ! Node: GFORTRAN_OPTIONAL_PLUS77732 ! Node: GFORTRAN_DEFAULT_RECL78208 ! Node: GFORTRAN_LIST_SEPARATOR78697 ! Node: GFORTRAN_CONVERT_UNIT79306 ! Node: GFORTRAN_ERROR_BACKTRACE82169 ! Node: Fortran 2003 and 2008 status82726 ! Node: Fortran 2003 status82986 ! Node: Fortran 2008 status87883 ! Node: TS 29113 status92668 ! Node: Compiler Characteristics93644 ! Node: KIND Type Parameters94180 ! Node: Internal representation of LOGICAL variables95430 ! Node: Thread-safety of the runtime library96787 ! Node: Data consistency and durability98214 ! Node: Extensions101256 ! Node: Extensions implemented in GNU Fortran101861 ! Node: Old-style kind specifications103219 ! Node: Old-style variable initialization104326 ! Node: Extensions to namelist105638 ! Node: X format descriptor without count field107635 ! Node: Commas in FORMAT specifications108162 ! Node: Missing period in FORMAT specifications108679 ! Node: I/O item lists109241 ! Node: `Q' exponent-letter109628 ! Node: BOZ literal constants110228 ! Node: Real array indices112807 ! Node: Unary operators113106 ! Node: Implicitly convert LOGICAL and INTEGER values113520 ! Node: Hollerith constants support114480 ! Node: Cray pointers116252 ! Node: CONVERT specifier121699 ! Node: OpenMP123697 ! Node: Argument list functions125948 ! Node: Extensions not implemented in GNU Fortran127554 ! Node: STRUCTURE and RECORD128476 ! Node: ENCODE and DECODE statements130912 ! Node: Variable FORMAT expressions132272 ! Node: Alternate complex function syntax133377 ! Node: Mixed-Language Programming133897 ! Node: Interoperability with C134437 ! Node: Intrinsic Types135775 ! Node: Derived Types and struct136290 ! Node: Interoperable Global Variables137647 ! Node: Interoperable Subroutines and Functions138923 ! Node: Working with Pointers142719 ! Node: Further Interoperability of Fortran with C147195 ! Node: GNU Fortran Compiler Directives150545 ! Node: Non-Fortran Main Program152737 ! Node: _gfortran_set_args154879 ! Node: _gfortran_set_options155814 ! Node: _gfortran_set_convert158534 ! Node: _gfortran_set_record_marker159398 ! Node: _gfortran_set_fpe160206 ! Node: _gfortran_set_max_subrecord_length161398 ! Node: Intrinsic Procedures162318 ! Node: Introduction to Intrinsics177804 ! Node: ABORT180156 ! Node: ABS180902 ! Node: ACCESS182519 ! Node: ACHAR184440 ! Node: ACOS185641 ! Node: ACOSH186878 ! Node: ADJUSTL187866 ! Node: ADJUSTR188807 ! Node: AIMAG189754 ! Node: AINT191135 ! Node: ALARM192722 ! Node: ALL194356 ! Node: ALLOCATED196274 ! Node: AND197411 ! Node: ANINT198708 ! Node: ANY200186 ! Node: ASIN202116 ! Node: ASINH203342 ! Node: ASSOCIATED204340 ! Node: ATAN207345 ! Node: ATAN2208764 ! Node: ATANH210536 ! Node: ATOMIC_DEFINE211536 ! Node: ATOMIC_REF212710 ! Node: BACKTRACE214070 ! Node: BESSEL_J0214649 ! Node: BESSEL_J1215697 ! Node: BESSEL_JN216749 ! Node: BESSEL_Y0218631 ! Node: BESSEL_Y1219631 ! Node: BESSEL_YN220631 ! Node: BGE222463 ! Node: BGT223152 ! Node: BIT_SIZE223799 ! Node: BLE224620 ! Node: BLT225299 ! Node: BTEST225934 ! Node: C_ASSOCIATED226817 ! Node: C_F_POINTER228026 ! Node: C_F_PROCPOINTER229450 ! Node: C_FUNLOC230951 ! Node: C_LOC232320 ! Node: C_SIZEOF233597 ! Node: CEILING235007 ! Node: CHAR236012 ! Node: CHDIR237216 ! Node: CHMOD238384 ! Node: CMPLX240247 ! Node: COMMAND_ARGUMENT_COUNT241711 ! Node: COMPILER_OPTIONS242634 ! Node: COMPILER_VERSION243660 ! Node: COMPLEX244624 ! Node: CONJG245761 ! Node: COS246832 ! Node: COSH248278 ! Node: COUNT249443 ! Node: CPU_TIME251459 ! Node: CSHIFT252813 ! Node: CTIME254469 ! Node: DATE_AND_TIME256122 ! Node: DBLE258583 ! Node: DCMPLX259376 ! Node: DIGITS260570 ! Node: DIM261536 ! Node: DOT_PRODUCT262794 ! Node: DPROD264450 ! Node: DREAL265367 ! Node: DSHIFTL266033 ! Node: DSHIFTR267353 ! Node: DTIME268674 ! Node: EOSHIFT271477 ! Node: EPSILON273550 ! Node: ERF274276 ! Node: ERFC275050 ! Node: ERFC_SCALED275854 ! Node: ETIME276546 ! Node: EXECUTE_COMMAND_LINE278787 ! Node: EXIT281367 ! Node: EXP282241 ! Node: EXPONENT283514 ! Node: EXTENDS_TYPE_OF284274 ! Node: FDATE285127 ! Node: FGET286609 ! Node: FGETC288427 ! Node: FLOOR290226 ! Node: FLUSH291210 ! Node: FNUM293085 ! Node: FPUT293807 ! Node: FPUTC295432 ! Node: FRACTION297203 ! Node: FREE298104 ! Node: FSEEK298939 ! Node: FSTAT301233 ! Node: FTELL302313 ! Node: GAMMA303291 ! Node: GERROR304332 ! Node: GETARG305051 ! Node: GET_COMMAND306815 ! Node: GET_COMMAND_ARGUMENT308179 ! Node: GETCWD310215 ! Node: GETENV311189 ! Node: GET_ENVIRONMENT_VARIABLE312614 ! Node: GETGID314767 ! Node: GETLOG315304 ! Node: GETPID316164 ! Node: GETUID316894 ! Node: GMTIME317410 ! Node: HOSTNM318899 ! Node: HUGE319817 ! Node: HYPOT320538 ! Node: IACHAR321358 ! Node: IALL322538 ! Node: IAND324015 ! Node: IANY324999 ! Node: IARGC326485 ! Node: IBCLR327506 ! Node: IBITS328167 ! Node: IBSET329082 ! Node: ICHAR329738 ! Node: IDATE331910 ! Node: IEOR332937 ! Node: IERRNO333813 ! Node: IMAGE_INDEX334362 ! Node: INDEX intrinsic335386 ! Node: INT336927 ! Node: INT2338629 ! Node: INT8339394 ! Node: IOR340106 ! Node: IPARITY340958 ! Node: IRAND342482 ! Node: IS_IOSTAT_END343838 ! Node: IS_IOSTAT_EOR344935 ! Node: ISATTY346062 ! Node: ISHFT346845 ! Node: ISHFTC347825 ! Node: ISNAN349041 ! Node: ITIME349789 ! Node: KILL350814 ! Node: KIND351718 ! Node: LBOUND352563 ! Node: LCOBOUND353896 ! Node: LEADZ355026 ! Node: LEN355886 ! Node: LEN_TRIM357167 ! Node: LGE358149 ! Node: LGT359651 ! Node: LINK361118 ! Node: LLE362153 ! Node: LLT363647 ! Node: LNBLNK365107 ! Node: LOC365883 ! Node: LOG366614 ! Node: LOG10368017 ! Node: LOG_GAMMA368991 ! Node: LOGICAL370080 ! Node: LONG370888 ! Node: LSHIFT371644 ! Node: LSTAT372729 ! Node: LTIME373923 ! Node: MALLOC375334 ! Node: MASKL376793 ! Node: MASKR377556 ! Node: MATMUL378322 ! Node: MAX379411 ! Node: MAXEXPONENT380910 ! Node: MAXLOC381726 ! Node: MAXVAL383745 ! Node: MCLOCK385378 ! Node: MCLOCK8386402 ! Node: MERGE387635 ! Node: MERGE_BITS388384 ! Node: MIN389245 ! Node: MINEXPONENT390746 ! Node: MINLOC391376 ! Node: MINVAL393395 ! Node: MOD395047 ! Node: MODULO396792 ! Node: MOVE_ALLOC398092 ! Node: MVBITS399121 ! Node: NEAREST400180 ! Node: NEW_LINE401276 ! Node: NINT402047 ! Node: NORM2403450 ! Node: NOT404588 ! Node: NULL405172 ! Node: NUM_IMAGES406077 ! Node: OR406893 ! Node: PACK408177 ! Node: PARITY410169 ! Node: PERROR411384 ! Node: POPCNT412005 ! Node: POPPAR412876 ! Node: PRECISION413927 ! Node: PRESENT414813 ! Node: PRODUCT415919 ! Node: RADIX417444 ! Node: RAN418256 ! Node: RAND418712 ! Node: RANDOM_NUMBER420044 ! Node: RANDOM_SEED421761 ! Node: RANGE425439 ! Node: RANK426135 ! Node: REAL426916 ! Node: RENAME428691 ! Node: REPEAT429710 ! Node: RESHAPE430436 ! Node: RRSPACING431905 ! Node: RSHIFT432598 ! Node: SAME_TYPE_AS433736 ! Node: SCALE434566 ! Node: SCAN435346 ! Node: SECNDS436896 ! Node: SECOND437984 ! Node: SELECTED_CHAR_KIND438860 ! Node: SELECTED_INT_KIND440451 ! Node: SELECTED_REAL_KIND441626 ! Node: SET_EXPONENT444292 ! Node: SHAPE445288 ! Node: SHIFTA446703 ! Node: SHIFTL447664 ! Node: SHIFTR448499 ! Node: SIGN449335 ! Node: SIGNAL450619 ! Node: SIN452116 ! Node: SINH453214 ! Node: SIZE454210 ! Node: SIZEOF455518 ! Node: SLEEP456993 ! Node: SPACING457553 ! Node: SPREAD458566 ! Node: SQRT459711 ! Node: SRAND461065 ! Node: STAT462233 ! Node: STORAGE_SIZE465400 ! Node: SUM466279 ! Node: SYMLNK467762 ! Node: SYSTEM468894 ! Node: SYSTEM_CLOCK470145 ! Node: TAN472261 ! Node: TANH473233 ! Node: THIS_IMAGE474390 ! Node: TIME475882 ! Node: TIME8477007 ! Node: TINY478157 ! Node: TRAILZ478757 ! Node: TRANSFER479574 ! Node: TRANSPOSE481608 ! Node: TRIM482295 ! Node: TTYNAM483152 ! Node: UBOUND484067 ! Node: UCOBOUND485457 ! Node: UMASK486589 ! Node: UNLINK487267 ! Node: UNPACK488244 ! Node: VERIFY489532 ! Node: XOR491253 ! Node: Intrinsic Modules492625 ! Node: ISO_FORTRAN_ENV492868 ! Node: ISO_C_BINDING497020 ! Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS501237 ! Node: Contributing502523 ! Node: Contributors503377 ! Node: Projects505044 ! Node: Proposed Extensions505848 ! Node: Copying507859 ! Node: GNU Free Documentation License545423 ! Node: Funding570566 ! Node: Option Index573091 ! Node: Keyword Index588082  End Tag Table --- 17860,18217 ----  Tag Table: ! Node: Top1950 ! Node: Introduction3337 ! Node: About GNU Fortran4086 ! Node: GNU Fortran and GCC8075 ! Node: Preprocessing and conditional compilation10189 ! Node: GNU Fortran and G7711834 ! Node: Project Status12407 ! Node: Standards14853 ! Node: Varying Length Character Strings15863 ! Node: Invoking GNU Fortran16615 ! Node: Option Summary18338 ! Node: Fortran Dialect Options21740 ! Node: Preprocessing Options30234 ! Node: Error and Warning Options38475 ! Node: Debugging Options48545 ! Node: Directory Options51523 ! Node: Link Options52958 ! Node: Runtime Options53584 ! Node: Code Gen Options55491 ! Node: Environment Variables72481 ! Node: Runtime73086 ! Node: TMPDIR74186 ! Node: GFORTRAN_STDIN_UNIT74856 ! Node: GFORTRAN_STDOUT_UNIT75238 ! Node: GFORTRAN_STDERR_UNIT75639 ! Node: GFORTRAN_UNBUFFERED_ALL76041 ! Node: GFORTRAN_UNBUFFERED_PRECONNECTED76572 ! Node: GFORTRAN_SHOW_LOCUS77216 ! Node: GFORTRAN_OPTIONAL_PLUS77712 ! Node: GFORTRAN_DEFAULT_RECL78188 ! Node: GFORTRAN_LIST_SEPARATOR78676 ! Node: GFORTRAN_CONVERT_UNIT79285 ! Node: GFORTRAN_ERROR_BACKTRACE82140 ! Node: Fortran 2003 and 2008 status82697 ! Node: Fortran 2003 status82957 ! Node: Fortran 2008 status87854 ! Node: TS 29113 status92638 ! Node: Compiler Characteristics93615 ! Node: KIND Type Parameters94151 ! Node: Internal representation of LOGICAL variables95400 ! Node: Thread-safety of the runtime library96757 ! Node: Data consistency and durability98184 ! Node: Extensions101238 ! Node: Extensions implemented in GNU Fortran101843 ! Node: Old-style kind specifications103200 ! Node: Old-style variable initialization104302 ! Node: Extensions to namelist105614 ! Node: X format descriptor without count field107611 ! Node: Commas in FORMAT specifications108138 ! Node: Missing period in FORMAT specifications108655 ! Node: I/O item lists109217 ! Node: 'Q' exponent-letter109604 ! Node: BOZ literal constants110204 ! Node: Real array indices112785 ! Node: Unary operators113084 ! Node: Implicitly convert LOGICAL and INTEGER values113498 ! Node: Hollerith constants support114457 ! Node: Cray pointers116229 ! Node: CONVERT specifier121676 ! Node: OpenMP123671 ! Node: Argument list functions125922 ! Node: Extensions not implemented in GNU Fortran127527 ! Node: STRUCTURE and RECORD128449 ! Node: ENCODE and DECODE statements130886 ! Node: Variable FORMAT expressions132246 ! Node: Alternate complex function syntax133351 ! Node: Mixed-Language Programming133870 ! Node: Interoperability with C134407 ! Node: Intrinsic Types135741 ! Node: Derived Types and struct136255 ! Node: Interoperable Global Variables137613 ! Node: Interoperable Subroutines and Functions138888 ! Node: Working with Pointers142682 ! Node: Further Interoperability of Fortran with C147158 ! Node: GNU Fortran Compiler Directives150513 ! Node: Non-Fortran Main Program152701 ! Node: _gfortran_set_args154841 ! Node: _gfortran_set_options155779 ! Node: _gfortran_set_convert158518 ! Node: _gfortran_set_record_marker159386 ! Node: _gfortran_set_fpe160196 ! Node: _gfortran_set_max_subrecord_length161394 ! Node: Intrinsic Procedures162317 ! Node: Introduction to Intrinsics177803 ! Node: ABORT180153 ! Node: ABS180898 ! Node: ACCESS182500 ! Node: ACHAR184430 ! Node: ACOS185634 ! Node: ACOSH186888 ! Node: ADJUSTL187883 ! Node: ADJUSTR188825 ! Node: AIMAG189773 ! Node: AINT191145 ! Node: ALARM192751 ! Node: ALL194383 ! Node: ALLOCATED196307 ! Node: AND197446 ! Node: ANINT198745 ! Node: ANY200242 ! Node: ASIN202168 ! Node: ASINH203411 ! Node: ASSOCIATED204416 ! Node: ATAN207427 ! Node: ATAN2208845 ! Node: ATANH210637 ! Node: ATOMIC_DEFINE211645 ! Node: ATOMIC_REF212721 ! Node: BACKTRACE213983 ! Node: BESSEL_J0214563 ! Node: BESSEL_J1215620 ! Node: BESSEL_JN216681 ! Node: BESSEL_Y0218506 ! Node: BESSEL_Y1219516 ! Node: BESSEL_YN220526 ! Node: BGE222357 ! Node: BGT223049 ! Node: BIT_SIZE223699 ! Node: BLE224521 ! Node: BLT225203 ! Node: BTEST225841 ! Node: C_ASSOCIATED226726 ! Node: C_F_POINTER227937 ! Node: C_F_PROCPOINTER229372 ! Node: C_FUNLOC230879 ! Node: C_LOC232250 ! Node: C_SIZEOF233529 ! Node: CEILING234942 ! Node: CHAR235950 ! Node: CHDIR237162 ! Node: CHMOD238336 ! Node: CMPLX240251 ! Node: COMMAND_ARGUMENT_COUNT241704 ! Node: COMPILER_OPTIONS242620 ! Node: COMPILER_VERSION243646 ! Node: COMPLEX244610 ! Node: CONJG245749 ! Node: COS246805 ! Node: COSH248229 ! Node: COUNT249411 ! Node: CPU_TIME251434 ! Node: CSHIFT252791 ! Node: CTIME254451 ! Node: DATE_AND_TIME256097 ! Node: DBLE258578 ! Node: DCMPLX259373 ! Node: DIGITS260555 ! Node: DIM261522 ! Node: DOT_PRODUCT262803 ! Node: DPROD264446 ! Node: DREAL265373 ! Node: DSHIFTL266039 ! Node: DSHIFTR267372 ! Node: DTIME268706 ! Node: EOSHIFT271521 ! Node: EPSILON273594 ! Node: ERF274321 ! Node: ERFC275102 ! Node: ERFC_SCALED275912 ! Node: ETIME276605 ! Node: EXECUTE_COMMAND_LINE278853 ! Node: EXIT281440 ! Node: EXP282316 ! Node: EXPONENT283567 ! Node: EXTENDS_TYPE_OF284329 ! Node: FDATE285185 ! Node: FGET286658 ! Node: FGETC288483 ! Node: FLOOR290289 ! Node: FLUSH291276 ! Node: FNUM293153 ! Node: FPUT293876 ! Node: FPUTC295508 ! Node: FRACTION297287 ! Node: FREE298189 ! Node: FSEEK299030 ! Node: FSTAT301334 ! Node: FTELL302419 ! Node: GAMMA303399 ! Node: GERROR304451 ! Node: GETARG305171 ! Node: GET_COMMAND306942 ! Node: GET_COMMAND_ARGUMENT308314 ! Node: GETCWD310362 ! Node: GETENV311342 ! Node: GET_ENVIRONMENT_VARIABLE312774 ! Node: GETGID314937 ! Node: GETLOG315474 ! Node: GETPID316336 ! Node: GETUID317066 ! Node: GMTIME317582 ! Node: HOSTNM319066 ! Node: HUGE319987 ! Node: HYPOT320709 ! Node: IACHAR321535 ! Node: IALL322703 ! Node: IAND324188 ! Node: IANY325175 ! Node: IARGC326669 ! Node: IBCLR327690 ! Node: IBITS328352 ! Node: IBSET329270 ! Node: ICHAR329927 ! Node: IDATE332097 ! Node: IEOR333127 ! Node: IERRNO334007 ! Node: IMAGE_INDEX334556 ! Node: INDEX intrinsic335584 ! Node: INT337110 ! Node: INT2338838 ! Node: INT8339606 ! Node: IOR340321 ! Node: IPARITY341177 ! Node: IRAND342709 ! Node: IS_IOSTAT_END344068 ! Node: IS_IOSTAT_EOR345167 ! Node: ISATTY346296 ! Node: ISHFT347079 ! Node: ISHFTC348062 ! Node: ISNAN349283 ! Node: ITIME350050 ! Node: KILL351078 ! Node: KIND351987 ! Node: LBOUND352833 ! Node: LCOBOUND354171 ! Node: LEADZ355306 ! Node: LEN356167 ! Node: LEN_TRIM357463 ! Node: LGE358451 ! Node: LGT359964 ! Node: LINK361442 ! Node: LLE362481 ! Node: LLT363981 ! Node: LNBLNK365452 ! Node: LOC366230 ! Node: LOG366962 ! Node: LOG10368310 ! Node: LOG_GAMMA369300 ! Node: LOGICAL370402 ! Node: LONG371214 ! Node: LSHIFT371972 ! Node: LSTAT373058 ! Node: LTIME374258 ! Node: MALLOC375664 ! Node: MASKL377126 ! Node: MASKR377893 ! Node: MATMUL378663 ! Node: MAX379761 ! Node: MAXEXPONENT381296 ! Node: MAXLOC382113 ! Node: MAXVAL384138 ! Node: MCLOCK385778 ! Node: MCLOCK8386801 ! Node: MERGE388031 ! Node: MERGE_BITS388783 ! Node: MIN389648 ! Node: MINEXPONENT391186 ! Node: MINLOC391817 ! Node: MINVAL393842 ! Node: MOD395495 ! Node: MODULO397264 ! Node: MOVE_ALLOC398567 ! Node: MVBITS399600 ! Node: NEAREST400666 ! Node: NEW_LINE401766 ! Node: NINT402539 ! Node: NORM2403960 ! Node: NOT405102 ! Node: NULL405686 ! Node: NUM_IMAGES406594 ! Node: OR407410 ! Node: PACK408696 ! Node: PARITY410703 ! Node: PERROR411924 ! Node: POPCNT412549 ! Node: POPPAR413421 ! Node: PRECISION414475 ! Node: PRESENT415362 ! Node: PRODUCT416474 ! Node: RADIX418008 ! Node: RAN418820 ! Node: RAND419276 ! Node: RANDOM_NUMBER420611 ! Node: RANDOM_SEED422340 ! Node: RANGE426037 ! Node: RANK426718 ! Node: REAL427500 ! Node: RENAME429297 ! Node: REPEAT430319 ! Node: RESHAPE431047 ! Node: RRSPACING432514 ! Node: RSHIFT433207 ! Node: SAME_TYPE_AS434347 ! Node: SCALE435179 ! Node: SCAN435960 ! Node: SECNDS437518 ! Node: SECOND438610 ! Node: SELECTED_CHAR_KIND439486 ! Node: SELECTED_INT_KIND441081 ! Node: SELECTED_REAL_KIND442258 ! Node: SET_EXPONENT444935 ! Node: SHAPE445932 ! Node: SHIFTA447356 ! Node: SHIFTL448320 ! Node: SHIFTR449157 ! Node: SIGN449995 ! Node: SIGNAL451221 ! Node: SIN452727 ! Node: SINH453769 ! Node: SIZE454781 ! Node: SIZEOF456100 ! Node: SLEEP457579 ! Node: SPACING458140 ! Node: SPREAD459154 ! Node: SQRT460305 ! Node: SRAND461637 ! Node: STAT462807 ! Node: STORAGE_SIZE465975 ! Node: SUM466854 ! Node: SYMLNK468346 ! Node: SYSTEM469481 ! Node: SYSTEM_CLOCK470736 ! Node: TAN472860 ! Node: TANH473848 ! Node: THIS_IMAGE475022 ! Node: TIME476522 ! Node: TIME8477647 ! Node: TINY478800 ! Node: TRAILZ479401 ! Node: TRANSFER480219 ! Node: TRANSPOSE482255 ! Node: TRIM482945 ! Node: TTYNAM483803 ! Node: UBOUND484721 ! Node: UCOBOUND486111 ! Node: UMASK487248 ! Node: UNLINK487930 ! Node: UNPACK488910 ! Node: VERIFY490205 ! Node: XOR491934 ! Node: Intrinsic Modules493307 ! Node: ISO_FORTRAN_ENV493550 ! Node: ISO_C_BINDING497718 ! Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS501450 ! Node: Contributing502732 ! Node: Contributors503586 ! Node: Projects505217 ! Node: Proposed Extensions506023 ! Node: Copying508033 ! Node: GNU Free Documentation License545578 ! Node: Funding570701 ! Node: Option Index573227 ! Node: Keyword Index588218  End Tag Table diff -Nrcpad gcc-4.8.1/gcc/fortran/interface.c gcc-4.8.2/gcc/fortran/interface.c *** gcc-4.8.1/gcc/fortran/interface.c Fri Apr 26 19:20:55 2013 --- gcc-4.8.2/gcc/fortran/interface.c Fri May 31 18:10:03 2013 *************** check_dummy_characteristics (gfc_symbol *** 1024,1030 **** bool type_must_agree, char *errmsg, int err_len) { /* Check type and rank. */ ! if (type_must_agree && !compare_type_rank (s2, s1)) { snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'", s1->name); --- 1024,1031 ---- bool type_must_agree, char *errmsg, int err_len) { /* Check type and rank. */ ! if (type_must_agree && ! (!compare_type_rank (s1, s2) || !compare_type_rank (s2, s1))) { snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'", s1->name); diff -Nrcpad gcc-4.8.1/gcc/fortran/match.c gcc-4.8.2/gcc/fortran/match.c *** gcc-4.8.1/gcc/fortran/match.c Thu Apr 18 18:20:22 2013 --- gcc-4.8.2/gcc/fortran/match.c Sat Aug 24 09:12:21 2013 *************** copy_ts_from_selector_to_associate (gfc_ *** 5142,5148 **** { gfc_ref *ref; gfc_symbol *assoc_sym; - int i; assoc_sym = associate->symtree->n.sym; --- 5142,5147 ---- *************** copy_ts_from_selector_to_associate (gfc_ *** 5153,5161 **** while (ref && ref->next) ref = ref->next; ! if (selector->ts.type == BT_CLASS ! && CLASS_DATA (selector)->as ! && ref && ref->type == REF_ARRAY) { /* Ensure that the array reference type is set. We cannot use gfc_resolve_expr at this point, so the usable parts of --- 5152,5159 ---- while (ref && ref->next) ref = ref->next; ! if (selector->ts.type == BT_CLASS && CLASS_DATA (selector)->as ! && ref && ref->type == REF_ARRAY) { /* Ensure that the array reference type is set. We cannot use gfc_resolve_expr at this point, so the usable parts of *************** copy_ts_from_selector_to_associate (gfc_ *** 5163,5169 **** if (ref->u.ar.type == AR_UNKNOWN) { ref->u.ar.type = AR_ELEMENT; ! for (i = 0; i < ref->u.ar.dimen + ref->u.ar.codimen; i++) if (ref->u.ar.dimen_type[i] == DIMEN_RANGE || ref->u.ar.dimen_type[i] == DIMEN_VECTOR || (ref->u.ar.dimen_type[i] == DIMEN_UNKNOWN --- 5161,5167 ---- if (ref->u.ar.type == AR_UNKNOWN) { ref->u.ar.type = AR_ELEMENT; ! for (int i = 0; i < ref->u.ar.dimen + ref->u.ar.codimen; i++) if (ref->u.ar.dimen_type[i] == DIMEN_RANGE || ref->u.ar.dimen_type[i] == DIMEN_VECTOR || (ref->u.ar.dimen_type[i] == DIMEN_UNKNOWN *************** copy_ts_from_selector_to_associate (gfc_ *** 5182,5218 **** selector->rank = 0; } ! if (selector->ts.type != BT_CLASS) { ! /* The correct class container has to be available. */ ! if (selector->rank) ! { ! assoc_sym->attr.dimension = 1; ! assoc_sym->as = gfc_get_array_spec (); ! assoc_sym->as->rank = selector->rank; ! assoc_sym->as->type = AS_DEFERRED; ! } ! else ! assoc_sym->as = NULL; ! ! assoc_sym->ts.type = BT_CLASS; ! assoc_sym->ts.u.derived = selector->ts.u.derived; ! assoc_sym->attr.pointer = 1; ! gfc_build_class_symbol (&assoc_sym->ts, &assoc_sym->attr, ! &assoc_sym->as, false); } else { /* The correct class container has to be available. */ - if (selector->rank) - { - assoc_sym->attr.dimension = 1; - assoc_sym->as = gfc_get_array_spec (); - assoc_sym->as->rank = selector->rank; - assoc_sym->as->type = AS_DEFERRED; - } - else - assoc_sym->as = NULL; assoc_sym->ts.type = BT_CLASS; assoc_sym->ts.u.derived = CLASS_DATA (selector)->ts.u.derived; assoc_sym->attr.pointer = 1; --- 5180,5198 ---- selector->rank = 0; } ! if (selector->rank) { ! assoc_sym->attr.dimension = 1; ! assoc_sym->as = gfc_get_array_spec (); ! assoc_sym->as->rank = selector->rank; ! assoc_sym->as->type = AS_DEFERRED; } else + assoc_sym->as = NULL; + + if (selector->ts.type == BT_CLASS) { /* The correct class container has to be available. */ assoc_sym->ts.type = BT_CLASS; assoc_sym->ts.u.derived = CLASS_DATA (selector)->ts.u.derived; assoc_sym->attr.pointer = 1; diff -Nrcpad gcc-4.8.1/gcc/fortran/module.c gcc-4.8.2/gcc/fortran/module.c *** gcc-4.8.1/gcc/fortran/module.c Tue Jan 29 21:40:51 2013 --- gcc-4.8.2/gcc/fortran/module.c Sun Jul 28 14:13:17 2013 *************** check_for_ambiguous (gfc_symbol *st_sym, *** 4465,4471 **** module_locus locus; symbol_attribute attr; ! if (st_sym->name == gfc_current_ns->proc_name->name) { gfc_error ("'%s' of module '%s', imported at %C, is also the name of the " "current program unit", st_sym->name, module_name); --- 4465,4471 ---- module_locus locus; symbol_attribute attr; ! if (gfc_current_ns->proc_name && st_sym->name == gfc_current_ns->proc_name->name) { gfc_error ("'%s' of module '%s', imported at %C, is also the name of the " "current program unit", st_sym->name, module_name); diff -Nrcpad gcc-4.8.1/gcc/fortran/resolve.c gcc-4.8.2/gcc/fortran/resolve.c *** gcc-4.8.1/gcc/fortran/resolve.c Tue May 7 16:36:48 2013 --- gcc-4.8.2/gcc/fortran/resolve.c Fri Oct 4 16:25:55 2013 *************** get_temp_from_expr (gfc_expr *e, gfc_nam *** 9746,9751 **** --- 9746,9755 ---- /* Add the attributes and the arrayspec to the temporary. */ tmp->n.sym->attr = gfc_expr_attr (e); + tmp->n.sym->attr.function = 0; + tmp->n.sym->attr.result = 0; + tmp->n.sym->attr.flavor = FL_VARIABLE; + if (as) { tmp->n.sym->as = gfc_copy_array_spec (as); *************** get_temp_from_expr (gfc_expr *e, gfc_nam *** 9759,9764 **** --- 9763,9769 ---- gfc_set_sym_referenced (tmp->n.sym); gfc_add_flavor (&tmp->n.sym->attr, FL_VARIABLE, name, NULL); + gfc_commit_symbol (tmp->n.sym); e = gfc_lval_expr_from_sym (tmp->n.sym); /* Should the lhs be a section, use its array ref for the *************** generate_component_assignments (gfc_code *** 9992,9997 **** --- 9997,10022 ---- temp_code = build_assignment (EXEC_ASSIGN, t1, (*code)->expr1, NULL, NULL, (*code)->loc); + + /* For allocatable LHS, check whether it is allocated. Note + that allocatable components with defined assignment are + not yet support. See PR 57696. */ + if ((*code)->expr1->symtree->n.sym->attr.allocatable) + { + gfc_code *block; + gfc_expr *e = + gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym); + block = gfc_get_code (); + block->op = EXEC_IF; + block->block = gfc_get_code (); + block->block->op = EXEC_IF; + block->block->expr1 + = gfc_build_intrinsic_call (ns, + GFC_ISYM_ALLOCATED, "allocated", + (*code)->loc, 1, e); + block->block->next = temp_code; + temp_code = block; + } add_code_to_chain (&temp_code, &tmp_head, &tmp_tail); } *************** generate_component_assignments (gfc_code *** 10000,10007 **** gfc_free_expr (this_code->ext.actual->expr); this_code->ext.actual->expr = gfc_copy_expr (t1); add_comp_ref (this_code->ext.actual->expr, comp1); } ! } else if (this_code->op == EXEC_ASSIGN && !this_code->next) { /* Don't add intrinsic assignments since they are already --- 10025,10061 ---- gfc_free_expr (this_code->ext.actual->expr); this_code->ext.actual->expr = gfc_copy_expr (t1); add_comp_ref (this_code->ext.actual->expr, comp1); + + /* If the LHS variable is allocatable and wasn't allocated and + the temporary is allocatable, pointer assign the address of + the freshly allocated LHS to the temporary. */ + if ((*code)->expr1->symtree->n.sym->attr.allocatable + && gfc_expr_attr ((*code)->expr1).allocatable) + { + gfc_code *block; + gfc_expr *cond; + + cond = gfc_get_expr (); + cond->ts.type = BT_LOGICAL; + cond->ts.kind = gfc_default_logical_kind; + cond->expr_type = EXPR_OP; + cond->where = (*code)->loc; + cond->value.op.op = INTRINSIC_NOT; + cond->value.op.op1 = gfc_build_intrinsic_call (ns, + GFC_ISYM_ALLOCATED, "allocated", + (*code)->loc, 1, gfc_copy_expr (t1)); + block = gfc_get_code (); + block->op = EXEC_IF; + block->block = gfc_get_code (); + block->block->op = EXEC_IF; + block->block->expr1 = cond; + block->block->next = build_assignment (EXEC_POINTER_ASSIGN, + t1, (*code)->expr1, + NULL, NULL, (*code)->loc); + add_code_to_chain (&block, &head, &tail); + } } ! } else if (this_code->op == EXEC_ASSIGN && !this_code->next) { /* Don't add intrinsic assignments since they are already *************** generate_component_assignments (gfc_code *** 10023,10035 **** } } - /* This is probably not necessary. */ - if (this_code) - { - gfc_free_statements (this_code); - this_code = NULL; - } - /* Put the temporary assignments at the top of the generated code. */ if (tmp_head && component_assignment_level == 1) { --- 10077,10082 ---- *************** generate_component_assignments (gfc_code *** 10038,10043 **** --- 10085,10114 ---- tmp_head = tmp_tail = NULL; } + // If we did a pointer assignment - thus, we need to ensure that the LHS is + // not accidentally deallocated. Hence, nullify t1. + if (t1 && (*code)->expr1->symtree->n.sym->attr.allocatable + && gfc_expr_attr ((*code)->expr1).allocatable) + { + gfc_code *block; + gfc_expr *cond; + gfc_expr *e; + + e = gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym); + cond = gfc_build_intrinsic_call (ns, GFC_ISYM_ASSOCIATED, "associated", + (*code)->loc, 2, gfc_copy_expr (t1), e); + block = gfc_get_code (); + block->op = EXEC_IF; + block->block = gfc_get_code (); + block->block->op = EXEC_IF; + block->block->expr1 = cond; + block->block->next = build_assignment (EXEC_POINTER_ASSIGN, + t1, gfc_get_null_expr (&(*code)->loc), + NULL, NULL, (*code)->loc); + gfc_append_code (tail, block); + tail = block; + } + /* Now attach the remaining code chain to the input code. Step on to the end of the new code since resolution is complete. */ gcc_assert ((*code)->op == EXEC_ASSIGN); *************** generate_component_assignments (gfc_code *** 10047,10053 **** gfc_free_expr ((*code)->expr1); gfc_free_expr ((*code)->expr2); **code = *head; ! free (head); *code = tail; component_assignment_level--; --- 10118,10125 ---- gfc_free_expr ((*code)->expr1); gfc_free_expr ((*code)->expr2); **code = *head; ! if (head != tail) ! free (head); *code = tail; component_assignment_level--; diff -Nrcpad gcc-4.8.1/gcc/fortran/simplify.c gcc-4.8.2/gcc/fortran/simplify.c *** gcc-4.8.1/gcc/fortran/simplify.c Tue May 7 16:36:48 2013 --- gcc-4.8.2/gcc/fortran/simplify.c Mon Jul 8 19:10:32 2013 *************** init_result_expr (gfc_expr *e, int init, *** 332,344 **** } ! /* Helper function for gfc_simplify_dot_product() and gfc_simplify_matmul. */ static gfc_expr * compute_dot_product (gfc_expr *matrix_a, int stride_a, int offset_a, ! gfc_expr *matrix_b, int stride_b, int offset_b) { ! gfc_expr *result, *a, *b; result = gfc_get_constant_expr (matrix_a->ts.type, matrix_a->ts.kind, &matrix_a->where); --- 332,346 ---- } ! /* Helper function for gfc_simplify_dot_product() and gfc_simplify_matmul; ! if conj_a is true, the matrix_a is complex conjugated. */ static gfc_expr * compute_dot_product (gfc_expr *matrix_a, int stride_a, int offset_a, ! gfc_expr *matrix_b, int stride_b, int offset_b, ! bool conj_a) { ! gfc_expr *result, *a, *b, *c; result = gfc_get_constant_expr (matrix_a->ts.type, matrix_a->ts.kind, &matrix_a->where); *************** compute_dot_product (gfc_expr *matrix_a, *** 361,369 **** case BT_INTEGER: case BT_REAL: case BT_COMPLEX: ! result = gfc_add (result, ! gfc_multiply (gfc_copy_expr (a), ! gfc_copy_expr (b))); break; default: --- 363,373 ---- case BT_INTEGER: case BT_REAL: case BT_COMPLEX: ! if (conj_a && a->ts.type == BT_COMPLEX) ! c = gfc_simplify_conjg (a); ! else ! c = gfc_copy_expr (a); ! result = gfc_add (result, gfc_multiply (c, gfc_copy_expr (b))); break; default: *************** gfc_simplify_dot_product (gfc_expr *vect *** 1881,1887 **** gcc_assert (vector_b->rank == 1); gcc_assert (gfc_compare_types (&vector_a->ts, &vector_b->ts)); ! return compute_dot_product (vector_a, 1, 0, vector_b, 1, 0); } --- 1885,1891 ---- gcc_assert (vector_b->rank == 1); gcc_assert (gfc_compare_types (&vector_a->ts, &vector_b->ts)); ! return compute_dot_product (vector_a, 1, 0, vector_b, 1, 0, true); } *************** gfc_simplify_matmul (gfc_expr *matrix_a, *** 3894,3900 **** for (row = 0; row < result_rows; ++row) { gfc_expr *e = compute_dot_product (matrix_a, stride_a, offset_a, ! matrix_b, 1, offset_b); gfc_constructor_append_expr (&result->value.constructor, e, NULL); --- 3898,3904 ---- for (row = 0; row < result_rows; ++row) { gfc_expr *e = compute_dot_product (matrix_a, stride_a, offset_a, ! matrix_b, 1, offset_b, false); gfc_constructor_append_expr (&result->value.constructor, e, NULL); diff -Nrcpad gcc-4.8.1/gcc/fortran/trans-array.c gcc-4.8.2/gcc/fortran/trans-array.c *** gcc-4.8.1/gcc/fortran/trans-array.c Thu Feb 21 12:26:44 2013 --- gcc-4.8.2/gcc/fortran/trans-array.c Sat Aug 24 12:46:17 2013 *************** evaluate_bound (stmtblock_t *block, tree *** 3674,3680 **** /* Calculate the lower bound of an array section. */ static void ! gfc_conv_section_startstride (gfc_loopinfo * loop, gfc_ss * ss, int dim) { gfc_expr *stride = NULL; tree desc; --- 3674,3680 ---- /* Calculate the lower bound of an array section. */ static void ! gfc_conv_section_startstride (stmtblock_t * block, gfc_ss * ss, int dim) { gfc_expr *stride = NULL; tree desc; *************** gfc_conv_section_startstride (gfc_loopin *** 3703,3714 **** /* Calculate the start of the range. For vector subscripts this will be the range of the vector. */ ! evaluate_bound (&loop->pre, info->start, ar->start, desc, dim, true); /* Similarly calculate the end. Although this is not used in the scalarizer, it is needed when checking bounds and where the end is an expression with side-effects. */ ! evaluate_bound (&loop->pre, info->end, ar->end, desc, dim, false); /* Calculate the stride. */ if (stride == NULL) --- 3703,3714 ---- /* Calculate the start of the range. For vector subscripts this will be the range of the vector. */ ! evaluate_bound (block, info->start, ar->start, desc, dim, true); /* Similarly calculate the end. Although this is not used in the scalarizer, it is needed when checking bounds and where the end is an expression with side-effects. */ ! evaluate_bound (block, info->end, ar->end, desc, dim, false); /* Calculate the stride. */ if (stride == NULL) *************** gfc_conv_section_startstride (gfc_loopin *** 3717,3724 **** { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, stride, gfc_array_index_type); ! gfc_add_block_to_block (&loop->pre, &se.pre); ! info->stride[dim] = gfc_evaluate_now (se.expr, &loop->pre); } } --- 3717,3724 ---- { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, stride, gfc_array_index_type); ! gfc_add_block_to_block (block, &se.pre); ! info->stride[dim] = gfc_evaluate_now (se.expr, block); } } *************** gfc_conv_ss_startstride (gfc_loopinfo * *** 3735,3740 **** --- 3735,3742 ---- gfc_ss *ss; tree desc; + gfc_loopinfo * const outer_loop = outermost_loop (loop); + loop->dimen = 0; /* Determine the rank of the loop. */ for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) *************** done: *** 3794,3803 **** /* Get the descriptor for the array. If it is a cross loops array, we got the descriptor already in the outermost loop. */ if (ss->parent == NULL) ! gfc_conv_ss_descriptor (&loop->pre, ss, !loop->array_parameter); for (n = 0; n < ss->dimen; n++) ! gfc_conv_section_startstride (loop, ss, ss->dim[n]); break; case GFC_SS_INTRINSIC: --- 3796,3806 ---- /* Get the descriptor for the array. If it is a cross loops array, we got the descriptor already in the outermost loop. */ if (ss->parent == NULL) ! gfc_conv_ss_descriptor (&outer_loop->pre, ss, ! !loop->array_parameter); for (n = 0; n < ss->dimen; n++) ! gfc_conv_section_startstride (&outer_loop->pre, ss, ss->dim[n]); break; case GFC_SS_INTRINSIC: *************** done: *** 3833,3839 **** fold_convert (gfc_array_index_type, rank), gfc_index_one_node); ! info->end[0] = gfc_evaluate_now (tmp, &loop->pre); info->start[0] = gfc_index_zero_node; info->stride[0] = gfc_index_one_node; continue; --- 3836,3842 ---- fold_convert (gfc_array_index_type, rank), gfc_index_one_node); ! info->end[0] = gfc_evaluate_now (tmp, &outer_loop->pre); info->start[0] = gfc_index_zero_node; info->stride[0] = gfc_index_one_node; continue; *************** done: *** 4115,4121 **** } tmp = gfc_finish_block (&block); ! gfc_add_expr_to_block (&loop->pre, tmp); } for (loop = loop->nested; loop; loop = loop->next) --- 4118,4124 ---- } tmp = gfc_finish_block (&block); ! gfc_add_expr_to_block (&outer_loop->pre, tmp); } for (loop = loop->nested; loop; loop = loop->next) *************** set_loop_bounds (gfc_loopinfo *loop) *** 4398,4403 **** --- 4401,4408 ---- mpz_t i; bool nonoptional_arr; + gfc_loopinfo * const outer_loop = outermost_loop (loop); + loopspec = loop->specloop; mpz_init (i); *************** set_loop_bounds (gfc_loopinfo *loop) *** 4583,4589 **** else { /* Set the delta for this section. */ ! info->delta[dim] = gfc_evaluate_now (loop->from[n], &loop->pre); /* Number of iterations is (end - start + step) / step. with start = 0, this simplifies to last = end / step; --- 4588,4594 ---- else { /* Set the delta for this section. */ ! info->delta[dim] = gfc_evaluate_now (loop->from[n], &outer_loop->pre); /* Number of iterations is (end - start + step) / step. with start = 0, this simplifies to last = end / step; *************** set_loop_bounds (gfc_loopinfo *loop) *** 4595,4601 **** gfc_array_index_type, tmp, info->stride[dim]); tmp = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type, tmp, build_int_cst (gfc_array_index_type, -1)); ! loop->to[n] = gfc_evaluate_now (tmp, &loop->pre); /* Make the loop variable start at 0. */ loop->from[n] = gfc_index_zero_node; } --- 4600,4606 ---- gfc_array_index_type, tmp, info->stride[dim]); tmp = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type, tmp, build_int_cst (gfc_array_index_type, -1)); ! loop->to[n] = gfc_evaluate_now (tmp, &outer_loop->pre); /* Make the loop variable start at 0. */ loop->from[n] = gfc_index_zero_node; } *************** gfc_set_delta (gfc_loopinfo *loop) *** 4671,4676 **** --- 4676,4683 ---- tree tmp; int n, dim; + gfc_loopinfo * const outer_loop = outermost_loop (loop); + loopspec = loop->specloop; /* Calculate the translation from loop variables to array indices. */ *************** gfc_set_delta (gfc_loopinfo *loop) *** 4706,4712 **** gfc_array_index_type, info->start[dim], tmp); ! info->delta[dim] = gfc_evaluate_now (tmp, &loop->pre); } } } --- 4713,4719 ---- gfc_array_index_type, info->start[dim], tmp); ! info->delta[dim] = gfc_evaluate_now (tmp, &outer_loop->pre); } } } *************** gfc_conv_expr_descriptor (gfc_se *se, gf *** 6690,6699 **** gcc_assert (ar->dimen_type[n + ndim] == DIMEN_THIS_IMAGE); /* Make sure the call to gfc_conv_section_startstride won't ! generate unnecessary code to calculate stride. */ gcc_assert (ar->stride[n + ndim] == NULL); ! gfc_conv_section_startstride (&loop, ss, n + ndim); loop.from[n + loop.dimen] = info->start[n + ndim]; loop.to[n + loop.dimen] = info->end[n + ndim]; } --- 6697,6706 ---- gcc_assert (ar->dimen_type[n + ndim] == DIMEN_THIS_IMAGE); /* Make sure the call to gfc_conv_section_startstride won't ! generate unnecessary code to calculate stride. */ gcc_assert (ar->stride[n + ndim] == NULL); ! gfc_conv_section_startstride (&loop.pre, ss, n + ndim); loop.from[n + loop.dimen] = info->start[n + ndim]; loop.to[n + loop.dimen] = info->end[n + ndim]; } diff -Nrcpad gcc-4.8.1/gcc/fortran/trans-intrinsic.c gcc-4.8.2/gcc/fortran/trans-intrinsic.c *** gcc-4.8.1/gcc/fortran/trans-intrinsic.c Fri Mar 15 10:09:39 2013 --- gcc-4.8.2/gcc/fortran/trans-intrinsic.c Sun Aug 11 11:31:41 2013 *************** scalar_transfer: *** 5653,5660 **** if (expr->ts.type == BT_CHARACTER) { ! tree direct; ! tree indirect; ptr = convert (gfc_get_pchar_type (expr->ts.kind), source); tmpdecl = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), --- 5653,5659 ---- if (expr->ts.type == BT_CHARACTER) { ! tree direct, indirect, free; ptr = convert (gfc_get_pchar_type (expr->ts.kind), source); tmpdecl = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), *************** scalar_transfer: *** 5687,5692 **** --- 5686,5698 ---- tmp = build3_v (COND_EXPR, tmp, direct, indirect); gfc_add_expr_to_block (&se->pre, tmp); + /* Free the temporary string, if necessary. */ + free = gfc_call_free (tmpdecl); + tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, + dest_word_len, source_bytes); + tmp = build3_v (COND_EXPR, tmp, free, build_empty_stmt (input_location)); + gfc_add_expr_to_block (&se->post, tmp); + se->expr = tmpdecl; se->string_length = fold_convert (gfc_charlen_type_node, dest_word_len); } diff -Nrcpad gcc-4.8.1/gcc/gcc-ar.c gcc-4.8.2/gcc/gcc-ar.c *** gcc-4.8.1/gcc/gcc-ar.c Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/gcc-ar.c Wed Jun 19 20:59:25 2013 *************** main(int ac, char **av) *** 136,142 **** setup_prefixes (av[0]); /* Find the GCC LTO plugin */ ! plugin = find_a_file (&target_path, LTOPLUGINSONAME); if (!plugin) { fprintf (stderr, "%s: Cannot find plugin '%s'\n", av[0], LTOPLUGINSONAME); --- 136,142 ---- setup_prefixes (av[0]); /* Find the GCC LTO plugin */ ! plugin = find_a_file (&target_path, LTOPLUGINSONAME, R_OK); if (!plugin) { fprintf (stderr, "%s: Cannot find plugin '%s'\n", av[0], LTOPLUGINSONAME); *************** main(int ac, char **av) *** 144,167 **** } /* Find the wrapped binutils program. */ ! exe_name = find_a_file (&target_path, PERSONALITY); if (!exe_name) { #ifdef CROSS_DIRECTORY_STRUCTURE ! const char *cross_exe_name; ! ! cross_exe_name = concat (target_machine, "-", PERSONALITY, NULL); ! exe_name = find_a_file (&path, cross_exe_name); if (!exe_name) { fprintf (stderr, "%s: Cannot find binary '%s'\n", av[0], ! cross_exe_name); exit (1); } - #else - fprintf (stderr, "%s: Cannot find binary '%s'\n", av[0], PERSONALITY); - exit (1); - #endif } /* Create new command line with plugin */ --- 144,163 ---- } /* Find the wrapped binutils program. */ ! exe_name = find_a_file (&target_path, PERSONALITY, X_OK); if (!exe_name) { + const char *real_exe_name = PERSONALITY; #ifdef CROSS_DIRECTORY_STRUCTURE ! real_exe_name = concat (target_machine, "-", PERSONALITY, NULL); ! #endif ! exe_name = find_a_file (&path, real_exe_name, X_OK); if (!exe_name) { fprintf (stderr, "%s: Cannot find binary '%s'\n", av[0], ! real_exe_name); exit (1); } } /* Create new command line with plugin */ diff -Nrcpad gcc-4.8.1/gcc/gengtype-lex.c gcc-4.8.2/gcc/gengtype-lex.c *** gcc-4.8.1/gcc/gengtype-lex.c Fri May 31 09:11:24 2013 --- gcc-4.8.2/gcc/gengtype-lex.c Wed Oct 16 07:29:37 2013 *************** *** 10,16 **** #define FLEX_SCANNER #define YY_FLEX_MAJOR_VERSION 2 #define YY_FLEX_MINOR_VERSION 5 ! #define YY_FLEX_SUBMINOR_VERSION 35 #if YY_FLEX_SUBMINOR_VERSION > 0 #define FLEX_BETA #endif --- 10,16 ---- #define FLEX_SCANNER #define YY_FLEX_MAJOR_VERSION 2 #define YY_FLEX_MINOR_VERSION 5 ! #define YY_FLEX_SUBMINOR_VERSION 37 #if YY_FLEX_SUBMINOR_VERSION > 0 #define FLEX_BETA #endif *************** typedef int flex_int32_t; *** 55,61 **** typedef unsigned char flex_uint8_t; typedef unsigned short int flex_uint16_t; typedef unsigned int flex_uint32_t; - #endif /* ! C99 */ /* Limits of integral types. */ #ifndef INT8_MIN --- 55,60 ---- *************** typedef unsigned int flex_uint32_t; *** 86,91 **** --- 85,92 ---- #define UINT32_MAX (4294967295U) #endif + #endif /* ! C99 */ + #endif /* ! FLEXINT_H */ #ifdef __cplusplus *************** typedef unsigned int flex_uint32_t; *** 154,160 **** typedef struct yy_buffer_state *YY_BUFFER_STATE; #endif ! extern int yyleng; extern FILE *yyin, *yyout; --- 155,166 ---- typedef struct yy_buffer_state *YY_BUFFER_STATE; #endif ! #ifndef YY_TYPEDEF_YY_SIZE_T ! #define YY_TYPEDEF_YY_SIZE_T ! typedef size_t yy_size_t; ! #endif ! ! extern yy_size_t yyleng; extern FILE *yyin, *yyout; *************** extern FILE *yyin, *yyout; *** 180,190 **** #define unput(c) yyunput( c, (yytext_ptr) ) - #ifndef YY_TYPEDEF_YY_SIZE_T - #define YY_TYPEDEF_YY_SIZE_T - typedef size_t yy_size_t; - #endif - #ifndef YY_STRUCT_YY_BUFFER_STATE #define YY_STRUCT_YY_BUFFER_STATE struct yy_buffer_state --- 186,191 ---- *************** struct yy_buffer_state *** 202,208 **** /* Number of characters read into yy_ch_buf, not including EOB * characters. */ ! int yy_n_chars; /* Whether we "own" the buffer - i.e., we know we created it, * and can realloc() it to grow it, and should free() it to --- 203,209 ---- /* Number of characters read into yy_ch_buf, not including EOB * characters. */ ! yy_size_t yy_n_chars; /* Whether we "own" the buffer - i.e., we know we created it, * and can realloc() it to grow it, and should free() it to *************** static YY_BUFFER_STATE * yy_buffer_stack *** 272,279 **** /* yy_hold_char holds the character lost when yytext is formed. */ static char yy_hold_char; ! static int yy_n_chars; /* number of characters read into yy_ch_buf */ ! int yyleng; /* Points to current character in buffer. */ static char *yy_c_buf_p = (char *) 0; --- 273,280 ---- /* yy_hold_char holds the character lost when yytext is formed. */ static char yy_hold_char; ! static yy_size_t yy_n_chars; /* number of characters read into yy_ch_buf */ ! yy_size_t yyleng; /* Points to current character in buffer. */ static char *yy_c_buf_p = (char *) 0; *************** static void yy_init_buffer (YY_BUFFER_ST *** 301,307 **** YY_BUFFER_STATE yy_scan_buffer (char *base,yy_size_t size ); YY_BUFFER_STATE yy_scan_string (yyconst char *yy_str ); ! YY_BUFFER_STATE yy_scan_bytes (yyconst char *bytes,int len ); void *yyalloc (yy_size_t ); void *yyrealloc (void *,yy_size_t ); --- 302,308 ---- YY_BUFFER_STATE yy_scan_buffer (char *base,yy_size_t size ); YY_BUFFER_STATE yy_scan_string (yyconst char *yy_str ); ! YY_BUFFER_STATE yy_scan_bytes (yyconst char *bytes,yy_size_t len ); void *yyalloc (yy_size_t ); void *yyrealloc (void *,yy_size_t ); *************** void yyfree (void * ); *** 333,339 **** /* Begin user sect3 */ ! #define yywrap(n) 1 #define YY_SKIP_YYWRAP typedef unsigned char YY_CHAR; --- 334,340 ---- /* Begin user sect3 */ ! #define yywrap() 1 #define YY_SKIP_YYWRAP typedef unsigned char YY_CHAR; *************** int yy_flex_debug = 0; *** 1173,1179 **** #define YY_MORE_ADJ 0 #define YY_RESTORE_YY_MORE_OFFSET char *yytext; ! #line 1 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" /* -*- indented-text -*- */ /* Process source files and output type information. Copyright (C) 2002-2013 Free Software Foundation, Inc. --- 1174,1180 ---- #define YY_MORE_ADJ 0 #define YY_RESTORE_YY_MORE_OFFSET char *yytext; ! #line 1 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" /* -*- indented-text -*- */ /* Process source files and output type information. Copyright (C) 2002-2013 Free Software Foundation, Inc. *************** You should have received a copy of the G *** 1194,1200 **** along with GCC; see the file COPYING3. If not see . */ #define YY_NO_INPUT 1 ! #line 24 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" #ifdef GENERATOR_FILE #include "bconfig.h" #else --- 1195,1201 ---- along with GCC; see the file COPYING3. If not see . */ #define YY_NO_INPUT 1 ! #line 24 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" #ifdef GENERATOR_FILE #include "bconfig.h" #else *************** update_lineno (const char *l, size_t len *** 1223,1229 **** /* Include '::' in identifiers to capture C++ scope qualifiers. */ ! #line 1226 "gengtype-lex.c" #define INITIAL 0 #define in_struct 1 --- 1224,1230 ---- /* Include '::' in identifiers to capture C++ scope qualifiers. */ ! #line 1227 "gengtype-lex.c" #define INITIAL 0 #define in_struct 1 *************** FILE *yyget_out (void ); *** 1265,1271 **** void yyset_out (FILE * out_str ); ! int yyget_leng (void ); char *yyget_text (void ); --- 1266,1272 ---- void yyset_out (FILE * out_str ); ! yy_size_t yyget_leng (void ); char *yyget_text (void ); *************** static int input (void ); *** 1324,1330 **** if ( YY_CURRENT_BUFFER_LVALUE->yy_is_interactive ) \ { \ int c = '*'; \ ! unsigned n; \ for ( n = 0; n < max_size && \ (c = getc( yyin )) != EOF && c != '\n'; ++n ) \ buf[n] = (char) c; \ --- 1325,1331 ---- if ( YY_CURRENT_BUFFER_LVALUE->yy_is_interactive ) \ { \ int c = '*'; \ ! size_t n; \ for ( n = 0; n < max_size && \ (c = getc( yyin )) != EOF && c != '\n'; ++n ) \ buf[n] = (char) c; \ *************** YY_DECL *** 1409,1415 **** register char *yy_cp, *yy_bp; register int yy_act; ! #line 65 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" /* Do this on entry to yylex(): */ *yylval = 0; --- 1410,1416 ---- register char *yy_cp, *yy_bp; register int yy_act; ! #line 65 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" /* Do this on entry to yylex(): */ *yylval = 0; *************** YY_DECL *** 1420,1426 **** } /* Things we look for in skipping mode: */ ! #line 1423 "gengtype-lex.c" if ( !(yy_init) ) { --- 1421,1427 ---- } /* Things we look for in skipping mode: */ ! #line 1424 "gengtype-lex.c" if ( !(yy_init) ) { *************** case 1: *** 1506,1512 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 76 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { BEGIN(in_struct); return TYPEDEF; --- 1507,1513 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 76 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { BEGIN(in_struct); return TYPEDEF; *************** case 2: *** 1518,1524 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 80 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { BEGIN(in_struct); return STRUCT; --- 1519,1525 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 80 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { BEGIN(in_struct); return STRUCT; *************** case 3: *** 1530,1536 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 84 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { BEGIN(in_struct); return UNION; --- 1531,1537 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 84 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { BEGIN(in_struct); return UNION; *************** case 4: *** 1542,1548 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 88 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { BEGIN(in_struct); return STRUCT; --- 1543,1549 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 88 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { BEGIN(in_struct); return STRUCT; *************** case 5: *** 1554,1560 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 92 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { BEGIN(in_struct); return EXTERN; --- 1555,1561 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 92 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { BEGIN(in_struct); return EXTERN; *************** case 6: *** 1566,1572 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 96 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { BEGIN(in_struct); return STATIC; --- 1567,1573 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 96 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { BEGIN(in_struct); return STATIC; *************** YY_RULE_SETUP *** 1577,1601 **** case 7: YY_RULE_SETUP ! #line 104 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { BEGIN(in_struct_comment); } YY_BREAK case 8: /* rule 8 can match eol */ YY_RULE_SETUP ! #line 105 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 9: /* rule 9 can match eol */ YY_RULE_SETUP ! #line 107 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { update_lineno (yytext, yyleng); } YY_BREAK case 10: /* rule 10 can match eol */ YY_RULE_SETUP ! #line 108 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 11: --- 1578,1602 ---- case 7: YY_RULE_SETUP ! #line 104 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { BEGIN(in_struct_comment); } YY_BREAK case 8: /* rule 8 can match eol */ YY_RULE_SETUP ! #line 105 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 9: /* rule 9 can match eol */ YY_RULE_SETUP ! #line 107 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { update_lineno (yytext, yyleng); } YY_BREAK case 10: /* rule 10 can match eol */ YY_RULE_SETUP ! #line 108 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 11: *************** case 11: *** 1604,1610 **** (yy_c_buf_p) = yy_cp = yy_bp + 5; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 110 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" /* don't care */ YY_BREAK case 12: --- 1605,1611 ---- (yy_c_buf_p) = yy_cp = yy_bp + 5; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 110 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" /* don't care */ YY_BREAK case 12: *************** case 12: *** 1612,1625 **** *yy_cp = (yy_hold_char); /* undo effects of setting up yytext */ (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ ! #line 112 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" case 13: /* rule 13 can match eol */ ! #line 113 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" case 14: /* rule 14 can match eol */ YY_RULE_SETUP ! #line 113 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext, yyleng, yyleng + 1); return IGNORABLE_CXX_KEYWORD; --- 1613,1626 ---- *yy_cp = (yy_hold_char); /* undo effects of setting up yytext */ (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ ! #line 112 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" case 13: /* rule 13 can match eol */ ! #line 113 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" case 14: /* rule 14 can match eol */ YY_RULE_SETUP ! #line 113 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext, yyleng, yyleng + 1); return IGNORABLE_CXX_KEYWORD; *************** case 15: *** 1631,1637 **** (yy_c_buf_p) = yy_cp = yy_bp + 3; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 117 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { return GTY_TOKEN; } YY_BREAK case 16: --- 1632,1638 ---- (yy_c_buf_p) = yy_cp = yy_bp + 3; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 117 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { return GTY_TOKEN; } YY_BREAK case 16: *************** case 16: *** 1640,1646 **** (yy_c_buf_p) = yy_cp = yy_bp + 5; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 118 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { return UNION; } YY_BREAK case 17: --- 1641,1647 ---- (yy_c_buf_p) = yy_cp = yy_bp + 5; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 118 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { return UNION; } YY_BREAK case 17: *************** case 17: *** 1649,1655 **** (yy_c_buf_p) = yy_cp = yy_bp + 6; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 119 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { return STRUCT; } YY_BREAK case 18: --- 1650,1656 ---- (yy_c_buf_p) = yy_cp = yy_bp + 6; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 119 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { return STRUCT; } YY_BREAK case 18: *************** case 18: *** 1658,1664 **** (yy_c_buf_p) = yy_cp = yy_bp + 5; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 120 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { return STRUCT; } YY_BREAK case 19: --- 1659,1665 ---- (yy_c_buf_p) = yy_cp = yy_bp + 5; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 120 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { return STRUCT; } YY_BREAK case 19: *************** case 19: *** 1667,1673 **** (yy_c_buf_p) = yy_cp = yy_bp + 7; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 121 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { return TYPEDEF; } YY_BREAK case 20: --- 1668,1674 ---- (yy_c_buf_p) = yy_cp = yy_bp + 7; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 121 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { return TYPEDEF; } YY_BREAK case 20: *************** case 20: *** 1676,1682 **** (yy_c_buf_p) = yy_cp = yy_bp + 4; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 122 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { return ENUM; } YY_BREAK case 21: --- 1677,1683 ---- (yy_c_buf_p) = yy_cp = yy_bp + 4; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 122 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { return ENUM; } YY_BREAK case 21: *************** case 21: *** 1685,1691 **** (yy_c_buf_p) = yy_cp = yy_bp + 9; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 123 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { return PTR_ALIAS; } YY_BREAK case 22: --- 1686,1692 ---- (yy_c_buf_p) = yy_cp = yy_bp + 9; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 123 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { return PTR_ALIAS; } YY_BREAK case 22: *************** case 22: *** 1694,1700 **** (yy_c_buf_p) = yy_cp = yy_bp + 10; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 124 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { return NESTED_PTR; } YY_BREAK case 23: --- 1695,1701 ---- (yy_c_buf_p) = yy_cp = yy_bp + 10; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 124 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { return NESTED_PTR; } YY_BREAK case 23: *************** case 23: *** 1703,1714 **** (yy_c_buf_p) = yy_cp = yy_bp + 4; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 125 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { return USER_GTY; } YY_BREAK case 24: YY_RULE_SETUP ! #line 126 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { return NUM; } YY_BREAK case 25: --- 1704,1715 ---- (yy_c_buf_p) = yy_cp = yy_bp + 4; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 125 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { return USER_GTY; } YY_BREAK case 24: YY_RULE_SETUP ! #line 126 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { return NUM; } YY_BREAK case 25: *************** case 25: *** 1717,1723 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 127 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext, yyleng, yyleng+1); return PARAM_IS; --- 1718,1724 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 127 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext, yyleng, yyleng+1); return PARAM_IS; *************** case 26: *** 1728,1738 **** *yy_cp = (yy_hold_char); /* undo effects of setting up yytext */ (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ ! #line 133 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" case 27: /* rule 27 can match eol */ YY_RULE_SETUP ! #line 133 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { size_t len; --- 1729,1739 ---- *yy_cp = (yy_hold_char); /* undo effects of setting up yytext */ (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ ! #line 133 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" case 27: /* rule 27 can match eol */ YY_RULE_SETUP ! #line 133 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { size_t len; *************** case 28: *** 1750,1756 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 144 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext, yyleng, yyleng+1); return ID; --- 1751,1757 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 144 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext, yyleng, yyleng+1); return ID; *************** YY_RULE_SETUP *** 1759,1765 **** case 29: /* rule 29 can match eol */ YY_RULE_SETUP ! #line 149 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng-1); return STRING; --- 1760,1766 ---- case 29: /* rule 29 can match eol */ YY_RULE_SETUP ! #line 149 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng-1); return STRING; *************** YY_RULE_SETUP *** 1769,1775 **** case 30: /* rule 30 can match eol */ YY_RULE_SETUP ! #line 154 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng-1); return ARRAY; --- 1770,1776 ---- case 30: /* rule 30 can match eol */ YY_RULE_SETUP ! #line 154 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng-1); return ARRAY; *************** YY_RULE_SETUP *** 1778,1784 **** case 31: /* rule 31 can match eol */ YY_RULE_SETUP ! #line 158 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng); return CHAR; --- 1779,1785 ---- case 31: /* rule 31 can match eol */ YY_RULE_SETUP ! #line 158 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng); return CHAR; *************** YY_RULE_SETUP *** 1786,1809 **** YY_BREAK case 32: YY_RULE_SETUP ! #line 163 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { return ELLIPSIS; } YY_BREAK case 33: YY_RULE_SETUP ! #line 164 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { return yytext[0]; } YY_BREAK /* ignore pp-directives */ case 34: /* rule 34 can match eol */ YY_RULE_SETUP ! #line 167 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" {lexer_line.line++;} YY_BREAK case 35: YY_RULE_SETUP ! #line 169 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { error_at_line (&lexer_line, "unexpected character `%s'", yytext); } --- 1787,1810 ---- YY_BREAK case 32: YY_RULE_SETUP ! #line 163 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { return ELLIPSIS; } YY_BREAK case 33: YY_RULE_SETUP ! #line 164 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { return yytext[0]; } YY_BREAK /* ignore pp-directives */ case 34: /* rule 34 can match eol */ YY_RULE_SETUP ! #line 167 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" {lexer_line.line++;} YY_BREAK case 35: YY_RULE_SETUP ! #line 169 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { error_at_line (&lexer_line, "unexpected character `%s'", yytext); } *************** YY_RULE_SETUP *** 1811,1846 **** case 36: YY_RULE_SETUP ! #line 174 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { BEGIN(in_comment); } YY_BREAK case 37: /* rule 37 can match eol */ YY_RULE_SETUP ! #line 175 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 38: /* rule 38 can match eol */ YY_RULE_SETUP ! #line 176 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 39: ! #line 178 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" case 40: /* rule 40 can match eol */ ! #line 179 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" case 41: /* rule 41 can match eol */ YY_RULE_SETUP ! #line 179 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 42: /* rule 42 can match eol */ YY_RULE_SETUP ! #line 180 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { update_lineno (yytext, yyleng); } YY_BREAK case 43: --- 1812,1847 ---- case 36: YY_RULE_SETUP ! #line 174 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { BEGIN(in_comment); } YY_BREAK case 37: /* rule 37 can match eol */ YY_RULE_SETUP ! #line 175 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 38: /* rule 38 can match eol */ YY_RULE_SETUP ! #line 176 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 39: ! #line 178 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" case 40: /* rule 40 can match eol */ ! #line 179 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" case 41: /* rule 41 can match eol */ YY_RULE_SETUP ! #line 179 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 42: /* rule 42 can match eol */ YY_RULE_SETUP ! #line 180 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { update_lineno (yytext, yyleng); } YY_BREAK case 43: *************** case 43: *** 1849,1869 **** (yy_c_buf_p) = yy_cp = yy_bp + 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 181 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 44: /* rule 44 can match eol */ YY_RULE_SETUP ! #line 184 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 45: ! #line 186 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" case 46: YY_RULE_SETUP ! #line 186 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 47: --- 1850,1870 ---- (yy_c_buf_p) = yy_cp = yy_bp + 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 181 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 44: /* rule 44 can match eol */ YY_RULE_SETUP ! #line 184 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 45: ! #line 186 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" case 46: YY_RULE_SETUP ! #line 186 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 47: *************** case 47: *** 1872,1896 **** (yy_c_buf_p) = yy_cp = yy_bp + 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 187 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 48: YY_RULE_SETUP ! #line 190 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { BEGIN(INITIAL); } YY_BREAK case 49: YY_RULE_SETUP ! #line 191 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { BEGIN(in_struct); } YY_BREAK case 50: ! #line 194 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" case 51: YY_RULE_SETUP ! #line 194 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" { error_at_line (&lexer_line, "unterminated comment or string; unexpected EOF"); --- 1873,1897 ---- (yy_c_buf_p) = yy_cp = yy_bp + 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 187 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 48: YY_RULE_SETUP ! #line 190 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { BEGIN(INITIAL); } YY_BREAK case 49: YY_RULE_SETUP ! #line 191 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { BEGIN(in_struct); } YY_BREAK case 50: ! #line 194 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" case 51: YY_RULE_SETUP ! #line 194 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" { error_at_line (&lexer_line, "unterminated comment or string; unexpected EOF"); *************** YY_RULE_SETUP *** 1899,1913 **** case 52: /* rule 52 can match eol */ YY_RULE_SETUP ! #line 199 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 53: YY_RULE_SETUP ! #line 201 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" YY_FATAL_ERROR( "flex scanner jammed" ); YY_BREAK ! #line 1910 "gengtype-lex.c" case YY_STATE_EOF(INITIAL): case YY_STATE_EOF(in_struct): case YY_STATE_EOF(in_struct_comment): --- 1900,1914 ---- case 52: /* rule 52 can match eol */ YY_RULE_SETUP ! #line 199 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 53: YY_RULE_SETUP ! #line 201 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" YY_FATAL_ERROR( "flex scanner jammed" ); YY_BREAK ! #line 1911 "gengtype-lex.c" case YY_STATE_EOF(INITIAL): case YY_STATE_EOF(in_struct): case YY_STATE_EOF(in_struct_comment): *************** static int yy_get_next_buffer (void) *** 2097,2117 **** else { ! int num_to_read = YY_CURRENT_BUFFER_LVALUE->yy_buf_size - number_to_move - 1; while ( num_to_read <= 0 ) { /* Not enough room in the buffer - grow it. */ /* just a shorter name for the current buffer */ ! YY_BUFFER_STATE b = YY_CURRENT_BUFFER; int yy_c_buf_p_offset = (int) ((yy_c_buf_p) - b->yy_ch_buf); if ( b->yy_is_our_buffer ) { ! int new_size = b->yy_buf_size * 2; if ( new_size <= 0 ) b->yy_buf_size += b->yy_buf_size / 8; --- 2098,2118 ---- else { ! yy_size_t num_to_read = YY_CURRENT_BUFFER_LVALUE->yy_buf_size - number_to_move - 1; while ( num_to_read <= 0 ) { /* Not enough room in the buffer - grow it. */ /* just a shorter name for the current buffer */ ! YY_BUFFER_STATE b = YY_CURRENT_BUFFER_LVALUE; int yy_c_buf_p_offset = (int) ((yy_c_buf_p) - b->yy_ch_buf); if ( b->yy_is_our_buffer ) { ! yy_size_t new_size = b->yy_buf_size * 2; if ( new_size <= 0 ) b->yy_buf_size += b->yy_buf_size / 8; *************** static int yy_get_next_buffer (void) *** 2142,2148 **** /* Read in more data. */ YY_INPUT( (&YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[number_to_move]), ! (yy_n_chars), (size_t) num_to_read ); YY_CURRENT_BUFFER_LVALUE->yy_n_chars = (yy_n_chars); } --- 2143,2149 ---- /* Read in more data. */ YY_INPUT( (&YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[number_to_move]), ! (yy_n_chars), num_to_read ); YY_CURRENT_BUFFER_LVALUE->yy_n_chars = (yy_n_chars); } *************** static int yy_get_next_buffer (void) *** 2238,2244 **** yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c]; yy_is_jam = (yy_current_state == 557); ! return yy_is_jam ? 0 : yy_current_state; } #ifndef YY_NO_INPUT --- 2239,2245 ---- yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c]; yy_is_jam = (yy_current_state == 557); ! return yy_is_jam ? 0 : yy_current_state; } #ifndef YY_NO_INPUT *************** static int yy_get_next_buffer (void) *** 2265,2271 **** else { /* need more input */ ! int offset = (yy_c_buf_p) - (yytext_ptr); ++(yy_c_buf_p); switch ( yy_get_next_buffer( ) ) --- 2266,2272 ---- else { /* need more input */ ! yy_size_t offset = (yy_c_buf_p) - (yytext_ptr); ++(yy_c_buf_p); switch ( yy_get_next_buffer( ) ) *************** void yypop_buffer_state (void) *** 2539,2545 **** */ static void yyensure_buffer_stack (void) { ! int num_to_alloc; if (!(yy_buffer_stack)) { --- 2540,2546 ---- */ static void yyensure_buffer_stack (void) { ! yy_size_t num_to_alloc; if (!(yy_buffer_stack)) { *************** YY_BUFFER_STATE yy_scan_string (yyconst *** 2631,2647 **** /** Setup the input buffer state to scan the given bytes. The next call to yylex() will * scan from a @e copy of @a bytes. ! * @param bytes the byte buffer to scan ! * @param len the number of bytes in the buffer pointed to by @a bytes. * * @return the newly allocated buffer state object. */ ! YY_BUFFER_STATE yy_scan_bytes (yyconst char * yybytes, int _yybytes_len ) { YY_BUFFER_STATE b; char *buf; yy_size_t n; ! int i; /* Get memory for full buffer, including space for trailing EOB's. */ n = _yybytes_len + 2; --- 2632,2648 ---- /** Setup the input buffer state to scan the given bytes. The next call to yylex() will * scan from a @e copy of @a bytes. ! * @param yybytes the byte buffer to scan ! * @param _yybytes_len the number of bytes in the buffer pointed to by @a bytes. * * @return the newly allocated buffer state object. */ ! YY_BUFFER_STATE yy_scan_bytes (yyconst char * yybytes, yy_size_t _yybytes_len ) { YY_BUFFER_STATE b; char *buf; yy_size_t n; ! yy_size_t i; /* Get memory for full buffer, including space for trailing EOB's. */ n = _yybytes_len + 2; *************** FILE *yyget_out (void) *** 2723,2729 **** /** Get the length of the current token. * */ ! int yyget_leng (void) { return yyleng; } --- 2724,2730 ---- /** Get the length of the current token. * */ ! yy_size_t yyget_leng (void) { return yyleng; } *************** void yyfree (void * ptr ) *** 2871,2877 **** #define YYTABLES_NAME "yytables" ! #line 201 "/d/gcc-4.8.1/gcc-4.8.1/gcc/gengtype-lex.l" --- 2872,2878 ---- #define YYTABLES_NAME "yytables" ! #line 201 "/d/gcc-4.8.2/gcc-4.8.2/gcc/gengtype-lex.l" diff -Nrcpad gcc-4.8.1/gcc/genoutput.c gcc-4.8.2/gcc/genoutput.c *** gcc-4.8.1/gcc/genoutput.c Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/genoutput.c Thu Aug 29 18:37:46 2013 *************** output_insn_data (void) *** 404,412 **** } if (d->name && d->name[0] != '*') ! printf (" (insn_gen_fn) gen_%s,\n", d->name); else ! printf (" 0,\n"); printf (" &operand_data[%d],\n", d->operand_number); printf (" %d,\n", d->n_generator_args); --- 404,412 ---- } if (d->name && d->name[0] != '*') ! printf (" { (insn_gen_fn::stored_funcptr) gen_%s },\n", d->name); else ! printf (" { 0 },\n"); printf (" &operand_data[%d],\n", d->operand_number); printf (" %d,\n", d->n_generator_args); diff -Nrcpad gcc-4.8.1/gcc/gimple-ssa-strength-reduction.c gcc-4.8.2/gcc/gimple-ssa-strength-reduction.c *** gcc-4.8.1/gcc/gimple-ssa-strength-reduction.c Mon Apr 15 15:00:06 2013 --- gcc-4.8.2/gcc/gimple-ssa-strength-reduction.c Tue Aug 6 15:08:59 2013 *************** unconditional_cands_with_known_stride_p *** 1525,1535 **** static void replace_ref (tree *expr, slsr_cand_t c) { ! tree add_expr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (c->base_expr), ! c->base_expr, c->stride); ! tree mem_ref = fold_build2 (MEM_REF, TREE_TYPE (*expr), add_expr, ! double_int_to_tree (c->cand_type, c->index)); ! /* Gimplify the base addressing expression for the new MEM_REF tree. */ gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt); TREE_OPERAND (mem_ref, 0) --- 1525,1547 ---- static void replace_ref (tree *expr, slsr_cand_t c) { ! tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr); ! unsigned HOST_WIDE_INT misalign; ! unsigned align; ! ! /* Ensure the memory reference carries the minimum alignment ! requirement for the data type. See PR58041. */ ! get_object_alignment_1 (*expr, &align, &misalign); ! if (misalign != 0) ! align = (misalign & -misalign); ! if (align < TYPE_ALIGN (acc_type)) ! acc_type = build_aligned_type (acc_type, align); ! ! add_expr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (c->base_expr), ! c->base_expr, c->stride); ! mem_ref = fold_build2 (MEM_REF, acc_type, add_expr, ! double_int_to_tree (c->cand_type, c->index)); ! /* Gimplify the base addressing expression for the new MEM_REF tree. */ gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt); TREE_OPERAND (mem_ref, 0) diff -Nrcpad gcc-4.8.1/gcc/gimple.c gcc-4.8.2/gcc/gimple.c *** gcc-4.8.1/gcc/gimple.c Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/gimple.c Fri Aug 16 09:06:41 2013 *************** walk_stmt_load_store_addr_ops (gimple st *** 4045,4050 **** --- 4045,4057 ---- ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data); } } + else if (visit_addr + && gimple_code (stmt) == GIMPLE_GOTO) + { + tree op = gimple_goto_dest (stmt); + if (TREE_CODE (op) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data); + } return ret; } diff -Nrcpad gcc-4.8.1/gcc/go/ChangeLog gcc-4.8.2/gcc/go/ChangeLog *** gcc-4.8.1/gcc/go/ChangeLog Fri May 31 09:01:50 2013 --- gcc-4.8.2/gcc/go/ChangeLog Wed Oct 16 07:19:48 2013 *************** *** 1,3 **** --- 1,52 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + + 2013-10-04 Chris Manghane + + * go-gcc.cc (Backend::convert_expression): New function. + + 2013-10-02 Chris Manghane + + * go-gcc.cc: Include "real.h" and "realmpfr.h". + (Backend::integer_constant_expression): New function. + (Backend::float_constant_expression): New function. + (Backend::complex_constant_expression): New function. + + 2013-09-30 Chris Manghane + + * go-gcc.cc (Backend::error_expression): New function. + (Backend::var_expression): New function. + (Backend::indirect_expression): New function. + + 2013-08-28 Ian Lance Taylor + + * go-gcc.cc (Gcc_backend::immutable_struct): Set TREE_PUBLIC if + the struct is not hidden. + (Gcc_backend::immutable_struct_set_init): Don't set TREE_PUBLIC. + + 2013-08-06 Ian Lance Taylor + + * go-gcc.cc (Gcc_backend::immutable_struct_set_init): Use + compute_reloc_for_constant. + + 2013-08-02 Ian Lance Taylor + + * go-gcc.cc (immutable_struct_set_init): Always call + resolve_unique_section. + + 2013-07-24 Ian Lance Taylor + + * go-gcc.cc (Gcc_backend::non_zero_size_type): If a struct has a + fields, recreate those fields with the first one with a non-zero + size. + + 2013-06-18 Ian Lance Taylor + + * go-gcc.cc (Gcc_backend::immutable_struct): Add is_hidden + parameter. + (Gcc_backend::immutable_struct_set_init): Likewise. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/gcc/go/go-gcc.cc gcc-4.8.2/gcc/go/go-gcc.cc *** gcc-4.8.1/gcc/go/go-gcc.cc Thu Jan 10 20:38:27 2013 --- gcc-4.8.2/gcc/go/go-gcc.cc Fri Oct 4 18:07:35 2013 *************** *** 29,34 **** --- 29,36 ---- #include "gimple.h" #include "toplev.h" #include "output.h" + #include "real.h" + #include "realmpfr.h" #include "go-c.h" *************** class Gcc_backend : public Backend *** 208,213 **** --- 210,237 ---- Bexpression* zero_expression(Btype*); + Bexpression* + error_expression() + { return this->make_expression(error_mark_node); } + + Bexpression* + var_expression(Bvariable* var, Location); + + Bexpression* + indirect_expression(Bexpression* expr, bool known_valid, Location); + + Bexpression* + integer_constant_expression(Btype* btype, mpz_t val); + + Bexpression* + float_constant_expression(Btype* btype, mpfr_t val); + + Bexpression* + complex_constant_expression(Btype* btype, mpfr_t real, mpfr_t imag); + + Bexpression* + convert_expression(Btype* type, Bexpression* expr, Location); + // Statements. Bstatement* *************** class Gcc_backend : public Backend *** 287,296 **** Location, Bstatement**); Bvariable* ! immutable_struct(const std::string&, bool, Btype*, Location); void ! immutable_struct_set_init(Bvariable*, const std::string&, bool, Btype*, Location, Bexpression*); Bvariable* --- 311,320 ---- Location, Bstatement**); Bvariable* ! immutable_struct(const std::string&, bool, bool, Btype*, Location); void ! immutable_struct_set_init(Bvariable*, const std::string&, bool, bool, Btype*, Location, Bexpression*); Bvariable* *************** Gcc_backend::zero_expression(Btype* btyp *** 848,853 **** --- 872,971 ---- return tree_to_expr(ret); } + // An expression that references a variable. + + Bexpression* + Gcc_backend::var_expression(Bvariable* var, Location) + { + tree ret = var->get_tree(); + if (ret == error_mark_node) + return this->error_expression(); + return tree_to_expr(ret); + } + + // An expression that indirectly references an expression. + + Bexpression* + Gcc_backend::indirect_expression(Bexpression* expr, bool known_valid, + Location location) + { + tree ret = build_fold_indirect_ref_loc(location.gcc_location(), + expr->get_tree()); + if (known_valid) + TREE_THIS_NOTRAP(ret) = 1; + return tree_to_expr(ret); + } + + // Return a typed value as a constant integer. + + Bexpression* + Gcc_backend::integer_constant_expression(Btype* btype, mpz_t val) + { + tree t = btype->get_tree(); + if (t == error_mark_node) + return this->error_expression(); + + tree ret = double_int_to_tree(t, mpz_get_double_int(t, val, true)); + return tree_to_expr(ret); + } + + // Return a typed value as a constant floating-point number. + + Bexpression* + Gcc_backend::float_constant_expression(Btype* btype, mpfr_t val) + { + tree t = btype->get_tree(); + tree ret; + if (t == error_mark_node) + return this->error_expression(); + + REAL_VALUE_TYPE r1; + real_from_mpfr(&r1, val, t, GMP_RNDN); + REAL_VALUE_TYPE r2; + real_convert(&r2, TYPE_MODE(t), &r1); + ret = build_real(t, r2); + return tree_to_expr(ret); + } + + // Return a typed real and imaginary value as a constant complex number. + + Bexpression* + Gcc_backend::complex_constant_expression(Btype* btype, mpfr_t real, mpfr_t imag) + { + tree t = btype->get_tree(); + tree ret; + if (t == error_mark_node) + return this->error_expression(); + + REAL_VALUE_TYPE r1; + real_from_mpfr(&r1, real, TREE_TYPE(t), GMP_RNDN); + REAL_VALUE_TYPE r2; + real_convert(&r2, TYPE_MODE(TREE_TYPE(t)), &r1); + + REAL_VALUE_TYPE r3; + real_from_mpfr(&r3, imag, TREE_TYPE(t), GMP_RNDN); + REAL_VALUE_TYPE r4; + real_convert(&r4, TYPE_MODE(TREE_TYPE(t)), &r3); + + ret = build_complex(t, build_real(TREE_TYPE(t), r2), + build_real(TREE_TYPE(t), r4)); + return tree_to_expr(ret); + } + + // An expression that converts an expression to a different type. + + Bexpression* + Gcc_backend::convert_expression(Btype* type, Bexpression* expr, Location) + { + tree type_tree = type->get_tree(); + tree expr_tree = expr->get_tree(); + if (type_tree == error_mark_node || expr_tree == error_mark_node) + return this->error_expression(); + + tree ret = fold_convert(type_tree, expr_tree); + return tree_to_expr(ret); + } + // An expression as a statement. Bstatement* *************** Gcc_backend::non_zero_size_type(tree typ *** 1242,1261 **** switch (TREE_CODE(type)) { case RECORD_TYPE: ! { ! if (go_non_zero_struct == NULL_TREE) ! { ! type = make_node(RECORD_TYPE); ! tree field = build_decl(UNKNOWN_LOCATION, FIELD_DECL, ! get_identifier("dummy"), ! boolean_type_node); ! DECL_CONTEXT(field) = type; ! TYPE_FIELDS(type) = field; ! layout_type(type); ! go_non_zero_struct = type; ! } ! return go_non_zero_struct; ! } case ARRAY_TYPE: { --- 1360,1400 ---- switch (TREE_CODE(type)) { case RECORD_TYPE: ! if (TYPE_FIELDS(type) != NULL_TREE) ! { ! tree ns = make_node(RECORD_TYPE); ! tree field_trees = NULL_TREE; ! tree *pp = &field_trees; ! for (tree field = TYPE_FIELDS(type); ! field != NULL_TREE; ! field = DECL_CHAIN(field)) ! { ! tree ft = TREE_TYPE(field); ! if (field == TYPE_FIELDS(type)) ! ft = non_zero_size_type(ft); ! tree f = build_decl(DECL_SOURCE_LOCATION(field), FIELD_DECL, ! DECL_NAME(field), ft); ! DECL_CONTEXT(f) = ns; ! *pp = f; ! pp = &DECL_CHAIN(f); ! } ! TYPE_FIELDS(ns) = field_trees; ! layout_type(ns); ! return ns; ! } ! ! if (go_non_zero_struct == NULL_TREE) ! { ! type = make_node(RECORD_TYPE); ! tree field = build_decl(UNKNOWN_LOCATION, FIELD_DECL, ! get_identifier("dummy"), ! boolean_type_node); ! DECL_CONTEXT(field) = type; ! TYPE_FIELDS(type) = field; ! layout_type(type); ! go_non_zero_struct = type; ! } ! return go_non_zero_struct; case ARRAY_TYPE: { *************** Gcc_backend::temporary_variable(Bfunctio *** 1454,1461 **** // Create a named immutable initialized data structure. Bvariable* ! Gcc_backend::immutable_struct(const std::string& name, bool, Btype* btype, ! Location location) { tree type_tree = btype->get_tree(); if (type_tree == error_mark_node) --- 1593,1600 ---- // Create a named immutable initialized data structure. Bvariable* ! Gcc_backend::immutable_struct(const std::string& name, bool is_hidden, ! bool, Btype* btype, Location location) { tree type_tree = btype->get_tree(); if (type_tree == error_mark_node) *************** Gcc_backend::immutable_struct(const std: *** 1469,1474 **** --- 1608,1615 ---- TREE_CONSTANT(decl) = 1; TREE_USED(decl) = 1; DECL_ARTIFICIAL(decl) = 1; + if (!is_hidden) + TREE_PUBLIC(decl) = 1; // We don't call rest_of_decl_compilation until we have the // initializer. *************** Gcc_backend::immutable_struct(const std: *** 1482,1489 **** void Gcc_backend::immutable_struct_set_init(Bvariable* var, const std::string&, ! bool is_common, Btype*, ! Location, Bexpression* initializer) { tree decl = var->get_tree(); --- 1623,1629 ---- void Gcc_backend::immutable_struct_set_init(Bvariable* var, const std::string&, ! bool, bool is_common, Btype*, Location, Bexpression* initializer) { tree decl = var->get_tree(); *************** Gcc_backend::immutable_struct_set_init(B *** 1494,1506 **** DECL_INITIAL(decl) = init_tree; // We can't call make_decl_one_only until we set DECL_INITIAL. ! if (!is_common) ! TREE_PUBLIC(decl) = 1; ! else ! { ! make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl)); ! resolve_unique_section(decl, 1, 0); ! } rest_of_decl_compilation(decl, 1, 0); } --- 1634,1647 ---- DECL_INITIAL(decl) = init_tree; // We can't call make_decl_one_only until we set DECL_INITIAL. ! if (is_common) ! make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl)); ! ! // These variables are often unneeded in the final program, so put ! // them in their own section so that linker GC can discard them. ! resolve_unique_section(decl, ! compute_reloc_for_constant (init_tree), ! 1); rest_of_decl_compilation(decl, 1, 0); } diff -Nrcpad gcc-4.8.1/gcc/go/gofrontend/backend.h gcc-4.8.2/gcc/go/gofrontend/backend.h *** gcc-4.8.1/gcc/go/gofrontend/backend.h Thu Nov 29 18:11:17 2012 --- gcc-4.8.2/gcc/go/gofrontend/backend.h Fri Oct 4 18:07:35 2013 *************** *** 7,12 **** --- 7,15 ---- #ifndef GO_BACKEND_H #define GO_BACKEND_H + #include + #include + // Pointers to these types are created by the backend, passed to the // frontend, and passed back to the backend. The types must be // defined by the backend using these names. *************** class Backend *** 95,101 **** // Get a function type. The receiver, parameter, and results are // generated from the types in the Function_type. The Function_type ! // is provided so that the names are available. virtual Btype* function_type(const Btyped_identifier& receiver, const std::vector& parameters, --- 98,107 ---- // Get a function type. The receiver, parameter, and results are // generated from the types in the Function_type. The Function_type ! // is provided so that the names are available. This should return ! // not the type of a Go function (which is a pointer to a struct) ! // but the type of a C function pointer (which will be used as the ! // type of the first field of the struct). virtual Btype* function_type(const Btyped_identifier& receiver, const std::vector& parameters, *************** class Backend *** 228,233 **** --- 234,271 ---- virtual Bexpression* zero_expression(Btype*) = 0; + // Create an error expression. This is used for cases which should + // not occur in a correct program, in order to keep the compilation + // going without crashing. + virtual Bexpression* + error_expression() = 0; + + // Create a reference to a variable. + virtual Bexpression* + var_expression(Bvariable* var, Location) = 0; + + // Create an expression that indirects through the pointer expression EXPR + // (i.e., return the expression for *EXPR). KNOWN_VALID is true if the pointer + // is known to point to a valid memory location. + virtual Bexpression* + indirect_expression(Bexpression* expr, bool known_valid, Location) = 0; + + // Return an expression for the multi-precision integer VAL in BTYPE. + virtual Bexpression* + integer_constant_expression(Btype* btype, mpz_t val) = 0; + + // Return an expression for the floating point value VAL in BTYPE. + virtual Bexpression* + float_constant_expression(Btype* btype, mpfr_t val) = 0; + + // Return an expression for the complex value REAL/IMAG in BTYPE. + virtual Bexpression* + complex_constant_expression(Btype* btype, mpfr_t real, mpfr_t imag) = 0; + + // Return an expression that converts EXPR to TYPE. + virtual Bexpression* + convert_expression(Btype* type, Bexpression* expr, Location) = 0; + // Statements. // Create an error statement. This is used for cases which should *************** class Backend *** 388,405 **** Bstatement** pstatement) = 0; // Create a named immutable initialized data structure. This is ! // used for type descriptors and map descriptors. This returns a ! // Bvariable because it corresponds to an initialized const global ! // variable in C. // // NAME is the name to use for the initialized global variable which // this call will create. // // IS_COMMON is true if NAME may be defined by several packages, and // the linker should merge all such definitions. If IS_COMMON is // false, NAME should be defined in only one file. In general // IS_COMMON will be true for the type descriptor of an unnamed type ! // or a builtin type. // // TYPE will be a struct type; the type of the returned expression // must be a pointer to this struct type. --- 426,447 ---- Bstatement** pstatement) = 0; // Create a named immutable initialized data structure. This is ! // used for type descriptors, map descriptors, and function ! // descriptors. This returns a Bvariable because it corresponds to ! // an initialized const variable in C. // // NAME is the name to use for the initialized global variable which // this call will create. // + // IS_HIDDEN will be true if the descriptor should only be visible + // within the current object. + // // IS_COMMON is true if NAME may be defined by several packages, and // the linker should merge all such definitions. If IS_COMMON is // false, NAME should be defined in only one file. In general // IS_COMMON will be true for the type descriptor of an unnamed type ! // or a builtin type. IS_HIDDEN and IS_COMMON will never both be ! // true. // // TYPE will be a struct type; the type of the returned expression // must be a pointer to this struct type. *************** class Backend *** 409,428 **** // address. After calling this the frontend will call // immutable_struct_set_init. virtual Bvariable* ! immutable_struct(const std::string& name, bool is_common, Btype* type, ! Location) = 0; // Set the initial value of a variable created by immutable_struct. ! // The NAME, IS_COMMON, TYPE, and location parameters are the same ! // ones passed to immutable_struct. INITIALIZER will be a composite ! // literal of type TYPE. It will not contain any function calls or ! // anything else which can not be put into a read-only data section. ! // It may contain the address of variables created by // immutable_struct. virtual void immutable_struct_set_init(Bvariable*, const std::string& name, ! bool is_common, Btype* type, Location, ! Bexpression* initializer) = 0; // Create a reference to a named immutable initialized data // structure defined in some other package. This will be a --- 451,470 ---- // address. After calling this the frontend will call // immutable_struct_set_init. virtual Bvariable* ! immutable_struct(const std::string& name, bool is_hidden, bool is_common, ! Btype* type, Location) = 0; // Set the initial value of a variable created by immutable_struct. ! // The NAME, IS_HIDDEN, IS_COMMON, TYPE, and location parameters are ! // the same ones passed to immutable_struct. INITIALIZER will be a ! // composite literal of type TYPE. It will not contain any function ! // calls or anything else that can not be put into a read-only data ! // section. It may contain the address of variables created by // immutable_struct. virtual void immutable_struct_set_init(Bvariable*, const std::string& name, ! bool is_hidden, bool is_common, Btype* type, ! Location, Bexpression* initializer) = 0; // Create a reference to a named immutable initialized data // structure defined in some other package. This will be a diff -Nrcpad gcc-4.8.1/gcc/go/gofrontend/expressions.cc gcc-4.8.2/gcc/go/gofrontend/expressions.cc *** gcc-4.8.1/gcc/go/gofrontend/expressions.cc Fri Dec 21 15:59:27 2012 --- gcc-4.8.2/gcc/go/gofrontend/expressions.cc Tue Oct 8 23:54:31 2013 *************** Expression::get_tree(Translate_context* *** 610,711 **** return this->do_get_tree(context); } ! // Return a tree for VAL in TYPE. ! ! tree ! Expression::integer_constant_tree(mpz_t val, tree type) { ! if (type == error_mark_node) ! return error_mark_node; ! else if (TREE_CODE(type) == INTEGER_TYPE) ! return double_int_to_tree(type, ! mpz_get_double_int(type, val, true)); ! else if (TREE_CODE(type) == REAL_TYPE) ! { ! mpfr_t fval; ! mpfr_init_set_z(fval, val, GMP_RNDN); ! tree ret = Expression::float_constant_tree(fval, type); ! mpfr_clear(fval); ! return ret; ! } ! else if (TREE_CODE(type) == COMPLEX_TYPE) ! { ! mpfr_t fval; ! mpfr_init_set_z(fval, val, GMP_RNDN); ! tree real = Expression::float_constant_tree(fval, TREE_TYPE(type)); ! mpfr_clear(fval); ! tree imag = build_real_from_int_cst(TREE_TYPE(type), ! integer_zero_node); ! return build_complex(type, real, imag); ! } ! else ! go_unreachable(); ! } ! ! // Return a tree for VAL in TYPE. ! tree ! Expression::float_constant_tree(mpfr_t val, tree type) ! { ! if (type == error_mark_node) ! return error_mark_node; ! else if (TREE_CODE(type) == INTEGER_TYPE) { mpz_t ival; ! mpz_init(ival); ! mpfr_get_z(ival, val, GMP_RNDN); ! tree ret = Expression::integer_constant_tree(ival, type); mpz_clear(ival); - return ret; } ! else if (TREE_CODE(type) == REAL_TYPE) { ! REAL_VALUE_TYPE r1; ! real_from_mpfr(&r1, val, type, GMP_RNDN); ! REAL_VALUE_TYPE r2; ! real_convert(&r2, TYPE_MODE(type), &r1); ! return build_real(type, r2); } ! else if (TREE_CODE(type) == COMPLEX_TYPE) { ! REAL_VALUE_TYPE r1; ! real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN); ! REAL_VALUE_TYPE r2; ! real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1); ! tree imag = build_real_from_int_cst(TREE_TYPE(type), ! integer_zero_node); ! return build_complex(type, build_real(TREE_TYPE(type), r2), imag); } else go_unreachable(); - } - - // Return a tree for REAL/IMAG in TYPE. - - tree - Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type) - { - if (type == error_mark_node) - return error_mark_node; - else if (TREE_CODE(type) == INTEGER_TYPE || TREE_CODE(type) == REAL_TYPE) - return Expression::float_constant_tree(real, type); - else if (TREE_CODE(type) == COMPLEX_TYPE) - { - REAL_VALUE_TYPE r1; - real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN); - REAL_VALUE_TYPE r2; - real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1); - - REAL_VALUE_TYPE r3; - real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN); - REAL_VALUE_TYPE r4; - real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3); ! return build_complex(type, build_real(TREE_TYPE(type), r2), ! build_real(TREE_TYPE(type), r4)); ! } ! else ! go_unreachable(); } // Return a tree which evaluates to true if VAL, of arbitrary integer --- 610,666 ---- return this->do_get_tree(context); } ! // Return a backend expression for VAL. ! Bexpression* ! Expression::backend_numeric_constant_expression(Translate_context* context, ! Numeric_constant* val) { ! Gogo* gogo = context->gogo(); ! Type* type = val->type(); ! if (type == NULL) ! return gogo->backend()->error_expression(); ! Btype* btype = type->get_backend(gogo); ! Bexpression* ret; ! if (type->integer_type() != NULL) { mpz_t ival; ! if (!val->to_int(&ival)) ! { ! go_assert(saw_errors()); ! return gogo->backend()->error_expression(); ! } ! ret = gogo->backend()->integer_constant_expression(btype, ival); mpz_clear(ival); } ! else if (type->float_type() != NULL) { ! mpfr_t fval; ! if (!val->to_float(&fval)) ! { ! go_assert(saw_errors()); ! return gogo->backend()->error_expression(); ! } ! ret = gogo->backend()->float_constant_expression(btype, fval); ! mpfr_clear(fval); } ! else if (type->complex_type() != NULL) { ! mpfr_t real; ! mpfr_t imag; ! if (!val->to_complex(&real, &imag)) ! { ! go_assert(saw_errors()); ! return gogo->backend()->error_expression(); ! } ! ret = gogo->backend()->complex_constant_expression(btype, real, imag); ! mpfr_clear(real); ! mpfr_clear(imag); } else go_unreachable(); ! return ret; } // Return a tree which evaluates to true if VAL, of arbitrary integer *************** Var_expression::do_get_tree(Translate_co *** 978,999 **** { Bvariable* bvar = this->variable_->get_backend_variable(context->gogo(), context->function()); - tree ret = var_to_tree(bvar); - if (ret == error_mark_node) - return error_mark_node; bool is_in_heap; if (this->variable_->is_variable()) is_in_heap = this->variable_->var_value()->is_in_heap(); else if (this->variable_->is_result_variable()) is_in_heap = this->variable_->result_var_value()->is_in_heap(); else go_unreachable(); if (is_in_heap) ! { ! ret = build_fold_indirect_ref_loc(this->location().gcc_location(), ret); ! TREE_THIS_NOTRAP(ret) = 1; ! } ! return ret; } // Ast dump for variable expression. --- 933,951 ---- { Bvariable* bvar = this->variable_->get_backend_variable(context->gogo(), context->function()); bool is_in_heap; + Location loc = this->location(); if (this->variable_->is_variable()) is_in_heap = this->variable_->var_value()->is_in_heap(); else if (this->variable_->is_result_variable()) is_in_heap = this->variable_->result_var_value()->is_in_heap(); else go_unreachable(); + + Bexpression* ret = context->backend()->var_expression(bvar, loc); if (is_in_heap) ! ret = context->backend()->indirect_expression(ret, true, loc); ! return expr_to_tree(ret); } // Ast dump for variable expression. *************** Temporary_reference_expression::do_addre *** 1043,1065 **** tree Temporary_reference_expression::do_get_tree(Translate_context* context) { Bvariable* bvar = this->statement_->get_backend_variable(context); ! // The gcc backend can't represent the same set of recursive types // that the Go frontend can. In some cases this means that a // temporary variable won't have the right backend type. Correct // that here by adding a type cast. We need to use base() to push // the circularity down one level. ! tree ret = var_to_tree(bvar); if (!this->is_lvalue_ ! && POINTER_TYPE_P(TREE_TYPE(ret)) ! && VOID_TYPE_P(TREE_TYPE(TREE_TYPE(ret)))) { ! Btype* type_btype = this->type()->base()->get_backend(context->gogo()); ! tree type_tree = type_to_tree(type_btype); ! ret = fold_convert_loc(this->location().gcc_location(), type_tree, ret); } ! return ret; } // Ast dump for temporary reference. --- 995,1018 ---- tree Temporary_reference_expression::do_get_tree(Translate_context* context) { + Gogo* gogo = context->gogo(); Bvariable* bvar = this->statement_->get_backend_variable(context); + Bexpression* ret = gogo->backend()->var_expression(bvar, this->location()); ! // The backend can't always represent the same set of recursive types // that the Go frontend can. In some cases this means that a // temporary variable won't have the right backend type. Correct // that here by adding a type cast. We need to use base() to push // the circularity down one level. ! Type* stype = this->statement_->type(); if (!this->is_lvalue_ ! && stype->has_pointer() ! && stype->deref()->is_void_type()) { ! Btype* btype = this->type()->base()->get_backend(gogo); ! ret = gogo->backend()->convert_expression(btype, ret, this->location()); } ! return expr_to_tree(ret); } // Ast dump for temporary reference. *************** Set_and_use_temporary_expression::do_typ *** 1090,1095 **** --- 1043,1057 ---- return this->statement_->type(); } + // Determine the type of the expression. + + void + Set_and_use_temporary_expression::do_determine_type( + const Type_context* context) + { + this->expr_->determine_type(context); + } + // Take the address. void *************** Func_expression::do_type() *** 1255,1271 **** go_unreachable(); } ! // Get the tree for a function expression without evaluating the ! // closure. tree ! Func_expression::get_tree_without_closure(Gogo* gogo) { Function_type* fntype; ! if (this->function_->is_function()) ! fntype = this->function_->func_value()->type(); ! else if (this->function_->is_function_declaration()) ! fntype = this->function_->func_declaration_value()->type(); else go_unreachable(); --- 1217,1232 ---- go_unreachable(); } ! // Get the tree for the code of a function expression. tree ! Func_expression::get_code_pointer(Gogo* gogo, Named_object* no, Location loc) { Function_type* fntype; ! if (no->is_function()) ! fntype = no->func_value()->type(); ! else if (no->is_function_declaration()) ! fntype = no->func_declaration_value()->type(); else go_unreachable(); *************** Func_expression::get_tree_without_closur *** 1273,1286 **** // can't take their address. if (fntype->is_builtin()) { ! error_at(this->location(), "invalid use of special builtin function %qs; must be called", ! this->function_->name().c_str()); return error_mark_node; } - Named_object* no = this->function_; - tree id = no->get_id(gogo); if (id == error_mark_node) return error_mark_node; --- 1234,1245 ---- // can't take their address. if (fntype->is_builtin()) { ! error_at(loc, "invalid use of special builtin function %qs; must be called", ! no->message_name().c_str()); return error_mark_node; } tree id = no->get_id(gogo); if (id == error_mark_node) return error_mark_node; *************** Func_expression::get_tree_without_closur *** 1296,1341 **** if (fndecl == error_mark_node) return error_mark_node; ! return build_fold_addr_expr_loc(this->location().gcc_location(), fndecl); } // Get the tree for a function expression. This is used when we take ! // the address of a function rather than simply calling it. If the ! // function has a closure, we must use a trampoline. tree Func_expression::do_get_tree(Translate_context* context) { ! Gogo* gogo = context->gogo(); ! ! tree fnaddr = this->get_tree_without_closure(gogo); ! if (fnaddr == error_mark_node) ! return error_mark_node; ! ! go_assert(TREE_CODE(fnaddr) == ADDR_EXPR ! && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL); ! TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1; ! ! // If there is no closure, that is all have to do. if (this->closure_ == NULL) ! return fnaddr; ! ! go_assert(this->function_->func_value()->enclosing() != NULL); ! // Get the value of the closure. This will be a pointer to space ! // allocated on the heap. ! tree closure_tree = this->closure_->get_tree(context); ! if (closure_tree == error_mark_node) ! return error_mark_node; ! go_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree))); ! // Now we need to build some code on the heap. This code will load ! // the static chain pointer with the closure and then jump to the ! // body of the function. The normal gcc approach is to build the ! // code on the stack. Unfortunately we can not do that, as Go ! // permits us to return the function pointer. ! return gogo->make_trampoline(fnaddr, closure_tree, this->location()); } // Ast dump for function. --- 1255,1309 ---- if (fndecl == error_mark_node) return error_mark_node; ! return build_fold_addr_expr_loc(loc.gcc_location(), fndecl); } // Get the tree for a function expression. This is used when we take ! // the address of a function rather than simply calling it. A func ! // value is represented as a pointer to a block of memory. The first ! // word of that memory is a pointer to the function code. The ! // remaining parts of that memory are the addresses of variables that ! // the function closes over. tree Func_expression::do_get_tree(Translate_context* context) { ! // If there is no closure, just use the function descriptor. if (this->closure_ == NULL) ! { ! Gogo* gogo = context->gogo(); ! Named_object* no = this->function_; ! Expression* descriptor; ! if (no->is_function()) ! descriptor = no->func_value()->descriptor(gogo, no); ! else if (no->is_function_declaration()) ! { ! if (no->func_declaration_value()->type()->is_builtin()) ! { ! error_at(this->location(), ! ("invalid use of special builtin function %qs; " ! "must be called"), ! no->message_name().c_str()); ! return error_mark_node; ! } ! descriptor = no->func_declaration_value()->descriptor(gogo, no); ! } ! else ! go_unreachable(); ! tree dtree = descriptor->get_tree(context); ! if (dtree == error_mark_node) ! return error_mark_node; ! return build_fold_addr_expr_loc(this->location().gcc_location(), dtree); ! } ! go_assert(this->function_->func_value()->enclosing() != NULL); ! // If there is a closure, then the closure is itself the function ! // expression. It is a pointer to a struct whose first field points ! // to the function code and whose remaining fields are the addresses ! // of the closed-over variables. ! return this->closure_->get_tree(context); } // Ast dump for function. *************** Expression::make_func_reference(Named_ob *** 1361,1366 **** --- 1329,1509 ---- return new Func_expression(function, closure, location); } + // Class Func_descriptor_expression. + + // Constructor. + + Func_descriptor_expression::Func_descriptor_expression(Named_object* fn) + : Expression(EXPRESSION_FUNC_DESCRIPTOR, fn->location()), + fn_(fn), dvar_(NULL) + { + go_assert(!fn->is_function() || !fn->func_value()->needs_closure()); + } + + // Traversal. + + int + Func_descriptor_expression::do_traverse(Traverse*) + { + return TRAVERSE_CONTINUE; + } + + // All function descriptors have the same type. + + Type* Func_descriptor_expression::descriptor_type; + + void + Func_descriptor_expression::make_func_descriptor_type() + { + if (Func_descriptor_expression::descriptor_type != NULL) + return; + Type* uintptr_type = Type::lookup_integer_type("uintptr"); + Type* struct_type = Type::make_builtin_struct_type(1, "code", uintptr_type); + Func_descriptor_expression::descriptor_type = + Type::make_builtin_named_type("functionDescriptor", struct_type); + } + + Type* + Func_descriptor_expression::do_type() + { + Func_descriptor_expression::make_func_descriptor_type(); + return Func_descriptor_expression::descriptor_type; + } + + // The tree for a function descriptor. + + tree + Func_descriptor_expression::do_get_tree(Translate_context* context) + { + if (this->dvar_ != NULL) + return var_to_tree(this->dvar_); + + Gogo* gogo = context->gogo(); + Named_object* no = this->fn_; + Location loc = no->location(); + + std::string var_name; + if (no->package() == NULL) + var_name = gogo->pkgpath_symbol(); + else + var_name = no->package()->pkgpath_symbol(); + var_name.push_back('.'); + var_name.append(Gogo::unpack_hidden_name(no->name())); + var_name.append("$descriptor"); + + Btype* btype = this->type()->get_backend(gogo); + + Bvariable* bvar; + if (no->package() != NULL + || Linemap::is_predeclared_location(no->location())) + bvar = context->backend()->immutable_struct_reference(var_name, btype, + loc); + else + { + Location bloc = Linemap::predeclared_location(); + bool is_hidden = ((no->is_function() + && no->func_value()->enclosing() != NULL) + || Gogo::is_thunk(no)); + bvar = context->backend()->immutable_struct(var_name, is_hidden, false, + btype, bloc); + Expression_list* vals = new Expression_list(); + vals->push_back(Expression::make_func_code_reference(this->fn_, bloc)); + Expression* init = + Expression::make_struct_composite_literal(this->type(), vals, bloc); + Translate_context bcontext(gogo, NULL, NULL, NULL); + bcontext.set_is_const(); + Bexpression* binit = tree_to_expr(init->get_tree(&bcontext)); + context->backend()->immutable_struct_set_init(bvar, var_name, is_hidden, + false, btype, bloc, binit); + } + + this->dvar_ = bvar; + return var_to_tree(bvar); + } + + // Print a function descriptor expression. + + void + Func_descriptor_expression::do_dump_expression(Ast_dump_context* context) const + { + context->ostream() << "[descriptor " << this->fn_->name() << "]"; + } + + // Make a function descriptor expression. + + Func_descriptor_expression* + Expression::make_func_descriptor(Named_object* fn) + { + return new Func_descriptor_expression(fn); + } + + // Make the function descriptor type, so that it can be converted. + + void + Expression::make_func_descriptor_type() + { + Func_descriptor_expression::make_func_descriptor_type(); + } + + // A reference to just the code of a function. + + class Func_code_reference_expression : public Expression + { + public: + Func_code_reference_expression(Named_object* function, Location location) + : Expression(EXPRESSION_FUNC_CODE_REFERENCE, location), + function_(function) + { } + + protected: + int + do_traverse(Traverse*) + { return TRAVERSE_CONTINUE; } + + Type* + do_type() + { return Type::make_pointer_type(Type::make_void_type()); } + + void + do_determine_type(const Type_context*) + { } + + Expression* + do_copy() + { + return Expression::make_func_code_reference(this->function_, + this->location()); + } + + tree + do_get_tree(Translate_context*); + + void + do_dump_expression(Ast_dump_context* context) const + { context->ostream() << "[raw " << this->function_->name() << "]" ; } + + private: + // The function. + Named_object* function_; + }; + + // Get the tree for a reference to function code. + + tree + Func_code_reference_expression::do_get_tree(Translate_context* context) + { + return Func_expression::get_code_pointer(context->gogo(), this->function_, + this->location()); + } + + // Make a reference to the code of a function. + + Expression* + Expression::make_func_code_reference(Named_object* function, Location location) + { + return new Func_code_reference_expression(function, location); + } + // Class Unknown_expression. // Return the name of an unknown expression. *************** Integer_expression::do_check_types(Gogo* *** 1811,1831 **** tree Integer_expression::do_get_tree(Translate_context* context) { ! Gogo* gogo = context->gogo(); ! tree type; if (this->type_ != NULL && !this->type_->is_abstract()) ! type = type_to_tree(this->type_->get_backend(gogo)); else if (this->type_ != NULL && this->type_->float_type() != NULL) { // We are converting to an abstract floating point type. ! Type* ftype = Type::lookup_float_type("float64"); ! type = type_to_tree(ftype->get_backend(gogo)); } else if (this->type_ != NULL && this->type_->complex_type() != NULL) { // We are converting to an abstract complex type. ! Type* ctype = Type::lookup_complex_type("complex128"); ! type = type_to_tree(ctype->get_backend(gogo)); } else { --- 1954,1971 ---- tree Integer_expression::do_get_tree(Translate_context* context) { ! Type* resolved_type = NULL; if (this->type_ != NULL && !this->type_->is_abstract()) ! resolved_type = this->type_; else if (this->type_ != NULL && this->type_->float_type() != NULL) { // We are converting to an abstract floating point type. ! resolved_type = Type::lookup_float_type("float64"); } else if (this->type_ != NULL && this->type_->complex_type() != NULL) { // We are converting to an abstract complex type. ! resolved_type = Type::lookup_complex_type("complex128"); } else { *************** Integer_expression::do_get_tree(Translat *** 1836,1851 **** int bits = mpz_sizeinbase(this->val_, 2); Type* int_type = Type::lookup_integer_type("int"); if (bits < int_type->integer_type()->bits()) ! type = type_to_tree(int_type->get_backend(gogo)); else if (bits < 64) ! { ! Type* t = Type::lookup_integer_type("int64"); ! type = type_to_tree(t->get_backend(gogo)); ! } else ! type = long_long_integer_type_node; } ! return Expression::integer_constant_tree(this->val_, type); } // Write VAL to export data. --- 1976,1998 ---- int bits = mpz_sizeinbase(this->val_, 2); Type* int_type = Type::lookup_integer_type("int"); if (bits < int_type->integer_type()->bits()) ! resolved_type = int_type; else if (bits < 64) ! resolved_type = Type::lookup_integer_type("int64"); else ! { ! if (!saw_errors()) ! error_at(this->location(), ! "unknown type for large integer constant"); ! Bexpression* ret = context->gogo()->backend()->error_expression(); ! return expr_to_tree(ret); ! } } ! Numeric_constant nc; ! nc.set_int(resolved_type, this->val_); ! Bexpression* ret = ! Expression::backend_numeric_constant_expression(context, &nc); ! return expr_to_tree(ret); } // Write VAL to export data. *************** Float_expression::do_check_types(Gogo*) *** 2099,2122 **** tree Float_expression::do_get_tree(Translate_context* context) { ! Gogo* gogo = context->gogo(); ! tree type; if (this->type_ != NULL && !this->type_->is_abstract()) ! type = type_to_tree(this->type_->get_backend(gogo)); else if (this->type_ != NULL && this->type_->integer_type() != NULL) { // We have an abstract integer type. We just hope for the best. ! type = type_to_tree(Type::lookup_integer_type("int")->get_backend(gogo)); } else { // If we still have an abstract type here, then this is being // used in a constant expression which didn't get reduced. We // just use float64 and hope for the best. ! Type* ft = Type::lookup_float_type("float64"); ! type = type_to_tree(ft->get_backend(gogo)); } ! return Expression::float_constant_tree(this->val_, type); } // Write a floating point number to a string dump. --- 2246,2277 ---- tree Float_expression::do_get_tree(Translate_context* context) { ! Type* resolved_type; if (this->type_ != NULL && !this->type_->is_abstract()) ! resolved_type = this->type_; else if (this->type_ != NULL && this->type_->integer_type() != NULL) { // We have an abstract integer type. We just hope for the best. ! resolved_type = Type::lookup_integer_type("int"); ! } ! else if (this->type_ != NULL && this->type_->complex_type() != NULL) ! { ! // We are converting to an abstract complex type. ! resolved_type = Type::lookup_complex_type("complex128"); } else { // If we still have an abstract type here, then this is being // used in a constant expression which didn't get reduced. We // just use float64 and hope for the best. ! resolved_type = Type::lookup_float_type("float64"); } ! ! Numeric_constant nc; ! nc.set_float(resolved_type, this->val_); ! Bexpression* ret = ! Expression::backend_numeric_constant_expression(context, &nc); ! return expr_to_tree(ret); } // Write a floating point number to a string dump. *************** Complex_expression::do_check_types(Gogo* *** 2276,2294 **** tree Complex_expression::do_get_tree(Translate_context* context) { ! Gogo* gogo = context->gogo(); ! tree type; if (this->type_ != NULL && !this->type_->is_abstract()) ! type = type_to_tree(this->type_->get_backend(gogo)); else { // If we still have an abstract type here, this this is being // used in a constant expression which didn't get reduced. We // just use complex128 and hope for the best. ! Type* ct = Type::lookup_complex_type("complex128"); ! type = type_to_tree(ct->get_backend(gogo)); } ! return Expression::complex_constant_tree(this->real_, this->imag_, type); } // Write REAL/IMAG to export data. --- 2431,2462 ---- tree Complex_expression::do_get_tree(Translate_context* context) { ! Type* resolved_type; if (this->type_ != NULL && !this->type_->is_abstract()) ! resolved_type = this->type_; ! else if (this->type_ != NULL && this->type_->integer_type() != NULL) ! { ! // We are converting to an abstract integer type. ! resolved_type = Type::lookup_integer_type("int"); ! } ! else if (this->type_ != NULL && this->type_->float_type() != NULL) ! { ! // We are converting to an abstract float type. ! resolved_type = Type::lookup_float_type("float64"); ! } else { // If we still have an abstract type here, this this is being // used in a constant expression which didn't get reduced. We // just use complex128 and hope for the best. ! resolved_type = Type::lookup_complex_type("complex128"); } ! ! Numeric_constant nc; ! nc.set_complex(resolved_type, this->real_, this->imag_); ! Bexpression* ret = ! Expression::backend_numeric_constant_expression(context, &nc); ! return expr_to_tree(ret); } // Write REAL/IMAG to export data. *************** Binary_expression::do_determine_type(con *** 5462,5467 **** --- 5630,5636 ---- if (tleft->is_abstract() && subcontext.type != NULL && !subcontext.may_be_abstract + && subcontext.type->interface_type() == NULL && subcontext.type->integer_type() == NULL) this->report_error(("invalid context-determined non-integer type " "for left operand of shift")); *************** Binary_expression::do_check_types(Gogo*) *** 5641,5646 **** --- 5810,5829 ---- this->set_is_error(); return; } + if (this->op_ == OPERATOR_DIV || this->op_ == OPERATOR_MOD) + { + // Division by a zero integer constant is an error. + Numeric_constant rconst; + unsigned long rval; + if (left_type->integer_type() != NULL + && this->right_->numeric_constant_value(&rconst) + && rconst.to_unsigned_long(&rval) == Numeric_constant::NC_UL_VALID + && rval == 0) + { + this->report_error(_("integer division by zero")); + return; + } + } } else { *************** Bound_method_expression::do_traverse(Tra *** 6429,6448 **** return Expression::traverse(&this->expr_, traverse); } // Return the type of a bound method expression. The type of this ! // object is really the type of the method with no receiver. We ! // should be able to get away with just returning the type of the ! // method. Type* Bound_method_expression::do_type() { ! if (this->method_->is_function()) ! return this->method_->func_value()->type(); ! else if (this->method_->is_function_declaration()) ! return this->method_->func_declaration_value()->type(); else return Type::make_error_type(); } // Determine the types of a method expression. --- 6612,6660 ---- return Expression::traverse(&this->expr_, traverse); } + // Lower the expression. If this is a method value rather than being + // called, and the method is accessed via a pointer, we may need to + // add nil checks. Introduce a temporary variable so that those nil + // checks do not cause multiple evaluation. + + Expression* + Bound_method_expression::do_lower(Gogo*, Named_object*, + Statement_inserter* inserter, int) + { + // For simplicity we use a temporary for every call to an embedded + // method, even though some of them might be pure value methods and + // not require a temporary. + if (this->expr_->var_expression() == NULL + && this->expr_->temporary_reference_expression() == NULL + && this->expr_->set_and_use_temporary_expression() == NULL + && (this->method_->field_indexes() != NULL + || (this->method_->is_value_method() + && this->expr_->type()->points_to() != NULL))) + { + Temporary_statement* temp = + Statement::make_temporary(this->expr_->type(), NULL, this->location()); + inserter->insert(temp); + this->expr_ = Expression::make_set_and_use_temporary(temp, this->expr_, + this->location()); + } + return this; + } + // Return the type of a bound method expression. The type of this ! // object is simply the type of the method with no receiver. Type* Bound_method_expression::do_type() { ! Named_object* fn = this->method_->named_object(); ! Function_type* fntype; ! if (fn->is_function()) ! fntype = fn->func_value()->type(); ! else if (fn->is_function_declaration()) ! fntype = fn->func_declaration_value()->type(); else return Type::make_error_type(); + return fntype->copy_without_receiver(); } // Determine the types of a method expression. *************** Bound_method_expression::do_type() *** 6450,6456 **** void Bound_method_expression::do_determine_type(const Type_context*) { ! Function_type* fntype = this->type()->function_type(); if (fntype == NULL || !fntype->is_method()) this->expr_->determine_type_no_context(); else --- 6662,6675 ---- void Bound_method_expression::do_determine_type(const Type_context*) { ! Named_object* fn = this->method_->named_object(); ! Function_type* fntype; ! if (fn->is_function()) ! fntype = fn->func_value()->type(); ! else if (fn->is_function_declaration()) ! fntype = fn->func_declaration_value()->type(); ! else ! fntype = NULL; if (fntype == NULL || !fntype->is_method()) this->expr_->determine_type_no_context(); else *************** Bound_method_expression::do_determine_ty *** 6465,6495 **** void Bound_method_expression::do_check_types(Gogo*) { ! if (!this->method_->is_function() ! && !this->method_->is_function_declaration()) ! this->report_error(_("object is not a method")); else { ! Type* rtype = this->type()->function_type()->receiver()->type()->deref(); ! Type* etype = (this->expr_type_ != NULL ! ? this->expr_type_ ! : this->expr_->type()); ! etype = etype->deref(); ! if (!Type::are_identical(rtype, etype, true, NULL)) ! this->report_error(_("method type does not match object type")); } } ! // Get the tree for a method expression. There is no standard tree ! // representation for this. The only places it may currently be used ! // are in a Call_expression or a Go_statement, which will take it ! // apart directly. So this has nothing to do at present. tree ! Bound_method_expression::do_get_tree(Translate_context*) { ! error_at(this->location(), "reference to method other than calling it"); ! return error_mark_node; } // Dump ast representation of a bound method expression. --- 6684,6961 ---- void Bound_method_expression::do_check_types(Gogo*) { ! Named_object* fn = this->method_->named_object(); ! if (!fn->is_function() && !fn->is_function_declaration()) ! { ! this->report_error(_("object is not a method")); ! return; ! } ! ! Function_type* fntype; ! if (fn->is_function()) ! fntype = fn->func_value()->type(); ! else if (fn->is_function_declaration()) ! fntype = fn->func_declaration_value()->type(); else + go_unreachable(); + Type* rtype = fntype->receiver()->type()->deref(); + Type* etype = (this->expr_type_ != NULL + ? this->expr_type_ + : this->expr_->type()); + etype = etype->deref(); + if (!Type::are_identical(rtype, etype, true, NULL)) + this->report_error(_("method type does not match object type")); + } + + // If a bound method expression is not simply called, then it is + // represented as a closure. The closure will hold a single variable, + // the receiver to pass to the method. The function will be a simple + // thunk that pulls that value from the closure and calls the method + // with the remaining arguments. + // + // Because method values are not common, we don't build all thunks for + // every methods, but instead only build them as we need them. In + // particular, we even build them on demand for methods defined in + // other packages. + + Bound_method_expression::Method_value_thunks + Bound_method_expression::method_value_thunks; + + // Find or create the thunk for METHOD. + + Named_object* + Bound_method_expression::create_thunk(Gogo* gogo, const Method* method, + Named_object* fn) + { + std::pair val(fn, NULL); + std::pair ins = + Bound_method_expression::method_value_thunks.insert(val); + if (!ins.second) { ! // We have seen this method before. ! go_assert(ins.first->second != NULL); ! return ins.first->second; } + + Location loc = fn->location(); + + Function_type* orig_fntype; + if (fn->is_function()) + orig_fntype = fn->func_value()->type(); + else if (fn->is_function_declaration()) + orig_fntype = fn->func_declaration_value()->type(); + else + orig_fntype = NULL; + + if (orig_fntype == NULL || !orig_fntype->is_method()) + { + ins.first->second = Named_object::make_erroneous_name(Gogo::thunk_name()); + return ins.first->second; + } + + Struct_field_list* sfl = new Struct_field_list(); + // The type here is wrong--it should be the C function type. But it + // doesn't really matter. + Type* vt = Type::make_pointer_type(Type::make_void_type()); + sfl->push_back(Struct_field(Typed_identifier("fn.0", vt, loc))); + sfl->push_back(Struct_field(Typed_identifier("val.1", + orig_fntype->receiver()->type(), + loc))); + Type* closure_type = Type::make_struct_type(sfl, loc); + closure_type = Type::make_pointer_type(closure_type); + + Function_type* new_fntype = orig_fntype->copy_with_names(); + + Named_object* new_no = gogo->start_function(Gogo::thunk_name(), new_fntype, + false, loc); + + Variable* cvar = new Variable(closure_type, NULL, false, false, false, loc); + cvar->set_is_used(); + Named_object* cp = Named_object::make_variable("$closure", NULL, cvar); + new_no->func_value()->set_closure_var(cp); + + gogo->start_block(loc); + + // Field 0 of the closure is the function code pointer, field 1 is + // the value on which to invoke the method. + Expression* arg = Expression::make_var_reference(cp, loc); + arg = Expression::make_unary(OPERATOR_MULT, arg, loc); + arg = Expression::make_field_reference(arg, 1, loc); + + Expression* bme = Expression::make_bound_method(arg, method, fn, loc); + + const Typed_identifier_list* orig_params = orig_fntype->parameters(); + Expression_list* args; + if (orig_params == NULL || orig_params->empty()) + args = NULL; + else + { + const Typed_identifier_list* new_params = new_fntype->parameters(); + args = new Expression_list(); + for (Typed_identifier_list::const_iterator p = new_params->begin(); + p != new_params->end(); + ++p) + { + Named_object* p_no = gogo->lookup(p->name(), NULL); + go_assert(p_no != NULL + && p_no->is_variable() + && p_no->var_value()->is_parameter()); + args->push_back(Expression::make_var_reference(p_no, loc)); + } + } + + Call_expression* call = Expression::make_call(bme, args, + orig_fntype->is_varargs(), + loc); + call->set_varargs_are_lowered(); + + Statement* s = Statement::make_return_from_call(call, loc); + gogo->add_statement(s); + Block* b = gogo->finish_block(loc); + gogo->add_block(b, loc); + gogo->lower_block(new_no, b); + gogo->finish_function(loc); + + ins.first->second = new_no; + return new_no; } ! // Return an expression to check *REF for nil while dereferencing ! // according to FIELD_INDEXES. Update *REF to build up the field ! // reference. This is a static function so that we don't have to ! // worry about declaring Field_indexes in expressions.h. ! ! static Expression* ! bme_check_nil(const Method::Field_indexes* field_indexes, Location loc, ! Expression** ref) ! { ! if (field_indexes == NULL) ! return Expression::make_boolean(false, loc); ! Expression* cond = bme_check_nil(field_indexes->next, loc, ref); ! Struct_type* stype = (*ref)->type()->deref()->struct_type(); ! go_assert(stype != NULL ! && field_indexes->field_index < stype->field_count()); ! if ((*ref)->type()->struct_type() == NULL) ! { ! go_assert((*ref)->type()->points_to() != NULL); ! Expression* n = Expression::make_binary(OPERATOR_EQEQ, *ref, ! Expression::make_nil(loc), ! loc); ! cond = Expression::make_binary(OPERATOR_OROR, cond, n, loc); ! *ref = Expression::make_unary(OPERATOR_MULT, *ref, loc); ! go_assert((*ref)->type()->struct_type() == stype); ! } ! *ref = Expression::make_field_reference(*ref, field_indexes->field_index, ! loc); ! return cond; ! } ! ! // Get the tree for a method value. tree ! Bound_method_expression::do_get_tree(Translate_context* context) { ! Named_object* thunk = Bound_method_expression::create_thunk(context->gogo(), ! this->method_, ! this->function_); ! if (thunk->is_erroneous()) ! { ! go_assert(saw_errors()); ! return error_mark_node; ! } ! ! // FIXME: We should lower this earlier, but we can't lower it in the ! // lowering pass because at that point we don't know whether we need ! // to create the thunk or not. If the expression is called, we ! // don't need the thunk. ! ! Location loc = this->location(); ! ! // If the method expects a value, and we have a pointer, we need to ! // dereference the pointer. ! ! Named_object* fn = this->method_->named_object(); ! Function_type* fntype; ! if (fn->is_function()) ! fntype = fn->func_value()->type(); ! else if (fn->is_function_declaration()) ! fntype = fn->func_declaration_value()->type(); ! else ! go_unreachable(); ! ! Expression* val = this->expr_; ! if (fntype->receiver()->type()->points_to() == NULL ! && val->type()->points_to() != NULL) ! val = Expression::make_unary(OPERATOR_MULT, val, loc); ! ! // Note that we are ignoring this->expr_type_ here. The thunk will ! // expect a closure whose second field has type this->expr_type_ (if ! // that is not NULL). We are going to pass it a closure whose ! // second field has type this->expr_->type(). Since ! // this->expr_type_ is only not-NULL for pointer types, we can get ! // away with this. ! ! Struct_field_list* fields = new Struct_field_list(); ! fields->push_back(Struct_field(Typed_identifier("fn.0", ! thunk->func_value()->type(), ! loc))); ! fields->push_back(Struct_field(Typed_identifier("val.1", val->type(), loc))); ! Struct_type* st = Type::make_struct_type(fields, loc); ! ! Expression_list* vals = new Expression_list(); ! vals->push_back(Expression::make_func_code_reference(thunk, loc)); ! vals->push_back(val); ! ! Expression* ret = Expression::make_struct_composite_literal(st, vals, loc); ! ret = Expression::make_heap_composite(ret, loc); ! ! tree ret_tree = ret->get_tree(context); ! ! Expression* nil_check = NULL; ! ! // See whether the expression or any embedded pointers are nil. ! ! Expression* expr = this->expr_; ! if (this->method_->field_indexes() != NULL) ! { ! // Note that we are evaluating this->expr_ twice, but that is OK ! // because in the lowering pass we forced it into a temporary ! // variable. ! Expression* ref = expr; ! nil_check = bme_check_nil(this->method_->field_indexes(), loc, &ref); ! expr = ref; ! } ! ! if (this->method_->is_value_method() && expr->type()->points_to() != NULL) ! { ! Expression* n = Expression::make_binary(OPERATOR_EQEQ, expr, ! Expression::make_nil(loc), ! loc); ! if (nil_check == NULL) ! nil_check = n; ! else ! nil_check = Expression::make_binary(OPERATOR_OROR, nil_check, n, loc); ! } ! ! if (nil_check != NULL) ! { ! tree nil_check_tree = nil_check->get_tree(context); ! tree crash = ! context->gogo()->runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE, loc); ! if (ret_tree == error_mark_node ! || nil_check_tree == error_mark_node ! || crash == error_mark_node) ! return error_mark_node; ! ! ret_tree = fold_build2_loc(loc.gcc_location(), COMPOUND_EXPR, ! TREE_TYPE(ret_tree), ! build3_loc(loc.gcc_location(), COND_EXPR, ! void_type_node, nil_check_tree, ! crash, NULL_TREE), ! ret_tree); ! } ! ! return ret_tree; } // Dump ast representation of a bound method expression. *************** Bound_method_expression::do_dump_express *** 6508,6523 **** ast_dump_context->ostream() << ")"; } ! ast_dump_context->ostream() << "." << this->method_->name(); } // Make a method expression. Bound_method_expression* ! Expression::make_bound_method(Expression* expr, Named_object* method, ! Location location) { ! return new Bound_method_expression(expr, method, location); } // Class Builtin_call_expression. This is used for a call to a --- 6974,6989 ---- ast_dump_context->ostream() << ")"; } ! ast_dump_context->ostream() << "." << this->function_->name(); } // Make a method expression. Bound_method_expression* ! Expression::make_bound_method(Expression* expr, const Method* method, ! Named_object* function, Location location) { ! return new Bound_method_expression(expr, method, function, location); } // Class Builtin_call_expression. This is used for a call to a *************** Builtin_call_expression::do_lower(Gogo* *** 6722,6727 **** --- 7188,7213 ---- return Expression::make_error(loc); } + if (this->code_ == BUILTIN_OFFSETOF) + { + Expression* arg = this->one_arg(); + Field_reference_expression* farg = arg->field_reference_expression(); + while (farg != NULL) + { + if (!farg->implicit()) + break; + // When the selector refers to an embedded field, + // it must not be reached through pointer indirections. + if (farg->expr()->deref() != farg->expr()) + { + this->report_error(_("argument of Offsetof implies indirection of an embedded field")); + return this; + } + // Go up until we reach the original base. + farg = farg->expr()->field_reference_expression(); + } + } + if (this->is_constant()) { Numeric_constant nc; *************** Builtin_call_expression::lower_make() *** 6874,6879 **** --- 7360,7367 ---- Type* uintptr_type = Type::lookup_integer_type("uintptr"); int uintptr_bits = uintptr_type->integer_type()->bits(); + Type_context int_context(Type::lookup_integer_type("int"), false); + ++parg; Expression* len_arg; if (parg == args->end()) *************** Builtin_call_expression::lower_make() *** 6892,6897 **** --- 7380,7386 ---- else { len_arg = *parg; + len_arg->determine_type(&int_context); if (!this->check_int_value(len_arg, true)) return Expression::make_error(this->location()); if (len_arg->type()->integer_type() != NULL *************** Builtin_call_expression::lower_make() *** 6904,6909 **** --- 7393,7399 ---- if (is_slice && parg != args->end()) { cap_arg = *parg; + cap_arg->determine_type(&int_context); if (!this->check_int_value(cap_arg, false)) return Expression::make_error(this->location()); *************** Builtin_call_expression::do_numeric_cons *** 7240,7247 **** return false; if (arg_type->is_abstract()) return false; - if (arg_type->named_type() != NULL) - arg_type->named_type()->convert(this->gogo_); unsigned int ret; if (this->code_ == BUILTIN_SIZEOF) --- 7730,7735 ---- *************** Builtin_call_expression::do_numeric_cons *** 7279,7297 **** Field_reference_expression* farg = arg->field_reference_expression(); if (farg == NULL) return false; ! Expression* struct_expr = farg->expr(); ! Type* st = struct_expr->type(); ! if (st->struct_type() == NULL) ! return false; ! if (st->named_type() != NULL) ! st->named_type()->convert(this->gogo_); ! unsigned int offset; ! if (!st->struct_type()->backend_field_offset(this->gogo_, ! farg->field_index(), ! &offset)) ! return false; nc->set_unsigned_long(Type::lookup_integer_type("uintptr"), ! static_cast(offset)); return true; } else if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG) --- 7767,7797 ---- Field_reference_expression* farg = arg->field_reference_expression(); if (farg == NULL) return false; ! unsigned int total_offset = 0; ! while (true) ! { ! Expression* struct_expr = farg->expr(); ! Type* st = struct_expr->type(); ! if (st->struct_type() == NULL) ! return false; ! if (st->named_type() != NULL) ! st->named_type()->convert(this->gogo_); ! unsigned int offset; ! if (!st->struct_type()->backend_field_offset(this->gogo_, ! farg->field_index(), ! &offset)) ! return false; ! total_offset += offset; ! if (farg->implicit() && struct_expr->field_reference_expression() != NULL) ! { ! // Go up until we reach the original base. ! farg = struct_expr->field_reference_expression(); ! continue; ! } ! break; ! } nc->set_unsigned_long(Type::lookup_integer_type("uintptr"), ! static_cast(total_offset)); return true; } else if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG) *************** Builtin_call_expression::do_determine_ty *** 7509,7514 **** --- 8009,8016 ---- case BUILTIN_REAL: case BUILTIN_IMAG: arg_type = Builtin_call_expression::complex_type(context->type); + if (arg_type == NULL) + arg_type = Type::lookup_complex_type("complex128"); is_print = false; break; *************** Builtin_call_expression::do_determine_ty *** 7517,7522 **** --- 8019,8026 ---- // For the complex function the type of one operand can // determine the type of the other, as in a binary expression. arg_type = Builtin_call_expression::real_imag_type(context->type); + if (arg_type == NULL) + arg_type = Type::lookup_float_type("float64"); if (args != NULL && args->size() == 2) { Type* t1 = args->front()->type(); *************** Builtin_call_expression::do_export(Expor *** 8509,8514 **** --- 9013,9086 ---- // Class Call_expression. + // A Go function can be viewed in a couple of different ways. The + // code of a Go function becomes a backend function with parameters + // whose types are simply the backend representation of the Go types. + // If there are multiple results, they are returned as a backend + // struct. + + // However, when Go code refers to a function other than simply + // calling it, the backend type of that function is actually a struct. + // The first field of the struct points to the Go function code + // (sometimes a wrapper as described below). The remaining fields + // hold addresses of closed-over variables. This struct is called a + // closure. + + // There are a few cases to consider. + + // A direct function call of a known function in package scope. In + // this case there are no closed-over variables, and we know the name + // of the function code. We can simply produce a backend call to the + // function directly, and not worry about the closure. + + // A direct function call of a known function literal. In this case + // we know the function code and we know the closure. We generate the + // function code such that it expects an additional final argument of + // the closure type. We pass the closure as the last argument, after + // the other arguments. + + // An indirect function call. In this case we have a closure. We + // load the pointer to the function code from the first field of the + // closure. We pass the address of the closure as the last argument. + + // A call to a method of an interface. Type methods are always at + // package scope, so we call the function directly, and don't worry + // about the closure. + + // This means that for a function at package scope we have two cases. + // One is the direct call, which has no closure. The other is the + // indirect call, which does have a closure. We can't simply ignore + // the closure, even though it is the last argument, because that will + // fail on targets where the function pops its arguments. So when + // generating a closure for a package-scope function we set the + // function code pointer in the closure to point to a wrapper + // function. This wrapper function accepts a final argument that + // points to the closure, ignores it, and calls the real function as a + // direct function call. This wrapper will normally be efficient, and + // can often simply be a tail call to the real function. + + // We don't use GCC's static chain pointer because 1) we don't need + // it; 2) GCC only permits using a static chain to call a known + // function, so we can't use it for an indirect call anyhow. Since we + // can't use it for an indirect call, we may as well not worry about + // using it for a direct call either. + + // We pass the closure last rather than first because it means that + // the function wrapper we put into a closure for a package-scope + // function can normally just be a tail call to the real function. + + // For method expressions we generate a wrapper that loads the + // receiver from the closure and then calls the method. This + // unfortunately forces reshuffling the arguments, since there is a + // new first argument, but we can't avoid reshuffling either for + // method expressions or for indirect calls of package-scope + // functions, and since the latter are more common we reshuffle for + // method expressions. + + // Note that the Go code retains the Go types. The extra final + // argument only appears when we convert to the backend + // representation. + // Traversal. int *************** Call_expression::do_lower(Gogo* gogo, Na *** 8542,8576 **** // Because do_type will return an error type and thus prevent future // errors, check for that case now to ensure that the error gets // reported. ! if (this->get_function_type() == NULL) { if (!this->fn_->type()->is_error()) this->report_error(_("expected function")); return Expression::make_error(loc); } - // Recognize a call to a builtin function. - Func_expression* fne = this->fn_->func_expression(); - if (fne != NULL - && fne->named_object()->is_function_declaration() - && fne->named_object()->func_declaration_value()->type()->is_builtin()) - return new Builtin_call_expression(gogo, this->fn_, this->args_, - this->is_varargs_, loc); - // Handle an argument which is a call to a function which returns // multiple results. if (this->args_ != NULL && this->args_->size() == 1 ! && this->args_->front()->call_expression() != NULL ! && this->fn_->type()->function_type() != NULL) { - Function_type* fntype = this->fn_->type()->function_type(); size_t rc = this->args_->front()->call_expression()->result_count(); if (rc > 1 ! && fntype->parameters() != NULL ! && (fntype->parameters()->size() == rc ! || (fntype->is_varargs() ! && fntype->parameters()->size() - 1 <= rc))) { Call_expression* call = this->args_->front()->call_expression(); Expression_list* args = new Expression_list; --- 9114,9140 ---- // Because do_type will return an error type and thus prevent future // errors, check for that case now to ensure that the error gets // reported. ! Function_type* fntype = this->get_function_type(); ! if (fntype == NULL) { if (!this->fn_->type()->is_error()) this->report_error(_("expected function")); return Expression::make_error(loc); } // Handle an argument which is a call to a function which returns // multiple results. if (this->args_ != NULL && this->args_->size() == 1 ! && this->args_->front()->call_expression() != NULL) { size_t rc = this->args_->front()->call_expression()->result_count(); if (rc > 1 ! && ((fntype->parameters() != NULL ! && (fntype->parameters()->size() == rc ! || (fntype->is_varargs() ! && fntype->parameters()->size() - 1 <= rc))) ! || fntype->is_builtin())) { Call_expression* call = this->args_->front()->call_expression(); Expression_list* args = new Expression_list; *************** Call_expression::do_lower(Gogo* gogo, Na *** 8584,8589 **** --- 9148,9158 ---- } } + // Recognize a call to a builtin function. + if (fntype->is_builtin()) + return new Builtin_call_expression(gogo, this->fn_, this->args_, + this->is_varargs_, loc); + // If this call returns multiple results, create a temporary // variable for each result. size_t rc = this->result_count(); *************** Call_expression::do_lower(Gogo* gogo, Na *** 8592,8599 **** std::vector* temps = new std::vector; temps->reserve(rc); ! const Typed_identifier_list* results = ! this->fn_->type()->function_type()->results(); for (Typed_identifier_list::const_iterator p = results->begin(); p != results->end(); ++p) --- 9161,9167 ---- std::vector* temps = new std::vector; temps->reserve(rc); ! const Typed_identifier_list* results = fntype->results(); for (Typed_identifier_list::const_iterator p = results->begin(); p != results->end(); ++p) *************** Call_expression::do_lower(Gogo* gogo, Na *** 8608,8617 **** // Handle a call to a varargs function by packaging up the extra // parameters. ! if (this->fn_->type()->function_type() != NULL ! && this->fn_->type()->function_type()->is_varargs()) { - Function_type* fntype = this->fn_->type()->function_type(); const Typed_identifier_list* parameters = fntype->parameters(); go_assert(parameters != NULL && !parameters->empty()); Type* varargs_type = parameters->back().type(); --- 9176,9183 ---- // Handle a call to a varargs function by packaging up the extra // parameters. ! if (fntype->is_varargs()) { const Typed_identifier_list* parameters = fntype->parameters(); go_assert(parameters != NULL && !parameters->empty()); Type* varargs_type = parameters->back().type(); *************** Call_expression::do_lower(Gogo* gogo, Na *** 8624,8630 **** Bound_method_expression* bme = this->fn_->bound_method_expression(); if (bme != NULL) { ! Named_object* method = bme->method(); Expression* first_arg = bme->first_argument(); // We always pass a pointer when calling a method. --- 9190,9196 ---- Bound_method_expression* bme = this->fn_->bound_method_expression(); if (bme != NULL) { ! Named_object* methodfn = bme->function(); Expression* first_arg = bme->first_argument(); // We always pass a pointer when calling a method. *************** Call_expression::do_lower(Gogo* gogo, Na *** 8665,8671 **** // old arguments, because we may be traversing them up in some // caller. FIXME. this->args_ = new_args; ! this->fn_ = Expression::make_func_reference(method, NULL, bme->location()); } --- 9231,9237 ---- // old arguments, because we may be traversing them up in some // caller. FIXME. this->args_ = new_args; ! this->fn_ = Expression::make_func_reference(methodfn, NULL, bme->location()); } *************** Call_expression::do_get_tree(Translate_c *** 9117,9122 **** --- 9683,9698 ---- const bool has_closure = func != NULL && func->closure() != NULL; const bool is_interface_method = interface_method != NULL; + bool has_closure_arg; + if (has_closure) + has_closure_arg = true; + else if (func != NULL) + has_closure_arg = false; + else if (is_interface_method) + has_closure_arg = false; + else + has_closure_arg = true; + int nargs; tree* args; if (this->args_ == NULL || this->args_->empty()) *************** Call_expression::do_get_tree(Translate_c *** 9161,9196 **** arg_val, location); if (args[i] == error_mark_node) ! { ! delete[] args; ! return error_mark_node; ! } } go_assert(pp == params->end()); go_assert(i == nargs); } ! tree rettype = TREE_TYPE(TREE_TYPE(type_to_tree(fntype->get_backend(gogo)))); if (rettype == error_mark_node) ! { ! delete[] args; ! return error_mark_node; ! } tree fn; ! if (has_closure) ! fn = func->get_tree_without_closure(gogo); else if (!is_interface_method) ! fn = this->fn_->get_tree(context); else - fn = this->interface_method_function(context, interface_method, &args[0]); - - if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node) { ! delete[] args; ! return error_mark_node; } tree fndecl = fn; if (TREE_CODE(fndecl) == ADDR_EXPR) fndecl = TREE_OPERAND(fndecl, 0); --- 9737,9807 ---- arg_val, location); if (args[i] == error_mark_node) ! return error_mark_node; } go_assert(pp == params->end()); go_assert(i == nargs); } ! tree fntype_tree = type_to_tree(fntype->get_backend(gogo)); ! if (fntype_tree == error_mark_node) ! return error_mark_node; ! go_assert(POINTER_TYPE_P(fntype_tree)); ! if (TREE_TYPE(fntype_tree) == error_mark_node) ! return error_mark_node; ! go_assert(TREE_CODE(TREE_TYPE(fntype_tree)) == RECORD_TYPE); ! tree fnfield_type = TREE_TYPE(TYPE_FIELDS(TREE_TYPE(fntype_tree))); ! if (fnfield_type == error_mark_node) ! return error_mark_node; ! go_assert(FUNCTION_POINTER_TYPE_P(fnfield_type)); ! tree rettype = TREE_TYPE(TREE_TYPE(fnfield_type)); if (rettype == error_mark_node) ! return error_mark_node; tree fn; ! tree closure_tree; ! if (func != NULL) ! { ! Named_object* no = func->named_object(); ! fn = Func_expression::get_code_pointer(gogo, no, location); ! if (!has_closure) ! closure_tree = NULL_TREE; ! else ! { ! closure_tree = func->closure()->get_tree(context); ! if (closure_tree == error_mark_node) ! return error_mark_node; ! } ! } else if (!is_interface_method) ! { ! closure_tree = this->fn_->get_tree(context); ! if (closure_tree == error_mark_node) ! return error_mark_node; ! tree fnc = fold_convert_loc(location.gcc_location(), fntype_tree, ! closure_tree); ! go_assert(POINTER_TYPE_P(TREE_TYPE(fnc)) ! && (TREE_CODE(TREE_TYPE(TREE_TYPE(fnc))) ! == RECORD_TYPE)); ! tree field = TYPE_FIELDS(TREE_TYPE(TREE_TYPE(fnc))); ! fn = fold_build3_loc(location.gcc_location(), COMPONENT_REF, ! TREE_TYPE(field), ! build_fold_indirect_ref_loc(location.gcc_location(), ! fnc), ! field, NULL_TREE); ! } else { ! fn = this->interface_method_function(context, interface_method, ! &args[0]); ! if (fn == error_mark_node) ! return error_mark_node; ! closure_tree = NULL_TREE; } + if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node) + return error_mark_node; + tree fndecl = fn; if (TREE_CODE(fndecl) == ADDR_EXPR) fndecl = TREE_OPERAND(fndecl, 0); *************** Call_expression::do_get_tree(Translate_c *** 9198,9209 **** // Add a type cast in case the type of the function is a recursive // type which refers to itself. if (!DECL_P(fndecl) || !DECL_IS_BUILTIN(fndecl)) ! { ! tree fnt = type_to_tree(fntype->get_backend(gogo)); ! if (fnt == error_mark_node) ! return error_mark_node; ! fn = fold_convert_loc(location.gcc_location(), fnt, fn); ! } // This is to support builtin math functions when using 80387 math. tree excess_type = NULL_TREE; --- 9809,9815 ---- // Add a type cast in case the type of the function is a recursive // type which refers to itself. if (!DECL_P(fndecl) || !DECL_IS_BUILTIN(fndecl)) ! fn = fold_convert_loc(location.gcc_location(), fnfield_type, fn); // This is to support builtin math functions when using 80387 math. tree excess_type = NULL_TREE; *************** Call_expression::do_get_tree(Translate_c *** 9241,9259 **** if (func == NULL) fn = save_expr(fn); tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype, fn, nargs, args); delete[] args; SET_EXPR_LOCATION(ret, location.gcc_location()); - if (has_closure) - { - tree closure_tree = func->closure()->get_tree(context); - if (closure_tree != error_mark_node) - CALL_EXPR_STATIC_CHAIN(ret) = closure_tree; - } - // If this is a recursive function type which returns itself, as in // type F func() F // we have used ptr_type_node for the return type. Add a cast here --- 9847,9884 ---- if (func == NULL) fn = save_expr(fn); + if (!has_closure_arg) + go_assert(closure_tree == NULL_TREE); + else + { + // Pass the closure argument by calling the function function + // __go_set_closure. In the order_evaluations pass we have + // ensured that if any parameters contain call expressions, they + // will have been moved out to temporary variables. + + go_assert(closure_tree != NULL_TREE); + closure_tree = fold_convert_loc(location.gcc_location(), ptr_type_node, + closure_tree); + static tree set_closure_fndecl; + tree set_closure = Gogo::call_builtin(&set_closure_fndecl, + location, + "__go_set_closure", + 1, + void_type_node, + ptr_type_node, + closure_tree); + if (set_closure == error_mark_node) + return error_mark_node; + fn = build2_loc(location.gcc_location(), COMPOUND_EXPR, + TREE_TYPE(fn), set_closure, fn); + } + tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype, fn, nargs, args); delete[] args; SET_EXPR_LOCATION(ret, location.gcc_location()); // If this is a recursive function type which returns itself, as in // type F func() F // we have used ptr_type_node for the return type. Add a cast here *************** Call_expression::do_get_tree(Translate_c *** 9274,9297 **** if (this->results_ != NULL) ret = this->set_results(context, ret); - // We can't unwind the stack past a call to nil, so we need to - // insert an explicit check so that the panic can be recovered. - if (func == NULL) - { - tree compare = fold_build2_loc(location.gcc_location(), EQ_EXPR, - boolean_type_node, fn, - fold_convert_loc(location.gcc_location(), - TREE_TYPE(fn), - null_pointer_node)); - tree crash = build3_loc(location.gcc_location(), COND_EXPR, - void_type_node, compare, - gogo->runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE, - location), - NULL_TREE); - ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR, - TREE_TYPE(ret), crash, ret); - } - this->tree_ = ret; return ret; --- 9899,9904 ---- *************** Array_index_expression::do_determine_typ *** 9774,9786 **** void Array_index_expression::do_check_types(Gogo*) { ! if (this->start_->type()->integer_type() == NULL) this->report_error(_("index must be integer")); if (this->end_ != NULL && this->end_->type()->integer_type() == NULL && !this->end_->type()->is_error() && !this->end_->is_nil_expression() ! && !this->end_->is_error_expression()) this->report_error(_("slice end must be integer")); Array_type* array_type = this->array_->type()->array_type(); --- 10381,10400 ---- void Array_index_expression::do_check_types(Gogo*) { ! Numeric_constant nc; ! unsigned long v; ! if (this->start_->type()->integer_type() == NULL ! && !this->start_->type()->is_error() ! && (!this->start_->numeric_constant_value(&nc) ! || nc.to_unsigned_long(&v) == Numeric_constant::NC_UL_NOTINT)) this->report_error(_("index must be integer")); if (this->end_ != NULL && this->end_->type()->integer_type() == NULL && !this->end_->type()->is_error() && !this->end_->is_nil_expression() ! && !this->end_->is_error_expression() ! && (!this->end_->numeric_constant_value(&nc) ! || nc.to_unsigned_long(&v) == Numeric_constant::NC_UL_NOTINT)) this->report_error(_("slice end must be integer")); Array_type* array_type = this->array_->type()->array_type(); *************** Field_reference_expression::do_lower(Gog *** 10679,10685 **** } Expression* e = Expression::make_composite_literal(array_type, 0, false, ! bytes, loc); Variable* var = new Variable(array_type, e, true, false, false, loc); --- 11293,11299 ---- } Expression* e = Expression::make_composite_literal(array_type, 0, false, ! bytes, false, loc); Variable* var = new Variable(array_type, e, true, false, false, loc); *************** Interface_field_reference_expression::do *** 10845,10850 **** --- 11459,11486 ---- return Expression::traverse(&this->expr_, traverse); } + // Lower the expression. If this expression is not called, we need to + // evaluate the expression twice when converting to the backend + // interface. So introduce a temporary variable if necessary. + + Expression* + Interface_field_reference_expression::do_lower(Gogo*, Named_object*, + Statement_inserter* inserter, + int) + { + if (this->expr_->var_expression() == NULL + && this->expr_->temporary_reference_expression() == NULL + && this->expr_->set_and_use_temporary_expression() == NULL) + { + Temporary_statement* temp = + Statement::make_temporary(this->expr_->type(), NULL, this->location()); + inserter->insert(temp); + this->expr_ = Expression::make_set_and_use_temporary(temp, this->expr_, + this->location()); + } + return this; + } + // Return the type of an interface field reference. Type* *************** Interface_field_reference_expression::do *** 10905,10922 **** } } ! // Get a tree for a reference to a field in an interface. There is no ! // standard tree type representation for this: it's a function ! // attached to its first argument, like a Bound_method_expression. ! // The only places it may currently be used are in a Call_expression ! // or a Go_statement, which will take it apart directly. So this has ! // nothing to do at present. tree ! Interface_field_reference_expression::do_get_tree(Translate_context*) { ! error_at(this->location(), "reference to method other than calling it"); ! return error_mark_node; } // Dump ast representation for an interface field reference. --- 11541,11728 ---- } } ! // If an interface field reference is not simply called, then it is ! // represented as a closure. The closure will hold a single variable, ! // the value of the interface on which the method should be called. ! // The function will be a simple thunk that pulls the value from the ! // closure and calls the method with the remaining arguments. ! ! // Because method values are not common, we don't build all thunks for ! // all possible interface methods, but instead only build them as we ! // need them. In particular, we even build them on demand for ! // interface methods defined in other packages. ! ! Interface_field_reference_expression::Interface_method_thunks ! Interface_field_reference_expression::interface_method_thunks; ! ! // Find or create the thunk to call method NAME on TYPE. ! ! Named_object* ! Interface_field_reference_expression::create_thunk(Gogo* gogo, ! Interface_type* type, ! const std::string& name) ! { ! std::pair val(type, NULL); ! std::pair ins = ! Interface_field_reference_expression::interface_method_thunks.insert(val); ! if (ins.second) ! { ! // This is the first time we have seen this interface. ! ins.first->second = new Method_thunks(); ! } ! ! for (Method_thunks::const_iterator p = ins.first->second->begin(); ! p != ins.first->second->end(); ! p++) ! if (p->first == name) ! return p->second; ! ! Location loc = type->location(); ! ! const Typed_identifier* method_id = type->find_method(name); ! if (method_id == NULL) ! return Named_object::make_erroneous_name(Gogo::thunk_name()); ! ! Function_type* orig_fntype = method_id->type()->function_type(); ! if (orig_fntype == NULL) ! return Named_object::make_erroneous_name(Gogo::thunk_name()); ! ! Struct_field_list* sfl = new Struct_field_list(); ! // The type here is wrong--it should be the C function type. But it ! // doesn't really matter. ! Type* vt = Type::make_pointer_type(Type::make_void_type()); ! sfl->push_back(Struct_field(Typed_identifier("fn.0", vt, loc))); ! sfl->push_back(Struct_field(Typed_identifier("val.1", type, loc))); ! Type* closure_type = Type::make_struct_type(sfl, loc); ! closure_type = Type::make_pointer_type(closure_type); ! ! Function_type* new_fntype = orig_fntype->copy_with_names(); ! ! Named_object* new_no = gogo->start_function(Gogo::thunk_name(), new_fntype, ! false, loc); ! ! Variable* cvar = new Variable(closure_type, NULL, false, false, false, loc); ! cvar->set_is_used(); ! Named_object* cp = Named_object::make_variable("$closure", NULL, cvar); ! new_no->func_value()->set_closure_var(cp); ! ! gogo->start_block(loc); ! ! // Field 0 of the closure is the function code pointer, field 1 is ! // the value on which to invoke the method. ! Expression* arg = Expression::make_var_reference(cp, loc); ! arg = Expression::make_unary(OPERATOR_MULT, arg, loc); ! arg = Expression::make_field_reference(arg, 1, loc); ! ! Expression *ifre = Expression::make_interface_field_reference(arg, name, ! loc); ! ! const Typed_identifier_list* orig_params = orig_fntype->parameters(); ! Expression_list* args; ! if (orig_params == NULL || orig_params->empty()) ! args = NULL; ! else ! { ! const Typed_identifier_list* new_params = new_fntype->parameters(); ! args = new Expression_list(); ! for (Typed_identifier_list::const_iterator p = new_params->begin(); ! p != new_params->end(); ! ++p) ! { ! Named_object* p_no = gogo->lookup(p->name(), NULL); ! go_assert(p_no != NULL ! && p_no->is_variable() ! && p_no->var_value()->is_parameter()); ! args->push_back(Expression::make_var_reference(p_no, loc)); ! } ! } ! ! Call_expression* call = Expression::make_call(ifre, args, ! orig_fntype->is_varargs(), ! loc); ! call->set_varargs_are_lowered(); ! ! Statement* s = Statement::make_return_from_call(call, loc); ! gogo->add_statement(s); ! Block* b = gogo->finish_block(loc); ! gogo->add_block(b, loc); ! gogo->lower_block(new_no, b); ! gogo->finish_function(loc); ! ! ins.first->second->push_back(std::make_pair(name, new_no)); ! return new_no; ! } ! ! // Get a tree for a method value. tree ! Interface_field_reference_expression::do_get_tree(Translate_context* context) { ! Interface_type* type = this->expr_->type()->interface_type(); ! if (type == NULL) ! { ! go_assert(saw_errors()); ! return error_mark_node; ! } ! ! Named_object* thunk = ! Interface_field_reference_expression::create_thunk(context->gogo(), ! type, this->name_); ! if (thunk->is_erroneous()) ! { ! go_assert(saw_errors()); ! return error_mark_node; ! } ! ! // FIXME: We should lower this earlier, but we can't it lower it in ! // the lowering pass because at that point we don't know whether we ! // need to create the thunk or not. If the expression is called, we ! // don't need the thunk. ! ! Location loc = this->location(); ! ! Struct_field_list* fields = new Struct_field_list(); ! fields->push_back(Struct_field(Typed_identifier("fn.0", ! thunk->func_value()->type(), ! loc))); ! fields->push_back(Struct_field(Typed_identifier("val.1", ! this->expr_->type(), ! loc))); ! Struct_type* st = Type::make_struct_type(fields, loc); ! ! Expression_list* vals = new Expression_list(); ! vals->push_back(Expression::make_func_code_reference(thunk, loc)); ! vals->push_back(this->expr_); ! ! Expression* expr = Expression::make_struct_composite_literal(st, vals, loc); ! expr = Expression::make_heap_composite(expr, loc); ! ! tree closure_tree = expr->get_tree(context); ! ! // Note that we are evaluating this->expr_ twice, but that is OK ! // because in the lowering pass we forced it into a temporary ! // variable. ! tree expr_tree = this->expr_->get_tree(context); ! tree nil_check_tree = Expression::comparison_tree(context, ! Type::lookup_bool_type(), ! OPERATOR_EQEQ, ! this->expr_->type(), ! expr_tree, ! Type::make_nil_type(), ! null_pointer_node, ! loc); ! tree crash = context->gogo()->runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE, ! loc); ! if (closure_tree == error_mark_node ! || nil_check_tree == error_mark_node ! || crash == error_mark_node) ! return error_mark_node; ! return fold_build2_loc(loc.gcc_location(), COMPOUND_EXPR, ! TREE_TYPE(closure_tree), ! build3_loc(loc.gcc_location(), COND_EXPR, ! void_type_node, nil_check_tree, crash, ! NULL_TREE), ! closure_tree); } // Dump ast representation for an interface field reference. *************** Selector_expression::lower_method_expres *** 11114,11121 **** // as their first argument. If this is for a pointer type, we can // simply reuse the existing function. We use an internal hack to // get the right type. ! ! if (method != NULL && is_pointer) { Named_object* mno = (method->needs_stub_method() ? method->stub_object() --- 11920,11929 ---- // as their first argument. If this is for a pointer type, we can // simply reuse the existing function. We use an internal hack to // get the right type. ! // FIXME: This optimization is disabled because it doesn't yet work ! // with function descriptors when the method expression is not ! // directly called. ! if (method != NULL && is_pointer && false) { Named_object* mno = (method->needs_stub_method() ? method->stub_object() *************** Selector_expression::lower_method_expres *** 11170,11191 **** method_type->is_varargs(), location); ! size_t count = call->result_count(); ! Statement* s; ! if (count == 0) ! s = Statement::make_statement(call, true); ! else ! { ! Expression_list* retvals = new Expression_list(); ! if (count <= 1) ! retvals->push_back(call); ! else ! { ! for (size_t i = 0; i < count; ++i) ! retvals->push_back(Expression::make_call_result(call, i)); ! } ! s = Statement::make_return_statement(retvals, location); ! } gogo->add_statement(s); Block* b = gogo->finish_block(location); --- 11978,11984 ---- method_type->is_varargs(), location); ! Statement* s = Statement::make_return_from_call(call, location); gogo->add_statement(s); Block* b = gogo->finish_block(location); *************** class Composite_literal_expression : pub *** 12443,12451 **** { public: Composite_literal_expression(Type* type, int depth, bool has_keys, ! Expression_list* vals, Location location) : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location), ! type_(type), depth_(depth), vals_(vals), has_keys_(has_keys) { } protected: --- 13236,13246 ---- { public: Composite_literal_expression(Type* type, int depth, bool has_keys, ! Expression_list* vals, bool all_are_names, ! Location location) : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location), ! type_(type), depth_(depth), vals_(vals), has_keys_(has_keys), ! all_are_names_(all_are_names) { } protected: *************** class Composite_literal_expression : pub *** 12463,12468 **** --- 13258,13264 ---- (this->vals_ == NULL ? NULL : this->vals_->copy()), + this->all_are_names_, this->location()); } *************** class Composite_literal_expression : pub *** 12492,12497 **** --- 13288,13296 ---- // If this is true, then VALS_ is a list of pairs: a key and a // value. In an array initializer, a missing key will be NULL. bool has_keys_; + // If this is true, then HAS_KEYS_ is true, and every key is a + // simple identifier. + bool all_are_names_; }; // Traversal. *************** Composite_literal_expression::lower_stru *** 12594,12599 **** --- 13393,13400 ---- std::vector vals(field_count); std::vector* traverse_order = new(std::vector); Expression_list::const_iterator p = this->vals_->begin(); + Expression* external_expr = NULL; + const Named_object* external_no = NULL; while (p != this->vals_->end()) { Expression* name_expr = *p; *************** Composite_literal_expression::lower_stru *** 12699,12704 **** --- 13500,13511 ---- if (no != NULL) { + if (no->package() != NULL && external_expr == NULL) + { + external_expr = name_expr; + external_no = no; + } + name = no->name(); // A predefined name won't be packed. If it starts with a *************** Composite_literal_expression::lower_stru *** 12748,12753 **** --- 13555,13577 ---- traverse_order->push_back(index); } + if (!this->all_are_names_) + { + // This is a weird case like bug462 in the testsuite. + if (external_expr == NULL) + error_at(this->location(), "unknown field in %qs literal", + (type->named_type() != NULL + ? type->named_type()->message_name().c_str() + : "unnamed struct")); + else + error_at(external_expr->location(), "unknown field %qs in %qs", + external_no->message_name().c_str(), + (type->named_type() != NULL + ? type->named_type()->message_name().c_str() + : "unnamed struct")); + return Expression::make_error(location); + } + Expression_list* list = new Expression_list; list->reserve(field_count); for (size_t i = 0; i < field_count; ++i) *************** Composite_literal_expression::do_dump_ex *** 13037,13047 **** Expression* Expression::make_composite_literal(Type* type, int depth, bool has_keys, ! Expression_list* vals, Location location) { return new Composite_literal_expression(type, depth, has_keys, vals, ! location); } // Return whether this expression is a composite literal. --- 13861,13871 ---- Expression* Expression::make_composite_literal(Type* type, int depth, bool has_keys, ! Expression_list* vals, bool all_are_names, Location location) { return new Composite_literal_expression(type, depth, has_keys, vals, ! all_are_names, location); } // Return whether this expression is a composite literal. diff -Nrcpad gcc-4.8.1/gcc/go/gofrontend/expressions.h gcc-4.8.2/gcc/go/gofrontend/expressions.h *** gcc-4.8.1/gcc/go/gofrontend/expressions.h Tue Jan 29 00:28:09 2013 --- gcc-4.8.2/gcc/go/gofrontend/expressions.h Tue Oct 8 23:54:31 2013 *************** class Translate_context; *** 16,21 **** --- 16,22 ---- class Traverse; class Statement_inserter; class Type; + class Method; struct Type_context; class Integer_type; class Float_type; *************** class String_expression; *** 32,37 **** --- 33,39 ---- class Binary_expression; class Call_expression; class Func_expression; + class Func_descriptor_expression; class Unknown_expression; class Index_expression; class Map_index_expression; *************** class Expression *** 67,72 **** --- 69,76 ---- EXPRESSION_SET_AND_USE_TEMPORARY, EXPRESSION_SINK, EXPRESSION_FUNC_REFERENCE, + EXPRESSION_FUNC_DESCRIPTOR, + EXPRESSION_FUNC_CODE_REFERENCE, EXPRESSION_UNKNOWN_REFERENCE, EXPRESSION_BOOLEAN, EXPRESSION_STRING, *************** class Expression *** 150,159 **** static Expression* make_sink(Location); ! // Make a reference to a function in an expression. static Expression* make_func_reference(Named_object*, Expression* closure, Location); // Make a reference to an unknown name. In a correct program this // will always be lowered to a real const/var/func reference. static Unknown_expression* --- 154,177 ---- static Expression* make_sink(Location); ! // Make a reference to a function in an expression. This returns a ! // pointer to the struct holding the address of the function ! // followed by any closed-over variables. static Expression* make_func_reference(Named_object*, Expression* closure, Location); + // Make a function descriptor, an immutable struct with a single + // field that points to the function code. This may only be used + // with functions that do not have closures. FN is the function for + // which we are making the descriptor. + static Func_descriptor_expression* + make_func_descriptor(Named_object* fn); + + // Make a reference to the code of a function. This is used to set + // descriptor and closure fields. + static Expression* + make_func_code_reference(Named_object*, Location); + // Make a reference to an unknown name. In a correct program this // will always be lowered to a real const/var/func reference. static Unknown_expression* *************** class Expression *** 207,215 **** make_call_result(Call_expression*, unsigned int index); // Make an expression which is a method bound to its first ! // parameter. static Bound_method_expression* ! make_bound_method(Expression* object, Named_object* method, Location); // Make an index or slice expression. This is a parser expression // which represents LEFT[START:END]. END may be NULL, meaning an --- 225,235 ---- make_call_result(Call_expression*, unsigned int index); // Make an expression which is a method bound to its first ! // parameter. METHOD is the method being called, FUNCTION is the ! // function to call. static Bound_method_expression* ! make_bound_method(Expression* object, const Method* method, ! Named_object* function, Location); // Make an index or slice expression. This is a parser expression // which represents LEFT[START:END]. END may be NULL, meaning an *************** class Expression *** 271,280 **** make_unsafe_cast(Type*, Expression*, Location); // Make a composite literal. The DEPTH parameter is how far down we ! // are in a list of composite literals with omitted types. static Expression* make_composite_literal(Type*, int depth, bool has_keys, Expression_list*, ! Location); // Make a struct composite literal. static Expression* --- 291,303 ---- make_unsafe_cast(Type*, Expression*, Location); // Make a composite literal. The DEPTH parameter is how far down we ! // are in a list of composite literals with omitted types. HAS_KEYS ! // is true if the expression list has keys alternating with values. ! // ALL_ARE_NAMES is true if all the keys could be struct field ! // names. static Expression* make_composite_literal(Type*, int depth, bool has_keys, Expression_list*, ! bool all_are_names, Location); // Make a struct composite literal. static Expression* *************** class Expression *** 523,528 **** --- 546,556 ---- bool is_local_variable() const; + // Make the builtin function descriptor type, so that it can be + // converted. + static void + make_func_descriptor_type(); + // Traverse an expression. static int traverse(Expression**, Traverse*); *************** class Expression *** 627,643 **** Type* left_type, tree left_tree, Type* right_type, tree right_tree, Location); ! // Return a tree for the multi-precision integer VAL in TYPE. ! static tree ! integer_constant_tree(mpz_t val, tree type); ! ! // Return a tree for the floating point value VAL in TYPE. ! static tree ! float_constant_tree(mpfr_t val, tree type); ! ! // Return a tree for the complex value REAL/IMAG in TYPE. ! static tree ! complex_constant_tree(mpfr_t real, mpfr_t imag, tree type); // Export the expression. This is only used for constants. It will // be used for things like values of named constants and sizes of --- 655,664 ---- Type* left_type, tree left_tree, Type* right_type, tree right_tree, Location); ! // Return the backend expression for the numeric constant VAL. ! static Bexpression* ! backend_numeric_constant_expression(Translate_context*, ! Numeric_constant* val); // Export the expression. This is only used for constants. It will // be used for things like values of named constants and sizes of *************** class Set_and_use_temporary_expression : *** 1057,1064 **** do_type(); void ! do_determine_type(const Type_context*) ! { } Expression* do_copy() --- 1078,1084 ---- do_type(); void ! do_determine_type(const Type_context*); Expression* do_copy() *************** class Func_expression : public Expressio *** 1484,1490 **** { } // Return the object associated with the function. ! const Named_object* named_object() const { return this->function_; } --- 1504,1510 ---- { } // Return the object associated with the function. ! Named_object* named_object() const { return this->function_; } *************** class Func_expression : public Expressio *** 1494,1502 **** closure() { return this->closure_; } ! // Return a tree for this function without evaluating the closure. ! tree ! get_tree_without_closure(Gogo*); protected: int --- 1514,1522 ---- closure() { return this->closure_; } ! // Return a tree for the code for a function. ! static tree ! get_code_pointer(Gogo*, Named_object* function, Location loc); protected: int *************** class Func_expression : public Expressio *** 1532,1542 **** // The function itself. Named_object* function_; // A closure. This is normally NULL. For a nested function, it may ! // be a heap-allocated struct holding pointers to all the variables ! // referenced by this function and defined in enclosing functions. Expression* closure_; }; // A reference to an unknown name. class Unknown_expression : public Parser_expression --- 1552,1610 ---- // The function itself. Named_object* function_; // A closure. This is normally NULL. For a nested function, it may ! // be a struct holding pointers to all the variables referenced by ! // this function and defined in enclosing functions. Expression* closure_; }; + // A function descriptor. A function descriptor is a struct with a + // single field pointing to the function code. This is used for + // functions without closures. + + class Func_descriptor_expression : public Expression + { + public: + Func_descriptor_expression(Named_object* fn); + + // Make the function descriptor type, so that it can be converted. + static void + make_func_descriptor_type(); + + protected: + int + do_traverse(Traverse*); + + Type* + do_type(); + + void + do_determine_type(const Type_context*) + { } + + Expression* + do_copy() + { return Expression::make_func_descriptor(this->fn_); } + + bool + do_is_addressable() const + { return true; } + + tree + do_get_tree(Translate_context*); + + void + do_dump_expression(Ast_dump_context* context) const; + + private: + // The type of all function descriptors. + static Type* descriptor_type; + + // The function for which this is the descriptor. + Named_object* fn_; + // The descriptor variable. + Bvariable* dvar_; + }; + // A reference to an unknown name. class Unknown_expression : public Parser_expression *************** class Map_index_expression : public Expr *** 1773,1782 **** class Bound_method_expression : public Expression { public: ! Bound_method_expression(Expression* expr, Named_object* method, ! Location location) : Expression(EXPRESSION_BOUND_METHOD, location), ! expr_(expr), expr_type_(NULL), method_(method) { } // Return the object which is the first argument. --- 1841,1850 ---- class Bound_method_expression : public Expression { public: ! Bound_method_expression(Expression* expr, const Method *method, ! Named_object* function, Location location) : Expression(EXPRESSION_BOUND_METHOD, location), ! expr_(expr), expr_type_(NULL), method_(method), function_(function) { } // Return the object which is the first argument. *************** class Bound_method_expression : public E *** 1791,1810 **** first_argument_type() const { return this->expr_type_; } ! // Return the method function. ! Named_object* ! method() { return this->method_; } // Set the implicit type of the expression. void set_first_argument_type(Type* type) { this->expr_type_ = type; } protected: int do_traverse(Traverse*); Type* do_type(); --- 1859,1891 ---- first_argument_type() const { return this->expr_type_; } ! // Return the method. ! const Method* ! method() const { return this->method_; } + // Return the function to call. + Named_object* + function() const + { return this->function_; } + // Set the implicit type of the expression. void set_first_argument_type(Type* type) { this->expr_type_ = type; } + // Create a thunk to call FUNCTION, for METHOD, when it is used as + // part of a method value. + static Named_object* + create_thunk(Gogo*, const Method* method, Named_object* function); + protected: int do_traverse(Traverse*); + Expression* + do_lower(Gogo*, Named_object*, Statement_inserter*, int); + Type* do_type(); *************** class Bound_method_expression : public E *** 1818,1824 **** do_copy() { return new Bound_method_expression(this->expr_->copy(), this->method_, ! this->location()); } tree --- 1899,1905 ---- do_copy() { return new Bound_method_expression(this->expr_->copy(), this->method_, ! this->function_, this->location()); } tree *************** class Bound_method_expression : public E *** 1828,1833 **** --- 1909,1919 ---- do_dump_expression(Ast_dump_context*) const; private: + // A mapping from method functions to the thunks we have created for + // them. + typedef Unordered_map(Named_object*, Named_object*) Method_value_thunks; + static Method_value_thunks method_value_thunks; + // The object used to find the method. This is passed to the method // as the first argument. Expression* expr_; *************** class Bound_method_expression : public E *** 1835,1842 **** // NULL in the normal case, non-NULL when using a method from an // anonymous field which does not require a stub. Type* expr_type_; ! // The method itself. ! Named_object* method_; }; // A reference to a field in a struct. --- 1921,1932 ---- // NULL in the normal case, non-NULL when using a method from an // anonymous field which does not require a stub. Type* expr_type_; ! // The method. ! const Method* method_; ! // The function to call. This is not the same as ! // method_->named_object() when the method has a stub. This will be ! // the real function rather than the stub. ! Named_object* function_; }; // A reference to a field in a struct. *************** class Field_reference_expression : publi *** 1847,1853 **** Field_reference_expression(Expression* expr, unsigned int field_index, Location location) : Expression(EXPRESSION_FIELD_REFERENCE, location), ! expr_(expr), field_index_(field_index), called_fieldtrack_(false) { } // Return the struct expression. --- 1937,1943 ---- Field_reference_expression(Expression* expr, unsigned int field_index, Location location) : Expression(EXPRESSION_FIELD_REFERENCE, location), ! expr_(expr), field_index_(field_index), implicit_(false), called_fieldtrack_(false) { } // Return the struct expression. *************** class Field_reference_expression : publi *** 1860,1865 **** --- 1950,1964 ---- field_index() const { return this->field_index_; } + // Return whether this node was implied by an anonymous field. + bool + implicit() const + { return this->implicit_; } + + void + set_implicit(bool implicit) + { this->implicit_ = implicit; } + // Set the struct expression. This is used when parsing. void set_struct_expression(Expression* expr) *************** class Field_reference_expression : publi *** 1914,1919 **** --- 2013,2021 ---- Expression* expr_; // The zero-based index of the field we are retrieving. unsigned int field_index_; + // Whether this node was emitted implicitly for an embedded field, + // that is, expr_ is not the expr_ of the original user node. + bool implicit_; // Whether we have already emitted a fieldtrack call. bool called_fieldtrack_; }; *************** class Interface_field_reference_expressi *** 1940,1945 **** --- 2042,2052 ---- name() const { return this->name_; } + // Create a thunk to call the method NAME in TYPE when it is used as + // part of a method value. + static Named_object* + create_thunk(Gogo*, Interface_type* type, const std::string& name); + // Return a tree for the pointer to the function to call, given a // tree for the expression. tree *************** class Interface_field_reference_expressi *** 1955,1960 **** --- 2062,2070 ---- int do_traverse(Traverse* traverse); + Expression* + do_lower(Gogo*, Named_object*, Statement_inserter*, int); + Type* do_type(); *************** class Interface_field_reference_expressi *** 1979,1984 **** --- 2089,2101 ---- do_dump_expression(Ast_dump_context*) const; private: + // A mapping from interface types to a list of thunks we have + // created for methods. + typedef std::vector > Method_thunks; + typedef Unordered_map(Interface_type*, Method_thunks*) + Interface_method_thunks; + static Interface_method_thunks interface_method_thunks; + // The expression for the interface object. This should have a type // of interface or pointer to interface. Expression* expr_; diff -Nrcpad gcc-4.8.1/gcc/go/gofrontend/go.cc gcc-4.8.2/gcc/go/gofrontend/go.cc *** gcc-4.8.1/gcc/go/gofrontend/go.cc Wed Oct 31 00:38:49 2012 --- gcc-4.8.2/gcc/go/gofrontend/go.cc Fri Jun 21 00:12:07 2013 *************** go_create_gogo(int int_type_size, int po *** 44,50 **** GO_EXTERN_C void go_parse_input_files(const char** filenames, unsigned int filename_count, ! bool only_check_syntax, bool require_return_statement) { go_assert(filename_count > 0); --- 44,50 ---- GO_EXTERN_C void go_parse_input_files(const char** filenames, unsigned int filename_count, ! bool only_check_syntax, bool) { go_assert(filename_count > 0); *************** go_parse_input_files(const char** filena *** 84,93 **** --- 84,99 ---- // Finalize method lists and build stub methods for named types. ::gogo->finalize_methods(); + // Check that functions have a terminating statement. + ::gogo->check_return_statements(); + // Now that we have seen all the names, lower the parse tree into a // form which is easier to use. ::gogo->lower_parse_tree(); + // Create function descriptors as needed. + ::gogo->create_function_descriptors(); + // Write out queued up functions for hash and comparison of types. ::gogo->write_specific_type_functions(); *************** go_parse_input_files(const char** filena *** 104,113 **** if (only_check_syntax) return; - // Check that functions have return statements. - if (require_return_statement) - ::gogo->check_return_statements(); - // Export global identifiers as appropriate. ::gogo->do_exports(); --- 110,115 ---- diff -Nrcpad gcc-4.8.1/gcc/go/gofrontend/gogo-tree.cc gcc-4.8.2/gcc/go/gofrontend/gogo-tree.cc *** gcc-4.8.1/gcc/go/gofrontend/gogo-tree.cc Tue Jan 29 00:28:09 2013 --- gcc-4.8.2/gcc/go/gofrontend/gogo-tree.cc Sat Sep 28 20:23:56 2013 *************** Gogo::write_globals() *** 755,760 **** --- 755,772 ---- this->build_interface_method_tables(); Bindings* bindings = this->current_bindings(); + + for (Bindings::const_declarations_iterator p = bindings->begin_declarations(); + p != bindings->end_declarations(); + ++p) + { + // If any function declarations needed a descriptor, make sure + // we build it. + Named_object* no = p->second; + if (no->is_function_declaration()) + no->func_declaration_value()->build_backend_descriptor(this); + } + size_t count_definitions = bindings->size_definitions(); size_t count = count_definitions; *************** Gogo::write_globals() *** 782,787 **** --- 794,801 ---- { Named_object* no = *p; + go_assert(i < count); + go_assert(!no->is_type_declaration() && !no->is_function_declaration()); // There is nothing to do for a package. if (no->is_package()) *************** Gogo::write_globals() *** 800,805 **** --- 814,828 ---- continue; } + // Skip blank named functions and constants. + if ((no->is_function() && no->func_value()->is_sink()) + || (no->is_const() && no->const_value()->is_sink())) + { + --i; + --count; + continue; + } + // There is nothing useful we can output for constants which // have ideal or non-integral type. if (no->is_const()) *************** Named_object::get_id(Gogo* gogo) *** 986,991 **** --- 1009,1024 ---- else package_name = this->package_->package_name(); + // Note that this will be misleading if this is an unexported + // method generated for an embedded imported type. In that case + // the unexported method should have the package name of the + // package from which it is imported, but we are going to give + // it our package name. Fixing this would require knowing the + // package name, but we only know the package path. It might be + // better to use package paths here anyhow. This doesn't affect + // the assembler code, because we always set that name in + // Function::get_or_make_decl anyhow. FIXME. + decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_); Function_type* fntype; *************** Named_object::get_tree(Gogo* gogo, Named *** 1028,1033 **** --- 1061,1072 ---- if (this->tree_ != NULL_TREE) return this->tree_; + if (Gogo::is_erroneous_name(this->name_)) + { + this->tree_ = error_mark_node; + return error_mark_node; + } + tree name; if (this->classification_ == NAMED_OBJECT_TYPE) name = NULL_TREE; *************** Function::get_or_make_decl(Gogo* gogo, N *** 1255,1268 **** if (this->fndecl_ == NULL_TREE) { tree functype = type_to_tree(this->type_->get_backend(gogo)); if (functype == error_mark_node) this->fndecl_ = error_mark_node; else { - // The type of a function comes back as a pointer, but we - // want the real function type for a function declaration. - go_assert(POINTER_TYPE_P(functype)); - functype = TREE_TYPE(functype); tree decl = build_decl(this->location().gcc_location(), FUNCTION_DECL, id, functype); --- 1294,1316 ---- if (this->fndecl_ == NULL_TREE) { tree functype = type_to_tree(this->type_->get_backend(gogo)); + + if (functype != error_mark_node) + { + // The type of a function comes back as a pointer to a + // struct whose first field is the function, but we want the + // real function type for a function declaration. + go_assert(POINTER_TYPE_P(functype) + && TREE_CODE(TREE_TYPE(functype)) == RECORD_TYPE); + functype = TREE_TYPE(TYPE_FIELDS(TREE_TYPE(functype))); + go_assert(FUNCTION_POINTER_TYPE_P(functype)); + functype = TREE_TYPE(functype); + } + if (functype == error_mark_node) this->fndecl_ = error_mark_node; else { tree decl = build_decl(this->location().gcc_location(), FUNCTION_DECL, id, functype); *************** Function::get_or_make_decl(Gogo* gogo, N *** 1285,1291 **** || this->type_->is_method()) { TREE_PUBLIC(decl) = 1; ! std::string asm_name = gogo->pkgpath_symbol(); asm_name.append(1, '.'); asm_name.append(Gogo::unpack_hidden_name(no->name())); if (this->type_->is_method()) --- 1333,1353 ---- || this->type_->is_method()) { TREE_PUBLIC(decl) = 1; ! std::string pkgpath = gogo->pkgpath_symbol(); ! if (this->type_->is_method() ! && Gogo::is_hidden_name(no->name()) ! && Gogo::hidden_name_pkgpath(no->name()) != gogo->pkgpath()) ! { ! // This is a method we created for an unexported ! // method of an imported embedded type. We need to ! // use the pkgpath of the imported package to avoid ! // a possible name collision. See bug478 for a test ! // case. ! pkgpath = Gogo::hidden_name_pkgpath(no->name()); ! pkgpath = Gogo::pkgpath_for_symbol(pkgpath); ! } ! ! std::string asm_name = pkgpath; asm_name.append(1, '.'); asm_name.append(Gogo::unpack_hidden_name(no->name())); if (this->type_->is_method()) *************** Function::get_or_make_decl(Gogo* gogo, N *** 1308,1316 **** DECL_CONTEXT(resdecl) = decl; DECL_RESULT(decl) = resdecl; - if (this->enclosing_ != NULL) - DECL_STATIC_CHAIN(decl) = 1; - // If a function calls the predeclared recover function, we // can't inline it, because recover behaves differently in a // function passed directly to defer. If this is a recover --- 1370,1375 ---- *************** Function::get_or_make_decl(Gogo* gogo, N *** 1333,1361 **** resolve_unique_section (decl, 0, 1); go_preserve_from_gc(decl); - - if (this->closure_var_ != NULL) - { - push_struct_function(decl); - - Bvariable* bvar = this->closure_var_->get_backend_variable(gogo, - no); - tree closure_decl = var_to_tree(bvar); - if (closure_decl == error_mark_node) - this->fndecl_ = error_mark_node; - else - { - DECL_ARTIFICIAL(closure_decl) = 1; - DECL_IGNORED_P(closure_decl) = 1; - TREE_USED(closure_decl) = 1; - DECL_ARG_TYPE(closure_decl) = TREE_TYPE(closure_decl); - TREE_READONLY(closure_decl) = 1; - - DECL_STRUCT_FUNCTION(decl)->static_chain_decl = closure_decl; - } - - pop_cfun(); - } } } return this->fndecl_; --- 1392,1397 ---- *************** Function_declaration::get_or_make_decl(G *** 1382,1396 **** } tree functype = type_to_tree(this->fntype_->get_backend(gogo)); tree decl; if (functype == error_mark_node) decl = error_mark_node; else { - // The type of a function comes back as a pointer, but we - // want the real function type for a function declaration. - go_assert(POINTER_TYPE_P(functype)); - functype = TREE_TYPE(functype); decl = build_decl(this->location().gcc_location(), FUNCTION_DECL, id, functype); TREE_PUBLIC(decl) = 1; --- 1418,1441 ---- } tree functype = type_to_tree(this->fntype_->get_backend(gogo)); + + if (functype != error_mark_node) + { + // The type of a function comes back as a pointer to a + // struct whose first field is the function, but we want the + // real function type for a function declaration. + go_assert(POINTER_TYPE_P(functype) + && TREE_CODE(TREE_TYPE(functype)) == RECORD_TYPE); + functype = TREE_TYPE(TYPE_FIELDS(TREE_TYPE(functype))); + go_assert(FUNCTION_POINTER_TYPE_P(functype)); + functype = TREE_TYPE(functype); + } + tree decl; if (functype == error_mark_node) decl = error_mark_node; else { decl = build_decl(this->location().gcc_location(), FUNCTION_DECL, id, functype); TREE_PUBLIC(decl) = 1; *************** Function::build_tree(Gogo* gogo, Named_o *** 1599,1608 **** --- 1644,1684 ---- } } } + *pp = NULL_TREE; DECL_ARGUMENTS(fndecl) = params; + // If we need a closure variable, fetch it by calling a runtime + // function. The caller will have called __go_set_closure before + // the function call. + if (this->closure_var_ != NULL) + { + Bvariable* bvar = + this->closure_var_->get_backend_variable(gogo, named_function); + tree var_decl = var_to_tree(bvar); + if (var_decl != error_mark_node) + { + go_assert(TREE_CODE(var_decl) == VAR_DECL); + static tree get_closure_fndecl; + tree get_closure = Gogo::call_builtin(&get_closure_fndecl, + this->location_, + "__go_get_closure", + 0, + ptr_type_node); + + // Mark the __go_get_closure function as pure, since it + // depends only on the global variable g. + DECL_PURE_P(get_closure_fndecl) = 1; + + get_closure = fold_convert_loc(this->location_.gcc_location(), + TREE_TYPE(var_decl), get_closure); + DECL_INITIAL(var_decl) = get_closure; + DECL_CHAIN(var_decl) = declare_vars; + declare_vars = var_decl; + } + } + if (this->block_ != NULL) { go_assert(DECL_INITIAL(fndecl) == NULL_TREE); *************** Function::build_tree(Gogo* gogo, Named_o *** 1681,1686 **** --- 1757,1769 ---- DECL_SAVED_TREE(fndecl) = code; } + + // If we created a descriptor for the function, make sure we emit it. + if (this->descriptor_ != NULL) + { + Translate_context context(gogo, NULL, NULL, NULL); + this->descriptor_->get_tree(&context); + } } // Build the wrappers around function code needed if the function has *************** Function::return_value(Gogo* gogo, Named *** 1844,1849 **** --- 1927,1946 ---- } } + // Build the descriptor for a function declaration. This won't + // necessarily happen if the package has just a declaration for the + // function and no other reference to it, but we may still need the + // descriptor for references from other packages. + void + Function_declaration::build_backend_descriptor(Gogo* gogo) + { + if (this->descriptor_ != NULL) + { + Translate_context context(gogo, NULL, NULL, NULL); + this->descriptor_->get_tree(&context); + } + } + // Return the integer type to use for a size. GO_EXTERN_C *************** Gogo::receive_from_channel(tree type_tre *** 2437,2506 **** build2(COMPOUND_EXPR, type_tree, call, tmp)); } } - - // Return the type of a function trampoline. This is like - // get_trampoline_type in tree-nested.c. - - tree - Gogo::trampoline_type_tree() - { - static tree type_tree; - if (type_tree == NULL_TREE) - { - unsigned int size; - unsigned int align; - go_trampoline_info(&size, &align); - tree t = build_index_type(build_int_cst(integer_type_node, size - 1)); - t = build_array_type(char_type_node, t); - - type_tree = Gogo::builtin_struct(NULL, "__go_trampoline", NULL_TREE, 1, - "__data", t); - t = TYPE_FIELDS(type_tree); - DECL_ALIGN(t) = align; - DECL_USER_ALIGN(t) = 1; - - go_preserve_from_gc(type_tree); - } - return type_tree; - } - - // Make a trampoline which calls FNADDR passing CLOSURE. - - tree - Gogo::make_trampoline(tree fnaddr, tree closure, Location location) - { - tree trampoline_type = Gogo::trampoline_type_tree(); - tree trampoline_size = TYPE_SIZE_UNIT(trampoline_type); - - closure = save_expr(closure); - - // We allocate the trampoline using a special function which will - // mark it as executable. - static tree trampoline_fndecl; - tree x = Gogo::call_builtin(&trampoline_fndecl, - location, - "__go_allocate_trampoline", - 2, - ptr_type_node, - size_type_node, - trampoline_size, - ptr_type_node, - fold_convert_loc(location.gcc_location(), - ptr_type_node, closure)); - if (x == error_mark_node) - return error_mark_node; - - x = save_expr(x); - - // Initialize the trampoline. - tree calldecl = builtin_decl_implicit(BUILT_IN_INIT_HEAP_TRAMPOLINE); - tree ini = build_call_expr(calldecl, 3, x, fnaddr, closure); - - // On some targets the trampoline address needs to be adjusted. For - // example, when compiling in Thumb mode on the ARM, the address - // needs to have the low bit set. - x = build_call_expr(builtin_decl_explicit(BUILT_IN_ADJUST_TRAMPOLINE), 1, x); - x = fold_convert(TREE_TYPE(fnaddr), x); - - return build2(COMPOUND_EXPR, TREE_TYPE(x), ini, x); - } --- 2534,2536 ---- diff -Nrcpad gcc-4.8.1/gcc/go/gofrontend/gogo.cc gcc-4.8.2/gcc/go/gofrontend/gogo.cc *** gcc-4.8.1/gcc/go/gofrontend/gogo.cc Sun Feb 10 06:02:38 2013 --- gcc-4.8.2/gcc/go/gofrontend/gogo.cc Sat Sep 28 20:23:56 2013 *************** Gogo::set_package_name(const std::string *** 364,370 **** // Declare "main" as a function which takes no parameters and // returns no value. Location uloc = Linemap::unknown_location(); ! this->declare_function("main", Type::make_function_type (NULL, NULL, NULL, uloc), uloc); } --- 364,370 ---- // Declare "main" as a function which takes no parameters and // returns no value. Location uloc = Linemap::unknown_location(); ! this->declare_function(Gogo::pack_hidden_name("main", false), Type::make_function_type (NULL, NULL, NULL, uloc), uloc); } *************** Gogo::start_function(const std::string& *** 819,825 **** char buf[30]; snprintf(buf, sizeof buf, ".$sink%d", sink_count); ++sink_count; ! ret = Named_object::make_function(buf, NULL, function); } else if (!type->is_method()) { --- 819,826 ---- char buf[30]; snprintf(buf, sizeof buf, ".$sink%d", sink_count); ++sink_count; ! ret = this->package_->bindings()->add_function(buf, NULL, function); ! ret->func_value()->set_is_sink(); } else if (!type->is_method()) { *************** Gogo::record_interface_type(Interface_ty *** 1191,1196 **** --- 1192,1218 ---- this->interface_types_.push_back(itype); } + // Return an erroneous name that indicates that an error has already + // been reported. + + std::string + Gogo::erroneous_name() + { + static int erroneous_count; + char name[50]; + snprintf(name, sizeof name, "$erroneous%d", erroneous_count); + ++erroneous_count; + return name; + } + + // Return whether a name is an erroneous name. + + bool + Gogo::is_erroneous_name(const std::string& name) + { + return name.compare(0, 10, "$erroneous") == 0; + } + // Return a name for a thunk object. std::string *************** Gogo::define_global_names() *** 1277,1282 **** --- 1299,1312 ---- n.c_str()); inform(pf->second, "%qs imported here", n.c_str()); } + + // No package scope identifier may be named "init". + if (!p->second->is_function() + && Gogo::unpack_hidden_name(p->second->name()) == "init") + { + error_at(p->second->location(), + "cannot declare init - must be func"); + } } } *************** Lower_parse_tree::constant(Named_object* *** 1599,1606 **** return TRAVERSE_CONTINUE; } ! // Lower function closure types. Record the function while lowering ! // it, so that we can pass it down when lowering an expression. int Lower_parse_tree::function(Named_object* no) --- 1629,1637 ---- return TRAVERSE_CONTINUE; } ! // Lower the body of a function, and set the closure type. Record the ! // function while lowering it, so that we can pass it down when ! // lowering an expression. int Lower_parse_tree::function(Named_object* no) *************** Gogo::lower_constant(Named_object* no) *** 1732,1737 **** --- 1763,1908 ---- lower.constant(no, false); } + // Traverse the tree to create function descriptors as needed. + + class Create_function_descriptors : public Traverse + { + public: + Create_function_descriptors(Gogo* gogo) + : Traverse(traverse_functions | traverse_expressions), + gogo_(gogo) + { } + + int + function(Named_object*); + + int + expression(Expression**); + + private: + Gogo* gogo_; + }; + + // Create a descriptor for every top-level exported function. + + int + Create_function_descriptors::function(Named_object* no) + { + if (no->is_function() + && no->func_value()->enclosing() == NULL + && !no->func_value()->is_method() + && !Gogo::is_hidden_name(no->name()) + && !Gogo::is_thunk(no)) + no->func_value()->descriptor(this->gogo_, no); + + return TRAVERSE_CONTINUE; + } + + // If we see a function referenced in any way other than calling it, + // create a descriptor for it. + + int + Create_function_descriptors::expression(Expression** pexpr) + { + Expression* expr = *pexpr; + + Func_expression* fe = expr->func_expression(); + if (fe != NULL) + { + // We would not get here for a call to this function, so this is + // a reference to a function other than calling it. We need a + // descriptor. + if (fe->closure() != NULL) + return TRAVERSE_CONTINUE; + Named_object* no = fe->named_object(); + if (no->is_function() && !no->func_value()->is_method()) + no->func_value()->descriptor(this->gogo_, no); + else if (no->is_function_declaration() + && !no->func_declaration_value()->type()->is_method() + && !Linemap::is_predeclared_location(no->location())) + no->func_declaration_value()->descriptor(this->gogo_, no); + return TRAVERSE_CONTINUE; + } + + Bound_method_expression* bme = expr->bound_method_expression(); + if (bme != NULL) + { + // We would not get here for a call to this method, so this is a + // method value. We need to create a thunk. + Bound_method_expression::create_thunk(this->gogo_, bme->method(), + bme->function()); + return TRAVERSE_CONTINUE; + } + + Interface_field_reference_expression* ifre = + expr->interface_field_reference_expression(); + if (ifre != NULL) + { + // We would not get here for a call to this interface method, so + // this is a method value. We need to create a thunk. + Interface_type* type = ifre->expr()->type()->interface_type(); + if (type != NULL) + Interface_field_reference_expression::create_thunk(this->gogo_, type, + ifre->name()); + return TRAVERSE_CONTINUE; + } + + Call_expression* ce = expr->call_expression(); + if (ce != NULL) + { + Expression* fn = ce->fn(); + if (fn->func_expression() != NULL + || fn->bound_method_expression() != NULL + || fn->interface_field_reference_expression() != NULL) + { + // Traverse the arguments but not the function. + Expression_list* args = ce->args(); + if (args != NULL) + { + if (args->traverse(this) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + } + return TRAVERSE_SKIP_COMPONENTS; + } + } + + return TRAVERSE_CONTINUE; + } + + // Create function descriptors as needed. We need a function + // descriptor for all exported functions and for all functions that + // are referenced without being called. + + void + Gogo::create_function_descriptors() + { + // Create a function descriptor for any exported function that is + // declared in this package. This is so that we have a descriptor + // for functions written in assembly. Gather the descriptors first + // so that we don't add declarations while looping over them. + std::vector fndecls; + Bindings* b = this->package_->bindings(); + for (Bindings::const_declarations_iterator p = b->begin_declarations(); + p != b->end_declarations(); + ++p) + { + Named_object* no = p->second; + if (no->is_function_declaration() + && !no->func_declaration_value()->type()->is_method() + && !Linemap::is_predeclared_location(no->location()) + && !Gogo::is_hidden_name(no->name())) + fndecls.push_back(no); + } + for (std::vector::const_iterator p = fndecls.begin(); + p != fndecls.end(); + ++p) + (*p)->func_declaration_value()->descriptor(this, *p); + fndecls.clear(); + + Create_function_descriptors cfd(this); + this->traverse(&cfd); + } + // Look for interface types to finalize methods of inherited // interfaces. *************** Shortcuts::convert_shortcut(Block* enclo *** 2217,2223 **** Block* retblock = new Block(enclosing, loc); retblock->set_end_location(loc); ! Temporary_statement* ts = Statement::make_temporary(Type::lookup_bool_type(), left, loc); retblock->add_statement(ts); --- 2388,2394 ---- Block* retblock = new Block(enclosing, loc); retblock->set_end_location(loc); ! Temporary_statement* ts = Statement::make_temporary(shortcut->type(), left, loc); retblock->add_statement(ts); *************** Order_eval::statement(Block* block, size *** 2391,2403 **** return TRAVERSE_CONTINUE; // If there is only one expression with a side-effect, we can ! // usually leave it in place. However, for an assignment statement, ! // we need to evaluate an expression on the right hand side before ! // we evaluate any index expression on the left hand side, so for ! // that case we always move the expression. Otherwise we mishandle ! // m[0] = len(m) where m is a map. ! if (c == 1 && s->classification() != Statement::STATEMENT_ASSIGNMENT) ! return TRAVERSE_CONTINUE; bool is_thunk = s->thunk_statement() != NULL; for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin(); --- 2562,2599 ---- return TRAVERSE_CONTINUE; // If there is only one expression with a side-effect, we can ! // usually leave it in place. ! if (c == 1) ! { ! switch (s->classification()) ! { ! case Statement::STATEMENT_ASSIGNMENT: ! // For an assignment statement, we need to evaluate an ! // expression on the right hand side before we evaluate any ! // index expression on the left hand side, so for that case ! // we always move the expression. Otherwise we mishandle ! // m[0] = len(m) where m is a map. ! break; ! ! case Statement::STATEMENT_EXPRESSION: ! { ! // If this is a call statement that doesn't return any ! // values, it will not have been counted as a value to ! // move. We need to move any subexpressions in case they ! // are themselves call statements that require passing a ! // closure. ! Expression* expr = s->expression_statement()->expr(); ! if (expr->call_expression() != NULL ! && expr->call_expression()->result_count() == 0) ! break; ! return TRAVERSE_CONTINUE; ! } ! ! default: ! // We can leave the expression in place. ! return TRAVERSE_CONTINUE; ! } ! } bool is_thunk = s->thunk_statement() != NULL; for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin(); *************** Build_recover_thunks::function(Named_obj *** 2643,2652 **** Expression* closure = NULL; if (orig_func->needs_closure()) { Named_object* orig_closure_no = orig_func->closure_var(); Variable* orig_closure_var = orig_closure_no->var_value(); Variable* new_var = new Variable(orig_closure_var->type(), NULL, false, ! true, false, location); snprintf(buf, sizeof buf, "closure.%u", count); ++count; Named_object* new_closure_no = Named_object::make_variable(buf, NULL, --- 2839,2855 ---- Expression* closure = NULL; if (orig_func->needs_closure()) { + // For the new function we are creating, declare a new parameter + // variable NEW_CLOSURE_NO and set it to be the closure variable + // of the function. This will be set to the closure value + // passed in by the caller. Then pass a reference to this + // variable as the closure value when calling the original + // function. In other words, simply pass the closure value + // through the thunk we are creating. Named_object* orig_closure_no = orig_func->closure_var(); Variable* orig_closure_var = orig_closure_no->var_value(); Variable* new_var = new Variable(orig_closure_var->type(), NULL, false, ! false, false, location); snprintf(buf, sizeof buf, "closure.%u", count); ++count; Named_object* new_closure_no = Named_object::make_variable(buf, NULL, *************** Build_recover_thunks::function(Named_obj *** 2682,2703 **** // Any varargs call has already been lowered. call->set_varargs_are_lowered(); ! Statement* s; ! if (orig_fntype->results() == NULL || orig_fntype->results()->empty()) ! s = Statement::make_statement(call, true); ! else ! { ! Expression_list* vals = new Expression_list(); ! size_t rc = orig_fntype->results()->size(); ! if (rc == 1) ! vals->push_back(call); ! else ! { ! for (size_t i = 0; i < rc; ++i) ! vals->push_back(Expression::make_call_result(call, i)); ! } ! s = Statement::make_return_statement(vals, location); ! } s->determine_types(); gogo->add_statement(s); --- 2885,2891 ---- // Any varargs call has already been lowered. call->set_varargs_are_lowered(); ! Statement* s = Statement::make_return_from_call(call, location); s->determine_types(); gogo->add_statement(s); *************** Check_return_statements_traverse::functi *** 2991,2997 **** return TRAVERSE_CONTINUE; if (func->block()->may_fall_through()) ! error_at(func->location(), "control reaches end of non-void function"); return TRAVERSE_CONTINUE; } --- 3179,3186 ---- return TRAVERSE_CONTINUE; if (func->block()->may_fall_through()) ! error_at(func->block()->end_location(), ! "missing return at end of function"); return TRAVERSE_CONTINUE; } *************** Gogo::convert_named_types() *** 3101,3106 **** --- 3290,3296 ---- Map_type::make_map_descriptor_type(); Channel_type::make_chan_type_descriptor_type(); Interface_type::make_interface_type_descriptor_type(); + Expression::make_func_descriptor_type(); Type::convert_builtin_named_types(this); Runtime::convert_types(this); *************** Function::Function(Function_type* type, *** 3128,3136 **** Location location) : type_(type), enclosing_(enclosing), results_(NULL), closure_var_(NULL), block_(block), location_(location), labels_(), ! local_type_count_(0), fndecl_(NULL), defer_stack_(NULL), ! results_are_named_(false), nointerface_(false), calls_recover_(false), ! is_recover_thunk_(false), has_recover_thunk_(false), in_unique_section_(false) { } --- 3318,3326 ---- Location location) : type_(type), enclosing_(enclosing), results_(NULL), closure_var_(NULL), block_(block), location_(location), labels_(), ! local_type_count_(0), descriptor_(NULL), fndecl_(NULL), defer_stack_(NULL), ! is_sink_(false), results_are_named_(false), nointerface_(false), ! calls_recover_(false), is_recover_thunk_(false), has_recover_thunk_(false), in_unique_section_(false) { } *************** Function::closure_var() *** 3206,3220 **** { if (this->closure_var_ == NULL) { // We don't know the type of the variable yet. We add fields as // we find them. Location loc = this->type_->location(); Struct_field_list* sfl = new Struct_field_list; Type* struct_type = Type::make_struct_type(sfl, loc); Variable* var = new Variable(Type::make_pointer_type(struct_type), ! NULL, false, true, false, loc); var->set_is_used(); ! this->closure_var_ = Named_object::make_variable("closure", NULL, var); // Note that the new variable is not in any binding contour. } return this->closure_var_; --- 3396,3411 ---- { if (this->closure_var_ == NULL) { + go_assert(this->descriptor_ == NULL); // We don't know the type of the variable yet. We add fields as // we find them. Location loc = this->type_->location(); Struct_field_list* sfl = new Struct_field_list; Type* struct_type = Type::make_struct_type(sfl, loc); Variable* var = new Variable(Type::make_pointer_type(struct_type), ! NULL, false, false, false, loc); var->set_is_used(); ! this->closure_var_ = Named_object::make_variable("$closure", NULL, var); // Note that the new variable is not in any binding contour. } return this->closure_var_; *************** Function::set_closure_type() *** 3229,3235 **** return; Named_object* closure = this->closure_var_; Struct_type* st = closure->var_value()->type()->deref()->struct_type(); ! unsigned int index = 0; for (Closure_fields::const_iterator p = this->closure_fields_.begin(); p != this->closure_fields_.end(); ++p, ++index) --- 3420,3433 ---- return; Named_object* closure = this->closure_var_; Struct_type* st = closure->var_value()->type()->deref()->struct_type(); ! ! // The first field of a closure is always a pointer to the function ! // code. ! Type* voidptr_type = Type::make_pointer_type(Type::make_void_type()); ! st->push_field(Struct_field(Typed_identifier(".$f", voidptr_type, ! this->location_))); ! ! unsigned int index = 1; for (Closure_fields::const_iterator p = this->closure_fields_.begin(); p != this->closure_fields_.end(); ++p, ++index) *************** Function::determine_types() *** 3410,3415 **** --- 3608,3626 ---- this->block_->determine_types(); } + // Return the function descriptor, the value you get when you refer to + // the function in Go code without calling it. + + Expression* + Function::descriptor(Gogo*, Named_object* no) + { + go_assert(!this->is_method()); + go_assert(this->closure_var_ == NULL); + if (this->descriptor_ == NULL) + this->descriptor_ = Expression::make_func_descriptor(no); + return this->descriptor_; + } + // Get a pointer to the variable representing the defer stack for this // function, making it if necessary. The value of the variable is set // by the runtime routines to true if the function is returning, *************** Bindings_snapshot::check_goto_defs(Locat *** 3940,3945 **** --- 4151,4169 ---- } } + // Class Function_declaration. + + // Return the function descriptor. + + Expression* + Function_declaration::descriptor(Gogo*, Named_object* no) + { + go_assert(!this->fntype_->is_method()); + if (this->descriptor_ == NULL) + this->descriptor_ = Expression::make_func_descriptor(no); + return this->descriptor_; + } + // Class Variable. Variable::Variable(Type* type, Expression* init, bool is_global, *************** void *** 4755,4760 **** --- 4979,4990 ---- Named_object::set_function_value(Function* function) { go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION); + if (this->func_declaration_value()->has_descriptor()) + { + Expression* descriptor = + this->func_declaration_value()->descriptor(NULL, NULL); + function->set_descriptor(descriptor); + } this->classification_ = NAMED_OBJECT_FUNC; // FIXME: We should free the old value. this->u_.func_value = function; diff -Nrcpad gcc-4.8.1/gcc/go/gofrontend/gogo.h gcc-4.8.2/gcc/go/gofrontend/gogo.h *** gcc-4.8.1/gcc/go/gofrontend/gogo.h Fri Dec 21 22:23:23 2012 --- gcc-4.8.2/gcc/go/gofrontend/gogo.h Sat Sep 28 20:23:56 2013 *************** class Gogo *** 387,392 **** --- 387,402 ---- void mark_locals_used(); + // Return a name to use for an error case. This should only be used + // after reporting an error, and is used to avoid useless knockon + // errors. + static std::string + erroneous_name(); + + // Return whether the name indicates an error. + static bool + is_erroneous_name(const std::string&); + // Return a name to use for a thunk function. A thunk function is // one we create during the compilation, for a go statement or a // defer statement or a method expression. *************** class Gogo *** 476,481 **** --- 486,495 ---- void lower_constant(Named_object*); + // Create all necessary function descriptors. + void + create_function_descriptors(); + // Finalize the method lists and build stub methods for named types. void finalize_methods(); *************** class Gogo *** 614,623 **** receive_from_channel(tree type_tree, tree type_descriptor_tree, tree channel, Location); - // Make a trampoline which calls FNADDR passing CLOSURE. - tree - make_trampoline(tree fnaddr, tree closure, Location); - private: // During parsing, we keep a stack of functions. Each function on // the stack is one that we are currently parsing. For each --- 628,633 ---- *************** class Gogo *** 669,678 **** tree ptr_go_string_constant_tree(const std::string&); - // Return the type of a trampoline. - static tree - trampoline_type_tree(); - // Type used to map import names to packages. typedef std::map Imports; --- 679,684 ---- *************** class Function *** 915,920 **** --- 921,934 ---- result_variables() { return this->results_; } + bool + is_sink() const + { return this->is_sink_; } + + void + set_is_sink() + { this->is_sink_ = true; } + // Whether the result variables have names. bool results_are_named() const *************** class Function *** 1059,1064 **** --- 1073,1094 ---- void determine_types(); + // Return an expression for the function descriptor, given the named + // object for this function. This may only be called for functions + // without a closure. This will be an immutable struct with one + // field that points to the function's code. + Expression* + descriptor(Gogo*, Named_object*); + + // Set the descriptor for this function. This is used when a + // function declaration is followed by a function definition. + void + set_descriptor(Expression* descriptor) + { + go_assert(this->descriptor_ == NULL); + this->descriptor_ = descriptor; + } + // Return the function's decl given an identifier. tree get_or_make_decl(Gogo*, Named_object*, tree id); *************** class Function *** 1137,1158 **** Labels labels_; // The number of local types defined in this function. unsigned int local_type_count_; // The function decl. tree fndecl_; // The defer stack variable. A pointer to this variable is used to // distinguish the defer stack for one function from another. This // is NULL unless we actually need a defer stack. Temporary_statement* defer_stack_; // True if the result variables are named. ! bool results_are_named_; // True if this method should not be included in the type descriptor. ! bool nointerface_; // True if this function calls the predeclared recover function. ! bool calls_recover_; // True if this a thunk built for a function which calls recover. ! bool is_recover_thunk_; // True if this function already has a recover thunk. ! bool has_recover_thunk_; // True if this function should be put in a unique section. This is // turned on for field tracking. bool in_unique_section_ : 1; --- 1167,1192 ---- Labels labels_; // The number of local types defined in this function. unsigned int local_type_count_; + // The function descriptor, if any. + Expression* descriptor_; // The function decl. tree fndecl_; // The defer stack variable. A pointer to this variable is used to // distinguish the defer stack for one function from another. This // is NULL unless we actually need a defer stack. Temporary_statement* defer_stack_; + // True if this function is sink-named. No code is generated. + bool is_sink_ : 1; // True if the result variables are named. ! bool results_are_named_ : 1; // True if this method should not be included in the type descriptor. ! bool nointerface_ : 1; // True if this function calls the predeclared recover function. ! bool calls_recover_ : 1; // True if this a thunk built for a function which calls recover. ! bool is_recover_thunk_ : 1; // True if this function already has a recover thunk. ! bool has_recover_thunk_ : 1; // True if this function should be put in a unique section. This is // turned on for field tracking. bool in_unique_section_ : 1; *************** class Function_declaration *** 1198,1204 **** { public: Function_declaration(Function_type* fntype, Location location) ! : fntype_(fntype), location_(location), asm_name_(), fndecl_(NULL) { } Function_type* --- 1232,1239 ---- { public: Function_declaration(Function_type* fntype, Location location) ! : fntype_(fntype), location_(location), asm_name_(), descriptor_(NULL), ! fndecl_(NULL) { } Function_type* *************** class Function_declaration *** 1218,1227 **** --- 1253,1279 ---- set_asm_name(const std::string& asm_name) { this->asm_name_ = asm_name; } + // Return an expression for the function descriptor, given the named + // object for this function. This may only be called for functions + // without a closure. This will be an immutable struct with one + // field that points to the function's code. + Expression* + descriptor(Gogo*, Named_object*); + + // Return true if we have created a descriptor for this declaration. + bool + has_descriptor() const + { return this->descriptor_ != NULL; } + // Return a decl for the function given an identifier. tree get_or_make_decl(Gogo*, Named_object*, tree id); + // If there is a descriptor, build it into the backend + // representation. + void + build_backend_descriptor(Gogo*); + // Export a function declaration. void export_func(Export* exp, const std::string& name) const *************** class Function_declaration *** 1235,1240 **** --- 1287,1294 ---- // The assembler name: this is the name to use in references to the // function. This is normally empty. std::string asm_name_; + // The function descriptor, if any. + Expression* descriptor_; // The function decl if needed. tree fndecl_; }; *************** class Named_constant *** 1630,1636 **** Named_constant(Type* type, Expression* expr, int iota_value, Location location) : type_(type), expr_(expr), iota_value_(iota_value), location_(location), ! lowering_(false) { } Type* --- 1684,1690 ---- Named_constant(Type* type, Expression* expr, int iota_value, Location location) : type_(type), expr_(expr), iota_value_(iota_value), location_(location), ! lowering_(false), is_sink_(false) { } Type* *************** class Named_constant *** 1664,1669 **** --- 1718,1731 ---- clear_lowering() { this->lowering_ = false; } + bool + is_sink() const + { return this->is_sink_; } + + void + set_is_sink() + { this->is_sink_ = true; } + // Traverse the expression. int traverse_expression(Traverse*); *************** class Named_constant *** 1699,1704 **** --- 1761,1768 ---- Location location_; // Whether we are currently lowering this constant. bool lowering_; + // Whether this constant is blank named and needs only type checking. + bool is_sink_; }; // A type declaration. diff -Nrcpad gcc-4.8.1/gcc/go/gofrontend/parse.cc gcc-4.8.2/gcc/go/gofrontend/parse.cc *** gcc-4.8.1/gcc/go/gofrontend/parse.cc Thu Dec 13 22:20:23 2012 --- gcc-4.8.2/gcc/go/gofrontend/parse.cc Tue Oct 8 23:54:31 2013 *************** Parse::qualified_ident(std::string* pnam *** 213,219 **** if (name == "_") { error_at(this->location(), "invalid use of %<_%>"); ! name = "blank"; } if (package->name() == this->gogo_->package_name()) --- 213,219 ---- if (name == "_") { error_at(this->location(), "invalid use of %<_%>"); ! name = Gogo::erroneous_name(); } if (package->name() == this->gogo_->package_name()) *************** Parse::const_spec(Type** last_type, Expr *** 1457,1462 **** --- 1457,1472 ---- if (!Gogo::is_sink_name(pi->name())) this->gogo_->add_constant(*pi, *pe, this->iota_value()); + else + { + static int count; + char buf[30]; + snprintf(buf, sizeof buf, ".$sinkconst%d", count); + ++count; + Typed_identifier ti(std::string(buf), type, pi->location()); + Named_object* no = this->gogo_->add_constant(ti, *pe, this->iota_value()); + no->const_value()->set_is_sink(); + } } if (pe != expr_list->end()) error_at(this->location(), "too many initializers"); *************** Parse::init_var(const Typed_identifier& *** 1930,1941 **** { if (this->gogo_->in_global_scope()) return this->create_dummy_global(type, init, location); - else if (type == NULL) - this->gogo_->add_statement(Statement::make_statement(init, true)); else { ! // With both a type and an initializer, create a dummy ! // variable so that we will check whether the // initializer can be assigned to the type. Variable* var = new Variable(type, init, false, false, false, location); --- 1940,1948 ---- { if (this->gogo_->in_global_scope()) return this->create_dummy_global(type, init, location); else { ! // Create a dummy variable so that we will check whether the // initializer can be assigned to the type. Variable* var = new Variable(type, init, false, false, false, location); *************** Parse::enclosing_var_reference(Named_obj *** 2627,2633 **** Named_object* this_function = this->gogo_->current_function(); Named_object* closure = this_function->func_value()->closure_var(); ! Enclosing_var ev(var, in_function, this->enclosing_vars_.size()); std::pair ins = this->enclosing_vars_.insert(ev); if (ins.second) --- 2634,2644 ---- Named_object* this_function = this->gogo_->current_function(); Named_object* closure = this_function->func_value()->closure_var(); ! // The last argument to the Enclosing_var constructor is the index ! // of this variable in the closure. We add 1 to the current number ! // of enclosed variables, because the first field in the closure ! // points to the function code. ! Enclosing_var ev(var, in_function, this->enclosing_vars_.size() + 1); std::pair ins = this->enclosing_vars_.insert(ev); if (ins.second) *************** Parse::composite_lit(Type* type, int dep *** 2679,2693 **** { this->advance_token(); return Expression::make_composite_literal(type, depth, false, NULL, ! location); } bool has_keys = false; Expression_list* vals = new Expression_list; while (true) { Expression* val; bool is_type_omitted = false; const Token* token = this->peek_token(); --- 2690,2706 ---- { this->advance_token(); return Expression::make_composite_literal(type, depth, false, NULL, ! false, location); } bool has_keys = false; + bool all_are_names = true; Expression_list* vals = new Expression_list; while (true) { Expression* val; bool is_type_omitted = false; + bool is_name = false; const Token* token = this->peek_token(); *************** Parse::composite_lit(Type* type, int dep *** 2708,2713 **** --- 2721,2727 ---- val = this->id_to_expression(gogo->pack_hidden_name(identifier, is_exported), location); + is_name = true; } else { *************** Parse::composite_lit(Type* type, int dep *** 2733,2738 **** --- 2747,2753 ---- { if (has_keys) vals->push_back(NULL); + is_name = false; } else { *************** Parse::composite_lit(Type* type, int dep *** 2779,2784 **** --- 2794,2802 ---- vals->push_back(val); + if (!is_name) + all_are_names = false; + if (token->is_op(OPERATOR_COMMA)) { if (this->advance_token()->is_op(OPERATOR_RCURLY)) *************** Parse::composite_lit(Type* type, int dep *** 2819,2825 **** } return Expression::make_composite_literal(type, depth, has_keys, vals, ! location); } // FunctionLit = "func" Signature Block . --- 2837,2843 ---- } return Expression::make_composite_literal(type, depth, has_keys, vals, ! all_are_names, location); } // FunctionLit = "func" Signature Block . *************** Parse::function_lit() *** 2882,2889 **** // Create a closure for the nested function FUNCTION. This is based // on ENCLOSING_VARS, which is a list of all variables defined in // enclosing functions and referenced from FUNCTION. A closure is the ! // address of a struct which contains the addresses of all the ! // referenced variables. This returns NULL if no closure is required. Expression* Parse::create_closure(Named_object* function, Enclosing_vars* enclosing_vars, --- 2900,2908 ---- // Create a closure for the nested function FUNCTION. This is based // on ENCLOSING_VARS, which is a list of all variables defined in // enclosing functions and referenced from FUNCTION. A closure is the ! // address of a struct which point to the real function code and ! // contains the addresses of all the referenced variables. This ! // returns NULL if no closure is required. Expression* Parse::create_closure(Named_object* function, Enclosing_vars* enclosing_vars, *************** Parse::create_closure(Named_object* func *** 2899,2914 **** for (Enclosing_vars::const_iterator p = enclosing_vars->begin(); p != enclosing_vars->end(); ++p) ! ev[p->index()] = *p; // Build an initializer for a composite literal of the closure's // type. Named_object* enclosing_function = this->gogo_->current_function(); Expression_list* initializer = new Expression_list; for (size_t i = 0; i < enclosing_var_count; ++i) { ! go_assert(ev[i].index() == i); Named_object* var = ev[i].var(); Expression* ref; if (ev[i].in_function() == enclosing_function) --- 2918,2942 ---- for (Enclosing_vars::const_iterator p = enclosing_vars->begin(); p != enclosing_vars->end(); ++p) ! { ! // Subtract 1 because index 0 is the function code. ! ev[p->index() - 1] = *p; ! } // Build an initializer for a composite literal of the closure's // type. Named_object* enclosing_function = this->gogo_->current_function(); Expression_list* initializer = new Expression_list; + + initializer->push_back(Expression::make_func_code_reference(function, + location)); + for (size_t i = 0; i < enclosing_var_count; ++i) { ! // Add 1 to i because the first field in the closure is a ! // pointer to the function code. ! go_assert(ev[i].index() == i + 1); Named_object* var = ev[i].var(); Expression* ref; if (ev[i].in_function() == enclosing_function) *************** Parse::primary_expr(bool may_be_sink, bo *** 3016,3022 **** && t->array_type()->length()->is_nil_expression()) { error_at(ret->location(), ! "invalid use of %<...%> in type conversion"); ret = Expression::make_error(loc); } else --- 3044,3050 ---- && t->array_type()->length()->is_nil_expression()) { error_at(ret->location(), ! "use of %<[...]%> outside of array literal"); ret = Expression::make_error(loc); } else *************** Parse::selector(Expression* left, bool* *** 3083,3089 **** if (token->identifier() == "_") { error_at(this->location(), "invalid use of %<_%>"); ! name = this->gogo_->pack_hidden_name("blank", false); } this->advance_token(); return Expression::make_selector(left, name, location); --- 3111,3117 ---- if (token->identifier() == "_") { error_at(this->location(), "invalid use of %<_%>"); ! name = Gogo::erroneous_name(); } this->advance_token(); return Expression::make_selector(left, name, location); *************** Parse::expr_case_clause(Case_clauses* cl *** 4499,4507 **** --- 4527,4538 ---- bool is_fallthrough = false; if (this->peek_token()->is_keyword(KEYWORD_FALLTHROUGH)) { + Location fallthrough_loc = this->location(); is_fallthrough = true; if (this->advance_token()->is_op(OPERATOR_SEMICOLON)) this->advance_token(); + if (this->peek_token()->is_op(OPERATOR_RCURLY)) + error_at(fallthrough_loc, _("cannot fallthrough final case in switch")); } if (is_default) *************** Parse::send_or_recv_stmt(bool* is_send, *** 4905,4911 **** { error_at(recv_var_loc, "no new variables on left side of %<:=%>"); ! recv_var = "blank"; } *is_send = false; *varname = gogo->pack_hidden_name(recv_var, is_rv_exported); --- 4936,4942 ---- { error_at(recv_var_loc, "no new variables on left side of %<:=%>"); ! recv_var = Gogo::erroneous_name(); } *is_send = false; *varname = gogo->pack_hidden_name(recv_var, is_rv_exported); *************** Parse::send_or_recv_stmt(bool* is_send, *** 4941,4947 **** { error_at(recv_var_loc, "no new variables on left side of %<:=%>"); ! recv_var = "blank"; } *is_send = false; if (recv_var != "_") --- 4972,4978 ---- { error_at(recv_var_loc, "no new variables on left side of %<:=%>"); ! recv_var = Gogo::erroneous_name(); } *is_send = false; if (recv_var != "_") *************** Parse::range_clause_decl(const Typed_ide *** 5239,5245 **** no->var_value()->set_type_from_range_value(); if (is_new) any_new = true; ! p_range_clause->value = Expression::make_var_reference(no, location); } if (!any_new) --- 5270,5277 ---- no->var_value()->set_type_from_range_value(); if (is_new) any_new = true; ! if (!Gogo::is_sink_name(pti->name())) ! p_range_clause->value = Expression::make_var_reference(no, location); } if (!any_new) *************** Parse::package_clause() *** 5477,5483 **** if (name == "_") { error_at(this->location(), "invalid package name _"); ! name = "blank"; } this->advance_token(); } --- 5509,5515 ---- if (name == "_") { error_at(this->location(), "invalid package name _"); ! name = Gogo::erroneous_name(); } this->advance_token(); } diff -Nrcpad gcc-4.8.1/gcc/go/gofrontend/runtime.def gcc-4.8.2/gcc/go/gofrontend/runtime.def *** gcc-4.8.1/gcc/go/gofrontend/runtime.def Thu Nov 29 18:11:17 2012 --- gcc-4.8.2/gcc/go/gofrontend/runtime.def Tue Jun 18 23:50:42 2013 *************** DEF_GO_RUNTIME(NEW, "__go_new", P1(UINTP *** 224,234 **** DEF_GO_RUNTIME(NEW_NOPOINTERS, "__go_new_nopointers", P1(UINTPTR), R1(POINTER)) - // Allocate a trampoline for a function literal. - DEF_GO_RUNTIME(ALLOCATE_GO_TRAMPOLINE, "__go_allocate_trampoline", - P2(UINTPTR, POINTER), R1(POINTER)) - - // Start a new goroutine. DEF_GO_RUNTIME(GO, "__go_go", P2(FUNC_PTR, POINTER), R0()) --- 224,229 ---- diff -Nrcpad gcc-4.8.1/gcc/go/gofrontend/statements.cc gcc-4.8.2/gcc/go/gofrontend/statements.cc *** gcc-4.8.1/gcc/go/gofrontend/statements.cc Fri Dec 21 15:59:27 2012 --- gcc-4.8.2/gcc/go/gofrontend/statements.cc Wed Sep 25 03:28:15 2013 *************** void *** 569,575 **** Assignment_statement::do_determine_types() { this->lhs_->determine_type_no_context(); ! Type_context context(this->lhs_->type(), false); this->rhs_->determine_type(&context); } --- 569,578 ---- Assignment_statement::do_determine_types() { this->lhs_->determine_type_no_context(); ! Type* rhs_context_type = this->lhs_->type(); ! if (rhs_context_type->is_sink_type()) ! rhs_context_type = NULL; ! Type_context context(rhs_context_type, false); this->rhs_->determine_type(&context); } *************** Assignment_statement::do_check_types(Gog *** 591,596 **** --- 594,608 ---- Type* lhs_type = this->lhs_->type(); Type* rhs_type = this->rhs_->type(); + + // Invalid assignment of nil to the blank identifier. + if (lhs_type->is_sink_type() + && rhs_type->is_nil_type()) + { + this->report_error(_("use of untyped nil")); + return; + } + std::string reason; bool ok; if (this->are_hidden_fields_ok_) *************** Tuple_assignment_statement::do_lower(Gog *** 972,978 **** if ((*plhs)->is_sink_expression()) { ! b->add_statement(Statement::make_statement(*prhs, true)); continue; } --- 984,993 ---- if ((*plhs)->is_sink_expression()) { ! if ((*prhs)->type()->is_nil_type()) ! this->report_error(_("use of untyped nil")); ! else ! b->add_statement(Statement::make_statement(*prhs, true)); continue; } *************** Statement::make_tuple_type_guard_assignm *** 1655,1700 **** location); } ! // An expression statement. ! ! class Expression_statement : public Statement ! { ! public: ! Expression_statement(Expression* expr, bool is_ignored) ! : Statement(STATEMENT_EXPRESSION, expr->location()), ! expr_(expr), is_ignored_(is_ignored) ! { } ! ! Expression* ! expr() ! { return this->expr_; } ! ! protected: ! int ! do_traverse(Traverse* traverse) ! { return this->traverse_expression(traverse, &this->expr_); } ! ! void ! do_determine_types() ! { this->expr_->determine_type_no_context(); } ! ! void ! do_check_types(Gogo*); ! bool ! do_may_fall_through() const; ! Bstatement* ! do_get_backend(Translate_context* context); ! void ! do_dump_statement(Ast_dump_context*) const; ! private: ! Expression* expr_; ! // Whether the value of this expression is being explicitly ignored. ! bool is_ignored_; ! }; // Check the types of an expression statement. The only check we do // is to possibly give an error about discarding the value of the --- 1670,1692 ---- location); } ! // Class Expression_statement. ! // Constructor. ! Expression_statement::Expression_statement(Expression* expr, bool is_ignored) ! : Statement(STATEMENT_EXPRESSION, expr->location()), ! expr_(expr), is_ignored_(is_ignored) ! { ! } ! // Determine types. ! void ! Expression_statement::do_determine_types() ! { ! this->expr_->determine_type_no_context(); ! } // Check the types of an expression statement. The only check we do // is to possibly give an error about discarding the value of the *************** Expression_statement::do_check_types(Gog *** 1707,1714 **** this->expr_->discarding_value(); } ! // An expression statement may fall through unless it is a call to a ! // function which does not return. bool Expression_statement::do_may_fall_through() const --- 1699,1706 ---- this->expr_->discarding_value(); } ! // An expression statement is only a terminating statement if it is ! // a call to panic. bool Expression_statement::do_may_fall_through() const *************** Expression_statement::do_may_fall_throug *** 1717,1738 **** if (call != NULL) { const Expression* fn = call->fn(); ! const Func_expression* fe = fn->func_expression(); ! if (fe != NULL) { ! const Named_object* no = fe->named_object(); ! Function_type* fntype; ! if (no->is_function()) ! fntype = no->func_value()->type(); ! else if (no->is_function_declaration()) ! fntype = no->func_declaration_value()->type(); ! else ! fntype = NULL; ! // The builtin function panic does not return. ! if (fntype != NULL && fntype->is_builtin() && no->name() == "panic") ! return false; } } return true; --- 1709,1736 ---- if (call != NULL) { const Expression* fn = call->fn(); ! // panic is still an unknown named object. ! const Unknown_expression* ue = fn->unknown_expression(); ! if (ue != NULL) { ! Named_object* no = ue->named_object(); ! if (no->is_unknown()) ! no = no->unknown_value()->real_named_object(); ! if (no != NULL) ! { ! Function_type* fntype; ! if (no->is_function()) ! fntype = no->func_value()->type(); ! else if (no->is_function_declaration()) ! fntype = no->func_declaration_value()->type(); ! else ! fntype = NULL; ! // The builtin function panic does not return. ! if (fntype != NULL && fntype->is_builtin() && no->name() == "panic") ! return false; ! } } } return true; *************** Thunk_statement::is_simple(Function_type *** 1953,1962 **** && results->begin()->type()->points_to() == NULL))) return false; ! // If this calls something which is not a simple function, then we // need a thunk. Expression* fn = this->call_->call_expression()->fn(); ! if (fn->interface_field_reference_expression() != NULL) return false; return true; --- 1951,1965 ---- && results->begin()->type()->points_to() == NULL))) return false; ! // If this calls something that is not a simple function, then we // need a thunk. Expression* fn = this->call_->call_expression()->fn(); ! if (fn->func_expression() == NULL) ! return false; ! ! // If the function uses a closure, then we need a thunk. FIXME: We ! // could accept a zero argument function with a closure. ! if (fn->func_expression()->closure() != NULL) return false; return true; *************** Thunk_statement::get_fn_and_arg(Expressi *** 2496,2502 **** Call_expression* ce = this->call_->call_expression(); ! *pfn = ce->fn(); const Expression_list* args = ce->args(); if (args == NULL || args->empty()) --- 2499,2509 ---- Call_expression* ce = this->call_->call_expression(); ! Expression* fn = ce->fn(); ! Func_expression* fe = fn->func_expression(); ! go_assert(fe != NULL); ! *pfn = Expression::make_func_code_reference(fe->named_object(), ! fe->location()); const Expression_list* args = ce->args(); if (args == NULL || args->empty()) *************** Statement::make_return_statement(Express *** 2800,2805 **** --- 2807,2834 ---- return new Return_statement(vals, location); } + // Make a statement that returns the result of a call expression. + + Statement* + Statement::make_return_from_call(Call_expression* call, Location location) + { + size_t rc = call->result_count(); + if (rc == 0) + return Statement::make_statement(call, true); + else + { + Expression_list* vals = new Expression_list(); + if (rc == 1) + vals->push_back(call); + else + { + for (size_t i = 0; i < rc; ++i) + vals->push_back(Expression::make_call_result(call, i)); + } + return Statement::make_return_statement(vals, location); + } + } + // A break or continue statement. class Bc_statement : public Statement *************** class Constant_switch_statement : public *** 3700,3708 **** void do_check_types(Gogo*); - bool - do_may_fall_through() const; - Bstatement* do_get_backend(Translate_context*); --- 3729,3734 ---- *************** Constant_switch_statement::do_check_type *** 3746,3767 **** this->set_is_error(); } - // Return whether this switch may fall through. - - bool - Constant_switch_statement::do_may_fall_through() const - { - if (this->clauses_ == NULL) - return true; - - // If we have a break label, then some case needed it. That implies - // that the switch statement as a whole can fall through. - if (this->break_label_ != NULL) - return true; - - return this->clauses_->may_fall_through(); - } - // Convert to GENERIC. Bstatement* --- 3772,3777 ---- *************** Switch_statement::do_dump_statement(Ast_ *** 3911,3916 **** --- 3921,3942 ---- ast_dump_context->ostream() << std::endl; } + // Return whether this switch may fall through. + + bool + Switch_statement::do_may_fall_through() const + { + if (this->clauses_ == NULL) + return true; + + // If we have a break label, then some case needed it. That implies + // that the switch statement as a whole can fall through. + if (this->break_label_ != NULL) + return true; + + return this->clauses_->may_fall_through(); + } + // Make a switch statement. Switch_statement* *************** Type_case_clauses::Type_case_clause::low *** 4050,4055 **** --- 4076,4102 ---- } } + // Return true if this type clause may fall through to the statements + // following the switch. + + bool + Type_case_clauses::Type_case_clause::may_fall_through() const + { + if (this->is_fallthrough_) + { + // This case means that we automatically fall through to the + // next case (it's used for T1 in case T1, T2:). It does not + // mean that we fall through to the end of the type switch as a + // whole. There is sure to be a next case and that next case + // will determine whether we fall through to the statements + // after the type switch. + return false; + } + if (this->statements_ == NULL) + return true; + return this->statements_->may_fall_through(); + } + // Dump the AST representation for a type case clause void *************** Type_case_clauses::lower(Type* switch_va *** 4148,4153 **** --- 4195,4219 ---- NULL); } + // Return true if these clauses may fall through to the statements + // following the switch statement. + + bool + Type_case_clauses::may_fall_through() const + { + bool found_default = false; + for (Type_clauses::const_iterator p = this->clauses_.begin(); + p != this->clauses_.end(); + ++p) + { + if (p->may_fall_through()) + return true; + if (p->is_default()) + found_default = true; + } + return !found_default; + } + // Dump the AST representation for case clauses (from a switch statement) void *************** Type_switch_statement::do_lower(Gogo*, N *** 4237,4242 **** --- 4303,4324 ---- return Statement::make_block_statement(b, loc); } + // Return whether this switch may fall through. + + bool + Type_switch_statement::do_may_fall_through() const + { + if (this->clauses_ == NULL) + return true; + + // If we have a break label, then some case needed it. That implies + // that the switch statement as a whole can fall through. + if (this->break_label_ != NULL) + return true; + + return this->clauses_->may_fall_through(); + } + // Return the break label for this type switch statement, creating it // if necessary. *************** Select_statement::do_lower(Gogo* gogo, N *** 4954,4959 **** --- 5036,5054 ---- return Statement::make_block_statement(b, loc); } + // Whether the select statement itself may fall through to the following + // statement. + + bool + Select_statement::do_may_fall_through() const + { + // A select statement is terminating if no break statement + // refers to it and all of its clauses are terminating. + if (this->break_label_ != NULL) + return true; + return this->clauses_->may_fall_through(); + } + // Return the backend representation for a select statement. Bstatement* *************** For_statement::set_break_continue_labels *** 5114,5119 **** --- 5209,5228 ---- this->continue_label_ = continue_label; } + // Whether the overall statement may fall through. + + bool + For_statement::do_may_fall_through() const + { + // A for loop is terminating if it has no condition and + // no break statement. + if(this->cond_ != NULL) + return true; + if(this->break_label_ != NULL) + return true; + return false; + } + // Dump the AST representation for a for statement. void diff -Nrcpad gcc-4.8.1/gcc/go/gofrontend/statements.h gcc-4.8.2/gcc/go/gofrontend/statements.h *** gcc-4.8.1/gcc/go/gofrontend/statements.h Tue Jan 29 00:28:09 2013 --- gcc-4.8.2/gcc/go/gofrontend/statements.h Tue Sep 3 21:58:47 2013 *************** class Function; *** 17,22 **** --- 17,23 ---- class Unnamed_label; class Temporary_statement; class Variable_declaration_statement; + class Expression_statement; class Return_statement; class Thunk_statement; class Label_statement; *************** class Statement *** 207,212 **** --- 208,220 ---- static Return_statement* make_return_statement(Expression_list*, Location); + // Make a statement that returns the result of a call expression. + // If the call does not return any results, this just returns the + // call expression as a statement, assuming that the function will + // end immediately afterward. + static Statement* + make_return_from_call(Call_expression*, Location); + // Make a break statement. static Statement* make_break_statement(Unnamed_label* label, Location); *************** class Statement *** 322,327 **** --- 330,343 ---- STATEMENT_VARIABLE_DECLARATION>(); } + // If this is an expression statement, return it. Otherwise return + // NULL. + Expression_statement* + expression_statement() + { + return this->convert(); + } + // If this is a return statement, return it. Otherwise return NULL. Return_statement* return_statement() *************** class Return_statement : public Statemen *** 629,634 **** --- 645,687 ---- bool is_lowered_; }; + // An expression statement. + + class Expression_statement : public Statement + { + public: + Expression_statement(Expression* expr, bool is_ignored); + + Expression* + expr() + { return this->expr_; } + + protected: + int + do_traverse(Traverse* traverse) + { return this->traverse_expression(traverse, &this->expr_); } + + void + do_determine_types(); + + void + do_check_types(Gogo*); + + bool + do_may_fall_through() const; + + Bstatement* + do_get_backend(Translate_context* context); + + void + do_dump_statement(Ast_dump_context*) const; + + private: + Expression* expr_; + // Whether the value of this expression is being explicitly ignored. + bool is_ignored_; + }; + // A send statement. class Send_statement : public Statement *************** class Select_statement : public Statemen *** 894,901 **** { this->clauses_->check_types(); } bool ! do_may_fall_through() const ! { return this->clauses_->may_fall_through(); } Bstatement* do_get_backend(Translate_context*); --- 947,953 ---- { this->clauses_->check_types(); } bool ! do_may_fall_through() const; Bstatement* do_get_backend(Translate_context*); *************** class For_statement : public Statement *** 1086,1091 **** --- 1138,1146 ---- Statement* do_lower(Gogo*, Named_object*, Block*, Statement_inserter*); + bool + do_may_fall_through() const; + Bstatement* do_get_backend(Translate_context*) { go_unreachable(); } *************** class Switch_statement : public Statemen *** 1399,1404 **** --- 1454,1462 ---- void do_dump_statement(Ast_dump_context*) const; + bool + do_may_fall_through() const; + private: // The value to switch on. This may be NULL. Expression* val_; *************** class Type_case_clauses *** 1449,1454 **** --- 1507,1517 ---- lower(Type*, Block*, Temporary_statement* descriptor_temp, Unnamed_label* break_label) const; + // Return true if these clauses may fall through to the statements + // following the switch statement. + bool + may_fall_through() const; + // Dump the AST representation to a dump context. void dump_clauses(Ast_dump_context*) const; *************** class Type_case_clauses *** 1493,1498 **** --- 1556,1567 ---- lower(Type*, Block*, Temporary_statement* descriptor_temp, Unnamed_label* break_label, Unnamed_label** stmts_label) const; + // Return true if this clause may fall through to execute the + // statements following the switch statement. This is not the + // same as whether this clause falls through to the next clause. + bool + may_fall_through() const; + // Dump the AST representation to a dump context. void dump_clause(Ast_dump_context*) const; *************** class Type_switch_statement : public Sta *** 1556,1561 **** --- 1625,1633 ---- void do_dump_statement(Ast_dump_context*) const; + bool + do_may_fall_through() const; + private: // The variable holding the value we are switching on. Named_object* var_; diff -Nrcpad gcc-4.8.1/gcc/go/gofrontend/types.cc gcc-4.8.2/gcc/go/gofrontend/types.cc *** gcc-4.8.1/gcc/go/gofrontend/types.cc Fri Feb 1 00:23:22 2013 --- gcc-4.8.2/gcc/go/gofrontend/types.cc Wed Oct 2 19:22:30 2013 *************** Type::make_type_descriptor_var(Gogo* gog *** 1298,1305 **** // converting INITIALIZER. this->type_descriptor_var_ = ! gogo->backend()->immutable_struct(var_name, is_common, initializer_btype, ! loc); if (phash != NULL) *phash = this->type_descriptor_var_; --- 1298,1305 ---- // converting INITIALIZER. this->type_descriptor_var_ = ! gogo->backend()->immutable_struct(var_name, false, is_common, ! initializer_btype, loc); if (phash != NULL) *phash = this->type_descriptor_var_; *************** Type::make_type_descriptor_var(Gogo* gog *** 1308,1314 **** Bexpression* binitializer = tree_to_expr(initializer->get_tree(&context)); gogo->backend()->immutable_struct_set_init(this->type_descriptor_var_, ! var_name, is_common, initializer_btype, loc, binitializer); } --- 1308,1314 ---- Bexpression* binitializer = tree_to_expr(initializer->get_tree(&context)); gogo->backend()->immutable_struct_set_init(this->type_descriptor_var_, ! var_name, false, is_common, initializer_btype, loc, binitializer); } *************** Type::make_type_descriptor_type() *** 1528,1553 **** // The type descriptor type. - Typed_identifier_list* params = new Typed_identifier_list(); - params->push_back(Typed_identifier("key", unsafe_pointer_type, bloc)); - params->push_back(Typed_identifier("key_size", uintptr_type, bloc)); - - Typed_identifier_list* results = new Typed_identifier_list(); - results->push_back(Typed_identifier("", uintptr_type, bloc)); - - Type* hashfn_type = Type::make_function_type(NULL, params, results, bloc); - - params = new Typed_identifier_list(); - params->push_back(Typed_identifier("key1", unsafe_pointer_type, bloc)); - params->push_back(Typed_identifier("key2", unsafe_pointer_type, bloc)); - params->push_back(Typed_identifier("key_size", uintptr_type, bloc)); - - results = new Typed_identifier_list(); - results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc)); - - Type* equalfn_type = Type::make_function_type(NULL, params, results, - bloc); - Struct_type* type_descriptor_type = Type::make_builtin_struct_type(10, "Kind", uint8_type, --- 1528,1533 ---- *************** Type::make_type_descriptor_type() *** 1555,1562 **** "fieldAlign", uint8_type, "size", uintptr_type, "hash", uint32_type, ! "hashfn", hashfn_type, ! "equalfn", equalfn_type, "string", pointer_string_type, "", pointer_uncommon_type, "ptrToThis", --- 1535,1542 ---- "fieldAlign", uint8_type, "size", uintptr_type, "hash", uint32_type, ! "hashfn", uintptr_type, ! "equalfn", uintptr_type, "string", pointer_string_type, "", pointer_uncommon_type, "ptrToThis", *************** Type::type_descriptor_constructor(Gogo* *** 1946,1953 **** Named_object* equal_fn; this->type_functions(gogo, name, hash_fntype, equal_fntype, &hash_fn, &equal_fn); ! vals->push_back(Expression::make_func_reference(hash_fn, NULL, bloc)); ! vals->push_back(Expression::make_func_reference(equal_fn, NULL, bloc)); ++p; go_assert(p->is_field_name("string")); --- 1926,1933 ---- Named_object* equal_fn; this->type_functions(gogo, name, hash_fntype, equal_fntype, &hash_fn, &equal_fn); ! vals->push_back(Expression::make_func_code_reference(hash_fn, bloc)); ! vals->push_back(Expression::make_func_code_reference(equal_fn, bloc)); ++p; go_assert(p->is_field_name("string")); *************** Type::method_constructor(Gogo*, Type* me *** 2207,2213 **** ++p; go_assert(p->is_field_name("tfn")); ! vals->push_back(Expression::make_func_reference(no, NULL, bloc)); ++p; go_assert(p == fields->end()); --- 2187,2193 ---- ++p; go_assert(p->is_field_name("tfn")); ! vals->push_back(Expression::make_func_code_reference(no, bloc)); ++p; go_assert(p == fields->end()); *************** Type::is_backend_type_size_known(Gogo* g *** 2308,2316 **** } case TYPE_NAMED: ! // Begin converting this type to the backend representation. ! // This will create a placeholder if necessary. ! this->get_backend(gogo); return this->named_type()->is_named_backend_type_size_known(); case TYPE_FORWARD: --- 2288,2294 ---- } case TYPE_NAMED: ! this->named_type()->convert(gogo); return this->named_type()->is_named_backend_type_size_known(); case TYPE_FORWARD: *************** Function_type::do_hash_for_method(Gogo* *** 3407,3412 **** --- 3385,3400 ---- Btype* Function_type::do_get_backend(Gogo* gogo) { + // When we do anything with a function value other than call it, it + // is represented as a pointer to a struct whose first field is the + // actual function. So that is what we return as the type of a Go + // function. + + Location loc = this->location(); + Btype* struct_type = + gogo->backend()->placeholder_struct_type("__go_descriptor", loc); + Btype* ptr_struct_type = gogo->backend()->pointer_type(struct_type); + Backend::Btyped_identifier breceiver; if (this->receiver_ != NULL) { *************** Function_type::do_get_backend(Gogo* gogo *** 3453,3460 **** go_assert(i == bresults.size()); } ! return gogo->backend()->function_type(breceiver, bparameters, bresults, ! this->location()); } // The type of a function type descriptor. --- 3441,3455 ---- go_assert(i == bresults.size()); } ! Btype* fntype = gogo->backend()->function_type(breceiver, bparameters, ! bresults, loc); ! std::vector fields(1); ! fields[0].name = "code"; ! fields[0].btype = fntype; ! fields[0].location = loc; ! if (!gogo->backend()->set_placeholder_struct_type(struct_type, fields)) ! return gogo->backend()->error_type(); ! return ptr_struct_type; } // The type of a function type descriptor. *************** Function_type::copy_with_receiver(Type* *** 3826,3831 **** --- 3821,3867 ---- return ret; } + // Make a copy of a function type ignoring any receiver and adding a + // closure parameter. + + Function_type* + Function_type::copy_with_names() const + { + Typed_identifier_list* new_params = new Typed_identifier_list(); + const Typed_identifier_list* orig_params = this->parameters_; + if (orig_params != NULL && !orig_params->empty()) + { + static int count; + char buf[50]; + for (Typed_identifier_list::const_iterator p = orig_params->begin(); + p != orig_params->end(); + ++p) + { + snprintf(buf, sizeof buf, "pt.%u", count); + ++count; + new_params->push_back(Typed_identifier(buf, p->type(), + p->location())); + } + } + + const Typed_identifier_list* orig_results = this->results_; + Typed_identifier_list* new_results; + if (orig_results == NULL || orig_results->empty()) + new_results = NULL; + else + { + new_results = new Typed_identifier_list(); + for (Typed_identifier_list::const_iterator p = orig_results->begin(); + p != orig_results->end(); + ++p) + new_results->push_back(Typed_identifier("", p->type(), + p->location())); + } + + return Type::make_function_type(NULL, new_params, new_results, + this->location()); + } + // Make a function type. Function_type* *************** Struct_field::is_field_name(const std::s *** 4168,4173 **** --- 4204,4225 ---- } } + // Return whether this field is an embedded built-in type. + + bool + Struct_field::is_embedded_builtin(Gogo* gogo) const + { + const std::string& name(this->field_name()); + // We know that a field is an embedded type if it is anonymous. + // We can decide if it is a built-in type by checking to see if it is + // registered globally under the field's name. + // This allows us to distinguish between embedded built-in types and + // embedded types that are aliases to built-in types. + return (this->is_anonymous() + && !Gogo::is_hidden_name(name) + && gogo->lookup_global(name.c_str()) != NULL); + } + // Class Struct_type. // A hash table used to find identical unnamed structs so that they *************** Struct_field::is_field_name(const std::s *** 4175,4180 **** --- 4227,4237 ---- Struct_type::Identical_structs Struct_type::identical_structs; + // A hash table used to merge method sets for identical unnamed + // structs. + + Struct_type::Struct_method_tables Struct_type::struct_method_tables; + // Traversal. int *************** Struct_type::field_reference_depth(Expre *** 4532,4537 **** --- 4589,4595 ---- go_assert(sub != NULL); } sub->set_struct_expression(here); + sub->set_implicit(true); } else if (subdepth > found_depth) delete sub; *************** Struct_type::interface_method_table(Gogo *** 4638,4646 **** const Interface_type* interface, bool is_pointer) { return Type::interface_method_table(gogo, this, interface, is_pointer, ! &this->interface_method_tables_, ! &this->pointer_interface_method_tables_); } // Convert struct fields to the backend representation. This is not --- 4696,4719 ---- const Interface_type* interface, bool is_pointer) { + std::pair + val(this, NULL); + std::pair ins = + Struct_type::struct_method_tables.insert(val); + + Struct_method_table_pair* smtp; + if (!ins.second) + smtp = ins.first->second; + else + { + smtp = new Struct_method_table_pair(); + smtp->first = NULL; + smtp->second = NULL; + ins.first->second = smtp; + } + return Type::interface_method_table(gogo, this, interface, is_pointer, ! &smtp->first, &smtp->second); } // Convert struct fields to the backend representation. This is not *************** Struct_type::do_type_descriptor(Gogo* go *** 4781,4791 **** ++q; go_assert(q->is_field_name("pkgPath")); ! if (!Gogo::is_hidden_name(pf->field_name())) ! fvals->push_back(Expression::make_nil(bloc)); else { ! std::string n = Gogo::hidden_name_pkgpath(pf->field_name()); Expression* s = Expression::make_string(n, bloc); fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); } --- 4854,4869 ---- ++q; go_assert(q->is_field_name("pkgPath")); ! bool is_embedded_builtin = pf->is_embedded_builtin(gogo); ! if (!Gogo::is_hidden_name(pf->field_name()) && !is_embedded_builtin) ! fvals->push_back(Expression::make_nil(bloc)); else { ! std::string n; ! if (is_embedded_builtin) ! n = gogo->package_name(); ! else ! n = Gogo::hidden_name_pkgpath(pf->field_name()); Expression* s = Expression::make_string(n, bloc); fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); } *************** Array_type::get_length_tree(Gogo* gogo) *** 5587,5594 **** t = Type::lookup_integer_type("int"); else if (t->is_abstract()) t = t->make_non_abstract_type(); ! tree tt = type_to_tree(t->get_backend(gogo)); ! this->length_tree_ = Expression::integer_constant_tree(val, tt); mpz_clear(val); } else --- 5665,5674 ---- t = Type::lookup_integer_type("int"); else if (t->is_abstract()) t = t->make_non_abstract_type(); ! Btype* btype = t->get_backend(gogo); ! Bexpression* iexpr = ! gogo->backend()->integer_constant_expression(btype, val); ! this->length_tree_ = expr_to_tree(iexpr); mpz_clear(val); } else *************** Map_type::map_descriptor(Gogo* gogo) *** 6227,6233 **** std::string mangled_name = "__go_map_" + this->mangled_name(gogo); Btype* map_descriptor_btype = map_descriptor_type->get_backend(gogo); ! Bvariable* bvar = gogo->backend()->immutable_struct(mangled_name, true, map_descriptor_btype, bloc); --- 6307,6314 ---- std::string mangled_name = "__go_map_" + this->mangled_name(gogo); Btype* map_descriptor_btype = map_descriptor_type->get_backend(gogo); ! Bvariable* bvar = gogo->backend()->immutable_struct(mangled_name, false, ! true, map_descriptor_btype, bloc); *************** Map_type::map_descriptor(Gogo* gogo) *** 6235,6241 **** context.set_is_const(); Bexpression* binitializer = tree_to_expr(initializer->get_tree(&context)); ! gogo->backend()->immutable_struct_set_init(bvar, mangled_name, true, map_descriptor_btype, bloc, binitializer); --- 6316,6322 ---- context.set_is_const(); Bexpression* binitializer = tree_to_expr(initializer->get_tree(&context)); ! gogo->backend()->immutable_struct_set_init(bvar, mangled_name, false, true, map_descriptor_btype, bloc, binitializer); *************** Method::bind_method(Expression* expr, Lo *** 7569,7575 **** // the child class. return this->do_bind_method(expr, location); } ! return Expression::make_bound_method(expr, this->stub_, location); } // Return the named object associated with a method. This may only be --- 7650,7656 ---- // the child class. return this->do_bind_method(expr, location); } ! return Expression::make_bound_method(expr, this, this->stub_, location); } // Return the named object associated with a method. This may only be *************** Expression* *** 7612,7619 **** Named_method::do_bind_method(Expression* expr, Location location) const { Named_object* no = this->named_object_; ! Bound_method_expression* bme = Expression::make_bound_method(expr, no, ! location); // If this is not a local method, and it does not use a stub, then // the real method expects a different type. We need to cast the // first argument. --- 7693,7700 ---- Named_method::do_bind_method(Expression* expr, Location location) const { Named_object* no = this->named_object_; ! Bound_method_expression* bme = Expression::make_bound_method(expr, this, ! no, location); // If this is not a local method, and it does not use a stub, then // the real method expects a different type. We need to cast the // first argument. *************** Type::build_one_stub_method(Gogo* gogo, *** 8991,9018 **** Call_expression* call = Expression::make_call(func, arguments, is_varargs, location); call->set_hidden_fields_are_ok(); - size_t count = call->result_count(); - if (count == 0) - gogo->add_statement(Statement::make_statement(call, true)); - else - { - Expression_list* retvals = new Expression_list(); - if (count <= 1) - retvals->push_back(call); - else - { - for (size_t i = 0; i < count; ++i) - retvals->push_back(Expression::make_call_result(call, i)); - } - Return_statement* retstat = Statement::make_return_statement(retvals, - location); // We can return values with hidden fields from a stub. This is // necessary if the method is itself hidden. retstat->set_hidden_fields_are_ok(); - - gogo->add_statement(retstat); } } // Apply FIELD_INDEXES to EXPR. The field indexes have to be applied --- 9072,9087 ---- Call_expression* call = Expression::make_call(func, arguments, is_varargs, location); call->set_hidden_fields_are_ok(); + Statement* s = Statement::make_return_from_call(call, location); + Return_statement* retstat = s->return_statement(); + if (retstat != NULL) + { // We can return values with hidden fields from a stub. This is // necessary if the method is itself hidden. retstat->set_hidden_fields_are_ok(); } + gogo->add_statement(s); } // Apply FIELD_INDEXES to EXPR. The field indexes have to be applied *************** Type::bind_field_or_method(Gogo* gogo, c *** 9202,9208 **** } else { ! if (!ambig1.empty()) error_at(location, "%qs is ambiguous via %qs and %qs", Gogo::message_name(name).c_str(), ambig1.c_str(), ambig2.c_str()); --- 9271,9281 ---- } else { ! if (Gogo::is_erroneous_name(name)) ! { ! // An error was already reported. ! } ! else if (!ambig1.empty()) error_at(location, "%qs is ambiguous via %qs and %qs", Gogo::message_name(name).c_str(), ambig1.c_str(), ambig2.c_str()); *************** Type::find_field_or_method(const Type* t *** 9353,9365 **** fnt = pf->type()->deref()->named_type(); go_assert(fnt != NULL); int sublevel = level == NULL ? 1 : *level + 1; bool sub_is_method; std::string subambig1; std::string subambig2; bool subfound = Type::find_field_or_method(fnt, name, ! receiver_can_be_pointer, seen, &sublevel, &sub_is_method, --- 9426,9443 ---- fnt = pf->type()->deref()->named_type(); go_assert(fnt != NULL); + // Methods with pointer receivers on embedded field are + // inherited by the pointer to struct, and also by the struct + // type if the field itself is a pointer. + bool can_be_pointer = (receiver_can_be_pointer + || pf->type()->points_to() != NULL); int sublevel = level == NULL ? 1 : *level + 1; bool sub_is_method; std::string subambig1; std::string subambig2; bool subfound = Type::find_field_or_method(fnt, name, ! can_be_pointer, seen, &sublevel, &sub_is_method, diff -Nrcpad gcc-4.8.1/gcc/go/gofrontend/types.h gcc-4.8.2/gcc/go/gofrontend/types.h *** gcc-4.8.1/gcc/go/gofrontend/types.h Fri Feb 1 00:23:22 2013 --- gcc-4.8.2/gcc/go/gofrontend/types.h Wed Sep 18 21:54:08 2013 *************** class Type *** 523,528 **** --- 523,536 ---- static Type* make_forward_declaration(Named_object*); + // Make a builtin struct type from a list of fields. + static Struct_type* + make_builtin_struct_type(int nfields, ...); + + // Make a builtin named type. + static Named_type* + make_builtin_named_type(const char* name, Type* type); + // Traverse a type. static int traverse(Type*, Traverse*); *************** class Type *** 1035,1048 **** type_descriptor_constructor(Gogo*, int runtime_type_kind, Named_type*, const Methods*, bool only_value_methods); - // Make a builtin struct type from a list of fields. - static Struct_type* - make_builtin_struct_type(int nfields, ...); - - // Make a builtin named type. - static Named_type* - make_builtin_named_type(const char* name, Type* type); - // For the benefit of child class reflection string generation. void append_reflection(const Type* type, Gogo* gogo, std::string* ret) const --- 1043,1048 ---- *************** class Function_type : public Type *** 1789,1794 **** --- 1789,1800 ---- Function_type* copy_with_receiver(Type*) const; + // Return a copy of this type ignoring any receiver and using dummy + // names for all parameters. This is used for thunks for method + // values. + Function_type* + copy_with_names() const; + static Type* make_function_type_descriptor_type(); *************** class Function_type : public Type *** 1796,1802 **** int do_traverse(Traverse*); ! // A trampoline function has a pointer which matters for GC. bool do_has_pointer() const { return true; } --- 1802,1808 ---- int do_traverse(Traverse*); ! // A function descriptor may be allocated on the heap. bool do_has_pointer() const { return true; } *************** class Struct_field *** 1920,1925 **** --- 1926,1935 ---- bool is_field_name(const std::string& name) const; + // Return whether this struct field is an embedded built-in type. + bool + is_embedded_builtin(Gogo*) const; + // The field type. Type* type() const *************** class Struct_type : public Type *** 2031,2038 **** public: Struct_type(Struct_field_list* fields, Location location) : Type(TYPE_STRUCT), ! fields_(fields), location_(location), all_methods_(NULL), ! interface_method_tables_(NULL), pointer_interface_method_tables_(NULL) { } // Return the field NAME. This only looks at local fields, not at --- 2041,2047 ---- public: Struct_type(Struct_field_list* fields, Location location) : Type(TYPE_STRUCT), ! fields_(fields), location_(location), all_methods_(NULL) { } // Return the field NAME. This only looks at local fields, not at *************** class Struct_type : public Type *** 2190,2195 **** --- 2199,2214 ---- static Identical_structs identical_structs; + // Used to manage method tables for identical unnamed structs. + typedef std::pair + Struct_method_table_pair; + + typedef Unordered_map_hash(Struct_type*, Struct_method_table_pair*, + Type_hash_identical, Type_identical) + Struct_method_tables; + + static Struct_method_tables struct_method_tables; + // Used to avoid infinite loops in field_reference_depth. struct Saw_named_type { *************** class Struct_type : public Type *** 2208,2220 **** Location location_; // If this struct is unnamed, a list of methods. Methods* all_methods_; - // A mapping from interfaces to the associated interface method - // tables for this type. Only used if this struct is unnamed. - Interface_method_tables* interface_method_tables_; - // A mapping from interfaces to the associated interface method - // tables for pointers to this type. Only used if this struct is - // unnamed. - Interface_method_tables* pointer_interface_method_tables_; }; // The type of an array. --- 2227,2232 ---- diff -Nrcpad gcc-4.8.1/gcc/ipa-cp.c gcc-4.8.2/gcc/ipa-cp.c *** gcc-4.8.1/gcc/ipa-cp.c Thu May 9 11:56:32 2013 --- gcc-4.8.2/gcc/ipa-cp.c Wed Jun 12 13:17:03 2013 *************** ipa_get_indirect_edge_target (struct cgr *** 1507,1513 **** tree otr_type; tree t; ! if (param_index == -1) return NULL_TREE; if (!ie->indirect_info->polymorphic) --- 1507,1514 ---- tree otr_type; tree t; ! if (param_index == -1 ! || known_vals.length () <= (unsigned int) param_index) return NULL_TREE; if (!ie->indirect_info->polymorphic) *************** ipa_get_indirect_edge_target (struct cgr *** 1528,1535 **** t = NULL; } else ! t = (known_vals.length () > (unsigned int) param_index ! ? known_vals[param_index] : NULL); if (t && TREE_CODE (t) == ADDR_EXPR --- 1529,1535 ---- t = NULL; } else ! t = known_vals[param_index]; if (t && TREE_CODE (t) == ADDR_EXPR diff -Nrcpad gcc-4.8.1/gcc/ipa-prop.c gcc-4.8.2/gcc/ipa-prop.c *** gcc-4.8.1/gcc/ipa-prop.c Thu May 23 13:25:23 2013 --- gcc-4.8.2/gcc/ipa-prop.c Mon Jun 24 12:57:52 2013 *************** parm_ref_data_preserved_p (struct param_ *** 678,690 **** bool modified = false; ao_ref refd; - gcc_checking_assert (gimple_vuse (stmt)); if (parm_ainfo && parm_ainfo->ref_modified) return false; ! ao_ref_init (&refd, ref); ! walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified, ! NULL); if (parm_ainfo && modified) parm_ainfo->ref_modified = true; return !modified; --- 678,696 ---- bool modified = false; ao_ref refd; if (parm_ainfo && parm_ainfo->ref_modified) return false; ! if (optimize) ! { ! gcc_checking_assert (gimple_vuse (stmt)); ! ao_ref_init (&refd, ref); ! walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified, ! NULL); ! } ! else ! modified = true; ! if (parm_ainfo && modified) parm_ainfo->ref_modified = true; return !modified; diff -Nrcpad gcc-4.8.1/gcc/ira.c gcc-4.8.2/gcc/ira.c *** gcc-4.8.1/gcc/ira.c Thu May 23 10:36:55 2013 --- gcc-4.8.2/gcc/ira.c Thu Jun 20 21:15:52 2013 *************** no_equiv (rtx reg, const_rtx store ATTRI *** 2863,2868 **** --- 2863,2890 ---- } } + /* Check whether the SUBREG is a paradoxical subreg and set the result + in PDX_SUBREGS. */ + + static int + set_paradoxical_subreg (rtx *subreg, void *pdx_subregs) + { + rtx reg; + + if ((*subreg) == NULL_RTX) + return 1; + if (GET_CODE (*subreg) != SUBREG) + return 0; + reg = SUBREG_REG (*subreg); + if (!REG_P (reg)) + return 0; + + if (paradoxical_subreg_p (*subreg)) + ((bool *)pdx_subregs)[REGNO (reg)] = true; + + return 0; + } + /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the equivalent replacement. */ *************** update_equiv_regs (void) *** 2901,2916 **** --- 2923,2955 ---- basic_block bb; int loop_depth; bitmap cleared_regs; + bool *pdx_subregs; /* We need to keep track of whether or not we recorded a LABEL_REF so that we know if the jump optimizer needs to be rerun. */ recorded_label_ref = 0; + /* Use pdx_subregs to show whether a reg is used in a paradoxical + subreg. */ + pdx_subregs = XCNEWVEC (bool, max_regno); + reg_equiv = XCNEWVEC (struct equivalence, max_regno); grow_reg_equivs (); init_alias_analysis (); + /* Scan insns and set pdx_subregs[regno] if the reg is used in a + paradoxical subreg. Don't set such reg sequivalent to a mem, + because lra will not substitute such equiv memory in order to + prevent access beyond allocated memory for paradoxical memory subreg. */ + FOR_EACH_BB (bb) + FOR_BB_INSNS (bb, insn) + { + if (! INSN_P (insn)) + continue; + for_each_rtx (&insn, set_paradoxical_subreg, (void *)pdx_subregs); + } + /* Scan the insns and find which registers have equivalences. Do this in a separate scan of the insns because (due to -fcse-follow-jumps) a register can be set below its use. */ *************** update_equiv_regs (void) *** 3008,3013 **** --- 3047,3059 ---- continue; } + /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */ + if (MEM_P (src) && pdx_subregs[regno]) + { + note_stores (set, no_equiv, NULL); + continue; + } + note = find_reg_note (insn, REG_EQUAL, NULL_RTX); /* cse sometimes generates function invariants, but doesn't put a *************** update_equiv_regs (void) *** 3166,3172 **** && reg_equiv[regno].init_insns != const0_rtx && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0), REG_EQUIV, NULL_RTX) ! && ! contains_replace_regs (XEXP (dest, 0))) { rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0); if (validate_equiv_mem (init_insn, src, dest) --- 3212,3219 ---- && reg_equiv[regno].init_insns != const0_rtx && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0), REG_EQUIV, NULL_RTX) ! && ! contains_replace_regs (XEXP (dest, 0)) ! && ! pdx_subregs[regno]) { rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0); if (validate_equiv_mem (init_insn, src, dest) *************** update_equiv_regs (void) *** 3357,3362 **** --- 3404,3410 ---- end_alias_analysis (); free (reg_equiv); + free (pdx_subregs); return recorded_label_ref; } diff -Nrcpad gcc-4.8.1/gcc/java/ChangeLog gcc-4.8.2/gcc/java/ChangeLog *** gcc-4.8.1/gcc/java/ChangeLog Fri May 31 09:02:10 2013 --- gcc-4.8.2/gcc/java/ChangeLog Wed Oct 16 07:20:09 2013 *************** *** 1,3 **** --- 1,7 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/gcc/lra-assigns.c gcc-4.8.2/gcc/lra-assigns.c *** gcc-4.8.1/gcc/lra-assigns.c Fri Feb 15 19:17:02 2013 --- gcc-4.8.2/gcc/lra-assigns.c Fri Jul 19 20:47:57 2013 *************** struct regno_assign_info *** 116,121 **** --- 116,126 ---- /* Map regno to the corresponding regno assignment info. */ static struct regno_assign_info *regno_assign_info; + /* All inherited, subreg or optional pseudos created before last spill + sub-pass. Such pseudos are permitted to get memory instead of hard + regs. */ + static bitmap_head non_reload_pseudos; + /* Process a pseudo copy with execution frequency COPY_FREQ connecting REGNO1 and REGNO2 to form threads. */ static void *************** reload_pseudo_compare_func (const void * *** 194,199 **** --- 199,213 ---- if ((diff = (ira_class_hard_regs_num[cl1] - ira_class_hard_regs_num[cl2])) != 0) return diff; + if ((diff + = (ira_reg_class_max_nregs[cl2][lra_reg_info[r2].biggest_mode] + - ira_reg_class_max_nregs[cl1][lra_reg_info[r1].biggest_mode])) != 0 + /* The code below executes rarely as nregs == 1 in most cases. + So we should not worry about using faster data structures to + check reload pseudos. */ + && ! bitmap_bit_p (&non_reload_pseudos, r1) + && ! bitmap_bit_p (&non_reload_pseudos, r2)) + return diff; if ((diff = (regno_assign_info[regno_assign_info[r2].first].freq - regno_assign_info[regno_assign_info[r1].first].freq)) != 0) return diff; *************** assign_by_spills (void) *** 1156,1162 **** rtx insn; basic_block bb; bitmap_head changed_insns, do_not_assign_nonreload_pseudos; - bitmap_head non_reload_pseudos; unsigned int u; bitmap_iterator bi; bool reload_p; --- 1170,1175 ---- *************** assign_by_spills (void) *** 1265,1271 **** } } } ! lra_assert (asm_p); break; } /* This is a very rare event. We can not assign a hard --- 1278,1284 ---- } } } ! gcc_assert (asm_p); break; } /* This is a very rare event. We can not assign a hard diff -Nrcpad gcc-4.8.1/gcc/lra-constraints.c gcc-4.8.2/gcc/lra-constraints.c *** gcc-4.8.1/gcc/lra-constraints.c Thu May 2 19:16:29 2013 --- gcc-4.8.2/gcc/lra-constraints.c Thu Aug 15 08:03:32 2013 *************** process_alt_operands (int only_alternati *** 1388,1394 **** for (nalt = 0; nalt < n_alternatives; nalt++) { /* Loop over operands for one constraint alternative. */ ! #ifdef HAVE_ATTR_enabled if (curr_id->alternative_enabled_p != NULL && ! curr_id->alternative_enabled_p[nalt]) continue; --- 1388,1394 ---- for (nalt = 0; nalt < n_alternatives; nalt++) { /* Loop over operands for one constraint alternative. */ ! #if HAVE_ATTR_enabled if (curr_id->alternative_enabled_p != NULL && ! curr_id->alternative_enabled_p[nalt]) continue; *************** update_ebb_live_info (rtx head, rtx tail *** 4396,4402 **** bitmap_clear_bit (&live_regs, reg->regno); /* Mark each used value as live. */ for (reg = curr_id->regs; reg != NULL; reg = reg->next) ! if (reg->type == OP_IN && bitmap_bit_p (&check_only_regs, reg->regno)) bitmap_set_bit (&live_regs, reg->regno); /* It is quite important to remove dead move insns because it --- 4396,4402 ---- bitmap_clear_bit (&live_regs, reg->regno); /* Mark each used value as live. */ for (reg = curr_id->regs; reg != NULL; reg = reg->next) ! if (reg->type != OP_OUT && bitmap_bit_p (&check_only_regs, reg->regno)) bitmap_set_bit (&live_regs, reg->regno); /* It is quite important to remove dead move insns because it diff -Nrcpad gcc-4.8.1/gcc/lto/ChangeLog gcc-4.8.2/gcc/lto/ChangeLog *** gcc-4.8.1/gcc/lto/ChangeLog Fri May 31 09:02:13 2013 --- gcc-4.8.2/gcc/lto/ChangeLog Wed Oct 16 07:20:13 2013 *************** *** 1,3 **** --- 1,7 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/gcc/objc/ChangeLog gcc-4.8.2/gcc/objc/ChangeLog *** gcc-4.8.1/gcc/objc/ChangeLog Fri May 31 09:02:25 2013 --- gcc-4.8.2/gcc/objc/ChangeLog Wed Oct 16 07:20:23 2013 *************** *** 1,3 **** --- 1,7 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/gcc/objcp/ChangeLog gcc-4.8.2/gcc/objcp/ChangeLog *** gcc-4.8.1/gcc/objcp/ChangeLog Fri May 31 09:02:37 2013 --- gcc-4.8.2/gcc/objcp/ChangeLog Wed Oct 16 07:20:33 2013 *************** *** 1,3 **** --- 1,7 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/gcc/omp-low.c gcc-4.8.2/gcc/omp-low.c *** gcc-4.8.1/gcc/omp-low.c Thu May 16 10:45:55 2013 --- gcc-4.8.2/gcc/omp-low.c Thu Sep 19 11:54:23 2013 *************** copy_var_decl (tree var, tree name, tree *** 836,841 **** --- 836,842 ---- DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (var); DECL_IGNORED_P (copy) = DECL_IGNORED_P (var); DECL_CONTEXT (copy) = DECL_CONTEXT (var); + TREE_NO_WARNING (copy) = TREE_NO_WARNING (var); TREE_USED (copy) = 1; DECL_SEEN_IN_BIND_EXPR_P (copy) = 1; *************** expand_omp_sections (struct omp_region * *** 5009,5016 **** { /* If we are not inside a combined parallel+sections region, call GOMP_sections_start. */ ! t = build_int_cst (unsigned_type_node, ! exit_reachable ? len - 1 : len); u = builtin_decl_explicit (BUILT_IN_GOMP_SECTIONS_START); stmt = gimple_build_call (u, 1, t); } --- 5010,5016 ---- { /* If we are not inside a combined parallel+sections region, call GOMP_sections_start. */ ! t = build_int_cst (unsigned_type_node, len - 1); u = builtin_decl_explicit (BUILT_IN_GOMP_SECTIONS_START); stmt = gimple_build_call (u, 1, t); } diff -Nrcpad gcc-4.8.1/gcc/passes.c gcc-4.8.2/gcc/passes.c *** gcc-4.8.1/gcc/passes.c Wed Feb 20 15:19:13 2013 --- gcc-4.8.2/gcc/passes.c Wed Sep 11 12:23:15 2013 *************** init_optimization_passes (void) *** 1531,1548 **** /* Perform simple scalar cleanup which is constant/copy propagation. */ NEXT_PASS (pass_ccp); NEXT_PASS (pass_object_sizes); /* Copy propagation also copy-propagates constants, this is necessary ! to forward object-size results properly. */ NEXT_PASS (pass_copy_prop); NEXT_PASS (pass_asan); NEXT_PASS (pass_tsan); NEXT_PASS (pass_rename_ssa_copies); - NEXT_PASS (pass_dce); - /* Fold remaining builtins. */ - NEXT_PASS (pass_fold_builtins); /* ??? We do want some kind of loop invariant motion, but we possibly need to adjust LIM to be more friendly towards preserving accurate debug information here. */ NEXT_PASS (pass_late_warn_uninitialized); NEXT_PASS (pass_uncprop); NEXT_PASS (pass_local_pure_const); --- 1531,1551 ---- /* Perform simple scalar cleanup which is constant/copy propagation. */ NEXT_PASS (pass_ccp); NEXT_PASS (pass_object_sizes); + /* Fold remaining builtins. */ + NEXT_PASS (pass_fold_builtins); /* Copy propagation also copy-propagates constants, this is necessary ! to forward object-size and builtin folding results properly. */ NEXT_PASS (pass_copy_prop); + NEXT_PASS (pass_dce); NEXT_PASS (pass_asan); NEXT_PASS (pass_tsan); NEXT_PASS (pass_rename_ssa_copies); /* ??? We do want some kind of loop invariant motion, but we possibly need to adjust LIM to be more friendly towards preserving accurate debug information here. */ + /* Split critical edges before late uninit warning to reduce the + number of false positives from it. */ + NEXT_PASS (pass_split_crit_edges); NEXT_PASS (pass_late_warn_uninitialized); NEXT_PASS (pass_uncprop); NEXT_PASS (pass_local_pure_const); diff -Nrcpad gcc-4.8.1/gcc/po/ChangeLog gcc-4.8.2/gcc/po/ChangeLog *** gcc-4.8.1/gcc/po/ChangeLog Fri May 31 09:02:33 2013 --- gcc-4.8.2/gcc/po/ChangeLog Wed Oct 16 07:20:30 2013 *************** *** 1,3 **** --- 1,19 ---- + 2013-10-16 Release Manager + + * GCC 4.8.2 released. + + 2013-07-11 Joseph Myers + + * fi.po: Update. + + 2013-07-02 Joseph Myers + + * ru.po: Update. + + 2013-06-25 Joseph Myers + + * zh_TW.po: Update. + 2013-05-31 Release Manager * GCC 4.8.1 released. diff -Nrcpad gcc-4.8.1/gcc/po/fi.gmo gcc-4.8.2/gcc/po/fi.gmo *** gcc-4.8.1/gcc/po/fi.gmo Fri May 31 09:51:10 2013 --- gcc-4.8.2/gcc/po/fi.gmo Wed Oct 16 08:08:48 2013 *************** *** 1,37 **** ! Þ•a$#Û,F˜]™]Ÿ]-¡]1Ï]^ ^Û7^+_J?_ Š_—_EŸ_8å_4`@S`J”`Kß`Q+a7}a=µaDóa?8b=xb8¶bEïbD5cBzcM½cN dQZd<¬d<édL&eAseBµe5øeE.g)tg*žgÉgäg ÿg! h-hKh#[h#h*£h6ÎhQiCWi7›iIÓiIjWgjE¿j9k2?k*rk:k(Øk"l$$l/Il1yl«lÊlél# m"-m(Pm-ym8§m>àmn&?n,fn(“n5¼neòn%Xo?~o,¾o3ëo8p:Xp3“p9Çp-q#/qSqoq@qÎqâqrr+.rZr-yr§r¹rÖrñrs$s@s,Vsƒs"™s¼s+Òs0þs /tPt>gt+¦t'Òtútu)6u2`u“u-©u+×uv'#vKv'^v'†v®v±vµv½vÄvÍv/Öv*w,1w.^w:w)Èwòw ùw#x>xWxtx”x¨x¿xÁxÊxÓxÜxåxîx÷xy yy y,y5y>yGyPyYy ]yiy<‡y.Äy óyz.z,Dz,qz*žz%Éz-ïz${+B{)n{.˜{LÇ{2|'G|+o|2›|.Î|ý|4}9P}Š},ž} ! Ë} ! Ö}(á} ! ~ ! ~!~0~D~[~n~ v~€~~ Ÿ~«~ ¾~ Ë~Ø~è~ û~& 9 ! C6N2…2¸ë€ €?9€0y€ª€Æ€߀ ý€"5A6w"®6Ñ(‚(1‚&Z‚‚™‚&¹‚4à‚ƒ,,ƒ2Yƒ-ŒƒºƒDÔƒ„.„5„H„ [„0h„"™„0¼„í„…;!…]…&x…6Ÿ…9Ö…4†,E†Cr†'¶†DÞ†'#‡@K‡0Œ‡!½‡<߇Fˆ6cˆ.šˆCɈC ‰&Q‰,x‰2¥‰D؉1ŠOŠ9nŠ:¨Š<ãŠ- ‹N‹!l‹1Ž‹5À‹+ö‹6"ŒIYŒ6£ŒUÚŒa0U’/è2Ž$KŽ2pŽ$£ŽNÈŽ;5S?‰:É8%=)c#­#Ñ)õ‰‘2©‘&Ü‘U’&Y’/€’8°’4é’!“+@“%l“)’“¼“Ï“ß“ö“ ”'7”=_”&”'Ĕ씕#•C•?[• ›• ¨•²•Ç• æ•%ð•(–?–W–-r– –½–Ù–ì–——˜,—˜Å—^˜~˜˜-­˜ Û˜,ü˜,)™/V™†™&£™Ê™â™ñ™š#š5š#Fšjšššš£šºšÑšäšF›0G›3x›2¬›-ß›0 œ0>œ/oœ0Ÿœ&Ðœ.÷œ)&/P€3ž"Ò-õ,#ž<Pž;ž'Éž@ñž12Ÿ2dŸ*—Ÿ,Ÿ.ïŸ- L %l 5’ ?È 8¡2A¡t¡G“¡+Û¡]¢6e¢+œ¢/È¢ø¢(£@£\£6{£$²£f×£>¤ ! G¤ R¤\¤W^¤?¶¤1ö¤*(¥.S¥"‚¥¥¥0¹¥/ê¥c¦+~¦#ª¦%Φ/ô¦4$§4Y§<Ž§˧!æ§!¨&*¨<Q¨Ž¨.ª¨)Ù¨4©48© m©"Ž©$±©0Ö©2ª:ª(Nª&wª,žª˪+êª «)7«/a« ‘«'ž«Æ«Ù«í«¬ ¬ +¬8¬K¬[¬.p¬1Ÿ¬ Ѭ#ò¬$­;­'[­3ƒ­$·­&Ü­ ®1$®0V®/‡®4·®%ì®)¯$<¯<a¯.ž¯0ͯþ¯°.5°1d°'–°+¾°ê°" ! ±-±'L±t±0”±9ű8ÿ±&8²:_²$š²<¿²;ü²58³5n³C¤³-è³&´$=´b´,}´'ª´$Ò´(÷´. µ'Oµ&wµ9žµ'ص#¶$¶,?¶,l¶)™¶%öJé¶/4·"d· ‡·+¨·CÔ·F¸)_¸!‰¸#«¸1ϸ+¹#-¹Q¹b¹v¹¹%¤¹ʹ!ß¹º.!ºPºjºE|º<º!ÿº!»>»T»+m»2™»3Ì»&¼6'¼6^¼•¼±¼μÖ¼ê¼ ½'½$6½.[½,Š½6·½ î½ü½ ¾&¾C¾_¾}¾œ¾ «¾(̾4õ¾&*¿Q¿#k¿%¿ µ¿C¿¿3À!7À3YÀ7À6ÅÀ7üÀ(4Á]Á0lÁÁF°Á^÷Á,VÂ+ƒÂ-¯Â'ÝÂ9Ã)?Ã%iÃ)Ã(¹Ã2âÃ$Ä=:Ä'xÄ8 Ä*ÙÄ,Å<1ÅnÅ ! Å)ŒÅ4¶Å ëÅ) Æ/6ÆfÆ"}Æ$ ÆHÅÆLÇ$[Ç€Ç:”Ç1ÏÇ(È)*È!TÈ#vÈ-šÈ8ÈÈ8É):É;dÉ0 É2ÑÉ#Ê+(Ê1TʆʕÊ2´ÊçÊ5Ë7ËJË\Ënˀ˒ˣ˵ËÇËØËêËüË ÌÌ1ÌCÌUÌgÌyÌ‹Ì̯ÌÁÌÓÌåÌöÌÍÍ,Í>ÍPÍbÍt͊ͮ͜ÍÀÍÒÍ0èÍ4Î)NÎ/xÎ0¨Î&ÙÎ,Ï"-ÏPÏKmϹÏÍÏèÏ=Ð<?Ð|Ð,˜Ð$ÅÐ%êÐ4Ñ*EÑ)pÑ3šÑ'ÎÑöÑUÒ"kÒŽÒ¡Ò´ÒÆÒ,àÒ* Ó-8Ó)fÓÓ°Ó#·ÓÛÓûÓ3ÔTFÔ›Ô¶Ô ÅÔ3æÔÕ *ÕKÕ!kÕÕœÕ@´Õ-õÕ#Ö%@Ö+fÖ’Ö$²Ö/×Ö7×6?×'v×%ž×Ä×"ã×=Ø.DØ,sØ, ØÍØ!äØÙÙ/4ÙdÙ!٣ٳÙ!ÊÙ ìÙ( Ú&6Ú%]Ú2ƒÚ!¶Ú,ØÚ6Û <Û]Û }Û'žÛ-ÆÛ ôÛ Ü#"ÜFÜ`Ü2oÜ&¢Ü*ÉÜ9ôÜ&.ÝUÝ:eÝK ÝMìÝ6:Þ*qÞœÞ4£Þ,ØÞ5ß(;ß5dß)šßÄßãß%þß6$à3[à/à!¿àáà/òà "á0áPáláŒá(«á$Ôá+ùá-%âSâ'pâ!˜â7ºâ.òâO!ãKqãJ½ãKäKTäJ äKëä57å7må9¥åDßåD$æ@iæ=ªæ-èæ.ç(Eç)nç-˜ç/Æç7öç).è Xèbè%}è+£è$Ïè.ôè#é;é Xé.fé$•éºé2Ðé>ê7Bê-zê*¨êJÓê&ëEëcë€ë•ëªëÉë-æëì<*ì'gì ì$°ì-Õì%í0)í0Zí‹í!«í;Íí9 î$Cî#hîŒî!œî-¾î<ìî8)ï+bïŽï8¬ï&åï ð*ð'Iðqð4‹ð*Àðëðñ,ñ"Lñoñ9ˆñ;Âñþñ)ò$Hòmò„òò²ò(ÇòZðòKóaó.}ó(¬ó4Õó9 ! ô7Dô3|ô/°ô4àô.õ.Dõ4sõ.¨õ.×õ9ö9@ö9zö:´ö9ïö:)÷9d÷9ž÷!Ø÷ú÷-ø'Dølø€ø•ø©ø¿øÓøæøûøù$ù8ùMùcùwùù§ù»ùÎùßùùùú$ú:úMú`ú3xú%¬ú)Òú&üú5#û;Yû1•û2Çûúûcü~ü:žüÙü*÷ü!"ý/Dýtý’ý"±ý3ÔýþMþ8kþ3¤þ-Øþ0ÿ'7ÿ&_ÿ(†ÿ6¯ÿ%æÿ' /4(d)/·3ç&:ay ˜¹Î"é /"0R.ƒ'²Úï%*3H4|±"Ìï>Y&n)•2¿&ò6GP/˜.È)÷4!&V+}©!Äæ0#6Z=z¸Øö,,;hQ Ó(ô  .' V >t 5³ é  ! & ! *: ! *e ! < ! 2Í !  % "A  d  … -¦ "Ô !÷ %  ? ` ~ › ³  Ð ‚Ú ]c1e:—Ò0ëè)?/ o|8„H½/>6KuQÁV8j=£Fá8(@a6¢HÙH"AkF­SôOH>˜>×PCgA«-í++G0s"¤"Ç ê/ö &G&W&~'¥BÍlH}OÆN_erÅc8Cœ5à3NJ,™'Æ3î>";a))Ç+ñ/.M/|<¬6é? "` *ƒ 4® 0ã B!fW!-¾!Lì!39"7m"9¥"8ß"?#7X#T#%å#+ $*7$Wb$º$$Í$ò$ ! %0#%"T%/w%§%¾%Õ%ò%#&)&G&=[&™&0²&ã&7'59'-o''Oµ'C(-I(+w(#£(.Ç(=ö(4),R)+)«)%È)î)1*'3*[*^*b*j*q* z*&‡*®*!Î*"ð*=+-Q++&†+0­+Þ+"ý+$ ,E,^,z, ~, Œ, š, ¨, ¶, Ä, Ò, à,î, þ, - - *- 8- F- T-b- ! e- p-@‘-;Ò- ..B0.@s.@´.>õ.94/An/<°/Cí/A10?s0Y³0J 1-X1<†1JÃ162!E2Gg2E¯2õ2D 3N3^3-n3 ! œ3 §3 ³3Á3Ñ3è3÷3 ! ÿ3 ! 4 4#434 C4 Q4_4o4 ˆ4•4ª4Ä4 ! Ü4ç4+ú43&53Z5Ž5¦5½59Ô5D6S6m6‡6"¢6Å68ä627P72o7$¢7$Ç7"ì78#83=89q8«8?Å8990?9p9@9Ñ9ä9'ë9': ;:9I:8ƒ:-¼:ê: ;3*;^;"t;H—;=à;3<+R<M~<#Ì<Oð<*@=Lk=9¸=+ò=<>P[>@¬>0í>E?Ed?+ª?0Ö?9@KA@/@&½@:ä@4ALTA2¡A(ÔA,ýA7*BBbB+¥B;ÑBR C7`CQ˜CVêCRAD8”D9ÍD'E8/E#hEWŒEEäE9*FLdF?±F=ñF+/G/[G*‹G.¶G'åG1 Hƒ?H9ÃH&ýHY$I!~I+ IBÌI?J!OJ5qJ+§J/ÓJ K KK/K-OK'}KF¥K6ìK7#L[L2uL0¨L&ÙLQM RM ^MjM&„M «M"¸MBÛMN6N8QNŠN¦NÃN×NëNOÎOÍäO*²PÝP'íP<Q%RQ.xQ/§Q>×Q&R,=R+jR!–R#¸R!ÜR+þR#*S+NS*zS¥S¿S"ÎS"ñST/TNMT:œT1×T> U%HU,nU;›U<×U9V/NV=~V.¼V9ëV)%W,OW'|W0¤W7ÕWL XLZX+§XNÓX;"YE^Y+¤Y;ÐY8 Z3EZ"yZ1œZ(ÎZC÷Z6;[6r[&©[jÐ[3;\fo\>Ö\5]-K])y]4£]%Ø])þ]=(^6f^e^ _ _ _,_`0_9‘_0Ë_&ü_-#`0Q`‚`4™`3Î`ca.fa*•a$Àa5åa4b?PbHbÙb$ôb$c.>cWmc"Åc"èc. d?:dEzdÀd*Ýd+e@4e4ue ªe7Ëe/f13f'ef0f-¾f6ìf,#gPg/cg“g#±g#Õg ùg ! h ! %h0hAhQh.fhH•hÞh(ýh6&i1]i*i9ºi'ôi2j8Oj,ˆj5µj1ëj6k*Tk.k?®kIîk68l4ol*¤l)Ïl8ùl42m/gm*—m"Âm#åm# n-n)Ln<vnG³nCûn-?oBmo%°oGÖoCp8bp5›pIÑp'q*Cq'nq–q1´q+æq$r+7rAcr5¥r+Ûr>s$Fs"ks"Žs&±s;Øs!t6tCTt5˜tÎtêt+u;3uCou:³u(îu)v9Av,{v$¨v ÍvÛvõvw'/wWwqw'‘wA¹wûwxP)xDzx'¿x!çx y!y38yEly;²y.îyEz@cz!¤z!Æzèzðz {){*?{-j{3˜{3Ì{G|H|%W|}|!Œ| ®|"Ï|#ò| } #}4D}Gy})Á}#ë}!~1~ P~`Z~E»~&>(FgF®:õ.0€_€1p€¢€R³€o-v'¤%Ì$ò8‚/P‚+€‚/¬‚.Ü‚3 ƒ%?ƒ>eƒ.¤ƒJÓƒ3„9R„BŒ„Ï„ ! á„3ì„F …$g…8Œ…/Å…#õ…:†2T†H‡†KІ%‡B‡>T‡4“‡Bȇ9 ˆ'Eˆ(mˆ-–ˆ>ĈD‰"H‰Gk‰ ³‰:Ô‰Š5)Š0_ŠŠ!ŸŠ9ÁŠûŠ?‹[‹s‹‰‹Ÿ‹µ‹Ë‹á‹÷‹ Œ$Œ:ŒPŒgŒ}Œ“Œ©Œ¿ŒÕŒëŒ-CYo†œ²ÈÞô ! Ž Ž:ŽPŽfŽ|Ž”Ž<±Ž<îŽ/+;[<—/Ô2/7gL„Ñ ã‘S‘Sr‘*Æ‘9ñ‘/+’2[’EŽ’5Ô’2 ! “D=“;‚“"¾“ká“"M”p”…”š”®”9Ê”3•68•2o•(¢•Ë•'Ó•0û•!,–IN–^˜–÷– —"—9?— y— ‡— ¨—!É—ë—ú—?˜/W˜"‡˜/ª˜CÚ˜7™<V™G“™OÛ™Q+šB}š6Àš2÷š$*›WO›I§›Mñ›M?œœ*§œÒœ#èœ. ;%TzŒ$©Î(å+ž3:ž/nž&žž7ÅžPýž%NŸ'tŸ,œŸ1ÉŸ3ûŸ/ (? +h ” ± 9Å /ÿ #/¡;S¡%¡µ¡GÌ¡P¢]e¢:â4þ¢3£<:£-w£6¥£-Ü£/ ! ¤7:¤!r¤”¤5³¤<é¤1&¥4X¥.¥¼¥1Ñ¥¦¦1¦H¦"c¦,†¦*³¦6Þ¦,§B§-]§#‹§9¯§7é§^!¨Y€¨\Ú¨Y7©Z‘©\ì©ZIªJ¤ªLïªM<«]Š«]è«HF¬M¬<ݬ;­.V­/…­4µ­+ê­8®,O®|®…®'¡®2É®+ü®7(¯`¯¯ ›¯4©¯$Þ¯°1°JJ°B•°@Ø°-±PG±6˜±#ϱ"ó±²1²%M²#s²<—²Ô²>í²&,³S³'r³)š³.ij?ó³E3´$y´%ž´AÄ´=µDµaµ}µ"Œµ2¯µDâµJ'¶1r¶!¤¶;ƶ-·!0· R·-s·¡·7¿·6÷·.¸H¸1b¸+”¸À¸;ܸJ¹c¹(ƒ¹#¬¹йí¹ º'º4Bºqwºéº&»-,»$Z»C»EûC ¼>M¼:Œ¼:Ǽ9½9<½:v½9±½9ë½=%¾=c¾A¡¾=ã¾<!¿=^¿<œ¿<Ù¿!À'8À/`À#À´ÀËÀãÀúÀÁ)Á?ÁWÁnÁ†ÁÁµÁÍÁäÁüÁÂ-ÂCÂSÂmƒ›³ÂÉÂßÂ(úÂ)#Ã)MÃ%wÃGÃGåÃ@-Ä>nÄ%­ÄtÓÄ&HÅ?oÅ%¯Å2ÕÅ)Æ42Æ#gÆ‹Æ&ªÆSÑÆ%Ç^=Ç7œÇ6ÔÇ2 È,>È7kÈ5£È(ÙÈ8É#;É$_É2„É(·É0àÉ=Ê8OÊ$ˆÊ/­ÊÝÊóÊ'Ë8Ë%SË%yËŸË1·Ë2éË?Ì/\̢̌Ì'·ÌßÌ;üÌ<8Í#uÍ:™ÍÔÍòÍ;ÎLÎ-iÎ0—Î0ÈÎ2ùÎB,ÏQoÏ7ÁÏ7ùÏ.1Ð:`Ð,›Ð/ÈÐøÐ$Ñ :Ñ5[Ñ*‘Ñ&¼ÑSãÑ7ÒWÒtÒ1’Ò2ÄÒ÷ÒPÓ%gÓ8Ó ! ÆÓ.ÑÓ,ÔK-Ô;yÔ:µÔ,ðÔÕ,1Õ2^Õ@‘Õ6ÒÕ0 Ö5:Ö0pÖ0¡Ö.ÒÖ;×A=×?×)¿×.é×Ø 7ØXØ&uØ œØA?qŠ@+¼ ›òÔÕüCù+ÊÈÏF˜]fÙ3øp6c¨Gæ’ñ\dÏ6vËÝ‘íchPg±Ðd Kû =`!7yŒ ÚúèÇ ! X›• ·S†êu;çaWIÆë~¦”Áœ¥þ}´ÿ=qˆúËäýmCì|%ªw”5K%jÉ3л’÷¶ç}1Ñ·GUÆ€â8äh/­x#‰UüOé6,95 ð-GÖ`Ùï–#à1‘\UØI2Ÿ å $B -«¥ l")DõNiž™‰b*™£¢ÁǬ£¤].Îp •_ÍW:˜ÆòRzgeÄÒ9DŽ»îD<ÏNWš;*à½ê@Uý8´OØZ§¬ˆßWö&©!M¡B9Ÿž{Ø8^0K• ! ‘Ö æF†Íò»—,(Œsb“òƒXñV¹š‹Tß¡Ya³¤á®0ª¾Ò'~„¡…­xÁÂÁ˜2Îö&ŽCÉÛK0¬­d—T õRµF§Üõ´M5êÇ’Nˆ –Æ̦te®ÐšDŸ^ähÅ4óí–m]6%½ûl¸ï#¸ÄµÍPxi¾œM°<?ãQ+.ebs«Y ©8)à¦%SlS¶áz×@½4H8øVAôÝ ! €7ÐÓäªñ a^¶/éð;fë‚GT$&7Ñ„ _‹¹uÝQ>åÿý“:Ç>® lŽk¿&‡iqW1_ µåRª¯ì>ov/1¿ýuȆʙ Ôs2A©ËMñ¿“œâ/é°@H]£­J}¢”Ày E~ô?… ar_V0ra9'PúE É0è\©Þ¨^ù•÷ ! {-4…"‚Fýº'3‹O€ŒšìóÙÛ»±:¤hŒ×ìP‡Z …më.J¢`ˆá§ãµ(`sOÒ6\A)7ÊÕQ³¿¬tß"*õjiÓTîc(B,èm(ç²*å+þô°¶º«\Š¯™ÝÅ‹÷.v¾F„g§ ´+éJ‚où5û”·ÎĦ?[ƒº=wïó^×&jvyøLçwÒ]„[±¼p¸ŸëÊí¤zÕYÈ;?coËL†`ïJ—k"’²%RèBÈQãYŠÎqnTfr¯±gùo¼M÷nÛILU€‰É[)«~HÏy!î£YÑÄtI#| ! Ù9dÜœè!$<¨>Cx.í(GÅÚŠ j/3ú$óß4EÞV@˜ŽâÃ*ÚîÍLƒ³¹IE:¡ºæÛÖÿž5t ÀôRkÜ-—1ü:øÀÓP‘¥–'üð®n¢¾°rz[HÞ‡N73n#Ñ-Qw O²×¸ðö}!k,;Vþá›âX¥AæãÌ2·ÔCÞÀZÌZD<Ü{XÚfÌžp“|SBN2L‡HïXÖ›'[؃û|öEż4¹Ze² ³bà=ÿ",Ó<K‰Õ_=Ô‚ê{>uJþS$) %+#D For bug reporting instructions, please see: --- 1,68 ---- ! Þ•  I/ ü‘¸Â¹Â¿Â-ÁÂ1ïÂ!à 6ÃÛWÃ+3ÄJ_Ä ªÄ ·ÄÃÄ×ÄEßÄ8%Å4^Å\“ÅvðÅ@gÆJ¨ÆNóÆKBÇQŽÇ:àÇ7È=SÈI‘ÈIÛÈ}%ÉD£É?èÉE(Ê=nÊ{¬Ê?(Ë8hËE¡ËDçËD,ÌBqÌM´ÌNÍQQÍP£Í<ôÍ<1Î3nÎL¢ÎAïÎH1ÏBzÏ5½ÏEóÐ)9Ñ0cÑZ”ÑïÑÒ$Ò$<Ò*aÒŒÒ§Ò ÂÒ"ÎÒ!ñÒÓ1ÓQÓ6iÓJ Ó8ëÓ$Ô8ÔQLÔKžÔSêÔI>Õ5ˆÕ;¾ÕUúÕ=PÖŽÖ#žÖ#ÂÖ*æÖ4×2F×6y×Q°×ØCØ7ZØI’ØIÜØW&ÙE~Ù9ÄÙ2þÙ&1ÚXÚ*xÚ:£Ú ÞÚ ÿÚ& Û4GÛ|Û.•Û ÄÛåÛ.þÛ(-ÜVÜ"mÜÜ$¯Ü2ÔÜÝÝ$;Ý/`Ý1Ý-ÂÝðÝÞ.Þ#NÞ"rÞ(•Þ-¾Þ"ìÞ8ß.Hß>w߶ß&Ößýß1àMà%fà,Œà!¹à&Ûà(á5+áeaá%Çá?íá,-â3Zâ8ŽâÇâ%áâ6ã*>ã!iã:‹ã3Æã(úã=#ä3aä!•ä9·ä-ñä%å#Eåiå/…å1µå,çå*æ,?ælæ…æ@£æäæ"øæç:çXçrç,…ç²ç8ÍçFè+Mè%yèŸè¾èÎè-íè!é=é-]é‹é#éÁéÞé:ùé4ê%Gê)mê%—ê½êÝêøêë*ëIë,_ë*Œë.·ë)æë)ì":ì#]ì(ì;ªì5æìí"2í6Uí4Œí6Áí'øí2 î)Sî%}î0£îÔî4êîï+=ï(iï,’ï/¿ï'ïï5ð0Mð1~ð3°ð6äð-ñ+Iñ uñ–ñ³ñ*Ìñ÷ñ]ò)oò+™òÅò%×ò)ýò'ó=ó-]ó‹ó¡óc³ó-ô&Eôlôƒô>šô*Ùô.õ3õ*Sõ+~õ'ªõÒõîõö)&öPögö2}ö°öËö-áö+÷;÷'[÷ƒ÷'–÷'¾÷æ÷!ø%(ø#Nørøuøyøø ˆø•øžø¯ø¸øOÑø/!ù*Qù,|ù.©ùØùòù0ú:?ú)zúC¤úèúû6û >û#_ûƒûœû¹ûÙû/íûü4üMügüiürü{üJ„üGÏü:ýgRý?ºýEúýJ@þ.‹þDºþ0ÿþ90ÿ@jÿB«ÿ=îÿ=,Cj8®=ç@%<fV£6ú816j:¡>Ü@A\KžCê8.8g< CÝL!PnT¿:EOK•á'þ&>'X€‰’¥®· ÀÍ<Ö  )52hHqºÃOÌN k -o  7© á *ÿ <* ! .g ! – !  ² ! À ! × ! .ë ! , ,G *t %Ÿ -Å Dó $8 +] )‰ .³ â #ù L 2j ' +Å 9ñ @+2l.ŸÎ4ì9!+[/‡+·!ã48P:‰2Ä'÷#"Cf,z ! § ! ²(½æÿ  ! %4H_r z„” £¯  ÏÜì ÿ ): M ! W6b2™2ÌÿB>`0ŸÐè$$=1b0”?Å =&0d#•)¹@ãL$Jq8¼*õ) 6J69¸eòjXkÃ9/Bi¬%ÊRð+C3o5£5Ù=+My/•5Å7û93/m43Ò!<+^Š1Ÿ1Ñ)'-U!s:•1Ð  "# 5F 6| "³ 6Ö J !TX!(­!(Ö!&ÿ!&"OE"%•"»"(Ò"û"#7.#*f#*‘#$¼#3á#$&5$E\$F¢$Mé$47%l%‹%*¢%Í%+å% &,2&_&|&œ&"³&2Ö&- '+7':c'ž'&»'&â' ((*(&S(+z(!¦(!È((ê()) =)$^)3ƒ)7·)"ï),*"?*"b*…*Bš*+Ý* +,(+!U+#w+/›+Ë+é+$,*,C,\,&p,—,±,DË,-,-E-b--¡- ¸-Ù-+î- .;.Z.a.t.&‡.®.Á.,Ô.//-)/$W/,|/3©/CÝ/#!0,E04r00§0'Ø01% 1+F15r1¨1Å1 ä12(!21J2"|2%Ÿ20Å2)ö2: 32[3(Ž30·3*è3$4/84$h44B­4)ð45375k5"ˆ5/«55Û5561G6)y6:£6.Þ66 7!D7f7 €7@70Î7Hÿ7.H8-w8$¥8"Ê80í809O9d9}9’9­9Å9Û9í9::+:>:S:g:5{:±:Ã:Õ:è:ú: ;;>;T;s;‰;¨;¾;Ñ;é;<<3<M<%f<Œ<)¥<;Ï< =%=>=W=p=‰=£=½=×=ñ=7 >C>7]>•>¯>É>ã>'û> #?8D?9}?(·?*à?3 @?@Z@v@’@&­@Ô@6î@9%A4_A,”ACÁA'BD-B'rB@šB.ÛB0 ! C!;C<]CFšC6áC.DCGDC‹D&ÏD,öD2#EDVE1›EÍE9ìE:&F<aF-žFÌF!êF1 G.>G5mG+£G6ÏGIH,PH6}HU´H ! Ia)IU‹I/áI2J$DJ2iJ$œJNÁJ;K5LK?‚K:ÂK8ýK%6L)\L†L#¦L#ÊL)îL‰M2¢M&ÕMUüM&RN/yN8©N4âN!O+9O%eO)‹O1µO'çOP"P:PLP\PoP†P0¤PLÕP"Q7BQ1zQC¬Q/ðQ R<8R'uRRH´R/ýR5-ScS%ƒS.©S ØS*ùS($T"MT'pT=˜TÖTNìT3;U)oU#™U,½U&êU'V9VRVpVV«V(ÄV(íV,WCW%bWˆW£WÀW"àW?XCX?[X,›XÈX+ßX Y Y"Y.7Y(fYY#®Y4ÒYZZ )Z3Z)HZ7rZªZ#ÅZ.éZA[AZ[?œ[>Ü[,\)H\%r\J˜\ã\÷\4 ];@](|]Z¥]-^2.^a^y^:”^*Ï^-ú^(_G_d_M€_GÎ_=`+T`<€`½`1Ð`a a?=aH}a4Æa ûa&bCb[bmbBŠb.Íbüb,c7Hc1€c²c0Èc"ùc2d(Od+xd,¤d+Ñd"ýd e#@e&de)‹e)µe$ße+f%0f(Vf#f'£f4Ëf&g+'gSg1rg?¤g;ägW hxhh˜¢h˜;iÔiôi!j((jQjpj-j »j,Üj, k!6kXk9qk3«kßk+þk/*lZl/xl+¨l1Ôl-m04m'em,mºmÚm"ùm9n+Vn2‚nµn-Ôn*o0-o-^o,Œo$¹o5Þo!p$6p#[p/p¯p&Ìp5óp2)q\qtqƒq”q£q#²qÖq óq ÿq rr#+rOrlrƒrœr¥rÀrÕrîrs ! -s8sOsfs+€s¬s½sÍsÝsðs. t v3ov2£v)Öv-w0.w0_w/w0ÀwWñw&Ix.px)Ÿx/Éx0ùx*y3Hy"|y-Ÿy,Íy<úy;7z6sz'ªz`Òz@3{Jt{1¿{.ñ{2 |*S|,~|.«|-Ú|}%(}5N}„}?};Ý}B~8\~2•~È~Gç~+/g[]Ã6!€+X€3„€/¸€è€(0L6k$¢JÇf‚y‚&‚‚*©‚)Ô‚ ! þ‚ ƒƒ$ƒ,:ƒWgƒ?¿ƒ%ÿƒ8%„8^„1—„'É„*ñ„…&<…'c….‹…"º…Ý… ñ…*†A=†0†/°†cà†$D‡+i‡#•‡.¹‡%臈)-ˆ+WˆEƒˆ*Ɉ&ôˆ9‰/U‰@…‰.Ɖ$õ‰5Š4PŠ4…Š<ºŠ÷Š‹!,‹%N‹%t‹!š‹'¼‹&ä‹ Œ%Œ<,ŒiŒ.…Œ)´Œ)ÞŒ44= r“$®"Ó.ö%%Ž%KŽ$qŽ)–Ž0ÀŽ2ñŽ$4H(\&…,¬Ù+ø=$ b)ƒ/­ Ýê‘‘..‘']‘…‘)˜‘‘Ö‘í‘’ ’ -’:’X’k’{’.’,¿’1ì’ “#?“c“1€“$²“+ד”)”(C”1l”*ž”É”'é”G•3Y•L•Ú•6ø•$/–&T– {–1œ–0Ζ/ÿ–4/—%d—)Š—@´—$õ—<˜.W˜4†˜0»˜ì˜™.#™1R™'„™¬™+Å™-ñ™š"?š!bš„š'£šËš6ëš0"›9S›8›Æ›Bå›&(œ:Oœ$Šœ1¯œ<áœ;.Z5‰5¿5õ>+ž?jžCªž.-6Ÿ&dŸ"‹Ÿ'®ŸÖŸ$óŸ 7 ,R / )¯ (Ù A¡'D¡$l¡(‘¡Bº¡.ý¡',¢&T¢.{¢9ª¢+ä¢.£)?£'i£<‘£;Σ# ! ¤.¤,I¤)v¤ ¤¼¤פ"줥+¥H¥<_¥5œ¥,Ò¥)ÿ¥%)¦3O¦Jƒ¦'Φ&ö¦+§I§/^§/Ž§(¾§)ç§#¨#5¨"Y¨ |¨(¨$ƨ-ë¨+©CE©F‰©Щ.í©*ªGªgª)ª#«ª!Ϫ-ñª$«$D«#i«/«/½«+í«¬3¬I¬a¬1u¬+§¬#Ó¬#÷¬#­?­P­d­{­ ’­  ­%®­Ô­ô­ ®& ®-G®u®•®!«®Í®.í®+¯H¯b¯Et¯<º¯ ÷¯!°:°W°m°†°/™°3É°+ý°)±+@±2l±3Ÿ±>Ó±,²4?²&t²6›²6Ò² ³$³@³\³$y³ž³'¦³$γ)ó³%´%C´$i´%Ž´´´UÒ´(µBµZµrµ‘µ8«µ:䵶2¶H¶\¶p¶‡¶˜¶¸¶ζâ¶ý¶(·+<·h·|··¤·Á·Þ·0ú·+¸ C¸'O¸$w¸.œ¸,˸6ø¸0/¹2`¹ “¹#¡¹Ź ã¹ ºº-ºIºgº†º •º(¶º:ߺ4»/O»»*ž»&É»ð»# ! ¼%.¼&T¼ {¼…¼C£¼3ç¼!½3=½7q½6©½7à½(¾A¾0P¾$¾$¦¾ ˾)ì¾)¿)@¿-j¿?˜¿4Ø¿ À,À,?À,lÀF™À^àÀ,?Á+lÁ#˜Á-¼Á'êÁ9Â)LÂ%vÂ)œÂ(ÆÂ/ïÂ$Ã0DÃRuÃ=ÈÃÄ'Ä8AÄzĘÄ*´Ä4ßÄ,Å<AÅ~Å ! ‘Å)œÅ.ÆÅ4õÅ1*Æ5\Æ ’Æ)³Æ/ÝÆ Ç9$Ç"^Ç$ÇH¦ÇLïÇ><È${ÈA ÈâÈ:öÈ11É(cÉ.ŒÉ;»É<÷É&4Ê[Ê{Ê)•Ê#¿Ê!ãÊ-Ë$3Ë$XË#}Ë-¡Ë-ÏË8ýË86Ì)oÌ;™ÌÕÌ0óÌ2$Í#WÍ+{Í9§Í1áÍÎ,ÎD;Î$€Î)¥Î3ÏÎ*Ï.Ï2MÏ&€Ï§Ï"ÁÏ5äÏÐ),Ð0VÐ-‡ÐµÐÈÐØÐêÐüÐÑ Ñ1ÑCÑUÑfÑxъћѭѿÑÑÑãÑõÑÒÒ+Ò=ÒOÒaÒsÒ„Ò–Ò¨ÒºÒÌÒÞÒðÒÓÓ*Ó<ÓNÓ`ÓpÓŠÓ0 Ó4ÑÓ)Ô!0Ô/RÔ0‚Ô³Ô&ÌÔ!óÔ(Õ,>ÕkÕ:ˆÕ"ÃÕ!æÕ!Ö&*ÖQÖoÖŒÖ$©ÖKÎÖ×).× X×+f×’×#²×Ö×ì×Ø. ØOØiØ=‡Ø-ÅØ&óØ<Ù'WÙ-Ù&­ÙÔÙ.ôÙ#Ú?Ú>RÚ,‘Ú(¾Ú'çÚ$Û%4Û4ZÛ*Û)ºÛ3äÛ9Ü'RÜzÜ%™Ü%¿ÜUåÜ";Ý^ÝqÝ„Ý–Ý,°Ý*ÝÝ"Þ+Þ-IÞ)wÞ"¡ÞÄÞ&äÞ' ß+3ß(_߈ß"¨ßËßëß#òßà6àVà3màT¡àöàá áAá!_áá3žáÒá âáâ!#âEâTâ0lâ1â@Ïâ-ã>ã%[ãã›ã+²ãÞã!þã& ä$Gä/lä7œä6Ôä' å%3åYå$wåœå5»å(ñå$æ?æ"Tæ=wæ.µæ,äæ,ç>ç!UçwçŠç/¥çÕç!òçè$è!;è ]è(~è&§èKÎè%é(@é%iéé.­é2Üé!ê,1ê^ê {ê+œê6Èêÿê6ë Këlë$Œë ±ë/Òë'ì"*ì$Mì#rì-–ìÄì Ýì êì# í/íIíaí3pí ¤íÅíåí'î2+î&^î5…î+»î,çîï3.ï4bï*—ï.Âï1ñï9#ð4]ð.’ð&Áðèð:øðK3ñMñ6Íñ*ò$/òTò4[ò5ò,Æò5óò3)ó(]ó†óB¤ó5çó$ô(Bô$kô$ô(µô)Þô!õ*õIõdõ%õ6¥õ3Üõ/ö!@öbötö/…öµö ÍöÛöûö÷7÷(V÷-÷5­÷ã÷(ø',ø$Tø+yø"¥ø-Èø%öø!ù!>ù,`ùù'ªù!Òù ôùú0ú*Lúwú7Žú%Æú.ìúOûKkûJ·ûKüKNüJšüKåü51ý7gý9Ÿý9ÙýDþDXþ@þ=Þþÿ-,ÿ.Zÿ(‰ÿ)²ÿ-Üÿ/ ! 7:)r œ¦ÁÖ ð%.'T|+˜ÄÝ$ú.Ng”® Ë7Ù.$@e2{®>ÂNMP%ž:Ä7ÿ-7*e­JÊ& <]{˜­Âá)þ-(@V—<­'ê $3-X%†0¬0Ý - $M !r !” ;¶ 9ò $, ! #Q ! u ! !… ! § ! "Æ ! é ! 5 -= <k 8¨ á +þ * 8H & ¨ Æ å ' , 4F { *– !Á "ã ")C,]"Š*­+Ø999s;­;é/%2U3ˆ/¼3ì )@)j+”/À2ð$#-H:v$±!Ö#ø (=f}–«(ÀZéDXn.Š(¹4â97Q3‰/½4í.".Q4€.µ.ä,9@9z9´:î9):c9ž9Ø.!A)c©-¼'ê-@ Xy¢¶Ìàó1EZp„š´ÈÛì1GZm3…%¹Fß)&&P5w;­1é2N.nc¯:31n' È*æ! /3 c 2 /´ /ä (!=!"\! !* !3Ë!ÿ!"%2"MX"6¦"8Ý"3#-J#0x#'©#&Ñ#%ø##$(B$6k$%¢$.È$%÷$%&0%*W%‚%&™% À%$á%'&(.&3W&1‹&½&/Ý&( ')6'/`'3'Ä'&ã' ! (()4(^(0}("®( Ñ(ò())"5)1X)Š)/ )0Ð)*!*.6*'e**¢*%·*.Ý*2 +?+%]+ƒ+3¢+4Ö+) ,5,"P,s,‰,>ž,Ý,&ò,)-2C-&v--6³-Gê-/2..b.)‘.».4Ô.& /+0/\/k/ƒ/1ž/!Ð/ò/00#B0!f0ˆ0#¦0Ê0=ê0(10H1,y1¦1 Ä1å1ý1,2,B2o2„2!2¿2QÞ2 03(Q3 z3 †343.Å3ô3>45Q4‡4¦4+Ä4ð4*5*/5$Z5<52¼5ï5% ! 6"06 S6 t6-•6"Ã6!æ6%7 .7O7m7Š7¢7¿7 Ó7¥Ý7ƒ9‰91‹9:½9ø90:èB:)+;JU;  ; ­;¹;Ì;CÔ;H</a<T‘<wæ<>^=K=Qé=Q;>V>8ä>8?=V?K”?Wà?8@F¸@8ÿ@L8A@…A’ÆA;YB6•BHÌBGCH]CA¦CFèCS/DOƒDhÓD>{E/ºEPêEC;FJFAÊF- G+:H+fH2’HYÅHI7I&MI&tI0›I"ÌI"ïI J0J/OJ J J½J.ÔJ>K=BK€K’Kx¤KhLm†LsôLYhMFÂMe NLoN¼N&ÌN&óN'O:BO8}OB¶OlùOfPHzPOÃPNQ_bQrÂQc5RC™R5ÝR(S%ŠV;ÉV"W)(W)RW+|W/¨W.ØW/X<7X&tX6›X;ÒX?Y"NY*qY"œY3¿YóY+Z4=ZrZ,Z0ºZBëZf.[-•[LÃ[3\7D\9|\¶\+Õ\8]0:](k]8”]?Í]3 ^DA^7†^(¾^7ç^T_)t_%ž_+Ä_9ð_<*`-g`)•`.¿`î`* aW7aa$¢a Ça$èa b'b9?byb6’bBÉb0 c,=c!jcŒc" c6Ãc&úc!d/=dmd(„d­dÄd9áde,.e0[e)Œe#¶eÚeòef!f9f=Mf5‹f5Áf1÷f1)g'[g)ƒg)­g+×gChGh0`h9‘h<Ëh7i'@i7hi6 i#×i4ûi0j:Nj%‰j7¯j0çj-k.Fk&uk7œk5Ôk3 ! l5>lHtl,½l+êl-mDmbm)ym£mPºm* n'6n^n,qn0žnÏn#æn4 ! o?oPofbo.Éoøop+pOCp5“p=Ép/q/7qCgq-«q+Ùq#r)r.Arpr‡r=˜r%Örür,s+Gsss%s¶s1És'ûs!#t#Et'it,‘t¾tÁtÅtÍt Ôtátêt ût%uS.u&‚u©u!Éu"ëu$v"3v7Vv=Žv-Ìv<úv7wMw4Tw&‰w.°wßw"þw$!xFx9_x™xµxÒxòx öx y y€ yw¡yez zm {{Ž{x ! |Xƒ|sÜ|]P}d®}l~n€~iï~iYkÃ^/€jŽ€mù€jgzÒaM‚a¯‚aƒisƒq݃oO„e¿„n%…p”…i†co†fÓ†y:‡…´‡n:ˆ©ˆc9‰u‰…Š$™Š0¾Š+ïŠ!‹2=‹ p‹ ~‹Œ‹ «‹ ¹‹ Ç‹Õ‹ å‹_ó‹SŒ cŒ qŒdŒ äŒcòŒ V dsrvæ]Ž0`Ž ! ‘Ž4œŽ ÑŽ)òŽ@;]$™ ¾(ËôB @L@>Î9 ‘AG‘N‰‘<Ø‘C’AY’?›’Û’(ï’Y“Jr“-½“<ë“H(”Lq”J¾”6 •!@•Gb•Eª•9ð•H*–8s–>¬–ë–@—<H—F…—>Ì—- ˜)9˜+c˜˜D£˜è˜ø˜-™6™ K™ ! Y™ d™ p™~™Ž™¥™´™ ! ¼™ Ç™ Ô™à™ð™ š šš,š EšRšfš{š•š ! ­š¸š+Ëš3÷š3+›0_›?›[ЛG,œtœ!Œœ®œÅœ$Üœ7/99i£6¿Dö+;ž>gžI¦žTðžZEŸG Ÿ5èŸ2 EQ G— aß ˆA¡Ê¡ŒX¢?å¢O%£"u£+˜£bÄ£-'¤=U¤?“¤2Ó¤B¥3I¥}¥?—¥3×¥F ¦ER¦<˜¦CÕ¦:§T§2n§.¡§;Ч ¨G,¨Lt¨JÁ¨- ©:©$U©Gz©7©"ú©ª8<ª2uª¨ª2ǪGúªSB«$–«$»«"à«,¬U0¬2†¬'¹¬+ᬠ­!­95­6o­4¦­&Û­4®7®3Q®R…®RØ®X+¯9„¯¾¯Û¯5õ¯+°2F°y°?—°×°ô°#±#8±9\±0–±5DZIý±)G²6q²1¨²+Ú²8³-?³;m³,©³.Ö³8´9>´+x´,¤´NÑ´D µ8eµ3žµ8Òµ8 ¶D¶`Z¶0»¶!ì¶4·*C·-n·<œ·+Ù·¸(%¸N¸"k¸$Ž¸)³¸ݸ"ý¸@ ¹a¹¹!ž¹"À¹2㹺53ºiº8|ºµº)Õºÿº»'%»1M»»ž»<½»ú»¼5:¼/p¼5 ¼;Ö¼S½-f½8”½@ͽ8¾0G¾0x¾4©¾(Þ¾?¿*G¿(r¿*›¿%Æ¿7ì¿8$À+]À0‰À5ºÀ.ðÀMÁJmÁ(¸Á7áÁ6Â.PÂ0Â/°Â,àÂY Ã/gÃ%—Ã9½Ã"÷Ã)Ä6DÄ9{Ä9µÄ8ïÄ7(ÅO`Å5°Å@æÅ0'Æ'XÆ €ÆnŽÆ9ýÆY7Ç5‘Ç7ÇÇ0ÿÇ80È-iÈ=—ÈÕÈïÈÉ (ÉIÉ`ÉuɆɜɮÉÁÉÓÉçÉúÉ8 ÊFÊWÊhÊzÊ‹ÊÊ®ÊÌÊáÊÿÊË2ËGËYËpˇˠ˸ËÍË$åË ! Ì&"Ì3IÌ}Ì̴̢ÌÆÌØÌëÌþÌÍ$Í)7ÍaÍ)t͞ͱÍÄÍ×ÍìÍ ÎM,Î6zÎ'±Î)ÙÎ7Ï;ÏPÏlχÏ"ÏÀÏEÛÏ=!Ð3_Ð+“ÐM¿Ð# ÑO1Ñ*ÑL¬Ñ-ùÑ?'Ò1gÒ<™ÒPÖÒ@'Ó0hÓE™ÓEßÓ+%Ô,QÔ9~ÔK¸Ô/Õ&4Õ:[Õ4–ÕLËÕ2Ö(KÖ,tÖ7¡Ö/ÙÖB ×+L×;x×R´×7Ø7?ØQwØ'ÉØVñØRHÙ8›Ù9ÔÙ'Ú86Ú#oÚW“ÚEëÚ91ÛLkÛ?¸Û=øÛ+6Ü/bÜ*’Ü.½Ü'ìÜ1݃FÝ9ÊÝ&ÞY+Þ!…Þ+§ÞBÓÞ?ß!Vß5xß+®ß/Úß> ! à,Ià và„à —à £à¯à¾àÐà;íà^)áˆá6¨á*ßá@ ! â,Kâ$xâLâ>êâ)ãPGã7˜ãbÐã(3ä+\ä2ˆä-»ä2éä1å.Nå'}åF¥å(ìåZæ>pæF¯æ9öæC0ç6tç7«çãç2ýç00è&aèˆè7£è7Ûè;é2Oé,‚é ¯é#Ðé ôé)êC?ê&ƒêQªê-üê *ë6Kë ‚ë Žëšë0´ë)åë&ì,6ì7cì$›ì(Àì éìöì(íB1ítí#íB³í_öí_Vî]¶îDï2Yï/Œï"¼ïjßïJðgðD„ð4ÉðBþð‚Añ>Äñ<ò@òXòBsò-¶ò8äò%óCó_óI|óHÆóFô8VôGô×ô3ëôõ6õnPõQ¿õ=ö-Oö6}ö´öËöàöG÷2H÷3{÷S¯÷Cø,Gøtø4ˆø&½ø8äø/ù0Mù3~ù5²ù3èù&ú)Cú*mú-˜ú-Æú(ôú3û)Qû,{û/¨û/Øû6ü+?ü8kü(¤ü8Íü@ý:GýT‚ý×ýìýÎþÍÐþ*žÿÉÿ?Ùÿ8-R'€<¨%å. /:6j$¡FÆ@ 'N.v?¥ å35:2p0£3Ô0/9"i!Œ&®KÕ2!8T0:¾6ù:0Dk9°0ê=.Y8ˆ6Á>ø&7,^J‹JÖ+! !M #o !“ µ +Ï 'û # ! #C ! #g ! ‹ ! +¥ ! 'Ñ ! *ù ! $ > $M r ˆ !¢  Ä å "ý " $C 9h ¢ Á ß ý ' <@ "}   2¸ ë  ! &D<bYŸUù3ONƒ:Ò1 >?8~%·,Ý; ! <F9ƒh½/&=V.”9Ã0ý).,X'…0­7ÞLLc;°+ìˆN¡Yð;JM†EÔ+;F8‚3»"ï1(D)mC—<ÛJ6c6š&Ñjø3c]—fõ>\5›-Ñ-ÿ)-4W%Œ)²=Ü6EQe— ý!1)2[Ž Ÿ­!±1Óe6k)¢7Ì= 0B .s &¢ #É 2í ) !0J!0{!¬!,Ã!4ð!E%"4k"3 "fÔ",;#1h#*š#1Å#$÷#$:8$8s$?¬$&ì$+%M?%4%EÂ%8&&A&9h&4¢&?×&H'`'{'$•'0º'/ë'$(0@(.q( ( ¿(WÌ("$)"G)*j).•)?Ä)E*J*g*(}**¦*6Ñ*,+,5++b+0Ž+@¿+4,5,P, m,7Ž,/Æ,1ö,'(-0P-?--Á-6ï-,&.S.!f.ˆ. ./³./ã./61/#h/#Œ/°/ È/ ! é/ ! ô/ÿ/0,0<0.Q00€0H±0ú0(1#B19f16 1,×12(2)F27p25¨21Þ2*3W;39“3XÍ3<&4Jc4'®42Ö48 5,B55o51¥56×5*6.96Nh6?·6O÷66G7;~77º7*ò7)88G84€8/µ8å8*ÿ81*9"\9#9+£9#Ï9ó9,:J?:<Š:GÇ:C;%S;Sy;-Í;Bû;%><4d<G™<Cá<0%=AV=8˜=5Ñ=O>JW>I¢>8ì>%?'IC-ˆC<¶C,óC$ DCED?‰D"ÉD"ìD&E,6E&cE*ŠEµE"ÓEöEF/FEEF<‹F;ÈF!G&G9DGC~G#ÂG$æG' H3H5DH*zH%¥H$ËHðHI/IKI(hI+‘I)½I+çI;JCOJ“J.¨J1×J K$K;;K)wK(¡K2ÊK*ýK((L)QL3{L1¯LJáL,MIM`M~M9—M,ÑM-þM$,N*QN |NŠN¤NÁNÞN óN'ÿN+'OSOmO(‰O-²OàOüOP'9PAaP/£PÓPñPPQDRQ—Q'·Q!ßQRR0R9MR8‡R9ÀR&úR3!SEUS;›S;×S5T=IT.‡TE¶T@üT =U!^U €U!¡U#ÃUçU#ïU-V3AV-uV,£V+ÐV,üV )WXJW£WÀWÛW!öWX<5X=rX°XÅXÝXóX Y"Y"5YXYpY†Y£Y0»Y<ìY)ZBZXZ jZ ‹Z!¬Z-ÎZüZ[*2[-][3‹[3¿[Gó[6;\8r\«\+º\%æ\ ]+]!:] \]"}]# ] Ä] Ñ]4ò]I'^Gq^4¹^!î^/_)@_#j_!Ž_°_&Ï_ ö_```Ew`&½`>ä`F#aFja:±a.ìab1,b*^b*‰b$´b+Ùb+c+1c4]cH’c0Ûc d+d%hAh.ThJƒhÎhêh3i1:i9liB¦iéi ! ûi3j5:jFpj&·j;Þj$k8?k/xk#¨kNÌk:l2VlH‰lKÒlHm%gmCmÑm>ãm4"nBWn4šnBÏnLo _o€ošo:°o(ëo'p1AqD€q"ÅqGèq 0r Qr6rr©r5Ãr.ùr0(sYsysKˆs,Ôs.tD0t3ut!©t9Ët4u:u(Zu?ƒuÃu,Õu.v91vkvƒv™v¯vÅvÛvñvww3wJw`wvww£w¹wÏwåwûwx'x=xSxixx•x¬xÂxØxîxyy0yFy`yvyŒy¢yºyÓyñy<z<Kz/ˆz'¸z;àz<{Y{/w{.§{+Ö{2|"5|FX|/Ÿ|$Ï|"ô|'}$?}d}}$ž}LÃ}~-"~P~Ee~&«~"Ò~õ~ 12K$~%£SÉ;€(Y€S‚€,Ö€145$j6*ÆñG ‚9U‚)‚.¹‚/è‚2ƒEKƒ5‘ƒ2ǃDúƒ>?„;~„"º„)Ý„)…k1…"…À…Õ…ê…þ…4†3O†+ƒ†¯†6φ2‡+9‡(e‡/Ž‡0¾‡4ï‡1$ˆ(Vˆ/ˆ$¯ˆÔˆ'܈0‰.5‰!d‰I†‰^Љ/ŠEŠ"TŠ*wŠ0¢Š/ÓŠ9‹ =‹ K‹ l‹!‹¯‹¾‹7Û‹=Œ?QŒ/‘Œ"ÁŒ/äŒ" 7CX7œ9Ô>Ž<MŽGŠŽOÒŽQ"Bt6·&î 26Hi,²ßÿ$‘WD‘Iœ‘Næ‘N5’„’*ž’É’#ß’.“2“%K“q“ƒ“$ “Å“(Ü“+”Q1”3ƒ”'·”)ß” •*)•/T•&„•7«•#ã•–-%–BS–––P²–%—')—'Q—,y—A¦—1è—1˜3L˜2€˜3³˜ç˜™(™+?™k™ˆ™§™?»™%û™$!š'Fš1nš8 š/Ùš< ›&F›#m›‘›.ª›0Ù›# ! œ8.œ7gœ;Ÿœ0Ûœ3 $@eG|PÄ]ž:sž4®ž)ãž Ÿ<Ÿ8QŸ-ŠŸ6¸Ÿ;ïŸ-+ "Y O| /Ì .ü 3+¡/_¡/¡1¿¡7ñ¡))¢!S¢u¢”¢5³¢<é¢1&£4X£.£¼£Ü£1ñ£ #¤D¤S¤r¤‰¤"¤¤,Ǥ5ô¤=*¥ h¥)‰¥(³¥*Ü¥6¦&>¦,e¦'’¦%º¦%à¦2§9§-T§#‚§&¦§ͧê§, ! ¨7¨9U¨,¨7¼¨^ô¨YS©\­©Y ! ªZdª\¿ªZ«Jw«L«<¬ML¬]š¬]ø¬HV­MŸ­í­<®;@®.|®/«®4Û®+¯8<¯,u¯¢¯«¯ǯÚ¯ò¯°'*°$R°w°2° ðä°+±7/±g±‚±¡±¾±×± ó±;²0=²$n²“²1¨²Ú²Lð²`=³^ž³%ý³<#´B`´@£´-ä´,µ#?µPcµ6´µ0ëµ#¶"@¶c¶~¶%š¶#À¶0ä¶<·FR·™·@²·)ó·!¸'?¸)g¸.‘¸?À¸E¹ F¹!g¹(‰¹"²¹&Õ¹Aü¹=>º|º™ºµº"ĺ(çº.»-?»4m»2¢»DÕ»J¼!e¼1‡¼!¹¼;Û¼-½!E½ g½ ˆ½-©½×½7õ½-¾6J¾*¾)¬¾"Ö¾ù¾¿1-¿+_¿)‹¿,µ¿â¿"þ¿;!À9]ÀJ—ÀAâÀ5$Á8ZÁ8“Á4ÌÁ8Â:Â(ZÂ(ƒÂ*¬Â.×Â-Ã#4Ã3XÃ?ŒÃ*ÌÃ-÷Ã!%Ä$GÄ-lĚķÄÖÄñÄ4 ÅqAųÅÑÅ&íÅ-Æ$BÆCgÆE«ÆCñÆ?5Ç:uÇ:°Ç9ëÇ9%È:_È9šÈ9ÔÈ9É=HÉ=†ÉAÄÉ=Ê<DÊ=Ê<¿Ê<üÊ,9Ë!fË'ˆË'°ËØË/íË#Ì9AÌ{Ì#’̶ÌÍÌåÌüÌÍ+ÍAÍYÍp͈͟ͷÍÏÍæÍþÍÎ/ÎEÎUÎoÎ…ÎεÎËÎáÎ(üÎ)%ÏMOÏ)Ï%ÇÏGíÏG5Ð@}Ð>¾Ð%ýÐ0#ÑTÑtfÑ&ÛÑ?ÒABÒ7„Ò%¼Ò2âÒ)ÓA?Ó#Ó>¥Ó;äÓ; Ô4\Ô‘Ô&°Ô!×Ô0ùÔS*Õ~Õ—Õ2¯Õ^âÕBAÖ7„Ö6¼Ö2óÖ,&×7S×5‹×.Á×$ð×(Ø8>Ø#wØ/›Ø,ËØøØ/Ù3>ÙrÙ2ŒÙ.¿Ù1îÙ$ Ú4EÚ3zÚ2®ÚáÚ2ÿÚ(2Û0[Û=ŒÛ8ÊÛ$Ü/(ÜXÜlÜ3‚ܶÜ/ÓÜÝ'ÝGÝdÝ%Ý%¥ÝKËÝÞ1/Þ2aÞ”Þ1¬Þ?ÞÞ/ßNßdß*yß/¤ß3Ôßà-%àSà;sà<¯à.ìà#á:?ázá˜á;¶áòá-â0=â0nâ2Ÿâ(ÒâBûâQ>ã7ã7Èã.ä$/ä:Tä,ä/¼äìä(å+å8Hå$å ¦å5Çå)ýå+'æ'Sæ*{æ&¦æSÍæ!ç,Aç(nç—ç+´çàçýç1è2Mè€è›è#ºè!Þè^é%_é8…é¾é ! Ðé>Ûé.ê,IêKvê;Âê:þê,9ë,fë“ë,§ë2Ôë.ì@6ì6wì0®ì5ßì0í0Fí.wí;¦íAâí?$î)dî.Žî½î Üîýî&ïAï ^ï>ÀÞ¬óŒt úFRóyÖÀЀÕWSÅ+Vë‰ÄZslHÍ´fœÇǶ†ÿäE§„í@$ñØ–Ä\G¥‹ "2›“ô%‘hå9¿Î{a|È4l·‘|nJ&Ht%‡ç“î â ‘Ò2Èû»T©ÓRrOÁ[·¢ÊÖtäìl¤ëŠXûÐIÒ¤xóýà;‡Ì1¢µ~åd°¥è.*D£q6;:` ʾ—-¬™Ñ nÄyyš‰²Ú®Ö‰ uŒê!5HM1–Ýo*ù…¦…ÙQLò+ßRº4kÆ°êg¦Y8¾"#ݱHŽ“3K_>'pÉP† %·að\L§ú 8Àh¤¹Í!K ! ªA|#VìF 2×tþL9Ź™TfÁå*Èqí]‹: ë攃r¯]Š}~k•¸‹Rz eáW.…èMbJBßÙv@B=£!éú/ÓóŠÂ4²X<žÿFHŸ‡ Cƒ™ŽÕÇ냦4Xæ1{#Ô„ÞV5¯æjŽ›ƒÇØ£¨# ! ¼ÔÐXg0vYæ,}âc»Kw'×"Ì+mô6ôp³wÝrr¦Zðº(NÄiN— ö÷2xÎdX’·¨9-íñ»úÍj¼Ê â楺üÛ³–BøM‘AIU‹æ¯ 6¾™“ãYž{-0ü;”ž”›o¦¤Z€ Â7O©œOH“ÇÞéå ¸}#lk"ÿhŠ¿ß_œZC1ºº'cÎFK‹bjb܆$7S°ˆÈ4ÓG–Ð=¢·"÷ȼÍýØÉßÏ‚Ì5a ÉUÉCgU<syQ,[ù‰— ã?;48ìl]7…FC zPMl'eU±OG&$‘Ñ*gE+0?SZ<=.ý%ïC­AQqÖò© È}ÏÆ¥(Ú¥]•'c*ƒAz6áÎôã—­þÜ“Nà GBd¬.JÇw÷C ÷üÒØdv‚~#î´P½á->ËD€±ršûÚ·€ý[ÿñܤò¡ï?×îðRŠ> P6çxrÝþÚš_HÕ¨úì3Zþ•ö$j¬dôEPW-´µÃ ÆA.Æ D| @­ÿ²Í"ÆXn™UÈڌ✠ñ¤@óüvQˆ íŠn5s-§LyË®˜â ûn%ëWñ/xKEL˲Ñ!ŒtΠc~ ÓågÒÞ\WoˆBY¾UénjM%:e<K§$=³\Í;øá¯3G |Ÿ èÂñõË´Êfb0)8—‰ÿ×ÄÊ`³à+ëB›•©Â'Ü€S#Ý1?i¢,±jÿÁxç¹Q )³$=Ÿ¹A|àÛ`«§Õ“OÖ©x$f›<çyÆÑ8sv¯öÅù°7oÉlC”‰Ý¤åm¿Sˆq2Á !  àqˆ¦õ®Qˆ£éª„¯(÷‡­¶hi&Ì«˜ù~µô:gùô*–ÑU³Vcã-G ¥-¸ÒÂý¼}â¸&{ã u|Й¼aOÛK)„žçPhsÇ¥£ì  º9xƒ` ÛB¨ã}Q® Gù,^Þµ»Ô.ä{M¢‰ ­Ûd5úÄ ?õ ·‘ ¾µÚg’¢„ý íÚ»;¹•¿‚ÛŒðÌÓåKf»â«Eà\¬Ô2Ÿ„Úí‡l{¥~^:ŠƒòÑ à"𒢇J%t+k>&’ou6w‹‡îwC°•óIîdÙÓõÑ–yÏté«söä~Jx—3Æ{ÓE_f6®ìÄ,¡e þ’$?IU÷Õ˜€²ˆo¡ÁpO†Ø(éMHä N­‚Ò•öàVæË D¬pìö@,·œ[Æ{Ŧ©ýi¨(Ÿ59Á°Üêo¨0Çõš*}ë¿í ³P«2ŒŽ÷ûÁ—DÊG›ó/ÃWÙ ÔL([öh0%[»»ѵuf ý¸D§Â è(¶çµqÁ]Ì'=ʧ ±á¡ü›Œª)ŽÉD·éh ‰–m™Qk ß‹•íèþ¡Õ+RÝ‘Îw^ê3Z7¥R)Àìm¬ê¹1€iJuuSá1½+C6lî&¦<yÄà,Prj©?LÍÀ VÔEÁ#ûÀ­]3½êŠŸ‡’ËÉ`äX}ù‰òº#hšc°ž½ÉÓkFzâ7ûk4m !  sìüÎJ¢Ës±ènO7äÍ~Mªªºñ¸\“%ž,Àb<¿úvöIq®0^9šÝ<>DÈJ©Ð*N¡ñ•úŸ5Ãç)Ÿ!² v:"wÖ¿'¬?L­& ! (ã^uˆù3ü¼_† ¼øã1>WRªñ†/²=¢›ÕQОœ®k[Ñ3ÒþôÉÌ/'’rN ‚þ‘Þd“>µ×_YyÓ°!x˜WI†^8/)i`벞ò¿=5–7z&ª!T­øT‚ß8œ@€,ÖÝ1|áÃwM¸TÏN:º˜ b™BU[½ýÖ¶ RY9LŽ´”×…¡mÖÙvk<?mT|^i^õÕ¯¸_¶wߣ™ä ] *€¯¡èÅZï bçö—8»]u@‘ù  2„ˆ) -$F6š.¼‚‚m0jcæA®/ÜÃeðg{}ÚX.¶ ! ó.‚îŽúp ÙïPÏ(Ù"\opÎzÒ:ðzAÄØ´ÍãÞW…Ìq¹«÷øØTû”Tõ„eìüæÀeeiåóBbŽSX²‹Œü¨`›”’ ËDçvGpzëÏõÇÈ’òV´ÛîâÏèÛ–…S‹¾;5¾¯;«—¨û¶×ÔYoÅ/µN^rÅ pÞ= ŒãÆïnëÅøï׊c_ä´ÙE僟”³jÜS¦ô8ÂøØÛ¿†ØœpV´+°d¹˜¡Ð_¾!4&þϪ½aêð)n:õÀß”mÌʤ®÷7‡ÙOÎa £×>œŽežYÕÿ…9tÞ ! !ÿ„áá¸fª ÜaË ! q2Ø4Ôš½K ! FFtNb IêÊíi±©ïAÜ0£HT ! «`I†cÒ ¹¶èòzJ /VоY¶\ ø½ê9@˜;ƒòðïséÔZ¼Eféa Ϙ¨`³g3±§Â¤î@h~a§]±[u…\ßøI %+#D For bug reporting instructions, please see: *************** Options starting with -g, -f, -m, -O, -W *** 49,108 **** ldd output with constructors/destructors. Display specific types of command line options ! %s %q+#D (Use '-v --help' to display command line options of sub-processes) --classpath PATH Set path to find .class files --help Display this information --version Display compiler version information -B Add to the compiler's search paths -Wl, Pass comma-separated on to the linker -Wp, Pass comma-separated on to the preprocessor -Xlinker Pass on to the linker -Xpreprocessor Pass on to the preprocessor -dumpspecs Display all of the built in spec strings -dumpversion Display the version of the compiler -h, --help Print this help, then exit -o Place the output into -pass-exit-codes Exit with highest error code from a phase -pipe Use pipes rather than intermediate files -print-file-name= Display the full path to library -print-multi-directory Display the root directory for versions of libgcc -print-prog-name= Display the full path to compiler component -print-search-dirs Display the directories in the compiler's search path -save-temps Do not delete intermediate files -save-temps= Do not delete intermediate files -std= Assume that the input sources are for -time Time the execution of each subprocess -v, --version Print version number, then exit -x Specify the language of the following input files Permissible languages include: c c++ assembler none 'none' means revert to the default behavior of guessing the language based on the file's extension as it is a non-system directory that duplicates a system directory ! but does not override %<%T(const %T&)%> expected a constant of type %qT, got %qT expected a type, got %qE expected a type, got %qT from here initializing argument %P of %qD or %# %s %.2f %.2f #include "..." search starts here: #include <...> search starts here: ! #pragma GCC memregs takes a number [0..16]#pragma GCC visibility must be followed by push or pop#pragma GCC visibility push() must specify default, internal, hidden or protected#pragma pack (pop) encountered without matching #pragma pack (push)#pragma pack has no effect with -fpack-struct - ignored#pragma pack(pop, %E) encountered without matching #pragma pack(push, %E)#pragma redefine_extname ignored due to conflict with __asm__ declaration#pragma redefine_extname ignored due to conflict with previous #pragma redefine_extname#pragma redefine_extname ignored due to conflict with previous rename$ operand number used after format without operand number%<#pragma GCC optimize%> is not a string or number%<%%%c%> yields only last 2 digits of year%<%%%c%> yields only last 2 digits of year in some locales%<%s %E%> declared inside parameter list%<...%> has invalid operand number%<__alignof%> applied to a bit-field%<__builtin_longjmp%> second argument must be 1%<__builtin_next_arg%> called without an argument%<__thread%> before %%<__thread%> before %%<__thread%> used with %%<__thread%> used with %%<__thread%> used with %% in file-scope empty declaration% not permitted with -fno-rtti% declared in % loop initial declaration% loop initial declarations are only allowed in C99 mode% in empty declaration% is too long for GCC% definition is not allowed here% must return type %qT% takes type %qT as first parameter% must not return NULL unless it is declared % (or -fcheck-new is in effect)% must return type %qT% takes type % (%qT) as first parameter% in file-scope empty declaration% with a value, in function returning void% with no value, in function returning non-void% declared in % loop initial declaration% is unavailable for static member functions% declared in % loop initial declaration% used in function with fixed args% must be the only parameter%E qualifier ignored on asm%q#T has pointer data members%q#T has virtual functions and accessible non-virtual destructor%q#T is not a class%q+#D previously defined here%q+D declared here%q+D is usually a function%q+D redeclared as different kind of symbol%q+D will be initialized after%qD declared as reference but not initialized%qD declared here%qD has already been defined%qD has an incomplete type%qD is a namespace%qD is not a class or namespace%qD is not a namespace-name%qD is not a variable%qD is not defined outside of function scope%qD was declared here%qD was not declared in this scope%qE attribute ignored%qE attribute ignored for field of type %qT%qE attribute only applies to variadic functions%qE defined as wrong kind of tag%qE is not of type %qT%qE is obsolete; g++ vtables are now COM-compatible by default%qE undeclared (first use in this function)%qE undeclared here (not in a function)%qT has no member named %qE%qT is not a class or namespace%qT is not a class, struct, or union type%qT is promoted to %qT when passed through %<...%>%qs attribute ignored%qs declared as function returning a function%qs declared as function returning an array%qs expects a constant argument%qs has both % and initializer%qs has overflowed%qs initialized and declared %%qs is narrower than values of its type%s%s ! %s %+#T%s %qs%s %s%s %s '%s' ! %s does not support %%n$ operand number formats%s does not support the %<%%%c%> %s format%s does not support the %<%%%s%c%> %s format%s does not support the %qs %s length modifier%s%s%s %sversion %s (%s) ! %s compiled by GNU C version %s, %s%s%s %sversion %s (%s) compiled by CC, %s: %s%s: Cannot open output file: %s %s: Failed to close output file %s ! %s: PCH file was invalid%s: cannot open as COFF file%s: couldn%'t open PCH file: %m%s: not a COFF file%s:no functions found ! '' ' flag'!' flag'#' flag''' flag'(' flag'+' flag'-' flag'0' flag'E' modifier'I' flag'O' modifier'^' flag'_' flag'a' flag'm' flag'q' flag(C)(anonymous)(near initialization for %qs)(perhaps a semicolon is missing after the definition of %qT)(so you should pass %qT not %qT to %)({anonymous})-I- specified twice-Wformat-contains-nul ignored without -Wformat-Wformat-extra-args ignored without -Wformat-Wformat-nonliteral ignored without -Wformat-Wformat-security ignored without -Wformat-Wformat-y2k ignored without -Wformat-Wformat-zero-length ignored without -Wformat-bundle not allowed with -dynamiclib-bundle_loader not allowed with -dynamiclib-client_name not allowed with -dynamiclib-current_version only allowed with -dynamiclib-fhandle-exceptions has been renamed -fexceptions (and is now on by default)-force_flat_namespace not allowed with -dynamiclib-fpic and -mapcs-reent are incompatible-install_name only allowed with -dynamiclib-keep_private_externs not allowed with -dynamiclib-m64 requires PowerPC64 architecture, enabling-m64 requires a PowerPC64 cpu-mapcs-stack-check incompatible with -mno-apcs-frame-mbig-endian and -mlittle-endian may not be used together-pipe not supported-private_bundle not allowed with -dynamiclib31 bit ABI64 bit ABI64-bit ABI not supported in ESA/390 mode A synonym for -std=c89 (for C) or -std=c++98 (for C++)AAPCS does not support -mcallee-super-interworkingAAPCS does not support -mcaller-super-interworkingAlias for --help=targetAlign the start of functionsAlign the start of loopsAllow the arguments of the '?' operator to have different typesAltiVec argument passed to unprototyped functionBranches executed:%s of %d ! Calls executed:%s of %d ! Check the return value of newConform to nothing in particularConform to the ISO 1990 C standardConform to the ISO 1990 C standard as amended in 1994Conform to the ISO 1990 C standard with GNU extensionsConform to the ISO 1999 C standardConform to the ISO 1999 C standard with GNU extensionsConform to the ISO Fortran 2003 standardConform to the ISO Fortran 2008 standardConform to the ISO Fortran 95 standardCreate a shared libraryDeprecated in favor of -std=c99Deprecated. This switch has no effectDisplay contents of a class file in readable form. ! Division by zero at %LDo not suppress warnings from system headersDo not warn about using "long long" when -pedanticDon't warn about uses of Microsoft extensionsEnable exception handlingEnable garbage collection (GC) in Objective-C/Objective-C++ programsEnd of search list. ! Error:Expected ")" at %CExpected "," at %CFatal Error:For bug reporting instructions, please see: %s. ! GCC supports only %u nested scopesGMP version %s, MPFR version %s, MPC version %s ! Generate 32bit i386 codeGenerate 64bit x86-64 codeGenerate code for NeXT (Apple Mac OS X) runtime environmentGenerate make dependenciesGenerate make dependencies and compileISO C does not allow extra %<;%> outside of a functionISO C does not support %<++%> and %<--%> on complex typesISO C does not support %<~%> for complex conjugationISO C does not support complex integer typesISO C does not support plain % meaning %ISO C does not support saturating typesISO C forbids % with expression, in function returning voidISO C forbids an empty translation unitISO C forbids assignment between function pointer and %ISO C forbids casting nonscalar to the same typeISO C forbids casts to union typeISO C forbids comparison of % with function pointerISO C forbids conditional expr between % and function pointerISO C forbids conditional expr with only one void sideISO C forbids const or volatile function typesISO C forbids conversion of function pointer to object pointer typeISO C forbids conversion of object pointer to function pointer typeISO C forbids empty initializer bracesISO C forbids forward parameter declarationsISO C forbids forward references to % typesISO C forbids initialization between function pointer and %ISO C forbids member declarations with no membersISO C forbids nested functionsISO C forbids omitting the middle term of a ?: expressionISO C forbids ordered comparisons of pointers to functionsISO C forbids return between function pointer and %ISO C forbids subscripting % arrayISO C forbids zero-size arrayISO C forbids zero-size array %qEISO C prohibits argument conversion to union typeISO C restricts enumerator values to range of %ISO C++ 1998 does not support %ISO C++ forbids calling %<::main%> from within programISO C++ forbids casting between pointer-to-function and pointer-to-objectISO C++ forbids comparison between pointer and integerISO C++ forbids comparison between pointer of type % and pointer-to-functionISO C++ forbids conditional expression between pointer of type % and pointer-to-functionISO C++ forbids conversion between pointer of type % and pointer-to-functionISO C++ forbids declaration of %qs with no typeISO C++ forbids decrementing a pointer of type %qTISO C++ forbids decrementing an enumISO C++ forbids incrementing a pointer of type %qTISO C++ forbids incrementing an enumISO C++ forbids initialization of member constant %qD of non-integral type %qTISO C++ forbids omitting the middle term of a ?: expressionISO C++ forbids taking address of function %<::main%>ISO C++ forbids using pointer of type % in subtractionISO C++ forbids using pointer to a function in subtractionISO C++ forbids using pointer to a method in subtractionISO C++ forbids variable length arrayISO C++ forbids variable length array %qDISO C++ forbids zero-size arrayISO C++ forbids zero-size array %qDISO C++ prohibits anonymous structsISO C++ prohibits overloading operator ?:ISO C++ says that these are ambiguous, even though the worst conversion for the first is better than the worst conversion for the second:ISO C90 does not support %<[*]%> array declaratorsISO C90 does not support %ISO C90 does not support % or type qualifiers in parameter array declaratorsISO C90 does not support complex typesISO C90 does not support flexible array membersISO C90 forbids array %qE whose size can%'t be evaluatedISO C90 forbids array whose size can%'t be evaluatedISO C90 forbids compound literalsISO C90 forbids mixed declarations and codeISO C90 forbids variable length arrayISO C90 forbids variable length array %qEIn constructor %qsIn function %qsIn member function %qsIncorrect function return valueInvalid procedure argument at %LJava class %qT cannot have a destructorJava class %qT cannot have an implicit non-trivial destructorLike -M but ignore system header filesLike -MD but ignore system header filesLines executed:%s of %d ! Make "char" signed by defaultMake "char" unsigned by defaultNULL used in arithmeticName '%s' at %C is already defined as a generic interface at %LNo branches No calls No executable lines ! Not a valid Java .class file. ! Options: ! Permit '$' as an identifier characterPrint extra (possibly unwanted) warningsProduce big endian codeProduce little endian codeRecognize C++ keywords like "compl" and "xor"Recognize built-in functionsRecognize the "asm" keywordSegmentation FaultSynonym for -WcommentThe size of L1 cacheThe size of L2 cacheThis is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. --- 80,177 ---- ldd output with constructors/destructors. Display specific types of command line options ! %s %qD %q+#D (Use '-v --help' to display command line options of sub-processes) --classpath PATH Set path to find .class files --help Display this information + --help={common|optimizers|params|target|warnings|[^]{joined|separate|undocumented}}[,...] + --sysroot= Use as the root directory for headers + and libraries --version Display compiler version information -B Add to the compiler's search paths + -Wa, Pass comma-separated on to the assembler -Wl, Pass comma-separated on to the linker -Wp, Pass comma-separated on to the preprocessor + -Xassembler Pass on to the assembler -Xlinker Pass on to the linker -Xpreprocessor Pass on to the preprocessor + -a, --all-blocks Show information for every basic block + -b, --branch-probabilities Include branch probabilities in output + -c, --branch-counts Given counts of branches taken + rather than percentages -dumpspecs Display all of the built in spec strings -dumpversion Display the version of the compiler + -f, --function-summaries Output summaries for each function -h, --help Print this help, then exit + -l, --long-file-names Use long output file names for included + source files + -n, --no-output Do not create an output file -o Place the output into -pass-exit-codes Exit with highest error code from a phase + -pie Create a position independent executable -pipe Use pipes rather than intermediate files -print-file-name= Display the full path to library -print-multi-directory Display the root directory for versions of libgcc -print-prog-name= Display the full path to compiler component -print-search-dirs Display the directories in the compiler's search path + -print-sysroot-headers-suffix Display the sysroot suffix used to find headers -save-temps Do not delete intermediate files -save-temps= Do not delete intermediate files + -shared Create a shared library -std= Assume that the input sources are for -time Time the execution of each subprocess + -v Display the programs invoked by the compiler -v, --version Print version number, then exit -x Specify the language of the following input files Permissible languages include: c c++ assembler none 'none' means revert to the default behavior of guessing the language based on the file's extension as it is a non-system directory that duplicates a system directory ! but does not override %<%T(const %T&)%> but does not override % candidate expects %d argument, %d provided candidate expects %d arguments, %d provided enters catch block enters try block expected a class template, got %qE expected a class template, got %qT expected a constant of type %qT, got %qT expected a type, got %qE expected a type, got %qT from here initializing argument %P of %q+D initializing argument %P of %qD or % skips initialization of %q+#D when initialized here you can work around this by removing the initializer All options with the desired characteristics have already been displayed ! No options with the desired characteristics were found ! candidate 1: %q+#F candidate 2: %q+#F!$OMP ATOMIC assignment intrinsic IAND, IOR or IEOR must have two arguments at %L!$OMP ATOMIC assignment intrinsic must be MIN, MAX, IAND, IOR or IEOR at %L!$OMP ATOMIC assignment must have an operator or intrinsic on right hand side at %L!$OMP ATOMIC intrinsic arguments except one must not reference '%s' at %L!$OMP ATOMIC intrinsic arguments must be scalar at %L!$OMP DO iteration variable must not be THREADPRIVATE at %L!$OMP DO iteration variable present on clause other than PRIVATE or LASTPRIVATE at %L"::" was expected after module nature at %C but was not found# %s %.2f %.2f #include "..." search starts here: #include <...> search starts here: ! #pragma GCC memregs takes a number [0..16]#pragma GCC optimize is not allowed inside functions#pragma GCC option is not allowed inside functions#pragma GCC visibility must be followed by push or pop#pragma GCC visibility push() must specify default, internal, hidden or protected#pragma message: %s#pragma pack (pop) encountered without matching #pragma pack (push)#pragma pack has no effect with -fpack-struct - ignored#pragma pack(pop, %E) encountered without matching #pragma pack(push, %E)#pragma redefine_extname ignored due to conflict with __asm__ declaration#pragma redefine_extname ignored due to conflict with previous #pragma redefine_extname#pragma redefine_extname ignored due to conflict with previous rename$ operand number used after format without operand number%<#pragma GCC optimize%> is not a string or number%<#pragma GCC option%> is not a string%<#pragma%> is not allowed here%<%%%c%> yields only last 2 digits of year%<%%%c%> yields only last 2 digits of year in some locales%<%D::%D%> is not a class member%<%E::%E%> has not been declared%<%E::%E%> is not a class or namespace%<%E::%E%> is not a class, namespace, or enumeration%<%E::%E%> is not a type%<%T::%D%> names the constructor, not the type%<%T::%E%> has not been declared%<%T::%E%> is not a type%<%T::%E%> names the constructor, not the type%<%s %E%> declared inside parameter list%<...%> as arguments.)%<...%> has invalid operand number%<::%E%> has not been declared%<::%E%> is not a class or namespace%<::%E%> is not a class, namespace, or enumeration%<::%E%> is not a type%<[*]%> not in a declaration%<__alignof%> applied to a bit-field%<__builtin_longjmp%> second argument must be 1%<__builtin_next_arg%> called without an argument%<__label__%> not at the beginning of a block%<__thread%> before %%<__thread%> before %%<__thread%> used with %%<__thread%> used with %%<__thread%> used with %% in file-scope empty declaration% not permitted with -fno-rtti% without a previous %% declared in % loop initial declaration% attribute directive ignored% loop initial declarations are only allowed in C99 mode% in empty declaration% is too long for GCC% invalid for %qs% and % specified together for %qs% invalid for %qs% or % invalid for %qs% definition is not allowed here% function does return% value must be positive% must return type %qT% takes type %qT as first parameter% must not return NULL unless it is declared % (or -fcheck-new is in effect)% must return type %qT% takes type % (%qT) as first parameter% in file-scope empty declaration% with a value, in function returning void% with no value, in function returning non-void% invalid for %qs% or % invalid for %qs% and % specified together for %qs% or % invalid for %qs% applied to a bit-field% declared in % loop initial declaration% is unavailable for static member functions% may not be used in this context% names %q#T, which is not a class template% names %q#T, which is not a type% applied to a bit-field% declared in % loop initial declaration% used in function with fixed args% outside class declaration% must be the only parameter%E qualifier ignored on asm%Kcall to %qs declared with attribute error: %s%Kcall to %qs declared with attribute warning: %s%d constructor found ! %d constructors found ! %d destructor found ! %d destructors found ! %d frame table found ! %d frame tables found ! %q#D has incomplete type%q#T has pointer data members%q#T has virtual functions and accessible non-virtual destructor%q#T is not a class%q#T is not a class or a namespace%q+#D previously declared here%q+#D previously defined here%q+D declared as a friend%q+D declared here%q+D is too small to hold all values of %q#T%q+D is usually a function%q+D may not be static because it is a member of a union%q+D may not have reference type %qT because it is a member of a union%q+D redeclared as different kind of symbol%q+D takes only zero or two arguments%q+D used prior to declaration%q+D was hidden%q+D will be initialized after%q+D: visibility attribute ignored because it%qD cannot have default arguments%qD declared as a non-parameter%qD declared as reference but not initialized%qD declared here%qD has a previous declaration here%qD has already been defined%qD has an incomplete type%qD has the same name as the class in which it is declared%qD is a namespace%qD is deprecated (declared at %s:%d)%qD is deprecated (declared at %s:%d): %s%qD is normally a non-static function%qD is not a class or namespace%qD is not a member of %qD%qD is not a namespace-name%qD is not a template%qD is not a template function%qD is not a variable%qD is not defined outside of function scope%qD is used uninitialized in this function%qD must not have variable number of arguments%qD must take either one or two arguments%qD must take either zero or one argument%qD must take exactly one argument%qD must take exactly two arguments%qD redeclared with different visibility%qD should be initialized in the member initialization list%qD was declared %qs which implies default visibility%qD was declared here%qD was not declared in this scope%qD was used with no declaration before its definition%qD was used with no prototype before its definition%qE attribute allows only an integer constant argument%qE attribute applies only to functions%qE attribute argument should be between 18 to 255%qE attribute conflicts with attribute %s%qE attribute does not apply to types%qE attribute have effect only on public objects%qE attribute ignored%qE attribute ignored because %qT is already defined%qE attribute ignored for %qE%qE attribute ignored for field of type %qT%qE attribute ignored on non-class types%qE attribute only applies to function types%qE attribute only applies to functions, not %s%qE attribute only applies to variables%qE attribute only applies to variables and functions%qE attribute only applies to variadic functions%qE attribute requires a string constant argument%qE attribute requires an integer constant argument%qE attribute requires prototypes with named arguments%qE declared as function returning a function%qE declared as function returning an array%qE defined as wrong kind of tag%qE does not have class type%qE does not name a type%qE fails to be a typedef or built in type%qE has not been declared%qE implies default visibility, but %qD has already been declared with a different visibility%qE in namespace %qE does not name a type%qE is an unrecognized format function type%qE is deprecated%qE is deprecated (declared at %s:%d)%qE is deprecated (declared at %s:%d): %s%qE is deprecated: %s%qE is not a class or namespace%qE is not a class, namespace, or enumeration%qE is not a template%qE is not a type%qE is not a valid template argument for type %qT because it is not an object with external linkage%qE is not an Objective-C class name or alias%qE is not at beginning of declaration%qE is not initialized%qE is not of type %qT%qE is obsolete; g++ vtables are now COM-compatible by default%qE is used uninitialized in this function%qE may be used uninitialized in this function%qE may not respond to %<%c%E%>%qE redeclared as different kind of symbol%qE undeclared (first use in this function)%qE undeclared here (not in a function)%qT has no member named %qE%qT is not a class or namespace%qT is not a class type%qT is not a class, struct, or union type%qT is not a namespace%qT is not a template%qT is promoted to %qT when passed through %<...%>%qT is/uses anonymous type%qs attribute ignored%qs declared as function returning a function%qs declared as function returning an array%qs expects a constant argument%qs has both % and initializer%qs has overflowed%qs initialized and declared %%qs is narrower than values of its type%qs specified for parameter %qE%qs specified for structure field%qs specified for structure field %qE%qs specified for unnamed parameter%s%s ! %s %+#T%s %qs%s %s %p %d ! %s %s%s ! %s %s(%E) %p %d %s '%s' ! %s at %L must be INTEGER%s attribute at %L is not allowed outside of the specification part of a module%s does not support %%n$ operand number formats%s does not support the %<%%%c%> %s format%s does not support the %<%%%s%c%> %s format%s does not support the %qs %s length modifier%s in format string at %L%s statement expected at %L%s statement not allowed in PURE procedure at %C%s%s%s %sversion %s (%s) ! %s compiled by GNU C version %s, %s%s%s %sversion %s (%s) compiled by CC, %s%swarning: %s header version %s differs from library version %s. ! %s-%s is an empty range%s: %s%s: --param arguments should be of the form NAME=VALUE%s: Cannot open output file: %s %s: Failed to close output file %s ! %s: PCH file was invalid%s: cannot open as COFF file%s: couldn%'t open PCH file: %m%s: not a COFF file%s:%d: confused by earlier errors, bailing out ! %s:no functions found ! %s:not a gcov data file ! %s:unknown function '%u' ! '' ' flag'!' flag'#' flag'%s' and '%s' arguments of '%s' intrinsic at %L must have identical shape.'%s' and '%s' arguments of '%s' intrinsic at %L must have the same type'%s' argument of '%s' intrinsic at %L cannot be INTENT(IN)'%s' argument of '%s' intrinsic at %L has invalid permutation of dimensions (dimension '%d' duplicated)'%s' argument of '%s' intrinsic at %L has negative element (%d)'%s' argument of '%s' intrinsic at %L has out-of-range dimension (%d)'%s' argument of '%s' intrinsic at %L has wrong number of elements (%d/%d)'%s' argument of '%s' intrinsic at %L is empty'%s' argument of '%s' intrinsic at %L is not a valid dimension index'%s' argument of '%s' intrinsic at %L must be %s'%s' argument of '%s' intrinsic at %L must be ALLOCATABLE'%s' argument of '%s' intrinsic at %L must be INTEGER or LOGICAL'%s' argument of '%s' intrinsic at %L must be INTEGER or PROCEDURE'%s' argument of '%s' intrinsic at %L must be INTEGER or REAL'%s' argument of '%s' intrinsic at %L must be REAL or COMPLEX'%s' argument of '%s' intrinsic at %L must be a POINTER or a TARGET'%s' argument of '%s' intrinsic at %L must be a constant'%s' argument of '%s' intrinsic at %L must be a logical array'%s' argument of '%s' intrinsic at %L must be a non-derived type'%s' argument of '%s' intrinsic at %L must be a numeric type'%s' argument of '%s' intrinsic at %L must be a pointer or target VARIABLE or FUNCTION'%s' argument of '%s' intrinsic at %L must be a scalar'%s' argument of '%s' intrinsic at %L must be a variable'%s' argument of '%s' intrinsic at %L must be an array'%s' argument of '%s' intrinsic at %L must be default real'%s' argument of '%s' intrinsic at %L must be double precision'%s' argument of '%s' intrinsic at %L must be numeric or LOGICAL'%s' argument of '%s' intrinsic at %L must be of a dummy variable'%s' argument of '%s' intrinsic at %L must be of an OPTIONAL dummy variable'%s' argument of '%s' intrinsic at %L must be of an extensible type'%s' argument of '%s' intrinsic at %L must be of kind %d'%s' argument of '%s' intrinsic at %L must be of rank %d'%s' argument of '%s' intrinsic at %L must be of rank 1 or 2'%s' argument of '%s' intrinsic at %L must be the same kind as '%s''%s' argument of '%s' intrinsic at %L must be the same type and kind as '%s''%s' argument of '%s' intrinsic at %L must have a type of either REAL or INTEGER'%s' argument of '%s' intrinsic at %L must have the same rank as '%s' or be a scalar'%s' argument of '%s' intrinsic at %L must not be OPTIONAL'%s' argument of '%s' intrinsic at %L must not be a subobject of '%s''%s' argument of '%s' intrinsic at %L must not be present if 'x' is COMPLEX'%s' at %C is not a variable'%s' at %L already is initialized at %L'%s' at %L is ambiguous'%s' at %L is not a VALUE'%s' at %L is of the ABSTRACT type '%s'''' flag'(' flag')' expected at %C'+' flag'-' flag'0' flag'E' modifier'I' flag'MOLD' argument of 'TRANSFER' intrinsic at %L must not be %s'O' modifier'^' flag'_' flag'a%d' argument of '%s' intrinsic at %L must be %s(%d)'a' flag'a1' argument of '%s' intrinsic at %L must be INTEGER, REAL or CHARACTER'm' flag'q' flag'shape' argument of 'reshape' intrinsic at %L must be an array of constant size'source' argument of 'shape' intrinsic at %L must not be an assumed size array(C)(Messages without a matching method signature(anonymous)(if you use %<-fpermissive%> G++ will accept your code)(near initialization for %qs)(perhaps % was intended)(perhaps a semicolon is missing after the definition of %qT)(so you should pass %qT not %qT to %)(static destructors for %s)({anonymous})--resource requires -o-I- specified twice-Wformat-contains-nul ignored without -Wformat-Wformat-extra-args ignored without -Wformat-Wformat-nonliteral ignored without -Wformat-Wformat-security ignored without -Wformat-Wformat-y2k ignored without -Wformat-Wformat-zero-length ignored without -Wformat-Wnormalized= Warn about non-normalised Unicode strings-bundle not allowed with -dynamiclib-bundle_loader not allowed with -dynamiclib-client_name not allowed with -dynamiclib-current_version only allowed with -dynamiclib-fPIC is not supported-fexcess-precision=standard for C++-fhandle-exceptions has been renamed -fexceptions (and is now on by default)-force_flat_namespace not allowed with -dynamiclib-fpic and -mapcs-reent are incompatible-install_name only allowed with -dynamiclib-isysroot Set to be the system root directory-isystem Add to the start of the system include path-keep_private_externs not allowed with -dynamiclib-m64 requires PowerPC64 architecture, enabling-m64 requires a PowerPC64 cpu-mapcs-stack-check incompatible with -mno-apcs-frame-mbig-endian and -mlittle-endian may not be used together-mc= must be -mc=tiny, -mc=near, or -mc=far-mclip currently has no effect without -mminmax-mcorea and -mcoreb can%'t be used together-mcpu=%s conflicts with -march=%s-mcpu=%s is not valid-mmultiple is not supported on little endian systems-mpcrel -fPIC is not currently supported on selected cpu-mshared-library-id= specified without -mid-shared-library-mstring is not supported on little endian systems-mvsx and -mno-altivec are incompatible-mvsx and -mpaired are incompatible-mvsx used with little endian code-pipe not supported-private_bundle not allowed with -dynamiclib31 bit ABI64 bit ABI64-bit ABI not supported in ESA/390 mode ! A synonym for -std=c89 (for C) or -std=c++98 (for C++)AAPCS does not support -mcallee-super-interworkingAAPCS does not support -mcaller-super-interworkingABSTRACT type '%s' used at %LASYNCHRONOUS= specifier at %L must be an initialization expressionActual argument for '%s' cannot be an assumed-size array at %LActual argument for '%s' must be a pointer at %LAlias for --help=targetAlign code and data to 32 bitsAlign the start of functionsAlign the start of loopsAlign variables on a 32-bit boundaryAllocatable '%s' at %L cannot have an initializerAllow gcc to use the repeat/erepeat instructionsAllow the arguments of the '?' operator to have different typesAllow the use of MT instructionsAllow the use of hardware floating-point ABI and instructionsAltiVec argument passed to unprototyped functionAlways treat bitfields as int-sizedAmbiguous symbol in TYPE definition at %CArgument '%s' of '%s' with PASS(%s) at %L may not be ALLOCATABLEArgument '%s' of '%s' with PASS(%s) at %L may not have the POINTER attributeArgument '%s' of '%s' with PASS(%s) at %L must be of the derived type '%s'Argument '%s' of '%s' with PASS(%s) at %L must be scalarArgument of %s at %L must be of length oneArgument of %s function at %L is negativeArgument of %s function at %L outside of range [0,127]Argument of FINAL procedure at %L must be of type '%s'Argument types of '%s' intrinsic at %L must match (%s/%s)Arithmetic NaN converting %s to %s at %L. This check can be disabled with the option -fno-range-checkArithmetic overflow converting %s to %s at %L. This check can be disabled with the option -fno-range-checkArithmetic underflow converting %s to %s at %L. This check can be disabled with the option -fno-range-checkArray reference at %C cannot have more than %d dimensionsArray reference at %L is out of bounds (%ld < %ld) in dimension %dArray reference out of boundsAssembler options ! ================= ! Assignment operator interface at %L must not redefine an INTRINSIC type assignmentAssignment to a FORALL index variable at %LAttribute at %L is not allowed in a TYPE definitionAutomatic array '%s' at %L cannot have an initializerBlock label is not appropriate for IF statement at %CBlock label not appropriate for arithmetic IF statement at %CBranch at %L may result in an infinite loopBranches executed:%s of %d ! CASE label at %L overlaps with CASE label at %LCHARACTER expression at %L is being truncated (%d/%d)CHARACTER(*) function '%s' at %L cannot be array-valuedCHARACTER(*) function '%s' at %L cannot be pointer-valuedCHARACTER(*) function '%s' at %L cannot be pureCHARACTER(*) function '%s' at %L cannot be recursiveCLOSE statement not allowed in PURE procedure at %CCalls executed:%s of %d ! Can't convert %s to %s at %LCan't delete module file '%s': %sCan't delete temporary module file '%s': %sCan't open file '%s'Can't open module file '%s' for reading at %C: %sCan't open module file '%s' for writing at %C: %sCan't rename module file '%s' to '%s': %sCannot assign to a named constant at %CCheck the return value of newCode size: small, medium or largeCompile all program units at once and check all interfacesConflict in attributes of function argument at %CConform to nothing in particularConform to the ISO 1990 C standardConform to the ISO 1990 C standard as amended in 1994Conform to the ISO 1990 C standard with GNU extensionsConform to the ISO 1999 C standardConform to the ISO 1999 C standard with GNU extensionsConform to the ISO 2011 C++ standard (experimental and incomplete support)Conform to the ISO 201y(7?) C++ draft standard (experimental and incomplete support)Conform to the ISO Fortran 2003 standardConform to the ISO Fortran 2008 standardConform to the ISO Fortran 95 standardConversion from %s to %s at %LCray pointer at %C has %d bytes of precision; memory addresses require %d bytesCray pointer at %C must be an integerCreate GUI applicationCreate a position independent executableCreate a shared libraryCreate console applicationDATA statement at %C is not allowed in a PURE procedureData element above array upper bound at %LData element below array lower bound at %LData is stored in big-endian format.Data is stored in little-endian format. (Default).Deprecated in favor of -std=c99Deprecated. This switch has no effectDerived-type '%s' with BIND(C) must not have a CONTAINS section at %CDerived-type '%s' with SEQUENCE must not have a CONTAINS section at %CDifferent types in pointer assignment at %L; attempted assignment of %s to %sDisplay contents of a class file in readable form. ! ! Display the compiler's versionDivision by zero at %LDivision by zero converting %s to %s at %LDo not discard commentsDo not discard comments in macro expansionsDo not generate #line directivesDo not suppress warnings from system headersDo not use MDMX instructionsDo not use MIPS-3D instructionsDo not use hardware FPDo not use hardware floating pointDo not warn about using "long long" when -pedanticDon't warn about uses of Microsoft extensionsDummy '%s' at %L cannot have an initializerDummy procedure '%s' at %C cannot have a generic interfaceDuplicate %s attribute at %LDuplicate %s attribute specified at %LDuplicate %s label specification at %CDuplicate %s specification at %CDuplicate BIND attribute specified at %LDuplicate ELSE statements at %L and %CDuplicate EXTENDS attribute specified at %LDuplicate NML specification at %CDuplicate POINTER attribute at %CDuplicate SAVE attribute specified at %LDuplicate VALUE attribute specified at %LDuplicate access-specifier at %CDuplicate format specification at %CDuplicate symbol '%s' in formal argument list at %CELEMENTAL function '%s' at %L must have a scalar resultEND tag label %d at %L not definedENUM definition statement expected before %CEOR tag label %d at %L not definedERR tag label %d at %L not definedESA/390 architectureEXTERNAL attribute conflicts with FUNCTION attribute in '%s' at %LElement in %s array constructor at %L is %sEmpty IMPLICIT statement at %CEmpty array constructor at %C is not allowedEnable 32-bit divide instructionsEnable 32-bit multiply instructionsEnable CFI tables via GAS assembler directives.Enable all -Wunused- warningsEnable average instructionsEnable bit manipulation instructionsEnable clip instructionsEnable conditional movesEnable debug outputEnable divide and modulus instructionsEnable exception handlingEnable function profilingEnable garbage collection (GC) in Objective-C/Objective-C++ programsEnable min/max instructionsEnable multicore supportEnable multiply instructionsEnable saturation instructionsEnable sign extend instructionsEnable the normal modeEnable user-defined instructionsEnd of search list. ! Enumerator exceeds the C integer type at %CError count reached limit of %d.Error writing modules file: %sError:Expected ")" at %CExpected "," at %CExpected "," or end of statement at %CExpected '(' at %CExpected ',' at %CExpected '::' after binding-attributes at %CExpected '::' at %CExpected '=>' at %CExpected 'END INTERFACE ASSIGNMENT (=)' at %CExpected :: in TYPE definition at %CExpected = sign in PARAMETER statement at %CExpected PARAMETER symbol in complex constant at %CExpected a CASE or END SELECT statement following SELECT CASE at %CExpected a nameless interface at %CExpected a procedure for argument '%s' at %LExpected a procedure pointer for argument '%s' at %LExpected a right parenthesis in expression at %CExpected a step value in iterator at %CExpected access-specifier at %CExpected alternate return label at %CExpected an initialization expression at %CExpected another dimension in array declaration at %CExpected argument list at %CExpected array subscript at %CExpected binding attribute at %CExpected binding name at %CExpected binding target after '=>' at %CExpected block name of '%s' in %s statement at %CExpected component reference at %CExpected exponent in expression at %CExpected expression at %C in PARAMETER statementExpected expression in %s statement at %CExpected formal argument list in function definition at %CExpected generic name or operator descriptor at %CExpected initialization expression at %CExpected initialization expression in CASE at %CExpected label '%s' for %s statement at %CExpected module procedure name at %CExpected scalar initialization expression at %CExpected specific binding name at %CExpected terminating name at %CExpected type-bound procedure or procedure pointer component at %CExpected variable in READ statement at %CExpected variable name at %CExpected variable name at %C in PARAMETER statementExpecting %s statement at %CExpecting 'END INTERFACE %s' at %CExpecting 'END INTERFACE OPERATOR (.%s.)' at %CExpression in CASE statement at %L must be of kind %dExpression in CASE statement at %L must be of type %sExpression in CASE statement at %L must be scalarExtension: Conversion from %s to %s at %LExtension: Missing positive width after L descriptor at %LExternal '%s' at %L cannot have an initializerExternal object '%s' at %L may not have an initializerFORMAT label %d at %L not definedFP exceptions are enabledFatal Error:First or last !$OMP ATOMIC intrinsic argument must be '%s' at %LFor bug reporting instructions, please see: %s. ! Function '%s' at %L cannot be called recursively, as it is not RECURSIVEFunction '%s' at %L cannot have an initializerFunction '%s' requires an argument list at %CFunction name '%s' not allowed at %CGCC supports only %u nested scopesGMP version %s, MPFR version %s, MPC version %s ! GNU C no longer supports -traditional without -EGenerate 32-bit codeGenerate 32bit i386 codeGenerate 64-bit codeGenerate 64bit x86-64 codeGenerate Cell microcodeGenerate H8/300H codeGenerate H8S codeGenerate H8S/2600 codeGenerate H8SX codeGenerate ILP32 codeGenerate LP64 codeGenerate MIPS16 codeGenerate PA1.0 codeGenerate PA1.1 codeGenerate PA2.0 code (requires binutils 2.10 or later)Generate SH1 codeGenerate SH2 codeGenerate SH2e codeGenerate SH3 codeGenerate SH3e codeGenerate SH4 codeGenerate SH4-100 FPU-less codeGenerate SH4-100 codeGenerate SH4-200 FPU-less codeGenerate SH4-200 codeGenerate SH4-300 FPU-less codeGenerate SH4-300 codeGenerate SH4a codeGenerate SH4al-dsp codeGenerate SHcompact codeGenerate big endian codeGenerate big-endian codeGenerate bit instructionsGenerate code for GNU asGenerate code for GNU assembler (gas)Generate code for GNU ldGenerate code for GNU runtime environmentGenerate code for NeXT (Apple Mac OS X) runtime environmentGenerate code for a 5206eGenerate code for a 520XGenerate code for a 528xGenerate code for a 5307Generate code for a 5407Generate code for a 68000Generate code for a 68010Generate code for a 68020Generate code for a 68030Generate code for a 68040Generate code for a 68040, without any new instructionsGenerate code for a 68060Generate code for a 68060, without any new instructionsGenerate code for a 68302Generate code for a 68332Generate code for a 68851Generate code for a DLLGenerate code for the Android platform.Generate code in big endian modeGenerate code suitable for executables (NOT shared libs)Generate code that uses 68881 floating-point instructionsGenerate debug information in VMS formatGenerate debug information in XCOFF formatGenerate debug information in extended STABS formatGenerate isel instructionsGenerate little endian codeGenerate little-endian codeGenerate make dependenciesGenerate make dependencies and compileGenerate normal-mode codeISO C does not allow extra %<;%> outside of a functionISO C does not support %<++%> and %<--%> on complex typesISO C does not support %<~%> for complex conjugationISO C does not support complex integer typesISO C does not support plain % meaning %ISO C does not support saturating typesISO C forbids % with expression, in function returning voidISO C forbids an empty translation unitISO C forbids assignment between function pointer and %ISO C forbids braced-groups within expressionsISO C forbids casting nonscalar to the same typeISO C forbids casts to union typeISO C forbids comparison of % with function pointerISO C forbids conditional expr between % and function pointerISO C forbids conditional expr with only one void sideISO C forbids const or volatile function typesISO C forbids conversion of function pointer to object pointer typeISO C forbids conversion of object pointer to function pointer typeISO C forbids empty initializer bracesISO C forbids forward parameter declarationsISO C forbids forward references to % typesISO C forbids initialization between function pointer and %ISO C forbids member declarations with no membersISO C forbids nested functionsISO C forbids omitting the middle term of a ?: expressionISO C forbids ordered comparisons of pointers to functionsISO C forbids return between function pointer and %ISO C forbids subscripting % arrayISO C forbids zero-size arrayISO C forbids zero-size array %qEISO C prohibits argument conversion to union typeISO C requires a named argument before %<...%>ISO C restricts enumerator values to range of %ISO C++ 1998 does not support %ISO C++ forbids calling %<::main%> from within programISO C++ forbids casting between pointer-to-function and pointer-to-objectISO C++ forbids casting to an array type %qTISO C++ forbids comparison between pointer and integerISO C++ forbids comparison between pointer of type % and pointer-to-functionISO C++ forbids computed gotosISO C++ forbids conditional expression between pointer of type % and pointer-to-functionISO C++ forbids conversion between pointer of type % and pointer-to-functionISO C++ forbids declaration of %qs with no typeISO C++ forbids decrementing a pointer of type %qTISO C++ forbids decrementing an enumISO C++ forbids incrementing a pointer of type %qTISO C++ forbids incrementing an enumISO C++ forbids initialization of member constant %qD of non-integral type %qTISO C++ forbids omitting the middle term of a ?: expressionISO C++ forbids taking address of function %<::main%>ISO C++ forbids using pointer of type % in subtractionISO C++ forbids using pointer to a function in subtractionISO C++ forbids using pointer to a method in subtractionISO C++ forbids variable length arrayISO C++ forbids variable length array %qDISO C++ forbids zero-size arrayISO C++ forbids zero-size array %qDISO C++ prohibits anonymous structsISO C++ prohibits overloading operator ?:ISO C++ says that these are ambiguous, even though the worst conversion for the first is better than the worst conversion for the second:ISO C90 does not support %<[*]%> array declaratorsISO C90 does not support %ISO C90 does not support % or type qualifiers in parameter array declaratorsISO C90 does not support complex typesISO C90 does not support flexible array membersISO C90 forbids array %qE whose size can%'t be evaluatedISO C90 forbids array whose size can%'t be evaluatedISO C90 forbids compound literalsISO C90 forbids mixed declarations and codeISO C90 forbids variable length arrayISO C90 forbids variable length array %qEIgnoring statement label in empty statement at %LIllegal character in BOZ constant at %CIn constructor %qsIn copy constructor %qsIn destructor %qsIn function %qsIn lambda functionIn member function %qsIn static member function %qsIncompatible ranks %d and %d in assignment at %LIncompatible types in DATA statement at %L; attempted conversion of %s to %sIncorrect function return valueInitialization at %C is not allowed in a PURE procedureInitialization at %C isn't for a pointer variableInitialization of variable at %C is not allowed in a PURE procedureInitializing already initialized variable at %CInteger too large at %CInterface mismatch in procedure pointer assignment at %L: %sInterface-name expected after '(' at %CInternal Error at (1):Internal procedure '%s' is invalid in procedure pointer assignment at %LIntrinsic '%s' at %L cannot have an initializerIntrinsic '%s' at %L must have at least two argumentsInvalid character in name at %CInvalid form of array reference at %CInvalid initializer %s in Data statement at %CInvalid procedure argument at %LInvalid procedure pointer assignment at %LInvalid value for %s specification at %CIterator step at %L cannot be zeroJava class %qT cannot have a destructorJava class %qT cannot have an implicit non-trivial destructorJunk after CALL at %CKeyword argument '%s' at %L is already associated with another actual argumentKeyword argument '%s' at %L is not in the procedureLabel %d at %L defined but cannot be usedLabel %d at %L defined but not usedLabel '%s' at %C doesn't match IF label '%s'Like -M but ignore system header filesLike -MD but ignore system header filesLines executed:%s of %d ! Make "char" signed by defaultMake "char" unsigned by defaultMake integers 32 bits wideMemory allocation failedMissing '(' in statement at or before %LMissing ')' in statement at or before %LMissing argument list in function '%s' at %CMissing argument to '%s' at %CMissing dimension specification at %CMissing format label at %CMissing kind-parameter at %CMissing right parenthesis at %CModule %s at line %d column %d: %sMultiple identifiers provided with single NAME= specifier at %CNULL used in arithmeticName '%s' at %C is already defined as a generic interface at %LName '%s' at %C is the name of the procedureName at %C is too longNo binding name is allowed in BIND(C) at %CNo branches No calls No executable lines ! Non-numeric character in statement label at %CNonstandard type declaration %s*%d at %CNot a valid Java .class file. ! Object '%s' is not a variable at %LOld-style type declaration %s*%d not supported at %COnly use 32 FPRsOnly use 32 GPRsOptions: ! Out of stack space. ! PARAMETER at %L is missing an initializerPRINT statement at %C not allowed within PURE procedurePRINT_OPERAND null pointerPRINT_OPERAND_ADDRESS, null pointerPROCEDURE at %C must be in a generic interfacePROCEDURE attribute conflicts with INTENT attribute in '%s' at %LPROCEDURE attribute conflicts with RESULT attribute in '%s' at %LPROCEDURE attribute conflicts with SAVE attribute in '%s' at %LPROTECTED at %C only allowed in specification part of a modulePeriod required in format specifier %s at %LPeriod required in format specifier at %LPermit '$' as an identifier characterPlease submit a full bug report, ! with preprocessed source if appropriate. ! Pointers are 32-bitPointers are 64-bitPositive width required in format specifier %s at %LPrevent the use of all hardware floating-point instructionsPrint extra (possibly unwanted) warningsProcedure '%s' at %C has an explicit interface and must not have attributes declared at %LProcedure '%s' at %C is already defined at %LProcedure '%s' at %L may not have basic type of %sProduce big endian codeProduce little endian codeRESULT variable at %C must be different than function nameReading module %s at line %d column %d: %sRecognize C++ keywords like "compl" and "xor"Recognize GNU-defined keywordsRecognize built-in functionsRecognize the "asm" keywordRestrict the use of hardware floating-point instructions to 32-bit operationsReturn type of BIND(C) function '%s' at %L cannot be a character stringReturn type of BIND(C) function '%s' at %L cannot be an arrayReturn value of function '%s' at %L not setSAVE attribute at %L cannot be specified in a PURE procedureSegmentation FaultSemicolon at %C needs to be preceded by statementSet start-address of dataSet start-address of the programSize of '%s' argument of '%s' intrinsic at %L too small (%i/%i)Statement function '%s' is invalid in procedure pointer assignment at %LStatement function '%s' requires argument list at %CString length at %L is too largeSubstring end index at %L is too largeSupport multi-threadingSuppress warningsSymbol '%s' already declaredSymbol '%s' at %C is already an external symbol that is not COMMONSymbol '%s' at %C is already in a COMMON blockSymbol '%s' at %L is ambiguousSymbol '%s' is used before it is typed at %LSymbol '%s' must be a PARAMETER in DATA statement at %CSymbol at %C is not appropriate for an expressionSynonym for -WcommentSyntax error in !GCC$ ATTRIBUTES statement at %CSyntax error in %s statement at %CSyntax error in ABSTRACT INTERFACE statement at %CSyntax error in CASE specification at %CSyntax error in CHARACTER declaration at %CSyntax error in CLASS IS specification at %CSyntax error in ENUMERATOR definition at %CSyntax error in I/O iterator at %CSyntax error in IF-clause at %CSyntax error in IF-expression at %CSyntax error in IMPORT statement at %CSyntax error in PROCEDURE statement at %CSyntax error in PROTECTED statement at %CSyntax error in SAVE statement at %CSyntax error in TYPE IS specification at %CSyntax error in VALUE statement at %CSyntax error in VOLATILE statement at %CSyntax error in argument list at %CSyntax error in array constructor at %CSyntax error in character length specification at %CSyntax error in data declaration at %CSyntax error in generic specification at %CSyntax error in iterator at %CSyntax error in procedure pointer component at %CSyntax error: Trailing garbage in END INTERFACE statement at %CSyntax error: Trailing garbage in INTERFACE statement at %CThe CHARACTER elements of the array constructor at %L must have the same length (%d/%d)The size of L1 cacheThe size of L2 cacheThis is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *************** FITNESS FOR A PARTICULAR PURPOSE. *** 110,139 **** warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. This switch lacks documentationThread model: %s ! Treat all warnings as errorsTreat missing header files as generated filesTreat specified warning as errorTreat the input file as already preprocessedTry 'jcf-dump --help' for more information. ! Usage: %s [OPTIONS]... CLASSNAMEmain [OUTFILE] Usage: %s [options] file... Usage: jcf-dump [OPTION]... CLASS... ! Use 128-bit long doubleUse 16 bit intUse 32 bit floatUse 32 bit intUse 32-bit floating-point registersUse 64 bit floatUse 64-bit floating-point registersUse 64-bit long doubleUse AltiVec instructionsUse EABIUse a 32-bit long typeUse a 64-bit long typeUse indirect callsUse software floating pointWarn about C constructs that are not in the common subset of C and C++Warn about PCH files that are found but not usedWarn about an empty body in an if or else statementWarn about casting functions to incompatible typesWarn about comparison of different enum typesWarn about compile-time integer division by zeroWarn about features not present in traditional CWarn about format strings that are not literalsWarn about format strings that contain NUL bytesWarn about function pointer arithmeticWarn about global functions without prototypesWarn about implicit function declarationsWarn about invalid uses of the "offsetof" macroWarn about misuses of pragmasWarn about multiple declarations of the same objectWarn about non-virtual destructorsWarn about overflow in arithmetic expressionsWarn about overloaded virtual function namesWarn about packed bit-fields whose offset changed in GCC 4.4Warn about possible security problems with format functionsWarn about possibly missing parenthesesWarn about printf/scanf/strftime/strfmon format string anomaliesWarn about returning structures, unions or arraysWarn about strftime formats yielding 2-digit yearsWarn about subscripts whose type is "char"Warn about suspicious declarations of "main"Warn about suspicious uses of memory addressesWarn about unprototyped function declarationsWarn about unrecognized pragmasWarn about unsuffixed float constantsWarn about use of multi-character character constantsWarn about user-specified include directories that do not existWarn about variables which are initialized to themselvesWarn about violations of Effective C++ style rulesWarn about zero-length formatsWarn for implicit type conversions between signed and unsigned integersWarn if a C-style cast is used in a programWarn if a comparison is always true or always false due to the limited range of the data typeWarn if an undefined macro is used in an #if directiveWarn if inherited methods are unimplementedWarn when a declaration does not specify a typeWarn when a function is unusedWarn when a function parameter is unusedWarn when a label is unusedWarn when a variable is unusedWarn when all constructors and destructors are privateWarn when the compiler reorders codeWarn whenever a function's return type defaults to "int" (C), or about inconsistent return types (C++)Warning:[disabled][enabled]`a parameter list with an ellipsis can%'t match an empty parameter name list declarationa storage class can only be specified for objects and functionsaddress of global register variable %qD requestedaddress of register variable %qD requestedalignment must be a small power of two, not %dalloc_size parameter outside rangealso found %<%c%s%>an anonymous struct cannot have function membersan anonymous union cannot have function membersan argument type that has a default promotion can%'t match an empty parameter name list declarationanonymous %s declared inside parameter listargs to be formatted is not %<...%>argument %qD doesn%'t match prototypearray index in initializer exceeds array boundsarray initialized from non-constant array expressionarray initialized from parenthesized string constantarray of inappropriate type initialized from string constantarray size missing in %q+Darray subscript has type %array subscript is not an integerarray type has incomplete element typeasm declaration ignored due to conflict with previous renameassertion missing after %qsassignment (not initialization) in declarationassignment from incompatible pointer typeassignment makes integer from pointer without a castassignment makes pointer from integer without a castassignment of constant field %qDassignment of read-only member %qDassignment of read-only variable %qDattributes in parameter array declarator ignoredautomatic variable %qE cannot be %bad zip/jar file %sbadly nested C headers from preprocessorbit-field %q+#D with non-integral typebit-field %q+D width not an integer constantbit-field %qs has invalid typebit-field %qs width not an integer constantbraces around scalar initializerbreak statement not within loop or switchbuilt-in function %q+D declared as non-functionbut not herecan%'t create precompiled header %s: %mcan%'t read %s: %mcan%'t write %s: %mcan%'t write to %s: %mcan't open input file: %scandidate 1:candidate 2:candidate is: %+#Dcandidates are:candidates are: %+#Dcannot call member function %qD without objectcannot convert %qT to %qT for argument %qP to %qDcannot convert to a pointer typecannot convert type %qT to type %qTcannot disable built-in function %qscannot inline function %cannot optimize possibly infinite loopscannot put object with volatile field into registercannot take address of bit-field %qDcannot use mode %qs for enumeral typescannot use typeid with -fno-rtticase label does not reduce to an integer constantcase label is not an integer constant expressioncase label value exceeds maximum value for typecase label value is less than minimum value for typecase value %qs not in enumerated typecase value %qs not in enumerated type %qTcast from %qT to %qT loses precisioncast from function call of type %qT to non-matching type %qTcast from pointer to integer of different sizecast increases required alignment of target typecast specifies array typecast specifies function typecast to pointer from integer of different sizecast to union type from type not present in unionchar-array initialized from wide stringclass %qT does not have any field named %qDcleanup argument not a functioncleanup argument not an identifierclosing dependency file %s: %mcode model %s does not support PIC modecomma at end of enumerator listcomparing floating point with == or != is unsafecomparison always false due to limited range of data typecomparison always true due to limited range of data typecomparison between pointer and integercomparison between signed and unsigned integer expressionscomparison between types %qT and %qTcomparison is always false due to limited range of data typecomparison is always true due to limited range of data typecomparison of unsigned expression < 0 is always falsecomparison of unsigned expression >= 0 is always truecomparisons like % do not have their mathematical meaningcomplex floating point overflow in expressioncomplex integer overflow in expressionconflicting type qualifiers for %q+Dconflicting types for %q+Dconflicting types for built-in function %q+Dconstructors cannot be declared virtualcontinue statement not within a loopcontrol reaches end of non-void functionconversion from %qT to %qT discards qualifiersconversion from %qT to %qT is ambiguousconversion lacks type at end of formatconversion of unsigned constant value to negative integerconversion to non-scalar type requestedconverting NULL to non-pointer typeconverting from %qT to %qTconverting to non-pointer type %qT from NULLdata definition has no type or storage classdeclaration %qD does not declare anythingdeclaration does not declare anythingdeclaration of % variable %qD in % loop initial declarationdeclaration of %q+D shadows a built-in functiondeclaration of %qD as non-functiondeclaration of %qD as non-memberdeclaration of namespace %qD conflicts withdeclaration of non-variable %qD in % loop initial declarationdeclaration of static variable %qD in % loop initial declarationdecrement of pointer to unknown structuredecrement of read-only member %qDdecrement of read-only variable %qDdeprecated conversion from string constant to %qTdestructor cannot be static member functiondestructors may not have parametersdivision by zeroduplicate %duplicate %duplicate %duplicate (or overlapping) case valueduplicate case valuedwarf version %d is not supporteddynamic dependency %s not founddynamic_cast of %q#D to %q#T can never succeedembedded %<\0%> in formatempty declarationempty declaration with storage class specifier does not redeclare tagempty declaration with type qualifier does not redeclare tagempty left precision in %s formatempty precision in %s formatempty range specifiedempty scalar initializerenumeration value %qE not handled in switchenumeration values exceed range of largest integerenumerator value for %qE is not an integer constantenvironment variable DJGPP not definedenvironment variable DJGPP points to corrupt file '%s'environment variable DJGPP points to missing file '%s'error while parsing fields ! error while parsing methods ! error: expected class nameexpected string literalextra %<;%>extra brace group at end of initializerextra elements in scalar initializerextra semicolon in method definition specifiedextra semicolon in struct or union specifiedextra type qualifiers in format argument (argument %d)fatal error: field %qD has incomplete typefield widthfield width in printf formatfield width in scanf formatfield width in strfmon formatfield width in strftime formatfill characterfill character in strfmon formatfirst argument of %q+D should be %first argument to % not of type %floating constant exceeds range of %qTfloating constant misusedfloating constant truncated to zerofloating point overflow in expressionfopen: %sformat argument %d unused before used argument %d in $-style formatformat argument %d used more than once in %s formatformat is a wide character stringformat not a string literal and no format argumentsformat not a string literal, argument types not checkedformat not a string literal, format string not checkedformat string argument follows the args to be formattedformat string has invalid operand numberfound %<%c%s%>found a virtual definition for a GIMPLE registerfrom this locationfunction %q+F can never be copied because it receives a non-local gotofunction %q+F can never be copied because it saves address of local label in a static variablefunction %qD declared virtual inside a unionfunction %qD is initialized like a variablefunction called through a non-compatible typefunction declaration isn%'t a prototypefunction declared % has a % statementfunction definition declared %<__thread%>function definition declared %function definition declared %function definition declared %function definition has qualified void return typefunction does not return string typefunction might be possible candidate for %qs format attributefunction return type cannot be functionfunction return types not compatible due to %function returns address of local variablefunction types not truly compatible in ISO Cfunction-scope %qs implicitly auto and declared %<__thread%>gcc version %s %s gcov %s%s ! gfortran does not support -E without -cppglobal register variable %qD used in nested functionia64_print_operand: unknown codeidentifier %qE conflicts with C++ keywordif this code is reached, the program will abortignoring #pragma %s %signoring duplicate directory "%s" ignoring nonexistent directory "%s" ! ignoring return value of %qD, declared with attribute warn_unused_resultignoring return value of function declared with attribute warn_unused_resultimplicit declaration of function %qEin declaration %q+Dincompatible implicit declaration of built-in function %qDincompatible implicit declaration of function %qDincompatible type for argument %d of %qEincrement of pointer to unknown structureincrement of read-only member %qDincrement of read-only variable %qDinitialization from incompatible pointer typeinitialization makes integer from pointer without a castinitialization makes pointer from integer without a castinitialization of a flexible array memberinitialization of flexible array member in a nested contextinitializer element is not a constant expressioninitializer element is not computable at load timeinitializer element is not constantinitializer fails to determine size of %q+Dinitializer-string for array of chars is too longinstall: %s%s ! integer overflow in expressioninter-module optimizations not implemented for C++internal compiler error: internal error: sideeffect-insn affecting main effectinvalid #pragma %sinvalid %%C valueinvalid %%D valueinvalid %%E valueinvalid %%F valueinvalid %%G modeinvalid %%G valueinvalid %%H valueinvalid %%J codeinvalid %%J valueinvalid %%K valueinvalid %%L codeinvalid %%L valueinvalid %%M valueinvalid %%N valueinvalid %%O valueinvalid %%P valueinvalid %%R valueinvalid %%S valueinvalid %%T valueinvalid %%U valueinvalid %%d valueinvalid %%f valueinvalid %%h valueinvalid %%j codeinvalid %%j valueinvalid %%k valueinvalid %%m valueinvalid %%p valueinvalid %%q valueinvalid %%r valueinvalid %%s valueinvalid %%t/%%b valueinvalid %%u valueinvalid %%v valueinvalid %%x valueinvalid %%xn codeinvalid IACC argumentinvalid application of % to a bit-fieldinvalid application of % to a function typeinvalid application of %qs to a void typeinvalid argument to %<__builtin_frame_address%>invalid argument to %<__builtin_return_address%>invalid cast from type %qT to type %qTinvalid const_cast from type %qT to type %qTinvalid conversion from %qT to %qTinvalid increment expressioninvalid initialization of reference of type %qT from expression of type %qTinvalid initializerinvalid parameter type %qTinvalid pointer mode %qsinvalid second argument to %<__builtin_prefetch%>; using zeroinvalid third argument to %<__builtin_prefetch%>; using zeroinvalid use of %invalid use of array with unspecified boundsinvalid use of flexible array memberinvalid use of incomplete typedef %qDinvalid use of member %q+D in static member functioninvalid use of non-static data member %q+Dinvalid use of non-static member functioninvalid use of structure with flexible array memberinvalid use of undefined type %<%s %E%>invalid use of void expressionits scope is only this definition or declaration, which is probably not what you wantjump skips variable initializationjump to case labeljump to label %q+Djump to label %qDjunk at end of #pragma %sjunk at end of #pragma GCC coprocessor widthjunk at end of #pragma GCC memregs [0..16]junk at end of %<#pragma GCC pch_preprocess%>junk at end of %<#pragma GCC visibility%>junk at end of %<#pragma pack%>label label %q+D declared but not definedlabel %q+D defined but not usedlabel %qD defined herelarge integer implicitly truncated to unsigned typelayout of classes derived from empty class %qT may change in a future version of GCCld returned %d exit statusleft precisionleft precision in strfmon formatleft-hand operand of comma expression has no effectlength modifierlength modifier in printf formatlength modifier in scanf formatlength modifier in strfmon formatlibraries: %s ! library lib%s not foundlower value in case label range less than minimum value for typelvalue required as left operand of assignmentmacro name missing after %qsmalformed #pragma GCC visibility pushmalformed #pragma redefine_extname, ignoredmalformed #pragma weak, ignoredmalformed %<#pragma pack%> - ignoredmalformed %<#pragma pack(pop[, id])%> - ignoredmalformed %<#pragma pack(push[, id][, ])%> - ignoredmalformed '#pragma ms_struct {on|off|reset}', ignoringmalformed '#pragma ms_struct', ignoringmalformed '#pragma options', ignoringmay not use both -m32 and -m64missing $ operand number in formatmissing %<(%> after %<#pragma GCC visibility push%> - ignoredmissing %<(%> after %<#pragma pack%> - ignoredmissing '(' after '#pragma unused', ignoringmissing ')' after '#pragma unused', ignoringmissing Code attributemissing braces around initializermissing definitionmissing filename after %qsmissing fill character at end of strfmon formatmissing increment expressionmissing makefile target after %qsmissing operandmissing path after %qsmissing sentinel in function callmissing terminating %c charactermissing type-name in typedef-declarationmode %qs applied to inappropriate typemultiple default labels in one switchmultiple storage classes in declaration specifiersmultiple types in one declarationmust #include before using typeidnegative integer implicitly converted to unsigned typenegative width in bit-field %q+Dnegative width in bit-field %qsnested extern declaration of %qDnested function %qs declared %new types may not be defined in a return typeno argumentsno class name specified with %qsno closing %<]%> for %<%%[%> formatno data type for mode %qsno input filesno return statement in function returning non-voidno semicolon at end of struct or unionnon-lvalue array in conditional expressionnon-static declaration of %q+D follows static declarationnonconstant array index in initializernonlocal label nonnull argument has invalid operand number (argument %lu)nonnull argument references non-pointer operand (argument %lu, operand %lu)nonnull argument with out-of-range operand number (argument %lu, operand %lu)nonnull attribute without arguments on a non-prototypenot configured with sysroot headers suffixnote: null argument where non-null required (argument %lu)number of arguments doesn%'t match prototypenumber of components of the vector not a power of twooffset outside bounds of constant stringonly declarations of constructors can be %opaque vector types cannot be initializedopening dependency file %s: %mopening output file %s: %moperand number out of range in formatoperand number specified for format taking no argumentoperand number specified with suppressed assignmentoperands to ?: have different types %qT and %qToperation on %qE may be undefinedoptions passed: ordered comparison of pointer with integer zeroout of memoryoutput filename specified twiceoverflow in array dimensionoverflow in constant expressionoverflow in enumeration valuesoverflow in implicit constant conversionparameter %P has incomplete type %qTparameter %P of %qD has incomplete type %qTparameter %q+D has just a forward declarationparameter %qD is initializedparameter %u (%q+D) has incomplete typeparameter %u (%q+D) has void typeparameter names (without types) in function declarationpassing NULL to non-pointer argument %P of %qDpassing argument %d of %qE as % rather than % due to prototypepassing argument %d of %qE as complex rather than floating due to prototypepassing argument %d of %qE as complex rather than integer due to prototypepassing argument %d of %qE as floating rather than complex due to prototypepassing argument %d of %qE as floating rather than integer due to prototypepassing argument %d of %qE as integer rather than complex due to prototypepassing argument %d of %qE as integer rather than floating due to prototypepassing argument %d of %qE as signed due to prototypepassing argument %d of %qE as unsigned due to prototypepassing argument %d of %qE from incompatible pointer typepassing argument %d of %qE makes integer from pointer without a castpassing argument %d of %qE makes pointer from integer without a castpassing argument %d of %qE with different width due to prototypepch_preprocess pragma should only be used with -fpreprocessedpointer of type % used in arithmeticpointer of type % used in subtractionpointer to a function used in arithmeticpointer to a function used in subtractionpointer to member function used in arithmeticpointer type mismatch in conditional expressionpointer/integer type mismatch in conditional expressionpointers are not permitted as case valuesprecisionprecision in printf formatprevious declaration of %q+D was hereprevious declaration of namespace %q+D hereprevious definition of %q+D was hereprevious implicit declaration of %q+D was herepreviously defined hereprofiler support for VxWorksprograms: %s ! promoted argument %qD doesn%'t match prototypeprotocol %qE has circular dependencyprototype declarationprototype for %q#D does not match any in class %qTprototype for %q+D declares argument %d with incompatible typerange expressions in switch statements are non-standardread-only location %qE used as % outputreading through null pointer (argument %d)redeclaration of %q+D with different visibility (old visibility preserved)redeclaration of C++ built-in type %qTredefinition of %redefinition of %redefinition of %q#Tredefinition of %q+Dredefinition of parameter %q+Dredefinition of typedef %q+Dregister variable %qD used in nested functionrepeated %s in formatrequest for member %qE in something not a structure or unionrequested alignment is not a power of 2requested alignment is too largerequested position is less than zerorequested position is not an integer constantreturn from incompatible pointer typereturn makes integer from pointer without a castreturn makes pointer from integer without a castreturn type defaults to %return type is an incomplete typereturn-statement with a value, in function returning 'void'return-statement with no value, in function returning %qTreturning a value from a constructorreturning a value from a destructorright precisionright precision in strfmon formatsecond argument of %q+D should be %second argument to %<__builtin_prefetch%> must be a constantsecond parameter of % not last named argumentsize of array %qD has non-integral type %qTsize of array %qD is negativesize of array %qD is not an integral constant-expressionsize of array %qE has non-integer typesize of array %qE is negativesize of array %qs is too largesize of array has non-integral type %qTsize of array is negativesize of array is not an integral constant-expressionsize of unnamed array has non-integer typesizeof(long double) is 12sizeof(long double) is 16specified mode too small for enumeral valuesspurious trailing %<%%%> in formatstatement with no effectstatic declaration of %q+D follows non-static declarationstatic or type qualifiers in non-parameter array declaratorstorage class specified for %qsstorage class specified for parameter %qsstorage class specified for typenamestray %<@%> in programstray %<\%o%> in programstray %qc in programstray %qs in programstrftime formats cannot format argumentsstring length %qd is greater than the length %qd ISO C%d compilers are required to supportstruct has no membersstruct has no named memberssubscripted value is neither array nor pointersubscripted value is pointer to functionsuggest braces around empty body in % statementsuggest braces around empty body in an % statementsuggest braces around empty body in an % statementsuggest explicit braces to avoid ambiguous %suggest parentheses around %<&&%> within %<||%>suggest parentheses around %<+%> in operand of %<&%>suggest parentheses around %<+%> inside %<<<%>suggest parentheses around %<+%> inside %<>>%>suggest parentheses around %<-%> in operand of %<&%>suggest parentheses around %<-%> inside %<<<%>suggest parentheses around %<-%> inside %<>>%>suggest parentheses around arithmetic in operand of %<^%>suggest parentheses around arithmetic in operand of %<|%>suggest parentheses around assignment used as truth valuesuggest parentheses around comparison in operand of %suggest parentheses around comparison in operand of %<&%>suggest parentheses around comparison in operand of %<==%>suggest parentheses around comparison in operand of %<^%>suggest parentheses around comparison in operand of %<|%>switch %qs is no longer supportedswitch missing default casetaking the address of a label is non-standardtarget format does not support infinitythe ' ' printf flagthe '!' strfmon flagthe '#' printf flagthe '#' strftime flagthe ''' printf flagthe ''' scanf flagthe '(' strfmon flagthe '+' printf flagthe '+' strfmon flagthe '-' printf flagthe '-' strfmon flagthe '-' strftime flagthe '0' printf flagthe '0' strftime flagthe 'E' strftime modifierthe 'I' printf flagthe 'I' scanf flagthe 'O' modifierthe 'O' strftime modifierthe '^' strfmon flagthe '^' strftime flagthe '_' strftime flagthe 'a' scanf flagthe 'm' scanf flagthe 'q' diagnostic flagthe address of %qD will always evaluate as %the address of %qD will never be NULLthe size of array %qE can%'t be evaluatedthe size of array can %'t be evaluatedthird argument of %q+D should probably be %third argument to %<__builtin_prefetch%> must be a constantthis decimal constant is unsigned only in ISO C90this decimal constant would be unsigned in ISO C90this is the first default labeltls_model argument must be one of "local-exec", "initial-exec", "local-dynamic" or "global-dynamic"tls_model argument not a stringto generate dependencies you must specify either -M or -MMtoo few arguments to functiontoo few arguments to function %too few arguments to function %qEtoo late for # directive to set debug directorytoo many arguments for formattoo many arguments to functiontoo many arguments to function %qEtoo many filenames given. Type %s --help for usagetoo many input filestraditional C lacks a separate namespace for labels, identifier %qE conflictstraditional C rejects automatic aggregate initializationtraditional C rejects string constant concatenationtraditional C rejects the unary plus operatortwo or more data types in declaration specifierstype %qE has a user-defined constructortype %qE has a user-defined destructortype %qT is not a base type for type %qTtype %qT is not derived from %type %qT is not derived from type %qTtype mismatch in conditional expressiontype of %qD does not match original declarationtype of bit-field %qs is a GCC extensiontype of formal parameter %d is incompletetype qualifiers ignored on function return typetypedef %qD is initialized (use __typeof__ instead)types are not quite compatibleunable to open dynamic dependency '%s'uninitialized const %qDuninitialized const member %qDunion cannot be made transparentunion has no membersunion has no named membersunknown #pragma GCC coprocessor %Eunknown cc_attr valueunknown conversion type character %qc in formatunknown conversion type character 0x%x in formatunnamed struct/union that defines no instancesunnamed variable or field declared voidunrecognizable insn:unrecognized addressunrecognized command line option "%s"unrecognized format specifierunsupported argument to %<__builtin_frame_address%>unsupported argument to %<__builtin_return_address%>unterminated format stringunused arguments in $-style formatunused parameter %q+Dunused variable %q+Dupper value in case label range exceeds maximum value for typeuse #include insteaduse -Winvalid-pch for more informationuse __attribute__ ((vector_size)) insteaduse of %qs length modifier with %qc type characteruse of %s and %s together in %s formatuse option -std=c99 or -std=gnu99 to compile your codeused array that cannot be converted to pointer where scalar is requiredused struct type value where scalar is requiredused union type value where scalar is requireduseless %<__thread%> in empty declarationuseless storage class specifier in empty declarationuseless type name in empty declarationuseless type qualifier in empty declarationvalue computed is not usedvariable %q+D declared %variable %qD has function typevariable %qD has initializer but incomplete typevariable or field %qE declared voidvariable or field declared voidvariable previously declared % redeclared %variable-sized compound literalvector overflow in expressionverify_flow_info failedverify_flow_info: Block %i lacks loop_fatherverify_flow_info: Wrong count of block %i %iverify_histograms failedvisibility argument must be one of "default", "hidden", "protected" or "internal"visibility argument not a stringvoid value not ignored as it ought to bewarning: weakref is not supported in this configurationwhen writing output to %s: %mwide character array initialized from incompatible wide stringwide character array initialized from non-wide stringwidth of %q+D exceeds its typewidth of %qs exceeds its typewithin this contextwriting into constant object (argument %d)writing through null pointer (argument %d)wrong number of arguments to function %<__builtin_next_arg%>wrong number of arguments to function %wrong type argument to abswrong type argument to bit-complementwrong type argument to conjugationwrong type argument to decrementwrong type argument to incrementwrong type argument to unary exclamation markwrong type argument to unary minuswrong type argument to unary plusxstormy16_print_operand: unknown codezero or negative size array %q+Dzero width for bit-field %q+Dzero width for bit-field %qszero width in %s formatzero-length %s format string{unknown}Project-Id-Version: gcc 4.5-b20091203 Report-Msgid-Bugs-To: http://gcc.gnu.org/bugs.html ! POT-Creation-Date: 2013-02-24 01:09+0000 ! PO-Revision-Date: 2010-01-11 22:13+0200 Last-Translator: Lauri Nurmi Language-Team: Finnish Language: fi MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit %+#D Ohjeet vikailmoitusten tekoon ovat osoitteessa: --- 179,217 ---- warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. This switch lacks documentationThread model: %s ! To enable preprocessing, use -cppToo many arguments in call to '%s' at %LToo many arguments to %s at %LTreat all warnings as errorsTreat missing header files as generated filesTreat specified warning as errorTreat the input file as already preprocessedTry 'jcf-dump --help' for more information. ! Type name '%s' at %C is ambiguousUNIT not specified at %LUNIT number in CLOSE statement at %L must be non-negativeUNIT number in statement at %L must be non-negativeUnclassifiable statement at %CUnclassifiable statement in IF-clause at %CUnequal character lengths (%ld/%ld) in %s at %LUnexpected %s statement at %CUnexpected %s statement at %C in INTERFACE bodyUnexpected %s statement in BLOCK DATA at %CUnexpected %s statement in CONTAINS section at %CUnexpected %s statement in FORALL block at %CUnexpected %s statement in INTERFACE block at %CUnexpected %s statement in MODULE at %CUnexpected %s statement in WHERE block at %CUnexpected CASE statement at %CUnexpected END statement at %CUnexpected TYPE IS statement at %CUnexpected alternate return spec in subroutine call at %LUnexpected character in variable list at %CUnexpected characters in PARAMETER statement at %CUnexpected end of file in '%s'Unexpected junk after ELSE IF statement at %CUnexpected junk after ELSE statement at %CUnexpected junk after function declaration at %CUnexpected junk in formal argument list at %CUnexpected use of subroutine name '%s' at %CUnknown argument list function at %LUnknown attribute in !GCC$ ATTRIBUTES statement at %CUnknown procedure name "%s" at %CUnused parameter '%s' declared at %LUnused variable '%s' declared at %LUsage: %s [OPTIONS]... CLASSNAMEmain [OUTFILE] Usage: %s [options] file... Usage: jcf-dump [OPTION]... CLASS... ! Use "-Wa,OPTION" to pass "OPTION" to the assembler. ! ! Use "-Wl,OPTION" to pass "OPTION" to the linker. ! ! Use 128-bit long doubleUse 16 bit intUse 32 bit floatUse 32 bit intUse 32-bit ABIUse 32-bit floating-point registersUse 32-bit general registersUse 64 FPRsUse 64 GPRsUse 64 bit floatUse 64-bit ABIUse 64-bit floating-point registersUse 64-bit general registersUse 64-bit long doubleUse AltiVec instructionsUse EABIUse H8/300 alignment rulesUse MCU instructionsUse MIPS-3D instructionsUse MIPS-DSP REV 2 instructionsUse PowerPC-64 instruction setUse VAX fpUse a 32-bit long typeUse a 64-bit long typeUse big-endian byte orderUse big-endian format for unformatted filesUse fp registersUse hardware FPUse hardware fpUse indirect callsUse little-endian byte orderUse little-endian format for unformatted filesUse ll, sc and sync instructionsUse media instructionsUse registers for argument passingUse registers r2 and r5Use shared librariesUse software floating pointUse the bit-field instructionsVariable %s cannot be assigned in PURE procedure at %CVariable '%s' at %L cannot have both the ALLOCATABLE and BIND(C) attributesVariable '%s' at %L cannot have both the POINTER and BIND(C) attributesVariable type is UNKNOWN in assignment at %LWarn about C constructs that are not in the common subset of C and C++Warn about PCH files that are found but not usedWarn about an empty body in an if or else statementWarn about casting functions to incompatible typesWarn about casts which discard qualifiersWarn about comparison of different enum typesWarn about compile-time integer division by zeroWarn about features not present in traditional CWarn about format strings that are not literalsWarn about format strings that contain NUL bytesWarn about function parameters declared without a type specifier in K&R-style functionsWarn about function pointer arithmeticWarn about global functions without prototypesWarn about implicit function declarationsWarn about invalid uses of the "offsetof" macroWarn about missing fields in struct initializersWarn about misuses of pragmasWarn about multiple declarations of the same objectWarn about non-virtual destructorsWarn about overflow in arithmetic expressionsWarn about overloaded virtual function namesWarn about packed bit-fields whose offset changed in GCC 4.4Warn about possible security problems with format functionsWarn about possibly missing braces around initializersWarn about possibly missing parenthesesWarn about possibly nested block comments, and C++ comments spanning more than one physical lineWarn about printf/scanf/strftime/strfmon format string anomaliesWarn about returning a pointer/reference to a local or temporary variable.Warn about returning structures, unions or arraysWarn about stray tokens after #elif and #endifWarn about strftime formats yielding 2-digit yearsWarn about subscripts whose type is "char"Warn about suspicious declarations of "main"Warn about suspicious uses of memory addressesWarn about unprototyped function declarationsWarn about unrecognized pragmasWarn about unsuffixed float constantsWarn about use of multi-character character constantsWarn about useless castsWarn about user-specified include directories that do not existWarn about uses of __attribute__((deprecated)) declarationsWarn about variables that might be changed by "longjmp" or "vfork"Warn about variables which are initialized to themselvesWarn about violations of Effective C++ style rulesWarn about zero-length formatsWarn for implicit type conversions between signed and unsigned integersWarn if a C-style cast is used in a programWarn if a caller of a function, marked with attribute warn_unused_result, does not use its return valueWarn if a comparison is always true or always false due to the limited range of the data typeWarn if an undefined macro is used in an #if directiveWarn if inherited methods are unimplementedWarn if testing floating point numbers for equalityWarn when a declaration does not specify a typeWarn when a function is unusedWarn when a function parameter is unusedWarn when a label is unusedWarn when a variable is unusedWarn when all constructors and destructors are privateWarn when the compiler reorders codeWarn when there is a cast to a pointer from an integer of a different sizeWarn whenever a function's return type defaults to "int" (C), or about inconsistent return types (C++)Warning:Work around an early 4300 hardware bugWriting module %s at line %d column %d: %sZero is not a valid statement label at %C[disabled][enabled]`a destructor cannot be %a parameter cannot be declared %a parameter list with an ellipsis can%'t match an empty parameter name list declarationa storage class can only be specified for objects and functionsabstract method in non-abstract classaddress area attribute cannot be specified for functionsaddress area of %q+D conflicts with previous declarationaddress of global register variable %qD requestedaddress of local variable %q+D returnedaddress of register variable %qD requestedafter previous declaration %q+Dalignment for %q+D must be at least %dalignment may not be specified for %q+Dalignment must be a small power of two, not %dalloc_size parameter outside rangealso found %<%c%s%>ambiguates old declaration %q+#Dambiguous default type conversion from %qTan address area attribute cannot be specified for local variablesan anonymous struct cannot have function membersan anonymous union cannot have function membersan argument type that has a default promotion can%'t match an empty parameter name list declarationand %qT has no template constructorsanonymous %s declared inside parameter listargs to be formatted is not %<...%>argument %qD doesn%'t match built-in prototypeargument %qD doesn%'t match prototypeargument %qd is not a constantargument 1 must be a 5-bit signed literalargument 2 must be a 5-bit unsigned literalargument of function call might be a candidate for a format attributeargument to decltype must be an expressionarray %q+D assumed to have one elementarray %qD initialized by parenthesized string literal %qEarray index in initializer exceeds array boundsarray index in initializer is not an integer constant expressionarray index in initializer not of integer typearray index in non-array initializerarray index range in initializer exceeds array boundsarray initialized from non-constant array expressionarray initialized from parenthesized string constantarray of inappropriate type initialized from string constantarray size missing in %q+Darray size missing in %qDarray subscript has type %array subscript is above array boundsarray subscript is below array boundsarray subscript is not an integerarray subscript is outside array boundsarray type has incomplete element typearray used as initializeras %qDasm declaration ignored due to conflict with previous renameassertion missing after %qsassignment (not initialization) in declarationassignment from distinct Objective-C typeassignment from incompatible pointer typeassignment makes integer from pointer without a castassignment makes pointer from integer without a castassignment of constant field %qDassignment of function %qDassignment of read-only location %qEassignment of read-only member %qDassignment of read-only named return value %qDassignment of read-only parameter %qDassignment of read-only reference %qDassignment of read-only variable %qDattribute %qs applies to array types onlyattributes in parameter array declarator ignoredautomatic variable %qE cannot be %bad shift insn:bad string constantbad zip/jar file %sbadly nested C headers from preprocessorbit-field %q+#D with non-integral typebit-field %q+D width not an integer constantbit-field %qs has invalid typebit-field %qs width not an integer constantbraced-group within expression allowed only inside a functionbraces around scalar initializerbreak statement not within loop or switchbuilt-in function %q+D declared as non-functionbut not herecall %2d never executed ! call %2d returned %s ! called from herecan not use an object as parameter to a methodcan%'t create precompiled header %s: %mcan%'t read %s: %mcan%'t set %qE attribute after definitioncan%'t write %s: %mcan%'t write to %s: %mcan't get program statuscan't open input file: %scandidate 1:candidate 2:candidate is:candidates are:candidate is: %+#Dcandidates are:candidates are: %+#Dcannot call member function %qD without objectcannot convert %qE from type %qT to type %qTcannot convert %qT to %qT for argument %qP to %qDcannot convert to a pointer typecannot convert type %qT to type %qTcannot create temporary filecannot decrement a pointer to incomplete type %qTcannot disable built-in function %qscannot expand initializer for member %<%D%>cannot find class %qEcannot find interface declaration for %qEcannot find protocol declaration for %qEcannot increment a pointer to incomplete type %qTcannot initialize arrays using this syntaxcannot inline function %cannot optimize possibly infinite loopscannot pass objects of non-trivially-copyable type %q#T through %<...%>cannot put object with volatile field into registercannot receive objects of non-trivially-copyable type %q#T through %<...%>; cannot specify both -C and -ocannot specify both -msep-data and -mid-shared-librarycannot take address of bit-field %qDcannot use mode %qs for enumeral typescannot use typeid with -fno-rtticase label does not reduce to an integer constantcase label is not an integer constant expressioncase label value exceeds maximum value for typecase label value is less than minimum value for typecase value %qs not in enumerated typecase value %qs not in enumerated type %qTcast from %qT to %qT increases required alignment of target typecast from %qT to %qT loses precisioncast from function call of type %qT to non-matching type %qTcast from pointer to integer of different sizecast from type %qT to type %qT casts away qualifierscast increases required alignment of target typecast specifies array typecast specifies function typecast to pointer from integer of different sizecast to union type from type not present in unionchar-array initialized from wide stringclass %qE already existsclass %qT does not have any field named %qDclass definition may not be declared a friendcleanup argument not a functioncleanup argument not an identifierclosing LTRANS output list %s: %mclosing dependency file %s: %mcode model %s does not support PIC modecomma at end of enumerator listcommand line option %qs is valid for %s but not for %scomparing floating point with == or != is unsafecomparison always false due to limited range of data typecomparison always true due to limited range of data typecomparison between %qT and %qTcomparison between distinct pointer types %qT and %qT lacks a castcomparison between pointer and integercomparison between signed and unsigned integer expressionscomparison between types %qT and %qTcomparison is always %d due to width of bit-fieldcomparison is always false due to limited range of data typecomparison is always true due to limited range of data typecomparison of complete and incomplete pointerscomparison of distinct Objective-C types lacks a castcomparison of unsigned expression < 0 is always falsecomparison of unsigned expression >= 0 is always truecomparison with string literal results in unspecified behaviorcomparison with string literal results in unspecified behaviourcomparisons like % do not have their mathematical meaningcompilation terminated due to -Wfatal-errors. ! compilation terminated. ! complex floating point overflow in expressioncomplex integer overflow in expressioncompound literal has variable sizecompound literal of non-object type %qTconflicting declaration %q#Dconflicting type qualifiers for %q+Dconflicting types for %<%c%s%>conflicting types for %q+Dconflicting types for built-in function %q+Dconflicts with new declaration with %qL linkageconflicts with previous declaration %q+#Dconflicts with previous declaration hereconstructor syntax used, but no constructor declared for type %qTconstructors cannot be declared virtualcontinue statement not within a loopcontrol reaches end of non-void functionconversion between distinct pointer types %qT and %qT lacks a castconversion from %qT to %qT discards qualifiersconversion from %qT to %qT is ambiguousconversion lacks type at end of formatconversion of %qE from %qT to %qT is ambiguousconversion of unsigned constant value to negative integerconversion to %qT alters %qT constant valueconversion to %qT from %qT may alter its valueconversion to %qT from boolean expressionconversion to non-scalar type requestedconversion to void will never use a type conversion operatorconverting % to pointer type for argument %P of %qDconverting NULL to non-pointer typeconverting from %qT to %qTconverting to non-pointer type %qT from NULLcould not open symbol resolution file: %mcould not parse file offsetcould not parse hex numbercould not split insncreating array of function memberscreating array of functionscreating array of referencescreating array of voiddata area attributes cannot be specified for local variablesdata area of %q+D conflicts with previous declarationdata definition has no type or storage classdeclaration %qD does not declare anythingdeclaration does not declare anythingdeclaration for parameter %qD but no such parameterdeclaration of % variable %qD in % loop initial declarationdeclaration of %<~%T%> as member of %qTdeclaration of %q#D has no initializerdeclaration of %q#D with C language linkagedeclaration of %q+#Ddeclaration of %q+D shadows a built-in functiondeclaration of %qD as array of function membersdeclaration of %qD as array of functionsdeclaration of %qD as array of referencesdeclaration of %qD as array of voiddeclaration of %qD as member of %qTdeclaration of %qD as non-functiondeclaration of %qD as non-memberdeclaration of %qE as array of functionsdeclaration of %qE as array of voidsdeclaration of C function %q#D conflicts withdeclaration of namespace %qD conflicts withdeclaration of non-variable %qD in % loop initial declarationdeclaration of static variable %qD in % loop initial declarationdeclaration of template %q#Ddeclaration of type name as array of functionsdeclaration of type name as array of voidsdecrement of constant field %qDdecrement of function %qDdecrement of pointer to unknown structuredecrement of read-only location %qEdecrement of read-only member %qDdecrement of read-only named return value %qDdecrement of read-only parameter %qDdecrement of read-only reference %qDdecrement of read-only variable %qDdefault argument given for parameter %d of %q#Ddefault argument specified for lambda parameterdefining a type in a cast is invalid in C++deleted definition of %qDdeleted function %q+Ddeleting LTRANS file %sdeleting array %q#Edeprecated conversion from string constant to %qTdestructor cannot be static member functiondestructors may not be cv-qualifieddestructors may not have parametersdistinct Objective-C type in returndivision by zeroduplicate %duplicate %duplicate %duplicate %qEduplicate %qsduplicate (or overlapping) case valueduplicate base type %qT invalidduplicate case valueduplicate cv-qualifierduplicate declaration for protocol %qEduplicate interface declaration for class %qEduplicate label declaration %qEduplicate member %q+Ddwarf version %d is not supporteddynamic dependency %s not founddynamic_cast of %q#D to %q#T can never succeedelements of array %q#D have incomplete typeembedded %<\0%> in formatempty declarationempty declaration with storage class specifier does not redeclare tagempty declaration with type qualifier does not redeclare tagempty index range in initializerempty left precision in %s formatempty precision in %s formatempty range specifiedempty scalar initializerenabled by defaultenum conversion in assignment is invalid in C++enum conversion in initialization is invalid in C++enum conversion in return is invalid in C++enum type defined hereenumeration value %qE not handled in switchenumeration values exceed range of largest integerenumerator value for %qE is not an integer constantenumerator value for %qE is not an integer constant expressionenvironment variable COLLECT_GCC must be setenvironment variable COLLECT_GCC_OPTIONS must be setenvironment variable DJGPP not definedenvironment variable DJGPP points to corrupt file '%s'environment variable DJGPP points to missing file '%s'error while parsing fieldserror while parsing fields ! error while parsing methodserror while parsing methods ! error while reading %s from zip fileerror: exception of type %<%T%> will be caughtexcess elements in array initializerexcess elements in char array initializerexcess elements in scalar initializerexcess elements in struct initializerexcess elements in union initializerexcess elements in vector initializerexpected %<(%> or end of lineexpected %<+%>, %<*%>, %<-%>, %<&%>, %<^%>, %<|%>, %<&&%>, %<||%>, % or %expected %<,%> or %<...%>expected %<,%> or %<;%>expected %<,%> or %<}%>expected %<,%>, %<;%> or %<}%>expected %<:%> or %<...%>expected %<:%>, %<,%>, %<;%>, %<}%> or %<__attribute__%>expected %<=%>, %<,%>, %<;%>, % or %<__attribute__%>expected %expected %expected %expected %expected %expected %expected % or %expected %expected %expected %expected %expected %qT but argument is of type %qTexpected a string after %<#pragma message%>expected class nameexpected expressionexpected identifierexpected identifier or %<(%>expected identifier or %<*%>expected integer expressionexpected iteration declaration or initializationexpected string literalextra %<;%>extra brace group at end of initializerextra elements in scalar initializerextra semicolon in method definition specifiedextra semicolon in struct or union specifiedextra type qualifiers in format argument (argument %d)fastcall and cdecl attributes are not compatiblefastcall and stdcall attributes are not compatiblefatal error: field %q+#D with same name as classfield %qD has incomplete typefield %qE declared as a functionfield widthfield width in printf formatfield width in scanf formatfield width in strfmon formatfield width in strftime formatfill characterfill character in strfmon formatfirst argument of %q+D should be %first argument to %<__builtin_choose_expr%> not a constantfirst argument to % not of type %flexible array member in otherwise empty structflexible array member in unionflexible array member not at end of structfloating constant exceeds range of %qTfloating constant misusedfloating constant truncated to zerofloating point overflow in expressionflow control insn inside a basic blockfopen: %sfor template declaration %q+Dformat argument %d unused before used argument %d in $-style formatformat argument %d used more than once in %s formatformat is a wide character stringformat not a string literal and no format argumentsformat not a string literal, argument types not checkedformat not a string literal, format string not checkedformat string argument follows the args to be formattedformat string has invalid operand numberfound %<%c%s%>found a virtual definition for a GIMPLE registerfr30_print_operand: invalid %%F codefr30_print_operand: invalid %%x codefr30_print_operand: unknown codefr30_print_operand: unrecognized %%B codefr30_print_operand: unrecognized %%b codefr30_print_operand: unrecognized %%p codefr30_print_operand_address: unhandled addressfriend declaration %qD in local class without prior declarationfriend declaration does not name a class or functionfrom previous declaration %q+Ffrom this locationfunction %q#D is initialized like a variablefunction %q+D definition is marked dllimportfunction %q+F can never be copied because it receives a non-local gotofunction %q+F can never be copied because it saves address of local label in a static variablefunction %qD declared virtual inside a unionfunction %qD is initialized like a variablefunction %qD redeclared as variablefunction called through a non-compatible typefunction declaration isn%'t a prototypefunction declared % has a % statementfunction definition declared %<__thread%>function definition declared %function definition declared %function definition declared %function definition does not declare parametersfunction does not return string typefunction might be candidate for attribute %<%s%>function might be candidate for attribute %<%s%> if it is known to return normallyfunction might be possible candidate for %qs format attributefunction profilingfunction return type cannot be functionfunction return types not compatible due to %function returning a functionfunction returning an arrayfunction returns address of local variablefunction template %qD redeclared as a class templatefunction types not truly compatible in ISO Cfunction-scope %qs implicitly auto and declared %<__thread%>gcc version %s %s gcov %s%s ! gfortran does not support -E without -cppgimple_bb (stmt) is set to a wrong basic blockglobal register variable %qD used in nested functiongoto destination is neither a label nor a pointergp_offset (%ld) or end_offset (%ld) is less than zeroia64_print_operand: unknown codeidentifier %qE conflicts with C++ keywordif this code is reached, the program will abortignoring #pragma %s %signoring asm-specifier for non-static local variable %q+Dignoring duplicate directory "%s" ignoring nonexistent directory "%s" ! ignoring return value of %qD, declared with attribute warn_unused_resultignoring return value of function declared with attribute warn_unused_resultillegal aggregate type %qE specified for instance variable %qsimplicit declaration of function %qEin C++98 %qD must be initialized by constructor, not by %<{...}%>in declaration %q+Dincompatible implicit declaration of built-in function %qDincompatible implicit declaration of function %qDincompatible type for argument %d of %qEincompatible types in assignment of %qT to %qTincompatible types when assigning to type %qT from type %qTincompatible types when initializing type %qT using type %qTincomplete implementation of class %qEincrement of constant field %qDincrement of function %qDincrement of pointer to unknown structureincrement of read-only location %qEincrement of read-only member %qDincrement of read-only named return value %qDincrement of read-only parameter %qDincrement of read-only reference %qDincrement of read-only variable %qDinitialization from distinct Objective-C typeinitialization from incompatible pointer typeinitialization makes integer from pointer without a castinitialization makes pointer from integer without a castinitialization of a flexible array memberinitialization of flexible array member in a nested contextinitialized field overwritteninitializer element is not a constant expressioninitializer element is not computable at load timeinitializer element is not constantinitializer fails to determine size of %q+Dinitializer for floating value is not a floating constantinitializer-string for array of chars is too longinsn outside basic blockinstall: %s%s ! instance variable %qE is %s; this will be a hard error in the futureinstance variable %qE is declared %sinstance variable %qE is declared privateint-array initialized from incompatible wide stringint-array initialized from non-wide stringinteger overflow in expressioninter-module optimizations not implemented for C++internal compiler error. Bad address:internal compiler error: internal error - invalid Utf8 nameinternal error: sideeffect-insn affecting main effectinternal functioninterrupt function must have no argumentsinterrupt function must have return type of voidinterrupt handlers cannot be MIPS16 functionsinvalid #pragma %sinvalid %%-codeinvalid %%C valueinvalid %%D valueinvalid %%E valueinvalid %%F valueinvalid %%G modeinvalid %%G valueinvalid %%H valueinvalid %%J codeinvalid %%J valueinvalid %%K valueinvalid %%L codeinvalid %%L valueinvalid %%M valueinvalid %%N valueinvalid %%O valueinvalid %%P valueinvalid %%R valueinvalid %%S valueinvalid %%T valueinvalid %%U valueinvalid %%d valueinvalid %%f valueinvalid %%h valueinvalid %%j codeinvalid %%j valueinvalid %%k valueinvalid %%m valueinvalid %%p valueinvalid %%q valueinvalid %%r valueinvalid %%s valueinvalid %%t/%%b valueinvalid %%u valueinvalid %%v valueinvalid %%x valueinvalid %%xn codeinvalid 'asm': invalid --param value %qsinvalid IACC argumentinvalid application of % to a bit-fieldinvalid application of % to a function typeinvalid application of %qs to a void typeinvalid argument of %qs attributeinvalid argument to %<__builtin_frame_address%>invalid argument to %<__builtin_return_address%>invalid array assignmentinvalid cast from type %qT to type %qTinvalid cast to function type %qTinvalid class name in declaration of %qDinvalid const_cast from type %qT to type %qTinvalid const_double operandinvalid constructor; you probably meant %<%T (const %T&)%>invalid conversion from %qT to %qTinvalid conversion in gimple callinvalid declaration of %<%T::%E%>invalid element type for attribute %qsinvalid expression as operandinvalid function declarationinvalid increment expressioninvalid initial value for member %qEinvalid initialization of reference of type %qT from expression of type %qTinvalid initializerinvalid initializer for array member %q#Dinvalid insn:invalid location for %, ignoredinvalid lvalue in asm output %dinvalid member function declarationinvalid parameter %qsinvalid parameter type %qTinvalid pointer mode %qsinvalid qualifiers on non-member function typeinvalid receiver type %qsinvalid redeclaration of %q+Dinvalid second argument to %<__builtin_prefetch%>; using zeroinvalid static_cast from type %qT to type %qTinvalid storage class for function %qEinvalid third argument to %<__builtin_prefetch%>; using zeroinvalid type for iteration variable %qEinvalid types in conversion to floating pointinvalid types in conversion to integerinvalid types in nop conversioninvalid use of % in conversion operatorinvalid use of %invalid use of %qDinvalid use of Boolean expression as operand to %invalid use of array with unspecified boundsinvalid use of constructor as a templateinvalid use of destructor %qD as a typeinvalid use of flexible array memberinvalid use of incomplete typedef %qDinvalid use of member %q+D in static member functioninvalid use of non-static data member %q+Dinvalid use of non-static member functioninvalid use of structure with flexible array memberinvalid use of template-name %qE without an argument listinvalid use of undefined type %<%s %E%>invalid use of void expressioninvalid vector type for attribute %qEinvalid vector type for attribute %qsits scope is only this definition or declaration, which is probably not what you wantjump skips variable initializationjump to case labeljump to label %q+Djump to label %qDjunk at end of #pragma %sjunk at end of #pragma GCC coprocessor widthjunk at end of #pragma GCC memregs [0..16]junk at end of #pragma io_volatilejunk at end of %<#pragma %s%>junk at end of %<#pragma GCC pch_preprocess%>junk at end of %<#pragma GCC visibility%>junk at end of %<#pragma message%>junk at end of %<#pragma pack%>junk at end of %<#pragma pop_options%>junk at end of %<#pragma push_options%>junk at end of %<#pragma redefine_extname%>junk at end of %<#pragma reset_options%>junk at end of %<#pragma weak%>junk at end of '#pragma ms_struct'junk at end of signature stringlabel label %q+D declared but not definedlabel %q+D defined but not usedlabel %q+D used but not definedlabel %qD defined herelarge integer implicitly truncated to unsigned typelayout of classes derived from empty class %qT may change in a future version of GCCld returned %d exit statusleft precisionleft precision in strfmon formatleft rotate count is negativeleft shift count >= width of typeleft shift count is negativeleft-hand operand of comma expression has no effectlength modifierlength modifier in printf formatlength modifier in scanf formatlength modifier in strfmon formatlibraries: %s ! library lib%s not foundlocal declaration of %qE hides instance variablelocal variable %qD may not appear in this contextlower value in case label range less than minimum value for typelvalue required as left operand of assignmentmacro name missing after %qsmalformed #pragma GCC visibility pushmalformed #pragma builtinmalformed #pragma callmalformed #pragma redefine_extname, ignoredmalformed #pragma weak, ignoredmalformed %<#pragma %s%>, ignoredmalformed %<#pragma message%>, ignoredmalformed %<#pragma pack%> - ignoredmalformed %<#pragma pack(pop[, id])%> - ignoredmalformed %<#pragma pack(push[, id][, ])%> - ignoredmalformed '#pragma ms_struct {on|off|reset}', ignoringmalformed '#pragma ms_struct', ignoringmalformed '#pragma options', ignoringmalformed COLLECT_GCC_OPTIONSmaximum value of parameter %qs is %umay not use both -m32 and -m64member %qD cannot be declared both virtual and staticmethod definition for %<%c%E%> not foundminimum value of parameter %qs is %umismatched argumentsmissing $ operand number in formatmissing %<(%> after %<#pragma GCC visibility push%> - ignoredmissing %<(%> after %<#pragma pack%> - ignoredmissing '(' after '#pragma unused', ignoringmissing ')' after '#pragma unused', ignoringmissing Code attributemissing braces around initializermissing definitionmissing filename after %qsmissing fill character at end of strfmon formatmissing increment expressionmissing makefile target after %qsmissing operandmissing path after %qsmissing sentinel in function callmissing terminating %c charactermissing type-name in typedef-declarationmode %qs applied to inappropriate typemultidimensional array must have bounds for all dimensions except the firstmultiple default labels in one switchmultiple fields in union %qT initializedmultiple methods named %<%c%E%> foundmultiple parameters named %qDmultiple storage classes in declaration of %qsmultiple storage classes in declaration specifiersmultiple types in one declarationmust #include before using typeidname %qT has incomplete typename missing for member functionnamed return values are no longer supportednarrowing conversion of %qE from %qT to %qT inside { }negative insn lengthnegative integer implicitly converted to unsigned typenegative width in bit-field %q+Dnegative width in bit-field %qsnested assembly dialect alternativesnested extern declaration of %qDnested function %q+D declared but never definednested function %qs declared %nested redefinition of %nested redefinition of %nested redefinition of %new types may not be defined in a return typeno %<%c%E%> method foundno argumentsno class name specified with %qsno closing %<]%> for %<%%[%> formatno data type for mode %qsno input file specifiedno input filesno matching push for %<#pragma GCC visibility pop%>no previous declaration for %q+Dno previous declaration for %qDno previous prototype for %qDno processor type specified for linkingno return statement in function returning non-voidno semicolon at end of struct or unionnon-const integer argument %u in call to function %qEnon-constant condition for static assertionnon-constant initialization expression at %Lnon-deleted function %q+Dnon-floating-point argument in call to function %qEnon-floating-point arguments in call to function %qEnon-lvalue array in conditional expressionnon-static data member %qD has Java class typenon-static data member %qE declared %non-static declaration of %q+D follows static declarationnon-static initialization of a flexible array membernon-static method %q+D overrides static methodnonconstant array index in initializernonlocal label nonnull argument has invalid operand number (argument %lu)nonnull argument references non-pointer operand (argument %lu, operand %lu)nonnull argument with out-of-range operand number (argument %lu, operand %lu)nonnull attribute without arguments on a non-prototypenot configured with sysroot headers suffixnot enough arguments to function %qEnote: null argument where non-null required (argument %lu)number of arguments doesn%'t match built-in prototypenumber of arguments doesn%'t match prototypenumber of components of the vector not a power of twoobject type %qT does not match destructor name ~%qToffset outside bounds of constant stringold-style function definitionold-style parameter declarations in prototyped function definitiononly declarations of constructors can be %only one of -mm and -ml may be givenonly one of -mm and -mtiny= may be givenonly one of -ms and -ml may be givenonly one of -ms and -mm may be givenonly one of -ms and -mtiny= may be givenopaque vector types cannot be initializedopening LTRANS output list %s: %mopening dependency file %s: %mopening output file %s: %mopening output file %s: %soperand number out of range in formatoperand number specified for format taking no argumentoperand number specified with suppressed assignmentoperands to ?: have different types %qT and %qToperation on %qE may be undefinedoptions enabled: options passed: ordered comparison of pointer with integer zerooriginally defined hereout of memoryoutput filename specified twiceoverflow in array dimensionoverflow in constant expressionoverflow in enumeration valuesoverflow in implicit constant conversionpacked attribute causes inefficient alignmentpacked attribute causes inefficient alignment for %qEpacked attribute is unnecessarypacked attribute is unnecessary for %q+Dpacked attribute is unnecessary for %qEparameter %P has incomplete type %qTparameter %P of %qD has incomplete type %qTparameter %q+D declared %parameter %q+D has just a forward declarationparameter %qD declared with void typeparameter %qD has Java class typeparameter %qD has incomplete typeparameter %qD invalidly declared method typeparameter %qD is initializedparameter %u (%q+D) has incomplete typeparameter %u (%q+D) has void typeparameter %u has incomplete typeparameter %u has void typeparameter declared %parameter name missing from parameter listparameter name omittedparameter names (without types) in function declarationparse error in template argument listpassing NULL to non-pointer argument %P of %qDpassing argument %d of %qE as % rather than % due to prototypepassing argument %d of %qE as complex rather than floating due to prototypepassing argument %d of %qE as complex rather than integer due to prototypepassing argument %d of %qE as floating rather than complex due to prototypepassing argument %d of %qE as floating rather than integer due to prototypepassing argument %d of %qE as integer rather than complex due to prototypepassing argument %d of %qE as integer rather than floating due to prototypepassing argument %d of %qE as signed due to prototypepassing argument %d of %qE as unsigned due to prototypepassing argument %d of %qE from distinct Objective-C typepassing argument %d of %qE from incompatible pointer typepassing argument %d of %qE makes integer from pointer without a castpassing argument %d of %qE makes pointer from integer without a castpassing argument %d of %qE with different width due to prototypepch_preprocess pragma should only be used with -fpreprocessedpex_init failedpointer of type % used in arithmeticpointer of type % used in subtractionpointer to a function used in arithmeticpointer to a function used in subtractionpointer to member function used in arithmeticpointer type mismatch in conditional expressionpointer/integer type mismatch in conditional expressionpointers are not permitted as case valuesprecisionprecision in printf formatprevious declarationprevious declaration %q+Dprevious declaration of %<%c%s%>previous declaration of %q+Dprevious declaration of %q+D was hereprevious declaration of %q+D was inlineprevious declaration of %qEprevious declaration of namespace %q+D hereprevious definition hereprevious definition of %q+#Tprevious definition of %q+D was hereprevious implicit declaration of %q+D was herepreviously declared herepreviously defined herepreviously used hereprofiler support for CR16profiler support for VxWorksprograms: %s ! promoted argument %qD doesn%'t match built-in prototypepromoted argument %qD doesn%'t match prototypeprotocol %qE has circular dependencyprototype declarationprototype for %q#D does not match any in class %qTprototype for %q+#Dprototype for %q+D declares argument %d with incompatible typeprototype for %q+D declares fewer arguments than previous old-style definitionprototype for %q+D declares more arguments than previous old-style definitionpure-specifier on function-definitionqualifiers can only be specified for objects and functionsrange expressions in switch statements are non-standardread-only location %qE used as % outputreading through null pointer (argument %d)recursive type %qT undefinedredeclaration of %redeclaration of %q+D with different visibility (old visibility preserved)redeclaration of C++ built-in type %qTredeclaration of enumerator %q+Dredefinition of %redefinition of %redefinition of %q#Tredefinition of %q+Dredefinition of parameter %q+Dredefinition of typedef %q+Dreference to local variable %q+D returnedregister variable %qD used in nested functionreinterpret_cast from type %qT to type %qT casts away qualifiersrepeated %s in formatrequest for member %qE in something not a structure or unionrequested alignment is not a power of 2requested alignment is too largerequested position is less than zerorequested position is not an integer constantreturn from incompatible pointer typereturn makes integer from pointer without a castreturn makes pointer from integer without a castreturn type %q#T is incompletereturn type defaults to %return type has Java class type %q#Treturn type is an incomplete typereturn type of %qD is not %return-statement with a value, in function returning 'void'return-statement with no value, in function returning %qTreturning a value from a constructorreturning a value from a destructorright precisionright precision in strfmon formatright rotate count is negativeright shift count >= width of typeright shift count is negativescalar object %qD requires one element in initializersecond argument of %q+D should be %second argument to %<__builtin_prefetch%> must be a constantsecond parameter of % not last named argumentshadowed declaration is heresize of array %qD has non-integral type %qTsize of array %qD is negativesize of array %qD is not an integral constant-expressionsize of array %qE has non-integer typesize of array %qE is negativesize of array %qE is too largesize of array %qs is too largesize of array has non-integral type %qTsize of array is negativesize of array is not an integral constant-expressionsize of array is too largesize of unnamed array has non-integer typesize of unnamed array is negativesize of unnamed array is too largesize of variable %q+D is too largesizeof(long double) is 12sizeof(long double) is 16specified mode too small for enumeral valuesspurious trailing %<%%%> in formatstack frame not a multiple of 8 bytes: %wdstack frame not a multiple of octabyte: %wdstatement with no effectstatic assertion failed: %sstatic declaration of %q+D follows non-static declarationstatic member function %q#D declared with type qualifiersstatic or type qualifiers in non-parameter array declaratorstatic_cast from type %qT to type %qT casts away qualifiersstdcall and cdecl attributes are not compatiblestdcall and fastcall attributes are not compatiblestorage class %<__thread%> invalid for function %qsstorage class % invalid for function %qsstorage class % invalid for function %qsstorage class specified for %qsstorage class specified for parameter %qEstorage class specified for parameter %qsstorage class specified for structure fieldstorage class specified for structure field %qEstorage class specified for template parameter %qsstorage class specified for typenamestorage class specified for unnamed parameterstorage class specifiers invalid in parameter declarationsstorage size of %q+D isn%'t constantstorage size of %q+D isn%'t knownstorage size of %qD isn%'t constantstorage size of %qD isn%'t knownstray %<,%> at end of member declarationstray %<@%> in programstray %<\%o%> in programstray %qc in programstray %qs in programstrftime formats cannot format argumentsstring length %qd is greater than the length %qd ISO C%d compilers are required to supportstruct defined herestruct has no membersstruct has no named memberssubscripted value is neither array nor pointersubscripted value is pointer to functionsuggest braces around empty body in % statementsuggest braces around empty body in an % statementsuggest braces around empty body in an % statementsuggest explicit braces to avoid ambiguous %suggest parentheses around %<&&%> within %<||%>suggest parentheses around %<+%> in operand of %<&%>suggest parentheses around %<+%> inside %<<<%>suggest parentheses around %<+%> inside %<>>%>suggest parentheses around %<-%> in operand of %<&%>suggest parentheses around %<-%> inside %<<<%>suggest parentheses around %<-%> inside %<>>%>suggest parentheses around %<>>%> expressionsuggest parentheses around arithmetic in operand of %<^%>suggest parentheses around arithmetic in operand of %<|%>suggest parentheses around assignment used as truth valuesuggest parentheses around comparison in operand of %suggest parentheses around comparison in operand of %<&%>suggest parentheses around comparison in operand of %<==%>suggest parentheses around comparison in operand of %<^%>suggest parentheses around comparison in operand of %<|%>suggested alternative:suggested alternatives:switch %qs is no longer supportedswitch jumps over variable initializationswitch missing default caseswitch starts heretaking the address of a label is non-standardtarget format does not support infinitytemplate argument for %qD uses local type %qTtemplate with C linkagetemplates may not be %the ' ' printf flagthe '!' strfmon flagthe '#' printf flagthe '#' strftime flagthe ''' printf flagthe ''' scanf flagthe '(' strfmon flagthe '+' printf flagthe '+' strfmon flagthe '-' printf flagthe '-' strfmon flagthe '-' strftime flagthe '0' printf flagthe '0' strftime flagthe 'E' strftime modifierthe 'I' printf flagthe 'I' scanf flagthe 'O' modifierthe 'O' strftime modifierthe '^' strfmon flagthe '^' strftime flagthe '_' strftime flagthe 'a' scanf flagthe 'm' scanf flagthe 'q' diagnostic flagthe address of %qD will always evaluate as %the address of %qD will never be NULLthe first parameter of % cannot have a default argumentthe size of array %qE can%'t be evaluatedthe size of array can %'t be evaluatedthird argument of %q+D should probably be %third argument to %<__builtin_prefetch%> must be a constantthis decimal constant is unsigned only in ISO C90this decimal constant would be unsigned in ISO C90this is the first default labelthis is the first entry overlapping that valuethis is the insn:tls_model argument must be one of "local-exec", "initial-exec", "local-dynamic" or "global-dynamic"tls_model argument not a stringto generate dependencies you must specify either -M or -MMtoo few arguments to %%:compare-debug-auxbase-opttoo few arguments to %%:version-comparetoo few arguments to functiontoo few arguments to function %too few arguments to function %qEtoo late for # directive to set debug directorytoo many arguments for formattoo many arguments to %%:compare-debug-auxbase-opttoo many arguments to %%:compare-debug-dump-opttoo many arguments to %%:compare-debug-self-opttoo many arguments to %%:version-comparetoo many arguments to functiontoo many arguments to function %qEtoo many arguments to method %qEtoo many braces around initializer for %qTtoo many filenames given. Type %s --help for usagetoo many initializers for %qTtoo many input filestotal size of local objects too largetraditional C lacks a separate namespace for labels, identifier %qE conflictstraditional C rejects ISO C style function definitionstraditional C rejects automatic aggregate initializationtraditional C rejects string constant concatenationtraditional C rejects the unary plus operatortwo or more data types in declaration specifierstype %qE has a user-defined constructortype %qE has a user-defined destructortype %qE has virtual member functionstype %qT does not have a known sizetype %qT is not a base type for type %qTtype %qT is not derived from %type %qT is not derived from type %qTtype defaults to % in declaration of %qEtype defaults to % in type nametype is deprecatedtype is deprecated (declared at %s:%d)type is deprecated (declared at %s:%d): %stype is deprecated: %stype mismatch in array range referencetype mismatch in array referencetype mismatch in component referencetype mismatch in conditional expressiontype mismatch in real/imagpart referencetype name declared as function returning a functiontype name declared as function returning an arraytype of %qD defaults to %type of %qD does not match original declarationtype of bit-field %qs is a GCC extensiontype of formal parameter %d is incompletetype qualifiers ignored on function return typetypedef %qD is initialized (use __typeof__ instead)types are not quite compatibleunable to open dynamic dependency '%s'unexpected offsetuninitialized const %qDuninitialized const %qD is invalid in C++uninitialized const member %qDuninitialized member %qD with % type %qTuninitialized reference member %qDunion cannot be made transparentunion defined hereunion has no membersunion has no named membersunknown #pragma GCC coprocessor %Eunknown action %qE for %<#pragma pack%> - ignoredunknown cc_attr valueunknown conversion type character %qc in formatunknown conversion type character 0x%x in formatunknown move insn:unnamed field has incomplete typeunnamed struct/union that defines no instancesunnamed variable or field declared voidunrecognizable insn:unrecognized addressunrecognized command line option "%s"unrecognized command line option %<-fdump-%s%>unrecognized command line option %<-fopt-info-%s%>unrecognized format specifierunrecognized gcc debugging option: %cunrecognized register name %qsunsupported argument to %<__builtin_frame_address%>unsupported argument to %<__builtin_return_address%>unterminated assembly dialect alternativeunterminated format stringunused arguments in $-style formatunused parameter %q+Dunused variable %q+Dupper value in case label range exceeds maximum value for typeuse #include insteaduse -Winvalid-pch for more informationuse __attribute__ ((vector_size)) insteaduse of %qs length modifier with %qc type characteruse of %s and %s together in %s formatuse of old-style castuse option -std=c99 or -std=gnu99 to compile your codeused array that cannot be converted to pointer where scalar is requiredused struct type value where scalar is requiredused union type value where scalar is requireduseless %<__thread%> in empty declarationuseless cast to type %qTuseless storage class specifier in empty declarationuseless type name in empty declarationuseless type qualifier in empty declarationusing %<%c%s%>using invalid field %qDvalue computed is not usedvariable %q#D has initializer but incomplete typevariable %q+D declared %variable %qD has function typevariable %qD has initializer but incomplete typevariable %qD redeclared as functionvariable length array %qE is usedvariable length array is usedvariable or field %qE declared voidvariable or field declared voidvariable previously declared % redeclared %variable-sized compound literalvariable-sized object %qD may not be initializedvariable-sized object may not be initializedvector overflow in expressionverification failed at PC=%d: %sverification failed: %sverify_flow_info failedverify_flow_info: Block %i lacks loop_fatherverify_flow_info: Wrong count of block %i %iverify_gimple failedverify_histograms failedversion attribute is not a stringvirtual non-class function %qsvisibility argument must be one of "default", "hidden", "protected" or "internal"visibility argument not a stringvoid value not ignored as it ought to bevtable for warning: weakref attribute must appear before alias attributeweakref is not supported in this configurationwhen writing output to %s: %mwide character array initialized from incompatible wide stringwide character array initialized from non-wide stringwidth of %q+D exceeds its typewidth of %qs exceeds its typewill be assumed to return % and acceptwithin this contextwriting into constant object (argument %d)writing through null pointer (argument %d)writing to LTRANS output list %s: %mwrong number of arguments to function %<__builtin_next_arg%>wrong number of arguments to function %wrong type argument to abswrong type argument to bit-complementwrong type argument to conjugationwrong type argument to decrementwrong type argument to incrementwrong type argument to unary exclamation markwrong type argument to unary minuswrong type argument to unary plusxstormy16_print_operand: unknown codezero or negative size array %q+Dzero width for bit-field %q+Dzero width for bit-field %qszero width in %s formatzero-length %s format stringzero-size array %qD{unknown}Project-Id-Version: gcc 4.8.0 Report-Msgid-Bugs-To: http://gcc.gnu.org/bugs.html ! POT-Creation-Date: 2013-03-15 17:42+0000 ! PO-Revision-Date: 2013-07-11 20:50+0300 Last-Translator: Lauri Nurmi Language-Team: Finnish Language: fi MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit + Plural-Forms: nplurals=2; plural=(n != 1); %+#D Ohjeet vikailmoitusten tekoon ovat osoitteessa: *************** Valitsimet, jotka alkavat -g, -f, -m, -O *** 152,212 **** valitsimia. ldd-tuloste muodostimilla/hajottimilla. ! Näytä tietyn tyyppiset valitsimet ! %s %q+#D (Komennolla â€-v --help†aliprosessien valitsimet) --classpath POLKU Aseta polku .class-tiedostojen löytämiseksi --help Näytä tämä ohje --version Näytä kääntäjän versiotiedot -B Lisää kääntäjän hakupolkuihin -Wl, Välitä pilkulla erotetut linkittimelle -Wp, Välitä pilkulla erotetut esikääntäjälle -Xlinker Välitä linkittimelle -Xpreprocessor Välitä esikääntäjälle -dumpspecs Näytä kaikki sisäiset määrittelyrivit -dumpversion Näytä kääntäjän versio -h, --help Näytä tämä ohje ja poistu -o Ohjaa tuloste -pass-exit-codes Palauta korkein käännösvaiheen virhekoodi -pipe Käytä putkia väliaikaistiedostojen sijaan -print-file-name= Näytä täysi polku kirjastoon -print-multi-directory Näytä libgcc:n versioiden juurihakemisto -print-prog-name= Näytä täysi polku kääntäjän komponenttiin -print-search-dirs Näytä kääntäjän hakupolussa olevat hakemistot -save-temps Älä poista väliaikaistiedostoja -save-temps= Älä poista väliaikaistiedostoja -std= Oleta syötetiedostojen olevan n mukaisia -time Mittaa kunkin aliprosessin suoritusaika -v, --version Näytä versionumero ja poistu -x Määrittele seuraavien syötetiedostojen kieli Kelvollisia kieliä ovat mm. c c++ assembler none â€none†palauttaa käyttöön oletustoiminnan, eli kielen päättelyn tiedostopäätteestä koska se on järjestelmähakemiston kopio ! mutta ei ylikuormitusta %<%T(const %T&)%> odotettiin %qT-tyyppistä vakiota, saatiin %qT odotettiin tyyppiä, saatiin %qE odotettiin tyyppiä, saatiin %qT täältä alustettaessa funktion %2$qD argumenttia %1$P eikä %# %s %.2f %.2f #include "..." -haku alkaa täältä: #include <...> -haku alkaa täältä: ! #pragma GCC memregs ottaa luvun [0..16]#pragma GCC visibility -ilmaisua pitää seurata joko push tai pop#pragma GCC visibility push() -ilmaisun pitää määrittää oletusarvo, sisäinen, piilotettu tai suojattu#pragma pack (pop) kohdattu ilman vastaavaa ilmaisua #pragma pack (push)#pragma pack ei vaikuta -fpack-struct-valitsimen kanssa - jätetään huomiotta#pragma pack(pop, %E) kohdattu ilman vastaavaa ilmaisua #pragma pack(push, %E)#pragma redefine_extname jätetty huomiotta, koska se on ristiriidassa __asm__-esittelyn kanssa#pragma redefine_extname jätetty huomiotta, koska se on ristiriidassa edellisen #pragma redefine_extname:n kanssa#pragma redefine_extname jätetty huomiotta, koska se on ristiriidassa edellisen nimeämisen kanssa$-operandinumeroa käytetty operandinumerottoman muotoilun jälkeen%<#pragma GCC optimize%> ei ole merkkijono eikä luku%<%%%c%> antaa vain vuoden kaksi viimeistä numeroa%<%%%c%> antaa vain vuoden kaksi viimeistä numeroa joissakin maa-asetustoissa%<%s %E%> esitelty parametrilistan sisällä%<...%>:lla on epäkelpo operandinumero%<__alignof%>-avainsanaa sovellettu bittikenttään%<__builtin_longjmp%>-fuktion toisen argumentin pitää olla 1funktiota %<__builtin_next_arg%> kutsuttu ilman argumenttiakäytetty %<__thread%> ennen %:akäytetty %<__thread%> ennen %:akäytetty sekä %<__thread%> että %käytetty sekä %<__thread%> että %käytetty sekä %<__thread%> että %% tiedostoalueen tyhjässä esittelyssä% ei ole sallittu valitsimen -fno-rtti kanssa% esitelty %-silmukan alkuesittelyssä%-silmukan alkuesittelyt ovat sallittuja vain C99-tilassa% tyhjässä esittelyssä% on liian pitkä GCC:lle%-määrittely ei ole sallittu täällä%:n on palautettava tyyppi %qT%:n ensimmäisen parametrin tyypin on oltava %qT% ei saa palauttaa NULLia ellei esittely ole % (tai -fcheck-new ole voimassa)%:n on palautettava tyyppi %qT%:n ensimmäisen parametrin tyypin on oltava % (%qT)% tiedostoalueen tyhjässä esittelyssä% arvon kanssa voidin palauttavassa funktiossa% ilman arvoa ei-voidin palauttavassa funktiossa% esitelty %-silmukan alkuesittelyssä% ei ole käytettävissä staattisissa jäsenfunktioissa% esitelty %-silmukan alkuesittelyssäfunktiota % käytetty funktiossa, jolla on kiinteä määrä argumentteja%:in on oltava ainoa parametri%E-määre jätetty huomiotta asm-lauseessaluokalla %q#T on datajäseninä osoittimialuokalla %q#T on virtuaalifunktioita ja käytettävissä oleva epävirtuaalinen hajotin%q#T ei ole luokka%q+#D määritelty aiemmin täällä%q+D esitelty täällä%q+D on yleensä funktio%q+D esitelty uudelleen erityyppisenä symbolina%q+D alustetaan jäljempänä kuin%qD esitelty viitteenä, mutta ei ole alustettu%qD esitelty täällä%qD on jo määritelty%qD on vaillinaista tyyppiä%qD on nimiavaruus%qD ei ole luokka eikä nimiavaruus%qD ei ole nimiavaruuden nimi%qD ei ole muuttuja%qD ei ole määritelty funktion näkyvyysalueen ulkopuolella%qD esiteltiin täällä%qD on esittelemättä tällä näkyvyysalueella%qE-attribuuttia ei huomioida%qE-attribuuttia ei huomioida %qT-tyyppiselle kentälle%qE-attribuutti soveltuu vain variadisiin funktioihin%qE määritelty vääränlaisena tunnisteena%qE ei ole tyyppiä %qT%qE on vanhentunut; g++:n vtable'it ovat nyt oletusarvoisesti COM-yhteensopivia%qE esittelemättä (ensimmäinen käyttökerta tässä funktiossa)%qE esittelemättä täällä (ei funktiossa)tyypillä %qT ei ole %qE-nimistä jäsentä%qT ei ole luokka eikä nimiavaruus%qT ei ole luokka-, struct- eikä unionityyppi%qT muunnetaan tyypiksi %qT, kun se viedään %<...%>:n läpi%qs attribuuttia ei huomioida%qs esitelty funktion palauttavana funktiona%qs esitelty taulukon palauttavan funktiona%qs odottaa vakioargumenttia%qs on sekä % että alustin%qs on ylivuotanut%qs alustettu ja esitelty %-avainsanalla%qs on kapeampi kuin tyyppisensä arvot%s%s ! %s %+#T%s %qs%s %s%s %s â€%s†! %s ei tue %%n$-operandinumeromuotoilua%s ei tue muotoilua %<%%%c%> %s%s ei tue muotoilua %<%%%s%c%> %s%s ei tue pituusmäärettä %qs %s%s%s%s %sversio %s (%s) ! %s käännetty GNU C:n versiolla %s, %s%s%s %sversio %s (%s) käännetty CC:llä, %s: %s%s: Ei voi avata tulostetiedostoa: %s ! %s: Tulostetiedoston %s sulkeminen epäonnistui ! %s: PCH-tiedosto oli epäkelpo%s: ei voida avata COFF-tiedostona%s: ei voida avata PCH-tiedostoa: %m%s: ei ole COFF-tiedosto%s:funktioita ei löytynyt ! â€â€ â€-lippuâ€!â€-lippuâ€#â€-lippuâ€'â€-lippuâ€(â€-lippuâ€+â€-lippuâ€-â€-lippuâ€0â€-lippuâ€Eâ€-määreâ€Iâ€-lippuâ€Oâ€-määreâ€^â€-lippuâ€_â€-lippuâ€aâ€-lippuâ€mâ€-lippuâ€qâ€-lippu©(nimetön)(%qs:n alustuksen lähistöllä)(mahdollisesti %qT:n määrittelyn perästä puuttuu puolipiste)(eli kannattaisi antaa %qT eikä %qT funktiolle %)({nimetön})-I- annettu kahdesti-Wformat-contains-nul jätetty huomiotta ilman valitsinta -Wformat-Wformat-extra-args jätetty huomiotta ilman valitsinta -Wformat-Wformat-nonliteral jätetty huomiotta ilman valitsinta -Wformat-Wformat-security jätetty huomiotta ilman valitsinta -Wformat-Wformat-y2k jätetty huomiotta ilman valitsinta -Wformat-Wformat-zero-length jätetty huomiotta ilman valitsinta -Wformatvalitsimia -bundle ja -dynamiclib ei voi käyttää yhdessävalitsimia -bundle_loader ja -dynamiclib ei voi käyttää yhdessävalitsimia -client_name ja -dynamiclib ei voi käyttää yhdessä-current_version on sallittu vain valitsimen -dynamiclib kanssa-fhandle-exceptions on uudelleennimetty: -fexceptions (ja se on nyt oletuksena päällä)valitsimia -force_flat_namespace ja -dynamiclib ei voi käyttää yhdessä-fpic ja -mapcs-reent ovat yhteensopimattomat-install_name on sallittu vain valitsimen -dynamiclib kanssavalitsimia -keep_private_externs ja -dynamiclib ei voi käyttää yhdessä-m64 vaatii PowerPC64-suorittimen, otetaan käyttöön-m64 vaatii PowerPC64-suorittimen-mapcs-stack-check on yhteensopimaton valitsimen -mno-apcs-frame kanssavalitsimia -mbig-endian ja -mlittle-endian ei voi käyttää yhdessä-pipe ei ole tuettuvalitsimia -private_bundle ja -dynamiclib ei voi käyttää yhdessä31-bittinen ABI64-bittinen ABI64-bittinen ABI ei ole tuettu ESA/390-tilassa Sama kuin -std=c89 (C) tai -std=c++98 (C++)AAPCS ei tue valitsinta -mcallee-super-interworkingAAPCS ei tue valitsinta -mcaller-super-interworkingSama kuin --help=targetTasaa funktioiden alutTasaa silmukoiden alutSalli â€?â€-operaattorin argumenttien olla eri tyyppiäAltiVec-argumentti välitetty funktiolle, jolla ei ole prototyyppiäHaaroja suoritettu:%s/%d ! Kutsuja suoritettu:%s/%d ! Tarkista new’n paluuarvoÄlä noudata mitään erityisestiNoudata ISO 1990 C -standardiaNoudata ISO 1990 C -standardia vuoden 1994 korjauksineenNoudata ISO 1990 C -standardia GNU-laajennoksineenNoudata ISO 1999 C -standardiaNoudata ISO 1999 C -standardia GNU-laajennoksineenNoudata ISO Fortran 2003 -standardiaNoudata ISO Fortran 2009 -standardiaNoudata ISO Fortran 95 -standardiaLuo jaettu kirjastoVanhentunut, ks. -std=c99Vanhentunut. Tämä valitsin ei vaikuta mihinkäänNäytä class-tiedoston sisältö luettavassa muodossa. ! Jako nollalla kohdassa %LÄlä vaienna järjestelmän otsakkeista aiheutuvia varoituksiaÄlä varoita â€long longâ€-tyypistä -pedantic-tilassaÄlä varoita Microsoft-laajennosten käytöstäKäytä poikkeustenkäsittelyäKäytä roskienkeruuta (GC) Objective-C/Objective-C++-ohjelmissaHakulistan loppu. ! Virhe:Odotettiin merkkiä â€)†kohdassa %COdotettiin merkkiä â€,†kohdassa %CVakava virhe:Katso ohjeet vikailmoitusten tekemiseen osoitteesta: %s. ! GCC tukee korkeintaan %u sisäkkäistä näkyvyysaluettaGMP-versio %s, MPFR-versio %s, MPC-versio %s ! Tuota 32-bittistä i386-koodiaTuota 64-bittistä x86-64-koodiaLuo koodia NeXT (Apple Mac OS X) -ajoympäristöönLuo make-riippuvuudetLuo make-riippuvuudet ja käännäISO C ei salli ylimääräisiä %<;%>-merkkejä funktioiden ulkopuolellaISO C ei tue kompleksityyppien %<++%>- ja %<--%>-operaatioitaISO C ei tue %<~%>-merkkiä kompleksikonjugaateissaISO C ei tue kompleksikokonaislukutyyppejäISO C ei tue pelkkää %-tyyppiä merkityksellä %ISO C ei tue saturoituvia tyyppejäISO C kieltää %:in lausekkeen kanssa voidin palauttavassa funktiossaISO C kieltää tyhjät käännösyksikötISO C kieltää funktio-osoittimen ja %-tyypin väliset sijoituksetISO C kieltää muuntamasta ei-skalaaria samaksi tyypiksiISO C kieltää muunnokset unionityyppeihinISO C kieltää %:n ja funktio-osoittimen vertailunISO C kieltää ehtolausekkeet %-tyypin ja funktio-osoittimen välilläISO C kieltää ehtolausekkeet, joissa on vain yksi tyhjä puoliISO C kieltää const- ja volatile-funktiotyypitISO C kieltää funktio-osoittimen muuntamisen objektiosoitintyypiksiISO C kieltää objektiosoittimen muuntamisen funktio-osoitintyypiksiISO C kieltää tyhjät alustusaaltosulkeetISO C kieltää parametrien esittelyn etukäteenISO C kieltää etukäteisviittaukset %-tyyppeihinISO C kieltää funktio-osoittimen ja %-tyypin väliset alustuksetISO C kieltää jäsenettömät jäsenesittelytISO C kieltää sisäkkäiset funktiotISO C kieltää ?:-lausekkeen ilman keskimmäistä termiäISO C kieltää funktio-osoittimien suuruusvertailunISO C kieltää funktio-osoittimen ja %-tyypin väliset palautuksetISO C kieltää %-taulukon indeksoinninISO C kieltää nollan kokoisen taulukonISO C kieltää nollan kokoisen taulukon %qEISO C kieltää argumenttien muuntamisen unionityypiksiISO C rajoittaa luetellun tyypin arvot %-tyypin arvoalueelleISO C++ 1998 ei tue % -tyyppiäISO C++ kieltää %<::main%>-funktion kutsumisen ohjelmastaISO C++ kieltää tyyppimuunnoksen funktio-osoittimen ja olio-osoittimen välilläISO C++ kieltää osoittimen ja kokonaisluvun vertailunISO C++ kieltää vertailun %-osoittimen ja funktio-osoittimen välilläISO C++ kieltää ehtolausekkeen %-osoittimen ja funktio-osoittimen välilläISO C++ kieltää muunnoksen %-osoittimen ja funktio-osoittimen välilläISO C++ kieltää muuttujan %qs esittelyn ilman tyyppiäISO C++ kieltää %qT-tyyppisen osoittimen vähentämisenISO C++ kieltää enumin vähentämisenISO C++ kieltää %qT-tyyppisen osoittimen kasvattamisenISO C++ kieltää enumin lisäyksenISO C++ kieltää epäkokonaislukutyyppiä %2$qT olevan vakiojäsenen %1$qD alustamisenISO C++ kieltää ?:-lausekkeen käytön ilman keskimmäistä termiäISO C++ kieltää %<::main%>-funktion osoitteen ottamisenISO C++ kieltää %-tyyppisen osoittimen käytön vähennyslaskussaISO C++ kieltää funktio-osoittimen käytön vähennyslaskussaISO C++ kieltää metodiosoittimen käytön vähennyslaskussaISO C++ kieltää muuttuvakokoisen taulukonISO C++ kieltää muuttuvakokoisen taulukon %qDISO C++ kieltää nollan kokoisen taulukonISO C++ kieltää nollan kokoisen taulukon %qDISO C++ kieltää nimettömät structitISO C++ kieltää ?:-operaattorin ylikuormituksenISO C++:n mukaan nämä ovat moniselitteisiä siitä huolimatta, että ensimmäisen huonoin muunnos on parempi kuin toisen huonoin:ISO C90 ei tue syntaksia %<[*]%> taulukkoesittelijöissäISO C90 ei tue % -tyyppiäISO C90 ei tue parametritaulukkoesittelyissä avainsanaa % tai tyyppimääreitäISO C90 ei tue kompleksityyppejäISO C90 ei tue joustavia taulukon jäseniäISO C90 kieltää taulukon %qE, jonka kokoa ei voida määrittääISO C90 kieltää taulukot, joiden kokoa ei voida määrittääISO C90 kieltää yhdysliteraalitISO C90 kieltää esittelyjen ja koodin sekoittamisenISO C90 kieltää muuttuvakokoisen taulukonISO C90 kieltää muuttuvakokoisen taulukon %qEMuodostin %qsFunktio %qsJäsenfunktio %qsVirheellinen funktion paluuarvoVirheellinen proseduuriargumentti kohdassa %LJava-luokalla %qT ei voi olla hajotintaJava-luokalla %qT ei voi olla implisiittistä epätriviaalia hajotintaKuten -M, mutta ilman järjestelmän otsikkotiedostojaKuten -MD, mutta ilman järjestelmän otsikkotiedostojaRivejä suoritettu:%s/%d ! Tee â€charâ€-tyypistä oletuksena etumerkillinenTee â€charâ€-tyypistä oletuksena etumerkitönNULL-arvon käyttö laskutoimituksessaNimi â€%s†kohdassa %C on jo määritelty geneerisenä rajapintana kohdassa %LEi haaroja Ei kutsuja Ei suoritettavia rivejä ! Ei kelvollinen Javan .class-tiedosto. ! Valitsimet: ! Salli â€$†tunnisteen merkkinäNäytä ylimääräisiä (mahdollisesti ei-toivottuja) varoituksiaTuota big-endian-koodiaTuota little-endian-koodiaTunnista C++:n avainsanat kuten â€compl†ja â€xorâ€Tunnista sisäiset funktiotTunnista â€asmâ€-avainsanaMuistialueen ylitysSama kuin -WcommentL1-välimuistin kokoL2-välimuistin kokoTämä ohjelma on vapaaohjelmisto; Katsokaa kopiointiehdot lähdekoodista. Tällä ohjelmistolla EI OLE TAKUUTA; ei edes KAUPALLISESTI HYVÄKSYTTÄVÄSTÄ LAADUSTA tai SOPIVUUDESTA TIETTYYN TARKOITUKSEEN. --- 230,328 ---- valitsimia. ldd-tuloste muodostimilla/hajottimilla. ! Näytä tietyn tyyppiset komentorivivalitsimet ! %s %qD %q+#D (Komennolla â€-v --help†aliprosessien komentorivivalitsimet) --classpath POLKU Aseta polku .class-tiedostojen löytämiseksi --help Näytä tämä ohje + --help={target|optimizers|warnings|undocumented|params}[,{[^]joined|[^]separate}] + --sysroot= Käytä otsakkeiden ja kirjastojen + juurihakemistona --version Näytä kääntäjän versiotiedot -B Lisää kääntäjän hakupolkuihin + -Wa, Välitä pilkulla erotetut assemblerille -Wl, Välitä pilkulla erotetut linkittimelle -Wp, Välitä pilkulla erotetut esikääntäjälle + -Xassembler Välitä assemblerille -Xlinker Välitä linkittimelle -Xpreprocessor Välitä esikääntäjälle + -a, --all-blocks Näytä tietoja jokaisesta peruslohkosta + -b, --branch-probabilities Sisällytä haarojen todennäköisyydet tulosteeseen + -c, --branch-counts Toteutuneiden haarojen lukumäärät, + ei prosenttilukuja -dumpspecs Näytä kaikki sisäiset määrittelyrivit -dumpversion Näytä kääntäjän versio + -f, --function-summaries Tulosta yhteenvedot jokaisesta funktiosta -h, --help Näytä tämä ohje ja poistu + -l, --long-file-names Käytä pitkiä tulostiedostojen nimiä sisällytetyille + lähdetiedostoille + -n, --no-output Älä luo tulostiedostoa -o Ohjaa tuloste -pass-exit-codes Palauta korkein käännösvaiheen virhekoodi + -pie Luo paikkariippumaton suoritettava tiedosto -pipe Käytä putkia väliaikaistiedostojen sijaan -print-file-name= Näytä täysi polku kirjastoon -print-multi-directory Näytä libgcc:n versioiden juurihakemisto -print-prog-name= Näytä täysi polku kääntäjän komponenttiin -print-search-dirs Näytä kääntäjän hakupolussa olevat hakemistot + -print-sysroot-headers-suffix Näytä sysroot-loppuliite, jota käytetään otsakkeiden löytämiseen -save-temps Älä poista väliaikaistiedostoja -save-temps= Älä poista väliaikaistiedostoja + -shared Luo jaettu kirjasto -std= Oleta syötetiedostojen olevan n mukaisia -time Mittaa kunkin aliprosessin suoritusaika + -v Näytä kääntäjän käynnistämät ohjelmat -v, --version Näytä versionumero ja poistu -x Määrittele seuraavien syötetiedostojen kieli Kelvollisia kieliä ovat mm. c c++ assembler none â€none†palauttaa käyttöön oletustoiminnan, eli kielen päättelyn tiedostopäätteestä koska se on järjestelmähakemiston kopio ! mutta ei ylikuormitusta %<%T(const %T&)%> mutta ei ylikuormitusta % ehdokas odottaa %d argumenttia, %d annettu ehdokas odottaa %d argumenttia, %d annettu siirtyy catch-lohkoon siirtyy try-lohkoon odotettiin luokkamallia, saatiin %qE odotettiin luokkamallia, saatiin %qT odotettiin %qT-tyyppistä vakiota, saatiin %qT odotettiin tyyppiä, saatiin %qE odotettiin tyyppiä, saatiin %qT täältä alustettaessa funktion %2$q+D argumenttia %1$P alustettaessa funktion %2$qD argumenttia %1$P eikä % ohittaa %q+#D:n alustuksen tässä alustuksessa voit kiertää tämän poistamalla alustimen Kaikki valitsimet halutuilla ominaisuuksilla on jo näytetty ! Yhtään valitsinta halutuilla ominaisuuksilla ei löytynyt ! ehdokas 1: %q+#F ehdokas 2: %q+#Fkääntäjänsisäisellä â€!$OMP ATOMICâ€-sijoituksella IAND, IOR tai IEOR täytyy olla kaksi argumenttia kohdassa %Lkääntäjänsisäisen â€!$OMP ATOMICâ€-sijoituksen on oltava MIN, MAX, IAND, IOR tai IEOR kohdassa %Lâ€!$OMP ATOMICâ€-sijoituksen on oltava operaattori tai kääntäjänsisäinen oikealla puolella kohdassa %Lkääntäjänsisäiset â€!$OMP ATOMICâ€-argumentit paitsi yksi eivät saa viitata kohteeseen â€%s†kohdassa %Lkääntäjänsisäisten â€!$OMP ATOMICâ€-argumenttien on oltava skaalaareja kohdassa %Lâ€!$OMP DOâ€-iteraatiomuuttuja ei saa olla THREADPRIVATE kohdassa %Lâ€!$OMP DOâ€-iteraatiomuuttuja on läsnä muussa lauseessa kuin PRIVATE tai LASTPRIVATE kohdassa %Lodotettiin â€::†moduuliluonteen jälkeen paikassa %C, mutta ei löytynyt# %s %.2f %.2f #include "..." -haku alkaa täältä: #include <...> -haku alkaa täältä: ! #pragma GCC memregs ottaa luvun [0..16]#pragma GCC optimize ei ole sallittu funktioiden sisällä#pragma GCC option ei ole sallittu funktioiden sisällä#pragma GCC visibility -ilmaisua pitää seurata joko push tai pop#pragma GCC visibility push() -ilmaisun pitää määrittää oletusarvo, sisäinen, piilotettu tai suojattu#pragma message: %s#pragma pack (pop) kohdattu ilman vastaavaa ilmaisua #pragma pack (push)#pragma pack ei vaikuta -fpack-struct-valitsimen kanssa - jätetään huomiotta#pragma pack(pop, %E) kohdattu ilman vastaavaa ilmaisua #pragma pack(push, %E)#pragma redefine_extname jätetty huomiotta, koska se on ristiriidassa __asm__-esittelyn kanssa#pragma redefine_extname jätetty huomiotta, koska se on ristiriidassa edellisen #pragma redefine_extname:n kanssa#pragma redefine_extname jätetty huomiotta, koska se on ristiriidassa edellisen nimeämisen kanssa$-operandinumeroa käytetty operandinumerottoman muotoilun jälkeen%<#pragma GCC optimize%> ei ole merkkijono eikä luku%<#pragma GCC option%> ei ole merkkijono%<#pragma%> ei ole sallittu täällä%<%%%c%> antaa vain vuoden kaksi viimeistä numeroa%<%%%c%> antaa vain vuoden kaksi viimeistä numeroa joissakin maa-asetustoissa%<%D::%D%> ei ole luokan jäsen%<%E::%E%> on esittelemättä%<%E::%E%> ei ole luokka eikä nimiavaruus%<%E::%E%> ei ole luokka, nimiavaruus eikä lueteltu tyyppi%<%E::%E%> ei ole tyyppi%<%T::%D%> nimeää muodostimen, ei tyyppiä%<%T::%E%> on esittelemättä%<%T::%E%> ei ole tyyppi%<%T::%E%> nimeää muodostimen, ei tyyppiä%<%s %E%> esitelty parametriluettelon sisällä%<...%> argumentteina.)%<...%>:lla on epäkelpo operandinumero%<::%E%> on esittelemättä%<::%E%> ei ole luokka eikä nimiavaruus%<::%E%> ei ole luokka, nimiavaruus eikä lueteltu tyyppi%<::%E%> ei ole tyyppi%<[*]%> ei ole esittelyssä%<__alignof%>-avainsanaa sovellettu bittikenttään%<__builtin_longjmp%>-fuktion toisen argumentin pitää olla 1funktiota %<__builtin_next_arg%> kutsuttu ilman argumenttia%<__label__%> ei ole lohkon alussakäytetty %<__thread%> ennen %:akäytetty %<__thread%> ennen %:akäytetty sekä %<__thread%> että %käytetty sekä %<__thread%> että %käytetty sekä %<__thread%> että %% tiedostoalueen tyhjässä esittelyssä% ei ole sallittu valitsimen -fno-rtti kanssa% ilman edeltävää %:iä% esitelty %-silmukan alkuesittelyssä%-attribuuttidirektiivi jätetty huomiotta%-silmukan alkuesittelyt ovat sallittuja vain C99-tilassa% tyhjässä esittelyssä% on liian pitkä GCC:lle% virheellinen %qs:llesekä % että % määritelty %qs:lle% virheellinen %qs:lle% tai % virheellinen %qs:lle%-määrittely ei ole sallittu täällä%-funktio palaa%-arvon on oltava positiivinen%:n on palautettava tyyppi %qT%:n ensimmäisen parametrin tyypin on oltava %qT% ei saa palauttaa NULLia ellei esittely ole % (tai -fcheck-new ole voimassa)%:n on palautettava tyyppi %qT%:n ensimmäisen parametrin tyypin on oltava % (%qT)% tiedostoalueen tyhjässä esittelyssä% arvon kanssa voidin palauttavassa funktiossa% ilman arvoa ei-voidin palauttavassa funktiossa% virheellinen %qs:lle% tai % virheellinen %qs:llesekä % että % määritelty %qs:lle% tai % virheellinen %qs:lle%:ia sovellettu bittikenttään% esitelty %-silmukan alkuesittelyssä% ei ole käytettävissä staattisissa jäsenfunktioissa-sanaa ei voi käyttää tässä yhteydessä% nimeää kohteen %q#T:n, joka ei ole luokkamalli% nimeää %q#T:n, joka ei ole tyyppi%:ia sovellettu bittikenttään% esitelty %-silmukan alkuesittelyssäfunktiota % käytetty funktiossa, jolla on kiinteä määrä argumentteja% luokan esittelyn ulkopuolella%:in on oltava ainoa parametri%E-määre jätetty huomiotta asm-lauseessa%Kkutsu kohteeseen %qs esitelty attribuuttivirheellä: %s%Kkutsu kohteeseen %qs esitelty attribuuttivaroituksella: %slöytyi %d muodostin ! löytyi %d muodostinta ! löytyi %d hajotin ! löytyi %d hajotinta ! löytyi %d kehystaulu ! löytyi %d kehystaulua ! %q#D on vaillinaista tyyppiäluokalla %q#T on datajäseninä osoittimialuokalla %q#T on virtuaalifunktioita ja käytettävissä oleva epävirtuaalinen hajotin%q#T ei ole luokka%q#T ei ole luokka eikä nimiavaruus%q+#D aiemmin esitelty täällä%q+#D määritelty aiemmin täällä%q+D esitelty ystävänä%q+D esitelty täällä%q+D on liian pieni sisältämään %q#T:n kaikkia arvoja%q+D on yleensä funktio%q+D ei voi olla staattinen koska se on unionin jäsen%q+D:lla ei voi olla viitetyyppiä %qT, koska se on unionin jäsen%q+D esitelty uudelleen erityyppisenä symbolina%q+D sallii vain nolla tai kaksi argumenttia%q+D:a käytetty ennen esittelyä%q+D oli piilotettu%q+D alustetaan jäljempänä kuin%q+D: näkyvyysattribuuttia ei oteta huomioon koska se%qD:lla ei voi olla oletusargumentteja%qD esitelty ei-parametrina%qD esitelty viitteenä, mutta ei ole alustettu%qD esitelty täällä%q+D:lla on edellinen esittely täällä%qD on jo määritelty%qD on vaillinaista tyyppiä%qD:llä on sama nimi kuin luokalla, jossa se on esitelty%qD on nimiavaruus%qD on vanhentunut (esitelty kohdassa %s:%d)%qD on vanhentunut (esitelty kohdassa %s:%d): %s%qD on tavallisesti ei-staattinen funktio%qD ei ole luokka eikä nimiavaruus%qD ei ole %qD:n jäsen%qD ei ole nimiavaruuden nimi%qD ei ole malli%qD ei ole mallifunktio%qD ei ole muuttuja%qD ei ole määritelty funktion näkyvyysalueen ulkopuolella%qD:a käytetään alustamattomana tässä funktiossa%qD:lla ei saa olla vaihtuvaa määrää argumentteja%qD:n on otettava joko yksi tai kaksi argumenttia%qD:n on otettava joko nolla tai yksi argumenttia%qD:n on otettava tasan yksi argumentti%qD:n on otettava tasan kaksi argumenttia%qD esitelty uudelleen eri näkyvyydellä%qD tulee alustaa jäsenten alustuslistassa%qD esiteltiin tyyppinä %qs, mikä edellyttää oletusnäkyvyyttä%qD esiteltiin täällä%qD on esittelemättä tällä näkyvyysalueella%qD käytössä ilman esittelyä ennen sen määrittelyä%qD käytössä ilman prototyyppiä ennen sen määrittelyä%qE-attribuutti sallii vain kokonaislukuvakioargumentin%qE-attribuutti pätee vain funktioihin%qE-attribuutin argumentin tulee olla välillä 18..255%qE-attribuutti on ristiriidassa attribuutin %s kanssa%qE-attribuutti ei päde tyyppeihin%qE-attribuutti vaikuttaa vain julkisiin objekteihin%qE-attribuuttia ei huomioida%qE-attribuuttia ei huomioida koska %qT on jo määritelty%qE-attribuuttia ei huomioida %qE:lle%qE-attribuuttia ei huomioida %qT-tyyppiselle kentälle%qE-attribuuttia ei huomioida ei-luokkatyypeille%qE-attribuutti pätee vain funktiotyyppeihin%qE-attribuutti pätee vain funktioihin, ei %s%qE-attribuutti pätee vain muuttujiin%qE-attribuutti soveltuu vain muuttujiin ja funktioihin%qE-attribuutti soveltuu vain variadisiin funktioihin%qE-attribuutti tarvitsee merkkijonovakioargumentin%qE-attribuutti tarvitsee kokonaislukuvakioargumentin%qE-attribuutti tarvitsee prototyyppejä, joilla nimettyjä argumentteja%qE esitelty funktion palauttavana funktiona%qE esitelty taulukon palauttavan funktiona%qE määritelty vääränlaisena tunnisteena%qE:lla ei ole luokkatyyppiä%qE ei nimeä tyyppiä%qE ei ole typedef eikä sisäinen tyyppi%qE on esittelemättä%qE edellyttää oletusnäkyvyyttä, mutta %qD on jo esitelty eri näkyvyydellä%qE nimiavaruudessa %qE ei nimeä tyyppiä%qE on tunnistamaton muotofunktiotyyppi%qE on vanhentunut%qE on vanhentunut (esitelty kohdassa %s:%d)%qE on vanhentunut (esitelty kohdassa %s:%d): %s%qE on vanhentunut: %s%qE ei ole luokka eikä nimiavaruus%qE ei ole luokka, nimiavaruus eikä lueteltu tyyppi%qE ei ole malli%qE ei ole tyyppi%qE ei ole kelvollinen malliargumentti tyypille %qT, koska se ei ole objekti ulkoisella linkityksellä%qE ei ole Objective-C-luokkanimi eikä -alias%qE ei ole esittelyn alussa%qE:a ei ole alustettu%qE ei ole tyyppiä %qT%qE on vanhentunut; g++:n vtable'it ovat nyt oletusarvoisesti COM-yhteensopivia%qE:a käytetään alustamattomana tässä funktiossa%qE:a saatetaan käyttää alustamattomana tässä funktiossa%qE ei välttämättä vastaa viestiin %<%c%E%>%qE esitelty uudelleen erityyppisenä symbolina%qE esittelemättä (ensimmäinen käyttökerta tässä funktiossa)%qE esittelemättä täällä (ei funktiossa)tyypillä %qT ei ole %qE-nimistä jäsentä%qT ei ole luokka eikä nimiavaruus%qT ei ole luokkatyyppi%qT ei ole luokka-, struct- eikä unionityyppi%qT ei ole nimiavaruus%qT ei ole malli%qT muunnetaan tyypiksi %qT, kun se viedään %<...%>:n läpi%qT on/käyttää anonyymiä tyyppiä%qs attribuuttia ei huomioida%qs esitelty funktion palauttavana funktiona%qs esitelty taulukon palauttavan funktiona%qs odottaa vakioargumenttia%qs on sekä % että alustin%qs on ylivuotanut%qs alustettu ja esitelty %-avainsanalla%qs on kapeampi kuin tyyppisensä arvot%qs määritelty parametrille %qE%qs määritelty tietueen kentälle%qs määritelty tietueen kentälle %qE%qs määritelty nimettömälle parametrille%s%s ! %s %+#T%s %qs%s %s %p %d ! %s %s%s ! %s %s(%E) %p %d %s â€%s†! %s:n kohdassa %L täytyy olla INTEGER%s-attribuutti kohdassa %L ei ole sallittu moduulin spesifikaatio-osan ulkopuolella%s ei tue %%n$-operandinumeromuotoilua%s ei tue muotoilua %<%%%c%> %s%s ei tue muotoilua %<%%%s%c%> %s%s ei tue pituusmäärettä %qs %s%s muotoilumerkkijonossa kohdassa %L%s-lausetta odotettiin kohdassa %L%s-lause ei ole sallittu PURE-proseduurissa kohdassa %C%s%s%s %sversio %s (%s) ! %s käännetty GNU C:n versiolla %s, %s%s%s %sversio %s (%s) käännetty CC:llä, %s%swarning: %s-otsakeversio %s eroaa kirjastoversiosta %s. ! %s-%s on tyhjä väli%s: %s%s: --param-argumenttien tulee olla muotoa NIMI=ARVO%s: Ei voi avata tulostetiedostoa: %s ! %s: Tulostiedoston %s sulkeminen epäonnistui ! %s: PCH-tiedosto oli epäkelpo%s: ei voida avata COFF-tiedostona%s: ei voitu avata PCH-tiedostoa: %m%s: ei ole COFF-tiedosto%s:%d: hämmentynyt aikaisemmista virheistä, poistutaan ! %s:funktioita ei löytynyt ! %s:ei ole gcov-datatiedosto ! %s:tuntematon funktio â€%u†! â€â€ â€-lippuâ€!â€-lippuâ€#â€-lippukääntäjänsisäisen â€%3$sâ€-funktion argumenttien â€%1$s†ja â€%2$s†kohdassa %4$L on oltava muodoltaan identtisiä.kääntäjänsisäisen â€%3$sâ€-funktion argumenttien â€%1$s†ja â€%2$s†kohdassa %4$L on oltava samaa tyyppiäkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L ei voi olla INTENT(IN)kääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on virheellinen ulottuvuuksia permutaatio (ulottuvuus â€%4$d†kahteen kertaan)kääntäjänsisäisen â€%2$sâ€-funktion argumentilla â€%1$s†kohdassa %3$L on negatiivinen alkio (%4$d)kääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on lukualueen ulkopuolinen ulottuvuus (%4$d)kääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on väärä määrä alkioita (%4$d/%5$d)kääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on tyhjäkääntäjänsisäisen â€%2$sâ€-funktion argumentti â€%1$s†kohdassa %3$L ei ole kelvollinen ulottuvuusindeksikääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava %4$skääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava ALLOCATABLEkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava INTEGER tai LOGICALkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava INTEGER tai PROCEDUREkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava INTEGER tai REALkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava REAL tai COMPLEXkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava POINTER tai TARGETkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava vakiokääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava looginen taulukkokääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava ei-perityn tyyppinenkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava numeerinen tyyppikääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava osoitin tai VARIABLE tai FUNCTIONkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava skalaarikääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava muuttujakääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava taulukkokääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava oletusreaalilukukääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava kaksoistarkkuusliukulukukääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava numeerinen tai LOGICALkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava valemuuttujakääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava OPTIONAL-valemuuttujakääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava laajennettavaa tyyppiäkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava %4$d:n kaltainenkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava %4$d tasoakääntäjänsisäisen â€%2$sâ€-funktion â€%1$sâ€-argumentin kohdassa %3$L on oltava tasoa 1 tai 2kääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava merkkijonon â€%4$s†kaltainenkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava saman tyyppinen ja kaltainen kuin â€%4$sâ€kääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava joko REAL tai INTEGERkääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†kohdassa %3$L on oltava samaa tasoa kuin â€%4$s†tai sen on oltava skalaarikääntäjänsisäisen â€%2$sâ€-funktion argumentti â€%1$s†kohdassa %3$L ei saa olla OPTIONALkääntäjänsisäisen â€%2$sâ€-funktion argumentti â€%1$s†kohdassa %3$L â€ei saa olla â€%4$sâ€:n aliobjektikääntäjänsisäisen â€%2$sâ€-funktion argumentti â€%1$s†kohdassa %3$L ei saa olla läsnä, jos â€x†on COMPLEX-tyyppinen â€%s†kohdassa %C ei ole muuttujaâ€%s†kohdassa %L on jo alustettu kohdassa %Lâ€%s†kohdassa %L ei ole yksiselitteinenâ€%s†kohdassa %L ei ole VALUEâ€%s†kohdassa %L on ABSTRACT-tyyppiä â€%sâ€â€'â€-lippuâ€(â€-lippuâ€)†odotettiin kohdassa %Câ€+â€-lippuâ€-â€-lippuâ€0â€-lippuâ€Eâ€-määreâ€Iâ€-lippukääntäjänsisäisen â€TRANSFERâ€-funktion argumentti â€MOLD†kohdassa %L ei saa olla %sâ€Oâ€-määreâ€^â€-lippuâ€_â€-lippukääntäjänsisäisen â€%2$sâ€-funktion argumentin â€a%1$d†kohdassa %3$L on oltava %4$s(%5$d)â€aâ€-lippukääntäjänsisäisen â€%sâ€-funktion â€al†kohdassa %L on oltava INTEGER, REAL tai CHARACTERâ€mâ€-lippuâ€qâ€-lippukääntäjänsisäisen â€reshapeâ€-funktion argumentti â€shape†kohdassa %L ei saa olla vakiokokoinen taulukkokääntäjänsisäisen â€shapeâ€-funktion argumentti â€source†kohdassa %L ei saa olla oletetun kokoinen taulukko©(Viestien ilman täsmäävää metodisignatuuria(nimetön)(G++ hyväksyy koodin %<-fpermissive%>-valitsimella)(%qs:n alustuksen lähistöllä)(ehkä tarkoitettiin %)(mahdollisesti %qT:n määrittelyn perästä puuttuu puolipiste)(eli kannattaisi antaa %qT eikä %qT funktiolle %)(staattiset hajottimet kohteelle %s)({nimetön})valitsin --resource vaatii valitsimen -o-I- annettu kahdesti-Wformat-contains-nul jätetty huomiotta ilman valitsinta -Wformat-Wformat-extra-args jätetty huomiotta ilman valitsinta -Wformat-Wformat-nonliteral jätetty huomiotta ilman valitsinta -Wformat-Wformat-security jätetty huomiotta ilman valitsinta -Wformat-Wformat-y2k jätetty huomiotta ilman valitsinta -Wformat-Wformat-zero-length jätetty huomiotta ilman valitsinta -Wformat-Wnormalized= Varoita normalisoimattomista Unicode-merkkijonoistavalitsimia -bundle ja -dynamiclib ei voi käyttää yhdessävalitsimia -bundle_loader ja -dynamiclib ei voi käyttää yhdessävalitsimia -client_name ja -dynamiclib ei voi käyttää yhdessä-current_version on sallittu vain valitsimen -dynamiclib kanssa-fPIC ei ole tuettu-fexcess-precision=standard C++-kielelle-fhandle-exceptions on uudelleennimetty: -fexceptions (ja se on nyt oletuksena päällä)valitsimia -force_flat_namespace ja -dynamiclib ei voi käyttää yhdessä-fpic ja -mapcs-reent ovat yhteensopimattomat-install_name on sallittu vain valitsimen -dynamiclib kanssa-isysroot Aseta järjestelmän juurihakemistoksi-isystem Lisää järjestelmän include-polun alkuunvalitsimia -keep_private_externs ja -dynamiclib ei voi käyttää yhdessä-m64 vaatii PowerPC64-suorittimen, otetaan käyttöön-m64 vaatii PowerPC64-suorittimen-mapcs-stack-check on yhteensopimaton valitsimen -mno-apcs-frame kanssavalitsimia -mbig-endian ja -mlittle-endian ei voi käyttää yhdessävalitsimen -mc= on oltava -mc=tiny, -mc=near, tai -mc=farvalitsimella -mclip ei nykyisin ole vaikutusta ilman valitsinta -mminmaxvalitsimia -mcorea ja -mcoreb ei voi käyttää yhdessävalitsin -mcpu=%s on ristiriidassa valitsimen -march=%s kanssa-mcpu=%s ei ole kelvollinenvalitsin -mmultiple ei ole tuettu little-endian-järjestelmissä-mpcrel -fPIC ei ole nykyisin tuettu valitulle prosessorille-mshared-library-id= määritelty ilman valitsinta -mid-shared-libraryvalitsin -mstring ei ole tuettu little-endian-järjestelmissä-mvsx ja -mno-altivec ovat yhteensopimattomat-mvsx ja -mpaired ovat yhteensopimattomat-mvsx:ää käytetty little-endian-koodissa-pipe ei ole tuettuvalitsimia -private_bundle ja -dynamiclib ei voi käyttää yhdessä31-bittinen ABI64-bittinen ABI64-bittinen ABI ei ole tuettu ESA/390-tilassa ! Sama kuin -std=c89 (C) tai -std=c++98 (C++)AAPCS ei tue valitsinta -mcallee-super-interworkingAAPCS ei tue valitsinta -mcaller-super-interworkingABSTRACT-tyyppiä â€%s†käytetty kohdassa %LASYNCHRONOUS= määrite kohdassa %L täytyy olla alustuslausekeVarsinainen argumentti kohteelle â€%s†ei voi olla oletetunkokoinen taulukko kohdassa %LVarsinaisen argumentin kohteelle â€%s†on oltava osoitin kohdassa %LSama kuin --help=targetKohdista koodi ja data 32 bittiinTasaa funktioiden alutTasaa silmukoiden alutKohdista muuttujat 32 bitin rajoilleVarattavalla â€%s†kohdassa %L ei voi olla alustintaSalli gcc:n käyttää repeat/erepeat-käskyjäSalli â€?â€-operaattorin argumenttien olla eri tyyppiäSalli MT-käskyjen käyttöSalli laitteistöliukuluku-ABIn ja -käskyjen käyttöAltiVec-argumentti välitetty funktiolle, jolla ei ole prototyyppiäKäsittele bittikenttiä aina int-kokoisinaMonimerkityksellinen symboli TYPE-määrittelyssä kohdassa %CArgumentti â€%sâ€/â€%s†PASS(%s) kohdassa %L ei voi olla ALLOCATABLEArgumentilla â€%sâ€/â€%s†PASS(%s) kohdassa %L ei voi olla POINTER-attribuuttiaArgumentin â€%sâ€/â€%s†PASS(%s) kohdassa %L täytyy olla perittyä tyyppiä â€%sâ€Argumentin â€%sâ€/â€%s†PASS(%s) kohdassa %L täytyy olla skalaariArgumentin %s kohdassa %L on oltava pituudeltaan yksiFunktion %s argumentti kohdassa %L on negatiivinenFunktion %s argumentti kohdassa %L on lukualueen [0,127] ulkopuolellaFINAL-proseduurin argumentin kohdassa %L täytyy olla tyyppiä â€%sâ€Kääntäjänsisäisen â€%sâ€-funktion argumenttityyppien kohdassa %L on täsmättävä (%s/%s)Aritmeettinen NaN muunnettaessa %s arvoksi %s kohdassa %L. Tämä tarkistus voidaan ottaa pois käytöstä valitsimella -fno-range-checkAritmeettinen ylivuoto muunnettaessa %s arvoksi %s kohdassa %L. Tämä tarkistus voidaan ottaa pois käytöstä valitsimella -fno-range-checkAritmeettien alivuoto muunnettaessa %s arvoksi %s kohdassa %L. Tämä tarkistus voidaan ottaa pois käytöstä valitsimella -fno-range-checkTaulukkoviitteellä kohdassa %C ei voi olla yli %d ulottuvuuttaTaulukkoviite kohdassa %L on rajojen ulkopuolella (%ld < %ld) ulottuvuudessa %dTaulukkoviite rajojen ulkopuolellaAssembler-valitsimet ! ==================== ! Sijoitusoperaattorirajapinta kohdassa %L ei saa määritellä uudelleen INTRINSIC-tyyppisijoitustaSijoitus FORALL-indeksimuuttujaan kohdassa %LAttribuutti kohdassa %L ei ole sallittu TYPE-määrittelyssäAutomaattitaulukolla â€%s†kohdassa %L ei voi olla alustintaLohkonimiö ei ole sopiva IF-lauseelle kohdassa %CLohkonimiö ei ole sopiva aritmeettiselle IF-lauseelle kohdassa %CHaarautuminen kohdassa %L voi aiheuttaa ikisilmukanHaaroja suoritettu:%s/%d ! CASE-nimiö kohdassa %L menee CASE-nimiön päälle kohdassa %LCHARACTER-lauseke kohdassa %L on typistetty (%d/%d)CHARACTER(*)-funktio â€%s†kohdassa %L ei voi olla taulukkoarvoinenCHARACTER(*)-funktio â€%s†kohdassa %L ei voi olla osoitinarvoinenCHARACTER(*)-funktio â€%s†kohdassa %L ei voi olla puhdasCHARACTER(*)-funktio â€%s†kohdassa %L ei voi olla rekursiivinenCLOSE-lause ei ole sallittu PURE-proseduurissa kohdassa %CKutsuja suoritettu:%s/%d ! Ei voi muuntaa tyyppiä %s tyyppiin %s kohdassa %LEi voida poistaa moduulitiedostoa â€%sâ€: %sEi voida poistaa tilapäistä moduulitiedostoa â€%sâ€: %sEi voi avata tiedostoa â€%sâ€Ei voi avata moduulitiedostoa â€%s†lukemista varten kohdassa %C: %sEi voi avata moduulitiedostoa â€%s†kirjoittamista varten kohdassa %C: %sEi voida nimetä uudelleen moduulitiedostoa â€%s†nimellä â€%sâ€: %sEi voi sijoitaa nimettyyn vakioon kohdassa %CTarkista new’n paluuarvoKoodin koko: small, medium tai largeKäännä kaikki ohjelmayksiköt kerralla ja tarkasta kaikki rajapinnatRistiriita funktioargumentin attribuuteissa kohdassa %CÄlä noudata mitään erityisestiNoudata ISO 1990 C -standardiaNoudata ISO 1990 C -standardia vuoden 1994 korjauksineenNoudata ISO 1990 C -standardia GNU-laajennoksineenNoudata ISO 1999 C -standardiaNoudata ISO 1999 C -standardia GNU-laajennoksineenNoudata ISO 2011 C++ -standardia (kokeellinen ja epätäydellinen tuki)Noudata ISO 201y(7?) C++ -standardiluonnosta (kokeellinen ja epätäydellinen tuki)Noudata ISO Fortran 2003 -standardiaNoudata ISO Fortran 2009 -standardiaNoudata ISO Fortran 95 -standardiaMuunnos tyypistä %s tyyppiin %s kohdassa %LCray-osoittimella kohdassa %C on %d-tavun tarkkuus; muistiosoitteet vaativat %d tavuaCray-osoittimen kohdassa %C on oltava kokonaislukuLuo graafinen käyttöliittymäsovellusLuo paikkariippumaton suoritettava tiedostoLuo jaettu kirjastoLuo konsolisovellusDATA-lause kohdassa %C ei ole sallittu PURE-proseduurissaData-alkio taulukon ylärajan yläpuolella kohdassa %LData-alkio taulukon alarajan alapuolella kohdassa %LData tallennetaan big-endian-muodossa.Data tallennetaan little-endian-muodossa. (Oletus).Vanhentunut, ks. -std=c99Vanhentunut. Tämä valitsin ei vaikuta mihinkäänPerityllä tyypillä â€%s†BIND(C):llä ei saa olla CONTAINS-lohkoa kohdassa %CPerityllä tyypillä â€%s†SEQUENCE:lla ei saa olla CONTAINS-lohkoa kohdassa %CEri tyypit osoitinsijoituksessa kohdassa %L; yritettiin tyypin %s sijoitusta tyyppiin %sNäytä class-tiedoston sisältö luettavassa muodossa. ! ! Näytä kääntäjän versioJako nollalla kohdassa %LJako nollalla muunnettaessa %s arvoksi %s kohdassa %LÄlä hylkää kommenttejaÄlä hylkää kommentteja makroja laajennettaessaÄlä luo #line-direktiivejäÄlä vaienna järjestelmän otsakkeista aiheutuvia varoituksiaÄlä käytä MDMX-käskyjäÄlä käytä MIPS-3D-käskyjäÄlä käytä laitteistoliukulukujaÄlä käytä laitteistoliukulukujaÄlä varoita â€long longâ€-tyypistä -pedantic-tilassaÄlä varoita Microsoft-laajennosten käytöstäTyhjällä â€%s†kohdassa %L ei voi olla alustintaValeproseduurilla â€%s†kohdassa %C ei voi olla geneeristä rajapintaaKaksoiskappele %s attribuutti kohdassa %LKaksoiskappale-%s-attribuutti määritelty kohdassa %LKaksoiskappale %s-nimiöspesifikaatio kohdassa %CKaksoiskappale %s-spesifikaatio kohdassa %CKaksoiskappale-BIND-attribuutti määritelty kohdassa %LKaksoiskappale-ELSE-lauseet kohdissa %L ja %CKaksoiskappale-EXTENDS-attribuutti määritelty kohdassa %LKaksoiskappale-NML-spesifikaatio kohdassa %CKaksoiskappale POINTER-attribuutti kohdassa %CKaksoiskappale SAVE-attribuutti määritelty kohdassa %LKaksoiskappale VALUE-attribuutti määritelty kohdassa %LKaksoiskappale pääsy-tarkenne kohdassa %CKaksoiskappalemuotospesifikaatio kohdassa %CKaksoiskappalesymboli â€%s†muodollisessa argumenttiluettelossa paikassa %CELEMENTAL-funktiolla â€%s†kohdassa %L täytyy olla skalaaritulosEND-tunnistenimiötä %d kohdassa %L ei ole määriteltyENUM-määrittelylause odotettiin ennen kohdetta %CEOR-tunnistenimiötä %d kohdassa %L ei ole määriteltyERR-tunnistenimiötä %d kohdassa %L ei ole määriteltyESA/390-arkkitehtuuriEXTERNAL-attribuutti on ristiriidassa FUNCTION-attribuutin kanssa kohteessa â€%s†kohdassa %LAlkio %s-taulukkomuodostimessa kohdassa %L on %sTyhjä IMPLICIT-lause kohdassa %CTyhjä taulukkomuodostin kohdassa %C ei ole sallittuOta käyttöön 32-bittiset divide-käskytOta käyttöön 32-bittiset kertolaskukäskytOta käyttöön CFI-taulut GAS-assembler-direktiivien kauttaOta käyttöön kaikki -Wunused-varoituksetOta käyttöön average-käskytOta käyttöön bittimanipulointikäskytOta käyttöön clip-käskytOta käyttöön ehdolliset siirrotOta käyttöön vianjäljitystulosteOta käyttöö divide- ja modulus-käskytKäytä poikkeustenkäsittelyäOta käyttöön funktioprofilointiKäytä roskienkeruuta (GC) Objective-C/Objective-C++-ohjelmissaOta käyttöön min/max-käskytOta käyttöön moniydintukiOta käyttöön kertolaskukäskytOta käyttöön saturation-käskytOta käyttöön etumerkilliset laajennetut käskytOta käyttöön normaalitilaOta käyttöön käyttäjän määrittelemät käskytHakulistan loppu. ! Enumeraattori ylittää C-kokonaislukutyypin kohdassa %CVirhelaskuri tavoitti rajan %d.Virhe kirjoitettaessa moduulitiedostoa %sVirhe:Odotettiin â€)†kohdassa %COdotettiin merkkiä â€,†kohdassa %COdotettiin â€,†tai lauseen loppua kohdassa %COdotettiin â€(†kohdassa %COdotettiin â€,†kohdassa %COdotettiin â€::†binding-attribuutin jälkeen kohdassa %COdotettiin â€::†kohdassa %COdotettiin â€=>†kohdassa %COdotettiin 'END INTERFACE ASSIGNMENT (=)' kohdassa %COdotettiin :: TYPE-määrittelyssä kohdassa %COdotettiin =-merkkiä PARAMETER-lauseessa kohdassa %COdotettiin PARAMETER-symbolia kompleksivakiossa kohdassa %COdotettiin CASE- tai END SELECT-lausetta seuraavaa SELECT CASE-lausetta kohdassa %COdotettiin nimetöntä rajapintaa kohdassa %COdotettiin proseduuria argumentille â€%s†kohdassa %LOdotettiin proseduuriosoitinta argumentille â€%s†kohdassa %LOdotettiin oikeaa sulkumerkkiä lausekkeessa kohdassa %COdotettiin askelarvoa iteraattorissa kohdassa %COdotettiin käyttöoikeustarkennetta kohdassa %COdotettiin vaihtoehtoista paluunimiötä kohdassa %COdotettiin alustuslauseketta kohdassa %COdotettiin toista ulottuvuutta taulukkoesittelyssä kohdassa %COdotettiin argumenttiluetteloa kohdassa %COdotettiin taulukkoindeksiä kohdassa %COdotettiin sitomisattribuuttia kohdassa %COdotettiin sitomisnimeä kohteessa %COdotettiin sitomiskohteen jälkeen â€=>†kohdassa %COdotettiin â€%sâ€-lohkonimeä %s-lauseessa kohdassa %COdotettiin komponenttiviitettä kohdassa %COdotettiin eksponenttia lausekkeessa kohdassa %COdotettiin lauseketta kohdassa %C PARAMETER-lauseessaOdotettiin lauseketta %s-lauseessa kohdassa %COdotetiin muodollista argumenttiluetteloa funktiomäärittelyssä kohdassa %COdotettiin geneeristä nimeä tai operaattorimäärittelijää kohdassa %COdotettiin alustuslauseketta kohdassa %COdotettiin alustuslauseketta CASE-lauseessa kohdassa %COdotettiin nimiötä â€%s†%s-lauseelle kohdassa %COdotettiin moduuliproseduurinimeä kohdassa %COdotettiin skalaarialustuslauseketta kohdassa %COdotettiin erityistä sitomisnimeä kohdassa %COdotettiin päättävää nimeä kohdassa %COdotettiin tyyppiriippuvaista proseduuria tai proseduurin osoitinkomponenttia kohdassa %COdotettiin muuttujaa READ-lauseessa kohdassa %COdotettiin muuttujanimeä kohdassa %COdotettiin muuttujanimeä kohdassa %C PARAMETER-lauseessaOdotettiin %s-lausetta kohdassa %COdotettiin 'END INTERFACE %s' kohdassa %COdotettiin 'END INTERFACE OPERATOR (.%s.)' kohdassa %CLauseke CASE-lauseessa kohdassa %L on oltava %d-kaltainenLauseke CASE-lauseessa kohdassa %L on oltava %s-tyyppinenLausekkeen CASE-lauseessa kohdassa %L on oltava skalaariLaajennus: Muunnos tyypistä %s tyypiksi %s kohdassa %LLaajennus: Puuttuva positiivinen leveys L-määrittelijän jälkeen kohdassa %LUlkoisella â€%s†kohdassa %L ei voi olla alustintaUlkoisella objektilla â€%s†kohdassa %L ei voi olla alustintaFORMAT-nimiö %d kohdassa %L ei ole määriteltyLiukulukupoikkeukset otettu käyttöönVakava virhe:Ensimmäisen tai viimeisen kääntäjänsisäisen â€!$OMP ATOMICâ€-argumentin on oltava â€%s†kohdassa %LKatso ohjeet vikailmoitusten tekemiseen osoitteesta: %s. ! Funktiota â€%s†kohdassa %L ei voida kutsua rekursiivisesti, koska se ei ole RECURSIVEFunktiolla â€%s†kohdassa %L ei voi olla alustintaFunktio â€%s†vaatii argumenttiluettelon kohdassa %CFunktionimi â€%s†ei ole sallittu kohdassa %CGCC tukee korkeintaan %u sisäkkäistä näkyvyysaluettaGMP-versio %s, MPFR-versio %s, MPC-versio %s ! GCC ei enää tue valitsinta -traditional ilman valitsinta -ETuota 32-bittistä koodiaTuota 32-bittistä i386-koodiaTuota 64-bittistä koodiaTuota 64-bittistä x86-64-koodiaTuota Cell-mikrokoodiaTuota H8/300H-koodiaTuota H8S-koodiaTuota H8S/2600-koodiaTuota H8SX-koodiaTuota ILP32-koodiaTuota LP64-koodiaTuota MIPS16-koodiaTuota PA1.0-koodiaTuota PA1.0-koodiaTuota PA2.0-koodia (vaatii binutils 2.10:n tai uudemman)Tuota SH1-koodiaTuota SH2-koodiaTuota SH2e-koodiaTuota SH3-koodiaTuota SH3e-koodiaTuota SH4-koodiaTuota SH4-100 FPU-less-koodiaTuota SH3-100-koodiaTuota SH4-200 FPU-less-koodiaTuota SH4-200-koodiaTuota SH4-300 FPU-less-koodiaTuota SH4-300-koodiaTuota SH4a-koodiaTuota SH4al-dsp-koodiaTuota SHcompact-koodiaTuota big endian -koodiaTuota big-endian-koodiaTuota bittikäskyjäTuota koodia GNU as:lleTuota koodia GNU-assemblerille (gas)Tuota koodia GNU ld:lleTuota koodi GNU-suoritusympäristölleLuo koodia NeXT (Apple Mac OS X) -ajoympäristöönTuota 5206e-koodiaTuota 520X-koodiaTuota 528x-koodiaTuota 5307-koodiaTuota 5407-koodiaTuota 68000-koodiaTuota 68010-koodiaTuota 68020-koodiaTuota 68030-koodiaTuota 68040-koodiaTuota 68040-koodia, ilman uusia käskyjäTuota 68060-koodiaTuota 68060-koodia, ilman uusia käskyjäTuota 68302-koodiaTuota 68332-koodiaTuota 68851-koodiaTuota koodia DLL:lleTuota koodia Android-alustalle.Tuota koodia big-endian-tilassaTuota suoritettaville tiedostoille sopivaa koodia (EI jaetuille kirjastoille)Tuota koodia, joka käyttää 68881-liukulukukäskyjäTuota vianjäljitystietoja VMS-muodossaTuota vianjäljitystietoja XCOFF-muodossaTuota vianjäljitystietoja laajennetussa STABS-muodossaTuota isel-käskyjäTuota little endian -koodiaTuota little-endian-koodiaLuo make-riippuvuudetLuo make-riippuvuudet ja käännäTuota normaalitilan koodiaISO C ei salli ylimääräisiä %<;%>-merkkejä funktion ulkopuolellaISO C ei tue kompleksityyppien %<++%>- ja %<--%>-operaatioitaISO C ei tue %<~%>-merkkiä kompleksikonjugaateissaISO C ei tue kompleksikokonaislukutyyppejäISO C ei tue pelkkää %-tyyppiä merkityksellä %ISO C ei tue saturoituvia tyyppejäISO C kieltää %:in lausekkeen kanssa voidin palauttavassa funktiossaISO C kieltää tyhjät käännösyksikötISO C kieltää funktio-osoittimen ja %-tyypin väliset sijoituksetISO C kieltää lohkot lausekkeiden sisälläISO C kieltää tyyppimuuntamasta ei-skalaaria samaksi tyypiksiISO C kieltää tyyppimuunnokset unionityyppeihinISO C kieltää %:n ja funktio-osoittimen vertailunISO C kieltää ehtolausekkeet %-tyypin ja funktio-osoittimen välilläISO C kieltää ehtolausekkeet, joissa on vain yksi tyhjä puoliISO C kieltää const- ja volatile-funktiotyypitISO C kieltää funktio-osoittimen muuntamisen objektiosoitintyypiksiISO C kieltää objektiosoittimen muuntamisen funktio-osoitintyypiksiISO C kieltää tyhjät alustusaaltosulkeetISO C kieltää parametrien ennakkoesittelynISO C kieltää etukäteisviittaukset %-tyyppeihinISO C kieltää funktio-osoittimen ja %-tyypin väliset alustuksetISO C kieltää jäsenettömät jäsenesittelytISO C kieltää sisäkkäiset funktiotISO C kieltää ?:-lausekkeen ilman keskimmäistä termiäISO C kieltää funktio-osoittimien suuruusvertailunISO C kieltää funktio-osoittimen ja %-tyypin väliset palautuksetISO C kieltää %-taulukon indeksoinninISO C kieltää nollan kokoisen taulukonISO C kieltää nollan kokoisen taulukon %qEISO C kieltää argumenttien muuntamisen unionityypiksiISO C vaatii nimetyn argumentin ennen %<...%>:aISO C rajoittaa luetellun tyypin arvot %-tyypin arvoalueelleISO C++ 1998 ei tue % -tyyppiäISO C++ kieltää %<::main%>-funktion kutsumisen ohjelmastaISO C++ kieltää tyyppimuunnoksen funktio-osoittimen ja olio-osoittimen välilläISO C++ kieltää tyyppimuunnoksen taulukkotyyppiin %qTISO C++ kieltää osoittimen ja kokonaisluvun vertailunISO C++ kieltää vertailun %-osoittimen ja funktio-osoittimen välilläISO C++ kieltää lasketut goto-käskytISO C++ kieltää ehtolausekkeen %-osoittimen ja funktio-osoittimen välilläISO C++ kieltää muunnoksen %-osoittimen ja funktio-osoittimen välilläISO C++ kieltää muuttujan %qs esittelyn ilman tyyppiäISO C++ kieltää %qT-tyyppisen osoittimen vähentämisenISO C++ kieltää enumin vähentämisenISO C++ kieltää %qT-tyyppisen osoittimen kasvattamisenISO C++ kieltää enumin lisäyksenISO C++ kieltää epäkokonaislukutyyppiä %2$qT olevan vakiojäsenen %1$qD alustamisenISO C++ kieltää ?:-lausekkeen käytön ilman keskimmäistä termiäISO C++ kieltää %<::main%>-funktion osoitteen ottamisenISO C++ kieltää %-tyyppisen osoittimen käytön vähennyslaskussaISO C++ kieltää funktio-osoittimen käytön vähennyslaskussaISO C++ kieltää metodiosoittimen käytön vähennyslaskussaISO C++ kieltää muuttuvakokoisen taulukonISO C++ kieltää muuttuvakokoisen taulukon %qDISO C++ kieltää nollan kokoisen taulukonISO C++ kieltää nollan kokoisen taulukon %qDISO C++ kieltää nimettömät structitISO C++ kieltää ?:-operaattorin ylikuormituksenISO C++:n mukaan nämä ovat moniselitteisiä siitä huolimatta, että ensimmäisen huonoin muunnos on parempi kuin toisen huonoin:ISO C90 ei tue syntaksia %<[*]%> taulukkoesittelijöissäISO C90 ei tue % -tyyppiäISO C90 ei tue parametritaulukkoesittelyissä avainsanaa % tai tyyppimääreitäISO C90 ei tue kompleksityyppejäISO C90 ei tue joustavia taulukon jäseniäISO C90 kieltää taulukon %qE, jonka kokoa ei voida määrittääISO C90 kieltää taulukot, joiden kokoa ei voida määrittääISO C90 kieltää yhdysliteraalitISO C90 kieltää esittelyjen ja koodin sekoittamisenISO C90 kieltää muuttuvakokoisen taulukonISO C90 kieltää muuttuvakokoisen taulukon %qEEi välitetä lausenimiöstä tyhjässä lauseessa kohdassa %LVirheellinen merkki BOZ-vakiossa kohdassa %CMuodostin %qsKopiomuodostin %qsHajotin %qsFunktio %qsLambda-funktioJäsenfunktio %qsStaattinen jäsenfunktio %qsYhteensopimattomat tasot %d ja %d sijoituksessa kohdassa %LYhteensopimattomat tyypit DATA-lauseessa kohdassa %L; yritettiin muuntaa tyyppi %s tyypiksi %sVirheellinen funktion paluuarvoAlustus kohdassa %C ei ole sallittu PURE-proseduurissaAlustus kohdassa %C ei ole osoitinmuuttujaMuuttujan alustus kohdassa %C ei ole sallittu PURE-proseduurissaAlustetaan jo alustettu muuttuja kohdassa %CKokonaisluku liian suuri kohdassa %CRajapintatäsmäämättömyys proseduuriosoitinsijoituksessa kohdassa %L: %sRajapintanimeä odotettiin merkin â€(†jälkeen kohdassa %CSisäinen virhe kohdassa (1):Sisäinen proseduuri â€%s†on virheellinen proseduuriosoittimessa kohdassa %LLuontaisella â€%s†kohdassa %L ei voi olla alustintaKääntäjänsisäisellä â€%sâ€-funktiolla kohdassa %L on oltava vähintään kaksi argumenttiaVirheellinen merkki nimessä kohdassa %CVirheellinen taulukkoviitemuoto kohdassa %CVirheellinen alustin %s Data-lauseessa kohdassa %CVirheellinen proseduuriargumentti kohdassa %LVirheellinen proseduuriosoitinsijoitus kohdassa %LVirheellinen arvo %s-spesifikaatiolle kohdassa %CIteraattoriaskel kohdassa %L ei voi olla nollaJava-luokalla %qT ei voi olla hajotintaJava-luokalla %qT ei voi olla implisiittistä epätriviaalia hajotintaRoskaa CALL-lauseen jälkeen kohdassa %CAvainsana-argumentti â€%s†kohdassa %L on jo liitetty toiseen varsinaiseen argumenttiinAvainsana-argumentti â€%s†kohdassa %L ei ole proseduurissaNimiö %d kohdassa %L on määritelty, mutta sitä ei voida käyttääNimiö %d kohdassa %L on määritelty, mutta ei käytettyNimiö â€%s†kohdassa %C ei täsmää IF nimiön â€%s†kanssaKuten -M, mutta ilman järjestelmän otsikkotiedostojaKuten -MD, mutta ilman järjestelmän otsikkotiedostojaRivejä suoritettu:%s/%d ! Tee â€charâ€-tyypistä oletuksena etumerkillinenTee â€charâ€-tyypistä oletuksena etumerkitönTee kokonaisluvista 32 bitin levyisiäMuistinvaraus epäonnistuiPuuttuva â€(†lauseessa kohdassa tai ennen kohtaa %LPuuttuva â€)†lauseessa kohdassa tai ennen kohtaa %LPuuttuva argumenttiluettelo funktiossa â€%s†kohdassa %CPuuttuva argumentti kohteelle â€%s†kohdassa %CPuuttuva ulottuvuusspesifikaatio kohdassa %CPuuttuva muotonimiö kohdassa %CPuuttuva kind-parametri kohdassa %CPuuttuva oikea sulje kohdassa %CModuuli %s rivillä %d sarakkeessa %d: %sUseita tunnisteita tarjottu yhdellä NAME= tarkenteella kohdassa %CNULL-arvon käyttö laskutoimituksessaNimi â€%s†kohdassa %C on jo määritelty geneerisenä rajapintana kohdassa %LNimi â€%s†kohdassa %C on proseduurin nimiNimi kohdassa %C on liian pitkäSitomisnimeä ei ole sallittu BIND(C):ssä kohdassa %CEi haaroja Ei kutsuja Ei suoritettavia rivejä ! Ei-numeerinen merkki lausenimiössä kohdassa %CEi-vakio tyyppiesittely %s*%d kohdassa %CEi kelvollinen Javan .class-tiedosto. ! Objekti â€%s†ei ole muuttuja kohdassa %LVanhantyylinen esittely %s*%d ei ole tuettu kohdassa %CKäytä vain 32 liukulukurekisteriäKäytä vain 32 yleiskäyttörekisteriäValitsimet: ! Pinotila loppui. ! PARAMETER kohdassa %L on ilman alustintaPRINT-lause kohdassa %C ei ole sallittu PURE-proseduurin sisälläPRINT_OPERAND null-osoitinPRINT_OPERAND_ADDRESS, null-osoitinPROCEDURE-lauseen kohdassa %C on oltava geneerisessä rajapinnassaPROCEDURE-attribuutti on ristiriidassa INTENT-attribuutin kanssa kohteessa â€%s†kohdassa %LPROCEDURE-attribuutti on ristiriidassa RESULT-attribuutin kanssa kohteessa â€%s†kohdassa %LPROCEDURE-attribuutti on ristiriidassa SAVE-attribuutin kanssa kohteessa â€%s†kohdassa %LPROTECTED kohdassa %C on sallittu vain moduulin spesifikaatio-osassaPiste vaadittu muotomääritteessä %s kohdassa %LPiste vaadittu muotomääritteessä kohdassa %LSalli â€$†tunnisteen merkkinäLähetä kokonainen vikaraportti, sisältäen ! sisältäen esiprosessoidun lähdekoodin, jos tarpeellista. ! Osoittimet ovat 32-bittisiäOsoittimet ovat 64-bittisiäPositiivinen leveys vaadittu muotomäärittelijässä %s kohdassa %LEstä kaikkien laitteistoliukulukukäskyjen käyttöNäytä ylimääräisiä (mahdollisesti ei-toivottuja) varoituksiaProseduurilla â€%s†kohdassa %C on eksplisiittinen rajapinta ja sillä ei saa olla attribuutteja, jotka on esitelty kohdassa %LProseduuri â€%s†kohdassa %C on jo määritelty kohdassa %LProseduuri â€%s†kohdassa %L ei voi olla perustyyppiä %sTuota big-endian-koodiaTuota little-endian-koodiaRESULT-muuttujan paikassa %C on oltava erilainen kuin funktionimenLuetaan moduulia %s rivillä %d sarake %d: %sTunnista C++:n avainsanat kuten â€compl†ja â€xorâ€Tunnista GNU-määritellyt avainsanatTunnista sisäiset funktiotTunnista â€asmâ€-avainsanaRajoita laitteistöliukulukukäskyjen käyttö 32-bittisiin operaatioihinBIND(C)-funktion â€%s†paluutyyppi kohdassa %L ei voi olla merkkijonoBIND(C)-funktion â€%s†paluutyyppi kohdassa %L ei voi olla taulukkoFunktion â€%s†paluuarvoa kohdassa %L ei ole asetettuSAVE-attribuuttia kohdassa %L ei voida määritellä PURE-proseduurissaMuistialueen ylitysLauseen on edellettävä puolipistettä kohdassa %CAseta datan alkuosoiteAseta ohjelman alkuosoiteKääntäjänsisäisen â€%2$sâ€-funktion argumentin â€%1$s†koko kohdassa %3$L on liian pieni (%4$i/%5$i)Käskyfunktio â€%s†on virheellinen proseduuriosoitinsijoituksessa kohdassa %LKäskyfunktio â€%s†vaatii argumenttiluettelon kohdassa %CMerkkijonon pituus kohdassa %L on liian suuriAlimerkkijonon loppuindeksi kohdassa %L on liian suuriTue monisäikeisyyttäVaimenna varoituksetSymboli â€%s†on jo esiteltySymboli â€%s†kohdassa %C on jo ulkoinen symboli, joka ei ole COMMONSymboli â€%s†kohdassa %C on jo COMMON-lohkossaSymboli â€%s†kohdassa %L ei ole yksiselitteinenSymbolia â€%s†käytetään ennen kuin sille määritellään tyyppi kohdassa %LSymbolin â€%s†täytyy olla PARAMETER DATA-lauseessa kohdassa %CSymboli kohdassa %C ei sovellu lausekkeeseenSama kuin -WcommentSyntaksivirhe !GCC$ ATTRIBUTES-lauseessa kohdassa %CSyntaksivirhe %s-lauseessa kohdassa %CSyntaksivirhe ABSTRACT INTERFACE -käskyssä kohdassa %CSyntaksivirhe CASE-spesifikaatiossa kohdassa %CSyntaksivirhe CHARACTER-esittelyssä kohdassa %CSyntaksvirhe CLASS IS -spesifikaatiossa kohdassa %CSyntaksivirhe ENUMERATOR-määrittelyssä kohdassa %CSyntaksivirhe siirräntäiteraattorissa kohdassa %CSyntaksivirhe IF-lauseessa kohdassa %CSyntaksivirhe IF-lausekkeessa kohdassa %CSyntaksivirhe IMPORT-lauseessa kohdassa %CSyntaksivirhe PROCEDURE-lauseessa kohdassa %CSyntaksivirhe PROTECTED-lauseessa kohdassa %CSyntaksivirhe SAVE-lauseessa kohdassa %CSyntaksivirhe TYPE IS -spesifikaatiossa kohdassa %CSyntaksivirhe VALUE-lauseessa kohdassa %CSyntaksivirhe VOLATILE-lauseessa kohdassa %CSyntaksivirhe argumenttiluettelossa kohdassa %CSyntaksivirhe taulukkomuodostimessa kohdassa %CSyntaksivirhe merkkipituusspesifikaatiossa kohdassa %CSyntaksivirhe data-esittelyssä kohdassa %CSyntaksivirhe geneerisessä spesifikaatiossa kohdassa %CSyntaksivirhe iteraattorissa kohdassa %CSyntaksivirhe proseduuriosoitinkomponentissa kohdassa %CSyntaksivirhe: Loppuroskaa END INTERFACE -käskyssä kohdassa %CSyntaksivirhe: Loppuroskaa INTERFACE-lauseessa kohdassa %CTaulukkomuodostimen CHARACTER-alkioiden kohdassa %L on oltava saman pituisia (%d/%d)L1-välimuistin kokoL2-välimuistin kokoTämä ohjelma on vapaaohjelmisto; Katsokaa kopiointiehdot lähdekoodista. Tällä ohjelmistolla EI OLE TAKUUTA; ei edes KAUPALLISESTI HYVÄKSYTTÄVÄSTÄ LAADUSTA tai SOPIVUUDESTA TIETTYYN TARKOITUKSEEN. *************** LAADUSTA tai SOPIVUUDESTA TIETTYYN TARKO *** 214,231 **** Tällä ohjelmistolla EI OLE TAKUUTA; ei edes KAUPALLISESTI HYVÄKSYTTÄVÄSTÄ LAADUSTA tai SOPIVUUDESTA TIETTYYN TARKOITUKSEEN. Tältä valitsimelta puuttuu dokumentaatioSäiemalli: %s ! Käsittele kaikki varoitukset virheinäKäsittele puuttuvia otsikkotiedostoja luotavina tiedostoinaKäsittele annettu varoitus virheenäKäsittele syötetiedosto jo esikäännettynäLisätietoja â€jcf-dump --helpâ€-komennolla. ! Käyttö: %s [VALITSIMET]... LUOKKANIMImain [TULOSTETIEDOSTO] Käyttö: %s [valitsimet] tiedosto... Käyttö: jcf-dump [VALITSIN]... LUOKKA... ! Käytä 128-bittistä long double -tyyppiäKäytä 16-bittistä int-tyyppiäKäytä 32-bittistä float-tyyppiäKäytä 32-bittistä int-tyyppiäKäytä 32-bittisiä liukulukurekistereitäKäytä 64-bittistä float-tyyppiäKäytä 64-bittisiä liukulukurekistereitäKäytä 64-bittistä long double -tyyppiäKäytä AltiVec-käskyjäKäytä EABI:aKäytä 32-bittistä long-tyyppiäKäytä 64-bittistä long-tyyppiäKäytä epäsuoria kutsujaKäytä ohjelmistoliukulukujaVaroita C:n rakenteista, jotka eivät ole C:n ja C++:n yhteisessä osajoukossaVaroita löytyneistä PCH-tiedostoista, joita ei käytetäVaroita tyhjästä rungosta if-tai else-lauseissaVaroita funktioiden muunnoksista epäyhteensopiviksi tyypeiksiVaroita eri enum-tyyppien vertailustaVaroita käännösaikaisesta nollalla jaostaVaroita ominaisuuksista, joita ei ole perinteisessä C:ssäVaroita muotoilumerkkijonoista, jotka eivät ole literaalejaVaroita NUL-tavuja sisältävistä muotoilumerkkijonoistaVaroita laskutoimituksista funktio-osoittimillaVaroita globaaleista funktioista, joilla ei ole prototyyppiäVaroita implisiittisistä funktioesittelyistäVaroita â€offsetofâ€-makron virheellisestä käytöstäVaroita pragmain väärästä käytöstäVaroita saman objektin useista esittelyistäVaroita epävirtuaalisista hajottimistaVaroita ylivuodosta aritmeettisissa lausekkeissaVaroita ylikuormitetuista virtuaalifunktioiden nimistäVaroita pakatuista bittikentistä, joiden siirrososoite vaihtui GCC 4.4:ssäVaroita mahdollisista turvallisuusongelmista muotoilufunktioiden yhteydessäVaroita mahdollisesti puuttuvista sulkeistaVaroita epäilyttävistä printf/scanf/strftime/strfmon-muotoilumerkkijonoistaVaroita tietueiden, unionien ja taulukoiden palauttamisestaVaroita kaksinumeroisia vuosilukuja tuottavista strftime-muotoiluistaVaroita â€charâ€-tyypillä indeksoinnistaVaroita epäilyttävistä â€mainâ€-funktion esittelyistäVaroita muistiosoitteiden epäilyttävästä käytöstäVaroita prototyypittömistä funktion esittelyistäVaroita tuntemattomista pragmoistaVaroita loppuliitteettömistä liukulukuvakioistaVaroita monimerkkisistä merkkivakioistaVaroita annetuista include-hakemistoista, jotka eivät ole olemassaVaroita muuttujista, jotka alustetaan omalla arvollaanVaroita Effective C++ -tyylisääntöjen rikkomuksistaVaroita nollan pituisista muotoiluistaVaroita implisiittisistä tyyppimuunnoksista etumerkillisten ja etumerkittömien kokonaislukujen välilläVaroita C-tyylisistä tyyppimuunnoksista ohjelmassaVaroita vertailusta, joka on aina tosi tai aina epätosi johtuen tietotyypin rajallisesta arvoalueestaVaroita määrittelemättömän makron käytöstä #if-ehdossaVaroita perittyjen metodien puuttuvista toteutuksistaVaroita kun esittely ei määrittele tyyppiäVaroita käyttämättömistä funktioistaVaroita käyttämättömistä funktion parametreistaVaroita kun nimiö on käyttämätönVaroita käyttämättömistä muuttujistaVaroita kun kaikki muodostimet ja hajottimet ovat yksityisiäVaroita kun kääntäjä järjestää koodia uudelleenVaroita kun funktion paluutyypiksi jää â€int†(C), tai kun paluutyypit ovat ristiriitaiset (C++)Varoitus:[ei käytössä][käytössä]â€kolme pistettä sisältävä parametrilista ei sovellu tyhjään parametrinimi-listan esittelyyntallennusluokan voi antaa vain objekteille ja funktioillehalutaan globaalin rekisterimuuttujan %qD osoitehalutaan rekisterimuuttujan %qD osoitetasauksen pitää olla kahden potenssi, ei %dalloc_size-parametri ei ole sallitulla välillälöytyi myös %<%c%s%>anonyymillä structilla ei voi olla funktiojäseniäanonyymillä unionilla ei voi olla funktiojäseniäargumenttityyppi, jolla on tavallinen tyyppimuunnos, ei sovi tyhjään parametrinimilistaesittelyynnimetön %s esitelty parametrilistan sisällämuotoiltavat argumentit eivät ole %<...%>argumentti %qD ei sovi prototyyppiintaulukon indeksi alustimessa ylittää taulukon rajattaulukko alustetaan muuttuvasta taulukkolausekkeestataulukko alustetaan suluilla ympäröidystä merkkijonovakiostasopimattomasta tyypistä koostuva taulukko alustetaan merkkijonovakiostataulukon %q+D koko puuttuutaulukon indeksin tyyppi on %taulukon indeksi ei ole kokonaislukutaulukon tyypillä on vaillinainen alkiotyyppiasm-esittely jätetty huomiotta, koska se on ristiriidassa edellisen nimeämisen kanssaväittämä puuttuu %qs:n jälkeensijoitus (ei alustus) esittelyssäsijoitus yhteensopimattomasta osoitintyypistäsijoitus tekee osoittimesta kokonaisluvun ilman tyyppimuunnostasijoituksessa tehdään osoitin kokonaisluvusta ilman tyyppimuunnostavakiokenttään %qD sijoitussijoitus kirjoitussuojattuun jäseneen %qDsijoitus kirjoitussuojattuun muuttujaan %qDparametritaulukon esittelijän attribuutit jätetään huomiottaautomaattimuuttuja %qE ei voi olla %virheellinen zip/jar-tiedosto %shuonosti sisäkkäistetyt C-otsikot esikääntäjältäbittikenttä %+q#D ei ole kokonaislukutyyppinenbittikentän %q+D leveys ei ole kokonaislukuvakiobittikentällä %qs on epäkelpo tyyppibittikentän %qs leveys ei ole kokonaislukuvakioskalaarialustimen ympärillä on aaltosulkeetbreak-lause silmukan tai switch-rakenteen ulkopuolellasisäinen funktio %q+D esitelty ei-funktionamutta ei täälläei voida luoda esikäännettyä otsikkoa %s: %mei voi lukea tiedostoa %s: %mei voi kirjoittaa tiedostoon %s: %mei voi kirjoittaa tiedostoon %s: %mei voi avata syötetiedostoa: %sehdokas 1:ehdokas 2:ehdokas on: %+#Dehdokkaat ovat:ehdokkaat ovat: %+#Djäsenfunktiota %qD ei voi kutsua ilman oliotaei voi muuntaa tyypistä %1$qT tyyppiin %2$qT %4$qD:n argumentiksi %3$qPei voi muuntaa osoitintyypiksiei voi muuntaa tyyppiä %qT tyypiksi %qTsisäistä funktiota %qs ei voi ottaa pois käytöstäfunktiota % ei voi määrittää avoimeksimahdollisia ikisilmukoita ei voi optimoidaei voi laittaa volatile-kenttäistä objektia rekisteriinbittikentän %qD osoitetta ei voi ottaaluetelluille tyypeille ei voi käyttää tilaa %qstypeid:tä ei voi käyttää -fno-rtti-valitsimen kanssacase-nimike ei pelkisty kokonaislukuvakioksicase-nimiö ei ole kokonaislukutyyppinen vakiolausekecase-nimikkeen arvo ylittää tyypin maksimiarvoncase-nimikkeen arvo on pienempi kuin tyypin minimiarvocase-arvo %qs ei ole luetellussa tyypissäcase-arvo %qs ei ole luetellussa tyypissä %qTmuunnoksessa tyypistä %qT tyyppiin %qT menetetään tarkkuuttamuunnos %qT-tyyppisestä funktiokutsusta yhteensopimattomaan tyyppiin %qTtyyppimuunnos osoittimesta erikokoiseen kokonaislukuunkohdetyypin vaatima tasaus kasvaa tyyppimuunnoksessatyyppimuunnos määrittää taulukkotyypintyyppimuunnos määrittää funktiotyypintyyppimuunnos erikokoisesta kokonaisluvusta osoittimeksiunioniin kuulumattoman tyypin muunnos unionityypiksimerkkitaulukon alustus leveästä merkkijonostaluokalla %qT ei ole %qD-nimistä kenttääpuhdistusargumentti ei ole funktiopuhdistusargumentti ei ole tunnistesuljetaan riippuvuustiedosto %s: %mkoodimalli %s ei tue PIC-tilaaluetellun tyypin listan lopussa on pilkkuliukulukujen vertailu operaattoreilla == ja != on epävarmaavertailu on aina epätosi johtuen tietotyypin rajallisesta arvoalueestavertailu on aina tosi johtuen tietotyypin rajallisesta arvoalueestaosoittimen ja kokonaisluvun välinen vertailuetumerkillisen ja etumerkittömän kokonaislukulausekkeen vertailutyyppien %qT ja %qT välinen vertailuvertailu on aina epätosi johtuen tietotyypin rajallisesta arvoalueestavertailu on aina tosi johtuen tietotyypin rajallisesta arvoalueestavertailu â€etumerkitön lauseke < 0†on aina epätosivertailu â€etumerkitön lauseke >= 0†on aina tosi% -tyylisillä vertailuilla on eri merkitys kuin matematiikassakompleksiliukulukuylivuoto lausekkeessakompleksikokonaislukuylivuoto lausekkeessaristiriitaiset tyyppimääreet %q+D:lleristiriitaiset tyypit %qD:lleristiriitaiset tyypit sisäiselle funktiolle %q+Dmuodostimia ei voi esitellä virtuaalisiksicontinue-lause silmukan ulkopuolellaei-void-tyyppisen funktion loppu saavutettumuunnos tyypistä %qT tyyppiin %qT ei säilytä tyyppimääreitämuunnos tyypistä %qT tyyppiin %qT on moniselitteinenmuunnoksen tyyppi puuttuu muotoilun lopustaetumerkittömän vakion muunnos negatiiviseksi kokonaisluvuksipyydetty muuntoa ei-skalaarityypiksiNULLin muunnos epäosoitintyypiksimuunnos tyypistä %qT tyyppiin %qTNULLin muunnos epäosoitintyypiksi %qTdatamäärittelyllä ei ole tyyppiä eikä tallennusluokkaaesittely %qD ei esittele mitäänesittely ei esittele mitään%-muuttujan %qD esittely %-silmukan alkuesittelyssä%q+D:n esittely varjostaa sisäänrakennetun funktion%qD:n esittely ei-funktiona%qD:n esittely ei-jäsenenänimiavaruuden %qD esittely on ristiriidassaei-muuttujan %qD esittely %-silmukan alkuesittelyssästaattisen muuttujan %qD esittely %-silmukan alkuesittelyssätuntemattomaan tietueeseen osoittavan osoittimen vähennyskirjoitussuojatun jäsenen %qD vähennyskirjoitussuojatun muuttujan %qD vähennysvanhentunut tyyppimuunnos merkkijonovakiosta tyyppiin %qThajotin ei voi olla staattinen jäsenfunktiohajottimilla ei voi olla parametrejajako nollallaylimääräinen %ylimääräinen %ylimääräinen %case-arvon kaksoiskappale (tai limitys)case-arvon kaksoiskappaledwarfin versio %d ei ole tuettudynaamista riippuvuutta %s ei löytynytdynamic_cast tyypistä %q#D tyypiksi %q#T ei voi koskaan onnistuasulautettu %<\0%> muotoilussatyhjä esittelytyhjä esittely tallennusluokkamääritteellä ei esittele tunnistetta uudelleentyhjä esittely tyyppimääreellä ei esittele tunnistetta uudelleen%s-muotoilussa vasen tarkkuus on tyhjä%s-muotoilussa tarkkuus on tyhjätyhjä arvoalue annettutyhjä skalaarialustinlueteltua arvoa %qE ei käsitellä switch-lauseessaluetellun tyypin arvot ylittävät suurimman kokonaisluvun arvoalueenluetellun tyypin jäsenen %qE arvo ei ole kokonaislukuvakioDJGPP-ympäristömuuttujaa ei ole määriteltyDJGPP-ympäristömuuttuja viittaa turmeltuneeseen tiedostoon â€%sâ€DJGPP-ympäristömuuttuja viittaa puuttuvaan tiedostoon â€%sâ€virhe jäsennettäessä kenttiä ! virhe jäsennettäessä metodeja ! virhe: odotettiin luokan nimeäodotettiin merkkijonoliteraaliaylimääräinen %<;%>alustimen lopussa on ylimääräinen lohkoskalaarialustimessa ylimääräisiä alkioitaylimääräinen puolipiste metodin määrittelyssäylimääräinen puolipiste structissa tai unionissaylimääräisiä tyyppimääreitä muotoiluargumentissa (argumentti %d)vakava virhe: kentällä %qD on vaillinainen tyyppikentän leveyskentän leveys printf-muotoilussakentän leveys scanf-muotoilussakentän leveys strfmon-muotoilussakentän leveys strftime-muotoilussatäytemerkkitäytemerkki strfmon-muotoilussa%q+D:n ensimmäisen argumentin pitäisi olla %%-funktion ensimmäinen argumentti ei ole tyyppiä %liukulukuvakio ylittää %qT:n arvoalueenliukulukuvakiota käytetty väärinliukulukuvakio katkaistu nollaksiliukulukuylivuoto lausekkeessafopen: %smuotoiluargumentti %d käyttämätön ennen käytettyä argumenttia %d $-tyylisessä muotoilussamuotoiluargumentti %d käytössä useammin kuin kerran %s-muotoilussamuotoilu on leveämerkkinen merkkijonomuotoilu ei ole merkkijonoliteraali eikä muotoiluargumenttejamuotoilu ei ole merkkijonoliteraali, argumenttityyppejä ei tarkistetamuotoilu ei ole merkkijonoliteraali, muotoilumerkkijonoa ei tarkistetamuotomerkkijonoargumentti seuraa muotoiltavia argumenttejamuotomerkkijonolla on epäkelpo operandinumerolöytyi %<%c%s%>löytyi virtuaalimäärittely GIMPLE-rekisterilletästä kohdastafunktiota %q+F ei voi koskaan kopioida, koska se vastaanottaa ei-paikallisen gotonfunktiota %q+F ei voi koskaan kopioida, koska se tallentaa paikallisen nimiön osoitteen staattiseen muuttujaanfunktio %qD esitelty virtuaaliseksi unionissafunktio %qD on alustettu kuten muuttujafunktiokutsu epäsopivan tyypin läpifunktion esittely ei ole prototyyppi%-esitellyllä funktiolla on %-lausefunktion määrittely esitelty %<__thread%>:ksifunktion määrittely esitelty %:ksifunktion määrittely esitelty %:ksifunktion määrittely esitelty %:ksifunktion määrittely oikeuttaa tyhjän paluutyypinfunktio ei palauta merkkijonotyyppiäfunktio on ehkä mahdollinen ehdokas %qs-muotoiluattribuutillefunktion paluuarvon tyyppi ei voi olla funktiofunktion paluuarvojen tyypit eivät ole yhteensopivia %:n takiafunktio palauttaa osoitteen paikalliseen muuttujaanfunktiotyypit eivät aidosti yhteensopivia ISO C:n mukaanfunktioalue %qs implisiittisesti auto ja esitelty %<__thread%>:ksigcc-versio %s %s gcov %s%s ! gfortran ei tue valitsinta -E ilman valitsinta -cppsisäkkäisessä funktiossa käytetty globaalia rekisterimuuttujaa %qDia64_print_operand: tuntematon kooditunniste %qE on ristiriidassa C++:n varatun sanan kanssajos tämä koodi saavutetaan, ohjelma keskeytyyjätetään #pragma %s %s huomiottajätetään hakemiston â€%s†kaksoiskappale huomiotta, jätetään puuttuva hakemisto â€%s†huomiotta ! %qD:n paluuarvoa ei huomioida, esitelty attribuutilla warn_unused_resultattribuutilla warn_unused_result esitellyn funktion paluuarvoa ei huomioidafunktio %qE esitelty implisiittisestiesittelyssä %q+Dsisäisen funktion %qD yhteensopimaton implisiittinen esittelyfunktion %qD yhteensopimaton implisiittinen esittelyfunktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimatontuntemattomaan tietueeseen osoittavan osoittimen kasvatuskirjoitussuojatun jäsenen %qD kasvatuskirjoitussuojatun muuttujan %qD kasvatusalustus yhteensopimattomasta osoitintyypistäalustus tekee osoittimesta kokonaisluvun ilman tyyppimuunnostaalustuksessa tehdään osoitin kokonaisluvusta ilman tyyppimuunnostajoustavan taulukkojäsenen alustusjoustavan taulukkojäsenen alustaminen sisäkkäisessä asiayhteydessäalustinalkio ei ole vakiolausekealustuselementtiä ei pystytä laskemaan latausajankohtanaalustusalkio ei ole vakioalustin ei pysty päättelemään taulukon %q+D kokoamerkkitaulukon alustusmerkkijono on liian pitkäasennus: %s%s ! kokonaislukuylivuoto lausekkeessamoduulienvälisiä optimointeja ei ole toteutettu C++:llekääntäjän sisäinen virhe: sisäinen virhe: sivuvaikutuskäsky vaikuttaa päävaikutukseenvirheellinen #pragma %svirheellinen %%C-arvovirheellinen %%D-arvovirheellinen %%E-arvovirheellinen %%F-arvovirheellinen %%G-tilavirheellinen %%G-arvovirheellinen %%H-arvovirheellinen %%J-koodivirheellinen %%J-arvovirheellinen %%K-arvovirheellinen %%L-koodivirheellinen %%L-arvovirheellinen %%M-arvovirheellinen %%N-arvovirheellinen %%O-arvovirheellinen %%P-arvovirheellinen %%R-arvovirheellinen %%S-arvovirheellinen %%T-arvovirheellinen %%U-arvovirheellinen %%d-arvovirheellinen %%f-arvovirheellinen %%h-arvovirheellinen %%j-koodivirheellinen %%j-arvovirheellinen %%k-arvovirheellinen %%m-arvovirheellinen %%p-arvovirheellinen %%q-arvovirheellinen %%r-arvovirheellinen %%s-arvovirheellinen %%t/%%b-arvovirheellinen %%u-arvovirheellinen %%v-arvovirheellinen %%x-arvovirheellinen %%xn-koodivirheellinen IACC-argumenttiepäkelpo %-avainsanan soveltaminen bittikenttäänepäkelpo %-avainsanan soveltaminen funktiotyyppiinepäkelpo %qs:n soveltaminen tyhjään tyyppiinepäkelpo argumentti funktiolle %<__builtin_frame_address%>epäkelpo argumentti funktiolle %<__builtin_return_address%>virheellinen muunnos tyypistä %qT tyyppiin %qTvirheellinen const_cast tyypistä %qT tyyppiin %qTvirheellinen muunnos tyypistä %qT tyypiksi %qTvirheellinen kasvatuslausekevirheellinen %qT-tyyppisen viittauksen alustus %qT-tyyppisestä lausekkeestaepäkelpo alustinvirheellinen parametrityyppi %qTepäkelpo osoitintila %qs%<__builtin_prefetch%>-funktion toinen argumentti on epäkelpo; käytetään nollaa%<__builtin_prefetch%>-funktion kolmas argumentti on epäkelpo; käytetään nollaaepäkelpo %-avainsanan käyttörajat määrittelemättömän taulukon epäkelpo käyttöjoustavien taulukkoalkioiden epäkelpo käyttövaillinaisen tyypin typedef %qD epäkelpo käyttöjäsentä %q+D käytetty virheellisesti staattisessa jäsenfunktiossaei-staattisen datajäsenen %q+D virheellinen käyttövirheellinen ei-staattisen jäsenfunktion käyttöjoustavan taulukkojäsenen sisältävän tietueen epäkelpo käyttömäärittelemättömän tyypin %<%s %E%> epäkelpo käyttövoid-lausekkeen epäkelpo käyttönäkyvyysalue on vain tämä määrittely tai esittely, mikä ei todennäköisesti ole sitä, mitä halusithyppy ohittaa muuttujan alustuksenhyppy case-nimiöönhyppy nimiöön %q+Dhyppy nimiöön %qDroskaa #pragma %s:n lopussaroskaa ilmaisun %<#pragma GCC coprocessor width%> lopussaroskaa ilmaisun #pragma GCC memregs [0..16] lopussaroskaa ilmaisun %<#pragma GCC pch_preprocess%> lopussaroskaa ilmaisun %<#pragma GCC visibility%> lopussaroskaa ilmaisun %<#pragma pack%> lopussanimiö nimike %qD esitelty muttei määriteltynimike %q+D määritelty mutta käytettämättänimiö %qD määritelty täälläsuuri kokonaisluku implisiittisesti katkaistu etumerkittömäksi tyypiksityhjästä luokasta %qT perittyjen luokkien rakenne saattaa muuttua GCC:n tulevissa versioissald:n paluuarvo oli %dvasen tarkkuusvasen tarkkuus strfmon-muotoilussapilkkulausekkeen vasemmalla operandilla ei ole vaikutustapituusmäärepituusmääre printf-muotoilussakenttämääre scanf-muotoilussapituusmääre strfmon-muotoilussakirjastot: %s ! kirjastoa lib%s ei löytynytcase-nimikkeen alarajan arvo on pienempi kuin tyypin minimiarvosijoituksen vasemman operandin on oltava lvaluemakron nimi puuttuu %qs:n jälkeenväärinmuodostettu #pragma GCC visibility pushväärinmuodostettu #pragma redefine_extname, jätetään huomiottaväärinmuodostettu #pragma weak, jätetään huomiottaväärinmuodostettu %<#pragma pack%> - jätetään huomiottaväärinmuodostettu %<#pragma pack(pop[, id])%> - jätetään huomiottaväärinmuodostettu %<#pragma pack(push[, id][, ])%> - jätetään huomiottaväärinmuodostettu â€#pragma ms_struct {on|off|reset}â€, jätetään huomiottaväärinmuodostettu â€#pragma ms_structâ€, jätetään huomiottaväärin muotoiltu â€#pragma optionsâ€, ei huomioidaei voi käyttää sekä valitsinta -m32 että -m64$-operandinumero puuttuu muotoilussa%<(%> puuttuu ilmaisun %<#pragma GCC visibility push%> jälkeen - jätetään huomiottapuuttuva %<(%> ilmaisun %<#pragma pack%> jälkeen - jätetään huomiottapuuttuva â€(†pragman â€#pragma unused†jälkeen, jätetään huomiottapuuttuva â€)†pragman â€#pragma unused†jälkeen, jätetään huomiottapuuttuva Code-attribuuttialustimen ympäriltä puuttuu aaltosulkeetpuuttuva määrittelytiedostonimi puuttuu %qs:n jälkeentäytemerkki puuttuu strfmon-muotoilun lopustapuuttuva kasvatuslausekemakefile-kohde puuttuu %qs:n jälkeenpuuttuva operandipolku puuttuu %qs:n jälkeenlopetusalkio puuttuu funktiokutsustaloppumerkki %c puuttuutyypin nimi puuttuu typedef-esittelystätilaa %qs sovellettu sopimattomaan tyyppiinuseita default-nimikkeitä samassa switch-lauseessauseita tallennusluokkia esittelymääritteissäuseita tyyppejä yhdessä esittelyssäennen typeid:n käyttöä on oltava #include negatiivinen kokonaisluku muunnettu implisiittisesti etumerkittömään tyyppiinbittikentän %q+D leveys negatiivinenbittikentän %qs leveys on negatiivinen%qD esitelty extern-avainsanalla sisäkkäinsisäkkäinen funktio %qs esitelty %:ksiuusia tyyppejä ei voi määritellä paluutyypissäei argumenttejaluokkanimeä ei ole annettu %qs:n kanssa%<%%[%>-muotoilua ei ole suljettu %<]%>:llaei tietotyyppiä tilalle %qsei syötetiedostojaei palautuslausetta funktiossa, joka palauttaa ei-tyhjänpuolipiste puuttuu structin tai unionin lopustaehtolausekkeessa ei-lvalue-taulukko%q+D esitelty ei-staattisena, edellinen esittely staattinenei-vakio taulukon indeksi alustimessaei-paikallinen nimiö ei-tyhjällä argumentilla on epäkelpo operandinumero (argumentti %lu)ei-tyhjä argumentti viittaa ei-osoitinoperandiin (argumentti %lu, operandi %lu)ei-tyhjällä argumentilla arvoalueen ylittävä operandinumero (argumentti %lu,operandi %lu)ei-tyhjä attribuutti ilman argumentteja ei-prototyypissäei konfiguroitu sysroot-otsakkeiden loppuliitteellähuom: tyhjä argumentti, vaikka ei-null vaaditaan (argumentti %lu)argumenttien määrä ei vastaa prototyyppiävektorin komponenttien määrä ei ole kahden potenssisiirros vakiomerkkijonon rajojen ulkopuolellevain muodostimen esittely voi olla %läpinäkymättömiä vektorityyppejä ei voida alustaaavataan riippuvuustiedosto %s: %mavataan tulostetiedosto %s: %moperandinumero on arvoalueen ulkopuolella muotoilussaoperandinumero annettu muotoilulle, joka ei ota argumenttejaoperandinumero annettu vaiennetulla sijoituksella?:-lausekkeen operandeilla on eri tyypit, %qT ja %qToperaatio %qE:lle voi olla määrittelemätönannetut valitsimet: osoittimen ja kokonaisluku nollan suuruusvertailumuisti lopussatulostiedosto annettu kahdestitaulukon koon ylivuotoylivuoto vakiolausekkeessaylivuoto luetellun tyypin arvoissaylivuoto implisiittisessä vakiomuunnoksessaparametrilla %P on vaillinainen tyyppi %qT%2$qD:n parametrilla %1$P on vaillinainen tyyppi %3$qTparametrilla %q+D on vain etukäteisesittelyparametri %qD on alustettuparametrilla %u (%q+D) on vaillinainen tyyppiparametrin %u (%q+D) tyyppi on voidparametrien nimet (ilman tyyppejä) funktion esittelyssäannettu NULL funktion %2$qD ei-osoitinargumenttina %1$Pfunktion %2$qE argumentti %1$d annetaan tyyppinä % eikä % prototyypin takiafunktion %2$qE argumentti %1$d annetaan kompleksisena eikä liukulukuna prototyypin takiafunktion %2$qE argumentti %1$d annetaan kompleksisena eikä kokonaislukuna prototyypin takiafunktion %2$qE argumentti %1$d annetaan liukulukuna eikä kompleksisena prototyypin takiafunktion %2$qE argumentti %1$d annetaan liukulukuna eikä kokonaislukuna prototyypin takiafunktion %2$qE argumentti %1$d annetaan kokonaislukuna eikä kompleksisena prototyypin takiafunktion %2$qE argumentti %1$d annetaan kokonaislukuna eikä liukulukuna prototyypin takiafunktion %2$qE argumentti %1$d annetaan etumerkillisenä prototyypin takiafunktion %2$qE argumentti %1$d annetaan etumerkittömänä prototyypin takiaannettu yhteensopimatonta osoitintyyppiä oleva %d. argumentti funktiolle %qEargumentin %d antaminen funktiolle %qE tekee kokonaisluvusta osoittimen ilman tyyppimuunnostaargumentin %d antaminen funktiolle %qE tekee kokonaisluvusta osoittimen ilman tyyppimuunnostafunktion %2$qE argumentti %1$d annetaan eri levyisenä prototyypin takiapch_preprocess-pragmaa tulee käyttää vain valitsimen -fpreprocessed kanssa%-tyyppistä osoitinta käytetty laskutoimituksessavähennyslaskussa käytetty %-tyyppistä osoitintafunktio-osoitinta käytetty laskutoimituksessavähennyslaskussa käytetty osoitinta funktioonjäsenfunktio-osoitinta käytetty laskutoimituksessaehtolausekkeessa on osoitintyyppiristiriitaehtolausekkeessa on osoitin/kokonaislukutyyppiristiriitaosoittimet eivät ole sallittuja case-arvojatarkkuustarkkuus printf-muotoilussa%q+D:n edellinen esittely oli täällätäällä olevan %q+D:n edellisen esittelyn kanssa%q+D:n edellinen määrittely oli täällä%q+D:n edellinen, implisiittinen esittely oli täällämääritelty aiemmin täälläprofilointituki VxWorksilleohjelmat: %s ! tyyppimuunnettu argumentti %qD ei sovi prototyyppiinprotokollalla %qE on kehäriippuvuusprototyypin esittelyprototyypille %q#D ei ole vastinetta luokassa %qTprototyypin %q+D esittelemällä argumentilla %d on yhteensopimaton tyyppiarvoaluelausekkeet switch-lauseessa eivät ole standardin mukaisiakirjoitussuojattua sijaintia %qE käytetään %-tulosteenaluetaan nollaosoittimen läpi (argumentti %d)%q+D esitelty uudelleen erilaisella näkyvyydellä (vanha näkyvyys säilytetty)C++:n sisäinen tietotyyppi %qT määritelty uudelleen% uudelleenmääritelty% uudelleenmääritelty%q#T uudelleenmääritelty%q+D määritelty uudelleenparametri %q+D määritelty uudelleentypedef %q+D määritelty uudelleensisäkkäisessä funktiossa käytetty rekisterimuuttujaa %qDtoistettu %s muotoilussapyydetty jäsentä %qE jostakin, joka ei ole tietue tai unionipyydetty tasaus ei ole kahden potenssipyydetty tasaus on liian suurihaluttu sijainti on pienempi kuin nollahaluttu sijainti ei ole kokonaislukuvakiopalautus yhteensopimattomasta osoitintyypistäpalautus tekee osoittimesta kokonaisluvun ilman tyyppimuunnostapalautuksessa tehdään osoitin kokonaisluvusta ilman tyyppimuunnostapalautustyyppi on oletuksena %palautustyyppi on vaillinainen tyyppiarvo return-lauseelle funktiossa, jonka paluutyyppi on â€voidâ€return-lause ilman arvoa funktiossa, jonka paluutyyppi on %qTarvon palautus muodostimestaarvon palautus hajottimestaoikea tarkkuusoikea tarkkuus strfmon-muotoilussa%q+D:n toisen argumentin pitäisi olla %%<__builtin_prefetch%>-funktion toisen argumentin pitää olla vakio%-funktion toinen parametri ei ole viimeinen nimetty argumenttitaulukon %qD koolla on epäkokonaislukutyyppi %qTtaulukon %qD koko on negatiivinentaulukon %qD koko ei ole kokonaislukutyyppinen vakiolauseketaulukon %qE koko ei ole kokonaislukutyyppiätaulukon %qE koko on negatiivinentaulukon %qs koko on liian suuritaulukon koolla on epäkokonaislukutyyppi %qTtaulukon koko on negatiivinentaulukon koko ei ole kokonaislukutyyppinen vakiolausekenimettömän taulukon koko ei ole kokonaislukutyyppiäsizeof(long double) on 12sizeof(long double) on 16annettu tila on liian pieni luetelluille arvoillevääränlainen seuraava %<%%%> muotoilussalauseella ei ole vaikutusta%q+D esitelty staattisena, edellinen esittely ei-staattinenstaattinen tai tyyppimääreitä ei-parametrisessa taulukkoesittelijässätallennusluokka annettu %qs:lletallennusluokka annettu parametrille %qstallennusluokka annettu typenamelleodottamaton %<@%> ohjelmassaodottamaton %<\%o%> ohjelmassaodottamaton %qc ohjelmassaodottamaton %qs ohjelmassastrftime-muotoilut eivät voi muotoilla argumenttejamerkkijonon pituudeksi annettu %1$qd merkkiä on suurempi kuin ISO C%3$d -kääntäjiltä vaadittu %2$qd merkkiästructilla ei ole jäseniästructilla ei ole nimettyjä jäseniäindeksoitu arvo ei ole taulukko eikä osoitinindeksoitu arvo on osoitin funktioonehdotetaan aaltosulkeita tyhjän lohkon ympärille %-lauseessaehdotetaan aaltosulkeita tyhjän lohkon ympärille %-lauseessaehdotetaan aaltosulkeita tyhjän lohkon ympärille %-lauseessaehdotetaan aaltosulkeita epäselvän %n välttämiseksiehdotetaan sulkeita %<&&%>:n ympärille %<||%>:n sisälläehdotetaan sulkeita %<+%>:n ympärille %<&%>:n operandissaehdotetaan sulkeita %<+%>:n ympärille %<<<%>:n sisälläehdotetaan sulkeita %<+%>:n ympärille %<>>%>:n sisälläehdotetaan sulkeita %<-%>:n ympärille %<&%>:n operandissaehdotetaan sulkeita %<-%>:n ympärille %<<<%>:n sisälläehdotetaan sulkeita %<-%>:n ympärille %<>>%>:n sisälläehdotetaan sulkeita lausekkeen ympärille %<^%>:n operandissaehdotetaan sulkeita lausekkeen ympärille %<|%>:n operandissaehdotetaan sulkeita totuusarvona käytetyn sijoituksen ympärilleehdotetaan sulkeita vertailun ympärille %:n operandissaehdotetaan sulkeita vertailun ympärille %<&%>:n operandissaehdotetaan sulkeita vertailun ympärille %<==%>:n operandissaehdotetaan sulkeita vertailun ympärille %<^%>:n operandissaehdotetaan sulkeita vertailun ympärille %<|%>:n operandissavalitsin %qs ei ole enää tuettuswitch-lauseesta puuttuu default-tapausnimikkeen osoitteen ottaminen ei ole standardiakohdemuoto ei tue äärettömyyttäprintf:n †â€-lippustrfmonin â€!â€-lippuprintf:n â€#â€-lippustrftimen â€#â€-lippuprintf:n â€'â€-lippuscanf:n â€'â€-lippustrfmonin â€(â€-lippuprintf:n â€+â€-lippustrfmonin â€+â€-lippuprintf:n â€-â€-lippustrfmonin â€-â€-lippustrftimen â€-â€-lippuprintf:n â€0â€-lippustrftimen â€0â€-lippustrftimen â€Eâ€-määreprintf:n â€Iâ€-lippuscanf:n â€Iâ€-lippuâ€Oâ€-määrestrftimen â€Oâ€-määrestrfmonin â€^v-lippustrftimen â€^â€-lippustrftimen â€_â€-lippuscanf:n â€aâ€-lippuscanf:n â€mâ€-lippuâ€qâ€-diagnostiikkalippu%qD:n osoite tulee aina olemaan %%qD:n osoite ei tule koskaan olemaan NULLtaulukon %qE kokoa ei voida määrittäätaulukon kokoa ei voida määrittää%q+D:n kolmannen argumentin pitäisi todennäköisesti olla %%<__builtin_prefetch%>-funktion kolmannen argumentin pitää olla vakiotämä desimaalivakio on etumerkitön vain ISO C90 -standardissatämä desimaalivakio olisi etumerkitön ISO C90 -standardissatämä on ensimmäinen default-nimiötls_model-argumentin pitää olla â€local-execâ€, â€initial-execâ€, â€local-dynamic†tai â€global-dynamicâ€tls_model-argumentti ei ole merkkijonomuodostaaksesi riippuvuudet sinun täytyy antaa joko -M tai -MMliian vähän argumentteja funktiolleliian vähän argumentteja funktiolle %liian vähän argumentteja funktiolle %qE#-opastimen on myöhäistä asettaa debug-hakemistoaliian monta argumenttia muotoilulleliikaa argumentteja funktiolleliian monta argumenttia funktiolle %qEliian monta tiedostonimeä annettu. Kirjoita %s --help nähdäksesi käyttöohjeenliikaa syötetiedostojaperinteisestä C:stä puuttuu erillinen nimiavaruus nimikkeille, tunniste %qE on ristiriidassaperinteinen C ei hyväksy automaattista koostealustustaperinteinen C ei salli merkkijonovakioiden katenointiaperinteinen C ei salli unaarista plus-operaattoriayli yksi tietotyyppi esittelymääritteissätyypillä %qE on käyttäjän määrittelemä muodostintyypillä %qE on käyttäjän määrittelemä hajotintyyppi %qT ei ole tyypin %qT kantatyyppityyppi %qT ei periydy luokasta %tyyppi %qT ei periydy %qT-tyypistäehtolausekkeessa on tyyppiristiriita%qD:n tyyppi ei täsmää aiemman esittelyn kanssabittikentän %qs tyyppi on GCC-laajennosmuodollisen parametrin %d tyyppi on vaillinainentyyppimääreet jätetään huomiotta funktion paluutyypissätypedef %qD on alustettu (käytä __typeof__ sen sijaan)tyypit eivät ole ihan yhteensopiviaei voida avata dynaamista riippuvuutta â€%sâ€alustamaton const %qDalustamaton const-jäsen %qDunionista ei voi tehdä läpinäkyvääunionilla ei ole jäseniäunionilla ei ole nimettyjä jäseniätuntematon #pragma GCC coprocessor %Etuntematon cc_attr-arvomuotoilussa on tuntematon muunnostyyppimerkki %qcmuotoilussa on tuntematon muunnostyyppimerkki 0x%xnimeämätön tietue/unioni ei määrittele yhtään instanssianimetön muuttuja tai kenttä esitelty voidiksitunnistamaton käsky:tunnistamaton osoitetuntematon komentorivivalitsin â€%sâ€tunnistamaton muotomääriteei-tuettu argumentti funktiolle %<__builtin_frame_address%>ei-tuettu argumentti funktiolle %<__builtin_return_address%>päättämätön muotoilumerkkijonokäyttämättömiä argumentteja $-tyylisessä muotoilussakäyttämätön muuttuja %q+Dkäyttämätön muuttuja %q+Dcase-nimikkeen ylärajan arvo ylittää tyypin maksimiarvonkäytä #includea sen sijaankäytä -Winvalid-pch saadaksesi lisätietojakäytä sen sijaan __attribute__ ((vector_size))pituusmääreen %qs käyttö tyyppimerkillä %qcmuotoilussa %3$s käytetään lippuja %1$s ja %2$skäytä valitsinta -std=c99 tai -std=gnu99 koodisi kääntämiseenkäytetty osoittimeksi muuntumatonta taulukkoa paikassa, jossa vaaditaan skalaarikäytetty tietuetyypin arvoa, vaikka vaaditaan skalaarikäytetty unionityypin arvoa, vaikka vaaditaan skalaaritarpeeton %<__thread%> tyhjässä esittelyssätarpeeton tallennusluokkamäärite tyhjässä esittelyssätarpeeton tyyppinimi tyhjässä esittelyssätarpeeton tyyppimääre tyhjässä esittelyssälaskettua arvoa ei käytetämuuttuja %qD esitelty %:ksimuuttujalla %qD on funktiotyyppimuuttujalla %qD on alustin, mutta vaillinainen tyyppimuuttuja tai kenttä %qE esitelty voidiksimuuttuja tai kenttä esitelty voidiksi%-määreellä esitelty muuttuja esitelty uudelleen %-tyyppiseksimuuttuvakokoinen yhdysliteraalivektoriylivuoto lausekkeessaverify_flow_info epäonnistuiverify_flow_info: Lohkosta %i puuttuu loop_fatherverify_flow_info: Väärä lohkolukumäärä %i %iverify_histograms epäonnistuinäkyvyysargumentin pitää olla "default", "hidden", "protected" tai "internal"näkyvyysargumentti ei ole merkkijonotyhjää arvoa ei jätetä huomioimatta, vaikka kuuluisivaroitus: weakref ei ole tuettu tässä konfiguraatiossakirjoitettaessa tulostetta tiedostoon %s: %mleveän merkkitaulukon alustus epäyhteensopivasta leveästä merkkijonostaleveän merkkitaulukon alustus epäleveästä merkkijonostabittikentän %q+D leveys ylittää kentän tyypin leveydenbittikentän %qs leveys ylittää tyyppinsätässä yhteydessäkirjoitetaan vakio-objektiin (argumentti %d)kirjoitetaan nollaosoittimen läpi (argumentti %d)väärä määrä argumentteja funktiolle %<__builtin_next_arg%>väärä määrä argumentteja funktiolle %abs-funktiolle annettu väärä tyyppiargumenttibittikomplementille annettu väärä tyyppiargumenttikonjugaatiolle annettu väärä tyyppiargumenttivähennykselle annettu väärä tyyppiargumenttilisäykselle annettu väärä tyyppiargumenttiunaariselle huutomerkille annettu väärä tyyppiargumenttiunaariselle miinus-operaatiolle annettu väärä tyyppiargumenttiunaariselle plus-operaatiolle annettu väärä tyyppiargumenttixstormy16_print_operand: tuntematon koodinollan tai negatiivisen kokoinen taulukko %q+Dbittikentän %q+D leveys nollabittikentän %qs leveys on nolla%s-muotoilun leveys on nolla%s-muotoilumerkkijonon pituus on nolla{tuntematon} \ No newline at end of file --- 330,355 ---- Tällä ohjelmistolla EI OLE TAKUUTA; ei edes KAUPALLISESTI HYVÄKSYTTÄVÄSTÄ LAADUSTA tai SOPIVUUDESTA TIETTYYN TARKOITUKSEEN. Tältä valitsimelta puuttuu dokumentaatioSäiemalli: %s ! Esiprosessoinnin käyttööottamiseksi, käytä valitsinta -cppLiikaa argumentteja funktiokutsussa â€%s†kohdassa %LLiikaa argumentteja funktiolle %s kohdassa %LKäsittele kaikki varoitukset virheinäKäsittele puuttuvia otsikkotiedostoja luotavina tiedostoinaKäsittele annettu varoitus virheenäKäsittele syötetiedosto jo esikäännettynäLisätietoja â€jcf-dump --helpâ€-komennolla. ! Tyyppinimi â€%s†kohdassa %C ei ole yksiselitteinenUNIT ei ole määritelty kohdassa %LUNIT-numeron CLOSE-lauseessa kohdassa %L täytyy olla epänegatiivinenUNIT-numeron lauseessa kohdassa %L täytyy olla epänegatiivinenLuokittelemiskelvoton lause kohdassa %CLuokittelematon lause IF-lauseessa kohdassa %CErisuuret merkkipituudet (%ld/%ld) merkkijonossa %s kohdassa %LOdottamaton %s-lause kohdassa %COdottamaton %s-lause kohdassa %C INTERFACE-rungossaOdottamaton %s-lause BLOCK DATA -lohkossa kohdassa %COdottamaton %s-lause CONTAINS-lohkossa kohdassa %COdottamaton %s-lause FORALL-lohkossa kohdassa %COdottamaton %s-lause INTERFACE-lohkossa kohdassa %COdottamaton %s-lause MODULE-lohkossa kohdassa %COdottamaton %s-lause WHERE-lohkossa kohdassa %COdottamaton CASE-lause kohdassa %COdottamaton END-lause kohdassa %COdottamaton TYPE IS -lause kohdassa %COdottamaton vaihtoehtoinen paluumäärittely alirutiinikutsussa kohdassa %LOdottamaton merkki muuttujaluettelossa kohdassa %COdottamattomia merkkejä PARAMETER-lauseessa kohdassa %COdottamaton tiedoston loppu tiedostossa â€%sâ€Odottamatonta roskaa ELSE IF -lauseen jälkeen kohdassa %COdottamatonta roskaa ELSE-lauseen jälkeen kohdassa %COdottamatonta roskaa funktioesittelyn jälkeen kohdassa %COdottamatonta roskaa muodollisessa argumenttiluettelossa kohdassa %COdottamaton alirutiininimen â€%s†käyttö kohdassa %CTuntematon argumenttiluettelofunktio kohdassa %LTuntematon attribuutti !GCC$ ATTRIBUTES-lauseessa kohdassa %CTuntematon proseduurinimi â€%s†kohdassa %CKäyttämätön parameteri â€%s†esitelty kohdassa %LKäyttämätön muuttuja â€%s†esitelty kohdassa %LKäyttö: %s [VALITSIMET]... LUOKKANIMImain [TULOSTETIEDOSTO] Käyttö: %s [valitsimet] tiedosto... Käyttö: jcf-dump [VALITSIN]... LUOKKA... ! Käytä â€-Wa,VALITSIN†välittämään â€VALITSIN†assemblerille. ! ! Käytä â€-Wl,VALITSIN†välittämään â€VALITSIN†linkittimelle. ! ! Käytä 128-bittistä long double -tyyppiäKäytä 16-bittistä int-tyyppiäKäytä 32-bittistä float-tyyppiäKäytä 32-bittistä int-tyyppiäKäytä 32-bittistä ABIaKäytä 32-bittisiä liukulukurekistereitäKäytä 32-bittisiä yleisrekistereitäKäytä 64 liukulukurekisteriäKäytä 64 yleiskäyttörekisteriäKäytä 64-bittistä float-tyyppiäKäytä 64-bittistä ABIaKäytä 64-bittisiä liukulukurekistereitäKäytä 64-bittisiä yleisrekistereitäKäytä 64-bittistä long double -tyyppiäKäytä AltiVec-käskyjäKäytä EABI:aKäytä H8/300-kohdistussääntöjäKäytä MCU-käskyjäKäytä MIPS-3D-käskyjäKäytä MIPS-DSP REV 2 -käskyjäKäytä PowerPC-64 -käskykantaaKäytä VAX-liukulukujaKäytä 32-bittistä long-tyyppiäKäytä 64-bittistä long-tyyppiäKäytä big-endian-tavujärjestystäKäytä big-endian-muotoa muotoilemattomille tiedostoilleKäytä liukulukurekistereitäKäytä laitteistoliukulukujaKäytä laitteistoliukulukujaKäytä epäsuoria kutsujaKäytä little-endian-tavujärjestystäKäytä little-endian-muotoa muotoilemattomille tiedostoilleKäytä ll-, sc- ja sync-käskyjäKäytä media-käskyjäKäytä rekistereitä argumenttien välittämiseenKäytä rekistereitä r2 ja r5Käytä jaettuja kirjastojaKäytä ohjelmistoliukulukujaKäytä bittikenttäkäskyjäMuuttuja %s ei voida liittää PURE-proseduuriin kohdassa %CMuuttujalla â€%s†kohdassa %L ei voi olla sekä ALLOCATABLE- että BIND(C)-attribuutitMuuttujalla â€%s†kohdassa %L ei voi olla sekä POINTER- että BIND(C)-attribuutitMuuttujatyyppi on UNKNOWN sijoituksessa kohdassa %LVaroita C:n rakenteista, jotka eivät ole C:n ja C++:n yhteisessä osajoukossaVaroita löytyneistä PCH-tiedostoista, joita ei käytetäVaroita tyhjästä rungosta if- ja else-lauseissaVaroita funktioiden muunnoksista epäyhteensopiviksi tyypeiksiVaroita tyyppimuunnoksista, jotka hylkäävät määreetVaroita eri enum-tyyppien vertailustaVaroita käännösaikaisesta nollalla jaostaVaroita ominaisuuksista, joita ei ole perinteisessä C:ssäVaroita muotoilumerkkijonoista, jotka eivät ole literaalejaVaroita NUL-tavuja sisältävistä muotoilumerkkijonoistaVaroita funktioparametreistä, jotka on esitelty ilman tyyppimäärittelyjä K&R-tyylisissä funktioissaVaroita laskutoimituksista funktio-osoittimillaVaroita globaaleista funktioista, joilla ei ole prototyyppiäVaroita implisiittisistä funktioesittelyistäVaroita â€offsetofâ€-makron virheellisestä käytöstäVaroita puuttuvista kentistä struct-alustimissaVaroita pragmain väärästä käytöstäVaroita saman objektin useista esittelyistäVaroita epävirtuaalisista hajottimistaVaroita ylivuodosta aritmeettisissa lausekkeissaVaroita ylikuormitetuista virtuaalifunktioiden nimistäVaroita pakatuista bittikentistä, joiden siirrososoite vaihtui GCC 4.4:ssäVaroita mahdollisista turvallisuusongelmista muotoilufunktioiden yhteydessäVaroita mahdollisesti puuttuvista aaltosuluista alustimissaVaroita mahdollisesti puuttuvista sulkeistaVaroita mahdollisista sisäkkäisistä lohkokommenteista ja C++-kommenteista, jotka ulottuvat useammalle kuin yhdelle fyysiselle rivilleVaroita epäilyttävistä printf/scanf/strftime/strfmon-muotoilumerkkijonoistaVaroita osoittimen/viittauksen palauttamisesta paikalliseen tai väliaikiseen muuttujaan.Varoita tietueiden, unionien ja taulukoiden palauttamisestaVaroita ylimääräisistä merkeistä #elif- ja #endif-direktiivien perässäVaroita kaksinumeroisia vuosilukuja tuottavista strftime-muotoiluistaVaroita â€charâ€-tyypillä indeksoinnistaVaroita epäilyttävistä â€mainâ€-funktion esittelyistäVaroita muistiosoitteiden epäilyttävästä käytöstäVaroita prototyypittömistä funktion esittelyistäVaroita tuntemattomista pragmoistaVaroita loppuliitteettömistä liukulukuvakioistaVaroita monimerkkisistä merkkivakioistaVaroita tarpeettomista tyyppimuunnoksistaVaroita annetuista include-hakemistoista, jotka eivät ole olemassaVaroita __attribute__((deprecated)) -esittelyjen käytöstäVaroita muuttujista, jotka â€longjmp†tai â€vfork†saattavat muuttaaVaroita muuttujista, jotka alustetaan omalla arvollaanVaroita Effective C++ -tyylisääntöjen rikkomuksistaVaroita nollan pituisista muotoiluistaVaroita implisiittisistä tyyppimuunnoksista etumerkillisten ja etumerkittömien kokonaislukujen välilläVaroita C-tyylisistä tyyppimuunnoksista ohjelmassaVaroita, jos attribuutilla warn_unused_result merkitty funktion kutsuja ei käytä paluuarvoaVaroita vertailusta, joka on aina tosi tai aina epätosi johtuen tietotyypin rajallisesta arvoalueestaVaroita määrittelemättömän makron käytöstä #if-ehdossaVaroita perittyjen metodien puuttuvista toteutuksistaVaroita liukulukujen yhtäsuuruusvertailuistaVaroita kun esittely ei määrittele tyyppiäVaroita käyttämättömistä funktioistaVaroita käyttämättömistä funktion parametreistaVaroita kun nimiö on käyttämätönVaroita käyttämättömistä muuttujistaVaroita kun kaikki muodostimet ja hajottimet ovat yksityisiäVaroita kun kääntäjä järjestää koodia uudelleenVaroita osoittimien tyyppimuunnoksista erikokoisiksi kokonaisluvuiksiVaroita kun funktion paluutyypiksi jää â€int†(C), tai kun paluutyypit ovat ristiriitaiset (C++)Varoitus:Kierrä vanha 4300-laitteistovikaKirjoitetaan moduuli %s rivillä %d sarake %d: %sNolla ei ole kelvollinen lausekenimiö kohdassa %C[ei käytössä][käytössä]â€hajotin ei voi olla %parametriksi ei voida esitellä %:ksikolme pistettä sisältävä parametriluettelo ei sovellu tyhjään parametrinimiluettelon esittelyyntallennusluokan voi antaa vain olioille ja funktioilleabstrakti metodi ei-abstraktissa luokassaosoitealueattribuuttia ei voi määritellä funktioille%q+D:n osoitealue on ristiriidassa edellisen esittelyn kanssahalutaan globaalin rekisterimuuttujan %qD osoitepalautettu osoite paikalliseen muuttujaan %q+Dhalutaan rekisterimuuttujan %qD osoite%q+D:n edellisen esittelyn jälkeenkohdistuksen %q+D:lle pitää olla vähintään %dkohdistusta ei voi määritellä %q+D:llekohdistuksen pitää olla kahden potenssi, ei %dalloc_size-parametri ei ole sallitulla välillälöytyi myös %<%c%s%>ei-yksiselitteistää vanhan esittelyn %q+#Dei-yksiselitteinen oletustyyppimuunnos tyypistä %qTosoitealueattribuuttia ei voi määritellä paikallisille muuttujilleanonyymillä structilla ei voi olla funktiojäseniäanonyymillä unionilla ei voi olla funktiojäseniäargumenttityyppi, jolla on tavallinen tyyppimuunnos, ei sovi tyhjään parametrinimiluetteloesittelyynja kohteella %qT:lla ei ole mallimuodostimianimetön %s esitelty parametriluettelon sisällämuotoiltavat argumentit eivät ole %<...%>argumentti %qD ei vastaa sisäistä prototyyppiäargumentti %qD ei sovi prototyyppiinargumentti %qd ei ole vakioargumentin 1 on oltava 5-bittinen etumerkillinen literaaliargumentin 2 on oltava 5-bittinen etumerkitön literaalifunktiokutsun argumentti voi olla ehdokas muotoiluattribuutilledecltypen argumentin on oltava lauseketaulukolla %q+D oletetaan olevan yksi alkiotaulukko %qD alustettu sulkujen sisällä olevalla merkkijonoliteraalilla %qEtaulukkoindeksi alustimessa ylittää taulukon rajattaulukkoindeksi alustimessa ei ole kokonaislukutyyppinen vakiolauseketaulukkoindeksi alustimessa ei ole kokonaislukutyyppinentaulukkoindeksi ei-taulukkoalustimessataulukkoindeksiväli alustimessa ylittää taulukon rajattaulukko alustetaan muuttuvasta taulukkolausekkeestataulukko alustetaan suluilla ympäröidystä merkkijonovakiostasopimattomasta tyypistä koostuva taulukko alustetaan merkkijonovakiostataulukon %q+D koko puuttuu%qD-taulukon koko puuttuutaulukon indeksin tyyppi on %taulukon indeksi on taulukkorajojen yläpuolellataulukon indeksi on taulukkorajojen alapuolellataulukon indeksi ei ole kokonaislukutaulukon indeksi on taulukkorajojen ulkopuolellataulukon tyypillä on vaillinainen alkiotyyppitaulukkoa käytetty alustimenanimellä %qDasm-esittely jätetty huomiotta, koska se on ristiriidassa edellisen nimeämisen kanssaväittämä puuttuu %qs:n jälkeensijoitus (ei alustus) esittelyssäsijoitus erilaisesta Objective-C-tyypistäsijoitus yhteensopimattomasta osoitintyypistäsijoitus tekee osoittimesta kokonaisluvun ilman tyyppimuunnostasijoituksessa tehdään osoitin kokonaisluvusta ilman tyyppimuunnostasijoitus vakiokenttään %qDfunktion %qD sijoituskirjoitussuojatun sijainnin %qE sijoitussijoitus kirjoitussuojattuun jäseneen %qDsijoitus kirjoitussuojattuun nimettyyn paluuarvoon %qDsijoitus kirjoitussuojattuun parametriin %qDsijoitus kirjoitussuojattuun viitteeseen %qDsijoitus kirjoitussuojattuun muuttujaan %qDattribuutti %qs soveltuu vain taulukkotyyppeihinparametritaulukon esittelijän attribuutit jätetään huomiottaautomaattimuuttuja %qE ei voi olla %virheellinen shift-käsky:virheellinen merkkijonovakiovirheellinen zip/jar-tiedosto %shuonosti sisäkkäistetyt C-otsikot esikääntäjältäbittikenttä %+q#D ei ole kokonaislukutyyppinenbittikentän %q+D leveys ei ole kokonaislukuvakiobittikentällä %qs on epäkelpo tyyppibittikentän %qs leveys ei ole kokonaislukuvakiolohkot lausekkeiden sisällä sallitaan vain funktion sisälläskalaarialustimen ympärillä on aaltosulkeetbreak-lause silmukan tai switch-rakenteen ulkopuolellasisäinen funktio %q+D esitelty ei-funktionamutta ei täälläkutsu %2d ei suoritettu koskaan ! kutsu %2d palautti %s ! kutsuttu täältäei voi käyttää objektia metodin parametrinäei voida luoda esikäännettyä otsikkoa %s: %mei voi lukea tiedostoa %s: %mei voi asettaa %qE-attribuuttia määrittelyn jälkeenei voi kirjoittaa tiedostoon %s: %mei voi kirjoittaa tiedostoon %s: %mohjelman tilaa ei saadaei voi avata syötetiedostoa: %sehdokas 1:ehdokas 2:ehdokas on:ehdokkaat ovat:ehdokas on: %+#Dehdokkaat ovat:ehdokkaat ovat: %+#Djäsenfunktiota %qD ei voi kutsua ilman oliota%qE:ta ei voi muuntaa tyypistä %qT tyyppiin %qTei voi muuntaa tyypistä %1$qT tyyppiin %2$qT %4$qD:n argumentiksi %3$qPei voi muuntaa osoitintyypiksiei voi muuntaa tyyppiä %qT tyypiksi %qTei voi luoda tilapäistä tiedostoaei voida vähentää osoitinta vaillinaiseen tyyppiin %qTsisäistä funktiota %qs ei voi ottaa pois käytöstäei voi laajentaa alustinta jäsenelle %<%D%>ei löydetä luokkaa %qEei löydetä rajapintaesittelyä %qE:lleei löydetä protokollaesittelyä %qE:lleei voida kasvattaa osoitinta vaillinaiseen tyyppiin %qTtaulukoita ei voi alustaa tätä syntaksia käyttäenfunktiota % ei voi määrittää avoimeksimahdollisia ikisilmukoita ei voi optimoidaei-triviaalisti-kopioitavan tyyppisiä %q#T-olioita ei voi välittää %<...%>:n kauttaei voi laittaa volatile-kenttäistä objektia rekisteriinei-triviaalisti-kopioitavan tyyppisiä %q#T-olioita ei voi vastaanottaa %<...%>:n kauttaei voi määritellä sekä valitsinta -C että valitsinta -oei voi määritellä sekä valitsinta -msep-date että -mid-shared-librarybittikentän %qD osoitetta ei voi ottaaluetelluille tyypeille ei voi käyttää tilaa %qstypeid:tä ei voi käyttää -fno-rtti-valitsimen kanssacase-nimike ei pelkisty kokonaislukuvakioksicase-nimiö ei ole kokonaislukutyyppinen vakiolausekecase-nimikkeen arvo ylittää tyypin maksimiarvoncase-nimikkeen arvo on pienempi kuin tyypin minimiarvocase-arvo %qs ei ole luetellussa tyypissäcase-arvo %qs ei ole luetellussa tyypissä %qTmuunnos tyypistä %qT tyyppiin %qT kasvattaa kohdetyypin vaadittua kohdistustamuunnoksessa tyypistä %qT tyyppiin %qT menetetään tarkkuuttatyyppimuunnos %qT-tyyppisestä funktiokutsusta yhteensopimattomaan tyyppiin %qTtyyppimuunnos osoittimesta erikokoiseen kokonaislukuuntyyppimuunnos tyypistä %qT tyyppiin %qT hylkää määreetkohdetyypin vaatima kohdistus kasvaa tyyppimuunnoksessatyyppimuunnos määrittää taulukkotyypintyyppimuunnos määrittää funktiotyypintyyppimuunnos erikokoisesta kokonaisluvusta osoittimeksiunioniin kuulumattoman tyypin muunnos unionityypiksimerkkitaulukon alustus leveästä merkkijonostaluokka %qE on jo olemassaluokalla %qT ei ole %qD-nimistä kenttääluokkamäärittelyä ei voi esitellä ystäväksipuhdistusargumentti ei ole funktiopuhdistusargumentti ei ole tunnistesuljettaessa LTRANS-tulosteluetteloa %s: %msuljetaan riippuvuustiedosto %s: %mkoodimalli %s ei tue PIC-tilaaluetellun tyypin luettelon lopussa on pilkkukomentorivivalitsin %qs on kelvollinen kohteelle %s, mutta ei kohteelle %sliukulukujen vertailu operaattoreilla == ja != on epävarmaavertailu on aina epätosi johtuen tietotyypin rajallisesta arvoalueestavertailu on aina tosi johtuen tietotyypin rajallisesta arvoalueestatyyppien %qT ja %qT välinen vertailuerilaisten osoitintyyppien %qT ja %qT välisestä vertailusta puuttuu tyyppimuunnososoittimen ja kokonaisluvun välinen vertailuetumerkillisen ja etumerkittömän kokonaislukulausekkeen vertailutyyppien %qT ja %qT välinen vertailuvertailu on aina %d johtuen bittikentän leveydestävertailu on aina epätosi johtuen tietotyypin rajallisesta arvoalueestavertailu on aina tosi johtuen tietotyypin rajallisesta arvoalueestatäydellisen ja vaillinaisen osoittimen vertailuerilaisten Objective-C-tyyppien vertailusta puuttuu tyyppimuunnosvertailu â€etumerkitön lauseke < 0†on aina epätosivertailu â€etumerkitön lauseke >= 0†on aina tosivertailu merkkijonoliteraalin kanssa aiheuttaa määrittelemätöntä toimintaavertailu merkkijonoliteraaliin johtaa määrittelemättömään toimintaan% -tyylisillä vertailuilla on eri merkitys kuin matematiikassakäännös keskeytyi -Wfatal-errors-valitsimen vuoksi. ! käännös keskeytyi. ! kompleksiliukulukuylivuoto lausekkeessakompleksikokonaislukuylivuoto lausekkeessayhdysliteraalin koko on muuttuvaei-objektityyppinen yhdysliteraali %qTristiriitainen esittely %q#Dristiriitaiset tyyppimääreet %q+D:lleristiriitaiset tyypit kohteelle %<%c%s%>:lleristiriitaiset tyypit %q+D:lleristiriitaiset tyypit sisäiselle funktiolle %q+Don ristiriidassa uuden esittelyn kanssa %qL-linkitykselläon ristiriidassa %q+#D:n edellisen esittelyn kanssaon ristiriidassa edelliseen tässä olevan esittelyn kanssamuodostinsyntaksia on käytetty, mutta %qT-tyypin muodostinta ei ole esiteltymuodostimia ei voi esitellä virtuaalisiksicontinue-lause silmukan ulkopuolellaei-void-tyyppisen funktion loppu saavutettuerilaisten osoitintyyppien %qT ja %qT välisestä muunnoksesta puuttuu tyyppimuunnosmuunnos tyypistä %qT tyyppiin %qT ei säilytä tyyppimääreitämuunnos tyypistä %qT tyyppiin %qT on moniselitteinenmuunnoksen tyyppi puuttuu muotoilun lopusta%qE:n muunnos tyypistä %qT tyyppiin %qT ei ole yksiselitteinenetumerkittömän vakion muunnos negatiiviseksi kokonaisluvuksimuunnos tyyppiin %qT muuttaa %qT:n vakioarvoamuunnos tyyppiin %qT tyypistä %qT saattaa muuttaa sen arvoamuunnos tyyppiin %qT loogisesta lausekkeestapyydetty muuntoa ei-skalaarityypiksimuunnnos void-tyypiksi ei koskaan käytä tyyppimuunnosoperaattoriamuunnetaan % osoitintyyppiksi %2$qD:n argumentissa %1$PNULLin muunnos epäosoitintyypiksimuunnos tyypistä %qT tyyppiin %qTNULLin muunnos epäosoitintyypiksi %qTei voitu avata symbolinselvitystiedostoa: %mei voitu jäsentää tiedostosiirrostaei voitu jäsentää heksadesimaalinumeroaei voitu jakaa käskyä osiinluodaan funktiojäsenten taulukkoaluodaan funktioiden taulukkoluodaan viitteiden taulukkoluodaan void-taulukkodata-alueattribuutteja ei voi määritellä paikallisille muuttujille%q+D:n data-alue on ristiriidassa edellisen esittelyn kanssadatamäärittelyllä ei ole tyyppiä eikä tallennusluokkaaesittely %qD ei esittele mitäänesittely ei esittele mitäänparametrin %qD esittely, mutta parametria ei ole olemassa%-muuttujan %qD esittely %-silmukan alkuesittelyssä%<~%T%>:n esittely %qT:n jäsenenä%q#D:n esittelyllä ei ole alustimia%q#D:n esittely C-kielen linkityksellä%q+#D:n esittely%q+D:n esittely varjostaa sisäänrakennetun funktion%qD:n esittely funktiojäsenten taulukkona%qD:n esittely funktioiden taulukkona%qD:n esittely viitteiden taulukkona%qD:n esittely void-taulukkona%qD:n esittely %qT:n jäsenenä%qD:n esittely ei-funktiona%qD:n esittely ei-jäsenenä%qE:n esittely taulukollisena funktioita%qE:n esittely taulukollisena void-alkioitaC-funktion %q#D esittely on ristiriidassanimiavaruuden %qD esittely on ristiriidassaei-muuttujan %qD esittely %-silmukan alkuesittelyssästaattisen muuttujan %qD esittely %-silmukan alkuesittelyssämallin %q#D esittelytyyppinimen esittely taulukollisena funktioitatyyppinimen esittely taulukollisena void-alkioitavakiokentän %qD vähennysfunktion %qD vähennystuntemattomaan rakenteeseen osoittavan osoittimen vähennyskirjoitussuojatun sijainnin %qE vähennyskirjoitussuojatun jäsenen %qD vähennyskirjoitussuojatun nimetyn paluuarvon %qD vähennyskirjoitussuojatun parametrin %qD vähennyskirjoitussuojatun viitteen %qD vähennyskirjoitussuojatun muuttujan %qD vähennysoletusargumentti annettu %2$q#D:n parametrille %1$doletusargumentti määritelty lambda-parametrilletyypin määritteleminen tyyppimuunnoksessa on virheellistä C++-kielessä%qD:n poistettu määrittelypoistettu funktio %q+Dpoistetaan LTRANS-tiedosto %spoistetaan taulukko %q#Evanhentunut tyyppimuunnos merkkijonovakiosta tyyppiin %qThajotin ei voi olla staattinen jäsenfunktiohajottimet eivät voi olla cv-määriteltyjähajottimilla ei voi olla parametrejaerilainen Objective-C-tyyppi palautuksessajako nollallaylimääräinen %ylimääräinen %ylimääräinen %%qE:n kaksoiskappalekaksois-%qscase-arvon kaksoiskappale (tai limitys)perustyypin %qT kaksoiskappale virheellinencase-arvon kaksoiskappalecv-määreen kaksoiskappaleprotokollan %qE esittelyn kaksoiskappalekaksoiskappale-rajapintaesittely luokalle %qE%qE-nimiön kaksoisesittelyjäsenen %q+D kaksoiskappaledwarfin versio %d ei ole tuettudynaamista riippuvuutta %s ei löytynytdynamic_cast tyypistä %q#D tyypiksi %q#T ei voi koskaan onnistuataulukon %q#D alkiot ovat vaillinaista tyyppiäsulautettu %<\0%> muotoilussatyhjä esittelytyhjä esittely tallennusluokkamääritteellä ei esittele tunnistetta uudelleentyhjä esittely tyyppimääreellä ei esittele tunnistetta uudelleentyhjä indeksiväli alustimessa%s-muotoilussa vasen tarkkuus on tyhjä%s-muotoilussa tarkkuus on tyhjätyhjä arvoalue annettutyhjä skalaarialustinoletusarvoisesti käytössäenum-muunnos sijoituksessa on virheellistä C++-kielessäenum-muunnos alustuksessa on virheellistä C++-kielessäenum-muunnos palautuksessa on virheellistä C++-kielessälueteltu tyyppi määritelty täällälueteltua arvoa %qE ei käsitellä switch-lauseessaluetellun tyypin arvot ylittävät suurimman kokonaisluvun arvoalueenluetellun tyypin jäsenen %qE arvo ei ole kokonaislukuvakioluetellun tyypin jäsenen %qE arvo ei ole kokonaislukuvakioCOLLECT_GCC-ympäristömuuttujan on oltava asetettunaCOLLECT_GCC_OPTIONS-ympäristömuuttujan on oltava asetettunaDJGPP-ympäristömuuttujaa ei ole määriteltyDJGPP-ympäristömuuttuja viittaa turmeltuneeseen tiedostoon â€%sâ€DJGPP-ympäristömuuttuja viittaa puuttuvaan tiedostoon â€%sâ€virhe jäsennettäessä kenttiävirhe jäsennettäessä kenttiä ! virhe jäsennettäessä metodejavirhe jäsennettäessä metodeja ! virhe luettaessa %s zip-tiedostostavirhe: %<%T%>-tyyppinen poikkeus siepataanylimääräisiä alkioita taulukkoalustimessaylimääräisiä alkioita merkkitaulukkoalustimessaylimääräisiä alkioita skalaarialustimessaylimääräisiä alkioita struct-alustimessaylimääräisiä alkioita union-alustimessaylimääräisiä alkioita vektorialustimessaodotettiin %<(%> tai rivin loppuodotettiin %<+%>, %<*%>, %<-%>, %<&%>, %<^%>, %<|%>, %<&&%>, %<||%>, % tai %odotettiin %<,%> tai %<...%>odotettiin %<,%> tai %<;%>odotettiin %<,%> tai %<}%>odotettiin %<,%>, %<;%> tai %<}%>odotettiin %<:%> tai %<...%>odotettiin %<:%>, %<,%>, %<;%>, %<}%> tai %<__attribute__%>odotettiin %<=%>, %<,%>, %<;%>, % tai %<__attribute__%>odotettiin %odotettiin %odotettiin %odotettiin %odotettiin %odotettiin %odotettiin % tai %odotettiin %odotettiin %odotettiin %odotettiin %odotettiin %qT, mutta argumentti on tyyppiä %qTodotettiin merkkijonoa ilmaisun %<#pragma message%> jälkeenodotettiin luokan nimeäodotettiin lausekettaodotettu tunnisteodotettiin tunnistetta tai %<(%>odotettiin tunnistetta tai %<*%>odotettiin kokonaislukulausekettaodotettiin iteraatioesittelyä tai -alustustaodotettiin merkkijonoliteraaliaylimääräinen %<;%>alustimen lopussa on ylimääräinen lohkoskalaarialustimessa ylimääräisiä alkioitaylimääräinen puolipiste metodin määrittelyssäylimääräinen puolipiste structissa tai unionissaylimääräisiä tyyppimääreitä muotoiluargumentissa (argumentti %d)attribuutit fastcall ja cdecl eivät ole yhteensopiviaattribuutit fastcall ja stdcall eivät ole yhteensopiviavakava virhe: kentällä %q+#D on sama nimi kuin luokallakentällä %qD on vaillinainen tyyppikenttä %qE esitelty funktionakentän leveyskentän leveys printf-muotoilussakentän leveys scanf-muotoilussakentän leveys strfmon-muotoilussakentän leveys strftime-muotoilussatäytemerkkitäytemerkki strfmon-muotoilussa%q+D:n ensimmäisen argumentin pitäisi olla %ensimmäinen argumentti funktiolle %<__builtin_choose_expr%> ei ole vakio%-funktion ensimmäinen argumentti ei ole tyyppiä %joustava taulukkojäsen muuten tyhjässä structissajoustava taulukkojäsen unionissajoustava taulukkojäsen ei ole structin lopussaliukulukuvakio ylittää %qT:n arvoalueenliukulukuvakiota käytetty väärinliukulukuvakio katkaistu nollaksiliukulukuylivuoto lausekkeessavuonohjauskäsky peruslohkon sisälläfopen: %smalliesittelylle %q+Dmuotoiluargumentti %d käyttämätön ennen käytettyä argumenttia %d $-tyylisessä muotoilussamuotoiluargumentti %d käytössä useammin kuin kerran %s-muotoilussamuotoilu on leveämerkkinen merkkijonomuotoilu ei ole merkkijonoliteraali eikä muotoiluargumenttejamuotoilu ei ole merkkijonoliteraali, argumenttityyppejä ei tarkistetamuotoilu ei ole merkkijonoliteraali, muotoilumerkkijonoa ei tarkistetamuotomerkkijonoargumentti seuraa muotoiltavia argumenttejamuotomerkkijonolla on epäkelpo operandinumerolöytyi %<%c%s%>löytyi virtuaalimäärittely GIMPLE-rekisterillefr30_print_operand: virheellinen %%F-koodifr30_print_operand: virheellinen %%x-koodifr30_print_operand: tuntematon koodifr30_print_operand: tunnistamaton %%B-koodifr30_print_operand: tunnistamaton %%b-koodifr30_print_operand: tunnistamaton %%p-koodifr30_print_operand_address: käsittelemätön osoitefriend-esittely %qD paikallisessa luokassa ilman edeltävää esittelyäystäväesittely ei nimeä luokkaa tai funktiotaedellisestä esittelystä %q+Ftästä kohdastafunktio %q#D alustetaan kuin muuttujafunktion %q+D määrittely on merkitty dllimport-tyyppiseksifunktiota %q+F ei voi koskaan kopioida, koska se vastaanottaa ei-paikallisen goto-käskynfunktiota %q+F ei voi koskaan kopioida, koska se tallentaa paikallisen nimiön osoitteen staattiseen muuttujaanfunktio %qD esitelty virtuaaliseksi unionissafunktio %qD on alustettu kuten muuttujafunktio %qD esitelty uudelleen muuttujanafunktiokutsu epäsopivan tyypin läpifunktion esittely ei ole prototyyppi%-esitellyllä funktiolla on %-lausefunktion määrittely esitelty %<__thread%>:ksifunktion määrittely esitelty %:ksifunktion määrittely esitelty %:ksifunktion määrittely esitelty %:ksifunktion määrittely ei esittele parametrejäfunktio ei palauta merkkijonotyyppiäfunktio voi olla ehdokas %<%s%>-attribuutillefunktio voi olla ehdokas %<%s%>-attribuutille jos sen tiedetään palaavan normaalistifunktio on ehkä mahdollinen ehdokas %qs-muotoiluattribuutillefunktioprofilointifunktion paluuarvon tyyppi ei voi olla funktiofunktion paluuarvojen tyypit eivät ole yhteensopivia %:n takiafunktion palauttava funktiotaulukon palauttava funktiofunktio palauttaa osoitteen paikalliseen muuttujaanfunktiomalli %qD esitelty uudelleen luokkamallinafunktiotyypit eivät aidosti yhteensopivia ISO C:n mukaanfunktioalue %qs implisiittisesti auto ja esitelty %<__thread%>:ksigcc-versio %s %s gcov %s%s ! gfortran ei tue valitsinta -E ilman valitsinta -cppgimple_bb (stmt) on asetettu väärään peruslohkoonsisäkkäisessä funktiossa käytetty globaalia rekisterimuuttujaa %qDgoto-kohde ei ole nimiö eikä osoitingp_offset (%ld) tai end_offset (%ld) on pienempi kuin nollaia64_print_operand: tuntematon kooditunniste %qE on ristiriidassa C++:n varatun sanan kanssajos tämä koodi saavutetaan, ohjelma keskeytyyjätetään #pragma %s %s huomiottaei-staattisen paikallismuuttujan %q+D asm-määrittäjä jätetään huomiottajätetään hakemiston â€%s†kaksoiskappale huomiotta, jätetään puuttuva hakemisto â€%s†huomiotta ! %qD:n paluuarvoa ei huomioida, esitelty attribuutilla warn_unused_resultattribuutilla warn_unused_result esitellyn funktion paluuarvoa ei huomioidavirheellinen aggregaattityyppi %qE määritelty instanssimuuttujalle %qsfunktio %qE esitelty implisiittisestiC++98:ssa %qD on alustettava muodostimessa, ei käyttäen %<{...}%>esittelyssä %q+Dsisäisen funktion %qD yhteensopimaton implisiittinen esittelyfunktion %qD yhteensopimaton implisiittinen esittelyfunktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimatonvaillinaiset tyypit %qT:n sijoituksessa tyyppiin %qTyhteensopimattomat tyypit sijoituksessa tyyppiin %qT tyypistä %qTyhteensopimattomat tyypit alustettaessa tyyppiä %qT käyttäen tyyppiä %qTluokan %qE vaillinainen toteutusvakiokentän %qD kasvatusfunktion %qD kasvatustuntemattomaan rakenteeseen osoittavan osoittimen kasvatuskirjoitussuojatun sijainnin %qE kasvatuskirjoitussuojatun jäsenen %qD kasvatuskirjoitussuojatun nimetyn paluuarvon %qD kasvatuskirjoitussuojatun parametrin %qD kasvatuskirjoitussuojatun viitteen %qD kasvatuskirjoitussuojatun muuttujan %qD kasvatusalustus erilaisesta Objective-C-tyypistäalustus yhteensopimattomasta osoitintyypistäalustus tekee osoittimesta kokonaisluvun ilman tyyppimuunnostaalustuksessa tehdään osoitin kokonaisluvusta ilman tyyppimuunnostajoustavan taulukkojäsenen alustusjoustavan taulukkojäsenen alustaminen sisäkkäisessä asiayhteydessäalustettu kenttä ylikirjoitettualustinalkio ei ole vakiolausekealustusalkiota ei pystytä laskemaan latausajankohtanaalustusalkio ei ole vakioalustin ei pysty päättelemään taulukon %q+D kokoaalustin liukulukuarvolle ei ole liukulukuvakiomerkkitaulukon alustusmerkkijono on liian pitkäkäsky peruslohkon ulkopuolellaasennus: %s%s ! instanssimuuttuja %qE on %s; tämä saattaa olla kova virhe tulevaisuudessainstanssimuuttuja %qE esiteltiin nimellä %sinstanssimuuttuja %qE on esitelty yksityisenäint-taulukko alustettu yhteensopimattomasta leveästä merkkijonostaint-taulukko alustettu epäleveästä merkkijonostakokonaislukuylivuoto lausekkeessamoduulienvälisiä optimointeja ei ole toteutettu C++:llekääntäjän sisäinen virhe. Virheellinen osoite:kääntäjän sisäinen virhe: sisäinen virhe - virheellinen Utf8-nimisisäinen virhe: sivuvaikutuskäsky vaikuttaa päävaikutukseensisäinen funktiokeskeytysfunktiolla ei saa olla argumenttejakeskeytysfunktiolla on oltava void-paluutyyppikeskeytyskäsittelijät eivät voi olla MIPS16-funktioitavirheellinen #pragma %svirheellinen %%-koodivirheellinen %%C-arvovirheellinen %%D-arvovirheellinen %%E-arvovirheellinen %%F-arvovirheellinen %%G-tilavirheellinen %%G-arvovirheellinen %%H-arvovirheellinen %%J-koodivirheellinen %%J-arvovirheellinen %%K-arvovirheellinen %%L-koodivirheellinen %%L-arvovirheellinen %%M-arvovirheellinen %%N-arvovirheellinen %%O-arvovirheellinen %%P-arvovirheellinen %%R-arvovirheellinen %%S-arvovirheellinen %%T-arvovirheellinen %%U-arvovirheellinen %%d-arvovirheellinen %%f-arvovirheellinen %%h-arvovirheellinen %%j-koodivirheellinen %%j-arvovirheellinen %%k-arvovirheellinen %%m-arvovirheellinen %%p-arvovirheellinen %%q-arvovirheellinen %%r-arvovirheellinen %%s-arvovirheellinen %%t/%%b-arvovirheellinen %%u-arvovirheellinen %%v-arvovirheellinen %%x-arvovirheellinen %%xn-koodivirheellinen â€asmâ€: virheellinen --param-arvo %qsvirheellinen IACC-argumenttiepäkelpo %-avainsanan soveltaminen bittikenttäänepäkelpo %-avainsanan soveltaminen funktiotyyppiinepäkelpo %qs:n soveltaminen tyhjään tyyppiin%qs-attribuutin virheellinen argumenttiepäkelpo argumentti funktiolle %<__builtin_frame_address%>epäkelpo argumentti funktiolle %<__builtin_return_address%>virheellinen taulukkosijoitusvirheellinen muunnos tyypistä %qT tyyppiin %qTvirheellinen tyyppimuunnos funktiotyyppiin %qTvirheellinen luokan nimi %qD:n esittelyssävirheellinen const_cast tyypistä %qT tyyppiin %qTvirheellinen const_double-operandivirheellinen muodostin; tarkoitit todennäköisesti %<%T (const %T&)%>virheellinen muunnos tyypistä %qT tyypiksi %qTvirheellinen muunnos gimple-kutsussavirheellinen %<%T::%E%>:n esittelyepäkelpo alkiotyyppi attribuutille %qsvirheellinen lauseke kohdemuuttujanavirheellinen funktioesittelyvirheellinen kasvatuslausekevirheellinen alkuarvo jäsenelle %qEvirheellinen %qT-tyyppisen viittauksen alustus %qT-tyyppisestä lausekkeestaepäkelpo alustinvirheellinen alustin taulukon jäsenelle %q#Dvirheellinen käsky:virheelinen sijainti ilmaisulle %<#pragma %s%>, jätetään huomiottavirheellinen lvalue asm-tulosteessa %dvirheellinen jäsenfunktioesittelyvirheellinen parametri %qsvirheellinen parametrityyppi %qTepäkelpo osoitintila %qsvirheelliset määreet ei-jäsenfunktion tyypissävirheellinen vastaanottajatyyppi %qs%q+D:n virheellinen uudelleenesittely%<__builtin_prefetch%>-funktion toinen argumentti on epäkelpo; käytetään nollaavirheellinen static_cast-muunnos tyypistä %qT tyyppiin %qTepäkelpo tallennusluokka funktiolle %qE%<__builtin_prefetch%>-funktion kolmas argumentti on epäkelpo; käytetään nollaavirheellinen tyyppi iterointimuuttujalle %qEvirheellisiä tyyppejä muunnoksessa liukuluvuksivirheellisiä tyyppejä muunnoksessa kokonaisluvuksivirheelliset tyypit nop-muunnoksellevirheellinen %:n käyttö muunnosoperaattorissaepäkelpo %-avainsanan käyttö%qD:n virheellinen käyttövirheellinen loogisen lausekkeen käyttö operandina %:llerajat määrittelemättömän taulukon epäkelpo käyttömuodostimen virheellinen käyttö mallinavirheellinen hajottimen %qD käyttö tyyppinäjoustavien taulukkoalkioiden epäkelpo käyttövaillinaisen tyypin typedef %qD epäkelpo käyttöjäsentä %q+D käytetty virheellisesti staattisessa jäsenfunktiossaei-staattisen datajäsenen %q+D virheellinen käyttövirheellinen ei-staattisen jäsenfunktion käyttöjoustavan taulukkojäsenen sisältävän tietueen epäkelpo käyttömallinimen %qE virheellinen käyttö ilman argumenttiluetteloamäärittelemättömän tyypin %<%s %E%> epäkelpo käyttövoid-lausekkeen epäkelpo käyttöepäkelpo vektorityyppi attribuutille %qEepäkelpo vektorityyppi attribuutille %qsnäkyvyysalue on vain tämä määrittely tai esittely, mikä ei todennäköisesti ole sitä, mitä halusithyppy ohittaa muuttujan alustuksenhyppy case-nimiöönhyppy nimiöön %q+Dhyppy nimiöön %qDroskaa #pragma %s:n lopussaroskaa ilmaisun pragma GCC coprocessor width lopussaroskaa ilmaisun #pragma GCC memregs [0..16] lopussaroskaa ilmaisun #pragma io_volatile lopussaroskaa %<#pragma %s%>:n lopussaroskaa ilmaisun %<#pragma GCC pch_preprocess%> lopussaroskaa ilmaisun %<#pragma GCC visibility%> lopussaroskaa ilmaisun %<#pragma message%> lopussaroskaa ilmaisun %<#pragma pack%> lopussaroskaa ilmaisun %<#pragma pop_options%> lopussaroskaa ilmaisun %<#pragma push_options%> lopussaroskaa ilmaisun %<#pragma redefine_extname%> lopussaroskaa ilmaisun %<#pragma reset_options%> lopussaroskaa ilmaisun %<#pragma weak%> lopussaroskaa ilmaisun â€#pragma ms_struct†lopussaroskaa signatuurimerkkijonon lopussanimiö nimike %qD esitelty muttei määriteltynimike %q+D määritelty mutta käytettämättänimiötä %q+D käytetty mutta ei määriteltynimiö %qD määritelty täälläsuuri kokonaisluku implisiittisesti katkaistu etumerkittömäksi tyypiksityhjästä luokasta %qT perittyjen luokkien rakenne saattaa muuttua GCC:n tulevissa versioissald:n paluuarvo oli %dvasen tarkkuusvasen tarkkuus strfmon-muotoilussavasemmalle kierron laskuri on negatiivinenvasemmalle siirron lukumäärä >= tyypin leveysvasemmalle siirron lukumäärä on negatiivinenpilkkulausekkeen vasemmalla operandilla ei ole vaikutustapituusmäärepituusmääre printf-muotoilussakenttämääre scanf-muotoilussapituusmääre strfmon-muotoilussakirjastot: %s ! kirjastoa lib%s ei löytynyt%qE:n paikallinen esittely piilottaa instanssimuuttujanpaikallinen muuttuja %qD ei voi esiintyä tässä yhteydessäcase-nimikkeen alarajan arvo on pienempi kuin tyypin minimiarvosijoituksen vasemman operandin on oltava lvaluemakron nimi puuttuu %qs:n jälkeenväärinmuodostettu #pragma GCC visibility pushvääränmuotoinen #pragma builtinväärinmuodostettu #pragma callväärinmuodostettu #pragma redefine_extname, jätetään huomiottaväärinmuodostettu #pragma weak, jätetään huomiottaväärinmuodostettu %<#pragma %s%>, jätetään huomiottaväärinmuodostettu %<#pragma message%>, jätetään huomiottaväärinmuodostettu %<#pragma pack%> - jätetään huomiottaväärinmuodostettu %<#pragma pack(pop[, id])%> - jätetään huomiottaväärinmuodostettu %<#pragma pack(push[, id][, ])%> - jätetään huomiottaväärinmuodostettu â€#pragma ms_struct {on|off|reset}â€, jätetään huomiottaväärinmuodostettu â€#pragma ms_structâ€, jätetään huomiottaväärin muotoiltu â€#pragma optionsâ€, ei huomioidavääränmuotoinen COLLECT_GCC_OPTIONSparametrin %qs maksimiarvo on %uei voi käyttää sekä valitsinta -m32 että -m64jäsentä %qD ei voida esitellä sekä virtuaaliseksi että staattiseksi%<%c%E%>:n metodimäärittelyä ei löytynytparametrin %qs minimiarvo on %utäsmäämättömät argumentit$-operandinumero puuttuu muotoilussa%<(%> puuttuu ilmaisun %<#pragma GCC visibility push%> jälkeen - jätetään huomiottapuuttuva %<(%> ilmaisun %<#pragma pack%> jälkeen - jätetään huomiottapuuttuva â€(†ilmaisun â€#pragma unused†jälkeen, jätetään huomiottapuuttuva â€)†ilmaisun â€#pragma unused†jälkeen, jätetään huomiottapuuttuva Code-attribuuttialustimen ympäriltä puuttuu aaltosulkeetpuuttuva määrittelytiedostonimi puuttuu %qs:n jälkeentäytemerkki puuttuu strfmon-muotoilun lopustapuuttuva kasvatuslausekemakefile-kohde puuttuu %qs:n jälkeenpuuttuva operandipolku puuttuu %qs:n jälkeenlopetusalkio puuttuu funktiokutsustaloppumerkki %c puuttuutyypin nimi puuttuu typedef-esittelystätilaa %qs sovellettu sopimattomaan tyyppiinmoniulotteisell taulukolla on oltava rajat kaikkiin suuntiin paitsi ensimmäiseenuseita default-nimikkeitä samassa switch-lauseessauseita kenttiä unionissa %qT alustettulöytyi useita metodeja nimellä %<%c%E%>useita parametreja nimellä %qDuseita tallennusluokkia %qs:n esittelyssäuseita tallennusluokkia esittelymääritteissäuseita tyyppejä yhdessä esittelyssäennen typeid:n käyttöä on oltava #include nimellä %qT on vaillinainen tyyppinimi puuttuu jäsenfunktioltanimetyt paluuarvot eivät ole enää tuettuja%qE:n kaventava muunnos tyypistä %qT tyyppiin %qT { }:n sisällänegatiivinen käskyn pituusnegatiivinen kokonaisluku muunnettu implisiittisesti etumerkittömään tyyppiinbittikentän %q+D leveys negatiivinenbittikentän %qs leveys on negatiivinensisäkkäiset assembly-murrevaihtoehdot%qD esitelty extern-avainsanalla sisäkkäinsisäkkäinen funktio %q+D esitelty mutta ei koskaan määriteltysisäkkäinen funktio %qs esitelty %:ksisisäkkäinen %:n uudelleenmäärittelysisäkkäinen %:n uudelleenmäärittelysisäkkäinen %:n uudelleenmäärittelyuusia tyyppejä ei voi määritellä paluutyypissäei löytynyt %<%c%E%>-methodiaei argumenttejaluokkanimeä ei ole annettu %qs:n kanssa%<%%[%>-muotoilua ei ole suljettu %<]%>:llaei tietotyyppiä tilalle %qssyötetiedostoa ei ole annettuei syötetiedostojavastaava push puuttuu ilmaisulta %<#pragma GCC visibility pop%>%q+D:lle ei ole edellistä esittelyä%qD:lle ei ole edellistä esittelyä%qD:lle ei ole edellistä prototyyppiälinkitystä varten ei ole määritelty suoritintaei palautuslausetta funktiossa, joka palauttaa ei-voidinpuolipiste puuttuu structin tai unionin lopustaei-vakio kokonaiskulukuargumentti %u kutsussa funktiolle %qEei-vakio ehto staattiselle väitteelleei-vakio alustuslauseke kohdassa %Lpoistamaton funktio %q+Dei-liukulukuargumentti kutsussa funktiolle %qEei-liukulukuargumentteja kutsussa funktiolle %qEehtolausekkeessa ei-lvalue-taulukkoei-staattisella datajäsenellä %qD on Java-luokkatyyppiei-staattinen datajäsen %qE esitelty %:ksi%q+D esitelty ei-staattisena, edellinen esittely staattinenjoustavan taulukkojäsenen ei-staattinen alustusei-staattinen metodi %q+D korvaa staattisen metodinei-vakio taulukkoindeksi alustimessaei-paikallinen nimiö ei-tyhjällä argumentilla on epäkelpo operandinumero (argumentti %lu)ei-tyhjä argumentti viittaa ei-osoitinoperandiin (argumentti %lu, operandi %lu)ei-tyhjällä argumentilla arvoalueen ylittävä operandinumero (argumentti %lu,operandi %lu)ei-tyhjä attribuutti ilman argumentteja ei-prototyypissäei konfiguroitu sysroot-otsakkeiden loppuliitteelläliian vähän argumentteja funktiolle %qEhuom: tyhjä argumentti, vaikka ei-null vaaditaan (argumentti %lu)argumenttien määrä ei vastaa sisäistä prototyyppiäargumenttien määrä ei vastaa prototyyppiävektorin komponenttien määrä ei ole kahden potenssiobjektityyppi %qT ei täsmää hajottimen nimen ~%qT kanssasiirros vakiomerkkijonon rajojen ulkopuolellevanhanmallinen funktiomäärittelyvanhanmallisia parametriesittelyitä prototyypitetyssä funktiomäärittelyssävain muodostimen esittely voi olla %vain yksi valitsimita -mm ja -ml voidaan antaavain yksi valitsimista -mm ja -mtiny= voidaan antaavain yksi valitsimista -ms ja -ml voidaan antaavain yksi valitsimista -ms ja -mm voidaan antaavai yksi valitsimista -ms ja -mtiny voidaan antaaläpinäkymättömiä vektorityyppejä ei voida alustaaavattaessa LTRANS-tulosteluetteloa %s: %mavataan riippuvuustiedosto %s: %mavataan tulostetiedosto %s: %mavataan tulostetiedosto %s: %soperandinumero on arvoalueen ulkopuolella muotoilussaoperandinumero annettu muotoilulle, joka ei ota argumenttejaoperandinumero annettu vaiennetulla sijoituksella?:-lausekkeen operandeilla on eri tyypit, %qT ja %qToperaatio %qE:lle voi olla määrittelemätönkäyttöön otetut valitsimet: annetut valitsimet: osoittimen ja kokonaisluku nollan suuruusvertailualunperin määritelty täällämuisti lopussatulostiedosto annettu kahdestitaulukon koon ylivuotoylivuoto vakiolausekkeessaylivuoto luetellun tyypin arvoissaylivuoto implisiittisessä vakiomuunnoksessapakattu attribuutti aiheuttaa tehottoman kohdistuksenpakattu attribuutti aiheuttaa tehottoman kohdistuksen %qE:llepakattu attribuutti on tarpeetonpakattu attribuutti on tarpeeton %q+D:llepakattu attribuutti on tarpeeton %qE:lleparametrilla %P on vaillinainen tyyppi %qT%2$qD:n parametrilla %1$P on vaillinainen tyyppi %3$qTparametri %q+D esitelty %:ksiparametrilla %q+D on vain etukäteisesittelyparametri %qD esitelty void-tyyppisenäparametrilla %qD on Java-luokkatyyppiparametrin %qD tyyppi on vaillinainenparametri %qD virheellisesti esitelty metodityyppiparametri %qD on alustettuparametrilla %u (%q+D) on vaillinainen tyyppiparametrin %u (%q+D) tyyppi on voidparametrilla %u in vaillinainen tyyppiparametrin %u tyyppi on voidparametri esitelty %:ksiparametrin nimi puuttuu parametriluettelostaparametrin nimi jätetty poisparametrien nimet (ilman tyyppejä) funktion esittelyssäjäsennysvirhe malliargumenttien luettelossaannettu NULL funktion %2$qD ei-osoitinargumenttina %1$Pfunktion %2$qE argumentti %1$d annetaan tyyppinä % eikä % prototyypin takiafunktion %2$qE argumentti %1$d annetaan kompleksisena eikä liukulukuna prototyypin takiafunktion %2$qE argumentti %1$d annetaan kompleksisena eikä kokonaislukuna prototyypin takiafunktion %2$qE argumentti %1$d annetaan liukulukuna eikä kompleksisena prototyypin takiafunktion %2$qE argumentti %1$d annetaan liukulukuna eikä kokonaislukuna prototyypin takiafunktion %2$qE argumentti %1$d annetaan kokonaislukuna eikä kompleksisena prototyypin takiafunktion %2$qE argumentti %1$d annetaan kokonaislukuna eikä liukulukuna prototyypin takiafunktion %2$qE argumentti %1$d annetaan etumerkillisenä prototyypin takiafunktion %2$qE argumentti %1$d annetaan etumerkittömänä prototyypin takiaargumentin %d/%qE välitys erilaisesta Objective-C-tyypistäannettu yhteensopimatonta osoitintyyppiä oleva %d. argumentti funktiolle %qEargumentin %d antaminen funktiolle %qE tekee kokonaisluvusta osoittimen ilman tyyppimuunnostaargumentin %d antaminen funktiolle %qE tekee kokonaisluvusta osoittimen ilman tyyppimuunnostafunktion %2$qE argumentti %1$d annetaan eri levyisenä prototyypin takiapch_preprocess-pragmaa tulee käyttää vain valitsimen -fpreprocessed kanssapex_init epäonnistui%-tyyppistä osoitinta käytetty laskutoimituksessavähennyslaskussa käytetty %-tyyppistä osoitintafunktio-osoitinta käytetty laskutoimituksessavähennyslaskussa käytetty osoitinta funktioonjäsenfunktio-osoitinta käytetty laskutoimituksessaehtolausekkeessa on osoitintyyppiristiriitaehtolausekkeessa on osoitin/kokonaislukutyyppiristiriitaosoittimet eivät ole sallittuja case-arvojatarkkuustarkkuus printf-muotoilussaedellinen esittelyedellinen esittely %q+D%<%c%s%>:n aikasempi esittely%q+D:n edellinen esittely%q+D:n edellinen esittely oli täällä%q+D:n edellinen esittely oli inline%qE:n edellinen esittelytäällä olevan %q+D:n edellisen esittelyn kanssaedellinen määrittely täälläedellinen %q+#T:n määrittely%q+D:n edellinen määrittely oli täällä%q+D:n edellinen, implisiittinen esittely oli täälläesitelty aiemmin täällämääritelty aiemmin täälläviimeksi käytetty täälläprofilointituki CR16:lleprofilointituki VxWorksilleohjelmat: %s ! ylennetty argumentti %qD ei vastaa sisäistä prototyyppiäylennetty argumentti %qD ei vastaa prototyyppiäprotokollalla %qE on kehäriippuvuusprototyypin esittelyprototyypille %q#D ei ole vastinetta luokassa %qTprototyyppi %q+#D:lle%q+D:n prototyypou esittelee yhteensopimatonta tyyppiä olevan argumentin %d%q+D:n prototyyppi esittelee vähemmän argumentteja kuin edellinen, vanhantyylinen määrittely%q+D:n prototyyppi esittelee enemmän argumentteja kuin edellinen, vanhantyylinen määrittelypure-tarkenne funktiomäärittelyssämääreet voidaan määrittää vain olioille ja funktioillearvoaluelausekkeet switch-lauseessa eivät ole standardin mukaisiakirjoitussuojattua sijaintia %qE käytetään %-tulosteenaluetaan nollaosoittimen läpi (argumentti %d)rekursiivinen tyyppi %qT määrittelemätön%:n uudelleenmäärittely%q+D esitelty uudelleen erilaisella näkyvyydellä (vanha näkyvyys säilytetty)C++:n sisäinen tietotyyppi %qT määritelty uudelleenluetellun tyypin jäsenen %q+D uudelleenesittely% uudelleenmääritelty% uudelleenmääritelty%q#T uudelleenmääritelty%q+D määritelty uudelleenparametri %q+D määritelty uudelleentypedef %q+D määritelty uudelleenpalautettu viittaus paikalliseen muuttujaan %q+Dsisäkkäisessä funktiossa käytetty rekisterimuuttujaa %qDreinterpret_cast-muunnos tyypistä %qT tyyppiin %qT hylkää määreettoistettu %s muotoilussapyydetty jäsentä %qE jostakin, joka ei ole tietue eikä unionipyydetty kohdistus ei ole kahden potenssipyydetty kohdistus on liian suurihaluttu sijainti on pienempi kuin nollahaluttu sijainti ei ole kokonaislukuvakiopalautus yhteensopimattomasta osoitintyypistäpalautus tekee osoittimesta kokonaisluvun ilman tyyppimuunnostapalautuksessa tehdään osoitin kokonaisluvusta ilman tyyppimuunnostapaluutyyppi %q#T on vaillinainenpaluutyyppi on oletuksena %paluutyypillä on Java-luokkatyyppi %q#Tpaluutyyppi on vaillinainen tyyppi%qD:n paluuarvon tyyppi ei ole %arvo return-lauseelle funktiossa, jonka paluutyyppi on â€voidâ€return-lause ilman arvoa funktiossa, jonka paluutyyppi on %qTarvon palautus muodostimestaarvon palautus hajottimestaoikea tarkkuusoikea tarkkuus strfmon-muotoilussaoikealle kierron laskuri on negatiivinenoikealle siirron lukumäärä >= tyypin leveysoikealle siirron lukumäärä on negatiivinenskalaariobjekti %qD vaatii yhden alkion alustimeensa%q+D:n toisen argumentin pitäisi olla %%<__builtin_prefetch%>-funktion toisen argumentin pitää olla vakio%-funktion toinen parametri ei ole viimeinen nimetty argumenttivarjostunut esittely on täällätaulukon %qD koolla on epäkokonaislukutyyppi %qTtaulukon %qD koko on negatiivinentaulukon %qD koko ei ole kokonaislukutyyppinen vakiolauseketaulukon %qE koko ei ole kokonaislukutyyppiätaulukon %qE koko on negatiivinentaulukon %qE koko on liian suuritaulukon %qs koko on liian suuritaulukon koolla on epäkokonaislukutyyppi %qTtaulukon koko on negatiivinentaulukon koko ei ole kokonaislukutyyppinen vakiolauseketaulukon koko on liian suurinimettömän taulukon koko ei ole kokonaislukutyyppiänimettömän taulukon koko on negatiivinennimettömän taulukon koko on liian suurimuuttujan %q+D koko on liian suurisizeof(long double) on 12sizeof(long double) on 16annettu tila on liian pieni luetelluille arvoillevääränlainen seuraava %<%%%> muotoilussapinokehys ei ole 8:n tavun monikerta: %wdpinokehys ei ole oktaalitavun monikerta: %wdlauseella ei ole vaikutustastaattinen väite epäonnistui: %s%q+D esitelty staattisena, edellinen esittely ei-staattinenstaattinen jäsenfunktio %q#D esitelty tyyppimääreillästaattinen tai tyyppimääreitä ei-parametrisessa taulukkoesittelijässästatic_cast-muunnos tyypistä %qT tyyppiin %qT hylkää määreetattribuutit stdcall ja cdecl eivät ole yhteensopiviaattribuutit stdcall ja fastcall eivät ole yhteensopiviatallennusluokka %<__thread%> virheellinen funktiolle %qstallennusluokka % virheellinen funktiolle %qstallennusluokka % virheellinen funktiolle %qstallennusluokka annettu %qs:lletallennusluokka annettu parametrille %qEtallennusluokka annettu parametrille %qstallennusluokka annettu tietueen kentälletallennusluokka annettu tietueen kentälle %qEtallennusluokka annettu malliparametrille %qstallennusluokka annettu typenamelletallennusluokka annettu nimettömälle parametrilletallennusluokkatarkentimet virheellisiä parameteresittelyissämuuttujan %q+D koko muistissa ei ole vakiomuuttujan %q+D koko muistissa ei ole tunnettu%qD:n koko muistissa ei ole vakio%qD:n koko muistissa ei ole tunnettuylimääräinen %<,%> jäsenesittelyn lopussaodottamaton %<@%> ohjelmassaodottamaton %<\%o%> ohjelmassaodottamaton %qc ohjelmassaodottamaton %qs ohjelmassastrftime-muotoilut eivät voi muotoilla argumenttejamerkkijonon pituudeksi annettu %1$qd merkkiä on suurempi kuin ISO C%3$d -kääntäjiltä vaadittu %2$qd merkkiästruct määritelty täällästructilla ei ole jäseniästructilla ei ole nimettyjä jäseniäindeksoitu arvo ei ole taulukko eikä osoitinindeksoitu arvo on osoitin funktioonehdotetaan aaltosulkeita tyhjän lohkon ympärille %-lauseessaehdotetaan aaltosulkeita tyhjän lohkon ympärille %-lauseessaehdotetaan aaltosulkeita tyhjän lohkon ympärille %-lauseessaehdotetaan aaltosulkeita epäselvän %:n välttämiseksiehdotetaan sulkeita %<&&%>:n ympärille %<||%>:n sisälläehdotetaan sulkeita %<+%>:n ympärille %<&%>:n operandissaehdotetaan sulkeita %<+%>:n ympärille %<<<%>:n sisälläehdotetaan sulkeita %<+%>:n ympärille %<>>%>:n sisälläehdotetaan sulkeita %<-%>:n ympärille %<&%>:n operandissaehdotetaan sulkeita %<-%>:n ympärille %<<<%>:n sisälläehdotetaan sulkeita %<-%>:n ympärille %<>>%>:n sisälläsuosittellaan sulkumerkkejä %<>>%>-lausekkeen ympärilleehdotetaan sulkeita lausekkeen ympärille %<^%>:n operandissaehdotetaan sulkeita lausekkeen ympärille %<|%>:n operandissaehdotetaan sulkeita totuusarvona käytetyn sijoituksen ympärilleehdotetaan sulkeita vertailun ympärille %:n operandissaehdotetaan sulkeita vertailun ympärille %<&%>:n operandissaehdotetaan sulkeita vertailun ympärille %<==%>:n operandissaehdotetaan sulkeita vertailun ympärille %<^%>:n operandissaehdotetaan sulkeita vertailun ympärille %<|%>:n operandissaehdotettu vaihtoehto:ehdotetut vaihtoehdot:valitsin %qs ei ole enää tuettuswitch hyppää muuttuja-alustuksen yliswitch-lauseesta puuttuu default-tapausswitch alkaa tästänimikkeen osoitteen ottaminen ei ole standardiakohdemuoto ei tue äärettömyyttä%qD:n malliargumentti käyttää paikallista tyyppiä %qTmalli C-linkityksellämallit eivät voi olla virtuaalisiaprintf:n †â€-lippustrfmonin â€!â€-lippuprintf:n â€#â€-lippustrftimen â€#â€-lippuprintf:n â€'â€-lippuscanf:n â€'â€-lippustrfmonin â€(â€-lippuprintf:n â€+â€-lippustrfmonin â€+â€-lippuprintf:n â€-â€-lippustrfmonin â€-â€-lippustrftimen â€-â€-lippuprintf:n â€0â€-lippustrftimen â€0â€-lippustrftimen â€Eâ€-määreprintf:n â€Iâ€-lippuscanf:n â€Iâ€-lippuâ€Oâ€-määrestrftimen â€Oâ€-määrestrfmonin â€^v-lippustrftimen â€^â€-lippustrftimen â€_â€-lippuscanf:n â€aâ€-lippuscanf:n â€mâ€-lippuâ€qâ€-diagnostiikkalippu%qD:n osoite tulee aina olemaan %%qD:n osoite ei tule koskaan olemaan NULL%:n ensimmäisellä parametrilla ei voi olla oletusargumenttiataulukon %qE kokoa ei voida määrittäätaulukon kokoa ei voida määrittää%q+D:n kolmannen argumentin pitäisi todennäköisesti olla %%<__builtin_prefetch%>-funktion kolmannen argumentin pitää olla vakiotämä desimaalivakio on etumerkitön vain ISO C90 -standardissatämä desimaalivakio olisi etumerkitön ISO C90 -standardissatämä on ensimmäinen default-nimiötämä on ensimmäinen arvoa limittävä kenttätämä on käsky:tls_model-argumentin pitää olla â€local-execâ€, â€initial-execâ€, â€local-dynamic†tai â€global-dynamicâ€tls_model-argumentti ei ole merkkijonomuodostaaksesi riippuvuudet sinun täytyy antaa joko -M tai -MMliian vähän argumentteja kohteelle %%:compare-debug-auxbase-optliian vähän argumentteja kohteelle %%:version-compareliian vähän argumentteja funktiolleliian vähän argumentteja funktiolle %liian vähän argumentteja funktiolle %qE#-opastimen on liian myöhäistä asettaa vianjäljityshakemistoaliian monta argumenttia muotoilulleliian monta argumenttia kohteelle %%:compare-debug-auxbase-optliian monta argumenttia kohteelle %%:compare-debug-dump-optliian monta argumenttia kohteelle %%:compare-debug-self-optliian monta argumenttia kohteelle %%:version-compareliikaa argumentteja funktiolleliian monta argumenttia funktiolle %qEliikaa argumentteja metodille %qEliikaa aaltosulkeita %qT:n alustimen ympärilläliian monta tiedostonimeä annettu. Kirjoita %s --help nähdäksesi käyttöohjeenliikaa alustimia %qT:lleliikaa syötetiedostojapaikallisten objektien kokonaiskoko on liian suuriperinteisestä C:stä puuttuu erillinen nimiavaruus nimikkeille, tunniste %qE on ristiriidassaperinteinen C ei hyväksy ISO C -tyylisiä funktiomäärittelyitäperinteinen C ei hyväksy automaattista koostealustustaperinteinen C ei salli merkkijonovakioiden katenointiaperinteinen C ei salli unaarista plus-operaattoriayli yksi tietotyyppi esittelymääritteissätyypillä %qE on käyttäjän määrittelemä muodostintyypillä %qE on käyttäjän määrittelemä hajotintyypillä %qE on virtuaalisia jäsenfunktioitatyypillä %qT ei ole tunnettua kokoatyyppi %qT ei ole tyypin %qT kantatyyppityyppi %qT ei periydy luokasta %tyyppi %qT ei periydy %qT-tyypistä%qE:n esittelyssä tyyppi on oletuksena %tyypin nimessä tyyppi on oletuksena %tyyppi on vanhentunuttyyppi on vanhentunut (esitelty kohdassa %s:%d)tyyppi on vanhentunut (esitelty kohdassa %s:%d): %styyppi on vanhentunut: %styyppitäsmäämättömyys taulukkoalueviitteessätyyppitäsmäämättömyys taulukkoviitteessätyyppitäsmäämättömyys komponenttiviitteessäehtolausekkeessa on tyyppiristiriitatyyppitäsmäämättömyys real/imagpart-viitteessätyyppinimi esitelty funktion palauttavana funktionatyyppinimi esitelty taulukon palauttavan funktiona%qD:n oletustyyppi on %%qD:n tyyppi ei täsmää aiemman esittelyn kanssabittikentän %qs tyyppi on GCC-laajennosmuodollisen parametrin %d tyyppi on vaillinainentyyppimääreet jätetään huomiotta funktion paluutyypissätypedef %qD on alustettu (käytä __typeof__ sen sijaan)tyypit eivät ole ihan yhteensopiviaei voida avata dynaamista riippuvuutta â€%sâ€odottamaton siirrosalustamaton const %qDalustamaton vakio %qD on virheellinen C++-kielessäalustamaton const-jäsen %qDalustamaton jäsen %qD %-tyyppillä %qTalustamaton viitejäsen %qDunionista ei voi tehdä läpinäkyvääunion määritelty täälläunionilla ei ole jäseniäunionilla ei ole nimettyjä jäseniätuntematon #pragma GCC coprocessor %Etuntematon toiminto %qE ilmaisulle %<#pragma pack%> - jätetään huomiottatuntematon cc_attr-arvomuotoilussa on tuntematon muunnostyyppimerkki %qcmuotoilussa on tuntematon muunnostyyppimerkki 0x%xtuntematon move-käsky:nimettömällä kentällä on vaillinainen tyyppinimeämätön tietue/unioni ei määrittele yhtään instanssianimetön muuttuja tai kenttä esitelty voidiksitunnistamaton käsky:tunnistamaton osoitetunnistamaton komentorivivalitsin â€%sâ€tunnistamaton komentorivivalitsin %<-fdump-%s%>tunnistamaton komentorivivalitsin %<-fopt-info-%s%>tunnistamaton muotomääritetunnistamaton gcc:n vianjäljitysvalitsin: %ctunnistamaton rekisterinimi %qsei-tuettu argumentti funktiolle %<__builtin_frame_address%>ei-tuettu argumentti funktiolle %<__builtin_return_address%>päättämättömät assembly-murrevaihtoehdotpäättämätön muotoilumerkkijonokäyttämättömiä argumentteja $-tyylisessä muotoilussakäyttämätön muuttuja %q+Dkäyttämätön muuttuja %q+Dcase-nimikkeen ylärajan arvo ylittää tyypin maksimiarvonkäytä #includea sen sijaankäytä -Winvalid-pch saadaksesi lisätietojakäytä sen sijaan __attribute__ ((vector_size))pituusmääreen %qs käyttö tyyppimerkillä %qcmuotoilussa %3$s käytetään lippuja %1$s ja %2$svanhanmallisen tyyppimuunnoksen käyttökäytä valitsinta -std=c99 tai -std=gnu99 koodisi kääntämiseenkäytetty osoittimeksi muuntumatonta taulukkoa paikassa, jossa vaaditaan skalaarikäytetty tietuetyypin arvoa, vaikka vaaditaan skalaarikäytetty unionityypin arvoa, vaikka vaaditaan skalaaritarpeeton %<__thread%> tyhjässä esittelyssätarpeeton tyyppimuunnos tyyppiin %qTtarpeeton tallennusluokkamäärite tyhjässä esittelyssätarpeeton tyyppinimi tyhjässä esittelyssätarpeeton tyyppimääre tyhjässä esittelyssäkäytetään %<%c%s%>käytetään virheellistä kenttää %qDlaskettua arvoa ei käytetämuuttujalla %q#D on alustin, mutta vaillinaista tyyppiämuuttuja %qD esitelty %:ksimuuttujalla %qD on funktiotyyppimuuttujalla %qD on alustin, mutta vaillinainen tyyppimuuttuja %qD esitelty uudelleen funktionakäytetään muuttuvapituista taulukkoa %qEkäytetään muuttuvapituista taulukkoamuuttuja tai kenttä %qE esitelty voidiksimuuttuja tai kenttä esitelty voidiksi%-määreellä esitelty muuttuja esitelty uudelleen %-tyyppiseksimuuttuvakokoinen yhdysliteraalimuuttuvakokoista objektia %qD ei voi alustaamuuttuvakokoista objektia ei voi alustaavektoriylivuoto lausekkeessaverifiointi epäonnistui kohdassa PC=%d: %sverifiointi epäonnistui: %sverify_flow_info epäonnistuiverify_flow_info: Lohkosta %i puuttuu loop_fatherverify_flow_info: Väärä lohkolukumäärä %i %iverify_gimple epäonnistuiverify_histograms epäonnistuiversioattribuutti ei ole merkkijonovirtuaalinen ei-luokkafunktio %qsnäkyvyysargumentin tulee olla â€defaultâ€, â€hiddenâ€, â€protected†tai â€internalâ€näkyvyysargumentti ei ole merkkijonotyhjää arvoa ei jätetä huomioimatta, vaikka kuuluisivtable kohteelle varoitus: weakref-attribuutin täytyy esiintyä ennen alias-attribuuttiaweakref ei ole tuettu tässä konfiguraatiossakirjoitettaessa tulostetta tiedostoon %s: %mleveän merkkitaulukon alustus epäyhteensopivasta leveästä merkkijonostaleveän merkkitaulukon alustus epäleveästä merkkijonostabittikentän %q+D leveys ylittää kentän tyypin leveydenbittikentän %qs leveys ylittää tyyppinsäoletetaan palauttavan % ja hyväksyväntässä yhteydessäkirjoitetaan vakio-objektiin (argumentti %d)kirjoitetaan nollaosoittimen läpi (argumentti %d)kirjoitettaessa LTRANS-tulosteluetteloa %s: %mväärä määrä argumentteja funktiolle %<__builtin_next_arg%>väärä määrä argumentteja funktiolle %abs-funktiolle annettu väärä tyyppiargumenttibittikomplementille annettu väärä tyyppiargumenttikonjugaatiolle annettu väärä tyyppiargumenttivähennykselle annettu väärä tyyppiargumenttilisäykselle annettu väärä tyyppiargumenttiunaariselle huutomerkille annettu väärä tyyppiargumenttiunaariselle miinus-operaatiolle annettu väärä tyyppiargumenttiunaariselle plus-operaatiolle annettu väärä tyyppiargumenttixstormy16_print_operand: tuntematon koodinollan tai negatiivisen kokoinen taulukko %q+Dbittikentän %q+D leveys nollabittikentän %qs leveys on nolla%s-muotoilun leveys on nolla%s-muotoilumerkkijonon pituus on nollanollan kokoinen taulukko %qD{tuntematon} \ No newline at end of file diff -Nrcpad gcc-4.8.1/gcc/po/fi.po gcc-4.8.2/gcc/po/fi.po *** gcc-4.8.1/gcc/po/fi.po Mon Mar 4 17:39:20 2013 --- gcc-4.8.2/gcc/po/fi.po Thu Jul 11 21:47:28 2013 *************** *** 1,9 **** # Finnish translation of GNU Compiler Collection ! # Copyright © 2010 Free Software Foundation, Inc. # This file is distributed under the same license as the GCC package. # Ville Koskinen , 2005. # Jorma Karvonen , 2009. ! # Lauri Nurmi , 2007-2010. # # Joitakin termejä, joille voi miettiä (parempaa) suomennosta: # --- 1,9 ---- # Finnish translation of GNU Compiler Collection ! # Copyright © 2013 Free Software Foundation, Inc. # This file is distributed under the same license as the GCC package. # Ville Koskinen , 2005. # Jorma Karvonen , 2009. ! # Lauri Nurmi , 2007-2010, 2013. # # Joitakin termejä, joille voi miettiä (parempaa) suomennosta: # *************** *** 21,84 **** # Uusia: # pass -> välittää vai antaa # incomplete ! # msgid "" msgstr "" ! "Project-Id-Version: gcc 4.5-b20091203\n" "Report-Msgid-Bugs-To: http://gcc.gnu.org/bugs.html\n" ! "POT-Creation-Date: 2013-02-24 01:09+0000\n" ! "PO-Revision-Date: 2010-01-11 22:13+0200\n" "Last-Translator: Lauri Nurmi \n" "Language-Team: Finnish \n" "Language: fi\n" "MIME-Version: 1.0\n" "Content-Type: text/plain; charset=UTF-8\n" "Content-Transfer-Encoding: 8bit\n" ! #: cfgrtl.c:2320 msgid "flow control insn inside a basic block" ! msgstr "" ! #: cfgrtl.c:2448 msgid "wrong insn in the fallthru edge" msgstr "" ! #: cfgrtl.c:2502 msgid "insn outside basic block" ! msgstr "" ! #: cfgrtl.c:2509 msgid "return not followed by barrier" msgstr "" #: collect2.c:1531 #, fuzzy, c-format - #| msgid "collect2 version %s" msgid "collect2 version %s\n" msgstr "collect2-versio %s" #: collect2.c:1638 ! #, fuzzy, c-format ! #| msgid "%d constructor(s) found\n" msgid "%d constructor found\n" msgid_plural "%d constructors found\n" ! msgstr[0] "löytyi %d muodostin(ta)\n" ! msgstr[1] "löytyi %d muodostin(ta)\n" #: collect2.c:1642 ! #, fuzzy, c-format ! #| msgid "%d destructor(s) found\n" msgid "%d destructor found\n" msgid_plural "%d destructors found\n" ! msgstr[0] "löytyi %d hajotin(ta)\n" ! msgstr[1] "löytyi %d hajotin(ta)\n" #: collect2.c:1646 #, c-format msgid "%d frame table found\n" msgid_plural "%d frame tables found\n" ! msgstr[0] "" ! msgstr[1] "" #: collect2.c:1902 #, c-format --- 21,88 ---- # Uusia: # pass -> välittää vai antaa # incomplete ! # frame table -> kehystaulu ! # immediate ! # soveltuu/pätee ! # brace group ! # qualifi* ! # tässä/täällä ! # duplicate msgid "" msgstr "" ! "Project-Id-Version: gcc 4.8.0\n" "Report-Msgid-Bugs-To: http://gcc.gnu.org/bugs.html\n" ! "POT-Creation-Date: 2013-03-15 17:42+0000\n" ! "PO-Revision-Date: 2013-07-11 20:50+0300\n" "Last-Translator: Lauri Nurmi \n" "Language-Team: Finnish \n" "Language: fi\n" "MIME-Version: 1.0\n" "Content-Type: text/plain; charset=UTF-8\n" "Content-Transfer-Encoding: 8bit\n" + "Plural-Forms: nplurals=2; plural=(n != 1);\n" ! #: cfgrtl.c:2318 msgid "flow control insn inside a basic block" ! msgstr "vuonohjauskäsky peruslohkon sisällä" ! #: cfgrtl.c:2446 msgid "wrong insn in the fallthru edge" msgstr "" ! #: cfgrtl.c:2500 msgid "insn outside basic block" ! msgstr "käsky peruslohkon ulkopuolella" ! #: cfgrtl.c:2507 msgid "return not followed by barrier" msgstr "" #: collect2.c:1531 #, fuzzy, c-format msgid "collect2 version %s\n" msgstr "collect2-versio %s" #: collect2.c:1638 ! #, c-format msgid "%d constructor found\n" msgid_plural "%d constructors found\n" ! msgstr[0] "löytyi %d muodostin\n" ! msgstr[1] "löytyi %d muodostinta\n" #: collect2.c:1642 ! #, c-format msgid "%d destructor found\n" msgid_plural "%d destructors found\n" ! msgstr[0] "löytyi %d hajotin\n" ! msgstr[1] "löytyi %d hajotinta\n" #: collect2.c:1646 #, c-format msgid "%d frame table found\n" msgid_plural "%d frame tables found\n" ! msgstr[0] "löytyi %d kehystaulu\n" ! msgstr[1] "löytyi %d kehystaulua\n" #: collect2.c:1902 #, c-format *************** msgstr "" *** 112,131 **** #: diagnostic.c:169 #, fuzzy, c-format - #| msgid "Treat all warnings as errors" msgid "%s: all warnings being treated as errors" msgstr "Käsittele kaikki varoitukset virheinä" #: diagnostic.c:174 #, fuzzy, c-format - #| msgid "%s: warning: no read access for file '%s'\n" msgid "%s: some warnings being treated as errors" ! msgstr "%s: varoitus: ei lukuoikeuksia tiedostoon \"%s\"\n" #: diagnostic.c:413 #, c-format msgid "compilation terminated due to -Wfatal-errors.\n" ! msgstr "" #: diagnostic.c:423 #, c-format --- 116,133 ---- #: diagnostic.c:169 #, fuzzy, c-format msgid "%s: all warnings being treated as errors" msgstr "Käsittele kaikki varoitukset virheinä" #: diagnostic.c:174 #, fuzzy, c-format msgid "%s: some warnings being treated as errors" ! msgstr "%s: varoitus: ei lukuoikeuksia tiedostoon â€%sâ€\n" #: diagnostic.c:413 #, c-format msgid "compilation terminated due to -Wfatal-errors.\n" ! msgstr "käännös keskeytyi -Wfatal-errors-valitsimen vuoksi.\n" #: diagnostic.c:423 #, c-format *************** msgid "" *** 138,143 **** --- 140,147 ---- "Please submit a full bug report,\n" "with preprocessed source if appropriate.\n" msgstr "" + "Lähetä kokonainen vikaraportti, sisältäen\n" + "sisältäen esiprosessoidun lähdekoodin, jos tarpeellista.\n" #: diagnostic.c:448 #, fuzzy, c-format *************** msgstr "Käytä AltiVec-käskyjä" *** 147,205 **** #: diagnostic.c:457 #, c-format msgid "compilation terminated.\n" ! msgstr "" #: diagnostic.c:722 #, c-format msgid "%s:%d: confused by earlier errors, bailing out\n" ! msgstr "" ! #: diagnostic.c:1126 #, c-format msgid "Internal compiler error: Error reporting routines re-entered.\n" msgstr "" #: final.c:1161 msgid "negative insn length" ! msgstr "" #: final.c:2897 msgid "could not split insn" ! msgstr "" #: final.c:3306 msgid "invalid 'asm': " ! msgstr "" #: final.c:3435 #, c-format msgid "nested assembly dialect alternatives" ! msgstr "" #: final.c:3450 final.c:3462 #, c-format msgid "unterminated assembly dialect alternative" ! msgstr "" #: final.c:3587 ! #, c-format msgid "operand number missing after %%-letter" ! msgstr "" #: final.c:3590 final.c:3631 ! #, c-format msgid "operand number out of range" ! msgstr "" #: final.c:3648 #, c-format msgid "invalid %%-code" ! msgstr "" #: final.c:3678 ! #, c-format msgid "'%%l' operand isn't a label" ! msgstr "" #. We can't handle floating point constants; #. PRINT_OPERAND must handle them. --- 151,209 ---- #: diagnostic.c:457 #, c-format msgid "compilation terminated.\n" ! msgstr "käännös keskeytyi.\n" #: diagnostic.c:722 #, c-format msgid "%s:%d: confused by earlier errors, bailing out\n" ! msgstr "%s:%d: hämmentynyt aikaisemmista virheistä, poistutaan\n" ! #: diagnostic.c:1129 #, c-format msgid "Internal compiler error: Error reporting routines re-entered.\n" msgstr "" #: final.c:1161 msgid "negative insn length" ! msgstr "negatiivinen käskyn pituus" #: final.c:2897 msgid "could not split insn" ! msgstr "ei voitu jakaa käskyä osiin" #: final.c:3306 msgid "invalid 'asm': " ! msgstr "virheellinen â€asmâ€: " #: final.c:3435 #, c-format msgid "nested assembly dialect alternatives" ! msgstr "sisäkkäiset assembly-murrevaihtoehdot" #: final.c:3450 final.c:3462 #, c-format msgid "unterminated assembly dialect alternative" ! msgstr "päättämättömät assembly-murrevaihtoehdot" #: final.c:3587 ! #, fuzzy, c-format msgid "operand number missing after %%-letter" ! msgstr "kohdemuuttujanumero puuttuu %%-kirjaimen jäljestä" #: final.c:3590 final.c:3631 ! #, fuzzy, c-format msgid "operand number out of range" ! msgstr "kohdemuuttujanumero lukualueen ulkopuolella" #: final.c:3648 #, c-format msgid "invalid %%-code" ! msgstr "virheellinen %%-koodi" #: final.c:3678 ! #, fuzzy, c-format msgid "'%%l' operand isn't a label" ! msgstr "â€%%lâ€-kohdemuuttuja ei ole nimiö" #. We can't handle floating point constants; #. PRINT_OPERAND must handle them. *************** msgstr "liukulukuvakiota käytetty vää *** 215,262 **** #: final.c:3877 config/i386/i386.c:13468 config/pdp11/pdp11.c:1729 #, c-format msgid "invalid expression as operand" ! msgstr "" ! #: gcc.c:1402 #, c-format msgid "Using built-in specs.\n" msgstr "" ! #: gcc.c:1599 #, c-format msgid "" "Setting spec %s to '%s'\n" "\n" msgstr "" ! #: gcc.c:1708 #, c-format msgid "Reading specs from %s\n" msgstr "" ! #: gcc.c:1833 #, c-format msgid "could not find specs file %s\n" msgstr "" ! #: gcc.c:1902 #, c-format msgid "rename spec %s to %s\n" msgstr "" ! #: gcc.c:1904 #, c-format msgid "" "spec is '%s'\n" "\n" msgstr "" ! #: gcc.c:2337 #, c-format msgid "%s\n" msgstr "%s\n" ! #: gcc.c:2704 #, c-format msgid "" "\n" --- 219,266 ---- #: final.c:3877 config/i386/i386.c:13468 config/pdp11/pdp11.c:1729 #, c-format msgid "invalid expression as operand" ! msgstr "virheellinen lauseke kohdemuuttujana" ! #: gcc.c:1403 #, c-format msgid "Using built-in specs.\n" msgstr "" ! #: gcc.c:1600 #, c-format msgid "" "Setting spec %s to '%s'\n" "\n" msgstr "" ! #: gcc.c:1709 #, c-format msgid "Reading specs from %s\n" msgstr "" ! #: gcc.c:1834 #, c-format msgid "could not find specs file %s\n" msgstr "" ! #: gcc.c:1903 #, c-format msgid "rename spec %s to %s\n" msgstr "" ! #: gcc.c:1905 #, c-format msgid "" "spec is '%s'\n" "\n" msgstr "" ! #: gcc.c:2338 #, c-format msgid "%s\n" msgstr "%s\n" ! #: gcc.c:2705 #, c-format msgid "" "\n" *************** msgstr "" *** 265,473 **** "\n" "Jatketaanko? (y tai n) " ! #: gcc.c:2844 #, c-format msgid "# %s %.2f %.2f\n" msgstr "# %s %.2f %.2f\n" ! #: gcc.c:3047 #, c-format msgid "Usage: %s [options] file...\n" msgstr "Käyttö: %s [valitsimet] tiedosto...\n" ! #: gcc.c:3048 msgid "Options:\n" msgstr "Valitsimet:\n" ! #: gcc.c:3050 msgid " -pass-exit-codes Exit with highest error code from a phase\n" msgstr " -pass-exit-codes Palauta korkein käännösvaiheen virhekoodi\n" ! #: gcc.c:3051 msgid " --help Display this information\n" msgstr " --help Näytä tämä ohje\n" ! #: gcc.c:3052 #, fuzzy msgid " --target-help Display target specific command line options\n" ! msgstr " --target-help Näytä " ! #: gcc.c:3053 ! #, fuzzy msgid " --help={common|optimizers|params|target|warnings|[^]{joined|separate|undocumented}}[,...]\n" msgstr " --help={target|optimizers|warnings|undocumented|params}[,{[^]joined|[^]separate}]\n" ! #: gcc.c:3054 msgid " Display specific types of command line options\n" ! msgstr " Näytä tietyn tyyppiset valitsimet\n" ! #: gcc.c:3056 msgid " (Use '-v --help' to display command line options of sub-processes)\n" ! msgstr " (Komennolla â€-v --help†aliprosessien valitsimet)\n" ! #: gcc.c:3057 msgid " --version Display compiler version information\n" msgstr " --version Näytä kääntäjän versiotiedot\n" ! #: gcc.c:3058 msgid " -dumpspecs Display all of the built in spec strings\n" msgstr " -dumpspecs Näytä kaikki sisäiset määrittelyrivit\n" ! #: gcc.c:3059 msgid " -dumpversion Display the version of the compiler\n" msgstr " -dumpversion Näytä kääntäjän versio\n" ! #: gcc.c:3060 msgid " -dumpmachine Display the compiler's target processor\n" ! msgstr "" ! #: gcc.c:3061 msgid " -print-search-dirs Display the directories in the compiler's search path\n" msgstr " -print-search-dirs Näytä kääntäjän hakupolussa olevat hakemistot\n" ! #: gcc.c:3062 msgid " -print-libgcc-file-name Display the name of the compiler's companion library\n" ! msgstr "" ! #: gcc.c:3063 msgid " -print-file-name= Display the full path to library \n" msgstr " -print-file-name= Näytä täysi polku kirjastoon \n" ! #: gcc.c:3064 msgid " -print-prog-name= Display the full path to compiler component \n" msgstr " -print-prog-name= Näytä täysi polku kääntäjän komponenttiin \n" ! #: gcc.c:3065 msgid "" " -print-multiarch Display the target's normalized GNU triplet, used as\n" " a component in the library path\n" msgstr "" ! #: gcc.c:3068 msgid " -print-multi-directory Display the root directory for versions of libgcc\n" msgstr " -print-multi-directory Näytä libgcc:n versioiden juurihakemisto\n" ! #: gcc.c:3069 msgid "" " -print-multi-lib Display the mapping between command line options and\n" " multiple library search directories\n" msgstr "" ! #: gcc.c:3072 msgid " -print-multi-os-directory Display the relative path to OS libraries\n" msgstr "" ! #: gcc.c:3073 #, fuzzy msgid " -print-sysroot Display the target libraries directory\n" msgstr " -dumpversion Näytä kääntäjän versio\n" ! #: gcc.c:3074 msgid " -print-sysroot-headers-suffix Display the sysroot suffix used to find headers\n" ! msgstr "" ! #: gcc.c:3075 msgid " -Wa, Pass comma-separated on to the assembler\n" ! msgstr "" ! #: gcc.c:3076 msgid " -Wp, Pass comma-separated on to the preprocessor\n" msgstr " -Wp, Välitä pilkulla erotetut esikääntäjälle\n" ! #: gcc.c:3077 msgid " -Wl, Pass comma-separated on to the linker\n" msgstr " -Wl, Välitä pilkulla erotetut linkittimelle\n" ! #: gcc.c:3078 msgid " -Xassembler Pass on to the assembler\n" ! msgstr "" ! #: gcc.c:3079 msgid " -Xpreprocessor Pass on to the preprocessor\n" msgstr " -Xpreprocessor Välitä esikääntäjälle\n" ! #: gcc.c:3080 msgid " -Xlinker Pass on to the linker\n" msgstr " -Xlinker Välitä linkittimelle\n" ! #: gcc.c:3081 msgid " -save-temps Do not delete intermediate files\n" msgstr " -save-temps Älä poista väliaikaistiedostoja\n" ! #: gcc.c:3082 msgid " -save-temps= Do not delete intermediate files\n" msgstr " -save-temps= Älä poista väliaikaistiedostoja\n" ! #: gcc.c:3083 msgid "" " -no-canonical-prefixes Do not canonicalize paths when building relative\n" " prefixes to other gcc components\n" msgstr "" ! #: gcc.c:3086 msgid " -pipe Use pipes rather than intermediate files\n" msgstr " -pipe Käytä putkia väliaikaistiedostojen sijaan\n" ! #: gcc.c:3087 msgid " -time Time the execution of each subprocess\n" msgstr " -time Mittaa kunkin aliprosessin suoritusaika\n" ! #: gcc.c:3088 msgid " -specs= Override built-in specs with the contents of \n" msgstr "" ! #: gcc.c:3089 msgid " -std= Assume that the input sources are for \n" msgstr " -std= Oleta syötetiedostojen olevan n mukaisia\n" ! #: gcc.c:3090 msgid "" " --sysroot= Use as the root directory for headers\n" " and libraries\n" msgstr "" ! #: gcc.c:3093 msgid " -B Add to the compiler's search paths\n" msgstr " -B Lisää kääntäjän hakupolkuihin\n" ! #: gcc.c:3094 msgid " -v Display the programs invoked by the compiler\n" ! msgstr "" ! #: gcc.c:3095 msgid " -### Like -v but options quoted and commands not executed\n" msgstr "" ! #: gcc.c:3096 #, fuzzy msgid " -E Preprocess only; do not compile, assemble or link\n" ! msgstr " -E Vain esikäsittely, älä käännä, xxxx tai linkitä\n" ! #: gcc.c:3097 msgid " -S Compile only; do not assemble or link\n" msgstr "" ! #: gcc.c:3098 msgid " -c Compile and assemble, but do not link\n" msgstr "" ! #: gcc.c:3099 msgid " -o Place the output into \n" msgstr " -o Ohjaa tuloste \n" ! #: gcc.c:3100 ! #, fuzzy ! #| msgid " -pipe Use pipes rather than intermediate files\n" msgid " -pie Create a position independent executable\n" ! msgstr " -pipe Käytä putkia väliaikaistiedostojen sijaan\n" ! #: gcc.c:3101 ! #, fuzzy ! #| msgid "Create a shared library" msgid " -shared Create a shared library\n" ! msgstr "Luo jaettu kirjasto" ! #: gcc.c:3102 msgid "" " -x Specify the language of the following input files\n" " Permissible languages include: c c++ assembler none\n" --- 269,476 ---- "\n" "Jatketaanko? (y tai n) " ! #: gcc.c:2845 #, c-format msgid "# %s %.2f %.2f\n" msgstr "# %s %.2f %.2f\n" ! #: gcc.c:3048 #, c-format msgid "Usage: %s [options] file...\n" msgstr "Käyttö: %s [valitsimet] tiedosto...\n" ! #: gcc.c:3049 msgid "Options:\n" msgstr "Valitsimet:\n" ! #: gcc.c:3051 msgid " -pass-exit-codes Exit with highest error code from a phase\n" msgstr " -pass-exit-codes Palauta korkein käännösvaiheen virhekoodi\n" ! #: gcc.c:3052 msgid " --help Display this information\n" msgstr " --help Näytä tämä ohje\n" ! #: gcc.c:3053 #, fuzzy msgid " --target-help Display target specific command line options\n" ! msgstr " --target-help Näytä kohdekohtaiset komentorivivalitsimet\n" ! #: gcc.c:3054 msgid " --help={common|optimizers|params|target|warnings|[^]{joined|separate|undocumented}}[,...]\n" msgstr " --help={target|optimizers|warnings|undocumented|params}[,{[^]joined|[^]separate}]\n" ! #: gcc.c:3055 msgid " Display specific types of command line options\n" ! msgstr " Näytä tietyn tyyppiset komentorivivalitsimet\n" ! #: gcc.c:3057 msgid " (Use '-v --help' to display command line options of sub-processes)\n" ! msgstr " (Komennolla â€-v --help†aliprosessien komentorivivalitsimet)\n" ! #: gcc.c:3058 msgid " --version Display compiler version information\n" msgstr " --version Näytä kääntäjän versiotiedot\n" ! #: gcc.c:3059 msgid " -dumpspecs Display all of the built in spec strings\n" msgstr " -dumpspecs Näytä kaikki sisäiset määrittelyrivit\n" ! #: gcc.c:3060 msgid " -dumpversion Display the version of the compiler\n" msgstr " -dumpversion Näytä kääntäjän versio\n" ! #: gcc.c:3061 ! #, fuzzy msgid " -dumpmachine Display the compiler's target processor\n" ! msgstr " -dumpmachine Näytä kääntäjän kohdesuoritin\n" ! #: gcc.c:3062 msgid " -print-search-dirs Display the directories in the compiler's search path\n" msgstr " -print-search-dirs Näytä kääntäjän hakupolussa olevat hakemistot\n" ! #: gcc.c:3063 ! #, fuzzy msgid " -print-libgcc-file-name Display the name of the compiler's companion library\n" ! msgstr " -print-libgcc-file-name Näytä kääntäjän kumppanikirjaston nimi\n" ! #: gcc.c:3064 msgid " -print-file-name= Display the full path to library \n" msgstr " -print-file-name= Näytä täysi polku kirjastoon \n" ! #: gcc.c:3065 msgid " -print-prog-name= Display the full path to compiler component \n" msgstr " -print-prog-name= Näytä täysi polku kääntäjän komponenttiin \n" ! #: gcc.c:3066 msgid "" " -print-multiarch Display the target's normalized GNU triplet, used as\n" " a component in the library path\n" msgstr "" ! #: gcc.c:3069 msgid " -print-multi-directory Display the root directory for versions of libgcc\n" msgstr " -print-multi-directory Näytä libgcc:n versioiden juurihakemisto\n" ! #: gcc.c:3070 msgid "" " -print-multi-lib Display the mapping between command line options and\n" " multiple library search directories\n" msgstr "" ! #: gcc.c:3073 msgid " -print-multi-os-directory Display the relative path to OS libraries\n" msgstr "" ! #: gcc.c:3074 #, fuzzy msgid " -print-sysroot Display the target libraries directory\n" msgstr " -dumpversion Näytä kääntäjän versio\n" ! #: gcc.c:3075 msgid " -print-sysroot-headers-suffix Display the sysroot suffix used to find headers\n" ! msgstr " -print-sysroot-headers-suffix Näytä sysroot-loppuliite, jota käytetään otsakkeiden löytämiseen\n" ! #: gcc.c:3076 msgid " -Wa, Pass comma-separated on to the assembler\n" ! msgstr " -Wa, Välitä pilkulla erotetut assemblerille\n" ! #: gcc.c:3077 msgid " -Wp, Pass comma-separated on to the preprocessor\n" msgstr " -Wp, Välitä pilkulla erotetut esikääntäjälle\n" ! #: gcc.c:3078 msgid " -Wl, Pass comma-separated on to the linker\n" msgstr " -Wl, Välitä pilkulla erotetut linkittimelle\n" ! #: gcc.c:3079 msgid " -Xassembler Pass on to the assembler\n" ! msgstr " -Xassembler Välitä assemblerille\n" ! #: gcc.c:3080 msgid " -Xpreprocessor Pass on to the preprocessor\n" msgstr " -Xpreprocessor Välitä esikääntäjälle\n" ! #: gcc.c:3081 msgid " -Xlinker Pass on to the linker\n" msgstr " -Xlinker Välitä linkittimelle\n" ! #: gcc.c:3082 msgid " -save-temps Do not delete intermediate files\n" msgstr " -save-temps Älä poista väliaikaistiedostoja\n" ! #: gcc.c:3083 msgid " -save-temps= Do not delete intermediate files\n" msgstr " -save-temps= Älä poista väliaikaistiedostoja\n" ! #: gcc.c:3084 msgid "" " -no-canonical-prefixes Do not canonicalize paths when building relative\n" " prefixes to other gcc components\n" msgstr "" ! #: gcc.c:3087 msgid " -pipe Use pipes rather than intermediate files\n" msgstr " -pipe Käytä putkia väliaikaistiedostojen sijaan\n" ! #: gcc.c:3088 msgid " -time Time the execution of each subprocess\n" msgstr " -time Mittaa kunkin aliprosessin suoritusaika\n" ! #: gcc.c:3089 msgid " -specs= Override built-in specs with the contents of \n" msgstr "" ! #: gcc.c:3090 msgid " -std= Assume that the input sources are for \n" msgstr " -std= Oleta syötetiedostojen olevan n mukaisia\n" ! #: gcc.c:3091 msgid "" " --sysroot= Use as the root directory for headers\n" " and libraries\n" msgstr "" + " --sysroot= Käytä otsakkeiden ja kirjastojen\n" + " juurihakemistona\n" ! #: gcc.c:3094 msgid " -B Add to the compiler's search paths\n" msgstr " -B Lisää kääntäjän hakupolkuihin\n" ! #: gcc.c:3095 msgid " -v Display the programs invoked by the compiler\n" ! msgstr " -v Näytä kääntäjän käynnistämät ohjelmat\n" ! #: gcc.c:3096 msgid " -### Like -v but options quoted and commands not executed\n" msgstr "" ! #: gcc.c:3097 #, fuzzy msgid " -E Preprocess only; do not compile, assemble or link\n" ! msgstr " -E Suorita vain esikäsittely, älä käännä, assembloi tai linkitä\n" ! #: gcc.c:3098 msgid " -S Compile only; do not assemble or link\n" msgstr "" ! #: gcc.c:3099 msgid " -c Compile and assemble, but do not link\n" msgstr "" ! #: gcc.c:3100 msgid " -o Place the output into \n" msgstr " -o Ohjaa tuloste \n" ! #: gcc.c:3101 msgid " -pie Create a position independent executable\n" ! msgstr " -pie Luo paikkariippumaton suoritettava tiedosto\n" ! #: gcc.c:3102 msgid " -shared Create a shared library\n" ! msgstr " -shared Luo jaettu kirjasto\n" ! #: gcc.c:3103 msgid "" " -x Specify the language of the following input files\n" " Permissible languages include: c c++ assembler none\n" *************** msgstr "" *** 479,485 **** " â€none†palauttaa käyttöön oletustoiminnan,\n" " eli kielen päättelyn tiedostopäätteestä\n" ! #: gcc.c:3109 #, c-format msgid "" "\n" --- 482,488 ---- " â€none†palauttaa käyttöön oletustoiminnan,\n" " eli kielen päättelyn tiedostopäätteestä\n" ! #: gcc.c:3110 #, c-format msgid "" "\n" *************** msgstr "" *** 493,519 **** " valitsimien välittämiseen näille prosesseille on käytettävä -W-\n" " valitsimia.\n" ! #: gcc.c:5364 #, c-format msgid "Processing spec (%s), which is '%s'\n" msgstr "" ! #: gcc.c:6649 #, c-format msgid "install: %s%s\n" msgstr "asennus: %s%s\n" ! #: gcc.c:6652 #, c-format msgid "programs: %s\n" msgstr "ohjelmat: %s\n" ! #: gcc.c:6654 #, c-format msgid "libraries: %s\n" msgstr "kirjastot: %s\n" ! #: gcc.c:6738 #, c-format msgid "" "\n" --- 496,522 ---- " valitsimien välittämiseen näille prosesseille on käytettävä -W-\n" " valitsimia.\n" ! #: gcc.c:5365 #, c-format msgid "Processing spec (%s), which is '%s'\n" msgstr "" ! #: gcc.c:6651 #, c-format msgid "install: %s%s\n" msgstr "asennus: %s%s\n" ! #: gcc.c:6654 #, c-format msgid "programs: %s\n" msgstr "ohjelmat: %s\n" ! #: gcc.c:6656 #, c-format msgid "libraries: %s\n" msgstr "kirjastot: %s\n" ! #: gcc.c:6740 #, c-format msgid "" "\n" *************** msgstr "" *** 522,537 **** "\n" "Ohjeet vikailmoitusten tekoon ovat osoitteessa:\n" ! #: gcc.c:6754 #, c-format msgid "%s %s%s\n" msgstr "%s %s%s\n" ! #: gcc.c:6757 gcov.c:491 fortran/gfortranspec.c:303 java/jcf-dump.c:1230 msgid "(C)" msgstr "©" ! #: gcc.c:6758 java/jcf-dump.c:1231 #, c-format msgid "" "This is free software; see the source for copying conditions. There is NO\n" --- 525,540 ---- "\n" "Ohjeet vikailmoitusten tekoon ovat osoitteessa:\n" ! #: gcc.c:6756 #, c-format msgid "%s %s%s\n" msgstr "%s %s%s\n" ! #: gcc.c:6759 gcov.c:491 fortran/gfortranspec.c:303 java/jcf-dump.c:1230 msgid "(C)" msgstr "©" ! #: gcc.c:6760 java/jcf-dump.c:1231 #, c-format msgid "" "This is free software; see the source for copying conditions. There is NO\n" *************** msgstr "" *** 542,573 **** "Tällä ohjelmistolla EI OLE TAKUUTA; ei edes KAUPALLISESTI HYVÄKSYTTÄVÄSTÄ\n" "LAADUSTA tai SOPIVUUDESTA TIETTYYN TARKOITUKSEEN.\n" ! #: gcc.c:6775 #, c-format msgid "Target: %s\n" msgstr "" ! #: gcc.c:6776 #, c-format msgid "Configured with: %s\n" msgstr "" ! #: gcc.c:6790 #, c-format msgid "Thread model: %s\n" msgstr "Säiemalli: %s\n" ! #: gcc.c:6801 #, c-format msgid "gcc version %s %s\n" msgstr "gcc-versio %s %s\n" ! #: gcc.c:6804 #, c-format msgid "gcc driver version %s %sexecuting gcc version %s\n" msgstr "" ! #: gcc.c:7058 #, c-format msgid "" "\n" --- 545,576 ---- "Tällä ohjelmistolla EI OLE TAKUUTA; ei edes KAUPALLISESTI HYVÄKSYTTÄVÄSTÄ\n" "LAADUSTA tai SOPIVUUDESTA TIETTYYN TARKOITUKSEEN.\n" ! #: gcc.c:6777 #, c-format msgid "Target: %s\n" msgstr "" ! #: gcc.c:6778 #, c-format msgid "Configured with: %s\n" msgstr "" ! #: gcc.c:6792 #, c-format msgid "Thread model: %s\n" msgstr "Säiemalli: %s\n" ! #: gcc.c:6803 #, c-format msgid "gcc version %s %s\n" msgstr "gcc-versio %s %s\n" ! #: gcc.c:6806 #, c-format msgid "gcc driver version %s %sexecuting gcc version %s\n" msgstr "" ! #: gcc.c:7061 #, c-format msgid "" "\n" *************** msgstr "" *** 580,612 **** "======================\n" "\n" ! #: gcc.c:7059 #, c-format msgid "" "Use \"-Wl,OPTION\" to pass \"OPTION\" to the linker.\n" "\n" msgstr "" ! #: gcc.c:8276 #, c-format msgid "" "Assembler options\n" "=================\n" "\n" msgstr "" ! #: gcc.c:8277 #, c-format msgid "" "Use \"-Wa,OPTION\" to pass \"OPTION\" to the assembler.\n" "\n" msgstr "" #: gcov.c:461 #, fuzzy, c-format - #| msgid "" - #| "Usage: gcov [OPTION]... SOURCEFILE...\n" - #| "\n" msgid "" "Usage: gcov [OPTION]... SOURCE|OBJ...\n" "\n" --- 583,619 ---- "======================\n" "\n" ! #: gcc.c:7062 #, c-format msgid "" "Use \"-Wl,OPTION\" to pass \"OPTION\" to the linker.\n" "\n" msgstr "" + "Käytä â€-Wl,VALITSIN†välittämään â€VALITSIN†linkittimelle.\n" + "\n" ! #: gcc.c:8279 #, c-format msgid "" "Assembler options\n" "=================\n" "\n" msgstr "" + "Assembler-valitsimet\n" + "====================\n" + "\n" ! #: gcc.c:8280 #, c-format msgid "" "Use \"-Wa,OPTION\" to pass \"OPTION\" to the assembler.\n" "\n" msgstr "" + "Käytä â€-Wa,VALITSIN†välittämään â€VALITSIN†assemblerille.\n" + "\n" #: gcov.c:461 #, fuzzy, c-format msgid "" "Usage: gcov [OPTION]... SOURCE|OBJ...\n" "\n" *************** msgstr " -v, --version *** 634,645 **** #: gcov.c:465 #, c-format msgid " -a, --all-blocks Show information for every basic block\n" ! msgstr "" #: gcov.c:466 #, c-format msgid " -b, --branch-probabilities Include branch probabilities in output\n" ! msgstr "" #: gcov.c:467 #, c-format --- 641,652 ---- #: gcov.c:465 #, c-format msgid " -a, --all-blocks Show information for every basic block\n" ! msgstr " -a, --all-blocks Näytä tietoja jokaisesta peruslohkosta\n" #: gcov.c:466 #, c-format msgid " -b, --branch-probabilities Include branch probabilities in output\n" ! msgstr " -b, --branch-probabilities Sisällytä haarojen todennäköisyydet tulosteeseen\n" #: gcov.c:467 #, c-format *************** msgid "" *** 647,657 **** " -c, --branch-counts Given counts of branches taken\n" " rather than percentages\n" msgstr "" #: gcov.c:469 #, c-format msgid " -n, --no-output Do not create an output file\n" ! msgstr "" #: gcov.c:470 #, c-format --- 654,666 ---- " -c, --branch-counts Given counts of branches taken\n" " rather than percentages\n" msgstr "" + " -c, --branch-counts Toteutuneiden haarojen lukumäärät,\n" + " ei prosenttilukuja\n" #: gcov.c:469 #, c-format msgid " -n, --no-output Do not create an output file\n" ! msgstr " -n, --no-output Älä luo tulostiedostoa\n" #: gcov.c:470 #, c-format *************** msgid "" *** 659,669 **** " -l, --long-file-names Use long output file names for included\n" " source files\n" msgstr "" #: gcov.c:472 #, c-format msgid " -f, --function-summaries Output summaries for each function\n" ! msgstr "" #: gcov.c:473 #, c-format --- 668,680 ---- " -l, --long-file-names Use long output file names for included\n" " source files\n" msgstr "" + " -l, --long-file-names Käytä pitkiä tulostiedostojen nimiä sisällytetyille\n" + " lähdetiedostoille\n" #: gcov.c:472 #, c-format msgid " -f, --function-summaries Output summaries for each function\n" ! msgstr " -f, --function-summaries Tulosta yhteenvedot jokaisesta funktiosta\n" #: gcov.c:473 #, c-format *************** msgstr "" *** 692,698 **** #: gcov.c:478 #, fuzzy, c-format - #| msgid " --help Display this information\n" msgid " -d, --display-progress Display progress information\n" msgstr " --help Näytä tämä ohje\n" --- 703,708 ---- *************** msgstr "\n" *** 733,763 **** #: gcov.c:723 #, fuzzy, c-format - #| msgid "%s:creating '%s'\n" msgid "Creating '%s'\n" msgstr "%s:luodaan â€%sâ€\n" #: gcov.c:726 #, fuzzy, c-format - #| msgid "%s:error writing output file '%s'\n" msgid "Error writing output file '%s'\n" msgstr "%s:virhe kirjoitettaessa tulostetiedostoa â€%sâ€\n" #: gcov.c:731 #, fuzzy, c-format - #| msgid "%s:could not open output file '%s'\n" msgid "Could not open output file '%s'\n" msgstr "%s: ei voitu avata tulostetiedostoa â€%sâ€\n" #: gcov.c:737 #, fuzzy, c-format - #| msgid "%s:creating '%s'\n" msgid "Removing '%s'\n" ! msgstr "%s:luodaan â€%sâ€\n" #: gcov.c:979 #, fuzzy, c-format - #| msgid "%s:error writing output file '%s'\n" msgid "%s:source file is newer than notes file '%s'\n" msgstr "%s:virhe kirjoitettaessa tulostetiedostoa â€%sâ€\n" --- 743,768 ---- #: gcov.c:723 #, fuzzy, c-format msgid "Creating '%s'\n" msgstr "%s:luodaan â€%sâ€\n" #: gcov.c:726 #, fuzzy, c-format msgid "Error writing output file '%s'\n" msgstr "%s:virhe kirjoitettaessa tulostetiedostoa â€%sâ€\n" #: gcov.c:731 #, fuzzy, c-format msgid "Could not open output file '%s'\n" msgstr "%s: ei voitu avata tulostetiedostoa â€%sâ€\n" #: gcov.c:737 #, fuzzy, c-format msgid "Removing '%s'\n" ! msgstr "Poistetaan â€%sâ€\n" #: gcov.c:979 #, fuzzy, c-format msgid "%s:source file is newer than notes file '%s'\n" msgstr "%s:virhe kirjoitettaessa tulostetiedostoa â€%sâ€\n" *************** msgstr "" *** 768,780 **** #: gcov.c:1009 #, fuzzy, c-format - #| msgid "%s: cannot open as COFF file" msgid "%s:cannot open notes file\n" msgstr "%s: ei voida avata COFF-tiedostona" #: gcov.c:1015 #, fuzzy, c-format - #| msgid "%s: not a COFF file" msgid "%s:not a gcov notes file\n" msgstr "%s: ei ole COFF-tiedosto" --- 773,783 ---- *************** msgstr "" *** 806,812 **** #: gcov.c:1232 #, c-format msgid "%s:not a gcov data file\n" ! msgstr "" #: gcov.c:1245 #, c-format --- 809,815 ---- #: gcov.c:1232 #, c-format msgid "%s:not a gcov data file\n" ! msgstr "%s:ei ole gcov-datatiedosto\n" #: gcov.c:1245 #, c-format *************** msgstr "ehtolausekkeessa on tyyppiristir *** 821,827 **** #: gcov.c:1286 #, c-format msgid "%s:unknown function '%u'\n" ! msgstr "" #: gcov.c:1300 #, c-format --- 824,830 ---- #: gcov.c:1286 #, c-format msgid "%s:unknown function '%u'\n" ! msgstr "%s:tuntematon funktio â€%uâ€\n" #: gcov.c:1300 #, c-format *************** msgstr "" *** 901,912 **** #: gcov.c:2170 #, c-format msgid "call %2d returned %s\n" ! msgstr "" #: gcov.c:2175 #, c-format msgid "call %2d never executed\n" ! msgstr "" #: gcov.c:2180 #, c-format --- 904,915 ---- #: gcov.c:2170 #, c-format msgid "call %2d returned %s\n" ! msgstr "kutsu %2d palautti %s\n" #: gcov.c:2175 #, c-format msgid "call %2d never executed\n" ! msgstr "kutsu %2d ei suoritettu koskaan\n" #: gcov.c:2180 #, c-format *************** msgstr "" *** 930,938 **** #: gcov.c:2258 #, fuzzy, c-format - #| msgid "%s: Cannot open output file: %s\n" msgid "Cannot open source file %s\n" ! msgstr "%s: Ei voi avata tulostetiedostoa: %s\n" #: gcse.c:2647 msgid "PRE disabled" --- 933,940 ---- #: gcov.c:2258 #, fuzzy, c-format msgid "Cannot open source file %s\n" ! msgstr "Lähdetiedostoa %s ei voi avata\n" #: gcse.c:2647 msgid "PRE disabled" *************** msgstr "" *** 944,956 **** #: gengtype-state.c:156 #, fuzzy, c-format - #| msgid "%s: invalid file name: %s\n" msgid "%s:%d:%d: Invalid state file; %s" msgstr "%s: virheellinen tiedoston nimi: %s\n" #: gengtype-state.c:160 #, fuzzy, c-format - #| msgid "%s: invalid file name: %s\n" msgid "%s:%d: Invalid state file; %s" msgstr "%s: virheellinen tiedoston nimi: %s\n" --- 946,956 ---- *************** msgstr "" *** 964,970 **** #: gengtype-state.c:176 #, fuzzy, c-format - #| msgid "%s: invalid file name: %s\n" msgid "%s:%d: Invalid state file; " msgstr "%s: virheellinen tiedoston nimi: %s\n" --- 964,969 ---- *************** msgstr "" *** 975,987 **** #: gengtype-state.c:756 #, fuzzy, c-format - #| msgid "Unexpected type in truthvalue_conversion" msgid "Unexpected type in write_state_scalar_type" msgstr "Odottamaton tyyppi kohteessa truthvalue_conversion" #: gengtype-state.c:771 #, fuzzy, c-format - #| msgid "Unexpected type in truthvalue_conversion" msgid "Unexpected type in write_state_string_type" msgstr "Odottamaton tyyppi kohteessa truthvalue_conversion" --- 974,984 ---- *************** msgstr "%s: virhe kirjoitettaessa tiedos *** 997,1009 **** #: gengtype-state.c:1249 #, fuzzy, c-format - #| msgid "%s: error writing file '%s': %s\n" msgid "output error when writing state file %s [%s]" msgstr "%s: virhe kirjoitettaessa tiedostoa â€%sâ€: %s\n" #: gengtype-state.c:1252 #, fuzzy, c-format - #| msgid "%s: Failed to close output file %s\n" msgid "failed to close state file %s [%s]" msgstr "%s: Tulostetiedoston %s sulkeminen epäonnistui\n" --- 994,1004 ---- *************** msgstr "" *** 1019,1025 **** #: gengtype-state.c:2565 #, fuzzy, c-format - #| msgid "%s: Failed to close output file %s\n" msgid "failed to close read state file %s [%s]" msgstr "%s: Tulostetiedoston %s sulkeminen epäonnistui\n" --- 1014,1019 ---- *************** msgid "ignoring nonexistent directory \" *** 1039,1055 **** msgstr "jätetään puuttuva hakemisto â€%s†huomiotta\n" # Tähän kuuluu ASCII-lainausmerkit. ! #: incpath.c:363 #, c-format msgid "#include \"...\" search starts here:\n" msgstr "#include \"...\" -haku alkaa täältä:\n" ! #: incpath.c:367 #, c-format msgid "#include <...> search starts here:\n" msgstr "#include <...> -haku alkaa täältä:\n" ! #: incpath.c:372 #, c-format msgid "End of search list.\n" msgstr "Hakulistan loppu.\n" --- 1033,1049 ---- msgstr "jätetään puuttuva hakemisto â€%s†huomiotta\n" # Tähän kuuluu ASCII-lainausmerkit. ! #: incpath.c:374 #, c-format msgid "#include \"...\" search starts here:\n" msgstr "#include \"...\" -haku alkaa täältä:\n" ! #: incpath.c:378 #, c-format msgid "#include <...> search starts here:\n" msgstr "#include <...> -haku alkaa täältä:\n" ! #: incpath.c:383 #, c-format msgid "End of search list.\n" msgstr "Hakulistan loppu.\n" *************** msgid "'" *** 1069,1125 **** msgstr "â€" #: ipa-pure-const.c:151 - #, fuzzy msgid "function might be candidate for attribute %<%s%>" ! msgstr "funktio on ehkä mahdollinen ehdokas %qs-muotoiluattribuutille" #: ipa-pure-const.c:152 - #, fuzzy msgid "function might be candidate for attribute %<%s%> if it is known to return normally" ! msgstr "funktio on ehkä mahdollinen ehdokas %qs-muotoiluattribuutille" #: langhooks.c:380 msgid "At top level:" msgstr "" ! #: langhooks.c:400 cp/error.c:3038 #, c-format msgid "In member function %qs" msgstr "Jäsenfunktio %qs" ! #: langhooks.c:404 cp/error.c:3041 #, c-format msgid "In function %qs" msgstr "Funktio %qs" ! #: langhooks.c:455 cp/error.c:2991 #, c-format msgid " inlined from %qs at %s:%d:%d" msgstr "" ! #: langhooks.c:460 cp/error.c:2996 #, c-format msgid " inlined from %qs at %s:%d" msgstr "" ! #: langhooks.c:466 cp/error.c:3002 #, c-format msgid " inlined from %qs" msgstr "" ! #: loop-iv.c:3029 tree-ssa-loop-niter.c:1924 msgid "assuming that the loop is not infinite" msgstr "" ! #: loop-iv.c:3030 tree-ssa-loop-niter.c:1925 msgid "cannot optimize possibly infinite loops" msgstr "mahdollisia ikisilmukoita ei voi optimoida" ! #: loop-iv.c:3038 tree-ssa-loop-niter.c:1929 msgid "assuming that the loop counter does not overflow" msgstr "" ! #: loop-iv.c:3039 tree-ssa-loop-niter.c:1930 msgid "cannot optimize loop, the loop counter may overflow" msgstr "" --- 1063,1117 ---- msgstr "â€" #: ipa-pure-const.c:151 msgid "function might be candidate for attribute %<%s%>" ! msgstr "funktio voi olla ehdokas %<%s%>-attribuutille" #: ipa-pure-const.c:152 msgid "function might be candidate for attribute %<%s%> if it is known to return normally" ! msgstr "funktio voi olla ehdokas %<%s%>-attribuutille jos sen tiedetään palaavan normaalisti" #: langhooks.c:380 msgid "At top level:" msgstr "" ! #: langhooks.c:400 cp/error.c:3042 #, c-format msgid "In member function %qs" msgstr "Jäsenfunktio %qs" ! #: langhooks.c:404 cp/error.c:3045 #, c-format msgid "In function %qs" msgstr "Funktio %qs" ! #: langhooks.c:455 cp/error.c:2995 #, c-format msgid " inlined from %qs at %s:%d:%d" msgstr "" ! #: langhooks.c:460 cp/error.c:3000 #, c-format msgid " inlined from %qs at %s:%d" msgstr "" ! #: langhooks.c:466 cp/error.c:3006 #, c-format msgid " inlined from %qs" msgstr "" ! #: loop-iv.c:3029 tree-ssa-loop-niter.c:1925 msgid "assuming that the loop is not infinite" msgstr "" ! #: loop-iv.c:3030 tree-ssa-loop-niter.c:1926 msgid "cannot optimize possibly infinite loops" msgstr "mahdollisia ikisilmukoita ei voi optimoida" ! #: loop-iv.c:3038 tree-ssa-loop-niter.c:1930 msgid "assuming that the loop counter does not overflow" msgstr "" ! #: loop-iv.c:3039 tree-ssa-loop-niter.c:1931 msgid "cannot optimize loop, the loop counter may overflow" msgstr "" *************** msgstr "" *** 1130,1141 **** #: lto-wrapper.c:183 #, c-format msgid "pex_init failed" ! msgstr "" #: lto-wrapper.c:214 #, c-format msgid "can't get program status" ! msgstr "" #: lto-wrapper.c:223 #, c-format --- 1122,1133 ---- #: lto-wrapper.c:183 #, c-format msgid "pex_init failed" ! msgstr "pex_init epäonnistui" #: lto-wrapper.c:214 #, c-format msgid "can't get program status" ! msgstr "ohjelman tilaa ei saada" #: lto-wrapper.c:223 #, c-format *************** msgstr "" *** 1155,1161 **** #: lto-wrapper.c:247 #, c-format msgid "deleting LTRANS file %s" ! msgstr "" #: lto-wrapper.c:269 #, fuzzy, c-format --- 1147,1153 ---- #: lto-wrapper.c:247 #, c-format msgid "deleting LTRANS file %s" ! msgstr "poistetaan LTRANS-tiedosto %s" #: lto-wrapper.c:269 #, fuzzy, c-format *************** msgstr "%s: ei voida avata PCH-tiedostoa *** 1170,1176 **** #: lto-wrapper.c:321 #, c-format msgid "malformed COLLECT_GCC_OPTIONS" ! msgstr "" #: lto-wrapper.c:430 #, c-format --- 1162,1168 ---- #: lto-wrapper.c:321 #, c-format msgid "malformed COLLECT_GCC_OPTIONS" ! msgstr "vääränmuotoinen COLLECT_GCC_OPTIONS" #: lto-wrapper.c:430 #, c-format *************** msgid "Option %s not used consistently i *** 1178,1191 **** msgstr "" #: lto-wrapper.c:461 ! #, fuzzy, c-format msgid "environment variable COLLECT_GCC must be set" ! msgstr "DJGPP-ympäristömuuttujaa ei ole määritelty" #: lto-wrapper.c:464 ! #, fuzzy, c-format msgid "environment variable COLLECT_GCC_OPTIONS must be set" ! msgstr "DJGPP-ympäristömuuttujaa ei ole määritelty" #: lto-wrapper.c:758 #, c-format --- 1170,1183 ---- msgstr "" #: lto-wrapper.c:461 ! #, c-format msgid "environment variable COLLECT_GCC must be set" ! msgstr "COLLECT_GCC-ympäristömuuttujan on oltava asetettuna" #: lto-wrapper.c:464 ! #, c-format msgid "environment variable COLLECT_GCC_OPTIONS must be set" ! msgstr "COLLECT_GCC_OPTIONS-ympäristömuuttujan on oltava asetettuna" #: lto-wrapper.c:758 #, c-format *************** msgstr "fopen: %s" *** 1197,1278 **** msgid "This switch lacks documentation" msgstr "Tältä valitsimelta puuttuu dokumentaatio" ! #: opts.c:1015 msgid "[default]" msgstr "" ! #: opts.c:1026 msgid "[enabled]" msgstr "[käytössä]" ! #: opts.c:1026 msgid "[disabled]" msgstr "[ei käytössä]" ! #: opts.c:1045 #, c-format msgid " No options with the desired characteristics were found\n" ! msgstr "" ! #: opts.c:1054 ! #, c-format msgid " None found. Use --help=%s to show *all* the options supported by the %s front-end\n" ! msgstr "" ! #: opts.c:1060 #, c-format msgid " All options with the desired characteristics have already been displayed\n" ! msgstr "" ! #: opts.c:1155 msgid "The following options are target specific" msgstr "" ! #: opts.c:1158 msgid "The following options control compiler warning messages" msgstr "" ! #: opts.c:1161 msgid "The following options control optimizations" msgstr "" ! #: opts.c:1164 opts.c:1203 msgid "The following options are language-independent" msgstr "" ! #: opts.c:1167 msgid "The --param option recognizes the following as parameters" msgstr "" ! #: opts.c:1173 msgid "The following options are specific to just the language " msgstr "" ! #: opts.c:1175 msgid "The following options are supported by the language " msgstr "" ! #: opts.c:1186 msgid "The following options are not documented" msgstr "" ! #: opts.c:1188 msgid "The following options take separate arguments" msgstr "" ! #: opts.c:1190 msgid "The following options take joined arguments" msgstr "" ! #: opts.c:1201 msgid "The following options are language-related" msgstr "" ! #: opts.c:2078 ! #, fuzzy ! #| msgid "Make \"char\" signed by default" msgid "enabled by default" ! msgstr "Tee â€charâ€-tyypistä oletuksena etumerkillinen" #: plugin.c:781 msgid "Event" --- 1189,1268 ---- msgid "This switch lacks documentation" msgstr "Tältä valitsimelta puuttuu dokumentaatio" ! #: opts.c:1018 msgid "[default]" msgstr "" ! #: opts.c:1029 msgid "[enabled]" msgstr "[käytössä]" ! #: opts.c:1029 msgid "[disabled]" msgstr "[ei käytössä]" ! #: opts.c:1048 #, c-format msgid " No options with the desired characteristics were found\n" ! msgstr " Yhtään valitsinta halutuilla ominaisuuksilla ei löytynyt\n" ! #: opts.c:1057 ! #, fuzzy, c-format msgid " None found. Use --help=%s to show *all* the options supported by the %s front-end\n" ! msgstr " Mitään ei löytynyt. Käytä --help=%s näyttämään *kaikki* valitsimet, joita %s-edusta tukee\n" ! #: opts.c:1063 #, c-format msgid " All options with the desired characteristics have already been displayed\n" ! msgstr " Kaikki valitsimet halutuilla ominaisuuksilla on jo näytetty\n" ! #: opts.c:1158 msgid "The following options are target specific" msgstr "" ! #: opts.c:1161 msgid "The following options control compiler warning messages" msgstr "" ! #: opts.c:1164 msgid "The following options control optimizations" msgstr "" ! #: opts.c:1167 opts.c:1206 msgid "The following options are language-independent" msgstr "" ! #: opts.c:1170 msgid "The --param option recognizes the following as parameters" msgstr "" ! #: opts.c:1176 msgid "The following options are specific to just the language " msgstr "" ! #: opts.c:1178 msgid "The following options are supported by the language " msgstr "" ! #: opts.c:1189 msgid "The following options are not documented" msgstr "" ! #: opts.c:1191 msgid "The following options take separate arguments" msgstr "" ! #: opts.c:1193 msgid "The following options take joined arguments" msgstr "" ! #: opts.c:1204 msgid "The following options are language-related" msgstr "" ! #: opts.c:2081 msgid "enabled by default" ! msgstr "oletusarvoisesti käytössä" #: plugin.c:781 msgid "Event" *************** msgstr "" *** 1289,1295 **** #: reload1.c:2123 msgid "this is the insn:" ! msgstr "" #. It's the compiler's fault. #: reload1.c:6095 --- 1279,1285 ---- #: reload1.c:2123 msgid "this is the insn:" ! msgstr "tämä on käsky:" #. It's the compiler's fault. #: reload1.c:6095 *************** msgstr "GMP-versio %s, MPFR-versio %s, M *** 1377,1388 **** #: toplev.c:690 #, c-format msgid "%s%swarning: %s header version %s differs from library version %s.\n" ! msgstr "" #: toplev.c:692 ! #, c-format msgid "%s%sGGC heuristics: --param ggc-min-expand=%d --param ggc-min-heapsize=%d\n" ! msgstr "" #: toplev.c:852 msgid "options passed: " --- 1367,1378 ---- #: toplev.c:690 #, c-format msgid "%s%swarning: %s header version %s differs from library version %s.\n" ! msgstr "%s%swarning: %s-otsakeversio %s eroaa kirjastoversiosta %s.\n" #: toplev.c:692 ! #, fuzzy, c-format msgid "%s%sGGC heuristics: --param ggc-min-expand=%d --param ggc-min-heapsize=%d\n" ! msgstr "%s%sGGC heuristinen/heuristiikka??: --param ggc-min-expand=%d --param ggc-min-heapsize=%d\n" #: toplev.c:852 msgid "options passed: " *************** msgstr "annetut valitsimet: " *** 1390,1396 **** #: toplev.c:880 msgid "options enabled: " ! msgstr "" #: tree-diagnostic.c:295 c-family/c-pretty-print.c:423 c/c-decl.c:4730 #: c/c-typeck.c:5873 cp/error.c:654 cp/error.c:938 --- 1380,1386 ---- #: toplev.c:880 msgid "options enabled: " ! msgstr "käyttöön otetut valitsimet: " #: tree-diagnostic.c:295 c-family/c-pretty-print.c:423 c/c-decl.c:4730 #: c/c-typeck.c:5873 cp/error.c:654 cp/error.c:938 *************** msgstr "" *** 1468,1474 **** #. Caller and callee disagree on the arguments. #: cif-code.def:84 msgid "mismatched arguments" ! msgstr "" #: cif-code.def:88 msgid "originally indirect function call not considered for inlining" --- 1458,1464 ---- #. Caller and callee disagree on the arguments. #: cif-code.def:84 msgid "mismatched arguments" ! msgstr "täsmäämättömät argumentit" #: cif-code.def:88 msgid "originally indirect function call not considered for inlining" *************** msgstr "" *** 1487,1493 **** #. caller cannot. #: cif-code.def:99 #, fuzzy - #| msgid "Enable exception handling" msgid "non-call exception handling mismatch" msgstr "Käytä poikkeustenkäsittelyä" --- 1477,1482 ---- *************** msgstr "" *** 1499,1505 **** #. We can't inline because of mismatched optimization levels. #: cif-code.def:105 #, fuzzy - #| msgid "Set optimization level to " msgid "optimization level attribute mismatch" msgstr "Aseta optimointitasoksi " --- 1488,1493 ---- *************** msgstr "" *** 2162,2174 **** #: c-family/c-format.c:346 #, fuzzy - #| msgid "field width" msgid "field width specifier" msgstr "kentän leveys" #: c-family/c-format.c:347 #, fuzzy - #| msgid "field precision" msgid "field precision specifier" msgstr "kentän tarkkuus" --- 2150,2160 ---- *************** msgstr "" --- 2437,2443 ---- #: c-family/c-pretty-print.c:390 msgid "" *************** msgstr "" *** 2469,2475 **** msgid "" msgstr "" ! #: c-family/c-pretty-print.c:2147 cp/error.c:1818 cp/error.c:2764 msgid "" msgstr "" --- 2455,2461 ---- msgid "" msgstr "" ! #: c-family/c-pretty-print.c:2147 cp/error.c:1818 cp/error.c:2768 msgid "" msgstr "" *************** msgstr "epäkelvot operandit binäärise *** 2487,2500 **** msgid "incompatible floating point / vector register operand for '%%%c'" msgstr "" ! #: config/aarch64/aarch64.c:3399 config/arm/arm.c:18223 #, c-format msgid "missing operand" msgstr "puuttuva operandi" #: config/aarch64/aarch64.c:3462 #, fuzzy, c-format - #| msgid "invalid rotate insn" msgid "invalid constant" msgstr "virheellinen rotate-käsky" --- 2473,2485 ---- msgid "incompatible floating point / vector register operand for '%%%c'" msgstr "" ! #: config/aarch64/aarch64.c:3399 config/arm/arm.c:18233 #, c-format msgid "missing operand" msgstr "puuttuva operandi" #: config/aarch64/aarch64.c:3462 #, fuzzy, c-format msgid "invalid constant" msgstr "virheellinen rotate-käsky" *************** msgstr "" *** 2592,2624 **** msgid "invalid %%xn code" msgstr "virheellinen %%xn-koodi" ! #: config/arm/arm.c:17560 config/arm/arm.c:17578 #, c-format msgid "predicated Thumb instruction" msgstr "" ! #: config/arm/arm.c:17566 #, c-format msgid "predicated instruction in conditional sequence" msgstr "" ! #: config/arm/arm.c:17697 config/arm/arm.c:17710 #, fuzzy, c-format msgid "Unsupported operand for code '%c'" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/arm/arm.c:17748 ! #, fuzzy, c-format ! msgid "invalid shift operand" ! msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! ! #: config/arm/arm.c:17805 config/arm/arm.c:17827 config/arm/arm.c:17837 ! #: config/arm/arm.c:17847 config/arm/arm.c:17857 config/arm/arm.c:17896 ! #: config/arm/arm.c:17914 config/arm/arm.c:17939 config/arm/arm.c:17954 ! #: config/arm/arm.c:17981 config/arm/arm.c:17988 config/arm/arm.c:18006 ! #: config/arm/arm.c:18013 config/arm/arm.c:18021 config/arm/arm.c:18042 ! #: config/arm/arm.c:18049 config/arm/arm.c:18174 config/arm/arm.c:18181 ! #: config/arm/arm.c:18204 config/arm/arm.c:18211 config/bfin/bfin.c:1439 #: config/bfin/bfin.c:1446 config/bfin/bfin.c:1453 config/bfin/bfin.c:1460 #: config/bfin/bfin.c:1469 config/bfin/bfin.c:1476 config/bfin/bfin.c:1483 #: config/bfin/bfin.c:1490 --- 2577,2610 ---- msgid "invalid %%xn code" msgstr "virheellinen %%xn-koodi" ! #: config/arm/arm.c:15438 config/arm/arm.c:15463 config/arm/arm.c:15473 ! #: config/arm/arm.c:15482 config/arm/arm.c:15490 ! #, fuzzy, c-format ! msgid "invalid shift operand" ! msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! ! #: config/arm/arm.c:17576 config/arm/arm.c:17594 #, c-format msgid "predicated Thumb instruction" msgstr "" ! #: config/arm/arm.c:17582 #, c-format msgid "predicated instruction in conditional sequence" msgstr "" ! #: config/arm/arm.c:17713 config/arm/arm.c:17726 #, fuzzy, c-format msgid "Unsupported operand for code '%c'" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/arm/arm.c:17815 config/arm/arm.c:17837 config/arm/arm.c:17847 ! #: config/arm/arm.c:17857 config/arm/arm.c:17867 config/arm/arm.c:17906 ! #: config/arm/arm.c:17924 config/arm/arm.c:17949 config/arm/arm.c:17964 ! #: config/arm/arm.c:17991 config/arm/arm.c:17998 config/arm/arm.c:18016 ! #: config/arm/arm.c:18023 config/arm/arm.c:18031 config/arm/arm.c:18052 ! #: config/arm/arm.c:18059 config/arm/arm.c:18184 config/arm/arm.c:18191 ! #: config/arm/arm.c:18214 config/arm/arm.c:18221 config/bfin/bfin.c:1439 #: config/bfin/bfin.c:1446 config/bfin/bfin.c:1453 config/bfin/bfin.c:1460 #: config/bfin/bfin.c:1469 config/bfin/bfin.c:1476 config/bfin/bfin.c:1483 #: config/bfin/bfin.c:1490 *************** msgstr "epäkelvot operandit binäärise *** 2626,2648 **** msgid "invalid operand for code '%c'" msgstr "" ! #: config/arm/arm.c:17909 #, c-format msgid "instruction never executed" msgstr "" #. Former Maverick support, removed after GCC-4.7. ! #: config/arm/arm.c:17930 #, c-format msgid "obsolete Maverick format code '%c'" msgstr "" ! #: config/arm/arm.c:20988 #, fuzzy msgid "function parameters cannot have __fp16 type" msgstr "funktion paluuarvon tyyppi ei voi olla funktio" ! #: config/arm/arm.c:20998 #, fuzzy msgid "functions cannot return __fp16 type" msgstr "funktio ei palauta merkkijonotyyppiä" --- 2612,2634 ---- msgid "invalid operand for code '%c'" msgstr "" ! #: config/arm/arm.c:17919 #, c-format msgid "instruction never executed" msgstr "" #. Former Maverick support, removed after GCC-4.7. ! #: config/arm/arm.c:17940 #, c-format msgid "obsolete Maverick format code '%c'" msgstr "" ! #: config/arm/arm.c:20998 #, fuzzy msgid "function parameters cannot have __fp16 type" msgstr "funktion paluuarvon tyyppi ei voi olla funktio" ! #: config/arm/arm.c:21008 #, fuzzy msgid "functions cannot return __fp16 type" msgstr "funktio ei palauta merkkijonotyyppiä" *************** msgstr "" *** 2662,2670 **** #: config/avr/avr.c:2169 #, fuzzy - #| msgid "requested alignment is not a constant" msgid "bad address, not a constant:" ! msgstr "pyydetty tasaus ei ole vakio" #: config/avr/avr.c:2187 msgid "bad address, not (reg+disp):" --- 2648,2655 ---- #: config/avr/avr.c:2169 #, fuzzy msgid "bad address, not a constant:" ! msgstr "pyydetty kohdistus ei ole vakio" #: config/avr/avr.c:2187 msgid "bad address, not (reg+disp):" *************** msgstr "" *** 2676,2687 **** #: config/avr/avr.c:2205 msgid "internal compiler error. Bad address:" ! msgstr "" #: config/avr/avr.c:2234 ! #, c-format ! msgid "Unsupported code '%c'for fixed-point:" ! msgstr "" #: config/avr/avr.c:2243 msgid "internal compiler error. Unknown mode:" --- 2661,2672 ---- #: config/avr/avr.c:2205 msgid "internal compiler error. Bad address:" ! msgstr "kääntäjän sisäinen virhe. Virheellinen osoite:" #: config/avr/avr.c:2234 ! #, fuzzy, c-format ! msgid "Unsupported code '%c' for fixed-point:" ! msgstr "void-lausekkeen epäkelpo käyttö" #: config/avr/avr.c:2243 msgid "internal compiler error. Unknown mode:" *************** msgstr "" *** 2689,2695 **** #: config/avr/avr.c:3213 config/avr/avr.c:3787 config/avr/avr.c:4073 msgid "invalid insn:" ! msgstr "" #: config/avr/avr.c:3242 config/avr/avr.c:3317 config/avr/avr.c:3360 #: config/avr/avr.c:3379 config/avr/avr.c:3470 config/avr/avr.c:3639 --- 2674,2680 ---- #: config/avr/avr.c:3213 config/avr/avr.c:3787 config/avr/avr.c:4073 msgid "invalid insn:" ! msgstr "virheellinen käsky:" #: config/avr/avr.c:3242 config/avr/avr.c:3317 config/avr/avr.c:3360 #: config/avr/avr.c:3379 config/avr/avr.c:3470 config/avr/avr.c:3639 *************** msgstr "" *** 2702,2712 **** #: config/avr/avr.c:3919 config/avr/avr.c:4012 config/avr/avr.c:4249 #: config/avr/avr.c:4370 msgid "unknown move insn:" ! msgstr "" #: config/avr/avr.c:4795 msgid "bad shift insn:" ! msgstr "" #: config/avr/avr.c:4903 config/avr/avr.c:5384 config/avr/avr.c:5799 msgid "internal compiler error. Incorrect shift:" --- 2687,2697 ---- #: config/avr/avr.c:3919 config/avr/avr.c:4012 config/avr/avr.c:4249 #: config/avr/avr.c:4370 msgid "unknown move insn:" ! msgstr "tuntematon move-käsky:" #: config/avr/avr.c:4795 msgid "bad shift insn:" ! msgstr "virheellinen shift-käsky:" #: config/avr/avr.c:4903 config/avr/avr.c:5384 config/avr/avr.c:5799 msgid "internal compiler error. Incorrect shift:" *************** msgstr "virheellinen %%j-arvo" *** 2725,2735 **** #: config/bfin/bfin.c:1581 config/c6x/c6x.c:2290 #, c-format msgid "invalid const_double operand" ! msgstr "" #: config/cris/cris.c:580 config/moxie/moxie.c:111 final.c:3311 final.c:3313 ! #: fold-const.c:270 gcc.c:4712 gcc.c:4726 loop-iv.c:3031 loop-iv.c:3040 ! #: rtl-error.c:102 toplev.c:332 tree-ssa-loop-niter.c:1933 tree-vrp.c:6783 #: cp/typeck.c:5618 java/expr.c:389 lto/lto-object.c:189 lto/lto-object.c:287 #: lto/lto-object.c:344 lto/lto-object.c:368 #, gcc-internal-format, gfc-internal-format --- 2710,2720 ---- #: config/bfin/bfin.c:1581 config/c6x/c6x.c:2290 #, c-format msgid "invalid const_double operand" ! msgstr "virheellinen const_double-operandi" #: config/cris/cris.c:580 config/moxie/moxie.c:111 final.c:3311 final.c:3313 ! #: fold-const.c:270 gcc.c:4713 gcc.c:4727 loop-iv.c:3031 loop-iv.c:3040 ! #: rtl-error.c:102 toplev.c:332 tree-ssa-loop-niter.c:1934 tree-vrp.c:6783 #: cp/typeck.c:5618 java/expr.c:389 lto/lto-object.c:189 lto/lto-object.c:287 #: lto/lto-object.c:344 lto/lto-object.c:368 #, gcc-internal-format, gfc-internal-format *************** msgstr "" *** 2840,2861 **** #: config/fr30/fr30.c:502 #, c-format msgid "fr30_print_operand_address: unhandled address" ! msgstr "" #: config/fr30/fr30.c:526 #, c-format msgid "fr30_print_operand: unrecognized %%p code" ! msgstr "" #: config/fr30/fr30.c:546 #, c-format msgid "fr30_print_operand: unrecognized %%b code" ! msgstr "" #: config/fr30/fr30.c:567 #, c-format msgid "fr30_print_operand: unrecognized %%B code" ! msgstr "" #: config/fr30/fr30.c:575 #, c-format --- 2825,2846 ---- #: config/fr30/fr30.c:502 #, c-format msgid "fr30_print_operand_address: unhandled address" ! msgstr "fr30_print_operand_address: käsittelemätön osoite" #: config/fr30/fr30.c:526 #, c-format msgid "fr30_print_operand: unrecognized %%p code" ! msgstr "fr30_print_operand: tunnistamaton %%p-koodi" #: config/fr30/fr30.c:546 #, c-format msgid "fr30_print_operand: unrecognized %%b code" ! msgstr "fr30_print_operand: tunnistamaton %%b-koodi" #: config/fr30/fr30.c:567 #, c-format msgid "fr30_print_operand: unrecognized %%B code" ! msgstr "fr30_print_operand: tunnistamaton %%B-koodi" #: config/fr30/fr30.c:575 #, c-format *************** msgstr "" *** 2865,2881 **** #: config/fr30/fr30.c:592 #, c-format msgid "fr30_print_operand: invalid %%x code" ! msgstr "" #: config/fr30/fr30.c:599 #, c-format msgid "fr30_print_operand: invalid %%F code" ! msgstr "" #: config/fr30/fr30.c:616 #, c-format msgid "fr30_print_operand: unknown code" ! msgstr "" #: config/fr30/fr30.c:644 config/fr30/fr30.c:653 config/fr30/fr30.c:664 #: config/fr30/fr30.c:677 --- 2850,2866 ---- #: config/fr30/fr30.c:592 #, c-format msgid "fr30_print_operand: invalid %%x code" ! msgstr "fr30_print_operand: virheellinen %%x-koodi" #: config/fr30/fr30.c:599 #, c-format msgid "fr30_print_operand: invalid %%F code" ! msgstr "fr30_print_operand: virheellinen %%F-koodi" #: config/fr30/fr30.c:616 #, c-format msgid "fr30_print_operand: unknown code" ! msgstr "fr30_print_operand: tuntematon koodi" #: config/fr30/fr30.c:644 config/fr30/fr30.c:653 config/fr30/fr30.c:664 #: config/fr30/fr30.c:677 *************** msgstr "epäkelpo %-avainsana *** 3074,3081 **** msgid "invalid operation on %<__fpreg%>" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/iq2000/iq2000.c:3132 config/tilegx/tilegx.c:5205 ! #: config/tilepro/tilepro.c:4695 #, c-format msgid "invalid %%P operand" msgstr "" --- 3059,3066 ---- msgid "invalid operation on %<__fpreg%>" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/iq2000/iq2000.c:3132 config/tilegx/tilegx.c:5203 ! #: config/tilepro/tilepro.c:4693 #, c-format msgid "invalid %%P operand" msgstr "" *************** msgstr "virheellinen %%p-arvo" *** 3090,3110 **** msgid "invalid use of %%d, %%x, or %%X" msgstr "" ! #: config/lm32/lm32.c:521 #, c-format msgid "only 0.0 can be loaded as an immediate" msgstr "" ! #: config/lm32/lm32.c:591 #, fuzzy msgid "bad operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/lm32/lm32.c:603 msgid "can't use non gp relative absolute address" msgstr "" ! #: config/lm32/lm32.c:607 #, fuzzy msgid "invalid addressing mode" msgstr "epäkelpo lvalue sijoituksessa" --- 3075,3095 ---- msgid "invalid use of %%d, %%x, or %%X" msgstr "" ! #: config/lm32/lm32.c:518 #, c-format msgid "only 0.0 can be loaded as an immediate" msgstr "" ! #: config/lm32/lm32.c:588 #, fuzzy msgid "bad operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/lm32/lm32.c:600 msgid "can't use non gp relative absolute address" msgstr "" ! #: config/lm32/lm32.c:604 #, fuzzy msgid "invalid addressing mode" msgstr "epäkelpo lvalue sijoituksessa" *************** msgstr "" *** 3174,3209 **** msgid "invalid %%L code" msgstr "virheellinen %%L-koodi" ! #: config/microblaze/microblaze.c:1760 #, c-format msgid "unknown punctuation '%c'" msgstr "" ! #: config/microblaze/microblaze.c:1769 #, c-format msgid "null pointer" msgstr "" ! #: config/microblaze/microblaze.c:1804 #, c-format msgid "PRINT_OPERAND, invalid insn for %%C" msgstr "" ! #: config/microblaze/microblaze.c:1833 #, c-format msgid "PRINT_OPERAND, invalid insn for %%N" msgstr "" ! #: config/microblaze/microblaze.c:1853 config/microblaze/microblaze.c:2014 msgid "insn contains an invalid address !" msgstr "" ! #: config/microblaze/microblaze.c:1867 config/microblaze/microblaze.c:2054 #: config/xtensa/xtensa.c:2443 msgid "invalid address" msgstr "" ! #: config/microblaze/microblaze.c:1966 #, c-format msgid "letter %c was found & insn was not CONST_INT" msgstr "" --- 3159,3194 ---- msgid "invalid %%L code" msgstr "virheellinen %%L-koodi" ! #: config/microblaze/microblaze.c:2156 #, c-format msgid "unknown punctuation '%c'" msgstr "" ! #: config/microblaze/microblaze.c:2165 #, c-format msgid "null pointer" msgstr "" ! #: config/microblaze/microblaze.c:2200 #, c-format msgid "PRINT_OPERAND, invalid insn for %%C" msgstr "" ! #: config/microblaze/microblaze.c:2229 #, c-format msgid "PRINT_OPERAND, invalid insn for %%N" msgstr "" ! #: config/microblaze/microblaze.c:2249 config/microblaze/microblaze.c:2420 msgid "insn contains an invalid address !" msgstr "" ! #: config/microblaze/microblaze.c:2264 config/microblaze/microblaze.c:2479 #: config/xtensa/xtensa.c:2443 msgid "invalid address" msgstr "" ! #: config/microblaze/microblaze.c:2363 #, c-format msgid "letter %c was found & insn was not CONST_INT" msgstr "" *************** msgstr "" *** 3285,3291 **** #: config/rs6000/host-darwin.c:94 #, c-format msgid "Out of stack space.\n" ! msgstr "" #: config/rs6000/host-darwin.c:115 #, c-format --- 3270,3276 ---- #: config/rs6000/host-darwin.c:94 #, c-format msgid "Out of stack space.\n" ! msgstr "Pinotila loppui.\n" #: config/rs6000/host-darwin.c:115 #, c-format *************** msgstr "" *** 3298,3318 **** #: config/rs6000/rs6000.c:2619 msgid "-mvsx and -mpaired are incompatible" ! msgstr "" #: config/rs6000/rs6000.c:2624 msgid "-mvsx used with little endian code" ! msgstr "" #: config/rs6000/rs6000.c:2626 msgid "-mvsx needs indexed addressing" msgstr "" #: config/rs6000/rs6000.c:2631 - #, fuzzy - #| msgid "-fpic and -mapcs-reent are incompatible" msgid "-mvsx and -mno-altivec are incompatible" ! msgstr "-fpic ja -mapcs-reent ovat yhteensopimattomat" #: config/rs6000/rs6000.c:2633 msgid "-mno-altivec disables vsx" --- 3283,3301 ---- #: config/rs6000/rs6000.c:2619 msgid "-mvsx and -mpaired are incompatible" ! msgstr "-mvsx ja -mpaired ovat yhteensopimattomat" #: config/rs6000/rs6000.c:2624 msgid "-mvsx used with little endian code" ! msgstr "-mvsx:ää käytetty little-endian-koodissa" #: config/rs6000/rs6000.c:2626 msgid "-mvsx needs indexed addressing" msgstr "" #: config/rs6000/rs6000.c:2631 msgid "-mvsx and -mno-altivec are incompatible" ! msgstr "-mvsx ja -mno-altivec ovat yhteensopimattomat" #: config/rs6000/rs6000.c:2633 msgid "-mno-altivec disables vsx" *************** msgstr "epäkelvot operandit binäärise *** 3486,3510 **** msgid "invalid operand for code: '%c'" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/sh/sh.c:1204 #, fuzzy, c-format msgid "invalid operand to %%R" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/sh/sh.c:1231 #, fuzzy, c-format msgid "invalid operand to %%S" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/sh/sh.c:9775 msgid "created and used with different architectures / ABIs" msgstr "" ! #: config/sh/sh.c:9777 msgid "created and used with different ABIs" msgstr "" ! #: config/sh/sh.c:9779 msgid "created and used with different endianness" msgstr "" --- 3469,3493 ---- msgid "invalid operand for code: '%c'" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/sh/sh.c:1201 #, fuzzy, c-format msgid "invalid operand to %%R" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/sh/sh.c:1228 #, fuzzy, c-format msgid "invalid operand to %%S" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/sh/sh.c:9772 msgid "created and used with different architectures / ABIs" msgstr "" ! #: config/sh/sh.c:9774 msgid "created and used with different ABIs" msgstr "" ! #: config/sh/sh.c:9776 msgid "created and used with different endianness" msgstr "" *************** msgstr "" *** 3523,3535 **** msgid "invalid %%B operand" msgstr "" ! #: config/sparc/sparc.c:8508 config/tilegx/tilegx.c:4988 ! #: config/tilepro/tilepro.c:4498 #, fuzzy, c-format msgid "invalid %%C operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/sparc/sparc.c:8525 config/tilegx/tilegx.c:5021 #, fuzzy, c-format msgid "invalid %%D operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" --- 3506,3518 ---- msgid "invalid %%B operand" msgstr "" ! #: config/sparc/sparc.c:8508 config/tilegx/tilegx.c:4986 ! #: config/tilepro/tilepro.c:4496 #, fuzzy, c-format msgid "invalid %%C operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/sparc/sparc.c:8525 config/tilegx/tilegx.c:5019 #, fuzzy, c-format msgid "invalid %%D operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" *************** msgstr "" *** 3574,3661 **** msgid "xstormy16_print_operand: unknown code" msgstr "xstormy16_print_operand: tuntematon koodi" ! #: config/tilegx/tilegx.c:4973 config/tilepro/tilepro.c:4483 #, c-format msgid "invalid %%c operand" msgstr "" ! #: config/tilegx/tilegx.c:5004 #, c-format msgid "invalid %%d operand" msgstr "" ! #: config/tilegx/tilegx.c:5101 #, fuzzy, c-format - #| msgid "invalid %%L code" msgid "invalid %%H specifier" msgstr "virheellinen %%L-koodi" ! #: config/tilegx/tilegx.c:5143 config/tilepro/tilepro.c:4512 #, fuzzy, c-format msgid "invalid %%h operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5155 config/tilepro/tilepro.c:4576 #, fuzzy, c-format msgid "invalid %%I operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5169 config/tilepro/tilepro.c:4590 #, fuzzy, c-format msgid "invalid %%i operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5192 config/tilepro/tilepro.c:4613 #, fuzzy, c-format msgid "invalid %%j operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5223 #, fuzzy, c-format msgid "invalid %%%c operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5238 config/tilepro/tilepro.c:4727 #, fuzzy, c-format msgid "invalid %%N operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5282 #, fuzzy, c-format msgid "invalid operand for 'r' specifier" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5307 config/tilepro/tilepro.c:4809 #, c-format msgid "unable to print out operand yet; code == %d (%c)" msgstr "" ! #: config/tilepro/tilepro.c:4548 #, fuzzy, c-format msgid "invalid %%H operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilepro/tilepro.c:4652 #, fuzzy, c-format msgid "invalid %%L operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilepro/tilepro.c:4712 #, fuzzy, c-format msgid "invalid %%M operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilepro/tilepro.c:4755 #, fuzzy, c-format msgid "invalid %%t operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilepro/tilepro.c:4762 #, fuzzy, c-format msgid "invalid %%t operand '" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilepro/tilepro.c:4783 #, fuzzy, c-format msgid "invalid %%r operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" --- 3557,3643 ---- msgid "xstormy16_print_operand: unknown code" msgstr "xstormy16_print_operand: tuntematon koodi" ! #: config/tilegx/tilegx.c:4971 config/tilepro/tilepro.c:4481 #, c-format msgid "invalid %%c operand" msgstr "" ! #: config/tilegx/tilegx.c:5002 #, c-format msgid "invalid %%d operand" msgstr "" ! #: config/tilegx/tilegx.c:5099 #, fuzzy, c-format msgid "invalid %%H specifier" msgstr "virheellinen %%L-koodi" ! #: config/tilegx/tilegx.c:5141 config/tilepro/tilepro.c:4510 #, fuzzy, c-format msgid "invalid %%h operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5153 config/tilepro/tilepro.c:4574 #, fuzzy, c-format msgid "invalid %%I operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5167 config/tilepro/tilepro.c:4588 #, fuzzy, c-format msgid "invalid %%i operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5190 config/tilepro/tilepro.c:4611 #, fuzzy, c-format msgid "invalid %%j operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5221 #, fuzzy, c-format msgid "invalid %%%c operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5236 config/tilepro/tilepro.c:4725 #, fuzzy, c-format msgid "invalid %%N operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5280 #, fuzzy, c-format msgid "invalid operand for 'r' specifier" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilegx/tilegx.c:5305 config/tilepro/tilepro.c:4807 #, c-format msgid "unable to print out operand yet; code == %d (%c)" msgstr "" ! #: config/tilepro/tilepro.c:4546 #, fuzzy, c-format msgid "invalid %%H operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilepro/tilepro.c:4650 #, fuzzy, c-format msgid "invalid %%L operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilepro/tilepro.c:4710 #, fuzzy, c-format msgid "invalid %%M operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilepro/tilepro.c:4753 #, fuzzy, c-format msgid "invalid %%t operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilepro/tilepro.c:4760 #, fuzzy, c-format msgid "invalid %%t operand '" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: config/tilepro/tilepro.c:4781 #, fuzzy, c-format msgid "invalid %%r operand" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" *************** msgstr "" *** 3723,3729 **** msgid "({anonymous})" msgstr "({nimetön})" ! #: c/c-parser.c:943 cp/parser.c:23010 #, fuzzy, gcc-internal-format msgid "expected end of line" msgstr "päättämätön muotoilumerkkijono" --- 3705,3711 ---- msgid "({anonymous})" msgstr "({nimetön})" ! #: c/c-parser.c:943 cp/parser.c:23014 #, fuzzy, gcc-internal-format msgid "expected end of line" msgstr "päättämätön muotoilumerkkijono" *************** msgstr "päättämätön muotoilumerkkij *** 3733,3740 **** #: c/c-parser.c:7357 c/c-parser.c:7392 c/c-parser.c:7423 c/c-parser.c:7470 #: c/c-parser.c:7651 c/c-parser.c:8419 c/c-parser.c:8489 c/c-parser.c:8532 #: c/c-parser.c:9810 c/c-parser.c:9825 c/c-parser.c:9834 c/c-parser.c:9979 ! #: c/c-parser.c:10018 c/c-parser.c:2500 c/c-parser.c:7644 cp/parser.c:22423 ! #: cp/parser.c:22956 #, gcc-internal-format msgid "expected %<;%>" msgstr "" --- 3715,3722 ---- #: c/c-parser.c:7357 c/c-parser.c:7392 c/c-parser.c:7423 c/c-parser.c:7470 #: c/c-parser.c:7651 c/c-parser.c:8419 c/c-parser.c:8489 c/c-parser.c:8532 #: c/c-parser.c:9810 c/c-parser.c:9825 c/c-parser.c:9834 c/c-parser.c:9979 ! #: c/c-parser.c:10018 c/c-parser.c:2500 c/c-parser.c:7644 cp/parser.c:22427 ! #: cp/parser.c:22960 #, gcc-internal-format msgid "expected %<;%>" msgstr "" *************** msgstr "" *** 3746,3758 **** #: c/c-parser.c:6703 c/c-parser.c:6727 c/c-parser.c:7942 c/c-parser.c:8014 #: c/c-parser.c:8841 c/c-parser.c:8862 c/c-parser.c:8912 c/c-parser.c:9065 #: c/c-parser.c:9144 c/c-parser.c:9228 c/c-parser.c:9942 c/c-parser.c:10766 ! #: c/c-parser.c:8985 c/c-parser.c:9010 cp/parser.c:20794 cp/parser.c:22959 #, gcc-internal-format msgid "expected %<(%>" msgstr "" #: c/c-parser.c:1843 c/c-parser.c:6389 c/c-parser.c:6427 c/c-parser.c:6555 ! #: cp/parser.c:22421 cp/parser.c:22974 #, fuzzy, gcc-internal-format msgid "expected %<,%>" msgstr "taulukon indeksin tyyppi on %" --- 3728,3740 ---- #: c/c-parser.c:6703 c/c-parser.c:6727 c/c-parser.c:7942 c/c-parser.c:8014 #: c/c-parser.c:8841 c/c-parser.c:8862 c/c-parser.c:8912 c/c-parser.c:9065 #: c/c-parser.c:9144 c/c-parser.c:9228 c/c-parser.c:9942 c/c-parser.c:10766 ! #: c/c-parser.c:8985 c/c-parser.c:9010 cp/parser.c:20798 cp/parser.c:22963 #, gcc-internal-format msgid "expected %<(%>" msgstr "" #: c/c-parser.c:1843 c/c-parser.c:6389 c/c-parser.c:6427 c/c-parser.c:6555 ! #: cp/parser.c:22425 cp/parser.c:22978 #, fuzzy, gcc-internal-format msgid "expected %<,%>" msgstr "taulukon indeksin tyyppi on %" *************** msgstr "taulukon indeksin tyyppi on %" msgstr "taulukon indeksin tyyppi on %" #: c/c-parser.c:3095 c/c-parser.c:3911 c/c-parser.c:3945 c/c-parser.c:5228 #: c/c-parser.c:6491 c/c-parser.c:6760 c/c-parser.c:6878 c/c-parser.c:10678 ! #: c/c-parser.c:10680 cp/parser.c:22968 #, fuzzy, gcc-internal-format msgid "expected %<]%>" msgstr "taulukon indeksin tyyppi on %" --- 3750,3764 ---- #: c/c-parser.c:7736 c/c-parser.c:7757 c/c-parser.c:7965 c/c-parser.c:8018 #: c/c-parser.c:8391 c/c-parser.c:8844 c/c-parser.c:8865 c/c-parser.c:8943 #: c/c-parser.c:9072 c/c-parser.c:9209 c/c-parser.c:9292 c/c-parser.c:9870 ! #: c/c-parser.c:9987 c/c-parser.c:10029 c/c-parser.c:10775 cp/parser.c:20820 ! #: cp/parser.c:23008 #, fuzzy, gcc-internal-format msgid "expected %<)%>" msgstr "taulukon indeksin tyyppi on %" #: c/c-parser.c:3095 c/c-parser.c:3911 c/c-parser.c:3945 c/c-parser.c:5228 #: c/c-parser.c:6491 c/c-parser.c:6760 c/c-parser.c:6878 c/c-parser.c:10678 ! #: c/c-parser.c:10680 cp/parser.c:22972 #, fuzzy, gcc-internal-format msgid "expected %<]%>" msgstr "taulukon indeksin tyyppi on %" *************** msgstr "taulukon indeksin tyyppi on %, %<,%> or %<)%>" msgstr "käytetty %<__thread%> ennen %:a" ! #: c/c-parser.c:3774 c/c-parser.c:9826 cp/parser.c:22962 cp/parser.c:24780 #, fuzzy, gcc-internal-format msgid "expected %<}%>" msgstr "käytetty %<__thread%> ennen %:a" #: c/c-parser.c:4064 c/c-parser.c:7985 c/c-parser.c:10272 c/c-parser.c:2318 ! #: c/c-parser.c:2521 c/c-parser.c:7539 cp/parser.c:14644 cp/parser.c:22965 #, gcc-internal-format msgid "expected %<{%>" msgstr "" #: c/c-parser.c:4283 c/c-parser.c:4292 c/c-parser.c:5135 c/c-parser.c:5469 #: c/c-parser.c:7750 c/c-parser.c:8125 c/c-parser.c:8182 c/c-parser.c:9198 ! #: cp/parser.c:22998 cp/parser.c:24001 #, fuzzy, gcc-internal-format msgid "expected %<:%>" msgstr "taulukon indeksin tyyppi on %" ! #: c/c-parser.c:4831 cp/parser.c:22892 #, fuzzy, gcc-internal-format msgid "expected %" msgstr "käytetty %<__thread%> ennen %:a" --- 3768,3792 ---- msgid "expected %<;%>, %<,%> or %<)%>" msgstr "käytetty %<__thread%> ennen %:a" ! #: c/c-parser.c:3774 c/c-parser.c:9826 cp/parser.c:22966 cp/parser.c:24784 #, fuzzy, gcc-internal-format msgid "expected %<}%>" msgstr "käytetty %<__thread%> ennen %:a" #: c/c-parser.c:4064 c/c-parser.c:7985 c/c-parser.c:10272 c/c-parser.c:2318 ! #: c/c-parser.c:2521 c/c-parser.c:7539 cp/parser.c:14646 cp/parser.c:22969 #, gcc-internal-format msgid "expected %<{%>" msgstr "" #: c/c-parser.c:4283 c/c-parser.c:4292 c/c-parser.c:5135 c/c-parser.c:5469 #: c/c-parser.c:7750 c/c-parser.c:8125 c/c-parser.c:8182 c/c-parser.c:9198 ! #: cp/parser.c:23002 cp/parser.c:24005 #, fuzzy, gcc-internal-format msgid "expected %<:%>" msgstr "taulukon indeksin tyyppi on %" ! #: c/c-parser.c:4831 cp/parser.c:22896 #, fuzzy, gcc-internal-format msgid "expected %" msgstr "käytetty %<__thread%> ennen %:a" *************** msgstr "käytetty %<__thread%> ennen %" msgstr "taulukon indeksin tyyppi on %" ! #: c/c-parser.c:7210 c/c-parser.c:7242 c/c-parser.c:7482 cp/parser.c:24564 ! #: cp/parser.c:24638 #, fuzzy, gcc-internal-format msgid "expected %<@end%>" msgstr "vektoriylivuoto lausekkeessa" ! #: c/c-parser.c:7899 cp/parser.c:22983 #, fuzzy, gcc-internal-format msgid "expected %<>%>" msgstr "käytetty %<__thread%> ennen %:a" ! #: c/c-parser.c:9296 cp/parser.c:23007 #, fuzzy, gcc-internal-format msgid "expected %<,%> or %<)%>" msgstr "käytetty %<__thread%> ennen %:a" #: c/c-parser.c:9549 c/c-parser.c:9580 c/c-parser.c:9816 c/c-parser.c:9968 ! #: c/c-parser.c:3968 cp/parser.c:22986 #, gcc-internal-format msgid "expected %<=%>" msgstr "" ! #: c/c-parser.c:10329 c/c-parser.c:10319 cp/parser.c:27421 #, fuzzy, gcc-internal-format msgid "expected %<#pragma omp section%> or %<}%>" msgstr "%qs määrittää %:n tiedostoalue-esittelyssä" ! #: c/c-parser.c:10666 cp/parser.c:22971 #, fuzzy, gcc-internal-format msgid "expected %<[%>" msgstr "taulukon indeksin tyyppi on %" --- 3796,3829 ---- msgid "expected %<.%>" msgstr "taulukon indeksin tyyppi on %" ! #: c/c-parser.c:7210 c/c-parser.c:7242 c/c-parser.c:7482 cp/parser.c:24568 ! #: cp/parser.c:24642 #, fuzzy, gcc-internal-format msgid "expected %<@end%>" msgstr "vektoriylivuoto lausekkeessa" ! #: c/c-parser.c:7899 cp/parser.c:22987 #, fuzzy, gcc-internal-format msgid "expected %<>%>" msgstr "käytetty %<__thread%> ennen %:a" ! #: c/c-parser.c:9296 cp/parser.c:23011 #, fuzzy, gcc-internal-format msgid "expected %<,%> or %<)%>" msgstr "käytetty %<__thread%> ennen %:a" #: c/c-parser.c:9549 c/c-parser.c:9580 c/c-parser.c:9816 c/c-parser.c:9968 ! #: c/c-parser.c:3968 cp/parser.c:22990 #, gcc-internal-format msgid "expected %<=%>" msgstr "" ! #: c/c-parser.c:10329 c/c-parser.c:10319 cp/parser.c:27425 #, fuzzy, gcc-internal-format msgid "expected %<#pragma omp section%> or %<}%>" msgstr "%qs määrittää %:n tiedostoalue-esittelyssä" ! #: c/c-parser.c:10666 cp/parser.c:22975 #, fuzzy, gcc-internal-format msgid "expected %<[%>" msgstr "taulukon indeksin tyyppi on %" *************** msgstr "taulukon indeksin tyyppi on %" msgstr "" ! #: cp/cxx-pretty-print.c:2149 msgid "template-parameter-" msgstr "" --- 3844,3850 ---- msgid "" msgstr "" ! #: cp/cxx-pretty-print.c:2153 msgid "template-parameter-" msgstr "" *************** msgid "" *** 3893,3901 **** msgstr "" #: cp/error.c:656 ! #, fuzzy, c-format msgid "" ! msgstr "" #. A lambda's "type" is essentially its signature. #: cp/error.c:661 --- 3875,3883 ---- msgstr "" #: cp/error.c:656 ! #, c-format msgid "" ! msgstr "" #. A lambda's "type" is essentially its signature. #: cp/error.c:661 *************** msgstr "(%qs:n alustuksen lähistöllä) *** 3914,3924 **** #: cp/error.c:907 #, c-format msgid "(static destructors for %s)" ! msgstr "" #: cp/error.c:1006 msgid "vtable for " ! msgstr "" #: cp/error.c:1018 msgid " " --- 3896,3906 ---- #: cp/error.c:907 #, c-format msgid "(static destructors for %s)" ! msgstr "(staattiset hajottimet kohteelle %s)" #: cp/error.c:1006 msgid "vtable for " ! msgstr "vtable kohteelle " #: cp/error.c:1018 msgid " " *************** msgstr " " *** 3926,3938 **** #: cp/error.c:1033 #, fuzzy - #| msgid "({anonymous})" msgid "{anonymous}" msgstr "({nimetön})" #: cp/error.c:1035 #, fuzzy - #| msgid "(anonymous)" msgid "(anonymous namespace)" msgstr "(nimetön)" --- 3908,3918 ---- *************** msgstr "" *** 3949,3955 **** msgid "" msgstr "" ! #: cp/error.c:1445 cp/error.c:2855 msgid "with" msgstr "" --- 3929,3935 ---- msgid "" msgstr "" ! #: cp/error.c:1445 cp/error.c:2859 msgid "with" msgstr "" *************** msgstr "" *** 3972,4084 **** msgid "" msgstr "" ! #: cp/error.c:2504 msgid "" msgstr "" ! #: cp/error.c:2518 msgid "" msgstr "" ! #: cp/error.c:2807 msgid "{unknown}" msgstr "{tuntematon}" ! #: cp/error.c:2922 msgid "At global scope:" msgstr "" ! #: cp/error.c:3028 ! #, fuzzy, c-format msgid "In static member function %qs" ! msgstr "Jäsenfunktio %qs" ! #: cp/error.c:3030 ! #, fuzzy, c-format msgid "In copy constructor %qs" ! msgstr "Muodostin %qs" ! #: cp/error.c:3032 #, c-format msgid "In constructor %qs" msgstr "Muodostin %qs" ! #: cp/error.c:3034 ! #, fuzzy, c-format msgid "In destructor %qs" ! msgstr "Muodostin %qs" ! #: cp/error.c:3036 ! #, fuzzy msgid "In lambda function" ! msgstr "Jäsenfunktio %qs" ! #: cp/error.c:3056 #, fuzzy, c-format msgid "%s: In substitution of %qS:\n" msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" ! #: cp/error.c:3057 #, fuzzy msgid "%s: In instantiation of %q#D:\n" msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" ! #: cp/error.c:3080 #, c-format msgid "%s:%d:%d: " msgstr "" ! #: cp/error.c:3083 #, c-format msgid "%s:%d: " msgstr "" ! #: cp/error.c:3091 #, c-format msgid "recursively required by substitution of %qS\n" msgstr "" ! #: cp/error.c:3092 #, c-format msgid "required by substitution of %qS\n" msgstr "" ! #: cp/error.c:3097 msgid "recursively required from %q#D\n" msgstr "" ! #: cp/error.c:3098 msgid "required from %q#D\n" msgstr "" ! #: cp/error.c:3105 #, fuzzy - #| msgid "previously defined here" msgid "recursively required from here" msgstr "määritelty aiemmin täällä" ! #: cp/error.c:3106 #, fuzzy - #| msgid " from here" msgid "required from here" msgstr " täältä" ! #: cp/error.c:3158 #, c-format msgid "%s:%d:%d: [ skipping %d instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ]\n" msgstr "" ! #: cp/error.c:3163 #, c-format msgid "%s:%d: [ skipping %d instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ]\n" msgstr "" ! #: cp/error.c:3227 #, fuzzy, c-format msgid "%s:%d:%d: in constexpr expansion of %qs" msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" ! #: cp/error.c:3231 #, fuzzy, c-format msgid "%s:%d: in constexpr expansion of %qs" msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" --- 3952,4066 ---- msgid "" msgstr "" ! #: cp/error.c:2498 ! #, fuzzy ! msgid "" ! msgstr "" msgstr "" ! #: cp/error.c:2522 msgid "" msgstr "" ! #: cp/error.c:2811 msgid "{unknown}" msgstr "{tuntematon}" ! #: cp/error.c:2926 msgid "At global scope:" msgstr "" ! #: cp/error.c:3032 ! #, c-format msgid "In static member function %qs" ! msgstr "Staattinen jäsenfunktio %qs" ! #: cp/error.c:3034 ! #, c-format msgid "In copy constructor %qs" ! msgstr "Kopiomuodostin %qs" ! #: cp/error.c:3036 #, c-format msgid "In constructor %qs" msgstr "Muodostin %qs" ! #: cp/error.c:3038 ! #, c-format msgid "In destructor %qs" ! msgstr "Hajotin %qs" ! #: cp/error.c:3040 msgid "In lambda function" ! msgstr "Lambda-funktio" ! #: cp/error.c:3060 #, fuzzy, c-format msgid "%s: In substitution of %qS:\n" msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" ! #: cp/error.c:3061 #, fuzzy msgid "%s: In instantiation of %q#D:\n" msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" ! #: cp/error.c:3084 #, c-format msgid "%s:%d:%d: " msgstr "" ! #: cp/error.c:3087 #, c-format msgid "%s:%d: " msgstr "" ! #: cp/error.c:3095 #, c-format msgid "recursively required by substitution of %qS\n" msgstr "" ! #: cp/error.c:3096 #, c-format msgid "required by substitution of %qS\n" msgstr "" ! #: cp/error.c:3101 msgid "recursively required from %q#D\n" msgstr "" ! #: cp/error.c:3102 msgid "required from %q#D\n" msgstr "" ! #: cp/error.c:3109 #, fuzzy msgid "recursively required from here" msgstr "määritelty aiemmin täällä" ! #: cp/error.c:3110 #, fuzzy msgid "required from here" msgstr " täältä" ! #: cp/error.c:3162 #, c-format msgid "%s:%d:%d: [ skipping %d instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ]\n" msgstr "" ! #: cp/error.c:3167 #, c-format msgid "%s:%d: [ skipping %d instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ]\n" msgstr "" ! #: cp/error.c:3231 #, fuzzy, c-format msgid "%s:%d:%d: in constexpr expansion of %qs" msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" ! #: cp/error.c:3235 #, fuzzy, c-format msgid "%s:%d: in constexpr expansion of %qs" msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" *************** msgstr "%qs:n esittely taulukollisena ty *** 4087,4099 **** msgid "candidates are:" msgstr "ehdokkaat ovat:" ! #: cp/pt.c:17926 cp/call.c:3290 ! #, fuzzy, gcc-internal-format ! #| msgid "candidate 1:" msgid "candidate is:" msgid_plural "candidates are:" ! msgstr[0] "ehdokas 1:" ! msgstr[1] "ehdokas 1:" #: cp/rtti.c:537 #, fuzzy --- 4069,4080 ---- msgid "candidates are:" msgstr "ehdokkaat ovat:" ! #: cp/pt.c:17922 cp/call.c:3290 ! #, gcc-internal-format msgid "candidate is:" msgid_plural "candidates are:" ! msgstr[0] "ehdokas on:" ! msgstr[1] "ehdokkaat ovat:" #: cp/rtti.c:537 #, fuzzy *************** msgid "module procedure" *** 4522,4530 **** msgstr "tyhjä esittely" #: fortran/resolve.c:592 - #, fuzzy msgid "internal function" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: fortran/resolve.c:2051 msgid "elemental procedure" --- 4503,4510 ---- msgstr "tyhjä esittely" #: fortran/resolve.c:592 msgid "internal function" ! msgstr "sisäinen funktio" #: fortran/resolve.c:2051 msgid "elemental procedure" *************** msgstr "" *** 4600,4606 **** #: fortran/resolve.c:6682 #, fuzzy - #| msgid "%qD is not a variable" msgid "iterator variable" msgstr "%qD ei ole muuttuja" --- 4580,4585 ---- *************** msgstr "" *** 4651,4662 **** msgid "Integer overflow when calculating the amount of memory to allocate" msgstr "" ! #: fortran/trans-decl.c:4842 #, c-format msgid "Actual string length does not match the declared one for dummy argument '%s' (%ld/%ld)" msgstr "" ! #: fortran/trans-decl.c:4850 #, c-format msgid "Actual string length is shorter than the declared one for dummy argument '%s' (%ld/%ld)" msgstr "" --- 4630,4641 ---- msgid "Integer overflow when calculating the amount of memory to allocate" msgstr "" ! #: fortran/trans-decl.c:4844 #, c-format msgid "Actual string length does not match the declared one for dummy argument '%s' (%ld/%ld)" msgstr "" ! #: fortran/trans-decl.c:4852 #, c-format msgid "Actual string length is shorter than the declared one for dummy argument '%s' (%ld/%ld)" msgstr "" *************** msgstr "" *** 4671,4682 **** msgid "Unequal character lengths (%ld/%ld) in %s" msgstr "" ! #: fortran/trans-intrinsic.c:6157 #, fuzzy, c-format msgid "Argument NCOPIES of REPEAT intrinsic is negative (its value is %ld)" msgstr "%<__builtin_args_info%>-funktion argumentin pitää olla vakio" ! #: fortran/trans-intrinsic.c:6189 msgid "Argument NCOPIES of REPEAT intrinsic is too large" msgstr "" --- 4650,4661 ---- msgid "Unequal character lengths (%ld/%ld) in %s" msgstr "" ! #: fortran/trans-intrinsic.c:6156 #, fuzzy, c-format msgid "Argument NCOPIES of REPEAT intrinsic is negative (its value is %ld)" msgstr "%<__builtin_args_info%>-funktion argumentin pitää olla vakio" ! #: fortran/trans-intrinsic.c:6188 msgid "Argument NCOPIES of REPEAT intrinsic is too large" msgstr "" *************** msgstr "" *** 4707,4713 **** #: fortran/trans.c:46 msgid "Array reference out of bounds" ! msgstr "" #: fortran/trans.c:47 msgid "Incorrect function return value" --- 4686,4692 ---- #: fortran/trans.c:46 msgid "Array reference out of bounds" ! msgstr "Taulukkoviite rajojen ulkopuolella" #: fortran/trans.c:47 msgid "Incorrect function return value" *************** msgstr "Virheellinen funktion paluuarvo" *** 4715,4721 **** #: fortran/trans.c:573 msgid "Memory allocation failed" ! msgstr "" #: fortran/trans.c:649 fortran/trans.c:1270 msgid "Allocation would exceed memory limit" --- 4694,4700 ---- #: fortran/trans.c:573 msgid "Memory allocation failed" ! msgstr "Muistinvaraus epäonnistui" #: fortran/trans.c:649 fortran/trans.c:1270 msgid "Allocation would exceed memory limit" *************** msgstr "%s: Ei voi avata tulostetiedosto *** 4896,4902 **** #: java/jvgenmain.c:165 #, c-format msgid "%s: Failed to close output file %s\n" ! msgstr "%s: Tulostetiedoston %s sulkeminen epäonnistui\n" #: objc/lang-specs.h:30 objc/lang-specs.h:41 msgid "GNU Objective C no longer supports traditional compilation" --- 4875,4881 ---- #: java/jvgenmain.c:165 #, c-format msgid "%s: Failed to close output file %s\n" ! msgstr "%s: Tulostiedoston %s sulkeminen epäonnistui\n" #: objc/lang-specs.h:30 objc/lang-specs.h:41 msgid "GNU Objective C no longer supports traditional compilation" *************** msgstr "" *** 4906,4912 **** msgid "objc-cpp-output is deprecated; please use objective-c-cpp-output instead" msgstr "" ! #: java/jvspec.c:79 ada/gcc-interface/lang-specs.h:33 gcc.c:844 msgid "-pg and -fomit-frame-pointer are incompatible" msgstr "" --- 4885,4891 ---- msgid "objc-cpp-output is deprecated; please use objective-c-cpp-output instead" msgstr "" ! #: java/jvspec.c:79 ada/gcc-interface/lang-specs.h:33 gcc.c:845 msgid "-pg and -fomit-frame-pointer are incompatible" msgstr "" *************** msgstr "" *** 4967,4973 **** msgid "consider using '-pg' instead of '-p' with gprof(1)" msgstr "" ! #: config/sh/sh.h:360 config/sh/sh.h:363 msgid "SH2a does not support little-endian" msgstr "" --- 4946,4952 ---- msgid "consider using '-pg' instead of '-p' with gprof(1)" msgstr "" ! #: config/sh/sh.h:363 config/sh/sh.h:366 msgid "SH2a does not support little-endian" msgstr "" *************** msgid "the -shared option is not current *** 5032,5038 **** msgstr "" #: config/i386/mingw-w64.h:82 config/i386/mingw32.h:115 ! #: config/i386/cygwin.h:113 msgid "shared and mdll are not compatible" msgstr "" --- 5011,5017 ---- msgstr "" #: config/i386/mingw-w64.h:82 config/i386/mingw32.h:115 ! #: config/i386/cygwin.h:109 msgid "shared and mdll are not compatible" msgstr "" *************** msgstr "" *** 5058,5064 **** #: config/arm/arm.h:206 #, fuzzy - #| msgid "-mbig-endian and -mlittle-endian may not be used together" msgid "-mfloat-abi=soft and -mfloat-abi=hard may not be used together" msgstr "valitsimia -mbig-endian ja -mlittle-endian ei voi käyttää yhdessä" --- 5037,5042 ---- *************** msgid "-mbig-endian and -mlittle-endian *** 5067,5101 **** msgstr "valitsimia -mbig-endian ja -mlittle-endian ei voi käyttää yhdessä" #: config/bfin/elf.h:55 - #, fuzzy msgid "no processor type specified for linking" ! msgstr "%J ristiriitaiset tyyppimääreet %qD:lle" #: config/vax/vax.h:46 config/vax/vax.h:47 #, fuzzy - #| msgid "profiling not supported with -mg\n" msgid "profiling not supported with -mg" msgstr "profilointia ei tueta valitsimen -mg kanssa\n" ! #: gcc.c:704 #, fuzzy - #| msgid "weakref is not supported in this configuration" msgid "-fuse-linker-plugin is not supported in this configuration" msgstr "weakref ei ole tuettu tässä konfiguraatiossa" ! #: gcc.c:718 msgid "cannot specify -static with -fsanitize=address" msgstr "" ! #: gcc.c:720 msgid "-fsanitize=thread linking must be done with -pie or -shared" msgstr "" ! #: gcc.c:1012 msgid "GNU C no longer supports -traditional without -E" ! msgstr "" ! #: gcc.c:1021 msgid "-E or -x required when input is from standard input" msgstr "" --- 5045,5076 ---- msgstr "valitsimia -mbig-endian ja -mlittle-endian ei voi käyttää yhdessä" #: config/bfin/elf.h:55 msgid "no processor type specified for linking" ! msgstr "linkitystä varten ei ole määritelty suoritinta" #: config/vax/vax.h:46 config/vax/vax.h:47 #, fuzzy msgid "profiling not supported with -mg" msgstr "profilointia ei tueta valitsimen -mg kanssa\n" ! #: gcc.c:705 #, fuzzy msgid "-fuse-linker-plugin is not supported in this configuration" msgstr "weakref ei ole tuettu tässä konfiguraatiossa" ! #: gcc.c:719 msgid "cannot specify -static with -fsanitize=address" msgstr "" ! #: gcc.c:721 msgid "-fsanitize=thread linking must be done with -pie or -shared" msgstr "" ! #: gcc.c:1013 msgid "GNU C no longer supports -traditional without -E" ! msgstr "GCC ei enää tue valitsinta -traditional ilman valitsinta -E" ! #: gcc.c:1022 msgid "-E or -x required when input is from standard input" msgstr "" *************** msgstr "" *** 5148,5164 **** #: fortran/lang.opt:230 #, fuzzy - #| msgid "Warn about implicit conversion" msgid "Warn about most implicit conversions" msgstr "Varoita implisiittisistä muunnoksista" ! #: fortran/lang.opt:234 common.opt:542 msgid "Print extra (possibly unwanted) warnings" msgstr "Näytä ylimääräisiä (mahdollisesti ei-toivottuja) varoituksia" #: fortran/lang.opt:238 #, fuzzy - #| msgid "Warn about implicit function declarations" msgid "Warn about function call elimination" msgstr "Varoita implisiittisistä funktioesittelyistä" --- 5123,5137 ---- #: fortran/lang.opt:230 #, fuzzy msgid "Warn about most implicit conversions" msgstr "Varoita implisiittisistä muunnoksista" ! #: fortran/lang.opt:234 common.opt:546 msgid "Print extra (possibly unwanted) warnings" msgstr "Näytä ylimääräisiä (mahdollisesti ei-toivottuja) varoituksia" #: fortran/lang.opt:238 #, fuzzy msgid "Warn about function call elimination" msgstr "Varoita implisiittisistä funktioesittelyistä" *************** msgstr "" *** 5215,5221 **** #: fortran/lang.opt:294 #, fuzzy - #| msgid "Warn about misuses of pragmas" msgid "Warn about unused dummy arguments." msgstr "Varoita pragmain väärästä käytöstä" --- 5188,5193 ---- *************** msgstr "" *** 5262,5272 **** #: fortran/lang.opt:350 msgid "Use big-endian format for unformatted files" ! msgstr "" #: fortran/lang.opt:354 msgid "Use little-endian format for unformatted files" ! msgstr "" #: fortran/lang.opt:358 msgid "Use native format for unformatted files" --- 5234,5244 ---- #: fortran/lang.opt:350 msgid "Use big-endian format for unformatted files" ! msgstr "Käytä big-endian-muotoa muotoilemattomille tiedostoille" #: fortran/lang.opt:354 msgid "Use little-endian format for unformatted files" ! msgstr "Käytä little-endian-muotoa muotoilemattomille tiedostoille" #: fortran/lang.opt:358 msgid "Use native format for unformatted files" *************** msgstr "" *** 5304,5312 **** msgid "Allow dollar signs in entity names" msgstr "" ! #: fortran/lang.opt:394 config/alpha/alpha.opt:31 common.opt:656 ! #: common.opt:830 common.opt:834 common.opt:838 common.opt:842 common.opt:1227 ! #: common.opt:1360 common.opt:1364 msgid "Does nothing. Preserved for backward compatibility." msgstr "" --- 5276,5284 ---- msgid "Allow dollar signs in entity names" msgstr "" ! #: fortran/lang.opt:394 config/alpha/alpha.opt:31 common.opt:660 ! #: common.opt:834 common.opt:838 common.opt:842 common.opt:846 common.opt:1231 ! #: common.opt:1364 common.opt:1368 msgid "Does nothing. Preserved for backward compatibility." msgstr "" *************** msgstr "" *** 5498,5504 **** #: fortran/lang.opt:598 msgid "Compile all program units at once and check all interfaces" ! msgstr "" #: fortran/lang.opt:638 msgid "Statically link the GNU Fortran helper library (libgfortran)" --- 5470,5476 ---- #: fortran/lang.opt:598 msgid "Compile all program units at once and check all interfaces" ! msgstr "Käännä kaikki ohjelmayksiköt kerralla ja tarkasta kaikki rajapinnat" #: fortran/lang.opt:638 msgid "Statically link the GNU Fortran helper library (libgfortran)" *************** msgstr "Noudata ISO Fortran 2009 -standa *** 5514,5520 **** #: fortran/lang.opt:650 #, fuzzy - #| msgid "Conform to the ISO Fortran 2008 standard" msgid "Conform to the ISO Fortran 2008 standard including TS 29113" msgstr "Noudata ISO Fortran 2009 -standardia" --- 5486,5491 ---- *************** msgstr "makron nimi puuttuu %qs:n jälke *** 5544,5550 **** #: c-family/c.opt:70 c-family/c.opt:73 c-family/c.opt:76 c-family/c.opt:79 #: c-family/c.opt:175 c-family/c.opt:178 c-family/c.opt:216 c-family/c.opt:220 #: c-family/c.opt:232 c-family/c.opt:1253 c-family/c.opt:1261 ! #: config/darwin.opt:53 common.opt:300 common.opt:303 common.opt:2399 #, c-format msgid "missing filename after %qs" msgstr "tiedostonimi puuttuu %qs:n jälkeen" --- 5515,5521 ---- #: c-family/c.opt:70 c-family/c.opt:73 c-family/c.opt:76 c-family/c.opt:79 #: c-family/c.opt:175 c-family/c.opt:178 c-family/c.opt:216 c-family/c.opt:220 #: c-family/c.opt:232 c-family/c.opt:1253 c-family/c.opt:1261 ! #: config/darwin.opt:53 common.opt:300 common.opt:303 common.opt:2403 #, c-format msgid "missing filename after %qs" msgstr "tiedostonimi puuttuu %qs:n jälkeen" *************** msgstr "" *** 5562,5572 **** #: c-family/c.opt:186 msgid "Do not discard comments" ! msgstr "" #: c-family/c.opt:190 msgid "Do not discard comments in macro expansions" ! msgstr "" #: c-family/c.opt:194 msgid "-D[=]\tDefine a with as its value. If just is given, is taken to be 1" --- 5533,5543 ---- #: c-family/c.opt:186 msgid "Do not discard comments" ! msgstr "Älä hylkää kommentteja" #: c-family/c.opt:190 msgid "Do not discard comments in macro expansions" ! msgstr "Älä hylkää kommentteja makroja laajennettaessa" #: c-family/c.opt:194 msgid "-D[=]\tDefine a with as its value. If just is given, is taken to be 1" *************** msgstr "Luo make-riippuvuudet ja käänn *** 5594,5600 **** #: c-family/c.opt:221 #, fuzzy - #| msgid "Write dependency output to the given file" msgid "-MF \tWrite dependency output to the given file" msgstr "Kirjoita riippuvuustuloste annettuun tiedostoon" --- 5565,5570 ---- *************** msgstr "" *** 5629,5635 **** #: c-family/c.opt:249 msgid "Do not generate #line directives" ! msgstr "" #: c-family/c.opt:253 msgid "-U\tUndefine " --- 5599,5605 ---- #: c-family/c.opt:249 msgid "Do not generate #line directives" ! msgstr "Älä luo #line-direktiivejä" #: c-family/c.opt:253 msgid "-U\tUndefine " *************** msgstr "Varoita C:n rakenteista, jotka e *** 5670,5688 **** #: c-family/c.opt:296 #, fuzzy - #| msgid "Deprecated in favor of -std=c99" msgid "Deprecated in favor of -Wc++11-compat" msgstr "Vanhentunut, ks. -std=c99" #: c-family/c.opt:300 #, fuzzy - #| msgid "Warn about C++ constructs whose meaning differs between ISO C++ 1998 and ISO C++ 201x" msgid "Warn about C++ constructs whose meaning differs between ISO C++ 1998 and ISO C++ 2011" msgstr "Varoita C++:n rakenteista, joilla on eri merkitys ISO C++ 1998- ja ISO C++ 201x -standardeissa" #: c-family/c.opt:304 msgid "Warn about casts which discard qualifiers" ! msgstr "" #: c-family/c.opt:308 msgid "Warn about subscripts whose type is \"char\"" --- 5640,5656 ---- #: c-family/c.opt:296 #, fuzzy msgid "Deprecated in favor of -Wc++11-compat" msgstr "Vanhentunut, ks. -std=c99" #: c-family/c.opt:300 #, fuzzy msgid "Warn about C++ constructs whose meaning differs between ISO C++ 1998 and ISO C++ 2011" msgstr "Varoita C++:n rakenteista, joilla on eri merkitys ISO C++ 1998- ja ISO C++ 201x -standardeissa" #: c-family/c.opt:304 msgid "Warn about casts which discard qualifiers" ! msgstr "Varoita tyyppimuunnoksista, jotka hylkäävät määreet" #: c-family/c.opt:308 msgid "Warn about subscripts whose type is \"char\"" *************** msgstr "Varoita â€charâ€-tyypillä ind *** 5690,5700 **** #: c-family/c.opt:312 msgid "Warn about variables that might be changed by \"longjmp\" or \"vfork\"" ! msgstr "" #: c-family/c.opt:316 msgid "Warn about possibly nested block comments, and C++ comments spanning more than one physical line" ! msgstr "" #: c-family/c.opt:320 msgid "Synonym for -Wcomment" --- 5658,5668 ---- #: c-family/c.opt:312 msgid "Warn about variables that might be changed by \"longjmp\" or \"vfork\"" ! msgstr "Varoita muuttujista, jotka â€longjmp†tai â€vfork†saattavat muuttaa" #: c-family/c.opt:316 msgid "Warn about possibly nested block comments, and C++ comments spanning more than one physical line" ! msgstr "Varoita mahdollisista sisäkkäisistä lohkokommenteista ja C++-kommenteista, jotka ulottuvat useammalle kuin yhdelle fyysiselle riville" #: c-family/c.opt:320 msgid "Synonym for -Wcomment" *************** msgstr "" *** 5706,5712 **** #: c-family/c.opt:328 #, fuzzy - #| msgid "converting NULL to non-pointer type" msgid "Warn for converting NULL from/to a non-pointer type" msgstr "NULLin muunnos epäosoitintyypiksi" --- 5674,5679 ---- *************** msgstr "" *** 5720,5726 **** #: c-family/c.opt:340 #, fuzzy - #| msgid "Warn about non-virtual destructors" msgid "Warn about deleting polymorphic objects with non-virtual destructors" msgstr "Varoita epävirtuaalisista hajottimista" --- 5687,5692 ---- *************** msgstr "Varoita Effective C++ -tyylisäà *** 5738,5748 **** #: c-family/c.opt:360 msgid "Warn about an empty body in an if or else statement" ! msgstr "Varoita tyhjästä rungosta if-tai else-lauseissa" #: c-family/c.opt:364 msgid "Warn about stray tokens after #elif and #endif" ! msgstr "" #: c-family/c.opt:368 msgid "Warn about comparison of different enum types" --- 5704,5714 ---- #: c-family/c.opt:360 msgid "Warn about an empty body in an if or else statement" ! msgstr "Varoita tyhjästä rungosta if- ja else-lauseissa" #: c-family/c.opt:364 msgid "Warn about stray tokens after #elif and #endif" ! msgstr "Varoita ylimääräisistä merkeistä #elif- ja #endif-direktiivien perässä" #: c-family/c.opt:368 msgid "Warn about comparison of different enum types" *************** msgstr "" *** 5754,5760 **** #: c-family/c.opt:384 msgid "Warn if testing floating point numbers for equality" ! msgstr "" #: c-family/c.opt:388 c-family/c.opt:416 msgid "Warn about printf/scanf/strftime/strfmon format string anomalies" --- 5720,5726 ---- #: c-family/c.opt:384 msgid "Warn if testing floating point numbers for equality" ! msgstr "Varoita liukulukujen yhtäsuuruusvertailuista" #: c-family/c.opt:388 c-family/c.opt:416 msgid "Warn about printf/scanf/strftime/strfmon format string anomalies" *************** msgstr "Varoita muuttujista, jotka alust *** 5794,5806 **** #: c-family/c.opt:428 #, fuzzy - #| msgid "Warn about implicit function declarations" msgid "Warn about implicit declarations" msgstr "Varoita implisiittisistä funktioesittelyistä" #: c-family/c.opt:432 #, fuzzy - #| msgid "Warn about implicit conversion" msgid "Warn about implicit conversions from \"float\" to \"double\"" msgstr "Varoita implisiittisistä muunnoksista" --- 5760,5770 ---- *************** msgid "Warn about C++11 inheriting const *** 5817,5825 **** msgstr "" #: c-family/c.opt:451 - #, fuzzy msgid "Warn when there is a cast to a pointer from an integer of a different size" ! msgstr "tyyppimuunnos erisuuruisesta kokonaisluvusta osoittimeksi" #: c-family/c.opt:455 msgid "Warn about invalid uses of the \"offsetof\" macro" --- 5781,5788 ---- msgstr "" #: c-family/c.opt:451 msgid "Warn when there is a cast to a pointer from an integer of a different size" ! msgstr "Varoita osoittimien tyyppimuunnoksista erikokoisiksi kokonaisluvuiksi" #: c-family/c.opt:455 msgid "Warn about invalid uses of the \"offsetof\" macro" *************** msgstr "Varoita epäilyttävistä â€mai *** 5852,5858 **** #: c-family/c.opt:487 msgid "Warn about possibly missing braces around initializers" ! msgstr "" #: c-family/c.opt:491 msgid "Warn about global functions without previous declarations" --- 5815,5821 ---- #: c-family/c.opt:487 msgid "Warn about possibly missing braces around initializers" ! msgstr "Varoita mahdollisesti puuttuvista aaltosuluista alustimissa" #: c-family/c.opt:491 msgid "Warn about global functions without previous declarations" *************** msgstr "" *** 5860,5866 **** #: c-family/c.opt:495 msgid "Warn about missing fields in struct initializers" ! msgstr "" #: c-family/c.opt:502 msgid "Warn about functions which might be candidates for format attributes" --- 5823,5829 ---- #: c-family/c.opt:495 msgid "Warn about missing fields in struct initializers" ! msgstr "Varoita puuttuvista kentistä struct-alustimissa" #: c-family/c.opt:502 msgid "Warn about functions which might be candidates for format attributes" *************** msgstr "Varoita annetuista include-hakem *** 5884,5890 **** #: c-family/c.opt:526 msgid "Warn about function parameters declared without a type specifier in K&R-style functions" ! msgstr "" #: c-family/c.opt:530 msgid "Warn about global functions without prototypes" --- 5847,5853 ---- #: c-family/c.opt:526 msgid "Warn about function parameters declared without a type specifier in K&R-style functions" ! msgstr "Varoita funktioparametreistä, jotka on esitelty ilman tyyppimäärittelyjä K&R-tyylisissä funktioissa" #: c-family/c.opt:530 msgid "Warn about global functions without prototypes" *************** msgid "Warn about NULL being passed to a *** 5923,5932 **** msgstr "" #: c-family/c.opt:574 - #, fuzzy - #| msgid "Warn about non-normalised Unicode strings" msgid "-Wnormalized=\tWarn about non-normalised Unicode strings" ! msgstr "Varoita normalisoimattomista Unicode-merkkijonoista" #: c-family/c.opt:578 msgid "Warn if a C-style cast is used in a program" --- 5886,5893 ---- msgstr "" #: c-family/c.opt:574 msgid "-Wnormalized=\tWarn about non-normalised Unicode strings" ! msgstr "-Wnormalized=\tVaroita normalisoimattomista Unicode-merkkijonoista" #: c-family/c.opt:578 msgid "Warn if a C-style cast is used in a program" *************** msgstr "" *** 5977,5982 **** --- 5938,5944 ---- msgid "Warn when a pointer is cast to an integer of a different size" msgstr "tyyppimuunnos osoittimesta erisuuruiseen kokonaislukuun" + # vähän fuzzy #: c-family/c.opt:634 msgid "Warn about misuses of pragmas" msgstr "Varoita pragmain väärästä käytöstä" *************** msgstr "Varoita kun kääntäjä järjes *** 5999,6005 **** #: c-family/c.opt:654 msgid "Warn about returning a pointer/reference to a local or temporary variable." ! msgstr "" #: c-family/c.opt:658 msgid "Warn whenever a function's return type defaults to \"int\" (C), or about inconsistent return types (C++)" --- 5961,5967 ---- #: c-family/c.opt:654 msgid "Warn about returning a pointer/reference to a local or temporary variable." ! msgstr "Varoita osoittimen/viittauksen palauttamisesta paikalliseen tai väliaikiseen muuttujaan." #: c-family/c.opt:658 msgid "Warn whenever a function's return type defaults to \"int\" (C), or about inconsistent return types (C++)" *************** msgid "Warn about macros defined in the *** 6082,6094 **** msgstr "" #: c-family/c.opt:766 - #, fuzzy msgid "Warn if a caller of a function, marked with attribute warn_unused_result, does not use its return value" ! msgstr "%Hattribuutilla warn_unused_result esitellyn funktion paluuarvoa ei huomioida" #: c-family/c.opt:770 #, fuzzy - #| msgid "Warn about unrecognized pragmas" msgid "Warn about using variadic macros" msgstr "Varoita tuntemattomista pragmoista" --- 6044,6054 ---- msgstr "" #: c-family/c.opt:766 msgid "Warn if a caller of a function, marked with attribute warn_unused_result, does not use its return value" ! msgstr "Varoita, jos attribuutilla warn_unused_result merkitty funktion kutsuja ei käytä paluuarvoa" #: c-family/c.opt:770 #, fuzzy msgid "Warn about using variadic macros" msgstr "Varoita tuntemattomista pragmoista" *************** msgstr "" *** 6116,6136 **** # puhuta, miksi tässä? #: c-family/c.opt:790 #, fuzzy - #| msgid "In C++, nonzero means warn about deprecated conversion from string literals to `char *'. In C, similar warning, except that the conversion is of course not deprecated by the ISO C standard." msgid "In C++, nonzero means warn about deprecated conversion from string literals to 'char *'. In C, similar warning, except that the conversion is of course not deprecated by the ISO C standard." msgstr "C++:ssa varoitetaan vanhentuneesta merkkijonoliteraalien tyyppimuunnoksesta â€char *â€:een. C:ssä annetaan vastaava varoitus, vaikkei muunnos ISO C -standardin mukaan tietenkään ole vanhentunut." #: c-family/c.opt:794 #, fuzzy - #| msgid "Warn when a label is unused" msgid "Warn when a literal '0' is used as null pointer" msgstr "Varoita kun nimiö on käyttämätön" #: c-family/c.opt:798 - #, fuzzy - #| msgid "Warn about misuses of pragmas" msgid "Warn about useless casts" ! msgstr "Varoita pragmain väärästä käytöstä" #: c-family/c.opt:802 msgid "A synonym for -std=c89 (for C) or -std=c++98 (for C++)" --- 6076,6092 ---- # puhuta, miksi tässä? #: c-family/c.opt:790 #, fuzzy msgid "In C++, nonzero means warn about deprecated conversion from string literals to 'char *'. In C, similar warning, except that the conversion is of course not deprecated by the ISO C standard." msgstr "C++:ssa varoitetaan vanhentuneesta merkkijonoliteraalien tyyppimuunnoksesta â€char *â€:een. C:ssä annetaan vastaava varoitus, vaikkei muunnos ISO C -standardin mukaan tietenkään ole vanhentunut." #: c-family/c.opt:794 #, fuzzy msgid "Warn when a literal '0' is used as null pointer" msgstr "Varoita kun nimiö on käyttämätön" #: c-family/c.opt:798 msgid "Warn about useless casts" ! msgstr "Varoita tarpeettomista tyyppimuunnoksista" #: c-family/c.opt:802 msgid "A synonym for -std=c89 (for C) or -std=c++98 (for C++)" *************** msgstr "" *** 6161,6167 **** #: c-family/c.opt:825 c-family/c.opt:958 c-family/c.opt:1201 #: c-family/c.opt:1205 c-family/c.opt:1221 #, fuzzy - #| msgid "switch %qs is no longer supported" msgid "No longer supported" msgstr "valitsin %qs ei ole enää tuettu" --- 6117,6122 ---- *************** msgid "Allow the arguments of the '?' op *** 6186,6194 **** msgstr "Salli â€?â€-operaattorin argumenttien olla eri tyyppiä" #: c-family/c.opt:856 c-family/c.opt:876 c-family/c.opt:1074 ! #: config/sh/sh.opt:209 common.opt:949 common.opt:1135 common.opt:1439 ! #: common.opt:1713 common.opt:1749 common.opt:1834 common.opt:1838 ! #: common.opt:1914 common.opt:1996 common.opt:2020 common.opt:2108 msgid "Does nothing. Preserved for backward compatibility." msgstr "" --- 6141,6149 ---- msgstr "Salli â€?â€-operaattorin argumenttien olla eri tyyppiä" #: c-family/c.opt:856 c-family/c.opt:876 c-family/c.opt:1074 ! #: config/sh/sh.opt:213 common.opt:953 common.opt:1139 common.opt:1443 ! #: common.opt:1717 common.opt:1753 common.opt:1838 common.opt:1842 ! #: common.opt:1918 common.opt:2000 common.opt:2024 common.opt:2112 msgid "Does nothing. Preserved for backward compatibility." msgstr "" *************** msgstr "" *** 6260,6270 **** #: c-family/c.opt:933 msgid "Recognize GNU-defined keywords" ! msgstr "" #: c-family/c.opt:937 msgid "Generate code for GNU runtime environment" ! msgstr "" #: c-family/c.opt:941 msgid "Use traditional GNU semantics for inline functions" --- 6215,6225 ---- #: c-family/c.opt:933 msgid "Recognize GNU-defined keywords" ! msgstr "Tunnista GNU-määritellyt avainsanat" #: c-family/c.opt:937 msgid "Generate code for GNU runtime environment" ! msgstr "Tuota koodi GNU-suoritusympäristölle" #: c-family/c.opt:941 msgid "Use traditional GNU semantics for inline functions" *************** msgstr "" *** 6361,6367 **** #: c-family/c.opt:1062 #, fuzzy - #| msgid "Conform to the ISO 1990 C standard as amended in 1994" msgid "Conform to the Objective-C 1.0 language as implemented in GCC 4.0" msgstr "Noudata ISO 1990 C -standardia vuoden 1994 korjauksineen" --- 6316,6321 ---- *************** msgstr "" *** 6452,6458 **** #: c-family/c.opt:1173 #, fuzzy - #| msgid "Do not generate thread-safe code for initializing local statics" msgid "-fno-threadsafe-statics\tDo not generate thread-safe code for initializing local statics" msgstr "Älä luo säieturvallista koodia paikallisten staattisten muuttujien alustamiseksi" --- 6406,6411 ---- *************** msgstr "" *** 6534,6550 **** #: c-family/c.opt:1266 #, fuzzy - #| msgid "Specify as a prefix for next two options" msgid "-iprefix \tSpecify as a prefix for next two options" msgstr "Määrittele etuliitteeksi seuraaville kahdelle valitsimelle" #: c-family/c.opt:1270 msgid "-isysroot \tSet to be the system root directory" ! msgstr "" #: c-family/c.opt:1274 msgid "-isystem \tAdd to the start of the system include path" ! msgstr "" #: c-family/c.opt:1278 msgid "-iquote \tAdd to the end of the quote include path" --- 6487,6502 ---- #: c-family/c.opt:1266 #, fuzzy msgid "-iprefix \tSpecify as a prefix for next two options" msgstr "Määrittele etuliitteeksi seuraaville kahdelle valitsimelle" #: c-family/c.opt:1270 msgid "-isysroot \tSet to be the system root directory" ! msgstr "-isysroot \tAseta järjestelmän juurihakemistoksi" #: c-family/c.opt:1274 msgid "-isystem \tAdd to the start of the system include path" ! msgstr "-isystem \tLisää järjestelmän include-polun alkuun" #: c-family/c.opt:1278 msgid "-iquote \tAdd to the end of the quote include path" *************** msgstr "" *** 6576,6613 **** #: c-family/c.opt:1320 c-family/c.opt:1324 #, fuzzy - #| msgid "Conform to the ISO 1998 C++ standard with GNU extensions" msgid "Conform to the ISO 1998 C++ standard revised by the 2003 technical corrigendum" msgstr "Noudata ISO 1998 C++ -standardia GNU-laajennoksineen" #: c-family/c.opt:1328 - #, fuzzy - #| msgid "Conform to the ISO 1998 C++ standard with GNU extensions" msgid "Conform to the ISO 2011 C++ standard (experimental and incomplete support)" ! msgstr "Noudata ISO 1998 C++ -standardia GNU-laajennoksineen" #: c-family/c.opt:1332 #, fuzzy - #| msgid "Deprecated in favor of -std=c99" msgid "Deprecated in favor of -std=c++11" msgstr "Vanhentunut, ks. -std=c99" - # Viesti ei jatku englanniksikaan pidemmälle. #: c-family/c.opt:1336 - #, fuzzy - #| msgid "Conform to the ISO 1998 C++ standard, with extensions that are likely to" msgid "Conform to the ISO 201y(7?) C++ draft standard (experimental and incomplete support)" ! msgstr "Noudata ISO 1998 C++ -standardia laajennoksineen, jotka todennäköisesti" #: c-family/c.opt:1340 c-family/c.opt:1426 #, fuzzy - #| msgid "Conform to the ISO 1990 C standard as amended in 1994" msgid "Conform to the ISO 2011 C standard (experimental and incomplete support)" msgstr "Noudata ISO 1990 C -standardia vuoden 1994 korjauksineen" #: c-family/c.opt:1344 #, fuzzy - #| msgid "Deprecated in favor of -std=c99" msgid "Deprecated in favor of -std=c11" msgstr "Vanhentunut, ks. -std=c99" --- 6528,6556 ---- #: c-family/c.opt:1320 c-family/c.opt:1324 #, fuzzy msgid "Conform to the ISO 1998 C++ standard revised by the 2003 technical corrigendum" msgstr "Noudata ISO 1998 C++ -standardia GNU-laajennoksineen" #: c-family/c.opt:1328 msgid "Conform to the ISO 2011 C++ standard (experimental and incomplete support)" ! msgstr "Noudata ISO 2011 C++ -standardia (kokeellinen ja epätäydellinen tuki)" #: c-family/c.opt:1332 #, fuzzy msgid "Deprecated in favor of -std=c++11" msgstr "Vanhentunut, ks. -std=c99" #: c-family/c.opt:1336 msgid "Conform to the ISO 201y(7?) C++ draft standard (experimental and incomplete support)" ! msgstr "Noudata ISO 201y(7?) C++ -standardiluonnosta (kokeellinen ja epätäydellinen tuki)" #: c-family/c.opt:1340 c-family/c.opt:1426 #, fuzzy msgid "Conform to the ISO 2011 C standard (experimental and incomplete support)" msgstr "Noudata ISO 1990 C -standardia vuoden 1994 korjauksineen" #: c-family/c.opt:1344 #, fuzzy msgid "Deprecated in favor of -std=c11" msgstr "Vanhentunut, ks. -std=c99" *************** msgstr "Vanhentunut, ks. -std=c99" *** 6625,6661 **** #: c-family/c.opt:1364 c-family/c.opt:1369 #, fuzzy - #| msgid "Conform to the ISO 1998 C++ standard with GNU extensions" msgid "Conform to the ISO 1998 C++ standard revised by the 2003 technical" msgstr "Noudata ISO 1998 C++ -standardia GNU-laajennoksineen" #: c-family/c.opt:1374 #, fuzzy - #| msgid "Conform to the ISO 1998 C++ standard, with GNU extensions and" msgid "Conform to the ISO 2011 C++ standard with GNU extensions (experimental and incomplete support)" msgstr "Noudata ISO 1998 C++ -standardia GNU-laajennoksineen ja" #: c-family/c.opt:1378 #, fuzzy - #| msgid "Deprecated in favor of -std=c99" msgid "Deprecated in favor of -std=gnu++11" msgstr "Vanhentunut, ks. -std=c99" #: c-family/c.opt:1382 #, fuzzy - #| msgid "Conform to the ISO 1998 C++ standard, with GNU extensions and" msgid "Conform to the ISO 201y(7?) C++ draft standard with GNU extensions (experimental and incomplete support)" msgstr "Noudata ISO 1998 C++ -standardia GNU-laajennoksineen ja" #: c-family/c.opt:1386 #, fuzzy - #| msgid "Conform to the ISO 1998 C++ standard, with GNU extensions and" msgid "Conform to the ISO 2011 C standard with GNU extensions (experimental and incomplete support)" msgstr "Noudata ISO 1998 C++ -standardia GNU-laajennoksineen ja" #: c-family/c.opt:1390 #, fuzzy - #| msgid "Deprecated in favor of -std=c99" msgid "Deprecated in favor of -std=gnu11" msgstr "Vanhentunut, ks. -std=c99" --- 6568,6598 ---- *************** msgstr "" *** 6693,6699 **** #: ada/gcc-interface/lang.opt:63 #, fuzzy - #| msgid "Synonym for -Wcomment" msgid "Synonym of -gnatk8" msgstr "Sama kuin -Wcomment" --- 6630,6635 ---- *************** msgstr "" *** 6747,6753 **** #: go/lang.opt:70 #, fuzzy - #| msgid "function declared % has a % statement" msgid "Functions which return values must end with return statements" msgstr "%-esitellyllä funktiolla on %-lause" --- 6683,6688 ---- *************** msgstr "" *** 6787,6793 **** #: config/mcore/mcore.opt:35 config/score/score.opt:23 #: config/moxie/moxie.opt:23 msgid "Generate big-endian code" ! msgstr "" #: config/mcore/mcore.opt:39 msgid "Emit call graph information" --- 6722,6728 ---- #: config/mcore/mcore.opt:35 config/score/score.opt:23 #: config/moxie/moxie.opt:23 msgid "Generate big-endian code" ! msgstr "Tuota big-endian-koodia" #: config/mcore/mcore.opt:39 msgid "Emit call graph information" *************** msgstr "" *** 6804,6810 **** #: config/mcore/mcore.opt:51 config/score/score.opt:27 #: config/moxie/moxie.opt:27 msgid "Generate little-endian code" ! msgstr "" #: config/mcore/mcore.opt:56 config/fr30/fr30.opt:27 msgid "Assume that run-time support has been provided, so omit -lsim from the linker command line" --- 6739,6745 ---- #: config/mcore/mcore.opt:51 config/score/score.opt:27 #: config/moxie/moxie.opt:27 msgid "Generate little-endian code" ! msgstr "Tuota little-endian-koodia" #: config/mcore/mcore.opt:56 config/fr30/fr30.opt:27 msgid "Assume that run-time support has been provided, so omit -lsim from the linker command line" *************** msgstr "" *** 6824,6835 **** #: config/mcore/mcore.opt:75 msgid "Always treat bitfields as int-sized" ! msgstr "" #: config/linux-android.opt:23 - #, fuzzy msgid "Generate code for the Android platform." ! msgstr "Käytä AltiVec-käskyjä" #: config/mmix/mmix.opt:24 msgid "For intrinsics library: pass all parameters in registers" --- 6759,6769 ---- #: config/mcore/mcore.opt:75 msgid "Always treat bitfields as int-sized" ! msgstr "Käsittele bittikenttiä aina int-kokoisina" #: config/linux-android.opt:23 msgid "Generate code for the Android platform." ! msgstr "Tuota koodia Android-alustalle." #: config/mmix/mmix.opt:24 msgid "For intrinsics library: pass all parameters in registers" *************** msgstr "" *** 6893,6903 **** #: config/mmix/mmix.opt:95 msgid "Set start-address of the program" ! msgstr "" #: config/mmix/mmix.opt:99 msgid "Set start-address of data" ! msgstr "" #: config/darwin.opt:114 msgid "Generate compile-time CFString objects" --- 6827,6837 ---- #: config/mmix/mmix.opt:95 msgid "Set start-address of the program" ! msgstr "Aseta ohjelman alkuosoite" #: config/mmix/mmix.opt:99 msgid "Set start-address of data" ! msgstr "Aseta datan alkuosoite" #: config/darwin.opt:114 msgid "Generate compile-time CFString objects" *************** msgstr "" *** 6913,6919 **** #: config/darwin.opt:217 msgid "Generate code suitable for executables (NOT shared libs)" ! msgstr "" #: config/darwin.opt:221 msgid "Generate code suitable for fast turn around debugging" --- 6847,6853 ---- #: config/darwin.opt:217 msgid "Generate code suitable for executables (NOT shared libs)" ! msgstr "Tuota suoritettaville tiedostoille sopivaa koodia (EI jaetuille kirjastoille)" #: config/darwin.opt:221 msgid "Generate code suitable for fast turn around debugging" *************** msgid "Do stack checking using bounds in *** 7002,7010 **** msgstr "" #: config/bfin/bfin.opt:102 - #, fuzzy msgid "Enable multicore support" ! msgstr "säiekohtaista muistia ei tueta tälle kohteelle" #: config/bfin/bfin.opt:106 msgid "Build for Core A" --- 6936,6943 ---- msgstr "" #: config/bfin/bfin.opt:102 msgid "Enable multicore support" ! msgstr "Ota käyttöön moniydintuki" #: config/bfin/bfin.opt:106 msgid "Build for Core A" *************** msgstr "" *** 7040,7114 **** #: config/m68k/m68k.opt:30 msgid "Generate code for a 520X" ! msgstr "" #: config/m68k/m68k.opt:34 msgid "Generate code for a 5206e" ! msgstr "" #: config/m68k/m68k.opt:38 msgid "Generate code for a 528x" ! msgstr "" #: config/m68k/m68k.opt:42 msgid "Generate code for a 5307" ! msgstr "" #: config/m68k/m68k.opt:46 msgid "Generate code for a 5407" ! msgstr "" #: config/m68k/m68k.opt:50 config/m68k/m68k.opt:111 msgid "Generate code for a 68000" ! msgstr "" #: config/m68k/m68k.opt:54 msgid "Generate code for a 68010" ! msgstr "" #: config/m68k/m68k.opt:58 config/m68k/m68k.opt:115 msgid "Generate code for a 68020" ! msgstr "" #: config/m68k/m68k.opt:62 msgid "Generate code for a 68040, without any new instructions" ! msgstr "" #: config/m68k/m68k.opt:66 msgid "Generate code for a 68060, without any new instructions" ! msgstr "" #: config/m68k/m68k.opt:70 msgid "Generate code for a 68030" ! msgstr "" #: config/m68k/m68k.opt:74 msgid "Generate code for a 68040" ! msgstr "" #: config/m68k/m68k.opt:78 msgid "Generate code for a 68060" ! msgstr "" #: config/m68k/m68k.opt:82 msgid "Generate code for a 68302" ! msgstr "" #: config/m68k/m68k.opt:86 msgid "Generate code for a 68332" ! msgstr "" #: config/m68k/m68k.opt:91 msgid "Generate code for a 68851" ! msgstr "" #: config/m68k/m68k.opt:95 msgid "Generate code that uses 68881 floating-point instructions" ! msgstr "" #: config/m68k/m68k.opt:99 msgid "Align variables on a 32-bit boundary" ! msgstr "" #: config/m68k/m68k.opt:103 config/score/score.opt:47 config/arm/arm.opt:81 #: config/c6x/c6x.opt:67 --- 6973,7047 ---- #: config/m68k/m68k.opt:30 msgid "Generate code for a 520X" ! msgstr "Tuota 520X-koodia" #: config/m68k/m68k.opt:34 msgid "Generate code for a 5206e" ! msgstr "Tuota 5206e-koodia" #: config/m68k/m68k.opt:38 msgid "Generate code for a 528x" ! msgstr "Tuota 528x-koodia" #: config/m68k/m68k.opt:42 msgid "Generate code for a 5307" ! msgstr "Tuota 5307-koodia" #: config/m68k/m68k.opt:46 msgid "Generate code for a 5407" ! msgstr "Tuota 5407-koodia" #: config/m68k/m68k.opt:50 config/m68k/m68k.opt:111 msgid "Generate code for a 68000" ! msgstr "Tuota 68000-koodia" #: config/m68k/m68k.opt:54 msgid "Generate code for a 68010" ! msgstr "Tuota 68010-koodia" #: config/m68k/m68k.opt:58 config/m68k/m68k.opt:115 msgid "Generate code for a 68020" ! msgstr "Tuota 68020-koodia" #: config/m68k/m68k.opt:62 msgid "Generate code for a 68040, without any new instructions" ! msgstr "Tuota 68040-koodia, ilman uusia käskyjä" #: config/m68k/m68k.opt:66 msgid "Generate code for a 68060, without any new instructions" ! msgstr "Tuota 68060-koodia, ilman uusia käskyjä" #: config/m68k/m68k.opt:70 msgid "Generate code for a 68030" ! msgstr "Tuota 68030-koodia" #: config/m68k/m68k.opt:74 msgid "Generate code for a 68040" ! msgstr "Tuota 68040-koodia" #: config/m68k/m68k.opt:78 msgid "Generate code for a 68060" ! msgstr "Tuota 68060-koodia" #: config/m68k/m68k.opt:82 msgid "Generate code for a 68302" ! msgstr "Tuota 68302-koodia" #: config/m68k/m68k.opt:86 msgid "Generate code for a 68332" ! msgstr "Tuota 68332-koodia" #: config/m68k/m68k.opt:91 msgid "Generate code for a 68851" ! msgstr "Tuota 68851-koodia" #: config/m68k/m68k.opt:95 msgid "Generate code that uses 68881 floating-point instructions" ! msgstr "Tuota koodia, joka käyttää 68881-liukulukukäskyjä" #: config/m68k/m68k.opt:99 msgid "Align variables on a 32-bit boundary" ! msgstr "Kohdista muuttujat 32 bitin rajoille" #: config/m68k/m68k.opt:103 config/score/score.opt:47 config/arm/arm.opt:81 #: config/c6x/c6x.opt:67 *************** msgstr "" *** 7117,7123 **** #: config/m68k/m68k.opt:107 msgid "Use the bit-field instructions" ! msgstr "" #: config/m68k/m68k.opt:119 msgid "Generate code for a ColdFire v4e" --- 7050,7056 ---- #: config/m68k/m68k.opt:107 msgid "Use the bit-field instructions" ! msgstr "Käytä bittikenttäkäskyjä" #: config/m68k/m68k.opt:119 msgid "Generate code for a ColdFire v4e" *************** msgid "Support TLS segment larger than 6 *** 7192,7219 **** msgstr "" #: config/m32c/m32c.opt:23 msgid "-msim\tUse simulator runtime" ! msgstr "" #: config/m32c/m32c.opt:27 msgid "-mcpu=r8c\tCompile code for R8C variants" ! msgstr "" #: config/m32c/m32c.opt:31 msgid "-mcpu=m16c\tCompile code for M16C variants" ! msgstr "" #: config/m32c/m32c.opt:35 msgid "-mcpu=m32cm\tCompile code for M32CM variants" ! msgstr "" #: config/m32c/m32c.opt:39 msgid "-mcpu=m32c\tCompile code for M32C variants" ! msgstr "" #: config/m32c/m32c.opt:43 msgid "-memregs=\tNumber of memreg bytes (default: 16, range: 0..16)" ! msgstr "" #: config/picochip/picochip.opt:23 msgid "Specify which type of AE to target. This option sets the mul-type and byte-access." --- 7125,7158 ---- msgstr "" #: config/m32c/m32c.opt:23 + #, fuzzy msgid "-msim\tUse simulator runtime" ! msgstr "Käytä simulaattorin ajoaikaista ympäristöä." #: config/m32c/m32c.opt:27 + #, fuzzy msgid "-mcpu=r8c\tCompile code for R8C variants" ! msgstr "Käännä koodi R8C-varianteille" #: config/m32c/m32c.opt:31 + #, fuzzy msgid "-mcpu=m16c\tCompile code for M16C variants" ! msgstr "Käännä koodi M16C-varianteille" #: config/m32c/m32c.opt:35 + #, fuzzy msgid "-mcpu=m32cm\tCompile code for M32CM variants" ! msgstr "Käännä koodi M32CM-varianteille" #: config/m32c/m32c.opt:39 + #, fuzzy msgid "-mcpu=m32c\tCompile code for M32C variants" ! msgstr "Käännä koodi M32C-varianteille" #: config/m32c/m32c.opt:43 + #, fuzzy msgid "-memregs=\tNumber of memreg bytes (default: 16, range: 0..16)" ! msgstr "Memreg-tavujen lukumäärä (oletus: 16, lukualue: 0..16)" #: config/picochip/picochip.opt:23 msgid "Specify which type of AE to target. This option sets the mul-type and byte-access." *************** msgstr "" *** 7263,7269 **** #: config/aarch64/aarch64.opt:76 #, fuzzy - #| msgid "Specify ABI to use" msgid "Specify the code model" msgstr "Määrittele käytettävä ABI" --- 7202,7207 ---- *************** msgstr "" *** 7305,7331 **** #: config/ia64/ilp32.opt:3 msgid "Generate ILP32 code" ! msgstr "" #: config/ia64/ilp32.opt:7 msgid "Generate LP64 code" ! msgstr "" #: config/ia64/ia64.opt:28 msgid "Generate big endian code" ! msgstr "" #: config/ia64/ia64.opt:32 msgid "Generate little endian code" ! msgstr "" #: config/ia64/ia64.opt:36 msgid "Generate code for GNU as" ! msgstr "" #: config/ia64/ia64.opt:40 msgid "Generate code for GNU ld" ! msgstr "" #: config/ia64/ia64.opt:44 msgid "Emit stop bits before and after volatile extended asms" --- 7243,7269 ---- #: config/ia64/ilp32.opt:3 msgid "Generate ILP32 code" ! msgstr "Tuota ILP32-koodia" #: config/ia64/ilp32.opt:7 msgid "Generate LP64 code" ! msgstr "Tuota LP64-koodia" #: config/ia64/ia64.opt:28 msgid "Generate big endian code" ! msgstr "Tuota big endian -koodia" #: config/ia64/ia64.opt:32 msgid "Generate little endian code" ! msgstr "Tuota little endian -koodia" #: config/ia64/ia64.opt:36 msgid "Generate code for GNU as" ! msgstr "Tuota koodia GNU as:lle" #: config/ia64/ia64.opt:40 msgid "Generate code for GNU ld" ! msgstr "Tuota koodia GNU ld:lle" #: config/ia64/ia64.opt:44 msgid "Emit stop bits before and after volatile extended asms" *************** msgid "Enable earlier placing stop bits *** 7392,7398 **** msgstr "" #: config/ia64/ia64.opt:114 config/spu/spu.opt:72 config/pa/pa.opt:58 ! #: config/sh/sh.opt:261 msgid "Specify range of registers to make fixed" msgstr "" --- 7330,7336 ---- msgstr "" #: config/ia64/ia64.opt:114 config/spu/spu.opt:72 config/pa/pa.opt:58 ! #: config/sh/sh.opt:265 msgid "Specify range of registers to make fixed" msgstr "" *************** msgstr "" *** 7573,7579 **** #: config/epiphany/epiphany.opt:52 #, fuzzy - #| msgid "Use software floating point" msgid "Use software floating point comparisons" msgstr "Käytä ohjelmistoliukulukuja" --- 7511,7516 ---- *************** msgstr "virheellinen versionumero â€%sâ *** 7604,7610 **** #: config/epiphany/epiphany.opt:80 #, fuzzy - #| msgid "Use indirect calls" msgid "Generate call insns as direct calls" msgstr "Käytä epäsuoria kutsuja" --- 7541,7546 ---- *************** msgstr "" *** 7655,7677 **** #: config/h8300/h8300.opt:23 msgid "Generate H8S code" ! msgstr "" #: config/h8300/h8300.opt:27 msgid "Generate H8SX code" ! msgstr "" #: config/h8300/h8300.opt:31 msgid "Generate H8S/2600 code" ! msgstr "" #: config/h8300/h8300.opt:35 msgid "Make integers 32 bits wide" ! msgstr "" #: config/h8300/h8300.opt:42 msgid "Use registers for argument passing" ! msgstr "" #: config/h8300/h8300.opt:46 msgid "Consider access to byte sized memory slow" --- 7591,7613 ---- #: config/h8300/h8300.opt:23 msgid "Generate H8S code" ! msgstr "Tuota H8S-koodia" #: config/h8300/h8300.opt:27 msgid "Generate H8SX code" ! msgstr "Tuota H8SX-koodia" #: config/h8300/h8300.opt:31 msgid "Generate H8S/2600 code" ! msgstr "Tuota H8S/2600-koodia" #: config/h8300/h8300.opt:35 msgid "Make integers 32 bits wide" ! msgstr "Tee kokonaisluvista 32 bitin levyisiä" #: config/h8300/h8300.opt:42 msgid "Use registers for argument passing" ! msgstr "Käytä rekistereitä argumenttien välittämiseen" #: config/h8300/h8300.opt:46 msgid "Consider access to byte sized memory slow" *************** msgstr "" *** 7683,7697 **** #: config/h8300/h8300.opt:54 msgid "Generate H8/300H code" ! msgstr "" #: config/h8300/h8300.opt:58 msgid "Enable the normal mode" ! msgstr "" #: config/h8300/h8300.opt:62 msgid "Use H8/300 alignment rules" ! msgstr "" #: config/h8300/h8300.opt:66 msgid "Push extended registers on stack in monitor functions" --- 7619,7633 ---- #: config/h8300/h8300.opt:54 msgid "Generate H8/300H code" ! msgstr "Tuota H8/300H-koodia" #: config/h8300/h8300.opt:58 msgid "Enable the normal mode" ! msgstr "Ota käyttöön normaalitila" #: config/h8300/h8300.opt:62 msgid "Use H8/300 alignment rules" ! msgstr "Käytä H8/300-kohdistussääntöjä" #: config/h8300/h8300.opt:66 msgid "Push extended registers on stack in monitor functions" *************** msgstr "Käytä 32-bittistä int-tyyppià *** 7760,7766 **** #: config/pdp11/pdp11.opt:79 config/rs6000/rs6000.opt:162 msgid "Do not use hardware floating point" ! msgstr "" #: config/pdp11/pdp11.opt:83 msgid "Target has split I&D" --- 7696,7702 ---- #: config/pdp11/pdp11.opt:79 config/rs6000/rs6000.opt:162 msgid "Do not use hardware floating point" ! msgstr "Älä käytä laitteistoliukulukuja" #: config/pdp11/pdp11.opt:83 msgid "Target has split I&D" *************** msgstr "" *** 7796,7806 **** #: config/i386/cygming.opt:23 msgid "Create console application" ! msgstr "" #: config/i386/cygming.opt:27 msgid "Generate code for a DLL" ! msgstr "" #: config/i386/cygming.opt:31 msgid "Ignore dllimport for functions" --- 7732,7742 ---- #: config/i386/cygming.opt:23 msgid "Create console application" ! msgstr "Luo konsolisovellus" #: config/i386/cygming.opt:27 msgid "Generate code for a DLL" ! msgstr "Tuota koodia DLL:lle" #: config/i386/cygming.opt:31 msgid "Ignore dllimport for functions" *************** msgstr "" *** 7816,7822 **** #: config/i386/cygming.opt:43 msgid "Create GUI application" ! msgstr "" #: config/i386/cygming.opt:47 config/i386/interix.opt:32 msgid "Use the GNU extension to the PE format for aligned common data" --- 7752,7758 ---- #: config/i386/cygming.opt:43 msgid "Create GUI application" ! msgstr "Luo graafinen käyttöliittymäsovellus" #: config/i386/cygming.opt:47 config/i386/interix.opt:32 msgid "Use the GNU extension to the PE format for aligned common data" *************** msgstr "sizeof(long double) on 16" *** 7853,7859 **** #: config/i386/i386.opt:82 config/i386/i386.opt:229 msgid "Use hardware fp" ! msgstr "" #: config/i386/i386.opt:86 msgid "sizeof(long double) is 12" --- 7789,7795 ---- #: config/i386/i386.opt:82 config/i386/i386.opt:229 msgid "Use hardware fp" ! msgstr "Käytä laitteistoliukulukuja" #: config/i386/i386.opt:86 msgid "sizeof(long double) is 12" *************** msgstr "sizeof(long double) on 12" *** 7861,7867 **** #: config/i386/i386.opt:90 #, fuzzy - #| msgid "Use 128-bit long double" msgid "Use 80-bit long double" msgstr "Käytä 128-bittistä long double -tyyppiä" --- 7797,7802 ---- *************** msgstr "Käytä 128-bittistä long doubl *** 7870,7876 **** msgid "Use 64-bit long double" msgstr "Käytä 64-bittistä long double -tyyppiä" ! #: config/i386/i386.opt:98 config/sh/sh.opt:205 msgid "Reserve space for outgoing arguments in the function prologue" msgstr "" --- 7805,7811 ---- msgid "Use 64-bit long double" msgstr "Käytä 64-bittistä long double -tyyppiä" ! #: config/i386/i386.opt:98 config/sh/sh.opt:209 msgid "Reserve space for outgoing arguments in the function prologue" msgstr "" *************** msgstr "" *** 7967,7985 **** #: config/i386/i386.opt:269 #, fuzzy - #| msgid "Use 32-bit floating-point registers" msgid "Set 80387 floating-point precision to 32-bit" msgstr "Käytä 32-bittisiä liukulukurekistereitä" #: config/i386/i386.opt:273 #, fuzzy - #| msgid "Use 32-bit floating-point registers" msgid "Set 80387 floating-point precision to 64-bit" msgstr "Käytä 32-bittisiä liukulukurekistereitä" #: config/i386/i386.opt:277 #, fuzzy - #| msgid "Use 32-bit floating-point registers" msgid "Set 80387 floating-point precision to 80-bit" msgstr "Käytä 32-bittisiä liukulukurekistereitä" --- 7902,7917 ---- *************** msgstr "" *** 8029,8035 **** #: config/i386/i386.opt:325 #, fuzzy - #| msgid "alias argument not a string" msgid "Valid arguments to -mstringop-strategy=:" msgstr "aliaksen argumentti ei ole merkkijono" --- 7961,7966 ---- *************** msgstr "Tuota 64-bittistä x86-64-koodia *** 8101,8107 **** #: config/i386/i386.opt:440 #, fuzzy - #| msgid "Generate 64bit x86-64 code" msgid "Generate 32bit x86-64 code" msgstr "Tuota 64-bittistä x86-64-koodia" --- 8032,8037 ---- *************** msgstr "" *** 8327,8341 **** #: config/pa/pa.opt:30 config/pa/pa.opt:83 config/pa/pa.opt:91 msgid "Generate PA1.0 code" ! msgstr "" #: config/pa/pa.opt:34 config/pa/pa.opt:95 config/pa/pa.opt:136 msgid "Generate PA1.1 code" ! msgstr "" #: config/pa/pa.opt:38 config/pa/pa.opt:99 msgid "Generate PA2.0 code (requires binutils 2.10 or later)" ! msgstr "" #: config/pa/pa.opt:42 msgid "Generate code for huge switch statements" --- 8257,8271 ---- #: config/pa/pa.opt:30 config/pa/pa.opt:83 config/pa/pa.opt:91 msgid "Generate PA1.0 code" ! msgstr "Tuota PA1.0-koodia" #: config/pa/pa.opt:34 config/pa/pa.opt:95 config/pa/pa.opt:136 msgid "Generate PA1.1 code" ! msgstr "Tuota PA1.0-koodia" #: config/pa/pa.opt:38 config/pa/pa.opt:99 msgid "Generate PA2.0 code (requires binutils 2.10 or later)" ! msgstr "Tuota PA2.0-koodia (vaatii binutils 2.10:n tai uudemman)" #: config/pa/pa.opt:42 msgid "Generate code for huge switch statements" *************** msgstr "" *** 8395,8401 **** #: config/v850/v850.opt:29 msgid "Use registers r2 and r5" ! msgstr "" #: config/v850/v850.opt:33 msgid "Use 4 byte entries in switch tables" --- 8325,8331 ---- #: config/v850/v850.opt:29 msgid "Use registers r2 and r5" ! msgstr "Käytä rekistereitä r2 ja r5" #: config/v850/v850.opt:33 msgid "Use 4 byte entries in switch tables" *************** msgstr "" *** 8522,8532 **** #: config/lynx.opt:27 msgid "Use shared libraries" ! msgstr "" #: config/lynx.opt:31 msgid "Support multi-threading" ! msgstr "" #: config/vxworks.opt:36 msgid "Assume the VxWorks RTP environment" --- 8452,8462 ---- #: config/lynx.opt:27 msgid "Use shared libraries" ! msgstr "Käytä jaettuja kirjastoja" #: config/lynx.opt:31 msgid "Support multi-threading" ! msgstr "Tue monisäikeisyyttä" #: config/vxworks.opt:36 msgid "Assume the VxWorks RTP environment" *************** msgstr "" *** 8613,8618 **** --- 8543,8552 ---- msgid "The device has no SPH special function register. This option will be overridden by the compiler driver with the correct setting if presence/absence of SPH can be deduced from -mmcu=MCU." msgstr "" + #: config/avr/avr.opt:80 + msgid "Warn if the address space of an address is change." + msgstr "" + #: config/m32r/m32r.opt:34 msgid "Compile for the m32rx" msgstr "" *************** msgstr "" *** 8659,8665 **** #: config/m32r/m32r.opt:78 msgid "Code size: small, medium or large" ! msgstr "" #: config/m32r/m32r.opt:94 msgid "Don't call any cache flush functions" --- 8593,8599 ---- #: config/m32r/m32r.opt:78 msgid "Code size: small, medium or large" ! msgstr "Koodin koko: small, medium tai large" #: config/m32r/m32r.opt:94 msgid "Don't call any cache flush functions" *************** msgstr "" *** 8699,8705 **** #: config/s390/s390.opt:89 msgid "ESA/390 architecture" ! msgstr "" #: config/s390/s390.opt:93 #, fuzzy --- 8633,8639 ---- #: config/s390/s390.opt:89 msgid "ESA/390 architecture" ! msgstr "ESA/390-arkkitehtuuri" #: config/s390/s390.opt:93 #, fuzzy *************** msgstr "" *** 8924,8934 **** #: config/sparc/sparc.opt:30 config/sparc/sparc.opt:34 msgid "Use hardware FP" ! msgstr "" #: config/sparc/sparc.opt:38 msgid "Do not use hardware FP" ! msgstr "" #: config/sparc/sparc.opt:42 msgid "Use flat register window model" --- 8858,8868 ---- #: config/sparc/sparc.opt:30 config/sparc/sparc.opt:34 msgid "Use hardware FP" ! msgstr "Käytä laitteistoliukulukuja" #: config/sparc/sparc.opt:38 msgid "Do not use hardware FP" ! msgstr "Älä käytä laitteistoliukulukuja" #: config/sparc/sparc.opt:42 msgid "Use flat register window model" *************** msgstr "säiekohtaista muistia ei tueta *** 8981,8999 **** #: config/sparc/sparc.opt:90 msgid "Pointers are 64-bit" ! msgstr "" #: config/sparc/sparc.opt:94 msgid "Pointers are 32-bit" ! msgstr "" #: config/sparc/sparc.opt:98 msgid "Use 64-bit ABI" ! msgstr "" #: config/sparc/sparc.opt:102 msgid "Use 32-bit ABI" ! msgstr "" #: config/sparc/sparc.opt:106 msgid "Use stack bias" --- 8915,8933 ---- #: config/sparc/sparc.opt:90 msgid "Pointers are 64-bit" ! msgstr "Osoittimet ovat 64-bittisiä" #: config/sparc/sparc.opt:94 msgid "Pointers are 32-bit" ! msgstr "Osoittimet ovat 32-bittisiä" #: config/sparc/sparc.opt:98 msgid "Use 64-bit ABI" ! msgstr "Käytä 64-bittistä ABIa" #: config/sparc/sparc.opt:102 msgid "Use 32-bit ABI" ! msgstr "Käytä 32-bittistä ABIa" #: config/sparc/sparc.opt:106 msgid "Use stack bias" *************** msgstr "" *** 9017,9023 **** #: config/sparc/sparc.opt:193 msgid "Enable debug output" ! msgstr "" #: config/sparc/sparc.opt:197 msgid "Enable strict 32-bit psABI struct return checking." --- 8951,8957 ---- #: config/sparc/sparc.opt:193 msgid "Enable debug output" ! msgstr "Ota käyttöön vianjäljitystuloste" #: config/sparc/sparc.opt:197 msgid "Enable strict 32-bit psABI struct return checking." *************** msgstr "" *** 9033,9043 **** #: config/rs6000/darwin.opt:38 config/rs6000/sysv4.opt:141 msgid "Generate 64-bit code" ! msgstr "" #: config/rs6000/darwin.opt:42 config/rs6000/sysv4.opt:145 msgid "Generate 32-bit code" ! msgstr "" #: config/rs6000/rs6000-tables.opt:24 msgid "Known CPUs (for use with the -mcpu= and -mtune= options):" --- 8967,8977 ---- #: config/rs6000/darwin.opt:38 config/rs6000/sysv4.opt:141 msgid "Generate 64-bit code" ! msgstr "Tuota 64-bittistä koodia" #: config/rs6000/darwin.opt:42 config/rs6000/sysv4.opt:145 msgid "Generate 32-bit code" ! msgstr "Tuota 32-bittistä koodia" #: config/rs6000/rs6000-tables.opt:24 msgid "Known CPUs (for use with the -mcpu= and -mtune= options):" *************** msgstr "" *** 9069,9075 **** #: config/rs6000/rs6000.opt:106 msgid "Use PowerPC-64 instruction set" ! msgstr "" #: config/rs6000/rs6000.opt:110 msgid "Use PowerPC General Purpose group optional instructions" --- 9003,9009 ---- #: config/rs6000/rs6000.opt:106 msgid "Use PowerPC-64 instruction set" ! msgstr "Käytä PowerPC-64 -käskykantaa" #: config/rs6000/rs6000.opt:110 msgid "Use PowerPC General Purpose group optional instructions" *************** msgstr "" *** 9221,9227 **** #: config/rs6000/rs6000.opt:320 msgid "Generate isel instructions" ! msgstr "" #: config/rs6000/rs6000.opt:324 msgid "Deprecated option. Use -mno-isel instead" --- 9155,9161 ---- #: config/rs6000/rs6000.opt:320 msgid "Generate isel instructions" ! msgstr "Tuota isel-käskyjä" #: config/rs6000/rs6000.opt:324 msgid "Deprecated option. Use -mno-isel instead" *************** msgstr "" *** 9253,9265 **** #: config/rs6000/rs6000.opt:352 #, fuzzy - #| msgid "Use AltiVec instructions" msgid "Use the AltiVec ABI extensions" msgstr "Käytä AltiVec-käskyjä" #: config/rs6000/rs6000.opt:356 #, fuzzy - #| msgid "Don't warn about uses of Microsoft extensions" msgid "Do not use the AltiVec ABI extensions" msgstr "Älä varoita Microsoft-laajennosten käytöstä" --- 9187,9197 ---- *************** msgstr "" *** 9273,9285 **** #: config/rs6000/rs6000.opt:371 #, fuzzy - #| msgid "Using darwin64 ABI" msgid "using darwin64 ABI" msgstr "Käytetään darwin64-ABIa" #: config/rs6000/rs6000.opt:374 #, fuzzy - #| msgid "Using old darwin ABI" msgid "using old darwin ABI" msgstr "Käytetään vanhaa darwin-ABIa" --- 9205,9215 ---- *************** msgid "Avoid all range limits on call in *** 9308,9321 **** msgstr "" #: config/rs6000/rs6000.opt:412 - #, fuzzy msgid "Generate Cell microcode" ! msgstr "Tuota 32-bittistä i386-koodia" #: config/rs6000/rs6000.opt:416 #, fuzzy msgid "Warn when a Cell microcoded instruction is emitted" ! msgstr "Varoita kun kaikki muodostimet ja hajottimet ovat yksityisiä" #: config/rs6000/rs6000.opt:420 msgid "Warn about deprecated 'vector long ...' AltiVec type usage" --- 9238,9250 ---- msgstr "" #: config/rs6000/rs6000.opt:412 msgid "Generate Cell microcode" ! msgstr "Tuota Cell-mikrokoodia" #: config/rs6000/rs6000.opt:416 #, fuzzy msgid "Warn when a Cell microcoded instruction is emitted" ! msgstr "Varoita kun Cell-mikrokoodattu käsky lähetetään" #: config/rs6000/rs6000.opt:420 msgid "Warn about deprecated 'vector long ...' AltiVec type usage" *************** msgstr "" *** 9348,9354 **** #: config/rs6000/rs6000.opt:460 #, fuzzy - #| msgid "alias argument not a string" msgid "Valid arguments to -malign-:" msgstr "aliaksen argumentti ei ole merkkijono" --- 9277,9282 ---- *************** msgstr "" *** 9467,9473 **** #: config/alpha/alpha.opt:27 msgid "Use fp registers" ! msgstr "" #: config/alpha/alpha.opt:35 msgid "Request IEEE-conformant math library routines (OSF/1)" --- 9395,9401 ---- #: config/alpha/alpha.opt:27 msgid "Use fp registers" ! msgstr "Käytä liukulukurekistereitä" #: config/alpha/alpha.opt:35 msgid "Request IEEE-conformant math library routines (OSF/1)" *************** msgstr "" *** 9483,9489 **** #: config/alpha/alpha.opt:50 msgid "Use VAX fp" ! msgstr "" #: config/alpha/alpha.opt:54 msgid "Do not use VAX fp" --- 9411,9417 ---- #: config/alpha/alpha.opt:50 msgid "Use VAX fp" ! msgstr "Käytä VAX-liukulukuja" #: config/alpha/alpha.opt:54 msgid "Do not use VAX fp" *************** msgid "Known TILEPro CPUs (for use with *** 9566,9579 **** msgstr "" #: config/lm32/lm32.opt:24 - #, fuzzy msgid "Enable multiply instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/lm32/lm32.opt:28 - #, fuzzy msgid "Enable divide and modulus instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/lm32/lm32.opt:32 #, fuzzy --- 9494,9505 ---- msgstr "" #: config/lm32/lm32.opt:24 msgid "Enable multiply instructions" ! msgstr "Ota käyttöön kertolaskukäskyt" #: config/lm32/lm32.opt:28 msgid "Enable divide and modulus instructions" ! msgstr "Ota käyttöö divide- ja modulus-käskyt" #: config/lm32/lm32.opt:32 #, fuzzy *************** msgid "Enable barrel shift instructions" *** 9581,9594 **** msgstr "Käytä AltiVec-käskyjä" #: config/lm32/lm32.opt:36 - #, fuzzy msgid "Enable sign extend instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/lm32/lm32.opt:40 - #, fuzzy msgid "Enable user-defined instructions" ! msgstr "säiekohtaista muistia ei tueta tälle kohteelle" #: config/rx/rx.opt:29 msgid "Store doubles in 64 bits." --- 9507,9518 ---- msgstr "Käytä AltiVec-käskyjä" #: config/lm32/lm32.opt:36 msgid "Enable sign extend instructions" ! msgstr "Ota käyttöön etumerkilliset laajennetut käskyt" #: config/lm32/lm32.opt:40 msgid "Enable user-defined instructions" ! msgstr "Ota käyttöön käyttäjän määrittelemät käskyt" #: config/rx/rx.opt:29 msgid "Store doubles in 64 bits." *************** msgstr "Tasaa funktioiden alut" *** 9606,9612 **** #: config/rx/rx.opt:44 #, fuzzy msgid "Enable the use of RX FPU instructions. This is the default." ! msgstr "Tasaa funktioiden alut" #: config/rx/rx.opt:50 msgid "Specify the target RX cpu type." --- 9530,9536 ---- #: config/rx/rx.opt:44 #, fuzzy msgid "Enable the use of RX FPU instructions. This is the default." ! msgstr "Ota käyttöön RX FPU-käskyjen käyttö." #: config/rx/rx.opt:50 msgid "Specify the target RX cpu type." *************** msgstr "" *** 9614,9624 **** #: config/rx/rx.opt:68 msgid "Data is stored in big-endian format." ! msgstr "" #: config/rx/rx.opt:72 msgid "Data is stored in little-endian format. (Default)." ! msgstr "" #: config/rx/rx.opt:78 msgid "Maximum size of global and static variables which can be placed into the small data area." --- 9538,9548 ---- #: config/rx/rx.opt:68 msgid "Data is stored in big-endian format." ! msgstr "Data tallennetaan big-endian-muodossa." #: config/rx/rx.opt:72 msgid "Data is stored in little-endian format. (Default)." ! msgstr "Data tallennetaan little-endian-muodossa. (Oletus)." #: config/rx/rx.opt:78 msgid "Maximum size of global and static variables which can be placed into the small data area." *************** msgstr "" *** 9671,9677 **** #: config/microblaze/microblaze.opt:40 #, fuzzy - #| msgid "Use software floating point" msgid "Use software emulation for floating point (default)" msgstr "Käytä ohjelmistoliukulukuja" --- 9595,9600 ---- *************** msgid "Use the soft multiply emulation ( *** 9697,9766 **** msgstr "" #: config/microblaze/microblaze.opt:72 ! msgid "Use the software emulation for divides (default)" msgstr "" #: config/microblaze/microblaze.opt:76 ! msgid "Use the hardware barrel shifter instead of emulation" msgstr "" #: config/microblaze/microblaze.opt:80 #, fuzzy - #| msgid "Use AltiVec instructions" msgid "Use pattern compare instructions" msgstr "Käytä AltiVec-käskyjä" ! #: config/microblaze/microblaze.opt:83 #, fuzzy, c-format msgid "%qs is deprecated; use -fstack-check" msgstr "%J%qD on tavallisesti ei-staattinen funktio" ! #: config/microblaze/microblaze.opt:84 #, fuzzy - #| msgid "parser stack overflow" msgid "Check for stack overflow at runtime" msgstr "jäsentimen pinon ylivuoto" ! #: config/microblaze/microblaze.opt:88 config/iq2000/iq2000.opt:65 msgid "Use GP relative sdata/sbss sections" msgstr "" ! #: config/microblaze/microblaze.opt:91 #, c-format msgid "%qs is deprecated; use -fno-zero-initialized-in-bss" msgstr "" ! #: config/microblaze/microblaze.opt:92 msgid "Clear the BSS to zero and place zero initialized in BSS" msgstr "" ! #: config/microblaze/microblaze.opt:96 msgid "Use multiply high instructions for high part of 32x32 multiply" msgstr "" ! #: config/microblaze/microblaze.opt:100 #, fuzzy msgid "Use hardware floating point conversion instructions" msgstr "säiekohtaista muistia ei tueta tälle kohteelle" ! #: config/microblaze/microblaze.opt:104 #, fuzzy msgid "Use hardware floating point square root instruction" msgstr "säiekohtaista muistia ei tueta tälle kohteelle" ! #: config/microblaze/microblaze.opt:108 msgid "Description for mxl-mode-executable" msgstr "" ! #: config/microblaze/microblaze.opt:112 msgid "Description for mxl-mode-xmdstub" msgstr "" ! #: config/microblaze/microblaze.opt:116 msgid "Description for mxl-mode-bootstrap" msgstr "" ! #: config/microblaze/microblaze.opt:120 msgid "Description for mxl-mode-novectors" msgstr "" --- 9620,9691 ---- msgstr "" #: config/microblaze/microblaze.opt:72 ! msgid "Use reorder instructions (swap and byte reversed load/store) (default)" msgstr "" #: config/microblaze/microblaze.opt:76 ! msgid "Use the software emulation for divides (default)" msgstr "" #: config/microblaze/microblaze.opt:80 + msgid "Use the hardware barrel shifter instead of emulation" + msgstr "" + + #: config/microblaze/microblaze.opt:84 #, fuzzy msgid "Use pattern compare instructions" msgstr "Käytä AltiVec-käskyjä" ! #: config/microblaze/microblaze.opt:87 #, fuzzy, c-format msgid "%qs is deprecated; use -fstack-check" msgstr "%J%qD on tavallisesti ei-staattinen funktio" ! #: config/microblaze/microblaze.opt:88 #, fuzzy msgid "Check for stack overflow at runtime" msgstr "jäsentimen pinon ylivuoto" ! #: config/microblaze/microblaze.opt:92 config/iq2000/iq2000.opt:65 msgid "Use GP relative sdata/sbss sections" msgstr "" ! #: config/microblaze/microblaze.opt:95 #, c-format msgid "%qs is deprecated; use -fno-zero-initialized-in-bss" msgstr "" ! #: config/microblaze/microblaze.opt:96 msgid "Clear the BSS to zero and place zero initialized in BSS" msgstr "" ! #: config/microblaze/microblaze.opt:100 msgid "Use multiply high instructions for high part of 32x32 multiply" msgstr "" ! #: config/microblaze/microblaze.opt:104 #, fuzzy msgid "Use hardware floating point conversion instructions" msgstr "säiekohtaista muistia ei tueta tälle kohteelle" ! #: config/microblaze/microblaze.opt:108 #, fuzzy msgid "Use hardware floating point square root instruction" msgstr "säiekohtaista muistia ei tueta tälle kohteelle" ! #: config/microblaze/microblaze.opt:112 msgid "Description for mxl-mode-executable" msgstr "" ! #: config/microblaze/microblaze.opt:116 msgid "Description for mxl-mode-xmdstub" msgstr "" ! #: config/microblaze/microblaze.opt:120 msgid "Description for mxl-mode-bootstrap" msgstr "" ! #: config/microblaze/microblaze.opt:124 msgid "Description for mxl-mode-novectors" msgstr "" *************** msgstr "" *** 9774,9780 **** #: config/vax/vax.opt:39 msgid "Generate code for GNU assembler (gas)" ! msgstr "" #: config/vax/vax.opt:43 msgid "Generate code for UNIX assembler" --- 9699,9705 ---- #: config/vax/vax.opt:39 msgid "Generate code for GNU assembler (gas)" ! msgstr "Tuota koodia GNU-assemblerille (gas)" #: config/vax/vax.opt:43 msgid "Generate code for UNIX assembler" *************** msgstr "" *** 9822,9828 **** #: config/frv/frv.opt:65 msgid "Enable conditional moves" ! msgstr "" #: config/frv/frv.opt:69 msgid "Set the target CPU type" --- 9747,9753 ---- #: config/frv/frv.opt:65 msgid "Enable conditional moves" ! msgstr "Ota käyttöön ehdolliset siirrot" #: config/frv/frv.opt:69 msgid "Set the target CPU type" *************** msgstr "" *** 9846,9864 **** #: config/frv/frv.opt:138 msgid "Only use 32 FPRs" ! msgstr "" #: config/frv/frv.opt:142 msgid "Use 64 FPRs" ! msgstr "" #: config/frv/frv.opt:146 msgid "Only use 32 GPRs" ! msgstr "" #: config/frv/frv.opt:150 msgid "Use 64 GPRs" ! msgstr "" #: config/frv/frv.opt:154 msgid "Enable use of GPREL for read-only data in FDPIC" --- 9771,9789 ---- #: config/frv/frv.opt:138 msgid "Only use 32 FPRs" ! msgstr "Käytä vain 32 liukulukurekisteriä" #: config/frv/frv.opt:142 msgid "Use 64 FPRs" ! msgstr "Käytä 64 liukulukurekisteriä" #: config/frv/frv.opt:146 msgid "Only use 32 GPRs" ! msgstr "Käytä vain 32 yleiskäyttörekisteriä" #: config/frv/frv.opt:150 msgid "Use 64 GPRs" ! msgstr "Käytä 64 yleiskäyttörekisteriä" #: config/frv/frv.opt:154 msgid "Enable use of GPREL for read-only data in FDPIC" *************** msgstr "" *** 9878,9884 **** #: config/frv/frv.opt:178 msgid "Use media instructions" ! msgstr "" #: config/frv/frv.opt:182 msgid "Use multiply add/subtract instructions" --- 9803,9809 ---- #: config/frv/frv.opt:178 msgid "Use media instructions" ! msgstr "Käytä media-käskyjä" #: config/frv/frv.opt:182 msgid "Use multiply add/subtract instructions" *************** msgstr "" *** 9887,9893 **** #: config/frv/frv.opt:186 #, fuzzy msgid "Enable optimizing &&/|| in conditional execution" ! msgstr "ehtolausekkeessa ei-lvalue-taulukko" #: config/frv/frv.opt:190 msgid "Enable nested conditional execution optimizations" --- 9812,9818 ---- #: config/frv/frv.opt:186 #, fuzzy msgid "Enable optimizing &&/|| in conditional execution" ! msgstr "Ota käyttöön optimointi &&/|| ehdollisessa suorituksessa" #: config/frv/frv.opt:190 msgid "Enable nested conditional execution optimizations" *************** msgstr "" *** 9997,10017 **** #: config/c6x/c6x.opt:30 config/mep/mep.opt:82 config/mips/mips.opt:130 msgid "Use big-endian byte order" ! msgstr "" #: config/c6x/c6x.opt:34 config/mep/mep.opt:86 config/mips/mips.opt:134 msgid "Use little-endian byte order" ! msgstr "" #: config/c6x/c6x.opt:46 #, fuzzy - #| msgid "alias argument not a string" msgid "Valid arguments for the -msdata= option" msgstr "aliaksen argumentti ei ole merkkijono" #: config/c6x/c6x.opt:59 #, fuzzy - #| msgid "Create a shared library" msgid "Compile for the DSBT shared library ABI" msgstr "Luo jaettu kirjasto" --- 9922,9940 ---- #: config/c6x/c6x.opt:30 config/mep/mep.opt:82 config/mips/mips.opt:130 msgid "Use big-endian byte order" ! msgstr "Käytä big-endian-tavujärjestystä" #: config/c6x/c6x.opt:34 config/mep/mep.opt:86 config/mips/mips.opt:134 msgid "Use little-endian byte order" ! msgstr "Käytä little-endian-tavujärjestystä" #: config/c6x/c6x.opt:46 #, fuzzy msgid "Valid arguments for the -msdata= option" msgstr "aliaksen argumentti ei ole merkkijono" #: config/c6x/c6x.opt:59 #, fuzzy msgid "Compile for the DSBT shared library ABI" msgstr "Luo jaettu kirjasto" *************** msgstr "" *** 10057,10063 **** #: config/cris/cris.opt:116 msgid "Align code and data to 32 bits" ! msgstr "" #: config/cris/cris.opt:133 msgid "Don't align items in code or data" --- 9980,9986 ---- #: config/cris/cris.opt:116 msgid "Align code and data to 32 bits" ! msgstr "Kohdista koodi ja data 32 bittiin" #: config/cris/cris.opt:133 msgid "Don't align items in code or data" *************** msgstr "" *** 10107,10408 **** msgid "Runtime name." msgstr "" ! #: config/sh/sh.opt:44 msgid "Generate SH1 code" ! msgstr "" ! #: config/sh/sh.opt:48 msgid "Generate SH2 code" ! msgstr "" ! #: config/sh/sh.opt:52 msgid "Generate default double-precision SH2a-FPU code" msgstr "" ! #: config/sh/sh.opt:56 msgid "Generate SH2a FPU-less code" msgstr "" ! #: config/sh/sh.opt:60 msgid "Generate default single-precision SH2a-FPU code" msgstr "" ! #: config/sh/sh.opt:64 msgid "Generate only single-precision SH2a-FPU code" msgstr "" ! #: config/sh/sh.opt:68 msgid "Generate SH2e code" ! msgstr "" ! #: config/sh/sh.opt:72 msgid "Generate SH3 code" ! msgstr "" ! #: config/sh/sh.opt:76 msgid "Generate SH3e code" ! msgstr "" ! #: config/sh/sh.opt:80 msgid "Generate SH4 code" ! msgstr "" ! #: config/sh/sh.opt:84 msgid "Generate SH4-100 code" ! msgstr "" ! #: config/sh/sh.opt:88 msgid "Generate SH4-200 code" ! msgstr "" ! #: config/sh/sh.opt:94 ! #, fuzzy msgid "Generate SH4-300 code" ! msgstr "Tuota 64-bittistä x86-64-koodia" ! #: config/sh/sh.opt:98 msgid "Generate SH4 FPU-less code" msgstr "" ! #: config/sh/sh.opt:102 ! #, fuzzy msgid "Generate SH4-100 FPU-less code" ! msgstr "Tuota 64-bittistä x86-64-koodia" ! #: config/sh/sh.opt:106 ! #, fuzzy msgid "Generate SH4-200 FPU-less code" ! msgstr "Tuota 64-bittistä x86-64-koodia" ! #: config/sh/sh.opt:110 ! #, fuzzy msgid "Generate SH4-300 FPU-less code" ! msgstr "Tuota 64-bittistä x86-64-koodia" ! #: config/sh/sh.opt:114 msgid "Generate code for SH4 340 series (MMU/FPU-less)" msgstr "" ! #: config/sh/sh.opt:119 msgid "Generate code for SH4 400 series (MMU/FPU-less)" msgstr "" ! #: config/sh/sh.opt:124 msgid "Generate code for SH4 500 series (FPU-less)." msgstr "" ! #: config/sh/sh.opt:129 msgid "Generate default single-precision SH4 code" msgstr "" ! #: config/sh/sh.opt:133 msgid "Generate default single-precision SH4-100 code" msgstr "" ! #: config/sh/sh.opt:137 msgid "Generate default single-precision SH4-200 code" msgstr "" ! #: config/sh/sh.opt:141 msgid "Generate default single-precision SH4-300 code" msgstr "" ! #: config/sh/sh.opt:145 msgid "Generate only single-precision SH4 code" msgstr "" ! #: config/sh/sh.opt:149 msgid "Generate only single-precision SH4-100 code" msgstr "" ! #: config/sh/sh.opt:153 msgid "Generate only single-precision SH4-200 code" msgstr "" ! #: config/sh/sh.opt:157 msgid "Generate only single-precision SH4-300 code" msgstr "" ! #: config/sh/sh.opt:161 msgid "Generate SH4a code" ! msgstr "" ! #: config/sh/sh.opt:165 msgid "Generate SH4a FPU-less code" msgstr "" ! #: config/sh/sh.opt:169 msgid "Generate default single-precision SH4a code" msgstr "" ! #: config/sh/sh.opt:173 msgid "Generate only single-precision SH4a code" msgstr "" ! #: config/sh/sh.opt:177 msgid "Generate SH4al-dsp code" ! msgstr "" ! #: config/sh/sh.opt:181 msgid "Generate 32-bit SHmedia code" msgstr "" ! #: config/sh/sh.opt:185 msgid "Generate 32-bit FPU-less SHmedia code" msgstr "" ! #: config/sh/sh.opt:189 msgid "Generate 64-bit SHmedia code" msgstr "" ! #: config/sh/sh.opt:193 msgid "Generate 64-bit FPU-less SHmedia code" msgstr "" ! #: config/sh/sh.opt:197 msgid "Generate SHcompact code" ! msgstr "" ! #: config/sh/sh.opt:201 msgid "Generate FPU-less SHcompact code" msgstr "" ! #: config/sh/sh.opt:213 msgid "Generate code in big endian mode" ! msgstr "" ! #: config/sh/sh.opt:217 msgid "Generate 32-bit offsets in switch tables" msgstr "" ! #: config/sh/sh.opt:221 ! #, fuzzy msgid "Generate bit instructions" ! msgstr "Käytä AltiVec-käskyjä" ! #: config/sh/sh.opt:225 msgid "Cost to assume for a branch insn" msgstr "" ! #: config/sh/sh.opt:229 msgid "Assume that zero displacement conditional branches are fast" msgstr "" ! #: config/sh/sh.opt:233 msgid "Enable cbranchdi4 pattern" msgstr "" ! #: config/sh/sh.opt:237 msgid "Emit cmpeqdi_t pattern even when -mcbranchdi is in effect." msgstr "" ! #: config/sh/sh.opt:241 msgid "Enable SH5 cut2 workaround" msgstr "" ! #: config/sh/sh.opt:245 msgid "Align doubles at 64-bit boundaries" msgstr "" ! #: config/sh/sh.opt:249 msgid "Division strategy, one of: call, call2, fp, inv, inv:minlat, inv20u, inv20l, inv:call, inv:call2, inv:fp, call-div1, call-fp, call-table" msgstr "" ! #: config/sh/sh.opt:253 msgid "Specify name for 32 bit signed division function" msgstr "" ! #: config/sh/sh.opt:257 msgid "Enable the use of 64-bit floating point registers in fmov instructions. See -mdalign if 64-bit alignment is required." msgstr "" ! #: config/sh/sh.opt:265 msgid "Cost to assume for gettr insn" msgstr "" ! #: config/sh/sh.opt:269 config/sh/sh.opt:319 msgid "Follow Renesas (formerly Hitachi) / SuperH calling conventions" msgstr "" ! #: config/sh/sh.opt:273 msgid "Increase the IEEE compliance for floating-point comparisons" msgstr "" ! #: config/sh/sh.opt:277 msgid "Enable the use of the indexed addressing mode for SHmedia32/SHcompact" msgstr "" ! #: config/sh/sh.opt:281 msgid "inline code to invalidate instruction cache entries after setting up nested function trampolines" msgstr "" ! #: config/sh/sh.opt:285 msgid "Assume symbols might be invalid" msgstr "" ! #: config/sh/sh.opt:289 msgid "Annotate assembler instructions with estimated addresses" msgstr "" ! #: config/sh/sh.opt:293 msgid "Generate code in little endian mode" msgstr "" ! #: config/sh/sh.opt:297 msgid "Mark MAC register as call-clobbered" msgstr "" ! #: config/sh/sh.opt:303 msgid "Make structs a multiple of 4 bytes (warning: ABI altered)" msgstr "" ! #: config/sh/sh.opt:307 msgid "Emit function-calls using global offset table when generating PIC" msgstr "" ! #: config/sh/sh.opt:311 msgid "Assume pt* instructions won't trap" msgstr "" ! #: config/sh/sh.opt:315 msgid "Shorten address references during linking" msgstr "" ! #: config/sh/sh.opt:323 msgid "Deprecated. Use -matomic= instead to select the atomic model" msgstr "" ! #: config/sh/sh.opt:327 #, fuzzy msgid "Specify the model for atomic operations" msgstr "Käytä AltiVec-käskyjä" ! #: config/sh/sh.opt:331 msgid "Use tas.b instruction for __atomic_test_and_set" msgstr "" ! #: config/sh/sh.opt:335 msgid "Deprecated. Use -Os instead" msgstr "" ! #: config/sh/sh.opt:339 msgid "Cost to assume for a multiply insn" msgstr "" ! #: config/sh/sh.opt:343 msgid "Don't generate privileged-mode only code; implies -mno-inline-ic_invalidate if the inline code would not work in user mode." msgstr "" ! #: config/sh/sh.opt:349 msgid "Pretend a branch-around-a-move is a conditional move." msgstr "" ! #: config/sh/sh.opt:353 #, fuzzy msgid "Enable the use of the fsca instruction" msgstr "Tasaa funktioiden alut" ! #: config/sh/sh.opt:357 #, fuzzy msgid "Enable the use of the fsrra instruction" msgstr "Tasaa funktioiden alut" --- 10030,10327 ---- msgid "Runtime name." msgstr "" ! #: config/sh/sh.opt:48 msgid "Generate SH1 code" ! msgstr "Tuota SH1-koodia" ! #: config/sh/sh.opt:52 msgid "Generate SH2 code" ! msgstr "Tuota SH2-koodia" ! #: config/sh/sh.opt:56 msgid "Generate default double-precision SH2a-FPU code" msgstr "" ! #: config/sh/sh.opt:60 msgid "Generate SH2a FPU-less code" msgstr "" ! #: config/sh/sh.opt:64 msgid "Generate default single-precision SH2a-FPU code" msgstr "" ! #: config/sh/sh.opt:68 msgid "Generate only single-precision SH2a-FPU code" msgstr "" ! #: config/sh/sh.opt:72 msgid "Generate SH2e code" ! msgstr "Tuota SH2e-koodia" ! #: config/sh/sh.opt:76 msgid "Generate SH3 code" ! msgstr "Tuota SH3-koodia" ! #: config/sh/sh.opt:80 msgid "Generate SH3e code" ! msgstr "Tuota SH3e-koodia" ! #: config/sh/sh.opt:84 msgid "Generate SH4 code" ! msgstr "Tuota SH4-koodia" ! #: config/sh/sh.opt:88 msgid "Generate SH4-100 code" ! msgstr "Tuota SH3-100-koodia" ! #: config/sh/sh.opt:92 msgid "Generate SH4-200 code" ! msgstr "Tuota SH4-200-koodia" ! #: config/sh/sh.opt:98 msgid "Generate SH4-300 code" ! msgstr "Tuota SH4-300-koodia" ! #: config/sh/sh.opt:102 msgid "Generate SH4 FPU-less code" msgstr "" ! # fuzzy: pitäisikö FPU-less kääntää? ! #: config/sh/sh.opt:106 msgid "Generate SH4-100 FPU-less code" ! msgstr "Tuota SH4-100 FPU-less-koodia" ! #: config/sh/sh.opt:110 msgid "Generate SH4-200 FPU-less code" ! msgstr "Tuota SH4-200 FPU-less-koodia" ! #: config/sh/sh.opt:114 msgid "Generate SH4-300 FPU-less code" ! msgstr "Tuota SH4-300 FPU-less-koodia" ! #: config/sh/sh.opt:118 msgid "Generate code for SH4 340 series (MMU/FPU-less)" msgstr "" ! #: config/sh/sh.opt:123 msgid "Generate code for SH4 400 series (MMU/FPU-less)" msgstr "" ! #: config/sh/sh.opt:128 msgid "Generate code for SH4 500 series (FPU-less)." msgstr "" ! #: config/sh/sh.opt:133 msgid "Generate default single-precision SH4 code" msgstr "" ! #: config/sh/sh.opt:137 msgid "Generate default single-precision SH4-100 code" msgstr "" ! #: config/sh/sh.opt:141 msgid "Generate default single-precision SH4-200 code" msgstr "" ! #: config/sh/sh.opt:145 msgid "Generate default single-precision SH4-300 code" msgstr "" ! #: config/sh/sh.opt:149 msgid "Generate only single-precision SH4 code" msgstr "" ! #: config/sh/sh.opt:153 msgid "Generate only single-precision SH4-100 code" msgstr "" ! #: config/sh/sh.opt:157 msgid "Generate only single-precision SH4-200 code" msgstr "" ! #: config/sh/sh.opt:161 msgid "Generate only single-precision SH4-300 code" msgstr "" ! #: config/sh/sh.opt:165 msgid "Generate SH4a code" ! msgstr "Tuota SH4a-koodia" ! #: config/sh/sh.opt:169 msgid "Generate SH4a FPU-less code" msgstr "" ! #: config/sh/sh.opt:173 msgid "Generate default single-precision SH4a code" msgstr "" ! #: config/sh/sh.opt:177 msgid "Generate only single-precision SH4a code" msgstr "" ! #: config/sh/sh.opt:181 msgid "Generate SH4al-dsp code" ! msgstr "Tuota SH4al-dsp-koodia" ! #: config/sh/sh.opt:185 msgid "Generate 32-bit SHmedia code" msgstr "" ! #: config/sh/sh.opt:189 msgid "Generate 32-bit FPU-less SHmedia code" msgstr "" ! #: config/sh/sh.opt:193 msgid "Generate 64-bit SHmedia code" msgstr "" ! #: config/sh/sh.opt:197 msgid "Generate 64-bit FPU-less SHmedia code" msgstr "" ! #: config/sh/sh.opt:201 msgid "Generate SHcompact code" ! msgstr "Tuota SHcompact-koodia" ! #: config/sh/sh.opt:205 msgid "Generate FPU-less SHcompact code" msgstr "" ! #: config/sh/sh.opt:217 msgid "Generate code in big endian mode" ! msgstr "Tuota koodia big-endian-tilassa" ! #: config/sh/sh.opt:221 msgid "Generate 32-bit offsets in switch tables" msgstr "" ! #: config/sh/sh.opt:225 msgid "Generate bit instructions" ! msgstr "Tuota bittikäskyjä" ! #: config/sh/sh.opt:229 msgid "Cost to assume for a branch insn" msgstr "" ! #: config/sh/sh.opt:233 msgid "Assume that zero displacement conditional branches are fast" msgstr "" ! #: config/sh/sh.opt:237 msgid "Enable cbranchdi4 pattern" msgstr "" ! #: config/sh/sh.opt:241 msgid "Emit cmpeqdi_t pattern even when -mcbranchdi is in effect." msgstr "" ! #: config/sh/sh.opt:245 msgid "Enable SH5 cut2 workaround" msgstr "" ! #: config/sh/sh.opt:249 msgid "Align doubles at 64-bit boundaries" msgstr "" ! #: config/sh/sh.opt:253 msgid "Division strategy, one of: call, call2, fp, inv, inv:minlat, inv20u, inv20l, inv:call, inv:call2, inv:fp, call-div1, call-fp, call-table" msgstr "" ! #: config/sh/sh.opt:257 msgid "Specify name for 32 bit signed division function" msgstr "" ! #: config/sh/sh.opt:261 msgid "Enable the use of 64-bit floating point registers in fmov instructions. See -mdalign if 64-bit alignment is required." msgstr "" ! #: config/sh/sh.opt:269 msgid "Cost to assume for gettr insn" msgstr "" ! #: config/sh/sh.opt:273 config/sh/sh.opt:323 msgid "Follow Renesas (formerly Hitachi) / SuperH calling conventions" msgstr "" ! #: config/sh/sh.opt:277 msgid "Increase the IEEE compliance for floating-point comparisons" msgstr "" ! #: config/sh/sh.opt:281 msgid "Enable the use of the indexed addressing mode for SHmedia32/SHcompact" msgstr "" ! #: config/sh/sh.opt:285 msgid "inline code to invalidate instruction cache entries after setting up nested function trampolines" msgstr "" ! #: config/sh/sh.opt:289 msgid "Assume symbols might be invalid" msgstr "" ! #: config/sh/sh.opt:293 msgid "Annotate assembler instructions with estimated addresses" msgstr "" ! #: config/sh/sh.opt:297 msgid "Generate code in little endian mode" msgstr "" ! #: config/sh/sh.opt:301 msgid "Mark MAC register as call-clobbered" msgstr "" ! #: config/sh/sh.opt:307 msgid "Make structs a multiple of 4 bytes (warning: ABI altered)" msgstr "" ! #: config/sh/sh.opt:311 msgid "Emit function-calls using global offset table when generating PIC" msgstr "" ! #: config/sh/sh.opt:315 msgid "Assume pt* instructions won't trap" msgstr "" ! #: config/sh/sh.opt:319 msgid "Shorten address references during linking" msgstr "" ! #: config/sh/sh.opt:327 msgid "Deprecated. Use -matomic= instead to select the atomic model" msgstr "" ! #: config/sh/sh.opt:331 #, fuzzy msgid "Specify the model for atomic operations" msgstr "Käytä AltiVec-käskyjä" ! #: config/sh/sh.opt:335 msgid "Use tas.b instruction for __atomic_test_and_set" msgstr "" ! #: config/sh/sh.opt:339 msgid "Deprecated. Use -Os instead" msgstr "" ! #: config/sh/sh.opt:343 msgid "Cost to assume for a multiply insn" msgstr "" ! #: config/sh/sh.opt:347 msgid "Don't generate privileged-mode only code; implies -mno-inline-ic_invalidate if the inline code would not work in user mode." msgstr "" ! #: config/sh/sh.opt:353 msgid "Pretend a branch-around-a-move is a conditional move." msgstr "" ! #: config/sh/sh.opt:357 #, fuzzy msgid "Enable the use of the fsca instruction" msgstr "Tasaa funktioiden alut" ! #: config/sh/sh.opt:361 #, fuzzy msgid "Enable the use of the fsrra instruction" msgstr "Tasaa funktioiden alut" *************** msgid "Enable all optional instructions" *** 10422,10448 **** msgstr "säiekohtaista muistia ei tueta tälle kohteelle" #: config/mep/mep.opt:31 - #, fuzzy msgid "Enable average instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/mep/mep.opt:35 msgid "Variables this size and smaller go in the based section. (default 0)" msgstr "" #: config/mep/mep.opt:39 - #, fuzzy msgid "Enable bit manipulation instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/mep/mep.opt:43 msgid "Section to put all const variables in (tiny, near, far) (no default)" msgstr "" #: config/mep/mep.opt:47 - #, fuzzy msgid "Enable clip instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/mep/mep.opt:51 msgid "Configuration name" --- 10341,10364 ---- msgstr "säiekohtaista muistia ei tueta tälle kohteelle" #: config/mep/mep.opt:31 msgid "Enable average instructions" ! msgstr "Ota käyttöön average-käskyt" #: config/mep/mep.opt:35 msgid "Variables this size and smaller go in the based section. (default 0)" msgstr "" #: config/mep/mep.opt:39 msgid "Enable bit manipulation instructions" ! msgstr "Ota käyttöön bittimanipulointikäskyt" #: config/mep/mep.opt:43 msgid "Section to put all const variables in (tiny, near, far) (no default)" msgstr "" #: config/mep/mep.opt:47 msgid "Enable clip instructions" ! msgstr "Ota käyttöön clip-käskyt" #: config/mep/mep.opt:51 msgid "Configuration name" *************** msgid "Const variables default to the ne *** 10471,10479 **** msgstr "ei tarpeeksi argumentteja lopetusalkion mahduttamiseksi" #: config/mep/mep.opt:78 - #, fuzzy msgid "Enable 32-bit divide instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/mep/mep.opt:93 msgid "__io vars are volatile by default" --- 10387,10394 ---- msgstr "ei tarpeeksi argumentteja lopetusalkion mahduttamiseksi" #: config/mep/mep.opt:78 msgid "Enable 32-bit divide instructions" ! msgstr "Ota käyttöön 32-bittiset divide-käskyt" #: config/mep/mep.opt:93 msgid "__io vars are volatile by default" *************** msgid "All variables default to the near *** 10493,10506 **** msgstr "" #: config/mep/mep.opt:112 - #, fuzzy msgid "Enable min/max instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/mep/mep.opt:116 - #, fuzzy msgid "Enable 32-bit multiply instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/mep/mep.opt:120 #, fuzzy --- 10408,10419 ---- msgstr "" #: config/mep/mep.opt:112 msgid "Enable min/max instructions" ! msgstr "Ota käyttöön min/max-käskyt" #: config/mep/mep.opt:116 msgid "Enable 32-bit multiply instructions" ! msgstr "Ota käyttöön 32-bittiset kertolaskukäskyt" #: config/mep/mep.opt:120 #, fuzzy *************** msgid "Disable all optional instructions *** 10508,10525 **** msgstr "Käytä AltiVec-käskyjä" #: config/mep/mep.opt:127 - #, fuzzy msgid "Allow gcc to use the repeat/erepeat instructions" ! msgstr "Tasaa funktioiden alut" #: config/mep/mep.opt:131 msgid "All variables default to the tiny section" msgstr "" #: config/mep/mep.opt:135 - #, fuzzy msgid "Enable saturation instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/mep/mep.opt:139 msgid "Use sdram version of runtime" --- 10421,10436 ---- msgstr "Käytä AltiVec-käskyjä" #: config/mep/mep.opt:127 msgid "Allow gcc to use the repeat/erepeat instructions" ! msgstr "Salli gcc:n käyttää repeat/erepeat-käskyjä" #: config/mep/mep.opt:131 msgid "All variables default to the tiny section" msgstr "" #: config/mep/mep.opt:135 msgid "Enable saturation instructions" ! msgstr "Ota käyttöön saturation-käskyt" #: config/mep/mep.opt:139 msgid "Use sdram version of runtime" *************** msgid "Use MIPS-DSP instructions" *** 10604,10612 **** msgstr "" #: config/mips/mips.opt:120 - #, fuzzy msgid "Use MIPS-DSP REV 2 instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/mips/mips.opt:142 msgid "Use NewABI-style %reloc() assembly operators" --- 10515,10522 ---- msgstr "" #: config/mips/mips.opt:120 msgid "Use MIPS-DSP REV 2 instructions" ! msgstr "Käytä MIPS-DSP REV 2 -käskyjä" #: config/mips/mips.opt:142 msgid "Use NewABI-style %reloc() assembly operators" *************** msgstr "" *** 10646,10656 **** #: config/mips/mips.opt:178 msgid "Work around an early 4300 hardware bug" ! msgstr "" #: config/mips/mips.opt:182 msgid "FP exceptions are enabled" ! msgstr "" #: config/mips/mips.opt:186 msgid "Use 32-bit floating-point registers" --- 10556,10566 ---- #: config/mips/mips.opt:178 msgid "Work around an early 4300 hardware bug" ! msgstr "Kierrä vanha 4300-laitteistovika" #: config/mips/mips.opt:182 msgid "FP exceptions are enabled" ! msgstr "Liukulukupoikkeukset otettu käyttöön" #: config/mips/mips.opt:186 msgid "Use 32-bit floating-point registers" *************** msgstr "" *** 10670,10680 **** #: config/mips/mips.opt:202 msgid "Use 32-bit general registers" ! msgstr "" #: config/mips/mips.opt:206 msgid "Use 64-bit general registers" ! msgstr "" #: config/mips/mips.opt:210 msgid "Use GP-relative addressing to access small data" --- 10580,10590 ---- #: config/mips/mips.opt:202 msgid "Use 32-bit general registers" ! msgstr "Käytä 32-bittisiä yleisrekistereitä" #: config/mips/mips.opt:206 msgid "Use 64-bit general registers" ! msgstr "Käytä 64-bittisiä yleisrekistereitä" #: config/mips/mips.opt:210 msgid "Use GP-relative addressing to access small data" *************** msgstr "" *** 10686,10692 **** #: config/mips/mips.opt:218 msgid "Allow the use of hardware floating-point ABI and instructions" ! msgstr "" #: config/mips/mips.opt:222 msgid "Generate code that can be safely linked with MIPS16 code." --- 10596,10602 ---- #: config/mips/mips.opt:218 msgid "Allow the use of hardware floating-point ABI and instructions" ! msgstr "Salli laitteistöliukuluku-ABIn ja -käskyjen käyttö" #: config/mips/mips.opt:222 msgid "Generate code that can be safely linked with MIPS16 code." *************** msgid "-mipsN\tGenerate code for ISA lev *** 10697,10714 **** msgstr "" #: config/mips/mips.opt:230 - #, fuzzy msgid "Generate MIPS16 code" ! msgstr "Tuota 32-bittistä i386-koodia" #: config/mips/mips.opt:234 msgid "Use MIPS-3D instructions" ! msgstr "" #: config/mips/mips.opt:238 - #, fuzzy msgid "Use ll, sc and sync instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/mips/mips.opt:242 msgid "Use -G for object-local data" --- 10607,10622 ---- msgstr "" #: config/mips/mips.opt:230 msgid "Generate MIPS16 code" ! msgstr "Tuota MIPS16-koodia" #: config/mips/mips.opt:234 msgid "Use MIPS-3D instructions" ! msgstr "Käytä MIPS-3D-käskyjä" #: config/mips/mips.opt:238 msgid "Use ll, sc and sync instructions" ! msgstr "Käytä ll-, sc- ja sync-käskyjä" #: config/mips/mips.opt:242 msgid "Use -G for object-local data" *************** msgid "Don't optimize block moves" *** 10735,10769 **** msgstr "" #: config/mips/mips.opt:266 - #, fuzzy msgid "Allow the use of MT instructions" ! msgstr "Tasaa funktioiden alut" #: config/mips/mips.opt:270 msgid "Prevent the use of all floating-point operations" msgstr "" #: config/mips/mips.opt:274 - #, fuzzy msgid "Use MCU instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/mips/mips.opt:278 msgid "Do not use a cache-flushing function before calling stack trampolines" msgstr "" #: config/mips/mips.opt:282 - #, fuzzy msgid "Do not use MDMX instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/mips/mips.opt:286 msgid "Generate normal-mode code" ! msgstr "" #: config/mips/mips.opt:290 msgid "Do not use MIPS-3D instructions" ! msgstr "" #: config/mips/mips.opt:294 msgid "Use paired-single floating-point instructions" --- 10643,10674 ---- msgstr "" #: config/mips/mips.opt:266 msgid "Allow the use of MT instructions" ! msgstr "Salli MT-käskyjen käyttö" #: config/mips/mips.opt:270 msgid "Prevent the use of all floating-point operations" msgstr "" #: config/mips/mips.opt:274 msgid "Use MCU instructions" ! msgstr "Käytä MCU-käskyjä" #: config/mips/mips.opt:278 msgid "Do not use a cache-flushing function before calling stack trampolines" msgstr "" #: config/mips/mips.opt:282 msgid "Do not use MDMX instructions" ! msgstr "Älä käytä MDMX-käskyjä" #: config/mips/mips.opt:286 msgid "Generate normal-mode code" ! msgstr "Tuota normaalitilan koodia" #: config/mips/mips.opt:290 msgid "Do not use MIPS-3D instructions" ! msgstr "Älä käytä MIPS-3D-käskyjä" #: config/mips/mips.opt:294 msgid "Use paired-single floating-point instructions" *************** msgstr "" *** 10787,10802 **** #: config/mips/mips.opt:323 msgid "Restrict the use of hardware floating-point instructions to 32-bit operations" ! msgstr "" #: config/mips/mips.opt:327 #, fuzzy msgid "Use SmartMIPS instructions" ! msgstr "Käytä AltiVec-käskyjä" #: config/mips/mips.opt:331 msgid "Prevent the use of all hardware floating-point instructions" ! msgstr "" #: config/mips/mips.opt:335 msgid "Optimize lui/addiu address loads" --- 10692,10707 ---- #: config/mips/mips.opt:323 msgid "Restrict the use of hardware floating-point instructions to 32-bit operations" ! msgstr "Rajoita laitteistöliukulukukäskyjen käyttö 32-bittisiin operaatioihin" #: config/mips/mips.opt:327 #, fuzzy msgid "Use SmartMIPS instructions" ! msgstr "Käytä SmartMIPS-käskyjä" #: config/mips/mips.opt:331 msgid "Prevent the use of all hardware floating-point instructions" ! msgstr "Estä kaikkien laitteistoliukulukukäskyjen käyttö" #: config/mips/mips.opt:335 msgid "Optimize lui/addiu address loads" *************** msgstr "" *** 10989,10995 **** #: common.opt:441 #, fuzzy - #| msgid "Set optimization level to " msgid "-O\tSet optimization level to " msgstr "Aseta optimointitasoksi " --- 10894,10899 ---- *************** msgid "Warn about returning structures, *** 11014,12580 **** msgstr "Varoita tietueiden, unionien ja taulukoiden palauttamisesta" #: common.opt:510 ! msgid "Warn if an array is accessed out of bounds" msgstr "" #: common.opt:514 ! msgid "Warn about inappropriate attribute usage" msgstr "" #: common.opt:518 ! msgid "Warn about pointer casts which increase alignment" msgstr "" #: common.opt:522 #, fuzzy - #| msgid "Warn when a function parameter is unused" msgid "Warn when a #warning directive is encountered" msgstr "Varoita käyttämättömistä funktion parametreista" ! #: common.opt:526 msgid "Warn about uses of __attribute__((deprecated)) declarations" ! msgstr "" ! #: common.opt:530 msgid "Warn when an optimization pass is disabled" msgstr "" ! #: common.opt:534 msgid "Treat all warnings as errors" msgstr "Käsittele kaikki varoitukset virheinä" ! #: common.opt:538 msgid "Treat specified warning as error" msgstr "Käsittele annettu varoitus virheenä" ! #: common.opt:546 msgid "Exit on the first error occurred" msgstr "" ! #: common.opt:550 msgid "-Wframe-larger-than=\tWarn if a function's stack frame requires more than bytes" msgstr "" ! #: common.opt:554 msgid "Warn when attempting to free a non-heap object" msgstr "" ! #: common.opt:558 msgid "Warn when an inlined function cannot be inlined" msgstr "" ! #: common.opt:562 msgid "Warn when an atomic memory model parameter is known to be outside the valid range." msgstr "" ! #: common.opt:569 msgid "-Wlarger-than=\tWarn if an object is larger than bytes" msgstr "" ! #: common.opt:573 msgid "Warn if the loop cannot be optimized due to nontrivial assumptions." msgstr "" ! #: common.opt:580 msgid "Warn about overflow in arithmetic expressions" msgstr "Varoita ylivuodosta aritmeettisissa lausekkeissa" ! #: common.opt:584 msgid "Warn when the packed attribute has no effect on struct layout" msgstr "" ! #: common.opt:588 msgid "Warn when padding is required to align structure members" msgstr "" ! #: common.opt:592 msgid "Issue warnings needed for strict compliance to the standard" msgstr "" ! #: common.opt:596 msgid "Warn when one local variable shadows another" msgstr "" ! #: common.opt:600 msgid "Warn when not issuing stack smashing protection for some reason" msgstr "" ! #: common.opt:604 msgid "Warn if stack usage might be larger than specified amount" msgstr "" ! #: common.opt:608 common.opt:612 msgid "Warn about code which might break strict aliasing rules" msgstr "" ! #: common.opt:616 common.opt:620 msgid "Warn about optimizations that assume that signed overflow is undefined" msgstr "" ! #: common.opt:624 #, fuzzy msgid "Warn about functions which might be candidates for __attribute__((const))" msgstr "funktio on ehkä mahdollinen ehdokas %qs-muotoiluattribuutille" ! #: common.opt:628 #, fuzzy msgid "Warn about functions which might be candidates for __attribute__((pure))" msgstr "funktio on ehkä mahdollinen ehdokas %qs-muotoiluattribuutille" ! #: common.opt:632 msgid "Warn about functions which might be candidates for __attribute__((noreturn))" msgstr "" ! #: common.opt:636 msgid "Do not suppress warnings from system headers" msgstr "Älä vaienna järjestelmän otsakkeista aiheutuvia varoituksia" ! #: common.opt:640 #, fuzzy - #| msgid "Warn when a variable is unused" msgid "Warn whenever a trampoline is generated" msgstr "Varoita käyttämättömistä muuttujista" ! #: common.opt:644 msgid "Warn if a comparison is always true or always false due to the limited range of the data type" msgstr "Varoita vertailusta, joka on aina tosi tai aina epätosi johtuen tietotyypin rajallisesta arvoalueesta" ! #: common.opt:648 msgid "Warn about uninitialized automatic variables" msgstr "" ! #: common.opt:652 #, fuzzy - #| msgid "Warn about variables which are initialized to themselves" msgid "Warn about maybe uninitialized automatic variables" msgstr "Varoita muuttujista, jotka alustetaan omalla arvollaan" ! #: common.opt:660 msgid "Enable all -Wunused- warnings" ! msgstr "" ! #: common.opt:664 #, fuzzy - #| msgid "Warn when a function parameter is unused" msgid "Warn when a function parameter is only set, otherwise unused" msgstr "Varoita käyttämättömistä funktion parametreista" ! #: common.opt:668 #, fuzzy - #| msgid "Warn when a variable is unused" msgid "Warn when a variable is only set, otherwise unused" msgstr "Varoita käyttämättömistä muuttujista" ! #: common.opt:672 msgid "Warn when a function is unused" msgstr "Varoita käyttämättömistä funktioista" ! #: common.opt:676 msgid "Warn when a label is unused" msgstr "Varoita kun nimiö on käyttämätön" ! #: common.opt:680 msgid "Warn when a function parameter is unused" msgstr "Varoita käyttämättömistä funktion parametreista" ! #: common.opt:684 msgid "Warn when an expression value is unused" msgstr "" ! #: common.opt:688 msgid "Warn when a variable is unused" msgstr "Varoita käyttämättömistä muuttujista" ! #: common.opt:692 msgid "Warn in case profiles in -fprofile-use do not match" msgstr "" ! #: common.opt:696 msgid "Warn when a vector operation is compiled outside the SIMD" msgstr "" ! #: common.opt:712 msgid "-aux-info \tEmit declaration information into " msgstr "" ! #: common.opt:731 msgid "-d\tEnable dumps from specific passes of the compiler" msgstr "" ! #: common.opt:735 msgid "-dumpbase \tSet the file basename to be used for dumps" msgstr "" ! #: common.opt:739 msgid "-dumpdir \tSet the directory name to be used for dumps" msgstr "" ! #: common.opt:798 msgid "Aggressively optimize loops using language constraints" msgstr "" ! #: common.opt:802 msgid "Align the start of functions" msgstr "Tasaa funktioiden alut" ! #: common.opt:809 msgid "Align labels which are only reached by jumping" msgstr "" ! #: common.opt:816 msgid "Align all labels" msgstr "" ! #: common.opt:823 msgid "Align the start of loops" msgstr "Tasaa silmukoiden alut" ! #: common.opt:846 msgid "Enable AddressSanitizer, a memory error detector" msgstr "" ! #: common.opt:850 msgid "Enable ThreadSanitizer, a data race detector" msgstr "" ! #: common.opt:854 msgid "Generate unwind tables that are exact at each instruction boundary" msgstr "" ! #: common.opt:858 #, fuzzy msgid "Generate auto-inc/dec instructions" msgstr "Käytä AltiVec-käskyjä" ! #: common.opt:866 msgid "Generate code to check bounds before indexing arrays" msgstr "" ! #: common.opt:870 msgid "Replace add, compare, branch with branch on count register" msgstr "" ! #: common.opt:874 msgid "Use profiling information for branch probabilities" msgstr "" ! #: common.opt:878 msgid "Perform branch target load optimization before prologue / epilogue threading" msgstr "" ! #: common.opt:882 msgid "Perform branch target load optimization after prologue / epilogue threading" msgstr "" ! #: common.opt:886 msgid "Restrict target load migration not to re-use registers in any basic block" msgstr "" ! #: common.opt:890 msgid "-fcall-saved-\tMark as being preserved across functions" msgstr "" ! #: common.opt:894 msgid "-fcall-used-\tMark as being corrupted by function calls" msgstr "" ! #: common.opt:901 msgid "Save registers around function calls" msgstr "" ! #: common.opt:905 msgid "Compare the results of several data dependence analyzers." msgstr "" ! #: common.opt:909 msgid "Looks for opportunities to reduce stack adjustments and stack references." msgstr "" ! #: common.opt:913 msgid "Do not put uninitialized globals in the common section" msgstr "" ! #: common.opt:921 msgid "-fcompare-debug[=]\tCompile with and without e.g. -gtoggle, and compare the final-insns dump" msgstr "" ! #: common.opt:925 msgid "Run only the second compilation of -fcompare-debug" msgstr "" ! #: common.opt:929 msgid "Perform comparison elimination after register allocation has finished" msgstr "" ! #: common.opt:933 msgid "Do not perform optimizations increasing noticeably stack usage" msgstr "" ! #: common.opt:937 msgid "Perform a register copy-propagation optimization pass" msgstr "" ! #: common.opt:941 msgid "Perform cross-jumping optimization" msgstr "" ! #: common.opt:945 msgid "When running CSE, follow jumps to their targets" msgstr "" ! #: common.opt:953 msgid "Omit range reduction step when performing complex division" msgstr "" ! #: common.opt:957 msgid "Complex multiplication and division follow Fortran rules" msgstr "" ! #: common.opt:961 msgid "Place data items into their own section" msgstr "" ! #: common.opt:965 msgid "List all available debugging counters with their limits and counts." msgstr "" ! #: common.opt:969 msgid "-fdbg-cnt=:[,:,...]\tSet the debug counter limit. " msgstr "" ! #: common.opt:973 msgid "Map one directory name to another in debug information" msgstr "" ! #: common.opt:977 msgid "Output .debug_types section when using DWARF v4 debuginfo." msgstr "" ! #: common.opt:983 msgid "Defer popping functions args from stack until later" msgstr "" ! #: common.opt:987 msgid "Attempt to fill delay slots of branch instructions" msgstr "" ! #: common.opt:991 msgid "Delete dead instructions that may throw exceptions" msgstr "" ! #: common.opt:995 msgid "Delete useless null pointer checks" msgstr "" ! #: common.opt:999 msgid "Try to convert virtual calls to direct ones." msgstr "" ! #: common.opt:1003 msgid "-fdiagnostics-show-location=[once|every-line]\tHow often to emit source location at the beginning of line-wrapped diagnostics" msgstr "" ! #: common.opt:1020 msgid "Show the source line with a caret indicating the column" msgstr "" ! #: common.opt:1024 msgid "Amend appropriate diagnostic messages with the command line option that controls them" msgstr "" ! #: common.opt:1028 msgid "-fdisable-[tree|rtl|ipa]-=range1+range2 disables an optimization pass" msgstr "" ! #: common.opt:1032 msgid "-fenable-[tree|rtl|ipa]-=range1+range2 enables an optimization pass" msgstr "" ! #: common.opt:1036 msgid "-fdump-\tDump various compiler internals to a file" msgstr "" ! #: common.opt:1043 msgid "-fdump-final-insns=filename\tDump to filename the insns at the end of translation" msgstr "" ! #: common.opt:1047 msgid "-fdump-go-spec=filename\tWrite all declarations to file as Go code" msgstr "" ! #: common.opt:1051 msgid "Suppress output of addresses in debugging dumps" msgstr "" ! #: common.opt:1055 #, fuzzy - #| msgid "options passed: " msgid "Dump optimization passes" msgstr "annetut valitsimet: " ! #: common.opt:1059 msgid "Suppress output of instruction numbers, line number notes and addresses in debugging dumps" msgstr "" ! #: common.opt:1063 msgid "Suppress output of previous and next insn numbers in debugging dumps" msgstr "" ! #: common.opt:1067 msgid "Enable CFI tables via GAS assembler directives." ! msgstr "" ! #: common.opt:1071 msgid "Perform early inlining" msgstr "" ! #: common.opt:1075 msgid "Perform DWARF2 duplicate elimination" msgstr "" ! #: common.opt:1079 msgid "Perform interprocedural reduction of aggregates" msgstr "" ! #: common.opt:1083 common.opt:1087 msgid "Perform unused type elimination in debug info" msgstr "" ! #: common.opt:1091 msgid "Do not suppress C++ class debug information." msgstr "" ! #: common.opt:1095 msgid "Enable exception handling" msgstr "Käytä poikkeustenkäsittelyä" ! #: common.opt:1099 msgid "Perform a number of minor, expensive optimizations" msgstr "" ! #: common.opt:1103 msgid "-fexcess-precision=[fast|standard]\tSpecify handling of excess floating-point precision" msgstr "" ! #: common.opt:1106 #, fuzzy, c-format msgid "unknown excess precision style %qs" msgstr "tuntematon konetila %qs" ! #: common.opt:1119 msgid "Output lto objects containing both the intermediate language and binary output." msgstr "" ! #: common.opt:1123 msgid "Assume no NaNs or infinities are generated" msgstr "" ! #: common.opt:1127 msgid "-ffixed-\tMark as being unavailable to the compiler" msgstr "" ! #: common.opt:1131 msgid "Don't allocate floats and doubles in extended-precision registers" msgstr "" ! #: common.opt:1139 msgid "Perform a forward propagation pass on RTL" msgstr "" ! #: common.opt:1143 msgid "-ffp-contract=[off|on|fast] Perform floating-point expression contraction." msgstr "" ! #: common.opt:1146 #, fuzzy, c-format msgid "unknown floating point contraction style %qs" msgstr "tuntematon konetila %qs" ! #: common.opt:1163 msgid "Allow function addresses to be held in registers" msgstr "" ! #: common.opt:1167 msgid "Place each function into its own section" msgstr "" ! #: common.opt:1171 msgid "Perform global common subexpression elimination" msgstr "" ! #: common.opt:1175 msgid "Perform enhanced load motion during global common subexpression elimination" msgstr "" ! #: common.opt:1179 msgid "Perform store motion after global common subexpression elimination" msgstr "" ! #: common.opt:1183 msgid "Perform redundant load after store elimination in global common subexpression" msgstr "" ! #: common.opt:1188 msgid "Perform global common subexpression elimination after register allocation" msgstr "" ! #: common.opt:1194 msgid "Enable in and out of Graphite representation" msgstr "" ! #: common.opt:1198 msgid "Enable Graphite Identity transformation" msgstr "" ! #: common.opt:1202 #, fuzzy msgid "Enable hoisting adjacent loads to encourage generating conditional move" msgstr "ehtolausekkeessa ei-lvalue-taulukko" ! #: common.opt:1207 msgid "Mark all loops as parallel" msgstr "" ! #: common.opt:1211 msgid "Enable Loop Strip Mining transformation" msgstr "" ! #: common.opt:1215 msgid "Enable Loop Interchange transformation" msgstr "" ! #: common.opt:1219 msgid "Enable Loop Blocking transformation" msgstr "" ! #: common.opt:1223 msgid "Enable support for GNU transactional memory" msgstr "" ! #: common.opt:1231 msgid "Enable the ISL based loop nest optimizer" msgstr "" ! #: common.opt:1235 msgid "Force bitfield accesses to match their type width" msgstr "" ! #: common.opt:1239 msgid "Enable guessing of branch probabilities" msgstr "" ! #: common.opt:1247 msgid "Process #ident directives" msgstr "" ! #: common.opt:1251 msgid "Perform conversion of conditional jumps to branchless equivalents" msgstr "" ! #: common.opt:1255 msgid "Perform conversion of conditional jumps to conditional execution" msgstr "" ! #: common.opt:1259 msgid "-fstack-reuse=[all|named_vars|none] Set stack reuse level for local variables." msgstr "" ! #: common.opt:1262 #, fuzzy, c-format msgid "unknown Stack Reuse Level %qs" msgstr "tuntematon konetila %qs" ! #: common.opt:1275 msgid "Convert conditional jumps in innermost loops to branchless equivalents" msgstr "" ! #: common.opt:1279 msgid "Also if-convert conditional jumps containing memory writes" msgstr "" ! #: common.opt:1287 msgid "Do not generate .size directives" msgstr "" ! #: common.opt:1291 msgid "Perform indirect inlining" msgstr "" ! #: common.opt:1297 msgid "Enable inlining of function declared \"inline\", disabling disables all inlining" msgstr "" ! #: common.opt:1301 #, fuzzy msgid "Integrate functions into their callers when code size is known not to grow" msgstr "jäsenfunktio-osoitinta käytetty laskutoimituksessa" ! #: common.opt:1305 #, fuzzy msgid "Integrate functions not declared \"inline\" into their callers when profitable" msgstr "jäsenfunktio-osoitinta käytetty laskutoimituksessa" ! #: common.opt:1309 #, fuzzy msgid "Integrate functions only required by their single caller" msgstr "jäsenfunktio-osoitinta käytetty laskutoimituksessa" ! #: common.opt:1316 msgid "-finline-limit=\tLimit the size of inlined functions to " msgstr "" ! #: common.opt:1320 msgid "Inline __atomic operations when a lock free instruction sequence is available." msgstr "" ! #: common.opt:1324 msgid "Instrument function entry and exit with profiling calls" msgstr "" ! #: common.opt:1328 msgid "-finstrument-functions-exclude-function-list=name,... Do not instrument listed functions" msgstr "" ! #: common.opt:1332 msgid "-finstrument-functions-exclude-file-list=filename,... Do not instrument functions listed in files" msgstr "" ! #: common.opt:1336 msgid "Perform Interprocedural constant propagation" msgstr "" ! #: common.opt:1340 msgid "Perform cloning to make Interprocedural constant propagation stronger" msgstr "" ! #: common.opt:1344 msgid "Perform interprocedural profile propagation" msgstr "" ! #: common.opt:1348 msgid "Perform interprocedural points-to analysis" msgstr "" ! #: common.opt:1352 msgid "Discover pure and const functions" msgstr "" ! #: common.opt:1356 msgid "Discover readonly and non addressable static variables" msgstr "" ! #: common.opt:1368 msgid "-fira-algorithm=[CB|priority] Set the used IRA algorithm" msgstr "" ! #: common.opt:1371 #, c-format msgid "unknown IRA algorithm %qs" msgstr "" ! #: common.opt:1381 msgid "-fira-region=[one|all|mixed] Set regions for IRA" msgstr "" ! #: common.opt:1384 #, c-format msgid "unknown IRA region %qs" msgstr "" ! #: common.opt:1397 common.opt:1402 msgid "Use IRA based register pressure calculation" msgstr "" ! #: common.opt:1407 msgid "Share slots for saving different hard registers." msgstr "" ! #: common.opt:1411 msgid "Share stack slots for spilled pseudo-registers." msgstr "" ! #: common.opt:1415 msgid "-fira-verbose=\tControl IRA's level of diagnostic messages." msgstr "" ! #: common.opt:1419 msgid "Optimize induction variables on trees" msgstr "" ! #: common.opt:1423 msgid "Use jump tables for sufficiently large switch statements" msgstr "" ! #: common.opt:1427 msgid "Generate code for functions even if they are fully inlined" msgstr "" ! #: common.opt:1431 msgid "Emit static const variables even if they are not used" msgstr "" ! #: common.opt:1435 msgid "Give external symbols a leading underscore" msgstr "" ! #: common.opt:1443 msgid "Enable link-time optimization." msgstr "" ! #: common.opt:1447 msgid "Link-time optimization with number of parallel jobs or jobserver." msgstr "" ! #: common.opt:1451 msgid "Partition symbols and vars at linktime based on object files they originate from" msgstr "" ! #: common.opt:1455 msgid "Partition functions and vars at linktime into approximately same sized buckets" msgstr "" ! #: common.opt:1459 msgid "Put every symbol into separate partition" msgstr "" ! #: common.opt:1463 #, fuzzy msgid "Disable partioning and streaming" msgstr "Käytä AltiVec-käskyjä" ! #: common.opt:1468 msgid "-flto-compression-level=\tUse zlib compression level for IL" msgstr "" ! #: common.opt:1472 msgid "Report various link-time optimization statistics" msgstr "" ! #: common.opt:1476 msgid "Set errno after built-in math functions" msgstr "" ! #: common.opt:1480 msgid "-fmax-errors=\tMaximum number of errors to report" msgstr "" ! #: common.opt:1484 msgid "Report on permanent memory allocation" msgstr "" ! #: common.opt:1488 msgid "Report on permanent memory allocation in WPA only" msgstr "" ! #: common.opt:1495 msgid "Attempt to merge identical constants and constant variables" msgstr "" ! #: common.opt:1499 msgid "Attempt to merge identical constants across compilation units" msgstr "" ! #: common.opt:1503 msgid "Attempt to merge identical debug strings across compilation units" msgstr "" ! #: common.opt:1507 msgid "-fmessage-length=\tLimit diagnostics to characters per line. 0 suppresses line-wrapping" msgstr "" ! #: common.opt:1511 msgid "Perform SMS based modulo scheduling before the first scheduling pass" msgstr "" ! #: common.opt:1515 msgid "Perform SMS based modulo scheduling with register moves allowed" msgstr "" ! #: common.opt:1519 msgid "Move loop invariant computations out of loops" msgstr "" ! #: common.opt:1523 msgid "Use the RTL dead code elimination pass" msgstr "" ! #: common.opt:1527 msgid "Use the RTL dead store elimination pass" msgstr "" ! #: common.opt:1531 msgid "Enable/Disable the traditional scheduling in loops that already passed modulo scheduling" msgstr "" ! #: common.opt:1535 msgid "Support synchronous non-call exceptions" msgstr "" ! #: common.opt:1539 msgid "When possible do not generate stack frames" msgstr "" ! #: common.opt:1543 #, fuzzy msgid "Enable all optimization info dumps on stderr" msgstr "säiekohtaista muistia ei tueta tälle kohteelle" ! #: common.opt:1547 msgid "-fopt-info[-=filename]\tDump compiler optimization details" msgstr "" ! #: common.opt:1551 msgid "Do the full register move optimization pass" msgstr "" ! #: common.opt:1555 msgid "Optimize sibling and tail recursive calls" msgstr "" ! #: common.opt:1559 msgid "Perform partial inlining" msgstr "" ! #: common.opt:1563 common.opt:1567 msgid "Report on memory allocation before interprocedural optimization" msgstr "" ! #: common.opt:1571 msgid "Pack structure members together without holes" msgstr "" ! #: common.opt:1575 msgid "-fpack-struct=\tSet initial maximum structure member alignment" msgstr "" ! #: common.opt:1579 msgid "Return small aggregates in memory, not registers" msgstr "" ! #: common.opt:1583 msgid "Perform loop peeling" msgstr "" ! #: common.opt:1587 msgid "Enable machine specific peephole optimizations" msgstr "" ! #: common.opt:1591 msgid "Enable an RTL peephole pass before sched2" msgstr "" ! #: common.opt:1595 msgid "Generate position-independent code if possible (large mode)" msgstr "" ! #: common.opt:1599 msgid "Generate position-independent code for executables if possible (large mode)" msgstr "" ! #: common.opt:1603 msgid "Generate position-independent code if possible (small mode)" msgstr "" ! #: common.opt:1607 msgid "Generate position-independent code for executables if possible (small mode)" msgstr "" ! #: common.opt:1611 msgid "Specify a plugin to load" msgstr "" ! #: common.opt:1615 msgid "-fplugin-arg--[=]\tSpecify argument = for plugin " msgstr "" ! #: common.opt:1619 msgid "Run predictive commoning optimization." msgstr "" ! #: common.opt:1623 msgid "Generate prefetch instructions, if available, for arrays in loops" msgstr "" ! #: common.opt:1627 msgid "Enable basic program profiling code" msgstr "" ! #: common.opt:1631 msgid "Insert arc-based program profiling code" msgstr "" ! #: common.opt:1635 msgid "Set the top-level directory for storing the profile data." msgstr "" ! #: common.opt:1640 msgid "Enable correction of flow inconsistent profile data input" msgstr "" ! #: common.opt:1644 msgid "Enable common options for generating profile info for profile feedback directed optimizations" msgstr "" ! #: common.opt:1648 msgid "Enable common options for generating profile info for profile feedback directed optimizations, and set -fprofile-dir=" msgstr "" ! #: common.opt:1652 msgid "Enable common options for performing profile feedback directed optimizations" msgstr "" ! #: common.opt:1656 msgid "Enable common options for performing profile feedback directed optimizations, and set -fprofile-dir=" msgstr "" ! #: common.opt:1660 msgid "Insert code to profile values of expressions" msgstr "" ! #: common.opt:1664 msgid "Report on consistency of profile" msgstr "" ! #: common.opt:1671 msgid "-frandom-seed=\tMake compile reproducible using " msgstr "" ! #: common.opt:1681 msgid "Record gcc command line switches in the object file." msgstr "" ! #: common.opt:1685 msgid "Return small aggregates in registers" msgstr "" ! #: common.opt:1689 msgid "Enables a register move optimization" msgstr "" ! #: common.opt:1693 msgid "Perform a register renaming optimization pass" msgstr "" ! #: common.opt:1697 msgid "Reorder basic blocks to improve code placement" msgstr "" ! #: common.opt:1701 msgid "Reorder basic blocks and partition into hot and cold sections" msgstr "" ! #: common.opt:1705 msgid "Reorder functions to improve code placement" msgstr "" ! #: common.opt:1709 msgid "Add a common subexpression elimination pass after loop optimizations" msgstr "" ! #: common.opt:1717 msgid "Disable optimizations that assume default FP rounding behavior" msgstr "" ! #: common.opt:1721 msgid "Enable scheduling across basic blocks" msgstr "" ! #: common.opt:1725 msgid "Enable register pressure sensitive insn scheduling" msgstr "" ! #: common.opt:1729 msgid "Allow speculative motion of non-loads" msgstr "" ! #: common.opt:1733 msgid "Allow speculative motion of some loads" msgstr "" ! #: common.opt:1737 msgid "Allow speculative motion of more loads" msgstr "" ! #: common.opt:1741 msgid "-fsched-verbose=\tSet the verbosity level of the scheduler" msgstr "" ! #: common.opt:1745 msgid "If scheduling post reload, do superblock scheduling" msgstr "" ! #: common.opt:1753 msgid "Reschedule instructions before register allocation" msgstr "" ! #: common.opt:1757 msgid "Reschedule instructions after register allocation" msgstr "" ! #: common.opt:1764 msgid "Schedule instructions using selective scheduling algorithm" msgstr "" ! #: common.opt:1768 msgid "Run selective scheduling after reload" msgstr "" ! #: common.opt:1772 msgid "Perform software pipelining of inner loops during selective scheduling" msgstr "" ! #: common.opt:1776 msgid "Perform software pipelining of outer loops during selective scheduling" msgstr "" ! #: common.opt:1780 msgid "Reschedule pipelined regions without pipelining" msgstr "" ! #: common.opt:1786 msgid "Allow premature scheduling of queued insns" msgstr "" ! #: common.opt:1790 msgid "-fsched-stalled-insns=\tSet number of queued insns that can be prematurely scheduled" msgstr "" ! #: common.opt:1798 msgid "Set dependence distance checking in premature scheduling of queued insns" msgstr "" ! #: common.opt:1802 msgid "-fsched-stalled-insns-dep=\tSet dependence distance checking in premature scheduling of queued insns" msgstr "" ! #: common.opt:1806 msgid "Enable the group heuristic in the scheduler" msgstr "" ! #: common.opt:1810 msgid "Enable the critical path heuristic in the scheduler" msgstr "" ! #: common.opt:1814 msgid "Enable the speculative instruction heuristic in the scheduler" msgstr "" ! #: common.opt:1818 msgid "Enable the rank heuristic in the scheduler" msgstr "" ! #: common.opt:1822 msgid "Enable the last instruction heuristic in the scheduler" msgstr "" ! #: common.opt:1826 msgid "Enable the dependent count heuristic in the scheduler" msgstr "" ! #: common.opt:1830 msgid "Access data in the same section from shared anchor points" msgstr "" ! #: common.opt:1842 msgid "Turn on Redundant Extensions Elimination pass." msgstr "" ! #: common.opt:1846 msgid "Show column numbers in diagnostics, when available. Default on" msgstr "" ! #: common.opt:1850 msgid "Emit function prologues only before parts of the function that need it," msgstr "" ! #: common.opt:1855 msgid "Disable optimizations observable by IEEE signaling NaNs" msgstr "" ! #: common.opt:1859 msgid "Disable floating point optimizations that ignore the IEEE signedness of zero" msgstr "" ! #: common.opt:1863 msgid "Convert floating point constants to single precision constants" msgstr "" ! #: common.opt:1867 msgid "Split lifetimes of induction variables when loops are unrolled" msgstr "" ! #: common.opt:1871 msgid "Generate discontiguous stack frames" msgstr "" ! #: common.opt:1875 msgid "Split wide types into independent registers" msgstr "" ! #: common.opt:1879 msgid "Apply variable expansion when loops are unrolled" msgstr "" ! #: common.opt:1883 msgid "-fstack-check=[no|generic|specific]\tInsert stack checking code into the program" msgstr "" ! #: common.opt:1887 msgid "Insert stack checking code into the program. Same as -fstack-check=specific" msgstr "" ! #: common.opt:1894 msgid "-fstack-limit-register=\tTrap if the stack goes past " msgstr "" ! #: common.opt:1898 msgid "-fstack-limit-symbol=\tTrap if the stack goes past symbol " msgstr "" ! #: common.opt:1902 msgid "Use propolice as a stack protection method" msgstr "" ! #: common.opt:1906 msgid "Use a stack protection method for every function" msgstr "" ! #: common.opt:1910 msgid "Output stack usage information on a per-function basis" msgstr "" ! #: common.opt:1922 msgid "Assume strict aliasing rules apply" msgstr "" ! #: common.opt:1926 msgid "Treat signed overflow as undefined" msgstr "" ! #: common.opt:1930 msgid "Implement __atomic operations via libcalls to legacy __sync functions" msgstr "" ! #: common.opt:1934 msgid "Check for syntax errors, then stop" msgstr "" ! #: common.opt:1938 msgid "Create data files needed by \"gcov\"" msgstr "" ! #: common.opt:1942 msgid "Perform jump threading optimizations" msgstr "" ! #: common.opt:1946 msgid "Report the time taken by each compiler pass" msgstr "" ! #: common.opt:1950 msgid "-ftls-model=[global-dynamic|local-dynamic|initial-exec|local-exec]\tSet the default thread-local storage code generation model" msgstr "" ! #: common.opt:1953 #, fuzzy, c-format msgid "unknown TLS model %qs" msgstr "tuntematon konetila %qs" ! #: common.opt:1969 msgid "Reorder top level functions, variables, and asms" msgstr "" ! #: common.opt:1973 msgid "Perform superblock formation via tail duplication" msgstr "" ! #: common.opt:1980 msgid "Assume floating-point operations can trap" msgstr "" ! #: common.opt:1984 msgid "Trap for signed overflow in addition, subtraction and multiplication" msgstr "" ! #: common.opt:1988 msgid "Enable SSA-CCP optimization on trees" msgstr "" ! #: common.opt:1992 msgid "Enable SSA-BIT-CCP optimization on trees" msgstr "" ! #: common.opt:2000 msgid "Enable loop header copying on trees" msgstr "" ! #: common.opt:2004 msgid "Enable coalescing of copy-related user variables that are inlined" msgstr "" ! #: common.opt:2008 msgid "Enable coalescing of all copy-related user variables" msgstr "" ! #: common.opt:2012 msgid "Replace SSA temporaries with better names in copies" msgstr "" ! #: common.opt:2016 msgid "Enable copy propagation on trees" msgstr "" ! #: common.opt:2024 msgid "Transform condition stores into unconditional ones" msgstr "" ! #: common.opt:2028 msgid "Perform conversions of switch initializations." msgstr "" ! #: common.opt:2032 msgid "Enable SSA dead code elimination optimization on trees" msgstr "" ! #: common.opt:2036 msgid "Enable dominator optimizations" msgstr "" ! #: common.opt:2040 #, fuzzy msgid "Enable tail merging on trees" msgstr "säiekohtaista muistia ei tueta tälle kohteelle" ! #: common.opt:2044 msgid "Enable dead store elimination" msgstr "" ! #: common.opt:2048 msgid "Enable forward propagation on trees" msgstr "" ! #: common.opt:2052 msgid "Enable Full Redundancy Elimination (FRE) on trees" msgstr "" ! #: common.opt:2056 #, fuzzy msgid "Enable string length optimizations on trees" msgstr "ehtolausekkeessa ei-lvalue-taulukko" ! #: common.opt:2060 msgid "Enable loop distribution on trees" msgstr "" ! #: common.opt:2064 msgid "Enable loop distribution for patterns transformed into a library call" msgstr "" ! #: common.opt:2068 msgid "Enable loop invariant motion on trees" msgstr "" ! #: common.opt:2072 msgid "Enable loop interchange transforms. Same as -floop-interchange" msgstr "" ! #: common.opt:2076 msgid "Create canonical induction variables in loops" msgstr "" ! #: common.opt:2080 msgid "Enable loop optimizations on tree level" msgstr "" ! #: common.opt:2084 msgid "Enable automatic parallelization of loops" msgstr "" ! #: common.opt:2088 #, fuzzy msgid "Enable hoisting loads from conditional pointers." msgstr "ehtolausekkeessa ei-lvalue-taulukko" ! #: common.opt:2092 msgid "Enable SSA-PRE optimization on trees" msgstr "" ! #: common.opt:2096 msgid "In SSA-PRE optimization on trees, enable partial-partial redundancy elimination" msgstr "" ! #: common.opt:2100 msgid "Perform function-local points-to analysis on trees." msgstr "" ! #: common.opt:2104 msgid "Enable reassociation on tree level" msgstr "" ! #: common.opt:2112 msgid "Enable SSA code sinking on trees" msgstr "" ! #: common.opt:2116 msgid "Perform straight-line strength reduction" msgstr "" ! #: common.opt:2120 msgid "Perform scalar replacement of aggregates" msgstr "" ! #: common.opt:2124 msgid "Replace temporary expressions in the SSA->normal pass" msgstr "" ! #: common.opt:2128 msgid "Perform live range splitting during the SSA->normal pass" msgstr "" ! #: common.opt:2132 msgid "Perform Value Range Propagation on trees" msgstr "" ! #: common.opt:2136 msgid "Compile whole compilation unit at a time" msgstr "" ! #: common.opt:2140 msgid "Perform loop unrolling when iteration count is known" msgstr "" ! #: common.opt:2144 msgid "Perform loop unrolling for all loops" msgstr "" ! #: common.opt:2151 msgid "Allow loop optimizations to assume that the loops behave in normal way" msgstr "" ! #: common.opt:2155 msgid "Allow optimization for floating-point arithmetic which may change the" msgstr "" ! #: common.opt:2160 msgid "Same as -fassociative-math for expressions which include division." msgstr "" ! #: common.opt:2168 msgid "Allow math optimizations that may violate IEEE or ISO standards" msgstr "" ! #: common.opt:2172 msgid "Perform loop unswitching" msgstr "" ! #: common.opt:2176 msgid "Just generate unwind tables for exception handling" msgstr "" ! #: common.opt:2180 msgid "Use the bfd linker instead of the default linker" msgstr "" ! #: common.opt:2184 msgid "Use the gold linker instead of the default linker" msgstr "" ! #: common.opt:2196 msgid "Perform variable tracking" msgstr "" ! #: common.opt:2204 msgid "Perform variable tracking by annotating assignments" msgstr "" ! #: common.opt:2210 msgid "Toggle -fvar-tracking-assignments" msgstr "" ! #: common.opt:2218 msgid "Perform variable tracking and also tag variables that are uninitialized" msgstr "" ! #: common.opt:2222 msgid "Enable loop vectorization on trees" msgstr "" ! #: common.opt:2226 msgid "-ftree-vectorizer-verbose=\tThis switch is deprecated. Use -fopt-info instead." msgstr "" ! #: common.opt:2230 msgid "Enable basic block vectorization (SLP) on trees" msgstr "" ! #: common.opt:2234 msgid "Enable use of cost model in vectorization" msgstr "" ! #: common.opt:2238 msgid "Enable loop versioning when doing loop vectorization on trees" msgstr "" ! #: common.opt:2242 msgid "Enable copy propagation of scalar-evolution information." msgstr "" ! #: common.opt:2252 msgid "Add extra commentary to assembler output" msgstr "" ! #: common.opt:2256 msgid "-fvisibility=[default|internal|hidden|protected]\tSet the default symbol visibility" msgstr "" ! #: common.opt:2259 #, fuzzy, c-format msgid "unrecognized visibility value %qs" msgstr "tunnistamaton muotomäärite" ! #: common.opt:2275 msgid "Use expression value profiles in optimizations" msgstr "" ! #: common.opt:2279 msgid "Construct webs and split unrelated uses of single variable" msgstr "" ! #: common.opt:2283 msgid "Enable conditional dead code elimination for builtin calls" msgstr "" ! #: common.opt:2287 msgid "Perform whole program optimizations" msgstr "" ! #: common.opt:2291 msgid "Assume signed arithmetic overflow wraps around" msgstr "" ! #: common.opt:2295 msgid "Put zero initialized data in the bss section" msgstr "" ! #: common.opt:2299 msgid "Generate debug information in default format" msgstr "" ! #: common.opt:2303 msgid "Generate debug information in COFF format" msgstr "" ! #: common.opt:2307 msgid "Generate debug information in DWARF v2 (or later) format" msgstr "" ! #: common.opt:2311 msgid "Generate debug information in default extended format" msgstr "" ! #: common.opt:2315 msgid "Don't generate DWARF pubnames and pubtypes sections." msgstr "" ! #: common.opt:2319 msgid "Generate DWARF pubnames and pubtypes sections." msgstr "" ! #: common.opt:2323 msgid "Don't record gcc command line switches in DWARF DW_AT_producer." msgstr "" ! #: common.opt:2327 msgid "Record gcc command line switches in DWARF DW_AT_producer." msgstr "" ! #: common.opt:2331 msgid "Don't generate debug information in separate .dwo files" msgstr "" ! #: common.opt:2335 msgid "Generate debug information in separate .dwo files" msgstr "" ! #: common.opt:2339 msgid "Generate debug information in STABS format" msgstr "" ! #: common.opt:2343 msgid "Generate debug information in extended STABS format" ! msgstr "" ! #: common.opt:2347 msgid "Emit DWARF additions beyond selected version" msgstr "" ! #: common.opt:2351 msgid "Don't emit DWARF additions beyond selected version" msgstr "" ! #: common.opt:2355 msgid "Toggle debug information generation" msgstr "" ! #: common.opt:2359 msgid "Generate debug information in VMS format" ! msgstr "" ! #: common.opt:2363 msgid "Generate debug information in XCOFF format" ! msgstr "" ! #: common.opt:2367 msgid "Generate debug information in extended XCOFF format" msgstr "" ! #: common.opt:2374 msgid "-iplugindir=\tSet to be the default plugin directory" msgstr "" ! #: common.opt:2378 msgid "-imultiarch \tSet to be the multiarch include subdirectory" msgstr "" ! #: common.opt:2400 #, fuzzy - #| msgid " -o Place the output into \n" msgid "-o \tPlace output into " msgstr " -o Ohjaa tuloste \n" ! #: common.opt:2404 msgid "Enable function profiling" ! msgstr "" ! #: common.opt:2414 msgid "Like -pedantic but issue them as errors" msgstr "" ! #: common.opt:2454 msgid "Do not display functions compiled or elapsed time" msgstr "" ! #: common.opt:2486 msgid "Enable verbose output" msgstr "" ! #: common.opt:2490 msgid "Display the compiler's version" ! msgstr "" ! #: common.opt:2494 msgid "Suppress warnings" ! msgstr "" ! #: common.opt:2504 msgid "Create a shared library" msgstr "Luo jaettu kirjasto" ! #: common.opt:2543 msgid "Create a position independent executable" ! msgstr "" ! #: go/gofrontend/expressions.cc:102 c-family/c-common.c:1777 cp/cvt.c:1149 #: cp/cvt.c:1395 #, gcc-internal-format msgid "value computed is not used" --- 10918,12481 ---- msgstr "Varoita tietueiden, unionien ja taulukoiden palauttamisesta" #: common.opt:510 ! msgid "Warn if a loop with constant number of iterations triggers undefined behavior" msgstr "" #: common.opt:514 ! msgid "Warn if an array is accessed out of bounds" msgstr "" #: common.opt:518 ! msgid "Warn about inappropriate attribute usage" msgstr "" #: common.opt:522 + msgid "Warn about pointer casts which increase alignment" + msgstr "" + + #: common.opt:526 #, fuzzy msgid "Warn when a #warning directive is encountered" msgstr "Varoita käyttämättömistä funktion parametreista" ! #: common.opt:530 msgid "Warn about uses of __attribute__((deprecated)) declarations" ! msgstr "Varoita __attribute__((deprecated)) -esittelyjen käytöstä" ! #: common.opt:534 msgid "Warn when an optimization pass is disabled" msgstr "" ! #: common.opt:538 msgid "Treat all warnings as errors" msgstr "Käsittele kaikki varoitukset virheinä" ! #: common.opt:542 msgid "Treat specified warning as error" msgstr "Käsittele annettu varoitus virheenä" ! #: common.opt:550 msgid "Exit on the first error occurred" msgstr "" ! #: common.opt:554 msgid "-Wframe-larger-than=\tWarn if a function's stack frame requires more than bytes" msgstr "" ! #: common.opt:558 msgid "Warn when attempting to free a non-heap object" msgstr "" ! #: common.opt:562 msgid "Warn when an inlined function cannot be inlined" msgstr "" ! #: common.opt:566 msgid "Warn when an atomic memory model parameter is known to be outside the valid range." msgstr "" ! #: common.opt:573 msgid "-Wlarger-than=\tWarn if an object is larger than bytes" msgstr "" ! #: common.opt:577 msgid "Warn if the loop cannot be optimized due to nontrivial assumptions." msgstr "" ! #: common.opt:584 msgid "Warn about overflow in arithmetic expressions" msgstr "Varoita ylivuodosta aritmeettisissa lausekkeissa" ! #: common.opt:588 msgid "Warn when the packed attribute has no effect on struct layout" msgstr "" ! #: common.opt:592 msgid "Warn when padding is required to align structure members" msgstr "" ! #: common.opt:596 msgid "Issue warnings needed for strict compliance to the standard" msgstr "" ! #: common.opt:600 msgid "Warn when one local variable shadows another" msgstr "" ! #: common.opt:604 msgid "Warn when not issuing stack smashing protection for some reason" msgstr "" ! #: common.opt:608 msgid "Warn if stack usage might be larger than specified amount" msgstr "" ! #: common.opt:612 common.opt:616 msgid "Warn about code which might break strict aliasing rules" msgstr "" ! #: common.opt:620 common.opt:624 msgid "Warn about optimizations that assume that signed overflow is undefined" msgstr "" ! #: common.opt:628 #, fuzzy msgid "Warn about functions which might be candidates for __attribute__((const))" msgstr "funktio on ehkä mahdollinen ehdokas %qs-muotoiluattribuutille" ! #: common.opt:632 #, fuzzy msgid "Warn about functions which might be candidates for __attribute__((pure))" msgstr "funktio on ehkä mahdollinen ehdokas %qs-muotoiluattribuutille" ! #: common.opt:636 msgid "Warn about functions which might be candidates for __attribute__((noreturn))" msgstr "" ! #: common.opt:640 msgid "Do not suppress warnings from system headers" msgstr "Älä vaienna järjestelmän otsakkeista aiheutuvia varoituksia" ! #: common.opt:644 #, fuzzy msgid "Warn whenever a trampoline is generated" msgstr "Varoita käyttämättömistä muuttujista" ! #: common.opt:648 msgid "Warn if a comparison is always true or always false due to the limited range of the data type" msgstr "Varoita vertailusta, joka on aina tosi tai aina epätosi johtuen tietotyypin rajallisesta arvoalueesta" ! #: common.opt:652 msgid "Warn about uninitialized automatic variables" msgstr "" ! #: common.opt:656 #, fuzzy msgid "Warn about maybe uninitialized automatic variables" msgstr "Varoita muuttujista, jotka alustetaan omalla arvollaan" ! #: common.opt:664 msgid "Enable all -Wunused- warnings" ! msgstr "Ota käyttöön kaikki -Wunused-varoitukset" ! #: common.opt:668 #, fuzzy msgid "Warn when a function parameter is only set, otherwise unused" msgstr "Varoita käyttämättömistä funktion parametreista" ! #: common.opt:672 #, fuzzy msgid "Warn when a variable is only set, otherwise unused" msgstr "Varoita käyttämättömistä muuttujista" ! #: common.opt:676 msgid "Warn when a function is unused" msgstr "Varoita käyttämättömistä funktioista" ! #: common.opt:680 msgid "Warn when a label is unused" msgstr "Varoita kun nimiö on käyttämätön" ! #: common.opt:684 msgid "Warn when a function parameter is unused" msgstr "Varoita käyttämättömistä funktion parametreista" ! #: common.opt:688 msgid "Warn when an expression value is unused" msgstr "" ! #: common.opt:692 msgid "Warn when a variable is unused" msgstr "Varoita käyttämättömistä muuttujista" ! #: common.opt:696 msgid "Warn in case profiles in -fprofile-use do not match" msgstr "" ! #: common.opt:700 msgid "Warn when a vector operation is compiled outside the SIMD" msgstr "" ! #: common.opt:716 msgid "-aux-info \tEmit declaration information into " msgstr "" ! #: common.opt:735 msgid "-d\tEnable dumps from specific passes of the compiler" msgstr "" ! #: common.opt:739 msgid "-dumpbase \tSet the file basename to be used for dumps" msgstr "" ! #: common.opt:743 msgid "-dumpdir \tSet the directory name to be used for dumps" msgstr "" ! #: common.opt:802 msgid "Aggressively optimize loops using language constraints" msgstr "" ! #: common.opt:806 msgid "Align the start of functions" msgstr "Tasaa funktioiden alut" ! #: common.opt:813 msgid "Align labels which are only reached by jumping" msgstr "" ! #: common.opt:820 msgid "Align all labels" msgstr "" ! #: common.opt:827 msgid "Align the start of loops" msgstr "Tasaa silmukoiden alut" ! #: common.opt:850 msgid "Enable AddressSanitizer, a memory error detector" msgstr "" ! #: common.opt:854 msgid "Enable ThreadSanitizer, a data race detector" msgstr "" ! #: common.opt:858 msgid "Generate unwind tables that are exact at each instruction boundary" msgstr "" ! #: common.opt:862 #, fuzzy msgid "Generate auto-inc/dec instructions" msgstr "Käytä AltiVec-käskyjä" ! #: common.opt:870 msgid "Generate code to check bounds before indexing arrays" msgstr "" ! #: common.opt:874 msgid "Replace add, compare, branch with branch on count register" msgstr "" ! #: common.opt:878 msgid "Use profiling information for branch probabilities" msgstr "" ! #: common.opt:882 msgid "Perform branch target load optimization before prologue / epilogue threading" msgstr "" ! #: common.opt:886 msgid "Perform branch target load optimization after prologue / epilogue threading" msgstr "" ! #: common.opt:890 msgid "Restrict target load migration not to re-use registers in any basic block" msgstr "" ! #: common.opt:894 msgid "-fcall-saved-\tMark as being preserved across functions" msgstr "" ! #: common.opt:898 msgid "-fcall-used-\tMark as being corrupted by function calls" msgstr "" ! #: common.opt:905 msgid "Save registers around function calls" msgstr "" ! #: common.opt:909 msgid "Compare the results of several data dependence analyzers." msgstr "" ! #: common.opt:913 msgid "Looks for opportunities to reduce stack adjustments and stack references." msgstr "" ! #: common.opt:917 msgid "Do not put uninitialized globals in the common section" msgstr "" ! #: common.opt:925 msgid "-fcompare-debug[=]\tCompile with and without e.g. -gtoggle, and compare the final-insns dump" msgstr "" ! #: common.opt:929 msgid "Run only the second compilation of -fcompare-debug" msgstr "" ! #: common.opt:933 msgid "Perform comparison elimination after register allocation has finished" msgstr "" ! #: common.opt:937 msgid "Do not perform optimizations increasing noticeably stack usage" msgstr "" ! #: common.opt:941 msgid "Perform a register copy-propagation optimization pass" msgstr "" ! #: common.opt:945 msgid "Perform cross-jumping optimization" msgstr "" ! #: common.opt:949 msgid "When running CSE, follow jumps to their targets" msgstr "" ! #: common.opt:957 msgid "Omit range reduction step when performing complex division" msgstr "" ! #: common.opt:961 msgid "Complex multiplication and division follow Fortran rules" msgstr "" ! #: common.opt:965 msgid "Place data items into their own section" msgstr "" ! #: common.opt:969 msgid "List all available debugging counters with their limits and counts." msgstr "" ! #: common.opt:973 msgid "-fdbg-cnt=:[,:,...]\tSet the debug counter limit. " msgstr "" ! #: common.opt:977 msgid "Map one directory name to another in debug information" msgstr "" ! #: common.opt:981 msgid "Output .debug_types section when using DWARF v4 debuginfo." msgstr "" ! #: common.opt:987 msgid "Defer popping functions args from stack until later" msgstr "" ! #: common.opt:991 msgid "Attempt to fill delay slots of branch instructions" msgstr "" ! #: common.opt:995 msgid "Delete dead instructions that may throw exceptions" msgstr "" ! #: common.opt:999 msgid "Delete useless null pointer checks" msgstr "" ! #: common.opt:1003 msgid "Try to convert virtual calls to direct ones." msgstr "" ! #: common.opt:1007 msgid "-fdiagnostics-show-location=[once|every-line]\tHow often to emit source location at the beginning of line-wrapped diagnostics" msgstr "" ! #: common.opt:1024 msgid "Show the source line with a caret indicating the column" msgstr "" ! #: common.opt:1028 msgid "Amend appropriate diagnostic messages with the command line option that controls them" msgstr "" ! #: common.opt:1032 msgid "-fdisable-[tree|rtl|ipa]-=range1+range2 disables an optimization pass" msgstr "" ! #: common.opt:1036 msgid "-fenable-[tree|rtl|ipa]-=range1+range2 enables an optimization pass" msgstr "" ! #: common.opt:1040 msgid "-fdump-\tDump various compiler internals to a file" msgstr "" ! #: common.opt:1047 msgid "-fdump-final-insns=filename\tDump to filename the insns at the end of translation" msgstr "" ! #: common.opt:1051 msgid "-fdump-go-spec=filename\tWrite all declarations to file as Go code" msgstr "" ! #: common.opt:1055 msgid "Suppress output of addresses in debugging dumps" msgstr "" ! #: common.opt:1059 #, fuzzy msgid "Dump optimization passes" msgstr "annetut valitsimet: " ! #: common.opt:1063 msgid "Suppress output of instruction numbers, line number notes and addresses in debugging dumps" msgstr "" ! #: common.opt:1067 msgid "Suppress output of previous and next insn numbers in debugging dumps" msgstr "" ! #: common.opt:1071 msgid "Enable CFI tables via GAS assembler directives." ! msgstr "Ota käyttöön CFI-taulut GAS-assembler-direktiivien kautta" ! #: common.opt:1075 msgid "Perform early inlining" msgstr "" ! #: common.opt:1079 msgid "Perform DWARF2 duplicate elimination" msgstr "" ! #: common.opt:1083 msgid "Perform interprocedural reduction of aggregates" msgstr "" ! #: common.opt:1087 common.opt:1091 msgid "Perform unused type elimination in debug info" msgstr "" ! #: common.opt:1095 msgid "Do not suppress C++ class debug information." msgstr "" ! #: common.opt:1099 msgid "Enable exception handling" msgstr "Käytä poikkeustenkäsittelyä" ! #: common.opt:1103 msgid "Perform a number of minor, expensive optimizations" msgstr "" ! #: common.opt:1107 msgid "-fexcess-precision=[fast|standard]\tSpecify handling of excess floating-point precision" msgstr "" ! #: common.opt:1110 #, fuzzy, c-format msgid "unknown excess precision style %qs" msgstr "tuntematon konetila %qs" ! #: common.opt:1123 msgid "Output lto objects containing both the intermediate language and binary output." msgstr "" ! #: common.opt:1127 msgid "Assume no NaNs or infinities are generated" msgstr "" ! #: common.opt:1131 msgid "-ffixed-\tMark as being unavailable to the compiler" msgstr "" ! #: common.opt:1135 msgid "Don't allocate floats and doubles in extended-precision registers" msgstr "" ! #: common.opt:1143 msgid "Perform a forward propagation pass on RTL" msgstr "" ! #: common.opt:1147 msgid "-ffp-contract=[off|on|fast] Perform floating-point expression contraction." msgstr "" ! #: common.opt:1150 #, fuzzy, c-format msgid "unknown floating point contraction style %qs" msgstr "tuntematon konetila %qs" ! #: common.opt:1167 msgid "Allow function addresses to be held in registers" msgstr "" ! #: common.opt:1171 msgid "Place each function into its own section" msgstr "" ! #: common.opt:1175 msgid "Perform global common subexpression elimination" msgstr "" ! #: common.opt:1179 msgid "Perform enhanced load motion during global common subexpression elimination" msgstr "" ! #: common.opt:1183 msgid "Perform store motion after global common subexpression elimination" msgstr "" ! #: common.opt:1187 msgid "Perform redundant load after store elimination in global common subexpression" msgstr "" ! #: common.opt:1192 msgid "Perform global common subexpression elimination after register allocation" msgstr "" ! #: common.opt:1198 msgid "Enable in and out of Graphite representation" msgstr "" ! #: common.opt:1202 msgid "Enable Graphite Identity transformation" msgstr "" ! #: common.opt:1206 #, fuzzy msgid "Enable hoisting adjacent loads to encourage generating conditional move" msgstr "ehtolausekkeessa ei-lvalue-taulukko" ! #: common.opt:1211 msgid "Mark all loops as parallel" msgstr "" ! #: common.opt:1215 msgid "Enable Loop Strip Mining transformation" msgstr "" ! #: common.opt:1219 msgid "Enable Loop Interchange transformation" msgstr "" ! #: common.opt:1223 msgid "Enable Loop Blocking transformation" msgstr "" ! #: common.opt:1227 msgid "Enable support for GNU transactional memory" msgstr "" ! #: common.opt:1235 msgid "Enable the ISL based loop nest optimizer" msgstr "" ! #: common.opt:1239 msgid "Force bitfield accesses to match their type width" msgstr "" ! #: common.opt:1243 msgid "Enable guessing of branch probabilities" msgstr "" ! #: common.opt:1251 msgid "Process #ident directives" msgstr "" ! #: common.opt:1255 msgid "Perform conversion of conditional jumps to branchless equivalents" msgstr "" ! #: common.opt:1259 msgid "Perform conversion of conditional jumps to conditional execution" msgstr "" ! #: common.opt:1263 msgid "-fstack-reuse=[all|named_vars|none] Set stack reuse level for local variables." msgstr "" ! #: common.opt:1266 #, fuzzy, c-format msgid "unknown Stack Reuse Level %qs" msgstr "tuntematon konetila %qs" ! #: common.opt:1279 msgid "Convert conditional jumps in innermost loops to branchless equivalents" msgstr "" ! #: common.opt:1283 msgid "Also if-convert conditional jumps containing memory writes" msgstr "" ! #: common.opt:1291 msgid "Do not generate .size directives" msgstr "" ! #: common.opt:1295 msgid "Perform indirect inlining" msgstr "" ! #: common.opt:1301 msgid "Enable inlining of function declared \"inline\", disabling disables all inlining" msgstr "" ! #: common.opt:1305 #, fuzzy msgid "Integrate functions into their callers when code size is known not to grow" msgstr "jäsenfunktio-osoitinta käytetty laskutoimituksessa" ! #: common.opt:1309 #, fuzzy msgid "Integrate functions not declared \"inline\" into their callers when profitable" msgstr "jäsenfunktio-osoitinta käytetty laskutoimituksessa" ! #: common.opt:1313 #, fuzzy msgid "Integrate functions only required by their single caller" msgstr "jäsenfunktio-osoitinta käytetty laskutoimituksessa" ! #: common.opt:1320 msgid "-finline-limit=\tLimit the size of inlined functions to " msgstr "" ! #: common.opt:1324 msgid "Inline __atomic operations when a lock free instruction sequence is available." msgstr "" ! #: common.opt:1328 msgid "Instrument function entry and exit with profiling calls" msgstr "" ! #: common.opt:1332 msgid "-finstrument-functions-exclude-function-list=name,... Do not instrument listed functions" msgstr "" ! #: common.opt:1336 msgid "-finstrument-functions-exclude-file-list=filename,... Do not instrument functions listed in files" msgstr "" ! #: common.opt:1340 msgid "Perform Interprocedural constant propagation" msgstr "" ! #: common.opt:1344 msgid "Perform cloning to make Interprocedural constant propagation stronger" msgstr "" ! #: common.opt:1348 msgid "Perform interprocedural profile propagation" msgstr "" ! #: common.opt:1352 msgid "Perform interprocedural points-to analysis" msgstr "" ! #: common.opt:1356 msgid "Discover pure and const functions" msgstr "" ! #: common.opt:1360 msgid "Discover readonly and non addressable static variables" msgstr "" ! #: common.opt:1372 msgid "-fira-algorithm=[CB|priority] Set the used IRA algorithm" msgstr "" ! #: common.opt:1375 #, c-format msgid "unknown IRA algorithm %qs" msgstr "" ! #: common.opt:1385 msgid "-fira-region=[one|all|mixed] Set regions for IRA" msgstr "" ! #: common.opt:1388 #, c-format msgid "unknown IRA region %qs" msgstr "" ! #: common.opt:1401 common.opt:1406 msgid "Use IRA based register pressure calculation" msgstr "" ! #: common.opt:1411 msgid "Share slots for saving different hard registers." msgstr "" ! #: common.opt:1415 msgid "Share stack slots for spilled pseudo-registers." msgstr "" ! #: common.opt:1419 msgid "-fira-verbose=\tControl IRA's level of diagnostic messages." msgstr "" ! #: common.opt:1423 msgid "Optimize induction variables on trees" msgstr "" ! #: common.opt:1427 msgid "Use jump tables for sufficiently large switch statements" msgstr "" ! #: common.opt:1431 msgid "Generate code for functions even if they are fully inlined" msgstr "" ! #: common.opt:1435 msgid "Emit static const variables even if they are not used" msgstr "" ! #: common.opt:1439 msgid "Give external symbols a leading underscore" msgstr "" ! #: common.opt:1447 msgid "Enable link-time optimization." msgstr "" ! #: common.opt:1451 msgid "Link-time optimization with number of parallel jobs or jobserver." msgstr "" ! #: common.opt:1455 msgid "Partition symbols and vars at linktime based on object files they originate from" msgstr "" ! #: common.opt:1459 msgid "Partition functions and vars at linktime into approximately same sized buckets" msgstr "" ! #: common.opt:1463 msgid "Put every symbol into separate partition" msgstr "" ! #: common.opt:1467 #, fuzzy msgid "Disable partioning and streaming" msgstr "Käytä AltiVec-käskyjä" ! #: common.opt:1472 msgid "-flto-compression-level=\tUse zlib compression level for IL" msgstr "" ! #: common.opt:1476 msgid "Report various link-time optimization statistics" msgstr "" ! #: common.opt:1480 msgid "Set errno after built-in math functions" msgstr "" ! #: common.opt:1484 msgid "-fmax-errors=\tMaximum number of errors to report" msgstr "" ! #: common.opt:1488 msgid "Report on permanent memory allocation" msgstr "" ! #: common.opt:1492 msgid "Report on permanent memory allocation in WPA only" msgstr "" ! #: common.opt:1499 msgid "Attempt to merge identical constants and constant variables" msgstr "" ! #: common.opt:1503 msgid "Attempt to merge identical constants across compilation units" msgstr "" ! #: common.opt:1507 msgid "Attempt to merge identical debug strings across compilation units" msgstr "" ! #: common.opt:1511 msgid "-fmessage-length=\tLimit diagnostics to characters per line. 0 suppresses line-wrapping" msgstr "" ! #: common.opt:1515 msgid "Perform SMS based modulo scheduling before the first scheduling pass" msgstr "" ! #: common.opt:1519 msgid "Perform SMS based modulo scheduling with register moves allowed" msgstr "" ! #: common.opt:1523 msgid "Move loop invariant computations out of loops" msgstr "" ! #: common.opt:1527 msgid "Use the RTL dead code elimination pass" msgstr "" ! #: common.opt:1531 msgid "Use the RTL dead store elimination pass" msgstr "" ! #: common.opt:1535 msgid "Enable/Disable the traditional scheduling in loops that already passed modulo scheduling" msgstr "" ! #: common.opt:1539 msgid "Support synchronous non-call exceptions" msgstr "" ! #: common.opt:1543 msgid "When possible do not generate stack frames" msgstr "" ! #: common.opt:1547 #, fuzzy msgid "Enable all optimization info dumps on stderr" msgstr "säiekohtaista muistia ei tueta tälle kohteelle" ! #: common.opt:1551 msgid "-fopt-info[-=filename]\tDump compiler optimization details" msgstr "" ! #: common.opt:1555 msgid "Do the full register move optimization pass" msgstr "" ! #: common.opt:1559 msgid "Optimize sibling and tail recursive calls" msgstr "" ! #: common.opt:1563 msgid "Perform partial inlining" msgstr "" ! #: common.opt:1567 common.opt:1571 msgid "Report on memory allocation before interprocedural optimization" msgstr "" ! #: common.opt:1575 msgid "Pack structure members together without holes" msgstr "" ! #: common.opt:1579 msgid "-fpack-struct=\tSet initial maximum structure member alignment" msgstr "" ! #: common.opt:1583 msgid "Return small aggregates in memory, not registers" msgstr "" ! #: common.opt:1587 msgid "Perform loop peeling" msgstr "" ! #: common.opt:1591 msgid "Enable machine specific peephole optimizations" msgstr "" ! #: common.opt:1595 msgid "Enable an RTL peephole pass before sched2" msgstr "" ! #: common.opt:1599 msgid "Generate position-independent code if possible (large mode)" msgstr "" ! #: common.opt:1603 msgid "Generate position-independent code for executables if possible (large mode)" msgstr "" ! #: common.opt:1607 msgid "Generate position-independent code if possible (small mode)" msgstr "" ! #: common.opt:1611 msgid "Generate position-independent code for executables if possible (small mode)" msgstr "" ! #: common.opt:1615 msgid "Specify a plugin to load" msgstr "" ! #: common.opt:1619 msgid "-fplugin-arg--[=]\tSpecify argument = for plugin " msgstr "" ! #: common.opt:1623 msgid "Run predictive commoning optimization." msgstr "" ! #: common.opt:1627 msgid "Generate prefetch instructions, if available, for arrays in loops" msgstr "" ! #: common.opt:1631 msgid "Enable basic program profiling code" msgstr "" ! #: common.opt:1635 msgid "Insert arc-based program profiling code" msgstr "" ! #: common.opt:1639 msgid "Set the top-level directory for storing the profile data." msgstr "" ! #: common.opt:1644 msgid "Enable correction of flow inconsistent profile data input" msgstr "" ! #: common.opt:1648 msgid "Enable common options for generating profile info for profile feedback directed optimizations" msgstr "" ! #: common.opt:1652 msgid "Enable common options for generating profile info for profile feedback directed optimizations, and set -fprofile-dir=" msgstr "" ! #: common.opt:1656 msgid "Enable common options for performing profile feedback directed optimizations" msgstr "" ! #: common.opt:1660 msgid "Enable common options for performing profile feedback directed optimizations, and set -fprofile-dir=" msgstr "" ! #: common.opt:1664 msgid "Insert code to profile values of expressions" msgstr "" ! #: common.opt:1668 msgid "Report on consistency of profile" msgstr "" ! #: common.opt:1675 msgid "-frandom-seed=\tMake compile reproducible using " msgstr "" ! #: common.opt:1685 msgid "Record gcc command line switches in the object file." msgstr "" ! #: common.opt:1689 msgid "Return small aggregates in registers" msgstr "" ! #: common.opt:1693 msgid "Enables a register move optimization" msgstr "" ! #: common.opt:1697 msgid "Perform a register renaming optimization pass" msgstr "" ! #: common.opt:1701 msgid "Reorder basic blocks to improve code placement" msgstr "" ! #: common.opt:1705 msgid "Reorder basic blocks and partition into hot and cold sections" msgstr "" ! #: common.opt:1709 msgid "Reorder functions to improve code placement" msgstr "" ! #: common.opt:1713 msgid "Add a common subexpression elimination pass after loop optimizations" msgstr "" ! #: common.opt:1721 msgid "Disable optimizations that assume default FP rounding behavior" msgstr "" ! #: common.opt:1725 msgid "Enable scheduling across basic blocks" msgstr "" ! #: common.opt:1729 msgid "Enable register pressure sensitive insn scheduling" msgstr "" ! #: common.opt:1733 msgid "Allow speculative motion of non-loads" msgstr "" ! #: common.opt:1737 msgid "Allow speculative motion of some loads" msgstr "" ! #: common.opt:1741 msgid "Allow speculative motion of more loads" msgstr "" ! #: common.opt:1745 msgid "-fsched-verbose=\tSet the verbosity level of the scheduler" msgstr "" ! #: common.opt:1749 msgid "If scheduling post reload, do superblock scheduling" msgstr "" ! #: common.opt:1757 msgid "Reschedule instructions before register allocation" msgstr "" ! #: common.opt:1761 msgid "Reschedule instructions after register allocation" msgstr "" ! #: common.opt:1768 msgid "Schedule instructions using selective scheduling algorithm" msgstr "" ! #: common.opt:1772 msgid "Run selective scheduling after reload" msgstr "" ! #: common.opt:1776 msgid "Perform software pipelining of inner loops during selective scheduling" msgstr "" ! #: common.opt:1780 msgid "Perform software pipelining of outer loops during selective scheduling" msgstr "" ! #: common.opt:1784 msgid "Reschedule pipelined regions without pipelining" msgstr "" ! #: common.opt:1790 msgid "Allow premature scheduling of queued insns" msgstr "" ! #: common.opt:1794 msgid "-fsched-stalled-insns=\tSet number of queued insns that can be prematurely scheduled" msgstr "" ! #: common.opt:1802 msgid "Set dependence distance checking in premature scheduling of queued insns" msgstr "" ! #: common.opt:1806 msgid "-fsched-stalled-insns-dep=\tSet dependence distance checking in premature scheduling of queued insns" msgstr "" ! #: common.opt:1810 msgid "Enable the group heuristic in the scheduler" msgstr "" ! #: common.opt:1814 msgid "Enable the critical path heuristic in the scheduler" msgstr "" ! #: common.opt:1818 msgid "Enable the speculative instruction heuristic in the scheduler" msgstr "" ! #: common.opt:1822 msgid "Enable the rank heuristic in the scheduler" msgstr "" ! #: common.opt:1826 msgid "Enable the last instruction heuristic in the scheduler" msgstr "" ! #: common.opt:1830 msgid "Enable the dependent count heuristic in the scheduler" msgstr "" ! #: common.opt:1834 msgid "Access data in the same section from shared anchor points" msgstr "" ! #: common.opt:1846 msgid "Turn on Redundant Extensions Elimination pass." msgstr "" ! #: common.opt:1850 msgid "Show column numbers in diagnostics, when available. Default on" msgstr "" ! #: common.opt:1854 msgid "Emit function prologues only before parts of the function that need it," msgstr "" ! #: common.opt:1859 msgid "Disable optimizations observable by IEEE signaling NaNs" msgstr "" ! #: common.opt:1863 msgid "Disable floating point optimizations that ignore the IEEE signedness of zero" msgstr "" ! #: common.opt:1867 msgid "Convert floating point constants to single precision constants" msgstr "" ! #: common.opt:1871 msgid "Split lifetimes of induction variables when loops are unrolled" msgstr "" ! #: common.opt:1875 msgid "Generate discontiguous stack frames" msgstr "" ! #: common.opt:1879 msgid "Split wide types into independent registers" msgstr "" ! #: common.opt:1883 msgid "Apply variable expansion when loops are unrolled" msgstr "" ! #: common.opt:1887 msgid "-fstack-check=[no|generic|specific]\tInsert stack checking code into the program" msgstr "" ! #: common.opt:1891 msgid "Insert stack checking code into the program. Same as -fstack-check=specific" msgstr "" ! #: common.opt:1898 msgid "-fstack-limit-register=\tTrap if the stack goes past " msgstr "" ! #: common.opt:1902 msgid "-fstack-limit-symbol=\tTrap if the stack goes past symbol " msgstr "" ! #: common.opt:1906 msgid "Use propolice as a stack protection method" msgstr "" ! #: common.opt:1910 msgid "Use a stack protection method for every function" msgstr "" ! #: common.opt:1914 msgid "Output stack usage information on a per-function basis" msgstr "" ! #: common.opt:1926 msgid "Assume strict aliasing rules apply" msgstr "" ! #: common.opt:1930 msgid "Treat signed overflow as undefined" msgstr "" ! #: common.opt:1934 msgid "Implement __atomic operations via libcalls to legacy __sync functions" msgstr "" ! #: common.opt:1938 msgid "Check for syntax errors, then stop" msgstr "" ! #: common.opt:1942 msgid "Create data files needed by \"gcov\"" msgstr "" ! #: common.opt:1946 msgid "Perform jump threading optimizations" msgstr "" ! #: common.opt:1950 msgid "Report the time taken by each compiler pass" msgstr "" ! #: common.opt:1954 msgid "-ftls-model=[global-dynamic|local-dynamic|initial-exec|local-exec]\tSet the default thread-local storage code generation model" msgstr "" ! #: common.opt:1957 #, fuzzy, c-format msgid "unknown TLS model %qs" msgstr "tuntematon konetila %qs" ! #: common.opt:1973 msgid "Reorder top level functions, variables, and asms" msgstr "" ! #: common.opt:1977 msgid "Perform superblock formation via tail duplication" msgstr "" ! #: common.opt:1984 msgid "Assume floating-point operations can trap" msgstr "" ! #: common.opt:1988 msgid "Trap for signed overflow in addition, subtraction and multiplication" msgstr "" ! #: common.opt:1992 msgid "Enable SSA-CCP optimization on trees" msgstr "" ! #: common.opt:1996 msgid "Enable SSA-BIT-CCP optimization on trees" msgstr "" ! #: common.opt:2004 msgid "Enable loop header copying on trees" msgstr "" ! #: common.opt:2008 msgid "Enable coalescing of copy-related user variables that are inlined" msgstr "" ! #: common.opt:2012 msgid "Enable coalescing of all copy-related user variables" msgstr "" ! #: common.opt:2016 msgid "Replace SSA temporaries with better names in copies" msgstr "" ! #: common.opt:2020 msgid "Enable copy propagation on trees" msgstr "" ! #: common.opt:2028 msgid "Transform condition stores into unconditional ones" msgstr "" ! #: common.opt:2032 msgid "Perform conversions of switch initializations." msgstr "" ! #: common.opt:2036 msgid "Enable SSA dead code elimination optimization on trees" msgstr "" ! #: common.opt:2040 msgid "Enable dominator optimizations" msgstr "" ! #: common.opt:2044 #, fuzzy msgid "Enable tail merging on trees" msgstr "säiekohtaista muistia ei tueta tälle kohteelle" ! #: common.opt:2048 msgid "Enable dead store elimination" msgstr "" ! #: common.opt:2052 msgid "Enable forward propagation on trees" msgstr "" ! #: common.opt:2056 msgid "Enable Full Redundancy Elimination (FRE) on trees" msgstr "" ! #: common.opt:2060 #, fuzzy msgid "Enable string length optimizations on trees" msgstr "ehtolausekkeessa ei-lvalue-taulukko" ! #: common.opt:2064 msgid "Enable loop distribution on trees" msgstr "" ! #: common.opt:2068 msgid "Enable loop distribution for patterns transformed into a library call" msgstr "" ! #: common.opt:2072 msgid "Enable loop invariant motion on trees" msgstr "" ! #: common.opt:2076 msgid "Enable loop interchange transforms. Same as -floop-interchange" msgstr "" ! #: common.opt:2080 msgid "Create canonical induction variables in loops" msgstr "" ! #: common.opt:2084 msgid "Enable loop optimizations on tree level" msgstr "" ! #: common.opt:2088 msgid "Enable automatic parallelization of loops" msgstr "" ! #: common.opt:2092 #, fuzzy msgid "Enable hoisting loads from conditional pointers." msgstr "ehtolausekkeessa ei-lvalue-taulukko" ! #: common.opt:2096 msgid "Enable SSA-PRE optimization on trees" msgstr "" ! #: common.opt:2100 msgid "In SSA-PRE optimization on trees, enable partial-partial redundancy elimination" msgstr "" ! #: common.opt:2104 msgid "Perform function-local points-to analysis on trees." msgstr "" ! #: common.opt:2108 msgid "Enable reassociation on tree level" msgstr "" ! #: common.opt:2116 msgid "Enable SSA code sinking on trees" msgstr "" ! #: common.opt:2120 msgid "Perform straight-line strength reduction" msgstr "" ! #: common.opt:2124 msgid "Perform scalar replacement of aggregates" msgstr "" ! #: common.opt:2128 msgid "Replace temporary expressions in the SSA->normal pass" msgstr "" ! #: common.opt:2132 msgid "Perform live range splitting during the SSA->normal pass" msgstr "" ! #: common.opt:2136 msgid "Perform Value Range Propagation on trees" msgstr "" ! #: common.opt:2140 msgid "Compile whole compilation unit at a time" msgstr "" ! #: common.opt:2144 msgid "Perform loop unrolling when iteration count is known" msgstr "" ! #: common.opt:2148 msgid "Perform loop unrolling for all loops" msgstr "" ! #: common.opt:2155 msgid "Allow loop optimizations to assume that the loops behave in normal way" msgstr "" ! #: common.opt:2159 msgid "Allow optimization for floating-point arithmetic which may change the" msgstr "" ! #: common.opt:2164 msgid "Same as -fassociative-math for expressions which include division." msgstr "" ! #: common.opt:2172 msgid "Allow math optimizations that may violate IEEE or ISO standards" msgstr "" ! #: common.opt:2176 msgid "Perform loop unswitching" msgstr "" ! #: common.opt:2180 msgid "Just generate unwind tables for exception handling" msgstr "" ! #: common.opt:2184 msgid "Use the bfd linker instead of the default linker" msgstr "" ! #: common.opt:2188 msgid "Use the gold linker instead of the default linker" msgstr "" ! #: common.opt:2200 msgid "Perform variable tracking" msgstr "" ! #: common.opt:2208 msgid "Perform variable tracking by annotating assignments" msgstr "" ! #: common.opt:2214 msgid "Toggle -fvar-tracking-assignments" msgstr "" ! #: common.opt:2222 msgid "Perform variable tracking and also tag variables that are uninitialized" msgstr "" ! #: common.opt:2226 msgid "Enable loop vectorization on trees" msgstr "" ! #: common.opt:2230 msgid "-ftree-vectorizer-verbose=\tThis switch is deprecated. Use -fopt-info instead." msgstr "" ! #: common.opt:2234 msgid "Enable basic block vectorization (SLP) on trees" msgstr "" ! #: common.opt:2238 msgid "Enable use of cost model in vectorization" msgstr "" ! #: common.opt:2242 msgid "Enable loop versioning when doing loop vectorization on trees" msgstr "" ! #: common.opt:2246 msgid "Enable copy propagation of scalar-evolution information." msgstr "" ! #: common.opt:2256 msgid "Add extra commentary to assembler output" msgstr "" ! #: common.opt:2260 msgid "-fvisibility=[default|internal|hidden|protected]\tSet the default symbol visibility" msgstr "" ! #: common.opt:2263 #, fuzzy, c-format msgid "unrecognized visibility value %qs" msgstr "tunnistamaton muotomäärite" ! #: common.opt:2279 msgid "Use expression value profiles in optimizations" msgstr "" ! #: common.opt:2283 msgid "Construct webs and split unrelated uses of single variable" msgstr "" ! #: common.opt:2287 msgid "Enable conditional dead code elimination for builtin calls" msgstr "" ! #: common.opt:2291 msgid "Perform whole program optimizations" msgstr "" ! #: common.opt:2295 msgid "Assume signed arithmetic overflow wraps around" msgstr "" ! #: common.opt:2299 msgid "Put zero initialized data in the bss section" msgstr "" ! #: common.opt:2303 msgid "Generate debug information in default format" msgstr "" ! #: common.opt:2307 msgid "Generate debug information in COFF format" msgstr "" ! #: common.opt:2311 msgid "Generate debug information in DWARF v2 (or later) format" msgstr "" ! #: common.opt:2315 msgid "Generate debug information in default extended format" msgstr "" ! #: common.opt:2319 msgid "Don't generate DWARF pubnames and pubtypes sections." msgstr "" ! #: common.opt:2323 msgid "Generate DWARF pubnames and pubtypes sections." msgstr "" ! #: common.opt:2327 msgid "Don't record gcc command line switches in DWARF DW_AT_producer." msgstr "" ! #: common.opt:2331 msgid "Record gcc command line switches in DWARF DW_AT_producer." msgstr "" ! #: common.opt:2335 msgid "Don't generate debug information in separate .dwo files" msgstr "" ! #: common.opt:2339 msgid "Generate debug information in separate .dwo files" msgstr "" ! #: common.opt:2343 msgid "Generate debug information in STABS format" msgstr "" ! #: common.opt:2347 msgid "Generate debug information in extended STABS format" ! msgstr "Tuota vianjäljitystietoja laajennetussa STABS-muodossa" ! #: common.opt:2351 msgid "Emit DWARF additions beyond selected version" msgstr "" ! #: common.opt:2355 msgid "Don't emit DWARF additions beyond selected version" msgstr "" ! #: common.opt:2359 msgid "Toggle debug information generation" msgstr "" ! #: common.opt:2363 msgid "Generate debug information in VMS format" ! msgstr "Tuota vianjäljitystietoja VMS-muodossa" ! #: common.opt:2367 msgid "Generate debug information in XCOFF format" ! msgstr "Tuota vianjäljitystietoja XCOFF-muodossa" ! #: common.opt:2371 msgid "Generate debug information in extended XCOFF format" msgstr "" ! #: common.opt:2378 msgid "-iplugindir=\tSet to be the default plugin directory" msgstr "" ! #: common.opt:2382 msgid "-imultiarch \tSet to be the multiarch include subdirectory" msgstr "" ! #: common.opt:2404 #, fuzzy msgid "-o \tPlace output into " msgstr " -o Ohjaa tuloste \n" ! #: common.opt:2408 msgid "Enable function profiling" ! msgstr "Ota käyttöön funktioprofilointi" ! #: common.opt:2418 msgid "Like -pedantic but issue them as errors" msgstr "" ! #: common.opt:2458 msgid "Do not display functions compiled or elapsed time" msgstr "" ! #: common.opt:2490 msgid "Enable verbose output" msgstr "" ! #: common.opt:2494 msgid "Display the compiler's version" ! msgstr "Näytä kääntäjän versio" ! #: common.opt:2498 msgid "Suppress warnings" ! msgstr "Vaimenna varoitukset" ! #: common.opt:2508 msgid "Create a shared library" msgstr "Luo jaettu kirjasto" ! #: common.opt:2547 msgid "Create a position independent executable" ! msgstr "Luo paikkariippumaton suoritettava tiedosto" ! #: go/gofrontend/expressions.cc:102 c-family/c-common.c:1782 cp/cvt.c:1149 #: cp/cvt.c:1395 #, gcc-internal-format msgid "value computed is not used" *************** msgstr "epäkelvot operandit binäärise *** 12622,12634 **** #: go/gofrontend/expressions.cc:5616 go/gofrontend/expressions.cc:5634 #, fuzzy - #| msgid "incompatible types in return" msgid "incompatible types in binary expression" msgstr "yhteensopimattomat tyypin palautuksessa" #: go/gofrontend/expressions.cc:5648 #, fuzzy - #| msgid "size of array %qE has non-integer type" msgid "shift of non-integer operand" msgstr "taulukon %qE koko ei ole kokonaislukutyyppiä" --- 12523,12533 ---- *************** msgstr "" *** 12642,12654 **** #: go/gofrontend/expressions.cc:6470 #, fuzzy - #| msgid "called object %qE is not a function" msgid "object is not a method" msgstr "kutsuttu objekti %qE ei ole funktio" #: go/gofrontend/expressions.cc:6479 #, fuzzy - #| msgid "argument %qD doesn%'t match prototype" msgid "method type does not match object type" msgstr "argumentti %qD ei sovi prototyyppiin" --- 12541,12551 ---- *************** msgstr "epäkelpo argumentti funktiolle *** 12663,12669 **** #: go/gofrontend/expressions.cc:7848 go/gofrontend/expressions.cc:9036 #: go/gofrontend/expressions.cc:9055 #, fuzzy - #| msgid "no arguments" msgid "not enough arguments" msgstr "ei argumentteja" --- 12560,12565 ---- *************** msgstr "%Jparametrilla %u in vaillinaine *** 12758,12764 **** #: go/gofrontend/expressions.cc:7858 #, fuzzy - #| msgid "cleanup argument not an identifier" msgid "complex arguments must have identical types" msgstr "puhdistusargumentti ei ole tunniste" --- 12654,12659 ---- *************** msgstr "epäkelpo %-avainsana *** 12779,12797 **** #: go/gofrontend/expressions.cc:9008 #, fuzzy - #| msgid "incompatible types in return" msgid "incompatible type for receiver" msgstr "yhteensopimattomat tyypin palautuksessa" #: go/gofrontend/expressions.cc:9026 #, fuzzy - #| msgid "invalid use of non-static member function" msgid "invalid use of %<...%> calling non-variadic function" msgstr "virheellinen ei-staattisen jäsenfunktion käyttö" #: go/gofrontend/expressions.cc:9460 go/gofrontend/expressions.cc:9474 #, fuzzy - #| msgid "number of arguments doesn%'t match prototype" msgid "number of results does not match number of values" msgstr "argumenttien määrä ei vastaa prototyyppiä" --- 12674,12689 ---- *************** msgstr "" *** 12813,12819 **** #: go/gofrontend/expressions.cc:10448 #, fuzzy - #| msgid "incompatible types in return" msgid "incompatible type for map index" msgstr "yhteensopimattomat tyypin palautuksessa" --- 12705,12710 ---- *************** msgstr "" *** 12823,12835 **** #: go/gofrontend/expressions.cc:11461 #, fuzzy - #| msgid "too many arguments for format" msgid "too many expressions for struct" msgstr "liian monta argumenttia muotoilulle" #: go/gofrontend/expressions.cc:11474 #, fuzzy - #| msgid "too few arguments for format" msgid "too few expressions for struct" msgstr "liian vähän argumentteja muotoilulle" --- 12714,12724 ---- *************** msgstr "" *** 12843,12849 **** #: go/gofrontend/expressions.cc:13318 go/gofrontend/statements.cc:1385 #, fuzzy - #| msgid "expected class name" msgid "expected channel" msgstr "odotettiin luokan nimeä" --- 12732,12737 ---- *************** msgstr "" *** 12858,12864 **** # XXX #: go/gofrontend/statements.cc:588 #, fuzzy - #| msgid "lvalue required as left operand of assignment" msgid "invalid left hand side of assignment" msgstr "sijoituksen vasemman operandin on oltava lvalue" --- 12746,12751 ---- *************** msgstr "liian vähän argumentteja funkt *** 12877,12883 **** #: go/gofrontend/statements.cc:2644 #, fuzzy - #| msgid "% with a value, in function returning void" msgid "return with value in function with no return type" msgstr "% arvon kanssa voidin palauttavassa funktiossa" --- 12764,12769 ---- *************** msgstr "" *** 12897,12903 **** #: go/gofrontend/statements.cc:4325 #, fuzzy - #| msgid "incompatible types in return" msgid "incompatible types in send" msgstr "yhteensopimattomat tyypin palautuksessa" --- 12783,12788 ---- *************** msgstr "" *** 12916,12922 **** #: go/gofrontend/types.cc:515 #, fuzzy - #| msgid "invalid application of %qs to a void type" msgid "invalid comparison of non-ordered type" msgstr "epäkelpo %qs:n soveltaminen tyhjään tyyppiin" --- 12801,12806 ---- *************** msgstr "epäkelvot operandit binäärise *** 12939,12945 **** #: go/gofrontend/types.cc:564 #, fuzzy - #| msgid "invalid application of %qs to incomplete type %qT " msgid "invalid comparison of non-comparable type" msgstr "epäkelpo %qs:n soveltaminen vaillinaiseen tyyppiin %qT " --- 12823,12828 ---- *************** msgstr "" *** 12957,12969 **** #: go/gofrontend/types.cc:714 #, fuzzy - #| msgid "Warn about implicit conversion" msgid "need explicit conversion" msgstr "Varoita implisiittisistä muunnoksista" #: go/gofrontend/types.cc:721 #, fuzzy, c-format - #| msgid "cannot convert type %qT to type %qT" msgid "cannot use type %s as type %s" msgstr "ei voi muuntaa tyyppiä %qT tyypiksi %qT" --- 12840,12850 ---- *************** msgstr "epäkelpo osoitintila %qs" *** 12975,12987 **** #: go/gofrontend/types.cc:3293 go/gofrontend/types.cc:3306 #: go/gofrontend/types.cc:3321 #, fuzzy - #| msgid "redefinition of parameter %q+D" msgid "different number of parameters" msgstr "parametri %q+D määritelty uudelleen" #: go/gofrontend/types.cc:3314 #, fuzzy - #| msgid "invalid parameter type %qT" msgid "different parameter types" msgstr "virheellinen parametrityyppi %qT" --- 12856,12866 ---- *************** msgstr "" *** 13010,13022 **** #: go/gofrontend/types.cc:6803 go/gofrontend/types.cc:6945 #, fuzzy, c-format - #| msgid "incompatible type for argument %d of %qE" msgid "incompatible type for method %s%s%s" msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" #: go/gofrontend/types.cc:6807 go/gofrontend/types.cc:6949 #, fuzzy, c-format - #| msgid "incompatible type for argument %d of %qE" msgid "incompatible type for method %s%s%s (%s)" msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" --- 12889,12899 ---- *************** msgstr "" *** 13026,13032 **** #: go/gofrontend/types.cc:6888 go/gofrontend/types.cc:6901 #, fuzzy - #| msgid "struct has no members" msgid "type has no methods" msgstr "structilla ei ole jäseniä" --- 12903,12908 ---- *************** msgid "method %s%s%s is marked go:nointe *** 13051,13057 **** msgstr "" #. Warn about and ignore all others for now, but store them. ! #: attribs.c:426 c-family/c-common.c:8019 objc/objc-act.c:4952 #: objc/objc-act.c:6922 objc/objc-act.c:8109 objc/objc-act.c:8160 #, fuzzy, gcc-internal-format msgid "%qE attribute directive ignored" --- 12927,12933 ---- msgstr "" #. Warn about and ignore all others for now, but store them. ! #: attribs.c:426 c-family/c-common.c:8041 objc/objc-act.c:4952 #: objc/objc-act.c:6922 objc/objc-act.c:8109 objc/objc-act.c:8160 #, fuzzy, gcc-internal-format msgid "%qE attribute directive ignored" *************** msgstr "attribuutille %qs annettu väär *** 13072,13078 **** #. type. Ignore it. #: attribs.c:452 #, fuzzy, gcc-internal-format - #| msgid "%qE attribute ignored" msgid "attribute ignored" msgstr "%qE-attribuuttia ei huomioida" --- 12948,12953 ---- *************** msgid "an attribute that appertains to a *** 13082,13095 **** msgstr "" #: attribs.c:471 ! #, fuzzy, gcc-internal-format msgid "%qE attribute does not apply to types" ! msgstr "attribuutti %qs ei päde tyyppeihin" #: attribs.c:523 ! #, fuzzy, gcc-internal-format msgid "%qE attribute only applies to function types" ! msgstr "attribuutti %qs pätee vain funktiotyyppeihin" #: attribs.c:533 #, fuzzy, gcc-internal-format --- 12957,12970 ---- msgstr "" #: attribs.c:471 ! #, gcc-internal-format msgid "%qE attribute does not apply to types" ! msgstr "%qE-attribuutti ei päde tyyppeihin" #: attribs.c:523 ! #, gcc-internal-format msgid "%qE attribute only applies to function types" ! msgstr "%qE-attribuutti pätee vain funktiotyyppeihin" #: attribs.c:533 #, fuzzy, gcc-internal-format *************** msgstr "%Jlohkoattribuutteja ei tueta tà *** 13250,13256 **** #. All valid uses of __builtin_va_arg_pack () are removed during #. inlining. ! #: builtins.c:6025 expr.c:10184 #, fuzzy, gcc-internal-format msgid "%Kinvalid use of %<__builtin_va_arg_pack ()%>" msgstr "epäkelpo argumentti funktiolle %<__builtin_frame_address%>" --- 13125,13131 ---- #. All valid uses of __builtin_va_arg_pack () are removed during #. inlining. ! #: builtins.c:6025 expr.c:10185 #, fuzzy, gcc-internal-format msgid "%Kinvalid use of %<__builtin_va_arg_pack ()%>" msgstr "epäkelpo argumentti funktiolle %<__builtin_frame_address%>" *************** msgstr "" *** 13337,13353 **** msgid "function call has aggregate value" msgstr "" ! #: cfgexpand.c:1238 function.c:971 varasm.c:1966 ! #, fuzzy, gcc-internal-format msgid "size of variable %q+D is too large" ! msgstr "taulukon %qs koko on liian suuri" ! #: cfgexpand.c:4487 #, gcc-internal-format msgid "stack protector not protecting local variables: variable length buffer" msgstr "" ! #: cfgexpand.c:4491 #, gcc-internal-format, gfc-internal-format msgid "stack protector not protecting function: all local arrays are less than %d bytes long" msgstr "" --- 13212,13228 ---- msgid "function call has aggregate value" msgstr "" ! #: cfgexpand.c:1238 function.c:971 varasm.c:1964 ! #, gcc-internal-format msgid "size of variable %q+D is too large" ! msgstr "muuttujan %q+D koko on liian suuri" ! #: cfgexpand.c:4542 #, gcc-internal-format msgid "stack protector not protecting local variables: variable length buffer" msgstr "" ! #: cfgexpand.c:4546 #, gcc-internal-format, gfc-internal-format msgid "stack protector not protecting function: all local arrays are less than %d bytes long" msgstr "" *************** msgstr "liikaa syötetiedostoja" *** 13647,13808 **** msgid "%d exits recorded for loop %d (having %d exits)" msgstr "" ! #: cfgrtl.c:2092 #, gcc-internal-format, gfc-internal-format msgid "BB_RTL flag not set for block %d" msgstr "" ! #: cfgrtl.c:2099 #, gcc-internal-format, gfc-internal-format msgid "insn %d basic block pointer is %d, should be %d" msgstr "" ! #: cfgrtl.c:2110 #, gcc-internal-format, gfc-internal-format msgid "insn %d in header of bb %d has non-NULL basic block" msgstr "" ! #: cfgrtl.c:2118 #, gcc-internal-format, gfc-internal-format msgid "insn %d in footer of bb %d has non-NULL basic block" msgstr "" ! #: cfgrtl.c:2141 #, gcc-internal-format msgid "verify_flow_info: REG_BR_PROB does not match cfg %wi %i" msgstr "" ! #: cfgrtl.c:2160 #, gcc-internal-format msgid "EDGE_CROSSING incorrectly set across same section" msgstr "" ! #: cfgrtl.c:2165 #, gcc-internal-format, gfc-internal-format msgid "fallthru edge crosses section boundary in bb %i" msgstr "" ! #: cfgrtl.c:2171 #, gcc-internal-format, gfc-internal-format msgid "EH edge crosses section boundary in bb %i" msgstr "" ! #: cfgrtl.c:2178 #, gcc-internal-format msgid "EDGE_CROSSING missing across section boundary" msgstr "" ! #: cfgrtl.c:2205 #, gcc-internal-format, gfc-internal-format msgid "missing REG_EH_REGION note at the end of bb %i" msgstr "" ! #: cfgrtl.c:2210 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "too many exception handling edges in bb %i" msgstr "liikaa syötetiedostoja" ! #: cfgrtl.c:2218 #, gcc-internal-format, gfc-internal-format msgid "too many outgoing branch edges from bb %i" msgstr "" ! #: cfgrtl.c:2223 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "fallthru edge after unconditional jump in bb %i" msgstr "väärä määrä argumentteja funktiolle %" ! #: cfgrtl.c:2228 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "wrong number of branch edges after unconditional jump in bb %i" msgstr "väärä määrä argumentteja funktiolle %" ! #: cfgrtl.c:2235 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "wrong amount of branch edges after conditional jump in bb %i" msgstr "väärä määrä argumentteja funktiolle %" ! #: cfgrtl.c:2241 #, gcc-internal-format, gfc-internal-format msgid "abnormal call edges for non-call insn in bb %i" msgstr "" ! #: cfgrtl.c:2246 #, gcc-internal-format, gfc-internal-format msgid "sibcall edges for non-call insn in bb %i" msgstr "" ! #: cfgrtl.c:2256 #, gcc-internal-format, gfc-internal-format msgid "abnormal edges for no purpose in bb %i" msgstr "" ! #: cfgrtl.c:2268 #, gcc-internal-format, gfc-internal-format msgid "insn %d inside basic block %d but block_for_insn is NULL" msgstr "" ! #: cfgrtl.c:2272 #, gcc-internal-format, gfc-internal-format msgid "insn %d inside basic block %d but block_for_insn is %i" msgstr "" ! #: cfgrtl.c:2286 cfgrtl.c:2296 #, gcc-internal-format, gfc-internal-format msgid "NOTE_INSN_BASIC_BLOCK is missing for block %d" msgstr "" ! #: cfgrtl.c:2309 #, gcc-internal-format, gfc-internal-format msgid "NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d" msgstr "" ! #: cfgrtl.c:2319 #, gcc-internal-format, gfc-internal-format msgid "in basic block %d:" msgstr "" ! #: cfgrtl.c:2371 cfgrtl.c:2461 #, gcc-internal-format, gfc-internal-format msgid "insn %d outside of basic blocks has non-NULL bb field" msgstr "" ! #: cfgrtl.c:2379 #, gcc-internal-format, gfc-internal-format msgid "end insn %d for block %d not found in the insn stream" msgstr "" ! #: cfgrtl.c:2392 #, gcc-internal-format, gfc-internal-format msgid "insn %d is in multiple basic blocks (%d and %d)" msgstr "" ! #: cfgrtl.c:2404 #, gcc-internal-format, gfc-internal-format msgid "head insn %d for block %d not found in the insn stream" msgstr "" ! #: cfgrtl.c:2421 #, gcc-internal-format, gfc-internal-format msgid "missing barrier after block %i" msgstr "" ! #: cfgrtl.c:2437 #, gcc-internal-format, gfc-internal-format msgid "verify_flow_info: Incorrect blocks for fallthru %i->%i" msgstr "" ! #: cfgrtl.c:2446 #, gcc-internal-format, gfc-internal-format msgid "verify_flow_info: Incorrect fallthru %i->%i" msgstr "" ! #: cfgrtl.c:2479 #, gcc-internal-format msgid "basic blocks not laid down consecutively" msgstr "" ! #: cfgrtl.c:2516 #, gcc-internal-format, gfc-internal-format msgid "number of bb notes in insn chain (%d) != n_basic_blocks (%d)" msgstr "" --- 13522,13683 ---- msgid "%d exits recorded for loop %d (having %d exits)" msgstr "" ! #: cfgrtl.c:2090 #, gcc-internal-format, gfc-internal-format msgid "BB_RTL flag not set for block %d" msgstr "" ! #: cfgrtl.c:2097 #, gcc-internal-format, gfc-internal-format msgid "insn %d basic block pointer is %d, should be %d" msgstr "" ! #: cfgrtl.c:2108 #, gcc-internal-format, gfc-internal-format msgid "insn %d in header of bb %d has non-NULL basic block" msgstr "" ! #: cfgrtl.c:2116 #, gcc-internal-format, gfc-internal-format msgid "insn %d in footer of bb %d has non-NULL basic block" msgstr "" ! #: cfgrtl.c:2139 #, gcc-internal-format msgid "verify_flow_info: REG_BR_PROB does not match cfg %wi %i" msgstr "" ! #: cfgrtl.c:2158 #, gcc-internal-format msgid "EDGE_CROSSING incorrectly set across same section" msgstr "" ! #: cfgrtl.c:2163 #, gcc-internal-format, gfc-internal-format msgid "fallthru edge crosses section boundary in bb %i" msgstr "" ! #: cfgrtl.c:2169 #, gcc-internal-format, gfc-internal-format msgid "EH edge crosses section boundary in bb %i" msgstr "" ! #: cfgrtl.c:2176 #, gcc-internal-format msgid "EDGE_CROSSING missing across section boundary" msgstr "" ! #: cfgrtl.c:2203 #, gcc-internal-format, gfc-internal-format msgid "missing REG_EH_REGION note at the end of bb %i" msgstr "" ! #: cfgrtl.c:2208 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "too many exception handling edges in bb %i" msgstr "liikaa syötetiedostoja" ! #: cfgrtl.c:2216 #, gcc-internal-format, gfc-internal-format msgid "too many outgoing branch edges from bb %i" msgstr "" ! #: cfgrtl.c:2221 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "fallthru edge after unconditional jump in bb %i" msgstr "väärä määrä argumentteja funktiolle %" ! #: cfgrtl.c:2226 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "wrong number of branch edges after unconditional jump in bb %i" msgstr "väärä määrä argumentteja funktiolle %" ! #: cfgrtl.c:2233 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "wrong amount of branch edges after conditional jump in bb %i" msgstr "väärä määrä argumentteja funktiolle %" ! #: cfgrtl.c:2239 #, gcc-internal-format, gfc-internal-format msgid "abnormal call edges for non-call insn in bb %i" msgstr "" ! #: cfgrtl.c:2244 #, gcc-internal-format, gfc-internal-format msgid "sibcall edges for non-call insn in bb %i" msgstr "" ! #: cfgrtl.c:2254 #, gcc-internal-format, gfc-internal-format msgid "abnormal edges for no purpose in bb %i" msgstr "" ! #: cfgrtl.c:2266 #, gcc-internal-format, gfc-internal-format msgid "insn %d inside basic block %d but block_for_insn is NULL" msgstr "" ! #: cfgrtl.c:2270 #, gcc-internal-format, gfc-internal-format msgid "insn %d inside basic block %d but block_for_insn is %i" msgstr "" ! #: cfgrtl.c:2284 cfgrtl.c:2294 #, gcc-internal-format, gfc-internal-format msgid "NOTE_INSN_BASIC_BLOCK is missing for block %d" msgstr "" ! #: cfgrtl.c:2307 #, gcc-internal-format, gfc-internal-format msgid "NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d" msgstr "" ! #: cfgrtl.c:2317 #, gcc-internal-format, gfc-internal-format msgid "in basic block %d:" msgstr "" ! #: cfgrtl.c:2369 cfgrtl.c:2459 #, gcc-internal-format, gfc-internal-format msgid "insn %d outside of basic blocks has non-NULL bb field" msgstr "" ! #: cfgrtl.c:2377 #, gcc-internal-format, gfc-internal-format msgid "end insn %d for block %d not found in the insn stream" msgstr "" ! #: cfgrtl.c:2390 #, gcc-internal-format, gfc-internal-format msgid "insn %d is in multiple basic blocks (%d and %d)" msgstr "" ! #: cfgrtl.c:2402 #, gcc-internal-format, gfc-internal-format msgid "head insn %d for block %d not found in the insn stream" msgstr "" ! #: cfgrtl.c:2419 #, gcc-internal-format, gfc-internal-format msgid "missing barrier after block %i" msgstr "" ! #: cfgrtl.c:2435 #, gcc-internal-format, gfc-internal-format msgid "verify_flow_info: Incorrect blocks for fallthru %i->%i" msgstr "" ! #: cfgrtl.c:2444 #, gcc-internal-format, gfc-internal-format msgid "verify_flow_info: Incorrect fallthru %i->%i" msgstr "" ! #: cfgrtl.c:2477 #, gcc-internal-format msgid "basic blocks not laid down consecutively" msgstr "" ! #: cfgrtl.c:2514 #, gcc-internal-format, gfc-internal-format msgid "number of bb notes in insn chain (%d) != n_basic_blocks (%d)" msgstr "" *************** msgstr "" *** 14072,14078 **** msgid "no arguments" msgstr "ei argumentteja" ! #: collect2.c:1284 opts.c:794 #, fuzzy, gcc-internal-format msgid "LTO support has not been enabled in this configuration" msgstr "#pragma redefine_extname ei ole tuettu tällä kohteella" --- 13947,13953 ---- msgid "no arguments" msgstr "ei argumentteja" ! #: collect2.c:1284 opts.c:797 #, fuzzy, gcc-internal-format msgid "LTO support has not been enabled in this configuration" msgstr "#pragma redefine_extname ei ole tuettu tällä kohteella" *************** msgstr "" *** 14089,14107 **** #: collect2.c:1520 collect2.c:1703 collect2.c:1738 #, fuzzy, gcc-internal-format - #| msgid "fopen %s" msgid "fopen %s: %m" msgstr "fopen %s" #: collect2.c:1523 collect2.c:1708 collect2.c:1741 #, fuzzy, gcc-internal-format - #| msgid "fclose %s" msgid "fclose %s: %m" msgstr "fclose %s" #: collect2.c:1805 #, fuzzy, gcc-internal-format - #| msgid "can%'t read %s: %m" msgid "can't get program status: %m" msgstr "ei voi lukea tiedostoa %s: %m" --- 13964,13979 ---- *************** msgstr "" *** 14130,14144 **** msgid "cannot find '%s'" msgstr "" ! #: collect2.c:1921 collect2.c:2448 collect2.c:2644 gcc.c:2749 #, fuzzy, gcc-internal-format - #| msgid "pex_init failed: %s" msgid "pex_init failed: %m" msgstr "pex_init epäonnistui: %s" ! #: collect2.c:1930 collect2.c:2457 collect2.c:2652 gcc.c:7188 #, fuzzy, gcc-internal-format - #| msgid "%s: %s" msgid "%s: %m" msgstr "%s: %s" --- 14002,14014 ---- msgid "cannot find '%s'" msgstr "" ! #: collect2.c:1921 collect2.c:2448 collect2.c:2644 gcc.c:2750 #, fuzzy, gcc-internal-format msgid "pex_init failed: %m" msgstr "pex_init epäonnistui: %s" ! #: collect2.c:1930 collect2.c:2457 collect2.c:2652 gcc.c:7191 #, fuzzy, gcc-internal-format msgid "%s: %m" msgstr "%s: %s" *************** msgstr "" *** 14149,14155 **** #: collect2.c:2470 #, fuzzy, gcc-internal-format - #| msgid "can't open ldd output" msgid "can't open nm output: %m" msgstr "ei voida avata ldd-tulostetta" --- 14019,14024 ---- *************** msgstr "" *** 14170,14176 **** #: collect2.c:2665 #, fuzzy, gcc-internal-format - #| msgid "can't open ldd output" msgid "can't open ldd output: %m" msgstr "ei voida avata ldd-tulostetta" --- 14039,14044 ---- *************** msgstr "" *** 14221,14227 **** #: convert.c:823 convert.c:899 #, fuzzy, gcc-internal-format - #| msgid "cast from pointer to integer of different size" msgid "can%'t convert between vector values of different size" msgstr "tyyppimuunnos osoittimesta erikokoiseen kokonaislukuun" --- 14089,14094 ---- *************** msgstr "" *** 14380,14386 **** msgid "global constructors not supported on this target" msgstr "" ! #: diagnostic.c:1145 #, gcc-internal-format, gfc-internal-format msgid "in %s, at %s:%d" msgstr "" --- 14247,14253 ---- msgid "global constructors not supported on this target" msgstr "" ! #: diagnostic.c:1148 #, gcc-internal-format, gfc-internal-format msgid "in %s, at %s:%d" msgstr "" *************** msgstr "" *** 14425,14446 **** msgid "non-delegitimized UNSPEC %s (%d) found in variable location" msgstr "" ! #: emit-rtl.c:2612 #, gcc-internal-format msgid "invalid rtl sharing found in the insn" msgstr "" ! #: emit-rtl.c:2614 #, gcc-internal-format msgid "shared rtx" msgstr "" ! #: emit-rtl.c:2616 #, gcc-internal-format msgid "internal consistency failure" msgstr "" ! #: emit-rtl.c:3741 #, gcc-internal-format msgid "ICE: emit_insn used where emit_jump_insn needed:\n" msgstr "" --- 14292,14313 ---- msgid "non-delegitimized UNSPEC %s (%d) found in variable location" msgstr "" ! #: emit-rtl.c:2616 #, gcc-internal-format msgid "invalid rtl sharing found in the insn" msgstr "" ! #: emit-rtl.c:2618 #, gcc-internal-format msgid "shared rtx" msgstr "" ! #: emit-rtl.c:2620 #, gcc-internal-format msgid "internal consistency failure" msgstr "" ! #: emit-rtl.c:3749 #, gcc-internal-format msgid "ICE: emit_insn used where emit_jump_insn needed:\n" msgstr "" *************** msgstr "" *** 14450,14506 **** msgid "abort in %s, at %s:%d" msgstr "" ! #: except.c:2026 #, gcc-internal-format msgid "argument of %<__builtin_eh_return_regno%> must be constant" msgstr "" ! #: except.c:2163 #, gcc-internal-format msgid "__builtin_eh_return not supported on this target" msgstr "" ! #: except.c:3222 except.c:3247 #, gcc-internal-format, gfc-internal-format msgid "region_array is corrupted for region %i" msgstr "" ! #: except.c:3235 except.c:3266 #, gcc-internal-format, gfc-internal-format msgid "lp_array is corrupted for lp %i" msgstr "" ! #: except.c:3252 #, gcc-internal-format, gfc-internal-format msgid "outer block of region %i is wrong" msgstr "" ! #: except.c:3257 #, gcc-internal-format, gfc-internal-format msgid "negative nesting depth of region %i" msgstr "" ! #: except.c:3271 #, gcc-internal-format, gfc-internal-format msgid "region of lp %i is wrong" msgstr "" ! #: except.c:3298 #, gcc-internal-format, gfc-internal-format msgid "tree list ends on depth %i" msgstr "" ! #: except.c:3303 #, gcc-internal-format msgid "region_array does not match region_tree" msgstr "" ! #: except.c:3308 #, gcc-internal-format msgid "lp_array does not match region_tree" msgstr "" ! #: except.c:3315 #, gcc-internal-format msgid "verify_eh_tree failed" msgstr "" --- 14317,14373 ---- msgid "abort in %s, at %s:%d" msgstr "" ! #: except.c:2075 #, gcc-internal-format msgid "argument of %<__builtin_eh_return_regno%> must be constant" msgstr "" ! #: except.c:2212 #, gcc-internal-format msgid "__builtin_eh_return not supported on this target" msgstr "" ! #: except.c:3271 except.c:3296 #, gcc-internal-format, gfc-internal-format msgid "region_array is corrupted for region %i" msgstr "" ! #: except.c:3284 except.c:3315 #, gcc-internal-format, gfc-internal-format msgid "lp_array is corrupted for lp %i" msgstr "" ! #: except.c:3301 #, gcc-internal-format, gfc-internal-format msgid "outer block of region %i is wrong" msgstr "" ! #: except.c:3306 #, gcc-internal-format, gfc-internal-format msgid "negative nesting depth of region %i" msgstr "" ! #: except.c:3320 #, gcc-internal-format, gfc-internal-format msgid "region of lp %i is wrong" msgstr "" ! #: except.c:3347 #, gcc-internal-format, gfc-internal-format msgid "tree list ends on depth %i" msgstr "" ! #: except.c:3352 #, gcc-internal-format msgid "region_array does not match region_tree" msgstr "" ! #: except.c:3357 #, gcc-internal-format msgid "lp_array does not match region_tree" msgstr "" ! #: except.c:3364 #, gcc-internal-format msgid "verify_eh_tree failed" msgstr "" *************** msgstr "" *** 14537,14555 **** #: expr.c:7590 #, fuzzy, gcc-internal-format - #| msgid "global register variable %qD used in nested function" msgid "local frame unavailable (naked function?)" msgstr "sisäkkäisessä funktiossa käytetty globaalia rekisterimuuttujaa %qD" ! #: expr.c:10191 ! #, fuzzy, gcc-internal-format msgid "%Kcall to %qs declared with attribute error: %s" ! msgstr "%Javoimelle funktiolle %qD annettu attribuutti noinline" ! #: expr.c:10198 ! #, fuzzy, gcc-internal-format msgid "%Kcall to %qs declared with attribute warning: %s" ! msgstr "%Javoimelle funktiolle %qD annettu attribuutti noinline" #: final.c:1499 #, fuzzy, gcc-internal-format --- 14404,14421 ---- #: expr.c:7590 #, fuzzy, gcc-internal-format msgid "local frame unavailable (naked function?)" msgstr "sisäkkäisessä funktiossa käytetty globaalia rekisterimuuttujaa %qD" ! #: expr.c:10192 ! #, gcc-internal-format msgid "%Kcall to %qs declared with attribute error: %s" ! msgstr "%Kkutsu kohteeseen %qs esitelty attribuuttivirheellä: %s" ! #: expr.c:10199 ! #, gcc-internal-format msgid "%Kcall to %qs declared with attribute warning: %s" ! msgstr "%Kkutsu kohteeseen %qs esitelty attribuuttivaroituksella: %s" #: final.c:1499 #, fuzzy, gcc-internal-format *************** msgstr "suuri kokonaisluku implisiittise *** 14581,14635 **** msgid "assuming signed overflow does not occur when negating a division" msgstr "" ! #: fold-const.c:3437 fold-const.c:3449 ! #, fuzzy, gcc-internal-format, gfc-internal-format msgid "comparison is always %d due to width of bit-field" ! msgstr "vertailu on aina tosi johtuen tietotyypin rajallisesta arvoalueesta" ! #: fold-const.c:4849 tree-ssa-reassoc.c:1943 #, gcc-internal-format msgid "assuming signed overflow does not occur when simplifying range test" msgstr "" ! #: fold-const.c:5285 fold-const.c:5299 #, gcc-internal-format, gfc-internal-format msgid "comparison is always %d" msgstr "" ! #: fold-const.c:5432 #, gcc-internal-format msgid "% of unmatched not-equal tests is always 1" msgstr "" ! #: fold-const.c:5437 #, gcc-internal-format msgid "% of mutually exclusive equal-tests is always 0" msgstr "" ! #: fold-const.c:8729 #, gcc-internal-format msgid "assuming signed overflow does not occur when reducing constant in comparison" msgstr "" ! #: fold-const.c:8887 #, gcc-internal-format msgid "assuming signed overflow does not occur when changing X +- C1 cmp C2 to X cmp C1 +- C2" msgstr "" ! #: fold-const.c:9150 #, gcc-internal-format msgid "assuming signed overflow does not occur when combining constants around a comparison" msgstr "" ! #: fold-const.c:14564 #, gcc-internal-format msgid "fold check: original tree changed by fold" msgstr "" #: function.c:227 ! #, fuzzy, gcc-internal-format msgid "total size of local objects too large" ! msgstr "taulukon %qs koko on liian suuri" #: function.c:1738 gimplify.c:5409 #, gcc-internal-format --- 14447,14501 ---- msgid "assuming signed overflow does not occur when negating a division" msgstr "" ! #: fold-const.c:3450 fold-const.c:3462 ! #, gcc-internal-format, gfc-internal-format msgid "comparison is always %d due to width of bit-field" ! msgstr "vertailu on aina %d johtuen bittikentän leveydestä" ! #: fold-const.c:4862 tree-ssa-reassoc.c:1944 #, gcc-internal-format msgid "assuming signed overflow does not occur when simplifying range test" msgstr "" ! #: fold-const.c:5298 fold-const.c:5312 #, gcc-internal-format, gfc-internal-format msgid "comparison is always %d" msgstr "" ! #: fold-const.c:5445 #, gcc-internal-format msgid "% of unmatched not-equal tests is always 1" msgstr "" ! #: fold-const.c:5450 #, gcc-internal-format msgid "% of mutually exclusive equal-tests is always 0" msgstr "" ! #: fold-const.c:8742 #, gcc-internal-format msgid "assuming signed overflow does not occur when reducing constant in comparison" msgstr "" ! #: fold-const.c:8900 #, gcc-internal-format msgid "assuming signed overflow does not occur when changing X +- C1 cmp C2 to X cmp C1 +- C2" msgstr "" ! #: fold-const.c:9163 #, gcc-internal-format msgid "assuming signed overflow does not occur when combining constants around a comparison" msgstr "" ! #: fold-const.c:14577 #, gcc-internal-format msgid "fold check: original tree changed by fold" msgstr "" #: function.c:227 ! #, gcc-internal-format msgid "total size of local objects too large" ! msgstr "paikallisten objektien kokonaiskoko on liian suuri" #: function.c:1738 gimplify.c:5409 #, gcc-internal-format *************** msgstr "" *** 14646,15026 **** msgid "argument %q+D might be clobbered by % or %" msgstr "" ! #: function.c:4631 #, gcc-internal-format msgid "function returns an aggregate" msgstr "" ! #: function.c:4993 #, gcc-internal-format msgid "unused parameter %q+D" msgstr "käyttämätön muuttuja %q+D" ! #: gcc.c:1804 gcc.c:1824 #, gcc-internal-format, gfc-internal-format msgid "specs %%include syntax malformed after %ld characters" msgstr "" ! #: gcc.c:1850 gcc.c:1859 gcc.c:1869 gcc.c:1879 #, gcc-internal-format, gfc-internal-format msgid "specs %%rename syntax malformed after %ld characters" msgstr "" ! #: gcc.c:1889 #, gcc-internal-format, gfc-internal-format msgid "specs %s spec was not found to be renamed" msgstr "" ! #: gcc.c:1896 #, fuzzy, gcc-internal-format msgid "%s: attempt to rename spec %qs to already defined spec %qs" msgstr "%qs-attribuuttia ei huomioida %qs:lle" ! #: gcc.c:1917 #, gcc-internal-format, gfc-internal-format msgid "specs unknown %% command after %ld characters" msgstr "" ! #: gcc.c:1928 gcc.c:1941 #, gcc-internal-format, gfc-internal-format msgid "specs file malformed after %ld characters" msgstr "" ! #: gcc.c:1993 #, gcc-internal-format msgid "spec file has no spec for linking" msgstr "" ! #: gcc.c:2538 #, fuzzy, gcc-internal-format - #| msgid "system path '%s' is not absolute" msgid "system path %qs is not absolute" msgstr "järjestelmäpolku â€%s†ei ole absoluuttinen" ! #: gcc.c:2626 #, gcc-internal-format msgid "-pipe not supported" msgstr "-pipe ei ole tuettu" ! #: gcc.c:2788 #, fuzzy, gcc-internal-format - #| msgid "ld returned %d exit status" msgid "failed to get exit status: %m" msgstr "ld:n paluuarvo oli %d" ! #: gcc.c:2794 #, gcc-internal-format msgid "failed to get process times: %m" msgstr "" ! #: gcc.c:2820 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "programs: %s\n" msgid "%s (program %s)" msgstr "ohjelmat: %s\n" ! #: gcc.c:3251 opts-common.c:986 opts-common.c:1058 #, fuzzy, gcc-internal-format - #| msgid "unrecognized command line option \"%s\"" msgid "unrecognized command line option %qs" msgstr "tuntematon komentorivivalitsin â€%sâ€" ! #: gcc.c:3506 #, gcc-internal-format msgid "%qs is an unknown -save-temps option" msgstr "" ! #: gcc.c:3967 #, gcc-internal-format msgid "-pipe ignored because -save-temps specified" msgstr "" ! #: gcc.c:4055 #, gcc-internal-format msgid "%<-x %s%> after last input file has no effect" msgstr "" ! #: gcc.c:4217 #, gcc-internal-format msgid "unable to locate default linker script %qs in the library search paths" msgstr "" ! #: gcc.c:4421 #, gcc-internal-format msgid "switch %qs does not start with %<-%>" msgstr "" ! #: gcc.c:4424 #, gcc-internal-format msgid "spec-generated switch is just %<-%>" msgstr "" ! #: gcc.c:4515 #, gcc-internal-format, gfc-internal-format msgid "could not open temporary response file %s" msgstr "" ! #: gcc.c:4521 #, gcc-internal-format, gfc-internal-format msgid "could not write to temporary response file %s" msgstr "" ! #: gcc.c:4527 #, gcc-internal-format, gfc-internal-format msgid "could not close temporary response file %s" msgstr "" ! #: gcc.c:4650 #, fuzzy, gcc-internal-format - #| msgid "%s: PCH file was invalid" msgid "spec %qs invalid" msgstr "%s: PCH-tiedosto oli epäkelpo" ! #: gcc.c:4799 #, fuzzy, gcc-internal-format - #| msgid "bit-field %qs has invalid type" msgid "spec %qs has invalid %<%%0%c%>" msgstr "bittikentällä %qs on epäkelpo tyyppi" ! #: gcc.c:5118 #, fuzzy, gcc-internal-format - #| msgid "bit-field %qs has invalid type" msgid "spec %qs has invalid %<%%W%c%>" msgstr "bittikentällä %qs on epäkelpo tyyppi" ! #: gcc.c:5140 #, fuzzy, gcc-internal-format - #| msgid "bit-field %qs has invalid type" msgid "spec %qs has invalid %<%%x%c%>" msgstr "bittikentällä %qs on epäkelpo tyyppi" #. Catch the case where a spec string contains something like #. '%{foo:%*}'. i.e. there is no * in the pattern on the left #. hand side of the :. ! #: gcc.c:5341 #, gcc-internal-format msgid "spec failure: %<%%*%> has not been initialized by pattern match" msgstr "" ! #: gcc.c:5384 #, fuzzy, gcc-internal-format msgid "spec failure: unrecognized spec option %qc" msgstr "tunnistamaton muotomäärite" ! #: gcc.c:5446 #, fuzzy, gcc-internal-format - #| msgid "In function %qs" msgid "unknown spec function %qs" msgstr "Funktio %qs" ! #: gcc.c:5476 #, fuzzy, gcc-internal-format - #| msgid "too many arguments to function %qs" msgid "error in args to spec function %qs" msgstr "liian monta argumenttia funktiolle %qs" ! #: gcc.c:5527 #, gcc-internal-format msgid "malformed spec function name" msgstr "" #. ) ! #: gcc.c:5530 #, gcc-internal-format msgid "no arguments for spec function" msgstr "" ! #: gcc.c:5549 #, gcc-internal-format msgid "malformed spec function arguments" msgstr "" ! #: gcc.c:5810 #, fuzzy, gcc-internal-format - #| msgid "bit-field %qs has invalid type" msgid "braced spec %qs is invalid at %qc" msgstr "bittikentällä %qs on epäkelpo tyyppi" ! #: gcc.c:5898 #, gcc-internal-format msgid "braced spec body %qs is invalid" msgstr "" ! #: gcc.c:6151 #, gcc-internal-format, gfc-internal-format msgid "%s: could not determine length of compare-debug file %s" msgstr "" ! #: gcc.c:6162 #, gcc-internal-format, gfc-internal-format msgid "%s: -fcompare-debug failure (length)" msgstr "" ! #: gcc.c:6172 gcc.c:6213 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "%s: could not open compare-debug file %s" msgstr "%s: ei voida avata PCH-tiedostoa: %m\n" ! #: gcc.c:6192 gcc.c:6229 #, gcc-internal-format, gfc-internal-format msgid "%s: -fcompare-debug failure" msgstr "" ! #: gcc.c:6304 #, fuzzy, gcc-internal-format - #| msgid "pex_init failed: %s" msgid "atexit failed" msgstr "pex_init epäonnistui: %s" ! #: gcc.c:6453 #, gcc-internal-format msgid "spec failure: more than one arg to SYSROOT_SUFFIX_SPEC" msgstr "" ! #: gcc.c:6477 #, gcc-internal-format msgid "spec failure: more than one arg to SYSROOT_HEADERS_SUFFIX_SPEC" msgstr "" ! #: gcc.c:6643 #, fuzzy, gcc-internal-format - #| msgid "unrecognized command line option \"%s\"" msgid "unrecognized command line option %<-%s%>" msgstr "tuntematon komentorivivalitsin â€%sâ€" #. The error status indicates that only one set of fixed #. headers should be built. ! #: gcc.c:6729 #, gcc-internal-format msgid "not configured with sysroot headers suffix" msgstr "ei konfiguroitu sysroot-otsakkeiden loppuliitteellä" ! #: gcc.c:6812 #, gcc-internal-format msgid "no input files" msgstr "ei syötetiedostoja" ! #: gcc.c:6861 #, gcc-internal-format msgid "cannot specify -o with -c, -S or -E with multiple files" msgstr "" ! #: gcc.c:6891 #, gcc-internal-format, gfc-internal-format msgid "%s: %s compiler not installed on this system" msgstr "" ! #: gcc.c:6913 #, gcc-internal-format msgid "recompiling with -fcompare-debug" msgstr "" ! #: gcc.c:6929 #, gcc-internal-format msgid "during -fcompare-debug recompilation" msgstr "" ! #: gcc.c:6938 #, fuzzy, gcc-internal-format msgid "comparing final insns dumps" msgstr "%s: ei voida avata PCH-tiedostoa: %m\n" ! #: gcc.c:7044 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "library lib%s not found" msgid "-fuse-linker-plugin, but %s not found" msgstr "kirjastoa lib%s ei löytynyt" ! #: gcc.c:7076 #, gcc-internal-format, gfc-internal-format msgid "%s: linker input file unused because linking not done" msgstr "" ! #: gcc.c:7117 #, gcc-internal-format, gfc-internal-format msgid "language %s not recognized" msgstr "" ! #: gcc.c:7344 #, fuzzy, gcc-internal-format msgid "multilib spec %qs is invalid" msgstr "alustamaton const %qD" ! #: gcc.c:7538 #, fuzzy, gcc-internal-format msgid "multilib exclusions %qs is invalid" msgstr "alustamaton const %qD" ! #: gcc.c:7602 #, gcc-internal-format msgid "multilib select %qs %qs is invalid" msgstr "" ! #: gcc.c:7758 #, fuzzy, gcc-internal-format msgid "multilib select %qs is invalid" msgstr "alustamaton const %qD" ! #: gcc.c:7797 #, fuzzy, gcc-internal-format msgid "multilib exclusion %qs is invalid" msgstr "alustamaton const %qD" ! #: gcc.c:8003 #, fuzzy, gcc-internal-format - #| msgid "environment variable \"%s\" not defined" msgid "environment variable %qs not defined" msgstr "ympäristömuuttujaa â€%s†ei ole määritelty" ! #: gcc.c:8115 gcc.c:8120 #, fuzzy, gcc-internal-format - #| msgid "invalid version number `%s'" msgid "invalid version number %qs" msgstr "virheellinen versionumero â€%sâ€" ! #: gcc.c:8163 ! #, fuzzy, gcc-internal-format, gfc-internal-format msgid "too few arguments to %%:version-compare" ! msgstr "liian vähän argumentteja muotoilulle" ! #: gcc.c:8169 ! #, fuzzy, gcc-internal-format, gfc-internal-format msgid "too many arguments to %%:version-compare" ! msgstr "liian monta argumenttia muotoilulle" ! #: gcc.c:8210 #, fuzzy, gcc-internal-format msgid "unknown operator %qs in %%:version-compare" ! msgstr "liian vähän argumentteja muotoilulle" ! #: gcc.c:8333 ! #, fuzzy, gcc-internal-format, gfc-internal-format msgid "too many arguments to %%:compare-debug-dump-opt" ! msgstr "liian monta argumenttia muotoilulle" ! #: gcc.c:8405 ! #, fuzzy, gcc-internal-format, gfc-internal-format msgid "too many arguments to %%:compare-debug-self-opt" ! msgstr "liian monta argumenttia muotoilulle" ! #: gcc.c:8440 ! #, fuzzy, gcc-internal-format, gfc-internal-format msgid "too few arguments to %%:compare-debug-auxbase-opt" ! msgstr "liian vähän argumentteja muotoilulle" ! #: gcc.c:8443 ! #, fuzzy, gcc-internal-format, gfc-internal-format msgid "too many arguments to %%:compare-debug-auxbase-opt" ! msgstr "liian monta argumenttia muotoilulle" ! #: gcc.c:8450 #, gcc-internal-format, gfc-internal-format msgid "argument to %%:compare-debug-auxbase-opt does not end in .gk" msgstr "" ! #: gcc.c:8524 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "too few arguments to function" msgid "too few arguments to %%:replace-extension" msgstr "liian vähän argumentteja funktiolle" --- 14512,14875 ---- msgid "argument %q+D might be clobbered by % or %" msgstr "" ! #: function.c:4620 #, gcc-internal-format msgid "function returns an aggregate" msgstr "" ! #: function.c:4982 #, gcc-internal-format msgid "unused parameter %q+D" msgstr "käyttämätön muuttuja %q+D" ! #: gcc.c:1805 gcc.c:1825 #, gcc-internal-format, gfc-internal-format msgid "specs %%include syntax malformed after %ld characters" msgstr "" ! #: gcc.c:1851 gcc.c:1860 gcc.c:1870 gcc.c:1880 #, gcc-internal-format, gfc-internal-format msgid "specs %%rename syntax malformed after %ld characters" msgstr "" ! #: gcc.c:1890 #, gcc-internal-format, gfc-internal-format msgid "specs %s spec was not found to be renamed" msgstr "" ! #: gcc.c:1897 #, fuzzy, gcc-internal-format msgid "%s: attempt to rename spec %qs to already defined spec %qs" msgstr "%qs-attribuuttia ei huomioida %qs:lle" ! #: gcc.c:1918 #, gcc-internal-format, gfc-internal-format msgid "specs unknown %% command after %ld characters" msgstr "" ! #: gcc.c:1929 gcc.c:1942 #, gcc-internal-format, gfc-internal-format msgid "specs file malformed after %ld characters" msgstr "" ! #: gcc.c:1994 #, gcc-internal-format msgid "spec file has no spec for linking" msgstr "" ! #: gcc.c:2539 #, fuzzy, gcc-internal-format msgid "system path %qs is not absolute" msgstr "järjestelmäpolku â€%s†ei ole absoluuttinen" ! #: gcc.c:2627 #, gcc-internal-format msgid "-pipe not supported" msgstr "-pipe ei ole tuettu" ! #: gcc.c:2789 #, fuzzy, gcc-internal-format msgid "failed to get exit status: %m" msgstr "ld:n paluuarvo oli %d" ! #: gcc.c:2795 #, gcc-internal-format msgid "failed to get process times: %m" msgstr "" ! #: gcc.c:2821 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "%s (program %s)" msgstr "ohjelmat: %s\n" ! #: gcc.c:3252 opts-common.c:1019 opts-common.c:1091 #, fuzzy, gcc-internal-format msgid "unrecognized command line option %qs" msgstr "tuntematon komentorivivalitsin â€%sâ€" ! #: gcc.c:3507 #, gcc-internal-format msgid "%qs is an unknown -save-temps option" msgstr "" ! #: gcc.c:3968 #, gcc-internal-format msgid "-pipe ignored because -save-temps specified" msgstr "" ! #: gcc.c:4056 #, gcc-internal-format msgid "%<-x %s%> after last input file has no effect" msgstr "" ! #: gcc.c:4218 #, gcc-internal-format msgid "unable to locate default linker script %qs in the library search paths" msgstr "" ! #: gcc.c:4422 #, gcc-internal-format msgid "switch %qs does not start with %<-%>" msgstr "" ! #: gcc.c:4425 #, gcc-internal-format msgid "spec-generated switch is just %<-%>" msgstr "" ! #: gcc.c:4516 #, gcc-internal-format, gfc-internal-format msgid "could not open temporary response file %s" msgstr "" ! #: gcc.c:4522 #, gcc-internal-format, gfc-internal-format msgid "could not write to temporary response file %s" msgstr "" ! #: gcc.c:4528 #, gcc-internal-format, gfc-internal-format msgid "could not close temporary response file %s" msgstr "" ! #: gcc.c:4651 #, fuzzy, gcc-internal-format msgid "spec %qs invalid" msgstr "%s: PCH-tiedosto oli epäkelpo" ! #: gcc.c:4800 #, fuzzy, gcc-internal-format msgid "spec %qs has invalid %<%%0%c%>" msgstr "bittikentällä %qs on epäkelpo tyyppi" ! #: gcc.c:5119 #, fuzzy, gcc-internal-format msgid "spec %qs has invalid %<%%W%c%>" msgstr "bittikentällä %qs on epäkelpo tyyppi" ! #: gcc.c:5141 #, fuzzy, gcc-internal-format msgid "spec %qs has invalid %<%%x%c%>" msgstr "bittikentällä %qs on epäkelpo tyyppi" #. Catch the case where a spec string contains something like #. '%{foo:%*}'. i.e. there is no * in the pattern on the left #. hand side of the :. ! #: gcc.c:5342 #, gcc-internal-format msgid "spec failure: %<%%*%> has not been initialized by pattern match" msgstr "" ! #: gcc.c:5385 #, fuzzy, gcc-internal-format msgid "spec failure: unrecognized spec option %qc" msgstr "tunnistamaton muotomäärite" ! #: gcc.c:5447 #, fuzzy, gcc-internal-format msgid "unknown spec function %qs" msgstr "Funktio %qs" ! #: gcc.c:5477 #, fuzzy, gcc-internal-format msgid "error in args to spec function %qs" msgstr "liian monta argumenttia funktiolle %qs" ! #: gcc.c:5528 #, gcc-internal-format msgid "malformed spec function name" msgstr "" #. ) ! #: gcc.c:5531 #, gcc-internal-format msgid "no arguments for spec function" msgstr "" ! #: gcc.c:5550 #, gcc-internal-format msgid "malformed spec function arguments" msgstr "" ! #: gcc.c:5811 #, fuzzy, gcc-internal-format msgid "braced spec %qs is invalid at %qc" msgstr "bittikentällä %qs on epäkelpo tyyppi" ! #: gcc.c:5899 #, gcc-internal-format msgid "braced spec body %qs is invalid" msgstr "" ! #: gcc.c:6152 #, gcc-internal-format, gfc-internal-format msgid "%s: could not determine length of compare-debug file %s" msgstr "" ! #: gcc.c:6163 #, gcc-internal-format, gfc-internal-format msgid "%s: -fcompare-debug failure (length)" msgstr "" ! #: gcc.c:6173 gcc.c:6214 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "%s: could not open compare-debug file %s" msgstr "%s: ei voida avata PCH-tiedostoa: %m\n" ! #: gcc.c:6193 gcc.c:6230 #, gcc-internal-format, gfc-internal-format msgid "%s: -fcompare-debug failure" msgstr "" ! #: gcc.c:6305 #, fuzzy, gcc-internal-format msgid "atexit failed" msgstr "pex_init epäonnistui: %s" ! #: gcc.c:6454 #, gcc-internal-format msgid "spec failure: more than one arg to SYSROOT_SUFFIX_SPEC" msgstr "" ! #: gcc.c:6478 #, gcc-internal-format msgid "spec failure: more than one arg to SYSROOT_HEADERS_SUFFIX_SPEC" msgstr "" ! #: gcc.c:6645 #, fuzzy, gcc-internal-format msgid "unrecognized command line option %<-%s%>" msgstr "tuntematon komentorivivalitsin â€%sâ€" #. The error status indicates that only one set of fixed #. headers should be built. ! #: gcc.c:6731 #, gcc-internal-format msgid "not configured with sysroot headers suffix" msgstr "ei konfiguroitu sysroot-otsakkeiden loppuliitteellä" ! #: gcc.c:6814 #, gcc-internal-format msgid "no input files" msgstr "ei syötetiedostoja" ! #: gcc.c:6863 #, gcc-internal-format msgid "cannot specify -o with -c, -S or -E with multiple files" msgstr "" ! #: gcc.c:6893 #, gcc-internal-format, gfc-internal-format msgid "%s: %s compiler not installed on this system" msgstr "" ! #: gcc.c:6915 #, gcc-internal-format msgid "recompiling with -fcompare-debug" msgstr "" ! #: gcc.c:6931 #, gcc-internal-format msgid "during -fcompare-debug recompilation" msgstr "" ! #: gcc.c:6940 #, fuzzy, gcc-internal-format msgid "comparing final insns dumps" msgstr "%s: ei voida avata PCH-tiedostoa: %m\n" ! #: gcc.c:7046 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "-fuse-linker-plugin, but %s not found" msgstr "kirjastoa lib%s ei löytynyt" ! #: gcc.c:7079 #, gcc-internal-format, gfc-internal-format msgid "%s: linker input file unused because linking not done" msgstr "" ! #: gcc.c:7120 #, gcc-internal-format, gfc-internal-format msgid "language %s not recognized" msgstr "" ! #: gcc.c:7347 #, fuzzy, gcc-internal-format msgid "multilib spec %qs is invalid" msgstr "alustamaton const %qD" ! #: gcc.c:7541 #, fuzzy, gcc-internal-format msgid "multilib exclusions %qs is invalid" msgstr "alustamaton const %qD" ! #: gcc.c:7605 #, gcc-internal-format msgid "multilib select %qs %qs is invalid" msgstr "" ! #: gcc.c:7761 #, fuzzy, gcc-internal-format msgid "multilib select %qs is invalid" msgstr "alustamaton const %qD" ! #: gcc.c:7800 #, fuzzy, gcc-internal-format msgid "multilib exclusion %qs is invalid" msgstr "alustamaton const %qD" ! #: gcc.c:8006 #, fuzzy, gcc-internal-format msgid "environment variable %qs not defined" msgstr "ympäristömuuttujaa â€%s†ei ole määritelty" ! #: gcc.c:8118 gcc.c:8123 #, fuzzy, gcc-internal-format msgid "invalid version number %qs" msgstr "virheellinen versionumero â€%sâ€" ! #: gcc.c:8166 ! #, gcc-internal-format, gfc-internal-format msgid "too few arguments to %%:version-compare" ! msgstr "liian vähän argumentteja kohteelle %%:version-compare" ! #: gcc.c:8172 ! #, gcc-internal-format, gfc-internal-format msgid "too many arguments to %%:version-compare" ! msgstr "liian monta argumenttia kohteelle %%:version-compare" ! #: gcc.c:8213 #, fuzzy, gcc-internal-format msgid "unknown operator %qs in %%:version-compare" ! msgstr "liian vähän argumentteja kohteelle %%:version-compare" ! #: gcc.c:8336 ! #, gcc-internal-format, gfc-internal-format msgid "too many arguments to %%:compare-debug-dump-opt" ! msgstr "liian monta argumenttia kohteelle %%:compare-debug-dump-opt" ! #: gcc.c:8408 ! #, gcc-internal-format, gfc-internal-format msgid "too many arguments to %%:compare-debug-self-opt" ! msgstr "liian monta argumenttia kohteelle %%:compare-debug-self-opt" ! #: gcc.c:8443 ! #, gcc-internal-format, gfc-internal-format msgid "too few arguments to %%:compare-debug-auxbase-opt" ! msgstr "liian vähän argumentteja kohteelle %%:compare-debug-auxbase-opt" ! #: gcc.c:8446 ! #, gcc-internal-format, gfc-internal-format msgid "too many arguments to %%:compare-debug-auxbase-opt" ! msgstr "liian monta argumenttia kohteelle %%:compare-debug-auxbase-opt" ! #: gcc.c:8453 #, gcc-internal-format, gfc-internal-format msgid "argument to %%:compare-debug-auxbase-opt does not end in .gk" msgstr "" ! #: gcc.c:8527 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "too few arguments to %%:replace-extension" msgstr "liian vähän argumentteja funktiolle" *************** msgstr "%s: ei voida avata PCH-tiedostoa *** 15040,15052 **** msgid "can%'t write padding to PCH file: %m" msgstr "%s: ei voida avata PCH-tiedostoa: %m\n" ! #: ggc-common.c:615 ggc-common.c:623 ggc-common.c:630 ggc-common.c:633 ! #: ggc-common.c:643 ggc-common.c:646 ggc-page.c:2439 #, fuzzy, gcc-internal-format msgid "can%'t read PCH file: %m" msgstr "%s: ei voida avata PCH-tiedostoa: %m\n" ! #: ggc-common.c:638 #, gcc-internal-format msgid "had to relocate PCH" msgstr "" --- 14889,14901 ---- msgid "can%'t write padding to PCH file: %m" msgstr "%s: ei voida avata PCH-tiedostoa: %m\n" ! #: ggc-common.c:681 ggc-common.c:689 ggc-common.c:696 ggc-common.c:699 ! #: ggc-common.c:709 ggc-common.c:712 ggc-page.c:2439 #, fuzzy, gcc-internal-format msgid "can%'t read PCH file: %m" msgstr "%s: ei voida avata PCH-tiedostoa: %m\n" ! #: ggc-common.c:704 #, gcc-internal-format msgid "had to relocate PCH" msgstr "" *************** msgstr "" *** 15058,15064 **** #: ggc-page.c:2327 ggc-page.c:2333 #, fuzzy, gcc-internal-format - #| msgid "can't write PCH file" msgid "can%'t write PCH file" msgstr "PCH-tiedostoa ei voida kirjoittaa" --- 14907,14912 ---- *************** msgstr "ei palautuslausetta funktiossa, *** 15105,15111 **** #: gimplify.c:5294 #, gcc-internal-format, gfc-internal-format msgid "invalid lvalue in asm output %d" ! msgstr "" #: gimplify.c:5410 #, gcc-internal-format, gfc-internal-format --- 14953,14959 ---- #: gimplify.c:5294 #, gcc-internal-format, gfc-internal-format msgid "invalid lvalue in asm output %d" ! msgstr "virheellinen lvalue asm-tulosteessa %d" #: gimplify.c:5410 #, gcc-internal-format, gfc-internal-format *************** msgstr "" *** 15119,15125 **** #: gimplify.c:5926 #, fuzzy, gcc-internal-format - #| msgid "register variable %qD used in nested function" msgid "threadprivate variable %qE used in untied task" msgstr "sisäkkäisessä funktiossa käytetty rekisterimuuttujaa %qD" --- 14967,14972 ---- *************** msgstr "" *** 15200,15206 **** #. Fatal error here. We do not want to support compiling ltrans units with #. different version of compiler or different flags than the WPA unit, so #. this should never happen. ! #: ipa-reference.c:1148 #, gcc-internal-format msgid "ipa reference summary is missing in ltrans unit" msgstr "" --- 15047,15053 ---- #. Fatal error here. We do not want to support compiling ltrans units with #. different version of compiler or different flags than the WPA unit, so #. this should never happen. ! #: ipa-reference.c:1146 #, gcc-internal-format msgid "ipa reference summary is missing in ltrans unit" msgstr "" *************** msgid "alignment of %qD is bigger than o *** 15332,15350 **** msgstr "%J%qD:n lohko on ristiriidassa edellisen esittelyn kanssa" #: lto-symtab.c:396 lto-symtab.c:489 ! #, fuzzy, gcc-internal-format msgid "previously declared here" ! msgstr "%Jviimeksi käytetty täällä" #: lto-symtab.c:470 ! #, fuzzy, gcc-internal-format msgid "variable %qD redeclared as function" ! msgstr "kenttä %qs esitelty funktiona" #: lto-symtab.c:477 ! #, fuzzy, gcc-internal-format msgid "function %qD redeclared as variable" ! msgstr "%Jsisäänrakennettu funktio %qD esitelty ei-funktiona" #: omp-low.c:1849 #, gcc-internal-format --- 15179,15197 ---- msgstr "%J%qD:n lohko on ristiriidassa edellisen esittelyn kanssa" #: lto-symtab.c:396 lto-symtab.c:489 ! #, gcc-internal-format msgid "previously declared here" ! msgstr "esitelty aiemmin täällä" #: lto-symtab.c:470 ! #, gcc-internal-format msgid "variable %qD redeclared as function" ! msgstr "muuttuja %qD esitelty uudelleen funktiona" #: lto-symtab.c:477 ! #, gcc-internal-format msgid "function %qD redeclared as variable" ! msgstr "funktio %qD esitelty uudelleen muuttujana" #: omp-low.c:1849 #, gcc-internal-format *************** msgstr "" *** 15392,15420 **** msgid "invalid branch to/from an OpenMP structured block" msgstr "" ! #: opts-common.c:997 #, fuzzy, gcc-internal-format msgid "command line option %qs is not supported by this configuration" msgstr "#pragma redefine_extname ei ole tuettu tällä kohteella" ! #: opts-common.c:1007 #, fuzzy, gcc-internal-format msgid "missing argument to %qs" msgstr "liikaa argumentteja funktiolle %s %q+#D" ! #: opts-common.c:1013 #, fuzzy, gcc-internal-format - #| msgid "first argument of %q+D should be %" msgid "argument to %qs should be a non-negative integer" msgstr "%q+D:n ensimmäisen argumentin pitäisi olla %" ! #: opts-common.c:1028 #, fuzzy, gcc-internal-format - #| msgid "unrecognized command line option \"%s\"" msgid "unrecognized argument in option %qs" msgstr "tuntematon komentorivivalitsin â€%sâ€" ! #: opts-common.c:1044 #, fuzzy, gcc-internal-format msgid "valid arguments to %qs are: %s" msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" --- 15239,15265 ---- msgid "invalid branch to/from an OpenMP structured block" msgstr "" ! #: opts-common.c:1030 #, fuzzy, gcc-internal-format msgid "command line option %qs is not supported by this configuration" msgstr "#pragma redefine_extname ei ole tuettu tällä kohteella" ! #: opts-common.c:1040 #, fuzzy, gcc-internal-format msgid "missing argument to %qs" msgstr "liikaa argumentteja funktiolle %s %q+#D" ! #: opts-common.c:1046 #, fuzzy, gcc-internal-format msgid "argument to %qs should be a non-negative integer" msgstr "%q+D:n ensimmäisen argumentin pitäisi olla %" ! #: opts-common.c:1061 #, fuzzy, gcc-internal-format msgid "unrecognized argument in option %qs" msgstr "tuntematon komentorivivalitsin â€%sâ€" ! #: opts-common.c:1077 #, fuzzy, gcc-internal-format msgid "valid arguments to %qs are: %s" msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" *************** msgstr "#pragma redefine_extname ei ole *** 15426,15451 **** #. Eventually this should become a hard error IMO. #: opts-global.c:105 ! #, fuzzy, gcc-internal-format msgid "command line option %qs is valid for %s but not for %s" ! msgstr "#pragma redefine_extname ei ole tuettu tällä kohteella" #: opts-global.c:136 #, gcc-internal-format, gfc-internal-format msgid "unrecognized command line option \"%s\"" ! msgstr "tuntematon komentorivivalitsin â€%sâ€" #: opts-global.c:389 ! #, fuzzy, gcc-internal-format ! #| msgid "unrecognized command line option \"%s\"" msgid "unrecognized command line option %<-fdump-%s%>" ! msgstr "tuntematon komentorivivalitsin â€%sâ€" #: opts-global.c:394 ! #, fuzzy, gcc-internal-format ! #| msgid "unrecognized command line option \"%s\"" msgid "unrecognized command line option %<-fopt-info-%s%>" ! msgstr "tuntematon komentorivivalitsin â€%sâ€" #: opts-global.c:415 opts-global.c:423 #, gcc-internal-format --- 15271,15294 ---- #. Eventually this should become a hard error IMO. #: opts-global.c:105 ! #, gcc-internal-format msgid "command line option %qs is valid for %s but not for %s" ! msgstr "komentorivivalitsin %qs on kelvollinen kohteelle %s, mutta ei kohteelle %s" #: opts-global.c:136 #, gcc-internal-format, gfc-internal-format msgid "unrecognized command line option \"%s\"" ! msgstr "tunnistamaton komentorivivalitsin â€%sâ€" #: opts-global.c:389 ! #, gcc-internal-format msgid "unrecognized command line option %<-fdump-%s%>" ! msgstr "tunnistamaton komentorivivalitsin %<-fdump-%s%>" #: opts-global.c:394 ! #, gcc-internal-format msgid "unrecognized command line option %<-fopt-info-%s%>" ! msgstr "tunnistamaton komentorivivalitsin %<-fopt-info-%s%>" #: opts-global.c:415 opts-global.c:423 #, gcc-internal-format *************** msgid "plugin support is disabled; confi *** 15453,15461 **** msgstr "" #: opts-global.c:447 ! #, fuzzy, gcc-internal-format msgid "unrecognized register name %qs" ! msgstr "tunnistamaton muotomäärite" #: opts.c:92 #, gcc-internal-format --- 15296,15304 ---- msgstr "" #: opts-global.c:447 ! #, gcc-internal-format msgid "unrecognized register name %qs" ! msgstr "tunnistamaton rekisterinimi %qs" #: opts.c:92 #, gcc-internal-format *************** msgstr "" *** 15472,15610 **** msgid "%<-femit-struct-debug-detailed=dir:...%> must allow at least as much as %<-femit-struct-debug-detailed=ind:...%>" msgstr "" ! #: opts.c:542 #, gcc-internal-format msgid "argument to %<-O%> should be a non-negative integer, %, % or %" msgstr "" ! #: opts.c:669 #, gcc-internal-format msgid "section anchors must be disabled when unit-at-a-time is disabled" msgstr "" ! #: opts.c:673 #, gcc-internal-format msgid "toplevel reorder must be disabled when unit-at-a-time is disabled" msgstr "" ! #: opts.c:679 #, fuzzy, gcc-internal-format msgid "transactional memory is not supported with non-call exceptions" msgstr "#pragma redefine_extname ei ole tuettu tällä kohteella" ! #: opts.c:694 #, gcc-internal-format msgid "section anchors must be disabled when toplevel reorder is disabled" msgstr "" ! #: opts.c:729 config/darwin.c:3061 config/sh/sh.c:936 #, gcc-internal-format msgid "-freorder-blocks-and-partition does not work with exceptions on this architecture" msgstr "" ! #: opts.c:744 config/sh/sh.c:944 #, gcc-internal-format msgid "-freorder-blocks-and-partition does not support unwind info on this architecture" msgstr "" ! #: opts.c:761 config/pa/pa.c:526 #, gcc-internal-format msgid "-freorder-blocks-and-partition does not work on this architecture" msgstr "" ! #: opts.c:797 #, gcc-internal-format msgid "-fno-fat-lto-objects are supported only with linker plugin." msgstr "" ! #: opts.c:805 #, gcc-internal-format msgid "only one -flto-partition value can be specified" msgstr "" ! #: opts.c:816 #, fuzzy, gcc-internal-format - #| msgid "weakref is not supported in this configuration" msgid "%<-fsplit-stack%> is not supported by this compiler configuration" msgstr "weakref ei ole tuettu tässä konfiguraatiossa" ! #: opts.c:1193 #, gcc-internal-format msgid "unrecognized include_flags 0x%x passed to print_specific_help" msgstr "" ! #: opts.c:1373 #, gcc-internal-format msgid "--help argument %q.*s is ambiguous, please be more specific" msgstr "" ! #: opts.c:1382 #, fuzzy, gcc-internal-format - #| msgid "unrecognized command line option \"%s\"" msgid "unrecognized argument to --help= option: %q.*s" msgstr "tuntematon komentorivivalitsin â€%sâ€" ! #: opts.c:1547 #, gcc-internal-format, gfc-internal-format msgid "structure alignment must be a small power of two, not %d" msgstr "" ! #: opts.c:1664 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "unknown stack check parameter \"%s\"" msgstr "tuntematon konetila %qs" ! #: opts.c:1701 #, gcc-internal-format, gfc-internal-format msgid "dwarf version %d is not supported" msgstr "dwarfin versio %d ei ole tuettu" ! #: opts.c:1791 #, gcc-internal-format, gfc-internal-format msgid "%s: --param arguments should be of the form NAME=VALUE" ! msgstr "" ! #: opts.c:1797 #, gcc-internal-format msgid "invalid --param value %qs" ! msgstr "" ! #: opts.c:1915 #, gcc-internal-format msgid "target system does not support debug output" msgstr "" ! #: opts.c:1924 #, gcc-internal-format, gfc-internal-format msgid "debug format \"%s\" conflicts with prior selection" msgstr "" ! #: opts.c:1940 #, gcc-internal-format, gfc-internal-format msgid "unrecognised debug output level \"%s\"" msgstr "" ! #: opts.c:1942 #, gcc-internal-format, gfc-internal-format msgid "debug output level %s is too high" msgstr "" ! #: opts.c:1962 #, gcc-internal-format msgid "getting core file size maximum limit: %m" msgstr "" ! #: opts.c:1965 #, gcc-internal-format msgid "setting core file size limit to maximum: %m" msgstr "" ! #: opts.c:2010 #, gcc-internal-format, gfc-internal-format msgid "unrecognized gcc debugging option: %c" ! msgstr "" ! #: opts.c:2036 #, gcc-internal-format, gfc-internal-format msgid "-Werror=%s: no option -%s" msgstr "" --- 15315,15451 ---- msgid "%<-femit-struct-debug-detailed=dir:...%> must allow at least as much as %<-femit-struct-debug-detailed=ind:...%>" msgstr "" ! #: opts.c:544 #, gcc-internal-format msgid "argument to %<-O%> should be a non-negative integer, %, % or %" msgstr "" ! #: opts.c:672 #, gcc-internal-format msgid "section anchors must be disabled when unit-at-a-time is disabled" msgstr "" ! #: opts.c:676 #, gcc-internal-format msgid "toplevel reorder must be disabled when unit-at-a-time is disabled" msgstr "" ! #: opts.c:682 #, fuzzy, gcc-internal-format msgid "transactional memory is not supported with non-call exceptions" msgstr "#pragma redefine_extname ei ole tuettu tällä kohteella" ! #: opts.c:697 #, gcc-internal-format msgid "section anchors must be disabled when toplevel reorder is disabled" msgstr "" ! #: opts.c:732 config/darwin.c:3061 config/sh/sh.c:933 #, gcc-internal-format msgid "-freorder-blocks-and-partition does not work with exceptions on this architecture" msgstr "" ! #: opts.c:747 config/sh/sh.c:941 #, gcc-internal-format msgid "-freorder-blocks-and-partition does not support unwind info on this architecture" msgstr "" ! #: opts.c:764 config/pa/pa.c:526 #, gcc-internal-format msgid "-freorder-blocks-and-partition does not work on this architecture" msgstr "" ! #: opts.c:800 #, gcc-internal-format msgid "-fno-fat-lto-objects are supported only with linker plugin." msgstr "" ! #: opts.c:808 #, gcc-internal-format msgid "only one -flto-partition value can be specified" msgstr "" ! #: opts.c:819 #, fuzzy, gcc-internal-format msgid "%<-fsplit-stack%> is not supported by this compiler configuration" msgstr "weakref ei ole tuettu tässä konfiguraatiossa" ! #: opts.c:1196 #, gcc-internal-format msgid "unrecognized include_flags 0x%x passed to print_specific_help" msgstr "" ! #: opts.c:1376 #, gcc-internal-format msgid "--help argument %q.*s is ambiguous, please be more specific" msgstr "" ! #: opts.c:1385 #, fuzzy, gcc-internal-format msgid "unrecognized argument to --help= option: %q.*s" msgstr "tuntematon komentorivivalitsin â€%sâ€" ! #: opts.c:1550 #, gcc-internal-format, gfc-internal-format msgid "structure alignment must be a small power of two, not %d" msgstr "" ! #: opts.c:1667 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "unknown stack check parameter \"%s\"" msgstr "tuntematon konetila %qs" ! #: opts.c:1704 #, gcc-internal-format, gfc-internal-format msgid "dwarf version %d is not supported" msgstr "dwarfin versio %d ei ole tuettu" ! #: opts.c:1794 #, gcc-internal-format, gfc-internal-format msgid "%s: --param arguments should be of the form NAME=VALUE" ! msgstr "%s: --param-argumenttien tulee olla muotoa NIMI=ARVO" ! #: opts.c:1800 #, gcc-internal-format msgid "invalid --param value %qs" ! msgstr "virheellinen --param-arvo %qs" ! #: opts.c:1918 #, gcc-internal-format msgid "target system does not support debug output" msgstr "" ! #: opts.c:1927 #, gcc-internal-format, gfc-internal-format msgid "debug format \"%s\" conflicts with prior selection" msgstr "" ! #: opts.c:1943 #, gcc-internal-format, gfc-internal-format msgid "unrecognised debug output level \"%s\"" msgstr "" ! #: opts.c:1945 #, gcc-internal-format, gfc-internal-format msgid "debug output level %s is too high" msgstr "" ! #: opts.c:1965 #, gcc-internal-format msgid "getting core file size maximum limit: %m" msgstr "" ! #: opts.c:1968 #, gcc-internal-format msgid "setting core file size limit to maximum: %m" msgstr "" ! #: opts.c:2013 #, gcc-internal-format, gfc-internal-format msgid "unrecognized gcc debugging option: %c" ! msgstr "tunnistamaton gcc:n vianjäljitysvalitsin: %c" ! #: opts.c:2039 #, gcc-internal-format, gfc-internal-format msgid "-Werror=%s: no option -%s" msgstr "" *************** msgstr "" *** 15612,15629 **** #: params.c:120 #, gcc-internal-format msgid "minimum value of parameter %qs is %u" ! msgstr "" #: params.c:125 #, gcc-internal-format msgid "maximum value of parameter %qs is %u" ! msgstr "" #. If we didn't find this parameter, issue an error message. #: params.c:135 #, gcc-internal-format msgid "invalid parameter %qs" ! msgstr "" #: passes.c:804 #, fuzzy, gcc-internal-format --- 15453,15470 ---- #: params.c:120 #, gcc-internal-format msgid "minimum value of parameter %qs is %u" ! msgstr "parametrin %qs minimiarvo on %u" #: params.c:125 #, gcc-internal-format msgid "maximum value of parameter %qs is %u" ! msgstr "parametrin %qs maksimiarvo on %u" #. If we didn't find this parameter, issue an error message. #: params.c:135 #, gcc-internal-format msgid "invalid parameter %qs" ! msgstr "virheellinen parametri %qs" #: passes.c:804 #, fuzzy, gcc-internal-format *************** msgstr "" *** 15642,15648 **** #: passes.c:816 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "no class name specified with %qs" msgid "unknown pass %s specified in -fdisable" msgstr "luokkanimeä ei ole annettu %qs:n kanssa" --- 15483,15488 ---- *************** msgid "can%'t use %qs as a fixed registe *** 15866,15880 **** msgstr "" #: reginfo.c:750 config/ia64/ia64.c:5897 config/ia64/ia64.c:5904 ! #: config/pa/pa.c:428 config/pa/pa.c:435 config/sh/sh.c:9362 ! #: config/sh/sh.c:9369 config/spu/spu.c:4908 config/spu/spu.c:4915 #, gcc-internal-format, gfc-internal-format msgid "unknown register name: %s" msgstr "" #: reginfo.c:763 #, fuzzy, gcc-internal-format - #| msgid "address of global register variable %qD requested" msgid "stack register used for global register variable" msgstr "halutaan globaalin rekisterimuuttujan %qD osoite" --- 15706,15719 ---- msgstr "" #: reginfo.c:750 config/ia64/ia64.c:5897 config/ia64/ia64.c:5904 ! #: config/pa/pa.c:428 config/pa/pa.c:435 config/sh/sh.c:9359 ! #: config/sh/sh.c:9366 config/spu/spu.c:4908 config/spu/spu.c:4915 #, gcc-internal-format, gfc-internal-format msgid "unknown register name: %s" msgstr "" #: reginfo.c:763 #, fuzzy, gcc-internal-format msgid "stack register used for global register variable" msgstr "halutaan globaalin rekisterimuuttujan %qD osoite" *************** msgstr "" *** 15890,15896 **** #: reginfo.c:777 #, fuzzy, gcc-internal-format - #| msgid "conflicting types for %q+D" msgid "conflicts with %qD" msgstr "ristiriitaiset tyypit %qD:lle" --- 15729,15734 ---- *************** msgstr "" *** 15949,15990 **** msgid "output operand is constant in %" msgstr "" ! #: rtl.c:738 #, gcc-internal-format, gfc-internal-format msgid "RTL check: access of elt %d of '%s' with last elt %d in %s, at %s:%d" msgstr "" ! #: rtl.c:748 #, gcc-internal-format, gfc-internal-format msgid "RTL check: expected elt %d type '%c', have '%c' (rtx %s) in %s, at %s:%d" msgstr "" ! #: rtl.c:758 #, gcc-internal-format, gfc-internal-format msgid "RTL check: expected elt %d type '%c' or '%c', have '%c' (rtx %s) in %s, at %s:%d" msgstr "" ! #: rtl.c:767 #, gcc-internal-format, gfc-internal-format msgid "RTL check: expected code '%s', have '%s' in %s, at %s:%d" msgstr "" ! #: rtl.c:777 #, gcc-internal-format, gfc-internal-format msgid "RTL check: expected code '%s' or '%s', have '%s' in %s, at %s:%d" msgstr "" ! #: rtl.c:804 #, gcc-internal-format, gfc-internal-format msgid "RTL check: attempt to treat non-block symbol as a block symbol in %s, at %s:%d" msgstr "" ! #: rtl.c:814 #, gcc-internal-format, gfc-internal-format msgid "RTL check: access of elt %d of vector with last elt %d in %s, at %s:%d" msgstr "" ! #: rtl.c:825 #, gcc-internal-format, gfc-internal-format msgid "RTL flag check: %s used with unexpected rtx code '%s' in %s, at %s:%d" msgstr "" --- 15787,15828 ---- msgid "output operand is constant in %" msgstr "" ! #: rtl.c:742 #, gcc-internal-format, gfc-internal-format msgid "RTL check: access of elt %d of '%s' with last elt %d in %s, at %s:%d" msgstr "" ! #: rtl.c:752 #, gcc-internal-format, gfc-internal-format msgid "RTL check: expected elt %d type '%c', have '%c' (rtx %s) in %s, at %s:%d" msgstr "" ! #: rtl.c:762 #, gcc-internal-format, gfc-internal-format msgid "RTL check: expected elt %d type '%c' or '%c', have '%c' (rtx %s) in %s, at %s:%d" msgstr "" ! #: rtl.c:771 #, gcc-internal-format, gfc-internal-format msgid "RTL check: expected code '%s', have '%s' in %s, at %s:%d" msgstr "" ! #: rtl.c:781 #, gcc-internal-format, gfc-internal-format msgid "RTL check: expected code '%s' or '%s', have '%s' in %s, at %s:%d" msgstr "" ! #: rtl.c:808 #, gcc-internal-format, gfc-internal-format msgid "RTL check: attempt to treat non-block symbol as a block symbol in %s, at %s:%d" msgstr "" ! #: rtl.c:818 #, gcc-internal-format, gfc-internal-format msgid "RTL check: access of elt %d of vector with last elt %d in %s, at %s:%d" msgstr "" ! #: rtl.c:829 #, gcc-internal-format, gfc-internal-format msgid "RTL flag check: %s used with unexpected rtx code '%s' in %s, at %s:%d" msgstr "" *************** msgid "packed attribute causes inefficie *** 16115,16123 **** msgstr "" #: stor-layout.c:1156 ! #, fuzzy, gcc-internal-format msgid "packed attribute is unnecessary for %q+D" ! msgstr "%qs-attribuuttia ei huomioida %qs:lle" #: stor-layout.c:1173 #, gcc-internal-format --- 15953,15961 ---- msgstr "" #: stor-layout.c:1156 ! #, gcc-internal-format msgid "packed attribute is unnecessary for %q+D" ! msgstr "pakattu attribuutti on tarpeeton %q+D:lle" #: stor-layout.c:1173 #, gcc-internal-format *************** msgstr "" *** 16126,16132 **** #: stor-layout.c:1235 #, fuzzy, gcc-internal-format - #| msgid "Warn about packed bit-fields whose offset changed in GCC 4.4" msgid "offset of packed bit-field %qD has changed in GCC 4.4" msgstr "Varoita pakatuista bittikentistä, joiden siirrososoite vaihtui GCC 4.4:ssä" --- 15964,15969 ---- *************** msgid "padding struct size to alignment *** 16136,16159 **** msgstr "" #: stor-layout.c:1569 ! #, fuzzy, gcc-internal-format msgid "packed attribute causes inefficient alignment for %qE" ! msgstr "%qs-attribuuttia ei huomioida %qs:lle" #: stor-layout.c:1573 ! #, fuzzy, gcc-internal-format msgid "packed attribute is unnecessary for %qE" ! msgstr "%qs-attribuuttia ei huomioida %qs:lle" #: stor-layout.c:1579 #, gcc-internal-format msgid "packed attribute causes inefficient alignment" ! msgstr "" #: stor-layout.c:1581 #, gcc-internal-format msgid "packed attribute is unnecessary" ! msgstr "" #: stor-layout.c:2293 #, gcc-internal-format --- 15973,15996 ---- msgstr "" #: stor-layout.c:1569 ! #, gcc-internal-format msgid "packed attribute causes inefficient alignment for %qE" ! msgstr "pakattu attribuutti aiheuttaa tehottoman kohdistuksen %qE:lle" #: stor-layout.c:1573 ! #, gcc-internal-format msgid "packed attribute is unnecessary for %qE" ! msgstr "pakattu attribuutti on tarpeeton %qE:lle" #: stor-layout.c:1579 #, gcc-internal-format msgid "packed attribute causes inefficient alignment" ! msgstr "pakattu attribuutti aiheuttaa tehottoman kohdistuksen" #: stor-layout.c:1581 #, gcc-internal-format msgid "packed attribute is unnecessary" ! msgstr "pakattu attribuutti on tarpeeton" #: stor-layout.c:2293 #, gcc-internal-format *************** msgstr "" *** 16167,16173 **** #: symtab.c:586 #, fuzzy, gcc-internal-format - #| msgid "function return type cannot be function" msgid "function symbol is not function" msgstr "funktion paluuarvon tyyppi ei voi olla funktio" --- 16004,16009 ---- *************** msgstr "#pragma extern_prefix ei ole tue *** 16253,16265 **** #: tlink.c:489 #, fuzzy, gcc-internal-format - #| msgid "removing .rpo file" msgid "removing .rpo file: %m" msgstr "poistetaan .rpo-tiedosto" #: tlink.c:491 #, fuzzy, gcc-internal-format - #| msgid "renaming .rpo file" msgid "renaming .rpo file: %m" msgstr "nimetään uudelleen .rpo-tiedosto" --- 16089,16099 ---- *************** msgstr "rajat määrittelemättömän ta *** 16443,16449 **** msgid "% function call not within outer transaction or %" msgstr "" ! #: trans-mem.c:676 trans-mem.c:4569 #, gcc-internal-format msgid "unsafe function call %qD within atomic transaction" msgstr "" --- 16277,16283 ---- msgid "% function call not within outer transaction or %" msgstr "" ! #: trans-mem.c:676 trans-mem.c:4570 #, gcc-internal-format msgid "unsafe function call %qD within atomic transaction" msgstr "" *************** msgstr "" *** 16458,16464 **** msgid "unsafe indirect function call within atomic transaction" msgstr "" ! #: trans-mem.c:694 trans-mem.c:4502 #, gcc-internal-format msgid "unsafe function call %qD within % function" msgstr "" --- 16292,16298 ---- msgid "unsafe indirect function call within atomic transaction" msgstr "" ! #: trans-mem.c:694 trans-mem.c:4503 #, gcc-internal-format msgid "unsafe function call %qD within % function" msgstr "" *************** msgstr "" *** 16473,16479 **** msgid "unsafe indirect function call within % function" msgstr "" ! #: trans-mem.c:719 trans-mem.c:4541 #, gcc-internal-format msgid "asm not allowed in atomic transaction" msgstr "" --- 16307,16313 ---- msgid "unsafe indirect function call within % function" msgstr "" ! #: trans-mem.c:719 trans-mem.c:4542 #, gcc-internal-format msgid "asm not allowed in atomic transaction" msgstr "" *************** msgstr "" *** 16495,16501 **** #: trans-mem.c:743 #, fuzzy, gcc-internal-format - #| msgid "pointer to a function used in subtraction" msgid "outer transaction in transaction" msgstr "vähennyslaskussa käytetty osoitinta funktioon" --- 16329,16334 ---- *************** msgstr "" *** 16509,16515 **** msgid "outer transaction in % function" msgstr "" ! #: trans-mem.c:4169 #, fuzzy, gcc-internal-format msgid "%Kasm not allowed in % function" msgstr "%Jvanhanmallinen funktiomäärittely" --- 16342,16348 ---- msgid "outer transaction in % function" msgstr "" ! #: trans-mem.c:4170 #, fuzzy, gcc-internal-format msgid "%Kasm not allowed in % function" msgstr "%Jvanhanmallinen funktiomäärittely" *************** msgstr "" *** 16559,16565 **** msgid "MODIFY_EXPR not expected while having tuples" msgstr "" ! #: tree-cfg.c:2613 tree-ssa.c:879 #, gcc-internal-format msgid "address taken, but ADDRESSABLE bit not set" msgstr "" --- 16392,16398 ---- msgid "MODIFY_EXPR not expected while having tuples" msgstr "" ! #: tree-cfg.c:2613 tree-ssa.c:876 #, gcc-internal-format msgid "address taken, but ADDRESSABLE bit not set" msgstr "" *************** msgid "invalid operands to array referen *** 16630,16653 **** msgstr "epäkelvot operandit binääriselle %s-operaatiolle" #: tree-cfg.c:2862 ! #, fuzzy, gcc-internal-format msgid "type mismatch in array reference" ! msgstr "ehtolausekkeessa on tyyppiristiriita" #: tree-cfg.c:2871 #, gcc-internal-format msgid "type mismatch in array range reference" ! msgstr "" #: tree-cfg.c:2882 ! #, fuzzy, gcc-internal-format msgid "type mismatch in real/imagpart reference" ! msgstr "ehtolausekkeessa on tyyppiristiriita" #: tree-cfg.c:2892 ! #, fuzzy, gcc-internal-format msgid "type mismatch in component reference" ! msgstr "ehtolausekkeessa on tyyppiristiriita" #: tree-cfg.c:2909 #, gcc-internal-format --- 16463,16486 ---- msgstr "epäkelvot operandit binääriselle %s-operaatiolle" #: tree-cfg.c:2862 ! #, gcc-internal-format msgid "type mismatch in array reference" ! msgstr "tyyppitäsmäämättömyys taulukkoviitteessä" #: tree-cfg.c:2871 #, gcc-internal-format msgid "type mismatch in array range reference" ! msgstr "tyyppitäsmäämättömyys taulukkoalueviitteessä" #: tree-cfg.c:2882 ! #, gcc-internal-format msgid "type mismatch in real/imagpart reference" ! msgstr "tyyppitäsmäämättömyys real/imagpart-viitteessä" #: tree-cfg.c:2892 ! #, gcc-internal-format msgid "type mismatch in component reference" ! msgstr "tyyppitäsmäämättömyys komponenttiviitteessä" #: tree-cfg.c:2909 #, gcc-internal-format *************** msgstr "" *** 16656,16662 **** #: tree-cfg.c:2916 #, fuzzy, gcc-internal-format - #| msgid "cast from pointer to integer of different size" msgid "conversion of register to a different size" msgstr "tyyppimuunnos osoittimesta erikokoiseen kokonaislukuun" --- 16489,16494 ---- *************** msgid "LHS in noreturn call" *** 16716,16724 **** msgstr "" #: tree-cfg.c:3077 ! #, fuzzy, gcc-internal-format msgid "invalid conversion in gimple call" ! msgstr "virheellinen versionumero â€%sâ€" #: tree-cfg.c:3086 #, fuzzy, gcc-internal-format --- 16548,16556 ---- msgstr "" #: tree-cfg.c:3077 ! #, gcc-internal-format msgid "invalid conversion in gimple call" ! msgstr "virheellinen muunnos gimple-kutsussa" #: tree-cfg.c:3086 #, fuzzy, gcc-internal-format *************** msgstr "epäkelpo totuusarvolauseke" *** 16767,16773 **** #: tree-cfg.c:3203 #, fuzzy, gcc-internal-format - #| msgid "Warn about comparison of different enum types" msgid "bogus comparison result type" msgstr "Varoita eri enum-tyyppien vertailusta" --- 16599,16604 ---- *************** msgid "invalid operand in unary operatio *** 16782,16790 **** msgstr "epäkelvot operandit binääriselle %s-operaatiolle" #: tree-cfg.c:3263 ! #, fuzzy, gcc-internal-format msgid "invalid types in nop conversion" ! msgstr "void-lausekkeen epäkelpo käyttö" #: tree-cfg.c:3278 #, fuzzy, gcc-internal-format --- 16613,16621 ---- msgstr "epäkelvot operandit binääriselle %s-operaatiolle" #: tree-cfg.c:3263 ! #, gcc-internal-format msgid "invalid types in nop conversion" ! msgstr "virheelliset tyypit nop-muunnokselle" #: tree-cfg.c:3278 #, fuzzy, gcc-internal-format *************** msgid "invalid types in fixed-point conv *** 16797,16810 **** msgstr "void-lausekkeen epäkelpo käyttö" #: tree-cfg.c:3307 ! #, fuzzy, gcc-internal-format msgid "invalid types in conversion to floating point" ! msgstr "epäkelpo %-avainsanan käyttö" #: tree-cfg.c:3322 ! #, fuzzy, gcc-internal-format msgid "invalid types in conversion to integer" ! msgstr "epäkelpo %-avainsanan käyttö" #: tree-cfg.c:3356 #, fuzzy, gcc-internal-format --- 16628,16641 ---- msgstr "void-lausekkeen epäkelpo käyttö" #: tree-cfg.c:3307 ! #, gcc-internal-format msgid "invalid types in conversion to floating point" ! msgstr "virheellisiä tyyppejä muunnoksessa liukuluvuksi" #: tree-cfg.c:3322 ! #, gcc-internal-format msgid "invalid types in conversion to integer" ! msgstr "virheellisiä tyyppejä muunnoksessa kokonaisluvuksi" #: tree-cfg.c:3356 #, fuzzy, gcc-internal-format *************** msgstr "epäkelvot operandit binäärise *** 16878,16884 **** #: tree-cfg.c:3693 #, fuzzy, gcc-internal-format - #| msgid "type mismatch in conditional expression" msgid "type mismatch in widening multiply-accumulate expression" msgstr "ehtolausekkeessa on tyyppiristiriita" --- 16709,16714 ---- *************** msgid "invalid conversion in return stat *** 16963,16971 **** msgstr "epäkelvot operandit binääriselle %s-operaatiolle" #: tree-cfg.c:4074 ! #, fuzzy, gcc-internal-format msgid "goto destination is neither a label nor a pointer" ! msgstr "indeksoitu arvo ei ole taulukko eikä osoitin" #: tree-cfg.c:4093 #, fuzzy, gcc-internal-format --- 16793,16801 ---- msgstr "epäkelvot operandit binääriselle %s-operaatiolle" #: tree-cfg.c:4074 ! #, gcc-internal-format msgid "goto destination is neither a label nor a pointer" ! msgstr "goto-kohde ei ole nimiö eikä osoitin" #: tree-cfg.c:4093 #, fuzzy, gcc-internal-format *************** msgstr "virheellinen %%H-arvo" *** 17047,17056 **** msgid "incompatible types in PHI argument %u" msgstr "yhteensopimattomat tyypit sijoituksessa" ! #: tree-cfg.c:4433 tree-cfg.c:4727 ! #, fuzzy, gcc-internal-format msgid "verify_gimple failed" ! msgstr "verify_flow_info epäonnistui" #: tree-cfg.c:4495 #, gcc-internal-format --- 16877,16886 ---- msgid "incompatible types in PHI argument %u" msgstr "yhteensopimattomat tyypit sijoituksessa" ! #: tree-cfg.c:4433 tree-cfg.c:4738 ! #, gcc-internal-format msgid "verify_gimple failed" ! msgstr "verify_gimple epäonnistui" #: tree-cfg.c:4495 #, gcc-internal-format *************** msgstr "" *** 17062,17211 **** msgid "location references block not in block tree" msgstr "" ! #: tree-cfg.c:4594 #, gcc-internal-format msgid "gimple_bb (phi) is set to a wrong basic block" msgstr "" ! #: tree-cfg.c:4603 #, fuzzy, gcc-internal-format - #| msgid "from this location" msgid "PHI node with location" msgstr "tästä kohdasta" ! #: tree-cfg.c:4614 tree-cfg.c:4663 #, gcc-internal-format msgid "incorrect sharing of tree nodes" msgstr "" ! #: tree-cfg.c:4622 #, gcc-internal-format msgid "virtual PHI with argument locations" msgstr "" ! #: tree-cfg.c:4651 #, gcc-internal-format msgid "gimple_bb (stmt) is set to a wrong basic block" ! msgstr "" ! #: tree-cfg.c:4687 #, gcc-internal-format msgid "in statement" msgstr "" ! #: tree-cfg.c:4702 #, gcc-internal-format msgid "statement marked for throw, but doesn%'t" msgstr "" ! #: tree-cfg.c:4709 #, gcc-internal-format msgid "statement marked for throw in middle of block" msgstr "" ! #: tree-cfg.c:4751 #, gcc-internal-format msgid "ENTRY_BLOCK has IL associated with it" msgstr "" ! #: tree-cfg.c:4757 #, gcc-internal-format msgid "EXIT_BLOCK has IL associated with it" msgstr "" ! #: tree-cfg.c:4764 #, gcc-internal-format, gfc-internal-format msgid "fallthru to exit from bb %d" msgstr "" ! #: tree-cfg.c:4788 #, gcc-internal-format msgid "nonlocal label " msgstr "ei-paikallinen nimiö " ! #: tree-cfg.c:4797 #, gcc-internal-format msgid "EH landing pad label " msgstr "" ! #: tree-cfg.c:4806 tree-cfg.c:4815 tree-cfg.c:4840 #, gcc-internal-format msgid "label " msgstr "nimiö " ! #: tree-cfg.c:4830 #, gcc-internal-format, gfc-internal-format msgid "control flow in the middle of basic block %d" msgstr "" ! #: tree-cfg.c:4863 #, gcc-internal-format, gfc-internal-format msgid "fallthru edge after a control statement in bb %d" msgstr "" ! #: tree-cfg.c:4876 #, gcc-internal-format, gfc-internal-format msgid "true/false edge after a non-GIMPLE_COND in bb %d" msgstr "" ! #: tree-cfg.c:4899 tree-cfg.c:4921 tree-cfg.c:4938 tree-cfg.c:5007 #, gcc-internal-format, gfc-internal-format msgid "wrong outgoing edge flags at end of bb %d" msgstr "" ! #: tree-cfg.c:4909 #, gcc-internal-format, gfc-internal-format msgid "explicit goto at end of bb %d" msgstr "" ! #: tree-cfg.c:4943 #, gcc-internal-format, gfc-internal-format msgid "return edge does not point to exit in bb %d" msgstr "" ! #: tree-cfg.c:4973 #, gcc-internal-format msgid "found default case not at the start of case vector" msgstr "" ! #: tree-cfg.c:4981 #, gcc-internal-format msgid "case labels not sorted: " msgstr "" ! #: tree-cfg.c:4998 #, gcc-internal-format, gfc-internal-format msgid "extra outgoing edge %d->%d" msgstr "" ! #: tree-cfg.c:5021 #, gcc-internal-format, gfc-internal-format msgid "missing edge %i->%i" msgstr "" ! #: tree-cfg.c:7803 ! #, fuzzy, gcc-internal-format msgid "% function does return" ! msgstr "%-funktio palauttaa ei-void-arvon" ! #: tree-cfg.c:7823 #, gcc-internal-format msgid "control reaches end of non-void function" msgstr "ei-void-tyyppisen funktion loppu saavutettu" ! #: tree-cfg.c:7963 #, gcc-internal-format msgid "ignoring return value of %qD, declared with attribute warn_unused_result" msgstr "%qD:n paluuarvoa ei huomioida, esitelty attribuutilla warn_unused_result" ! #: tree-cfg.c:7968 #, gcc-internal-format msgid "ignoring return value of function declared with attribute warn_unused_result" msgstr "attribuutilla warn_unused_result esitellyn funktion paluuarvoa ei huomioida" #: tree-diagnostic.c:202 #, fuzzy, gcc-internal-format - #| msgid "redefinition of %q+D" msgid "in definition of macro %qs" msgstr "%q+D määritelty uudelleen" --- 16892,17039 ---- msgid "location references block not in block tree" msgstr "" ! #: tree-cfg.c:4605 #, gcc-internal-format msgid "gimple_bb (phi) is set to a wrong basic block" msgstr "" ! #: tree-cfg.c:4614 #, fuzzy, gcc-internal-format msgid "PHI node with location" msgstr "tästä kohdasta" ! #: tree-cfg.c:4625 tree-cfg.c:4674 #, gcc-internal-format msgid "incorrect sharing of tree nodes" msgstr "" ! #: tree-cfg.c:4633 #, gcc-internal-format msgid "virtual PHI with argument locations" msgstr "" ! #: tree-cfg.c:4662 #, gcc-internal-format msgid "gimple_bb (stmt) is set to a wrong basic block" ! msgstr "gimple_bb (stmt) on asetettu väärään peruslohkoon" ! #: tree-cfg.c:4698 #, gcc-internal-format msgid "in statement" msgstr "" ! #: tree-cfg.c:4713 #, gcc-internal-format msgid "statement marked for throw, but doesn%'t" msgstr "" ! #: tree-cfg.c:4720 #, gcc-internal-format msgid "statement marked for throw in middle of block" msgstr "" ! #: tree-cfg.c:4762 #, gcc-internal-format msgid "ENTRY_BLOCK has IL associated with it" msgstr "" ! #: tree-cfg.c:4768 #, gcc-internal-format msgid "EXIT_BLOCK has IL associated with it" msgstr "" ! #: tree-cfg.c:4775 #, gcc-internal-format, gfc-internal-format msgid "fallthru to exit from bb %d" msgstr "" ! #: tree-cfg.c:4799 #, gcc-internal-format msgid "nonlocal label " msgstr "ei-paikallinen nimiö " ! #: tree-cfg.c:4808 #, gcc-internal-format msgid "EH landing pad label " msgstr "" ! #: tree-cfg.c:4817 tree-cfg.c:4826 tree-cfg.c:4851 #, gcc-internal-format msgid "label " msgstr "nimiö " ! #: tree-cfg.c:4841 #, gcc-internal-format, gfc-internal-format msgid "control flow in the middle of basic block %d" msgstr "" ! #: tree-cfg.c:4874 #, gcc-internal-format, gfc-internal-format msgid "fallthru edge after a control statement in bb %d" msgstr "" ! #: tree-cfg.c:4887 #, gcc-internal-format, gfc-internal-format msgid "true/false edge after a non-GIMPLE_COND in bb %d" msgstr "" ! #: tree-cfg.c:4910 tree-cfg.c:4932 tree-cfg.c:4949 tree-cfg.c:5018 #, gcc-internal-format, gfc-internal-format msgid "wrong outgoing edge flags at end of bb %d" msgstr "" ! #: tree-cfg.c:4920 #, gcc-internal-format, gfc-internal-format msgid "explicit goto at end of bb %d" msgstr "" ! #: tree-cfg.c:4954 #, gcc-internal-format, gfc-internal-format msgid "return edge does not point to exit in bb %d" msgstr "" ! #: tree-cfg.c:4984 #, gcc-internal-format msgid "found default case not at the start of case vector" msgstr "" ! #: tree-cfg.c:4992 #, gcc-internal-format msgid "case labels not sorted: " msgstr "" ! #: tree-cfg.c:5009 #, gcc-internal-format, gfc-internal-format msgid "extra outgoing edge %d->%d" msgstr "" ! #: tree-cfg.c:5032 #, gcc-internal-format, gfc-internal-format msgid "missing edge %i->%i" msgstr "" ! #: tree-cfg.c:7814 ! #, gcc-internal-format msgid "% function does return" ! msgstr "%-funktio palaa" ! #: tree-cfg.c:7834 #, gcc-internal-format msgid "control reaches end of non-void function" msgstr "ei-void-tyyppisen funktion loppu saavutettu" ! #: tree-cfg.c:7974 #, gcc-internal-format msgid "ignoring return value of %qD, declared with attribute warn_unused_result" msgstr "%qD:n paluuarvoa ei huomioida, esitelty attribuutilla warn_unused_result" ! #: tree-cfg.c:7979 #, gcc-internal-format msgid "ignoring return value of function declared with attribute warn_unused_result" msgstr "attribuutilla warn_unused_result esitellyn funktion paluuarvoa ei huomioida" #: tree-diagnostic.c:202 #, fuzzy, gcc-internal-format msgid "in definition of macro %qs" msgstr "%q+D määritelty uudelleen" *************** msgstr "%q+D määritelty uudelleen" *** 17214,17335 **** msgid "in expansion of macro %qs" msgstr "" ! #: tree-eh.c:4368 #, gcc-internal-format, gfc-internal-format msgid "BB %i has multiple EH edges" msgstr "" ! #: tree-eh.c:4380 #, gcc-internal-format, gfc-internal-format msgid "BB %i can not throw but has an EH edge" msgstr "" ! #: tree-eh.c:4388 #, gcc-internal-format, gfc-internal-format msgid "BB %i last statement has incorrectly set lp" msgstr "" ! #: tree-eh.c:4394 #, gcc-internal-format, gfc-internal-format msgid "BB %i is missing an EH edge" msgstr "" ! #: tree-eh.c:4400 #, gcc-internal-format, gfc-internal-format msgid "Incorrect EH edge %i->%i" msgstr "" ! #: tree-eh.c:4434 tree-eh.c:4453 #, gcc-internal-format, gfc-internal-format msgid "BB %i is missing an edge" msgstr "" ! #: tree-eh.c:4470 #, gcc-internal-format, gfc-internal-format msgid "BB %i too many fallthru edges" msgstr "" ! #: tree-eh.c:4479 #, gcc-internal-format, gfc-internal-format msgid "BB %i has incorrect edge" msgstr "" ! #: tree-eh.c:4485 #, gcc-internal-format, gfc-internal-format msgid "BB %i has incorrect fallthru edge" msgstr "" ! #: tree-inline.c:3012 #, gcc-internal-format msgid "function %q+F can never be copied because it receives a non-local goto" ! msgstr "funktiota %q+F ei voi koskaan kopioida, koska se vastaanottaa ei-paikallisen goton" ! #: tree-inline.c:3026 #, gcc-internal-format msgid "function %q+F can never be copied because it saves address of local label in a static variable" msgstr "funktiota %q+F ei voi koskaan kopioida, koska se tallentaa paikallisen nimiön osoitteen staattiseen muuttujaan" ! #: tree-inline.c:3066 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses alloca (override using the always_inline attribute)" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska se käyttää avoimille funktioille sopimattomia attribuutteja" ! #: tree-inline.c:3080 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses setjmp" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska ne on poistettu käytöstä -fno-inline:lla" ! #: tree-inline.c:3094 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses variable argument lists" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska se käyttää avoimille funktioille sopimattomia attribuutteja" ! #: tree-inline.c:3106 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses setjmp-longjmp exception handling" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska se käyttää avoimille funktioille sopimattomia attribuutteja" ! #: tree-inline.c:3114 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses non-local goto" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska ne on poistettu käytöstä -fno-inline:lla" ! #: tree-inline.c:3126 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses __builtin_return or __builtin_apply_args" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska se käyttää avoimille funktioille sopimattomia attribuutteja" ! #: tree-inline.c:3146 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it contains a computed goto" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska ne on poistettu käytöstä -fno-inline:lla" ! #: tree-inline.c:3249 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it is suppressed using -fno-inline" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska ne on poistettu käytöstä -fno-inline:lla" ! #: tree-inline.c:3257 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses attributes conflicting with inlining" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska se käyttää avoimille funktioille sopimattomia attribuutteja" ! #: tree-inline.c:3842 #, gcc-internal-format msgid "inlining failed in call to always_inline %q+F: %s" msgstr "" ! #: tree-inline.c:3844 tree-inline.c:3859 #, gcc-internal-format msgid "called from here" ! msgstr "" ! #: tree-inline.c:3857 #, gcc-internal-format msgid "inlining failed in call to %q+F: %s" msgstr "" ! #: tree-into-ssa.c:3209 tree-outof-ssa.c:774 tree-outof-ssa.c:831 #: tree-ssa-coalesce.c:934 tree-ssa-live.c:1282 #, gcc-internal-format msgid "SSA corruption" --- 17042,17163 ---- msgid "in expansion of macro %qs" msgstr "" ! #: tree-eh.c:4396 #, gcc-internal-format, gfc-internal-format msgid "BB %i has multiple EH edges" msgstr "" ! #: tree-eh.c:4408 #, gcc-internal-format, gfc-internal-format msgid "BB %i can not throw but has an EH edge" msgstr "" ! #: tree-eh.c:4416 #, gcc-internal-format, gfc-internal-format msgid "BB %i last statement has incorrectly set lp" msgstr "" ! #: tree-eh.c:4422 #, gcc-internal-format, gfc-internal-format msgid "BB %i is missing an EH edge" msgstr "" ! #: tree-eh.c:4428 #, gcc-internal-format, gfc-internal-format msgid "Incorrect EH edge %i->%i" msgstr "" ! #: tree-eh.c:4462 tree-eh.c:4481 #, gcc-internal-format, gfc-internal-format msgid "BB %i is missing an edge" msgstr "" ! #: tree-eh.c:4498 #, gcc-internal-format, gfc-internal-format msgid "BB %i too many fallthru edges" msgstr "" ! #: tree-eh.c:4507 #, gcc-internal-format, gfc-internal-format msgid "BB %i has incorrect edge" msgstr "" ! #: tree-eh.c:4513 #, gcc-internal-format, gfc-internal-format msgid "BB %i has incorrect fallthru edge" msgstr "" ! #: tree-inline.c:3022 #, gcc-internal-format msgid "function %q+F can never be copied because it receives a non-local goto" ! msgstr "funktiota %q+F ei voi koskaan kopioida, koska se vastaanottaa ei-paikallisen goto-käskyn" ! #: tree-inline.c:3036 #, gcc-internal-format msgid "function %q+F can never be copied because it saves address of local label in a static variable" msgstr "funktiota %q+F ei voi koskaan kopioida, koska se tallentaa paikallisen nimiön osoitteen staattiseen muuttujaan" ! #: tree-inline.c:3076 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses alloca (override using the always_inline attribute)" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska se käyttää avoimille funktioille sopimattomia attribuutteja" ! #: tree-inline.c:3090 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses setjmp" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska ne on poistettu käytöstä -fno-inline:lla" ! #: tree-inline.c:3104 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses variable argument lists" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska se käyttää avoimille funktioille sopimattomia attribuutteja" ! #: tree-inline.c:3116 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses setjmp-longjmp exception handling" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska se käyttää avoimille funktioille sopimattomia attribuutteja" ! #: tree-inline.c:3124 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses non-local goto" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska ne on poistettu käytöstä -fno-inline:lla" ! #: tree-inline.c:3136 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses __builtin_return or __builtin_apply_args" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska se käyttää avoimille funktioille sopimattomia attribuutteja" ! #: tree-inline.c:3156 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it contains a computed goto" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska ne on poistettu käytöstä -fno-inline:lla" ! #: tree-inline.c:3259 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it is suppressed using -fno-inline" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska ne on poistettu käytöstä -fno-inline:lla" ! #: tree-inline.c:3267 #, fuzzy, gcc-internal-format msgid "function %q+F can never be inlined because it uses attributes conflicting with inlining" msgstr "%Jfunktio %qF ei voi koskaan olla avoin, koska se käyttää avoimille funktioille sopimattomia attribuutteja" ! #: tree-inline.c:3852 #, gcc-internal-format msgid "inlining failed in call to always_inline %q+F: %s" msgstr "" ! #: tree-inline.c:3854 tree-inline.c:3869 #, gcc-internal-format msgid "called from here" ! msgstr "kutsuttu täältä" ! #: tree-inline.c:3867 #, gcc-internal-format msgid "inlining failed in call to %q+F: %s" msgstr "" ! #: tree-into-ssa.c:3226 tree-outof-ssa.c:774 tree-outof-ssa.c:831 #: tree-ssa-coalesce.c:934 tree-ssa-live.c:1282 #, gcc-internal-format msgid "SSA corruption" *************** msgstr "" *** 17360,17365 **** --- 17188,17203 ---- msgid "unimplemented functionality" msgstr "" + #: tree-ssa-loop-niter.c:2557 + #, fuzzy, gcc-internal-format + msgid "iteration %E invokes undefined behavior" + msgstr "operaatio %qE:lle voi olla määrittelemätön" + + #: tree-ssa-loop-niter.c:2559 + #, gcc-internal-format + msgid "containing loop" + msgstr "" + #: tree-ssa-operands.c:975 #, gcc-internal-format msgid "virtual definition of statement not up-to-date" *************** msgstr "" *** 17387,17393 **** #: tree-ssa-operands.c:1023 #, fuzzy, gcc-internal-format - #| msgid "assertion missing after %qs" msgid "use operand missing for stmt" msgstr "väittämä puuttuu %qs:n jälkeen" --- 17225,17230 ---- *************** msgstr "väittämä puuttuu %qs:n jälke *** 17396,17540 **** msgid "stmt volatile flag not up-to-date" msgstr "" ! #: tree-ssa-uninit.c:1943 tree-ssa.c:1668 #, gcc-internal-format msgid "%qD may be used uninitialized in this function" msgstr "" ! #: tree-ssa.c:625 #, gcc-internal-format msgid "expected an SSA_NAME object" msgstr "" ! #: tree-ssa.c:631 #, gcc-internal-format msgid "found an SSA_NAME that had been released into the free pool" msgstr "" ! #: tree-ssa.c:638 #, gcc-internal-format msgid "type mismatch between an SSA_NAME and its symbol" msgstr "" ! #: tree-ssa.c:644 #, gcc-internal-format msgid "found a virtual definition for a GIMPLE register" msgstr "löytyi virtuaalimäärittely GIMPLE-rekisterille" ! #: tree-ssa.c:650 #, gcc-internal-format msgid "virtual SSA name for non-VOP decl" msgstr "" ! #: tree-ssa.c:656 #, fuzzy, gcc-internal-format msgid "found a real definition for a non-register" msgstr "funktion määrittely esitelty %:ksi" ! #: tree-ssa.c:663 #, gcc-internal-format msgid "found a default name with a non-empty defining statement" msgstr "" ! #: tree-ssa.c:693 #, gcc-internal-format msgid "RESULT_DECL should be read only when DECL_BY_REFERENCE is set" msgstr "" ! #: tree-ssa.c:699 #, gcc-internal-format, gfc-internal-format msgid "SSA_NAME created in two different blocks %i and %i" msgstr "" ! #: tree-ssa.c:708 tree-ssa.c:1020 #, gcc-internal-format msgid "SSA_NAME_DEF_STMT is wrong" msgstr "" ! #: tree-ssa.c:760 #, gcc-internal-format msgid "missing definition" msgstr "puuttuva määrittely" ! #: tree-ssa.c:766 #, gcc-internal-format, gfc-internal-format msgid "definition in block %i does not dominate use in block %i" msgstr "" ! #: tree-ssa.c:774 #, gcc-internal-format, gfc-internal-format msgid "definition in block %i follows the use" msgstr "" ! #: tree-ssa.c:781 #, gcc-internal-format msgid "SSA_NAME_OCCURS_IN_ABNORMAL_PHI should be set" msgstr "" ! #: tree-ssa.c:789 #, gcc-internal-format msgid "no immediate_use list" msgstr "" ! #: tree-ssa.c:801 #, gcc-internal-format msgid "wrong immediate use list" msgstr "" ! #: tree-ssa.c:835 #, gcc-internal-format msgid "incoming edge count does not match number of PHI arguments" msgstr "" ! #: tree-ssa.c:849 #, gcc-internal-format, gfc-internal-format msgid "PHI argument is missing for edge %d->%d" msgstr "" ! #: tree-ssa.c:858 #, gcc-internal-format msgid "PHI argument is not SSA_NAME, or invariant" msgstr "" ! #: tree-ssa.c:886 #, gcc-internal-format, gfc-internal-format msgid "wrong edge %d->%d for PHI argument" msgstr "" ! #: tree-ssa.c:967 #, gcc-internal-format, gfc-internal-format msgid "AUX pointer initialized for edge %d->%d" msgstr "" ! #: tree-ssa.c:992 #, gcc-internal-format msgid "stmt (%p) marked modified after optimization pass: " msgstr "" ! #: tree-ssa.c:1049 #, gcc-internal-format msgid "verify_ssa failed" msgstr "" ! #: tree-ssa.c:1631 varasm.c:322 #, gcc-internal-format msgid "%qD was declared here" msgstr "%qD esiteltiin täällä" ! #: tree-ssa.c:1663 ! #, fuzzy, gcc-internal-format msgid "%qD is used uninitialized in this function" ! msgstr "%q+D on yleensä funktio" ! #: tree-ssa.c:1700 ! #, fuzzy, gcc-internal-format msgid "%qE is used uninitialized in this function" ! msgstr "%q+D on yleensä funktio" ! #: tree-ssa.c:1705 ! #, fuzzy, gcc-internal-format msgid "%qE may be used uninitialized in this function" ! msgstr "%q+D on yleensä funktio" #: tree-streamer-in.c:316 tree-streamer-in.c:1075 #, gcc-internal-format --- 17233,17377 ---- msgid "stmt volatile flag not up-to-date" msgstr "" ! #: tree-ssa-uninit.c:1946 tree-ssa.c:1665 #, gcc-internal-format msgid "%qD may be used uninitialized in this function" msgstr "" ! #: tree-ssa.c:622 #, gcc-internal-format msgid "expected an SSA_NAME object" msgstr "" ! #: tree-ssa.c:628 #, gcc-internal-format msgid "found an SSA_NAME that had been released into the free pool" msgstr "" ! #: tree-ssa.c:635 #, gcc-internal-format msgid "type mismatch between an SSA_NAME and its symbol" msgstr "" ! #: tree-ssa.c:641 #, gcc-internal-format msgid "found a virtual definition for a GIMPLE register" msgstr "löytyi virtuaalimäärittely GIMPLE-rekisterille" ! #: tree-ssa.c:647 #, gcc-internal-format msgid "virtual SSA name for non-VOP decl" msgstr "" ! #: tree-ssa.c:653 #, fuzzy, gcc-internal-format msgid "found a real definition for a non-register" msgstr "funktion määrittely esitelty %:ksi" ! #: tree-ssa.c:660 #, gcc-internal-format msgid "found a default name with a non-empty defining statement" msgstr "" ! #: tree-ssa.c:690 #, gcc-internal-format msgid "RESULT_DECL should be read only when DECL_BY_REFERENCE is set" msgstr "" ! #: tree-ssa.c:696 #, gcc-internal-format, gfc-internal-format msgid "SSA_NAME created in two different blocks %i and %i" msgstr "" ! #: tree-ssa.c:705 tree-ssa.c:1017 #, gcc-internal-format msgid "SSA_NAME_DEF_STMT is wrong" msgstr "" ! #: tree-ssa.c:757 #, gcc-internal-format msgid "missing definition" msgstr "puuttuva määrittely" ! #: tree-ssa.c:763 #, gcc-internal-format, gfc-internal-format msgid "definition in block %i does not dominate use in block %i" msgstr "" ! #: tree-ssa.c:771 #, gcc-internal-format, gfc-internal-format msgid "definition in block %i follows the use" msgstr "" ! #: tree-ssa.c:778 #, gcc-internal-format msgid "SSA_NAME_OCCURS_IN_ABNORMAL_PHI should be set" msgstr "" ! #: tree-ssa.c:786 #, gcc-internal-format msgid "no immediate_use list" msgstr "" ! #: tree-ssa.c:798 #, gcc-internal-format msgid "wrong immediate use list" msgstr "" ! #: tree-ssa.c:832 #, gcc-internal-format msgid "incoming edge count does not match number of PHI arguments" msgstr "" ! #: tree-ssa.c:846 #, gcc-internal-format, gfc-internal-format msgid "PHI argument is missing for edge %d->%d" msgstr "" ! #: tree-ssa.c:855 #, gcc-internal-format msgid "PHI argument is not SSA_NAME, or invariant" msgstr "" ! #: tree-ssa.c:883 #, gcc-internal-format, gfc-internal-format msgid "wrong edge %d->%d for PHI argument" msgstr "" ! #: tree-ssa.c:964 #, gcc-internal-format, gfc-internal-format msgid "AUX pointer initialized for edge %d->%d" msgstr "" ! #: tree-ssa.c:989 #, gcc-internal-format msgid "stmt (%p) marked modified after optimization pass: " msgstr "" ! #: tree-ssa.c:1046 #, gcc-internal-format msgid "verify_ssa failed" msgstr "" ! #: tree-ssa.c:1628 varasm.c:321 #, gcc-internal-format msgid "%qD was declared here" msgstr "%qD esiteltiin täällä" ! #: tree-ssa.c:1660 ! #, gcc-internal-format msgid "%qD is used uninitialized in this function" ! msgstr "%qD:a käytetään alustamattomana tässä funktiossa" ! #: tree-ssa.c:1697 ! #, gcc-internal-format msgid "%qE is used uninitialized in this function" ! msgstr "%qE:a käytetään alustamattomana tässä funktiossa" ! #: tree-ssa.c:1702 ! #, gcc-internal-format msgid "%qE may be used uninitialized in this function" ! msgstr "%qE:a saatetaan käyttää alustamattomana tässä funktiossa" #: tree-streamer-in.c:316 tree-streamer-in.c:1075 #, gcc-internal-format *************** msgid "vector shuffling operation will b *** 17587,17605 **** msgstr "" #: tree-vrp.c:6015 ! #, fuzzy, gcc-internal-format msgid "array subscript is outside array bounds" ! msgstr "taulukon indeksi ei ole kokonaisluku" #: tree-vrp.c:6033 tree-vrp.c:6134 ! #, fuzzy, gcc-internal-format msgid "array subscript is above array bounds" ! msgstr "taulukon indeksi ei ole kokonaisluku" #: tree-vrp.c:6046 tree-vrp.c:6120 ! #, fuzzy, gcc-internal-format msgid "array subscript is below array bounds" ! msgstr "taulukon indeksi ei ole kokonaisluku" #: tree-vrp.c:6765 #, gcc-internal-format --- 17424,17442 ---- msgstr "" #: tree-vrp.c:6015 ! #, gcc-internal-format msgid "array subscript is outside array bounds" ! msgstr "taulukon indeksi on taulukkorajojen ulkopuolella" #: tree-vrp.c:6033 tree-vrp.c:6134 ! #, gcc-internal-format msgid "array subscript is above array bounds" ! msgstr "taulukon indeksi on taulukkorajojen yläpuolella" #: tree-vrp.c:6046 tree-vrp.c:6120 ! #, gcc-internal-format msgid "array subscript is below array bounds" ! msgstr "taulukon indeksi on taulukkorajojen alapuolella" #: tree-vrp.c:6765 #, gcc-internal-format *************** msgstr "" *** 17651,17674 **** msgid "%q+D redeclared without dllimport attribute: previous dllimport ignored" msgstr "" ! #: tree.c:5610 tree.c:5622 tree.c:5632 c-family/c-common.c:6380 ! #: c-family/c-common.c:6399 c-family/c-common.c:6417 c-family/c-common.c:6445 ! #: c-family/c-common.c:6473 c-family/c-common.c:6501 c-family/c-common.c:6517 ! #: c-family/c-common.c:6536 c-family/c-common.c:6553 c-family/c-common.c:6577 ! #: c-family/c-common.c:6600 c-family/c-common.c:6617 c-family/c-common.c:6645 ! #: c-family/c-common.c:6666 c-family/c-common.c:6687 c-family/c-common.c:6714 ! #: c-family/c-common.c:6745 c-family/c-common.c:6782 c-family/c-common.c:6809 ! #: c-family/c-common.c:6869 c-family/c-common.c:6954 c-family/c-common.c:6984 ! #: c-family/c-common.c:7038 c-family/c-common.c:7496 c-family/c-common.c:7514 ! #: c-family/c-common.c:7576 c-family/c-common.c:7619 c-family/c-common.c:7690 ! #: c-family/c-common.c:7818 c-family/c-common.c:7886 c-family/c-common.c:7944 ! #: c-family/c-common.c:7992 c-family/c-common.c:8155 c-family/c-common.c:8176 ! #: c-family/c-common.c:8288 c-family/c-common.c:8312 c-family/c-common.c:8619 ! #: c-family/c-common.c:8642 c-family/c-common.c:8681 c-family/c-common.c:8759 ! #: c-family/c-common.c:8906 config/darwin.c:1997 config/arm/arm.c:5119 ! #: config/arm/arm.c:5147 config/arm/arm.c:5164 config/avr/avr.c:7789 ! #: config/h8300/h8300.c:5463 config/h8300/h8300.c:5487 config/i386/i386.c:4965 ! #: config/i386/i386.c:34737 config/ia64/ia64.c:737 #: config/rs6000/rs6000.c:24907 config/spu/spu.c:3743 #: ada/gcc-interface/utils.c:6189 lto/lto-lang.c:222 #, gcc-internal-format --- 17488,17511 ---- msgid "%q+D redeclared without dllimport attribute: previous dllimport ignored" msgstr "" ! #: tree.c:5610 tree.c:5622 tree.c:5632 c-family/c-common.c:6385 ! #: c-family/c-common.c:6404 c-family/c-common.c:6422 c-family/c-common.c:6450 ! #: c-family/c-common.c:6478 c-family/c-common.c:6506 c-family/c-common.c:6522 ! #: c-family/c-common.c:6537 c-family/c-common.c:6558 c-family/c-common.c:6575 ! #: c-family/c-common.c:6599 c-family/c-common.c:6622 c-family/c-common.c:6639 ! #: c-family/c-common.c:6667 c-family/c-common.c:6688 c-family/c-common.c:6709 ! #: c-family/c-common.c:6736 c-family/c-common.c:6767 c-family/c-common.c:6804 ! #: c-family/c-common.c:6831 c-family/c-common.c:6891 c-family/c-common.c:6976 ! #: c-family/c-common.c:7006 c-family/c-common.c:7060 c-family/c-common.c:7518 ! #: c-family/c-common.c:7536 c-family/c-common.c:7598 c-family/c-common.c:7641 ! #: c-family/c-common.c:7712 c-family/c-common.c:7840 c-family/c-common.c:7908 ! #: c-family/c-common.c:7966 c-family/c-common.c:8014 c-family/c-common.c:8177 ! #: c-family/c-common.c:8198 c-family/c-common.c:8310 c-family/c-common.c:8334 ! #: c-family/c-common.c:8641 c-family/c-common.c:8664 c-family/c-common.c:8703 ! #: c-family/c-common.c:8781 c-family/c-common.c:8928 config/darwin.c:1997 ! #: config/arm/arm.c:5119 config/arm/arm.c:5147 config/arm/arm.c:5164 ! #: config/avr/avr.c:7789 config/h8300/h8300.c:5463 config/h8300/h8300.c:5487 ! #: config/i386/i386.c:4965 config/i386/i386.c:34737 config/ia64/ia64.c:737 #: config/rs6000/rs6000.c:24907 config/spu/spu.c:3743 #: ada/gcc-interface/utils.c:6189 lto/lto-lang.c:222 #, gcc-internal-format *************** msgid "inline function %q+D declared as *** 17681,17689 **** msgstr "%Javoimelle funktiolle %qD annettu attribuutti noinline" #: tree.c:5658 ! #, fuzzy, gcc-internal-format msgid "function %q+D definition is marked dllimport" ! msgstr "funktion määrittely esitelty %:ksi" #: tree.c:5666 #, gcc-internal-format --- 17518,17526 ---- msgstr "%Javoimelle funktiolle %qD annettu attribuutti noinline" #: tree.c:5658 ! #, gcc-internal-format msgid "function %q+D definition is marked dllimport" ! msgstr "funktion %q+D määrittely on merkitty dllimport-tyyppiseksi" #: tree.c:5666 #, gcc-internal-format *************** msgid "external linkage required for sym *** 17696,17704 **** msgstr "" #: tree.c:5708 ! #, fuzzy, gcc-internal-format msgid "%qE implies default visibility, but %qD has already been declared with a different visibility" ! msgstr "%J%qD esitelty uudelleen erityyppisenä symbolina" #: tree.c:7482 #, gcc-internal-format --- 17533,17541 ---- msgstr "" #: tree.c:5708 ! #, gcc-internal-format msgid "%qE implies default visibility, but %qD has already been declared with a different visibility" ! msgstr "%qE edellyttää oletusnäkyvyyttä, mutta %qD on jo esitelty eri näkyvyydellä" #: tree.c:7482 #, gcc-internal-format *************** msgid "tree check: accessed operand %d o *** 17756,17809 **** msgstr "" #: tree.c:11557 ! #, fuzzy, gcc-internal-format msgid "%qD is deprecated (declared at %s:%d): %s" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: tree.c:11561 ! #, fuzzy, gcc-internal-format msgid "%qD is deprecated (declared at %s:%d)" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: tree.c:11586 ! #, fuzzy, gcc-internal-format msgid "%qE is deprecated (declared at %s:%d): %s" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: tree.c:11590 ! #, fuzzy, gcc-internal-format msgid "%qE is deprecated (declared at %s:%d)" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: tree.c:11597 ! #, fuzzy, gcc-internal-format, gfc-internal-format msgid "type is deprecated (declared at %s:%d): %s" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: tree.c:11601 #, gcc-internal-format, gfc-internal-format msgid "type is deprecated (declared at %s:%d)" ! msgstr "" #: tree.c:11610 ! #, fuzzy, gcc-internal-format msgid "%qE is deprecated: %s" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: tree.c:11613 ! #, fuzzy, gcc-internal-format msgid "%qE is deprecated" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: tree.c:11618 #, gcc-internal-format, gfc-internal-format msgid "type is deprecated: %s" ! msgstr "" #: tree.c:11621 #, gcc-internal-format msgid "type is deprecated" ! msgstr "" #: value-prof.c:408 #, gcc-internal-format --- 17593,17646 ---- msgstr "" #: tree.c:11557 ! #, gcc-internal-format msgid "%qD is deprecated (declared at %s:%d): %s" ! msgstr "%qD on vanhentunut (esitelty kohdassa %s:%d): %s" #: tree.c:11561 ! #, gcc-internal-format msgid "%qD is deprecated (declared at %s:%d)" ! msgstr "%qD on vanhentunut (esitelty kohdassa %s:%d)" #: tree.c:11586 ! #, gcc-internal-format msgid "%qE is deprecated (declared at %s:%d): %s" ! msgstr "%qE on vanhentunut (esitelty kohdassa %s:%d): %s" #: tree.c:11590 ! #, gcc-internal-format msgid "%qE is deprecated (declared at %s:%d)" ! msgstr "%qE on vanhentunut (esitelty kohdassa %s:%d)" #: tree.c:11597 ! #, gcc-internal-format, gfc-internal-format msgid "type is deprecated (declared at %s:%d): %s" ! msgstr "tyyppi on vanhentunut (esitelty kohdassa %s:%d): %s" #: tree.c:11601 #, gcc-internal-format, gfc-internal-format msgid "type is deprecated (declared at %s:%d)" ! msgstr "tyyppi on vanhentunut (esitelty kohdassa %s:%d)" #: tree.c:11610 ! #, gcc-internal-format msgid "%qE is deprecated: %s" ! msgstr "%qE on vanhentunut: %s" #: tree.c:11613 ! #, gcc-internal-format msgid "%qE is deprecated" ! msgstr "%qE on vanhentunut" #: tree.c:11618 #, gcc-internal-format, gfc-internal-format msgid "type is deprecated: %s" ! msgstr "tyyppi on vanhentunut: %s" #: tree.c:11621 #, gcc-internal-format msgid "type is deprecated" ! msgstr "tyyppi on vanhentunut" #: value-prof.c:408 #, gcc-internal-format *************** msgstr "" *** 17850,17994 **** msgid "variable tracking size limit exceeded" msgstr "" ! #: varasm.c:315 #, gcc-internal-format msgid "%+D causes a section type conflict" msgstr "" ! #: varasm.c:318 #, gcc-internal-format msgid "%+D causes a section type conflict with %D" msgstr "" ! #: varasm.c:960 #, gcc-internal-format msgid "alignment of %q+D is greater than maximum object file alignment. Using %d" msgstr "" ! #: varasm.c:1200 varasm.c:1209 #, fuzzy, gcc-internal-format msgid "register name not specified for %q+D" ! msgstr "%Jtasausta ei voi määrittää %qD:lle" ! #: varasm.c:1211 #, fuzzy, gcc-internal-format msgid "invalid register name for %q+D" msgstr "epäkelpo osoitintila %qs" ! #: varasm.c:1213 #, gcc-internal-format msgid "data type of %q+D isn%'t suitable for a register" msgstr "" ! #: varasm.c:1216 #, gcc-internal-format msgid "the register specified for %q+D cannot be accessed by the current target" msgstr "" ! #: varasm.c:1219 #, gcc-internal-format msgid "the register specified for %q+D is not general enough to be used as a register variable" msgstr "" ! #: varasm.c:1222 #, gcc-internal-format msgid "register specified for %q+D isn%'t suitable for data type" msgstr "" ! #: varasm.c:1232 #, gcc-internal-format msgid "global register variable has initial value" msgstr "" ! #: varasm.c:1236 #, gcc-internal-format msgid "optimization may eliminate reads and/or writes to register variables" msgstr "" ! #: varasm.c:1274 #, gcc-internal-format msgid "register name given for non-register variable %q+D" msgstr "" ! #: varasm.c:1820 #, gcc-internal-format msgid "thread-local COMMON data not implemented" msgstr "" ! #: varasm.c:1852 #, gcc-internal-format msgid "requested alignment for %q+D is greater than implemented alignment of %wu" msgstr "" ! #: varasm.c:1940 c/c-decl.c:4353 ! #, fuzzy, gcc-internal-format msgid "storage size of %q+D isn%'t known" ! msgstr "%Jmuuttujan %qD koko muistissa ei ole tunnettu" ! #: varasm.c:4605 #, gcc-internal-format msgid "initializer for integer/fixed-point value is too complicated" msgstr "" ! #: varasm.c:4610 #, gcc-internal-format msgid "initializer for floating value is not a floating constant" ! msgstr "" ! #: varasm.c:4918 ! #, fuzzy, gcc-internal-format msgid "invalid initial value for member %qE" ! msgstr "alustamaton const-jäsen %qD" ! #: varasm.c:5270 #, fuzzy, gcc-internal-format msgid "weak declaration of %q+D must be public" msgstr "%J%qD esitelty uudelleen ilman linkitystä" ! #: varasm.c:5272 #, fuzzy, gcc-internal-format msgid "weak declaration of %q+D not supported" msgstr "%J%qD:n esittely varjostaa parametria" ! #: varasm.c:5301 varasm.c:5598 #, gcc-internal-format msgid "only weak aliases are supported in this configuration" msgstr "" ! #: varasm.c:5490 #, gcc-internal-format msgid "weakref is not supported in this configuration" msgstr "weakref ei ole tuettu tässä konfiguraatiossa" ! #: varasm.c:5513 varasm.c:5595 #, fuzzy, gcc-internal-format - #| msgid "weakref is not supported in this configuration" msgid "ifunc is not supported in this configuration" msgstr "weakref ei ole tuettu tässä konfiguraatiossa" ! #: varasm.c:5572 #, gcc-internal-format msgid "weakref %q+D ultimately targets itself" msgstr "" ! #: varasm.c:5581 #, gcc-internal-format msgid "weakref %q+D must have static linkage" msgstr "" ! #: varasm.c:5588 #, fuzzy, gcc-internal-format msgid "alias definitions not supported in this configuration" msgstr "#pragma redefine_extname ei ole tuettu tällä kohteella" ! #: varasm.c:5807 config/sol2.c:155 config/i386/winnt.c:254 #, gcc-internal-format msgid "visibility attribute not supported in this configuration; ignored" msgstr "" #: varpool.c:240 #, fuzzy, gcc-internal-format - #| msgid "variable %qD has function type" msgid "variable %q+D part of alias cycle" msgstr "muuttujalla %qD on funktiotyyppi" --- 17687,17829 ---- msgid "variable tracking size limit exceeded" msgstr "" ! #: varasm.c:314 #, gcc-internal-format msgid "%+D causes a section type conflict" msgstr "" ! #: varasm.c:317 #, gcc-internal-format msgid "%+D causes a section type conflict with %D" msgstr "" ! #: varasm.c:959 #, gcc-internal-format msgid "alignment of %q+D is greater than maximum object file alignment. Using %d" msgstr "" ! #: varasm.c:1198 varasm.c:1207 #, fuzzy, gcc-internal-format msgid "register name not specified for %q+D" ! msgstr "%Jkohdistusta ei voi määrittää %qD:lle" ! #: varasm.c:1209 #, fuzzy, gcc-internal-format msgid "invalid register name for %q+D" msgstr "epäkelpo osoitintila %qs" ! #: varasm.c:1211 #, gcc-internal-format msgid "data type of %q+D isn%'t suitable for a register" msgstr "" ! #: varasm.c:1214 #, gcc-internal-format msgid "the register specified for %q+D cannot be accessed by the current target" msgstr "" ! #: varasm.c:1217 #, gcc-internal-format msgid "the register specified for %q+D is not general enough to be used as a register variable" msgstr "" ! #: varasm.c:1220 #, gcc-internal-format msgid "register specified for %q+D isn%'t suitable for data type" msgstr "" ! #: varasm.c:1230 #, gcc-internal-format msgid "global register variable has initial value" msgstr "" ! #: varasm.c:1234 #, gcc-internal-format msgid "optimization may eliminate reads and/or writes to register variables" msgstr "" ! #: varasm.c:1272 #, gcc-internal-format msgid "register name given for non-register variable %q+D" msgstr "" ! #: varasm.c:1818 #, gcc-internal-format msgid "thread-local COMMON data not implemented" msgstr "" ! #: varasm.c:1850 #, gcc-internal-format msgid "requested alignment for %q+D is greater than implemented alignment of %wu" msgstr "" ! #: varasm.c:1938 c/c-decl.c:4353 ! #, gcc-internal-format msgid "storage size of %q+D isn%'t known" ! msgstr "muuttujan %q+D koko muistissa ei ole tunnettu" ! #: varasm.c:4590 #, gcc-internal-format msgid "initializer for integer/fixed-point value is too complicated" msgstr "" ! #: varasm.c:4595 #, gcc-internal-format msgid "initializer for floating value is not a floating constant" ! msgstr "alustin liukulukuarvolle ei ole liukulukuvakio" ! #: varasm.c:4903 ! #, gcc-internal-format msgid "invalid initial value for member %qE" ! msgstr "virheellinen alkuarvo jäsenelle %qE" ! #: varasm.c:5255 #, fuzzy, gcc-internal-format msgid "weak declaration of %q+D must be public" msgstr "%J%qD esitelty uudelleen ilman linkitystä" ! #: varasm.c:5257 #, fuzzy, gcc-internal-format msgid "weak declaration of %q+D not supported" msgstr "%J%qD:n esittely varjostaa parametria" ! #: varasm.c:5286 varasm.c:5583 #, gcc-internal-format msgid "only weak aliases are supported in this configuration" msgstr "" ! #: varasm.c:5475 #, gcc-internal-format msgid "weakref is not supported in this configuration" msgstr "weakref ei ole tuettu tässä konfiguraatiossa" ! #: varasm.c:5498 varasm.c:5580 #, fuzzy, gcc-internal-format msgid "ifunc is not supported in this configuration" msgstr "weakref ei ole tuettu tässä konfiguraatiossa" ! #: varasm.c:5557 #, gcc-internal-format msgid "weakref %q+D ultimately targets itself" msgstr "" ! #: varasm.c:5566 #, gcc-internal-format msgid "weakref %q+D must have static linkage" msgstr "" ! #: varasm.c:5573 #, fuzzy, gcc-internal-format msgid "alias definitions not supported in this configuration" msgstr "#pragma redefine_extname ei ole tuettu tällä kohteella" ! #: varasm.c:5792 config/sol2.c:155 config/i386/winnt.c:254 #, gcc-internal-format msgid "visibility attribute not supported in this configuration; ignored" msgstr "" #: varpool.c:240 #, fuzzy, gcc-internal-format msgid "variable %q+D part of alias cycle" msgstr "muuttujalla %qD on funktiotyyppi" *************** msgstr "" *** 18008,19348 **** msgid "bytecode stream: tag %s is not in the expected range [%s, %s]" msgstr "" ! #: c-family/c-common.c:911 #, gcc-internal-format msgid "%qD is not defined outside of function scope" msgstr "%qD ei ole määritelty funktion näkyvyysalueen ulkopuolella" ! #: c-family/c-common.c:961 #, gcc-internal-format msgid "string length %qd is greater than the length %qd ISO C%d compilers are required to support" msgstr "merkkijonon pituudeksi annettu %1$qd merkkiä on suurempi kuin ISO C%3$d -kääntäjiltä vaadittu %2$qd merkkiä" ! #: c-family/c-common.c:1280 c/c-typeck.c:9864 cp/typeck.c:4158 #, gcc-internal-format msgid "left shift count is negative" ! msgstr "" ! #: c-family/c-common.c:1281 c/c-typeck.c:9812 cp/typeck.c:4112 #, gcc-internal-format msgid "right shift count is negative" ! msgstr "" ! #: c-family/c-common.c:1286 c/c-typeck.c:9871 cp/typeck.c:4165 #, gcc-internal-format msgid "left shift count >= width of type" ! msgstr "" ! #: c-family/c-common.c:1287 c/c-typeck.c:9823 cp/typeck.c:4119 #, gcc-internal-format msgid "right shift count >= width of type" ! msgstr "" ! #: c-family/c-common.c:1508 c-family/c-common.c:1520 cp/semantics.c:6865 #, gcc-internal-format msgid "overflow in constant expression" msgstr "ylivuoto vakiolausekkeessa" ! #: c-family/c-common.c:1543 #, gcc-internal-format msgid "integer overflow in expression" msgstr "kokonaislukuylivuoto lausekkeessa" ! #: c-family/c-common.c:1548 #, gcc-internal-format msgid "floating point overflow in expression" msgstr "liukulukuylivuoto lausekkeessa" ! #: c-family/c-common.c:1552 #, fuzzy, gcc-internal-format msgid "fixed-point overflow in expression" msgstr "liukulukuylivuoto lausekkeessa" ! #: c-family/c-common.c:1556 #, gcc-internal-format msgid "vector overflow in expression" msgstr "vektoriylivuoto lausekkeessa" ! #: c-family/c-common.c:1562 #, gcc-internal-format msgid "complex integer overflow in expression" msgstr "kompleksikokonaislukuylivuoto lausekkeessa" ! #: c-family/c-common.c:1565 #, gcc-internal-format msgid "complex floating point overflow in expression" msgstr "kompleksiliukulukuylivuoto lausekkeessa" ! #: c-family/c-common.c:1608 #, gcc-internal-format msgid "logical % applied to non-boolean constant" msgstr "" ! #: c-family/c-common.c:1611 #, gcc-internal-format msgid "logical % applied to non-boolean constant" msgstr "" ! #: c-family/c-common.c:1675 #, gcc-internal-format msgid "logical % of collectively exhaustive tests is always true" msgstr "" ! #: c-family/c-common.c:1679 #, gcc-internal-format msgid "logical % of mutually exclusive tests is always false" msgstr "" ! #: c-family/c-common.c:1811 #, gcc-internal-format msgid "type-punning to incomplete type might break strict-aliasing rules" msgstr "" ! #: c-family/c-common.c:1826 #, gcc-internal-format msgid "dereferencing type-punned pointer will break strict-aliasing rules" msgstr "" ! #: c-family/c-common.c:1833 c-family/c-common.c:1851 #, gcc-internal-format msgid "dereferencing type-punned pointer might break strict-aliasing rules" msgstr "" ! #: c-family/c-common.c:1985 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the destination; did you mean to remove the addressof?" msgstr "" ! #: c-family/c-common.c:1992 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the destination; did you mean to provide an explicit length?" msgstr "" ! #: c-family/c-common.c:1997 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the destination; did you mean to dereference it?" msgstr "" ! #: c-family/c-common.c:2009 #, gcc-internal-format msgid "argument to % in %qD call is the same pointer type %qT as the destination; expected %qT or an explicit length" msgstr "" ! #: c-family/c-common.c:2025 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the source; did you mean to remove the addressof?" msgstr "" ! #: c-family/c-common.c:2032 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the source; did you mean to provide an explicit length?" msgstr "" ! #: c-family/c-common.c:2037 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the source; did you mean to dereference it?" msgstr "" ! #: c-family/c-common.c:2049 #, gcc-internal-format msgid "argument to % in %qD call is the same pointer type %qT as the source; expected %qT or an explicit length" msgstr "" ! #: c-family/c-common.c:2065 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the first source; did you mean to remove the addressof?" msgstr "" ! #: c-family/c-common.c:2072 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the first source; did you mean to provide an explicit length?" msgstr "" ! #: c-family/c-common.c:2077 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the first source; did you mean to dereference it?" msgstr "" ! #: c-family/c-common.c:2089 #, gcc-internal-format msgid "argument to % in %qD call is the same pointer type %qT as the first source; expected %qT or an explicit length" msgstr "" ! #: c-family/c-common.c:2105 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the second source; did you mean to remove the addressof?" msgstr "" ! #: c-family/c-common.c:2112 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the second source; did you mean to provide an explicit length?" msgstr "" ! #: c-family/c-common.c:2117 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the second source; did you mean to dereference it?" msgstr "" ! #: c-family/c-common.c:2129 #, gcc-internal-format msgid "argument to % in %qD call is the same pointer type %qT as the second source; expected %qT or an explicit length" msgstr "" ! #: c-family/c-common.c:2161 #, gcc-internal-format msgid "first argument of %q+D should be %" msgstr "%q+D:n ensimmäisen argumentin pitäisi olla %" ! #: c-family/c-common.c:2170 #, gcc-internal-format msgid "second argument of %q+D should be %" msgstr "%q+D:n toisen argumentin pitäisi olla %" ! #: c-family/c-common.c:2179 #, gcc-internal-format msgid "third argument of %q+D should probably be %" msgstr "%q+D:n kolmannen argumentin pitäisi todennäköisesti olla %" ! #: c-family/c-common.c:2190 ! #, fuzzy, gcc-internal-format msgid "%q+D takes only zero or two arguments" ! msgstr "%J%qD sallii vain nolla tai kaksi argumenttia" ! #: c-family/c-common.c:2239 #, gcc-internal-format msgid "use -flax-vector-conversions to permit conversions between vectors with differing element types or numbers of subparts" msgstr "" ! #: c-family/c-common.c:2278 #, fuzzy, gcc-internal-format msgid "__builtin_shuffle last argument must be an integer vector" msgstr "puhdistusargumentti ei ole tunniste" ! #: c-family/c-common.c:2286 #, fuzzy, gcc-internal-format - #| msgid "%<__builtin_longjmp%> second argument must be 1" msgid "__builtin_shuffle arguments must be vectors" msgstr "%<__builtin_longjmp%>-fuktion toisen argumentin pitää olla 1" ! #: c-family/c-common.c:2292 #, gcc-internal-format msgid "__builtin_shuffle argument vectors must be of the same type" msgstr "" ! #: c-family/c-common.c:2302 #, gcc-internal-format msgid "__builtin_shuffle number of elements of the argument vector(s) and the mask vector should be the same" msgstr "" ! #: c-family/c-common.c:2311 #, gcc-internal-format msgid "__builtin_shuffle argument vector(s) inner type must have the same size as inner type of the mask" msgstr "" ! #: c-family/c-common.c:2505 #, gcc-internal-format msgid "negative integer implicitly converted to unsigned type" msgstr "negatiivinen kokonaisluku muunnettu implisiittisesti etumerkittömään tyyppiin" ! #: c-family/c-common.c:2511 #, gcc-internal-format msgid "conversion of unsigned constant value to negative integer" msgstr "etumerkittömän vakion muunnos negatiiviseksi kokonaisluvuksi" ! #: c-family/c-common.c:2605 #, gcc-internal-format msgid "conversion to %qT from %qT may change the sign of the result" msgstr "" ! #: c-family/c-common.c:2674 ! #, fuzzy, gcc-internal-format msgid "conversion to %qT from boolean expression" ! msgstr "muunnos tyypistä %2$qT tyypiksi %1$qT" ! #: c-family/c-common.c:2681 ! #, fuzzy, gcc-internal-format msgid "conversion to %qT alters %qT constant value" ! msgstr "muunnos tyypistä %2$qT tyypiksi %1$qT" ! #: c-family/c-common.c:2700 ! #, fuzzy, gcc-internal-format msgid "conversion to %qT from %qT may alter its value" ! msgstr "muunnos tyypistä %2$qT tyypiksi %1$qT" ! #: c-family/c-common.c:2730 #, gcc-internal-format msgid "large integer implicitly truncated to unsigned type" msgstr "suuri kokonaisluku implisiittisesti katkaistu etumerkittömäksi tyypiksi" ! #: c-family/c-common.c:2736 c-family/c-common.c:2743 c-family/c-common.c:2751 #, gcc-internal-format msgid "overflow in implicit constant conversion" msgstr "ylivuoto implisiittisessä vakiomuunnoksessa" ! #: c-family/c-common.c:2923 #, gcc-internal-format msgid "operation on %qE may be undefined" msgstr "operaatio %qE:lle voi olla määrittelemätön" ! #: c-family/c-common.c:3234 #, gcc-internal-format msgid "case label does not reduce to an integer constant" msgstr "case-nimike ei pelkisty kokonaislukuvakioksi" ! #: c-family/c-common.c:3274 #, gcc-internal-format msgid "case label value is less than minimum value for type" msgstr "case-nimikkeen arvo on pienempi kuin tyypin minimiarvo" ! #: c-family/c-common.c:3282 #, gcc-internal-format msgid "case label value exceeds maximum value for type" msgstr "case-nimikkeen arvo ylittää tyypin maksimiarvon" ! #: c-family/c-common.c:3290 #, gcc-internal-format msgid "lower value in case label range less than minimum value for type" msgstr "case-nimikkeen alarajan arvo on pienempi kuin tyypin minimiarvo" ! #: c-family/c-common.c:3299 #, gcc-internal-format msgid "upper value in case label range exceeds maximum value for type" msgstr "case-nimikkeen ylärajan arvo ylittää tyypin maksimiarvon" ! #: c-family/c-common.c:3378 #, gcc-internal-format msgid "GCC cannot support operators with integer types and fixed-point types that have too many integral and fractional bits together" msgstr "" ! #: c-family/c-common.c:3881 #, fuzzy, gcc-internal-format msgid "invalid operands to binary %s (have %qT and %qT)" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: c-family/c-common.c:4142 #, gcc-internal-format msgid "comparison is always false due to limited range of data type" msgstr "vertailu on aina epätosi johtuen tietotyypin rajallisesta arvoalueesta" ! #: c-family/c-common.c:4145 #, gcc-internal-format msgid "comparison is always true due to limited range of data type" msgstr "vertailu on aina tosi johtuen tietotyypin rajallisesta arvoalueesta" ! #: c-family/c-common.c:4230 #, gcc-internal-format msgid "comparison of unsigned expression >= 0 is always true" msgstr "vertailu â€etumerkitön lauseke >= 0†on aina tosi" ! #: c-family/c-common.c:4237 #, gcc-internal-format msgid "comparison of unsigned expression < 0 is always false" msgstr "vertailu â€etumerkitön lauseke < 0†on aina epätosi" ! #: c-family/c-common.c:4279 #, gcc-internal-format msgid "pointer of type % used in arithmetic" msgstr "%-tyyppistä osoitinta käytetty laskutoimituksessa" ! #: c-family/c-common.c:4285 #, gcc-internal-format msgid "pointer to a function used in arithmetic" msgstr "funktio-osoitinta käytetty laskutoimituksessa" ! #: c-family/c-common.c:4291 #, gcc-internal-format msgid "pointer to member function used in arithmetic" msgstr "jäsenfunktio-osoitinta käytetty laskutoimituksessa" ! #: c-family/c-common.c:4503 #, gcc-internal-format msgid "the address of %qD will always evaluate as %" msgstr "%qD:n osoite tulee aina olemaan %" ! #: c-family/c-common.c:4598 cp/semantics.c:592 cp/typeck.c:7906 #, gcc-internal-format msgid "suggest parentheses around assignment used as truth value" msgstr "ehdotetaan sulkeita totuusarvona käytetyn sijoituksen ympärille" ! #: c-family/c-common.c:4677 c/c-decl.c:3686 c/c-typeck.c:10883 #, gcc-internal-format msgid "invalid use of %" msgstr "epäkelpo %-avainsanan käyttö" ! #: c-family/c-common.c:4870 #, gcc-internal-format msgid "invalid application of % to a function type" msgstr "epäkelpo %-avainsanan soveltaminen funktiotyyppiin" ! #: c-family/c-common.c:4880 #, fuzzy, gcc-internal-format - #| msgid "ISO C does not allow extra %<;%> outside of a function" msgid "ISO C++ does not permit % applied to a function type" msgstr "ISO C ei salli ylimääräisiä %<;%>-merkkejä funktioiden ulkopuolella" ! #: c-family/c-common.c:4883 #, fuzzy, gcc-internal-format - #| msgid "ISO C does not allow extra %<;%> outside of a function" msgid "ISO C does not permit %<_Alignof%> applied to a function type" msgstr "ISO C ei salli ylimääräisiä %<;%>-merkkejä funktioiden ulkopuolella" ! #: c-family/c-common.c:4894 #, gcc-internal-format msgid "invalid application of %qs to a void type" msgstr "epäkelpo %qs:n soveltaminen tyhjään tyyppiin" ! #: c-family/c-common.c:4903 #, fuzzy, gcc-internal-format - #| msgid "invalid application of %qs to incomplete type %qT " msgid "invalid application of %qs to incomplete type %qT" msgstr "epäkelpo %qs:n soveltaminen vaillinaiseen tyyppiin %qT " ! #: c-family/c-common.c:4911 #, fuzzy, gcc-internal-format - #| msgid "invalid application of %qs to incomplete type %qT " msgid "invalid application of %qs to array type %qT of incomplete element type" msgstr "epäkelpo %qs:n soveltaminen vaillinaiseen tyyppiin %qT " ! #: c-family/c-common.c:4951 #, gcc-internal-format msgid "%<__alignof%> applied to a bit-field" msgstr "%<__alignof%>-avainsanaa sovellettu bittikenttään" ! #: c-family/c-common.c:5664 #, gcc-internal-format msgid "cannot disable built-in function %qs" msgstr "sisäistä funktiota %qs ei voi ottaa pois käytöstä" ! #: c-family/c-common.c:5855 #, gcc-internal-format msgid "pointers are not permitted as case values" msgstr "osoittimet eivät ole sallittuja case-arvoja" ! #: c-family/c-common.c:5862 #, gcc-internal-format msgid "range expressions in switch statements are non-standard" msgstr "arvoaluelausekkeet switch-lauseessa eivät ole standardin mukaisia" ! #: c-family/c-common.c:5888 #, gcc-internal-format msgid "empty range specified" msgstr "tyhjä arvoalue annettu" ! #: c-family/c-common.c:5948 #, gcc-internal-format msgid "duplicate (or overlapping) case value" msgstr "case-arvon kaksoiskappale (tai limitys)" ! #: c-family/c-common.c:5950 ! #, fuzzy, gcc-internal-format msgid "this is the first entry overlapping that value" ! msgstr "%Jtämä on ensimmäinen arvoa limittävä kenttä" ! #: c-family/c-common.c:5954 #, gcc-internal-format msgid "duplicate case value" msgstr "case-arvon kaksoiskappale" ! #: c-family/c-common.c:5955 ! #, fuzzy, gcc-internal-format msgid "previously used here" ! msgstr "%Jviimeksi käytetty täällä" ! #: c-family/c-common.c:5959 #, gcc-internal-format msgid "multiple default labels in one switch" msgstr "useita default-nimikkeitä samassa switch-lauseessa" ! #: c-family/c-common.c:5961 #, gcc-internal-format msgid "this is the first default label" msgstr "tämä on ensimmäinen default-nimiö" ! #: c-family/c-common.c:6013 #, gcc-internal-format msgid "case value %qs not in enumerated type" msgstr "case-arvo %qs ei ole luetellussa tyypissä" ! #: c-family/c-common.c:6018 #, gcc-internal-format msgid "case value %qs not in enumerated type %qT" msgstr "case-arvo %qs ei ole luetellussa tyypissä %qT" ! #: c-family/c-common.c:6077 #, gcc-internal-format msgid "switch missing default case" msgstr "switch-lauseesta puuttuu default-tapaus" ! #: c-family/c-common.c:6149 #, gcc-internal-format msgid "enumeration value %qE not handled in switch" msgstr "lueteltua arvoa %qE ei käsitellä switch-lauseessa" ! #: c-family/c-common.c:6175 #, gcc-internal-format msgid "taking the address of a label is non-standard" msgstr "nimikkeen osoitteen ottaminen ei ole standardia" ! #: c-family/c-common.c:6369 #, gcc-internal-format msgid "%qE attribute ignored for field of type %qT" msgstr "%qE-attribuuttia ei huomioida %qT-tyyppiselle kentälle" ! #: c-family/c-common.c:6464 c-family/c-common.c:6492 ! #, fuzzy, gcc-internal-format msgid "%qE attribute conflicts with attribute %s" ! msgstr "%qE-attribuutti soveltuu vain variadisiin funktioihin" ! #: c-family/c-common.c:6622 lto/lto-lang.c:227 #, fuzzy, gcc-internal-format msgid "%qE attribute has no effect on unit local functions" msgstr "%J%qE-attribuutti soveltuu vain funktioihin" ! #: c-family/c-common.c:6776 ! #, fuzzy, gcc-internal-format msgid "%qE attribute have effect only on public objects" ! msgstr "%J%qE-attribuutti soveltuu vain funktioihin" ! #: c-family/c-common.c:6890 #, fuzzy, gcc-internal-format msgid "destructor priorities are not supported" msgstr "%Jlohkoattribuutteja ei tueta tälle kohteelle" ! #: c-family/c-common.c:6892 #, gcc-internal-format msgid "constructor priorities are not supported" msgstr "" ! #: c-family/c-common.c:6910 #, gcc-internal-format, gfc-internal-format msgid "destructor priorities from 0 to %d are reserved for the implementation" msgstr "" ! #: c-family/c-common.c:6915 #, gcc-internal-format, gfc-internal-format msgid "constructor priorities from 0 to %d are reserved for the implementation" msgstr "" ! #: c-family/c-common.c:6923 #, gcc-internal-format, gfc-internal-format msgid "destructor priorities must be integers from 0 to %d inclusive" msgstr "" ! #: c-family/c-common.c:6926 #, gcc-internal-format, gfc-internal-format msgid "constructor priorities must be integers from 0 to %d inclusive" msgstr "" ! #: c-family/c-common.c:7082 #, fuzzy, gcc-internal-format msgid "unknown machine mode %qE" msgstr "tuntematon konetila %qs" ! #: c-family/c-common.c:7111 #, fuzzy, gcc-internal-format msgid "specifying vector types with __attribute__ ((mode)) is deprecated" msgstr "vektorityyppien määrittäminen __attribute__ ((mode)) -tyyliin on paheksuttavaa" ! #: c-family/c-common.c:7114 #, gcc-internal-format msgid "use __attribute__ ((vector_size)) instead" msgstr "käytä sen sijaan __attribute__ ((vector_size))" ! #: c-family/c-common.c:7123 #, fuzzy, gcc-internal-format msgid "unable to emulate %qs" msgstr "ei voi emuloida %qs" ! #: c-family/c-common.c:7134 #, gcc-internal-format msgid "invalid pointer mode %qs" msgstr "epäkelpo osoitintila %qs" ! #: c-family/c-common.c:7151 #, gcc-internal-format msgid "signedness of type and machine mode %qs don%'t match" msgstr "" ! #: c-family/c-common.c:7162 #, gcc-internal-format msgid "no data type for mode %qs" msgstr "ei tietotyyppiä tilalle %qs" ! #: c-family/c-common.c:7172 #, gcc-internal-format msgid "cannot use mode %qs for enumeral types" msgstr "luetelluille tyypeille ei voi käyttää tilaa %qs" ! #: c-family/c-common.c:7199 #, gcc-internal-format msgid "mode %qs applied to inappropriate type" msgstr "tilaa %qs sovellettu sopimattomaan tyyppiin" ! #: c-family/c-common.c:7231 #, fuzzy, gcc-internal-format msgid "section attribute cannot be specified for local variables" msgstr "%Jlohkoattribuuttia ei voi määrittää paikalliselle muuttujalle" ! #: c-family/c-common.c:7242 config/bfin/bfin.c:4737 config/bfin/bfin.c:4788 #: config/bfin/bfin.c:4815 config/bfin/bfin.c:4828 #, fuzzy, gcc-internal-format msgid "section of %q+D conflicts with previous declaration" msgstr "%J%qD:n lohko on ristiriidassa edellisen esittelyn kanssa" ! #: c-family/c-common.c:7250 #, gcc-internal-format msgid "section of %q+D cannot be overridden" msgstr "" ! #: c-family/c-common.c:7258 #, fuzzy, gcc-internal-format msgid "section attribute not allowed for %q+D" msgstr "%Jlohkoattribuutti ei ole sallittu %qD:lle" ! #: c-family/c-common.c:7265 #, fuzzy, gcc-internal-format msgid "section attributes are not supported for this target" msgstr "%Jlohkoattribuutteja ei tueta tälle kohteelle" ! #: c-family/c-common.c:7284 #, fuzzy, gcc-internal-format - #| msgid "requested alignment is not a constant" msgid "requested alignment is not an integer constant" ! msgstr "pyydetty tasaus ei ole vakio" ! #: c-family/c-common.c:7291 #, gcc-internal-format msgid "requested alignment is not a power of 2" ! msgstr "pyydetty tasaus ei ole kahden potenssi" ! #: c-family/c-common.c:7296 #, gcc-internal-format msgid "requested alignment is too large" ! msgstr "pyydetty tasaus on liian suuri" ! #: c-family/c-common.c:7379 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "requested alignment is too large" msgid "requested alignment %d is larger than %d" ! msgstr "pyydetty tasaus on liian suuri" ! #: c-family/c-common.c:7436 ! #, fuzzy, gcc-internal-format msgid "alignment may not be specified for %q+D" ! msgstr "%Jtasausta ei voi määrittää %qD:lle" ! #: c-family/c-common.c:7454 #, gcc-internal-format msgid "alignment for %q+D was previously specified as %d and may not be decreased" msgstr "" ! #: c-family/c-common.c:7458 ! #, fuzzy, gcc-internal-format msgid "alignment for %q+D must be at least %d" ! msgstr "tasauksen pitää olla kahden potenssi, ei %d" ! #: c-family/c-common.c:7483 #, fuzzy, gcc-internal-format msgid "inline function %q+D declared weak" msgstr "sisäkkäinen funktio %qs esitelty %:ksi" ! #: c-family/c-common.c:7488 #, fuzzy, gcc-internal-format msgid "indirect function %q+D cannot be declared weak" msgstr "sisäkkäinen funktio %qs esitelty %:ksi" ! #: c-family/c-common.c:7525 #, fuzzy, gcc-internal-format msgid "%q+D defined both normally and as %qE attribute" msgstr "%J%qD määritelty sekä tavallisesti että aliaksena" ! #: c-family/c-common.c:7533 #, fuzzy, gcc-internal-format msgid "weak %q+D cannot be defined %qE" msgstr "%J%qD on tavallisesti ei-staattinen funktio" ! #: c-family/c-common.c:7550 #, fuzzy, gcc-internal-format msgid "attribute %qE argument not a string" msgstr "haluttu sijainti ei ole kokonaislukuvakio" ! #: c-family/c-common.c:7626 #, fuzzy, gcc-internal-format msgid "indirect function %q+D cannot be declared weakref" msgstr "sisäkkäinen funktio %qs esitelty %:ksi" ! #: c-family/c-common.c:7648 #, gcc-internal-format msgid "weakref attribute must appear before alias attribute" ! msgstr "" ! #: c-family/c-common.c:7677 ! #, fuzzy, gcc-internal-format msgid "%qE attribute ignored on non-class types" ! msgstr "%qs-attribuuttia ei huomioida ei-luokkatyypeille" ! #: c-family/c-common.c:7683 ! #, fuzzy, gcc-internal-format msgid "%qE attribute ignored because %qT is already defined" ! msgstr "%qs-attribuuttia ei huomioida %qs:lle" ! #: c-family/c-common.c:7696 #, gcc-internal-format msgid "visibility argument not a string" msgstr "näkyvyysargumentti ei ole merkkijono" ! #: c-family/c-common.c:7708 #, fuzzy, gcc-internal-format msgid "%qE attribute ignored on types" msgstr "%qs-attribuuttia ei huomioida ei-luokkatyypeille" ! #: c-family/c-common.c:7724 #, gcc-internal-format msgid "visibility argument must be one of \"default\", \"hidden\", \"protected\" or \"internal\"" ! msgstr "näkyvyysargumentin pitää olla \"default\", \"hidden\", \"protected\" tai \"internal\"" ! #: c-family/c-common.c:7735 ! #, fuzzy, gcc-internal-format msgid "%qD redeclared with different visibility" ! msgstr "%J%qD esitelty uudelleen erityyppisenä symbolina" ! #: c-family/c-common.c:7738 c-family/c-common.c:7742 ! #, fuzzy, gcc-internal-format msgid "%qD was declared %qs which implies default visibility" ! msgstr "%J%qD esitelty uudelleen erityyppisenä symbolina" ! #: c-family/c-common.c:7826 #, gcc-internal-format msgid "tls_model argument not a string" msgstr "tls_model-argumentti ei ole merkkijono" ! #: c-family/c-common.c:7839 #, gcc-internal-format msgid "tls_model argument must be one of \"local-exec\", \"initial-exec\", \"local-dynamic\" or \"global-dynamic\"" msgstr "tls_model-argumentin pitää olla â€local-execâ€, â€initial-execâ€, â€local-dynamic†tai â€global-dynamicâ€" ! #: c-family/c-common.c:7859 c-family/c-common.c:7965 c-family/c-common.c:8950 #: config/m32c/m32c.c:2926 ! #, fuzzy, gcc-internal-format msgid "%qE attribute applies only to functions" ! msgstr "%J%qE-attribuutti soveltuu vain funktioihin" ! #: c-family/c-common.c:7865 c-family/c-common.c:7971 c-family/c-common.c:8956 ! #, fuzzy, gcc-internal-format msgid "can%'t set %qE attribute after definition" ! msgstr "%Jei voi asettaa %qE-attribuuttia määrittelyn jälkeen" ! #: c-family/c-common.c:7911 #, gcc-internal-format msgid "alloc_size parameter outside range" msgstr "alloc_size-parametri ei ole sallitulla välillä" ! #: c-family/c-common.c:8029 #, fuzzy, gcc-internal-format - #| msgid "%qE attribute ignored" msgid "%qE attribute duplicated" msgstr "%qE-attribuuttia ei huomioida" ! #: c-family/c-common.c:8031 #, fuzzy, gcc-internal-format msgid "%qE attribute follows %qE" ! msgstr "%qs-attribuuttia ei huomioida %qs:lle" ! #: c-family/c-common.c:8130 #, fuzzy, gcc-internal-format msgid "type was previously declared %qE" msgstr "%Jviimeksi käytetty täällä" ! #: c-family/c-common.c:8183 #, fuzzy, gcc-internal-format - #| msgid "cleanup argument not an identifier" msgid "%qE argument not an identifier" msgstr "puhdistusargumentti ei ole tunniste" ! #: c-family/c-common.c:8194 #, fuzzy, gcc-internal-format msgid "%qD is not compatible with %qD" msgstr "%J%qD on tavallisesti ei-staattinen funktio" ! #: c-family/c-common.c:8197 #, fuzzy, gcc-internal-format - #| msgid "cleanup argument not a function" msgid "transaction_wrap argument is not a function" msgstr "puhdistusargumentti ei ole funktio" ! #: c-family/c-common.c:8245 #, fuzzy, gcc-internal-format msgid "deprecated message is not a string" msgstr "näkyvyysargumentti ei ole merkkijono" ! #: c-family/c-common.c:8286 ! #, fuzzy, gcc-internal-format msgid "%qE attribute ignored for %qE" ! msgstr "%qs-attribuuttia ei huomioida %qs:lle" ! #: c-family/c-common.c:8346 ! #, fuzzy, gcc-internal-format msgid "invalid vector type for attribute %qE" ! msgstr "epäkelpo vektorityyppi attribuutille %qs" ! #: c-family/c-common.c:8352 ada/gcc-interface/utils.c:6307 #: ada/gcc-interface/utils.c:6401 #, gcc-internal-format msgid "vector size not an integral multiple of component size" msgstr "" ! #: c-family/c-common.c:8358 ada/gcc-interface/utils.c:6313 #: ada/gcc-interface/utils.c:6407 #, gcc-internal-format msgid "zero vector size" msgstr "" ! #: c-family/c-common.c:8366 ada/gcc-interface/utils.c:6321 #: ada/gcc-interface/utils.c:6414 #, gcc-internal-format msgid "number of components of the vector not a power of two" msgstr "vektorin komponenttien määrä ei ole kahden potenssi" ! #: c-family/c-common.c:8394 ada/gcc-interface/utils.c:6048 #, gcc-internal-format msgid "nonnull attribute without arguments on a non-prototype" msgstr "ei-tyhjä attribuutti ilman argumentteja ei-prototyypissä" ! #: c-family/c-common.c:8408 ada/gcc-interface/utils.c:6062 #, gcc-internal-format, gfc-internal-format msgid "nonnull argument has invalid operand number (argument %lu)" msgstr "ei-tyhjällä argumentilla on epäkelpo operandinumero (argumentti %lu)" ! #: c-family/c-common.c:8430 ada/gcc-interface/utils.c:6084 #, gcc-internal-format, gfc-internal-format msgid "nonnull argument with out-of-range operand number (argument %lu, operand %lu)" msgstr "ei-tyhjällä argumentilla arvoalueen ylittävä operandinumero (argumentti %lu,operandi %lu)" # XXX ! #: c-family/c-common.c:8438 ada/gcc-interface/utils.c:6093 #, gcc-internal-format, gfc-internal-format msgid "nonnull argument references non-pointer operand (argument %lu, operand %lu)" msgstr "ei-tyhjä argumentti viittaa ei-osoitinoperandiin (argumentti %lu, operandi %lu)" ! #: c-family/c-common.c:8533 #, fuzzy, gcc-internal-format msgid "not enough variable arguments to fit a sentinel" ! msgstr "ei tarpeeksi argumentteja lopetusalkion mahduttamiseksi" ! #: c-family/c-common.c:8547 #, gcc-internal-format msgid "missing sentinel in function call" msgstr "lopetusalkio puuttuu funktiokutsusta" ! #: c-family/c-common.c:8588 #, gcc-internal-format, gfc-internal-format msgid "null argument where non-null required (argument %lu)" msgstr "tyhjä argumentti, vaikka ei-null vaaditaan (argumentti %lu)" ! #: c-family/c-common.c:8653 #, gcc-internal-format msgid "cleanup argument not an identifier" msgstr "puhdistusargumentti ei ole tunniste" ! #: c-family/c-common.c:8660 #, gcc-internal-format msgid "cleanup argument not a function" msgstr "puhdistusargumentti ei ole funktio" ! #: c-family/c-common.c:8697 ! #, fuzzy, gcc-internal-format msgid "%qE attribute requires prototypes with named arguments" ! msgstr "%qs-attribuutti tarvitsee prototyyppejä, joilla nimettyjä argumentteja" ! #: c-family/c-common.c:8705 #, gcc-internal-format msgid "%qE attribute only applies to variadic functions" msgstr "%qE-attribuutti soveltuu vain variadisiin funktioihin" ! #: c-family/c-common.c:8717 ada/gcc-interface/utils.c:6135 #, gcc-internal-format msgid "requested position is not an integer constant" msgstr "haluttu sijainti ei ole kokonaislukuvakio" ! #: c-family/c-common.c:8725 ada/gcc-interface/utils.c:6142 #, gcc-internal-format msgid "requested position is less than zero" msgstr "haluttu sijainti on pienempi kuin nolla" ! #: c-family/c-common.c:8843 #, gcc-internal-format, gfc-internal-format msgid "bad option %s to optimize attribute" msgstr "" ! #: c-family/c-common.c:8846 #, gcc-internal-format, gfc-internal-format msgid "bad option %s to pragma attribute" msgstr "" ! #: c-family/c-common.c:9075 ! #, fuzzy, gcc-internal-format msgid "not enough arguments to function %qE" msgstr "liian vähän argumentteja funktiolle %qE" ! #: c-family/c-common.c:9081 c-family/c-common.c:10007 c/c-typeck.c:2954 #, gcc-internal-format msgid "too many arguments to function %qE" msgstr "liian monta argumenttia funktiolle %qE" ! #: c-family/c-common.c:9111 c-family/c-common.c:9157 ! #, fuzzy, gcc-internal-format msgid "non-floating-point argument in call to function %qE" ! msgstr "ei-liukulukuargumentti funktiolle %qs" ! #: c-family/c-common.c:9134 ! #, fuzzy, gcc-internal-format msgid "non-floating-point arguments in call to function %qE" ! msgstr "ei-liukulukuargumentti funktiolle %qs" ! #: c-family/c-common.c:9150 ! #, fuzzy, gcc-internal-format msgid "non-const integer argument %u in call to function %qE" ! msgstr "ei-liukulukuargumentti funktiolle %qs" ! #: c-family/c-common.c:9170 #, fuzzy, gcc-internal-format msgid "non-integer argument 3 in call to function %qE" ! msgstr "ei-liukulukuargumentti funktiolle %qs" ! #: c-family/c-common.c:9496 #, gcc-internal-format msgid "cannot apply % to static data member %qD" msgstr "" ! #: c-family/c-common.c:9501 #, gcc-internal-format msgid "cannot apply % when % is overloaded" msgstr "" ! #: c-family/c-common.c:9508 #, gcc-internal-format msgid "cannot apply % to a non constant address" msgstr "" ! #: c-family/c-common.c:9521 cp/typeck.c:5289 #, gcc-internal-format msgid "attempt to take address of bit-field structure member %qD" msgstr "" ! #: c-family/c-common.c:9573 #, gcc-internal-format msgid "index %E denotes an offset greater than size of %qT" msgstr "" ! #: c-family/c-common.c:9613 #, gcc-internal-format msgid "the omitted middle operand in ?: will always be %, suggest explicit middle operand" msgstr "" ! #: c-family/c-common.c:9634 #, fuzzy, gcc-internal-format msgid "assignment of member %qD in read-only object" msgstr "sijoitus kirjoitussuojattuun jäseneen %qD" ! #: c-family/c-common.c:9636 #, fuzzy, gcc-internal-format - #| msgid "increment of data-member %qD in read-only structure" msgid "increment of member %qD in read-only object" msgstr "vain-luku-tietueen datajäsenen %qD kasvatus" ! #: c-family/c-common.c:9638 #, fuzzy, gcc-internal-format - #| msgid "decrement of data-member %qD in read-only structure" msgid "decrement of member %qD in read-only object" msgstr "vain-luku-tietueen datajäsenen %qD vähennys" ! #: c-family/c-common.c:9640 #, fuzzy, gcc-internal-format - #| msgid "read-only location %qE used as % output" msgid "member %qD in read-only object used as % output" msgstr "kirjoitussuojattua sijaintia %qE käytetään %-tulosteena" ! #: c-family/c-common.c:9644 #, gcc-internal-format msgid "assignment of read-only member %qD" msgstr "sijoitus kirjoitussuojattuun jäseneen %qD" ! #: c-family/c-common.c:9645 #, gcc-internal-format msgid "increment of read-only member %qD" msgstr "kirjoitussuojatun jäsenen %qD kasvatus" ! #: c-family/c-common.c:9646 #, gcc-internal-format msgid "decrement of read-only member %qD" msgstr "kirjoitussuojatun jäsenen %qD vähennys" ! #: c-family/c-common.c:9647 #, gcc-internal-format msgid "read-only member %qD used as % output" msgstr "" ! #: c-family/c-common.c:9651 #, gcc-internal-format msgid "assignment of read-only variable %qD" msgstr "sijoitus kirjoitussuojattuun muuttujaan %qD" ! #: c-family/c-common.c:9652 #, gcc-internal-format msgid "increment of read-only variable %qD" msgstr "kirjoitussuojatun muuttujan %qD kasvatus" ! #: c-family/c-common.c:9653 #, gcc-internal-format msgid "decrement of read-only variable %qD" msgstr "kirjoitussuojatun muuttujan %qD vähennys" ! #: c-family/c-common.c:9654 #, gcc-internal-format msgid "read-only variable %qD used as % output" msgstr "" ! #: c-family/c-common.c:9657 ! #, fuzzy, gcc-internal-format msgid "assignment of read-only parameter %qD" ! msgstr "sijoitus kirjoitussuojattuun jäseneen %qD" ! #: c-family/c-common.c:9658 ! #, fuzzy, gcc-internal-format msgid "increment of read-only parameter %qD" ! msgstr "kirjoitussuojatun jäsenen %qD kasvatus" ! #: c-family/c-common.c:9659 ! #, fuzzy, gcc-internal-format msgid "decrement of read-only parameter %qD" ! msgstr "kirjoitussuojatun jäsenen %qD vähennys" ! #: c-family/c-common.c:9660 #, fuzzy, gcc-internal-format - #| msgid "read-only location %qE used as % output" msgid "read-only parameter %qD use as % output" ! msgstr "kirjoitussuojattua sijaintia %qE käytetään %-tulosteena" ! #: c-family/c-common.c:9665 ! #, fuzzy, gcc-internal-format msgid "assignment of read-only named return value %qD" ! msgstr "kirjoitussuojatun muuttujan %qs sijoitus" ! #: c-family/c-common.c:9667 ! #, fuzzy, gcc-internal-format msgid "increment of read-only named return value %qD" ! msgstr "kirjoitussuojatun muuttujan %qs sijoitus" ! #: c-family/c-common.c:9669 ! #, fuzzy, gcc-internal-format msgid "decrement of read-only named return value %qD" ! msgstr "kirjoitussuojatun muuttujan %qs sijoitus" ! #: c-family/c-common.c:9671 #, fuzzy, gcc-internal-format - #| msgid "read-only location %qE used as % output" msgid "read-only named return value %qD used as %output" ! msgstr "kirjoitussuojattua sijaintia %qE käytetään %-tulosteena" ! #: c-family/c-common.c:9676 ! #, fuzzy, gcc-internal-format msgid "assignment of function %qD" ! msgstr "Funktio %qs:" ! #: c-family/c-common.c:9677 ! #, fuzzy, gcc-internal-format msgid "increment of function %qD" ! msgstr "Funktio %qs:" ! #: c-family/c-common.c:9678 ! #, fuzzy, gcc-internal-format msgid "decrement of function %qD" ! msgstr "Funktio %qs:" ! #: c-family/c-common.c:9679 #, fuzzy, gcc-internal-format - #| msgid "read-only location %qE used as % output" msgid "function %qD used as % output" msgstr "kirjoitussuojattua sijaintia %qE käytetään %-tulosteena" ! #: c-family/c-common.c:9682 c/c-typeck.c:3902 ! #, fuzzy, gcc-internal-format msgid "assignment of read-only location %qE" ! msgstr "kirjoitussuojatun sijainnin sijoitus" ! #: c-family/c-common.c:9683 c/c-typeck.c:3905 ! #, fuzzy, gcc-internal-format msgid "increment of read-only location %qE" ! msgstr "kirjoitussuojatun sijainnin kasvatus" ! #: c-family/c-common.c:9684 c/c-typeck.c:3908 ! #, fuzzy, gcc-internal-format msgid "decrement of read-only location %qE" ! msgstr "kirjoitussuojatun sijainnin vähennys" ! #: c-family/c-common.c:9685 #, gcc-internal-format msgid "read-only location %qE used as % output" msgstr "kirjoitussuojattua sijaintia %qE käytetään %-tulosteena" # XXX ! #: c-family/c-common.c:9699 #, gcc-internal-format msgid "lvalue required as left operand of assignment" msgstr "sijoituksen vasemman operandin on oltava lvalue" ! #: c-family/c-common.c:9702 #, gcc-internal-format msgid "lvalue required as increment operand" msgstr "" ! #: c-family/c-common.c:9705 #, gcc-internal-format msgid "lvalue required as decrement operand" msgstr "" ! #: c-family/c-common.c:9708 #, gcc-internal-format msgid "lvalue required as unary %<&%> operand" msgstr "" ! #: c-family/c-common.c:9711 #, fuzzy, gcc-internal-format msgid "lvalue required in asm statement" msgstr "epäkelpo lvalue asm-lauseessa" ! #: c-family/c-common.c:9728 #, fuzzy, gcc-internal-format - #| msgid "invalid type argument of %qs (have %qT)" msgid "invalid type argument (have %qT)" msgstr "virheellinen %qs-tyyppiargumentti (pitäisi olla %qT)" ! #: c-family/c-common.c:9732 #, fuzzy, gcc-internal-format - #| msgid "invalid type argument of %qs (have %qT)" msgid "invalid type argument of array indexing (have %qT)" msgstr "virheellinen %qs-tyyppiargumentti (pitäisi olla %qT)" ! #: c-family/c-common.c:9737 #, fuzzy, gcc-internal-format - #| msgid "invalid type argument of %qs (have %qT)" msgid "invalid type argument of unary %<*%> (have %qT)" msgstr "virheellinen %qs-tyyppiargumentti (pitäisi olla %qT)" ! #: c-family/c-common.c:9742 #, fuzzy, gcc-internal-format - #| msgid "invalid type argument of %qs (have %qT)" msgid "invalid type argument of %<->%> (have %qT)" msgstr "virheellinen %qs-tyyppiargumentti (pitäisi olla %qT)" ! #: c-family/c-common.c:9747 #, fuzzy, gcc-internal-format - #| msgid "invalid type argument of %qs (have %qT)" msgid "invalid type argument of implicit conversion (have %qT)" msgstr "virheellinen %qs-tyyppiargumentti (pitäisi olla %qT)" ! #: c-family/c-common.c:9877 cp/init.c:2373 ! #, fuzzy, gcc-internal-format msgid "size of array is too large" ! msgstr "taulukon %qs koko on liian suuri" ! #: c-family/c-common.c:9925 c-family/c-common.c:9981 c/c-typeck.c:3185 #, gcc-internal-format msgid "too few arguments to function %qE" msgstr "liian vähän argumentteja funktiolle %qE" ! #: c-family/c-common.c:9942 config/mep/mep.c:6175 c/c-typeck.c:5687 #, gcc-internal-format msgid "incompatible type for argument %d of %qE" msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" ! #: c-family/c-common.c:10074 #, fuzzy, gcc-internal-format msgid "incorrect number of arguments to function %qE" msgstr "liian vähän argumentteja funktiolle %qE" ! #: c-family/c-common.c:10082 #, fuzzy, gcc-internal-format msgid "argument 1 of %qE must be a non-void pointer type" msgstr "ylivuoto vakiolausekkeessa" ! #: c-family/c-common.c:10091 #, fuzzy, gcc-internal-format msgid "argument 1 of %qE must be a pointer to a constant size type" msgstr "argumentin %d antamisessa funktiolle %qE tehdään osoitin kokonaisluvusta ilman tyyppimuunnosta" ! #: c-family/c-common.c:10102 #, fuzzy, gcc-internal-format msgid "argument 1 of %qE must be a pointer to a nonzero size object" msgstr "argumentin %d antamisessa funktiolle %qE tehdään osoitin kokonaisluvusta ilman tyyppimuunnosta" ! #: c-family/c-common.c:10117 #, fuzzy, gcc-internal-format msgid "argument %d of %qE must be a pointer type" msgstr "ylivuoto vakiolausekkeessa" ! #: c-family/c-common.c:10124 #, fuzzy, gcc-internal-format - #| msgid " initializing argument %P of %qD" msgid "size mismatch in argument %d of %qE" msgstr " alustettaessa funktion %2$qD argumenttia %1$P" ! #: c-family/c-common.c:10140 #, fuzzy, gcc-internal-format - #| msgid "incompatible type for argument %d of %qE" msgid "invalid memory model argument %d of %qE" msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" ! #: c-family/c-common.c:10147 #, fuzzy, gcc-internal-format - #| msgid "incompatible type for argument %d of %qE" msgid "non-integer memory model argument %d of %qE" msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" ! #: c-family/c-common.c:10674 #, gcc-internal-format msgid "array subscript has type %" msgstr "taulukon indeksin tyyppi on %" ! #: c-family/c-common.c:10709 c-family/c-common.c:10712 #, gcc-internal-format msgid "suggest parentheses around %<+%> inside %<<<%>" msgstr "ehdotetaan sulkeita %<+%>:n ympärille %<<<%>:n sisällä" ! #: c-family/c-common.c:10715 c-family/c-common.c:10718 #, gcc-internal-format msgid "suggest parentheses around %<-%> inside %<<<%>" msgstr "ehdotetaan sulkeita %<-%>:n ympärille %<<<%>:n sisällä" ! #: c-family/c-common.c:10724 c-family/c-common.c:10727 #, gcc-internal-format msgid "suggest parentheses around %<+%> inside %<>>%>" msgstr "ehdotetaan sulkeita %<+%>:n ympärille %<>>%>:n sisällä" ! #: c-family/c-common.c:10730 c-family/c-common.c:10733 #, gcc-internal-format msgid "suggest parentheses around %<-%> inside %<>>%>" msgstr "ehdotetaan sulkeita %<-%>:n ympärille %<>>%>:n sisällä" ! #: c-family/c-common.c:10739 c-family/c-common.c:10742 #, gcc-internal-format msgid "suggest parentheses around %<&&%> within %<||%>" msgstr "ehdotetaan sulkeita %<&&%>:n ympärille %<||%>:n sisällä" ! #: c-family/c-common.c:10749 c-family/c-common.c:10753 #, gcc-internal-format msgid "suggest parentheses around arithmetic in operand of %<|%>" msgstr "ehdotetaan sulkeita lausekkeen ympärille %<|%>:n operandissa" ! #: c-family/c-common.c:10757 c-family/c-common.c:10760 #, gcc-internal-format msgid "suggest parentheses around comparison in operand of %<|%>" msgstr "ehdotetaan sulkeita vertailun ympärille %<|%>:n operandissa" ! #: c-family/c-common.c:10765 #, gcc-internal-format msgid "suggest parentheses around operand of % or change %<|%> to %<||%> or % to %<~%>" msgstr "" ! #: c-family/c-common.c:10773 c-family/c-common.c:10777 #, gcc-internal-format msgid "suggest parentheses around arithmetic in operand of %<^%>" msgstr "ehdotetaan sulkeita lausekkeen ympärille %<^%>:n operandissa" ! #: c-family/c-common.c:10781 c-family/c-common.c:10784 #, gcc-internal-format msgid "suggest parentheses around comparison in operand of %<^%>" msgstr "ehdotetaan sulkeita vertailun ympärille %<^%>:n operandissa" ! #: c-family/c-common.c:10790 c-family/c-common.c:10793 #, gcc-internal-format msgid "suggest parentheses around %<+%> in operand of %<&%>" msgstr "ehdotetaan sulkeita %<+%>:n ympärille %<&%>:n operandissa" ! #: c-family/c-common.c:10796 c-family/c-common.c:10799 #, gcc-internal-format msgid "suggest parentheses around %<-%> in operand of %<&%>" msgstr "ehdotetaan sulkeita %<-%>:n ympärille %<&%>:n operandissa" ! #: c-family/c-common.c:10803 c-family/c-common.c:10806 #, gcc-internal-format msgid "suggest parentheses around comparison in operand of %<&%>" msgstr "ehdotetaan sulkeita vertailun ympärille %<&%>:n operandissa" ! #: c-family/c-common.c:10811 #, gcc-internal-format msgid "suggest parentheses around operand of % or change %<&%> to %<&&%> or % to %<~%>" msgstr "" ! #: c-family/c-common.c:10818 c-family/c-common.c:10821 #, gcc-internal-format msgid "suggest parentheses around comparison in operand of %<==%>" msgstr "ehdotetaan sulkeita vertailun ympärille %<==%>:n operandissa" ! #: c-family/c-common.c:10826 c-family/c-common.c:10829 #, gcc-internal-format msgid "suggest parentheses around comparison in operand of %" msgstr "ehdotetaan sulkeita vertailun ympärille %:n operandissa" ! #: c-family/c-common.c:10839 c-family/c-common.c:10845 #, gcc-internal-format msgid "comparisons like % do not have their mathematical meaning" msgstr "% -tyylisillä vertailuilla on eri merkitys kuin matematiikassa" ! #: c-family/c-common.c:10861 #, gcc-internal-format msgid "label %q+D defined but not used" msgstr "nimike %q+D määritelty mutta käytettämättä" ! #: c-family/c-common.c:10863 #, gcc-internal-format msgid "label %q+D declared but not defined" msgstr "nimike %qD esitelty muttei määritelty" ! #: c-family/c-common.c:10879 #, gcc-internal-format msgid "division by zero" msgstr "jako nollalla" ! #: c-family/c-common.c:10911 #, gcc-internal-format msgid "comparison between types %qT and %qT" msgstr "tyyppien %qT ja %qT välinen vertailu" ! #: c-family/c-common.c:10962 #, gcc-internal-format msgid "comparison between signed and unsigned integer expressions" msgstr "etumerkillisen ja etumerkittömän kokonaislukulausekkeen vertailu" ! #: c-family/c-common.c:11013 #, gcc-internal-format msgid "promoted ~unsigned is always non-zero" msgstr "" ! #: c-family/c-common.c:11016 #, gcc-internal-format msgid "comparison of promoted ~unsigned with constant" msgstr "" ! #: c-family/c-common.c:11026 #, gcc-internal-format msgid "comparison of promoted ~unsigned with unsigned" msgstr "" ! #: c-family/c-common.c:11204 #, fuzzy, gcc-internal-format msgid "typedef %qD locally defined but not used" msgstr "%Jnimike %qD määritelty, mutta ei käytetty" ! #: c-family/c-common.c:11443 #, gcc-internal-format msgid "index value is out of bound" msgstr "" ! #: c-family/c-common.c:11481 c-family/c-common.c:11531 ! #: c-family/c-common.c:11546 #, fuzzy, gcc-internal-format - #| msgid "conversion from %qT to %qT is ambiguous" msgid "conversion of scalar %qT to vector %qT involves truncation" msgstr "muunnos tyypistä %qT tyyppiin %qT on moniselitteinen" --- 17843,19158 ---- msgid "bytecode stream: tag %s is not in the expected range [%s, %s]" msgstr "" ! #: c-family/c-common.c:916 #, gcc-internal-format msgid "%qD is not defined outside of function scope" msgstr "%qD ei ole määritelty funktion näkyvyysalueen ulkopuolella" ! #: c-family/c-common.c:966 #, gcc-internal-format msgid "string length %qd is greater than the length %qd ISO C%d compilers are required to support" msgstr "merkkijonon pituudeksi annettu %1$qd merkkiä on suurempi kuin ISO C%3$d -kääntäjiltä vaadittu %2$qd merkkiä" ! #: c-family/c-common.c:1285 c/c-typeck.c:9864 cp/typeck.c:4158 #, gcc-internal-format msgid "left shift count is negative" ! msgstr "vasemmalle siirron lukumäärä on negatiivinen" ! #: c-family/c-common.c:1286 c/c-typeck.c:9812 cp/typeck.c:4112 #, gcc-internal-format msgid "right shift count is negative" ! msgstr "oikealle siirron lukumäärä on negatiivinen" ! #: c-family/c-common.c:1291 c/c-typeck.c:9871 cp/typeck.c:4165 #, gcc-internal-format msgid "left shift count >= width of type" ! msgstr "vasemmalle siirron lukumäärä >= tyypin leveys" ! #: c-family/c-common.c:1292 c/c-typeck.c:9823 cp/typeck.c:4119 #, gcc-internal-format msgid "right shift count >= width of type" ! msgstr "oikealle siirron lukumäärä >= tyypin leveys" ! #: c-family/c-common.c:1513 c-family/c-common.c:1525 cp/semantics.c:6867 #, gcc-internal-format msgid "overflow in constant expression" msgstr "ylivuoto vakiolausekkeessa" ! #: c-family/c-common.c:1548 #, gcc-internal-format msgid "integer overflow in expression" msgstr "kokonaislukuylivuoto lausekkeessa" ! #: c-family/c-common.c:1553 #, gcc-internal-format msgid "floating point overflow in expression" msgstr "liukulukuylivuoto lausekkeessa" ! #: c-family/c-common.c:1557 #, fuzzy, gcc-internal-format msgid "fixed-point overflow in expression" msgstr "liukulukuylivuoto lausekkeessa" ! #: c-family/c-common.c:1561 #, gcc-internal-format msgid "vector overflow in expression" msgstr "vektoriylivuoto lausekkeessa" ! #: c-family/c-common.c:1567 #, gcc-internal-format msgid "complex integer overflow in expression" msgstr "kompleksikokonaislukuylivuoto lausekkeessa" ! #: c-family/c-common.c:1570 #, gcc-internal-format msgid "complex floating point overflow in expression" msgstr "kompleksiliukulukuylivuoto lausekkeessa" ! #: c-family/c-common.c:1613 #, gcc-internal-format msgid "logical % applied to non-boolean constant" msgstr "" ! #: c-family/c-common.c:1616 #, gcc-internal-format msgid "logical % applied to non-boolean constant" msgstr "" ! #: c-family/c-common.c:1680 #, gcc-internal-format msgid "logical % of collectively exhaustive tests is always true" msgstr "" ! #: c-family/c-common.c:1684 #, gcc-internal-format msgid "logical % of mutually exclusive tests is always false" msgstr "" ! #: c-family/c-common.c:1816 #, gcc-internal-format msgid "type-punning to incomplete type might break strict-aliasing rules" msgstr "" ! #: c-family/c-common.c:1831 #, gcc-internal-format msgid "dereferencing type-punned pointer will break strict-aliasing rules" msgstr "" ! #: c-family/c-common.c:1838 c-family/c-common.c:1856 #, gcc-internal-format msgid "dereferencing type-punned pointer might break strict-aliasing rules" msgstr "" ! #: c-family/c-common.c:1990 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the destination; did you mean to remove the addressof?" msgstr "" ! #: c-family/c-common.c:1997 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the destination; did you mean to provide an explicit length?" msgstr "" ! #: c-family/c-common.c:2002 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the destination; did you mean to dereference it?" msgstr "" ! #: c-family/c-common.c:2014 #, gcc-internal-format msgid "argument to % in %qD call is the same pointer type %qT as the destination; expected %qT or an explicit length" msgstr "" ! #: c-family/c-common.c:2030 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the source; did you mean to remove the addressof?" msgstr "" ! #: c-family/c-common.c:2037 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the source; did you mean to provide an explicit length?" msgstr "" ! #: c-family/c-common.c:2042 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the source; did you mean to dereference it?" msgstr "" ! #: c-family/c-common.c:2054 #, gcc-internal-format msgid "argument to % in %qD call is the same pointer type %qT as the source; expected %qT or an explicit length" msgstr "" ! #: c-family/c-common.c:2070 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the first source; did you mean to remove the addressof?" msgstr "" ! #: c-family/c-common.c:2077 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the first source; did you mean to provide an explicit length?" msgstr "" ! #: c-family/c-common.c:2082 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the first source; did you mean to dereference it?" msgstr "" ! #: c-family/c-common.c:2094 #, gcc-internal-format msgid "argument to % in %qD call is the same pointer type %qT as the first source; expected %qT or an explicit length" msgstr "" ! #: c-family/c-common.c:2110 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the second source; did you mean to remove the addressof?" msgstr "" ! #: c-family/c-common.c:2117 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the second source; did you mean to provide an explicit length?" msgstr "" ! #: c-family/c-common.c:2122 #, gcc-internal-format msgid "argument to % in %qD call is the same expression as the second source; did you mean to dereference it?" msgstr "" ! #: c-family/c-common.c:2134 #, gcc-internal-format msgid "argument to % in %qD call is the same pointer type %qT as the second source; expected %qT or an explicit length" msgstr "" ! #: c-family/c-common.c:2166 #, gcc-internal-format msgid "first argument of %q+D should be %" msgstr "%q+D:n ensimmäisen argumentin pitäisi olla %" ! #: c-family/c-common.c:2175 #, gcc-internal-format msgid "second argument of %q+D should be %" msgstr "%q+D:n toisen argumentin pitäisi olla %" ! #: c-family/c-common.c:2184 #, gcc-internal-format msgid "third argument of %q+D should probably be %" msgstr "%q+D:n kolmannen argumentin pitäisi todennäköisesti olla %" ! #: c-family/c-common.c:2195 ! #, gcc-internal-format msgid "%q+D takes only zero or two arguments" ! msgstr "%q+D sallii vain nolla tai kaksi argumenttia" ! #: c-family/c-common.c:2244 #, gcc-internal-format msgid "use -flax-vector-conversions to permit conversions between vectors with differing element types or numbers of subparts" msgstr "" ! #: c-family/c-common.c:2283 #, fuzzy, gcc-internal-format msgid "__builtin_shuffle last argument must be an integer vector" msgstr "puhdistusargumentti ei ole tunniste" ! #: c-family/c-common.c:2291 #, fuzzy, gcc-internal-format msgid "__builtin_shuffle arguments must be vectors" msgstr "%<__builtin_longjmp%>-fuktion toisen argumentin pitää olla 1" ! #: c-family/c-common.c:2297 #, gcc-internal-format msgid "__builtin_shuffle argument vectors must be of the same type" msgstr "" ! #: c-family/c-common.c:2307 #, gcc-internal-format msgid "__builtin_shuffle number of elements of the argument vector(s) and the mask vector should be the same" msgstr "" ! #: c-family/c-common.c:2316 #, gcc-internal-format msgid "__builtin_shuffle argument vector(s) inner type must have the same size as inner type of the mask" msgstr "" ! #: c-family/c-common.c:2510 #, gcc-internal-format msgid "negative integer implicitly converted to unsigned type" msgstr "negatiivinen kokonaisluku muunnettu implisiittisesti etumerkittömään tyyppiin" ! #: c-family/c-common.c:2516 #, gcc-internal-format msgid "conversion of unsigned constant value to negative integer" msgstr "etumerkittömän vakion muunnos negatiiviseksi kokonaisluvuksi" ! #: c-family/c-common.c:2610 #, gcc-internal-format msgid "conversion to %qT from %qT may change the sign of the result" msgstr "" ! #: c-family/c-common.c:2679 ! #, gcc-internal-format msgid "conversion to %qT from boolean expression" ! msgstr "muunnos tyyppiin %qT loogisesta lausekkeesta" ! #: c-family/c-common.c:2686 ! #, gcc-internal-format msgid "conversion to %qT alters %qT constant value" ! msgstr "muunnos tyyppiin %qT muuttaa %qT:n vakioarvoa" ! #: c-family/c-common.c:2705 ! #, gcc-internal-format msgid "conversion to %qT from %qT may alter its value" ! msgstr "muunnos tyyppiin %qT tyypistä %qT saattaa muuttaa sen arvoa" ! #: c-family/c-common.c:2735 #, gcc-internal-format msgid "large integer implicitly truncated to unsigned type" msgstr "suuri kokonaisluku implisiittisesti katkaistu etumerkittömäksi tyypiksi" ! #: c-family/c-common.c:2741 c-family/c-common.c:2748 c-family/c-common.c:2756 #, gcc-internal-format msgid "overflow in implicit constant conversion" msgstr "ylivuoto implisiittisessä vakiomuunnoksessa" ! #: c-family/c-common.c:2928 #, gcc-internal-format msgid "operation on %qE may be undefined" msgstr "operaatio %qE:lle voi olla määrittelemätön" ! #: c-family/c-common.c:3239 #, gcc-internal-format msgid "case label does not reduce to an integer constant" msgstr "case-nimike ei pelkisty kokonaislukuvakioksi" ! #: c-family/c-common.c:3279 #, gcc-internal-format msgid "case label value is less than minimum value for type" msgstr "case-nimikkeen arvo on pienempi kuin tyypin minimiarvo" ! #: c-family/c-common.c:3287 #, gcc-internal-format msgid "case label value exceeds maximum value for type" msgstr "case-nimikkeen arvo ylittää tyypin maksimiarvon" ! #: c-family/c-common.c:3295 #, gcc-internal-format msgid "lower value in case label range less than minimum value for type" msgstr "case-nimikkeen alarajan arvo on pienempi kuin tyypin minimiarvo" ! #: c-family/c-common.c:3304 #, gcc-internal-format msgid "upper value in case label range exceeds maximum value for type" msgstr "case-nimikkeen ylärajan arvo ylittää tyypin maksimiarvon" ! #: c-family/c-common.c:3383 #, gcc-internal-format msgid "GCC cannot support operators with integer types and fixed-point types that have too many integral and fractional bits together" msgstr "" ! #: c-family/c-common.c:3886 #, fuzzy, gcc-internal-format msgid "invalid operands to binary %s (have %qT and %qT)" msgstr "epäkelvot operandit binääriselle %s-operaatiolle" ! #: c-family/c-common.c:4147 #, gcc-internal-format msgid "comparison is always false due to limited range of data type" msgstr "vertailu on aina epätosi johtuen tietotyypin rajallisesta arvoalueesta" ! #: c-family/c-common.c:4150 #, gcc-internal-format msgid "comparison is always true due to limited range of data type" msgstr "vertailu on aina tosi johtuen tietotyypin rajallisesta arvoalueesta" ! #: c-family/c-common.c:4235 #, gcc-internal-format msgid "comparison of unsigned expression >= 0 is always true" msgstr "vertailu â€etumerkitön lauseke >= 0†on aina tosi" ! #: c-family/c-common.c:4242 #, gcc-internal-format msgid "comparison of unsigned expression < 0 is always false" msgstr "vertailu â€etumerkitön lauseke < 0†on aina epätosi" ! #: c-family/c-common.c:4284 #, gcc-internal-format msgid "pointer of type % used in arithmetic" msgstr "%-tyyppistä osoitinta käytetty laskutoimituksessa" ! #: c-family/c-common.c:4290 #, gcc-internal-format msgid "pointer to a function used in arithmetic" msgstr "funktio-osoitinta käytetty laskutoimituksessa" ! #: c-family/c-common.c:4296 #, gcc-internal-format msgid "pointer to member function used in arithmetic" msgstr "jäsenfunktio-osoitinta käytetty laskutoimituksessa" ! #: c-family/c-common.c:4508 #, gcc-internal-format msgid "the address of %qD will always evaluate as %" msgstr "%qD:n osoite tulee aina olemaan %" ! #: c-family/c-common.c:4603 cp/semantics.c:592 cp/typeck.c:7906 #, gcc-internal-format msgid "suggest parentheses around assignment used as truth value" msgstr "ehdotetaan sulkeita totuusarvona käytetyn sijoituksen ympärille" ! #: c-family/c-common.c:4682 c/c-decl.c:3686 c/c-typeck.c:10883 #, gcc-internal-format msgid "invalid use of %" msgstr "epäkelpo %-avainsanan käyttö" ! #: c-family/c-common.c:4875 #, gcc-internal-format msgid "invalid application of % to a function type" msgstr "epäkelpo %-avainsanan soveltaminen funktiotyyppiin" ! #: c-family/c-common.c:4885 #, fuzzy, gcc-internal-format msgid "ISO C++ does not permit % applied to a function type" msgstr "ISO C ei salli ylimääräisiä %<;%>-merkkejä funktioiden ulkopuolella" ! #: c-family/c-common.c:4888 #, fuzzy, gcc-internal-format msgid "ISO C does not permit %<_Alignof%> applied to a function type" msgstr "ISO C ei salli ylimääräisiä %<;%>-merkkejä funktioiden ulkopuolella" ! #: c-family/c-common.c:4899 #, gcc-internal-format msgid "invalid application of %qs to a void type" msgstr "epäkelpo %qs:n soveltaminen tyhjään tyyppiin" ! #: c-family/c-common.c:4908 #, fuzzy, gcc-internal-format msgid "invalid application of %qs to incomplete type %qT" msgstr "epäkelpo %qs:n soveltaminen vaillinaiseen tyyppiin %qT " ! #: c-family/c-common.c:4916 #, fuzzy, gcc-internal-format msgid "invalid application of %qs to array type %qT of incomplete element type" msgstr "epäkelpo %qs:n soveltaminen vaillinaiseen tyyppiin %qT " ! #: c-family/c-common.c:4956 #, gcc-internal-format msgid "%<__alignof%> applied to a bit-field" msgstr "%<__alignof%>-avainsanaa sovellettu bittikenttään" ! #: c-family/c-common.c:5669 #, gcc-internal-format msgid "cannot disable built-in function %qs" msgstr "sisäistä funktiota %qs ei voi ottaa pois käytöstä" ! #: c-family/c-common.c:5860 #, gcc-internal-format msgid "pointers are not permitted as case values" msgstr "osoittimet eivät ole sallittuja case-arvoja" ! #: c-family/c-common.c:5867 #, gcc-internal-format msgid "range expressions in switch statements are non-standard" msgstr "arvoaluelausekkeet switch-lauseessa eivät ole standardin mukaisia" ! #: c-family/c-common.c:5893 #, gcc-internal-format msgid "empty range specified" msgstr "tyhjä arvoalue annettu" ! #: c-family/c-common.c:5953 #, gcc-internal-format msgid "duplicate (or overlapping) case value" msgstr "case-arvon kaksoiskappale (tai limitys)" ! #: c-family/c-common.c:5955 ! #, gcc-internal-format msgid "this is the first entry overlapping that value" ! msgstr "tämä on ensimmäinen arvoa limittävä kenttä" ! #: c-family/c-common.c:5959 #, gcc-internal-format msgid "duplicate case value" msgstr "case-arvon kaksoiskappale" ! #: c-family/c-common.c:5960 ! #, gcc-internal-format msgid "previously used here" ! msgstr "viimeksi käytetty täällä" ! #: c-family/c-common.c:5964 #, gcc-internal-format msgid "multiple default labels in one switch" msgstr "useita default-nimikkeitä samassa switch-lauseessa" ! #: c-family/c-common.c:5966 #, gcc-internal-format msgid "this is the first default label" msgstr "tämä on ensimmäinen default-nimiö" ! #: c-family/c-common.c:6018 #, gcc-internal-format msgid "case value %qs not in enumerated type" msgstr "case-arvo %qs ei ole luetellussa tyypissä" ! #: c-family/c-common.c:6023 #, gcc-internal-format msgid "case value %qs not in enumerated type %qT" msgstr "case-arvo %qs ei ole luetellussa tyypissä %qT" ! #: c-family/c-common.c:6082 #, gcc-internal-format msgid "switch missing default case" msgstr "switch-lauseesta puuttuu default-tapaus" ! #: c-family/c-common.c:6154 #, gcc-internal-format msgid "enumeration value %qE not handled in switch" msgstr "lueteltua arvoa %qE ei käsitellä switch-lauseessa" ! #: c-family/c-common.c:6180 #, gcc-internal-format msgid "taking the address of a label is non-standard" msgstr "nimikkeen osoitteen ottaminen ei ole standardia" ! #: c-family/c-common.c:6374 #, gcc-internal-format msgid "%qE attribute ignored for field of type %qT" msgstr "%qE-attribuuttia ei huomioida %qT-tyyppiselle kentälle" ! #: c-family/c-common.c:6469 c-family/c-common.c:6497 ! #, gcc-internal-format msgid "%qE attribute conflicts with attribute %s" ! msgstr "%qE-attribuutti on ristiriidassa attribuutin %s kanssa" ! #: c-family/c-common.c:6644 lto/lto-lang.c:227 #, fuzzy, gcc-internal-format msgid "%qE attribute has no effect on unit local functions" msgstr "%J%qE-attribuutti soveltuu vain funktioihin" ! #: c-family/c-common.c:6798 ! #, gcc-internal-format msgid "%qE attribute have effect only on public objects" ! msgstr "%qE-attribuutti vaikuttaa vain julkisiin objekteihin" ! #: c-family/c-common.c:6912 #, fuzzy, gcc-internal-format msgid "destructor priorities are not supported" msgstr "%Jlohkoattribuutteja ei tueta tälle kohteelle" ! #: c-family/c-common.c:6914 #, gcc-internal-format msgid "constructor priorities are not supported" msgstr "" ! #: c-family/c-common.c:6932 #, gcc-internal-format, gfc-internal-format msgid "destructor priorities from 0 to %d are reserved for the implementation" msgstr "" ! #: c-family/c-common.c:6937 #, gcc-internal-format, gfc-internal-format msgid "constructor priorities from 0 to %d are reserved for the implementation" msgstr "" ! #: c-family/c-common.c:6945 #, gcc-internal-format, gfc-internal-format msgid "destructor priorities must be integers from 0 to %d inclusive" msgstr "" ! #: c-family/c-common.c:6948 #, gcc-internal-format, gfc-internal-format msgid "constructor priorities must be integers from 0 to %d inclusive" msgstr "" ! #: c-family/c-common.c:7104 #, fuzzy, gcc-internal-format msgid "unknown machine mode %qE" msgstr "tuntematon konetila %qs" ! #: c-family/c-common.c:7133 #, fuzzy, gcc-internal-format msgid "specifying vector types with __attribute__ ((mode)) is deprecated" msgstr "vektorityyppien määrittäminen __attribute__ ((mode)) -tyyliin on paheksuttavaa" ! #: c-family/c-common.c:7136 #, gcc-internal-format msgid "use __attribute__ ((vector_size)) instead" msgstr "käytä sen sijaan __attribute__ ((vector_size))" ! #: c-family/c-common.c:7145 #, fuzzy, gcc-internal-format msgid "unable to emulate %qs" msgstr "ei voi emuloida %qs" ! #: c-family/c-common.c:7156 #, gcc-internal-format msgid "invalid pointer mode %qs" msgstr "epäkelpo osoitintila %qs" ! #: c-family/c-common.c:7173 #, gcc-internal-format msgid "signedness of type and machine mode %qs don%'t match" msgstr "" ! #: c-family/c-common.c:7184 #, gcc-internal-format msgid "no data type for mode %qs" msgstr "ei tietotyyppiä tilalle %qs" ! #: c-family/c-common.c:7194 #, gcc-internal-format msgid "cannot use mode %qs for enumeral types" msgstr "luetelluille tyypeille ei voi käyttää tilaa %qs" ! #: c-family/c-common.c:7221 #, gcc-internal-format msgid "mode %qs applied to inappropriate type" msgstr "tilaa %qs sovellettu sopimattomaan tyyppiin" ! #: c-family/c-common.c:7253 #, fuzzy, gcc-internal-format msgid "section attribute cannot be specified for local variables" msgstr "%Jlohkoattribuuttia ei voi määrittää paikalliselle muuttujalle" ! #: c-family/c-common.c:7264 config/bfin/bfin.c:4737 config/bfin/bfin.c:4788 #: config/bfin/bfin.c:4815 config/bfin/bfin.c:4828 #, fuzzy, gcc-internal-format msgid "section of %q+D conflicts with previous declaration" msgstr "%J%qD:n lohko on ristiriidassa edellisen esittelyn kanssa" ! #: c-family/c-common.c:7272 #, gcc-internal-format msgid "section of %q+D cannot be overridden" msgstr "" ! #: c-family/c-common.c:7280 #, fuzzy, gcc-internal-format msgid "section attribute not allowed for %q+D" msgstr "%Jlohkoattribuutti ei ole sallittu %qD:lle" ! #: c-family/c-common.c:7287 #, fuzzy, gcc-internal-format msgid "section attributes are not supported for this target" msgstr "%Jlohkoattribuutteja ei tueta tälle kohteelle" ! #: c-family/c-common.c:7306 #, fuzzy, gcc-internal-format msgid "requested alignment is not an integer constant" ! msgstr "pyydetty kohdistus ei ole vakio" ! #: c-family/c-common.c:7313 #, gcc-internal-format msgid "requested alignment is not a power of 2" ! msgstr "pyydetty kohdistus ei ole kahden potenssi" ! #: c-family/c-common.c:7318 #, gcc-internal-format msgid "requested alignment is too large" ! msgstr "pyydetty kohdistus on liian suuri" ! #: c-family/c-common.c:7401 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "requested alignment %d is larger than %d" ! msgstr "pyydetty kohdistus on liian suuri" ! #: c-family/c-common.c:7458 ! #, gcc-internal-format msgid "alignment may not be specified for %q+D" ! msgstr "kohdistusta ei voi määritellä %q+D:lle" ! #: c-family/c-common.c:7476 #, gcc-internal-format msgid "alignment for %q+D was previously specified as %d and may not be decreased" msgstr "" ! #: c-family/c-common.c:7480 ! #, gcc-internal-format msgid "alignment for %q+D must be at least %d" ! msgstr "kohdistuksen %q+D:lle pitää olla vähintään %d" ! #: c-family/c-common.c:7505 #, fuzzy, gcc-internal-format msgid "inline function %q+D declared weak" msgstr "sisäkkäinen funktio %qs esitelty %:ksi" ! #: c-family/c-common.c:7510 #, fuzzy, gcc-internal-format msgid "indirect function %q+D cannot be declared weak" msgstr "sisäkkäinen funktio %qs esitelty %:ksi" ! #: c-family/c-common.c:7547 #, fuzzy, gcc-internal-format msgid "%q+D defined both normally and as %qE attribute" msgstr "%J%qD määritelty sekä tavallisesti että aliaksena" ! #: c-family/c-common.c:7555 #, fuzzy, gcc-internal-format msgid "weak %q+D cannot be defined %qE" msgstr "%J%qD on tavallisesti ei-staattinen funktio" ! #: c-family/c-common.c:7572 #, fuzzy, gcc-internal-format msgid "attribute %qE argument not a string" msgstr "haluttu sijainti ei ole kokonaislukuvakio" ! #: c-family/c-common.c:7648 #, fuzzy, gcc-internal-format msgid "indirect function %q+D cannot be declared weakref" msgstr "sisäkkäinen funktio %qs esitelty %:ksi" ! #: c-family/c-common.c:7670 #, gcc-internal-format msgid "weakref attribute must appear before alias attribute" ! msgstr "weakref-attribuutin täytyy esiintyä ennen alias-attribuuttia" ! #: c-family/c-common.c:7699 ! #, gcc-internal-format msgid "%qE attribute ignored on non-class types" ! msgstr "%qE-attribuuttia ei huomioida ei-luokkatyypeille" ! #: c-family/c-common.c:7705 ! #, gcc-internal-format msgid "%qE attribute ignored because %qT is already defined" ! msgstr "%qE-attribuuttia ei huomioida koska %qT on jo määritelty" ! #: c-family/c-common.c:7718 #, gcc-internal-format msgid "visibility argument not a string" msgstr "näkyvyysargumentti ei ole merkkijono" ! #: c-family/c-common.c:7730 #, fuzzy, gcc-internal-format msgid "%qE attribute ignored on types" msgstr "%qs-attribuuttia ei huomioida ei-luokkatyypeille" ! #: c-family/c-common.c:7746 #, gcc-internal-format msgid "visibility argument must be one of \"default\", \"hidden\", \"protected\" or \"internal\"" ! msgstr "näkyvyysargumentin tulee olla â€defaultâ€, â€hiddenâ€, â€protected†tai â€internalâ€" ! #: c-family/c-common.c:7757 ! #, gcc-internal-format msgid "%qD redeclared with different visibility" ! msgstr "%qD esitelty uudelleen eri näkyvyydellä" ! #: c-family/c-common.c:7760 c-family/c-common.c:7764 ! #, gcc-internal-format msgid "%qD was declared %qs which implies default visibility" ! msgstr "%qD esiteltiin tyyppinä %qs, mikä edellyttää oletusnäkyvyyttä" ! #: c-family/c-common.c:7848 #, gcc-internal-format msgid "tls_model argument not a string" msgstr "tls_model-argumentti ei ole merkkijono" ! #: c-family/c-common.c:7861 #, gcc-internal-format msgid "tls_model argument must be one of \"local-exec\", \"initial-exec\", \"local-dynamic\" or \"global-dynamic\"" msgstr "tls_model-argumentin pitää olla â€local-execâ€, â€initial-execâ€, â€local-dynamic†tai â€global-dynamicâ€" ! #: c-family/c-common.c:7881 c-family/c-common.c:7987 c-family/c-common.c:8970 #: config/m32c/m32c.c:2926 ! #, gcc-internal-format msgid "%qE attribute applies only to functions" ! msgstr "%qE-attribuutti pätee vain funktioihin" ! #: c-family/c-common.c:7887 c-family/c-common.c:7993 c-family/c-common.c:8976 ! #, gcc-internal-format msgid "can%'t set %qE attribute after definition" ! msgstr "ei voi asettaa %qE-attribuuttia määrittelyn jälkeen" ! #: c-family/c-common.c:7933 #, gcc-internal-format msgid "alloc_size parameter outside range" msgstr "alloc_size-parametri ei ole sallitulla välillä" ! #: c-family/c-common.c:8051 #, fuzzy, gcc-internal-format msgid "%qE attribute duplicated" msgstr "%qE-attribuuttia ei huomioida" ! #: c-family/c-common.c:8053 #, fuzzy, gcc-internal-format msgid "%qE attribute follows %qE" ! msgstr "%qE-attribuuttia ei huomioida %qE:lle" ! #: c-family/c-common.c:8152 #, fuzzy, gcc-internal-format msgid "type was previously declared %qE" msgstr "%Jviimeksi käytetty täällä" ! #: c-family/c-common.c:8205 #, fuzzy, gcc-internal-format msgid "%qE argument not an identifier" msgstr "puhdistusargumentti ei ole tunniste" ! #: c-family/c-common.c:8216 #, fuzzy, gcc-internal-format msgid "%qD is not compatible with %qD" msgstr "%J%qD on tavallisesti ei-staattinen funktio" ! #: c-family/c-common.c:8219 #, fuzzy, gcc-internal-format msgid "transaction_wrap argument is not a function" msgstr "puhdistusargumentti ei ole funktio" ! #: c-family/c-common.c:8267 #, fuzzy, gcc-internal-format msgid "deprecated message is not a string" msgstr "näkyvyysargumentti ei ole merkkijono" ! #: c-family/c-common.c:8308 ! #, gcc-internal-format msgid "%qE attribute ignored for %qE" ! msgstr "%qE-attribuuttia ei huomioida %qE:lle" ! #: c-family/c-common.c:8368 ! #, gcc-internal-format msgid "invalid vector type for attribute %qE" ! msgstr "epäkelpo vektorityyppi attribuutille %qE" ! #: c-family/c-common.c:8374 ada/gcc-interface/utils.c:6307 #: ada/gcc-interface/utils.c:6401 #, gcc-internal-format msgid "vector size not an integral multiple of component size" msgstr "" ! #: c-family/c-common.c:8380 ada/gcc-interface/utils.c:6313 #: ada/gcc-interface/utils.c:6407 #, gcc-internal-format msgid "zero vector size" msgstr "" ! #: c-family/c-common.c:8388 ada/gcc-interface/utils.c:6321 #: ada/gcc-interface/utils.c:6414 #, gcc-internal-format msgid "number of components of the vector not a power of two" msgstr "vektorin komponenttien määrä ei ole kahden potenssi" ! #: c-family/c-common.c:8416 ada/gcc-interface/utils.c:6048 #, gcc-internal-format msgid "nonnull attribute without arguments on a non-prototype" msgstr "ei-tyhjä attribuutti ilman argumentteja ei-prototyypissä" ! #: c-family/c-common.c:8430 ada/gcc-interface/utils.c:6062 #, gcc-internal-format, gfc-internal-format msgid "nonnull argument has invalid operand number (argument %lu)" msgstr "ei-tyhjällä argumentilla on epäkelpo operandinumero (argumentti %lu)" ! #: c-family/c-common.c:8452 ada/gcc-interface/utils.c:6084 #, gcc-internal-format, gfc-internal-format msgid "nonnull argument with out-of-range operand number (argument %lu, operand %lu)" msgstr "ei-tyhjällä argumentilla arvoalueen ylittävä operandinumero (argumentti %lu,operandi %lu)" # XXX ! #: c-family/c-common.c:8460 ada/gcc-interface/utils.c:6093 #, gcc-internal-format, gfc-internal-format msgid "nonnull argument references non-pointer operand (argument %lu, operand %lu)" msgstr "ei-tyhjä argumentti viittaa ei-osoitinoperandiin (argumentti %lu, operandi %lu)" ! #: c-family/c-common.c:8555 #, fuzzy, gcc-internal-format msgid "not enough variable arguments to fit a sentinel" ! msgstr "ei tarpeeksi muuttuja-argumentteja lopetusalkion mahduttamiseksi" ! #: c-family/c-common.c:8569 #, gcc-internal-format msgid "missing sentinel in function call" msgstr "lopetusalkio puuttuu funktiokutsusta" ! #: c-family/c-common.c:8610 #, gcc-internal-format, gfc-internal-format msgid "null argument where non-null required (argument %lu)" msgstr "tyhjä argumentti, vaikka ei-null vaaditaan (argumentti %lu)" ! #: c-family/c-common.c:8675 #, gcc-internal-format msgid "cleanup argument not an identifier" msgstr "puhdistusargumentti ei ole tunniste" ! #: c-family/c-common.c:8682 #, gcc-internal-format msgid "cleanup argument not a function" msgstr "puhdistusargumentti ei ole funktio" ! #: c-family/c-common.c:8719 ! #, gcc-internal-format msgid "%qE attribute requires prototypes with named arguments" ! msgstr "%qE-attribuutti tarvitsee prototyyppejä, joilla nimettyjä argumentteja" ! #: c-family/c-common.c:8727 #, gcc-internal-format msgid "%qE attribute only applies to variadic functions" msgstr "%qE-attribuutti soveltuu vain variadisiin funktioihin" ! #: c-family/c-common.c:8739 ada/gcc-interface/utils.c:6135 #, gcc-internal-format msgid "requested position is not an integer constant" msgstr "haluttu sijainti ei ole kokonaislukuvakio" ! #: c-family/c-common.c:8747 ada/gcc-interface/utils.c:6142 #, gcc-internal-format msgid "requested position is less than zero" msgstr "haluttu sijainti on pienempi kuin nolla" ! #: c-family/c-common.c:8865 #, gcc-internal-format, gfc-internal-format msgid "bad option %s to optimize attribute" msgstr "" ! #: c-family/c-common.c:8868 #, gcc-internal-format, gfc-internal-format msgid "bad option %s to pragma attribute" msgstr "" ! #: c-family/c-common.c:9095 ! #, gcc-internal-format msgid "not enough arguments to function %qE" msgstr "liian vähän argumentteja funktiolle %qE" ! #: c-family/c-common.c:9101 c-family/c-common.c:10027 c/c-typeck.c:2954 #, gcc-internal-format msgid "too many arguments to function %qE" msgstr "liian monta argumenttia funktiolle %qE" ! #: c-family/c-common.c:9131 c-family/c-common.c:9177 ! #, gcc-internal-format msgid "non-floating-point argument in call to function %qE" ! msgstr "ei-liukulukuargumentti kutsussa funktiolle %qE" ! #: c-family/c-common.c:9154 ! #, gcc-internal-format msgid "non-floating-point arguments in call to function %qE" ! msgstr "ei-liukulukuargumentteja kutsussa funktiolle %qE" ! #: c-family/c-common.c:9170 ! #, gcc-internal-format msgid "non-const integer argument %u in call to function %qE" ! msgstr "ei-vakio kokonaiskulukuargumentti %u kutsussa funktiolle %qE" ! #: c-family/c-common.c:9190 #, fuzzy, gcc-internal-format msgid "non-integer argument 3 in call to function %qE" ! msgstr "ei-vakio kokonaiskulukuargumentti %u kutsussa funktiolle %qE" ! #: c-family/c-common.c:9516 #, gcc-internal-format msgid "cannot apply % to static data member %qD" msgstr "" ! #: c-family/c-common.c:9521 #, gcc-internal-format msgid "cannot apply % when % is overloaded" msgstr "" ! #: c-family/c-common.c:9528 #, gcc-internal-format msgid "cannot apply % to a non constant address" msgstr "" ! #: c-family/c-common.c:9541 cp/typeck.c:5289 #, gcc-internal-format msgid "attempt to take address of bit-field structure member %qD" msgstr "" ! #: c-family/c-common.c:9593 #, gcc-internal-format msgid "index %E denotes an offset greater than size of %qT" msgstr "" ! #: c-family/c-common.c:9633 #, gcc-internal-format msgid "the omitted middle operand in ?: will always be %, suggest explicit middle operand" msgstr "" ! #: c-family/c-common.c:9654 #, fuzzy, gcc-internal-format msgid "assignment of member %qD in read-only object" msgstr "sijoitus kirjoitussuojattuun jäseneen %qD" ! #: c-family/c-common.c:9656 #, fuzzy, gcc-internal-format msgid "increment of member %qD in read-only object" msgstr "vain-luku-tietueen datajäsenen %qD kasvatus" ! #: c-family/c-common.c:9658 #, fuzzy, gcc-internal-format msgid "decrement of member %qD in read-only object" msgstr "vain-luku-tietueen datajäsenen %qD vähennys" ! #: c-family/c-common.c:9660 #, fuzzy, gcc-internal-format msgid "member %qD in read-only object used as % output" msgstr "kirjoitussuojattua sijaintia %qE käytetään %-tulosteena" ! #: c-family/c-common.c:9664 #, gcc-internal-format msgid "assignment of read-only member %qD" msgstr "sijoitus kirjoitussuojattuun jäseneen %qD" ! #: c-family/c-common.c:9665 #, gcc-internal-format msgid "increment of read-only member %qD" msgstr "kirjoitussuojatun jäsenen %qD kasvatus" ! #: c-family/c-common.c:9666 #, gcc-internal-format msgid "decrement of read-only member %qD" msgstr "kirjoitussuojatun jäsenen %qD vähennys" ! #: c-family/c-common.c:9667 #, gcc-internal-format msgid "read-only member %qD used as % output" msgstr "" ! #: c-family/c-common.c:9671 #, gcc-internal-format msgid "assignment of read-only variable %qD" msgstr "sijoitus kirjoitussuojattuun muuttujaan %qD" ! #: c-family/c-common.c:9672 #, gcc-internal-format msgid "increment of read-only variable %qD" msgstr "kirjoitussuojatun muuttujan %qD kasvatus" ! #: c-family/c-common.c:9673 #, gcc-internal-format msgid "decrement of read-only variable %qD" msgstr "kirjoitussuojatun muuttujan %qD vähennys" ! #: c-family/c-common.c:9674 #, gcc-internal-format msgid "read-only variable %qD used as % output" msgstr "" ! #: c-family/c-common.c:9677 ! #, gcc-internal-format msgid "assignment of read-only parameter %qD" ! msgstr "sijoitus kirjoitussuojattuun parametriin %qD" ! #: c-family/c-common.c:9678 ! #, gcc-internal-format msgid "increment of read-only parameter %qD" ! msgstr "kirjoitussuojatun parametrin %qD kasvatus" ! #: c-family/c-common.c:9679 ! #, gcc-internal-format msgid "decrement of read-only parameter %qD" ! msgstr "kirjoitussuojatun parametrin %qD vähennys" ! #: c-family/c-common.c:9680 #, fuzzy, gcc-internal-format msgid "read-only parameter %qD use as % output" ! msgstr "kirjoitussuojattua parametria %qD käytetään %-tulosteena" ! #: c-family/c-common.c:9685 ! #, gcc-internal-format msgid "assignment of read-only named return value %qD" ! msgstr "sijoitus kirjoitussuojattuun nimettyyn paluuarvoon %qD" ! #: c-family/c-common.c:9687 ! #, gcc-internal-format msgid "increment of read-only named return value %qD" ! msgstr "kirjoitussuojatun nimetyn paluuarvon %qD kasvatus" ! #: c-family/c-common.c:9689 ! #, gcc-internal-format msgid "decrement of read-only named return value %qD" ! msgstr "kirjoitussuojatun nimetyn paluuarvon %qD vähennys" ! #: c-family/c-common.c:9691 #, fuzzy, gcc-internal-format msgid "read-only named return value %qD used as %output" ! msgstr "kirjoitussuojattua muuttujaa %qD käytetään %-tulosteena" ! #: c-family/c-common.c:9696 ! #, gcc-internal-format msgid "assignment of function %qD" ! msgstr "funktion %qD sijoitus" ! #: c-family/c-common.c:9697 ! #, gcc-internal-format msgid "increment of function %qD" ! msgstr "funktion %qD kasvatus" ! #: c-family/c-common.c:9698 ! #, gcc-internal-format msgid "decrement of function %qD" ! msgstr "funktion %qD vähennys" ! #: c-family/c-common.c:9699 #, fuzzy, gcc-internal-format msgid "function %qD used as % output" msgstr "kirjoitussuojattua sijaintia %qE käytetään %-tulosteena" ! #: c-family/c-common.c:9702 c/c-typeck.c:3902 ! #, gcc-internal-format msgid "assignment of read-only location %qE" ! msgstr "kirjoitussuojatun sijainnin %qE sijoitus" ! #: c-family/c-common.c:9703 c/c-typeck.c:3905 ! #, gcc-internal-format msgid "increment of read-only location %qE" ! msgstr "kirjoitussuojatun sijainnin %qE kasvatus" ! #: c-family/c-common.c:9704 c/c-typeck.c:3908 ! #, gcc-internal-format msgid "decrement of read-only location %qE" ! msgstr "kirjoitussuojatun sijainnin %qE vähennys" ! #: c-family/c-common.c:9705 #, gcc-internal-format msgid "read-only location %qE used as % output" msgstr "kirjoitussuojattua sijaintia %qE käytetään %-tulosteena" # XXX ! #: c-family/c-common.c:9719 #, gcc-internal-format msgid "lvalue required as left operand of assignment" msgstr "sijoituksen vasemman operandin on oltava lvalue" ! #: c-family/c-common.c:9722 #, gcc-internal-format msgid "lvalue required as increment operand" msgstr "" ! #: c-family/c-common.c:9725 #, gcc-internal-format msgid "lvalue required as decrement operand" msgstr "" ! #: c-family/c-common.c:9728 #, gcc-internal-format msgid "lvalue required as unary %<&%> operand" msgstr "" ! #: c-family/c-common.c:9731 #, fuzzy, gcc-internal-format msgid "lvalue required in asm statement" msgstr "epäkelpo lvalue asm-lauseessa" ! #: c-family/c-common.c:9748 #, fuzzy, gcc-internal-format msgid "invalid type argument (have %qT)" msgstr "virheellinen %qs-tyyppiargumentti (pitäisi olla %qT)" ! #: c-family/c-common.c:9752 #, fuzzy, gcc-internal-format msgid "invalid type argument of array indexing (have %qT)" msgstr "virheellinen %qs-tyyppiargumentti (pitäisi olla %qT)" ! #: c-family/c-common.c:9757 #, fuzzy, gcc-internal-format msgid "invalid type argument of unary %<*%> (have %qT)" msgstr "virheellinen %qs-tyyppiargumentti (pitäisi olla %qT)" ! #: c-family/c-common.c:9762 #, fuzzy, gcc-internal-format msgid "invalid type argument of %<->%> (have %qT)" msgstr "virheellinen %qs-tyyppiargumentti (pitäisi olla %qT)" ! #: c-family/c-common.c:9767 #, fuzzy, gcc-internal-format msgid "invalid type argument of implicit conversion (have %qT)" msgstr "virheellinen %qs-tyyppiargumentti (pitäisi olla %qT)" ! #: c-family/c-common.c:9897 cp/init.c:2373 ! #, gcc-internal-format msgid "size of array is too large" ! msgstr "taulukon koko on liian suuri" ! #: c-family/c-common.c:9945 c-family/c-common.c:10001 c/c-typeck.c:3185 #, gcc-internal-format msgid "too few arguments to function %qE" msgstr "liian vähän argumentteja funktiolle %qE" ! #: c-family/c-common.c:9962 config/mep/mep.c:6175 c/c-typeck.c:5687 #, gcc-internal-format msgid "incompatible type for argument %d of %qE" msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" ! #: c-family/c-common.c:10094 #, fuzzy, gcc-internal-format msgid "incorrect number of arguments to function %qE" msgstr "liian vähän argumentteja funktiolle %qE" ! #: c-family/c-common.c:10102 #, fuzzy, gcc-internal-format msgid "argument 1 of %qE must be a non-void pointer type" msgstr "ylivuoto vakiolausekkeessa" ! #: c-family/c-common.c:10111 #, fuzzy, gcc-internal-format msgid "argument 1 of %qE must be a pointer to a constant size type" msgstr "argumentin %d antamisessa funktiolle %qE tehdään osoitin kokonaisluvusta ilman tyyppimuunnosta" ! #: c-family/c-common.c:10122 #, fuzzy, gcc-internal-format msgid "argument 1 of %qE must be a pointer to a nonzero size object" msgstr "argumentin %d antamisessa funktiolle %qE tehdään osoitin kokonaisluvusta ilman tyyppimuunnosta" ! #: c-family/c-common.c:10137 #, fuzzy, gcc-internal-format msgid "argument %d of %qE must be a pointer type" msgstr "ylivuoto vakiolausekkeessa" ! #: c-family/c-common.c:10144 #, fuzzy, gcc-internal-format msgid "size mismatch in argument %d of %qE" msgstr " alustettaessa funktion %2$qD argumenttia %1$P" ! #: c-family/c-common.c:10160 #, fuzzy, gcc-internal-format msgid "invalid memory model argument %d of %qE" msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" ! #: c-family/c-common.c:10167 #, fuzzy, gcc-internal-format msgid "non-integer memory model argument %d of %qE" msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" ! #: c-family/c-common.c:10694 #, gcc-internal-format msgid "array subscript has type %" msgstr "taulukon indeksin tyyppi on %" ! #: c-family/c-common.c:10729 c-family/c-common.c:10732 #, gcc-internal-format msgid "suggest parentheses around %<+%> inside %<<<%>" msgstr "ehdotetaan sulkeita %<+%>:n ympärille %<<<%>:n sisällä" ! #: c-family/c-common.c:10735 c-family/c-common.c:10738 #, gcc-internal-format msgid "suggest parentheses around %<-%> inside %<<<%>" msgstr "ehdotetaan sulkeita %<-%>:n ympärille %<<<%>:n sisällä" ! #: c-family/c-common.c:10744 c-family/c-common.c:10747 #, gcc-internal-format msgid "suggest parentheses around %<+%> inside %<>>%>" msgstr "ehdotetaan sulkeita %<+%>:n ympärille %<>>%>:n sisällä" ! #: c-family/c-common.c:10750 c-family/c-common.c:10753 #, gcc-internal-format msgid "suggest parentheses around %<-%> inside %<>>%>" msgstr "ehdotetaan sulkeita %<-%>:n ympärille %<>>%>:n sisällä" ! #: c-family/c-common.c:10759 c-family/c-common.c:10762 #, gcc-internal-format msgid "suggest parentheses around %<&&%> within %<||%>" msgstr "ehdotetaan sulkeita %<&&%>:n ympärille %<||%>:n sisällä" ! #: c-family/c-common.c:10769 c-family/c-common.c:10773 #, gcc-internal-format msgid "suggest parentheses around arithmetic in operand of %<|%>" msgstr "ehdotetaan sulkeita lausekkeen ympärille %<|%>:n operandissa" ! #: c-family/c-common.c:10777 c-family/c-common.c:10780 #, gcc-internal-format msgid "suggest parentheses around comparison in operand of %<|%>" msgstr "ehdotetaan sulkeita vertailun ympärille %<|%>:n operandissa" ! #: c-family/c-common.c:10785 #, gcc-internal-format msgid "suggest parentheses around operand of % or change %<|%> to %<||%> or % to %<~%>" msgstr "" ! #: c-family/c-common.c:10793 c-family/c-common.c:10797 #, gcc-internal-format msgid "suggest parentheses around arithmetic in operand of %<^%>" msgstr "ehdotetaan sulkeita lausekkeen ympärille %<^%>:n operandissa" ! #: c-family/c-common.c:10801 c-family/c-common.c:10804 #, gcc-internal-format msgid "suggest parentheses around comparison in operand of %<^%>" msgstr "ehdotetaan sulkeita vertailun ympärille %<^%>:n operandissa" ! #: c-family/c-common.c:10810 c-family/c-common.c:10813 #, gcc-internal-format msgid "suggest parentheses around %<+%> in operand of %<&%>" msgstr "ehdotetaan sulkeita %<+%>:n ympärille %<&%>:n operandissa" ! #: c-family/c-common.c:10816 c-family/c-common.c:10819 #, gcc-internal-format msgid "suggest parentheses around %<-%> in operand of %<&%>" msgstr "ehdotetaan sulkeita %<-%>:n ympärille %<&%>:n operandissa" ! #: c-family/c-common.c:10823 c-family/c-common.c:10826 #, gcc-internal-format msgid "suggest parentheses around comparison in operand of %<&%>" msgstr "ehdotetaan sulkeita vertailun ympärille %<&%>:n operandissa" ! #: c-family/c-common.c:10831 #, gcc-internal-format msgid "suggest parentheses around operand of % or change %<&%> to %<&&%> or % to %<~%>" msgstr "" ! #: c-family/c-common.c:10838 c-family/c-common.c:10841 #, gcc-internal-format msgid "suggest parentheses around comparison in operand of %<==%>" msgstr "ehdotetaan sulkeita vertailun ympärille %<==%>:n operandissa" ! #: c-family/c-common.c:10846 c-family/c-common.c:10849 #, gcc-internal-format msgid "suggest parentheses around comparison in operand of %" msgstr "ehdotetaan sulkeita vertailun ympärille %:n operandissa" ! #: c-family/c-common.c:10859 c-family/c-common.c:10865 #, gcc-internal-format msgid "comparisons like % do not have their mathematical meaning" msgstr "% -tyylisillä vertailuilla on eri merkitys kuin matematiikassa" ! #: c-family/c-common.c:10881 #, gcc-internal-format msgid "label %q+D defined but not used" msgstr "nimike %q+D määritelty mutta käytettämättä" ! #: c-family/c-common.c:10883 #, gcc-internal-format msgid "label %q+D declared but not defined" msgstr "nimike %qD esitelty muttei määritelty" ! #: c-family/c-common.c:10899 #, gcc-internal-format msgid "division by zero" msgstr "jako nollalla" ! #: c-family/c-common.c:10931 #, gcc-internal-format msgid "comparison between types %qT and %qT" msgstr "tyyppien %qT ja %qT välinen vertailu" ! #: c-family/c-common.c:10982 #, gcc-internal-format msgid "comparison between signed and unsigned integer expressions" msgstr "etumerkillisen ja etumerkittömän kokonaislukulausekkeen vertailu" ! #: c-family/c-common.c:11033 #, gcc-internal-format msgid "promoted ~unsigned is always non-zero" msgstr "" ! #: c-family/c-common.c:11036 #, gcc-internal-format msgid "comparison of promoted ~unsigned with constant" msgstr "" ! #: c-family/c-common.c:11046 #, gcc-internal-format msgid "comparison of promoted ~unsigned with unsigned" msgstr "" ! #: c-family/c-common.c:11224 #, fuzzy, gcc-internal-format msgid "typedef %qD locally defined but not used" msgstr "%Jnimike %qD määritelty, mutta ei käytetty" ! #: c-family/c-common.c:11463 #, gcc-internal-format msgid "index value is out of bound" msgstr "" ! #: c-family/c-common.c:11501 c-family/c-common.c:11551 ! #: c-family/c-common.c:11566 #, fuzzy, gcc-internal-format msgid "conversion of scalar %qT to vector %qT involves truncation" msgstr "muunnos tyypistä %qT tyyppiin %qT on moniselitteinen" *************** msgstr "funktio ei palauta merkkijonotyy *** 19358,19364 **** #: c-family/c-format.c:153 #, fuzzy, gcc-internal-format - #| msgid "format string argument not a string type" msgid "format string argument is not a string type" msgstr "muotomerkkijonoargumentti ei ole merkkijonotyyppiä" --- 19168,19173 ---- *************** msgstr "" *** 19379,19385 **** #: c-family/c-format.c:214 #, fuzzy, gcc-internal-format - #| msgid "first argument of %q+D should be %" msgid "format argument should be a %<%s%> reference" msgstr "%q+D:n ensimmäisen argumentin pitäisi olla %" --- 19188,19193 ---- *************** msgid "%qE is only allowed in Objective- *** 19394,19402 **** msgstr "%qs ei ole kelpo tulostetiedosto" #: c-family/c-format.c:282 ! #, fuzzy, gcc-internal-format msgid "%qE is an unrecognized format function type" ! msgstr "%qs on tunnistamaton muotofunktiotyyppi" #: c-family/c-format.c:296 #, gcc-internal-format --- 19202,19210 ---- msgstr "%qs ei ole kelpo tulostetiedosto" #: c-family/c-format.c:282 ! #, gcc-internal-format msgid "%qE is an unrecognized format function type" ! msgstr "%qE on tunnistamaton muotofunktiotyyppi" #: c-family/c-format.c:296 #, gcc-internal-format *************** msgstr "ylimääräisiä tyyppimääreit *** 19639,19663 **** #: c-family/c-format.c:2490 #, fuzzy, gcc-internal-format - #| msgid "format %q.*s expects type %<%s%s%>, but argument %d has type %qT" msgid "%s %<%s%.*s%> expects argument of type %<%s%s%>, but argument %d has type %qT" msgstr "muotoilu %q.*s odottaa tyyppiä %<%s%s%>, mutta %d. argumentin tyyppi on %qT" #: c-family/c-format.c:2497 #, fuzzy, gcc-internal-format - #| msgid "%qs expects a constant argument" msgid "%s %<%s%.*s%> expects a matching %<%s%s%> argument" msgstr "%qs odottaa vakioargumenttia" #: c-family/c-format.c:2505 #, fuzzy, gcc-internal-format - #| msgid "format %q.*s expects type %<%T%s%>, but argument %d has type %qT" msgid "%s %<%s%.*s%> expects argument of type %<%T%s%>, but argument %d has type %qT" msgstr "muotoilu %q.*s odottaa %<%T%s%>-tyyppiä, mutta %d. argumentin tyyppi on %qT" #: c-family/c-format.c:2512 #, fuzzy, gcc-internal-format - #| msgid "%qs expects a constant argument" msgid "%s %<%s%.*s%> expects a matching %<%T%s%> argument" msgstr "%qs odottaa vakioargumenttia" --- 19447,19467 ---- *************** msgstr "tämä desimaalivakio olisi etum *** 19749,19755 **** #: c-family/c-lex.c:666 #, fuzzy, gcc-internal-format - #| msgid "integer constant is too large for %qs type" msgid "integer constant is too large for % type" msgstr "kokonaislukuvakio on liian suuri tyypille %qs" --- 19553,19558 ---- *************** msgid "%<#pragma omp atomic capture%> us *** 19809,19822 **** msgstr "" #: c-family/c-omp.c:367 cp/semantics.c:4880 ! #, fuzzy, gcc-internal-format msgid "invalid type for iteration variable %qE" ! msgstr "epäkelpo vektorityyppi attribuutille %qs" #: c-family/c-omp.c:380 ! #, fuzzy, gcc-internal-format msgid "%qE is not initialized" ! msgstr "parametri %qD on alustettu" #: c-family/c-omp.c:397 cp/semantics.c:4795 #, gcc-internal-format --- 19612,19625 ---- msgstr "" #: c-family/c-omp.c:367 cp/semantics.c:4880 ! #, gcc-internal-format msgid "invalid type for iteration variable %qE" ! msgstr "virheellinen tyyppi iterointimuuttujalle %qE" #: c-family/c-omp.c:380 ! #, gcc-internal-format msgid "%qE is not initialized" ! msgstr "%qE:a ei ole alustettu" #: c-family/c-omp.c:397 cp/semantics.c:4795 #, gcc-internal-format *************** msgstr "tulostiedosto annettu kahdesti" *** 19866,19872 **** #: c-family/c-opts.c:822 #, gcc-internal-format msgid "-fexcess-precision=standard for C++" ! msgstr "" #: c-family/c-opts.c:835 #, gcc-internal-format --- 19669,19675 ---- #: c-family/c-opts.c:822 #, gcc-internal-format msgid "-fexcess-precision=standard for C++" ! msgstr "-fexcess-precision=standard C++-kielelle" #: c-family/c-opts.c:835 #, gcc-internal-format *************** msgstr "" *** 19961,19967 **** #: c-family/c-opts.c:1401 #, gcc-internal-format msgid "too late for # directive to set debug directory" ! msgstr "#-opastimen on myöhäistä asettaa debug-hakemistoa" #: c-family/c-pch.c:115 #, gcc-internal-format --- 19764,19770 ---- #: c-family/c-opts.c:1401 #, gcc-internal-format msgid "too late for # directive to set debug directory" ! msgstr "#-opastimen on liian myöhäistä asettaa vianjäljityshakemistoa" #: c-family/c-pch.c:115 #, gcc-internal-format *************** msgstr "ei voida luoda esikäännettyä *** 19973,20009 **** msgid "can%'t write to %s: %m" msgstr "ei voi kirjoittaa tiedostoon %s: %m" ! #: c-family/c-pch.c:191 #, gcc-internal-format msgid "can%'t write %s: %m" msgstr "ei voi kirjoittaa tiedostoon %s: %m" ! #: c-family/c-pch.c:219 c-family/c-pch.c:260 c-family/c-pch.c:311 #, gcc-internal-format msgid "can%'t read %s: %m" msgstr "ei voi lukea tiedostoa %s: %m" ! #: c-family/c-pch.c:417 #, gcc-internal-format msgid "pch_preprocess pragma should only be used with -fpreprocessed" msgstr "pch_preprocess-pragmaa tulee käyttää vain valitsimen -fpreprocessed kanssa" ! #: c-family/c-pch.c:418 #, gcc-internal-format msgid "use #include instead" msgstr "käytä #includea sen sijaan" ! #: c-family/c-pch.c:424 #, gcc-internal-format msgid "%s: couldn%'t open PCH file: %m" ! msgstr "%s: ei voida avata PCH-tiedostoa: %m" ! #: c-family/c-pch.c:429 #, gcc-internal-format msgid "use -Winvalid-pch for more information" msgstr "käytä -Winvalid-pch saadaksesi lisätietoja" ! #: c-family/c-pch.c:430 #, gcc-internal-format, gfc-internal-format msgid "%s: PCH file was invalid" msgstr "%s: PCH-tiedosto oli epäkelpo" --- 19776,19812 ---- msgid "can%'t write to %s: %m" msgstr "ei voi kirjoittaa tiedostoon %s: %m" ! #: c-family/c-pch.c:193 #, gcc-internal-format msgid "can%'t write %s: %m" msgstr "ei voi kirjoittaa tiedostoon %s: %m" ! #: c-family/c-pch.c:221 c-family/c-pch.c:262 c-family/c-pch.c:313 #, gcc-internal-format msgid "can%'t read %s: %m" msgstr "ei voi lukea tiedostoa %s: %m" ! #: c-family/c-pch.c:419 #, gcc-internal-format msgid "pch_preprocess pragma should only be used with -fpreprocessed" msgstr "pch_preprocess-pragmaa tulee käyttää vain valitsimen -fpreprocessed kanssa" ! #: c-family/c-pch.c:420 #, gcc-internal-format msgid "use #include instead" msgstr "käytä #includea sen sijaan" ! #: c-family/c-pch.c:426 #, gcc-internal-format msgid "%s: couldn%'t open PCH file: %m" ! msgstr "%s: ei voitu avata PCH-tiedostoa: %m" ! #: c-family/c-pch.c:431 #, gcc-internal-format msgid "use -Winvalid-pch for more information" msgstr "käytä -Winvalid-pch saadaksesi lisätietoja" ! #: c-family/c-pch.c:432 #, gcc-internal-format, gfc-internal-format msgid "%s: PCH file was invalid" msgstr "%s: PCH-tiedosto oli epäkelpo" *************** msgid "malformed %<#pragma pack(pop[, id *** 20044,20052 **** msgstr "väärinmuodostettu %<#pragma pack(pop[, id])%> - jätetään huomiotta" #: c-family/c-pragma.c:173 ! #, fuzzy, gcc-internal-format msgid "unknown action %qE for %<#pragma pack%> - ignored" ! msgstr "tuntematon toiminto %qs ilmaisulle %<#pragma pack%> - jätetään huomiotta" #: c-family/c-pragma.c:202 #, gcc-internal-format --- 19847,19855 ---- msgstr "väärinmuodostettu %<#pragma pack(pop[, id])%> - jätetään huomiotta" #: c-family/c-pragma.c:173 ! #, gcc-internal-format msgid "unknown action %qE for %<#pragma pack%> - ignored" ! msgstr "tuntematon toiminto %qE ilmaisulle %<#pragma pack%> - jätetään huomiotta" #: c-family/c-pragma.c:202 #, gcc-internal-format *************** msgstr "#pragma pack ei vaikuta -fpack-s *** 20061,20072 **** #: c-family/c-pragma.c:225 #, gcc-internal-format, gfc-internal-format msgid "alignment must be a small power of two, not %d" ! msgstr "tasauksen pitää olla kahden potenssi, ei %d" #: c-family/c-pragma.c:263 #, fuzzy, gcc-internal-format msgid "applying #pragma weak %q+D after first use results in unspecified behavior" ! msgstr "%J#pragma weak %qD -ilmaisun soveltaminen ensimmäisen käytön jälkeen käyttäytyy määrittelemättömästi" #: c-family/c-pragma.c:354 c-family/c-pragma.c:359 #, gcc-internal-format --- 19864,19875 ---- #: c-family/c-pragma.c:225 #, gcc-internal-format, gfc-internal-format msgid "alignment must be a small power of two, not %d" ! msgstr "kohdistuksen pitää olla kahden potenssi, ei %d" #: c-family/c-pragma.c:263 #, fuzzy, gcc-internal-format msgid "applying #pragma weak %q+D after first use results in unspecified behavior" ! msgstr "#pragma weak %q+D -ilmaisun soveltaminen ensimmäisen käytön jälkeen johtaa määrittelemättömään toimintaan" #: c-family/c-pragma.c:354 c-family/c-pragma.c:359 #, gcc-internal-format *************** msgid "malformed #pragma weak, ignored" *** 20074,20082 **** msgstr "väärinmuodostettu #pragma weak, jätetään huomiotta" #: c-family/c-pragma.c:363 ! #, fuzzy, gcc-internal-format msgid "junk at end of %<#pragma weak%>" ! msgstr "roskaa ilmaisun %<#pragma pack%> lopussa" #: c-family/c-pragma.c:430 c-family/c-pragma.c:432 #, gcc-internal-format --- 19877,19885 ---- msgstr "väärinmuodostettu #pragma weak, jätetään huomiotta" #: c-family/c-pragma.c:363 ! #, gcc-internal-format msgid "junk at end of %<#pragma weak%>" ! msgstr "roskaa ilmaisun %<#pragma weak%> lopussa" #: c-family/c-pragma.c:430 c-family/c-pragma.c:432 #, gcc-internal-format *************** msgid "malformed #pragma redefine_extnam *** 20084,20092 **** msgstr "väärinmuodostettu #pragma redefine_extname, jätetään huomiotta" #: c-family/c-pragma.c:435 ! #, fuzzy, gcc-internal-format msgid "junk at end of %<#pragma redefine_extname%>" ! msgstr "roskaa ilmaisun #pragma redefine_extname lopussa" #: c-family/c-pragma.c:464 c-family/c-pragma.c:537 #, gcc-internal-format --- 19887,19895 ---- msgstr "väärinmuodostettu #pragma redefine_extname, jätetään huomiotta" #: c-family/c-pragma.c:435 ! #, gcc-internal-format msgid "junk at end of %<#pragma redefine_extname%>" ! msgstr "roskaa ilmaisun %<#pragma redefine_extname%> lopussa" #: c-family/c-pragma.c:464 c-family/c-pragma.c:537 #, gcc-internal-format *************** msgid "#pragma GCC visibility must be fo *** 20119,20127 **** msgstr "#pragma GCC visibility -ilmaisua pitää seurata joko push tai pop" #: c-family/c-pragma.c:668 ! #, fuzzy, gcc-internal-format msgid "no matching push for %<#pragma GCC visibility pop%>" ! msgstr "Vastaava push puuttuu ilmaisulle %<#pragma GCC visibility pop%>" #: c-family/c-pragma.c:673 c-family/c-pragma.c:680 #, gcc-internal-format --- 19922,19930 ---- msgstr "#pragma GCC visibility -ilmaisua pitää seurata joko push tai pop" #: c-family/c-pragma.c:668 ! #, gcc-internal-format msgid "no matching push for %<#pragma GCC visibility pop%>" ! msgstr "vastaava push puuttuu ilmaisulta %<#pragma GCC visibility pop%>" #: c-family/c-pragma.c:673 c-family/c-pragma.c:680 #, gcc-internal-format *************** msgid "unknown option after %<#pragma GC *** 20159,20172 **** msgstr "tuntematon toiminto %qs ilmaisulle %<#pragma pack%> - jätetään huomiotta" #: c-family/c-pragma.c:747 ! #, fuzzy, gcc-internal-format msgid "#pragma GCC option is not allowed inside functions" ! msgstr "#pragma GCC diagnostic ei ole sallittu funktion sisällä" #: c-family/c-pragma.c:760 ! #, fuzzy, gcc-internal-format msgid "%<#pragma GCC option%> is not a string" ! msgstr "väärinmuodostettu #pragma GCC pch_preprocess, jätetään huomiotta" #: c-family/c-pragma.c:787 #, gcc-internal-format --- 19962,19975 ---- msgstr "tuntematon toiminto %qs ilmaisulle %<#pragma pack%> - jätetään huomiotta" #: c-family/c-pragma.c:747 ! #, gcc-internal-format msgid "#pragma GCC option is not allowed inside functions" ! msgstr "#pragma GCC option ei ole sallittu funktioiden sisällä" #: c-family/c-pragma.c:760 ! #, gcc-internal-format msgid "%<#pragma GCC option%> is not a string" ! msgstr "%<#pragma GCC option%> ei ole merkkijono" #: c-family/c-pragma.c:787 #, gcc-internal-format *************** msgid "#pragma GCC target string... is b *** 20179,20187 **** msgstr "" #: c-family/c-pragma.c:816 ! #, fuzzy, gcc-internal-format msgid "#pragma GCC optimize is not allowed inside functions" ! msgstr "#pragma GCC diagnostic ei ole sallittu funktion sisällä" #: c-family/c-pragma.c:829 #, gcc-internal-format --- 19982,19990 ---- msgstr "" #: c-family/c-pragma.c:816 ! #, gcc-internal-format msgid "#pragma GCC optimize is not allowed inside functions" ! msgstr "#pragma GCC optimize ei ole sallittu funktioiden sisällä" #: c-family/c-pragma.c:829 #, gcc-internal-format *************** msgid "#pragma GCC optimize string... is *** 20199,20212 **** msgstr "" #: c-family/c-pragma.c:903 ! #, fuzzy, gcc-internal-format msgid "junk at end of %<#pragma push_options%>" ! msgstr "roskaa ilmaisun %<#pragma pack%> lopussa" #: c-family/c-pragma.c:933 ! #, fuzzy, gcc-internal-format msgid "junk at end of %<#pragma pop_options%>" ! msgstr "roskaa ilmaisun %<#pragma pack%> lopussa" #: c-family/c-pragma.c:940 #, gcc-internal-format --- 20002,20015 ---- msgstr "" #: c-family/c-pragma.c:903 ! #, gcc-internal-format msgid "junk at end of %<#pragma push_options%>" ! msgstr "roskaa ilmaisun %<#pragma push_options%> lopussa" #: c-family/c-pragma.c:933 ! #, gcc-internal-format msgid "junk at end of %<#pragma pop_options%>" ! msgstr "roskaa ilmaisun %<#pragma pop_options%> lopussa" #: c-family/c-pragma.c:940 #, gcc-internal-format *************** msgid "%<#pragma GCC pop_options%> witho *** 20214,20257 **** msgstr "" #: c-family/c-pragma.c:982 ! #, fuzzy, gcc-internal-format msgid "junk at end of %<#pragma reset_options%>" ! msgstr "roskaa ilmaisun #pragma extern_prefix lopussa" #: c-family/c-pragma.c:1020 c-family/c-pragma.c:1027 ! #, fuzzy, gcc-internal-format msgid "expected a string after %<#pragma message%>" ! msgstr "leveä merkkijonovakio %-lauseessa" #: c-family/c-pragma.c:1022 ! #, fuzzy, gcc-internal-format msgid "malformed %<#pragma message%>, ignored" ! msgstr "väärinmuodostettu #pragma weak, jätetään huomiotta" #: c-family/c-pragma.c:1032 ! #, fuzzy, gcc-internal-format msgid "junk at end of %<#pragma message%>" ! msgstr "roskaa ilmaisun %<#pragma pack%> lopussa" #: c-family/c-pragma.c:1035 ! #, fuzzy, gcc-internal-format, gfc-internal-format msgid "#pragma message: %s" ! msgstr "ohjelmat: %s\n" #: c-family/c-pragma.c:1072 ! #, fuzzy, gcc-internal-format msgid "invalid location for %, ignored" ! msgstr "väärinmuodostettu %<#pragma pack%> - jätetään huomiotta" #: c-family/c-pragma.c:1079 c-family/c-pragma.c:1093 ! #, fuzzy, gcc-internal-format msgid "malformed %<#pragma %s%>, ignored" ! msgstr "väärinmuodostettu #pragma weak, jätetään huomiotta" #: c-family/c-pragma.c:1099 ! #, fuzzy, gcc-internal-format msgid "junk at end of %<#pragma %s%>" ! msgstr "roskaa #pragma %s:n lopussa" #: c-family/c-pragma.c:1117 #, gcc-internal-format --- 20017,20060 ---- msgstr "" #: c-family/c-pragma.c:982 ! #, gcc-internal-format msgid "junk at end of %<#pragma reset_options%>" ! msgstr "roskaa ilmaisun %<#pragma reset_options%> lopussa" #: c-family/c-pragma.c:1020 c-family/c-pragma.c:1027 ! #, gcc-internal-format msgid "expected a string after %<#pragma message%>" ! msgstr "odotettiin merkkijonoa ilmaisun %<#pragma message%> jälkeen" #: c-family/c-pragma.c:1022 ! #, gcc-internal-format msgid "malformed %<#pragma message%>, ignored" ! msgstr "väärinmuodostettu %<#pragma message%>, jätetään huomiotta" #: c-family/c-pragma.c:1032 ! #, gcc-internal-format msgid "junk at end of %<#pragma message%>" ! msgstr "roskaa ilmaisun %<#pragma message%> lopussa" #: c-family/c-pragma.c:1035 ! #, gcc-internal-format, gfc-internal-format msgid "#pragma message: %s" ! msgstr "#pragma message: %s" #: c-family/c-pragma.c:1072 ! #, gcc-internal-format msgid "invalid location for %, ignored" ! msgstr "virheelinen sijainti ilmaisulle %<#pragma %s%>, jätetään huomiotta" #: c-family/c-pragma.c:1079 c-family/c-pragma.c:1093 ! #, gcc-internal-format msgid "malformed %<#pragma %s%>, ignored" ! msgstr "väärinmuodostettu %<#pragma %s%>, jätetään huomiotta" #: c-family/c-pragma.c:1099 ! #, gcc-internal-format msgid "junk at end of %<#pragma %s%>" ! msgstr "roskaa %<#pragma %s%>:n lopussa" #: c-family/c-pragma.c:1117 #, gcc-internal-format *************** msgstr "" *** 20270,20282 **** #: c-family/c-semantics.c:157 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "wrong type argument to abs" msgid "wrong type argument to %s" msgstr "abs-funktiolle annettu väärä tyyppiargumentti" #: c-family/cppspec.c:92 #, fuzzy, gcc-internal-format - #| msgid "\"%s\" is not a valid option to the preprocessor" msgid "%qs is not a valid option to the preprocessor" msgstr "â€%s†ei ole kelvollinen esikääntäjän valitsin" --- 20073,20083 ---- *************** msgid "-mshared-library-id=%s is not bet *** 20296,20304 **** msgstr "" #: common/config/bfin/bfin-common.c:323 ! #, fuzzy, gcc-internal-format, gfc-internal-format msgid "-mcpu=%s is not valid" ! msgstr "%qs ei ole kelpo tulostetiedosto" #: common/config/bfin/bfin-common.c:359 #, gcc-internal-format, gfc-internal-format --- 20097,20105 ---- msgstr "" #: common/config/bfin/bfin-common.c:323 ! #, gcc-internal-format, gfc-internal-format msgid "-mcpu=%s is not valid" ! msgstr "-mcpu=%s ei ole kelvollinen" #: common/config/bfin/bfin-common.c:359 #, gcc-internal-format, gfc-internal-format *************** msgstr "" *** 20392,20400 **** #: common/config/v850/v850-common.c:47 #, fuzzy, gcc-internal-format - #| msgid "requested alignment is too large" msgid "value passed in %qs is too large" ! msgstr "pyydetty tasaus on liian suuri" #: config/darwin-c.c:87 #, gcc-internal-format --- 20193,20200 ---- #: common/config/v850/v850-common.c:47 #, fuzzy, gcc-internal-format msgid "value passed in %qs is too large" ! msgstr "pyydetty kohdistus on liian suuri" #: config/darwin-c.c:87 #, gcc-internal-format *************** msgstr "" *** 20420,20431 **** #: config/darwin-c.c:139 #, gcc-internal-format msgid "missing '(' after '#pragma unused', ignoring" ! msgstr "puuttuva â€(†pragman â€#pragma unused†jälkeen, jätetään huomiotta" #: config/darwin-c.c:160 #, gcc-internal-format msgid "missing ')' after '#pragma unused', ignoring" ! msgstr "puuttuva â€)†pragman â€#pragma unused†jälkeen, jätetään huomiotta" #: config/darwin-c.c:163 #, gcc-internal-format --- 20220,20231 ---- #: config/darwin-c.c:139 #, gcc-internal-format msgid "missing '(' after '#pragma unused', ignoring" ! msgstr "puuttuva â€(†ilmaisun â€#pragma unused†jälkeen, jätetään huomiotta" #: config/darwin-c.c:160 #, gcc-internal-format msgid "missing ')' after '#pragma unused', ignoring" ! msgstr "puuttuva â€)†ilmaisun â€#pragma unused†jälkeen, jätetään huomiotta" #: config/darwin-c.c:163 #, gcc-internal-format *************** msgid "malformed '#pragma ms_struct {on| *** 20443,20451 **** msgstr "väärinmuodostettu â€#pragma ms_struct {on|off|reset}â€, jätetään huomiotta" #: config/darwin-c.c:185 ! #, fuzzy, gcc-internal-format msgid "junk at end of '#pragma ms_struct'" ! msgstr "roskaa ilmaisun #pragma weak lopussa" #: config/darwin-c.c:411 #, gcc-internal-format, gfc-internal-format --- 20243,20251 ---- msgstr "väärinmuodostettu â€#pragma ms_struct {on|off|reset}â€, jätetään huomiotta" #: config/darwin-c.c:185 ! #, gcc-internal-format msgid "junk at end of '#pragma ms_struct'" ! msgstr "roskaa ilmaisun â€#pragma ms_struct†lopussa" #: config/darwin-c.c:411 #, gcc-internal-format, gfc-internal-format *************** msgstr "" *** 20454,20460 **** #: config/darwin-c.c:594 #, fuzzy, gcc-internal-format - #| msgid "Unknown value %qs of -mmacosx-version-min" msgid "unknown value %qs of -mmacosx-version-min" msgstr "Tuntematon -mmacosx-version-min-arvo %qs" --- 20254,20259 ---- *************** msgstr "" *** 20490,20496 **** #: config/darwin.c:2689 #, fuzzy, gcc-internal-format - #| msgid "weakref is not supported in this configuration" msgid "protected visibility attribute not supported in this configuration; ignored" msgstr "weakref ei ole tuettu tässä konfiguraatiossa" --- 20289,20294 ---- *************** msgstr "" *** 20516,20528 **** #: config/darwin.c:3294 #, fuzzy, gcc-internal-format - #| msgid "built-in function %q+D declared as non-function" msgid "built-in function %qD requires the %<-mconstant-cfstrings%> flag" msgstr "sisäinen funktio %q+D esitelty ei-funktiona" #: config/darwin.c:3301 #, fuzzy, gcc-internal-format - #| msgid "built-in function %q+D declared as non-function" msgid "built-in function %qD takes one argument only" msgstr "sisäinen funktio %q+D esitelty ei-funktiona" --- 20314,20324 ---- *************** msgstr "profilointituki VxWorksille" *** 20629,20646 **** #: config/aarch64/aarch64-builtins.c:1032 #, fuzzy, gcc-internal-format - #| msgid "incompatible type for argument %d of %qE" msgid "incompatible type for argument %d, expected %" msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" #: config/aarch64/aarch64.c:3643 #, gcc-internal-format msgid "function profiling" ! msgstr "" #: config/aarch64/aarch64.c:4623 #, fuzzy, gcc-internal-format - #| msgid "missing filename after %qs" msgid "missing feature modifier after %qs" msgstr "tiedostonimi puuttuu %qs:n jälkeen" --- 20425,20440 ---- #: config/aarch64/aarch64-builtins.c:1032 #, fuzzy, gcc-internal-format msgid "incompatible type for argument %d, expected %" msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" #: config/aarch64/aarch64.c:3643 #, gcc-internal-format msgid "function profiling" ! msgstr "funktioprofilointi" #: config/aarch64/aarch64.c:4623 #, fuzzy, gcc-internal-format msgid "missing feature modifier after %qs" msgstr "tiedostonimi puuttuu %qs:n jälkeen" *************** msgstr "tuntematon konetila %qs" *** 20652,20685 **** #: config/aarch64/aarch64.c:4675 #, fuzzy, gcc-internal-format - #| msgid "missing path after %qs" msgid "missing arch name in -march=%qs" msgstr "polku puuttuu %qs:n jälkeen" #. ARCH name not found in list. #: config/aarch64/aarch64.c:4699 #, fuzzy, gcc-internal-format - #| msgid "Unknown value %qs of -mmacosx-version-min" msgid "unknown value %qs for -march" msgstr "Tuntematon -mmacosx-version-min-arvo %qs" #: config/aarch64/aarch64.c:4724 #, fuzzy, gcc-internal-format - #| msgid "missing path after %qs" msgid "missing cpu name in -mcpu=%qs" msgstr "polku puuttuu %qs:n jälkeen" #. CPU name not found in list. #: config/aarch64/aarch64.c:4747 #, fuzzy, gcc-internal-format - #| msgid "Unknown value %qs of -mmacosx-version-min" msgid "unknown value %qs for -mcpu" msgstr "Tuntematon -mmacosx-version-min-arvo %qs" #. CPU name not found in list. #: config/aarch64/aarch64.c:4771 #, fuzzy, gcc-internal-format - #| msgid "Unknown value %qs of -mmacosx-version-min" msgid "unknown value %qs for -mtune" msgstr "Tuntematon -mmacosx-version-min-arvo %qs" --- 20446,20474 ---- *************** msgstr "AAPCS ei tue valitsinta -mcallee *** 20847,20855 **** #: config/arm/arm.c:1923 #, fuzzy, gcc-internal-format - #| msgid "-fpic and -mapcs-reent are incompatible" msgid "iWMMXt and NEON are incompatible" ! msgstr "-fpic ja -mapcs-reent ovat yhteensopimattomat" #: config/arm/arm.c:1927 #, gcc-internal-format --- 20636,20643 ---- #: config/arm/arm.c:1923 #, fuzzy, gcc-internal-format msgid "iWMMXt and NEON are incompatible" ! msgstr "iWMMXt ja NEON ovat yhteensopimattomat" #: config/arm/arm.c:1927 #, gcc-internal-format *************** msgstr "" *** 20937,21131 **** #: config/i386/i386.c:34639 config/i386/i386.c:34690 config/i386/i386.c:34762 #: config/m68k/m68k.c:729 config/mcore/mcore.c:3046 config/mep/mep.c:3887 #: config/mep/mep.c:3901 config/mep/mep.c:3975 config/rl78/rl78.c:480 ! #: config/rs6000/rs6000.c:24833 config/rx/rx.c:2571 config/sh/sh.c:9515 ! #: config/sh/sh.c:9533 config/sh/sh.c:9562 config/sh/sh.c:9644 ! #: config/sh/sh.c:9667 config/spu/spu.c:3685 config/stormy16/stormy16.c:2207 #: config/v850/v850.c:2082 #, fuzzy, gcc-internal-format msgid "%qE attribute only applies to functions" msgstr "attribuutti %qs pätee vain funktiotyyppeihin" ! #: config/arm/arm.c:19315 #, gcc-internal-format msgid "unable to compute real location of stacked parameter" msgstr "" ! #: config/arm/arm.c:21257 #, fuzzy, gcc-internal-format msgid "argument must be a constant" msgstr "%<__builtin_expect%>-funktion toisen argumentin pitää olla vakio" #. @@@ better error message ! #: config/arm/arm.c:21632 config/arm/arm.c:21736 #, gcc-internal-format msgid "selector must be an immediate" msgstr "" ! #: config/arm/arm.c:21640 config/arm/arm.c:21685 config/arm/arm.c:21743 ! #: config/arm/arm.c:21752 #, gcc-internal-format msgid "the range of selector should be in 0 to 7" msgstr "" ! #: config/arm/arm.c:21645 config/arm/arm.c:21754 #, gcc-internal-format msgid "the range of selector should be in 0 to 3" msgstr "" ! #: config/arm/arm.c:21650 config/arm/arm.c:21756 #, gcc-internal-format msgid "the range of selector should be in 0 to 1" msgstr "" ! #: config/arm/arm.c:21822 #, gcc-internal-format msgid "mask must be an immediate" msgstr "" ! #: config/arm/arm.c:21827 #, fuzzy, gcc-internal-format msgid "the range of mask should be in 0 to 255" msgstr "haluttu sijainti ei ole kokonaislukuvakio" ! #: config/arm/arm.c:22015 #, gcc-internal-format msgid "the range of count should be in 0 to 32. please check the intrinsic _mm_rori_pi16 in code." msgstr "" ! #: config/arm/arm.c:22017 #, gcc-internal-format msgid "the range of count should be in 0 to 32. please check the intrinsic _mm_rori_pi32 in code." msgstr "" ! #: config/arm/arm.c:22019 #, gcc-internal-format msgid "the range of count should be in 0 to 32. please check the intrinsic _mm_ror_pi16 in code." msgstr "" ! #: config/arm/arm.c:22021 #, gcc-internal-format msgid "the range of count should be in 0 to 32. please check the intrinsic _mm_ror_pi32 in code." msgstr "" ! #: config/arm/arm.c:22027 #, gcc-internal-format msgid "the range of count should be in 0 to 64. please check the intrinsic _mm_rori_si64 in code." msgstr "" ! #: config/arm/arm.c:22029 #, gcc-internal-format msgid "the range of count should be in 0 to 64. please check the intrinsic _mm_ror_si64 in code." msgstr "" ! #: config/arm/arm.c:22034 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srli_pi16 in code." msgstr "" ! #: config/arm/arm.c:22036 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srli_pi32 in code." msgstr "" ! #: config/arm/arm.c:22038 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srli_si64 in code." msgstr "" ! #: config/arm/arm.c:22040 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_slli_pi16 in code." msgstr "" ! #: config/arm/arm.c:22042 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_slli_pi32 in code." msgstr "" ! #: config/arm/arm.c:22044 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_slli_si64 in code." msgstr "" ! #: config/arm/arm.c:22046 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srai_pi16 in code." msgstr "" ! #: config/arm/arm.c:22048 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srai_pi32 in code." msgstr "" ! #: config/arm/arm.c:22050 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srai_si64 in code." msgstr "" ! #: config/arm/arm.c:22052 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srl_pi16 in code." msgstr "" ! #: config/arm/arm.c:22054 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srl_pi32 in code." msgstr "" ! #: config/arm/arm.c:22056 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srl_si64 in code." msgstr "" ! #: config/arm/arm.c:22058 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_sll_pi16 in code." msgstr "" ! #: config/arm/arm.c:22060 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_sll_pi32 in code." msgstr "" ! #: config/arm/arm.c:22062 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_sll_si64 in code." msgstr "" ! #: config/arm/arm.c:22064 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_sra_pi16 in code." msgstr "" ! #: config/arm/arm.c:22066 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_sra_pi32 in code." msgstr "" ! #: config/arm/arm.c:22068 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_sra_si64 in code." msgstr "" ! #: config/arm/arm.c:22787 #, gcc-internal-format msgid "no low registers available for popping high registers" msgstr "" ! #: config/arm/arm.c:23012 #, gcc-internal-format msgid "interrupt Service Routines cannot be coded in Thumb mode" msgstr "" #: config/avr/avr-c.c:65 config/avr/avr-c.c:190 #, fuzzy, gcc-internal-format - #| msgid "%qs expects a constant argument" msgid "%qs expects 1 argument but %d given" msgstr "%qs odottaa vakioargumenttia" #: config/avr/avr-c.c:76 #, fuzzy, gcc-internal-format - #| msgid "%qs expects a constant argument" msgid "%qs expects a fixed-point value as argument" msgstr "%qs odottaa vakioargumenttia" --- 20725,20917 ---- #: config/i386/i386.c:34639 config/i386/i386.c:34690 config/i386/i386.c:34762 #: config/m68k/m68k.c:729 config/mcore/mcore.c:3046 config/mep/mep.c:3887 #: config/mep/mep.c:3901 config/mep/mep.c:3975 config/rl78/rl78.c:480 ! #: config/rs6000/rs6000.c:24833 config/rx/rx.c:2571 config/sh/sh.c:9512 ! #: config/sh/sh.c:9530 config/sh/sh.c:9559 config/sh/sh.c:9641 ! #: config/sh/sh.c:9664 config/spu/spu.c:3685 config/stormy16/stormy16.c:2207 #: config/v850/v850.c:2082 #, fuzzy, gcc-internal-format msgid "%qE attribute only applies to functions" msgstr "attribuutti %qs pätee vain funktiotyyppeihin" ! #: config/arm/arm.c:19325 #, gcc-internal-format msgid "unable to compute real location of stacked parameter" msgstr "" ! #: config/arm/arm.c:21267 #, fuzzy, gcc-internal-format msgid "argument must be a constant" msgstr "%<__builtin_expect%>-funktion toisen argumentin pitää olla vakio" #. @@@ better error message ! #: config/arm/arm.c:21642 config/arm/arm.c:21746 #, gcc-internal-format msgid "selector must be an immediate" msgstr "" ! #: config/arm/arm.c:21650 config/arm/arm.c:21695 config/arm/arm.c:21753 ! #: config/arm/arm.c:21762 #, gcc-internal-format msgid "the range of selector should be in 0 to 7" msgstr "" ! #: config/arm/arm.c:21655 config/arm/arm.c:21764 #, gcc-internal-format msgid "the range of selector should be in 0 to 3" msgstr "" ! #: config/arm/arm.c:21660 config/arm/arm.c:21766 #, gcc-internal-format msgid "the range of selector should be in 0 to 1" msgstr "" ! #: config/arm/arm.c:21832 #, gcc-internal-format msgid "mask must be an immediate" msgstr "" ! #: config/arm/arm.c:21837 #, fuzzy, gcc-internal-format msgid "the range of mask should be in 0 to 255" msgstr "haluttu sijainti ei ole kokonaislukuvakio" ! #: config/arm/arm.c:22025 #, gcc-internal-format msgid "the range of count should be in 0 to 32. please check the intrinsic _mm_rori_pi16 in code." msgstr "" ! #: config/arm/arm.c:22027 #, gcc-internal-format msgid "the range of count should be in 0 to 32. please check the intrinsic _mm_rori_pi32 in code." msgstr "" ! #: config/arm/arm.c:22029 #, gcc-internal-format msgid "the range of count should be in 0 to 32. please check the intrinsic _mm_ror_pi16 in code." msgstr "" ! #: config/arm/arm.c:22031 #, gcc-internal-format msgid "the range of count should be in 0 to 32. please check the intrinsic _mm_ror_pi32 in code." msgstr "" ! #: config/arm/arm.c:22037 #, gcc-internal-format msgid "the range of count should be in 0 to 64. please check the intrinsic _mm_rori_si64 in code." msgstr "" ! #: config/arm/arm.c:22039 #, gcc-internal-format msgid "the range of count should be in 0 to 64. please check the intrinsic _mm_ror_si64 in code." msgstr "" ! #: config/arm/arm.c:22044 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srli_pi16 in code." msgstr "" ! #: config/arm/arm.c:22046 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srli_pi32 in code." msgstr "" ! #: config/arm/arm.c:22048 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srli_si64 in code." msgstr "" ! #: config/arm/arm.c:22050 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_slli_pi16 in code." msgstr "" ! #: config/arm/arm.c:22052 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_slli_pi32 in code." msgstr "" ! #: config/arm/arm.c:22054 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_slli_si64 in code." msgstr "" ! #: config/arm/arm.c:22056 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srai_pi16 in code." msgstr "" ! #: config/arm/arm.c:22058 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srai_pi32 in code." msgstr "" ! #: config/arm/arm.c:22060 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srai_si64 in code." msgstr "" ! #: config/arm/arm.c:22062 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srl_pi16 in code." msgstr "" ! #: config/arm/arm.c:22064 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srl_pi32 in code." msgstr "" ! #: config/arm/arm.c:22066 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_srl_si64 in code." msgstr "" ! #: config/arm/arm.c:22068 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_sll_pi16 in code." msgstr "" ! #: config/arm/arm.c:22070 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_sll_pi32 in code." msgstr "" ! #: config/arm/arm.c:22072 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_sll_si64 in code." msgstr "" ! #: config/arm/arm.c:22074 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_sra_pi16 in code." msgstr "" ! #: config/arm/arm.c:22076 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_sra_pi32 in code." msgstr "" ! #: config/arm/arm.c:22078 #, gcc-internal-format msgid "the count should be no less than 0. please check the intrinsic _mm_sra_si64 in code." msgstr "" ! #: config/arm/arm.c:22797 #, gcc-internal-format msgid "no low registers available for popping high registers" msgstr "" ! #: config/arm/arm.c:23022 #, gcc-internal-format msgid "interrupt Service Routines cannot be coded in Thumb mode" msgstr "" #: config/avr/avr-c.c:65 config/avr/avr-c.c:190 #, fuzzy, gcc-internal-format msgid "%qs expects 1 argument but %d given" msgstr "%qs odottaa vakioargumenttia" #: config/avr/avr-c.c:76 #, fuzzy, gcc-internal-format msgid "%qs expects a fixed-point value as argument" msgstr "%qs odottaa vakioargumenttia" *************** msgstr "" *** 21141,21159 **** #: config/avr/avr-c.c:124 #, fuzzy, gcc-internal-format - #| msgid "%qs expects a constant argument" msgid "%qs expects 2 arguments but %d given" msgstr "%qs odottaa vakioargumenttia" #: config/avr/avr-c.c:136 config/avr/avr-c.c:201 #, fuzzy, gcc-internal-format - #| msgid "%qs expects a constant argument" msgid "%qs expects a fixed-point value as first argument" msgstr "%qs odottaa vakioargumenttia" #: config/avr/avr-c.c:144 #, fuzzy, gcc-internal-format - #| msgid "%qs expects a constant argument" msgid "%qs expects an integer value as second argument" msgstr "%qs odottaa vakioargumenttia" --- 20927,20942 ---- *************** msgstr "" *** 21257,21280 **** msgid "MCU %qs supported for assembler only" msgstr "" ! #: config/avr/avr.c:11718 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "case label does not reduce to an integer constant" msgid "%s expects a compile time integer constant" msgstr "case-nimike ei pelkisty kokonaislukuvakioksi" ! #: config/avr/avr.c:11732 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "%qs expects a constant argument" msgid "%s expects a compile time long integer constant as first argument" msgstr "%qs odottaa vakioargumenttia" ! #: config/avr/avr.c:11760 #, gcc-internal-format, gfc-internal-format msgid "rounding to %d bits has no effect for fixed-point value with %d fractional bits" msgstr "" ! #: config/avr/avr.c:11769 #, gcc-internal-format msgid "rounding result will always be 0" msgstr "" --- 21040,21066 ---- msgid "MCU %qs supported for assembler only" msgstr "" ! #: config/avr/avr.c:10816 ! #, fuzzy, gcc-internal-format ! msgid "conversion from address space %qs to address space %qs" ! msgstr "muunnos tyypistä %qT tyyppiin %qT" ! ! #: config/avr/avr.c:11778 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "%s expects a compile time integer constant" msgstr "case-nimike ei pelkisty kokonaislukuvakioksi" ! #: config/avr/avr.c:11792 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "%s expects a compile time long integer constant as first argument" msgstr "%qs odottaa vakioargumenttia" ! #: config/avr/avr.c:11820 #, gcc-internal-format, gfc-internal-format msgid "rounding to %d bits has no effect for fixed-point value with %d fractional bits" msgstr "" ! #: config/avr/avr.c:11829 #, gcc-internal-format msgid "rounding result will always be 0" msgstr "" *************** msgstr "" *** 21287,21293 **** #: config/bfin/bfin.c:2356 #, gcc-internal-format msgid "-mshared-library-id= specified without -mid-shared-library" ! msgstr "" #: config/bfin/bfin.c:2360 #, gcc-internal-format --- 21073,21079 ---- #: config/bfin/bfin.c:2356 #, gcc-internal-format msgid "-mshared-library-id= specified without -mid-shared-library" ! msgstr "-mshared-library-id= määritelty ilman valitsinta -mid-shared-library" #: config/bfin/bfin.c:2360 #, gcc-internal-format *************** msgstr "valitsimia -mbig-endian ja -mlit *** 21307,21313 **** #: config/bfin/bfin.c:2373 config/m68k/m68k.c:535 #, gcc-internal-format msgid "cannot specify both -msep-data and -mid-shared-library" ! msgstr "" #: config/bfin/bfin.c:2393 #, gcc-internal-format --- 21093,21099 ---- #: config/bfin/bfin.c:2373 config/m68k/m68k.c:535 #, gcc-internal-format msgid "cannot specify both -msep-data and -mid-shared-library" ! msgstr "ei voi määritellä sekä valitsinta -msep-date että -mid-shared-library" #: config/bfin/bfin.c:2393 #, gcc-internal-format *************** msgid "-mcoreb should be used with -mmul *** 21325,21333 **** msgstr "" #: config/bfin/bfin.c:2402 ! #, fuzzy, gcc-internal-format msgid "-mcorea and -mcoreb can%'t be used together" ! msgstr "valitsimia -mbig-endian ja -mlittle-endian ei voi käyttää yhdessä" #: config/bfin/bfin.c:4641 #, fuzzy, gcc-internal-format --- 21111,21119 ---- msgstr "" #: config/bfin/bfin.c:2402 ! #, gcc-internal-format msgid "-mcorea and -mcoreb can%'t be used together" ! msgstr "valitsimia -mcorea ja -mcoreb ei voi käyttää yhdessä" #: config/bfin/bfin.c:4641 #, fuzzy, gcc-internal-format *************** msgstr "" *** 21341,21349 **** #: config/bfin/bfin.c:4758 config/i386/winnt.c:60 config/mep/mep.c:3791 #: config/mep/mep.c:3929 ! #, fuzzy, gcc-internal-format msgid "%qE attribute only applies to variables" ! msgstr "attribuutti %qE pätee vain muuttujiin" #: config/bfin/bfin.c:4765 #, fuzzy, gcc-internal-format --- 21127,21135 ---- #: config/bfin/bfin.c:4758 config/i386/winnt.c:60 config/mep/mep.c:3791 #: config/mep/mep.c:3929 ! #, gcc-internal-format msgid "%qE attribute only applies to variables" ! msgstr "%qE-attribuutti pätee vain muuttujiin" #: config/bfin/bfin.c:4765 #, fuzzy, gcc-internal-format *************** msgid "invalid data model option -mdata- *** 21371,21380 **** msgstr "epäkelpo osoitintila %qs" #: config/cr16/cr16.h:431 ! #, fuzzy, gcc-internal-format ! #| msgid "profiler support for VxWorks" msgid "profiler support for CR16" ! msgstr "profilointituki VxWorksille" #. This function is for retrieving a part of an instruction name for #. an operator, for immediate output. If that ever happens for --- 21157,21165 ---- msgstr "epäkelpo osoitintila %qs" #: config/cr16/cr16.h:431 ! #, gcc-internal-format msgid "profiler support for CR16" ! msgstr "profilointituki CR16:lle" #. This function is for retrieving a part of an instruction name for #. an operator, for immediate output. If that ever happens for *************** msgstr "" *** 21433,21445 **** #: config/cris/cris.c:2932 #, fuzzy, gcc-internal-format - #| msgid "" msgid "unknown src" msgstr "" #: config/cris/cris.c:2993 #, fuzzy, gcc-internal-format - #| msgid "" msgid "unknown dest" msgstr "" --- 21218,21228 ---- *************** msgstr "" *** 21524,21535 **** #: config/epiphany/epiphany.c:1439 #, fuzzy, gcc-internal-format msgid "stack_offset must be at least 4" ! msgstr "tasauksen pitää olla kahden potenssi, ei %d" #: config/epiphany/epiphany.c:1441 #, fuzzy, gcc-internal-format msgid "stack_offset must be a multiple of 4" ! msgstr "tasauksen pitää olla kahden potenssi, ei %d" #: config/frv/frv.c:8684 #, gcc-internal-format --- 21307,21318 ---- #: config/epiphany/epiphany.c:1439 #, fuzzy, gcc-internal-format msgid "stack_offset must be at least 4" ! msgstr "kohdistuksen pitää olla kahden potenssi, ei %d" #: config/epiphany/epiphany.c:1441 #, fuzzy, gcc-internal-format msgid "stack_offset must be a multiple of 4" ! msgstr "kohdistuksen pitää olla kahden potenssi, ei %d" #: config/frv/frv.c:8684 #, gcc-internal-format *************** msgstr "" *** 21665,21671 **** #: config/i386/i386.c:3191 config/i386/i386.c:3203 #, fuzzy, gcc-internal-format - #| msgid "code model %s does not support PIC mode" msgid "code model %qs not supported in x32 mode" msgstr "koodimalli %s ei tue PIC-tilaa" --- 21448,21453 ---- *************** msgstr "" *** 21771,21777 **** #: config/i386/i386.c:4229 #, fuzzy, gcc-internal-format - #| msgid "alias argument not a string" msgid "attribute % argument not a string" msgstr "aliaksen argumentti ei ole merkkijono" --- 21553,21558 ---- *************** msgid "regparam and thiscall attributes *** 21796,21804 **** msgstr "" #: config/i386/i386.c:4945 config/i386/i386.c:34659 ! #, fuzzy, gcc-internal-format msgid "%qE attribute requires an integer constant argument" ! msgstr "%qs-attribuutti tarvitsee prototyyppejä, joilla nimettyjä argumentteja" #: config/i386/i386.c:4951 #, fuzzy, gcc-internal-format --- 21577,21585 ---- msgstr "" #: config/i386/i386.c:4945 config/i386/i386.c:34659 ! #, gcc-internal-format msgid "%qE attribute requires an integer constant argument" ! msgstr "%qE-attribuutti tarvitsee kokonaislukuvakioargumentin" #: config/i386/i386.c:4951 #, fuzzy, gcc-internal-format *************** msgstr "%Jei voi asettaa %qE-attribuutti *** 21808,21819 **** #: config/i386/i386.c:4976 config/i386/i386.c:5019 #, gcc-internal-format msgid "fastcall and cdecl attributes are not compatible" ! msgstr "" #: config/i386/i386.c:4980 #, gcc-internal-format msgid "fastcall and stdcall attributes are not compatible" ! msgstr "" #: config/i386/i386.c:4988 config/i386/i386.c:5037 #, gcc-internal-format --- 21589,21600 ---- #: config/i386/i386.c:4976 config/i386/i386.c:5019 #, gcc-internal-format msgid "fastcall and cdecl attributes are not compatible" ! msgstr "attribuutit fastcall ja cdecl eivät ole yhteensopivia" #: config/i386/i386.c:4980 #, gcc-internal-format msgid "fastcall and stdcall attributes are not compatible" ! msgstr "attribuutit fastcall ja stdcall eivät ole yhteensopivia" #: config/i386/i386.c:4988 config/i386/i386.c:5037 #, gcc-internal-format *************** msgstr "" *** 21823,21834 **** #: config/i386/i386.c:4998 config/i386/i386.c:5015 #, gcc-internal-format msgid "stdcall and cdecl attributes are not compatible" ! msgstr "" #: config/i386/i386.c:5002 #, gcc-internal-format msgid "stdcall and fastcall attributes are not compatible" ! msgstr "" #: config/i386/i386.c:5006 config/i386/i386.c:5033 #, gcc-internal-format --- 21604,21615 ---- #: config/i386/i386.c:4998 config/i386/i386.c:5015 #, gcc-internal-format msgid "stdcall and cdecl attributes are not compatible" ! msgstr "attribuutit stdcall ja cdecl eivät ole yhteensopivia" #: config/i386/i386.c:5002 #, gcc-internal-format msgid "stdcall and fastcall attributes are not compatible" ! msgstr "attribuutit stdcall ja fastcall eivät ole yhteensopivia" #: config/i386/i386.c:5006 config/i386/i386.c:5033 #, gcc-internal-format *************** msgstr "ISO C kieltää sisäkkäiset fu *** 21944,21950 **** #. around the addition and comparison. #: config/i386/i386.c:11261 #, fuzzy, gcc-internal-format - #| msgid "ISO C90 does not support flexible array members" msgid "-fsplit-stack does not support 3 register parameters" msgstr "ISO C90 ei tue joustavia taulukon jäseniä" --- 21725,21730 ---- *************** msgstr "" *** 21985,21991 **** #: config/i386/i386.c:29067 config/i386/i386.c:29512 #, fuzzy, gcc-internal-format - #| msgid "dwarf version %d is not supported" msgid "Virtual function multiversioning not supported" msgstr "dwarfin versio %d ei ole tuettu" --- 21765,21770 ---- *************** msgstr "#pragma redefine_extname ei ole *** 22006,22012 **** #: config/i386/i386.c:29695 #, fuzzy, gcc-internal-format - #| msgid "third argument to %<__builtin_prefetch%> must be a constant" msgid "Parameter to builtin must be a string constant or literal" msgstr "%<__builtin_prefetch%>-funktion kolmannen argumentin pitää olla vakio" --- 21785,21790 ---- *************** msgstr "%qE-attribuuttia ei huomioida" *** 22117,22123 **** #: config/i386/i386.c:42160 #, fuzzy, gcc-internal-format - #| msgid "Unknown architecture '%s'" msgid "Unknown architecture specific memory model" msgstr "Tuntematon arkkitehtuuri â€%sâ€" --- 21895,21900 ---- *************** msgstr "" *** 22169,22175 **** #: config/ia64/ia64-c.c:51 #, gcc-internal-format msgid "malformed #pragma builtin" ! msgstr "" #: config/ia64/ia64.c:703 #, fuzzy, gcc-internal-format --- 21946,21952 ---- #: config/ia64/ia64-c.c:51 #, gcc-internal-format msgid "malformed #pragma builtin" ! msgstr "vääränmuotoinen #pragma builtin" #: config/ia64/ia64.c:703 #, fuzzy, gcc-internal-format *************** msgid "invalid argument of %qE attribute *** 22177,22232 **** msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" #: config/ia64/ia64.c:716 ! #, fuzzy, gcc-internal-format msgid "an address area attribute cannot be specified for local variables" ! msgstr "%Jlohkoattribuuttia ei voi määrittää paikalliselle muuttujalle" #: config/ia64/ia64.c:723 ! #, fuzzy, gcc-internal-format msgid "address area of %q+D conflicts with previous declaration" ! msgstr "%J%qD:n lohko on ristiriidassa edellisen esittelyn kanssa" #: config/ia64/ia64.c:731 ! #, fuzzy, gcc-internal-format msgid "address area attribute cannot be specified for functions" ! msgstr "%Jlohkoattribuuttia ei voi määrittää paikalliselle muuttujalle" #: config/ia64/ia64.c:764 ! #, fuzzy, gcc-internal-format msgid "%qE attribute requires a string constant argument" ! msgstr "%qs-attribuutti tarvitsee prototyyppejä, joilla nimettyjä argumentteja" ! #: config/ia64/ia64.c:5885 config/pa/pa.c:416 config/sh/sh.c:9351 #: config/spu/spu.c:4897 #, gcc-internal-format msgid "value of -mfixed-range must have form REG1-REG2" msgstr "" ! #: config/ia64/ia64.c:5912 config/pa/pa.c:443 config/sh/sh.c:9377 #: config/spu/spu.c:4923 #, gcc-internal-format, gfc-internal-format msgid "%s-%s is an empty range" ! msgstr "" #: config/ia64/ia64.c:11098 ! #, fuzzy, gcc-internal-format msgid "version attribute is not a string" ! msgstr "näkyvyysargumentti ei ole merkkijono" #: config/iq2000/iq2000.c:1834 #, gcc-internal-format, gfc-internal-format msgid "gp_offset (%ld) or end_offset (%ld) is less than zero" ! msgstr "" #: config/iq2000/iq2000.c:2596 #, gcc-internal-format msgid "argument %qd is not a constant" ! msgstr "" #: config/iq2000/iq2000.c:2899 config/xtensa/xtensa.c:2438 #, gcc-internal-format msgid "PRINT_OPERAND_ADDRESS, null pointer" ! msgstr "" #: config/iq2000/iq2000.c:3054 #, gcc-internal-format, gfc-internal-format --- 21954,22009 ---- msgstr "funktiolle %2$qE annettu argumentin %1$d tyyppi on yhteensopimaton" #: config/ia64/ia64.c:716 ! #, gcc-internal-format msgid "an address area attribute cannot be specified for local variables" ! msgstr "osoitealueattribuuttia ei voi määritellä paikallisille muuttujille" #: config/ia64/ia64.c:723 ! #, gcc-internal-format msgid "address area of %q+D conflicts with previous declaration" ! msgstr "%q+D:n osoitealue on ristiriidassa edellisen esittelyn kanssa" #: config/ia64/ia64.c:731 ! #, gcc-internal-format msgid "address area attribute cannot be specified for functions" ! msgstr "osoitealueattribuuttia ei voi määritellä funktioille" #: config/ia64/ia64.c:764 ! #, gcc-internal-format msgid "%qE attribute requires a string constant argument" ! msgstr "%qE-attribuutti tarvitsee merkkijonovakioargumentin" ! #: config/ia64/ia64.c:5885 config/pa/pa.c:416 config/sh/sh.c:9348 #: config/spu/spu.c:4897 #, gcc-internal-format msgid "value of -mfixed-range must have form REG1-REG2" msgstr "" ! #: config/ia64/ia64.c:5912 config/pa/pa.c:443 config/sh/sh.c:9374 #: config/spu/spu.c:4923 #, gcc-internal-format, gfc-internal-format msgid "%s-%s is an empty range" ! msgstr "%s-%s on tyhjä väli" #: config/ia64/ia64.c:11098 ! #, gcc-internal-format msgid "version attribute is not a string" ! msgstr "versioattribuutti ei ole merkkijono" #: config/iq2000/iq2000.c:1834 #, gcc-internal-format, gfc-internal-format msgid "gp_offset (%ld) or end_offset (%ld) is less than zero" ! msgstr "gp_offset (%ld) tai end_offset (%ld) on pienempi kuin nolla" #: config/iq2000/iq2000.c:2596 #, gcc-internal-format msgid "argument %qd is not a constant" ! msgstr "argumentti %qd ei ole vakio" #: config/iq2000/iq2000.c:2899 config/xtensa/xtensa.c:2438 #, gcc-internal-format msgid "PRINT_OPERAND_ADDRESS, null pointer" ! msgstr "PRINT_OPERAND_ADDRESS, null-osoitin" #: config/iq2000/iq2000.c:3054 #, gcc-internal-format, gfc-internal-format *************** msgstr "" *** 22236,22242 **** #: config/iq2000/iq2000.c:3063 config/xtensa/xtensa.c:2292 #, gcc-internal-format msgid "PRINT_OPERAND null pointer" ! msgstr "" #: config/m32c/m32c-pragma.c:55 #, gcc-internal-format --- 22013,22019 ---- #: config/iq2000/iq2000.c:3063 config/xtensa/xtensa.c:2292 #, gcc-internal-format msgid "PRINT_OPERAND null pointer" ! msgstr "PRINT_OPERAND null-osoitin" #: config/m32c/m32c-pragma.c:55 #, gcc-internal-format *************** msgstr "#pragma GCC memregs ottaa luvun *** 22255,22267 **** #: config/m32c/m32c-pragma.c:105 #, fuzzy, gcc-internal-format - #| msgid "junk at end of #pragma %s" msgid "junk at end of #pragma ADDRESS" msgstr "roskaa #pragma %s:n lopussa" #: config/m32c/m32c-pragma.c:110 #, fuzzy, gcc-internal-format - #| msgid "malformed #pragma GCC visibility push" msgid "malformed #pragma ADDRESS variable address" msgstr "väärinmuodostettu #pragma GCC visibility push" --- 22032,22042 ---- *************** msgid "%qE attribute is not supported fo *** 22276,22290 **** msgstr "%Jlohkoattribuutteja ei tueta tälle kohteelle" #. The argument must be a constant integer. ! #: config/m32c/m32c.c:2934 config/sh/sh.c:9570 config/sh/sh.c:9676 #, fuzzy, gcc-internal-format msgid "%qE attribute argument not an integer constant" msgstr "haluttu sijainti ei ole kokonaislukuvakio" #: config/m32c/m32c.c:2943 ! #, fuzzy, gcc-internal-format msgid "%qE attribute argument should be between 18 to 255" ! msgstr "haluttu sijainti ei ole kokonaislukuvakio" #: config/m32c/m32c.c:4119 #, gcc-internal-format --- 22051,22065 ---- msgstr "%Jlohkoattribuutteja ei tueta tälle kohteelle" #. The argument must be a constant integer. ! #: config/m32c/m32c.c:2934 config/sh/sh.c:9567 config/sh/sh.c:9673 #, fuzzy, gcc-internal-format msgid "%qE attribute argument not an integer constant" msgstr "haluttu sijainti ei ole kokonaislukuvakio" #: config/m32c/m32c.c:2943 ! #, gcc-internal-format msgid "%qE attribute argument should be between 18 to 255" ! msgstr "%qE-attribuutin argumentin tulee olla välillä 18..255" #: config/m32c/m32c.c:4119 #, gcc-internal-format *************** msgid "% has no effect on *** 22292,22315 **** msgstr "" #: config/m32c/m32c.c:4223 ! #, fuzzy, gcc-internal-format msgid "% attribute directive ignored" ! msgstr "%qs-attribuuttidirektiivi jätetty huomiotta" #: config/m32r/m32r.c:382 #, gcc-internal-format msgid "invalid argument of %qs attribute" ! msgstr "" #: config/m68k/m68k.c:476 #, gcc-internal-format, gfc-internal-format msgid "-mcpu=%s conflicts with -march=%s" ! msgstr "" #: config/m68k/m68k.c:547 #, gcc-internal-format msgid "-mpcrel -fPIC is not currently supported on selected cpu" ! msgstr "" #: config/m68k/m68k.c:609 #, gcc-internal-format, gfc-internal-format --- 22067,22090 ---- msgstr "" #: config/m32c/m32c.c:4223 ! #, gcc-internal-format msgid "% attribute directive ignored" ! msgstr "%-attribuuttidirektiivi jätetty huomiotta" #: config/m32r/m32r.c:382 #, gcc-internal-format msgid "invalid argument of %qs attribute" ! msgstr "%qs-attribuutin virheellinen argumentti" #: config/m68k/m68k.c:476 #, gcc-internal-format, gfc-internal-format msgid "-mcpu=%s conflicts with -march=%s" ! msgstr "valitsin -mcpu=%s on ristiriidassa valitsimen -march=%s kanssa" #: config/m68k/m68k.c:547 #, gcc-internal-format msgid "-mpcrel -fPIC is not currently supported on selected cpu" ! msgstr "-mpcrel -fPIC ei ole nykyisin tuettu valitulle prosessorille" #: config/m68k/m68k.c:609 #, gcc-internal-format, gfc-internal-format *************** msgid "initialized variable %q+D is mark *** 22347,22355 **** msgstr "" #: config/mep/mep-pragma.c:71 ! #, fuzzy, gcc-internal-format msgid "junk at end of #pragma io_volatile" ! msgstr "roskaa #pragma %s:n lopussa" #: config/mep/mep-pragma.c:85 #, gcc-internal-format --- 22122,22130 ---- msgstr "" #: config/mep/mep-pragma.c:71 ! #, gcc-internal-format msgid "junk at end of #pragma io_volatile" ! msgstr "roskaa ilmaisun #pragma io_volatile lopussa" #: config/mep/mep-pragma.c:85 #, gcc-internal-format *************** msgstr "" *** 22374,22380 **** #: config/mep/mep-pragma.c:254 #, gcc-internal-format msgid "junk at end of #pragma GCC coprocessor width" ! msgstr "roskaa ilmaisun %<#pragma GCC coprocessor width%> lopussa" #: config/mep/mep-pragma.c:261 #, gcc-internal-format --- 22149,22155 ---- #: config/mep/mep-pragma.c:254 #, gcc-internal-format msgid "junk at end of #pragma GCC coprocessor width" ! msgstr "roskaa ilmaisun pragma GCC coprocessor width lopussa" #: config/mep/mep-pragma.c:261 #, gcc-internal-format *************** msgid "unknown #pragma GCC coprocessor % *** 22417,22425 **** msgstr "tuntematon #pragma GCC coprocessor %E" #: config/mep/mep-pragma.c:392 ! #, fuzzy, gcc-internal-format msgid "malformed #pragma call" ! msgstr "väärinmuodostettu #pragma weak, jätetään huomiotta" #: config/mep/mep.c:351 #, fuzzy, gcc-internal-format --- 22192,22200 ---- msgstr "tuntematon #pragma GCC coprocessor %E" #: config/mep/mep-pragma.c:392 ! #, gcc-internal-format msgid "malformed #pragma call" ! msgstr "väärinmuodostettu #pragma call" #: config/mep/mep.c:351 #, fuzzy, gcc-internal-format *************** msgid "-fpic is not supported" *** 22427,22470 **** msgstr "valitsin %qs ei ole enää tuettu" #: config/mep/mep.c:353 ! #, fuzzy, gcc-internal-format msgid "-fPIC is not supported" ! msgstr "ISO C ei tue kompleksikokonaiskulutyyppejä" #: config/mep/mep.c:355 #, gcc-internal-format msgid "only one of -ms and -mm may be given" ! msgstr "" #: config/mep/mep.c:357 #, gcc-internal-format msgid "only one of -ms and -ml may be given" ! msgstr "" #: config/mep/mep.c:359 #, gcc-internal-format msgid "only one of -mm and -ml may be given" ! msgstr "" #: config/mep/mep.c:361 #, gcc-internal-format msgid "only one of -ms and -mtiny= may be given" ! msgstr "" #: config/mep/mep.c:363 #, gcc-internal-format msgid "only one of -mm and -mtiny= may be given" ! msgstr "" #: config/mep/mep.c:365 #, gcc-internal-format msgid "-mclip currently has no effect without -mminmax" ! msgstr "" #: config/mep/mep.c:372 #, gcc-internal-format msgid "-mc= must be -mc=tiny, -mc=near, or -mc=far" ! msgstr "" #: config/mep/mep.c:1374 #, gcc-internal-format --- 22202,22245 ---- msgstr "valitsin %qs ei ole enää tuettu" #: config/mep/mep.c:353 ! #, gcc-internal-format msgid "-fPIC is not supported" ! msgstr "-fPIC ei ole tuettu" #: config/mep/mep.c:355 #, gcc-internal-format msgid "only one of -ms and -mm may be given" ! msgstr "vain yksi valitsimista -ms ja -mm voidaan antaa" #: config/mep/mep.c:357 #, gcc-internal-format msgid "only one of -ms and -ml may be given" ! msgstr "vain yksi valitsimista -ms ja -ml voidaan antaa" #: config/mep/mep.c:359 #, gcc-internal-format msgid "only one of -mm and -ml may be given" ! msgstr "vain yksi valitsimita -mm ja -ml voidaan antaa" #: config/mep/mep.c:361 #, gcc-internal-format msgid "only one of -ms and -mtiny= may be given" ! msgstr "vai yksi valitsimista -ms ja -mtiny voidaan antaa" #: config/mep/mep.c:363 #, gcc-internal-format msgid "only one of -mm and -mtiny= may be given" ! msgstr "vain yksi valitsimista -mm ja -mtiny= voidaan antaa" #: config/mep/mep.c:365 #, gcc-internal-format msgid "-mclip currently has no effect without -mminmax" ! msgstr "valitsimella -mclip ei nykyisin ole vaikutusta ilman valitsinta -mminmax" #: config/mep/mep.c:372 #, gcc-internal-format msgid "-mc= must be -mc=tiny, -mc=near, or -mc=far" ! msgstr "valitsimen -mc= on oltava -mc=tiny, -mc=near, tai -mc=far" #: config/mep/mep.c:1374 #, gcc-internal-format *************** msgid "address region attributes on poin *** 22487,22495 **** msgstr "" #: config/mep/mep.c:3853 ! #, fuzzy, gcc-internal-format msgid "%qE attribute only applies to variables and functions" ! msgstr "%qE-attribuutti soveltuu vain variadisiin funktioihin" #: config/mep/mep.c:3873 config/mep/mep.c:4189 #, gcc-internal-format --- 22262,22270 ---- msgstr "" #: config/mep/mep.c:3853 ! #, gcc-internal-format msgid "%qE attribute only applies to variables and functions" ! msgstr "%qE-attribuutti soveltuu vain muuttujiin ja funktioihin" #: config/mep/mep.c:3873 config/mep/mep.c:4189 #, gcc-internal-format *************** msgstr "funktiota % ei voi määr *** 22504,22525 **** #: config/mep/mep.c:3913 #, gcc-internal-format msgid "interrupt function must have return type of void" ! msgstr "" #: config/mep/mep.c:3918 ! #, fuzzy, gcc-internal-format msgid "interrupt function must have no arguments" ! msgstr "â€-%câ€-valitsimelle on annettava argumentti" #: config/mep/mep.c:3939 ! #, fuzzy, gcc-internal-format msgid "%qE attribute allows only an integer constant argument" ! msgstr "haluttu sijainti ei ole kokonaislukuvakio" #: config/mep/mep.c:3972 ! #, fuzzy, gcc-internal-format msgid "%qE attribute only applies to functions, not %s" ! msgstr "attribuutti %qs pätee vain funktiotyyppeihin" #: config/mep/mep.c:3983 #, fuzzy, gcc-internal-format, gfc-internal-format --- 22279,22300 ---- #: config/mep/mep.c:3913 #, gcc-internal-format msgid "interrupt function must have return type of void" ! msgstr "keskeytysfunktiolla on oltava void-paluutyyppi" #: config/mep/mep.c:3918 ! #, gcc-internal-format msgid "interrupt function must have no arguments" ! msgstr "keskeytysfunktiolla ei saa olla argumentteja" #: config/mep/mep.c:3939 ! #, gcc-internal-format msgid "%qE attribute allows only an integer constant argument" ! msgstr "%qE-attribuutti sallii vain kokonaislukuvakioargumentin" #: config/mep/mep.c:3972 ! #, gcc-internal-format msgid "%qE attribute only applies to functions, not %s" ! msgstr "%qE-attribuutti pätee vain funktioihin, ei %s" #: config/mep/mep.c:3983 #, fuzzy, gcc-internal-format, gfc-internal-format *************** msgstr "%J%qD on tavallisesti ei-staatti *** 22583,22594 **** #: config/mep/mep.c:6167 config/mep/mep.c:6284 #, fuzzy, gcc-internal-format msgid "argument %d of %qE must be in the range %d...%d" ! msgstr "tasauksen pitää olla kahden potenssi, ei %d" #: config/mep/mep.c:6170 #, fuzzy, gcc-internal-format msgid "argument %d of %qE must be a multiple of %d" ! msgstr "tasauksen pitää olla kahden potenssi, ei %d" #: config/mep/mep.c:6223 #, fuzzy, gcc-internal-format --- 22358,22369 ---- #: config/mep/mep.c:6167 config/mep/mep.c:6284 #, fuzzy, gcc-internal-format msgid "argument %d of %qE must be in the range %d...%d" ! msgstr "kohdistuksen pitää olla kahden potenssi, ei %d" #: config/mep/mep.c:6170 #, fuzzy, gcc-internal-format msgid "argument %d of %qE must be a multiple of %d" ! msgstr "kohdistuksen pitää olla kahden potenssi, ei %d" #: config/mep/mep.c:6223 #, fuzzy, gcc-internal-format *************** msgstr "" *** 22615,22636 **** msgid "unexpected %d byte cop instruction" msgstr "Käytä AltiVec-käskyjä" ! #: config/microblaze/microblaze.c:1311 #, fuzzy, gcc-internal-format msgid "-fPIC/-fpic not supported for this target" msgstr "säiekohtaista muistia ei tueta tälle kohteelle" ! #: config/microblaze/microblaze.c:1323 #, fuzzy, gcc-internal-format msgid "%qs is an invalid argument to -mcpu=" msgstr "tyyppi %qT ei ole tyypin %qT kantatyyppi" ! #: config/microblaze/microblaze.c:1372 #, gcc-internal-format msgid "-mxl-multiply-high can be used only with -mcpu=v6.00.a or greater" msgstr "" ! #: config/microblaze/microblaze.c:1384 #, gcc-internal-format msgid "-mxl-multiply-high requires -mno-xl-soft-mul" msgstr "" --- 22390,22421 ---- msgid "unexpected %d byte cop instruction" msgstr "Käytä AltiVec-käskyjä" ! #: config/microblaze/microblaze.c:1676 #, fuzzy, gcc-internal-format msgid "-fPIC/-fpic not supported for this target" msgstr "säiekohtaista muistia ei tueta tälle kohteelle" ! #: config/microblaze/microblaze.c:1688 #, fuzzy, gcc-internal-format msgid "%qs is an invalid argument to -mcpu=" msgstr "tyyppi %qT ei ole tyypin %qT kantatyyppi" ! #: config/microblaze/microblaze.c:1737 #, gcc-internal-format msgid "-mxl-multiply-high can be used only with -mcpu=v6.00.a or greater" msgstr "" ! #: config/microblaze/microblaze.c:1753 ! #, gcc-internal-format ! msgid "-mxl-reorder can be used only with -mcpu=v8.30.a or greater" ! msgstr "" ! ! #: config/microblaze/microblaze.c:1759 ! #, gcc-internal-format ! msgid "-mxl-reorder requires -mxl-pattern-compare for -mcpu=v8.30.a" ! msgstr "" ! ! #: config/microblaze/microblaze.c:1764 #, gcc-internal-format msgid "-mxl-multiply-high requires -mno-xl-soft-mul" msgstr "" *************** msgstr "" *** 22668,22674 **** #: config/mips/mips.c:9771 #, gcc-internal-format msgid "interrupt handlers cannot be MIPS16 functions" ! msgstr "" #: config/mips/mips.c:10596 #, gcc-internal-format --- 22453,22459 ---- #: config/mips/mips.c:9771 #, gcc-internal-format msgid "interrupt handlers cannot be MIPS16 functions" ! msgstr "keskeytyskäsittelijät eivät voi olla MIPS16-funktioita" #: config/mips/mips.c:10596 #, gcc-internal-format *************** msgstr "" *** 22859,22870 **** #: config/mmix/mmix.c:1971 #, gcc-internal-format msgid "stack frame not a multiple of 8 bytes: %wd" ! msgstr "" #: config/mmix/mmix.c:2210 #, gcc-internal-format msgid "stack frame not a multiple of octabyte: %wd" ! msgstr "" #: config/mmix/mmix.c:2496 config/mmix/mmix.c:2555 #, gcc-internal-format, gfc-internal-format --- 22644,22655 ---- #: config/mmix/mmix.c:1971 #, gcc-internal-format msgid "stack frame not a multiple of 8 bytes: %wd" ! msgstr "pinokehys ei ole 8:n tavun monikerta: %wd" #: config/mmix/mmix.c:2210 #, gcc-internal-format msgid "stack frame not a multiple of octabyte: %wd" ! msgstr "pinokehys ei ole oktaalitavun monikerta: %wd" #: config/mmix/mmix.c:2496 config/mmix/mmix.c:2555 #, gcc-internal-format, gfc-internal-format *************** msgstr "" *** 22928,22940 **** #: config/picochip/picochip.c:1589 #, fuzzy, gcc-internal-format - #| msgid "%qD has already been defined" msgid "LCFI labels have already been deferred" msgstr "%qD on jo määritelty" #: config/picochip/picochip.c:1652 #, fuzzy, gcc-internal-format - #| msgid "%qD has already been defined" msgid "LM label has already been deferred" msgstr "%qD on jo määritelty" --- 22713,22723 ---- *************** msgstr "" *** 22986,23003 **** #: config/picochip/picochip.c:4055 config/picochip/picochip.c:4148 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "%s: Second source operand is not a constant" ! msgstr "pyydetty tasaus ei ole vakio" #: config/picochip/picochip.c:4058 config/picochip/picochip.c:4109 #: config/picochip/picochip.c:4151 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "%s: Third source operand is not a constant" ! msgstr "pyydetty tasaus ei ole vakio" #: config/picochip/picochip.c:4112 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "%s: Fourth source operand is not a constant" ! msgstr "pyydetty tasaus ei ole vakio" #: config/picochip/picochip.c:4410 #, gcc-internal-format, gfc-internal-format --- 22769,22786 ---- #: config/picochip/picochip.c:4055 config/picochip/picochip.c:4148 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "%s: Second source operand is not a constant" ! msgstr "pyydetty kohdistus ei ole vakio" #: config/picochip/picochip.c:4058 config/picochip/picochip.c:4109 #: config/picochip/picochip.c:4151 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "%s: Third source operand is not a constant" ! msgstr "pyydetty kohdistus ei ole vakio" #: config/picochip/picochip.c:4112 #, fuzzy, gcc-internal-format, gfc-internal-format msgid "%s: Fourth source operand is not a constant" ! msgstr "pyydetty kohdistus ei ole vakio" #: config/picochip/picochip.c:4410 #, gcc-internal-format, gfc-internal-format *************** msgstr "-pg ei ole tuettu tällä alusta *** 23151,23162 **** #: config/rs6000/rs6000.c:2595 #, gcc-internal-format msgid "-mmultiple is not supported on little endian systems" ! msgstr "" #: config/rs6000/rs6000.c:2602 #, gcc-internal-format msgid "-mstring is not supported on little endian systems" ! msgstr "" #: config/rs6000/rs6000.c:2711 #, gcc-internal-format, gfc-internal-format --- 22934,22945 ---- #: config/rs6000/rs6000.c:2595 #, gcc-internal-format msgid "-mmultiple is not supported on little endian systems" ! msgstr "valitsin -mmultiple ei ole tuettu little-endian-järjestelmissä" #: config/rs6000/rs6000.c:2602 #, gcc-internal-format msgid "-mstring is not supported on little endian systems" ! msgstr "valitsin -mstring ei ole tuettu little-endian-järjestelmissä" #: config/rs6000/rs6000.c:2711 #, gcc-internal-format, gfc-internal-format *************** msgstr "sisäistä funktiota %qs ei voi *** 23216,23227 **** #: config/rs6000/rs6000.c:9938 #, gcc-internal-format msgid "argument 1 must be a 5-bit signed literal" ! msgstr "" #: config/rs6000/rs6000.c:10041 config/rs6000/rs6000.c:11058 #, gcc-internal-format msgid "argument 2 must be a 5-bit unsigned literal" ! msgstr "" #: config/rs6000/rs6000.c:10080 #, gcc-internal-format --- 22999,23010 ---- #: config/rs6000/rs6000.c:9938 #, gcc-internal-format msgid "argument 1 must be a 5-bit signed literal" ! msgstr "argumentin 1 on oltava 5-bittinen etumerkillinen literaali" #: config/rs6000/rs6000.c:10041 config/rs6000/rs6000.c:11058 #, gcc-internal-format msgid "argument 2 must be a 5-bit unsigned literal" ! msgstr "argumentin 2 on oltava 5-bittinen etumerkitön literaali" #: config/rs6000/rs6000.c:10080 #, gcc-internal-format *************** msgstr "" *** 23290,23314 **** #: config/rs6000/rs6000.c:11406 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "built-in function %q+D declared as non-function" msgid "Builtin function %s requires the -mvsx option" msgstr "sisäinen funktio %q+D esitelty ei-funktiona" #: config/rs6000/rs6000.c:11408 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "built-in function %q+D declared as non-function" msgid "Builtin function %s requires the -maltivec option" msgstr "sisäinen funktio %q+D esitelty ei-funktiona" #: config/rs6000/rs6000.c:11410 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "built-in function %q+D declared as non-function" msgid "Builtin function %s requires the -mpaired option" msgstr "sisäinen funktio %q+D esitelty ei-funktiona" #: config/rs6000/rs6000.c:11412 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "built-in function %q+D declared as non-function" msgid "Builtin function %s requires the -mspe option" msgstr "sisäinen funktio %q+D esitelty ei-funktiona" --- 23073,23093 ---- *************** msgstr "väärinmuodostettu #pragma GCC *** 23409,23415 **** #: config/rs6000/rs6000.c:27874 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "%s: PCH file was invalid" msgid "%s\"%s\"%s is invalid" msgstr "%s: PCH-tiedosto oli epäkelpo" --- 23188,23193 ---- *************** msgstr "" *** 23559,23565 **** #: config/rs6000/e500.h:41 #, fuzzy, gcc-internal-format - #| msgid "-pipe not supported" msgid "64-bit SPE not supported" msgstr "-pipe ei ole tuettu" --- 23337,23342 ---- *************** msgstr "taulukon %qs koko on negatiivine *** 23747,23809 **** msgid "%qs uses dynamic stack allocation" msgstr "" ! #: config/sh/sh.c:906 #, gcc-internal-format msgid "ignoring -fschedule-insns because of exception handling bug" msgstr "" ! #: config/sh/sh.c:923 #, gcc-internal-format msgid "unwind tables currently require either a frame pointer or -maccumulate-outgoing-args for correctness" msgstr "" ! #: config/sh/sh.c:8284 #, gcc-internal-format msgid "__builtin_saveregs not supported by this subtarget" msgstr "" ! #: config/sh/sh.c:9439 #, fuzzy, gcc-internal-format msgid "%qE attribute only applies to interrupt functions" msgstr "%qE-attribuutti soveltuu vain variadisiin funktioihin" ! #: config/sh/sh.c:9509 #, fuzzy, gcc-internal-format msgid "%qE attribute is supported only for SH2A" msgstr "%Jlohkoattribuutteja ei tueta tälle kohteelle" ! #: config/sh/sh.c:9539 #, gcc-internal-format msgid "attribute interrupt_handler is not compatible with -m5-compact" msgstr "" ! #: config/sh/sh.c:9556 #, fuzzy, gcc-internal-format msgid "%qE attribute only applies to SH2A" msgstr "attribuutti %qs pätee vain funktiotyyppeihin" ! #: config/sh/sh.c:9578 #, fuzzy, gcc-internal-format msgid "%qE attribute argument should be between 0 to 255" msgstr "haluttu sijainti ei ole kokonaislukuvakio" #. The argument must be a constant string. ! #: config/sh/sh.c:9651 #, fuzzy, gcc-internal-format msgid "%qE attribute argument not a string constant" msgstr "haluttu sijainti ei ole kokonaislukuvakio" ! #: config/sh/sh.c:12341 #, gcc-internal-format msgid "r0 needs to be available as a call-clobbered register" msgstr "" ! #: config/sh/sh.c:12362 #, gcc-internal-format msgid "need a second call-clobbered general purpose register" msgstr "" ! #: config/sh/sh.c:12370 #, gcc-internal-format msgid "need a call-clobbered target register" msgstr "" --- 23524,23586 ---- msgid "%qs uses dynamic stack allocation" msgstr "" ! #: config/sh/sh.c:903 #, gcc-internal-format msgid "ignoring -fschedule-insns because of exception handling bug" msgstr "" ! #: config/sh/sh.c:920 #, gcc-internal-format msgid "unwind tables currently require either a frame pointer or -maccumulate-outgoing-args for correctness" msgstr "" ! #: config/sh/sh.c:8281 #, gcc-internal-format msgid "__builtin_saveregs not supported by this subtarget" msgstr "" ! #: config/sh/sh.c:9436 #, fuzzy, gcc-internal-format msgid "%qE attribute only applies to interrupt functions" msgstr "%qE-attribuutti soveltuu vain variadisiin funktioihin" ! #: config/sh/sh.c:9506 #, fuzzy, gcc-internal-format msgid "%qE attribute is supported only for SH2A" msgstr "%Jlohkoattribuutteja ei tueta tälle kohteelle" ! #: config/sh/sh.c:9536 #, gcc-internal-format msgid "attribute interrupt_handler is not compatible with -m5-compact" msgstr "" ! #: config/sh/sh.c:9553 #, fuzzy, gcc-internal-format msgid "%qE attribute only applies to SH2A" msgstr "attribuutti %qs pätee vain funktiotyyppeihin" ! #: config/sh/sh.c:9575 #, fuzzy, gcc-internal-format msgid "%qE attribute argument should be between 0 to 255" msgstr "haluttu sijainti ei ole kokonaislukuvakio" #. The argument must be a constant string. ! #: config/sh/sh.c:9648 #, fuzzy, gcc-internal-format msgid "%qE attribute argument not a string constant" msgstr "haluttu sijainti ei ole kokonaislukuvakio" ! #: config/sh/sh.c:12338 #, gcc-internal-format msgid "r0 needs to be available as a call-clobbered register" msgstr "" ! #: config/sh/sh.c:12359 #, gcc-internal-format msgid "need a second call-clobbered general purpose register" msgstr "" ! #: config/sh/sh.c:12367 #, gcc-internal-format msgid "need a call-clobbered target register" msgstr "" *************** msgstr "" *** 23842,23848 **** #: config/sparc/sparc.c:1040 #, fuzzy, gcc-internal-format - #| msgid "thread-local storage not supported for this target" msgid "-fcall-saved-REG is not supported for out registers" msgstr "säiekohtaista muistia ei tueta tällä kohteella" --- 23619,23624 ---- *************** msgstr "" *** 23883,23901 **** #: config/spu/spu.c:6322 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "%s expects an integer literal in the range [%d, %d]." msgid "%s expects an integer literal in the range [%d, %d]" msgstr "%s odottaa kokonaislukuliteraalia väliltä [%d, %d]." #: config/spu/spu.c:6342 #, fuzzy, gcc-internal-format - #| msgid "%s expects an integer literal in the range [%d, %d]. (" msgid "%s expects an integer literal in the range [%d, %d]. (%wd)" msgstr "%s odottaa kokonaislukuliteraalia väliltä [%d, %d]. (" #: config/spu/spu.c:6371 #, fuzzy, gcc-internal-format, gfc-internal-format - #| msgid "%d least significant bits of %s are ignored." msgid "%d least significant bits of %s are ignored" msgstr "%d vähiten merkitsevää %s:n bittiä ei huomioida." --- 23659,23674 ---- *************** msgid "junk at end of #pragma ghs endzda *** 24010,24023 **** msgstr "" #: config/v850/v850.c:2119 ! #, fuzzy, gcc-internal-format msgid "data area attributes cannot be specified for local variables" ! msgstr "%Jlohkoattribuuttia ei voi määrittää paikalliselle muuttujalle" #: config/v850/v850.c:2130 ! #, fuzzy, gcc-internal-format msgid "data area of %q+D conflicts with previous declaration" ! msgstr "%J%qD:n lohko on ristiriidassa edellisen esittelyn kanssa" #: config/v850/v850.c:2261 #, gcc-internal-format, gfc-internal-format --- 23783,23796 ---- msgstr "" #: config/v850/v850.c:2119 ! #, gcc-internal-format msgid "data area attributes cannot be specified for local variables" ! msgstr "data-alueattribuutteja ei voi määritellä paikallisille muuttujille" #: config/v850/v850.c:2130 ! #, gcc-internal-format msgid "data area of %q+D conflicts with previous declaration" ! msgstr "%q+D:n data-alue on ristiriidassa edellisen esittelyn kanssa" #: config/v850/v850.c:2261 #, gcc-internal-format, gfc-internal-format *************** msgstr "" *** 24056,24074 **** #: config/vms/vms-c.c:44 #, fuzzy, gcc-internal-format - #| msgid "junk at end of #pragma %s" msgid "junk at end of #pragma __nostandard" msgstr "roskaa #pragma %s:n lopussa" #: config/vms/vms-c.c:55 #, fuzzy, gcc-internal-format - #| msgid "junk at end of #pragma %s" msgid "junk at end of #pragma __standard" msgstr "roskaa #pragma %s:n lopussa" #: config/vms/vms-c.c:80 #, fuzzy, gcc-internal-format - #| msgid "malformed '#pragma ms_struct', ignoring" msgid "malformed '#pragma member_alignment', ignoring" msgstr "väärinmuodostettu â€#pragma ms_structâ€, jätetään huomiotta" --- 23829,23844 ---- *************** msgstr "" *** 24079,24085 **** #: config/vms/vms-c.c:100 #, fuzzy, gcc-internal-format - #| msgid "malformed #pragma weak, ignored" msgid "malformed '#pragma member_alignment'" msgstr "väärinmuodostettu #pragma weak, jätetään huomiotta" --- 23849,23854 ---- *************** msgstr "roskaa ilmaisun #pragma weak lop *** 24095,24101 **** #: config/vms/vms-c.c:202 #, fuzzy, gcc-internal-format - #| msgid "malformed '#pragma options', ignoring" msgid "malformed '#pragma extern_model', ignoring" msgstr "väärin muotoiltu â€#pragma optionsâ€, ei huomioida" --- 23864,23869 ---- *************** msgstr "väärinmuodostettu #pragma weak *** 24121,24127 **** #: config/vms/vms-c.c:273 config/vms/vms-c.c:279 #, fuzzy, gcc-internal-format - #| msgid "malformed #pragma extern_prefix, ignored" msgid "malformed '#pragma __extern_prefix', ignoring" msgstr "väärinmuodostettu #pragma extern_prefix, jätetään huomiotta" --- 23889,23894 ---- *************** msgstr "%qE-attribuutti soveltuu vain va *** 24188,24211 **** #: ada/gcc-interface/utils.c:6194 #, fuzzy, gcc-internal-format - #| msgid "%qE attribute ignored" msgid "%qE attribute has no effect" msgstr "%qE-attribuuttia ei huomioida" #: ada/gcc-interface/utils.c:6300 ! #, fuzzy, gcc-internal-format msgid "invalid vector type for attribute %qs" msgstr "epäkelpo vektorityyppi attribuutille %qs" #: ada/gcc-interface/utils.c:6363 ! #, fuzzy, gcc-internal-format msgid "attribute %qs applies to array types only" ! msgstr "attribuutti %qs pätee vain funktiotyyppeihin" #: ada/gcc-interface/utils.c:6390 ! #, fuzzy, gcc-internal-format msgid "invalid element type for attribute %qs" ! msgstr "epäkelpo vektorityyppi attribuutille %qs" #. Except for passing an argument to an unprototyped function, #. this is a constraint violation. When passing an argument to --- 23955,23977 ---- #: ada/gcc-interface/utils.c:6194 #, fuzzy, gcc-internal-format msgid "%qE attribute has no effect" msgstr "%qE-attribuuttia ei huomioida" #: ada/gcc-interface/utils.c:6300 ! #, gcc-internal-format msgid "invalid vector type for attribute %qs" msgstr "epäkelpo vektorityyppi attribuutille %qs" #: ada/gcc-interface/utils.c:6363 ! #, gcc-internal-format msgid "attribute %qs applies to array types only" ! msgstr "attribuutti %qs soveltuu vain taulukkotyyppeihin" #: ada/gcc-interface/utils.c:6390 ! #, gcc-internal-format msgid "invalid element type for attribute %qs" ! msgstr "epäkelpo alkiotyyppi attribuutille %qs" #. Except for passing an argument to an unprototyped function, #. this is a constraint violation. When passing an argument to *************** msgid "conversion to non-scalar type req *** 24224,24232 **** msgstr "pyydetty muuntoa ei-skalaarityypiksi" #: c/c-decl.c:731 ! #, fuzzy, gcc-internal-format msgid "array %q+D assumed to have one element" ! msgstr "%Jtaulukolla %qD oletetaan olevan yksi alkio" #: c/c-decl.c:772 #, gcc-internal-format --- 23990,23998 ---- msgstr "pyydetty muuntoa ei-skalaarityypiksi" #: c/c-decl.c:731 ! #, gcc-internal-format msgid "array %q+D assumed to have one element" ! msgstr "taulukolla %q+D oletetaan olevan yksi alkio" #: c/c-decl.c:772 #, gcc-internal-format *************** msgid "GCC supports only %u nested scope *** 24244,24257 **** msgstr "GCC tukee korkeintaan %u sisäkkäistä näkyvyysaluetta" #: c/c-decl.c:1112 cp/decl.c:372 ! #, fuzzy, gcc-internal-format msgid "label %q+D used but not defined" ! msgstr "nimikettä %qD käytetty, mutta ei määritelty" #: c/c-decl.c:1157 ! #, fuzzy, gcc-internal-format msgid "nested function %q+D declared but never defined" ! msgstr "sisäkkäinen funktio %qs esitelty %:ksi" #: c/c-decl.c:1169 #, fuzzy, gcc-internal-format --- 24010,24023 ---- msgstr "GCC tukee korkeintaan %u sisäkkäistä näkyvyysaluetta" #: c/c-decl.c:1112 cp/decl.c:372 ! #, gcc-internal-format msgid "label %q+D used but not defined" ! msgstr "nimiötä %q+D käytetty mutta ei määritelty" #: c/c-decl.c:1157 ! #, gcc-internal-format msgid "nested function %q+D declared but never defined" ! msgstr "sisäkkäinen funktio %q+D esitelty mutta ei koskaan määritelty" #: c/c-decl.c:1169 #, fuzzy, gcc-internal-format *************** msgstr "käyttämätön muuttuja %q+D" *** 24265,24271 **** #: c/c-decl.c:1190 #, fuzzy, gcc-internal-format - #| msgid "label %q+D defined but not used" msgid "variable %qD set but not used" msgstr "nimike %q+D määritelty mutta käytettämättä" --- 24031,24036 ---- *************** msgid "type of array %q+D completed inco *** 24275,24308 **** msgstr "%Jtaulukon %qD tyyppi viimeistelty epäkelvosti implisiittisellä alustuksella" #: c/c-decl.c:1474 c/c-decl.c:5869 c/c-decl.c:6699 c/c-decl.c:7410 ! #, fuzzy, gcc-internal-format msgid "originally defined here" ! msgstr "funktion määrittely esitelty %<__thread%>:ksi" #: c/c-decl.c:1544 #, gcc-internal-format msgid "a parameter list with an ellipsis can%'t match an empty parameter name list declaration" ! msgstr "kolme pistettä sisältävä parametrilista ei sovellu tyhjään parametrinimi-listan esittelyyn" #: c/c-decl.c:1551 #, gcc-internal-format msgid "an argument type that has a default promotion can%'t match an empty parameter name list declaration" ! msgstr "argumenttityyppi, jolla on tavallinen tyyppimuunnos, ei sovi tyhjään parametrinimilistaesittelyyn" #: c/c-decl.c:1592 ! #, fuzzy, gcc-internal-format msgid "prototype for %q+D declares more arguments than previous old-style definition" ! msgstr "%Jfunktion %qD prototyyppi esittelee enemmän argumentteja kuin edellinen, vanhantyylinen määrittely" #: c/c-decl.c:1598 ! #, fuzzy, gcc-internal-format msgid "prototype for %q+D declares fewer arguments than previous old-style definition" ! msgstr "%Jfunktion %qD prototyyppi esittelee vähemmän argumentteja kuin edellinen, vanhantyylinen määrittely" #: c/c-decl.c:1607 #, gcc-internal-format msgid "prototype for %q+D declares argument %d with incompatible type" ! msgstr "prototyypin %q+D esittelemällä argumentilla %d on yhteensopimaton tyyppi" #. If we get here, no errors were found, but do issue a warning #. for this poor-style construct. --- 24040,24073 ---- msgstr "%Jtaulukon %qD tyyppi viimeistelty epäkelvosti implisiittisellä alustuksella" #: c/c-decl.c:1474 c/c-decl.c:5869 c/c-decl.c:6699 c/c-decl.c:7410 ! #, gcc-internal-format msgid "originally defined here" ! msgstr "alunperin määritelty täällä" #: c/c-decl.c:1544 #, gcc-internal-format msgid "a parameter list with an ellipsis can%'t match an empty parameter name list declaration" ! msgstr "kolme pistettä sisältävä parametriluettelo ei sovellu tyhjään parametrinimiluettelon esittelyyn" #: c/c-decl.c:1551 #, gcc-internal-format msgid "an argument type that has a default promotion can%'t match an empty parameter name list declaration" ! msgstr "argumenttityyppi, jolla on tavallinen tyyppimuunnos, ei sovi tyhjään parametrinimiluetteloesittelyyn" #: c/c-decl.c:1592 ! #, gcc-internal-format msgid "prototype for %q+D declares more arguments than previous old-style definition" ! msgstr "%q+D:n prototyyppi esittelee enemmän argumentteja kuin edellinen, vanhantyylinen määrittely" #: c/c-decl.c:1598 ! #, gcc-internal-format msgid "prototype for %q+D declares fewer arguments than previous old-style definition" ! msgstr "%q+D:n prototyyppi esittelee vähemmän argumentteja kuin edellinen, vanhantyylinen määrittely" #: c/c-decl.c:1607 #, gcc-internal-format msgid "prototype for %q+D declares argument %d with incompatible type" ! msgstr "%q+D:n prototyypou esittelee yhteensopimatonta tyyppiä olevan argumentin %d" #. If we get here, no errors were found, but do issue a warning #. for this poor-style construct. *************** msgid "declaration of %q+D shadows a bui *** 24342,24350 **** msgstr "%q+D:n esittely varjostaa sisäänrakennetun funktion" #: c/c-decl.c:1695 ! #, fuzzy, gcc-internal-format msgid "redeclaration of enumerator %q+D" ! msgstr "%Jluetellun tyypin jäsenen %qd uudelleenesittely" #. If types don't match for a built-in, throw away the #. built-in. No point in calling locate_old_decl here, it --- 24107,24115 ---- msgstr "%q+D:n esittely varjostaa sisäänrakennetun funktion" #: c/c-decl.c:1695 ! #, gcc-internal-format msgid "redeclaration of enumerator %q+D" ! msgstr "luetellun tyypin jäsenen %q+D uudelleenesittely" #. If types don't match for a built-in, throw away the #. built-in. No point in calling locate_old_decl here, it *************** msgstr "ristiriitaiset tyypit sisäisell *** 24357,24363 **** #: c/c-decl.c:1741 c/c-decl.c:1754 c/c-decl.c:1790 #, gcc-internal-format msgid "conflicting types for %q+D" ! msgstr "ristiriitaiset tyypit %qD:lle" #: c/c-decl.c:1770 #, fuzzy, gcc-internal-format --- 24122,24128 ---- #: c/c-decl.c:1741 c/c-decl.c:1754 c/c-decl.c:1790 #, gcc-internal-format msgid "conflicting types for %q+D" ! msgstr "ristiriitaiset tyypit %q+D:lle" #: c/c-decl.c:1770 #, fuzzy, gcc-internal-format *************** msgstr "ristiriitaiset tyyppimääreet % *** 24381,24393 **** #: c/c-decl.c:1812 #, fuzzy, gcc-internal-format - #| msgid "redefinition of typedef %q+D" msgid "redefinition of typedef %q+D with different type" msgstr "typedef %q+D määritelty uudelleen" #: c/c-decl.c:1825 #, fuzzy, gcc-internal-format - #| msgid "redefinition of typedef %q+D" msgid "redefinition of typedef %q+D with variably modified type" msgstr "typedef %q+D määritelty uudelleen" --- 24146,24156 ---- *************** msgid "declaration of %q+D shadows a pre *** 24492,24500 **** msgstr "%J%qD:n esittely varjostaa edellistä paikallista" #: c/c-decl.c:2580 cp/name-lookup.c:1153 cp/name-lookup.c:1196 ! #, fuzzy, gcc-internal-format msgid "shadowed declaration is here" ! msgstr "%Jvarjostunut esittely on täällä" #: c/c-decl.c:2707 #, gcc-internal-format --- 24255,24263 ---- msgstr "%J%qD:n esittely varjostaa edellistä paikallista" #: c/c-decl.c:2580 cp/name-lookup.c:1153 cp/name-lookup.c:1196 ! #, gcc-internal-format msgid "shadowed declaration is here" ! msgstr "varjostunut esittely on täällä" #: c/c-decl.c:2707 #, gcc-internal-format *************** msgstr "%qE esittelemättä (ensimmäine *** 24528,24534 **** #: c/c-decl.c:3020 #, fuzzy, gcc-internal-format - #| msgid "(Each undeclared identifier is reported only once" msgid "each undeclared identifier is reported only once for each function it appears in" msgstr "(Jokaisesta esittelemättömästä tunnisteesta ilmoitetaan vain" --- 24291,24296 ---- *************** msgid "label %qD defined here" *** 24553,24559 **** msgstr "nimiö %qD määritelty täällä" #: c/c-decl.c:3111 c/c-decl.c:3383 c/c-typeck.c:6979 cp/class.c:1339 ! #: cp/class.c:2928 #, gcc-internal-format msgid "%qD declared here" msgstr "%qD esitelty täällä" --- 24315,24321 ---- msgstr "nimiö %qD määritelty täällä" #: c/c-decl.c:3111 c/c-decl.c:3383 c/c-typeck.c:6979 cp/class.c:1339 ! #: cp/class.c:2932 #, gcc-internal-format msgid "%qD declared here" msgstr "%qD esitelty täällä" *************** msgid "jump into statement expression" *** 24564,24572 **** msgstr "ylivuoto vakiolausekkeessa" #: c/c-decl.c:3187 ! #, fuzzy, gcc-internal-format msgid "duplicate label declaration %qE" ! msgstr "%qs-nimikkeen kaksoisesittely" #: c/c-decl.c:3285 cp/decl.c:2984 #, gcc-internal-format --- 24326,24334 ---- msgstr "ylivuoto vakiolausekkeessa" #: c/c-decl.c:3187 ! #, gcc-internal-format msgid "duplicate label declaration %qE" ! msgstr "%qE-nimiön kaksoisesittely" #: c/c-decl.c:3285 cp/decl.c:2984 #, gcc-internal-format *************** msgstr "perinteisestä C:stä puuttuu er *** 24581,24592 **** #: c/c-decl.c:3381 #, gcc-internal-format msgid "switch jumps over variable initialization" ! msgstr "" #: c/c-decl.c:3382 c/c-decl.c:3393 #, gcc-internal-format msgid "switch starts here" ! msgstr "" #: c/c-decl.c:3392 #, fuzzy, gcc-internal-format --- 24343,24354 ---- #: c/c-decl.c:3381 #, gcc-internal-format msgid "switch jumps over variable initialization" ! msgstr "switch hyppää muuttuja-alustuksen yli" #: c/c-decl.c:3382 c/c-decl.c:3393 #, gcc-internal-format msgid "switch starts here" ! msgstr "switch alkaa tästä" #: c/c-decl.c:3392 #, fuzzy, gcc-internal-format *************** msgstr "tyhjä esittely tyyppimääreell *** 24617,24623 **** # XXX #: c/c-decl.c:3731 #, fuzzy, gcc-internal-format - #| msgid "empty declaration with type qualifier does not redeclare tag" msgid "empty declaration with %<_Alignas%> does not redeclare tag" msgstr "tyhjä esittely tyyppimääreellä ei esittele tunnistetta uudelleen" --- 24379,24384 ---- *************** msgstr "% tyhjässä esittelyss *** 24633,24639 **** #: c/c-decl.c:3774 #, fuzzy, gcc-internal-format - #| msgid "% in empty declaration" msgid "%<_Noreturn%> in empty declaration" msgstr "% tyhjässä esittelyssä" --- 24394,24399 ---- *************** msgstr "tarpeeton tyyppimääre tyhjäss *** 24664,24670 **** #: c/c-decl.c:3813 #, fuzzy, gcc-internal-format - #| msgid "useless %<__thread%> in empty declaration" msgid "useless %<_Alignas%> in empty declaration" msgstr "tarpeeton %<__thread%> tyhjässä esittelyssä" --- 24424,24429 ---- *************** msgstr "parametri %qD on alustettu" *** 24717,24723 **** #. sense to permit them to be initialized given that #. ordinary VLAs may not be initialized. #: c/c-decl.c:4055 c/c-decl.c:4070 c/c-typeck.c:6303 ! #, fuzzy, gcc-internal-format msgid "variable-sized object may not be initialized" msgstr "muuttuvakokoista objektia ei voi alustaa" --- 24476,24482 ---- #. sense to permit them to be initialized given that #. ordinary VLAs may not be initialized. #: c/c-decl.c:4055 c/c-decl.c:4070 c/c-typeck.c:6303 ! #, gcc-internal-format msgid "variable-sized object may not be initialized" msgstr "muuttuvakokoista objektia ei voi alustaa" *************** msgstr "muuttuvakokoista objektia ei voi *** 24726,24732 **** msgid "variable %qD has initializer but incomplete type" msgstr "muuttujalla %qD on alustin, mutta vaillinainen tyyppi" ! #: c/c-decl.c:4150 cp/decl.c:4529 cp/decl.c:12970 #, fuzzy, gcc-internal-format msgid "inline function %q+D given attribute noinline" msgstr "%Javoimelle funktiolle %qD annettu attribuutti noinline" --- 24485,24491 ---- msgid "variable %qD has initializer but incomplete type" msgstr "muuttujalla %qD on alustin, mutta vaillinainen tyyppi" ! #: c/c-decl.c:4150 cp/decl.c:4529 cp/decl.c:12961 #, fuzzy, gcc-internal-format msgid "inline function %q+D given attribute noinline" msgstr "%Javoimelle funktiolle %qD annettu attribuutti noinline" *************** msgstr "alustamaton const %qD" *** 24738,24744 **** #: c/c-decl.c:4203 cp/init.c:2130 cp/init.c:2145 #, fuzzy, gcc-internal-format - #| msgid "%q+D will be initialized after" msgid "%qD should be initialized" msgstr "%q+D alustetaan jäljempänä kuin" --- 24497,24502 ---- *************** msgid "zero or negative size array %q+D" *** 24758,24771 **** msgstr "nollan tai negatiivisen kokoinen taulukko %q+D" #: c/c-decl.c:4364 ! #, fuzzy, gcc-internal-format msgid "storage size of %q+D isn%'t constant" ! msgstr "%Jmuuttujan %qD koko muistissa ei ole vakio" #: c/c-decl.c:4414 ! #, fuzzy, gcc-internal-format msgid "ignoring asm-specifier for non-static local variable %q+D" ! msgstr "%Jei-staattisen paikallismuuttujan %qD asm-määrittäjä jätetään huomiotta" #: c/c-decl.c:4444 #, gcc-internal-format --- 24516,24529 ---- msgstr "nollan tai negatiivisen kokoinen taulukko %q+D" #: c/c-decl.c:4364 ! #, gcc-internal-format msgid "storage size of %q+D isn%'t constant" ! msgstr "muuttujan %q+D koko muistissa ei ole vakio" #: c/c-decl.c:4414 ! #, gcc-internal-format msgid "ignoring asm-specifier for non-static local variable %q+D" ! msgstr "ei-staattisen paikallismuuttujan %q+D asm-määrittäjä jätetään huomiotta" #: c/c-decl.c:4444 #, gcc-internal-format *************** msgid "cannot put object with volatile f *** 24773,24786 **** msgstr "ei voi laittaa volatile-kenttäistä objektia rekisteriin" #: c/c-decl.c:4531 ! #, fuzzy, gcc-internal-format msgid "uninitialized const %qD is invalid in C++" ! msgstr "alustamaton const %qD" #: c/c-decl.c:4589 #, gcc-internal-format msgid "ISO C forbids forward parameter declarations" ! msgstr "ISO C kieltää parametrien esittelyn etukäteen" #: c/c-decl.c:4684 #, gcc-internal-format --- 24531,24544 ---- msgstr "ei voi laittaa volatile-kenttäistä objektia rekisteriin" #: c/c-decl.c:4531 ! #, gcc-internal-format msgid "uninitialized const %qD is invalid in C++" ! msgstr "alustamaton vakio %qD on virheellinen C++-kielessä" #: c/c-decl.c:4589 #, gcc-internal-format msgid "ISO C forbids forward parameter declarations" ! msgstr "ISO C kieltää parametrien ennakkoesittelyn" #: c/c-decl.c:4684 #, gcc-internal-format *************** msgstr "bittikentän %qs leveys ei ole k *** 24794,24800 **** #: c/c-decl.c:4746 #, fuzzy, gcc-internal-format - #| msgid "bit-field %qs width not an integer constant" msgid "bit-field %qs width not an integer constant expression" msgstr "bittikentän %qs leveys ei ole kokonaislukuvakio" --- 24552,24557 ---- *************** msgid "the size of array can %'t be eval *** 24859,24872 **** msgstr "taulukon kokoa ei voida määrittää" #: c/c-decl.c:4853 ! #, fuzzy, gcc-internal-format msgid "variable length array %qE is used" ! msgstr "Varoita käyttämättömistä muuttujista" ! #: c/c-decl.c:4857 cp/decl.c:8274 #, gcc-internal-format msgid "variable length array is used" ! msgstr "" #: c/c-decl.c:5016 c/c-decl.c:5364 c/c-decl.c:5374 #, fuzzy, gcc-internal-format --- 24616,24629 ---- msgstr "taulukon kokoa ei voida määrittää" #: c/c-decl.c:4853 ! #, gcc-internal-format msgid "variable length array %qE is used" ! msgstr "käytetään muuttuvapituista taulukkoa %qE" ! #: c/c-decl.c:4857 cp/decl.c:8277 #, gcc-internal-format msgid "variable length array is used" ! msgstr "käytetään muuttuvapituista taulukkoa" #: c/c-decl.c:5016 c/c-decl.c:5364 c/c-decl.c:5374 #, fuzzy, gcc-internal-format *************** msgid "variably modified field at file s *** 24879,24892 **** msgstr "muuttuja tai kenttä %qs esitelty tyhjäksi" #: c/c-decl.c:5038 ! #, fuzzy, gcc-internal-format msgid "type defaults to % in declaration of %qE" ! msgstr "%qs:n esittelyssä tyyppi on oletuksena %" #: c/c-decl.c:5042 ! #, fuzzy, gcc-internal-format msgid "type defaults to % in type name" ! msgstr "%qs:n esittelyssä tyyppi on oletuksena %" # XXX #: c/c-decl.c:5075 --- 24636,24649 ---- msgstr "muuttuja tai kenttä %qs esitelty tyhjäksi" #: c/c-decl.c:5038 ! #, gcc-internal-format msgid "type defaults to % in declaration of %qE" ! msgstr "%qE:n esittelyssä tyyppi on oletuksena %" #: c/c-decl.c:5042 ! #, gcc-internal-format msgid "type defaults to % in type name" ! msgstr "tyypin nimessä tyyppi on oletuksena %" # XXX #: c/c-decl.c:5075 *************** msgid "function definition declared %<__ *** 24930,24955 **** msgstr "funktion määrittely esitelty %<__thread%>:ksi" #: c/c-decl.c:5130 ! #, fuzzy, gcc-internal-format msgid "storage class specified for structure field %qE" ! msgstr "tallennusluokka annettu tietueen kentälle %qs" #: c/c-decl.c:5133 ! #, fuzzy, gcc-internal-format msgid "storage class specified for structure field" ! msgstr "tallennusluokka annettu tietueen kentälle %qs" #: c/c-decl.c:5137 ! #, fuzzy, gcc-internal-format msgid "storage class specified for parameter %qE" ! msgstr "tallennusluokka annettu parametrille %qs" #: c/c-decl.c:5140 ! #, fuzzy, gcc-internal-format msgid "storage class specified for unnamed parameter" ! msgstr "tallennusluokka annettu parametrille %qs" ! #: c/c-decl.c:5143 cp/decl.c:9283 #, gcc-internal-format msgid "storage class specified for typename" msgstr "tallennusluokka annettu typenamelle" --- 24687,24712 ---- msgstr "funktion määrittely esitelty %<__thread%>:ksi" #: c/c-decl.c:5130 ! #, gcc-internal-format msgid "storage class specified for structure field %qE" ! msgstr "tallennusluokka annettu tietueen kentälle %qE" #: c/c-decl.c:5133 ! #, gcc-internal-format msgid "storage class specified for structure field" ! msgstr "tallennusluokka annettu tietueen kentälle" #: c/c-decl.c:5137 ! #, gcc-internal-format msgid "storage class specified for parameter %qE" ! msgstr "tallennusluokka annettu parametrille %qE" #: c/c-decl.c:5140 ! #, gcc-internal-format msgid "storage class specified for unnamed parameter" ! msgstr "tallennusluokka annettu nimettömälle parametrille" ! #: c/c-decl.c:5143 cp/decl.c:9279 #, gcc-internal-format msgid "storage class specified for typename" msgstr "tallennusluokka annettu typenamelle" *************** msgid "static or type qualifiers in non- *** 24993,25016 **** msgstr "staattinen tai tyyppimääreitä ei-parametrisessa taulukkoesittelijässä" #: c/c-decl.c:5276 ! #, fuzzy, gcc-internal-format msgid "declaration of %qE as array of voids" ! msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" #: c/c-decl.c:5278 ! #, fuzzy, gcc-internal-format msgid "declaration of type name as array of voids" ! msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" #: c/c-decl.c:5285 ! #, fuzzy, gcc-internal-format msgid "declaration of %qE as array of functions" ! msgstr "%qs esitelty funktiotaulukkona" #: c/c-decl.c:5288 ! #, fuzzy, gcc-internal-format msgid "declaration of type name as array of functions" ! msgstr "%qs esitelty funktiotaulukkona" #: c/c-decl.c:5295 c/c-decl.c:7196 #, gcc-internal-format --- 24750,24773 ---- msgstr "staattinen tai tyyppimääreitä ei-parametrisessa taulukkoesittelijässä" #: c/c-decl.c:5276 ! #, gcc-internal-format msgid "declaration of %qE as array of voids" ! msgstr "%qE:n esittely taulukollisena void-alkioita" #: c/c-decl.c:5278 ! #, gcc-internal-format msgid "declaration of type name as array of voids" ! msgstr "tyyppinimen esittely taulukollisena void-alkioita" #: c/c-decl.c:5285 ! #, gcc-internal-format msgid "declaration of %qE as array of functions" ! msgstr "%qE:n esittely taulukollisena funktioita" #: c/c-decl.c:5288 ! #, gcc-internal-format msgid "declaration of type name as array of functions" ! msgstr "tyyppinimen esittely taulukollisena funktioita" #: c/c-decl.c:5295 c/c-decl.c:7196 #, gcc-internal-format *************** msgid "size of array %qE is negative" *** 25043,25061 **** msgstr "taulukon %qE koko on negatiivinen" #: c/c-decl.c:5349 ! #, fuzzy, gcc-internal-format msgid "size of unnamed array is negative" ! msgstr "taulukon koko on negatiivinen" #: c/c-decl.c:5423 c/c-decl.c:5826 ! #, fuzzy, gcc-internal-format msgid "size of array %qE is too large" ! msgstr "taulukon %qs koko on liian suuri" #: c/c-decl.c:5426 c/c-decl.c:5828 ! #, fuzzy, gcc-internal-format msgid "size of unnamed array is too large" ! msgstr "taulukon %qs koko on liian suuri" #: c/c-decl.c:5463 #, gcc-internal-format --- 24800,24818 ---- msgstr "taulukon %qE koko on negatiivinen" #: c/c-decl.c:5349 ! #, gcc-internal-format msgid "size of unnamed array is negative" ! msgstr "nimettömän taulukon koko on negatiivinen" #: c/c-decl.c:5423 c/c-decl.c:5826 ! #, gcc-internal-format msgid "size of array %qE is too large" ! msgstr "taulukon %qE koko on liian suuri" #: c/c-decl.c:5426 c/c-decl.c:5828 ! #, gcc-internal-format msgid "size of unnamed array is too large" ! msgstr "nimettömän taulukon koko on liian suuri" #: c/c-decl.c:5463 #, gcc-internal-format *************** msgstr "ISO C90 ei tue joustavia tauluko *** 25064,25072 **** #. C99 6.7.5.2p4 #: c/c-decl.c:5484 ! #, fuzzy, gcc-internal-format msgid "%<[*]%> not in a declaration" ! msgstr "% tyhjässä esittelyssä" #: c/c-decl.c:5497 #, gcc-internal-format --- 24821,24829 ---- #. C99 6.7.5.2p4 #: c/c-decl.c:5484 ! #, gcc-internal-format msgid "%<[*]%> not in a declaration" ! msgstr "%<[*]%> ei ole esittelyssä" #: c/c-decl.c:5497 #, gcc-internal-format *************** msgid "array type has incomplete element *** 25074,25104 **** msgstr "taulukon tyypillä on vaillinainen alkiotyyppi" #: c/c-decl.c:5591 ! #, fuzzy, gcc-internal-format msgid "%qE declared as function returning a function" ! msgstr "%qs esitelty funktion palauttavana funktiona" #: c/c-decl.c:5594 ! #, fuzzy, gcc-internal-format msgid "type name declared as function returning a function" ! msgstr "%qs esitelty funktion palauttavana funktiona" #: c/c-decl.c:5601 ! #, fuzzy, gcc-internal-format msgid "%qE declared as function returning an array" ! msgstr "%qs esitelty taulukon palauttavan funktiona" #: c/c-decl.c:5604 ! #, fuzzy, gcc-internal-format msgid "type name declared as function returning an array" ! msgstr "%qs esitelty taulukon palauttavan funktiona" #: c/c-decl.c:5632 ! #, gcc-internal-format msgid "function definition has qualified void return type" msgstr "funktion määrittely oikeuttaa tyhjän paluutyypin" ! #: c/c-decl.c:5635 cp/decl.c:9411 #, gcc-internal-format msgid "type qualifiers ignored on function return type" msgstr "tyyppimääreet jätetään huomiotta funktion paluutyypissä" --- 24831,24861 ---- msgstr "taulukon tyypillä on vaillinainen alkiotyyppi" #: c/c-decl.c:5591 ! #, gcc-internal-format msgid "%qE declared as function returning a function" ! msgstr "%qE esitelty funktion palauttavana funktiona" #: c/c-decl.c:5594 ! #, gcc-internal-format msgid "type name declared as function returning a function" ! msgstr "tyyppinimi esitelty funktion palauttavana funktiona" #: c/c-decl.c:5601 ! #, gcc-internal-format msgid "%qE declared as function returning an array" ! msgstr "%qE esitelty taulukon palauttavan funktiona" #: c/c-decl.c:5604 ! #, gcc-internal-format msgid "type name declared as function returning an array" ! msgstr "tyyppinimi esitelty taulukon palauttavan funktiona" #: c/c-decl.c:5632 ! #, fuzzy, gcc-internal-format msgid "function definition has qualified void return type" msgstr "funktion määrittely oikeuttaa tyhjän paluutyypin" ! #: c/c-decl.c:5635 cp/decl.c:9407 #, gcc-internal-format msgid "type qualifiers ignored on function return type" msgstr "tyyppimääreet jätetään huomiotta funktion paluutyypissä" *************** msgid "%qs specified for auto variable % *** 25124,25152 **** msgstr "epäkelpo vektorityyppi attribuutille %qs" #: c/c-decl.c:5757 ! #, fuzzy, gcc-internal-format msgid "%qs specified for parameter %qE" ! msgstr "tallennusluokka annettu parametrille %qs" #: c/c-decl.c:5760 ! #, fuzzy, gcc-internal-format msgid "%qs specified for unnamed parameter" ! msgstr "tallennusluokka annettu parametrille %qs" #: c/c-decl.c:5766 ! #, fuzzy, gcc-internal-format msgid "%qs specified for structure field %qE" ! msgstr "tallennusluokka annettu tietueen kentälle %qs" #: c/c-decl.c:5769 ! #, fuzzy, gcc-internal-format msgid "%qs specified for structure field" ! msgstr "tallennusluokka annettu tietueen kentälle %qs" #: c/c-decl.c:5782 #, fuzzy, gcc-internal-format msgid "alignment specified for typedef %qE" ! msgstr "%Jtasausta ei voi määrittää %qD:lle" #: c/c-decl.c:5784 #, fuzzy, gcc-internal-format --- 24881,24909 ---- msgstr "epäkelpo vektorityyppi attribuutille %qs" #: c/c-decl.c:5757 ! #, gcc-internal-format msgid "%qs specified for parameter %qE" ! msgstr "%qs määritelty parametrille %qE" #: c/c-decl.c:5760 ! #, gcc-internal-format msgid "%qs specified for unnamed parameter" ! msgstr "%qs määritelty nimettömälle parametrille" #: c/c-decl.c:5766 ! #, gcc-internal-format msgid "%qs specified for structure field %qE" ! msgstr "%qs määritelty tietueen kentälle %qE" #: c/c-decl.c:5769 ! #, gcc-internal-format msgid "%qs specified for structure field" ! msgstr "%qs määritelty tietueen kentälle" #: c/c-decl.c:5782 #, fuzzy, gcc-internal-format msgid "alignment specified for typedef %qE" ! msgstr "kohdistusta ei voi määrittää %q+D:lle" #: c/c-decl.c:5784 #, fuzzy, gcc-internal-format *************** msgstr "tallennusluokka annettu parametr *** 25166,25172 **** #: c/c-decl.c:5796 #, fuzzy, gcc-internal-format msgid "alignment specified for bit-field %qE" ! msgstr "%Jtasausta ei voi määrittää %qD:lle" #: c/c-decl.c:5798 #, fuzzy, gcc-internal-format --- 24923,24929 ---- #: c/c-decl.c:5796 #, fuzzy, gcc-internal-format msgid "alignment specified for bit-field %qE" ! msgstr "%Jkohdistusta ei voi määrittää %qD:lle" #: c/c-decl.c:5798 #, fuzzy, gcc-internal-format *************** msgstr "ISO C kieltää const- ja volati *** 25209,25215 **** msgid "a member of a structure or union cannot have a variably modified type" msgstr "" ! #: c/c-decl.c:5915 cp/decl.c:8516 #, gcc-internal-format msgid "variable or field %qE declared void" msgstr "muuttuja tai kenttä %qE esitelty voidiksi" --- 24966,24972 ---- msgid "a member of a structure or union cannot have a variably modified type" msgstr "" ! #: c/c-decl.c:5915 cp/decl.c:8519 #, gcc-internal-format msgid "variable or field %qE declared void" msgstr "muuttuja tai kenttä %qE esitelty voidiksi" *************** msgid "attributes in parameter array dec *** 25220,25228 **** msgstr "parametritaulukon esittelijän attribuutit jätetään huomiotta" #: c/c-decl.c:5980 ! #, fuzzy, gcc-internal-format msgid "parameter %q+D declared %" ! msgstr "%Jparametri %qD esitelty %:ksi" #: c/c-decl.c:5982 #, fuzzy, gcc-internal-format --- 24977,24985 ---- msgstr "parametritaulukon esittelijän attribuutit jätetään huomiotta" #: c/c-decl.c:5980 ! #, gcc-internal-format msgid "parameter %q+D declared %" ! msgstr "parametri %q+D esitelty %:ksi" #: c/c-decl.c:5982 #, fuzzy, gcc-internal-format *************** msgid "parameter %q+D declared %<_Noretu *** 25230,25238 **** msgstr "%Jparametri %qD esitelty %:ksi" #: c/c-decl.c:5995 ! #, fuzzy, gcc-internal-format msgid "field %qE declared as a function" ! msgstr "kenttä %qs esitelty funktiona" #: c/c-decl.c:6002 #, fuzzy, gcc-internal-format --- 24987,24995 ---- msgstr "%Jparametri %qD esitelty %:ksi" #: c/c-decl.c:5995 ! #, gcc-internal-format msgid "field %qE declared as a function" ! msgstr "kenttä %qE esitelty funktiona" #: c/c-decl.c:6002 #, fuzzy, gcc-internal-format *************** msgid "field %qE has incomplete type" *** 25240,25253 **** msgstr "kentällä %qs on vaillinainen tyyppi" #: c/c-decl.c:6004 ! #, fuzzy, gcc-internal-format msgid "unnamed field has incomplete type" ! msgstr "kentällä %qs on vaillinainen tyyppi" #: c/c-decl.c:6021 c/c-decl.c:6032 c/c-decl.c:6035 ! #, fuzzy, gcc-internal-format msgid "invalid storage class for function %qE" ! msgstr "epäkelpo tallennusluokka funktiolle %qs" #: c/c-decl.c:6086 #, gcc-internal-format --- 24997,25010 ---- msgstr "kentällä %qs on vaillinainen tyyppi" #: c/c-decl.c:6004 ! #, gcc-internal-format msgid "unnamed field has incomplete type" ! msgstr "nimettömällä kentällä on vaillinainen tyyppi" #: c/c-decl.c:6021 c/c-decl.c:6032 c/c-decl.c:6035 ! #, gcc-internal-format msgid "invalid storage class for function %qE" ! msgstr "epäkelpo tallennusluokka funktiolle %qE" #: c/c-decl.c:6086 #, gcc-internal-format *************** msgstr "%qs alustettu ja esitelty %" msgid "ISO C99 does not support %<_Noreturn%>" msgstr "ISO C90 ei tue % -tyyppiä" #: c/c-decl.c:6104 #, fuzzy, gcc-internal-format - #| msgid "ISO C90 does not support %" msgid "ISO C90 does not support %<_Noreturn%>" msgstr "ISO C90 ei tue % -tyyppiä" --- 25018,25028 ---- *************** msgstr "muuttuja %qD esitelty % *** 25283,25289 **** #: c/c-decl.c:6145 #, fuzzy, gcc-internal-format - #| msgid "variable %q+D declared %" msgid "variable %q+D declared %<_Noreturn%>" msgstr "muuttuja %qD esitelty %:ksi" --- 25038,25043 ---- *************** msgid "parameter %u (%q+D) has incomplet *** 25313,25321 **** msgstr "parametrilla %u (%q+D) on vaillinainen tyyppi" #: c/c-decl.c:6323 ! #, fuzzy, gcc-internal-format, gfc-internal-format msgid "parameter %u has incomplete type" ! msgstr "%Jparametrilla %u in vaillinainen tyyppi" #: c/c-decl.c:6334 #, gcc-internal-format --- 25067,25075 ---- msgstr "parametrilla %u (%q+D) on vaillinainen tyyppi" #: c/c-decl.c:6323 ! #, gcc-internal-format, gfc-internal-format msgid "parameter %u has incomplete type" ! msgstr "parametrilla %u in vaillinainen tyyppi" #: c/c-decl.c:6334 #, gcc-internal-format *************** msgid "parameter %u (%q+D) has void type *** 25323,25331 **** msgstr "parametrin %u (%q+D) tyyppi on void" #: c/c-decl.c:6338 ! #, fuzzy, gcc-internal-format, gfc-internal-format msgid "parameter %u has void type" ! msgstr "%Jparametrin %u tyyppi on void" #: c/c-decl.c:6423 #, fuzzy, gcc-internal-format --- 25077,25085 ---- msgstr "parametrin %u (%q+D) tyyppi on void" #: c/c-decl.c:6338 ! #, gcc-internal-format, gfc-internal-format msgid "parameter %u has void type" ! msgstr "parametrin %u tyyppi on void" #: c/c-decl.c:6423 #, fuzzy, gcc-internal-format *************** msgstr "parametrilla %q+D on vain etukä *** 25346,25358 **** #: c/c-decl.c:6501 #, gcc-internal-format msgid "%<%s %E%> declared inside parameter list" ! msgstr "%<%s %E%> esitelty parametrilistan sisällä" #. The %s will be one of 'struct', 'union', or 'enum'. #: c/c-decl.c:6505 #, gcc-internal-format, gfc-internal-format msgid "anonymous %s declared inside parameter list" ! msgstr "nimetön %s esitelty parametrilistan sisällä" #: c/c-decl.c:6510 #, gcc-internal-format --- 25100,25112 ---- #: c/c-decl.c:6501 #, gcc-internal-format msgid "%<%s %E%> declared inside parameter list" ! msgstr "%<%s %E%> esitelty parametriluettelon sisällä" #. The %s will be one of 'struct', 'union', or 'enum'. #: c/c-decl.c:6505 #, gcc-internal-format, gfc-internal-format msgid "anonymous %s declared inside parameter list" ! msgstr "nimetön %s esitelty parametriluettelon sisällä" #: c/c-decl.c:6510 #, gcc-internal-format *************** msgid "its scope is only this definition *** 25360,25378 **** msgstr "näkyvyysalue on vain tämä määrittely tai esittely, mikä ei todennäköisesti ole sitä, mitä halusit" #: c/c-decl.c:6610 ! #, fuzzy, gcc-internal-format msgid "enum type defined here" ! msgstr "%q+#D määritelty aiemmin täällä" #: c/c-decl.c:6616 ! #, fuzzy, gcc-internal-format msgid "struct defined here" ! msgstr "%q+#D määritelty aiemmin täällä" #: c/c-decl.c:6622 ! #, fuzzy, gcc-internal-format msgid "union defined here" ! msgstr "%q+#D määritelty aiemmin täällä" #: c/c-decl.c:6695 #, gcc-internal-format --- 25114,25132 ---- msgstr "näkyvyysalue on vain tämä määrittely tai esittely, mikä ei todennäköisesti ole sitä, mitä halusit" #: c/c-decl.c:6610 ! #, gcc-internal-format msgid "enum type defined here" ! msgstr "lueteltu tyyppi määritelty täällä" #: c/c-decl.c:6616 ! #, gcc-internal-format msgid "struct defined here" ! msgstr "struct määritelty täällä" #: c/c-decl.c:6622 ! #, gcc-internal-format msgid "union defined here" ! msgstr "union määritelty täällä" #: c/c-decl.c:6695 #, gcc-internal-format *************** msgid "redefinition of %" *** 25385,25398 **** msgstr "% uudelleenmääritelty" #: c/c-decl.c:6706 ! #, fuzzy, gcc-internal-format msgid "nested redefinition of %" ! msgstr "sisäkkäinen uudelleenmäärittely: %" #: c/c-decl.c:6708 ! #, fuzzy, gcc-internal-format msgid "nested redefinition of %" ! msgstr "sisäkkäinen uudelleenmäärittely: %" #: c/c-decl.c:6740 c/c-decl.c:7428 #, gcc-internal-format --- 25139,25152 ---- msgstr "% uudelleenmääritelty" #: c/c-decl.c:6706 ! #, gcc-internal-format msgid "nested redefinition of %" ! msgstr "sisäkkäinen %:n uudelleenmäärittely" #: c/c-decl.c:6708 ! #, gcc-internal-format msgid "nested redefinition of %" ! msgstr "sisäkkäinen %:n uudelleenmäärittely" #: c/c-decl.c:6740 c/c-decl.c:7428 #, gcc-internal-format *************** msgstr "esittely ei esittele mitään" *** 25406,25425 **** #: c/c-decl.c:6816 #, fuzzy, gcc-internal-format - #| msgid "ISO C doesn%'t support unnamed structs/unions" msgid "ISO C99 doesn%'t support unnamed structs/unions" msgstr "ISO C ei tue nimettömiä structeja/unioneita" #: c/c-decl.c:6819 #, fuzzy, gcc-internal-format - #| msgid "ISO C doesn%'t support unnamed structs/unions" msgid "ISO C90 doesn%'t support unnamed structs/unions" msgstr "ISO C ei tue nimettömiä structeja/unioneita" #: c/c-decl.c:6911 c/c-decl.c:6930 c/c-decl.c:6993 ! #, fuzzy, gcc-internal-format msgid "duplicate member %q+D" ! msgstr "%Jjäsenen %qD kaksoiskappale" #: c/c-decl.c:7104 #, gcc-internal-format --- 25160,25177 ---- #: c/c-decl.c:6816 #, fuzzy, gcc-internal-format msgid "ISO C99 doesn%'t support unnamed structs/unions" msgstr "ISO C ei tue nimettömiä structeja/unioneita" #: c/c-decl.c:6819 #, fuzzy, gcc-internal-format msgid "ISO C90 doesn%'t support unnamed structs/unions" msgstr "ISO C ei tue nimettömiä structeja/unioneita" #: c/c-decl.c:6911 c/c-decl.c:6930 c/c-decl.c:6993 ! #, gcc-internal-format msgid "duplicate member %q+D" ! msgstr "jäsenen %q+D kaksoiskappale" #: c/c-decl.c:7104 #, gcc-internal-format *************** msgid "struct has no members" *** 25442,25460 **** msgstr "structilla ei ole jäseniä" #: c/c-decl.c:7176 ! #, fuzzy, gcc-internal-format msgid "flexible array member in union" ! msgstr "%Jjoustava taulukkojäsen unionissa" #: c/c-decl.c:7182 ! #, fuzzy, gcc-internal-format msgid "flexible array member not at end of struct" ! msgstr "%Jjoustava taulukkojäsen ei ole structin lopussa" #: c/c-decl.c:7188 ! #, fuzzy, gcc-internal-format msgid "flexible array member in otherwise empty struct" ! msgstr "%Jjoustava taulukkojäsen muuten tyhjässä structissa" #: c/c-decl.c:7307 #, gcc-internal-format --- 25194,25212 ---- msgstr "structilla ei ole jäseniä" #: c/c-decl.c:7176 ! #, gcc-internal-format msgid "flexible array member in union" ! msgstr "joustava taulukkojäsen unionissa" #: c/c-decl.c:7182 ! #, gcc-internal-format msgid "flexible array member not at end of struct" ! msgstr "joustava taulukkojäsen ei ole structin lopussa" #: c/c-decl.c:7188 ! #, gcc-internal-format msgid "flexible array member in otherwise empty struct" ! msgstr "joustava taulukkojäsen muuten tyhjässä structissa" #: c/c-decl.c:7307 #, gcc-internal-format *************** msgid "union cannot be made transparent" *** 25462,25476 **** msgstr "unionista ei voi tehdä läpinäkyvää" #: c/c-decl.c:7401 ! #, fuzzy, gcc-internal-format msgid "nested redefinition of %" ! msgstr "sisäkkäinen uudelleenmäärittely: %" #. This enum is a named one that has been declared already. #: c/c-decl.c:7408 ! #, fuzzy, gcc-internal-format msgid "redeclaration of %" ! msgstr "uudelleenmäärittely: %" #: c/c-decl.c:7483 #, gcc-internal-format --- 25214,25228 ---- msgstr "unionista ei voi tehdä läpinäkyvää" #: c/c-decl.c:7401 ! #, gcc-internal-format msgid "nested redefinition of %" ! msgstr "sisäkkäinen %:n uudelleenmäärittely" #. This enum is a named one that has been declared already. #: c/c-decl.c:7408 ! #, gcc-internal-format msgid "redeclaration of %" ! msgstr "%:n uudelleenmäärittely" #: c/c-decl.c:7483 #, gcc-internal-format *************** msgid "enumerator value for %qE is not a *** 25488,25494 **** msgstr "luetellun tyypin jäsenen %qE arvo ei ole kokonaislukuvakio" #: c/c-decl.c:7616 ! #, fuzzy, gcc-internal-format msgid "enumerator value for %qE is not an integer constant expression" msgstr "luetellun tyypin jäsenen %qE arvo ei ole kokonaislukuvakio" --- 25240,25246 ---- msgstr "luetellun tyypin jäsenen %qE arvo ei ole kokonaislukuvakio" #: c/c-decl.c:7616 ! #, gcc-internal-format msgid "enumerator value for %qE is not an integer constant expression" msgstr "luetellun tyypin jäsenen %qE arvo ei ole kokonaislukuvakio" *************** msgstr "%Javoimelle funktiolle %qD annet *** 25510,25611 **** #: c/c-decl.c:7751 #, gcc-internal-format msgid "return type is an incomplete type" ! msgstr "palautustyyppi on vaillinainen tyyppi" #: c/c-decl.c:7761 #, gcc-internal-format msgid "return type defaults to %" ! msgstr "palautustyyppi on oletuksena %" #: c/c-decl.c:7839 ! #, fuzzy, gcc-internal-format msgid "no previous prototype for %qD" ! msgstr "%J%qD:lle ei ole aiempaa prototyyppiä" #: c/c-decl.c:7848 ! #, fuzzy, gcc-internal-format msgid "%qD was used with no prototype before its definition" ! msgstr "%J%qD käytössä ilman prototyyppiä ennen määrittelyänsä" #: c/c-decl.c:7855 ! #, fuzzy, gcc-internal-format msgid "no previous declaration for %qD" ! msgstr "%J%qD:lle ei ole aiempaa esittelyä" #: c/c-decl.c:7865 ! #, fuzzy, gcc-internal-format msgid "%qD was used with no declaration before its definition" ! msgstr "%J%qD käytössä ilman esittelyä ennen määrittelyänsä" #: c/c-decl.c:7884 ! #, fuzzy, gcc-internal-format msgid "return type of %qD is not %" ! msgstr "%q+D-funktion paluuarvon tyyppi ei ole %" #: c/c-decl.c:7890 ! #, fuzzy, gcc-internal-format msgid "%qD is normally a non-static function" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: c/c-decl.c:7927 ! #, fuzzy, gcc-internal-format msgid "old-style parameter declarations in prototyped function definition" ! msgstr "%Jvanhanmallisia parametriesittelyitä prototyypitetyssä funktiomäärittelyssä" #: c/c-decl.c:7941 ! #, fuzzy, gcc-internal-format msgid "traditional C rejects ISO C style function definitions" ! msgstr "%Jperinteinen C ei hyväksy ISO C -tyylisiä funktiomäärittelyitä" #: c/c-decl.c:7957 ! #, fuzzy, gcc-internal-format msgid "parameter name omitted" ! msgstr "%Jparametrin nimi jätetty pois" #: c/c-decl.c:7994 ! #, fuzzy, gcc-internal-format msgid "old-style function definition" ! msgstr "%Jvanhanmallinen funktiomäärittely" #: c/c-decl.c:8003 ! #, fuzzy, gcc-internal-format msgid "parameter name missing from parameter list" ! msgstr "%Jparametrin nimi puuttuu parametrilistasta" #: c/c-decl.c:8018 ! #, fuzzy, gcc-internal-format msgid "%qD declared as a non-parameter" ! msgstr "%q+D esitelty ei-parametrina" #: c/c-decl.c:8024 ! #, fuzzy, gcc-internal-format msgid "multiple parameters named %qD" msgstr "useita parametreja nimellä %qD" #: c/c-decl.c:8033 ! #, fuzzy, gcc-internal-format msgid "parameter %qD declared with void type" ! msgstr "parametri %q+D esitelty void-tyyppisenä" #: c/c-decl.c:8062 c/c-decl.c:8066 ! #, fuzzy, gcc-internal-format msgid "type of %qD defaults to %" ! msgstr "%q+D:n oletustyyppi on %" #: c/c-decl.c:8086 ! #, fuzzy, gcc-internal-format msgid "parameter %qD has incomplete type" ! msgstr "parametrin %q+D tyyppi on vaillinainen" #: c/c-decl.c:8093 ! #, fuzzy, gcc-internal-format msgid "declaration for parameter %qD but no such parameter" ! msgstr "parametrin %q+D esittely, mutta parametria ei ole olemassa" #: c/c-decl.c:8145 ! #, fuzzy, gcc-internal-format msgid "number of arguments doesn%'t match built-in prototype" ! msgstr "argumenttien määrä ei vastaa prototyyppiä" #: c/c-decl.c:8156 #, gcc-internal-format --- 25262,25363 ---- #: c/c-decl.c:7751 #, gcc-internal-format msgid "return type is an incomplete type" ! msgstr "paluutyyppi on vaillinainen tyyppi" #: c/c-decl.c:7761 #, gcc-internal-format msgid "return type defaults to %" ! msgstr "paluutyyppi on oletuksena %" #: c/c-decl.c:7839 ! #, gcc-internal-format msgid "no previous prototype for %qD" ! msgstr "%qD:lle ei ole edellistä prototyyppiä" #: c/c-decl.c:7848 ! #, gcc-internal-format msgid "%qD was used with no prototype before its definition" ! msgstr "%qD käytössä ilman prototyyppiä ennen sen määrittelyä" #: c/c-decl.c:7855 ! #, gcc-internal-format msgid "no previous declaration for %qD" ! msgstr "%qD:lle ei ole edellistä esittelyä" #: c/c-decl.c:7865 ! #, gcc-internal-format msgid "%qD was used with no declaration before its definition" ! msgstr "%qD käytössä ilman esittelyä ennen sen määrittelyä" #: c/c-decl.c:7884 ! #, gcc-internal-format msgid "return type of %qD is not %" ! msgstr "%qD:n paluuarvon tyyppi ei ole %" #: c/c-decl.c:7890 ! #, gcc-internal-format msgid "%qD is normally a non-static function" ! msgstr "%qD on tavallisesti ei-staattinen funktio" #: c/c-decl.c:7927 ! #, gcc-internal-format msgid "old-style parameter declarations in prototyped function definition" ! msgstr "vanhanmallisia parametriesittelyitä prototyypitetyssä funktiomäärittelyssä" #: c/c-decl.c:7941 ! #, gcc-internal-format msgid "traditional C rejects ISO C style function definitions" ! msgstr "perinteinen C ei hyväksy ISO C -tyylisiä funktiomäärittelyitä" #: c/c-decl.c:7957 ! #, gcc-internal-format msgid "parameter name omitted" ! msgstr "parametrin nimi jätetty pois" #: c/c-decl.c:7994 ! #, gcc-internal-format msgid "old-style function definition" ! msgstr "vanhanmallinen funktiomäärittely" #: c/c-decl.c:8003 ! #, gcc-internal-format msgid "parameter name missing from parameter list" ! msgstr "parametrin nimi puuttuu parametriluettelosta" #: c/c-decl.c:8018 ! #, gcc-internal-format msgid "%qD declared as a non-parameter" ! msgstr "%qD esitelty ei-parametrina" #: c/c-decl.c:8024 ! #, gcc-internal-format msgid "multiple parameters named %qD" msgstr "useita parametreja nimellä %qD" #: c/c-decl.c:8033 ! #, gcc-internal-format msgid "parameter %qD declared with void type" ! msgstr "parametri %qD esitelty void-tyyppisenä" #: c/c-decl.c:8062 c/c-decl.c:8066 ! #, gcc-internal-format msgid "type of %qD defaults to %" ! msgstr "%qD:n oletustyyppi on %" #: c/c-decl.c:8086 ! #, gcc-internal-format msgid "parameter %qD has incomplete type" ! msgstr "parametrin %qD tyyppi on vaillinainen" #: c/c-decl.c:8093 ! #, gcc-internal-format msgid "declaration for parameter %qD but no such parameter" ! msgstr "parametrin %qD esittely, mutta parametria ei ole olemassa" #: c/c-decl.c:8145 ! #, gcc-internal-format msgid "number of arguments doesn%'t match built-in prototype" ! msgstr "argumenttien määrä ei vastaa sisäistä prototyyppiä" #: c/c-decl.c:8156 #, gcc-internal-format *************** msgid "prototype declaration" *** 25618,25650 **** msgstr "prototyypin esittely" #: c/c-decl.c:8193 ! #, fuzzy, gcc-internal-format msgid "promoted argument %qD doesn%'t match built-in prototype" ! msgstr "tyyppimuunnettu argumentti %qD ei sovi prototyyppiin" #: c/c-decl.c:8198 #, gcc-internal-format msgid "promoted argument %qD doesn%'t match prototype" ! msgstr "tyyppimuunnettu argumentti %qD ei sovi prototyyppiin" #: c/c-decl.c:8208 ! #, fuzzy, gcc-internal-format msgid "argument %qD doesn%'t match built-in prototype" ! msgstr "argumentti %qD ei sovi prototyyppiin" #: c/c-decl.c:8213 #, gcc-internal-format msgid "argument %qD doesn%'t match prototype" msgstr "argumentti %qD ei sovi prototyyppiin" ! #: c/c-decl.c:8396 cp/decl.c:13848 #, gcc-internal-format msgid "no return statement in function returning non-void" ! msgstr "ei palautuslausetta funktiossa, joka palauttaa ei-tyhjän" #: c/c-decl.c:8416 #, fuzzy, gcc-internal-format - #| msgid "parameter %qD is initialized" msgid "parameter %qD set but not used" msgstr "parametri %qD on alustettu" --- 25370,25401 ---- msgstr "prototyypin esittely" #: c/c-decl.c:8193 ! #, gcc-internal-format msgid "promoted argument %qD doesn%'t match built-in prototype" ! msgstr "ylennetty argumentti %qD ei vastaa sisäistä prototyyppiä" #: c/c-decl.c:8198 #, gcc-internal-format msgid "promoted argument %qD doesn%'t match prototype" ! msgstr "ylennetty argumentti %qD ei vastaa prototyyppiä" #: c/c-decl.c:8208 ! #, gcc-internal-format msgid "argument %qD doesn%'t match built-in prototype" ! msgstr "argumentti %qD ei vastaa sisäistä prototyyppiä" #: c/c-decl.c:8213 #, gcc-internal-format msgid "argument %qD doesn%'t match prototype" msgstr "argumentti %qD ei sovi prototyyppiin" ! #: c/c-decl.c:8396 cp/decl.c:13839 #, gcc-internal-format msgid "no return statement in function returning non-void" ! msgstr "ei palautuslausetta funktiossa, joka palauttaa ei-voidin" #: c/c-decl.c:8416 #, fuzzy, gcc-internal-format msgid "parameter %qD set but not used" msgstr "parametri %qD on alustettu" *************** msgid "incompatible address space qualif *** 25698,25713 **** msgstr "" #: c/c-decl.c:8886 c/c-decl.c:9216 c/c-decl.c:9645 ! #, fuzzy, gcc-internal-format msgid "duplicate %qE" ! msgstr "ylimääräinen %qE" #: c/c-decl.c:8912 c/c-decl.c:9227 c/c-decl.c:9507 #, gcc-internal-format msgid "two or more data types in declaration specifiers" msgstr "yli yksi tietotyyppi esittelymääritteissä" ! #: c/c-decl.c:8924 cp/parser.c:22803 #, gcc-internal-format msgid "% is too long for GCC" msgstr "% on liian pitkä GCC:lle" --- 25449,25464 ---- msgstr "" #: c/c-decl.c:8886 c/c-decl.c:9216 c/c-decl.c:9645 ! #, gcc-internal-format msgid "duplicate %qE" ! msgstr "%qE:n kaksoiskappale" #: c/c-decl.c:8912 c/c-decl.c:9227 c/c-decl.c:9507 #, gcc-internal-format msgid "two or more data types in declaration specifiers" msgstr "yli yksi tietotyyppi esittelymääritteissä" ! #: c/c-decl.c:8924 cp/parser.c:22807 #, gcc-internal-format msgid "% is too long for GCC" msgstr "% on liian pitkä GCC:lle" *************** msgid "C++ lookup of %qD would return a *** 25758,25771 **** msgstr "" #: c/c-decl.c:9538 ! #, fuzzy, gcc-internal-format msgid "%qE fails to be a typedef or built in type" ! msgstr "%qs ei ole typedef eikä sisäänrakennettu tyyppi" #: c/c-decl.c:9586 ! #, fuzzy, gcc-internal-format msgid "%qE is not at beginning of declaration" ! msgstr "%qs ei ole esittelyn alussa" #: c/c-decl.c:9607 #, gcc-internal-format --- 25509,25522 ---- msgstr "" #: c/c-decl.c:9538 ! #, gcc-internal-format msgid "%qE fails to be a typedef or built in type" ! msgstr "%qE ei ole typedef eikä sisäinen tyyppi" #: c/c-decl.c:9586 ! #, gcc-internal-format msgid "%qE is not at beginning of declaration" ! msgstr "%qE ei ole esittelyn alussa" #: c/c-decl.c:9607 #, gcc-internal-format *************** msgstr "ISO C kieltää tyhjät käännà *** 25830,25843 **** #: c/c-parser.c:1338 c/c-parser.c:7586 #, gcc-internal-format msgid "ISO C does not allow extra %<;%> outside of a function" ! msgstr "ISO C ei salli ylimääräisiä %<;%>-merkkejä funktioiden ulkopuolella" #: c/c-parser.c:1464 c/c-parser.c:2046 c/c-parser.c:3321 #, fuzzy, gcc-internal-format msgid "unknown type name %qE" msgstr "tuntematon konetila %qs" ! #: c/c-parser.c:1484 c/c-parser.c:8618 cp/parser.c:28127 #, fuzzy, gcc-internal-format msgid "expected declaration specifiers" msgstr "useita tallennuspaikkoja esittelymääritteissä" --- 25581,25594 ---- #: c/c-parser.c:1338 c/c-parser.c:7586 #, gcc-internal-format msgid "ISO C does not allow extra %<;%> outside of a function" ! msgstr "ISO C ei salli ylimääräisiä %<;%>-merkkejä funktion ulkopuolella" #: c/c-parser.c:1464 c/c-parser.c:2046 c/c-parser.c:3321 #, fuzzy, gcc-internal-format msgid "unknown type name %qE" msgstr "tuntematon konetila %qs" ! #: c/c-parser.c:1484 c/c-parser.c:8618 cp/parser.c:28131 #, fuzzy, gcc-internal-format msgid "expected declaration specifiers" msgstr "useita tallennuspaikkoja esittelymääritteissä" *************** msgstr "useita tallennuspaikkoja esittel *** 25847,25853 **** msgid "expected %<;%>, identifier or %<(%>" msgstr "käytetty %<__thread%> ennen %:a" ! #: c/c-parser.c:1527 cp/parser.c:24553 cp/parser.c:24627 #, fuzzy, gcc-internal-format msgid "prefix attributes are ignored for methods" msgstr "%Jlohkoattribuutteja ei tueta tälle kohteelle" --- 25598,25604 ---- msgid "expected %<;%>, identifier or %<(%>" msgstr "käytetty %<__thread%> ennen %:a" ! #: c/c-parser.c:1527 cp/parser.c:24557 cp/parser.c:24631 #, fuzzy, gcc-internal-format msgid "prefix attributes are ignored for methods" msgstr "%Jlohkoattribuutteja ei tueta tälle kohteelle" *************** msgstr "datamäärittelyllä ei ole tyyp *** 25870,25876 **** #: c/c-parser.c:1701 cp/parser.c:10614 #, gcc-internal-format msgid "expected %<,%> or %<;%>" ! msgstr "" #. This can appear in many cases looking nothing like a #. function definition, so we don't give a more specific --- 25621,25627 ---- #: c/c-parser.c:1701 cp/parser.c:10614 #, gcc-internal-format msgid "expected %<,%> or %<;%>" ! msgstr "odotettiin %<,%> tai %<;%>" #. This can appear in many cases looking nothing like a #. function definition, so we don't give a more specific *************** msgstr "" *** 25878,25884 **** #: c/c-parser.c:1708 c/c-parser.c:1724 #, gcc-internal-format msgid "expected %<=%>, %<,%>, %<;%>, % or %<__attribute__%>" ! msgstr "" #: c/c-parser.c:1716 #, gcc-internal-format --- 25629,25635 ---- #: c/c-parser.c:1708 c/c-parser.c:1724 #, gcc-internal-format msgid "expected %<=%>, %<,%>, %<;%>, % or %<__attribute__%>" ! msgstr "odotettiin %<=%>, %<,%>, %<;%>, % tai %<__attribute__%>" #: c/c-parser.c:1716 #, gcc-internal-format *************** msgstr "ISO C kieltää sisäkkäiset fu *** 25887,25910 **** #: c/c-parser.c:1832 #, fuzzy, gcc-internal-format - #| msgid "ISO C90 does not support %" msgid "ISO C99 does not support %<_Static_assert%>" msgstr "ISO C90 ei tue % -tyyppiä" #: c/c-parser.c:1835 #, fuzzy, gcc-internal-format - #| msgid "ISO C90 does not support %" msgid "ISO C90 does not support %<_Static_assert%>" msgstr "ISO C90 ei tue % -tyyppiä" ! #: c/c-parser.c:1860 c/c-parser.c:3388 c/c-parser.c:8673 cp/parser.c:27998 #, gcc-internal-format msgid "expected string literal" msgstr "odotettiin merkkijonoliteraalia" #: c/c-parser.c:1868 #, fuzzy, gcc-internal-format - #| msgid "array subscript is not an integer" msgid "expression in static assertion is not an integer" msgstr "taulukon indeksi ei ole kokonaisluku" --- 25638,25658 ---- #: c/c-parser.c:1832 #, fuzzy, gcc-internal-format msgid "ISO C99 does not support %<_Static_assert%>" msgstr "ISO C90 ei tue % -tyyppiä" #: c/c-parser.c:1835 #, fuzzy, gcc-internal-format msgid "ISO C90 does not support %<_Static_assert%>" msgstr "ISO C90 ei tue % -tyyppiä" ! #: c/c-parser.c:1860 c/c-parser.c:3388 c/c-parser.c:8673 cp/parser.c:28002 #, gcc-internal-format msgid "expected string literal" msgstr "odotettiin merkkijonoliteraalia" #: c/c-parser.c:1868 #, fuzzy, gcc-internal-format msgid "expression in static assertion is not an integer" msgstr "taulukon indeksi ei ole kokonaisluku" *************** msgstr "taulukon koko ei ole kokonaisluk *** 25915,25921 **** #: c/c-parser.c:1880 #, fuzzy, gcc-internal-format - #| msgid "initializer element is not constant" msgid "expression in static assertion is not constant" msgstr "alustusalkio ei ole vakio" --- 25663,25668 ---- *************** msgstr "" *** 25931,25951 **** #: c/c-parser.c:7409 c/c-parser.c:7417 c/c-parser.c:7446 c/c-parser.c:7459 #: c/c-parser.c:7764 c/c-parser.c:7888 c/c-parser.c:8316 c/c-parser.c:8351 #: c/c-parser.c:8404 c/c-parser.c:8457 c/c-parser.c:8473 c/c-parser.c:8519 ! #: c/c-parser.c:8798 c/c-parser.c:9873 c/c-parser.c:10676 cp/parser.c:23013 ! #: cp/parser.c:25397 cp/parser.c:25427 cp/parser.c:25497 cp/parser.c:27718 #, gcc-internal-format msgid "expected identifier" ! msgstr "" ! #: c/c-parser.c:2295 cp/parser.c:14837 #, gcc-internal-format msgid "comma at end of enumerator list" ! msgstr "luetellun tyypin listan lopussa on pilkku" #: c/c-parser.c:2301 #, gcc-internal-format msgid "expected %<,%> or %<}%>" ! msgstr "" #: c/c-parser.c:2332 #, gcc-internal-format --- 25678,25698 ---- #: c/c-parser.c:7409 c/c-parser.c:7417 c/c-parser.c:7446 c/c-parser.c:7459 #: c/c-parser.c:7764 c/c-parser.c:7888 c/c-parser.c:8316 c/c-parser.c:8351 #: c/c-parser.c:8404 c/c-parser.c:8457 c/c-parser.c:8473 c/c-parser.c:8519 ! #: c/c-parser.c:8798 c/c-parser.c:9873 c/c-parser.c:10676 cp/parser.c:23017 ! #: cp/parser.c:25401 cp/parser.c:25431 cp/parser.c:25501 cp/parser.c:27722 #, gcc-internal-format msgid "expected identifier" ! msgstr "odotettu tunniste" ! #: c/c-parser.c:2295 cp/parser.c:14839 #, gcc-internal-format msgid "comma at end of enumerator list" ! msgstr "luetellun tyypin luettelon lopussa on pilkku" #: c/c-parser.c:2301 #, gcc-internal-format msgid "expected %<,%> or %<}%>" ! msgstr "odotettiin %<,%> tai %<}%>" #: c/c-parser.c:2332 #, gcc-internal-format *************** msgstr "ISO C kieltää jäsenettömät *** 25980,26016 **** #: c/c-parser.c:2695 #, gcc-internal-format msgid "expected %<,%>, %<;%> or %<}%>" ! msgstr "" #: c/c-parser.c:2702 #, gcc-internal-format msgid "expected %<:%>, %<,%>, %<;%>, %<}%> or %<__attribute__%>" ! msgstr "" #: c/c-parser.c:2755 ! #, fuzzy, gcc-internal-format msgid "% applied to a bit-field" ! msgstr "% sovellettu bittikenttään" #: c/c-parser.c:2789 #, fuzzy, gcc-internal-format - #| msgid "ISO C90 does not support %" msgid "ISO C99 does not support %<_Alignas%>" msgstr "ISO C90 ei tue % -tyyppiä" #: c/c-parser.c:2792 #, fuzzy, gcc-internal-format - #| msgid "ISO C90 does not support %" msgid "ISO C90 does not support %<_Alignas%>" msgstr "ISO C90 ei tue % -tyyppiä" #: c/c-parser.c:3020 #, gcc-internal-format msgid "expected identifier or %<(%>" ! msgstr "" #: c/c-parser.c:3227 ! #, fuzzy, gcc-internal-format msgid "ISO C requires a named argument before %<...%>" msgstr "ISO C vaatii nimetyn argumentin ennen %<...%>:a" --- 25727,25761 ---- #: c/c-parser.c:2695 #, gcc-internal-format msgid "expected %<,%>, %<;%> or %<}%>" ! msgstr "odotettiin %<,%>, %<;%> tai %<}%>" #: c/c-parser.c:2702 #, gcc-internal-format msgid "expected %<:%>, %<,%>, %<;%>, %<}%> or %<__attribute__%>" ! msgstr "odotettiin %<:%>, %<,%>, %<;%>, %<}%> tai %<__attribute__%>" #: c/c-parser.c:2755 ! #, gcc-internal-format msgid "% applied to a bit-field" ! msgstr "%:ia sovellettu bittikenttään" #: c/c-parser.c:2789 #, fuzzy, gcc-internal-format msgid "ISO C99 does not support %<_Alignas%>" msgstr "ISO C90 ei tue % -tyyppiä" #: c/c-parser.c:2792 #, fuzzy, gcc-internal-format msgid "ISO C90 does not support %<_Alignas%>" msgstr "ISO C90 ei tue % -tyyppiä" #: c/c-parser.c:3020 #, gcc-internal-format msgid "expected identifier or %<(%>" ! msgstr "odotettiin tunnistetta tai %<(%>" #: c/c-parser.c:3227 ! #, gcc-internal-format msgid "ISO C requires a named argument before %<...%>" msgstr "ISO C vaatii nimetyn argumentin ennen %<...%>:a" *************** msgstr "käytetty %<__thread%> ennen % without a previous %" ! msgstr "" #: c/c-parser.c:4242 #, fuzzy, gcc-internal-format --- 25817,25823 ---- #: c/c-parser.c:4225 cp/parser.c:9134 #, gcc-internal-format msgid "% without a previous %" ! msgstr "% ilman edeltävää %:iä" #: c/c-parser.c:4242 #, fuzzy, gcc-internal-format *************** msgstr "nimike yhdyslauseen lopussa" *** 26082,26088 **** #: c/c-parser.c:4287 #, gcc-internal-format msgid "expected %<:%> or %<...%>" ! msgstr "" #: c/c-parser.c:4318 #, gcc-internal-format --- 25827,25833 ---- #: c/c-parser.c:4287 #, gcc-internal-format msgid "expected %<:%> or %<...%>" ! msgstr "odotettiin %<:%> tai %<...%>" #: c/c-parser.c:4318 #, gcc-internal-format *************** msgstr "" *** 26092,26098 **** #: c/c-parser.c:4493 #, gcc-internal-format msgid "expected identifier or %<*%>" ! msgstr "" #. Avoid infinite loop in error recovery: #. c_parser_skip_until_found stops at a closing nesting --- 25837,25843 ---- #: c/c-parser.c:4493 #, gcc-internal-format msgid "expected identifier or %<*%>" ! msgstr "odotettiin tunnistetta tai %<*%>" #. Avoid infinite loop in error recovery: #. c_parser_skip_until_found stops at a closing nesting *************** msgstr "epäkelvot operandit binäärise *** 26130,26136 **** #: c/c-parser.c:5022 #, fuzzy, gcc-internal-format - #| msgid "missing sentinel in function call" msgid "missing collection in fast enumeration" msgstr "lopetusalkio puuttuu funktiokutsusta" --- 25875,25880 ---- *************** msgid "traditional C rejects the unary p *** 26150,26212 **** msgstr "perinteinen C ei salli unaarista plus-operaattoria" #: c/c-parser.c:6026 ! #, fuzzy, gcc-internal-format msgid "% applied to a bit-field" ! msgstr "% sovellettu bittikenttään" #: c/c-parser.c:6047 #, fuzzy, gcc-internal-format - #| msgid "ISO C90 does not support %" msgid "ISO C99 does not support %qE" msgstr "ISO C90 ei tue % -tyyppiä" #: c/c-parser.c:6050 #, fuzzy, gcc-internal-format - #| msgid "ISO C90 does not support %" msgid "ISO C90 does not support %qE" msgstr "ISO C90 ei tue % -tyyppiä" #: c/c-parser.c:6101 #, fuzzy, gcc-internal-format - #| msgid "ISO C does not allow extra %<;%> outside of a function" msgid "ISO C does not allow %<%E (expression)%>" ! msgstr "ISO C ei salli ylimääräisiä %<;%>-merkkejä funktioiden ulkopuolella" #: c/c-parser.c:6126 #, fuzzy, gcc-internal-format - #| msgid "cannot take address of bit-field %qD" msgid "cannot take address of %qs" msgstr "bittikentän %qD osoitetta ei voi ottaa" #: c/c-parser.c:6297 c/c-parser.c:6747 c/c-parser.c:6766 ! #, fuzzy, gcc-internal-format msgid "expected expression" ! msgstr "vektoriylivuoto lausekkeessa" #: c/c-parser.c:6315 ! #, fuzzy, gcc-internal-format msgid "braced-group within expression allowed only inside a function" ! msgstr "lohkot lausekkeiden sisällä sallitaan vain funktioissa" #: c/c-parser.c:6328 ! #, fuzzy, gcc-internal-format msgid "ISO C forbids braced-groups within expressions" ! msgstr "ISO C kieltää lohkot lausekkeen sisällä" #: c/c-parser.c:6520 #, fuzzy, gcc-internal-format - #| msgid "wrong number of arguments to function %<__builtin_next_arg%>" msgid "wrong number of arguments to %<__builtin_choose_expr%>" msgstr "väärä määrä argumentteja funktiolle %<__builtin_next_arg%>" #: c/c-parser.c:6536 ! #, fuzzy, gcc-internal-format msgid "first argument to %<__builtin_choose_expr%> not a constant" ! msgstr "funktion %<__builtin_choose_expr%> ensimmäinen argumentti ei ole vakio" #: c/c-parser.c:6602 #, fuzzy, gcc-internal-format - #| msgid "wrong number of arguments to function %<__builtin_next_arg%>" msgid "wrong number of arguments to %<__builtin_complex%>" msgstr "väärä määrä argumentteja funktiolle %<__builtin_next_arg%>" --- 25894,25952 ---- msgstr "perinteinen C ei salli unaarista plus-operaattoria" #: c/c-parser.c:6026 ! #, gcc-internal-format msgid "% applied to a bit-field" ! msgstr "%:ia sovellettu bittikenttään" #: c/c-parser.c:6047 #, fuzzy, gcc-internal-format msgid "ISO C99 does not support %qE" msgstr "ISO C90 ei tue % -tyyppiä" #: c/c-parser.c:6050 #, fuzzy, gcc-internal-format msgid "ISO C90 does not support %qE" msgstr "ISO C90 ei tue % -tyyppiä" #: c/c-parser.c:6101 #, fuzzy, gcc-internal-format msgid "ISO C does not allow %<%E (expression)%>" ! msgstr "ISO C ei salli ylimääräisiä %<;%>-merkkejä funktion ulkopuolella" #: c/c-parser.c:6126 #, fuzzy, gcc-internal-format msgid "cannot take address of %qs" msgstr "bittikentän %qD osoitetta ei voi ottaa" #: c/c-parser.c:6297 c/c-parser.c:6747 c/c-parser.c:6766 ! #, gcc-internal-format msgid "expected expression" ! msgstr "odotettiin lauseketta" + # XXXX #: c/c-parser.c:6315 ! #, gcc-internal-format msgid "braced-group within expression allowed only inside a function" ! msgstr "lohkot lausekkeiden sisällä sallitaan vain funktion sisällä" + # XXXX #: c/c-parser.c:6328 ! #, gcc-internal-format msgid "ISO C forbids braced-groups within expressions" ! msgstr "ISO C kieltää lohkot lausekkeiden sisällä" #: c/c-parser.c:6520 #, fuzzy, gcc-internal-format msgid "wrong number of arguments to %<__builtin_choose_expr%>" msgstr "väärä määrä argumentteja funktiolle %<__builtin_next_arg%>" #: c/c-parser.c:6536 ! #, gcc-internal-format msgid "first argument to %<__builtin_choose_expr%> not a constant" ! msgstr "ensimmäinen argumentti funktiolle %<__builtin_choose_expr%> ei ole vakio" #: c/c-parser.c:6602 #, fuzzy, gcc-internal-format msgid "wrong number of arguments to %<__builtin_complex%>" msgstr "väärä määrä argumentteja funktiolle %<__builtin_next_arg%>" *************** msgstr "" *** 26217,26234 **** #: c/c-parser.c:6633 #, fuzzy, gcc-internal-format - #| msgid "%<__builtin_longjmp%> second argument must be 1" msgid "%<__builtin_complex%> operands of different types" msgstr "%<__builtin_longjmp%>-fuktion toisen argumentin pitää olla 1" #: c/c-parser.c:6679 cp/parser.c:5531 #, fuzzy, gcc-internal-format - #| msgid "wrong number of arguments to function %<__builtin_next_arg%>" msgid "wrong number of arguments to %<__builtin_shuffle%>" msgstr "väärä määrä argumentteja funktiolle %<__builtin_next_arg%>" #: c/c-parser.c:6801 ! #, fuzzy, gcc-internal-format msgid "compound literal has variable size" msgstr "yhdysliteraalin koko on muuttuva" --- 25957,25972 ---- #: c/c-parser.c:6633 #, fuzzy, gcc-internal-format msgid "%<__builtin_complex%> operands of different types" msgstr "%<__builtin_longjmp%>-fuktion toisen argumentin pitää olla 1" #: c/c-parser.c:6679 cp/parser.c:5531 #, fuzzy, gcc-internal-format msgid "wrong number of arguments to %<__builtin_shuffle%>" msgstr "väärä määrä argumentteja funktiolle %<__builtin_next_arg%>" #: c/c-parser.c:6801 ! #, gcc-internal-format msgid "compound literal has variable size" msgstr "yhdysliteraalin koko on muuttuva" *************** msgstr "ISO C90 kieltää yhdysliteraali *** 26245,26251 **** #: c/c-parser.c:7190 #, fuzzy, gcc-internal-format msgid "expected identifier or %<)%>" ! msgstr "%qs määrittää %:n tiedostoalue-esittelyssä" #: c/c-parser.c:7286 #, gcc-internal-format --- 25983,25989 ---- #: c/c-parser.c:7190 #, fuzzy, gcc-internal-format msgid "expected identifier or %<)%>" ! msgstr "odotettiin tunnistetta tai %<(%>" #: c/c-parser.c:7286 #, gcc-internal-format *************** msgstr "useita tallennuspaikkoja esittel *** 26274,26408 **** #: c/c-parser.c:8230 #, fuzzy, gcc-internal-format - #| msgid "storage class specified for %qs" msgid "no type or storage class may be specified here," msgstr "tallennusluokka annettu %qs:lle" ! #: c/c-parser.c:8320 c/c-parser.c:8377 cp/parser.c:25457 #, fuzzy, gcc-internal-format - #| msgid "" msgid "unknown property attribute" msgstr "" ! #: c/c-parser.c:8341 cp/parser.c:25417 #, fuzzy, gcc-internal-format - #| msgid "missing %<(%> after %<#pragma pack%> - ignored" msgid "missing %<=%> (after % attribute)" msgstr "puuttuva %<(%> ilmaisun %<#pragma pack%> jälkeen - jätetään huomiotta" ! #: c/c-parser.c:8344 cp/parser.c:25420 #, fuzzy, gcc-internal-format - #| msgid "missing %<(%> after %<#pragma pack%> - ignored" msgid "missing %<=%> (after % attribute)" msgstr "puuttuva %<(%> ilmaisun %<#pragma pack%> jälkeen - jätetään huomiotta" ! #: c/c-parser.c:8358 cp/parser.c:25435 #, fuzzy, gcc-internal-format msgid "the % attribute may only be specified once" msgstr "%Jlohkoattribuuttia ei voi määrittää paikalliselle muuttujalle" ! #: c/c-parser.c:8363 cp/parser.c:25441 #, gcc-internal-format msgid "setter name must terminate with %<:%>" msgstr "" ! #: c/c-parser.c:8370 cp/parser.c:25449 #, fuzzy, gcc-internal-format msgid "the % attribute may only be specified once" msgstr "%Jlohkoattribuuttia ei voi määrittää paikalliselle muuttujalle" ! #: c/c-parser.c:8556 cp/parser.c:28042 #, gcc-internal-format msgid "%<#pragma omp barrier%> may only be used in compound statements" msgstr "" ! #: c/c-parser.c:8567 cp/parser.c:28057 #, gcc-internal-format msgid "%<#pragma omp flush%> may only be used in compound statements" msgstr "" ! #: c/c-parser.c:8578 cp/parser.c:28073 #, gcc-internal-format msgid "%<#pragma omp taskwait%> may only be used in compound statements" msgstr "" ! #: c/c-parser.c:8589 cp/parser.c:28089 #, gcc-internal-format msgid "%<#pragma omp taskyield%> may only be used in compound statements" msgstr "" ! #: c/c-parser.c:8602 cp/parser.c:28117 #, gcc-internal-format msgid "%<#pragma omp section%> may only be used in %<#pragma omp sections%> construct" msgstr "" ! #: c/c-parser.c:8608 cp/parser.c:28032 #, fuzzy, gcc-internal-format msgid "%<#pragma GCC pch_preprocess%> must be first" msgstr "väärinmuodostettu #pragma GCC pch_preprocess, jätetään huomiotta" ! #: c/c-parser.c:8773 cp/parser.c:25705 #, gcc-internal-format msgid "too many %qs clauses" msgstr "" ! #: c/c-parser.c:8875 cp/parser.c:25820 #, fuzzy, gcc-internal-format msgid "collapse argument needs positive constant integer expression" msgstr "etumerkillisen ja etumerkittömän kokonaislukulausekkeen vertailu" ! #: c/c-parser.c:8941 cp/parser.c:25871 #, gcc-internal-format msgid "expected % or %" ! msgstr "" #: c/c-parser.c:9076 c/c-parser.c:9290 ! #, fuzzy, gcc-internal-format msgid "expected integer expression" ! msgstr "vektoriylivuoto lausekkeessa" #: c/c-parser.c:9088 #, gcc-internal-format msgid "% value must be positive" ! msgstr "" ! #: c/c-parser.c:9192 cp/parser.c:26090 #, gcc-internal-format msgid "expected %<+%>, %<*%>, %<-%>, %<&%>, %<^%>, %<|%>, %<&&%>, %<||%>, % or %" ! msgstr "" ! #: c/c-parser.c:9281 cp/parser.c:26175 #, gcc-internal-format msgid "schedule % does not take a % parameter" msgstr "" ! #: c/c-parser.c:9285 cp/parser.c:26178 #, gcc-internal-format msgid "schedule % does not take a % parameter" msgstr "" ! #: c/c-parser.c:9303 cp/parser.c:26194 #, gcc-internal-format msgid "invalid schedule kind" msgstr "" ! #: c/c-parser.c:9431 cp/parser.c:26326 #, gcc-internal-format msgid "expected %<#pragma omp%> clause" msgstr "" ! #: c/c-parser.c:9440 cp/parser.c:26335 #, fuzzy, gcc-internal-format msgid "%qs is not valid for %qs" msgstr "%qs ei ole kelpo tulostetiedosto" ! #: c/c-parser.c:9732 cp/parser.c:26619 #, fuzzy, gcc-internal-format - #| msgid "junk at end of %<#pragma pack%>" msgid "invalid form of %<#pragma omp atomic%>" msgstr "roskaa ilmaisun %<#pragma pack%> lopussa" ! #: c/c-parser.c:9772 c/c-parser.c:9790 cp/parser.c:26650 cp/parser.c:26667 #, gcc-internal-format msgid "invalid operator for %<#pragma omp atomic%>" msgstr "" --- 26012,26141 ---- #: c/c-parser.c:8230 #, fuzzy, gcc-internal-format msgid "no type or storage class may be specified here," msgstr "tallennusluokka annettu %qs:lle" ! #: c/c-parser.c:8320 c/c-parser.c:8377 cp/parser.c:25461 #, fuzzy, gcc-internal-format msgid "unknown property attribute" msgstr "" ! #: c/c-parser.c:8341 cp/parser.c:25421 #, fuzzy, gcc-internal-format msgid "missing %<=%> (after % attribute)" msgstr "puuttuva %<(%> ilmaisun %<#pragma pack%> jälkeen - jätetään huomiotta" ! #: c/c-parser.c:8344 cp/parser.c:25424 #, fuzzy, gcc-internal-format msgid "missing %<=%> (after % attribute)" msgstr "puuttuva %<(%> ilmaisun %<#pragma pack%> jälkeen - jätetään huomiotta" ! #: c/c-parser.c:8358 cp/parser.c:25439 #, fuzzy, gcc-internal-format msgid "the % attribute may only be specified once" msgstr "%Jlohkoattribuuttia ei voi määrittää paikalliselle muuttujalle" ! #: c/c-parser.c:8363 cp/parser.c:25445 #, gcc-internal-format msgid "setter name must terminate with %<:%>" msgstr "" ! #: c/c-parser.c:8370 cp/parser.c:25453 #, fuzzy, gcc-internal-format msgid "the % attribute may only be specified once" msgstr "%Jlohkoattribuuttia ei voi määrittää paikalliselle muuttujalle" ! #: c/c-parser.c:8556 cp/parser.c:28046 #, gcc-internal-format msgid "%<#pragma omp barrier%> may only be used in compound statements" msgstr "" ! #: c/c-parser.c:8567 cp/parser.c:28061 #, gcc-internal-format msgid "%<#pragma omp flush%> may only be used in compound statements" msgstr "" ! #: c/c-parser.c:8578 cp/parser.c:28077 #, gcc-internal-format msgid "%<#pragma omp taskwait%> may only be used in compound statements" msgstr "" ! #: c/c-parser.c:8589 cp/parser.c:28093 #, gcc-internal-format msgid "%<#pragma omp taskyield%> may only be used in compound statements" msgstr "" ! #: c/c-parser.c:8602 cp/parser.c:28121 #, gcc-internal-format msgid "%<#pragma omp section%> may only be used in %<#pragma omp sections%> construct" msgstr "" ! #: c/c-parser.c:8608 cp/parser.c:28036 #, fuzzy, gcc-internal-format msgid "%<#pragma GCC pch_preprocess%> must be first" msgstr "väärinmuodostettu #pragma GCC pch_preprocess, jätetään huomiotta" ! #: c/c-parser.c:8773 cp/parser.c:25709 #, gcc-internal-format msgid "too many %qs clauses" msgstr "" ! #: c/c-parser.c:8875 cp/parser.c:25824 #, fuzzy, gcc-internal-format msgid "collapse argument needs positive constant integer expression" msgstr "etumerkillisen ja etumerkittömän kokonaislukulausekkeen vertailu" ! #: c/c-parser.c:8941 cp/parser.c:25875 #, gcc-internal-format msgid "expected % or %" ! msgstr "odotettiin % tai %" #: c/c-parser.c:9076 c/c-parser.c:9290 ! #, gcc-internal-format msgid "expected integer expression" ! msgstr "odotettiin kokonaislukulauseketta" #: c/c-parser.c:9088 #, gcc-internal-format msgid "% value must be positive" ! msgstr "%-arvon on oltava positiivinen" ! #: c/c-parser.c:9192 cp/parser.c:26094 #, gcc-internal-format msgid "expected %<+%>, %<*%>, %<-%>, %<&%>, %<^%>, %<|%>, %<&&%>, %<||%>, % or %" ! msgstr "odotettiin %<+%>, %<*%>, %<-%>, %<&%>, %<^%>, %<|%>, %<&&%>, %<||%>, % tai %" ! #: c/c-parser.c:9281 cp/parser.c:26179 #, gcc-internal-format msgid "schedule % does not take a % parameter" msgstr "" ! #: c/c-parser.c:9285 cp/parser.c:26182 #, gcc-internal-format msgid "schedule % does not take a % parameter" msgstr "" ! #: c/c-parser.c:9303 cp/parser.c:26198 #, gcc-internal-format msgid "invalid schedule kind" msgstr "" ! #: c/c-parser.c:9431 cp/parser.c:26330 #, gcc-internal-format msgid "expected %<#pragma omp%> clause" msgstr "" ! #: c/c-parser.c:9440 cp/parser.c:26339 #, fuzzy, gcc-internal-format msgid "%qs is not valid for %qs" msgstr "%qs ei ole kelpo tulostetiedosto" ! #: c/c-parser.c:9732 cp/parser.c:26623 #, fuzzy, gcc-internal-format msgid "invalid form of %<#pragma omp atomic%>" msgstr "roskaa ilmaisun %<#pragma pack%> lopussa" ! #: c/c-parser.c:9772 c/c-parser.c:9790 cp/parser.c:26654 cp/parser.c:26671 #, gcc-internal-format msgid "invalid operator for %<#pragma omp atomic%>" msgstr "" *************** msgstr "" *** 26410,26438 **** #: c/c-parser.c:9876 c/c-parser.c:9897 #, gcc-internal-format msgid "expected %<(%> or end of line" ! msgstr "" ! #: c/c-parser.c:9932 cp/parser.c:26939 #, fuzzy, gcc-internal-format msgid "for statement expected" msgstr "ylivuoto vakiolausekkeessa" #: c/c-parser.c:9985 cp/semantics.c:4785 cp/semantics.c:4855 ! #, fuzzy, gcc-internal-format msgid "expected iteration declaration or initialization" ! msgstr "%qD esitelty extern-avainsanalla sisäkkäin" #: c/c-parser.c:10066 #, gcc-internal-format msgid "not enough perfectly nested loops" msgstr "" ! #: c/c-parser.c:10119 cp/parser.c:27284 #, gcc-internal-format msgid "collapsed loops not perfectly nested" msgstr "" ! #: c/c-parser.c:10157 cp/parser.c:27125 cp/parser.c:27163 cp/pt.c:12692 #, fuzzy, gcc-internal-format msgid "iteration variable %qD should not be firstprivate" msgstr "sisäkkäisessä funktiossa käytetty rekisterimuuttujaa %qD" --- 26143,26171 ---- #: c/c-parser.c:9876 c/c-parser.c:9897 #, gcc-internal-format msgid "expected %<(%> or end of line" ! msgstr "odotettiin %<(%> tai rivin loppu" ! #: c/c-parser.c:9932 cp/parser.c:26943 #, fuzzy, gcc-internal-format msgid "for statement expected" msgstr "ylivuoto vakiolausekkeessa" #: c/c-parser.c:9985 cp/semantics.c:4785 cp/semantics.c:4855 ! #, gcc-internal-format msgid "expected iteration declaration or initialization" ! msgstr "odotettiin iteraatioesittelyä tai -alustusta" #: c/c-parser.c:10066 #, gcc-internal-format msgid "not enough perfectly nested loops" msgstr "" ! #: c/c-parser.c:10119 cp/parser.c:27288 #, gcc-internal-format msgid "collapsed loops not perfectly nested" msgstr "" ! #: c/c-parser.c:10157 cp/parser.c:27129 cp/parser.c:27167 cp/pt.c:12687 #, fuzzy, gcc-internal-format msgid "iteration variable %qD should not be firstprivate" msgstr "sisäkkäisessä funktiossa käytetty rekisterimuuttujaa %qD" *************** msgstr "automaattimuuttuja %qE ei voi ol *** 26457,26483 **** msgid "% %qE has incomplete type" msgstr "%Jparametrin %qD tyyppi on vaillinainen" ! #: c/c-parser.c:10823 cp/parser.c:27928 #, gcc-internal-format msgid "%<__transaction_cancel%> without transactional memory support enabled" msgstr "" ! #: c/c-parser.c:10829 cp/parser.c:27934 #, gcc-internal-format msgid "%<__transaction_cancel%> within a %<__transaction_relaxed%>" msgstr "" ! #: c/c-parser.c:10838 cp/parser.c:27943 #, gcc-internal-format msgid "outer %<__transaction_cancel%> not within outer %<__transaction_atomic%>" msgstr "" ! #: c/c-parser.c:10840 cp/parser.c:27946 #, gcc-internal-format msgid " or a % function" msgstr "" ! #: c/c-parser.c:10846 cp/parser.c:27952 #, gcc-internal-format msgid "%<__transaction_cancel%> not within %<__transaction_atomic%>" msgstr "" --- 26190,26216 ---- msgid "% %qE has incomplete type" msgstr "%Jparametrin %qD tyyppi on vaillinainen" ! #: c/c-parser.c:10823 cp/parser.c:27932 #, gcc-internal-format msgid "%<__transaction_cancel%> without transactional memory support enabled" msgstr "" ! #: c/c-parser.c:10829 cp/parser.c:27938 #, gcc-internal-format msgid "%<__transaction_cancel%> within a %<__transaction_relaxed%>" msgstr "" ! #: c/c-parser.c:10838 cp/parser.c:27947 #, gcc-internal-format msgid "outer %<__transaction_cancel%> not within outer %<__transaction_atomic%>" msgstr "" ! #: c/c-parser.c:10840 cp/parser.c:27950 #, gcc-internal-format msgid " or a % function" msgstr "" ! #: c/c-parser.c:10846 cp/parser.c:27956 #, gcc-internal-format msgid "%<__transaction_cancel%> not within %<__transaction_atomic%>" msgstr "" *************** msgstr "tyypillä %qT ei ole %qE-nimistà *** 26572,26578 **** #: c/c-typeck.c:2208 #, gcc-internal-format msgid "request for member %qE in something not a structure or union" ! msgstr "pyydetty jäsentä %qE jostakin, joka ei ole tietue tai unioni" #: c/c-typeck.c:2257 #, gcc-internal-format --- 26305,26311 ---- #: c/c-typeck.c:2208 #, gcc-internal-format msgid "request for member %qE in something not a structure or union" ! msgstr "pyydetty jäsentä %qE jostakin, joka ei ole tietue eikä unioni" #: c/c-typeck.c:2257 #, gcc-internal-format *************** msgstr "" *** 26586,26592 **** #: c/c-typeck.c:2317 #, fuzzy, gcc-internal-format - #| msgid "subscripted value is neither array nor pointer" msgid "subscripted value is neither array nor pointer nor vector" msgstr "indeksoitu arvo ei ole taulukko eikä osoitin" --- 26319,26324 ---- *************** msgstr "" *** 26617,26641 **** #: c/c-typeck.c:2679 cp/decl2.c:4524 cp/typeck.c:3478 #, fuzzy, gcc-internal-format - #| msgid "%qD declared here" msgid "declared here" msgstr "%qD esitelty täällä" #: c/c-typeck.c:2746 #, fuzzy, gcc-internal-format - #| msgid "called object %qE is not a function" msgid "called object %qE is not a function or function pointer" msgstr "kutsuttu objekti %qE ei ole funktio" #: c/c-typeck.c:2751 #, fuzzy, gcc-internal-format - #| msgid "called object %qE is not a function" msgid "called object %qD is not a function or function pointer" msgstr "kutsuttu objekti %qE ei ole funktio" #: c/c-typeck.c:2757 #, fuzzy, gcc-internal-format - #| msgid "called object %qE is not a function" msgid "called object is not a function or function pointer" msgstr "kutsuttu objekti %qE ei ole funktio" --- 26349,26369 ---- *************** msgid "function with qualified void retu *** 26653,26661 **** msgstr "funktion määrittely oikeuttaa tyhjän paluutyypin" #: c/c-typeck.c:2951 ! #, fuzzy, gcc-internal-format msgid "too many arguments to method %qE" ! msgstr "liikaa argumentteja funktiolle %s %q+#D" #: c/c-typeck.c:2990 #, gcc-internal-format, gfc-internal-format --- 26381,26389 ---- msgstr "funktion määrittely oikeuttaa tyhjän paluutyypin" #: c/c-typeck.c:2951 ! #, gcc-internal-format msgid "too many arguments to method %qE" ! msgstr "liikaa argumentteja metodille %qE" #: c/c-typeck.c:2990 #, gcc-internal-format, gfc-internal-format *************** msgstr "funktion %2$qE argumentti %1$d a *** 26719,26735 **** #: c/c-typeck.c:3152 cp/call.c:6219 #, fuzzy, gcc-internal-format - #| msgid "conversion from %qT to %qT is ambiguous" msgid "implicit conversion from %qT to %qT when passing argument to function" msgstr "muunnos tyypistä %qT tyyppiin %qT on moniselitteinen" #: c/c-typeck.c:3267 c/c-typeck.c:3272 ! #, fuzzy, gcc-internal-format msgid "comparison with string literal results in unspecified behavior" ! msgstr "%J#pragma weak %qD -ilmaisun soveltaminen ensimmäisen käytön jälkeen käyttäytyy määrittelemättömästi" #: c/c-typeck.c:3286 ! #, fuzzy, gcc-internal-format msgid "comparison between %qT and %qT" msgstr "tyyppien %qT ja %qT välinen vertailu" --- 26447,26462 ---- #: c/c-typeck.c:3152 cp/call.c:6219 #, fuzzy, gcc-internal-format msgid "implicit conversion from %qT to %qT when passing argument to function" msgstr "muunnos tyypistä %qT tyyppiin %qT on moniselitteinen" #: c/c-typeck.c:3267 c/c-typeck.c:3272 ! #, gcc-internal-format msgid "comparison with string literal results in unspecified behavior" ! msgstr "vertailu merkkijonoliteraalin kanssa aiheuttaa määrittelemätöntä toimintaa" #: c/c-typeck.c:3286 ! #, gcc-internal-format msgid "comparison between %qT and %qT" msgstr "tyyppien %qT ja %qT välinen vertailu" *************** msgstr "vähennykselle annettu väärä *** 26781,26792 **** #: c/c-typeck.c:3657 #, gcc-internal-format msgid "increment of pointer to unknown structure" ! msgstr "tuntemattomaan tietueeseen osoittavan osoittimen kasvatus" #: c/c-typeck.c:3660 #, gcc-internal-format msgid "decrement of pointer to unknown structure" ! msgstr "tuntemattomaan tietueeseen osoittavan osoittimen vähennys" #: c/c-typeck.c:3744 #, gcc-internal-format --- 26508,26519 ---- #: c/c-typeck.c:3657 #, gcc-internal-format msgid "increment of pointer to unknown structure" ! msgstr "tuntemattomaan rakenteeseen osoittavan osoittimen kasvatus" #: c/c-typeck.c:3660 #, gcc-internal-format msgid "decrement of pointer to unknown structure" ! msgstr "tuntemattomaan rakenteeseen osoittavan osoittimen vähennys" #: c/c-typeck.c:3744 #, gcc-internal-format *************** msgstr "pilkkulausekkeen vasemmalla oper *** 26860,26872 **** #: c/c-typeck.c:4461 #, fuzzy - #| msgid "cast adds new qualifiers to function type" msgid "cast adds %q#v qualifier to function type" msgstr "tyyppimuunnos lisää funktiotyyppiin uusia määreitä" #: c/c-typeck.c:4467 #, fuzzy - #| msgid "cast discards qualifiers from pointer target type" msgid "cast discards %q#v qualifier from pointer target type" msgstr "osoitinkohdetyypin määreitä häviää tyyppimuunnoksessa" --- 26587,26597 ---- *************** msgstr "tyyppimuunnos määrittää funk *** 26888,26899 **** #: c/c-typeck.c:4561 #, gcc-internal-format msgid "ISO C forbids casting nonscalar to the same type" ! msgstr "ISO C kieltää muuntamasta ei-skalaaria samaksi tyypiksi" #: c/c-typeck.c:4578 #, gcc-internal-format msgid "ISO C forbids casts to union type" ! msgstr "ISO C kieltää muunnokset unionityyppeihin" #: c/c-typeck.c:4588 #, gcc-internal-format --- 26613,26624 ---- #: c/c-typeck.c:4561 #, gcc-internal-format msgid "ISO C forbids casting nonscalar to the same type" ! msgstr "ISO C kieltää tyyppimuuntamasta ei-skalaaria samaksi tyypiksi" #: c/c-typeck.c:4578 #, gcc-internal-format msgid "ISO C forbids casts to union type" ! msgstr "ISO C kieltää tyyppimuunnokset unionityyppeihin" #: c/c-typeck.c:4588 #, gcc-internal-format *************** msgstr "" *** 26918,26924 **** #: c/c-typeck.c:4653 #, gcc-internal-format msgid "cast increases required alignment of target type" ! msgstr "kohdetyypin vaatima tasaus kasvaa tyyppimuunnoksessa" #: c/c-typeck.c:4664 #, gcc-internal-format --- 26643,26649 ---- #: c/c-typeck.c:4653 #, gcc-internal-format msgid "cast increases required alignment of target type" ! msgstr "kohdetyypin vaatima kohdistus kasvaa tyyppimuunnoksessa" #: c/c-typeck.c:4664 #, gcc-internal-format *************** msgstr "tyyppimuunnos osoittimesta eriko *** 26928,26934 **** #: c/c-typeck.c:4669 #, gcc-internal-format msgid "cast from function call of type %qT to non-matching type %qT" ! msgstr "muunnos %qT-tyyppisestä funktiokutsusta yhteensopimattomaan tyyppiin %qT" #: c/c-typeck.c:4678 cp/typeck.c:6905 #, gcc-internal-format --- 26653,26659 ---- #: c/c-typeck.c:4669 #, gcc-internal-format msgid "cast from function call of type %qT to non-matching type %qT" ! msgstr "tyyppimuunnos %qT-tyyppisestä funktiokutsusta yhteensopimattomaan tyyppiin %qT" #: c/c-typeck.c:4678 cp/typeck.c:6905 #, gcc-internal-format *************** msgstr "ISO C kieltää objektiosoittime *** 26948,26959 **** #: c/c-typeck.c:4787 #, gcc-internal-format msgid "defining a type in a cast is invalid in C++" ! msgstr "" #: c/c-typeck.c:4926 c/c-typeck.c:5223 #, gcc-internal-format msgid "enum conversion in assignment is invalid in C++" ! msgstr "" #. This macro is used to emit diagnostics to ensure that all format #. strings are complete sentences, visible to gettext and checked at --- 26673,26684 ---- #: c/c-typeck.c:4787 #, gcc-internal-format msgid "defining a type in a cast is invalid in C++" ! msgstr "tyypin määritteleminen tyyppimuunnoksessa on virheellistä C++-kielessä" #: c/c-typeck.c:4926 c/c-typeck.c:5223 #, gcc-internal-format msgid "enum conversion in assignment is invalid in C++" ! msgstr "enum-muunnos sijoituksessa on virheellistä C++-kielessä" #. This macro is used to emit diagnostics to ensure that all format #. strings are complete sentences, visible to gettext and checked at *************** msgstr "" *** 26963,26971 **** #. compile time. It is the same as WARN_FOR_ASSIGNMENT but with an #. extra parameter to enumerate qualifiers. #: c/c-typeck.c:5131 c/c-typeck.c:5161 c/c-typeck.c:5690 ! #, fuzzy, gcc-internal-format msgid "expected %qT but argument is of type %qT" ! msgstr "muotoilu %q.*s edellyttää %<%T%s%>-tyyppiä, mutta %d. argumentin tyyppi on %qT" #: c/c-typeck.c:5221 #, gcc-internal-format --- 26688,26696 ---- #. compile time. It is the same as WARN_FOR_ASSIGNMENT but with an #. extra parameter to enumerate qualifiers. #: c/c-typeck.c:5131 c/c-typeck.c:5161 c/c-typeck.c:5690 ! #, gcc-internal-format msgid "expected %qT but argument is of type %qT" ! msgstr "odotettiin %qT, mutta argumentti on tyyppiä %qT" #: c/c-typeck.c:5221 #, gcc-internal-format *************** msgstr "" *** 26975,26986 **** #: c/c-typeck.c:5225 c/c-typeck.c:7793 #, gcc-internal-format msgid "enum conversion in initialization is invalid in C++" ! msgstr "" #: c/c-typeck.c:5227 ! #, fuzzy, gcc-internal-format msgid "enum conversion in return is invalid in C++" ! msgstr "epäkelvot operandit binääriselle %s-operaatiolle" #: c/c-typeck.c:5256 #, gcc-internal-format --- 26700,26711 ---- #: c/c-typeck.c:5225 c/c-typeck.c:7793 #, gcc-internal-format msgid "enum conversion in initialization is invalid in C++" ! msgstr "enum-muunnos alustuksessa on virheellistä C++-kielessä" #: c/c-typeck.c:5227 ! #, gcc-internal-format msgid "enum conversion in return is invalid in C++" ! msgstr "enum-muunnos palautuksessa on virheellistä C++-kielessä" #: c/c-typeck.c:5256 #, gcc-internal-format *************** msgstr "" *** 26989,27007 **** #: c/c-typeck.c:5386 c/c-typeck.c:5611 #, fuzzy - #| msgid "passing argument %d of %qE makes integer from pointer without a cast" msgid "passing argument %d of %qE makes %q#v qualified function pointer from unqualified" msgstr "argumentin %d antaminen funktiolle %qE tekee kokonaisluvusta osoittimen ilman tyyppimuunnosta" #: c/c-typeck.c:5389 c/c-typeck.c:5614 #, fuzzy - #| msgid "assignment discards qualifiers from pointer target type" msgid "assignment makes %q#v qualified function pointer from unqualified" msgstr "sijoitus hylkää kohdeosoitintyypin määreitä" #: c/c-typeck.c:5392 c/c-typeck.c:5616 #, fuzzy - #| msgid "initialization discards qualifiers from pointer target type" msgid "initialization makes %q#v qualified function pointer from unqualified" msgstr "alustus hylkää kohdeosoitintyypin määreitä" --- 26714,26729 ---- *************** msgstr "sijoitus hylkää kohdeosoitinty *** 27016,27034 **** #: c/c-typeck.c:5404 c/c-typeck.c:5576 #, fuzzy - #| msgid "assignment discards qualifiers from pointer target type" msgid "assignment discards %qv qualifier from pointer target type" msgstr "sijoitus hylkää kohdeosoitintyypin määreitä" #: c/c-typeck.c:5406 c/c-typeck.c:5578 #, fuzzy - #| msgid "initialization discards qualifiers from pointer target type" msgid "initialization discards %qv qualifier from pointer target type" msgstr "alustus hylkää kohdeosoitintyypin määreitä" #: c/c-typeck.c:5408 c/c-typeck.c:5580 #, fuzzy - #| msgid "return discards qualifiers from pointer target type" msgid "return discards %qv qualifier from pointer target type" msgstr "palautus hylkää kohdeosoitintyypin määreitä" --- 26738,26753 ---- *************** msgid "return makes integer from pointer *** 27190,27203 **** msgstr "palautus tekee osoittimesta kokonaisluvun ilman tyyppimuunnosta" #: c/c-typeck.c:5693 ! #, fuzzy, gcc-internal-format msgid "incompatible types when assigning to type %qT from type %qT" ! msgstr "yhteensopimattomat tyypit sijoituksessa" #: c/c-typeck.c:5698 ! #, fuzzy, gcc-internal-format msgid "incompatible types when initializing type %qT using type %qT" ! msgstr "yhteensopimattomat tyypit alustuksessa" #: c/c-typeck.c:5703 #, gcc-internal-format --- 26909,26922 ---- msgstr "palautus tekee osoittimesta kokonaisluvun ilman tyyppimuunnosta" #: c/c-typeck.c:5693 ! #, gcc-internal-format msgid "incompatible types when assigning to type %qT from type %qT" ! msgstr "yhteensopimattomat tyypit sijoituksessa tyyppiin %qT tyypistä %qT" #: c/c-typeck.c:5698 ! #, gcc-internal-format msgid "incompatible types when initializing type %qT using type %qT" ! msgstr "yhteensopimattomat tyypit alustettaessa tyyppiä %qT käyttäen tyyppiä %qT" #: c/c-typeck.c:5703 #, gcc-internal-format *************** msgstr "alustinalkio ei ole vakiolauseke *** 27263,27269 **** #: c/c-typeck.c:6289 c/c-typeck.c:7771 #, gcc-internal-format msgid "initializer element is not computable at load time" ! msgstr "alustuselementtiä ei pystytä laskemaan latausajankohtana" #: c/c-typeck.c:6307 #, gcc-internal-format --- 26982,26988 ---- #: c/c-typeck.c:6289 c/c-typeck.c:7771 #, gcc-internal-format msgid "initializer element is not computable at load time" ! msgstr "alustusalkiota ei pystytä laskemaan latausajankohtana" #: c/c-typeck.c:6307 #, gcc-internal-format *************** msgstr "skalaarialustimessa ylimääräi *** 27313,27319 **** #: c/c-typeck.c:7116 c/c-typeck.c:7197 #, gcc-internal-format msgid "array index in non-array initializer" ! msgstr "" #: c/c-typeck.c:7121 c/c-typeck.c:7253 #, gcc-internal-format --- 27032,27038 ---- #: c/c-typeck.c:7116 c/c-typeck.c:7197 #, gcc-internal-format msgid "array index in non-array initializer" ! msgstr "taulukkoindeksi ei-taulukkoalustimessa" #: c/c-typeck.c:7121 c/c-typeck.c:7253 #, gcc-internal-format *************** msgstr "" *** 27323,27354 **** #: c/c-typeck.c:7170 #, gcc-internal-format msgid "array index in initializer not of integer type" ! msgstr "" #: c/c-typeck.c:7179 c/c-typeck.c:7188 ! #, fuzzy, gcc-internal-format msgid "array index in initializer is not an integer constant expression" ! msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" #: c/c-typeck.c:7193 c/c-typeck.c:7195 #, gcc-internal-format msgid "nonconstant array index in initializer" ! msgstr "ei-vakio taulukon indeksi alustimessa" #: c/c-typeck.c:7199 c/c-typeck.c:7202 #, gcc-internal-format msgid "array index in initializer exceeds array bounds" ! msgstr "taulukon indeksi alustimessa ylittää taulukon rajat" #: c/c-typeck.c:7216 #, gcc-internal-format msgid "empty index range in initializer" ! msgstr "" #: c/c-typeck.c:7225 #, gcc-internal-format msgid "array index range in initializer exceeds array bounds" ! msgstr "" #: c/c-typeck.c:7260 #, gcc-internal-format --- 27042,27073 ---- #: c/c-typeck.c:7170 #, gcc-internal-format msgid "array index in initializer not of integer type" ! msgstr "taulukkoindeksi alustimessa ei ole kokonaislukutyyppinen" #: c/c-typeck.c:7179 c/c-typeck.c:7188 ! #, gcc-internal-format msgid "array index in initializer is not an integer constant expression" ! msgstr "taulukkoindeksi alustimessa ei ole kokonaislukutyyppinen vakiolauseke" #: c/c-typeck.c:7193 c/c-typeck.c:7195 #, gcc-internal-format msgid "nonconstant array index in initializer" ! msgstr "ei-vakio taulukkoindeksi alustimessa" #: c/c-typeck.c:7199 c/c-typeck.c:7202 #, gcc-internal-format msgid "array index in initializer exceeds array bounds" ! msgstr "taulukkoindeksi alustimessa ylittää taulukon rajat" #: c/c-typeck.c:7216 #, gcc-internal-format msgid "empty index range in initializer" ! msgstr "tyhjä indeksiväli alustimessa" #: c/c-typeck.c:7225 #, gcc-internal-format msgid "array index range in initializer exceeds array bounds" ! msgstr "taulukkoindeksiväli alustimessa ylittää taulukon rajat" #: c/c-typeck.c:7260 #, gcc-internal-format *************** msgstr "" *** 27363,27389 **** #: c/c-typeck.c:7314 c/c-typeck.c:7341 c/c-typeck.c:7868 #, gcc-internal-format msgid "initialized field overwritten" ! msgstr "" #: c/c-typeck.c:8084 #, gcc-internal-format msgid "excess elements in char array initializer" ! msgstr "" #: c/c-typeck.c:8091 c/c-typeck.c:8152 #, gcc-internal-format msgid "excess elements in struct initializer" ! msgstr "" #: c/c-typeck.c:8167 #, gcc-internal-format msgid "non-static initialization of a flexible array member" ! msgstr "" #: c/c-typeck.c:8238 #, gcc-internal-format msgid "excess elements in union initializer" ! msgstr "" #: c/c-typeck.c:8260 #, gcc-internal-format --- 27082,27108 ---- #: c/c-typeck.c:7314 c/c-typeck.c:7341 c/c-typeck.c:7868 #, gcc-internal-format msgid "initialized field overwritten" ! msgstr "alustettu kenttä ylikirjoitettu" #: c/c-typeck.c:8084 #, gcc-internal-format msgid "excess elements in char array initializer" ! msgstr "ylimääräisiä alkioita merkkitaulukkoalustimessa" #: c/c-typeck.c:8091 c/c-typeck.c:8152 #, gcc-internal-format msgid "excess elements in struct initializer" ! msgstr "ylimääräisiä alkioita struct-alustimessa" #: c/c-typeck.c:8167 #, gcc-internal-format msgid "non-static initialization of a flexible array member" ! msgstr "joustavan taulukkojäsenen ei-staattinen alustus" #: c/c-typeck.c:8238 #, gcc-internal-format msgid "excess elements in union initializer" ! msgstr "ylimääräisiä alkioita union-alustimessa" #: c/c-typeck.c:8260 #, gcc-internal-format *************** msgstr "" *** 27393,27409 **** #: c/c-typeck.c:8328 #, gcc-internal-format msgid "excess elements in array initializer" ! msgstr "" #: c/c-typeck.c:8362 #, gcc-internal-format msgid "excess elements in vector initializer" ! msgstr "" #: c/c-typeck.c:8394 #, gcc-internal-format msgid "excess elements in scalar initializer" ! msgstr "" #: c/c-typeck.c:8631 #, gcc-internal-format --- 27112,27128 ---- #: c/c-typeck.c:8328 #, gcc-internal-format msgid "excess elements in array initializer" ! msgstr "ylimääräisiä alkioita taulukkoalustimessa" #: c/c-typeck.c:8362 #, gcc-internal-format msgid "excess elements in vector initializer" ! msgstr "ylimääräisiä alkioita vektorialustimessa" #: c/c-typeck.c:8394 #, gcc-internal-format msgid "excess elements in scalar initializer" ! msgstr "ylimääräisiä alkioita skalaarialustimessa" #: c/c-typeck.c:8631 #, gcc-internal-format *************** msgstr "" *** 27463,27469 **** #: c/c-typeck.c:8977 cp/parser.c:9265 #, gcc-internal-format msgid "suggest explicit braces to avoid ambiguous %" ! msgstr "ehdotetaan aaltosulkeita epäselvän %n välttämiseksi" #: c/c-typeck.c:9086 cp/parser.c:9994 #, gcc-internal-format --- 27182,27188 ---- #: c/c-typeck.c:8977 cp/parser.c:9265 #, gcc-internal-format msgid "suggest explicit braces to avoid ambiguous %" ! msgstr "ehdotetaan aaltosulkeita epäselvän %:n välttämiseksi" #: c/c-typeck.c:9086 cp/parser.c:9994 #, gcc-internal-format *************** msgstr "" *** 27492,27498 **** #: c/c-typeck.c:9894 c/c-typeck.c:10031 cp/typeck.c:4461 #, fuzzy, gcc-internal-format - #| msgid "Warn about comparison of different enum types" msgid "comparing vectors with different element types" msgstr "Varoita eri enum-tyyppien vertailusta" --- 27211,27216 ---- *************** msgstr "osoittimen ja kokonaisluvun väl *** 27539,27545 **** #: c/c-typeck.c:10069 #, gcc-internal-format msgid "comparison of complete and incomplete pointers" ! msgstr "" #: c/c-typeck.c:10071 #, gcc-internal-format --- 27257,27263 ---- #: c/c-typeck.c:10069 #, gcc-internal-format msgid "comparison of complete and incomplete pointers" ! msgstr "täydellisen ja vaillinaisen osoittimen vertailu" #: c/c-typeck.c:10071 #, gcc-internal-format *************** msgstr "ISO C kieltää funktio-osoittim *** 27548,27554 **** #: c/c-typeck.c:10076 #, fuzzy, gcc-internal-format - #| msgid "ordered comparison of pointer with integer zero" msgid "ordered comparison of pointer with null pointer" msgstr "osoittimen ja kokonaisluku nollan suuruusvertailu" --- 27266,27271 ---- *************** msgstr "käytetty unionityypin arvoa, va *** 27580,27586 **** #: c/c-typeck.c:10459 #, fuzzy, gcc-internal-format - #| msgid "used struct type value where scalar is required" msgid "used vector type where scalar is required" msgstr "käytetty tietuetyypin arvoa, vaikka vaaditaan skalaari" --- 27297,27302 ---- *************** msgstr "virheellinen muunnos tyypistä % *** 27644,27651 **** #, gcc-internal-format, gfc-internal-format msgid " candidate expects %d argument, %d provided" msgid_plural " candidate expects %d arguments, %d provided" ! msgstr[0] "" ! msgstr[1] "" #: cp/call.c:3154 #, gcc-internal-format --- 27360,27367 ---- #, gcc-internal-format, gfc-internal-format msgid " candidate expects %d argument, %d provided" msgid_plural " candidate expects %d arguments, %d provided" ! msgstr[0] " ehdokas odottaa %d argumenttia, %d annettu" ! msgstr[1] " ehdokas odottaa %d argumenttia, %d annettu" #: cp/call.c:3154 #, gcc-internal-format *************** msgstr "" *** 27654,27666 **** #: cp/call.c:3159 #, fuzzy, gcc-internal-format - #| msgid "" msgid "%s%D(%T, %T) " msgstr "" #: cp/call.c:3163 #, fuzzy, gcc-internal-format - #| msgid "" msgid "%s%D(%T) " msgstr "" --- 27370,27380 ---- *************** msgstr "" *** 27784,27790 **** #: cp/call.c:4218 cp/call.c:4249 cp/call.c:4258 #, fuzzy, gcc-internal-format - #| msgid "" msgid "%" msgstr "" --- 27498,27503 ---- *************** msgstr "" *** 27795,27801 **** #: cp/call.c:4228 #, fuzzy, gcc-internal-format - #| msgid "" msgid "%" msgstr "" --- 27508,27513 ---- *************** msgstr "" *** 27806,27812 **** #: cp/call.c:4239 #, fuzzy, gcc-internal-format - #| msgid "%s" msgid "%qs" msgstr "%s" --- 27518,27523 ---- *************** msgstr "" *** 27837,27843 **** #: cp/call.c:4433 #, fuzzy, gcc-internal-format - #| msgid "pointer type mismatch in conditional expression" msgid "incompatible vector types in conditional expression: %qT, %qT and %qT" msgstr "ehtolausekkeessa on osoitintyyppiristiriita" --- 27548,27553 ---- *************** msgid "converting to non-pointer type %q *** 27932,27954 **** msgstr "NULLin muunnos epäosoitintyypiksi %qT" #: cp/call.c:5755 ! #, fuzzy, gcc-internal-format msgid "converting % to pointer type for argument %P of %qD" ! msgstr "annettu NULL funktion %2$qD ei-osoitinargumenttina %1$P" #: cp/call.c:5759 #, fuzzy, gcc-internal-format msgid "converting % to pointer type %qT" ! msgstr "annettu NULL funktion %2$qD ei-osoitinargumenttina %1$P" #: cp/call.c:5802 ! #, fuzzy, gcc-internal-format msgid "too many braces around initializer for %qT" ! msgstr "alustimen ympäriltä puuttuu aaltosulkeet" #: cp/call.c:5808 #, fuzzy, gcc-internal-format - #| msgid "invalid conversion from %qT to %qT" msgid "invalid user-defined conversion from %qT to %qT" msgstr "virheellinen muunnos tyypistä %qT tyypiksi %qT" --- 27642,27663 ---- msgstr "NULLin muunnos epäosoitintyypiksi %qT" #: cp/call.c:5755 ! #, gcc-internal-format msgid "converting % to pointer type for argument %P of %qD" ! msgstr "muunnetaan % osoitintyyppiksi %2$qD:n argumentissa %1$P" #: cp/call.c:5759 #, fuzzy, gcc-internal-format msgid "converting % to pointer type %qT" ! msgstr "muunnetaan % osoitintyyppiksi %qT" #: cp/call.c:5802 ! #, gcc-internal-format msgid "too many braces around initializer for %qT" ! msgstr "liikaa aaltosulkeita %qT:n alustimen ympärillä" #: cp/call.c:5808 #, fuzzy, gcc-internal-format msgid "invalid user-defined conversion from %qT to %qT" msgstr "virheellinen muunnos tyypistä %qT tyypiksi %qT" *************** msgid "converting to %qT from initialize *** 27968,27976 **** msgstr "" #: cp/call.c:5949 cp/call.c:6080 ! #, fuzzy, gcc-internal-format msgid " initializing argument %P of %q+D" ! msgstr " alustettaessa funktion %2$qD argumenttia %1$P" # XXX # %s on "initialization", jota EI VOI suomentaa tällä hetkellä. --- 27677,27685 ---- msgstr "" #: cp/call.c:5949 cp/call.c:6080 ! #, gcc-internal-format msgid " initializing argument %P of %q+D" ! msgstr " alustettaessa funktion %2$q+D argumenttia %1$P" # XXX # %s on "initialization", jota EI VOI suomentaa tällä hetkellä. *************** msgid "scoped enum %qT will not promote *** 28000,28014 **** msgstr "" #: cp/call.c:6268 ! #, fuzzy, gcc-internal-format msgid "cannot pass objects of non-trivially-copyable type %q#T through %<...%>" ! msgstr "%q#T-tyyppisiä epä-POD-objekteja ei voi välittää %<...%>:n kautta, ohjelma tulee keskeytymään ajettaessa" #. conditionally-supported behavior [expr.call] 5.2.2/7. #: cp/call.c:6300 ! #, fuzzy, gcc-internal-format msgid "cannot receive objects of non-trivially-copyable type %q#T through %<...%>; " ! msgstr "%q#T-tyyppisiä epä-POD-objekteja ei voi vastaanottaa %<...%>:n kautta, ohjelma tulee keskeytymään ajettaessa" #: cp/call.c:6359 #, gcc-internal-format --- 27709,27723 ---- msgstr "" #: cp/call.c:6268 ! #, gcc-internal-format msgid "cannot pass objects of non-trivially-copyable type %q#T through %<...%>" ! msgstr "ei-triviaalisti-kopioitavan tyyppisiä %q#T-olioita ei voi välittää %<...%>:n kautta" #. conditionally-supported behavior [expr.call] 5.2.2/7. #: cp/call.c:6300 ! #, gcc-internal-format msgid "cannot receive objects of non-trivially-copyable type %q#T through %<...%>; " ! msgstr "ei-triviaalisti-kopioitavan tyyppisiä %q#T-olioita ei voi vastaanottaa %<...%>:n kautta" #: cp/call.c:6359 #, gcc-internal-format *************** msgid "call to %qD uses the default argu *** 28021,28029 **** msgstr "" #: cp/call.c:6482 ! #, fuzzy, gcc-internal-format msgid "argument of function call might be a candidate for a format attribute" ! msgstr "funktio on ehkä mahdollinen ehdokas %qs-muotoiluattribuutille" # XXX #: cp/call.c:6526 --- 27730,27738 ---- msgstr "" #: cp/call.c:6482 ! #, gcc-internal-format msgid "argument of function call might be a candidate for a format attribute" ! msgstr "funktiokutsun argumentti voi olla ehdokas muotoiluattribuutille" # XXX #: cp/call.c:6526 *************** msgstr "%J%qD esitelty turhaan uudestaan *** 28056,28163 **** msgid " (you can disable this with -fno-deduce-init-list)" msgstr "" ! #: cp/call.c:7153 #, gcc-internal-format msgid "could not find class$ field in java interface type %qT" msgstr "" ! #: cp/call.c:7414 #, gcc-internal-format msgid "call to non-function %qD" msgstr "" ! #: cp/call.c:7459 cp/typeck.c:2680 #, gcc-internal-format msgid "cannot call constructor %<%T::%D%> directly" msgstr "" ! #: cp/call.c:7461 #, gcc-internal-format msgid " for a function-style cast, remove the redundant %<::%D%>" msgstr "" ! #: cp/call.c:7578 #, gcc-internal-format msgid "no matching function for call to %<%T::operator %T(%A)%#V%>" msgstr "" ! #: cp/call.c:7591 #, gcc-internal-format msgid "no matching function for call to %<%T::%s(%A)%#V%>" msgstr "" ! #: cp/call.c:7616 #, gcc-internal-format msgid "call of overloaded %<%s(%A)%> is ambiguous" msgstr "" ! #: cp/call.c:7645 #, gcc-internal-format msgid "cannot call member function %qD without object" msgstr "jäsenfunktiota %qD ei voi kutsua ilman oliota" ! #: cp/call.c:8410 #, gcc-internal-format msgid "passing %qT chooses %qT over %qT" msgstr "" ! #: cp/call.c:8412 cp/name-lookup.c:5552 #, gcc-internal-format msgid " in call to %qD" msgstr "" ! #: cp/call.c:8470 #, gcc-internal-format msgid "choosing %qD over %qD" msgstr "" ! #: cp/call.c:8471 #, gcc-internal-format msgid " for conversion from %qT to %qT" msgstr "" ! #: cp/call.c:8474 #, gcc-internal-format msgid " because conversion sequence for the argument is better" msgstr "" ! #: cp/call.c:8628 #, gcc-internal-format msgid "default argument mismatch in overload resolution" msgstr "" ! #: cp/call.c:8631 #, gcc-internal-format msgid " candidate 1: %q+#F" ! msgstr "" ! #: cp/call.c:8633 #, gcc-internal-format msgid " candidate 2: %q+#F" ! msgstr "" ! #: cp/call.c:8677 #, gcc-internal-format msgid "ISO C++ says that these are ambiguous, even though the worst conversion for the first is better than the worst conversion for the second:" msgstr "ISO C++:n mukaan nämä ovat moniselitteisiä siitä huolimatta, että ensimmäisen huonoin muunnos on parempi kuin toisen huonoin:" ! #: cp/call.c:8841 #, fuzzy, gcc-internal-format - #| msgid "converting from %qT to %qT" msgid "could not convert %qE from %qT to %qT" msgstr "muunnos tyypistä %qT tyyppiin %qT" ! #: cp/call.c:9034 #, gcc-internal-format msgid "a temporary bound to %qD only persists until the constructor exits" msgstr "" ! #: cp/call.c:9150 #, fuzzy, gcc-internal-format msgid "invalid initialization of non-const reference of type %qT from an rvalue of type %qT" msgstr "virheellinen %qT-tyyppisen ei-const-viittauksen alustus %qT-tyyppisestä väliaikaisesta muuttujasta" ! #: cp/call.c:9154 #, gcc-internal-format msgid "invalid initialization of reference of type %qT from expression of type %qT" msgstr "virheellinen %qT-tyyppisen viittauksen alustus %qT-tyyppisestä lausekkeesta" --- 27765,27871 ---- msgid " (you can disable this with -fno-deduce-init-list)" msgstr "" ! #: cp/call.c:7156 #, gcc-internal-format msgid "could not find class$ field in java interface type %qT" msgstr "" ! #: cp/call.c:7417 #, gcc-internal-format msgid "call to non-function %qD" msgstr "" ! #: cp/call.c:7462 cp/typeck.c:2680 #, gcc-internal-format msgid "cannot call constructor %<%T::%D%> directly" msgstr "" ! #: cp/call.c:7464 #, gcc-internal-format msgid " for a function-style cast, remove the redundant %<::%D%>" msgstr "" ! #: cp/call.c:7581 #, gcc-internal-format msgid "no matching function for call to %<%T::operator %T(%A)%#V%>" msgstr "" ! #: cp/call.c:7594 #, gcc-internal-format msgid "no matching function for call to %<%T::%s(%A)%#V%>" msgstr "" ! #: cp/call.c:7619 #, gcc-internal-format msgid "call of overloaded %<%s(%A)%> is ambiguous" msgstr "" ! #: cp/call.c:7661 #, gcc-internal-format msgid "cannot call member function %qD without object" msgstr "jäsenfunktiota %qD ei voi kutsua ilman oliota" ! #: cp/call.c:8428 #, gcc-internal-format msgid "passing %qT chooses %qT over %qT" msgstr "" ! #: cp/call.c:8430 cp/name-lookup.c:5547 #, gcc-internal-format msgid " in call to %qD" msgstr "" ! #: cp/call.c:8488 #, gcc-internal-format msgid "choosing %qD over %qD" msgstr "" ! #: cp/call.c:8489 #, gcc-internal-format msgid " for conversion from %qT to %qT" msgstr "" ! #: cp/call.c:8492 #, gcc-internal-format msgid " because conversion sequence for the argument is better" msgstr "" ! #: cp/call.c:8646 #, gcc-internal-format msgid "default argument mismatch in overload resolution" msgstr "" ! #: cp/call.c:8649 #, gcc-internal-format msgid " candidate 1: %q+#F" ! msgstr " ehdokas 1: %q+#F" ! #: cp/call.c:8651 #, gcc-internal-format msgid " candidate 2: %q+#F" ! msgstr " ehdokas 2: %q+#F" ! #: cp/call.c:8695 #, gcc-internal-format msgid "ISO C++ says that these are ambiguous, even though the worst conversion for the first is better than the worst conversion for the second:" msgstr "ISO C++:n mukaan nämä ovat moniselitteisiä siitä huolimatta, että ensimmäisen huonoin muunnos on parempi kuin toisen huonoin:" ! #: cp/call.c:8859 #, fuzzy, gcc-internal-format msgid "could not convert %qE from %qT to %qT" msgstr "muunnos tyypistä %qT tyyppiin %qT" ! #: cp/call.c:9052 #, gcc-internal-format msgid "a temporary bound to %qD only persists until the constructor exits" msgstr "" ! #: cp/call.c:9168 #, fuzzy, gcc-internal-format msgid "invalid initialization of non-const reference of type %qT from an rvalue of type %qT" msgstr "virheellinen %qT-tyyppisen ei-const-viittauksen alustus %qT-tyyppisestä väliaikaisesta muuttujasta" ! #: cp/call.c:9172 #, gcc-internal-format msgid "invalid initialization of reference of type %qT from expression of type %qT" msgstr "virheellinen %qT-tyyppisen viittauksen alustus %qT-tyyppisestä lausekkeesta" *************** msgstr "Java-luokalla %qT ei voi olla im *** 28179,28185 **** #: cp/class.c:1120 #, fuzzy, gcc-internal-format - #| msgid "type %qT is not derived from type %qT" msgid "%q#D inherited from %qT" msgstr "tyyppi %qT ei periydy %qT-tyypistä" --- 27887,27892 ---- *************** msgstr "" *** 28230,28236 **** #: cp/class.c:1331 cp/class.c:1341 #, fuzzy, gcc-internal-format - #| msgid "%qD declared here" msgid "%qT declared here" msgstr "%qD esitelty täällä" --- 27937,27942 ---- *************** msgstr "" *** 28269,28637 **** msgid "no unique final overrider for %qD in %qT" msgstr "" ! #: cp/class.c:2648 #, fuzzy, gcc-internal-format msgid "%q+#D marked final, but is not virtual" msgstr "%Jnimike %qD määritelty, mutta ei käytetty" ! #: cp/class.c:2650 #, gcc-internal-format msgid "%q+#D marked override, but does not override" msgstr "" #. Here we know it is a hider, and no overrider exists. ! #: cp/class.c:2719 #, gcc-internal-format msgid "%q+D was hidden" ! msgstr "" ! #: cp/class.c:2720 #, gcc-internal-format msgid " by %q+D" msgstr "" ! #: cp/class.c:2763 cp/decl2.c:1365 #, gcc-internal-format msgid "%q+#D invalid; an anonymous union can only have non-static data members" msgstr "" # semi-fuzzy ! #: cp/class.c:2766 #, fuzzy, gcc-internal-format msgid "%q+#D invalid; an anonymous struct can only have non-static data members" msgstr "ei-staattista datajäsentä %q+D käytetty virheellisesti" ! #: cp/class.c:2774 cp/decl2.c:1371 #, gcc-internal-format msgid "private member %q+#D in anonymous union" msgstr "" ! #: cp/class.c:2776 #, gcc-internal-format msgid "private member %q+#D in anonymous struct" msgstr "" ! #: cp/class.c:2781 cp/decl2.c:1373 #, gcc-internal-format msgid "protected member %q+#D in anonymous union" msgstr "" ! #: cp/class.c:2783 #, gcc-internal-format msgid "protected member %q+#D in anonymous struct" msgstr "" ! #: cp/class.c:2927 #, gcc-internal-format msgid "the ellipsis in %qD is not inherited" msgstr "" ! #: cp/class.c:3103 #, gcc-internal-format msgid "bit-field %q+#D with non-integral type" msgstr "bittikenttä %+q#D ei ole kokonaislukutyyppinen" ! #: cp/class.c:3119 #, gcc-internal-format msgid "bit-field %q+D width not an integer constant" msgstr "bittikentän %q+D leveys ei ole kokonaislukuvakio" ! #: cp/class.c:3124 #, gcc-internal-format msgid "negative width in bit-field %q+D" msgstr "bittikentän %q+D leveys negatiivinen" ! #: cp/class.c:3129 #, gcc-internal-format msgid "zero width for bit-field %q+D" msgstr "bittikentän %q+D leveys nolla" ! #: cp/class.c:3135 #, gcc-internal-format msgid "width of %q+D exceeds its type" msgstr "bittikentän %q+D leveys ylittää kentän tyypin leveyden" ! #: cp/class.c:3139 #, gcc-internal-format msgid "%q+D is too small to hold all values of %q#T" ! msgstr "" ! #: cp/class.c:3198 #, gcc-internal-format msgid "member %q+#D with constructor not allowed in union" msgstr "" ! #: cp/class.c:3201 #, gcc-internal-format msgid "member %q+#D with destructor not allowed in union" msgstr "" ! #: cp/class.c:3203 #, gcc-internal-format msgid "member %q+#D with copy assignment operator not allowed in union" msgstr "" ! #: cp/class.c:3207 #, gcc-internal-format msgid "unrestricted unions only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/class.c:3244 #, gcc-internal-format msgid "multiple fields in union %qT initialized" ! msgstr "" ! #: cp/class.c:3329 #, gcc-internal-format msgid "%q+D may not be static because it is a member of a union" ! msgstr "" ! #: cp/class.c:3334 #, gcc-internal-format msgid "%q+D may not have reference type %qT because it is a member of a union" ! msgstr "" ! #: cp/class.c:3345 #, fuzzy, gcc-internal-format msgid "field %q+D invalidly declared function type" msgstr "kenttä %qs esitelty funktiona" ! #: cp/class.c:3351 #, fuzzy, gcc-internal-format msgid "field %q+D invalidly declared method type" msgstr "%Jparametri %qD esitelty tyhjällä tyypillä" ! #: cp/class.c:3407 #, gcc-internal-format msgid "ignoring packed attribute because of unpacked non-POD field %q+#D" msgstr "" ! #: cp/class.c:3504 #, gcc-internal-format msgid "field %q+#D with same name as class" ! msgstr "" ! #: cp/class.c:3527 #, gcc-internal-format msgid "%q#T has pointer data members" msgstr "luokalla %q#T on datajäseninä osoittimia" ! #: cp/class.c:3532 #, gcc-internal-format msgid " but does not override %<%T(const %T&)%>" msgstr " mutta ei ylikuormitusta %<%T(const %T&)%>" ! #: cp/class.c:3534 #, gcc-internal-format msgid " or %" msgstr " eikä %" ! #: cp/class.c:3538 #, gcc-internal-format msgid " but does not override %" ! msgstr "" ! #: cp/class.c:4009 #, gcc-internal-format msgid "offset of empty base %qT may not be ABI-compliant and maychange in a future version of GCC" msgstr "" ! #: cp/class.c:4136 #, gcc-internal-format msgid "class %qT will be considered nearly empty in a future version of GCC" msgstr "" ! #: cp/class.c:4218 #, gcc-internal-format msgid "initializer specified for non-virtual method %q+D" msgstr "" ! #: cp/class.c:4645 #, gcc-internal-format msgid "method overrides both % and %qE methods" msgstr "" ! #: cp/class.c:4666 #, gcc-internal-format msgid "method declared %qE overriding %qE method" msgstr "" ! #: cp/class.c:5132 cp/semantics.c:5826 #, fuzzy, gcc-internal-format msgid "enclosing class of constexpr non-static member function %q+#D is not a literal type" msgstr "%q+D-funktion paluuarvon tyyppi ei ole %" ! #: cp/class.c:5157 #, fuzzy, gcc-internal-format - #| msgid "%q#T is not a class" msgid "%q+T is not literal because:" msgstr "%q#T ei ole luokka" ! #: cp/class.c:5159 #, fuzzy, gcc-internal-format - #| msgid "Java class %qT cannot have an implicit non-trivial destructor" msgid " %q+T has a non-trivial destructor" msgstr "Java-luokalla %qT ei voi olla implisiittistä epätriviaalia hajotinta" ! #: cp/class.c:5164 #, gcc-internal-format msgid " %q+T is not an aggregate, does not have a trivial default constructor, and has no constexpr constructor that is not a copy or move constructor" msgstr "" ! #: cp/class.c:5200 #, gcc-internal-format msgid " base class %qT of %q+T is non-literal" msgstr "" ! #: cp/class.c:5214 #, fuzzy, gcc-internal-format msgid " non-static data member %q+D has non-literal type" msgstr "%Jparametri %qD esitelty %:ksi" ! #: cp/class.c:5332 #, gcc-internal-format msgid "non-static reference %q+#D in class without a constructor" msgstr "" ! #: cp/class.c:5337 #, gcc-internal-format msgid "non-static const member %q+#D in class without a constructor" msgstr "" #. If the function is defaulted outside the class, we just #. give the synthesis error. ! #: cp/class.c:5363 #, gcc-internal-format msgid "%q+D declared to take const reference, but implicit declaration would take non-const" msgstr "" ! #: cp/class.c:5587 #, gcc-internal-format msgid "offset of virtual base %qT is not ABI-compliant and may change in a future version of GCC" msgstr "" ! #: cp/class.c:5688 #, gcc-internal-format msgid "direct base %qT inaccessible in %qT due to ambiguity" msgstr "" ! #: cp/class.c:5700 #, gcc-internal-format msgid "virtual base %qT inaccessible in %qT due to ambiguity" msgstr "" ! #: cp/class.c:5886 #, gcc-internal-format msgid "size assigned to %qT may not be ABI-compliant and may change in a future version of GCC" msgstr "" ! #: cp/class.c:5926 #, gcc-internal-format msgid "the offset of %qD may not be ABI-compliant and may change in a future version of GCC" msgstr "" ! #: cp/class.c:5954 #, gcc-internal-format msgid "offset of %q+D is not ABI-compliant and may change in a future version of GCC" msgstr "" ! #: cp/class.c:5964 #, gcc-internal-format msgid "%q+D contains empty classes which may cause base classes to be placed at different locations in a future version of GCC" msgstr "" ! #: cp/class.c:6052 #, gcc-internal-format msgid "layout of classes derived from empty class %qT may change in a future version of GCC" msgstr "tyhjästä luokasta %qT perittyjen luokkien rakenne saattaa muuttua GCC:n tulevissa versioissa" ! #: cp/class.c:6220 cp/decl.c:12134 cp/parser.c:18856 #, gcc-internal-format msgid "redefinition of %q#T" msgstr "%q#T uudelleenmääritelty" ! #: cp/class.c:6369 #, gcc-internal-format msgid "%q#T has virtual functions and accessible non-virtual destructor" msgstr "luokalla %q#T on virtuaalifunktioita ja käytettävissä oleva epävirtuaalinen hajotin" ! #: cp/class.c:6395 #, fuzzy, gcc-internal-format - #| msgid "class %qT does not have any field named %qD" msgid "type transparent %q#T does not have any fields" msgstr "luokalla %qT ei ole %qD-nimistä kenttää" ! #: cp/class.c:6401 #, gcc-internal-format msgid "type transparent class %qT has base classes" msgstr "" ! #: cp/class.c:6405 #, fuzzy, gcc-internal-format msgid "type transparent class %qT has virtual functions" msgstr "% ei ole käytettävissä staattisissa jäsenfunktioissa" ! #: cp/class.c:6411 #, gcc-internal-format msgid "type transparent %q#T cannot be made transparent because the type of the first field has a different ABI from the class overall" msgstr "" ! #: cp/class.c:6562 #, gcc-internal-format msgid "trying to finish struct, but kicked out due to previous parse errors" msgstr "" ! #: cp/class.c:7071 #, gcc-internal-format msgid "language string %<\"%E\"%> not recognized" msgstr "" ! #: cp/class.c:7160 #, gcc-internal-format msgid "cannot resolve overloaded function %qD based on conversion to type %qT" msgstr "" ! #: cp/class.c:7280 #, gcc-internal-format msgid "no matches converting function %qD to type %q#T" msgstr "" ! #: cp/class.c:7308 #, gcc-internal-format msgid "converting overloaded function %qD to type %q#T is ambiguous" msgstr "" ! #: cp/class.c:7335 #, gcc-internal-format msgid "assuming pointer to member %qD" msgstr "" ! #: cp/class.c:7338 #, gcc-internal-format msgid "(a pointer to member can only be formed with %<&%E%>)" msgstr "" ! #: cp/class.c:7413 cp/class.c:7447 #, gcc-internal-format msgid "not enough type information" msgstr "" ! #: cp/class.c:7430 cp/cvt.c:173 cp/cvt.c:199 cp/cvt.c:248 #, gcc-internal-format msgid "cannot convert %qE from type %qT to type %qT" ! msgstr "" #. [basic.scope.class] #. #. A name N used in a class S shall refer to the same declaration #. in its context and when re-evaluated in the completed scope of #. S. ! #: cp/class.c:7742 cp/decl.c:1325 #, gcc-internal-format msgid "declaration of %q#D" msgstr "" ! #: cp/class.c:7743 #, gcc-internal-format msgid "changes meaning of %qD from %q+#D" msgstr "" --- 27975,28340 ---- msgid "no unique final overrider for %qD in %qT" msgstr "" ! #: cp/class.c:2652 #, fuzzy, gcc-internal-format msgid "%q+#D marked final, but is not virtual" msgstr "%Jnimike %qD määritelty, mutta ei käytetty" ! #: cp/class.c:2654 #, gcc-internal-format msgid "%q+#D marked override, but does not override" msgstr "" #. Here we know it is a hider, and no overrider exists. ! #: cp/class.c:2723 #, gcc-internal-format msgid "%q+D was hidden" ! msgstr "%q+D oli piilotettu" ! #: cp/class.c:2724 #, gcc-internal-format msgid " by %q+D" msgstr "" ! #: cp/class.c:2767 cp/decl2.c:1365 #, gcc-internal-format msgid "%q+#D invalid; an anonymous union can only have non-static data members" msgstr "" # semi-fuzzy ! #: cp/class.c:2770 #, fuzzy, gcc-internal-format msgid "%q+#D invalid; an anonymous struct can only have non-static data members" msgstr "ei-staattista datajäsentä %q+D käytetty virheellisesti" ! #: cp/class.c:2778 cp/decl2.c:1371 #, gcc-internal-format msgid "private member %q+#D in anonymous union" msgstr "" ! #: cp/class.c:2780 #, gcc-internal-format msgid "private member %q+#D in anonymous struct" msgstr "" ! #: cp/class.c:2785 cp/decl2.c:1373 #, gcc-internal-format msgid "protected member %q+#D in anonymous union" msgstr "" ! #: cp/class.c:2787 #, gcc-internal-format msgid "protected member %q+#D in anonymous struct" msgstr "" ! #: cp/class.c:2931 #, gcc-internal-format msgid "the ellipsis in %qD is not inherited" msgstr "" ! #: cp/class.c:3106 #, gcc-internal-format msgid "bit-field %q+#D with non-integral type" msgstr "bittikenttä %+q#D ei ole kokonaislukutyyppinen" ! #: cp/class.c:3122 #, gcc-internal-format msgid "bit-field %q+D width not an integer constant" msgstr "bittikentän %q+D leveys ei ole kokonaislukuvakio" ! #: cp/class.c:3127 #, gcc-internal-format msgid "negative width in bit-field %q+D" msgstr "bittikentän %q+D leveys negatiivinen" ! #: cp/class.c:3132 #, gcc-internal-format msgid "zero width for bit-field %q+D" msgstr "bittikentän %q+D leveys nolla" ! #: cp/class.c:3138 #, gcc-internal-format msgid "width of %q+D exceeds its type" msgstr "bittikentän %q+D leveys ylittää kentän tyypin leveyden" ! #: cp/class.c:3142 #, gcc-internal-format msgid "%q+D is too small to hold all values of %q#T" ! msgstr "%q+D on liian pieni sisältämään %q#T:n kaikkia arvoja" ! #: cp/class.c:3201 #, gcc-internal-format msgid "member %q+#D with constructor not allowed in union" msgstr "" ! #: cp/class.c:3204 #, gcc-internal-format msgid "member %q+#D with destructor not allowed in union" msgstr "" ! #: cp/class.c:3206 #, gcc-internal-format msgid "member %q+#D with copy assignment operator not allowed in union" msgstr "" ! #: cp/class.c:3210 #, gcc-internal-format msgid "unrestricted unions only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/class.c:3247 #, gcc-internal-format msgid "multiple fields in union %qT initialized" ! msgstr "useita kenttiä unionissa %qT alustettu" ! #: cp/class.c:3332 #, gcc-internal-format msgid "%q+D may not be static because it is a member of a union" ! msgstr "%q+D ei voi olla staattinen koska se on unionin jäsen" ! #: cp/class.c:3337 #, gcc-internal-format msgid "%q+D may not have reference type %qT because it is a member of a union" ! msgstr "%q+D:lla ei voi olla viitetyyppiä %qT, koska se on unionin jäsen" ! #: cp/class.c:3348 #, fuzzy, gcc-internal-format msgid "field %q+D invalidly declared function type" msgstr "kenttä %qs esitelty funktiona" ! #: cp/class.c:3354 #, fuzzy, gcc-internal-format msgid "field %q+D invalidly declared method type" msgstr "%Jparametri %qD esitelty tyhjällä tyypillä" ! #: cp/class.c:3410 #, gcc-internal-format msgid "ignoring packed attribute because of unpacked non-POD field %q+#D" msgstr "" ! #: cp/class.c:3507 #, gcc-internal-format msgid "field %q+#D with same name as class" ! msgstr "kentällä %q+#D on sama nimi kuin luokalla" ! #: cp/class.c:3530 #, gcc-internal-format msgid "%q#T has pointer data members" msgstr "luokalla %q#T on datajäseninä osoittimia" ! #: cp/class.c:3535 #, gcc-internal-format msgid " but does not override %<%T(const %T&)%>" msgstr " mutta ei ylikuormitusta %<%T(const %T&)%>" ! #: cp/class.c:3537 #, gcc-internal-format msgid " or %" msgstr " eikä %" ! #: cp/class.c:3541 #, gcc-internal-format msgid " but does not override %" ! msgstr " mutta ei ylikuormitusta %" ! #: cp/class.c:4012 #, gcc-internal-format msgid "offset of empty base %qT may not be ABI-compliant and maychange in a future version of GCC" msgstr "" ! #: cp/class.c:4139 #, gcc-internal-format msgid "class %qT will be considered nearly empty in a future version of GCC" msgstr "" ! #: cp/class.c:4221 #, gcc-internal-format msgid "initializer specified for non-virtual method %q+D" msgstr "" ! #: cp/class.c:4648 #, gcc-internal-format msgid "method overrides both % and %qE methods" msgstr "" ! #: cp/class.c:4669 #, gcc-internal-format msgid "method declared %qE overriding %qE method" msgstr "" ! #: cp/class.c:5135 cp/semantics.c:5828 #, fuzzy, gcc-internal-format msgid "enclosing class of constexpr non-static member function %q+#D is not a literal type" msgstr "%q+D-funktion paluuarvon tyyppi ei ole %" ! #: cp/class.c:5160 #, fuzzy, gcc-internal-format msgid "%q+T is not literal because:" msgstr "%q#T ei ole luokka" ! #: cp/class.c:5162 #, fuzzy, gcc-internal-format msgid " %q+T has a non-trivial destructor" msgstr "Java-luokalla %qT ei voi olla implisiittistä epätriviaalia hajotinta" ! #: cp/class.c:5167 #, gcc-internal-format msgid " %q+T is not an aggregate, does not have a trivial default constructor, and has no constexpr constructor that is not a copy or move constructor" msgstr "" ! #: cp/class.c:5203 #, gcc-internal-format msgid " base class %qT of %q+T is non-literal" msgstr "" ! #: cp/class.c:5217 #, fuzzy, gcc-internal-format msgid " non-static data member %q+D has non-literal type" msgstr "%Jparametri %qD esitelty %:ksi" ! #: cp/class.c:5335 #, gcc-internal-format msgid "non-static reference %q+#D in class without a constructor" msgstr "" ! #: cp/class.c:5340 #, gcc-internal-format msgid "non-static const member %q+#D in class without a constructor" msgstr "" #. If the function is defaulted outside the class, we just #. give the synthesis error. ! #: cp/class.c:5366 #, gcc-internal-format msgid "%q+D declared to take const reference, but implicit declaration would take non-const" msgstr "" ! #: cp/class.c:5590 #, gcc-internal-format msgid "offset of virtual base %qT is not ABI-compliant and may change in a future version of GCC" msgstr "" ! #: cp/class.c:5691 #, gcc-internal-format msgid "direct base %qT inaccessible in %qT due to ambiguity" msgstr "" ! #: cp/class.c:5703 #, gcc-internal-format msgid "virtual base %qT inaccessible in %qT due to ambiguity" msgstr "" ! #: cp/class.c:5889 #, gcc-internal-format msgid "size assigned to %qT may not be ABI-compliant and may change in a future version of GCC" msgstr "" ! #: cp/class.c:5929 #, gcc-internal-format msgid "the offset of %qD may not be ABI-compliant and may change in a future version of GCC" msgstr "" ! #: cp/class.c:5957 #, gcc-internal-format msgid "offset of %q+D is not ABI-compliant and may change in a future version of GCC" msgstr "" ! #: cp/class.c:5967 #, gcc-internal-format msgid "%q+D contains empty classes which may cause base classes to be placed at different locations in a future version of GCC" msgstr "" ! #: cp/class.c:6055 #, gcc-internal-format msgid "layout of classes derived from empty class %qT may change in a future version of GCC" msgstr "tyhjästä luokasta %qT perittyjen luokkien rakenne saattaa muuttua GCC:n tulevissa versioissa" ! #: cp/class.c:6223 cp/decl.c:12125 cp/parser.c:18860 #, gcc-internal-format msgid "redefinition of %q#T" msgstr "%q#T uudelleenmääritelty" ! #: cp/class.c:6372 #, gcc-internal-format msgid "%q#T has virtual functions and accessible non-virtual destructor" msgstr "luokalla %q#T on virtuaalifunktioita ja käytettävissä oleva epävirtuaalinen hajotin" ! #: cp/class.c:6398 #, fuzzy, gcc-internal-format msgid "type transparent %q#T does not have any fields" msgstr "luokalla %qT ei ole %qD-nimistä kenttää" ! #: cp/class.c:6404 #, gcc-internal-format msgid "type transparent class %qT has base classes" msgstr "" ! #: cp/class.c:6408 #, fuzzy, gcc-internal-format msgid "type transparent class %qT has virtual functions" msgstr "% ei ole käytettävissä staattisissa jäsenfunktioissa" ! #: cp/class.c:6414 #, gcc-internal-format msgid "type transparent %q#T cannot be made transparent because the type of the first field has a different ABI from the class overall" msgstr "" ! #: cp/class.c:6565 #, gcc-internal-format msgid "trying to finish struct, but kicked out due to previous parse errors" msgstr "" ! #: cp/class.c:7074 #, gcc-internal-format msgid "language string %<\"%E\"%> not recognized" msgstr "" ! #: cp/class.c:7163 #, gcc-internal-format msgid "cannot resolve overloaded function %qD based on conversion to type %qT" msgstr "" ! #: cp/class.c:7283 #, gcc-internal-format msgid "no matches converting function %qD to type %q#T" msgstr "" ! #: cp/class.c:7311 #, gcc-internal-format msgid "converting overloaded function %qD to type %q#T is ambiguous" msgstr "" ! #: cp/class.c:7338 #, gcc-internal-format msgid "assuming pointer to member %qD" msgstr "" ! #: cp/class.c:7341 #, gcc-internal-format msgid "(a pointer to member can only be formed with %<&%E%>)" msgstr "" ! #: cp/class.c:7416 cp/class.c:7450 #, gcc-internal-format msgid "not enough type information" msgstr "" ! #: cp/class.c:7433 cp/cvt.c:173 cp/cvt.c:199 cp/cvt.c:248 #, gcc-internal-format msgid "cannot convert %qE from type %qT to type %qT" ! msgstr "%qE:ta ei voi muuntaa tyypistä %qT tyyppiin %qT" #. [basic.scope.class] #. #. A name N used in a class S shall refer to the same declaration #. in its context and when re-evaluated in the completed scope of #. S. ! #: cp/class.c:7745 cp/decl.c:1325 #, gcc-internal-format msgid "declaration of %q#D" msgstr "" ! #: cp/class.c:7746 #, gcc-internal-format msgid "changes meaning of %qD from %q+#D" msgstr "" *************** msgstr "" *** 28643,28656 **** #: cp/cvt.c:91 #, fuzzy, gcc-internal-format - #| msgid "cannot convert type %qT to type %qT" msgid "can%'t convert from incomplete type %qT to %qT" msgstr "ei voi muuntaa tyyppiä %qT tyypiksi %qT" #: cp/cvt.c:101 #, gcc-internal-format msgid "conversion of %qE from %qT to %qT is ambiguous" ! msgstr "" #: cp/cvt.c:383 #, fuzzy, gcc-internal-format --- 28346,28358 ---- #: cp/cvt.c:91 #, fuzzy, gcc-internal-format msgid "can%'t convert from incomplete type %qT to %qT" msgstr "ei voi muuntaa tyyppiä %qT tyypiksi %qT" #: cp/cvt.c:101 #, gcc-internal-format msgid "conversion of %qE from %qT to %qT is ambiguous" ! msgstr "%qE:n muunnos tyypistä %qT tyyppiin %qT ei ole yksiselitteinen" #: cp/cvt.c:383 #, fuzzy, gcc-internal-format *************** msgstr "" *** 28750,28756 **** #: cp/cvt.c:1036 #, fuzzy, gcc-internal-format - #| msgid "invalid application of %qs to incomplete type %qT " msgid "indirection will not access object of incomplete type %qT in statement" msgstr "epäkelpo %qs:n soveltaminen vaillinaiseen tyyppiin %qT " --- 28452,28457 ---- *************** msgstr "ei-liukulukuargumentti funktioll *** 28931,28967 **** #: cp/cvt.c:1335 #, fuzzy, gcc-internal-format - #| msgid "left-hand operand of comma expression has no effect" msgid "second operand of conditional expression has no effect" msgstr "pilkkulausekkeen vasemmalla operandilla ei ole vaikutusta" #: cp/cvt.c:1340 #, fuzzy, gcc-internal-format - #| msgid "left-hand operand of comma expression has no effect" msgid "third operand of conditional expression has no effect" msgstr "pilkkulausekkeen vasemmalla operandilla ei ole vaikutusta" #: cp/cvt.c:1345 #, fuzzy, gcc-internal-format - #| msgid "left-hand operand of comma expression has no effect" msgid "right operand of comma operator has no effect" msgstr "pilkkulausekkeen vasemmalla operandilla ei ole vaikutusta" #: cp/cvt.c:1349 #, fuzzy, gcc-internal-format - #| msgid "left-hand operand of comma expression has no effect" msgid "left operand of comma operator has no effect" msgstr "pilkkulausekkeen vasemmalla operandilla ei ole vaikutusta" #: cp/cvt.c:1353 #, fuzzy, gcc-internal-format - #| msgid "statement with no effect" msgid "statement has no effect" msgstr "lauseella ei ole vaikutusta" #: cp/cvt.c:1357 #, fuzzy, gcc-internal-format - #| msgid "left-hand operand of comma expression has no effect" msgid "for increment expression has no effect" msgstr "pilkkulausekkeen vasemmalla operandilla ei ole vaikutusta" --- 28632,28662 ---- *************** msgstr "NULLin muunnos epäosoitintyypik *** 28973,28979 **** #: cp/cvt.c:1587 cp/cvt.c:1636 #, gcc-internal-format msgid "ambiguous default type conversion from %qT" ! msgstr "" #: cp/cvt.c:1589 #, gcc-internal-format --- 28668,28674 ---- #: cp/cvt.c:1587 cp/cvt.c:1636 #, gcc-internal-format msgid "ambiguous default type conversion from %qT" ! msgstr "ei-yksiselitteinen oletustyyppimuunnos tyypistä %qT" #: cp/cvt.c:1589 #, gcc-internal-format *************** msgstr "" *** 28987,28993 **** #: cp/decl.c:640 #, fuzzy, gcc-internal-format - #| msgid "label %q+D defined but not used" msgid "variable %q+D set but not used" msgstr "nimike %q+D määritelty mutta käytettämättä" --- 28682,28687 ---- *************** msgstr "" *** 28998,29006 **** #: cp/decl.c:1147 cp/decl.c:1756 objc/objc-act.c:3375 objc/objc-act.c:3964 #: objc/objc-act.c:3992 objc/objc-act.c:4048 objc/objc-act.c:6831 ! #, fuzzy, gcc-internal-format msgid "previous declaration of %q+D" ! msgstr "%J%qD:lle ei ole aiempaa esittelyä" #: cp/decl.c:1179 #, fuzzy, gcc-internal-format --- 28692,28700 ---- #: cp/decl.c:1147 cp/decl.c:1756 objc/objc-act.c:3375 objc/objc-act.c:3964 #: objc/objc-act.c:3992 objc/objc-act.c:4048 objc/objc-act.c:6831 ! #, gcc-internal-format msgid "previous declaration of %q+D" ! msgstr "%q+D:n edellinen esittely" #: cp/decl.c:1179 #, fuzzy, gcc-internal-format *************** msgid "declaration of %qF has a differen *** 29008,29020 **** msgstr "%qs esitelty funktiotaulukkona" #: cp/decl.c:1181 ! #, fuzzy, gcc-internal-format msgid "from previous declaration %q+F" ! msgstr "%J%qD:lle ei ole aiempaa esittelyä" #: cp/decl.c:1206 #, fuzzy, gcc-internal-format - #| msgid "declaration of %qD as non-member" msgid "redeclaration %qD differs in %" msgstr "%qD:n esittely ei-jäsenenä" --- 28702,28713 ---- msgstr "%qs esitelty funktiotaulukkona" #: cp/decl.c:1181 ! #, gcc-internal-format msgid "from previous declaration %q+F" ! msgstr "edellisestä esittelystä %q+F" #: cp/decl.c:1206 #, fuzzy, gcc-internal-format msgid "redeclaration %qD differs in %" msgstr "%qD:n esittely ei-jäsenenä" *************** msgid "function %q+D redeclared with att *** 29049,29067 **** msgstr "%Javoimelle funktiolle %qD annettu attribuutti noinline" #: cp/decl.c:1289 ! #, fuzzy, gcc-internal-format msgid "previous declaration of %q+D was inline" ! msgstr "%J%qD:n edellinen esittely oli täällä" #: cp/decl.c:1313 cp/decl.c:1387 #, fuzzy, gcc-internal-format - #| msgid "cannot disable built-in function %qs" msgid "shadowing built-in function %q#D" msgstr "sisäistä funktiota %qs ei voi ottaa pois käytöstä" #: cp/decl.c:1314 cp/decl.c:1388 #, fuzzy, gcc-internal-format - #| msgid "In member function %qs" msgid "shadowing library function %q#D" msgstr "Jäsenfunktio %qs" --- 28742,28758 ---- msgstr "%Javoimelle funktiolle %qD annettu attribuutti noinline" #: cp/decl.c:1289 ! #, gcc-internal-format msgid "previous declaration of %q+D was inline" ! msgstr "%q+D:n edellinen esittely oli inline" #: cp/decl.c:1313 cp/decl.c:1387 #, fuzzy, gcc-internal-format msgid "shadowing built-in function %q#D" msgstr "sisäistä funktiota %qs ei voi ottaa pois käytöstä" #: cp/decl.c:1314 cp/decl.c:1388 #, fuzzy, gcc-internal-format msgid "shadowing library function %q#D" msgstr "Jäsenfunktio %qs" *************** msgstr "%J%qD:lle ei ole aiempaa esittel *** 29098,29119 **** #: cp/decl.c:1495 #, gcc-internal-format msgid "declaration of template %q#D" ! msgstr "" #: cp/decl.c:1496 cp/name-lookup.c:844 cp/name-lookup.c:859 ! #, fuzzy, gcc-internal-format msgid "conflicts with previous declaration %q+#D" ! msgstr "%J%qD:n lohko on ristiriidassa edellisen esittelyn kanssa" #: cp/decl.c:1511 cp/decl.c:1536 ! #, fuzzy, gcc-internal-format msgid "ambiguates old declaration %q+#D" ! msgstr "%qs-nimikkeen kaksoisesittely" #: cp/decl.c:1519 #, gcc-internal-format msgid "declaration of C function %q#D conflicts with" ! msgstr "" #: cp/decl.c:1521 #, fuzzy, gcc-internal-format --- 28789,28810 ---- #: cp/decl.c:1495 #, gcc-internal-format msgid "declaration of template %q#D" ! msgstr "mallin %q#D esittely" #: cp/decl.c:1496 cp/name-lookup.c:844 cp/name-lookup.c:859 ! #, gcc-internal-format msgid "conflicts with previous declaration %q+#D" ! msgstr "on ristiriidassa %q+#D:n edellisen esittelyn kanssa" #: cp/decl.c:1511 cp/decl.c:1536 ! #, gcc-internal-format msgid "ambiguates old declaration %q+#D" ! msgstr "ei-yksiselitteistää vanhan esittelyn %q+#D" #: cp/decl.c:1519 #, gcc-internal-format msgid "declaration of C function %q#D conflicts with" ! msgstr "C-funktion %q#D esittely on ristiriidassa" #: cp/decl.c:1521 #, fuzzy, gcc-internal-format *************** msgstr "%qs-nimikkeen kaksoisesittely" *** 29128,29134 **** #: cp/decl.c:1544 #, gcc-internal-format msgid "conflicting declaration %q#D" ! msgstr "" #: cp/decl.c:1545 #, fuzzy, gcc-internal-format --- 28819,28825 ---- #: cp/decl.c:1544 #, gcc-internal-format msgid "conflicting declaration %q#D" ! msgstr "ristiriitainen esittely %q#D" #: cp/decl.c:1545 #, fuzzy, gcc-internal-format *************** msgid "%q+#D previously defined here" *** 29159,29173 **** msgstr "%q+#D määritelty aiemmin täällä" #: cp/decl.c:1610 cp/name-lookup.c:1136 ! #, fuzzy, gcc-internal-format msgid "%q+#D previously declared here" ! msgstr "%Jviimeksi käytetty täällä" #. Prototype decl follows defn w/o prototype. #: cp/decl.c:1619 ! #, fuzzy, gcc-internal-format msgid "prototype for %q+#D" ! msgstr "%J%qD:lle ei ole aiempaa prototyyppiä" #: cp/decl.c:1621 #, fuzzy, gcc-internal-format --- 28850,28864 ---- msgstr "%q+#D määritelty aiemmin täällä" #: cp/decl.c:1610 cp/name-lookup.c:1136 ! #, gcc-internal-format msgid "%q+#D previously declared here" ! msgstr "%q+#D aiemmin esitelty täällä" #. Prototype decl follows defn w/o prototype. #: cp/decl.c:1619 ! #, gcc-internal-format msgid "prototype for %q+#D" ! msgstr "prototyyppi %q+#D:lle" #: cp/decl.c:1621 #, fuzzy, gcc-internal-format *************** msgstr "%J%qD esitelty uudelleen ilman l *** 29182,29193 **** #: cp/decl.c:1663 #, gcc-internal-format msgid "conflicts with new declaration with %qL linkage" ! msgstr "" #: cp/decl.c:1686 cp/decl.c:1692 #, gcc-internal-format msgid "default argument given for parameter %d of %q#D" ! msgstr "" #: cp/decl.c:1688 cp/decl.c:1694 #, fuzzy, gcc-internal-format --- 28873,28884 ---- #: cp/decl.c:1663 #, gcc-internal-format msgid "conflicts with new declaration with %qL linkage" ! msgstr "on ristiriidassa uuden esittelyn kanssa %qL-linkityksellä" #: cp/decl.c:1686 cp/decl.c:1692 #, gcc-internal-format msgid "default argument given for parameter %d of %q#D" ! msgstr "oletusargumentti annettu %2$q#D:n parametrille %1$d" #: cp/decl.c:1688 cp/decl.c:1694 #, fuzzy, gcc-internal-format *************** msgid "redundant redeclaration of %qD in *** 29200,29213 **** msgstr "" #: cp/decl.c:1761 ! #, fuzzy, gcc-internal-format msgid "deleted definition of %qD" ! msgstr "%J%qD määritelty uudelleen" #: cp/decl.c:1762 ! #, fuzzy, gcc-internal-format msgid "after previous declaration %q+D" ! msgstr "%J%qD:lle ei ole aiempaa esittelyä" #. From [temp.expl.spec]: #. --- 28891,28904 ---- msgstr "" #: cp/decl.c:1761 ! #, gcc-internal-format msgid "deleted definition of %qD" ! msgstr "%qD:n poistettu määrittely" #: cp/decl.c:1762 ! #, gcc-internal-format msgid "after previous declaration %q+D" ! msgstr "%q+D:n edellisen esittelyn jälkeen" #. From [temp.expl.spec]: #. *************** msgid "explicit specialization of %qD af *** 29223,29241 **** msgstr "" #: cp/decl.c:2248 ! #, fuzzy, gcc-internal-format msgid "%q+D: visibility attribute ignored because it" ! msgstr "%qs attribuuttia ei huomioida" #: cp/decl.c:2250 ! #, fuzzy, gcc-internal-format msgid "conflicts with previous declaration here" ! msgstr "%J%qD:n lohko on ristiriidassa edellisen esittelyn kanssa" #. Reject two definitions. #: cp/decl.c:2429 cp/decl.c:2458 cp/decl.c:2491 cp/decl.c:2508 cp/decl.c:2581 #, fuzzy, gcc-internal-format - #| msgid "redefinition of %q#T" msgid "redefinition of %q#D" msgstr "%q#T uudelleenmääritelty" --- 28914,28931 ---- msgstr "" #: cp/decl.c:2248 ! #, gcc-internal-format msgid "%q+D: visibility attribute ignored because it" ! msgstr "%q+D: näkyvyysattribuuttia ei oteta huomioon koska se" #: cp/decl.c:2250 ! #, gcc-internal-format msgid "conflicts with previous declaration here" ! msgstr "on ristiriidassa edelliseen tässä olevan esittelyn kanssa" #. Reject two definitions. #: cp/decl.c:2429 cp/decl.c:2458 cp/decl.c:2491 cp/decl.c:2508 cp/decl.c:2581 #, fuzzy, gcc-internal-format msgid "redefinition of %q#D" msgstr "%q#T uudelleenmääritelty" *************** msgstr "" *** 29315,29327 **** #: cp/decl.c:2803 cp/decl.c:2910 #, gcc-internal-format msgid " enters try block" ! msgstr "" #. Can't skip init of __exception_info. #: cp/decl.c:2805 cp/decl.c:2899 cp/decl.c:2912 #, gcc-internal-format msgid " enters catch block" ! msgstr "" #: cp/decl.c:2815 cp/decl.c:2915 #, gcc-internal-format --- 29005,29017 ---- #: cp/decl.c:2803 cp/decl.c:2910 #, gcc-internal-format msgid " enters try block" ! msgstr " siirtyy try-lohkoon" #. Can't skip init of __exception_info. #: cp/decl.c:2805 cp/decl.c:2899 cp/decl.c:2912 #, gcc-internal-format msgid " enters catch block" ! msgstr " siirtyy catch-lohkoon" #: cp/decl.c:2815 cp/decl.c:2915 #, gcc-internal-format *************** msgid "jump to label %q+D" *** 29334,29342 **** msgstr "hyppy nimiöön %q+D" #: cp/decl.c:2903 ! #, fuzzy, gcc-internal-format msgid " skips initialization of %q+#D" ! msgstr "(%qs:n alustuksen lähistöllä)" #: cp/decl.c:2980 #, gcc-internal-format --- 29024,29032 ---- msgstr "hyppy nimiöön %q+D" #: cp/decl.c:2903 ! #, gcc-internal-format msgid " skips initialization of %q+#D" ! msgstr " ohittaa %q+#D:n alustuksen" #: cp/decl.c:2980 #, gcc-internal-format *************** msgstr "muunnos tyypistä %qT tyyppiin % *** 29376,29387 **** #: cp/decl.c:3351 #, gcc-internal-format msgid "% names %q#T, which is not a class template" ! msgstr "" #: cp/decl.c:3358 #, gcc-internal-format msgid "% names %q#T, which is not a type" ! msgstr "" #: cp/decl.c:3430 #, gcc-internal-format --- 29066,29077 ---- #: cp/decl.c:3351 #, gcc-internal-format msgid "% names %q#T, which is not a class template" ! msgstr "% nimeää kohteen %q#T:n, joka ei ole luokkamalli" #: cp/decl.c:3358 #, gcc-internal-format msgid "% names %q#T, which is not a type" ! msgstr "% nimeää %q#T:n, joka ei ole tyyppi" #: cp/decl.c:3430 #, gcc-internal-format *************** msgstr "" *** 29420,29432 **** #: cp/decl.c:4190 #, fuzzy, gcc-internal-format - #| msgid "attribute ignored in declaration of %q+#T" msgid "attribute ignored in declaration of %q#T" msgstr "attribuutti jätetty huomioimatta %q+#T:n esittelyssä" #: cp/decl.c:4193 #, fuzzy, gcc-internal-format - #| msgid "attribute for %q+#T must follow the %qs keyword" msgid "attribute for %q#T must follow the %qs keyword" msgstr "%q+#T:n attribuutin on oltava %qs-avainsanan perässä" --- 29110,29120 ---- *************** msgstr "C++:n sisäinen tietotyyppi %qT *** 29442,29448 **** #: cp/decl.c:4238 #, fuzzy, gcc-internal-format - #| msgid "a storage class can only be specified for objects and functions" msgid "% can only be specified for variables or function declarations" msgstr "tallennusluokan voi antaa vain objekteille ja funktioille" --- 29130,29135 ---- *************** msgstr "" *** 29474,29485 **** #: cp/decl.c:4288 #, gcc-internal-format msgid "a storage class can only be specified for objects and functions" ! msgstr "tallennusluokan voi antaa vain objekteille ja funktioille" #: cp/decl.c:4294 #, gcc-internal-format msgid "qualifiers can only be specified for objects and functions" ! msgstr "" #: cp/decl.c:4297 #, fuzzy, gcc-internal-format --- 29161,29172 ---- #: cp/decl.c:4288 #, gcc-internal-format msgid "a storage class can only be specified for objects and functions" ! msgstr "tallennusluokan voi antaa vain olioille ja funktioille" #: cp/decl.c:4294 #, gcc-internal-format msgid "qualifiers can only be specified for objects and functions" ! msgstr "määreet voidaan määrittää vain olioille ja funktioille" #: cp/decl.c:4297 #, fuzzy, gcc-internal-format *************** msgstr "" *** 29555,29571 **** #: cp/decl.c:4682 #, gcc-internal-format msgid "variable %q#D has initializer but incomplete type" ! msgstr "" #: cp/decl.c:4688 cp/decl.c:5499 #, gcc-internal-format msgid "elements of array %q#D have incomplete type" ! msgstr "" #: cp/decl.c:4695 cp/decl.c:6123 ! #, fuzzy, gcc-internal-format msgid "declaration of %q#D has no initializer" ! msgstr "%J%qD:n esittely varjostaa parametria" #: cp/decl.c:4697 #, gcc-internal-format --- 29242,29258 ---- #: cp/decl.c:4682 #, gcc-internal-format msgid "variable %q#D has initializer but incomplete type" ! msgstr "muuttujalla %q#D on alustin, mutta vaillinaista tyyppiä" #: cp/decl.c:4688 cp/decl.c:5499 #, gcc-internal-format msgid "elements of array %q#D have incomplete type" ! msgstr "taulukon %q#D alkiot ovat vaillinaista tyyppiä" #: cp/decl.c:4695 cp/decl.c:6123 ! #, gcc-internal-format msgid "declaration of %q#D has no initializer" ! msgstr "%q#D:n esittelyllä ei ole alustimia" #: cp/decl.c:4697 #, gcc-internal-format *************** msgstr "" *** 29600,29624 **** #: cp/decl.c:4839 #, gcc-internal-format msgid "array size missing in %qD" ! msgstr "" #: cp/decl.c:4850 #, gcc-internal-format msgid "zero-size array %qD" ! msgstr "" #. An automatic variable with an incomplete type: that is an error. #. Don't talk about array types here, since we took care of that #. message in grokdeclarator. #: cp/decl.c:4892 ! #, fuzzy, gcc-internal-format msgid "storage size of %qD isn%'t known" ! msgstr "%Jmuuttujan %qD koko muistissa ei ole tunnettu" #: cp/decl.c:4915 ! #, fuzzy, gcc-internal-format msgid "storage size of %qD isn%'t constant" ! msgstr "%Jmuuttujan %qD koko muistissa ei ole vakio" #: cp/decl.c:4961 #, gcc-internal-format --- 29287,29311 ---- #: cp/decl.c:4839 #, gcc-internal-format msgid "array size missing in %qD" ! msgstr "%qD-taulukon koko puuttuu" #: cp/decl.c:4850 #, gcc-internal-format msgid "zero-size array %qD" ! msgstr "nollan kokoinen taulukko %qD" #. An automatic variable with an incomplete type: that is an error. #. Don't talk about array types here, since we took care of that #. message in grokdeclarator. #: cp/decl.c:4892 ! #, gcc-internal-format msgid "storage size of %qD isn%'t known" ! msgstr "%qD:n koko muistissa ei ole tunnettu" #: cp/decl.c:4915 ! #, gcc-internal-format msgid "storage size of %qD isn%'t constant" ! msgstr "%qD:n koko muistissa ei ole vakio" #: cp/decl.c:4961 #, gcc-internal-format *************** msgstr "" *** 29628,29634 **** #: cp/decl.c:4965 #, gcc-internal-format msgid " you can work around this by removing the initializer" ! msgstr "" #: cp/decl.c:4996 #, gcc-internal-format --- 29315,29321 ---- #: cp/decl.c:4965 #, gcc-internal-format msgid " you can work around this by removing the initializer" ! msgstr " voit kiertää tämän poistamalla alustimen" #: cp/decl.c:4996 #, gcc-internal-format *************** msgstr "" *** 29672,29678 **** #: cp/decl.c:5226 #, fuzzy, gcc-internal-format - #| msgid "invalid initializer" msgid "invalid initializer for %q#D" msgstr "epäkelpo alustin" --- 29359,29364 ---- *************** msgstr "" *** 29685,29691 **** #: cp/typeck2.c:1299 cp/typeck2.c:1346 #, gcc-internal-format msgid "too many initializers for %qT" ! msgstr "" #: cp/decl.c:5326 #, fuzzy, gcc-internal-format --- 29371,29377 ---- #: cp/typeck2.c:1299 cp/typeck2.c:1346 #, gcc-internal-format msgid "too many initializers for %qT" ! msgstr "liikaa alustimia %qT:lle" #: cp/decl.c:5326 #, fuzzy, gcc-internal-format *************** msgstr "taulukon %qD alkioilla on vailli *** 29705,29711 **** #: cp/decl.c:5510 #, gcc-internal-format msgid "variable-sized object %qD may not be initialized" ! msgstr "" #: cp/decl.c:5512 #, gcc-internal-format --- 29391,29397 ---- #: cp/decl.c:5510 #, gcc-internal-format msgid "variable-sized object %qD may not be initialized" ! msgstr "muuttuvakokoista objektia %qD ei voi alustaa" #: cp/decl.c:5512 #, gcc-internal-format *************** msgid "variable-sized compound literal" *** 29713,29737 **** msgstr "muuttuvakokoinen yhdysliteraali" #: cp/decl.c:5567 ! #, fuzzy, gcc-internal-format ! #| msgid "%qD has an incomplete type" msgid "%q#D has incomplete type" ! msgstr "%qD on vaillinaista tyyppiä" #: cp/decl.c:5587 #, gcc-internal-format msgid "scalar object %qD requires one element in initializer" ! msgstr "" #: cp/decl.c:5630 #, gcc-internal-format msgid "in C++98 %qD must be initialized by constructor, not by %<{...}%>" ! msgstr "" #: cp/decl.c:5717 #, gcc-internal-format msgid "array %qD initialized by parenthesized string literal %qE" ! msgstr "" #: cp/decl.c:5744 #, gcc-internal-format --- 29399,29422 ---- msgstr "muuttuvakokoinen yhdysliteraali" #: cp/decl.c:5567 ! #, gcc-internal-format msgid "%q#D has incomplete type" ! msgstr "%q#D on vaillinaista tyyppiä" #: cp/decl.c:5587 #, gcc-internal-format msgid "scalar object %qD requires one element in initializer" ! msgstr "skalaariobjekti %qD vaatii yhden alkion alustimeensa" #: cp/decl.c:5630 #, gcc-internal-format msgid "in C++98 %qD must be initialized by constructor, not by %<{...}%>" ! msgstr "C++98:ssa %qD on alustettava muodostimessa, ei käyttäen %<{...}%>" #: cp/decl.c:5717 #, gcc-internal-format msgid "array %qD initialized by parenthesized string literal %qE" ! msgstr "taulukko %qD alustettu sulkujen sisällä olevalla merkkijonoliteraalilla %qE" #: cp/decl.c:5744 #, gcc-internal-format *************** msgstr "taulukko alustetaan muuttuvasta *** 29771,30017 **** #: cp/decl.c:6391 #, gcc-internal-format msgid "non-static data member %qD has Java class type" ! msgstr "" #: cp/decl.c:6460 #, gcc-internal-format msgid "function %q#D is initialized like a variable" ! msgstr "" ! #: cp/decl.c:6883 #, gcc-internal-format msgid "non-local variable %qD declared %<__thread%> needs dynamic initialization" msgstr "" ! #: cp/decl.c:6886 #, gcc-internal-format msgid "non-local variable %qD declared %<__thread%> has a non-trivial destructor" msgstr "" ! #: cp/decl.c:6892 #, gcc-internal-format msgid "C++11 % allows dynamic initialization and destruction" msgstr "" ! #: cp/decl.c:7119 #, fuzzy, gcc-internal-format - #| msgid "initializer fails to determine size of %q+D" msgid "initializer fails to determine size of %qT" msgstr "alustin ei pysty päättelemään taulukon %q+D kokoa" ! #: cp/decl.c:7123 #, fuzzy, gcc-internal-format - #| msgid "array size missing in %q+D" msgid "array size missing in %qT" msgstr "taulukon %q+D koko puuttuu" ! #: cp/decl.c:7126 #, fuzzy, gcc-internal-format - #| msgid "ISO C forbids zero-size array %qE" msgid "zero-size array %qT" ! msgstr "ISO C kieltää nollan kokoisen taulukon %qE" ! #: cp/decl.c:7142 #, gcc-internal-format msgid "destructor for alien class %qT cannot be a member" msgstr "" ! #: cp/decl.c:7144 #, gcc-internal-format msgid "constructor for alien class %qT cannot be a member" msgstr "" ! #: cp/decl.c:7168 #, fuzzy, gcc-internal-format msgid "%qD declared as a % variable" msgstr "kenttä %qs esitelty funktiona" ! #: cp/decl.c:7170 #, fuzzy, gcc-internal-format msgid "%qD declared as an % variable" msgstr "%q+D esitelty ei-parametrina" ! #: cp/decl.c:7172 #, gcc-internal-format msgid "% and % function specifiers on %qD invalid in variable declaration" msgstr "" ! #: cp/decl.c:7177 #, fuzzy, gcc-internal-format msgid "%qD declared as a % parameter" msgstr "%q+D esitelty ei-parametrina" ! #: cp/decl.c:7179 #, fuzzy, gcc-internal-format msgid "%qD declared as an % parameter" msgstr "%q+D esitelty ei-parametrina" ! #: cp/decl.c:7181 #, gcc-internal-format msgid "% and % function specifiers on %qD invalid in parameter declaration" msgstr "" ! #: cp/decl.c:7186 #, fuzzy, gcc-internal-format msgid "%qD declared as a % type" msgstr "kenttä %qs esitelty funktiona" ! #: cp/decl.c:7188 #, fuzzy, gcc-internal-format msgid "%qD declared as an % type" msgstr "%q+D esitelty ei-parametrina" ! #: cp/decl.c:7190 #, gcc-internal-format msgid "% and % function specifiers on %qD invalid in type declaration" msgstr "" ! #: cp/decl.c:7195 #, fuzzy, gcc-internal-format msgid "%qD declared as a % field" msgstr "kenttä %qs esitelty funktiona" ! #: cp/decl.c:7197 #, fuzzy, gcc-internal-format msgid "%qD declared as an % field" msgstr "kenttä %qs esitelty funktiona" ! #: cp/decl.c:7199 #, gcc-internal-format msgid "% and % function specifiers on %qD invalid in field declaration" msgstr "" ! #: cp/decl.c:7206 ! #, fuzzy, gcc-internal-format msgid "%q+D declared as a friend" ! msgstr "kenttä %qs esitelty funktiona" ! #: cp/decl.c:7212 #, fuzzy, gcc-internal-format msgid "%q+D declared with an exception specification" msgstr "%qs esitelty funktion palauttavana funktiona" ! #: cp/decl.c:7246 #, gcc-internal-format msgid "definition of %qD is not in namespace enclosing %qT" msgstr "" ! #: cp/decl.c:7286 #, gcc-internal-format msgid "static member function %q#D declared with type qualifiers" ! msgstr "" ! #: cp/decl.c:7385 #, gcc-internal-format msgid "defining explicit specialization %qD in friend declaration" msgstr "" #. Something like `template friend void f()'. ! #: cp/decl.c:7395 #, gcc-internal-format msgid "invalid use of template-id %qD in declaration of primary template" msgstr "" ! #: cp/decl.c:7425 #, gcc-internal-format msgid "default arguments are not allowed in declaration of friend template specialization %qD" msgstr "" ! #: cp/decl.c:7433 #, gcc-internal-format msgid "% is not allowed in declaration of friend template specialization %qD" msgstr "" ! #: cp/decl.c:7475 #, gcc-internal-format msgid "cannot declare %<::main%> to be a template" msgstr "" ! #: cp/decl.c:7477 #, gcc-internal-format msgid "cannot declare %<::main%> to be inline" msgstr "" ! #: cp/decl.c:7479 #, gcc-internal-format msgid "cannot declare %<::main%> to be static" msgstr "" ! #: cp/decl.c:7507 #, gcc-internal-format msgid "anonymous type with no linkage used to declare function %q#D with linkage" msgstr "" ! #: cp/decl.c:7511 cp/decl.c:7879 cp/decl2.c:3864 #, gcc-internal-format msgid "%q+#D does not refer to the unqualified type, so it is not used for linkage" msgstr "" ! #: cp/decl.c:7517 #, fuzzy, gcc-internal-format msgid "type %qT with no linkage used to declare function %q#D with linkage" msgstr "%J%qD esitelty uudelleen ilman linkitystä" ! #: cp/decl.c:7539 #, gcc-internal-format msgid "static member function %qD cannot have cv-qualifier" msgstr "" ! #: cp/decl.c:7540 #, gcc-internal-format msgid "non-member function %qD cannot have cv-qualifier" msgstr "" ! #: cp/decl.c:7556 #, fuzzy, gcc-internal-format msgid "literal operator with C linkage" msgstr "%J%qD esitelty uudelleen ilman linkitystä" ! #: cp/decl.c:7565 #, fuzzy, gcc-internal-format - #| msgid "invalid IACC argument" msgid "%qD has invalid argument list" msgstr "virheellinen IACC-argumentti" ! #: cp/decl.c:7573 #, gcc-internal-format msgid "integer suffix %<%s%> shadowed by implementation" msgstr "" ! #: cp/decl.c:7579 #, gcc-internal-format msgid "floating point suffix %<%s%> shadowed by implementation" msgstr "" ! #: cp/decl.c:7585 #, fuzzy, gcc-internal-format - #| msgid "invalid use of non-static member function" msgid "%qD must be a non-member function" msgstr "virheellinen ei-staattisen jäsenfunktion käyttö" ! #: cp/decl.c:7636 #, gcc-internal-format msgid "%<::main%> must return %" msgstr "" ! #: cp/decl.c:7678 #, gcc-internal-format msgid "definition of implicitly-declared %qD" msgstr "" ! #: cp/decl.c:7683 #, fuzzy, gcc-internal-format - #| msgid "redefinition of typedef %q+D" msgid "definition of explicitly-defaulted %q+D" msgstr "typedef %q+D määritelty uudelleen" ! #: cp/decl.c:7684 #, fuzzy, gcc-internal-format - #| msgid "%q+#D previously defined here" msgid "%q+#D explicitly defaulted here" msgstr "%q+#D määritelty aiemmin täällä" ! #: cp/decl.c:7701 cp/decl2.c:738 #, gcc-internal-format msgid "no %q#D member function declared in class %qT" msgstr "" --- 29456,29695 ---- #: cp/decl.c:6391 #, gcc-internal-format msgid "non-static data member %qD has Java class type" ! msgstr "ei-staattisella datajäsenellä %qD on Java-luokkatyyppi" #: cp/decl.c:6460 #, gcc-internal-format msgid "function %q#D is initialized like a variable" ! msgstr "funktio %q#D alustetaan kuin muuttuja" ! #: cp/decl.c:6886 #, gcc-internal-format msgid "non-local variable %qD declared %<__thread%> needs dynamic initialization" msgstr "" ! #: cp/decl.c:6889 #, gcc-internal-format msgid "non-local variable %qD declared %<__thread%> has a non-trivial destructor" msgstr "" ! #: cp/decl.c:6895 #, gcc-internal-format msgid "C++11 % allows dynamic initialization and destruction" msgstr "" ! #: cp/decl.c:7122 #, fuzzy, gcc-internal-format msgid "initializer fails to determine size of %qT" msgstr "alustin ei pysty päättelemään taulukon %q+D kokoa" ! #: cp/decl.c:7126 #, fuzzy, gcc-internal-format msgid "array size missing in %qT" msgstr "taulukon %q+D koko puuttuu" ! #: cp/decl.c:7129 #, fuzzy, gcc-internal-format msgid "zero-size array %qT" ! msgstr "nollan kokoinen taulukko %qD" ! #: cp/decl.c:7145 #, gcc-internal-format msgid "destructor for alien class %qT cannot be a member" msgstr "" ! #: cp/decl.c:7147 #, gcc-internal-format msgid "constructor for alien class %qT cannot be a member" msgstr "" ! #: cp/decl.c:7171 #, fuzzy, gcc-internal-format msgid "%qD declared as a % variable" msgstr "kenttä %qs esitelty funktiona" ! #: cp/decl.c:7173 #, fuzzy, gcc-internal-format msgid "%qD declared as an % variable" msgstr "%q+D esitelty ei-parametrina" ! #: cp/decl.c:7175 #, gcc-internal-format msgid "% and % function specifiers on %qD invalid in variable declaration" msgstr "" ! #: cp/decl.c:7180 #, fuzzy, gcc-internal-format msgid "%qD declared as a % parameter" msgstr "%q+D esitelty ei-parametrina" ! #: cp/decl.c:7182 #, fuzzy, gcc-internal-format msgid "%qD declared as an % parameter" msgstr "%q+D esitelty ei-parametrina" ! #: cp/decl.c:7184 #, gcc-internal-format msgid "% and % function specifiers on %qD invalid in parameter declaration" msgstr "" ! #: cp/decl.c:7189 #, fuzzy, gcc-internal-format msgid "%qD declared as a % type" msgstr "kenttä %qs esitelty funktiona" ! #: cp/decl.c:7191 #, fuzzy, gcc-internal-format msgid "%qD declared as an % type" msgstr "%q+D esitelty ei-parametrina" ! #: cp/decl.c:7193 #, gcc-internal-format msgid "% and % function specifiers on %qD invalid in type declaration" msgstr "" ! #: cp/decl.c:7198 #, fuzzy, gcc-internal-format msgid "%qD declared as a % field" msgstr "kenttä %qs esitelty funktiona" ! #: cp/decl.c:7200 #, fuzzy, gcc-internal-format msgid "%qD declared as an % field" msgstr "kenttä %qs esitelty funktiona" ! #: cp/decl.c:7202 #, gcc-internal-format msgid "% and % function specifiers on %qD invalid in field declaration" msgstr "" ! #: cp/decl.c:7209 ! #, gcc-internal-format msgid "%q+D declared as a friend" ! msgstr "%q+D esitelty ystävänä" ! #: cp/decl.c:7215 #, fuzzy, gcc-internal-format msgid "%q+D declared with an exception specification" msgstr "%qs esitelty funktion palauttavana funktiona" ! #: cp/decl.c:7249 #, gcc-internal-format msgid "definition of %qD is not in namespace enclosing %qT" msgstr "" ! #: cp/decl.c:7289 #, gcc-internal-format msgid "static member function %q#D declared with type qualifiers" ! msgstr "staattinen jäsenfunktio %q#D esitelty tyyppimääreillä" ! #: cp/decl.c:7388 #, gcc-internal-format msgid "defining explicit specialization %qD in friend declaration" msgstr "" #. Something like `template friend void f()'. ! #: cp/decl.c:7398 #, gcc-internal-format msgid "invalid use of template-id %qD in declaration of primary template" msgstr "" ! #: cp/decl.c:7428 #, gcc-internal-format msgid "default arguments are not allowed in declaration of friend template specialization %qD" msgstr "" ! #: cp/decl.c:7436 #, gcc-internal-format msgid "% is not allowed in declaration of friend template specialization %qD" msgstr "" ! #: cp/decl.c:7478 #, gcc-internal-format msgid "cannot declare %<::main%> to be a template" msgstr "" ! #: cp/decl.c:7480 #, gcc-internal-format msgid "cannot declare %<::main%> to be inline" msgstr "" ! #: cp/decl.c:7482 #, gcc-internal-format msgid "cannot declare %<::main%> to be static" msgstr "" ! #: cp/decl.c:7510 #, gcc-internal-format msgid "anonymous type with no linkage used to declare function %q#D with linkage" msgstr "" ! #: cp/decl.c:7514 cp/decl.c:7882 cp/decl2.c:3864 #, gcc-internal-format msgid "%q+#D does not refer to the unqualified type, so it is not used for linkage" msgstr "" ! #: cp/decl.c:7520 #, fuzzy, gcc-internal-format msgid "type %qT with no linkage used to declare function %q#D with linkage" msgstr "%J%qD esitelty uudelleen ilman linkitystä" ! #: cp/decl.c:7542 #, gcc-internal-format msgid "static member function %qD cannot have cv-qualifier" msgstr "" ! #: cp/decl.c:7543 #, gcc-internal-format msgid "non-member function %qD cannot have cv-qualifier" msgstr "" ! #: cp/decl.c:7559 #, fuzzy, gcc-internal-format msgid "literal operator with C linkage" msgstr "%J%qD esitelty uudelleen ilman linkitystä" ! #: cp/decl.c:7568 #, fuzzy, gcc-internal-format msgid "%qD has invalid argument list" msgstr "virheellinen IACC-argumentti" ! #: cp/decl.c:7576 #, gcc-internal-format msgid "integer suffix %<%s%> shadowed by implementation" msgstr "" ! #: cp/decl.c:7582 #, gcc-internal-format msgid "floating point suffix %<%s%> shadowed by implementation" msgstr "" ! #: cp/decl.c:7588 #, fuzzy, gcc-internal-format msgid "%qD must be a non-member function" msgstr "virheellinen ei-staattisen jäsenfunktion käyttö" ! #: cp/decl.c:7639 #, gcc-internal-format msgid "%<::main%> must return %" msgstr "" ! #: cp/decl.c:7681 #, gcc-internal-format msgid "definition of implicitly-declared %qD" msgstr "" ! #: cp/decl.c:7686 #, fuzzy, gcc-internal-format msgid "definition of explicitly-defaulted %q+D" msgstr "typedef %q+D määritelty uudelleen" ! #: cp/decl.c:7687 #, fuzzy, gcc-internal-format msgid "%q+#D explicitly defaulted here" msgstr "%q+#D määritelty aiemmin täällä" ! #: cp/decl.c:7704 cp/decl2.c:738 #, gcc-internal-format msgid "no %q#D member function declared in class %qT" msgstr "" *************** msgstr "" *** 30020,30913 **** #. no linkage can only be used to declare extern "C" #. entities. Since it's not always an error in the #. ISO C++ 90 Standard, we only issue a warning. ! #: cp/decl.c:7876 #, gcc-internal-format msgid "anonymous type with no linkage used to declare variable %q#D with linkage" msgstr "" ! #: cp/decl.c:7885 #, gcc-internal-format msgid "type %qT with no linkage used to declare variable %q#D with linkage" msgstr "" # semi-fuzzy ! #: cp/decl.c:8008 #, fuzzy, gcc-internal-format msgid "in-class initialization of static data member %q#D of incomplete type" msgstr "ei-staattista datajäsentä %q+D käytetty virheellisesti" ! #: cp/decl.c:8012 #, fuzzy, gcc-internal-format - #| msgid "ISO C++ forbids initialization of member constant %qD of non-integral type %qT" msgid "% needed for in-class initialization of static data member %q#D of non-integral type" msgstr "ISO C++ kieltää epäkokonaislukutyyppiä %2$qT olevan vakiojäsenen %1$qD alustamisen" ! #: cp/decl.c:8015 #, fuzzy, gcc-internal-format - #| msgid "ISO C++ forbids initialization of member constant %qD of non-integral type %qT" msgid "in-class initialization of static data member %q#D of non-literal type" msgstr "ISO C++ kieltää epäkokonaislukutyyppiä %2$qT olevan vakiojäsenen %1$qD alustamisen" ! #: cp/decl.c:8028 #, gcc-internal-format msgid "invalid in-class initialization of static data member of non-integral type %qT" msgstr "" ! #: cp/decl.c:8034 #, gcc-internal-format msgid "ISO C++ forbids in-class initialization of non-const static member %qD" msgstr "" ! #: cp/decl.c:8038 #, gcc-internal-format msgid "ISO C++ forbids initialization of member constant %qD of non-integral type %qT" msgstr "ISO C++ kieltää epäkokonaislukutyyppiä %2$qT olevan vakiojäsenen %1$qD alustamisen" ! #: cp/decl.c:8144 cp/decl.c:8172 #, gcc-internal-format msgid "size of array %qD has non-integral type %qT" msgstr "taulukon %qD koolla on epäkokonaislukutyyppi %qT" ! #: cp/decl.c:8147 cp/decl.c:8174 #, gcc-internal-format msgid "size of array has non-integral type %qT" msgstr "taulukon koolla on epäkokonaislukutyyppi %qT" ! #: cp/decl.c:8224 #, gcc-internal-format msgid "size of array %qD is negative" msgstr "taulukon %qD koko on negatiivinen" ! #: cp/decl.c:8226 #, gcc-internal-format msgid "size of array is negative" msgstr "taulukon koko on negatiivinen" ! #: cp/decl.c:8240 #, gcc-internal-format msgid "ISO C++ forbids zero-size array %qD" msgstr "ISO C++ kieltää nollan kokoisen taulukon %qD" ! #: cp/decl.c:8242 #, gcc-internal-format msgid "ISO C++ forbids zero-size array" msgstr "ISO C++ kieltää nollan kokoisen taulukon" ! #: cp/decl.c:8254 #, gcc-internal-format msgid "size of array %qD is not an integral constant-expression" msgstr "taulukon %qD koko ei ole kokonaislukutyyppinen vakiolauseke" ! #: cp/decl.c:8257 #, gcc-internal-format msgid "size of array is not an integral constant-expression" msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" ! #: cp/decl.c:8263 #, gcc-internal-format msgid "ISO C++ forbids variable length array %qD" msgstr "ISO C++ kieltää muuttuvakokoisen taulukon %qD" ! #: cp/decl.c:8265 #, gcc-internal-format msgid "ISO C++ forbids variable length array" msgstr "ISO C++ kieltää muuttuvakokoisen taulukon" ! #: cp/decl.c:8271 #, gcc-internal-format msgid "variable length array %qD is used" msgstr "" ! #: cp/decl.c:8323 #, gcc-internal-format msgid "overflow in array dimension" msgstr "taulukon koon ylivuoto" ! #: cp/decl.c:8383 #, fuzzy, gcc-internal-format msgid "declaration of %qD as array of %" msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" ! #: cp/decl.c:8391 ! #, fuzzy, gcc-internal-format msgid "declaration of %qD as array of void" ! msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" ! #: cp/decl.c:8393 ! #, fuzzy, gcc-internal-format msgid "creating array of void" ! msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" ! #: cp/decl.c:8398 ! #, fuzzy, gcc-internal-format msgid "declaration of %qD as array of functions" ! msgstr "%qs esitelty funktiotaulukkona" ! #: cp/decl.c:8400 ! #, fuzzy, gcc-internal-format msgid "creating array of functions" ! msgstr "%qs esitelty funktiotaulukkona" ! #: cp/decl.c:8405 ! #, fuzzy, gcc-internal-format msgid "declaration of %qD as array of references" ! msgstr "%qs esitelty funktiotaulukkona" ! #: cp/decl.c:8407 ! #, fuzzy, gcc-internal-format msgid "creating array of references" ! msgstr "ehtolausekkeessa on tyyppiristiriita" ! #: cp/decl.c:8412 ! #, fuzzy, gcc-internal-format msgid "declaration of %qD as array of function members" ! msgstr "%qs esitelty funktiotaulukkona" ! #: cp/decl.c:8414 ! #, fuzzy, gcc-internal-format msgid "creating array of function members" ! msgstr "%qs esitelty funktiotaulukkona" ! #: cp/decl.c:8428 #, gcc-internal-format msgid "declaration of %qD as multidimensional array must have bounds for all dimensions except the first" msgstr "" ! #: cp/decl.c:8432 ! #, fuzzy, gcc-internal-format msgid "multidimensional array must have bounds for all dimensions except the first" ! msgstr "moniulotteisen taulukon" ! #: cp/decl.c:8467 #, gcc-internal-format msgid "return type specification for constructor invalid" msgstr "" ! #: cp/decl.c:8477 #, gcc-internal-format msgid "return type specification for destructor invalid" msgstr "" ! #: cp/decl.c:8490 #, gcc-internal-format msgid "return type specified for %" msgstr "" ! #: cp/decl.c:8512 #, gcc-internal-format msgid "unnamed variable or field declared void" msgstr "nimetön muuttuja tai kenttä esitelty voidiksi" ! #: cp/decl.c:8519 #, gcc-internal-format msgid "variable or field declared void" msgstr "muuttuja tai kenttä esitelty voidiksi" ! #: cp/decl.c:8720 #, fuzzy, gcc-internal-format msgid "invalid use of qualified-name %<::%D%>" msgstr "määrittelemättömän tyypin %<%s %s%> epäkelpo käyttö" ! #: cp/decl.c:8723 #, fuzzy, gcc-internal-format msgid "invalid use of qualified-name %<%T::%D%>" msgstr "määrittelemättömän tyypin %<%s %s%> epäkelpo käyttö" ! #: cp/decl.c:8726 #, fuzzy, gcc-internal-format msgid "invalid use of qualified-name %<%D::%D%>" msgstr "määrittelemättömän tyypin %<%s %s%> epäkelpo käyttö" ! #: cp/decl.c:8735 ! #, fuzzy, gcc-internal-format msgid "%q#T is not a class or a namespace" ! msgstr "%qT ei ole luokka tai nimiavaruus" ! #: cp/decl.c:8743 #, gcc-internal-format msgid "type %qT is not derived from type %qT" msgstr "tyyppi %qT ei periydy %qT-tyypistä" ! #: cp/decl.c:8759 cp/decl.c:8851 cp/decl.c:8860 cp/decl.c:10242 #, gcc-internal-format msgid "declaration of %qD as non-function" msgstr "%qD:n esittely ei-funktiona" ! #: cp/decl.c:8765 #, gcc-internal-format msgid "declaration of %qD as non-member" msgstr "%qD:n esittely ei-jäsenenä" ! #: cp/decl.c:8796 #, gcc-internal-format msgid "declarator-id missing; using reserved word %qD" msgstr "" ! #: cp/decl.c:8843 ! #, fuzzy, gcc-internal-format msgid "function definition does not declare parameters" ! msgstr "funktion määrittely esitelty %:ksi" ! #: cp/decl.c:8868 #, fuzzy, gcc-internal-format msgid "declaration of %qD as %" msgstr "tyhjä esittely" ! #: cp/decl.c:8873 #, fuzzy, gcc-internal-format msgid "declaration of %qD as parameter" msgstr "%J%qD:n esittely varjostaa parametria" ! #: cp/decl.c:8906 #, fuzzy, gcc-internal-format msgid "% cannot appear in a typedef declaration" msgstr "%Hprototyypin esittely" ! #: cp/decl.c:8914 #, gcc-internal-format msgid "two or more data types in declaration of %qs" msgstr "" ! #: cp/decl.c:8920 #, fuzzy, gcc-internal-format msgid "conflicting specifiers in declaration of %qs" msgstr "%qs:n esittelyssä tyyppi on oletuksena %" ! #: cp/decl.c:8992 cp/decl.c:8995 cp/decl.c:8998 #, gcc-internal-format msgid "ISO C++ forbids declaration of %qs with no type" msgstr "ISO C++ kieltää muuttujan %qs esittelyn ilman tyyppiä" ! #: cp/decl.c:9009 #, fuzzy, gcc-internal-format msgid "%<__int128%> is not supported by this target" msgstr "säiekohtaista muistia ei tueta tälle kohteelle" ! #: cp/decl.c:9014 #, fuzzy, gcc-internal-format - #| msgid "ISO C++ 1998 does not support %" msgid "ISO C++ does not support %<__int128%> for %qs" msgstr "ISO C++ 1998 ei tue % -tyyppiä" ! #: cp/decl.c:9035 cp/decl.c:9055 ! #, fuzzy, gcc-internal-format msgid "% or % invalid for %qs" ! msgstr "sekä % että % esittelymääritteissä" ! #: cp/decl.c:9037 ! #, fuzzy, gcc-internal-format msgid "% and % specified together for %qs" ! msgstr "sekä % että % esittelymääritteissä" ! #: cp/decl.c:9039 ! #, fuzzy, gcc-internal-format msgid "% invalid for %qs" ! msgstr "% on liian suuri GCC:lle" ! #: cp/decl.c:9041 #, gcc-internal-format msgid "% invalid for %qs" ! msgstr "" ! #: cp/decl.c:9043 #, gcc-internal-format msgid "% invalid for %qs" ! msgstr "" ! #: cp/decl.c:9045 ! #, fuzzy, gcc-internal-format msgid "% or % invalid for %qs" ! msgstr "sekä % että % esittelymääritteissä" ! #: cp/decl.c:9047 #, fuzzy, gcc-internal-format msgid "%, %, %, or % invalid for %qs" msgstr "sekä % että % esittelymääritteissä" ! #: cp/decl.c:9049 #, gcc-internal-format msgid "% or % specified with char for %qs" msgstr "" ! #: cp/decl.c:9051 ! #, fuzzy, gcc-internal-format msgid "% and % specified together for %qs" ! msgstr "sekä % että % esittelymääritteissä" ! #: cp/decl.c:9057 ! #, fuzzy, gcc-internal-format msgid "% or % invalid for %qs" ! msgstr "sekä % että % esittelymääritteissä" ! #: cp/decl.c:9065 #, gcc-internal-format msgid "long, short, signed or unsigned used invalidly for %qs" msgstr "" ! #: cp/decl.c:9133 #, gcc-internal-format msgid "complex invalid for %qs" msgstr "" ! #: cp/decl.c:9161 #, gcc-internal-format msgid "qualifiers are not allowed on declaration of %" msgstr "" ! #: cp/decl.c:9193 #, gcc-internal-format msgid "member %qD cannot be declared both virtual and static" ! msgstr "" ! ! #: cp/decl.c:9201 ! #, gcc-internal-format ! msgid "%<%T::%D%> is not a valid declarator" ! msgstr "" ! #: cp/decl.c:9210 #, gcc-internal-format msgid "typedef declaration invalid in parameter declaration" msgstr "" ! #: cp/decl.c:9215 ! #, fuzzy, gcc-internal-format msgid "storage class specified for template parameter %qs" ! msgstr "tallennusluokka annettu parametrille %qs" ! #: cp/decl.c:9221 #, gcc-internal-format msgid "storage class specifiers invalid in parameter declarations" ! msgstr "" ! #: cp/decl.c:9227 ! #, fuzzy, gcc-internal-format msgid "a parameter cannot be declared %" ! msgstr "%Jparametri %qD esitelty %:ksi" ! #: cp/decl.c:9236 ! #, fuzzy, gcc-internal-format msgid "% outside class declaration" ! msgstr "virtual luokan esittelyn ulkopuolella" ! #: cp/decl.c:9254 #, gcc-internal-format msgid "multiple storage classes in declaration of %qs" ! msgstr "" ! #: cp/decl.c:9277 #, gcc-internal-format msgid "storage class specified for %qs" msgstr "tallennusluokka annettu %qs:lle" ! #: cp/decl.c:9281 #, gcc-internal-format msgid "storage class specified for parameter %qs" msgstr "tallennusluokka annettu parametrille %qs" ! #: cp/decl.c:9294 #, gcc-internal-format msgid "nested function %qs declared %" msgstr "sisäkkäinen funktio %qs esitelty %:ksi" ! #: cp/decl.c:9298 #, gcc-internal-format msgid "top-level declaration of %qs specifies %" msgstr "" ! #: cp/decl.c:9305 #, gcc-internal-format msgid "function-scope %qs implicitly auto and declared %<__thread%>" msgstr "funktioalue %qs implisiittisesti auto ja esitelty %<__thread%>:ksi" ! #: cp/decl.c:9317 #, gcc-internal-format msgid "storage class specifiers invalid in friend function declarations" msgstr "" ! #: cp/decl.c:9427 #, gcc-internal-format msgid "%qs declared as function returning a function" msgstr "%qs esitelty funktion palauttavana funktiona" ! #: cp/decl.c:9432 #, gcc-internal-format msgid "%qs declared as function returning an array" msgstr "%qs esitelty taulukon palauttavan funktiona" ! #: cp/decl.c:9438 #, fuzzy, gcc-internal-format - #| msgid "%qs declared as function returning an array" msgid "%qs declared as function returning an abstract class type" msgstr "%qs esitelty taulukon palauttavan funktiona" ! #: cp/decl.c:9467 #, gcc-internal-format msgid "%qs function uses % type specifier without trailing return type" msgstr "" ! #: cp/decl.c:9473 #, gcc-internal-format msgid "%qs function with trailing return type has %qT as its type rather than plain %" msgstr "" #. Not using maybe_warn_cpp0x because this should #. always be an error. ! #: cp/decl.c:9484 #, gcc-internal-format msgid "trailing return type only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/decl.c:9487 #, gcc-internal-format msgid "%qs function with trailing return type not declared with % type specifier" msgstr "" ! #: cp/decl.c:9520 #, gcc-internal-format msgid "destructor cannot be static member function" msgstr "hajotin ei voi olla staattinen jäsenfunktio" ! #: cp/decl.c:9521 #, fuzzy, gcc-internal-format - #| msgid "destructor cannot be static member function" msgid "constructor cannot be static member function" msgstr "hajotin ei voi olla staattinen jäsenfunktio" ! #: cp/decl.c:9525 #, gcc-internal-format msgid "destructors may not be cv-qualified" ! msgstr "" ! #: cp/decl.c:9526 #, fuzzy, gcc-internal-format - #| msgid "constructors cannot be declared virtual" msgid "constructors may not be cv-qualified" msgstr "muodostimia ei voi esitellä virtuaalisiksi" ! #: cp/decl.c:9543 #, gcc-internal-format msgid "constructors cannot be declared virtual" msgstr "muodostimia ei voi esitellä virtuaalisiksi" ! #: cp/decl.c:9556 #, fuzzy, gcc-internal-format msgid "can%'t initialize friend function %qs" msgstr "indeksoitu arvo on osoitin funktioon" #. Cannot be both friend and virtual. ! #: cp/decl.c:9560 #, gcc-internal-format msgid "virtual functions cannot be friends" msgstr "" ! #: cp/decl.c:9564 #, gcc-internal-format msgid "friend declaration not in class definition" msgstr "" ! #: cp/decl.c:9566 #, gcc-internal-format msgid "can%'t define friend function %qs in a local class definition" msgstr "" ! #: cp/decl.c:9587 #, gcc-internal-format msgid "destructors may not have parameters" msgstr "hajottimilla ei voi olla parametreja" ! #: cp/decl.c:9613 #, gcc-internal-format msgid "cannot declare pointer to %q#T" msgstr "" ! #: cp/decl.c:9626 cp/decl.c:9633 #, gcc-internal-format msgid "cannot declare reference to %q#T" msgstr "" ! #: cp/decl.c:9635 #, gcc-internal-format msgid "cannot declare pointer to %q#T member" msgstr "" ! #: cp/decl.c:9658 #, fuzzy, gcc-internal-format msgid "cannot declare reference to qualified function type %qT" msgstr "tyyppimuunnos lisää funktiotyyppiin uusia määreitä" ! #: cp/decl.c:9659 #, fuzzy, gcc-internal-format msgid "cannot declare pointer to qualified function type %qT" msgstr "tyyppimuunnos lisää funktiotyyppiin uusia määreitä" ! #: cp/decl.c:9733 #, gcc-internal-format msgid "cannot declare reference to %q#T, which is not a typedef or a template type argument" msgstr "" ! #: cp/decl.c:9797 #, fuzzy, gcc-internal-format - #| msgid "both %<_Sat%> and % in declaration specifiers" msgid "both % and % cannot be used here" msgstr "sekä %<_Sat%> että % esittelymääritteissä" ! #: cp/decl.c:9809 #, gcc-internal-format msgid "template-id %qD used as a declarator" msgstr "" ! #: cp/decl.c:9833 #, gcc-internal-format msgid "member functions are implicitly friends of their class" msgstr "" ! #: cp/decl.c:9838 #, gcc-internal-format msgid "extra qualification %<%T::%> on member %qs" msgstr "" ! #: cp/decl.c:9868 #, fuzzy, gcc-internal-format msgid "cannot define member function %<%T::%s%> within %<%T%>" msgstr "funktiota % ei voi määrittää avoimeksi" ! #: cp/decl.c:9870 #, fuzzy, gcc-internal-format msgid "cannot declare member function %<%T::%s%> within %<%T%>" msgstr "funktiota % ei voi määrittää avoimeksi" ! #: cp/decl.c:9879 #, gcc-internal-format msgid "cannot declare member %<%T::%s%> within %qT" msgstr "" ! #: cp/decl.c:9912 #, gcc-internal-format msgid "non-parameter %qs cannot be a parameter pack" msgstr "" ! #: cp/decl.c:9922 #, gcc-internal-format msgid "size of array %qs is too large" msgstr "taulukon %qs koko on liian suuri" ! #: cp/decl.c:9933 #, gcc-internal-format msgid "data member may not have variably modified type %qT" msgstr "" ! #: cp/decl.c:9935 #, gcc-internal-format msgid "parameter may not have variably modified type %qT" msgstr "" #. [dcl.fct.spec] The explicit specifier shall only be used in #. declarations of constructors within a class definition. ! #: cp/decl.c:9943 #, gcc-internal-format msgid "only declarations of constructors can be %" msgstr "vain muodostimen esittely voi olla %" ! #: cp/decl.c:9951 #, gcc-internal-format msgid "non-member %qs cannot be declared %" msgstr "" ! #: cp/decl.c:9957 #, gcc-internal-format msgid "non-object member %qs cannot be declared %" msgstr "" ! #: cp/decl.c:9963 #, gcc-internal-format msgid "function %qs cannot be declared %" msgstr "" ! #: cp/decl.c:9968 #, gcc-internal-format msgid "static %qs cannot be declared %" msgstr "" ! #: cp/decl.c:9973 #, gcc-internal-format msgid "const %qs cannot be declared %" msgstr "" ! #: cp/decl.c:9978 #, fuzzy, gcc-internal-format msgid "reference %qs cannot be declared %" msgstr "%Jparametri %qD esitelty %:ksi" ! #: cp/decl.c:10013 #, fuzzy, gcc-internal-format msgid "typedef declared %" msgstr "%Jparametri %qD esitelty %:ksi" ! #: cp/decl.c:10023 #, gcc-internal-format msgid "typedef name may not be a nested-name-specifier" msgstr "" ! #: cp/decl.c:10042 #, gcc-internal-format msgid "ISO C++ forbids nested type %qD with same name as enclosing class" msgstr "" ! #: cp/decl.c:10143 #, gcc-internal-format msgid "qualified function types cannot be used to declare static member functions" msgstr "" ! #: cp/decl.c:10145 #, gcc-internal-format msgid "qualified function types cannot be used to declare free functions" msgstr "" ! #: cp/decl.c:10172 #, gcc-internal-format msgid "type qualifiers specified for friend class declaration" msgstr "" ! #: cp/decl.c:10177 #, gcc-internal-format msgid "% specified for friend class declaration" msgstr "" ! #: cp/decl.c:10185 #, gcc-internal-format msgid "template parameters cannot be friends" msgstr "" ! #: cp/decl.c:10187 #, gcc-internal-format msgid "friend declaration requires class-key, i.e. %" msgstr "" ! #: cp/decl.c:10191 #, gcc-internal-format msgid "friend declaration requires class-key, i.e. %" msgstr "" ! #: cp/decl.c:10204 #, gcc-internal-format msgid "trying to make class %qT a friend of global scope" msgstr "" ! #: cp/decl.c:10222 #, gcc-internal-format msgid "invalid qualifiers on non-member function type" ! msgstr "" ! #: cp/decl.c:10232 #, gcc-internal-format msgid "abstract declarator %qT used as declaration" msgstr "" ! #: cp/decl.c:10261 #, gcc-internal-format msgid "cannot use %<::%> in parameter declaration" msgstr "" ! #: cp/decl.c:10265 ! #, fuzzy, gcc-internal-format msgid "parameter declared %" ! msgstr "%Jparametri %qD esitelty %:ksi" ! #: cp/decl.c:10308 #, fuzzy, gcc-internal-format msgid "non-static data member declared %" msgstr "%Jparametri %qD esitelty %:ksi" #. Something like struct S { int N::j; }; ! #: cp/decl.c:10330 #, gcc-internal-format msgid "invalid use of %<::%>" msgstr "" ! #: cp/decl.c:10352 #, fuzzy, gcc-internal-format msgid "declaration of function %qD in invalid context" msgstr "%J%qD:n esittely varjostaa parametria" ! #: cp/decl.c:10361 #, gcc-internal-format msgid "function %qD declared virtual inside a union" msgstr "funktio %qD esitelty virtuaaliseksi unionissa" ! #: cp/decl.c:10370 #, gcc-internal-format msgid "%qD cannot be declared virtual, since it is always static" msgstr "" ! #: cp/decl.c:10386 #, gcc-internal-format msgid "expected qualified name in friend declaration for destructor %qD" msgstr "" ! #: cp/decl.c:10393 ! #, fuzzy, gcc-internal-format msgid "declaration of %qD as member of %qT" ! msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" ! #: cp/decl.c:10399 ! #, fuzzy, gcc-internal-format msgid "a destructor cannot be %" ! msgstr "hajotin ei voi olla staattinen jäsenfunktio" ! #: cp/decl.c:10405 #, fuzzy, gcc-internal-format msgid "expected qualified name in friend declaration for constructor %qD" msgstr "%qD esitelty staattisesti sisäkkäin" ! #: cp/decl.c:10451 #, gcc-internal-format msgid "field %qD has incomplete type" msgstr "kentällä %qD on vaillinainen tyyppi" ! #: cp/decl.c:10453 #, gcc-internal-format msgid "name %qT has incomplete type" ! msgstr "" ! #: cp/decl.c:10462 #, gcc-internal-format msgid " in instantiation of template %qT" msgstr "" ! #: cp/decl.c:10471 #, gcc-internal-format msgid "%qE is neither function nor member function; cannot be declared friend" msgstr "" ! #: cp/decl.c:10528 #, fuzzy, gcc-internal-format msgid "constexpr static data member %qD must have an initializer" msgstr "muuttuvakokoista objektia ei voi alustaa" ! #: cp/decl.c:10537 ! #, fuzzy, gcc-internal-format msgid "non-static data member %qE declared %" ! msgstr "%Jparametri %qD esitelty %:ksi" ! #: cp/decl.c:10587 #, gcc-internal-format msgid "storage class % invalid for function %qs" ! msgstr "" ! #: cp/decl.c:10589 #, gcc-internal-format msgid "storage class % invalid for function %qs" ! msgstr "" ! #: cp/decl.c:10593 #, gcc-internal-format msgid "storage class %<__thread%> invalid for function %qs" ! msgstr "" ! #: cp/decl.c:10596 #, fuzzy, gcc-internal-format - #| msgid "storage class specified for %qs" msgid "storage class % invalid for function %qs" ! msgstr "tallennusluokka annettu %qs:lle" ! #: cp/decl.c:10601 #, fuzzy, gcc-internal-format msgid "virt-specifiers in %qs not allowed outside a class definition" msgstr "%Jvanhanmallinen funktiomäärittely" ! #: cp/decl.c:10612 #, gcc-internal-format msgid "% specified invalid for function %qs declared out of global scope" msgstr "" ! #: cp/decl.c:10616 #, gcc-internal-format msgid "% specifier invalid for function %qs declared out of global scope" msgstr "" ! #: cp/decl.c:10624 #, gcc-internal-format msgid "virtual non-class function %qs" ! msgstr "" ! #: cp/decl.c:10631 #, fuzzy, gcc-internal-format msgid "%qs defined in a non-class scope" msgstr "%qs-attribuuttia ei huomioida ei-luokkatyypeille" ! #: cp/decl.c:10632 #, fuzzy, gcc-internal-format msgid "%qs declared in a non-class scope" msgstr "%qs-attribuuttia ei huomioida ei-luokkatyypeille" ! #: cp/decl.c:10660 #, gcc-internal-format msgid "cannot declare member function %qD to have static linkage" msgstr "" #. FIXME need arm citation ! #: cp/decl.c:10667 #, gcc-internal-format msgid "cannot declare static function inside another function" msgstr "" ! #: cp/decl.c:10697 #, gcc-internal-format msgid "% may not be used when defining (as opposed to declaring) a static data member" msgstr "" ! #: cp/decl.c:10704 #, gcc-internal-format msgid "static member %qD declared %" msgstr "" ! #: cp/decl.c:10710 #, gcc-internal-format msgid "cannot explicitly declare member %q#D to have extern linkage" msgstr "" ! #: cp/decl.c:10717 #, fuzzy, gcc-internal-format - #| msgid "declaration of non-variable %qD in % loop initial declaration" msgid "declaration of constexpr variable %qD is not a definition" msgstr "ei-muuttujan %qD esittely %-silmukan alkuesittelyssä" ! #: cp/decl.c:10730 #, gcc-internal-format msgid "%qs initialized and declared %" msgstr "%qs alustettu ja esitelty %-avainsanalla" ! #: cp/decl.c:10734 #, gcc-internal-format msgid "%qs has both % and initializer" msgstr "%qs on sekä % että alustin" ! #: cp/decl.c:10880 #, fuzzy, gcc-internal-format msgid "default argument %qE uses %qD" msgstr "tyyppimuunnettu argumentti %qD ei sovi prototyyppiin" ! #: cp/decl.c:10882 #, gcc-internal-format msgid "default argument %qE uses local variable %qD" msgstr "" ! #: cp/decl.c:10970 ! #, fuzzy, gcc-internal-format msgid "parameter %qD has Java class type" ! msgstr "parametrin %q+D tyyppi on vaillinainen" ! #: cp/decl.c:10998 #, gcc-internal-format msgid "parameter %qD invalidly declared method type" ! msgstr "" ! #: cp/decl.c:11023 #, gcc-internal-format msgid "parameter %qD includes pointer to array of unknown bound %qT" msgstr "" ! #: cp/decl.c:11025 #, gcc-internal-format msgid "parameter %qD includes reference to array of unknown bound %qT" msgstr "" --- 29698,30577 ---- #. no linkage can only be used to declare extern "C" #. entities. Since it's not always an error in the #. ISO C++ 90 Standard, we only issue a warning. ! #: cp/decl.c:7879 #, gcc-internal-format msgid "anonymous type with no linkage used to declare variable %q#D with linkage" msgstr "" ! #: cp/decl.c:7888 #, gcc-internal-format msgid "type %qT with no linkage used to declare variable %q#D with linkage" msgstr "" # semi-fuzzy ! #: cp/decl.c:8011 #, fuzzy, gcc-internal-format msgid "in-class initialization of static data member %q#D of incomplete type" msgstr "ei-staattista datajäsentä %q+D käytetty virheellisesti" ! #: cp/decl.c:8015 #, fuzzy, gcc-internal-format msgid "% needed for in-class initialization of static data member %q#D of non-integral type" msgstr "ISO C++ kieltää epäkokonaislukutyyppiä %2$qT olevan vakiojäsenen %1$qD alustamisen" ! #: cp/decl.c:8018 #, fuzzy, gcc-internal-format msgid "in-class initialization of static data member %q#D of non-literal type" msgstr "ISO C++ kieltää epäkokonaislukutyyppiä %2$qT olevan vakiojäsenen %1$qD alustamisen" ! #: cp/decl.c:8031 #, gcc-internal-format msgid "invalid in-class initialization of static data member of non-integral type %qT" msgstr "" ! #: cp/decl.c:8037 #, gcc-internal-format msgid "ISO C++ forbids in-class initialization of non-const static member %qD" msgstr "" ! #: cp/decl.c:8041 #, gcc-internal-format msgid "ISO C++ forbids initialization of member constant %qD of non-integral type %qT" msgstr "ISO C++ kieltää epäkokonaislukutyyppiä %2$qT olevan vakiojäsenen %1$qD alustamisen" ! #: cp/decl.c:8147 cp/decl.c:8175 #, gcc-internal-format msgid "size of array %qD has non-integral type %qT" msgstr "taulukon %qD koolla on epäkokonaislukutyyppi %qT" ! #: cp/decl.c:8150 cp/decl.c:8177 #, gcc-internal-format msgid "size of array has non-integral type %qT" msgstr "taulukon koolla on epäkokonaislukutyyppi %qT" ! #: cp/decl.c:8227 #, gcc-internal-format msgid "size of array %qD is negative" msgstr "taulukon %qD koko on negatiivinen" ! #: cp/decl.c:8229 #, gcc-internal-format msgid "size of array is negative" msgstr "taulukon koko on negatiivinen" ! #: cp/decl.c:8243 #, gcc-internal-format msgid "ISO C++ forbids zero-size array %qD" msgstr "ISO C++ kieltää nollan kokoisen taulukon %qD" ! #: cp/decl.c:8245 #, gcc-internal-format msgid "ISO C++ forbids zero-size array" msgstr "ISO C++ kieltää nollan kokoisen taulukon" ! #: cp/decl.c:8257 #, gcc-internal-format msgid "size of array %qD is not an integral constant-expression" msgstr "taulukon %qD koko ei ole kokonaislukutyyppinen vakiolauseke" ! #: cp/decl.c:8260 #, gcc-internal-format msgid "size of array is not an integral constant-expression" msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" ! #: cp/decl.c:8266 #, gcc-internal-format msgid "ISO C++ forbids variable length array %qD" msgstr "ISO C++ kieltää muuttuvakokoisen taulukon %qD" ! #: cp/decl.c:8268 #, gcc-internal-format msgid "ISO C++ forbids variable length array" msgstr "ISO C++ kieltää muuttuvakokoisen taulukon" ! #: cp/decl.c:8274 #, gcc-internal-format msgid "variable length array %qD is used" msgstr "" ! #: cp/decl.c:8326 #, gcc-internal-format msgid "overflow in array dimension" msgstr "taulukon koon ylivuoto" ! #: cp/decl.c:8386 #, fuzzy, gcc-internal-format msgid "declaration of %qD as array of %" msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" ! #: cp/decl.c:8394 ! #, gcc-internal-format msgid "declaration of %qD as array of void" ! msgstr "%qD:n esittely void-taulukkona" ! #: cp/decl.c:8396 ! #, gcc-internal-format msgid "creating array of void" ! msgstr "luodaan void-taulukko" ! #: cp/decl.c:8401 ! #, gcc-internal-format msgid "declaration of %qD as array of functions" ! msgstr "%qD:n esittely funktioiden taulukkona" ! #: cp/decl.c:8403 ! #, gcc-internal-format msgid "creating array of functions" ! msgstr "luodaan funktioiden taulukko" ! #: cp/decl.c:8408 ! #, gcc-internal-format msgid "declaration of %qD as array of references" ! msgstr "%qD:n esittely viitteiden taulukkona" ! #: cp/decl.c:8410 ! #, gcc-internal-format msgid "creating array of references" ! msgstr "luodaan viitteiden taulukko" ! #: cp/decl.c:8415 ! #, gcc-internal-format msgid "declaration of %qD as array of function members" ! msgstr "%qD:n esittely funktiojäsenten taulukkona" ! #: cp/decl.c:8417 ! #, gcc-internal-format msgid "creating array of function members" ! msgstr "luodaan funktiojäsenten taulukkoa" ! #: cp/decl.c:8431 #, gcc-internal-format msgid "declaration of %qD as multidimensional array must have bounds for all dimensions except the first" msgstr "" ! #: cp/decl.c:8435 ! #, gcc-internal-format msgid "multidimensional array must have bounds for all dimensions except the first" ! msgstr "moniulotteisell taulukolla on oltava rajat kaikkiin suuntiin paitsi ensimmäiseen" ! #: cp/decl.c:8470 #, gcc-internal-format msgid "return type specification for constructor invalid" msgstr "" ! #: cp/decl.c:8480 #, gcc-internal-format msgid "return type specification for destructor invalid" msgstr "" ! #: cp/decl.c:8493 #, gcc-internal-format msgid "return type specified for %" msgstr "" ! #: cp/decl.c:8515 #, gcc-internal-format msgid "unnamed variable or field declared void" msgstr "nimetön muuttuja tai kenttä esitelty voidiksi" ! #: cp/decl.c:8522 #, gcc-internal-format msgid "variable or field declared void" msgstr "muuttuja tai kenttä esitelty voidiksi" ! #: cp/decl.c:8722 #, fuzzy, gcc-internal-format msgid "invalid use of qualified-name %<::%D%>" msgstr "määrittelemättömän tyypin %<%s %s%> epäkelpo käyttö" ! #: cp/decl.c:8725 #, fuzzy, gcc-internal-format msgid "invalid use of qualified-name %<%T::%D%>" msgstr "määrittelemättömän tyypin %<%s %s%> epäkelpo käyttö" ! #: cp/decl.c:8728 #, fuzzy, gcc-internal-format msgid "invalid use of qualified-name %<%D::%D%>" msgstr "määrittelemättömän tyypin %<%s %s%> epäkelpo käyttö" ! #: cp/decl.c:8737 ! #, gcc-internal-format msgid "%q#T is not a class or a namespace" ! msgstr "%q#T ei ole luokka eikä nimiavaruus" ! #: cp/decl.c:8745 #, gcc-internal-format msgid "type %qT is not derived from type %qT" msgstr "tyyppi %qT ei periydy %qT-tyypistä" ! #: cp/decl.c:8761 cp/decl.c:8853 cp/decl.c:8862 cp/decl.c:10238 #, gcc-internal-format msgid "declaration of %qD as non-function" msgstr "%qD:n esittely ei-funktiona" ! #: cp/decl.c:8767 #, gcc-internal-format msgid "declaration of %qD as non-member" msgstr "%qD:n esittely ei-jäsenenä" ! #: cp/decl.c:8798 #, gcc-internal-format msgid "declarator-id missing; using reserved word %qD" msgstr "" ! #: cp/decl.c:8845 ! #, gcc-internal-format msgid "function definition does not declare parameters" ! msgstr "funktion määrittely ei esittele parametrejä" ! #: cp/decl.c:8870 #, fuzzy, gcc-internal-format msgid "declaration of %qD as %" msgstr "tyhjä esittely" ! #: cp/decl.c:8875 #, fuzzy, gcc-internal-format msgid "declaration of %qD as parameter" msgstr "%J%qD:n esittely varjostaa parametria" ! #: cp/decl.c:8908 #, fuzzy, gcc-internal-format msgid "% cannot appear in a typedef declaration" msgstr "%Hprototyypin esittely" ! #: cp/decl.c:8916 #, gcc-internal-format msgid "two or more data types in declaration of %qs" msgstr "" ! #: cp/decl.c:8922 #, fuzzy, gcc-internal-format msgid "conflicting specifiers in declaration of %qs" msgstr "%qs:n esittelyssä tyyppi on oletuksena %" ! #: cp/decl.c:8994 cp/decl.c:8997 cp/decl.c:9000 #, gcc-internal-format msgid "ISO C++ forbids declaration of %qs with no type" msgstr "ISO C++ kieltää muuttujan %qs esittelyn ilman tyyppiä" ! #: cp/decl.c:9011 #, fuzzy, gcc-internal-format msgid "%<__int128%> is not supported by this target" msgstr "säiekohtaista muistia ei tueta tälle kohteelle" ! #: cp/decl.c:9016 #, fuzzy, gcc-internal-format msgid "ISO C++ does not support %<__int128%> for %qs" msgstr "ISO C++ 1998 ei tue % -tyyppiä" ! #: cp/decl.c:9037 cp/decl.c:9057 ! #, gcc-internal-format msgid "% or % invalid for %qs" ! msgstr "% tai % virheellinen %qs:lle" ! #: cp/decl.c:9039 ! #, gcc-internal-format msgid "% and % specified together for %qs" ! msgstr "sekä % että % määritelty %qs:lle" ! #: cp/decl.c:9041 ! #, gcc-internal-format msgid "% invalid for %qs" ! msgstr "% virheellinen %qs:lle" ! #: cp/decl.c:9043 #, gcc-internal-format msgid "% invalid for %qs" ! msgstr "% virheellinen %qs:lle" ! #: cp/decl.c:9045 #, gcc-internal-format msgid "% invalid for %qs" ! msgstr "% virheellinen %qs:lle" ! #: cp/decl.c:9047 ! #, gcc-internal-format msgid "% or % invalid for %qs" ! msgstr "% tai % virheellinen %qs:lle" ! #: cp/decl.c:9049 #, fuzzy, gcc-internal-format msgid "%, %, %, or % invalid for %qs" msgstr "sekä % että % esittelymääritteissä" ! #: cp/decl.c:9051 #, gcc-internal-format msgid "% or % specified with char for %qs" msgstr "" ! #: cp/decl.c:9053 ! #, gcc-internal-format msgid "% and % specified together for %qs" ! msgstr "sekä % että % määritelty %qs:lle" ! #: cp/decl.c:9059 ! #, gcc-internal-format msgid "% or % invalid for %qs" ! msgstr "% tai % virheellinen %qs:lle" ! #: cp/decl.c:9067 #, gcc-internal-format msgid "long, short, signed or unsigned used invalidly for %qs" msgstr "" ! #: cp/decl.c:9135 #, gcc-internal-format msgid "complex invalid for %qs" msgstr "" ! #: cp/decl.c:9163 #, gcc-internal-format msgid "qualifiers are not allowed on declaration of %" msgstr "" ! #: cp/decl.c:9195 #, gcc-internal-format msgid "member %qD cannot be declared both virtual and static" ! msgstr "jäsentä %qD ei voida esitellä sekä virtuaaliseksi että staattiseksi" ! #: cp/decl.c:9206 #, gcc-internal-format msgid "typedef declaration invalid in parameter declaration" msgstr "" ! #: cp/decl.c:9211 ! #, gcc-internal-format msgid "storage class specified for template parameter %qs" ! msgstr "tallennusluokka annettu malliparametrille %qs" ! #: cp/decl.c:9217 #, gcc-internal-format msgid "storage class specifiers invalid in parameter declarations" ! msgstr "tallennusluokkatarkentimet virheellisiä parameteresittelyissä" ! #: cp/decl.c:9223 ! #, gcc-internal-format msgid "a parameter cannot be declared %" ! msgstr "parametriksi ei voida esitellä %:ksi" ! #: cp/decl.c:9232 ! #, gcc-internal-format msgid "% outside class declaration" ! msgstr "% luokan esittelyn ulkopuolella" ! #: cp/decl.c:9250 #, gcc-internal-format msgid "multiple storage classes in declaration of %qs" ! msgstr "useita tallennusluokkia %qs:n esittelyssä" ! #: cp/decl.c:9273 #, gcc-internal-format msgid "storage class specified for %qs" msgstr "tallennusluokka annettu %qs:lle" ! #: cp/decl.c:9277 #, gcc-internal-format msgid "storage class specified for parameter %qs" msgstr "tallennusluokka annettu parametrille %qs" ! #: cp/decl.c:9290 #, gcc-internal-format msgid "nested function %qs declared %" msgstr "sisäkkäinen funktio %qs esitelty %:ksi" ! #: cp/decl.c:9294 #, gcc-internal-format msgid "top-level declaration of %qs specifies %" msgstr "" ! #: cp/decl.c:9301 #, gcc-internal-format msgid "function-scope %qs implicitly auto and declared %<__thread%>" msgstr "funktioalue %qs implisiittisesti auto ja esitelty %<__thread%>:ksi" ! #: cp/decl.c:9313 #, gcc-internal-format msgid "storage class specifiers invalid in friend function declarations" msgstr "" ! #: cp/decl.c:9423 #, gcc-internal-format msgid "%qs declared as function returning a function" msgstr "%qs esitelty funktion palauttavana funktiona" ! #: cp/decl.c:9428 #, gcc-internal-format msgid "%qs declared as function returning an array" msgstr "%qs esitelty taulukon palauttavan funktiona" ! #: cp/decl.c:9434 #, fuzzy, gcc-internal-format msgid "%qs declared as function returning an abstract class type" msgstr "%qs esitelty taulukon palauttavan funktiona" ! #: cp/decl.c:9463 #, gcc-internal-format msgid "%qs function uses % type specifier without trailing return type" msgstr "" ! #: cp/decl.c:9469 #, gcc-internal-format msgid "%qs function with trailing return type has %qT as its type rather than plain %" msgstr "" #. Not using maybe_warn_cpp0x because this should #. always be an error. ! #: cp/decl.c:9480 #, gcc-internal-format msgid "trailing return type only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/decl.c:9483 #, gcc-internal-format msgid "%qs function with trailing return type not declared with % type specifier" msgstr "" ! #: cp/decl.c:9516 #, gcc-internal-format msgid "destructor cannot be static member function" msgstr "hajotin ei voi olla staattinen jäsenfunktio" ! #: cp/decl.c:9517 #, fuzzy, gcc-internal-format msgid "constructor cannot be static member function" msgstr "hajotin ei voi olla staattinen jäsenfunktio" ! #: cp/decl.c:9521 #, gcc-internal-format msgid "destructors may not be cv-qualified" ! msgstr "hajottimet eivät voi olla cv-määriteltyjä" ! #: cp/decl.c:9522 #, fuzzy, gcc-internal-format msgid "constructors may not be cv-qualified" msgstr "muodostimia ei voi esitellä virtuaalisiksi" ! #: cp/decl.c:9539 #, gcc-internal-format msgid "constructors cannot be declared virtual" msgstr "muodostimia ei voi esitellä virtuaalisiksi" ! #: cp/decl.c:9552 #, fuzzy, gcc-internal-format msgid "can%'t initialize friend function %qs" msgstr "indeksoitu arvo on osoitin funktioon" #. Cannot be both friend and virtual. ! #: cp/decl.c:9556 #, gcc-internal-format msgid "virtual functions cannot be friends" msgstr "" ! #: cp/decl.c:9560 #, gcc-internal-format msgid "friend declaration not in class definition" msgstr "" ! #: cp/decl.c:9562 #, gcc-internal-format msgid "can%'t define friend function %qs in a local class definition" msgstr "" ! #: cp/decl.c:9583 #, gcc-internal-format msgid "destructors may not have parameters" msgstr "hajottimilla ei voi olla parametreja" ! #: cp/decl.c:9609 #, gcc-internal-format msgid "cannot declare pointer to %q#T" msgstr "" ! #: cp/decl.c:9622 cp/decl.c:9629 #, gcc-internal-format msgid "cannot declare reference to %q#T" msgstr "" ! #: cp/decl.c:9631 #, gcc-internal-format msgid "cannot declare pointer to %q#T member" msgstr "" ! #: cp/decl.c:9654 #, fuzzy, gcc-internal-format msgid "cannot declare reference to qualified function type %qT" msgstr "tyyppimuunnos lisää funktiotyyppiin uusia määreitä" ! #: cp/decl.c:9655 #, fuzzy, gcc-internal-format msgid "cannot declare pointer to qualified function type %qT" msgstr "tyyppimuunnos lisää funktiotyyppiin uusia määreitä" ! #: cp/decl.c:9729 #, gcc-internal-format msgid "cannot declare reference to %q#T, which is not a typedef or a template type argument" msgstr "" ! #: cp/decl.c:9793 #, fuzzy, gcc-internal-format msgid "both % and % cannot be used here" msgstr "sekä %<_Sat%> että % esittelymääritteissä" ! #: cp/decl.c:9805 #, gcc-internal-format msgid "template-id %qD used as a declarator" msgstr "" ! #: cp/decl.c:9829 #, gcc-internal-format msgid "member functions are implicitly friends of their class" msgstr "" ! #: cp/decl.c:9834 #, gcc-internal-format msgid "extra qualification %<%T::%> on member %qs" msgstr "" ! #: cp/decl.c:9864 #, fuzzy, gcc-internal-format msgid "cannot define member function %<%T::%s%> within %<%T%>" msgstr "funktiota % ei voi määrittää avoimeksi" ! #: cp/decl.c:9866 #, fuzzy, gcc-internal-format msgid "cannot declare member function %<%T::%s%> within %<%T%>" msgstr "funktiota % ei voi määrittää avoimeksi" ! #: cp/decl.c:9875 #, gcc-internal-format msgid "cannot declare member %<%T::%s%> within %qT" msgstr "" ! #: cp/decl.c:9908 #, gcc-internal-format msgid "non-parameter %qs cannot be a parameter pack" msgstr "" ! #: cp/decl.c:9918 #, gcc-internal-format msgid "size of array %qs is too large" msgstr "taulukon %qs koko on liian suuri" ! #: cp/decl.c:9929 #, gcc-internal-format msgid "data member may not have variably modified type %qT" msgstr "" ! #: cp/decl.c:9931 #, gcc-internal-format msgid "parameter may not have variably modified type %qT" msgstr "" #. [dcl.fct.spec] The explicit specifier shall only be used in #. declarations of constructors within a class definition. ! #: cp/decl.c:9939 #, gcc-internal-format msgid "only declarations of constructors can be %" msgstr "vain muodostimen esittely voi olla %" ! #: cp/decl.c:9947 #, gcc-internal-format msgid "non-member %qs cannot be declared %" msgstr "" ! #: cp/decl.c:9953 #, gcc-internal-format msgid "non-object member %qs cannot be declared %" msgstr "" ! #: cp/decl.c:9959 #, gcc-internal-format msgid "function %qs cannot be declared %" msgstr "" ! #: cp/decl.c:9964 #, gcc-internal-format msgid "static %qs cannot be declared %" msgstr "" ! #: cp/decl.c:9969 #, gcc-internal-format msgid "const %qs cannot be declared %" msgstr "" ! #: cp/decl.c:9974 #, fuzzy, gcc-internal-format msgid "reference %qs cannot be declared %" msgstr "%Jparametri %qD esitelty %:ksi" ! #: cp/decl.c:10009 #, fuzzy, gcc-internal-format msgid "typedef declared %" msgstr "%Jparametri %qD esitelty %:ksi" ! #: cp/decl.c:10019 #, gcc-internal-format msgid "typedef name may not be a nested-name-specifier" msgstr "" ! #: cp/decl.c:10038 #, gcc-internal-format msgid "ISO C++ forbids nested type %qD with same name as enclosing class" msgstr "" ! #: cp/decl.c:10139 #, gcc-internal-format msgid "qualified function types cannot be used to declare static member functions" msgstr "" ! #: cp/decl.c:10141 #, gcc-internal-format msgid "qualified function types cannot be used to declare free functions" msgstr "" ! #: cp/decl.c:10168 #, gcc-internal-format msgid "type qualifiers specified for friend class declaration" msgstr "" ! #: cp/decl.c:10173 #, gcc-internal-format msgid "% specified for friend class declaration" msgstr "" ! #: cp/decl.c:10181 #, gcc-internal-format msgid "template parameters cannot be friends" msgstr "" ! #: cp/decl.c:10183 #, gcc-internal-format msgid "friend declaration requires class-key, i.e. %" msgstr "" ! #: cp/decl.c:10187 #, gcc-internal-format msgid "friend declaration requires class-key, i.e. %" msgstr "" ! #: cp/decl.c:10200 #, gcc-internal-format msgid "trying to make class %qT a friend of global scope" msgstr "" ! #: cp/decl.c:10218 #, gcc-internal-format msgid "invalid qualifiers on non-member function type" ! msgstr "virheelliset määreet ei-jäsenfunktion tyypissä" ! #: cp/decl.c:10228 #, gcc-internal-format msgid "abstract declarator %qT used as declaration" msgstr "" ! #: cp/decl.c:10257 #, gcc-internal-format msgid "cannot use %<::%> in parameter declaration" msgstr "" ! #: cp/decl.c:10261 ! #, gcc-internal-format msgid "parameter declared %" ! msgstr "parametri esitelty %:ksi" ! #: cp/decl.c:10304 #, fuzzy, gcc-internal-format msgid "non-static data member declared %" msgstr "%Jparametri %qD esitelty %:ksi" #. Something like struct S { int N::j; }; ! #: cp/decl.c:10326 #, gcc-internal-format msgid "invalid use of %<::%>" msgstr "" ! #: cp/decl.c:10348 #, fuzzy, gcc-internal-format msgid "declaration of function %qD in invalid context" msgstr "%J%qD:n esittely varjostaa parametria" ! #: cp/decl.c:10357 #, gcc-internal-format msgid "function %qD declared virtual inside a union" msgstr "funktio %qD esitelty virtuaaliseksi unionissa" ! #: cp/decl.c:10366 #, gcc-internal-format msgid "%qD cannot be declared virtual, since it is always static" msgstr "" ! #: cp/decl.c:10382 #, gcc-internal-format msgid "expected qualified name in friend declaration for destructor %qD" msgstr "" ! #: cp/decl.c:10389 ! #, gcc-internal-format msgid "declaration of %qD as member of %qT" ! msgstr "%qD:n esittely %qT:n jäsenenä" ! #: cp/decl.c:10395 ! #, gcc-internal-format msgid "a destructor cannot be %" ! msgstr "hajotin ei voi olla %" ! #: cp/decl.c:10401 #, fuzzy, gcc-internal-format msgid "expected qualified name in friend declaration for constructor %qD" msgstr "%qD esitelty staattisesti sisäkkäin" ! #: cp/decl.c:10447 #, gcc-internal-format msgid "field %qD has incomplete type" msgstr "kentällä %qD on vaillinainen tyyppi" ! #: cp/decl.c:10449 #, gcc-internal-format msgid "name %qT has incomplete type" ! msgstr "nimellä %qT on vaillinainen tyyppi" ! #: cp/decl.c:10458 #, gcc-internal-format msgid " in instantiation of template %qT" msgstr "" ! #: cp/decl.c:10467 #, gcc-internal-format msgid "%qE is neither function nor member function; cannot be declared friend" msgstr "" ! #: cp/decl.c:10524 #, fuzzy, gcc-internal-format msgid "constexpr static data member %qD must have an initializer" msgstr "muuttuvakokoista objektia ei voi alustaa" ! #: cp/decl.c:10533 ! #, gcc-internal-format msgid "non-static data member %qE declared %" ! msgstr "ei-staattinen datajäsen %qE esitelty %:ksi" ! #: cp/decl.c:10583 #, gcc-internal-format msgid "storage class % invalid for function %qs" ! msgstr "tallennusluokka % virheellinen funktiolle %qs" ! #: cp/decl.c:10585 #, gcc-internal-format msgid "storage class % invalid for function %qs" ! msgstr "tallennusluokka % virheellinen funktiolle %qs" ! #: cp/decl.c:10589 #, gcc-internal-format msgid "storage class %<__thread%> invalid for function %qs" ! msgstr "tallennusluokka %<__thread%> virheellinen funktiolle %qs" ! #: cp/decl.c:10592 #, fuzzy, gcc-internal-format msgid "storage class % invalid for function %qs" ! msgstr "tallennusluokka % virheellinen funktiolle %qs" ! #: cp/decl.c:10597 #, fuzzy, gcc-internal-format msgid "virt-specifiers in %qs not allowed outside a class definition" msgstr "%Jvanhanmallinen funktiomäärittely" ! #: cp/decl.c:10608 #, gcc-internal-format msgid "% specified invalid for function %qs declared out of global scope" msgstr "" ! #: cp/decl.c:10612 #, gcc-internal-format msgid "% specifier invalid for function %qs declared out of global scope" msgstr "" ! #: cp/decl.c:10620 #, gcc-internal-format msgid "virtual non-class function %qs" ! msgstr "virtuaalinen ei-luokkafunktio %qs" ! #: cp/decl.c:10627 #, fuzzy, gcc-internal-format msgid "%qs defined in a non-class scope" msgstr "%qs-attribuuttia ei huomioida ei-luokkatyypeille" ! #: cp/decl.c:10628 #, fuzzy, gcc-internal-format msgid "%qs declared in a non-class scope" msgstr "%qs-attribuuttia ei huomioida ei-luokkatyypeille" ! #: cp/decl.c:10655 #, gcc-internal-format msgid "cannot declare member function %qD to have static linkage" msgstr "" #. FIXME need arm citation ! #: cp/decl.c:10662 #, gcc-internal-format msgid "cannot declare static function inside another function" msgstr "" ! #: cp/decl.c:10692 #, gcc-internal-format msgid "% may not be used when defining (as opposed to declaring) a static data member" msgstr "" ! #: cp/decl.c:10699 #, gcc-internal-format msgid "static member %qD declared %" msgstr "" ! #: cp/decl.c:10705 #, gcc-internal-format msgid "cannot explicitly declare member %q#D to have extern linkage" msgstr "" ! #: cp/decl.c:10712 #, fuzzy, gcc-internal-format msgid "declaration of constexpr variable %qD is not a definition" msgstr "ei-muuttujan %qD esittely %-silmukan alkuesittelyssä" ! #: cp/decl.c:10725 #, gcc-internal-format msgid "%qs initialized and declared %" msgstr "%qs alustettu ja esitelty %-avainsanalla" ! #: cp/decl.c:10729 #, gcc-internal-format msgid "%qs has both % and initializer" msgstr "%qs on sekä % että alustin" ! #: cp/decl.c:10874 #, fuzzy, gcc-internal-format msgid "default argument %qE uses %qD" msgstr "tyyppimuunnettu argumentti %qD ei sovi prototyyppiin" ! #: cp/decl.c:10876 #, gcc-internal-format msgid "default argument %qE uses local variable %qD" msgstr "" ! #: cp/decl.c:10964 ! #, gcc-internal-format msgid "parameter %qD has Java class type" ! msgstr "parametrilla %qD on Java-luokkatyyppi" ! #: cp/decl.c:10992 #, gcc-internal-format msgid "parameter %qD invalidly declared method type" ! msgstr "parametri %qD virheellisesti esitelty metodityyppi" ! #: cp/decl.c:11017 #, gcc-internal-format msgid "parameter %qD includes pointer to array of unknown bound %qT" msgstr "" ! #: cp/decl.c:11019 #, gcc-internal-format msgid "parameter %qD includes reference to array of unknown bound %qT" msgstr "" *************** msgstr "" *** 30927,31094 **** #. or implicitly defined), there's no need to worry about their #. existence. Theoretically, they should never even be #. instantiated, but that's hard to forestall. ! #: cp/decl.c:11279 #, gcc-internal-format msgid "invalid constructor; you probably meant %<%T (const %T&)%>" ! msgstr "" ! #: cp/decl.c:11401 #, gcc-internal-format msgid "%qD may not be declared within a namespace" msgstr "" ! #: cp/decl.c:11406 #, gcc-internal-format msgid "%qD may not be declared as static" msgstr "" ! #: cp/decl.c:11432 #, gcc-internal-format msgid "%qD must be a nonstatic member function" msgstr "" ! #: cp/decl.c:11441 #, gcc-internal-format msgid "%qD must be either a non-static member function or a non-member function" msgstr "" ! #: cp/decl.c:11463 #, gcc-internal-format msgid "%qD must have an argument of class or enumerated type" msgstr "" ! #: cp/decl.c:11492 #, gcc-internal-format msgid "conversion to a reference to void will never use a type conversion operator" msgstr "" ! #: cp/decl.c:11494 ! #, fuzzy, gcc-internal-format msgid "conversion to void will never use a type conversion operator" ! msgstr "epäkelpo %-avainsanan käyttö" ! #: cp/decl.c:11501 #, gcc-internal-format msgid "conversion to a reference to the same type will never use a type conversion operator" msgstr "" ! #: cp/decl.c:11503 #, gcc-internal-format msgid "conversion to the same type will never use a type conversion operator" msgstr "" ! #: cp/decl.c:11511 #, gcc-internal-format msgid "conversion to a reference to a base class will never use a type conversion operator" msgstr "" ! #: cp/decl.c:11513 #, gcc-internal-format msgid "conversion to a base class will never use a type conversion operator" msgstr "" #. 13.4.0.3 ! #: cp/decl.c:11522 #, gcc-internal-format msgid "ISO C++ prohibits overloading operator ?:" msgstr "ISO C++ kieltää ?:-operaattorin ylikuormituksen" ! #: cp/decl.c:11527 #, gcc-internal-format msgid "%qD must not have variable number of arguments" ! msgstr "" ! #: cp/decl.c:11578 #, gcc-internal-format msgid "postfix %qD must take % as its argument" msgstr "" ! #: cp/decl.c:11581 #, gcc-internal-format msgid "postfix %qD must take % as its second argument" msgstr "" ! #: cp/decl.c:11589 #, gcc-internal-format msgid "%qD must take either zero or one argument" ! msgstr "" ! #: cp/decl.c:11591 #, gcc-internal-format msgid "%qD must take either one or two arguments" ! msgstr "" ! #: cp/decl.c:11613 #, gcc-internal-format msgid "prefix %qD should return %qT" msgstr "" ! #: cp/decl.c:11619 #, gcc-internal-format msgid "postfix %qD should return %qT" msgstr "" ! #: cp/decl.c:11628 #, gcc-internal-format msgid "%qD must take %" msgstr "" ! #: cp/decl.c:11630 cp/decl.c:11639 #, gcc-internal-format msgid "%qD must take exactly one argument" ! msgstr "" ! #: cp/decl.c:11641 #, gcc-internal-format msgid "%qD must take exactly two arguments" ! msgstr "" ! #: cp/decl.c:11650 #, gcc-internal-format msgid "user-defined %qD always evaluates both arguments" msgstr "" ! #: cp/decl.c:11664 #, gcc-internal-format msgid "%qD should return by value" msgstr "" ! #: cp/decl.c:11675 cp/decl.c:11680 #, gcc-internal-format msgid "%qD cannot have default arguments" ! msgstr "" ! #: cp/decl.c:11741 #, gcc-internal-format msgid "using template type parameter %qT after %qs" msgstr "" ! #: cp/decl.c:11764 #, fuzzy, gcc-internal-format msgid "using alias template specialization %qT after %qs" msgstr "%Hdatamäärittelyllä ei ole tyyppiä eikä tallennusluokkaa" ! #: cp/decl.c:11767 #, gcc-internal-format msgid "using typedef-name %qD after %qs" msgstr "" ! #: cp/decl.c:11769 ! #, fuzzy, gcc-internal-format msgid "%qD has a previous declaration here" ! msgstr "%J%qD:n edellinen esittely oli täällä" ! #: cp/decl.c:11777 #, gcc-internal-format msgid "%qT referred to as %qs" msgstr "" ! #: cp/decl.c:11778 cp/decl.c:11785 #, fuzzy, gcc-internal-format msgid "%q+T has a previous declaration here" msgstr "%J%qD:n edellinen esittely oli täällä" ! #: cp/decl.c:11784 #, gcc-internal-format msgid "%qT referred to as enum" msgstr "" --- 30591,30758 ---- #. or implicitly defined), there's no need to worry about their #. existence. Theoretically, they should never even be #. instantiated, but that's hard to forestall. ! #: cp/decl.c:11273 #, gcc-internal-format msgid "invalid constructor; you probably meant %<%T (const %T&)%>" ! msgstr "virheellinen muodostin; tarkoitit todennäköisesti %<%T (const %T&)%>" ! #: cp/decl.c:11395 #, gcc-internal-format msgid "%qD may not be declared within a namespace" msgstr "" ! #: cp/decl.c:11400 #, gcc-internal-format msgid "%qD may not be declared as static" msgstr "" ! #: cp/decl.c:11426 #, gcc-internal-format msgid "%qD must be a nonstatic member function" msgstr "" ! #: cp/decl.c:11435 #, gcc-internal-format msgid "%qD must be either a non-static member function or a non-member function" msgstr "" ! #: cp/decl.c:11457 #, gcc-internal-format msgid "%qD must have an argument of class or enumerated type" msgstr "" ! #: cp/decl.c:11486 #, gcc-internal-format msgid "conversion to a reference to void will never use a type conversion operator" msgstr "" ! #: cp/decl.c:11488 ! #, gcc-internal-format msgid "conversion to void will never use a type conversion operator" ! msgstr "muunnnos void-tyypiksi ei koskaan käytä tyyppimuunnosoperaattoria" ! #: cp/decl.c:11495 #, gcc-internal-format msgid "conversion to a reference to the same type will never use a type conversion operator" msgstr "" ! #: cp/decl.c:11497 #, gcc-internal-format msgid "conversion to the same type will never use a type conversion operator" msgstr "" ! #: cp/decl.c:11505 #, gcc-internal-format msgid "conversion to a reference to a base class will never use a type conversion operator" msgstr "" ! #: cp/decl.c:11507 #, gcc-internal-format msgid "conversion to a base class will never use a type conversion operator" msgstr "" #. 13.4.0.3 ! #: cp/decl.c:11516 #, gcc-internal-format msgid "ISO C++ prohibits overloading operator ?:" msgstr "ISO C++ kieltää ?:-operaattorin ylikuormituksen" ! #: cp/decl.c:11521 #, gcc-internal-format msgid "%qD must not have variable number of arguments" ! msgstr "%qD:lla ei saa olla vaihtuvaa määrää argumentteja" ! #: cp/decl.c:11572 #, gcc-internal-format msgid "postfix %qD must take % as its argument" msgstr "" ! #: cp/decl.c:11575 #, gcc-internal-format msgid "postfix %qD must take % as its second argument" msgstr "" ! #: cp/decl.c:11583 #, gcc-internal-format msgid "%qD must take either zero or one argument" ! msgstr "%qD:n on otettava joko nolla tai yksi argumenttia" ! #: cp/decl.c:11585 #, gcc-internal-format msgid "%qD must take either one or two arguments" ! msgstr "%qD:n on otettava joko yksi tai kaksi argumenttia" ! #: cp/decl.c:11607 #, gcc-internal-format msgid "prefix %qD should return %qT" msgstr "" ! #: cp/decl.c:11613 #, gcc-internal-format msgid "postfix %qD should return %qT" msgstr "" ! #: cp/decl.c:11622 #, gcc-internal-format msgid "%qD must take %" msgstr "" ! #: cp/decl.c:11624 cp/decl.c:11633 #, gcc-internal-format msgid "%qD must take exactly one argument" ! msgstr "%qD:n on otettava tasan yksi argumentti" ! #: cp/decl.c:11635 #, gcc-internal-format msgid "%qD must take exactly two arguments" ! msgstr "%qD:n on otettava tasan kaksi argumenttia" ! #: cp/decl.c:11644 #, gcc-internal-format msgid "user-defined %qD always evaluates both arguments" msgstr "" ! #: cp/decl.c:11658 #, gcc-internal-format msgid "%qD should return by value" msgstr "" ! #: cp/decl.c:11669 cp/decl.c:11674 #, gcc-internal-format msgid "%qD cannot have default arguments" ! msgstr "%qD:lla ei voi olla oletusargumentteja" ! #: cp/decl.c:11732 #, gcc-internal-format msgid "using template type parameter %qT after %qs" msgstr "" ! #: cp/decl.c:11755 #, fuzzy, gcc-internal-format msgid "using alias template specialization %qT after %qs" msgstr "%Hdatamäärittelyllä ei ole tyyppiä eikä tallennusluokkaa" ! #: cp/decl.c:11758 #, gcc-internal-format msgid "using typedef-name %qD after %qs" msgstr "" ! #: cp/decl.c:11760 ! #, gcc-internal-format msgid "%qD has a previous declaration here" ! msgstr "%q+D:lla on edellinen esittely täällä" ! #: cp/decl.c:11768 #, gcc-internal-format msgid "%qT referred to as %qs" msgstr "" ! #: cp/decl.c:11769 cp/decl.c:11776 #, fuzzy, gcc-internal-format msgid "%q+T has a previous declaration here" msgstr "%J%qD:n edellinen esittely oli täällä" ! #: cp/decl.c:11775 #, gcc-internal-format msgid "%qT referred to as enum" msgstr "" *************** msgstr "" *** 31100,31187 **** #. void f(class C); // No template header here #. #. then the required template argument is missing. ! #: cp/decl.c:11799 #, gcc-internal-format msgid "template argument required for %<%s %T%>" msgstr "" ! #: cp/decl.c:11849 cp/name-lookup.c:3069 #, gcc-internal-format msgid "%qD has the same name as the class in which it is declared" ! msgstr "" ! #: cp/decl.c:11879 cp/name-lookup.c:2561 cp/name-lookup.c:3395 ! #: cp/name-lookup.c:3440 cp/parser.c:5076 cp/parser.c:21175 #, gcc-internal-format msgid "reference to %qD is ambiguous" msgstr "" ! #: cp/decl.c:11994 #, gcc-internal-format msgid "use of enum %q#D without previous declaration" msgstr "" ! #: cp/decl.c:12015 #, gcc-internal-format msgid "redeclaration of %qT as a non-template" msgstr "" ! #: cp/decl.c:12016 ! #, fuzzy, gcc-internal-format msgid "previous declaration %q+D" ! msgstr "%J%qD:lle ei ole aiempaa esittelyä" ! #: cp/decl.c:12157 #, gcc-internal-format msgid "derived union %qT invalid" msgstr "" ! #: cp/decl.c:12166 #, gcc-internal-format msgid "Java class %qT cannot have multiple bases" msgstr "" ! #: cp/decl.c:12177 #, gcc-internal-format msgid "Java class %qT cannot have virtual bases" msgstr "" ! #: cp/decl.c:12197 #, gcc-internal-format msgid "base type %qT fails to be a struct or class type" msgstr "" ! #: cp/decl.c:12230 #, gcc-internal-format msgid "recursive type %qT undefined" ! msgstr "" ! #: cp/decl.c:12232 #, gcc-internal-format msgid "duplicate base type %qT invalid" ! msgstr "" ! #: cp/decl.c:12356 #, gcc-internal-format msgid "scoped/unscoped mismatch in enum %q#T" msgstr "" ! #: cp/decl.c:12359 cp/decl.c:12367 cp/decl.c:12379 cp/parser.c:14742 ! #, fuzzy, gcc-internal-format msgid "previous definition here" ! msgstr "%J%qD:n edellinen määrittely oli täällä" ! #: cp/decl.c:12364 #, gcc-internal-format msgid "underlying type mismatch in enum %q#T" msgstr "" ! #: cp/decl.c:12376 #, gcc-internal-format msgid "different underlying type in enum %q#T" msgstr "" ! #: cp/decl.c:12443 #, gcc-internal-format msgid "underlying type %<%T%> of %<%T%> must be an integral type" msgstr "" --- 30764,30851 ---- #. void f(class C); // No template header here #. #. then the required template argument is missing. ! #: cp/decl.c:11790 #, gcc-internal-format msgid "template argument required for %<%s %T%>" msgstr "" ! #: cp/decl.c:11840 cp/name-lookup.c:3062 #, gcc-internal-format msgid "%qD has the same name as the class in which it is declared" ! msgstr "%qD:llä on sama nimi kuin luokalla, jossa se on esitelty" ! #: cp/decl.c:11870 cp/name-lookup.c:2561 cp/name-lookup.c:3390 ! #: cp/name-lookup.c:3435 cp/parser.c:5076 cp/parser.c:21179 #, gcc-internal-format msgid "reference to %qD is ambiguous" msgstr "" ! #: cp/decl.c:11985 #, gcc-internal-format msgid "use of enum %q#D without previous declaration" msgstr "" ! #: cp/decl.c:12006 #, gcc-internal-format msgid "redeclaration of %qT as a non-template" msgstr "" ! #: cp/decl.c:12007 ! #, gcc-internal-format msgid "previous declaration %q+D" ! msgstr "edellinen esittely %q+D" ! #: cp/decl.c:12148 #, gcc-internal-format msgid "derived union %qT invalid" msgstr "" ! #: cp/decl.c:12157 #, gcc-internal-format msgid "Java class %qT cannot have multiple bases" msgstr "" ! #: cp/decl.c:12168 #, gcc-internal-format msgid "Java class %qT cannot have virtual bases" msgstr "" ! #: cp/decl.c:12188 #, gcc-internal-format msgid "base type %qT fails to be a struct or class type" msgstr "" ! #: cp/decl.c:12221 #, gcc-internal-format msgid "recursive type %qT undefined" ! msgstr "rekursiivinen tyyppi %qT määrittelemätön" ! #: cp/decl.c:12223 #, gcc-internal-format msgid "duplicate base type %qT invalid" ! msgstr "perustyypin %qT kaksoiskappale virheellinen" ! #: cp/decl.c:12347 #, gcc-internal-format msgid "scoped/unscoped mismatch in enum %q#T" msgstr "" ! #: cp/decl.c:12350 cp/decl.c:12358 cp/decl.c:12370 cp/parser.c:14744 ! #, gcc-internal-format msgid "previous definition here" ! msgstr "edellinen määrittely täällä" ! #: cp/decl.c:12355 #, gcc-internal-format msgid "underlying type mismatch in enum %q#T" msgstr "" ! #: cp/decl.c:12367 #, gcc-internal-format msgid "different underlying type in enum %q#T" msgstr "" ! #: cp/decl.c:12434 #, gcc-internal-format msgid "underlying type %<%T%> of %<%T%> must be an integral type" msgstr "" *************** msgstr "" *** 31190,31274 **** #. #. IF no integral type can represent all the enumerator values, the #. enumeration is ill-formed. ! #: cp/decl.c:12577 #, gcc-internal-format msgid "no integral type can represent all of the enumerator values for %qT" msgstr "" ! #: cp/decl.c:12718 #, fuzzy, gcc-internal-format msgid "enumerator value for %qD is not an integer constant" msgstr "luetellun tyypin jäsenen %qE arvo ei ole kokonaislukuvakio" ! #: cp/decl.c:12764 #, fuzzy, gcc-internal-format msgid "incremented enumerator value is too large for %" msgstr "luetellun tyypin jäsenen %qE arvo ei ole kokonaislukuvakio" ! #: cp/decl.c:12776 #, gcc-internal-format msgid "overflow in enumeration values at %qD" msgstr "" ! #: cp/decl.c:12796 #, fuzzy, gcc-internal-format msgid "enumerator value %E is too large for underlying type %<%T%>" msgstr "luetellun tyypin jäsenen %qE arvo ei ole kokonaislukuvakio" ! #: cp/decl.c:12886 #, gcc-internal-format msgid "return type %q#T is incomplete" ! msgstr "" ! #: cp/decl.c:12888 ! #, fuzzy, gcc-internal-format msgid "return type has Java class type %q#T" ! msgstr "palautustyyppi on vaillinainen tyyppi" ! #: cp/decl.c:13012 cp/typeck.c:8247 #, gcc-internal-format msgid "% should return a reference to %<*this%>" msgstr "" ! #: cp/decl.c:13108 ! #, fuzzy, gcc-internal-format msgid "no previous declaration for %q+D" ! msgstr "%J%qD:lle ei ole aiempaa esittelyä" ! #: cp/decl.c:13329 ! #, fuzzy, gcc-internal-format msgid "invalid function declaration" ! msgstr "Varoita implisiittisistä funktioesittelyistä" ! #: cp/decl.c:13413 #, gcc-internal-format msgid "parameter %qD declared void" msgstr "" ! #: cp/decl.c:13781 #, fuzzy, gcc-internal-format - #| msgid "no return statement in function returning non-void" msgid "no return statements in function returning %qT" msgstr "ei palautuslausetta funktiossa, joka palauttaa ei-tyhjän" ! #: cp/decl.c:13783 cp/typeck.c:8135 #, fuzzy, gcc-internal-format - #| msgid "function return types not compatible due to %" msgid "only plain % return type can be deduced to %" msgstr "funktion paluuarvojen tyypit eivät ole yhteensopivia %:n takia" ! #: cp/decl.c:13879 #, fuzzy, gcc-internal-format - #| msgid "label %q+D defined but not used" msgid "parameter %q+D set but not used" msgstr "nimike %q+D määritelty mutta käytettämättä" ! #: cp/decl.c:13974 #, gcc-internal-format msgid "invalid member function declaration" ! msgstr "" ! #: cp/decl.c:13988 #, gcc-internal-format msgid "%qD is already defined in class %qT" msgstr "" --- 30854,30935 ---- #. #. IF no integral type can represent all the enumerator values, the #. enumeration is ill-formed. ! #: cp/decl.c:12568 #, gcc-internal-format msgid "no integral type can represent all of the enumerator values for %qT" msgstr "" ! #: cp/decl.c:12709 #, fuzzy, gcc-internal-format msgid "enumerator value for %qD is not an integer constant" msgstr "luetellun tyypin jäsenen %qE arvo ei ole kokonaislukuvakio" ! #: cp/decl.c:12755 #, fuzzy, gcc-internal-format msgid "incremented enumerator value is too large for %" msgstr "luetellun tyypin jäsenen %qE arvo ei ole kokonaislukuvakio" ! #: cp/decl.c:12767 #, gcc-internal-format msgid "overflow in enumeration values at %qD" msgstr "" ! #: cp/decl.c:12787 #, fuzzy, gcc-internal-format msgid "enumerator value %E is too large for underlying type %<%T%>" msgstr "luetellun tyypin jäsenen %qE arvo ei ole kokonaislukuvakio" ! #: cp/decl.c:12877 #, gcc-internal-format msgid "return type %q#T is incomplete" ! msgstr "paluutyyppi %q#T on vaillinainen" ! #: cp/decl.c:12879 ! #, gcc-internal-format msgid "return type has Java class type %q#T" ! msgstr "paluutyypillä on Java-luokkatyyppi %q#T" ! #: cp/decl.c:13003 cp/typeck.c:8252 #, gcc-internal-format msgid "% should return a reference to %<*this%>" msgstr "" ! #: cp/decl.c:13099 ! #, gcc-internal-format msgid "no previous declaration for %q+D" ! msgstr "%q+D:lle ei ole edellistä esittelyä" ! #: cp/decl.c:13320 ! #, gcc-internal-format msgid "invalid function declaration" ! msgstr "virheellinen funktioesittely" ! #: cp/decl.c:13404 #, gcc-internal-format msgid "parameter %qD declared void" msgstr "" ! #: cp/decl.c:13772 #, fuzzy, gcc-internal-format msgid "no return statements in function returning %qT" msgstr "ei palautuslausetta funktiossa, joka palauttaa ei-tyhjän" ! #: cp/decl.c:13774 cp/typeck.c:8135 #, fuzzy, gcc-internal-format msgid "only plain % return type can be deduced to %" msgstr "funktion paluuarvojen tyypit eivät ole yhteensopivia %:n takia" ! #: cp/decl.c:13870 #, fuzzy, gcc-internal-format msgid "parameter %q+D set but not used" msgstr "nimike %q+D määritelty mutta käytettämättä" ! #: cp/decl.c:13965 #, gcc-internal-format msgid "invalid member function declaration" ! msgstr "virheellinen jäsenfunktioesittely" ! #: cp/decl.c:13979 #, gcc-internal-format msgid "%qD is already defined in class %qT" msgstr "" *************** msgstr "" *** 31276,31282 **** #: cp/decl2.c:318 #, gcc-internal-format msgid "name missing for member function" ! msgstr "" #: cp/decl2.c:388 cp/decl2.c:402 #, gcc-internal-format --- 30937,30943 ---- #: cp/decl2.c:318 #, gcc-internal-format msgid "name missing for member function" ! msgstr "nimi puuttuu jäsenfunktiolta" #: cp/decl2.c:388 cp/decl2.c:402 #, gcc-internal-format *************** msgstr "" *** 31291,31297 **** #: cp/decl2.c:439 #, gcc-internal-format msgid "deleting array %q#E" ! msgstr "" #: cp/decl2.c:445 #, gcc-internal-format --- 30952,30958 ---- #: cp/decl2.c:439 #, gcc-internal-format msgid "deleting array %q#E" ! msgstr "poistetaan taulukko %q#E" #: cp/decl2.c:445 #, gcc-internal-format *************** msgstr "%:n on palautetta *** 31428,31436 **** #. The first parameter shall not have an associated default #. argument. #: cp/decl2.c:1491 ! #, fuzzy, gcc-internal-format msgid "the first parameter of % cannot have a default argument" ! msgstr "%-funktion toinen parametri ei ole viimeinen nimetty argumentti" #: cp/decl2.c:1507 #, gcc-internal-format --- 31089,31097 ---- #. The first parameter shall not have an associated default #. argument. #: cp/decl2.c:1491 ! #, gcc-internal-format msgid "the first parameter of % cannot have a default argument" ! msgstr "%:n ensimmäisellä parametrilla ei voi olla oletusargumenttia" #: cp/decl2.c:1507 #, gcc-internal-format *************** msgstr "%qD esitelty extern-avainsanalla *** 31504,31600 **** msgid "use of %qD before deduction of %" msgstr "%q+D:n oletustyyppi on %" ! #: cp/error.c:3327 #, gcc-internal-format msgid "extended initializer lists only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3332 #, gcc-internal-format msgid "explicit conversion operators only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3337 #, gcc-internal-format msgid "variadic templates only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3342 #, gcc-internal-format msgid "lambda expressions only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3347 #, gcc-internal-format msgid "C++0x auto only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3351 #, gcc-internal-format msgid "scoped enums only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3355 #, gcc-internal-format msgid "defaulted and deleted functions only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3360 #, gcc-internal-format msgid "inline namespaces only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3365 #, gcc-internal-format msgid "override controls (override/final) only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3370 #, gcc-internal-format msgid "non-static data member initializers only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3375 #, gcc-internal-format msgid "user-defined literals only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3380 #, gcc-internal-format msgid "delegating constructors only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3385 #, gcc-internal-format msgid "inheriting constructors only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3390 #, fuzzy, gcc-internal-format msgid "c++11 attributes only available with -std=c++11 or -std=gnu++11" msgstr "attribuutti %qs pätee vain funktiotyyppeihin" ! #: cp/error.c:3439 #, gcc-internal-format msgid "incomplete type %qT used in nested name specifier" msgstr "" ! #: cp/error.c:3443 #, gcc-internal-format msgid "reference to %<%T::%D%> is ambiguous" msgstr "" ! #: cp/error.c:3448 cp/typeck.c:2260 #, gcc-internal-format msgid "%qD is not a member of %qT" msgstr "" ! #: cp/error.c:3452 ! #, fuzzy, gcc-internal-format msgid "%qD is not a member of %qD" ! msgstr "%qs ei ole kelpo tulostetiedosto" ! #: cp/error.c:3457 #, fuzzy, gcc-internal-format msgid "%<::%D%> has not been declared" msgstr "%J%qD on tavallisesti ei-staattinen funktio" --- 31165,31261 ---- msgid "use of %qD before deduction of %" msgstr "%q+D:n oletustyyppi on %" ! #: cp/error.c:3331 #, gcc-internal-format msgid "extended initializer lists only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3336 #, gcc-internal-format msgid "explicit conversion operators only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3341 #, gcc-internal-format msgid "variadic templates only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3346 #, gcc-internal-format msgid "lambda expressions only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3351 #, gcc-internal-format msgid "C++0x auto only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3355 #, gcc-internal-format msgid "scoped enums only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3359 #, gcc-internal-format msgid "defaulted and deleted functions only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3364 #, gcc-internal-format msgid "inline namespaces only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3369 #, gcc-internal-format msgid "override controls (override/final) only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3374 #, gcc-internal-format msgid "non-static data member initializers only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3379 #, gcc-internal-format msgid "user-defined literals only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3384 #, gcc-internal-format msgid "delegating constructors only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3389 #, gcc-internal-format msgid "inheriting constructors only available with -std=c++11 or -std=gnu++11" msgstr "" ! #: cp/error.c:3394 #, fuzzy, gcc-internal-format msgid "c++11 attributes only available with -std=c++11 or -std=gnu++11" msgstr "attribuutti %qs pätee vain funktiotyyppeihin" ! #: cp/error.c:3443 #, gcc-internal-format msgid "incomplete type %qT used in nested name specifier" msgstr "" ! #: cp/error.c:3447 #, gcc-internal-format msgid "reference to %<%T::%D%> is ambiguous" msgstr "" ! #: cp/error.c:3452 cp/typeck.c:2260 #, gcc-internal-format msgid "%qD is not a member of %qT" msgstr "" ! #: cp/error.c:3456 ! #, gcc-internal-format msgid "%qD is not a member of %qD" ! msgstr "%qD ei ole %qD:n jäsen" ! #: cp/error.c:3461 #, fuzzy, gcc-internal-format msgid "%<::%D%> has not been declared" msgstr "%J%qD on tavallisesti ei-staattinen funktio" *************** msgid "member %qD declared as friend bef *** 31751,31759 **** msgstr "" #: cp/friend.c:561 ! #, fuzzy, gcc-internal-format msgid "friend declaration %qD in local class without prior declaration" ! msgstr "%J%qD:n lohko on ristiriidassa edellisen esittelyn kanssa" #: cp/friend.c:584 #, gcc-internal-format --- 31412,31420 ---- msgstr "" #: cp/friend.c:561 ! #, gcc-internal-format msgid "friend declaration %qD in local class without prior declaration" ! msgstr "friend-esittely %qD paikallisessa luokassa ilman edeltävää esittelyä" #: cp/friend.c:584 #, gcc-internal-format *************** msgstr "" *** 31767,31773 **** #: cp/init.c:381 #, fuzzy, gcc-internal-format - #| msgid "invalid application of %qs to incomplete type %qT " msgid "value-initialization of incomplete type %qT" msgstr "epäkelpo %qs:n soveltaminen vaillinaiseen tyyppiin %qT " --- 31428,31433 ---- *************** msgid "constructor required before non-s *** 31792,31800 **** msgstr "" #: cp/init.c:564 ! #, fuzzy, gcc-internal-format msgid "%qD should be initialized in the member initialization list" ! msgstr "%J%qD tulisi alustaa jäsenten alustuslistassa" #: cp/init.c:582 #, fuzzy, gcc-internal-format --- 31452,31460 ---- msgstr "" #: cp/init.c:564 ! #, gcc-internal-format msgid "%qD should be initialized in the member initialization list" ! msgstr "%qD tulee alustaa jäsenten alustuslistassa" #: cp/init.c:582 #, fuzzy, gcc-internal-format *************** msgid "%qD is initialized with itself" *** 31802,31820 **** msgstr "%q+D on yleensä funktio" #: cp/init.c:676 ! #, fuzzy, gcc-internal-format msgid "invalid initializer for array member %q#D" ! msgstr "alustamaton const-jäsen %qD" #: cp/init.c:689 cp/init.c:707 ! #, fuzzy, gcc-internal-format msgid "uninitialized member %qD with % type %qT" ! msgstr "alustamaton const %qD" #: cp/init.c:703 ! #, fuzzy, gcc-internal-format msgid "uninitialized reference member %qD" ! msgstr "alustamaton const-jäsen %qD" #: cp/init.c:863 #, gcc-internal-format --- 31462,31480 ---- msgstr "%q+D on yleensä funktio" #: cp/init.c:676 ! #, gcc-internal-format msgid "invalid initializer for array member %q#D" ! msgstr "virheellinen alustin taulukon jäsenelle %q#D" #: cp/init.c:689 cp/init.c:707 ! #, gcc-internal-format msgid "uninitialized member %qD with % type %qT" ! msgstr "alustamaton jäsen %qD %-tyyppillä %qT" #: cp/init.c:703 ! #, gcc-internal-format msgid "uninitialized reference member %qD" ! msgstr "alustamaton viitejäsen %qD" #: cp/init.c:863 #, gcc-internal-format *************** msgid " base %qT" *** 31837,31845 **** msgstr "" #: cp/init.c:873 ! #, fuzzy, gcc-internal-format msgid " when initialized here" ! msgstr "%J tässä alustuksessa" #: cp/init.c:890 #, fuzzy, gcc-internal-format --- 31497,31505 ---- msgstr "" #: cp/init.c:873 ! #, gcc-internal-format msgid " when initialized here" ! msgstr " tässä alustuksessa" #: cp/init.c:890 #, fuzzy, gcc-internal-format *************** msgid "bad array initializer" *** 31907,31915 **** msgstr "" #: cp/init.c:1790 cp/semantics.c:2834 ! #, fuzzy, gcc-internal-format msgid "%qT is not a class type" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/init.c:1844 #, gcc-internal-format --- 31567,31575 ---- msgstr "" #: cp/init.c:1790 cp/semantics.c:2834 ! #, gcc-internal-format msgid "%qT is not a class type" ! msgstr "%qT ei ole luokkatyyppi" #: cp/init.c:1844 #, gcc-internal-format *************** msgstr "" *** 31948,31960 **** #: cp/init.c:2143 #, fuzzy, gcc-internal-format - #| msgid "uninitialized const member %qD" msgid "uninitialized const member in %q#T" msgstr "alustamaton const-jäsen %qD" #: cp/init.c:2254 #, fuzzy, gcc-internal-format - #| msgid "integer overflow in expression" msgid "integer overflow in array size" msgstr "kokonaislukuylivuoto lausekkeessa" --- 31608,31618 ---- *************** msgstr "muuttuja tai kenttä %qs esitelt *** 31970,31976 **** #: cp/init.c:2292 #, fuzzy, gcc-internal-format - #| msgid "ISO C does not support saturating types" msgid "ISO C++ does not support variable-length array types" msgstr "ISO C ei tue saturoituvia tyyppejä" --- 31628,31633 ---- *************** msgstr "" *** 32011,32017 **** #: cp/init.c:2706 #, fuzzy, gcc-internal-format - #| msgid "array index in initializer exceeds array bounds" msgid "parenthesized initializer in array new" msgstr "taulukon indeksi alustimessa ylittää taulukon rajat" --- 31668,31673 ---- *************** msgstr "alustamaton const %qD" *** 32217,32223 **** #: cp/method.c:1091 #, fuzzy, gcc-internal-format - #| msgid "uninitialized const member %qD" msgid "uninitialized non-static const member %q#D" msgstr "alustamaton const-jäsen %qD" --- 31873,31878 ---- *************** msgstr "" *** 32325,32343 **** #. #. This function shall not be overloaded. #: cp/name-lookup.c:799 ! #, fuzzy, gcc-internal-format msgid "invalid redeclaration of %q+D" ! msgstr "%qD esitelty staattisesti sisäkkäin" #: cp/name-lookup.c:800 #, gcc-internal-format msgid "as %qD" ! msgstr "" #: cp/name-lookup.c:841 cp/name-lookup.c:857 ! #, fuzzy, gcc-internal-format msgid "declaration of %q#D with C language linkage" ! msgstr "%J%qD esitelty uudelleen ilman linkitystä" #: cp/name-lookup.c:847 #, fuzzy, gcc-internal-format --- 31980,31998 ---- #. #. This function shall not be overloaded. #: cp/name-lookup.c:799 ! #, gcc-internal-format msgid "invalid redeclaration of %q+D" ! msgstr "%q+D:n virheellinen uudelleenesittely" #: cp/name-lookup.c:800 #, gcc-internal-format msgid "as %qD" ! msgstr "nimellä %qD" #: cp/name-lookup.c:841 cp/name-lookup.c:857 ! #, gcc-internal-format msgid "declaration of %q#D with C language linkage" ! msgstr "%q#D:n esittely C-kielen linkityksellä" #: cp/name-lookup.c:847 #, fuzzy, gcc-internal-format *************** msgstr "%qD esitelty extern-avainsanalla *** 32356,32362 **** #: cp/name-lookup.c:1047 #, fuzzy, gcc-internal-format - #| msgid "nested extern declaration of %qD" msgid "extern declaration of %q#D doesn%'t match" msgstr "%qD esitelty extern-avainsanalla sisäkkäin" --- 32011,32016 ---- *************** msgid " using obsolete binding at %q+D" *** 32417,32435 **** msgstr "" #: cp/name-lookup.c:1367 ! #, fuzzy, gcc-internal-format msgid "(if you use %<-fpermissive%> G++ will accept your code)" ! msgstr "(G++ hyväksyy koodin -fpermissive-valitsimella)" #: cp/name-lookup.c:1422 #, gcc-internal-format msgid "%s %s(%E) %p %d\n" ! msgstr "" #: cp/name-lookup.c:1425 #, gcc-internal-format msgid "%s %s %p %d\n" ! msgstr "" #: cp/name-lookup.c:2254 #, gcc-internal-format --- 32071,32089 ---- msgstr "" #: cp/name-lookup.c:1367 ! #, gcc-internal-format msgid "(if you use %<-fpermissive%> G++ will accept your code)" ! msgstr "(G++ hyväksyy koodin %<-fpermissive%>-valitsimella)" #: cp/name-lookup.c:1422 #, gcc-internal-format msgid "%s %s(%E) %p %d\n" ! msgstr "%s %s(%E) %p %d\n" #: cp/name-lookup.c:1425 #, gcc-internal-format msgid "%s %s %p %d\n" ! msgstr "%s %s %p %d\n" #: cp/name-lookup.c:2254 #, gcc-internal-format *************** msgstr "" *** 32456,32462 **** #: cp/name-lookup.c:2385 cp/name-lookup.c:2410 #, gcc-internal-format msgid "%qT is not a namespace" ! msgstr "" #. 7.3.3/5 #. A using-declaration shall not name a template-id. --- 32110,32116 ---- #: cp/name-lookup.c:2385 cp/name-lookup.c:2410 #, gcc-internal-format msgid "%qT is not a namespace" ! msgstr "%qT ei ole nimiavaruus" #. 7.3.3/5 #. A using-declaration shall not name a template-id. *************** msgstr "" *** 32482,32581 **** msgid "%qD not declared" msgstr "" ! #: cp/name-lookup.c:3218 #, gcc-internal-format msgid "using-declaration for non-member at class scope" msgstr "" ! #: cp/name-lookup.c:3225 #, gcc-internal-format msgid "%<%T::%D%> names destructor" msgstr "" ! #: cp/name-lookup.c:3236 #, gcc-internal-format msgid "%<%T::%D%> names constructor in %qT" msgstr "" ! #: cp/name-lookup.c:3287 #, gcc-internal-format msgid "no members matching %<%T::%D%> in %q#T" msgstr "" ! #: cp/name-lookup.c:3374 #, gcc-internal-format msgid "declaration of %qD not in a namespace surrounding %qD" msgstr "" ! #: cp/name-lookup.c:3382 #, fuzzy, gcc-internal-format msgid "explicit qualification in declaration of %qD" msgstr "%qD esitelty staattisesti sisäkkäin" ! #: cp/name-lookup.c:3465 #, gcc-internal-format msgid "%qD should have been declared inside %qD" msgstr "" ! #: cp/name-lookup.c:3509 #, fuzzy, gcc-internal-format msgid "%qD attribute requires a single NTBS argument" msgstr "%qs-attribuutti tarvitsee prototyyppejä, joilla nimettyjä argumentteja" ! #: cp/name-lookup.c:3516 #, gcc-internal-format msgid "%qD attribute is meaningless since members of the anonymous namespace get local symbols" msgstr "" ! #: cp/name-lookup.c:3524 cp/name-lookup.c:3936 #, gcc-internal-format msgid "%qD attribute directive ignored" msgstr "" ! #: cp/name-lookup.c:3588 #, gcc-internal-format msgid "namespace alias %qD not allowed here, assuming %qD" msgstr "" ! #: cp/name-lookup.c:3924 #, gcc-internal-format msgid "strong using only meaningful at namespace scope" msgstr "" ! #: cp/name-lookup.c:3928 #, gcc-internal-format msgid "current namespace %qD does not enclose strongly used namespace %qD" msgstr "" ! #: cp/name-lookup.c:4267 #, gcc-internal-format msgid "maximum limit of %d namespaces searched for %qE" msgstr "" ! #: cp/name-lookup.c:4277 #, gcc-internal-format msgid "suggested alternative:" msgid_plural "suggested alternatives:" ! msgstr[0] "" ! msgstr[1] "" ! #: cp/name-lookup.c:4281 #, fuzzy, gcc-internal-format - #| msgid " %q+#D" msgid " %qE" msgstr " %q+#D" ! #: cp/name-lookup.c:5551 #, gcc-internal-format msgid "argument dependent lookup finds %q+D" msgstr "" ! #: cp/name-lookup.c:6088 #, gcc-internal-format msgid "XXX entering pop_everything ()\n" msgstr "" ! #: cp/name-lookup.c:6097 #, gcc-internal-format msgid "XXX leaving pop_everything ()\n" msgstr "" --- 32136,32234 ---- msgid "%qD not declared" msgstr "" ! #: cp/name-lookup.c:3211 #, gcc-internal-format msgid "using-declaration for non-member at class scope" msgstr "" ! #: cp/name-lookup.c:3218 #, gcc-internal-format msgid "%<%T::%D%> names destructor" msgstr "" ! #: cp/name-lookup.c:3231 #, gcc-internal-format msgid "%<%T::%D%> names constructor in %qT" msgstr "" ! #: cp/name-lookup.c:3282 #, gcc-internal-format msgid "no members matching %<%T::%D%> in %q#T" msgstr "" ! #: cp/name-lookup.c:3369 #, gcc-internal-format msgid "declaration of %qD not in a namespace surrounding %qD" msgstr "" ! #: cp/name-lookup.c:3377 #, fuzzy, gcc-internal-format msgid "explicit qualification in declaration of %qD" msgstr "%qD esitelty staattisesti sisäkkäin" ! #: cp/name-lookup.c:3460 #, gcc-internal-format msgid "%qD should have been declared inside %qD" msgstr "" ! #: cp/name-lookup.c:3504 #, fuzzy, gcc-internal-format msgid "%qD attribute requires a single NTBS argument" msgstr "%qs-attribuutti tarvitsee prototyyppejä, joilla nimettyjä argumentteja" ! #: cp/name-lookup.c:3511 #, gcc-internal-format msgid "%qD attribute is meaningless since members of the anonymous namespace get local symbols" msgstr "" ! #: cp/name-lookup.c:3519 cp/name-lookup.c:3931 #, gcc-internal-format msgid "%qD attribute directive ignored" msgstr "" ! #: cp/name-lookup.c:3583 #, gcc-internal-format msgid "namespace alias %qD not allowed here, assuming %qD" msgstr "" ! #: cp/name-lookup.c:3919 #, gcc-internal-format msgid "strong using only meaningful at namespace scope" msgstr "" ! #: cp/name-lookup.c:3923 #, gcc-internal-format msgid "current namespace %qD does not enclose strongly used namespace %qD" msgstr "" ! #: cp/name-lookup.c:4262 #, gcc-internal-format msgid "maximum limit of %d namespaces searched for %qE" msgstr "" ! #: cp/name-lookup.c:4272 #, gcc-internal-format msgid "suggested alternative:" msgid_plural "suggested alternatives:" ! msgstr[0] "ehdotettu vaihtoehto:" ! msgstr[1] "ehdotetut vaihtoehdot:" ! #: cp/name-lookup.c:4276 #, fuzzy, gcc-internal-format msgid " %qE" msgstr " %q+#D" ! #: cp/name-lookup.c:5546 #, gcc-internal-format msgid "argument dependent lookup finds %q+D" msgstr "" ! #: cp/name-lookup.c:6083 #, gcc-internal-format msgid "XXX entering pop_everything ()\n" msgstr "" ! #: cp/name-lookup.c:6092 #, gcc-internal-format msgid "XXX leaving pop_everything ()\n" msgstr "" *************** msgstr "" *** 32587,32610 **** #: cp/parser.c:746 #, fuzzy, gcc-internal-format - #| msgid "identifier %qE conflicts with C++ keyword" msgid "identifier %qE is a keyword in C++11" msgstr "tunniste %qE on ristiriidassa C++:n varatun sanan kanssa" #: cp/parser.c:2402 ! #, fuzzy, gcc-internal-format msgid "%<#pragma%> is not allowed here" ! msgstr "väärinmuodostettu #pragma GCC pch_preprocess, jätetään huomiotta" #: cp/parser.c:2433 ! #, fuzzy, gcc-internal-format msgid "%<%E::%E%> has not been declared" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:2436 ! #, fuzzy, gcc-internal-format msgid "%<::%E%> has not been declared" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:2439 #, fuzzy, gcc-internal-format --- 32240,32262 ---- #: cp/parser.c:746 #, fuzzy, gcc-internal-format msgid "identifier %qE is a keyword in C++11" msgstr "tunniste %qE on ristiriidassa C++:n varatun sanan kanssa" #: cp/parser.c:2402 ! #, gcc-internal-format msgid "%<#pragma%> is not allowed here" ! msgstr "%<#pragma%> ei ole sallittu täällä" #: cp/parser.c:2433 ! #, gcc-internal-format msgid "%<%E::%E%> has not been declared" ! msgstr "%<%E::%E%> on esittelemättä" #: cp/parser.c:2436 ! #, gcc-internal-format msgid "%<::%E%> has not been declared" ! msgstr "%<::%E%> on esittelemättä" #: cp/parser.c:2439 #, fuzzy, gcc-internal-format *************** msgid "request for member %qE in non-cla *** 32612,32676 **** msgstr "pyyntö jäsenen %qs käsittelyyn jossain, joka ei ole tietue tai unioni" #: cp/parser.c:2442 ! #, fuzzy, gcc-internal-format msgid "%<%T::%E%> has not been declared" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:2445 ! #, fuzzy, gcc-internal-format msgid "%qE has not been declared" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:2452 ! #, fuzzy, gcc-internal-format msgid "%<%E::%E%> is not a type" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:2456 ! #, fuzzy, gcc-internal-format ! #| msgid "%qT is not a class or namespace" msgid "%<%E::%E%> is not a class or namespace" ! msgstr "%qT ei ole luokka eikä nimiavaruus" #: cp/parser.c:2461 ! #, fuzzy, gcc-internal-format ! #| msgid "%qT is not a class or namespace" msgid "%<%E::%E%> is not a class, namespace, or enumeration" ! msgstr "%qT ei ole luokka eikä nimiavaruus" #: cp/parser.c:2474 ! #, fuzzy, gcc-internal-format msgid "%<::%E%> is not a type" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:2477 ! #, fuzzy, gcc-internal-format ! #| msgid "%qT is not a class or namespace" msgid "%<::%E%> is not a class or namespace" ! msgstr "%qT ei ole luokka eikä nimiavaruus" #: cp/parser.c:2481 ! #, fuzzy, gcc-internal-format ! #| msgid "%qT is not a class or namespace" msgid "%<::%E%> is not a class, namespace, or enumeration" ! msgstr "%qT ei ole luokka eikä nimiavaruus" #: cp/parser.c:2493 ! #, fuzzy, gcc-internal-format msgid "%qE is not a type" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:2496 ! #, fuzzy, gcc-internal-format ! #| msgid "%qT is not a class or namespace" msgid "%qE is not a class or namespace" ! msgstr "%qT ei ole luokka eikä nimiavaruus" #: cp/parser.c:2500 ! #, fuzzy, gcc-internal-format ! #| msgid "%qT is not a class or namespace" msgid "%qE is not a class, namespace, or enumeration" ! msgstr "%qT ei ole luokka eikä nimiavaruus" #: cp/parser.c:2563 #, gcc-internal-format --- 32264,32322 ---- msgstr "pyyntö jäsenen %qs käsittelyyn jossain, joka ei ole tietue tai unioni" #: cp/parser.c:2442 ! #, gcc-internal-format msgid "%<%T::%E%> has not been declared" ! msgstr "%<%T::%E%> on esittelemättä" #: cp/parser.c:2445 ! #, gcc-internal-format msgid "%qE has not been declared" ! msgstr "%qE on esittelemättä" #: cp/parser.c:2452 ! #, gcc-internal-format msgid "%<%E::%E%> is not a type" ! msgstr "%<%E::%E%> ei ole tyyppi" #: cp/parser.c:2456 ! #, gcc-internal-format msgid "%<%E::%E%> is not a class or namespace" ! msgstr "%<%E::%E%> ei ole luokka eikä nimiavaruus" #: cp/parser.c:2461 ! #, gcc-internal-format msgid "%<%E::%E%> is not a class, namespace, or enumeration" ! msgstr "%<%E::%E%> ei ole luokka, nimiavaruus eikä lueteltu tyyppi" #: cp/parser.c:2474 ! #, gcc-internal-format msgid "%<::%E%> is not a type" ! msgstr "%<::%E%> ei ole tyyppi" #: cp/parser.c:2477 ! #, gcc-internal-format msgid "%<::%E%> is not a class or namespace" ! msgstr "%<::%E%> ei ole luokka eikä nimiavaruus" #: cp/parser.c:2481 ! #, gcc-internal-format msgid "%<::%E%> is not a class, namespace, or enumeration" ! msgstr "%<::%E%> ei ole luokka, nimiavaruus eikä lueteltu tyyppi" #: cp/parser.c:2493 ! #, gcc-internal-format msgid "%qE is not a type" ! msgstr "%qE ei ole tyyppi" #: cp/parser.c:2496 ! #, gcc-internal-format msgid "%qE is not a class or namespace" ! msgstr "%qE ei ole luokka eikä nimiavaruus" #: cp/parser.c:2500 ! #, gcc-internal-format msgid "%qE is not a class, namespace, or enumeration" ! msgstr "%qE ei ole luokka, nimiavaruus eikä lueteltu tyyppi" #: cp/parser.c:2563 #, gcc-internal-format *************** msgstr "(mahdollisesti %qT:n määrittel *** 32685,32691 **** #: cp/parser.c:2587 cp/parser.c:5124 cp/pt.c:7090 #, gcc-internal-format msgid "%qT is not a template" ! msgstr "" #: cp/parser.c:2591 #, fuzzy, gcc-internal-format --- 32331,32337 ---- #: cp/parser.c:2587 cp/parser.c:5124 cp/pt.c:7090 #, gcc-internal-format msgid "%qT is not a template" ! msgstr "%qT ei ole malli" #: cp/parser.c:2591 #, fuzzy, gcc-internal-format *************** msgid "%qE is not a class template" *** 32693,32701 **** msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:2593 ! #, fuzzy, gcc-internal-format msgid "%qE is not a template" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:2596 #, fuzzy, gcc-internal-format --- 32339,32347 ---- msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:2593 ! #, gcc-internal-format msgid "%qE is not a template" ! msgstr "%qE ei ole malli" #: cp/parser.c:2596 #, fuzzy, gcc-internal-format *************** msgstr "%J%qD on tavallisesti ei-staatti *** 32704,32739 **** #: cp/parser.c:2629 #, fuzzy, gcc-internal-format - #| msgid "floating point overflow in expression" msgid "floating-point literal cannot appear in a constant-expression" msgstr "liukulukuylivuoto lausekkeessa" ! #: cp/parser.c:2633 cp/pt.c:13527 #, gcc-internal-format msgid "a cast to a type other than an integral or enumeration type cannot appear in a constant-expression" msgstr "" #: cp/parser.c:2638 #, fuzzy, gcc-internal-format - #| msgid "size of array is not an integral constant-expression" msgid "% operator cannot appear in a constant-expression" msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" #: cp/parser.c:2642 #, fuzzy, gcc-internal-format - #| msgid "size of array is not an integral constant-expression" msgid "non-constant compound literals cannot appear in a constant-expression" msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" #: cp/parser.c:2646 #, fuzzy, gcc-internal-format - #| msgid "size of array is not an integral constant-expression" msgid "a function call cannot appear in a constant-expression" msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" #: cp/parser.c:2650 #, fuzzy, gcc-internal-format - #| msgid "initializer element is not a constant expression" msgid "an increment cannot appear in a constant-expression" msgstr "alustinalkio ei ole vakiolauseke" --- 32350,32380 ---- #: cp/parser.c:2629 #, fuzzy, gcc-internal-format msgid "floating-point literal cannot appear in a constant-expression" msgstr "liukulukuylivuoto lausekkeessa" ! #: cp/parser.c:2633 cp/pt.c:13522 #, gcc-internal-format msgid "a cast to a type other than an integral or enumeration type cannot appear in a constant-expression" msgstr "" #: cp/parser.c:2638 #, fuzzy, gcc-internal-format msgid "% operator cannot appear in a constant-expression" msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" #: cp/parser.c:2642 #, fuzzy, gcc-internal-format msgid "non-constant compound literals cannot appear in a constant-expression" msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" #: cp/parser.c:2646 #, fuzzy, gcc-internal-format msgid "a function call cannot appear in a constant-expression" msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" #: cp/parser.c:2650 #, fuzzy, gcc-internal-format msgid "an increment cannot appear in a constant-expression" msgstr "alustinalkio ei ole vakiolauseke" *************** msgstr "ylivuoto vakiolausekkeessa" *** 32744,32786 **** #: cp/parser.c:2658 #, fuzzy, gcc-internal-format - #| msgid "size of array is not an integral constant-expression" msgid "an array reference cannot appear in a constant-expression" msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" #: cp/parser.c:2662 #, fuzzy, gcc-internal-format - #| msgid "case label is not an integer constant expression" msgid "the address of a label cannot appear in a constant-expression" msgstr "case-nimiö ei ole kokonaislukutyyppinen vakiolauseke" #: cp/parser.c:2666 #, fuzzy, gcc-internal-format - #| msgid "case label is not an integer constant expression" msgid "calls to overloaded operators cannot appear in a constant-expression" msgstr "case-nimiö ei ole kokonaislukutyyppinen vakiolauseke" #: cp/parser.c:2670 #, fuzzy, gcc-internal-format - #| msgid "size of array is not an integral constant-expression" msgid "an assignment cannot appear in a constant-expression" msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" #: cp/parser.c:2673 #, fuzzy, gcc-internal-format - #| msgid "size of array is not an integral constant-expression" msgid "a comma operator cannot appear in a constant-expression" msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" #: cp/parser.c:2677 #, fuzzy, gcc-internal-format - #| msgid "size of array is not an integral constant-expression" msgid "a call to a constructor cannot appear in a constant-expression" msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" #: cp/parser.c:2681 #, fuzzy, gcc-internal-format - #| msgid "size of array is not an integral constant-expression" msgid "a transaction expression cannot appear in a constant-expression" msgstr "taulukon koko ei ole kokonaislukutyyppinen vakiolauseke" --- 32385,32420 ---- *************** msgstr "ylivuoto vakiolausekkeessa" *** 32792,32803 **** #: cp/parser.c:2756 #, gcc-internal-format msgid "invalid use of template-name %qE without an argument list" ! msgstr "" #: cp/parser.c:2759 ! #, fuzzy, gcc-internal-format msgid "invalid use of destructor %qD as a type" ! msgstr "epäkelpo %-avainsanan käyttö" #. Something like 'unsigned A a;' #: cp/parser.c:2762 --- 32426,32437 ---- #: cp/parser.c:2756 #, gcc-internal-format msgid "invalid use of template-name %qE without an argument list" ! msgstr "mallinimen %qE virheellinen käyttö ilman argumenttiluetteloa" #: cp/parser.c:2759 ! #, gcc-internal-format msgid "invalid use of destructor %qD as a type" ! msgstr "virheellinen hajottimen %qD käyttö tyyppinä" #. Something like 'unsigned A a;' #: cp/parser.c:2762 *************** msgstr "" *** 32807,32815 **** #. Issue an error message. #: cp/parser.c:2766 ! #, fuzzy, gcc-internal-format msgid "%qE does not name a type" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:2775 #, gcc-internal-format --- 32441,32449 ---- #. Issue an error message. #: cp/parser.c:2766 ! #, gcc-internal-format msgid "%qE does not name a type" ! msgstr "%qE ei nimeä tyyppiä" #: cp/parser.c:2775 #, gcc-internal-format *************** msgstr "" *** 32819,32841 **** #: cp/parser.c:2802 #, gcc-internal-format msgid "(perhaps % was intended)" ! msgstr "" #: cp/parser.c:2817 ! #, fuzzy, gcc-internal-format msgid "%qE in namespace %qE does not name a type" ! msgstr "luokalla %qT ei ole %qD-nimistä kenttää" #. A::A() #: cp/parser.c:2823 ! #, fuzzy, gcc-internal-format msgid "%<%T::%E%> names the constructor, not the type" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:2826 ! #, fuzzy, gcc-internal-format msgid "and %qT has no template constructors" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:2831 #, gcc-internal-format --- 32453,32475 ---- #: cp/parser.c:2802 #, gcc-internal-format msgid "(perhaps % was intended)" ! msgstr "(ehkä tarkoitettiin %)" #: cp/parser.c:2817 ! #, gcc-internal-format msgid "%qE in namespace %qE does not name a type" ! msgstr "%qE nimiavaruudessa %qE ei nimeä tyyppiä" #. A::A() #: cp/parser.c:2823 ! #, gcc-internal-format msgid "%<%T::%E%> names the constructor, not the type" ! msgstr "%<%T::%E%> nimeää muodostimen, ei tyyppiä" #: cp/parser.c:2826 ! #, gcc-internal-format msgid "and %qT has no template constructors" ! msgstr "ja kohteella %qT:lla ei ole mallimuodostimia" #: cp/parser.c:2831 #, gcc-internal-format *************** msgstr "luokalla %qT ei ole %qD-nimistä *** 32849,32855 **** #: cp/parser.c:3394 #, fuzzy, gcc-internal-format - #| msgid "expected string literal" msgid "expected string-literal" msgstr "odotettiin merkkijonoliteraalia" --- 32483,32488 ---- *************** msgstr "" *** 32860,32866 **** #: cp/parser.c:3499 #, fuzzy, gcc-internal-format - #| msgid "within this context" msgid "a wide string is invalid in this context" msgstr "tässä yhteydessä" --- 32493,32498 ---- *************** msgstr "" *** 32871,32889 **** #: cp/parser.c:3682 #, fuzzy, gcc-internal-format - #| msgid "floating constant exceeds range of %qT" msgid "integer literal exceeds range of %qT type" msgstr "liukulukuvakio ylittää %qT:n arvoalueen" #: cp/parser.c:3688 #, fuzzy, gcc-internal-format - #| msgid "floating constant exceeds range of %qT" msgid "floating literal exceeds range of %qT type" msgstr "liukulukuvakio ylittää %qT:n arvoalueen" #: cp/parser.c:3692 #, fuzzy, gcc-internal-format - #| msgid "floating constant truncated to zero" msgid "floating literal truncated to zero" msgstr "liukulukuvakio katkaistu nollaksi" --- 32503,32518 ---- *************** msgstr "" *** 32904,32910 **** #: cp/parser.c:3831 cp/parser.c:10509 #, fuzzy, gcc-internal-format - #| msgid "empty declaration" msgid "expected declaration" msgstr "tyhjä esittely" --- 32533,32538 ---- *************** msgid "expected primary-expression" *** 32929,32937 **** msgstr "vektoriylivuoto lausekkeessa" #: cp/parser.c:4127 ! #, fuzzy, gcc-internal-format msgid "% may not be used in this context" ! msgstr "%qD on esittelemättä tällä näkyvyysalueella" #: cp/parser.c:4244 #, fuzzy, gcc-internal-format --- 32557,32565 ---- msgstr "vektoriylivuoto lausekkeessa" #: cp/parser.c:4127 ! #, gcc-internal-format msgid "% may not be used in this context" ! msgstr "-sanaa ei voi käyttää tässä yhteydessä" #: cp/parser.c:4244 #, fuzzy, gcc-internal-format *************** msgid "a template declaration cannot app *** 32939,32947 **** msgstr "%Hdatamäärittelyllä ei ole tyyppiä eikä tallennusluokkaa" #: cp/parser.c:4378 ! #, fuzzy, gcc-internal-format msgid "local variable %qD may not appear in this context" ! msgstr "%qD on esittelemättä tällä näkyvyysalueella" #: cp/parser.c:4543 #, fuzzy, gcc-internal-format --- 32567,32575 ---- msgstr "%Hdatamäärittelyllä ei ole tyyppiä eikä tallennusluokkaa" #: cp/parser.c:4378 ! #, gcc-internal-format msgid "local variable %qD may not appear in this context" ! msgstr "paikallinen muuttuja %qD ei voi esiintyä tässä yhteydessä" #: cp/parser.c:4543 #, fuzzy, gcc-internal-format *************** msgid "scope %qT before %<~%> is not a c *** 32954,32962 **** msgstr "%qT ei ole luokka tai nimiavaruus" #: cp/parser.c:4797 ! #, fuzzy, gcc-internal-format msgid "declaration of %<~%T%> as member of %qT" ! msgstr "%qs:n esittely taulukollisena tyhjiä alkioita" #: cp/parser.c:4812 #, gcc-internal-format --- 32582,32590 ---- msgstr "%qT ei ole luokka tai nimiavaruus" #: cp/parser.c:4797 ! #, gcc-internal-format msgid "declaration of %<~%T%> as member of %qT" ! msgstr "%<~%T%>:n esittely %qT:n jäsenenä" #: cp/parser.c:4812 #, gcc-internal-format *************** msgstr "" *** 32968,32974 **** msgid "literal operator suffixes not preceded by %<_%> are reserved for future standardization" msgstr "" ! #: cp/parser.c:4857 cp/parser.c:16496 #, gcc-internal-format msgid "expected unqualified-id" msgstr "" --- 32596,32602 ---- msgid "literal operator suffixes not preceded by %<_%> are reserved for future standardization" msgstr "" ! #: cp/parser.c:4857 cp/parser.c:16498 #, gcc-internal-format msgid "expected unqualified-id" msgstr "" *************** msgid "decltype evaluates to %qT, which *** 32984,32992 **** msgstr "%Jcase-arvo %qs ei ole luetellussa tyypissä" #: cp/parser.c:5125 cp/typeck.c:2531 cp/typeck.c:2551 ! #, fuzzy, gcc-internal-format msgid "%qD is not a template" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:5203 #, fuzzy, gcc-internal-format --- 32612,32620 ---- msgstr "%Jcase-arvo %qs ei ole luetellussa tyypissä" #: cp/parser.c:5125 cp/typeck.c:2531 cp/typeck.c:2551 ! #, gcc-internal-format msgid "%qD is not a template" ! msgstr "%qD ei ole malli" #: cp/parser.c:5203 #, fuzzy, gcc-internal-format *************** msgstr "useita tallennuspaikkoja esittel *** 32995,33007 **** #: cp/parser.c:5400 cp/parser.c:7183 #, fuzzy, gcc-internal-format - #| msgid "new types may not be defined in a return type" msgid "types may not be defined in casts" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" #: cp/parser.c:5460 #, fuzzy, gcc-internal-format - #| msgid "new types may not be defined in a return type" msgid "types may not be defined in a % expression" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" --- 32623,32633 ---- *************** msgid "two consecutive %<[%> shall only *** 33018,33036 **** msgstr "" #: cp/parser.c:5999 ! #, fuzzy, gcc-internal-format msgid "%qE does not have class type" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:6088 cp/typeck.c:2440 #, gcc-internal-format msgid "invalid use of %qD" ! msgstr "" #: cp/parser.c:6097 ! #, fuzzy, gcc-internal-format msgid "%<%D::%D%> is not a class member" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:6359 #, gcc-internal-format --- 32644,32662 ---- msgstr "" #: cp/parser.c:5999 ! #, gcc-internal-format msgid "%qE does not have class type" ! msgstr "%qE:lla ei ole luokkatyyppiä" #: cp/parser.c:6088 cp/typeck.c:2440 #, gcc-internal-format msgid "invalid use of %qD" ! msgstr "%qD:n virheellinen käyttö" #: cp/parser.c:6097 ! #, gcc-internal-format msgid "%<%D::%D%> is not a class member" ! msgstr "%<%D::%D%> ei ole luokan jäsen" #: cp/parser.c:6359 #, gcc-internal-format *************** msgstr "" *** 33039,33057 **** #: cp/parser.c:6455 #, fuzzy, gcc-internal-format - #| msgid "ISO C does not allow extra %<;%> outside of a function" msgid "ISO C++ does not allow % with a non-type" ! msgstr "ISO C ei salli ylimääräisiä %<;%>-merkkejä funktioiden ulkopuolella" #: cp/parser.c:6540 #, fuzzy, gcc-internal-format - #| msgid "new types may not be defined in a return type" msgid "types may not be defined in % expressions" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" #: cp/parser.c:6769 #, fuzzy, gcc-internal-format - #| msgid "new types may not be defined in a return type" msgid "types may not be defined in a new-expression" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" --- 32665,32680 ---- #: cp/parser.c:6455 #, fuzzy, gcc-internal-format msgid "ISO C++ does not allow % with a non-type" ! msgstr "ISO C ei salli ylimääräisiä %<;%>-merkkejä funktion ulkopuolella" #: cp/parser.c:6540 #, fuzzy, gcc-internal-format msgid "types may not be defined in % expressions" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" #: cp/parser.c:6769 #, fuzzy, gcc-internal-format msgid "types may not be defined in a new-expression" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" *************** msgstr "" *** 33067,33073 **** #: cp/parser.c:6863 #, fuzzy, gcc-internal-format - #| msgid "new types may not be defined in a return type" msgid "types may not be defined in a new-type-id" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" --- 32690,32695 ---- *************** msgstr "" *** 33079,33085 **** #: cp/parser.c:7247 #, gcc-internal-format msgid "use of old-style cast" ! msgstr "" #: cp/parser.c:7382 #, gcc-internal-format --- 32701,32707 ---- #: cp/parser.c:7247 #, gcc-internal-format msgid "use of old-style cast" ! msgstr "vanhanmallisen tyyppimuunnoksen käyttö" #: cp/parser.c:7382 #, gcc-internal-format *************** msgid "%<>>%> operator is treated as two *** 33087,33095 **** msgstr "" #: cp/parser.c:7385 ! #, fuzzy, gcc-internal-format msgid "suggest parentheses around %<>>%> expression" ! msgstr "sulkumerkkien käyttö &&:n ympärillä on suositeltavaa ||:n sisällä" #: cp/parser.c:7531 #, gcc-internal-format --- 32709,32717 ---- msgstr "" #: cp/parser.c:7385 ! #, gcc-internal-format msgid "suggest parentheses around %<>>%> expression" ! msgstr "suosittellaan sulkumerkkejä %<>>%>-lausekkeen ympärille" #: cp/parser.c:7531 #, gcc-internal-format *************** msgstr "" *** 33118,33130 **** #: cp/parser.c:8373 #, fuzzy, gcc-internal-format - #| msgid "increment of read-only variable %qD" msgid "capture of non-variable %qD " msgstr "kirjoitussuojatun muuttujan %qD kasvatus" #: cp/parser.c:8375 cp/parser.c:8384 #, fuzzy, gcc-internal-format - #| msgid "%q+D declared here" msgid "%q+#D declared here" msgstr "%q+D esitelty täällä" --- 32740,32750 ---- *************** msgid "explicit by-reference capture of *** 33144,33156 **** msgstr "" #: cp/parser.c:8470 ! #, fuzzy, gcc-internal-format msgid "default argument specified for lambda parameter" ! msgstr "tallennusluokka annettu parametrille %qs" #: cp/parser.c:8885 #, fuzzy, gcc-internal-format - #| msgid "attributes in parameter array declarator ignored" msgid "attributes at the beginning of statement are ignored" msgstr "parametritaulukon esittelijän attribuutit jätetään huomiotta" --- 32764,32775 ---- msgstr "" #: cp/parser.c:8470 ! #, gcc-internal-format msgid "default argument specified for lambda parameter" ! msgstr "oletusargumentti määritelty lambda-parametrille" #: cp/parser.c:8885 #, fuzzy, gcc-internal-format msgid "attributes at the beginning of statement are ignored" msgstr "parametritaulukon esittelijän attribuutit jätetään huomiotta" *************** msgid "need % before %qE beca *** 33170,33192 **** msgstr "" #: cp/parser.c:9037 ! #, fuzzy, gcc-internal-format msgid "%<%T::%D%> names the constructor, not the type" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" #: cp/parser.c:9086 #, gcc-internal-format msgid "compound-statement in constexpr function" msgstr "" ! #: cp/parser.c:9298 cp/parser.c:23016 #, fuzzy, gcc-internal-format msgid "expected selection-statement" msgstr "tyhjä esittely" #: cp/parser.c:9331 #, fuzzy, gcc-internal-format - #| msgid "new types may not be defined in a return type" msgid "types may not be defined in conditions" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" --- 32789,32810 ---- msgstr "" #: cp/parser.c:9037 ! #, gcc-internal-format msgid "%<%T::%D%> names the constructor, not the type" ! msgstr "%<%T::%D%> nimeää muodostimen, ei tyyppiä" #: cp/parser.c:9086 #, gcc-internal-format msgid "compound-statement in constexpr function" msgstr "" ! #: cp/parser.c:9298 cp/parser.c:23020 #, fuzzy, gcc-internal-format msgid "expected selection-statement" msgstr "tyhjä esittely" #: cp/parser.c:9331 #, fuzzy, gcc-internal-format msgid "types may not be defined in conditions" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" *************** msgstr "" *** 33210,33223 **** msgid "inconsistent begin/end types in range-based % statement: %qT and %qT" msgstr "" ! #: cp/parser.c:9889 cp/parser.c:23019 #, fuzzy, gcc-internal-format msgid "expected iteration-statement" msgstr "tyhjä esittely" #: cp/parser.c:9936 #, fuzzy, gcc-internal-format - #| msgid "% loop initial declarations are only allowed in C99 mode" msgid "range-based % loops are not allowed in C++98 mode" msgstr "%-silmukan alkuesittelyt ovat sallittuja vain C99-tilassa" --- 32828,32840 ---- msgid "inconsistent begin/end types in range-based % statement: %qT and %qT" msgstr "" ! #: cp/parser.c:9889 cp/parser.c:23023 #, fuzzy, gcc-internal-format msgid "expected iteration-statement" msgstr "tyhjä esittely" #: cp/parser.c:9936 #, fuzzy, gcc-internal-format msgid "range-based % loops are not allowed in C++98 mode" msgstr "%-silmukan alkuesittelyt ovat sallittuja vain C99-tilassa" *************** msgstr "%-silmukan alkuesittelyt o *** 33225,33238 **** #: cp/parser.c:10058 #, gcc-internal-format msgid "ISO C++ forbids computed gotos" ! msgstr "" ! #: cp/parser.c:10071 cp/parser.c:23022 #, fuzzy, gcc-internal-format msgid "expected jump-statement" msgstr "tyhjä esittely" ! #: cp/parser.c:10203 cp/parser.c:19157 #, gcc-internal-format msgid "extra %<;%>" msgstr "ylimääräinen %<;%>" --- 32842,32855 ---- #: cp/parser.c:10058 #, gcc-internal-format msgid "ISO C++ forbids computed gotos" ! msgstr "ISO C++ kieltää lasketut goto-käskyt" ! #: cp/parser.c:10071 cp/parser.c:23026 #, fuzzy, gcc-internal-format msgid "expected jump-statement" msgstr "tyhjä esittely" ! #: cp/parser.c:10203 cp/parser.c:19161 #, gcc-internal-format msgid "extra %<;%>" msgstr "ylimääräinen %<;%>" *************** msgstr "ylimääräinen %<;%>" *** 33240,33246 **** #: cp/parser.c:10436 #, gcc-internal-format msgid "%<__label__%> not at the beginning of a block" ! msgstr "" #: cp/parser.c:10587 #, gcc-internal-format --- 32857,32863 ---- #: cp/parser.c:10436 #, gcc-internal-format msgid "%<__label__%> not at the beginning of a block" ! msgstr "%<__label__%> ei ole lohkon alussa" #: cp/parser.c:10587 #, gcc-internal-format *************** msgid "decl-specifier invalid in conditi *** 33265,33278 **** msgstr "%Jvanhanmallinen funktiomäärittely" #: cp/parser.c:10966 ! #, fuzzy, gcc-internal-format msgid "class definition may not be declared a friend" ! msgstr "funktion määrittely esitelty %:ksi" ! #: cp/parser.c:11034 cp/parser.c:19551 #, gcc-internal-format msgid "templates may not be %" ! msgstr "" #: cp/parser.c:11073 #, fuzzy, gcc-internal-format --- 32882,32895 ---- msgstr "%Jvanhanmallinen funktiomäärittely" #: cp/parser.c:10966 ! #, gcc-internal-format msgid "class definition may not be declared a friend" ! msgstr "luokkamäärittelyä ei voi esitellä ystäväksi" ! #: cp/parser.c:11034 cp/parser.c:19555 #, gcc-internal-format msgid "templates may not be %" ! msgstr "mallit eivät voi olla virtuaalisia" #: cp/parser.c:11073 #, fuzzy, gcc-internal-format *************** msgstr "rajat määrittelemättömän ta *** 33281,33294 **** #: cp/parser.c:11208 #, fuzzy, gcc-internal-format - #| msgid "new types may not be defined in a return type" msgid "types may not be defined in % expressions" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" #: cp/parser.c:11467 ! #, fuzzy, gcc-internal-format msgid "invalid use of % in conversion operator" ! msgstr "epäkelpo %-avainsanan käyttö" #: cp/parser.c:11471 #, fuzzy, gcc-internal-format --- 32898,32910 ---- #: cp/parser.c:11208 #, fuzzy, gcc-internal-format msgid "types may not be defined in % expressions" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" #: cp/parser.c:11467 ! #, gcc-internal-format msgid "invalid use of % in conversion operator" ! msgstr "virheellinen %:n käyttö muunnosoperaattorissa" #: cp/parser.c:11471 #, fuzzy, gcc-internal-format *************** msgid "only constructors take member ini *** 33301,33313 **** msgstr "skalaarialustimen ympärillä on aaltosulkeet" #: cp/parser.c:11582 ! #, fuzzy, gcc-internal-format msgid "cannot expand initializer for member %<%D%>" ! msgstr "alustamaton const-jäsen %qD" #: cp/parser.c:11594 #, fuzzy, gcc-internal-format - #| msgid "static declaration of %q+D follows non-static declaration" msgid "mem-initializer for %qD follows constructor delegation" msgstr "%q+D esitelty staattisena, edellinen esittely ei-staattinen" --- 32917,32928 ---- msgstr "skalaarialustimen ympärillä on aaltosulkeet" #: cp/parser.c:11582 ! #, gcc-internal-format msgid "cannot expand initializer for member %<%D%>" ! msgstr "ei voi laajentaa alustinta jäsenelle %<%D%>" #: cp/parser.c:11594 #, fuzzy, gcc-internal-format msgid "mem-initializer for %qD follows constructor delegation" msgstr "%q+D esitelty staattisena, edellinen esittely ei-staattinen" *************** msgstr "leveä merkkijonovakio %-l *** 33333,33339 **** #: cp/parser.c:12061 #, fuzzy, gcc-internal-format - #| msgid "expected string literal" msgid "expected suffix identifier" msgstr "odotettiin merkkijonoliteraalia" --- 32948,32953 ---- *************** msgstr "vektoriylivuoto lausekkeessa" *** 33353,33364 **** msgid "keyword % not implemented, and will be ignored" msgstr "" ! #: cp/parser.c:12317 cp/parser.c:12415 cp/parser.c:12522 cp/parser.c:17611 #, fuzzy, gcc-internal-format msgid "template parameter pack %qD cannot have a default argument" msgstr "strftime-muotoilut eivät voi muotoilla argumentteja" ! #: cp/parser.c:12321 cp/parser.c:17619 #, fuzzy, gcc-internal-format msgid "template parameter pack cannot have a default argument" msgstr "strftime-muotoilut eivät voi muotoilla argumentteja" --- 32967,32978 ---- msgid "keyword % not implemented, and will be ignored" msgstr "" ! #: cp/parser.c:12317 cp/parser.c:12415 cp/parser.c:12522 cp/parser.c:17613 #, fuzzy, gcc-internal-format msgid "template parameter pack %qD cannot have a default argument" msgstr "strftime-muotoilut eivät voi muotoilla argumentteja" ! #: cp/parser.c:12321 cp/parser.c:17621 #, fuzzy, gcc-internal-format msgid "template parameter pack cannot have a default argument" msgstr "strftime-muotoilut eivät voi muotoilla argumentteja" *************** msgstr "strftime-muotoilut eivät voi mu *** 33373,33382 **** msgid "expected template-id" msgstr "%J%qD on tavallisesti ei-staattinen funktio" ! #: cp/parser.c:12658 cp/parser.c:22980 #, fuzzy, gcc-internal-format msgid "expected %<<%>" ! msgstr "käytetty %<__thread%> ennen %:a" #: cp/parser.c:12665 #, gcc-internal-format --- 32987,32996 ---- msgid "expected template-id" msgstr "%J%qD on tavallisesti ei-staattinen funktio" ! #: cp/parser.c:12658 cp/parser.c:22984 #, fuzzy, gcc-internal-format msgid "expected %<<%>" ! msgstr "odotettiin %<<%>" #: cp/parser.c:12665 #, gcc-internal-format *************** msgstr "(G++ hyväksyy koodin -fpermissi *** 33396,33409 **** #: cp/parser.c:12750 #, gcc-internal-format msgid "parse error in template argument list" ! msgstr "" #. The name does not name a template. #: cp/parser.c:12819 cp/parser.c:12934 cp/parser.c:13146 #, fuzzy, gcc-internal-format - #| msgid "expected class name" msgid "expected template-name" ! msgstr "odotettiin luokan nimeä" #. Explain what went wrong. #: cp/parser.c:12865 --- 33010,33022 ---- #: cp/parser.c:12750 #, gcc-internal-format msgid "parse error in template argument list" ! msgstr "jäsennysvirhe malliargumenttien luettelossa" #. The name does not name a template. #: cp/parser.c:12819 cp/parser.c:12934 cp/parser.c:13146 #, fuzzy, gcc-internal-format msgid "expected template-name" ! msgstr "odotettiin mallinimeä" #. Explain what went wrong. #: cp/parser.c:12865 *************** msgstr "liian paljon argumentteja funkti *** 33428,33434 **** #: cp/parser.c:13256 #, fuzzy, gcc-internal-format - #| msgid "invalid IACC argument" msgid "invalid non-type template argument" msgstr "virheellinen IACC-argumentti" --- 33041,33046 ---- *************** msgstr "vektoriylivuoto lausekkeessa" *** 33459,33465 **** #: cp/parser.c:13930 #, fuzzy, gcc-internal-format - #| msgid "expected class name" msgid "expected type-name" msgstr "odotettiin luokan nimeä" --- 33071,33076 ---- *************** msgstr "odotettiin luokan nimeä" *** 33468,33634 **** msgid "elaborated-type-specifier for a scoped enum must not use the %<%D%> keyword" msgstr "" ! #: cp/parser.c:14355 #, gcc-internal-format msgid "declaration %qD does not declare anything" msgstr "esittely %qD ei esittele mitään" ! #: cp/parser.c:14441 #, fuzzy, gcc-internal-format msgid "attributes ignored on uninstantiated type" msgstr "%qs-attribuuttia ei huomioida ei-luokkatyypeille" ! #: cp/parser.c:14445 #, fuzzy, gcc-internal-format msgid "attributes ignored on template instantiation" msgstr "%qs-attribuuttia ei huomioida ei-luokkatyypeille" ! #: cp/parser.c:14450 #, gcc-internal-format msgid "attributes ignored on elaborated-type-specifier that is not a forward declaration" msgstr "" ! #: cp/parser.c:14584 #, fuzzy, gcc-internal-format msgid "%qD is an enumeration template" msgstr "%J%qD on tavallisesti ei-staattinen funktio" ! #: cp/parser.c:14592 #, fuzzy, gcc-internal-format - #| msgid "%qD is not a namespace-name" msgid "%qD is not an enumerator-name" msgstr "%qD ei ole nimiavaruuden nimi" ! #: cp/parser.c:14655 #, fuzzy, gcc-internal-format msgid "expected %<;%> or %<{%>" msgstr "käytetty %<__thread%> ennen %:a" ! #: cp/parser.c:14703 #, fuzzy, gcc-internal-format msgid "cannot add an enumerator list to a template instantiation" msgstr "%qs-attribuuttia ei huomioida ei-luokkatyypeille" ! #: cp/parser.c:14712 cp/parser.c:18714 #, fuzzy, gcc-internal-format msgid "declaration of %qD in namespace %qD which does not enclose %qD" msgstr "%J%qD:n edellinen esittely oli täällä" ! #: cp/parser.c:14717 cp/parser.c:18719 #, fuzzy, gcc-internal-format msgid "declaration of %qD in %qD which does not enclose %qD" msgstr "%J%qD:n edellinen esittely oli täällä" ! #: cp/parser.c:14740 #, gcc-internal-format msgid "multiple definition of %q#T" msgstr "" ! #: cp/parser.c:14767 #, gcc-internal-format msgid "opaque-enum-specifier without name" msgstr "" ! #: cp/parser.c:14770 #, gcc-internal-format msgid "opaque-enum-specifier must use a simple identifier" msgstr "" ! #: cp/parser.c:14946 #, gcc-internal-format msgid "%qD is not a namespace-name" msgstr "%qD ei ole nimiavaruuden nimi" ! #: cp/parser.c:14947 #, fuzzy, gcc-internal-format - #| msgid "expected class name" msgid "expected namespace-name" msgstr "odotettiin luokan nimeä" ! #: cp/parser.c:15072 #, gcc-internal-format msgid "% definition is not allowed here" msgstr "%-määrittely ei ole sallittu täällä" ! #: cp/parser.c:15218 #, gcc-internal-format msgid "a template-id may not appear in a using-declaration" msgstr "" ! #: cp/parser.c:15258 #, gcc-internal-format msgid "access declarations are deprecated in favour of using-declarations; suggestion: add the % keyword" msgstr "" ! #: cp/parser.c:15323 #, fuzzy, gcc-internal-format - #| msgid "new types may not be defined in a return type" msgid "types may not be defined in alias template declarations" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" ! #: cp/parser.c:15787 #, fuzzy, gcc-internal-format - #| msgid "% definition is not allowed here" msgid "a function-definition is not allowed here" msgstr "%-määrittely ei ole sallittu täällä" ! #: cp/parser.c:15799 #, fuzzy, gcc-internal-format msgid "an asm-specification is not allowed on a function-definition" msgstr "%Jvanhanmallinen funktiomäärittely" ! #: cp/parser.c:15803 #, fuzzy, gcc-internal-format msgid "attributes are not allowed on a function-definition" msgstr "%Jvanhanmallinen funktiomäärittely" ! #: cp/parser.c:15840 #, gcc-internal-format msgid "expected constructor, destructor, or type conversion" msgstr "" #. Anything else is an error. ! #: cp/parser.c:15875 cp/parser.c:17782 #, fuzzy, gcc-internal-format msgid "expected initializer" msgstr "epäkelpo alustin" ! #: cp/parser.c:15895 #, fuzzy, gcc-internal-format msgid "invalid type in declaration" msgstr "Varoita implisiittisistä funktioesittelyistä" ! #: cp/parser.c:15971 #, fuzzy, gcc-internal-format msgid "initializer provided for function" msgstr "indeksoitu arvo on osoitin funktioon" ! #: cp/parser.c:16005 #, gcc-internal-format msgid "attributes after parenthesized initializer ignored" msgstr "" ! #: cp/parser.c:16416 #, gcc-internal-format msgid "array bound is not an integer constant" msgstr "" ! #: cp/parser.c:16542 #, fuzzy, gcc-internal-format msgid "cannot define member of dependent typedef %qT" msgstr "parametrilla %P on vaillinainen tyyppi %qT" ! #: cp/parser.c:16546 ! #, fuzzy, gcc-internal-format msgid "%<%T::%E%> is not a type" ! msgstr "%J%qD on tavallisesti ei-staattinen funktio" ! #: cp/parser.c:16574 ! #, fuzzy, gcc-internal-format msgid "invalid use of constructor as a template" ! msgstr "epäkelpo %-avainsanan käyttö" ! #: cp/parser.c:16576 #, gcc-internal-format msgid "use %<%T::%D%> instead of %<%T::%D%> to name the constructor in a qualified name" msgstr "" --- 33079,33241 ---- msgid "elaborated-type-specifier for a scoped enum must not use the %<%D%> keyword" msgstr "" ! #: cp/parser.c:14357 #, gcc-internal-format msgid "declaration %qD does not declare anything" msgstr "esittely %qD ei esittele mitään" ! #: cp/parser.c:14443 #, fuzzy, gcc-internal-format msgid "attributes ignored on uninstantiated type" msgstr "%qs-attribuuttia ei huomioida ei-luokkatyypeille" ! #: cp/parser.c:14447 #, fuzzy, gcc-internal-format msgid "attributes ignored on template instantiation" msgstr "%qs-attribuuttia ei huomioida ei-luokkatyypeille" ! #: cp/parser.c:14452 #, gcc-internal-format msgid "attributes ignored on elaborated-type-specifier that is not a forward declaration" msgstr "" ! #: cp/parser.c:14586 #, fuzzy, gcc-internal-format msgid "%qD is an enumeration template" msgstr "%J%qD on tavallisesti ei-staattinen funktio" ! #: cp/parser.c:14594 #, fuzzy, gcc-internal-format msgid "%qD is not an enumerator-name" msgstr "%qD ei ole nimiavaruuden nimi" ! #: cp/parser.c:14657 #, fuzzy, gcc-internal-format msgid "expected %<;%> or %<{%>" msgstr "käytetty %<__thread%> ennen %:a" ! #: cp/parser.c:14705 #, fuzzy, gcc-internal-format msgid "cannot add an enumerator list to a template instantiation" msgstr "%qs-attribuuttia ei huomioida ei-luokkatyypeille" ! #: cp/parser.c:14714 cp/parser.c:18718 #, fuzzy, gcc-internal-format msgid "declaration of %qD in namespace %qD which does not enclose %qD" msgstr "%J%qD:n edellinen esittely oli täällä" ! #: cp/parser.c:14719 cp/parser.c:18723 #, fuzzy, gcc-internal-format msgid "declaration of %qD in %qD which does not enclose %qD" msgstr "%J%qD:n edellinen esittely oli täällä" ! #: cp/parser.c:14742 #, gcc-internal-format msgid "multiple definition of %q#T" msgstr "" ! #: cp/parser.c:14769 #, gcc-internal-format msgid "opaque-enum-specifier without name" msgstr "" ! #: cp/parser.c:14772 #, gcc-internal-format msgid "opaque-enum-specifier must use a simple identifier" msgstr "" ! #: cp/parser.c:14948 #, gcc-internal-format msgid "%qD is not a namespace-name" msgstr "%qD ei ole nimiavaruuden nimi" ! #: cp/parser.c:14949 #, fuzzy, gcc-internal-format msgid "expected namespace-name" msgstr "odotettiin luokan nimeä" ! #: cp/parser.c:15074 #, gcc-internal-format msgid "% definition is not allowed here" msgstr "%-määrittely ei ole sallittu täällä" ! #: cp/parser.c:15220 #, gcc-internal-format msgid "a template-id may not appear in a using-declaration" msgstr "" ! #: cp/parser.c:15260 #, gcc-internal-format msgid "access declarations are deprecated in favour of using-declarations; suggestion: add the % keyword" msgstr "" ! #: cp/parser.c:15325 #, fuzzy, gcc-internal-format msgid "types may not be defined in alias template declarations" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" ! #: cp/parser.c:15789 #, fuzzy, gcc-internal-format msgid "a function-definition is not allowed here" msgstr "%-määrittely ei ole sallittu täällä" ! #: cp/parser.c:15801 #, fuzzy, gcc-internal-format msgid "an asm-specification is not allowed on a function-definition" msgstr "%Jvanhanmallinen funktiomäärittely" ! #: cp/parser.c:15805 #, fuzzy, gcc-internal-format msgid "attributes are not allowed on a function-definition" msgstr "%Jvanhanmallinen funktiomäärittely" ! #: cp/parser.c:15842 #, gcc-internal-format msgid "expected constructor, destructor, or type conversion" msgstr "" #. Anything else is an error. ! #: cp/parser.c:15877 cp/parser.c:17784 #, fuzzy, gcc-internal-format msgid "expected initializer" msgstr "epäkelpo alustin" ! #: cp/parser.c:15897 #, fuzzy, gcc-internal-format msgid "invalid type in declaration" msgstr "Varoita implisiittisistä funktioesittelyistä" ! #: cp/parser.c:15973 #, fuzzy, gcc-internal-format msgid "initializer provided for function" msgstr "indeksoitu arvo on osoitin funktioon" ! #: cp/parser.c:16007 #, gcc-internal-format msgid "attributes after parenthesized initializer ignored" msgstr "" ! #: cp/parser.c:16418 #, gcc-internal-format msgid "array bound is not an integer constant" msgstr "" ! #: cp/parser.c:16544 #, fuzzy, gcc-internal-format msgid "cannot define member of dependent typedef %qT" msgstr "parametrilla %P on vaillinainen tyyppi %qT" ! #: cp/parser.c:16548 ! #, gcc-internal-format msgid "%<%T::%E%> is not a type" ! msgstr "%<%T::%E%> ei ole tyyppi" ! #: cp/parser.c:16576 ! #, gcc-internal-format msgid "invalid use of constructor as a template" ! msgstr "muodostimen virheellinen käyttö mallina" ! #: cp/parser.c:16578 #, gcc-internal-format msgid "use %<%T::%D%> instead of %<%T::%D%> to name the constructor in a qualified name" msgstr "" *************** msgstr "" *** 33637,33904 **** #. here because we do not have enough #. information about its original syntactic #. form. ! #: cp/parser.c:16593 #, fuzzy, gcc-internal-format msgid "invalid declarator" msgstr "Varoita implisiittisistä funktioesittelyistä" ! #: cp/parser.c:16660 #, fuzzy, gcc-internal-format msgid "expected declarator" msgstr "useita tallennuspaikkoja esittelymääritteissä" ! #: cp/parser.c:16763 #, gcc-internal-format msgid "%qD is a namespace" msgstr "%qD on nimiavaruus" ! #: cp/parser.c:16765 #, fuzzy, gcc-internal-format msgid "cannot form pointer to member of non-class %q#T" msgstr "parametrilla %P on vaillinainen tyyppi %qT" ! #: cp/parser.c:16786 #, fuzzy, gcc-internal-format msgid "expected ptr-operator" msgstr "vektoriylivuoto lausekkeessa" ! #: cp/parser.c:16845 ! #, fuzzy, gcc-internal-format msgid "duplicate cv-qualifier" ! msgstr "case-arvon kaksoiskappale" ! #: cp/parser.c:16903 #, fuzzy, gcc-internal-format msgid "duplicate virt-specifier" msgstr "case-arvon kaksoiskappale" ! #: cp/parser.c:17065 cp/typeck2.c:448 cp/typeck2.c:1685 #, fuzzy, gcc-internal-format msgid "invalid use of %" msgstr "epäkelpo %-avainsanan käyttö" ! #: cp/parser.c:17084 #, fuzzy, gcc-internal-format - #| msgid "new types may not be defined in a return type" msgid "types may not be defined in template arguments" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" ! #: cp/parser.c:17165 #, fuzzy, gcc-internal-format msgid "expected type-specifier" msgstr "taulukon indeksin tyyppi on %" ! #: cp/parser.c:17407 ! #, fuzzy, gcc-internal-format msgid "expected %<,%> or %<...%>" ! msgstr "käytetty %<__thread%> ennen %:a" ! #: cp/parser.c:17464 #, fuzzy, gcc-internal-format - #| msgid "new types may not be defined in a return type" msgid "types may not be defined in parameter types" msgstr "uusia tyyppejä ei voi määritellä paluutyypissä" ! #: cp/parser.c:17590 #, gcc-internal-format msgid "deprecated use of default argument for parameter of non-function" msgstr "" ! #: cp/parser.c:17594 #, gcc-internal-format msgid "default arguments are only permitted for function parameters" msgstr "" ! #: cp/parser.c:17613 #, fuzzy, gcc-internal-format msgid "parameter pack %qD cannot have a default argument" msgstr "strftime-muotoilut eivät voi muotoilla argumentteja" ! #: cp/parser.c:17621 #, fuzzy, gcc-internal-format msgid "parameter pack cannot have a default argument" msgstr "strftime-muotoilut eivät voi muotoilla argumentteja" ! #: cp/parser.c:17910 #, gcc-internal-format msgid "ISO C++ does not allow designated initializers" msgstr "" ! #: cp/parser.c:17924 #, fuzzy, gcc-internal-format msgid "ISO C++ does not allow C99 designated initializers" msgstr "ISO C90 ei tue joustavia taulukkojäseniä" ! #: cp/parser.c:18032 cp/parser.c:18157 #, fuzzy, gcc-internal-format - #| msgid "expected class name" msgid "expected class-name" msgstr "odotettiin luokan nimeä" ! #: cp/parser.c:18337 #, fuzzy, gcc-internal-format msgid "expected %<;%> after class definition" msgstr "Käytä AltiVec-käskyjä" ! #: cp/parser.c:18339 #, fuzzy, gcc-internal-format msgid "expected %<;%> after struct definition" msgstr "Käytä AltiVec-käskyjä" ! #: cp/parser.c:18341 #, fuzzy, gcc-internal-format msgid "expected %<;%> after union definition" msgstr "%qD esitelty extern-avainsanalla sisäkkäin" ! #: cp/parser.c:18662 #, fuzzy, gcc-internal-format msgid "expected %<{%> or %<:%>" ! msgstr "käytetty %<__thread%> ennen %:a" ! #: cp/parser.c:18673 #, gcc-internal-format msgid "cannot specify % for a class" msgstr "" ! #: cp/parser.c:18681 #, gcc-internal-format msgid "global qualification of class name is invalid" msgstr "" ! #: cp/parser.c:18688 #, fuzzy, gcc-internal-format msgid "qualified name does not name a class" msgstr "esittely ei esittele mitään" ! #: cp/parser.c:18700 ! #, fuzzy, gcc-internal-format msgid "invalid class name in declaration of %qD" ! msgstr "%qD esitelty staattisesti sisäkkäin" ! #: cp/parser.c:18733 #, gcc-internal-format msgid "extra qualification not allowed" msgstr "" ! #: cp/parser.c:18745 #, gcc-internal-format msgid "an explicit specialization must be preceded by %